
("·
..

Medusa
Programmer's Guide
Beta Draft

. Apple Confidential

Medusa Programmer's Guide, Beta Draft

S APPLE COMPUTB, INC.

This manual ~ copyrighted by Apple
or by Apple's suppliers, with all rights
re.served. Under the cop)'!ight laws,
this manual may oot be copied, in
whole or in part, without the
written consent of Apple Computer,
Inc. This exception does not allow
copies to be made for others,
whether or not sold, but all r::i the
material purchased may be sold,
given, or lent to another person.
Under the law, copying includes
translating into another language.

C Apple Computer, Inc., 1989
20525 Mariani Avenue
Cupertino, CA 95014
(4<E)9')6.1010

Apple, the Apple logo, and Macinto.sh
are registered t.rademarks of Apple
Computer, Inc.

TokenTalk, Macintosh Coprocessor
Platform, and MR-DOS are
trademarks of Apple Computer, Inc.

NuBus is a trademark of Texas
Instruments.

Simultaneously published in the
United States and Canada

Notice

The information in this
document reflects the current
state of the product. Every
effort bas been made to verify
the accuracy of this information;
however, it Is subject to c:bange.
Beta Drafts are relcued IA this
form to pnmde the
deveJopmatt community with
esscntJal Information IA order
to work on compatible produdl.

Apple confidential

(
Apple Confidential

Contents

Preface
What this document contains I
Suggested reading I
Possible applications I
Conventions used in this manual I

1 Introduction 1

Token Ring Networks I
The network layers I
A token ring network I
Token communication I
The Macintosh II token ring interface I

SubNetwork Access Protocol (SNAP) I
The 002.2 Logical Link Control !PC interface I
Macintosh Operating System !PC services I
Download and initialization services I

iii

lv

Apple Confidential

2 Source Routing Support

What is source routing? I
Hierarchical networks I
Mesh networks I

How source routing works I
Routing information I

Source routing implementation I
SNAPuse I
11.Cuse I

Source route limits I

3 SubNetwork Access Protocol (SNAP) Interface

General information I
Typical SNAP use I
IPC requests to SNAP I

SNAPAttach I
SNAPGetConfig I
SNAPGet.Hdr I
SNAPTransmit I
SNAPDetach I
SNAPReceive I
SNAPC.ancel I
SNAPGetParms I

Functions supporting 802.2 I
SNAPSwapHdr I

Ex.ample program listing I

4 The 802.2 UC I IPC Interface

General infamation I
Typi::al 8l2.2 U.C use I
!PC requests to 8l2.2 LLC I

ilCOpenSAP I
U.CCl05CSAP /

CONTENTS

(

Apple C.Onfidential

llCGetHdr I
llCGetConfig I
LLCOpenStation I
LLCOoseStation I
llCC.OnnectStation I
LLCModifyParams I
llCReceive I
llCReceiveC.ancel I
LLCTl Transmit I
u.cmransmit I
llCReset I
LLCRetumBuff er I
LLCGetStatistics I
LLCStatus I
llCSetFurx.tionalAddr I

Functions Supporting 002.2 I
LLCSwapHdr I

5 Apple IPC Services

General information I
Apple !PC driver I
Apple !PC library I

Apple !PC managers I
L:sing Apple !PC I
Apple !PC services I
a~eue/
C.OpyNuBus I
FreeMsg I
GetCard I
GetETICk I
GetlCCilD I
GetIPCg I
GetMsg I
GetNameTID I
r .ietTickPS I
-:JecI1D .
lsLocai /
KillRece:ve /

CONENTS v

Lookup_ Task I
OpenQJeue I
Receive I
Register_Task I
Send I
SwapTID I

Apple O::mfidential

6 Download and lnitlalizatlon
General information I
TokenTalk Prep services I

ITFindCards I
ITFindBootedCards I
ITFindUnbootedCards I
TIBootCards I
TIForceBoot /
ITGetStatusAddr I
ITGetLLCTID I
ITGetSNAPTID I
ITGetBoardID I
ITDynamicDL I

TokenTallc Prep file example I
UC resource description I

TokenTalk '.'IB card boot process summary I
Defining the UC resource I

7 Avoiding Trouble
Genera! information /
Commoo error causes I

Fnoroodes I
Network connection failure I
Pr~ programming the listener function I
Global data structures and dynamic download I
DMA conflicts I

Appendix . .\ Components 77

vi CONTENTS

(:

Apple Confidential

Appendix B The TokenTalk NB Card 79

Hardware overview I
Cooununications engine I

(.entral processor unit (CPU) I
Read-only memory (ROM) I
Dynamic random access memory (DRAM) I
Communications engine/NuBus interface I
Communications engine/token ring interface I

Token ring interface I
TMS38)10 rommunications processor I
TMS38)20 protocol handler (PH) I
TMS38)30 system interface (SIF) I
TMS38)51 and TMS38)52 ring interface I
Burned-in unit ID I

Adapter interfaces I
TokenTalk NB memory map I
Control registers I
TokenTalk NB card options register I
TMS38:>30 direct I/O interface registers I

DATA regi.ster I
DATA AlITO INCREMENT register I
ADDRESS register I
INTERRUPT register I

TMS38)30 OMA I
NuBus addressing I

Adapter timer /
68000 reset I
TMS38:>30 reset /
Interrupts I

Software overview I
Power-on self-test I
Software interface I

System command block I
System status block I
TMS~ initialization I
TMS~ command execution I
Command completion I

TMS380 commancJ.S I

CONENTS vii

Apple C.Onfidcntial

Appendix C Echo Task Program Example
. -

Program summary I
Programming checklist I
Dynamic download I

DynDownI.oadExamp.make I
DynDownLoadc I

Dynamic global data structure management I
ADT.h I
ADT.c I
ListenerGlue.a I

The echo task I
F.choTask.make I
F.cOO.h I
General.h I
EchoBlastTask.c I
EchoTask.c I
EchoTask.r I

Interface to MR-DOS and SNAP I
Extemals.h I
SNAP-Interface.h I
Echo-lnterface.h I
MREcho-lnterface.c I
MRSNAP-lnterface.c I

viii CONTENTS

Apple Confidential

(

Figures and Tables

C H A P T E R 1 Introduction I 1

Figure 1-1 TokenTalk NB protocol model I
Figure 1-2 Token ring topology I
Figure 1-3 Token ring components I
Figure 1-4. Frame formats: free token, busy token I
Figure 1-5 Macintosh interface to the token ring network I

CHAPTER 2 Source Routing Support I

Figure 2-1 Single bridge between networks I
Figure 2-2 Hierarchical network I
Figure 2-3 Mesh network I

(CHAPTER 4 The 802.2 llC I IPC Interface I

Figure 4-1 SAPs and link stations I

CHAPTER 5 Apple IPC Services I

Table 5-1 Apple !PC services I
Table 5-2 State table for the Receive call I
Table 5-3 Errors returned I

CHAPTER 7 Avoiding Trouble I

Figure 7-1 Dynamic task download I
Table 7-1 mStatus error code summary I

APPENDIX B The TokcnTaJk NB Oard I

Figure B-1 TokenTalk NB block diagram

x

/

Apple C.Onfidential

Preface

IBIS DOCUMENT is to be used by Apple software developers who wish

to develop a protocol interface to the Apple® TokenTalkTll NB card in

conjunction with the Macintosh® Operating System (OS). To make use of

the information presented here, you should have a working knowiedge of the

Macintosh OS and, depending on your application, a working knowledge of

token ring networks. The information presented in this manual describes

how to interface to the data link layer by way of calls to the SubNetwork

Access Protocol (SNAP) interface and the ~2.2 logical link control (LLO

interface.

You should be familiar with the following information:

• Macintosh II computer and NuBus ™
• Macintosh Programmer's Workshop (MP~)

• C programming

• Multiprocessor programming techniques

• Network programming techniques

• ~inimal Realtime Distributed Operating System (MR-DOS™)

What this document contal..Ds

This document provides a description of the programming interface to the
TokenTalk NB card and includes programming information on the
SubNetwork Access Protocol (SNAP) interface, the logical link control (LLC)
interface, and the interprocessor communication (!PC) interface provided in
the Macintosh OS. The Macintosh services that initialize the TokenTalk NB
card are also presented.

xi

xii ?reface

Apple confidential

The intent of this document is to supply information that allows
developers to develop other protocol interfaces (APPC, 3270, and so on) that
run under the Macintosh OS for the TokenTalk NB card.

The following table describes the contents of this manual and shows
where to find information that helps you accompli5h a desired task. Not all
cbapterS-are applicable to all tasks. A roadmap that illustrates the manual
organiz.ation follows the table.

Wbatyouneed Location Content

Introductory Chapter 1 An introduction to token ring concepts
information and interface services running under the

Macintosh OS

Source routing support Chapter 2 A discussion d source routing support in
in a multi-network Token Talk
environment

Developing Type 1 Chapter 3 The SubNetwork Access Protocol (SNAP)
•connectionless• token interface calls to the Macintosh OS
ring services

Developing Type 2 Chapter 4 The 802.2 logical link control (UC) interface,
connection-oriented which is useful for applications based on a
token ring services specific protocol with an assigned Service

Access Point (SAP) identifier
,

Interprocess commun- Chapter 5 The interprocess communication (!PC)
ication between the services provided by the Macintosh OS for
Macintosh OS and the passing messages between the operating
TokenTalk NB card system and the TokenTalk NB card. All

developers need the information contained
in this chapter.

Initialize the TokenTalk Chapter6 The code and parameters in the TokenTalk
NB card Prep file used for initializing the TokenTalk

NB card and an example of how to use '.he
• TokenTalk Prep ftle. All developers need

the information contained in this chapter.

General troubleshooting Chapter7 Troubleshooting tips and hints for
guidelines avoiding trouble with software and

hardware.

~,/

(-

Chapter3
SNAP
T;pe 1 appltcatiOn
(simple inteif ace)

Chapter 1
IntroductiOn

Chapter 2
Soun:e
routing
sup part

Chapter 5
Macintosh OS
interprocess
CommunicatiOn
Services

Chapter 6
TokenTaik NB c.ard
downloading and
initializing

II
Chapter 7
How ID avoid
trouble

Apple confidential

Chapter 4
802.2 LLC
Type 2 application
(comp/er inteiface)

Preface xi ii

(

xiv ?reface

Apple confidential

Suggested reading

Here is a list of reference materials that relate or apply directly to the
TokenTalk NB card:

• Macintosh Coprocessor Platform Developer's Guide (MR-DOS !PC
implementations)

• Apple TokenTalk NB User's Guide

• Alhena Programmer's Reference and User's Guide

• Texas Instruments 1MS380 Adapter Chipset User's Guide

• Texas Instruments 1MS380 Adapter ChipSet User's Guide Supplement

• Texas Instruments Manual Update, Revision F

• IBM Token Ring Netux:Jrk Architecture Reference

• lEEE 802.2 StJndard

• IEEE 802.5 Standard

Possible applications

You may-vi.sh to develop any number of possible applications. For example,
you may want to create your ovm 3270 prOlocol emulator that accesses
mainframe computers by way of the token ring interface. Other applications
might be to implement TCP/JP under the Macintosh OS for the TokenTalk
NB card or to provide X.25 dial-up services.

The information presented in this document assumes that the token ring
application you are developing runs under the Macintosh OS and is not

downloadetl to reside in memory on the TokenTalk NB card itself. The
Macintosh Coprocessor Platform Developer's Guide contains information you
:ieed to deve:op •ckenT.::.lk NB memory-resident applications.

UJnventions 'JSed in this manual

-~>)K :::;; :nese :::mventions throughout the manual:

+ Note: Notes like this contain supplementary information.

A special rypeface is usetl to indicate lines of code:

(

Medusa Programmer's Guide, Beta Draft Apple Confidential

Chapter 1 Introduction

T H I S C H A P T E R I N T R 0 D U C E S the topics that support

programming acces.; to the Apple TokenTalk NB card. The TokenTalk NB

card provides an interface to a token ring network. By using the services

provided in the Macintosh Operating System (OS), you can program a protocol

interface, such as 3270 data stream protocol or TCP/IP, that supports token

ring communication.

In this chapter you will find introductory information on token ring

networks, SubNetwork Access Protocol (SNAP), the ~2.2 Logical Link Control

(LLC) interface, Macintosh OS Interproces.; Communication (IPC), and the

download and initialization services for the TokenTalk NB card. •

1

Medusa Programmer's Guide, Beta Draft Apple c.onfidential

Token ring networks

A token ring network is a topclogy (ring) and a protocol (token-passing) defined by the IEEE 802
commiuee. The actual token ring access method, or how to interface with the physical media, is
defined in the IEEE 802.5 standard. However, you need not be concerned with the physical access to
the token ring net"WOrk because the access is handled by the TokenTalk NB card itself, as are the
8:>2.2 logical link control functions.

The network layers

The TokenTalk NB card provides an interface to the token ring network. The token ring network
interface adheres to the International Standards Organization Open System Interconnection (ISO
OSI) network model. The 8:>2.2 UC interface provided for the TokenTalk NB card corresponds to
the ISO OSI model as shown in Figure 1-1.

• Figure 1-1 TokenTalk NB protocol model

--
Session

Tr.a.n..pon

2 1 I Introduction
,,,,~

l,

\~"",./

(

Medusa Programmer's Guide, Beta Draft Apple Confidential

A token ring network

The topology ci a token ring network is shown in Figure 1-2, which shows the ring, the nodes, and
the free token that circulates around the ring. The physical components of a token ring network
consist of the TokenTalk NB cards, one or more multistation access units (MAU), and the
connecting cables. The MAU ind the connecting cables provide the physical "ring" for the network,
in fact, the MAU acts as a wiring concentrator for the connecting cables. Multistation access units
can be connected in a daisy chain to provide whatever size network is required. The TokenTaJk NB
card and the Macintosh II system provide the network node on the ring (F1gure 1-3).

Token communication

In a token ring network, a data packet called a free token is passed from node to node. If a node has
no data to transmit, it passes the free token to the next node. On the other hand, if a node does

~ have data to transmit, it captures the free coken, changes it to a busy token, and appends the
necessary destination address, source address, data, data checks, and control bytes to ensure reliable
delivery to the destination node. This busy token is called a frame.

Each node between the source node and the destination node passes the frame, or data packet,
onward. When the data is received a; the destination node, it marks the data packet as received and
sends the busy token around the ring to the source node. The source node then checks the token
and verifies that the destination node received the data. The originating node removes the busy
token from the ring and releases a new free token on the ring so another node can transmit (Figure
I--0. The originating node must wait for another free token before it can transmit again.

Any one node is allowed one transmission per free token, which limits each node's access to the
network. In this manner, every node on the network is guaranteed equal access time to the
network.

l i Introduction 3

Medusa Pro8f2mmer'S Guide, Beta Draft

• Figure 1·2 Token ring topology

0

mi\1111111 ! I! I

Apple Confidential

D
mi1111111 I ! I B I

"' Circ:ulating token
,..... ___
D

• Figur: 1·3 Token ring components

4 l / Introduction

(up ro8 nodes per MAU)

rf~~"
)

\~,/

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

• Figure 1-4 Frame formats: free token, busy token

Pree token format

The Macintosh JI token ring interface

The actual formatting and transmission of the data packets, free tokens, and busy tokens is
handled by the hardware on the TokenTalk NB card and the 802.2 llC interface software. Your task
as a developer or programmer is to use the programming support tools to pass the necessary
destination address and data information to the TokenTalk NB card and to deliver the data from
the card to applications running under the Macinta;h OS .. Source routing of packets through
bridges is described in Chapter 2.

Figure 1-5 shows :he ~cintosh lI and TokenTalk '.'IB card interface :s the token ring network.

.: Introduction

:=rar::e
scarus

;

)

Medusa Programmer's Guide, Bela Draft Apple Confidential

• Figure l·S Macinto.5h interface to the token ring network

Macint°'h II

As shown in Figure 1-5, the primary communication interface between the TokenTalk NB card and
the Macintosh II is through the inlerprocess communication (IPC) services. These services are
provided by the Maddosh OS oa the Macintosh II and by MR-DOS on the TokenTalk NB card A
specific set of servia:s for the 802.2 llC md SNAP vrovide the interface m I.he chip set that handles
:.he low-ievel praoeol processtng and phvsicai commumcation with tne mi<en nm~ netWoric.

"'.":1e '.oken Talk NB cara i.s mlliaiized and downiooaea bv wav oi cne serv1a:s prov1aea in cne
TokenTalk Preo file.

6 1 I introduction

(

(~

Medusa Programmer's Guide, Beta Draft Apple Confidential

SubNetwork Access Protocol (SNAP)

The IEEE ~2.2 committee has implemented a SubNetwork Access Protocol (SNAP) that allows
protocol multiplexing and demultiplexing among multiple users of a data link. When Ethernet was
first designed, it allowed for 64 different protocol identifiers. However, with the macuration of
local area network technology and the development cl <Xher network standards such as token ring
and token bus, 64 different protocols identifiers were too few. Different network companies
devised various schemes to expand the number of protocol identifiers so as to differentiate
between, say, AppleTalk, TCP/IP, XNS, and other protocols.

To accommodate the large number of network protocols, the IEEE 802 committee has imposed the
SNAP to standardize protocol access to the network and to ensure that protocol identifiers from
different vendors do not conflict. SNAP is analogous to the old Ethernet protocol ID except that
SNAP is a 5-byte field and the old Ethernet protocol ID is a 2-byte field. The trend now is to
represent the old Ethernet protocol IDs in SNAP, which provides compliance with the current
standard.

SNAP allows Type 1 (datagram) communication services only; it does not support connection and
session-oriented Type 2 services. For tho.se services you must bypass SNAP and use the 002.2 logical
link control (UC) interface directly. · ·

The SNAP interface described in this manual is sufficient for a wide variety of network protocol
applications. Source routing is supported by the SNAP interface to allow transmission of packets
through bridges and multiple networks, but is not implemented in the UC interface. The more
complex UC interface should be used primarily in Type 2 applications, such as connection-oriented
3270 data stream protocol communication.

The 802.2 Logical Link Control IPC interface

The logical link control (UC) sublayer is the part ci the data !ink layer that supports the media­
independent data link functions, and -=.;h'.ch use; the services cf the medium access control (MAC)
sublaver to prcvide services ~o L'1e ne~ork !ayer. 1i'le :PC interface to the 002.2 UC communicates
with e1mer the Texas Instruments token rmg chip set (the l.'15380 family) that implements the
002.2 UC, or with a software-based 802.2 UC wherein the tasks performed by the chip set are
implemented in software.

The 002.2 lPC interface functions described in this manual provide access to and communicate with
the 802.2 UC. It is important to understand that for the TokenTalk NB card applications, the ~2.2
UC itself is implemented in the chip set on the TokenTalk ~rn card.

1 / !mroduction

Medusa Programmer's Guide, Beta Draft Apple Confidential

Macintosh Operating System IPC services
The Macintosh II operating system supports a multitasking, multiprocessor environment.
Different intelligent cards residing on the NuBus, such as the TokenTalk NB card, depend on
interrupt-driven communications to transfer information and to COO"dinate task execution. The
interprocess communication (IPC) i.5 the mechanism that provides this communication service.

Many !PC functions are provided for the Macintosh Operating System and for the MR-DOS.
MR-DOS is an operating system that resides on the smart cards in the Macinto.sb II and provides
the !PC services for these cards. For information on the MR-DOS !PC, refer to the MactnlOSh
Coprocessor Plalform Developer's Guide.

Download and initialization services
A TokenTalk NB card is initialized from the Macintosh Operating System by way ~ a special file
called TokenTalk Prep. This file contains resources that hold code images for downloading to the
TokenTalk NB card. The TokenTalk Prep file provides the services that initialize the TokenTalk NB
card and download MR-DOS, SNAP, ~2.2 LLC/IPC interface, and default I.LC parameters.

8 1 I Introduction

(

(

Medusa Programmer's Guide, Beta Draft Apple C.Onfxiential

Chapter 2 Source Routing Support

T H I S C H A P T E R D E S C R I B E S network source routing support and

includes background information on necwork routing arxi bridges. This

chapter also discusses source routing implementation and source routing

limits. For the most part, source routing support is transparent because it is

included as part of the SubNetwork Access Protocol (SNAP) services in

TokenTalk. •

9

Medusa Programmer's Guide, Beta Draft Apple Q)nfidential ·

What is source routing?
Chapter 1 presented the concepts associated with a single token ring network and briefly described
the frame formats associated with data transmission within a token ring network. In a single
token ring network, the information contained in the frame, or data packet, includes the address of
the source node and the address of the destination node. Source node and destination node
addresses are all that are required to send data packets in a token ring nerwork.

