LEVEL II COBOL
LANGUAGE REFERENCE
MANUAL

Version 2.0

Micro Focus Limited Issue 6
February 1984

COBOL is an industry language and is not the broperty of any company or
group of companies, or of any organization or group of organizationms.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL Programming Language Committee as to the accuracy and functioning of
the programming system and language. Moreover, no responsibility is assumed
by any contributor, or by the committee, in connection herewith.

The authors and copyright holders of the copyrighted material used herein:

FLOW-MATIC (Trademark for Sperry Rand Corporation) Programming for the
(R)

Univac I and II, Data Automation Systems copyrighted 1958, 1959, by

Sperry Rand Corporation; IBM Commercial Translator Form No. F28-8013,
copyrighted 1959 by IBM; FACT, DSI27A5260-2760, copyrighted 1960 by
Minneapolis~Honeywell.

have specifically authorized the use of this material in whole or in part,
in the COBOL specifications. Such authorization extends to the reproduction
and use of COBOL specifications in programming manuals or similar
publications.

MICRO FOCUS

268 WEST STREET NEWBURY BERKSHIRE RG13 14T
TELEPHONE (.0535] 326848 (10 LINES) 32585 (7 LINES)
TELEX B8480468 MICROF & FAX (O0B835) 33366

LEVEL II cCoBOL™ (LEVEL II COBOL), FORMS-2™ (FORMS-2), and ANIMATOR™
(ANIMATOR) are trademarks of Micro Focus
IBM is a trademark of IBM Corporation

© COPYRIGHT 1978, 1984 by Micro Focus Ltd.

ii

LEVEL II COBOL LANGUAGE REFERENCE MANUAL

AMENDMENT RECORD

Issue Dated Inserted by Signature Date
Number
2 October 1982 - Incorporated in this reprint -

3 December 1982 - Addendum incorporated in this reprint -

4 February 1983 - Addendum 2 incorporated in this reprint -
5 July 1983 - Incorporated in this reprint -

6 February 1984 - Typographical corrections -

iii

PREFACE

This manual describes the LEVEL 1II COBOL language for programming
microcomputers. LEVEL II COBOL is based on the ANSI COBOL standard X3.23
(1974) (see Acknowledgement). It also describes the additional LEVEL 1II
COBOL features that exploit the capabilities of microprocessors.

Each release of LEVEL II COBOL is characterized by a two-digit code in the
form of

"Version number'". "Release number within version"

Note: In the remainder of this manual the full product name LEVEL II COBOL
is abbreviated to L/II COBOL.

AUDIENCE

This manual is intended for programmers already familiar with COBOL on other
equipment.

MANUAL ORGANIZATION

Chapters 1 through 4 of the manual apply to all users and describe basic
features of the language. Chapters 5 through 7 describe language features
for programming the three file organization formats supported: sequential,

relative and indexed. .

Chapters 8 through 11 apply to all users and describe additional features
and facilities available with the standard language. The appendices supply
reference information pertinent to all systems.

The manual contains the following chapters and appendices:

"Chapter 1. Introduction", which gives a general description of the
language, including a broad outline of ANSI COBOL features included and
omitted and additional features of L/IT COBOL.

"Chapter 2. COBOL Concepts", which describes general concepts of the COBOL
language including program structure, and details of statement components

and notation.

"Chapter 3. Nucleus", which describes the nucleus of all COBOL programs and
the layout of each program division in the nucleus.

"Chapter 4. Table Handling'", which describes the handling of data tables in
the Data and Procedure divisions of a COBOL program.

"Chapter 5. Sequential Input and Output", which describes the programming of
input and output of data in files with sequential format.

iv (Addendum 1)

"Chapter 6. Relative Input and Output', which describes the programming of
input and output of data in files with relative format.

"Chapter 7. Indexed Input and Output", which describes the programming of
input and output of data in files with indexed format.

"Chapter 8. Sort-Merge'", which describes the facility to order one or more
files of records or to combine two or more identically ordered files of
records according to a set of user-specified keys contained within each
record.

"Chapter 9. Segmentation', which describes the facility for specifying
permanent and independent object program segments.

"Chapter 10. Library", which describes the source 1library maintenance
feature of COBOL.

"Chapter 11. Debug and Interactive Debugging", which describes the basic and "
interactive debugging features available in L/II COBOL.

"Chapter 12. Interprogram Communication", which describes the ability of
L/IT COBOL programs to interface during running and to access common data,
enabling modular programming.

"Chapter 13. Communication", which describes the facility to communicate
through a Message Control System (MCS) with local and remote devices, and to
access, process and create messages or portions thereof.

"Chapter l4. Programming Techniques and Sizing", which describes the means
available for L/II COBOL programmers to estimate object program size and
includes programming techniques in L/II COBOL.

"Appendix A. Reserved Word Table", which lists words reserved for L/II COBOL
functions within a program.

"Appendix B. Character Set and Collating Sequence', which 1lists all
characters available and their collating sequence.

"Appendix C. Glossary', which lists specific terms used in L/II COBOL.

"Appendix D. Compile - Time Errors'", which lists all errors that can be
signalled during program compilation.

"Appendix E. Run-Time Errors'", which lists all errors that can be signalled
during program execution.

"Appendix F. Syntax Summary'", which summarizes the syntax used in L/II
COBOL programming.

"Appendix G. Summary of Extensions to ANSI COBOL", which summarizes all
extensions to ANSI COBOL provided by L/II COBOL.

"Appendix H. System Dependent Language Features", which describes the
system dependent L/II COBOL entries for use with mlcrocomputers and those
features not included because of hardware requlrements.

"Appendix I. Language Specification", which is an overall specification of
the L/II COBOL language.

"Appendix J. IBM Extensions', which describes some L/II COBOL extensions
that are compatible with the IBM 8100 DPPX COBOL implementation.

RELATED PUBLICATIONS

No discussion of operating the L/II COBOL Compiler or Run-Time system is
incorporated in this manual. Please refer to document:
L/I1 COBOL Operating Guide
(for use with the relevant Operating System)

NOTATION IN THIS MANUAL

Throughout this manual, the following notation is used to describe the
format of COBOL statements:

1. All words printed in capital letters which are underlined must always
be present when the functions of which they are a part are used. An
error printout will occur during compilation if the underlined words
are absent or incorrectly spelled. The underlining is not necessary
when writing a COBOL source program.

2. All words printed in capital letters which are not underlined are used

for readability only. They may be written, or not, as the programmer
wishes.
3. All words printed in small letters are generic terms representing

names which will be devised by the programmer.

4. When material is enclosed in braces { } , a choice must be made from
the options within them.

5. When material is enclosed in square brackets [], it is an indication
that the material is an option which may be included or omitted as
required.

6. When material is enclosed in square brackets crossed £ }, it is an

indication that the material is mandatory when the ANSI switch is set
(see Chapter 2) but optional otherwise.

7. Language features that are shaded in the text are language extensions
which exceed the ANSI 1974 standard, as are ANSI 1974 features that
are treated as for documentary purposes only in LEVEL II COBOL. See
note at the end of this Preface.

vi (Addendum 1)

9. In text, the ellipsis (...) shows the omission of a portion of a
source program Or a sequence. This meaning becomes apparent in
context.

In the general formats, the ellipsis represents the position at which
repetition may occur at the user's option. The portion of the format
that may be repeated is determined as follows:

Given ... in a clause or statement format, scanning right to left,
determine the or [immediately to the left of the ...; continue
scanning right to left and determine the logically matching or]; the
... applies to the words between the determined pair of delimiters.

10. The term identifier means either a data-name or a subscripted
data-name. An identifier takes the following form:

[(3data—name—2)]

data-name-1 literal-l

data~-name-2 or literal-l must be a positive integer in the range 1
to the number of elements in the table.
Headings are presented in this manual in the following order of importance:
CHAPTER N
Chapter Heading
TITLE

ORDER ONE HEADING

ORDER TWO HEADING

Order Three Heading Text two lines down

Order Four Heading

Order Five Heading: Text on same line

Numbers one (1) to nine (9) are written in text as letters, e.g. one.
Numbers ten (10) upwards are written in text as numbers, e.g. 12.

The phrase "For documentation purposes only" in the text of this manual
means that the associated coding is accepted syntactically by the Compiler,
but is ignored when producing the object program.

Bars in the right hand margin indicate differences from CIS COBOL Version 4,
and asterisks in the right hand margin indicate deletions.

Changes issued as part of an Addendum are identified by the Addendum number
printed at the bottom of the changed page. On these pages the change bars
and asterisks indicate only changes since the previous release. Page iii is
provided as a record of all amendments to your copy of the manual.

vii : (Addendum 1)

TABLE OF CONTENTS

PREFACE
CHAPTER 1
INTRODUCTION

WHAT IS L/II COBOL?

PROGRAM STRUCTURE

FORMATS AND RULES

GENERAL FORMAT
SYNTAX RULES
GENERAL RULES
ELEMENTS

SOURCE FORMAT

SEQUENCE NUMBER
INDICATOR AREA
AREAS A AND B
CHAPTER 2
COBOL CONCEPTS

LANGUAGE CONCEPTS

CHARACTER SET
LANGUAGE STRUCTURE

Separators

Character-strings

COBOL Words

User-Defined Words
Condition-Name
Mnemonic-Name
Paragraph-Name
Section-Name

Other User-Defined Names
System-Names
Reserved Words

Key Words

Optional Words
Connectives

viii

PO RN NN NN
1
[oXWe W NV, IV, BV, BNV, BNV, N S i S B VS]

Special Registers
Figurative Constants
Special-Character Words
Literals

Nonnumeric Literals
Numeric Literals

Figurative Constant Values
PICTURE Character-Strings
Comment-Entries

CONCEPT OF COMPUTER INDEPENDENT DATA DESCRIPTION

Concept of Levels

Level-Numbers

Concept of Classes of Data

Selection of Character Representation and Radix
Algebraic Signs

Standard Alignment Rules

Uniqueness of Reference

Qualification
Subscripting
Indexing
Identifier
Condition-Name

EXPLICIT AND IMPLICIT SPECIFICATIONS

Explicit and Implicit Procedure Division References

Explicit and Implicit Transfers of Control
Explicit and Implicit Attributes

PROGRAM STRUCTURE

THE "ANSI SWITCH" COMPILER DIRECTIVE

IDENTIFICATION DIVISION

GENERAL DESCRIPTION
ORGANIZATION
STRUCTURE

General Format

ix

ENVIRONMENT DIVISION 2-25

GENERAL DESCRIPTION 2-25
ORGANIZATION 2-25
STRUCTURE 2-25
General Format 2=25
DATA DIVISION 2-26
OVERALL APPROACH 2-26
PHYSICAL AND LOGICAL ASPECTS OF DATA DESCRIPTION 2-26
Data Division Organization 2-26
General Format 2-27
PROCEDURE DIVISION 2-28
GENERAL DESCRIPTION 2-28
Declaratives 2-28
Procedures 2-28
Execution 2-29
General Format 2-29
Procedure Division Header 2-29

Procedure Division Body 2-29
STATEMENTS AND SENTENCES 2-29
Conditional Statement 2-30
Conditional Sentence 2-30
Compiler Directing Statement 2-30
Compiler Directing Sentence 2-30
Imperative Statement 2=31
Imperative Sentence ‘ 2-31
Categories of Statements 2-32
 REFERENCE FORMAT 2-34
GENERAL DESCRIPTION 2-34
REFERENCE FORMAT REPRESENTATION 2-34
Sequence Numbers 2-35
Continuation of Lines 2-35
Blank Lines 2-35
Pseudo Text) 2-35

DIVISION, SECTION, PARAGRAPH FORMATS 2-36

Division Header
Section Header
Paragraph Header, Paragraph-Name and Paragraph

DATA DIVISION ENTRIES
DECLARATIVES
COMMENT LINES

RESERVED WORDS

CHAPTER 3

THE NUCLEUS

FUNCTION OF THE NUCLEUS
OVERALL LANGUAGE

NAME CHARACTERISTICS
FIGURATIVE CONSTANTS
REFERENCE FORMAT

IDENTIFICATION DIVISION IN THE NUCLEUS

GENERAL DESCRIPTION
"ORGANIZATION

Structure
General Format
Svntax Rules

THE PROGRAM-ID PARAGRAPH

Function
General Format
Svntax Rules
General Rules

THE DATE-COMPILED PARAGRAPH

Function
General Format

Syntax Rule

General Rule

ENVIRONMENT DIVISION IN THE NUCLEUS

CONFIGURATION SECTION

The SOURCE-COMPUTER Paragraph

xi

2-36
2-36
2-36

2-36
2-37
2-37

2-38

tidw
—

W ww
|
=

Function
General Format
Syntax Rules
General Rules

The OBJECT-COMPUTER Paragraph

Function
General Format
Syntax Rules
General Rules

The SPECIAL-NAMES Paragraph

Function
General Format
Syntax Rule
General Rules

DATA DIVISION IN THE NUCLEUS

WORKING~-STORAGE SECTION

Noncontiguous Working-Storage
Working-Storage Records
Initial Values

THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON

Function
General Format
Syntax Rules
General Rules

THE BLANK WHEN ZERO CLAUSE

Function
General Format

Syntax Rule

General Rules

THE DATA-NAME OR FILLER CLAUSE

Function
General Format
Syntax Rules
General Rule

THE JUSTIFIED CLAUSE

xii

3-12
3-12
3-12
3-12

3-13

3-13
3-13
3-13
3-13

Function
General Format
Syntax Rules
General Rules

LEVEL-NUMBER

Function
General Format
Syntax Rules
General Rules

THE PICTURE CLAUSE

Function
General Format
Syntax Rules
General Rules

Alphabetic Data Rules

Numeric Data Rules
Alphanumeric Data Rules
Alphanumeric Edited Data Rules
Numeric Edited Data Rules
Elementary Item Size

Symbols Used

Editing Rules

Simple Insertion Editing
Special Insertion Editing
Fixed Insertion Editing
Floating Insertion Editing
Zero Suppression Editing

Precedence Rules

THE REDEFINES CLAUSE

General Format
Syntax Rules
General Rules

THE RENAMES CLAUSE

Function -
General Format
Syntax Rules
General Rules

xiii

3-14
3-14
3-14
3-14

3-15
3-15
3-15
3-15

3-16
3-16
3-16
3-16

3-16
3-16
3-17
3-17
3-17
3-18
3-18

3-20

3-21
3-21
3-21
3-22
3-23

3-23
3-26

3-26
3-26
3-26
3-26

3-28

3-28
3-28
3-28
3-29

THE SIGN CLAUSE

Function
General Format
Syntax Rules
General Rules

THE SYNCHRONIZED CLAUSE

Function
General Format
Syntax Rules
General Rules

THE USAGE CLAUSE

Function
General Format
Syntax Rules
General Rules

THE VALUE CLAUSE

Function

General Format

Syntax Rules

General Rules

Condition-Name Rules

Data Description Entries other than Condition-Names

PROCEDURE DIVISION IN THE NUCLEUS

ARITHMETIC EXPRESSIONS

Definition of an Arithmetic Expression
Arithmetic Operators
Formulation and Evaluation Rules

CONDITIONAL EXPRESSIONS

Simple Conditions

Relation Condition

Comparison of Numeric
-Operands

Comparison of Nonnumeric
Operands

Class Condition

xiv

3-30

3-30
3=-30
3-30
3-30

3-32

3-32
3-32
3-32
3-32

3-34
3-34
3-34
3-34
3-34
3-35
3-35
3-35
3-35
3-35
3-36
3-36
3-38
3-38
3-38
3-38
3-38
3-40
3-40

3-40

Condition-Name Condition
Switch-Status Condition
Sign Condition

Complex Conditions

Negated Simple Conditions
Combined and Negated Simple Conditions

Abbreviated Combined Relation Conditions

Condition Evaluation Rules
COMMON PHRASES AND GENERAL RULES FOR STATEMENT FORMATS

The ROUNDED Phrase
The SIZE ERROR Phrase

SIZE ERROR Phrase Not Specified
SIZE ERROR Phrase Specified

The CORRESPONDING Phrase

Arithmetic Statements

Overlapping Operands

Multiple Results in Arithmetic Statements
Incompatible Data

Signed Receiving Items

CRT Devices

- THE ACCEPT STATEMENT

Function
General Format

Syntax Rule

General Rules

THE ADD STATEMENT

Function
General Format
Syntax Rules
General Rules

THE ALTER STATEMENT

Function
General Format
Syntax Rules
General Rules

THE COMPUTE STATEMENT

v

3-43
3-43
3=-44

3-44

3=45
3-45

3-46
3-47
3-49

3-49
3-49

3-49
3-49

3-50
3-50
3-51
3-51
3-51
3-52
3-52

3-53

3-53
3-53
3-53
3-53

3-58
3-58
3-58
3-58
3-59
3-60
3-60
3-60
3-60
3-60
3-61

(Addendum 2)

THE

THE

THE

THE

THE

THE

Function
General Format
Syntax Rules
General Rules

DISPLAY STATEMENT

Function
General Format
Syntax Rules
General Rules

DIVIDE STATEMENT

Function
General
Syntax Rules
General Rules

ENTER STATEMENT

Function
General

Syntax Rule

General Rule

EXIT STATEMENT

Function
General Format

Syntax Rule

General Rule

GO TO STATEMENT

Function
General Format
Syntax Rules
General Rules

IF STATEMENT

Function
General Format
Syntax Rules
General Rules

xvi

3-61
3-61
3-61
3-61

3-62

3-62
3-62
3-62
3-62

3-65

3-65
3-65
3-66
3-66

3-68

3-68
3-68
3-68
3-68

3-69

3-69
3-69
3-69
3-69

3-70

3-70
3-70
3-70
3-70

3-72
3-72
3-72
3-72

THE

THE

THE

THE

THE

THE

THE

INSPECT STATEMENT

Function
General Format
Syntax Rules
General Rules

MOVE STATEMENT

Function
General Format
Syntax Rules
General Rules

MULTIPLY STATEMENT

Function
General Format
Syntax Rules
General Rules

PERFORM STATEMENT

Function
General Format
Syntax Rules
General Rules

STOP STATEMENT

Function
General Format
Syntax Rules
General Rules

STRING STATEMENT

Function
General Format
Syntax Rules
General Rules

SUBTRACT STATEMENT

Function
General Format
Syntax Rules
General Rules

xvii

3-74

3-74
3-74
3-75
3-76

3-82

3-82
3-82
3-82
3-82

3-86

3-86
3-86
3-86
3-86

3-88

3-88
3-88
3-89
3-89

3-96

3-96
3-96
3-96
3-96

3-97

3-97
3-97
3-97
3-98

3-100

3-100
3-100
3-100
3-101

THE UNSTRING STATEMENT

Function
General Format
Syntax Rules
General Rules

CHAPTER 4

TABLE HANDLING

INTRODUCTION TO THE TABLE HANDLING MODULE

DATA DIVISION IN THE TABLE HANDLING MODULE

THE OCCURS CLAUSE

Function
General Format
Syntax Rules
General Rules

THE USAGE CLAUSE

Function
General Format
Syntax Rules
General Rules

PROCEDURE DIVISION IN THE TABLE HANDLING MODULE

RELATION CONDITION

Comparisons Involving Index-names and/or

Index Data Items

OVERLAPPING OPERANDS
THE SEARCH STATEMENT

Function
General Format
Syntax Rules
General Rules

xviii

3-102

3-102
3-102
3-102
3-103

THE SET STATEMENT

Function
General Format
Syntax Rules
General Rules

CHAPTER 5

SEQUENTIAL INPUT AND OUTPUT

INTRODUCTION TO THE SEQUENTIAL I-O MODULE

LANGUAGE CONCEPTS

Organization

Access Mode

Current Record Pointer
I-0 Status

Status Key 1

Status Key 2

Valid Combinations of Status
1 and 2

The AT END Condition

LINAGE - COUNTER

ENVIRONMENT DIVISION IN THE SEQUENTIAL I-O MODULE

INPUT-OUTPUT SECTION

The FILE-CONTROL Paragraph

Function
General Format

The FILE-CONTROL Entry

Function
General Format
Syntax Rules
General Rules

xix

4-10

4-10
4-10
4-10
4-10

The I-0 CONTROL Paragraph ' 5~-6

Function 5-6
General Format 5-6
Syntax Rules 5-6
General Rules 5-7
DATA DIVISION IN THE SEQUENTIAL I-0 MODULE 5-8

FILE SECTION 5-8
RECORD DESCRIPTION STRUCTURE 5-8
THE FILE DESCRIPTION-COMPLETE ENTRY SKELETON 5-9

Function 5-9
General Format 5-9
Syntax Rules 5-9
THE BLOCK CONTAINS CLAUSE 5=10
Function 5-10
General Format 5-10
General Rule 5-10
THE CODE-SET CLAUSE 5-10
Function 5-10
General Format 5-10
Syntax Rules 5-10
General Rule . 5-10
THE DATA RECORDS CLAUSE 5-10
Function 5-10
General Format 5-11
Syntax Rule 5-11
General Rule 5-11
THE LABEL RECORDS CLAUSE 5-11
Function 5-11
General Format 5~11
Syntax Rule 5-11
General Rule 5-11
THE LINAGE CLAUSE 5-11
Function . 5-11
General Format 5-11
Syntax Rules 5-12
General Rules 5-12

XX

THE RECORD CONTAINS CLAUSE A 5-15

Function 5-15
General Format 5~15
General Rules 5-15
THE VALUE OF CLAUSE 5-15
Function 5-15
General Format 5-15
Syntax Rules 5-15
General Rules 5-15
PROCEDURE DIVISION IN THE SEQUENTIAL I-O MODULE 5-17
THE CLOSE STATEMENT 5-17
Function ' 5-17
General Format ‘ 5-17
Syntax Rules 5-17
General Rules 5-17
THE OPEN STATEMENT 5-21
Function 5=-21
General Format 5-21
Syntax Rules 5-21
General Rules 5-21

THE READ STATEMENT 5-25
Function : 5=25
General Format 5-25
Syntax Rules ' 5-~25
General Rules 5~-25
THE REWRITE STATEMENT 5-28
Function 5-28
General Format 5-28
Syntax Rules 5-28
General Rules 5-28
THE USE STATEMENT 5-30
Function 5-30
General Format 5-30
Syntax Rules 5-30
General Rules 5-30

