Apple. A/UX. Programmer’s
Reference

Copyright

This material contains trade secrets and
confidential and proprietary information of
Apple Computer, Inc., and UniSoft Corpora-
tion. Use of this copyright notice is precau-
tionary only and does not imply publication.
Copyright © 1985, 1986, 1987, Apple Com-
puter, Inc., and UniSoft Corporation. All
rights reserved. Portions of this document
have been previously copyrighted by AT&T
Information Systems, the Regents of the
University of California, Adobe Systems,
Inc., and Sun Microsystems, Inc., and are
reproduced with permission. Under the copy-
right laws, this manual or the software may
not be copied, in whole or part, without writ-
ten consent of Apple or UniSoft, except in the
normal use of the software or to make a
backup copy of the software. The same
proprietary and copyright notices must be
affixed to any permitted copies as were
affixed to the original. This exception does
not allow copies to be made for others,
whether or not sold, but all of the material
purchased (with all backup copies) may be
sold, given, or loaned to another person.
Under the law, copying includes translating
into another language or format. You may
use the software on any computer owned by
you, but extra copies cannot be made for this
purpose.

Apple Computer, Inc.
20525 Mariani Ave.
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo, ImageWriter, Laser-
Writer, and Macintosh are registered trade-
marks of Apple Computer, Inc.

A/UX is a trademark of Apple Computer, Inc.

UNIX is a registered trademark of AT&T
Information Systems.
B-NET is a trademark of UniSoft Corpora-

tion.
Ethernet is a trademark of Xerox Corporation.

Diablo is a registered trademark of Xerox
Corporation.

POSTSCRIPT and TRANSCRIPT are trademarks
of Adobe Systems, Inc. © 1984 Adobe Sys-
tems, Inc. All rights reserved.

DEC is a trademark of Digital Equipment
Corporation.

Hewlett-Packard 2631 is a trademark of
Hewlett-Packard.

Limited Warranty on Media and
Replacement

If you discover physical defects in the manu-
als distributed with an Apple product or in the
media on which a software product is distri-
buted, Apple will replace the media or manu-
als at no charge to you, provided you return
the item to be replaced with proof of purchase
to Apple or an authorized Apple dealer during
the 90-day period after you purchased the
software. In addition, Apple will replace dam-
aged software media and manuals for as long
as the software product is included in Apple’s
Media Exchange Program. While not an
upgrade or update method, this program
offers additional protection for up to two
years or more from the date of your original
purchase. See your authorized Apple dealer
for program coverage and details. In some
countries the replacement period may be dif-
ferent; check with your authorized Apple
dealer.

ALL IMPLIED WARRANTIES ON THE

MEDIA AND MANUALS, INCLUDING
IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ARE LIM-
ITED IN DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE ORI-
GINAL RETAIL PURCHASE OF THIS
PRODUCT.

Even though Apple has tested the software
and reviewed the documentation, APPLE
AND ITS SOFTWARE SUPPLIER MAKE
NO WARRANTIES OR REPRESENTA-
TIONS, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO
SOFTWARE, ITS QUALITY, PERFOR-
MANCE, MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR PUR-
POSE. AS A RESULT, THIS SOFTWARE
IS SOLD AS IS, AND YOU THE PUR-
CHASER ARE ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY AND PER-
FORMANCE.

IN NO EVENT WILL APPLE OR ITS
SOFTWARE SUPPLIER BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT IN THE SOFTWARE ORITS
DOCUMENTATION, even if advised of the
possibility of such damages. In particular,
Apple and its software supplier shall have no
liability for any programs or data stored in or
used with Apple products, including the costs
of recovering such programs or data.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is author-
ized to make any modification, extension, or
addition to this warranty.

Some states do not allow the exclusion or lim-
itation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply
to you. This warranty gives you specific legal
rights, and you may also have other rights
which vary from state to state.

A/UX Programmer’s Reference

Contents

Preface

Introduction

Section 2 System Calls

Section 3 Subroutines

Section 4 File Formats

Section 5 Miscellaneous Facilities

Appendix A Permuted Index

Preface

Conventions Used in This Manual

Throughout the A/UX manuals, words that must be typed exactly as
shown or that would actually appear on the screen are in Courier
type. Words that you must replace with actual values appear in italics
(for example, user-name might have an actual value of joe). Key
names appear in CAPS (for example, RETURN). Special terms are in
bold type when they are introduced; many of these terms are also
defined in the glossary in the A/UX System Overview.

Syntax notation
All A/UX manuals use the following conventions to represent
command syntax. A typical A/UX command has the form

command [flag-option] [argument]. ..
where:
command Command name (the name of an executable file).

flag-option One or more flag options. Historically, flag options
have the form

~[opt...]

where opt is a letter representing an option. The
form of flag options varies from program to
program. Note that with respect to flag options, the
notation

[-all-b][-c]

means you can select one or more letters from the
list enclosed in brackets. If you select more than one
letter you use only one hyphen, for example, —ab.

argument Represents an argument to the command, in this
context usually a filename or symbols representing
one or more filenames.

[] Surround an optional item.

Courier type

italics

Follows an argument that may be repeated any
number of times.

anywhere in the syntax diagram indicates that
characters must be typed literally as shown.

for an argument name indicates that a value must be
supplied for that argument.

Other conventions used in this manual are:

<CR>

A

X

cmd(sect)

indicates that the RETURN key must be pressed.

An abbreviation for CONTROL-x, where x may be
any key.

A cross-reference to an A/UX reference manual.
cmd is the name of a command, program, or other
facility, and sect is the section number where the
entry resides. For example, cat(1).

Introduction

to the A/UX Reference Manuals

1. How to use the reference manuals

The A/UX Command Reference, AIUX Programmer’s Reference, and
A/UX System Administrator’s Reference are reference manuals for all
the programs and utilities included with your A/UX system. These
manuals provide complete information on these programs and utilities,
but they are designed for quick reference and are not tutorials. If you
are just learning the A/UX system, or are unfamiliar with a group of
programs (such as the shells or the text formatting programs) you
should first refer to Getting Started With A/UX and the narrative user
guides provided with your system. After you have worked with the
A/UX system, use these reference manuals to look up a new command
or refresh your memory on a command you already know.

2. Information contained in the reference manuals
A/UX reference manuals are divided into three volumes:

o The 2-part A/UX Command Reference contains information for
the general user. It describes commands you type at the A/UX
prompt which list your files, compile programs, format text,
change your shell, and so on. It also includes programs used in
scripts and command language procedures. The commands in
this manual generally reside in the directories /bin, /usr/bin
and /usr/ucb.

o The A/UX Programmer’s Reference contains information for the
programmer. It describes utilities for programming, such as
system calls, subroutines file formats, and miscellaneous
programming facilities.

e The A/UX System Administrator's Reference contains
information for the system administrator. It describes commands
you type at the A/UX prompt to control your machine, such as

accounting commands, backing up your system, and charting
your system’s activity. These commands generally reside in the
directories /etc, /usr/etc,and /usr/1lib.

These areas can overlap. For example, if you are the only person using
your machine, then you are both the general user and the system
administrator.

3. How the reference manuals are organized

All manual pages are grouped by section. The sections are grouped by
general function and are numbered according to standard conventions
as follows:

1 User commands

IM System maintenance commands
System calls

Subroutines

File formats

Miscellaneous facilities

Games

Special files (files that refer to devices)

00 N9 N Lt A WL

System maintenance procedures

Each of the reference manuals is divided into two or more sections and
lists each command or utility alphabetically within each section. The
sections included in each volume are as follows:

The A/UX Command Reference contains sections 1 and 6. Note that
both of these sections describe commands and programs available to
the general user.

e Section 1

The commands in Section 1 fall into four categories. These
categories are indicated next to the command name at the top of

the page:

1 General-purpose commands, such as cat and 1s.
1C Communications commands, such as cu and t ip.
1G Graphics commands, such as graph and tplot.

IN Networking commands used by the B-NET program and
NFS such as rcp and ypcat.

o Section 6
This contains all the games, such as cribbage and worms.

The A/UX Programmer’ s Reference contains sections 2 through 5.

o Section 2—System Calls
This describes the services provided by the A/UX system kernel,
including the C language interface. It includes two categories
(indicated next to the command name at the top of the page):

2 General system calls
2N Networking system calls

o Section 3—Subroutines
This describes the available subroutines. The binary versions are
in the system libraries in the /1ib and /usr/1ib directories.
This section includes six categories (indicated next to the
command name at the top of the page):

3C Cand assembler library routines
3F Fortran library routines

3M Mathematical library routines
3N Networking routines

3S Standard I/O library routines

3X Miscellaneous routines

¢ Section 4—File Formats
This describes the structure of some files, but does not include

files that are used by only one command (such as the assembler’s
intermediate files). The C language struct declarations
corresponding to these formats are in the /usr/include and
/usr/include/sys directories. There are two categories in
this section (indicated next to the file name at the top of the
page):

4 General file formats
4N Networking formats

¢ Section 5S—Miscellaneous facilities
This section contains various character sets, macro packages, etc.
There are three categories in this section (indicated next to the
name at the top of the page):

5 General miscellaneous facilities
SF Protocol families

5P Protocol descriptions

The A/UX System Administrator’s Reference contains sections 1M, 7
and 8.

o Section IM—System Maintenance Commands
This section contains system maintenance programs such as
fsck and mkf£s.

o Section 7—Special Files
This section discusses special files that refer to specific hardware
peripherals and system device drivers. The names in this section
generally refer to device names for the hardware, rather than to
the names of the special files themselves.

o Section 8—System Maintenance Procedures

This section includes crash recovery and boot procedures and the
standalone environnment.

-iv-

4. How a manual entry is organized

Each section of the reference volumes has an introduction and several
entries arranged alphabetically. The entry name and its category (for
example 1M or 2N) appear in the upper comners of each page. Each
entry is numbered separately (that is, each entry begins on a page
numbered ““1°°).

Some entries describe several routines or commands. These multiple
subentries are listed under the main entry, and each subentry refers you
back to the main entry. For example, chown and chgrp share a page
with the name chown(1) at the upper comers. If you turn to the page
chgrp(1), you will find a reference to chown(1). (This is true only for
the A/UX Command Reference and A/UX System Administrator’'s
Reference.

All of the entries have a common format, and may include any of the
following parts:

NAME
the name(s) and a brief description.

SYNOPSIS
describes the syntax for using the command or routine.

DESCRIPTION
discusses what the program does.

EXAMPLE
gives example(s) of usage.

RETURN VALUE
describes the value returned by a function.

ERRORS
describes the possible error conditions.

FILES
lists the file names that are used by the program.

SEE ALSO
provides pointers to related information.

-V-

DIAGNOSTICS
discusses the diagnostic messages that may be produced. Self-
explanatory messages are not listed.

WARNINGS
points out potential pitfalls.

BUGS

gives known bugs and sometimes deficiencies. Occasionally, it
describes the suggested fix.

5. Locating information in the reference manuals

The A/UX Command Reference and A/UX System Administrator’s
Reference have four summaries to help you locate information. The
A/UX Programmer’s Reference contains two summaries: the table of
contents and the permuted index.

5.1 Table of contents

Each book contains an overall table of contents and individual chapter
table of contents. The general table of contents lists the overall
contents of each volume. The more detailed chapter table of contents
lists the manual pages contained in each section and a brief description
of their function. Note that they appear in alphabetic order within each
section.

5.2 Command summary by function

This summary groups the commands in the A/UX Command Reference
and A/UX System Administrator’s Reference by their general function.
This will give you some idea of the commands that are available and
how they are used.

5.3 Command synopses

This lists the synopsis of the commands in the A/UX Command
Reference and A/UX System Administrator’s Reference and is provided
as an even briefer reference to help you use commands you are already
familiar with.

-Vi-

5.4 Permuted index

The permuted index lists commands by the information in the NAME
part of each entry. The permuted index contains three columns. The
center column is sorted alphabetically by keywords that describe the
basic function you may be looking for. When you use the permuted
index, you should scan the first words in the center column to find the
general area of functionality for various commands.

For example, to look for a text editor, scan the center column for the
word ‘“‘editor.’” There are several index lines containing an *‘editor’’
reference, e.g.:

ed, red: text editor.......cccevervreernennes ed(1)
files. 1d: link editor for common ObJECEc.ccemerevirirircniineiirienininnnene 1d(1)

The first column contains the the rest of the information that either
precedes or follows the keyword in the description of a command’s
function, and the third column shows the manual page where the
command is fully described. This entry is followed by the appropriate
section number in parentheses.

You can then turn to the entries listed in the last column, ed(1) and
1d(1), to find information on that editor.

5.5 On-line manual pages

You can call up these entries on-line with the man(l) command. Just
type man and the name of the entry you want to look at.

If you are not sure of the manual page name, you can use the
apropos command with the name of a related command or general
function, for example:

apropos compile

shows you commands related to compiling (see apropos(1) for more
information).

-Vii-

Table of Contents

Section 2: System Calls

11111 (0 JOURUR cerenenenns .Antroduction to system calls and error numbers
CXIuerererreeeererenesseesssnsesneeessssnssteseeseseessnsanarnsnasesseansenssnssanes see exit(2)
..accept a connection on a socket
ACCESS vovveereeneeseeseeesersserearassressessessessessassans determine accessibility of a file
ACCL cuecnreeercrnnreneesensiessseseneseenneesnsnnse.CNADIE OT disable process accounting
..correct the time to allow synchronization of system clock
alarm................. rrressnresesnssesanerenenesnsnenennennennee.SCL @ Process’s alarm clock
asynC_daemon........c.ceveeeereerecverrueseesnennens eeeerereeaene st eaerbasaes see nfssvc(2)
bind................. rrerentsestsesssasasnsasnsasnecnenenenesenennssnens DI @ NAMeE t0 a socket
brk.......... ...change data segment space allocation
CRAIT ..ttt evesecnesneesnesennenennenn.ChANEE WoOTKing directory
chmod.......coceeeeveevervennnens eeetrteet et st et s ane e eeneneed change mode of file
ChOWN ...ttt «.eeeeeichange owner and group of a file
chroot srereerenennennneen.Change root directory
CloSe ..uvevreeeneeneennnns . erteeeenererenreeenaes close a file descriptor
CONNECL.....c.corvreveernens «eeeneeeeneeeoiNitiate @ connection on a socket
CTEAL....ccrereerreereensesnnenneneennennn.CIEALE @ NEW file Or rewrite an existing one
dup . eeeeerreesenennesasenaes cereneerees reeesreesnenns duplicate a descriptor
BXEC cvvruinirienernenressssesssssensrassssssssersssessesssnsassssssesesnssassnsennensen.CXECULE @ fil€
[(¢! U rreeeebesnrenrenarens reeerrenreeneenne see exec(2)
[5G0l (RN rereersreeenneesnnnesransnsnanns cereeenanens ceneeenaeens see exec(2)
19 (Tl | 1 PRSI cesnneneas cererreenes ceveneennesS€€ exec(2)
CXECV uerenreccrsaneenasssssssrorasssssessans esvrneeenns cereteessnresessteaesnsenenes see exec(2)
€XECVE ..uverreerenannes teveeraeereeseestaesreenaesre e ae st eestesnesansssaseseens S €XEC(2)
€XECVD eeeverereeenes reeeeresteresteatetete e seseesansanasane reeeneneenenes reerenens see exec(2)
i terminate process
......... see chown(2)
foentl...eeceeeeeeicceeeeees eeenseeenes ceeettrsisatteesaasesssaneans cerrnrenane P file control
....apply or remove an advxsory lock on an open file
fOTK. vttt creerenesreenesCreate a new process
fsmount................. ceeeneens rereereernesseessennnennennneeiniOUNE an NFS file system
fstat ereereenes rerterreeeeeresraesrreaeennes reesreesaeeraeessesseesnaesaessnsnes see stat(2)

esscscccecccens

fSYNC weoveerrireeerreenrnnes synchronize a file’s in-core state with that on disk

ftruncate..................... eeeeersansnsnnns see truncate(2)
getcompat. ettt e ste st s s erentat e ten e anreseenestaranserartan see setcompat(2)
getdirentriesget dlrectory entries in a file system independent format
getdomainname..........cccceevenenen. get/set name of current network domain
getdtablesize......cceieevereetrerernenieneieseneseseenenens get descriptor table size
GELEZIA c..veueerereerrererenreeee e st et se s st e e e aeresansesessenenenans see getuid(2)
getetidooveeeeererenrceieeeeeeeere e . ceeeenennSCE getuid(2)
getgid......... eeereseesasatantensereseeneetsneseereesesaestesasnan see getuid(2)
getgroups.... get group access list
gethostid......ceeeuceeeccnccenneeeneennnes get/set unique identifier of current host
EthOSMAME........couevieerrerenieenenreesrecnneananes get/set name of current host
BELLIMETcvvrerreeresreereeesnsssessessrsneserssnanns get/set value of interval timer
ZEIPEETNAIMIEeeeeeenereeenesaenaneeeesenssnmnanses get name of connected peer
see getpid(2)

getpid....ccveceveveeneenene get process, process group, and parent process IDs
getppid.....cceeeveenreennnns ereeserensenesaenetertesenseesnsresesaasesasnssnnses see getpid(2)
ELSOCKNAIMEceveerreerenreerenrereereeerasesnesessessrsessaseseesans get socket name
BELSOCKOPL. ... eenieererareseeceeeerceneeseseaenans get and set options on sockets
ettimeofday.......coceeeveeeerenerererreneeesesneseeneeeesaessnnns get/set date and time
getuid...get real user, effective user, real group, and effective group IDs
TOCH centeeereneneecrret e et st enteseesesesaesrenesnesssstnsnsenessssassesnand control device
Kill..oouovereereereiensnecanennes send a signal to a process or a group of processes
TIIK oot ce st senessesesasnssssesessonesesecsesssnsassessssssossonsses link to a file
TISEEN..c..cerveetetccecereccne e listen for connections on a socket
locking.....cccovveeeennnes provide exclusive file regions for reading or writing
ISCEK ..eeeeeeeteectecrene s e sreeessrnee s ssessnessnsns move read/write file pointer
..................................... see stat(2)

make a directory file

make a directory, or a special or ordinary file
.. message control operations
.................. get message queue

message operations

.............. see msgop(2)

.............. see msgop(2)

.. get a file handle

.NFS daemons

OPCI ..nrerecnnernerrenesaeeseesneseesasnenesopen for reading or writing
PAUSEeevererrerevrnssesreearessssesnsnnenennennenennene.SUSPENd process until signal

PIDPE ceeenereecriereneteesneneereseeressenseseenennennno CTEALE AN interprocess channel
plock ...ueeeeennene. eestesteteneananensJlock process, text, or data in memory
PIOfil.ccecueeneceerereeeeernnnens . execution time profile
veeesneneessPTOCESS trace
TEAA c.ecuvecrinirinrrnninnecsnsssrsncessnesssessoncassussssessesssssssassenssnnenneee JEAA frOm file

readv............
TEDOOL ...ttt creeretnaes e sessessesnesaseesessennenennenns . JEDOOL the SYsStem
TECV worereresnreesnseranssssenssnsasnssesnensnneenseesesn JECEIVE @ Message from a socket
recvfrom cvverresneenns ceveeneens rereeneeenes weeeneennS€E TECV(2N)
recvmsg cerreerenseereeensssSEE TECV(2N)
TENAME. ...cueeerrersrersreseesansnscsconssnes change the name of a file
rmdir ceeereene reesresrenes SR reeeresrenees ceesnersnans remove a directory file
SDIK ... evieceiecctrccrrecrtecsseresesesnsaeessaeessnesanesnnsasnans creeernenrenenenenen.5€€ DIK(2)
select.....ceureennne cereesasneane reereneesaene ceseeneneneeSYNChronous I/O multiplexing
semctl................ ceeeeeneene crereenns eeeereeareneanes ...semaphore control operations
SCINEEL..ccverrrerreereeeersessensersessessarasarsseseensennensennennenneeZEL €L Of SEMaphores
SEIMOP «.veeverereresresseneeessesesseseesessessesessenes weeveesreaeaans semaphore operations
send......cceeeee eeessesasisssnsasnsssanssite Rsend a message from a socket
sendmsg.. ceeresreresresesnnsrsnessenseseess-SEE SENA(2ZN)
sendto..... ...see send(2N)
setcompat cerrsesssanessassasssessasssssesnesssSEL OF get process compatibility mode
setdomamname reeereesreseerbeaasranns ceeerrennens rereerennens see getdomainname(2N)
setgid.....ccceerereenen cvennesee setuid(2)
SELETOUPS «.eererrarruessnesnssnssaessesana rreereressneesesneseeneneneenesSEL GTOUP ACCESS list
SEthOStidcceeeerrereerrenserruneneseeraens rrererrernessenesenseneneanenenn.5€€ gELhOStId(2N)
sethostname........ rerreerereeereeseeeraeenasanans cvreeseesseeanssee gethostname(2N)
SEHUMET ...coveereerereenenennne ereeseesterasnseneens e assnteneestestsanasns see getitimer(2)
1511744 § [N . .set process group ID
Seregid.....coveeveenrrnerenecnceeecaenns reeeeesteenas .set real and effective group ID
setreuid.....set real and effective user ID’s
setsockopt............ rrervesertetesressessesesessassesnesessenenenneenss.SGC ZELSOCKOPL(2N)
settimeofday5€€ gettimeofday(2)
SEUid...eenreernererseeenennenens . . set user and group IDs
shmat................... eveseeresasentenassn et e aeeanns cereeaenes ceeereneenenes-.8€€ ShMOP(2)

ShMCHL ..t shared memory control operations

SHIMAL .ttt ettt et sesnebesneseeneanenees see shmop(2)
SHMEEL ... e eeeeesevenas get shared memory segment
SHIMOP.ce.eereenreenerteceneeree sttt seneaesenens shared memory operations
shutdown.... <.eeeeee.Shut down part of a full-duplex connection
SIZDIOCK ..veuetireerreteeeee e et see e st easeren s s eneneeneneaes block signals
sigpause........... atomically release blocked signals and wait for interrupt
SIZSELMASKevreeerenrereneeneerusneseessenesasessanesssnesnnsns set current signal mask
SIZStACK. cuvererneraereneserrnensssesesnesesennsennns set and/or get signal stack context
sigvec ... optional BSD-compatible software signal facilities
SOCKEL .evrurrrerrnereenrsnerenensssaassesnenas create an endpoint for communication
.. get file status
.. get file system statistics
.. set time

. make symbolic link to a file
.. update superblock
... get time
HINES. ...oeeeeeeeerereeeeeeaeesseesaresnennneseees get process and child process times
[TUNCALE ... cvcevieerrinesresesaeessesresassnssesnnes truncate a file to a specified length
..................................... get and set user limits

set and get file creation mask

... unmount a file system
... get name of current system
.. remove directory entry

. ..remove a file system
... get file system statistics
ULMEeoeeeeeeeneercencenneseesecsnnencssnons set file access and modification times
1177 | R, returns system-specific configuration information
| OO wait for child process to stop or terminate
..wait for child process to stop or terminate

.. write on a file
see write(2)

-iv-

intro(2) intro(2)

NAME
intro — introduction to system calls and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION

This section describes all of the A/UX system calls. Most of these
calls have one or more error returns. An error condition is indi-
cated by an otherwise impossible returned value. This is almost
always —1; the individual descriptions specify the details. An
error number is also made available in the external variable
errno. errno is not cleared on successful calls, so it should
be tested only after an error has been indicated.