The cenn source roW1ng refers to the means by which frames between multiple networks are
correctly sent, or routed, between the source and destination nodes. Source routing occurs when a
bridge connects two or more token ring networks and frames pass through the bridge between the
two networks (Figure 2-1). In essence, a bridge forwards frames from one network to another
based on routing information that :.S inserted by the source node.

• Figure 2-1 Single bridge between networks

To_-QJ==---L.JBridLgel---=(~~~ 2

As defined by the IEEE 802 specification, a bridge is a functional unit that conneds two networks
using a single logic:3l link rontrol (LLC) procedure, which in TokenTalk is the IEEE 802.2 llC. Several
configurations are pos.5ible when more than two networks are connected by bridge, but the
resultant network is either a hierarchical network or a mesh network. These two concepts are
explained in the following ~aragraohs.

Hierarchical netwcr.XS

Simply defined, a hierarchical networt is one that provides only one path between the source and
desti031ion nodes, no matter the number of intermediate rings. For example, in Figure 2-2 a frame
from ring l must pw through intermediate ring 2 in order to reach ;ts. destination on ring 3. '.'lo
other path exists.

Ukcwise, a frame from ring 4 destined for ring 1 must pass through intennediale rings 3 and 2.
The key to a haer.uc:bica1 necworic is that only one path. or ~oule. is provided between source and
:1estination nodes. .'\! the fi~re !:Dows. mere :s a choice ~i bria~es between rim~ l anci 3 bul no
:.~01ce oi imermediale rim~.

10 2 I Source Rouun~ 5uooon

(
Medusa Programmer's Guide, Beta Draft Apple Confidential.

• Figure 2·2 Hierarchical network

Bridge Bridge

Bridge

Bridge

.Mesh networks

A mesh netUXJrk provides multiple paths between the source and destination rings and alternative
choices of bridges. Figure 2-3 shows four rings connected in a mesh configuration.

• F!gure 2·3 Mesh network

Token~(\
~_.), r=---LJ

Bridge

3ncige

Bridge

· :> the ::iesh nerwork ~hown m forure 2- ~ . .l frame has two oossible oaths from rim~ 1 '.o ring : . The
-::rne -:.::n ce ~mcea t!iroCJQrl rmll '! or l nrom!.n nn:;: 2.

2 / Source Roulin~ Support 11

Medusa Programmer's Guide, Beta Draft Apple Confidential

Note that a parallel connection exists between ring 2 and 3. Parallel connections provide redundancy
in situations that require high reliability. Up to 16 parallel connections can exist between any two
rings.

Variations on hierarchical and mesh networks can accommodate a wide variety of network
configurations. Configuation parameters and network layouts are detennined during the planning
and installatioo phase and are dependent on specific limitations enforced by the bridge
manufacturer. The primary benefit of bridges is to allow more than 260 devices to be supported in
the netWork installation.

How source routing works

For any two oodes, or stations, to communicate in a hierarchical or mesh network, routing
infomwion must exist that describes the path between the two stations. Route determination
can be the responsibility of the communicating stations, the bridges, or a central management
facility' . Source routing applies to the first case, where the station that is the source of the frame
puts the routing information into the frame. Bridges, which operate at the data link layer of the
network, support source routing. (Refer to Chapter 1 for an illustration of the network layers.)

Source routing exhibits the following features:

• Routing information is based on information about the path between two communicating
stations; station addresses arc not used.

• Path infonnation is learned dynamically by a station that initiates communication with
another.

• Route d~ery is a twcrpart proceSs that involves broadcasting a message to all of the
interconnected networks.

• Bridge routing tables are not required; bridges decide whether to forward a frame by comparing
a fixed, identifjing value with a small portion of the routing information field in the frame.

Routing information

Routing information is contained in its own field in the frame and is separate from the destination
address. The routing information is obtained in two stages. The first stage occurs when the
source station ~ a frame to all of the connected networks. The broacbst frame contains
the destination addrm of the target station plus information that tells the intervening bridges lo

forward the frame.

· ·'..ian-i3o:n !l ~.,,)a.."Uel Averv !'i.!1. ;;no P.obert A . .Jonnan. ·~ource Rouung ror Local Area NetworK.s;' 'BM Ccroorauon

;:a5

12 2 I Source Routing Support

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

The routing information i.s added to the frame during the broadcast phase. A bridge on the
first network adds the identifying numbers of the two networks that it joins. Additional bridges
add only the identifying number of the next network. (The network ID numbers are assigned by a
network administraror when the network is initially installed and configured.) Frames are
prevented from looping because no bridge will forward a frame to a network whose number
already appears in the fr2me. -

The second phase of obtaining the routing information is performed by the station that received
the initial brcadcast frames. F.ach fr2me is returned as soon as possible according to the route it
acquired from the bridges along the way, rather than being returned by broadcast message.
Because the initial broadcast frame is returned by any of several possible routes, the source station
acquires frames that contain valid routing information. The source station can choose any of the
valid routes returned by the destination, but the first response has usually traveled the fastest
route.

Up to this point, the destination station still has no idea which route will be used for
communication. The source station keeps its chosen routing information, which is learned by the
destination station when nonbroadcast communication begins. Because the same route is used for
communication in both directions, failed links can be easily diagnosed.

The routing information can be associated solely with the destination address, or with the
combination of destination address and destination and source link service access points (SAPs).
The first case limits all communication to the same route, whereas the second case allows different
"conversations• to use different routes. Chapter 4 describes SAPs.

As previously mentioned, the SubNetwork Access Protocol (SNAP) interface automatically
provides source routing support in a connectionless environment. Because the source routing is
provided in a connectionless environment, an aging timer i.s used to diminate source routing
information from the routing tables, thus preventing possible errors from table overflow. By
contrast, if connection-oriented source routing were supported, the routing information would be
maintained only for the duration of the link connection.

Source routing implementation

Source rouung IS implemented in the SubNetwork Access Protocol (SNAP) interface. Suppiied willl
the TokenTalk NB card, this protocol automatically handles the discovery and response phase for
source routing addresses.

2 I Source Routing Support 13

Medusa Programmer's Guide, Beta Draft Apple c.oofidential

SNAP use

The SNAP interf.lce allows Type 1 (datagram) communication services only; connection and
session-<>riented Type 2 services are only supported by the 802.2 logial link control (11.C). For those
services you must bypass SNAP and use the I.LC interface directly.

The SNAP irierface described in this manual is suffkient for a wide variety of network
protocol applications.

llC use

The more complex LLC interface is used priniarily in Type 2 applications, such as connection-oriented
3270 data stream protocol coaununication. Source routing is not directly supported in the LLC
interface

Source route limits

Some limits on source routing are imposed when the networks and network bridges are installed. A

network administrator is responsible for properly configuring the network and supplying workable
values. The configuration parameters that can restrict frame forwarding and source routing
activity include the following:

• Bridge ID number. To properly route frames, each bridge must have an ID number assigned.

• Hop count limit. The hop count is tjle number of bridges that broadcast frames have already
crossed to reach the current bridge. Broadcast frames with a hop count equal to or higher than
the hop count limit imposed on the bridge are noc allowed to crass the bridge. If the number
r:i hops between the source and destination station exceeds the hop count limit, the frame
transmission fails.

Additional bridge configuration parameters controlled by the network administrator affect how
frames are passed throughout the network.

The number r:i source routing addresses that any one station can keep track of is limited by the
table size reserved for storing these addresses. Two tables are used: one keeps track of the address­
to-ring numbers; the other keeps track of the ring-number-to-route. The tables can hold
approximalely a> oode a<ttes.ses and 100 ring addresses.

Table overflow is prevented by a •teast-used timeout• algorithm. A node address entry is
dropped when it is DOt beard from for 40 seconds. A ring number is dropped when it is noc heard
from for three minutes.

14 2 / Source Routin~ Sui:>port

(.

Medusa Programmer's Guide, Beta Draft Apple Confidential

Chapter 3 SubNetwork Access Protocol (SNAP)
Interface

T H I S C H A P T E R D I S C U S S E S the programming interface for the

802.2 SubNetwork Access Protocol (SNAP) interface. SNAP is used to deliver

Type 1 messages in a network and i.5 a les.s complex interface than the 802.2

UC interface described in Chapter 4. •

15

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

General information
SubNetwork Access Protocol (SNAP)i.s defined by the IEEE 802 committee as the standard means
of identifying a large number of protocols in an 802.2 environment. SNAP uses a service access point
(SAP) identifier of OxAA. By compariron, a ISO OSI SAP identifier is the hex value OxFE.

The first five bytes of the infonnation field of each SNAP frame contain a protocol discriminator
that identifies a particular protocol. The first three bytes of the protocol discriminator are the
vendor ID assigned to the creator of the protocol, that is, the same vendor ID used in globally­
administered node addresses. The Ethernet bit ordering in these three bytes is retained, which
means that the bytes are transmitted most-significant-byte, least-significant-bit first. This
Ethernet bit ordering is the format for representing the vendor ID in SNAP on all media. The last
two bytes are assigned by the vendor to identify a particular protocol. By convention, if the vendor
ID is set to zero, the remaining two bytes represent an Ethernet protocol ID.

As you C3Il see, the SNAP interface is not strictly limited to token ring applications. Because the
SNAP interface is at the data link level of the network model, it is insulated from the
implementation of the physical level.

In the TokenTalk NB card implementation, the SNAP interface registers itself under the type
·sNAP• with the MR-DOS name manager. A name that is associated with the type is passed as a
startup parameter. (Startup parameters are provided in the TokenTalk Prep file discussed in Chapter
6.) By convention, the name is -rokenTalk.\/B. •

Client processes should limit the number of requests that they queue to the SNAP. As a general
guideline, no more than ten SNAPReceive and ten SNAPTransmit requests should be queued by a
single client at once. With any more queued requests MR-DOS can run out of message buffers. One
method to impose this limit is to allocate a fixed number of transmit buffers, receive buffers, and
data buffers when the code is initialized 'and to keep the buffers in a linked list. Then, by removing
entries from the list and requeueing them when a request completes, there only await a limited
number of requests to the SNAP interface at any given time. Queueing several receive or transmit
requests improves bcti:i the throughput and reliability, but the number of queued requests must
never exceed the numter oi available MR-DOS message buffers.

16 3 / SubNetwork Access Protocol (Snap) Interface

/

Medusa Programmer's Guide, Beta Draft Apple Confidential

The following list presents the requests that a client can issue to the SNAP interface. In each case,
mCode identifies the function and, in the reply, mStatus hol~ the result code for the function. As
is the convention with MR-DOS !PC, all requests have an even me.ode value and all replies use the
corresponding mCode plus one.

mCode

SNAPAttach

SNAPGetConfig

SNAPGetHdr

SNAPTransmit

SNAPDetach

SNAP Receive

Meaning-

Attach protocol discriminator

Return SNAP configuration information

Return media header template

Send a SNAP type 1 frame

Detach protocol discriminator

Receive a frame

Sec page

19
21

Z2

24

25

li
SNAPCancel Cancel all queued receives 28

SNAPGetParrns Returns SNAP-associated parameters ~

In addition to the above messages, the SNAP interface supplies the following library of support
functions:

Name Description

SNAPSwapHdr Swap node addres.ses in 1..Ai"lHdr structure for return to sender

Typical SNAP use

!PC requests support both Type 1 and Type 2 logical link control (Il.C). Type 1 is connectionless and
uses both the SNAP interface and, because the SNAP services are built on top of the LLC services,
the ~2.2 UC interface. Type 2 is connection-oriented and is ncx supported by the SNAP interface. A
typical application for Type 2 is 3270 terminal emulation.

Because the SNAP allows a Type 1 data link service only, it is discussed in terms of Type 1 LLC. Type
l Ll.C provides a data !ink with a minimum prctccol ccmplexity and is used when the upper iayers of
J'le ISO model provide :.he error detection and recovery. 7:-pe 1 LLC :S -"ISO used in m appiICation in

which it is not necessary to guarantee all data link layer transmissions.

Once a SNAP is attached, the application or protocol stack associated with that prcxocol
discriminator an trammit and receive any of the following Type 1 frames through the SNAP:

• TEST - Test Coounand causes the remote node to send a Test Response.

• rj1 - Cnnumbereci Information is used to r..-an.sfer data in a ivpe l environment

3 I SubNetwork Access Protocol (SNAP) Interface 17

Medusa Programmer's Guide, Beta Draft Apple <:onfldential

The following series of actions illustrates a typictl usage for a SNAP client using Type 1 services and
outlines the actions~ to transmit data by way of a TokenTalk NB card:

1. Use the TokenTalk Prep Utilities ('ITGetSNAPTID) or the IPC name lookup to find the SNAP
service.

2 Issue a SNAPGet.Panm to-obtain the Task ID of LLC and the RetNum of the SNAP's SAP. This
allows the SNAP dient to be able to make requests directly of the 8>2.2 LLC IPC interface, such
as LLCTlTransmit, LLCGetHdr, and llCGetConfig.

3. Issue a SNAPAa.ach, which includes a 5-byte protocol discriminator.

4. Optionally obtain configuration information from LLC by way cl SNAPGetConfig.

5. Obtain header template by way of SNAPGetHdr. The header can be copied after it has been
obtained, but it is important initially to use SNAPGetHdr to build the UN header with values
supplied by the client (such as destination node). Different LLC implementations might assume
a different header setup, so by using SNAPGetHdr you insulate yourself from uMecessary
problems. In general, the offset V2lues supplied in the header should be left alone.

6. Queue receive requests to SNAP to accept incoming frames by way of SNAPReceive.

7. Issue transmit requests to SNAP as required by way of SNAPTransmit

a Reissue receive requests as the receive frames are returned.

9. On completion, issue SNAPDetach. SNAPDetach automatically cancels outstanding receives.
Any outstanding receives are returned as •cancelled•

IPC requests to SNAP

In all structure declarations in this chapter, the type "byte• refers to an unsigned S-bit integer and
"word" refers tO an unsigned 16-bil integer. All structures and symbols used in this document are
defined in the include fde SNAP.h.

18 3 ; SubNetwork Access Protocol (Snao) Interface ;1-·-°',

~i

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

SNAPAttach

The SNAPAttach message is used to begin listening for packets on the specified SNAP protocol.
This request also specifies various options that are associated with the particular protocol.

F.xample 3-1 shows the type SNAP _PD, which is used to hold protocol discriminators. This type
may not be useful for representing the SNAP header in frames because the C compiler pads it to six
bytes.

mDataPtr points to the five-byte PD datl structure. mDataSize is equal to the size of the PD data
structure.

Refer lo F.xample 3-2 for the structure of mOData in the SNAPAU.ach request. Note that
mDataPtr points to the type SNAP.PD, which holds the protocol discriminator to auach to.

Result codes Value

SNAPNoErr

SNAP!nUse

SNAPNoMore

Descriptton

Normal completion

PD already attached

Insufficient resources

The "Listener" function pointer is a special hook th.at some clients find useful to handle incoming
frames more efficiently. Most clients should not use a listener function. Any listener that is
provided must be located on the same slot as the 802.2 interface. A listener function is called with
parameters that pass the media header, information pointer, information length, and frame type.
The listener must be completed with this buffer before returning. When a listener function is in use,
SNAPReceive requests are not used to receive frames.

An example declaration for the SNAP listener function might be coded as follows:

void Sample_Listener (nul, nu'2, hp, bp, len, ft)

long nul, nu2; /*Not used, but do not alter•/

LANHdr •hp; /*Pointer to LANHdr of received frame•/

:er.;
::. ;

J)

rec urn;

i f (bp (5] ! a 0)

ret:urn;

/TPoin:e~ :o :-f~eld, i~cludes :~e protoc~l

· d~scriminacorr/

/•Ler.gth of :-f~eld•/

;•frame type, J, a, or 9 only•/

/ r If :;ot :;r :::a'Tle, :.gr.ore•/

/*If byte following prococol discriminacor is not O•/
/*ignore frame •/

/• Other code to manipulate frame dat:a •/

ret:urn;

3 / SubNetwork Access Protocol (SNAP) Interface 19

Medusa Programmer's Guide, Beta Draft Apple Confidential

• Example 3-1 mOData stru<.ture for SNAP _PD request

typedef struct
{

union

long
char

PDl;
PDc{S);

/• Fast access to first four bytes of PD •/
/• Access to each and every byte of PO •/

l PD;
SNAP_PD;

• Example 3-2 mOData structure for SNAPAttach request

typedef struct

word PDRefNum; /• Returns RefNum of this
word Options; ;• Options

/• Bit 15:
Bit 14:

Bits 13-0:
•/

PD (used on SNAPReceive)

Unused
Use listener function
Unused

void (•Listener)(); ;• Pointer to optional listening function •/

SNAPAttachOData;

3 / SubNetwnrk .\ccess Protocol (5nao) Interface

•/

< .. ·

(~'

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPGetConfig

The SNAPGetConfig message returns. configuration information about SNAP. Examp/8 3-3 shows
the structure returned at the address passed in mDataPtr.

Result codes Value ·

U.Ci~oErr

U.CTruncated

Descripl1on

Normal completion

Buff er too short to receive all information

• Example 3-3 Structure mDataPtr points to following completion of SNAPGetConfig

<:ypedef struc<:

long ~:..cvers.ion; /* ::.Le Version ID */
long FAddr; /* Funct.ional address (token ring only) */
long GlTimerl; /* Does not apply to SNAP */

long G2Timerl; /* Does not apply to SNAP */

long G1Timer2; /* Does not apply to SNAP */

.:.ong G2Timer2; /* Does not apply to SNAP *I

.:.ong Gl:Timer; /* Does not apply to SNAP *I
long G2I':imer; /* Does not apply to SNAP *I
word ~axFrameLen; I* Maximum frame length •/

were .n.SA?s; / * Joes :'\Ot apply ~o SNA? */

wcrd AStations; / * Does not apply to SNA? *I
word MaxHeader; I* Maximum header size for this media */

byte LLCClass; I* Class of LLC implementation:
* 1 - Implements typel only

2 - Implements typel and type 2
*/

byt.e Media; /* Media indicator:
0 - Unknown 4 - 16 Mb Token Ring
1 - Local Talk 5 - FDDI
2 - -~ Mb Ether:'let 6 - 7oi<e!'I. 3us
3 - 4 Mb Token Ri~g

*I
oy<:e Rcuti~g; / .. Source-rcu-cinq i:",dicator:

'.) - llo sou::-:e-rout.:.::q
1 - IBM source-rou<:ing

*/

byt.e AddrLen; /* Length of node address in bytes */

byt.e Addr (9 J ; /* This node's address */

byt.e NumGAddrs; /* The number of group addresses that follow */

byte GAddrBuf [l]; /* Start of group addresses (length, address pairs)
LLCGet.ConfigBuffer;

*I

3 I SubNetwork Access Pro<ocol (SNAP) Interface 21

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPGetHdr

The SNAPGetHdr mes.sage creates a LANHdr structure that is used to transmit to the specified
node. Options are also provided to return broadcast header templates.

F.xample 3-4 shows the structure of mOData in the !PC message and F.xample 3-5 shows the
structure of the LANHdr structure that is returned to the area pointed to by the Heir field in
mOData.

mData..Ptr points to the node address and mDataSize indicates the size of that address in bytes.

N<X all media support all possible options. In cases when an umupportable option is specified, the
SNAP interface builds the best header it can and returns the status LLCNotFullySupponed to the
client. mDataSize must either be zero to get a broadcast template or be the exac.t size of a node
address for the underlying media.