XxXi

THE WRITE STATEMENT

Function
General Format
Syntax Rules
General Rules

CHAPTER 6

RELATIVE INPUT AND OUTPUT

INTRODUCTION TO THE RELATIVE I-O MODULE

LANGUAGE CONCEPTS

Organization

Access Modes

Current Record Pointer
I-0 Status

Status Key 1

Status key 2

Valid Combination of Status Keys
1 and 2

The INVALID KEY Condition

The AT END Condition

ENVIRONMENT DIVISION IN THE RELATIVE I-0 MODULE

INPUT-OUTPUT SECTION

The FILE-CONTROL Paragraph

Function
General Format

The FILE CONTROL Entry

Function
General Format
Syntax Rules
General Rules

The I-0 CONTROL Paragraph

Function
General Format
Syntax Rules
General Rules

xxii

5-32

5-32
5-32
5-32
5-33

DATA DIVISION IN THE RELATIVE I-0 MODULE

FILE SECTION
RECORD DESCRIPTION STRUCTURE

THE FILE DESCRIPTION-COMPLETE ENTRY SKELETON

Function
General Format
Syntax Rules

THE BLOCK CONTAINS CLAUSE

Function
General Format
General Rule

THE DATA RECORDS CLAUSE

Function
General Format

Syntax Rule

General Rule

THE LABEL RECORDS CLAUSE

Function
General Format

Syntax Rule

General Rule

THE RECORD CONTAINS CLAUSE

Function
General Format
General Rules

THE VALUE OF CLAUSE

Function
General Format
Syntax Rules’
General Rules

PROCEDCRE DIVISION IN THE RELATIVE I-0 MODULE

THE CLOSE STATEMENT

Function
General Format

Syntax Rule

General Rules

xxiii

6-10
6~-10
6~10

6-10
6-11
6-11
6-11
6-11
6-11
6-11
6-12
6-12
6-12
6-12
6-12
6-12

6-12

- 6-12

6-12
6-12

6-13

6-13
6-13
6-13

6-14

6-14
6-14
6-14
6-14

6-15
6-15
6-15
6-15

6-15
6-15

THE

THE

THE

THE

THE

THE

THE

DELETE STATEMENT

Function
General Format
Syntax Rules
General Rules

OPEN STATEMENT

Function
General Format
Syntax Rules
General Rules

READ STATEMENT

Function
General Format
Syntax Rules
General Rules

REWRITE STATEMENT

Function
General Format
Syntax Rules
General Rules

START STATEMENT

Function
General Format
Syntax Rules
General Rules

USE STATEMENT

Function
General Format
Syntax Rules
General Rules

WRITE STATEMENT

Function
General Format
Syntax Rules
General Rules

xxiv

6-17

6-17
6-17
6=-17
6-17

6-18

6-18
6-18
6-18
6-18

6-21

6-21
6-21
6-21
6-21

6-24

6-24
6-24
6-24
6-24

6-26

6-26
6-26
6-26
6-26

6-28

6-28
6-28
6-28
6-28

6-30

6-30
6-30
6-30
6-30

CHAPTER 7
INDEXED INPUT AND OUTPUT

INTRODUCTION TO THE INDEXED I-O MODULE

LANGUAGE CONCEPTS

Organization

Access Modes

Current Record Pointer
I-0 Status

Status Key 1

Status Key 2

Valid Combination of Status Keys
1 and 2

The INVALID KEY Condition

The AT END Condition

ENVIRONMENT DIVISION IN THE INDEXED I-O MODULE

INPUT-OUTPUT SECTION

The FILE-CONTROL Paragraph

Function
General Format

The FILE CONTROL Entry

Function
General Format
Syntax Rules
General Rules

The I-0 CONTROL Paragraph

Function
General Format
Syntax Rules
General Rules

DATA DIVISION IN THE INDEXED I-O MODULE

FILE SECTION
RECORD DESCRIPTION STRUCTURE
THE FILE DESCRIPTION-COMPLETE ENTRY SKELETON

XXV

Function
General Format
Syntax Rules

THE BLOCK CONTAINS CLAUSE

Function
General Format
General Rule

THE DATA RECORDS CLAUSE

Function
General Format
Syntax Rules
General Rules

THE LABEL RECORDS CLAUSE

Function
General Format
Syntax Rule

General Rule

THE RECORD CONTAINS CLAUSE

Function
General Format
General Rules

THE VALUE OF CLAUSE

Function
General Format
Syntax Rules
General Rules

PROCEDURE DIVISION IN THE INDEXED I-O MODULE

THE CLOSE STATEMENT

Function
General Format
Syntax Rules
General Rules

XxXvi

7-12
7-12
7-12

7-12

7-12
7-13
7-13

7-13

7-13
7-13
7-13
7-13

7-13

7-13
7-14
7-14
7-14

7-14

7-14
7-14
7-14

7-14

7-14
7-14
7-15
7-15

7-16

7-16
7-16
7-16
7-16

THE

THE

THE

THE

THE

THE

THE

DELETE STATEMENT

Function
General Format
Syntax Rules
General Rules

OPEN STATEMENT

Function
General Format
Syntax Rules
General Rules

READ STATEMENT

Function
General Format
Syntax Rules
General Rules

REWRITE STATEMENT

Function
General Format
Syntax Rules
General Rules

START STATEMENT

Function
General Format
Syntax Rules
General Rules

USE STATEMENT

Function
General Format
Syntax Rules
General Rules

WRITE STATEMENT

Function
General Format
Syntax Rules
General Rules

xxvii

7-18

7-18
7-18
7-18
7-18

7-19
7-19
7-19
7-19

7-22

7-22
7-22
7-22
7-23

7-26

7-26
7-26
7~-26
7-26

7-28

7-28
7-28
7-28
7-28

7-30

7-30
7-30
7-30
7-30

7-32

7-32
7-32
7-32
7-32

CHAPTER 8

SORT-MERGE

INTRODUCTION TO THE SORT-MERGE MODULE

RELATIONSHIP WITH SEQUENTIAL I-O MODULE

ENVIRONMENT DIVISION IN THE SORT-MERGE MODULE

INPUT-OUTPUT SECTION

The FILE-CONTROL Paragraph

Function
General Format

The FILE-CONTROL Entry

- Function
General Format
Syntax Rules
General Rule

The I-0 Control Paragraph

Function
General Format
Syntax Rules
General Rules

DATA DIVISION IN THE SORT~-MERGE MODULE

FILE SECTION

THE SORT-MERGE FILE DESCRIPTION - COMPLETE ENTRY

SKELETON

Function
General Format

Syntax Rule
THE DATA RECORDS CLAUSE

Function
General Format

Syntax Rule

General Rules

THE RECORD CONTAINS CLAUSE

xxviii

Function
General Format
General Rules

PROCEDURE DIVISION IN THE SORT-MERGE MODULE

THE MERGE STATEMENT

Function
General Format
Syntax Rules
General Rules

THE RELEASE STATEMENT

Function
General Format
Syntax Rules
General Rules

THE RETURN STATEMENT

Function
General Format
Syntax Rules
General Rules

THE SORT STATEMENT

Function
General Format
Syntax Rules
General Rules

CHAPTER 9

SEGMENTATION

INTRODUCTION TO THE SEGMENTATION MODULE

GENERAL DESCRIPTION OF SEGMENTATION
ORGANIZATION

Program Segments
Fixed Portion
Independent Segments

SEGMENTATION CLASSIFICATION
SEGMENTATION CONTROL

XxXix

8-5
8-5
8-5

O O O
!
P

O O O
]
N =

[NeJNe)
|
w N

STRUCTURE OF PROGRAM SEGMENTS

SEGMENT NUMBERS

General Format
Syntax Rules
General Rules

SEGMENT-LIMIT

General Format
Syntax Rules
General Rules

RESTRICTIONS ON PROGRAM FLOW

THE ALTER STATEMENT
THE PERFORM STATEMENT
THE MERGE STATEMENT
THE SORT STATEMENT

EXTRA INTERMEDIATE CODE FILES

CHAPTER 10

LIBRARY

INTRODUCTION TO THE LIBRARY MODULE
THE COPY STATEMENT

FUNCTION
GENERAL FORMAT
SYNTAX RULES
GENERAL RULES

CHAPTER 11

DEBUG AND INTERACTIVE DEBUGGING

INTRODUCTION
STANDARD ANSI COBOL DEBUG

COMPILE TIME SWITCH
COBOL DEBUG OBJECT TIME SWITCH
ENVIRONMENT DIVISION IN COBOL DEBUG

XXX

11-2
11-2
11-2

(Addendum 1)

The WITH DEBUGGING MODE Clause

Function
General Format
General Rules
PROCEDURE DIVISION IN COBOL DEBUG-

The USE FOR DEBUGGING Statement

Function
Syntax Rules
General Rules
DEBUGGING LINES
CHAPTER 12
INTERPROGRAM COMMUNICATION

INTRODUCTION TO THE INTER-PROGRAM COMMUNICATION MODULE
DATA DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

LINKAGE SECTION

Noncontiguous Linkage Storage

PROCEDURE DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

THE PROCEDURE DIVISION HEADER
THE CALL STATEMENT

Function
General Format
Syntax Rules
General Rules

THE CANCEL STATEMENT

Function
General Format
Syntax Rules
General Rules

THE EXIT PROGRAM STATEMENT

Function
General Format
Syntax Rules
General Rule

XXX1

12-1
12-2
12-3
12-3
12-4
12-4
12-4
12-4
12-4
12-6
12-6
12-6
12-6
12-6
12-7
12-7
12-7
12-7
12-7

(Addendum 1)

CHAPTER 13

COMMUNICATION

INTRODUCTION TO THE COMMUNICATION MODULE

FUNCTION

DATA DIVISION IN THE COMMUNICATION MODULE

COMMUNICATION SECTION

THE COMMUNICATION DESCRIPTION - COMPLETE ENTRY SKELETON

Function
General Format
Syntax Rules
General Rules

PROCEDURE DIVISION IN THE COMMUNICATION MODULE

THE ACCEPT MESSAGE COUNT STATEMENT

Function
General Format
Syntax Rule

General Rules

THE DISABLE STATEMENT

Function
General Format

Syntax Rule

General Rules

THE ENABLE STATEMENT

Function
General Format

Syntax Rule
General Rules

THE RECEIVE STATEMENT

Function
General Format

Syntax Rule

General Rules

THE SEND STATEMENT

xxxii

13-12

13-12
13-12
13-12
13-12

13-13

13-13
13-13
13-13
13-13

13-15

13-15
13-15
13-15
13-15

13-17
13-17
13-17
13-17
13-17

13-20

Function ' 13-20

General Format 13-20

Syntax Rules 13-20

General Rules 13-21
CHAPTER 14

PROGRAMMING TECHNIQUES AND SIZING

PROGRAMMING TECHNIQUES 14-1
USEFUL HINTS 14-1
SIZING 14-2
GENERAL DESCRIPTION 14=2
DATA DICTIONARY 14=2

APPENDIX A

RESERVED WORD LIST

APPENDIX B

CHARACTER SETS AND COLLATING SEQUENCE

APPENDIX C

GLOSSARY

APPENDIX D

COMPILE-TIME ERRORS

APPENDIX E

RUN-TIME ERRORS

APPENDIX F
SYNTAX SUMMARY
APPENDIX G

SUMMARY OF EXTENSIONS TO ANSI COBOL

xxxiii

SCREEN FORMATTING AND DATA ENTRY

THE ACCEPT STATEMENT
THE DISPLAY STATEMENT

DISK FILES

LINE SEQUENTIAL FILES
RUN TIME INPUT OF FILE NAMES

LOWER CASE CHARACTERS
HEXADECIMAL VALUES

APPENDIX H
SYSTEM DEPENDENT LANGUAGE FEATURES

MANDATORY CHANGES

ENVIRONMENT DIVISION

Configuration Section
Input=-Output Section

STATEMENTS COMPILED AS DOCUMENTATION ONLY

ENVIRONMENT DIVISION
DATA DIVISION
PROCEDURE DIVISION
APPENDIX T

LANGUAGE SPECIFICATION

APPENDIX J
IBM EXTENSIONS

ALPHABETIC INDEX

xxxiv

TABLES

Title

13-1

14-1

Figurative Constants and their Reserved Words

Data Levels Classes and Categories

Numeric Data Storage for the COMP(UTATIONAL) PICTURE
Clause

Numeric Data Storage for the COMP(-3) PICTURE CLAUSE

Editing Types for Data Categories

Editing Symbols in PICTURE Character Strlngs
PICTURE Character Precedence Chart

Combination of Symbols in Arithmetic Expressions
Relational Operators

Combinations of Conditions, Logical Operations
and Parenthesis

Cursor Repositioning Keys

MOVE Statement Data Categories

SET Statement Valid Operand Combinations
Relationship of Categories of Files and the Formats
of the CLOSE Statement

Permissible Combinations of Statements and

OPEN Modes for Sequential I-O

Permissible Combinations of Statements and
OPEN Modes for Relative I-0

Permissible Combinations of Statements and
OPEN Modes for Indexed I-0O

Communication Status Key Condition

Data Dictionary Entry Sizing

XXXV

5-22

6-19

7-20

13-11

14-3

1-1
2-1
3-1
3-2
3-3

3-4

ILLUSTRATIONS

Title
Sample Program Listing Showing Source Format
Reference Format for a COBOL Source Line

Flowchart for VARYING Phrase of a PERFORM
Statement having One Condition

Flowchart for VARYING Phrase of PERFORM
Statement with Two Conditions

Flowchart for VARYING Phrase of PERFORM
Statement with Three Conditions

PERFORM Statements in Sequence

Flowchart of SEARCH Operation

xxxvi

CHAPTER 1

INTRODUCTION

WHAT IS L/II COBOL?

COBOL (COmmon Business Oriented Language) is the most widely and extensively
used language for the programming of commercial and administrative data
processing.

L/II COBOL is a compact, interactive and standard COBOL Language System
which is designed for use on microprocessor-based computers and intelligent
terminals.

It is based on the ANSI COBOL as specified in "American National Standard
Programming Language COBOL" (ANSI X3.23 1974). The following modules are
fully implemented at Level II:

. Nucleus
Table Handling
Sequential Input and Output
Relative Input and Output

. Indexed Input and Output

. Sort-Merge

. Segmentation

. Library

. Inter-Program Communication
Debug

. Communications

This manual is‘intended as a reference work for L/II COBOL programmers and
material from the ANSI COBOL language standard document is included.

The package has been proved to meet and exceed the COBOL ANSI standard X3.23
and has been certified by the Federal Compiler Testing Center (FCTC) under
the direction of the General Services Administration (GSA) as validated at
Federal High Level. The GSA Validation Summary Report is available under
the reference FCTC-82/161.

(Addendum 2)

~ Along with the ANSI implementation L/II COBOL also contains several language
extensions specifically oriented to the small computer environment and for
compatibility with some larger mainframe applications. These enable a L/II
COBOL program to format CRT screens for data input and output (DISPLAY and
ACCEPT), READ and WRITE text files efficiently and define external file
names at run time,

The programmer wishing to transport an existing COBOL program to run under
L/II COBOL must check that the individual language features he has used are
supported by L/II COBOL. The COBOL SECTION statements in the Segmentation
feature can be performed using the PERFORM statement.

A compile time FLAG directive can be set that flags all LEVEL II COBOL
extension features together with ANSI COBOL features at any of the levels
specified by the Federal Compiler Testing Center under the direction of the
General Services Administration (GSA). (See Chapter 2).

The L/II COBOL compiler is designed to enable programs to be developed in a
64K machine. The Compiler supports sequential, relative and indexed
sequential files, as well as interactive communications via the ACCEPT and
DISPLAY verbs.

L/II COBOL is part of a family of application development tools that are
available for visual programming:

* FORMS-2 that enables the Operator to define screen layouts from a
screen '"module" and produce automatically the data description for
direct inclusion in a L/II COBOL program. This is described in the
FORMS~2 Operating Guide

* ANIMATOR brings a program to life on the screen '"animating" it by
displaying the source code during run time with the cursor moving from
COBOL source statement to statement. ANIMATOR is a full interactive
"symbolic debugging tool that complies with the published GSA
certification standard enabling the setting of breakpoints, examination
and alteration of data and the changing of the flow of control.

L/I1 COBOL programs are created using a conventional text editor. The
Compiler compiles the programs and the Run~Time system links with the
compiled output to form a running user program. A listing of the L/II COBOL
program is provided by the Compiler during compilation. Error messages are
inserted in the listing.

L/II COBOL is designed to be interfaced easily to any microprocessor
operating system. Detailed operating characteristics are dependent on the
particular host operating system used and are defined in the appropriate
Operating Guide.

PROGRAM STRUCTURE
A COBOL program consists of four divisions:
1. IDENTIFICATION DIVISION - An identification of the program

2. ENVIRONMENT DIVISION - A description of the equipment to be used to
compile and run the program

3. DATA DIVISION - A description of the data to be processed

4, PROCEDURE DIVISION - A set of procedures to specify the operations to
be performed on the data

Each division is divided into sections which are further divided into
paragraphs which in turn are made up of sentences.

Within these subdivisions of a COBOL program, further subdivisions
exist as clauses and statements. A clause is an ordered set of COBOL
elements that specify an attribute of an entry, and a statement is a

combination of elements in the Procedure Division that include a COBOL verb
and constitute a program instruction.

FORMATS AND RULES

GENERAL FORMAT

A general format is the specific arrangement of the elements of a clause or
a statement. Throughout this document a format is shown adjacent to
information defining the clause or statement. When more than one specific
arrangement is permitted, the general format is separated into numbered
formats. Clauses must be written in the sequence given in the general
formats. (Clauses that are optional must appear in the sequence shown if
‘they are used). In certain cases, stated explicitly in the rules associated
with a given format, the clauses may appear in sequences other than that
shown. Applications, requirements or restrictions are shown as rules.

SYNTAX RULES

Syntax rules are those rules that define or clarify the order in which words
or elements are arranged to form larger elements such as phrases, clauses,
or statements. Syntax rules also impose restrictions on individual words or
elements.,

These rules are used to define or clarify how the statement must be written,
i.e., the order of the elements of the statement and restrictions on what
each element may represent.

GENERAL RULES

A general rule is a rule that defines or clarifies the meaning or
relationship of meanings of an element or set of elements. It is used to
define or clarify the semantics of the statement and the effect that it has
on either execution or compilatiom.

ELEMENTS
Elements which make up a clause or a statement consist of uppercase words,

lowercase words, level-numbers, brackets, braces, counectives and special
characters (see Chapter 2).

SOURCE FORMAT

The COBOL source format divides each COBOL source record into 72 columns.
These columns are used in the following way:

Columns 1 - 6 Sequence number
Column 7 Indicator area
Column 8 - 11 Area A

Columns 12 - 72 Area B

SEQUENCE NUMBER

A sequence number of six digits may be used to identify each source program
line. If column 1 contains an asterisk (*) or columns 1 and 2 contain a
form feed character followed by an asterisk the entire line will be ignored
by the compiler and will not appear in the list file. This facility allows
list files to be used as source files.

INDICATOR AREA

An asterisk * in this area marks the line as documentary comment only. Such
a comment line can appear anywhere in the program after the Identification
Division header. Any characters from the ASCII character set can be

included in Area A and Area B of the line.

A stroke /, in the indicator area acts as a comment line above but causes
the page to eject before printing the comment.

A '"D" in the indicator area represents a debugging line. Areas A and B may
contain any valid COBOL sentence,

A "-" in the indicator area represents a continuation of the previous line
without spaces or the continuation of a non-numeric literal (see Chapter 2).
AREAS A AND B

Section names and paragraph names begin in Area A and are followed by a
period and a space. Level indicators FD, Ol and 66, 77 and 88 begin in Area

A and are followed in Area B by the appropriate file and record description.

Program sentences may commence anywhere in Area A and Area B. More than one
sentence is permitted in each source record.

Note that TAB characters are not permitted in LEVEL II COBOL source.

Figure'l-l shows the source format of a typical program.

(Addendum 2)

00
no
0o
15
50
60
79
A0
00
no
10
14
60
78
BO
B4

* Level II COBOL vi, 1 B:STOCK1.CBL PAGE: OBDUL
%* .
000010 IDENTIFICATION DIVISION. NL1E
000020 PROGRAM-ID. STOCK-FILE-SET-UP. 0120
000030 AUTHOR. MICRO FOCUS LTD. ni20
000040 ENVIRONMENT DIVISION. 0120
000050 CONFIGURATION SECTION. n120
000060 SOURCE-COMPUTER. MDS-800. 0120
000070 OBJECT-COMPUTER. MDS-800. 0120
000075 SPECIAL-NAMES. CONSOLE IS CRT. 0120
000080 INPUT-OUTPUT SECTION. 0120
000090 FILE-CONTROL. . 018cC
000100 SELECT SPOCK-FILE ASSIGN "STOCK.IT" N018E
000110 ORGANIZATION INDEXED 018E
000120 ACCESS DYNAMIC 018E
000130 RECORD KEY STOCKR-CODE. 018E
000140 DATA DIVISION. n1Ch
000150 FILE SECTION. n1cé
000160 FD STOCK-FILE; RECORD 32. nich
000170 01 STOCR-ITEM. 01C6
000180 02" STOCKR-CODE PIC X(4). n1ce
000190 02 PRODUCT-DESC PIC X(24). N1CA
000200 02 UNIT-SIZE PIC 9(4). N1E2
000210 WORKING-STORAGE SECTION. 0268
000220 01 SCREEN-HEADINGS. n268
000230 02 ASR-CODE PIC X(21) VALUE "STOCK CODE < >". 0268
000240 02 FILLER PIC X(59). ' 027D
000250 02 ASK-DESC PIC ¥(16) VALUE "DESCRIPTION <", 0288
N0N260 02 SI-DESC PIC X(25) VALUE * >". 02c8
000270 02 FILLER PIC X(39). N2E1
000280 02 ASK-SIZFE PIC X(21) VALUE "UNIT SIZE < >v, n308
000290 01 ENTER-IT REDEFINES SCREEN-HEADINGS. 0268
000300 02 FILLER PIC X(1h). n268
000310 02 CRT-STOCK=-CODE PIC X(4). 0278
000320 02 FILLER PIC X(76). 027¢
000330 02 CRT-PROD-DESC PIC X(24). 02cC8
000340 02 FILLER PIC X(56). 02E0
000350 02 CRT-UNIT-SIZE PIC 9(4). 0318
000360 02 FILLER PIC X. n3ic
000370 PROCEDURE DIVISION. nnoo
000380 SR1. N02E
0003090 DISPLAY SPACE. NO2F
000400 OPEN I-0 STOCK-FILE. nn34
000410 DISPLAY SCREEN-HEADINGS. 0038
0N0420 NORMAL-INPUT. NO4E
000430 MOVE SPACE TO ENTER-IT. NO4F
000440 DISPLAY ENTER-IT. 0055
000450 CORRECT-ERROR. 00N6E -
000460 ACCEPT ENTER-IT. NO6F
000470 IF CRT-STOCK-CODE = SPACE GO TO END-IT. nNOR8
000480 IF CRT-UNIT-SIZF NOT NUMERIC GO TO CORRECT-ERROR. nna2
000490 MOVE CRT-PROD-DESC TO PRODUCT-DESC. NO9A
000500 MOVE CRT-UNIT-SIZE TO UNIT-SIZE. ; NOAO
000510 MOVE CRT~-STOCK~CODE TO STOCK-CODE. N0A6
000520 WRITE STOCK-ITEM; INVALID GO TO CORRECT-ERROR. N0AC
000530 GO TO NORMAL~INPUT. NOB9
000540 END-IT. nNBC
000550 CLOSE STOCK-FILE. NOBD
000560 DISPLAY SPACE. noc1
000570 DISPLAY "END OF PROGRAM". 00C6
N005R0 STOP RUN. NODR
00D9
* Level II COBOL V1.1 REVISION h URN AA/N0000/AA
* Compiler (C) 1978,1982 MICRO FOCUS LTD. .
%*.
* ERRORS=00000 DATA=01024 CODE=00512 DICT=00426:61868/62294 GSA FLAGS = OFF
4 T :

Cols. Cols. Inserted)ﬂ
1-6 12-72 by
Sequence Area B Compiler
Number

Col 7

Indicator

Area -

Cols 8-11
Area A

Figure 1-l. Samplé Program Listing showing Source Format.