There is a table of messages associated with each error, and a rou-
tine for printing the message; see perror(3C). Each system call
description attempts to list all possible error numbers.

ERRORS
The following is a complete list of A/UX error numbers and their
names as defined in <errno.h>.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in
some way forbidden except to its owner or the superuser. It
is also returned for attempts by ordinary users to do things
allowed only by the superuser.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file
should exist but doesn’t, or when one of the directories in a
pathname does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by
pidin kill orptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the
user program has elected to catch, occurred during a system
call. If execution is resumed after processing the signal, it
will appear as if the interrupted system call returned this error
condition.

S EI0 /O error
Some physical I/O error has occurred. This error may in
some cases occur on a call following the one to which it actu-
ally applies.

-1- September, 1987

intro(2) intro(2)

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not
exist, or beyond the limits of the device. It may also occur
when, for example, a tape drive is not on-line or no disk pack
is loaded on a drive.

7 E2BIG Argument list too long
An argument list longer than ARG_MAX is presented to a
member of the exec family.

8 ENOEXEC exec format error
A request is made to execute a file which, although it has the

appropriate permissions, does not start with a valid magic
number (see a . out(4)).

9 EBADF Bad file number
Either a file descriptor does not refer to an open file, or a read
(respectively, write) request is made to a file that is open only
for writing (respectively, reading).

10 ECHILD No children

A wait was executed by a process that had no existing or
unwaited-for child processes.

11 EAGAIN No more processes

The system is out of a resource which may be available later.
A fork failed because the system’s process table is full or
the user is not allowed to create any more processes. A sys-
tem call which requires memory may also fail with this error
if the system is out of memory or swap space, but the request
is less than the system-imposed per process limit (see
ulimit(2)).

12 ENOMEM Not enough space
During an exec, brk, or sbrk, a program asks for more
space than the system is able to supply. This is not a tem-
porary condition; the maximum space size is a system param-
eter. The error may also occur if the arrangement of text,
data, and stack segments requires to0 many segmentation
registers, or if there is not enough swap space during a fork.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by
the protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use
an argument of a system call.

-2- September, 1987

intro(2) intro(2)

15

16

17

18

19

20

21

22

23

24

25

ENOTBLK Block device required
A nonblock file was mentioned where a block device was
required, e.g., in mount.

EBUSY Mount device busy
The device or resource is currently unavailable. An attempt
was made to mount a device that was already mounted or to
dismount a device on which there is an active file (open file,
current directory, mounted-on file, active text segment). It
will also occur if an attempt is made to enable accounting
when it is already enabled.

EEXIST File exists
An existing file was mentioned in an inappropriate context,
e.g., link.

EXDEV Cross-device link
A link to a file on another device was attempted.

ENODEV No such device
An attempt was made to apply an inappropriate system call to
a device; e.g., read a write-only device.

ENOTDIR Not a directory
A nondirectory was specified where a directory is required,
for example in a path prefix or as an argument to chdir(2).

EISDIR Isa directory
An attempt was made to write on a directory.

EINVAL Invalid argument
Some invalid argument (e.g., dismounting a nonmounted
device; mentioning an undefined signal in signal, or
kill; reading or writing a file for which lseek has gen-
erated a negative pointer). Also set by the math functions
described in the (3M) entries of this manual.

ENFILE File table overflow
The system file table is full, and temporarily no more
opens can be accepted.

EMFILE Too many open files
No process may have more than the maximum number of file
descriptors OPEN_MAX open at a time. When a record lock
is being created with fcnt1, there are too many files with
record locks on them.

ENOTTY Not a typewriter
An attempt was made to ioct 1(2) a file that is not a special

-3- September, 1987

intro(2) intro(2)

character device.

26 ETXTBSY Text file busy

27

28

29

30

31

32

33

34

35

An attempt was made to execute a pure-procedure program
which is currently open for writing. Also an attempt to open
for writing a pure-procedure program that is being executed.

Note: If you are running an NFS system and you are
accessing a shared binary remotely, it is possible that
you will not get this errno.

EFBIG File too large
The size of a file exceeded the maximum file size ULIMIT;
see ulimit(2).

ENOSPC No space left on device
During a write to an ordinary file, there is no free space
left on the device. In fcntl, the setting or removing of
record locks on a file cannot be accomplished because there
are no more record entries left on the system

ESPIPE Illegal seek

An lseek was issued to a pipe. This error should also be
issued for other nonseckable devices.

EROFS Read-only file system
An attempt to modify a file or directory was made on a dev-
ice mounted read-only.

EMLINK Too many links
An attempt was made to create more than the maximum
number of links LINK_MAX to a file.

EPIPE Broken pipe
A write was attempted on a pipe for which there is no process
to read the data. This condition normally generates a signal;
the error is returned if the signal is ignored.

EDOM Argument out of domain of func

The argument of a function in the math package (3M) is out
of the domain of the function.

ERANGE Math result not representable
The value of a function in the math package (3M) is not
representable within machine precision.

ENOMSG No message of desired type
An attempt was made to receive a message of a type that
does not exist on the specified message queue; see

-4- September, 1987

intro(2) intro(2)

msgop(2).

36 EIDRM Identifier removed
This error is returned to processes that resume execution due
to the removal of an identifier from the file system’s name
space (see msgct 1(2), semct 1(2), and shmct 1(2)).

37 ECHRNG Channel number out of range
This errno is included for compatibility with AT&T.

38 EL2NSYNC Level 2 not synchronized
This errno is included for compatibility with AT&T.

39 EL3HLT Level 3 halted
This errno is included for compatibility with AT&T.

40 EL3RST Level 3 reset
This errno is included for compatibility with AT&T.

41 ELNRNG Link number out of range
This errno is included for compatibility with AT&T.

42 EUNATCH Protocol driver not attached
This errno is included for compatibility with AT&T.

43 ENOCSI No CSI structure available
This errno is included for compatibility with AT&T.

44 EL2HLT Level 2 halted
This errno is included for compatibility with AT&T.

45 EDEADLK Deadlock
A deadlock situation was detected and avoided.

55 EWOULDBLOCK Operation would block
An operation which would cause a process to block was
attempted on an object in nonblocking mode (see
socket(2N) and setcompat(2)).

56 EINPROGRESS Operation now in progress
An operation which takes a long time to complete (such as a
connect(2N)) was started on a nonblocking object (see

socket(2N)).

57 EALREADY Operation already in progress
An operation was attempted on a nonblocking object which
already had an operation in progress.

58 ENOTSOCK Socket operation on nonsocket
A socket operation was attentped on an object that is not a
socket.

-5- September, 1987

intro(2) intro(2)

59 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a
socket.

60 EMSGSIZE Message too long

A message sent on a socket was larger than the internal mes-
sage buffer.

61 EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support the seman-
tics of the socket type requested. For example, you cannot
use the internet UDP protocol with type SOCK_STREAM,

62 ENOPROTOOPT Bad protocol option
A bad option was specified in a get sockopt(2) or
setsockopt(2) system call.

63 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or there
is no implementation for it.

64 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into
the system or there is no implementation for it.

65 EOPNOTSUPP Operation not supported on socket
The support for the operation on the selected socket type has
not been configured or there is no implementation for it. For
example, trying to accept a connection on a datagram
socket.

66 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system
or there is no implementation for it.

67 EAFNOSUPPORT Address not supported by protocol family
An address incompatible with the requested protocol was
used. For example, PUP Internet addresses cannot neces-
sarily be used with ARPA Internet protocols.

68 EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

69 EADDRNOTAVAIL Can’t assign requested address
Normally results from an attempt to create a socket with an
address not on this machine.

70 ENETDOWN Network is down
A socket operation encountered a dead network.

-6- September, 1987

intro(2) intro(2)

71

72

73

74

75

76

7

78

80

81

82

83

ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

ENETRESET Network dropped connection on reset
The connected host crashed and rebooted.

ECONNABORTED Software caused connection abort
A connection abort was caused internal to the host machine.

ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally
results from the peer executing a shutdown(2) system call.

ENOBUFS No buffer space available
An operation on a socket or pipe was not performed because
the system lacked sufficient buffer space.

EISCONN Socket is already connected
A connect request was made on an already connected
socket; or a sendto or sendmsg request on a connected
socket specified a destination other than the connected party.

ENOTCONN Socket is not connected
A request to send or receive data was disallowed because the
socket had already been shut down with a previous shut-
down(2) call.

ESHUTDOWN Can’t send after socket shutdown
A request to send data was disallowed because the socket had
already been shut down with a previous shutdown(2) call.

ETIMEDOUT Connection timed out
A connect request failed because the connected party did
not properly respond after a period of time. (The timeout
period is dependent on the communication protocol.)
ECONNREFUSED Connection refused
No connection could be made because the target machine
actively refused it. This usually results from trying to con-
nect to a service which is inactive on the foreign host.

ELOOP Too many levels of symbolic links
A pathname lookup involved more than 8 symbolic links.

ENAMETOOLONG File name too long
A component of a pathname exceeded NAME_MAX charac-
ters, or an entire pathname exceeded PATH_MAX charac-
ters.

-7- September, 1987

intro(2) intro(2)

84 EHOSTDOWN Host is down
A socket operation encountered a defunct host.

85 EHOSTUNREACH No route to host
A socket operation was attempted to an unreachable host.

86 ENOTEMPTY Directory not empty
A directory with entries other than *‘.”’ and *‘..”” was sup-
plied to a remove directory or rename call.

87 ENOSTR Device not a stream
A stream operation was attempted on a file descriptor that is
not a streams device.

88 ENODATA No data (for no delay I/O)
Reading from a stream and the O_NEDELAY flag set (from
open(2) or fcnt 1(2)) but no data is ready to be read.

89 ETIME Stream ioctl timeout
The timer set for a streams ioctl1(2) system call has
expired. The cause of this error is device specific and could
indicate either a hardware or software failure, or perhaps a
timeout value that is too short for the specific operation. The
status of the ioct 1(2) operation is indeterminate.

90 ENOSR Out of stream resources
During a streams open(2), either no streams queues or no
streams head data structures were available.

95 ESTALE Stale NFS file handle
A client referenced an open file when the file has been
deleted.

96 EREMOTE Too many levels of remote in path
An attempt was made to remotely mount a file system into a
path which already has a remotely-mounted component.

97 EPROCLIM Too many processes

98 EUSERS Too many users
A write to an ordinary file, the creation of a directory or
symbolic link, or the creation of a directory entry failed
abecause the user’s quota of disk blocks was exhausted, or
the allocation of an inode for a newly created file failed
because the user’s quota of inodes was exhausted.

100 EDEADLOCK Locking deadlock error
Returned by locking(2) system call if deadlock would
occur or when locktable overflows.

-8- September, 1987

intro(2) intro(2)

DEFINITIONS
System Constants

The following are the default implementation-specific constants
defined for the A/UX system on the Macintosh II:

ARG_MAX

CHAR_BIT
CHAR_MAX
CHILD_MAX

INT_MAX
LINK_MAX
LONG_MAX
MAXDOUBLE

NAME_MAX

OPEN_MAX
PATH_MAX

PID_MAX
PIPE_MAX

PROC_MAX
SHRT_MAX
SYS_NMLN

UID_MAX

Maximum length of argument to exec
(5,120).

Number of bits in a char (8).

Maximum integer value of a char (255).
Maximum number of processes per user ID
(25).

Maximum decimal value of an int
(2,147,483,647).

Maximum number of links to a single file
(1000)

Maximum decimal value of a long
(2,147,483,647).

Maximum decimal value of a double
(1.79769313486231470e+308).

Maximum number of characters in a
filename (255). On System V file systems,
names are limited to 14 characters.

Maximum number of files a process can
have open (32).

Maximum number of characters in a path-
name (1,024).

Maximum value for a process ID (30,001).

Maximum number of bytes written to a
pipeinawrite (5,120).

Maximum number of simultaneous
processes, system wide (50).

Maximum decimal value of a short
(65,535).

Number of characters in a string returned
by uname (9).

Maximum value for a user ID or group ID
(60,001).

-9- September, 1987

intro(2) intro(2)

USI_MAX Maximum decimal value of an unsigned
(4,294,967,295).

INT_MIN Minimum decimal value for an int
(-2,147,483,648).

LONG_MIN Minimum decimal value for a long
(-2,147,483,648).

SHRT_MIN Minimum decimal value for a short
(-32,768).

ULIMIT Maximum number of bytes in a file
(16,777,216).

Process ID

Each active process in the system is identified uniquely by a posi-
tive integer called a process ID. The range of this ID is from 1 to
PID_MAX.

Parent Process ID
A new process is created by a currently active process; see
fork(2). The parent process ID of a process is the process ID of
its creator.

Process Group
Each active process is a member of a process group that is
identified by a positive integer called the process group ID. This
ID is the process ID of the group leader. This grouping permits
the signaling of related processes; see ki11(2).

Tty Group ID
Each active process can be a member of a terminal group that is
identified by a positive integer called the tty group ID. This
grouping is used to terminate a group of related processes upon
termination of one of the processes in the group; see exit(2) and
signal(3).

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive integer
called a real user IDs.

Each user is also a member of a group. The group is identified by
a positive integer called the real group ID.

An active process has a real user ID and real group ID that are set
to the real user ID and real group ID, respectively, of the user
responsible for the creation of the process.

-10- September, 1987

intro(2) intro(2)

Effective User ID and Effective Group ID
An active process has an effective user ID and an effective group
ID that are used to determine file access permissions (see below).
The effective user ID and effective group ID are equal to the
process’s real user ID and real group ID respectively, unless the
process or one of its ancestors evolved from a file that had the
set-user-ID bit or set-group ID bit set; see exec(2).

Superuser
A process is recognized as a ‘‘superuser’’ process and is granted
special privileges if its effective user ID is 0.

Special Processes
The processes with a process ID of 0 and a process ID of 1 are
special processes and are referred to as procO and procl .

procO is the scheduler. procl is the initialization process (init).
procl is the ancestor of every other process in the system and is
used to control the process structure.

File Descriptor
A file descriptor is a small integer used to do I/O on a file. The
value of a file descriptor is from 0 to OPEN_MAX-1. A process
may have no more than OPEN_MAX file descriptors open simul-
taneously. A file descriptor is returned by system calls such as
open(2), or pipe(2). The file descriptor is used as an argument
by calls such as read(2), write(2), ioct1(2), and close(2).

File Pointer
A file with the associated stdio buffering is called a stream. A
stream is a pointer to a type FILE defined by the <stdio.h>
header file. The fopen(3S) routine creates descriptive data for a
stream and returns a pointer that identifies the stream in all further
transactions with other stdio routines.

Most stdio routines manipulate either a stream created by the
fopen(3S) function or one of the three streams that are associ-
ated with three files that are expected to be open in the base sys-
tem (see termio(7). These three streams are declared in the
<stdio.h> header file:

stdin the standard input file.
stdout the standard output file.
stderr the standard error file.

Output streams, with the exception of the standard error stream
stderr, are by default buffered if the output refers to a file and

-11- September, 1987

intro(2) intro(2)

line-buffered if the output refers to a terminal. The standard error
output stream stderr is by default unbuffered. When an output
stream is unbuffered, information is queued for writing on the des-
tination file or terminal as soon as written; when it is buffered,
many characters are saved up and written as a block. When it is
line-buffered, each line of output is queued for writing on the des-
tination terminal as soon as the line is completed (that is, as soon
as a newline character is written or terminal input is requested).
The setbuf(3S) routines may be used to change the stream’s
buffering strategy.

Filename
Names consisting of 1 to 14 characters may be used to name an
ordinary file, special file or directory.

These characters may be selected from the set of all character
values excluding \0 (null) and the ASCII code for / (slash).

Note that it is generally unwise to use *, 2, [, or] as part of file
names because of the special meaning attached to these characters
by the shell. See sh(l). Although permitted, it is advisable to
avoid the use of unprintable characters in file names.

Pathname and Path Prefix
A pathname is a null-terminated character string starting with an
optional slash (/), followed by zero or more directory names
separated by slashes, optionally followed by a file name.

Unless specifically stated otherwise, the null pathname is treated
as if it named a nonexistent file.

More precisely, a pathname is a null-terminated character string
constructed as follows:

<path-name>::=<file>l<path-prefix><file> /
<path-prefix>::=<rtprefix>| / <rtprefix>

<rtprefix>::=<dirname> / |I<rtprefix><dirname>/

where <file> is a string of 1 to 14 characters other than the ASCII
slash and null, and <dirname> is a string of 1 to 14 characters
(other than the ASCII slash and null) that names a directory.

If a pathname begins with a slash, the path search begins at the
root directory. Otherwise, the search begins from the current
working directory.

-12- September, 1987

intro(2) intro(2)

A slash by itself names the root directory.

Directory
Directory entries are called links. By convention, a directory con-
tains at least two links, . and . ., referred to as ‘‘dot’’ and *‘dot-
dot” respectively. Dot refers to the directory itself and dot-dot
refers to its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a root directory and a current
working directory for the purpose of resolving pathname searches.
The root directory of a process need not be the root directory of
the root file system.

File Access Permissions
Read, write, and execute/search permissions on a file are granted
to a process if one or more of the following is true:

The effective user ID of the process is superuser.

The effective user ID of the process matches the user ID of
the owner of the file and the appropriate access bit of the
““‘owner’’ portion (0700) of the file mode is set.

The effective user ID of the process does not match the user
ID of the owner of the file, and the effective group ID of the
process matches the group of the file and the appropriate
access bit of the “‘group’’ portion (070) of the file mode is
set.

The effective user ID of the process does not match the user
ID of the owner of the file, and the effective group ID of the
process does not match the group ID of the file, and the
appropriate access bit of the ‘‘other’’ portion (07) of the file
mode is set.

Otherwise, the corresponding permissions are denied.

INTERPROCESS COMMUNICATION
Message Queue Identifier
A message queue identifier (msqid) is a unique positive integer
created by a msgget(2) system call. Each msqid has a message
queue and a data structure associated with it. The data structure is
referred to as msqid_ds and contains the following members:

struct ipc_perm msg_perm; /* operation permission

struct */
ushort msg_gnum; /* number of msgs on q */
ushort msg_gbytes; /* max number of bytes on g */

-13- September, 1987

intro(2) intro(2)

ushort msg lspid; /* pid of last msgsnd
operation */

ushort msg_lrpid; /* pid of last msgrcv
operation */

time_t msg_stime; /* last msgsnd time */

time_t msg_rtime; /* last msgrcv time */

time_t msg_ctime; /* last change time */

/* Times measured in secs
since 00:00:00 GMT, 1/1/70 */

msg_permisan ipc_perm structure that specifies the message
operation permission (see below). This structure includes the fol-
lowing members:

ushort cuid; /* creator user ID */
ushort cgid; /* creator group ID */
ushort wuid; /* user ID */

ushort gid; /* group ID */

ushort mode; /* r/w permission */

msg_qgnum is the number of messages currently on the queue.
msg_gbytes is the maximum number of bytes allowed on the
queue. msg_lspid is the process ID of the last process that
performed a msgsnd operation. msg_lrpid is the process id
of the last process that performed a msgrcv operation.
msg_stime is the time of the last msgsnd operation,
msg_rtime is the time of the last msgrcv operation, and
msg_ctime is the time of the last msgct1(2) operation that
changed a member of the above structure.

Semaphore Identifier
A semaphore identifier (semid) is a unique positive integer created
by a semget(2) system call. Each semid has a set of semaphores
and a data structure associated with it. The data structure is
referred to as semid _ds and contains the following members:

struct ipc_perm sem perm; /* operation permission
struct */

ushort sem nsems; /* number of sems in set */
time_t sem_otime; /* last operation time */
time_t sem ctime; /* last change time */

/* Times measured in secs since
00:00:00 GMT, 1/1/970 */

sem_perm is an ipc_perm structure that specifies the sema-
phore operation permission (see below). This structure includes

-14 - September, 1987

intro(2) intro(2)

the following members:

ushort cuid; /* creator user ID */
ushort cgid; /* creator group ID */
ushort uid; /* user ID */

ushort gid; /* group ID */

ushort mode; /* r/a permission */

The value of sem_nsems is equal to the number of semaphores
in the set. Each semaphore in the set is referenced by a positive
integer referred to as a sem num. sem num values run
sequentially from O to the value of sem nsems minus 1.
sem_otime is the time of the last semop(2) operation, and
sem_ctime is the time of the last semct1(2) operation that
changed a member of the above structure.