Result codes Value Descriptton

LLCi~oErr Normal completion

LLCNotFullySupported Some option or type requested is not fully
supported by this media

LLCAddrError Invalid remote address-size must be 0 or equal to
the node address size for the media

• Example 3-4 mOData struc.ture for SNAPGetHdr requests

typedef struct

word HdrType;

~pt,:ons;

/• Header types:

•/

0 - Normal header
1 - Single-route b'cast, all-routes b'cast return
2 - Single-route b'cast, non-broadcast return
3 - All-routes broadcast header

/• Header options ra.:.ways zero) •/
oyt:e Reserved; /• Always zero •I

byte ?.eservea; ! • Always zero •I

~P..NHdr •:-i-=.::: 1
... ?oi:-~t:er :o :..ANncr st.:'Jcc~re :o be :er.'..lr:-:ed. */

r.:.:::;etHdrOData;

22 3 / SubNetwork Access Protocol (Snap) Irnerface

(

(,:

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

• Example 3-S LANHdr structure for SNAPGetHdr

typedef struct
{

byte

byte

byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte

:...ANHdr;

Media;

Routing;

DOff;
DLen;
SOff;
SLen;
ROff;
RLen;
HOff;
HLen;
DSAP;
SSAP;
HBuf [40 i;

/• Media indicator:
O - Unknown - 16 Mb Token Ring

* l LocalTalk 5 - FDDI

* 2 - 10 Mb Ethernet 6 - Token Bus

* J - 4 Mb Token Ring
*/

/* Source-routing indicator:

j•

/•

/•

/*

/"
/*

/*

/*

/*

/•

/•

Offset to
Length of
Off set to
Length of
Offset to
l..ength of
Off set to
Length of

O - No source-routing
l - IBM source-routing

destination address in header
destination address in header

buf :er
buffer

source address in header buffer •/

source address in header buffer •/

routing information in header buffer
routing information in header buffer
media header in header buffer •/

media header in header buffer "I
Destination SAP value "I
Source SAP value •/

Header buffer •/

•/

•/

•/

•/

3 I SubNetwork Access Protocol (SNAP) Interface 23

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPTransmit

The SNAPTransmit memge is used tq send a Type 1 frame.

Refer to E:tample 3-6 for the structure of mOData in the !PC message and to Example 3-5 for the
description of the LANHdr stz:!.iaure that is pointed to by Heir.

mDataPtr points to either a frame holding the buffer, or, if the "list-directed• bit of the Options
field is set, to an array of counts and pointers to buffers, as with receive.

If mDataPtr points to a frame holding user data, the first 5 bytes must be the prcxocol
di.scriminator (PD) and filled in by the user. It is possible to separate the 5 bytes of the PD from the
user data by using the list-directed option. In this case the mDataPtr points to an array of counts
and pointers: the first pointer points to the 5-byte PD and the second points to the user data.

Result codes Value Descrlptton

LLCNoErr Normal completion

U.CBadPri Unauthorized access priority

llCI'xError Error in frame transmit or strip

LLCUnauthMAC Unauthorized MAC frame

LLCTxTooLong Invalid transmit Frame length

LLCBadRefNurn Invalid RefNurn

LLCRoutingError Invalid routing information length

LLCBadFrame Invalid frame type

llCCancelled Transmit cancelled

• Example 3-6 mOData structure; SNAPTransmit requests

-;:ypedef struct

:<eser·1ed; /• :<eserved - always zero •/
wcr::i
word

::'lfoLen;

Qpt.:..ons;

/• ~ength o! information placed in buffer •/
/•Options:

Sits 15-8: :Jn used
Bit 7: List-directed
Bits 6-0: Unused

.. I

byte FrameType: /* Frame type
* Specifies frame to send:
* 03 OI frame OB Test cmd (p•ll
.. I

byte FS; /* Returns frame status •/
:.ANHar ·~cir /* ?ointer to ~ANHdr IN/A to LLCT2Transmitl •/

SNAPTxOCata:

24 3 / SubNetwork Access Protocol (Snap) Interface

(

(

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPDetach

The SNAPDetach message deactivates. a SNAP protocol. All out.standing SNAPReceives are cancelled,
and if a listener was in use on the protocol being detached, it will no longer be called.

Refer to F.xampk 3-7 for the ~tructure of mOData in the !PC message.

Result codes Value

SNAPNoErr

.Descrtptton

Normal completion

SNAPNotAttached Invalid RefNum

• Example 3-7 mODat.a structure for SNAPDetach and SNAPCancel requests

::ypedef si:ruct

word PDRefNum; J• RefNum of SNAP protocol discriminator
•/

} SNAP_PD_RefNum;

3 I SubNetwork Access Protocol (SNAP) Interface 25

Medusa Programmer's Guide, Beta Draft Apple c.onfidential

SNAPRecelve

The SNAPReceive mes.sage i.s used to-receive frames from an attached SNAP protocol.

Ref er to Example 3-8 for the structure of mOData in the IPC mes.sage and to LLC interface
documentation for the description of the LANHdr structure that may be pointed to by Hdr.

mData.Ptr points to either a buffer to receive the frame or, if the "list-directed• bit of the Options
field i.s set, to an array of counts and pointers. See E:xample 3-9 for the structure of the array of
counts and lengths.

It is possible to separate the 5 bytes of the PD from the user data by using the list-directed option.
In this case the mDataPtr points to an array of counts and pointers: the first pointer points to the
5-byte PD and the second points to the user data.

When list-directed, the number of elements in the list is determined by its size in bytes, given by the
value of mDataSize. Note that multiple receives can be queued for any given RefNum.

Result codes Value Descriptton

SNAPNoErr Normal completion

SNAPNotAttached Invalid RefNum

SNAPTruncated

SNAPCancelled

Frame larger than provided buffer space

Receive cancelled, either explicitly or by SNAPDetach

• Example 3-8 mOData structure for SNAPReceive requests

typedef struct

word PDRefNum;
word Options;

word :::nfoLen;
byte F:-ameType;

byte Filler;

/* RefNum of protocol discriminator */

/* Options:
Bits 15-8:
Bit 7:

Bits 6-0:

• /

Unused
List-direc::ed
Unused

/* Number of bytes of data in the :-field */

/* Frame ::ype :eceived:
C3 J! ~=ame

08 Test resp t f•ll
09 Test resp (f•Ol

*/

/* Not used */

LANHdr *Sdr; /* Pointer to area to receive header */

l LLCTxRxOOata;

26 3 I SubNetwork Access Protocol (Snap) Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential

• Example 3-9 Strudure for list-directed SNAPReceive requests

struct

word Count; /• 3yce count: for: tr.is :ransfer •/

byte

array[];

/• Poincer for t:his transfer •/

3 I SubNetwork Access Protocol (SNAP) Interface 27

Medusa Programmer's Guide, Beta Draft Apple r.onfldential

SNAPCancel

The SNAPCancel message is used to Qncel SNAPReceive requests outstanding on an attached SNAP
prOlocol.

Refer to Example 3-7 for the s_cructure <i mOData in the !PC message.

Result codes Value

SNAPNoErr

.Descriptton

Normal completion
SNAPNotAttached Invalid RefNum

28 3 / SubNetWOrk Access Prococol (Snap) Interface

(

(._

,...,/

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPGetParms

The SNAPGetPanm message is used ~o get the SNAP associated parameters. The message returns
the Task ID of the associated llC process and the RefNum of the SNAP's SAP (OxAA). The llC
process information is useful if the client process wishes to make calls directly to the llC interface.

-
F.xample 3-10 shows the structure of the mOOata in the !PC message.

Result code Value

SNAPNoErr

.Descnptton

Normal completion

• Example 3-10 Structure for SNAPGetParmsOData

typedef st::::uct

tid_type LLCT!D;
word SAPRefNum;

) SNAPGetParmsOData;

3 I SubNetwork Access Protocol (SNAP) Interface 29

Medusa Programmer's Guide, Beta Draft Apple Cooftdential

Functions supporting 802.2
In addition to the preceding SNAP messages, the interface supplies a library containing the
following support function. Note I.hat you must link the LLCSupportLlb.O me with your code
before using SNAPSwapHdr.

Name Description
SNAPSwapHdr Swap node addresses in LANHdr structure for return to sender

SNAPSwapHdt

The SNAPSwapHdr function is called using Pascal calling conventions. The function swaps the
addresses in a LANHdr. Thi.s swapping would usually be done to respond to a Type 1 frame.

pascal void SNAl'SwapHdr(LANHdr *Hdr);

Example program listing

The program listing presented below is a sample of how to invoke TokenTalk NB functions and
perform a SNAPAttach. Note the use of "define statements that simplify program maintenance
and insulate the code from extreme revisions in the TokenTalk intetface code.

/* Useful defined functions. */

tdetine ODataAs (x, yl ((x •) ((y) ->mOData))
•define SDataAs(x,y) ((x *) ((y)->mSDatall
ltdefine DPAs (x, y> ((x *l ((yl ->~DataPtrl l
•define ~eply(x,y) \

:id_:ype t;\

t = <xJ->mfrom, (x)->mfrom • (x)->mTo, (x)->mTo • t:\
(x)->mCode i = ~. (x) ->mStatus = y: \

Send ix);\

static tid_type SNAP_TID;
static short OurSNAPRefNum;

/* This does a SNAE'Attach •/
tdefine Vendor ID OxOOOOOO
tdefine ProtcolID Oxl234

/* TIO of SNAP process */
/* Our SNA? RefNum */

/* Vendor ID */
/* Ethernet protocol Oxl234 •/

30 3 I SubNetwork Acc:es.5 Protocol (Snap) Interface

Medusa Programmer's Guide, Beta Draft

message

long
SNAP _PO

•cmp;

Id;

pd;
if ((cmp • GetMsg() l 0)

return:

Apple Confidential Y20/89

/* How to get the SNAP_T!D */

cmp->mTo • SNAP_TIO;
cmp->mCode • SNAPAttach;

/* SNAP_TID acquired from previous name lookup •/

Id - cmp->mid;
pd.PD.PDc[O) = (VendorID >> 16) & Oxff;
pd.PD.?Dc[l) • (VendorID >> 8) & Oxff;
pd.?D.?Oc[2] • VendorID & Oxff;
pd.PD.PDc(3) = <ProtocolI::J >> 8) & Oxf~;

pd.?::l.?Dc~4; Protocc::~ & :x:::
\SNAP_?~ •) c~p->mDa~aP~r = &pd;

cmp->mDataS~ze = sizeof ISNA?_?Dl;
Send lcmp);
cmp = Receive(Id, 0, 0, 0);

if (cmp->mStatus)
(

FreeMsg (cmp);

return;

OurSNA?RefNum • ODataAslSNA?AttachReplyOData, cmp)->PDRefNum;
:::eeMsg lc:np);

3 I SubNetwork Access Protocol (SNAP) Interface 31

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

Chapter 4 The 802.2 UC I IPC Interface

T H I S C H A P T E R D E S C R I B E S the programming function calls that

support the 802.2 LLC I !PC interface. The 802.2 LLC I IPC interface provides the

message-passing interface to the TMS300 chip set that implements the logical

link control (LLC) for the token ring network. The 802.2 !PC interface

described in this chapter works equally well with an LLC that is implemented

in software rather than the ThfS380 chip seL •

33

Medusa Programmer's Guide, Beta Draft Apple Confidential

General information
The IPC services ~ a name table to identify various IPC clients. Every client must register its name
to use the name lookup functions provided by the !PC services. The TokenTalk NB implementation
of the 802.2 U.C I IPC interfa~ registers itself under three different types with the MR-DOS Name
Manager. These types are

• IlC

• Token Ring llC

• 4 MB Token Ring U.C

By providing several types for the U.C interface, a client can look for a generic U.C or a specific type
of U.Cby name.Associated with each of these types is the name that is passed in the llC"iame field
of the startup parameters. (Startup parameters are provided in the TokenTalk Prep file discussed in
Chapter 6.) By convention, the name is "TokenTalkNB. •

Oient processes should limit the number of requests that they queue to the U.C. As a general
-.guideline, no more than ten LLCReceive and ten U.CTlTran.smit (or U.CTZI'ransmit) requests should
be queued by a single client at once. With any more queued requests MR-DOS can run out ri
message buffers. One method to impose this limit is to allocate a fixed number of transmit buffers,
receive buffers, and data buffers when the code is initialized and to keep the buffers in a linked list
Then, by removing entries from the list and returning them when a request fmishes, only a limited
number of requests await the UC interface at any given time. Queueing several receive or transmit
requests improves bah the throughput and reliability, but the number ri queued requests must
never exceed the number of available MR-DOS message buffers.

The majority ri functions described in this chapter support !PC messages to the 802.2 U.C. An
additional function provides address swapping that swaps the source and destination addresses in
the frame header.

4 / The 8:!2.2 UC I IPC Interface

(

f

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

The following list presents the requests that a client can issue to the 802.2 LLC. In the normal
fashion, replies from LLC to these requests increment by one the me.ode in the !PC message to
indicate the reply.

mCode Meaning See page

LLC0pen.5AP Activate an individual or group SAP ~

LLCCluseSAP Deactivate a SAP 42
LLCGetHdr Return media header template 43
LLCGetConfig Return LLC configuration information 45
LLCOpenStation Allocate resources to support a

Type 2 connection ~

UCCloseStation Terminate activity on a station and
release the station (!

LLCC.OnnectStation Attempt to place local and remote stations
into data transfer state 4.g

UCModifyParams Modify parameters associated with a SAP
or link station 49

LLCReceive Receive a frame from a SAP or link station ;;

LLCReceiveCancel Cancel outstanding receives on stations or SAPs 51

LLCTl Transmit Send a Type 1 frame 52
LLCT2Transmit Send a Type 2 frame (I frame) 53
LLCReset Reset link stations and/or SAPs 54
LLCRetumBuffer Return interface-owned buffer to UC

(no reply to.this request) 55

LLCGetStatistics Get link station statistics ~

LLCSetFunctionalAddr Add/remove functional addres.ses CJ)

LLCStatus Notifies client of status changes sg

The LLCStatus message is sent by the 802.2 LLC interface to a client This message informs the client
of status changes related to Ty-pe 2 llC. There is co s9ecific reply to this message.

4 I The 8022 LLC I !PC Interface 35

Medusa Programmer's Guide, Beta Draft Apple Confidential

Typical 802.2 LLC use

The IPC requests suppcrt both Type land Type 2 logical link control CLLO. Type 1 is connectionless
and uses the SNAP irlerface described in Chapter 3. Type 2 is conne<.1ion-0riented and is not

supported by the SNAP interface. A typical application for Type 2 is connec.tion-0riented 3270 data
stream protocol.

Refer to the 1MS380 Adapter Chipset User's Guide Supplement for additional infonnation.

SubNetwork Access Protocol (SNAP) is not supported for Type 2 connections; therefore, Type 2
connections depend on the 802.2 LLC interface described in this chapter. Token ring conneaions
used by IBM, such as 3270 data stream protocols, exclusively use Type 2 data link services.

Type 2 services are connection-oriented. That is, the attached client must open further
connections after opening the service access point (SAP). Type 2 services guarantee the delivery of
all data link transmissions with proper sequencing, acknowledgments, and automatic retries. With
Type 2 services, connections are established prior to any data transmissions between nodes wishing
to communicate. These connection points between nodes are referred to as "link stations.•

For example, consider a link station 1 that wishes to communicate with link station 2. Station 1
allocates a link resource and sends a connection request frame to station 2. If station 2 has the
resources and is authorized to communicate with station 1, it returns a positive acknowledgment
to the station 1 connection request Assuming a positive acknowledgment is returned, a link is
established and data t.ransf er can occur in either direction. Once all data and all ·acknowledgments
transferred, either station can send a disconnect request to close the link, which frees resources in
both stations for other communications.

To establish communications for Type 2 operation, the attached client must first open a SAP, then
open a link station asscx:iated with that SAP, and finally peri'orrn a connection request with the
remote station. This sequence creates a link from the SAP in this node to another SAP in a different
node. One link station can be associated with only one local SAP and only one remote SAP on one
remote node. However, a single SAP may be associated with multiple link stations (Ftgure 4-1).

The following series of actions illustrates a typical usage for an UC client using a Type 2
connection-Oriented data link service:

l Cse the TokenTalkPrep Utilities ITTGetLLCI1D) or the IPC name lookup to find the UC
service.

2. Optionally obtain configuration information by way of LLCGetConfig, which provides the
maximum frame size and the physical limit for the maximum number of stations.

3. ls.sue LLCOpcn.5AP to begin LLC aaivity.

4. Obtain a header template by way of LLCGetHdr. The header can be copied after it is obtained,
but it is import2n1 initially to use LLCGetHdr to build the I.AN header with values supplied by
the client (such as destination node). Different UC implementations might assume a different
Je2der setuo, so by using U.C:ie!Hdr yoo insulate yourself from unnecessary problems. In
genera.i, the offset vaiues suppiied in the healler shouid be left alone.

36 4 I The ~2.2 LLC I !PC Interface

(~\

Medusa Programmer's Guide, Beta Draft Apple Confidential

5. Queue receive requests to the SAP to accept incoming Type 1 frames by way <i LLCReceive.
Remember that XID frames necessary to establish Type 2 communication are transmitted as
Type 1.

6. Obtain the address of the node that is to receive the Type 2 frame. The destination address can
be ol:uined from a broa~t name lookup function, or it can be provided by a hard-wired table
maintained on the network. A hardwired name table is site-dependent.

7. Issue LLCGetHdr with the destination node address.

& Is.sue an llCOpenStation request using a template.

9. Using a template, exchange XID frames as required with the destination node.

10. Using a template, issue LLCConnect.Station to activate the Type 2 link station connection.

11. Issue LLCReceive requests to the link station to permit reception of information frames (I
frames).

12. Issue transmit requests as required by way of LLCTZrransmit

13. Reissue receive requests as the receive frames are returned.

14. When done with the link station, issue LLCCloseStation.

15. On completion, close the SAP by way <i LLCCLoseSAP.

Establishing a link station requires a significant amount of resource. As a result, only a limited
number of link stations can be open at any one time. The number of open link stations allowed is a
parameter to LLC when it is first started. The number of available stations can be determined with
LLCGetConfig.

• Figure 4-1 SAPs and link stations

Station 1 resources Station 2 resources

4 I The ~2.2 llC I !PC Interface 37

Medusa Prawammer's Guide, Beta Draft Apple Confidential

IPC Requests to 802.2 LLC

In all structure dedarations in this chapter, the •type• byte refers to an unsigned 8-bit integer, and
•word" refers to an unsigned 16-bit integer.

All the structures and sympols used in this document are defined in the indude file LLC.h. The
include file 05.h conlains the structures for the IPC messages referred to in this chapter.

In each case, mCode identifies the function. In the reply, mStatus holds the result code for the
function. As is the convention with MR-DOS !PC, all requests have an even mCode value and all
replies use the corresponding mCode plus one.

4 /The ~2.2 LLC / !PC Interface

[''\

\, j
'-..__../

(

(

(

Medusa Programmer's Guide, Beta Draft Apple O:mfidential

LLCOpenSAP

The UCOpenSAP message activates either an individual or group SAP. This request also specifies
various options and defaults associated with the particular SAP.

Example 4-1 shows the structure of mOData in the !PC message. E.:i:ample 4-2 shows the
structure of the optional staOOn parameters that can be pointed to by mDataPtr. Station
parameters can be set to default values by passing mDataPtr as zero.

The universal receive option on a SAP (Example 4-1) allows the SAP to receive all frames directed
to it whether the frames are for an associated link station or for the SAP itself. In this case, a single
posted receive will accept either a Type 1 or a Type 2 frame. When the universal receive option is
used for Type 2 frames (I frame), the RefNum in the completed receive is replaced by the RefNum
of the destination link station.

The universal receive option is provided as a convenience for some SAPs. When used, all receives
should be queued to the SAP, and none to the link stations.

The listener function pointer is a special hook that for certain dients find useful to handle
~ received frames more efficiently. Most clients should simply specify 0 for this particular bit. Any

listener that is provided must be located on the same slot as the 802.2 interface. A listener function
is called with parameters that pass the media header, information pointer, information length, and
frame type. The listener must be finished with this buffer and header before returning.

