“ A/UX Text-Processing Tools

Release 3.0



LIMITED WARRANTY ON MEDIA AND REPLACEMENT

If you discover physical defects in the manuals distributed with an Apple product or in the media on
which a software product is distributed, Apple will replace the media or manuals at no charge to you,
provided you return the item to be replaced with proof of purchase to Apple or an authorized Apple
dealer during the 90-day period after you purchased the software. In addition, Apple will replace
damaged software media and manuals for as long as the software product is included in Apple’s Media
Exchange Program. While not an upgrade or update method, this program offers additional
protection for up to two years or more from the date of your original purchase. See your authorized
Apple dealer for program coverage and details. In some countries the replacement period may be
different; check with your authorized Apple dealer.

ALL IMPLIED WARRANTIES ON THE MEDIA AND MANUALS, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY (90) DAYS FROM THE DATE OF THE ORIGINAL RETAIL
PURCHASE OF THIS PRODUCT.

Even though Apple has tested the software and reviewed the documentation, APPLE MAKES NO
WARRANTY OR REPRESENTATION, EITHER EXPRESS, OR IMPLIED, WITH RESPECT TO
SOFTWARE, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS SOFTWARE IS SOLD “AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE SOFTWARE OR ITS
DOCUMENTATION, even if advised of the possibility of such damages. In particular, Apple shall have
no liability for any programs or data stored in or used with Apple products, including the costs of
recovering such programs or data.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN, EXPRESS, OR IMPLIED. No Apple dealer, agent, or employee is
authorized to make any modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other rights which vary from state to state.



& Apple Computer, Inc.

This manual and the software described in it are copyrighted, with all rights reserved. Under the
copyright laws, this manual or the software may not be copied, in whole or part, without written
consent of Apple, except in the normal use of the software or to make a backup copy of the software.
The same proprietary and copyright notices must be affixed to any permitted copies as were affixed to
the original. This exception does not allow copies to be made for others, whether or not sold, but all of
the material purchased (with all backup copies) may be sold, given, or loaned to another person.
Under the law, copying includes translating into another language or format.

You may use the software on any computer owned by you, but extra copies cannot be made for this
purpose.

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the “keyboard” Apple logo
(Option-Shift-k) for commercial purposes without the prior written consent of Apple may constitute
trademark infringement and unfair competition in violation of federal and state laws.

© Apple Computer, Inc., 1992
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, A/UX, ImageWriter, LaserWriter, and Macintosh are trademarks of Apple
Computer, Inc., registered in the United States and other countries.

Adobe Illustrator, PostScript, and TranScript are trademarks of Adobe Systems Incorporated, registered
in the United States.

APS-5 is a trademark of Autologic.

Hewlett-Packard 2631 is a trademark of Hewlett-Packard.

ITC Zapf Dingbats is a registered trademark of International Typeface Corporation.
Linotronic is a registered trademark of Linotype Co.

Microsoft is a trademark of Microsoft Corporation.

Teletype is a registered trademark of AT&T.

TermiNet is a trademark of General Electric.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Varityper is a registered trademark, and VT600 is a trademark, of AM International, Inc.
Versatec is a registered trademark of Versatec.

Simultaneously published in the United States and Canada.

Mention of third-party products is for informational purposes only and constitutes neither an
endorsement nor a recommendation. Apple assumes no responsibility with regard to the performance
or use of these products.



Contents

Figures and Tables / xxiii

About This Guide / xxxi

What are text-processing tools? / xxxi

Who should use this book / xxxi

How to use this book / xxxii

Conventions used in this guide / xxxiii
Keys and key combinations / xxxiii
Terminology / xxxiii
The Courier font / xxxiv
Font styles / xxxv
A/UX command syntax / xxxv
Manual page reference notation / xxxvi
For more information / xxxvii

1 Introduction to A/UX Text Processing / 1-1

What are the A/UX text-processing tools? / 1-2
troff and nroff fortext / 1-2
The mm macro package for text / 14
tbl fortables / 1-4
eqn for formatting equations / 1-6
pic for pictures / 16



grap forgraphs / 1-8
Other macro packages / 1-10

Page layout concepts / 1-11
Principal units of measurement / 1-12
Line length / 1-13
Page length / 1-14
Paragraph types / 1-14
Margins / 1-15
Adjusted and filled text / 1-15
Indentation / 1-16
Headers and footers / 1-17
Centered text / 1-18
Footnotes / 1-19
Heading levels / 1-19

Font descriptions / 1-20
Type families: Changing to bold and italic / 1-20
Point size / 1-22
Vertical spacing / 1-23
Character set / 1-24
Accents / 1-25
Overstriking / 1-26

Other formatting features / 1-26
Displays / 1-26
Lists / 1-27
Tables of contents / 1-28
Multicolumn output / 1-28
Strings / 1-29
Number registers / 1-29
Defining and using macros / 1-30
Horizontal and vertical line spacing / 1-31
Line drawing 1-32

Document printing / 1-32
Output devices / 1-32
The TranScript package / 1-33

Contents



2 troff/mm Tutorial / 2-1

Lesson 1: Producing a formatted letter / 2-2
Using mm displays / 2-2 v
Creating spaces between paragraphs / 2-3
Creating a list with bullets / 24
Changing fonts / 2-5
Indenting text / 2-5
Formatting and printing your file / 2-6
Lesson 2: Producing letterhead / 2-8
Setting top-of-page instructions / 2-9
Changing the size of your text / 2-9
Changing the size of your page / 2-10
Designing your letterhead / 2-10
Printing your letter on letterhead / 2-12

Lesson 3: Modifying the appearance of a page / 2-14

Producing a footnote / 2-14
Producing graphics / 2-16

3 nroff/troff Formatters / 3-1

Whatis nroff/troff formatting? / 3-2
Options when invoking nroff and troff formatters / 3-3

Principles of nroff and troff formatters / 3-6
Form of input / 3-6
Formatter and device resolution / 3-7
Numeric parameter input / 3-7
Numeric expressions / 3-8
Notation / 3-9
troff characterset / 3-10

Definitions of terms / 3-10

Working with text / 3-12
Choosing a font / 3-12

Contents



Setting character size / 3-12

Overstriking characters / 3-14

Setting zero-width characters / 3-14

Creating large brackets / 3-14

Underlining / 3-15

Setting vertical spacing / 3-17
Adding an extra line space / 3-18
Creating a block of vertical space / 3-18

Structuring the page / 3-20

Filling, adjusting, and centering text / 3-22
Controlling line and word breaks / 3-22
Hyphenating text / 3-24

Indenting lines / 3-25

Setting tabs / 3-26
Setting field delimiters / 3-27

Advanced features / 3-28

Creating macros and strings / 3-28
Interpreting copy mode input / 3-28
Defining arguments / 3-29

Creating diversions: Storing and redirecting text / 3-30

Using traps / 3-31

Storing values: Creating number registers / 3-33

Creating three-part titles / 3-34

Spacing characters on a line: Setting horizontal and vertical motion and width / 3-35
Moving characters within a line: Setting local motion / 3-35
Spacing characters within a line: Setting width / 3-36
Overprinting text: Marking horizontal place / 3-36

Numbering output lines / 3-37

Using conditionals / 3-39

Switching environments / 3-41

Inserting from standard input / 3-41

Switching input/output files / 3-42

Reading output and error messages / 3-43

Miscellaneous requests / 3-44

Input/output conventions and character translations / 3-45

viii Contents



Input character translations / 3-45

Ligatures / 3-45

Control characters / 3-46

Output translation / 3-46

Transparent throughput / 3-47

Comments and concealed newline characters / 3-47

Reference tables / 3-48

mm Macros / 4-1

What are mm macros, and why should you use them? / 4-3
Required structure for a document / 4-4
Restricted use of the BEL character / 4-5

Options and commands for accessing mm / 4-5
The mm command / 4-5
The -mm flag / 4-7
Typical command lines / 47
Parameters set from the command line / 4-10
Omission of -mm flag / 4-12
SCCS release identification / 4-13

Working with text / 4-13
Understanding formatting / 4-14
Using arguments and double quotation marks / 4-14
Specifying unpaddable spaces / 4-15
Hyphenating text / 4-15
Setting tabs / 4-16
Justifying the right margin / 4-17
Spacing lines of text / 417
Setting point size and vertical spacing / 4-18
Reducing point size of a string / 4-19
Creating bullets / 4-20
Using dashes, minus signs, and hyphens / 4-20
Using bold, italic, and roman fonts / 4-21
Creating a trademark string / 4-22

Contents



Producing accents / 4-22
Inserting text interactively / 4-23
Using formatter requests / 4-24

Structuring the page / 4-25

Creating paragraphs / 4-25

Indenting paragraphs / 4-25

Numbering paragraphs / 4-26

Setting spacing between paragraphs / 4-27
Creating numbered headings / 4-27

Using default headings / 4-27

Changing the appearance of headings / 4-28

Working with unnumbered headings / 4-32

Using headings in the table of contents / 4-32

Using headings in page numbering / 4-33

Creating user exit macros / 4-33
Creating page headers and footers / 4-35

Using default headers and footers / 4-36

Using header and footer macros / 4-36

Header and footer example / 4-39

Skipping pages / 4-39

Forcing an odd page / 4-39

Specifying top and bottom margins / 4-40

Using the word “PRIVATE” in the header / 4-40

Defining a macro for top-of-page processing / 4-40

Defining a macro for bottom-of-page processing / 4-41

Creating a disclaimer using a proprietary marking macro / 4-42
Creating two-column output / 4-43

Creating headings for two-column output / 4-44
Hints for large documents / 4-44

Creating lists / 4-45

Contents

Using list-initialization macros / 4-45
Using list-item macros / 4-46

Using list-end macros / 4-47

Setting spacing in a list / 4-48
Numbering or alphabetizing a list / 4-48



Creating a bulleted list / 4-49
Creating a dashed list / 4-49
Creating a marked list / 4-50
Creating a reference list / 4-50
Creating a variable-item list / 4-51
Example of nested lists / 4-52
Using list-begin macros / 4-54
Defining other list structures / 4-56

Creating memorandum and released-paper style documents / 4-59
Understanding the sequence of beginning macros / 4-59
Generating a title / 4-60
Describing the author / 4-61
Specifying the TM numbers / 4-62
Identifying the abstract / 4-62
Using other keywords / 4-63
Understanding memorandum types / 4-64
Changing the date / 4-65
Using an alternate first-page format / 4-66
Example of input text / 4-66
Creating end-of-memorandum macros / 4-67

Using the signature block / 4-67
Using “copy to” and other notations / 4-68
Generating the approval signature line / 4-70
Forcing a one-page letter / 4-70
Using define file information / 4-70
Using business letter style / 4-71
Using the letter-type macro / 4-71
Using writer’s address macros / 4-73
Using inside address macros / 4-74
Using the letter-options macro / 4-75
Generating multipage letters / 4-77
Understanding the sequence of beginning letter macros / 4-77

Creating displays / 4-78
Starting static displays / 4-79
Starting floating displays / 4-81

Contents



Using displays in tables / 4-83
Using displays in equations / 4-84
Using displays in figure, table, equation, and exhibit titles / 4-85
Listing figures, tables, equations, and exhibits / 4-86
Creating footnotes / 4-87
Numbering footnotes / 4-87
Delimiting footnote text / 4-87
Controlling format style of footnote text / 4-88
Setting spacing between footnote entries / 4-90

Generating a table of contents and cover sheet / 4-90

Generating a table of contents / 4-91
Generating a cover sheet / 4-93

Using references / 4-93
Numbering references / 4-94
Delimiting reference text / 4-94
Creating subsequent references / 4-94
Generating a reference page / 4-95
Troubleshooting / 4-96
What happens when a macro detects an error? / 4-96
Why does output disappear? / 4-96
Extending and modifying memorandum macros / 4-97
Naming conventions / 4-97
Names used by formatters / 4-98
Names used by memorandum macros / 4-98
Names used by cw, eqn/neqn,and tbl / 498
Names defined by user / 4-99
Sample appendix headings / 4-99
Hanging indents with tabs / 4-100

mm examples / 4-101
mm reference tables / 4-106

Error messages / 4-116
mm error messages / 4-116
Formatter error messages / 4-119

Contents



5 ms Macros / 5-1

What are ms macros? / 5-3
How input is read / 5-3
Understanding arguments and double quotation marks / 5-5
Sequence of beginning macros / 5-5

Using basic document formats / 5-5
Cover sheets / 5-5
Titles / 5-6
Authors / 5-6
Abstracts / 5-7
Paper styles / 5-8
Chapter titles / 5-8
UNIX trademark / 5-9

Changing the look of the document / 5-9
Creating multicolumn output / 5-10
Setting point size and vertical spacing / 5-10
Changing top and bottom margins / 5-11
Changing line length / 5-12
Changing page offset / 5-12
Changing tab setting / 5-13
Changing fonts / 5-13
Changing the string point size / 5-14
Changing and removing the date / 5-15
Structuring the page / 5-16
Creating paragraphs / 5-16
Creating the standard paragraph / 5-16
Creating a left-block paragraph / 5-16
Indenting paragraphs / 5-17
Creating a hanging paragraph / 5-18
Creating a quote paragraph / 5-19
Changing the spacing between paragraphs / 5-19
Creating headings / 5-20
Creating numbered headings / 5-20
Working with unnumbered headings / 5-21

Contents



Creating page headers and footers / 5-21
Using standard headers / 5-22
Using standard footers / 5-22
Customizing headers and footers / 5-23
Printing a header and/or footer on the first page / 5-24
Creating multiline headers and footers / 5-24
Setting title length / 5-25
Keeping text together on a page / 5-25
Forcing a page with static keeps / 5-25
Using floating keeps / 5-26
Indenting blocks of text / 5-26
Creating displays / 5-27
Using ms displays / 5-27
Standard display format / 5-27
Indented display / 5-28
Left-adjusted display / 5-28
Centered display / 5-28
Block display / 5-29
Display distance / 5-29
Producing tables and equations / 5-29
Creating tables / 5-30
Creating equations / 5-31
Creating footnotes / 5-32
Changing footnote style / 5-32
Changing footnote indent / 5-33
Changing footnote length / 5-33

Using references / 5-34

Creating an index or a table of contents / 5-34
Understanding index format / 5-35
Printing the index / 5-36
Printing the table of contents / 5-36
Drawing boxes / 5-37
Boxing a word / 5-37
Boxing a block of text / 5-37

Contents



* Troubleshooting / 8-28
Error conditions / 8-28
The checkeq program / 8-29

pic Line Drawings / 9-1.

Whatis pic? / 9-2

Using pic / 9-2
Understanding pic command syntax / 9-2
Understanding the troff interface / 9-2
Defining the picture format / 9-3

Drawing pictures / 9-5
Drawing primitive objects / 9-5
Setting object attributes / 9-7
Setting object variables / 9-10
Changing the sizes of objects / 9-11
Adding text to pictures / 9-12
Positioning objects / 9-14
Using coordinates / 9-14
Using corners / 9-16
Positioning with move / 9-18
Positioning with variables / 9-18
Labeling objects / 9-19
Grouping objects / 9-20
Using blocks / 9-24
Using the chop facility / 9-27

Creating macros / 9-28

Understanding mathematical functions / 9-29
Understanding loops and conditional statements / 9-30
Understanding expressions / 9-32

Examples of pic specifications / 9-32

Contents



10 grap Graphs / 10-1

What is grap? / 10-3

Using grap / 10-4

Defining the graph format / 10-5
Specifying charts: Default actions / 10-5
Adjusting the frame / 10-8

Adding text to a chart / 10-9

Adding grid lines to a chart / 10-10
Using the shell / 10-11

Creating macros / 10-12

Using the copy thru construction / 10-13
Using loops and conditionals / 10-13

Plotting curves / 10-16
Using polar coordinates / 10-19
Using equally scaled axes / 10-23
Plotting curves from data points / 10-26

Summary of grap syntax / 10-28

11 Related Tools / 11-1

What are the other text preprocessors? / 11-2
Preparing constant-width text / 11-2
Numbering lines / 11-2
Translating characters / 11-3
Single-spacing a document / 11-4
Changing the format of a text file / 114
Printing Greek characters / 11-4
Creating underlines for your terminal / 11-5
Stripping out reverse line feeds / 11-5

Using a macro package to typeset viewgraphs and slides / 11-6

Contents



Using special tools for the manual pages / 11-6
Creating a manual page / 11-7
Reading online manual entries / 11-7
Creating a permuted index / 11-7

Checking your work before you format it / 11-8

Checking your spelling / 11-8

Checking your writing style / 11-8

Checking your document’s clarity / 11-9
Checking your eqn commands / 11-9
Checking your mm commands / 11-10
Checking your ms commands / 11-10
Checking your cw commands / 11-11

Glossary / G-1
Index / I-1

Contents



Figures and Tables

Chapter 1 Introduction to A/UX Text Processing / 1-1

Figure 1-1 Producing a printed document / 1-2

Figure 1-2 Example of tbl output / 1-5

Figure 1-3 A simple picture / 1-7

Figure 1-4 A more complicated picture / 1-7

Figure 1-5 An even more complicated picture / 1-8
Figure 1-6 Agraph / 1-9

Figure 1-7 A more complicated graph / 1-10

Figure 1-8 Parts of a page / 1-12

Table 1-1 Principal units of measurement / 1-13

Table 1-2 Argument n defaults / 1-15

Table 1-3 Using mm macros to change fonts to bold and italic / 1-21
Table 1-4 Using numbers to specify fonts / 1-22

Table 1-5 Accessing a few special font characters / 1-25

Chapter2 troff/mm Tutorial / 2-1

Figure 2-1 Contents of your file with text and troff/mm code / 2-7
Figure 2-2 File printed on a LaserWriter / 2-8

Figure 2-3 A sample letterhead / 2-12

Figure 2-4 A sample letter / 2-13



Figure 2-5
Figure 2-6

A sample letter with a footnote / 2-15
A sample line graphic / 2-16

Chapter 3 nroff/troff Formatters / 3-1

Table 3-1
Table 3-2

Table 3-3

Table 3-4

Table 3-5

Table 3-6

Table 3-7

Table 3-8

Table 3-9

Table 3-10
Table 3-11
Table 3-12
Table 3-13
Table 3-14
Table 3-15
Table 3-16
Table 3-17
Table 3-18
Table 3-19
Table 3-20
Table 3-21
Table 3-22
Table 3-23
Table 3-24
Table 3-25
Table 3-26

xxiv Figures and Tables

Options for invoking nroff/troff / 34

Numeric input and appended scale indicators for
nroff/troff / 3-7

ASCII character exceptions to troff / 3-10
Character size request forms / 3-13
Line-drawing requests / 3-17

Vertical space requests / 3-19

Page control requests / 3-20

Interrupted text requests / 3-23
Hyphenation requeéts / 3-24

Line length and indent requests / 3-25
Three types of internal tab stops / 3-26

Field requests / 3-27

Trap requests / 3-31

Number register access sequences / 3-33
Number register requests / 3-34

Three-part title requests / 3-35

Output line numbering requests / 3-37
Summary and explanation of conditional acceptance requests / 3-39
Built-in condition names / 3-40
Environment switching request / 341
Standard input insertion requests / 3-42
Input/output switching requests / 3-42
Output printing request / 3-43
Miscellaneous requests / 3-44

Output translation requests / 3-46

Escape sequences for characters, indicators, and functions / 3-48



Checking your work / 5-38
Using nroff/troff commandsin ms / 5-38

Creating your own macros / 5-39
Conventions used in this reference / 5-39
Format of names used by ms / 5-40
Names used by eqn/neqn and tbl / 540

Reference tables / 5-40

me Macros / 6-1

What are me macros? / 6-2
How input is read / 6-2
Understanding arguments and double quotation marks / 6-2
Sequence of beginning macros / 6-3

Using basic document formats / 6-3
Title pages / 6-3
Chapter titles / 6-3
Thesis format / 6-4

Changing the look of the document / 6-5
Creating multicolumn output / 6-5
Setting point size and vertical spacing / 6-6
Changing top and bottom margins / 6-6
Changing line length / 6-6
Changing page offset / 6-7
Changing fonts / 6-7
Changing the string point size / 6-8
Structuring the page / 6-8
Creating paragraphs / 6-8
Creating the standard paragraph / 69
Creating a left-block paragraph / 6-9
Indenting paragraphs / 6-9
Creating headings / 6-11
Creating numbered headings / 6-11
Working with unnumbered headings / 6-12

Contents



Table 3-27 Naming conventions for special characters on the standard

fonts / 3-50
Table 3-28 Naming conventions for Greek characters on the special font / 3-51
Table 3-29 Naming conventions for special characters on the special font / 3-52

Table 3-30 Predefined general number registers / 3-53
Table 3-31 Predefined read-only number registers / 3-54

Chapter4 mm Macros / 4-1

Figure 4-1 Example of input file for a simple letter / 4-102
Figure 4-2 Example of a simple letter: nroff output / 4-104
Figure 4-3 Example of a simple letter: troff output / 4-105
Table 4-1 mm command options / 4-6

Table 4-2 Number registers to hold parameter values / 4-10
Table 4-3 Formatter requests useful with mm / 4-24

Table 44 Arguments for marking numeral styles / 4-31

Table 4-5 Arguments for the width control macro / 4-43
Table 4-6 List-initialization macros / 4-46

Table 4-7 “Copy to” notations / 4-68

Table 4-8 Letter-type arguments and formats / 4-71

Table 4-9 Letter formatting components and macros / 4-72
Table 4-10 Format argument in static displays / 4-79

Table 4-11 Fill argument in static displays / 4-80

Table 4-12 De number register code settings in floating displays / 4-82
Table 4-13 Df number register code settings in floating displays / 4-82
Table 4-14 Hyphenating footnote text / 4-89

Table 4-15 Memorandum macro names / 4-106

Table 4-16 String names / 4-112

Table 4-17 Number register names / 4-113

Table 4-18 mm error messages / 4-117

Table 4-19 Formatter error messages / 4-119

Figures and Tables XXV



xvi

Creating page headers and footers / 6-12
Keeping text together on a page / 6-13
Forcing a page with static keeps / 6-13
Using floating keeps / 6-13
Indenting blocks of text / 6-14
Centering blocks of text / 6-14
Creating displays / 6-14
Using me displays / 6-14
Major quotes / 6-15
Standard lists / 6-15
Custom lists / 6-15
Creating footnotes / 6-16

Creating an index or a table of contents / 6-16
Understanding index format / 6-17
Printing the index / 6-17
Drawing boxes / 6-18
Boxing a word / 6-18
Boxing a block of text / 6-18
Checking your work / 6-18

Creating your own macros / 6-19
Conventions used in this reference / 6-19
Defining a macro in me / 6-19

Reference tables / 6-20

tbl Tables / 7-1

Whatis tb1? / 7-2

Using tbl / 7-2
Understanding command-line syntax / 7-2
Defining table formats / 7-3

Using global format options / 7-3
Setting table width and positioning / 74

Contents



Chapter 5 ms Macros / 5-1

Table 5-1

Table 5-2

Table 5-3

Table 5-4

Table 5-5

Table 5-6

Table 5-7

Table 5-8

Table 59

Table 5-10
Table 5-11
Table 5-12
Table 5-13
Table 5-14
Table 5-15
Table 5-16
Table 5-17
Table 5-18
Table 5-19
Table 5-20
Table 5-21
Table 5-22
Table 5-23
Table 5-24
Table 5-25
Table 5-26
Table 5-27
Table 5-28
Table 5-29
Table 5-30

xxvi Figures and Tables

ms macros that cause a break / 54

Title macro / 5-6

Author macros / 5-7

Abstract macros / 5-7

Paper styles macros-/ 5-8

Chapter title macro / 5-9

UNIX trademark macro / 5-9

Multicolumn macros / 5-10

Point size and vertical spacing registers / 5-11
Top and bottom margin registers / 5-11

Line length register / 5-12

Page offset register / 5-12

Tab setting macro / 5-13

Font changing macros / 5-14

String point size changing macros / 5-15
Date changing macro / 5-15

Date removal macro / 5-15

Standard paragraph macros / 5-16
Left-block paragraph macros / 5-17
Indented paragraph macros / 5-18

Indented paragraph registers / 5-18
Hanging paragraph macro / 5-19

Quote paragraph macro / 5-19

Paragraph spacing register / 5-19

Numbered headings macros / 5-20
Unnumbered headings macros / 5-21
Standard header macros / 5-22

Standard footer macros / 5-22

Customized header and footer macros / 5-23
Printing header/footer on first page macro / 5-24



Drawing boxes / 7-4

Changing line thickness / 7-5

Setting a new tab character / 7-5

Using mathematical equations in tables / 7-5
Using tobl with other A/UX preprocessors / 7-6

Aligning columns: Keyletters / 7-6
Understanding numeric columns / 7-7
How tbl reads keyletter instructions / 7-8
Fine-tuning keyletter specifications / 7-9

Drawing horizontal lines / 7-9
Drawing vertical lines / 7-10
Setting column spacing / 7-10
Setting vertical spacing / 7-10
Setting vertical spanning / 7-11
Setting column width / 7-11
Setting equal-width columns / 7-11
Setting staggered columns / 7-11
Changing fonts / 7-12

Changing point sizes / 7-12

Using zero-width items / 7-12
Using default column spacing / 7-12

Refining formats / 7-13
Inserting troff commands in tables / 7-13
Setting up text blocks for multiline entries / 7-13
Drawing lines / 7-14
Drawing full-width horizontal lines / 7-14
Drawing single-column-width lines / 7-15
Repeating characters / 7-15
Using vertical spanning / 7-15

Producing multipage tables with repeated headings / 7-16
Adding new tbl format instructions in the text / 7-17
tbl restrictions / 7-18

Examples of tbl inputand output / 7-19

Contents



Chapter 6

Table 5-31
Table 5-32
Table 5-33
Table 5-34
Table 5-35
Table 5-36
Table 5-37
Table 5-38
Table 5-39
Table 5-40
Table 5-41
Table 5-42
Table 5-43
Table 5-44
Table 5-45
Table 5-46
Table 5-47
Table 5-48
Table 5-49
Table 5-50
Table 5-51
Table 5-52
Table 5-53
Table 5-54
Table 5-55

Setting title length register / 5-25
Static-keeps macros / 5-25
Floating-keeps macros / 5-26
Right-shift macros / 5-26
Standard display macro / 5-27
Indented display macro / 5-28
Left-adjusted display macro / 5-28
Centered display macro / 5-28
Block display macro / 5-29
Display distance macro / 5-29
Table macros / 5-30

Equations macros / 5-31

Begin and end footnote macros / 5-32
Footnote format register / 5-33
Footnote indent register / 5-33
Footnote length register / 5-33
Reference macros / 5-34

Index format macros / 5-36
Index print macros / 5-36

Table of contents print macro / 5-36
Boxed word macros / 5-37
Boxed block of text macros / 5-37
ms macro summary / 5-40
Number register summary / 5-43
ms string summary / 5-45

me Macros / 6-1

Table 6-1
Table 6-2
Table 6-3
Table 6-4

Title pages macro / 6-3

me chapter titles macros / 6-4
Thesis format macro / 64
Multiple column macros / 6-5

Figures and Tables



8 egn Equations / 8-1

What is eqn? / 8-2

Using eqn / 8-2
Understanding command-line syntax / 8-2
Using eqn with other A/UX preprocessors / 8-3
Using Greek letters and mathematical symbols / 8-3
Using additional symbols / 8-7
Using /usr/pub/eqnchar / 88
Using command delimiters / 8-8
Using displayed equations / 8-8
Using inline equations / 8-10
Defining equations / 8-11
Specifying equations / 8-12
How spaces are interpreted during input / 8-13
Using special characters to force output spacing / 8-13
Using quotation marks / 8-14
Combining items with braces / 8-15
Using equation labels / 8-15

Entering equations / 8-16
Subscripts and superscripts / 8-16
Fractions / 8-17
Square roots / 8-18
Items with limits / 8-18
Diacritical marks / 8-19
Oversized brackets / 8-20
Piling objects / 8-21
Matrixes / 8-22

Aligning equations / 8-23
Controlling local motions / 8-24

Changing the size and shape of fonts / 8-24
Making local changes / 8-25
Making global changes / 8-26

Understanding precedence rules / 827

xviii Contents



Table 6-5 Point size and vertical spacing registers / 6-6

Table 6-6 Font changing macros / 6-8

Table 6-7 String point size changing macro / 6-8
Table 6-8 Standard paragraph macro / 69
Table 69 Left-block paragraph macro / 6-9

Table 6-10 Indented paragraph macros / 6-10
Table 6-11 Indented paragraph register / 6-10
Table 6-12 Numbered headings macros / 6-12
Table 6-13 Unnumbered headings macro / 6-12
Table 6-14 Static keeps macros / 6-13

Table 6-15 Floating keeps macros / 6-13

Table 6-16 Centering macros / 6-14

Table 6-17 Major quotes macros / 6-15

Table 6-18 Standard lists macros / 6-15

Table 6-19 Custom lists macros / 6-16
Table 6-20 Begin and end footnote macros / 6-16
Table 6-21 Index format macros / 6-17

Table 6-22 Index print macro / 6-17

Table 6-23 Boxed word macro / 6-18

Table 6-24 me macro summary / 6-20
Table 6-25 Number register summary / 6-22
Table 6-26 String summary / 6-22

Chapter 7 tbl Tables / 7-1

Figure 7-1 Table using the expand option / 7-19

Figure 7-2 Table using the allbox and center options / 7-20
Figure 7-3 Table using the vertical bar keyletter feature / 7-21
Figure 7-4 Table using horizontal lines in place of keyletters / 7-22
Figure 7-5 Table using additional command lines / 7-23

Figure 7-6 Table using text blocks / 7-24

Figure 7-7 Table using eqn delimiters / 7-25

xxvili  Figures and Tables



Chapter 8

Chapter 9

Figure 7-8
Figure 7-9
Figure 7-10
Table 7-1
Table 7-2
Table 7-3

Table using horizontal lines in place of data / 7-26
Table showing the versatility of the tbl program / 7-27
Table showing font changes / 7-28

Allowable global options / 74
Keyletter descriptions / 7-7
Numeric column alignment / 7-7

eqn Equations / 8-1

Table 8-1
Table 8-2
Table 8-3

Standard mathematical characters / 8-5
Greek alphabet / 8-6
Additional character set / 87

pic Line Drawings / 9-1

Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 9-7
Figure 9-8
Figure 9-9
Table 9-1

Table 9-2

Table 9-3

pic primitive objects / 9-6

Space pig / 9-32

Source code for “space pig” / 9-33

Sine and cosine curves / 9-34

Source code for “sine and cosine curves” / 9-34
File-system diagram / 9-35

Source code for “file-system diagram” / 9-35
Geometric shape / 9-37

Source code for “geometric shape” / 9-37

Primitive object attributes / 9-8
Primitive object variables / 9-10
Mathematical functions / 9-29

Figures and Tables



Chapter 10 grap Graphs / 10-1

Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5
Figure 10-6
Figure 10-7
Figure 10-8
Figure 10-9
Figure 10-10
Figure 10-11
Figure 10-12
Figure 10-13
Figure 10-14
Figure 10-15
Figure 10-16

XXX Figures and Tables

A simple graph / 10-3

A more complicated graph / 104

The default graph / 10-7

A better graph / 10-7

A dotted frame / 109

Adding grid lines / 10-11

Plotting a simple curve / 10-15

Shading part of a curve / 10-16

Logarithmic and exponential functions / 10-18
Plotting a polar equation / 10-20

A second polar equation / 10-21

A grap circle / 10-22

Equally scaled axes / 10-24

Equally scaled axes without coord / 10-25
Sample C program to generate data / 10-26
Plotting a curve from data points / 10-27



About This Guide

Welcome to A/UX Text-Processing Tools. This book describes the commands you need to
format text, tables, equations, and graphics. You can also use the tutorial in Chapter 2 if
you need a quick brush-up on t ro£ £ text processing. The companion book, A/UX Text-
Editing Tools, presents detailed information on the five text editors provided by A/UX,
and describes how to use the editors to create and edit text.

What are text-processing tools?

In A/UX you can use the UNIX® text-processing tools you're already familiar with: the
formatters t ro£ £ and nrof£; the macro packages, mm, me, and ms; and a variety of
preprocessors such as pic, eqn, grap, and tbl. Using these text-processing tools, you
can design documents to suit your specific needs.

Who should use this book

This document is not geared toward the beginner but toward someone who is already
familiar with using macro packages and is interested in altering or writing macros in
A/UX. Itisalso a useful reference for nroff and t rof £ commands that are not
available in existing macro packages.



xxxii

How to use this book

This manual is meant to be used as a reference guide, but it also includes a tutorial. If
your text-processing skills are rusty, you can work through the lessons in Chapter 2. You
can use the table of contents to find the section that covers your general need and can
use the index when you know exactly what command or process you want to refer to.
For example, if you're formatting a paragraph using ms macros and you want to know
what options are available, you could look in the table of contents for Chapter 5, “ms
Macros,” and find the section “Creating Paragraphs.” However, if you know you want to
create an indented paragraph, but you don’t know what command to use, you would
refer to “paragraphs, indenting” in the index.

A/UX Text-Processing Tools contains the following chapters:

Preface

Chapter 1, “Introduction to A/UX Text Processing,” gives a brief overview of the A/UX
text-processing tools, explains page layout concepts, describes fonts, and introduces
you to other formatting features.

Chapter 2, “t rof £/mm Tutorial,” guides you through three lessons: You'll produce a
formatted letter, produce a letterhead, and modify the appearance of a page.

Chapter 3, “nrof £/t rof £ Formatters,” tells you how to use the powerful capabilities
of nrof £ and t rof £ formatters in A/UX.

Chapter 4, “mm Macros,” is a guide and reference for users of the memorandum
macros.

Chapter 5, “ms Macros,” is a guide and reference for users of the ms macros, designed
for writing general-purpose documents.

Chapter 6, “me Macros,” is a guide and reference for users of the me macros, designed
for writing thesis papers at the University of California at Berkeley.

Chapter 7, “t b1 Tables,” explains how tb1 works and how you can use it to create
tables that meet your specific needs.

Chapter 8, “eqn Equations,” explains how to use eqn to create typeset-quality
mathematical text.

Chapter 9, “pic Line Drawings,” shows you how to create simple line drawings using
the pic preprocessor.

Chapter 10, “grap Graphics,” is a guide to a graph-drawing program you can use to
create charts and graphs.



s Chapter 11, “Related Tools,” is a brief guide to additional text-processing tools.
= The glossary contains definitions of useful text-processing terms.

Conventions used in this guide

A/UX guides follow specific conventions. For example, words that require special
emphasis appear in specific fonts or font styles. The following sections describe the
conventions used in all A/UX guides.

Keys and key combinations

Certain keys on the keyboard have special names. These modifier and character keys,
often used in combination with other keys, perform various functions. In this guide, the
names of these keys are in Initial Capital letters followed by SMALL CAPITAL letters.

The key names are

CAPS LOCK DOWN ARROW ({) OPTION SPACE BAR
COMMAND (88)  ENTER RETURN TAB

CONTROL ESCAPE RIGHT ARROW (=)  UP ARROW (T)
DELETE LEFT ARROW («—) SHIFT

Sometimes you will see two or more names joined by hyphens. The hyphens indicate
that you use two or more keys together to perform a specific function. For example,

Press COMMAND-K

means “Hold down the COMMAND key and then press the K key.”

Terminology

In A/UX guides, a certain term can represent a specific set of actions. For example, the
word enter indicates that you type a series of characters on the command line and press
the RETURN key. The instruction

Enter 1s

means “Type 1s and press the RETURN key.”

Preface Xxxiii



Here is a list of common terms and the corresponding actions you take.

Term Action
Click Press and then immediately release the mouse button.
Drag Position the mouse pointer, press and hold down the mouse button

while moving the mouse, and then release the mouse button.

Choose Activate a command in a menu. To choose a command from a pull-
down menu, position the pointer on the menu title and hold down the
mouse button. While holding down the mouse button, drag down
through the menu until the command you want is highlighted. Then

release the mouse button.

Select Highlight a selectable object by positioning the mouse pointer on the
object and clicking.

Type Type a series of characters without pressing the RETURN key.

Enter Type the series of characters indicated and press the RETURN key.

The courier fO?’lt

Throughout A/UX guides, words that appear on the screen or that you must type exactly
as shown are in the Courier font.

For example, suppose you see this instruction:

Type date on the command line and press RETURN.
The word date is in the Courier font to indicate that you must type it.

Suppose you then read this explanation:
After you press RETURN, information such as this appears on the screen:

Tues Oct 17 17:04:00 PDT 1989

In this case, Courier is used to represent the text that appears on the screen.

All A/UX manual page names are also shown in the Courier font. For example, the
entry 1s(1) indicates that 1s is the name of a manual page in an A/UX reference manual.
See “Manual Page Reference Notation” later in this preface for more information on the
A/UX command reference manuals.

XxXxiv Preface



Font styles

Italics are used to indicate that a word or set of words is a placeholder for part of a
command. For example,

cat filename

tells you that filename s a placeholder for the name of a file you want to display. For
example, if you wanted to display the contents of a file named E1vis, you would type
the word E1vis in place of filename. In other words, you would enter

cat Elvis

New terms appear in boldface where they are defined. Boldface is also used for steps
in a series of instructions.

A/UX command syntax

A/UX commands follow a specific command syntax. A typical A/UX command gives the
command name first, followed by options and arguments. For example, here is the syntax
for the we command:

wc [-1] [-w] [-c¢] [filename]...

In this example, wc is the command, -1, -w, and —c are options and filenameis an
argument. Brackets ([ ]) enclose elements that are not necessary for the command to
execute. The ellipsis (...) indicates that you can specify more than one argument. Brackets
and ellipses are not to be typed. Also, note that each command element is separated
from the next element by a space.

The following table gives more information about the elements of an A/UX
command.

Preface XXXV



Element Description
command The command name.

option A character or group of characters that modifies the command. Most
options have the form - option, where option is a letter representing an
option. Most commands have one or more options.

argument A modification or specification of 2 command, usually a filename or
symbols representing one or more filenames.
[] Brackets used to enclose an optional item—that is, an item that js not

essential for execution of the command.
Ellipses are used to indicate that you can enter more than one
argument.

For example, the we command is used to count lines, words, and characters in a file.
Thus, you can enter

wCc -w Priscilla

In this command line, -w is the option that instructs the command to count all of the
words in the file, and the argument Priscilia is the file to be searched.

Manual page reference notation

The A/UX Command Reference, the A/UX Programmer’s Reference, the A/UX System
Administrator’s Reference, the X11 Command Reference for A/UX, and the X11
Programmer’s Reference for A/UX contain descriptions of commands, subroutines, and
other related information. Such descriptions are known as manual pages (often
shortened to man pages). Manual pages are organized within these references by section
numbers. The standard A/UX cross-reference notation is

command (section)
where command is the name of the command, file, or other facility; and section is the
number of the section in which the item resides.

= Items followed by section numbers (1IM) and (8) are described in the A/UX System
Administrator’s Reference.

= Items followed by section numbers (1) and (6) are described in the A/UX Command
Reference.

xxxvi Preface



= [tems followed by section numbers (2), (3), (4), and (5) are described in
the A/UX Programmer's Reference.

s Items followed by section number (1X) are described in the X11 Command Reference
Jor A/UX.

m  Items followed by section numbers (3X) and (3Xt) are described in the X11
Programmer’s Reference for A/UX.

For example

cat (1)
refers to the command cat, which is described in Section 1 of the A/UX Command
Reference.

You can display manual pages on the screen by using the man command. For
example, you could enter the command
man cat
to display the manual page for the cat command, including its description, syntax,
options, and other pertinent information. To exit a manual page, press the SPACE BAR
until you see a command prompt, or type q at any time to return immediately to your
command prompt.

For more information

To find out where you need to go for more information about how to use A/UX, see
Road Map to A/UX. This guide contains descriptions of each A/UX guide and ordering
information for all the guides in the A/UX documentation suite.

