
LEVEL II COBOL 

LANGUAGE REFERENCE 

MANUAL 

Version 2.0 

Micro Focus Limited 

i 

Issue 6 
February 1984 



COBOL is an industry language and is not the property of any company or 
group of companies. or of any organization or group of organizations. 

No warranty, expressed or implied, is made by any contributor or by the 
CODASYL Programming Language Committee as 'to the accuracy and functioning of 
the programming system and language. Moreover, no responsibility is assumed 
by any contributor, or by the committee, in connection herewith. 

The authors and copyright holders of the copyrighted material used herein: 

FLOW-MATIC (Trademark for Sperry Rand Corporation) Programming for the 

Univac(R) I and II, Data Automation Systems copyrighted 1958, 1959, by 

Sperry Rand Corporation; IBM Commercial Translator Form No. F28-8013, 
copyrighted 1959 by IBM; FACT, DSI27 A5260-2760, copyrighted 1960 by 
Minneapolis-Honeywell. 

have specifically authorized the use of this material in whole or in part, 
in the COBOL specifications. Such authorization extends to the reproduction 
and use of COBOL specifications in programming manuals or similar 
publications. 

MICRO FOCUS 
26 WEST STREET NEW8URY 
TELEPHONE (0635) 32646 (10 
TEL E X 8 4 8"0 4 6 M I C R 0 F G 

BERKSHIRE RG13 1-.JT 
LINES) 32595 (7 LINES] 

FAX (0635) 33966 

LEVEL II COBOI:M (LEVEL II COBOL), FORMS-21M (FORMS-2) , and ANIMATOR1M 

(ANIMATOR) are trademarks of Micro Focus 
IBM is a trademark of IBM Corporation 

~ COPYRIGHT 1978, 1984 by Micro Focus Ltd. 

ii 



LEVEL II COBOL LANGUAGE REFERENCE MANUAL 

AMENDMENT RECORD 

Issue Dated Inserted by Signature Date 
Number 

2 Oc tober 1982 - Incorporated in this reprint -

3 December 1982 - Addendum incorporated in this reprint -

4 February 1983 - Addendum 2 incorporated in this reprint-

S July 1983 - Incorporated in this reprint -

6 February 1984 - Typographical corrections -

iii 



PREFACE 

This manual describes the LEVEL II COBOL language for programming 
microcomputers. LEVEL II COBOL is based on the ANSI COBOL standard X3.23 
(1974) (see Acknowledgement). It also describes the additional LEVEL II 
COBOL features that exploit the capabilities of microprocessors. 

Each release of LEVEL II COBOL is characterized by a two-digit code in the 
form of 

"Version number". "Release number within version" 

Note: In the remainder of this manual the full product name LEVEL II COBOL 
is abbreviated to L/II COBOL. *' 

AUDIENCE 

This manual is intended for programmers already familiar with COBOL on other 
equipment. 

MANUAL ORGANIZATION 

Chapters 1 through 4 of the manual apply to all users and describe basic 
features of the language. Chapters 5 through 7 describe language features 
for programming the three file organization formats supported: sequential, 
relative and indexed. 

Chapters 8 through 11 apply to all users and describe additional features 
and facilities available with the standard language. The appendices supply 
reference information pertinent to al~ systemso 

The manual contains the following chapters and appendices: 

"Chapter 1. Introduction", which gives a general description of the 
language, including a broad outline of ANSI COBOL features included and 
omitted and additional features of L/Il COBOL. 

"Chapter 2. COBOL Concepts", which describes general concepts of the COBOL 
language including program structure, and details of statement components 
and notation. 

"Chapter 3. Nucleus", which describes the nucleus of all COBOL programs and 
the layout of each program division in the nucleus. 

"Chapter 4. Table Handling", which describes the handling of data tables in 
the Data and Procedure divisions of a COBOL program. 

"Chapter 5. Sequential Input and Output", which describes the programming of 
input and output of data in files with sequential format. 

iv (Addendum 1) 



"Chapter 6. Relative Inpu t and Output", which desc ribes the programming of 
input and output of data in files with relativ"e format. 

"Chapter 7. Indexed Input and Output", which describes the programming of 
input and output of data in files with indexed format. 

"Chapter 8. Sort-Merge", which describes the facility to order one or more 
files of records or to combine two or more identically ordered files of 
records according to a set of user-specified keys contained wi thin each 
record. 

"Chapter 9. Segmentation", which describes the facility for specifying 
permanent and independent object program segments. 

"Chapter 10. Library", which describes the source library maintenance 
feature of COBOL. 

"Chapter 11. Debug and Interactive Debugging", which describes the basic and' 
interactive debugging features available in L/II COBOL. 

"Chapter 12. Interprogram Communication", which describes the ability of 
L/lI COBOL programs to interface during running and to access common data, 
enabling modular programming. 

"Chapter 13. Communication", which describes the facility to communicate 
through a Message Control System (MCS) with local and remote devices, and to 
access, process and create messages or portions thereof. 

"Chapter 14. Programming Techniques and Sizing", which describes the means 
available for L/ll COBOL programmers to estimate object program size and 
includes programming techniques in L/II COBOL. 

"Appendix A. Reserved Word Table", which lists words reserved for L/Il COBOL 
functions within a program. 

"Appendix B. Character Set and Collating Sequence", which lists all 
characters available and their collating sequence. 

"Appendix C. Glossary", which lists specific terms used in L/II COBOL. 

"Appendix D. Compile - Time Errors", which lists all errors that can be 
signalled during program compilation. 

"Appendix E. Run-Time Errors", which lists all errors that can be signalled 
during program execution. 

"Appendix F. Synta"'{ Summary", which summarizes the syntax used in L/II 
COBOL programming. 

"Appendix G. Summary of Extensions to ANSI COBOL", which summarizes all 
extensions to ANSI COBOL provided by L/II COBOL. 

v 



"Appendix H. System Dependent Language Features", which describes the 
system dependent L/II COBOL entries for use with microcomputers and those 
features not included because of hardware requirements. 

"Appendix I. Language Specification", which is an overall specification of 
the L/II COBOL language. 

"Appendix J. IBM Extensions", which describes some L/II COBOL extensions 
that are compatible with the IBM 8100 DPPX COBOL implementation. 

RELATED PUBLICATIONS 

No discussion of operating the L/II COBOL Compiler or Run-Time system is 
incorporated in this manual. Please refer to document: 

L/II COBOL Operating Guide 
(for use with the relevant Operating System) 

NOTATION IN THIS MANUAL 

Throughout this manual, the following notation is used to describe the 
format of COBOL statements: 

1. All words printed in capital letters which are underlined must always 
be present when the functions of which they are a part are used. An 
error printout will occur during compilation if the underlined words 
are absent or incorrectly spelled. The underlining is not necessary 
when writing a COBOL source program. 

2. All words printed in capital letters which are not underlined are used 
for readability only. They may be written, or not, as the programmer 
wishes. 

3. All words printed in small letters are generic terms representing 
names which will be devised by the programmer. 

4. When material is enclosed in braces { } , a choice must be made from 
the options within them. 

5. When material is enclosed in square brackets [ ], it is an indication 
that the material is an option which may be included or omitted as 
required. 

6. When material is enclosed in square brackets crossed t- +, it is an 
indication that the material is mandatory when the ANSI switch is set 
(see Chapter 2) but optional otherwise. 

7. Language features that are shaded in the text are language extensions 
which exceed the ANSI 1974 standard, as are ANSI 1974- features that 
are treated as for documentary purposes only in LEVEL II COBOL. See 
note at the end of this Preface. 

vi (Addendum 1) 



9. 

10. 

In text, the ellipsis 
source program or a 
context. 

(. 0 • ) shows the omission of a portion of a 
sequence. This meaning becomes apparent in 

In the general formats, the ellipsis represents the position at which 
repetition may occur at the user's option. The portion of the format 
that may be repeated is determined as follows: 

Given •.• in a clause or statement format, scanning right to left, 
determine the or [ immediately to the left of the •.. , continue 
scanning right to left and determine the logically matching or]; the 

applies to the words between the determined pair of delimiters. 

The term 
data-name. 

identifier means either a data-name or 
An identifier takes the following form: 

data-name-1 [ ( ~ data-name-2 ~ 
~ literal-1 5 

a subscripted 

data-name-2 or literal-l must be a positive integer in the range 1 
to the number of elements in the table. 

Headings are presented in this manual in the following order of importance: 

CHAPTER 
N l Chapter Heading 

TITLE 

ORDER ONE HEADING 

ORDER TWO HEADING 

Order Three Heading Text two lines down 

Order Four Heading 

Order Five Heading: Text on same line 

Numbers one (1) to nine (9) are written in text as letters, e.g. one. 

Numbers ten (10) upwards are written in text as numbers, e.g. 12. 

The phrase "For documentation purposes only" in the text of this manual 
means that the associated coding is accepted syntactically by the Compiler, 
but is ignored when producing the object program. 

Bars in the right hand margin indicate differences from CIS COBOL Version 4, 
and asterisks in the right hand margin indicate deletions. 

Changes issued as part of an Addendum are identified by the Addendum number 
printed at the bottom of the changed page. On these pages the change bars 
and asterisks indicate only change$ since the-previous release. Page iii is 
provided as a record of all amendments to your copy of the manual. 

vii (Addendum 1) 



TABLE OF CONTENTS 

PREFACE 

CHAPTER 1 

INTRODUCTION 

WHAT IS L/II COBOL? 

PROGRAM STRUCTURE 

FORMATS AND RULES 

GENERAL FORMAT 
SYNTAX RULES 
GENERAL RULES 
ELEMENTS 

SOURCE FORMAT 

SEQUENCE NUMBER 
INDICATOR AREA 
AREAS A AND B 

CHAPTER 2 

COBOL CONCEPTS 

LANGUAGE CONCEPTS 

CHARACTER SET 
LANGUAGE STRUCTURE 

Separators 
Character-strings 

COBOL Words 

User-Defined Words 
Condition-Name 
Mnemonic-Name 
Paragraph-Name 
Section-Name 
Other User-Defined Names 
System-Names 
Reserved Words 
Key Words 
Optional Words 
Connectives 

viii 

1-1 

1-3 

1-4 

1-4 
1-4 
1-4 
1-4 

1-5 

1-5 
1-5 
1-5 

2-1 

2-1 
2-1 

2-2 
2-3 

2-3 

2-3 
2-4 
2-4 
2-5 
2-5 
2-5 
2-5 
2-5 
2-6 
2-6 
2-6 



Special Registers 
Figurative Constants 
Special-Character Words 

Literals 

Nonnumeric Literals 
Numeric Literals 

Figurative Constant Values 
PICTURE Character-Strings 
Comment-Entries 

CONCEPT OF COMPUTER INDEPENDENT DATA DESCRIPTION 

Concept of Levels 

Level-Numbers 

Concept of Classes of Data 
Selection of Character Representation and Radix 
Algebraic Signs 
Standard Alignment Rules 
Uniqueness of Reference 

2-6 
2-6 
2-7 

2-7 

2-7 
2-7 

2-8 
2-10 
2-10 

2-11 

2-11 

2-11 

2-12 
2-13 
2-15 
2-15 
2-16 

Qualification 2-16 
Subscripting 2-17 
Indexing 2-18 
Identifier 2-19 
Condition-Name 2-20 

EXPLICIT AND IMPLICIT SPECIFICATIONS 2-20 

Explicit and Implicit Procedure Division References 2-20 
Explicit and Implicit Transfers of Control 2-21 
Explicit and Implicit Attributes 2-22 

PROGRAN STRUCTURE 2-22 

THE "ANSI SWITCH" COMPILER DIRECTIVE 2-23 

IDENTIFICATION DIVISION 2-24 

GENERAL DESCRIPTION 2-24 
ORGANIZATION 2-24 
STRUCTURE 2-24 

General Format 2-24 

ix 



ENVIRONMENT DIVISION 

GENERAL DESCRIPTION 
ORGANIZATION 
STRUCTURE 

General Format 

DATA DIVISION 

OVERALL APPROACH 
PHYSICAL AND LOGICAL ASPECTS OF DATA DESCRIPTION 

Data Division Organization 
General Format 

PROCEDURE DIVISION 

GENERAL DESCRIPTION 

Declaratives 
Procedures 
Execution 
General Format 

Procedure Division Header 
Procedure Division Body 

STATEMENTS AND SENTENCES 

Conditional Statement 
Conditional Sentence 
Compiler Directing Statement 
Compiler Directing Sentence 
Imperative Statement 
Imperative Sentence 
Categories of Statements 

REFERENCE FORMAT 

GENERAL DESCRIPTION 
REFERENCE FORMAT REPRESENTATION 

Sequence Numbers 
Continuation of Lines 
Blank Lines 
Pseudo Text 

DIVISION, SECTION, PARAGRAPH FORMATS 

x 

2-25 

2-25 
2-25 
2-25 

2-25 

2-26 

'2-26 
2-26 

2-26 
2-27 

2-28 

2-28 

2-28 
2-28 
2-29 
2-29 

2-29 
2-29 

2-29 

2-30 
2-30 
2-30 
2-30 
2-31 
2-31 
2-32 

2-34 

2-34 
2-34 

2-35 
2-35 
2-35 
2-35 

2-36 



Division Header 
Section Header 
Paragraph Header, Paragraph-Name and Paragraph 

DATA DIVISION ENTRIES 
DECLARATIVES 
COMMENT LINES 

RESERVED WORDS 

FUNCTION OF THE NUCLEUS 
OVERALL LANGUAGE 

NAME CHARACTERISTICS 
FIGURATIVE CONSTANTS 
REFERENCE FORMAT 

CHAPTER 3 

THE NUCLEUS 

IDENTIFICATION DIVISION IN THE NUCLEUS 

GENERAL DESCRIPTION 
. ORGANIZATION 

Structure 
General Format 
Syntax Rules 

THE PROGRAM-ID PARAGRAPH 

Function 
General Format 
Syntax Rules 
General Rules 

THE DATE-COMPILED PARAGRAPH 

Function 
General Format 
Syntax Rule' 
General Rule 

ENVIRONMENT DIVISION IN THE NUCLEUS 

CONFIGURATION SECTION 

The SOURCE-COMPUTER Paragraph 

xi 

2-36 
2-36 
2-36 

2-36 
2-37 
2-37 

2-38 

3-1 
3-1 

3-1 
3-1 
3-1 

3-2 

3-2 
3-2 

3-2 
3-2 
3-2 

3-3 

3-3 
3-3 
3-3 
3-3 

3-3 

3-3 
3-3 
3-3 
3-3 

3-4 

3-4 

3-4 



Function 
General Format 
Syntax Rules 
General Rules 

The OBJECT-COMPUTER Paragraph 

Function 
General Format 
Syntax Rules 
General Rules 

The SPECIAL-NAMES Paragraph 

Function 
General Format 
Syntax Rule 
General Rules 

DATA DIVISION IN THE NUCLEUS 

WORKING-STORAGE SECTION 

Noncontiguous Working-Storage 
Working-Storage Records 
Initial Values 

THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON 

Function 
General Format 
Syntax Rules 
General Rules 

THE BLfu~K WHEN ZERO CLAUSE 

Function 
General Format 
Syntax Rule 
General Rules 

THE DATA-NAME OR FILLER CLAUSE 

Function 
General Format 
Syntax Rules 
General Rule 

THE JUSTIFIED CLAUSE 

xii 

3-4 
J-4 
3-4 
3-4 

3-4 

3-4 
3-4 
3-4 
3-4 

3-5 

3-5 
3-6 
3-6 
3-7 

3-9 

3-9 

3-9 
3-9 
3-9 

3-9 

3-9 
3-10 
3-10 
3-11 

3-12 

3-12 
3-12 
3-12 
3-12 

3-13 

3-13 
3-13 
3-13 
3-13 

3-14 



Function 
General Format 
Syntax Rules 
General Rules 

LEVEL-NUMBER 

Function 
General Format 
Syntax Rules 
General Rules 

THE PICTURE CLAUSE 

Function 
General Format 
Syntax Rules 
General Rules 

Alphabetic Data Rules 
Numeric Data Rules 
Alphanumeric Data Rules 
Alphanumeric Edited Data Rules 
Numeric Edited Data Rules 
Elementary Item Size 
Symbols Used 

Editing Rules 

Simple Insertion Editing 
Special Insertion Editing 
Fixed Insertion Editing 
Floating Insertion Editing 
Zero Suppression Editing 

Precedence Rules 

THE REDEFINES CLAUSE 

Function 
General Format 
Syntax Rules 
General Rules 

THE REN&~ES CLAUSE 

Function 
General Format 
Syntax Rules 
General Rules 

xiii 

3-14 
3-14 
3-14 
3-14 

3-15 

3-15 
3-15 
3-15 
3-15 

3-16 

3-16 
3-16 
3-16 
3-16 

3-16 
3-16 
3-17 
3-17 
3-17 
3-18 
3-18 

3-20 

3-21 
3-21 
3-21 
3-22 
3-23 

3-23 

3-26 

3-26 
3-26 
3-26 
3-26 

3-28 

3-28 
3-28 
3-28 
3-29 



THE SIGN CLAUSE 3-30 

Function 3-30 
General Format 3-30 
Syntax Rules 3-30 
General Rules 3-30 

THE SYNCHRONIZED CLAUSE 3-32 

Function 3-32 
General Format 3-32 
Syntax Rules 3-32 
General Rules 3-32 

THE USAGE CLAUSE 3-34 

Function 3-34 
General Format 3-34 
Syntax Rules 3-34 
General Rules 3-34 

THE VALUE CLAUSE 3-35 

Function 3-35 
General Format 3-35 
Syntax Rules 3-35 
General Rules 3-35 
Condition-Name Rules 3-36 
Data Description Entries other than Condition-Names 3-36 

PROCEDURE DIVISION IN THE NUCLEUS 3-38 

ARITHMETIC EXPRESSIONS 3-38 

Definition of an Arithmetic Expression 3-38 
Arithmetic Operators 3-38 
Formulation and Evaluation Rules 3-38 

CONDITIONAL EXPRESSIONS 3-40 

Simple Conditions 3-40 

Relation Condition 3-40 

Comparison of Numeric 
Operands 3-41 
Comparison of Nonnumeric 
Operands 3-41 
Class Condition 3-42 

xiv 



Condition-Name Condition 
Switch-Status Condition 
Sign Condition 

Complex Conditions 

Negated Simple Conditions 
Combined and Negated Simple Conditions 

Abbreviated Combined Relation Conditions 

Condition Evaluation Rules 

COMMON PHRASES AND GENERAL RULES FOR STATEMENT FORMATS 

The ROUNDED Phrase 
The SIZE ERROR Phrase 

SIZE ERROR Phrase Not Specified 
SIZE ERROR Phrase Specified 

The CORRESPONDING Phrase 
Arithmetic Statements 
Overlapping Operands 
Multiple Results in Arithmetic Statements 
Incompatible Data 
Signed Receiving Items 
CRT Devices 

THE ACCEPT STATEMENT 

Function 
General Format 
Syntax Rule 
General Rules 

THE ADD STATEMENT 

Function 
General Format 
Syntax Rules 
General Rules 

THE ALTER STATEMENT 

Function 
General Format 
Syntax Rules 
General Rules 

THE COMPUTE STATEMENT 

xv 

3-43 
3-43 
3-44 

3-44 

3-45 
3-45 

3-46 

3-47 

3-49 

3-49 
3-49 

3-49 
3-49 

3-50 
3-50 
3-51 
3-51 
3-51 
3-52 
3-52 

3-53 

3-53 
3-53 
3-53 
3-53 

3-58 

3-58 
3-58 
3-58 
3-59 

3-60 

3-60 
3-60 
3-60 
3-60 

3-61 

(Addendum 2) 



Function 3-61 
General Format 3-61 
Syntax Rules 3-61 
General Rules 3-61 

THE DISPLAY STATEMENT 3-62 

Function 3-62 
General Format 3-62 
Syntax Rules 3-62 
General Rules 3-62 

THE DIVIDE STATEMENT 3-65 

Function 3-65 
General 3-65 
Syntax Rules 3-66 
General Rules 3-66 

THE ENTER STATEMENT 3-68 

Function 3-68 
General 3-68 
Syntax Rule 3-68 
General Rule 3-68 

THE EXIT STATEMENT 3-69 

Function 3-69 
General Format 3-69 
Syntax Rule 3-69 
General Rule 3-69 

THE GO TO STATEMENT 3-70 

Function 3-70 
General Format 3-70 
Syntax Rules 3-70 
General Rules 3-70 

THE IF STATEMENT 3-72 

Function 3-72 
General Format 3-72 
Syntax Rules 3-72 
General Rules 3-72 

xvi 



THE INSPECT STATEMENT 3-74 

Function 3-74 
General Format 3-74 
Syntax Rules 3-75 
General Rules 3-76 

THE MOVE STATEMENT 3-82 

Function 3-82 
General Format 3-82 
Syntax Rules 3-82 
General Rules 3-82 

THE MULTIPLY STATEMENT 3-86 

Function 3-86 
General Format 3-86 
Syntax Rules 3-86 
General Rules 3-86 

THE PERFORM STATEMENT 3-88 

Function 3-88 
General Format 3-88 
Syntax Rules 3-89 
General Rules 3-89 

THE STOP STATEMENT 3-96 

Function 3-96 
General Format 3-96 
Syntax Rules 3-96 
General Rules 3-96 

THE STRING STATEMENT 3-97 

Function 3-97 
General Format 3-97 
Syntax Rules 3-97 
General Rules 3-98 

THE SUBTRACT STATEMENT 3-100 

Function 3-100 
General Format 3-100 
Syntax Rules 3-100 
General Rules 3-101 

xvii 



THE UNSTRING STATEMENT 

Function 
General Format 
Syntax Rules 
General Rules 

CHAPTER 4 

TABLE HANDLING 

INTRODUCTION TO THE TABLE HANDLING MODULE 
DATA DIVISION IN THE TABLE HANDLING MODULE 

THE OCCURS CLAUSE 

Function 
General Format 
Syntax Rules 
General Rules 

THE USAGE CLAUSE 

Function 
General Format 
Syntax Rules 
General Rules 

PROCEDURE DIVISION IN THE TABLE HANDLING MODULE 

RELATION CONDITION 

Comparisons Involving Index-names and/or 
Index Data Items 

OVERLAPPING OPERANDS 

THE SEARCH STATEMENT 

Function 
General Format 
Syntax Rules 
General Rules 

xviii 

3-102 

3-102 
3-102 
3-102 
3-103 

4-1 
4-1 

4-1 

4-1 
4-1 
4-1 
4-3 

4-4 

4-4 
4-4 
4-4 
4-4 

4-4 

4-4 

4-4 

4-4 

4-5 

4-5 
4-5 
4-6 
4-7 



THE SET STATEMENT 

Function 
General Format 
Syntax Rules 
General Rules 

CHAPTER 5 

SEQUENTIAL INPUT AND OUTPUT 

INTRODUCTION TO THE SEQUENTIAL 1-0 MODULE 

LANGUAGE CONCEPTS 

Organization 
Access Mode 
Current Record Pointer 
1-0 Status 

Status Key 1 
Status Key 2 
Valid Combinations of Status 

1 and 2 

The AT END Condition 

LINAGE - COUNTER 

ENVIRONMENT DIVISION IN THE SEQUENTIAL 1-0 MODULE 

INPUT-OUTPUT SECTION 

The FILE-CONTROL Paragraph 

Function 
General Format 

The FILE-CONTROL Entry 

Function 
General Format 
Syntax Rules 
General Rules 

xix 

4-10 

4-10 
4-10 
4-10 
4-10 

5-1 

5-1 

5-1 
5-1 
5-1 
5-1 

5-1 
5-2 

5-2 

5-3 

5-3 

5-4 

5-4 

5-4 

5-4 
5-4 

5-4 

5-4 
5-4 
5-4 
5-5 



The 1-0 CONTROL Paragraph 

Function 
General Format 
Syntax Rules 
General Rules 

DATA DIVISION IN THE SEQUENTIAL 1-0 MODULE 

FILE SECTION 
RECORD DESCRIPTION STRUCTURE 
THE FILE DESCRIPTION-COMPLETE ENTRY SKELETON 

Function 
General Format 
Syntax Rules 

THE BLOCK CONTAINS CLAUSE 

Function 
General Format 
General Rule 

THE CODE-SET CLAUSE 

Function 
General Format 
Syntax Rules 
General Rule 

THE DATA RECORDS CLAUSE 

Function 
General Format 
Syntax Rule 
General -Rule 

THE LABEL RECORDS CLAUSE 

Function 
General Format 
Syntax Rule 
General Rule 

THE LINAGE CLAUSE 

Function 
General Format 
Syntax Rules 
General Rules 

xx 

5-6 

5-6 
5-6 
5-6 
5-7 

5-8 

5-8 
5-8 
5-9 

5-9 
5-9 
5-9 

5-10 

5-10 
5-10 
5-10 

5-10 

5-10 
5-10 
5-10 
5-10 

5-10 

5-10 
5-11 
5-11 
5-11 

5-11 

5-11 
5-11 
5-11 
5-11 

5-11 

5-11 
5-11 
5-12 
5-12 



THE RECORD CONTAINS CLAUSE 5-15 

Function 5-15 
General Format 5-15 
General Rules 5-15 

THE VALUE OF CLAUSE 5-15 

Function 5-15 
General Format 5-15 
Syntax Rules 5-15 
General Rules 5-15 

PROCEDURE DIVISION IN THE SEQUENTIAL I-O MODULE 5-17 

THE CLOSE STATEMENT 5-17 

Function 5-17 
General Format 5-17 
Syntax Rules 5-17 
General Rules 5-17 

THE OPEN STATEMENT 5-21 

Function 5-21 
General Format 5-21 
Syntax Rules· 5-21 
General Rules 5-21 

THE READ STATEMENT 5-25 

Function 5-25 
General Format 5-25 
Syntax Rules 5-25 
General Rules 5-25 

THE REWRITE STATEMENT 5-28 

Function 5-28 
General Format 5-28 
Slntax Rules 5-28 
General Rules 5-28 

THE USE STATEMENT 5-30 

Function 5-30 
General Format 5-30 
Syntax Rules 5-30 
General Rules 5-30 

xxi 



THE WRITE STATEMENT 

Function 
General Format 
Syntax Rules 
General Rules 

CHAPTER 6 

RELATIVE INPUT AND OUTPUT 

INTRODUCTION TO THE RELATIVE 1-0 MODULE 

LANGUAGE CONCEPTS 

Organization 
Access Modes 
Current Record Pointer 
1-0 Status 

Status Key 1 
Status key 2 
Valid Combination of Status Keys 

1 and 2 
The INVALID KEY Condition 
The AT END Condition 

ENVIRONMENT DIVISION IN THE RELATIVE 1-0 MODULE 

INPUT-OUTPUT SECTION 

The FILE-CONTROL Paragraph 

Function 
General Format 

The FILE CONTROL Entry 

Function 
General Format 
Syntax Rules 
General Rules 

The 1-0 CONTROL Paragraph 

Function 
General Format 
Syntax Rules 
General Rules 

xxii 

5-32 

5-32 
5-32 
5-32 
5-33 

6-1 

6-1 

6-1 
6-1 
6-1 
6-1 

6-2 
6-2 

6-3 
6-4 
6-4 

6-5 

6-5 

6-5 

6-5 
6-5 

6-5 

6-4 
6-5 
6-5 
6-6 

6-8 

6-8 
6-8 
6-8 
6-9 



DATA DIVISION IN THE RELATIVE 1-0 MODULE 

FILE SECTION 
RECORD DESCRIPTION STRUCTURE 
THE FILE DESCRIPTION-COMPLETE ENTRY SKELETON 

Function 
General Format 
Syntax Rules 

THE BLOCK CONTAINS CLAUSE 

Function 
General Format 
General Rule 

THE DATA RECORDS CLAUSE 

Function 
General Format 
Syntax Rule 
General Rule 

THE LABEL RECORDS CLAUSE 

Function 
General Format 
Syntax Rule 
General Rule 

THE RECORD CONTAINS CLAUSE 

Function 
General Format 
General Rules 

THE VALUE OF CLAUSE 

Function 
General Format 
Syntax Rules 
General Rules 

PROCEDURE DIVISION IN THE RELATIVE 1-0 MODULE 

THE CLOSE STATEMENT 

Function 
General Format 
Syntax Rule 
General Rules 

xxiii 

6-10 

6-10 
6-10 
6-10 

6-10 
6-11 
6-11 

6-11 

6-11 
6-11 
6-11 

6-12 

6-12 
6-12 
6-12 
6-12 

6-12 

6-12 
·6-12 
6-12 
6-12 

6-13 

6-13 
6-13 
6-13 

6-14 

6-14 
6~14 

6-14 
6-14 

6-15 

6-15 

6-15 
6-15 
6-15 
6-15 



THE DELETE STATEMENT 6-17 

Function 6-17 
General Format 6-17 
Syntax Rules 6-17 
General Rules 6-17 

THE OPEN STATEMENT 6-18 

Function 6-18 
General Format 6-18 
Syntax Rules 6-18 
General Rules 6-18 

THE READ STATEMENT 6-21 

Function 6-21 
General Format 6-21 
Syntax Rules 6-21 
General Rules 6-21 

THE REWRITE STATEMENT 6-24 

Function 6-24 
General Format 6-24 
Syntax Rules 6-24 
General Rules 6-24 

THE START STATEMENT 6-26 

Function 6-26 
General Format 6-26 
Syntax Rules 6-26 
General Rules 6-26 

THE USE STATEMENT 6-28 

Function 6-28 
General Format 6-28 
Syntax Rules 6-28 
General Rules 6-28 

THE WRITE STATEMENT 6-30 

Function 6-30 
General Format 6-30 
Syntax Rules 6-30 
General Rules 6-30 

xxiv 



CHAPTER 7 

INDEXED INPUT AND OUTPUT 

INTRODUCTION TO THE INDEXED 1-0 MODULE 

LANGUAGE CONCEPTS 

Organization 
Access Modes 
Current Record Pointer 
1-0 Status 

Status Key 1 
Status Key 2 
Valid Combination of Status Keys 

1 and 2 
The INVALID KEY Condition 
The AT END Condition 

ENVIRONMENT DIVISION IN THE INDEXED 1-0 MODULE 

INPUT-OUTPUT SECTION 

The FILE-CONTROL Paragraph 

Function 
General Format 

The FILE CONTROL Entry 

Function 
General Format 
Syntax Rules 
General Rules 

The 1-0 CONTROL Paragraph 

Function 
General Format 
Syntax Rules 
General Rules 

DATA DIVISION IN THE INDEXED 1-0 MODULE 

FILE SECTION 
RECORD DESCRIPTION STRUCTURE 
THE FILE DESCRIPTION-COMPLETE ENTRY SKELETON 

xxv 

7-1 

7-1 

7-1 
7-1 
7-2 
7-2 

7-2 
7-3 

7-4 
7-4 
7-5 

7-6 

7-6 

7-6 

7-6 
7-6 

7-6 

7-6 
7-6 
7-7 
7-7 

7-8 

7-8 
7-8 
7-9 
7-9 

7-11 

7-11 
7-11 
7-12 



Function 
General Format 
Syntax Rules 

THE BLOCK CONTAINS CLAUSE 

Function 
General Format 
General Rule 

THE DATA RECORDS CLAUSE 

Function 
General Format 
Syntax Rules 
General Rules 

THE LABEL RECORDS CLAUSE 

Function 
General Format 
Syntax Rule 
General Rule 

THE RECORD CONTAINS CLAUSE 

Function 
General Format 
General Rules 

THE VALUE OF CLAUSE 

Function 
General Format 
Syntax Rules 
General Rules 

PROCEDURE DIVISION IN THE INDEXED 1-0 MODULE 

THE CLOSE STATEMENT 

Function 
General Format 
Syntax Rules 
General Rules 

xxvi 

7-12 
7-12 
7-12 

7-12 

7-12 
7-13 
7-13 

7-13 

7-13 
7-13 
7-13 
7-13 

7-13 

7-13 
7-14 
7-14 
7-14 

7-14 

7-14 
7-14 
7-14 

7-14 

7-14 
7-14 
7-15 
7-15 

7-16 

7-16 

7-16 
7-16 
7-16 
7-16 



THE DELETE STATEMENT 7-18 

Function 7-18 
General Format 7-18 
Syntax Rules 7-18 
General Rules 7-18 

THE OPEN STATEMENT 7-19 

Function 7-19 
General Format 7-19 
Syntax Rules 7-19 
General Rules 7-19 

THE READ STATEMENT 7-22 

Function 7-22 
General Format 7-22 
Syntax Rules 7-22 
General Rules 7-23 

THE REWRITE STATEMENT 7-26 

Function 7-26 
General Format 7-26 
Syntax Rules 7-26 
General Rules 7-26 

THE START STATEMENT 7-28 

Function 7-28 
General Format 7-28 
Syntax Rules 7-28 
General. Rules 7-28 

THE USE STATEMENT 7-30 

Function 7-30 
General Format 7-30 
Syntax Rules 7-30 
General Rules 7-30 

THE WRITE STATEMENT 7-32 

Function 7-32 
General Format 7-32 
Syntax Rules 7-32 
General Rules 7-32 

xxvii 



CHAPTER 8 

SORT-MERGE 

INTRODUCTION TO THE SORT-MERGE MODULE 

RELATIONSHIP WITH_SEQUENTIAL 1-0 MODULE 

ENVIRONMENT DIVISION IN THE SORT-MERGE MODULE 

INPUT-OUTPUT SECTION 

The FILE-CONTROL Paragraph 

Function 
General Format 

The FILE-CONTROL Entry 

. Function 
General Format 
Syntax Rules 
General Rule 

The 1-0 Control Paragraph 

Function 
General Format 
Syntax Rules 
General Rules 

DATA DIVISION IN THE SORT-MERGE }10DULE 

FILE SECTION 

THE SORT-MERGE FILE DESCRIPTION - COMPLETE ENTRY 
SKELETON 

Function 
General Format 
Syntax Rule 

THE DATA RECORDS CLAUSE 

Function 
General Format 
Syntax Rule 
General Rules 

THE RECORD CONTAINS CLAUSE 

xxviii 

8-1 

8-1 

8-1 

8-1 

8-1 

8-1 
8-1 

8-1 

8-1 
8-1 
8-2 
8-2 

8-2 

8-2 
8-2 
8-2 
8-3 

8-4 

8-4 

8-4 

8-4 
8-4 
8-4 

8-4 

8-4 
8-4 
8-5 
8-5 

8-5 



Function 
General Format 
General Rules 

PROCEDURE DIVISION IN THE SORT-MERGE MODULE 

THE MERGE STATEMENT 

Function 
General Format 
Syntax Rules 
General Rules 

THE RELEASE STATEMENT 

Function 
General Format 
Syntax Rules 
General Rules 

THE RETURN STATEMENT 

Function 
General Format 
Syntax Rules 
General Rules 

THE SORT STATEMENT 

Function 
General Format 
Syntax Rules 
General Rules 

CHAPTER 9 

SEGMENTATION 

INTRODUCTION TO THE SEGMENTATION MODULE 
GENERAL DESCRIPTION OF SEGMENTATION 

ORGANIZATION 

Program Segments 
Fixed Portion 
Independent Segments 

SEGMENTATION CLASSIFICATION 
SEGMENTATION CONTROL 

xxix 

8-5 
8-5 
8-5 

8-6 

8-6 

8-6 
8-6 
8-6 
8-7 

8-10 

8-10 
8-10 
8-10 
8-10 

8-11 

8-11 
8-11 
8-11 
8-11 

8-13 

8-13 
8-13 
8-13 
8-14 

9-1 
9-1 
9-1 

9-1 
9-1 
9-2 

9-2 
9-3 



STRUCTURE OF PROGRAM SEGMENTS 

SEGMENT NUMBERS 

General Format 
Syntax Rules 
General Rules 

SEGMENT-LIMIT 

General Format 
Syntax Rules 
General Rules 

RESTRICTIONS ON PROGRAM FLOW 

THE ALTER STATEMENT 
THE PERFORM STATEMENT 
THE MERGE STATEMENT 
THE SORT STATEMENT 

EXTRA INTERMEDIATE CODE FILES 

INTRODUCTION TO THE LIBRARY MODULE 
THE COPY STATEMENT 

FUNCTION 
GENERAL FORMAT 
SYNTAX RULES 
GENERAL RULES 

CHAPTER 10 

LIBRARY 

CHAPTER 11 

DEBUG AND INTERACTIVE DEBUGGING 

INTRODUCTION 
STANDARD ANSI COBOL DEBUG 

COMPILE TIME SWITCH 
COBOL DEBUG OBJECT TIME SWITCH 
ENVIRONMENT DIVISION IN COBOL DEBUG 

xxx 

9-3 

9-3 

9-3 
9-3 
9-3 

9-4 

9-4 
9-4 
9-4 

9-5 

9-5 
9-5 
9-5 
9-6 

9-6 

10-1 
10-2 

10-2 
10-2 
10-2 
10-2 

11-1 
11-1 

11-2 
11-2 
11-2 

(Addendum 1) 



The WITH DEBUGGING MODE Clause 

Function 
General Format 
General Rules 

PROCEDURE DIVISION IN COBOL DEBUG· 

The USE FOR DEBUGGING Statement 

Function 
Syntax Rules 
General Rules 

DEBUGGING LINES 

CHAPTER 12 

INTERPROGRAM COMMUNICATION 

INTRODUCTION TO THE INTER-PROGRAM COMMUNICATION MODULE 
DATA DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE 

LINKAGE SECTION 

Noncontiguous Linkage Storage 

PROCEDURE DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE 

THE PROCEDURE DIVISION HEADER 

THE CALL STATEMENT 

Function 
General Format 
Syntax Rules 
General Rules 

THE CANCEL STATEMENT 

Function 
General Format 
Syntax Rules 
General Rules 

THE EXIT PROGRAM STATEMENT 

Function 
General Format 
Syntax Rules 
General Rule 

xxxi 

11-2 

11-2 
11-2 
11-2 

11-3 

11-3 

11-3 
11-3 
11-4 

11-10 

12-1 
12-1 

12-1 

12-2 

12-3 

12-3 

12-4 

12-4 
12-4 
12-4 
12-4 

12-6 

12-6 
12-6 
12-6 
12-6 

12-7 

12-7 
12-7 
12-7 
12-7 

(Addendum 1) 



CHAPTER 13 

COMMUNICATION 

INTRODUCTION TO THE COMMUNICATION MODULE 

FUNCTION 

DATA DIVISION IN THE COMMUNICATION MODULE 

COMMUNICATION SECTION 
THE COMMUNICATION DESCRIPTION - COMPLETE ENTRY SKELETON 

Function 
General Format 
Syntax Rules 
General Rules 

PROCEDURE DIVISION IN THE COMMUNICATION MODULE 

THE ACCEPT MESSAGE COUNT STATEMENT 

Function 
General Format 
Syntax Rule 
General Rules 

THE DISABLE STATEMENT 

Function 
General Format 
Syntax Rule 
General Rules 

THE ENABLE STATEMENT 

Function 
General Format 
Syntax Rule 
General Rules 

THE RECEIVE STATEMENT 

Function 
General Format 
Syntax Rule 
General Rules 

THE SEND STATEMENT 

xxxii 

13-1 

13-1 

13-1 

13-1 
13-1 

13-1 
13-2 
13-2 
13-6 

13-12 

13-12 

13-12 
13-12 
13-12 
13-12 

13-13 

13-13 
13-13 
13-13 
13-13 

13-15 

13-15 
13-15 
13-15 
13-15 

13-17 

13-17 
13-17 
13-17 
13-17 

13-20 



Function 
General Format 
Syntax Rules 
General Rules 

CHAPTER 14 

PROGRAMMING TECHNIQUES AND SIZING 

PROGRAMMING TECHNIQUES 
USEFUL HINTS 
SIZING 

GENERAL DESCRIPTION 
DATA DICTIONARY 

APPENDIX A 

RESERVED WORD LIST 

APPENDIX B 

CHARACTER SETS AND COLLATING SEQUENCE 

APPENDIX C 

GLOSSARY 

APPENDIX D 

COMPILE-Tn-1E ERRORS 

APPENDIX E 

RUN-TIME ERRORS 

APPENDIX F 

SYNTAX SUMMARY 

APPENDIX G 

SUMMARY OF EXTENSIONS TO ANSI COBOL 

xxxiii 

13-20 
13-20 
13-20 
13-21 

14-1 
14-1 
14-2 

14-2 
14-2 



SCREEN FORMATTING AND DATA ENTRY 

THE ACCEPT STATEMENT 
THE DISPLAY STATEMENT 

DISK FILES 

LINE SEQUENTIAL FILES 
RUN TIME INPUT OF FILE NAMES 

LOWER CASE CHARACTERS 
HEXADECIMAL VALUES 

APPENDIX H 

SYSTEM DEPENDENT LANGUAGE FEATURES 

MANDATORY CHANGES 

ENVIRONMENT DIVISION 

Configuration Section 
Input-Output Section 

STATEMENTS COMPILED AS DOCUMENTATION ONLY 

ENVIRONMENT DIVISION 
DATA DIVISION 
PROCEDURE DIVISION 

APPENDIX I 

LANGUAGE SPECIFICATION 

APPENDIX J 

IBM EXTENSIONS 

ALPHABETIC INDEX 

xxxiv 

G-l 

G-l 
G-l 

G-2 

G-2 
G-2 

G-2 
G-2 

H-l 

H-l 

H-l 
H-l 

H-l 

H-l 
H-2 
H-2 



Table 

2-1 
2-2 
2-3 

2-4 

3-1 
3-2 
3-3 
3-4 
3-5 
3-6 

3-7 
3-8 

4-1 

5-1 

5-2 

6-1 

7-1 

13-1 

14-1 

TABLES 

Title 

Figurative Constants and their Reserved Words 
Data Levels Classes and Categories 
Numeric Data Storage for the COMP(UTATIONAL) PICTURE 

Clause 
Numeric Data Storage for the COMP(-3) PICTURE CLAUSE 

Editing Types for Data Categories 
Editing Symbols in PICTURE Character Strings 
PICTURE Character Precedence Chart 
Combination of Symbols in Arithmetic Expressions 
Relational Operators 
Combinations of Conditions, Logical Operations 
and Parenthesis 
Cursor Repositioning Keys 
MOVE Statement Data Categories 

SET Statement Valid Operand Combinations 

Relationship of Categories of Files and the Formats 
of the CLOSE Statement 
Permissible Combinations of Statements and 

OPEN Modes for Sequential 1-0 

Permissible Combinations of Statements and 
OPEN Modes for Relative 1-0 

Permissible Combinations of Statements and 
OPEN Modes for Indexed 1-0 

Communication Status Key Condition 

Data Dictionary Entry Sizing 

xxxv 

2-9 
2-12 

2-13 
2-14 

3-20 
3-21 
3-24 
3-39 
3 .... 41 

3-46 
3-56 
3-85 

4-12 

5-22 

6-19 

7-20 

13-11 

14-3 



Figure 

1-1 

2-1 

3-1 

3-2 

3-3 

3-4 

4-1 

ILLUSTRATIONS 

Title 

Sample Program Listing Showing Source Format 

Reference Format for a COBOL Source Line 

Flowchart for VARYING Phrase of a PERFORM 
Statement having One Condition 
Flowchart for VARYINC Phrase of PERFORM 
Statement with Two Conditions 
Flowchart for VARYING Phrase of PERFORM 
Statement with Three Conditions 
PERFORM Statements in Sequence 

Flowchart of SEARCH Operation 

xxxvi 

1-6 

2-34 

3-92 

3-93 

3-94 
3-95 

4-9 



CHAPTER 1 

INTRODUCTION 

WHAT IS L/II COBOL? 

COBOL (COmmon Business Oriented Language) is the most widely and extensively 
used language fqr the programming of commercial and administrative data 
processing. 

L/II COBOL is a compact, interactive and standard COBOL Language System 
which is designed for use on microprocessor-based computers and intelligent 
terminals. 

It is based on the ANSI COBOL as specified in "American National Standard 
Programming Language COBOL" (ANSI X3.23 1974). The following modules are 
fully implemented at Level II: 

Nucleus 
Table Handling 
Sequential Input and Output 
Relative Input and Output 
Indexed Input and Output 
Sort-Merge 
Segmentation 
Library 
Inter-Program Communication 
Debug 
Communications 

This manual is intended as a reference work for L/II COBOL programmers and 
material from the ANSI COBOL language standard document is included. 

The package has been proved to meet and exceed the COBOL ANSI standard X3.23 
and has been certified by the Federal Compiler Testing Center (FCTC) under 
the direction of the General Services Administration (GSA) as validated at 
Federal High Level. The GSA Validation Summary Report is available under 
the reference FCTC-82/161. 

(Addendum 2) 

1 - 1 



Along with the ANSI implementation L/ll COBOL also contains several language 
extensions specifically oriented to the small computer environment and for 
compatibility with some larger mainframe applications. These enable a L/ll 
COBOL program to format CRT screens for data input and output (DISPLAY and 
ACCEPT), READ and WRITE text files efficiently and define external file 
names at run time. 

The programmer wishing to transport an existing COBOL program to run under 
L/ll COBOL must check that the individual language features he has used are 
supported by L/II COBOL. The COBOL SECTION statements in the Segmentation 
feature can be performed using the PERFORM statement. 

A compile time FLAG directive can be set that flags all LEVEL II COBOL 
extension features together with ANSI COBOL features at any of the levels 
specified by the Federal Compiler Testing Center under the direction of the 
General Services Administration (GSA). (See Chapter 2). 

The L/II COBOL compiler is designed to enable programs to be developed in a 
64K machine. The Compiler supports sequential, relative and indexed 
sequential files, as well as interactive communications via the ACCEPT and 
DISPLAY verbs" 

L/II COBOL is part of a family of application development tools that are 
available for visual programming: 

* FORL'1S-2 that enables the Operator to define screen layouts from a 
screen "module" and produce automatically the data description for 
direct inclusion in a L/Il COBOL program. This is described in the 
FORMS-2 Operating Guide 

* ANIMATOR brings a program to life on the screen "animating" it by 
displaying the source code during run time with the cursor moving from 
COBOL source statement to statement. ANIMATOR is a full interactive 
symbolic debugging tool that complies with the published GSA 
certification standard enabling the setting of breakpoints, examination 
and alteration of data and the changing of the flow of control. 

L/II COBOL programs are created using a conventional text editor. The 
Compiler compiles the programs and the Run-Time system links with the 
compiled output to form a running user program. A listing of the L/Il COBOL 
program is provided by the Compiler during compilation. Error messages are 
inserted in the listing. 

L/II COBOL is designed to be interfaced easily to any microprocessor 
operating system. Detailed operating characteristics are dependent on the 
particular host operating system used and are defined in the appropriate 
Operating Guide. 

1 - 2 

* 



PROGRAM STRUCTURE 

A COBOL program consists of four divisions: 

1. IDENTIFICATION DIVISION - An identification of the program 

2. ENVIRONMENT DIVISION - A description of the equipment to be used to 
compile and run the program 

3. DATA DIVISION - A description of the data to be processed 

4~ PROCEDURE DIVISION - A set of procedures to specify the operations to 
be performed on the data 

Each, division is divided into sections which are further divided into 
paragraphs which in turn are made up of sentences. 

Within these subdivisions of a COBOL program, further subdivisions 
exist as clauses and statements. A clause is an ordered set of COBOL 
elements that specify an attribute of an entry, and a statement is a 
combination of elements in the Procedure Division that include a COBOL verb 
and constitute a program instruction. 

1 - 3 



FORMATS AND RULES 

GENERAL FORMAT 

A general format is the specific arrangement of the elements of a clause or 
a statement. Throughout this document a format is shown adjacent to 
information defining the clause or statement. When more than one specific 
arrangement is permitted, the general format is separated into numbered 
formats. Clauses must be written in the sequence given in the general 
formats. (Clauses that are optional must appear in the sequence shown if 
they are used). In certain cases, stated explicitly in the rules associated 
with a given format, the clauses may appear in sequences other than that 
shown. Applications, requirements or restrictions are shown as rules. 

SYNTAX RULES 

Syntax rules are those rules that define or clarify the order in which words 
or elements are arranged to form larger elements such as phrases, clauses, 
or statements. Syntax rules also impose restrictions on individual words or 
elements. 

These rules are used to define or clarify how the statement must be written, 
i.e., the order of the elements of the statement and restrictions on what 
each element may represent. 

GENERAL RULES 

A general rule is a rule that defines or clarifies the meaning or 
rela tionship of meanings of an element or set of elements. It is used to 
define or clarify the semantics of the statement and the effect that it has 
on either execution or compilation. 

ELEMENTS 

Elements which make up a clause or a statement consist of uppercase words, 
lowercase words, level-numbers, brackets, braces, connect ives and special 
characters (see Chapter 2). 

1 - 4 



SOURCE FORMAT 

The COBOL source format divides each COBOL source record into 72 columns. 
These columns are used in the following way: 

Columns 1 - 6 
Column 7 
Column 8 - 11 
Columns 12 - 72 

SEQUENCE NUMBER 

Sequence number 
Indicator area 
Area A 
Area B 

A sequence number of six digits may be used to identify each source program 
line. If column 1 contains an asterisk (*) or columns 1 and 2 contain a 
form feed character followed by an asterisk the entire line will be . ignored 
by the compiler and will not appear in the list file. This facility allows 
list files to be used as source files. 

INDICATOR AREA 

An asterisk * in this area marks the line as documentary comment only. Such 
a comment line can appear anywhere in the program after the Identification 
Division header. Any characters from the ASCII character set can be 
included in Area A and Area B of the line. 

A stroke I, in the indicator area acts as a comment line above but causes 
the page to eject before printing the comment. 

A "D" in the indicator area represents a debugging line. Areas A and B may 
contain any valid COBOL sentence. 

A "-" in the indicator area represents a continuation of the previous line 
without spaces or the continuation of a non-numeric literal (see Chapter 2). 

AREAS A AND B 

Section names and paragraph names begin in Area A and are followed by a 
period and a space. Level indicators FD, 01 and 66, 77 and 88 begin in Area 
A and are followed in Area B by the appropriate file and record description. 

Program sentences may commence anywhere in Area A and Area B. More than one 
sentence is permitted in each source record. 

Note that TAB characters are not permitted in LEVEL II COBOL source. 

Figure 1-1 shows the source format of a typical program. 

(Addendum 2) 

1 - 5 



* Level II COBOL v1.1 B:STOCKl.CBL "'Alj~: (J'JUl 

* 000010 
000020 
000030 
000040 
000050 
000060 
000070 
000075 
OOOO~O 
000090 
000100 
000110 
000120 
000130 
000140 
000150 

IDENTIFICATION DIVISION. 
PROGRAM-ID. STOCK-FILE-SET-UP. 
AUTHOR. MICRO FOCUS LTD. 
ENVIRONMENT DIVISION. 
CONFIGURAtION SECTION. 
SOURCE-COMPUTER. MOS-SOO. 
OBJ~CT-COMPUTER. MDS-SOO. 
SPECIAL-NAMES. CONSOLE IS CRT. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT S10CK-FILE' ASSIGN "STOCK. IT" 
ORGANIZATION INDEXED 
ACCESS DYNAMIC 
RECORD KEY STOCK-CODE. 

DATA DIVISION. 
FILE SECTION. 

000160 FD STOCK-FILE; RECORD 32. 
000170 01 STOCK-ITEM. 
0001~0 02' STOCK-CODE PIC X( 4). 
000190 02 PRODUCT-DF.SC PIC X(24). 
000200 02 UNIT-SIZ~ PIC 9(4). 
000210 WORKING-STORAGE SECTION. 
000220 01 SCREEN-HEADINGS. 
000230 02 ASK-CODE PIC X(21) VALUE "STOCK CODE 
000240 02 FILLER PIC X(59). 
000250 
0002nO 
000270 
0002AO 
000290 
000300 
000310 
000320 
000330 
000340 
0003';0 
000360 
000370 
000380 
0003QO 
000400 
000410 
000420 
000430 
n00440 
000450 
0004f10 

02 ASK-DESC PIC ~(16) VALUE "DESCRIPTION 
02 SI-DESC PIC X(25) VALUE .. 
02 FILLER PIC X(3 Q ). 

02 ASK-SIZF. PIC X(21) VALUE "UNIT SIZE 
01 ENTER-IT REDEFINES SCREEN-HEADINGS. 

02 FILLER PIC X(ln). 
02 CRT-STOCK-CODE PIC X(4). 
02 FILLER PIC X(76). 
02 CRT-PROD-DESC PIC X(24). 
02 FILLER PIC X(S6). 
02 CRT-UNIT-SIZE PIC 9(4). 
02 FILLER PIC X. 

PROCEDURE DIVISION. 
SR1. 

DISPLAY SPACE. 
OPEN 1-0 STOCK-FILE. 
DISPLAY SCREEN-HEADINGS. 

NORMAL-INPUT. 
MOVE SPACE TO ENTER-IT. 
DISPLAY ENTER-IT. 

CORRECT-ERROR. 
ACCEPT ENTER-IT. 

000470 IF CRT-STOCK-CODF. ~ SPACF. GO TO END-IT. 

< >". 

<". 

< >". 

000480 IF CRT-UNIT-SIZ~ NOT NUMERIC GO TO CI1RREC~-ERROR. 
0004QO MOVE CRT-PROD-DESC TO PRODUCT-DESC. 
000500 MOVE CRT-UNIT-SIZE TO UNIT-SIZE. 
000510 MOVE CRT-STOCK-CODE TO STOCK-CODE. 
000520 WRITE STOCK-ITEM; INVALIn GO TO CORRECT-ERROR. 
on0530 GO TO NORMAL-INPUT. 
0110540 END-IT. 
000550 CLOSE STOCK-FILE. 
000560 
000570 

DISPLAY SPACE. 
DISPLAY "END OF PROGRAM". 

011E 
0120 
0120 
0120 
0120 
0120 
0120 
0120 
0120 
01SC 
01AE 
01BE 
018E 
018E 
0lC6 
01C6 
OlCn 
OlC6 
OlCn 
nlCA 
nlE2 
n268 
11268 
02n8 
0270 
02B8 

>". 02CA 
n2El 
n308 
n268 
n268 
0278 
027C 
02CS 
02EO 
011A 
n31C 
0000 
002E 
n02F 
n034 
0038 
004E 
004F 
0055 

,on6E 
n06F 
nORR 
onQ2 
nOQA 
110AO 
00A6 
OOAC 
00B9 
nn BC 
nOBD 
nOCl 
00C6 

n00580 STI1P RUN. 

* Level II COBOL VI.l REVISION h 

nOD8 
0009 

URN AA/OOOO/AA 
* Compiler (C) 197R,198~ MICRO FOCUS LTD. 

* ERRORS~OOOOO DATA=01024 CODE s 00512 DICT~00426:61R6R/622Q4 GSA FLAGS = OFF 

C4l ~~--------------------~~t-S--.----------~In-s-e-r-;;dl 
1~ S. ' 12-72 by 

Sequence Area B Camp ile r 
Number 

Col 7 
Indicator 
Area 

Cols 8-11 
Area A 

Figure 1-1. Sample Program Listing showing Source Format. 
1 - 6 

00 
no 
00 
15 
50 
60 
7Q 
AO 
00 
00 
10 
14 
60 
7R 
BO 
B4 



CHAPTER 2 

COBOL CONCEPTS 

LANGUAGE CONCEPTS 

CHARACTER SET 

The most basic and indivisible unit of the language is the character. The 
set of characters used to form L/I! COBOL character-strings and separators 
includes the letters of the alphabet, digits and special characters. The 
character set consists of the characters defined below: 

o to 9 
A to Z 

Space 
+ Plus sign 

Minus sign or hyphen 
* Asterisk 
/ Oblique Stroke/Slash 
= Equal sign 
$ Dollar sign 

. , 
" 
( 
) 

> 
< 

Full stop or decimal point 
Comma or decimal point 
Semicolon 
Quotation mark 
Left Parenthesis 
Right Parenthesis 
Greater than symbol 
Less than symbol 

The L/ll COBOL language is restricted to the above character set, but the 
content of non-numeric lit'erals, comment lines and data may include any of 
the characters from the ASCII character set. See Appendix B. 

LANGUAGE STRUCTURE 

The individual characters of the language are concatenated to form 
character-strings and separators. A separator may be concatenated with 
another separator or with a character-string. A character-string may only 
be concatenated with a separator. The concatenation of character-strings 
and separators forms the text of a source program. 

2 - 1 



Separators 

A separator is a string of one or more punctuation characters. The rules 
for formation of separators are: 

1. The punctuation character space is a separator. Anywhere a space is 
used as a separator, more than one space may be used. 

2. The punctuation characters comma, semicolon and period, when 
immediately followed by a space, are separators. These separators may 
appear in a COBOL source program only where explicitly permitted by the 
general formats, by format punctuation rules (see FORMATS AND RULES in 
Ch~pter 1), by statement and sentence structure definitions (see 
STATEMENTS AND SENTENCES in this Chapter), or reference format rules 
(see REFERENCE FORMAT in this Chapter). 

3. The punctuation characters right and left parenthesis are separators. 
Parenthesis may appear only in balanced pairs of left and right 
parentheses delimiting subscripts, indices, arithmetic expressions, or 
conditions. 

4. The punctuation character quotation mark is a separator. An opening 
quotation- mark must be immediately preceded by a space or left 
parenthesis; a closing quotation mark must be immediately followed by 
one of the separators space, comma, semicolon, period, or right 
parenthesis. 

Quotation marks may appear only. in balanced pairs delimiting nonnumeric 
literals except when the literal is continued. (See 
CONTINUATION OF LINES in this Chapter). 

5. Pseudo-text delimiters are separators. An opening pseudo-text 
delimiter may be immediately preceded by a space; a closing. pseudo-text 
delimiter must be immediately followed by one of the separators space, 
comma, semicolon, or period. 

Pseudo-text delimiters may appear only in balanced pairs delimiting 
pseudo-text. (See Chapter 10. LIBRARY) 

6. The separator space may optionally immediately precede all separators 
except the following: 

a. As specified by reference format rules see REFERENCE FO&~T 
in this Chapter. 

b. -~he separator closing quotation mark. In 
preceding space is considered as part of 
literal and not as a separator. 

this case, a 
the nonnumeric 

c. The opening pseudo-text delimiter, where the preceding space 
is required. 

2 - 2 



7. The separator space is optional and can immediately follow any 
separator except the opening quotation mark. In this case, a following 
space is considered as pat't of the nonnumeric literal and not as a 
separator. 

Any punctuation character which appears as part of the specification of a 
PICTURE character-string (see Chapter 3) or numeric literal is not 
considered as a punctuation character, but rather as a symbol used in the 
specification of that PICTURE character-string or numeric literal. PICTURE 
character-strings are delimited only by the separators space, comma, 
semicolon, or period. 

The rules established for the formation of separators do not apply to the 
characters which comprise the contents of nonnumeric literals, 
comment-entries, or comment lines. 

Character-Strings 

A character-string is a character or a seq'tence of contiguous characters 
which forms a L/II COBOL word, a literal, a PICTURE character-string, or a 
comment-entry. A character-string is delimited by separators. 

COBOL Words 

A COBOL word is a character-string of not more than 30 characters which 
forms a user defined word, a system-name, or a reserved word. Wi thin a 
given source program these classes form disj oint sets; a COBOL word may 
belong to one and only one of these classes. 

User-Defined Words: A user-defined word is a COBOL word that must be 
supplied by the user to satisfy the format of a clause or statement. Each 
character of a user-defined word is selected from the set of characters 'A', 
, B', ' C' , ' Z', [~t~.~rtiiIIlf~lil~~i~~ili~l~Ill11.1l!1[1i1ljl1IilMl1ii1liji~f::.~l!j1[1i:ii[~!W.ijl:"i1I:#g!I:~~~[l~r:ja.[iIfi!!ipp'gi;E¢A$..:~t '0', 
..• '9', and '-', except that the '_I may not appear as the first or last 
character. 

User-defined word types which are implemented are as follows: 

alphabet-name 
cd-name 
condition-name 
data-name 

:!ii!~i!i!i!lB.ilffl_!lil!_'IIIIII_!!! 
file-name 
index-name 
level-number 

. library-name 
mnemonic-name 
paragraph-name 
program-name 

2 - 3 



record-name 
routine-name 
section-name 
segment-number 
text-name 

Within a given source program, 14 of these 17 types of user-defined words 
are grouped into 12 disjoint sets. The disjoint sets are: 

alphabet-names 
cd-names 
condition-names, data-names, and record-names 
file-names 
index-names 
library-names 
mnemonic-names 
paragraph-names 
program-names 
routine-names 
section-names 
text-names 

All user-defined words, except segment-numbers and level-numbers, can belong 
to one and only one of these disjoint sets. Further, all user-defined words 
within a given disjoint set must be unique. (See UNIQUENESS OF REFERENCE in 
this Section.) 

With the exception of paragraph-name, section-name, level-number and 
segment-number, all user-defined words must contain at least one alphabetic 
chara·cter. Segment-numbers and level-numbers need not be unique; a given 
specification of a segment-number or level-number may be identical to any 
other segment-number or level-number a~d may even be identical to a 
paragraph-name or section-name. 

Condition-Name: A condition-name is a name which is assigned to a 
specific value, set of values, or range of values, 
within a complete set of values that a data. item r.lay 
assume. The data item itself is called a conditional 
variable. 

Condition-names may be defined in the Data Division or 
in the SPECIAL-NAMES paragraph within the Environment 
Division where a condition-name must be assigned to the 
ON STATUS or OFF STATUS, or both, of the run time 
switches. 

A condition-name is used only in the RERUN clause or in 
conditions as an abbreviation for the relation 
condition; this relation condition posits that the 
associated conditional variable is equal to one of the 
set of values to which that condition-name is assigned. 

2 - 4 



Mnemonic-Name: 

Paragraph-Name: 

Section-Name: 

Other User-Defined 
Names: 

System-Names: 

Reserved Words: 

A mnemonic-name assigns a user-defined word to an 
implementor-name. These associations are established in 
the SPECIAL-NAMES paragraph of the Environment Division. 
(See SPECIAL-NAMES in Chapter 3). 

A paragraph-name is a word which names a paragraph in 
the Procedure Division. \ Paragraph-names are equivalent 
if, and only if, they are composed of the same sequence 
of the same number of digits and/or characters. 

A section-name is a word which names a section in the 
Procedure Division. Section names are equivalent if, and 
only if, they are composed of the same sequence of the 
same number of digits and/or characters. 

See the glossary in Appendix C for definitions of all 
other types of user-defined words. 

A system-name is a COBOL word which is used to 
communicate with the operating environment. Each 
character used in the formation of a system-name must be 
selected from the set of characters 'A', 'B', 'C', ••• 
'z' ,jf?\ri\1\\i1t1\!\B~;f\~\~\\\\\M\WM\\\\~\\\!\\"\\~\\\i\[ '0', .•• '9' and '-', except that 
the '-' may not appear as the first or last character. 

There are three types of system-names: 

1. computer-name 
2. implementor-name 
3. language-name 

Within a given implementation these three types of 
system-names form disjoint sets; a given system-name may 
belong to one and only one of them. 

The system-names listed above are individually defined 
in the glossary in Appendix C. 

A reserved word is a COBOL word that is one of a 
specified list of words which may be used in COBOL 
source programs, but which must not appear in the 
programs as user-defined words or system-names. 
Reserved words can only be used as specified in the 
general formats. (See Appendix A). 

There are six types of reserved words: 

1. Key words 
2. Optional words 
3. Connectives 

2 - 5 



Key Words: 

Optional Words: 

Connectives: 

Special 
Registers: 

Figurative 
Constants: 

4. Special registers 
5. Figurative constants 
6. Special-character words 

A key word is a word whose presence is required when the 
format in which the word appears is used in a source 
program. Within each format, such words are uppercase 
and underlined. 

Key words are of three types: 

1. Verbs such as ADD, READ, and ENTERe 
2. Required words, which appear in statement and entry 

formats. 
3. Words which have a specific functional meaning such 

as NEGATIVE, SECTION, etc. 

Within each format, uppercase words that are not 
underlined are called optional words and may appear at 
the user's option. The presence or absence of an 
optional word does not alter the semantics of the COBOL 
program in which it appears. 

There are three types of connectives: 

- 10 Qualifier connectives that are used to associate a 
data-name, a co~dition-name, and a text-name, or a 
paragraph-name with its qualifier: OF, IN. 

2. Series connectives 
consecutive operands: 
(separator semicolon). 

that link two or 
(separator comma) 

more 
or 

3. Logical connectives that are used in the formation 
of conditions: AND, OR. 

Certain reserved words are used to name and reference 
special registers. Special registers are certain 
compiler generated storage areas whose primary use is to 
store information produced in conjunction with the use 
of specific COBOL features. These special registers 
include LINAGE-COUNTER (see Chapter 5) and DEBUG-ITEM 
(see Chapter 11). 

Certain reserved words are used to name and reference 
specific- constant values. These reserved words are 
specified under Figurative Constant Values in this 
chapter. 

2 - 6 



Special 
-Character 
Words: 

Literals 

The arithmetic operators and relation characters are 
reserved words. (See the glossary - Appendix C). 

A literal is a character-string whose value is implied by an ordered set of 
characters of which the literal is composed· or by specification of a 
reserved word which references a figurative constant. Every literal belongs 
to one of two types, nonnumeric or numeric. 

Nonnumeric 
Literals: A nonnumeric literal is a character-string delimited on 

both ends by quotation marks and consisting of any 
allowable character in the computer's character set. 
Allowed are nonnumeric literals of 1 through 128 
characters in length. To represent a single quotation 
mark character within a nonnumeric literal, two 
contiguous quotation marks must be used. The value of a 
nonnumeric literal in the object program is the string 
of characters itself, except: 

1. The delimiting quotation marks are excluded t and 

2. Each embedded pair of contiguous quotation marks 
represents a single quotation mark. character . 

. All other punctuation characters are part of the value of the 
than separators; all nonnumeric literals 
The PICTURE Glause in chapter 3).' .. 

Numeric Literals: A numeric literal is a character-string whose characters 
are selected from the digits '0' through '9', the plus 
sign, the minus sign, and/ or the decimal point. The 
implementation allows for numeric literals of 1 through 
18 digits in length. The rules for the formation of 
numeric literals are as follows: 

1. A literal must contain at least one digit. 

2. A literal must not contain more than one sign 
character. If a sign is used, it must appear as 
the leftmost character of the literal. If the 
literal is unsigned, the literal is positive. 

2 - 7 



Figurative Constant 
Values 

3. A literal must not contain more than one decimal 
point. 'The decimal point is treated as an assumed 
decimal point, and may appear anywhere within the 
literal except as the rightmost character. If the 
literal contains no decimal point, the literal is 
an integer. 

If a literal conforms to the rules for the 
formation of numeric literals, but is enclosed in 
quotation marks, it is a nonnumeric literal and it 
is treated as such by the compiler. 

4. The value of a numeric literal is the algebraic 
quality represented by the characters in the 
numeric literal. Every numeric literal is category 
numeric. (See THE PICTURE CLAUSE in Chapter 3). 

The size of a numeric literal in standard data 
format characters is equal to the number of digits 
specified by the user. 

Figurative Constant Values are generated by the compiler and referenced 
through the use of the reserved words given below. These words must not be 
bounded by quotation marks when used as figurative constants. The singular 
and plural forms of figurative constants are equivalent and may be used 
interchangeably. 

The figurative constant values and the reserved words used to reference them 
are shown in Table 2-1. 

2 - 8 



Table 2-1. Figurative Constants and their Reserved Words 

CONSTANT 

ZERO 

ZEROS 
ZEROES 

SPACE 
SPACES 

HIGH-VALUE 
HIGH-VALUES 

LOW-VALUE 
LOW-VALUES 

QUOTE 
QUOTES 

ALL literal 

REPRESENTATION 

Represents the value '0', or one or more 
of the character '0' depending on context. 

Represents one or more of the character 
space from the computer's character set. 

Represents one or more of the character 
that has the highest ordinal position in 
the program collating sequence. 
(Hex 7F for the ASCII character set) 

Represents one or more of the character that 
has the lowest ordinal position in the program 
collating sequence. 
(Hex 00 for the ASCII character set) 

Represents one or more of the character ''''. 
The word QUOTE or QUOTES cannot be used in 
place of a quotation mark in a source program 
to bound a nonnumeric literal. Thus, QUOTE 
ABD QUOTE is incorrect as a way of stating 
the nonnumeric literal "ABD". 

Represents one or more characters of the string of ' 
characters comprising the literal. The 
literal must be either a nonnumeric literal 
or a figurative constant other than ALL literal • 

. When a figurative constant is used, the word 
ALL is redundant and is used for readability 
only. 

2 - 9 



When a figurative constant represents a string of one or more characters, 
the length of the string is determined by the compiler from context 
according to the following r.ules: 

1. When a figurative constant is associated with another data item, as 
when the figurative constant is moved to or compared with another data 
item, the string of characters specified by the figurative constant is 
repeated character by character on the right until the size of the 
resultant string is equal to the size in characters of the associated 
data item. This is done prio~ to and independent of the application of 
any JUSTIFIED clause that may be associated with the data item. 

2. When a figurative constant is not associated with another data item, as 
when the figurative constant appears in a DISPLAY, STRING, STOP or 
UNSTRING statement, the length of the string is one character. 

A figurative constant may be used wherever a literal appears in a format, 
except that whenever the literal is restricted to having only numeric 
characters in it, the only figurative constant permitted is ZERO (ZEROS, 
ZEROES). 

When the figurative constants HIGH-VALUE(S) or LOW-VALUE(S) are used in the 
source program, the actual character associated with each figurative 
constant depends upon the program collating sequence specified. (See 
THE OBJECT-COMPUTER PARAGRAPH, and THE SPECIAL-NAMES PARAGRAPH in Chapter 
3). 

Each reserved word which is used to reference a figurative constant value is 
a distinct character-string with the exception of the construction 'ALL 
literal' which is composed of two distinct character-strings. 

PICTURE Character-Strings 

A PICTURE character-string consists of certain combinations of characters in 
the COBOL character set used as symbols. See THE PICTURE CLAUSE in 
chapter 3 for the PICTURE character-string and for the rules that govern 
their use. 

Any punctuation character which appears as part of the specification of a 
PICTURE character-string is not considered as a punctuation character, but 
rather as a symbol used in the specification of that PICTURE 
cha~acter-string. 

Comment-Entries 

A comment-entry is an ent.ry in the Identification Division' that may be any 
combination of characters from the compute.r' s character set. 

2 - 10 



CONCEPT OF COMPUTER INDEPENDENT DATA DESCRIPTION 

To make data as computer independent as ?ossible, the characteristics or 
properties of the data are described in relation to a standard data format 
rather than an equipment-oriented format. This standard data format is 
oriented to general data processing applications and uses the decimal system 
to represent numbers (regardless of the radix used by the computer) and the 
remaining characters in the L/II COBOL character set to describe nonnumeric 
data items. 

Concept of Levels 

A level concept is inherent in the structure. of a logical record. This 
concept arises from the need to specify subdivisions of a record for the 
purpose of data reference. Once a subdivision has been specified, it may be 
further subdivided to permit more detailed data referral. 

The most basic subdivisions of a record, that is, those not further sub­
divided, are called elementary items; consequently, a record is said to 
consist of a sequence of elementary items, or the record itself may be an 
elementary item. 

In order to refer to a set of elementary items, the elementary items are 
combined into groups. Each group consists of a named sequence of one or 
more elementary items. Groups, in turn, may be combined into groups of two 
or more groups, etc. Thus, an elementary item may belong to more than one 
group. 

Level-Numbers 

A system of level-numbers shows the organization of elementary items and 
group items. Since records are the most inclusive data items, level-numbers 
for records start at 01. Less inclusive data items are assigned higher (not 
necessarily successive) level-numbers not greater in value than 49 .. A 
maximum of 49 levels in a record is allowed.· There are special 
level~numbers, 66, 77 and 88 which are exceptions to this rule (see below). 
Separate entries are written in the source program for each level-number 
used. 

A group includes all group and elementary items following it u'ntil a 
level-number less than or equal to the level-number of that group is 
encountered. All items which are immediately subordinate to a given group 
it~m must be described using identical level-numbers than the 
level-number used describe that group 

(Addendum 1) 

2 - 11 



Three types of entries exist for which there is no true concept of level. 
These are: 

1. Entries that specify elementary items or groups introduced by a RENAMES 
clause 

2. Entries that specify noncontiguous working storage and linkage data 
items 

3. Entries that specify condition-names 0 

Entries describing items by means of RENAMES clauses for the purpose of 
regrouping data items have, been assigned the special level-number 66. 

Entries that specify noncontiguous data items, which are not subdivisions of 
other items, and are not themselves subdivided, have been assigned the 
special level-number 77. 

Entries that specify condition-names, 
values of a conditional variable, 
level-number 88. 

Concept of Classes of Data 

to be associated with particular 
have been assigned the special 

The five categories of data items (see THE PICTURE CLAUSE in Chapter 3) are 
grouped into three classes: alphabetic, numeric, and alphanumeric. -For 
alphabetic and numeric, the classes and ca tegories . are synonymous. The 
alphanumeric class includes the categories of alphanumeric edited, numeric 
edited and alphanumeric (without editing). Every elementary item except for 
an index data item belongs to one of the classes and further to one of the 
categories. The class of a group item is treated at object time as 
alphanumeric regardless of the class of elementary items subordinate to that 
group item. Table 2-2 depicts the relationship of the class and categories 
of data items. 

Table 2-2 Data Levels, classes and categories 

LEVEL OF ITEM CLASS CATEGORY 
Alphabetic Alphabetic 

Numeric Numeric 
Elementary Numeric Edited 

Alphanumeric Alphanumeric Edited 
Alphanumeric 

/ Alphabetic 
Numeric 

Non-Elementary Alphanumeric Numeric Edited 
Group Alphanumeric Edited 

Alphanumeric 

2 - 12 



Selection of Character Representation and Radix 

The value of a numeric item may be represented in either binary or decimal 
form, depending on the equipment. In addition, there are several ways of 
expressing decimal. Since these representations are actually combinations 
of bits, they are commonly called binary-coded decimal forms. The four 
standard formats used for storing numeric data in L/II COBOL are as follows: 

1. As alphanumeric characters stored one per byte in ASCII representation. 

2. As numeric characters defined by USAGE IS DISPLAY (See The USAGE Clause 
in Chapter 3) one per byte in ASCII representation. If they are signed 
and the sign is specified as INCLUDED, bit 6 of the leading or trailing 
byte of the field is set for negative, depending on the field 
definition. If a SEPARATE sign is specified as a one byte ASCII + or 

, a sign is added as the leading or trailing byte. If no SIGN clause 
is specified, bit 6 of the trailing digit is set to indicate negative 
by default. 

3. As numeric characters defined by USAGE IS COMP or COMPUTATIONAL in pure 
binary form. If the field is signed the number is held in its 
twos-complement form. Storage is then dependent on the number of 9' s 
in the PICTURE clause (see The PICTURE Clause in Chapter 3) and on 
whether the field is SIGNed or not (see The SIGN Clause in Chapter 3). 

4. 

Table 2-3 shows the storage requirements for each COMP (UTATIONAL) 
PICTURE Clatise. 

Table 2-3. 
Clause. 

Numeric Data Storage for the COMP(UTATIONAL) PICTURE 

Number of Characters 
Bytes Required Signed Unsigned 

1 1-2 1-2 
2 3-4 3-4 
3 5-6 5-7 
4 7-9 8-9 
5 10-11 10-12 
6 12-14 13-14 
7 15-16 15-16 
8 17-18 17-18 



2 - 14 



Algebraic Signs 

Algebraic signs fall into two categories: operational signs, which are 
associated with signed numeric data items and signed numeric literals to 
indicate their algebraic properties; and editing signs, which appear on 
edited reports to identify the sign of the item. 

The SIGN Clause permits the programmer to state explicitly, the 
location of the operational sign. The Clause is optional; if it is not used 
operational signs will be represented as defined by setting bit 6 of the 
trailing digit for ASCII numbers. (see above). 

Editing signs are inserted into a data item through the use of the sign 
control symbols of THE PICTURE CLAUSE. 