An example declaration for the 802.2 UC listener function might be coded as follo'lll'S:

vo.:..d Sa.rnple_:..istene:r (t'.p~ bp, le;i, f':l

~ANHdr *hp; /*Pointer to ~ANHdr of received frame•/

unsigned char •bp; /*Pointer co I-field*/

int

int

len;

ft;

if I bp [0 l > 3)

return;

/*Length of I-field*/

/*Frame type, 3-9•/

/*If first byte of the I-field is > 3 ignore frame •/

Result codes Vaiue Description

UCNoErr

UCBadSAPOpts

11.CBad.Pri

l.LCMaxf.xceeded
llCBadSAPVaiue

Normal completion

Invalid SAP options

Unauthorized access priority

Parameter exceeds maximum

Invalid SAP value

4 I The 802.2 UC I !PC Interface 39

Medusa Progranuner's Guide, Beta Draft Apple C.Onfidential

Value

ll.OloGroup
ll.OloResources

U.CGroupLimit

LLCBadSi1.e

Description

Requested membership in nonexistent group
The maximum number of SAPs are already open

The group SAP already has maximum members

mDataSize has inappropriate length

• EDmple 4-1 mOData structure for U.COpenSAP and LLCModifyParams

typedef struct

word
word

function

*/

byte

byte
byte
byte
void

LLCSAPOData;

RefNum;
Options;

SAPValue;

StationCnt:
F ailedGSAP;
Unused;
(*Listener) ();

/* Returns refnum assigned to SAP */
/* Holds SAP options
/* Bit 15: "Universal" receive

* Bit 14: "Listener• is a Listening

Bits l3-9:Unused

* Bit 8: Reserved

* Bits '7-5: Access priority

* Bit 4: Unused
Bit 3: Handle XIDs

* Bit 2: Individual SAP
Bi: l: Group SAP
Bit O: Unused

*/
/* Holds desired SAP number (individual or group)

/* Max. link stations for this SAP */

/* Returns failing GSAP */

/• Unused */

/* Pointer to optional listening function */

• Example 4-2 mODataPtr structure for UCOpenSAP, LLCOpenStation, and LLCModifyParam.5

40

byte TimerTl;
byte TimerT2;
byte TimerTI;
byte M&xOut;
byte Maxin;
byte MaxOutincr;
byte MaxRetries;
oyi:e GSAPMaxMem;
,;ore :-!axrFie.id;
oyi:e GCnt;
::yr.e ':SAP f '31;

/* Response timer value (default a 5) */

/* Receive Acknowledge timer value (default • 2) •/
/* Inactivity timer valu~ (default • 3l •/

I* Max. no. of outstanding Tx I frames •/
/* Max. no. of outstanding Rx I frames */

/* Dynamic windowing increment */

/* Max. no. of retransmissions */

/* ~ax •. ~o. of :nelllbers of a ·::SAP */

;• ~ax. :engi:n of !-!ield •/
/* Number of GSAPs to join •/
'• ~? := ~ight qroup SAPS •!

4 I The al2.2 U.C I IPC Interface /~-.........."
I -,

'~./

(
Medusa Programmer's Guide, Beta Draft Apple C.OnfidentiaJ.

N<Xe that the GCnt and GSAP fields are net used in LLCOpenStation requests and that
GSAPMaxMem and MaxIField are not used in LLCMoclifyParams requests.

The timers all range in value fromO (for default) to 10. For Timem, values in the range 1-5 use
the corresponding groop 1 timer inteival which is 200 ms. Values in the range 6-10 use the group 2
timer interval which is 1 second

For TimetT2, values in the-range 1-5 use the corresponding group 1 timer interval which is 40
ms. Values in the range 6-10 use the group 2 interval which is 400 ms.

For TimerTI, values in the range 1-5 use the corresponding group 1 timer interval which is 1
second Values in the range 6-10 use the group 2 interval which is 5 seconds.

4 I The ~2.2 LLC I IPC Interface 41

Medusa Programmer's Guide, Beta Draft Apple C.onfidential

UCCloseSAP

The ll.COoscSAP mes.ugc deactivates. a SAP. An individual SAP should ncx be closed until all link
stations associated with the SAP are closed Likewise, a group SAP should ncx be closed as long as
the group has any SAPs as members. A SAP can be removed from a group by ll.COoseSAP (for that
SAP), or by IJ.CModjfyPar:u. F.xample 4-3 shows the structure of mOOata in the IPC message.

lmlh codes VaJue

LLCNoErr
LLCBadRefNum

llO.inkOpen
ll.CiAPOpen

llCSeqError

Descrtptton

Normal completion

Invalid RefNum

U ndosed link stations on SAP

Group SAP cannot close-all member SAPs are not
closed

Sequence error

• E:umple 4-3 mOOata structure for llCOoseSAP, LLCCloseStation, llCReceiveCancel, and
ll.CResel

typedef struct
{

word RefNum;
:..:..cRefNumOData;

42 4 /The fm.2 ll.C / IPC Interface

/• RefNum of SAP ~o close •/

(

('

Medusa Progranuner's Guide, Beta Draft Apple Confidential

LLCGetHdr

The LLCGetHdr message creates a I.ANHdr structure that is used to receive, transmit, open a
station, or connect a station to or from the specified node. Options are also provided to return
broadcast header templates.

F.xample 4-4 shows the structure of mODala in the !PC message, and F.xample 4-5 shows the
structure of the I.ANHdr structure that is returned to the area pointed to by the Hdr field in
mOData. mDataPtr poin!S to the node address and mDataSize indicates the size of that address in
bytes.

Not all media support all possible options. When an unsupportable option is specified, the !PC
interface builds the best header it can and returns the status UC.~otFullySupported to the clienL
mDataSize must either be zero to get a broadcast template or be the exact size of a node address for
the underlying media.

Result codes Value Descriptton

LLCNoErr Normal completion

UCNotFullySupported Some option or type requested is not fully
supported by this media

UCAddrError Invalid remote address-size must be 0 or node
address size for the media

• Example 4-4 mOData structure for UCGetHdr requests

typedef struct

word HdrType; /• Header .types:
0 - Normal header
l - Single-route b'cast, all-routes b'cast =etur~
2 - Si~gle-route b'cast, non-broadcast retu=~
3 - Al.:.-routes oroadcast ~eader

•/

•o=d Cptions; /" Header options: Al·•ays zero •I

cyte SSAP; /• Source SAP va.:.ue •/
byte JSAP; /• Jest.i:iat.:..on SAP value •/

LANHdr •Hdr; /• Pointer to LANHdr structure to be returned •/
L;:.CGetHdrODal:a;

4 I The ~l2 U.C I !PC Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential-

• Example 4-S L\NHdr structure for LLCGetHdr used by LLCOpenStation, LLCConnectStation,
LLCReceive, and LLCTransmit

typedef struct

Media;

byte Routing:

byte DOff;
byte DLen:
byte SO ff;

byte SLen;
byte ROf!:
byte RLen;
byte H.Cf:;

byte HLen;

byte DSAP;
byte SSAP;

byte HBuf[40];
LANHdr;

/* Media indicator:

O - Unknown

* 1 - LocalTalk

*/

2 - 10 Mb Ethernet
3 - 4 Mb Token Ring
4 - 16 Mb Token Ring

5 - FDDI
6 - Token Bus

/* Source-routing indicator:
0 - No source-routing
1 - IBM source-routing

*/

/* Off set to destination address in header buffer
/* Lenc;th of destination address in header buffer
/• Offset to source address in header buffer •/

/• Length of source address in header buffer */

/* Offset to routing information in
/* Length of routing information in
/• ~:fset to media header in
/* Length of media header in

/* Destination SAP value */

/* Source SAP value */

/* Header buffer */

header
header

header buffer
r.eader buffer

buffer */

buffer */

44 4 /The ~2.2 LLC /IPC Interface

*/

*/

*/

*/

(

(

Medusa Programmer's Guide, Beta Draft Apple Confidential

llCGetConflg

The 11.CGetConfig message returns cpofiguration information about 11.C. Example 4-6 shows the
structure returned to the address passed in mDataPtr.

Resuh codes Value -

LLCNoErr

LLCTruncated

Description

Normal completion

Buffer too short to receive all information

• Example 4-6 Structure mDataPtr points to following completion of 11.CGetConfig

::ypedef si::::uct

.:.ong
long
.l.ong
long
long

long
long
:ong
WO!:'d

;./O!:'d

wo::d
word

byt.e

byt.e

:..:.cve:sion;
FAddr;
GlTimerl;
G2Timerl;
G1Timer2;
G2Timer2;

GlITimer;
G2:Timer;
MaxFrameLen;
ASAPs;

AStations;
MaxHeader;
LLCClass;

Media;

/• ~:.c Version ID •/
/• Functional address (token ::ing only) •/
/• Group 1 timer 1 (response timer) in milliseconds •/
!• Group 2 timer 1 (response timer) in milliseconds •/
/• Group 1 timer 2 (receive ackl in milliseconds •/
/• Group 2 timer 2 (receive ack) in milliseconds •/

/• Group 1 inactivity timer in milliseconds •/
/• Group 2 inactivity timer in milliseconds •/
/• Maximum frame ~ength •/
/• Available SAPs •/

/• Available stations •/
/• Maximum header size for this media •/
/• Class of LLC implementation:

- Implements typel only
2 - Implements typel and Type 2

•/

/• Media indicator:

•/

0 - Unknown
1 - LocalTalk
2 - .u ~b Et~e=~et

3 - 4 ~b :cken Ring
- :6 ~b :cken Ring

5 - F:lD!

6 - ::cKen 3us

byte Routing; /• Source-routing indicator:

•/

O - No source-routing

1 - IBM source-ro~ting

byte Add.rLen; /* Length of node address in bytes •/

byte Add.r[9J; /• This node's address •/
byte NurnGAddrs; /• The number cf ~roup addresses tnat follow •1

oyt:e ~;..aa.rBuf l::; '* Star-: of ;roup aadresses ~ .:.enqt:~. aad.::-ess ?airs) ..,, /

4 I The 802.2 11.C I IPC Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential

LLCOpenStation

The LLCOpenStation message allocates resources to support a connection between two stations.

Refer to Example 4-7 for the structure of mOData in the IPC message. Refer back to Example 4-2
for the structUre cl the statio~ parameters that can be pointed to by mDataPtr. The station
parameters can be set to default values by passing mDataPtr as zero. Example 4-5 shows the
LANHdr strucrure that is pointed to by the Hdr field in mOData.

The RefNum parameter (Example 4-3) holds the RefNum of the local SAP when the request is made
and returns the new station's RefNum on successful reply. The high byte of the RefNum is the
reference number for the SAP, and the low byte is the reference number of the link station.

Rcsuk codes Value

LLCNoErr

U.CBadPri

LLCBadRefNum

llCMax.Exceeded

llCBadSAPValue

LLC.l\/oResources

UCAddrError

llCBadSize

Descriptton

Normal completion

Unauthorized access priority

Invalid RefNum

Parameter exceeded maximum

Invalid SAP value or SAP value already in use
Maximum number of link stations are already open

Invalid remote address-group address invalid

mDataSize has inappropriate value

• Example 4-7 mOData structure for UCOpenStation and UCConnectStation requests

typedef struct.

word RefNum;

word StaOpts;

/* Returned station refnum */

/* Station options:

Bits 15-8:

Bies 7-5:

Bies 4-0:

•/

Unused
?:-:.or;..t:y

Unused

:.ANH er • Hdr; /• ?oi:H:er - ~ !.ANHdr :Colding

remote node address •/

LLCStationOData;

4 I The ~2. 2 UC I IPC Interface

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

LLCCloseStatlon
The U.CCIC6e5tation message causes a link station to go to a closed state. Refer back to Example 4-3 for the
structure of mOData in the !PC message.

Result codes Value

llCNoErr

LLCBadRefNum

LLCClosedNoAck

LLCSeqError

Descriptton

Normal completion

Invalid RefNum
Station closed without remote acknowledgment

Sequence error-have already i.ssued a close to this link

4 /The 8:12.2 LLC I IPC Interface 47

Medusa Programmer's Guide, Bd2 Draft Apple Confidential

LLCConnectStatlon

The U.CConnectStalion meMage pla~ the local and remote link statiom into the data tr"amfer
state. Example +7 shows the structure of mOData in the !PC message. Refer back to Example 4-5
for the LANHdr structure pointed to by the contents of mOData.

Result coda Value

llCNoErr

llCBadRefNum
llCProtoError

llCRoutingError
UCConnSeqError

U.CConnFail

48 4 / The ~2.2 Ll.C / !PC lntetface

Descr!ptton

Normal completion

Invalid RefNum
Protocol error-link in invalid state for command

Invalid routing information length

Connect sequence error

The remote station did not accept the connection
request

(
Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

LLCModifyParams

The I.LCModifyPararns message is used to modify either open link station parameters or default
SAP parameters.

Refer back to Example 4-1 for .the structure of mOData in the !PC message and to Example 4-2 for
the structure of the station parameters that can be pointed to by mDataPtr. Specification of the
station parameters can be set to default values by passing mDataPtr as zero. The only fields in the
LLC:SAPOData structure used for this request are RefNum and the access priority in SAPOption.s.
Any GSAP addition that failed is returned in FailedGSAP.

If the low-order bit of a specified GSAP is zero, the specified group SAP membership should be
added. If the low-order bit is one, the specified group SAP membership should be cancelled.

Result codes Value

I.LU.'loErr

LLCBadPri

LLCBadRefNum

LLC~ceeded

LLCNoGroup
LLCGroupLimit

LLCNotMember

LLCBadSize

Description

Normal completion

Unauthorized access priority

Invalid RefNum

Parameter exceeded maximum

Requested group membership in nonexistent group SAP
Group SAP has maximum members

Member not found in group SAP

mDataSize has inappropriate value

4 /The ~2.2 LLC I !PC Interface 49

Medusa Programmer's Guide, Beta Draft Apple Confidential

LLCReceive

The llCReceive message bused to receive frames from a link station or a SAP. E:tamp'8 4-8 shows
the structure of mOOata in the IPC message,and Example 4-5 shows the description of the LANHdr
structure that an be pointed to by Hdr.

mDalaPtr points either to a buffer that receives the frame or, if the "list-directed' bit d the
Options field is set, to an array of counts and pointers. Sec F.xample 4-9 for the structure of the
array of counts and lengths.

Do not use he "list-directed• option in conjunction with a SAP listener function (see llCOpenSAP).
The number of elements in the list is determined by mDataSize, as usual. Multiple receives can be
queued for any given RefNum, which allows reception of Type 1 or Type 2 frames. Normally this
interface requires the receiver to provide the buffer space. If the "use interface buffer" bit of the
Options field is set, the interface fills in addresses for mDataPtr and Hdr. When the "use interface
buffer- feature is used, the client initially passes mDataPtr and Hdr as zero and passes back to llC
any buff er that is present on completion of the receive. After completion the buffers arc returned
to the interface by reissuing the receive or by issuing llCRetumBuffer.

Result codes Value

LLC.'loErr
LLCBadRefNum

LLCMsgReject

LLCCarx:elled
LLCBadPointer

4 I The m2 u.c I !PC Interface

Descrtptton

Normal completion
Invalid RefNum

Unusual interface error

Receive cancelled, either explicitly or by d~ operation

Bad pointer passed as "interface-owned'

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

LLCReceiveCancel
The LLCReceiveCancel message i.s used to cancel all outstanding receives on either a link station or a SAP. Refer
back to Example 4-3 for the structure. of mOData in the !PC message.

Result codes Value·­

llCNoErr
UCBadRefNum

.Descriptton

Normal completion

Invalid RefNum

• Example 4-8 mOData structure, LLCReceive, LLCTlTransmit, and LLCTZI'ransmit requests

':ypedef St:''..lC::.

word
word

RefNum;
Options;

/* Re!Num for link station or SAP •/
/* Options:

•/

Bits 15-8: Unused
Bit 7: List-directed
Bit 6: Use interface buffer

(LLCReceive only)
Bits 5-0: Unused

word :nfoLen; /* :..ength of information placed in buffer */
by::.e F:-ame:ype; /* ?.et~r~s received f:-ame type Ion :..:..cReceivel or

byte FS;
:..ANHdr *Hdr

:.:..c:xRxODar.a;

T Spec:!ies :rame to send (on LLCTlTransmi:):
06 XIO resp (f=l)

02 I frame 07 XIO resp lf•O)
03 UI frame 08 Test resp (f•l)
04 XIO cmd (p•l) 09 Test resp <f=O)
OS XIO cmd (p•O) OB Test cmd (p•~)

•/

/* Returns frame status (token-ring Type l only) •/
/* ?ointer to LANHdr (N/A to :..LC'!'2'!'ransmit) •/

• Example 4-9 Structure for list-directed receives and transmits

word
byte

array[];

Count;
*Ptr;

/* Byte count for this transfer */
/* Pointer for this transfer */

4 I 1be ~2.2 U.C I IPC Interface 51

Medusa Programmer's Guide, Beta Draft Apple Confidential-

llCTlTransmit

The LLCT1Transml ~ge is used to send a Type 1 frame. Refer to Example 4-8 for the structure
of mOData in the IPC message and to Example 4-5 for the description of the I.ANHdr structure that
can be pointed to by Hdr.

mDataPtr points either tcf a frame holding the buffer or, if the "list-directed• bit of the Options
fieJd is set, to an array of counts and pointers, as with receive. See Example 4-9 for the structure of
the list-directed transmit array. Typically, FrameType 3 is used for Type 1 trans~ions.

lesuJt codes Value Descriptton

LLCNoErr Normal completion

IlCBadPri Unauthorized access priority
LLCTxError Error in frame transmit or strip

LLCUnauthMAC Unauthorized MAC frame

LLCTxTooLong Invalid transmit frame length
LLCBadRefNum Invalid RefNum

LLCRoutingError Invalid routing information length

LLCBadFrame Invalid frame type

LLCCm:elled Transmit cancelled

S2 4 I The ~22 LLC I IPC Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential

llCT2Transmit

The LLCT2Trammit message is used to send a Type 2 frame (I frame) through a link station. Refer
to Example 4-8 fa the structure of mOData in the !PC mes.sage and to Example 4-5 for the
description of the LANHdr structure that can be pointed to by Hdr.

mDataPtr points either to a frame holding the buffer or, if the "Ii.st-directed" bit of the Options
field is set, to an array of counts and pointers, as with receive. See Example 4-9 for the structure of
the list-directed transmit array. Typically, FrameType 2 is used for Type 2 transmissions.

Resuh codes Value Description

LLCNoErr :-.:orrnal completion

LLCBadPri Cnauthorized acces.s priority

LLCTxError Error in frame transmit or strip

LLCUnauthMAC Unauthorized MAC frame

LLCNo!Frames Link not transmitting I frames

LLCTxTooLong Invalid transmit frame length

LLCBadRefNurn Invalid RefNum

LLCProtoError Protocol error-I frame issued before DMA ready

LLCcancelled Transmit cancelled

4 /The 812.2 LLC I !PC Interface 53

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

LLCReset

The llCReset mes.uge reset san indi~dual link station or a SAP and all of irs link stations. Be certain
to use rhe correct RefNum so that a link station is not inadvertently reset. Refer to Example 4-3 for
the struc.ture of mOData in the IPC message.

Result codes Value

LLCNoErr

LLCBadRet'Num

4 I The 8:12.2 LLC I lPC lnterfa...re

Descrtptton

Normal completion

Invalid Ret'Num

(

(

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

LLCReturnBuffe.r

The LLCReturnBuffer request is used 10 return interface-owned receive buffers to the interface.
;-!orrnally this is not needed since requeuing the receive also returns the buffer. However, a race
condition can occur when closing a SAP that can result in the dient receiving completed receive
requests and yet not being able to requeue the receives because an LLCOoseSAP request has already
been sent. When this rare event occurs, the LLCReturnBuffer request is used to return the buffers.

To return a buffer, set mDataPtr to the buffer address and place the address of the header in
mOData[O]. This message has no reply.

Resuh codes There are no result codes for this function because there is no reply.