Preface xxxvii



Introduction to A/UX Text Processing

What are the A/UX text-processing tools? / 1-2
Page layout concepts / 1-11

Font descriptions / 1-20

Other formatting features / 1-26

Document printing / 1-32

The A/UX operating system provides a large number of tools for editing, formatting, and
printing text and graphics. You can use these tools to prepare almost any kind or size of
document, from newsletters to books. This chapter provides a conceptual overview of
A/UX text processing. It describes what A/UX text-processing tools are, explains layout
and font concepts, and gives a brief introduction to other formatting features that you

might find useful. It also contains a short section on the printing process.



What are the A/UX text-processing tools?

1-2

To understand the A/UX text-processing tools, it is helpful to understand the process
involved in producing a final printed document. The sequence typically looks something
like that in Figure 1-1.

begin end
enter/edit format print
text text file document
A ]

Figure 1-1 Producing a printed document

It is a basic assumption of the A/UX text-processing system that these tasks are
separable from one another and ought to be handled by different programs. First, you
use one of the standard A/UX editors to enterand edit your text. The editor doesn’t
format or print the file; it merely stores your text, exactly as you enter it. To arrange the
text into pages and paragraphs, you use a formatting program (usually t rof £ or nrof £
in conjunction with a macro package). These programs use instructions you have entered
in the text file, which indicate how you want the final output to look. Once the text is
edited and formatted, you may print the document by directing the formatted output to a
printer.

troff and nroff for text

The A/UX text-processing system is based on a pair of programs called t ro£ £ and
nroff. troff formats its input for printing on any high-resolution typesetter or laser
printer that is capable of printing multiple fonts and type sizes. nxof £ formats its input
for printing on less-capable devices such as daisy wheel and dot matrix printers or your
terminal screen. trof £ and nro£ £ are for the most part compatible with each other, so
that a single input file may be processed with either formatting program. nro£ £ simply
ignores any t rof £ commands that the intended output device cannot support. From
now on in this chapter, any reference to t rof £ means either nrof £ or t roff.

Chapter 1 Introduction to A/UX Text Processing



As mentioned above, t ro£ £ searches through your file for commands. Input consists
of text, which will print, and commands, which set parameters or call out special
characters. These are t rof £ commands. There are two ways to call out a command:

» By beginning a line with a control character (period or single quotation) optionally
followed by a space or tab, followed by a one- or two-character command name, and
then followed by a space or a new line. These are sometimes called dot commands.
The single quotation suppresses the break function (the forced output of a partially
filled line) caused by certain requests. Unrecognized command names are ignored.

= By typing an escape character (\), followed by a command name anywhere in a
line. These are sometimes called “escape sequences.”

The following are examples of t rof £ dot commands:
.sp 4
.ft B

These instruct t ro£ £ to leave four blank lines and switch into the bold font.

The following is an example of a t rof £ escape sequence:
The last word on this line is \s20big.\sl0

This command causes t rof £ to produce the following output:
The last word on this line is blg

The sequence \s20 instructs t ro£ £ to switch to point size 20. The same effect could be
achieved using t rof £ dot commands, as follows:

The last word on this line is

.ps 20

big.

.ps 10

What are the A/UX text-processing tools? 13



14

The mm macro package for text

troff and nrof £ provide facilities for controlling virtually all features affecting the
appearance of the final printed page. These programs do so, however, at a relatively low
level; for instance, neither program provides automatic margins, page headers and
footers, or page numbering. To obtain these features, as well as countless others you will
probably need, you must use a macro package in conjunction with t ro££. A macro is a
collection of t rof £ commands grouped into a useful unit, and a macro package is a
collection of macros grouped into a useful unit.

The standard A/UX macro package is called mm. (For a brief discussion of other
macro packages, see “Other Macro Packages” later in this chapter.) The mm package
provides two kinds of additions to basic t ro£ £ capabilities:

»  alarge number of dot commands that are not included in the t rof £ command set
but are necessary for most document processing

»  default parameter settings governing margins, page length, paragraph indent levels,
and so forth

The mm dot commands are almost universally uppercase, to distinguish them from
troff dot commands, which are all lowercase. For example, you can use

.P

to indicate the beginning of a paragraph. You use these additional dot commands exactly
like t rof £ dot commands. However, when you run the file through the formatting
program, t rof £ won't understand these macros unless you get it to read their
definitions first. You can do this by invoking t ro£ £ with the -mm argument:
troff -mm file

Thus, the argument to t ro£ £ gives you access to the mm macro package. You can get
access to other macro packages in the same way.

tb1l for tables

It’s easy to produce tables in a document by using the program tb1. Figure 1-2 shows an
example of tb1 output.

Chapter 1 Introduction to A/UX Text Processing



Text processing programs
Program Function
eqn format equations
grap format graphs
1p printer spooler
nroff low-quality output
pic format pictures
tbl format tables
troff high-quality output
vi enter/edit text

Figure 1-2 Example of tb1 output

The tb1 program, unlike the mm package, operates as a preprocessor to t rof £.

tb1 processes the input file containing table specifications before the file is processed by
troff, as follows:

tbl file

This is because tb1 translates the table specifications into t rof £ commands. tb1 recog-
nizes these specifications when they occur between lines beginning with one of the commands
.Ts and . TE. For instance, the input for the table in Figure 1-2 looks like this in the text file:

.TS

troff —-mm

box center tab(:) ;

c s
cc
1f7 1

\f6Text Processing Programs\fR .

sp .5

egn:format equations

grap:format graphs

lp:printer spooler

nroff:low—-quality output

pic:format pictures
tbl:format tables

troff:high-quality output

vi:enter/edit text

.TE

For a complete discussion of the tb1 program, see Chapter 7, “tb1 Tables.”

What are the A/UX text-processing tools?

1-5



1-6

eqgn for formatting equations

The A/UX text-processing system includes another t ro£ £ preprocessor, eqn, that
allows you to include mathematical equations and formulas in documents. eqn searches
for equation specifications contained within . EQ and .EN pairs. For example, the input

.EQ
X+ vy =4 sup 2
.EN

yields the output
x+y=42
And the input

.EQ
X = {-b +- sqgrt{b sup 2 -4ac}} over 2a
.EN

yields the output

-b_-/'\/ b’4ac

2a

Like tb1, eqn is a preprocessor to t rof £. Its general command line looks like
eqn file | troff -mm
See Chapter 8, “eqn Equations,” for further details.

pic for pictures

You may also produce simple line drawings in a document by using the pic program,
another t rof £ preprocessor. You specify pictures by including their descriptions within
.Ps and .PE pairs. For example, if you include the following description in the input file

.PS
box; arrow; ellipse
.PE

and run trof £ with the pic preprocessor
pic file | troff -mm ..
you get the picture shown in Figure 1-3.

Chapter 1 Introduction to A/UX Text Processing



Figure 1-3 A shnple picture

You can draw more complicated (and useful) drawings as well, such as those in

Figures 1-4 and 1-5. The descriptions of these pictures are much more complicated than
the simple description of Figure 1-3, but a mildly experienced pic user should have no
trouble producing such diagrams. See Chapter 9, “pic Line Drawings,” for a complete

discussion of the pic language.

President

Vice President| |} Vice President| |Vice President| |Vice President
Engineering Publications Finance Sales
see Manager see see
Fig. 1 Publications Fig. 3 Fig. 4
Technical Mid-Level - Graphic Technical
Writer Manager Designer Writer
1
______ _l |
Technical Technical Copy
Writer Writer | Editor

Figure 1-4 A more complicated picture

What are the A/UX text-processing tools?



——

Ui
IR
mutnnannnasnnmm

2z

Ethemnet
Figure 1-5 An even more complicated picture

grap for graphs

In addition to tables, equations, and simple line drawings, it is also possible to include
graphs in a document formatted with t ro£ £. This is accomplished by using the grap
preprocessor. Figure 1-6 is an example of grap output.

1-8 Chapter 1 Introduction to A/UX Text Processing



Text BT 2

processing Fr—
programs e —

troff ]
nroff . ]
[psdit )
[Ip 1]
| ! |
0 50000 100000
Program size (bytes)

Figure 1-6 A graph

Like the other preprocessors, grap looks for a specification of how the graph should
look and for the data to be graphed. These are enclosed within .G1 and . G2 pairs, as

follows:

.G1
specification of graph
.G2

grap, however, is a preprocessor for pic; this means that grap translates the
specification of the graph into pic code, not directly into t ro£ £ code. So, to get
graphical output, your command line must look something like this one:

grap file | pic | troff -mm

Figure 1-7 shows another example of grap’s capabilities. It charts San Francisco 49er
wide receiver Jerry Rice’s total receiving yardage per game for each of the sixteen regular
season NFL football games in 1986. The height of the little football indicates the yardage,
and the number inside the football indicates how many catches Rice made that day.
Finally, the number of little goal posts under the football indicates how many
touchdowns Rice scored in the game.

What are the A/UX text-processing tools? 19



250 —

200 — @
&
150 — @ @ @
<D
100 — >
€ © D
50 { & ®@
! Dy @® &
Ly y
0 o Wogy b . Yoy iy
1T 1T T 1T 1T 1T 17 17 1T 1T 1T 1T 1T 1T 1
0 1 23 4 5 6 7 8 91011 1213 14 15 16

Jerry Rice's 1986 Season
Figure 1-7 A more complicated graph

For further information, see Chapter 10, “grap Graphs.”

Other macro packages

In addition to the mm macro package, there are other macro packages that you may
encounter on A/UX systems. Of particular note is the ms macro package (see Chapter 5,
“ms Macros”). The ms program provides most of the same functions provided by the mm
package, but with different syntax. For instance, a left-adjusted paragraph is indicated in
ms with the macro

.LP
and in mm it is indicated with the macro
.P

For the most part, the page- and font-description concepts underlying the mm macros
(described in the following two sections, “Page Layout Concepts” and “Font

1-10 Chapter 1 Introduction to A/UX Text Processing



Descriptions”) will carry over into any other common macro package. Some mm macros,
however, have no simple equivalent in other packages.

Another very common macro package is the man macro package. This collection of
macros is intended for the special purpose of formatting manual pages as presented in
A/UX Command Reference, A/UX Programmer’s Reference, and A/UX System
Administrator’s Reference. See man(5) in A/UX Programmer’s Reference for further
details.

Page layout concepts

To get the most out of the A/UX text-processing programs, you must have some grasp of
the terms used to describe page layout. This section introduces you to the most important
of these.

If you use the mm macro package in conjunction with t rof £, the page is divided into
a number of separate regions, some of which you can print on and some of which you
cannot. The parts of a page are illustrated in Figure 1-8.

Generally, you cannot print on the entire physical page (typically a sheet of paper);
the mm macros automatically generate margins on all four margins of the paper. You can,
however, increase or reduce any of these margins independently of the others. In
addition, the mm package automatically provides headers and footers (lines of text that
are printed on the top and bottom, respectively, of every page). For more detailed
discussion of these points, see “Margins” and “Headers and Footers” later in this chapter.

Page layout concepts 111



Entire physical page

Je—— Title length

Top margin

___>|:

1

[

T

I

;

1

:

1

1

ft margin Right in

e meoan
i

|

I

i

—_—

|

1

|

|

| Bottom margin ——:—

| :

1

:LELEﬂIOEIeE T T amierloaer _ C Tighttooier ~
Printable portion of page

Figure 1-8 Parts of a page

Principal units of measurement

Many t rof £ and mm commands require a unit of measure as part of the command. For
instance, you must specify the line length as some number of inches or centimeters, and
so on. trof £ and mm understand both inches and centimeters, as well as a number of
other units that are more familiar to printers. (See Table 1-1.)

1-12 Chapter 1 Introduction to A/UX Text Processing



Table 1-1 Principal units of measurement

Unit Abbreviation Equivalence

Inch i None

Centimeter c 254c=1i

Pica P 6P =1i

Point p 72p = 1i

Em m Width of “m” in current font
En n Width of “n” in current font

Of these units, only picas and points are likely to be unfamiliar to you. Points are
used mostly to specify sizes of type (also called “point sizes™), and picas are often used
for specifying line lengths and page lengths. For the most part, you can avoid using picas,
but it is difficult to specify type sizes in any unit other than points.

Line length

The default line length using t ro£ £ (with or without the mm macro package) is 6 inches.
The maximum length of a line of text (or graphics) is the widest printable portion of the
page, which is dependent on the capabilities of the printer you are using. You may
specify the output line length with the t rof £ command . 11 followed by some
measurement; for example,

L1174

gives you a line length of 7 inches. There is no single mm command to accomplish the
same thing. There is a number register that controls the length of the line and the page
header and footer. You can set this register as follows:

.nr W 71

For more information, see “Number Registers” later in this chapter.

Page layout concepts 113



1-14

Page length

The length of the physical page depends on the printer you are using; usually you will be
working with one of the standard page sizes (for example, 8.5 by 11 inches, or A4). By
default, the mm package assumes an 11-inch page, but you can alter the page length by
setting the L number register:

.nr L 9i

The equivalent t rof £ command is

.pl 91

Note that this page length includes the top and bottom (vertical) margins. You can
increase the amount of space taken by these margins with the . vM macro:

.VM 2 5

This adds two vertical spaces to the top margin and five vertical spaces to the bottom
margin.

Paragraph types

You can specify more than one type of paragraph in 2 document. The mm macro package
provides one macro, .p, for specifying the beginning of a paragraph (there is usually no
need to specify the end of a paragraph). The argument you add to this macro determines
the type of the paragraph. For instance, the command

.P 0
provides a left-adjusted paragraph, and the command
P 1

provides a paragraph with the first line indented from the margin.
If there is no argument to the . P command, mm provides whatever you have selected
as the default paragraph type. You select the default type with the command

.nr Pt n

where the argument 7 is as shown in Table 1-2.

Chapter 1 Introduction to A/UX Text Processing



Table 1-2 Argument 7 defaults

Argument Resulting default

0 Left-adjusted

1 Indented

2 Indented except after headings, lists, or displays
Margins

There are two horizontal margins, one left and one right, on every page. The left margin
is also known as the page offset, and you can change it using the t rof £ command .po.
The default is about 1 inch, but you can increase or decrease it.

The following command would be appropriate to center a 6-inch line of text on a
piece of paper 8.5 inches wide:

.po 1.25i
You can change the right margin by changing the line length or the page offset.

Adjusted and filled text

By default, t ro££ both fills and adjusts the text it formats. To fill text is to place as much
text on a line as will fit, regardless of how the text occurs in the input file. One nice
feature of t ro£ £ is that it fills automatically. This means you can type your text into a file
in whatever way is easiest for you to edit subsequently (for instance, beginning all
sentences on a new line). t ro £ £ may have to break a word in the middle to achieve a
nice fit, but it will usually do this hyphenation in an intelligent manner.

Page layout concepts 1-15



1-16

You can control whether or not filling occurs with the t rof £ commands .nf and
. £1. For instance, the input
.nf
This text should not be filled.
So the output
will be arranged just like
the input.

produces the following output:

This text should not be filled.
So the output

will be arranged just like

the input.

You can tumn filling back on with the . £1 command.

To adjust text is to place small amounts of space between words in a filled line so
that the line of output text is exactly the current line length. t ro£ £ automatically adjusts
text, but you can turn adjustment off with the .na command. You can turn adjustment
back on with the .na command.

Indentation

Occasionally you need to indent some text to set it off from the surrounding text. You
can do so with the t rof £ command . in. For instance, the input

.P

This line is not indented at all.

.in .51

This line is indented .5 inch.

.in 11

This line is indented 1 inch.

.in 0

This line is not indented.

Chapter 1 Introduction to A/UX Text Processing



produces the following output:

This line is not indented at all.
This line is indented .5 inch.
, This line is indented 1 inch.
This line is not indented.

Notice that you can supply both absolute and relative arguments here, and that an
argument of zero (0) returns to the current left margin. The indent persists until you reset
it, or until it is reset automatically.

Headers and footers

A header is a line of text that is printed on the top of every page. Similarly, a footer is a
line of text that is printed on the bottom of every page. (See Figure 1-8 for the locations of
these lines.) Each of these lines is further divided into a left part, a center part, and a right
part. You can specify any of these six items independently of the others. Further, you can
specify different headers and footers for odd and even pages.

There are six mm macros affecting headers and footers:

.PH page header (all pages)

.OH odd header .i..OH macro

EH even header .i..EH macro (mm)

PF page footer (all pages) .i..PF macro (mm)
.OF odd footer .i..OF macro (mm)

EF even footer .i..EF macro (mm)

Each of these macros takes the same kind of argument, a string surrounded by double
quotation marks ("), with each of the three parts of the header or footer. For instance, we
might specify a page header as follows:

.PH "’Chapter 8’%’The Bill of Rights’"

This header will appear on all pages. The left header will read “Chapter 8,” the center
header will be the page number, and the right header will read “The Bill of Rights.”

Page layout concepts 1-17



1-18

Note that mm interprets the percent symbol specially in a header or footer
specification; each time the header or footer is printed, the percent symbol is replaced by
the current page number.

If you want one of the three parts of the header or footer to be empty, just leave the
appropriate field in the argument string empty. For instance, the following command will
cause the page number to be printed at the top of each page:

.PH "%’ " ,

If you need an apostrophe in the header or footer, you can change the delimiting
character to anything you like, and mm will detect the change automatically. For instance,
you might want the following header specification:

.PH "@Chapter 7@%@Bill’s Alibi@"

You may specify a separate header or footer for odd and even pages. The following
pair represents a very common way to handle headers:

.OH "@Chapter 7@%@Bill’s Alibi@"
.EH "@Bill’s Alibi@%@Chapter 7@"

Centered text

You can center a line of text on the page by using the t rof £ dot command . ce. For
example,

.Ce

This line is centered.

produces

This line is centered.

If you provide a numeric argument, the corresponding number of lines will be
centered. For example,
.ce 3
This is the first centered line.
This is the second centered line.

This is the third and last centered line.

produces

Chapter 1 Introduction to A/UX Text Processing



This is the first centered line.
This is the second centered line.
This is the third and last centered line.

Note that filling and adjusting are turned off for lines that are centered.

Footnotes

You can include footnotes in a document by enclosing the text to be included in the
footnote between .Fs and . FE pairs.! For example, the input

.FS

This is the text of a footnote.

It is smaller than the main text

and placed at the bottom of the page.

.FE

produces the footnote that appears at the bottom of this page. If you need consecutively
numbered footnotes, you should include the string \ *F at the appropriate spot in the
text. For further details about footnotes and footnote formats, see Chapter 4, “mm Macros.

n

Heading levels

In addition to the grouping provided by the paragraph macros, mm provides several
macros for grouping paragraphs into sections and for generating a table of contents
listing sections and subsections.

The primary macro for grouping paragraphs into sections is . , for “heading level.” A
typical use of this macro might look like this:
.H 1 "The Clues to the Murder"
There was a broken window,
and the maid heard a loud scream
shortly before midnight.

In addition,

IThis is the text of a footnote. It is smaller than the main text and placed at the bottom of the
page.

Page layout concepts 1-19



The 1 indicates that a first-level heading is to be generated; mm automatically numbers
these headings. If this is the fourth such macro in our text file, the output looks like this:

4, The Clues to the Murder

There was a broken window, and the maid heard a loud
scream shortly before midnight. In addition,

There may also be subsections within first-level sections. These are indicated with a
second-level heading:

.H 2 "An Investigation of the Glass Shards"

The mm package allows for up to seven levels of headings (rarely are this many
needed, however). In addition, there is a macro, . HU, for generating unnumbered
headings:

.HU "Appendix A: Summary of Clues"

Many features of these heading-level macros, such as the point size and font for each
heading level and the amount of spacing from surrounding text, can be adjusted to taste.
See Chapter 4, “mm Macros,” for a complete list of memorandum macros. ‘

Font descriptions

1-20

troff is able to print in any font that is supported by the printer being used. nro£f can
generally print in only one font, but, depending upon the capabilities of the printer you
are using, nrof £ may be able to simulate boldface by overstriking and italics by
underlining.

Type families: Changing to bold and italic

You can achieve a great deal of clarity in a document by selecting fonts that are
appropriate for your purposes. A font is a collection of letters and characters unified by a
distinctive pattern or “look.” What fonts are available to you is dependent on how trof £
has been configured, but typically at least the following three fonts are available:

Chapter 1 Introduction to A/UX Text Processing



Times Roman ABCDEFGHIJKLMNOPQRSTUVWXYZ
Times Roman italic ABCDEFGHIJKLMNOPQRSTUVWXYZ
Times Roman bold ABCDEFGHIJKLMNOPQRSTUVWXYZ

By default, text is printed in “plain” Times Roman, unless you change fonts. You may
change fonts with either a dot command (. £t) or an inline escape sequence (\ £),
followed by the name of the font desired. The following two lines give identical output:

This is in Times Roman,
.ft B
and this is Times Roman bold.

This is in Times Roman,
\fBand this is Times Roman bold.

The output in either case is

This is in Times Roman, and this is Times Roman bold.

You can also use mm macros (see Table 1-3).

Table 1-3 Using mm macros to change fonts to bold and italic

mm macro Effect
.B Bold
I Talics
.R Roman

Thus, the example above could be further rewritten as

This is in Times Roman,
.B

and this is Times Roman bold.

Font descriptions 1-21



You can also replace font names with numbers. For example, instead of \ £8, you
may write \ £3. Many people prefer the numbers because it is easier to pick out the
escape sequence. Which numbers correspond to which fonts depends on how your
printer and software have been configured. For example, systems using the TranScript
trof £-to-PostScript® translator driving the Apple LaserWriter printer have the
correspondence shown in Table 1-4.

Table 1-4 Using numbers to specify fonts

Number Font

Times Roman
Times Italic

Times Bold
Times Bold Italic
Helvetica
Helvetica Bold

Courier

W ~N SN N B W N e

Courier Bold

Point size

troff can work with virtually any text size that the printer supports. The program is
usually configured to allow you access to only a portion of those actually printable. Point
sizes normally range approximately from 2 point to 80 point. (Point size 2 is so small that
it’s unreadable.) The following shows point size 80:

30

1-22 Chapter 1 Introduction to A/UX Text Processing



The default type size is 10 point. You may change point sizes in a variety of ways.
Usually this is done with the .ps command:

.ps 14

This text is now in 14 point.

This produces
This text is now in 14 point.

You may also use the inline escape sequence \s. The input
This is in 10 point, \sl4and this is in 14\sO.
produces
This is in 10 point, and this is in 14.
Notice that \ s0 returns to the previous type size, not size 0.

Type size changes may also be specified relatively. For instance, you may rewrite the
previous example as follows:

This is in 10 point, \s+4and this is in 14\s0.

Vertical spacing

The vertical spacing between two lines of text is the distance from the base of the
characters on one line of text to the base of the characters on the next line. Normally, the
vertical spacing is set to 12 points, which is enough to accommodate a 10-point character
plus a small amount of white space between lines. If you change point sizes, you must
increase or decrease the vertical spacing accordingly. You can change the vertical
spacing with the .vs command:

.ps 20
.vs 22

A common mistake is to increase the point size without increasing the vertical
spacing. In such a case you usually end up with garbage, for example,

TS 34pains (5t
spacing.

Font descriptions 1-23



1-24

You can set both the point size and the vertical spacing at once with the mm macro
. . For instance,

.S 24 26
sets the point size to 24 points and the vertical spacing to 26 points.

Character set

The set of characters that you can print using t rof £ depends on the abilities of the
printer you are using. Generally, a character is accessible to t ro£ £ if it is a member of
some font that t rof £ knows about. A t ro£ £ font typically includes the following
characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

1234567890

&, ~1@#$% ™ ()-+={}HI\1><

In addition, there may be other fonts known as “special” fonts. Originally these fonts

were used for mathematical symbols not available on the standard Times Roman font, but
a special font can contain any sort of characters or glyphs. A typical mathematical special
font provides the following characters, which include a full Greek alphabet:

ABEAEGI'OIKAMNOIIYPETYQXHZ
aBEdedpyBixApvonypotvoynl

z¢ C ‘V-ozo2d[(Aeve x—=0
+-)=>°_ C "50OV3V-~=~

There are two standard ways to get one of these characters to print in a document.
First, you can use a feature of the preprocessor eqn that allows inline equations. In that
case, you would use the eqn name of these symbols. For instance, we have seen that
eqn translates the word into the symbol | (appropriately scaled, of course).

A second way to get access to special font characters is to use their t rof £ name (see
Table 1-6). _

For a complete list, see Chapter 3, “nrof £/t rof £ Formatters.”

Chapter 1 Introduction to A/UX Text Processing



Table 1-5 Accessing a few special font characters

Input Output Name

\(pl + Plus

\(mi - Minus

\(mu ¥ Multiplication
\(sr + Square root + (square root sign) 1-
\(br | Box rule

\(ua = Up arrow
\(da @ Down arrow
\(ci 0 Circle

\(= T Not equal
\(is ] Integral
Accents

The mm macro package provides the ability to print accent marks over certain characters.
To do this, you need to put the mm name of the accent mark after the letter you want

accented. For example, the input

re\*’ sume\ *’

produces the word “résumé.” The following accents are available:

Input Output Name

~

\** grave accent

\** ’ acute accent

\x~ ~ circumflex

\*~ ~ tilde

\*, , cedilla

\*: ’ umlaut (lowercase)
*; umlaut (uppercase)

Font descriptions

1-25



Overstriking

The t ro£ £ formatter provides one additional way of generating characters that are not
in its basic character set: by overstriking two or more characters. The inline escape
sequence \o will overstrike whatever characters (up to nine) are enclosed within single
quotation marks.

The \o sequence centers each character as it overstrikes it. If instead you want the char-
acters lined up on their left sides, you could use the \ z escape sequence. This instructs
troff to print the character that follows but not to move to the right after printing it.

Other formatting features

1-26

troff and the mm macro package provide several additional features that are very useful
in document production: displays, automatic list and table of contents generation,
multicolumn output, strings, and number registers.

Displays

Occasionally a certain stretch of text should be kept together on one page. For instance, it
is generally preferred that the information in a table not be split across page breaks. tb1
does not provide the service of preventing bad text breaks, but mm provides a way of
doing it with displays. A display is a block of text that is to be kept on one page.

You can indicate a display by enclosing the relevant text within the pair of macros
.Ds and .DE, as follows:

.DS

This text will be kept all together.

No heading macros are allowed in a display,
but paragraph macros and lists are allowed.
By default the text of a display is not
filled or adjusted, but you can override
this by providing an argument

to the .DS macro.

.DE

Chapter 1 Introduction to A/UX Text Processing



If there is not enough space remaining on the page to fit this entire block, t ro£ £ will
begin a new page so that the block remains together.

Lists

Occasionally you want to provide a list of items. The mm package provides a number of
macros designed to facilitate printing lists of various kinds. For instance,
.P
The remaining suspects are
.sp .5
.BL
.LI
Tim
.LI
Joe
.LI
the butler
.LI
the maid
.LE
.Sp
produces
The remaining suspects are
¢ Tim
¢ Joe
e the butler
¢ the maid
The macro . BL is a list-initialization macro; it instructs mm that a bulleted list

follows. The macro . LI indicates the beginning of each list item, and the macro . LE
indicates the end of the list.

Other formatting features 1-27



1-28

There are a number of other list-initialization macros:

AL Numbered or lettered list
.BL Bulleted list

DL Dashed list

ML Marked list

RL Reference list

VL Variable-item list

As you would expect, the format of the list can be adjusted as needed; see Chapter 4,
“mm Macros,” for details.

Tables of contents

mm is able to generate a table of contents for your document by remembering all section
headings and the pages where they occur as it formats the document. To get the table of
contents printed, you must include the following macro at the end of your input file:

.TC

This macro causes mm to print out the accumulated section headings and page
numbers. You may control the appearance of the table by adding arguments to the macro
(see Chapter 4, “mm Macros”).

Multicolumn output

By default, t rof £ outputs the text in one column. You can instruct it to print two
columns with the .2c macro.
To return to one column, use the .1c macro.

Chapter 1 Introduction to A/UX Text Processing



Strings

A string is a sequence of characters grouped together under a name. The mm macro
package provides several predefined strings that you can use. For instance, the string
\* (DT will be replaced by the current date, as follows:
Today is \* (DT.

This results in
Today is September 7, 1990.

You get access to a string by preceding its name with the sequence \ * ( (or, as we
saw above, with the sequence \ * if the name of the string is only one character). In
addition, you may define your own strings with the t rof £ command . ds. Defining
your own strings might be useful for abbreviating an often-used but lengthy phrase. For
example,

.ds CU Pig Farmers of America Credit Union
.P

The annual board meeting of the \*(CU

was called to order at 2:11 p.m.

Chairman Curley reported

an unexpected rise

produces

The annual board meeting of the Pig Farmers of
America Credit Union was called to order at 2:11 p.m.
Chairman Curley reported an unexpected rise

Number registers

troff keeps track of many of the parameters governing the page layout by storing them
in number registers. You may think of a number register as a slot having both a label
(the name of the register) and something inside it (the value of the number register).
Some of these registers are created and manipulated by t rof £ and mm themselves, but
you may also define your own number registers.

You can create a number register with the command . nx:

Other formatting features 1-29



1-30

.nr YR 86
The profit in year 19\n (YR was $250,000.

In the text, you must precede the number register (here, YR) with \n. The value you
define in the number register then appears in the output:

The profit in year 1986 was $250,000.

A more typical use of the .nr command is to change built-in parameters. For
instance, you can use the command

.nr Pi 10

to change the paragraph indent to 10 ens. See Chapter 4, “mm Macros,” for a complete list
of number registers.

Defining and using macros

If you find yourself repeating the same sequence of t ro£ £ commands, or almost the
same sequence, you may find it useful to define a macro encapsulating that sequence of
commands. You define a macro with the . de macro, for instance,

.de QP
.in +5n
.11 -10n
.ps -2

The line consisting of two dots indicates the end of the macro. Here we have defined
a rudimentary quote paragraph macro: it indents the text from both sides and reduces the
point size by 2.

You can also define macros with arguments, like many of the mm macros. The
arguments are indicated in the definition with the sequences \\$1, \\$2, and so on.
For example,

Chapter 1 Introduction to A/UX Text Processing



.de XX
Today is \\$1 the \\$2.

.XX Friday 6th
yields
Today is Friday the 6th.
Macro names should be chosen carefully to avoid conflicts with predefined mm macro

names. To be safe, user-defined macros should be two characters with the first lowercase
and the second uppercase. For example,

.de mN

Horizontal and vertical line spacing

troff includes commands for making arbitrary motions in a horizontal (\h ) or vertical
(\v) direction. For example,

There is a gap \h’0.5i’ in this sentence.
yields
There is a gap in this sentence.

Both \h and \ v require a distance specification within single quotation marks; the
two escape sequences \u and \d, however, move up and down a fixed distance and so
require no argument. For example,

This sentence contains a superscript\ulld.
yields
This sentence contains a superscriptl.

Other formatting features 1-31



The TranScript package

As indicated earlier in this chapter, a printer interface program is needed to translate the
output of t rof £ into a form that is understood by your printer. If you wish to produce
output on an Apple LaserWriter, you must pipe the output of t ro£ £ through a program
that translates it into PostScript, the page-description language used by the LaserWriter.
For this purpose, the A/UX system contains a package of programs called TranScript.

The most important program in this package is psdit, which translates t rof £
output into PostScript. For instance, the command line used in producing this chapter
was

grap chap.l | pic | tbl | egqn | troff -Tpsc -mm | psdit | 1lp

The only thing new here, aside from the postprocessor psdit, is the -Tpsc option
to trof £. This tells t ro£ £ which type of printer it should format its output for; t rof £
needs this information so that it can know which point sizes are legal for that printer and
which fonts are available on the printer (among other things). The psc stands for
“PostScript device” and is the appropriate option for the LaserWriter.

For more information on the TranScript package, consult transcript(IM)in
A/UX System Administrator’s Reference.

Document printing 133



Line drawing
There are two t rof £ commands for drawing horizontal and vertical lines, \1 and
\L. For example,
\1’0.5i"\L’0.51"
prints

Document printing

1-32

trof £ produces output that is device independent. This means that you will need to
process the output of t rof £ with a program (usually called an interface program) that
translates this output into a form that the printer understands. This step of the printing
process may be done automatically, or you may need to invoke this program yourself.
Check with local administrators to see what is appropriate for your installation. On the
A/UX system, an interface program is provided to allow t ro£ £ output to be printed on
the LaserWriter; this program is called psdit and is discussed later in this chapter in
“The TranScript Package.”

Output devices

The A/UX family of text-processing tools is designed to be as independent of any
particular type of output device as possible, thereby allowing the user to get output on
any of a wide number of printers or display devices. On the high end of the spectrum,
troff is capable of producing output on modern digital typesetters and
phototypesetters, and on laser-driven printers, whose quality approaches that of much
more expensive typesetters. t rof £ can also send output to certain high-resolution video
display terminals. On the low end of the spectrum, nrof £ can format its input for output
on virtually any terminal screen, dot-matrix printer, or daisy-wheel printer.

Chapter 1 Introduction to A/UX Text Processing



When you print the letter, the name and address print out as follows:
Ms. Pandora S. Bach

Comparative Surveys, Inc.

79 Downing Street

San Jose, California 95128

Creating spaces between paragraphs

You can leave a space and a half on the printed page between the address and the
salutation by using . p, the paragraph macro. Type

.pP

on the line below . DE, and follow it with

Dear Ms. Bach:

on the next line, followed with another . P on the line after that. The file now looks like
.DS

Ms. Pandora S. Bach

Comparative Surveys, Inc.

79 Downing Street

San Jose, California 95128

.DE

.P

Dear Ms. Bach:

.P

where . p stands for “paragraph.” Use the paragraph macro wherever you want to leave
extra space or start a paragraph.

Lesson 1: Producing a formatted letter 23



Creating a list with bullets

The body of this letter lists three items. To print them out in a bulleted list, with each item
preceded by a bullet and indented five spaces, use the bulleted list macro. Starting at the
line below the second . p, type

.P

Enclosed please find the following items:

.BL 5

LI

A copy of a message from Ms. Gail Smith

dated March 6.

.LI

A copy of the worksheet you requested.

.LI

A \f (BIComparative Surveys\fR records

form and relevant information.

.LE

.P

Thank you for your attention to this account.

.P

Printing the file produces the following output:
Enclosed please find the following items:

* A copy of a message from Ms. Gail Smith dated March 6.
* A copy of the worksheet you requested.
» A Comparative Surveys records form and relevant information.

Thank you for your attention to this account.

24 Chapter 2 troff/mm Tutorial



Changing fonts

Note that in the text above, the phrase “Comparative Surveys” prints out in bold étalic
and the words after in roman. This is caused by the t rof £ commands \ £ (BI and \ £R.
The first command

\f (BI

instructs the printer to print the following text in bold italic Times Roman font.

The second command
\fR
instructs the printer to print the following text in Times Roman font.

Indenting text

To finish off your letter, you can use the indent command (. in) to print text indented on
the page. Type

.in +21i

Sincerely yours,

.sp 3

John C. Doe

.in -2i

.sp

Enclosures

Printing the file produces the following output:

Sincerely yours,

John C. Doe
Enclosures

Lesson 1: Producing a formatted letter 25



2-6

Formatting and printing your file

When you have entered all the above text and commands in your file 1et ter, save the
file on disk and exit vi. When you see the shell prompt on your screen again, you are
ready to format your file and send it to the printer. (See Setting Up Accounts and
Peripherals for A/UX for information about setting up a printer.)

At the shell prompt, type
troff -Tpsc -mm letter | psdit | 1lp

This command line sends your file through the t ro££ program and mm macros, then
sends it to a postprocessor, psdit, that prepares it for the LaserWriter, and finally sends
it to the printer. See Chapter 1, “Introduction to A/UX Text Processing,” and the reference
chapters that follow for more information.

When the printer has received your file, you will see a message on your screen.
Figures 2-1 and 2-2 show your file 1etter as it appears on your screen and on the
printed page that is produced.

Chapter 2 trof £ /mm Tutorial



.DS

Ms. Pandora S. Bach

Comparative Surveys, Inc.

79 Downing Street

San Jose, California 95128

.DE

.P

Dear Ms. Bach:

.P

.P

Enclosed please find the following items:
.BL 5

LI

A copy of a message from Ms. Gail Smith dated March 6.
.LI

A copy of the worksheet you requested.
.LI

A \f (BIComparative Surveys\fR

records form and relevant information.
.LE

.P

Thank you for your attention to this account.
.P

.in +21i

Sincerely yours,

.Sp 3

John C. Doe

.in -2i

.sp

Enclosures

Figure 2-1 Contents of your file with text and t rof £/mm code

Lesson 1: Producing a formatted letter



Ms. Pandora S. Bach
Comparative Surveys, Inc.
79 Downing Street

San Jose, California 95128

Dear Ms. Bach:

Enclosed please find the following items:

» A copy of a message from Ms. Gail Smith dated March 6.

A copy of the worksheet you requested.

s A Comparative Surveys records form and relevant information.
Thank you for your attention to this account.

Sincerely yours,

John C. Doe

Enclosures
Figure 2-2 File printed on a LaserWriter

Lesson 2: Producing letterhead

To create letterhead stationery, you may first create a new file by invoking one of the
A/UX text editors such as vi. Create the new file, let terhead, by entering

vi letterhead

Once you have opened the new file, you can use vi commands to enter text and
troff and mm commands to format it.

This simple letterhead will consist of John Doe’s name and address at the top of a
page. Because of the physical size of this manual, the stationery will print out smaller
than standard 8.5-by-11-inch paper. In “Changing the Size of Your Page” later in this
chapter you will see how to change the code to print out a larger version of this
letterhead.

2-8 Chapter 2 troff/mm Tutorial



Setting top-of-page instructions

The t ro£ £ program uses several internal defaults to define how text will print out. You
can change these defaults to fine-tune the format of your printed page.

For example, t ro£ £ prints a page number at the top of each page. To prevent this,
you can change the “page header” macro’s definition. The page header macro accepts
three fields: the left side of the page, the center, and the right side. In the definition, the
three fields are separated by single quotation marks.

At the top of the file, enter

.PH wrrzsrrmw

This defines all three fields as empty.
You may define how many spaces are left at the top of the page, using the definition

.de TP
.sp 2

This tells the printer to start printing text two spaces below the default of 1 inch. Enter
this definition in the file below the page header macro.

Changing the size of your text

The tro£ £ program uses point size 10 by default. This is the point size used in this
manual. If you want the text of your letter (and any text in your letterhead) to appear in
point size 10, you don'’t need to specify this to t rof £. However, if you want the text to
appear slightly larger, for example, point size 11, you can use the mm command

.5 11 13
This changes the default point size to 11 and the vertical spacing to 13.

Lesson 2: Producing letterhead 29



2-10

Changing the size of your page

Because of the physical size of this manual, the stationery in this tutorial will print out
smaller than standard 8.5-by-11-inch paper. The length of a line of text, the width of the
margin, and the length of the page itself are defined using number registers. Number
registers are assigned values as follows:

.nr W 4i specifies a 4-inch line

.nr O 2i specifies 2-inch margins
.nr L 11i  specifies an 11-inch page

The w number register stands for the width of the text, and the o register stands of the
offset from the physical width of the page.

To print out a standard-size page, change these definitions as follows:
.nr W 6i Specifies a 6-inch line

.nr O 1i Specifies 1-inch margins
.nr L 11i  Specifies an 11-inch page

Designing your letterhead

Enter the following commands in your file:
.sp
\1’4i’
.sp
\sl4John C. Doe\s0
br
\1’4i’
.sp —-1.75m
\1l’4i’
.sp .25
.tl 77'\s9\&P.0. Box 14, Carter, CA 94530\s0’
.Sp
.E1 /7 7\* (DT’
.sp 2

Chapter 2 troff/mm Tutorial



These commands are listed below with comment lines that describe what each one tells
the printer to do.

.sp Leave one blank line.

\1’4i’ Draw a line 4 inches long.