Standard Alignment Rules 

The standard rules for positioning data within an elementary item 
depend on the category of the receiving item. These rules are: 

1. If the receiving data item is described as numeric: 

a. The data is aligned by decimal point and is moved to the receiving 
character positions with zero fill or truncation on either end as 
required. 

b. When an assumed decimal point is not explicitly specified, the 
data item is treated as if it had an assumed decimal point 
immediately following its rightmost character and is aligned as in 
paragraph a. above. 

20 If the receiving data item is a numeric edited data item, the data 
moved to the edited item is aligned by decimal point with zero fill or 
truncation at either end as required within the receiving character 
positions of the data item, except where editing requirements cause 
replacement of the leading zeros. 

3. If the receiving data item is alphanumeric (other than a numeric edited 
data item), alphanumeric edited or alphabetic, the sending data is 
moved to the receiving character positions and aligned at the leftmost 
character position in the data item with space fill or truncation to 
the right, as required. 

If the JUSTIFIED Clause is specified for the receiving item, these standard 
rules are modified as described in THE JUSTIFIED CLAUSE in Chapter 3. 

2 - 15 



Uniqueness of Reference 

Qualification 

Every user-specified name that defines an element in a COBOL source program 
must be unique, either because no other name has the identical spelling and 
hyphenation, or because the name exists within a hierarchy of names such 
that references to the name can be made unique by mentioning one or more of 
the higher levels of the hierarchy. The higher levels are called qualifiers 
and this process that specifies uniqueness is called qualification. Enough 
qualification must be mentioned to make the name unique; however, it may not 
be necessary to mention all levels of the hierarchy. Within the Data 
Division, all data-names used for qualification must be associated with a 
level indicator or a level-number. Therefore, two identical data-names must 
not appear as entries subordinate to a group item unless they are capable of 
being made unique through qualification. In the Procedure Division two 
identical paragraph-names must not appear in the same section. 

In the hierarchy of qualification, names associated with a level indicator 
are the most significant, then those names associated with level-number 01, 
then names associated with level-number 02, 0&0 ,49. A section-name is the 
highest (and the only) qualifier available for a paragraph-name. Thus, the 
most significant name in the hierarchy must be unique and cannot be 
qualified. Subscripted or indexed data-names and conditional variables, as 
well as procedure-names and data-names, may be made unique by qualification. 
The name of a conditional variable can be used as a qualifier for any of its 
condition-names. Regardless of the available qualification, no name can be 
both a data-name and procedure-name. 

Qualification is performed by following a data-name, a condition-name, a 
paragraph-name, or a text-name by one or more phrases composed of a 
qualifier preceded by IN or OF. IN and OF are logically equivalent. 

The general formats for qualification are: 

Format 1 

{ data-name-l } [{ OF } ] 
condition-name IN data-name-2 

Format 2 

paragraph-name [{ ~~} section-name] 

Format 3 

text-name [{ ~~} library-name] 

2 - 16 



The rules for qualification are as follows: 

1. Each qualifier must be of a suc·cessively higher level and within the 
same hierarchy as the name it qualifies. 

2. The same name must not appear at two levels in a hierarchy. 

3. If a data-name or a condition-name is assigned to more than one data 
item in a source - program, the data-name or condition-name must be 
qualified each time it is referred to in the Procedure, Environment, 
and Data Divisions (except in the REDEFINES clause where qualification 
is unnecessary and must not be used.) 

4. A paragraph-name must not be duplicated within a section. When a 
paragraph-name is qualified by a section-name, the word SECTION must 
not appear. A paragraph-name need not be qualified when referred to 
from within the same section. 

50 A data-name cannot be subscripted when it is being used as a qualifier. 

6. A name can be qualified even though it does not need qualifications; if 
there is more than one combination of qualifiers that ensures 
uniqueness, then any such set can be used. The complete set of 
qualifiers for a data-name must not be the same as any partial set of 
qualifiers for another data-name. 

Qualified data-names may have up to five qualifiers. 

7. If more than one COBOL library is available to the compiler during 
compilation, text-name must be qualified each time it is referenced. 

Subscripting 

Subscripts can be used only when reference is made to an individual element 
within a list or table of like elements that have not been assigned 
individual data-names (see THE OCCURS CLAUSE in Chapter 4). 

The subscript can be represented either by a numeric literal that is an 
integer or by a data-name. The data-name must be a numeric elementary item 
that represents an integer. 

The subscript may be signed and, if signed, it must be positive. The lowest 
possible subscript value is 1. This value points to the first element of 
the table. The next sequential elements of the table are pointed to by 
subscripts whose values are 2, 3, ••• • The highest permissible subscript 
value, in any particular case, is the maximum number of occurrences of-the 
item as specified in the OCCURS clause. 

Relative subscripting can be used in a similar manner to relative indexing 
if the ANSI flag is not set. 

2 - 17 



The subscript. or set of subscripts. that identifies the table element is 
delimited by the balanced pair of separators left parenthesis and right 
parenthesis following the table element data-name 0 The table element 
data-name appended with a subscript is called a subscripted data-name or an 
identifier. When more than one subscript is required, they written in 
the order of successiv less inclusive dimensions the data 

The format is: 

{
data-name } 
condition name 

(subscript-l[, subscript-2[, subscript-3 ] ••• ]) 

Indexing 

References can be made to individual elements within a table of like 
elements by specifying indexing for that reference. An index is assigned to 
that level of the table by using the INDEXED BY phrase in the definition of 
a table. A name given in the INDEXED BY phrase is known as an index-name 
and is used to refer to the assigned index. The value of an index 
corresponds to the occurrence number of an element in the associated table 
or any other table. An index-name must be initialized before it is used as 
a table refere)lce. An index-name can be given an initial. value by a SET 
statement. 

Direct indexing is specified by using an index-name in the form of a 
subscript. Relative indexing is specified when the index-name is followed 
by the operator + or -, "followed by an unsigned integer numeric literal all 
delimited by the balanced pair of separators left parenthesis and right 
parenthesis following the table element data-name. The occurrence number 
resulting from relative indexing is determined by incrementing (where the 
operator + is used) or decrementing (when the operator - is used), by the 
value of the literal, the occurrence number represented by the value of the 
index. When more than one index-name is required, they are written in the 
order of successively less inclusive dimensions of the data organization. 

At the time of execution of a statement which refers to an indexed table 
element, the value contained in the index referenced by the index-name 
associated with the table element must neither correspond to a value less 
than one nor to a value greater than the highest permissible occurrence 
number of an element of the associated table. This restriction also lies 
to the value relative indexing. 

(Addendum 1) 

2 - 18 



The general format for indexing is: 

Sdata-name I 
I condition-name S { 

Sindex-name-1 
lliteral-l 

[ { + lliteral-2 ] I 

[ ti~~:~:~~e-2 [{+ !literal-4]1 [ ti~~:~:~~~e-3 [{:tlliteral-6] U .. -} 
Identifier 

An identifier is a term used to reflect that a data-name, if not unique in'a 
program, must be followed by a syntactically correct combination of 
qualifiers, subscripts or indices necessary to ensure uniqueness. 

The general formats for identifiers are: 

Format 1: 

data-name-~~! } data-name-2] ... [(subscript-l [. subscript-2 [ • subscript-3]])] 

Format 2: 

data-name-{{ ~!}data-name-2 ] •.. [
{ Si~dex-name-l [1±} literal-2]1 

lll.teral-l 5 

[ 
s index-name-2 [ { ± } 

, ~ literal-3 
literal-4 ] ~ 

[ 
S i~dex-name-3 [ {± }literal-6 ] l]] )] 

,~ ll.teral-5 5 

Restrictions on subscripting and indexing are: 

1. A data-name must not itself be subscripted nor indexed when that 
data-name is being used as an index, or subscript. 

2. Indexing is not permitted where subscripting is not permitted. 

3. An index may be modified only by the SET, SEARCH, and PERFORM 
statements. Data items described by the USAGE IS INDEX clause permit 
storage of the values associated with index-names as data in a form 
specified by the implementor. Such data items are called index data 
items. 

4. Literal-I, literal-3, literal-S, in the above format must be positive 
numeric integers. Literal-2, literal-4, literal-6 must be unsigned 
numeric integers. 

(Addendum 1) 

2 - 19 



Condition-Name 

Each condition-name must be unique, or be made unique through qualification 
and/ or indexing, or subscripting. If qualification is used to make a 
condition-name unique, the associated conditional variable may be used as 
the first qualifier. If qualification is used, the hierarchy of names 
associated with the conditional variable or the conditional variable itself 
must be used to make the condition-name unique. 

If references to a conditional variable require indexing or subscripting, 
then references to any of its condition-names also require the same 
combination of indexing or subscripting. 

The format and restrictions on the combined use of qualification, 
subscripting, and indexing of condition-names is exactly that of 
'identifier' except that data-name-l is replaced by condition-name-l. 

In the general formats, 'condition-name' refers to a condition-name 
qualified, indexed or subscripted, as necessary. 

EXPLICIT AND IMPLICIT SPECIFICATIONS 

There are three types of explicit and implicit specifications that occur in 
COBOL source programs: 

1. Explicit and implicit Procedu~e Division references 

2. Explicit and implicit transfers of control 

3. Explicit and implicit attributeso 

Explicit and Implicit Procedure Division References 

A COBOL source program can reference data items either explicitly or 
implicitly in Procedure Division statements. An explicit reference occurs 
when the name of the referenced item is written in a Procedure Division 
statement or when the name of the referenced item is copied into the 
Procedure Division by the processing of a COpy statement. An implicit 
reference occurs when the item is referenced by a Procedure Division 
statement without the name of the referenced item being written in the 
source statement. An implicit referenc·e also occurs, during the execution 
of a PERFORM statement, when the index or data item referenced by the 
index-name or identifier specified in the VARYING, AFTER or UNTIL phrase is 
initialized, modified, or evaluated by the control mechanism associated with 
that PERFORM statement. Such an implicit reference occurs if and only if 
the data item contributes to the execution of the statement. 

2 - 20 



Explicit and Implicit Transfers of Control 

The mechanism that controls program flow transfers control from statement to 
statement in the sequence in which they were written in the source program 
unless an explicit transfer of control overrides this sequence or there is 
no next executable statement to which control can be passed. The transfer 
of control from statement to statement occurs without the writing of an 
explicit Procedure Division statement, and therefore, is an implicit 
transfer of control. 

COBOL provides both explicit and implicit means of altering the implicit 
control transfer mechanism. 

In addition to the implicit transfer of control between consecutive 
statements, implicit transfer of control also occurs when the normal flow is 
altered without the execution of a procedure branching statement. COBOL 
provides the following types of implicit control flow alterations which 
override the statement-to-statement transfers of control: 

1. If a paragraph is being executed under control of another COBOL 
statement (for example, PERFORM, USE, SORT and MERGE) and the paragraph 
is the last paragraph in the range of the controlling statement, then 
an implied transfer of control occurs from the last statement in the 
paragraph to the control mechanism of the last executed controlling 
statement. Further, if a paragraph is being executed under the control 
of a PERFORM statement which causes iterative execution and that 
paragraph is the first paragraph in the range of that PERFORM 
statement, an implicit transfer of control occurs between the control 
mechanism associated with that PERFORM statement and the first 
statement in that paragraph for .each iterative execution of the 
paragraph. 

2. When a SORT or· MERGE statement is executed, an implicit transfer of 
control occurs to any associated input or output procedures. 

3. When any COBOL statement is executed which results in the execution of 
a declarative section, an implicit transfer of control to the 
declarative section occurs. Note that another implicit transfer of 
control occurs after execution of the declarative section, as described 
in (1) above. 

2 - 21 



An explicit transfer of control consists of an alteration of the implicit 
control transfer mechanism by the execution of a procedure branching or 
conditional statement. (See STATEMENTS AND SENTENCES later in this 
Chapter.) An explicit transfer of control can be caused only by the 
execution of a procedure branching or conditional statement. The execution 
of the procedure branching statement ALTER does not in itself constitute an 
explicit transfer of control, but affects the explicit transfer of control 
that occurs when the associated GO TO statement is executed. The procedure 
branching statement EXIT PROGRAM causes an explicit transfer of control when 
the statement is executed in a called program. 

In this document, the term 'next executable statement' is used to refer to 
the next COBOL statement to which control is transferred according to the 
rules above and the rules associated with' each language element in the 
Procedure Division. 

There is no next executable statement following: 

1. The last statement in a declarative section when the paragraph in which 
it appears is not being executed under the control of some other COBOL 
statement. 

2. The last statement in a program when th~ paragraph in which it appears 
is not being executed under the control of some other COBOL statement. 

Explicit and Implicit Attributes 

Attributes may be implicitly or explicity specified. Any attribute which 
has been explicitly specified is called an explicit attribute. If an 
attribute has not been specified explicitly, then the attribute takes on the 
default specification. Such an attribute is known as an implicit attribute. 

For example, the usage of a data item need not be specified, in which case a 
data item's usage is DISPLAY. 

PROGRAM STRUCTURE 

A L/II COBOL program consists of four divisions: 

1. IDENTIFICATION DIVISION - An identification of the program. 

2. ENVIRONMENT DIVISION - A description of the equipment to be used to 
compile and run the program. 

3. DATA DIVISION - A description of the data to be processed. 

4. PROCEDURE DIVISION - A set of procedures to specify the operations to 
be performed on the data. 

Each .' division is divided into sections which are further divided into 
paragraphs, which in turn are made up of sentences. 

2 - 22 



2 - 23 



IDENTIFICATION DIVISION 

GENERAL DESCRIPTION 

The Identification Division must be included in every ANSI COBOL source 
program. This division identifies both the source program and the resultant 
output listing. In addition, the user may include the date the program is 
written, the date the compilation of the source program is accomplished and 
such other information as desired under the paragraphs in the general format 
shown below. 

ORGANIZATION 

Paragraph headers identify the type of information contained in the 
paragraph. The name of the program must be given in the first paragraph, 
which is the PROGRAM-ID paragraph. The other paragraphs are optional and 
may be included in this division at the user's choice, in order of 
presentation shown by the format below. 

STRUCTURE 

The following is the general format of the paragraphs in the Identification 
Division and it defines the order of presentation in the source program. 

General Format" 

fIDENTIFICATION DIVISION.t 

fPROGRAM-ID. program-name. + 
[AUTHOR. [comment-entry] ••• ] 

[INSTALLATION. [comment-entry] ••. ] 

[DATE-\~RITTEN. [comment-entry] ••. ] 

[DATE-COMPILED. [comment-entry] .•• ] 

[SECURITY. [comment-entry] •.. ] 

2 - 24 



ENVIRONMENT DIVISION 

GENERAL DESCRIPTION 

The Environment Division specifies a standard method of expressing 
those aspects of a data processing problem that are dependent upon the 
physical characteristics of a specific computer. This division allows 
specification of the configuration of the compiling computer and the object 
computer. In addition, information relating to input-output control, 
special hardware characteristics and control techniques can be given. 

The Environment Division must be included in every COBOL source 
program. 

ORGANIZATION 

Two sections make up the Environment Division: the Configuration 
Section and the Input-Output Section. 

The Configuration Section deals with the characteristics of the source 
computer and the obj ect computer. This section is divided into three 
paragraphs: the SOURCE-COMPUTER paragraph, which describes the computer 
configuration on which the source program is- compiled; the OBJECT-COMPUTER 
paragraph, which describes the computer configuration on which the obj ect 
program produced by the compiler is to be run; and the SPECIAL-NAMES 
paragraph, which relates the implemention-names used by the compiler to the 
mnemonic-names used in the source program. 

The Input-Output Section deals with the information needed to control 
transmission and handling of data between external media and the obj ect 
program. This section is divided into two paragraphs: the FILE-CONTROL 
paragraph which names and associates the files with external media; and the 
I-a-CONTROL paragraph which defines special control techniques to be used in 
the object program. 

STRUCTURE 

The following is the general format of the sections and paragraphs in 
the Environment Division, and defines the order of presentation in the source 
program. 

General Format 

f ENVIROm1ENT DIVISION. 1-
f CONFIGURATION SECTION. 1-
f SOURCE-COMPUTER. source-computer-entry 1-
f OBJECT-COMPUTER. object-computer-entry 1-
[SPECIAL-NAMES. special-names-entry] 

[ f INPUT-OUTPUT SECTION. 1-
f FILE-CONTROL. 1- file-control-entry 

[I-a-CONTROL. input-output-control-entry]] 

2 - 25 



DATA DIVISION 

OVERALL APPROACH 

The Data Division describes the data that the object program is to accept as 
input, to manipulate, to create, or to produce as output. Data to be 
processed falls into three categories: 

1. That which is contained in files and enters or leaves the internal 
memory of the computer from a specified area or areas. 

2. That which is developed internally and placed into intermediate or 
working storage, or placed into specific format for output reporting 
purposes. 

3. Constants which are defined by the user. 

PHYSICAL AND LOGICAL ASPECTS OF DATA DESCRIPTION 

Data Division Organization 

The DATA DIVISION which is one of the required divisions in a program, is 
subdivided into sections. These are the File, Working-Storage, Linkage and 
Communication sections. 

The FILE SECTION defines the structure of data files. Each file is defined 
by a file description entry and one or more record descriptions. Record 
descriptions are written immediately following the file description entry. 
The WORKING-STORAGE SECTION describes records and noncontiguous data items 
which are not part of external data files but are developed and processed 
internally. It also describes data items whose values are assigned in the 
source program and do not change during the execution of the object program. 
The LINKAGE SECTION appears in the called program and describes data items 
that are to be referred to by the calling program and the called program. 
Its structure is the same as the WORKING-STORAGE SECTION. The communication 
section· describes the data item in the source program that will serve as 
the interface between the MCS and the program. 

(Addendum 2) 

2 - 26 



General Format 

The following gives the general format of the sections in the Data 
Division, and defines the order of their presentation in the source program. 

f DATA DIVISION. f 

[

FILE SECTION. 

[
file-descriPtion-entry [record-description-entry] ••• 
Sort-merge-file-description-entry~record-descriPtion-entry ( 

[

WORKING-STORAGE SECTION. 

[ 77-leVel-des~ri~tion-entry] 
record-descr~pt~on-entry 

[

LINKAGE SECTION. 

[ 77-1eVel-deS:ri~tion-entry] record-descr~pt~on-entry 

... 

[ 

COMMUNICATION SECTION. 

[communication-description-entry [record-description-entry] ..• ] 

2 - 27 

] ... ] 
] 

] 
· · · ] 



PROCEDURE DIVISION 

GENERAL DESCRIPTION 

The Procedure Division must be included in every COBOL source program. This 
division may contain declarative procedures. 

Declaratives 

Declarative sections must be grouped at the beginning of the Procedure 
Division preceded by the key word DECLARATIVES and followed by the key words 
END DECLARATIVES. (See descriptions of the USE statement in Chapters 5, 6 
and 7 and the Debug Chapter 11). 

Procedures 

A procedure is composed of a paragraph, or group of successive paragraphs 
or a section, or a group of 

successive sections within the Procedure Division. If one paragraph is in a 
section, then all paragraphs must be in sections. A procedure-name is a 
word used to refer to a paragraph or section in the source program in which 
it occurs. It consists of a paragraph-name (which may be qualified), or a 
section-name. 

The end of the Procedure Division and the physical end of the program is 
that physical position in a COBOL source program after which no further 
procedures appear. 

A section consists of a section header. followed by zero, one, or more 
successive paragraphs. A section ends immediately before the next section 
or at the end of the Procedure Division or, in the declaratives portion of 
the Procedure Division, at the key words END DECLARATIVES. 

A paragraph consists of a paragraph-name followed by a period and a space 
and by zero, one, or more successive sentences. A paragraph ends 
immediately before the next paragraph-name or section-name or at the end of 
the Procedure Division or, in the declaratives portion of the Procedure 
Division, at the key words END DECLARATIVES. 

A sentence consists of one or more statements and is terminated by a period 
followed by a space. 

A statement is a syntactically valid combination of words and symbols 
beginning with a COBOL verb. 

The term 'identifier' is defined as the word or words necessary to make 
unique reference to a data item. 

2 - 28 



Execution 

Execution begins with the first statement of the Procedure Division, 
excluding declaratives. Statements are then executed in the order in which 
they are presented for compilation, except where the rules indicate some 
other order. 

General Format 

Procedure Division Header 

The Procedure Division is identified by and must begin with the following 
header: 

PROCEDURE DIVISION [USING data-name-1 [, data-name-2] ] . 

Procedure Division Body 

The body of the Procedure Division must conform to one of the following 
formats: 

Format 1: 

[ o ECLARAT IVES • 

) section-name SECTION [segment-number]. declarative-sentence 

[paragraph-name. [sentence] e CI • ] · .. t ... 
END DECLARATIVES.] 

) section-name SECTION [segment-number] . 

~~i~l:~:I:i,!I!·~!as:lll:::·:::·::~~:i:~i:l~:::I::::~::~: 

[paragraph-name. [sentence] • •• ~ eo. 

Format 2: 

fparagraph-name.f [sentence] ..• [ ~paragraph-name. [sentence] ... ~ ... ] 

STATEMENTS AND SENTENCES 

There are three types of statements: 

1. Conditional statements, 
2. Compiler directing statements, 
3. Imperative statements. 

(Addendum 1) 

2 - 29 



There are three types of sentences: 

1. Conditional sentences, 
2. Compiler directing sentences, 
3Q Imperative sentences. 

Conditional Statement 

A conditional statement specifies that the truth value of a condition is to 
be determined and that the subsequent action of the obj ect program is 
dependent on this truth value. 

A conditional statement is one of the following: 

* An IF, SEARCH or RETURN statement. 

* A READ statement that specifies the AT END or INVALID KEY phrase. 

* A WRITE statement that specifies the INVALID KEY or END-OF-PAGE 
phrase. 

* A START, REWRITE or DELETE statement that specifies the INVALID 
KEY phrase. 

* An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) 
that specifies the SIZE ERROR phrase. 

* A RECEIVE statement that specifies a NO DATA phrase. 

* A STRING, UNSTRING or CALL statement that specifies the ON 
OVERFLOW phrase. 

Conditional Sentence 

A conditional sentence is a conditional statement, optionally preceded by an 
imperative statement, terminated by a period followed by a space. 

Compiler Directing Statement 

A compiler directing statement consists of a compiler directing verb and its 
operands. The compiler directing verbs are COPY, ENTER and USE (see 
THE COpy STATEMENT in Chapter 10, THE ENTER STATEMENT in Chapter 3, and THE 
USE STATEMENT in Chapters 5, 6 and 7). A compiler directing statement 
causes the compiler to take a specified action during compilation. 

Compiler Directing Sentence 

A compiler' directing sentence is a single compiler directing statement 
terminated by a period followed by a space. 

2 - 30 



Imperative Statement 

An imperative statement indicates a specific unconditional action to be 
taken by the object program. An imperative statement is any statement that 
is neither a conditional statement, nor a compiler directing statement. An 
imperative statement may consist of a sequence of imperative statements, 
each possibly separated from the next by a separator. 

The imperative verbs are: 

ACCEPT 

ADDl 

ALTER 

CALL3 

CANCEL 

CLOSE 

COMPUTEl 

DELETE2 

DISABLE 

DISPLAY 

DIVIDEl 

1 - Without the optional 
2 - Without the optional 
3 - Without the optional 
4 - Without the optional 
S - Without the optional 
6 - Without the optional 

ENABLE 

EXIT 

GO 

INSPECT 

MERGE 

MOVE 

MULTIPLyl 

OPEN 

PERFORM 

READS 

RECEIVE4 

SIZE ERROR phrase. 
INVALID KEY phrase. 
ON OVERFLOW phrase. 
NO DATA phrase. 

RELEASE 

REWRITE2 

SEND 

SET 

SORT 

START2 

STOP 

STRING3 

SUBTRACTl 

UNSTRING3 

\.JRITE6 

AT END phrase or INVALID KEY phrase. 
INVALID KEY phrase or END-OF-PAGE phrase. 

When 'imperative-statement' appears in the general format of statements, 
'imperative-statement' refers to that sequence of consecutive imperative 
statements that must be ended by a period or an ELSE phrase associated with 
a previous IF statement. 

Imperative Sentence 

An imperative sentence is an imperative statement terminated by a period 
followed by a space. 

2 - 31 



Categories of Statements 

Category 

Arithmetic 

Compiler Directing 

Conditional 

Data Movement 

Ending 

Verbs 

ADD 
COMPUTE 
DIVIDE 
INSPECT (TALLYING) 
MULTIPLY 
SUBTRACT 

COpy 
ENTER 
USE 

ADD (SIZE ERROR) 
CALL (OVERFLOW) 
COMPUTE (SIZE ERROR) 
DELETE (INVALID KEY) 
DIVIDE (SIZE ERROR) 
IF 
MULTIPLY (SIZE ERROR) 
READ (END or INVALID KEY) 
RECEIVE (NO DATA) 
RETURl~ (END) . 
REWRITE (INVALID KEY) 
SEARCH 
START (INVALID KEY) 
STRING (OVERFLOW) 
SUBTRACT (SIZE ERROR) 
UNSTRING (OVERFLOW) 
WRITE (INVALID KEY or END-OF-PAGE) 

ACCEPT (DATE, DAY or TIME) 
ACCEPT MESSAGE COUNT 
INSPECT (REPLACING) 
MOVE 
STRING 
UNSTRING 

STOP 

2 - 32 



Category 

Input-Output 

Inter-Program 
Communicating 

Ordering 

Procedure Branching 

Table Handling 

{ 

! 

{ 

Verbs 

ACCEPT (identifier) 
CLOSE 
DELETE 
DISABLE 
DISPLAY 
ENABLE 
OPEN 
READ 
RECEIVE 
REWRITE 
SEND 
START 
STOP (literal) 
WRITE 

CALL 
CANCEL 

MERGE 
RELEASE 
RETURN 
SORT 

ALTER 
CALL 
EXIT 
GO TO 
PERFORM 

SEARCH 
SET 

IF is a verb in the COBOL sense; it is recognised that it is not a verb in 
English. 

2 - 33 



REFERENCE FORMAT 

GENERAL DESCRIPTION 

The reference format, which provides a standard method for describing COBOL 
source programs, is described in terms of character positions in a line on 
an input-output medium. The L/II COBOL compiler accepts source programs 
written in reference format and produces an output listing of the source 
program input in reference format. (See the L/II COBOL Operating Guide for 
a sample source program.) 

The rules for spacing given in the discussion of the reference format take 
precedence over all other rules for spacing. 

The divisions of a source program must be ordered as follows: the Identi­
fication Division, then the Environment Division, then the Data Division, 
then the Procedure Division. Each division must be written according to the 
rules for the reference format. 

REFERENCE FORMAT REPRESENTATION 

The reference format for a line is represented as in Figure 2-1. 

Margin Hargin Hargin Margin Margin 
L C A B R 

1 61 I 1 
~I 

1 1 

1 1 2 3 4 5 7 8 9 0 2 3 

-- "-"" - t - ---- ............ --Sequence Number Area Area A Area B 

Indicator Area 

Margin L is immediately to the left of the leftmost character position 
of a line. 

Margin C is between the 6th and 7th character positions of a line. 

Margin A is between the 7th and 8th character positions of a line. 

Margin B is between the 11th and 12th character positions of a line. 

Margin R is immediately to the right of the rightmost character 
position of a line. 

Figure 2-1. Reference Format for a COBOL Source Line. 

The sequence numb~r area occupies six character positions (1-6), and is 
between Margin L and Margin C. 

2 - 34 



The indicator area is the 7th character position of a line. 

Area A occupies character positions 8, 9, 10 and 11, and is between margin A 
and margin B. 

Area B occupies character positions 12 through 72 inclusive; it begins 
immediately to the right of Margin B and terminates immediately to the left 
of Margin R. 

Sequence Numbers 

A sequence number, consisting of six digits in the sequence area, may be 
used to label a source program line. 

Continuation of Lines 

Whenever a sentence, entry, phrase, or clause requires more than one line, 
it may be continued by starting subsequent line(s) in area B. These 
subsequent lines are called the continuation line(s). The line being 
continued is called the continued line. Any word or literal may be broken 
in such a way that part of it appears on a continuation line. 

A hyphen in the indicator area of a line indicates that the first nonblank 
character in area B of the current line is the successor of the last 
nonblank character of the preceding line without any intervening space. 
However, if the continued line contains a nonn~meric literal without closing 
quotation mark, the first nonblank character in area B on the continuation 
line must be a quotation mark, and the continuation starts with the 
character immediately after that quotation mark. All spaces at the end of 
the continued line are considered part of the literal. Area A of a 
continuation line must be blank. 

if there is no hyphen in the indicator area of a line, it is assumed that 
the last character in the preceding line is followed by a space. 

Blank Lines 

A blank line is one that is blank from margin C to margin R, inclusive. A 
blank line can appear anywhere in the source program, except immediately 
preceding a continuation line. (See Figure 2-1). 

Pseudo-Text 

The character-strings and separators comprising pseudo-text may start in 
either area A or area B. If, however, there is a hyphen in the indicator 
area of a line which follows the opening pseudo-text delimiter, area A of 
the line must be blank; and the normal rules for continuation of lines apply 
to the formation of text words. (See Chapter 10, LIBRARY.) 

2 - 35 



DIVISION, SECTION, PARAGRAPH FORMATS 

Division Header 

The division header must start in area A. (See Figure 2-1). 

Section Header 

The section header must start in area A. (See Figure 2-1)~ 

A section consists of paragraphs in the Environment and Procedure Divisions 
and Data Division entries in the Data Division. 

Paragraph Header, Paragraph-Name and Paragraph 

A paragraph consists of a paragraph-name followed by a period and a space 
and by zero, one or more sentences, or a paragraph header followed by one or 
more entries. Comment entries may be included within a paragraph. The 
paragraph header or paragraph-name starts in area A of any line following 
the first line of a division or a section. 

The first sentence or entry in a paragraph begins either on the same line as 
the paragraph header or paragraph-name or in area B of the next nonblank 
line that is not a comment line. Successive sentences or entries either 
begin in area B of the same line as the preceding sentence or entry or in 
area B of the next nonblank line that is not a comment line. 

When the sentences or entries of a paragraph require more than one line they 
may be continued as described in CONTINUATION OF LINES in this Chapter. 

DATA DIVISION ENTRIES 

Each Data Division entry begins with a level indicator or a level-number, 
followed by a space, followed by its associated name (except in the Report 
Section), followed by a sequence of independent descriptive clauses. Each 
clause, except the last clause of an entry, may be terminated by either the 
separator semicolon or the separator comma. The last clause is always 
terminated by a period followed by a space. 

There are two types of Data Division entries: those which begin with a level 
indicator and those which begin with a level-number. 

A level indicator is any of the following: FD (see THE FILE DESCRIPTION 
-COMPLETE ENTRY SKELETON in Chapters 5, 6 and 7), SD (see the SORT MERGE 
FILE DESCRIPTION - COMPLETE ENTRY SKELETON in Chapter 8), (see the 
COMMUNICATION DESCRIPTION - COMPLETE ENTRY SKELETON in Chapter 13). 

2 - 36 



In those Data Division entries that begin with a level indicator, the level 
indicator begins in area A followed by a space and followed in area B with 
its associated name and appropriate descriptive information. 

Those Data Division entries that begin with level-numbers are called data 
description entries. 

A level-number has a value taken from the set of values 1 through 49, 66, 77 
and 88. Level-numbers in the range 1 through 9 may be written either as a 
single digit or as a zero followed by a significant digit. At least one 
space must separate a level-number from the word following the level-number. 

In those data description entries that begin with level-number 01 or 66, 77 
and 88, the level-number begins in area A followed by a space and followed 
in area B by its associated record-name or item-name and appropriate 
descriptive information. 

Successive data description entries may have the same format as the first or 
may be indented according to level-number. The entries in the output 
listing need be indented only if the input is indented. Indentation does 
not affect the magnitude of a level-number. 

When level-numbers are to be indented, each new level-number may begin any 
number of spaces to the right of margin A. The extent of indentation to the 
right is determined only by the width of the physical medium. 

DECLARATIVES 

The key word DECLARATIVES and the key words END DECLARATIVES that 
precede and follow, respectively, the declaratives portion of the Procedure 
Division must each appear on a line by themselves. Each must begin in area 
A and be followed by a period and a space (see Figure 2-1). 

COMMENT LINES 

A comment line is any line with an asterisk in the continuation 
indica tor area of the line. A comment line can appear as any line in a 
source program after the Identification Division header. Any combination of 
characters from the computer's character set may be included in area A and 
area B of that line (see Figure 2-1). The asterisk and the characters in 
area A and area B will be produced on the listing but serve as documentation 
only. A special form of comment line represented by a stroke in the 
indicator area of the line causes page ejection prior to printing the 
comment. 

Successive comment lines are allowed. Continuation of comment lines is 
permitted, except that each continuation line must contain an '*' in the 
indicator area. 

2 - 37 



RESERVED WORDS 

A full list of reserved words is given in Appendix A. 

2 - 38 



CHAPTER 3 

THE NUCLEUS 

FUNCTION OF THE NUCLEUS 

The Nucleus provides a basic languag~ capability for the internal processing 
of data within the basic structure of the four divisions of a program. 

OVERALL LANGUAGE 

NAME CHARACTERISTICS 

L/II COBOL data-names need not begin with an alphabetic character; the 
alphabetic characters may be positioned anywhere within the data-name. 
Qualification is permitted and all data-names, condition-names, 
paragraph-names, and text-names need not be unique. 

FIGURATIVE CONSTANTS 

All the following figurative constants may be used: ZERO, ZEROS, ZEROES, 
SPACE, SPACES HIGH-VALUE, HIGH-VALUES, LOW-VALUE, LOW-VALUES, QUOTE, QUOTES, 
and ALL literal. 

REFERENCE FORMAT 

A word or numeric literal can be broken in such a way that part of it 
appears on a continuation line. 

~ - 1 



IDENTIFICATION DIVISION IN THE NUCLEUS 

GENERAL DESCRIPTION 

The Identification Division must be included in every COBOL source program. 
This division identifies the source program and the resultant output 
listing. In addition, the user may include the date the program is written 
and such other information as desired under the paragraphs in the general 
format shown below. 

ORGANIZATION 

Paragraph headers identify the type of information 
paragraph. The name of the program must be given in the 
which is the PROGRAM-ID paragraph. The other paragraphs 
may be included in this division at the user's choice, 
presentation shown by the general format below. 

Structure 

contained in the 
first paragraph, 
are optional and 
in the order of 

~:~o!~n~ __ ~ the Identification Division is given 

General Format 

f IDENTIFICATION DIVISION + 

f PROGRAM-ID. program-name. + 
[ AUTHOR. [comment-entry] 

[ INSTALLATION. [comment-entry] 

[ DATE-WRITTEN. [comment-entry] 

[DATE-COMPILED. [comment-entry] 

[SECURITY . [comment-entry] 

Syntax Rules 

· .. ] 
] 

... ] 
... ] 

] 

1. The Identification Division must begin with the reserved words. 
IDE~TIFICATION DIVISION followed by a period and a space. 

2. The comment-entry may be any combination of the characters f rom the 
computer's character set and may be written in Area B on one or more 
lines. The continuation of the comment-entry by the use of the hyphen 
in the indicator area is not permitted. 

3 - 2 



THE PROGRAM-ID PARAGRAPH 

Function 

The PROGRAM-ID paragraph gives the name by which a program is identified. 

General Format 

PROGRAM-ID. program-name. 

Syntax Rules 

1. The program-name must conform to the rules for formation of a 
user-defined word. 

General Rules 

1. The PROGRAM-ID 

2. The program-name identifies the source program and all listings 
pertaining to a particular program. 

THE DATE-COMPILED PARAGRAPH 

Function 

The DATE-COMPILED paragraph provides the compilation date in the 
Identification Division source program listing. 

General Format 

DATE-COMPILED. comment-entry 

Syntax Rule 

The comment-entry may be any combination of the characters from the 
computer's character set. The continuation of the comment entry by use of 
the hyphen is not permitted; however, the comment entry may be contained on 
one or more lines. 

General Rule 

The paragraph-name DATE-COMPILED causes a date comment entry string to be 
inRerted during program compilation (null comment entries are permitted). 
If a DATE compiler directive is present, the DATE-COMPILED comment-entry is 
replaced in its entirety by the date string specified in the command line. 

3 - 3 



See the L/II COBOL Operating Guide for details of the derivation of the 
comment-entry replacement string for your COBOL implementation at 
compile-time. 

ENVIRONMENT DIVISION IN THE NUCLEUS 

CONFIGURATION SECTION 

The SOURCE-COMPUTER Paragraph 

Function 

The SOURCE-COMPUTER paragraph identifies the computer upon which the program 
is to be compiled. 

General Format 

SOURCE-COMPUTER. computer-name. 

Syntax Rule 

Computer-name must be one COBOL word defined by the user. 

General Rules 

The computer-name provides a means for identifying equipment configuration, 

~c~s;;~e __ ~ 

The OBJECT-COMPUTER Paragraph 

Function 

The OBJECT-COMPUTER Paragraph identifies the computer on which the program 
is to be executed. 

General Format 

OBJECT-COMPUTER. computer-name [ MEMORY SIZE integer ~ ~=CTERS lJ 
( MODULES 

[,PROGRA}l COLLATING SEQUENCE IS alphabet-name]. 

Syntax Rule 

1. Computer-name must be one COBOL word defined by the user. 

General Rules 

1. The computer-name 
configuration, in 

provides a means for identifying equipment 
which case the computer-name and its implied 

3 - 4 



configurations are specified by the user. 
contains specific information 

The configuration definition 
the ..... 

2. If the PROGRAM COLLATING SEQUENCE Clause is specified, the collating 
sequence associated with alphabet-name i.; used to determine the truth 
value of any nonnumeric comparisons: 

a. Explicitly specified in relation conditions 
Condition later in this Chapter). 

(see Relation 

b. Explicitly specified in condition-name conditions; see Condition 
Name Condition (Conditional Variable). 

3. If the PROGRAM COLLATING SEQUENCE Clause is not specified, the native 
collating sequence is used. Appendix B lists the full ASCII collating 
sequence (native) and those characters used in COBOL. 

4. If the PROGRAM COLLATING SEQUENCE Clause is specified, the program 
collating sequence is the collating sequence associated with the 
alphabet-name specified in that Clause. 

5. The PROGRAM COLLATING SEQUENCE Clause is also applied to any nonnumeric 
merge or sort keys unless the COLLATING SEQUENCE phrase of the 
respective SORT or MERGE statement is specified. 

6. The PROGRAM COLLATING SEQUENCE clause applies only to the program in 
which it is specified. 

The SPECIAL-NAMES Paragraph 

Function 

The SPECIAL-NAMES paragraph provides a means of relating implementor-names 
to user-specified mnemonic-names and of relating alphabet-names to character 
sets and/or collating sequences. 

3 - 5 



General Format 

SPECIAL-NAMES. 

[function-name-l IS mnemonic-name-l] 
[function-name-2 IS mnemonic-name-2] 

SWITCH (li mnemonic-name] 

~ ,ON STATUS IS condition-name-l [,OFF STATUS ~ condition-name-2]~ 
? ,OFF STATUS IS condition-name-2 [,ON STATUS ~ condition-name-l] ~ 

, alphabet-name IS 
STANDARD-l 
NATIVE 

~ THROUGH ~ . 
literal-l ? THRU S 11teral-2 

ALSO literal-3 [, ALSO literal-4] 

[
literal-sr ~ ~~~~UGH .~. literal-6 . 
~ literal-7 [, ALSO literal-8] 

[, CURRENCY SIGN 1i literal-9] 

[, DECIMAL-POINT ~ COMMA] 

Syntax Rules 

Jft· · · ... ~ 

1 . Mnemonic-names can be any COBOL user-defined word and at leas tone 
constituent character must be alphabetic. 

2. The literals specified in the literal phrase of the alphabet-name 
clause: 

a. If numeric, must be unsigned integers and must have a value within 
the range of one (1) through the maximum number of characters in 
the native character set. 

b. If nonnumeric and associated with a THROUGH or ALSO phrase, must 
each be one character in length. 

3 - 6 



3. If the literal phrase of the alphabet-name clause is specified a given 
character must not be specified more than once in an alphabet-name 
clause. 

4. The words THRU and THROUGH are equivalent. 

General Rules 

1. Function-name-l specifies system devices or functions used by the 
compiler. The programmer can associate any user-defined COBOL word 
with a function-name. Mnemoni~-name-l, -2, etc can be used in the 
ACCEPT, WRITE 

Note that the FORMFEED and TAB functions correspond to the ASCII 
characters DC and DB as sent to the printer. On most printers DC moves 
the paper to the Top of Form position and the effect of DB depends on 
the individual mode of the printer. Usually a specified number of 
lines are skipped. 

2. The SWITCH clause must have at least one condition-name associated with 
it. The switch is set at run-time by the operator and the setting may 
be determined in the program by testing the condition-names. The 
setting of the switches cannot be changed during execution. 

3. The alphabet-name clause provides a means for relating a name to a 
specified character code set and/ or collating sequence. When 
alphabet-name is referenced in the PROGRAM COLLATING SEQUENCE clause 
(see THE OBJECT-COMPUTER PARAGRAPH in this Chapter) or the COLLATING 
SEQUENCE phrase of a SORT or MERGE statement (see THE SORT STATEMENT or 
THE MERGE STATEMENT in Chapter 8), the alphabet-name clause specifies a 
collating sequence. When alphabet-name is referenced in a CODE-SET 
clause in a file description entry (see The File Description - Complete 
Entry Skeleton in Chapter 5), the alphabet-name clause specifies a 
character code set. 
a. If the STANDARD-l phrase is specified, the character code set or 

collating sequence identified is that defined in American Standard 
Code for Informatipn Interchange, X3.4-1968. Appendix B defines 
the correspondence between the characters of the standard 
character set and the characters of the native character set. 

b. If the NATIVE phrase is specified, the na"tive character code set 
or native collating sequence is used. The native collating 
sequence is as in ANSI publication X3.4-1968 (see Appendix B). 

4. The character that has the highest ordinal position in the program 
collating sequence specified is associated with the figurative ~onstant 
HIGH-VALUE. If more than one character has the highest position in the 

3 - 7 



program collating sequence, the last character specified is associated 
with the figurative constant HIGH-VALUE. 

5. The character that has the lowest ordinal position in the program 
collating sequence specified is associated with the figurative constant 
LOW-VALUE. If more than one character has the lowest position in the 
program collating sequence, the first character specified is associated 
with the figurative constant LOW-VALUE. 

6. The literal which appears in the CURRENCY SIGN IS literal clause is 
used in the PICTURE clause to represent the currency symbol. The 
literal is limited to a single character and must not be one of the 
following characters. 

* digits 0 thru 9; 

* alphabetic characters A, B, C, D, L, P, R, S, V, X, Z, or the 
space; 

* special characters '*' 
, / 'or '='. 

'+', '-' " " , . , " ., " 'C', ')', , " , 

If this clause is not present, only the currency sign is used in the 
PICTURE clause. 

7. The clause DECIMAL-POINT IS COMMA means that the function of comma and 
period are exchanged in the character-string of the PICTURE clause and 
in numeric literals. 

3 - 8 



DATA DIVISION IN THE NUCLEUS 

WORKING STORAGE SECTION 

The Working-Storage Section is composed of the section header, followed by 
data description entries for noncontiguous data items and/or record 
description entries. Each Working-Storage Section record name and 
noncontiguous item name must be unique since it cannot be qualified. 
Subordinate data-names need not be unique if they can be made unique by 
qualification. 

Noncontiguous Working-Storage 

Items and constants in Working-Storage which bear no hierarchical 
relationship to one another need not be grouped into records, provided they 
do not need to be further subdivided. Instead, they are classified and 
defined in a separate data description entry which begins with the special 
level-number, 77. 

The following data clauses are required in each data descriptions entry: 

* Level-number 77 
* Data-name 
* The PICTURE clause or the USAGE IS INDEX clause 

Other data description clauses are optional and can be used to complete the 
description of the item if necessary. 

Working-Storage Records 

Data elements and constants in Working-Storage which bear a definite hier­
archic relationship to one another must be grouped into records according to 
the rules for formation of record descriptions. All clauses which are used 
in record descriptions in the File Section can be used in record 
descriptions in the Working-Storage Section. 

Initial Values 

The initial value of any item in the Working-Storage Section except an index 
data item is specified by using the VALUE clause with the data item. The 
initial value of any index data item is unpredictable. 

THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON 

Function 

A data description entry specifies the characteristics of a particular item 
of data. 

3 - 9 



General Format 

Format 1: 

level-number ~data-name-1~ 
~FILLER 5 

Format 2: 

[; REDEFINES data-name-2] 

r • 
t. , 

IS character-string] 

COMPUTATIONAL 
COMP 

[USAGE IS] COMPUTATIONAL-3 
COMP-3 
DISPLAY 

{
LEADING } 

[SIGN IS] TRAILING 

{ 
SYNCHRONIZED} 
SYNC [ LEFT] ] 

RIGHT 

{ 
JUSTIFIED} ] 
JUST RIGHT 

BLANK WHEN ZERO] 

[ SEPARATE CHARACTER]] 

[; VALUE IS literal]. 

66 data-name-l; RENAMES data-name-z[ {~UGH} data-name-3] . 

Format 3: 

. . {VALUE IS }. [ {THROUGH} 88 cond~t~on-name; VALUES ARE l~teral-l THRU 

[ ,literal-3 [ G:~UGH} literal-4] ] ... . 

literal-2 ] 

Syntax Rules 

1. The level-number in Format 1 may be any number from 01-49 or 77. 

2. The clauses may be written in any order with two exceptions: the 
data-name-1 or FILLER clause must immediately follow the level-number; 
the REDEFINES clause, when used, must . immediately follow the 
data-name-l clause. 

3 - 10 



3. The PICTURE clause must be specified for every elementary item except 
an index data item, in which case use of this clause is prohibited. 

4. The words THRU and THROUGH are equivalent. 

General Rules 

1. The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO, must 
not be specified except for an elementary data item. 

2. Format 3 is used for each condition-name. Each condition-name requires 
a separate entry with level-number 88. Format 3 contains the name of 
the condition and the value, values, or range of values associated with 
the condition-name. The condition-name entries for a particular 
conditional variable must follow the entry describing the item with 
which the condition-name is associated. A condition-name can be 
associated with any data description entry which contains a 
level-number except the following: 

a. Another condition-name. 

b. A level 66 item. 

c. A group containing items with descriptions including JUSTIFIED, 
SYNCHRONIZED or USAGE (other than USAGE IS DISPLAY). 

d. An index data item (See The USAGE IS INDEX Clause in Chapter 4). 

3 - 11 



THE BLANK WHEN ZERO CLAUSE 

Function 

The BLANK WHEN ZERO clause permits the blanking of an item when its value is 
zero. 

General Format 

BLANK WHEN ZERO 

Syntax Rule 

The BLANK WHEN ZERO clause can be used only for an elementary item whose 
PICTURE is specified as numeric (with implicit or explicit USAGE IS. DISPLAY) 
or numeric edited. (See THE PICTURE CLAUSE later in this Chapter). 

General Rules 

1. When the BLANK WHEN ZERO clause is used, the item will contain nothing 
but spaces if the value of the item is zero. 

2. When the BLANK WHEN ZERO clause is used for an item whose PICTURE is 
numeric, the category of the item is considered to be numeric edited. 

3 - 12 



THE DATA-NAME OR FILLER CLAUSE 

Function 

A data-name specifies the name of the data being described. The word 
FILLER specifies an elementary item of the logical record that cannot be 
referred to explicitly. 

General Format 

{
data-name} 
FILLER 

Syntax Rule 

In the File, Working-Storage, Communication and Linkage Sections, a 
data-name or the key word FILLER must be the first word following the 
level-number in each data description entry. 

General Rule 

The key word FILLER may be used to name an elementary item or ~:lllll!;ljii!: in 
a record. Under no circumstances can a FILLER item be referred to 
explicitly. However, the key word FILLER may be used as a conditional 
variable because such use does not require explicit reference to the FILLER 
item but to its value. 

3 - 13 



THE JUSTIFIED CLAUSE 

Function 

The JUSTIFIED clause specifies non-standard positioning of data wi thin a 
receiving data item. 

General Format 

S JUSTIFIED ~ RIGHT 
? JUST 5 

Syntax Rules 

1. The JUSTIFIED clause can be specified only at the elementary item 
level. 

2. JUST is an abbreviation for JUSTIFIED. 

3. The JUSTIFIED clause cannot be specified for any data item described as 
numeric or for which editing is specified. 

General Rules 

I. When a receiving data item is described with the JUSTIFIED clause and 
the sending data item is larger than the receiving data item, the 
leftmost characters are truncated. When the receiving data item is 
described with the JUSTIFIED clause and it is larger than the sending 
data item, the data is aligned at the rightmost character position in 
the data item with space fill for the leftmost character positions. 

Note that the contents of the sending data item are not taken into 
account, i.e. trailing spaces are not suppressed. 

For example 

If a data-item PIC X(4) whose value is A ............... (i.e. A followed by 
three spaces) is moved into a data-item PIC X(6) JUSTIFIED the 
result will be ........... A ..... uw. If the same data item is moved to one with 
PIC X(3) JUSTIFIED the result will be ..... ~w i.e. the leftmost 
character is truncated. 

2. When the JUSTIFIED clause is omitted, the st~ndard rules for aligning 
data within an elementary item apply. (See Standard Alignment Rules.) 

(Addendum 1) 

3 - 14 



LEVEL NUMBER 

Function 

The level-number shows the hierarchy of data within a logical record. In 
addition, it is used to identify entries for working storage items, linkage 
items, condition-names, and the RENAMES clause. 

General Format 

level-number 

Syntax Rules 

1. A level-number is required as the first element in each data 
description entry. 

2. Da ta description entries subordinate to an FD, CD, or SD entry must· 
have level-numbers with the values 01-49, 66 or 88. (See 
THE FILE DESCRIPTION in Chapter 5). 

3. Data description entries in the Working-Storage Section and Linkage 
Section must have level-numbers with the values 01-49, 66, 77 or 88. 

4. A level number may be a one or two digit number. 

General Rules 

1. The level-number 01 identifies the first entry in each record 
description. 

2. Special level numbers have been assigned to certain entries where there 
is no real concept of level: 

a. The level-number 77 is assigned to identify noncontiguous working 
storage data items, noncontiguous linkage data items, and can be 
used only as described by Format 1 of the data description 
skeleton. (See THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON in 
this Chapter). 

b.· Level number 66 is assigned to identify RENAMES entries and can be 
used only as described in Format 2 of the data description 
skeleton earlier in this Chapter. 

c. Level number 88 is assigned to entries which define 
condition-names associated with a conditional variable and can be 
used only as described in Format 3 of the data description 
skeleton earlier in this Chapter. 

3. Multiple level 01 entries subordinate to any given level indicator, 
represent implicit redefinitions of the same area. 

3 - 15 



THE PICTURE CLAUSE 

Function 

The PICTURE clause describes the general characteristics and editing 
requirements of an elementary item. 

General Format 

~ PICTURE ~ 
~ PIC ~ IS character-string 

Syntax Rules 

1. A PICTURE clause can be specified only at the elementary item level. 

2. A character-string consists of certain allowable combinations of 
characters in the COBOL character set used as symbols. The allowable 
combinations determine the category of the elementary item. 

3. The maximum number of characters allowed in the character-string is 30. 

4. The PICTURE clause must be specified for every elementary item except 
an index data item, in which case use of this clause is prohibited. 

5. PIC is an abbreviation for PICTURE. 

6. The asterisk when used as the zero suppression symbol and the clause 
BLANK WHEN ZERO may' not appear in the same entry. 

General Rules 

There are five categories of data that can be described with a PICTURE 
clause: alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric 
edited. General rules within these categories are given below: 

Alphabetic Data Rules 

1. Its PICTURE character-string can only contain the symbols 'A', 'B'; and 

2. Its contents when represented in standard data format must be any 
combination of the twenty-six (26) letters of the Roman alphabet and 
the space from the COBOL character set. Its length must be between 1 
and 8191 characters. 

Numeric Data Rules 

1. Its PICTURE character-string can only contain the symbols '9', 'p', 
'S', and 'V'. The number of digit positions that can be described by 
the PICTURE character-string must range from 1 to 18 inclusive. 

3 - 16 



2. If unsigned, the data in standard data format must be a combination of 
the Arabic numerals '0', '1', ' 2', '3', '4', '5', '6', ' 7 " ' 8 " and 
'9'; if signed, the item may also contain a '+', '-' or other 
representation of an operational sign. (see THE SIGN CLAUSE later in 
this Chapter). 

Alphanumeric Data Rules 

1. Its PICTURE character-string is restricted to certain combinations of 
the symbols 'A', 'X', '9', and the item is treated as if the 
character-string contained all X's. A PICTURE character-string which 
contains all A's or all 9's does not define an alphanumeric item; and 

2·. Its contents when represented in standard data format can consist of 
any characters in the computer's character set. Its length must be 
between 1 and 8191 characters. 

Alphanumeric Edited Data Rules 

1. Its PICTURE character-string is restricted to certain combinations of 
the following symbols: 'A', 'X', '9', 'B', '0', and 'I' as follows: 

a. The character-string must contain at least one 'B' and at least 
one 'X' or at least one '0' (zero) and at least one 'X' or at 
least one 'I' (stroke) and at least one 'X'; or 

b. The character-string must contain at least one '0' (zero) and at 
least one 'A' or at least one 'I' (stroke) and at least one 'A'; 
and 

2. Its contents when represented in standard data format are allowable 
chara~ters in the computer's set. Its length must be between 1 and 152 
characters. 

Numeric Edited Data Rules 

1. Its PICTURE character-string is restricted to certain combinations of 
the symbols 'B', 'I', 'P', 'V', 'Z', '0', '9', ',', '.', '*', '+', '-', 
'CR', 'DB', and the currency symbol. The allowable combinations are 
determined from the order of precedence of symbols and the editing 
rules as follows: 

a. The number of digit positions that can be represented in the 
PICTURE character-string must range from 1 to 18 inclusive. 

b. The character-string must contain at least one '0', 'B', 'I', 'Z', 
'*', '+', ',', '.', '-', 'CR', 'DB', or currency symbol. 

2. The contents of the character positions of these symbols that are 
allowed to represent a digit in standard data format, must be one of 
the numerals. 

3 - 17 



Elementary Item Size 

The size of an elementary item, where size means the number of charac"ter 
positions occupied by the elementary item in standard data format, is 
determined by the "number of allowable symbols that represent character 
positions 0 An integer which is enclosed in parentheses following the 
symbols 'A', ',', 'X', '9', 'P', 'Z', '*', 'B', 'I', '0', '+', '-', or the 
currency symbol indicates the number of consecutive occurrences of the 
symbol. Note that the following symbols may appear only once in a given 
PICTURE: 'S', 'V', '.', 'CR', and 'DB'. 

Symbols Used 

The functions of the symbols used to describe an elementary item are 
explained as follows: 

A - Each 'A' in the character-string represents a character position which 
can contain only a letter of the alphabet or a space. 

B - Each fB' in the character-string represents a character position into 
which the space character will be inserted. 

P - Each 'p' indicates an assumed decimal scaling position and is used to 
specify the location of an assumed decimal point when the point is not 
within the number that appears in the data item. The scaling position 
character 'p' is not counted in the size of the data item. Scaling 
position characters are counted in determining the maximum number of 
digit positions (18) in numeric edited items or numeric items. The 
scaling position character 'p' can appear only to the left or right as 
a continuous string of 'p' s within a PICTURE description; since the 
scaling position character 'p' implies an assumed decimal point (to the 
left of 'p's if 'P's are leftmost PICTURE characters and to the right 
if 'p' s are rightmost PICTURE characters), the assumed decimal point 
symbol 'V' is redundant as either the leftmost or rightmost character 
within such a PICTURE description. The character 'p' and the insertion 
character " (period) cannot both occur in the same PICTURE 
character-string. If, in any operation involving conversion of data 
from one form of internal representation to another, the data item 
being converted is described with the PICTURE character 'p', each digit 
position described by a 'p' is considered to contain the value zero, 
and the size of the data. item is considered to include the digit 
positions so described. 

S - The letter'S' is used in a character-string to indicate the presence, 
but neither the representation nor, necessarily, the position of an 
operational sign; it must be written as the leftmost character in the 
PICTURE. The'S' is not counted in determining the size (in terms of 
standard data format characters) of the elementary item unless the 
entry is subject to a SIGN clause which specifies the optional SEPARATE 
CHARACTER phrase. (See the SIGN Clause in this Chapter.) 

3 --18 



v - The 'V' is used in a character-string to indicate the location of the 
assumed decimal point and may only appear once in a character-string. 
The 'V' does not represent a character position and therefore is not 
counted in the size of the elementary item. When the assumed decimal 
point is to the right of the rightmost symbol in the string the 'V' is 
redundant .. 

x - Each 'X' in the character-string is used to represent a character 
position which contains any allowable character from the computer's 
character set. 

Z - Each 'z, in a character-string may only be used to represent the 
leftmost numeric character positions which will be replaced by a space 
character when the contents of that character position is zero. Each 
'z' is counted in the size of the item. 

9 - Each '9' in the character-string represents a character position which 
contains a numeral and is counted in the size of the item. 

a - Each '0' (zero) in the character-string represents a character position 
into which the numeral zero will be inserted. The '0' is counted in 
the size of the item. 

I - Each ' I' (stroke) in the character-string represents a character 
position into which the stroke character will be inserted. The 'I' is 
counted in the size of the item. 

Each ',' (comma) in the character-string represents a character 
position into which the character ',' will be inserted. This character 
position is counted in the size of the item. The insertion character 
',' must not be the last character in the PICTURE character-string. 

When the character ' , (period) appears in the character-string it is 
an editing symbol which represents the decimal point for alignment 
purposes and in addition, represents a character position into which 
the character '.' will be inserted. The character '.' is counted in 
the size of the item. For a given program the functions of the period 
and comma are exchanged if the clause. DECIMAL-POINT IS COMMA is stated 
in the SPECIAL-NAMES paragraph. In this exchange the rules for the 
period apply to the comma and the rules for the comma apply to the 
period wherever they appear in a PICTURE clause. The insertion 
character " must not be the last character in the PICTURE 
character-string. 

+, -, CR, DB - These symbols are used as editing sign control symbols. When 
used, they represent the character position into which the 
editing sign control symbol will be placed. The symbols are 
mutually exclusive in anyone character-string and each 
character used in the symbol is counted in determining the 
size of the data item. 

3 - 19 



* - Each '*' (asterisk) in the character-stringrepresents a leading 
numeric character position into which an asterisk will be placed when 
the contents of that position is zero. Each '*' is counted in the size 
of the item. 

cs - The currency symbol in the character-string represents a character 
position into which a currency symbol is to be placed. The currency 
symbol in a character-string is represented by either the curr~ncy sign 
or by the single character specified in the CURRENCY SIGN clause in the 
SPECIAL-NAMES paragraph. The currency symbol is counted in the size of 
the item. 

Editing Rules 

There are two general methods of performing editing in the PICTURE clause, 
either by insertion or by suppression and replacement. There are four types 
of insertion editing available. They are: 

* Simple insertion 
* Special insertion 
* Fixed insertion 
* Floating insertion 

There are two types of suppression and replacement editing: 

* Zero suppression and replacement with spaces 
* Zero suppression and replacement with asterisks 

The type of editing which may be performed upon an item is dependent upon 
the category to which the item belongs. Table 3-1 specifies which type of 
editing may be performed upon a given category. 

Table 3-1. Editing Types for Data Categories 

CATEGORY TYPE OF EDITING 

Alphabetic Simple insertion 'B' only 

Numeric None 

Alphanumeric None 

Alphanumeric Edited Simp_Ie insertion '0' , 'B' and ' / ' 
Numeric Edited All, but see NOTE below 

3 - 20 



NOTE: 

Floating insertion editing and editing by zero suppression and 
replacement are mutually exclusive in a PICTURE clause. Only one type 
of replacement may be used with zero suppression in a PICTURE clause. 

Simple Insertion Editing 

S~ple Insertion Editing. The ',' (comma), 'B' (space), '0' (zero), and 'I' 
(stroke) are used as the insertion characters. The insertion characters are 
counted in the size of the item and represent the position in the item into 
which the character will be inserted. 

Special Insertion Editing 

Special Insertion Editing. The " (period) is used as the insertion 
character. In addition to being an insertion character it also represents 
the decimal point for alignment purposes. The insertion character used for 
the actual decimal point is counted in the size of the item. The use of the 
assumed decimal point, represented by the symbol 'V' and the actual decimal 
point, represented by the insertion character, in the same PICTURE 
character-string is disallowed. The result of special insertion editing is 
the appearance of the insertion character in the item in the same position 
as shown in the character-string. 

Fixed Insertion Editing 

Fixed Insertion Editing. The currency symbol and the editing sign 
control symbols, '+', '-', 'CR', 'DB', are the insertion characters. Only 
one currency symbol and only one of the editing sign control symbols can be 
used in a given PICTURE character-string. When the symbols 'CR' or 'DB' are 
used they represent two character positions in determining the size of the 
item and they must represent the rightmost character positions that are 
counted in the size of the item. The symbol '+' or '-', when used, must be 
either the leftmost or rightmost character position to be counted in the 
size of the item. The currency symbol must be the leftmost character 

Table 3-2 Editing Symbols in PICTURE Character-Strings 

RESULT 
EDITING SYMBOL IN 

PICTURE CHARACTER-STRING DATA ITEM DATA ITEM 
POSITIVE OR ZERO NEGATIVE 

+ + -
- sp_ace -
CR 2 spaces CR 
DB 2 spaces DB 

3 - 21 



Floating Insertion Editing 

The currency symbol and editing sign control symbols '+' or '-' are the 
floating insertion characters and as such are mutually exclusive in a given 
PICTURE character-string. 

Floating insertion editing is indicated in a PICTURE character-string by 
using a string of at least two of the floating insertion characters. This 
string of floating insertion characters may contain any of the fixed 
insertion symbols or have fixed insertion characters immediately to the 
right of this string. These simple insertion characters are part of the 
floating string. 

The leftmost character of the floating insertion string represents the 
leftmost limit of the floating symbol in the data item. The rightmost 
character of the floating string represents the rightmost limit of the 
floating symbols in the data item. 

The second floating character from the left represents the leftmost limit of 
the numeric data that can be stored in the data item. Non-zero numeric data 
may replace all the characters at or to the right of this limit. 

In a PICTURE character-string, there are only two ways of representing 
floating insertion editing. One way is to represent any or all of the 
leading numeric character positions on the left of the decimal point by the 
insertion character. The other way is to represent all of the numeric 
character positions in the PICTURE character-string by the insertion 
character. 

If the insertion characters are only to the left of the decimal point in the 
PICTURE character-string, the result is that a single floating insertion 
character will be placed into the character position immediately preceding 
either the decimal point or the first non-zero digit in the data represented 
by the insertion symbol string, whichever is farther to the left in the 
PICTURE character-string. The character positions preceding the insertion 
character are replaced with spaces. 

If all numeric character positions in the PICTURE character-string are 
represented by the insertion character, the result depends upon the value of 
the data. If the value is zero the entire data item will contain spaces. 
If the value is not zero, the result is the same as when the insertion 
character is only to the left of the decimal point. 

To avoid truncation, the minimum size of the PICTURE character-string for 
the receiving data item must be the number of characters in the sending data 
item, plus the number of non-floating insertion characters being edited into 
the receiving data item, plus one for the floating insertion character. 

3 - 22 



Zero Suppression Editing 

The suppression of leading zeros in numeric character positions is indicated 
by the use of the alphabetic character 'z, or the character '*' (asterisk) 
as suppression symbols in a PICTURE character-string. These symbols are 
mutually exclusive in a given PICTURE character-string. Each suppression 
symbol is counted in determining the size of the item. If 'z, is used, the 
replacement character will be the space and if the asterisk is used, the 
replacement character will be '*'. 

Zero suppression and replacement is indicated in a PICTURE character-string 
by using a string of one or more of the allowable symbols to represent 
leading numeric character positions which are to be replaced when the 
associated character position in the data contains a zero. Any of the 
simple insertion characters embedded in the string of symbols or to the 
immediate right of this string are part of the string. 

In a PICTURE character-string, there are only two ways of representing zero 
suppression. One way is to represent any or all of the leading numeric 
character positions to the left of the decimal point by suppression symbols. 
The other way is to repres.ent all of the numeric character positions in the 
PICTURE character-string by suppression symbols. 

If the suppression symbols appear only to the lef~ of the decimal point, any 
leading zero in the data which corresponds to a symbol in the string is 
replaced by the replacement character. Suppression terminates at the first 
non-zero digit in the data represented by the suppression symbol string or 
at the decimal point, whichever is encountered first. 

If all numeric character positions in the PICTURE character-s tring are 
represented by suppression symbols and the value of the data is not zero, 
the result is the same as if the suppression characters were only to the 
left of the decimal point. If the value is zero and the suppression symbol 
is 'Z', the entire data item will be spaces. If the value is zero and the 
suppression symbol is '*' the data item will be all '*' except for the 
actual decimal point. 

The symbols '+', '-', '*', 'Z', 
floating replacement characters, 
character-string. 

Precedence Rules 

and the currency symbol, when used as 
are mutually exclusive within a given 

Table 3-3 shows the order of precedence when using characters as symbols in 
a character-string. An 'X' at an intersection indicates that the symbol(s) 
at the top of the column may precede, in a given character-string, the 
symbol (s) at the left of the row. Arguments appearing in braces indicate 
that the symbols are mutually exclusive. The currency symbol is indicated 
by the symbol 'cst. 

3 - 23 



At least one of the symbols 'A', 'X', 'Z', '9' or '*', or at least two of 
the symbols '+', -' or 'cs' must be present in a PICTURE string. 

Table 3-3. PICTURE Character Precedence Chart. 

~ 
Non-Flo.tiDa Flo.tina Other Symbols 

S)'1IIbol Inaertion Symbola Ina.rUon Symbola 

Second B 0 I {:} f:} {:} {:1 {:) {~} \:1 9 A S V P P , C8 C8 C8 X 
Symbol 

I 
B x x x x x x x x x x x x x x x x x 

0 x x x x x x x x x x x x x x x x x 

I x x x x x x x x x x x x x x x x ]I; 

• .... x x x x x x x x x x x x x x 0 , x x 
:1 
'">-
"'0 • x x x x x o c:i x x x x x 
.... 0 
Il10," , ... 
c: ... {:1 o • 
z ! ... 

(:} x x x x x x x x x x x x x x 

{:1 x x x x x x x x x x x x x x 

ca x 

{:l x x x x x x x 

{:} x x x x x x x x x x x 
• .... 
0 

i {:} x 110>- x x x x X 
c:rn 
'" ... c: 
" 0 {:l 0," x % X X X ....... x x x x X 

Il1o ... 
II • c: .... ca x x x x x x 

ca x x x x x x x x x ·x 

9 x x x x x x x x x x x x x x x 

A 
• X x x x x x ... 
0 

i 
>- S rn 
... 
II .c: ... 

V Q x X X X X X X X X X X x 

I p x x x x x x x x x x x x 
I 

:1 p x x x x x 

3 - 24 



In Table 3-3, non-floating insertion symbols '+' and '-', floating 
insertion symbols t Z', '* t, '+ t, t -', and 'cs t, and other symbol 'p' appear 
twice in the PICTURE character precedence chart. The leftmost column and 
uppermost row for each symbol represents its use to the left of the decimal 
point position. The second appearance of symbol in the row and column 
represents its use to the right of the decimal point position. 

3 - 25 



THE REDEFINES CLAUSE 

Function 

The REDEFINES clause allows the same computer storage area to be described 
by different data description entriese 

General Format 

NOTE: 

level-number data-name-I; REDEFINES data-name-2 

Level-number, data-name-I and the semi-colon are shown in the 
above format to improve clarity. Level-number and data-name-l are 
not part of the REDEFINES clause. 

Syntax Rules 

1. The REDEFINES clause, when specified, must immediately follow 

2. The level-numbers of data-name-1 and data-name-2 must be identical but 
must not be 66 or 88. 

3. This clause must not be used in level 01 entries in the File Section. 
(See General Rule 2 of THE DATA RECORDS CLAUSE in Chapter 5. 

4. This clause must not be used in level 01 entries in the Communication 
Section. 

5. Data-name-2 may be subordinate to an entry which contains a REDEFINES 
clause. However data-name-2 may be subordinate to an item ~vhose data 
description entry contains an OCCURS clause. In this case, the 
reference to data-name-2 in the REDEFINES clause may not be subscripted 
or indexed. Neither the original definition nor the redefinition can 
include an item whose size is variable as defined in the OCCURS clause. 
(See THE OCCURS CLAUSE in Chapter 4). 

6. No entry having a level-number numerically lower than the level-number 
of data-name-2 and data-name-1 may occur between the data description 
entries of data-name-2 and data-name-1. 

General. Rules 

1. Redefinition starts at data-name-2 and ends when a level-number less 
than or equal to that of data-name-2 is encountered. 

3 - 26 



2. When the'level-number of data-name-1 is other than 01, it must specify 
the same number of character positions that the data item referenced by 
data-name-2 contains (when the ANSI switch is set). It is important to 
observe that the REDEFINES clause specifies the redefinition of a 
storage area, not of the data items occupying the area. 

3. Multiple redefinitions of the same character positions are permitted. 
The entries giving the new descriptions of the character positions must 
follow the entries defining the area being redefined, without 
intervening entries that define new character positions. MUltiple 
redefinitions of the same character positions must all use the 
data-name of the entry that originally defined the area. 

4. The entries giving the new description of the character positions must 
not contain any VALUE clauses except in condition-name entries. 

5. Multiple level 01 entries subordinate to any given level indicator 
represent implicit redefinitions of the same area. 

(Addendum 2) 

3 - 27 



THE RENAMES CLAU S E 

Function 

The RENAMES clause penni ts al ternative, possibly overlapping, group ings of 
elementary items. 

General Fonuat 

66 data-name-l; RENAMES data-name-2 [~';UGH! data-name-3 ] 

NOTE: Level-number 66, data-name-l and the semicolon are shown in the 
above format to improve clarity. Level-number and data-name-l are 
not part of the RENAMES clause. 

Syntax Rules 

1. All RENAMES entries referring to data items within a given logical 
record must immediately follow the last data description entry of the 
associated record description entry. 

2. Data-name-2 and data-name-3 must be names of elementary items or groups 
of elementary items in the same logical record, and cannot be the same 
data-name. A 66 level entry cannot rename another 66 level entry nor 
can it rename a 77, 88, or 01 entry. 

3. Data-name-l cannot be used as a qualifier, and can only be qualified by 
the names of the associated level 01, FD, CD or SD entries. Neither 
data-name-2 nor data-name-3 may have an OCCURS clause in its data 
description entry nor be subordinate to an item that has an OCCURS 
clause in its data description entry. (See THE OCCURS CLAUSE in 
Chapter 4.) 

4. The beginning of the area described by data-name-3 must not be to the 
left of the beginning of the area desribed by data-name-2. The end of 
the area described by data-name-3 must be the right of the end of the 
area described by data-name-2. Data-name-3, therefore, cannot be 
subordinate to data-name-2. 

5. Data-name-2 and data-name-3 may be qualified. 

6. The words THRU and THROUGH are equivalent. 

7. None of the items within the range, including data-name-2 and 
data-name-3, if specified, can be an item whose size is variable as 
defined in THE OCCURS CLAUSE in Chapter 4. 

3 - 2~ 



General Rules 

1. One or more RENAMES entries can be written for a logical record. 

2. When data-name-3 is specified t data-name-l is a group item which 
includes all elementary items starting with data-name-2 (if data-name-2 
is an elementary item) or the first elementary item in data-name-2 (if 
data-name-2 is a group item), and concluding with data-name-3 (if 
data-name-3 is an elementary item) or the last elementary item in 
data-name-3 (if data-name-3 is a group item). 

3c When data-name-3 is not specified t data-name-2 can be either a group or 
an elementary item; when data-name-2 is a group item, data-name-l is 
treated as a group item, and when data-name-2 is an elementary item, 
data-name-l is treated as an elementary item. 

3 - 29 



THE SIGN CLAUSE 

Function 

The SIGN clause specifies the position and the mode of representation of the 
operational sign when it is necessary to describe these properties 
exp~icitly. 

General Format 

~ LEADING ~ 
[SIGN l.§.l l TRAILING ~ [SEPARATE CHARACTER] 

Syntax Rules 

1. The SIGN clause may be specified only for a numeric data description 
entry whose PICTURE contains the character'S', or a group item 
containing at least one such numeric data description entry. 

2. The numeric data description entries to which the SIGN clause applies 
must be described as USAGE IS DISPLAY. 

3. At most one SIGN clause may apply to any given numeric data description 
entry. 

4. If the CODE-SET clause is specified, any signed numeric data 
description entries associated with that file description entry must be 
described with the SIGN IS SEPARATE clause. 

General Rules 

1. The optional SIGN clause, if present, specifies the position and the 
mode of representation of the operational sign for the numeric data 
description entry to which it applies, or for each numeric data 
description entry subordinate to the group to which it applies. The 
SIGN clause applies only to numeric data description entries whose 
PICTURE contains the character'S'; the'S' indicates the presence of, 
but neither the representation nor, necessarily, the position of the 
operational sign. 

2. A numeric data description entry whose PICTURE contains the character 
'S', but to which no optional SIGN clause applies, has an operational 
sign, but neither the representation nor, necessarily, the position of 
the operational sign is specified by the character'S'. In this 
(default) case, general rules 3 through 5 do not apply to such signed 
numeric data items. The representation of the default operational sign 
is defined in Chapter 2 under the heading Selection of Character 
Representation and Radix. 

3 - 30 



3e If the optional SEPARATE CHARACTER phrase is not present, then: 

all The operational sign will be presumed to be associated with the 
leading (or, respectively, trailing) digit position of the 
elementary numeric data item. 

b. The letter'S' in a PICTURE character-string is not counted in 
determining the size of the item (in terms of standard data format 
characters). 

4. If the optional SEPARATE CHARACTER phrase is present, then: 

5. 

a. The operational sign will be presumed to be the leading (or, 
respectively, trailing) character position of the elementary 
numeric da~a item; this character position is not a digit 
position. 

b. The letter'S' in a PICTURE character-string is counted in 
determining the size of the item (in terms of standard data format 
characters). 

c. The operational signs for positive and negative are the standard 
data format characters '+' and '-', respectively. 

Every numeric data description entry whose PICTURE contains the 
character ' S ' is a signed numeric data description entry. If a SIGN 
clause applies to such an entry and conversion is necessary for 
purposes of computation or comparisons, conversion takes place 
automatically. 

j - 31 



THE SYNCHRONIZED CLAUSE 

Function 

The SYNCHRONIZED clause specifies the alignment of art elementary item on the 
natural boundaries of the computer memorYe 

General Format 

{ 
SYNCHRONIZED} 
SYNC [

LEFT ] 
RIGHT 

Syntax Rules 

10 This clause may only appear with an elementary item. 

2. SYNC is an abbreviation for SYNCHRONIZED 0 

General Rules 

1. 

2. This clause specifies that the subject data item is to be aligned in 
the computer such that no other data item occupies any of the character 
positions between the leftmost and rightmost natural boundaries 
delimiting this data item. If the number of character positions 
required to store this data item is less than the number of character 
positions between those natural boundaries, the unused character 
positions (or portions thereof) must not be used for any other data 
item. Such unused character positions, however, are included in: 

a. The size of any group item(s) to which the elementary item 
belongs; and 

b. The character positions redefined when this data item is the 
object of a REDEFINES clause. 

3. SYNCHRONIZED not followed by either RIGHT or LEFT specifies that the 
elementary item is to be positioned between natural boundaries in such 
a way as to effect efficient utilization of the elementary data item. 

4. SYNCHRONIZED LEFT specifies that the elementary item is to be posi­
tioned such that it will begin at the left character position of the 
natural boundary in which the elementary item is placed. 

5. SYNCHRONIZED RIGHT specifies that the elementary item is to be posi­
tioned such that it will terminate on the right character position of 
the natural boundary in which the elementary item is placed. 

3 - 32 

I 



6. Whenever a SYNCHRONIZED item is referenced in the source program, the 
original size of the item, as shown in the PICTURE clause, is used in 
detennining any action that depends on size, such as justification, 
truncation or overflow. 