4 I The 002.211.C I !PC Interface 55

Medusa Programmer's Guide, Beta Draft Apple O:>nfidential

llCGetStatistics

The LLCGetSt.amtks message is used·to get statistics for a link station. Refer to F.xample 4-lOfor
the structure of mOData in the !PC message and to F.:t:ample 4-11 for the description of the
structure returned to the area_ pointed to by mDat.aPtr. The type of statistics tracked include

• Number of I frames sent and received

• Number of I frame errors sent and received

• Tl timer expirations

• l..'.lst command/response sent or received

• Primary and secondary link states

Result codes Value

LLCNoErr

LLCTruncated

LLCBadRefNum

Description

Normal completion

Returned data incomplete due to inadequate buffer
space

Invalid RefNum

• Example 4-10 mOData structure for LLCGetStatistics requests

typedef st:::-uct

word RefNum;

word Options;

;;ord Act.'..,en;
~~CGe~Sta~is:icsODa~a;

56 4 I The 8)2.2 LLC I IPC Interface

/• RefNum of link st:ation •/
/• Options:

•/

Bit: 15: Clear error counters

after returning statistics
Bits 14-0:' Unused

/• Act~al length of buffer returned •/

(

(

Medusa Programmer's Guide, Beta Draft Apple C.Onfldential

• Example 4-11 mDataPtr pointer to LLCGetStatistics buffer

typedef struct

word
word

byte
byte
word

byte
byte
oyte

NumITx;

NumIRx;
NumIRxErr;
NumITxErr;
NumTlExp;

LastCmdRx;
LastCmdTx;
?riStat.e:

byte SecState;

oyte TxState;
:Jy':e RxStai:.e;

cyte :.as:·S?.;
:Oy:.e :.Jn·..lsed;

:.ANHd:: Hdr;

/* Number of I frames sent */

/* Number of frames received */

/• Number of bad I frames received */

/• Number of I frames sent ending in error •/
/• Number of times Tl expired when not •/
/• transferring data •/
/• Last command/response rcvd (LLC byte 01 */

/• Last command/response sent */

/• Link primary state:
3it 7: Closed
3it 6: :Jisconnected
3it 5: Disconnecting

Bit 4: Opening

Bit 3: Resetting
Bit 2: FR.MR Senc
Bit l: FR.MR Received
Bit 0: Opened

*/

/• Link secondary scate:
Sit ~. '. Checkpointing

3ic 6: Local busy (user sec)

Bit 5: Local busy (system)

Bit 4: Remote busy

Bit 3: Rejeccion
Bit 2: Clearing

Bit 1: Oyn. win. running

Bit 0: reserved
•/

1• Send scace variable V(S) */

;• Receive st.ate variable VIR) •/

/. :..ast ::ecei-.1ed N IRI •I

/• Unused •/

j• LANHdr us ea to send :=ames •/

4 I The ~2.2 LLC I !PC Interface 57

Medusa Programmer's Guide, Beta Draft Apple Confidential-

llCStatus

The ~2.2 LLC interface send.5 the UC5tarus message to the client of a particular link that has
changed status. There is no specific reply to this message. Refer to E:xample 4-12 for the structure
of mSData in the IPC message and to E:xample 4-13 for the structure of mOData in the IPC
message.

• Example 4-12 mSData structure in UCStarus messages

typedef struct

word RefNum;

word Stat.us;

byte F!U".R [5 J ;

byte Priority;

LLCStatusSData;

/• RefNum of link station •/
j• L:.C stat.us bits:

Bit lS:Linl< lost

Bit 14:Disconnected

* Bit 13 :FRMR rcv'd

* Bit l2:FRMR sent

Bit ll:SABME rev' d

Bit lO:Opened link

Bit 9: Remote busy

Bit B:Remote not busy

Bit 7: TI expired
9; ... 6: Counter cvfl.

Bit 5: Priority reduced

Bits 4-0: Reserved

*/

/* Holds FRMR response (if bit 12 or 13 set) •/

/* Holds access priority (if bit S set) */

• Example 4-13 mOData structure in UCStatus messages

nyte

oyte

byi:e

-'dd:: Len;

Addr'.9;;

RSAP;

LLCStatusOData;

/* Length of ::e!'!\cte :iode address :..n bytes • /

I• Holds ::emote node address (!.f bit :o setl •/

1• Holds ::emcee SAP value (if bit :o setl •/

58 4 /The ~2.2 LLC I IPC Interface

(
Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

LLCSetFunctio nalAddr

The UCSetFunctiona!Addr message is used to add or remove bits to the fundional address. Refer to
Example 4-14 for the structure of mOData in the !PC message.

Result code Value

LLG'JoErr

Description

Normal completion

• Example 4-14 mOData structure for UCSetFunctionalAddr

typedef struct

word Opt.ion;

~ong Addr;

LLCSet.FunctionalAddrOData;

/• =~ zero, add ot~erwise remove •/

/• Mask of bits co add or remove •/

4 /The 002.2 UC I IPC Interface 59

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential-

Functions supporting 802.2
In addition to the previous !PC messages, the 802.2 interface supplies a library containing the
following support function:

Name

LLCSwapHdr

LLCSwapHdr

DescriptloA

Swap addresses in LANHdr structure for return to sender

The UCSwapHdr function swaps the addresses in a I.ANHdr. This swapping usually be done to
respond to a Type 1 frame. Nonnally the caller provides its own SAP value for the SSAP. The SSAP
for the swapped header cannct be taken from the DSAP in the header because the DSAP might be a
group SAP, and group SAPs cannct be SSAPs.

Call the LLCSwapHdr function by using Pascal calling conventions:

pascal void LLCSwapHdr<LANHdr *Hdr, byte SSAP);

60 4 I 1be 802.2 LLC J IPC Interface

c:

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential.

Chapter 5 Apple IPC Services

T H I S C H A P T E R P R E S E N T S the Apple interprocess communication

(IPC) services provided by the Macintosh Operating System on the Macintosh

II. IPC services provide a means of passing messages between processors

that reside on the NuBus. An Apple smart card, such as the TokenTalk NB

card, has its own on-card operating system called Minimal Realtirne

Distributed Operating System (MR-DOS). The MR-DOS IPC interface ~ fully

described in the Macintosh Coprocessor Platform Developer's Guide. This

chapter summarizes the applicable Apple !PC services , which are fully

described in the Developer's Guide. •

61

Medusa Programmer's Guide, Beta Draft Apple Confidential

General information
The code for MR-DOS and Apple IPC·indudes a collection of traps, interrupt handlers, and tasks that
provide support for process naming, timing services, and intercard and intracard communications
using messages. These routines enable a smart card to support a multitasking distributed operating
environment for communicatiOns and other real-time services on the same card or on other smart
cards installed in the Macintosh II computer.

Interprocess communication is accomplished through communication messages that are fJ:xed­
size but flexibly fonnatted MR-DOS allows dynamic name-binding of tasks to support interprocess
communication.

Apple !PC (lnterProcess Communication) is a combination of a driver and support software
found in the Apple !PC fde in the Apple !PC folder on the distribution disk. Apple !PC provides
message-passing and naming services for communications from the Macintosh II to tasks on
smart cards such as the TokenTalk NB card Apple !PC is simiiar to the lnterCard Communications
Manager on MR-DOS.

Apple IPC is a driver and associated interface code in the form of a library that runs under the
Macintosh Operating System. The Apple IPC driver handles all message passing (interprocess
communicalion) between processes on the Macintosh II Operating System and Macintosh
Coprocessor (MCP) card tasks on the NuBus.

Periodically, Apple !PC scans for and processes incoming messages, receives calls that have
timed out, activates slots that have timed out, and processes outgoing messages. The driver
receives messages from and delivers messages to Macinte6h II processes using calls to Apple !PC
driver.

An application that uses Apple !PC must have an initial call to OpenQueue to establish its use of
Apple IPC. Messages are sent and received by way of the Send and Receive calls, much like tasks
under MR-DOS. Several source-language examples of applications are provided in the Apple !PC
folder on the distribution disk.

Apple IPC driver
Apple !PC services are handled by the Apple !PC driver, which handles all message passing between
processes on the Macintosh II operating system and smart card processes on the NuBus. The
Macintosh ll process sends to and receives from smart card processes by way of calls to the Apple
1PC driver.

The Apple JPC file is plao:d in the System Folder; routines contained in the file are installed by
the INIT 31 mecbmiml during system startup.

During initiaJizatioa, the driver sets up a communication area. It then searches NuBus sloo for
the InterCa.rd Communication Manager (ICC.\fl comrnumc:ation areas of smart cards installed in the
Macintosh ll, much as the MR-DOS ~CC.'d does. For eacn valid communiC31ion area founa, r.he dnver
stores the address d the Apple !PC communication area in a vector in the smart card's
:ommunication area.

62 5 / Apple !PC Services

(

(

Medusa Programmer's Guide, Beta Draft Apple Confidential

Periodically, Apple !PC scans for and processes Receive operations that have timed out,
incoming messages, aaive slots that have timed out, and outgoing messages. The driver receives
messages from and delivers message$ to the Macintosh II processes.

Apple IPC library
The object routines, or glue code, in the Apple !PC library provide the interface between a Macintosh
application and the Apple !PC driver. These routines provide for opening and closing the message
queue to the driver, getting and freeing mes.sage buffers, and sending and receiving messages.

In addition, the Apple !PC library provides access to many c:i the same utilities that MR-DOS
provides, such as moving data, obtaining the operating environment, and registering and looking up
task names through the Apple !PC Name Manager. These routines are located in the Apple
IPC:IPCGlue.o file on the distribution disk. The C language calling sequence is used in all of these
routines.

Apple IPC managers

The managers for Apple !PC are the Echo Manager and the Name Manager. These Apple !PC
managers perform functions identical to and have the same message interface as those of their MR­
DOS counterparts; minor differences are due to the slightly different interface with Apple !PC.

The Apple !PC managers are tasks that carry out higher level services on behalf of applications
on the Macintosh II computer. These managers are often referred to as slot 0 managers, and the
Macintosh itself is sometimes referred to as the slot 0 card.

• Note. The slot O card is not to be confused with the Slot Manager in the Macintosh II (part
of the Macintosh Operating System).

5 I Apple !PC Services 63

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

Using Apple IPC
To establish its use of Apple IPC, an application must have an initial call to OpenQueue to establish
its use of IPC. Each process that uses Apple IPC requests that a queue be opened for messages
addressed to that process.

Much like tasks under MR-DOS, messages are sent and received in Apple !PC by way of the Send call
and the Receive call.

• When I.he driver gets a Receive request and no completion routine is specified, it searches the
queue for a message matching the criteria specified. If it finds a matching message, I.he driver
returns to the process. If it fmds no matching mes.sage, the driver either returns immediately
or, depending on the timeout specified, lets the process wait for a matching message
(indefinitely if the timeout is 0, or until the timeout is reached). Waiting is handled by placing
the process in an internal timeout queue.

• The Receive request behaves differently when a completion routine is specified. Additional
information on the Receive call follows in this chapter.

• If a Send request is destined for a process on the Macintosh II, the destination process is
unblocked, if waiting, ex the message is placed in its queue. If the message is destined for a task
on a smart card, the message is transferred to the ICCM on that slot. for delivery to the task.

Apple IPC services

This section describes the Apple !PC services and provides examples of how to call primitives from
b<Xh C and assembly language. These services are provided to support features similar to those of
~-DOS for applications running on the Macintosh II computer. The MCP Developer's Guide
contains additional information on both MR-DOS and Apple !PC.

• Note. As with MR-DOS, Apple IPC uses C calling conventions, and all registers are preserved
except DO, Dl, AO, and Al. Calls in both C and assembly language take arguments and use
similar data srruaures. Any macm; referred to in this chapter are for examples only and do
na exist on the distribution disk at this time.

Table 5-1 briefly describes the services provided by Apple !PC.

5 I Apple IPC Services

Medusa Programmer's Guide, Beta Draft

• Table 5-1 Apple !PC services

Apple Confidential

Name

OaieQueue

CopyNuBus

FreeMsg

Get Card

GetETick

GetICCTID
GellPCg

GetMsg

GetNameTID

GetTickPS

GetTID

ls Local

KillReceive

Lookup_ Task

OpenQueue

Receive

Register_ Task

Serx1
Swap TIO

CloseQueue

Descripdoa

Ooses an Apple !PC queue

Copies a block of data from the source address to the destination
address

Frees a message buffer

Returm the NuBus slot number on which the calling process is running

Returra the number of major ticks since the operating system started

Returns the task identifier of the lnterCard Communication Manager
Returm the address of the global data area within the Apple !PC driver

Gets message buff er

Returns the task identifier of the Name Manager

Returm the number of major ticks in one second

Returns the task identifier of the calling task

Returm an indication of the locality of an address

Cancels an outstanding receive request

Returns the task identifier of the task that matches the object and
type names specified

Opera an Apple IPC queue

Receives a message

Allows a task to register itself with the object and type names
specified

Sends a me5sage

Swaps the mFrom and mTo fields in a message buffer

CloseQueue cl<RS the queue that w.as previously opened. Make this !PC call last prior to
terminating an entitiy.

The C declaratioo for OoseQueue ~

void CloseQueue();

The following ex21Dpie provides an equivalent of OoseQueue in assembly language .

.:sR :::loseQueue

5 I Apple !PC Services 6;

Medusa Programmer's Guide, Beta Draft Apple Confidential

CopyNuBus

CopyNuBus copies a block of data and does a simple move of bytes from the source to the
destination, without checking for overlapping source and destination addresses. The number of
bytes is specified in the count parameler. The source address and destination address may be either
Macintosh main memay or memory on a smart card. This routine deaJs with the complexity of
p<XentiaJ 32-bit NuBus addresses for the source and the destination, but it does not deal with the
~ibility of overlapping buffers.

A Warning Don't overlap the source and destination blocks. Doing so oould cause
partial overwriting of the destination block. •

The C declaration for CopyNuBus is

void CopyNuBus (source, destination, count);
char *source; /* Address of source buffer •/
char *destination; /* Address of destination buffer */
unsigned short count; /* Byte count */

The following example provides an equivalent of CopyNuBus in assembly language.

MCVE.L tcount,-(A7}
PEA Destination
PEA Source
JSR CopyNuBus
AOO.L i12,A7

FreeMsg

FreeMsg frees a message buffer that was acquired earlier by a call to GetMsg.
The number of messages initially available depends on the number requested in the named

resource Apple !PC enuies d type aipn in the Apple !PC driver file.

The C declaration of FreeMsg is

void FreeHsg(mptr);
message *mptr; /• pointer to message buffer to free */

The form for the PreeMsg maao is as follows, where Pl is the address of the memgc buffer to be
freed:

[La.bell i.'l

To indiae the location containing the desired address, Pl can be specified as a regisler (AO-A6, DO­
D7). or bv using any~ addressin~ mode valid in an LEA imuuction.

66 5 I Apple IPC Services

(

(

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

Get Card

GetCard returns the NuBus slct number on which the calling process is running. For the Macintosh
II computer, the number returned is always zero.

The C declaration for GetCard_is

char GetCard ();

The following example provides an equivalent of GetCard in assembly language. On return, DO
contains the NuBus slot number on which the calling process is running .

.:;sR Get Card

GetETick

GetETick returns the number of major ticks-that is, the elapsed time in ticks-since the
operating system started.

The C declaration for GetETick is

unsigned long GetETick();

The following example shows how to call GetETick using assembly language. To return the
number of major ticks, get the value of location gMa j orT ick in the gCormnon data
area

JSR GetETick

+ Note. A tick on the Macintosh II is of a different duration than that on an MCP card

GetICCTID

GetlCCTID returns the task identifier of the InterCard Communication Manager.

The C declaration for GetJCCTID is

tid_type GetICCTID (l ;

An equivalent of GetJCCIID in assembly language is given in the following example. On return, DO
contains the task identifier of the !CC.\i .

.:;sR Gecrcc::o

5 / Apple !PC Services 67

Medusa Programmer's Guide, Beta Draft Apple Confidential"

GetIPCg

GetgIPCg returns che address of the data area of the Apple IPC driver. This routine is an aid for
advanced developers. Ref er to the include files on your distribution disk for the structure of IPCg.

The C declaration fa GetgIPCg is

struct IPCg •GetIPCg();

The following example provides an equivalent <:i GetIPCg in assembly language. On return, DO
contains the ad~ of the data area of the Apple IPC driver .

.;sR Get!?Cg

.A. Warning Use this call at your own risk. Subject to change with no notice. ...

GetMsg

GetMsg requeslS a message buffer from the free-message pool. GetMsg returns either a pointer to
the allocated message or zero. A FreeMsg call releases the mes.sage.

All fields in the message, except mes.sage ID (mID) and the From address (mFrom), are cleared
before the pointer to the message is returned. Mes.sage ID is a message field set to a number that is
statistically unique; the From address is a message field set to the current task identifier.

The C declaration of GetMsg is

message •GetMsg ();

The form for the GetMsg macro is

::.abeli ::>etMsg

The address of the allocated message buffer is returned in DO unless no buffer was available. In that
case, O is returned in DO.

5 / Apple !PC Services

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential.

GetNameTID

GetNameTID retu~ the task identifier ci the Name Manager. The C declaration for GetNameTID
is

tid_type GetNameTID ();

The foUowing example gives an equivalent of GetNameTID in assembly language. On return, DO i.5
the task identifier of the Name Manager.

JSR GetNameTID

GetTickPS

GetTickPS retu~ the number of major ticks in one second.

The C dedaration for Get Ti ck PS i.5

unsigned short GetTickPS ();

The following example provides an equivalent of GetTickPS in assembly language. On return, DO is
the number ci major ticks in one second.

JSR GetTickPS

GetTID

GetTID returns the task identifier of the calling task.

The C declaration for GemD is

t.:.d_type GetTI:l ();

The following example provides an equivalent of GecTID in assembly language. On return, DO is the
task identifier of the calling task.

JSR Get TIO

5 I Apple !PC Services 69

Medusa Programmer's Guide, Beta Draft Apple Confidential

Is Local

IsLoc3J returns true or false to indicate whether an address is local.

The C declaratioo for lsLocal is

short Is Local {address)
char *address; /* address to test. */

IsLocal returns true (nonzero) if the address passed is local, false (zero) if it is a remote NuBus
address.

The form for the IsLoc3J macro is as follows, where Pl is the address to examine.

:sLocal Pl

To indicate the location of a longword containing the desired value, you can specify Pl as a register
(AO-A6, 00-07), an immediate (t<a.bs-expr>), or use any 68:loo addressing mode valid in an LEA
instruction.

KlllReceive

KillReceive cancels any outstanding Receive request for this process. ~essages destined for this
process are not discarded.

The C declaration for KillReceive is

void KillReceive();

The following example shows how to call KillReceive using assembly language:

:sR KillReceive

Lookup_Task

Lookup_ Task returns the task identifier of the process or wk that matches the Object Name and
Type '.'lame specified, or 0 if no matching process or task is found The wildcard character •.• is
allowed. Initially, set the index to 0. Su!Rquent calls might modify the index, which should be left
unchanged.

Lookup_ Ta.* modifies the variable index. The variable index allows Lookup_ Task to find any
additional entries that might match the criteria in subsequent calls.

The C declaratioo fa Lookup_ Task is

:~c_:ype LooKup_:asx too1ec:, :ype, ~m_!:D, •naexJ

70

cnar oo ject [i ; I .. Object Name • /
::har -:ype r,; / • l'ype Name *'I

: :..c_::·1pe

..i.::s;..qneci 3hcr-: .. :.:::lex; ·" :::o.ex ~ .r

5 I Apple IPC Services /-\
\t.~/

(

(.

Medusa Programmer's Guide, Beta Draft Apple Confidential.

The task identifier of the Name .'Aanager is nm_TID, and it can be obtained by using GetNameTID
for name managers on the Macintosh II, or by sending an ICC_GetCards message to the ICCM for
name managers on NuBus cards. Loekup_ Task returns the task identifier of the first process or
task that matches the criteria.

The following code shows how to look up all processes on the main logic board of the Macintosh
II computer:

short index;
tid_type t.id;

index = 0;

wh;.:.e (l':;.d = Lool<up_:asi< I"=", "=", Get.Name!:O (), &index)) > Cl
pri.:'ltf ("T:J %x Found\::", tid):

The following example shows how to call Lookup_ Task from assembly language:

MOVE.W

PEA
MOVE. L

MOVE. L

PEA
PEA
:SR

ADDO.fl
:'ST. 'N

SNE.S

iO,INDEX ; initialize index
INDEX ; address of index
TID,DO ; value of tid on st.ack
D0,-(A7) place on stack

TYPE_NAME address of type name
OBJECT NAME address of object name
Lookup_:"ask
E6,A7 pop t:-:.e stac~

::::o ; check if found

DO,XXX jump if found

5 I Apple !PC Services 71

Medusa Programmer's Guide, Beta Draft Apple C.Onftdential

Open Queue

OpenQueue assigns an IPC queue anq returns the 110 ri the proc:e.M that called OpenQueue. If if
no queue could be assigned, it returns zero. This method allows you to set up your own procedure
to determine what to do while waiting on a blocking Receive; if you do not want to use this
mechanism, use a pmmeter of zero. Th~ procedure also lets you decide whether to cancel the
outstanding Receive request or d~ontinue conununication with Apple !PC; that ~. it lets you
check for operator termination.

This function must be called before any other call to !PC can be made. You can issue either

• an AppleIPC OCRQueue request, or

• a KillReceive request

If the procedure issues an ApplelPC QoseQueue request and returns to the Apple !PC driver, then
the driver returns to the outstanding Receive request with a value of 0. Issuing a KillReceive
request returns 0 to the Receive request (no message).