.sp Leave one blank line.
\sl4John C. Doe\s0 Print this text in point size 14.
.br Break line here (go to next line).
\1’4i’ Draw a line 4 inches long.

.sp -1.75m Go back up 1.75 em units.
\14i’ Draw a line 4 inches long.

.sp .25 Leave 1/4 vertical space.

.t1l 777\s9\&P.0. Box 14, Carter, CA 94530\s0’
Print this text in point size 9,
on the right side of the line.

.sp Leave one blank line.

.tl 777 \* (DT’ Print the current date on the
right side of the line.

.sp 2 Leave two blank lines.

Note that the string \ * (DT will print the current date (the date on which you format
your letter). The “title” request:

.tl rrrs

is similar to the page header macro described above in that it defines three separate
fields, enclosed in single quotation marks. The three fields are the left side of the page,
the center, and the right side. In the letterhead definition above, the title request is used
to justify a string of text on the right side of the page.

If you format your 1etterhead file using the t rof £ command line shown under
“Formatting and Printing Your File” earlier in this chapter, your letterhead looks like the
output in Figure 2-3.

Lesson 2: Producing letterhead 2-11



2-12

John C. Doe

P.O. Box 14, Carter, CA 94530
August 28, 1987

Figure 2-3 A sample letterhead

Printing your letter on letterhead

Now that you have created a file containing the t rof £ and mm codes to produce
letterhead stationery, save the file on disk and exit vi. You can now use this letterhead
with any letters you write by formatting it on the same command line as your letter.
Because the letterhead must print before the text of your letter, the command line should
look like this:

troff -Tpsc -mm letterhead letter | psdit | 1lp

This command line sends both files through the t ro£ £ program and mm macros. The
letter this produces looks like the one in Figure 2-4.

Chapter 2 trof £ /mm Tutorial



John C. Doe

P.O. Box 14, Carter, CA 94530
August 28, 1987

Ms. Pandora S. Bach

Comparative Surveys, Inc.

79 Downing Street

San Jose, California 95128

Dear Ms. Bach:

Enclosed please find the following items:

e A copy of a message from Ms. Gail Smith dated March 6.

* A copy of the worksheet you requested.

* A Comparative Surveys records form and relevant information.

Thank you for your attention to this account.

Sincerely yours,

John C. Doe

Enclosures
Figure 2-4 A sample letter

Lesson 2: Producing letterhead

2-13



Lesson 3: Modifying the appearance

of a page

Now that you have created a simple letter and printed it out on letterhead stationery, you
may want to modify the letter to include more information. In this lesson, you will learn
how to produce a footnote and line graphics in your letter.

Producing a footnote

To include a footnote in your file named letter, first open the file using an editor such
as vi:
vi letter

Move your cursor to the place in the file where you want the footnote to be
referenced. This example uses a “dagger” symbol rather than a number. For example,
move to the line in your file that reads
A copy of the worksheet you requested.
and place the dagger symbol at the end of the line:
A copy of the worksheet you requested.\ (dg

When you include a footnote in your text, use the mm footnote macros. . Fs stands

for “footnote start” and . FE for “footnote end.” These should be placed as close as
possible to the footnote reference (in this case, \ (dg). On the next line in your file, type

.FS \(dg
Note that the worksheet is dated March 20.
.FE

Your letter will look like the one in Figure 2-5.

2-14 Chapter 2 troff /mm Tutorial



John C. Doe

— —

P.O. Box 14, Carter, CA 94530
August 28, 1987

Ms. Pandora S. Bach

Comparative Surveys, Inc.

79 Downing Street

San Jose, California 95128

Dear Ms. Bach:

Enclosed please find the following items:

* A copy of a message from Ms. Gail Smith dated March 6.

» A copy of the worksheet you requested.T

» A Comparative Surveys records form and relevant information.

Thank you for your attention to this account.

Sincerely yours,

John C. Doe

Enclosures

i Please note that the worksheet is dated March 20.

Figure 2-5 A sample letter with a footnote

Lesson 3: Modifying the appearance of a page

2-15



2-16

Producing graphics

You can include simple line drawings in a document by using the preprocessor pic after
you've entered appropriate picture specifications in your file.

Graphics can be useful in documents. For example, you might want to order some
printed envelopes to go along with your custom stationery. A good way to let the printer
know how you want it to look is to enclose a picture of the printed envelope. You can
specify such a picture by including the following input in your file:

.PS

A: box ht 2i wid 4i

line from A.nw to A.c

line from A.ne to A.c

box invis ht .75i "John C. Doe"™ "P.O. Box 14"\
"Carter, CA"™ "94350" with .n at A.n

.PE

You can then process this with the command line
pic letter | troff ~Tpsc —-mm | psdit | 1lp
The output, in part, will look like Figure 2-6.

John C. Doe

P.O.Box 14

Carter, CA
94350

Figure 2-6 A sample line graphic

Chapter 2 troff/mm Tutorial



nroff/troff Formatters

Whatis nroff/troff formatting? / 3-2

Options when invoking nrof £ and trof £ formatters / 3-3
Principles of nrof£ and t rof £ formatters / 3-6
Definitions of terms / 3-10

Working with text / 3-12

Structuring the page / 3-20

Advanced features / 3-28

Input/output conventions and character translations / 3-45
Reference tables / 3-48

This chapter introduces you to the capabilities of the nroff/troff formatters.



What is nrof £/t rof £ formatting?

32

The nrof £ text formatter formats text for typewriter-like terminals.

The t ro£ £ formatter formats text destined to be printed on a phototypesetter but
intended to be converted by a postprocessor into codes that will drive a particular
phototypesetter.

Both nrof £ and t rof £ processors accept lines of text interspersed with lines of
format control information. They format the text into a printable, paginated document
having a user-designed style. The nroff and t rof £ formatters offer unusual freedom
in document styling, including

»  versatile paragraph and section control

» flexible-style headers and footers

m generation of footnotes

= automatic sequence numbering for paragraphs and sections

= multiple-column output

= font and point-size control (t ro£f £ only)

» arbitrary horizontal and vertical local motions at any point

»  overstriking, bracket construction, and line-drawing functions

Because nroff and trof £ formatters are reasonably compatible, it is usually
possible to prepare input acceptable to both. Conditional input is provided that enables
you to embed input expressly destined for either program (see “Conditional Acceptance
of Input”), for example,

.if n .sp \"if nroff, then go one space

LAf t .sp .5 \"if troff, then go one-half space

The major dissimilarity between the two formatters is spacing. nro£ £ does not have
fractional space capabilities. For example, nrof £ will ignore the t ro£ £ vertical space
request .sp .5 and will treat .sp 1.3 as one space. Keep in mind that nro£ £ output
devices use constant-width characters, whereas in t rof £, character widths vary. This is
important when determining distances for setting tabs. Local-motion escape characters
also have different effects in nrof f and t ro£ £ (see “Moving Characters Within a Line:
Setting Local Motion” later in this chapter).

Chapter 3 nroff/troff Formatters



The nrof £ formatter can prepare output directly for a variety of terminal types and is
capable of utilizing the full resolution of each terminal.

The trof £ text formatter is a program that can drive virtually any phototypesetter
because its output is an ASCII code describing the position, font, size, and so on of
characters to be typeset on a page. This output must be converted by another program,
called a postprocessor, into codes a particular phototypesetter will understand.
Parameters such as fonts, character sizes, and special characters depend on the
phototypesetter being driven.

Full user control over fonts, sizes, and character positions, as well as the usual
features of a formatter (right-margin justification, automatic hyphenation, page titling and
numbering, and so on) are provided by the t ro£f £ processor. It also provides macros,
arithmetic variables and operations, and conditional testing for complicated formatting
tasks.

Options when invoking nrof £ and
trof £ formatters

The general form of invoking an nrof £ or t rof £ formatter at the A/UX operating-
system command level is

nroff [options (files

or

troff [options [files]

where options represents any of a number of flag options and files represents the list of
files containing the document to be formatted. An argument consisting of a single minus
sign (-) is taken to be a filename corresponding to the standard input. Input is taken
from the standard input if no filenames are given. Options may appear in any order but
must appear before the files. (See Table 3-1.)

Options when invoking nroff and troff formatters 33



Table 3-1 Options for invoking nrof £/t rof £

Option  Effect

-a (troff only.) Send a printable approximation in American Standard Code for Information Interchange (ASCII)
character set of the results to the standard output. This approximates a display of the document.

-e (nroff only.) Produce equally spaced words in adjusted lines using full terminal resolution.

—-Fdir  Getaccess to font information from the directory dir/devname, where nameis the default output device. The
default font information directoryis /usr/1lib/font/devname.

-h (nroff only.) Use output tabs during horizontal spacing to speed output and to reduce output byte count. Device
tab settings are assumed to be every eight nominal character widths. The default settings of logical input tabs are also
every eight nominal character widths.

-i Read standard input after the input files are exhausted.

-mname Prefixthe /usr/lib/tmac/tmac.namemacro file to the input files. Multiple —m macro package requests
on a command line are accepted and are processed in sequence.

-nn Number the first generated page .

—olist Print only pages whose page numbers appear in Jist, which can consist of comma-separated numbers, number
ranges, or both:

& Alist of comma-separated numbers such as #, m means pages nand m.
® A number range has the form #-m and means pages # through m.

®  Aninitial -» means from the beginning to page n.

® A final #- means from page 7 to the end.

-g Invoke the simultaneous input/output mode of the . rd request.

-xran Set register x (one character) to 7.

-sn Stop every npages. The nroff formatter will halt after every n pages (default 7 = 1) to allow paper loading or
changing and will resume upon receipt of a new line. Whenusing troff, it is probably preferable to use the
-s option on the postprocessor if one exists.

3-4 Chapter 3 nroff/troff Formatters



Table 3-1 Options for invoking nroff/troff (continued)

Option

Effect

~Tname Specify the name of the output terminal type. Currently defined names are 1p for generic printers that can

-un]

underline and tab, 2631 for the Hewlett-Packard 2631 printer in regular mode, 2631—c for the Hewlett-
Packard 2631 printer in compressed mode, 2631-e for the Hewlett-Packard 2631 printer in expanded mode,
300 forthe DASI300, 300-12 for DASI 300 terminal set to 12 pitch, 300s for the DASI 300s, 300s-12
for DASI 300s terminal set to 12 pitch, 37 for the Teletype Model 37 (nrof £ default), 382 for the DCT-382
terminal, 4000a for the Trendata 4000A terminal, 450 forthe DASI450, 450-12 forthe DASI 450 set to
12 pitch, 832 for the Anderson Jacobson 832 terminal, 8510 for the C.ITOH printer, tn300 for the GE
TermiNet 300 (or any terminal without half-line capabilities), and X for the EBCDIC TX train printer.

In troff,the —T option may be used to specify the output device. The psc argument (“t roff -Tpsc”)
is required for PostScript output on a LaserWriter. (This is the A/lUX troff default.)

(nroff only.) Set the emboldening factor (number of character overstrikes) in the formatter for the third font
position (bold) to be 7 (0 if 7 is missing). It is not possible to turn off the emboldening in nro £ £ if the overstriking
is controlled locally by the printing device.

Suppress formatted output. Only message output will occur (from . tm requests and diagnostics).

Each option is invoked as a separate argument. For example,
nroff -04,8-10 -T300s -mabc chapterl chapter2

requests formatting of pages 4, 8, 9, and 10 of a document contained in the files named
chapterl and chapter2, specifies the output terminal as a DASI 300s, and invokes
the macro package abc.

Various preprocessors and postprocessors are available for use with the nrof £ and
troff formatters:

» The equation preprocessors are neqn and eqn (for nrof £ and t rof £ formatters,
respectively).

» The table-construction preprocessor is tb1.
» The picture-drawing preprocessor for the t rof £ formatter is pic.

= A reverse-line postprocessor for multiple-column nrof£ £ formatter output on
terminals without reverse-line ability is col. The Teletype Model 37 escape
sequences that the nro£ £ formatter produces by default are expected by col.

Options when invoking nroff and troff formatters 35



troff output can be viewed on the Teletype Model 5620. No special filter is
required to postprocess t rof £'s output for the 5620. The finished version of a document
typeset with t ro£ £ is most frequently sent to a phototypesetter:
tbl file | eqn | troff [options | typeseiter

The first pipe (1) indicates the piping of tb1 output to eqn input; the second pipe
indicates the piping of eqn output to the t ro£ £ formatter input. Finally, the
accumulated output from these processes is piped to a postprocessor that interprets
trof£’s output language for the output device.

tc is a phototypesetter-simulator postprocessor, which enables you to view t rof £
output on a Tektronix 4014 terminal. The syntax for its usage is as follows:

pic file | tbl | eqn | troff [options | tc

The t ro£ £ formatter depends on a postprocessor to convert its output into codes for
a particular phototypesetter.

Principles of nrof £ and t rof £ formatters

36

This section describes some general principles of the nrof £ and t ro£ £ formatters.

Form of input

Input data consists of text lines, which are destined to be printed, interspersed with
control lines, which set parameters or otherwise control subsequent processing. Control
lines begin with a control character, normally a period or an acute accent (), followed by
a one- or two- character name that specifies a basic request or the substitution of a user-
defined macro in place of the control line. The acute accent control character suppresses
the break function (the forced output of a partially filled line) caused by certain requests.
Control characters may be separated from request/macro names by white space (spaces,
tabs, or both) for aesthetic reasons. Names must be followed by either a space or a
newline character. Control lines with unrecognized request/macro names are ignored.
The tables throughout this chapter contain explanations of the request/macro names.
Various special functions may be introduced anywhere in the input by means of an
escape character (\). For example, the function \nr causes the interpolation of the

Chapter 3 nroff/troff Formatters



contents of the number register 7in place of the function. Number register ris either x for a
single-letter register name or xx for a two-character register name. The escape sequences
for characters, indicators, and functions are summarized at the end of this chapter.

Formatter and device resolution

The nrof£ processor internally uses 240 units/inch, corresponding to the least common
multiple of the horizontal and vertical resolutions of various typewriter-like output
devices. Units in t rof £ are device-dependent. t rof £ rounds horizontal/vertical
numeric parameter input to its internal horizontal/vertical resolution. nro£ £ similarly
rounds numeric input to the actual resolution of the output device indicated by the -
option (default Teletype Model 37).

Numeric parameter input

Both nroff and t ro£ £ formatters accept numeric input with the appended scale
indicators shown in Table 3-2, where Sis the current type size in points, Vs the current
vertical line spacing in basic units, and C'is a nominal character width in basic units. The
number of basic units is device-dependent in trof £. !

Table 3-2 Numeric input and appended scale indicators for nrof £/t rof £

Scale indicator Meaning Number of basic units in nro££
i Inch 240

c Centimeter 240x50/127

P Pica = 1/6 inch 240/6

m Em = Spoints C

n En =em/2 C same as em

P Point = 1/72 inch 240/72

u Basic unit 1

v Vertical line space |4

None Default None

Principles of nroff and troff formatters 3-7



38

In nrof £ processors, both em and en are taken to be equal to C, which is output-
device dependent; common values are 1/10 and 1/12 inch. Actual character widths in the
nroff formatter need not be all the same. Constructed characters (such as ->) are often
extra wide. Default scaling is

» emfor horizontally oriented requests (. 11, . in, .ti, .a, .1t, .po, .mc) and
functions (\h, \ 1)

s Vfor vertically oriented requests (. p1, .wh, .ch, .dt, .sp, .sv, .ne, .rt)and
functions (\v, \x, \L)

»  pforrequests .VS and. vs and functions \H and \ s
= ufor .nr, .if,and . ie requests

All other requests ignore scale indicators. When a number register containing an
already appropriately scaled number is interpolated to provide numeric input, the basic
unit scale indicator (u) may need to be appended to prevent an additional inappropriate
default scaling. The number, 7, may be specified in decimal-fraction form, but the
parameter finally stored is rounded to an integer number of basic units.

The absolute position indicator (1) may be prefixed to a number 7 to generate the
distance to the vertical or horizontal place #:

= For vertically oriented requests and functions, | # becomes the distance in basic units
from the current vertical place on the page or in a diversion to the vertical place 7
(see “Creating Diversions: Storing and Redirecting Text” and “Using Traps” later in
this chapter) .

m  For all other requests and functions, | n becomes the distance from the current
horizontal place on the input line to the horizontal place 7. For example,

.sp |3.2c
will space in the required direction to 3.2 centimeters from the top of the page.

Numeric expressions

Wherever numeric input is expected, the following may be used:
= an expression involving parentheses

m the arithmetic operators +, —, /, *, and % (mod)

m the logical operators <, >, <= >=, = == & (and), and : (or)

Chapter 3 nroff/troff Formatters



Except where controlled by parentheses, evaluation of expressions is left to right;
there is no operator precedence. In the case of certain requests, an initial + or — is
stripped and interpreted as an increment or decrement indicator. In the presence of
default scaling, the desired scale indicator must be attached to every number in an
expression for which the desired and default scalings differ. For example, if the number
register x contains 2 and the current point size is 10, then

.11 (4.25i+\nxP+3m)/2u

sets the line length to 1/2 the sum of 4.25 inches + 2 picas + 3 ems (30 points because the
point size is 10).

¢ Note The use of white space in arithmetic expressions is not permitted. There is no
precedence among arithmetic and logical operators. nrof £/t rof £ expressions do not
recognize decimal multipliers or divisors; a high level of precision may be achieved by
mixing scales within expressions. e

Notation

Numeric parameters are indicated in this chapter in two ways. A £ means that the
argument may take one of the forms 7, +n, and -7 and that the corresponding effect is to
set the affected parameter to #, to increment it by #, or to decrement it by #, respectively.
Plain 7 means that an initial algebraic sign is not an increment indicator but merely the
sign of 7. Generally, numeric input is either ignored or truncated to a reasonable value.
For example, most requests expect to set parameters to non-negative values; exceptions
are .sp, .wh, .ch, .nr,and .if.If no argument is specified, then the .ps, . ft, .po,
.vs, .1s, .11, .in, and . 1t requests restore the previous value.

Single-character arguments are indicated by single lowercase letters, and one- or two-
character arguments are indicated by a pair of lowercase letters. Character string
arguments are indicated by multicharacter mnemonics.

Principles of nroff and troff formatters 39



troff character set

The t ro£ £ character set consists of the so-called Commercial II character set plus the
Special Mathematical font character set. The ASCII characters are entered as themselves
(with three exceptions); non-ASCII characters are entered in the form \ (xx, where xxis a
two-character name. The three ASCII character exceptions are mapped in Table 3-3.

Table 3-3 ASCII character exceptions to t rof £

ASCH input Printed by trof£

character Name character Name
! Acute accent ’ Close quotation mark
' Grave accent ) Open quotation mark
- Minus - Hyphen

The characters *, *, and - may be entered by typing \ -, \*, and \-, respectively, or
by typing their names (\ (aa, \ (ga, and \ (mi). The ASCII characters @, #,", ", *, <, >, \,
{,},~,/, and _ exist in the Special Mathematical font and are printed as a one-em space if
that font is not mounted.

The nrof £ processor understands the entire t rof £ character set but can print only

®  ASCII characters

» additional characters that are available on the output device

= characters that can be constructed by overstriking or by other combinations
= characters that can be mapped into other printable characters

Each printer’s capability is determined by a driving table prepared for that device. The
characters *, *, and - print as themselves.

Definitions of terms

Formatter refers to the nrof £ and t rof £ text formatting programs. nro£ £ and
trof £ behave similarly, except where noted.

3-10 Chapter 3 nroff/troff Formatters



Requests are built-in commands recognized by the formatters. Although you seldom
need to use these requests directly, this chapter refers to some of them. These requests
have lowercase names. mm and ms macros have uppercase names, and me macros have
lowercase names (for example, . sp is a formatter request, . 1p is an me macro, and

.PP isan ms macro).

Macros are named collections of requests. The macro name is used as an
abbreviation for a collection of commands that you would otherwise have to enter
explicitly each time they were used. mm, ms, and me supply many macros, and you can
define additional ones. Macros and requests share the same set of names and are used in
the same way. Table 5-53 at the end of Chapter 5 lists the ms macros alphabetically, and
Table 6-24 at the end of Chapter 6 lists the me macros alphabetically.

Strings provide character variables, each of which names a string of characters.
Strings are often used in page headers, page footers, and lists. These registers share the
pool of names used by requests and macros. You can define a string with the . ds
(define string) command, and call it out in the form \ *x (for one-character names) or
\ * (xx (for two-character names). For instance, the string DY in ms contains the current
date. The input line

Today is \*(DY.
prints
Today is October 17, 1989.

You can replace the current date with the command
.ds DY 02/21/90

Table 5-55 at the end of Chapter 5 lists the ms string names alphabetically.

Number registers are integer variables. These registers are used for flags and for
arithmetic and automatic numbering. You can give a register a value with the . nr
command. For example, the following sets the value of the line length register, LL:

.nr LL 4i

This instructs the formatter to generate all text lines at 4 inches. To reset this value to
the default, enter the following:

.nr LL 0O

See the section “Extending and Modifying Memorandum Macros” in Chapter 4 for
naming conventions for requests, macros, strings, and number registers.

Definitions of terms 3-11



Working with text

312

The tro£f and nrof £ formatters allow you to choose the font and size you want,
overstrike or underline characters, create brackets, and set vertical spacing to meet very
specific requirements.

Choosing a font

Default fonts may differ from device to device. Typically, the fonts will include at least the
following: Times Roman (r), Times Italic (1), Times Bold (), and Special Mathematical
(s). The current font may be changed by use of the . £t request or by embedding at any
desired point either \ £, \ £ (xx, or \ £77, where x and xx are the names of mounted
fonts, and # is a numeric font position. It is not necessary to change to the Special
Mathematical font; characters on that font are automatically handled. They are invoked
by their four-character input names (see “t rof £ Character Set” earlier in this chapter).

A request for a named but not mounted font is translated into a request to mount the
font at position 0. This position is reserved for such dynamic requests and is otherwise
inaccessible. The t ro£ £ processor can be informed that any particular font is mounted
by use of the . £p request. The list of known fonts is device-dependent. In the
subsequent discussion of font-related requests, frepresents either a one- or two-character
font name or the numeric font position. The current font is available as a numeric
position in the read-only number register . £.

Font control is understood by the nro£ £ formatter, which normally underlines italic
characters and overstrikes bold characters. Other font changes are usually ignored.

Setting character size

The available character point sizes depend on the individual printing device. The .ps
request is used to change or to restore the default point size. Alternatively, the point size
may be changed between any two characters by embedding a \ s at the desired point to
set the size to 7 or a \ st (1<n<9) to increase or decrease the size by #; \ s0 restores
the previous size. Requested point size values that are between two valid sizes yield the
closer legal size. The current size is available in the . s number register.

Chapter 3 nroff/troff Formatters



In tro£ £ the escape sequence \H’ n’ sets the height of a character without affecting
its width. 7 can be expressed in absolute values or in relative values of the form +x.
Note that the nro£ £ formatter ignores type size control.

Table 3-4 Character size request forms

Request form

Initial
value

Ifno
argument

Explanation

.bd f [n

.bd sfn

.cs f [nlm

-fp nf [fild

ft A

.ps [&n

.85 n

Off

off

off

R,I,B,S

Roman

10 point

12/36 em

Ignored

Previous

Previous

Ignored

Boldface font /by 71 units. Characters in font fwill be artificially
boldfaced by printing each one twice, separated by 71 basic units. A
reasonable value for #is 3 when the character size is in the vicinity of 10
points. If n is missing, the boldface mode is turned off. The mode must still
(or again) be in effect when the characters are physically printed.

Boldface special font when current font is f. The characters in the special
font will be emboldened whenever the current font is /. The mode must still
(or again) be in effect when the characters are physically printed.

Set constant character space (width) mode on for font Aif mounted). The
width of every character is assumed to be 7/36 ems. If m is absent, the em is
that of the character point size; if m is given, the em is m-points. All affected
characters are centered in this space, including those with an actual width
larger than this space. Special font characters occurring while the current
font is fare also so treated. If n is absent, the mode is turned off. The mode
must still (or again) be in effect when the characters are printed. There is no
effect in the nro £ £ formatter.

Position font. A font named £is mounted on position 7. It is a fatal error if
Jis not known. . £p accepts a third optional argument, file, which is an
alternate version of the font f.

Change to font A fis x, xx, #, or P). Font P means the previous font. For
font changes within a line of text, sequences \ £x, \ £ (xx, and \ £ncan
be used. Relevant parameters are a part of the current environment.

Set point size to 7. Any valid positive size value may be requested; if
invalid, the nearest valid size will result, with a maximum size to be
determined by the individual printing device. A paired sequence +#, -n will
work because the previous requested value is remembered. For point size
changes within a line of text, sequence \sn#or \sz# can be used. Relevant
parameters are a part of the current environment. There is no effect in the
nroff formatter.

Set space character size to 7/36 ems. This size is the minimum word spacing
in adjusted text. Relevant parameters are a part of the current environment.
There is no effect inthe nroff formatter.

Working with text 3-13



314

.bd can be used to boldface characters, effectively increasing the number of
available fonts. This capability of modifying existing fonts to make new ones is enhanced
with the t ro£ £ escape sequence, \ S, used to slant output characters by a number of
specified degrees. This escape sequence is stated as \ s’#’, where # may be any integer,
negative or positive. 0 turns slanting off.

Overstriking characters

Automatically centered overstriking of up to nine characters is provided by the overstrike
function \ o’ string’ . Characters in string are overprinted with centers aligned; the total
width is that of the widest character. String should not contain local vertical motion.

Setting zero-width characters

The function \ z¢ will generate ¢ without spacing over it and can be used to produce left-
aligned overstruck combinations.

Creating large brackets

The Special Mathematical font contains a number of bracket construction pieces that can
be combined into various bracket styles. The function \b’ string’ can be used to pile up
vertically the characters in string (the first character on top and the last at the bottom); the
characters are vertically separated by one em space, and the total pile is centered one-
half em above the current base line (one-half line in the nro£ £ formatter). For example,
\b’\ (Le\ (LE/\ |EN [\b/ \ (re\ (rf’\x’-0.5m’ \x’ 0.5m’

produces

[=]

Chapter 3 nroff/troff Formatters



Underlining

The nrof £ processor underlines characters automatically in the underline font,
specifiable with the . uf request. The underline font is normally on font position 2
(Times Italic). In addition to the . £t request and \ £fescape sequence, the underline
font may be selected by .ul and . cu requests. Underlining is restricted to an output-
device dependent subset of reasonable characters.

The \ 1’ nc’ function will draw a string of repeated c’s toward the right for a distance
n (1 is lowercase L).

» If clooks like a continuation of an expression for #, it can be insulated from # with a
\&.

m If cis not specified, the base-line rule () (underline character in nro££) is used .

» If nis negative, a backward horizontal motion of size # is made before drawing the
string.

Any space resulting from #/(size of ¢) having a remainder is put at the beginning (left
end) of the string. In the case of characters that are designed to be connected, such as
base-line rule (), underrule (\ (u1), and root en (\ (ru), the remainder space is
covered by overlapping. If 7 is less than the width of c, a single cis centered on a
distance #. As an example, a macro to underscore a string can be written

.de us
\\SINL7 |0\ (ul’

or a macro can draw a box around a string

.de bx
N (br\NINASIN [\ (bx\17 [0\ (xn’/\1" |0\ (ul’

such that

.us "underlined words"

and

.bx "words in a box"

Working with text 3-15



yield
underlined words

and

words in a box

The function \L” nc’ will draw a vertical line consisting of the optional character ¢
stacked vertically apart one em (one line in nrof £), with the first two characters
overlapped, if necessary, to form a continuous line. The default character is box rule
(\ (bx); the other suitable character is-bold vertical (\ (bv). The line is begun without
any initial motion relative to the current base line. A positive 7 specifies a line drawn
downward, and a negative 7 specifies a line drawn upward. After the line is drawn, no
compensating motions are made; the instantaneous base line is at the end of the line.

The horizontal and vertical line-drawing functions may be used in combination to
produce large boxes. The zero-width box rule and the one-half-em underrule were
designed to form corners when using one-em vertical spacings. For example, the macro

.de eb

.sp -1i \"compensate for automatic base-line spacing
.nf \"avoid possibly overflowing word buffer
\h’-.5n"\L’ | \\nau-1/\1"\ \n (.lu+ln\ (ul’\L’-{\\nau+l’\

\1’ | O0u-.5n\ (ul’ \"draw box

.fi

will draw a box around some text whose beginning vertical place is saved in number
register a (for example, using .mk a).

In addition, t ro£ £ provides drawing functions capable of drawing arcs and splines;
these functions are listed in Table 3-5.

3-16 Chapter 3 nroff/troff Formatters



Table 3-5 Line-drawing requests

Request form

Explanation

\D’1 dh dv’
\D’c d’
\D’e dI d2

\D’na dhl dvl dh2 dv2’

\D’ ~ dhl dvl dh2 dv2..."

Draw a line for the current position by dh, dbv.
Draw a circle of diameter 4 with its left side at the current position.

Draw an ellipse of diameters d1 and d2 with its left side at the
current position.

Draw a counterclockwise arc from the current position to
dhi1+dh2, dvl+dy2, with its center at dh1, dvl from the current
position.

Draw a B-spline from the current position by dh1, dv1, then by
dh2, dv2 then . . .

The current position after using these drawing functions is at the end of the drawn
line, which for circles and ellipses is at the right side.

Setting vertical spacing

Vertical spacing size (¢) between base lines of successive output lines can be set using
the . vs request with a device-dependent resolution. Spacing size must be large enough
to accommodate character sizes on affected output lines. For the common type sizes (9
through 12 points), usual typesetting practice is to set v'to two points greater than the
point size; t rof £ default is 10-point type on a 12-point spacing. The current vis
available in the . v register. Multiple #+line separation (for example, double-spacing) may
be obtained with a . 1s (line spacing) request.

Working with text 317



318

Adding an extra line space

If a word contains a vertically tall construct requiring the output line containing it to have
extra vertical space before or after it or in both places, the extra line space function \x'n’
can be embedded in or attached to that word. In this and in other functions having a pair
of delimiters around their parameters, the delimiter choice is arbitrary except that it
cannot look like the continuation of a number expression for 7.

s If nis negative, the output line containing the word will be preceded by 7 extra
vertical spaces.

» If nis positive, the output line containing the word will be followed by 7 extra
vertical spaces.

m  If successive requests for extra space apply to the same line, the maximum value is
used.

The most recently used postline extra line space is available in the . a register.

Creating a block of vertical space

A block of vertical space is ordinarily requested using . sp, which honors the no-space
mode and does not space past a trap. A contiguous block of vertical space may be
reserved using the . sv request. Forms that may be used to request vertical space are
listed in Table 3-6.

& Note Values separated by a semicolon () in the “Initial value” field in Table 3-6 are
for the nroff and t rof £ formatters, respectively. o

Chapter 3 nroff/troff Formatters



Table 3-6 Vertical space requests

Request form

Initial
value

If no
argument

Explanation

.1s [

.ns

.08

. IS

.sp [n

.sv [n

.vs [n

Blank line

n=1

Space

1/6in. 12pt.

Previous

Previous

Set line spacing to £n. Output n-1 blank lines (us) after each output text line.
If the text or previous appended blank line reached a trap position,
appended blank lines are omitted. Relevant parameters are a part of the
current environment.

Set no-space mode, which inhibits . sp and . bp requests without a next
page number. It is turned off when a line of output occurs or with the . rs
request. Mode or relevant parameters are associated with current diversion
level.

Save output vertical space. The request is used to output a block of vertical
space requested by an earlier . sv request. The no-space mode (. ns) has
no effect.

Restore spacing. The no-space mode (. ns) is turned off. Mode or relevant
parameters are associated with current diversion level.

Space vertically. The request provides spaces in either direction. If 7 is
negative, the motion is backward (upward) and is limited to the distance to
the top of the page. Forward (downward) motion is truncated to the
distance of the nearest trap. If the no-space mode (. ns) is on, no spacing
occurs. The scale indicator is ignored if not specified in the request. The
request causes a break.

Save a contiguous vertical block of size ». If the distance to the next trap is
greater than 7, n vertical spaces are produced. If the distance to the next

trap is less than #, no vertical space is immediately produced, but 7 is
remembered for later output (. os). Subsequent . sv requests overwrite any
still remembered 7. The no-space mode (. ns) has no effect. The scale
indicator is ignored if not specified in the request.

Set vertical base-line spacing size v. Transient extra vertical spaces are
available with \ x'n’The scale indicator is ignored if not specified in the
request. Relevant parameters are a part of the current environment.

Cause a break and output of a blank line (just as does . sp 1).

Working with text 3-19



Structuring the page

Top and bottom margins are not automatically provided. They may be defined by two
macros that set traps at vertical positions 0 (top) and -7 (7 from the bottom) (see “Using
Traps” later in this chapter). A pseudo-page transition onto the first page occurs either
when the first break occurs or when the first nondiverted text processing occurs.
Arrangements for a trap to occur at the top of the first page must be completed before
this transition. References to the current diversion mean that the mechanism being
described works during both ordinary and diverted output (the former is considered as
the top diversion level). Page control request forms are listed in Table 3-7.

Physical limitations on the nro£ £ and t ro£ £ processor output are output-device
dependent.

¢ Note Values separated by a semicolon (;) in the “Initial value” field in Table 3-7 are
for the nroff and trof £ formatters, respectively. o

Table 3-7 Page control requests

Initial Ifno

Request form value argument Explanation

.bp [En/ n=1 — Begin page. The current page is ejected and a new page is begun. If +7 is
given, the new page number will be 7. The scale indicator is ignored if not
specified in the request. The request causes a break. The use of * as the
control character (instead of .) suppresses the break function. The request
with no n is inhibited by the . ns request.

nk (A None Internal Mark current vertical place in an internal register (associated with the current
diversion leveD) or in register 7, if given. The request is used in conjunction
with “return to marked vertical place in current diversion” request (. rt).
Mode or relevant parameters are associated with current diversion level.

3-20 Chapter 3 nroff/troff Formatters



Table 3-7 Page control requests (continued)

Initial If no
Request form value argument Explanation
.ne [n — n=1v Need 7 vertical spaces. The scale indicator is ignored if not specified in the

request.

If the distance to the next trap position (d) is less than 7, a forward vertical
space of size d occurs, which will spring the trap.

1f there are no remaining traps on the page, d is the distance to the bottom
of the page.

If dis less than vertical spacing (2), another line could still be output and
spring the trap.

In a diversion, d is the distance to the diversion trap (if any) or is very large.
Mode or relevant parameters are associated with current diversion level.

.pl [ 11in. 11in. Set page length to 7. The internal limitation is about 75 inches in the
troff formatter and 136 inches in the nrof £ formatter. Current page
length is available in the . p register. The scale indicator is ignored if not
specified in the request.

.pn *n n=1 Ignored Set page number. The next page (when it occurs) will have the page number
+n. The request must occur before the initial pseudopage transition to affect
the page number of the first page. The current page number is in the %
register.

.po [t7] 0;lin.  Previous Set page offset. The current left margin is set to £». The scale indicator is
ignored if not specified in the request. The t ro£ £ formatter initial value
provides about 1 inch of paper margin. The current page offset is available
in the . o register.

.rt [ None Internal Return (upward only) to marked vertical place in current diversion. If £n
(with respect to place) is given, the vertical place is £ from the top of the
page or diversion. If # is absent, the vertical place is marked by a previous

.mk. The . sp request may be used in all cases instead of . rt by spacing to
the absolute place stored in an explicit register, for example, using the
sequence .mk 7. . . . sp | \ \nn. Mode or relevant parameters are
associated with current diversion level. The scale indicator is ignored if not
specified in the request.

Structuring the page 3-21



3-22

Filling, adjusting, and centering text

Normally, words are collected from input text lines and assembled into an output text
line until some word does not fit. An attempt may be made to hyphenate the word in an
effort to assemble a part of it into the output line. The spaces between the words on the
output line are increased to spread out the line to the current line length minus any
current indent. A word is any string of characters delimited by the space character or the
beginning or the end of the input line. Any adjacent pair of words that must be kept
together (neither split across output lines nor spread apart in the adjustment process) can
be tied together using a backslash-space character (\SPACE); this separates the words
with an unpaddable space. The adjusted word spacings are uniform in the t rof £
formatter, and the minimum interword spacing can be controlled with the . ss request.
In the nro£ £ formatter, they are normally nonuniform because of quantization to
character-size spaces; however, the flag option -e causes uniform spacing with full
output device resolution.

Filling, adjustment, and hyphenation can all be prevented or controlled. The text
length on the last line output is available in the . n number register, and text base-line
position on the page for this line is in the n1 number register. The text base-line high-
water mark (lowest place) on the current page is in the . h register.

An input text line ending with a period (.), a2 question mark (?), or an exclamation
mark (!) is taken to be the end of a sentence, and an additional space character is
automatically provided during filling. Multiple interword space characters found in the
input are retained, except for trailing spaces; initial spaces also cause a break.

To obtain a specific break in a line when filling is in effect, a \p sequence may be
embedded in or attached to a word to cause a break at the end of that word and have the
resulting output of the line containing that word spread out to fill the current line length.

A text input line that happens to begin with a control character (such as a period) can
be made to be interpreted as the actual character itself by prefacing it with the
nonprinting, zero-width filler character (\ &). Another way is to specify output
translation of some convenient character into the control character using the .t r
request.

Controlling line and word breaks

Copying an input line in no-fill mode can be interrupted by terminating the partial line
with a \ c escape sequence. The next encountered input text line will be considered to

Chapter 3 nroff/troff Formatters



Table 3-8 Interrupted text requests

be a continuation of the same line of input text. Similarly, a word within filled text may be
interrupted by terminating the word, and line, with \ c; the next encountered text will be
taken as a continuation of the interrupted word. If the intervening control lines cause a
break, any partial line or partial word will be forced out. (See Table 3-8.)

Request form  value argument

Initial Kno

Explanation

.ad [n

.Ce

Jfi

.na

.nf

[n]

Adjust

Off

Fill

Adjust

Fill

Adjust

Adjust. Output lines are adjusted with mode #. If the type indicator (n) is present, the
adjustment type is as follows:

Indicator Adjust type

1 Adijust left margin only
r Adjust right margin only
c Center

born Adjust both margins
absent Unchanged

The adjustment type indicator 7 may also be a number obtained from the . j register.
If fill mode is not on, adjustment will be deferred. Relevant parameters are a part of the
current environment,

Break. Filling of the line currently being collected is stopped, and the line is output
without adjustment. Text lines beginning with space characters and empty text lines
(blank lines) also cause a break.

Center, The next n input text lines are centered within the current line length (minus
indent). If 7 = 0, any residual count is cleared. A break occurs after each of the 7 input
lines. If the input line is too long, it will be left-adjusted. The request normally causes a
break. Relevant parameters are a part of the current environment.

Set fill mode. The request causes a break. Subsequent output lines are filled to provide
an even right margin. Relevant parameters are a part of the current environment.

Set no adjust. Output line adjusting is not done. Since adjustment is turned off, the right
margin will be ragged. Adjustment type for the . ad request is not changed. Output
line filling still occurs if fill mode is on. Relevant parameters are a part of the current
environment.

Set no-fill mode. Subsequent output lines are neither filled nor adjusted. The request
normally causes a break. Input text lines are copied directly to output lines without
regard for the current line length. Relevant parameters are a part of the current
environment.

Structuring the page 3-23



Hyphenating text
The automatic hyphenation may be switched off and on. When switched on with . hy,
several variants may be set. A hyphenation indicator character may be embedded in a
word to specify desired hyphenation points or may precede a word to suppress
hyphenation. In addition, the user may specify a small exception word list. The default
condition of hyphenation is off.

Only words that consist of a central alphabetic string surrounded by nonalphabetic
strings (usually null) are considered candidates for automatic hyphenation. Words that
were entered containing hyphens (minus), em-dashes (\ (em), or hyphenation indicator
characters (such as mother-in-law) are always subject to splitting after those characters
whether or not automatic hyphenation is on or off. (See Table 3-9.)