7. If the data description of an item contains the SYNCHRONIZED clause and 
an operational sign, the sign of the item appears in the normal 
operational sign position, regardless of whether the item is 
SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT. 

8. When the SYNCHRONIZED clause is specified in a data description entry 
of a data item that also contains an OCCURS clause, or in a data 
description entry of a data item subordinate to a data description 
entry that contains an OCCURS clause, then: 

a. Each occurrence of the data item is SYNCHRONIZED. 

b. Any implicit FILLER generated for other data items within that 
same table are generated for each occurrence of those data items. 

9. This clause is hardware dependent. 

3 - 33 



THE USAGE CLAUSE 

Function 

The USAGE clause specifies the format of a data item in the computer 
storage. 

General Format 

[USAGE IS] 

Syntax Rules 

COMPUTATIONAL 
COMP 
DISPLAY 
COMPUTATIONAL-3 
COMP-3 

1. The PICTURE character-string of a COMPUTATIONAL or COMPUTATIONAL-3 item 
can contain only '9's, the operational sign character'S', the implied 
decimal point character 'V', one or more 'P's. (See THE PICTURE CLAUSE 
earlier in this Chapter). 

2. COMP is an abbreviation for COMPUTATIONAL. 

General Rules 

1. The USAGE clause can be written at any level. If the USAGE clause is 
written at group level, it applies to each elementary item in the 
group. The USAGE clause of an elementary item cannot contradict the 
USAGE clause of a group to which the item belongs. 

2. This clause specifies the manner in which a data item is represented in 
the storage of a computer. It does not affect the use of the data 
item, although the specifications for some statements in the Procedure 
Division may restrict the USAGE clause of the operands referred to. 
The USAGE clause may affect the radix or type of character 
representation of the item. 

3. A COMPUTATIONAL or COMPUTATIONAL-3 item is capable of representing a 
value to be used in computations and must be numeric. If a group item 
is described as COMPUTATIONAL (-3) , the elementary items in the group 
are ~OMPUTATIONAL(-3). The group item itself is not COMPUTATIONAL(-3) 
and cannot be used in computations. 

4. The USAGE IS DISPLAY clause indicates that the format of the data is a 
standard data format. 

5. If the USAGE clause is not specified for an elementary item, or for any 
group to which the item belongs, the usage is implicitly DISPLAY. 

6. Space requirements for the various USAGE storage options are given 
under Selection of Character Representation and Radix in Chapt'er 2. 

3 - 34 



THE VALUE CLAUSE 

Function 

The VALUE clause defines the value of constants, the initial value of 
working storage items, and the values associated with a condition name. 

General Fonnat 

Format 1: 

VALUE is literal 

Format 2: 

{ 
VALUE IS } 
VALUES ARE 

Syntax Rules 

literal-l {THROUGH} 
THRU 

,1~teral-3 THRU 
[

. [{ THROUGH} 

literal-2 

l1teral-4 ]] 

1. The VALUE clause cannot be stated for any items whose size is variable. 
(See THE OCCURS CLAUSE in Chapter 4). 

2. A signed numeric literal must have associated with it a signed numeric 
PICTURE character-string. 

3. All numeric literals in a VALUE clause of an item must have values 
which are within the range of values indicated by the PICTURE clause, 
and must not have a value which would require truncation of nonzero 
digits. Nonnumeric literals in a VALUE clause of an item must not 
exceed the size indicated by the PICTURE clause. 

4. The words THRU and THROUGH are equivalent. 

General Rules 

1. The VALUE clause must not confl ict wi th other clauses in the data 
description of the item or in the data description within the hierarchy 
of the item. The following rules apply: 

a. If the category of the item is numeric, all literals in the VALUE 
clause must be numeric. If the literal defines the value of a 
working storage item, the literal is aligned in the data item 
according to the standard al ignment rules. (See Standard 
Alignment Rules in Chapter 2). 

3 - 35 



b. If the category of the item is alphabetic, alphanumeric, 
alphanumeric edited or numeric edited, all literals in the VALUE 
clause must be nonnumeric literals. The literal is aligned in the 
data item as if the data item had been described as alphanumeric. 
(See STANDARD ALIGNMENT RULES in Chapter 2). Editing characters 
in the PICTURE clause are included in determining the size of the 
data item (see THE PICTURE CLAUSE earlier in this Chapter) but 
have no effect on initialization of the data item. Therefore, the 
VALUE for an edited item is presented in an edited form. 

c. Initialization takes place independent of any BLANK WHEN ZERO or 
JUSTIFIED clause that may be specified. 

2. A figurative constant may be substituted in both Format 1 and Format 2 
wherever a literal is specified. 

Condition-name Rules 

1. In a condition-name entry, the VALUE clause is required. The VALUE 
. clause and the condi~ion-name itself are the only two clauses permitted 
in the. entry. The characteristics of a condition-name are implicitly 
those of its conditional variable. 

2. Format 2 can be used only in connection with condition-names. Wherever 
the THRU phrase is used, literal-l must be less than literal-2, 
literal-3 less than literal-4, etc. 

Data Description Entries other than Condition-Names 

Rules governing the use of the VALUE clause differ with the respective 
sections of the Data Division: 

1. In the File Section, the VALUE clause may be used only in 
condition-name entries. 

2. In the Working-Storage Section, the VALUE clause must be used in 
condition-name entries. The VALUE clause may also be used to specify 
the initial value of a data item; in which case the clause causes the 
item to assume the specified value at the start of the object program. 
If the VALUE clause is not used in an item's description, the initial 
value is undefined. 

3. In the Linkage Section, the VALUE clause may be used only in 
condition-name entries. 

4. The VALUE clause must not be stated in a data description entry that 
contains an OCCURS clause, or in an entry that is subordinate to an 
entry containing an OCCURS clause. This rule does not apply to 
condition-name entries. (See THE OCCURS CLAUSE in Chapter 4). 

3 - 36 



5. The VALUE clause may be' stated in a data description entry that 
contains a REDEFINES clause, or in an entry that is subordinate to an 
entry containing a REDEFINES clause. This rule does not apply to 
condition-name entries. 

6. If the VALUE clause is used in an entry at the group level, the literal 
must be a figurative constant or a nonnumeric literal, and the group 
area is initialized without consideration for the individual elementary 
or group items contained within this group. The VALUE clause cannot be 
stated at the subordinate levels within this group. 

7. The VALUE clause must not be written for a group containing items with 
descriptions, including JUSTIFIED, SYNCHRONIZED, or USAGE (other than 
USAGE IS DISPLAY). 

3 - 37 



PROCEDURE DIVISION IN THE NUCLEUS 

ARITHMETIC EXPRESSIONS 

Definition of an Arithmetic Expression 

An arithmetic expression can be an identifier of a numeric elementary item, 
a numeric literal, such identifers and literals separated by arithmetic 
operators, two arithmetic expressions separated by an arithmetic operator, 
o~ an arithmetic expression enclosed in parentheses. Any arithmetic 
expression may be preceded by a unary operator. The permissible 
combinations of variables, numeric literals, arithmetic operator and 
parentheses are given in Table 3-4, Combination of Symbols in Arithmetic 
Express ions. 

Those identifiers and literals appearing in an arithmetic expression must 
represent either numeric elementary items or numeric literals on which 
arithmetic may be performedG 

Arithmetic Operators 

There are five binary arithmetic operators and two unary arithmetic 
operators that may be used in arithmetic expressions. They are represented 
by specific characters that may be preceded by a space and followed by a 
space .. 

Binary Arithmetic 
Operators 

+ 

* 
/ 
** 

Unary Arithmetic 
Operators 

+ 

Formation and Evaluation Rules 

Meaning 

Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 

Meaning 

The effect of multiplication 
by numeric literal +1 

The effect of multiplication 
by numeric literal -1. 

1. Parentheses may be used in arithmetic expressions to specify the order 
in which elements are to be evaluated. Expressions within parentheses 
are evaluated first, and within nested parentheses, evaluation proceeds 
from the least inclusive set to the most inclusive set. When 



parentheses are not used, or parenthesized expressions are at the same 
level of inclusiveness, the following hierarchical order of execution 
is implied: 

1st - Unary plus and minus 
2nd - Exponentiation 
3rd - Multiplication and division 
4th - Addition and subtraction 

2. Parentheses are used either to eliminate ambiguities in logic where 
consecutive operations of the same hierarchical level appear or to 
modify the normal hierarchical sequence of execution in expressions 
where it is necessary to have some deviation from the normal 
precedence. When the sequence of execution is not specified by 
parentheses, the order of execution of consecutive operations of the 
same hierarchical level is from left to right. 

3. The ways in which operators, variables, and parentheses may be combined 
in an arithmetic expression are summarized in Table 3-4, where: 

a. The letter 'p' indicates a permissible pair of symbols. 

b. The character '-' indicates an invalid pair. 

c. 'Variable' indicates an identifier or literal. 

FIRST SECOND SYMBOL 
SYMBOL Variable * / ** - + Unary + or - ( ) 

Variable - P - - p 

* / ** + - p - p p -
Unary + or - P - - 0 -4 

( P - P P -
) - p - - p 

Table 3-4. Combination of Symbols in Arithmetic Expressions 

4. An arithmetic expression may only begin wi th the symbol '(', '+', '-', 
or a variable and may only end with a ')' or a variable. There must be 
a one-to-one correspondence between left and right parenthesis of an 
arithmetic expression such that each left parenthesis is to the left of 
its corresponding right parenthesis. 

5. Ar.ithmetic expressions allow the user to combine arithmetic operations 
without the restrictions on composite of operands and/or receiving data 
items. See, for example, syntax rule 3 of THE ADD STATEMENT in this 
Chapter. 

3 - 3Y 



CONDITIONAL EXPRESSIONS 

Conditional expressions identify conditions that are tested to enable the 
object program to select between alternate paths of control depending upon 
the truth value of the' condition. Conditional expressions are specified in 
the IF, PERFORM and SEARCH statements'. There are two categories of 
condi tions associated with conditional expressions: simple conditions and 
complex conditions. Each may be enclosed within any number of paired 
parentheses, in which case its category is not changed. 

Simple Conditions 

The simple conditions are the relation, class, condition-name, 
switch-status, and sign conditions. A simple condition has a truth value of 
'true' or 'false'. The inclusion in parentheses of simple conditions does 
not change the simple truth value. 

Relation Condition 

A relation condition causes a comparison of two operands, each of which may 
be the data item referenced by an identifier, a literal or the value 
resulting from an arithmetic expression. A relation condition has a truth 
value of 'true' if the relation exists between the operandsD Comparison of 
two numeric operands is permitted regardless of the formats specified in 
their respective USAGE clauses. However, for all other comparisons the. 
operands must have the same usage. If either of the operands is a group 
item, the nonnumeric comparison rules apply. 

The general format of a relation condition is as follows: 

~identifier-l ~ 
IS [NOT] GREATER THAN 

~ identifer-2 I IS [NOT] LESS THAN literal-2 literal-l EQUAL TO ~arithmetic-expression-l IS [NOT] l arithmetic- ~ IS [NOT] > expression-2 IS [NOT] < 
IS [NOT] = 

NOTE: The required relational characters '< ' , '>' , and 
underlined to avoid confusion with other symbols 
(Greater than or equal to) 

'=' are not 
such as I>' 

The first operand (identifier-I, Ii teral-l or arithmetic-expression-l) is 
called the subject of the condition; the second operand (identifier-2 or 
literal-2 or arithmetic-expression-2) is called the object of the condition. 
The relation condition must contain at least one reference to a variable. 

3 - 40 



The relational operator specifies the type of comparison to be made in a 
relation condition. A space must precede and follow each reserved word com­
prising the relational operator. When used, 'NOT' and the next key word or 
relation character are one relational operator that defines the comparison 
to be executed for truth value; e.g., 'NOT EQUAL' is a truth test for an 
'unequal' • 

Comparison: 'NOT GREATER f 
comparison. The meaning of 
Table 3-5. 

is a truth test for an f equal' 
the relational operators is as 

or 'less f 
shown in 

Table 3-5. Relational Operatorse 

Meaning Relational °Eerator 

Gt"eater than or not greater than IS NOT GREATER THAN 
IS NOT > --

Less than or not less than IS NOT LESS THAN 
IS NOT < --

Equal to or not equal to IS NOT -- EQUAL TO 
IS NOT = --

The required relational characters '>' , '<' , and '= , are not 
underlined to avoid confusion with other symbols such as '> ' -(greater than or equal to). 

Comparison of Nume ric Operands; For operands whose class is numeric a 
comparison is made with respect to the algebraic value of the operands. The 
length of the literal or arithmetic expression operands in terms of number 
of digits represented, is not significant. Zero is considered a unique 
value regardless of the sign. 

Comparison of these operands is penni tted regardless of the manner in which 
their usage is described. Unsigned numeric operands are considered positive 
for purposes of comparison. 

Comparison of Nonnumeric Operands: For nonnumeric operands, or one numeric 
and one nonnumeric operand, a comparison is made with respect to a specified 
collating sequence of characters (see The OBJECT-COMPUTER Paragraph in this 
Chapter). If one of the operands is specified as numeric, it must be an 
integer data item or an integer literal and: 

1. If the nonnumeric operand is an elementary data i tern or a nonnumeric 
literal, the numeric operand is treated as though it were moved to an 
elementary alphanumeric data item of the same size as the numeric data 

3 - 41 



item (in terms of standard data format characters), and the contents of 
this alphanumeric data item were then compared to the nonnumeric 
operand. (See THE MOVE STATMENT in this Chapter, and the PICTURE 
Character 'p' under the heading Symbols Used earlier in this Chapter). 

2. If the non-numeric operand is a group item, the numeric operand is 
treated as though it were moved to a group item of the same size as the 
numeric data item (in terms of standard data format characters), and 
the contents of this group item were then compared to the nonnumeric 
operand. (See THE MOVE STATEMENT in this Chapter, and the PICTURE 
character 'p' under the heading Symbols Used earlier in this Chapter). 

3. A non-integer numeric operand cannot be compared to a nonnumeric 
operand. 

The size of an operand is the total number of standard 
characters in the operand. Numeric 

their usage is the 

There are two cases to consider: 

1. Operands of equal size - If the operands are of equal size, comparison 
effectively proceeds by comparing characters in corresponding character 
positions starting from the high order end and continuing until either 
a pair of unequal characters is encountered or the low order end of the 
operand is reached, whichever comes first. The operands are determined 
to be equal if all pairs of characters compare equally through the last 
pair, when the low order end is reached. 

The first encountered pair of unequal characters is compared to deter­
mine their relative position in the collating sequence. The operand 
that contains the character that is positioned higher in the collating 
sequence is considered to be the greater operand. 

2. Operands of unequal size If the operands are of unequal size, 
comparison proceeds as though the shorter operand were extended on the 
right by sufficient spaces to make the operands of equal size. 

Class Condition 

The class condition determines whether the operand is numeric, that is, 
consists entirely of the characters '0', '1', '2', '3', ... , '9', with or 
without the operational sign; or alphabetic, that is, consists entirely of 
the characters 'A', 'B', 'C', ... , 'Z', space. The general format for the 
class condition is as follows: 

~ NUMERIC l identifier IS [NOT] ~ ALPHABETIC 

3 - 42 

(Addendum 2) 



The usage of the operand being tested must be described as display. When 
used, 'NOT' and the next key word specify one class condition that defines 
the class test to be executed for truth value; e. g. 'NOT NUMERIC' is a 
truth test for determining that an operand is nonnumeric. 

The NUMERIC test cannot be used with an item whose data description 
describes the item as alphabetic or as a group item composed of elementary 
items whose data description indicates the presence of operational sign(s). 
If the data description of the item being tested does not indicate the 
presence of an operational sign, the item being tested is determined to be 
numeric only if the contents are numeric and an operational sign is not 
present. If the data description of the item does indicate the presence of 
an operational sign, the item being tested is determined to be numeric only 
if the contents are numeric and a valid operational sign is present. Valid 
operational signs for data items described with the SIGN IS SEPARATE clause 
are the standard data format characters, '+' and '-'. 

The ALPHABETIC test cannot be used with an item whose data description 
describes the item as numeric. The item being tested is determined to be 
alphabetic only if the contents consist of any combination of the alphabetic 
characters 'A' through 'z, and the space. 

Condition-Name Condition (Conditional Variable) 

In a condition-name condition, a conditional variable is tested to determine 
whether or not its value is equal to one of the valuei associated with a 
condition-name. The general format for the condition-name condition is as 
follows: 

condition-name 

If the condition-name is associated with a range or ranges of values, then 
the conditional variable is tested to determine whether or not its value 
falls in this range, including the end values. 

The rules for comparing a conditional variable with a condition-name value 
are the same as those specified for relation conditions. 

The result of the test is true if one of the values corresponding to the 
condition-name equals the value of its associated conditional variable. 

Switch-Status Condition 

A switch-status condition determines the 'on' or 'off' status of an 
implementor-defined switch. The switch and the 'on' or 'off' value 
associated with the condition must be named in the SPECIAL-NAMES paragraph 
of the Environment Division. The general format for the switch-status 
condition is as follows: 

condition-name 

3 - 43 



The result of the test is true if the switch is set to the specified posi­
tion corresponding to the condition-name. 

Sign Condition 

The sign condition determines whether or not the algebraic value of an 
arithmetic expression is less than, greater than or equal to zero. The 
general format for a sign condition is as follows: 

~
POSITIVE~ 

arithmetic-expression IS [NOT] NEGATIVE 
ZERO 

When used, 'NOT' and the next key word specify one sign condition that 
defines that algebraic test to be executed for truth value; e.g., 'NOT ZERO' 
is a truth test for a nonzero (positive or negative) value. An operand is 
positive if its value is greater than zero, negative if its value is less 
than zero, and zero if its value is equal to zero. The arithmetic 
expression must contain at least one reference to a variable. 

Complex Conditions 

A complex condition is formed by combining simple conditions, combined 
conditions and/or complex conditions with logical connectors (logical 
operators 'AND' and 'OR') or negating these conditions with logical negation 
(the logical operator 'NOT'). The truth value of a complex condition, 
whether parenthesized or not, is that truth value which results from the 
interaction of all the stated logical operators on the individual truth 
values of simple conditions, or the intermediate truth val.ues of conditions 
logically connected or logically negated. 

T~e logical operators and their meanings are: 

Logical Operator 

AND 

OR 

~OT 

Meaning 

Logical conjunction; the truth value is 
'true' if both of the conjoined 
condi tions are true; 'false' if one or 
both of the conjoined conditions is 
false. 

Logical inclusive OR; the truth value is 
'true' if one or both of the included 
conditions is true; 'false' if both 
included conditions are false. 

Logical negation or reversal of truth 
value; the truth value is 'true' if the 
condition is false; 'false' if the 
condition is true. 

3 - 44 



The logical operators must be preceded by a space and followed by a space. 

Negated Simple Conditions: A simple condition is negated through the use 
of the logical operator 'NOT'. The negated simple condition effects 
the opposite truth value for a simple condition. Thus the truth value 
of a negated simple condition is 'true' if and only if the truth value 
of the simple condition is 'false'; the truth value of a negated simple 
condition is 'false' if and only if the truth value of the simple 
condition is 'true'. The inclusion in parentheses of a negated simple 
condition does not change the truth value. 

The general format for a negated simple condition is: 

NOT simple-condition 

Combined and Negated Combined Conditions: A combined condition results 
from connecting conditions with one of the logical operators 'AND' or 
'OR'. The general format of a combined condition is: 

condition ~ {:.n} condition I 
where 'condition' may be: 

a. A simple condition, or 

b. A negated simple condition, or 

c. A combined condition, or 

d. A negated combined condition; i.e., the 'NOT' logical operator 
followed by a combined condition enclosed within parentheses, or 

e. Combinations of the above, specified according to the rules 
summarized in table 3-6, Combinations of Conditions, Logical 
Operators, and Parentheses, located on the next page. 

Although parentheses need never be used when either 'AND' or 'OR' (but 
not both) is used exclusively in a combined condition, parentheses may 
be used to effect a final truth value when a mixture of 'AND', 'OR' and 
'NOT' is used. (See Table 3-6, Combinations of Conditit:'lns, Logical 
Operators, and Parentheses below, and Condition Evaluation Rules 
earlier in this Chapter.) 

Table 3-6 on the next page indicates the ways in which conditions and 
logical operators may be combined and parenthesized. There must be a 
one-to-one co~respondence between left and right parentheses such that 
each left parenthesis is matched by a corresponding right parenthesis. 
The table assumes a left to right sequence of elements. 

3 - 45 



Table 3-6 Combinations of Conditions, Logical Operators, and Parentheses 

Element Permitted Element can be Element can be 
location in preceded by only: followed by only: 
conditional 
expression 

simple-condition Any OR, NOT, AND, ( OR, AND, ) 

OR, 

NOT 

( 

) 

or AND Not first simple-condition, ) . simple-condition, 
or last NOT, ( 

Not last OR, AND, ( simple-condition, ( 

Not last OR, NOT, AND, ( simple-condition, 
NOT, ( 

Not first Simple-condition, ) OR, AND, ) 

Thus, the element pair 'OR NOT' is permissible while the pair 'NOT OR' 
is not permissible; 'NOT (' is permissible while 'NOT NOT' is not 
permissib Ie. 

Abbreviated Combined Relation Conditions 

When simple or negated simple relation conditions are co~bined with logical 
connectives in a consecutive sequence such that a succeeding relation 
condition contains a subj ect or subj ect and relational operator that is 
common with the preceding relation condition, and no parentheses are used 
within such a consecutive sequence, any relation condition except the first 
may be abbreviated by: 

I. The omission of the subject of the relation condition, or 

2. Th~ omission of the subject and relational operator of the relation 
condition. 

The format for an abb+eviated combined relation condition is: 

relation-condition~{~} [NOT] [relational-operator] Object~ ... 
Within a sequence of relation conditions both of the above forms of 
abbreviation may be used. The effect of using such abbreviations is as if 
the last preceding stated subject were inserted in place of the omitted 
subj ect, and the last s;tated relational operator were inserted in place of 
the omitted relational operator. The result of such implied insertion must 

3 - 46 



comply with the rules of Table 3-6, Combinations of Conditions, Logical 
Operators, and Parentheses. This insertion of an omitted subject and/or 
relational operator terminates once a complete simple condition is 
encountered within a complex condition. 

The interpretation applied to the use of the word 'NOT' in an abbreviated 
combined relation condition is as follows: 

1. If the word immediately following 'NOT' is 'GREATER', '>', 'LESS', '<', 
'EQUAL' , '=', then the 'NOT' participates as part of the relational 
operator; otherwise 

2. The 'NOT' is interpreted as a logical operator and, therefore, the 
implied insertion of subject or relational operator results in a 
negated relation condition. 

Some examples of abbreviated combined and negated combined relation 
conditions and expanded equivalents follow. 

Abbreviated Combined 
Relation Condition 

a > b AND NOT < c OR d 

a NOT EQUAL b OR c 

NOT a = b OR c 

NOT (a GREATER b OR < c) 

NOT (a NOT > b AND c AND NOT d) 

Condition Evaluation Rules 

Expanded Equivalent 

«a> b) AND (a NOT < c» OR (a NOT < d) 

(a NOT EQUAL b) OR (a NOT EQUAL c) 

(NOT (a = b» OR (a = c) 

NOT «a GREATER b) OR (a < c» 

NOT ««a NOT> b) AND (a NOT> c» ~~D 
(NOT (a NOT> d»» 

Parentheses may be used to specify the order in which individual conditions 
of complex conditions are to be evaluated when it is necessary to depart 
from the implied evaluation precedence. Conditions within parentheses are 
evaluated first, and, within· nested parentheses, evaluation proceeds from 
the least inclusive condition to the most inclusive condition. When 
parentheses are not used, or parenthesized conditions are at the same level 
of inclusiveness, the following hierarchical order of logical evaluation is 
implied until the final truth value is determined: 

1. Values are established for arithmetic expressions. (See Formation and 
Evaluation Rules under ARITHMETIC EXPRESSIONS in this Chapter.) ---

'l _ 1.7 



2. Truth values for simple conditions are established in the following 
order: 

relation (following the expansion of any abbreviated relation 
condition) 

class 
condition-name 
switch-status 
sign 

3. Truth values for negated conditions are established. 

4. Truth values for combined conditions are established: 

'AND' logical operators, followed by 
'OR' logical operators. 

5. Truth values for negated combined conditions are established. 

6. When the sequence of evaluation is not completely specified by 
parentheses, the order of evaluation of consecutive operations of the 
same hierarchical level is from left to right. 

3 - 48 



COMKlN PHRASES AND GENERAL RULES FOR STATEMENT FORMATS 

In the statemen~ descriptions that follow, several phrases appear 
frequently: the ROUNDED phrase, the SIZE ERROR phrase and the CORRESPONDING 
phrase. 

These are described below; a resultant-identifier is that identifier 
associated with the result of an arithmetic operation. 

The ROUNDED Phrase 

If, after decimal point alignment, the number of places in the fraction of 
the result of an arithmetic operation is greater than the number of places 
provided for the fraction of the resultant-identifier, truncation is 
relative to the size provided for the resultant-identifier. When rounding 
is requested, the absolute value of the resultant-identifier is increased by 
one whenever the most significant digit of the the excess is greater than or 
equal to five. 

When the low-order integer positions in a resultant-identifier are 
represented by the character 'p' in the PICTURE for the 
resultant-identifier, rounding or truncation occurs relative to the 
rightmost integer position for which storage is allocated. 

The SIZE ERROR Phrase 

If, after decimal point alignment, the absolute value of a result exceeds 
the largest value that can be contained in the associated 
resultant-identifier, a size error condi tion exists. Division by zero 
always causes a size error condition. The size error condition applies only 
to the final results, except in MULTIPLY and DIVIDE statements, in .which 
case the size error condition applies to the intermediate results as well. 
If the ROUNDED phrase is specified, rounding takes place before checking for 
size error. When such a size error condition occurs, the subsequent action 
depends on whether or not the SIZE ERROR phrase is specified, as follows: 

SIZE ERROR Phrase Not Specified 

When a size error condi tion 
resultant-identifier(s) affected 
resultant-identifier(s) for which no 
unaffected by size errors that occur 
during execution of this operation. 

SIZE ERROR Phrase Specified 

occurs, the val ue of those 
is undefined. Values of 
size error condition occurs are 
for other resultant-identifier(s) 

When a size error cond1 tion occurs, then the values of 
resultant-identifier(s) affected by the size errors are not altered. Values 
of resultant-identifier(s) for which no size error condition occurs are 

3 - 49 



unaffected by size errors that occur for other resultant-identifier(s) 
during execution of this operation. After completion of the execution of 
this operation, the imperative statement in the SIZE ERROR phrase is 
executed. 

For the ADD statement with the CORRESPONDING phrase and the SUBTRACT 
statement with the CORRESPONDING phrase, if any of the individual operations 
produces a size error condition, the imperative statement in the SIZE ERROR 
phrase is not executed until all of the individual additions or subtractions 
are completed. 

The CORRESPONDING Phrase 

In the text that follows dl and d2 must each be identifiers that refer 
to group items. A pair of data items, one from dl and one from d2 
correspond if the following conditions exist: 

1. A data item in dl and a data item in d2 are not designated by the key 
word FILLER and have the same data-name and the same qualifiers up to, 
but not including, dl and d2. 

2. At least one of the data items is an elementary -data item in the case 
of a MOVE statement with the CORRESPONDING phrase; and both of the data 
items are elementary numeric data items in the case of the ADD 
statement with the CORRESPONDING phrase or the SUBTRACT statement with 
the CORRESPONDING phrase. 

3. The description of dl and d2 must not contain level-number 66, 77, or 
88 or the USAGE IS INDEX clause. 

4. A data item that is subordinate to dl or d2 and contains a REDEFINES, 
RENAMES, OCCURS or USAGE IS INDEX clause is ignored, as well as those 
data items subordinate to the data item that contains the REDEFINES, 
OCCURS, or USAGE IS INDEX clause. However, dl and d2 may have 

REDEFINES or OCCURS clauses or be subordinate to data items with 
REDFINES or OCCURS clauses. 

Arithmetic Statements 

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and 
SUBTRACT statements. Common features are as follows: 

1. The data descriptions of 
necessary conversion and 
throughout the calculation. 

the operands need not be 
decimal point alignment 

3 - 50 

the same; any 
are supplied 



2. The maximum size of each operand is 18 decimal digits. The composite 
of operands, which is a hypothetical data item' resulting from the 
superimposition of specified operands in a statement aligned on their 
decimal points (See THE ADD STATEMENT, THE DIVIDE STATEMENT, THE 
MULTIPLY STATEMENT and THE SUBTRACT STATEMENT later in this Chapter) 
must not contain more than 18 decimal digits. 

Overlapping Operands 

When a sending and a rece~v~ng item in an arithmetic statement or an 
INSPECT, MOVE, SET, STRING or UNSTRING statement share a part of their 
storage areas, the result of the execution of such a statement is undefined. 

Multiple Results in Arithmetic Statements 

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have 
multiple results. Such statements behave as though they had been written in 
the following way: 

1. A statement which performs all arithmetic necessary to arrive at the 
result to be stored in the receiving items, and stores that result in a 
temporary storage location. 

2. A sequence of statements transferri~g or combining the value of this 
temporary location with a single result. These statements are 
considered to be written in the same left-to-right sequence in which 
the multiple results are listed. 

The result of the statement 

ADD a, b, c TO c, d (c), e -

is equivalent to 

ADD a, b, c GIVING temp 
ADD temp TO c 
ADD temp TO d (c) 
ADD temp TO e 

where 'temp' is an intermediate result item provided by the compiler. 

Incompatible Data 

Except for the class condition (See Class Condition in this Chapter), when 
the contents of a data item are referenced in the Procedure Division and the 
contents of that data item are not compatible with the class specified for 
that data item by its PICTURE clause, then the result of such a reference is 
undefined~ 

3 - 51 



Signed Receiving Items 

When the receiving item in an arithmetic statement or a MOVE statement is a 
signed numeric or a signed numeric edited item, the sign is moved into the 
receiving item independently of any truncation of the absolute numeric data. 
It is possible, therefore, for the numeric value to be zero but for the sign 
to be negative. 

(Addendum 2) 

3 - 52 



THE ACCEPT STATEMENT 

Function 

The ACCEPT statement causes data keyed at the CRT console to be made 
available to the program in a specified data item 

General Formats 

Format 1 

ACCEPT identifier [FROMsmnemonic-name~] 
--?CONSOLE S 

Format 3 

ACCEPT identifier FROM ~ ~~iE l 
? TIME ~ 

Syntax Rule 

The mnemonic name in Format 1 must also he specified in the SPECIAL NAMES 
paragraph of the Environment Division and must be associated with the 
console. 

General Rules 

1. Format 1 is the standard ANSI ACCEPT statement 

3 - 53 



Format 1 

2. The ACCEPT statement causes the transfer of data from the system 
console device. This input data replaces the contents of the data item 
named by the identifier. 

3. The data is transferred as an integral number of data records (up to a 
maximum of 12). The size of a data record is defined by the compiler 
directive CRTWIDTH (see the LEVEL II COBOL Operating Guide). As each 
data record is keyed at the console it may be line-edited according to 
the operating system rules for line-editing (see the User Guide for 
your operating system). Each data record is terminated by pressing the 
"accept data" key (normally the RETURN or ENTER key) or by exactly 
filling the data record. After each data record is transferred, the 
cursor is moved to the start of the next line (possibly with 
scrolling). 

4. If the size of the data record transferred is the same as the size of 
the receiving data item, the transferred data is stored in the 
receiving data item. 

5. If the input line is not of the same size as the receiving data item, 
then: 

a.. If the size of the receiving data item (or the portion of the 
receiving data item not yet currently occupied by transferred 
data) exceeds the S1ze of the transferred data record, the 

- transferred data is stored aligned to the left in the receiving 
data item (or the portion of the receiving data item not yet 
occupied), and an additional data record is requested. 

b. If the size of the transferred data record exceeds the size of the 
receiving data item (or the portion of the receiving data item not 
.yet occupied by transferred data) only the leftmost characters of 
the input data are stored in the receiving data item (or the 
portion remaining). The remaining characters of the input data 
which do not fit into the receiving data item are ignored. 

(Addendum 2)' 

3 - 54 



3 - 55 



3 - 56 



Format 3 

18. The ACCEPT statement causes the information requested to be transferred 
to the data item specified by identifier according to the rules of the 
MOVE statement. DATE, DAY, and TIME are conceptual data items and, 
therefore, are not described in the COBOL program. 

19. DATE is composed of the data elements year of century, month of year, 
and day of month. The sequence of the data element codes shall be from 
high to low order (left to right), year of century, month of year, and 
day of month. Date, when accessed by a COBOL program, behaves as if it 
had been described in the COBOL program as an unsigned elementary 
numeric integer data item six digits in length. 

20. DAY is composed of the data elements year of century and day of year. 
The sequence of the data element codes shall be from high order to low 
order (left to right) year of century, day of year. Therefore, July 1, 
1968 would be expressed as 68183. DAY, when accessed by a COBOL 
program, behaves as if it had been described in a COBOL program as an 
unsigned elementary numeric integer data item five digits in length. 

21. TIME is composed of the data elements hours, minutes, seconds and 
hundredths of a second. TIME is based on elapsed time after midnight 
on a 24-hour clock basis -- thus, 2: 41 p. m. would be expressed as 
14410000. TIME, when accessed by a COBOL program behaves as if it had 
been described in a COBOL program as an unsigned elementary numeric 
integer data item eight digits in length. The minimum value of TIME is 
00000000; the maximum value of TIME is 23595999. If the hardware does 
not have the facility to provide fractional parts of TIME, the value is 
converted to the closest decim~l approximation. 

3 - 57 



THE ADD STATEMENT 

Function 

The ADD statement causes two or more numeric operands to be summed and the 
result to be stored. 

General Format 

Format 1 

sidentifier-l ~ r,' identifier-2] 
~ ? literal-l ~ L literal-2 TO identifier-m [ROUNDED] 

[,identifier-n [ROUNDED]] ••• [; ON SIZE ERROR imperative-statement] 

Format 2 

ADD Sidentifier-l~ , sidentifier-2 l [, identifier-3] 
? 11 teral-l ~ ? Ii teral-2 5 ,Ii teral-3 

GIVING identifier-m [ROUNDED] [.identifier-n [ROUNDED] ] 

[; ON SIZ E ERROR imperative-statement] 

Format 3 

ADD 
1 

CORRESPONDING l identifier-l TO identifier-2 
CORR ) 

[ROUNDED] 

[; ON SIZE ERROR imperative-statement] 

Syntax Rules 

1. In Fonnats .1 and 2, each identifier must refer to an elementary numeric 
item, except that in Format 2 each identifier following the word GIVING 
must refer to either an elementary numeric item or an elementary 
numeric edited item. In Format 3, each identifier must refer to a 
group item. 

2. Each literal must be a numeric literal. 

3. The composite of operands must not contain more than 18 digits (see 
Arithmetic Statements in this Chapter). 

a. In Format 1 the composite of operands is determined by using all 
of the operands in a given statement. 

3 - 58 



h. In Format 2 the composite of operands is determined by using all 
of the operands in a given statement excluding the data items that 
follow the word GIVING. 

c. In Format 3 the composite of operands is determined separately for 
each corresponding pair of data items. 

General Rules 

1. See The ROUNDED Phrase, The SIZE ERROR Phrase, The CORRESPONDING 
Phrase, Arithmetic Statements, Overlapping Operands and Multiple 
Results in Arithmetic Statements in this Chapter. 

2. If Format 1 is used, the values of the operands preceding the word TO 
are added together, th"en the sum is added to the current value of 
identifier-m storing the result immediately into identifier-m, and 
repeating this process respectively for each operand following the word 
TO. 

3. If Format 2 is used, the value of the operands preceding the word 
GIVING are added together, then the sum is stored as the new value of 
each identifier-m, identifier-n, ••. , the resultant identifiers. 

4. If Format 3 is used, data items in identifier-l are added to and stored 
in corresponding data items in identifier-2. 

5. The compiler ensures that enough places are carried so as not to lose 
any significant digits during execution. 

3 - 59 



THE ALTER STATEMENT 

Function 

The ALTER statement modifies a predetermined sequence of operations. 

General Format 

ALTER procedure-name-l TO [PROCEED TO] procedure-name-2 

[, procedure-name-3 TO [PROCEED TO] procedure-name-4] .e. 
Syntax Rules 

1 .. Each procedure-name-l, procedure-name-3, ... , is the 
paragraph that contains a single sentence consisting 
statement without the DEPENDING phrase. 

name 
of a 

of a 
GO TO 

2. Each procedure-name-2, procedure-name-4, .e., is the name of a 
paragraph or section in the Procedure Division. 

General Rules 

1. Execution of the ALTER statement modifies the GO TO statement in the 
paragraph named procedure-name-l, procedure-name-3, ... , so that 
subsequent executions of the modified GO TO statements cause transfer 
of control to procedure-name-2, procedure-name-4, ... , respectively. 
Modified GO TO statements in independent segments may, under some 
circumstances, be returned to their initial· states (see 
Independent Segments in Chapter 8). 

2. A GO TO statement in a section whose segment-number is greater than or 
equal to 50 must not be referred to by an ALTER statement in a section 
with a different segment-number. 

All other uses of the ALTER statement are valid and are performed even 
if procedure-name-l, procedure-name-3 is in an overlayable fixed 
segment. 

3 - 60 



THE COMPUTE STATEMENT 

Function 

The COMPUTE statement assigns to one or more data items the value of an 
arithmetic expression. 

General Format 

COMPUTE identifier-l [ROUNDED] [, identifier-2 [ROUNDED]] 

= arithmetic-expression [; ON SIZE ERROR imperative-statement] 

Syntax Rules 

Identifiers that appear only to the left of = must refer to either an 
elementary numeric item or an elementary numeric edited item. 

General Rules 

1. See The ROUNDED Phrase, The SIZE ERROR Phrase, Arithmetic Statements, 
Overlapping Operands and Multiple Results in Arithmetic Statements. 

2. An arithmetic expression consisting of a single identifier or literal 
provides a method of setting the values of identifier-I, identifier-2, 
etc., equal to the value of the single identifier or literal. 

3. If more than one identifier is specified for the result of the 
operation, that is preceding =, the value of the arithmetic expression 
is computed, and then this value is stored as the new value of each of 
identifier-I, identifier-2, etc., in turn. 

4. The COMPUTE statement allows the user to combine arithmetic operations 
without the restrictions on composite of operands and/or receiving data 
items imposed by the arithmetic statements ADD, SUBTRACT, MULTIPLY, and 
DIVIDE. 

3 - 61 



THE DISPLAY STATEMENT 

Function 

The DISPLAY statement causes data to be transferred from specified data 
items to the CRT screenc 

General Formats 

Format 1 

DISPLAY 

Syntax Rules 

~ identifier-l 

lliteral-l [

, ~ identifier-2 

? literal-2 

[ UPONSmnemonic-name~] 
--?CONSOLE 5 

1. The mnemonic-name in Format-1 must be associated with the console in 
the SPECIAL-NAMES paragraph in the Environment Division. 

2. Each literal may be any figurative constant, except ALL. 

3. If the literal is numeric, it must be an unsigned integer. 

4. 

5. 

General Rules 

1. Format 1 is the standard ANSI DISPLAY statement. 

3 - 62 



Format 1 

2. The DISPLAY statement causes the contents of each operand to be 
transferred to the console device in the order listed. 

3. The data is transferred as an integral number of data records (up to a 
maximum of 12). The size of a data record is defined by the compiler 
directive CRTWIDTH (see the LEVEL II COBOL Operating Guide). As each 
data record is transferred it is displayed on the console from the 
current cursor position with any trailing space characters removed and 
the cursor is moved to the start of the next line (possible with 
scrolling). 

4. If a figurative constant is specified as one of the operands, only a 
single occurrence of the figurative constant is displayed. 

5. If the data item (or the portion of the data-item not yet transferred) 
is the same size as the data record, the data item (or the portion not 
yet transferred) is transferred. 

6. If the data item (or the portion of the data item not yet transferred) 
is not the same size as the data record, one of the following applies: 

a. If .the size of the data item (or the portion of the data item not 
yet transferred) exceeds the size of the data record, the data 
item (or the portion not yet transferred) is transferred to the 
data record, beginning with the leftmost character and continuing 
until the data record is filled, an additional data record is then 
requested. 

b. If the size of the data record exceeds the size of the data item 
(or the portion of the data item not yet transferred), the data 
item (or the portion not yet transferred) is transferred to the 
data record beginning with the leftmost character and continuing 
until the final character of the data item has been transferred. 
The remaining characters in the data record are space filled. 

7 • When operands in a DISPLAY statement are USAGE CaMP or USAGE COMP-3 
such operands are converted to USAGE DISPLAY. The size of the sending 
item is the sum of the sizes associated with the operands (after 
possible conversion) and the values of the operand are transferred in 
the sequence in which they are encountered. 

(Addendum 2) 

3 - 63 



(Addendum 2) 

3 - 64 



THE DIVIDE STATEMENT 

Function 

The DIVIDE statement divides one numeric data item into others and sets the 
values of data items equal to the quotient. 

General Fonnat 

Format 1 

DIVIDE 
~ identifier-ll 
/literal-l ~ INTO identifier-2 [ROUNDED] 

[, identifier-3 [ROUNDED] ] [;ON SIZ E ERROR imperative-statement] 

Fonnat 2 

DIVIDE ~identifier 11 
/literal-l ~ INTO 

~identifier-2 i 
~literal-2 ) 

GIVING identifier-3 [ROUNDED] [,identifier-4 [ROUNDED]] 

[;ON SIZE ERROR imperative-statement] 

Format 3 

DIVIDE ~ identifier-l i 
~ 1 i teral-I ) 

BY ~ identifier-21 
~ Ii teral-2 ) 

GIVING identifter-3 [ROUNDED] [. identifier-4 [ROUNDED]] 

[;ON SIZE ERROR imperative-statement] 

Format 4 

DIVIDE 
~ identifier Ii 
~ Ii teral-I ) INTO 

~ identifier-2 i 
~ Ii teral-2 ) 

GIVING identifier-3 [ROUNDED] 

R~INDER identifier-4 [; ON SIZE ERROR imperative-statement] 

3 - 65 



Format 5 

DIVIDE 
S identifier 1 ~ 
l literal-l 5 BY 

S identifier-2 
l literal-2 

GIVING identifier-3 [ROUNDED] 

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement] 

Syntax Rules 

1. Each identifier must refer to an elementary numeric item, except that 
any identifier associated with the GIVING or REMAINDER phrase must 
refer to either an elementary numeric item or an elementary numeric 
edited item. 

2. Each literal must be a numeric literale 

3. The composite of operands, which is the hypothetical data item 
reSUlting from the superimposition of all receiving data items (except 
the REMAINDER data item) of a given statement aligned on their decimal 
points, must not contain more than eighteen digits. 

General Rules 

1. See The ROUNDED Phrase, The SIZE ERROR Phrase, Arithmetic Statements, 
Overlapping Operands and Multiple Results in Arithmetic Statements in 
this Chapter for a description of these functions. 

2. When Format 1 is used, the value of identifier-l or literal-l is 
divided into the value of identifier-2. The value of the dividend 
(identifier-2) is replaced by this quotient; similarly for identifier-l 
or literal-l and literal-3, etc. 

3. ~Vhen Format 2 is used, the value of identifier-l or literal-l is 
divided into identifier-2 or literal-2 and the result is stored in 
identifier-3, identifier-4 etc. 

4. When Format 3 is used, the value of identifier-l or literal-l is 
divided by the value of identifier-2 or literal-2 and the result is 
stored in identifier-3, identifier-4 etc. 

5. Formats 4 and 5 are used when a remainder from the division operation 
is desired, namely identifier-4. The remainder in COBOL is defined as 
the result of subtracting the product of the quotient (identifier-3) 
and the divis.or from the dividend. If identifier-3 is defined as a 
numeric edited item, the quotient used to calculate the remainder is an 
intermediate field which contains the unedited quotient. If ROUNDED is 
used, the 'quotient used to calculate the remainder is an intermediate 
field which contains the quotient of the DIVIDE statement, truncated 
rather than rounded. 

3 - 66 

r 



6. In Formats 4 and 5, the accuracy of 'the REMAINDER data item 
(identifier-4) is defined by the calculation described above. 
Appropriate decimal allignment truncation (not rounding) will be 
performed for the content of the data item referenced by identifier-4, 
as needed. 

7. When the ON SIZE ERROR phrase is used in Formats 4 and 5, the following 
rules pertain: 

a. If the size error occurs on the quotient, no remainder calculation 
is meaningful. Thus, the contents of the data items referenced by 
both identifier-3 and identifier-4 will remain unchanged. 

b. If the size error occurs on the remainder, the contents of the 
data item referenced by identifier-4 remains unchanged, However, 
as with other instances of multiple results of arithmetic 
statements, the user will have to do his own analysis to recognize 
which situation has actually occurred. 

3 - 67 



THE ENTER STATEMENT 

Function 

The ENTER statement provides a means of allowing the use of more than one 
language in the same program. 

General Format 

ENTER language-name [routine-name] 

Syntax Rule 

Language-name and routine-name can be any user-defined word or alphanumeric 
literal. 

General Rule 

Access to other languages can be achieved by means of CALL. 

3 - 68 



THE EXIT STATEMENT 

Function 

The EXIT statement provides a common end point for a series of procedures. 

General Format 

EXIT 

Syntax Rules 

1. The EXIT statement must appear in a sentence by itself. 

2. The EXIT sentence must be the only sentence ~n the paragraph. 

General Rule 

An EXIT statement serves <?nly to enable the user to assign a procedure-name 
to a given point in a program. Such an ·EXIT statement has no other effect 
on the compilation or execution of the program. 

3 - 69 



THE GO TO STATEMENT 

Function 

The GO TO statement causes control to be transferred from one part of the 
Procedure Division to another. 

General Format 

Format I 

GO TO [procedure-name-I] 

Format-2 

GO TO procedure-name-1 [, procedure-name-2] procedure-name-n 

DEPENDING ON identifier 

Syntax Rules 

1. Identifier is the name of a numeric elementary item described without 
any positions to the right of the assumed decimal point. 

2. When a paragraph is referenced by an ALTER statement, that paragraph 
can consist only of a paragraph header followed by a Format 1 GO TO 
statement. 

3. A Format 1 GO TO statement, without procedure-name-1, can only appear 
in a single statement paragraph. 

4. If a GO TO statement represented by Format 1 appears in a consecutive 
sequence of imperative statements within a sentence, it appears as the 
last statement in that sequence. 

General Rules 

1. When a GO TO statement, represented by Format 1 is executed, control is 
transferred to procedure-name-1 or to another procedure-name if the GO 
TO statement has been modified by an ALTER statement. 

2. If procedure-name-1 is not specified in Format 1, an ALTER statement, 
referring to this GO TO statement, must be execu ted prior to the 
execution of this GO TO statement. 

3 - 70 



3. When a GO TO statement represented by Format' 2 is executed, control is 
transferred to procedure-name-l, procedure-name-2, etc., depending on 
the val ue of the identifier being 1, 2, ••• , n. If the val ue of the 
identifier is anything other than the positive or unsigned integers 1, 
2, ••• , n, then no transfer occurs' and control passes to the next 
statement in the normal sequence for execution. 

3 - 71 



THE IF STATEMENT 

Function 

The IF statement causes a condi tion to be evaluated (see CONDITIONAL 
EXPRESSIONS in this Chapter). The subsequent action of the object program 
depends on whether the value of the condition is true or false. 

General Format 

IF condition; 

Syntax Rules 

THEN { 
statement-l } 
NEXT SENTENC E {

; ELSE statement-2 } 
; ELSE NEXT SENTENCE 

1. Statement-l and statement-2 represent either an imperative statement or 
a conditional statement, and either may be followed by a conditional 
statement. 

2. The ELSE NEXT SENTENCE phrase may be omitted if it immediately precedes 
the terminal period of the sentence. 

General Rules 

1. When an IF statement is executed, the following transfers of control 
occur: . 

a. If the condition is true, statement-I is executed if specified. If 
stattement-l contains a procedure branching or conditional 
statement, control is explicitly transferred in accordance wi th 
the rules of that statement. If statement-I does not contain a 
procedure branching or conditional statement, the ELSE phrase, if 
specified, is ignored and control passes to the next executab Ie 
sentence. 

b. If the condition is true and the NEXT SENTENCE phrase is specified 
instead of statement-I, the ELSE phrase, if specified, is ignored 
and control passes to the next executable sentence. 

c. If the condition is false, statement-lor its surrogate NEXT 
SENTENCE is ignored, and statement-2, if specified, is executed. 
IE statement-2 contains a procedure branching or conditional 
statement, control is explicitly transferred in accordance with 
the rules of that statement. If statement-2 does not contain a 
procedure branching or conditional statement, control passes to 
the next executable sentence. If the ELSE statement-2 phrase is 
not specified, statement-l is ignored and control passes to the 
next executable sentence • 

..) - I~ 



d. If the condition is false, and the ELSE NEXT SENTENCE phrase is 
specified, statement-l is ignored, if specified, and control 
passes to the next executable sentence. 

2. Statement-l and/or statement-2 may contain an IF statement. In this 
case the IF statement is said to be nested. 

IF statements within IF statements may be considered as paired IF and 
ELSE combinations, proceeding from left to right. Thus, any ELSE 
encountered is considered to apply to the immediately preceding IF that 
has not been already paired with an ELSE. 

3 - 73 



THE INSPECT STATEMENT 

Function 

The INSPECT statement provides the ability to tally (Format 1), replace 
(Format 2), or tally and replace (Format 3) occurrences of single characters 
or group of characters in a data item. 

General Format 

Format 1 

INSPECT identifier-l TALLYING 

~ l 
S ALL ~ S identifier-3 ~ l 

identifier-2 FOR ,?LEADING 5 ~ literal-l 5 

CHARACTERS 

[ 
S BEFORE ~ INITIAL S i~entifier-4 ~ ] l 
? AFTER 5 ~ l1teral-2 5 ~ 

Format 2 

INSPECT identifier-l REPLACING 

CHARACTERS BY S i~entifier-6 ~ [S BEFORE ~ INITIAL S i~entifier-7 ~J 
-- ?l1teral-4 5 ? AFTER 5 ? l1teral-S 5 

~ )llinING l~. I i~entifier-5! BY I i~entifier-6! 
(?FIRST (? I1teral-3 -- ?11teral-4 

[ 
S BEFORE ~ 
? AFTER S 

INITIAL S i~entifier-7nl ••• l 
? 11teral-S SJ ) 

3 - 74 . 



Format 3 

INSPECT identifier-1 TALLYING 

identifier-2 FOR , ~LEADING~ ~literal-1 ~ ~ l 
S ALL ~ S identifier-3 ~ ~ 

[{ 
BEFORE} 
AFTER 

REPLACING 

CHARACTERS 

INITIAL Si~entifier-4~J l 
~11.teral-2 ~ ~ 

CHARACTERS sidentifier-6~ 
BY ~literal-4 ~ [{

BEFORE} 
AFTER 

INITIAL Si~entifier-7~J 
~ll.teral-S S 

U~ING~~, 
? ~ FIRST ) ~ 

Syntax Rules 

All Formats 

Sidentifier-S~ BY sidentifier-6~ 
~literal-3 ~ -- ~literal-4 ~ 

[{
BEFORE} 
AFTER INITIAL Sidentifier-7~J 

~literal-S ~ ~ ... ~ ... 

1. Identifier-1 must reference either a group item or any category of 
elementary item, described (either implicitly or explicitly) as USAGE 
IS DISPLAY. 

2. Identifier-3 identifier-n must reference either an elementary 
alphabetic, alphanumeric or numeric item described (either implicitly 
or explicitly) as USAGE IS DISPLAY. 

3. Each literal must be nonnumeric and may be any figurative constant, 
except ALL. 

4. Literal-1, literal-2, literal-3, literal-4, and literal-5, and the data 
items referenced by identifier-3, identifier-4, identifier-S, 
identifier-6, and identifier-7 can be any number of characters in 
length up to the limit allowed for literals or data items. 

Formats 1 and 3 Only 

S. Identifier-2 must reference an elementary numeric data item. 

6. If either literal-lor literal-2 is a figurative constant, the 
figurative constant refers to an implicit one character data item. 

3 - 75 



Formats 2 and 3 Only 

7 e The size of the data referenced by literal-4 or identifier-6 must be 
equal to the size of the data referenced by literal-3 or identifier-5. 
When a figurative constant is used as literal-4, the size of the 
figurative constant is equal to the size of literal-3 or the size of 
the data item referenced by identifier-50 

8. When the CHARACTERS phrase is used, literal-4, literal-5, or the size 
of the data item referenced by identifier-6, identifier-7 must be one 
character in length. 

9. When a .figurative constant is used as Ii teral-3, the data referenced by 
literal-4 or identifier-6 must be one character in length. 

General Rules 

All Formats 

1. Inspection (which includes the comparison cycle, the establishment of 
boundaries for the BEFORE or AFTER phrase, and the mechanism for 
tallying and/or replacing) begins at the leftmost character position of 
the data item referenced by identifier-I, regardless of its class, and 
proceeds from left to right to the rightmost character position as 
described in general rules 4 through 6. 

2. For use in the INSPECT statement, the contents of the data item 
referenced by identifier-I, identifier-3, identifier-4, identifier-5, 
identifier-6 or identifier-7 will be treated as follows: 

a. If any of identifier-I, identifier-3, identifier-4, identifier-5, 
identifier-? or identifier-7 is described as alphanumeric, the 
INSPECT statement treats the contents of each sUGh identifier as a 
character-string. 

b. If any of identifier-I, identifier-3, identifier-4, identifier-5, 
identifier-6 or identifier-7 is described as alphanumeric edited, 
numeri~ edited or unsigned numeric, the data item is inspected as 
though it had been redefined as alphanumeric (see general rule 2a) 
and the INSPECT statement had been written to reference the 
redefined data item. 

c.. If any' of identifier-I, identifier-3, identifier-4, identifier-5, 
identifier-6 or identifier-7 is described as signed numeric, the 
data item is inspected as though it had been moved to an unsigned 
numeric data item of the same length and then the rules in general 
rule 2b had been applied. (See THE MOVE STATEMENT later in this 
Chapter) .. 

3. In general rules 4 through 11 all references to literal-I, 1iteral-2, 
literal-3, literal-4, and literal-5 apply equally to the contents of 
the data item referenced by identifier-3, identifier-4, ident'ifier-S, 
identifier-6, and identifier-7, respectively. 

3 - 76 



4. During inspection of the contents of the data item referenced by 
identifier-i, each properly matched occurrence of literal-1 is tallied 
(Formats 1 and 3) and/or each properly matched occurrence of literal-3 

replaced by literal-4 (Formats 2 and 3). . . 

5. The comparison operation to determine the occurrences of literal-1 to 
be tallied and/or occurrences of literal-3 to be replaced, occurs as 
follows: 

a. The operands of the TALLYING and REPLACING phrases are considered 
in the order they are specified in the INSPECT statement from left 
to right. The first literal-1, literal-3 is compared to an equal 
number of contiguous characters, starting with the leftmost 
character position in the data item referenced by identifier-i. 
Literal-1, literal-3 and that portion of the contents of the data 
item referenced by identifier-i match if, and only if, they are 
equal, character for character. 

b. If no match occurs in the comparison of the first literal-1, 
literal-3, the comparison is repeated with each successive 
literal-1, literal-3, if any, until either a match is found or 
there is no next successive literal-1, literal-3. When there is 
no next successive literal-1, literal-3, the character position 
in the data item referenced by identifier-i immediately to the 
right of the leftmost character position considered in the last 
comparison cycle is considered as the leftmost character position, 
and the comparison cycle begins again with the first literal-1, 
literal-3. 

c. Whenever a match occurs, tallying and/or replacing takes place as 
described i~ general rules 8 through 10. The character position 
in the data item referenced by identifier-1 immediately to the 
right of the rightmost character position that participated in the 
match is now considered to be the leftmost character position of 
the data item referenced by identifier-1, and the comparison cycle 
starts again with the first literal-1, literal-3.· 

d. The comparison operation continues until the rightmost character 
position of the data item referenced by identifier-1 has 
participated in a match or has been considered as the leftmost 
character position. When this occurs, inspection is terminated. 

e. If the CHARACTERS phrase is specified, an implied one character 
operand participates in the cycle described in paragraphs Sa 
through·Sd above, except that no comparison to the contents of the 
data item referenced by identifier-i takes place. This implied 
character is considered always to match the leftmost character of 
the contents of the data item referenced by identifier-1 
participating in the current comparison cycle. 

3 - 77 



6. The comparison operation defined in general 'rule 5 is affected by the 
BEFORE and AFTER phrases as follows: 

a. If the BEFORE or AFTER phrase is not specified, literal-I, 
literal-3 or the implied operand of the CHARACTERS phrase 
participates in the comparison operation as described in general 
rule 5. 

b. If the BEFORE phrase is specified, the associated literal-I, 
literal-3 or the implied operand of the CHARACTERS phrase 
participates only in those comparison cycles which involve that 
portion of the contents of the data item referenced by 
identifier-I from its leftmost character position up to, bu t not 
including, the first occurrence of literal-2, literal-S within the 
contents of the data item referenced by ident~fier-I. The 
position of this first occurrence is determined before the first 
cycle of the comparison operation described in general rule 5 is 
begun. If, on any comparison cycle, literal-I, literal-3 or the 
implied operand of the CHARACTERS phrase is not eligible to 
participate, it is considered not to match the contents of the 
data item referenced by identifier-I. If there is no occurrence 
of literal-2, literal-S within the contents of the data item 
referenced by identifier-I, its associated literal-I, literal-3, 
or the implied operand of the CHARACTERS phrase participates in 
the comparison operation as though the BEFORE phrase had not been 
specified. 

c. If the AFTER phrase is specified, the associated literal-I, 
literal-3 or the implied operand of the CHARACTERS phrase may 
participate only in those comparison cyc les which involve that 
portion of the contents of the data item referenced by 
identifier-I from the character position immediately to the right 
of the rightmost character position of the first occurrence of 
literal-2, literal-5 within the contents of the data item 
referenced by identifier-I and the rightmost character position of 
the data item referenced by identifier-I. The posit ion of this 
first occurrence is determined before the first cycle of the 
comparison operation described in general rule 5 is begun. If, on 
any comparison cycle, literal-I, literal-3 .or the implied operand 
of the CHARACTERS phrase is not eligible to participate, it is 
considered not to match the contents of the data item referenced 
by identifier-I. If there is no occurrence of literal-2, 
literal-S within the contents of the data item referenced by 
identifier-I, its associated literal-I, literal-3, or the implied 
operand of the CHARACTERS phrase is never eligible to participate 
in the comparison operation. 

Format 1 

7. The contents of the data item referenced by identifier-2 is not 
initialized by the execution of the INSPECT statement. 

3 - 78 



8. The rules for tallying are as follows: 

a. If the ALL phrase is specified, the contents of the data item 
referenced by identifier-2 are incremented by one for each 
occurrence of literal-l matched within the contents of the data 
item referenced by identifier-l. 

b. If the LEADING phrase is specified, the contents of the data item 
referenced by identifier-2 are incremented by one for each 
contiguous occurrence of literal-l matched within the contents of 
the data item referenced by identifier-l, provided that the 
leftmost such occurrence is at the point where comparison began in 
the first comparison cycle in which literal-l was eligible to 
participate. 

c.. If the CHARACTERS phrase is specified, the contents of .the data 
item referenced by identifier-2 are incremented by one for each 
character matched, in the sense of general rule 5e, within the 
contents of the data item referenced by identifier-l. 

Format 2 

9. The required words ALL, LEADING, and FIRST are adjectives that apply to 
each succeeding BY phrase until the next adjective appears. 

10. The rules for replacement are as follows: 

a. When the CHARACTERS phrase is specified, each character matched in 
the sense of general rule 5e in the contents of the data item 
referenced by identifier-l, is replaced by literal-4. 

b. When the adjective ALL is specified, each occurrence of literal-3 
matched in the contents of the data item referenced by 
identifier-l is replaced by literal-4. 

c. When the adj ec tive LEADING is specified, each contiguous 
occurrence of literal-3 matched in the contents of the data item 
referenced by identifier-l is replaced by literal-4, provided that 
the leftmost occurrence is at the point where comparison began in 
the first comparison cycle in which literal-3 was eligible to 
participate. 

d. When the adjective FIRST is specified, the leftmost occurrence of 
literal-3 matched within the contents of the data item referenced 
by identifier-l is replaced by literal-4. 

3 - 79 



Fonnat 3 

11. A Format 3 INSPECT statement is interpreted and executed as though two 
successive INSPECT statements specifying the same identifier-1 had been 
written with one statement being a Format 1 statement with TALLYING 
phrases identical to those specified in the Format 3 statement, and the 
other statement being a Format 2 statement with REPLACING phrases 
identical to those specified in the Format 3 statement. The general 
rules given for matching and counting apply to the Format 1 statement 
and the general rules given for matching and replacing apply to the 
Format 2 statement. 

EXAMPLES 

Six examples of the use of the INSPECT statement follow: 

INSPECT word TALLYING count FOR LEADING "L" BEFORE INITIAL "Aft, count-l FOR 
LEADING "A" BEFORE INITIAL "L". 

Where word = LARGE, count = 1, count-l = O. 
Where word = ANALYST, count = 0, count-l = 1. 

INSPECT word TALLYING count FOR ALL ilL", REPLACING LEADING "A" BY "E" AFTER 
INITIAL "L ". 

Where word = CALLAR, count = 2, word = CALLAR. 
Where word = SALAMI, count = 1, word = SALEMI. 
Where word = LATTER, count = 1, word = LETTER. 

INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X". 

\.Jhere wo rd :: ARXAX, word = GRXAX. 
mlere word = HANDAX, word = HGNDGX. 

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J" REPLACING ALL 
"A" BY "B" 

Where word 
Where word 
Where word 

ADJECTIVE, count = 6, word = BDJECTIVE. 
= JACK, count = 3, word = JBCK. 

JUJMAB, count = 5, word = JUJMBB. 

3 - 80 



INSPECT word REPLACING ALL "X" BY "Y", "B" BY "Z", "w" BY "Q" AFTER INITIAL 
"R". 

Where word = RXXBQWY, word = RYYZQQY. 
Where word = YZACDWBR, word = YZACDWZR. 
Where word = RAWRXEB, word = RAQRYEZ. 

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A". 

word before: 
word after: 

1 2 X 
B B B B 

Z 
B 

A B' C 
ABC 

3 - 81 

D 
D 



THE MOVE STATEMENT 

Function 

The MOVE statement transfers data, in accordance with the rules of editing, 
to one or more data areas. 

General Fonua t 

Format 1 

MOVE 
S identifier-l ~ 
?literal 5 TO identifier-2 [, identifier-3] 

Format 2 

MOVE 1 CORRESPOND ING l 
CORR identifer-l TO identifier-2 

Syntax Rules 

Identifier-l 
identifier-3, 

and . . . , literal represent the sending 
represent the receiving area • 

2. CORR is an abreviation for CORRESPONDING. 

area; ident ifier-2, 

3. When the CORRESPONDING phrase is used, both identifiers must be group 
items. 

4. An index data item cannot appear as an operand of a MOVE statement. 
(See THE USAGE CLAUSE in this Chapter). 

General Rules 

1. If the CORRESPONDING phrase is used, selected items ~vithin identifier-l 
are moved to selected items within identifier-2, according to the rules 
given in The CORRESPONDING Phrase in this Chapter. The results are the 
same as -if the user had referred to each pair of corresponding 
identifiers in separate MOVE statements. 

2. The data designated by the literal or identifier-l is moved first to 
identifier-2, then to identifier-3, The rules referring to 
identifier-2 also apply to the other receiving areas. Any subscripting 
or indexing associated with identifier-2, ••• , is evaluated immediately 
before the data is moved to the respective data item. 

Any subscripting or indexing associated with identifier-l is evaluated 
only once, immediately before data is moved to the first of the 

3 - 82 



receiving operands. The result of the statement: 

MOVE a (b) TO b, c (b) 

is equivalent to: 

MOVE a (b) TO temp 
MOVE temp TO b 
MOVE temp TO c (b) 

where 'temp' is an intermediate result item provided by the compiler. 

3. Any MOVE in which the sending and receiving items are both elementary 
items is an elementary move. Every elementary item belongs to one of 
the following categories: numeric, alphabetic, alphanumeric, numeric 
edited, alphanumeric edited e These categories are described in the 
PICTURE clause. Numeric literals belong to the category numeric, and 
nonnumeric literals belong to the category alphanumeric. The figurative 
constant ZERO belongs to the category numeric. The figurative constant 
SPACE belongs to the category alphabetic. All other figurative 
constants belong to the category alphanumeric. 

The following rules apply to an elementary move between these 
categories: 

a. i. The figurative constant SPACE, or an alphanumeric edited, or 
alphabetic data item must not be moved to a numeric or 
numeric edited data item. 

ii. A numeric edited data item must not be moved to a numeric 
edited data item. 

b. A numeric literal, the figurative constant ZERO, a numeric data 
item or a numeric edited data item must not be moved to an 
alphabetic data item. 

c. A non-integer numeric literal or a non-integer numeric data item 
must not be moved to an alphanumeric or alphanumeric edited data 
item. 

d. All other elementary moves are legal and are performed according 
to the rules given in general rule 4. 

4. Any necessary conversion of data from one form of internal 
representation to another takes place during legal elementary moves, 
along with any editing specified for the receiving data item: 

a. When an alphanumeric edited or alphanumeric item is a receiving 
item, alignment and any necessary space filling takes place as 
defined under STANDARD ALIGNMENT RULES in this Chapter. If the 

(Addendum 2) 

3 - 83 



size of the sending item is greater than the size of the receiving 
item, the excess characters are truncated on the right after the 
receiving item is filled. If the sending item is described as 
being signed numeric, the operational sign will not be moved; if 
the operational sign occupies a separate character position (see 
THE SIGN CLAUSE in this Chapter), that character will not be moved 
and the size of the sending item will be considered to be one less 
than its actual size (in terms of standard data format 
characters)~ 

b. When a numeric or numeric edited item is the receiving item, 
aLignment by decimal point and any necessary zero-fill ing takes 
place as defined under the STANDARD ALIGNMENT RULES in Chapter 2, 
except where zeroes are replaced because of editing requirements. 

When a signed numeric item is the receiving item, the sign of the 
sending item is placed in the receiving item. (See THE 
SIGN CLAUSE in this Chapter) 0 Conversion of the representation of 
the sign takes place as necessary. If the sending item is 
unsigned, a positive sign is generated for the receiving item. 

When an unsigned numeric item is the receiving item, the absolute 
value of the sending item is moved and no operational sign is 
generated for the receiving item. 

When a data item described as alphanumeric is the sending item, 
data is moved as if the sending item were described as an unsigned 
numeric integer. 

c. When a rece1.v1.ng field is described as alphabetic, ~justification 
and any necessary space-filling takes place as defined under the 
STANDARD ALIGNMENT RULES in Chapter 2. If the size of the sending 
item is greater than the size of the rece1.v1.ng item, the excess 
characters are truncated on the right after the receiving item is 
filled. 

5. Any move that is not an elementary move is treated exactly as if it 
were an alphanumeric to alphanumeric elementary move, except that there 
is no conversion of data from one form of internal representation to 
another. In such a move, the receiving. area will be filled without 
consideration for the individual elementary or group items contained 
within either the sending or receiving area, except as noted in general 
rule 4 of the OCCURS clause. 

6. Data in Table 3-8 summarizes the legal ity of the various types of HOVE 
statements. The general rule reference indicates the rule that 
prohibits the move or the behavior of a legal move. 

3 - 84 



Table 3-8. MOVE Statement Data Categories. 

Category of Sending Category of Receiving Data Item 1 

Alphabetic Alphanumeric Numeric Integer Numeric 
Edited Numeric Non-Integer Edited 
Alphanumeric 

ALPHABETIC Yes/4c Yes/4a No/3a No/3a 

ALPHANUMERIC Yes/4c Yes/4a Yes/4b Yes/4b 

ALPHANUMERIC EDITED Yes/4c Yes/4a No/3a No/3a 

NUMERIC INTEGER No/2b Yes/4a Yes/4b Yes/4b 

NON-INTEGER No/3b No/3c Yes/4b Yes/4b 

NUMERIC EDITED No/3b Yes/4a :M:I,=:I!§:::: No/3a 

1 The relevant rule number is quoted in these columns -

3 - 85 



THE MULTIPLY STATEMENT 

Function 

The MULTIPLY statement causes numeric data items to be multiplied and sets 
the values of data items equal to the resultse 

General Forma t 

Format 1 

~ identifier-l i 
~MU~L.;...T_I;.;;.P.;;LY.;;;., ~ 1 i teral-l ~ BY identifier-2 [ROUNDED] 

[, identifier-3 [ROUNDED] ] ••• [; ON SIZE ERROR imperative-statement] 

Format 2 

MULTIPLY ~i~entifier-l i BY 
~l~teral-l ) 

Syntax Rules 

~identifier-2 i 
~literal~2 ~ GIVING identifier-3 [ROUNDED] 

1. Each identifier must refer to a numeric elementary item, except that in 
Format 2 each identifier following ·the word GIVING must refer to either 
an elementary numeric item or an elementary numeric edited item. 

2. Each literal must be a numeric literal. 

3. The composite of operands, which is that hypothetical data item 
resulting from the superimposition of all receiving data items aligned 
on their decimal points must not contain more than 18 digits. 

General Rules 

1. See The ROUNDED Phrase, The SIZE ERROR Phrase, Arithmetic Statements, 
Overlapping Operands and Multiple Results in Arithmetic Statements in 
this Chapter. 

2. When Format 1 is used, the value of identifier-l or literal-l is 
mUltiplied by the value of identifier-2. The value of the mUltiplier 
(identifier-2) is replaced by this product; similarly for identifier-1 
or literal-1 and identifier-3, etc. 

3 - 86 



3. When Fonnat 2 is used, the value of identifier-lor literal-l is 
multiplied by identifier-2 or literal-2 and the result is stored in 
identifier-3, identifier-4, etc. 

3 - 87 



THE PERFORM STATEMENT 

Function 

The PERFORM statement is used to transfer control explicitly to one or more 
procedures and to return control implicitly whenever execution of the 
specified procedure is completes 

General Format 

Fonnat 1 

PERFORM procedure-name-1 [
5 THROUGH ~ 
l THRU 5 procedure-name-2] 

Format 2 

[
5 THROUGH ~ ] ~identifier-ll 

' PERFORM procedure-name-l l ~ 5 procedure-name-2 (integer-l TIMES 

Format 3 

PERFORM procedure-name-l[1 ~UGH! procedure-name-2] UNTIL condition-1 

Format 4 

PERFORM procedure-name-1 [
s THROUGH ~ 
l THRU 5 procedure-name-2] 

VARYING ~ identifier -2j 
~ index-name-1 

FROM ~ 
identifier-3 ~ 
index -name-2 
literal-l 

[ 
~ identifier-41 

BY ~ literal-2 UNTIL condi tion-l 

AFTER ~ identifier-5 1 FR~ ~~~::~:~!:;~ ~ 
~ index-name-3 ? Ii teral-3 ) 

BY li~entifier-7l 
- l~teral-4 

UNTIL condition-2 

[ AFTER ~ identifier-8l ~ identifier-9 ~ 
index-name-5 

FROM index -name-6 
literal-5 

BY ~ identifier-lO l UNTIL condition-3 ] literal-6 

3 - 88 1 



Syntax Rules 

1. Each identifier represents a numeric elementary item described in the 
Data Division. In Format 2, identifier-I must be described as a 
numeric integer. 

2. Each literal represents a numeric literal. 

3. The words THRU and THROUGH are equivalent. 

4. If an index-name is specified in the VARYING or AFTER phrase, then: 

a. The identifier in the associated FROM and BY phrases must be an 
integer data item. 

b. The literal in the associated FROM phrase must be a positive 
integer. 

c. The literal in the associated BY phrase must be a non-zero 
integer. 

5. If an index-name is specified in the FROM phrase, then: 

a. The identifier in the associated VARYING or AFTER phrase must be 
an integer data item. 

b. The identifier in the associated BY phrase must be an integer data 
item. 

c. The literal in the associated BY phrase must be an integer. 

6. The literal in the BY phrase must not be zero. 

7. Condition-I, condition-2, condition-3 may be any conditional expression 
as described under CONDITIONAL EXPRESSIONS in this Chapter. 

8. Where procedure-name-1 and procedure-name-2 are both specified and 
either is the name of a procedure in the declarative section of the 
program then both must be procedure-names in the same declarative 
section. 

General Rules 

1. The data items referenced by identifier-4, identifier-7, and 
identifier-IO must not have a zero value. 

2. If an in4ex-name is specified in the VARYING or AFTER phrase, and an 
identifier is specified in the associated FROM phrase, then the data 
item referenced by the identifier must have a positive value. 

3 - 89 



3. When the PERFORM statement is executed, control is transferred to the 
first statement of the procedure named procedure-na~e-l (except as 
indicated in general rules 6b, 6c, and 6d). This transfer of control 
occurs only once for each execution of a PERFORM statement. For those 
cases where a transfer of control to the named procedure does take 
place, an implicit transfer of control to the next executable statement 
following the PERFORM statement is established as follows: 

a. If procedure-name-l is a paragraph-name and procedure-name-2 is 
not specified, then the return is after the last statement of 
procedure-name-l. 

b. If procedure-name-l is a section-name and procedure-name-2 is not 
specified, then the return is after the last statement of the last 
paragraph in procedure-name-l. 

c. If procedure-name-2 is specified and it is a paragraph-name, then 
the return is after the last statement of the paragraph. 

d. If procedure-name-2 is specified and it is a section-name, then 
the return is after the last statement of the last paragraph in 
the section. 

4. There is no necessary relationship between procedure-name-l and 
procedure-name-2 except that a consecutive sequence of operations is to 
be executed beginning at the procedure named procedure-name-l and 
ending with the execution of the procedure named procedure-name-2. In 
particular, GO TO and PERFORM statements may occur between 
procedure-name-l and the end of procedure-name-2. If there are two or 
more logical paths to the return point, then procedure-name-2 may be 
the name of a paragraph consisting of the EXIT statement, to which all 
of these paths must lead. 

5. If control passes to these procedures other than via a PERFORM 
statement the procedures are executed right through to the next 
executable statement in the main program as if they were just part of 
the main program. 

6. The PERFORM statements operate as follows with rule 5 above applying to 
all formats: 

a. Format 1 is the basic PERFORM statement. 
by this type of PERFORM statement is 
control passes to the next executable 
PERFORH statement. 

A procedure referenced 
executed once and then 
statement following the 

b. Format 2 is the PERFORM ... TIMES. The procedures are performed the 
number of times specified by integer-lor by the initial value of 
the data item referenced- by identifier-l for that execution. If, 
at the time of execution of a PERFORM statement, the value of the 
data item referenced by identifier-l is equal to zero or is 

3 - 90 



negative, control passes to the next exe'cutable statement 
following the PERFORM statement. Following the execution of the 
procedures the specified number of times, control is transferred 
to the next executable statement following the PERFORM statement. 

During execution of the PERFORM statement, references to identi­
fier-I cannot alter the number of times the procedures are to be 
executed from that which was indicated by the initial value of 
identifier-l. 

c. Format 3 is the PERFORM ••• UNTIL. The specifiep procedures are 
performed until the condition specified by the UNTIL phrase is 
true. When the condition is true, control is transferred to the 
next executable statement after the PERFORM statement. If the 
condition is true when the PERFORM statement is entered, no 
transfer to procedure-name-I takes place, and control is passed to 
the next executable statement following the PERFORM statement. 

d. Format 4 is the PERFORM ••• VARYING. Tnis variation of the PERFORM 
statement is used to augment the values referenced by one or more 
identifiers or index-names in an orderly fashion during the 
execution of a PERFORM statement. In the following discussion, 
every reference to identifier as the object of the VARYING, AFTER 
and FROM (current value) phrases also refers to index-names. When 
index-name appears in a VARYING and/or AFTER phrase, it is 
initialized and subsequently augmented (as described below) 
according to the rules of the SET statement. When index-name 
appears in the FROM phrase and identifier appears in an associated 
VARYING or AFTER phrase, identifier is initialized according to 
the rules of the SET statement; subsequent augmentation is as 
described belmY'. 