A semaphore is a data structure that contains the following

members:
ushort semval; /* semaphore value */
short sempid; /* pid of last operation */
ushort semncnt; /* # awaiting semval > cval */
ushort semzcnt; /* # awaiting semval = 0 */

semval is a non-negative integer. sempid is equal to the
process ID of the last process that performed a semaphore
operation on this semaphore. semncnt is a count of the
number of processes that are currently suspended awaiting
this semaphore’s semval to become greater than its current
value. semzcnt is a count of the number of processes that
are currently suspended awaiting this semaphore’s semval to
become zero.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive integer
created by a shmget(2) system call. Each shmid has a segment
of memory (referred to as a shared memory segment) and a data
structure associated with it. The data structure referred to as
shmid ds contains the following members:

struct ipc perm shm _perm; /* operation permission struct*/

int shm_segsz; /* size of segment*/

ushort shm_cpid; /* creator pid*/

ushort shm lpid; /* pid of last operation*/
short shm nattch; /* number of current attaches*/
time_t shm atime; /* last attach time*/

-15- September, 1987

intro(2) intro(2)

time_t shm dtime; /* last detach time*/
time_t shm ctime; /* last change time*/
/* Times measured in secs
since 00:00:00 GMT, 1/1/70%/

shm _permis an ipc_perm structure that specifies the shared
memory operation permission (see below). This structure includes
the following members:

ushort cuid; /* creator user ID */
ushort c¢gid; /* creator group ID */
ushort uid; /* user ID */

ushort gid; /* group ID */

ushort mode; /* r/w permission */

shm_segsz specifies the size of the shared memory segment.
shm _cpid is the process ID of the process that created the
shared memory identifier. shm_1pid is the process ID of the
last process that performed a shmop(2) operation.
shm_nattch is the number of processes that currently have this
segment attached. shm_atime is the time of the last shmat
operation, shm_dt ime is the time of the last shmdt operation,
and shm_ctime is the time of the last shmct1(2) operation
that changed one of the members of the above structure.

IPC PERMISSIONS
In the msgop(2) and msgct1(2) system call descriptions, the
permission required for an operation is interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Message Operation Permissions
Read and Write permissions on a msqid are granted to a process if
one or more of the following is true:

The effective user ID of the process is superuser.

The effective user ID of the process matches
msg_perm.[cluid in the data structure associated with
msqid and the appropriate bit of the ‘‘user’’ portion (0600)
of msg_perm.mode is set.

The effective user ID of the process does not match
msg_perm.[cluid and the process’s effective group ID
matches msg_perm.[clgid and the appropriate bit of the

-16- September, 1987

intro(2) intro(2)

“‘group’’ portion (060) of msg_perm.mode is set.

The effective user ID of the process does not match
msg_perm.[cluid and the effective group ID of the pro-
cess does not match msg_perm.[clgid and the appropri-
ate bit of the “‘other’’ portion (06) of msg perm.mode is
set.

Otherwise, the corresponding permissions are denied.

Semaphore Operation Permissions
Read and Alter permissions on a semid are granted to a process if
one or more of the following is true:

The effective user ID of the process is superuser.

The effective user ID of the process matches
sem_perm.[cluid in the data structure associated with
semid and the appropriate bit of the ‘‘user’’ portion (0600)
of sem perm.mode is set.

The effective user ID of the process does not match
sem_perm.[cluid and the effective group ID of the pro-
cess matches sem_perm.[c]lgid and the appropriate bit of
the “‘group’’ portion (060) of sem_ perm.mode is set.

The effective user ID of the process does not match
sem_perm.[cluid and the effective group ID of the pro-
cess does not match sem_perm.[c]gid and the appropri-
ate bit of the “‘other’’ portion (06) of sem perm.mode is -
set.

Otherwise, the corresponding permissions are denied.

Shared Memory Operation Permissions
Read and Write permissions on a shmid are granted to a process if
one or more of the following is true:

The effective user ID of the process is superuser.

The effective user ID of the process matches
shm_perm.[cluid in the data structure associated with
shmid and the appropriate bit of the ‘‘user’’ portion (0600)
of shm perm.mode is set.

The effective user ID of the process does not match
shm_perm.[c]uid and the effective group ID of the pro-
cess matches shm_perm.[c]gid and the appropriate bit of

-17 - September, 1987

intro(2) intro(2)

the “‘group’’ portion (060) of shm_perm.mode is set.

The effective user ID of the process does not match
shm_perm.[cJuid and the effective group ID of the pro-
cess does not match shm_perm.[c]gid and the appropri-
ate bit of the ‘‘other’’ portion (06) of shm_perm.mode is
set.

Otherwise, the corresponding permissions are denied.

SEE ALSO
close(2), ioctl(2), open(2), pipe(2), read(2), write(2),
intro(3), perror(3).
“‘Overview of the Programming Environment’’ in A/UX Program-
ming Languages and Tools, Volume 1.

- 18- September, 1987

accept(2N) accept (2N)

NAME
accept — accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int accept (s, addr, addrlen)
int s;

struct sockaddr *addr;
int *addrlen;

DESCRIPTION

The argument s is a socket which has been created with
socket(2N), bound to an address with bind(2N), and is listen-
ing for connections after a 1isten(2N). accept extracts the
first connection on the queue of pending connections, creates a
new socket with the same properties of s and allocates a new file
descriptor for the socket. If no pending connections are present on
the queue, and the socket is not marked as nonblocking, accept
blocks the caller until a connection is present. If the socket is
marked nonblocking and no pending connections are present on
the queue, accept returns an error as described below. The
accepted socket may not be used to accept more connections. The
original socket s remains open.

The argument addr is a result parameter which is filled in with the
address of the connecting entity, as known to the communications
layer. The exact format of the addr parameter is determined by
the domain in which the communication is occurring. The
addrlen is a value-result parameter; it should initially contain the
amount of space pointed to by addr; on return it will contain the
actual length (in bytes) of the address returned. This call is used
with connection-based socket types, currently with
SOCK_STREAM.

It is possible to select(2N) a socket for the purposes of doing
an accept by selecting it for read.

RETURN VALUE
The call returns —1 on error. If it succeeds it returns a non-
negative integer which is a descriptor for the accepted socket.

ERRORS
accept will fail if:

[EBADF] The descriptor is invalid.

-1- September, 1987

accept(2N) accept (2N)

[ENOTSOCK] The descriptor references a file, not a
socket.

[EOPNOTSUPP] The referenced socket is not of type
SOCK_STREAM.

[EFAULT] The addr parameter is not in a writable
part of the user address space.

[EWOULDBLOCK] The socket is marked nonblocking and no
connections are present to be accepted.
SEE ALSO
bind(2N), connect(2N), 1listen(2N), select(2N),
socket(2N).

-2- September, 1987

access(2)

NAME

access(2)

access — determine accessibility of a file

SYNOPSIS
int access (path,
char *path;
int amode;

DESCRIPTION

amode)

access is used to determine the accessibility of a file. path
points to a path name naming a file. access checks the named
file for accessibility according to the bit pattern contained in
amode, using the real user ID in place of the effective user ID and
the real group ID in place of the effective group ID. The bit pat-
tern contained in amode is constructed as follows:

o4 read

02 write

01 execute (search)

00 check existence of file
RETURN VALUE

If the requested access is permitted, a value of O is returned. Oth-
erwise, a value of —1 is returned and errno is set to indicate the

error.
ERRORS

access will fail if one or more of the following are true:

[EPERM]

[ENAMETOOLONG]

[ELOOP]

[ENOTDIR]

[ENOENT]

[ENOENT]
[EACCES]

A pathname contains a character with the
high-order bit set.

A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

Too many symbolic links were encoun-
tered in translating a pathname.

A component of the path prefix is not a
directory.

Read, write, or execute (search) permis-
sion is requested for a null path name.

The named file does not exist.

Search permission is denied on a com-
ponent of the path prefix.

-1- September, 1987

access(2) access(2)

[EROFS] Write access is requested for a file on a
read-only file system.

[ETXTBSY] Write access is requested for a pure pro-
cedure (shared text) file that is being exe-
cuted.

Note: If you are running an NFS
system and you are accessing a
shared binary remotely, it is pos-
sible that you will not get this

errno.
[EACCESS] Permission bits of the file mode do not
permit the requested access.
[EFAULT] path points outside the allocated address

space for the process.

The owner of a file has permission checked with respect to the
““owner’’ read, write, and execute mode bits. Members of the
file’s group other than the owner have permissions checked with
respect to the ‘‘group’’ mode bits, and all others have permissions
checked with respect to the ‘‘other’’ mode bits.

The superuser is always granted execute permission even though
(1) execute permission is meaningful only for directories and reg-
ular files, and (2) exec requires that at least one execute mode
bit be set for regular file to be executable.

Notice that it is only access bits that are checked. A directory may
be announced as writable by access, but an attempt to open it
for writing will fail because it is not allowed to write into the
directory structure itself, although files may be created there. A
file may look executable, but exec will fail unless it is in proper
format.

SEE ALSO
chmod(2), stat(2).

-2- September, 1987

acct(2) acct(2)

NAME
acct — enable or disable process accounting

SYNOPSIS
int acct (path)
char *path;

DESCRIPTION
acct is used to enable or disable the system process accounting
routine. If the routine is enabled, an accounting record will be
written on an accounting file for each process that terminates.
Termination can be caused by one of two things: an exit call or
a signal; see exit(2) and signal(3). The effective user ID of
the calling process must be superuser to use this call.

path points to a path name naming the accounting file. The
accounting file format is given in acct(4).

The accounting routine is enabled if path is nonzero and no errors
occur during the system call. It is disabled if path is zero and no
errors occur during the system call.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

ERRORS
acct will fail if one or more of the following are true:
[EPERM] A pathname contains a character with the
high-order bit set.
[EPERM] The effective user ID of the calling pro-

cess is not superuser.

[ENAMETOOLONG] A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

[ELOOP] Too many symbolic links were encoun-
tered in translating a pathname.

[EBUSY] An attempt is being made to enable
accounting when it is already enabled.

[ENOTDIR] A component of the path prefix is not a
directory.

[ENOENT] One or more components of the account-

ing file path name do not exist.

-1- September, 1987

acct(2) acct(2)

[EACCES] A component of the path prefix denies
search permission.

[EACCES] The file named by path is not an ordinary
file.

[EACCES] mode permission is denied for the named
accounting file.

[EROFS] The named file resides on a read-only file
system.

[EFAULT] path points to an illegal address.

SEE ALSO

acct(1M), exit(2), signal(3), acct(4).

-2- September, 1987

adjtime(2) adjtime(2)

NAME
adjtime — correct the time to allow synchronization of the sys-
tem clock

SYNOPSIS
#include <sys/time.h>

adjtime (delta, olddelta)
struct timeval *delta;
struct timeval *olddelta;

DESCRIPTION

adjtime makes small adjustments to the system time, as
returned by gettimeofday(2), advancing or retarding it by the
time specified by the timeval delta. If delta is negative, the
clock is slowed down by incrementing it more slowly than normal
until the correction is complete. If delta is positive, a larger incre-
ment than normal is used. The skew used to perform the correc-
tion is generally a fraction of one percent. Thus, the time is
always a monotonically increasing function. A time correction
from an earlier call to adjt ime may not be finished when adj-
time is called again. If olddelta is nonzero, then the structure
pointed to will contain, upon return, the number of microseconds
still to be corrected from the earlier call.

This call may be used by time servers that synchronize the clocks
of computers in a local area network. Such time servers would
slow down the clocks of some machines and speed up the clocks
of others to bring them to the average network time.

The call adjt ime(2) is restricted to the superuser.

RETURN VALUE
A return value of O indicates that the call succeeded. A return
value of —1 indicates that an error occurred, and in this case an
error code is stored in the global variable errno.

ERRORS
adjtime will fail if:
[EFAULT] An argument points outside the process’s allo-
cated address space.
[EPERM] The process’s effective user ID is not that of
the superuser.
SEE ALSO
date(l).

-1- September, 1987

alarm(2) alarm(2)

NAME
alarm— seta process’s alarm clock

SYNOPSIS
unsigned alarm/(sec)
unsigned sec;

DESCRIPTION
alarm instructs the calling process’s alarm clock to send the sig-
nal SIGALRM to the calling process after the number of real time
seconds specified by sec have elapsed; see signal(3).

alarm requests are not stacked; successive calls reset the calling
process’s alarm clock. If the argument is 0, any alarm request is
canceled. Because the clock has a 1-second resolution, the signal
may occur up to one second early; because of scheduling delays,
resumption of execution of when the signal is caught may be
delayed an arbitrary amount. The longest specifiable delay time is
4,294,967,295 (2**32-1) seconds, or 136 years.

RETURN VALUE
alarm returns the amount of time previously remaining in the
calling process’s alarm clock.

SEE ALSO
pause(2), setitimer(2), signal(3).

-1- September, 1987

bind(2N)

NAME

bind(2N)

bind - bind a name to a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int bind(s, name, namelen)

int s;

struct sockaddr *name;

int namelen;
DESCRIPTION

bind assigns a name to an unnamed socket. When a socket is
created with socket(2N) it exists in a name space (address fam-
ily) but has no name assigned. bind requests that the name be

assigned to the socket.

NOTES

The rules used in name binding vary between communication
domains. Consult the manual entries in Section 5 (specifically
inet(5F)) for detailed information.

RETURN VALUE

If the bind is successful, a 0 value is returned. A return value of
-1 indicates an error, which is further specified in the global

errno.

ERRORS
bind will fail if:
[EBADF]
[ENOTSOCK]
[EADDRNOTAVAIL]

[EADDRINUSE]
[EINVAL]

[EACCESS]

[EFAULT]

s is not a valid descriptor.
s is not a socket.

The specified address is not available
from the local machine.

The specified address is already in use.

The socket is already bound to an
address.

The requested address is protected, and
the current user has inadequate permis-
sion to access it.

The name parameter is not in a valid part
of the user address space.

-1- September, 1987

bind(2N) bind(2N)

SEE ALSO
connect(2N), getsockname(2N), listen(2N),
socket(2N).

-2- September, 1987

brk(2) brk(2)

NAME
brk, sbrk — change data segment space allocation

SYNOPSIS
int brk (endds)
char *endds;

char *sbrk (incr)
int incr;

DESCRIPTION
brk and sbrk are used to change dynamically the amount of
space allocated for the calling process’s data segment; see
exec(2). The change is made by resetting the process’s break
value and allocating the appropriate amount of space. The break
value is the address of the first location beyond the end of the data
segment. The amount of allocated space increases as the break
value increases. The newly allocated space is set to zero.

brk sets the break value to endds and changes the allocated space
accordingly.
sbrk adds incr bytes to the break value and changes the allocated
space accordingly. incr can be negative, in which case the amount
of allocated space is decreased.

RETURN VALUE
Upon successful completion, brk returns a value of 0 and sbrk
returns the old break value. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

ERRORS
brk and sbrk will fail without making any change in the allo-
cated space if the following is true:

[ENOMEM] Not enough space. Program asks for more space
than the system is able to supply.

[EAGAIN] The system has temporarily exhausted its avail-
able memory or swap space.

Such a change would result in more space being allocated than is
allowed by a system-imposed maximum (see ulimit(2)). Such
a change would result in the break value being greater than or
equal to the start address of any attached shared memory segment
(see shmop(2)).

SEE ALSO
exec(2), shmop(2), ulimit(2).

-1- September, 1987

chdir(2) chdir(2)

NAME

chdir — change working directory
SYNOPSIS

int chdir (path)

char *path;

DESCRIPTION
chdir causes the named directory to become the current working
directory, the starting point for path searches for path names not
beginning with /. path points to the path name of a directory.
RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of —1 is returned and errno is set to indicate the error.
ERRORS
chdir will fail and the current working directory will be
unchanged if one or more of the following are true:

[EPERM] A pathname contains a character with the
high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded

NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

[ELOOP] Too many symbolic links were encoun-
tered in translating a pathname.

[ENOTDIR] A component of the path name is not a
directory.

[ENOENT] The named directory does not exist.

[EACCES] Search permission is denied for any com-
ponent of the path name.

[EFAULT] path points outside the allocated address

space of the process.

SEE ALSO
csh(1), ksh(1), sh(1l), chroot(2).

-1- September, 1987

chmod(2) chmod(2)

NAME
chmod — change mode of file

SYNOPSIS
int chmod(path, mode)
char *path;
int mode;

DESCRIPTION
chmod sets the access permission portion of the named file’s
mode according to the bit pattern contained in mode. path points
to a path name naming a file.

Access permission bits are interpreted as follows:

04000 Set effective user ID on execution.
02000 Set effective group ID on execution.
01000 Save text image after execution.

00400 Read by owner.

00200 Write by owner.

00100 Execute (search if a directory) by owner.
00070 Read, write, execute (search) by group.
00007 Read, write, execute (search) by others.

The effective user ID of the calling process must match the owner
of the file or be the superuser to change the mode of a file.

If the effective user ID of the process is not the superuser, mode
bit 01000 (save text image on execution) is cleared.

If the effective user ID of the process is not superuser and the
effective group ID of the process does not match the group ID of
the file, mode bit 02000 (set group ID on execution) is cleared.

If an executable file is prepared for sharing (see the cc -n
option), then mode bit 01000 prevents the system from abandon-
ing the swap-space image of the program-text portion of the file
when its last user terminates. Thus, when the next user of the file
executes it, the text need not be read from the file system but can
simply be swapped in, saving time.

Changing the owner of a file turns off the set user ID bit, unless
the superuser does it. This makes the system somewhat more
secure at the expense of a degree of compatibility.

-1- September, 1987

chmod(2)

RETURN VALUE

chmod(2)

Upon successful completion, a value of 0 is returned. Otherwise,
a value of —1 isreturned and errno is set to indicate the error.

ERRORS

chmod will fail and the file mode will be unchanged if one or
more of the following are true:

[ENOTDIR]

[ENAMETOOLONG]

[ELOOP]

[ENOENT]
[EACCES]

[EPERM]

[EPERM]

[EROFS]

[EFAULT]

SEE ALSO

A component of the path prefix is not a
directory.

A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

Too many symbolic links were encoun-
tered in translating a pathname.

The named file does not exist.

Search permission is denied on a com-
ponent of the path prefix.

A pathname contains a character with the
high-order bit set.

The effective user ID does not match the
owner of the file and the effective user
ID is not superuser.

The named file resides on a read-only file
system.

path points outside the allocated address
space of the process.

chmod(1), chown(2), mknod(2), open(2), stat(2), mknod(2),

umask(2).

-2- September, 1987

chown(2) chown(2)

NAME
chown, fchown — change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char *path;
int owner, group;

int fchown(fd, owner, group)
int fd, owner, group;

DESCRIPTION
The file which is named by path or referenced by fd has its owner
and group changed as specified. Only the superuser or the file’s
owner may execute this call.

chown clears the set userID and set group ID bits on the file to
prevent accidental creation of set user ID and set group ID pro-
grams owned by the superuser.

If chown is invoked successfully by other than the superuser, the
set user ID and set group ID bits of the file mode, 04000 and
02000 respectively, will be cleared. (This prevents ordinary users
from making themselves effectively other users or members of a
group to which they don’t belong.)

Only one of the owner and group ID’s may be set by specifying
the other as 1.

RETURN VALUE
Zero is returned if the operation was successful; —1 is returned if
an error occurs, with a more specific error code being placed in
the global variable errno.

ERRORS

chown will fail and the file will be unchanged if:

[EINVAL] The argument path does not refer to a
file.

[ENOTDIR] A component of the path prefix is not a
directory.

[ENOENT] The argument pathname is too long.

[EPERM] The argument contains a byte with the
high-order bit set.

[ENOENT] The named file does not exist.

-1- September, 1987

chown(2)

[EACCES]
[EPERM]

[ENAMETOOLONG]

[ELOOP]

[EPERM]

[EROFS]
[EFAULT]
[ELOOP]

fchown will fail if:
[EBADF]
[EINVAL]

SEE ALSO

chown(2)

Search permission is denied on a com-
ponent of the path prefix.

A pathname contains a character with the
high-order bit set.

A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

Too many symbolic links were encoun-
tered in translating a pathname.

The effective user ID does not match the
owner of the file and the effective user
ID is not the superuser.

The named file resides on a read-only file
system.

path points outside the process’s allo-
cated address space.

Too many symbolic links were encoun-
tered in translating the pathname.

fd does not refer to a valid descriptor.
fd refers to a socket, not a file.

chown(1), chgrp(2), chmod(2).

-2- September, 1987

chroot(2)

NAME

chroot(2)

chroot — change root directory

SYNOPSIS

int chroot (path)

char *path;
DESCRIPTION

chroot causes the named directory to become the root directory,
the starting point for path searches for path names beginning with
/. The user’s working directory is unaffected by the chroot
system call. path points to a path name naming a directory.

The effective user ID of the process must be the superuser to
change the root directory.

The .. entry in the root directory is interpreted to mean the root
directory itself. Thus, .. cannot be used to access files outside the
subtree rooted at the root directory.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise,
a value of —1 isreturned and errno is set to indicate the error.