Table 3-9 Hyphenation requests

Initial
Requestform  value

argument  Explanation

.he [d \%
hw wordl. .. —
.hy [ Off, n=0
.nh No hyphen

\%

Ignored

on,n=1

Hyphenation character. Hyphenation indicator character is set to c or to the
default \ %. The indicator does not appear in the output. Relevant
parameters are a part of the current environment.

Exception words. Hyphenation points in words are specified with
embedded minus signs. Versions of a word with terminal s are implied; that
is, dig-itimplies dig-its. This list is examined initially and after each suffix
stripping. Space available is small—about 128 characters.

Hyphenate. Automatic hyphenation is turned on for n2 1 or off for n=0. If
n =2, last lines (ones that will cause a trap) are not hyphenated. For n =4
the last two characters of a word are not divided. For n = 8 the first two
characters of a word are not divided. These values are additive; that is, 7=
14 invokes all three restrictions. Relevant parameters are a part of the current
environment.

No hyphenation. Automatic hyphenation is tumed off. Relevant parameters
are a part of the current environment.

3-24 Chapter 3 nroff/troff Formatters



Indenting lines

The maximum line length for fill mode may be set with a . 11 request. The indent may
be set with a . in request; an indent applicable to only the next output line may be set
with the . t i (temporary indent) request. (See Table 3-10.)

The line length includes indent space but not page offset space. The line length
minus the indent is the basis for centering with the . ce request. If a partially collected
line exists, the effect of .11, . in, or .t1 is delayed until after that line is produced. In
fill mode, the length of text on an output line is less than or equal to the line length minus
the indent.

The current line length and indent are available in registers . 1 and . i, respectively.
The length of three-part titles produced by .t 1 is independently set by . 1t (see
“Creating Three-Part Titles” later in this chapter).

Table 3-10 Line length and indent requests

Initial If no
Request form value argument Explanation

.in [Fn n=0 Previous Indent. The indent is set to & and prefixed to each output line. The scale
indicator is ignored if not specified in the request. Relevant parameters are a
part of the current environment. The request causes a break.

.11 [ 6.5 in. Previous Line length. The line length is set to +#. The scale indicator is ignored if not
specified in the request. Relevant parameters are a part of the current
environment,

.ti tn — Ignored Temporary indent. The next output text line will be indented a distance +n

with respect to the current indent. The resulting total indent may not be
negative. The current indent is not changed. The value of the current indent
(stored in the . i register) is unchanged. The scale indicator is ignored if not
specified in the request. Relevant parameters are a part of the current
environment. The request causes a break.

Structuring the page 3-25



3-26

Setting tabs

Both the ASCII horizontal tab character and the ASCII SOH character (the leader) can be
used to generate either horizontal motion or a string of repeated characters. The length of
the generated entity is governed by internal tab stops specified with a . ta request. The
default difference is that tabs generate motion and leaders generate a string of periods;
.tcand . 1c offer the choice of repeated character or motion.

There are three types of internal tab stops: left justified, right justified, and centered.
In Table 3-11

»  next-string consists of the input characters following the tab (or leader) up to the next
tab (or leader) or end of line

m  dis the distance from the current position on the input line (where a tab or leader
was found) to the next tab stop

= wis the width of next-string

Table 3-11 Three types of internal tab stops

Length of motion or
Tab type repeated characters Location of next-string
Left d Following d
Right d-w Right justified within 4
Centered (d~w)2 Centered on right end of 4

The length of generated motion is allowed to be negative, but that of a repeated
character string cannot be. Repeated character strings contain an integer number of
characters, and any residual distance is prefixed as motion. Tabs or leaders found after
the last tab stop are ignored, but they may be used as next-string terminators.

Tabs and leaders are not interpreted in copy mode. The \t and \ a always generate
an uninterpreted tab and leader, respectively, and are equivalent to actual tabs and
leaders in copy mode.

Chapter 3 nroff/troff Formatters



Setting field delimiters

A field is contained between a pair of field delimiter characters. It consists of substrings
separated by padding indicator characters. The field length is the distance on the input
line from the position where the field begins to the next tab stop. The difference between
the total length of all the substrings and the field length is incorporated as horizontal
padding space that is divided among the indicated padding places. The incorporated
padding is allowed to be negative. For example, if the field delimiter is # and the padding
indicator is ~, then

# rxxx~right#

specifies a right-justified string with the string xxx centered in the remaining space.

¢ Note Values separated by a semicolon (;) in the “Initial value” field in Table 3-12 are
for the nroff and t rof £ formatters, respectively. o

Table 3-12 Field requests

Initial If no
Request form  value argument Explanation

fc ld(d

.1c [d

.ta nt...

tc [dl

off

off Field delimiter is set to 4. The padding indicator is set to the space character or to b,
if given. In the absence of arguments, the field mechanism is turned off.

None Leader repetition character becomes c or is removed specifying motion. Relevant
parameters are a part of the current environment.

8n; 0.5in. None Set tab stops and types. The adjustment within the tab is as follows:

Type Result
R Right

c Centering
Absent Left

Tab stops for the t rof £ formatter are preset every 0.5 inch; tab stops for the
nrof £ formatter are preset every eight nominal character widths. Stop values are
separated by spaces, and a value preceded by + is treated as an increment to the
previous stop value. Relevant parameters are a part of the current environment. The
scale indicator is ignored if not specified in the request.

None None Tab repetition character becomes c or is removed specifying motion. Relevant

parameters are a part of the current environment.

Structuring the page 3-27



Advanced features

3-28

The following section describes the various advanced features you can use with
nroff/troff formatters.

Creatiﬁg macros and strings

A macro is a named set of arbitrary lines that can be invoked by name or with a trap. A
string is a named string of characters, not including a newline character, that can be
interpolated by name at any point. Request, macro, and string names share the same
name list. Macro and string names may be one- or two-characters long and may usurp
previously defined request, macro, or string names. Any of these entities may be renamed
with . rn or removed with . rm.

®  Macros are created by . de and .di and appended by .amand .da (.di and .da
cause normal output to be stored in a macro).

= Strings are created by .ds and appended by . as.

A macro is invoked in the same way as a request; a control line beginning .xx will
interpolate the contents of macro xx. The remainder of the line can contain up to nine
arguments. The strings x and xx are interpolated at any desired point with \ *xand
\* (xx, respectively. String references and macro invocations can be nested within text.

Interpreting copy mode input

During the definition and extension of strings and macros in the current environment, the
input is read in copy mode. The input is copied without interpretation except that

= contents of number registers indicated by \n are interpolated

m strings indicated by \ * are interpolated (see “Macros and Strings” earlier in this
chapter)

= arguments indicated by \ $ are interpolated
m  concealed newline characters indicated by \RETURN are eliminated

= comments indicated by \ " are eliminated (see “Comments and Concealed Newline
Characters”)

Chapter 3 nroff/troff Formatters



=\t and \a are interpreted as ASCII horizontal tab and start of heading (SOH),
respectively (see “Setting Tabs” later in this chapter)

® \\ isinterpreted as “\”

= \. isinterpreted as “.”

These interpretations can be suppressed by prefixing a \. For example, because \\
maps into a \, \ \n will copy as \n, which will be interpreted as a number register
indicator when the macro or string is reread.

Defining arguments

When a macro is invoked by name, the remainder of the line can contain up to nine
arguments. The argument separator is the space character, and arguments may be
surrounded by double quotation marks to permit embedded space characters. Pairs of
double quotation marks may be embedded in double-quoted arguments to represent a
single double-quote. If the desired arguments will not fit on a line, a concealed newline
character may be used to continue on the next line.

When a macro is invoked, the input level is pushed down, and any arguments
available at the previous level become unavailable until the macro is completely read and
the previous level is restored. A macro’s own arguments can be interpolated at any point
within the macro with \ $ 7, which interpolates the nth argument (1< 7#<9).If an
invoked argument does not exist, a null string results. For example, the macro xx may be
defined by

.de xx \" begin definition
Today is \\$1 the \\$2.
\" end definition

and called by
.XX Monday 14th

to produce the text
Today is Monday the 14th.

The \ $ was concealed in the definition with a preceding backslash. The number of
currently available arguments is in the . $ register.

Advanced features 3-29



3-30

No arguments are available

= at the top (nonmacro) level in this implementation

= from within a string because string referencing is implemented as an input-level
pushdown

»  within a trap-invoked macro

Arguments are copied in copy mode onto a stack, where they are available for
reference. The mechanism does not allow an argument to contain a direct reference to a
long string (interpolated at copy time), and it is advisable to conceal string references
(with an extra \) to delay interpolation until argument reference time.

Creating diversions: Storing and redirecting text

Processed output may be diverted into a macro for purposes such as footnote processing
or determining the horizontal and vertical sizes of some text for conditional changing of
pages or columns. A single diversion trap can be set at a specified vertical position. The
number registers . dn and . d1, respectively, contain the vertical and horizontal sizes of
the most recently ended diversion. Processed text that is diverted into a macro retains the
vertical size of each of its lines when reread in no-fill mode regardless of the current v.
Constant-spaced (. cs) or emboldened (. bd) text that is diverted can be reread correctly
only if these modes are again or still in effect at reread time. One way to do this is to
embed in the diversion the appropriate . cs or .bd request with the transparent
mechanism (described in “Transparent Throughput” later in this chapter). #

Diversions may be nested, and certain parameters and registers are associated with
the current diversion level (the top nondiversion level may be thought of as diversion
level 0). These parameters and registers are

m diversion trap and associated macro

= no-space mode

= internally saved marked place (see .mk and . rt)
= current vertical place (. d register)

= current high-water text base line (. h register)

= current diversion name (. z register)

Chapter 3 nroff/troff Formatters



Using traps

Three types of trap mechanisms are available:
= page trap

= diversion trap

= input-line-count trap

Macro-invocation traps can be planted using . wh requests at any page position,
including the top. This trap position can be changed using the . ch request. Trap
positions at or below the bottom of the page have no effect unless or until moved to
within the page or rendered effective by an increase in page length. Two traps may be
planted at the same position only by first planting them at different positions and then
moving one of the traps; the first planted trap will conceal the second unless and until the
first one is moved. If the first planted trap is moved back, it again conceals the second
trap. The macro associated with a page trap is automatically invoked when a line of text
whose vertical size reaches or sweeps past the trap position is generated. Reaching the
bottom of a page springs the top-of-page trap, if any, provided there is a next page. The
distance to the next trap position is available in the . t register; if there are no traps
between the current position and the bottom of the page, the distance returned is the
distance to the page bottom.

Macro-invocation traps, effective in the current diversion, can be planted using . dt
requests. The . t register works in a diversion. If there is no subsequent trap, a large
distance is returned. (See Table 3-13.)

Table 3-13 Trap requests

Initial Ifno
Request form value argument Explanation

.am xx [yl — W= Append to macro xx (append version of .de).

.as xx string = — Ignored Append string to string xx (append version of .ds).

.ch xx [n] — - Change trap location. Change the trap position for macro xxto be 7. In the
absence of 7, the trap, if it exists, is removed. The scale indicator is ignored
if not specified in the request.

.da [xd — End Divert and append to macro xx (append version of the .di request).
Mode or relevant parameters are associated with current diversion level.

(continued)w

Advanced features 3-31



Table 3-13 Trap requests (continued)

Request form

Initial

value

Ifno

argument

Explanation

.de xx [yl

.di [xd

.ds xxstring

.dt [n][xd

.em Xx

At [n) [ed

~rm xXx

.Tn Xxyy

wh n [xd

None

=

End

Ignored

off

None

Off

Ignored

Ignored

Define or redefine macro xx. The contents of the macro begin on the next
input line. Input lines are copied in copy mode until the definition is
terminated by a line beginning with .. The macro yyis then called. In the
absence of yy, the definition is terminated by a line beginning with . . . A
macro may contain . de requests provided the terminating macros differ or
the contained definition terminator is concealed; . . can be concealed as
\\ .., whichwill copyas \ . . andberereadas . . .

Divert output to macro xx. Normal text processing occurs during diversion
except that page offsetting is not done. The diversion ends when the request
.di or .da isencountered without an argument; extraneous requests of
this type should not appear when nested diversions are being used. Mode or
relevant parameters are associated with current diversion level.

Define a string xx containing string. Any initial double quotation marks in
string is stripped to permit initial blanks.

Install a diversion trap at position # in the current diversion to invoke macro
xx. Another .dt will redefine the diversion trap. If no arguments are
given, the diversion trap is removed. Mode or relevant parameters are
associated with current diversion level. The scale indicator is ignored if not
specified in the request.

End macro. Macro xx will be invoked when all input has ended. The effect is
the same as if the contents of xx had been at the end of the last file
processed.

Input-line-count trap. An input-line-count trap is set to invoke the macro xx
after n lines of text input have been read (control or request lines do not
count). Text may be in line or interpolated by in line or trap-invoked
macros. Relevant parameters are a part of the current environment.

Remove. A request, macro, or string is removed. The name xx is removed
from the name list, and any related storage space is freed. Subsequent
references have no effect.

Rename. Rename request, macro, or string from xxto yy. If yy exists, it is
first removed.

When. A location trap is set to invoke macro xx at page position 7; a
negative 7 is interpreted with respect to the page bottom. Any macro
previously planted at n is replaced by xx. A zero n refers to the top of a
page. In the absence of xx, the first found trap at #, if any, is removed. The
scale indicator is ignored if not specified in the request.

3-32 Chapter 3 nroff/troff Formatters



Storing values: Creating number registers

A variety of predefined number registers are available to the user. In addition, the user
may define his or her own named registers. Register names are one- or two-characters
long and do not conflict with request, macro, or string names. Except for certain
predefined read-only number registers, a number register can be read, written,
automatically incremented or decremented, and interpolated into the input in a variety of
formats. One common use of user-defined registers is to automatically number sections,
paragraphs, lines, and so on. A number register can be used any time numeric input is
expected or desired and can be used in numeric expressions.

Number registers are created and modified using the . nr request, which specifies
name, numeric value, and automatic increment size. Registers are also modified if
invoked with an automatic incrementing sequence. If the registers x and xx both contain
n and have the automatic increment size m, the access sequences have the effects shown
in Table 3-14.

Table 3-14 Number register access sequences

Sequence Effect on reguster Value interpolated
nx None n

n(xx None n

n+x xincremented by m n+m

n-x xdecremented by m n-m

n+ (e xx incremented by m n+m

n—(xx xxdecremented by m n-m

According to the format specified by the . a£ request, a number register is converted
(when interpolated) to one of the following:

»  decimal (default)

= decimal with leading zeros

s Jowercase Roman

m uppercase Roman

= lowercase sequential alphabetic
= uppercase sequential alphabetic

Advanced features 3-33



The escape sequence “\gx” or “\g (x¢" gives the format used by register x or xx. This
escape sequence will return a value only if the stated register has been set or used;
otherwise, it returns 0. The value can also be saved and used as the second argument of
.af to restore a previous format. (See Table 3-15.)

Table 3-15 Number register requests

Initial If no
Request form value argument

Explanation

.af rc Arabic —

.nr rtnm — —

.rr r i -

Assign format. Format ¢ is assigned to register . Available formats are
1 0,1,2,.

001 000,001,002,.

i 0,i,ii,...

I 0,LII,...

a 0,a,b,..,z,3aa,ab,..,zz, aaa,...

A 0,A,B,..,ZAAAB,...ZZ, AAA,...

An Arabic format having » digits specifies a field width of  digits. Read-only
registers and width function are always Arabic.

Number register. The number register ris assigned the value £ with respect
to the previous value, if any. The automatic incrementing value is set to m.
The number register value () is ignored if not specified in the request.

Remove register. The number register ris removed. If many registers are
being created dynamically, it may be necessary to remove registers that are
no longer used in order to recapture internal storage space for newer
registers.

Creating three-part titles

The titling function . t1 provides for automatic placement of three fields at the left,
center, and right of a line with a title length specifiable with . 1t. The .t 1 may be used
anywhere and is independent of the normal text-collecting process. A common use is in
header and footer macros. (See Table 3-16.)

3-34 Chapter 3 nroff/troff Formatters



Table 3-16 Three-part title requests

Initial Ifno

Request form value argument Explanation

L1t [ 6.5 in. Previous Length of title set to £#. Line length and title length are independent. Indents
do not apply to titles; page offsets do. Relevant parameters are a part of the
current environment. The scale indicator is ignored if not specified in the
request.

.pc [d % off Page number character set to ¢ or removed. The page number register
remains %.

.t 1’ left’ center’ right’ — Three-part title. The strings left, center, and right are respectively left-

adjusted, centered, and right-adjusted in the current title length. Any of the
strings may be empty, and overlapping is permitted. If the page number
character (initially %) is found within any of the fields, it is replaced by the
current page number having the format assigned to register %. Any character
may be used as the string delimiter.

Spacing characters on a line: Setting horizontal and
vertical motion and width

This section explains how troff creates superscripts and subscripts and how you can
space characters horizontally on a line by adding or reducing space.

Moving characters within a line: Setting local motion

The functions \v’n* and \h’ »’ can be used for local vertical and horizontal motion,
respectively. The distance 7 may be negative; the positive directions are rightward and
downward. A local motion is one contained within a line. To avoid unexpected vertical
dislocations, it is necessary that the net vertical local motion (within a word in filled text
and otherwise within a line) balance to 0.

As an example, E’ is generated by the sequence
E\v’/=-.5'\s-4\&2\s0\v’ .5’

Advanced features 3-35



3-36

Spacing characters within a line: Setting width

The width function \w- string’ generates the numeric width of string in basic units.
Size and font changes may be embedded in string and will not affect the current
environment. For example,

.ti -\w’l.’u

could be used to temporarily indent leftward a distance equal to the size of the string “1.”.
The width function also sets three number registers. The registers st and sb are sets,

respectively, to the highest and lowest extents of string relative to the base line; then, for

example, the total height of the string is \n (stu-\n (sbu. In the t ro£ £ formatter, the

number register ct is set to a value between 0 and 3:

= 0 means that all characters in string are short lowercase characters without
descenders (like the character e).

= 1 means that at least one character has a descender (like the character y).
® 2 means that at least one character is tall (like the character H).
= 3 means that both tall characters and characters with descenders are present.

Overprinting text: Marking horizontal place
The escape sequence \kx will cause the current horizontal position in the input line to
be stored in register x. As an example, the construction:

\kx\fIword\fR\h’ | \nxu+2u’ \fIword\fR

will boldface word by backing up and overprinting it, resulting in
word

Chapter 3 nroff/troff Formatters



Numbering output lines

Automatic sequence numbering of output lines can be requested with . nm. When it is in
effect, a three-digit Arabic number and a digit space are prefixed to output text lines. Text
lines are offset by four digit-spaces and otherwise retain their line length. A reduction in
line length may be desired to keep the right margin aligned with an earlier margin. Blank
lines, other vertical spaces, and lines generated by . t 1 are not numbered. Numbering
can be temporarily suspended with . nn or with a . nm followed by a later .nm +0.In
addition, a line number indent 7and the number-text separation s can be specified in digit
spaces. Further, it can be specified that only those line numbers that are multiples of
some number m are to be printed (the others will appear as blank number fields). (See
Table 3-17.)

Table 3-17 Output line numbering requests

Request form

Initial Ifno
value argument Explanation

omBEamisl] — off Line number mode. If £n is given, line numbering is turned on, and the next

.nn [n]

output line is numbered *#. Default values are m=1,s=1,and i = 0.
Parameters corresponding to missing arguments are unaffected; a non-
numeric argument is considered missing. In the absence of all arguments,
numbering is turned off, and the next line number is preserved for possible
further use in number register 1n. Relevant parameters are a part of the
current environment.

- n=1 Next 7 lines are not numbered. Relevant parameters are a part of the current
environment.

Advanced features 3-37



The following example illustrates output line numbering. Paragraph portions are
numbered with m = 2.

Automatic sequence numbering of output lines may be

2 requested with .nm. When in effect, a three-digit Arabic number and a digit
space areeee prefixed to output text four lines. Text lines are offset by four

4  digit spaces and otherwise retain their line length. A reduction in line
length (such as .11 -\w'0000 'u in this example) may be desired to keep the
right margin aligned with an earlier margin.

6  Blank lines, other vertical spaces, and lines generated 10 by .t1 are

8  not numbered. Numbering can be temporarily suspended with .nn or with a
.nm followed by a later .nm 12 +0.

10 In addition, a line number indent i and the number-text separation s may be
specified in digit spaces. Further, it can be specified that

12 only those line numbers that are multiples of some number m are to be
printed (the others will appear as blank number fields). This example uses
the multiple of 2.

.11 -\w’ 0000’ u was placed at the beginning to keep the right margin aligned.
= .nm 1 2 was placed at the beginning,

= .nm +0 was placed in front of the second and third paragraphs.

= _.nmwas placed at the end.

® .11 +\w’0000’u was placed at the end to return to the original line length.

Another example is
.nm +5 5 x 3

which turns on numbering with the line number of the next line to be five greater than
the last numbered line, with m = 5, spacing s untouched, and the indent i set to 3.

3-38 Chapter 3 nroff/troff Formatters



Using conditionals

In Table 3-18, which is a summary and explanation of conditional acceptance requests,

m cisaone-character, built-in condition name

m ! signifies not |

=  7is a numeric expression

»  stringl and string2 are strings delimited by any nonblank, non-numeric character not
in the strings

m  gnything represents what is conditionally accepted

Table 3-18 Summary and explanation of conditional acceptance requests

Request form Explanation

.el anything The “else” portion of “if-else.”

.ie canything The “if” portion of “if-else.” The ¢ can be any of the forms
acceptable with the . 1 £ request.

.1f canything If condition c s true, accept anything as input; for multiline case,
use \ { anything\ } . The scale indicator is ignored if not
specified in the request.

.if !canything If condition C is false, accept anything.

.if nanything If expression 7> 0, accept anything. The scale indicator is
ignored if not specified in the request.

.if !nanything If expression 7 < 0, accept anything. The scale indicator is

ignored if not specified in the request.
Lif stringlstring2’anything If string1 is identical to string2, accept anything.
Lif 'stringl'string2'anything  If string1 is not identical to string2, accept anything.

Table 3-19 lists built-in condition names.

Advanced features 3-39



Table 3-19 Built-in condition names

Condition name True if

o Current page number is odd.
e Current page number is even.
t Formatteris troff.
n Formatteris nroff.

If condition c is true, if number 7 is greater than 0, or if strings compare identically
(including motions and character size and font), anything is accepted as input. If a !
precedes the condition, number, or string comparison, the sense of the acceptance is
reversed.

Any spaces between the condition and the beginning of anything are skipped over.
The anything can be either a single input line (text, macro, or whatever) or a number of
input lines. In the multiline case, the first line must begin with a left delimiter \ { and the
last line must end with a right delimiter \ ;.

The request . ie (if-else) is identical to . i £ except that the acceptance state is
remembered. A subsequent and matching . e1 (else) request then uses the reverse sense
of that state. The . ie - . el pairs may be nested. For example,

.if e .tl1 ’ Even Page %’’’
generates a title if the page number is even, and

.ie \n%>1\{\
"sp 0.51

.tl "Page %’’’
'sp |1.2i\}

.el .spl2.51i
treats page 1 differently from other pages.

3-40 Chapter 3 nroff/troff Formatters



Switching environments

A number of parameters that control text processing are gathered together into an
environment, which can be switched by the user. Environment parameters are those
associated with some requests. The request tables in this chapter indicate in the
“Explanation” column those requests so affected. In addition, partially collected lines and
words are in the environment. Everything else is global; examples are page-oriented
parameters, diversion-oriented parameters, number registers, and macro and string
definitions. All environments are initialized with default parameter values. (See Table
3-20.)

Table 3-20 Environment switching request

Initial If no
Request form value argument Explanation
.ev [n] n=0 Previous Environment switched to 0, 1, or 2. Switching is done in pushdown fashion
so that restoring a previous environment must be done with . e v rather
than specific reference.

Inserting from standard input

The input can be switched temporarily to the system standard input with . rd and
switched back when two newline characters in a row are found (the extra blank line is
not used). This mechanism is intended for insertions in form-letter-like documentation.
On the A/UX operating system, the standard input can be the user keyboard, a pipe, or a
file.

If insertions are to be taken from the terminal keyboard while output is being printed
on the terminal, the flag option -q will turn off the echoing of keyboard input and
prompt only with BEL. The regular input and insertion input cannot simultaneously come
from the standard input. As an example, multiple copies of a form letter can be prepared
by entering insertions for all copies in one file to be used as the standard input and
causing the file containing the letter to reinvoke itself by using the . nx request. The
process would be ended by a . ex request in the insertion file. (See Table 3-21.)

Advanced features 3-41



Table 3-21 Standard input insertion requests

Initial K no
Request form value argument Explanation
.ex — — Exit from the nrof £/t rof £ formatter. Text processing is terminated
exactly as if all input had ended.
.xd [prompi - prompt=BEL  Read insertion from the standard input until two newline characters in a row

are found. If standard input is the user keyboard, a prompt (or a BEL) is
written onto the user terminal. The request behaves like a macro; arguments
may be placed after prompt.

Table 3-22 Input/output switching requests

Switching input/output files

Table 3-22 lists requests for switching input/output files.

Initial If no

Request form value argument Explanation

.cf filename  — — Copy the contents of file, uninterpreted into t ro£ £ output file at this point.
Havoc ensues unless the motions in the file restore the current horizontal
and vertical positions.

L1f nfile — —_ Correct t rof £'s idea of the current line number, 7, and the current file, file,
for use in error messages.

.nx [filenamd — End-of-file Next file is filename. The current file is considered ended, and the input is
immediately switched to filename.

.pi program — — Pipe output to program. This request must occur before any printing occurs.
No arguments are transmitted to program.

.so filename — — Switch source file (pushdown). The top input level (file reading) is switched

to filename. Contents are interpolated at the point the request is
encountered. When the new file ends, input is again taken from the original
file. The . so requests may be nested.

3-42 Chapter 3 nroff/troff Formatters



Reading output and error messages

Output from .tmand . pm, prompt from . rd, and various error messages are written
onto the A/UX operating-system standard message output. The latter is different from the
standard output, when compared to the nrof £ formatted output. By default, both are
written onto the user’s terminal, but they can be independently redirected. (See Table
3-23)

Various error conditions can occur during the operation of the nrof £ and trof £
formatters. Certain less serious errors having only local impact do not cause processing to
terminate. Two examples are

m word overflow: caused by a word that is too large to fit into the word buffer (in
fill mode)

m line overflow:caused byan output line that grew too large to fit in the line
buffer

In both cases, a message is printed, the offending excess is discarded, and the
affected word or line is marked at the point of truncation with a * (in nro££) ora = (in
trof£). The usual procedure is to continue processing, if possible, on the grounds that
output useful for debugging may be produced. If a serious etror occurs, processing
terminates, and an appropriate message is printed. Error conditions that can cause this
include the inability to create, read, or write files, and the exceeding of certain internal
limits that make future output unlikely to be useful.

Table 3-23 Output printing request

Request form

Initial Ifno
value argument Explanation

.ab [texd

- — Print fext on the message output and terminate without further processing. If
textis missing, User Abort . is printed. This request does not cause a
break. The output buffer is flushed.

Advanced features 343



Miscellaneous requests

Table 3-24 lists those requests that are not found in other tables, such as requests that
flush the output buffer, ignore input lines, set margin character, print macro, execute cmd
without capturing output, and print string on a terminal.

Table 3-24 Miscellaneous requests

Request form

Initial Ifno
value argument

Explanation

£l

.ig

.mc ¢l

.8y cmdargs

.tm [string

— Newline

Flush output buffer. Used in interactive debugging to force output. The
request causes a break.

Ignore input lines until call of yy. This request behaves like the . de request
except that the input is discarded. The input is read in copy mode, and any
automatically incremented registers will be affected.

Set margin character ¢ and separation n. Specify that a margin character ¢
appear a distance 7 to the right of the right margin after each nonempty text
line (except those produced by . t 1). If the output line is too long (as can
happen in no-fill mode), the character will be appended to the line. If n is
not given, the previous # is used; the initial nis 0.2 inches in the nrof £
formatter and 1 em in t rof £. Relevant parameters are a patt of the current
environment. The scale indicator is ignored if not specified in the request.

Print macros. The names and sizes of all defined macros and strings are
printed on the user terminal. If ¢is given, only the total of the sizes is
printed. Sizes are given in blocks of 128 characters.

cmd is executed but its output is not captured at this point. The standard
input for cmd is closed. Output for processing must be explicitly saved in an
output file.

Print string on terminal (A/UX operating system standard message output).
After skipping initial blanks, string (rest of the line) is read in copy mode and
written on the user terminal.

3-44 Chapter 3 nroff/troff Formatters



Input/output conventions and
character translations

The following sections explain input/output characters and conventions found in
nroff/troff formatters.

Input character translations

The newline character delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are
accepted and can be used as delimiters or translated into a graphic with a . t r request.
All others are ignored.

The escape character (\) introduces sequences that indicate some function such as a
font change or the printing of a special character. The escape character

» should not be confused with the ASCII control character ESC of the same name

= can be input with the sequence \\

»  can be changed with . ec, and all that has been said about the default \ becomes
true for the new escape character

A \e sequence can be used to print the current escape character. If necessary or
convenient, the escape mechanism can be turned off with . eo and restored with . ec.

Ligatures

Two ligatures are available in the t ro£ £ character set: fi and fl. They may be entered
(even in the nro£ £ formatter) by \ (£1 and \ (£1, respectively. Note that ligature mode
is normally on in the t ro£ £ formatter; that is, ligatures are automatically produced.
Constant-width fonts normally do not use ligatures.

Input/output conventions and character translations 345



Control characters

Both the break control character (.) and the no-break control character () may be
changed, if desired. Such a change must be compatible with the design of any macros
used in the span of the change and particularly with any trap-invoked macros.

Output translation

One character can be made a stand-in for another character using the . t r request. All
text processing (for example, character comparisons) takes place with the input (stand-
in) character, which appears to have the width of the final character. Graphic translation
occurs at the moment of output (including diversion).

& Note Values separated by a semicolon () in the “Initial value” field in Table 3-25 are
for the nrof£ and t rof £ formatters, respectively. o

Table 3-25 Output translation requests

Initial ifno

Request form value argument Explanation

.cc [d Set control character to c or reset to .. Relevant parameters are a part of the
current environment.

.cu [n] off n=1 Continuous underline in the nxo£ £ formatter. A variant of . ul that causes
every character to be underlined. Identical to . ul in the t ro£ £ formatter.
Relevant parameters are a part of the current environment.

.c2 [d ’ ' Set no-break control character to c or reset to 7 . Relevant parameters are a
part of the current environment.

ec [d \ \ Set escape character to \ orto cif given.

.eo On — Turn escape character mechanism off.

.1g [ Offon On Ligature mode is turned on if # is absent or nonzero and turned off if
n=0.If n= 2, only the two-character ligatures are automatically invoked.
Ligature mode is inhibited for requests, macros, strings, registers, filenames,
and copy mode. There is no effect in the nro £ £ formatter.

3-46 Chapter 3 nroff/troff Formatters



Table 3-25 Output translation requests (continued)

Initial If no

Request form value argument Explanation

.tx abcd. .. None — Translate a into b, ¢ into d, and so forth on output. If an odd number of
characters is given, the last one will be mapped into the space character. To
be consistent, a particular translation must stay in effect from input to output
time. Initially there are no translate values.

uf f Italic Ttalic Underline font set to f(to be switched to by . ul). In the nro£ £ formatter f
may not be on position 1 (initially Times Roman).

.ul [n] off n=1 Underline in the nro£ £ formatter (italicize in t rof£) the next # input text

lines. Switch to underline font, saving the current font for later restoration;
other font changes within the span of a . ul will take effect, but the
restoration will undo the last change. Output generated by . t 1 is affected
by the font change but does not decrement ». If 7 is greater than 1, there is
the risk that a trap-interpolated macro may provide text lines within the
span, which environment switching can prevent. Relevant parameters are a
part of the current environment.

Transparent throughput

An input line beginning with a \ ! is read in copy mode and transparently output (without
the initial \ 1); the text processor is otherwise unaware of the line’s presence. This is
known as transparent throughput. This mechanism may be used to pass control
information to a postprocessor or to embed control lines in a macro created by a diversion.

Comments and concealed newline characters

An unusually long input line that must stay one line (for example, a string definition or
no-filled text) can be split into many physical lines by ending all but the last one with the
escape character (\). The sequence \RETURN is ignored except in a comment.
Comments can be embedded at the end of any line by prefacing them with \ . The
newline character at the end of a comment cannot be concealed. A line beginning with
\" will appear as a blank line and behave like . sp 1;a comment can be on a line by
itself by beginning the line with .\ .

Input/output conventions and character translations 347



Reference tables

The following tables are your guides to escape sequences, naming conventions, and
predefined number registers.

Table 3-26 Escape sequences for characters, indicators, and functions

Escape sequence Meaning

A\ \ (to prevent or delay the interpretation of \)
\e Printable version of current escape character.
Acute accent (equivalent to \ (aa).

Grave accent (equivalent to \ (ga).

\- — (minus sign in the current font).

\. Period (dot).

\SPACE BAR Unpaddable space-size space character.

\O Unpaddable digit-width space.

\ | 1/6-em narrow space character (zero width in nro£ £).
\ 1/12-em half-narrow space character (zero width in nro£ £).
\& Nonprinting zero-width character.

\! Transparent line indicator.

\" Beginning of comment .

\$n Interpolate argument (1 < n <9).

\% Default optional hyphenation character.

\ (ax Character named xx.

\*x \ * (ox Interpolate string x or xx.

\ { Begin conditional input.

\'} End conditional input.

\RETURN Concealed (ignored) newline character.

\a Uninterpreted leader character.

\b’abc. ..’ Bracket building function.

\c Continuation of interrupted text.

\d Forward (down) 1/2-em vertical motion (1/2 line in nro £ £).
\D Line-drawing functions.

348 Chapter 3 nroff/troff Formatters



Table 3-26 Escape sequences for characters, indicators, and functions (continued)

Escape sequence Meaning

\Ex\f (xx,\f7 Change to font named xor xxor position 7.

\gx,\g (xx Return the . af~type format of the register x or xx.
\h’ n’ Local horizontal motion, move right 7 (negative left).
\H’ n’ Height control of characters (does not affect width).

\kx Mark horizontal input place in register x.

\1’nc’ Horizontal line drawing function (optionally with ¢).
\L‘ nc’ Vertical line drawing function (optionally with ¢).
\nx,\n (xx Interpolate number register x or xx.

\o’abc...’ Overstrike characters g, b, . . .

\p Break and spread output line.

\r Reverse 1-em vertical motion (reverse line in nrof £).
\sn\stn Point-size change function.

\t Uninterpreted horizontal tab.

\u Reverse (up) 1/2-em vertical motion (1/2 line in nro££).
\v’n’ Local vertical motion, move down 7 (negative up).

\w’ string’ Interpolate width of string.

\x’n’ Extra line-space function (negative before, positive after).
\zc Print ¢ with zero width (without spacing).

\X Any character not listed above.

# Note Escape sequences \\, \., \", \$, \*, \a, \n, \t,and \RETURN are

interpreted in copy mode.

Reference tables

349



3-50

Table 3-27 Naming conventions for special characters on the standard fonts

Char Input name Character name Char Input name Character name
’ Close quotation mark 1/2 \ (12 One-half

‘ Open quotation mark 3/4 \ (34 Three-fourths
— \ (em 3/4-em dash fi \ (fi fi

- - Hyphen fl \ (f1 fl

- \ (hy Hyphen \ (de Degree

- \- Current font minus t \ (dg Dagger

. \ (bu Bullet ¢ \ (fm Foot mark

O \ (sq Square ¢ \ (ct Cent sign

_ \ (ru Rule ® \ (rg Registered
1/4 \ (14 One-fourth © \ (co Copyright

Chapter 3 nroff/troff Formatters



Table 3-28 Naming conventions for Greek characters on the special font

Char Input name Character name Char Input name Character name
A \(*A Alpha* o \(*a alpha
B \(*B Beta* B \(b beta
r ICG Gamma Y \(*g gamma
A \(*D Delta ) \(*d delta
E \CE Epsilon* € \(*e epsilon
4 \(*Z Zeta* € \(*z zeta
H \CY Eta* n \Cy eta
(C) \(*H Theta 0 \Ch theta
I \('1 Iota* 1 \(i iota
K \(‘K Kappa* K \Ck kappa
A \('L Lambda A \( lambda
M \(*M Mu* 1} \(*m mu
N \(*N Nu* ) \('n nu
E \(*C Xi 3 \(*c Xi
(0] \(O Omicron* o \(*o omicron
n \(*P Pi T \Cp pi
P ICR Rho* P \Cr tho
z \(*S Sigma c \(s sigma

S \(s terminal sigma
T \(*T Tau* T \("t tau
¥ \(*U Upsilon 0 \(*u upsilon
0] \(*F Phi o \('f phi
X \(X Chi* 0 \(*x chi
b 4 \(Q Psi v \(*q psi
Q \CW Omega (0] \Cw omega

* Mapped into uppercase English letters in the font mounted on font position one.

Reference tables 3-51



Table 3-29 Naming conventions for special characters on the special font

Char Input Character Char Input Character
- name name name name
+ \ (pl Math plus * \ (** “Math star”
- \ (mi Math minus | \ (or Or
+ \ (+- Plus-minus / \ (sl Slash
X \ (mu Multiply § \ (sc Section
+ \ (di Divide : \ (aa Acute accent
= \ (eq Math equals \ (ga Grave accent
b3 \ (>= Greater than or equal _ \ (ul Underrule
< \ (<= Less than or equal - \ (=> Right arrow
= \ (== Identically equal - \ (<~ Left arrow
\( = Approximately equal T \ (ua Up arron
~ \ (ap Approximates { \ (da Down arrow
# \(!= Not equal i \ (dd Double dagger
v \ (sr Square route v \ (bs “Bell System logo”
- \ (rn Root en extender &= \ (1h “Left hand”
v \ (cu Cup (union) = \ (rh “Right hand”
N \ (ca Cap (intersection) | \ (bx Box vertical rule
c \ (sb Subset of ' o \ (ci Circle
o \ (sp Superset of | \ (bv Bold vertical
c \ (ib Improper subset r \ (lc Left ceiling (bracket)
=2 \ (ip Improper superset 1 \ (rc Right ceiling
€ \ (mo Member of L \ (1£f Left floor
1] \ (es Empty set ] \(rf Right floor
oo \ (if Infinity ( \ (1t Left top (brace)
0 \ (pd Partial derivative 3 \ (rt Right top
\% \(gr  Gradient L \ (1b Left bottom
[ \ (is Integral sign J \ (rb Right bottom
oc \ (pt Proportional to { \ (1k Left center
= \ {no Not t \ (rk Right center

3-52 Chapter 3 nroff/troff Formatters



Table 3-30 Predefined general number registers

Register name Description

% Current page number.

.b Boldfacing factor of the current font.

.c Provides general register access to the input line number in the current input file.

Contains the same value as the read-only . c register.

.R Number of number registers that remain available for use.

ct Character type (set by width function).

dl Width (maximum) of last completed diversion.

dn Height (vertical size) of last completed diversion.

dw Cusrent day of the week (1 through 7).

dy Current day of the month (1 through 31).

1n Output line number.
mo Current month (1 through 12).

nl Vertical position of last printed text base line.

sb Depth of string below base line (generated by width function).
st Height of string above base line (generated by width function).
yr Last two digits of current year.

Reference tables 3-53



Table 3-31 Predefined read-only number registers

Register name Description

.$ Number of arguments available at the current macro level.

$s$ Identification number (process ID) for nro £ £ or t rof £ processes.

.A Set to 1 in the t ro£ £ formatter if —a option used; always 1 in the nrof £ formatter.

.F Value is a string that is the name of the current input file.

.H Available horizontal resolution in basic units.