1 -6

CHAPTER 2

COBOL CONCEPTS

LANGUAGE CONCEPTS

CHARACTER SET

The most basic and indivisible unit of the language is the character. The
set of characters used to form L/II COBOL character-strings and separators
includes the letters of the alphabet, digits and special characters. The
character set consists of the characters defined below:

Space

+ Plus sign

- Minus sign or hyphen
* Asterisk

/ Oblique Stroke/Slash
= Equal sign

$ Dollar sign

Full stop or decimal point
Comma or decimal point
Semicolon

Quotation mark

Left Parenthesis

Right Parenthesis

Greater than symbol

Less than symbol

s

-
-

AN NV~~~

The L/ITI COBOL language is restricted to the above character set, but the
content of non-numeric literals, comment lines and data may include any of
the characters from the ASCII character set. See Appendix B.

LANGUAGE STRUCTURE

The individual characters of the language are concatenated to form
character-strings and separators. A separator may be concatenated with
another separator or with a character-string. A character-string may only
be concatenated with a separator. The concatenation of character-strings
and separators forms the text of a source program,

Separators

A separator is a string of one or more punctuation characters. The rules
for formation of separators are:

1.

2.

The punctuation character space is a separator. Anywhere a space is
used as a separator, more than one space may be used.

The punctuation characters comma, semicolon and period, when
immediately followed by a space, are separators. These separators may
appear in a COBOL source program only where explicitly permitted by the
general formats, by format punctuation rules (see FORMATS AND RULES in
Chapter 1), by statement and sentence structure definitions (see
STATEMENTS AND SENTENCES in this Chapter), or reference format rules
(see REFERENCE FORMAT in this Chapter).

The punctuation characters right and left parenthesis are separators.
Parenthesis may appear only in balanced pairs of left and right
parentheses delimiting subscripts, indices, arithmetic expressions, or
conditions.

The punctuation character quotation mark is a separator. An opening
quotation mark must be immediately preceded by a space or left
parenthesis; a closing quotation mark must be immediately followed by
one of the separators space, comma, semicolon, period, or right
parenthesis.

Quotation marks may appear only. in balanced pairs delimiting nonnumeric
literals except when the literal is continued. (See
CONTINUATION OF LINES in this Chapter).

Pseudo-text delimiters are separators. An opening pseudo-text
delimiter may be immediately preceded by a space; a closing. pseudo-text
delimiter must be immediately followed by one of the separators space,
comma, semicolon, or period.

Pseudo-text delimiters may appear only in balanced pairs delimiting
pseudo-text. (See Chapter 10. LIBRARY)

The separator space may optionally immediately precede all separators
except the following:

a. As specified By reference format rules see REFERENCE FORMAT
in this Chapter.

b. The separator closing quotation mark. In this case, a
preceding space is considered as part of the nonnumeric
literal and not as a separator.

c. The opening pseudo-text delimiter, where the preceding space
is required.

7. The separator space is optional and can immediately follow any
separator except the opening quotation mark. In this case, a following
space is considered as part of the nonnumeric literal and not as a
separator.

Any punctuation character which appears as part of the specification of a
PICTURE character-string (see Chapter 3) or numeric 1literal is not
considered as a punctuation character, but rather as a symbol used in the
specification of that PICTURE character-string or numeric literal. PICTURE
- character-strings are delimited only by the separators space, comma,
semicolon, or period. :

The rules established for the formation of separators do not apply to the

characters which comprise the contents of nonnumeric literals,
comment-entries, or comment lines.

Character-Strings

A character-string is a character or a seqnence of contiguous characters
which forms a L/II COBOL word, a literal, a PICTURE character-string, or a
comment-entry. A character-string is delimited by separators.

COBOL Words

A COBOL word is a character-string of not more than 30 characters which
- forms a user defined word, a system-name, or a reserved word. Within a
given source program these classes form disjoint sets; a COBOL word may
belong to one and only one of these classes.

User-Defined Words: A user-defined word is a COBOL word that must be
supplied by the user to satisfy the format of a clause or statement. Each
character of a user-defined word is selected from the set of characters 'A',
'B', 'Cl, e 'Zl, : 'ol’

...'9", and '-', except that the '-' may not appear as the first or last
haracter Do e e

User~defined word types which are implemented are as follows:

alphabet-name
cd-name
condition-name

index-name
level-number
library-name
mnemonic-name
paragraph-name
program-name

2 -3

record-name
routine-name
section-name
segment-number
text-name

Within a given source program, 14 of these 17 types of user-defined words
are grouped into 12 disjoint sets. The disjoint sets are:

alphabet-names
cd-names
condition-names, data-names, and record-names
file-names
index-names
library-names
mnemonic-names
paragraph-names
program-names
routine-names
section-names
text-names

All user-defined words, except segment-numbers and level-numbers, can belong.
to one and only one of these disjoint sets. Further, all user-defined words
within a given disjoint set must be unique. (See UNIQUENESS OF REFERENCE in
this Section.) -

With the exception of paragraph-name, section-name, level-number and
segment-number, all user-defined words must contain at least one alphabetic
character. Segment-numbers and level-numbers need not be unique; a given
specification of a segment-number or level-number may be identical to any
other segment-number or level-number and may even be identical to a
paragraph-name or section-name. '

Condition-Name: A condition-name is a name which 1is assigned to a
specific value, set of values, or range of values,
within a complete set of values that a data. item may
assume. The data item itself is called a conditional
variable.

Condition-names may be defined in the Data Division or
in the SPECIAL-NAMES paragraph within the Environment
Division where a condition-name must be assigned to the
ON STATUS or OFF STATUS, or both, of the run time
switches.

A condition-name is used only in the RERUN clause or in
conditions as an abbreviation for the relation
condition; this relation condition posits that the
associated conditional variable is equal to one of the
set of values to which that condition-name is assigned.

2 -4

Mnemonic-Name:

Paragraph-Name:

Section-Name:

Other User-Defined
Names:

System-Names:

Reserved Words:

A mnemonic-name assigns a user-defined word to an
implementor-name. These associations are established in
the SPECIAL-NAMES paragraph of the Environment Division.
(See SPECIAL-NAMES in Chapter 3).

A paragraph-name is a word which names a paragraph in
the Procedure Division.' Paragraph-names are equivalent
if, and only if, they are composed of the same sequence
of the same number of digits and/or characters.

A section-name is a word which names a section in the
Procedure Division. Section names are equivalent if, and
only if, they are composed of the same sequence of the
same number of digits and/or characters.

See the glossary in Appendix C for definitions of all
other types of user-defined words.

A system-name is a COBOL word which is wused to
communicate with the operating environment. Each
character used in the formation of a system-name must be
selected of characters 'A', 'B', 'C', ...
AN ” ta® 00", ... '9' and '-', except that
the '-' may not appear as the first or last character.

There are three types of system-names:

1. computer-name
2. implementor-name
3. language~name

Within a given implementation these three types of
system-names form disjoint sets; a given system-name may
belong to one and only one of them.

The system-names listed above are individually defined
in the glossary in Appendix C.

A reserved word is a COBOL word that is one of a
specified list of words which may be used in COBOL
source programs, but which must not appear in the
programs as user-defined words or system-names.
Reserved words can only be used as specified in the
general formats. (See Appendix A).

There are six types of reserved words:
1. Key words

2. Optional words
3. Connectives

2 -5

Key Words:

Optional Words:

Connectives:

Special

Registers:

Figurative
Constants:

4, Special registers
5. Figurative constants
6. Special-character words

A key word is a word whose presence is required when the
format in which the word appears is used in a source
program. Within each format, such words are uppercase
and underlined.

Key words are of three types:

l. Verbs such as ADD, READ, and ENTER.

2. Required words, which appear in statement and entry
formats.

3. Words which have a specific functional meaning such
as NEGATIVE, SECTION, etc.

Within each format, uppercase words that are not
underlined are called optional words and may appear at
the user's option. The presence or absence of an
optional word does not alter the semantics of the COBOL

" program in which it appears.

There are three types of connectives:

- 1. Qualifier connectives that are used to associate a

data-name, a condition-name, and a text-name, or a
paragraph-name with its qualifier: OF, IN.

2. Series connectives that link two or more
consecutive operands: , (separator comma) or ;
(separator semicolon).

3. Logical connectives that are used in the formation
of conditions: AND, OR. ‘

Certain reserved words are used to name and reference
special registers. Special registers are certain
compiler generated storage areas whose primary use is to
store information produced in conjunction with the use
of specific COBOL features. These special registers
include LINAGE-COUNTER (see Chapter 5) and DEBUG-ITEM
(see Chapter 11).

Certain reserved words are used to name and reference
specific. constant values. These reserved words are
specified under Figurative Constant Values in this
chapter.

Special

-Character

Words: The arithmetic operators and relation characters are
reserved words. (See the glossary - Appendix C).

Literals

A literal is a character-string whose value is implied by an ordered set of
characters of which the literal is composed or by specification of a
reserved word which references a figurative constant. Every literal belongs
to one of two types, nonnumeric or numeric.

Nonnumeric

Literals: A nonnumeric literal is a character-string delimited on
both ends by quotation marks and consisting of any
allowable character in the computer's character set.
Allowed are nonnumeric 1literals of 1 through 128
characters in length. To represent a single quotation
mark character within a nonnumeric 1literal, two
contiguous quotation marks must be used. The value of a
nonnumeric literal in the object program is the string
of characters itself, except:

1. The delimiting quotation marks are excluded, and

2. Each embedded pair of contiguous quotation marks
represents a single quotation mark character.

"All other punctuation characters are part of the value of the nonnumeric
literal rather than separators; all nonnumeric lit 1 t lpha-
numeric. (See The PICTURE Clause in chapter 3).

Numeric Literals: A numeric literal is a character-string whose characters
are selected from the digits 'O' through '9', the plus
sign, the minus sign, and/or the decimal point. The
implementation allows for numeric literals of 1 through
18 digits in length. The rules for the formation of
numeric literals are as follows:

1. A literal must contain at least one digit.

2. A literal must not contain more than one sign
character. If a sign is used, it must appear as
the leftmost character of the 1literal. If the
literal is unsigned, the literal is positive.

3. A literal must not contain more than one decimal
point. 'The decimal point is treated as an assumed
decimal point, and may appear anywhere within the
literal except as the rightmost character. If the
literal contains no decimal point, the literal is
an integer.

If a 1literal conforms to the rules for the
formation of numeric literals, but is enclosed in
quotation marks, it is a nonnumeric literal and it
is treated as such by the compiler.

4, The value of a numeric literal is the algebraic
quality represented by the characters in the
numeric literal. Every numeric literal is category
numeric. (See THE PICTURE CLAUSE in Chapter 3).

The size of a numeric literal in standard data
format characters is equal to the number of digits
specified by the user.

Figurative Constant
Values

Figurative Constant Values are generated by the compiler and referenced
through the use of the reserved words given below. These words must not be
bounded by quotation marks when used as figurative comstants. The singular
and plural forms of figurative constants are equivalent and may be used
interchangeably. :

The figurative constant values and the reserved words used to reference them
are shown in Table 2-1.

HIGH-VALUES

Table 2-1. Figurative Constants and their Reserved Words
CONSTANT REPRESENTATION
ZERO Represents the value '0', or one or more
of the character '0' depending on context.

ZEROS

ZEROES

SPACE Represents one or more of the character
SPACES space from the computer's character set.
HIGH-VALUE Represents one or more of the character

that has the highest ordinal position in
the program collating sequence.
(Hex 7F for the ASCII character set)

LOW-VALUE
LOW-VALUES

Represents one or more of the character that
has the lowest ordinal position in the program
collating sequence.

(Hex 00 for the ASCII character set)

QUOTE
QUOTES

Represents one or more of the character '"',

The word QUOTE or QUOTES cannot be used in
place of a quotation mark in a source program
to bound a nonnumeric literal. Thus, QUOTE
ABD QUOTE is incorrect as a way of stating
the nonnumeric literal "ABD".

ALL literal

Represents one or more characters of the string of
characters comprising the literal. The
literal must be either a nonnumeric literal

‘or a figurative constant other than ALL literal.
.When a figurative constant is used, the word

ALL is redundant and is used for readability
only.

When a figurative constant represents a string of one or more characters,
the length of the string is determined by the compiler from context
according to the following rules:

1. When a figurative constant is associated with another data item, as
when the figurative constant is moved to or compared with another data
item, the string of characters specified by the figurative constant is
repeated character by character on the right until the size of the
resultant string is equal to the size in characters of the associated
data item. This is done prior to and independent of the application of
any JUSTIFIED clause that may be associated with the data item.

2. When a figurative constant is not associated with another data item, as
when the figurative constant appears in a DISPLAY, STRING, STOP or
UNSTRING statement, the length of the string is one character.

A figurative constant may be used wherever a literal appears in a format,
except that whenever the 1literal is restricted to having only numeric
characters in it, the only figurative constant permitted is ZERO (ZEROS,
ZEROES) . _

When the figurative constants HIGH-VALUE(S) or LOW-VALUE(S) are used in the
source program, the actual character associated with each figurative
constant depends upon the program collating sequence specified. (See
THE OBJECT-COMPUTER PARAGRAPH, and THE SPECIAL-NAMES PARAGRAPH in Chapter
3).

Each reserved word which is used to reference a figurative constant value is
a distinct character-string with the exception of the construction 'ALL
liceral' which is composed of two distinct character-strings.

PICTURE Character-Strings

A PICTURE character-string consists of certain combinations of characters in
the COBOL character set used as symbols. See THE PICTURE CLAUSE in
chapter 3 for the PICTURE character-string and for the rules that govern
their use. :

Any punctuation character which appears as part of the specification of a
PICTURE character-string is not considered as a punctuation character, but
rather as a symbol wused in the specification of that PICTURE
character-string.

Comment-Entries

A comment-entry is an entry in the Identification Division that may be any

combination of characters from the computer's character set.

2 -10

CONCEPT OF COMPUTER INDEPENDENT DATA DESCRIPTION

To make data as computer independent as possible, the characteristics or
properties of the data are described in relation to a standard data format
rather than an equipment-oriented format. This standard data format is
oriented to general data processing applications and uses the decimal system
to represent numbers (regardless of the radix used by the computer) and the
remaining characters in the L/II COBOL character set to describe nonnumeric
data items.

Concept of Levels

A level concept is inherent in the structure of a logical record. This
concept arises from the need to specify subdivisions of a record for the
purpose of data reference. Once a subdivision has been specified, it may be
further subdivided to permit more detailed data referral.

The most basic subdivisions of a record, that is, those not further sub-
divided, are called elementary items; consequently, a record is said to
consist of a sequence of elementary items, or the record itself may be an
elementary item.

In order to refer to a set of elementary items, the elementary items are
combined into groups. Each group consists of a named sequence of one or
more elementary items. Groups, in turn, may be combined into groups of two
or more groups, etc. Thus, an elementary item may belong to more than one
group.

Level-Numbers

A system of level-numbers shows the organization of elementary items and
group items. Since records are the most inclusive data items, level-numbers
for records start at 0l. Less inclusive data items are assigned higher (not
necessarily successive) level-numbers not greater in value than 49. © A
maximum of 49 1levels in a record 1is allowed.: There are special
level-numbers, 66, 77 and 88 which are exceptions to this rule (see below).
Separate entries are written in the source program for each level-number
used.

A group includes all group and elementary items following it wuntil a
level-number less than or equal to the level-number of that group is
encountered. All items which are immediately subordinate to a given group
item must be described using identical level-numbers greater than the
1 1 b d d ib h i

(Addendum 1)

2 - 11

Three types of entries exist for which there is no true concept of level.
These are:

1. Entries that specify elementary items or groups introduced by a RENAMES
clause ;

2. Entries that specify noncontiguous working storage and 1linkage data
items

3. Entries that specify condition-names.

Entries describing items by means of RENAMES clauses for the purpose of
regrouping data items have been assigned the special level-number 66.

Entries that specify noncontiguous data items, which are not subdivisions of
other items, and are not themselves subdivided, have been assigned the
special level-number 77.

Entries that specify condition-names, to be associated with particular

values of a conditional variable, have been assigned the special
level-number 88.

Concept of Classes of Data

The five categories of data items (see THE PICTURE CLAUSE in Chapter 3) are
grouped into three classes: alphabetic, numeric, and alphanumeric. -For
alphabetic and numeric, the classes and categories .are synonymous. The
alphanumeric class includes the categories of alphanumeric edited, numeric
edited and alphanumeric (without editing). Every elementary item except for
an index data item belongs to one of the classes and further to one of the
categories. The class of a group item 1is treated at object time as
alphanumeric regardless of the class of elementary items subordinate to that
group item. Table 2-2 depicts the relationship of the class and categories
of data items.

Table 2-2 Data Levels, classes and categories

LEVEL OF ITEM CLASS ' CATEGORY
Alphabetic Alphabetic
Numeric Numeric
Elementary Numeric Edited
Alphanumeric "Alphanumeric Edited
Alphanumeric
" Alphabetic
Numeric
Non-Elementary Alphanumeric Numeric Edited
Group Alphanumeric Edited
Alphanumeric

2 - 12

Selection of Character Representation and Radix

The value of a numeric item may be represented in either binary or decimal
form, depending on the equipment. In addition, there are several ways of
expressing decimal. Since these representations are actually combinations
of bits, they are commonly called binary-coded decimal forms. The four
standard formats used for storing numeric data in L/II COBOL are as follows:

1.

2.

As alphanumeric characters stored one per byte in ASCII representation.

As numeric characters defined by USAGE IS DISPLAY (See The USAGE Clause
in Chapter 3) one per byte in ASCII representation. If they are signed
and the sign is specified as INCLUDED, bit 6 of the leading or trailing
byte of the field is set for negative, depending on the field
definition. If a SEPARATE sign is specified as a one byte ASCII + or
-, a sign is added as the leading or trailing byte. If no SIGN clause
is specified, bit 6 of the trailing digit is set to indicate negative
by default.

As numeric characters defined by USAGE IS COMP or COMPUTATIONAL in pure
binary form. If the field is signed the number is held in its
twos-complement form. Storage is then dependent on the number of 9's
in the PICTURE clause (see The PICTURE Clause in Chapter 3) and on
whether the field is SIGNed or not (see The SIGN Clause in Chapter 3).

Table 2-3 shows the storage requirements for each COMP(UTATIONAL)
PICTURE Clause. .

Table 2-3. Numeric Data Storage for the COMP(UTATIONAL) PICTURE
Clause.

Number of Characters
Bytes Required Signed Unsigned
1 1-2 1-2
2 3-4 3-4
3. 5-6 5-7
4 7-9 8-9
5 10-11 10-12
6 12-14 13-14
7 15-16 15-16
8 17-18 17-18

Algebraic Signs

Algebraic signs fall into two categories: operational signs, which are
associated with signed numeric data items and signed numeric literals to
indicate their algebraic properties; and editing signs, which appear on
edited reports to identify the sign of the item.

The SIGN Clause permits the programmer to state explicitly, the
location of the operational sign. The Clause is optional; if it is not used
operational signs will be represented as defined by setting bit 6 of the
trailing digit for ASCII numbers. (see above).

Editing signs are inserted into a data item through the use of the sign
control symbols of THE PICTURE CLAUSE.

Standard Alignment Rules

The standard rules for positioning data within an elementary item
depend on the category of the receiving item. These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving
character positions with zero fill or truncation on either end as
required.

b. When an assumed decimal point is not explicitly specified, the
data item is treated as if it had an assumed decimal point
immediately following its rightmost character and is aligned as in
paragraph a. above,

2. If the receiving data item is a numeric edited data item, the data
moved to the edited item is aligned by decimal point with zero fill or
truncation at either end as required within the receiving character
positions of the data item, except where editing requirements cause
replacement of the leading zeros.

3. If the receiving data item is alphanumeric (other than a numeric edited
data item), alphanumeric edited or alphabetic, the sending data is
moved to the receiving character positions and aligned at the leftmost
character position in the data item with space fill or truncation to
the right, as required.

If the JUSTIFIED Clause is specified for the receiving item, these standard
rules are modified as described in THE JUSTIFIED CLAUSE in Chapter 3.

2 -15

Uniqueness of Reference

Qualification

Every user-specified name that defines an element in a COBOL source program
must be unique, either because no other name has the identical spelling and
hyphenation, or because the name exists within a hierarchy of names such
that references to the name can be made unique by mentioning one or more of
the higher levels of the hierarchy. The higher levels are called qualifiers
and this process that specifies uniqueness is called qualification. Enough
qualification must be mentioned to make the name unique; however, it may not
be necessary to mention all levels of the hierarchy. Within the Data
Division, all data-names used for qualification must be associated with a
level indicator or a level-number. Therefore, two identical data-names must
not appear as entries subordinate to a group item unless they are capable of
being made unique through qualification. _In the Procedure Division two
identical paragraph-names must not appear in the same section.

In the hierarchy of qualification, names associated with a level indicator
are the most significant, then those names associated with level-number 01,
then names associated with level-number 02, ... , 49. A section-name is the
highest (and the only) qualifier available for a paragraph~name. Thus, the
most significant name in the hierarchy must be unique and cannot be
qualified. Subscripted or indexed data-names and conditional variables, as
well as procedure-names and data-names, may be made unique by qualification.
The name of a conditional variable can be used as a qualifier for any of its
condition-names. Regardless of the available qualification, no name can be
both a data-name and procedure-name.

Qualification is performed by following a data-name, a condition-name, a
paragraph-name, or a text-name by one or more phrases composed of a
qualifier preceded by IN or OF. 1IN and OF are logically equivalent.
The general formats for qualification are:

Format 1

data-name-1
e data-name-2
condition-name

=S

Format 2

} section-name]

1219

paragraph-name [{

Format 3

text-name [{

} Alibrary-name]

21S

2 - 16

The rules for qualification are as follows:

1. Each qualifier must be of a successively higher level and within the
same hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. 1f a data-name or a condition-name is assigned to more than one data
item in a source. program, the data-name or condition-name must be
qualified each time it is referred to in the Procedure, Environment,
and Data Divisions (except in the REDEFINES clause where qualification
is unnecessary and must not be used.)

4, A paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION must
not appear. A paragraph-name need not be qualified when referred to
from within the same section.

5. A data-name cannot be subscripted when it is being used as a qualifier.

6. A name can be qualified even though it does not need qualifications; if
there 1is more than one combination of qualifiers that ensures
uniqueness, then any such set can be used. The complete set of
qualifiers for a data-name must not be the same as any partial set of
qualifiers for another data-name.

Qualified data-names may have up to five qualifiers.

7. If more than one COBOL library is available to the compiler during:
compilation, text-name must be qualified each time it is referenced.

Subscripting

Subscripts can be used only when reference is made to an individual element
within a 1list or table of 1like elements that have not been assigned
individual data-names (see THE OCCURS CLAUSE in Chapter 4).

The subscript can be represented either by a numeric literal that is an
integer or by a data-name. The data-name must be a numeric elementary item
that represents an integer.

The subscript may be signed and, if signed, it must be positive. The lowest
possible subscript value is 1. This value points to the first element of
the table. The next sequential elements of the table are pointed to by
subscripts whose values are 2, 3, The highest permissible subscript
value, in any particular case, is the maximum number of occurrences of the
item as specified in the OCCURS clause.