1be C declaration for OpenQueue ~

tid_type OpenQueue(procedurel
void (•procedure) () ; /* Procedure to execute while waiting•/

/* for blocking receive to complete. •/

+ Note. This parameter is required; use 0 if you do not want to call the procedure.

The fonn for the OpenQueue macro is as follows, where Pl ~ the address ri the procedure to
execute while waiting for a blocking receive to complete.

(Label] Open Queue Pl

To indicate the location of a longword containing the desired value, you can specify Pl as a register
(A(}-A6, ~07), an immediate (il<abs-expr >) , or use any 60000 addressing mcx:le valid in an I.EA

instruction.

5 I Apple IPC Services

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

Receive

Receive retu~ the highest priority message from the message queue of the process that matches
the specified criteria.

The C declaration of Receive is.

message
unsigned
tid_type
unsigned

*Receive(mID, mFrom, mCode, timeout, compl)
long mID; /* Unique message ID to wait on
mFrom; /* Sender address to wait on
short mCode; /* Message code to wait on

long timeout; /* Time to wait in major ticks
/• before giving up

•/

•/
void compl (l ; /* Address of a completion routine •/

•/

•/
•/

The first three parameters (mID, mfrom, and mCode) are selection criteria used to receive a specific
kind of message. These parameters can be set to match either a specific value, any value (by

.. specifying OS_MATOi_All), or no value (by specifying OS_MATCH_NONE).
The fourth parameter is the timeout value. A timeout value of 0 waits forever for a satisfying

message. A negative value returm either a satisfying mes.5age or 0 immediately, and a positive value
waits that many ticks for a satisfying message to arrive.

• .Vote. If a completion routine is not specified, the !PC Receive performs in exactly the same
way as the MR-DOS Receive primitive.

The fifth parameter is the address of a C completion routine. Required for Apple !PC, compl

changes the way the Receive request perfonm. The compl parameter must be either the address
of a completion routine or zero, if no completion routine is desired. When this completion routine
parameter is nonzero, the call to Receive always returns immediately with a result of 0.

The completion routine is called with a parameter of type ·message • •. If the completion routine
is passed a pointer of zero, a timeout occurred

• Note. It is possible to call the completion routine before the Receive actually returns. The
purpc>.5C of the completion routine is to provide a mechanism by which the Macintosh II
application can continue to execute without having to wait for a message. This ~ necessary
because the current version of the Macintosh II operating system is ncx a multitasking
operating system; therefore, the application cannot cease to process events. Under MR­
DOS, a process cm do a blocking Receive and permit other processes to execute.

Table 5-2 describes the results from various settings of the timeout parameter in major tic.ks for
the Receive call. The results column describes what is returned to the Receive request and
cornpietion rouune. :i.s weil as when the cornplet1on routine !5 c:llied.

5 I Apple IPC Services 73

Medusa Programmer's Guide, Beta Draft Apple Confidential

• Table S-2 State table for the Receive call
Name Description

Time- Comple· Message Immediate Subsequent
out don available results results
value routi!le

<O No(O) No Returns 0 to the Receive None
request

No(O) Yes Returns message to None
Receive request

Yes No Apple IPC driver returns None
0 to the Receive request;
completion routine i.5
not called

Yes Yes Apple !PC driver calls None
the completion routine with
the message; driver then
returns 0 to the Receive request

No(O) No Waits until it gets a message, Waits for a
then returns a message to the message;
Receive request Open(Neue

routine i.5
called
continuously.

No(O) Yes When a message arrives, None
returns a message to the
Receive request

Yes No Returns 0 to the Receive None
request; when a message
arrives, the driver calls the
completion routine with
the message

Yes Yes Returns a message to the None
completion routine and
returns 0 to the Receive
request

74 5 I Apple IPC Services

(-

(

(-\

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

Table S-2 (continued)

Time- Comple- Message· Immediate
out ti on available results
value routine

:>() No(O) No Waits for a message

If the time interval that
you specify expires, then
it returns 0 to the Receive
request

No(O) Yes ~essage returns to the
Receive request

Yes No Immediately returns 0 to
the Receive request and the
task continues executing

When a message comes in,
the driver calls the completion
routine with the message

If the timeout expires, the
driver calls the completion
routine with 0

Yes Yes Returns a message to the
completion routine; returns
0 to the Receive request

When using completion routine, you should observe the following guidelines:

• '.'lever use a blocking Receive in a completion routine.

Subsequent
results

Message does
not arrive

None

None

None

• Be cautious about starting the next asynchronous Receive within a completion routine, as
recursion can be deadly.

• Remember that completion routines are sometimes called as the result of an interrupt;
anticipate the unexpected!

Only one Receive may be outsWlding on a given queue at a time; attempted additional Receive
routines retum erras. Receive retums a 0 in the event of one of the following:

• no message is milable (either timeout or nonblocking)

• a negative erra code is received in the case of an error

• or a pa5itive pointer to the received message buffer is returned

• .Vote: :::Xercise oucion when testing !he pointer returned bv Receive for a negative value to
ensure that ~'le ~est is ·;aiid.

S I Apple !PC Services 75

Medusa Programmer's Guide, Beta Draft

The form fa the Receive macro is:

[La.bell Receive

Apple Confidential.

Pl, P2, PJ, P4, PS

where Pi is the message ID match code, as follows:

?2 = sender~ matc:h code
P J = message code match code
P 4 = timeout code
P s • completion routine address

To indicate the location of a longword containing the desired value, you can specify Pl through P5
as a register (AO-A6, 00-07), an immediate (lt<abs-expr>), or you can use any 68000 addres.sing
mode valid in an LEA instruction.

Whenever you call the Receive request on Apple !PC, you get one rJ three results returned from the
!PC driver:

• 0

• message

• negative number (indicating an error)

Table 5-3 lists the only two errors that can be returned when a Receive request is made to Apple !PC.

• Table S-3 Erroo returned
Error NUJDbcr D~scrlption

NoQueueErr -64 No more queues or bad queue
QueueBusy .{55 Receive is already oulStanding on queue

Error -64 (NoQueueErr) is returned if the queue number ('TIO) of the task doing the Receive request
is bad. A queue number i.s bad if it is OOl within the range of legal queue numbers or is not open
(either OpenQueue was not done or QoseQueue was done).

Erra -65 (QueueBusy) is returned if an attempt is made to do a Receive request for a particular
queue number mo) when a request is already outstanding. For more information, refer to the
seaion earlier in this chapter on OpenQueue.

76

To check for an error in the message pointer returned by a Receive request
in C language, you must cast the message pointer to long before checking
to see if the pointer is negative. Failure to do so will result in a system
~ ...

5 / Apple IPC Services

(

(..

(~

Medusa Programmer's Guide, Beta Draft Apple Confidential

The following code checks the message pointer to see if an error code was returned:

message •msgptr;

msqpt: •Receive (0, 0, 0, 0, 0);
if <(long) msqptr < 01-

/* Process error code •/

else

/* ~o error, process message •/

Register_Task

Register_ Task allows a process to register itself with the Object Name and Type Name specified,
using the Name Manager. To make the process visible only to other processes on the Macintosh II
main logic board, set local_only to nonzero. To make the process visible to tasks on <Xher cards,
then set kx:al_only to 0. Register_ Task returns a nonzero value if the process was registered; if nol,

0 is returned.

The C declararion for Register_ Task is

typedef boolean short;
ehar Register_Task
ehar ob jeet [J ;

char type [J:

object, type, loeal_only>;
/* Object Name */
/* Type Name */

boolean loeal_only; /* If Local Visibility Only */

The following code provides an example of how to register a process:

1 '.Register_:"ask ("my_:iame", "my_::ype", 0))
pr!nt!(''Could not Register ?~ocess'');

The following example shows how to call Register_ Task from assembly language:

MOVE.L tLOCAL, -(A7) value of local on stack
PEA TYPE_NAME address of type name
PEA OB..1ECT_NAME address of object name
JSR Reqister_Task
ADDQ.W tl2,A7 pop the stack
TST.B DO cheek if register ok
3NE.S OK ;ump i! OK

5 I Apple IPC Services 77

Medusa Programmer's Guide, Beta Draft Apple C.Onfldential

Send

Send allows you to send a message to. the destination address specified in the message. Send places
a message in the queue of the process specified by the message field, mTo. The message is placed in
the queue in priorky order (from highest to lowest). This call assumes that all fields have been filled
in (mFrom, mTo, mCode, and"so forth).

The C declaration c:i Send is

void Send(mptr)

message *mptr; /* pointer to message buffer */

If a message is undeliverable, it is returned to the sender with the message status, mStatus, set to
Ox800J and the message code, mCode, having bit 1 « 15 set

The assembly-language form for the Send macro is as follows, where Pl is the address of the
message buff er to be sent

[Label J Send !?l

To indicate the location containing the address of the message buffer to be sent, you can specify Pl

as a register (AO-A6, 00-07), or you can use any 68000 addressing mode valid in an I.EA instruction.

SwapTID

SwapTID swaps the mFrom and mTo fields of a message buffer.

The C declaration of SwapTID is

void SwapTID< mptr)

message •mptr; /* pointer to message buffer */

The assembly-language form for the SwapTID macro is as follows, where Pl is the address of the
message buff er

: Label l SwapT:::J ?l

To indicate the lccation containing the desired address, you can specify Pl as a register (AO-A6, D0-

07), or you can use any 68000 addressing mode valid in an I.EA instruction.

P1 can be specified as a register (AO-A6, D0-07), or can use any 68000 addressing mode valid in an I.EA
instruction to specify the location containing the desired address.

78 5 I Apple !PC Services

(
~

./

Medusa Programmer's Guide, Beta Draft Apple Confidential

Chapter 6 Download and Initialization

T H I S C H A P T E R D E S C R I B E S the interface to and the operation of

the TokenTalk Prep file. The TokenTalk Prep file provides code and

parameters for initializing the TokenTalk NB card. This chapter contains an

example of how to use the TokenTalk Prep file to download and initialize the

TokenTalk NB card, and it describes the resources and services in the

TokenTalk Prep file. •

79

Medusa Programmer's Guide, Beta Draft Apple Confidential

General information
The TokenTalk Prep file contains resources. These resources consist of code images for
downloading to the TokenTalk NB card and routines that participate in the boot process and
initialization of the card.

The TokenTalk Prep file is a specific type, 't tpp', and the file's creator is also of the type
• t tpp'. Specifically, the TolcenTalk Prep file contains the following resources:

Res Type ID Description

'STR' -4® The TolcenTalk Prefs file

'ttbl' 0-n resources containing MR-DOS, UC, and SNAP; these boot the
card

'llcp' -1 Resource that contains default LLC parameters

'ttut' 0 Resource that contains the utility routine to suppon the
TokenTalk NB card initialization

The TokenTalk Prefs file (whose name is contained in 'STR') can contain an 'llcp' resource
that overrides the default logical link control UC parameters. See the section "LLC Resource
Description" later in this chapter for information on creating your own 'llcp' resource.

The 'ttbl' resource contains the software that boots the card and 'llcp' concains
the default UC parameters.

The 'ttut' resource contains a utility routine that suppons the TokenTalk NB card
initialization.

TokenTalk Prep services

The 't tut ' resource in the Token Talk Prep file provides the following services. Definitions
relating to these operations are located in the include file ITlJtil.h.

Code Meaning See page

TIFindCards Find all cards and return mask 8Z

TIFindBootedCards Find lx.ioted cards and return mask 8Z

TTFindUnbootedCards Find unbooted cards and return mask 8Z

TTBootCards Boot cards 83
TIForceBoot Force boot of cards 83
TTGetStatusAddr Return 11' status address 83
TTGetLLCTID Return TID of U.C for given slot 84
TIGetSNAPTlD Return TID of SNAP for given slot 84

TIGetBoardID Return board ID for given sla 84
TIDvnamicDL Perfam dynamic download 85

80 6 I Download and Initialization

(

(

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

To call on the TokenTalk Prep file to perform these services, perform the following steps:

1. Open the resource fork of the TokenTalk Prep file in the System Folder.

2 Load the ' t tut ' resource.

3. Obtain the pointer to the resource and strip it using StripAddres.s.

4. Use the stripped pointer to call the function in the ' t tut ' resource.

See the section "TokenTalk Prep File Example" later in this chapter for a sample program listing that
performs these steps.

c.au the TokenTalk Prep services using Pascal calling conventions. The function accepts two long
integer parameters and returns a long integer result. The first parameter is always one of the service
names listed above; it specifies which operation to perform. The second parameter and the returned
result vary depending on the operation specified. In addition, the TokenTalk Prep file should be on
the top of the resource file list for all operations except TIDynamicDL. When dynamically
downloading a running TokenTalk NB card, the ftle that contains the resources to download should
be at the top of the resource file list.

6 I Download and Initialization 81

Medusa Programmer's Guide, Beta Draft Apple Confidential

IDindCards

The TI'FindCards funaion finds all or.some TokenTalk NB cards. The second parameter is a 16-bit
mask of the NuBus slots to check in the low-order 16 bits. In the bit mask, bit 2n denOles NuBus
slOl n. The result returned is a similar mask of the TokenTalk NB cards found.

Assume that the pointer Uti!Ptr is declared as follows and that it has been initialized with the
stripped address ci the ' t tut ' resource:

typedef pascal long <•TT'OtilPtrl <long op, long data);

TTUtilP'tr 'OtilPtr;

A TIFindCards request to find all TokenTalk NB cards would be similar to the following:

result • (•UtilPtrl <TTFindCards, -ll;

To verify that slOl 1 (NuBus slot 9-the one nearest the Macintosh II power supply) contains a
TokenTalk NB card, use the following call:

result • <•UtilP1:rl <TTFindCards, Ox0200l;

This operation uses the Slot Manager to identify TokenTalk NB cards. It makes no use ci any MR­
DOS !PC services.

TIFindBootedCards

The ITFindBootedCards function is similar to ITFindCards except that it only locates TokenTalk
NB cards that already have MR-DOS and U.C running. Logically, this function uses ITFindCards to
identify TokenTalk NB cards then checks that the card is running by using MR-DOS !PC services.

The following call finds all TokenTalk :'llB cards that are running:

:esu.!.t = <·~ti:?t:l <:':'Find.BootedCa:ds, -1);

TIFindUnbootedcards

The TI'F'llldUnboocedCards operation is similar to TI'FindBootedCards except that I only locates
TokenTalk NB cards that do na already have MR-DOS and U.C running. Logially, this request uses
TIFindCards to idmty TokcnTalk NB cards then checks to see whether the card is running by
using MR-DOS !PC services.

The following call finds all TokenTalk NB cards that are not running:

result • (•01:ilP1:r) (TTFindOnbootedCards, -ll;

82 6 / Downlaad and Initialization

(

(

Medusa Programmer's Guide, Beta Draft Apple Confidential

ITBootCards

The TTBootCards function boots the·TokenTalk NB card. This request only boots TokenTalk NB
cards I.hat have nol yet been booted. Logically, this request uses mindUnbootedCards then boots
those cards found. The result of this operation is a mask of the cards I.hat were actually booted.

See the section •tokenTal.k NB Card Boot Process Summary" later in this chapter for more
information on the boot process.

The following call starts all TokenTalk NB cards that are net running:

result • <*Util?t::) (!TBootCards, -1);

ITForceBoot

The TIForceBoot function is similar to the TIBootCards operation except that it forcibly restarts
cards that are already running. In normal use, this function should never be used since a TokenTalk
NB card may be supporting multiple concurrent applications. The result of this operation is a mask
of the cards that were actually started.

See the section "TokenTalk NB card Boot Process Summary" later in this chapter for more
information on the boot process.

The following call starts the TokenTalk NB card in slot 2 (NuBus slot A):

::esult - (*UtilPt::) (!TForceBoot, Ox0400l;

TTGetStatusAddr

The TIGetStatusAddr function returns the address of the UC status structure for the given slot.
The second parameter to this request is a mask of the slot to operate on. Unlike previous requests,
this mask should have only a single bit set since only a single status address can be returned. The
result of this operation is a 32-bit '.\luBus address. This address will be returned even if the card is
not running. By inspecting the structure at this address, ring status can be monitored. Refer to the
TMS380 Adapter ChipSet User's Gutdl! Suppiement for additional information on ring status
messages.

The following call returns the status address for the TokenTalk NB card in slot 3 (NuBus slct B):

result - (*OtilPtr) (TTGetStatusAddr, Ox0800);

61 Download and Initializ.ation 83

Medusa Programmer's Guide, Beta Draft Apple Confidential'

ITGetllCl'ID

The 1TGetllCI1D function returns the task ID d the LLC task running on the given slot. The
second parameter is a mask of the slot to operate on. This mask should only have a single bit set
since only a single task ID ~ be returned. This task ID may be used to iMue LLC requests as
described in Chapter 4, "The 802..2 LLC I IPC Interface.• A zero is returned if the card is mbsing or not
running.

The following caJI returns the LLC task ID for the TokenTaJk NB card in slot 4 (NuBus slot C):

result - (*UtilPtr) (TTGetLLCTID, Oxl000);

ITGetSNAPTID

The ITGetSNAPTID function is much like the ITGetLLCTID function except that it returns the
task ID of the SNAP task running on the given slot. The second parameter is a mask of the slot to
operate oo. This mask should only have a single bit set since only a single task ID can be returned
This task ID may be used to issue SNAP requests as described in Olapter 3, "SubNetwork Access
Protocol (SNAP) Interface.• A zero is returned if the card is missing or not running.

The following call returns the SNAP task ID for the TokenTalk NB card in slot 5 (NuBus slot D):

resul:: • (*OtilPtrl (T:'GetSNAPTID, Ox2000);

ITGetBoardID

The ITGetBoardID function returns the BoardID for the TokenTaJk NB card in the given sla.
This is the board ID returned by the Slot Manager. The second parameter is a mask d the slot to
operate on. This mask should only have a single bit set since only a single board ID can be returned
The result of this operation is board ID stored in the declaration ROM on the card. The board ID is
returned even if the card is not running.

The following call returns the board ID for the TokenTalk NB card in slct 6 (NuBus slot E):

result • (*UtilPtrl <TTGetSoardID, Ox4000!;

fi I Download and Initialization

(

(

Medusa Programmer's Guide, Beta Draft Apple Confidential

TIDynamicDL

The TIDynarnicDL funaion downloads and starts a task onto a running TokenTalk NB card.
Dynamic download requires considerable familiarity with the MR-DOS environment and is beyond
the scope of this document The second parameter is the address of the strucrure shown in
F.:cample 6-1. The result of tfl~ operation is the task ID of the started task, or zero if the task could
not be started.

The following call attemptS to start a task on the TokenTalk NB card in slot 3 (NuBus sl~ B):

TTDDLP t tdl;

memset ((char •) &::.':dl, 0, sizeof (':"':'DDL?)); /• clearing memory •/

:tdl.~ype = 'abed';
ttdl.SlotNo = B;
ttdl.STPB.stack = 2048;

/* ::.he type of your task code file •/
/* the slot number to download to •/
/*the size of the task's stack */

ttdl.STPB.priority • 25; /*the task's priority */

result • (•OtilPtr) (TTDynamicDL, (long) &ttdll;

• Example 6-1 TIDynarnicDL request structure

': ypede f st ru ct

long Type;
long Slot No;

struct st_?B xxx;

TTDDLP;

/• Resource type holding code to down.:.oad •/
/• Slot number to download to

(not a mask - 9 - 14) */
/• Start!ask parameter structure defined in MR-DOS

include file os.h.
*/

6 I Downlcad and Initialii.ation 85

Medusa Programmer's Guide, Beta Draft Apple Confidential t >'2M39

TokenTalk Prep file example
The following routine returns a pointer to the 111Jtil routine and a Ret'Num to the resource file, so
that the file can be dosed on completion. The pointer is returned as zero if any errors occur. See
Appendix C for a canplete prcgiamming example.

/•

• GetTTOtilPtr - Return pointer,to TTOtil routine.

Inputs:
resno Resource number of string resource holding prep file name.
refptr Address of a short to receive the resource file.refnum.

Outputs:
Returns pointer to TTOtil routine, or zero if unavailable.

Note that no refnum is returned if the pointer returned is zero. This
" routine will automatically close any resource .file it may have opened

in that case.