In Format 4, when one identifier is varied, identifier-2 is set to 
the value of literal-lor the current value of identifier-3 at the 
point of initial execution' of the PERFORM statement; then, if the 
condition of the UNTIL phrase is false, the sequence of 
procedures, procedure-name-l through procedure-name-2, is executed 
once. The value of identifier-2 is augmented by the specified 
increment or decrement value (the value of identifier-4 or 
literal-2) and condition-l is evaluated again. The .cycle 
continues until this condition is true; at which point, control is 
transferred to the next executable statement following the PERFORM 
statement. If condition-l is true at the beginning of execution 
of the PERFORM statement, control is transferred to the next 
executable statement following the PERFORM statement. 

3 - 91 



ENTRANCE 
~ 

set identifier-2 equal to 
current FROM value 

(condi tion-1 
True .. Exit 

False 

Execute procedure-name-1 
THRU procedure-name-2 

t 
Augment identifier-2 with 

current BY value 

Figure 3-1. Flowchart for VARYING Phrase of a PERFORM Statement 
Having One Condition. 

In Format 4, when two identifiers are varied, identifier-2 and 
identifier-S are set to the current value of identifier-3 and 
identifier-6, respectively. After the identifiers have been set, 
condition-1 is evaluated; if true, control is transferred to the 
next executable statement; if false, condition-2 is evaluated. If 
condition-2 is false, procedure-name-l through procedure-name-2 is 
executed once, then identifier-S is augmented by identifier-7 or 
literal-4 and condition-2 is evaluated again. This cycle of 
evaluation and augmentation continues until this condition is 
true. When condition-2 is true, identifier-S is set to the value 
of literal-3 or the current value of identifier-6, identifier-2 is 
augmented by identifier-4 and condition-1 is re-evaluated. The 
PERFORM statement is completed if condition-l is true; if not, the 
cycles continue until condition-1 is true. 

During the execution of the procedures associated with the PERFORM 
statement, any change to the VARYING variable (identifier-2 and 
index-name-l), the BY variable (identifier-4), the AFTER variable 
(identifier-S and index-name-3), or the FROM variable 
(identifier-3 and index-name-2) will be taken into consideration 
and will affect the operation of the PERFOB}l statement. 

3 - 92 



jl 

ENTRANCE 
I 

Set identifier-2 and iden t if ier-5 
to current FROM values 

... \... Condition-l 
True - Exit - -

I • False 

.... r Condi t ion-~ True -
False 

r ~ Jl 
Execute procedure-name-l I Set identifier-5 to its I THRU procedure-name-2 current FROM value 

"-.j 
, t 

Augment identifier-5 with Augment identifier-2 with 1 
I current BY value current BY value 

./ 
Figure 3 -2. Flowchart for VARYING Phrase of PERFORM Statement 
with Two Conditions. 

At the termination of the PERFORM statement identifier-5 contains 
the current value of identifier-6. Identifier-2 has a value that 
exceeds the last used setting by an increment or decrement value, 
unless condition-l was true when the PERFORM statement was 
entered, in which case identifier-2 contains the current 'value of 
ident ifier-3. 

When two identifiers are varied, identifier-5 goes through a 
complete cycle (FROM, BY, UNTIL) each time identifier-2 is varied. 

For three identifiers the mechanism is the same as for two 
identifiers except that identifier-8 goes through a complete cycle 
each time that identifier-5 is augmented by identifier-7 or 
literal-4, which in turn goes through a complete cycle each time 
identifier-2 is varied. 

3 - 93 



A~ j 

ENTRANCE 
I 

Set 
identifier-2, identifier-5, 

identifier-8 
to current FROM values 

I 

~ {Condition-l 
True - Exit . 

False 

:: I'Condition-2' True 

False 

- "C d·· 3 - ~ on l.t~on-
True 

False 
~r Ir ~~ 

_ J~ 
Execute Set Set 

procedure-name -1 identifier-8 identifier-5 
THRU procedure- to its current to its current 

name-2 FROM value FROM value 
t f t 

"-
Augment Augment Augment 

identifier-8 iden t if ier-5 iden t if ier-2 
with current with current with current 

BY value BY value BY value 
./ ../ 

Figure 3 -3. Flowchart for VARYING Phrase of PERFORM Statement 
with Three Conditions. 

After the completion of a Format 4 PERFORM statement, identifier-5 
and identifier-8 contain the current value of identifier-6 and 
identifier-9 respectively. Identifier-2 has a value that exceeds 
its last used setting by one increment or decrement value, unless 
condition-l is true when the PERFORM statement is entered, in 
which case identifier-2 contains the current value of 
identif ier-3. 

7. If a sequence of statements referred to by a PERFORM statement includes 
another PERFOID1 statement, the sequence of procedures associated with 
the included PERFORM must itself either be totally included in, or 
totally excluded from, the logical sequence referred to by the first 
PERFO~. Thus, an active PERFORM statement, whose execution point 
begins within the range of another active PERFORM statement, must not 
allow control to pass to the exit of the other active PERFORM 
statement; furthermore, two or more such active PERFORM statements may 
not have a common exit. See Figure 3 - 4. 

3 - 94 



x PERFORM a THRU m x PERFORM a THRU m 

a a 

d PERFORM f THRU J d PE RFO RM f THRU j 

f 

) 
h 

, • m oJ 

m f 

j 
) 

• 
x PERFORM a THRU m 

a 

"" 
f 

""" 
m .J 

j .J 

d PERFORM f THRU j 

Fig. 3-4. PERFORM Statement in Sequence. 

8. A PERFORM statement that appears in a section that is not an 
independent segment can have wi thin its range, in addi tion to any 
declarative sections whose execution is caused within that range, only 
one of the following: 

a. Sections and/or paragraphs wholly contained in one or more 
non-independent segments. 

b. Sections and/or paragraphs wholly contained in a single 
independent segment. 

9. A PERFORM statement that appears in an independent segment can have 
within its range, in addition to any declarative sections whose 
execution is caused within that range, only one of the following: 

a. Sections and/or paragraphs wholly contained in one or more 
non-independent segments. 

b. Sections and/or paragraphs wholly contained in the same 
independent segment as that PERFORM statement. 

3 - 95 



THE STOP STATEMENT 

Function 

The STOP statement causes a permanent or temporary suspension of the 
execution of the object programe 

General Format 

STOP 

Syntax Rules 

RUN l 
literal 5 

1. The literal may be numeric or non-numeric or may be any figurative 
constant, except ALL. 

2. If the literal is numeric, then it must be an unsigned integer. 

3. If a STOP RUN statement appears in a consecutive sequence of imperative 
statements within a sentence, it must appear as the last statement in 
that sequence. 

General Rules 

1. If the RUN phrase is used, then the operating system ending procedure 
is:instituted. 

2. If STOP literal is specified, the literal is communicated to the 
operator. Continuation of the object program begins w~th the execution 
of the next executable statement in sequence. Operator action to 
continue is dependent on the operating system. See your LEVEL II COBOL 
Operating Guide. 

3 - 96 



THE STRING STATEMENT 

Function 

The STRING statement provides juxtaposition of the partial or complete 
contents of two or more data items into a single data item. 

General Format 

STRING I identifier-3 ! 
sidentifier-l~ [', i~entifier-2] .•. DELIMITED BY literal-3 
?literal-l 5 1~teral-2 SIZE 

[ 
S identifier-4~ [,' identifier-S] 

'~literal-4 5 , literal-S .•• 

INTO identifier-7 [WITH POINTER identifier-B] 

[; ON OVERFLOW imperative-statement] 

Syntax Rules 

1 . Each literal 
ALL. 

2. All literals 
identifiers, 
explicitly as 

may be any figurative constant without the optional word 

must be described 
except identifier-B, 
usage is DISPLAY. 

as nonnumeric literals, and all 
must be described' implicitly or 

3. Identifier-7 must represent an elementary alphanumeric data item 
without editing symbols or the JUSTIFIED clause. 

4. Identifier-8 must represent an elementary numeric integer data item of 
sufficient size to contain a value equal to the size plus 1 of the area 
referenced by identifier-7. The symbol 'p' may not be used in the 
PICTURE character-string of identifier-B. . 

5. Where identifier-I, identifier-2, ... , or identifier-3 is an elementary 
numeric data item, it must be described as an int.eger without the 
symbol 'p' in its PICTURE character-string. 

3 -·97 



General Rules 

1. All references to identifier-I, identifier-2, identifier-3, literal-I, 
literal-2, literal-3 apply equally to identifier-4, identifier-s, 
identifier-6, literal-4, literal-s and literal-6, respectively, and all 
recursions thereof. 

Identifier-I, 
sending items. 

literal-I, identifier-2, literal-2 represent 
Identifier-7 represents the receiving iteme 

the 

3. Literal-3, identifier-3, indicate the character(s) delimiting the move. 
If the SIZE phrase is used, the complete data item defined by 
identifier-I, literal-I, identifier-2, literal-2 , is moved. When a 
figurative constant is used as the delimiter, it stands for a single 
character nonnumeric literal. 

4. When a figurative constant is specified as literal-I, literal-2, 
literal-3, it refers to an implicit one-character data item where usage 
is DISPLAY. 

5. When the STRING statement is executed, the transfer of data is governed 
by the following rules: 

a. Those characters from literal-I, literal-2, or from the contents 
of the data item referenced by identifier-I, identifier-2, are 
transferred to the contents of identifier-7 in accordance with the 
rules for alphanumeric to alphanumeric moves, except that no 
space-filling will be provided. (See THE MOVE STATEMENT.) 

b. If the DELIMITED phrase is specified without the SIZE phrase, the 
contents of the. data item referenced by identifier-I, 
identifier-2, or the value of literal-I, literal-2, are 
transferred to the receiving data item in the sequence specified 
in the STRING statement beginning with the leftmost character and 
continuing from left to right until the end of the data item is 
reached, or until the character(s) specified by literal-3, or by 
the contents of identifier-3 are encountered. The character(s) 
specified by literal-3, or by the data item referenced by 
identifier-3 are not transferred. 

c. If the DELIMITED phrase is specified with the SIZE phrase, the 
entire contents of literal-I, literal-2, or the contents of the 
data item referenced by identifier-I, identifier-2, are 
transferred, in the sequence specified in the STRING statement, to 
the data item referenced by identifier-7 until all data has been 
transferred or the end of the data item referenced by identifier-7 
has been reached. 

6. If the POINTER phrase is specified, identifier-8 is explicitly 
available to the programmer, who is then responsible for setting its 
initial value. The initial value must not be less than one. 

3 - 98 



7 . If the POINTER phrase is not specified, the following general rules 
apply as if the user had specified identifier-B with an initial value 
of 1. 

B. When characters are transferred to the data item referenced by 
identifier-7, the moves behave as though the characters were moved one 
at a time from the source into the character position of the data item 
referenced by identifier-7 designated by the value associated with 
identifier-B, and then identifier-B was increased by one prior to the 
move of the next character. The value associated with identifier-B is 
changed during execution of the STRING statement only by the behaviour 
specified above. 

9. At the end of execution of the STRING statement, only the portion of 
the data item referenced by identifier-7 that was referenced during the 
execution of the STRING statement is changed. All other portions of 
the data item referenced by identifier-7 will contain data that was 
present before this execution of the STRING statement. 

10. If at any point at or after initialization of the STRING statement, but 
before execution of the STRING statement is completed, the value 
associated with identifier-8 is either less than one or exceeds the 
number of character positions in the data item referenced by 
identifier-7, no (further) data is transferred to the data item 
referenced by identifier-7, and the imperative statement in the ON 
OVERFLOW phrase is executed, if specified. 

11. If the ON OVERFLOW phrase is not specified when the conditions 
described in' general rule 10 above are encountered, control is 
transferred to the next executable statement. 

3 - 99 



THE SUBTRACT STATEMENT 

Function 

The SUBTRACT statement is used to subtract one, or the sum of two or more, 
numeric data items from one or more items, and set the values of one or more 
items equal to the results. 

General Format 

Fonnat 1 

SUBTRACT ~i~enti£ier-l ~ [, ~i~enti£ier-2l] FROM 
~ l~ teral-l ~ ~l~ teral-2 ~ 

identifier-m [ROUNDED] [. identifier-n [ROUNDED]] 

(; ON SIZE ERROR imperative-statement] 

Format 2 

SUBTRACT \i~entifier-li [, \i~entifier-2i] 
~ l~ teral-l ) ~ l~ teral-2 ~ 

FROM~ i~entifier-m i 
--~ l~ teral-m ) 

GIVING identifier-n (ROUNDED] [, identifier-o [ROUNDED] ] ••• 

[; ON SIZ E ERROR imperative-statement] 

Format 3 

SUBTRACT ~ CORRESPONDING l 'd t' fi -1 FROM identifier-2 [ROUNDED] ( CORR ) ~ en ~ er __ 

[; ON SIZE ERROR imperative-statement] 

Syn tax Ru Ie s 

1. Each identifier must refer to a numeric elementary item except that in 
Format 2, each identifier following the word GIVING must refer to 
either an elementary numeric item or an elementary numeric edited item, 
and in Format 3, each identifier must refer to a group item. 

2. Each literal must be a numeric literal. 

3 - 100· 

I 



3. The composite of operands must not contain more than 18 digits. (See 
The Arithmetic Statements in this Chapter). 

a. In Format 1 the composite of operands is determined by using all 
of the operands in a given statement. 

b. In Format 2 the composite of operands is determined by using all 
of the operands in a given statement excluding the data items that 
follow the word GIVING. 

c. In Format 3 the composite operands is determined separately for 
each pair of corresponding data items. 

4. CORR is an abbreviation for CORRESPONDING. 

General Rules 

1. See The ROUNDED Phrase, The SIZE ERROR Phrase, Arithmetic Statements, 
Overlapping Operands and Multiple Results in Arithmetic Statements in 
this Chapter. 

2. In Format 1, all literals or identifiers preceding the word FROM are 
added together and this total is subtracted from the current value of 
identifier-m storing the result immediately into identifier-m, and 
repeating this process respectively for each operand following the word 
FROM. 

3. In Format 2, all literals or identifiers preceding the word FROM are 
added together, the sum is subtracted from literal-m or identifier-m 
and the result of the subtraction is stored as the new value of 
identifier-n, identifier-a, etc. 

4. If Format 3 is used, data items in identifier-l are subtracted from and 
stored into corresponding data items in identifier-2. 

5. The compiler ensures enough places are carried so as not to lose 
significant digits during execution. 

3 - 101 



THE UNSTRING STATEMENT 

Function 

The UNSTRING statement causes contiguous data in a sending field to be 
separated and placed into multiple receiving fields. 

General Format 

UNSTRING identifier-l 

[
DELIMITED BY [ALL] 1 i~entifier-2 i 

-- l~ teral-l ) 

..!!!Q. identifier-4 [, DELIMITER IN identifier-5] 

[, COUNT IN identifier-6] 

[. identifier-7 [. DELIMITER IN identifier-8] 

[. COUNT IN identifier-9jJ ••• 

[WITH POINTER identifier-IO] [TALLYING IN identifier-ll] 

[; ON OVERFLOW.imperative-statement] 

Syntax Rules 

1. Each literal must be a nonnumeric literal. In addition, each literal 
may be any figurative constant without the optional word ALL. 

2. Identifier-I; identifier-2, identifier-3, 
identifier-8 must be described, implicitly 
alphanumeric data item. 

identifier-5, and 
or explicitly, as an 

3. Identifier-4 and identifier-7 may be described as either alphabetic 
(except that the symbol 'B' may not be used in the PICTURE 
character-string), alphanumeric, or numeric (except that the symbol 'p' 
may not be used in the PICTURE charatcer-string), and must be described 
as usage is DISPLAY. 

4. Identifier-6, identifier-9, identifier-la, and identifier-ll must be 
described as elementary numeric integer data items (except that the 
symbol 'P'may not be used in the PICTURE character-string). 

5. No identifier may name a level 88 entry. 

6. The DELIMITER IN phrase and the COUNT IN phrase may be specified only 
if the DELIMITED BY phrase is specified. 

3 - 102 



General Rules 

1. All references to identifier-2, literal-I, identifier-4, identifier-5 
and identifier-6, apply equally to identifier-3, literal-2, 
identifier-7, identifier-8 and identifier-9, respectively, and all 
recursions thereof. 

2. Identifier-l represents the sending area. 

3. Identifier-4 represents the data receiving area. 
represents the receiving area for delimiters. 

Identifier-5 

4. Li teral-I or the data i tern referenced by identifier-2 specifies a 
delimiter. 

5. The data-item referenced by identifier-6 represents the count of the 
number of characters within the data item referenced by identifier-l 
isolated by the delimiters for the move to the data-item referenced by 
identifier-4. This value does not include a count of the delimiter 
character(s). 

6. The data itp.m referenced by 
indicates a relative character 
identifier-I. 

identifier-IO contains a value that 
position within the area defined by 

7. The data item referenced by identifier-II is a counter that records the 
number of data items acted upon during the execution of an UNSTRING 
statement. 

8. Whe'n a figurative constant is used as the delimiter, it stands for a 
single character nonnumeric literal. 

When the ALL phrase is specified, one occurrence or two or more 
contiguous occurrences of literal-l (figurative constant or not) or the 
contents of the data item referenced by identifier-2 are treated as if 
it were only one occurrence, and this occurrence is moved to the 
receiving data item according to the rules in general rule I3d. 

9. When any examination encounters two contiguous del'imiters, the current 
receiving area is either space or zero filled according to the 
description of the receiving area. 

10. Literal-lor the contents of the data it~~ referenced by identifier-2 
can contain any character in the computer's character set. 

11 . Each Ii teral-l 0 r the data item referenced by identifier-2 represents 
one delimiter. When a delimiter contains two or more characters, all 
of the characters mus t be present in contiguous positions of the 
sending item and in the order given, to be recognized as a delimiter. 

3 - 103 



12. When two or more delimiters are specified in the DELIMITED BY phrase, 
an 'OR' condition exists between them. Each delimiter is compared to 
the sending field. If a match occurs, the character(s) in the sending 
field is considered to be a single delimiter. No character(s) in the 
sending field can be considered a part of more than one delimiter. 

Each delimiter is applied to the sending field in the sequence 
specified in the UNSTRING statement. 

13. When the UNSTRING statement is initiated, the current rece1v1ng area is 
the data item referenced by identifier-4. Data is transferred from the 
data item referenced by identifier-l to the data item referenced by 
identifier-4 according to the following rules: 

a. If the POINTER phrase is specified, the string of characters 
referenced by identifier-l is examined beginning with the relative 
character position indicated by the contents of the data item 
referenced by identifier-IO. If the POINTER phrase is not 
specified, the string of characters is examined beginning with the 
leftmost character position. 

b. If the DELIMITED BY phrase is specified, the examination proceeds 
left to right until either a delimiter specified by the value of 
literal-lor the data item referenced by identifier-2 is 
encountered. (See general rule 11.) If the DELIMITEP BY phrase 
is not specified, the number of characters examined is equal to 
the size of the current receiving area. However, if the sign of 
the receiving item is defined as occupying a separate character 
posi tion, the number of characters examined is one less than the 
size of the current receiving area. 

If the end of the data item referenced by identifier-l is 
encountered be fore the delimi t ing condition is me t, the 
examination terminates with the last character examined. 

c. The characters thus examined (excluding the delimiting 
character(s), if any) are treated as an elementary alphanumeric 
data item,and are moved into the current receiving area according 
to the rules for the MOVE statement. (See THE MOVE STATEMENT.) 

d. If the DELIMITER IN phrase is specified, the del imi ting 
character(s) are treated as an elementary alphanumeric data item 
and are moved into the data item referenced by identifier-5 
according to the rules for the MOVE statement. (See THE MOVE 
STATEMENT.) If the delimiting condition is the end of the data 
item referenced by identifier-I, then the data item referenced by 
identifier-5 is space-filled. 

e. If the COUNT IN phrase is specified, a value equal to the number 
of characters thus examined (excluding the delimiter character(s) 
if any) is moved into the area referenced by identifier-1 
according to the rules for an elementary move. 

3 - 104 



f. If the DELIMITED BY phrase is specified the string of characters 
is further examined beginning with the first character to the 
right of the delimiter. If the DELIMITED BY phrase is not 
specified, the string of characters is further examined beginning 
with the character to the right of the last character transferred. 

g. After data is transferred to the data item referenced by 
identifier-4 t the current rece~v~ng area is the data item 
referenced by identifier-7. The behaviour described in 
paragraph 13b through 13f is repeated until either all the 
characters are exhausted in the data item referenced by 
identifier-I, or until there are no more receiving areas. 

14. The initialization of the contents of the data items associated with 
the POINTER phrase or the TALLYING phrase is the responsibility of the 
user. 

15. The contents of the data item referenced by identifier-lO will be 
incremented by one for each character examined in the data item 
referenced by identifier-I. When the execution of an UNSTRING 
statement with a POINTER phrase is complete, the contents of the data 
item referenced by identifier-lO will contain a value equal to the 
initial value plus the number of characters examined in the data item 
referenced by identifier-I. 

16. When the execution of an UNSTRING statement with a TALLYING phrase is 
completed, the contents of the data i.tem referenced by identifier-l1 
contains a value equal to its initial value plus the number of data 
receiving items acted upon. 

17. Either of the following situations causes an overflow condition: 

a. An UNSTRING is initiated, and the value in the data item 
referenced by identifier-lO is less than 1 or greater than the 
size of the data item referenced by identifier-1. 

b. If, during execution of an UNSTRING statement, all data receiving 
areas have been acted upon, and the data item referenced by 
identifier-l contains characters that have not been examined. 

18. ~fuen an overflow condition exists, the UNSTRING operation is 
terminated. If an ON OVERFLOW phrase has been specifi.ed, the 
imperative statement included in the ON OVERFLOW phrase is executed. 
If the ON OVERFLOW phrase is not specified, control is transferred to 
the next executable statement. 

3 - 105 



19. The evaluation of subscripting and indexing·for the identifiers is as 
follows: 

a. Any subscripting or indexing associated with identifier-I, 
identifier-IO, identifier-II is evaluated only once, immediately 
before any data is transferred as the result of the execution of 
the UNSTRING statement. 

b. Any subscripting or . indexing associated 
ident ifier-3, identifier-4, identifier -5, 
evaluated immediatel~ before the transfer 
respective data item. 

3 - 106 

wi th identifier-2, 
identifier-6 is 

of data into the 



CHAPTER 4 

TABLE HANDLING 

INTRODUCTION TO THE TABLE HANDLING MODULE 

The Table Handling module provides a capability for defining tables of 
contiguous data items and accessing an item relative to its position in the 
table. Language facilities are provided for specifying how many times an 
item is to be repeated. Each item may be identified through use of a 
subscript or an index (see Chapter 2). 

Table Handling provides a capability for accessing items in variable length 
tables of multiple dimensions. The maximum number of mUltiple dimensions if 
the ANSI switch (see Chapter 2) is restricted to three' 

add'ition 
handling provides 
permits searching 
condition. 

or descending keys and 
satisfying a specified 

DATA DIVISION IN THE TABLE HANDLING MODULE 

THE OCCURS CLAUSE 

Function 

The OCCURS clause eliminates the need for separate entries for repeated data 
items and supplies information required for the application of subscripts or 
indices. 

General Format 

Format 1 

OCCURS integer-2 TIMES 

[{
ASCENDING } 
DESCENDING KEY IS data-name-2 [, data-name-3] ] ... 
[INDEXED BY index-name-l [, index-name-2] . .. ] 

Format 2 

OCCURS integer-l TO integer-2 TIMES DEPENDING ON data-name-l 

[{ 
ASCENDING } 
DESCENDING KEY IS data-name-2 [, data-name-3] 

[INDEXED BY index-name-l [, index-name-2] .•. ] 

(Addendum 1) 
4 - 1 



Syntax Rules 

1. Where both integer-1 and integer-2 are used, the value of integer-1 
must be less than the value of integer-2o 

2. The data description of data-name-1 must describe a positive integer. 

3. Data-name-l, data-name-2, data-name-3, 00. may be qualified. 

4. Data-name-2 must either be the name of the entry containing the OCCURS 
clause or the name of an entry subordinate to the entry containing the 
OCCURS clause. 

5. Data-name-3, etc., must be the name of an entry subordinate to the 
group item which is the subject of this entry. 

6. An INDEXED BY phrase is required if the subject of this entry, or an 
entry subordinate to this entry, is to be referred to by indexing. The 
index-name identified by this clause is not defined elsewhere, and not 
bein data be associated with data hierar 

7. A data description entry that contains Format-2 of the OCCURS clause 
may only be followed, within that record description, by data 
description entries which are subordinate to it. 

8. The OCCURS clause cannot be specified in a data description entry that: 

b. Describes an item whose size is variable. The size of an item is 
variable if the data description of any subordinate item contains 
Format 2 of the OCCURS clause. 

9. In Format 2, the data item defined by data-name-l must not occupy a 
character position within the range of the first character position 
defined by the data description entry containing the OCCURS clause and 
the last character position defined by the record description entry 
containing that OCCURS clause. 

10. If data-name-2 is not the subject of this entry, then: 

a. All of the items identified by the data-names in the KEY IS phrase 
must be within the group item which is the subject of this entry. 

b. Items identified by the data-name in the KEY IS phrase must not 
contain an OCCURS clause. 

c. There must not be any entry that contains an OCCURS clause between 
the items identified by the data-names in the KEY IS phrase and 
the subject of this entry. 

11. Index-name-l, index-name-2, 
program. 

4 - 2 

must be unique words within the 

(Addendum 2) 



General Rules 

1. The OCCURS clause is used in defining tables and other homogenous sets 
of repeated data items. Whenever the OCCURS clause is used, the 
data-name which is the subject of this entry must be either subscripted 
or indexed whenever it is referred to in a statement other than SEARCH 
or USE FOR DEBUGGING. Further, if the subject of this entry is the 
name of a group item, then all data-names belonging to the group must 
be subscripted or indexed whenever they are used as operands, except as 
the object of a REDEFINES clause. (See under headings Subscripting, 
Indexing and Identifier in Chapter 2). 

2. Except for the OCCURS clause itself, all data description clauses 
associated with an item whose description includes an OCCURS clause 
apply to each occurrence of the item described. (See restriction in 
general rule 2 under Data Description Entries Other Than Condition 
Names in Chapter 3). 

3. The number of occurrences of the subject entry is defined as follows: 

a. In Format 1, the value of integer-2 representing the exact number 
of occurrences. 

b. In Format 2, the current value of the data item referenced by 
data-name-1 represents the number of occurrences. 

This format specifies that the subject of this 'entry has a 
variable number of occurrences. The value of integer-2 represents 
the maximum number of occurrences and the value of integer-l 
represents the mintmum number of occurrences. This does not imply 
that the length of the subject of the entry is variable, but that 
the number of occurrences is variable. 

The value of the data item referenced by data-name-l must fall 
within the range of integer-l through integer -2. Reducing the 
value of the data item referenced by data-name-l makes the 
contents of data items, whose occurrence numbers now exceed the 
value of the data item referenced by data-name-l, unpredictable. 

4. When a group item, having subordinate to it an entry that specifies 
Format 2 of the OCCURS clause, is referenced, only that part of the 
table area that is specified by the value of data-name-l will be used 
in the operation. 

5. The KEY IS phrase is used to indicate that the repeated data is 
arranged in ascending or descending order according to the values 
contained data-name-2, data-name-3, etc. The ascending or descending 
order is determined according to the rules for comparison of operands 
(see Comparison of Numeric Operands, Comparison of Nonnumeric Operands 
in Chapter 3). The data-names are listed in their descending order of 
significance. 

4 - 3 



THE USAGE CLAUSE 

Function 

The USAGE clause specifies the format of a data item in the computer 
storageG 

General Format 

[USAGE IS] INDEX 

Syntax Rules 

1. An index data item can be referenced explicitly only in a SEARCH or SET 
statement, a relation condition, the USING phrase of a Procedure 
Division header, or the USING phrase of a CALL statement. 

2. The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE and BLANK WHEN ZERO clauses 
cannot be used to describe group or elementary items described with the 
USAGE IS INDEX clause. 

General Rules 

10 The USAGE clause can be written at any level. If the USAGE clause is 
written at a group level, it applies to each elementary item in the 
group. The USAGE clause of an elementary item cannot contradict the 
USAGE clause of a group to which the item belongs. 

2. An elementary item described with the USAGE IS INDEX clause is called 
an index data item and contains a value which must correspond to an 
occurrence number of a table element. The elementary item cannot be a 
conditional variable. The compiler will allocate a 2 byte binary field 
with an implied Picture of 9 (4) COMP. If a group item is described 
with the USAGE IS INDEX clause the elementary items in the group are 
all index data items. The group itself is not an index data item and 
cannot be used in the SEARCH or SET statement or in a relation 
condition. 

3. An index data item can be part of a group which is referred to in a 
MOVE or input-output statement, in which case no conversion will take 
place. 

4- 4 



PROCEDURE DIVISION IN THE TABLE HANDLING MODULE 

RELATION CONDITION 

Comparisons Involving Index-Names and/or Index Data Items 

Relation tests may be made between the following data items: 

* Two index-names. The result is the same as if the corresponding 
occurrence numbers were compared. 

* An index-name and a data item (other than an index data item) or 
literal. The occurrence number that corresponds to the value of 
the index-name is compared to the data item or literale 

* An index data item and an index-name or another index data iteme 
The actual values are compared without conversion. 

* The result of the comparison of an index data item with any data 
item or literal not specified above is undefined. 

OVERLAPPING OPERANDS 

When a sending and a receiving item in a SET statement share a part of their 
storage areas, the result of the execution of such a statement is undefined. 

THE SEARCH STATEMENT 

Function 

The SEARCH statement is used to search a table for a table element that 
satisfies the specified condition and to adjust the associated index-name to 
indicate that table element. 

General Format 

Format 1 

SEARCH identifier-l [ VARYING S~dentifier-2~] 
?1ndex-name-15 

[; AT END imperative-statement-l] 

WHEN condition-l simperative-statement-2 ~ 
? NEXT SENTENCE 5 

[; WHEN condition-2 S imperative-statement-3 ~] 
? NEXT SENTENCE 5 

4 - 5 



Format 2 

SEARCH ALL identifier-l [; AT END imperative-statement-l] 

WHEN 
{

IS EQUAL TO} ~identifier-3 l 
data-name-l IS = literal-l 

arithmetic-expression-l 
condition-name-l 

data-name-2 {
IS EQUAL TO} ~identifier-4 l 

literal-2 
IS = arithmetic-expression-2 

condition-name-2 

S imperative-statement-2 l 
l NEXT SENTENCE S 

] 
NOTE: The required relational character '=' is not und'erlined to 

avoid confusion with other symbolse 

Syntax Rules 

1. In both Formats 1 and 2, identifier-l must not be subscripted or 
indexed, but its description must contain an OCCURS clause and an 
INDEXED BY clause. The description of identifier-l in Format 2 must 
also contain the KEY IS phrase in, its OCCURS clause. 

2. Identifier-2, when specified, must be described as USAGE IS INDEX or as 
a numeric elementary item without any positions to the right of the 
assumed decimal point. 

3. In Format 1, condition-I, condition-2, etc., may be any condition as 
described in CONDITION EXPRESSIONS in Chapter 3. 

4. In Format 2, all referenced condition-names must be defined as having 
only a single value. The data-name associated with a condition-name 
must appear .in the KEY clause of identifier-1. Each data-name-1, 
data-name-2 may be qualified. Each data-name-1, data-name-2 must be 
indexed by the first index-name associated with identifier-1 along with 
other indices or literals as required, and must be referenced in the 
KEY clause of identifier-1. Identifier-3, identifier-4, or identifiers 
specified in arithmetic-expression-1, arithme~ic-expression-2 must not 
be referenced in the KEY clause of identifier-lor be indexed by the 
first index-name associated w'ith identifier-1. 

In Format 2, when a data-name in the KEY clause of identifier-l is 
referenced, or when a condition-name associated with a data-name in the 
KEY clause of identifier-1 is referenced, all preceding data-names in 
the KEY clause of identifier-lor their associated condition-names must 
also be referenced. 

4 - 6 



General Rules 

1. If Format 1 of the SEARCH is used, a serial type of search operation 
takes place, starting with the current index setting. 

a. If, at the start of execution of the SEARCH statement, thp 
index-name associated with identifier-I contains a value tha t 
corresponds to an occurrence number that is greater than the 
highest permissible occurrence number for identifier-I, the SEARCH 
is terminated immediately. The number of occurrences of 
identifier-I, the last of which is the highest permissible, is 
discussed in the occurs clause. (See. THE OCCURS CLAUSE in 
Chapter 4.) Then, if the AT END phrase is specified, 
imperative-s tatement-I is executed; if the AT END phrase is not 
specified, control passes to the next executable sentence. 

b. If, at the start of execution of the SEARCH statement, the 
index-name associated with identifier-I contains a value that 
corresponds to an occurrence number that is not greater than the 
highest permissible occurrence number for identifier-I (the number 
of occurrences of identifier-I, the last of which is the highest 
permis~ible is discussed in the OCCURS clause); the SEARCH 
statement operates by evaluating the conditions in the order that 
they are written, making use of the index settings, wherever 
specified, to determine the occurrence of those items to be 
tested. If none of the conditions is satisfied, the index-name 
for identifier-I is incremented to ob tain reference to the next 
occurrence. The process is then repeated using the new index-name 
settings unless. the new value of the index-name settings for 
identifier-l corresponds to a table element outside the 
permissible range of occurrence values, in which case the search 
terminates as indicated in Ia above. If one of the conditions is 
satisfied upon its evaluation, the search terminates immediately 
and the imperative statement associated with that condition is 
executed; the index-name remains set at the occurrence which 
caused the condition to be satisfied. 

2. In a Forma t 2 SEARCH, the results of the SEARCH ALL operation are 
predictable only when: 

a. The data in the table is ordered in the same manner as described 
tn the ASCENDING/DESCENDING KEY clause associated with the 
description of identifier-I, and 

b. The contents of the keyes) referenced in the WHEN clause are 
sufficient to identify a unique table element. 

3. If Format 2 of the SEARCH is used, a non-serial type of search 
operation may take place; the initial setting of the index-name for 
identi£ier-I is ignored and its setting is varied during the search 

4 - 7 



operation with the restriction that at no time is it set to a value 
that exceeds the value which corresponds to the last element of the 
table, or that is less than the value that corresponds to the first 
element of the table. The length of the table is discussed in the 
OCCURS clause. If any of the conditions specified in the WHEN clause 
cannot be satisfied for any setting of the index within the permitted 
range, control is passed to imperative-statement-l of the AT END 
phrase, when specified, or to the next executable sentence when this 
phrase is not specified; in either caSe the final setting of the index 
is not predictable. If all conditions can be satisfied, the index 
indicates an occurrence that allows the conditions to be satisfied, and 
control passes to imperative-statement-2. 

4. After execution of imperative-statement-l, imperative-statement-2, or 
imperative-statement-3, that does not terminate with a GO TO statement, 
control passes to the next executable sentence. 

5. In Format 2, the index-name that is used for the search operation is 
the first (or only) index-name that appears in the INDEXED BY phrase of 
identifier-I. Any other index-names for identifier-I remain un0hanged. 

6. In Format 1, if the VARYING phrase is not used, the index-name that is 
used for the search operation is the first (or only) index-name that 
appears in the INDEXED BY phrase of identifier-I. Any other 
index-names for identifier-l remain unchanged. 

7. In Format 1, if the VARYING index-name-l phrase is specified, and if 
index-name-I appears in the INDEXED BY phrase of identifier-I, that 
index-name is used for this search. If this is not the case, or if the 
VARYING identifier-2 phrase is specified, the first (or only) 
index-name given in the INDEXED BY phrase of identifier-I is used for 
the search. In addition, the following operations will occur: 

a. If the VARYING index-name-I phrase is used, and if index-name-I 
appears in the INDEXED BY phrase of another table entry, the 
occurrence number represented by index-name-l is incremented by 
the same amount as, and at the same time as, the index-name 
associated with identifier-I is incremented. 

b. If the VARYING identifier-2 phrase is specified, and identifier-2 
is an index data item, then the data item referenced by 
identifier-2 is incremented by the same amount as, and at the same 
time as, the index associated with identifier-I is incremented. 
If identifier-2 is not an index data item, the data item 
referenced by identifier-2 is incremented by the value (1) at the 
same time as the index referenced by the index-name associated 
with identifier-I is incremented. 

8. If identifier-l is a data item subordinate to a data item that contains 
an OCCURS clause (providing for a two or three dimensional table), an 
index-name must be associated with each dimension of the table through 
the INDEXED BY phrase of the OCCURS clause. Only the setting of the 

4 - 8 



, 

1 

2 

index-name associated with identifier-l (and the data item identifier-2 
or index-name-l, if present) is modified by the execution of the SEARCH 
statement. To search an entire two or three dimensional table is not 
necessary to execute a SEARCH statement several times. Prior to each 
execution of a SEARCH statement, SET statements must be executed 
whenever index-names must be adjusted to appropriate settings. 

Figure 4-1 shows a flowchart of the Format 1 SEARCH operation 
containing two WHEN phrases. 

START 
~ 

Index setting: > AT ENDl imperative-

r highest permissible 
statement-l ----.. 

occurrence number 

~ 

< -
True imperative-condition-l .. ~ statement-2 

2 

False 

1 True imperative- 1 
condition-2 . statement-3 ~ 

False 

Increment 
index-name for 
identifier-l 
(index-name-l 

if applicable) , 
Increment 1 

index-name-l (for 
- a different table) 

or identifier-2 

These operations are options included only when specified in the 
SEARCH statement. 

Each of these control transfers is to the next executable sentence 
un~ess the imperative-statement ends with a GO TO statement. 

Figure 4-1. Flowchart of SEARCH Operation with Two WHEN Phrases. 

4 - 9 



THE SET STATEMENT 

Function 

The SET statement establishes reference points for table handling operations 
by setting index-names associated with table elements 0 

General Format 

Format 1 

sidentifier-l 
SET ~index-name-l 

[, identifier-2] 
[, index-name-2] : : : ~ TO I identifier-3 ! 

index-name-3 
·integer-l 

Format 2 

SET ~ index-name-4 [, index-name-S] ~ 

~ ~~l~I.IJJll.i.~IW~~~t1~~~I~I~~~i~~~ltlit'fiil_i~fiti*§ll.1 ~ 

Syntax Rules 

1. All references to index-name-l, identifier-I, index-name-4 and 
identifier-S apply equally to index-name-2, identifier-2, index-name-S 
and identifier-6, respectively. 

2. Identifier-I, identifier-3 and identifier-S must name either index data 
items, or elementary items described as an integer. 

3. Identifier-4 must be described as an elementary numeric integer. 

4. Integer-l and integer-2 may be signed. Integer-l must be positive. 

General Rules 

, 
1 • 

2. 

Index-names are considered related to a given table :mlfill~lllll'fi"~lll~:lfl1l~l:lltl:'Ww.liB:1l 
\\\ll~I\I~:\l\l\§.:.:ll: and are defined by being specified in the INDEXED BY clause. 

If index-name-3 is specified, the value of the index before the 
execution of the SET statement must correspond to an occurrence number 
of an element in the associated table. 

If index-name-4, index-name-S is specified, the value of the index both 
before and after the execution of the SET statement must correspond to an 
occurrence number of an element in the associated table. If index-name-l, 
index-name-2 is specified, the value of the index after the execution of the 
SET statement must correspond to an occurrence number of an element in the 
associated table. The value of the index associated with an index-name 
after the execution of a SEARCH or PERFORM statement may be undefined. (See 
THE SEARCH STATEMENT and THE PERFORM STATEMENT in Chapter 3). 

4 - 10 



3. In Format 1, the following action occurs: 

a. Index-name-l is set to a value causing it to refer to the table 
element that corresponds in occurrence number to the table element 
referenced by index-name-3, identifier-3, or integer-I. If 
identifier-3 is an index data item, or if index-name-3 is related 
to the same table as index-name-l, no conversion takes place. 

b. If identifier-l is an index data item, it may be set equal to 
either the contents of index-name-3 or identifier-3 where 
identifier-3 is also an index item; no conversion takes place in 
either case. 

c. If identifier-l is not an index data item, it may be set only to 
an occurrence number that corresponds to the value of 
index-name-3. Neither identifier-3 nor integer-l can be used in 
this case. 

d. The process is repeated for index-name-2, identifier-2, etc., if 
specified. Each time the value of index-name-3 or identifier-3 is 
used as it was at the beginning of the execution of the statement. 
Any subscripting or indexing associated with identifier-I, etc., 
is evaluated immediately before the value of the respective data 
item is changed. 

4. In Format 2, the contents of index-name-4 are incremented (UP BY) or 
decremented (DOWN BY) by a value that corresponds to the number of 
occurrences represented by the value of integer-2 or identifier-4; 
thereafter, the process is repeated for index-name-5, etc. Each time 
the value of identifier-4 is used as it was at the beginning of the 
execution of the statement. 

5. Data in Table 4-1 represents the 
combinations in the SET statement. 
indicates the applicable general rule. 

4 - 11 

validity of 
The general 

various operand 
rule reference 



Table 4-1. SET Statement Valid Operand Combinations. 

# 

1 
Sending Item Receivin~g Item 

Integer Data Item Index-Name Index Data Item 

Integer Literal No/3c Valid/3a No/3b 

In teger Data Item No/3c Valid/3a No/3b 

Index-Name Valid/3c Valid/3a Valid/3b2 

Index Data Item No/3c Valid/3a2 Valid/3b2 

1 = Rule numbers under General Rules above are referred to. 
2 = No conversion takes place 

4 - 12 



CHAPTER 5 

SEQUENTIAL INPUT AND OUTPUT 

INTRODUCTION TO THE SEQUENTIAL 1-0 MODULE 

The Sequential 1-0 module provides a capability to access records of a file 
in established sequence. The sequence is established as a result of writing 
the records to the file. It also provides for the specification of re-run 
points and the sharing of memory areas among files. 

LANGUAGE CONCEPTS 

Organization 

Sequential files are organized such that each record in the file except the 
first has a unique predecessor record, and each record except the last has a 
unique successor record. These predecessor-successor relationships are 
established by the order of WRITE statements when the file is created. Once 
established, the predecessor-successor relationships do not change except in 
the case where records are added to the end of the file. 

Access Mode 

In the sequential access mode, the sequence in which records are accessed is 
the order in which the records were originally written. 

Current Record Pointer 

The current record po inter is a conceptual entity used in this document to 
facilitate specification of the next record to be accessed within a given 
file. The concept of the current record pointer has no meaning for a file 
opened in the output mode. The setting of the current record pointer is 
affected only by the OPEN and READ statements. 

1-0 Status 

If the FILE STATUS clause is specified in a file control entry, a value is 
placed into the specified two-character data item during the execution of an 
OPEN, CLOSE, READ, WRITE, or REWRITE statement and before any applicable USE 
procedure is executed, to indicate to the COBOL program the status of that 
input-output operation. 

Status Key 1 

The leftmost character position of the FILE STATUS data item is known as 
Status Key 1 and is set to indicate one of the following conditions upon 
completion of the input-output operation. 

5 - 1 



'0' indicates Successful Completion 
'1' indicates At End 
'3' indicates Permanent Error 
'9' indicates an Operating System Error Message 

The meaning of the above indications are as follows: 

o 

1 

3 

9 

Status Key 2 

Successful Completion. 
successfully executed. 

The input-output statement was 

At End. The sequential READ statement was unsuccessfully 
executed either as a result of an attempt to read a record 
when no next logical record exists in the file or as a result 
of the first READ statement being executed for a file 
desc ribed wi th the OPTIONAL clause, and that file was not 
available to the program at the time its associated OPEN 
statement was executed. 

Permanent Error. The input-output statement was 
unsuccessfully executed as the result of a boundary violation 
for a sequential file or as the result of an input-output 
error, such as data check parity error, or transmission 
error. 

Operating System Error Message. The input-output statement 
was unsuccessfully executed as a result of a condition that 
is specified by the Operating System Error Message. This 
value is used only to indicate a condition not indicated by 
other defined values of status key 1, or by specified 
combinations of the values of status key 1 and status key 2. 

The rightmost character position of the FILE STATUS data item is known as 
Status Key 2 and is used to further describe the results of the input-output 
operation. This character will contain a value as follows: 

* If no further information is available concerning the input-output 
operation, then status key 2 contains a value of '0'. 

* When status key 1 contains a value of '3' an irrecoverable error 
has occurred. This is treated as a fatal error by the Operating 
System. 

* When status key 1 contains a value of '9', the value of status 
key 2 is the operating system error message number (for those 
operating systems which designate errors numerically). The 
LEVEL II COBOL Operating Guide contains details of this 
status-key-2 representation. 
Note that it is not possible to extract this number directly. 

5 - 2 



Valid Combinations of Status Keys 1 and 2 

The valid permissible combinations of the values of status key 1 and status 
key 2 are shown in the following table. An 'X' at an intersection indicates 
a valid permissible combination. 

Status Key 2 
No Further 

Status Key 1 Information 
(0) 

Successful Completion (0) X 
At End (1) X 
Permanent Error (3) X 
Implementor Defined (9) O/S Error Number 

The AT END Condition 

The AT END condition can occur as a result of the execution of a READ 
statement. For details of the causes of the condition, see THE READ 
S TATD-lENT la ter in this Chapter. 

LINAGE~OUNTER 

The reserved word LINAGE-COUNTER is a name for a special register generated 
by the presence of a LINAGE clause in a file description entry. The 
implicit description is that of an unsigned integer whose size is equal to 
integer-1 or the data item referenced by data-name-1 in the LINAGE clause. 
See THE LINAGE CLAUSE later in this Chapter. 

5 - 3 



ENVIRONMENT DIVISION IN THE SEQUENTIAL 1-0 MODULE 

INPUT-OUTPUT SECTION 

The FILE-CONTROL Paragraph 

Function 

The FILE-CONTROL paragraph names each file and allows specification of other . 
file-related information. 

General Format 

£ FILE-CONTROL. } ~file-control-entry~ 

The FILE CONTROL Entry 

Function 

The file control entry names a file and may specify other file-related 
information. 

General Format 

SELECT [OPTIONAL] file-name 

TO sexternal-file-name-literal~ [, sexternal-file-name-literal~] 
ASSIGN ?file-identifier 5 ?file-identifier 5 

[; RESERVE integer-l [~S] ] 

[; ORGANIZATION IS {~} ] 

(; ACCESS MODE IS SEQUENTIAL] 

[; FILE STATUS IS data-name-1] 

Syntax Rules 

1. The SELECT clause must be specified first in the file control entry. 
The clauses which follow the SELECT clause may appear in any order. 

2. Each file described in the Data Division must be named once and only 
once as file-name in the FILE-CONTROL paragraph. Each file specified 
in the file control entry must have a file description entry in the 
Data Division. 

5 - 4 



3. If the ACCESS MODE clause is not specified, the ACCESS MODE IS 
SEQUENTIAL clause is implied. 

4. Data-name-l must be defined in the Data Division as a two-character 
data item of the category alphanumeric and must not be defined in the 
File Section or the Communication Section. 

5. Data-name-l may be qualified. 

6. When the ORGANIZATION IS SEQUENTIAL clause is not specified, the 
ORGANIZATION IS SEQUENTIAL clause is implied. 

7 • The OPTIONAL phrase may only be specified for input 
specification is required for input files that are not 
present each time the object program is executed. 

files. Its 
necessarily 

8. File-identifier is any user-defined word, but must not be the same as 
file-name. 

General Rules 

1. The ASSIGN clause specifies the association of the file referenced by 
to a storage medium. See the L/II COBOL Operating Guide. 
assignment takes effect. 

2. The RESERVE clause allows 
allocated. 

3. The ORGANIZATION clause specifies the logical structure of a file. The 
file organization is established at the time a file is created and 
cannot subsequently be changed. 

4. 

5. Records in the file are accessed in the sequence dictated by the file 
organization. This sequence is specified by predecessor-successor 
record relationships established by the execution of WRITE statements 
when the file is created or extended. 

6. When the FILE STATUS clause is specified, a value will be moved by the 
operating system into the data item specified by data-name-l after the 

5 - 5 



execution of every statement that references that file either 
explicitly or implicitly. This value indicates the status of execution 
of the statement (See 1-0 STATUS in this Chapter). 

7 • File-identifier will be implicitly defined if it is not explicitly 
defined. 

The I-O-CONTROL Paragraph 

Function 

The 1-0 CONTROL paragraph specifies the points at which re-run is to be 
established, the memory area which is to be shared by different files, and 
the -location of files on a multiple file reel. 

General Format 

I-O-CONTROL. 

[; SAME [RECORD] AREA FOR file-name-3 ~, file-name-4 ~ 

Syntax Rules 

1. The I-O-CONTROL paragraph is optional. 

2. File-name-l must be a sequentially organized file. 

3. The END OF REEL/UNIT clause may only be used if file-name-2 is a 
sequentially organized file. 

4. When either the integer-l RECORDS clause or the integer-2 CLOCK-UNITS 
clause is specified, implementor-name must be given in the RERUN 
clause. 

5. More than one RERUN clause may be specified for a given file-name-2 
subject to the following restrictions: 

a. When multiple integer-l RECORD clauses are specified, no two of 
them can specify the same file-name-2. 

5 - 6 



b. When mUltiple END OF REEL or END OF UNIT clauses are specified, no 
two of them may specify the same file-name-2. 

6. The two forms of the SAME clause (SAME AREA, SAME RECORD AREA) are 
considered separately in the following: 

More than one SAME clause may be included in a program, however: 

a. a file-name must not appear in more than one SAME AREA clause. 

b. a file-name must not appear in more than one SAME RECORD AREA 
clause. 

c. If one or more file-names of a SAME AREA clause appear in a SAME 
RECORD AREA clause, all of the file-names in that SAME AREA clause 
must appear in the SAME RECORD AREA clause. However, additional 
file-names not appearing in that SAME AREA clause may also appear 
in that SAME RECORD AREA clause. The rule that only one of the 
files mentioned in a SAME AREA clause can be open at any given 
time takes precedence over the rule that all files mentioned in a 
SAME RECORD AREA clause can be open at any given time. 

7. The files referenced in the SAME AREA or SAME RECORD AREA clause need 
not all have the same organization or access. 

General Rules 

2. The SANE AREA clause specifies that two or more files that do not 
represent sort or merge files are to use the same memory area during 
processing. The area being stored includes all storage area assigned 
to the files specified; therefore, it is not valid to have more than 
one of the files open at the same time. (See Syntax Rule 6c). 

3. The SAME RECORD AREA clause specifies that two or more files are to use 
the same memory area for processing of the current logical record. All 
of the files may be open at the same time. A logical record in the 
SAME RECORD AREA is considered as a logical record of each opened 
output file whose file-name appears in this SAME RECORD AREA clause and 
of the most recently read input file whose file-name appears in this 
SAME RECORD AREA clause. This is equivalent to an implicit 
redef ini t ion of the area i. e., records are aligned on the lef tmos t 
character position. 

5 - 7 



DATA DIVISION IN THE SEQUENTIAL I-O MODULE 

FILE SECTION 

In an LEVEL II COBOL program the file description entry (FD) represents the 
highest level of organization in the File Section. The File Section header 
is followed by a file description entry consisting of a level indicator 
(FD) , a file-name and a series of independent clauses. The FD clauses 
specify the size of the logical and physical records, the presence or 
absence of label records, the value of implementor-defined label items, the 
names of the data records which comprise the file. The entry itself is 
terminated by a period. 

RECORD DESCRIPTION STRUCTURE 

A record description consists of a set of data description entries which 
describe the characteristics of a particular record. Each data description 
entry consists of a level-number followed by a data-name if required, 
followed by a series of independent clauses as required. A record 
description has a hierarchical structure and therefore the clauses used with 
an entry may vary considerably, depending upon whether or not it is followed 
by subordinate entries. The structure of a record description is defined in 
CONCEPT OF LEVELS in Chapter 2, while the elements allowed in a record 
description are shown in the Data Description - Complete Entry Skeleton in 
Chapter 3. 

5 - 8 



THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON 

Function 

The file description furnishes information concerning the physical 
structure, identification, and record names pertaining to a given file. 

General Format 

FD f iJ:e-name 

[; BLOCK CONTAINS [integer-l TO] integer-2 { RECORDS }J 
CHARACTERS 

[ ; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS] 

I {RECORD IS } {STANDARD} 1 1; LABEL RECORDS ARE OMITTED J 

[; VALUE OF data-name-l IS 

[, data-name-3 IS 

sdata-name-2~ 
~literal-l 5 

sdata-name-4~ 
~literal-2 5 ] ... J 

[ {
RECORD IS } 

; DATA RECORDS ARE data-name-3 [. data-name-4] ... J 

[; LINAGE IS s~ata-name-5l LINES 
~1.nteger-5 5 

[
, LINES AT TOP s~ata-name-7~J 

l1.nteger-7 5 

[; CODE-SET IS alphabet-name] 

Syntax Rules 

[. WITH FOOTING AT 

[. LINES AT BOTTOM 

s~ata-name-6~J 
~1.nteger-6 5 

S ~ata-n. ame-8 l J ] 
?1.nteger-8 5 

1. The level indicator FD identifies the beginning of a file description 
and must precede the file-name. 

2. The clauses which follow the name of the file are optional in many 
of 

3. One or more record description entries must follow the file description 
entry. 

5 - 9 



THE BLOCK CONTAINS CLAUS E 

Function 

The BLOCK CONTAINS clause specifies the size of a physical recorde 

General Format 

BLOCK CONTAINS 

General Rule 

THE CODE-SET CLAUSE 

Function 

[integer-l TO] integer-2 ~ RECORDS I 
~ CHARACTERS ~ 

The CODE-SET clause specifies the character code set used to represent 
data on the external media. 

General Format 

CODE-SET IS alphabet-name 

Syntax Rules 

1. When the CODE-SET clause is specified for a file, all data in that file 
must be described as usage is DISPLAY and any signed numeric data must 
be described with the SIGN IS SEPARATE clause. 

2. The alphabet-name clause referenced by the CODE-SET clause must not 
~pecify the literal phrase. 

3. The CODE-SET clause may only be specified for non-disk files. 

General" Rule 

THE DATA RECORDS CLAUSE 

Function 

The DATA RECORDS clause serves only as documentation for the names of data 
records with their associate~ file. 

5 - 10 



General Format 

S RECORD IS ~ 
DATA ~RECORDS ARE~ 

Syntax Rule 

data-name-l [, data-name-2] 

Pata-name-l and data-name-2 are the names of data records and should have 01 
level-number record descriptions, with the same names, associated with them. 

General Rules 

1. The presence of more than one data-name indicates that the file 
contains more than one type of data record. These records may be of 
differing sizes, different formats, etc. The order in which they are 
listed is not significant. 

2. Conceptually, all data records within a file share the same area. This 
is in no way altered by the presence of more than one type of data 
record within the file. 

THE LABEL RECORDS CLAUSE 

Function 

The LABEL RECORDS clause specifies whether labels are present. 

General Format 

LABEL 

Syntax Rule 

General Rule 

S RECORD IS ~ S STANDARD ~ 
~ RECORDS ARE ~ ~ OMITTED ~ 

THE LINAGE CLAUSE 

Function 

The Linage clause provides a means for specifying the depth of a logical 
page in terms of number of lines. It also provides for specifying the size 
of the top and bottom margins on the logical page, and the line number, 
within the page body, at which the footing area begins. 

(Addendum 1) 

5 - 11 



General Format 

LINAGE IS S ~ata-name-l~ 
~ ~nteger-l 5 LINES [. WITH FOOTING AT 

[ ,LINES AT TOP ~~ata-name-3~J [,LINES AT BOTTOM 
-- l ~nteger-3 ~ 

~~ata-name-2~J 
~~nteger-2 ~ 

s~ata-name-4lJ 
? ~nteger-4 5 

Syntax Rules 

1. Data-name-l, data-name-2, data-name-3, data-name-4 must reference 
elementary unsigned numeric integer data items. 

2. The value of integer-1 must be greater than zero. 

3. The value of integer-2 must not be greater than integer-1. 

4. The value of integer-3, integer-4 may be zero. 

General Rules 

1. The LINAGE clause provides a means for specifying the size of a logical 
page in terms of number of lines. The logical page size is the sum of 
the values referenced by each phrase except the FOOTING phrase. If the 
LINES AT TOP or LINES AT BOTTOM phrases are not specified, the values 
for these fu~ctions are zero. If the FOOTING phrase is not specified, 
the assumed value is equal to integer-I, or the contents of the data 
item referenced by data-name-l, whichever is specified. 

There is not necessarily any relationship between the size of the 
logical page and the size of a physical page. 

2. The value of integer-1 or the data item referenced by data-name-l 
specifies the number of lines that can be written and/or spaced on the 
logical page. The value must be greater than zero. That part of the 
logical page in which these lines can be written and/ or spaced is 
called the page body. 

3. The value of integer-3 or the data item referenced by data-name-3 
specifies the number of lines that comprise the top margin on the 
logical page. The value may be zero. 

4. The value of integer-4 or the data item referenced by data-name-4 
specifies the number of lines that comprise the bottom margin on the 
logical page. The value may be zero. 

5. The value of integer-2 or the data item referenced by data-name-2 
specifies the line number within the page body at which the footing 
area begins. The value must be greater than zero and not greater than 
the value of integer-l or the data item referenced by data-name-l. 

The footing area comprises the area of the logical page between the 
line represented by the value of integer-2 or the data item referenced 

5 - 12 



by data-name-2 and the line represented by the value of integer-l or 
the data item referenced by data-namel, inclusive. 

6. The value of integer-I, integer-3, and integer-4, if specified, will be 
used at the time the file is opened by the execution of an OPEN 
statement with the OUTPUT phrase, to specify the number of lines that 
comprise each of the indicated sections of a logical page. The value 
of integer-2, if specified, will be used at that time to define the 
footing area. These values are used for all logical pages written for 
the file during a given execution of the program. 

7. The values of the data items referenced by data-name-l, data-name-3, 
and data-name-4, if specified, will be used as follows: 

a. The values of the data items, at the time an open statement with 
the OUTPUT phrase is executed for the file, will be used to 
specify the number of lines that are to comprise each of the 
indicated sections for the first logical page. 

b. The values of the data items, at the time a WRITE statement with 
the ADVANCING PAGE phrase is executed or page overflow condition 
occurs (see THE WRITE STATEMENT), will be used to specify the 
number of lines that are to comprise each of the indicated 
sections for the next logical page. 

8. The value of the data item referenced by data-name-2, if specified, at 
the time an OPEN statement with the OUTPUT phrase is executed for the 
file, will be used to define the footing area for the first logical 
page. At the time a WRITE statement with the ADVANCING PAGE phrase is 
executed or a page overflow condition occurs, it will be used to define 
the footing area for the next logical page. 

9. A LINAGE-COUNTER is generated by the presence of a LINAGE clause. The 
value in the LINAGE-COUNTER at any given time represents the line 
number at which the device is positioned within the current page body. 
The rules governing the LINAGE-COUNTER are as follows: 

a. A separate LINAGE-COUNTER is supplied for each file described in 
the File Section whose file description entry contains a LINAGE 
clause. 

b. LINAGE-COUNTER may be referenced, but may not be modified, by 
Procedure Division statements. Since more than one LINAGE-COUNTER 
may exist in a program, the user must qualify LINAGE-COUNTER by 
file-name when necessary. 

c. LINAGE-COUNTER is automatically modified, according to the 
following rules, during the execution of a WRITE statement to an 
associated file: 

* When the ADVANCING PAGE phrase of the WRITE statement is 
specified, the LINAGE-COUNTER is automatically reset to one. 

5 - 13 



* When the ADVANCING identifier-2 or integer phrase of the 
WRITE statement is specified, the LINAGE-COUNTER is 
incremented by integer or the value of the data item 
referenced by identifier-2~ 

* When the ADVANCING phrase of the WRITE statement is not 
specified, the LINAGE-COUNTER is incremented by the value 
one. (See THE WRITE STATEMENT.) 

* The value of LINAGE-COUNTER is automatically reset to one 
. when the device is repositioned to the first line that can be 
written on for each of the succeeding logical pages e (See 
THE WRITE STATEMENT.) 

d. The value of LINAGE-COUNTER is automatically set to one at the 
time an OPEN statement is executed for the associated file. 

10. Each logical page is contiguous to the next with no additional spacing 
provided. 

5 - 14 



THE RECORD CONTAINS CLAUSE 

Function 

The RECORD CONTAINS clause specifies the size of data records. 

General Format 

RECORD CONTAINS [ integer-1 TO integer-2 CHARACTERS 

General Rule 

The size of each data record is completely defined within the record 
description entry therefore this clause is never required ii:aliiiiiiii::i!lwiD:jii 
::i~qllliU§:::i::::9:li!'H~!:::::i::!i[:::i::~i!I:I:I:~!i:j::::~g:B:::::::!9RIBIIII~~g!:::::::iliig:li:~I:I:\:I:~§IIII~\\II\\· 

THE VALUE OF CLAUSE 

Function 

The VALUE OF clause specialises the description of an item in the label 
records associated with a file. 

General Format-

VALUE OF data-name-1 IS ~d~ta-name-2~ 
? ll.teral-l S 

[ data-name-3 IS~d~ta-name-4~J 
?11.teral-2 ... 

Syntax Rules 

1. Data-name-2, data-name-4, etc should be qualified when necessary but 
cannot be subscripted or indexed, nor can they be items described with 
the USAGE IS INDEX clause. 

2. Data-name-2, data-name-4, etc must be in the Working-Storage Section. 

General Rules 

(Addendum 1) 

5 - 15 



2. On input data-name-1 is checked against data-name-2 or Ii teral-l as 
specified and data-name-3 against data-name-4 or literal-2 as specified 
etc. 

On output data-name-2 or literaI-l are substituted for data-name-l as 
specified and data-name-4 or literal-2 from data-name-3 etc. 

3. A figurative constant may be substituted in the format above wherever a 
literal is specified. 

5 - 16 



PROCEDURE DIVISION IN THE SEQUENTIAL 1-0 MODULE 

THE CLOSE STATEMENT 

Function 

The CLOSE statement terminates the processing of reels/units and files, with 
optional rewind and/or lock or removal where applicablee 

General Format 

CLOSE . rJREEL} f~le-name-1 1UNIT 

WITH 

, file-name-2 [{
REEL} 
UNIT 

WITH 

Syntax Rule 

1. The phrases REEL, UNIT, WITH 
used for sequential 

[ WITH NO REWINDJ] 
FOR REMOVAL 

{
NO REWIND} 
LOCK 

[ WITH NO REWINDJ] 
FOR REMOVAL 

{
NO REWIND} 
LOCK . 

FOR REMOVAL, 

2. The files referenced in the CLOSE statement need not all have the same 
organization or access. 

General Rules 

Except where otherwise stated in the general rules below, the terms 'reel' 
and 'unit' are synonymous and completely interchangeable in the CLOSE 
statement. Treatment of sequential mass storage files is logically 
equivalent to the treatment of a file on tape or analogous sequential media. 

1. A CLOSE statement may only be executed for a file in an open mode. 

2. For the purpose of showing the effect of various types of CLOSE 
statements as applied to various storage media, all files are divided 
into the following categories: 

5 - 17 



a. Non-reel/unit. A file whose input or output medium is such that 
the concepts of rewind and reels/units have no meaning. 

b. Sequential single-reel/unit. A sequential file that is entirely 
contained on one reel/unit. 

Co Sequential multi-reel/unit. A sequential file that is contained 
on more than one reel/unit. 

3. The results of executing each type of CLOSE for each category of file 
are summarized in Table 5-1, Relationship of Categories of Files and 
Formats of the CLOSE Statment. 

File Category 

CLOSE Sequential Sequential 
Statement Single- Multi-

Format Non-Reel/Unit Reel/Unit Reel/Unit 

CLOSE C C,G C,G,A 

CLOSE WITH LOCK C,E C,G,E C,G,E,A 

CLOSE WITH NO REWIND X C,B C,B,A 

CLOSE REEL/UNIT X X F,G 

CLOSE REEL/UNIT X X F,D,G 
FOR REMOVAL 

CLOSE REEL/UNIT X X F,B 
WITH NO REWIND 

Table 5-1. Relationship of Categories of Files and the Formats of the 
CLOSE Statement 

The definitions of the symbols in the table are given below. Where the 
definition depends on whether the file is an input, output or input-output 
file, alternate definitions are given; otherwise, a definition applies to 
input, output, and input-output files. 

A. Previous Reels/Units Unaffected 

Input Files and Input-Output Files: 

All reels/units 
processed except 

in the 
those 

file prior 
reels/units 

5 - 18 

to the current 
controlled by 

reel/unit are 
a prior CLOSE 



REEL/UNIT statement. If the current reel/unit is not the last in the 
file, the reels/units in the file following the current one are not 
processed. 

Output Files: 

All reels/units in the 
processed except those 
REEL/UNIT statement. 

B. No Rewind of Current Reel 

file prior 
reels/units 

to the current 
controlled~y 

The current reel/unit is left in its current position. 

C. Close File 

Input Files and Input-Output Files: 

reel/unit are 
a prior CLOSE 

If the file is positioned at its end and label records are specified 
for the file, the labels are processed according to the operating 
system standard label convention. The behaviour of the CLOSE statement 
when label records are specified but not present, or when label records 
are not specified but are present, is Run-Time System (RTS) dependent. 
See your LEVEL II COBOL Operating Guide. 

Out pu t File s : 

If label records are specified for the file, the labels are processed 
according to the operating system label convention. The behaviour of 
the CLOSE statement when label records are specified but not present, 
or when label records are not specified but are present, is RTS 
dependent. See your LEVEL II COBOL Operating Guide. 

D. Reel/Unit Removal 

The reel or unit may be accessed again, in its proper order of reels or 
units within the file, if a CLOSE statement without the REEL or UNIT 
phrase is subsequently executed for this file followed by the execution 

·of an OPEN statement for the file. 

E. File Lock 

This file cannot be opened again during this execution of this run 
unit. 

.5 - 19 



F. Close Reel/Unit 

Input Files: 

The following operations take place: 

1. A reel/unit swap. 

2. The standard beginning reel/unit label procedure is executed. 

The next executed READ statement for that file makes available the next 
data record on the new reel/unit. 

Output Files and Input-Output Files: 

The following operations take place; 

1. (For output files only.) 
procedure is executed. 

2. A reel/unit swap. 

The standard ending reel/unit label 

3. The standard beginning reel/unit label procedure is executed. 

For input-output files, the next executed READ statement that 
references that file makes the next logical data record on the next 
mass storage unit available. For output files, the next executed WRITE 
statement that references that file directs the next logical data 
record to the next reel/unit of the file. 

G. Rewind 

The current reel or analogous device is positioned at its physical 
beginning. 

X. Illegal 

This is an illegal combinat'ion of a CLOSE option and a file category. 
The results at object time are undefined. 

4. The action taken if the file is in the open mode when a STOP RUN 
statement is executed is to close the file. The action taken for a file 
that has been opened in a called program and not closed in that program 
prior to the execution of a CANCEL statement for that program is to 
close the file. 

5. If the OPTIONAL phrase has been specified for the file in the 
FILE-CONTROL paragraph of the Environment Division and the file is not 
present, the standard end-of-file processing is not performed for that 
file. 

5 - 20 



6. If a CLOSE statement without the REEL or UNIT phrase has been executed 
for a file, no other statement (except the SORT or MERGE statements 
with the USING or GIVING phrases) can be executed that references that 
file, either explicitly or implicitly, unless an intervening OPEN 
statement for that file is executed. 

7. The WITH NO REWIND and FOR REMOVAL phrases will have no effect at 
object time if they do not apply to the storage media on which the file 
resides. 

8e Following the successful execution of a CLOSE statement the record area 
associated with file-name is no longer available. The unsuccessful 
execution of such a CLOSE statement leaves the availability of the 
record area undefined. 

9. If WITH LOCK is specified, the file cannot be reopened in the current 
execution of the run unit, provided that your run time system supports 
locked files. Otherwise a normal CLOSE takes effect. 

THE OPEN STATEMENT 

Function 

The OPEN statement initiates the processing of files. It also performs 
checking and/or writing of labels and other input-output operations. 

General Format 

INPUT file-name-l [
REVERSED ] 
WITH NO REWIND 

[
. [REVERS ED ]0 

, flle-name-2 WITH NO REWIND U··· 

OUTPUT file-name-3 [WITH NO REWIND] 

[, file-name-4 WITH NO REWIND]] ..• 

OPEN 

1-0 file-name-5 [, file-name-6] 

EXTEND file-name-7 [, file-name-8] 

5 - 21 



Syntax Rules 

1. 

3. 

4. The EXTEND phrase must not be specified with multiple file reels. 

5. The files referenced in the OPEN statement need not all have the same 
organization or access. 

General Rules 

1. The successful execution of an OPEN statement determines the avail­
ability of the file and results in the file being in an open mode. 

2. The successful execution of an OPEN statement makes the associated 
record area available to the program. 

3. Prior to the successful execution of an OPEN statement for a given 
file, no statement (except for a SORT or MERGE statement with the USING 
or GIVING phrases) can be executed that references that file, either 
explicitly or implicitly. 

4. "An OPEN statement must be successfully executed prior to the execution 
of any of the permissible input-output statement. In Table 5-1, 'X' at 
an intersection indicates that the specified statement, used in the 
sequential access mode, may be used with the sequential file 
organization and open mode given at the top of the column. 

Table 5-1. 

Statement 

READ 

WRITE 

REWRITE 

Permissable Combinations of Statements and OPEN Modes for 
Sequential I/O. 

Open Mode 

Input Output Input-Output 1 Extend 

X X 

X X 

X 

1 - This OPEN mode is not supported for ORGANIZATION line sequential files. 

5 - 22 



5. A file may be opened with the INPUT, OUTPUT, EXTEND and 1-0 phrases in 
the same program. Following the initial execution of an OPEN statement 
for a file, each subsequent OPEN statement execution for that same file 
must be preceded by the execution of a CLOSE statement, for that file. 

6. Execution of the OPEN statement does not obtain or release the first 
data record. 

7. The ASSIGNed name in the SELECT statement for a file is processed as 
follows: 

a. When the INPUT phrase is specified, the execution of the OPEN 
statement causes the ASSIGNed name to be checked in accordance 
with the operating system conventions for opening files for input. 

b. When the OUTPUT phrase is specified, the execution of the OPEN 
statement causes the ASSIGNed name to be written in accordance 
with the operating system conventions for opening files for 
output. 

8. The file desc ription entry for file-name-1, file-name-2, file-name-5, 
file-name-6, file-name-7 and file-name-8 must be equivalent to that 
used when this file was created. 

9. If an input file is designated with the OPTIONAL phrase in its SELECT 
clause, the object program causes an interrogation for the presence or 
a.bsence of this file. If the file is not present, the first READ 
statement for this file causes the AT END condition to occur. 

10. If the storage medium for the file permits rewinding the following 
rules apply: 

a. Execution of the OPEN statement causes the file to be positioned 
at its beginning. 

b. ~fuen the REVERSED phrase is specified, the file is positioned at 
its end by execution of the OPEN statement. 

11. When the REVERSED phrase is specified, the subsequent READ statements 
for the file make the data available in reversed order, i.e., starting 
with the last record. 

12. For files being opened with the IiWUT or 1-0 phrase, the OPEN statement 
sets the current record pointer to the first record currently existing 
within the file. If no records exist in the file, the current record 
pointer is set such that the next executed READ statement for the file 
will result in an AT E~ condition. If the file does not exist, OPEN 
INPUT will cause an error status. 

5 - 23 



13e When the EXTEND phrase is specified, the OPEN statement positions the 
file immediately following the last logical record of that filec 
Subsequent WRITE statements referencing the file will add records to 
the file as thou the file had been opened, with the OU~PUT phrase. 

14. When the EXTEND phrase is specified and the LABEL RECORDS clause 
indicates label records are present, the execution of the OPEN 
statement includes the following steps: 

15. 

a. The beginning file labels are processed only in the case of a 
single reel/unit file. 

b. The beginning reel/unit labels on the last existing reel/unit are 
processed as though the file was being opened with, the INPUT 
phrase. 

c. The existing ending file labels are processed as though the file 
is being opened with the INPUT phrase. These labels are then 
deleted. 

d. Processing then proceeds as though the file had been opened with 
the OUTPUT phrase. 

16. When the 1-0 phrase is specified and the LABEL RECORDS clause indicates 
label records are present, the execution of the OPEN statement includes 
the following steps: 

a. The labels are checked in accordance with the operating system 
specified conventions for input-output label checking. 

b. The new labels are written in accordance with the operating system 
specified conventions for input-output label writing. 

17. Upon successful execution of an OPEN statement with the OUTPUT phrase 
specified, file created. At that time the associated file 
contains 

18. The execution of the OPEN statement causes the value of the FILE STATUS 
data item to be updated ( see 1-0 STATUS in this chapter). 

5 - 24 



THE READ STATEMENT 

Function 

The READ statement makes available the next logical record from a file. 

General Format 

READ file-name RECORD [INTO identifier] [; AT END imperative-statement] 

Syntax Rules 

1.. The INTO phrase must not be used when the input file contains logical 
records of various sizes as indicated by their record descriptions. 
The storage area associated with identifier and the record area 
associated with file-name must not be the same storage area. 

2. The AT END phrase must be specified if no applicable USE procedure is 
specified for file-name. 

General Rules 

1. The associated file must be open in the INPUT or 1-0 mode at the time 
this statement is executed. (See THE OPEN STATEMENT in this Chapter). 

2. The record to be made available by the READ statement is determined as 
follows: 

a. If the current record pointer was positioned by the execution of 
the OPEN statement, the record pointed to by the current record 
pointer is made availab-le. 

b. If the current record pointer was positioned by the execution of a 
previous READ statement, the current record pointer is updated to 
point to the next existing record in the file and then that record 
is made available. 

3. The execution of the READ statement causes the value of the FILE STATUS 
data i tern, if any, associated with file-name to be updated. (See 1-0 
STATUS in this Chapter). ' 

4. Regardless of the method used to overlap access time wi th processing 
time, the concept of the READ statement is unchanged in that a record 
is available to the object program prior to the execution of any 
statement following the READ statement. 

5 - 25 



5. When the logical records of a file are described wi th more than one 
record description, these records automatically share the same storage 
area; this is equivalent to an implicit redefinition of the area. The 
contents of any data items which lie beyond the range of the current 
data record are undefined at the completion of the execution of the 
READ statement. 

6. If the INTO phrase is specified, the record being read is moved from 
the record area to the area specified by identifier according to the 
rules specified for the MOVE statement without the CORRESPONDING 
phrase. The implied MOVE does not occur if the execution of the READ 
statement was unsuccessfu 1. Any sub sc ripting or indexing associated 
with identifier is evaluated after the record has been read and 
immediately before it is moved to the data item. 

7. 

8. 

When the INTO phrase is used, 
both the input record area 
identifier. 

the record being read is availab Ie in 
and the data area associated with 

If, at the time of execution of a READ statement, 
current record pointer for that file is undefined, 
that READ statement i:; unsuccessful. 

the position of 
the execution of 

9. If the end of a reel or unit is recognized during the execution of a 
READ statement, an end-of-file status condition exists. 

a. The standard ending reel/unit label procedure. 

b. A reel/unit swap. 

c. The standard beginning reel/unit label procedure. 

d. The first data record of the new reel/unit is made available. 

10. If a file described with the OPTIONAL clause is not present at the time 
the file is opened, then at the time of the execution of the first READ 
statement for the file, the AT END condition occurs and the execution 
of the READ statement is unsuccessful. The standard end of file 
procedures are not performed. (See The FIL~-CONTROL paragraph and The 
OPEN and the USE statement descriptions in this Chapter.) Execution of 
the program then proceeds as in general rule 12. 

11. If, at the time of the execution of a READ statement, no next logical 
record exists in the file, the AT END condi tion occurs, and the 
execution of the READ statement is considered unsuccessful. (See 1-0 
STATUS). 

12. When the AT END condition is recognized the following actions are taken 
in the specified order: 

5 - 26 
\ 



a. A value is placed into the FILE STATUS data item, if specified for 
this file, to indicate an AT END condition. (See 1-0 STATUS). 

b. If the AT END phrase 
condition, control 
imperative-statement. 
is not executed. 

is specified in the statement causing the 
is transferred to the AT END 

Any USE procedure specified for this file 

c. If the AT END phrase is not specified, then a USE procedure must 
be specified, either explicitly or implicitly, for this file and 
that procedure is executed. 