Relative subscripting can be used in a similar manner to relative indexing
if the ANSI flag is not set.

2 - 17

The subscript, or set of subscripts, that identifies the table element is
delimited by the balanced pair of separators left parenthesis and right
parenthesis following the table element data-name. The table element
data-name appended with a subscript is called a subscripted data-name or an
identifier. When more than one subscript is required, they are written in
the order of successively 1less inclusive dimensions of the data
organization

The format is:

data-name _ _
{condition name} (subscript-1[, subscript-2[, subscript-3] ... 1)

Indexing

References can be made to individual elements within a table of 1like
elements by specifying indexing for that reference. An index is assigned to
that level of the table by using the INDEXED BY phrase in the definition of
a table. A name given in the INDEXED BY phrase is known as an index-name
and is wused to refer to the assigned index. The value of an index
corresponds to the occurrence number of an element in the associated table
or any other table. An index-name must be initialized before it is used as
a table reference. An index-name can be given an initial value by a SET
statement.

Direct indexing is specified by using an index-name in the form of a
subscript. Relative indexing is specified when the index-name is followed
by the operator + or -, followed by an unsigned integer numeric literal all
delimited by the balanced pair of separators left parenthesis and right
parenthesis following the table element data-name. The occurrence number
resulting from relative indexing is determined by incrementing (where the
operator + is used) or decrementing (when the operator - is used), by the
value of the literal, the occurrence number represented by the value of the
index. When more than one index-name is required, they are written in the
order of successively less inclusive dimensions of the data organizationm.

At the time of execution of a statement which refers to an indexed table
element, the value contained in the index referenced by the index-name
associated with the table element must neither correspond to a value less
than one nor to a value greater than the highest permissible occurrence
number of an element of the associated table. This restriction also applies

h 1 lat indexi

(Addendum 1)

2 - 18

The general format for indexing is:

data-name s (index-name-1 [{ i} literal-2] z
condition-name literal-l

index-name-2 [{:} 1itéral-4] ;index-name-3 [{i} literal—é]s)
? literal-3 2 > tliteral-5 T

Identifier

An identifier is a term used to reflect that a data-name, if not unique in'a
program, must be followed by a syntactically correct combination of
qualifiers, subscripts or indices necessary to ensure uniqueness.

The general formats for identifiers are:
Format 1:

data-name-lﬁ%} data-name-2 .o [(subscript-l[ssubscript-2[,subscript-3]])]

Format 2:

- N [(index-name-1 [{t} literal—2]$

OF
vdata—name-l[{ }data-name—z literal-l

N

literal-3 ,{literal-5

[, index-name-2 [{*} literal-4]$ [index—name—S[{:}literal_G]i]])]

Restrictions on subscripting and indexing are:

1. A data-name must not itself be subscripted nor indexed when that
data-name is being used as an index, or subscript.

2. Indexing is not permitted where subscripting is not permitted.

3. An index may be modified only by the SET, SEARCH, and PERFORM
statements. Data items described by the USAGE IS INDEX clause permit
storage of the values associated with index-names as data in a form
specified by the implementor. Such data items are called index data
items.

4, Literal-1l, literal-3, literal-5, in the above format must be positive
numeric integers. Literal-2, literal-4, literal-6 must be unsigned
numeric integers.

" (Addendum 1)

2 -19

Condition-Name

Each condition-name must be unique, or be made unique through qualification
and/or indexing, or subscripting. If qualification is used to make a
condition-name unique, the associated conditional variable may be used as
the first qualifier. If qualification is used, the hierarchy of names
associated with the conditional variable or the conditional variable itself
must be used to make the condition-name unique.

If references to a conditional variable require indexing or subscripting,
then references to any of its condition-names also require the same
combination of indexing or subscripting.

The format and restrictions on the combined use of qualification,
subscripting, and indexing of condition-names is exactly that of
'identifier' except that data-name-1 is replaced by condition-name-l.

In the general formats, 'condition-name' refers to a condition-name
qualified, indexed or subscripted, as necessary.

EXPLICIT AND IMPLICIT SPECIFICATIONS

There are three types of explicit and implicit specifications that occur in
COBOL source programs: ’

1. Explicit and implicit Procedure Division references
2. Explicit and implicit transfers of control
3. Explicit and implicit attributes.

Explicit and Implicit Procedure Division References

A COBOL source program can reference data items either explicitly or
implicitly in Procedure Division statements. An explicit reference occurs
when the name of the referenced item is written in a Procedure Division
statement or when the name of the referenced item 1is copied into the
Procedure Division by the processing of a COPY statement. An implicit
reference occurs when the item is referenced by a Procedure Division
statement without the name of the referenced item being written in the
source statement. An implicit reference also occurs, during the execution
of a PERFORM statement, when the index or data item referenced by the
index-name or identifier specified in the VARYING, AFTER or UNTIL phrase is
initialized, modified, or evaluated by the control mechanism associated with
that PERFORM statement. Such an implicit reference occurs if and only if
the data item contributes to the execution of the statement.

2 - 20

Explicit and Implicit Transfers of Control

The mechanism that controls program flow transfers control from statement to
statement in the sequence in which they were written in the source program
unless an explicit transfer of control overrides this sequence or there is
no next executable statement to which control can be passed. The transfer
of control from statement to statement occurs without the writing of an
explicit Procedure Division statement, and therefore, is an implicit
transfer of control.

COBOL provides both explicit and implicit means of altering the implicit
control transfer mechanism.

In addition to the implicit transfer of control between consecutive
statements, implicit transfer of control alsoc occurs when the normal flow is
altered without the execution of a procedure branching statement. COBOL
provides the following types of implicit control flow alterations which
override the statement-to-statement transfers of control:

L. If a paragraph is being executed under control of another COBOL
statement (for example, PERFORM, USE, SORT and MERGE) and the paragraph
is the last paragraph in the range of the controlling statement, then
an implied transfer of control occurs from the last statement in the
paragraph to the control mechanism of the last executed controlling
statement. Further, if a paragraph is being executed under the control
of a PERFORM statement which causes iterative execution and that
paragraph is the first paragraph in the range of that PERFORM
statement, an implicit transfer of control occurs between the control
mechanism associated with that PERFORM statement and the first
statement in that paragraph for each iterative execution of the
paragraph. '

2. When a SORT or MERGE statement is executed, an implicit transfer of
control occurs to any associated input or output procedures.

3. When any COBOL statement is executed which results in the execution of
a declarative section, an implicit transfer of control to the
declarative section occurs. Note that another implicit transfer of
control occurs after execution of the declarative section, as described
in (1) above.

2 - 21

An explicit transfer of control consists of an alteration of the implicit
control transfer mechanism by the execution of a procedure branching or
conditional statement. (See STATEMENTS AND SENTENCES later in this
Chapter.) An explicit transfer of control can be caused only by the
execution of a procedure branching or conditional statement. The execution
of the procedure branching statement ALTER does not in itself constitute an
explicit transfer of control, but affects the explicit transfer of control
that occurs when the associated GO TO statement is executed. The procedure
branching statement EXIT PROGRAM causes an explicit transfer of control when
the statement is executed in a called program.

In this document, the term 'next executable statement' is used to refer to
the next COBOL statement to which control is transferred according to the
rules above and the rules associated with each language element in the
Procedure Division.

There is no next executable statement following:

1. The last statement in a declarative section when the paragraph in which
it appears is not being executed under the control of some other COBOL
statement.

2. The last statement in a program when the paragraph in which it appears

is not being executed under the control of some other COBOL statement.

Explicit and Implicit Attributes

Attributes may be implicitly or explicity specified. Any attribute which
has been explicitly specified is called an explicit attribute. If an
attribute has not been specified explicitly, then the attribute takes on the
default specification. Such an attribute is known as an implicit attribute.

For éxample, the usage of a data item need not be specified, in which case a
data item's usage is DISPLAY.

PROGRAM STRUCTURE

A L/II COBOL program consists of four divisions:
1. IDENTIFICATION DIVISION - An identification of the program.

2. ENVIRONMENT DIVISION -~ A description of the equipment to be used to
compile and run the program.

3. DATA DIVISION -~ A description of the data to be processed.

4. PROCEDURE DIVISION - A set of procedures to specify the operations to
be performed on the data.

Each division is divided into sections which are further divided into
paragraphs, which in turn are made up of sentences.

2 - 22

2 - 23

IDENTIFICATION DIVISION
GENERAL DESCRIPTION

The Identification Division must be included in every ANSI COBOL source
program. This division identifies both the source program and the resultant
output listing. In addition, the user may include the date the program is
written, the date the compilation of the source program is accomplished and
such other information as desired under the paragraphs in the general format
shown below.

ORGANIZATION

Paragraph headers identify the type of information contained in the
paragraph. The name of the program must be given in the first paragraph,
which is the PROGRAM-ID paragraph. The other paragraphs are optional and
may be included in this division at the user's choice, in order of
presentation shown by the format below.

STRUCTURE

The following is the general format of the paragraphs in the Identification
Division and it defines the order of presentation in the source program.

General Format

+IDENTIFICATION DIVISION.?}

{PROGRAM-ID. program-name.+

[AUTHOR. [comment-entry] eeo]

[INSTALLATION. [comment-entry] eodl
[DATE~WRITTEN. [comment-entry] eee]
[DATE-COMPILED. [comment-entry] ved]
[SECURITY. [comment-entry] -

2 - 24

ENVIRONMENT DIVISION

GENERAL DESCRIPTION

The Environment Division specifies a standard method of expressing
those aspects of a data processing problem that are dependent upon the
physical characteristics of a specific computer. This division allows
specification of the configuration of the compiling computer and the object
computer. In addition, information relating to input-output control,
special hardware characteristics and control techniques can be given.

The Environment Division must be included in every COBOL source
program.

ORGANIZATION

Two sections make wup the Environment Division: the Configuration
Section and the Input-Output Section.

The Configuration Section deals with the characteristics of the source
computer and the object computer. This section is divided into three
paragraphs: the SOURCE-COMPUTER paragraph, which describes the computer
configuration on which the source program is compiled; the OBJECT-COMPUTER
paragraph, which describes the computer configuration on which the object
program produced by the compiler is to be run; and the SPECIAL-NAMES
paragraph, which relates the implemention-names used by the compiler to the
mnemonic-names used in the source program.

The Input~-Output Section deals with the information needed to control
transmission and handling of data between external media and the object
program. This section is divided into two paragraphs: the FILE-CONTROL
paragraph which names and associates the files with external media; and the
I-0-CONTROL paragraph which defines special control techniques to be used in
the object program.

STRUCTURE
The following is the general format of the sections and paragraphs in
the Environment Division, and defines the order of presentation in the source

program.

General Format

ENVIRONMENT DIVISION. }

CONFIGURATION SECTION.

SOURCE-COMPUTER. source-computer-entry +
OBJECT-COMPUTER. object-computer-entry 3
SPECIAL-NAMES. special-names-entry]
INPUT-OUTPUT SECTION. $

. ¢ FILE-CONTROL. + file-control-entry cee
[I-O-CONTROL. input-output-control-entry]]

s pEanis nlls olls plls o

2 - 25

DATA DIVISION

OVERALL APPROACH

The Data Division describes the data that the object program is to accept as
input, to manipulate, to create, or to produce as output. Data to be
processed falls into three categories:

1. That which is contained in files and enters or leaves the internal
memory of the computer from a specified area or areas.

2. That which 1is developed internally and‘ placed into intermediate or
working storage, or placed into specific format for output reporting
purposes.

3. Constants which are defined by the user.

PHYSICAL AND LOGICAL ASPECTS OF DATA DESCRIPTION

Data Division Organization

The DATA DIVISION which is one of the required divisions in a program, is
subdivided into sections. These are the File, Working-Storage, Linkage and
Communication sections.

The FILE SECTION defines the structure of data files. Each file is defined
by a file description entry and one or more record descriptions. Record
descriptions are written immediately following the file description entry.
The WORKING-STORAGE SECTION describes records and noncontiguous data items
which are not part of external data files but are developed and processed
internally. It also describes data items whose values are assigned in the
source program and do not change during the execution of the object program.
The LINKAGE SECTION appears in the called program and describes data items
that are to be referred to by the calling program and the called program.
Its structure is the same as the WORKING-STORAGE SECTION. The communication
section describes the data item in the source program that will serve as
the interface between the MCS and the program.

(Addendum 2)

2 - 26

General Format

The following gives the general format of the sections in the Data
Division, and defines the order of their presentation in the source program.

£ DATA DIVISION. %

- FILE SECTION.

file-description-entry [record-description-entry] cee
i Sort—merge-file—description—entry;record-description-entryg eee] 7T

[WORKING-STORAGE SECTION.

77-level-description-entry
| | record-description-entry

~ LINKAGE SECTION.

77-level~-description~-entry
| | record-description-entry ot

- COMMUNICATION SECTiON.

_[communication-description-entry [record-description-entry]...) .o

2 - 27

PROCEDURE DIVISION

GENERAL DESCRIPTION

The Procedure Division must be included in every COBOL source program. This
division may contain declarative procedures.

Declaratives

Declarative sections must be grouped at the beginning of the Procedure
Division preceded by the key word DECLARATIVES and followed by the key words
END DECLARATIVES. (See descriptions of the USE statement in Chapters 5, 6
and 7 and the Debug Chapter 11).

Procedures

r group of successive paragraphs
or a section, or a group of
succe ocedure Division. If one paragraph is in a
section, then all paragraphs must be in sections. A procedure-name is a
word used to refer to a paragraph or section in the source program in which
it occurs. It consists of a paragraph-name (which may be qualified), or a
section-name. ’

The end of the Procedure Division and the physical end of the program is
that physical position in a COBOL source program after which no further
procedures appear.

A section consists of a section header followed by zero, one, or more
successive paragraphs. A section ends immediately before the next section
or at the end of the Procedure Division or, in the declaratives portion of
the Procedure Division, at the key words END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a period and a space
and by zero, one, or more successive sentences. A paragraph ends
immediately before the next paragraph-name or section-name or at the end of
the Procedure Division or, in the declaratives portion of the Procedure
Division, at the key words END DECLARATIVES.

A sentence consists of one or more statements and is terminated by a period
followed by a space.

A statement is a syntactically valid combination of words and symbols
beginning with a COBOL verb.

The term 'identifier' is defined as the word or words necessary to make
unique reference to a data item.

2 - 28

Execution

Execution begins with the first statement of the Procedure Division,
excluding declaratives. - Statements are then executed in the order in which
they are presented for compilation, except where the rules indicate some
other order.

General Format

Procedure Division Header

The Procedure Division is identified by and must begin with the following
header:

PROCEDURE DIVISION [USING data-name-l [, data=-name-2] -].

Procedure Division Body

The body of the Procedure Division must conform to one of the following
formats:

Format 1:

[DECLARATIVES.

%section—name SECTION [segment-number]. declarative-sentence
[paragraph-name. [sentence] ...] ... $

END DECLARATIVES.]

;section-name SECTION [segment-number]

[paragraph-name. [sentence] eedl cee z
Format 2:

{paragraph-name.} [sentence] ... [gparagraph—name. [sentence]...g...]

STATEMENTS AND SENTENCES

There are three types of statements:
1. Conditional statements,

2. Compiler directing statements,

3. Imperative statements.
(Addendum 1)

2 - 29

There are three types of sentences:
1. Conditional sentences,

2. . Compiler directing sentences,
3. Imperative sentences.

Conditional Statement

A conditional statement specifies that the truth value of a condition is to
be determined and that the subsequent action of the object program is
dependent on this truth value.
A conditional statement is one of the following:

* An IF, SEARCH or RETURN statement.

* A READ statement that specifies the AT END or INVALID KEY phrase.

* A WRITE statement that specifies the INVALID KEY or END-OF-PAGE
phrase.

* A START, REWRITE or DELETE statement that specifies the INVALID
KEY phrase.

* An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT)
that specifies the SIZE ERROR phrase.

* A RECEIVE statement that specifies a NO DATA phrase.
* A STRING, UNSTRING or CALL statement that specifies the ON
OVERFLOW phrase.

Conditional Sentence

A conditional sentence is a conditional statement, optionally preceded by an
imperative statement, terminated by a period followed by a space.

Compiler Directing Statement

A compiler directing statement consists of a compiler directing verb and its
operands. The compiler directing verbs are COPY, ENTER and USE (see
THE COPY STATEMENT in Chapter 10, THE ENTER STATEMENT in Chapter 3, and THE
USE STATEMENT in Chapters 5, 6 and 7). A compiler directing statement
causes the compiler to take a specified action during compilation.

Compiler Directing Sentence

A compiler directing sentence is a single compiler directing statement
terminated by a period followed by a space.

2 - 30

Imperative Statement

An imperative statement indicates a specific unconditional action to be
taken by the object program. An imperative statement is any statement that
is neither a conditional statement, nor a compiler directing statement. An
imperative statement may consist of a sequence of imperative statements,
each possibly separated from the next by a separator.

The imperative verbs are:

ACCEPT ENABLE RELEASE
ADDl EXIT REWRITE2
ALTER GO SEND

CALL3 INSPECT SET

CANCEL - MERGE SORT

CLOSE MOVE STAR'I'2
COMPU’I‘E1 MULTIPLY1 STOP
DELETE2 OPEN STRING3
DISABLE PERFORM SUBTRACTl
DISPLAY READS UNSTRING3
DIVIDE' RECEIVE" WRITE®

1 - Without the optional SIZE ERROR phrase.

2 - Without the optional INVALID KEY phrase.

3 - Without the optional ON OVERFLOW phrase.

4 - Without the optional NO DATA phrase.

5 - Without the optional AT END phrase or INVALID KEY phrase.
6 - Without the optional INVALID KEY phrase or END-OF-PAGE phrase.

When 'imperative-statement' appears in the general format of statements,
'imperative-statement' refers to that sequence of consecutive imperative
statements that must be ended by a period or an ELSE phrase associated with
a previous IF statement. :

Imperative Sentence

An imperative sentence is an imperative statement terminated by a period
- followed by a space. '

2 - 31

Categories of Statements

Category

Arithmetic

Compiler Directing

Conditional

Data Movement

Ending

Verbs

ADD

COMPUTE

DIVIDE

INSPECT (TALLYING)
MULTIPLY

SUBTRACT

ENTER

COPY
3 USE

CALL (OVERFLOW)

COMPUTE (SIZE ERROR)
DELETE (INVALID KEY)
DIVIDE (SIZE ERROR)

IF

MULTIPLY (SIZE ERROR)
READ (END or INVALID KEY)
RECEIVE (NO DATA)

RETURN (END) :
REWRITE (INVALID KEY)
SEARCH

START (INVALID KEY)
STRING (OVERFLOW)
SUBTRACT (SIZE ERROR)
UNSTRING (OVERFLOW)
WRITE (INVALID KEY or END-OF-PAGE)

(ADD (SIZE ERROR)

ACCEPT (DATE, DAY or TIME)
ACCEPT MESSAGE COUNT
INSPECT (REPLACING)

MOVE

STRING

UNSTRING

STOP

2 - 32

Category Verbs

ACCEPT (identifier)

CLOSE.

DELETE

DISABLE

DISPLAY

ENABLE
Input-Output OPEN

READ

RECEIVE
REWRITE

SEND

START

STOP (literal)
WRITE

CALL
CANCEL

Inter-Program
Communicating

MERGE
RELEASE
RETURN
SORT

Ordering

ALTER
CALL
EXIT

GO TO
PERFORM

Procedure Branching

SEARCH

Table Handling SET

IF is a verb in the COBOL sense; it is recognised that it is not a verb in
English.

2 - 33

REFERENCE FORMAT

GENERAL DESCRIPTION

The reference format, which provides a standard method for describing COBOL
source programs, is described in terms of character positions in a line on
an input-output medium. The L/II COBOL compiler accepts source programs
written in reference format and produces an output listing of the source
program input in reference format. (See the L/II COBOL Operating Guide for
a sample source program.)

The rules for spacing given in the discussion of the reference format take
precedence over all other rules for spacing.

The divisions of a source program must be ordered as follows: the Identi-
fication Division, then the Environment Division, then the Data Division,
then the Procedure Division. Each division must be written according to the
rules for the reference format.

REFERENCE FORMAT REPRESENTATION

The reference format for a line is represented as in Figure 2-1.

| | | |

Margin Margin Margin Margin Margin
L C A B R
- 1 1 1 ! o e .
1 2 3 4 5 6 7 8 9 0 1 2 3
,V\—,/\M/,V__/
Sequence Number Area Area A Area B

Indicator Area
Margin L is immediately to the left of the leftmost character position
of a line.
Margin C is between the 6th and 7th character positions of a line.
Margin A is between the 7th and 8th character positions of a line.
Margin B is between the llth and 12th character positions of a line.

Margin R is immediately to the right of the rightmost character
position of a line.

Figure 2-1. Reference Format for a COBOL Source Line.

The sequence number area occupies six character positions (1-6), and is
between Margin L and Margin C.

2 - 34

The indicator area is the 7th character position of a line.

Area A occupies character positions 8, 9, 10 and 11, and is between margin A
and margin B.

Area B occupies character positions 12 through 72 inclusive; it begins

immediately to the right of Margin B and terminates immediately to the left
of Margin R.

Sequence Numbers

A sequence number, consisting of six digits in the sequence area, may be
used to label a source program line.

Continuation of Lines

Whenever a sentence, entry, phrase, or clause requires more than one line,
it may be continued by starting subsequent line(s) in area B. These
subsequent lines are called the continuation line(s). The line being
continued is called the continued line. Any word or literal may be broken
in such a way that part of it appears on a continuation line.

A hyphen in the indicator area of a line indicates that the first nonblank
character in area B of the current line is the successor of the last
nonblank character of the preceding line without any intervening space.
However, if the continued line contains a nonnumeric literal without closing
quotation mark, the first nonblank character in area B on the continuation
line must be a quotation mark, and the continuation starts with the
character immediately after that quotation mark. All spaces at the end of
the continued line are considered part of the 1literal. Area A of a
continuation line must be blank.

If there is no hyphen in the indicator area of a line, it is assumed that
the last character in the preceding line is followed by a space.

Blank Lines

A blank line is one that is blank from margin C to margin R, inclusive. A
blank line can appear anywhere in the source program, except immediately
preceding a continuation line. (See Figure 2-1).

Pseudo-Text

The character-strings and separators comprising pseudo-text may start in
either area A or area B. If, however, there is a hyphen in the indicator
area of a line which follows the opening pseudo~text delimiter, area A of
the line must be blank; and the normal rules for continuation of lines apply
to the formation of text words. (See Chapter 10, LIBRARY.)

2 - 35

DIVISION, SECTION, PARAGRAPH FORMATS

Division Header

The division header must start in area A. (See Figure 2-1).

Section Header

The section header must start in area A. (See Figure 2-1).

A section consists of paragraphs in the Environment and Procedure Divisions
and Data Division entries in the Data Division.

Paragraph Header, Paragraph-Name and Paragraph

A paragraph consists of a paragraph-name followed by a period and a space
and by zero, one or more sentences, or a paragraph header followed by one or
more entries. Comment entries may be included within a paragraph. The
paragraph header or paragraph-name starts in area A of any line following
the first line of a division or a sectiom.