ERRORS

chroot will fail and the root directory will remain unchanged if
one or more of the following are true:

[ENOTDIR]

[ENAMETOOLONG]

[ELOOP]

[ENOENT]
[EPERM]

[EPERM]
[EFAULT]

SEE ALSO

Any component of the path name is not a
directory.

A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

Too many symbolic links were encoun-
tered in translating a pathname.

The named directory does not exist.

A pathname contains a character with the
high-order bit set.

The effective user ID is not the superuser.

path points outside the allocated address
space of the process.

chroot(1M), chdir(2).

-1- September, 1987

close(2) close(2)

NAME
close — close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION
close closes the file descriptor indicated by fildes. All outstand-
ing record locks owned by the process (on the file indicated by
fildes) are removed.

fildes is a file descriptor obtained from a creat, open, dup,
fentl, pipe, or socket system call. A close of all files is
automatic on exit, but since there is a small, finite limit on the
number of open files per process, OPEN_MAX, close is neces-
sary for programs which deal with many files.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of —1 isreturned and errno is set to indicate the error.

ERRORS
close will fail if:

[EBADF] fildes is not a valid open file descriptor.

SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), open(2), pipe(2),
socket(2N).

-1- September, 1987

connect (2N)

NAME

connect (2N)

connect — initiate a connection on a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int connect (s,
int s;

name, namelen)

struct sockaddr *name:;

int namelen;
DESCRIPTION

connect is used to initiate a connection on a socket. The param-
eter s is a socket. If it is of type SOCK_DGRAM, then this call per-
manently specifies the peer to which datagrams are to be sent; if it
is of type SOCK_STRERAM, then this call attempts to make a con-
nection to another socket. The other socket is specified by name
which is an address in the communications space of the socket.
Each communications space interprets the name parameter in its

own way.
RETURN VALUE

If the connection or binding succeeds, then 0 is returned. Other-
wise a —1 is returned, and a more specific error code is stored in

errno.

ERRORS
connect fails if:

[EBADF]
[ENOTSOCK]
[EADDRNOTAVAIL]

[EAFNOSUPPORT]

[EISCONN]
[ETIMEDOUT]

[ECONNREFUSED]

[ENETUNREACH]

s is not a valid descriptor.
s is a descriptor for a file, not a socket.

The specified address is not available on
this machine.

Addresses in the specified address family
cannot be used with this socket.

The socket is already connected.

Connection establishment timed out
without establishing a connection.

The attempt to connect was forcefully
rejected.

The network isn’t reachable from this
host.

-1- September, 1987

connect (2N)

[EADDRINUSE]
[EFAULT]

[EWOULDBLOCK]

SEE ALSO

connect (2N)

The address is already in use.

The name parameter specifies an area
outside the process address space.

The socket is nonblocking and the and
the connection cannot be completed
immediately. It is possible to
select(2N) the socket while it is con-
necting by selecting it for writing.

accept(2N), get sockname(2N), select(2N), socket(2N).

-2- September, 1987

creat(2) creat(2)

NAME
creat — create a new file or rewrite an existing one

SYNOPSIS
int creat (path, mode)
char *path;
int mode;

DESCRIPTION
creat creates a new ordinary file or prepares to rewrite an exist-
ing file named by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and
owner are unchanged. Otherwise, the file’s owner ID is set to the
effective user ID, of the process the group ID of the process is set
to the effective group ID, of the process and the low-order 12 bits
of the file mode are set to the value of mode modified as follows:

All bits set in the process’s file mode creation mask are
cleared. See umask(2).

The ‘‘save text image after execution bit’’ of the mode is
cleared. See chmod(2).

Upon successful completion, the file descriptor is returned and the
file is open for writing, even if the mode does not permit writing.
The file pointer is set to the beginning of the file. The file descrip-
tor is set to remain open across exec system calls. See
fcnt1(2). No process may have more than the maximum
number of files, OPEN_MAX, open simultaneously.

The mode given is arbitrary; it need not allow writing. This
feature is used by programs which deal with temporary files of
fixed names. The creation is done with a mode that forbids writ-
ing. Then, if a second instance of the program attempts a creat,
an error is returned and the program knows that the name is unus-
able for the moment.

RETURN VALUE
Upon successful completion, a non-negative integer, namely the
file descriptor, is returned. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

ERRORS
creat will fail if one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a

directory.

-1- September, 1987

creat(2)

[EPERM]

[ENAMETOOLONG]

[ELOOP]
[ENOENT]
[EACCES]
[ENOENT]
[EACCES]
[EROFS]

[ETXTBSY]

[EACCES]

[EISDIR]
[EMFILE]

[EFAULT]

[ENFILE]
BUGS

creat(2)

A pathname contains a character with the
high-order bit set.

A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

Too many symbolic links were encoun-
tered in translating a pathname.

A component of the path prefix does not
exist.

Search permission is denied on a com-
ponent of the path prefix.

The path name is null.

The file does not exist and the directory in
which the file is to be created does not per-
mit writing,

The named file resides or would reside on
aread-only file system.

The file is a pure procedure (shared text)
file that is being executed.

Note: If you are running an NFS
system and you are accessing a
shared binary remotely, it is possi-
ble that you will not get this
errno.

The file exists and write permission is
denied.

The named file is an existing directory.

the maximum number of file descriptors
are currently open.

path points outside the allocated address
space of the process.

The system file table is full.

The system-scheduling algorithm does not make this a true unin-
terruptible operation, and a race condition may develop if creat
is done at precisely the same time by two different processes.

-2- September, 1987

creat(2) creat(2)

SEE ALSO
chmod(2), close(2), dup(2), f£cnt1(2), 1seek(2), open(2),
read(2), umask(2), write(2).

-3- September, 1987

dup(2) dup(2)

NAME
dup - duplicate a descriptor

SYNOPSIS
int dup (oldd)
int oldd;

DESCRIPTION
dup duplicates an existing object descriptor. The argument oldd
is a small non-negative integer index in the per-process descriptor
table. The value must be less than the size of the table, which is
returned by getdtablesize(2N). The new descriptor returned
by the call is the lowest numbered descriptor which is not
currently in use by the process.

The object referenced by the descriptor does not distinguish
between references using the old and new descriptor in any way.
Thus if the old and new descriptor are duplicate references to an
open file, read(2), write(2), and 1lseek(2) calls all move a
single pointer into the file. If a separate pointer into the file is
desired, a different object reference to the file must be obtained by
issuing an additional open(2) call.
RETURN VALUE

The value —1 is returned if an error occurs in either call and
errno is set to indicate the error.

ERRORS
dup fails if:
[EBADF] The old descriptor is not a valid active descrip-
tor
[EMFILE] Too many descriptors are active.
SEE ALSO

accept(2N), open(2), close(2), getdtablesize(2N),
pipe(2), socket(2N), dup2(3N).

-1- September, 1987

exec(2) exec(2)

NAME

execl, execv, execle, execve, execlp, execvp — €xe-
cute a file

SYNOPSIS
int execl(path, arg0, argl,..., argn, 0);
char *path, *arg0, *argl,..., *argn;

int execv(path, argv)
char “*path, *argv[];

int execle(path, arg0, argl,..., argn, 0, envp)
char *path, *arg0, *argl,..., *argn, *envpl];

int execve (path, argv, envp)
char ‘*path, *argv[l, *envpl];

int execlp(file, arg0, argl,..., argn, 0)
char *file, *arg0, *argl,..., *argn;
int execvp (file, argv)
char *file, *argv(]:;

DESCRIPTION
exec in all its forms transforms the calling process into a new
process. The new process is constructed from an ordinary, exe-
cutable file called the ‘‘new process file.”” There can be no return
from a successful exec because the calling process is overlaid
by the new process.

path points to a path name that identifies the new process file.

Jile points to the new process file. The path prefix for this file is
obtained by a search of the directories passed as the environment
variable PATH (see environ(5)).

The shell is invoked if a command file is found by execlp or
execvp.

arg0, argl, ..., argn are pointers to null terminated character
strings. These strings constitute the argument list available to the
new process. By convention, at least arg0 must be present and
point to a string that is the same as path (or its last component).

argv is an array of character pointers to null terminated strings.
These strings constitute the argument list available to the new pro-
cess. By convention, argv must have at least one member, and it
must point to a string that is the same as path (or its last com-
ponent). argv is terminated by a null pointer and is directly usable
in another execv because argv[argc]is 0. ‘

-1- September, 19&7

exec(2) exec(2)

envp is an array of character pointers to null terminated strings.
These strings constitute the environment for the new process.
envp is terminated by a null pointer. For execl and execv, the
C runtime start-off routine places a pointer to the environment of
the calling process in the global cell:

extern char **environ;

and it is used to pass the environment of the calling process to the
new process.

File descriptors open in the calling process remain open in the new
process, except for those whose close-on-exec flag is set; see
fcnt1(2). For those file descriptors that remain open, the file
pointer is unchanged.

The new process automatically has the System V, Release 2 signal
mechanism. Signals set to terminate the calling process will be set
to terminate the new process. Signals set to be ignored by the cal-
ling process will be set to be ignored by the new process. Signals
set to be caught by the calling process will be set to terminate new
process; see signal(3).

If the set user ID mode bit of the new process file is set (see
chmod(2)), exec sets the effective user ID of the new process to
the owner ID of the new process file. Similarly, if the set group
ID mode bit of the new process file is set, the effective group ID
of the new process is set to the group ID of the new process file.
The real user ID and real group ID of the new process remain the
same as those of the calling process.

The shared memory segments attached to the calling process will
not be attached to the new process (see shmop(2)).

Profiling is disabled for the new process; see profi1(2).

Regions of physical memory mapped into the virtual address
space of the calling process are detached from the address space
of the new process; see phys(2).
The new process also inherits the following attributes from the
calling process:

access groups (see getgroups(2))

nice value (see nice(2))

process ID
parent process ID

-2- September, 1987

exec(2) exec(2)

process group ID

semadjj values (see semop(2))

tty group ID (see exit(2) and signal(3))

trace flag (see pt race(2) request 0)

time left until an alarm clock signal (see alarm(2))
current working directory

root directory

file mode creation mask (see umask(2))

file size limit (see ulimit(2))

utime, stime, cutime,and cstime (see times(2))

execl is useful when a known file with known arguments is
being called; the arguments to execl are the character strings
constituting the file and the arguments; the first argument is con-
ventionally the same as the file name (or its last component). A 0
argument must end the argument list.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char **argy, **envp;

where argc is the argument count and argv is an array of character
pointers to the arguments themselves. As indicated, argc is con-
ventionally at least one and the first member of the array points to
a string containing the name of the file.

envp is a pointer to an array of strings that constitute the environ-
ment of the process. Each string consists of a name, an ‘‘="’, and
a null-terminated value. The array of pointers is terminated by a
null pointer. The shell sh(1) passes an environment entry for
each global shell variable defined when the program is called. See
environ(5) for some conventionally used names. The C run-
time start-off routine places a copy of envp in the global cell
environ, which is used by execv and execl to pass the
environment to any subprograms executed by the current program.
The exec routines use lower-level routines as follows to pass an
environment explicitly:

execve (file, argv, environ) ;
execle (file, arg0, argl, ... , argn, 0, environ) ;

execlp and execvp are called with the same arguments as
execl and execv, but duplicate the shell’s actions in searching
for an executable file in a list of directories. The directory list is

-3- September, 1987

exec(2)

exec(2)

obtained from the environment.

RETURN VALUE

If exec returns to the calling process an error has occurred; the
return value will be —1 and errno will be set to indicate the

€rTor.
ERRORS

exec will fail and return to the calling process if one or more of

the following are true:
[ENOENT]

[EPERM]

[ENAMETOOLONG]

[ELOOP]
[ENOTDIR]
[EACCES]

[EACCES]
[EACCES]

[EAGAIN]

[ENOEXEC]

[ETXTBSY]

One or more components of the new pro-
cess file’s path name do not exist.

A pathname contains a character with the
high-order bit set.

A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

Too many symbolic links were encoun-
tered in translating a pathname.

A component of the new process file’s path
prefix is not a directory.

Search permission is denied for a directory
listed in the new process file’s path prefix.

The new process file is not an ordinary file.

The new process file mode denies execu-
tion permission.

The system has temporarily exhausted its
available memory or swap space.

The exec is not an execlp or execvp,
and the new process file has the appropri-
ate access permission but an invalid magic
number in its header.

The new process file is a pure procedure
(shared text) file that is currently open for
writing by some process.

Note: If you are running an NFS
system and you are accessing a
shared binary remotely, it is possi-
ble that you will not get this

-4- September, 1987

exec(2) exec(2)

errno.

[ENOMEM] The new process requires more memory
than is allowed by the system-imposed
maximum (MAXMEM).

[E2BIG] The number of bytes in the new process’s
argument list is greater than the system-
imposed limit of ARG_MAX.

[EFAULT] The new process file is not as long as indi-
cated by the size values in its header.
[EFAULT] path, argv, or envp point to an illegal
address.
SEE ALSO

csh(l), ksh(l), sh(1l), alarm(2), exit(2), fork(2), nice(2),
phys(2), ptrace(2), semop(2), setcompat(2), times(2),
signal(3).

-5- September, 1987

exit(2)

NAME

exit(2)

exit, exit — terminate process

SYNOPSIS
void exit (status)

int

status;

void _exit (status)

int

status;

DESCRIPTION

exit terminates the calling process with the following conse-
quences:

All of the file descriptors open in the calling process are
closed.

If the parent process of the calling process is executing a
wait, it is notified of the calling process’s termination and
the low order eight bits (i.e., bits 0377) of status are made
available to it; see wait(2).

If the parent process of the calling process is not executing a
wait, the calling process is transformed into a zombie pro-
cess. A ‘‘zombie process’’ is a process that only occupies a
slot in the process table. It has no other space allocated
either in user or kernel space. The process table slot that it
occupies is partially overlaid with time accounting informa-
tion (see <sys/proc.h>) tobe used by t imes.

The parent process ID of all of the calling process’s existing
child processes and zombie processes is set to 1. This means
the initialization process (see intro(2)) inherits each of
these processes.

Each attached shared memory segment is detached and the

value of shm nattach in the data structure associated
with its shared memory identifier is decremented by 1.

For each semaphore for which the calling process has set a
semadj value (see semop(2)), that semad j value is added to
the semval of the specified semaphore.

If the process has a process, text, or data lock, an unlock
is performed (see plock(2)).

An accounting record is written on the accounting file if the
system’s accounting routine is enabled; see acct(2).

-1- September, 1987

exit(2) exit(2)

If the process ID, tty group ID, and process group ID of the
calling process are equal, the SIGHUP signal is sent to each
process that has a process group ID equal to that of the cal-
ling process.
The C function exit may cause cleanup actions before the pro-
cess exits. The function _exit circumvents all cleanup.

SEE ALSO
acct(2), fork(2), intro(2), plock(2), semop(2), wait(2),
signal(3).

WARNING
See WARNING section in signal(3).

-2- September, 1987

fent1(2)

NAME

fentl1(2)

fcntl - file control

SYNOPSIS

#include <fcntl.h>
int fcntl (fildes, cmd, arg)

int fildes,

DESCRIPTION

cmd, arg;

fentl provides for control over open files. fildes is an open file
descriptor obtained from a creat, open, dup, fecntl,
socket, or pipe system call.

The cmds available are:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL
F_SETFL

F_GETLK

Return a new file descriptor as follows:

Lowest numbered available file descriptor
greater than or equal to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both
file descriptors share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors
share the same file status flags).

The close-on-exec flag associated with the new
file descriptor is set to remain open across
exec(2) system calls.

Get the close-on-exec flag associated with the
file descriptor fildes. If the low-order bit is 0 the
file will remain open across exec, otherwise the
file will be closed upon execution of exec.

Set the close-on-exec flag associated with fildes
to the low-order bit of arg (0 or 1 as above).

Get file status flags.

Set file status flags to arg. Only certain flags
can be set; see fcnt 1(5).

Get the first lock which blocks the lock descrip-
tion given by the variable of type struct
flock pointed to by arg. The information
retrieved overwrites the information passed to

-1- September, 1987

fcntl(2) fentl(2)

fcntl in the flock structure. If no lock is
found that would prevent this lock from being
created, then the structure is passed back
unchanged except for the lock type which will
be set to F_UNLCK.

F_SETLK Set or clear a file segment lock according to the
variable of type struct flock pointed to
by arg (see £cnt1(5)). The cmd F_SETLK is
used to establish read (F_RDLCK) and write
(F_WRLCK) locks, as well as remove either type
of lock (F_UNLCK). If a read or write lock can-
not be set, fcntl will return immediately with
an error value of —1.

F_SETLKW This cmd is the same as F_SETLK except that
if a read or write lock is blocked by other locks,
the process will sleep until the segment is free to
be locked.

F_GETOWN Get the process ID or process group currently
receiving SIGIO and SIGURG signals; pro-
cess groups are returned as negative values.

F_SETOWN Set the process or process group to receive
SIGIO and SIGURG signals; process groups
are specified by supplying arg as negative, oth-
erwise arg is interpreted as a process ID.

A read lock prevents any process from write locking the protected
area. More than one read lock may exist for a given segment of a
file at a given time. The file descriptor on which a read lock is
being placed must have been opened with read access.

A wrrite lock prevents any process from read locking or write lock-
ing the protected area. Only one write lock may exist for a given
segment of a file at a given time. The file descriptor on which a
write lock is being placed must have been opened with write
access.

The structure flock describes the type (1_type), starting
offset (1_whence), relative offset (1_start), size (1_len),
and process ID (1_pid) of the segment of the file to be affected.
The process ID field is only used with the F_GETLK cmd to
return the value for a block in lock. Locks may start and extend
beyond the current end of a file, but may not be negative relative
to the beginning of the file. A lock may be set to always extend to

-2- September, 1987

fent1(2) fcntl1(2)

the end of file by setting 1_1len to zero (0). If such a lock also
has 1 _start set to zero (0), the whole file will be locked.
Changing or unlocking a segment from the middle of a larger
locked segment leaves two smaller segments for either end. Lock-
ing a segment that is already locked by the calling process causes
the old lock type to be removed and the new lock type to take
affect. All locks associated with a file for a given process are
removed when a file descriptor for that file is closed by that pro-
cess or the process holding that file descriptor terminates. Locks
are not inherited by a child process in a fork(2) system call.

RETURN VALUE
Upon successful completion, the value returned depends on cmd

as follows:
F_DUPFD A new file descriptor.
F_GETFD Value of flag (only the low-order bit is

defined).

F_SETFD Value other than 1.
F_GETFL Value of file flags.
F_SETFL Value other than —1.
F_GETLK Value other that —1.
F_SETLK Value other than —1.
F_SETLKW Value other than —1.
F_GETOWN Value other than —1.

F_SETOWN Value other than —1.

Otherwise, a value of —1 is returned and errno is set to indicate
the error.

ERRORS
fcnt 1 will fail if one or more of the following are true:

[EBADF] fildes is not a valid open file descriptor.

[EMFILE] cmd is F_DUPFD and the maximum
number of file descriptors are currently open.

[EINFILE] cmd is F_DUPFD and arg is negative or

greater than the maximum number file
descriptors currently open.

-3- September, 1987

fentl(2)

[EINVAL]

[EACCESS]

[EMFILE]

[ENOSPC]

[EDEADLK]

[ENOTSOCK]

[EREMOTE]

SEE ALSO

fentl1(2)

cmd is F_GETLK, F_SETLK, or SETLKW
and arg or the data it points to is not valid.

cmd is F_SETLK the type of lock
(1_type) is a read (F_RDLCK) or write
(F_ WRLCK) lock and the segment of a file to
be locked is already write locked by another
process or the type is a write lock and the
segment of a file to be locked is already read
or write locked by another process.

cmdis F_SETLK or F_SETLKW, the type
of lock is a read or write lock and there are
no more file locking headers available (too
many files have segments locked).

cmd is F _SETLK or F_SETLKW, the
type of lock is a read or write lock and there
are no more file locking headers available
(too many files have segments locked) or
there are no more record locks available (too
many file segments locked).

cmd is F_SETLK, when the lock is
blocked by some lock from another process
and sleeping (waiting) for that lock to
become free, this causes a deadlock situa-
tion.

cmd is F_GETOWN or F_SETOWN and
fildes is not a file descriptor for a socket.

cmd is F_GETLK F_SETLK or
F_SETLKW and fildes references a file on a
remotely mounted file system.

close(2), creat(2), dup(2), exec(2), ioctl(2), open(2),
pipe(2), socket(2N), 1lock£f(3C), fcnt 1(5).

-4- September, 1987

flock(2) flock(2)

NAME
flock — apply or remove an advisory lock on an open file

SYNOPSIS
#include <sys/file.h>

#define LOCK_SH 1 /* shared lock */
#define LOCK EX 2 /* exclusive lock */
#define LOCK_NB 4 /* nonblocking lock */
#define LOCK UN 8 /* unlock */

flock (fd, operation)
int fd, operation;

DESCRIPTION
flock applies or removes an advisory lock on the file associated
with the file descriptor fd. A lock is applied by specifying an
operation parameter that is the inclusive OR of LOCK_SH or
LOCK_EX and, possibly, LOCK_NB. To unlock an existing lock,
the operation should be LOCK_UN.

Advisory locks allow cooperating processes to perform consistent
operations on files, but do not guarantee exclusive access (i.e.,
processes may still access files without using advisory locks, pos-
sibly resulting in inconsistencies).

The locking mechanism allows two types of locks: shared locks
and exclusive locks. More than one process may hold a shared
lock for a file at any given time, but multiple exclusive, or both
shared and exclusive, locks may not exist simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice
versa, simply by specifying the appropriate lock type; the previous
lock will be released and the new lock applied (possibly after
other processes have gained and released the lock).