!'!'UtilP'tr GetTTUti:Ptr(resno, refptr)
snort resno;
short. •:-efpt:;

Handle st rhdl, ut lhdl;
short ttrefnum;
SysEnvRec sysrec;

if ((strhdl • GetResource('STR ' resno)l •• O I I SysEnvirons(l, &sysrec))
return O; /* Fail if resource missing or

SysEnvirons fails •/
ttrefnum • OpenRFPerm<•strhdl, sysrec.sysVRefNum, fsRdPerm);
Re~easeResourcecstrhdll; /• F:le r.ame no longer needed•/
i! t-::trefnum == -U /• :f open failed, return 0 •/

if ((Utlhdl • GetlResource('ttut', 0)) •• 0) I* Error loading

CloseResFile(ttrefnum);
return O;

•refptr • ttrefnum;

resource? •/

/*Close file and return 0 if didn't
get resource •/

return (TTOti1Ptr)StripAddress1•utlhdll; /* Return stripped pointer •/

6 I Download and Initialization

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

LLC resource description

The following infonnatioo summarizes the boct process and describes the LLC resource.

TokenTalk NB card boot process summary

The boct process checks for the presence of a TokenTalk Prefs file whose name comes from the
'STR • resource. In the TokenTalk Prefs file, the boct process checks for an 1 llcp 1 resource
with an ID that matches the siO(being booted. If the matching slot ID i.s present, the LLC
parameters in that resource are used when starting LLC on that slO(. Otherwise, the default
contents of the • llcp' resource in the TokenTalk Prep file is used This approach allows a
Macintosh II system with multiple TokenTalk NB cards to have each card initialized with different
parameters based on its intended use.

Defining the UC resource

If the TokenTalk Prefs file does not exist and you want to define special LLC parameters, you must
create the TokenTalk Prefs file in the System Folder with a type of 't tpf' and creator
• t t pp ' . The description of the • 11 cp ' resource follows:

/•

•/

:ype

TTinit.r - Define format of LLC parameter resource.

Mark D. Ruscad. 9/10/98.

Copyright e Apple Computer, Inc. 1999.

I .:...:..cp I

longi::t;
.:.ong .i.no;;;

:ongint;

longirit;

unsigned integer;
unsigned integer;
unsigned integer;
unsigned byte;

unsigned byte;
unsigned byte;

'Jn signed byte;

\.:nsigned byte;
unsigned byte;
..:r.siq~ed :::yt.e;

..:~s:..::;nea ::;vt.e;

I• :::.:.::..a.:. ~'J:ic~.:.or:al add::ess •/

/• :.-:it.i.al gr:::i.;p address •/

/• Options (not used - should be zero)
/• Address of listener, always zero

in resource .. /
/• Maximum frame size •/
/• Maximum number of link stations */

/• Buffer size within tms380 •/
/• Maximum number of SAPs •/

/• Maximum number of group SAPs •/

. /

/* Maximum number of group SAP members •/

,'• ~umber of 4::-ansmit buf:er in .:.ist */

/• Sum.ber cf receive buffers in lis~ •/
/• Number of interrupt messages to reserve */

,..., ~rou-p :esponse -peri.od \40 ~s ::.=xs, * /

6 I Dovmlood and Initialization 87

Medusa Programmer's Guide, Beta Draft Apple Confidential
/* Group 1 inactivity period */

/• Group 2 response period */

/* Group 2 receive acknowledge period
/* Group 2 inactivity period •/
I* Minimum transmit buffers */

/* Maximum transmit buffers •/

"I

I* Node address, 0 uses burned-in address •/
/* Product ID string (in EBCDIC?) •/

JJnsigned byte;
unsigned byte;
unsigned byte;
unsigned byte;
unsigned byte;
unsigned byte;
hex string[6];
hex string[l8J;
cs tr ing [32 J ; /* IPC name Of this LLC */

);

/* End of l:cp.r */

88 6 I Download and Initialization

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

Chapter 7 Avoiding Trouble

T H I S C H A P T E R D I S C U S S E S some common situations that might

prevent your development ccxle from operating correctly. The object of this

chapter is to provide a first-line troubleshooting guide that helps identify

common but subtle errors. The troubleshooting information includes

software tips and hardware tips. •

89

Medusa Programmer's Guide, Beta Draft Apple Confidential

General information

The overall complelly <i programming and developing applications for a network environment
provides ample opportunity for problems. Good programming technique and design can prevent
some problems; other problew arise from implementing good practices in an environment that
lacks full support for those tried-and-true practices.

The SNAP and LLC interfaces provide error ~ges. Problems with the interface itself can
usually be resolved by investigating the causes of the error ~ges. Other problems can be more
subtle, such as having the token ring chipset shut down for no apparent reason or having code that
worked in a standalone environment fail when ported to a dynamic download environmenL The
remainder of this chapter presents guidelines for those less obvious error conditions.

Refer to the echo task program in Appendix C for a comprehensive example of a functional,
dynamically downloaded TokenTalk task.

Common error causes

Pcxential causes of errors not easily detected include the following:

• linchecked error codes

• Failure in the physical network connection

• Errors in programming the listener function

• Global data structures referred to incorrectly

• DMA activity that conflicts

Each of these causes is discussed in the following paragraphs.

Error codes

The mStatus ~ge returns 0 on successful completion of an interface call. Your program should
always check the mSiatus mes.sage for an error condition and provide a suitable recovery routine.

By checking the error codes, you obtain a diagno.5tic indication of the cause of the error, which is an
important program development tool. A summary of error codes is pr~ted in Table 7-1.

90 7 I Avoiding Trouble

(

(

Medusa Programmer's Guide, Beta Draft Apple Confidential

• Table 7·1. m5tatus error code surrunary

SNAP Resuh

codes
Value

SNAPCancelled

SNAPinUse

SNAPNoErr

SNAPNoErr

SNAP'.'JoErr

SNAP'.'JoMore

SNAPNotAttached

SNAPNotAttached

SNAPTruncated

LLC Result codes Value

UCAddrError

UCBadfrarne

UCBadPointer

UCBadPri

LLCBadRefNum

LLCBadSAPOpts

UCBadSAPValue

UCBadSize

UC Cancelled

UCC!osedNoAck

UCc.oon.Fail

LLCCoonSeqEm:~

LLCGroupLlmit

LLO.inkOpen

U.a.tDcFxceeded

LLCMsgReject

LLCNoErr

LLCNoGroup

~LC'.'loiframes

Descriptton

Receive cancelled, either explicitly or by SNAPDetach

PD already attached

Normal completion

Normal completion

Normal completion

Insufficient resources

Invalid RefNum

Invalid RefNum

Frame larger than provided buffer space

Description

Invalid remote address-group address invalid.
Also,size must be 0 or node address size for the
media

Invalid frame type

Bad pointer passed as "interface-owned'

Unauthorized access priority

Invalid RefNum

Invalid SAP options

Invalid SAP value or SAP value already in use

mDataSize has inappropriate value

Receive cancelled, either explicitly or by dose operation

Station dosed without remote acknowledgment

The remote station did not accept the connection
request

Connect sequence error

The group SAP already has maximum members

Unclosed link stations on SAP

Parameter exceeds maximum

Unusual interface error

Normai <.:ompletion

Requested group membership in nonexistent group SAP

Link nm transmmmg i rrames

7 I Avoiding i:rouble 91

Medusa Progmnmer's Guide, Beta Draft Apple Confidential

LLCNoResources Maximum number r:i link stations or SAPs are already
open

LLCNotFullySupported Some option or type requested is not fully
supported by this media

LLCNotMember

LLCProtoError

LLCRoutingError

U.CSAPOpen

U.CSeqError

LLCTruncated

LLCTxError

LLCTxTooLong

LLCUnauthMAC

Member not found in group SAP

Protocol error-I frame issued before OMA ready or link
in invalid state for corrunand

Invalid routing information length

Group SAP cannot d~all member SAPs are not
closed
Sequence error-have already i.ssued a close to this link

Buffer too short to receive all information

Error in frame transmit or strip

Invalid transmit frame length

Unauthorized MAC frame

Network connection failure

If a cable is disconnec.ted on the TokenTalk NB card or the Multistation Access Unit (MAU) while
the TokenTalk software is running, the error ·uc not open• occurs. The adapter card's chipset will
waits for approximately 2 seconds and then shuts itself down, which cl~ the LLC interface. All
queued messages are returned to the client and any future messages are also returned to the client
with the ·uc not open• error code.

Recovery for this condition depends on the application on the TokenTalk NB card. The choices
are either to download and initialize the card again, or to require a complete system reOOot.

A similar condition occurs if the card is downloaded and initialized without being plugged in to
the ~U.

Problems programming the listener function

Treat the listener function like an interrupt service routine, which is to say keep it simple and
efficient Avoid allocallng large amounts of stack to the listener funaion and avoid attempting to
perform a large amcuol of processing. All "good programming" techniques for dealing with
interrupt service routines apply equally well to dealing with the listener function.

92 7 I Avoiding Trouble

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

Global data structures and dynamic download

For each task, the A5 register conta~ the starting address ci the global data structure associated
with that task when it is created and linked with MR-DOS. It is normally useful to assign the
common global data structure in this manner, because all tasks created and linked with MR-DOS will
have the same value for AS, for example,

AS • GetgCommon(J->ginitA5

In a dynamic download situation, however, this assumption is wrong. A task spawned from the
dynamically downloaded task has a different AS, which differs from that of the task created and
linked with MR-DOS. Therefore, to spawn ancxher task from the dynamic download task, you
must set up your own AS to ensure that the correct data structure is used.

This type of error is difficult to trace because a task developed as a standalone under MR-DOS
will execute. But when the same task is dynamically downloaded it will fail, and all because the
wrong data structure address is used. This is a situation in which a useful arid acceptable
programming practice backfires.

Ftgure 7-1 shows a situation in which the adapter card is loaded and initialized from the Macintosh
OS. A task is linked with MR-DOS, the 802.2 interface is downloaded to he card along with MR-DOS,
and all tasks begin execution. At this point, the AS register contains the address of the common
global data structure, which is set when the the tasks are linked with MR-DOS. Sometime later, a
new task is dynamically downloaded to the card. As the figure shows, the new task must have its
own value for AS, which is created by the dynamic download process. The echo task program in

Appendix C contains an example of the code that captures and manages the dynamic download
value for AS.

7 I Avoiding Trouble 93

Medusa Programmer's Guide, Beta Draft

• Figure 7 -1 Dynamic task download

[!]
•

Apple Confidential

As-> global dara and jump table
MR-DOS lm.2 task

• '---------> Available memory

Macin!06h Openting System

Load and initialize card
Tas.ts /inited /IJ MR-DOS

Dynamic download
newTa.sk

Direct Memory Access (DMA) conflicts

A5 points to common global smiaure
Task.AS • gCommon

·············~~:-~~ii~~~-~~P. .. ~~-·-············JJ·····
............. ~~-~-'~-~!'.'f. .. .

A5-> global dara and jump table

............ ~?.!-~~!~.~ .. n
NewTa.sk '>

newTaak.A5 111 gCommon

An error condition can occur when the TMS380 chipsets on two cards in the same system attempt a
DMA transfer to one another at the same time. The chipset anempts to retry on error; but if it
fails repeacedly, it shuts ilse!f down. The simplest way to avoid this condition is to have the CPU
perform the OMA transfer and have the chipset copy the data from the CPU.

This DMA coaflkt is possible because the token ring chipset has no conneaor to the CPU halt
signal. It is by mcaos d ~ing the halt and bus error signals at the same time that a bus retry
occurs. A bus reuy occurs when the OMA request cannot complete. Because the chipset only sees
the bus error signal, it ads as though a bus error has occurred in fact, rather than merely a bus retrv.
The reuy-on-error coont is set to its mamnum iimit of 255, meaning that 255 consecuuvc bus errors
must be seen by the chip.set before it shuts itself down.

Avoid lhlS potentiai error condition in one oi •wo ways:

94 7 I Avoiding ~rouble

(

Medusa Programmer's Guide, Beta Draft Apple C.onfidential

• As mentioned, have the ad.apter card CPU perform the OMA transfer rather than the token ring
chipset

• Split the OMA transmit buffers into small enough sizes that the buffer will exhaust before the
bus retry count does

7 I Avoiding Trouble 95

(

(

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

Appendix A Components

The release diskette for software development on the TokenTalk NB card

includes the following files:

• UC:Supportlib.o

• llC.h

• SNAP.h

• TRinit.h

• TTUtil.h

• TT!nit.r

97

(

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

Appendix B The TokenTalk NB Card

The TokenTalk NB card i.5 a single-board communications controller that

occupies one l/O slot on the system board of the Macintosh II system. The

card provides high-speed (4M bps) token ring network communications and is

compatible with the IBM token ring adapter a1 the physical transmission

level.

Designed to the Draft 2.0 NuBus specifications, the TokenTalk NB card can

function as either a NuBus master or slave device. When a<.ting as bus master,

TokenTalk NB has full access to all other NuBus devices installed in the host

system. As a NuBus slave, TokenTalk NB relinqui.5hes control of all its

internal resources to the designated bus master.

Throughout this appendix, all address reference and data values are given as

hexadecimal values and refer to the 24-bit address range of the Motorola 68000

microprocessor. Tbe high-order 8 bits that indicate the NuBus slot address are

not contained in the addresses listed in this appendix.

The term "ntS380" as used in this appendix refers to the complete Texas

Instruments ntS380 Token Ring Adapter Chipset as a whole rather than to a

specific member of the chipset. •

99

Medusa Programmer's Guide, Beta Draft Apple C.onfidential

Hardware overview
The overall design a the TokenTalk N.B card can be divided into two main functional blocks: the
communications engine and the token ring interface. Figure B-1 shows a functional block diagram
of the TokenTalk NB card.

• Figure B-1 TokenTalk NB Block Diagram

Communialions engine

~ 6lm>-10

~ Token Ring interface

1--i
UnitlDPROM !6KBSRAM

I==

~
TMS38)!0 1-i

64KBROM CommuniaLicns

68000/NuBus ~
proceAOf

interface
~

TMS38>20 1-i
512 KB RAM Protocol

handler

Rin inwW:e
~ ~ Control 1~~11 iepten I TmEi I

....... TMS38130 I-=
Sysrem
interface

Communications engine

The communications engine comists of five major components:

• The Motorola 6l>OO CPU

• PROM

• RAM

• Communiolions engine/NuBus interface

• Communications engine/token ring interface

ihese components are aescr1bed in tile foilowing sections.

100 BI The TokenTalk NB Card

(

Medusa Programmer's Guide, Beta Draft Apple Confidential

Central proc~r unit (CPU)

The processor empl~ on the Tok~Talk NB card is a Motaola 68000 CPU with a dock speed of
10 Mhz. The 10-Mhz dock is derived from the 10-Mhz NuBus clock. Because TokenTalk NB can
function as a NuBus Master device, the ~ processor is capable of acquiring full access and
control of all NuBus devices and resources.

Read-only memory (ROM)

TokenTalk NB provides space for 64KB of adapter ROM. This ROM contains the NuBus
configuration information required to interface the card to the Macintosh II environment, the
power on self-test code, the power on reset vectors, the burned-in unit ID, the version number, the
copyright notice, and any additional firmware provided by Apple Computer, Inc.

The adapter ROM is mapped at adapter addrcs.ses FFOO>O to FFFFFF. The on-beta.rd ROM appears as
a 16-bit device to the 68000 and as a 32-bit device to the Nu Bus. When accessed by NuBus, circuitry
on the communicatiora engine perfoom two 16-bit accesses to provide a full 32 bits of data in one
NuBus access. When this action is performed, the low-address word occupies the low-order bits (0-

15) and the high-address word occupies the high-order bits (16-31) of a 32-bit longword.

Dynamic random access memory (DRA.\I)

A total of 512KB of DRAM on the Token Talk NB is mapped at adapter addresses 000000 to 07FFFF.
The CPU, TMS30030 Token Ring System Interface, and NuBus all have access to this memory. The
on-board ORAM is used for TokenTalk NB system code and data space.

When it functions as a bus slave, all on-board RAM is accessible to the current system bus master.
While the current NuBus master has access, both the 68000 and the TMS30030 are denied access to
the on-board RAM. This RAM:, like the ROM, appears as a 16-bit device to the 60000 and TMS380, and
as a 32-bit device to NuBus.

When accessed by ;'lluBus, circuitry on the communications engine performs two 16-bit accesses to
provide a full 32 bits of data in one NuBus access. When this action is performed, the low-address
word occupies the low-order bits (0-15) and the high-address word occupies the high-order bits (16-

31) of a 32-bil longwad

B I The TokenTalk NB C.ard 101

Medusa Programmer's Guide, Beta Draft Apple Confidential

Communications engi.ne/NuBus interface

The communicatiom engine/NuBus interface provides an 8/16/32-bit interface between the
TokenTalk NB 6imO and NuBus. Because the 68000 is a 16-bit device and the Nu Bus allows 32-bit
accesses, special circuitty is provided to transform a 32-bit NuBus access into two 16-bit 6&)00

accesses. If any problem occurs with the NuBus access, a bus error is reported to the 6&)00. Access
to the communications engine/NuBus interface is accomplished through a set of control registers
located at addresses COOOOO-C00040.

NuBus pinouts as viewed from the front edge of the card are as follows:

Pin Row A RowB Rowe

1 -12 -12 /RESET
2 GND GND GND
3 /SPV GND +5
4 ISP +5 +5
5 /TMl +5 /TMO
6 /ADl +5 /ADO
7 /AD3 +5 /AD2
8 /ADS /AD4
9 /AD7 !AD6
10 /AD9 /ADS
11 /ADll /ADlO
12 /AD13 GND /AD12
13 /AD15 GND /AD14
14 /AD17 GND /AD16
15 /AD19 GND /ADIB
16 /AD21 GND /AD20
17 /AD23 GND /AD22
18 1AD25 GND /AD24
19 /AD27 GND /AD26
2) /AD29 GND /AD28
21 /AD31 GND /AD~

Z2 GND GND GND
Z3 GND GND /PFW
24 /ARBl /ARBO
z; /ARB3 /ARB2
J) /IDl /IDO
'lJ /ID3 /102
J3 /AQ{ +5 /START
l) +5 +5 +5
)) 1RQST GND -.;
31 /NMRQ GND GND
;i •12 d2 /Q..l(

• These pms tJTe connecw:i but nor ::u.pp1i2d wuh tr.e-5.2 v ~:gnai spec~"'.ed :11 :he ."iuBu.s specif'.amon.

102 BI The Token Talk NB Card

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

Communications engine/token ring interface

The communications engine/token ring interface consists ci the 6.g()()(), the token ring interface
logic, and the direct VO control registers and OMA controller located in the TMS38030. This interface
logic provides a l~bit interface between the 60COO and the TMS38030. Access to this interface is
accomplished through the use- of the TMS38030 direct 1/0 control registers that are mapped to the
60000 memory addres.ses from 800000-aXl006.

Token ring interface

The token ring interface section of TokenTalk NB is implemented using the TI TMS380 token ring
interface controller chipset. The TMS380 configuration consists ci the five TMS380 chips, 16KB of
buffer RAM, and the interface logic.

The TMS3~ chips are briefly described in the following sections.

TMS38010 communications processor

The TMS38010 executes the protocol firmware residing in the TMS38030 and provides intermediate
buffering of ring traffic. There are 2816 bytes of internal buffer RAM that are supplemented with
16KB of external static RAM (19,200 bytes total) to provide a larger and more efficient buffer space.

TMS38020 protocol handler (PH)

The token ring Media Access Control (MAC) sublayer protocol firmware normally resident v.ithin
the TMS38020 can be replaced with enhanced protocol firmware residing in external PROM. Addition
of this enhanced PROM provides features required in a bridge environmenl An application that
needs to verify the installation of the optional prococol firmware can read the TokenTalk NB
options register (address ~) and check whether bit 0 is set to zero.

Texas Instruments has a set of two PROMs that contains an enhanced version of the TMS38020
prcxocol handler internal ROM. This enhanced PROM set is used in bridge applications. The
TokenTalk NB card can incorporate these PROMs through the use of a piggy-back baud, which is
plugged into a cooneaor located on the TokenTalk NB card.

The maximum number of Token Talk NB cards that can be installed in a single Macintosh II
system is limited by the power supply and by the number of available slots. Software access to
each card is accomplished through the NuBus slot addressing conventions.

B I The TokenTalk NB Card 103

Medusa Programmer's Guide, Beta Draft Apple Confidential

TMS38030 system interface (SJF)

The TMS38030 system interface chip oontrols all interface functions between the ~ and the
remainder d the token ring chipset. The TMS3a>30 provides a 16-bit bus between the~ and the
TMS38> token ring interface. The TMS38>30 provides a set of direct VO registers and a direct
memory access (DMA) channCJ for data transfers.