The first sentence or entry in a paragraph begins either on the same line as
the paragraph header or paragraph-name or in area B of the next nonblank
line that is not a comment line. Successive sentences or entries either
begin in area B of the same line as the preceding sentence or entry or in
area B of the next nonblank line that is not a comment line.

When the sentences or entries of a paragraph require more than one line they
may be continued as described in CONTINUATION OF LINES in this Chapter.

DATA DIVISION ENTRIES

Each Data Division entry begins with a level indicator or a level-number,
followed by a space, followed by its associated name (except in the Report
Section), followed by a sequence of independent descriptive clauses. Each
clause, except the last clause of an entry, may be terminated by either the
separator semicolon or the separator comma. The 1last clause is always
terminated by a period followed by a space.

There are two types of Data Division entries: those which begin with a level
indicator and those which begin with a level-number.

A level indicator is any of the following: FD (see THE FILE DESCRIPTION
-COMPLETE ENTRY SKELETON in Chapters 5, 6 and 7), SD (see the SORT MERGE
FILE DESCRIPTION - COMPLETE ENTRY SKELETON in Chapter 8), (see the
COMMUNICATION DESCRIPTION -~ COMPLETE ENTRY SKELETON in Chapter 13).

2 - 36

In those Data Division entries that begin with a level indicator, the level
indicator begins in area A followed by a space and followed in area B with
its associated name and appropriate descriptive information.

Those Data Division entries that begin with level-numbers are called data
description entries.

A level-number has a value taken from the set of values 1 through 49, 66, 77
and 88. Level-numbers in the range 1 through 9 may be written either as a
single digit or as a zero followed by a significant digit. At least one
space must separate a level-number from the word following the level-number.

In those data description entries that begin with level-number 0l or 66, 77
and 88, the level-number begins in area A followed by a space and followed
in area B by its associated record-name or item-name and appropriate
descriptive information.

Successive data description entries may have the same format as the first or
may be indented according to level-number. The entries in the output
listing need be indented only if the input is indented. Indentation does
not affect the magnitude of a level-number.

When level-numbers are to be indented, each new level-number may begin any
number of spaces to the right of margin A. The extent of indentation to the
right is determined only by the width of the physical medium.

DECLARATIVES

The key word DECLARATIVES and the key words END DECLARATIVES that
precede and follow, respectively, the declaratives portion of the Procedure
Division must each appear on a line by themselves. Each must begin in area
A and be followed by a period and a space (see Figure 2-1).

COMMENT LINES

A comment line is any line with an asterisk in the continuation
indicator area of the line. A comment line can appear as any line in a
source program after the Identification Division header. Any combination of
characters from the computer's character set may be included in area A and
area B of that line (see Figure 2-1). The asterisk and the characters in
area A and area B will be produced on the listing but serve as documentation
only. A special form of comment line represented by a stroke in the
indicator area of the line causes page ejection prior to printing the
comment. B

Successive comment lines are allowed. Continuation of comment lines is

permitted, except that each continuation line must contain an '*' in the
indicator area.

2 - 37

RESERVED WORDS

A full list of reserved words is given in Appendix A.

2 - 38

CHAPTER 3

THE NUCLEUS

FUNCTION OF THE NUCLEUS

The Nucleus provides a basic language capability for the internal processing
of data within the basic structure of the four divisions of a program.

OVERALL LANGUAGE

NAME CHARACTERISTICS

L/II COBOL data-names need unot begin with an alphabetic character; the
alphabetic characters may be positioned anywhere within the data-name.
Qualification is permitted and all data-names, condition-names,
paragraph-names, and text-names need not be unique.

FIGURATIVE CONSTANTS

All the following figurative constants may be used: ZERO, ZEROS, ZEROES,
SPACE, SPACES HIGH-VALUE, HIGH-VALUES, LOW-VALUE, LOW-VALUES, QUOTE, QUOTES,
and ALL literal.

REFERENCE FORMAT

A word or oaumeric literal can be broken in such a way that part of it
appears on a continuation line.

IDENTIFICATION DIVISION IN THE NUCLEUS

GENERAL DESCRIPTION

The Identification Division must be included in every COBOL source program.
This division identifies the source program and the resultant output
listing. In addition, the user may include the date the program is written
and such other information as desired under the paragraphs in the general
format shown below.

ORGANIZATION

Paragraph headers identify the type of information contained in the
paragraph. The name of the program must be given in the first paragraph,
which is the PROGRAM-ID paragraph. The other paragraphs are optional and
may be included in this division at the user's choice, in the order of
presentation shown by the general format below.

Structure

The general format of the paragraphs in the Identification Division is given
below.

General Format

+ IDENTIFICATION DIVISION %

{ PROGRAM-ID. program-name. +

[AUTHOR. [comment-entry] ...]

[INSTALLATION. [comment-entry] ...]

[DATE-WRITTEN. [comment-entry] ...]

[DATE-COMPILED. [comment-entry] ...]

[SECURITY. [comment-entry] e]

Syntax Rules

L. The Identification Division must begin with the reserved words.
IDENTIFICATION DIVISION followed by a period and a space.

2. The comment-entry may be any combination of the characters from the
computer's character set and may be written in Area B on one or more
lines. The continuation of the comment-entry by the use of the hyphen
in the indicator area is not permitted.

THE PROGRAM-ID PARAGRAPH
Function

The PROGRAM-ID paragraph gives the name by which a program is identified.

General Format

PROGRAM~ID. program-name.

Syntax Rules

L. The program-name must conform to the rules for formation of a
user-defined word.

General Rules

L. The PROGRAM-ID paragraph must
be present in every program

2. The program-name identifies the source program and all 1listings
pertaining to a particular program.

THE DATE-COMPILED PARAGRAPH

Function

The DATE-COMPILED paragraph provides the compilation date in the
Identification Division source program listing.

General Format

DATE-COMPILED. comment-entry

Syntax Rule

The comment-entry may be any combination of the characters from the
computer's character set. The continuation of the comment entry by use of
the hyphen is not permitted; however, the comment entry may be contained on
one or more lines.

General Rule

The paragraph-name DATE-COMPILED causes a date comment entry string to be
inserted during program compilation (null comment entries are permitted).
If a DATE compiler directive is present, the DATE-COMPILED comment-entry is
replaced in its entirety by the date string specified in the command line.

3 -3

See the L/II COBOL Operating Guide for details of the derivation of the
comment—entry replacement string for your COBOL implementation at
compile~time.

ENVIRONMENT DIVISION IN THE NUCLEUS

CONFIGURATION SECTION

The SOURCE-COMPUTER Paragraph

Function

The SOURCE-~-COMPUTER paragraph identifies the computer upon which the program
is to be compiled. ‘

General Format

SOURCE-COMPUTER. computer-name.

Syntax Rule
Computer-name must be one COBOL word defined by the user.
General Rules
The computer-name provides a means for identifying equipment configuration,

in which case the computer-name and its implied configuration are specified
by the user.

The OBJECT-COMPUTER Paragraph

Function

The OBJECT-COMPUTER Paragraph identifies the computer on which the program
is to be executed.

General Format

WORDS
OBJECT~-COMPUTER. computer—nauwz[MEMORY SIZE integer CHARACTERS%]

MODULES

[,PROGRAM COLLATING SEgUﬁNCE IS alphabet-name].
Syntax Rule J |
l. Computer-name must be one COBOL word defined b& the user.
General Rules
1. The computer-name provides a means for identifying equipment

configuration, in which case the computer-name and its implied
3 -4

configurations are specified by the user. The configuration definiti
contains specific 1information concerning: the memory size.

If the PROGRAM COLLATING SEQUENCE Clause is specified, the collating
sequence associated with alphabet-name is used to determine the truth
value of any nonnumeric comparisons:

a. Explicitly specified in relation conditions (see Relation
Condition later in this Chapter).

b. Explicitly specified in condition-name conditions; see Condition
Name Condition (Conditional Variable).

If the PROGRAM COLLATING SEQUENCE Clause is not specified, the native
collating sequence is used. Appendix B lists the full ASCII collating
sequence (native) and those characters used in COBOL.

If the PROGRAM COLLATING SEQUENCE Clause is specified, the program
collating sequence 1is the collating sequence associated with the
alphabet-name specified in that Clause.

The PROGRAM COLLATING SEQUENCE Clause is also applied to any nonnumeric
merge or sort keys unless the COLLATING SEQUENCE phrase of the
respective SORT or MERGE statement is specified.

The PROGRAM COLLATING SEQUENCE clause applies only to the program in
which it is specified.

The SPECIAL-NAMES Paragraph

Function

The SPECIAL-NAMES paragraph provides a means of relating implementor-names
to user-specified mnemonic-names and of relating alphabet-names to character
sets and/or collating sequences.

General Format

SPECIAL-NAMES.

[function-name-1 IS mnemonic-name-~1]
[function-name-2 IS mnemonic-name-2] ...

0
SWITCH . (IS mnemonic-name]

3 ,ON STATUS 1S condition-name~1 [, OFF STATUS 1S condltlon—name—Z]g
OFF STATUS 1. IS condition-name-2 [, ON STATUS IS S condition-name-1]

STANDARD-1
r, alphabet-name IS NATIVE

“ o

THROUGH .
3 THRU i literal-2

ALSO literal-3 [, ALSO literal-4]

literal-l

THROUGH j ..
- literal-5 3THRU { literal-6

ALSO literal-7 [, ALSO literal-8] .

[, CURRENCY SIGN IS literal-9]

[, DECIMAL-POINT IS COMMA]

Syntax Rules

L. Mnemonic~names can be any COBOL user-defined word and at least one
constituent character must be alphabetic.

2. The 1literals specified in the literal phrase of the alphabet-~name
clause:

a. If numeric, must be unsigned integers and must have a value within

the range of one (1) through the maximum number of characters in
the native character set. :

b. If nonnumeric and associated with a THROUGH or ALSO phrase, must
. each be one character in length.

3 -6

4.

If the literal phrase of the alphabet-name clause is specified a given
character must not be specified more than once in an alphabet-name
clause.

The words THRU and THROUGH are equivalent.

General Rules

1‘

Function-name-1 specifies system devices or functions used by the
compiler. The programmer can associate any user-defined COBOL word
with a function-name. Mnemonic-name-l, -2, etc can be used in the

r WRITE statements.

Note that the FORMFEED and TAB functions correspond to the ASCII
characters 0C and OB as sent to the printer. On most printers 0C moves
the paper to the Top of Form position and the effect of OB depends on
the individual mode of the printer. Usually a specified number of
lines are skipped. ‘

The SWITCH clause must have at least one condition-name associated with
it. The switch is set at run-time by the operator and the setting may
be determined in the program by testing the condition-names. The
setting of the switches cannot be changed during execution.

The alphabet-name clause provides a means for relating a name to a
specified character code set and/or collating sequence. ° When
alphabet-name is referenced in the PROGRAM COLLATING SEQUENCE clause
(see THE OBJECT-COMPUTER PARAGRAPH in this Chapter) or the COLLATING
SEQUENCE phrase of a SORT or MERGE statement (see THE SORT STATEMENT or
THE MERGE STATEMENT in Chapter 8), the alphabet-name clause specifies a
collating sequence. When alphabet-name is referenced in a CODE-SET
clause in a file description entry (see The File Description - Complete
Entry Skeleton in Chapter 5), the alphabet-name clause specifies a
character code set. : »
a. If the STANDARD-1 phrase is specified, the character code set or
collating sequence identified is that defined in American Standard
Code for Information Interchange, X3.4-1968. Appendix B defines
the correspondence between the characters of the standard
character set and the characters of the native character set.
b. If the NATIVE phrase is specified, the native character code set
or native collating sequence 1is wused. The native collating
sequence is as in ANSI publication X3.4-1968 (see Appendix B).

The character that has the highest ordinal position in the program
collating sequence specified is associated with the figurative constant
HIGH-VALUE. If more than one character has the highest position in the

3 -7

program collating sequence, the last character specified is associated
with the figurative constant HIGH-VALUE.

The character that has the lowest ordinal position in the program
collating sequence specified is associated with the figurative constant
LOW-VALUE. If more than ome character has the lowest position in the
program collating sequence, the first character specified is associated
with the figurative constant LOW-VALUE.

The literal which appears in the CURRENCY SIGN IS literal clause 1is
used in the PICTURE clause to represent the currency symbol. The
literal is limited to a single character and must not be one of the
following characters.

* digits 0 thru 9;

* alphabetic characters A; B, ¢, b, L, P, R, S, V, X, Z, or the
space;

* special characters '*', '4', f-T v v ot o rer oo, Yy, ey,
"/lor '='

If this clause is not present, only the currency sign is used in the
PICTURE clause. ’

The clause DECIMAL-POINT IS COMMA means that the function of comma and
period are exchanged in the character-string of the PICTURE clause and
in numeric literals.

DATA DIVISION IN THE NUCLEUS

WORKING STORAGE SECTION

The Working-Storage Section 1is composed of the section header, followed by
data description entries for noncontiguous data items and/or record
description entries., Each Working-Storage Section record mname and

noncontiguous item name must be unique since it cannot be qualified.
Subordinate data-names need not be unique if they can be made unique by
qualification.

Noncontiguous Working-Storage

Items and constants in Working-Storage which ©bear no hierarchical
relationship to one another need not be grouped into records, provided they
do not need to be further subdivided. 1Instead, they are classified and
defined in a separate data description entry which begins with the special
level -number, 77.

The following data clauses are required in each data descriptions eatry:
® Level-number 77
* Data=-name

* The PICTURE clause or the USAGE IS INDEX clause

Other data description clauses are optional and can be used to complete the
description of ‘the item if necessary.

Working-Storage Records

Data elements and constants in Working-Storage which bear a definite hier-
archic relationship to one another must be grouped into records according to
the rules for formation of record descriptions. All clauses which are used
in record descriptions in - the File Section can be wused 1in record
descriptions in the Working-Storage Section.

Initial Values

The initial value of any item in the Working~-Storage Section except an index
data item is specified by using the VALUE clause with the data item. The
initial value of any index data item is unpredictable.

THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON

Function

A data description entry specifies the characteristics of a particular item
of data.

General Format

Format 1:

data-name—lg

level-number FILLER

[; REDEFINES data-name-2]

PICTURE)

; {PIC } IS character—strlng]
COMPUTATIONAL
COMP

; [USAGE IS]{COMPUTATIONAL-3
COMP-3
DISPLAY

i LEADING

; [SIGN IS] {TRAILING} [SEPARATE CHARACTERJ]

[, fSYNCHRONIZED LEFT

|’ s¥NC RIGHT

-

JUSTIFIED
; {JUST } RIGHT]

s BLANK WHEN ZERO]

(s VALUE IS literal].
Format 2:

THRU } data-name-3

66 data-name-1; RENAMES data—name—Z[:{zgggggg]

Format 3:

88 condition-name; {giiggslzRE} literal-l [-{%%%%Hgﬂ} literél—Z]

. THROUGH .
[,llteral-3[{THRU- } llteral—4]] oo

Syntax Rules

1. The level-number in Format 1 may be any number from 01-49 or 77.

2. The clauses may be written in any order with two exceptions: the
data-name-1 or FILLER clause must immediately follow the level-number;
the REDEFINES clause, when wused, must immediately follow the
data-name~1 clause.

3-10

3. The PICTURE clause must be specified for every elementary item except
' an index data item, in which case use of this clause is prohibited.

4. The words THRU and THROUGH are equivalent.

General Rules

l. The clauses SYNCHRONIZED, PICTURE, JUSTIFLED, and BLANK WHEN ZERO, must
not be specified except for an elementary data item.

2. Format 3 is used for each condition-name. Each condition-name requires
a separate entry with level-number 88. Format 3 contains the name of
the condition and the value, values, or range of values associated with
the condition-name. The condition-name entries for a particular
conditional variable must follow the entry describing the item with
which the condition-name 1is associated. A condition-name can be
associated with any data description entry which contains a
level-number except the following:

a. Another condition-name.

b. A level 66 item.

c. A group containing items with descriptions including JUSTIFIED,
SYNCHRONIZED or USAGE (other than USAGE IS DISPLAY).

d. An index data item (See The USAGE IS INDEX Clause in Chapter 4).

3 -11

THE BLANK WHEN ZERO CLAUSE
Function

The BLANK WHEN ZERO clause permits the blanking of an item when its value is
zero.

General Format

BLANK WHEN ZERO

Syntax Rule

The BLANK WHEN ZERO clause can be used only for én elementary item whose
PICTURE is specified as numeric (with implicit or explicit USAGE IS DISPLAY)
or numeric edited. (See THE PICTURE CLAUSE later in this Chapter).

General Rules

1. When the BLANK WHEN ZERO clause is used, the item will contain nothing
but spaces if the value of the item is zero.

2. When the BLANK WHEN ZERO clause is used for an item whose PICTURE is
numeric, the category of the item is considered to be numeric edited.

3 -12

THE DATA-NAME OR FILLER CLAUSE
Function
A data-name specifies the name of the data being described. The word

FILLER specifies an elementary item of the logical record that cannot be
referred to explicitly.

General Format

data~name
FILLER

Syntax Rule
In the File, Working=-Storage, Communication and Linkage Sections, a

data-name or the key word FILLER must be the first word following the
level-number in each data description entry.

General Rule

The key word FILLER may be used to name an elementary item o
a record. Under no circumstances can a FILLER item be referred to
explicitly. However, the key word FILLER may be used as a conditional
variable because such use does not require explicit reference to the FILLER
item but to its value.

3 -13

THE JUSTIFIED CLAUSE

Function

The JUSTIFIED clause specifies non-standard positioning of data within a
receiving data item.

General Format

3JUSTIFIED

ToeT ; RIGHT

Syntax Rules

L.

The JUSTIFIED clause can be specified only at the elementary item
level.

JUST is an abbreviation for JUSTIFIED.

The JUSTIFIED clause cannot be specified for any data item described as
numeric or for which editing is specified.

General Rules

1.

When a receiving data item is described with the JUSTIFIED clause and
the sending data item is larger than the receiving data item, the
leftmost characters are truncated. When the receiving data item 1is
described with the JUSTIFIED clause and it is larger than the sending
data item, the data is aligned at the rightmost character position in
the data item with space fill for the leftmost character positions.

Note that the contents of the sending data item are not taken into
account, i.e. trailing spaces are not suppressed.

For example

If a data-item PIC X(4) whose value is A_.....(i.e. A followed by
three spaces) is moved into a data-item PIC X(6) JUSTIFIED the
result will be__ . Ac... If the same data item is moved to one with
PIC X(3) JUSTIFIED the result will be - i.e. the leftmost
character is truncated.

When the JUSTIFIED clause is omitted, the standard rules for aligning
data within an elementary item apply. (See Standard Alignment Rules.)

(Addendum 1)

3 - 14

LEVEL NUMBER
Function
The level-number shows the hierarchy of data within a logical record. 1In

addition, it is used to identify entries for working storage items, linkage
items, condition-names, and the RENAMES clause.

General Format

level-number

Syntax Rules

1. A level-number is required as the first element in each data
description entry. '

2. Data description entries subordinate to an FD, CD, or SD entry must:
have level-numbers with the wvalues 01-49, 66 or 88. (See
THE FILE DESCRIPTION in Chapter 5).

3. Data description entries in the Working-Storage Section and Linkage
Section must have level-numbers with the values 01-49, 66, 77 or 88.

4. A level number may be a one or two digit number.

General Rules

1. The level-number 01 identifies the . first entry in each record
description.

2. Special level numbers have been assigned to certain entries where there
is no real concept of level:

a. The level-number 77 is assigned to identify noncontiguous working
storage data items, noncontiguous linkage data items, and can be
used only as described by Format 1 of the data description
skeleton. (See THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON in
this Chapter).

b. Level number 66 is assigned to identify RENAMES entries and can be
used only as described in Format 2 of the data description
skeleton earlier in this Chapter. ' ’

c. Level number 88 is assigned to entries which define
condition-names associated with a conditional variable and can be
used only as described in Format 3 of the data description
skeleton earlier in this Chapter.

3. Multiple level 0l entries subordinate to any given level indicator,
represent implicit redefinitions of the same area.

3 -15

THE PICTURE CLAUSE
Function

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

General Format

3 PICTURE

PIC i IS character-string

Syntax Rules

1. A PICTURE clause can be specified only at the elementary item level.

2. A character-string consists of certain allowable combinations of
characters in the COBOL character set used as symbols. The allowable
combinations determine the category of the elementary item.

3. The maximum number of characters allowed in the character-string is 30.

4, The PICTURE clause must be specified for every elementary item eXcept
an index data item, in which case use of this clause is prohibited.

5. PIC is an abbreviation for PICTURE.

6. The asterisk when used as the zero suppression symbol and the clause
BLANK WHEN ZERO may not appear in the same entry.

General Rules

There are five categories of data that can be described with a PICTURE
clause: alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric
edited. General rules within these categories are given below:

Alphabetic Data Rules

1. Its PICTURE character-string can only contain the symbols 'A', 'B'; and

2,. 1Its contents when represented in standard data format must be any
combination of the twenty-six (26) letters of the Roman alphabeét and
the space from the COBOL character set. Its length must be between 1
and 8191 characters.

Numeric Data Rules

1. Its PICTURE character-string can only contain the symbols '9', 'P',
'S', and 'V'. The number of digit positions that can be described by

the PICTURE character-string must range from 1 to 18 inclusive.

3 -16

If unsigned, the data in standard data format must be a combination of
the Arabic numerals '0', '1', '2', '3', '4', 's5', 'e', '7', '8', and
'9'; if signed, the item may also contain a '+', '-', or other
representation of an operational sign. (see THE SIGN CLAUSE later in
this Chapter).

Alphanumeric Data Rules

l.

Its PICTURE character-string is restricted to certain combinations of
the symbols 'A', 'X', '9', and the item 1is treated as 1if the
character-string contained all X's. A PICTURE character-string which
contains all A's or all 9's does not define an alphanumeric item; and

Its contents when represented in standard data format can consist of
any characters in the computer's character set. Its length must be
between 1 and 8191 characters.

Alphanumeric Edited Data Rules

1.

Its PICTURE character-string is restricted to certain combinations of
the following symbols: 'A', 'X', '9', 'B', '0', and '/' as follows:

a. The character-string must contain at least one 'B' and at least
one 'X' or at least one '0' (zero) and at least ome 'X' or at
least one '/' (stroke) and at least one 'X'; or ’

b. The character-string must contain at least one '0' (zero) and at
least one 'A' or at least one '/' (stroke) and at least one 'A';
and

Its contents when represented in standard data format are allowable
characters in the computer's set. Its length must be between 1 and 152
characters.

Numeric Edited Data Rules

L.

Its PICTURE character-string is restricted to certain combinations of
the SymbOlS 'BY’ '/" ‘P', 'V', lz', VOY, |9l’ V’V,‘|.|’ '*', '+|’ V_V’
'CR', 'DB', and the currency symbol. The allowable combinations are
determined from the order of precedence of symbols and the editing
rules as follows:

a., The number of digit positions that can be represented in the
PICTURE character-string must range from 1 to 18 inclusive.

b. The character-string must contain at least one '0O', 'B', '/', 'Z',
TR, T, T, T, =", 'CR', 'DB', or currency symbol.