Requesting a lock on an object that is already locked normally
causes the caller to block until the lock may be acquired. If
LOCK_NB is included in operation, then this will not happen;
instead the call will fail and the error EWOULDBLOCK will be
returned.

NOTES
Locks are on files, not file descriptors. That is, file descriptors
duplicated through dup(2) or fork(2) do not result in multiple
instances of a lock, but rather multiple references to a single lock.
If a process holding a lock on a file forks and the child explicitly
unlocks the file, the parent will lose its lock.

-1- September, 1987

flock(2) flock(2)

Processes blocked awaiting a lock may be awakened by signals.

RETURN VALUE
Zero is returned on success, —1 on error, with an error code stored
in errno.

ERRORS
The £1lock call fails if:

[EWOULDBLOCK] The file is locked and the LOCK NB

option was specified.
[EBADF] The argument fd is an invalid descriptor.
[EOPNOTSUPP] The argument fd refers to an object other
than a file.
SEE ALSO
close(2), dup(2), execve(2), fcnt1l(2), fork(2), open(2),
lock£(3).
BUGS

Locks obtained through the £lock mechanism are known only
within the system on which they were placed. Thus, multiple
clients may successfully acquire exclusive locks on the same
remote file. If this behavior is not explicitly desired, the
fcnt1(2) or Lock£(3) system calls should be used instead.

-2- September, 1987

fork(2) fork(2)

NAME
fork — create a new process

SYNOPSIS
int fork()

DESCRIPTION
fork causes creation of a new process. The new process (child
process) is an exact copy of the calling process (parent process).
The child process inherits the following attributes from the parent
process:

environment
close-on-exec flag (see exec(2))
signal handling settings (i.., SIG_DFL, SIG_IGN, func-
tion address)
set user ID mode bit
set group ID mode bit
process compatibility flags (see set compat(2))
profiling on/off status
access groups (see getgroups(2))
nice value (see nice(2))
all attached shared memory segments (see shmop(2))
process group ID
tty group ID (see exit(2) and signal(3))
trace flag (see pt race(2) request 0)
time left until an alarm clock signal (see alarm(2))
current working directory
root directory
file mode creation mask (see umask(2))
file size limit (se¢ ulimit(2))
phys regions see phys(2).
The child process differs from the parent process in the following
ways:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the
process ID of the parent process).

The child process has its own copy of the parent’s file
descriptors. Each of the child’s file descriptors shares a com-
mon file pointer with the corresponding file descriptor of the
parent.

All semadj values are cleared (see semop(2)).

-1- September, 1987

fork(2) fork(2)

Process locks, text locks and data locks are not inherited by
the child (see plock(2)).

The child process’s utime, stime, cutime, and
cstime are setto O (see times(2)). The time left until an
alarm clock signal is reset to 0.

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the
child process and returns the process ID of the child process to the
parent process. Otherwise, a value of —1 is returned to the parent
process, no child process is created, and errno is set to indicate

the error.
ERRORS

fork will fail and no child process will be created if one or more

of the following are true:

[EAGAIN] The system-imposed limit on the total number
of processes under execution would be
exceeded.

[EAGAIN] The system-imposed limit on the total number
of processes under execution by a single user
would be exceeded.

[EAGAIN] The system has temporarily exhausted its avail-
able memory or swap space.

SEE ALSO

exec(2), nice(2), phys(2), plock(2), pt race(2), semop(2),
setcompat(2), shmop(2), times(2), wait(2), wait3(2N),
signal(3).

-2- September, 1987

fsmount (2) fsmount (2)

NAME
fsmount — mount an NFS file system

SYNOPSIS
#include <sys/mount.h>
int fsmount (type, dir, flags, data)
int type;
char *dir;
int flags;
caddr_t data;

DESCRIPTION
fsmount attaches a file system to a directory. After a successful
return, references to directory dir will refer to the root directory
on the newly mounted file system. dir is a pointer to a null-
terminated string containing a path name. dir must exist already,

and must be a directory. Its old contents are inaccessible while
the file system is mounted.

The flags argument determines whether the file system can be
written on, and if set user ID execution is allowed. Physically
write-protected and magnetic tape file systems must be mounted
read-only or errors will occur when access times are updated,
whether or not any explicit write is attempted.

type indicates the type of the file system. It must be one of the
types defined in mount . h. data is a pointer to a structure which
contains the type specific arguments to mount. Below is a list of
the file system types supported and the type specific arguments to

each:
MOUNT_UFS
struct ufs_args {
char *fspec; /* Block special file
/* to mount */
};
MOUNT_NFS

#include <nfs/nfs.h>
#include <netinet/in.h>
struct nfs_args {
struct sockaddr_in *addr; /* file server address */

fhandle_t *fh; /* File handle to be
/* mounted */
int flags; /* flags */
int wsize; /* write size in bytes */

-1- September, 1987

fsmount (2)

int rsize;
int timeo;

int retrans;

}:
RETURN VALUE

fsmount (2)

/* read size in bytes */
/* initial timeout in
/* .1 secs */

/* times to retry send */

fsmount returns O if the action occurred, and -1 if special is
inaccessible or not an appropriate file, if name does not exist, if
special is already mounted, if name is in use, or if there are
already too many file systems mounted.

ERRORS

fsmount will fail when one of the following occurs:

[EPERM]
[ENOTBLK]
[ENXIO]
[EBUSY]
[EBUSY]
[EBUSY]

[EBUSY]

[ENOTDIR]

[EPERM]

[ENAMETOOLONG]

[ENOENT]
[EACCES]

The caller is not the superuser.
special is not a block device.

The major device number of special is out
of range (this indicates no device driver
exists for the associated hardware).

dir is not a directory, or another process
currently holds a reference to it.

No space remains in the mount table.

The super block for the file system had a
bad magic number or an out of range block
size.

Not enough memory was available to read
the cylinder group information for the file
system.

A component of the path prefix in special or
name is not a directory.

The pathname of special or name contains a
character with the high-order bit set.

The pathname of special or name was too
long.

special or name does not exist.

Search permission is denied for a com-
ponent of the path prefix of special or
name.

-2- September, 1987

fsmount(2) fsmount (2)

[EFAULT] special or name points outside the process’s
allocated address space.

[ELOOP] Too many symbolic links were encountered
in translating the pathname of special or
name.

[EIO] An I/O error occurred while reading from
or writing to the file system.

SEE ALSO
unmount(2), umount(2), mount(3).
BUGS

Too many errors appear to the caller as one value.

-3- September, 1987

fsync(2) fsync(2)

NAME
fsync - synchronize a file’s in-core state with that on disk
SYNOPSIS
int fsync (fd)
int fd;
DESCRIPTION
fsync causes all modified data and attributes of fd to be moved
to a permanent storage device. This normally results in all in-core
modified copies of buffers for the associated file to be written to a
disk.
fsync should be used by programs which require a file to be in a
known state; for example in building a simple transaction facility.

RETURN VALUE
A 0 value is returned on success. A —1 value indicates an error.

ERRORS
fsync fails if:

[EBADF] fdisnot a valid descriptor.
[EINVAL] fd refers to a socket, not to a file.

SEE ALSO
sync(l), sync(2).

BUGS
The current implementation of this call is expensive for large files.

-1- September, 1987

getdirentries(2) getdirentries(2)

NAME

getdirentries - gets directory entries in a file system
independent format

SYNOPSIS
#include <sys/types.h>
#include <sys/dir.h>

int getdirentries(d, buf, nbytes, basep)
int d;

char *buf;

int nbytes;

long *basep

DESCRIPTION
getdirentries attempts to put directory entries from the
directory referenced by the descriptor d into the buffer pointed to
by buf, in a file system independent format. Up to nbytes of data
will be transferred. nbytes must be greater than or equal to the
block size associated with the file, see stat(2). Sizes less than
this may cause errors on certain file systems.

The data in the buffer is a series of direct structures. The
direct structure is defined as

struct direct ({

unsigned long d_fileno;

unsigned short d_reclen;

unsigned short d_namlen;

char d_name [MAXNAMELEN + 1];
}:

The d_fileno entry is a number which is unique for each dis-
tinct file in the file system. Files that are linked by hard links (see
1ink(2)) have the same d_fileno. The d_reclen entry is
the length, in bytes, of the directory record. The d_name and
d_namelen entries specify the actual file name and its length.

Upon return, the actual number of bytes transferred is returned.
The current position pointer associated with d is set to point to the
next block of entries. The pointer is not necessarily incremented
by the number of bytes returned by getdirentries. If the
value returned is zero, the end of the directory has been reached.
The current position pointer may be set and retrieved by
1seek(2). The basep entry is a pointer to a location into which
the current position of the buffer just transferred is placed. It is
not safe to set the current position pointer to any value other than a

-1- September, 1987

getdirentries(2) getdirentries(2)

value previously returned by lseek(2) or a value previously
returned in basep or zero.

RETURN VALUE
If successful, the number of bytes actually transferred is returned.
Otherwise, a —1 is returned and the global variable errno is set
to indicate the error.

SEE ALSO
1ink(2), 1seek(2), open(2), stat(2), directory(3).

-2- September, 1987

getdomainname(2N) getdomainname (2N)

NAME
getdomainname, setdomainname — get/set name of current
network domain

SYNOPSIS
int getdomainname (name, namelen)
char *name;
int namelen;

int setdomainname (name, namelen)
char *name;
int namelen;

DESCRIPTION
getdomainname returns the name of the network domain for
the current processor, as previously set by setdomainname.
The parameter namelen specifies the size of the name array. The
returned name is null-terminated unless insufficient space is pro-
vided.

setdomainname sets the domain of the host machine to be
name, which has length namelen. This call is restricted to the
superuser and is normally used only when the system is
bootstrapped.

The purpose of domains is to enable two distinct networks that
may have host names in common to merge. Each network would
be distinguished by having a different domain name. At the
current time, only the yellow pages service makes use of domains.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a
value of —1 is returned and an error code is placed in the global
location errno.

ERRORS
The following errors may be returned by these calls:
[EFAULT] The name or namelen parameter gave an
invalid address.
[EPERM] The caller was not the superuser.
BUGS

Domain names are limited to 255 characters.

-1- September, 1987

getdtablesize(2N) getdtablesize(2N)

NAME
getdtablesize — get descriptor table size

SYNOPSIS
int getdtablesize()

DESCRIPTION
Each process has a fixed size descriptor table which is guaranteed
to have at least the maximum number of open slots OPEN_MAX.
The entries in the descriptor table are numbered with small
integers starting at 0. getdtablesize returns the size of this
table.

SEE ALSO
close(2), dup(2), open(2).

-1- September, 1987

getgroups(2) getgroups(2)

NAME
getgroups — get group access list
SYNOPSIS
#include <sys/param.h>
int getgroups (gidsetlen, gidset)
int gidsetlen, *gidset;
DESCRIPTION
getgroups gets the current group access list of the user process

and stores it in the array gidset. The parameter gidsetlen indicates
the number of entries that may be placed in gidset.

getgroups returns the actual number of groups returned in gid-
set. No more than NGROUPS, as defined in <sys/param.h>,
will ever be returned.

RETURN VALUE
A successful call returns the number of groups in the group set. A
value of —1 indicates that an error occurred, and the error code is
stored in the global variable errno.

ERRORS
The possible errors for getgroups are:
[EINVAL] The argument gidsetlen is smaller than the
number of groups in the group set.
[EFAULT] The argument gidset specifies an invalid
address.
SEE ALSO
setgroups(2), initgroups(3X).
BUGS

The gidset array should be of type gid_t, but remains integer for
compatibility with earlier systems.

-1- September, 1987

gethostid(2N) gethostid(2N)

NAME
gethostid, sethostid — get/set unique identifier of current
host

SYNOPSIS
int gethostid()

int sethostid (hostid)
int hostid

DESCRIPTION
sethostid establishes a 32-bit identifier for the current proces-
sor. This identifier is intended to be unique among all systems in
existence and is normally a DARPA Internet address for the local
machine. This call is allowed only to the superuser and is nor-
mally performed at boot time.

RETURN VALUE
gethostid returns the 32-bit identifier for the current processor.

sethostid returns zero upon successful completion and -1
upon error.

SEE ALSO
hostid(IN), gethostname(2N).

BUGS
32 bits for the identifier is too small.

-1- September, 1987

gethostname(2N) gethostname (2N)

NAME
gethostname, sethostname — get/set name of current host

SYNOPSIS
int gethostname (name, namelen)
char *name;
int namelen;

int sethostname (name, namelen)
char *name;
int namelen;

DESCRIPTION
gethostname returns the standard host name for the current
processor, as previously set by sethostname. The parameter
namelen specifies the size of the name array. The returned name
is null-terminated unless insufficient space is provided.

sethostname sets the name of the host machine to be name,
which has length namelen. This call is restricted to the superuser
and is normally used only when the system is bootstrapped.

RETURN VALUE
If the call succeeds a value of O is returned. If the call fails, then a
value of —1 is returned and an error code is placed in the global
location errno.

ERRORS

The following errors may be returned by these calls:

[EFAULT] The name or namelen parameter gave an

invalid address.

[EPERM] The caller was not the superuser.
SEE ALSO

gethostid(2N).
BUGS

Host names are limited to 255 characters.

-1- September, 1987

getitimer(2) getitimer(2)

NAME
getitimer, setitimer — get/set value of interval timer

SYNOPSIS
#include <sys/time.h>

getitimer (which, value)
int which;
struct itimerval *value;

setitimer (which, value, ovalue)
int which;
struct itimerval *value, *ovalue;

DESCRIPTION
The system provides each process with three interval timers,
defined in <sys/time.h>. The getitimer call returns the
current value for the timer specified in which in the structure at
value. The setitimer call sets a timer to the specified value
(returning the previous value of the timer if ovalue is nonzero).

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */
}i
If it_value is nonzero, it indicates the time to the next timer
expiration. If it_interval is nonzero, it specifies a value to
be used in reloading it_value when the timer expires. Setting
it_value to O disables a timer. Setting it interval to 0
causes a timer to be disabled after its next expiration (assuming
it_value is nonzero).

Time values smaller than the resolution of the system clock are
rounded up to this resolution (16 milliseconds on this system, 10
milliseconds on the VAX).

The ITIMER REAL timer decrements in real time. A
SIGALRM signal is delivered when this timer expires.

The ITIMER VIRTUAL timer decrements in process virtual
time. It runs only when the process is executing. A
SIGVTALRM signal is delivered when it expires.

The ITIMER PROF timer decrements both in process virtual
time and when the system is running on behalf of the process. It is
designed to be used by interpreters in statistically profiling the
execution of interpreted programs. Each time the

-1- September, 1987

getitimer(2) getitimer(2)

ITIMER PROF timer expires, the SIGPROF signal is delivered.
Because this signal may interrupt in-progress system calls, pro-
grams using this timer must be prepared to restart interrupted sys-
tem calls.

NOTES
Three macros for manipulating time values are defined in
<sys/time.h>. timerclear sets a time value to zero,
timerisset tests if a time value is nonzero, and timercmp
compares two time values (beware that >= and <= do not work
with this macro).

RETURN VALUE
If the calls succeed, a value of 0 is returned. If an error occurs,

the value -1 is returned, and a more precise error code is placed in
the global variable errno.

ERRORS
The possible errors are:
[EFAULT] The value parameter specified a bad address.
[EINVAL] A value parameter specified a time was too
large to be handled.
SEE ALSO

sigvec(2), gettimeofday(2).

-2- September, 1987

getpeername(2N) getpeername (2N)

NAME
getpeername — get name of connected peer

SYNOPSIS
int getpeername (s, name, namelen)
int s;
struct sockaddr ‘*name;
int *namelen;

DESCRIPTION
getpeername returns the name of the peer connected to socket
s. The namelen parameter should be initialized to indicate the
amount of space pointed to by name. On return it contains the
actual size of the name returned (in bytes).

RETURN VALUES
A 0 is returned if the call succeeds, —1 if it fails.
ERRORS
getpeername fails if:
[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.
[ENOTCONN] The socket is not connected.

[ENOBUFS] Insufficient resources were available in the sys-
tem to perform the operation.
[EFAULT] The name parameter points to memory not in a

valid part of the process address space.

SEE ALSO
bind(2N), get sockname(2N), socket(2N).

-1- September, 1987

getpid(2) getpid(2)

NAME
getpid, getpgrp, getppid — get process, process group, and
parent process IDs
SYNOPSIS
int getpid()
int getpgrp()
int getppid()
DESCRIPTION
The getpid system call returns the process ID of the calling
process. Each active process in the system is uniquely identified

by a positive integer. The range of this integer is from 1 to the
system-imposed limit, or PID_MAX.

The getpgrp system call returns the process group ID of the
calling process. Each active process is a member of a process
group that is identified by a positive integer. This grouping per-
mits the signaling of related processes.
The getppid system call returns the parent process ID of the
calling process. The parent process ID is the process ID of its
creator.

RETURN VALUE
getpid returns the process ID of the calling process.

getpgrp returns the process group ID of the calling process.
getppid returns the parent process ID of the calling process.

These system calls are useful for generating uniquely-named tem-
porary files.

SEE ALSO
exec(2), fork(2), gethostid(2N), intro(2), setpgrp(2),
signal(3).

-1- September, 1987

getsockname(2N) getsockname (2N)

NAME
getsockname — get socket name

SYNOPSIS
int getsockname(s, name, namelen)
int s;

struct sockaddr *name;
int *namelen;

DESCRIPTION
getsockname returns the current name for the specified socket.
The namelen parameter should be initialized to indicate the
amount of space pointed to by name. On return it contains the
actual size of the name returned (in bytes).

RETURN VALUES
A 0 is returned if the call succeeds, —1 if it fails.
ERRORS
getsockname fails if:
[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOBUFS] Insufficient resources were available in the sys-
tem to perform the operation.
[EFAULT] The name parameter points to memory not in a
valid part of the process address space.
SEE ALSO
bind(2N), getpeername(2N), getsockopt(2N),
socket(2N).

-1- September, 1987

getsockopt (2N) getsockopt (2N)

NAME
getsockopt, setsockopt — get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int getsockopt (s, level, optname, optval, optlen)
int s, level, optname;

char *optval;

int *optlen;

int setsockopt (s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int *optlen;

DESCRIPTION
getsockopt and setsockopt manipulate options associated
with a socket. Options may exist at multiple protocol levels; they
are always present at the uppermost ‘‘socket’’ level.

When manipulating socket options the level at which the option
resides and the name of the option must be specified. To manipu-
late options at the ‘‘socket” level, level is specified as
SOL_SOCKET. To manipulate options at any other level the pro-
tocol number of the appropriate protocol controlling the option is
supplied. For example, to indicate an option is to be interpreted
by the TCP protocol, level should be set to the protocol number of
TCP; see getprotoent(3N).

The parameters optval and optlen are used to access option values
for setsockopt. For getsockopt they identify a buffer in
which the value of the requested options(s) are to be returned. For
getsockopt, optlen is a value-result parameter, initially con-
taining the size of the buffer pointed to by optval , and modified
on return to indicate the actual size of the value returned. If no
option value is to be supplied or returned, optval may be supplied
as 0.

optname and any specified options are passed uninterpreted to the
appropriate protocol module for interpretation. The include file
<sys/socket .h> contains definitions for ‘‘socket’” level
options; see socket(2N). Options at other protocol levels vary
in format and name; consult the appropriate entries in Section 5 of
this manual (appropriate entries are marked (5P)).

-1- September, 1987

getsockopt (2N) getsockopt (2N)

RETURN VALUE
A 0 is returned if the call succeeds, —1 if it fails.

ERRORS
The callls fail if:
[EBADF] The argument s is not a valid descrip-
tor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOPROTOOPT] The option is unknown.
[EFAULT] The options are not in a valid part of
the process address space.
SEE ALSO

getsockname(2N), socket(2N), getprotoent(3N).

-2- September, 1987

gettimeofday(2) gettimeofday(2)

NAME
gettimeofday, settimeofday — get/set date and time

SYNOPSIS
#include <sys/time.h>

int gettimeofday(tp, izp)
struct timeval *ip;
struct timezone *fzp;

int settimeofday(tp, izp)
struct timeval *fp;
struct timezone *tzp;

DESCRIPTION

The system’s notion of the current Greenwich time and the current
time zone is obtained with the gettimeofday call, and set
with the settimeofday call. The time is expressed in seconds
and microseconds since midnight (0 hour), January 1, 1970. The
resolution of the system clock is hardware dependent, and the time
may be updated continuously or in ‘‘ticks.”” If tzp is zero, the
time zone information will not be returned or set.

The structures referenced by #p and tzp are defined in
<sys/time.h> as:

struct timeval {
long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */

};

struct timezone {
int tz_minuteswest; /* of Greenwich */
int tz_dsttime; /* type of dst correction
to apply */
¥z

The timezone structure indicates the local time zone (meas-
ured in minutes of time westward from Greenwich), and a flag
that, if nonzero, indicates that Daylight Saving time applies locally
only when Dayling Savings Time is in effect.

Only the superuser may set the time of day or time zone. Changes
to the time zone structure are effective for the current process
only.

RETURN VALUE

A 0 return value indicates that the call succeeded. A —1 return
value indicates an error occurred, and in this case an error code is

-1- September, 1987

gettimeofday(2) gettimeofday(2)

stored into the global variable errno.

ERRORS
The calls fail if:
[EFAULT] An argument address referenced invalid
memory.
[EPERM] A user other than the superuser attempted to set
the time.
SEE ALSO

date(l), adjtime(2), t ime(2), st ime(2), ct ime(3).