.L Contains the current line spacing parameter (the value of the most recent . 1s
request).

.P Contains the value 1 if the current page is being printed and is 0 otherwise, that is, if
the current page did not appear in the o option list.

.T Setto 1 in the nrof £ formatter if T flag option used; always 0 in the t ro£ £
formatter.

.V Available vertical resolution in basic units.

.a Post-line extra line space most recently utilized using .

.C Number of lines read from current input file.

.d Current vertical place in current diversion: equal to n1 if no diversion.

.£ Current font as physical quadrant (1 through 4).

.h Text base-line high-water mark on current page or diversion.

i Current indent.

| Indicates the current adjustment mode and type. Can be saved and later given to the
. ad request to restore a previous mode.

.k Contains the horizontal size of the text portion (without indent) of the current
partially collected output line, if any, in the current environment.

.1 Current line length.

.n Length of text portion on previous output line,

.0 Current page offset.

.p Current page length.

.S Current point size.

.t Distance to the next trap.

.u Equal to 1 in fill mode and 0 in no-fill mode.

.V Current vertical line spacing.

W Width of previous character.

.X Reserved version-dependent register.

.y Reserved version-dependent register.

.Z Name of current diversion.

3-54 Chapter 3 nroff/troff Formatters



4 mm Macros

What are mm macros, and why should you use them? / 4-3
Options and commands for accessing mm macros / 4-5
Working with text / 4-13

Structuring the page / 4-25

Creating lists / 4-45

Creating memorandum and released-paper style documents / 4-59
Creating displays / 4-78

Creating footnotes / 4-87

Generating a table of contents and cover sheet / 4-90
Using references / 4-93

Troubleshooting / 4-96

Extending and modifying memorandum macros / 4-97
mm examples / 4-101

mm reference tables / 4-106

Error messages / 4-116



This chapter is a guide and reference for users of the memorandum macros. These
macros provide a general-purpose package of text-formatting macros for use with the
A/UX text formatters nrof £ and t rof £. For more details, see the previous chapter or

refer to nro£ £(1) and t ro££(1) in A/UX Command Reference.

42 Chapter 4 mm Macros



What are mm macros, and why should you

use them?

The following qualities of mm have been emphasized in its design in approximate order
of importance:

Robustness in the face of error—A user need not be an nro£ £/t rof £ expert to use
the memorandum macros. When the input is incorrect, either the macros attempt to
make a reasonable interpretation of the error or an error message describing the error
is produced. An effort has been made to minimize the possibility that a user will get
cryptic system messages or strange output as a result of simple errors.

Ease of use for simple documents—It is not necessary to write complex sequences of
commands to produce documents. Reasonable macro argument default values are
provided where possible.

Setting parameters—There are many different preferences in the area of document
styling. Many parameters are provided so that users can adapt input text files to
produce documents that meet their respective needs with a wide range of styles.

Extension by moderately expert users—A strong effort has been made to use
mnemonic naming conventions and consistent techniques in construction of macros.
Naming conventions are given so that a user can add new macros or redefine existing
ones if necessary.

Device independence—A common use of mm is to produce documents on hard copy
via teletypewriter terminals using the nro£ £ formatter. Macros can be used
conveniently with both 10- and 12-pitch terminals. In addition, output can be
displayed on an appropriate CRT terminal. Macros have been constructed to allow
compatibility with the t ro£ £(1) formatter so that output can be produced on both a
phototypesetter and a teletypewriter/CRT terminal.

Minimization of input—The design of macros attempts to minimize repetitive typing.
For example, if a user wants to have a blank line after all first- or second-level
headings, the user need only set a specific parameter once at the beginning of a
document rather than type a blank line after each such heading,

What are mm macros, and why should you use them? 43



44

»  Uncoupling of input format from output style—There is but one way to prepare the
input text, although the user may obtain a number of output styles by setting a few
global flags. For example, the . 5 macro is used for all numbered headings, yet the
actual output style of these headings can be made to vary from document to
document or within a single document.

Required structure for a document

Input for a document to be formatted with the mm text-formatting macro package has four
major segments, any of which may be omitted. If present, the segments must occur in the
following order: '

» The parameter-setting segment sets the general style and appearance of a document.
The user can control page width, margin justification, numbering styles for headings
and lists, page headers and footers, and many other properties of the document. Also,
the user can add macros or redefine existing ones. This segment can be omitted
entirely if the user is satisfied with default values; it produces no actual output, but
performs only the formatter setup for the rest of the document.

» The beginning segment includes those items that occur only once, at the beginning of
a document, for example, title, author’s name, and date.

» The body segment is the actual text of the document. It may be as small as a single
paragraph or as large as hundreds of pages. It may have a hierarchy of headings up to
seven levels deep (see “Creating Numbered Headings” later in this chapter). Headings
are automatically numbered (if desired) and can be saved to generate the table of
contents. Five additional levels of subordination are provided by a set of list macros
for automatic numbering, alphabetic sequencing, and “marking” of list items (see
“Creating Lists” later in this chapter). The body may also contain various types of
displays, tables, figures, footnotes, and references (see “Creating Displays,” “Creating
Footnotes,” and “Using References” later in this chapter).

= The ending segment contains those items that occur only once at the end of a
document. Included are signatures and lists of notations (for example, “Copy to” lists)
(see “Creating End-of-Memorandum Macros” later in this chapter). Certain macros
may be invoked here to print information that is wholly or partially derived from the
rest of the document, such as the table of contents or the cover sheet for a document
(see “Generating a Table of Contents and Cover Sheet” later in this chapter).

Chapter 4 mm Macros



Existence and size of these four segments vary widely among different document
types. Although a specific item (such as date, title, author names) of a segment may differ
depending on the document, there is a uniform way of typing it into an input text file.

To make it easy to edit or revise input file text at a later time:
= Input lines should be kept short.

m Lines should be broken at the end of clauses.
= Each new sentence should begin on a new line.

Restricted use of the BEL character

The nonprinting character BEL is used as a delimiter in many macros to compute the
width of an argument or to delimit arbitrary text, for example, in page headers and
footers, headings, and lists. Users who include BEL characters in their input text file
(especially in arguments to macros) will receive mangled output. See “Creating Page
Headers and Footers,” “Creating Paragraphs,” “Creating Numbered Headings,” and
“Creating Lists” later in this chapter.

Options and commands for accessing
mm MACTOS

This part describes how to access mm, illustrates A/UX operating system command lines
appropriate for various output devices, and describes command-line flags for the mm text-
formatting macro package.

The mm command

The mm(1) command can be used to prepare documents using the nro£ £ formatter and
the memorandum macros. The mm command has options to specify preprocessing by
tbl of neqn, or both, and for postprocessing by various output filters.

Options and commands for accessing mm macros 45



46

¢ Note Options can occur in any order but must appear before the filenames. o

Any arguments or flag options that are not recognized by the mm command (for
example, -rC3) are passed to the nrof £ formatter or to mm, as appropriate. Options are
shown in Table 4-1.

Table 41 mm command options

Option Meaning

-e The neqn preprocessor is to be invoked; also causes negn to read
/usr/pub/eqgnchar (see eqnchax(7)).

-t The tb1(1) preprocessor is to be invoked.

-c The co1(1) postprocessor is to be invoked.

-E The ~e option of the nro£ £ formatter is to be invoked.

-12 The 12-pitch mode is to be used. The pitch switch on the terminal should be set to 12
if necessary.

-T2631 Output is prepared for an HP2631 printer, where -T2631-e and -T2631—-c may
be used for expanded and compressed modes, respectively (implies —c).

-T300 Output is to a DASI 300 terminal.

-T300s Output is to a DASI 300S.

-T37 Output is to a Teletype Model 37.

-T382 Output is to a DTC-382.

-T4000a Output is to a Trendata 4000A.

~T450 Output is to a DASI 450. This is the default terminal type (unless $TERM is set; see
sh(1)). Itis also equivalent to =T1620.

-T832 Output is to an Anderson Jacobson 832 terminal.

-T8510 Output is to a C.ITOH printer.

-Tlp Output is to a device with no reverse or partial line motions or other special features
(implies —c).

-Ttn300 Output is to a GE TermiNet 300 terminal.

-TX Output is prepared for an EBCDIC line printer.

Any other -T option given does not produce an error; it is equivalent to -T1p.
A similar command is available for use with the t rof £ formatter (see mmt.(1)).

Chapter 4 mm Macros



The -mm flag

The mm package can also be invoked by including the -mm flag as an argument to the
formatter. The -mm flag causes the file /usr/1ib/tmac/tmac.m toberead and
processed before any other files. This action

m defines the memorandum macros

s sets default values for various parameters

= initializes the formatter to be ready to process input text files

Typical command lines

The prototype command lines are as follows (various options are explained in
“Parameters Set From the Command Line” later in this chapter):

= Text without tables or equations:

mm [options filename . . .
or

nroff [options -mm filename ...
mmt [options filename . . .

or

troff [options -mm filename ...
Text with tables:

mm -t [options filename . ..

or

tbl filename ... | nroff [options -mm
mmt -t [options| filename . ..

or
tbl filename ... | troff [options -mm

Options and commands for accessing mm macros

47



s Text with equations:
mm -e [options| filename . . .

or

neqn /usr/pub/eqnchar filename ... | nroff (options -mm
mmt -e [options) filename . ..

or

eqn /usr/pub/eqnchar filename ... | troff [options] -mm

s Text with both tables and equations:
mm -t -e [options] filename ...
or
tbl filename ... | negn /usr/pub/eqnchar\
| nroff [options] -mm
mmt -t -e [options) filename ...
or

tbl filename ... | eqn /usr/pub/eqnchar\
| troff [options] -mm

When formatting a document with the nro£ £ processor, the output should normally
be processed for a specific type of terminal because the output may require some
features that are specific to a given terminal (for example, reverse paper motion or half-
line paper motion in both directions). Some commonly used terminal types and the
command lines appropriate for them are given below. For more information, see
“Parameters Set From the Command Line” later in this chapter and 300(1), 450(2),
4014(1), hp(1), co1(1), termio(4), and term(5).

»  DASI 450 in 10-pitch, 6 lines/inch mode, with 0.75-inch offset, and a line length of 6
inches (60 characters) where this is the default terminal type so no -T option is
needed (unless $TERM is set to another value):

mm filename . ..
or
nroff -T450 -h -mm filename ...

4-8 Chapter 4 mm Macros



»  DASI 450 in 12-pitch, 6 lines/inch mode, with 0.75-inch offset, and a line length of 6
inches (72 characters):

mm -12 filename ...

or

nroff -T450-12 -h -mm filename ...

or to increase the line length to 80 characters and decrease the offset to 3 characters:

mm -12 -rW80 -r03 filename ...

or

nroff -T450-12 -rW80 -rO3 -h -mm filename ..
»  Hewlett-Packard HP264x CRT family:

mm -Thp filename ...

or

nroff -mm filename ... | col | hp

= Any terminal incapable of reverse paper motion and also lacking hardware tab stops
(Texas Instruments 700 series, and so on):

mm -T745 filename ...
or
nroff -mm filename ... | col -x

The tb1(1) and eqn/neqn(1) formatters must be invoked as shown in the command
lines illustrated earlier.

If two-column processing is used with the nro £ £ formatter, either the -c option
must be specified to mm (mm uses the col program automatically for many terminal
types), or the nro£ £ formatter output must be postprocessed by col. See co1(1) in
A/UX Command Reference and “Creating Two-Column Output” and “The mm Command”
in this chapter. In the latter case, the -T37 terminal type must be specified to the nrof £
formatter, the -h option must not be specified, and the output of co1(1) must be
processed by the appropriate terminal filter (for example, 450(1)); mm(1) with the -c
option handles all this automatically.

Options and commands for accessing mm macros 49



Parameters set from the command line

Number registers are commonly used within mm to hold parameter values that control
various aspects of output style. Many of these values can be changed within the text files
with . nr requests. In addition, some of these registers can be set from the command
line. This is a useful feature for those parameters that should not be permanently
embedded within the input text. If used, the number registers (with the exception of the
P register) must be set on the command line or before the mm macro definitions are
processed. The number register meanings are shown in Table 4-2.

Table 4-2 Number registers to hold parameter values

Register name

Description

—-rAn

-rCn

-rD1

-rEn

-rLk

n =1, has the effect of invoking the . AF macro without an argument (see “Using an Alternate First-Page
Format” later in this chapter).

Sets type of copy (for example, DRAFT) to be printed at the bottom of each page (see “Page Footers” later
in this chapter):

n =1, OFFICIAL FILE COPY.

n =2, DATE FILE COPY.

n =3, DRAFT with single spacing and default paragraph style.

n =4, DRAFT with double spacing and 10-space paragraph indent.

Sets debug mode. This flag requests the formatter to continue processing even if mm detects errors that
would otherwise cause termination. It also includes some debugging information in the default page
header (see “Page Headers” and “SCCS Release Identification” later in this chapter).

Controls the font of Subject/Date/From fields:

n =0, fields are bold (default for the t rof £ formatter).

n =1, fields are roman font (regular text default for the nro££ formatter).

Sets length of physical page to klines.

For the nro££ formatter, kis an unscaled number representing lines.

For the t ro£ £ formatter, kmust be scaled (1 for inches, v for vertical spaces).
Default value is 66 lines per page.

410 Chapter 4 mm Macros



4-100

Hanging indents with tabs

The following example illustrates the use of the hanging indent feature of variable-item
lists (see “Creating a Variable-Item List” earlier in this chapter). A user- defined macro is
defined to accept four arguments that make up the mark. In the output, each argument is
to be separated from the previous one by a tab; tab settings are defined later. Since the
first argument may begin with a period or apostrophe, the \ & is used so that the
formatter will not interpret such a line as a formatter request or macro call.

¢ Note The two-character sequence \ & is understood by formatters to be a “zero-
width” space. It causes no output characters to appear, but it removes the special
meaning of a leading period or apostrophe.

‘The \t is translated by the formatter into a tab. The \ ¢ is used to concatenate the
input text that follows the macro call to the line built by the macro. The user-defined
macro and an example of its use are

.de aX
.LI
VEANSINENNS2\ENNS3\E\\$4\t\c

.ta .51 1i 1.5i 2i

VL 29

.aX .nh off \- no

No hyphenation.

Automatic hyphenation is turned off.
Words containing hyphens

(for example, mother-in-law) can still be
split across lines.

.aX .hy on \- no

Hyphenate.

Chapter 4 mm Macros



Automatic hyphenation is turned on.

.aX .hec\ ¢ none none no

Hyphenation indicator character is set to ‘‘c¢’’
or removed.

During text processing, the indicator is
suppressed and will not appear in the output.
Prefixing the indicator to a word has the
effect of preventing hyphenation of that word.
.LE

Note that the space following “. hc\” is required.

The resulting output is

.nh  off - no No hyphenation. Automatic hyphenation is turned
off. Words containing hyphens (for example, mother-
in-law) may still be split across lines.

.hy on - no Hyphenate. Automatic hyphenation is turned on.

.hc ¢ none none  Hyphenation indicator character is set to “c” or
removed. During text processing, the indicator is
suppressed and will not appear in the output.
Prefixing the indicator to a word has the effect of
preventing hyphenation of that word.

mm €xamples

This section contains an example of an input file of a simple letter (Figure 4-1) that is also
shown formatted by both nro£ £ (in Figure 4-2) and t ro£ £ (in Figure 4-3) using the
memorandum macros. This example illustrates how the formatters work and what to
expect from your input file.

mm examples 4101



Figure 4-1 Example of input file for a simple letter

Input:

.nr N 2 \" specifies header to be omitted from page 1
.ta 3i

September 5, 1987

.SP 2

Mr. Steven J. Jones

.br

386 Broderick Street

.br

San Francisco, CA 94111
.SP

Dear Mr. Jones:

.P

Enclosed please find a copy of

.I

A/UX\*F Text-Processing Tools.

.R

FS

A/UX is a registered trademark of Apple Computer, Inc.
.FE

P

This manual covers using the

\s=1UNIX\s+1l\*F

.FS

\s-1UNIX\s+1l is a registered trademark of UNIX System
.Laboratories, Inc. \

.FE

operating system for preparing documentation, and includes
topics such as:

VL 17

.LI Formatters:

4-102 Chapter 4 mm Macros



the \fBnroff/troff\fR formatters,

with tables listing defaults and explanations of all requests
.LI Tables:

the \fBtbl\fR:program,

with examples of code at the end of the chapter

.LI Equations:

the .fBeqn\fR program, for printing mathematical expressions
.LI "Macro Package:"

the \fBmm\fR macro package chapter gives a complete outline
of

all the capabilities of this powerful document-processing
tool

.LE

.P

I hope you will find this guide useful in preparing your
report.

.SP

.nf

Sincerely,

.SP 2

Rosemary Clooney

Documentation Specialist

RC/dcb

Enc.

LE1

mm examples 4103



Figure 4-2 Example of a simple letter: nrof £ output
September 5, 1987

Mr. Steven J. Jones
386 Broderick Street
San Francisco, CA 94111

Dear Mr. Jones:

Enclosed please find a copy of A/UX! Text-Processing Tools.

This manual covers using the UNIX2 operating system for
preparing documentation, and includes topics such as:

Formatters: the nroff/troff formatters, with tables
listing defaults and explanations of all
requests

Tables: the tbl program, with examples of code at the
end of the chapter

Equations: the eqn program, for printing mathematical
expressions

Macro Package: the mm macro package chapter gives
a complete outline of all the capabilities of
this powerful document-processing tool

I hope you will find this guide useful in preparing your

report.
Sincerely,
Rosemary Clooney
Documentation

Specialist

RC/dcb

Enc.

1 a/ux is a registered trademark of Apple Computer, Inc.

2 UNIX is a registered trademark of UNIX System Laboratories, Inc.

4-104 Chapter 4 mm Macros



Figure 4-3 Example of a simple letter: t ro£ £ output
September 5, 1987

Mr. Steven J. Jones
386 Broderick Street
San Francisco, CA 94111

Dear Mr. Jones:
Enclosed please find a copy of Arux! Text-Processing Tools.

This manual covers using the UNIX2 operating system for preparing documentation, and
includes topics such as:

Formatters: the nroff/troff formatters, with tables listing defaults and
explanations of all requests

Tables: the tbl program, with examples of code at the end of the chapter

Equations: the eqn program, for printing mathematical expressions

Macro Package: the mm macro package chapter gives a complete outline of all the

capabilities of this powerful document-processing tool

I hope you will find this guide useful in preparing your report.

Sincerely,
Rosemary Clooney
Documentation Specialist
RC/dcb
Enc.

1 A/UX is a registered trademark of Apple Computer, Inc.

2 UNIXisa registered trademark of UNIX System Laboratories, Inc.

mm examples 4105



mm reference tables

4-106

Tables 4-15 through 4-19 are useful reference tools when using the memorandum
macros. Table 4-15 is an alphabetic summary of all the memorandum macro names
available for producing a document. Table 4-16 is 2 summary of all the predefined string
names in the memorandum macro package. Table 4-17 is a summary of all the predefined
number register names in the memorandum macro package. Tables 4-18 and 4-19 list
error messages that you may encounter when formatting a document. memorandum
macro error messages as well as nrof £/t rof £ error messages are explained.

Table 4-15 Memorandum macro names

Macro Description
ic One-column processing
.1C
2C Two-column processing
.2C
AE Abstract end
.AE
AF Alternate format of “Subject/Date/From” block
.AF [company-name]
AL Automatically incremented list start
.AL [typel [text-indenil [1]
AS Abstract start
.AS {argl lindeni
AT Author’s title
LAT [tld ...
AU Author information

AU name linitiald [lod] [depd
lexd [room] [arg] [argl [arg]

AV Approval signature
.AV [namd

B Bold
.B [bold-arg) [prev-font-argl
(bold) [predd [bold) [prev]

Chapter 4 mm Macros



Table 4-15 Memorandum macro names (continued)

Macro Description
BE Bottom block end
.BE
BI Bold/italic
.BI [bold-arg litalic-arg]
[bold) litalid [ bold) [italid
BL Bulleted list start
.BL [text-indenfl [1]
BR Bold/roman
.BR [bold-argl [roman-arg]
[bold) [roman} [ bold) [roman)
BS Bottom block start
.BS
(oF] Cover sheet
.CS [pages] othen {totall [figs| [tbls] [refs
DE Display end
.DE
DF Display floating start
.DF [format fill [right-indeni]
DL Dashed list start
.DL [text-indeni [1]
DS Display static start
.DS [formal [fill [right-indeni]
EC Equation caption
.EC ltitld] [override] [flag]
EF Even-page footer
.EF larg
EH Even-page header
.EH [arg
EN End equation display
.EN
EQ Equation display start
.EQ liabel

(continued)w

mm reference tables

4107



4-108

Table 4-15 Memorandum macro names (continued)

Macro Description
EX Exhibit caption
-EX [titld [override] flag]
FC Formal closing
.FC I[closing]
FD Footnote default format
.FD larg (1]
FE Footnote end
.FE
FG Figure title
.FG [titld [override flag]
FS Footnote start
.FS llabel
H Heading—numbered
-H level [heading-text} [heading-suffir
HC Hyphenation character
.HC [hyphenation-indicator]
HM Heading mark style
(Arabic or Roman numerals, or letters)
.HM [angl] . .. larg7
HU Heading—unnumbered
.HU heading-text
BX* Heading user exit X (before printing heading)
.HX dlevel rlevel heading-text
HY* Heading user exit Y (before printing heading)
.HY dlevel rlevel heading-text
Hz* Heading user exit Z (after printing heading)
-HZ dlevel rlevel heading-text
I Italic (underline in the nrof £ formatter)
. I litalic-arg [prev-font-arg
litalic| [pred] [italic] [prev]
IA Inside address start
. IA [addressee-name [titlel
IB Italic/bold
. IB l[italic-argl [bold-arg litalid
[bold) [italic] (bold]

Chapter 4 nm Macros



Table 4-15 Memorandum macro names (continued)

Macro Description

IE Inside address end
.IE

IR Italic/roman

. IR litalic-arg [roman-arg italid
[roman litalic [roman)

LB List begin
LB text-indent mark-indent padtype [mark
[LI-space] [LB-space]
LC List-status clear
LLC llist-level
LE List end
LE [1]
LT List jtem
.LI [mard [1]
LO Letter options
.LO ppe larg
LT Letter type
LT [arg
ML Marked list start
ML mark [text-indendl [1]
MT Memorandum type
.MT [ppdladdressed or .MT 4 1
ND New date
.ND new-date
NE Notation end
.NE
nP Double-line indented paragraphs
.nP
NS Notation start
.NS [arg
OF Odd-page footer
.OF larg

(continued)mw

mm reference tables 4109



Table 4-2 Number registers to hold parameter values (continued)

Registername  Description

-rNn

-rok*

-rPn

-rSn

Specifies page numbering style:

n =0 (default), all pages get the prevailing header.
n =1, page header replaces footer on page 1 only.
n = 2, page header is omitted from page 1.

n =3, “section-page” numbering occurs (. FD and . RP define footnote and reference numbering in
sections). (See “Page Headers,” “Using Headings in Page Numbering,” “Controlling Format Style of
Footnote Text,” and “Generating a Reference Page” later in this chapter.)

n = 4, default page header is suppressed; however, a user-specified header is not affected.
n=>5, “section-page” and “section-figure” numbering occurs.

n  Pagel Pages 2ff.

0  Header Header

1 Header replaces footer Header

2 No header Header

3 “Section page” as footer Same as page 1

4 Noheader No header unless . PH defined
5  “Section page” as footer and “section figure” Same as page 1

Contents of the prevailing header and footer do not depend on number register N value; N controls only
whether the header (¥ = 3) or the footer

(v = 5) is printed, as well as the page numbering style. If header and footer are null (see “Page Headers”
and “Page Footers” later in this chapter), the value of N is irrelevant.

Offsets output kspaces to the right.

For the nro£ £ formatter, kis an unscaled number representing character positions. For the t rof £
formatter, kmust be scaled.

This flag is helpful for adjusting output positioning on some terminals, If this register is not set on the
command line, the default offset is 0.75 inchinnro£f and 0.5 inchin t ro£ £,

Specifies that pages of the document are to be numbered starting with 7.
This register may also be set via a . nr request in the input text.

Sets point size and vertical spacing for the document. The default # is 10, that is, 10-point type on 12-point
vertical spacing, giving 6 lines per inch (see “Setting Point Size and Vertical Spacing” later in this chapter).

This flag applies to the t rof £ formatter only.
(continued)m

Options and commands for accessing mm macros 411



4110

Table 4-15 Memorandum macro names (continued)

Macro Description
OH Odd-page header
.OH larg
OK Other keywords for technical memo cover sheet
.OK lkegyword) . . .
OoP Odd page
.OP
P Paragraph
.P lypd
PF Page footer
.PF larg
PH Page header
.PH larg
PM Proprietary marking
.PM [code]
PX* Page-header user exit
.PX
R Return to regular (roman) font
. .R
RB Roman/bold
.RB [roman-arg| [bold-arg} [roman) [bold)
[roman] [bold]
RD Read insertion from terminal
.RD [promp# [diversion] [string]
RF Reference end
.RF
RI Roman/italic
-RI [roman-arg litalic-argl
[roman) litalic} [roman] litalid]
RL Reference list start
.RL [text-indenil [1]
RP Produce reference page
.RP |[argl[argl
RS Reference start

Chapter 4 mm Macros

.RS I[string-name]



Table 4-15 Memorandum macro names (continued)

Macro Description
s Set t rof £ formatter point size and vertical spacing
.S [size [spacing]
SA Set adjustment (right-margin justification) default
.SA [arg
SG Signature line
.SG largll1]
SK Skip pages
.SK [pages
SM Make a string smaller
.SM stringl [string2 [string3]
SP Space vertically
.SP [lines
TB Table title
. TB [titld loverridd [flag]
TC Table of contents
.TC [slevell [spacing] [tevel
(tat] [head1) |head2} (head3) [head4) [heads)
TE Table end
.TE
TH Table header
.TH [N]
TL Title of memorandum
. TL [charging-casd [filing-casel
™ Technical memorandum number(s)
.TM [numbed . ..
TP* Top-of-page macro
.TP
TS Table start
.TS [H]
<* Table of contents user exit
.TX

(continued)w

mm reference tables 4111



4112

Table 4-15 Memorandum macro names (continued)

Macro Description
TY* Table of contents user exit (suppress CONTENTS)
.TY
VL Variable-item list start
VL text-indent [mark-indend [1]
VM Vertical margins
. VM [10p} [bottom)]
WA Writer's address start
WA writer-name [titld
we Footnote and display width control
.WC [formad

* Macros marked with an asterisk are not, in general, called directly by the user. They are “user
exits” defined by the user and called by mm from inside header, footer, or other macros.

Table 4-16 String names

String Description

BU Bullet (nro£ £ overstrikes a 0 with a plus sign; t ro£ £ types a filled bullet).

ci Table of contents indent list; up to seven scaled arguments for heading levels.

DT Date (current date, unless overridden); month, day, year (for example, May 1,
1988).

EM Em-dash string; produces an em dash in the t rof £ formatter and a double
hypheninnroff.

F Footnote number generator.
nroff: \u\\n+(:p\d
troff: \v-4m'\s-3\\n+(;p\sO\v".4m’

HF Heading font list; up to seven codes for heading levels 1 through 7
3322222(levels 1and 2 bold, 3 through 7 underlined by nro£ £ and
italicized by t ro£ £).

HP Heading point size list; up to seven codes for heading levels 1 through 7.

Le Title for list of equations.

LE Title for list of figures.

Lt Title for list of tables.

Lx Title for list of exhibits.

Chapter 4 mm Macros



Table 4-16 String names (continued)

String Description

RE SCCS release and level of memorandum macros release level (for example,
15.129).

Rf Reference number generator.

Rp Title for references .

Tm Trademark string; places “TM” 1/2 line above text that it follows; seven accent

strings are also available,

¢ Note If the released-paper style is used, then, in addition to the above strings, certain
BTL location codes are defined as strings and are needed only until the .MT macro is
called. The following codes are recognized: Ax, AL, ALF, CB, CH, CP, DR, FJ, HL, HO,
HOH, HP, IH, IN, INH, IW, MH, MV, PY, RD, RR, WB, WH, and Wwv. &

Table 4-17 Number register names

Register Description

A* Handles preprinted forms and Bell System logo
0,10:2]

Au Inhibits printing of author information
1,[0:1]

Cc* Copy type (original, draft, etc.)
0 (original), [0:4]

cl Level of headings saved for table of contents
2,[0:7]

Cp Placement of list of figures, etc.
1 (on separate pages), [0:1]

D* Debug flag
0, [0:1]

De Display eject register for floating displays
0, [0:1]

Df Display format register for floating displays

5, [0:5]

(continued)w

mm reference tables 4113



4114

Table 4-17 Number register names (continued)

Register Description

Ds Static display pre and postspace
1,[0:1]

E* Controls font of the Subject/Date/From fields
1(nroff), 0(troff),[0:1]

Ec Equation counter, used by . EC macro
0, [0:2], incremented by 1 for each . EC call

Ej Page-ejection flag for headings
0 (no eject), [0:7]

Eq Equation label placement
0 (right-adjusted), [0:1]

Ex Exhibit counter, used by . EX macro
0, [0, incremented by 1 for each . EX call

Fg Figure counter, used by . FG macro
0, [0:7], incremented by 1 for each . FG call

Fs Footnote space (i.e., spacing between footnotes)
1, [0:7]

H1-H7 Heading counters for levels 1 through 7
0, [0:7], incremented by the . H macro of corresponding level or the . HU macro
if at level given by the Hu register. The H2 through H7 registers are reset to 0 by
any . H (. HU) macro at a lower-numbered level.

Hb Heading break level (after . H and . HU)
2,[0:7]

He Heading centering level for . Hand . HU
0 (no centered headings), [0:7]

Hi Heading temporary indent (after . Hand . HU)
1 (indent as paragraph), [0:2]

Hs Heading space level (after . Hand . HU)
2(space only after .H 1land .H 2),[0:7]

Ht Heading type (for . H: single or concatenated numbers)
0 (concatenated numbers: 1.1.1, etc.), [0:1]

Hu Heading level for unnumbered heading (. HU)

Chapter 4 mm Macros

2(.HU at the same level as .H 2),[0:7]



Table 4-17 Number register names (continued)

Register Description
Hy Hyphenation control for body of document
0 (automatic hyphenation off), [0:1]
L Length of page
66, 2021 (114, [2i7) in t ro £ £ formatter)
Le List of equations
0 (list not produced), [0:1]
Lf List of figures
1 (list produced), [0:1]
Li List indent
6(nroff),5(troff), 07
Ls List spacing between items by level
6 (spacing between all levels), [0:6]
Lt List of tables
1 (list produced), [0:1]
Lx List of exhibits
1 (list produced), [0:1]
N* Numbering style
0, [0:5]
Np Numbering style for paragraphs
0 (unnumbered), [0:1]
o Offset of page

75i, [0 0.5, [0i:2] in t ro £ £ formatter)

For nro£ £ formatter, these values are unscaled numbers representing lines or
character positions.

For t ro £ £ formatter, these values must be scaled.

Oc Table of contents page numbering style
0 (lowercase Roman), [0:1]

of Figure caption style
0 (period separator), [0:1]

P- Page number managed by memorandum macros
0, [0:]

Pi Paragraph indent

5(nroff),3(troff), [0

(continued)w-

mm reference tables 4115



Table 4-17 Number register names (continued)

Register Description
Ps Paragraph spacing
1 (one blank space between paragraphs), [0:7]
Pt Paragraph type
0 (paragraphs always left justified), [0:2]
Pv “PRIVATE" header
0 (not printed), {0:2]
Rf Reference counter, used by . RS macro
0, [0:7], incremented by 1 for each . RS call
s* trof £ formatter default point size
10, [6:36]
Si Standard indent for displays
5(nroff),3(troff), [0
T* Type of nro£ £ output device
0, (0:21
Tb Table counter, used by . TB macro
0, [0:7], incremented by 1 for each . TB call
U Underlining style (nro££) for . Hand . HU
0 (continuous underline when possible), [0:1]
w Width of page (line and title length)

6i, [10:1365] (6i, [2i:7.54il in the t rof £ formatter)

* Register names marked with an asterisk can be set only from the command line or before the
macro definitions are read by the formatter.

Error messages

The following sections list mm error messages and formatter error messages.

mm error messages

An mm error message has a standard part followed by a variable part. The standard part
has the form

ERROR: (filename) input line n:

4-116 Chapter 4 mm Macros



Variable part # consists of a descriptive message, usually beginning with a macro
name. The error messages are listed in Table 4-18 in alphabetical order by macro name,
each with a more complete explanation.

Table 4-18 mm error messages

Error message

Description

Check TL, AU, AS,
sequence

Check TL, AU, AS,
AE, NS, NE, MT
sequence

Check WA, WE, IA,
IE, LT sequence

CS:cover sheet too

long

DE:no DS or DF
active

DF:illegal inside
TL or AS

DF:missing DE

DF:missing FE

DF:too many
displays

DS:illegal inside
TL or AS

DS:missing DE

DS:missing FE

Something has disturbed the correct order of macros at the AE, MT
start of a memorandum . See “Understanding the Sequence of
Beginning Letter Macros” earlier in this chapter.

Occurs ifthe .AS 2 macro was used. Something has

disturbed the correct order of macros at the start of a

memorandum . See “Understanding the Sequence of Beginning
Macros” earlier in this chapter.

Something has disturbed the correct order of these macros.

Text of the cover sheet is too long to fit on one page. The
abstract should be reduced or the indent of the abstract
should be decreased.

A .DE macro has been encountered, but there has not been a
previous .DS or .DF macro to match it.

Displays are not allowed in the title or abstract.

A . DF macro occurs within a display; thatis,a .DE macro has
been omitted or mistyped.

A display starts inside a footnote. The likely cause is the
omission (or misspelling) ofa .FE macro to end a previous
footnote.

More than 26 floating displays are active at once; that is, have
been accumulated but not yet output.

Displays are not allowed in the title or abstract.

A .DS macro occurs within a display, thatis,a .DE has been
omitted or mistyped.

A display starts inside a footnote. The likely cause is the
omission (or misspelling) ofa .FE to end a previous footnote.

(continued)mw

4117

Error messages



Table 4-18 mm error messages (continued)

Error message Description

FE:no FS active A .FE macro has been encountered with no previous .FS to
match it.

FS:missing DE A footnote starts inside a display; thatis,a .DS or .DF occurs
without a matching .DE.

FS:missing FE Aprevious .FS macro was not matched by a closing . FE; that
is, an attempt is being made to begin a footnote inside
another one.

H:bad arg:value The first argument to the .H macro must be a single digit from
1to 7, but value has been supplied instead.

H:missing arg The . H macro needs at least one argument.

H:missing DE A heading macro (.H or .HU) occurs inside a display.

H:missing FE A heading macro (.H or .HU) occurs inside a footnote.

HU:missing arg The .HU macro needs one argument.

LB:missing arg(s) The .LB macro requires at least four arguments.

LB:too many nested  Another list was started when there were already six active

lists. lists.

LE:mismatched The .LE macro has occurred without a previous . LB or other

list-initialization macro. This is not a fatal error. The message
is issued because some problem exists in the preceding
text.

LI:no lists active  The .LI macro occurred without a preceding list-initialization
macro. The latter probably has been omitted or entered

incorrectly.
LO:LO argument not  You have provided anargumentto .LO that it does not
recognized recognize.
LT:LT argument not  You have provided an argumentto .LT that it does not
recognized recognize.
ML:missing arg The .ML macro requires at least one argument.
ND:missing arg The .ND macro requires one argument.
RF:no RS active The .RF macro has been encountered with no previous .RF to
match it.
RP:missing RF Aprevious .RS macro was not matched by a closing . RF.
S:bad arg:uvalue The incorrect argument value has been given forthe .S macro.

4-118 Chapter 4 mm Macros



Table 4-18 mm error messages (continued)

Error message

Description

SA:bad arg:uvalue

SG:missing DE
SG:missing FE
SG:no authors
VL:missing arg
)W:WA macro
missing

JW:WA or WE macro
missing

JW:WA, WE, or IE
macro missing

WC:unknown option

The argument tothe .SA macro (if any) must be either 0 or 1.
The incorrect argument is shown as value.

The .SG macro occurred inside a display.

The .SG macro occurred inside a footnote.

The .sG macro occurred without any previous .AU macro(s).
The . VL macro requires at least one argument.

Ifyouuse .LT,you must specify at leastone .WA/.WE pair.

Ifyouuse .WA or .WE,you mustspecify the other member of
the missing macro pair.

You have omitted either or both of the .IA and .IE macros.

An incorrect argument has been given tothe .WC macro.

Formatter error messages

Most messages issued by the formatter are self-explanatory. Those error messages over
which the user has some control are listed in Table 4-19. Any other error messages
should be reported to the local system support group.

Table 4-19 Formatter error messages

Error message Description
Cannot do ev Can be caused by
® setting a page width that is negative or extremely short

setting a page length that is negative or extremely short

reprocessing a macro package (for example, performinga . so
request on a macro package that was already requested on the
command line)

requesting the troff formatter ~s1 option on a document that is
longer than ten pages

(continued)w-

Error messages 4119



Table 4-2 Number registers to hold parameter values (continued)

Register name Description

-xrTn

-rUl

-rWk

Provides register settings for certain devices:
n =1, line length and page offset are set to 80 and 3, respectively.

n =2, changes the page length to 84 lines per page and inhibits underlining; it is meant for output sent to
the Versatec printer.

The default value for nis 0.
This flag applies to the nro£ £ formatter only.
Controls underlining of section headings.

This flag causes only letters and digits to be underlined. Otherwise, all characters (including spaces) are
underlined (see “Emphasizing Headings with Bold, Italics, and Underlining” later in this chapter).

This flag applies to the nro£ £ formatter only.

Sets page width (line length and title length) to &

For the nro£ £ formatter, kis an unscaled number representing character positions.
For the t ro£ £ formatter, kmust be scaled.

This flag can be used to change page width from the default value of 6 inches (60 characters in 10 pitch or
72 characters in 12 pitch).

4-12

Omission of -mm flag

If a large number of arguments is required on the command line, it may be convenient to
set up the first (or only) input file of a document as follows:

2zero or more initializations of registers listed in “Parameters Set From Command Line”
.so /usr/lib/tmac/tmac.m
remainder of text

In this case, the user must not use the —mm flag (or the mm(1) or mmt.(1) command);
the . so request has the equivalent effect, but registers shown in “Parameters Set From
the Command Line” earlier in this chapter must be initialized before the . so request
because their values are meaningful only if set before macro definitions are processed.
When using this method, it is best to lock into the input file only those parameters that
are seldom changed. For example,

Chapter 4 mm Macros



Table 4-19 Formatter error messages (continued)

Error message Description

Cannot execute  Givenbythe .! request if the filenameis not found.

Silename;

Cannot open Indicates one of the files in the list of files to be processed
Silename; cannot be opened.

Exception word  Indicates too many words have been specified in the
list full; hyphenation exception list (via .hw requests).

Line overflow Indicates output line being generated was too long for the

formatter line buffer capacity. The excess was discarded. Likely
causes for this message are very long lines or words generated

through the misuse of \c ofthe .cu request, or very long
equations produced by eqn/neqn (1).

Nonexistent Indicates a request has been made to mount an unknown font font
type:

Nonexistent Indicates the requested macro package does not exist.

macro file;

Nonexistent Indicates the terminal options refer to an unknown terminal terminal
type; type.

Out of temp Indicates additional temporary space for macro definitions,

file space; diversions, and so on cannot be allocated. This message often

occurs because of unclosed diversions (missing .FE or .DE),
unclosed macro definitions (for example, missing " . . "), ora

huge table of contents.
Too many number Indicates the pool of number register names is full. Unneeded
registers; registers can be deleted by using the .rr request.
Too many page Indicates the list of pages specified to the —o formatter option
numbers; istoo long.
Too many Indicates the pool of string and macro names is full. Unneeded

strings/macros; strings and names macros can be deleted using the . rm request.