The contents of the character positions of these symbols that are

allowed to represent a digit in standard data format, must be one of
the numerals.

3 -17

Elementary Item Size

The size of an elementary item, where size means the number of character
positions occupied by the elementary item in standard data format, is
determined by the number of allowable symbols that represent character
positions. An integer which 1is enclosed in parentheses following the
Symbols IA" l’l, ‘X', '9" 'P', ’Z', l*|’ 'B', '/7, '0', '+l, '_" or the
currency symbol indicates the number of consecutive occurrences of the

symbol. Note that the following symbols may appear only once in a given
PICTURE: 's', 'v', '.', 'CR', and 'DB'.

Symbols Used

The functions of the symbols used to describe an elementary item are
explained as follows:

A - Each 'A' in the character-string represents a character position which
can contain only a letter of the alphabet or a space.

B - Each 'B' in the character-string represents a character position into
which the space character will be inserted.

P - Each 'P' indicates an assumed decimal scaling position and is used to
specify the location of an assumed decimal point when the point is not
within the number that appears in the data item. The scaling position
character 'P' is not counted in the size of the data item. Scaling
position characters are counted in determining the maximum number of
digit positions (18) in numeric edited items or numeric items. The
scaling position character 'P' can appear only to the left or right as
a continuous string of 'P's within a PICTURE description; since the
scaling position character 'P' implies an assumed decimal point (to the
left of 'P's if '"P's are leftmost PICTURE characters and to the right
if 'P's are rightmost PICTURE characters), the assumed decimal point
symbol 'V' is redundant as either the leftmost or rightmost character
within such a PICTURE description. The character 'P' and the insertion
character '.' (period) cannot both occur in the same PICTURE
character-string. If, in any operation involving conversion of data
from one form of internal representation to another, the data item
being counverted is described with the PICTURE character 'P', each digit
position described by a 'P' is considered to contain the value zero,
and the size of the data item is considered to include the digit
positions so described.

S - The letter 'S' is used in a character-string to indicate the presence,
but neither the representation nor, necessarily, the position of an
operational sign; it must be written as the leftmost character in the
PICTURE. The 'S' is not counted in determining the size (in terms of
standard data format characters) of the elementary item unless the
entry is subject to a SIGN clause which specifies the optional SEPARATE
CHARACTER phrase. (See the SIGN Clause in this Chapter.)

3 --18

V = The 'V' is used in a character-string to indicate the location of the
assumed decimal point and may only appear once in a character-string.
The 'V' does not represent a character position and therefore is not
counted in the size of the elementary item. When the assumed decimal
point is to the right of the rightmost symbol in the string the 'V' is
redundant,

X - Each 'X' in the character-string is used to represent a character
position which contains any allowable character from the computer's
character set,

Z - Each 'Z' in a character=-string may only be used to represent the
leftmost numeric character positions which will be replaced by a space
character when the contents of that character position is zero. Each
'2' is counted in the size of the item.

9 - Each '9' in the character-string represents a character position which
contains a numeral and is counted in the size of the item.

0 - Each '0' (zero) in the character-string represents a character position
into which the numeral zero will be inserted. The '0' is counted in
the size of the item.

/ = Each '/' (stroke) in the character-string represents a character
position into which the stroke character will be inserted. The '/' is
counted in the size of the item.

, — Each ',' (comma) in the character-string represents a character
position into which the character ',' will be inserted. This character
position is counted in the size of the item. The insertion character

'," must not be the last character in the PICTURE character-string.

. = When the character '.' (period) appears in the character-string it is
an editing symbol which represents the decimal point for alignment
purposes and in addition, represents a character position into which
the character '.' will be inserted. The character '.' is counted in
the size of the item. For a given program the functions of the period
and comma are exchanged if the clause DECIMAL-POINT IS COMMA is stated
in the SPECIAL-NAMES paragraph. In this exchange the rules for the
period apply to the comma and the rules for the comma apply to the

period wherever they appear in a PICTURE clause. The insertion
character '.' must not be the last character 1in the PICTURE

character-string.

+, =y CR, DB - These symbols are used as editing sign coantrol symbols. When
used, they represent the character position into which the
editing sign control symbol will be placed. The symbols are
mutually exclusive in any one character-string and each
character used in the symbol 1is counted in determining the
size of the data item.

kX -

Cs

Each '*#' (asterisk) in the character-string represents a leading

numeric character position into which an asterisk will be placed when
the contents of that position is zero. Each '#' is counted in the size

of the item.

The currency symbol in the character-string represents a character
position into which a currency symbol is to be placed. The currency
symbol in a character-string is represented by either the currency sign
or by the single character specified in the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph. The currency symbol is counted in the size of
the item.

Editing Rules

There are two general methods of performing editing in the PICTURE clause,
either by insertion or by suppression and replacement. There are four types
of insertion editing available. They are:

Simple insertion
Special insertion
Fixed insertion
Floating insertion

* % F *

There are two types of suppression and replacement editing:

* Zero suppression and replacement with spaces
% Zero suppression and replacement with asterisks’

The type of editing which may be performed upon an item 1is dependent upon
the category to which the item belongs. Table 3-l specifies which type of
editing may be performed upon a given category.

Table 3-1. Editing Types for Data Categories

CATEGORY TYPE OF EDITING

Alphabetic Simple inserfion 'B' only
Numeric Noné

Alphanumeric None

Alphanumeric Edited Simple insertion '0', 'B' and '/'
Numeric Edited All, but see NOTE below

3 -20

NOTE:

Floating insertion editing and editing by =zero suppression and
replacement are mutually exclusive in a PICTURE clause, Only one type
of replacement may be used with zero suppression in a PICTURE clause.

Simple Insertion Editing

Simple Insertion Editing. The ',' (comma), 'B' (space), '0' (zero), and '/'
(stroke) are used as the insertion characters. The insertion characters are
counted in the size of the item and represent the position in the item into
which the character will be inserted.

Special Insertion Editing

Special Insertion Editing. The '.,' (period) 1is used as the insertion
character. In addition to being an insertion character it also represents
the decimal point for alignment purposes. The insertion character used for
the actual decimal point is counted in the size of the item. The use of the
assumed decimal point, represented by the symbol 'V' and the actual decimal
point, represented by the insertion character, in the same PICTURE
character-string is disallowed. The result of special insertion editing is
the appearance of the insertion character in the item in the same position
as shown in the character-string.

Fixed Insertion Editing

Fixed Insertion Editing., The currency symbol and the editing sign
control symbols, '+', '=', 'CR', 'DB', are the insertion characters. Only
one currency symbol and only one of the editing sign control symbols can be
used in a given PICTURE character-string. When the symbols 'CR' or 'DB' are
used they represent two character positions in determining the size of the
item and they must represent the rightmost character positions that are
counted in the size of the item. The symbol '+' or '-', when used, must be
either the leftmost or rightmost character position to be counted in the
size of the item. The currency symbol must be the leftmost character

Table 3-2 Editing Symbols in PICTURE Character-Strings

] RESULT
EDITING SYMBOL IN

PICTURE CHARACTER~STRING DATA ITEM DATA ITEM
POSITIVE OR ZERO NEGATIVE

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

3 =21

Floating Insertion Editing

The currency symbol and editing sign control symbols '+' or '-=' are the
floating insertion characters and as such are mutually exclusive in a given
PICTURE character-string. '

Floating insertion editing is indicated in a PICTURE character-string by
using a string of at least two of the floating insertion characters. This
string of floating insertion characters may contain any of the fixed
insertion symbols or have fixed insertion characters immediately to the
right of this string. These simple insertion characters are part of the
floating string.

The leftmost character of the floating insertion string represents the
leftmost limit of the floating symbol in the data item. The rightmost
character of the floating string represents the rightmost limit of the
floating symbols in the data item.

The second floating character from the left represents the leftmost limit of
the numeric data that can be stored in the data item. Non-zero numeric data
may replace all the characters at or to the right of this limit.

In a PICTURE character-string, there are only two ways of representing
floating insertion editing. Oune way 1is to represent any or all of the
leading numeric character positions on the left of the decimal point by the
insertion character. The other way is to represent all of the numeric
character positions in the PICTURE character-string by the insertion
character,

If the insertion characters are only to the left of the decimal point in the
PICTURE character-string, the result is that a single floating insertion
character will be placed into the character position immediately preceding
either the decimal point or the first non-zero digit in the data represented
by the insertion symbol string, whichever is farther to the left in the
PICTURE character-string. The character positions preceding the insertion
character are replaced with spaces.

If all numeric character positions in the PICTURE character~string are
represented by the insertion character, the result depends upon the value of
the data. TIf the value is zero the entire data item will contain spaces.
If the value is not zero, the result is the same as when the insertion
character is only to the left of the decimal point,

To avoid truncation, the minimum size of the PICTURE character=-string for
the receiving data item must be the number of characters in the sending data
item, plus the number of non-floating insertion characters being edited into
the receiving data item, plus one for the floating insertion character.

3 =22

Zero Suppression Editing

The suppression of leading zeros in numeric character positions is indicated
by the use of the alphabetic character 'Z' or the character '*' (asterisk)
as suppression symbols in a PICTURE character-string. These symbols are
mutually exclusive in a given PICTURE character-string. Each suppression
symbol is counted in determining the size of the item. If 'Z' is used, the
replacement character will be the space and if the asterisk is used, the
replacement character will be '*',

Zero suppression and replacement is indicated in a PICTURE character-string
by using a string of one or more of the allowable symbols to represent
leading numeric character positions which are to be replaced when the
associated character position in the data contains a zero. Any of the
simple 1insertion characters embedded in the string of symbols or to the
immediate right of this string are part of the string.

In a PICTURE character-string, there are only two ways of representing zero
suppression. One way is to represent any or all of the leading numeric
character positions to the left of the decimal point by suppression symbols.
The other way is to represent all of the numeric character positions in the
PICTURE character-string by suppression symbols,

If the suppression symbols appear only to the left of the decimal point, any
leading zero in the data which corresponds to a symbol in the string is
replaced by the replacement character. Suppression terminates at the first
non-zero digit in the data represented by the suppression symbol string or
at the decimal point, whichever is encountered first.

If all numeric character positions in the PICTURE character-string are
represented by suppression symbols and the value of the data is not zero,
the result is the same as if the suppression characters were only to the
left of the decimal point. If the value is zero and the suppression symbol
is 'Z', the entire data item will be spaces. If the value is zero and the
suppression symbol is '*', the data item will be all '*' except for the
actual decimal point.

The symbols '+', '=', '#' '72' and the currency symbol, when used as
floating replacement characters, are mutually exclusive within a given
character-string.

Precedence Rules

Table 3-3 shows the order of precedence when using characters as symbols in
a character-string. An 'X' at an intersection indicates that the symbol(s)
at the top of the column may precede, in a given character-string, the
symbol(s) at the left of the row. Arguments appearing in braces indicate
that the symbols are mutually exclusive. The currency symbol is indicated

by the symbol 'ecs'.

3 -23

At least ome of the symbols 'A', 'X', 'Z', '9' or '#', or at least two of
the symbols '+', '-' or 'cs' must be present in a PICTURE string.

Table 3-3. PICTURE Character Precedence Chart.
First Non-Floating Floating
Symbol Insertion Symbols Insertion Symbols Other Symbols
|
+ (4
Second Blo /|, {:}{t}{m m{f}{i}{;}{_]aa9gsv1’?
Symbol
B | x| x}|x| x| x| x x| x| x| x | x| x| x |x}|x x X
0 | x| x| x| x| x| x x| x| x| x [x|x| x |{x }|x x x
/ | x| x| x| x} x| x x| x| x| x x| x| x|[x|x x x
a
o » | x| x| x| x| x| x x | x| x|{x |[x|x] x|x x x
]
a8
8=
-
S x| x| x| x x x| x x x x
- Q
PR ot
L8
ga{"’
z al 1.
-
{
1=zl =z| x| x x| x| x x| x| x x| x| x
{g}xxxxx x|x]| x xX{ x| x x| x| x
cs x
H
o | Tl x| x| x x x| x
{z
«f | X| [2] x| x{x x| x| x x b
a
-4
o
ua{+}xxxx x x
aw| \=
Te
35| o,
33{}::::: x x| x x x
RIS
[’}
*
<
“les | x| x| x| x x x
es | x| x|x| x| x| x x| x x x
9 | x| x| x| x}| x| x x| x x x x| x| x| x x
A
:‘xxxx x| x
F)
1
a] S
1]
v
=
-
| V] x|x|x| x x x| x x x x x x
P iz{x|=x!|x x x| x x x x x x
P x x x| x x

b4
insertion symbols 'Z', '%' '+' '-' and 'cs', and other symbol 'P' appear
twice in the PICTURE character precedence chart. The leftmost column and
uppermost row for each symbol represents its use to the left of the decimal
point position. The second appearance of symbol in the row and column
represents its use to the right of the decimal point position.

In Table 3-3, non-floating insertion symbols‘ '+' and '-' floating

3 =25

THE REDEFINES CLAUSE
Function

The REDEFINES clause allows the same computer storage area to be described
by different data description entries.

General Format

level-number data-name-1; REDEFINES data-name-2
NOTE: Level-number, data-name-l and the semi-colon are shown in the

above format to improve clarity. Level-number and data-name-1 are
not part of the REDEFINES clause.

Syntax Rules

1. The REDEFINES clause when specified must immediately follow

2. The level¥numbers of data-name-l and data-name-2 must be identical but
must not be 66 or 88.

3. This clause must not be used in level 0Ol entries in the File Section.
(See General Rule 2 of THE DATA RECORDS CLAUSE in Chapter 5.

4, This clause must not be used in level Ol entries in the Communication
Section.

3. Data-name-2 may be subordinate to an entry which contains a REDEFINES
' clause. However data-name~2 may be subordinate to an item whose data
description entry contains an OCCURS clause. In this case, the
reference to data-name-2 in the REDEFINES clause may not be subscripted
or indexed. Neither the original definition nor the redefinition can
include an item whose size is variable as defined in the OCCURS clause.

(See THE OCCURS CLAUSE in Chapter 4).

6. No entry having a level-number numerically lower than the level-number
of data-name-2 and data-name-l1 may occur between the data description
entries of data-name-2 and data-name-l.

General Rules

1. Redefinition starts at data-name-2 and ends when a level-number less
than or equal to that of data-name-2 is encountered.

3 - 26

When the level-number of data-name-l is other than 0l, it must specify
the same number of character positions that the data item referenced by
data-name-2 contains (when the ANSI switch is set). It is important to
observe that the REDEFINES clause specifies the redefinition of a
storage area, not of the data items occupying the area.

Multiple redefinitions of the same character positions are permitted.
The entries giving the new descriptions of the character positions must
follow the entries defining the area being redefined, without
intervening entries that define new character positions. Multiple
redefinitions of the same character positions must all wuse the
data-name of the entry that originally defined the area.

The entries giving the new description of the character positions must
not contain any VALUE clauses except in condition-name entries.

Multiple level 0l entries subordinate to any given level indicator
represent implicit redefinitions of the same area.

(Addendum 2)

3 - 27

THE RENAMES CLAUSE
Function
The RENAMES clause permits alternative, possibly overlapping, groupings of

elementary items.

General Format

66 data-name-l; RENAMES data-name=2 [~%§%§E§E data-name-B] .
NOTE: Level-number 66, data-name~l and the semicolon are shown in the

above format to improve clarity. Level-number and data-name-l are
not part of the RENAMES clause. :

Syntax Rules

L. All RENAMES entries referring to data items within a given logical
record must immediately follow the last data description entry of the
associated record description entry.

2. Data-name-2 and data-name-3 must be names of elementary items or groups
of elementary items in the same logical record, and cannot be the same
data-name. A 66 level entry cannot rename another 66 level entry nor
can it rename a 77, 88, or 0l entry.

3. Data-~name~-l cannot be used as a qualifier, and can only be qualified by
the names of the associated level 01, FD, CD or SD entries. Neither
data-name-2 nor data-name-3 may have an OCCURS clause in its data
description entry nor be subordinate to an item that has an OCCURS
clause in 1its data description entry. (See THE OCCURS CLAUSE in
Chapter 4.)

4, The beginning of the area described by data-name=-3 must not be to the
left of the beginning of the area desribed by data-name-2. The end of
the area described by data-name-3 must be the right of the end of the
area described by data-name=-2. Data-name-3, therefore, cannot be
subordinate to data-name-2,

5. Data-name-~2 and data-name-3 may be qualified.
6. The words THRU and THROUGH are equivalent.
7. None of the items within the range, 1including data-name-2 and

data-name-3, if specified, can be an item whose size is variable as
defined in THE OCCURS CLAUSE in Chapter 4, :

3 -128

General Rules

1.

2.

One or more RENAMES entries can be written for a logical record.

When data-name-3 is specified, data-name~l is a group item which
includes all elementary items starting with data-name-2 (if data-name-2
is an elementary item) or the first elementary item in data-name-2 (if
data-name-2 is a group item), and concluding with data-name-3 (if
data-name-3 1is an elementary item) or the last elementary item in
data-name-3 (if data-name-3 is a group item).

When data-name-3 is not specified, data-name-2 can be either a group or
an elementary item; when data-name-2 is a group item, data-name-l is
treated as a group item, and when data-name-2 is an elementary item,
data-name-1 is treated as an elementary item.

3 -29

THE SIGN CLAUSE

Function

The SIGN clause specifies the position and the mode of representation of the
operational sign when it 1is necessary to describe these properties
explicitly.

General Format

LEADING

[SIGN Is] 3 TRAILING

; [SEPARATE CHARACTER]

Syntax Rules

L.

The SIGN clause may be specified only for a numeric data description
entry whose PICTURE contains the character 'S', or a group item
containing at least one such numeric data description entry.

The numeric data description entries to which the SIGN clause applies
must be described as USAGE IS DISPLAY.

At most one SIGN clause may apply to any given numeric data description
entry.

If the CODE-SET clause 1is specified, any signed numeric data
description entries associated with that file description entry must be
described with the SIGN IS SEPARATE clause.

General Rules

1.

The optional SIGN clause, if present, specifies the position and the
mode of representation of the operational sign for the numeric data
description entry to which it applies, or for each numeric data
description entry subordinate to the group to which it applies. The
SIGN clause applies only to numeric data description entries whose
PICTURE contains the character 'S'; the 'S' indicates the presence of,
but neither the representation nor, necessarily, the position of the
operational sign. :

A numeric data description entry whose PICTURE contains the character
'S', but to which no optional SIGN clause applies, has an operational
sign, but neither the representation nor, necessarily, the position of
the operational sign is specified by the character 'S'. In this
(default) case, general rules 3 through 5 do not apply to such signed
numeric data items. The representation of the default operational sign
is defined in Chapter 2 under the heading Selection of Character
Representation and Radix.

3 -30

If the optional SEPARATE CHARACTER phrase is not present, then:

a. The operational sign will be presumed to be associated with the
leading (or, respectively, trailing) digit position of the
elementary numeric data item.

b. The letter 'S' in a PICTURE character-string is not counted in
determining the size of the item (in terms of standard data format
characters).

If the optional SEPARATE CHARACTER phrase is present, then:

a. The operational sign will be presumed to be the leading (or,
respectively, trailing) character position of the elementary
numeric data item; this character position 1is not a digit
position.

b. The letter 'S' in a PICTURE character-string is counted in
determining the size of the item (in terms of standard data format
characters).

c. The operational signs for positive and negative are the standard
data format characters '+' and '-', respectively.

Every numeric data description entry whose PICTURE contains the
character 'S' is a signed numeric data description entry. If a SIGN
clause applies to such an entry and coaversion is necessary for
purposes of computation or comparisons, conversion takes place
automatically.

3 - 31

THE SYNCHRONIZED CLAUSE

Function

The SYNCHRONIZED clause specifies the alignment of an elementary item on the
natural boundaries of the computer memory.

General Format

{

SYNCHRONIZED LEFT
SYNC RIGHT

Syntax Rules

1.

This clause may only appear with an elementary item.

SYNC is an abbreviation for SYNCHRONIZED.

General Rules

This clause specifies that the subject data item is to be aligned in
the computer such that no other data item occupies any of the character
positions between the leftmost and rightmost natural boundaries
delimiting this data item. If the number of character positions
required to store this data item is less than the number of character
positions between those natural boundaries, the unused <character
positions (or portions thereof) must not be used for any other data
item. Such unused character positions, however, are included in:

a. The size of any group item(s) to which the elementary item
belongs; and

~b. The character positions redefined when this data item is the

object of a REDEFINES clause.

SYNCHRONIZED not followed by either RIGHT or LEFT specifies that the
elementary item is to be positioned between natural boundaries in such
a way as to effect efficient utilization of the elementary data item.

SYNCHRONIZED LEFT specifies that the elementary item is to be posi-
tioned such that it will begin at the left character position of the
natural boundary in which the elementary item is placed.

SYNCHRONIZED RIGHT specifies that the elementary item is to be posi-
tioned such that it will terminate on the right character position of
the natural boundary in which the elementary item is placed.

3 - 32

Whenever a SYNCHRONIZED item 1is referenced in the source program, the
original size of the item, as shown in the PICTURE clause, is used in
determining any action that depends on size, such as justification,
truncation or overflow.

If the data description of an item contains the SYNCHRONIZED clause and
an operational sign, the sign of the item appears in the normal
operational sign position, regardless of whether the item 1is
SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT.

When the SYNCHRONIZED clause is specified in a data description entry
of a data item that also contains an OCCURS clause, or in a data
description entry of a data item subordinate to a data description
entry that contains an OCCURS clause, then:

a. Each occurrence of the data item is SYNCHRONIZED.

b. Any implicit FILLER generated for other data items within that
same table are generated for each occurrence of those data items.

This clause is hardware dependent,

3 =33

THE USAGE CLAUSE

Function

The USAGE clause specifies the format of a data item in the computer
storage.

General Format

COMPUTATIONAL
[USAGE 1S] COMP

DISPLAY

COMPUTATIONAL-3

COMP—=3

Syntax Rules

L.

2.

The PICTURE character-string of a COMPUTATIONAL or COMPUTATIONAL-3 item
can contain only '9's, the operational sign character 'S', the implied
decimal point character 'V', one or more 'P's. (See THE PICTURE CLAUSE
earlier in this Chapter).

COMP is an abbreviation for COMPUTATIONAL.

General Rules

1.

The USAGE clause can be written at any level. If the USAGE clause is
written at group level, it applies to each elementary item in the
group. The USAGE clause of an elementary item cannot contradict the
USAGE clause of a group to which the item belongs.

This clause specifies the manner in which a data item is represented in
the storage of a computer. It does not affect the use of the data
item, although the specifications for some statements in the Procedure
Division may restrict the USAGE clause of the operands referred to.
The USAGE clause may affect the radix or type of character
representation of the item.

A COMPUTATIONAL or COMPUTATIONAL-3 item is capable of representing a
value to be used in computations and must be numeric. If a group item
is described as COMPUTATIONAL(-3), the elementary items in the group
are COMPUTATIONAL(-3). The group item itself is not COMPUTATIONAL(-3)
and cannot be used in computations.

The USAGE IS DISPLAY clause indicates that the format of the data is a
standard data format. '

If the USAGE clause is not specified for an elementary item, or for any
group to which the item belongs, the usage is implicitly DISPLAY.