-2- September, 1987

getuid(2) getuid(2)

NAME
getuid, geteuid, getgid, getegid — get real user, effec-
tive user, real group, and effective group IDs

SYNOPSIS
unsigned short getuid()

unsigned short geteuid()
unsigned short getgid()
unsigned short getegid()

DESCRIPTION
Each user allowed on the system is identified by a positive integer
called a real user ID. The getuid system call returns the real
user ID of the calling process.

Each active process has an effective user ID which is equal to the
process’s real user ID (unless the process of one of its ancestors
evolved from a fail that had the set-user-ID bit set; see exec(2)).
The geteuid system call returns the effective user ID of the
calling process.

Each user is a member of a group which is idenﬁﬁed by a positive
integer called a real group ID. The getgid system call returns
the real group ID of the calling process.

Each active process has an effective group ID which is equal to
the process’s real group ID (unless the process of one of its ances-
tors evolved from a fail that had the set-group-ID bit set; see
exec(2)). The getegid system call returns the effective group
ID of the calling process.

RETURN VALUE
getuid returns the real user ID of the calling process.
geteuid returns the effective user ID of the calling pro-
cess.
getgid returns the real group ID of the calling process.
getegid returns the effective group ID of the calling pro-
cess.
SEE ALSO

intro(2), setreuid(2), setuid(2).

1o September, 1987

ioctl1(2) ioctl(2)

NAME
ioctl - control device
SYNOPSIS
int ioctl (fildes, request, arg)
int fildes, request;
DESCRIPTON

ioctl performs a variety of functions on character special files
(devices). Section 7 of the A/UX System Administrator’s Refer-
ence describes the ioctl requests that apply to the given device.

RETURN VALUE

If an error has occurred, a value of —1 is returned and errno is
set to indicate the error.

ERRORS
ioct1 will fail if one or more of the following are true:
[EBADF] fildes is not a valid open file descriptor.

[ENOTTY] fildes is not associated with a character special
device.

[EINVAL] request or arg is not valid. See Section 7 of the
A/UX System Administrator’ s Reference.

[EINTR] A signal was caught during the ioctl system
call.

SEE ALSO
intro(2), fcntl1(2), intro(7). termio(7).

-1- September, 1987

kill(2) kill(2)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
int kill(pid, sig)
int pid, sig;

DESCRIPTION
kill sends a signal to a process or a group of processes. The
process or group of processes to which the signal is to be sent is
specified by pid. The signal that is to be sent is specified by sig
and is either one from the list given in signal(3), or 0. If sig is
0 (the null signal), error checking is performed but no signal is
actually sent. This can be used to check the validity of pid.

The real or effective user ID of the sending process must match
the real or effective user ID of the receiving process, unless the
effective user ID of the sending process is the superuser.

The processes with a process ID of 0 and a process ID of 1 are
special processes (see int ro(2)) and will be referred to below as
proc0 and procl respectively.

If pid is greater than zero, sig will be sent to the process whose
process ID is equal to pid. pid may equal 1.
If pid is 0, sig will be sent to all processes excluding procO and

procl whose process group ID is equal to the process group ID of
the sender.

If pid is —1 and the effective user ID of the sender is not the
superuser, sig will be sent to all processes excluding procO and
procl whose real user ID is equal to the effective user ID of the
sender.

If pid is —1 and the effective user ID of the sender is the superuser,

sig will be sent to all processes excluding proc0 and procl .

If pid is negative but not —1, sig will be sent to all processes

whose process group ID is equal to the absolute value of pid.
RETURN VALUE

Upon successful completion, a value of O is returned. Otherwise,

a value of —1 is returned and errno is set to indicate the error.
ERRORS

ki1l will fail and no signal will be sent if one or more of the fol-
lowing are true:

-1- September, 1987

kill(2)

[EINVAL]
[EINVAL]
[ESRCH]

[EPERM]

SEE ALSO

kill(2)

sig is not a valid signal number.

sigis SIGKILL and pidis 1 (procl).

No process can be found corresponding to that
specified by pid.

The sending process is not sending to itself, its
effective user ID is not the superuser, and its

real or effective user ID does not match the real
or effective user ID of the receiving process.

kill(1), getpid(2), setpgrp(2), sigvec(2), signal(3).

-2- September, 1987

1ink(2) 1link(2)

NAME
link — link to a file

SYNOPSIS
int link(pathl, path2)
char *pathl, *path2;
DESCRIPTION
link creates a new link (directory entry) for an existing file.
pathl points to a path name naming an existing file. path2 points
to a path name naming the new directory entry to be created.
RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of —1 isreturned and errno is set to indicate the error.

ERRORS
link will fail and no link will be created if one or more of the
following are true:
[ENOTDIR] A component of either path prefix is not a
directory.
[EPERM] A pathname contains a character with the

high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

[ELOOP] Too many symbolic links were encoun-
tered in translating a pathname.

[ENOENT] A component of either path prefix does not
exist.

[EACCES] A component of either path prefix denies
search permission.

[ENOENT] The file named by pathl does not exist.

[EEXIST] The link named by path2 exists.

[EPERM] The file named by pathl is a directory and
the effective user ID is not the superuser.

[EXDEV] The link named by path? and the file

named by pathl are on different logical
devices (file systems).

[ENOENT] path2 points to a null path name.

-1- September, 1987

1link(2)

[EACCES]

[EROFS]
[EFAULT]
[EMLINK]

SEE ALSO

1ink(2)

The requested link requires writing in a
directory with a mode that denies write
permission.

The requested link requires writing in a
directory on a read-only file system.

path points outside the allocated address
space of the process.

The maximum number of links to a file
would be exceeded.

symlink(2), unlink(2).

-2- September, 1987

listen(2N) listen(2N)

NAME
listen — listen for connections on a socket

SYNOPSIS
listen(s, backlog)
int s, backlog;

DESCRIPTION
To accept connections, a socket is first created with socket (2N),
a backlog for incoming connections is specified with
listen(2N) and then the connections are accepted with

accept(2N). The listen call applies only to sockets of type
SOCK_STREAM Or SOCK_PKTSTREAM.

The backlog parameter defines the maximum length the queue of
pending connections may grow to.

RETURN VALUE
A O return value indicates success; —1 indicates an error.

ERRORS
listen will fail if:
[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is not a socket.
[EOPNOTSUPP] The operation is not supported on a

socket.

If a connection request arrives with the queue full the client will
receive an error with an indication of ECONNREFUSED. The
socket is not of a type that supports the operation 1isten.

SEE ALSO
accept(2N), connect(2N), socket(2N).

BUGS
The backlog is currently limited (silently) to 5.

-1- September, 1987

locking(2) locking(2)

NAME
locking - provide exclusive file regions for reading or writing

SYNOPSIS
int locking (fildes, mode, size)
int fildes;
int mode;
int size;

DESCRIPTION
locking will allow a specified number of bytes to be accessed
only by the locking process (mandatory locking). Other processes
which attempt to lock, read, or write the locked area will sleep
until the area becomes unlocked. (Advisory locking is available
via lock£(3C)).

fildes is the word returned from a successful open, creat, dup,
or pipe system call.

mode is zero to unlock the area. mode is one or two for making
the area locked. If the mode is one and the area has some other
lock on it, then the process will sleep until the entire area is avail-
able. If the mode is two and the area is locked, an error will be
returned.

size is the number of contiguous bytes to be locked or unlocked.
The area to be locked starts at the current offset in the file. If size
is zero, the area to the end of file is locked.

The potential for a deadlock occurs when a process controlling a
locked area is put to sleep by accessing another process’s locked
area. Thus calls to locking, read, or write scan for a
deadlock prior to sleeping on a locked area. An error return is
made if sleeping on the locked area would cause a deadlock.

Lock requests may, in whole or part, contain or be contained by a
previously locked area for the same process. When this or adja-
cent areas occur, the areas are combined into a single area. If the
request requires a new lock element with the lock table full, an
error is returned, and the area is not locked.

Unlock requests may, in whole or part, release one or more locked
regions controlled by the process. When regions are not fully
released, the remaining areas are still locked by the process.
Release of the center section of a locked area requires an addi-
tional lock element to hold the cut off section. If the lock table is
full, an error is returned, and the requested area is not released.

-1- September, 1987

locking(2) locking(2)

While locks may be applied to special files or pipes, read/write
operations will not be blocked. Locks may not be applied to a
directory.

Note that close(2) automatically removes any locks that were
associated with the closed file descriptor.

RETURN VALUE
The value -1 is returned if the file does not exist, or if a deadlock
using file locks would occur.

ERRORS
locking will fail if the following are true:
[EACCES] The area is already locked by another process.

[EDEADLOCK] Returned by read, write, or locking if a
deadlock would occur.
[EDEADLOCK] Locktable overflow.

[EREMOTE] fildes is a file descriptor that refers to file on a
remotely mounted file system.
SEE ALSO

close(2), creat(2), dup(2), open(2), read(2), write(2),
lock£(3C).

-2- September, 1987

1lseek(2) lseek(2)

NAME
1lseek — move read/write file pointer
SYNOPSIS
long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;
DESCRIPTION
fildes is a file descriptor returned from a creat, open, dup, or

fcntl system call. lseek sets the file pointer associated with
fildes as follows:

If whence is 0, the pointer is set to offset bytes.
If whence is 1, the pointer is set to its current location plus

offset.

If whence is 2, the pointer is set to the size of the file plus
offset.

Upon successful completion, the resulting pointer location, as
measured in bytes from the beginning of the file, is returned.

RETURN VALUE
Upon successful completion, a non-negative integer indicating the
file pointer value is returned. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

ERRORS
1lseek will fail and the file pointer will remain unchanged if one
or more of the following are true:

[EBADF] fildes is not an open file descriptor.
[ESPIPE] fildes is associated with a pipe or FIFO.

[EINVAL] and the SIGSYS signal
whence isnot 0, 1, or 2.

[EINVAL] The resulting file pointer would be negative.

Some devices are incapable of seeking. The value of the file
pointer associated with such a device is undefined.

SEE ALSO
creat(2), dup(2), fcnt 1(2), open(2).

-1- September, 1987

mkdir(2)

NAME

mkdir(2)

mkdir — make a directory file

SYNOPSIS

int mkdir (path,

char *path;
int mode;

DESCRIPTION

mode)

mkdir creates a new directory file with name path. The mode of
the new file is initialized from mode. (The protection part of the
mode is modified by the process’s mode mask; see umask(2)).

The directory’s owner ID is set to the process’s effective user ID.
The directory’s group ID is set to that of the parent directory in

which it is created.

The low-order 9 bits of mode are modified by the process’s file
mode creation mask: all bits set in the process’s file mode creation
mask are cleared. See umask(2).

RETURN VALUE

A O return value indicates success. A —1 return value indicates an
error, and an error code is stored in errno.

ERRORS

mkdir will fail and no directory will be created if:

[EPERM]

[EPERM]

[ENAMETOOLONG]

[ELOOP]

[EPERM]

[ENOTDIR]

[ENOENT]

The process’s effective user ID is not the
superuser.

A pathname contains a character with the
high-order bit set.

A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

Too many symbolic links were encoun-
tered in translating a pathname.

The path argument contains a byte with the
high-order bit set.

A component of the path prefix is not a
directory.

A component of the path prefix does not
exist.

-1- September, 1987

mkdir(2)

[EROFS]

[EEXIST]
[EFAULT]

[ELOOP]
[EIO]

SEE ALSO

mkdir(2)

The named file resides on a read-only file
system.

The named file exists.

path points outside the process’s allocated
address space.

Too many symbolic links were encoun-
tered in translating the pathname.

An T/O error occured while writing to the
file system.

mkdir(l), chmod(2), rmdir(2), stat(2), umask(2).

-2- September, 1987

mknod(2) mknod(2)

NAME
mknod — make a directory, or a special or ordinary file

SYNOPSIS
int mknod(path, mode, dev)
char *path;
int mode, dev;

DESCRIPTION
mknod creates a new file named by the path name pointed to by
path. The mode of the new file is initialized from mode, where
the value of mode is interpreted as follows:

0170000 file type mask; one of the following:

0010000 FIFO special

0020000 character special

0040000 directory

0060000 block special

0100000 or 0000000 ordinary file
0120000 symbolic link

0140000 socket

0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution

0000777 access permissions; constructed from the following

0000400 read by owner

0000200 write by owner

0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of the pro-
cess. The group ID of the file is set to the effective group ID of
the process.

Values of mode other than those above are undefined and should
not be used. The low-order 9 bits of mode are modified by the
process’s file mode creation mask: all bits set in the process’s file
mode creation mask are cleared. See umask(2). If mode indi-
cates a block or character special file, dev is a configuration-
dependent specification of a character or block I/O device. If
mode does not indicate a block special or character special device,
dev is ignored.

-1- September, 1987

mknod(2) mknod(2)

mknod may be invoked only by the superuser for file types other
than FIFO special.
RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.
ERRORS

mknod will fail and the new file will not be created if one or more
of the following are true:

[EPERM] The effective user ID of the process is not
superuser.
[EPERM] A pathname contains a character with the

high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded
NAME MAX characters, or an entire
pathname exceeded PATH_MAX.

[ELOOP] Too many symbolic links were encoun-
tered in translating a pathname.

[ENOTDIR] A component of the path prefix is not a
directory.

[ENOENT] A component of the path prefix does not
exist.

[EROFS] The directory in which the file is to be
created is located on a read-only file sys-
tem.

[EEXIST] The named file exists.

[EFAULT] path points outside the allocated address

space of the process.

SEE ALSO
mkdir(1l), mknod(1), chmod(2), exec(2), stat(2), umask(2),
fs(4), stat(5).

-2- September, 1987

msgct1(2)

NAME

msgctl1(2)

msgctl — message control operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl(id, cmd, buf)

int i,

struct msqid _ds *buf;

DESCRIPTION

msgctl provides a variety of message control operations as
specified by cmd. The following cmds are available:

IPC_STAT

IPC_SET

Place the current value of each member of the
data structure associated with id into the struc-
ture referenced by buf. The contents of this
structure are defined in int ro(2).

Set the value of the following members of the
data structure associated with id to the
corresponding value found in the structure
referenced by buf:

msg_perm.uid
msg_perm.gid
msg_perm.mode (only low 9 bits)
msg_gbytes

This cmd can only be executed by a process that has an effective
user ID equal to either that of superuser or to the value of
msg_perm.uid in the data structure associated with id. Only
the superuser can raise the value of msg_gbytes.

IPC_RMID

Remove the message queue identifier specified
by id from the system and destroy the message
queue and data structure associated with it.
This cmd can only be executed by a process
that has an effective user ID equal to either that
of super user or to the value of
msg_perm.uid in the data structure associ-
ated with id. The identifier and its associated
data structure are not actually removed until
there are no more referencing processes. See
ipcrm(1), and ipcs(1).

-1- September, 1987

msgct1(2)

RETURN VALUE

msgct1(2)

Upon successful completion, a value of 0 is returned. Otherwise,
a value of —1 is returned and errno is set to indicate the error.

ERRORS

msgct 1 will fail if one or more of the following are true:

[EINVAL]
[EINVAL]
[EACCES]

[EPERM]

[EPERM]

[EFAULT]
SEE ALSO

id is not a valid message queue identifier.
cmd is not a valid command.

cmd is equal to IPC_STAT and operation per-
mission is denied to the calling process (see
intro(2)).

cmd is equal to IPC_RMID or IPC_SET. The
effective user ID of the calling process is not
equal to that of superuser and it is not equal to
the value of msg_perm.uid in the data
structure associated with id.

cmd is equal to IPC_SET, an attempt is being
made to increase to the value of
msg_gbytes, and the effective user ID of
the calling process is not equal to that of
superuser.

buf points to an illegal address.

intro(2), msgget(2), msgop(2).

-2- September, 1987

msgget(2) msgget(2)

NAME
msgget — get message queue
SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgfig)
key_t key;
int msgflg;
DESCRIPTION
msgget retuns the message queue identifier associated with key.
A message queue identifier and associated message queue and

data structure (see intro(2)) are created for key if one of the fol-
lowing is true:

key is equal to IPC_PRIVATE.

key does not already have a message queue identifier associ-
ated with it, and (msgflg & IPC_CREAT) is ‘‘true’’.
The key IPC_PRIVATE will create an identifier and associated
data structure that is unique to the calling process and its children.

Upon creation, the data structure associated with the new message
queue identifier is initialized as follows:

msg_perm.cuid, msg_perm.uid, msg_perm.cgid,
and msg_perm.gid are set equal to the effective user ID
and effective group ID, respectively, of the calling process.

The low-order 9 bits of msg_perm.mode are set equal to
the low-order 9 bits of msgfig.

msg_gnum, msg_lspid, msg_lrpid, msg_stime,
and msg_rtime are set equal to 0.

msg_ctime is set equal to the current time.
msg_gbytes is set equal to the system limit.

RETURN VALUE
Upon successful completion, a non-negative integer, namely a
message queue identifier, is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

ERRORS
msgget will fail if one or more of the following are true:

-1- September, 1987

msgget (2)

[EACCES]

[ENOENT]

[ENOSPC]

[EEXIST]

SEE ALSO

msgget(2)

A message queue identifier exists for key, but
operation permission (see intro(2)) as
specified by the low-order 9 bits of msgflg
would not be granted.

A message queue identifier does not exist for
key and (msgflg & IPC_CREAT) is ‘“‘false’.

A message queue identifier is to be created but
the system-imposed limit on the maximum
number of allowed message queue identifiers
system wide would be exceeded.

A message queue identifier exists for key but
((msgflg & IPC_CREAT) && (msgfly &
IPC_EXCL)) is “‘true’’.

intro(2), msgct1(2), msgop(2).

-2- September, 1987

msgop(2) msgop(2)

NAME
msgop, msgsnd, msgsrv — message operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(msqid, msgp, msgsz, msgfig)
int msqid;

struct msgbuf *msgp;

int msgsz, msgflg;

int msgrcv(msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz;
long msgtyp;
int msgflg;

DESCRIPTION
msgsnd is used to send a message to the queue associated with
the message queue identifier specified by msqid. msgp points to a
structure containing the message. This structure is composed of

the following members:
long mitype; /* message type */
char mtext[]; /* message text */

mtype is a positive integer that can be used by the receiving pro-
cess for message selection (see msgrcv below). mtext is any
text of length msgsz bytes. msgsz can range from O to a system-
imposed maximum.

msgflg specifies the action to be taken if one or more of the fol-
lowing are true:

The number of bytes already on the queue is equal to
msg_gbytes (see intro(2)).

The total number of messages on all queues systemwide is
equal to the system-imposed limit.

These actions are as follows:

If (msgfig & IPC_NOWAIT) is ‘‘true’’, the message will
not be sent and the calling process will return immediately.

If (msgflg & IPC_NOWAIT) is ‘‘false’’, the calling pro-
cess will suspend execution until one of the following

-1- September, 1987

msgop(2) msgop(2)

occurs:

The condition responsible for the suspension no longer
exists, in which case the message is sent.

msqid is removed from the system (see msgctl1(2)).
When this occurs, errno is set equal to EIDRM, and a
value of -1 is returned.

The calling process receives a signal that is to be
caught. In this case the message is not sent and the cal-
ling process resumes execution in the manner
prescribed in sigvec(2)).

Upon successful completion, the following actions are taken with
respect to the data structure associated with msqgid (see
intro(2)).

msg_qgnumn is incremented by 1.

msg_lspid is set equal to the process ID of the calling pro-
cess.

msg_stime is set equal to the current time.

msgrcv reads a message from the queue associated with the mes-
sage queue identifier specified by msqid and places it in the struc-
ture pointed to by msgp. This structure is composed of the follow-
ing members:

long mtype; /* message type */

char mtext[]; /* message text */
mtype is the received message’s type as specified by the sending
process. mtext is the text of the message. msgsz specifies the size
in bytes of mtext. The received message is truncated to msgsz
bytes if it is larger than msgsz and (msgfig & MSG_NOERROR)
is ““true’’. The truncated part of the message is lost and no indica-
tion of the truncation is given to the calling process.

msgtyp specifies the type of message requested as follows:

If msgtyp is equal to O, the first message on the queue is
received.

If msgtyp is greater than 0, the first message of type msgtyp
is received.

If msgtyp is less than 0, the first message of the lowest type
that is less than or equal to the absolute value of msgtyp is
received.

-2- September, 1987

msgop(2) msgop(2)

msgfig specifies the action to be taken if a message of the desired
type is not on the queue. These are as follows:

If (msgflg & IPC_NOWAIT) is “‘true’’, the calling process
will return immediately with a return value of —1 and
errno is set to ENOMSG.

If (msgflg & IPC_NOWAIT) is “‘false”’, the calling pro-
cess will suspend execution until one of the following
occurs:

A message of the desired type is placed on the queue.

msqid is removed from the system. When this occurs,
errno is set equal to EIDRM, and a value of -1 is
returned.

The calling process receives a signal that is to be
caught. In this case a message is not received and the
calling process resumes execution in the manner
prescribed in sigvec(2)).
Upon successful completion, the following actions are taken with
respect to the data structure associated with msqid (see
intro(2)).
msg_gnum is decremented by 1.

msg_lrpid is set equal to the process ID of the calling pro-
cess.

msg_rtime is set equal to the current time.

RETURN VALUES
If msgsnd or msgrcv return due to the receipt of a signal, a
value of —1 is returned to the calling process and errno is set to
EINTR. If they return due to removal of msqid from the system, a
value of —1 is returned and errno is set to EIDRM.

Upon successful completion, the return value is as follows:
msgsnd returns a value of 0.

msgrcv returns a value equal to the number of bytes actu-
ally placed into mtext.

Otherwise, a value of —1 is returned and errno is set to indicate
the error.