Word overflow Indicates a word being generated exceeded the formatter word
buffer capacity. Excess characters were discarded. Likely causes
for this message are very long lines, words generated through the
misuse of \c ofthe .cu request, or very long equations
produced by eqn/negn(1).

4-120 Chapter 4 mm Macros



.nr W 80

.nr O 10

.nr N 3

.so /usr/lib/tmac/tmac.m
.H 1 "INTRODUCTION"

specifies, for the nrof £ formatter, a line length (w) of 80, a page offset (0) of 10, and
section-page (N) numbering.

SCCS release identification

The RE string contains the SCCS release and the memorandum macros text formatting
package current version level. For example,

This is version \*(RE of the macros.
produces
This is version 10.129 of the macros.

This information is useful in analyzing suspected bugs in mm. The easiest way to have the
release identification number appear in the output is to specify -rD1 (see “Parameters Set
From the Command Line” earlier in this chapter) on the command line. This causes the RE
string to be generated as part of the page header (see “Page Headers” later in this chapter).

Working with text

Normal action of the formatters is to fill output lines from one or more input lines. Output
lines may be justified so that both the left and right margins are aligned. As lines are

- being filled, words may also be hyphenated as necessary (see “Hyphenating Text"). It is
possible to turn any of these modes on and off by using . sa (see “Justifying the Right
Margin”), Hy (see “Hyphenating Text”), and the .nf and . £i formatter requests.
Turning off fill mode also turns off justification and hyphenation.

Working with text 413



4-14

Understanding formatting

Certain formatting commands (requests and macros) cause filling of the current output
line to cease, the line (of whatever length) to be printed, and subsequent text to begin a
new output line. This printing of a partially filled output line is known as a break. A few
formatter requests and most of the mm macros cause a break.

Formatter requests can be used with mm (see “Using Formatter Requests” later in this
chapter); however, there are consequences and side effects that each such request might
have. A good rule is to use formatter requests only when absolutely necessary. The mm
macros described herein should be used in most cases because

= it is much easier to control (and change at any later point in time) the overall style of
the document

= complicated features such as footnotes or tables of contents can be obtained with
ease

= the user is insulated from the complexities of the formatter language

Using arguments and double quotation marks

For any macro call, a null argument is an argument whose width is 0. Such an argument
often has a special meaning; the preferred form for a null argument is " . Omitting an
argument is not the same as supplying a null argument (for example, the .MT macro; see
“Understanding Memorandum Types” later in this chapter). Omitted arguments can occur
only at the end of an argument list; null arguments can occur anywhere in the list.

Any macro argument containing ordinary (paddable) spaces must be enclosed in
double quotation marks. A double quotation mark () is a single character that should
not be confused with two close quotation marks (* * ) or open quotation marks (* ).
Unless you enclose an argument containing spaces in double quotation marks, it will be
treated as several separate arguments.

Double quotation marks are not permitted as part of the value of a macro argument or
of a string that is to be used as a macro argument. If it is necessary to have a macro
argument value, two close quotation marks (* *) or open quotation marks (* ) ora
combination of the two may be used instead. This restriction is necessary because many
macro arguments are processed (interpreted) a variable number of times. For example,
headings are first printed in the text and may be reprinted in the table of contents.

Chapter 4 mm Macros



Specifying unpaddable spaces

When output lines are justified to give an even right margin, existing spaces in a line may
have additional spaces appended to them. This may distort the desired alignment of text.
To avoid this distortion, it is necessary to specify a space that cannot be expanded during
justification, that is, an unpaddable space. There are several ways to accomplish this:

»  Type a backslash followed by a space. This pair of characters directly generates an
unpaddable space.

»  Sacrifice some seldom-used character to be translated into a space when output is
generated.

Because this translation occurs after justification, the chosen character may be used
anywhere an unpaddable space is desired. The tilde (~) is often used with the translation
macro for this purpose. To use the tilde in this way, the following statement is inserted at
the beginning of the document:

.tr ~

If a tilde must actually appear in the output, it can be temporarily “recovered” by inserting
tr ~~

before the place where needed. Its previous usage is restored by repeating the .tr ~
after a break or after the line containing the tilde has been forced out.

& Note Use of the tilde in this fashion is not recommended for documents in which the
tilde is used within equations. e

Hyphenating text

Formatters do not perform hyphenation unless it is requested. Hyphenation can be
turned on in the body of the text by specifying

.nr Hy 1
once at the beginning of the document input file. “Controlling Format Style of Footnote
Text" later in this chapter describes hyphenation within footnotes and across pages.

If hyphenation is requested, formatters will automatically hyphenate words if need
be. However, the user may specify hyphenation points for a specific occurrence of any

Working with text 4-15



416

word with a special character known as a hyphenation indicator or may specify
hyphenation points for a small list of words (about 128 characters).

If the hyphenation indicator (initially, the two-character sequence \ %) appears at the
beginning of a word, the word is not hyphenated. Alternatively, this sequence can be
used to indicate legal hyphenation points inside a word. All occurrences of the
hyphenation indicator disappear when output is generated.

The user may specify a different hyphenation indicator.
.HC [hyphenation-indicaton

The circumflex (») is often used for this purpose by inserting the following at the
beginning of a document input text file:

JHC ~

¢ Note Any word or phrase containing hyphens or dashes (also known as em dashes)
will be hyphenated immediately after a hyphen or dash if it is necessary to hyphenate,
even if the formatter hyphenation function is turned off. ¢

The user may supply, via the exception word . hw request, a small list of words with
the proper hyphenation points indicated. For example, to indicate the proper
hyphenation of the word printout, the user may specify

.hw print-out

Setting tabs

Macros .MT (see “Understanding Memorandum Types” later in this chapter), . TC, and
.Cs (see “Generating a Table of Contents and Cover Sheet” later in this chapter) use the
formatter . ta (tab) request to set tab stops and then restore the default values of tab
settings (every eight characters in the nrof £ formatter; every 1/2 inch in the t rof £
formatter). Setting tabs to other than the default values is the user’s responsibility.

Default tab setting values for nroff are 9,17,25, ... ,and 161, for a total of 20
tab stops. Values may be separated by commas, spaces, or any other non-numeric
character. A user may set tab stops at any value desired, for example,

Chapter 4 mm Macros



.ta 1.5i 31 4.5i

A tab character is interpreted with respect to its position on the input line rather than
its position on the output line. In general, tab characters should appear only on lines
processed in no-fill (. n£) mode (see “Understanding Formatting” earlier in this chapter).

The tb1(1) program (see “Using Displays in Tables” later in this chapter) changes tab
stops but does not restore default tab settings.

Justifying the right margin

The . sa macro is used to set right-margin justification for the main body of text.
.SA larg
Two justification flags are used—current and default. Initially, both flags are set for

no justification in the nrof £ formatter and for justification in the t ro£ £ formatter. The
argument causes the following action:

0 Sets both flags to no justification, the same as the . na request.
1 Sets both flags to cause both right and left justification, the same as the . ad
request.

Omitted Causes the current flag to be copied from the default flag, thus performing
eithera .na or . ad depending on the default condition.

In general, the no-adjust request (. na) can be used to ensure that justification is

turned off, but . sa should be used to restore justification, rather than the . ad request. In
 this way, justification or no justification for the remainder of the text is specified by
inserting .SA 0 or .sA 1 once at the beginning of the document.

Spacing lines of text

.SP [lines

There are several ways of obtaining vertical spacing, all with different effects. The . sp
request spaces the number of lines specified unless the no-space (. ns) mode is on, in
which case the . sp request is ignored. The no-space mode is set at the end of a page
header to eliminate spacing by a . sp or . bp request that happens to occur at the top of
a page. This mode can be turned off by the . rs (restore spacing) request.

Working with text 417



418

The . sp macro is used to avoid the accumulation of vertical space by successive
macro calls. Several . sp calls in a row will not produce the sum of the arguments but
only the maximum argument. For example, the following produces only three blank
lines:

.SP 2
.SP 3
.SP

Many memorandum macros use . SP for spacing. For example, . LE 1 (see “Using
List-Item Macros” later in this chapter) immediately followed by . P (see “Creating
Paragraphs”) produces only a single blank line (nro£ £) or one-half a vertical space
(trof£) between the end of the list and the following paragraph. An omitted argument
defaults to one blank line (nro£ £) or one vertical space (t ro£ £). Negative arguments
are not permitted. The argument must be unscaled, but fractional amounts are permitted.
The . sp macro (as well as . sp) is also inhibited by the . ns (no-space) request.

Setting point size and vertical spacing
The prevailing point size and vertical spacing can be changed by invoking the . s macro:
.S [point sizéd (vertical spacing]

In the t ro£ £ formatter, the default point size obtained from the mm register s is 10
points; the vertical spacing is 12 points, six lines per inch. The mnemonics D (default
value), ¢ (current value), and p (previous value) can be used for both arguments. See
“Parameters Set From the Command Line” earlier in this chapter for an alternative way to
set these parameters.

In the t ro£ £ formatter, these guidelines apply:

» Ifan argument is negative, current value is decremented by the specified amount.
= If an argument is positive, current value is incremented by the specified amount.
s If an argument is unsigned, it is used as the new value.

= If there are no arguments, the . s macro defaults to p.

m  If the first argument is specified but the second is not, then D, the default, is used for
the vertical spacing.

Chapter 4 mm Macros



Default value for vertical spacing is always two points greater than the current point
size. Footnotes are two points smaller than the body with an additional 3-point space
between footnotes. A null (") value for either argument defaults to ¢, the current value.
Thus, if 7 is a numeric value:

P P
Cn
n C
n D
CD
cC
nn = .S nn

If the first argument is greater than 99, the default point size, 10 points, is restored. If
the second argument is greater than 99, the default vertical spacing (current point size
plus two points) is used, for example,

L) =
n "un
n

LA

" "ww

0 n n hhn G 0
0 n n nn h

.S 100 = .S 10 12
.S 14 111 = .S 14 16
Reducing point size of a string

The . sM macro allows the user to reduce by one point the size of a string,
.SM stringl (string2A(string3]

If the third argument (string3) is omitted, the first argument (string1) is made smaller
and is concatenated with the second argument (string2) if specified. If all three

arguments are present (even if any is null), the second argument is made smaller, and all
three arguments are concatenated. For example,

.SM X
produces

X
.SM Y XYyxX ""

produces
YXYX

and

.SM ( YXYX )
produces
(YXYX)

Working with text 419



Creating bullets

A bullet (#) is often obtained on a typewriter terminal by using an “0” overstruck by a
“+”. For compatibility with the troff formatter, a bullet string is provided by mm with
the following sequence:

\* (BU
The bullet list (. BL) macro uses this string to generate automatically the bullets for
bullet-listed items (see “Creating a Bulleted List” later in this chapter).

Using dashes, minus signs, and hyphens

The troff formatter has distinct graphics for a dash, a minus sign, and a hyphen; the
nroff formatter does not.

= Users who intend to use the nroff formatter only may use the minus sign (-) for
the minus, hyphen, and dash.

w  Users who plan to use the troff formatter primarily should follow troff
escape conventions (that is, \ (mi for minus, \ (em for dash,and \ (hy for
hyphen).

= Users who plan to use both formatters must take care during input text file
preparation. Unfortunately, these graphic characters cannot be represented in a way
that is both compatible and convenient for both formatters. The following approach is
suggested:

Dash Type \* (EM for each text dash for both nroff and troff
formatters. This string generates an em dash (—) inthe troff
formatter and two hyphens (--) in the nro£ £ formatter. Dash list
(.DL) macros (see “Creating a Dashed List” later in this chapter)
automatically generate the em dash for each list item.

Hyphen  Type - and use as is for both formatters. The nroff formatter will
printitas is. The troff formatter will print a true hyphen.

Minus Type \ - for a true minus sign regardless of formatter. The nroff
formatter will ignore the \. The troff formatter will print a true
minus sign (-).

4-20 Chapter 4 mm Macros



Using bold, italic, and roman fonts

When called without arguments, the . B macro changes the font to bold and the . 1
macro changes to underlining (nro££) or italic (t ro£ £). This condition continues until
the occurrence of the . R macro, which causes the roman font to be restored.

.B [bold-argl [previous-font-argl . . .

. I litalic-arg) [previous-font-arg . . .

-R

Thus,
I

here is some text.
.R
yields underlined text via nro££(1) and italic text via t ro£ £(1).

If the . B or . T macro is called with one argument, that argument is printed in the
appropriate font (underlined in the nrof £ formatter for . 1). Then the previous font is
restored; underlining is turned off in the nrof £ formatter. If two or more arguments
(maximum six) are given with a . B or . 1 macro call, the second argument is
concatenated to the first with no intervening space (1/12 space if the first font is italic) but
is printed in the previous font. Remaining pairs of arguments are similarly alternated. For
example,

.I one " two " three -four
produces
onetwo three-four

The .B and . I macros alternate with the prevailing font at the time the macros are
invoked. To alternate specific pairs of fonts, the following macros are available:
.IB italic bold
.BI bold italic
.IR italic roman
.RI roman italic
.RB roman bold
.BR bold roman
Each macro takes a maximum of six arguments and alternates arguments between
specified fonts.

Working with text 4-21



When you are using a terminal that cannot underline, the following can be inserted at
the beginning of the document to eliminate all underlining:

.rm ul

.rm Cu

¢ Note Font changes in headings are handled separately. o

Creating a trademark string

A trademark string \ * (Tm is available with mm. This places the letters “TM” one-half line
above the text that it follows. For example,

The
A/UX\* (Tm manual

is available from the library.
yields

The A/UX™ manual

is available from the library.

Producing accents

Strings can be used to produce accents for letters as shown in the following examples:

Input Output
Grave accent e\* e
Acute accent e\* é
Circumflex o\* )
Tilde n\* fi
Cedilla c\* ¢
Lowercase umlaut u\* i
Uppercase umlaut U\Y U

4-22 Chapter 4 mm Macros



Inserting text interactively

.RD [prompd (diversion [string]

The .RD (read insertion) macro allows a user to stop the standard output of a document
and to read text from the standard input until two consecutive newline characters are
found. When newline characters are encountered, normal output is resumed.

m The prompt argument will be printed at the terminal. If not given, . RD signals the
user with a BEL on terminal output.

» The diversion argument allows the user to save all text typed in after the prompt in a
macro whose name is that of the diversion.

®  The string argument allows the user to save for later reference the first line following
the prompt in the named string.

The . RD macro follows the formatting conventions in effect. Thus, the following
examples assume that the . RD is invoked in no-fill mode (. n£):

.RD Name aA bB
produces

Name: S. Jones (user types name)
16 Elm Rd.,
Piscataway
The diverted macro . aa will contain
S. Jones
16 Elm Rd.,
Piscataway
The string bB (\* (bB) contains “S. Jones”.
A newline character followed by an eof (user-specifiable end-of-file character) also

allows the user to resume normal output. See stty(1) in A/UX Command Reference for
information about the user-specifiable sequences.

Working with text 4-23



4-24

Using formatter requests

Most formatter requests should not be used with mm because mm provides the
corresponding formatting functions in a much more user-oriented and surprise-free
fashion than do the basic formatter requests. However, some formatter requests are
useful with mm, namely, those listed in Table 4-3.

Table 4-3 Formatter requests useful with mm

Request Description
.af Assign format.

.br Break.

.ce Center.

.de Define macro.

.ds Define string.

Lfi Fill output lines.

.hw Hyphen word exceptions.
.1ls Line spacing.

.nf No filling of output lines.
.nr Number register define and set.
.nx Next file (does not return).
.rm Remove macro.

.rr Remove register.

.Irs Restore spacing.

.S0 Source file and return.
.Sp Space.

.ta Tab stop settings.

.ti Temporary indent.

.t Title.

.tr Translate.

! Escape.

Chapter 4 mm Macros



The . £p (font position), . 1g (ligature mode), and . ss (space-character size)
requests are also sometimes useful for the t ro££ formatter. Use of other requests
without fully understanding their implications very often leads to disaster.

Structuring the page

Using mm macros you can create indented and numbered paragraphs, establish headings
and change their appearance, create customized headers and footers, change the text
flow to two-column output, and use a variety of other macros to create the layout that
best suits your purposes.

Creating paragraphs
P [typd

one or more lines of text
The . P macro is used to control paragraph style.

Indenting paragraphs
An indented or an unindented paragraph is defined with the type argument

0 Left justified
1 Indented

In a left-justified paragraph, the first line begins at the left margin. In an indented
paragraph, the paragraph is indented the amount specified in the 1 register (default
value is 5 ens). For example, to indent paragraphs by ten spaces in nro£ £ the following
is entered at the beginning of the document input file:

.nr Pi 10

A document input file possesses a default paragraph type obtained by specifying . p
before each paragraph that does not follow a heading (see “Creating Numbered
Headings” later in this chapter). Default paragraph type is controlled by the Pt number
register.

Structuring the page 4-25



» The initial value of Pt is 0, which provides left-justified paragraphs.

» Al paragraphs can be forced to be indented by inserting the following at the
beginning of the document input file:
.nr Pt 1

»  All paragraphs can be indented (except when they occur after headings, lists, and
displays) by entering the following at the beginning of the document input file:

.nr Pt 2

Both the Pi and pt register values must be greater than 0 for any paragraphs to be
indented.

¢ Note Values that specify indentation must be unscaled and are treated as character
positions, that is, as a number of ens. In the nrof £ formatter, an en is equal to the width
of a character. In the t ro£ £ formatter, an en is the number of points (1 point = 1/72 of
an inch) equal to half the current point size.

Regardless of the value of pt, an individual paragraph can be forced to be left
justified or indented. The .p 0 macro request forces left justification; .P 1 causes
indentation by the amount specified by the register Pi.

If . P occurs inside a list, the indent (if any) of the paragraph is added to the current
list indent (see “Creating Lists” later in this chapter).

Numbering paragraphs

Numbered paragraphs may be produced by setting the Np register to 1. This produces
paragraphs numbered within first-level headings, for example, 1.01, 1.02, 1.03, 2.01, and
so forth.

A different style of numbered paragraphs is obtained by using the . np macro rather
than the . P macro for paragraphs. This produces paragraphs that are numbered within
second-level headings.

.H 1 "FIRST HEADING"
.H 2 "Second Heading"
.nP

one or more lines of text

4-26 Chapter 4 mm Macros



The paragraphs contain a double line indent in which the text of the second line is
indented to be aligned with the text of the first line so that the number stands out.

Setting spacing between paragraphs
The ps number register controls the amount of spacing between paragraphs. By default,
Ps is set to 1, yielding one blank space in nro££, one-half a vertical space in t ro££.

Creating numbered headings

.H level (heading-texti [ heading-suffix]
zero or more lines of text

The level argument provides the numbered heading level. There are seven heading
levels; level 1 is the highest; level 7 is the lowest.

The heading-text argument is the text of the heading. If the heading contains more
than one word or contains spaces, the entire argument must be enclosed in double
quotation marks.

The heading-suffix argument may be used for footnote marks, which should not
appear with heading text in the table of contents.

There is no need for a . P macro immediately after a . & or . HU (see “Working With
Unnumbered Headings” later in this chapter) because the . # macro also performs the
function of the . P macro. Any . P macro immediately following a . B macro is ignored. It
is, however, good practice to start every paragraph with a . P macro, thereby ensuring
that all paragraphs begin with a . p throughout a document.

Using default headings

The effect of the . H macro varies according to the level argument. First-level headings are
preceded by two blank lines in nro£ £ and one vertical space in t rof £; all other levels
are preceded by one blank line in nro £ £ and one-half a vertical space in t ro£ £. The
following describes the default effect of the level argument.

Structuring the page 4-27



4-28

.H 1 heading-text  Produces an underlined (italicized) font heading, followed by a
single blank line. The text that follows begins on a new line and
is indented according to the current paragraph type. Full capital
letters can be used to make the heading stand out.

.H n heading-text Produces an underlined (italicized) font heading followed by
two spaces (3 < n<7). The following text begins on the same
line; that is, these are run-in headings.

Appropriate numbering and spacing (horizontal and vertical) occur even if the
heading-text argument is omitted from a . H macro call.

& Note Users satisfied with the default appearance of headings may skip to “Working
With Unnumbered Headings” later in this chpater. o

Changing the appearance of headings

The user can modify the appearance of headings quite easily by setting certain registers
and strings at the beginning of the document input text file. This permits quick alteration
of a document's style because this style-control information is concentrated in a few lines
rather than being distributed throughout the document.

Prespacing headings and forcing a page break A first-level heading (.2 1)
normally has two blank lines (one vertical space) preceding it, and all other headings are
preceded by one blank line (nro££) or one-half a vertical space (t ro££). If a multiline
heading is to be split across pages, it is automatically moved to the top of the next page.
Every first-level heading may be forced to the top of a new page by inserting

.nr Ej 1

at the beginning of the document input text file. Long documents may be made more
manageable if each section starts on a new page. Setting the E 5 (eject) register to a
higher value causes the same effect for headings up to that level; that is, a page eject
occurs if the heading level is less than or equal to the E§ value.

Setting spacing after headings Three registers control the appearance of text
immediately following a . H call. The registers are Hpb (heading break level), s (heading
space level), and i (postheading indent).

Chapter 4 mm Macros



If the heading level is less than or equal to the value of Hb, a break (see
“Understanding Formatting” earlier in this chapter) occurs after the heading.

If the heading level is less than or equal to the value of Hs, a blank line (nro££) or
one-half a vertical space (t ro£ £) is inserted after the heading,

If a heading level is greater than the value of b and also greater than the value of
Hs, then the heading (if any) is run into the following text. These registers permit
headings to be separated from the text in a consistent way throughout a document while
allowing easy alteration of white space and heading emphasis. The default value for Hb
and Hs is 2.

For any stand-alone heading, that is, a heading not run into the following text,
alignment of the next line of output is controlled by the Hi number register:

- m IfHi is0, text is left justified.
s IfHi is 1 (the default value), text is indented according to the paragraph type as
specified by the pt register (see “Indenting Paragraphs” earlier in this chapter).

m IfHi is 2, text is indented to line up with the first word of the heading itself so that
the heading number stands out more clearly.

To cause a blank line (nro££) or one-half a vertical space (t rof £) to appear after
the first three heading levels, to have no run-in headings, and to force the text following
all headings to be left justified (regardless of the value of pt), the following should
appear at the beginning of the document input text file:

.nr Hs 3
.nr Ho 7

.nr Hi 0

Centering headings The Hc register can be used to obtain centered headings. A
heading is centered if its Jevel argument is less than or equal to Hc and if it is also a stand-
alone heading. The Hc register is 0 initially (no centered headings).

Emphasizing headings with bold, italics, and underlining Any heading that is
underlined by the nro£ £ formatter is italicized by the t rof £ formatter. The string HF
(heading font) contains seven codes that specify fonts for heading levels 1 through 7. You
can use any font number defined on your output device, for example:

Structuring the page 4-29



4-30

HF code Default

Formatter 1 2 3 HF code
nroff Nounderline  Underline Bold 2222222
troff Roman Italic Bold 2222222

Thus, levels 1 through 7 are underlined by the nro£ £ formatter and italicized by the
trof £ formatter. The user may reset HF as desired. Any value omitted from the right end
of the list is assumed to be a 1. The following request would result in levels 1 through 5
in bold font and levels 6 and 7 in roman font:

.ds HF 3 3 3 3 3

The nrof £ formatter underlines in either of two styles:
= The normal style (. ul request) is used to underline only letters and digits.
= The continuous style (. cu request) underlines all characters including spaces.

By default, mm attempts to use the continuous style on any heading that is to be
underlined and is short enough to fit on a single line. If a heading is to be underlined but
is longer than a single line, the heading is underlined in the normal style (only letters and
digits).

All underlining of headings can be forced to the normal style by using the -ru1 flag
option when invoking the nro£ £ formatter (see “Parameters Set From the Command
Line” earlier in this chapter).

Setting point sizes for headings The user can specify the desired point size for each
heading level with the 1P string (for use with the t ro£ £ formatter only).

.ds HP [ps]l [ps2 [ps3) [ps4l [ps5) [ps6] [ps7

By default, the text of headings (. 1 and . HU) is printed in the same point size as the
body except that bold stand-alone headings are printed in a size one point smaller than
the body. The string HP, similar to the string HF, can be specified to contain up to seven
values, corresponding to the seven levels of headings. For example,

.ds HP 12 12 10 10 10 10 10

specifies that the first- and second-level headings are to be printed in 12-point type with
the remainder printed in 10-point. Specified values may also be relative point-size
changes, for example, :

.ds HP +2 +2 -1 -1

Chapter 4 mm Macros



If absolute point sizes are specified, then absolute sizes will be used regardless of the
point size of the body of the document. If relative point sizes are specified, then point
sizes for headings will be relative to the point size of the body even if the latter is
changed.

Null or 0 values imply that default size will be used for the corresponding heading
level.

¢ Note Only the point size of the headings is affected. Specifying a large point size
- without providing increased vertical spacing (via . HX or . Hz) may cause overprinting. &

Marking styles: Numerals and concatenation The registers named H1 through H7
are used as counters for the seven levels of headings. Register values are normally printed
using Arabic numerals. The . BM macro (heading mark style) allows this choice to be
overridden, thus providing outline and other document styles.

.BM [arg]) ... larg7

This macro can have up to seven arguments; each argument is a string indicating the
type of marking to be used. Legal arguments and their meanings are described in
Table 4-4.

Table 44 Arguments for marking numeral styles

Argument Meaning

1 Arabic (default for all levels)

0001 Arabic with enough leading zeros to get the specified number of digits
A Uppercase alphabetic

a Lowercase alphabetic

I Uppercase Roman

i Lowercase Roman

Omitted Interpreted as 1 (Arabic)

Iliegal No effect

Structuring the page 4-31



432

By default, the complete heading mark for a given level is built by concatenating the
mark for that level to the right of all marks for all levels of higher value. To inhibit the
concatenation of heading level marks, that is, to obtain just the current level mark
followed by a period, the heading mark type register (Ht) is set to 1. For example, input
for a commonly used outline style is
LHMIAlali
.nr Ht 1

Working with unnumbered headings
The . HU macro is a special case of . H; it is handled in the same way as . H except that no
heading mark is printed.
.HU heading-text

In order to preserve the hierarchical structure of headings when . H and . HU calls are
intermixed, each . HU heading is considered to exist at the level given by register Hu,
whose initial value is 2. Thus, in the normal case, the only difference between
.HU heading-text
and
.H 2 heading-text
is the printing of the heading mark for the latter. Both macros have the effect of
incrementing the numbering counter for level 2 and resetting to 0 the counters for levels
3 through 7. Typically, the value of Bu should be set to make unnumbered headings (if
any) be the lowest-level headings in a document.

The . Hu macro can be especially helpful in setting up appendixes and other sections
that may not fit well into the numbering scheme of the main body of a document (see
“Sample Appendix Headings” later in this chapter).

Using headings in the table of contents

The text of headings and their corresponding page numbers can be collected
automatically for a table of contents. This is accomplished by doing the following:

m  specifying in the contents level register, c1, what level headings are to be saved

= invoking the . TC macro (see “Generating a Table of Contents and Cover Sheet” later
in this chapter) at the end of the document

Chapter 4 mm Macros



Any heading whose level is less than or equal to the value of the c1 register is saved
and later displayed in the table of contents. The default value for the c1 register is 2; that
is, the first two levels of headings are saved.

Due to the way headings are saved, it is possible to exceed the formatter’s storage
capacity, particularly when saving many levels of many headings, while also processing
displays and footnotes (see “Creating Displays” and “Creating Footnotes” later in this
chapter). If this happens, the “Out of temp file space” formatter error message will be
issued; the only remedy is to save fewer levels, to have fewer words in the heading text,
or do both.

Using headings in page numbering

By default, pages are numbered sequentially at the top of the page. For large documents,
it may be desirable to use page numbering of the section-page form, where section is the
number of the current first-level heading. This page numbering style can be achieved by
specifying the -rN3 or -rN5 flag option on the command line (see “Using Default
Headers and Footers With Section-Page Numbering” later in this chapter). This also has
the effect of setting £ to 1, whick: causes each first-level section to begin on a new page.
In this style, the page number is printed at the bottom of the page so that the correct
section number is printed.

Creating user exit macros

This section is intended primarily for users who are accustomed to writing formatter
macros.

.HX dlevel rlevel heading-text
.BY dlevel rlevel heading-text
.02 dlevel rlevel heading-text

The . BX, .HY, and . Hz macros are the means by which the user obtains a final level
of control over the previously described heading mechanism. These macros are not
defined by mm; they are intended to be defined by the user. The . # macro call invokes
. Hx shortly before the actual heading text is printed; it calls . Hz as its last action. After
. HX is invoked, the size of the heading is calculated. This processing causes certain
features that may have been included in . X, such as . t i for temporary indent, to be
lost. After the size calculation, . HY is invoked so that the user may specify these features

Structuring the page 4-33



434

again. All default actions occur if these macros are not defined. If . HX, .HY, or .HZ is
defined by the user, user-supplied definition is interpreted at the appropriate point.
These macros can influence handling of all headings because the . HU macro is actually a
special case of the . 1 macro.

If the user first invokes the . H macro, then the derived level argument (dlevel) and
the real level argument (rleve)) both are equal to the level given in the . H invocation. If
the user first invokes the . Hu macro (see “Working With Unnumbered Headings” earlier
in this chapter), dlevel is equal to the contents of register Hu, and rlevelis 0. In both cases,
heading-textis the text of the original invocation. '

By the time . H calls . HX, it has already incremented the heading counter of the
specified level, produced blank lines (vertical spaces) to precede the heading (see
“Prespacing Headings and Forcing a Page Break” earlier in this chapter), and
accumulated the “heading mark,” that is, the string of digits, letters, and periods needed
for a numbered heading. When . Bx is called, all user-accessible registers and strings can
be referenced, as well as the following:

string }0 If rlevel is nonzero, this string contains the heading mark. Two
unpaddable spaces (to separate the mark from the heading) have been
appended to this string. If rlevel is 0, this string is null.

register ; 0 This register indicates the type of spacing that is to follow the heading
(see “Setting Spacing After Headings” earlier in this chapter).

A value of 0 means that the heading is run-in.
A value of 1 means a break (but no blank line) is to follow the heading.

A value of 2 means that a blank line (nro££) or one-half a vertical
space (tro££) is to follow the heading.

string }2 If register ; 0 is 0, this string contains two unpaddable spaces that will
be used to separate the (run-in) heading from the following text.

If register ; 0 is nonzero, this string is null.

register ; 3 This register contains an adjustment factor for a . ne request issued
before the heading is actually printed. On entry to . HX, it has the value
3 if dlevel equals 1, and a value of 1 otherwise. The . ne request is for
the following number of lines: the contents of the register ; 0 taken as
blank lines (nro££) or halves of vertical space (t ro£ £) plus the
contents of register ; 3 as blank lines (nro££) or halves of vertical
space (t ro£ £) plus the number of lines of the heading.

Chapter 4 mm Macros



The user may alter the values of 10, 12, and ; 3 within . Bx. The following are
examples of actions that might be performed by defining . 8X to include the lines shown:

»  Change first-level heading mark from format 7. to 7.0:
if \\$1=1 .ds }0 \\n(H1.0\<sp>\<sp>
where <sp> stands for a space.

= Separate run-in heading from the text with a period and two unpaddable spaces:
if \\n(;0=0 .ds }2 .\<sp>\<sp>

u  Ensure that at least 15 lines are left on the page before printing a first-level heading:
if \\$1=1 .nr ;3 (15-\\n(;0)v

s Add three additional blank lines before each first-level heading:
if \\$1=1 .sp 3

» Indent level-3 run-in headings by five spaces:
if \\$1=3 .ti 5n

If temporary strings or macros are used within . HX, their names should be chosen
with care (see “Naming Conventions” later in this chapter).

When the . HY macro is called after the . ne is issued, certain features requested in
. Hx must be repeated, for example,
.de HY
.if \\$1=3 .ti 5n

The . Hz macro is called at the end of . H to permit user-controlled actions after the
heading is produced. In a large document, sections may correspond to chapters of a
book; and the user may want to change a page header or footer, for example,

.de HZ
.if \\$1=1 .PF "Section \\$3"

Creating page headers and footers

Text printed at the top of each page is called a page header. Text printed at the bottom
of each page is called a page footer. There can be up to three lines of text associated
with the header—every page, even page only, and odd page only. Thus the page header

Structuring the page 4-35



4-36

may have up to two lines of text—the line that occurs at the top of every page and the
line for the even- or odd-numbered page. The same is true for the page footer.

This part describes the default appearance of page headers and page footers and
ways of changing them. The term header (not qualified by even or odd) is used to mean
the page header line that occurs on every page, and similarly for the term footer.

Using default headers and footers

By default, each page has a centered page number as the header. There is no default
footer and no even or odd default headers or footers except as specified in the next
section, “Using Default Headers and Footers With Section-Page Numbering.”

In a2 memorandum or a released-paper style document, the page header on the first
page is automatically suppressed provided a break does not occur before the . MT macro
is called. Macros and text in the following categories do not cause a break and are
permitted before the memorandum type (. MT) macro:

= memorandum and released-paper style document macros (. TL, .AU, .AT, . TM,
.AS, .AE, .OK, .ND, .AF, .NS, and .NE)

= page header and footer macros (. PH, .EH, .OH, .PF, .EF, and .OF)

s the .nr and .ds requests

Using default headers and footers with section-page numbering Pages can be
numbered sequentially within sections by section number and page number (see “Using
Headings in Page Numbering” earlier in this chapter). To obtain this numbering style,
-rN3 or -rN5 is specified on the command line. In this case, the default footer is a
centered section- page number, for example, 7-2—and the default page header is blank.

Using header and footer macros

For header and footer macros (. PH, .EH, .OH, .PF, .EF, and . OF) the argument [arg]
is of the form

"7 lefi-part’ center-part’ right-part’ v
If it is inconvenient to use an apostrophe () as the delimiter because it occurs within
one of the parts, it may be replaced uniformly by any other character. The . £c request

redefines the delimiter. In formatted output, the parts are left justified, centered, and right
justified, respectively.

Chapter 4 mm Macros



Page headers The . pH macro specifies the header that is to appear at the top of every
page.
.PH larg

The initial value is the default centered page number enclosed by hyphens. The page
number contained in the P register is an Arabic number. The format of the number may
be changed by the . a£ macro request.

If debug mode is set using the flag option -rD1 on the command line, additional
information printed at the top left of each page is included in the default header. This
consists of the Source Code Control System (SCCS) release and level of memorandum
macros (thus identifying the current version followed by the current line number within
the current input file). (See “Parameters Set From Command Line” and “SCCS Release
Identification.”)

Even-page headers The .EH macro supplies a line to be printed at the top of each
even-numbered page immediately following the header.

-EH [argl
Initial value is a blank line.

Odd-page header The .0H macro is the same as . EH except that it applies to odd-
numbered pages.

.OH larg

Page footers The . pF macro specifies a line that is to appear at the bottom of each
page.
.PF [argl

Its initial value is a blank line. If the -rcn flag option is specified on the command
line, the type of copy follows the footer on a separate line. In particular, if -rc3 or -xc4

(DRAFT) is specified, the footer is initialized to contain the date instead of being a blank
line.

Even-page footers The .EF macro supplies a line to be printed at the bottom of each
even-numbered page immediately preceding the footer.

-EF larg
Initial value is a blank line.

Structuring the page 4-37



4-38

Odd-page footers The .OF macro supplies a line to be printed at the bottom of each
odd-numbered page immediately preceding the footer.
.OF larg

Initial value is a blank line.

First-page footers By default, the first-page footer is a blank line. If, in the input text
file, the user specifies . PF, .OF, or both, before the end of the first page of the
document, these lines will appear at the bottom of the first page.

The header, whatever its contents, replaces the footer on the first page only if the -
rN1 flag option is specified on the command line (see “Parameters Set From the
Command Line” earlier in this chapter).

Strings and registers in header and footer macros String and register names can
be placed in arguments to header and footer macros. If the value of the string or register
is to be computed when the respective header or footer is printed, invocation must be
escaped by four backslashes. This is because string or register invocation will be
processed three times:

1. As the argument to the header or footer macro

2. In a formatting request within the header or footer macro

3. Ina .t1 request during header or footer processing

For example, page number register p must be escaped with four backslashes in order
to specify a header in which the page number is to be printed at the right margin:

.PH "’’’Page \\\\nP’"

creates a right-justified header containing the word “Page” followed by the page number.
Similarly, to specify a footer with the section-page style, the user specifies

.PF "/ /7= \\\\n (H1-\\\\nP -’"

If the user arranges for the string a] to contain the current section heading that is to be
printed at the bottom of each page, the . PF macro call would be

.PF ﬂlr\\\\* (a]rln

If only one or two backslashes were used, the footer would print a constant value for
al, namely, its value when . PF appeared in the input text.

Chapter 4 mm Macros



Header and footer example

The following sequence specifies blank lines for header and footer lines, page numbers
on the outside margin of each page (that is, top left margin of even pages and top right
margin of odd pages), and “Revision 3” on the top inside margin of each page. Nothing is
specified for the center.

.PH ""

.PF ""

.EH "/\\\\nP”Revision 3’"

.OH "’Revision 3”\\\\npP’"

Skipping pages
The . sk macro skips pages but retains the usual header and footer processing.
.SK [pages
If the pages argument is omitted, null, or 0, . Sk skips to the top of the next page
unless it is currently at the top of a page (in which case it does nothing). A . sk n

command skips 7 pages. A . SK positions text that follows it at the top of a page, while
.SK 1 leaves one page blank except for the header and footer.

Forcing an odd page

The . op macro is used to ensure that formatted output text following the macro begins

at the top of an odd-numbered page.

.OP

s [f currently at the top of an odd-numbered page, text output begins on that page (no
motion takes place).

= If currently on an even-numbered page, text resumes printing at the top of the next
page.

= If currently on an odd-numbered page (but not at the top of the page), one blank
page is produced, and printing resumes on the next odd-numbered page after that.

Structuring the page 4-39



4-40

Specifying top and bottom margins
The . vM (vertical margin) macro allows the user to specify additional space at the top
and bottom of the page.

.VM [topl [bottom)

This space precedes the page header and follows the page footer. The . vM macro
takes two unscaled arguments that are treated as vertical spaces (v). For example,

.VM 10 15

adds 10 vertical spaces to the default top-of-page margin and 15 vertical spaces to the
default bottom-of-page margin. Both arguments must be positive (default spacing at the
top of the page may be decreased by redefining . TP).

Using the word “PRIVATE” in the header

.nr Pv value
The word “PRIVATE” may be printed, centered, and underlined on the second line of
a document (preceding the page header). This is done by setting the pv register value:
0 Do not print PRIVATE (default)
1  PRIVATE on first page only
2 PRIVATE on all pages
If valueis 2, the user-definable . TP macro may not be used because the . TP macro

is used by mm to print “PRIVATE” on all pages except the first page of a memorandum on
which .Tp is not invoked.

Defining a macro for top-of-page processing

This part is intended only for users accustomed to writing formatter macros.
During header processing, mm invokes two user-definable macros:

s The . TP (top-of-page) macro is invoked in the environment (refer to . ev request) of
the header.

» The .PX is a page header user-exit macro that is invoked (without arguments) when

the normal environment has been restored and with the no-space mode already in
effect.

Chapter 4 mm Macros



The effective initial definition of . TP (after the first page of a document) is

.de TP

.sp 3

L1 A\\*(Jt

Lif e tl \\*(}e
.1f o 7tl \\*(}o
.sp 2

The string }t contains the header, the string } e contains the even-page header, and
the string } o contains the odd-page header as defined by the . pH, .EH, and .0oH
macros, respectively. To obtain more specialized page titles, the user may redefine the
. TP macro to cause the desired header processing (see “Creating Headings for Two-
Column Output” later in this chapter). Formatting done within the . TP macro is
processed in an environment different from that of the body. For example, to obtain a
page header that includes three centered lines of data, that is, document number, issue
date, and revision date, the user could define the . TP macro as follows:

.de TP

.sp

.ce 3
777-888-999

Iss. 2, AUG 1977
Rev. 7, SEP 1977

.8p

The . PX macro can be used to provide text that is to appear at the top of each page
after the normal header and that can have tab stops to align it with columns of text in the
body of the document.