When the AT END condi tion occurs, execution of the input-output 
statement which caused the condition is unsuccessful. 

13. Following the unsuccessful execution of any READ statement, the 
contents of the associated record area and the position of the current 
record pointer are undefined. 

14. When the AT END condition has been recognized, a READ statement for 
that file must not be executed without first executing a succes,sful 
CLOSE statement followed by the execution of a successful OPEN 
statement for that file. 

5 - 27 



THE REWRITE STATEMENT 

Function 

The REWRITE statement logically replaces a record existing in a disk file. 

General Format 

REWRITE record-name (FROM identifier] 

Syntax Rules 

1. Record-name and identifier must not refer to the same storage area. 

2. Record-name is the name of a logical record in the File Section of the 
Data Division and may be qualified. 

General Rules 

1. The file associated with record-name must be a disk file and must be 
open in the 1-0 mode at the time of execution of this statement. (See 
THE OPEN STATEMENT in this Chapter). 

2. The last input-output statement executed for the associated file prior 
to the execution of the REWRITE statement must have been a successfully 
executed READ statement. The operating system logically replaces the 
record that was accessed by the READ statement. 

3. The number of character positions in the record referenced by 
record-name must be equal to the number of character positions in the 
record being replaced. 

4. The logical record released by a successful execution of the REWRITE 
statement is no longer available in the record area unless the 
associated file is saved in a SAME RECORD AREA clause. In this case, 
not only is the record still available to the program in the record 
area as a record of this file, but as a record of other files named in 
the SAME RECORD AREA clause. 

5. The execution of a REWRITE statement with the FROM phrase is equivalent 
to the execution of: 

MOVE identifier TO record-name 

followed by the execution of the same REWRITE statement without the 
FROM phrase. The contents of the record area prior to the execution of 
the implicit MOVE statement have no effect on the execution of the 
REWRITE statement. 

5 - 28 



6 e The current record pointer is not affected by the execution of a 
REWRITE statement. 

7. The execution of the REWRITE statement causes the value of the FILE 
STATUS data item, if any, associated with the file to be updated. (See 
1-0 STATUS in this Chapter). 

5- 29 



THE USE STATEMENT 

Function 

The USE statement specifies procedures for input-output error handling that 
are in addition to the standard procedures provided by the input-output 
control system. 

General Format 

USE AFTER STANDARD {EXCEPTION} PROCEDURE ON 
- ERROR 

Syntax Rules 

file-name-1 
INPUT 
OUTPUT 
1-0 
·EXTEND 

[, file-name-2] ... 

1.. A USE statement, when present, must immediately follow a section header 
in the declaratives section and must be followed by a period followed 
by a space. The remainder of the section must consist of zero, one or 
more procedural paragraphs that define the procedure to be used. 

2. The USE statement itself is never executed; it merely defines the 
conditions calling for the execution of the USE procedures. 

3. The same file-name can appear in a different specific arrangement of 
the format. Appearance of a file-name in a USE statement must not 
cause the simultaneous request for execution of more than one USE 
procedure. 

4. The words ERROR and EXCEPTION are synonymous and may be used 
interchangeably. 

5. The files implicitly or explicitly referenced in a USE statement need 
not all have the same organization or access. 

General Rules 

1. The designated procedures are executed by the input-output system after 
completing the standard input-output error routine; or upon recognition 
of the AT END condition, when the AT END phrase has not been specified 
in the input-output statement. 

2. After execution of a USE procedure, control is returned to the invoking 
routine. 

(Addendum· 2) 

5 - 30 



3. Wi thin a USE procedure, there must not be any reference to any non­
declarative procedures. Conversely, in the nondeclarative portion 
there mus t be no reference to procedure-names that appear in the 
declarative portion, except that PERFORM statements may refer to a USE 
statement or to the procedures associated with such a USE statement. 

4. Within a USE procedure, there must not be the execution of any state­
ment that would cause the execution of a USE procedure that had 
previously been invoked and had not yet returned control to the 
invoking routine. 

5 - 31 



THE WRITE STATEMENT 

Function 

The WRITE statement releases a logical record for an output file. It can 
also be used for vertical positioning of lines within a logical page. 

General Format 

WRITE record-name [FROM identifier-1] 

{ 
BEFORE} ADV ANCING 
AFTER 

Syntax Rules 

{
END-OF-PAGE} 
EOP 

S ~dentifier-2~ [LINE] 
?1nteger 5 LINES 

imperative-statement] 

1. Record-name and identifier-l must not reference the same storage area. 

2. 

3. The record-name is the name of a logical record in the File Section of 
the Data Division and may be qualified. 

4. When identifier-2 is used in the ADVANCING phrase, it must be the name 
of an elementary integer data item. 

5. Integer, or the value of the data item referenced by identifier-2, may 
be zero. 

6. If the END-OF-PAGE phrase is specified, the LINAGE clause must be 
specified in the file description entry for the associated file. 

7. The words END-OF-PAGE and EOP are equivalent. 

8. The ADVANCING TAB phrase cannot be specified when writing a record to a 
file whose file description entry contains the LINAGE clause. 

5 - 32 



General Rules 

1. The associated file must be open in the OUTPUT or EXTEND mode at the 
time of the execution of this statement. (See THE OPEN STATEMENT in 
this Chapter). 

2. The logical record released by the execution of the WRITE statement is 
no longer available in the record area unless the associated file is 
named in a SAME RECORD AREA clause or the execution of the WRITE 
statement was unsuccessful due to a boundary violation. 

The logical record is also availab Ie to the program as a record of 
other files referenced in the SAME RECORD AREA clause as the associated 
output file, as well as to the file associated with record-name. 

30 The results of the execution of the WRITE statement with the FROM 
phrase is equivalent to the execution of: 

a. The statement: 

MOVE identifier-l TO record-name 

according to the rules specified for the MOVE statement, followed 
by: 

b. The same WRITE statement without the FROM phrase. 

The contents of the record area prior to the execution of the 
implicit MOVE statement have no effect on the execution of this 
WRITE statement. 

After execution of the WRITE statement is complete, the 
information in the area referenced by identifier-l is available, 
even though the information in the area referenced by record-name 
may not be. (See general rule 2.) 

4. The current record pointer is unaffected by the execution of a WRITE 
statement. 

5. The execution of the WRITE statement causes the value of the FILE 
STATUS data item, if any, associated with the file to be updated. (See 
1-0 STATUS in this Chapter). 

6. The maximum record size for a file is established at the time the file 
is created and must not subsequently be changed. 

7. The number of character positions on a disk required to store a logical 
record in a file mayor may not be equal to the number of character 
positions defined by the logical description of that record in the 
program. 

5 - 33 



8. The execution of the WRITE statement releases a logical record to the 
operating system. 

9. Both the ADVANCING phrase and the END-OF-PAGE phrase allows control of 
the vertical positioning of each line on a representation of a printed 
page. 

a. With ORGANIZATION SEQUENTIAL if the ADVANCING phrase is not used, 
automatic advancing is provided when output is directed to a 
list-device to act as if the user had specified AFTER 
ADVANCING 1 LINE. If the ADVANCING phrase.is used, advancing is 
provided as follows: 

b. 

i. If identifier-2 is specified, the repsentation of the printed 
page is advanced the number of lines equal to the current 
value associated with identifier-2. 

ii. If integer is specified, the representation of the printed 
page is advanced the number of lines equal to the value of 
integer. 

iii. If mnemonic-name is specified the representation of the 
printed page is advanced according to the rules specified by 
the implementor for the hardware device. 

iv. If the BEFORE phrase is used, the line is presented before 
the representation of the printed page is advanced according 
to the rules i, ii and iii above. 

v. If the AFTER phrase is used, the line is presented after the 
representation of the printed page is advanced according to 
the rules i, ii and iii above. 

vi. If PAGE is specified, the record is presented on the logical 
page before or after (depending on the phrase used) the 
device is repositioned to the next logical page. If the 
record to be written is associated with a file whose file 
description entry contains a LINAGE clause, t~. repositioning 
is to the first line that can be written on the next logical 
page as specified in the LINAGE clause. If the record to be 
written is associated with a file whose description entry 
contains a LINAGE clause, the repositioning is to the first 
line that can be written on the next logical page as 
specified in the LINAGE clause. 

5 - 34 



10. If the logical end of the representation of the printed page is reached 
during the execution of a WRITE statement with the END-OF-PAGE phrase, 
the imperative-statement specified in the END-OF-PAGE phrase is 
executed. The logical end is specified in the LINAGE clause associated 
with record-name. 

11. An end-of-page condition is reached whenever the execution of a given 
WRITE statement with the END-OF-PAGE phrase occurs when the execution 
of such a WRITE statement causes the LINAGE-COUNTER to equal or exceed 
the value specified by integer-2 or the data item referenced by 
data-name-2 of the LINAGE clause, if specified. In this case, the 
WRITE statement is executed and then the imperative statement in the 
END-OF-PAGE phrase is executed. 

An automatic page. overflow condition is reached whenever the execution 
of a given WRITE statement (with or without an END-OF-PAGE phrase) 
cannot be fully accommodated within the current page body. 

This occurs when a WRITE statement, if executed, would cause the 
LINAGE-COUNTER to exceed the value specified by integer-lor the data 
item referenced by data-name-1 of the LINAGE clause. In this case, the 
record is presented on the logical page before or after (depending on 
the phrase used) the device is repositioned to the first line that can 
be written on the next logical page as specified in the LINAGE clause. 
The imperative statement in the END-OF-PAGE clause, if specified, is 
executed after the record is written and the device has been 
repositioned. 

If integer-2or data-name-2 of the LINAGE clause is not specified, no 
end-of-page condition distinct from the page overflow condition is 
detected. In this case, the end-of-page condition and page overflow 
condition occur simultaneously. 

If integer-2 or data-name-2 of the LINAGE clause is specified, but the 
execution of a given WRITE statement would cause LINAGE-COUNTER to 
simultaneously exceed the value of both integer-2 or the data item 
referenced by data-name-2 and integer-lor the data item referenced by 
data-name-l, then the operation proceeds as if integer-2 or data-name-2 
had not been specified. 

12. When an attempt is made to write beyond the externally defined bound­
aries of a sequential file, an exception condition exists and the 
contents of the record area are unaffected. The following action takes 
place: 

a. The value of the FILE STATUS data item, if any, of the associated 
file is set to a value indicating a boundary violation. (See 1-0 
STATUS in this Chapter). 

5 - 35 



b. If a USE AFTER STANDARD EXCEPTION declaratiye is explicitly or 
implicitly specified for the file, that declarative procedure will 
then be executed. 

c. If a USE AFTER STANDARD EXCEPTION declarative is not explicitly or 
implicitly specified for the file, the result is undefined. 

13. After the recognition of an end-of-reel or an end-of-unit of an output 
file that is contained on more than one physical reel/unit, the WRITE 
statement performs the following operations: 

a. The standard ending reel/unit procedure. 

b. The reel/unit swap. 

c. The standard beginning reel/unit label procedure. 

5 - 36 



CHAPTER 6 

RELATIVE INPUT AND OUTPUT 

INTRODUCTION TO THE RELATIVE 1-0 MODULE 

The Relative 1-0 module provides a capability to access 
storage file in either a random or sequential manner. 
relative file is uniquely identified by an integer value 
which specifies the record's ordinal position in the file. 

LANGUAGE CONCEPTS 

Organization 

records of a mass 
Each record in a 
greater than zero 

Relative file organization is permitted only on disk devices. A relative 
file consists of records which are identified by relative record numbers. 
The file may be thought of as composed of a serial string of areas, each 
capable of holding a logical record. Each of these areas is denominated by 
a relative record number. Records are stored and retrieved based on this 
number. For example, the tenth record area, whether or not records have 
been written in the first through the ninth record areas. 

Access Modes 

In the sequential access mode, the sequence in which records are accessed is 
the ascendirtg order of the relative record numbers of all records which 
currently exist within the file. 

In the random access mode, the sequence in which records are accessed is 
controlled by the programmer. The desired record is accessed by placing its 
relative record number in a relative key data item. 

In the dynamic access mode, the programmer may change at will from 
sequential access to random access using appropriate forms of input-output 
statements. 

Current Record Pointer 

The current record pointer is a conceptual entity used in this document to 
facilitate specification of the next record to be accessed within a given 
file. The concept of the current record pointer has no meaning for a file 
opened in the output mode. The setting of the current record pointer is 
affected only by the OPEN, START and READ statements. 

1-0 Status 

If the FILE STATUS clause is specified in a file control entry, a value is 
placed into the specified two-character data item during the execution of an 
OPEN, CLOSE, READ, WRITE, REWRITE, DELETE or START statement and before any 
applicable USE procedure is executed, to indicate to the COBOL program the 
status of that input-output operation. 

6 - 1 



Status Key 1 

The leftmost character position of the FILE STATUS data item is known as 
status key 1 and is set to indicate one of the following conditions upon 
completion of the input-output operation. 

'0' - indicates Successful Completion 
'1' - indicates At End 
'2' - indicates Invalid Key 
'3' - indicates Permanent Error 
'9' - indicates an Operating System Error Message 

The meaning of the above indications are as follows: 

'0' - Successful Completion. 
successfully executed. 

The input-output statement 

'1' - At End. The Format 1 READ statement was unsuccessfully 
executed as a result of an attempt to read a record when no 
next logical record exists in the file. 

was 

'2' - Invalid Key. The input-output statement was unsuccessfully 
executed as a result of one of the following: 

* Duplicate Key 
* .No Record Found 
* Boundary Violation 

'3' - Pennanent Error. The input-output statement was unsuccessfully 
executed as the reult of an input-output error, such as data 
check, parity error or transmission error. 

'9' - Operating System Error Message. The input-output statement was 
unsuccessfully executed as the result of a condition that is 
specified by the Operating System. This value is used only to 
indicate a condition not indicated by other defined values of 
status key 1, or by specified combinations of the values of status 
key 1 and status key 2. 

Status Key 2 

The rightmost character position of the FILE STATUS data item is known as 
status key 2 and is used to further describe the reults of the input-output 
operation. This character contains a value as follows: 

* If no further information is available concerning the input-output 
operation, then status key 2 contains a value of '0' 

6 - 2 



* When status key 1 contains a value of '2' indicating an INVALID 
KEY condition, status key 2 is used to designate the cause of that 
condition by the following values: 

2 

3 

4 

Indicates a duplicate key value. An attempt has been 
made to write a record that would create a duplicate key 
in a relative file. 

Indicates no record found. An attempt has been made to 
access a record, identified by a key, and that. record 
does not exist in the file. 

Indicates a boundary violation. An attempt has been 
made to write beyond the externally-defined boundaries 
of a relative file. This is normally treated as a fatal 
error by the Operation System. 

* When status key 1 contains a value of '9' the value of status key 
2 is the Operating System Error Message number. 

* When status key 1 contains a value of '9', the value of status 
key 2 is the operating system error message number (for those 
operating systems which designate errors numerically). The 
LEVEL II COBOL Operating Guide contai"ns details of the 
status-key-2 representation. 
Note that it is not possible to extract this number'directly. 

Valid Combinations of Status Keys 1 and 2 

The valid permissible combinations of the values of status key 1 and status 
key 2 are shown in the table. An 'X' at an intersection indicates a valid 
permissible combination. 

Status Key 1 Status Key 2 

No Further Duplicate No Record Boundary 
Information Key Found Violation 
(0) (2) , (3) (4 ) 

Successful 
Completion (U) X 

At End (1) X 

Invalid Key (2) X X X 

Permanent 
Error (3) X 

Implementor 
Defined (9) Operating System Error Message Number 

6 - 3 



The INVALID KEY Condition 

The INVALID KEY condition 'can occur as a result of the execution of a START, 
READ, WRITE, REWRITE or DELETE statement. For details of the causes of the 
condition, see The START Statement, The READ Statement, The WRITE Statement, 
The REWRITE Statement, and The DELETE Statement later in this chaptero 

When the INVALID KEY condition is recognised, the Operating System takes 
these actions in the following order: 

1. A value is placed into the FILE STATUS data item, if specified for this 
file, to indicate an INVALID KEY condition. (See I-O Status in this 
Chapter). 

2. If the INVALID KEY phrase is specified in the statement causing the 
condition, control is transferred to the INVALID KEY. imperative 
statement. Any USE procedure specified for this file is not executed. 

3. If the INVALID KEY phrase is not specified, but a USE procedure is 
specified, either explicitly or implicitly, for this file, that 
procedure is executed. 

When the INVALID KEY condition occurs, execution of the input-output 
statement which recognised the condition is unsuccessful, and the file is 
not affected. 

NOTE: 

INVALID KEY does not trap errors when Status key 1 is set to 9. Such 
errors must be trapped either by explicitly testing the Status key or 
by using declaratives instead of the INVALID KEY clause. 

The AT END Condition 

The AT END condition can occur 
statement. For details of the 
Statement later in this chapter. 

as a resul t of 
causes of the 

6 - 4 

the execution of a READ 
condition, see The READ 



ENVIRONMENT DIVISION IN THE RELATIVE 1-0 MODULE 

INPUT-OUTPUT SECTION 

The File-Control Paragraph 

Function 

The FILE-CONTROL paragraph names each file and allows specification of other 
file-related information. (See also the LEVEL II COBOL Operating Guide). 

General Format 

FILE-CONTROL ~file-control-entry~ 

The File Control Entry 

Function 

The file control entry names a file and may specify other file-related 
information. 

General Format 

SELECT file-name 

Syntax 

ASSIGN TO ~external-file-name-literal~ 

~ file-identifier ~ 

[ 
sexternal-file-name-literal~J 

' ~file-identifier ~ 

[: RESERVE . [AREA JJ ~nteger-1 AREAs 

ORGANIZATION IS RELATIVE 

[; SEQUENTIAL [ ,RELATIVE KEY 

ACCESS MODE IS {RANDOM} ,RELATIVE KEY DYNAMIC 

[ ; FILE STATUS IS data-name-2]. 

Rules 

IS data-name-1] ] IS data-name-l 

1. The SELECT clause must be specified first in the file control entry. 
The clauses which follow the SELECT clause may appear in any order. 

2. Each file described in the Data Division must be named once and only 
once as file-name in the FILE-CONTROL paragraph. Each file specified 
in the file control entry must have a file description entry in the 
Data Division. 

6 - 5 



~3. If the ACCESS MODE clause is not specified, the ACCESS MODE IS 
SEQUENTIAL clause is implied. 

4. Data-name-2 must be defined in the Data Division as a two-character 
data item of the category alphanumeric and must not be defined in the 
File Section or the Communication Section. 

5. . Data-name-l and data-name-2 may be qualified. 

6. If a relative file is to be referenced by a START statement, the 
RELATIVE KEY phrase must be specified for that file. 

7. Data-name-l must not be defined in a record description entry 
associated with that file-name. 

8. The data item referenced by data-name-l must be defined as an unsigned 
integer. 

9. File-identifier is any user-defined word, but must not be the same as 
the file-name. 

General Rules 

1. The ASSIGN clause specifies the association of the file referenced by 
to a storage medium. See the LIII COBOL Operating Guide. 
assignment takes place. .. .... .. .. 

2. The RESERVE the user to specify the number of 

3. The ORGANIZATION clause specifies the logical structure of a file. The 
file organization is established at the time a file is created and 
cannot subsequently be changed. 

4. When the access mode is sequential, records in the file are accessed in 
the sequence dictated by the file organization. This sequence is the 
order of ascending relative record numbers of existing records in the 
file. 

5. When the FILE STATUS clause is specified, a value will be moved by the 
operating system into the data item specified by data-name-2 after the 
execution of every statement that references that file either 
explicitly or implicitly. This value indicates the status of execution 
of the statement. (See 1-0 Status in this Chapter). 

6. If the access mode is random, the value of the RELATIVE KEY data item 
indicates the record to be accessed. 

(Addendum 2) 

6 - 6 

I 



7. When the access mode is dynamic, records in the file may be accessed 
sequentially and/or randomly. (See General Rules 4 and 6). 

8. All records stored in a relative file are uniquely identified by 
relative record numbers. The relative record number of a given record 
specifies the record's logical ordinal position in the file. The first 
logical record has a relative record number of 1, and subsequent 
logical records have relative record numbers of 2, 3, 4, 

9. The data item specified by data-name-l is used to communicate a 
relative record number between the user and the Operating System. 

10. If file-identifier is not explicitly defined it will be implicitly 
defined. 

6 - 7 



The I-a-CONTROL Paragraph 

Function 

The I-a-CONTROL paragraph specifies the points at which rerun is to be 
established and the memory area which is to be shared by different fileso 

General Format 

I-O-CONTROL. 

~ RERUN ON 
Sfile-name-l ~ 
~implementor-nameS linteger-l RECORDS OF file-name-2!J 

EVERY integer-2 CLOCK-UNITS 
condition-name 

[;SAME [RECORD] AREA FOR file-name-3 ~,file-name-4~ ... ] 

Syntax Rules 

1. The I-O-CONTROL paragraph is optional. 

2. File-name-l must be a sequentially organized file. 

3. When either the integer-l RECORDS clause or the integer-2 CLOCK-UNITS 
clause is specified, implementor-name must be given in the RERUN 
clause. 

4. When mUltiple integer-l RECORDS clauses are specified, no two of them 
may specify the same file-name-2. 

5. Only one RERUN clause containing the CLOCK-UNITS clause may be 
specified. 

6. The two forms of the SAME clause (SAME AREA, SAME RECORD AREA) are 
considered separately in the following: 

More than one SAME clause may be included in a program, however: 

a. a file-name must not appear in more than one SAME AREA clause. 

b. a file-name must not appear in more than one SAME RECORD AREA 
clause. 

6 - 8 



Co If one or more file-names of a SAME AREA clause appear in a SAME 
RECORD AREA clause, all of the file-names in that SAME AREA clause 
must appear in the SAME RECORD AREA clause. However, additional 
file-names not appearing in that SAME AREA clause may also appear 
in that SAME RECORD AREA clause. The rule that only one of the 
files mentioned in a SAME AREA clause can be open at any given 
time takes precedence over the rule that all files mentioned in a 
SAME RECORD AREA clause can be open at any given time. 

7. The files referenced in the SAME AREA or SAME RECORD AREA clauses need 
not all have the same organization or access. 

General Rules 

2. The SAME AREA clause specifies that two or more files that do not 
represent sort or merge files are to use the same memory area during 
processing. The area being shared includes all storage areas 
(including alternate areas) assigned to the files specified; therefore, 
it is not valid to have more than one of the files open at the same 
time. 

3. The SAME RECORD AREA clause specifies that two or more files are to use 
the same memory area for processing of the current logical record. All 
of the files may be open at the same time. A logical record in the 
SAME RECORD AREA is considered as a logical record of each opened 
output file whose file-name appears in this SAME RECORD AREA clause and 
of the most recently read input file whose file-name appears in this 
SAME RECORD AREA clause. This is equivalent to an implicit 
redefinition of the area i. e., records are aligned on the leftmost 
character position. 

6 - 9 



DATA DIVISION IN THE RELATIVE 1-0 MODULE 

FILE SECTION 

In a COBOL program the file description entry (FD) represents the highest 
level or organization in the File Section. The File Section header is 
followed by a file description entry consisting of a level indicator (FD), a 
file-name and a series of independent clauses. The FD clauses specify the 
size of the logical and physical records, the presence or absence of label 
records, the value of implementor-defined label items, and the names of the 
data records which comprise the file. The entry itself is terminated by a 
period. 

RECORD DESCRIPTION STRUCTURE 

A record description consists of a set of data description entries which 
describe the characteristics of a particular records Each data description 
entry consists of a level-number followed by a data-name if required, 
followed by a series of independent clauses as required. A record 
description has a hierarchical structure and therefore the clauses used with 
an entry {nay vary considerably, depending upon whether or not it is followed 
by subordinate entriesc The structure of a record description is defined in 
CONCEPTS OF LEVELS in Chapter 2 while the elements allowed in a record 
description are shown in the DATA DESCRIPTION-COMPLETE ENTRY SKELETON in 
Chapter 3. 

THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON 

Function 

The file description furnishes information concerning the physical 
structure, identification, and record names pertaining to a given file. 



General Format 

FD file-name 

BLOCK CONTAINS [integer-l TO] integer-2 
{

RECORDS }] 
CHARACTERS 

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS] 

LABEL {RECORD IS } {STANDARD}} 
RECORDS ARE OMITTED 

VALUE OF data-name-l IS sdata-name-2~ 
~literal-l 5 

[. data-name-3 IS Sdata-name-4~] 
~ literal-2 5 ... ] 

DATA {RECORD IS } 
RECORDS ARE 

data-name-S [, data-name-6] · · .] . 

Syntax Rules 

1. The level indicator FD identifies the beginning of a file description 
and must prec~de the file-name. 

2. The clauses which follow' the name of the file are optional in many 
cases, and their order of appearance is immaterial. All clauses are 
optional when the ANSI switch is unset. 

3. One or more record description entries must follow the file description 
entry. 

THE BLOCK CONTAINS CLAUSE 

Function 

The BLOCK CONTAINS clause specifies the size of a physical record. 

General Format 

BLOCK CONTAINS 

General Rule 

[integer-l TO] 

6 - 11 

integer-2 
{

RECORDS } 
CHARACTERS 



THE DATA RECORDS CLAUSE 

Function 

The DATA RECORDS clause serves only as documentation for the names of 
data records with their associated file. 

General Format 

DATA 

Syntax Rule 

S RECORD IS ~ 
l RECORDS ARE 5 

data-name-l [, data-name-2] 

Data-name-l and data-name-2 are the names of data records and should 
have 01 level-number record descriptions, with the same names, 
associated with them. 

General Rules 

1. The presence of mor~ than one data-name indicates that the file 
contains more than one type of data record. These records may be of 
differing sizes, different formats, etc. The order in which they are 
listed is not significant. 

2. Conceptually, all data records within a file share the same area. This 
is in no way altered by the· ·presence of more than one type of data 
record within the file. 

THE LABEL RECORDS CLAUSE 

Function 

The LABEL RECORDS clause specifies whether labels are present. 

General Format 

LABEL 

Syntax Rule 

~ RECORD IS ~ ~ STANDARD ~ 
~RECORDS ARE5~OMITTED 5 

This clause is required in every file description entry, when the ANSI switch 
is set. 

General Rule 

(Addendum 1) 

6 - 12 



THE RECORD CONTAINS CLAUSE 

Function 

The RECORD CONTAINS clause specifies the size of data records. 

Format 

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS 

General Rule 

The size of each data record is completely defined within the record 
description entry, therefore this clause is never required. 

6 - 13 



THE VALUE OF CLAUSE 

Function 

The VALUE of clause specializes the description of an item in the label 
records associated with a filee 

General Format 

VALUE OF data-name-l ISSd~ta-name-2~ 
~llteral-l 5 

[ 
Sdata-name-4~] 

,data-name-3 IS~ literal-2 5 

Syntax Rules 

Ie Data-names should be qualified when necessary, but cannot be 
subscripted or indexed, nor can they be items described with the USAGE 
IS INDEX clause 

2. Data-name-2, data-name-4 etc, must be in the Working-Storage Section 

General Rules 

The compiler checks that data-name-l matches in value data-name-2 or 
literal-I, data-name-3 matches in value data-name-4 or literal-2, etc, 
for input files. For output files the value of data-name-2 or 
literal-l is substituted for data-name-l, the value of data-name-4 or 
literal-2 is substituted for data-name-3, etc. 

2. A figurative constant may be substituted in the format above wherever a 
literal is specified. 

6 - 14 



PROCEDURE DIVISION IN THE RELATIVE 1-0 MODULE 

THE CLOSE STATEMENT 

Function 

The CLOSE statement terminates the processing of files. 

General Format 

'CLOSE file-name-l [WITH LOCK] [,file-name-2 [WITH LOCK]] 

Syntax Rule 

The files referenceq in the CLOSE statement need not all have the same 
organization or access. 

General Rules 

1. A CLOSE statement may only be executed for a file in an open mode. 

2. Relative files are classified as belonging to the category of 
non-sequential single/multi-reel/unit. The results of executing each 
type of CLOSE for this category of file are summarized in the following 
table. 

CLOSE File Category = 
Statement Non-sequential 

Format Single/Multi-Reel/Unit 

CLOSE A 
CLOSE \vITH LOCK A,B 

The definitions of the symbols in the table are given below. Where the 
definition depends on whether the file is an input, output or 
input-output file, alternate definitions are given; otherwise, a 
definition applies to input, output, and input-output filesc 

A. Close File 

Input Files and Input-Output Files (Sequential Access Mode): 

If the file is positioned at its end and label records are specified 
for the file, the labels are processed according to the operating 
system label convention. The behaviour of the CLOSE statement when 
label records are specified but not present, or when label records are 
not specified but are present, is undefined. If the file is 
positioned at its end and label records are not specified for the file, 
label processing does not take place but other closing operations 

6 - 15 



dependent on the Run-Time System are executed. See your LEVEL II COBOL 
Operating Guide. If the file is positioned other than at its end, the 
closing operations dependent on the RTS are executed, but there is no 
ending label processingQ 

Input Files and Input-Output Files (Random or Dynamic Access Mode); 
Output Files (Random, Dynamic, or Sequential Access Mode): 

If label records are specified for the file, the labels are processed 
according to the operating system standard label convention. The 
behavior of the CLOSE statement when label records are specified but 
not present, or when label records are not specified but are present, 
is undefined. If label records are not specified for the file, label 
processing does not take place but other closing operations dependent 
on the RTS are executed. 

B. File Lock 

This file cannot be opened again during this execution of this run 
unite 

3. The action taken if a file is in the open mode when a STOP RUN 
statement is executed is to close the file. The action taken for a 
file that has been opened in a called program and not closed in that 
program prior to the execution of a CANCEL statement for the program is 
to close the file. 

4. If a CLOSE statement has been executed for a file, no other statement 
can be executed that references that file, either explicitly or 
implicitly, unless an intervening OPEN statement for that file is 
executed. 

5. Following the successful execution of a CLOSE statement, the record 
area associated with file-name is no longer available. The 
unsuccessful execution of such a CLOSE statement leaves the 
availability of the record area undefined. 

6. If WITH LOCK is specified, the file cannot be reopened in the current 
execution of the run unit. 

6 - 16 



THE DELETE STATEMENT 

Function 

The DELETE statement logically removes a record from a mass storage file. 

General Format 

DELETE file-name RECORD [;INVALID KEY imperative-statement] 

Syntax Rules 

1 ~ The INVALID KEY phrase must not be -specified for a DELETE statement 
which references a file which is in sequential access mode. 

2. The INVALID KEY phrase must be specified for a DELETE statement which 
references a file which is not in sequential access mode and for which 
an applicable USE procedure is not specified. 

General Rules 

1. The associated file must be open _ in the 1-0 mode at the time of the 
execution of this statement. (See THE OPEN STATEMENT later in this 
Chapter) 

2. For files in the sequential access mode, the last input-output 
statement executed for file-name prior to the execution of the DELETE 
statement must have been a successfully executed READ statement. The 
Operating System logically removes from the file the record that was 
accessed by that READ statement. 

3. For a file in random or dynamic access mode, the Operating System 
logically removes from the file that record identified by the contents 
of the REL~TIVE KEY data item associated with file-name. If the file 
does not contain the resord specified by the key, an INVALID key 
condi tion exists. (See The INVALID KEY Condi tion in this Chapter). 

4. After the succesful execution of a DELETE statement, the identified 
record has been logically removed from the file and can no longer be 
accessed. 

5. The execution of a DELETE statement does not affect the contents of the 
record area associated with file-name. 

6. The current record pointer is not affected by the execution of a DELETE 
statement. 

7. The execution of the DELETE statement causes the value of the specified 
FILE STATUS data item, if any, associated with the file-name to be 
updated. See 1-0 STATUS in this cha~ter. 

6 - 17 



THE OPEN STATEMENT 

Function 

The OPEN statement initiates the processing of files. It also performs 
checking and/or writing of labels and other input-output operations. 

General Format 

OPEN 

Syntax Rule 

l 

INPUT file-name-l 
OUTPUT file-name-3 
1-0 file-name-S 

[,file-name-2] 
[,file-name-4] 
[,file-name-6] 

~ ... 

The files referenced in the OPEN statement need not all have the same 
organization or access o 

General Rules 

1. The successful execution of an OPEN statement determines the 
availability of the file and results in the file being in an open mode. 

2 ~ The successful execution of the OPEN statement makes the associated 
record area available to the program. 

3. Prior to the successful execution of an OPEN statement for a given 
file, no statement can be executed that references that file, either 
explicitly or implicitly. 

4. An OPEN statement must be successfully executed prior to the execution 
of any of the permissible input-output statements. In Table 6-1, 'X' 
at an intersection indicates that the specified statement, used in the 
access mode given for that row, may be used with the relative file 
organization and the open mode given at the top of the column. 

6 - 18 



Table 6-1. Permissible Combinations of Statements and Open Modes for 
Relative I/O 

File Access Open Mode 
Mode Statement Input Output Input-Output 

Sequential READ X X 

WRITE X 

REWRITE X 

START X X 

DELETE X 

Random READ X X 

WRITE X X 

REWRITE X 

START 

DELETE X 

Dynamic READ X X 

WRITE X X 

REWRITE X 

START X X 

DELETE X 

5. A file may be opened with the INPUT, OUTPUT, AND 1-0 phrases in the 
same program. Following the initial execution of an OPEN statement for 
a file, each subsequent execution for that same file must be preceded 
by the execution of a CLOSE statement, for that file. 

6. Execution of the OPEN statement does not obtain or release the first 
data record. 

7 ~ The ASSIGNed name in the SELECT statement for a file is processed as 
follows: 

a. When the INPUT phrase is specified, the execution of the OPEN 
statement causes the ASSIGNed name to be checked in accordance 
with the operating system conventions for opening files for input. 

6 - 1.9 



b. When the OUTPUT phrase is specified, the execution of the OPEN 
statement causes the ASSIGNed name to be written in accordance 
with the operating system conventions for opening files for 
output. 

8. The file description entry for file-name-l, file-name-2, file-name-S or 
file-name-6 must be equivalent to that used when this file was created. 

9. For files being opened with the INPUT or 1-0 phrase, the OPEN statement 
sets the current record pointer to the first record 
currently existing within the file. If no records exist in the file, 
the current record pointer is set such that the next executed Format 1 
READ statement for the file will result in an AT END condition. If the 
file does not exist, INPUT-will cause an error status. 

10. The 1-0 phrase permits the opening of a file for both input and output 
operations. 

11. When the 1-0 phrase is specified and the LABEL RECORDS clause indicates 
label records are present, the execution of the OPEN statement includes 
the following steps: 

a. The labels are checked in accordance with the operating system 
.specified conventions for input-output label checking. 

b. The new labels are written in accordance with the operating system 
specified conventions for input-output label writing. 

12. Upon successful execution of an OPEN statement with the OUTPUT phrase 
specified, a file is created. At the time the associated file 
contains data records. 

13. The execution of the OPEN statement causes the value of the FILE STATUS 
data item to be updated (see 1-0 STATUS in this chapter). 

(Addendum 1) 

6 - 20 



THE READ STATEMENT 

Function 

For sequential access, the READ statement makes available the next logical 
record from a file. For random access, the READ statement makes available a 
specified record from a mass storage file. 

General Format 

Format 1 

READ file-name [NEXT] RECORD [INTO identifier] 
[; AT END imperative-stat~t] 

Format 2 

READ file-name RECORD [INTO identifier] [;INVALID KEY imperative-statement] 

Syntax Rules 

1. The INTO phrase must not be used when the input file contains logical 
records of various sizes as indicated by their record descriptions. The 
storage area associated with identifier and the record area associated 
with file-name must not be the same storage area. 

2. Format 1 must be used (without the NEXT phrase) for all files in 
sequential access mode. 

3. Format 1 (with the NEXT phrase) must be specified for files in dynamic 
access mode, when records are to be retrieved sequentially. 

4. Format 2 is used for files in random access mode or for files in 
dynamic access mode when records are to be r.etrieved randomly. 

5. The INVALID KEY phrase or the AT END phrase must be specified if no 
applicable USE procedure is specified for file-name. 

General Rules 

1. The associated files must be open in the INPUT or 1-0 mode at the time 
this statement is executed. See THE OPEN STATEMENT in this Chapter 

2. The record to be made available by .a Format 1 READ statement is 
determined as follows: 

a. The record, pointed to by the current record pointer, is made 
available provided that the current record pointer was .positioned 
by the START or OPEN statement and the record is still accessible 
through the path indicated by the current record pointer; if the 
record is no longer accessible, which may have been caused by the 

6 - 21 



deletion of the record, the current record pointer is updated to 
point to the next existing record in the file and that record is 
then made available. 

b. If the current record pointer was positioned by the execution of a 
previous READ statement, the current record pointer is updated to 
point to the next existing record in the file and then that record 
is made available. 

3. The execution of the READ statement causes the value of the FILE STATUS 
data item, if any, associated with file-name to be updated. (See 1-0 
Status in this Chapter). 

4. Regardless of the method used to overlap access time with processing 
time, the concept of the READ statement is unchanged in that a record 
is available to the object program prior to the execution of any 
statement following the READ statement. 

5. When the logical records of a file are described with more than one 
record description, these records automatically share the same storage 
area; this is equivalent to an implicit redefinition of the area. The 
contents of any data items which lie bey'ond the range of the current 
data record are undefined at the completion of the execution of the 
READ statement. 

6. If the INTO phrase is specified, the record being read is moved from 
the record area to the area specified by identifier according to the 
rules specified for the MOVE statement without the CORRESPONDING 
phrase. The implied MOVE does not occur if the execution of the READ 
statement was unsuccessful. Any subscripting or indexing associated 
with identifier is evaluated after the record has been read and 
immediately before it is moved to the data item. 

7 • wllen the INTO phrase is used, the record being read 
both the input record area and the data area 
identifier. 

is available in 
associated with 

8. If, at the time of execution of a Format 1 READ statement, the position 
of current record pointer for that file is undefined, the execution of 
that READ statement is unsuccessful. 

9. If, at the time of the execution of a Format 1 READ statement, no next 
logical record exists in the file, the AT END condition occurs, and the 
execution of the READ statement is considered unsuccessful. (See 1-0 
Status in this Chapter). 

10. When the AT END condition is recognized the following actions are taken 
in the specified order: 

a. A value is placed into the FILE STATUS data item, if specified for 
this file, to indicate an AT END condition. (See 1-0 Status in 
this Chapter) 

6 - 22 



b. If the AT END phrase is specified in the statement causing the 
condition, control is transferred to the AT END 
imperative-statement. Any USE procedure specified for this file 
is not executed. 

c. If the AT END phrase is not specified, then a USE procedure must 
be specified, either explicitly or implicitly, for this file, and 
that procedure is executed. 

When the AT END condition occurs, execution of the input-output 
statement which caused the condition is unsuccessful. 

11. Following the unsuccessful execution of any READ statement, the 
contents of the associated record area and the position of the current 
record pointer are undefined. 

12. When the AT END condition has been recognised, a Format 1 READ 
statement for that file must not be executed without first executing 
one of the following: 

a. A successful CLOSE statement followed by the execution of a 
successful OPEN statement for that file. 

b. A successful START statement for that file. 

c. A successful Format 2 READ statement for that file. 

13. For a file for which dynamic access mode is specified, a Format 1 READ 
statement with the NEXT phrase specified causes the next logical record 
to be retrieved, from the file as described in general rule 2. 

14. If the RELATIVE KEY phrase is specified, the execution of a Fa rma t 1 
READ statement updates the contents of the RELATIVE KEY data item such 
that it contains the relative record number of the record made 
available. 

15 e The execution of a Forma t 2 READ statement sets the current record 
pointer to, and makes available, the record whose relative record 
number is contained in the data item named in the RELATIVE KEY phrase 
for the file, If the file does not contain such a record, the INVALID 
KEY condi tion exists and execution of the READ statpment is 
unsuccessful. (See The INVALID KEY Condition in this Chapter). 

6 - 23 



THE REWRITE STATEMENT 

Function 

The REWRITE statement logically replaces a record existing in a disk filec 

General Format 

REWRITE record-name [FROM identifier] [; INVALID KEY imperative-statement] 

Syntax Rules 

1. Record-name and identifier must not refer to the same storage area. 

2c Record-name is the name of a logical record in the File Section of the 
Data Division and may be qualified. 

3. The INVALID KEY phrase must not be specified for a REWRITE statement 
which references a file in sequential access mode. 

4. The INVALID KEY phrase must be specified in the REWRITE statement for 
files in the random or dynamic access mode for which an appropriate USE 
procedure is not specified. 

General Rules 

1. The file associated wi th record-name must be open in the I-O mode at 
the time of execution of this statement. (See THE OPEN STATEMENT in 
this Chapter). 

2. For files in the sequential access mode, the last input-output 
statement executed for the associated file prior to the execution of 
the REWRITE statement mus t have been a successfu lly executed READ 
statement. The Operating System logically replaces the record that was 
accessed by the READ statement. 

3. The number of character positions in the record referenced by 
record-name must be equal to the number of character positions in the 
record being replaced. 

4. The logical record released by a successfu 1 execution of the RE'"~RITE 
statement is no longer available in the record area unless the 
associated file is named in a SAME RECORD AREA clause, in which case 
the logical record is available to the program as a record of other 
files appearing in the same SAME RECORD AREA clause as the associated 
I-O file, as well as to the file associated with record-name. 

5. The execution of a REWRITE statement with the FROM phrase is equivalent 
to the execut~on oi: 

MOVE identifier TO record-name 
6 - 24 



followed by the execution of the same REWRITE statement wi thout the 
FROM phrase. The contents of the record area prior to the execution of 
the implicit MOVE statement have no effect on the execution of the 
REWRITE statement. 

6. The current record pointer is not affected by the execution of a 
REWRITE statement. 

7. The execution of the REWRITE statement causes the value of the FILE 
STATUS data item, if any, associated with the file to be updated. (See 
1-0 STATUS in this Chapter). 

8. For a file accessed in either random or dynamic access mode, the 
Operating System logically replaces the record specified by the 
contents of the RELATIVE KEY data i tern associated wi th the file. If 
the file does not contain the record specified by the key, the INVALID 
KEY condition exists. (See THE INVALID KEY CONDITION in this Chapter). 
The updating operation does not take place and the data in the record 
area is unaffected. 

6 - 25 



THE START STATEMENT 

Function 

The START statement provides a basis for logical positioning within a 
relative file, for subsequent sequential retrieval of records. 

General Format 

= EQUAL TO 

START file-name KEY 
> GREATER THAN 
> 

IS 
,IS = 
IS 
IS 
IS 
IS 

data-name 

NOTE: 

< NOT LESS THAN -----NOT < 

[; INVALID KEY imperative-statement] 

The required relational characters '>', and '<' and '=' 
are not underlined to avoid confusion with other symbols 
such as '>' (greater than or equal to). 

Syntax Rules 

1. File-name must be the name of a file with sequential or dynamic access. 

2. Data-name may be qualified. 

3. The INVALID KEY phrase must be specified if no applicable USE procedure 
is specified for file-name. 

4. Data-name, if specified, must be the data item specified in the 
RELATIVE KEY phrase of the associated file control entry. 

General Rules 

1. File-name must be open in the INPUT or I-a mode at the time that the 
START statement is executed. (See THE OPEN STATEMENT in this Chapter). 

2. If the KEY phrase is not specified the relational operator 'IS EQUAL 
TO' is implied. 

3. The type of comparison specified by the relational operator in the KEY 
phrase occurs between a key associated with a record in the file 
referenced by file-name and a data item as specified in general Rule 5. 

a. The current record pointer is positioned to the first logical 
record currently existing in the file whose key satisfies the 
comparison. 

6 - 26 



b. If the comparison is not satisfied by any record in the file, an 
INVALID KEY condition exists, the execution of the START statement 
is unsuccessful, and the position of the current record pointer is 
undefined. (See The INVALID KEY Condition in this Chapter). 

4. The execution of the START statement causes the value of the FILE 
STATUS data item, if any, associated with file-name to be updated. (See 
1-0 STATUS in this Chapter). 

5. The comparison described in general rule 3 uses the data item 
referenced by the RELATIVE KEY clause associated with file-name. A 
RELATIVE KEY clause must be associated with a filename. 

6 - 27 



THE USE STATEMENT 

Function 

The USE statement specifies procedures for input-output error handling that 
are in addition to the standard procedures provided by the input-output 
control system. 

General Format 

EXCEPTION 
USE AFTER STANDARD 

ERROR 

Syntax Rules 

PROCEDURE ON 

file-name-l [,file-name-2] 
INPUT 
OUTPUT 
1-0 

1. A USE statement, when present, must immediately follow a section header 
in the declaratives section and must be followed by a period followed 
by a space. The remainder of the section must consist of zero, one or 
more procedural paragraphs that define the procedures to be used. 

2.. The USE statement itself is never executed; it merely defines the 
conditions calling for the execution of the USE procedures .. 

3.. The same file-name can appear in a different specific arrangement of 
the format. Appearance of a file-name in a USE statement must not 
cause the simultaneous request for execution of more than one USE 
procedure. 

4. The words ERROR and EXCEPTION are synonymous and may be used 
interchangeably. 

5. The files implicitly or explicitly referred in a USE statement need not 
all have the same organization or access. 

General Rules 

1. The designated procedures are executed by the input-output system after 
completing the standard input-output error routine, or upon recognition 
of the INVALID KEY or AT END conditions when the INVALID KEY or AT END 
phrases have not been specified in the input-output statement. 

2. After execution of a USE procedure, control is returned to the invoking 
routine. 

(Addendum 2) 

6 - 28 



3. Within a USE procedure, there must not be any reference to any 
nondeclarative procedures. Conversely, in the nondeclarative portion 
there must be no reference to procedure-names in the declarative 
portion, except that PERFORM statements may refer to a USE statement or 
to the procedures associated with such a USE statement. 

4. Within a USE procedure, there must not be the execution of any 
statement that would cause the execution of a USE procedure that had 
previously been invoked and had not yet returned control to the 
invoking routine. 

6 - 29 



THE WRITE STATEMENT 

Function 

The WRITE statement releases a logical record for an output or input-output 
file$ 

General Format 

WRITE record-name [FROM identifier] [; INVALID KEY imperative-statement] 

Syntax Rules 

1. Record-name and identifier must not reference the same'storage area. 

2. The record-name is the name of a logical record in the File Section of 
the Data Division and may be qualified. 

3. The INVALID KEY phrase must be specified if an applicable USE procedure 
is not specified for the associated file. 

General Rules 

1. The associated file must be open in the OUTPUT or 1-0 mode at the time 
of the execution of this statement. (See THE OPEN STATEMENT Chapter). 

2. The logical record released by the execution of the WRITE statement is 
no longer availab Ie in the record area un less the associated file is 
named in a SA.\fE RECORD' AREA clause or the execution of the WRITE 
statement is unsuccessful due to an INVALID KEY condition. 

The logical record is also available to the program as a record of 
other files referenced in the same SAME RECORD AREA clause as the 
associated output file, as well as to the file associated with 
record-name. 

3. The resu Its of the execution of the WRITE statement wi th the FROM 
phrase is equivalent to the execution of 

a. The statement: 

MOVE identifier TO record-name 

according to the rules specified for the MOVE statement, followed 
by: 

6 - 30 



b. The same WRITE statement without the FROM phrasee 

The contents of the record area prior to the execution of the 
implicit MOVE statement have no effect on the execution of this 
WRITE statement. 

After execution of the WRITE statement is complete, the 
information in the area referenced by identifier is available, 
even though the information in the area referenced by record-name 
may not be. (See general rule 2 above). 

4. The current record pointer is unaffected by the execution of a WRITE 
statement. 

5 e The execution of the WRITE statement causes the value of the FILE 
STATUS data item, if any, associated with the file to be updated. (See 
1-0 Status in this Chapter). 

6. The maximum record size for a file is established at the time the file 
is created and must not subsequently be changed. 

7. The number of character positions on a mass storage device required to 
store a logical record in a file mayor may not be equal to the number 
of character positions defined by the logical description of that 
record in the program. 

8. The execution of the WRITE statement releases a logical record to the 
operating system. 

9. When a file". is opened in the output mode, records may be placed into 
the file by one of the following: 

a. If the access mode is sequential, the WRITE statement will cause a 
record to be released to the Operating System. The first record 
will have a relative record number of one and subsequent records 
released will have relative record numbers of 2,3,4, .t. If the 
RELATIVE KEY data item has been specified in the file control 
entry for the associated file, the re lative record number of the 
record just released will be placed into the RELATIVE KEY data 
item by the Operating System during execution of the WRITE 
statement. 

b. If the access mode is random or dynamic, prior to the execution of 
the WRITE statement the value of the RELATIVE KEY data item must 
be initialized in the program with the relative record number of 
be associated with the record in the record area. That record is 
then released to the Operating System by execution of the WRITE 
statement. 

6 - 31 



10. When a file is opened in the 1-0 mode and the access mode is random or 
dynamic, records are to be inserted in the associated file. The value 
of the RELATIVE KEY data item must be initialised by the program with 
the relative record number to be associated with the record in the 
record area. Execution of a WRITE statement then causes the contents 
of the record area to be released to the Operating System. 

11. The INVALID KEY condition exists under the following circumstances: 

a. When the access mode is random or dynamic, and the RELATIVE KEY 
data item specifies a record which already exists in the file, or 

b. When an attempt is made to write beyond the externally defined 
boundaries of the file. 

12. When the INVALID KEY condition is recognised, the execution of the 
WRITE statement is unsuccessful, the contents of the record area are 
unaffected, and the FILE STATUS data i tern, if any, of the associated 
file is set to a value indicating the cause of the conditionG 
Execution of the program proceeds according to the rules stated in The 
INVALID KEY Condition in this Chapter see also 1-0 Status in this 
Chapter). 

6 - 32 



CHAPTER 7 

INDEXED INPUT AND OUTPUT 

INTRODUCTION TO THE INDEXED 1-0 MODULE 

The Indexed 1-0 module provides a capability to access records of· a mass 
storage file in either a random or sequential manner. Each record in an 
indexed file is uniquely identified by the value of one or more keys within 
that record. 

LANGUAGE CONCEPTS 

Organization 

A file whose organization is indexed is a mass storage file in which data 
records may be accessed by the value of a key. A record description may 
include one or more key data items, each of which is associated with an 
index. Each index provides a logical path to the data records according to 
the contents of a data item within each record which is the record key for 
that index. 

The data item named in the RECORD KEY clause of the file control entry for a 
file is the prime record key for that file. For purposes of inserting, 
updating and deleting records in a file, each record is identified solely by 
the value of its prime record key. This value must, therefore, be unique 

be changed when updating the record. 

A data item named in the ALTERNATE RECORD KEY clause of the file control 
entry for a file is an alternative record key for that file. The value of 
an alternative record key may be non-unique if the DUPLICATES phrase is 
specified for it. These keys provide alternative access paths for retrieval 
of records from the file. A maximum number of 80 alternate keys can be 
specifiedo 

Access Modes 

In the sequential access mode, the sequence in which records are accessed is 
the ascending order of the record key values. The order of retrieval of 
records within a set of records having duplicate record key values is the 
order in which the records were written into the set. 

In the random access mode, the sequence in which records are accessed is 
controlled by the programmer. The desired record is accessed by placing the 
value of its record key in the record key data item. 

7 - 1 



In the dynamic access mode, the programmer may change at will from 
sequential access to random access using appropriate forms of input-output 
statements. I 

Current Record Pointer 

The current record pointer is a conceptual entity used in this document to 
facilitate specification of the next record to be accessed within a given 
file. The concept of the current record pointer has no meaning for a file 
opened only in the output mode. The setting of the current record pointer 
is affected only by the OPEN, START and READ statements. 

1-0 Status 

If the FILE STATUS 'clause is specified in a file control entry, a value is 
placed into the specified two-character data item during the execution of an 
OPEN, CLOSE, READ, WRITE, REWRITE, DELETE or START statement and before any 
applicable USE procedure is executed, to indicate to the COBOL program the 
status of that input-output operation. 

Status Key 1 

The leftmost character position of the FILE STATUS data item is known as 
status key 1 and is set to indicate one of the following conditions upon 
completion of the input-output operation~ 

'0' - Successful Completion 
'1' - At End 
'2' - Invalid Key 
'3' - Permanent Error 
'9' - Operating System Error Message 

The meaning of the above indications are as follows: 

o - Successful Completion. 
successfully executed. 

The input-output statement was 

1 - At End. The Format 1 READ statement was unsuccessfully executed 
as a result of an attempt to read a record when'no next logical 
record exists in the file. 

2 - Invalid Key. The input-output statement was unsuccessfully 
executed as a result of one of the following: 

Sequence Error 
Duplicate Key 
No Record Found 
Boundary Violation 

3 - Permanent Error. The input-output statement was unsuccessful as 
the result of an input-output error, such as data check, parity 
error, or transmission error. 

7 - 2 



9 - Operating System Error Message. The input-output statement was 
unsuccessfully executed as a result of a condition that is 
specified by the Operating System Error Message number. This 
value is used only to indicate a condition not indicated by other 
defined values of status key 1, or by specified combinations of 
the value of status key 1 and status key 2. 

Status Key 2 

The rightmost character position of the FILE STATUS data item is known as 
status key 2 and is used to further describe the results of the input-output 
operation. This character will contain a value as follows: 

If no further information is available concerning the input-output 
operation, then status key 2 contains a value of '0'. 

When status key 1 contains a value of '0' indicating a successful 
completion, status key 2 may contain a value of '2' indicating a 
duplicate key. This condition indicates one of two possibilities: 

1. For a READ statement, the key value for the current key of 
reference is equal to the value of that same key in the next 
record within the current key of reference. 

2." For a WRITE or REWRITE statement, the record just written created 
a duplicate key value for at least one alternate record key for 
which duplicates are allowed. 

When status key 1 contains a value of 
condition, status key 2 contains values 
condition as follows: 

'2' indicating an INVALID KEY 
to designate the cause of that 

1 Indicates a sequence error for a sequentially accessed indexed 
file. The ascending sequence requirements of successive record 
key values have been violated (see The WRITE Statement later in 
this Chapter), or the prime record key value has been changed "by 
the COBOL program between the successful execution of a READ 
statement and the execution of the next REWRITE statement for that 
file. 

2 Indicates a duplicate key value. An attempt has been made to 
write or rewrite a record that would create a duplicate key in an 
indexed file. 

3 Indicates no record found. An attempt has been made to access a 
record, identified by a key, and that record does not exist in the 
file. 

4 Indicates a boundary violation. An attempt has been made to write 
beyond the externally defined boundaries of an indexed file. This 
is usually treated as a fatal error by Operating Systems. 

7 - 3 



When status key 1 contains a value of '9' the value of status key 2 is the 
operating system error message number (for those operating systems which 
designate errors numerically). The L/II COBOL· Operating Guide specific to 
your operating system contains details of the status-key-2 representation. 
Note that it is not possible to extract this number directly. 

Valid Combinations of Status Keys 1 and 2 

The valid permissible combinations of the value of status key 1 and 
status key 2 are shown in the following table. An 'X' at an intersection 
indicates a valid permissible combination. 

Status Key 1 Status Key 2 

No Further Sequence Duplicate No Record Boundary 
Information Error Key Found Violation 

(0) (1) ( 2) (3) (4) 

Successful X X 
Completion (0) 

At End (1.) X 

Invalid Key (2) X X X X 

Permanent 
Error (3) X 

Implementor 
Defined (9) Operating System Error Message Number 

The INVALID KEY Condition 

The INVALID KEY condition can occur as a result of the execution of a START, 
READ, WRITE, REWRITE or DELETE statement. For details of the causes of the 
condition see THE START STATEMENT, THE READ STATEMENT, THE WRITE STATEMENT, 
and THE DELETE STATEMENT later in this Chapter. 

When the INVALID KEY condition is recognized, the Operating System takes 
these actions in the following order: 

·1. A value is placed into the FILE STATUS data item, if specified for this 
file, to indicate an INVALID KEY condition. (See 1-0 Status). 

2. If the INVALID KEY phrase is specified in the statement causing the 
condition, control is transferred to the INVALID KEY imperative 
statement. Any USE procedure specified for this file is not executed. 

7 - 4 



3. If the INVALID KEY phrase is not specified, but a USE procedure is 
specified, either explicitly or implicitly, for this file, that 
procedure is executed. 

When the INVALID KEY condi tion occurs, execution of the input-output 
statement which recognised the condition is unsuccessful and the file 
is not affected. 

The AT END Condition 

The AT END condition can occur as a result of the execution of a READ 
statement. For details of the causes of the condition, see THE READ 
STATEMENT later in this Chapter. 

7 - 5 



ENVIRONMENT DIVISION IN THE INDEXED 1-0 MODULE 

INPUT-OUTPUT SECTION 

The File Control Paragraph 

Function 

The FILE-CONTROL paragraph names each file and allows specification of 
other file-related information~ (See also the LIII COBOL Operating Guide). 

General Format 

FILE-CONTROL. ~ file-control-entry~ ••. 

The File Control Entry 

Function 

The file control entry names a file and may specify other file-related 
information. 

General Format 

SELECT file-name 

ASSIGN TO sexternal-file-name-literall 
lfile-identifier S 

[ 
sexternal-file-name-li~erall] 

'I file-identifier . S 

~ RESERVE integer-t[!:!s] ] 
ORGANIZATION IS INDEXED 

[; ACCESS MODE IS ~ 
SEQUENTIAL ~J 
DYNAMIC 
RANDOM 

RECORD KEY IS data-name-l 

[; ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]] ••. 

[; FILE STATUS IS data-name-3] 

7 - 6 



Syntax Rules 

1. The SELECT clause must be specified first in the file control entry. 
The clauses which follow the SELECT clause may appear in any order. 

2. Each file described in the Data Division must be named once and only 
once as file-name in the FILE-CONTROL paragraph. Each file specified 
in the file control entry must have a file description entry in the 
Data Division. 

3. If the ACCESS MODE clause is not specified, the ACCESS MODE IS 
SEQUENTIAL clause is implied. 

4. Data-name-3 must be defined in the Data Division as a two-character 
data item of the category alphanumeric and must not be defined in the 
File Section. 

5. Data-name-1, data-name-2 and data-name-3 may be qualified. 

6. The data items referenced by data-name-1 and data-name-2 must each be 
defined as a data item of the category alphanumeric within a record 
description entry associated with that file-name. 

7. Neither data-name-l nor data-name-2 can describe an item whose size is 
variable. (See THE OCCURS CLAUSE in Chapter 4). 

8. Data-name-2 cannot reference an- item whose leftmost character position 
corresponds to the leftmost character position of an item referenced by 
data-name-1 or by any other data-name-2 associated with this file. 

9. File-identifier is any user-defined word but must not be the same as 
file-name. 

General Rules 

1. The ASSIGN clause specifies the association of the file referenced by 
to a storage medium. See L/II COBOL Operatin Guide. 

~U".~ut takes effect. 

2. The RESERVE clause allows 
allocated. 

3. The ORGANIZATION clause specifies the logical structure of a file. The 
File organization is established at the time a file is created and 
cannot subsequently be changed. 

4. When the access mode is sequential, records in the file are accessed in 
the sequence dictated by the file organization. For indexed files this 
sequence is the order of ascending record key values within a given key 
of reference. 

(Addendum 2) 
7 - 7 



5. When the FILE STATUS clause is specified, a value will be moved by the 
operating system into the data item specified by data-name-3 after the 
execution of every statement that references that file either 
explicitly or implicitly. This value indicates the status of execution 
of the statement. (See 1-0 STATUS in this Chapter). 

6. If the access mode is random, the value of the record key data item 
indicates the record to be accessed. 

75 When the access mode is dynamic, records in the file may be accessed 
sequentially and/or randomly. (See general rules 4 and 6). 

8. The RECORD KEY clause specifies the record key that is the prime record 
key for the file. The values of the prime record key must be unique 
among records of the file. This prime record key provides an access 
path to records in an indexed file. 

9. An ALTERNATE RECORD KEY clause specifies a record key that is an 
alternative record key for the file. This alternate record key 
provides an alternate access path to records in an indexed file. 

10. The data description of data-name-1 and data-name-2 as well as relative 
locations within a record must be the same as that used when the file 
was created. The number of alternate keys for the file must also be 
the same as that used when the file was created. 

11. The DUPLICATES phrase specifies that the value of the associated 
alternate record key may be duplicated within any of the records in the 
file. If the DUPLICATES phrase is not specified, the value of the 
associated alternate record key must not be duplicated among any of the 
records in the file. 

12. If file-identifier is not explicitly defined it will be implicitly 
defined. 

The 1-0 Control Paragraph 

Function 

The I-O-CONTROL paragraph specifies the points at which rerun is to be 
established and the memory area which is to be shared by different files. 

General Format 

I-O-CONTROL. 

r; RERUN ON S f ile-name-1 ~ L ~implementor-name~ 
EVERY 

~
integer-1 RECORDS OF file-name-2j] 
integer-2 CLOCK-UNITS 
condition-name 

~ SAME [RECORD] AREA FOR file-name-3 I. file-name-4! ... ] 

7 - 8 



Syntax Rules 

1. The I-a-CONTROL paragraph is optional. 

2. File-name-l must be a sequentially organized file. 

3. When either the integer-l RECORDS clause or the integer-2 CLOCK-UNITS 
clause is specified, implementor-name must be given in the RERUN 
clause. 

4. When multiple integer-l RECORDS clauses are specified, no two of them 
may specify the same file-name-2. 

5. Only one RERUN clause containing the CLOCK-UNITS clause may be 
specified. 

6. The two forms of the SAME clause (SAME AREA, SAME RECORD AREA) are 
considered separately in the following: 

More than one SAME clause may be included in a program, however: 

a. A file-name must not appear in more than one SAME AREA clause. 

b. A file-name must not appear in more than one SAME RECORD AREA 
clause. 

c. If one or more file-names of a SAME AREA clause appear in a SAME 
RECORD AREA clause', all of the file-names in the SAME AREA clause 
must appear in the SAME RECORD AREA clause. However, additional 
file-names not appearing in that SAME AREA clause may also appear 
in that SAME RECORD AREA clause. The rule that only one of the 
files mentioned in a SAME AREA clause can be open at any given 
time takes precedence over the rule that all files mentioned in a 
SAME RECORD AREA-clause can be open at any given time. 

7. The files referenced in the SAME AREA or SAME RECORD AREA clause need 
not all have the same organization or access. 

General Rules 

2. The SAME AREA clause specifies that two or more files are to use the 
same memory area during processing. The "area shared includes all 
storage areas assigned to the files specified; therefore, it is not 
valid to have more than one of the files open at the same time. (See 
syntax rule 6c.) 

7 - 9 



3. The SAME RECORD AREA clause specifies that two or more files are to use 
the same memory area for processing of the current logical record. All 
of the files may be open at the same time. A logical record in the 
SAME RECORD AREA is considered as a logical record of each opened 
output file whose file-name appears in this SAME RECORD AREA clause and 
of the most recently read input file whose file-name appears in this 
SAME RECORD AREA clause. This is equivalent to an implicit 
redefinition of the area, ioeo, records are aligned on the leftmost 
character position. 

7 - 10 



DATA DIVISION IN THE INDEXED 1-0 MODULE 

FILE SECTION 

In a COBOL program the file description entry (FD) represents the highest 
level of organization in the File Section. The File Section header is 
followed by a file description entry consisting of a level indicator (FD), a 
file-name and a series of independent clauses. The FD clauses specify the 
size of the logical and physical records, the presence or absence of label 
records, the value of implementor-defined label items, and the names of the 
data records which comprise the file. The entry itself is terminated by a 
period'. 

RECORD DESCRIPTION STRUCTURE 

A record description consists of a set of data description entries which 
describe the characteristics of a particular record. Each data description 
entry consists of a level-number ~ollowed by a data-name if required, 
followed by a series of independent clauses as required. A record 
description has a hierarchical structure and therefore the clauses used with 
an entry may vary considerably, depending upon whether or not it .is followed 
by subordinate entries. The structure of a record description is defined in 
CONCEPTS OF LEVELS in Chap fer 2 while the elements allowed in a record 
description are shown in THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON in 
Chapter 3. 

7 - 11 



THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON 

Function 

The file description furnishes information concerning the physical 
structure, identification, and record names pertaining to a given file. 

General Format 

FD file-name 

[
; BLOCK CONTAINS [integer-I] TO integer-2{RECORDS }] 

CHARACTERS 

(; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS] 

fLABEL { RECORD IS } {STANDARD}} 
RECORDS ARE OMITTED 

[;VALUE OF data-name-l 

[,data-name-3 IS 

IS Sd~ta-name-2l 
ll~teral-l ~ 

Sdata-name-4~] 
?literal-2 5 

[ { 
RECORD IS } 

DATA RECORDS ARE data-name-5 [,data-name-6] 

Syntax Rules 

] 
] . 

1. The level indicator FD identifies the beginnning of a file description 
and must precede the file-name. 

2. The clauses which follow the name of the file are optional in many 
of 

3. One or more record description entries must follow the file description 
entry. 

THE BLOCK CONTAINS CLAUSE 

Function 

The BLOCK CONTAINS clause specifies the size of a physical record. 

7 - 12 



General Format 

. ~ RECORDS ~ 
BLOCK CONTAINS [integer-1 TO] ~ntrger-2 ?CHARACTERSS 

General Rule 

THE DATA RECORDS CLAUSE 

Function 

The DATA RECORDS clause serves only as documentation for the names of data 
records with their associated file. 

General Format 

DATA 

Syntax Rule 

S RECORD IS ~ 

? RECORDS ARE S data-name-1 [, data-name-2] ... 

Data-name-1 and data-name-2 are the names of data records and should have 01 
level-number record descriptions, with the same names, associated with them. 

General Rules 

1. The presence of more than one data-name indicates that the file 
contains more than one type of data record. These records may be of 
differing sizes, different formats, etc. The order in which they are 
listed is not significant. 

2. Conceptually, all data records within a file share the same area. This 
is no way altered by the presence of more than one type of data record 
within the file. 

THE LABEL RECORDS CLAUSE 

Function 

The LABEL RECORDS clause specifies whether labels are present. 

7 - 13 



General Format 

LABEL {RECORD IS } 
RECORDS ARE 

General Rule 

THE RECORD CONTAINS CLAUSE 

Function 

{ 
STANDARD} 
OMITTED. 

The RECORD CONTAINS clause specifies the size of data records" 

General Format 

RECORD CONTAINS [integer-l TO] integer-2 CHARACTERS 

General Rule 

The size of each completely defined within. the record 
clause required. . 

THE VALUE OF CLAUSE 

Function 

The VALUE OF clause specialises the description of an item in the label 
records associated with a file. 

General Format 

VALUE OF data-name-1 ISSd~ta-name-2l 
ll~teral-l 5 

rr Sdata-name-4~] 
t,data-name-3 ISlliteral-2 5 

Syntax Rules 

1. Data-name-2, data-name-4, etc., should be qualified when necessary, but 
cannot be subscripted or indexed, nor can they be items described with 
the USAGE IS INDEX clause. 

2. Data-name-2, data-name-4, etc., must be in the Working-Storage Section. 

7 - 14 



General Rules 

1. 

2. For an input file, the appropriate label routine checks to see if the 
value of data-name-l is equal to the value of literal-I, or of 
data-name-2, whichever has been specified. 

For an output file, at the appropriate time the value of data-name-l is 
made equal to the value of literal-I, or of a data-name-2, whichever 
has been specified. 

3. A figurative constant may be substituted in the format above wherever a 
literal is specified. 

7 - 15 



PROCEDURE DIVISION IN THE INDEXED I~O MODULE 

THE CLOSE STATEMENT 

Function 

The CLOSE statement terminates the processing of files. 

General Format 

CLOSE file-name-1 [WITH LOCK] [t file-name-2 [WITH LOCK] ] G •• 

Syntax Rule 

The files referenced in the CLOSE statement need not all have the same 
organization or access. 

General Rules 

1. A CLOSE statement may only be executed for a file in an open mode. 

2. Indexed files are classified as belonging to the category of 
non-sequential single/multi-reel/unit. The results of executing each 
type of CLOSE for this category of file are summarized in the following 
table. 

CLOSE File Category = 
Statement Non-sequential 

Format Single/Multi-Reel/Unit 

CLOSE A 
CLOSE WITH LOCK A,B 

The definitions of the symbols in the table are given below. Where the 
definition depends on whether the file is an input, output, or 
input-output file, alternate definitions are given; otherwise, a 
definition applies to input, output, and input-output files. 

A. Close File 

Input Files and Input-Output Files (Sequential Access Mode): 

If the file is positioned at its end and label records are specified 
for the file, the labels are processed according to the operating 
system standard label convention. The behaviour of the CLOSE statement 
when label records are specified but not present, or when label records 
are not specified but are present, is undefined. If the file is 
positioned at its end and label records are not specified for the file, 
label processing does not take place but other closing operations 
dependent on the Run-Time System (RTS) are executed. See the L/ll 
COBOL Operating Guide. If the file is positioned other than at its 

7 - 16 



end, the closing operations specified by the RTS are executed, but 
there is no ending label processing. 

Input Files and Input-Output Files (Random or Dynamic Access Mode); 
Output Files (Random, Dynamic, or Sequential Access Mode): 

If label records are specified for the file, the labels are processed 
according to the operating system standard label convention. The 
behaviour of the CLOSE statement when label records are specified but 
not present, or when label records are not specified but are present, 
is undefined. If label records are not specified for the file, label 
processing does not take place but other closing operations dependent 
on the RTS are executed. 

B. File Lock 

This file cannot be opened again during this execution of this run 
unit. 

3. The action taken if a file is in the open mode when a STOP RUN 
statement is executed is to close the file. The action taken for a file 
that has been opened in a called program and not closed in that program 
prior to the execution of a CANCEL statement for that program is to 
close the file. 

4. If a CLOSE statement has been executed for a file, no other statement 
can be executed that references that file, either explicitly or 
implicitly, unless an intervening OPEN statement for that file is 
executed. 

5. Following the successful execution of a CLOSE statement, the record 
area associated with file-name is no longer available. The unsuccessful 
execution of such a CLOSE statement leaves the availabili ty of the 
record area undefined. 

6. If WITH LOCK is specified, the file cannot be reopened in the current 
execution of the run unit. 

7 - 17 



THE DELETE STATEMENT 

Function 

The DELETE statement logically removes a record from a mass storage file. 

General Format 

DELETE file-name RECORD [; INVALID KEY imperative-statement] 

Syntax Rules 

1. The INVALID KEY phase must not be specified for a DELETE statement 
which references a file which is in sequential access mode. 

2. The INVALID KEY phrase must be specified for a DELETE statement which 
references a file which is not in sequential access mode and for which 
an applicable USE procedure is not specified. 

General Rules 

1. The associated file must be open in 1-0 mode at the time of the 
execution of this statement. (See THE OPEN STATEMENT later in this 
Chapter) . 

2. For files in the sequential access mode, the last input-output 
statement executed for file-name prior to the execution of the DELETE 
statement must have been a successfully executed READ statement. The 
Operating System logically removes from the file the record that was 
accessed by that READ statement. 

3. For a file in random or dynamic access mode, the Operating System 
logically removes from the file the record ident ified by the contents 
of the prime record key data item associated wi th file-name. If the 
file does not contain the record specified by the key, an INVALID KEY 
condition exists. (See THE INVALID KEY CONDITION in this Chapter). 

4. After the successful execution of a DELETE statement, the identified 
record has been logically removed from the file and can no longer be 
accessed. 

5. The execution of a DELETE statement does not affect the contents of the 
record area associated with file-name. 

6. The current re~ord pointer is not affected by the execution of a DELETE 
statement. 

7. The execution of the DELETE statement causes the value of the specified­
FILE STATUS data item, if any, associated with file-name to be updated. 
(See 1-0 STATUS in this Chapter). 

7 - 18 



THE OPEN STATEMENT 

Function 

The OPEN statement initiates the processing of files. It also performs 
checking and/or writing of labels and other input-output operations. 

General Forma t 

OPEN 

Syntax Rule 

~ 
INPUT file-name-l 
OUTPUT file-name-3 
I-O file-name-S 

[, file':'name-2] 
[ , f 1- Ie-name -4 ] 
[, f ile-name-6] 

( .. 

The files referenced in the OPEN statement need not all have the same 
organization or access. 

General Rules 

1. The successful execution of the OPEN statement determines the 
availability of the file and results in the file being in an open mode. 

2. The successfu I execution of the OPEN statement makes the associated 
record area available to the program. 

3. Prior to the successfu I execution of an OPEN statement for a given 
file, no statement can be executed that references that file, either 
explicitly or implicitly. 

4. An OPEN statement must be successfully executed prior to the execution 
of any of the permissible input-output statements. In Table 7-1, 
Permissible Statements, 'X' at an intersection indicates that the 
specified statement, used in the access mode given for that row, may be 
used with the indexed file organization and the open mode given at the 
top of the column. 

7 - 19 



Table 7-1. Permissab1e Combinations of Statements and Open Modes for 
Indexed I/O. 

Open Mode 
File Access 

Mode Statement Input Output Input-Output 

Sequential READ X X 
WRITE X 
REWRITE X 
START X X 
DELETE X 

Random READ X X 
WRITE X X 
REWRITE X 
START 
DELETE X 

Dynamic READ X X 
WRITE X X 
REWRITE X --
START X X 
DELETE X 

5. A file may be opened with the INPUT, OUTPUT and 1-0 phrases in the. same 
program. Following the initial execution of an OPEN statement for a 
file, each .subsequent OPEN statement execution for that same file must 
be preceded'by the execution of a CLOSE statement for that file. 

6. Execution of the OPEN statement does not obtain or release the first 
data record. 

7 • The assigned name in the select statement for a file is processed as 
follows: 

a. When the INPUT phrase is specified, the execution of the OPEN 
statement causes the assigned name to be checked in accordance 
with the operating system conventions for opening files for input. 

b. When the OUTPUT phrase is specified, the execution of the OPEN 
statement causes the assigned name to be written in accordance 
with the operating system conventions for opening files for 
output. 

8. The file description entry for file-name-1, file-name-2, file-name-5, 
or file-name-6 must be equivalent to that used when this file was 
created. 

7 - 20 



9. For files being opened with the INPUT or 1-0 phrase, the OPEN statement 
sets the current record pointer to the first record currently existing 
within the file. For indexed files, the prime record key is 
established as the key of reference and is used to determine the first 
record to be accessed. If no records exist in the file, the current 
record pointer is set such that the next executed Format 1 READ 
statement for the file will result in an AT END condition. If the file 
does not exist, INPUT will cause an error status. 

10. 

11. When the 1-0 phrase is specified and the LABEL RECORDS clause indicates 
label records are present, the execution of the OPEN statement includes 
the following steps: 

a. The labels are checked in accordance with the operating system 
specified conventions for input-output label checking. 

b. The new labels are written in accordance with the operating system 
specified conventions for input-output label writing. 

12. Upon successful execution of an OPEN statement with the output phrase 
specified, a file is created. At that time the associated file 
contains no data records. If a file of the same name exists it will be 
deleted. If write protected, an error status occurs. 

13. The execution of the OPEN statement causes the value of the FILE STATUS 
data item to be updated (see 1-0 STATUS in this chapter). 

(Addendum 1) 

7 - 21 



THE READ STATEMENT 

Function 

For sequential access, the READ statement makes available the next logical 
record from a file. For random access, the READ statement makes available a 
specified record from a mass storage file. 

General Format 

Format 1 

READ file-name [NEXT] RECORD [INTO identifier] 

[;AT END imperative-statement] 

Format 2 

READ file-name RECORD INTO identifier ] 

[;KEY IS data-name] 

[;INVALID KEY imperative-statement] 

Syntax Rl,lles 

1. The INTO phrase must not be used when the input file contains logical 
records of various sizes as indicated by their record descriptions. 
The storage area associated with identifier and the storage area which 
is the record area associated with file-name must not be the same 
storage area. 