ERRORS
msgsnd will fail and no message will be sent if one or more of
the following are true:

-3- September, 1987

msgop(2)

msgop(2)

[EINVAL] msqid is not a valid message queue identifier.

[EACCES] Operation permission is denied to the calling
process (see intro(2)).

[EINVAL] mtype is less than 1.

[EAGAIN] The message cannot be sent for one of the rea-
sons cited above and (msgflg &
IPC_NOWAIT) is ‘‘true’’.

[EINVAL] msgsz is less than zero or greater than the
system-imposed limit.

[EFAULT] msgp points to an illegal address.

msgrcv will fail and no message will be received if one or more
of the following are true:

[EINVAL] msqid is not a valid message queue identifier.

[EACCES] Operation permission is denied to the calling
process.

[EINVAL] msgsz is less than 0.

[E2BIG] miext is greater than msgsz and (msgflg &
MSG_NOERROR) is “‘false’’.

[ENOMSG] The queue does not contain a message of the
desired type and (msgtyp & IPC_NOWAIT)
is “u’ue”,

[EFAULT] msgp points to an illegal address.

SEE ALSO

intro(2), msgct1l(2), msgget(2), sigvec(2), signal(3).

-4.- September, 1987

nice(2) nice(2)

NAME
nice — change priority of a process
SYNOPSIS
int nice (incr)
int incr;
DESCRIPTION
nice adds the value of incr to the value of the calling process. A

process’s nice value is a positive number for which a higher value
results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are
imposed by the system. Requests for values above or below these
limits result in the nice value being set to the corresponding limit.

RETURN VALUE

Upon successful completion, nice returns the new nice value

minus 20. Otherwise, a value of —1 is returned and errno is set

to indicate the error. If a value of —1 is a valid return value on
successful completion (i.e., if your new nice value is 19), errno
is not changed.

ERRORS

nice will fail if:

[EPERM] nice will fail and not change the nice value if
incr is negative or greater than 40 and the effec-
tive user ID of the calling process is not
superuser.

SEE ALSO
nice(l), exec(2).

-1- September, 1987

nfssvc(2) nfssvc(2)

NAME
nfssvc, async_daemon — NFS daemons

SYNOPSIS

int nfssvc (sock)
int sock;

async_daemon ()

DESCRIPTION
nfssvc starts an NFS daemon listening on socket sock. The
socket must be AF_INET, and SOCK_DGRAM (protocol
UDP/IP). The system call will return only if the process is killed.

async_daemon implements the NFS daemon that handles asyn-
chronous I/O for an NFS client. The system call never returns.

BUGS
These two system calls allow kernel processes to have user con-
text.

SEE ALSO
mountd(1M), nfsd(1M).

-1- September, 1987

nfs_getfh(2) nfs_getfh(2)

NAME
nfs_getfh — get a file handle

SYNOPSIS
#include <rpc/types.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <nfs/nfs.h>

int nfs_getfh (fildes, fhp)
int fildes;
fhandle t *fhp;

DESCRIPTION
nfs_getfh returns the file handle associated with the file
descriptor fd. This call is restricted to the superuser.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a
value of —1 is returned and an error code is placed int the global
location errno.

ERRORS
The following errors may be returned by these calls:
[EPERM] The caller was not the superuser.
[EBADF] fd is not a valid open file descriptor.
[EFAULT] The fhp parameter gave an invalid address.

-1- September, 1987

open(2)

NAME

open(2)

open — open for reading or writing

SYNOPSIS

#include <fcntl.h>
int open (path, oflag [, mode])

char *path;
int oflag,
DESCRIPTION

mode ;

open opens a file descriptor for the named file and sets the file
status flags according to the value of oflag. path points to a path
name naming a file. oflag values are constructed by or-ing flags
from the following list (only one of the first three flags below may

be used):
O_RDONLY
O_WRONLY
O_RDWR
O_NDELAY

Open for reading only.
Open for writing only.
Open for reading and writing.

This flag may affect subsequent reads and
writes. See read(2) and write(2).

When opening a FIFO with O _RDONLY or
O_WRONLY set:

If O_NDELAY is set:

An open for reading-only will return
without delay. An open for writing-only
will return an error if no process currently
has the file open for reading.

If O_NDELAY is clear:

An open for reading-only will block until
a process opens the file for writing. An
open for writing-only will block until a
process opens the file for reading.

‘When opening a file associated with a communi-
cation line:

If O_NDELAY is set:
The open will return without waiting for
carrier.

If O_NDELAY is clear:

-1- September, 1987

open(2)

O_APPEND

O_CREAT

O_TRUNC

0_EXCL

open(2)

The open will block until carrier is present.

If set, the file pointer will be set to the end of the
file prior to each write.

If the file exists, this flag has no effect. Other-
wise, the owner ID of the file is set to the effec-
tive user ID of the process, the group ID of the
file is set to the effective group ID of the pro-
cess, and the low-order 12 bits of the file mode
are set to the value of mode modified as follows
(see creat(2)):

All bits set in the file mode creation mask
of the process are cleared. See umask(2).

The ‘‘save text image after execution bit’’
of the mode is cleared. See chmod(2).

If the file exists, its length is truncated to 0 and
the mode and owner are unchanged.

If 0 _EXCL and O_CREAT are set, open will
fail if the file exists.

The file pointer used to mark the current position within the file is
set to the beginning of the file.

The new file descriptor is set to remain open across exec system
calls. See fcnt1(2).

RETURN VALUE

Upon successful completion, the file descriptor is returned. Other-
wise, a value of —1 is returned and errno is set to indicate the

error.
ERRORS

The named file is opened unless one or more of the following are

true:
[ENOTDIR]

[EPERM]

A component of the path prefix is not a
directory.

A pathname contains a character with the
high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded

NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

-2- September, 1987

open(2)

[ELOOP]

[ENOENT]
[EACCES]
[EACCES]
[EISDIR]
[EROFS]

[EMFILE]

[ENXIO]

[ETXTBSY]

[EFAULT]
[EEXIST]

[ENXIO]

[EINTR]

[ENFILE]

open(2)

Too many symbolic links were encoun-
tered in translating a pathname.

O_CREAT is not set and the named file
does not exist.

A component of the path prefix denies
search permission.

oflag permission is denied for the named
file.

The named file is a directory and oflag is
write or read/write.

The named file resides on a read-only file
system and oflag is write or read/write.

The per-process open file limit would be
exceeded.

The named file is a character special or
block special file, and the device associ-
ated with this special file does not exist.

The file is a pure procedure (shared text)
file that is being executed and oflag is write
or read/write.

Note: If you are running an NFS
system and you are accessing a
shared binary remotely, it is possi-
ble that you will not get this
errmno.

path points outside the allocated address
space of the process.

O_CREAT and O_EXCL are set, and the
named file exists.

O_NDELAY is set, the named file is a
FIFO, O_WRONLY is set, and no process
has the file open for reading.

A signal was caught during the open sys-
tem call.

The system file table is full.

-3- September, 1987

open(2) épen(z)

SEE ALSO
chmod(2), close(2), creat(2), dup(2), fcnt1(2), 1seek(2),
read(2), umask(2), write(2), fopen(3), ferror(3).

-4- September, 1987

pause(2) pause(2)

NAME
pause — suspend process until signal

SYNOPSIS
pause ()

DESCRIPTION
pause suspends the calling process until it receives a signal. The

signal must be one that is not currently set to be ignored by the
calling process.

If the signal causes termination of the calling process, pause
will not return.

The behavior of pause will vary when a signal is caught by the
calling process according to flags set by setcompat(2) or
set42sig(3). If the COMPAT SYSCALLS flag is set when
control is returned from the signal catching function, then the pro-
cess will once again pause; otherwise, flag not set will resume as
above.

ERRORS
If the signal is caught by the calling process and control is
returned from the signal-catching function (see signal(3)), the
calling process resumes execution from the point of suspension;
with a return value of —1 from pause and errno set to
EINTR.

SEE ALSO
alarm(2), kill(2), wait(2), signal(3).

-1- September, 1987

phys(2) phys(2)

NAME
phys — allow a process to access physical addresses

SYNOPSIS
int phys (physnum, virtaddr, size, physaddr)
int physnum;
char *virtaddr;
unsigned int size;
char *physaddr;

DESCRIPTION

The phys system call allows the superuser to map a region of
physical memory into a process’s virtual address space.

The calling process chooses physnum to specify the phys region
this call references. The maximum number of regions per process
is defined by the v_phys field in the var structure returned by
uvar(2). physnum must be between zero and v_phys -1, and is
only used to identify a particular phys region to the kernel dur-
inga phys system call.

virtaddr is the base virtual address for the region in the process’s
virtual address space, and size is the length in bytes of the desired
region. The virtual address range of the region must not overlap
any of the existing address space of the process, including text,
data, stack, shared memory regions (see shmget(2)), and any
other active phys regions. All addresses in this range must be
valid user virtual addresses (see the example below). Care should
also be taken to avoid placing a phys region at a virtual address
that the data or stack segments might grow to encompass.

If size is zero, any previous phys mapping is cleared for the
region specified by physnum.

A phys region’s virtaddr and size are dependent on the imple-
mentation decisions for the memory management unit. In particu-
lar, the base virtaddr must be on a kernel segment boundary and
the size will be rounded up to an integral multiple of the page size.
These values may be computed from the v_segshift and
v_pageshift fields returned by uvar(2); i.e., the segment size
is

l<<v_segshift
and the page size is

1<<v_pageshift

-1- September, 1987

phys(2) phys(2)

The physaddr argument is the base physical address for the
region. physaddr is rounded down to the previous page boundary.
Also, physaddr to physaddr + size should be inside the range of
physical addresses supported by the hardware. phys regions
are inherited across fork(2) system calls and disowned across
execs.

phys may only be executed by a process with an effective user
ID of root.

As an example, suppose a process wishes to map a piece of
memory-mapped hardware into its address space. This hardware
has 0x8800 bytes of memory and control registers located at phy-
sical address OxFA000000. By calling uvar(2), the process finds
that v_pageshift is 12 and v_segshift is 20; thus, the
page size is 0x1000 and the segment size is 0x100000. Also,
v_phys is found to be 32, so any number from zero to 31 may be
used for physnum.

The var structure also contains v_ustart and v_uend, the
starting and ending virtual addresses for user processes. For this
example, assume v_ustart is zero and v_uend is
0x20000000. The first few segments are used for the running
program’s text and data and the last are used for the user stack.
The process might decide it is unlikely its data and text segment
will exceed 0x4000000, which is an integral multiple of 0x100000
(the segment size).

The call:
phys (0, 0x4000000, 0x8800, OxFA000000);

will allow the process access to physical locations from
0xFAO0OO00 to OxFAO009000 by referencing virtual addresses
0x4000000 to 0x4009000. The range has been adjusted to 0x9000
bytes because that is the next page boundary.

In this example, referencing 0x4008804 (an address in the phys
region, but outside of the known hardware memory) will result in
unpredictable failures. A useless value may be read off the
hardware lines, a write may appear to succeed without affecting
anything, the program may get a SIGSEGV (see signal(3)), the
hardware may react randomly, or the entire system may crash.
There may be other possibilities depending on system
configuration.

-2- September, 1987

phys(2) phys(2)

If the process wished to add another phys region without delet-
ing the first region, the next available virtaddr would be
0x4100000 (the next segment boundary) and physnum could be
any number from one to 31.

RETURN VALUES
The value zero is returned if the call was successful; otherwise —1
isreturned. phys will fail if the effective user ID of the calling
process is not root, if virtaddr or physaddr is not in the proper
range, or if the range of virtual addresses overlaps a portion of the
user’s virtual address space that is already in use.

NOTES
phys is hardware and implementation dependent and must be
used with extreme caution. The intention is to give the superuser
complete access to the physical hardware. To insure maximum
portability, virtaddr and size should be calculated as described in
the example.

Different hardware may respond differently to mistakes in
addressing. Sometimes all the bits of a physical address are not
decoded, making (for example) OxFD100000 the same as
0xFDO000000. If physaddr or size is wrong it is possible to crash
the system.

Most versions of UNIX do not support this system call.

SEE ALSO
uvar(2), shmget(2), signal(3).

-3- September, 1987

pipe(2) pipe(2)

NAME
pipe — create an interprocess channel

SYNOPSIS
int pipe (fildes)
int fildes(2];

DESCRIPTION
pipe creates an I/O mechanism called a pipe and returns two file
descriptors, fildes (0] and fildes (1] . fildes (0] is opened for
reading and fildes [1] is opened for writing.
Up to PIPE_MAX bytes of data are buffered by the pipe before
the writing process is blocked. A read only file descriptor
fildes [0] accesses the data written to fildes[1] on a first-in-
first-out (FIFO) basis.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of —1 is returned and errno is set to indicate the error.

ERRORS
pipe will fail if one or more of the following is true:

[EMFILE] pipe will fail if the per-process open file limit
would be exceeded.

[ENFILE] The system file table is full.

SEE ALSO
read(2), write(2).

-1- September, 1987

plock(2)

NAME

plock(2)

plock — lock process, text, or data in memory

SYNOPSIS

#include <sys/lock.h>
int plock (op)

int op;
DESCRIPTION

plock allows the calling process to lock its text segment (text
lock), its data segment (data lock), or both its text and data seg-
ments (process lock) into memory. Locked segments are immune
to all routine swapping. plock also allows these segments to
be unlocked. The effective user ID of the calling process must be
superuser to use this call. op specifies the following:

PROCLOCK

TXTLOCK

DATLOCK

UNLOCK
RETURN VALUE

lock text and data segments into memory (pro-
cess lock)

lock text segment into memory (text lock)
lock data segment into memory (data lock)
remove locks

Upon successful completion, a value of 0 is returned to the calling
process. Otherwise, a value of —1 isreturned and errno is set to
indicate the error.

ERRORS

plock will fail and not perform the requested operation if one or
more of the following are true:

[EPERM]

[EAGAIN]

[EINVAL]

[EINVAL]

[EINVAL]

The effective user ID of the calling process is
not superuser.

The system has temporarily exhausted its avail-
able memory or swap space.

op is equal to PROCLOCK and a process lock,
a text lock, or a data lock already exists on the
calling process.

op is equal to TXTLOCK and a text lock, or a
process lock already exists on the calling pro-
cess.

op is equal to DATLOCK and a data lock, or a
process lock already exists on the calling pro-
cess.

-1- September, 1987

plock(2) plock(2)

[EINVAL] op is equal to UNLOCK and no type of lock
exists on the calling process.

SEE ALSO
exec(2), exit(2), fork(2).

-2- September, 1987

profil(2) profil(2)

NAME
profil —execution time profile

SYNOPSIS
profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION
profil is used to report performance analysis of an application.
buff points to an area of core whose length (in bytes) is given by
bufsiz. After the call, the user’s program counter (pc) is examined
for each clock tick; offset is subtracted from it, and the result mul-
tiplied by scale. If the resulting number corresponds to a word
inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with
16 bits of fraction: 0x10000 gives a 1-1 mapping of pc’s to words
in buff; 0x8000 maps each pair of instruction words together; 2
maps all instructions onto the beginning of buff (producing a
noninterrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered
ineffective by giving a bufsiz of 0. Profiling is turned off when an
exec is executed, but remains on in child and parent both after a
fork. Profiling will be turned off if an update in buff would
cause a memory fault.

RETURN VALUE
Not defined.

SEE ALSO
prof(l), monitor(3C).

-1- September, 1987

ptrace(2) ptrace(2)

NAME
ptrace — process trace

SYNOPSIS
int ptrace (request, pid, addr, data)
int request, pid, addr, data;

DESCRIPTION

ptrace provides a means by which a parent process may control
the execution of a child process. Its primary use is for the imple-
mentation of breakpoint debugging. The child process behaves
normally until it encounters a signal (see sigvec(2) for the list),
at which time it enters a stopped state and its parent is notified via
wait(2). When the child is in the stopped state, its parent can
examine and modify its ‘‘core image’’ using ptrace. Also, the
parent can cause the child either to terminate or continue, with the
possibility of ignoring the signal that caused it to stop.

The request argument determines the precise action to be taken by
ptrace and is one of the following:

0 This request must be issued by the child process if it is to
be traced by its parent. It turns on the child’s trace flag that
stipulates that the child should be left in a stopped state
upon receipt of a signal rather than the state specified by
func; see sigvec(2). The pid, addr, and data arguments
are ignored, and a return value is not defined for this
request. Peculiar results will ensue if the parent does not
expect to trace the child.

The remainder of the requests can only be used by the parent pro-
cess. For each, pid is the process ID of the child. The child must
be in a stopped state before these requests are made.

1, 2

With these requests, the word at location addr in the address
space of the child is returned to the parent process. Either
request 1 or request 2 may be used with equal results. The
data argument is ignored. These two requests will fail if
addr is not the start address of a word, in which case a value
of —1 is returned to the parent process and the parent’s
errnoissetto EIO.

3 With this request, the word at location addr in the child’s
USER area in the system’s address space (see
<sys/user.h>) is returned to the parent process.
Addresses are system dependent. The data argument is

-1- September, 1987

ptrace(2) ptrace(2)

ignored. This request will fail if addr is not the start address
of a word or is outside the USER area, in which case a value
of —1 is returned to the parent process and the parent’s
errnoissetto EIO.

4, 5

With these requests, the value given by the data argument is
written into the address space of the child at location addr.
Either request 4 or request 5 may be used with equal results.
Upon successful completion, the value written into the
address space of the child is returned to the parent. These
two requests will fail if addr is a location in a pure procedure
space and another process is executing in that space, or addr
is not the start address of a word. Upon failure, a value of —1
is returned to the parent process and the parent’s errno is
setto EIO.

6 With this request, a few entries in the child’s USER area can
be written. data gives the value that is to be written and addr
is the location of the entry. The few entries that can be writ-
ten are:

the general registers
the condition codes
certain bits of the Processor Status Word

7 This request causes the child to resume execution. If the data
argument is O, all pending signals including the one that
caused the child to stop are canceled before it resumes execu-
tion. If the data argument is a valid signal number, the child
resumes execution as if it had incurred that signal, and any
other pending signals are canceled. The addr argument must
be equal to 1 for this request. Upon successful completion,
the value of data is returned to the parent. This request will
fail if data is not O or a valid signal number, in which case a
value of —1 is returned to the parent process and the parent’s
errnoissetto EIO.

8 This requést causes the child to terminate with the same
consequences as exit(2).

9 This request sets the trace bit in the Processor Status Word of
the child and then executes the same steps as listed above for
request 7. The trace bit causes an interrupt upon completion
of one machine instruction. This effectively allows single
stepping of the child.

-2- September, 1987

ptrace(2) ptrace(2)

Note: The trace bit remains set after an interrupt.

10 Read user register; pid = child process ID; addr = register
number; data is ignored; returns value of child’s register.

11 Write user register; pid = child process ID; addr = register
number; data = integer value to be written into named regis-
ter.

Note: For both requests 10 and 11, the register
numbers are as shown below for the 68000 family
(these numbers are system dependent).

Register Register# Register Register #
do 0 al 9
d1 1 a2 10
a2 2 a3 11
d3 3 a4 12
d4 4 a5 13
ds 5 a6 14
dé 6 Sp 15
d7 7 PC 16
a0 8 PS 17

To forestall possible fraud, ptrace inhibits the set-user-ID
facility on subsequent exec(2) calls. If a traced process calls
exec, it will stop before executing the first instruction of the new
image showing signal SIGTRAP.

ERRORS
ptrace will in general fail if one or more of the following are
true:
[EIO] request is an illegal number.
[ESRCH] pid identifies a child that does not exist or has
not executed a ptrace with request 0.
NOTE

Request 11 largely supercedes request 6, and request 10 largely
supercedes request 3 (request 3 can read any part of the child’s
user area while request 10 can only read register values of the
child).

SEE ALSO
exec(2), sigvec(2), wait(2), signal(3).

-3- September, 1987

read(2) read(2)

NAME
read, readv —read from file
SYNOPSIS
int read (fildes, buf, nbytes)
int fildes;
char *buf;
int nbytes;

#include <sys/types.h>
#include <sys/uio.h>

int readv (fildes, iov, iovcnt)
int fildes;

struct iovec *iov;

int iovcnt;

DESCRIPTION
read attempts to read nbytes bytes from the file associated with
fildes into the buffer pointed to by buf. readv performs the
same action, but scatters the input data into the iovcnt buffers
specified by the members of the iovec

fildes is a file descriptor obtained from a creat, open, dup,
fcntl, pipe, or socket system call.

array: iov[0],iov[1],..., iov[iovcnt—1].
For readv, the iovec structure is defined as

struct iovec {
caddr_t iov_base;
int iov_len;
}i
Each iovec entry specifies the base address and length of an
area in memory where data should be placed. readv will always
fill an area completely before proceeding to the next.

On devices capable of seeking, the read starts at a position in
the file given by the file pointer associated with fildes. Upon
return from read, the file pointer is incremented by the number
of bytes actually read.

Devices that are incapable of seeking always read from the current
position. The value of a file pointer associated with such a file is
undefined.

Upon successful completion, read and readv return the
number of bytes actually read and placed in the buffer; this

-1- September, 1987

read(2) read(2)

number may be less than nbytes if the file is associated with a
communication line (see ioctl(2), socket(2N), and
termio(7)), or if the number of bytes left in the file is less than
nbytes bytes. A value of 0 is returned when an end-of-file has
been reached.

When attempting to read from an empty pipe (or FIFO):
If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until data is writ-
ten to the file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no
data currently available:

If O_NDELAY is set, the read will return a 0.