Space requirements for the various USAGE storage options are given
under Selection of Character Representation and Radix in Chapter 2.
3 - 34

THE VALUE CLAUSE
Function

The VALUE clause defines the value of constants, the initial wvalue of
working storage items, and the values associated with a condition name.

General Format

Format 1l:

VALUE is literal

Format 2:
VALUE IS) THROUGH .
.{VALUES ARE} literal-l {THRU } literal-2
: THROUGH
[, 1lteral"3[{m———} litera1-4]] coo

Syntax Rules

1. The VALUE clause cannot be stated for any items whose size is variable.
(See THE OCCURS CLAUSE in Chapter 4).

2. A signed numeric literal must have associated with it a signed numeric
PICTURE character=-string.

3. All numeric literals in a VALUE clause of an item must have values
which are within the range of values indicated by the PICTURE clause,
and must not have a value which would require truncation of nonzero
digits. Nonnumeric literals in a VALUE clause of an item must not

exceed the size indicated by the PICTURE clause.

4, The words THRU and THROUGH are equivalent.

General Rules

1. The VALUE clause must not conflict with other clauses in the data
description of the item or in the data description within the hierarchy
of the item., The following rules apply:

a. If the category of the item is numeric, all literals in the VALUE
clause must be numeric. If the literal defines the value of a
working storage item, the 1literal is aligned in the data item
according to the standard alignment rules. (See Standard
Alignment Rules in Chapter 2).

3 =35

2.

b. If the category of the item 1is alphabetic, alphanumeric,
alphanumeric edited or numeric edited, all literals in the VALUE
clause must be nonnumeric literals. The literal is aligned in the
data item as if the data item had been described as alphanumeric.
(See STANDARD ALIGNMENT RULES in Chapter 2). Editing characters
in the PICTURE clause are included in determining the size of the
data item (see THE PICTURE CLAUSE earlier in this Chapter) but
have no effect on initialization of the data item. Therefore, the
VALUE for an edited item is presented in an edited form.

c. Initialization takes place independent of any BLANK WHEN ZERO or
JUSTIFIED clause that may be specified.

A figurative constant may be substituted in both Format 1 and Format 2

wherever a literal is specified.

Condition-name Rules

1.

In a condition-name entry, the VALUE clause 1is required. The VALUE

. clause and the condition-name itself are the only two clauses permitted

in the entry. The characteristics of a condition-name are implicitly
those of its conditional variable.

Format 2 can be used only in connection with condition-names. Wherever
the THRU phrase is used, literal~l must be 1less than literal-2,
literal-3 less than literal-4, etc.

Data Description Entries other than Condition-Names

Rules governing the use of the VALUE clause differ with the respective
sections of the Data Division:

L.

2.

In the File Section, the VALUE clause may be wused only in
condition-name entries.

In the Working-Storage Section, the VALUE clause must be -used in

condition-name entries. The VALUE clause may also be used to specify
the initial value of a data item; in which case the clause causes the
item to assume the specified value at the start of the object program.
If the VALUE clause is not used in an item's description, the initial
value is undefined.

In the Linkage Section, the VALUE clause may be used only in

. condition-name entries.

The VALUE clause must not be stated in a data description entry that
contains an OCCURS clause, or in an entry that is subordinate to an
entry containing an OCCURS clause. This rule does not apply to
condition-name entries. (See THE OCCURS CLAUSE in Chapter 4).

3 - 36

The VALUE clause may be stated in a data description entry that
contains a REDEFINES clause, or in an entry that is subordinate to an
entry containing a REDEFINES clause. This rule does not apply to
condition-name entries.

If the VALUE clause is used in an entry at the group level, the literal
must be a figurative constant or a nonnumeric literal, and the group
area is initialized without consideration for the individual elementary
or group items contained within this group. The VALUE clause cannot be
stated at the subordinate levels within this group.

The VALUE clause must not be written for a group containing items with

descriptions, including JUSTIFIED, SYNCHRONIZED, or USAGE (other than
USAGE IS DISPLAY).

3 - 37

PROCEDURE DIVISION IN THE NUCLEUS

ARITHMETIC EXPRESSIONS

Definition of an Arithmetic Expression

An arithmetic expression can be an identifier of a numeric elementary item,
a numeric literal, such identifers and 1literals separated by arithmetic
operators, two arithmetic expressions separated by an arithmetic operator,
or an arithmetic expression enclosed in parentheses. Any arithmetic
expression may be preceded by a unary operator. The permissible
combinations of variables, numeric 1literals, arithmetic operator and
parentheses are given in Table 3-4, Combination of Symbols in Arithmetic
Expressions.

Those identifiers and literals appearing in an arithmetic expression must
represent either numeric elementary items or numeric 1literals on which
arithmetic may be performed.

Arithmetic Operators

There are five binary arithmetic operators and two unary arithmetic
operators that may be used in arithmetic expressions. They are represented

by specific characters that may be preceded by a space and followed by a
space.

Binary Arithmetic

Operators Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
*% Exponentiation

Unary Arithmetic

Operators Meaning
+ The effect of multiplication

by numeric literal +1

- The effect of multiplication
: by numeric literal -1.

Formation and Evaluation Rules

1. Parentheses may be used in arithmetic expressions to specify the order
in which elements are to be evaluated. Expressions within parentheses

- are evaluated first, and within nested parentheses, evaluation proceeds
from the least inclusive set to the most inclusive set, When

3 = 30

2.

parentheses are not used, or parenthesized expressions are at the same
level of inclusiveness, the following hierarchical order of execution
is implied: '

lst - Unary plus and minus

2nd = Exponentiation

3rd - Multiplication and division
4th - Addition and subtraction

Parentheses are used either to eliminate ambiguities in logic where
consecutive operations of the same hierarchical 1level appear or to
modify the normal hierarchical sequence of execution in expressions
where it is necessary to have some deviation from the normal
precedence, When the sequence of execution is not specified by
parentheses, the order of execution of comnsecutive operations of the
same hierarchical level is from left to right.

The ways in which operators, variables, and parentheses may be combined
in an arithmetic expression are summarized in Table 3-4, where:

a. The letter 'P' indicates a permissible pair of symbols.

b. The character '-' indicates an invalid pair.

C. 'Variable' indicates an identifier or literal.

FIRST SECOND SYMBOL

SYMBOL Variable * [%% -« + | Unary + or -| ()
Variable - 4 - - P
*) k% 4+ = P - P P -
Unary + or - P - - P -
(P - P P -
) - P - - P

Table 3-4. Combination of Symbols in Arithmetic Expressions

An arithmetic expression may only begin with the symbol '(', '+', '-=',
or a variable and may only end with a ')' or a variable. There must be
a one-to-one correspondence between left and right parenthesis of an
arithmetic expression such that each left parenthesis is to the left of
its corresponding right parenthesis.,

Arithmetic expressions allow the user to combine arithmetic operations

without the restrictions on composite of operands and/or receiving data
items. See, for example, syntax rule 3 of THE ADD STATEMENT in this

Chapter.

3 =~ 39

CONDITIONAL EXPRESSIONS

Conditional expressions identify conditions that are tested to enable the
object program to select between alternate paths of control depending upon
the truth value of the condition. Conditional expressions are specified in
the IF, PERFORM and SEARCH statements. There are two categories of
conditions associated with conditional expressions: simple conditions and
complex conditions. Each may be enclosed within any number of paired
parentheses, in which case its category is not changed. '

Simple Conditions

The simple conditions are the relation, class, condition~-name,
switch=-status, and sign conditions. A simple condition has a truth value of
'true' or 'false'. The inclusion in parentheses of simple conditions does
not change the simple truth value.

Relation Condition

A relation condition causes a comparison of two operands, each of which may
be the data item referenced by an identifier, a literal or the value
resulting from an arithmetic expression. A relation condition has a truth
value of 'true' if the relation exists between the operands. Comparison of
two numeric operands is permitted regardless of the formats specified in
their respective USAGE clauses. However, for all other comparisons the
operands must have the same usage. If either of the operands is a group
item, the nonnumeric comparison rules apply. '

The general format of a relation condition is as follows:

identifier-l IS [NOT] GREATER T identifer-2
) IS ([NOT] LESS THAN ;)
literal-l —— == literal=2
(; . . Is [NOT] EQUAL TO ; .
arithmetic~expression-l IS [NOT] S (arlthmetlc-
IS [NOT] < expression-2
Is [NOT] =
NOTE: The required relational characters '<', '>', and '=' are not

underlined to avoid confusion with other symbols such as '>'
(Greater than or equal to)

The first operand (identifier-l, literal-l or arithmetic-expression-l) is
called the subject of the condition; the second operand (identifier-2 or
literal-2 or arithmetic-expression-2) is called the object of the condition.
The relation condition must contain at least one reference to a variable.

3 -40

The relational operator specifies the type of comparison to be made in a
relation condition. A space must precede and follow each reserved word com-
prising the relational operator. When used, 'NOT' and the next key word or
relation character are one relational operator that defines the comparison

to be executed for truth value; e.g., 'NOT EQUAL' is a truth test for an
'unequal'.

Comparison: 'NOT GREATER' is a truth test for an 'equal' or 'less'
comparison. The meaning of the relational operators is as shown 1in

Table 3-5. Relational Operators.

Meaning i Relational Operator

Greater than or not greater than IS NOT GREATER THAN

IS NOT >
Less than or not less than IS NOT LESS THAN

IS NOT <
Equal to or not equal to IS NOT EQUAL TO

IS NOT =
The required relational characters '>', '<', and '=' are not
underlined to avoid confusion with other symbols such as '>'
(greater than or equal to).

Comparison of Numeric Operands: For operands whose class 1is numeric a
comparison is made with respect to the algebraic value of the operands. The
length of the literal or arithmetic expression operands in terms of number
of digits represented, 1is not significant. Zero is considered a unique
value regardless of the sign.

Comparison of these operands is permitted regardless of the manner in which
their usage is described. Unsigned numeric operands are considered positive
for purposes of comparison.

Comparison of Nonnumeric Operands: For nonnumeric operands, or one numeric
and one nonnumeric operand, a comparison is made with respect to a specified
collating sequence of characters (see The OBJECT-COMPUTER Paragraph in this
Chapter). 1If one of the operands is specified as numeric, it must be an
integer data item or an integer literal and:

L. If the nonnumeric operand is an elementary data item or a unonnumeric
literal, the numeric operand is treated as though it were moved to an
elementary alphanumeric data item of the same size as the numeric data

item (in terms of standard data format characters), and the contents of
this alphanumeric data item were then compared to the nonnumeric
operand. (See THE MOVE STATMENT in this Chapter, and the PICTURE
Character 'P' under the heading Symbols Used earlier in this Chapter).

2. If the non-numeric operand is a group item, the numeric operand is
treated as though it were moved to a group item of the same size as the
numeric data item (in terms of standard data format characters), and
the contents of this group item were then compared to the nonnumeric
operand. (See THE MOVE STATEMENT in this Chapter, and the PICTURE
character 'P' under the heading Symbols Used earlier in this Chapter).

3. A non-integer numeric operand cannot be compared to a nonnumeric
operand.

The size of an operand is the total number of standard data format
characters in the operand. Numeri ‘
only when their usage is the same

There are two cases to consider:

1. Operands of equal size - If the operands are of equal size, comparison
effectively proceeds by comparing characters in corresponding character
positions starting from the high order end and continuing until either
a pair of unequal characters is encountered or the low order end of the
operand is reached, whichever comes first. The operands are determined
to be equal if all pairs of characters compare equally through the last
pair, when the low order end is reached.

The first encountered pair of unequal characters is compared to deter-
mine their relative position in the collating sequence. The operand
that contains the character that is positioned higher in the collating
sequence is considered to be the greater operand.

2. Operands of unequal size - If the operands are of unequal size,
comparison proceeds as though the shorter operand were extended on the
right by sufficient spaces to make the operands of equal size.

Class Condition

The class condition determines whether the operand is numeric, that is,
consists entirely of the characters 'O', '1', '2', '3', ..., '9', with or
without the operational sign; or alphabetic, that is, consists entirely of
the characters 'aA', 'B', 'C', ..., 'Z', space. The general format for the
class condition is as follows:

identifier IS [NOT]§NUMERIC g

ALPHABETIC
(Addendum 2)

3 - 42

The usage of the operand being tested must be described as display. When
used, 'NOT' and the next key word specify one class condition that defines
the class test to be executed for truth value; e.g. 'NOT NUMERIC' is a
truth test for determining that an operand is nonnumeric.

The NUMERIC test cannot be used with an item whose data description
describes the item as alphabetic or as a group item composed of elementary
items whose data description indicates the presence of operational sign(s).
If the data description of the item being tested does not indicate the
presence of an operational sign, the item being tested is determined to be
numeric only if the contents are numeric and an operational sign is not
present. If the data description of the item does indicate the presence of
an operational sign, the item being tested is determined to be numeric only
if the contents are numeric and a valid operational sign is present. Valid
operational signs for data items described with the SIGN IS SEPARATE clause

are the standard data format characters, '+' and '-'.

The ALPHABETIC test cannot be used with an item whose data description
describes the item as numeric. The item being tested is determined to be
alphabetic only if the contents consist of any combination of the alphabetic
characters 'A' through 'Z' and the space.

Condition-Name Condition (Conditional Variable)

In a condition-name condition, a conditional variable is tested to determine
whether or not its value 1is equal to one of the values associated with a
condition-name. The general format for the condition-name condition is as
follows:

condition-name
If the condition~name is associated with a range or ranges of values, then
the conditional variable is tested to determine whether or not its value

falls in this range, including the end values.

The rules for comparing a conditional variable with a condition-name value
are the same as those specified for relation conditions.

The result of the test is true if one of the values corresponding to the
condition-name equals the value of its associated conditional variable.
Switch-Status Condition

A switch-status condition determines the 'on' or 'off' status of an
implementor-defined switch. The switch and the 'on' or 'off' wvalue
associated with the condition must be named in the SPECIAL-NAMES paragraph
of the Environment Division. The general format for the switch-status

condition is as follows:

condition-name

3 - 43

The result of the test is true if the switch is set to the specified posi-
tion corresponding to the condition-name.

Sign Coudition

The sign condition determines whether or not the algebraic value of an
arithmetic expression is less than, greater than or equal to zero. The
general format for a sign condition is as follows:

SPOSITIVE
arithmetic-expression IS [NOT] NEGATIVE
(ZERO

When used, 'NOT' and the next key word specify one sign condition that
defines that algebraic test to be executed for truth value; e.g., 'NOT ZERO'
is a truth test for a nonzero (positive or negative) value. An operand is
positive if its value is greater than zero, negative if its value is less
than zero, and zero if its value 1is equal to =zero. The arithmetic
expression must contain at least one reference to a variable.

Complex Conditions

A complex condition is formed by combining simple conditions, combined
conditions. and/or complex conditions with logical connectors (logical
operators 'AND' and 'OR') or negating these conditions with logical negation
(the logical operator 'NOT'). The truth value of a complex condition,
whether parenthesized or not, 1is that truth value which results from the
interaction of all the stated logical operators on the individual truth
values of simple conditions, or the intermediate truth values of conditions
logically connected or logically negated. '

The logical operators and their meanings are:

Logical Operator Meaning
AND Logical conjunction; the truth value 1is

'true' if both of the conjoined
conditions are true; 'false' if one or
both of the «conjoined conditions 1is

false.

OR Logical inclusive OR; the truth value is
"true' if one or both of the included
conditions is true; 'false' if both

included conditions are false.

NOT Logical negation or reversal of truth
value; the truth value is 'true' if the
condition 1is false; 'false' if the
condition is true.

3 - 44

The logical operators must be preceded by a space and followed by a space.

Negated Simple Conditions: A simple condition is negated through the use
of the logical operator 'NOT'. The negated simple condition effects
the opposite truth value for a simple condition. Thus the truth value
of a negated simple condition is 'true' if and only if the truth value
of the simple condition is 'false'; the truth value of a negated simple
condition is 'false' if and only if the truth value of the simple
condition is 'true'. The inclusion in parentheses of a negated simple
condition does not change the truth value.

The general format for a negated simplevcondition is:

NOT simple~condition

Combined and Negated Combined Conditions: A combined condition results
from connecting conditions with one of the logical operators 'AND' or
'OR'. The general format of a combined condition is:

. AND
conditlong {95

condition' may be:

} condition ; e

where '

a. A simple condition, or
b. A negated simple condition, or
c. A combined condition, or

d. A negated combined condition; i.e., the 'NOT' logical operator
followed by a combined condition enclosed within parentheses, or

e. Combinations of the above, specified according to the rules
summarized in table 3-6, Combinations of Conditions, Logical
Operators, and Parentheses, located on the next page.

Although parentheses need never be used when either 'AND' or 'OR' (but
not both) is used exclusively in a combined condition, parentheses may
be used to effect a final truth value when a mixture of 'AND', 'OR' and
'NOT' is used. (See Table 3-6, Combinations of Conditions, Logical
Operators, and Parentheses below, and Condition Evaluation Rules
earlier in this Chapter.) .

Table 3-6 on the next page indicates the ways in which conditions and
logical operators may be combined and parenthesized. There must be a
one-to-one correspondence between left and right parentheses such that
each left parenthesis is matched by a corresponding right parenthesis.
The table assumes a left to right sequence of elements.

3 -45

Table 3-6 Combinations of Conditions, Logical Opérators, and Parentheses

Element Permitted Element can be Element can be
location in | preceded by only: followed by only:
conditional
expression

simple-condition Any OR, NOT, AND, (OR, AND,)
OR, or AND Not first simple-condition,) | simple-condition,
' or last NOT, ¢(
NOT : Not last OR, AND, (simple-condition, (
(Not last OR, NOT, AND, (simple~condition,
NOT, (
) Not first simple-condition,) OR, AND,)

Thus, the element pair 'OR NOT' is permissible while the pair 'NOT OR'
is not permissible; 'NOT (' is permissible while 'NOT NOT' is not
permissible.

Abbreviated Combined Relation Conditions .

When simple or negated simple relation conditions are combined with logical
connectives in a consecutive sequence such that a succeeding relation
condition contains a subject or subject and relational operator that is
common with the preceding relation condition, and no parentheses are used
within such a consecutive sequence, any relation condition except the first
may be abbreviated by:

1. The omission of the subject of the relation condition, or

2. The omission of the subject and relational operator of the relation
condition. :

The format for an abbreviated combined relation condition is:

relation-condition.{égg} [NOT] [relational-operator] object}...

or

Within a sequence of relation conditions both of the above forms of
abbreviation may be used. The effect of using such abbreviations is as if
the last preceding stated subject were inserted in place of the omitted
subject, and the last stated relational operator were inserted in place of
the omitted relational operator. The result of such implied insertion must

3 - 46

comply with the rules of Table 3-6, Combinations of Conditions, Logical

Operators, and Parentheses. This insertion of an omitted subject and/or
relational operator terminates once a complete simple condition is
encountered within a complex condition.

The interpretation applied to the use of the word 'NOT' in an abbreviated
combined relation condition is as follows:

1. If the word immediately following 'NOT' is 'GREATER', '>', 'LESS', '<',
'EQUAL','=', then the 'NOT' participates as part of the relational
operator; otherwise

2. The 'NOT' is interpreted as a logical operator and, therefore, the
implied insertion of subject or relational operator results in a
negated relation condition.

Some examples of abbreviated combined and negated combined relation
conditions and expanded equivalents follow.

Abbre#iated Combined

Relation Condition Expanded Equivalent
a>b AND NOT < c OR d ((a > b) AND (a NOT < c)) OR (a NOT < d)
a NOT EQUAL b OR c (a NOT EQUAL b) OR (a NOT EQUAL c)
NOT a = b OR ¢ : (NOT (a = b)) OR (a = ¢)
NOT (a GREATER b OR < c¢) NOT ((a GREATER b) OR (a < ¢))

NOT (a NOT > b AND c AND NOT d) NOT ((((a NOT > b) AND (a NOT > c)) AND
(NOT (a NOT > d))))

Condition Evaluation Rules

Parentheses may be used to specify the order in which individual conditions
of complex conditions are to be evaluated when it is necessary to depart
from the {implied evaluation precedence. Conditions within parentheses are
evaluated first, and, within aested parentheses, evaluation proceeds from
the 1least inclusive condition to the most inclusive condition. When
parentheses are not used, or parenthesized conditions are at the same level
of inclusiveness, the following hierarchical order of logical evaluation is
implied until the final truth value is determined:

1. Values are established for arithmetic expressions. (See Formation and
Evaluation Rules under ARITHMETIC EXPRESSIONS in this Chapter.)

2P - L7

2.

6.

Truth values for simple conditions are established in the following

order:

relation (following the expansion of any abbreviated relation
condition)

class

condition-name

switch-status

sign

Truth values for negated conditions are established.
Truth values for combined conditions are established:

'AND' logical operators, followed by
'OR' 1logical operators.

Truth values for negated combined conditions are established.

When the sequence of evaluation 1is not completely specified

by

parentheses, the order of evaluation of consecutive operations of the

same hierarchical level is from left to right.

3 - 48

COMMON PHRASES AND GENERAL RULES FOR STATEMENT FORMATS

In the statement descriptions that follow, several phrases appear
frequently: the RDUNDED phrase, the SIZE ERROR phrase and the CORRESPONDING
phrase.

These are described below; a resultant-identifier is that identifier
associated with the result of an arithmetic operation.

The ROUNDED Phrase

If, after decimal point alignment, the number of places in the fractiom of
the result of an arithmetic operation is greater than the number of places
provided for the fraction of the resultant-identifier, truncation is
relative to the size provided for the resultant-identifier. When rounding
is requested, the absolute value of the resultant-identifier is increased by
one whenever the most significant digit of the the excess is greater than or
equal to five.

When the low-order integer positions in a resultant-identifier are
represented by the character 'p' in the PICTURE for the
resultant-identifier, rounding or truncation occurs relative to the
rightmost integer position for which storage is allocated.

The SIZE ERROR Phrase

If, after decimal point aligmment, the absolute value of a result exceeds
the largest value that can be contained in the associated
resultant-identifier, a size error condition exists. Division by zero
always causes a size error condition. The size error condition applies only
to the final results, except in MULTIPLY and DIVIDE statements, in which
case the size error condition applies to the intermediate results as well.
If the ROUNDED phrase is specified, rounding takes place before checking for
size error. When such a size error condition occurs, the subsequent action
depends oun whether or not the SIZE ERROR phrase is specified, as follows:

SIZE ERROR Phrase Not Specified

When a size error condition occurs, the value of those
resultant-identifier(s) affected is undefined. Values of
resultant-identifier(s) for which no size error condition occurs are
unaffected by size errors that occur for other resultant-identifier(s)
during execution of this operation.

SIZE ERROR Phrase Specified
When a size error condition occurs, then the values of
resultant-identifier(s) affected by the size errors are not altered. Values

of resultant-identifier(s) for which no size error condition occurs are

3 -49

unaffected by size errors that occur for other resultant-identifier(s)
during execution of this operation. After completion of the execution of
this operation, the imperative statement in the SIZE ERROR phrase is
executed.

For the ADD statement with the CORRESPONDING phrase and the SUBTRACT
statement with the CORRESPONDING phrase, if any of the individual operations
produces a size error condition, the imperative statement in the SIZE ERROR
phrase is not executed until all of the individual additions or subtractions
are completed.