2. Data-name must be the name of a data item specified as a record key 
associated with file-name. 

3. Data-name may be qualified. 

4. Format 1 must be used (without the NEXT phrase) for all files in 
sequential access mode. 

5. Format 1 (with the NEXT phrase) must be specified for files in dynamic 
access mode, when records are to be retrieved sequentially. 

6. Format 2 is used for files in random access mode or for files in 
dynamic access mode when records are to be retrieved randomly. 

7. The INVALID KEY phrase or the AT END phrase must be specified if no 
applicable USE procedure is specified for file-name. 

7 - 22 



General Rules 

1. The associated file must be open in the INPUT or 1-0 mode at the time 
this statement is executed. (See THE OPEN STATEMENT in this Chapter). 

2. The record to be made available by a Format 1 READ statement is 
determined as follows: 

a. The record, pointed to by the current record pointer, is made 
available provided that the current record pointer was positioned 
by the START or OPEN statement and the record is still accessible 
through the path indicated by the current record pointer; if the 
record is no longer accessible, which may have been caused by the 
deletion of the record or a change in an ALTERNATE RECORD key. The 
current record pointer is updated to point to the next existing 
record within the established key of reference and that record is 
then made available. 

b. If the current record pointer was positioned by the execution of a 
previous READ statement, the current record pointer is updated to 
point to the next existing record in the file with the established 
key of reference and then that record is made available. 

3. The execution of the READ statement causes the value of the FILE STATUS 
data item, if any, associated with file-name to be updated. (See 1-0 
Status in this Chapter). 

4. Regardless of the method used to overlap access time wi th processing 
time, the concept of the READ statement is unchanged in that a record 
is available to the object program prior to the execution of any 
statement following the READ statement. 

5. When the logical records of a file are described wi th more than one 
record description, these records automatically share the same storage 
area; this is equivalent to an implicit redefinition of the area. The 
contents of any data items which lie beyond the range of the current 
data record are undefined at the completion of the execution of the 
READ statement. 

6. If the INTO phrase is specified, the record being read is moved from 
the record area to the area specified by identifier according to the 
rules specified for the MOVE statement without the CORRESPONDING 
phrase. The implied MOVE does not occur if the execution of the READ 
statement was unsuccessfu 1. Any subscripting or indexing associated 
with identifier is evaluated after the record has been read and 
immediately before it is moved to the data item. 

7. When the INTO phrase is used, 
both the input record area 
identifier. 

the record being read is availab Ie in 
and the data area associated with 

7 - 23 



8. If, at the time of execution of a Format 1 READ statement, the position 
of current record pointer for that file is undefined, the execution of 
that READ statement is unsuccessful. 

9. If, at the time of the execution of a Format 1 READ statement, no next 
logical record exists in the file, the AT END condition occurs, and the 
execution of the READ statement is considered unsuccessful. (See 1-0 
Status in this Chapter). 

10. When the AT END condition is recognised the following actions are taken 
in the specified order: 

a. A value is placed into the FILE STATUS data item, if specified for 
this file, to indicate an AT END condition. (See 1-0 STATUS in 
this Chapter). 

b. If the AT END phrase is specified in the statement causing the 
condition, control is transferred to the AT END imperative 
statement. Any USE procedure specified for this file is not 
executed. 

c. If the AT END phrase is not specified, then a USE procedure must 
be specified, either explictly or implicitly, for this file, and 
that procedure is executed. 

When the AT END condition occurs, execution of the input-output 
statement which caused the condition is unsuccessful. 

11. Following the unsuccessful execution of any READ statement, the 
contents of the associated record area and the position of the current 
record pointer are undefined. For indexed files the key of reference 
is also undefined. 

12. When the AT END condition has been recognised, a Format 1 READ 
statement for that file must not be executed without first executing 
one of the following: 

a. A successful CLOSE statement followed by the execution of a 
successful OPEN statement for that file. 

b. A successful START statement for that file. 

c. A successful Format 2 READ statement for that file. 

13. For a file for which dynamic access mode is specified, a Format 1 READ 
statement with the NEXT phrase specified causes the next logical record 
to be retrieved from that file as described in general rule 2 above. 

14. 'For an indexed file being sequentially accessed, reco'rds having the 
same duplicate value in an alternate record key which is the key of 
reference are made available in the same order in which they are 
released by execution of WRITE statements, or by execution of rewrite 
statements which create such duplicate values. 

7 - 24 



15. If the KEY phrase is not specified in a Format 2 READ statement, the 
prime record key is estab lished as the key of reference for this 
retrieval. If the dynamic access mode is specified, this key of 
reference is also used for retrievals by any subsequent executions of 
Format 1 READ statement for the file. 

16. For an indexed file if the KEY phrase is specified in a Format 2 READ 
statement, data-name is established as the key of reference for this 
retrieval. If the dynamic access mode is specified, this key of 
reference is also used for retrievals by any subsequent executions of 
Format 1 READ statements for the file until a different key of 
reference is established for the file. 

17. Execution of a Format 2 READ statement causes the value of the key of 
reference to be compared with the value contained in the corresponding 
data item of the stored records in the file, until the firs t record 
having an equal value is found. The current record pointer is 
positioned to this record which is then made available. If no record 
can be so identified, the INVALID KEY condition exists and execution of 
the READ statement is unsuccessful. (See The INVALID KEY Condition in 
this Chapter). 

7 - 25 



THE REWRITE STATEMENT 

Function 

The REWRITE statement logically replaces a record existing in a mass storage 
file. 

General Format 

REWRITE record-name FROM identifier] [;INVALID KEY imperative-statement] 

Syntax Rules 

1. Record-name and identifier must not refer to the same storage area. 

2. Record-name is the name of a logical record in the File Section of the 
Data Division and may be qualified. 

3. The INVALID KEY phrase must be specified in the REWRITE statement for 
files for which an appropriate USE procedure is not specified. 

General Rules 

1. The file associated with record-name must be open in the 1-0 mode at 
the time of execution of this statement. (See THE OPEN STATEHENT in 
this Chapter). 

2. For files in the sequential access mode, the last input-output 
statement executed for the associated file prior to the execution of 
the REWRITE statement must have been a successfully executed READ 
statement. The Operating System logically replaces the record that was 
accessed by the READ statement. 

3. The number of character positions in the record referenced by 
record-name must be equal to the number of character positions in the 
record being replaced. 

4. The logical record released by a successful execution of the REWRITE 
statement is no longer available in the record area unless the 
associated file is named in a SAME RECORD AREA clause, in which case 
the logical record is available to the program as a record of other 
files appearing in the same SAME RECORD AREA clause as the associated 
1-0 file, as well as to the file associated with record-name. 

5. The execution of a REWRITE statement with the FROM phrase is equivalent 
to the execution of: 

MOVE identifier TO record-name 

7 - 26 



followed by the execution of the same REWRITE statement wi thout the 
FROM phrase. The contents of the record area prior to the execution of 
the implicit MOVE statement have no effect on the execution of the 
REWRITE statement. 

6 e The current record pointer is not affected by the execution of a 
REWRITE statement. 

7. The execution of the REWRITE statement causes the value of the FILE 
STATUS data item, if any, associated with the file to be updated. (See 
I-O Status). 

8. For a file in the sequential access mode, the record to be replaced is 
specified by the value contained in the prime record key. When the 
REWRITE statement is executed the value contained in the prime record 
key data item of the record to be replaced must be equal to the value 
of the prime record key of the last record read from this file. 

9. For a file in the random or dynamic access mode, the record to be 
replaced is specified by the prime record key data item. 

10. The contents of alternative record key data items of the record being 
rewritten may differ from those in the record being replaced. The 
Operating System utilizes the content of the record key data items 
during the execution of the REWRITE statement in such a way that 
subsequent access of the record may be made based upon any of those 
specified record keys. 

11. The INVALID KEY condition exists when: 

a. The access mode is sequential and the value contained in the prime 
record key data item of the record to be replaced is not equal to 
the value of the prime record key of the last record read from 
this file or, 

b. The val ue contained in the prime record key data i tern does not 
equal that of any record stored in the file, or 

c. The value contained in an alternate record key data item for which 
a DUPLICATES clause has not been specified is equal to that of a 
record already stored in the file. 

The updating operation does not take place and the data in the 
record area is unaffected. (See The INVALID KEY Condition in this 
Chapter). 

7 - 27 



THE START STATEMENT 

Function 

The START statement provides a basis for logical positioning within an 
indexed file, for subsequent sequential retrieval of records. 

General Format 

NOTE: 

START file-name KEY 

IS EQUAL TO 
IS = 
IS GREATER THAN 
IS > 
IS NOT LESS THAN -----IS NOT < 

[;INVALID KEY imperative-statement] 

data-name 

The required relational characters '>', '<' and 
underlined to avoid confusion with other symbols 
(greater than or equal to). 

Syntax Rules 

1. File-name must be the name of an indexed file. 

'=' are 
such as 

not 
'>' 

2. File-name must be the name of a file with sequential or dynamic access. 

3. Data-name may be qualified. 

4. The INVALID KEY phrase must be specified if no applicable USE procedure 
is specified for file-name. 

5. If file-name is the name of an indexed file, and if the KEY phrase is 
specified, data-name may reference a data item specified as a record 
key associated with file-name, or it may reference any data item of 
category alpanumeric subordinate to the data-name of a data item 
specified as a record key associated with file-name whose leftmost 
character position corresponds to the leftmost character position of 
that record key data item. 

General Rules 

1. File-name must be open in the INPUT or 1-0 mode at the time that the 
START statement is executed. (See THE OPEN STATEMENT in this Chapter). 

2. If the KEY phrase is not specified the relational operator 'IS EQUAL 
TO' is implied. 

7 - 28 



3. The type of comparison specified by the relational operator in the KEY 
phrase occurs between a key associated with a record in the file 
referenced by file-name and a data item as specified in general rule 5. 
If file-name references an indexed file and the operands are of unequal 
size, comparison proceeds as though the longer one were truncated on 
the right such that its length is equal to that of the shorter. All 
other nonnumeric comparison rules apply except that the presence of the 
PROGRAM COLLATING SEQUENCE clause will have no effect on the 
comparison. (See Comparison of Nonnumeric Operands). 

a. The current record pointer is positioned to the first logical 
record currently existing in the file whose key satisfies the 
comparison. 

b. If the comparison is not satisfied by any record in the file, an 
INVALID KEY condition exists, the execution of the START statement 
is unsuccessful, and the position of the current record pointer is 
undefined. (See The INVALID KEY Condition in this Chapter) 

4. The execution of the START statement causes the value of the FILE 
STATUS data item, if any, associated with file-name to be updated. (See 
1-0 Status). 

5. If the KEY phrase is specified, the comparison described in general 
rule 3 uses the data item referenced by data-name. 

6. If the KEY phrase is not specified, the comparison described in general 
rule 3 uses the data item referenced in the RECORD KEY clause 
associated with file-name. 

7. Upon completion of the successful execution of the START statement, a 
key of reference is established and used in subsequent Format 1 READ 
statements as follows: (See THE READ STATEMENT in this Chapter). 

a. If the KEY phrase is not specified, the prime record key specified 
for file-name becomes the key of reference. 

b. If the KEY phrase is specified, and data-name is specified as a 
record key for file-name, that record key becomes the key of 
reference. 

c. If the KEY phrase is specified, and data-name is not specified as 
a record key for file-name, the record key whose leftmost 
character position corresponds to the leftmost character position 
of the data item specified by data-name, becomes the key of 
reference. 

8. If the execution of the START statement is not successful, the key of 
reference is undefined. 

7 - 29 



THE USE STATEMENT 

Function 

The USE statement specifies procedures for input-output error handling that 
are in addition to the standard procedures provided by the input-output 
control system. 

General Format 

{ 
EXCEPTION} 

USE AFTER STANDARD ERROR 

Syntax Rules 

file-name-l [, file-name-2] ... 
INPUT 

PROCEDURE ON OUTPUT 
1-0 

1.A USE statement, when present, must immediately follow a section header 
in the declaratives section and must be followed by a period followed 
by a space. The remainder of the section must consist of zero, one or 
more procedural paragraphs that define the procedures to be used. 

2. The USE statement itself is never executed; it merely defines the 
conditions calling for the execution of the USE procedures. 

3. The same file-name can appear in a different specific arrangement of 
the format. Appearance of a file-name in a USE statement must not 
cause the simultaneous request for execution of more than one USE 
procedure. 

4. The words ERROR and EXCEPTION are synonymous and may be used 
interchangeably. 

5. The files implicitly referenced in a USE statement need not all have 
the same organization or access. 

General Rules 

1. The designated procedures ar~ executed by the input-output system after 
completing the standard input-output routine, or upon recognition of 
the INVALID KEY or AT END condition, when the INVALID KEY phrase or the 
AT END phrase have not been specified in the input-output statements . 

2. After execution of a USE procedure, control is returned to the invoking 
routine. 

(Addendum 2) 

7 - 30 



3. Wi thin a USE procedure t there must not be any reference to <-iny 
nondeclarative procedures. ConverselYt in the nondeclarative portion 
there must be no reference to procedure-names that appear in the 
declarative portiont except that PERFORM statements may refer to a USE 
statement or to the procedures associated with such a USE statement. 

4. Within a USE procedure, there must not be the excecution of any 
statement that would cause the execution of a USE procedure that had 
previously been invoked and had not yet returned control to the 
invoking routine. 

7 - 31 



THE WRITE STATEMENT 

Function 

The WRITE statement releases a logical record for an output or input-output 
file. 

General Format 

WRITE record-name [FROM identifier][; INVALID KEY imperative-statement] 

1. Record-name and identifier must not reference the same storage area. 

2& The record-name is the name of a logical record in the File Section of 
the Data Division and may be qualified. 

3. The INVALID KEY phrase must be specified if an applicable USE procedure 
is not specified for the associated file. 

General Rules 

1. The associated file must be open in the OUTPUT or 1-0 mode at the time 
of the execution of this statement. (See THE OPEN STATEMENT in this 
Chapter). 

2. The logical record released by the execution of the WRITE statement is 
no longer available in the record area unless the associated file is 
named in a SAME RECORD AREA clause or the execution of the WRITE 
statement is unsuccessful due to an INVALID KEY condition. The logical 
record is available to the program from the file associated wi th 
record-name and from other files referenced in the same SAME RECORD 
AREA clause as the associated output file. 

3. The results of the execution of the WRITE statement with the FROM 
phrase is equivalent to the execution of: 

a. The statement: 

MOVE identifier TO record-name 

according to the rules specified for the MOVE statement, followed 
by: 

b. The same WRITE statement without the FROM phrase. 

The contents of the record area prior to the execution of the 
implicit MOVE statement have no effect on the execution of this 
WRITE statement. 

7 - 32 



After execution of the WRITE statement is complete, the 
information in the area referenced by identifier is availab Ie, 
even though the information in the area referenced by record-name 
may not be. (See general rule 2 above). 

4. The current record pointer is unaffected by the execution of a WRITE 
statement. 

5. The execution of the WRITE statement causes the value of the FILE 
STATUS data item, if any, associated with the file to be updated. (See 
1-0 Status in this Chapter). 

6. The maximum record size for a file is established at the time the file 
is created and must not subsequently be changed. 

7. The number of character positions on a mass storage device required to 
store a logical record in a file mayor may not be equal to the number 
of characte-r positions defined by the logical description of that 
record in the program. 

8. The execution of the WRITE statement releases a logical record to the 
operating system. 

9. Execution of the WRITE statement causes the contents of the record areCi 
to be released. The Operating System utilizes the content of the 
record keys in such a way that subsequent access of the record may be 
made based upon any of those specified record keys. 

10. The value of the prime record key must be unique within the records in 
the file. 

11. The data item specified as the prime record key mus t be set by the 
program to the desired value prior to the execution· of the WRITE 
statement. 

12. If sequential access mode is specified for the file, records mus t be 
released to the Operating System is ascending order ,of prime record key 
values. 

13. If random or dynamic access mode is specified, records may be released 
to the Operating System in any program-specified order. 

14. When the ALTERNATE RECORD KEY clause is specified in the file control 
entry for an indexed file, the value of the alternate record key may be 
non-unique only if the DUPLICATES phrase is specified for that data 
item. In this case the Operating System provides storage of records 
such that when records are accessed sequentially, the order of 
retrieval of those records is the order in which they are released to 
the Operating System. 

7 - 33 



15. The INVALID KEY condition exists under the following circumstances: 

16. 

a. When sequential access mode is specified for a file opened in the 
output mode, and the value of the prime record key is not greater 
than the value of the prime record key of the previous record, or 

b. When the file is opened in the output or 1-0 mode, and the value 
of the prime record key is equal to the value of a prime record 
key of a record already existing in the file, or 

c. When the file is opened in the output or 1-0 mode, 'and the value 
of an al ternate record key for which dup licates are not allowed 
equals the corresponding data item of a record already existing in 
the file, or 

d. When an atte:npt is made to write beyond the externally defined 
boundaries of the file. 

When the INVALID KEY condition is 
statement is unsuccessful, the 
unaffected and the FILE STATUS 
file-name of the associated file 
of the condition. Execution of 
rules stated under THE INVALID 
this Chapter). 

recognised the execution of the WRITE 
contents of the record area are 

data i tern, if any, associated wi th 
is set to a value indicating the cause 
the program proceeds according to the 
KEY CONDITION (See also 1-0 Status in 

7 - 34 



CHAPTER 8 

SORT-MERGE 

INTRODUCTION TO THE SORT-MERGE MODULE 

The Sort-Merge module provides the capability to order one or more files of 
records, or to combine two or more identically ordered files of records, 
according to a set of user-specified keys contained wi thin each record. 
Optionally, a user may apply some special processing to each of the 
individual records by input or output procedures. This special processing 
may be applied before and/or after the records are ordered by the SORT or 
after the records have been combined by the MERGE. 

RELATIONSHIP WITH ?EQUENTIAL 1-0 MODULE 

The files specified in the USING and GIVING phrases of the SORT and MERGE 
sta·tements must be described implicitly or explicity in the FILE-CONTROL 
paragraph as having sequential organization. No input-output statement may 
be executed for the file named in the sort-merge file description. 

ENVIRONMENT ·DIVISION IN THE SORT-MERGE MODULE 

INPUT-QUTPUT SECTION 

The FILE-CONTROL Paragraph 

Function 

The FILE-CONTROL paragraph.names each file and allows specification of other 
file-related information. 

General Fonnat 

FILE CONTROL. ~file-control-entry~ 

The File Control Entry 

Function 

The file control entry names a sort or merge file and specifies the 
association of the file to a storage medium. 

General Format 

SELECT file-name 

ASSIGN TO sexternal-file-name-literal~ 
~ file-identifier ~ 

8 - 1 



Syntax Rules 

1. Each sort or merge file described in the Data Division must be named 
once and only once as file-name in the FILE-CONTROL paragraph. Each 
sort or merge file specified in the file control entry must have a 
sort-merge file description entry in the Data Division. 

2. Since file-name represents a sort or merge file, only the ASSIGN clause 
is permitted to follow file-name in the FILE-CONTROL paragraph. 

General Rule 

The ASSIGN clause specifies the association of the sort or merge file 
referenced by file-name to a storage medium. 

The I-a-CONTROL Paragraph 

Function 

The I-O-CONTROL paragraph specifies the memory area which is to be shared by 
different files. 

General Format 

I-a-CONTROL 

~ ~~i~RD ~ AREA FOR file-name-l 

~ SORT-MERGE ~ ] 

~, file-name-2 ~ ••. 

Syntax Rules 

1. The I-O-CONTROL paragraph is optional. 

2. In the SAME AREA clause, SORT and SORT-MERGE are equivalent. 

3. If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least 
one of the file-names must represent a sort or merge file. Files that 
do not represent sort or merge files may also be named in the clause. 

4. The three formats of the SAME clause (SAME RECORD AREA, SAME SORT AREA, 
SAME SORT-MERGE AREA) are considered separately in the following: 

More than one SAME clause may be included in a program, however: 

a. A file-name must not appear in more than one SAME RECORD AREA 
clause. 

8 - 2 



b. A file-name that represents a sort or merge file must not appear 
in more than one SAME SORT AREA or SAME SORT-MERGE AREA clause. 

c. If a file-name that does not represent a sort or merge file 
appears in a SAME AREA clause and one or more SAME SORT AREA or 
SAME SORT-MERGE AREA clauses, all of the files named in that SAME 
AREA clause must be named in that SAME SORT AREA or SAME 
SORT-MERGE AREA clauses(s). 

5. The files referenced in the SAME SORT AREA, SAME SORT-MERGE AREA, or 
SAME RECORD AREA clause need not all have the same organization or 
access. 

General Rules 

1. The SAME RECORD AREA clause specifies that two or more files are to use 
the same memory area for processing of the current logical record. All 
of the files may be open at the same time. A logical record in the 
SAME RECORD AREA is considered as a logical record of each opened 
output file whose file-name appears in this SAME RECORD AREA clause and 
of the most recently read input file whose file-name appears in this 
SAME RECORD AREA clause. This is equivalent to implicit redefinition 
of the area, i.e., records are aligned on the leftmost character 
position. 

2. If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least 
one of the file-names must represent a sort or merge file. Files that 
do not represent sort or merge files may also be named in the clause. 
This clause specifies that storage is shared as follows: 

a. The SAME SORT AREA or SAME SORT-MERGE AREA clause specifies a 
memory area which will be made available for use in sorting or 
merging each sort or merge file named. Thus any memory area 
allocated for the sorting or merging of a sort or merge file is 
available for reuse in sorting or merging any of the other sort or 
merge files. 

b. In addition, storage areas assigned to files that do not represent 
sort or merge files may be allocated as needed for sorting or 
merging t'he sort or merge files named in the SAME SORT AREA or 
SAME SORT-MERGE AREA clause. 

c. Files other than sort or merge files do not share the same storage 
area with each other. If the user wishes these files to share the 
same storage area wit~ each other, he must also include in the 
program a SAME AREA or SAME RECORD AREA clause naming these files. 

d. During the execution of a SORT or MERGE statement that refers to a 
sort or merge file named in this clause, any non sort-merge files 
named in this clause must not be open. 

8 - 3 



DATA DIVISION IN THE SORT-MERGE MODULE 

FILE SECTION 

An SD file description gives information about the size and the names of the 
data records associated with the file to be sorted or merged~ There are no 
label procedures which the user can control, and the rules for blocking and 
internal storage are peculiar to the SORT and MERGE statements. 

THE SORT-MERGE FILE DESCRIPTION - COMPLETE ENTRY SKELETON 

Function 

The sort-merge file description furnishes information concerning the 
physical structure, identification and record names of the file to be sorted 
or merged. 

General Format 

SD file-name 

[; RECORD CONTAINS [integer-l TO] integer-2 CHARACTERS] 

[; DATA { :~g~s I ~E} da ta-name-l [. da ta-name-2j ••• ] 

Syntax Rules 

1. The level indicator SD identifies "the beginning of the sort-merge file 
description and must precede the file-name. 

2. The clauses which follow the name of the file are optional and their 
of 

3. One or more record description entries must follow the sort-merge file 
description entry, however, no input-output statements may be executed 
for this file. 

THE DATA RECORDS CLAUSE 

Function 

The DATA RECORDS clause serves only as documentation for the names of data 
records with their associated file. 

General Format 

DATA {RECORD IS } 
RECORDS ARE data-name-l [, data-name-2] 

8 - 4 



Syntax Rule 

Data-name-1 and data-name-2 are the names of data records and must have 01 
level-number record descriptions, with the same names, associated with them. 

General Rules 

2. The presence of more than one data-name indicates that the file 
contains mo re than one type of data record. These records may be of 
differing sizes, different formats, etc. The order in which they are 
listed is not significant. 

3. Conceptually, all data records within a file share the same area. This 
is in no way altered by the presence of more than one type of data 
record within the file. 

THE RECORD CONTAINS CLAUSE 

Function 

The RECORD CONTAINS clause specifies the size of data records. 

General Format 

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS 

Gel.l;:.ral Rule 

2. The size of each data record is completely defined 'Nithi.n 
description entry, therefore this clause is never required. 
however, the following notes apply: 

the l~ecord 

\'Jben present, 

a. Integer-2 may not be used by itself unless all the data records in the 
file have the same size. In this case integer-2 represents the exact 
number of characters in the data record. If integer-1 and integer-2 
are both shown, they refer to the minimum number of characters in the 
smallest size data records and the maximum number of characters in the 
largest size data records, respectively. 

b. The size is specified in terms of the number of character positions 
required to store the logical record, regardless of the types of 
characters used to represent the items within the logical record. The 
size of a record is determined by the sum of the number of characters 
in all fixed length elementary items plus the sum of the maximum number 
of characters in any variab Ie length item subordinate to the record. 
This sum may be different from the actual size of the record; see 
Selection of Character Representation and Radix in Chapter 2; and THE 
SYNCHRONIZED CLAUSE and THE USAGE CLAUSE in Chapter 3. 



PROCEDURE DIVISION IN THE SORT-MERGE MODULE 

THE MERGE STATEMENT 

Function 

The MERGE statement combines two or more identically sequenced files on a 
set of specified keys, and during the process makes records available, in 
merge order, to an output procedure or to an output file. 

General Format 

. ~ ASCENDING t 
MERGE f~le-name-l ON ~DESCENDING~KEY data-name-l [, data-name-2] 

~ ASCENDING i 
~ DESCENDING ~ KEY data-name-3 [t data-name-4] • 0 oJ o. 0 

[COLLATING SEqUENCE IS alphabet-name] 

USING file-name-2, file-name-3 [, file-name-4] 

OUTPUT PROCEDURE IS section-name-l 
[ 

~ THROUGH ~ J 
~ THRU ~ section~name-2 

GIVING file-name-5 

Syntax Rules 

1. File-name-I must be described in a sort-merge file description entry in 
the Data Divison. 

2. Section-name-l represents the name of an output procedure. 

3. File-name-2, file-name-3, file-name-4, and file-name-S must be 
described in a file description entry, not in a sort-merge file 
description entry, .in the Data Division. The lictual size of the 
logical record(s) described for fi1e-name-2, fi1e-name-3, fi1e-name-4, 
and f ile-name-S must be equal to the actual size of the logical 
record(s) described for fi1e-name-l. If the data descriptions of the 
e1emen tary i tems that make up these records are not identical, it is 
the programmer's responsibi1 i ty to describe the corresponding records 
in such a manner so as to cause an equal number of character positions 
to be allocated for the corresponding records. 

4. The words THRU and THROUGH are equivalent. 

8 - 6 



5. Data-name-l, data-name-2, data-name-3, and data-name-4 are KEY 
data-names and are subject to the following rules: 

ao The data items identified by KEY data-names must be described in 
records associated with file-name-l. 

be KEY data-names may be qualified. 

c. The data items identified by KEY data-names must not be variable 
length items. 

d. If file-name-l has more than one record description, then the data 
items identified by KEY data-names need be described in only one 
of the record descriptions. 

e. None of the data items identified by KEY data-names can be 
described by an entry which either contains an OCCURS clause or is 
subordinate to an entry which contains an OCCURS clause. 

6. No more than one file-name from a multiple file reel can appear in the 
MERGE statement. 

7. File-names must not be repeated within the MERGE statement. 

8. MERGE statements may appear anywhere except in the declaratives portion 
of the Procedure Division or in an input or output procedure associated 
with a SORT or MERGE statement. 

General Rules 

1. The MERGE statement will merge all r~cords contained on file-name-2, 
file-name-3, and file-name-4. The files referenced in the MERGE 
statement must not be open at the time the MERGE statement is executed. 
These files are automatically opened and closed by the merge operation 
wi th all implicit functions performed, such as the execution of any 
associated USE procedures. The terminating function for all files is 
performed as if a CLOSE statement~ without optional phrases, had been 
executed for each file. 

2. The data-names following the wo rd KEY are listed from left to righ t in 
the MERGE statement in order of decreasing significance without regard 
to how they are divided into KEY phrases. In the format, data-name-l 
is the major key, data-name-2 is the/next most significant key, etc. 

a. When the ASCENDING phrase is specified, the merged sequence will 
be from the lowest value of the contents of "the data items 
identified by the KEY data-names to the highest value, according 
to the rules for comparison of operands in a relation condition. 

b. When the DESCENDING phrase is specified, the merged sequence will 
be from the highest value of the contents of the data items 
identified by the KEY data-names to the lowest value, according 
to the rule for comparison of operands in a relation condition. 

8 - 7 



3. The collating sequence that applies to the comparison of the nonnumeric 
key data items specified is determined in the following order of 
precedence: 

a. First, ~he collating sequence established by the COLLATING 
SEQUENCE phrase, if specified, in that MERGE statement. 

b. Second, the collating sequence established as the program 
collating sequence. 

4. The output procedure must consist of one or more sections that appear 
contiguously in a source program and do not form part of any other 
procedure. In order to make merged records available for processing, 
the output procedure must include the execution of at least one RETURN 
statement. Control must not be passed to the output procedure except 
when a related SORT or MERGE statement is being executedc The output 
procedure may consist of any procedures needed to select, modify, or 
copy the records that are being returned one at a time in merge order, 
from file-name-l. The restrictions on the procedural statements within 
the output procedure are as follows:-

a. The output procedure must not contain any transfers of control to 
points outside the output procedure; ALTER, GO TO and PERFORM 
statements in the output procedure are not permitted to refer to 
pr.ocedure-names outside the output procedure. COBOL statements 
are allowed that will cause an implied transfer of control to 
declaratives. 

b. The output procedures must not contain any SORT or MERGE 
statements. 

c. The remainder of the Procedure Division mus t not contain any 
transfers of control to points inside the output procedures; 
AL TER, GO TO, and PERFORM statements in the remainder of the 

. Procedure Division are not permitted to refer to procedure-names 
within the output procedures. 

5. If an output procedure is specified, control passes to it during 
execution of the MERGE statement. The compiler inserts a return 
mechanism at the end of the last section in the output procedure. ~len 
control passes the last statement in the output procedure, the return 
mechanism provides for termination of the merge, and then passes 
control to the next executable procedure. The merge procedure has then 
reached a point at which it can select the next record in merged order 
when requested.- The RETURN statements in the output procedure are the 
requests for the next record. 

8 - 8 



6. Segmentation, as defined in Chapter 9, can be applied to programs 
containing the MERGE statement. However, the following restrictions 
apply: 

a. If the MERGE statement appears in a section that is not in an 
independent segment, then any output procedure referenced by that 
MERGE statement must appear: 

* Totally within non-independent segments, or 

* Wholly contained in a single independent segment. 

b. If a MERGE statement appears in an independent segment, then any 
output procedure referenced by that MERGE statement must be 
contained: 

* Totally within non-independent segments, or 

* Wholly within the same independent segment as that MERGE 
statement. 

7. If the GIVING phrase is specified, all the merged records in 
file-name-l are automatically written on file-name-5 as the implied 
output procedure for this MERGE statement. 

8. In the case of equal compare, according to the rules for comparison of 
operands in a relation condition, on the contents of the data items 
identified by all the KEY data-names between records from two or more 
input fil.es (file-name-2, file-name-3, file-name-4, ••• ), the records 
are written on file-name-5 or returned to the output procedure, 
depending on the phrase specified, in the order that the associated 
input files are specified in the MERGE statement. 

9. The results of the merge operation are predictable only when the 
records in the files referenced by file-name-2, file-name-3, ... , are 
ordered as described in the ASCENDING or DESCENDING KEY clause 
associated with the MERGE statement. 

8 - 9 



THE RELEASE STATEMENT 

Function 

The RELEASE statement transfers records to the initial phase of a SORT 
operation. 

Ge ner a1 Fo rma t 

RELEASE record-name [FROM identifier] 

Syntax Rules 

1. A RELEASE statement may only be used within the range of an input 
procedure associated with a SORT statement for a file whose sort-merge 
file description entry contains record-name. (See The SORT Statement.) 

2. Record-name must be the name of a logical record in the associated 
sort-merge file description entry and may be qualified. 

3. Record-name and identifier must not refer to the same storage area. 

General Rules 

1. The execution of a RELEASE statement causes the record named by 
record-name to be released to the initial phase of a sort operation. 

2. If the FROM phrase is used, the contents of the identifier data area 
are moved to record-name, then the contents of record-name are released 
to the sort file. Moving files takes place according to the rules 
specified for the MOVE statement without the CORRESPONDING phrase. The 
information in the record area is no longer available, but the 
information in the data area associated with identifier is available. 

3. After the execution of the RELEASE statement, the logical record is no 
longer available in the record area unless the associated sort-merge 
file is named in a SAME RECORD AREA clause. The logical record is also 
available to the program as a record of other files referenced in the 
same SAME RECORD AREA clause as the associated sort-merge file, as well 
as to the file associated with record-name. When control passes from 
the input procedure, the file consists of all those records which were 
placed in.it by the execution of RELEASE statements. 

8 - 10 



THE RETURN STATEMENT 

Function 

The RETURN statement obtains either sorted records from the final phase of a 
SORT operation or merged records during a MERGE operation. 

General Format 

RETURN file-name RECORD [INTO identifier] 
AT END imperative-statement 

Syntax Rules 

10 File-name must be described by a sort-merge file description entry in 
the Data Division. 

2. A RETURN statement may only be used wi thin the range of an outpu t 
procedure associated with a SORT or MERGE statement for file-name. 

30 The INTO phrase must not be used when the input file contains logical 
records of various sizes as indicated by their record descriptions. 
The storage area associated with identifier and the record area 
associated with file-name must not be the same storage area. 

General Rules 

1. When the logical records of a file are described with more than one 
record descritpion, these records automatically share the same storage 
area; this is equivalent to an implicit redefinition of the area. The 
contents of any data items which lie beyond the range of the current 
data record are undefined at the completion of the execution of the 
RETURN statement. 

2.. The execut ion of the RETURN statement causes the next record, in the 
order specified by the keys listed in the SORT or MERGE statement, to 
be made available for processing in the record areas associated wi th 
the sort or merge file. 

3. If the INTO phrase is specified, the current record is moved from the 
input area to the area specified by identifier according to the rules 
for the HOVE statement without the CORRESPONDING phrase. The implied 
MOVE does not occur if there is an AT END condition. Any subscripting 
or indexing associated with iden"tifier is evaluated after the record 
has been returned and immediately before it is moved to the data item. 

4. When the INTO phrase is used, the data is available in both the input 
record area and the data area associated with identifier. 

8 - 11 



5. If no next logical record exists for the file at the time of the 
execution of a RETURN statement, the AT END condition occurs. The 
contents of the record areas associated wi th the file when the AT END 
condition occurs are undefined.. After the execution of the 
imperative-statement in the AT END phrase, no RETURN statement may be 
executed as part of the current output proceduree 

8 - 12 



THE SORT STATEMENT 

Function 

The SORT statement creates a sort file by executing input procedures or by 
transferring records from another file, sorts the records in the sort file 
on a set of specified keys, and in the final phase of the sort operation, 
makes available each record from the sort file, in sorted order to some 
output procedures or to an output file. 

General Format 

. { ASCEND ING } SORT f~le-name-l ON DESCENDING KEY data-name-l [5 data-name-2] .•• 

[ { 
ASCENDING } 

ON DESCENDING KEY data-name-3, [, data-n~-41 ••• ] ••• 

[COLLATING SEQUENCE IS alphabet-name] 

INPUT PROCEDURE IS section-name-l [ {;UGH} section-name-2 ] 

USING file-name-2 [, file-name-3] .•. 

OUTPUT PROCEDURE IS section-name-3[{=UGH} section-name-4 ] 

GIVING file-name-4 

Syntax Rules 

1. File-name-l must be described in a sort-merge file description entry in 
the Data Division. 

2. Section-name-l represents the name of an input 
Section-name-3 represents the name of an output procedure. 

procedure. 

3. File-name-2, file-name-3 and file-name-4 must be described in a file 
description entry, not in a sort-merge file description entry, in the 
Data Division. The actual size of the logical record(s) described for 
file-name-2, file-name-3 and file-name-4 must be equal to the actual 
size of the logical record(s) described for file-name-1. If the data 
descriptions of the elementary items that make up these records are not 
identical, it is the programmer's responsibility to describe the 
corresponding records in such a manner so as to cause equal amounts of 
character positions to be allocated for the corresponding records. 

8 - 13 



4. Da ta-name-l, da ta-name-2 t da ta-name-3, and, da ta-name-4 are KEY 
data-names and are subject to the following rules: 

aD The data items identified by KEY data-names must be described in 
records associated with fi1e-name-l. 

b. KEY data-names may be qualified. 

c. The data items identified by KEY data-names must not be variable 
length items. 

do If fi1e-name-l has more than one record description, then the data 
items identified by KEY data-names need be described in only one 
of the record descriptions. 

e. None of the data items identified by KEY data-names can be 
described by an entry which either contains an OCCURS clause or 
is subordinate to an entry which contains an OCCURS clause. 

5. The words THRU and THROUGH are equivalent. 

6. SORT statements may appear anywhere except in the declaratives portion 
of the Procedure Division or in an input or output procedure associated 
wi th a SORT or MERGE statement. 

7. No more than one file-name from a multiple file reel can appear in the 
SORT statement. 

General Rules 

1. The Procedure Division may contain more than one SORT statement 
appearing anywhere except: 

a. In the declaratives portion, or 

b. In the input and output procedures associated with a SSRT or rffiRGE 
statement. 

2. The data-names following the word KEY are listed from left to right in 
the SORT statement in order of decreasing significance without regard 
to how they are divided into KEY phrases. In the format, data-name-l 
is the major key, data-name-2 is the next most significant key, etc. 

a. When the ASCENDING phrase is specified, the sorted sequence will 
be from the lowest value of the contents of the data items 
identified by the KEY data-names to the highest value, according 
to the rules for comparison of operands in a relation condition. 

b. When the DESCENDING phrase is specified, the sorted sequence will 
be from the highest value of the contents of the data items 
identified by the KEY data-names to the lowest value, accQrding to 
the rules for comparison of operands in a relation condition. 

8 - 14 



3. The collating sequence that applies to the comparison of the nonnumeric 
key data items specified is determined in the following order of 
precedence: 

a. First, the collating sequence established by the COLLATING 
SEQUENCE phrase, if specified, in the SORT statement. 

b. Second, the collating sequence established as the program 
collating sequence. 

4. The input procedure must consist of one or more sections that appear 
contiguously in a source program and do"not form a part of any output 
procedure. In order to transfer records to the file referenced by 
file-name-l, the input procedure must include the execution of at least 
one RELEASE statement. Control must not be passed to the input 
procedure when a related SORT statement is being executed. The input 
procedure can include any procedures needed to select, create, or 
modify records. The restrictions on the procedural statements within 
the input procedure are as follows: 

a. The input procedure must not contain any SORT or MERGE statements. 

b. The input procedure must not contain any explicit transfers of 
control to points outside the input procedure; ALTER, GO TO, and 
PERFORM statements in the input procedure are not permitted to 
refer to procedure-names outside the input procedure. COBOL 
statements are allowed that will cause an implied transfer of 
control to declaratives. 

c. The remainder of the Procedure Division must not contain any 
transfers of control to points inside the input procedure; ALTER, 
GO TO and PERFORM statements in the remainder of the Procedure 
Division must not refer to procedure-names within the input 
procedure. 

5. If an input procedure is specified, control is passed to the input 
procedure before file-name-l is sequenced by the SORT statement. The 
compiler inserts a return mechanism at the end of the last section in 
the input procedure and when control passes the last statement in the 
input procedure, the records that have been released to file-name-l are 
sorted. 

6. The output procedure must consist of one or more sections that appear 
contiguously in a source program and do not form part of any input 
procedure. In order to make sorted records available for processing, 
the output procedure must include the execution of at least one RETURN 
statement. Control must not be passed to the output procedure except 
when a related SORT statement is being executed. The output procedure 
may consist of any procedures needed to select, modify or copy the 
records that are being returned, one at a time in sorted order, from 
the sort file. The restrictions on the procedural statements within 
the output procedure are as follows: 

8 - 15 



a. The output procedure must not contain any SORT or MERGE 
statements. 

b. The output procedure must not contain any explicit transfers of 
control to points outside the output procedure; ALTER, GO TO, and 
PERFORM statements in the output procedure are not permitted to 
refer to procedure-names outside the output procedure.. COBOL 
statements are allowed that will cause an implied transfer of 
control to declaratives. 

c. The remainder of the Procedure Division must not contain any 
transfers of control to points inside the output procedure; ALTER, 
GO TO and PERFORM statements in the remainder of the Procedure 
Division are not permitted to refer to procedure-names within the 
output procedure. 

7. If an output procedure is specified, control passes to it after 
file-name-l has been sequenced by the SORT statement. The compiler 
inserts a return mechanism at the end of the last section in the output 
procedure and when control passes the last statement in the output 
procedure, the return mechanism provides for termination of the sort 
and then passes control to the next executable statement after the SORT 
s tata'1lent. Before entering the outpu t procedure, the sort procedure 
reaches a point at which it can select the next record in sorted order 
when requested. The RETURN statements in the output procedure are the 
requests for the next record. 

8. Segmentation as defined in Chapter 9 can be applied to programs 
containing the SORT statement. However, the following restrictions 
apply: 

a. If a SORT statement appears in a section that is not 
independent segment, then any input procedures or 
procedures referenced by that SORT statement must appear: 

* Totally within non-independent segments, or 

* Wholly contained in a single independent segment. 

in an 
output 

b. If a SORT statement appears in an independent segment t then any 
input procedures or output procedures referenced by that SORT 
statement must be contained: 

* Totally within non-independent segments, or 

* Wholly within the same independent segment as that SORT 
statement. 

9. If the USING phrase is specified, all the records in file-name-2 and 
file-name~3 are transferred automatically to file-name-I. At the times 
of execution of the SORT statement, file-name-2 and file-name-3 must 

8 - 16 



not be open. The SORT statement automatically initiates the processing 
of, makes available the logical records for, and terminates the 
processing of file-name-2 and file-name-3. These implicit functions 
are performed such that any associated USE Procedures are executed. 
The terminating function for all files is performed as if a CLOSE 
statement, without optional phrases, had been executed for each file. 
The SORT statement also automatically performs the implicit functions 
of moving the records from the file area of file-name-2 and file-name-3 
to the file area for file-name-l and the release of records to the 
initial phase of the sort operation. 

10. If the GIVING phrase is specified, all the sorted records in 
file-name-l are automatically written on file-name-4 as the implied 
output procedure for this SORT statement. At the time of execution of 
the SORT statement file-name-4 must not be open. The SORT statement 
automatically initiates the processing of, releases the logical records 
to, and terminates the processing of file-name-4. These implicit 
functions are performed such that any associated USE procedures are 
executed. The terminating function is performed as if a CLOSE 
statement, wi thout optional phrases, had been executed for the file. 
The SORT statement also automatically performs the implicit functions 
of the return of the sorted records from the final phase of the sort 
operation ·and the moving of the records from the file area for 
file-name-l to the file area for file-name-4. 

8 - 17 



8 - 18 



CHAPTER 9 

SEGMENTATION 

INTRODUCTION TO THE SEGMENTATION MODULE 

The Segmentation module provides a capability to specify obj ect program 
overlay requirements. 

Segmentation provides a facility for specifying permanent and independent 
segments. All segments specified as permanent segments must be contiguous 
in the source program. Segmentation also allows the intermixing of sections 
with different segment-numbers and allows the fixed portion of the source 
program to contain segments that may be overlaid. 

GENERAL DESCRIPTION OF SEGMENTATION 

COBOL segmentation is a facility that provides a means by which the user may 
communicate with the compiler to specify obj ect program overlay 
requirements. 

COBOL segmentation deals only with segmentation of procedures. As such, 
only the Procedure Division is considered in determining segmentation 
requirements for an object program. 

ORGANIZATION 

Program Segments 

Although it is not mandatory, the Procedure Division for a source program is 
usually written as a consecutive group of sections, each of which ,is 
composed of a series of closely related operations that are designed to 
collectively perform a particular function. However, when segmentation is 
used, the entire Procedure Division must be in sections. In addition, each 
section must be classified as belonging either to the fixed portion or to 
one of the independent segments of the object program. Segmentation in no 
way affects the need for qualification of procedure-names to insure 
uniqueness. 

Fixed Portion 

The fixed po-rtion is defined as that part of the obj ect program which is 
logically treated as if it were always in memory. This portion of the 
program is composed of fixed permanent segments, and fixed overlayable 
segments. 

A fixed permanent segment is a segment in the fixed portion which cannot be 
overlaid by any other part of the program. 

A fixed overlayable segment is a segment in the fixed portion which, 
although logically treated as if it were always in memory, can be'overlaid 

9 - 1 



by another segment to optimize memory utilitization. Variation of the 
number of fixed permanent segments in the fixed portion can be accomplished 
by using a special facility called the SEGMENT-LIMIT clause (see 
SEGMENT-LIMIT in this Chapter). Such a segment, if called for by the 
program, is always made available in its last used state. 

Independent Segments 

An independent segment is defined as part of the object program which can 
overlay, and can be overlaid by e·ither a fixed overlayable segment or 
another independent segment. An independent segment is in its initial state 
whenever control is transferred (either implicitly or explicitly) to that 
segment for the first time during the execution of a program. On subsequent 
transfers of control to the segment, an independent segment is also in its 
initial state when: 

10 Control is transferred to that segment as a result of the implicit 
transfer of control between consecutive statements from a segment with 
a different segment-number. 

20 Control is transferred to that segment as the result of the implicit 
transfer of control between a SORT or MERGE statement, in a segment 
with a different segment-number, and an associated input or output 
procedure in that independent segment. 

3. Control is transferred explicitly to that- segment from a segment with a 
different segment-number (with the exception noted in paragraph 2 
below) . 

On subsequent transfer of control to the segment, an independent segment is 
in its last-used state when: 

1. Control is t~ansferred implicitly to that segment from a segment with a 
different segment-number (except as noted in paragraph 1). 

2. Control is transferred explicitly to that segment as the result of the 
execution of an EXIT PROGRAM statement. 

SEGMENTATION CLASSIFICATION 

Sections which are to be segmented are classified, using a system of 
segment-numbers and the following criteria: 

1. Logic Requirements - Sections which must be available for reference at 
all times, or which are referred to very frequently, are normally 
classified as belonging either to one of the overlayable fixed segments 
or to one of the permanent segments; sections which are used less 
frequently are normally classified as belonging to one of the 
independent segments, depending on logic requirements. 

9 - 2 

l 
I 



2. Frequency of Use - Generally, the more frequently a section is referred 
to, the lower its segment-number, the less frequently it is referred 
to, the higher its segment-number. 

3. Relationship to Other Sections - Sections which frequently communicate 
with one another should be given the same segment-numbers. 

SEGMENTATION CONTROL 

The logical sequence of the program is the same as the physical sequence 
except for specific transfers of control. Control may be transferred within 
a source program to any paragraph in a section; that is, it is not mandatory 
to transfer control to the beginning of a section. 

STRUCTURE OF PROGRAM SEGMENTS 

SEGMENT-NUMBERS 

Section classification is accomplished by means of a system of 
segment-numbers. The segment-number is included in the section header. 

General Format 

section-name SECTION [segment-number]. 

Syntax Rules 

1. The segment-number must be an integer ranging in value from 0 through 
99. 

2. If the segment-number is omitted from the section header, the 
segment-number is assumed to be O. 

3. Sections in the declaratives must contain segment-numbers less than SO. 

General Rules 

1. All sections which have the same segment-number constitute a program 
segment. All sections which have the same segment-number need not be 
physically contiguous in the source program. 

2. Segments with segment-number 0 through 49 belong to the fixed portion 
of the object program. 

3. Segments with segment-number SO through 99 are independent segments. 

9 - 3 

* 



SEGMENT-LntIT 

General Format 

The SEGMENT-LIMIT clause appears in the OBJECT-COMPUTER paragraph and has 
the following format: 

[,SEGMENT-LntIT ~ segment-number] 

Syntax Rules 

Segment-number must be an integer ranging in value from 1 through 4ge 

General Rules 

2e When the SEGMENT-LIMIT clause is specified, only those segments having 
segment-numbers from 0 up to, but not including, the segment-number 
designated as the segment-limit, are considered as permanent segments 
of the object program. 

3. Those segments having segment-numbers from the segment-limit through 49 
are considered as overlayable fixed segmentse 

4. When the SEGMENT-LIMIT clause is omitted, all segments having 
segment-numbers from 0 through 49 are considered as permanent segments 
of the object program. 

9 - 4 



RESTRICTIONS ON PROGRAM FLOW 

When segmentation is used, the following restrictions are placed on the 
ALTER, PERFORM, MERGE and SORT statements. 

THE ALTER STATEMENT 

A GO TO statement in a section whose segment-number is greater than or equal 
to 50 must not be referred to by an ALTER statement in a section with a 
different segment-number. 

All other uses of the ALTER statement are valid and performed even if the GO 
TO to which the ALTER refers is in a fixed over1ayable segment. 

THE PERFORM STATEMENT 

A PERFORM statement that appears in a section that is not in an independent 
segment can have within its range, in addition to any declarative sections 
whose execution is caused within that range, only one of the following: 

* Sections and/or paragraphs wholly contained in one or more 
non-independent segments. 

* Sections and/or paragraph wholly contained in a single independent 
segment. 

A PERFORM statement that appears in an independent segment can have within 
its range, in addition to any declarative sections whose execution is caused 
within that range, only one of the fo\lowing: 

a. Sections and/or paragraphs wholly contained in one or more 
non-independent segments. 

b. Sections and/or paragraphs wholly contained in the same 
independent segment as that PERFO~~ statement. 

THE MERGE STATEMENT 

If the MERGE statement appears in a section that is not in an independent 
segment, then any output procedure referenced by that MERGE statement must 
appear: 

a. Totally within non-independent segments, or 

b. Wholly contained in a single independent segment. 

If a MERGE statement appears in an independent segment, then any outpu t 
procedure referenced by that MERGE statement must be contained: 

9 - 5 



a. Totally within non-independent segments, or 

b. Wholly within the same independent segment as that MERGE 
statement. 

THE SORT STATEMENT 

If a SORT statement appears in a section that is not an independent segment, 
then any input procedures or output procedures referenced by that SORT 
statement must appear: 

a. Totally within non-independent segments, or 

b. Wholly contained in a single independent segment. 

If a SORT statement appears in an independent segment, then any input 
procedures or output prcoedures referenced by that SORT statement must be 
contained: 

a. Totally within non-independent segments, or 

b. \~olly within the same independent segment as that SORT statement. 

9 - 6 



CHAPTER 10 

LIBRARY 

INTRODUCTION TO THE LIBRARY MODULE 

The Library module provides a capability for specifying text that is to be 
copied from a source user-library file. This is usually created using any 
suitable source text editor. 

L/II COBOL libraries consist of disk files that contain source ·to be made 
available to the compiler. The effect of the interpretation of the COpy 
statement is to insert text into the source program, where it will be 
treated by the compiler as part of the source program. All occurrences of a 
given literal, identifier, word or group of words in the library text can be 
replaced with alternate text during the copy process. The library module 
also provides for the availability of more than one COBOL library at compile 
time. 

10 - 1 



THE COpy STATEMENT 

FUNCTION 

The COpy statement incorporates text into a L/l! COBOL source program~ 

GENERAL FORMAT 
" " 

copy{~} [{~~} library-name]· 

REPLACING 

SYNTAX RULES 

~
==pseudo-text-2==~ 
identifier-2 
literal-2 
word-2 

1. If more than one COBOL library is available during compilation, 
text-name must be qualified by the library-name identifying the COBOL 
library in which the text associated with text-name resides. See your 
L/II COBOL Operating Guide for details of library files. 

2.. The COPY statement must be preceded by" a space and terminated by the 
separator period. 

3. Pseudo-text-l must not be null, nor may it consists solely of the 
character space(s), nor may tt consist solely of comment lines. 

4. Pseudo-text-2 may be null. 

5. Character-strings within pseudo-text-l and pseudo-text-2 may be 
continued. However, both characters of a pseudo-text delimiter must be 
on the same line. (see Continuation of Lines). 

6. Word-lor word-2 may be any single COBOL word. 

7. A' COpy statement may occur in the source program anywhere a 
character-string or a separator may occur except that a COpy statement 
must not occur within a COpy statement. 

8.. Text-name defines a unique external file name which conforms to the 
rules for defined words (note "lower is translated to 
case). 

10 - 2 



GENERAL RULES 

1.. The compilation of a source program containing COpy statement is 
logically equivalent to processing all COpy statements prior to the 
processing of the resulting source program. 

2. The effect of processing a COpy statement is that the library text 
associated with text-name is copied into the source program, logically 
replacing the entire COpy statement,'beginning with the reserved word 
COpy and ending with the punctuation character period, inclusive. 

3. If the REPLACING phrase is not specified, the library text is copied 
unchanged. 

If the REPLACING phrase is specified, the library text is copied and 
each properly matched occurrence of pseudo-text-I, identifier-I, 
word-I, and literal-l in the library text is replaced by the 
corresponding pseudo-text-2, identifier-2, word-2, or literal-2. 

For purposes of matching, identifier-I, 
treated as pseudo-text containing only 
literal-I, respectively. 

word-I, and literal-I 
identifier-I, word-I, 

are 
or 

5. The comparison operation to determine text replacement occurs in the 
following manner: 

Any separator comma, semicolon and/or space(s) preceding the leftmost 
library text-word is copied into the source program. Starting with the 
left-most library text-word and the first pseudo-text-I, the entire 
REPLACING phrase operand that precedes the reserved word BY is compared 
to an equivalent number of contiguous library text-words. 

Pseudo-text-I, identifier-I, word-I, or literal-I match the library 
text if, and only if, the ordered sequence of text-words that forms 
pseudo-text-l, identifier-I, word-l or literal-I is equal, character 
for character ~ to the ordered sequence of library text words 0 For 
purposes of matching, each occurrence of a separator comma or semicolon 
in pseudo-text-l or in the library eext is considered to be a single 
space except when pseudo-text-I consists solely of either a separator 
comma or semicolon, in which case it participates in the match as a 
text-word. Each sequence of one or more space separators is considered 
to be a single space. 

If no match occurs, the comparison is repeated with each next 
successive pseudo-text-l, identifier-I, word-I, or literal-I, if any, 
in the REPLACING phrase until either a match is found or there is no 
next successive REPLACING operand. 

When all the REPLACING phrase operands have been compared and no match 
has occurred, the leftmost library text-word is copied into the source 
program. The next successive library text-word is then considered as 

10 - 3 



the leftmost library text-word, and the comparison cycle starts again 
with the first pseudo-text-I, identifier-I, word-lor literal-I 
specified in the REPLACING phrase. 

Whenever a match occurs between pseudo-text-I, identifier-I, word-I, or 
literal-I and the library text, the corresponding pseudo-text-2, 
identifier-2, word-2, or literal-2 is placed into the source program. 
The library text-word immediately following the rightmost text-word 
that participated in the match· is then considered as the leftmost 
library text-word. The comparison cycle starts again with the first 
pseudo-text-1, identifier-I, word-I, or literal-1 specified in the 
REPLACING phrase. 

The comparison operation continues until the rightmost text-word in the 
library text has either participated in a match or been considered as a 
leftmost library text-word and participated in a complete comparison 
cycle. 

6. A comment line occurring in the library text and pseudo-text-l us 
interpreted ll for purposes of matching, as a single space. Comment 
lines appearing in pseudo-text-2 and library text are copied into the 
source program unchanged. 

7 • Debugging lines are permitted within library text and pseudo-text-2. 
Debugging lines are not permitted within pseudo-text-1; text-words 
within a debugging line participate in the matching rules as if the 'D' 
did not appear in the indicator area. If a COpy statement is specified 
on a debugging line, then the text that is the result of the processing 
of the COpy statement will appear as though it were specified on 
debugging lines with the following exception: comment lines in library 
text will appear as comment lines in the resultant source program. 

8. The text produced as a result of the c.omplete processing of a COpy 
statement must not contain a COpy statement. 

9~ The syntatic correctness of the library text cannot be independently 
determined. The syntatic correctness of the entire COBOL source 
program cannot be determined until all COpy statements have been 
completely processed. 

10. Library text must conform to the rules for COBOL reference format. 

11. For purposes of compilation, text-words after replacement are placed in 
the source program according to the rules for reference format as 
described in Chapter 1. 

12. 

10 - 4 



CHAPTER 11 

DEBUG AND INTERACTIVE DEBUGGING 

INTRODUCTION 

Standard ANSI COBOL debugging provides a means by which the user can 
describe the conditions under which procedures are to be monitored during 
the execution of the object program. 

The optional ANIMATOR debugging product is also available, and brings a 
program to life on the screen "animating" it by displaying the source code 
during run time with the cursor moving from COBOL source statement to 
statement Q ANIMATOR is a full interactive symbolic debugging tool that 
complies with the published GSA certification standard enabling the setting 
of breakpoints, e,xamination and alteration of data and the changing of the 
flow of control. It is supplied with a manual. 

This Chapter describes the standard ANSI '74 COBOL DEBUG module. 

STANDARD ANSI COBOt DEBUG 

The decisions of what to monitor and what information to display are 
explicitly in the domain of the user. The COBOL Debug facility simply 
provides a convenient access to pertinent information. 

The features of the language that support the COBOL Debug module are: 

* A compile time switch -- ~vITH DEBUGGING MODE. 

* An object time switch. 

* A USE FOR DEBUGGING statementQ 

* A special register -- DEBUG-ITEM. 

* Debugging lines. 

The reserved word DEBUG-ITEM is the name for a special register generated 
automatically by the compiler that supports the debugging facility. Only 
one DEBUG-ITEM is allocated per program. The names of the subordinate data 
items in DUBUG-ITEM are also reserved words. 

(Addendum 1) 

11 - 1 



COMPILE-TIME SWITCH 

The DEBUGGING MODE clause is written as part of the SOURCE-COMPUTER 
paragraph in the Environment Division. It serves as a compile-time switch 
over debugging statements written in the program. 

When the WITH DEBUGGING MODE clause is specified in a program, all debugging 
sections and ~ll debugging lines are compiled as specified, in this section 
of-the document. 

When DEBUGGING MODE is not specified in a program, .all the debugging 
sections and debugging lines are compiled as if they were comment lines and 
their syntax is not checked. 

COBOL DEBUG OBJECT TIME SWITCH 

An object time switch dynamically activates the debugging code inserted by 
the compiler. This switch cannot be addressed in the program; it is 
controlled outside the COBOL environment. If the switch is 'on', the 
effects of any USE FOR DEBUGGING statements written in the source program 
are permitted. If the switch is 'off', all the effects described in the USE 
FOR DEBUGGING Statement, are inhibited. Recompilation of the source program 
is not required to provide or take away this facility. 

The object time switch has no effect on the execution of the object program 
if the WITH DEBUGGING MODE clause was not specified in the source program at 
compile time. 

The switch is described in the LIII COBOL Operating Guide. 

ENVIRONMENT DIVISION IN COBOL DEBUG 

The WITH DEBUGGING MODE Clause 

Function 

The WITH DEBUGGING MODE clause indicates that all debugging sections and all 
debugging lines are to be compiled. If this clause is not specified, all 
debugging lines and sections are compiled as if they were comment lines. 

General Format 

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE]. 

General Rules 

1. If the WITH DEBUGGING MODE clause is .specified in the SOURCE-COMPUTER 
paragraph of the Configuration Section of a program, all USE FOR 
DEBUGGING statements and all debugging lines are compiled. 

11 - 2 



2. If the WITH DEBUGGING MODE clause is not specified in the 
SOURCE-COMPUTER paragraph of the Configuration Section of a program, 
any USE FOR DEBUGGING statements and all associated debugging sections, 
and any debugging lines are compiled as if they were comment 
statements. 

PROCEDURE DIVISION IN COBOL DEBUG 

The USE FOR DEBUGGING Statement 

Function 

The USE FOR DEBUGGING statement identifies the user items that are to be 
monitored by the associated debugging section. 

Gene'ral Format 

section-name SECTION [segment number]e 

cd-name-l 

USE FOR DEBUGGING ON 
[ALL REFERENCES OF] identifier-l 
file-name-l 

Syntax Rules 

procedure-name-1 
ALL PROCEDURES 

cd-name-2 
[ALL REFERENCES OF] identifier-2 
file-name-2 
procedure-name-2-
ALL PROCEDURES 

1. Debugging section(s), if specified, must appear together immediately 
after the DECLARATIVES header. 

2. Except in the USE FOR DEBUGGING statement itself, there must be no 
reference to any non-declarative procedure within the debugging 
section. 

3. Statements appearing outside of the set of debugging sections must not 
reference procedure-names defined within the set of debugging sections. 

4. Except for the USE FOR DEBUGGING statement itself, statements appearing 
within a given debugging section may reference procedure-names defined 
within a different USE procedure only with a PERFORM statement. 

11 - 3 



5. Procedure-names defined within debugging sections must not appear 
within USE FOR DEBUGGING statements. 

6. Any given identifier, cd-name, file-name, or procedure-name may appear 
in only one USE FOR DEBUGGING statement and may appear only once in 
that statement. 

7. The ALL PROCEDURES phrase can appear only once in a program. 

8. When the ALL PROCEDURES phrase is specified, procedure-name-l, 
procedure-name-2, ••• must not be specified in any USE FOR DEBUGGING 
statement. 

9. If the data description entry of the data item referenced by 
identifier-I, identifier-2, ••• , contains an OCCURS clause or is 
subordinate to a data description entry that contains an OCCURS clause, 
identifier-l, identifier-2, ••• , must be specified without the 
subscripting or indexing normally required. 

10. References to the special register DEBUG-ITEM are restricted to 
references from within a debugging section. 

General Rules 

1. In the following general rules all references to cd-name, identifier-l, 
procedure-name-l, and file-name-l apply equally to cd-name-2, 
identifier-2, procedure-name-2 and file-name-2 respectively. 

2. Automatic execution of a debugging section is not caused by a statement 
appearing in a debugging section. 

3. When file-name-l is specified in a USE FOR DEBUGGING statement, that 
debugging sgction is executed: 

a. After the execution of any OPEN or CLOSE statement that references 
file-name-l, and 

b. After the execution of any READ statement (after any other 
specified USE procedure) not resulting in the execution of an 
associated AT END or INVALID KEY imperative statement, and 

c. After the execution of any DELETE or START statement that 
references file-name-1. 

(Addendum 2) 

11 - 4 



40 When procedure-name-I is specified in a USE FOR DEBUGGING statement 
that debugging section is executed: 

a. Immediately before each execution of the named procedure; 
b. Immediately after the execution of an ALTER statement which 

re~erence's procedure-name-I. 

5. The ALL PROCEDURES phrase causes the effects described in general rule 
4 to occur for every procedure-name in the program, except those 
appearing within a debugging section. 

6. When the ALL REFERENCES OF identifier-phrase is specified, that 
debugging section is executed for every statement that explicitly 
references identifier-I at each of the following times: 

a. In the case of a WRITE or REWRITE statement immediately before the 
execution of that WRITE or REWRITE statement and after the 
execution of any implicit move resulting from the presence of the 
FROM phrase. 

b. In the case of a GO TO statement wi th a DEPENDING ON phrase, 
~ediately before control is transferred and prior to the 
execution of any debugging section associated with the 
procedure-name to which control is to be transferred. 

c. In the case of a PERFORM statement in which a VARYING, AFTER, or 
UNTIL phrase references identifier-I, immediately after each 
initialization, modification or evaluation of the contents of the 
data item referenced by identifier-I. 

d. In the case of any other COBOL statement, immediately after 
execution of that statement. 

If identifier-I is specified in a phrase that is not executed or 
evaluated, the associated debugging section is not executed. 

7. When identifier-I is specified wi thout the ALL REFERENCES OF phrase, 
that debugging section is executed at each of the following times: 

a. In the case of a WRITE or R&lRITE statement that explicitly 
references identifier-2, immediately before" the execution of that 
WRITE or REWRITE statement and after the execution of any implicit 
move resulting from the presence of the FROM phrase. 

b. In the case of a PERFORM statement in which a VARYING, AFTER or 
UNTIL phrase references identifier-l, immediately after each 
initialization, modification or evaluation of the contents of the 
data item referenced by identifier-I. 

11 - 5 



c. Immediately after the execution of any other COBOL sta~ement that 
explicitly references and causes the contents of the data item 
referenced by identifier-l to be changed. 

If identifier-l is specified in a phrase that is not executed or 
evaluated, the associated debugging section is not executed. 

8. The associated debugging section is not executed for a specific operand 
more than once as a result of the execution of a single statement, 
regardless of the number of times that operand is explicitly specified. 
In the case of a PERFORM statement which caused iterative execution of 
a referenced procedure, the associated debugging section is executed 
once for each iteration. 

Within an imperative statement, each individual occurrence of an 
imperative 'verb identifies a separate statement for the purpose of 
debugging. 

9. When cd-name-l is specified in a USE FOR DEBUGGING statement, that 
debugging section is executed: 

a. After the execution of any ENABLE, DISABLE, and SEND statement 
that references cd-name-l, 

b. After the execution of a RECEIVE statement referencing cd-name-l 
that does not result in the execution of the NO DATA 
imperative-statement, and 

c. After the execution of an ACCEPT MESSAGE COUNT statement that 
references cd-name-l. 

10. A reference to file-name-l, identifier-I, procedure-name-I or cd-name-I 
as a qualifier does not constitute reference to that item for the 
debugging described in the general rules above. 

11 - 6 

r 



11. Associated with each execution of a debugging section is the special 
register DEBUG-ITEM, which provides information about the conditions 
that caused the execution of a debugging section. DEBUG-IT~l has the 
following implicit description: 

01 DEBUG-ITEM. 
02 DEBUG-LINE PICTURE IS X(6). 
02 FILLER PICTURE IS X VALUE SPACE. 
02 DEBUG-NAME PICTURE IS X(30). 
02 FILLER PICTURE IS X VALUE SPACE. 
02 DEBUG-SUB-l PICTURE IS S9999 SIGN IS LEADING SEPARATE 

CHARACTER. 
02 FILLER PICTURE IS X VALUE SPACE 
02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE 

CHARACTER. 
02 FILLER PICTURE IS X VALUE SPACE. 
02 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE 

CHARACTER. 
02 FILLER PICTURE IS X VALUE SPACE. 
02 DEBUG-CONTENTS PICTURE IS X(n). 

12. Prior to each execution of a debugging section, the contents of the 
data item referenced by DEBUG-ITEM are space-filled. The contents of 
data items subordinate to DEBUG-ITEM are then updated, according to the 
following general rules, immediately before control is passed to that 
debugging section. The contents of any data item not specified in the 
following general rules remains spaces. 

Updating is accomplished in accordance with the rules for the MOVE 
statement, the sole exception being the move to DEBUG-CONTENTS when the 
move is treated exactly as if it was an alphanumeric to alphanumeric 
elementary move with no conversion of data from one form of internal 
representation to another. 

13. The contents of DEBUG-LINE is the relevant COBOL source line number. 
This provides the means .of identifying a particular source statement. 

14. DEBUG-NAME contains the "first 30 characters of the name that caused the 
debugging section to be executed. 

All qualifiers of the name are separated in DEBUG-NAME by the word IN 
or OF. 

Subscripts/indices, if any, are not entered into DEBUG-N&~E. 

15. If the reference to a data item that causes the debugging section to be 
executed is subscripted or indexed, the occurrence number of each level 
is entered in DEBUG-SUB-l, DEBUG-SUB-2, DEBUG-SUB-3 respectively as 
necessary. 

16. DEBUG-CONTENTS is a data item that is large enough to contain the data 
required by the following general rules. 

11 - 7 



17. If the first execution of the first nondeclarative procedure in the 
program causes the debugging section to be executed, the following 
conditions exist: 

a. DEBUG-LINE identifies the first statement of that procedure. 

b. DEBUG-NAME contains the name of that proceduree 

c. DEBUG-CONTENTS contains'S TART PROGRAM' • 

18. If a reference to procedure-name-l in an ALTER statement causes the 
debugging section to be executed, the following conditions exist: 

a. DEBUG-LINE identifies the ALTER statement that references 
procedure-name-I. 

b. DEBUG-NAME contains procedure-name-I. 

c. DEBUG-CONTENTS contains the applicable procedure-name associated 
with the TO phrase of the ALTER statement. 

19. If the transfer of control associated wi th the execution of a GO TO 
statement causes the debugging section to be executed, the f.ollowing 
conditions exist: 

a. DEBUG-LINE identifies the GO TO statement whose execution 
transfers control to procedure-name-I. 

b. DEBUG-NAME contains procedure-name-l. 

20. If reference to procedure-name-I in the INPUT or OUTPUT phrase of a 
SORT or MERGE statement causes the debugging section to be executed t 

the following conditions exist: 

a. DEBUG-LINE identifies the SORT or MERGE statement that references 
prcoedure-name-l. 

b. DEBUG-NAME contains procedure-name-I. 

c. DEBUG7CONTENTS contains: 

i. If the reference to procedure-name-I is the INPUT· phrase of a 
SORT statement, 'SORT INPUT'. 

ii. If the reference to procedure-name-I is in the OUTPUT phrase 
of a SORT statement, 'SORT OUTPUT'. 

iii. If the reference to procedure-name-l is in the OUTPUT phrase 
of a MERGE statement, 'MERGE OUTPUT'. 

11 - 8 



21. If the transfer to control from the control mechanism associated with a 
PERFORM statement causes the debugging section associated with 
procedure-name-l to be executed, the following conditions exist: 

a. DEBUG-LINE identifies the PERFORM statement that references 
procedure-name 1. 

b. DEBUG-NAME contains procedure-name-l. 

c. DEBUG-CONTENTS contains 'PERfORM LOOP'. 

22. If procedure-name-l is a USE procedure that is to be executed, the 
following conditions exist: 

23. 

a. DEBUG-LINE identifies the statement that causes execution of the 
USE procedure. 

b. DEBUG-NAME contains procedure-name-l. 

c. DEBUG-CONTENTS contains 'USE PROCEDURE'. 

If an implicit transfer of control fram the previous sequential 
paragraph to procedure-name-l causes the debugging section to be 
executed, the following conditions exist: 

a. DEBUG-LINE identifies the previous statement. 

b. DEBUG-NAME contains procedure-name-l. 

c. DEBUG-CONTENTS contains 'FALL THROUGH'. 

240 If references to file-name-I, cd-name-I causes the debugging section to 
be executed, then: 

a. DEBUG-LINE identifies the source statement that references 
file-name-I, cd-name-Io 

'b. DEBUG-NAME contains the name of file-name-I, cd-name-I. 

c. For READ, DEBUG-CONTENTS contains the entire record read. 

d. For all other references to file-name-l, DEBUG-CONTENTS,contains 
spaces. 

e. For any reference cd-name-I, DEBUG-CONTENTS contains the contents 
of the area associated with the cd-name. 

25. If a reference to 1dentif1er-I causes the debugging section to be 
executed, then,: 

a. DEBUG-LINE identifies the source statement that references 
identifier-I» 

11 - 9 



b. DEBUG-NAME contains the name of identifier-l, and 

c. DEBUG-CONTENTS contains the contents of the data item referenced 
by identifier-2 at the time that control passes to the debugging 
section (see General Rules 6 and 7). 

DEBUGGING LINES 

A debugging line is any line with a 'D' in the indicator area of the line. 
Any debugging line that consists solely of spaces from margin A to margin R 
is considered the same as a blank line. 

The contents of a debugging line must be such that a syntactically correct 
program is formed wi th or wi thout the debugging lines being considered as 
comment lines. 

A debugging line will be considered to have all the characteristics of a 
comment line, if the WITH DEBUGGING MODE clause is not specified in the 
SOURCE-COMPUTER paragraph. 

Successive debugging lines are allowed. Continuation of debugging lines is 
permitted, except that each continuation line must contain a 'D' in the 
indicator area, and character-strings may not be broken across two lines. 

A debugging line is only permitted in the program after the OBJECT-COMPUTER 
paragraph. 

11 - 10 



CHAPTER 12 

INTERPROGRAM COMMUNICATION 

INTRODUCTION TO THE INTER-PROGRAM COMMUNICATION MODULE 

The Inter-Program Communication module provides a facility by which a 
program can communicate with one or more programs. This provides a 
programmer with a modular programming capability. Each module when CALLed 
is loaded dynamically by the Run Time System. Communication is provided by: 

* The ability to transfer control from one program to another within 
a run unit 

* The ability for both programs to have access to the same data 
items. 

DATA DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE 

LINKAGE SECTION 

The Linkage Section in a program is meaningful if and only if the obj ect 
program is to function under the control of a CALL statement, and the CALL 
statement in the calling program contains a USING phrase. 

The Linkage Section is used for describing data that is available through 
the calling program but is to be referred to in both the calling and the 
called program. No space is allocated in the program for data items 
referenced by data-names in the Linkage Section of that program. Procedur.e 
Division references to these data items are resolved at obj ect time by 
equating the reference in the called program to the location used in the 
calling program. In the case of index-names, no such correspondence is 
established. Index-names in the called and calling program always refer to 
separate indices. 

Data items defined in the Linkage Section of the called program may be 
referenced within the Procedure Division of the called program only if they 
are specified as operands of the USING phrase of the Procedure Division 
header or are subordinate to such operands, and the object program is under 
the control of a CALL statement that specifies a USING phrase. 

The structure of the Linkage Section is the same as that previously 
described for the Working-Storage Section, beginning with a section header, 
followed by data. description entries· for noncontiguous data items and/ or 
record description entries. 

Each Linkage Section record-name and noncontiguous item name must be unique 
within the called program since it cannot be qualified. 

12 - 1 



Of those items defined in the Linkage Section only data-name-l t data-name-2, 
in the USING phrase of the Procedure Division header, data items 

subordinate to these data-names, and condition-names and/or index-names 
associated with such data-names and/or subordinate data items, may be 
referenced in the Procedure Divisione 

Noncontiguous Linkage Storage 

Items in the Linkage Section that bear no hierarchic relationship to one 
another need not be grouped into records and are classified and defined as 
noncontiguous elementary items. Each of these data items is defined in a 
separate data description entry which begins with the special level-number 
77. 

The following data clauses are required in each data description entry: 

* Level-number 77 
* Data-name 
* The PICTURE clause or the USAGE IS INDEX clause 

Other data description clauses are optional and can be used to complete the 
description of the item if necessary. 

Linkage Records 

Data elements in the Linkage Section which bear a definite hierarchic 
relationship to one another must be grouped into records according to the 
rules for formation of record descriptions. Any clause which is used in an 
input or output record description can be used in a Linkage Sectiono 

Initial Values 

The VALUE clause must not be specified in the Linkage 'Section except in 
condition-name entries (level 88). 

12 - 2 



PROCEDURE DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE 

THE PROCEDURE DIVISION HEADER 

The Procedure Division is identified by and must begin with the following 
header: 

PROCEDURE DIVISION (USING data-name-1 [, data-name-2] ee.] 

The USING phrase is present if and only if the object program is to function 
under the contrQl of a CALL statement, and the CALL statement in the calling 
program contains a USING phrase. 

Each of the operands in the USING phrase of the Procedure Division header 
must be defined as a data item in the Linkage Section of the program in 
which this header occurs, and it must have a 01 or 77 level-numbere 

Within a called program, Linkage Section data items are processed according 
to their data descriptions given in the called program. 

When the USING phrase is present, the object program operates as if 
data-name-: of the Procedure Division header in the called program and 
data-name-l in the USING phrase of the CALL statement in the calling program 
refer to a single set of data that is equally available to both the called 
and calling programs. Their descriptions must define an equal number of 
character positions; however they need not be the same name. In like 
manner, there is an equivalent relationship between data-name-2, ••. , in the 
USING phrase of the called program and data-name-2, ••• , in the USING phrase 
of the CALL statement in the calling program. A data-name must not appear 
more than once in the USING phrase in the Procedure Division header of the 
called program; however, a given data-name may appear more than once in the 
same USING phrase of a CALL statement. 

If the USING phrase is specified, the INITIAL clause must not be present in 
any CD entry. (See THE COMMUNICATION DESCRIPTION - COMPLETE ENTRY SKELETON 
in Chapter 13). 

(Add~ndum 1) 

12 - 3 



THE CALL STATEMENT 

Function 

The CALL statement causes control to be transferred from one object program 
to another, within the run unit. 

General Format 

Format 1 

CALL S identifier-q 
lliteral-l S [USING datanamel [ , dataname2] • ~ . ] 

[ON OVERFLOW imperative-statement] 

Syntax Rules 

1. Literal-l must be a nonnumeric literal which identifies a file 
containing the subprogram to be CALLed. 

2G Identifier-l must be defined as an alphanumeric data item usage 
display. 