Defining a macro for bottom-of-page processing

Lines of text that are specified between the . Bs (bottom-block start) and . BE (bottom-
block end) macros will be printed at the bottom of each page after the footnotes (if any)
but before the page footer.

Structuring the page 4-41



4-42

.BS
zero or more lines of text
.BE

This block of text is removed by specifying an empty block, that is,

.BS
-BE

The bottom block will appear on the table of contents, pages, and cover sheet for
memorandum for file, but not on the technical memorandum or released-paper cover
sheets.

Creating a disclaimer using a proprietary marking macro

The . pM (proprietary marking) macro appends a proprietary disclaimer to the page
footer. The proprietary disclaimers are constructed from strings defined in the file
/usr/lib/macros/strings.mm.

.PM [codd

The argument is selected from among the following:

PM1
PM2 or CA
PM3 or CP
PM4
PM5
PM6

Use . pM at the beginning of your document, before you use footnotes or macros that
define the memorandum style. Otherwise, an interaction between this macro and another
that redefines the appearance of the bottom of the page may cause you problems.

The default disclaimers are in a form approved for use by AT&T. Markings are
underlined. (They are italicized in t ro££.)

System administrators can change the contents of the st ring.mm file to match your
needs. This file is described in “Using Define File Information” later in this chapter. In
cases where the disclaimer message for a code argument has been removed, the
argument issues a currently approved disclaimer message. Because the code argument
may produce a shorter or longer disclaimer message, the page formatting of the
document may be affected.

Chapter 4 mm Macros



Creating two-column output

The . 2¢ macro begins two-column processing, which continues until a . 1¢ macro (one-
column processing) is encountered.

.2C

text and formatting requests (except another . 2¢)
.1c

In two-column processing, each physical page is thought of as containing two-columnar
“pages” of equal (but smaller) “page” width. Page headers and footers are not affected by
two-column processing. The . 2¢ macro does not balance two-column output.

It is possible to have full-page-width footnotes and displays when in two-column
mode, although default action is for footnotes and displays to be narrow in two-column
mode and wide in one-column mode. Footnote and display width is controlled by the
.wc (width control) macro, which takes the arguments listed in Table 4-5.

Table 4-5 Arguments for the width control macro

Argument Meaning
N Default mode (-WF, -FF, —WD, FB).
WF Wide footnotes (even in two-column mode).
-WF Default: Turn off WF. Footnotes follow column mode; wide in one-column mode
(1C), narrow in two-column mode (2C), unless F'F is set.
FF First footnote. All footnotes have same width as first footnote encountered for that
page.
-FF Default: Tumn off FF. Footnote style follows settings of WE' or —WF.
WD Wide displays (even in two-column mode).
-WD Default: Displays follow the column mode in effect when display is encountered.
FB Default: Floating displays cause a break when output on the current page.
-FB Floating displays on current page do not cause a break.

¢ Note The .wc wp FF command will cause all displays to be wide and all footnotes
on a page to be the same width, while .wc ~ will reinstate default actions. If conflicting
settings are given to .Wc, the last one is used. A .WwC WF -WF command has the effect
ofa .wCc -wF. &

Structuring the page 443



4-44

Creating headings for two-column output

This section is intended only for users accustomed to writing formatter macros.

In two-column processing output, it is sometimes necessary to have headers over
each column as well as headers over the entire page. This is accomplished by redefining
the . TP macro to provide header lines both for the entire page and for each of the
columns, for example,

.de TP

.sp 2

.tl ‘Page \\nP’OVERALL’’

.tl ’/TITLE’’

.sp

.nf

.ta 16C 31R 34 50C 65R
left~Icenter*Iright~Ileft~Icenter~Iright
~Ifirst column”I”*I”Isecond column
Lfi

.sp 2

where ~ I stands for the tab character.

The above example will produce two lines of page header text plus two lines of
headers over each column. Tab stops are for a 65-en overall line length. See “Defining a
Macro for Top-of-Page Processing” earlier in this chapter for more information on headers.

Hints for large documents

A large document is often organized for convenience into one input text file per section.
If the files are numbered, it is wise to use enough digits in the names of these files for the
maximum number of sections; that is, use suffix numbers 01 through 20 rather than 1
through 9 and 10 through 20.

Users often want to format individual sections of long documents. To do this with the
correct section numbers, it is necessary to set register H1 to one less than the number of
the section just before the corresponding .5 1 call. For example, at the beginning of
Part 5, insert

Chapter 4 mm Macros



.nr Hl1l 4

It will also be necessary to set the correct page number by using the . pn request or
the -rpn flag option.

¢ Note This is not good practice. It defeats the automatic (re)numbering of sections
when sections are added or deleted. Such lines should be removed as soon as possible. &

Creating lists

In order to avoid repetitive typing of arguments to describe the style or appearance of
items in a list, mm provides a convenient way to specify lists. All lists share the same
overall structure and are composed of the following basic parts:

= A list-initialization macro (. AL, .BL, .DL, .ML, .RL, or . VL) determines the style of
the list: line spacing, indentation, marking with special symbols, and numbering or
alphabetizing of list items.

= One or more list-item macros (. L.1) identify unique items to the system. They are
followed by the actual text of the corresponding list items.

= The list-end macro (. L.E) identifies the end of the list. It terminates the list and
restores the previous indentation.

Lists may be nested up to six levels. The list-initialization macro saves the previous list
status (indentation, marking, style, and so forth); the . LE macro restores it.

With this approach, the format of a list is specified only once at the beginning of the
list. In addition, by building onto the existing structure, users may create their own
customized sets of list macros with relatively little effort (see “Using List-Begin Macros”
and “Defining Other List Structures” later in this chapter).

Using list-initialization macros

List-initialization macros are implemented as calls to the more basic . LB macro (see
“Using List-Begin Macros” later in this chapter). The list-initialization macros are listed in
Table 4-6.

Creating lists 445



4-46

Table 4-6 List-initialization macros

Macro Description

.AL Automatically numbered or alphabetized list
.BL Bulleted list

.DL Dashed list

.ML Marked list

.RL Reference list

.VL Variable-item list

Using list-item macros

The . 1.1 macro is used with all lists and for each list item.

.LI [mark [1]

one or more lines of text that make up the list item
It normally causes output of a single blank line (nro££) or one-half a vertical space

(trof£) before its list item, although this may be suppressed.

= If no arguments are given, . LI labels the item with the current mark (except in . vL
lists), which is specified by the most recent list-initialization macro.

= If a single argument is given, that argument is output instead of the current mark.

» If two arguments are given, the first argument becomes a prefix to the current mark,
thus allowing the user to emphasize one or more items in a list. One unpaddable
space is inserted between the prefix and the mark.

For example,

.BL 5

.LI

This is a simple bullet item.
LT +

This replaces the bullet with a “plus.”
LI+ 1

Chapter 4 mm Macros



This uses a “plus” as prefix to the bullet.
.LE

when formatted yields
» This is a simple bullet item.

+ This replaces the bullet with a “plus.”

+e This uses a “plus” as prefix to the bullet.

& Note The markmust not contain ordinary (paddable) spaces because alignment of
items will be lost if the right margm is justified (see “Specifying Unpaddable Spaces”
earlier in this chapter).

If the current mark (in the current list) is a null string and the first argument of . L1 is
omitted or null, the result is that of a “hanging indent”; that is, the first line of the
following text is moved to the left starting at the same place where mark would have
started (see “Creating a Variable-Item List” later in this chapter). &

Using list-end macros

The . LE macro restores the state of the list to that existing just before the most recent list-
initialization macro call. '

.LE [1]

If the optional argument is given, the . LE generates a blank line (nro£ £) or one-half
a vertical space (t ro£ £). This option should generally be used only when the . LE is
followed by running text but not when followed by a macro that produces blank lines of
its own, such as the . P or . H macro.

The .= and . HU macros automatically clear all list information. The user may omit
the . LE macros that would normally occur just before either of these macros and not
receive the “LE :mismatched” error message. Such a practice is not recommended
because errors will occur if the list text is separated from the heading at some later time
(for example, by insertion of text).

Creating lists 4-47



4-48

Setting spacing in a list

Spacing at the beginning of the list and between items can be suppressed by setting the
list space register (Ls). The Ls register is set to the innermost list level for which spacing
is done. For example,

.nr Ls 0

specifies that no spacing will occur around any list items. The default value for Ls is 6
(which is the maximum list-nesting level).

Numbering or alphabetizing a list

The . AL macro is used to begin sequentially numbered or alphabetized lists.
.AL [typd [text-indent (1]

if there are no arguments, the list is numbered, and text is indented by L1 (default is
6) spaces from the indent in force when the . AL is called. This leaves room for a space,
two digits, a period, and two spaces before the text. Values that specify indentation must
be unscaled and are treated as character positions, that is, number of ens. The string . AL
A 5 is used to initialize the following list:

A. The typeargument may be given to obtain a different type of sequencing. Its value
indicates the first element in the sequence desired. If the #)pe argument is omitted or
null, the value 1 is assumed. Listed below are the arguments and interpretations:

Argument  Interpretation

1 Arabic (default for all levels)
A Uppercase alphabetic

a Lowercase alphabetic

I Uppercase Roman

i Lowercase Roman

B. If the text-indent argument is non-null, it is used as the number of spaces from the
current indent to the text; that is, it is used instead of the L register for this list only.
If the text-indent argument is null, the value of L.i will be used.

Chapter 4 mm Macros



C. Ifthe third argument is given, a blank line (nro£ £) or one-half a vertical space
(trof£) will not separate items in the list. However, a blank line will occur before
the first item.

Creating a bulleted list

The . BL macro begins a bulleted list.
.BL l[text-indenf [1]

Each list item is marked by a bullet () followed by one space. The string . BL 5 is used

to initialize the following list:

o If the text-indent argument is specified (non-null), it overrides the default indentation,
which is the amount of paragraph indentation as given in the P register (see
“Creating Paragraphs” earlier in this chapter). In the default case, the text of a bulleted
list lines up with the first line of indented paragraphs.

e If the second argument is specified, no blank lines will separate items in the list.

~ Creating a dashed list

The . DL macro begins a.dashed list.
.DL l[text-indent [1]

Each list item is marked by a dash (—) followed by one space. The string .DL 5 is used

to initialize the following list:

— If the text-indent argument is specified (non-null), it overrides the default indentation,
which is the amount of paragraph indentation as given in the P register (see
“Creating Paragraphs” earlier in this chapter). In the default case, the text of a dashed
list lines up with the first line of indented paragraphs.

— Ifthe second argument is specified, no blank lines will separate items in the list.

Creating lists 4-49



450

Creating a marked list

The .ML macro is much like . BL and . DL macros but expects the user to specify an
arbitrary mark, which may consist of more than a single character.

ML mark [text-indent) [1]

The string .ML \ (sq 5 is used to initialize the following list:

m Text is indented text-indent spaces if the second argument is specified (non-null);
otherwise, the text is indented one more space than the width of mark.

u  [f the third argument is specified, no blank lines will separate items in the list.

& Note The mark must not contain ordinary (paddable) spaces because alignment of
items will be lost if the right margin is justified (see “Specifying Unpaddable Spaces”
earlier in this chapter).

Creating a reference list

A .RL macro call begins an automatically numbered list in which the numbers are
enclosed by square brackets ([ D).

.RL [text-indenf (1]

The string . RL 5 is used to initialize the following list:

[1] Ifthe text-indent argument is specified (non-null), it is used as the number of spaces
from the current indent to the text; that is, it is used instead of L1 for this list only. If
the text-indent argument is omitted or null, the value of L1 is used.

[2] If the second argument is specified, no blank lines will separate the items in the list.

Chapter 4 mm Macros



Creating a variable-item list

When a list begins with a . v macro, there is effectively no current mark; it is expected

that each . .1 will provide its own mark.
.VL lext-indent [mark-indenf| (1]

This form is typically used to display definitions of terms or phrases.

m text-indent provides the distance from current indent to beginning of the text.

»  mark-indent produces the number of spaces from current indent to beginning of the

mark, and it defaults to 0 if omitted or null.

s If the third argument is specified, no blank lines will separate items in the list.

An example of . VL macro usage is shown below:
.VL 20 5
.LI "First\ Mark" »
This is the first mark specified for this list.
.LI "Second\ Mark"
.br
This is the second mark specified for this list.
The .br request causes a break so that this
text will appear one lihe below the mark.
.LI "Third\ Mark\ Longer\ Than\ Indent:"
This item shows the effect of a long mark;
one space separates the mark from the text.
LI "M\
This item has a nonprinting mark and effectively
produces a list item that is indented.
.LI
This item has an omitted mark
and produces a ‘‘hanging indent.’’
The first line of text is at the left margin and
the second is indented.
.LE

Creating lists

451



4-52

When formatted, it yields

First Mark  This is the first mark specified for this list.

Second Mark
This is the second mark specified for this list. The .br
request causes a break so that this text appears one line
below the mark.

Third Mark Longer Than Indent: This item shows the effect of a long mark;
one space separates the mark from the text.
This item has a nonprinting mark (an unpaddable space) and
effectively produces a list item that is indented.

This item has an omitted mark and produces a “hanging indent.” The first
line of text is at the left margin and the second is indented.

¢ Note The mark must not contain ordinary (paddable) spaces because alignment of
items will be lost if the right margin is justified (see “Specifying Unpaddable Spaces”
earlier in this chapter). If you do not escape the spaces within the double quotation
marks containing the list item, the first line of the text will be slightly adjusted for the
paddable spaces and will not line up with the rest of the text blocks in your list. &

Example of nested lists

An example of input for the several lists and the corresponding output is shown below.
The .AL and . DL macro calls (see “Numbering or Alphabetizing a List,” and “Creating a
Dashed List” earlier in this chapter) contained therein are examples of list-initialization
macros. Input text is

.AL A 5

.LI

This is automatically alphabetized list item A.

This list item has an indentation of 5 ens.

.AL

LI

This is automatically numbered list item 1.

Chapter 4 mm Macros



This list item also has an indentation of 5 ens.

.DL

.LI This is a dashed list item.

LI + 1

This is another dashed item in the same list

as the above item with a “plus” as prefix.

This is the last item in the dashed list.

.LE

LI

This is item 2 in the automatically numbered list.
This is the last item in the automatically numbered list.
-LE

LI

This is item B in the automatically alphabetized list.
This is the last item in the automatically
alphabetized list.

.LE

The output is
A. This is automatically alphabetized list item A. This list item has an indentation of 5
ens.
1. This is automatically numbered list item 1. This list item also has an
indentation of 5 ens.
—  This is a dashed list item.
+—  This is another dashed item in the same list as the above item with a “plus” as
prefix.
This is the last item in the dashed list.
2. Thisis item 2 in the automatically numbered list. This is the last item in the
automatically numbered list.
B. This is item B in the automatically alphabetized list. This is the last item in the
automatically alphabetized list.

Creating lists 4-53



4-54

Using list-begin macros

List-initialization macros described above suffice for almost all cases. However, if
necessary, the user may obtain more control over the layout of lists by using the basic list-
begin macro (. LB).

.LB text-indent mark-indent pad type \mark |LI-spacé [LB-space

The . 1.B macro is used by the other list-initialization macros. Its arguments are as
follows:

» The text-indent argument provides the number of spaces that text is to be indented
from the current indent. Normally, this value is taken from the L1 register (for
automatic lists) or from the pi register (for bulleted and dashed lists).

s The combination of mark-indent and pad arguments determines the placement of the
mark. The mark s placed within an area (called mark area) that starts mark-indent
spaces to the right of the current indent and ends where the text begins (that is, ends
text-indent spaces to the right of the current indent). The mark-indent argument is
typically 0.

s Within the mark areq, the mark is left-justified if the pad argument is 0. If padis a
number 7 (greater than 0) then # blanks are appended to the mark; the mark-indent
value is ignored. The resulting string immediately precedes the text. The markis
effectively right-justified pad spaces immediately to the left of the text.

= Arguments #peand mark interact to control the type of marking used. If #ypeis 0,
simple marking is performed using the mark character or characters found in the
mark argument. If #ypeis greater than 0, automatic numbering or alphabetizing is
done. Then, mark s interpreted as the first item in the sequence to be used for
numbering or alphabetizing and is chosen from the set (1, A, a, 1, 1), as in “Numbering
or Alphabetizing a List” earlier in this chapter. This is summarized in the following
list:

Type  Argument mark Result

0 Omitted Hanging indent

0 String String is the mark

>0 Omitted ~ Arabic numbering

>0 Oneof1,A a,T,ori  Automatic numbering or alphabetic sequencing

Chapter 4 mm Macros



Each nonzero value of #ype from 1 to 6 selects a different way of displaying the marks.
The following table shows the output appearance for each value of #pe,

Value  Appearance

1 X.
2 X)
3 (x)
4 (d
5 <x>
6 {x}

where x is the generated number or letter.

¢ Note markmust not contain ordinary (paddable) spaces because alignment of items
will be lost if the right margin is justified (see “Specifying Unpaddable Spaces” earlier in
this chapter).

The LI-space argument gives the number of blank lines (nro££) or half vertical spaces
(tro££) that should be generated by each . L.T macro in the list. If omitted, LI-space
defaults to 1; the value 0 can be used to obtain compact lists. If LI-space is greater than
0, the . L1 macro issues a . ne request for two lines just before printing the mark.

The LB-space argument is the number of blank lines (nro££) or half vertical spaces
(trof£f£) to be generated by . 1B itself. If omitted, LB-space defaults to 0.
There are three combinations of LI-space and LB-space:

The normal case is to set LI-spaceto 1 and LB-spaceto 0, yielding one blank line
(nrof£) or one-half a vertical space (t ro£ £) before each item in the list; such a list
is usually terminated witha . LE 1 macro to end the list with a blank line (nro££)
or one-half a vertical space (trof£).

For a more compact list, LI-spaceis set to 0, LB-spaceis setto 1, and the .LE 1
macro is used at the end of the list. The result is a list with one blank line (nro££) or
one-half a vertical space (t rof £) before and after it.

If both LI-space and LB-spaceare set to 0 and the . LE macro is used to end the list, a
list without any blank lines will result.

Creating lists 4-55



The following section, “Defining Other List Structures,” shows how to build upon the
supplied list of macros to obtain other kinds of lists.

Defining other list structures

This section is intended for users accustomed to writing formatter macros.

If a large document requires complex list structures, it is useful to define the
appearance for each list level only once instead of having to define the appearance at the
beginning of each list. This permits consistency of style in a large document. A
generalized list-initialization macro might be defined in such a way that what the macro
does depends on the list-nesting level in effect at the time the macro is called. Levels 1
through 5 of the lists to be formatted may have the following appearance:

A.

(1

a)
+
The following code defines a macro (. aL) that always begins a new list and

determines the type of list according to the current list level. To understand it, the user
should know that the number register : g is used by the mm list macros to determine the
current list level; it is 0 if there is no currently active list. Each call to a list-initialization
macro increments : g, and each . LE call decrements it.
.\" register g is used as a local
.\" temporary to save :g before
.\" it is changed below
.de aL
.nr g \\n(:g

.if \\ng=0 .AL A \" produces an A.

.if \\ng=1 .LB \\n(Li 0 1 4 \" produces a [1]
.if \\ng=2 .BL \" produces a bullet

.if \\ng=3 .LB \\n(Li 0 2 2 a \" produces an a)
.if \\ng=4 .ML + \" produces a +

4-56 Chapter 4 mm Macros



This macro can be used (in conjunction with . L. and . LE) instead of . AL, .RL, .BL,

.LB, and .ML. For example, the following input

.AL
.LI
First line.
.aL
.LI
Second line.
.LE
.LI
Third line.
.LE
when formatted yields
1. First line.
[1] Second line.
2. Third line.

There is another approach to lists that is similar to the . 5 mechanism. List-
initialization macros, as well as the . 1.1 and the . LE macros, are all included in a single
macro. That macro, defined as . bL below, requires an argument to tell it what level of
item is required; it adjusts the list level by either beginning a new list or setting the list

level back to a previous value, and then issues a . LT macro call to produce the item:

.de bL
.ie \\n(.% .nr g \\$1

\" if there is an argument, that is the level

.el .nr g \\n(:g

\" if no argument, use current level

.if \\ng-\\n(:g>1 .)D
\" **ILLEGAL SKIPPING OF LEVEL

\" increasing level by more than 1

.if \\ng>\\n(:g \{.alL \\ng-1

\" if g > :g, begin new list
.nr g \\n(:g\}

\" and reset g to current level

Creating lists

4-57



4-58

\" (.aL changes q)
.if \\n(:g>\\ng .LC \\ng
\" if :g > g, prune back to correct level
\" if :g = g, stay within current 1list
LI
\" in all cases, get out an item

For .bL to work, the previous definition of the . aL. macro must be changed to
obtain the value of g from its argument rather than from : g. Invoking . bL without
arguments causes it to stay at the current list level. The . L.c (list clear) macro removes list
descriptions until the level is less than or equal to that of its argument. For example, the
. H macro includes the call .L.c 0. If text is to be resumed at the end of a list, insert the
call .Lc 0 to clear out the lists completely. The example below illustrates the relatively
small amount of input needed by this approach. The input text
The quick brown fox jumped over the lazy dog's back.

.bL 1

First line.
.bL 2
Second line.
.bL 1

Third line.
.bL

Fourth line.
.LC O

Fifth line.

when formatted yields
The quick brown fox jumped over the lazy dog’s back.
A.  Firstline.
[1] Second line.
B.  Third line.
C.  Fourth line.
Fifth line.

Chapter 4 mm Macros



Creating memorandum and
released-paper style documents

Some of the information in this section is applicable to Bell Laboratories documents only.
However, most of the features discussed here can be tailored to specific needs.

One use of the memorandum macros is the preparation of memoranda and released-
paper documents that have special requirements for the first page and for the cover
sheet. Data needed (title, author, date, case numbers, and so forth) is entered in the same
way for both styles; an argument to the . MT macro indicates which style is being used.

Understanding the sequence of beginning macros

If the following macros are present, they must be given in the following order:

.ND new-date
.TL [charging-casd [filing-case
one or more lines of title text
.AF [company-namé
.AU name linitials lloc] (dept] lexdl [room) [arg larg]
.AT [titld ...
.TM [numben . ..
.AS [argl lindent
one or more lines of abstract text
.AE
-Ns [argl
one or more lines of Copy to notation
.NE

.OK [keyword . . .
-MT [typd [addressed

The only required macros for a memorandum for file or a released-paper document
are .TL, .AU, and .MT; all other macros (and their associated input lines) may be
omitted if the features are not needed. Once .MT has been invoked, none of the above

Creating memorandum and released-paper style documents 459



4-60

macros (except . Ns and . NE) can be reinvoked because they are removed from the
table of defined macros to save memory space.

If neither the memorandum nor the released-paper style is desired, the . TL, . AT,
.TM, .AE, .OK, .MT, .ND, and . AF macros should be omitted from the input text. If
these macros are omitted, the first page will have only the page header followed by the
body of the document.

Generating a title

The . TL macro generates a centered title.
.TL [charging-casd [filing-case
one or more lines of title text

Arguments to the . TL macro are the charging-case number(s) and filing-case
number(s).

» The charging-case argument is the case number to which time was charged for the
development of the project described in the memorandum. Multiple charging-case
numbers are entered as subarguments by separating each from the previous with a
comma and a space and enclosing the entire argument within double quotation
marks.

m The filing-case argument is a number under which the memorandum is to be filed.
Multiple filing-case numbers are entered similarly, for example,

n .TL "12345, 67890" 987654321
Construction of a Table of Even Prime Numbers

The title of the memorandum or released-paper document follows the . TL macro
and is processed in fill mode. The .br request may be used to break the title into several
lines as follows:

.TL 12345

First Title Line
.br

\!.br

Second Title Line

Chapter 4 mm Macros



On output, the title appears after the word “Subject” in the memorandum style and is
centered and bold in the released-paper document style.

If only a charging-case number or only a filing-case number is given, it will be
separated from the title in the memorandum style by a dash and will appear on the same
line as the title. If both case numbers are given and are the same, then “Charging and
Filing case” followed by the number will appear on a line following the title. If the two
case numbers are different, separate lines for “Charging Case” and “Filing Case” will
appear after the title.

Describing the author

The . AU and . AT macros take arguments that describe an author.

.AU name linitials] lloc [depdl lexAi [room) [argl [arg]
.AT [titld . ..

If any argument contains blanks, that argument must be enclosed within double
quotation marks. The first six arguments must appear in the order given. A separate . AU
macro is required for each author.

The . AT macro is used to specify the author’s title. Up to nine arguments may be
given. Each will appear in the signature block for memorandum style (see “Creating End-
of-memorandum macros” later in this chapter) on a separate line following the signer’s
name. The . AT must immediately follow the . Au for the given author, for example,

AU "S. J. Jones" SJJ PY 9876 5432 1Z2-234

.AT Director "Materials Research Laboratory"

In the “From” portion in the memorandum style, the author’s name is followed by
location and department number on one line and by room number and extension
number on the next line. The “x” for the extension is added automatically. Printing of the
location, department number, extension number, and room number can be suppressed
on the first page of a memorandum by setting the Au register to 0; the default value for
Au is 1. The seventh through ninth rguments of the . Au macro, if present, will follow this
normal author information in the “From” portion, each on a separate line. These last three
arguments can be used for organizational numbering schemes, and so on, for example,

.AU "S. P. Lename"™ SPL IH 998 7766 5H-44 654-3210.01MF

Creating memorandum and released-paper style documents 4-61



The name, initials, location, and department are also used in the signature block.
Author information in the “From” portion, as well as names and initials in the signature
block, will appear in the same order as in the . AU macros.

¢ Note Names of authors in the released-paper style are centered below the title.
Following the name of the last author, “Bell Laboratories” and the location are centered.
The paragraph on memorandum types contains information regarding authors from
different locations (see “Understanding Memorandum Types” later in this chapter).

Specifying the TM numbers

If the memorandum is a technical memorandum, the TM numbers are supplied via the
. TM macro.

.TM [numben . ..
Up to nine numbers may be specified, for example,
.TM 7654321 77777777

This macro call is ignored in the released-paper and external-letter styles (see
“Understanding Memorandum Types” later in this chapter).

Identifying the abstract

If a memorandum has an abstract, the input is identified with the . As (abstract start) and
.AE (abstract end) delimiters.

.AS [arg lindeni
one or more lines of abstract text
.AE

Abstracts are printed on page one of a document, on its cover sheet, or on both. There

are three styles of cover sheet:

= released paper

= technical memorandum

= memorandum for file (also used for engineer’s note, memorandum for record, and so on)

4-62 Chapter 4 mm Macros



Cover sheets for released papers and technical memoranda are obtained by invoking
the . cs macro (see “Generating a Table of Contents and Cover Sheet” later in this
chapter).

In released-paper style (first argument of the . MT macro is 4) and in technical
memorandum style, if the first argument of . As is

0 Abstract will be printed on page one and on the cover sheet (if any).
1 Abstract will appear only on the cover sheet (if any).

(See “Understanding Memorandum Types” later in this chapter.)
In memoranda for file style and in all other documents (other than external letters), if
the first argument of . As is

0 Abstract will appear on page one, and no cover sheet will be printed.

2 Abstract will appear only on the cover sheet, which will be produced automatically
(that is, without invoking the . cs macro).

It is not possible to get either an abstract or a cover sheet with an external letter (first
argument of the .MT macro is 5).

Notations such as a “Copy to” list are allowed on memoranda for file cover sheets; the
.Ns and . NE macros must appear after the .As 2 and . AE macros. Headings and
displays are not permitted within an abstract. (See “Creating Numbered Headings” and
“Working with Unnumbered Headings” earlier in this chapter and “Using Copy To and
Other Notations” and “Creating Displays” later in this chapter.)

The abstract is printed with ordinary text margins; an indentation to be used for both
margins can be specified as the second argument of . as. Values that specify indentation
must be unscaled and are treated as “character positions,” that is, as the number of ens.

Using other keywords

Topical keywords may be specified on a technical memorandum cover sheet using the
. OK macro.

.OK lkeyword) ...

Up to nine such keywords or keyword phrases can be specified as arguments to the
. OK macro; if any keyword contains spaces, it must be enclosed within double quotation
marks.

Creating memorandum and released-paper style documents 4-63



Understanding memorandum types

The .MT macro controls the format of the top part of the first page of a memorandum or
of a released-paper document and the format of the cover sheets.

.MT [typd laddressee

The #ype arguments and corresponding values are
i No memorandum type printed

0 No memorandum type printed

None MEMORANDUM FOR FILE is printed
1 MEMORANDUM FOR FILE is printed
2 PROGRAMMER’ S NOTES is printed
3 ENGINEER’S NOTES is printed

4 Released-paper style

5 External-letter style

"string" string is printed

If the #ype argument indicates a memorandum style document, the corresponding
statement indicated under Value will be printed after the last line of author information. If
typeis longer than one character, then the string itself will be printed, for example,

.MT "Technical Note #5"

A simple letter is produced by calling . MT with a null (but not omitted) or 0
argument.

The second argument to . MT is the name of the addressee of a letter. If present, that
name and the page number replace the normal page header on the second and following
pages of a letter. For example,

.MT 1 "Steve Jones"
produces
Steve Jones - 2

The addressee argument cannot be used if the first argument is 4 (released-paper style
document).

The released-paper style is obtained by specifying
.MT 4 [1]

4-64 Chapter 4 mm Macros



This results in a centered, bold title followed by centered names of authors. The
location of the last author is used as the location following “Bell Laboratories” (unless the
. AF macro specifies a different company). If the optional second argument to .MT 4 is
given, the name of each author is followed by the respective company name and
location. Information necessary for the memorandum style document but not for the
released-paper style document is ignored.

If the released-paper style document is used, most Bell Telephone Laboratories
location codes are defined as strings that are the addresses of the corresponding BTL
locations. These codes are needed only until the .MT macro is invoked. Thus, following
the . MT macro, the user may reuse these string names. In addition, the macros for the
end of a memorandum (see “Creating End-of-memorandum macros” later in this chapter)
and their associated lines of input are ignored when the released-paper style is specified.

Authors from non-BTL locations may include their affiliations in the released-paper
style by specifying the appropriate . AF macro (see “Using an Alternate First-Page
Format” later in this chapter) and defining a string (with a two-character name such as
zz) for the address before each . Ay, for example,

.TL

A Learned Treatise

.AF "Getem Inc."

.ds ZZ "22 Maple Avenue, Sometown 09999"

.AU "F. Swatter" "" ZZ
.AF "Bell Laboratories"
.AU "Sam P. Lename" "" CB
MT 4 1

In the external-letter style document, only the title without the word “Subject:” and
the date are printed in the upper left and right comers, respectively, on the first page. It is
expected that preprinted stationery with the company logo and address of the author will
be used.

Changing the date

The . ND macro alters the value of the string DT, which is initially set to produce the
current date.

Creating memorandum and released-paper style documents 465



4-66

.ND new-date
If the argument contains spaces, it must be enclosed within double quotation marks.

Using an alternate first-page format

An alternate first-page format can be specified with the . AF macro.
.AF [company-namé

The words “Subject,” “Date,” and “From” (in the memorandum style) are omitted, and
an alternate company name is used.

If an argument is given, it replaces “Bell Laboratories” without affecting other
headings. If the argument is null, “Bell Laboratories” is suppressed, and extra blank lines
are inserted to allow room for stamping the document with a Bell System logo or a Bell
Laboratories stamp.

The . AF with no argument suppresses “Bell Laboratories” and the
“Subject/Date/From” headings, allowing output on preprinted stationery. The use of . AF
with no arguments is equivalent to the use of -ra1 except that the latter must be used if
it is necessary to change the line length, page offset, or both (these default to 5.8i and 1i,
respectively, for preprinted forms). The flag options - rok and —rwk are not effective
with . AF. The only . AF use appropriate for the t ro£ £ formatter is to specify a
replacement for “Bell Laboratories.” The flag option ~rE# controls the font of the
“Subject/Date/From” block. (See “Parameters Set From the Command Line” earlier in this
chapter).

Example of input text

Input text for a document may begin as follows:

.TL

MM\ * (EMmemorandum macros

.AU "D. W. Smith" DWS PY

AU "J. R. Mashey" JRM PY

.AU "E. C. Pariser (January 1980 Rev.)" ECP PY

Chapter 4 mm Macros



.AU "N. W. Smith (June 1980 Rev.)" NWS PY
.MT 4

Figures 4-1, 4-2, and 4-3 later in this chapter show the input text file for a simple letter
as well as the formatted output from both the nrof £ and t rof £ formatters.

Creating end-of-memorandum macros

At the end of a memorandum document, signatures of authors and a list of notations can
be requested. The following macros and their input are ignored if the released-paper
style document is selected.

Using the signature block
The .Fc and . sG macros print a formal closing and signature block.

.FC [closing
.SG largl 1

The . Fc macro prints “Yours very truly,” as a formal closing, if no closing argument
is used. It must be given before the . sG macro. A different closing may be specified as an
argument to . FC.

The . sG macro prints the author’s name after the formal closing, if any. Each name
begins at the center of the page. Three blank lines are left above each name for the actual
signature.

s If no arguments are given, the line of reference data (location code, department
number, author’s initials, and typist’s initials all separated by hyphens) will not
appear.

- = Anon-null first argument is treated as the typist’s initials and is appended to the
reference data.

= A null first argument prints reference data without the typist’s initials or the preceding
hyphen.

u [f there are several authors and if the second argument is given, reference data is
placed on the line of the first author.

Creating memorandum and released-paper style documents 467



4-68

Reference data contains only the location and department number of the first author.
Thus, if there are authors from different departments or from different locations, the
reference data should be supplied manually after the invocation (without arguments) of
the . sG macro, for example,

.SG

.S

.5p -1v
PY/MH-9876/5432-J3J/SPL-cen

Using “copy to” and other notations

Many types of notations (such as a list of attachments or “Copy to” lists) may follow
signature and reference data. Various notations are obtained through the . Ns macro,
which provides for proper spacing and for breaking notations across pages, if necessary.
NS larg

zero or more lines of the notation

.NE

Codes for arg and the corresponding notations are listed in Table 4-7.

Table 4-7 “Copy to” notations

Argument Notation

None Copy to

" Copy to

Copy to

Copy (with att.) to
Copy (without att.) to
Att.

Atts.

Enc.

Encs.

Under Separate Cover
Letter to
Memorandum to

" string" Copy (string) to

O 0 J o b W E O

Chapter 4 mm Macros



If arg consists of more than one character, it is placed within parentheses between the
words “Copy” and “to.” For example,

.NS "with att. 1 only"

will generate

Copy (with att. 1 only) to

as the notation. More than one notation may be specified before the . NE macro because
a .Ns macro terminates the preceding notation, if one exists. For example,

.NS 4

Attachment 1-List of register names

Attachment 2-List of string and macro names

.NS 1

S. J. Jones

.NS 2

S. P. Lename

G. H. Hurtz

.NE

would be formatted as
Atts,

Attachment 1-List of register names
Attachment 2-List of string and macro names

Copy (with att.) to
S.J. Jones

Copy (without att.) to
S.P. Lename
G. H. Hurtz

The .xs and . NE macros can also be used following .As 2 and . AE to place the
notation list on the memorandum for file cover sheet (see “Identifying the Abstract”
earlier in this chapter). If notations are given at the beginning without .As 2, they will
be saved and generated at the end of the document.

Creating memorandum and released-paper style documents 4-69



470

Generating the approval signature line

The . Av macro can be used after the last notation block to automatically generate a line
with spaces for the approval signature and date.

.AV approver’s-name
For example,

.AV "Jane Doe"

produces

APPROVED:

Jane Doe Date

Forcing a one-page letter

To increase the page length temporarily, for example, to force space for a signature at the
bottom of a letter, you can use the - rL# flag option. For example, using -r1.90 has the
effect of making the formatter believe that the page is 90 lines long and therefore
providing more space than usual to place the signature or the notations.

¢ Note This will work only for a single-page letter or memo.

Using define file information

The /usr/lib/macros/strings.mn file contains predefined strings for the .MT
and . PM macros. These strings are proprietary disclaimers for AT&T Bell Laboratories
and may be redefined by system administrators to contain different string and font
information. Only system administrators have write permissions to change the define file.

Chapter 4 mm Macros



Using business letter style

An alternative to the format memorandum style is the business letter style, which
produces four types of business letters: blocked, semiblocked, full-blocked, and
simplified.

Using the letter-type macro
The letter-type macro . LT formats a letter in one of four business styles:
.LT larg

LT accepts one optional argument. Arguments and corresponding formats are listed
in Table 4-8.

Table 4-8 Letter-type arguments and formats

Argument Format
None Blocked

BL Blocked

FB Full-blocked
SB Semiblocked
SP Simplified

. LT controls the placement on the page of the output of the subordinate macro . L0 and

the subordinate macro pairs (. Ia and . IE, .wA and .wE), which differs according to
each of the four business letter formats.

Business letter and formal memorandum macros (. LT and . MT) are mutually
exclusive. If you specify both . LT-specific and . MT-specific macros in a single
document, nrof £/t roff attempts to process the file according to the first formatting
specific macro it encounters. mm ignores . MT-specific macros and . MT-specific
command-line parameters if you use them with . LT; conversely, if you use . LT-specific
macros with . MT, mm ignores them.

If you use these business letter macros, the macro pairs .wa/.WE, and .12/.IE and
the page formatting macros . LT are required; all other business letter macros are
optional.

Creating memorandum and released-paper style documents 471



The . LT macro arguments control paragraph indentation for each of the four letter
types. If you redefine the pt and p1i registers, the user-specified indentations will override.
Specification of the Pt and pi registers must occur after specification of the . LT macros.

= In the block format all lines of text begin at the left margin except the dateline, return
address, closing, and writer’s identification. These begin at the center of the line. (The
center of the line is not a fixed point; it is calculated for the current line length.)

» The semiblocked format is the same as the blocked format, except the first line of
each paragraph is indented five spaces.

= In full-blocked format all lines begin at the left margin. There are no exceptions.

= The simplified format is the same as the full-blocked format, except the salutation is

replaced by an all-capital subject line and is followed by an additional blank line, the
closing is omitted, and the writer’s identification is in capital letters on one line.

Table 4-9 presents a synopsis of the placement of business letter components for the
four . LT letter formats and lists the macros (which are explained in detail below) that
you use to format those components.
There are two possible error conditions for the . L.T macro:
= If you omit the . LT macro, file processing aborts and an appropriate error message prit
= If mm does not recognize an argument to . LT, the file processing aborts and an
appropriate error message prints.

Table 49 Letter formatting components and macros

Macro Function BL SB FB SP
.WA/.WE Writer's address Center Center Left Left
.LO CN larg Confidential notation ~ Left Left Left Left
.LO RNlarg Reference notation Center Center Left Left
.IA/.IE Inside address Left Left Left Left
.LO AT larg Attention Left Left Left Left
.LO SA larg Salutation Left Left Left None
.LO SJ lard Subject line Left Indented Left Left
.P Paragraphs Left Indented Left Left
.FC Closing Center Center Left Left
.SG Signature Center Center Left Left
.NS/.NE Copy notation Left Left Left Left

472 Chapter 4 rm Macros



Using writer’s address macros
Use this macro pair to specify the writer of the letter and the writer’s return address.
WA writer-name [titld

return address
WE

For example,

.WA "James Lorrin, Ph.D." Director
Summit Research Company

38 River Road

Summit, New Jersey 07901

.WE

If a complete return address is not necessary for the letter (for example, if you use
printed letterhead stationary), you can specify the writer information alone:
.WA "James Lorrin, Ph.D." Director
.WE

The return address cannot exceed 14 lines. Lines in the return address that follow line
14 do not appear on the letter.