The CORRESPONDING Phrase

In the text that follows dl and d2 must each be identifiers that refer
to group items. A pair of data items, one from dl and one from d2
correspond if the following conditions exist:

1. A data item in dl and a data item in d2 are not designated by the key
word FILLER and have the same data-name and the same qualifiers up to,
but not including, dl and d2.

2. At least one of the data items is an elementary data item in the case
of a MOVE statement with the CORRESPONDING phrase; and both of the data
items are elementary numeric data items in the case of the ADD
statement with the CORRESPONDING phrase or the SUBTRACT statement with
the CORRESPONDING phrase. .

3. The description of dl and d2 must not contain level-number 66, 77, or
88 or the USAGE IS INDEX clause.

4, A data item that is subordinate to dl or d2 and contains a REDEFINES,
RENAMES, OCCURS or USAGE IS INDEX clause is ignored, as well as those
data items subordinate to the data item that contains the REDEFINES,
OCCURS, or USAGE IS INDEX clause. However, dl and d2 may have

REDEFINES or OCCURS clauses or be subordinate to data items with
REDFINES or OCCURS clauses.

Arithmetic Statements

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and
SUBTRACT statements. Common features are as follows:

1. The data descriptions of the operands need not be the same; any

necessary conversion and decimal point alignment are supplied
throughout the calculation.

3 -50

2. The maximum size of each operand is 18 decimal digits. The composite
of operands, which is a hypothetical data item resulting from the
superimposition of specified operands in a statement aligned on their
decimal points (See THE ADD STATEMENT, THE DIVIDE STATEMENT, THE
MULTIPLY STATEMENT and THE SUBTRACT STATEMENT later in this Chapter)
must not contain more than 18 decimal digits.

Overlapping Operands

When a sending and a receiving item in an arithmetic statement or an
INSPECT, MOVE, SET, STRING or UNSTRING statement share a part of their
storage areas, the result of the execution of such a statement is undefined.

Multiple Results in Arithmetic Statements

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have
multiple results. Such statements behave as though they had been written in
the following way:

1. A statement which performs all arithmetic necessary to arrive at the

result to be stored in the receiving items, and stores that result in a
temporary storage location.

2. A sequence of statements transferring or combining the wvalue of this

temporary location with a single result. These statements are
considered to be written in the same left-to-right sequence in which
the multiple results are listed.

The result of the statement
ADD a, b, ¢ TO ¢, d (¢c), e -
is equivalent to
ADD a, b, ¢ GIVING temp
ADD temp TO ¢
ADD temp TO d (¢)
ADD temp TO e

where 'temp' is an intermediate result item provided by the compiler.

Incompatible Data

Except for the class condition (See Class Condition in this Chapter), when
the contents of a data item are referenced in the Procedure Division and the
contents of that data item are not compatible with the class specified for

that data item by its PICTURE clause, then the result of such a reference is
undefined. : :

3 -51

Signed Receiving Items

When the receiving item in an arithmetic statement or a MOVE statement is a
signed numeric or a signed numeric edited item, the sign is moved into the
receiving item independently of any truncation of the absolute numeric data.
It is possible, therefore, for the numeric value to be zero but for the sign
to be negative.

(Addendum 2)

3 -52

THE ACCEPT STATEMENT
Function

The ACCEPT statement causes data keyed at the CRT console to be made
available to the program in a specified data item

General Formats

Format 1
ACCEPT identifier [mong‘;gg’é‘gﬁc'“amei]

Format 3
DATE
ACCEPT identifier FROM { DAY
TIME

Syntax Rule

The mnemonic name in Format 1 must also be specified in the SPECIAL NAMES
paragraph of the Environment Division and must be associated with the
console.

General Rules

l. Format 1| is the standard ANSI ACCEPT statement

3 -353

Format 1

2.

The ACCEPT statement causes the transfer of data from the system
console device. This input data replaces the contents of the data item
named by the identifier.

The data is transferred as an integral number of data records (up to a
maximum of 12). The size of a data record is defined by the compiler
directive CRIWIDTH (see the LEVEL II COBOL Operating Guide). As each
data record is keyed at the console it may be line-edited according to
the operating system rules for line-editing (see the User Guide for
your operating system). Each data record is terminated by pressing the
"accept data" key (normally the RETURN or ENTER key) or by exactly
filling the data record. After each data record is transferred, the
cursor is moved to the start of the next 1line (possibly with
scrolling).

If the size of the data record transferred is the same as the size of
the receiving data item, the transferred data is stored inm the
receiving data item. :

If the input line is not of the same size as the receiving data item,
then:

a. If the size of the receiving data item (or the portion of the
receiving data item not yet currently occupied by transferred
data) exceeds the size of the transferred data record, the

-transferred data is stored aligned to the left in the receiving
data item (or the portion of the receiving data item not vyet
occupied), and an additional data record is requested.

b. If the size of the transferred data record exceeds the size of the
receiving data item (or the portion of the receiving data item not
yet occupied by transferred data) only the leftmost characters of
the input data are stored in the receiving data item (or the
portion remaining). The remaining characters of the input data
which do not fit into the receiving data item are ignored.

(Addendum 2)-

3 - 54

(Addendum 1)

3 -55

Format 3

18.

19.

20.

21.

The ACCEPT statement causes the information requested to be transferred
to the data item specified by identifier according to the rules of the
MOVE statement. DATE, DAY, and TIME are conceptual data items and,
therefore, are not described in the COBOL program.

DATE is composed of the data elements year of century, month of year,
and day of month. The sequence of the data element codes shall be from
high to low order (left to right), year of century, month of year, and
day of month. Date, when accessed by a COBOL program, behaves as if it
had been described in the COBOL program as an unsigned elementary
numeric integer data item six digits in length.

DAY is composed of the data elements year of century and day of year.
The sequence of the data element codes shall be from high order to low
order (left to right) year of century, day of year. Therefore, July 1,
1968 would be expressed as 68183. DAY, when accessed by a COBOL
program, behaves as if it had been described in a COBOL program as an
unsigned elementary numeric integer data item five digits in length.

TIME is composed of the data elements hours, minutes, seconds and
hundredths of a second. TIME is based on elapsed time after midnight
on a 24-hour clock basis -~ thus, 2:4l p.m. would be expressed as
14410000. TIME, when accessed by a COBOL program behaves as if it had
been described in a COBOL program as an unsigned elementary numeric
integer data item eight digits in length. The minimum value of TIME is
00000000; the maximum value of TIME is 23595999. If the hardware does
not have the facility to provide fractional parts of TIME, the value is
converted to the closest decimal approximation.

3 - 57

THE ADD STATEMENT
Function

The ADD statement causes two or more numeric operands to be summed and the
result to be stored.

General Format

— (literal=-l , literal~3

Format 1
wp figentitiery |, entitier2] g0 encitiern (zonmm]
[,identifier-n [ROUNDED]] «oo [; ON SIZE ERROR imperative-statement]
Format 2
ADD identifier-1$, iqentifier-zi [, identifier-B]
iteral=2

GIVING identifier-m [ROUNDED] [}identifier-n [ROUNDED]] e

[; ON SIZE ERROR imperative-statement]

Format 3
ADD g ggﬁiESPONDING identifier-l TO identifier-2 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

Syntax Rules

l. In Formats 1 and 2, each identifier must refer to an elementary numeric
item, except that in Format 2 each identifier following the word GIVING
must refer to either an elementary numeric item or an elementary
numeric edited item. In Format 3, each identifier must refer to a
group item.

2. Each literal must be a numeric literal.

3. The composite of operands must not contain more than 18 digits (see
Arithmetic Statements in this Chapter).

a. In Format 1 the composite of operands is determined by using all
of the operands in a given statement.

3 -58

b. In Format 2 the composite of operands is determined by using all
of the operands in a given statement excluding the data items that
follow the word GIVING.

c. In Format 3 the composite of operands is determined separately for
each corresponding pair of data items.

General Rules

i.

See The ROUNDED Phrase, The SIZE ERROR Phrase, The CORRESPONDING
Phrase, Arithmetic Statements, Overlapping Operands and Multiple

Results in Arithmetic Statements in this Chapter.

If Format 1 is used, the values of the operands preceding the word TO
are added together, then the sum is added to the current value of
identifier-m storing the result immediately into identifier-m, and
repeating this process respectively for each operand following the word
TO.

If Format 2 is used, the value of the operands preceding the word
GIVING are added together, then the sum is stored as the new value of

each identifier-m, identifier-n, ..., the resultant identifiers.

If Format 3 is used, data items in identifier-1 are added to and stored
in corresponding data items in identifier-2.

The compiler ensures that enough places are carried so as not to lose
any significant digits during execution. ‘

3 -59

THE ALTER STATEMENT

Function

The ALTER statement modifies a predetermined sequence of operations.

General Format

ALTER procedure-name-1 T0 [PROCEED T0] procedure-name=-2

[, procedure-name-3 TO [PROCEED TO] procedure-name-A»]...

Syntax Rules

1.

Each procedure-name-l, procedure-name-3, ..., 1is the name of a
paragraph that contains a single sentence consisting of a GO TO
statement without the DEPENDING phrase.

Each procedure-name-2, procedure-name-4, ..., is the name of a
paragraph or section in the Procedure Division.

General Rules

li

Execution of the ALTER statement modifies the GO TO statement in the
paragraph named procedure-name-l, procedure-name-3, ..., so that
subsequent executions of the modified GO TO statements cause transfer
of control to procedure-name-2, procedure-name-4, ..., respectively.
Modified GO TO statements in independent segments may, under some
circumstances, be returned to their initial states (see
Independent Segments in Chapter 8).

A GO TO statement in a section whose segment-number is greater than or
equal to 50 must not be referred to by an ALTER statement in a section
with a different segment-number.

All other uses of the ALTER statement are valid and are performed even

if procedure-name-l, procedure-name-3 is in an overlayable fixed
segment.

3 - 60

THE COMPUTE STATEMENT
Function

The COMPUTE statement assigns to one or more data items the value of an
arithmetic expression.

General Format

COMPUTE identifier-l1 [ROUNDED] [, identifier-2 [ROUNDED]] ‘o

= arithmetic-expression [; ON SIZE ERROR imperative-statement]

Syntax Rules

Identifiers that appear only to the left of = must refer to either an
elementary numeric item or an elementary numeric edited item.

General Rules

1. See The ROUNDED Phrase, The SIZE ERROR Phrase, Arithmetic Statements,
Overlapping Operands and Multiple Results in Arithmetic Statements.

2. An arithmetic expression consisting of a single identifier or literal
provides a method of setting the values of identifier-1, identifier-2,
etc., equal to the value of the single identifier or literal.

3. If more than one identifier is specified for the result of the
operation, that is preceding =, the value of the arithmetic expression
is computed, and then this value is stored as the new value of each of
identifier-1l, identifier-2, etc., in turn.

4. The COMPUTE statement allows the user to combine arithmetic operations
without the restrictions on composite of operands and/or receiving data
items imposed by the arithmetic statements ADD, SUBTRACT, MULTIPLY, and
DIVIDE.

3 - 61

THE DISPLAY STATEMENT
Function

The DISPLAY statement causes data to be transferred from Specified data
items to the CRT screen.

General Formats

Format 1
identifier-1 identifier-2 mnemonic-name
DISPLAY ' ’ oo L lj--13953001\130LE %]
literal-1 literal-2

Syntax Rules

1. The mnemonic-name in Format-l must be associated with the console in
the SPECIAL-NAMES paragraph in the Environment Division.

2. Each literal may be any figurative constant, except ALL.

3. If the literal is numeric, it must be an unsigned integer.

General Rules

1. Format 1 is the standard ANSI DISPLAY statement.

3 -62

Format 1

2.

The DISPLAY statement causes the contents of each operand to be
transferred to the console device in the order listed.

The data is transferred as an integral number of data records (up to a
maximum of 12). The size of a data record is defined by the compiler
directive CRIWIDTH (see the LEVEL II COBOL Operating Guide). As each
data record is transferred it is displayed on the comnsole from the
current cursor position with any trailing space characters removed and
the cursor is moved to the start of the next line (possible with
scrolling).

If a figurative constant is specified as one of the operands, only a
single occurrence of the figurative constant is displayed.

If the data item (or the portion of the data-item not yet transferred)
is the same size as the data record, the data item (or the portion not
yet transferred) is transferred.

If the data item (or the portion of the data item not yet transferred)
is not the same size as the data record, one of the following applies:

a. If the size of the data item (or the portion of the data item not
yet transferred) exceeds the size of the data record, the data
item (or the portion not yet transferred) is transferred to the
data record, beginning with the leftmost character and continuing
until the data record is filled, an additional data record is then
requested.

b. If the size of the data record exceeds the size of the data item
(or the portion of the data item not yet transferred), the data
item (or the portion not yet transferred) is transferred to the
data record beginning with the leftmost character and continuing
until the final character of the data item has been transferred.
The remaining characters in the data record are space filled.

When operands in a DISPLAY statement are USAGE COMP or USAGE COMP-3
such operands are converted to USAGE DISPLAY. The size of the sending
item is the sum of the sizes associated with the operands (after
possible conversion) and the values of the operand are transferred in
the sequence in which they are encountered.

(Addendum 2)

3 -63

(Addendum 2)

3 - 64

THE DIVIDE STATEMENT
Function

The DIVIDE statement divides one numeric data item into others and sets the
values of data items equal to the quotient.

General Format

Format 1
pryrp jrdentifier=l) oo identifier-2 [ROUNDED]
e llteral -1 ——— e

[, identifier-3 [ROUNDED]] «se [;ON SIZE ERROR imperative-statement]

Format 2
identifier 1 identifier-2
DIVIDE = J14teral-l INTIO 31iteral-2 %
GLVING identifier-3 [ROUNDED] [,identifier-4 [ROUNDED]] cee
[;ON SIZE ERROR imperative-statement]
Format 3
identifier-l identifier=2
DIVIDE gliteral-l % B gliteral-z g

GIVING identifier-3 [ROUNDED] [, identifier—4 [ROUNDED]] oo

[;ON SIZE ERROR imperative-statement]

Format 4
V\identifier 1 identifier-2
»212122 §litera1-l % INTO %literal-z g

GIVING identifier-3 [ROUNDED]

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement]

3 -65

Format 5

;identifier 12

;identifier-zg.
literal-l

DIVIDE literal-2

BY

GIVING identifier-3 [ROUNDED]

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement]

Syntax Rules

L.

Each identifier must refer to an elementary numeric item, except that
any identifier associated with the GIVING or REMAINDER phrase must
refer to either an elementary numeric item or an elementary numeric
edited item.

Each literal must be a numeric literal.

The composite of operands, which is the hypothetical data item
resulting from the superimposition of all receiving data items (except
the REMAINDER data item) of a given statement aligned on their decimal
points, must not contain more than eighteen digits.

General Rules

L.

. See The ROUNDED Phrase, The SIZE ERROR Phrase, Arithmetic Statements,

Overlapping Operands and Multiple Results in Arithmetic Statements in

this Chapter for a description of these functions.

When Format 1 is used, the value of identifier-l1 or literal-l is
divided into the value of identifier-2. The value of the dividend
(identifier-2) is replaced by this quotient; similarly for identifier-1
or literal-l and literal-3, etc.

When Format 2 is used, the value of identifier-1 or literal-l is
divided into identifier-2 or literal-2 and the result 1is stored in
identifier-3, identifier-4 etc. ‘

When Format 3 is used, the value of identifier-l1 or literal-l is
divided by the value of identifier-2 or literal-2 and the result is
stored in identifier-3, identifier-4 etc.

Formats 4 and 5 are used when a remainder from the division operation
is desired, namely identifier-4. The remainder in COBOL is defined as
the result of subtracting the product of the quotient (identifier-3)
and the divisor from the dividend. 1If identifier-3 is defined as a
numeric edited item, the quotient used to calculate the remainder is an
intermediate field which contains the unedited quotient. If ROUNDED is
used, the quotient used to calculate the remainder is an intermediate
field which contains the quotient of the DIVIDE statement, truncated
rather than rounded.

3 - 66

In Formats 4 and 5, the accuracy of the REMAINDER data item
(identifier—4) 1is defined by the calculation described above.
Appropriate decimal alligmment truncation (not rounding) will be
performed for the content of the data item referenced by identifier-4,

as needed.,

When the ON SIZE ERROR phrase is used in Formats 4 and 5, the following
rules pertain:

a. If the size error occurs on the quotient, no remainder calculation
is meaningful. Thus, the contents of the data items referenced by
both identifier-3 and identifier-4 will remain unchanged.

b. If the size error occurs on the remainder, the contents of the
data item referenced by identifier-4 remains unchanged, However,
as with other instances of multiple results of arithmetic
statements, the user will have to do his own analysis to recognize
which situation has actually occurred.

3 -67

THE ENTER STATEMENT
Function

The ENTER statement provides a means of éllowing the use of more than one
language in the same program.

General Format

ENTER language-name [routine-name] .

Syntax Rule

Language-name and routine-name can be any user-defined word or alphanumeric
literal.

General Rule

Access to other languages can be achieved by means of CALL.

3 - 68

THE EXIT STATEMENT
Function
The EXIT statement provides a common end point for a series of procedures,

General Format

EXIT

Syntax Rules

1. The EXIT statement must appear in a sentence by itself.

2. The EXIT senteunce must be the only sentence in the paragraph.

General Rule

An EXIT statement serves only to enable the user to assign a procedure-name
to a given point in a program. Such an EXIT statement has no other effect
on the compilation or execution of the program.

3 -69

THE GO TO STATEMENT

Function

The GO TO statement causes control to be transferred from one part of the
Procedure Division to another.

General Format

Format 1

GO TO [procedure-name-1]

Format-2

GO TO procedure-name-l [, procedure-name-2] ... , procedure-name-n

DEPENDING ON identifier

Syntax Rules

L.

2.

Identifier is the name of a numeric elementary item described without
any positions to the right of the assumed decimal point.

When a paragraph is referenced by an ALTER statement, that paragraph
can consist only of a paragraph header followed by a Format 1 GO TO
statement. :

A Format 1 GO TO statement, without procedure-name-~l, can only appear
in a single statement paragraph.,

If a GO TO statement represeﬁted by Format 1 appears in a consecutive
sequence of imperative statements within a sentence, it appears as the
last statement in that sequence.

General Rules

1.

When a GO TO statement, represented by Format 1 is executed, control is
transferred to procedure-name-l or to another procedure-name if the GO
TO statement has been modified by an ALTER statement.

If procedure-name-l is not specified in Format !, an ALTER statement,

referring to this GO TO statement, must be executed prior to the
execution of this GO TO statement.

3-170

3.

When a GO TO statement represented by Format 2 is executed, control is

transferred to procedure-name-l, procedure-name-2, etc., depending on
the value of the identifier being 1, 2, ..., n. If the value of the

identifier is anything other than the positive or unsigned integers 1,

2, +s05, N, then no transfer occurs and control passes to the next
statement in the normal sequence for execution.

3 -71

THE IF STATEMENT
Function
The IF statement causes a condition to be evaluated (see CONDITIONAL

EXPRESSIONS in this Chapter). The subsequent action of the object program
depends on whether the value of the condition is true or false.

General Format

-1 ; ELSE stat -2
IF condition; THEN {Statement } {, statement }

NEXT SENTENCE ;s ELSE NEXT SENTENCE

Syntax Rules

1. Statement-l and statement-2 represent either an imperative statement or
a conditional statement, and either may be followed by a conditional
statement.

2. The ELSE NEXT SENTENCE phrase may be omitted if it immediately precedes
the terminal period of the sentence.

General Rules

1. When an IF statement is executed, the following transfers of control
occur:-

a. If the condition is true, statement-l is executed if specified. If
statement-l contains a procedure branching or conditional
statement, control is explicitly transferred in accordance with
the rules of that statement. If statement-l does not contain a
procedure branching or conditional statement, the ELSE phrase, if

specified, is ignored and control passes to the next executable
sentence.

b. If the condition is true and the NEXT SENTENCE phrase is specified
instead of statement-l, the ELSE phrase, if specified, is ignored
and control passes to the next executable sentence.

C. If the condition is false, statement-~l or its surrogate NEXT
SENTENCE is ignored, and statement-2, if specified, is executed.
If statement-2 contains a procedure branching or conditional
statement, control is explicitly transferred in accordance with
the rules of that statement. If statement-2 does not contain a
procedure branching or conditional statement, control passes to
the next executable sentence. If the ELSE statement-2 phrase is
not specified, statement-l is ignored and coantrol passes to the
next executable sentence.

D - 7z

d. If the condition is false, and the ELSE NEXT SENTENCE phrase is
specified, statement-l is ignored, if specified, and control
passes to the next executable sentence.

Statement-l1 and/or statement-2 may contain an IF statement., In this
case the IF statement is said to be nested.

IF statements within IF statements may be considered as paired IF and
ELSE combinations, proceeding from left to right. Thus, any ELSE
encountered is considered to apply to the immediately preceding IF that
has not been already paired with an ELSE.

3 -73

THE INSPECT STATEMENT
Function
The INSPECT statement provides the ability to tally (Format 1), replace

(Format 2), or tally and replace (Format 3) occurrences of single characters
or group of characters in a data item.

General Format

Format 1

INSPECT identifier-1 TALLYING

, identifier-2 FOR ,3 LEADING literal-l

ALL % g identifier—3£€‘
CHARACTERS
[BEFORE

= i INTTIAL 3identifier-4£]

literal-2

Format 2

INSPECT identifier-1 REPLACING

identifier-6 BEFORE identifier-7
craracters BY {19reritieT 0} [§RERREY mvria {fgentiiieTY)
ALL . e . e
ATEADING (), ;1§ent1f1er—5£ BY $1§ent1f1er-6$
FIRST literal-3 — (literal-4

BEFORE identifier-7
[3AFTER { miriaL § RIS {‘% R G

3 -74

Format 3

INSPECT identifier-l1 TALLYING

3ALL z 3Ident1f1er 3%%

, 1identifier-2 FOR , LEADING iteral-l
CHARACTERS
BEFORE . identifier-4
[{AFTER } INITIAL {1iteral-2] e
REPLACING |
. identifier-6 BEFORE identifier-7
CHARACTERS BY (P2 72 ™) [{AFTER } INITIAL {00 s]

LEADING literal-3 literal-4 2

ALL 3;dentifier—5€ sy {identifier-6
FIRST

BEFORE identifier-7
[{AFTER } INITIAL S %] g e

Syntax Rules

All Fdrmats

10

Identifier-l must reference either a group item or any category of
elementary item, described (either implicitly or explicitly) as USAGE
IS DISPLAY.

Identifier-3 ... identifier-n must reference either an elementary
alphabetic, alphanumeric or numeric item described (either implicitly
or explicitly) as USAGE IS DISPLAY.

Each literal must be nonnumeric and may be any figurative constant,
except ALL.

Literal-l, literal-2, literal-3, literal-4, and literal-5, and the data
items referenced by identifier-3, identifier-4, identifier-5,
identifier-6, and identifier-7 can be any number of characters in
length up to the limit allowed for literals or data items.

Formats 1 and 3 Only

5.

6.

Identifier-2 must reference an elementary numeric data item.

If<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>