3G The USING phrase is included in the CALL statement only if there is a 
USING phrase in the Procedure Division header of the called program and 
the number of operands in each USING phrase must be identical. 

4. Each of the operands in the USING phrase must have been defined as a 
data item in the File Section, Working-Storage Section, or Linkage 

_~ionDa~~~n:::l~av~a~a::::~~~~m:~~ ,Of !; orb:7 ~:~~;!!'~ 
"'rele'rence data items defined in the File Section or the Communication 
Section. 

General Rules 

1. The program which is identified by the value of literal-lor 
.identifier-l is a called subprogram, the program which is identified by 
literal-2 or identifier-2 is a called run time subroutine; the program 
in which the CALL statement appears is the calling program. 

(Addendum 2) 
12 - 4 

I 
I 



2. The execution of a CALL statement causes control to pass to the called 
program. 

3. In format 1, a called intermediate code module is loaded from disk the 
first time it is called within a run-unit and the first time it is 
called after a CANCEL to the called program. 

On all other entries into the called program, the state of the program 
remains unchanged from its state when last exited. This includes all 
data fields, the status and positioning of all files, and all alterable 
swi tch settings. 

5. If durin~ the execution of a CALL statement, it is determined that the 
available portion of run-time memory is incapable of accomodating the 
program specified in the CALL statement, the next sequential 
instruction is executed. If ON OVERFLOW has been specified, the 
associated imperative statement is executed before the next instruction 
is executed. 

6. Called programs may contain CALL statements. However, a called program 
must not contain a call statement that directly or indirectly calls the 
calling program. 

7. The data-names, specified by the USING phrase of the CALL statement, 
indicate those data items available to a calling program that may be 
referred to in the called program. The order of appearance of the 
data-names in the USING phrase of the CALL statement and the USING 
phrase in the Procedure Division header is critical. Corresponding 
data-names refer to a single set of data which is availab le to the 
called and calling program. The correspondence is positional, not by 
name. In the case of index-names, no such correspondence is 
established. Index-names in the called and calling program always 
refer to separate indices. 

8. The CALL statement may appear anywhere wi thin a segmented program. 
Therefore, when a CALL statement appears in a section with a 
segment-number greater than or equal to 50, that segment is in its last 
used state when the EXIT PROGRAM statement returns control to the 
calling program. 

12 - 5 



THE CANCEL STATEMENT 

Function 

The CANCEL statement releases the memory areas occupied by the referred to 
program. 

General Format 

CANCEL 

Syntax Rules 

Sidentifier-1i 
lliteral-l 5 [

, identifier-2] 
, literal-2 

1. Literal-I, literal-2, 000, must each be a nonnumeric literal containing 
the equivalent value as used in the corresponding CALL statement. 

2. Identifier-I, identifier-2, e • 0 , must each be defined as an 
alphanumeric data item such that its value can be a program name. 

General Rules 

1. Subsequent to the execution of a CANCEL statement, the program referred 
to ceases to have any logical relationship to the run unit in which the 
CANCEL statement appears. A subsequently executed CALL statement 
naming the same program will result in that program being initiated in 
its initial state. The memory areas associated with the named programs 
are released so as to be made available for disposition by the 
operating system. 

2. A program named in the CANCEL statement must not refer to any program 
that has been called and has not yet executed an EXIT PROGRAM 
statement. 

3. A logical relationship to a cancelled subprogram is established only by 
execution of a subsequent call statement. 

4. -A called program is cancelled either by being referred to as the 
operand of a CANCEL statement or by the termination of the run unit of 
which the program is a member. 

5. No action is taken when a CANCEL statement is executed naming a program 
that has not been called in this run unit or has been called and is at 
present cancelled. Control passes to the next statement. 

12 - 6 



THE EXIT PROGRAM STATEMENT 

Function 

The EXIT PROGRAM statement marks the logical end of a called program. 

General Format 

EXIT PROGRAM 0 

Syntax Rules 

1. The EXIT PROGRAM statement must appear in a sentence by itself. 

2. The EXIT PROGRAM sentence must be the only sentence in the paragraph. 

General Rule 

An execution of an EXIT PROGRAM statement in a called program causes control 
to be passed to the calling program. Execution of an EXIT PROGRAM statement 
in a program which is not called behaves as if the statement were an EXIT 
statement. (See THE EXIT STATEMENT in Chapter 3). 

12 - 7 



12 - 8 



CHAPTER 13 

COMMUNICATION 

INTRODUCTION TO THE COMMUNICATION MODULE 

FUNCTION 

The Communication module provides the ability to access, process, and create 
messages or portions thereof. It provides the ability to communicate 
through a Message Control System (MCS) with local and remote communication 
devices. 

DATA DIVISION IN THE COMMUNICATION MODULE 

COMMUNICATION SECTION 

In a COBOL program the communication description entries (CD) represent the 
highest level of organization in the Communication Section. The 
Communication Section header is followed by a communication description 
entry consisting of a level indicator (CD), a data-name and a series of 
independent clauses. These clauses indicate the queues and sub-queues, the 
message date and time, the source, the text length, the status and end keys, 
and message count of input. These clauses specify the destination count, 
the text length, the 'status and error keys, and destinations for output. 
The entry itself is' terminated by a period. These record areas may be 
implicitly redefined by user-specified record description entries following 
the various communication description clauses. 

THE COMMUNICATION DESCRIPTION - COMPLETE ENTRY SKELETON 

Funct ion 

The communication description specifies the interface area between the MCS 
and a COBOL program. 

13 - 1 



General Format 

Format 1: 

CD cd-name; 

[[; SYMBOLIC QUEUE IS data-name-1] 

[; SYMBOLIC SUB-QUEUE-1 IS data-name-2] 
[; SYMBOLIC SUB-QUEUE-2 IS data-name-3] 
[; SYMBOLIC SUB-QUEUE-3 IS data-name-4] 
[; MESSAGE DATE IS data-name-5] 

FOR [INITIAL] INPUT [; MESSAGE TIME IS data-name-6] 

Format 2: 

[; SYMBOLIC SOURCE IS data-name-7] 
[; TEXT LENGTH IS data-name-8] 
[; END KEY IS data-name-9] 
[; STATUS KEY IS data-name-10] 
[; MESSAGE-cDUNT IS data-name-111] 

[data-name-1, data-name-2, .. 8, data-name-l1] 

CD cd-name; FOR OUTPUT 

[; DESTINATION COUNT IS data-name-1] 
[; TEXT LENGTH IS data-name-2] 
[; STATus KEY IS data-name-3] 
[; DESTINATION TABLE OCCURS integer-2 TIMES 

[; INDEXED BY index-name-l [, index-name-2] ... ]] 
[; ERROR KEY IS data-name-4] 
[; SYMBOLIC DESTINATION IS data-name-5]. 

Syntax Rules 

Format 1: 

1. A CD must appear only in the Communication Section. 

2. Within a single program, the INITIAL clause may be specified in only 
one CD. The INITIAL clause must not be used in a program that 
specifies the USING phrase of the Procedure Division Header. (See The 
Procedure Division Header.) 

3. Except for the INITIAL clause, the optional clauses may be written in 
any order. 

4. If neither option in the format is specified, a level 01 data 
description entry must follow the CD description entry. Either option 
may be followed by a level 01 data description entry. 

13 - 2 



5. For each input CD, a record area of 87 contiguous standard data format 
characters is allocated. This record area is defined to the MCS as 
follows: 

a. The SYMBOLIC QUEUE clause defines data-name-1 as the name of an 
elementary alphanumeric data item of 12 characters occupying 
positions 1-12 in the record. 

b. The SYMBOLIC SUB-QUEUE-1 clause defines data-name-2 as the name of 
an elementary alphanumeric data item of 12 characters occupying 
positions 13-24 in the record. 

c. The SYMBOLIC SUB-QUEUE-2 clause defines data-name-3 as the name of 
an elementary alphanumeric data item of 12 characters occupying 
positions 25-36 in the record. 

d. The SYMBOLICSUB-QUEUE-3 clause defines data-name-4 as the name of 
an elementary alphanumeric data item of 12 characters occupying 
positions 37-48 in the record. 

e. The MESSAGE DATE clause defines data-name-5 as the name of a data 
item whose implicit description is that of an integer of 6 digits 
without an operational sign occupying character positions 49-54 in 
the record. 

f. The MESSAGE TIME clause defines data-name-6 as the name of a data 
item whose implicit description is that of an integer of 8 digits 
without an operational sign occupying character positions 55-62 in 
the record. 

g. The SYMBOLIC SOURCE clause defines data-name-7 as the name of an 
elementary alphanumeric data item of 12 characters occupying 
positions 63-74 in the record. 

h. The TEXT LENGTH clause defines data-name-8 as the name of an 
elementary data item whose implicit description is that of an 
integer of 4 digits without an operational sign occupying 
character positions 75-78 in the record. 

i. The END KEY clause defines 
elementary alphanumeric data 
position 79 in the record. 

data-name-9 
item of 1 

as the name of an 
character occupying 

j. The STATUS KEY clause defines data-name-10 as the name of an 
elementary alphanumeric data item of 2 characters occupying 
positions 80-81 in the record. 

k. The MESSAGE COUNT clause defines data-name-ll as the name of an 
elementary data item whose implicit description is that of an 
integer of 6 digits wi thout an operational sign occupying 
character positions 82-87 in the record. 

13 - 3 



The second option may be used to replace the above clauses by a series 
of data-names which, taken in order, correspond to the data-names 
defined by these clauses. 

Use of either option results in a record whose implicit description is 
equivalent to the following: 

NOTE: 

IMPLICIT DESCRIPTION 

01 da ta -name -0 • 

02 data-name-l PICTURE X(12) .. 
02 da ta -name-2 PICTURE X(I2) .. 
02 da ta -name -3 PICTURE X(I2)" 
02 data-name-4 PICTURE X(I2)" 
02 da ta -name -5 PICTURE 9 (06). 
02 da ta -name-6 PICTURE 9 (08). 
02 data-name-7 PICTURE X(I2)" 
02 da ta -name-8 PICTURE 9 (04) " 
02 da ta -name -9 PICTURE Xc 
02 da ta -name -1 0 PICTURE XX. 
02 data-name-II PICTURE 9(06). 

COMMENT 

SYMBOLIC QUEUE 
SYMBOLIC SUB-QUEUE-I 
SYMBOLIC SUB-QUEUE-2 
SYMBOLIC SUB-QUEUE-3 
MESSAGE DATE 
MESSAGE TIME 
SYMBOLIC SOURCE 
TEXT LENGTH 
END KEY 
STATUS KEY 
MESSAGE COUNT 

In the above, the information under 'COMMENT' is for clarification 
and is not part of the description. 

6" Record description entries following an inpu t CD implicitly redefine 
this "record and must describe a record of exactly 87 characters. 
Multiple redefinitions of this record are permitted; however, only the 
first redefinition may contain VALUE clauses. However, the MCS will 
always reference the record according to the data descriptions defined 
in syntax rule 5. 

7. Data-name-I, data-name-2, ••• , "data-name-II must be unique within the 
CD. Within this series, any data-name may be replaced by the reserved 
wo rd FILLER. 

Format 2: 

8. A CD must appear only in the Communication Section. 

9. If none of the optional clauses of the CD is specified, a level 01 data 
description entry must follow the CD description entry. 

10. For each output CD, a record area of contiguous standard data format 
characters is allocated according to the following formula: (10 plus 
13 times integer.-2). 

13 - 4 



ae The DESTINATION COUNT clause defines data-name-1 as the name of a 
data item whose implicit description is that of an integer without 
an operational sign occupying character positions 1-4 in the 
recordo 

b. The TEXT LENGTH clause defines data-name-2 as the name of an 
elementary data i tern whose implicit description is that of an 
integer of 4 digits without an operational sign occupying 
character positions 5-8 in the record. 

c. The STATUS KEY clause defines data-name-3 to be an elementary 
alphanumeric data item of 2 characters occupying positions 9-10 in 
the record. 

d. Character positions 11-23 and every set of 13 characters 
thereafter will form table items of the following description: 

* The ERROR KEY clause defines data-name-4 as the name of an 
elementary alphanumeric data item of 1 character. 

* The SYMBOLIC DESTINATION clause defines data-name-5 as the 
name of an elementary alphanumeric data item of 
12 characters. 

Use of the above clauses results in a record whose implicit description 
is equivalent to the following: 

01 

NOTE: 

IMPLICIT DESCRIPTION 

data-name-O. 
02 data-name-l PICTURE 9(04). 
02 data-narne-2 PICTURE 9(04). 
02 data-name-3 PICTURE XX. ' 
02 data-name OCCURS integer-2 TIMES. 

03 
03 

data-name-4 
data-name-5 

PICTURE X. 
PICTURE X(12). 

COMMENT 

DESTINATION COUNT 
TEXT LENGTH 
STATUS KEY 
DESTINATION TABLE 

ERROR KEY 
SYMBOLIC DESTINATION 

In the above, the information under 'COMMENT' is for clarification 
and is not part of the description. 

11. Record descriptions following an output CD implictly redefine this 
record. Multiple redefinitions of this record are permitted; however, 
only the first redefinition may contain VALUE clauses. Note that the 
MCS will always reference the record according to the data descriptions 
defined in syntax rule 10. 

13 - 5 



12. Data-name-1, data-name-2, ••• , data-name-5 must be unique within a CDe 

130 If the DESTINATION TABLE OCCURS clause is not specified, one ERROR KEY 
and one SYMBOLIC DESTINATION area is assumed.. In this case, neither 
subscripting nor indexing is permitted when referencing these data 
items. 

14.. If the DESTINATION TABLE OCCURS clause is specified, data-name-4 and 
dataname-5 may only be referred to by subscripting or indexing. 

15 e There is no restriction on the value of the data i tern referenced by 
data-name-l and integer-2. 

General Rules 

Format 1: 

1. The input CD information constitutes the communication between the MCS 
and the program as information about the message being handled. This 
information does not come from the terminal as part of the message. 

2. The contents of the data items referenced by data-name-2, data-name-3, 
and data-name-4, when not being used must contain spaces. 

3e The data items referenced by data-name-l, data-name-2, data-name-3, and 
data-name-4 contain symbolic names designating queues, sub-queues, 
respectively. All symbolic names must follow the rules for the 
formation of system-names, and must have been previously defined to the 
MCS. 

4. A RECEIVE statement causes the serial return of the 'next' message or a 
portion of a message from the queue as specified by the entries in the 
CD. 

If during the execution of a RECEIVE statement, a message from a more 
specific source is needed, the contents of the data item referenced by 
data-name-1 can be made more specific by the use of the contents of the 
data items referenced by data-name-2, data-name-3, and in turn 
data-name-4. When a given level of the queue structure is specified, 
all higher levels must also be specified. 

If fewer than all the levels of the queue hierarchy are specified, the 
MCD determines the 'next' message or portion of a message to be 
accessed. 

After the execution of a RECEIVE statement, the contents of the data 
items referenced by data-name:" 1 through data-name-4 will contain the 
symbolic names of all the levels of the queue structure. 

13 - 6 



5. Whenever a program is scheduled by the MCS to process a message, that 
program establishes a run unit and the symbolic names of the queue 
structure that demanded this activity will be placed in the data items 
referenced by data-name-1 through data-name-4 of the CD associated with 
the INITIAL clause as applicable. In all other cases, the contents of 
the data items referenced by data-name-l through data-name-4 of the CD 
associated with the INITIAL clause are initialized to spaces. 

The symbolic names 
completed prior to 
statement. 

are inserted or the initialization to spaces is 
the execution of the first Procedure Division 

The execution of a subsequent RECEIVE statement naming the same 
contents of the data items referenced by data-name-1 through 
data-name-4 will return the actual message that caused the program to 
be scheduled. Only at that time will the remainder of the CD be 
updated. 

6. If the MCS attempts to schedule a program lacking an INITIAL clause, 
the results are undefined. 

7. Data-name-5 has the format 'YYMMDD' (year, month, day). Its contents 
represent the date on which the MCS recognizes that the message is 
complete. 

The contents of the data item referenced by data-name-5 are only 
updated by the MCS as part of the execution of a RECEIVE statement. 

B. The contents of data-name-6 have the format 'HHMMSSTT' (hours, minutes, 
seconds, hundredths of a second) and its contents represent the time at 
which the MCS recognizes that the message is complete. 

The contents of the data item referenced by data-name-6 are only 
updated by the MCS as part of the execution of the RECEIVE statement. 

9. During the execution of a RECEIVE statement, the MCS provides, in the 
data item referenced by data-name-7, the symbolic name of the 
communications terminal that is the source of the message b~ing 
transferred. This symbolic move must follow the rules for the 
formation of system names. However, if the symbolic name of the 
communication terminal is not known to the MCS, the contents of the 
data item referenced by data-name-7 will contain spaces. 

10. The MCS indicates via the contents of the data item referenced by 
data-name-B the number of character positions filled as a result of the 
execution of the RECEIVE statement. (See THE RECEIVE STAT&~ENT later 
in this Chapter.) 

11. The contents of the data item referenced by data-name-9 are set only by 
the MCS as part of the execution of a RECEIVE statement according to 
the following rules: 

13 - 7 



a. When the RECEIVE MESSAGE phrase is specified, then data-name-9 is 
set to one of the following: 

* If an end of group has been detected, the contents of the 
data item referenced by data-name-9 are set to 3; 

* If an end of message has been detected, the contents of the 
data item referenced by data-name-9 are set to 2; 

* If less than a message has been detected, the contents of the 
data item referenced by data-name-9 are set to O. 

b. When the RECEIVE SEGMENT phrase is specified, data-name-9 is set 
to one of the following: 

c. 

* If an end of group has been detected, the contents of the 
data item referenced by data-name-9 are set to 3; 

* If an end of message has been detected, the contents of the 
data item referenced by data-name-9 are set to 2; 

* If an end of segment has been detected,the contents of the 
data item referenced by data-name-9 are set to 1; 

* If less than a message segment is transferred, the contents 
of the data item referenced by data-name-9 are set to 0. 

When mo re than one of 
simultaneously, the rule 
determines the contents 
da ta -name -9. 

the 
first 

of 

above conditions is satisfied 
satisfied in the order listed 

the data item referenced by 

12. The contents of the data item referenced by data-name-l0 indicate the 
status condition of the pr"eviously executed RECEIVE, ACCEPT MESSAGE 
COUNT, ENABLE INPUT, or DISABLE INPUT statements. 

The actual association between the contents of the data item referenced 
by data-name-lO and the status condition itself is defined in 
Table 13-1. 

13. The contents of the data item referenced by data-name-ll indicate the 
number of messages that exist in a queue, sub-queue-l, •.•. The MCS 
updates the contents of the data item referenced by data-name-l1 only 
as part of the execution of an ACCEPT statement with the COUNT phrase. 

Format 2: 

14. The nature of the output CD information is such that it is not sent to 
the terminal, but constitutes the communication between the program and 
the MCS as information about the message being handled. 

13 - 8 



15. During the execution of a SEND, ENABLE OUTPUT, or DISABLE OUTPUT 
statement, the contents of the data item referenced by data-name-l will 
indicate to the MCS the number of symbolic destinations that are to be 
used from the area referenced by data-name-5. 

The MCS finds the first symbolic destination in the first occurrence of 
the area referenced by data-name-5, the second symbolic destination in 
the second occurrence of the area referenced by data-name-S ••• ,m up 
to and including the occurrence of the area referenced by data-name-5 
indicated by the contents of data-name-l. 

If during the execution of a SEND, ENABLE OUTPUT, or DISABLE OUTPUT 
statement the value of the data item referenced by' data-name-1 is 
outside the range of 1 through integer-2, an error condition is 
indicated and the execution of the SEND, ENABLE OUTPUT, or DISABLE 
OUTPUT statement is terminated. 

16. It is the responsibility of the user to insure that the value of the 
data item referenced by data-name-l is valid at the time of execution 
of the SEND, ENABLE OUTPUT, or DISABLE OUTPUT statement. 

17. As part of the execution of a SEND statement, the MCS will interpret 
the contents of the data item referenced by data-name-2 to be the 
user's indication of the number of leftmost character positions of the 
data item referenced by the associated SEND identififer from which data 
is to be transferred. (See THE SEND STATEMENT later in this Chapter). 

18. Each occurrence of the date item referenced by data-name-5 contains a 
symbolic destination previously known to the MCS. These symbolic 
destination names must follow the rules for the formation of 
system-names. 

19. The contents of the data item referenced by data-name-3 indicate the 
status condition of the previously executed SEND, &~ABLE OUTPUT or 
DISABLE OUTPUT statement. 

20. 

The actual association between the contents of the data item referenced 
by data-name-3 and the status condition itself is defined in 
Table 13-1. 

If, during the execution 
OUTPUT statement, the MCS 
unknown, the contents of 
all occurrences of the 
updated. 

of a SEND, an ENABLE OUTPUT, or a DISABLE 
determines that any specified destination is 
the data item referenced by data-name-3 and 
data items referenced by data-name-4 are 

The contents of the data item referenced by data-name-4 when equal to 1 
indicate that the associated value in the area referenced by 
data-name-S has not been previously defined to the MeS. Otherwise, the 
contents of the data item referenced by data-name-4 are set to zero. 

13 - 9 



All Fonnats: 

21. Table 13-1 indicates the possible contents of the data items referenced 
by data-name-10 for Format 1 and by data-name-3 for Format 2 at the 
completion of each statement shown. An 'X' on a line in a statement 
column indicates that the associated code shown for that line is 
possible for that statement. 

13 - 10 



Table 13-1. Communication Status Key Condition 

RECEIVE 

SEND 

ACCEPT MESSAGE COUNT 

ENABLE INPUT (without terminal) 

ENABLE INPUT (with terminal) 

ENABLE OUTPUT 

DISABLE OUTPUT (without terminal) 

DISABLE OUTPUT (with terminal) 

DISABLE OUTPUT 

STATUS KEY CODE 

X X X X X X X X X 00 No error detected. Action completed. 

X 10 One or more destinations are 
disabled. Action completed. 

One or more destinations unknown. 
Action completed for known destina-

X X X 20 tions. No action taken for unknown 
destinations. Data-name-4 (ERROR 
KEY) indicates known or unknown. 

X X X X 20 
One or more queues or sub-queues 
unknown. No action taken. 

X X 20 
The source is unknown. No action 
taken. 

X X X 30 
Content of DESTINATION COUNT 
invalid. No action taken. 

X X X X X X 40 
Password invalid. No 
enabling/disabling action taken. 

X 50 
Character count greater than length 
of sending field. No action taken. 

Partial segment with either zero 
X 60 character count or no sending area 

specified. No action taken. 

13 - 11 



PROCEDURE DIVISION IN THE COMMUNICATION MODULE 

THE ACCEPT MESSAGE COUNT STATEMENT 

Function 

The ACCEPT MESSAGE COUNT statement causes the number of messages in a queue 
to be made available •. 

General Fonna t 

ACCEPT cd-name MESSAGE COUNT 

Syntax Rule 

CD-name must reference an input CD. 

General Rules 

1. The ACCEPT MESSAGE COUNT statement causes the MESSAGE COUNT field 
specified for cd-name to be updated to indicate the number of messages 
that exist in a queue, sub-queue-l, •••• 

2. Upon execution of the ACCEPT MESSAGE COUNT statement, the contents of 
the area specified by a communication description entry must contain at 
least the name of the symbolic queue to be tested. Testing the 
condition causes the contents of the data items referenced by 
data-name-10 (STATUS KEY) and data-name-l (MESSAGE COqNT) of the area 
associated with the communication entry to be appropriately updated. 
(See THE COMMUNICATION DESCRIPTION - COMPLETE ENTRY SKELETON.) 

13 - 12 



THE DISABLE STATEMENT 

Function 

The DISABLE statement notifies the MCS to inhibit data transfer between 
specified output queues and destinations for output or between specified 
sources and input queues for input. 

General Format 

{ 
INPUT 

DISABLE OUTPUT 

Syntax Rules 

[TERMINAL] } cd-name WITH KEY sidentifier-1~ 
~literal-1 ~ 

1. Cd-name must reference an input CD when the INPUT phrase is specified. 

2. cd-name must reference an output CD when the OUTPUT phrase is 
specified. 

3. Literal-lor the contents of the data item referenced by identifier-1 
must be defined as alphanumeric. 

General Rules 

1. The DISABLE statement provides a logical disconnection between the MCS 
and the specified sources or destinations. When this logical 
disconnection is already in existence, or is to be handled by some 
other means external to this program, the DISABLE statement is not 
required in this program. The logical path for the transfer of data 
between the COBOL programs and the MCS is not affected by the DISABLE 
statement. 

2. When the INPUT phrase with the optional word TERMINAL is specified, the 
logical path between the source and all queues and sub-queues is 
deactivated. Only the contents of the data item referenced by 
data-name-7 (SYMBOLIC SOURCE) of the area referenced by cd-name are 
meaningful. 

3. When the INPUT phrase without the optional word TERMINAL is specified, 
the logical paths for all of the sources associated with the queues and 
sub-queues specified by the contents of data-name-1 (SYMBOLIC QUEUE) 
through data-name-4 (SYNBOLIC SUB-QUEUE-3) of the area referenced by 
cd-name are deactivated. 

4. When the OUTPUT phrase is specified, the logical path for destination, 
or the logical paths for all destinations, specified by the contents of 
the data item referenced by data-name-S (SYMBOLIC DESTINATION) of the 
area referenced by cd-name are deactivated. 

13 - 13 



5. Literal-1 or the contents of the data-name referenced by identifier-l 
will be matched with a password built into the systeme The DISABLE 
statement will be honored only if literal-1 or the contents of the data 
item referenced by identifier-1 match the system password. When 
literal-1 or the contents of the data item referenced by identifier-l 
do not match the system password, the value of the STATUS KEY item in 
the area referenced by cd-name is updated. 

The MCS must be capable of handling a password of from one to ten 
characters inclusive. 

6. The MCS will insure that the execution of a DISABLE statement will 
cause the logical disconnection at the earliest time the source or 
destination is inactive. The execution of the DISABLE statement wi 1.1 
never cause the remaining portion of the message to be terminated 
during transmission to or from a terminal. 

13 - 14 



THE ENABLE STATEMENT 

Function 

The ENABLE statement notifies the MCS to allow date transfer between 
specified output queues and destinations for output or between specified 
sources and input queues for input. 

General Format 

~ INPUT 
ENABLE (OUTPUT 

Syntax Rules 

[TERMINAL] ~ cd-name WITH KEY lidentifier-1 l 
literal-1 ) 

1. cd-name must reference an input CD when the INPUT phrase is specified. 

2. Cd-name must reference an output CD when the OUTPUT phrase is 
specified. 

3. Literal-1 or the contents of the data item referenced by identifier-l 
must be defined as alphanumeric. 

General Rules 

1. The ENABLE statement provides a logical connection between the HCS and 
the specified sources or destinations. When this logical connection is 
already in existence, or is to be handled by some other means external 
to this program, the ENABLE statement is not required in this program. 
The logical path for the transfer of data between the COBOL programs 
and the MCS is not affected by. the ENABLE statement. 

2. When the INPUT phrase with the optional word TER}UNAL is specified, the 
logical path between the source and all associated queues and 
sub-queues which are already enabled is activated. Only the contents 
of the data item referenced by data-name-7 (SYMBOLIC SOURCE) of the 
area referenced by cd-name are meaningful to the MCS. 

3. When the INPUT phrase without the optional word TERMINAL is specified, 
the logcal paths for all of the sources associated with the queue and 
sub-queues specified by the contents of data-name-l (SYMBOLIC QUEUE) 
through data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area referenced by 
cd-name are ~ctivated. 

4. When the OUTPUT phrase is specified, the logical path for destination, 
or the logical paths for all destinations, specified by the contents of 
the data item referenced by data-name-S (SYMBOLIC DESTINATION) of the 
area referenced by cd-name are activated. 

13 - 15 



5. Literal-1 or the contents of the data item referenced by identifier-1 
will be matched with a password built into the system" The ENABLE 
statement will be honored only if li.teral-1 or the contents of the data 
item referenced by identifier-1 match the system password. tVhen 
literal-1 or the contents of the data item referenced by identifier-1 
do not match the system password, the value of the STATUS KEY item in 
the area referenced by cd-name is updated. 

The Mes must be capable of handling a password of from one to ten 
characters inclusive. 

13 -·16 



THE RECEIVE STATEMENT 

Function 

The RECEIVE statement makes available to the COBOL program a message, 
message segment, or a portion of a message or segment, and pertinent 
information about that data from a queue maintained by the Message Control 
System. The RECEIVE statement allows for a specific imperative statement 
when no data is available. 

General Format 

RECEIVE 

Syntax Rule 

cd-name ~MESSAGE~ INTO identifier-l 
~ SEGMENT ~ 

[; NO DATA imperative-statement] 

Cd-name must reference an input CD. 

General Rules 

1. The contents of the data items specified by data-name-l (SYMBOLIC 
QUEUE) through data-name-4 (SYMBOLIC S,UB-QUEUE-3) of the area 
referenced by cd-name designate the' queue structure containing the 
message. (See THE COMMUNICATION DESCRIPTION - COMPLETE ENTRY 
SKELETON. ) 

2 e The message, message segment, or portion of a message or segment is 
transferred to the receiving character positions of the area referenced 
by identifier-l aligned to the left without space fill. 

3. When during the execution of a RECEIVE statement, the MCS makes data 
available in the data item referenced by identifier-I, control is 
transferred to the next executable statement, whether or not the NO 
DATA phrase is specified. 

4. When, during the execution, of a RECEIVE statement, the MCS does not 
make data available in the data ite~ referenced by identifier-I: 

a. If the NO DATA phrase is specified, the RECEIVE operation is 
terminated with the indication that action is complete (see 
general rule 5), and the imperative statement in the NO DATA 
phrase is executed. 

b. If the NO DATA phrase is not specified, execution of the ob~ect 
program is suspended until data is made available in the data item 
referenced by identifier-I. 

13 - 17 



c. If one or more queues or sub-queues is unknown to the MCS, control 
passes to the next executable statement, whether or not the NO 
DATA phrase is specified. (See Table 13-1 for Status.) 

5. The data items identified by the input CD are appropriately updated by 
the Message Control System at each execution of a RECEIVE statement 0 

6. A single execution of a RECEIVE statement never returns to the data 
item referenced by identifier-l more than a single message (when the 
MESSAGE phrase is used) or a single segment (when the SEGMENT phrase is 
used). However, the MCS does not pass any portion of a message to the 
obj ect program until the entire message is available in the input 
queue, even if the SEGMENT phrase of the RECEIVE statement is 
specified. 

7 • When the MESSAGE phrase is used, end of segment indicators are ignored, 
and the following rules apply to the data transfer: 

a. If a message is the same size as the area referenced by 
identifier-I, the message is stored in the area referenced by 
identifier-I. 

b. If a message size is less than the area referenced by 
identifier-I, the message is aligned to the leftmost character 
position of the area referenced by identifier-I with no space 
fill. 

c. If a message size is greater than the area referenced by 
identifier-I, the message fills the area referenced by 
identifier-I left to right starting with the leftmost character of 
the message. The remainder of the message can be transferred to 
the area referenced by identififer-I with subsequent RECEIVE 
statements referring to the same queue, sub-queu~ .•.. The 
remainder of the message, for the purposes of applying rules 7a, 
7b, and 7c, is treated as a new message. 

8. When the SEGMENT phrase is used, the following rules apply: 

a. If a segment is 
identifier-I, the 
identifier-I. 

the same 
segment is 

size as the area referenced by 
stored in the area referenced by 

b. If the segment size is less than the area referenced by 
identifier-1, the segment is aligned to the leftmost character 
position of the area referenced by identifier-1 with no space 
fill. 

c. If a segment size is greater than the area referenced by 
identifier-I, the segment fills the area referenced by 
identifier-l left to right starting with the leftmost character of 
the segment. The remainder of the segment can be transferred to 

13 - 18 



the area referenced by identifier-1 with subsequent RECEIVE 
statements calling out the same queue, sub-queue •..• The 
remainder of the segment, for the purposes of applying rules 8a, 
8b and 8c, is treated as a new segment. 

d. If the text to be accessed by the RECEIVE statement has associated 
with it an end of message indicator or end of group indicator, the 
existence of an end of segment indicator associated with the text 
is implied and the text is treated as a message segment according 
to general rule 8. 

9. Once the execution of a RECEIVE statement has returned a. portion of a 
message, only subsequent execution of RECEIVE statements in that run 
unit can cause the remaining portion of the message to be returned. 

10. After the execution of a STOP RUN statement, the disposition of a 
remaining portion of a message partially obtained in that run unit is 
defined by the Run-Time System (RTS). (See THE STOP STATEMENT in 
Chapter 3.) 

13 - 19 



THE SEND STATEMENT 

Function 

The SEND statement causes a message, a message segment, or a portion of a 
message or segment to be released to one or more output queues maintained by 
the Message Control Systeme 

General Format 

Format 1: 

SEND cd-name FROM identifier-1 

Format 2: 

! 
WITH identifier-2 

[~ identifier-I] ~i~: ~~~ 
WITH EGI 

SEND cd-name 

{ BEFORE} ADVANCING 
AFTER 

Syntax Rules 

{
s identifier-3 ~ 
~integer S 

{
mnemOniC-name} 
PAGE 

1 & CD-name mus t ref erence an outpu t CD. 

[ LINE] } 
LINES ' 

2. Identifier-2 must reference a one character integer without an 
operational sign. 

3e When identifier-3 is used in the ADVANCING phrase, it must be the name 
of an elementary integer item. 

4. When the mnemonic-name phrase is used, the name is identified with a 
particular feature specified. The mnemonic-name is defined in the 
SPECIAL-NAMES paragraph of the Environment Division. 

5. Integer or the value of the data item referenced by identifier-3 may be 
zero. 

13 ~ 20 



General Rules 

All Formats: 

1. When a rece~v~ng communication device (printer, display screen, card 
punch, etc.) is oriented to a fixed line size: 

a. Each message or message segment will begin at the leftmost 
character position of the physical line. 

b. A message or message segment that is smaller than the physical 
line size is released so as to appear space-filled to the right. 

c. Excess characters of a message or message segment will not be 
truncated. Characters will be packed to a size equal to that of 
the physical line and then transmitted to the device. The process 
continues on the next line with the excess characters. 

2. When a receiving communication device (paper tape punch, another 
computer, etc.) is oriented to handle variable length messages, each 
message or message segment will begin on the next available character 
position of the communications device. 

3. As part of the execution of a SEND statement, the MCS wiil interpret 
the contents of the data item referenced by data-name-2 (TEXT LENGTH) 
of the area referenced by cd-name to the user's indication of the 
number of leftmost character positions of the data item referenced by 
identififer-1 from which data is to be transferred. 

If the contents of the data item referenced by data-name-2 (TEXT 
LENGTH) of the area referenced by cd-name are zero, no. characters of 
the data item referenced by identifier-1 are transferred. 

I f the contents of the data i tern referenced by da ta-name-2 (TEXT 
LENGTH) of the area referenced by cd-name are outside the range of zero 
through the size of the data item referenced by identifier-1 inclusive, 
an error is indicated by the value of the data item referenced by 
data-name-3 (STATUS KEY) of the area referenced by cd-name, and no data 
is transferred. (See Table 13-1 for Status.) 

4. As part of the execution of a SEND statement, the contents of the data 
item referenced by data-name-3 (STATUS KEY) of the area referenced by 
cd-name is upda ted by the 't-ICS. (See THE COMMUNICATION 
DIVISION - COMPLETE ENTRY SKELETON.) 

5. The effect of having special control characters within the contents of 
the data item referenced by identifier-l is undefined. 

6. A single execution of a SEND statement for Forma t 1 releases only a 
si~gle portion of a message or of a message segment to the MCS. 

13 - 21 



A single execution of a SEND statement of Format 2 never ,releases to 
the MeS more than a single message or a single message segment as 
indicated by the contents of the data item referenced by identifier-2 
or by the specified indicator ESI, EMI or EGI. 

However, the MeS will not transmit any portion of a message to a 
communications device until the entire message is placed in the output 
queue 0 

70 During the execution of the run unit, the disposition of a portion of a 
message not terminated by an EMI or· EGI is undefined. However, the 
message does not logically exist for the MeS and hence cannot be sent 
to a destination. 

After the execution of a STOP RUN statement, any portion of a message 
transferred from the run unit via a SEND statement, but not terminated 
by an EMI or EGI, is purged from the system. Thus no portion of the 
message is sent. 

80 Once the execution of a SEND statement has released a portion of a 
message to the MeS, only subsequent execution of SEND statements in the 
same run unit can cause the remaining portion of the message to be 
released. 

Format 2: 

9. The contents of the data item referenced by identifier-2 indicate that 
the contents of the data item referenced by identifier-1 are to have 
associated with it an end of segment indicator, and end of message 
indicator or an end of transmission indicator according to the 
following schedule: 

If the contents of the 
data item referenced 
by identifier-2 is 

'0' 
, 1 ' 

, 2 ' 

, 3 ' 

then the contents of 
data item referenced 
by identifier-l have 
associated with it 

no indicato'r 

ESI 

EMI 

EGI 

which means 

no indicator 

an end of segment indicator 

an end of message indicator 

an end of group indicator 

Any character other than '1', '2', or '3' will be interpreted as '0' 

If the contents of the data item referenced by identifier-2 is other 
than '1', '2', or '3', and identifier-1 is not specified, then an error 
is indicated by the value in the data item referenced by data-name-3 
(STATUS KEY) of the area referenced by cd-name, and no data is 
transferred. 

13 - 22 



10. The ESI indicates to the MCS that the message segment is completec The 
EMI indicates to the MCS that the message is complete. 

The EGI indicates to the MCS that the group of messages is complete. 
The Run-Time System specifies the interpretation that is given to the 
EGI by the MCS. 

The MCS will recognize these indications and establish whatever is 
necessary to maintain group, message, and segment control. 

11. The hierarchy of ending indicators is EGI, EMI, ESI. An EGI need not 
be preceded by an ESI or EMI. An EMI need not be preceded by an ESI. 

120 The ADVANCING phrase allows control of the vertical positioning of each 
message or message segment on a communication device where vertical 
positioning is applicable. If vertical" positioning is not applicable 
on the device, the MCS will ignore the vertical positioning specified 
or implied. 

13. If identifier-2 is ;3pecified and the content of the data item 
referenced by identififer-2 is zero, the ADVANCING phrase is ignored by 
the MCS. 

14. On a device where vertical positioning is applicable and the ADVANCING 
phrase is not specified, automatic advancing is provided to act as if 
the user had specified AFTER ADVANCING 1 LINE. 

15. If the ADVANCING phrase is imp1ictly or explicitly specified and 
vertical positioning is applicable, the following rules apply: 

a. If identifier-3 or int~ger is specified, characters transmitted to 
the communication device will be repositioned vertically downward 
the number of lines equal to the value associated with the data 
item referenced by identifier-3 or integer. 

b. If mnemonic-name is specified, characters transmitted to the 
communication device will be positioned according to the rules 
specified for that communication device. 

c. If the BEFORE phrase is used, the message or message segment is 
represented on the communication device before vertical 
repositioning according to general rules 15a and ISb above. 

d. If the AFTER phrase is used, the message or message segment is 
represented on the communication device after vertical 
repositioning according to general rules 15a and I5b above. 

e. If PAGE is specified, characters transmitted to the communication 
device will be represented on the device before or after 
(depending upon the phrase used) the device is repositioned to the 

next page. If PAGE is specified but page has no meaning in 
conjunction with a specific device~ then advancing is provided to 
act as if the user had specified BEFORE or AFTER (depending upon 
the phrase used) ADVANCING 1 LINE. 

13 - 23 



13 - 24 



CHAPTER 14 

PROGRAMMING TECHNIQUES, USEFUL HINTS AND PROGRAM SIZING 

PROGRAMMING TECHNIQUES 

Although COBOL is written in an essentially free form, the user will 
nevertheless reap many advantages from a few self-imposed disciplines. It is 
suggested that these should include the following: 

1. Use of the first 256 bytes of working-storage for variables which are 
frequently referenced will produce more compact and efficient code. 

2. Use subscripts as sparingly as possible because each subscript has a 
storage requirement approximately equal to the size of a normal 
instruction. 

3. For ACCEPT and DISPLAY the compiler generates one instruction per 
elementary item of the data-name being displayed/accepted. Therefore 
redefine a group of fields as a single field for DISPLAY whenever 
possible and avoid unnecessary numbers of small fields in ACCEPT. 

4. Use FILLER instead of a data-name for any elementary field not 
referenced explicitly because the word FILLER is compacted to one 
character in the Data Dictionary. 

5. Keep the number of digits in numeric fields as small as possible. 

6. Whenever possible move a group instead of several elementary moves. 

USEFUL HINTS 

When writing interactive programs the following facilities of LEVEL II COBOL 
should be remembered: 

1. By use of the CURSOR IS facility and the ACCEPT statement it is easy to 
program conditionally depending on the cursor position after a menu 
type of prompt. The operator need then only move the cursor to the 
option required to reply to the prompt, or just press RETURN in the 
default case. 

2. By use of the ACCEPT FROM CONSOLE facility it is 
parameters to your program via the Run command line. 
STATEMENT in Chapter 3. 

easy to pass 
See THE ACCEPT 

3. If the STOP "literal" statement is used in a program, execution of the 
program halts at this statement with the literal displayed on the CRT 
screen. Execution continues on pressing the Carriage Return (CR) key. 

14 - 1 



It should be noted that if any string of characters terminated by a CR 
character has been keyed and is waiting to be read the program will 
appear not to halt. Examples of this are if the CR key was 
inadvertently pressed twice at the last command entered or if 
parameters to the Run command have not yet been reade 

SIZING 

GENERAL DESCRIPTION 

There are three aspects to s~z~ng a program: the source code, the Data 
Dictionary and the compiled code. 

The maximum number of source statements per program is limited, firstly by 
the space available for the compiler's data dictionary and secondly by that 
available to load the generated program. 

The Data Dictionary contains an entry for every user-defined name in the 
program. Detailed information is contained in the next sectione 

The maximum number of bytes available for the user's program and work space 
for any given configuration, can be found in the appropriate Operating 
Guide. A guide for calculating the size of the generated program is as 
follows: 

The sum of the Record size for each file in bytes 
+ the Record size for each Working-Storage record in bytes 
+ the number of characters in all Procedure Division literals 
+ 60 bytes per File 
+ 300 bytes control area 
+ 6 bytes per COBOL instruction with the following qualifiers: 

for an ACCEPT/DISPLAY statement add 3 bytes per elementary item within 
the Accepted/Displayed data-name. 

for every subscript used in a statement add 7 bytes 

for a comparison add 6 bytes 

for an implicitly generated comparison e.g. PERFORM UNTIL, READ AT END, 
add 6 bytes 

DATA DICTIONARY 

The Data Dictionary is constructed as the program is compiled. Its size 
depends on the host operating system. Each user defined name will have an 
entry in this dictionary. The number of bytes required for each entry is. 
given in Table 14-1. 

14 - 2 



Table 14-1. Data Dictionary Entry Sizing 

User-defined name 

File-name 
Record-name 
Key-name 
Status-name 
Paragraph-name 
Data-name Group 
Alphanumeric < 32 characters 
Alphanumeric > 32 characters 
Numeric integer 
Numeric non integer 
Numeric edited 

Number ot 

18 
8 
8 
8 
6 
8 
7 
8 
7 
8 
7 

Bytes 

+ n 
+ n 
+ n 
+ n 
+ n 
+ n 
+ n 
+ n 
+ n 
+ n 
+ n + x 

1 n = number of characters in user-defined name. 

For a FILLER, n = 1. 

1 

2 
2 
2 
2 
2 

x = number of characters in PICture, after coalescing repetitions. 

2 

e.g. 9999.9 
9(4).9 
2(2)9(4) .9(3) 

= 3 bytes 
= 3 bytes 
= 4 bytes 

Subtract 1 byte if item is in the first 256 bytes of 
Working-Storage. 

Add 4 bytes if item has an OCCURS clause associated with it. 

Add 2 bytes if· item is subordinate to an item described with 
OCCURS. 

14 - 3 



14 - 4 



APPENDIX A 

RESERVED WORD LIST 

This appendix contains a full list of COBOL and L/II COBOL reserved 
words. A shaded reserved word is a L/ll COBOL extension to ANSI COBOL. 

The / symbol denotes that the text up to that point is a reserved word, 
as is the whole word. 

e.g., In INDEX/ED, INDEX and INDEXED are reserved words. In SPACE/S, 
SPACE and SPACES are reserved words. 

A-I 



ACCEPT 
ACCESS 
ADD 
ADVANCING 
AFTER 
ALL 
ALPHABETIC 
ALSO 
ALTER 
ALTERNATE 
AND 
ARE 
AREA/S 
ASCENDING 
ASSIGN 
AT 
AUTHOR 

BEFORE 
BLANK 
BLOCK 
BOTTOM 
BY 

CALL 
CANCEL 
CD 
CHARACTER/S 
CLOCK-UNITS 
CLOSE 
COBOL 
CODE-SET 
COLLATING 
COMMA 
;;igQ_ffi~iilliii1: 
COMMUNICATION 
COMP/UTATIONAL/-3 
COMPUTE 
CONFIGURATION 
!::§~Blm~iiiji 
CONTAINS 
COpy 
CORR/ESPONDING 
COUNT 

CURRENCY 
::::~RigBji: 

DATA 
DATE 

DATE-COMPILED 
DATE-WRITTEN 
DAY 
DEBUG-CONTENTS 
DEBUG-ITEM 
DEBUG-LINE 
DEBUG-NAME 
DEBUG-SUB-l 
DEBUG-SUB-2 
DEBUG-SUB-3 
DEBUGGING 
DECIMAL-POINT 
DECLARATIVES 
DELETE 
DELIMITED 
DELIMITER 
DEPENDING 
DESCENDING 
DESTINATION 
DISABLE 
DISPLAY 
DIVIDE 
DIVISION 
DOWN 
DUPLICATES 
DYNAMIC 

EGI 
ELSE 
EMI 
ENABLE 
END 
END-OF-PAGE 
ENTER 
ENVIRONMENT 
EOP 
EQUAL 
ERROR 
ESI 
EVERY 
EXCEPTION 
lilllCI§lniljjjj 
EXIT 
EXTEND 

FD 
FILE 
FILE-CONTROL 
FILLER 
FIRST 
FOOTING 
FOR 

A - 2 

:jjli.~fltjljj 
FROM 

GIVING 
GO 
GREATER 

HIGH-VALUE/S 

I-O/-CONTROL 
::jjllij~~: 
IDENTIFICATION 
IF 
IN 
INDEX/ED 
INITIAL 
INPUT/-OUTPUT 
INSPECT 
INSTALLATION 
INTO 
INVALID 
IS 

JUST/IFIED 

KEY 

LABEL 
LEADING 
LEFT 
LENGTH 
LESS 
LIMIT/S 
LINAGE/-COUNTER 
LINE/S 
LINKAGE 
LOCK 
LOW-VALUE/S 

HEMORY 
HERGE 
MESSAGE 
MODE 
MODULES 
MOVE 
HULTIPLE 
MULTIPLY 

NATIVE 
NEGATIVE 
NEXT 



NOT ROUNDED TRAILING 
NUMERIC RUN TYPE 

OBJECT-COMPUTER SAME UNIT 
OCCURS SD UNSTRING 
OF SEARCH UNTIL 
OFF SECTION UP 
OMITTED SECURITY UPON 
ON SEGMENT/-LIMIT USAGE 
OPEN SELECT USE 
OPTIONAL SEND USING 
OR SENTENCE 
ORGANIZATION SEPARATE VALUE/S 
OUTPUT SEQUENCE VARYING 
OVERFLOW SEQUENTIAL 

SET WHEN 
PAGE SIGN WITH 
PAGETHROW SIZE WORDS 
PERFORM SORT WORKING-STORAGE 
PIC/TURE SORT-MERGE WRITE 
POINTER SOURCE/-COMPUTER 
POSITION SPACE/S ZERO/ES or S 
POSITIVE SPECIAL-NAMES 
PROCEDURE/S STANDARD/-l . (period) 
PROCEED START ( 
PROGRAM/-ID STATUS 

STOP * 
QUEUE STRING· ** 
QUOTE/S SUB-QUEUE-l ) 

SUB-QUEUE-2 
RANDOM SUB-QUEUE-3 + 
RD SUBTRACT / 
READ SWITCH 
RECEIVE SYMBOLIC < 
RECORD/S SYNC/HRONIZED = 
REDEFINES > 
REEL 
REFERENCES 
RELATIVE ::::mXlf: 
RELEASE TABLE 
REMAINDER TALLYING 
REMOVAL TAPE 
RENAMES TERMINAL 
REPLACING TEXT 
RERUN THAN 
RESERVE :w'IDlll. 
RETURN THROUGH 
REVERSED THRU 
REHIND TIME/S 
REwRITE TO 
RIGHT TOP 

A - 3 



The Report, Writer module is not included in LEVEL II COBOL, nor is it 
required for GSA High Level certification, however the reserved words used 
in the Report Writer module may be reserved in other inplementations of 
COBOL and are given here so that they may be avoided by anyone writing 
portable programs: 

CF 
CH 
CODE 
COLUMN 
CONTROL/S 
DE 
DETAIL 
FINAL 
FOOTING 
GENERATE 
GROUP 
HEADING 
INDICATE 

INITIATE 
LAST 
LINE-COUNTER 
NUMBER 
PAGE-COUNTER 
PF 
PH 
PLUS 
PRINTING 
REPORT/S 
REPORTING 
RESET 
RF 

A - 4 

RH 
SUM 
SUPPRESS 
TERMINATE 



APPENDIX B 

CHARACTER SETS AND COLLATING SEQUENCE 

ASCII HEX COBOL ASCII HEX COBOL ASCII HEX COBOL 

NUL 00 x / 2F 5E x 
SOH 01 x 0 30 SF x 
STX 02 x 1 31 60 x 
ETX 03 x 2 32 a 61 
EaT 04 x 3 33 b 62 
ENQ 05 x 4 34 c 63 
ACK 06 x 5 35 d 64 
BEL 07 x 6 36 e 65 
BS 08 x 7 37 f 66 
HT 09 x 8 38 g 67 
LF 0A x 9 39 h 68 
VT 0B x . 3A x . i 69 
FF 0c x ; 3B j 6A 
CR 0D x < 3C k 6B 
SO 0E x = 3D 1 6C 
SI 0F x > 3E m 6D 
DLE 10 x ? 3F x n 6E 
DCI 11 x @ 40 x a 6F 
DC2 12 x A 41 p 70 
DC3 13 x B 42 q 71 
DC4 14 x C 43 r 72 
NAK 15 x D 44 s 73 
SYN 16 x E 45 t 74 
ETB 17 x F 46 u 75 
CAN 18 x G 47 v 76 
EM 19 x H 48 w 77 
SUB 1A x I 49 x 78 
ESC 1B x J 4A y 79 
FS 1C x K 4B z 7A 
GS ID x L 4C 7B x 
RS IE x M 4D 7C x 
US 1F x N 4E 7D x 
space 20 b 4F 7E x 
! 21 x P 50 DEL 7F x 
" 22 Q 51 
II 23 x R 52 
$ 24 S 53 
% 25 x T 54 
& 26 x U 55 , 27 x V 56 
( 28 W 57 
) 29 X 58 
* 2A y 59 
+- 2B Z SA 
, 2C 5B x 
- 2D 5C x 
. 2E 5D x 

B-1 



B-2 



APPENDIX C 

GLOSSARY 

INTRODUCTION 

The terms in this Chapter are defined in accordance wi th their meaning as 
used in this document describing L/II COBOL and may not have the same 
meaning for other languages. 

These definitions are, also intended to be either reference material or 
introductory material to be reviewed prior to reading the detailed language 
specifications that are contained in this manual. For this reason, these 
definitions are, in most instances, brief and do not include detailed 
syntactic rules. 

DEFINITIONS 

Abbreviated Combined Relation Condition. The combined condition that results 
from the explicit omission of a common subject or a common subject 
and common relational operator in a consecutive sequence of 
relation conditions. 

Access Mode. The manner in which records are to be operated upon within a 
file. 

Actual Decimal Point. The physical representation, 
decimal point characters (period) or , 
point position in a data item. 

using either of the 
(comma) of the decimal 

Alphabet-Name. A user-defined word in the SPECIAL-NA..'1ES paragraph' of the 
Envirorunent Division that assigns a name to a specific character 
set and/or collating sequence. 

Alphabetic Character. A character that belongs to the following set of 
letters: A,B,C,D,E ,N,O,P"Q,R,S,T,U,V,W,X,'Y'Z and 
the space. 

Alphanumeric Character. Any character in the computer's character set. 

Animator. A COBOL-oriented debugging tool for use with the CIS or Level II 
COBOL products. 

Arithmetic Expression. An arithmetic expression can be an identifier or a 
numeric elementary item, a numeric literal, such identifiers and 
literals separated by arithmetic operators, two arithmetic 
expressions separated by an arithmetic operator, or an arithmetic 
expression enclosed in parentheses. 

Arithmetic Operator. A single character, or a fixed two-character combin­
ation, that belongs to the following set: 

C - 1 



Character 
+ 

* 
/ 
** 

Meaning 
Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 

Ascending Key. A key upon the values of which data is ordered starting with 
the lowest value of key up to the highest value of key in 
accordance with the rules for comparison of the data items. 

Assumed Decimal Point. A decimal point position which does not involve the 
existence of an actual character in a data item. The assumed 
decimal point has logical meaning but no physical representation. 

At End Condition. A condition caused in one of two circumstances: 

1. During the execution of a READ statement for a sequentially 
accessed fileQ 

20 During the execution of a RETURN statement when no next 
logical record exists for the associated sort or merge file. 

3. During the execution of a SEARCH statement, when the search 
operation terminates without satisfying the condition 
specified in any of the associated WHEN phrases. 

Block. A physical unit of data that is normally composed of one or more 
logical records. For mass storage files, a block may contain a 
portion of a logical record. The size of a block has no direct 
relationship to the size of the file within which the block is 
contained or to the size of the logical record(s) that are either 
continued within the block or that overlap the block. The term is 
synonymous with physical record. 

Cd-Name. A user-defined word that names an MCS interface area described in 
a communication description entry within the Communication Section 
of the Data Division. 

Called Program. A program which is the object of a CALL statement combined 
at run time with the calling program to produce a run unit. 

Calling Program. A program which executes a CALL to another program. 

Character. The basic indivisible unit of the language. 

Character Set (L/11 COBOL). The complete L/11 COBOL character set consists 
of all characters listed below: 

Character Meaning 
0,1, ... ,9 Numeric digit 
A,B, .•. ,Z Uppercase "alphabetic 

:::@i~illi!~~!!ii~!i:i;!!:i:~M:!:l:!:i:i!!iiiiI!!!i!iii:i:iii:!:::i:::iii:::i:i:!i::i:!:ii:!i:i!!i!iiii!!i!i!!i!!ii!:ii!:::i:!:::lilii!ii:iiiIBlB!iwlllililil!llillv'i:li~gli!11 
(Addendum 2) 

C - 2 



+ 

* 
/ 
= 
$ 

( 
) 
> 
< 

Plus Sign 
Minus Sign 
Asterisk 
Stroke (Virgule or Slash) 
Equal Sign 
Currency Sign 
Comma 
Semicolon 
Period (Decimal Point, Fullstop) 
Quotation Mark 
Left Parenthesis 
Right Parenthesis 
Greater Than Symbol 
Less Than Symbol 

Character Position. A character position is the amount of physical storage 
required to store a single standard data format character 
described as usage in DISPLAY. 

Character-String. A sequence 
L/II COBOL word, a 
comment-entry. 

of contiguous characters which form 
literal, a PICTURE character-string or 

a 
a 

Class Condition. The proposition, for which a truth value can be determined, 
that the content of an item is wholly alphabetic or is wholly 
numeric. 

Clause. A clause is an ordered set of consecutive L/II COBOL character­
strings whose purpose is to specify an attribute of an entry. 

COBOL Word. (See Word) 

Collating Sequence. The sequence 
acceptable in a computer 
merging and or comparing. 

in 
are 

Column. A character position within 

which the characters 
ordered for purposes of 

that are 
sorting, 

a print line. The columns are 
numbered from one, by one, starting at the left-most character 
position of the print line and extending to the right-most 
character position of the print line. 

Combined Condition. A condition that is the result of connecting two or more 
conditions with the 'AND' or the 'OR' logical operator. 

Comment Entry. An entry in the Identification Division that may be any 
combination of characters from the computer character set. 

C - 3 



Comment Line. A source program line represented by an asterisk in the 
indicator area of the line and any characters from the computer's 
character set in area A and area B of that line. The comment line 
serves only for documentation in a program. A special form of 
comment line represented by a stroke (/) in the indicator area of 
the line and any characters from the computer's character set in 
area A and area B of that line causes page ej ection before 
printing the comment. 

Communication Description Entry. An entry in the Communication Section of 
the Data Division that is composed of the level indicator CD, 
followed by a cd-name, and then followed by a set of clauses as 
required. It describes the interface between the Message Control 
System (MCS) and the COBOL program. 

Communication Device. A mechanism (hardware or hardware/software) capable of 
sending data to a queue and/or receiving data from a queue. This 
mechanism may be a computer or a peripheral device. One or more 
programs containing communication description entries and residing 
within the same computer define one or more of these mechanisms. 

Communication Section. The section of the Data Division that describes the 
interface areas between the MCS and the program, composed of one 
or more CD description entr.ies. 

Compile Time. The time at which an L/II COBOL source program is translated 
by the compiler to an L/II COBOL intermediate code program. 

Compiler-Directing Statement. A statement, 
compiler-directing verb, that causes 
specific action during compilation. 

beginning with a 
the comp,iler to take a 

Complex Condition. A condition in which one or more logical operators act 
upon one or more conditions. (See Negated Simple Condition, 
Combined Condition, Negated Combined Condition). 

Computer-Name. A system-name that identifies the computer upon which the 
program is t~ be compiled or run. 

Condition. A status of a program at execution time for which a truth value 
can be determined. Where the term "condi t ion" (condi tion-l, 
condition-2) ... ) appears in these language specifications in or in 
reference to "condition" (condi tion-l , condi tion-2, ... ) of a 
general format, it is a conditional expression consisting of 
either a simple condition optionally parenthesised, or a negated 
simple condition. 

Condi t ion Name. The user-def ined wo rd assigned 
implementor-defined switch or device. 

C - 4 

to ~ status of an 



Condition-Name Condition. The proposition, for which a truth value can be 
determined, that the value of a conditional variable is a member 
of the set of values attributed to a condition-name associated 
with the conditional variable. 

Conditional Expression. A simple condition specified in an IF, PERFORM or 
SEARCH statement. (See Simple Condition and Complex Condition.) 

Conditional Statement. A conditional statement specifies that the truth 
value of a condition is to be determined, and that the subsequent 
action of the run-time program is dependent on this truth value. 

Conditional Variable. A data item one or more values of which has a 
condition-name assigned to it. 

Configuration Section. A section of the Environment Division that describes 
overall specifications of source and run computers. 

Connective. A reserved word that is used to: 

1. Associate a data-name, paragraph-name, condition-name, or 
text-name with its qualifier. 

2. Link two or more operands written in a series. 
3. Form conditions (logical connectives). (See Logical 

Operator.) 

Contiguous Items. Items that are described by consecutive entries in 
the Data Division, and that bear a definite hierarchic 
relationship to one another. 

Counter. A data item used for storing numbers or number representations in 
a manner that permits these numbers to be increased or decreased 
by the value of another number, or to be changed or reset to zero 
or to an arbitrary positive or negative value. 

Currency Sign. The character "$" (dollar sign) in the L/II COBOL character 
set. 

Currency Symbol. The character defined by the CURRENCY SIGN clause in the 
SPECIAL-NAMES paragraph. If no CURRENCY SIGN clause is present in 
an L/II COBOL source program, the currency symbol is identical to 
the currency sign. 

Current Record. The record which is available in the record area associated 
with the file. 

(Addendum 2) 

C - 5 

* 



Current Record Pointer. A conceptual entity thai is used in the selection 
of the next record. 

Data Clause. A clause that appears in a data description entry in the Data 
Division and provides information describing a particular 
attribute of a data item. 

Data Description Entry. An entry in the Data Division that is composed of a 
level-number followed by a data-name, if required, and then 
followed by a set of data clauses as required. 

Data Item. A character or set of contiguous characters (excluding in either 
case literals) defined as a unit of data by the L/ll COBOL 
program~ 

Data-name. A user-defined word that names a data item described in a data 
description entry in the Data Division. When used in the general 
formats, "data-name" represents a word which can neither be 
subscripted, nor indexed unless specifically permitted by the 
rules for that format. 

Debugging Line. A debugging line is any line with "D" in the indicator area 
of the line. 

Debugging Section. A debugging section is a section that contains a USE FOR 
DEBUGGING statement. 

Declaratives. A set of one or more special purpose sections written at the 
beginning of the Procedure Division, the first of which is 
preceded by the· key word DECLARATIVES and the last of which is 
followed by the key words END DECLARATIVES. A declarative is 
composed of a section header, followed by a USE compiler directing 
sequence, followed by a set of associated paragraphs (0 or more). 

Declarative-Sentence. A compiler-directing sentence consisting of a single 
USE statement terminated by the separator period (.). 

Delimiter. A character (or sequence of contiguous characters) that 
identifies the end 6f a string of characters, and separates that 
string of characters from the following string of characters. A 
delimiter is not part of the string of characters that it 
delimits. 

C - 6 



Descending Key. A key upon the values of which data is ordered starting 
with the highest value of key down to the lowest value of key, in 
accordance with the rules for comparing data items. 

Destination. The symbolic identification of the receiver of a transmission 
from a queue. 

Digit Position. A digit position is the amount of physical storage 
required to store a single digit. This amount varies depending on 
the usage of the data item describing the digit position. Further 
characteristics of the physical storage are defined by the 
implementor. 

Division. A set of sections or paragraphs (0 or more) that are formed and 
combined in accordance with a specific set of rules is called a 
division body. There are four divisions in an L/II COBOL program: 
Identification, Environment, Data and Procedure. 

Division Header. A combination of words followed by a period and a space 
that indicate the beginning of a division. The division headers 
are: 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
DATA DIVISION. ] 
PROCEDURE DIVISION [USING data-name-l [data-name-2] ""! " 

Dynamic Access. An access mode in which specific logical records can be 
obtained from or placed into a disk file in a non-sequential 
manner (see Random Access) and obtained from a file in a 
sequential ·manner (see Sequential Access) during the scope of the 
same OPEN statement. 

Editing Character. A single character or a fixed two-character combination 
belonging to the same set: 

Character Meaning 
B Space 
0 Zero 
+ Plus 
- Minus 
CR Credit 
DB Debit 
Z Zero Suppress 

* Check Protect 
$ Currency Sign 
, Comma 
. Period (Decimal Point) 
/ Stroke (Virgule, Slash) 

C - 7 



Elementary Item. A data item- that is described as not being further 
logically subdivided. 

End of Procedure Division. The physical position in a L/I1 COBOL source 
program after which no f~rther procedures appear 0 

Entry. Any descriptive set of consecutive clauses terminated by a 
period (.) and written in the Identification Division, Environment 
Division or Data Division of an L/II COBOL source program. 

Environment Clause. A clause that appears as part of an Environment 
Division entry. 

Extend Mode. With the EXTEND phrase specified, the state of a file after 
execution of an OPEN statement, and before the execution of a 
CLOSE statement for the file. 

Figurative Constant. A compiler-generated value referenced through the use 
of certain reserved words. 

File. A collection of records. 

File Clause. A clause that appears as part of any. of the following Data 
Division entries: 

File Description (FD) 
Sort-Merge File Description (SD) 
Communication Description (CD) 

FILE-CONTROL. The name of an Environment Division paragraph in which the 
data files for a given source program are declared. 

File Description Entry. An entry in the File Section of the Data Division 
that is composed of the level indicator FD, followed by a 
file-name, and then followed by a set _of file clauses as required. 

File-Name. A user-defined word that names a file described . in a file 
description entry or a sort-merge file description entry within 
the File Section of the Data Division. 

File Organization. The permanent logical file structure established at the 
time that a file is created. 

File Section. The section of 
description entries 
descriptions. 

the Data Division 
together with their 

Format. A specific arrangement of a set of data. 

C - 8 

that contains file 
associated record 



Group Item. A named contiguous set of elementary or group items. 

High Order End. The leftmost character of a string of characters. 

I-O-CONTROL. The name of an Environment Division paragraph in which object 
program requirements for specific input/output techniques, rerun 
points, sharing of same areas by several data files, and multiple 
file storage on a single input/output device are specified. 

1-0 Mode. The state of a file after execution of an OPEN statement, with the 
1-0 phrase specified for that file, and before the execution of a 
CLOSE statement for that file. 

Identifier. A data-name, followed as required by the syntactically correct 
combination of subscripts and indices necessary to make unique 
reference to a data item. 

Imperative Statement. A statement that begins wi th an imperative verb and 
specifies an unconditional action to be taken. An imperative 
statement may consist of a sequence of imperative statements. 

Implementor-Name. A system-name that refers to a particular feature avail­
able on the implementor's computing system. 

Index. A computer storage position or register, the contents of which 
represent the identification of a particular element in a table. 

Index Data Item. A data item in which the value associated with an 
index-name can be stored in a form specified by the implementor. 

Index-Name. A user-defined word that names an index associated with a 
specific table. 

Indexed Data-Name. An identifier that is composed of a data-name, followed 
by one or more index-names enclosed in parentheses. 

Indexed File. A file with indexed organization. 

Indexed Organization. The permanent logical file structure in which each 
record is identified by the value of one or more keys within that 
record. 

Indicator Area. The leftmost parameter position of a L/lL COBOL source 
record that indicates the use of the record. 

Input File. A file that is opened in the input mode. 

Input Mode. The state of a file after execution of an OPEN statement, with 
the INPUT phrase specified for that file, and before the execution 
of a CLOSE statement for that file. 

C - 9 



Input-Output File. A file that is opened in the 1-0 mode. 

Input-output Section. The section of the Environment Division that names 
the files and the external media used by a program and which 
provides information required for transmission and handling of 
data during execution of the run-time program. 

Input Procedure. A set of statements that is executed each time a record is 
released to the sort file. 

Integer. A numeric literal or a numeric data item that does not include any 
character positions to the right of the assumed decimal point. 
Where the 'integer' appears in general formats, integer must not 
be a numeric data item, and must not be signed, nor zero unless 
explicitly allowed by the rules of that format. 

Invalid Key Condition. A condition, at object time, caused when a specified 
value of the key associated with an indexed or relative file is 
detennined to be invalid. 

A data item which identifies' the location of a record, or a set of 
data items which serve to identify the ordering of data. 

Key of Reference. The key currently being used to access records within an 
indexed file. 

Key Word. A reserved word whose presence is required when the fonna t in 
which the word appears is used in a source program. 

Language-Name. A . system-name that specifies a particular programming 
language. 

Level Indicator. Two alphabetic characters that identify a specific type of 
file or a position in hierarchy. 

Level-Number. A user-defined word which indicates the position of a data 
item in the hierarchical structure of a logical record or which 
indicates special properties of a data description entry. A 
level-number is expressed as a one or two digit number. 
Level-numbers in the range 1 through 49 indicate the position of a 
data item in the hierarchical structure of a logical record. 

C - 10 



Level-numbers in the range 1 through 9 may be written either as a 
single digit or as a zero followed by a significant digit. 
Level-numbers 66, 77 and 88 identifies special properties of a 
data description entry. 

Library-Name. A user-defined word that names a L/II COBOL library 
source file that is to be used by the compiler for a given source 
program compilation. 

Library-Text. A sequence of character-strings and/or separators in a COBOL 
library. 

Linkage Section. The section in the Data Division of the called program 
that describes data items available from the calling program. 
These data items may be referred to by both the calling and called 
program. 

Literal. A character-string whose value is implied by the ordered set of 
characters comprising the string. 

Logical Operator. One of the reserved words AND, OR or NOT. In the 
formation of a condition, both or either of AND and OR can be used 
as logical connections. NOT can be used for logical negation. 

Logical Record. The most inclusive data item. 
record is 01. 

The level-number f0r a 

Low Order End. The rightmost character of a string of characters. 

MCS. (See Message Control System). 

Merge File. A collection of records to be merged by a MERGE statement. The 
merge file is created and can be used only by the merge function. 

Message. Data associated with an end of message indicator or an end of 
group indicator. (See Message Indicators) 

Message Control System (MCS). A communication control system that supports 
the processing of messages. 

Message Count. The count of the number of complete messages that exist in 
the designated queue of messages. 

Message Indicators. EGI (end of group indicator), EMI (end of message 
indicator), and ESI (end of segment indicator) are conceptual 
indications that serve to notify the MCS that a specific condition 
exists (end of group, end of message, end of segment). 

(Addendum 2) 

C - 11 



Within the hierarchy of EGI, EMI, and ESI, an EGI is conceptually 
equivalent to an ESI, EMI, and EGI. An EMI is conceptually 
equivalent to an ESI and EMI. Thus, a segment may be terminated by 
an ESI, EMI, or EGI. A message may be terminated by an EM! or EGl. 

Message Segment. Data that forms a logical subdivision of a message normally 
associated with an end of segment indicator. (See Message 
Indicators) • 

Mnemonic-Name. A user-defined word that is associated in the Environment 
Division with a specified implementor-name. 

Native Character Set. The implementor-defined character set associated with 
the computer specified in the OBJECT-COMPUTER paragraph. 

Native Collating Sequence. 
associated with 
paragraph. 

The implementor-defined collating sequence 
the computer specified in the OBJECT-COMPUTER 

Negated Combined Condition. The 'NOT' logical operator immediately followed 
by a parenthesized combined condition. 

Negated Simple Condition. The 'NOT' logical operator immediately followed 
by a simple condition. 

Next Executable Sentence. The next sentence to which control will be 
transferred after execution of the current statement is complete. 

Next Executable Statement. The next statement to which control will be 
transferred after execution of the current statement is complete. 

Next Record. The record which logically follows the current record of a 
file. 

Noncont iguous I terns. Elementary data items, i.n the Wo rking-S torage and 
Linkage Sections, which bear no hierarchic relationship to other 
data items. 

Nonnuffip.ric Item. A data item whose description permits its contents to be 
composed of any combination of characters taken from the 
computer's character set. Certain categories of nonnumer.ic items 
may be formed from more restricted character sets. 

Nonnumeric Literal. 
string of 
character 
within a 
be used. 

A character-string bounded by quotation marks. The 
characters may include ~ny character in the computer's 
set. To represent a single quotation mark character 

nonnumeric literal, two contiguous quotation marks must 

Numeric Character. A character that belongs to the following set of digits: 
0,1, l, 3, 4, 5,. 6,7,8,9. 

C - 12 



Numeric Item. A data item whose description restricts its contents to a 
value represented by characters chosen from the digits '0' through 
'9'; if signed, the i tern may also contain a '+', '-', or other 
representation of an operational sign. 

Numeric Literal. A literal composed of one or more numeric characters that 
also may contain either a decimal point, or an algebraic sign, or 
both. The decimal point must not be the rightmost character. The 
algebraic sign, if present, must be the leftmost character. 

OBJECT-COMPUTER. The name of an Environment Division paragraph in which the 
computer environment, within which the run-time program is 
executed, is described. 

Open Mode. The state of a file after execution of an OPEN statement for that 
file and before the execution of a CLOSE statement for that file. 
The particular open mode is specified in the OPEN statement as 
either INPUT, OUTPUT, 1-0 or EXTEND. 

Operand. Whereas the general definition of operand is 'that component which 
is operated upon', for the purposes of this publication, any 
lowercase word (or words) that appears in a statement or entry 
format may be considered to be an operand and, as such, is an 
implied reference to the data indicated by the operand. 

Operational Sign. An ,algebraic sign, associated with a numeric data item or 
a numeric literal, to indicate whether its value is positive or 
negative. 

Optional Word. A reserved word that is included in a specified format only 
to improve the readab iIi ty of the language and whose presence is 
optional to the user when the format in which the word appears is 
used in a source program. 

Output File. A file that is opened in either the outpu t mode or extend 
mode. 

Output Mode. The state of a file after execution of an OPEN statement, with 
the OUTPUT or EXTEND phrase specified for that file and before the 
execution of a CLOSE statement for that file. 

OutEut Procedure. A set oE statements to which control is given during 
execution of a SORT statement after the sort function is 
completed, or during execution of a MERGE statement after the 
merge function has selected the next record in merged order. 

. Paragraph. In the Procedure Division, a paragraph-name followed by a period 
and a space and optionally by one, or more sentences. In the 
Identification and Environment Divisions, a paragraph, header 
followed by zero, one, or more entries. 

c - 13 



Paragraph Header. A reserved word, followed by a period and a space that 
indicates the beginning of a paragraph in the Identification and 
Environment Divisions. The permissible paragraph headers are: 

In the Identification Division: 

PROGRAM-ID. 
AUTHOR. 
INSTALLATION. 
DATE-WRITTEN. 
DATE-COMPILED. 
SECURITY. 

In the Environment Division: 

SOURCE-COMPUTER. 
OBJECT-COMPUTER. 
SPECIAL-NAMES. 
FILE-CONTROL. 
r-o-CONTROL. 

I 

Paragraph-Name. A user-defined word that identifies and begins a paragraph 
in the Procedure Division. 

Phrase. A phrase is an ordered set of one or more consecutive COBOL 
character-strings that form a portion of a L/Il COBOL procedural 
statement o.r of a COBOL clause. 

Physical Record. (See Block) 

Prime Record Key. A key whose contents uniquely identify a record wi thin an 
indexed file. 

Procedure. A paragraph or group- of logically successive paragraphs, or a 
section or group of logically successive sections, within the 
Procedure Division. 

Procedure-Name. A user-defined word which. is used to name a paragraph or 
section in the Procedure Division. It consists of a 
paragraph-name or a·section-name. 

Program-Name. A user-defined word that identifies a COBOL source program. 

Pseudo-Text. A sequence of character-strings and/or separators bounded by, 
but not including, pseudo-text delimiters. 

Pseudo-Text Delimiter. Two contiguous equal sign (=) characters used to 
delimit pseudo-text. 

C - 14 



Punctuation Character. A character that belongs to' the following set: 

Character 

" 
( 
) 

= 

Meaning 

comma 
semicolon 
period 
quotation mark 
left parenthesis 
right parenthesis 
space 
equal sign 

Qualified Data-Name. An identifier that is composed of a data-name followed 
by one or more sets of either of the connectives OF and IN 
followed by a data-name qualifier. 

Qualifier. 

Queue. 

1. A data-name which is used in a reference together with 
another data name at a lower level in the same hierarchy. 
2. A section-name which is used in a reference together with a 
paragraph-name specified in that section. 
3. A library-name which is used in a reference together with a 
text-name associated with that library. 

A logical collection of messages awaiting transmission or 
processing. 

Queue Name. A symbolic name that indicates to the MCS the logical path by 
which a message or a portion of a completed message may be 
accessible in a queue. 

Random Access. An access mode in which the program-specified value of a key 
data item identifies the logical record that is obtained from, 
deleted from or placed into a relative or indexed file. 

Record. (see Logical Record) 

Record Area. A storage area allocated for the purpose of processing the 
record described in a record description entry in the File 
Section. 

Record. Description. (See Record Description Entry) 

Record Description Entry. The total set of data description entries 
associated with a particular record. 

Record Key. A key, either the prime record key or an alternate record key, 
whose contents identify a record within an indexed file. 

c - 15 



Record-Name. A user-defined word that names a record described in a record 
description entry lnthe Data Divisionc 

Reference-Format. A format that provides a standard method for describing 
COBOL source programs. 

Rela tiona (See Relational Operator) 

Relation Character. A character that belongs to the following set: 

Character Meaning 

> greater than 
< less than 
= equal to 

Relation Condition. The proposition, for which a truth value can be 
determined, that the value of an arithmetic expression or data 
item has a specified relationship to the value of another 
arithmetic expression or data item. (See Relational Operator). 