The two arguments specified for the . wa and . we macro pair, the writer-name and
the title, provide information used by the . sG macro. If you do not specify the . sG
macro, the writer's name does not appear on the letter.

For the case of multiple writers on a single letter, you may specify only one writer
return address. The specified writer return address must appear with the first writer-name
as the first invocation of the . wa/.wE macro pair. Later return address specifications do
not appear on the letter, although any number of additional writer names may be
specified, for example,

.WA "James Lorrin, Ph.D." Director
Summit Research Company

38 River Road

Summit, New Jersey 07901

.WE

.WA "John Smith" Supervisor

.WE

.WA "Diane Kane" "Technical Support"
-WE

Creating memorandum and released-paper style documents 4-73



For blocked and semiblocked letter styles, the writer return address begins on line 12
of the first page and each line begins at the center of the line. For the full-blocked and
simplified letter styles, the writer return address begins on line 12 of the page and each
line begins at the left margin.

¢ Note Top-of-page processing can be controlled directly through nrof£. The
beginning of the printed page is user-defined. See the requests . wh and . ch in Chapter
3, “nroff/troff Formatters.” &

If you omit either or both of the . wa and . we macros, the file processing aborts and
an appropriate error message prints.

Using inside address macros
.IAand . IE are a macro pair that you use to specify the addressee and the addressee’s
address. There are two ways that you can use this macro pair:
.IA
text
.IE
or
.IA laddressee-namad ltitle
text
.IE
For example,
.IA Fred Smith, Ph.D.
Columbia University
116th Street
New York, New York 10019
.IE
or
.IA "Fred Smith, Ph.D."
.IE

4-74 Chapter 4 mm Macros



For all four styles of . LT, the inside address prints on the fifth line below the date (if
a reference notation or confidential notation appears after the date, the inside address
prints three lines below the notation), and each line begins at the left margin.

If you omit either or both of the . 1A and . TE macros, the file processing aborts and
an appropriate error message prints.

Using the letter-options macro

The letter-options macro provides the capability for specifying five common business
letter components:

.LO pype larg

The . ..o macro takes care of placement and spacing of these letter components for
each . LT letter format. . .0 requires one argument to specify a letter component type
and accepts one optional string argument to refine its action. . LO’s arguments and their
corresponding components are

AT Attention

CN Confidential notation
RN Reference notation
SA Salutation

SJ Subject line

Confidential notation The confidential notation shows that a business letter should be
read only by the person to whom it is addressed. The confidential notation appears on
the second line below the date line of the letter and begins at the left margin for all letter
formats.

If the optional string argument is present the specified string replaces the default, for
example,

.LO CN "RESTRICTED"
The default of cN prints CONFIDENTIAL.

Reference notation The reference notation supplies specific information to be used by
the addressee, for example,

.LO RN "meeting of 1/25"

Creating memorandum and released-paper style documents 475



4-76

The reference note appears two lines below the dateline of the letter or on the second
line below any notation that follows the date and is left aligned with the dateline for all
four letter formats.

RN provides a common format for including a reference note by printing the string
“In reference to:" preceding the optional string argument to . LO. The format
string “In reference to:” cannot be redefined. There is no default value for the
optional argument.

Attention line The attention line directs the letter to the attention of a specific person or
department, for example,

.LO AT "Dr. Smith"

The attention information appears on the second line below the inside address of the
letter and begins at the left margin.

AT provides a common format for directing a letter to the attention of a specific
person by printing the string “ATTENTION : ” preceding the optional string argument to
.1.0. The format string “ATTENTION : ” cannot be redefined. There is no default value
for the optional argument.

Salutation The salutation specifies the letter’s opening greeting. For the blocked,
semiblocked, and full-blocked formats the salutation appears on the second line below
the inside address (or on the second line below the attention line, if used). In the
simplified letter format, the salutation is ignored.

The default of sa prints “To Whom It May Concern:” for the salutation. If the
optional string argument is present, the specified string will replace the default, for
example,

.LO SA "Dear Dr. Smith"

Subject line The subject line shows what the letter is about. In the blocked and full-
blocked letter formats, the subject line information appears on the second line below the
salutation and begins at the left margin. For the semiblocked format the subject line
appears on the second line below the salutation and is indented five spaces. In the
simplified letter format the subject line information appears in place of the salutation
three lines below the inside address of the attention line; the salutation, if you use it, is
ignored.

Chapter 4 mm Macros



For the blocked, semiblocked, and full-blocked formats, sJ provides a common
format for indicating what the letter is about by printing the string “suBJECT:”
preceding the optional string argument to . L.O.

.LO SJ "Staff Meeting"

The format string “SUBJECT : " cannot be redefined. There is no default value for the
optional argument.

For the simplified letter, the subject line string argument prints on the third line below
the inside address or the attention line (a salutation is ignored if used).

If you specify the . Lo macro without an argument or the argument you specify is
unrecognized, the file processing aborts and an appropriate error message prints.

Generating multipage letters

The . LT macro controls the format for the first page of the letter. The letter macros will
not alter the default nrof£/troff page processing following the first page of the letter.

Understanding the sequence of beginning letter macros

Macros .wa, .WE, . IA, .IE,and .LT mustbe given in the order listed below. . Lo can
be specified multiple times with different argument ypes. The . Lo argument #ypes do not
have to be in any specific order. All . Lo requests must be specified before . LT.

.ND new date

.WA writer’s nameltitld

Return address

Street City, State Zip Code

Text

.WE

.IA

Addressee name

Title

Company

Street City, State Zip Code

Text

.IE

Creating memorandum and released-paper style documents 477



.1LO typelarg
.LT [arg

.P

Text

.FC

.SG [arg 111
.NS larg 1]
Text

.NE

If you put nrof £/t rof £ requests and lines of text before . LT, you change how
. LT works. For example, if the first line of a file is a line of text, mm processes the file as if
you had not specified . L.T.

Creating displays

Displays are blocks of text that are to be kept together on a page and not split across
pages. They are processed in an environment that is different from the body of the text
(see the . ev request in Chapter 3, “nrof £/t rof £ Formatters”). The memorandum
macros package provides two styles of displays—a static (. Ds) style and a floating (. DF)
style.

= In the static style, the display appears in the same relative position in the output text
as it does in the input text. This may result in extra white space at the bottom of the
page if the display is too long to fit in the remaining page space.

»  In the floating style, the display “floats” through the input text to the top of the next
page if there is not enough space on the current page. Thus input text that follows a
floating display may precede it in the output text. A queue of floating displays is
maintained so that their relative order of appearance in the text is not disturbed.

By default, a display is processed in no-fill mode with single spacing and is not
indented from the existing margins. The user can specify indentation or centering as well
as fill-mode processing.

4-78 Chapter 4 mm Macros



¢ Note Displays and footnotes can never be nested in any combination. Although lists
and paragraphs are permitted, no headings (. 5 or . Hu) can occur within displays or
footnotes. o

Starting static displays

A static display is started by the . s macro and terminated by the . DE macro.
.DS [formad (fill (rindent
one or more lines of text
.DE
With no arguments, . Ds accepts lines of text exactly as typed (no-fill mode) and will
not indent lines from the prevailing left margin indentation or from the right margin.

= The format argument is an integer or letter used to control the left margin indentation
and centering with the meanings shown in Table 4-10.

= The fillargument is an integer or letter and can have the meanings shown in
Table 4-11.

» The rindent argument is the number of characters that the line length should be
decreased, that is, an indentation from the right margin. This number must be
unscaled in the nro£ £ formatter and is treated as ens. It may be scaled in the trof £
formatter or else it defaults to ems.

Table 4-10 Format argument in static displays

Format Meaning

e No indent

Omitted No indent

0 or L No indent

lorlI Indent by standard amount
2 o C Center each line

3 or CB Center as a block

Creating displays 479



Table 4-11 Fill argument in static displays

Fill Meaning
ne No-fill mode
Omitted No-fill mode
OorN No-fill mode
lorF Fill mode

The standard amount of static display indentation is taken from the si register, a default
value of five spaces. Thus, text of an indented display aligns with the first line of indented
paragraphs, whose indent is contained in the P 1 register (see “Creating Paragraphs”
earlier in this chapter). Even though their initial values are the same default values, these
two registers are independent.

The display format argument value 3 (or cB) horizontally centers the entire display as
a block, as opposed to .Ds 2 and .DF 2, which center each line individually. All col-
lected lines are left-justified, and the display is centered based on the width of the longest
line. This format must be used in order for the eqn/neqn mark and lineup feature to
work with centered equations (see “Using Displays in Equations” later in this chapter).

By default, a blank line (nro££) or one-half a vertical space (t ro££) is placed
before and after static and floating displays. These blank lines before and after static
displays can be inhibited by setting the register Ds to 0.

The following example shows usage of all three arguments for static displays. This block
of text will be indented five spaces (ems in t ro£ £) from the left margin, filled, and indent-
ed five spaces (ems in t rof £) from the right margin (that is, centered). The input text
.DSIFS
“We the people of the United States,
in order to form a more perfect union,
establish justice, ensure domestic tranquillity,
provide for the common defense,
and secure the blessings of liberty to
ourselves and our posterity,
do ordain and establish this Constitution to the
United States of America.”

.DE

4-80 Chapter 4 mm Macros



produces the output

“We the people of the United States, in order to form a more
perfect union, establish justice, ensure domestic tranquillity,
provide for the common defense, and secure the blessings of
liberty to ourselves and our posterity, do ordain and establish
this Constitution to the United States of America.”

Starting floating displays

A floating display is started by the . DF macro and terminated by the . DE macro.
.DF [formad [fill [rindens.

one or more lines of text

.DE

Arguments have the same meanings as static displays described above, except indent,
no indent, and centering are calculated with respect to the initial left margin. This is
because prevailing indent may change between when the formatter first reads the floating
display and when the display is printed. One blank line (nro££) or one-half a vertical
space (trof £) occurs before and after a floating display.

The user may exercise precise control over the output positioning of floating displays
through the use of two number registers, De and Df (see Tables 4-12 and 4-13 below).
When a floating display is encountered by the nrof£ or t ro£ £ formatter, it is processed
and placed onto a queue of displays waiting to be generated. Displays are removed from
the queue and printed in the order entered, which is the order they appeared in the input
file. If a new floating display is encountered and the queue of displays is empty, the new
display is a candidate for immediate output on the current page. Immediate output is
governed by size of display and the setting of the Df register code. The De register code
controls whether text will appear on the current page after a floating display has been
produced.

As long as the display queue contains one or more displays, new displays will be
automatically entered there rather than being generated. When a new page is started, or
the top of the second column in two-column mode, the next display from the queue
becomes a candidate for output if the D£ register code has specified top-of-page output.
When a display is generated, it is also removed from the queue.

Creating displays 4-81



4-82

When the end of a section (using section-page numbering) or the end of 2 document
is reached, all displays are automatically removed from the queue and are generated. This
occurs before a . SG, .Cs, or . TC macro is processed.

A display will fit on the current page if there is enough room to contain the entire
display or if the display is longer than one page in length and less than half of the current
page has been used. A wide (full-page width) display will not it in the second column of
a two-column document.

Table 4-12 De number register code settings in floating displays

Code  Action

No special action occurs (also the default condition).

1 A page eject will always follow the output of each floating display, so onfy one floating display
will appear on a page and no text will follow it.

Note: For any other code, the action performed is the same as for code 1.

Table 4-13 Df number register code settings in floating displays

Code  Action

0 Floating displays will not be generated until end of section (when section-page numbering) or
end of document.

Ifthe De register is set to 1, each display will be followed by a page eject, causing a new top of
page to be reached where at least one more display will be generated (this also applies to code 5).

1 Generate new floating display on current page if there is space; otherwise, hold it until end of
section or document.

2 Generate exactly one floating display from queue to the top of a new page or column (when in
two-column mode).

3 Generate one floating display on current page if there is space; otherwise, output to the top of a
new page or column.

Generate as many displays as will fit (but at least one) starting at the top of a new page or column.

Generate a new floating display on the current page if there is room (default condition). Generate
as many displays (but at least one) as will fit on the page starting at the top of 2 new page or
column.

Note: For any code greater than 5, the action performed is the same as for code 5. If the De
register is set to 1, each display will be followed by a page eject, causing a new top of page to be
reached where at least one more display will be generated.

Chapter 4 o Macros



The .wc macro (see “Creating Two-Column Output” earlier in this chapter) can also
be used to control handling of displays in double-column mode and to control the break
in text before floating displays.

Using displays in tables

The mm macros interact with the tb1 macros and provide some extra functionality (see
Chapter 7, “cb1 Tables,” for a description of the tb1 program).

.Ts [H]

global options;
column descriptors.
title lines

[.TH NI

data within the table.
.TE

The . Ts (table start) and . TE (table end) macros make possible the use of the
tb1(1) program. These macros are used to delimit text to be examined by tb1 and to set
proper spacing around the table.

The display function and the tb1 delimiting function are independent. In order to
permit the user to keep together blocks that contain any mixture of tables, equations,
filled text, unfilled text, and caption lines, the . TS/ . TE block should be enclosed within
a display (. s/ . DE). Floating tables may be enclosed inside floating displays
(.DF/.DE).

Macros . Ts and . TE permit processing of tables that extend over several pages. If a
table heading is needed for each page of a multipage table, the 1 argument should be
specified to the . TS macro as above. Following the options and format information, the
table title is typed on as many lines as required and is followed by the . TH macro. The
. TH macro must occur when . TS H is used for a multipage table. This is not a feature of
tb1 but of the definitions provided by the memorandum macros package.

The . TH (table header) macro may take as an argument the letter N. This argument
causes the table header to be printed only if it is the first table header on the page. This
option is used when it is necessary to build long tables from smaller . Ts H/.TE
segments. For example,

Creating displays 4-83



4-84

.TS H

global options,
column descriptors.
title lines

.TH

data

.TE

.TS H

global options;
column descriptors.
title lines

.TH N

data

.TE

causes the table heading to appear at the top of the first table segment and no heading to
appear at the top of the second segment when both appear on the same page. However,
the heading will still appear at the top of each page that contains the table. This feature is
used when a single table must be broken into segments because of table complexity (for
example, too many blocks of filled text). If each segment had its own . TS B/.TH
sequence, it would have its own header. However, if each table segment after the first
uses .TS H/.TH N, the table header will appear only at the beginning of the table and
the top of each new page or column that contains the table.

For the nro£ £ formatter, the —e flag option (~E for mm(1)) can be used for terminals,
for instance, the 450, that are capable of finer printing resolution. This will cause better
alignment of features such as the lines forming the corner of a box. The —e flag option is
not effective with co1(1). (See “The mm Command” earlier in this chapter.)

Using displays in equations

Mathematical typesetting programs eqn/neqn(1) expect to use the . EQ (equation start)
and . EN (equation end) macros as delimiters in the same way that tb1(1) uses . Ts and
. TE; however, when processed with the mm macros, . EQ and . EN must occur inside a
.Ds/ . DE pair. There is an exception to this rule—if . EQ and . EN are used to specify

Chapter 4 mm Macros



only the delimiters for inline equations or to specify eqn/neqn defines, the .ps and
. DE macros must not be used; otherwise, extra blank lines will appear in the output.
.DS
.EQ [label
equation(s)
.EN
.DE

The . EQ macro takes an argument that will be used as a label for the equation. By
default, the label will appear at the right margin in the vertical center of the general
equation. The Eq register can be set to 1 to change labeling to the left margin.

The equation will be centered for centered displays; otherwise, the equation will be
adjusted to the opposite margin from the label.

Using displays in figure, table, equation,
and exhibit titles

The . FG (figure title), . TB (table title), . EC (equation caption), and . EX (exhibit
caption) macros are normally used inside . DS/ . DE pairs to automatically number and
print captions for figures, tables, and equations.

.FG ltitld overridd [flag]
.TB l[titld loverride (flag
.EC [titld (overridd |flag
.EX [titld loverridé (flag

These macros use registers Fg, Tb, Ec, and Ex, respectively. (See “Parameters Set
From the Command Line” earlier in this chapter on -rN5 to reset counters in sections.)
For example,
.FG "This is a Figure Title"

yields

Figure 1. This is a Figure Title

The . TB macro replaces “Figure” with “TABLE,” the . EC macro replaces “Figure”
with “Equation,” and the . Ex macro replaces “Figure” with “Exhibit.” The output title is
centered if it can fit on a single line; otherwise, all lines but the first are indented to line

Creating displays 485



4-86

up with the first character of the title. The format of the numbers can be changed using
the . af request of the formatter. By setting the of register to 1, the format of the caption
may be changed from
Figure 1. title

to
Figure 1 - title

The override argument is used to modify normal numbering. If the flag argument is
omitted or 0, overrideis used as a prefix to the number; if the flag argument is 1, override
is used as a suffix; and if the flag argument is 2, override replaces the number. If -xN5 is
given, “section-figure” numbering is set automatically, and the user-specified override
argument is ignored. (See “Parameters Set From the Command Line” earlier in this
chapter.)

As a matter of formatting style, table headings are usually placed above the text of
tables, while figure, equation, and exhibit titles are usually placed below corresponding
figures and equations.

Listing figures, tables, equations, and exhibits

Lists of figures, tables, exhibits, and equations are printed following the table of contents
if the number registers Lf, Lt, Lx, and Le (respectively) are set to 1. The Lf, Lt, and
Lx registers are 1 by default; Le is 0 by default.

Titles of these lists can be changed by redefining the following strings, which are
shown here with their default values:
.ds Lf LIST OF FIGURES
.ds Lt LIST OF TABLES
.ds Lx LIST OF EXHIBITS
.ds Le LIST OF EQUATIONS

Chapter 4 mm Macros



Creating footnotes

There are two macros (. Fs and . FE) that delimit text of footnotes, a string (F) that
automatically numbers footnotes, and a macro (. FD) that specifies the style of footnote
text. Footnotes are processed in an environment different from that of the body of text
(refer to . ev request in Chapter 3, “nrof £/t rof £ Formatters”).

Numbering footnotes

Footnotes may be automatically numbered by typing the three characters \ *F (that is,
invoking the string ¥) immediately after the text to be footnoted without any intervening
spaces. This will place the next sequential footnote number (in a smaller point size) a half
line above the text to be footnoted.

Delimiting footnote text

.Fs (label
one or more lines of footnote text
.FE

There are two macros that delimit the text of each footnote. The . Fs (footnote start)
macro marks the beginning of footnote text, and the . FE (footnote end) macro marks the
end. The label on the . Fs macro, if present, will be used to mark footnote text.
Otherwise, the number retrieved from the string F will be used. Automatically numbered
and user-labeled footnotes can be intermixed. If a footnote is labeled (. Fs label), the
text to be footnoted must be followed by label, rather than by \ *F. Text between .Fs
and . FE is processed in fill mode. Another . Fs, a .Ds, ora .DF is not permitted
between . Fs and . FE macros. If footnotes are required in the title, abstract, or table (see
“Using Displays in Tables” earlier in this chapter), only labeled footnotes will appear
properly. Everywhere else automatically numbered footnotes work correctly. For
example, the input for an automatically numbered footnote is

This is the line containing the word\*F
.FS

Creating footnotes 4-87



4-88

This is the text of the footnote.
.FE
to be footnoted and automatically numbered.

and the input for labeled footnote is

This is a labeled*

.FS *

The footnote is labeled with an asterisk.
.FE

footnote.

Text of the footnote (enclosed within the . Fs/ . FE pair) should immediately follow
the word to be footnoted in the input text, so that \ *F or label occurs at the end of a line
of input and the next line is the . F's macro call. It is also good practice to append an
unpaddable space (see “Specifying Unpaddable Spaces” earlier in this chapter) to \ *F or
label when they follow an end-of-sentence punctuation mark (a period, question mark,
or exclamation point).

Controlling format style of footnote text

Within footnote text, the user can control formatting style by specifying text hyphenation,
right margin justification, and text indentation, as well as left or right justification of the
label when text indenting is used. The . FD macro is invoked to select the appropriate
style.

.FD largi(1]

The first argument (a7g) is a number from the left column of Table 4-14. Formatting
style for each number is indicated in the remaining four columns. Further explanation of
the first two of these columns is given in the definitions of the .ad, .na, .hy,and .nh
(adjust, no adjust, hyphenation, and no hyphenation, respectively) requests in Chapter 3,
“nroff/troff Formatters.”

Chapter 4 mm Macros



Table 4-14 Hyphenating footnote text

Argument Hyphenation Adjust Text indent Label justification
0 .nh ad Yes Left

1 hy ad Yes Left

2 ah na Yes Left

3 .y .na Yes Left

4 .nh ad No Left

5 Sy ad No Left

6 ah na No Left -
7 hy .na No Left

8 .nh ad Yes Right
9 Sy ad Yes Right
10 nh .na Yes Right
1 hy na Yes Right

If the first argument to . FD is greater than 11, the effect is as if .FD 0 were specified.
If the first argument is omitted or null, the effect is equivalentto .FD 10 inthe nroff
formatter and to .FD 0 in the t ro£ £ formatter; these are also the respective initial
default values.

If the second argument is specified, then when a first-level heading is encountered,
automatically numbered footnotes begin again with 1. This is most useful with the
section- page numbering scheme. As an example, the input line

. FD nn 1

maintains the default formatting style and causes footnotes to be numbered afresh after
each first-level heading in a document.

Hyphenation across pages is inhibited by mm except for long footnotes that continue
to the following page. If hyphenation is permitted, it is possible for the last word on the
last line on the current page footnote to be hyphenated. The user has control over this
situation by specifying an even . FD argument.

Footnotes are separated from the body of the text by a short line rule. Those that
continue to the next page are separated from the body of the text by a full-width rule. In
the t ro£ £ formatter, footnotes are set in type two points smaller than the point size used
in the body of text.

Creating footnotes 4-89



Setting spacing between footnote entries

Normally, one blank line (nro££) or a 3-point vertical space (t rof £) separates
footnotes when more than one occurs on a page. To change this spacing, the Fs number
register is set to the desired value. For example,

.nr Fs 2

will cause two blank lines (nro££) or a 6-point vertical space (t ro£f £) to occur between
footnotes.

Generating a table of contents and
cover sheet

490

The table of contents and the cover sheet for a document are produced by invoking the
.TC and . CS macros, respectively.

¢ Note This section refers to cover sheets for technical memoranda and released
papers only. The mechanism for producing a memorandum for file cover sheet was
discussed earlier (see “Identifying the Abstract” earlier in this chapter). ¢

These macros normally appear once at the end of the document, after the signature
block and notations macros, and may occur in either order. (See “Using the Signature
Block” and “Using Copy to and Other Notations” earlier in this chapter.)

The table of contents is produced at the end of the document because the entire
document must be processed before the table of contents can be generated. Similarly, the
cover sheet may not be desired by a user and is therefore produced at the end.

Chapter 4 mm Macros



Generating a table of contents

The . TC macro generates a table of contents containing heading levels that were saved
for the table of contents as determined by the value of the c1 register (see “Using
Headings in the Table of Contents” earlier in this chapter).

.TC l[slevel (spacing (tlevel (tab} (head ) (head2) (head3] |head4) (head5)

Arguments to . TC control spacing before each entry, placement of associated page
numbers, and additional text on the first page of the table of contents before the word
“CONTENTS.”

Spacing before each entry is controlled by the first and second arguments (slevel and
spacing). Headings whose level is less than or equal to slevel will have spacing blank
lines (nro££) or half-vertical spaces (t ro£f £) before them. Both slevel and spacing
default to 1. This means that first-level headings are preceded by one blank line (nro££)
or one-half a vertical space (t ro£ £). The slevel argument does not control what levels of
heading have been saved; saving of headings is the function of the c1 register.

The third and fourth arguments (t/evel and tab) control placement of the associated
page number for each heading. Page numbers can be justified at the right margin with
either blanks or dots, called leaders, separating the heading text from the page number,
or the page numbers can follow the heading text.

For headings whose level is less than or equal to tlevel (default 2), page numbers are
justified at the right margin. In this case, the value of tab determines the character used to
separate heading text from page number. If tabis 0 (default value), dots (leaders) are
used. If tabis greater than 0, spaces are used.

For headings whose level is greater than tlevel, page numbers are separated from
heading text by two spaces (that is, page numbers are ragged right, not right-justified).

Additional arguments (head1 . . . head5) are horizontally centered on the page and
precede the table of contents.

If the . TC macro is invoked with at most four arguments, the user-exit macro . TX is
invoked (without arguments) before the word “CONTENTS” is printed, or the user-exit
macro . TY is invoked and the word “CONTENTS” is not printed.

By defining . Tx or . TY and invoking . TC with at most four arguments, the user can
specify what needs to be done at the top of the first page of the table of contents. For
example,

Generating a table of contents and cover sheet 491



492

.de TX

.ce 2

Special Application
Message Transmission
.sp

.in +10n

Approved: \1’3i’

.in 0
.sp
.TC
yields the following output when the file is formatted:
Special Application
Message Transmission
Approved:
CONTENTS

If the . TX macro is defined as . Ty, the word “CONTENTS” is suppressed. Defining
. TY as an empty macro will suppress “CONTENTS” with no replacement:

.de TY

By default, the first-level headings will appear in the table of contents left-justified.
Subsequent levels will be aligned with the text of headings at the preceding level. These
indentations can be changed by defining the ci string, which takes a maximum of seven
arguments corresponding to the heading levels. It must be given at least as many
arguments as are set by the c1 register. Arguments must be scaled. For example, with c1
=5
.ds Ci .25i .5i .75i 1i 1i \"troff

or

.ds Ci 0 2n 4n 6n 8n \"nroff

Chapter 4 mm Macros



Two other registers are available to modify the format of the table of contents—oc
and Cp.

By default, table of contents pages will have lowercase roman numeral page
numbering. If the Oc register is set to 1, the . TC macro will not print any page number
but will instead reset the P register to 1. It is the user’s responsibility to give an
appropriate page footer to specify the placement of the page number. Ordinarily, the
same . PF macro (page footer) used in the body of the document will be adequate.

The list of figures, tables, exhibits, and equations will be produced as separate pages
unless Cp is set to 1, which causes these lists to appear on the same page as the table of
contents.

Generating a cover sheet

The . cs macro generates a cover sheet in either the released-paper or technical
memorandum style (see “Identifying the Abstract” earlier in this chapter for details of the
memorandum for file cover sheet).

.CS [pages) [othen [total [figs) (tbist [refs

All other information for the cover sheet is obtained from data given before the .MT
macro call (see “Understanding the Sequence of Beginning Letter Macros” eatlier in this
chapter). If the technical memorandum style is used, the . cs macro generates the “Cover
Sheet for Technical Memorandum.” The data that appears in the lower left corner of the
technical memorandum cover sheet (counts of pages of text, other pages, total pages,
figures, tables, and references) is generated automatically (0 is used for other pages).
These values can be changed by supplying the corresponding arguments to the .cs
macro. If the released-paper style is used, all arguments to . Cs are ignored.

Using references

There are two macros (.Rs and . RF) that delimit the text of references, a string that
automatically numbers the subsequent references, and an optional macro (. rP) that
produces reference pages within the document.

Using references 493



494

Numbering references

Automatically numbered references can be obtained by typing \ * (R£ (invoking the
string Rf) immediately after the text to be referenced. This places the next sequential
reference number (in a smaller point size) enclosed in brackets one-half line above the
text to be referenced. Reference count is kept in the Rf number register.

Delimiting reference text

The .Rs and . RF macros are used to delimit text of each reference.
.RS [string-naméd
.RF
For example,
A line of text to be referenced.\* (Rf
.RS
reference text
.RF

Creating subsequent references

The . Rs macro takes one argument, a string-name, for example,

.RS aA
reference text
.RF

The string aA is assigned the current reference number. This string may be used later
in the document as the string call, \ * (aa, to reference text that must be labeled with a
prior reference number. The reference is output enclosed in brackets one-half line above
the text to be referenced. No . RS/ . RF pair is needed for subsequent references.

Chapter 4 mm Macros



Generating a reference page

The . RP macro causes a reference page, entitled by default “References,” to be generated
automatically at the end of the document (before table of contents and cover sheet) and
to be listed in the table of contents.

.RP [arglllarg2

This page contains the reference items enclosed within .Rs/ . RF pairs. Reference
items will be separated by a space (nro£ £) or one-half a vertical space (t ro£ £) unless
the Ls register is set to 0 to suppress this spacing. The user may change the reference
page title by defining the Rp string:
.ds Rp "New Title"

The . rp (reference page) macro may be used to produce reference pages anywhere
else within a document (that is, after each major section). It is not needed to produce a
separate reference page with default spacings at the end of the document.

Two . Rp macro arguments allow the user to control resetting of reference numbering
and page skipping:

argl Meaning

0 Reset reference counter (default)
1 Do not reset reference counter
arg2 Meaning

0 Put on separate page (default)

1 Do not cause a following . SK
2 Do not cause a preceding . SK
3 No . SK before or after

If no . sk macro is issued by the . RP macro, a single blank line will separate the
references from the following and preceding text. The user may wish to adjust spacing,
For example, to produce references at the end of each major section:

.sp 3
.RP 1 2

.H 1 "Next Section"

Using references 495



Troubleshooting

This section explains what happens when a macro finds an error. This section also helps
you find output that doesn't appear.

What happens when a macro detects an error?

When a macro detects an error, the following actions occur:

m A break occurs.

»  The formatter output buffer (which may contain some text) is printed to avoid
confusion regarding location of the error.

= A short message is printed giving the name of the macro that detected the error, type
of error, and approximate line number in the current input file of the last processed
input line. Error messages are explained in “Error Messages” later in this chapter.

m  Processing terminates unless register D has a positive value. In the latter case,
processing continues even though the output is guaranteed to be deranged from that
point on. (See “Parameters Set From the Command Line” earlier in this chapter.)

The error message is printed by generating the message directly to the user terminal.
If an output filter, such as 300(1), 450(1), or hp(1), is being used to postprocess the
nrof £ formatter output, the message may be garbled by being mixed with text held in
that filter’s output buffer.

¢ Note If any cw(1), eqn/neqn(l), and tb1(1) programs are being used and if the
-olist option of the formatter causes the last page of the document not to be printed, a
harmless “broken pipe” message may result. &

Why does output disappear?

Disappearance of output usually occurs because of an unclosed diversion (for example, a
missing .DE or . FE macro). Fortunately, macros that use diversions are careful about it,
and these macros check to make sure that illegal nestings do not occur. If any error

4-96 Chapter 4 mm Macros



message is issued concerning a missing . DE or . FE, the appropriate action is to search
backward from the termination point looking for the corresponding associated . DF,
.DS, or . Fs (because these macros are used in pairs).

The following command:

grep -n ’~\.[EDFRTIEFNQS)’ filenamel filename2
prints all the . DF, .DS, .DE, .EQ, .EN, .FS, .FE, .RS, .RF, .TS, and . TE macros
found in filename1 and filename2. Each is preceded by its filename and the line number

in that file. This listing can be used to check for illegal nesting, omission of these macros,
or both.

Extending and modifying
memorandum macros

The naming conventions listed in this section allow you to extend and modify
memorandum macros. Request, macro, and string names are kept by the formatters in a
single internal table; therefore, there must be no duplication among such names. Number
register names are kept in a separate table.

Naming conventions

In this part, the following conventions are used to describe names:

a Lowercase letter

A Uppercase letter

n Digit

) Any nonalphanumeric character (special character)

x Any alphanumeric character (7, a, or 4, that is, letter or digit)

All other characters are literals; that is, they are characters that stand for themselves.

Extending and modifying memorandum macros 4-97



Names used by formatters

Requests: g4 (most common)
an (only one, currently c2)
Registers:  aa (normal)
% (normal)
s (only one, currently .)
a. (only one, currently c.)
% (page number)

Names used by memorandum macros

Macros and strings: A4, A4, Aa (accessible to users, for example, macros p and Hy;
strings F, BU, and Lt)
nA (accessible to users; only two, currently 1¢ and 2¢)
aA (accessible to users; only one, currently np)

s (accessible to users; currently only the seven accents (see
“Reducing Point Size of a String” earlier in this chapter)

)X, }x, lx, >x, 2x(internal)
Registers: An, Aa (accessible to users, for example, H1, Fg)

A (accessible to users; meant to be set on the command line, for
example, C)

:X, ;Xx, #x, 2X, !x(internal)

Names used by cw, eqn/neqn, and tbl

The cw(1) program is the constant-width font preprocessor for the t ro£ £ formatter. It
uses the following five macro names:

.CDh .CN .CP .CW .PC

This preprocessor also uses the number register names cE and cw. The mathematical
equation preprocessors, eqn(1) and neqn(1), use registers and string names of the form
nn. The table preprocessor, tb1(1), uses T, T#, and TW, and names of the form

a- a+ al nn na ~a #a #S

4-98 Chapter 4 mm Macros



Names defined by user

Names that consist of either a single lowercase letter or a lowercase letter followed by a
character other than a lowercase letter (names . c2 and . np are already used) should be
used to avoid duplication with already used names. The following is a possible naming

convention:
Macros: aA (for example, bG, kW)
Strings: as (for example, c), £], p})

Registers:  a (for example, £, t)

Sample appendix headings

The following is a way of generating and numbering appendix headings:

.nr
.nr
.de
.nr
.nr
.PH
.SK
.HU

Hu 1

ao

aHl

a +1

PO

"r 7 rpappendix \\na-\\\\\\\\np’"

"\\1"

After the above initialization and definition, each call of the form

.al

" titlem

begins a new page, with the page header changed to “Appendix a-n”, and generates an
unnumbered heading of title, which can be saved for the table of contents. To center
appendix titles, the Hc register must be set to 1 (see “Centering Headings” earlier in this
chapter).

Extending and modifying memorandum macros 4-99



5 ms Macros

What are ms macros? / 5-3

Using basic document formats / 5-5
Changing the look of the document / 5-9
Structuring the page / 5-16

Creating displays / 5-27

Producing tables and equations / 5-29
Creating footnotes / 5-32

Using references / 5-34

Creating an index or a table of contents / 5-34
Drawing boxes / 5-37

Checking your work / 5-38

Using nroff/troff commandsin ms / 5-38
Creating your own macros / 5-39

Reference tables / 5-40



This chapter is a reference for the ms macro package. It's a good idea to skim this
chapter for a general understanding of the ms macro package and then read specific

sections in detail as needed.

5-2 Chapter 5 ms Macros



What are ms macros?

ms is a collection of text-formatting macros for the A/UX text formatters nrof £ and
troff. ms was designed for writing general-purpose documents. ms and me perform
many of the same functions, but some features of me are not available in ms, so A/UX
Release 3.0 supports both packages. You can use only one of these packages at a time,
however, so you may wish to read this chapter and the chapter on me and make a
decision about which package to use before you actually begin formatting a document.

For a complete discussion of text-formatting concepts and principles, refer to
Chapter 1, “Introduction to A/UX Text Processing.”

How input is read

Formatters fill output lines from one or more input lines. You can justify output lines so
that both the left and right margins are aligned. As lines are being filled, words may also
be hyphenated as necessary. You can turn any of these modes on and off (with the . na,
.ad, .hy, .nf, and . £i formatter requests; turning off fill mode also turns off
justification and hyphenation). Certain formatting commands (requests and macros) stop
filling the current output line, print the line (of whatever length), and begin subsequent
text on a new output line. This printing of a partially filled output line is called a break. A
few formatter requests and most of the ms macros cause a break. (See Table 5-1.)

What are ms macros? 5-3



54

Table 5-1 ms macros that cause a break

Name Description

.AB Begin abstract.

.AI Author’s institution.

.AU Author’s name.

.BD Block display (no keep).
.B1 Begin boxed text.

.B2 End boxed text.

.CD Centered display (no keep).
.CT Chapter title.

.DE End display.

.DS Start standard display.

.EN End equation.

.EQ Start equation.

.ID Indented display (no keep).
.IP Indented paragraph.

.KE End keep.

.KS Start keep.

.LD Left-adjusted display (no keep).
.LP Left-block paragraph.

.MC Begin multcolumn text.

.NH Numbered heading.

.PP Standard paragraph.

.QP Quotation mark paragraph.
.RE End right shift.

.RS Begin right shift.

.SH Unnumbered section heading.
.TC Print table of contents.

.TE End table.

.TL Print centered title in boldface.
.TS Start table.

XA Additional index entry.

.XS Begin index entry.

.1C Resume one-column printing.
.2C Begin two-column printing.

Chapter 5 ms Macros



Understanding arguments and double quotation marks

In ms , you can use an argument to modify a macro. For example, the macro .Ds begins a
standard display. When you add a ¢ to the macro

.DS C

the material in the display is centered.

Any macro argument containing ordinary (paddable) spaces must be enclosed in
double quotation marks. A double quotation mark is a single character that must not be
confused with two apostrophes, acute accents, or grave accents. If an argument
containing such spaces is not enclosed in double quotation marks, it will be treated as
several separate arguments.

Sequence of beginning macros

Any text file processed by the ms macros must begin with one of the following macros:
.TL, .SH, .NH, .PP,and .LP.

These macros initialize the file and must precede a break caused by blank lines,
leading spaces, or . sp, .br, and . ce troff requests.

Using basic document formats

The ms macro packages has facilities for formatting the basic elements of a document,
such as the cover page, margins, and spacing.

Cover sheets

You can generate a separate cover sheet containing any of the following: title (. TL),
author (. AU), author’s institution (. AI), and abstract (. AB). Precede these macros with
.RP and enter them in the order indicated. The current date is printed on the cover sheet
(unless you suppress this feature with the : ND macro; see “Changing and Removing the
Date” later in this chapter).

Using basic document formats 5-5



You can also include this information without producing a cover sheet. Title, author,
abstract, and so on are then printed on the first page of the document.

Titles

The title macro (. TL) creates a centered title (as opposed to the three-part title format of
the troff request .t1).In troff the title is printed two points larger than the
remaining text and is in boldface. In nro£ £ the title is underlined. When used with the

. RP macro, the title is centered on the cover sheet. (See Table 5-2.)

Table 5-2 Title macro

Type Form Explanation

Macro .TL Print centered title in boldface two points larger than
current font.

Authors

The macros . AU and . AT print the author’s name and institution centered and in italic.
(See Table 5-3.) For example,

.AU
author’s-name

.AI
author’s-institution

produces
author’s-name

author’s-institution

5-6 Chapter 5 ms Macros



Multiple authors (and institutions) can also be used. Precede each additional entry
with . AU or . AT, as appropriate, for example,
.AU
authorl
.AU
author2

Table 5-3 Author macros

Type Form Explanation
Macro .AI Print centered information about the author’s institution.
Macro .AU Print centered author’s name, in current point size and in

italic. Multiple names are printed on separate lines if entered
on separate input lines.

Abstracts

An abstract is a brief summary of the text it precedes. The . AB macro prints this summary
after the author’s institution, if used, with an optional centered heading. (See Table 5-4.)

Table 5-4 Abstract macros

Type Form Explanation

Macro .AB [no] Begin abstract. The abstract text is preceded by a centered
heading titled “ABSTRACT.” Argument no suppresses the
heading, The abstract text is filled and adjusted on a line 5/6
the normal text line length.

Macro .AE End abstract.

Using basic document formats 5-7



5-8

Paper styles

You can produce cover sheets in two basic formats: standard released-paper or thesis
mode. (See Table 5-5.)

Released paper format (. Rp) provides a separate cover sheet containing title, author,
institution, and abstract. (See “Cover Sheets” earlier in this chapter.)

Thesis mode (. T™) formats your document according to university specifications for
doctoral dissertations. The page number is printed on each page, text is double-spaced,
the current date is removed from the center footer, and the chapter title macro (. cT) is
defined and activated.

Table 5-5 Paper styles macros

Type Form Explanation

Macro .RP [no] Released-paper format. Provides a separate cover sheet for
title, author, author’s institution, 