If O _NDELAY is clear, the read will block until data
becomes available.
RETURN VALUE
Upon successful completion, a nonnegative integer is returned
indicating the number of bytes actually read. Otherwise, a —1 is
returned and errno is set to indicate the error.
ERRORS
When attempting to read from a stream that has no data currently
available, if O NDELAY is set, the read will retum —1 and

errno will be set to ENODATA. If O NDELAY is clear, the
read will block until data becomes available.

read and readv will fail if one or more of the following is true:
[EIO] A physical I/O error has occurred.

[ENXIO] The device associated with the file descrip-
tor is a block-special or character-special
file and the value of the file pointer is out
of range.

[EWOULDBLOCK] The file was marked for nonblocking I/O,
and no data were ready to be read.

[EBADF] fildes is not a valid file descriptor open for
reading.

[EFAULT] buf points outside the allocated address
space.

[EINTR] A signal was caught during the read sys-
tem call.

-2- September, 1987

read(2) read(2)

[ENODATA] A read from a stream was attempted
when no data was available and
O_NDELAY was set.

In addition, readv may return one of the following errors:

[EINVAL] iovent was less than or equal to 0, or greater
than 16.

[EINVAL] One of the iov_len values in the iov
array was negative.

[EINVAL] The sum of the iov_len values in the

iov array overflowed a 32-bit integer.

SEE ALSO
creat(2), fcntl(2), ioctl(2), open(?), pipe(2),
socket(2N), setcompat(2), termio(7).

-3- September, 1987

readlink(2) readlink(2)

NAME
readlink —read value of a symbolic link

SYNOPSIS
int readlink (path, buf, bufsiz)
char *path, *buf;
int bufsiz;

DESCRIPTION
readlink places the contents of the symbolic link name in the
buffer buf which has size bufsiz. The contents of the link are not
null terminated when returned.

RETURN VALUE
The call returns the count of characters placed in the buffer if it
succeeds, or a -1 if an error occurs, placing the error code in the
global variable errno.

ERRORS
readlink will fail and the file mode will be unchanged if:
[EPERM] The path argument contained a byte with
the high-order bit set.
[EPERM] A pathname contains a character with the

high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

[ELOOP] Too many symbolic links were encoun-
tered in translating a pathname.

[ENOENT] The pathname was too long.

[ENOTDIR] A component of the path prefix is not a
directory.

[ENOENT] The named file does not exist.

[ENXIO] The named file is not a symbolic link.

[EACCES] Search permission is denied on a com-
ponent of the path prefix.

[EPERM] The effective user ID does not match the
owner of the file and the effective user ID
is not the superuser.

[EINVAL] The named file is not a symbolic link.

-1- September, 1987

readlink(2) readlink(2)

[EFAULT] buf extends outside the process’s allocated
address space.
[ELOOP] Too many symbolic links were encoun-

tered in translating the pathname.
SEE ALSO
stat(2), 1stat(2), symlink(2).

-2- September, 1987

reboot(2) reboot(2)

NAME
reboot —reboot the system

SYNOPSIS
reboot ()

DESCRIPTION
reboot causes the kernel to execute the initial bootstrap code
that was used to boot the operating system.

The reboot(2) call takes the place of a manual restart and
requres effective user ID of root (superuser) to run.

SEE ALSO
reboot(1M).

-1- September, 1987

recv(2N) recv(2N)

NAME
recv, recvfrom, recvmsg — receive a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int recv(s, buf, len, flags)
int s;

char *buf;

int len, flags;

int recvfrom(s, buf, len, flags, from, fromlen)
int s;

char *buf;

int len, flags:;

struct sockaddr *from;

int *fromlen;

int recvmsg(s, msg, flags)
int s;
struct msghdr msgl[]:;
int flags;

DESCRIPTION

recv, recvfrom, and recvmsg are used to receive messages
from a socket.

The recv call may be used only on a connected socket (i.e.,
when connect(2N) has been used), while recvfrom and
recvmsg may be used to receive data on a socket whether it is in
a connected state or not.

If from is nonzero, the source address of the message is filled in.
fromlen is a value-result parameter, initialized to the size of the
buffer associated with from, and modified on return to indicate the
actual size of the address stored there. The length of the message
is returned. If a message is too long to fit in the supplied buffer,
excess bytes may be discarded depending on the type of socket the
message is received from; see socket(2N).

If no messages are available at the socket, the receive call waits
for a message to arrive, unless the socket is nonblocking (see
ioct1(2)) in which case a —1 is returned with the external vari-
able errno set to ENOULDBLOCK.

The select(2N) call may be used to determine when more data
arrives.

-1- September, 1987

recv(2N) recv(2N)

The flags argument to'a send call is formed by or’ing one or
more of the values,

#define MSG_PEEK 0x1 /* peek at incoming message */
#define MSG_OOB 0x2 /* process out-of-band data */

The recvmsg call uses a msghdr structure to minimize the
number of directly supplied parameters. This structure has the
following form, as defined in <sys/socket .h>:

struct msghdr {

caddr_t msg_name; /* optional address */

int msg_namelen; /* size of address */

struct iov *msg_iov; /* scatter/gather array */

int msg_iovlen; /* # elements in msg_iov */
caddr_t msg_accrights; /* access rights sent/received */
int msg_accrightslen;

};

Here msg_name and msg_namelen specify the destination
address if the socket is unconnected; msg_name may be given
as a null pointer if no names are desired or required. The
msg_iov and msg_iovlen describe the scatter gather loca-
tions. Access rights to be sent along with the message are
specified in msg_accrights, which has length
msg_accrightslen.

RETURN VALUE
These calls return the number of bytes received, or —1 if an error
occurred.

ERRORS
The calls fail if:

[EBADF] The argument s is an invalid descriptor.
[ENOTSOCK] The argument s is not a socket.

[EWOULDBLOCK] The socket is marked nonblocking and
the receive operation would block.

[EINTR] The receive was interrupted by delivery
of a signal before any data was available
for the receive.

[EFAULT] The data was specified to be received into

a nonexistent or protected part of the pro-
cess address space.

-2- September, 1987

recv(2N) recv(2N)

SEE ALSO
connect(2N), read(2), send(2N), socket(2N).

-3. September, 1987

rename(2) rename(2)

NAME
rename — change the name of a file

SYNOPSIS
int rename (from, to)
char *from, *to;

DESCRIPTION
rename causes the link named from to be renamed as to. If t0
exists, then it is first removed. Both from and fo must be of the
same type (that is, both directories or both nondirectories), and
must reside on the same file system.

rename guarantees that an instance of the file will always exist,
even if the system should crash in the middle of the operation.

CAVEAT
The system can deadlock if a loop in the file system graph is
present. This loop takes the form of an entry in directory “‘a’’ say
a/foo, being a hard link to directory ‘‘b’’, and an entry in direc-
tory “‘b’’, say b/bar, being a hard link to directory ‘‘a’’. When
such a loop exists and two separate processes attempt to perform
rename a/foo b/bar and rename b/bar a/foo,
respectively, the system may deadlock attempting to lock both
directories for modification. Hard links to directories should be
replaced by symbolic links by the system administrator.

RETURN VALUE
A 0 value is returned if the operation succeeds, otherwise
rename returns —1 and the global variable errno indicates the
reason for the failure.

ERRORS
rename will fail and neither of the files named as arguments will
be affected if any of the following are true:

[ENOTDIR] A component of either path prefix is not a
directory.
[EPERM] A pathname contains a character with the

high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

[ELOOP] Too many symbolic links were encoun-
tered in translating a pathname.

-1- September, 1987

rename(2)

[ENOENT]
[EACCES]

[ENOENT]
[EPERM]

[EXDEV]

[EACCES]

[EROFS]
[EFAULT]
[EINVAL]

SEE ALSO
mv(1l), open(2).

rename(2)

A component of either path prefix does not
exist.

A component of either path prefix denies
search permission.

The file named by from does not exist.

The file named by from is a directory and
the effective user ID is not superuser.

The link named by 7o and the file named by
from are on different logical devices (file
systems).

The requested link requires writing in a
directory with a mode that denies write
permission.

The requested link requires writing in a
directory on a read-only file system.

path points outside the process’s allocated
address space.

Jfrom is a parent directory of fo.

-2- September, 1987

rmdir(2) rmdir(2)

NAME
rmdir — remove a directory file
SYNOPSIS
int rmdir (path)
char *path;
DESCRIPTION
rmdir removes a directory file whose name is given by path.
The directory must not have any entries other than ‘“.’” and *‘.."”".

RETURN VALUE
A 0 is returned if the remove succeeds; otherwise a —1 is returned
and an error code is stored in the global location errno.

ERRORS
The named file is removed unless one or more of the following are
true:
[ENOTEMPTY] The named directory contains files other
than ‘6.’, and “. ", in it.
[EPERM] A pathname contains a character with the

high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

[ELOOP] Too many symbolic links were encoun-
tered in translating a pathname.

[ENOTDIR] A component of the path prefix is not a
directory.

[ENOENT] The named file does not exist.

[EACCES] A component of the path prefix denies
search permission.

[EACCES] Write permission is denied on the directory
containing the link to be removed.

[EBUSY] The directory to be removed is the mount
point for a mounted file system.

[EROFS] The directory entry to be removed resides
on a read-only file system.

[EFAULT] path points outside the process’s allocated
address space.

-1- September, 1987

rmdir(2) rmdir(2)

SEE ALSO
rmdir(l), mkdir(2), unlink(2).

-2- September, 1987

select(2N) select(2N)

NAME
select — synchronous I/O multiplexing

SYNOPSIS
#include <sys/time.h>

int select (nfds, readfds, writefds, execptfds, timeout)
int nfds, *readfds, *writefds, *execptfds;
struct timeval *timeout;

DESCRIPTION

select examines the I/O descriptors specified by the bit masks
readfds, writefds, and execptfds to see if they are ready for read-
ing, writing, or have an exceptional condition pending, respec-
tively. File descriptor f is represented by the bit 1<<f in the mask.
nfds descriptors are checked, i.e., the bits from 0 through nfds—1
in the masks are examined. select retums, in place, a mask of
those descriptors which are ready. The total number of ready
descriptors is returned.

If timeout is a nonzero pointer, it specifies a maximum interval to
wait for the selection to complete. If timeout is a zero pointer, the
select blocks indefinitely. To affect a poll, the timeout argument
should be nonzero, pointing to a zero valued timeval

structure.

Any of readfds, writefds, and execptfds may be given as 0 if no
descriptors are of interest.

RETURN VALUE
select returns the number of descriptors which are contained in
the bit masks, or —1 if an error occurred. If the time limit expires
then select returns 0.

ERRORS

An error return from se lect indicates:

[EBADF] One of the bit masks specified an invalid
descriptor.

[EINTR] A signal was delivered before any of the
selected for events occurred or the time limit
expired.

SEE ALSO

accept(2N), connect(2N), recv(2N), readv(2), send(2N),

writev(2).

-1- September, 1987

select(2N) select(2N)

BUGS
The descriptor masks are always modified on return, even if the
call returns as the result of the timeout.

-2- September, 1987

semct1(2)

NAME

semct1(2)

semct 1 — semaphore control operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)

int semid,

cmd;

int semnum;

union semun {
int wval;
struct semid ds *buf;
ushort *array;

} arg;
DESCRIPTION

semctl provides a variety of semaphore control operations as
specified by cmd.

The following cmds are executed with respect to the semaphore
specified by semid and semnum (see intro(2) for required per-
missions and structure declarations):

GETVAL Return the value of semval (see int ro(2)).

SETVAL Set the value of semval to arg.val. When this
command is successfully executed, the semadj
value corresponding to the specified semaphore in
all processes is cleared.

GETPID Return the value of sempid.

GETNCNT Return the value of semncnt.

GETZCNT Return the value of semzcnt.

The following cmds return and set, respectively, every semval in

the set of semaphores.

GETALL Place semvals into array pointed to by arg.array.

SETALL

Set semvals according to the array pointed to by
arg.array. When this command is successfully exe-
cuted, the semadj values corresponding to each
specified semaphore in all processes are cleared.

The following cmds are also available:

-1- September, 1987

semct1(2) semct1(2)

IPC_STAT Place the current value of each member of the data
structure associated with semid into the structure
pointed to by arg.buf. The contents of this structure
are defined in int ro(2).

IPC_SET Set the value of the following members of the data
structure associated with semid to the corresponding
value found in the structure pointed to by arg.buf:
sem _perm.uid
sem_perm.gid
sem perm.mode /* only low 9 bits */

This command can only be executed by a process
that has an effective user ID equal to either that of
superuser or to the value of sem perm.uid in the
data structure associated with semid.

IPC_RMID Remove the semaphore identifier specified by semid
from the system and destroy the set of semaphores
and data structure associated with it. This command
can only be executed by a process that has an effec-
tive user ID equal to either that of superuser or to the
value of sem perm.uid in the data structure
associated with semid. The identifier and its associ-
ated data structure are not actually removed until
there are no more referencing processes. See
ipcrm(1), and ipcs(1).

RETURN VALUE
Upon successful completion, the value returned depends on cmd
as follows:
GETVAL The value of semval.
GETPID The value of sempid.
GETNCNT The value of semncnt.
GETZCNT The value of semzent.
All others A value of 0.
Otherwise, a value of —1 is returned and errno is set to indicate
the error.
ERRORS
semct 1 will fail if one or more of the following are true:
[EINVAL] semid is not a valid semaphore identifier.

-2- September, 1987

semct1(2)

[EINVAL]

[EINVAL]
[EACCES]

[ERANGE]

[EPERM]

[EFAULT]
SEE ALSO

semct1(2)

semnum 1is less than zero or greater than
Sem_nsems.

cmd is not a valid command.

Operation permission is denied to the calling
process (see intro(2)).

cmd is SETVAL or SETALL and the value to
which semval is to be set is greater than the
system imposed maximum.

cmd is equal to IPC_RMID or IPC_SET and
the effective user ID of the calling process is
not equal to that of superuser and it is not equal
to the value of sem perm.uid in the data
structure associated with semid.

arg.buf points to an illegal address.

intro(2), semget(2), semop(2).

-3- September, 1987

semget (2) semget(2)

NAME
semget — get set of semaphores
SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
int semget (key, nsems, semflg)
key t key;
int nsems, semflg;
DESCRIPTION
semget returns the semaphore identifier associated with key.
A semaphore identifier and associated data structure and set con-

taining nsems semaphores (see intro(2)) are created for key if
one of the following are true:

key is equal to IPC_PRIVATE.

key does not already have a semaphore identifier associated
with it, and (semflg & IPC_CREAT) is ‘“‘true’’.

The key IPC_PRIVATE will create an identifier and associated
data structure that is unique to the calling process and its children.
Upon creation, the data structure associated with the new sema-
phore identifier is initialized as follows:

sem perm.cuid, sem perm.uid, sem perm.cgid,
and sem_perm.gid are set equal to the effective user ID
and effective group ID, respectively, of the calling process.

The low-order 9 bits of sem perm.mode are set equal to
the low-order 9 bits of semflg.

sem_nsems is set equal to the value of nsems.

sem_otime is set equal to 0 and sem_ctime is set equal
to the current time.

RETURN VALUE
Upon successful completion, a non-negative integer, namely a
semaphore identifier, is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
semget will fail if one or more of the following are true:
[EINVAL] nsems is either less than or equal to zero or

greater than the system-imposed limit.

-1- September, 1987

semget (2)

[EACCES]

[EINVAL]

[ENOENT]

[ENOSPC]

[ENOSPC]

[EEXIST]

SEE ALSO

semget (2)

A semaphore identifier exists for key, but
operation permission (see intro(2)) as
specified by the low-order 9 bits of semflg
would not be granted.

A semaphore identifier exists for key, but the
number of semaphores in the set associated
with it is less than nsems and nsems is not equal
to zero.

A semaphore identifier does not exist for key
and (semflg & IPC_CREAT) is ‘‘false’’.

A semaphore identifier is to be created but the
system-imposed limit on the maximum number
of allowed semaphore identifiers system wide
would be exceeded.

A semaphore identifier is to be created but the
system-imposed limit on the maximum number
of allowed semaphores system wide would be
exceeded.

A semaphore identifier exists for key but
((semfig & IPC_CREAT) && (semflg &
IPC_EXCL)) is “‘true’’.

intro(2), semct1(2), semop(2).

-2- September, 1987

semop(2) semop(2)

NAME
semop — semaphore operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;

struct sembuf **sops;

int nsops;

DESCRIPTION
semop is used to automatically perform an array of semaphore
operations on the set of semaphores associated with the sema-
phore identifier specified by semid. sops is a pointer to the array
of semaphore-operation structures. nsops is the number of such
structures in the array. The contents of each structure includes the
following members:

short sem num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem flg; /* operation flags */

Each semaphore operation specified by sem_op is performed on
the corresponding semaphore specified by semidand sem num.

sem_op specifies one of three semaphore operations as follows
(see int ro(2) for permissions and structure declarations:

If sem_op is a negative integer, one of the following will occur:

If semval (see intro(2)) is greater than or equal to the
absolute value of sem_op, the absolute value of sem_op is
subtracted from semval. Also, if (sem flg &
SEM_UNDO) is ‘‘true’’, the absolute value of sem op is
added to the calling process’s semadj value (see exit(2))
for the specified semaphore.

If semval is less than the absolute value of sem_ op and
(sem_flg & IPC_NOWAIT) is ‘‘true’’, semop will
return immediately.

If semval is less than the absolute value of sem op and
(sem_flg & IPC_NOWAIT) is ‘‘false’’, semop will
increment the semncnt associated with the specified sema-
phore and suspend execution of the calling process until one
of the following conditions occur:

-1- September, 1987

semop(2) semop(2)

semval becomes greater than or equal to the absolute
value of sem_op. When this occurs, the value of
semncnt associated with the specified semaphore is
decremented, the absolute value of sem op is sub-
tracted from semval and, if (sem flg &
SEM_UNDO) is “‘true’’, the absolute value of sem op
is added to the calling process’s semadj value for the
specified semaphore.

The semid for which the calling process is awaiting
action is removed from the system (see semct1(2)).
When this occurs, errno is set equal to EIDRM, and a
value of -1 is returned.

The calling process receives a signal that is to be caught.
When this occurs, the value of semncnt associated with
the specified semaphore is decremented, and the calling
process resumes execution in the manner prescribed in
signal(3).

If sem_op is a positive integer, the value of sem_op is added
to semval and, if (sem_flg & SEM UNDO) is ‘‘true”, the
value of sem op is subtracted from the calling process’s
semadj value for the specified semaphore.

If sem_op is zero, one of the following will occur:
If semval iszero, semop will return immediately.

If semval is not equal to zero and (sem flg &
IPC_NOWAIT) is ‘“‘true’’, semop will return immediately.

If semval is not equal to zero and (sem flg &
IPC_NOWAIT) is ‘‘false’’, semop will increment the
semzcnt associated with the specified semaphore and
suspend execution of the calling process until one of the fol-
lowing occurs:

semval becomes zero, at which time the value of
semzcnt associated with the specified semaphore is
decremented.

The semid for which the calling process is awaiting
action is removed from the system. When this occurs,
errno is set equal to EIDRM, and a value of —1 is
returned.

The calling process receives a signal that is to be caught.
When this occurs, the value of semzcnt associated

-2- September, 1987

semop(2)

semop(2)

with the specified semaphore is decremented, and the
calling process resumes execution in the manner
prescribed in signal(3).

RETURN VALUE

If semop returns due to the receipt of a signal, a value of -1 is
returned to the calling process and errno is set to EINTR. If it
returns due to the removal of a semid from the system, a value of
—1lisreturned and errno is set to EIDRM.

Upon successful completion, the value of semval at the time of
the call for the last operation in the array pointed to by sops is
returned. Otherwise, a value of —1 is returned and errno is set
to indicate the error.

ERRORS

semop will fail if one or more of the following are true for any of
the semaphore operations specified by sops:

[EINVAL]
[EFBIG]

[E2BIG]

[EACCES]

[EAGAIN]

[ENOSPC]

[EINVAL]

[ERANGE]

[ERANGE]

[EFAULT]

semid is not a valid semaphore identifier.

sem_num is less than zero or greater than or
equal to the number of semaphores in the set
associated with semid.

nsops is greater than the system-imposed max-
imum.

Operation permission is denied to the calling
process (see intro(2)).

The operation would result in suspension of the
calling process but (sem flg &
IPC_NOWAIT) is *“‘true’’.

The limit on the number of individual processes
requesting an SEM_UNDO would be exceeded.

The number of individual semaphores for
which the calling process requests a
SEM_UNDO would exceed the limit.

An operation would cause a semval to
overflow the system-imposed limit.

An operation would cause a semadj value to
overflow the system-imposed limit.

sops points to an illegal address.

-3- September, 1987

semop(2) semop(2)

Upon successful completion, the value of semid for each sema-
phore specified in the array pointed to by sops is set equal to the
process ID of the calling process.

SEE ALSO

exec(2), exit(2), fork(2), intro(2), semctl(2),
semget(2).

-4- September, 1987

send(2N) send(2N)

NAME
send, sendto, sendmsg — send a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket,h>

int send(s, msg, len, flags)
int s;

char *msg;

int len, flags;

int sendto(s, msg, len, flags, to, tolen)
int s;

char *msg;

int len, flags;

struct sockaddr *to;

int tolen;

int sendmsg(s, msg, flags)
int s;
struct msghdr msgl]:;
int flags;

DESCRIPTION
send, sendto, and sendmsg are used to transmit a message to
another socket. send may be used only when the socket is in a
connected state (i.e., when connect(2N) has been used), while
sendto and sendmsg may be used at any time.

The address of the target is given by to with tolen specifying its
size. The length of the message is given by len. If the message is
too long to pass atomically through the underlying protocol, then
the error EMSGSIZE is returne