Relational Operator. 
consecutive 
words and 

A reserved word, a relation character, a group of 
reserved words, or a group of consecutive reserved 

relation characters used in the construction of a 
relation condition. The permissible operators and their meaning 
are: 

Relational Operator Meaning 

IS NOT GREATER THAN Greater than or not greater than 
IS NOT > 

IS NOT LESS THAN Less than or not less than 
IS NOT < 

IS NOT EQUAL TO Equal to or not equal to 
IS NOT = 

Relative File. A file with relative organization. 

Relative Key. A key whose contents identify a logical record in a relative 
file. 

Relative Organization. The permanent logical file structure in which each 
record is uniquely identified by an integer value greater than 
zero, which specifies the record's logical ordinal position in the 
file. 

C - 16 



Reserved Word. A COBOL word specified in the list of words which may be 
used in COBOL source programs, but which must not appear in the 
programs as user-defined words or system-names. 

Routine-Name. A user-defined word that identifies a procedure written in a 
language other than COBOL 

Run Unit. A set of one or more intermediate code programs which function, at 
run time, as a unit to provide problem solutions. 

Section. A set of none, one, or more paragraphs or entries, called a 
section body, the first of which is preceded by a section header. 
Each section consists of the section header and the related 
section body. 

Section Header. A combination of words followed by a period and a space that 
indicates the beginning of a section in the Environment, Data and 
Procedure Divisions. 

In the Environment and Data Divisions, a section header is composed of 
reserved words followed by a period and.a space. The permissible section 
headers are: 

In the Environment Division: 

CONFIGURATION SECTION. 
INPUT-OUTPUT SECTION. 

In the Data Division: 

FILE SECTION. 
WORKING-STORAGE SECTION. 
LINKAGE SECTION. 
COMMUNICATION SECTION. 

In the Procedure Division, a section header is composed of a section-name, 
followed by the reserved word SECTION, followed by a segment-number 
(optional), followed by a period and a space. 

Section-Name. A user-defined word which names a section in the Procedure 
Division. 

C - 17 



Segment-Number. A user-defined word which classifies sections in the 
Procedure Division for purposes of segmentation. Segment-numbers 
may contain only the characters '0' , ' 1 " ..... , '9' .. A 
segment-number may be expressed either as a one or two digit 
number, and is checked for syntax only. 

Sentence. A sequence of one or more statements, the last of which is 
terminated by a period followed by a space. 

Separator. A punctuation character used to delimit character-strings .. 

Sequential Access. An access mode in which logical records are obtained from 
or placed into a file in a consecutive predecessor-to-successor 
logical record sequence determined by the order of records in the 
file. 

Sequential File. A file with sequential organization. 

Sequential Organization. The permanent logical file structure in which a 
record is identified by a predecessor-successor relationship 
established when the record is placed into the file. 

Sign Condition. The proposition, for which a truth value can be determined, 
that the algebraic value of a data item or an arithmetic 
expression is either less than, greater than, or equal to zero. 

Simple Condition. Any single condition chosen from the set: 

relation condition 
class condition 
switch-status condition 
condition-name condition 
sign condition 
(simple-condition) 

Sort File. A collection of records to be sorted by a SORT statement.. The 
sort file is created and can be used by the sort function only. 

Sort-Merge File Description Entry. An entry in the File Section of the Data 
Division that is composed of the level indicator SD, followed by a 
file-name, and then followed"by a set of file clauses as required. 

Source. The symbolic definition of the originator of a transmission to a 
queue. 

SOURCE-COMPUTER. The name of an Environment Division paragraph in which 
the computer environment, within which the source program is 
compiled, is described. 

Source Program. Although it is recognized that a source program may be 
represented by other forms and symbols, in this document it always 

C - 18 



refers to a syntactically correct set of COBOL statements 
beginning with an Identification Division and ending with the end 
of the Procedure Division. In contexts where there is no danger 
of ambiguity, the word 'program' alone may be used in place of the 
phrase 'source program'. 

Special' Character. A character that belongs to the following set: 

Character Meaning 

+ 

* 
/ 
= 
$ 

" 
( 
) 

> 
< 

plus sign 
minus sign 
asterisk 
stroke (virgule, slash) 
equal sign 
currency sign 
comma (decimal point) 
semicolon 
period (decimal point) 
quotation mark 
left parenthesis 
right parenthesis 
greater than symbol 
less than symbol 

Special-Character Word. A reserved word which is an arithmetic operator or 
a relation character. 

SPECIAL-NA...l1ES. The name of an Environment Division paragraph in which 
implementor~n~mes are related to user-specified mnemonic-names. 

Special Registers. Compiler generated storage areas whose primary use,is to 
store information produced in conjunction with the user of 
specified COBOL features. 

Standard Data Fonnat. The concept used in describing the characteristics of 
data in a COBOL Data Division under which the characteristics or 
properties of the data are expressed in a form oriented to the 
appearance of the data on a printed page of infinite length and 
breadth, rather than a form oriented to the manner in which "the 
data is stored internally in the computer, or on a' particular 
external medium. 

Statement. A syntactically valid combinat'ion of words and symbols written in 
the Procedure Division beginning with a verb. 

Sub-Queue. A logical hierarchical division of a queue. 

Subject of Entry. An operand 
following the level 
Division entry. 

or reserved word 
indicator or the 

C - 19 

that appears 
level-numbe r 

immediately 
in a Data 



Subprogram. (See Called Program). 

Subscript. An integer whose value identifies a particular element in a 
table. 

Subscripted Data-Name. An identifier that is composed of a data-name 
followed by one or more subscripts enclosed in parentheses. 

Switch-Status Condition. The proposition, for which a truth value can be 
determined, that an implementor-defined switch, capable of being 
set to an 'on' or 'off' status, has been set to a specified 
status. 

Symbol Function. The use of specified characters in the PICTURE clause to 
represent data types. 

System-Name. A COBOL word which is used to communicate with the operating 
environment. 

Syntax. The order in which elements must be put together to form a 
program. 

A._set of logically consecutive items of data that are defined in 
the Data Division by means of the OCCURS clause~ 

Table Element. A data item that belongs to the set of repeated items 
comprising a table. 

Terminal. The originator of a transmission to a queue, or the receiver of a 
transmission from a queue. 

Text-Name. A user-defined word which identifies library text. 

Text-Word. Any character-string or separator, except space, in' a COBOL 
library or in pseudo-text. 

Truth Value. The representation of the result of the evaluation of a 
condition in terms of one of two values 

true 
false 

Unary Operator. A plus (+) or a minus (-) sign, which precedes a variable 
or a left parenthesis in an arithmetic expression and which has 
the effect of multiplying the expression by +1 or -1 respectively. 

User-Defined Word. A COBOL word that must be supplied by the user to 
satisfy the format of a clause or statement. 

c - 20 



Variable. A data item whose value may be changed by execution of the object 
program. A variable used in an arithmetic expression must be a 
numeric elementary item. 

Verb. 

Word. 

A Word that expresses an action to be taken by a COBOL compiler or 
run time program. 

A character-string of not more than 30 characters which forms a 
user-defined word, a system-name, or a reserved word. 

Working-Storage Section. The section of the Data Division that describes 
working storage data items, composed either of noncontiguous items 
or of working storage records or of both. 

77 Level-Description-Entry. A data description entry that describes a 
,noncontiguous data item with the level-number 77. 

C - 21 



c - 22 



APPENDIX D 

COMPILE-TIME ERRORS 

The error descriptions that correspond to error numbers as printed on 
listings produced by the L/II COBOL compiler are listed below. In the case 
of alternative meanings, relevancy is obvious from context. 

ERROR 

01 

02 
03 
04 
05 
06 

07 
08 

09 
10 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

34 

36 
37 

38 
39 
40 
41 
42 
43 
44 
45 

DESCRIPTION 

Compiler Error; consult your Technical Support 
Service 

Illegal format: data-name 
Illegal format: literal 
Illegal format: character 
data-name not unique 
Too many data or procedure names have been 

declared 
Obligatory reserved word missing 
Nested COpy statement or unknown COpy 

file specified 
, .' missing 
The statement starts in the wrong area of 

the source line, i.e., reference format violation 

, .' missing 
'DIVISION' missing 
'SECTION' missing 
'IDENTIFICATION' missing 
'PROGruu~-ID' missing 
'AUTHOR' missing 
'INSTALLATION' missing 
'DATE-WRITTEN' missing 
'SECURITY' missing 
'ENVIRONMENT' missing 
'CONFIGURATION' missing 
'SOURCE-COMPUTER' missing 

MEMORY SIZE/COLLATING SEQUENCE/SPECIAL-NAJ1ES clause 
in error 

'OBJECT-COMPUTER' missing 

'SPECIAL-NAMES' missing 
SWITCH Clause in error 

or system-name/mnemonic-name error 
DECTIMAL-POINT Clause in error 

. CONSOLE Clause in error 
Illegal currency symbol 
, .' missing 
'DIVISION' missing 
'SECTION' missing 
'INPUT-OUTPUT' missing 
'FILE-CONTROL' misSing 

D - 1 



46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
62 
63 
64 

65 

66 

67 
68 
69 
70 
71 

72 
73 

74 

75 
76 

77 

78 
79 

81 
82 
83 
84 
85 
86 
87 
88 

89 

'ASSIGN' missing 
'SEQUENTIAL' or 'INDEXED' or 'RELATIVE' missing 
'ACCESS' missing on indexed/relative file 
'SEQUENTIAL/DYNAMIC' missing or >64 alternate keys 
Illegal combination ORGANIZATION/ACCESS/KEY 
SELECT Clause phrase unrecognised 
RERUN Clause syntax error 
SAME RECORD AREA clash 
file-name missing or illegal 
'DATA DIVISION' missing 
'PROCEDURE DIVISION' missing or unknown statement 
Collating sequence not defined 1 
'EXCLUSIVE' , 'AUTOMATIC', or 'MANUAL' missing 1 
Non-exclusive lock mode specified for restricted file 
'DIVISION' missing 
'SECTION' missing 
file-name not specified in SELECT statement 

or invalid CD name 
RECORD SIZE integer missing or line sequential 

record> 1024 bytes --
Illegal level number (01-49), or 01 level required, 

££ level hierarchyincorrect--
FD, CD or SD qualification contains syntax error 
'WORKING-STORAGE' missing 
'PROCEDURE DIVISION' missing or unknown statement 
Data Description Qualifier or '.' missing 
Incompatible PICTURE clause and qualifiers 

(SIGN/USAGE illegal with COMP data-item or unsigned 
PICTURE data) 

BLANK is illegal with non-numeric data-item 
PICTURE clause too long (Numeric 18 Numeric 

Edited 512 Alphanumeric 8192) 
VALUE clause with non-elementary data-item, ££ truncation, 

or wrong data type 
'VALUE' in error or illegal for PICTURE type 
FILLER/SYNCHRONIZED/JUSTIFIED/BLANK clause with 

non-elementary item 
Preceding item at this level has> 8192 bytes 

or 0 bytes 
REDEFINES of unequal fields or different levels. 
Da,t$i storage exceeds 64K bytes 

Data Description Qualifier inappropriate or repeated 
REDEFINES data-name not declared 
USAGE must be COMP, DISPLAY or INDEX 
SIGN must be LEADING or TRAILING 
SYNCHRONIZED mus t be LEFT or RIGHT 
JUSTIFIED must be RIGHT 
BLANK must be ZERO 
OCCURS must be numeric, non-zero, unsigned ££ 

DEPENDING 
VALUE must be a literal, numeric literal or 
figurative constant 

D - 2 



90 

91 
92 

101 
102 
103 
104 
105 
106 
107 
108 

109 
110 
III 
112 
113 
114 
115 
116 

117 

118 
119 
120 
121 
122 
123 

141 
142 
143 
144 
145 
146 
147 

148 
149 
150 

151 
152 
153 
154 
155 
157 

1 I 160 
- Apply to 

PICTURE string has illegal precedence or illegal 
character 
INDEXED dataname missing or already declared 
Numeric-edited PICTURE string is too large 

Unrecognized verb 
IF .•• ELSE mismatch 
Wrong data-type or data-name not declared 
Procedure-name not unique 
Procedure-name same as data-name 
Name required 
Wrong combination of data types 
Conditional statement not allowed in this 

context; must be an imperative statement 
Malformed subscript 
ACCEPT/DISPLAY wrong or Communications syntax incorrect 
Illegal Syntax used with 1-0 verb 
Invalid arithmetic statement 
Invalid arithmetic expression 
Procedure Division in memory > 32K 
Invalid conditional expression 
IF statements nested too deep ~ too many AFTER 

phrases in a PERFORM statement 
Incorrect structure of Procedure Division e.g. Sections 
out of order 
Reserved Word missing or incorrectly used 
Too many subscripts in one statement 
Too many operands in one statement 1 
'LOCK' clause specified for 'EXCLUSIVE' file 1 
'KEPT' specified for uncommitable file 1 
'KEPT' omitted for commitable file 

Inter-segment procedure name duplication 
IF .•. ELSE mismatch at end of Source Input 
Wrong data type or data-name not declared 
Procedure-name undeclared 
Index dataname declared twice 
Bad cursor control: illegal AT clause 
KEY declaration missing or illegal (alternate key 

clash or key in wrong place) 
STATUS declaration missing 
Bad STATUS record 
Uridefined inter-segment reference or error in 

ALTERed paragraph 
PROCEDURE DIVISION in error 
USING parameter not declared in Linkage Section 
USING parameter is not level 01 or 77 
USING parameter used twice in parameter list 
'FD' missing 
Incorrect structure of Procedure Division: 

e.g. Sections out of order 
Too many operands in one statement 

Fileshare optional product syntax. 

D - 3 



In addition to these numbered error messages, the following two messages can 
be displayed with subsequent termination of the compilation: 

{
filename } 

1-0 ERROR: OBJECT FILE 

where filename is the erroneous file. 
OBJECT FILE is one of .INT, .D??, or. I?? (for segmented programs) 

Any intermediate code file produced is not usable. 

The following conditions will cause this error: 

Disk overflow 
File directory overflow 
File full 
Impossible 1-0 device usage 

Other operating system dependent conditions can also cause this errore 

READ ERROR: filename 

where filename is the erroneous file. 

This error is caused by a spurious carriage-return character (Hex OD) 
in the file. 

(Addendum 2) 

D - 4 



APPENDIX E 

RUN-TIME ERRORS 

Run-time error messages are preceded by the name and segment number of the 
currently executing intermediate code file. 

There are two types of run-time errors: Recoverable and Fatal~ 

(a) Recoverable errors 

If the programmer has selected STATUS for a file then error handling is his 
responsibility. This will generally only apply to errors that are not 
considered fatal by the operating system. 

(b) Fatal errors 

All errors except those above are fatal. They may come from the operating 
system or from the run-time system. Fatal errors cause a message to be 
output to the console which includes a three digit error code and reference 
to the COBOL statement subsequent to that in which the error occurred. 
These fall into two classes: 

(i) Exceptions 
These cover arithmetic overflow, subscript out of 
range, too many levels of perform nesting. 

(ii) 1-0 errors 
These exclude those for which STATUS is not selected 
as above. 

Refer to your LEVEL II COBOL Operating Guide for details of selecting and 
decoding STATUS, and for the list of run-time errors applicable to your 
implementation of LEVEL II COBOL. 

E - 1 



E - 2 



APPENDIX F 

SYNTAX SUMMARY 

All the syntax for L/II COBOL is summarized below. 

E denotes that the feature is a L/II COBOL extension to ANSI COBOL. 

D denotes that the feature is documentary only in L/II COBOL. 

GENERAL FORMAT FOR IDENTIFICATION DIVISION 

t IDENTIFICATION DIVISION.} 

£ PROGRAl'1-ID. program name}-

[AUTHOR. [comment entry] · .. ] 
[INSTALLATION. [comment entry ] · .. ] 
[DATE-WRITTEN. [comment entry] · .. ] 
[DATE-COMPILED. [comment entry] · .. ] 
[SECURITY. [comment entry] · .. ] 



GENERAL FORMAT FOR ENVIRONMENT DIVISION 

f ENVIRONMENT DIVISION. }­

t CONFIGURATION SECTION e ]-

~SOURCE-COMPUTER. source-computer-entry [WITH DEBUGGING MODE]e}­

fOBJECT-COMPUTER. object-computer-entry 

[.MEMORY SIZE integer l WORDS l ] CHARACTERS 
MODULES 

[,PROGRAM COLLATING SEQUENCE IS alphabet-name] 

[,SEGMENT-LIMIT IS segment number]. T 
[ SPECIAL-NAMES. 

[ 9{SYSIN } I . ] SYSOUT ~ mnemon1c-name-l 

[
,{TAB ~ mnemonic-name-2] 

FORMFEEU 
o 

SWITCH [li mnemonic-name] ON STATUS IS condition-name-l 

7 

[OFF STATUS ~ condition-name-2] 

, alphabet-name IS 

STANDARD-l 
NATIVE 

literal-l THRU literal-2 [l { THROUGH } l~ 
ALSO literal-3 [, ALSO literal-4] ... 

[ ~l { THROUGH} I]] literal-S THRU literal-6 
. ALSO literal-7 [, ALSO literal-8]. . .. 

[,CURRENCY SIGN IS literal-9] 
[,DECIMAL-POINT IS COMMA] 

E 

J. E 

F - 2 



[ -£ INPUT-QUTPUT SECTION.} 

t FILE-CONTROL • 3-
~file-control-entry~.e. 

[ ~~~~RD J AREA FOR file-name-3 ~ ,file-name-4~ • .. J 0 •• 

SORT-MERGE 

F - 3 

D 

D 



GENERAL FORMAT FOR FILE-CONTROL ENTRY 

Sequential SELECT: 

SELECT 

ASSIGN TO 

[ OPTIONAL ] file-name 

sexternal-file-name-literal~ 
?f ile-identifier 5 

;ORGANIZATION IS Di~G 
[;ACCESS MODE IS SEQUENTIAL] 

[;FILE STATUS IS data-name] 

Relative Select: 

SELECT file-name 

ASSIGN TO Sexternal-file-name-literal~ 
~file-identifier . ~ 

ORGANIZATION IS RELATIVE 

D 

E 

D 

~ACCES S MODE IS { 

SEQUENTIAL 

{ 
RANDOM } 
DYNAMIC 

[,RELATIVE KEY IS data-nam~~J 
,RELATIVE KEY IS data-name, 

[;FILE STATUS IS data-name] 

Indexed Select: 

SELECT file-name 

ASSIGN TO sexternal-file-name-literal~ 
~file-identifier 5 

F - 4 

D 

D 

D 



INDEXED ;ORGANIZATION IS 

~ACCESS MODE IS 1 
SEQUENTIAL ~] 
RANDOM 
DYNAMIC 

;RECORD KEY IS data-name-l 

[; ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES] 

[;FILE STATUS IS data-name-3] 

Sort or Merge Select: 

SELECT file-name 

ASSIGN TO {external-file-name-li teral } 
file-identifier 

F - 5 



GENERAL FORMAT FOR THE DATA DIVISION 

£ DATA DIVISION. } 
[ FILE SECTION. 

[ FD file-name 

D 

D 

D 

D 

[; LINAGE IS s~ata-name-5~ 
?~nteger-5 ~ 

LINES [, WITH FOOTING AT s~ata-name-6~] 
?~nteger-6 ~ 

[
, LINES AT TOP s~ata-name-7~] [ LINES AT BOTTOM 

~ ~nteger-7 ~ , 

[record-description-entry] ..• ] ..• 

[ SD file-name 

record-description-entry 

[

WORKING-STORAGE SECTION 

[ 77-1eVel-des:ri~tion-entry] record-descr~pt~on-entry 

[ 

LINKAGE SECTION 

[
77-leVel-descriPtion-entry] 
record-description-entry 

.. ] 
· · · ] 

[

COMMUNICATION SECTION ] 
[communicatio~-d:scription-entry] 
[record-descr~Pt~on-entry .•. ] ••. 

F - 6 

s~ata-name-8 ~] 1 
l~nteger-8 5 

&~ 

D 

D 



GENERAL FORMAT FOR DATA DESCRIPTION ENTRY 

Format 1: 

level-number Sdata-name-l~ 
?FILLER 5 

[;REDEFINES data-name-2] 

[ {
PICTURE}IS . . ] ; PIC :1cture-str1ng 

COMPUTATIONAL 
COMP 
COMPUTATIONAL-3 

;(PSAGE IS] -CO-M--P--3~---
DISPLAY 

INDEX 

[ (; SIGN is] g~~~~G} [SEPARATE CHARACTER] ] 

OCCURS {integer-l TO integer-2 TIMES DEPENDING ON data-name-3} 
integer-2 TIMES 

Format 2: 

[{ ;~~~::~;G} KEY IS data-name-4 [, data-name-5] •.• ] • • · 

[INDEXED BY index-name-l [, index-name-2] ••• ~ 

[
;{JUSTIFIED} RIGHT J'~' 

JUST 
[ ; B'i:A.NK WHEN ZERO] 
[;VALUE IS literal] . 

D 

[{ 
THROUGH} ] 66 data-name-l; RENAMES data-name-2 THRU data-name-3 

Format 3: 

88 condition-name; { VALUE IS } Ii teral-l [{ THROUGH} 
VALUES ARE THRU literal-2 ] 

[, literal-3 [{~UGH} literal-4] ] 

F - 7 



GENERAL FORMAT FOR COMMUNICATION DESCRIPTION ENTRY 

FORMAT 1: 

CD cd-name; 

FOR [INITIAL] INPUT 

FORMAT 2: 

CD cd-name; FOR OUTPUT 

[[ ; SYMBOLIC QUEUE IS data-name-l] 

[ ; SYMBOLIC SUB-QUEUE-l IS data-name-2] 

[ ; SYMBOLIC SUB-gUEUE-2 IS data-name-3] 

[ ; SYMBOLIC SUB-QUEUE-3 IS data-name-4] 

[ ; MESSAGE DATE IS data-name-5] 

[ ; MESSAGE TIME IS data-name-6] 

[ ; SYMBOLIC SOURCE IS data-name-7] 

[; TEXT LENGTH IS data-name-8] 

[; END KEY IS data-name-9] 

[; STATUS KEY IS data-name-IO] 

[; MESSAGE COUNT IS data-name-ll]] 

[data-name-l, data-name-2, ... , data-name-ll] 

[; DESTINATION COUNT IS data-name-l] 

[; TEXT LENGTH IS data-name-2] 

[; STATUS KEY IS data-name-3] 

DESTINATION TABLE OCCURS integer-2 TIMES 

[[; INDEXED BY index-name-l [, index-name-2] 

[; ERROR KEY IS data-name-4] 

(; SYMBOLIC DESTINATION IS data-name-4]. 

F - 8 



GENERAL FORMAT FOR PROCEDURE DIVISION 

Declarative format: 

PROCEDURE DIVISION [USING data-name-l. [, ·data-name-2] • 0 .]. 

[ Df:CLARATIVES. 
~section-name SECTION [segment-numbe~. declarative-sentence 
[fparagraph-name.} [sentence] ••• ] ••• ~ 

END DECLARATIVES.] 
~section-name SECTION [segment-number] 
[tparagraph-name.3-[ sentence] ••• ] ••• ~ 

Non-declarative format: 

PROCEDURE DIVISION [USING data-name-l 
~aragraph-name.}[sentence] ••• ~ ••• 

F - 9 

[, data-name-2] , ••• ] • 



GENERAL FORMAT FOR VERBS 

ACCEPT identifier [FROM CONSOLE] 

ACCEPT identifier FROM 1 ~!~E l 
TIME 

ACCEPT cd-name MESSAGE COUNT 

E 

D 

ADD S identifier-q [, identifier-2] •.. TO identifier-m [ROUNDED] 
Iliteral-1 5 ,literal-2 

[, identifier-n [ROUNDED] .•. [; ON SIZE ERROR imperative-statement] 

ADD sidentifier-1~ 'Sidentifier-2~[' identifier-3] 
Iliteral-1 5 lliteral-2 5, literal-3 ••• 

GIVING identifier-m [ROUNDED] [, identifier-n [ROUNDED]] ... 

[; ON SIZE ERROR imperative-statement] 

ADD { 
CORRESPOND ING} . d . f . 1 ___ CORR 1 entl ler- TO identifier-2 [ROUNDED] 

[; ON SIZE ERROR imperative-statement] 

ALTER {procedure-name-l TO[PROCEED TO] procedure-name-2} 

sidentifier-1~ 
CALL lliteral-l 5 

USING data-name-l [, data-name-2] 

[; ON OVERFLOW imperative-statement] 

CANCEL sidentifier-l~ [S'identifier-2~] 
?literal-l 5 ?,literal-2 5 

CLOSE file-name-1 

, file-name-2 

F - 10 

D 



CLOSE file-name-l [WITH LOCK] [, file-name-2 [WITH LOCK] 

COMPUTE identifier-l [ ROUNDED] [t identifier-2 [ROUNDED] 

= arithmetic-expression [; ON SIZE ERROR imperative-statement] 

DELETE file-name RECORD [; INVALID KEY imperative-statement] 

DISABLE cd-name WITH KEY 5 l I NPUT [TERMINAL] ~ ~identifier-l~ 
OUTPUT literal-l 

DISPLAY ~identifier-l~[, 
? Ii teral-l 5, 

~ identifier-l~ 
DIVIDE ?literal-l 5 

identifier-2] 
Ii teral-2 

INTO identifier-2 

... [UPON CONSOLE] 

E 

[ROUNDED] 

[, identifier-3 [ROUNDED]] •.. [jON SIZE ERROR imperative-statement] 

DIVIDE j i~entifier-l} 
« l~teral-l 

j INTO} j identifier-2} GIVING . d 0 f' -3 
« BY « literal-2 1 entl ler [ROUNDED] 

[, identifier-4 [ROUNDED]] •.. [jON SIZE ERROR imperative-statement] 

DIVIDE { i~entifier-l} j INTO} 
Ilteral-l « BY 

identifier-2t GIVING °d tOfO -3 literal-2 f 1 en 1 ler [ROUNDED] 

REMAINDER identifier-4 [;ON SIZE ERROR 

ENABLE ~ INPUT [TERMINAL] ~ d T.TI'I'H KEY 
~OUTPUT ) c -name w 

EXIT [PROGRAM] . 

GO TO[procedure-nam~. 

GO TO procedure-name-l ~, procedure-name-2~ ... 

DEPENDING ON identifier 

imperative-statement] 

sidentifier-l~ 
? Ii teral-l 5 

D 

{
; ELSE statement-2 } 
; ELSE NEXT SENTENCE 

F - 11 

E 



INSPECT identifier-l TALLYING tally-clause ·(as follows) 

identifier-2 FOR ~ , ~~~ING~ ~i~~:~!i~~r-3~~ 
~ ~ CHARACTERS ~ 

[{ 
BEFORE} INITIAL Si~entifier-4~ ] ~ e ~ • 

- (tally-clause) 

AFTER ?1~teral-3 5 ~ 

INSPECT identifier-l REPLACING replacing-clause (as follows) 

CHARACTERS BY Sidentifier-6~UBEFORE} INITIAL Sidentifier-7~J 
?literal-4 5~AFTER ~literal-5 5 

~, ~~ING i l' 
? ~ FIRST ~ 

[{
BEFORE} 
AFTER 

S identifier-5~ 
?literal-3 5 BY 

INITIAL 

Sidentifier-6~ 
?literal-4 5 

sidentifier-7~ ] i . l 
lliteral-S \ ~ ••• ~ ••• 

- (replacing clause) 

INSPECT identifier TALLYING tally-clause REPLACING replacing-clause 

. . {ASCENDING} MERGE f~le-name-l ON DESCENDING KEY data-name-l [, data-name-2] 

[ 
. {ASCENDING 

ON DESCENDING KEY data-name-:-3. [, data-name-4] ... ] ... 1 

[COLLATING SEQUENCE IS alphabet-name] 

USING file-name-2, file-name-3 [, file-name-4] 

.. [{ THROUGH} OUTPUT PROCEDURE.IS sect~on-name-1 THRU section-name-2 ] 

GIVING file-name-S 

MOVE ~ identifier-l~ TO ··d . f' -2 
l ' 1 1 ~ ent~ ~er -- ~tera-

[,identifier-3] 

MOVE { 
CORRESPONDING} 'd . f' 1 TO . d . f' 2 __ CORR ~ ent~ ~er- _ ~ ent~ ~er-

MULTIPLY ~i~~:~!i~~r-1~ BY identifier-2 [ROUNDED] 

[, identifier-3 [ROUNDED]] [; ON SIZE ERROR imperative-:-statement] 

MULTIPLY Si~entifier-l~ BySi~entifier-2~ GIVING identifier-3 [ROUNDED] 
?llteral-l 5 ~llteral-2 5 

[, identifier-4 [ROUNDED]] ... . 
[; ON SIZE ERROR imperative-statement] 

F - 12 

(A,ddendum 2) 



INPUT file-name-l ~_ .... ] [ file-name-2 [!_;~~J] 
OPEN OUTPUT file-name-3 [WITH NO REWIND] [,file-name-4 [WITH NO REWIND] ] ... 

I-O file-name-5 [, file-name-6] ••. 
EXTEND file-name-7 [, file-name-8] 

PERFORM procedure-name-l [{;UGH} procedure-name-2 ] 

PERFORM qTHROUGH} J{ identifier-I} 
procedure-name-I~THRU procedure-name-2 integer-I TIMES 

qTHROUGH} PERFORM procedure-name-I ~THRU procedure-name-2 ] UNTIL condition-l 

PERFORM procedure-name-l [{~UGH} . procedure-name-2 ] 

VARYING S~dentifier-2~ FROM index-name-2 
?~ndex-name-15 ---- lidentifier-3l 

Ii teral-I 

BY 

[AFTER 

BY 

BY 

Si~entifier-4~ UNTIL condition-I 
?1~teral-2 5 

~
identifier-6~ 

~~dentifier-5~ FROM index-name-4 
~ndex-name-3 lOt 1 3 

~ era. -

~ identifier-7~ UNTIL dO ° -2 
l Ot 1 4 con ~t~on 
~ era -

sidentifier-8~ 
~index-name-55FROM 

{identifier-9l 
~ index-name-6 
~ Ii teral-5 

S identifier ~ 
~literal-6 5 UNTIL cond1tion-3J] 

READ file-name [NEXT] RECORD [INTO identifier] 
[;AT END imperative-statement] 

READ file-name RECORD [INTO identifier] [;KEY IS data-name] 
[;INVALID KEY imperative-statement] ---

. F - 13 

D 



. d { MES SAGE} INTO . d . f . I RECEIVE c -name SEGMENT ____ ~ ent~ ~er- [; NO DATA imperative-statement] 

RELEASE record-name [FROM identifier] 

RETURN file-name RECORD [INTO identifier] AT END imperative-statement 

REWRITE record-name [FROM identifier] 

[;INVALID KEY imperative-statement] 

SEARCH identifier-l [VARYING ~ ~dentifier-2~] 
? ~ndex-name-l ~ 

[; AT END imperative-statement-l] 

WHEN condition-l {imperative-statement-2} 
NEXT SENTENCE-

[; WHEN condition-2 {
imperative-statement-3}] 
NEXT SENTENCE 

SEARCH· ALL identifier-l [; AT END imperative-statement-l] 

{IS data-name-l IS WHEN 

condition-name-l 

{IS data-name-2 IS AND 

condition-name-2 

{ 
imperative-statement-2} 
NEXT SENTENCE 

SEND cd-name FROM identifier-l 

SEND cd-name [FROM identifier-I] 

l
S~dentifier-3~ 
?~nteger 5 

EQUAL TO} !identifier-3 . l 
literal-I' = arithmetic-express ion-l 

EQUAL TO} literal-2 
!identifier-4 l 

= arithmetic-expression-2 

WITH identifier-2 
WITH ESI 
WITH EMI 
WITH EGI 

[ LINE] i 
LINES ~ 

{ BEFORE } ADVANCING 
AFTER 

{ 
.mnemoniC-name} 
PAGE 

F - 14 

... 



SET sidentif ier-l 
lindex-name-l 

[identifier-2]~ 
[index-name-2]~ 

TO l identifier-3 ! 
index-name-3 
integer-l 

{
ASCENDING } 

SORT file-name-l ON DESCENDING KEY data-name-l [, data-name-2] 

[ON {~~~~~~~;G} KEY data-name-3 [. data-name-4] • •. ] ••• 

[COLLATING SEQUENCE IS alphabet-name] 

~ INPUT PROCEDURE IS section-name-l[f=UGH} section-name-2] ~ 
(USING file-name-2 ,[file-name-3] ~ 
~ OUTPUT PROCEDURE IS section-name-3 [{ ~:~UGH} section-name-4] ~ 
(GIVING file-name-4 ) 

IS EQUAL = 
IS = 

START file-name KEY IS GREATER than 
IS > 

STOP 

IS NOT LESS THAN -----IS NOT < 
[; INVALID KEY imperative-stati~:T1ent] 

S RUN ~ 
? Ii teral ~ 

STRING sidenti£ier-l~ [ 
11iteral-l ~ t 

Sidentifier-2~] 
?li teral-2 ~ 

[ 
~identifier-4~ [ 
?literal-4 ~ , 

Sid.en tifier-5~] 
?literal-5 S 

data-name 

{ identifier-3! 
DELIMITED BY ~ literal-3 

~ SIZE 

DELIMITED BY ~it~~~!i:~r-~J. 
~ S I2 E ) 

INTO identi£ier-7 (WITH POINTER identifier-B] 

[, ON OVERFLOW imperative-statement] 

SUBTRACT Si~entifer-l~ [, Si~entifier-2~] •.. 
?11teral-l ~ ?11teral-2 ~ 

[, identifier-n [ROUNDED] ] 

[; ON SIZE ERROR imperative-statement] 

F - 15 

FROM identifier-m [ROUNDED] 

E 



SUBTRACT Sidentifier-l~[, ,identifier-2] 
lliteral-l ~,literal-2 DOO 

FROMsi~entifier-m~ 
--?l~teral-m ~ 

GIVING identifier-n [ROUNDED] [, identifier-o 

[; ON SIZE ERROR imperative-statement] 

[ROUNDED]] • $ e 

SUBTRACT ~ ~~~~ESPONDING ~ identifier-l FROM identifier-2 [ROUNDED] 

[; ON SIZE ERROR imperative-statement] 

UNSTRING identifier-l 

[DELIMITED BY [ALL] ~i~entifier-2~ [ OR [ALL] 
~ l~ teral-l ~ '---

Si~entifier-3~] .•• J 
~11.teral-2 ~ 

INTO iden·tifier-4 [, DELIMITER IN identifier-5] [, COUNT IN identifier-6] 

[, identifier-7 [, DELIMITER IN identifier-81[, COUNT IN identifier-9]] 

[WITH POINTER identifier-lO] [TALLYING IN identifier-II] 

[; ON OVERFLOW imperative-statement] 

file-name-l [, file-name-2 ] •.. 
INPUT 

USE AFTER STANDARD { EXCEPTION} PROCEDURE ON OUTPUT 
- . ERROR 1-0 

EXTEND 

cd-name-l 

USE FOR DEBUGGING ON 
[ALL REFERENCES OF] identifier-l 
file-name-l 
procedure-name-l 
ALL PROCEDURES 

[, cd-name-2 ~ [ALL REFERENCES OF] identifier-2 
file-name-2 
procedure-name-2 
ALL PROCEDURES 

WRITE 

re[c{o:::::e} 

AFTER 

[; AT 

WRITE record-name [FROM identifier] 

[;INVALID KEY imperative-statement] 

F - 16 

E 



GENERAL FORM FOR COpy STATEMENT 

COpy ~ text-name ~ [~OINF ~ library-name] 
?external-file-name-litera1 5 ~ 5 

~ 
==pseudo-text-1 ==~ 
identifier-1 BY 
literal-l 
word-l 

REPLACli'fG 

G-ENERAL FOfU'IAT FO~_ CONI) LTLONS 

Relation condition: 

icientifier-l 
literal-l 
arithmetic-expression-l 
index-name-l 

Class Condition: 

IS [NOT] GREATER THAN 
IS [NOT] LESS THAN 
IS [NOT] ~L to 
IS [NOT] > 
IS (NOT] < 
IS [NOT] = 

identifier IS [NOT] ~ :~fJHERIC i 
( ALPHABETIC) 

Sign Condition: 

arithmetic-expression IS [NOT] 

Condition-name Condition: 

condition-name 

Switch-status Condition: 

condition-name 

Negated Simple Condition: 

NOT simple-condition 

Combined Condition: 

condition ~ {~\jD} cana it iUT1 i 
~ uR ) 

~ 
POSITIVE ~ 
NEGATIVE 
ZERO 

Abreviated Combined Relation Condition: 

~
==pseUdo-text-2==~ 
identifier-2 
litt.:.ral-2 

.... vorJ-2 

identifier-2 
Ii teral-2 
arithmetic-expression-2 
index-name-2 

relation-condition{l~l [NOT] [relational-operator] Object~ ... 
F - 17 



MISCELLANEOUS FORMATS 

QUALIFICATION: 

~data-name-l t 
?condition-name ~ 

paragraph-name 

data -name -2 ] 

[! ~~! section-name ] 

text-nam!? [ S 0IN
F ~ ] ~ ~ library-name 

SUBSCRIPTING: 

~da ta-name t 
?condition-name ~ 

(subscript-l [. subscript-2 G SUbscriPt-3]] ) 

INDEXING: 

~ i~dex-name -1 [~± ~ Ii teral-2] t ~~:!:~~~~-name!< 
[ ~ i~~:~:~~e-2 

~ll.teral-l ~ 

[~±~literal-4]t [ ~index-name-3 [~±~literal-6]iJ~) 
~ /literal-S ~ ~ 

IDENTIFIER: FORMAT 1 

data-name-l [l~~! data-name-2] 

[, subscript-31] )] 

IDENTIFI ER: FORMAT 2 

data-name-l [l ~~! data-name-2] 

[ 
~ index-name-2 

, ~literal-3 

• •• [<SUbscriPt-l G subscript-2 

F - 18 

~ index -name-l 
~ Ii teral-l 

[ 
~ index-name-3· 

'~ literal-5 

q±!literal-21! 

q±! literal-61 DJ )] 



APPENDIX G 

SUMMARY OF EXTENSIONS TO ANSI COBOL 

LIII COBOL is oriented to microcomputer users with the system close at hand 
and usually with a CRT. L/II COBOL therefore provides extensions for 
interactive working, program control of files, text file handling and rapid 
development and testing. These facilities are summarised below. 

SCREEN FORMATTING AND DATA ENTRY 

THE ACCEPT STATEMENT 

An additional format for the ACCEPT statement is provided as follows: 

Format 

ACCEPT data-name-l [AT~d~ta-name-2~J 
-? l~teral-l 5 FROM CRT 

data-name-2 allows the start of screen to be changed dynamically. It 
refers to a PIC 9999 field where the most significant 99 is a 
line count 1-25 and the least significant 99 is a character 
position 1-80. 

data-name-l refers to a record, group or elementary item but may not be 
subscripted. 

Ii tera1-1 

NOTE: 

is a numeric literal 

See Chapter 3 for description. 
Environment Division changes. 

THE DISPLAY STATEMENT 

See also Appendix H for 

An additional format for the DISPLAY statement is provided as follows: 

Format 

DISPLAY ~d~ta-name-I~[AT ~ d~taname-2~J 
?1~teral-3 5 -- ? 1~tera11 5 

literal-3 is an alphanumeric literal 

UPON~ CRT l 
--( CRT-UNDER) 

dataname-l refers to a record, group or elementary item but may not be 
subscripted 

dataname-2 defines the leftmost position on the screen. It refers to a 
PIC 9999 field where the most significant 99 is a line count 
1-25 and the least significant 99 is a character position 
1-80. 

NOTE: See Chapter 3 for description. 
G - 1 



DISK FILES 

Two extensions are offered by L/II COBOL file processing; these are as 
follows: 
1. Line sequential files 
2. Run time input of filenames 

LINE SEQUENTIAL FILES 

When LINE SEQUENTIAL ORGANIZATION is specified in the FILE CONTROL paragraph 
ORGANIZATION IS entry, the file is treated as consisting of variable length 
records separated by an operating system dependent line delimiter character. 
On input the delimiter is removed and the record area padded out with spaces 
as necessary; on output any trailing spaces in the record area are removed. 

RUN TIME INPUT OF FILENAMES 

The ASSIGNed name in the SELECT statement for a file is processed on OPENing 
as follows: 

When the INPUT or OUTPUT phrase is specified, execution of OPEN causes 
checking of the file names in accordance with the operating system 
connections for opening on input or output tile. The full operating system 
features for file reallocation and device control are therefore available "to 
the L/II COBOL program. 

LOWER CASE CHARACTERS 

The full alphanumeric lower case a to z is available in L/II COBOL. Reserved 
and user word characters are read as their upper case equivalents (A to Z). 

HEXADECIMAL VALUES 

Hexadecimal binary values can be attributed to non-numeric literals in L/II 
COBOL by expressing them as X "xx", where x is a hexadecimal character in 
the set 0-9, A-F; xx can be repeated up to 128 times, but the number of 
hexadecimal digits must be even. 

G - 2 



APPENDIX H 

SYSTEM DEPENDENT LANGUAGE FEATURES 

This Appendix summarises those parts of a COBOL program that need to be 
changed to run them as L/II COBOL programs and those parts that do not need 
changing specifically but are ignored by the L/Il COBOL compiler when 
generating the object program. 

MANDATORY CHANGES-

ENVIRONMENT DIVISION 

The only statements in the environment division that must be specialised for 
L/II COBOL are shown below: 

Configuration Section 

SPECIAL-NAMES. special names entry 

special names entry must include the following: 

CURSOR IS data-name-l 

The CURSOR IS data-name-l clause specifies the data-name which will contain 
the CRT cursor address as used by ACCEPT statements. Data-name-l must be 
declared in the Working-Storage section as a 4 character item. The 
interpretation of the 4 characters is given in the ACCEPT statement 
description. 

Input-Output Section 

File names must be as described_in the L/II COBOL Operating Guide. 

STATEMENTS COMPILED AS DOCUMENTATION ONLY 

COBOL programs not speci_fically written for compilation as L/II COBOL on 
microcomputers can still be compiled. Statements using features that are 
not available are treated as documentary only, and are not compiled. A 
summary of these features follows: 

ENVIRONMENT DIVISION 

I-O-Control Paragraph 

The clauses that refer to a real time clock and magnetic tape in this 
paragraph are ignored by the compiler during compilation but do not cuase 
compile times errors. These clauses are as follows: 

END OF ~REEL ~ of filename2 
? UNIT ~ 

H - 1 

(no magnetic tape) 



integer-2 CLOCK UNITS (no clock) 

DATA DIVISION 

File Description Paragraph 

The following complete statements in the file description are ignored 
by the compiler during compilation but do not cause compile time errors: 

BLOCK CONTAINS integer-l TO integer-2 

{
RECORDS } 
CHARACTERS 

CODE-SET IS alphabetic-name 

LABEL { 
RECORD IS} 
RECORDS ARE 

VALUE OF implementor-name-l 
--[,implementor-name-2 

PROCEDURE DIVISION 

CLOSE Statement 

{
STANDARD} 
OMITTED 

IS literal-l 
IS literal-2] 

The following phrases in the CLOSE statement are ignored by the 
compiler during compilation but do not cause compiler-time errors: 

{
REEL} 
UNIT 

(No magnetic tape) 

H - 2 



APPENDIX I 

LANGUAGE SPECIFICATION 

L/II COBOL is ANSI COBOL as specified in "American National Standard 
Programming Language COBOL" (ANSI X3.23 1974). The L/II COBOL Implementation 
has been selected from both levels of ANSI COBOL. The following modules are 

. fully implemented at Levelland Level 2: 

Nucleus 
Table Handling 
Sequential Input and Output 
Relative Input and Output 
Indexed Input and Output 
Sort-Merge 
Segmentation 
Library 
Inter-Program Communication 
Debug 
Communications 

This appendix specifies the implementation of L/II COBOL. The 
implementation of each of the eight standard COBOL modules listed above is 
given under the following headings as applicable: 

Level 1 Implementation 
Level 2 Implementation 
L/II COBOL Extensions 

Appendix F in this manual is a L/II CQBOL syntax summary. 

I - 1 

* 



NUCLEUS 

Level One Implementation 

Fully implemented to Level Two .. 

Level Two Implementation 

Fully implemented to Level Two. 

L/II COBOL Extensions 

Ie Lower case letters a to z are read as upper case letters A to Ze 

2.. Hexadecimal binary values can be attributed to non-numeric values by 
expressing literals as X"nn". 

30 Reserved word SPACE can be used to clear the whole CRT screen. 

4. The ANSI switch unset enables omission of certain A.L~SI required "red 
tape" paragraphs and statements. 

5. 

6. 

7. 

COMPUTATIONAL-3 or COMP-3 can be specified in the USAGE clause to 
specify packed internal decimal storage, (BCD). 

ACCEPT data-name-l [AT S d~ ta-name-2 }] FROM CRT 
1 l~teral-l 

gives enhanced CRT input features 

DISPLAY sda.ta-name-It[ATsda.ta-name-2}] UPON SCRT } 
ll~teral-l ~ ll~teral-2 lCRT-UNDER 

gives enhanced CRT output facilities. 

8. 'CURSOR IS data-name~ can be specified in SPECIAL-NAMES and 'data-name' 
in· WORKING-STORAGE section to specify CRT cursor address for ACCEPT 
statements 

9. The function names SYSIN, SYSOUT and TAB can be assigned to user 
specified mnemonic-names in the SPECIAL NAMES paragraph. SYSIN and 
SYSOUT are equivalent to ACCEPT and DISPAY from and to CONSOLE 
respectively. TAB is used with the WRITE statement to printer to throw 
a page. A directive is available in the compiler command line to alter 
these. function names if they are already used in your COPOL program for 
other purposes. 

In addition the following IBM type extensions are incorporated. 
Extensions numbered I and 2 below are always active unless the ANSI 
switch directive is set in the compiler command line. E~tension 

1-2 



number 3 takes effect only when the directive IBM is used in the 
compiler command line. 

1 • Redefini tion of data names need not be the same length - the 
compiler reserves the largest area. 

2. Level numbers need not be specified in sequence. Thus: 
01 
03 -
02 -
will be valid - with 03 being treated as if it were 02. 

3. Introduction of FILLER group items. 

SEQUENTIAL, RELATIVE AND INDEXED 1-0 

Level One Implementation 

Fully implemented to Level One. 

Level Two Implementation 

Fully implemented to Level Two. 

L/II COBOL Extensions 

1. Run Time allocation of file-names. See Appendix F in Operating Guide. 

2. LINE SEQUENTIAL is an additional file type. 

3. All File Description (FD) clauses are optional when the ANSI switch is 
unset. 

4. Tabbing is available, specified by TAB in the ~.JR.ITE statement. (S.ee 
note 9 under NUCLEUS L/II COBOL Extensions above. 

TABLE HANDLING 

Level One Implementation 

Fully implemented to Level One. 

L/II COBOL Extensions 

Fully implemented to Level Two. 

1-3 



SEGMENTATION 

Level One Implementation 

Fully implemented to Level One 

Level Two Implementation 

Fully implemented to Level Two. 

LIBRARY 

Level One Implementation 

Fully implemented to Level One 

Level Two Implementation 

Fully implemented to Level Two. 

DEBUG 

Level One Implementation 

Fully implemented to Levell. 

Level Two Implementation 

Fully implemented to Level Two (plus~,an additional Interactive Run-Time 
Debug package, and an optional COBOL oriented interactive debugging package 
known as ANIMATOR). 

L/II COBOL Extensions 

A powerful Run-Time Debug package is available. See Chapter 3 in the 
L/II COBOL Operating Guide. A very powerful COBOL oriented debugging 
package known as ANIMATOR is also available complete with documentation. 

1-4 



INTER-PROGRAM COMMUNICATION 

Level One Implementation 

Fully implemented to Level One. 

Level Two ImElementation 

Fully implemented to Level Two. 

SORT-MERGE 

Level One ImElementation 

Fully implemented to Level One. 

Level Two Implementation 

Fully implemented to Level Two. 

COMMUNICATIONS 

Level One Implementation 

Fully implemented to Level One. 

Level Two ImElementation 

Fully implemented to Level Two. 

I - 5 



I - 6 



APPENDIX J 

IBM EXTENSIONS 

The following IBM extensions are implemented in the Full L/II COBOL 
product: 

1. "ID" is a synonym for "IDENTIFICATION". 

2. In redefinition of data names the areas need not be the same size: 
the compiler allocates space for the largest. 

3. Level number rules are relaxed so that they need not be declared in 
ascending sequence e.g.: 

01 
03 
02 is allowed 

4. FILLER items can be grouped e.g.: 

03 FILLER 
04 

5. Apostrophe (Hex 27) can be used ·in place of quote to delimit 
alphanumeric literals. 

These LEVEL II extensions are only allowed if the ANSI switch is unset 
in the compiler command line (see the L/II COBOL Operating Guide). 

J - 1 



J - 2 



A 

Abbreviated Combined Relation 
3-46 
ACCEPT MESSAGE COUNT Statement 
13-12 
ACCEPT Statement, 
3-53 
Access Mode, 
5-1, 6-1, 7-1 
ADD Statement, 
3-58 
Algebraic Signs, 
2-14 
Alignment Rules, Standard, 
2-14 
Alphabetic Data Rules 
3-16 
Alphanumeric Data Rules, 
3-17 
Alphanumeric Edited Data Rules 
3-17 
ALTER Statement, 
3-60, 9-4 
ANIMATOR 
1-2,11-1 
ANSI CANS) Compiler Directive, 
2-21 
Area, Indicator, 
1-5 
Arithmetic Expressions, 
3-38 
Arithmetic Operators 
3-38 
Arithmetic Statements, 
3-50 
ASSIGN Clause, 
5-5, 6-6, 7-7 
AT END Condition, 
5-3, 6-4, 7-5 
Attributes, Explicit and Implicit 
2-21 

B 

Blank Lines, 
2-31 

BLANK WHEN ZERO Clause, 
3-12 
BLOCK CONTAINS Clause, 
5-10, 6-11, 7-12 
Body, Procedure Division, 
2-27 

C 

CALL Statement, 
12-4 
CANCEL Statement, 
12-6 
Character Representation, 
2-12 
Character Sets, 
2-1 
Character Strings, 
2-3 
Character Strings, PICTURE, 
2-9 
Characteristics, Name, 
3-1 
Class Condition, 
3-42 
Classes of Data, Concepts, 
2-11 
Classification, Segmentation, 
9-2 
Clause, ASSIGN, 
5-5, 6-6, 7-7 
Clause, BLANK WHEN ZERO, 
3-12 
Clause, BLOCK CONTAINS, 
5-10, 6-11, 7-12 
Clause, CODE-SET, 
5-10 
Clause, CURSOR IS, 
3-5 
Clause, DATA RECORDS, 
5-10, 6-12, 7-13, 8-4 
Clause, DATA-NAME or FILLER, 
3-13 
Clause, FILE STATUS, 
5-5, 6-6, 7-7 
Clause, JUSTIFIED, 
3-14 

Index - 1 



Clause, LABEL RECORDS, 
5-1, 6-12, 7-13 
Clause, OCCURS, 
4-1 
Clause, ORGANIZATION, 
5-5, 6-6, 7-7 
Clause, PICTURE, 
3-16 
Clause, RECORD CONTAINS, 
5-15, 6-13, 7-14, 8-5 
Clause, RECORD KEY, 
7-8 
Clause, REDEFINES, 
3-26 
Clause, RENAMES, 
3-28 
Clause, SEGMENT-LIMIT, 
9-4 
Clause, SELECT, 
5-4, 6-5, 7-6 
Clause, SIGN, 
3-30 
Clause, SYCHRONISED, 
3-32 
Clause, USAGE, 
3-34, 4-4 
Clause, VALUE OF, 
5-15, 6-14, 7-14 
Clause, VALUE, 
3-35 
Clause, W~TH DEBUGGING MODE, 
11-2 
CLOSE Statement, 
5-17, 6-15, 7-16 
COBOL Words, 
2-3 
CODE-SET Clause, 
5-10 
Combined and Negat'ed Simple Conditions, 
3-45 
Comment Entries, 
2-9 
Comment Lines, 
2-33 
Communication Description, 
13-1 
Communication Nodule, 
13-1 
Communication Section, 
13-1 

Communication, 
13-1 
Communication, Procedure 
13-12 
COMP(UTATIONAL) (-3) 
2-13 
Comparison Involving Index 
4-4 
Comparison of Nonnumeric 
3-41 
Comparison of Numeric 
3-41 
Compile Time Debug Switch, 
11-2 
Compiler Directives, 
2-21 
COMPLEX Conditions, 
3-44 
COMPUTE Statement, 
3-61 
Computer Independent 

2-10 
Data 

Concept, Classes of Data, 
2-11 
Concepts, Computer 
2-10 
Concepts, Levels, 
2-10 
Concepts, Language, 
2-1 
Condition Evaluation Rules, 
3-47 
Condition-Name Condition, 
3-43 
Condition-Name Rules, 
3-36 
Condition-Name, 
2-4, 2-18 
Conditional Expressions, 
3-40 
Conditions, Abbreviated 
3-46 
Conditions, AT END 
5-3, 6-4, 7-5 
Conditions, Class, 
3-42 
Conditions, Complex 
3-44 
Conditions, INVALID KEY, 
6-3, 7-4 

Index - 2 



Conditions, Negated Simple, 
3-45 
Conditions, Relation, 
3-40, 4-4 
Conditions, Sign 
3-44 
Conditions, Simple 
3-40 
Conditions, Switch-Status 
3-43 
CONFIGURATION SECTION, 
3-4 
Connectives, 
2-6 
Constants, Figurative, 
2-6, 3-1 
Continuation of Lines, 
2-31 
COpy Statement, 
10-2 
CORRESPONDING Phrase, 
3-50 
CRT Devices, 
3-52 
Current Record Pointer, 
5-1, 6-1, 7-1 
CURSOR IS Clause, 
3-5 

D 

Data Description, Computer 
2-10 
Data Description, Entries 
3-36 
Data Description, Entry 
3-9 
Data Dictionary, 
14-2 
Data Division Entries, 
2-32 
Data Division in Communications, 
13-1 
Data Division in Indexed 1-0 
7-11 
Data Division in Interprogram 
12-1 

Data Division in Nucleus, 
3-9 
Data Division in Relative 
6-10 
Data Division in Sequential 
5-8 
DATA RECORDS Clause, 
5-10, 6-12, 7-13, 8-4 
DATA-NAME or FILLER Clause 
3-13 
Data, Incompatible, 
3-51 
DATE-COMPILED Paragraph, 
3-3 
Debug 
11-1 
DEBUG, Environment 
11-2 
DEBUG, Object Time Switch, 
11-2 
DEBUG, Procedure Division in, 
11-3 
Debugging Lines, 
11-10 
Declaratives, 
2-26 
DELETE Statement, 
6-17, 7-18 
DISABLE Statement, 
13-13 
DISPLAY Statement, 
3-62 
DIVIDE Statement, 
3-65 
Division Format, 
2-32 
Division Header, 
2-32 

E 

Editing Symbols, 
3-18 
Editing Types for Data 
3-17 
Elements, 
1-4 

Index - 3 



ENABLE Statement, 
13-15 
ENTER Statement, 
3-68 
Entries, Comment 
2-9 
Entry, Communication 
13-1 
Entry, FILE-CONTROL, 
5-4 , 6-5 , 7-6 ,8-1 
Environment Division 
11-2 
Environment Division 
7-6 
Environment Division 
3-4 
Environment Division 
6-5 
Environment Division 
5-4 
Environment Division 
8-1 
Evaluation Rules 
3-38 
Execution, Procedure 
2-27 

in 

in 

in 

in 

in 

in 

Division 

EXIT PROGRAM Statement, 
12-7 
EXIT Statement, 
3-69 
Explicit Specifications 
2-19 
Expressions, Arithmetic 
3-38 
Expressions, Conditional 
3-40 
Extra Intermediate Code Files, 
9-4 

F 

Figurative Constant Values, 
2-7 
Figurative Constants, 
2-6, 3-1 
File Description Entry 
5-9, 6-10, 7-12, 8-4 

FILE SECTION, 
5-8, 6-10, 7-11, 8-4 
FILE STATUS Clause, 
5-5, 6-6, 7-7 
FILE-CONTROL ENTRY, 
5-4, 6-5, 7-6, 8-1 
FILE-CONTROL Paragraph, 
5-4, 6-5, 7-6, 8-1 
FILLER or DATA-NAME Clause 
3-13 
Fixed Insertion Editing Rules 
3-21 
Fixed Portion, 
9-1 
Format, Reference 
3-1 
Formats, Division, 
2-32 
Formats, General, 
1-4 
Formats, Paragraph, 
2-32 
Formats, Reference, 
2-30 
Formats, Section, 
2-32 
Formats, Source, 
1-5 
FORMS-2 
1-2 
Formulation Rules, 
3-38 

G 

General Formats, 
1-4 
GO TO Statement, 
3-70 

H 

Header, Division 
2-32 

Index - 4 



Header, Paragraph 
2-32 
Header, Procedure Division 
2-32 
Header, Section, 
2-32 
Hexadecimal Characters, 
2-7 
Hints, Useful, 
14-1 

I 

1-0 Control Paragraph, 
5-6, 6-8, 7-8, 8-2 
Identification Division, 
2-22 
Identification Division, 
3-2 
Identifier, 
2-18 
IF Statement, 
3-72 
Imp,licit Specifications 
2-19 
Independent Segments, 
9-1 
Index Data Items, 
4-4 
Index-Names, 
4-4 
Indexed 1-0 
7-1 
Indexed 1-0 
7-6 
Indexed 1-0 
7-11 
Indexed 1-0 
7-16 
Indexing, 
2-17 

Module, 

Module, 

Module, 

Module, 

Indicator Area, 
1-4 

Data 

Procedure 

Input-Output Section, 
5-4, 6-5, 7-6, 8-1 
Input-Output Status, 
5-1, 6-1, 7-2 

Insertion Editing 
3-22 
Insertion Editing 
3-21 
Insertion Editing 
3-21 
Insertion Editing 
3-21 
INSPECT Statement, 
3-74 

Rules, 

Rules, 

Rules, 

Rules, Fixed, 

Inter Program Communication 
12-1 
Inter Program Communication 
12-3 
Intermediate Code Files, 
9-4 
INVALID KEY Condition, 
6-3, 7-4 

J 

JUSTIFIED Clause, 
3-14 

K 

Keys, Status, 
5-1, 6-2, 7-2 

L 

L/II COBOL, What It Is, 
1-1 
LABEL RECORDS Clause, 
5-11, 6-12, 7-13 
Language Concepts, 
2-1, 5-1, 6-1, 7-1 
Language Structure, 
2-1 
Language, Overall 
3-1 

Index - 5 



Levels, Concept, 
2-10 
Levels, Number, 
2-10, 3-15 
Library Module, 
10-1 
LINAGE CLAUSE, 
5-9 
LINE SEQUENTIAL Organization, 
5-4 
Lines, Blank, 
2-31 
Lines, Comment, 
2-33 
Lines, Continuation 
2-31 
Lines, Debugging, 
11-10 
Linkage Section, 
12-1 

of, 

Literals, Nonnumeric, 
2-6 
Literals, Numeric, 
2-7 

M 

MERGE Statement, 
8-6 
MERGE Statement, Restrictions 
9-5 
Mnemon'ic-Name, 
2-4 
Mode, Access, 
5-1, 6-1, 7-1 
MOVE Statement, 
3-82 
Multiple Results in 
3-51 
MULTIPLY Statement, 
3-86 

N 

Name Characteristics 
3-1 
Name, Condition, 
2-4, 2-18 
Name, Library, 
2-3, 10-2 
Name, Mnemonic, 
2-4 
Name, Paragraph, 
2-5 
Name, Section, 
2-5 
Name, System, 
2-5 
Name, User-Defined, 
2-5 
Negated Simple Conditions, 
3-45 
Nonnumeric Literals, 
2-6 
Nucleus Function, 
3-1 
Nucleus, Data Division in, 
3-9 
Nucleus, Environment Division in, 
3-4 
Nucleu~, Identification 
3-2 
Nucleus, Organization, 
3-2 
Nucleus, Procedure 
3-38 
Nucleus, Structure, 
3-1 
Number, Level, 
2-10, 3-15 
Number, Segment, 
9-3 
Number, Sequence, 
1-5, 2-31 
Numeric Data Rules, 
3-16 
Numeric Edited Data 
3-17 
Numeric Literals, 
2-7 
Numeric Operands, 
3-41 

Index - 6 

Rules, 



o 

OBJECT Time DEBUG Switch, 
11-2 
OBJECT-COMPUTER Paragraph 
3-4 
OCCURS Clause, 
4-1 
OPEN Statement, 
5-21, 6-18, 7-19 
Operand Comparison, 
3-41 
Operand, Overlapping, 
3-51, 4-4 
Operators, Arithmetic, 
3-38 
Organization Data Division, 
2-24 
Organization Environment Division, 
2-23 
Organization Identification Division, 
2-22 
ORGANIZATION IS 
5-4 
ORGANIZATION IS INDEXED, 
7-6 
ORGANIZATION IS RELATIVE, 
6-5 
ORGANIZATION IS SEQUENTIAL, 
5-4 
Organization, Indexed 
7-1 
Organization, LINE SEQUENTIAL, 
5-4 
Organization, Nucleus, 
3-1 
Organization, Procedure 
2-26 
Organization, Relative Input-
6-1 
Organization, Segmentation, 
9-1 
Organization, Sequential 
5-1 
Overlapping Operands, 
3-51, 4-4 

P 

Paragraph Format, 
2-32 
Paragraph-Name, 
2-5 
Paragraph, 
3-4 
Paragraph, DATE-COMPILED, 
3-3 
Paragraph, FILE-CONTROL, 
5-4, 6-5, 7-6, 8-1 
Paragraph, 1-0 CONTROL, 
5-6, 6-8, 7-8, 8-1 
Paragraph,- PROGRAM ID, 
3-3 
Paragraph, SOURCE-COMPUTER, 
3-4 
Paragraph, SPECIAL-NAMES, 
3-5 
PERFORM Statement, 
3-88, 9-4 
Phrase, CORRESPONDING, 
3-50 
Phrase, ROUNDED, 
3-49 
Phrase, SIZE ERROR, 
3-49 
PICTURE Character Strings, 
2-9 
PICTURE Clause, 
3-16 
Portion, Fixed, 
9-1 
Precedence Rules, 
3-23 
Procedure Division Header, 
2-26, 12-3 
Procedure Division in 
11-3 
Procedure Division in 
13-12 
Procedure Division in Indexed 
7-16 
Procedure Division in the 
12-3 
Procedure Div.ision in the 
3-38 

Index - 7 



Procedure Division in the 
6-15 
Procedure Division in the 
5-17 
Procedure Division in the 
8-6 
Procedure Division, 
2-26 
Procedure Division, 
2-26 
Procedure Division, Body, 
2-27 
Procedure Division, 
2-27 
Procedure Division, 

2-27 
Procedures, 
2-26 
Program Segments, 
9-1 

Execution, 

General 

Program Structure, 
1-3, 2-21, 9-3 
PROGRAM-ID Paragraph, 
3-3 
Programming Techniques, 
14-1 
Pseudo Text 
2-31, 10-2 
Pseudo Text Delimiter, 
2-2 

Q 

Qualification, 
2-15 

R 

READ Statement, 
5-25, 6-21, 7-22 
RECEIVE Statement, 
13-17 . 
RECORD CONTAINS Clause, 
5-15, 6-13, 7-14, 8-5 

Record Description Format, 
2-32 
Record Description Structure, 
5-8, 6-10, 7-11 
RECORD KEY Clause, 
7-6 
Record Pointer, Current, 
5-1, 6-1, 7-1 
REDEFINES Clause, 
3-26 

.Reference Format, 
2-30 
Reference, Uniqueness of, 
2-15 
Relation Condition, 
3-40 
Relation Condition, Table 
4-4 
Relative Input-Ouput Module, 
6-5 
Relative Input-Output Module, 
6-10 
Relative Input-Output Module, 
6-15 
RELEASE Statement, 
8-10 
RENAMES Clause 
3-28 
RESERVE CLAUSE, 
5-4, 6-5, 7-6 
Reserved Words, 
2-5, 2-34, A-1 
Restrictions on Program Flow, 
9-5 
RETURN Statement, 
8-11 
REWRITE Statement, 
5-28, 6-24, 7-26 
ROUNDED Phrase, 
3-49 
Rules General, 
1-4 
Rules, Alignment, 
2-14 
Rules, Alphabetic 
3-16 

Standard, 

Data, 

Rules, Alphanumeric Data, 
,3-17 
Rules, Alphanumeric Edited 
3-17 

Index - 8 

Data 



Rules, Condition-Name 
3-36 
Rules, Editing, 
3-20 
Rules, Editing, Fixed 
3-21 
Rules, Editing, Floating 
3-22 
Rules, Editing, Simple 
3-21 
Rules, Editing, Special 
3-21 
Rules, Editing, Zero 
3-23 
Rules, Elementary· Item Size, 
3-18 
Rules, Evaluation Condition 
3-47 
Rules, Evaluation, 
3-38 
Rules, Formulation, 
3-38 
Rules, Numeric Data, 
3-16 
Rules, Numeric Edited 
3-17 
Rules, Precedence, 
3-23 
Rules, Symbols Used, 
3-18 
Rules, Syntax, 
1-4 

S 

SEARCH STATEMENT, 
4-5 
Section Format, 
2-32 
Section Input-Output, 
5-4, 6-5, 7-6, 8-1 
Section Name, 
2-5 

Data, 

SECTION, COMMUNICATION, 
13-1 
SECTION, CONFIGURATION, 
3-4 

SECTION, FILE, 
5-8, 6-10, 7-11 
SECTION, LINKAGE, 
12-1 
SECTION, WORKING-STORAGE, 
3-9 
Segment Numbers 
9-3 
SEGMENT-LIMIT Clause 
9-4 
Segmentation Classification, 
9-2 
Segmentation Control, 
9-2 
Segmentation Organisation, 
9-1 
Segmentation, 
9-1 
Segments, Independent, 
9-1 
Segments, Program, 
9-1 
SELECT Clause, 
5-4, 6-5, 7-6 
Selection of Character 
2-12 
SEND Statement, 
13-20 
Sentences, 
2-27 
Sentences, Compiler Directing, 

2-28 
Sentences, Imperative, 
2-29 
Separators, 
2-2 
Separators, Conditional, 
2-2 
Sequence Number, 
1-5, 2-31 
Sequential 1-0 Module, 
8-1 
Sequential Input-Output 
5-1 
Sequential Input-Output 
5-4 
Sequential Input-Output 
5-17 
SET Statement, 
4-10 

Index - 9 

Module, 

Module, 

Nodule, 



SIGN Clause, 
3-30 
Sign Condition 
3-44 
Signs, Algebraic, 
214 
Simple Conditions, 
3-40 
Simple Insertion Editing Rules, 
3-21 
SIZE ERROR Phrase, 
3-49 
Sizing, 
14-2 
SLIDESHOW 
1-2 
SORT Statement, 
8-13 
SORT Statement, Restrictions 
9-6 
Sort-Merge Module, 
8-1 
Sort-Merge Module, 
8-1 
Sort-Merge, 
8-4 
Sort-Merge, 
8-4 
Sort-Merge, 
8-4 
Sort-Merge, 
8-1 
Sort-Merge, 
8-1 
Sort-Merge, 
8-1 
Sort-Merge, 
8-1 
Sort-Merge, 
8-6 
Sort-Merge, 
8-5 
Sort-Merge, File 
8-4 
Source Format, 
1-5 
SOURCE-COMPUTER Paragraph, 
3-4 
Special Insertion Editing Rules, 
3-21 

SPECIAL-NAMES Paragraph, 
3-5 
Specifications, Explicit and Implicit 
2-19 
Standard Alignment Rules, 
2-14 
START Statement, 
6-26, 7-28 
Statement, ACCEPT 
3-53 
Statement, ACCEPT MESSAGE 
13-12 
Statement, ADD, 
3-58 
Statement, ALTER, 
3-60, 9-4 
Statement, CALL 
12-4 
Statement, CANCEL, 
12-6 
Statement, CLOSE, 
5-17, 6-15, 7-16 
Statement, COMPUTE, 
3-61 
Statement, COPY, 
10-2 
Statement, DELETE 
6-17, 7-17 
Statement, DISABLE 
13-13 
Statement, DISPLAY, 
3-62 
Statement, DIVIDE, 
3-65 
Statement, ENABLE, 
13-15 
Statement, ENTER, 
3-68 
Statement, EXIT PROGRAM, 
12-7 
Statement, EXIT, 
3-69 
Statement, GO TO, 
3-70 
Statement, IF, 
3-72 
Statement, INSPECT, 
3-74 
Statement, MERGE, 
8-6 

Index - 10 



Rules, Condition-Name 
3-36 
Rules, Editing, 
3-20 
Rules, Editing, Fixed 
3-21 
Rules, Editing, Floating 
3-22 
Rules, Editing, Simple 
3-21 
Rules, Editing, Special 
3-21 
Rules, Editing, Zero 
3-23 
Rules, Elementary Item Size, 
3-18 
Rules, Evaluation Condition 
3-47 
Rules, Evaluation, 
3-38 
Rules, Formulation, 
3-38 
Rules, Numeric Data, 
3-16 
Rules, Numeric Edited 
3-17 
Rules, Precedence, 
3-23 
Rules, Symbols Used, 
3-18 
Rules, Syntax, 
1-4 

S 

SEARCH STATEMENT, 
4-5 
Section Format, 
2-32 
Section Input-Output, 
5-4, 6-5, 7-6, 8-1 
Section Name, 
2-5 

Data, 

SECTION, COMMUNICATION, 
13-1 
SECTION, CONFIGURATION, 
3-4 

SECTION, FILE, 
5-8, 6-10, 7-11 
SECTION, LINKAGE, 
12-1 
SECTION, WORKING-STORAGE, 
3-9 
Segment Numbers 
9-3 
SEGMENT-LIMIT Clause 
9-4 
Segmentation Classification, 
9-2 
Segmentation Control, 
9-2 
Segmentation Organisation, 
9-1 
Segmentation, 
9-1 
Segments, Independent, 
9-1 
Segments, Program, 
9-1 
SELECT Clause, 
5-4, 6-5, 7-6 
Selection of Character 
2-12 
SEND Statement, 
13-20 
Sentences, 
2-27 
Sentences, Compiler Directing, 

2-28 
Sentences, Imperative, 
2-29 
Separators, 
2-2 
Separators, Conditional, 
2-2 
Sequence Number, 
1-5, 2-31 
Sequential 1-0 Module, 
8-1 
Sequential Input-Output 
5-1 
Sequential Input-Output 
5-4 
Sequential Input-Output 
5-17 
SET Statement, 
4-10 

Index - 9 

Module, 

Module, 

Module, 



SIGN Clause, 
3-30 
Sign Condition 
3-44 
Signs, Algebraic, 
214 
Simple Conditions, 
3-40 
Simple Insertion Editing Rules, 
3-21 
SIZE ERROR Phrase, 
3-49 
Sizing, 
14-2 
SLIDESHOW 
1-2 
SORT Statement, 
8-13 
SORT Statement, Restrictions 
9-6 
Sort-Merge Module, 
8-1 
Sort-tvierge Module, 
8-1 
Sort-Merge, 
8-4 
Sort-Merge, 
8.;..4 
Sort-Merge, 
8-4 
Sort-Merge, 
8-1 
Sort-Merge, 
8-1 
Sort-Merge, 
8-1 
Sort-Merge, 
8-1 
Sort-Merge~ 

8-6 
Sort-Merge, 
8-5 
Sort-Merge, File 
8-4 
Source Format, 
1-5 

• ""'!':~' 

SOURCE-COMPUTER Paragraph, 
3-4 
Special Insertion Editing Rules, 
3-21 

SPECIAL-NAMES Paragraph, 
3-5 
Specifications, Explicit and Implicit 
2-19 
Standard Alignment Rules, 
2-14 
START Statement, 
6-26, 7-28 
Statement, ACCEPT 
3-53 
Statement, ACCEPT MESSAGE 
13-12 
Statement, ADD, 
3-58 
Statement, ALTER, 
3-60, 9-4 
Statement, CALL 
12-4 
Statement, CANCEL, 
12-6 
Statement, CLOSE, 
5-17, 6-15, 7-16 
Statement, COMPUTE, 
3-61 
Statement, COPY, 
10-2 
Statement, DELETE 
6-17, 7-17 
Statement, DISABLE 
13-13 
Statement, DISPLAY, 
3-62 
Statement, DIVIDE, 
3-65 
Statement, ENABLE, 
13-15 
Statement, ENTER, 
3-68 
Statement, EXIT PROGRAM, 
12-7 
Statement, EXIT, 
3-69 
Statement, GO TO, 
3-70 
Statement, IF, 
3-72 
Statement, INSPECT, 
3-74 
Statement, MERGE, 
8-6 

Index - 10 



Statement, MOVE, 
3-82 
Statement, MULTIPLY, 
3-86 
Statement, OPEN, 
5-21, 6-18, 7-18 
Statement, PERFORM, 
3-88 
Statement, READ, 
5-25, 6-21, 7-21 
Statement, RECEIVE, 
13-17 
Statement, RELEASE, 
8-10 
Statement, RETURN, 
8-11 
Statement, REWRITE, 
5-28, 6-24, 7-23 
Statement, SEND, 
13-20 
Statement, SET, 
4-10 
Statement, SORT, 
8-13 
Statement, START, 
6-26, 7-27 
Statement, STOP, 
3-99 
Statement, STRING, 
3-96 
Statement, SUBTRACT, 
3-100 
Statement, UNSTRING, 
3-102 
Statement, USE FOR DEBUGGING, 
11-3 
Statement, USE, 
5-,30 6-28, 7-29 
Statement, WRITE 
5-32, 6-30, 7-29 
Statements, Arithmetic, 
3-50 
Statements, Compiler Directing, 
2-28 
Statements, Conditional, 
2-28 
Statements, Imperative, 
2-29 
Status Keys 
5-1, 6-2, 7-2, 13-11 

Status, Input-Output, 
5-1, 6-2, 7-2 
STOP Statement, 
3-99 
STRING Statement, 
3-96 
Structure, Data Division 
2-25 
Structure, Environment Division 
2-23 
Structure, Identification Division, 
2-22 
Structure, Language, 
2-1 
Structure, Nucleus, 
3-1 
Structure, Procedure Division, 
2-27 
Structure, Program Segments, 
9-3 
Structure, Program, 
1-2, 2-21 
Structure, Record Description, 
5-8, 6-10, 7-11 
Subscripting, 
2-16 
SUBTRACT Statement, 
3-100 
Supression Editing, Zero, 
3-23 
Switch Status Condition, 
3-43 
Switch, Compile Time, 
11-1 
Symbols Used Rules, 
3-18 
SYNCHRONISED Clause, 
3-32 
Syntax Rules, 
1-4 
Syntax Rules, in Nucleus, 
3-1 
System-Name, 
2-5 

Index - 11-



T 

Table Handling, 
4-1 
Table Handling, Data Division in, 
4-1 

Words, COBOL, 
2-3 
Words, Key, 
2-6 

Table Handling, Procedure Division in, Words, Optional, 
4-4 
Techniques, Programming, 
14-1 
Transfers of Control, 
2-19 

U 

Uniqueness of Reference, 
2-15 
UNSTRING Statement, 
3-102 
USAGE Clause, 
3-34 
USE FOR DEBUGGING Statement, 
11-3 
USE Statement, 
5-30, 6-28, 7 -30 
Useful Hints, 
14-1 
User-defined Names, 
2-5 
User-Defined Words, 
2-3 

v 

VALUE Clause, 
3-35 
VALUE OF Clause, 
5-15, 6-14, 7-14 

W 

WITH DEBUGGING MODE Clause, 
11-2 

2-6 
Words, Reserved 
2-5 
Words, Reserved, 
2-6, 2-34, A-I 
Words, User Defined, 
2-3 
Working-Storage Noncontiguous, 
3-9 
Working-Storage Records, 
3-9 
WORKING-STORAGE Section, 
3-9 
WRITE Statement, 
5-32, 6-30, 7-32 

x 

y 

Z 

Zero-Suppression Editing Rules, 
3-23 

Index - 12 