TMS38051 and TMS38052 ring interface

The TMS38051 and TMS3a>52 ring interface chips perform the actual data encoding and decoding
using the differential Manchester code. The ring interface chips also perfonn the ring insertion and
de-insertion tasks. Physical connection to the ring is by way of an IBM Token Ring Adapter DB9
nine-pin connector. The DB9 connector provides correct signal connection to the IBM Type 1
Cabling System. Pinouts for the DB9 connector are as follows:

Pin Wire Signal

ShieJd
1
2
3
4
5
6
7
8
9

1
4

3
s

2

Burned-in unit ID

Ground
Receive
Noc Used
Noc L'sed
Noc Used
Transmit
Receive
NOC Used
Noc Used
Transmit

The unit JD/serial number is stored in a reserved location in the ~ Declaration PROM. The unit
ID is the network node address of a TokenTalk NB card and its h~t. Each token ring adapter card,
whether a TokenTalk NB cud or otherwise, has a unique 6-byte (48-bit) burned-in unit ID. The unit
ID contained in this ROM is used as the default node ID when the adapter card is first opened By
supplying a locally administered node ID as a parameter to the TMS380 Open command, you can
override the default unit ID. If no unit ID override is provided by the application software, the
low-level protocol softw2re must reuieve the burned-in unit ID from the Declaration PROM and
pass it to the TMS38> chipset as the node ID used when opening the TokenTalk NB card (or Clher
adapter card).

The iEEE ~2 committee administers and assigns blocks of unit ID numbers to respeaive
manufaaurers.

104 B I The Token Talk NB Card

(

(~,,

Medusa Programmer's Guide, Beta Draft Apple C.onftdential

Adapter interfaces

The following sectiom desaibe the adapter interfaces and include descriptions of the adapter
memory map, control registers, opliom register, direct 1/0 interface registers, OMA, timers, resets,
and interrupts.

TokenTalk NB memory map

The following li5t provides an address map of all resources on the TokenTalk NB card:

Address Function

~FFFFFF ROM(64KB)
EOOOOO-FEFFFF Reserved
amt() 68)00 Reset
QXXX)A Set Interrupt TokenTalk NB Request
COO'.XB Clear Interrupt TokenTalk NB Request
(JJ.1Xf, Set Interrupt Host Request
ax:oo4 Clear Interrupt Host Request
ax:XXJ2 Clear Timer Interrupt
artlJ.) NuBus Extension Register I Clear Reset
AOOOOO-BFFFFF Nu Bus
!ro:>12-9FFFFF Reserved (1/0 Interface Oeccxie)
am10 TMS38> NuBus Extension Register
8XW3 TokenTalk NB Options Register
mdJ ™538030 OIO Interrupt Register
8XX))4 TMS38030 010 Address Register
8XXXl2 TMS38>30 010 Data Auto Increment Register
8XXXlO TMS38030 OIO Data Register
400000-iFFFFF Reserved (110 Interface-No Decode)
~3FFFFF Reserved
(XXX)()'.)...-OFFfF RAM: 512KB

B I The TokenTalk NB c.atd 105

Medusa Programmer's Guide, Beta Draft Apple Confidential

Control registers

1be communicatiom engine provides eight control registers that assist the 68000/rMS380 software
irlerface. The control registers are memory-mapped 31 addresses CQ0000-C00040. The eight control
registers and func1ioos are as follow:

~ Pwlction l/W
amto ~Reset w
OXXX>A Set Interrupt TokenTalk NB Request R
~ Oear Interrupt TokenTalk NB Request R
am6 Set Interrupt Host Request R
CIXXX>4 Oear Interrupt Host Request R
axro2 Oear Timer Interrupt R
am:X> NuBus Extension Register I Oear Reset R

TokenTalk NB card options register

The options register at address~ is provided to determine what options, if any, are currently
installed on the TokenTalk NB card. The only option currently planned for the card is the optional
Enhanced TMS38020 PROM set. By reading the options register and testing bit 0, you can determine
whether the bridge PROM set is installed when 0 • installed and 1 • not installed

TMS38030 direct 1/0 interface registers

The TMS38030 provides both a direct 1/0 (DIO) interface and a OMA interface. The DIO is used for
initializing the TokenTalk NB card, command initiation, and status reporting. The OMA interface is
used for transferring commands, parameter lists, and frames between the TMS380 RAM and the
~RAM.

The DIO interface consists of four 16-bit registers, located in the 68000 memory space starting at
address ~- The registers are as follows:

DATA register

Function
™538030 DIO Interrupt Register
™538030 010 Address Register
TMS38030 010 Data Auto Increment Register
TMS38030 OIO Data Register

The DATA register is the primary meam of reading from or writing to the buffer RAM of the
TMS38010. The data being read or written is pointed to by the address contained in the ADORFSS
register.

106 BI The Token Talk NB C.ard

(

(

Medusa Programmer's Guide, Beta Draft

DATA AlITO INCREMENT register

Apple Confidential

The DATA AUTO INCREMENT register functions similarly to the DATA register, except that the
address contained in the ADDRF.SS register is automatically incremented in preparation for the next
data access.

ADDRESS register

The ADDRESS register points to the address ci the TMS~lO buffer memory at which the next
data access will occur.

INTERRUPT register

The 11'-lERRCPT register interrupts and reads status information from the Thf5380 chipset. Bits 0-

i of the INTERRCPT register can be set to 1 only by the 60000. Only the communications processor
(TMS~IO) can reset these bits. Bit 8 can be set only by the TMS~lO, and only the 68000 can reset
this bit.

Bits 9-15 of the INTERRUPT register are read-only to the 68000. The bit definitions for the
INTERRUPT register change depending on whether a read or a write operation is being performed.
In read mode, the register bits have the following definitions, where bit 0 is the moc;t significant
bit:

Bit Definition

0 Interrupt adapter (TMS380)
Adapter reset (TMS~)

2 System status block dear

3 Execute
4 System control block request
5 Receive continue
6 Receive valid
.,

Transmit valid I

8 Interrupt host system
9 Initialize
10 Test
11 Error
12 Interrupt rode 0 I Error 0
13 Interrupt rode 1 I Error 1
14 Interrupt rode 2 I Error 2
15 Enor3

B I The TokenTalk NB C.ard 107

Medusa Programmer's Guide, Beta Draft Apple Confidential

In write mode, the register bits have the following definitions:

Bit Deflllition

0 Interrupt adapter (TMS380)
1 Adapter reset (TMS380)
2 System status bfock clear
3 Execute
4 System control block request
5 Receive continue
6 Receive valid
7 Transmit valid
8 Reset system interrupt
9 Don't cal"!
10 Don't care
11 Don't care
12 Don't care
13 Don't care
14 Don't care
15 Don't care

TMS38030 DMA

The TMS38030 OMA channel provides 24 address bits, enabling access to a full 16 MB r:i memory.
Since the DMA only has 16 hardware address lines, the 8 most significant address bits are separately
latched onto the 6800o bus before the least significant 16 bits are latched. This action and any
updating ci the most significant address bits are accomplished automatically by the TMS38030.
OMA access to the Macintosh II system beard or any <Xher NuBus cards in.stalled in the system is
accomplished by the communications engine through the NuBus extension register. The contents
of this 12-bit register are used as the NuBus slot address (bits 20-31) to create a full 32-bit NuBus
address. The OMA channel can be programmed for either burst-mcx:!e or cycle-steal modes of
operation.

NuBus addressing

A special 12-bit address extension register located at address COOOOO provides ~a:ess to the 32-bit
NuBus address space from the 68>00. Access to this address space from the TMS38>30 ~ through
the TMS38> NuBus e:demion register at address 800010. To access the NuBus, the 12 most
signific:ant bits of the NuBus address should be written to this register prior to the NuBus access.
Additionally, setting bit A1JJ in the address field - a bit not normally used - performs a hardware
read/modify/write cyde. This bit must be set whenever executing an 68000 software test-and-reset
(BSET) in.struaion. Address bit A20 should be faise (0) for all <Xher operations.

108 B /The TokenTalk NB Card

/

1·-'_
\: i ,_,,.

(

(

Medusa Programmer's Guide, Beta Draft Apple Confidential

The contents of the NuBus extension regi.)ter are appended by the communications engine as
the high-order 12 bits of all addres.ses used by the TMS38030 to transfer OMA daca across the
system interface. By using this extens1on register, it i.) possible for the communications engine to
route a data packet from the TMS3a)10 buffer to the Macintosh II or olher NuBus card

If you change the NuBus ~ension register to route data packets from the TM53a) to a
location olher than the TokenTalk NB card on-board RAM, you must restore the extension regi.)ter
contents to the appropriate value.

When you route packets from the TMS~ to another destination, remember that you are
transferring IEEE ~2.5 packets including all header information, which must be processed.

Adapter timer

An on-board timer circuit provides a Level 1 interrupt every 6.5536 milliseconds. The timer interrupt
can be cleared by reading address C0Cl002. The timer interrupt must be cleared within 3 milli.seconds

• or the next timer tick will be lost

68000 reset

The 6&XXl processor can be reset by reading address 0Xl004. The Rf.SET line i.) deared when address
COOJOO is read or whenever Nu Bus is reset On a power-on Rf.SET (Nu Bus reset), the 6IDOO supervisor
stack pointer and program counter are read from the on-board ROM !ocatioos FFOOOO and FF0004,
respectively. The power on reset vectors will point to the diagnostic and power-up code located in
the ROM.

In the event of a software initiated reset (address C00004 is read), the~ supervisor stack
pointer is loaded from address 000000 in the TokenTalk NB card RAM, and the program counter is
loaded from RAM address ()(()()()4. You must make certain that valid programmed reset vee10rs are
loaded in these locations.

TMS38030 reset

The TMS3a)30 can be reset in software by writing an FF to the DIO INTERRUPT register of the
TMS3a)30, located at address B<XXl06. From the ho.5t side, the TMS380 is reset when the 6IDOO is reset
by reading a~ C00004 and it is removCd from reset when the 68oOO reads address COOOOO. When
the 68ooo is reset fran NuBus, the TMS38030 is also reset.

B I The TokenTalk NB Card 109

Medusa Programmer's Guide, Beu Draft Apple O>nfidential

Interrupts

The TokenTalk NB card provides three levels d interrupts and priaities as follows:

Interrupt Level Priority

Timer 1 Lowest

Nu Bus 2 Low

Token ring interface 3 Highest

Software overview

The following sections provide overviews of the power-on self-test, the software interface, and
the TMS380 command set.

Power-on self-test

A series of power-on self-test (POST) routines are executed when the adapter is first powered up.
All tests are initiated and controlled by the on-board 68000 processor. The following functions are
performed:

• Write then read test of 512KB RAM

• CRC check of decbration ROM

• Initiali1.3tion of the ~ exception vector table

• TMS380 diagnmtic and lobe media tests. These tests are performed under the control of the
TMS380, with sutus and error information passed back to the 68000.

• Read/write test across NuBus between 6&'.l20 and 68000

• 68000 hardware reset test across NuBus

• Timer, NuBus, token ring interrupt test

The TMS380 diagnostic and lobe media tests include internal CRC circuitry checkout, an internal
loop-back test from the TMS38>10 to the TMS38020 and ring interface chi~ and back to the
TMS38010. Ahe.r sua:es.WI completion of the intcmal loop-back and CRC tests, the TMS380
pcrfonns a lobe media test nm w the same as the intcmal loop-baclc test, except that instead of
looping back to the ~38)10 from the ring interface, the test continues through the connecting
cable to the multislldoo access uni (wiring concentrator) before looping back. For additiooal
information on these oper:Wonal tests, refer to the Texas Instruments TMS380 Adapter Chipset
USer's Gutda.

110 B I 1be TokcnTalk N'B Card 1·---...
' \\

(

C\
"

Medusa Programmer's Guide, Beta Draft Apple Confidential

Software interface

The following secticm present a basic overview of the software mechanisms that control and
operate the TMS~ from the 60000. In addition to direct manipulation of the 010 registers, two
software constructs-the system command block (SCB) and the system status block (SSB) that
reside in the TokenTalk NB card's 68000 memory-are used to pass conunands to and get status
from the TMS38l.

System command block (SCB)

The system command block is a six-byte buffer that is used to issue commands to the TMS380.
from low memory to high memory, the format of the SCB is as follows:

COMMAND 2 bytes

ADDRF.5S high 2 bytes

ADDRESS low 2 bytes

The COMMAND field contains the 16-bit command code of the command to be issued. The two
address fields contain a 32-bit pointer to a rommand parameter table. (The upper 8 bits are ignored,
resulting in a 24-bit addres.5.) The format of the command parameter table varies for each command
and contains parameter and address information needed to execute the command

System status block (SSB)

The system status block is an eight-byte buffer that the TMS380 uses to return status information
and completion codes on completion of an adapter chipset command. From low memory to high
memory, the format of the SSB is as follows:

COMMAND 2 bytes

STATIJS 0 2 bytes

STATI:S 1 2 bytes

STAITS 2 2 bytes

The COMMA.\'D field is updated by the TMS38l and identifies either RING STATI:S, COMMAND
REJECT ST A TUS, or the stacus of a general command. The three status fields contain actual status
information for the COMMAND field. The format and meaning of the status fields vary depending
on the command.

TMS380 lnitiallzation

TMS30 initialization is accomplished by allcx:ating in the 68JOO memory an SCB and an 5.5B. The
particular applialixl running on the TokenTalk NB card also cre:ues a 22-byte initialization block.
This block, similar to a command parameter table, contains various intia1i7.21ioo options, interrupt
vectors for the TMS3al, TMS38l DMA parameters, and 24-bit pointers to the SCB and SSB.

B I The TokenTalk NB Card 111

Medusa Programmer's Guide, Beta Draft Apple Confidential

To transfer the intializ.ation bloclc to the TMS380, the direct VO registers are used. The basic
proo:dure is as follows:

1. Software reset the TokenTalk NB card.

2 Verify that the power-up ~iagnostics are succes.sfully completed.

3. Write the value 0200 to the TMS38>30 address register.

4. Transfer the intialization block to the TMS38030 by writing each byte or 16-bil word to the
DATA AlITO INCREMENT register. This action causes the initWization block to be written to
successive TMS38> RAM lcx::ation.s beginning at address OAOO.

5. After transferring the entire initialization block, write the hex value 9080 to the INTERRUPT
register. This value causes an adapter interrupt, instructs the adapter to execute the intialization
block, and prevents resetting the system interrupt bit.

6. Loop on reading the INTERRUPT register until either the error bit is set (initialization failed), the
IN111AUZE, TEST and ERROR bits are all zero (successful initialization), or 10 seconds have
passed (hardware failure).

7. Verify that the SSB and SCB contents are correct, which verifies TMS38>30 OMA.

TMS380 command execution

After successful initialization of the TMS~. commands can be issued to the adapter. The process
of issuing a command involves the SCB and an associated command parameter table. The basic
proo:dure is as follows:

• Allcx::ate an appropriate conunand parameter table and initialize its values as required.

• Fill the SCB with the command ccxie and pointers to the command parameter table as required.

• Set the INTERRUPT ADAPTER (bit 0), SSB Cl.EAR (bit 2), and EXECUTES bits to 1.

This process interrupts the TMS380 and causes it to transfer by way c:i the DMA the SCB and any
required parameters into the ntS~ RAM, and then begins execution of the command. Once the
SCB and parameters are copied into the TMS~ RAM, the TMS380 writes a zero into the COMMAND
field c:i the SCB, indicating that an<Xher command may now be issued.

Command completion

On completion of a command or on discovering an error while executing a command, the TMS~
transfers by way of the OMA 8 bytes of status infonnation into the SSB. The OMA result is always
8 bytes, regardless d the actual number c:i bytes c:i information supplied. After a OMA transfer of
the command swus iDformation, the 6BOoo is interrupted by the TMS 380. At this point an
application C3D check the SSB fa successful completion. The actual status values that indicate
success a failure vary depending on the conunand

112 B I The TokenTalk NB Card

Medusa Programmer's Guide, Beta Draft Apple C.Onfldential

TMS380 commands

All TMS3a> SCB ~ and their associated hex codes are as follows:

Command Code

~ - CXX>3

Transmit 00)4

Transmit Halt Oll5

Receive ~

aase OC1J7

Set Group Address (XXl3

Set Functional Address rJ:l.E

Read Error Log WJA

Read Adapter Buffer WJB

B I The TokenTalk NB Card 113

(

(

Medusa Programmer's Guide, Beta Draft Apple C.Onfidenlial

Appendix C Echo Task Program Example

The echo task program presented in this appendix shows all major software

components needed to successfully program a downloadable task for the

TokenTalk NB card.

Additionally, this echo task program is fully functional and exercises the

tran.5mit and receive functions on a single TokenTalk NB card. As such, it

provides not only a good programming example but also a functional exercise

of the token ring hardware.

Throughout this appendix, all address reference and data values are given as

hexadecimal values and refer to the 24-bit address range of the Motorola 68000

microprocessor. The high-order 8 bits that indicate the NuBus slot address are

nct contained in the addresses listed in this appendix. •

115

Medusa Programmer's Guide, Beta Draft Apple Confidential

Program summary
The majority of this appendix is a C program Ii.sting that demonstrates a fully-functional echo task
that is dynamically downloaded to the TokenTalk NB card in Slot A. The echo task exercises the
transmit and receive functions of the SNAP interface, causing a single card to send frames to itself,
effectively flooding the network with SNAP frams. This exercise is useful because it verifies overall
operation of the card and also provides a template for implementing the listener function and for
managing global data structures under a dynamically downloaded task. (Chapter 7 discussed some
of the problems associated with managing global data structures under a dynamically downloaded
task.) The program was developed using the MacintCASh Programmer's Workshop (MPW).

The program does not produce any displayed output. By using a network packet analyzing
tool, such as a Sniffer from Data General, you can examine the traffic created by this program.

The echo task program contains several modules:

• Header files. The C language include file giving constants that can be added together to set the
options field in many of the I.LC and SNAP calls.

• Make files. The make files for building the program example that show how to make the
program from its various modules.

• Source files. The source files for DynDownLoadExamp.

The program listing consists of modules that support the echo task. It demonstrates many
features and techniques for working with the UC and SNAP interface:

• How to conditionally compile and use a listener function

• How to write a protocol (shown in Echo.c)

• How to start tasks from other task.$ (shown in Download.c)

• How to find and use SNAP from MR-DOS.

116 C I Echo Task Program Example

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

Programming checklist
The following procedure describes step-by-step how to create the example program using MPW
Version 3.0 (or later). Copies of the files are provided on the distribution diskettes supplied with
TokenTalk NB development tools.

L Copy the Apple IPC and Token Talk Prep files into your System Folder.

2. Copy the MR-DOS Includes folder into your MPW folder.

3. Copy the UserStartup•TokenRingExamp file into your MPW folder.

4. Copy the TokenRingExamp folder into the MPW folder.

5. Create a new folder in MPW and name it TokenTalk Includes. Copy the following files into this
folder:

• llC.h

• SNAP.h

• TRlnit.h

• TTUtil.h

• TTinit.r

6. Creal a new folder in MPW and name it TokenTalk Libraries. Copy the following ftle into this
folder:

• LLCSupport.Lib.o

These folders and files are required to build the example program. If Apple !PC did not already exist
in the System Folder prior to copying these files, you must reboot before you can execute the
example program.

The next steps are accomplished using MPW 3.0 or later. If you are not using MPW 3.0 or later, you
can copy UserStartup•TokenRingExamp to your L'serStartup file.

1. !..aunch~PW.

2. Build the Echo Task program.

3. Build the DynDownLoadExamp program.

4. Quit MPW.

;. Copy Echo Task to your System Folder.

6. launch DynDownI.oad.E:p.

At this point, DynDownLoadE:a.mp downloads the Echo Task program to the TokenTalk NB card
in Slot A of your ~h II. The Echo Task program floods the token ring with frames.

CI Echo Task Program Example 117

Medusa Programmer's Guide, Beu Draft Apple C.Onfidential

Program listing
The remainder of um appendix is a listing of the make files, header files, and source files that create
the dynamic downlcad rask and the echo rask. The modules are presented as follow:

• Dymm.k: down.load

DynDownLoadE.xamp.make

DynDownLoad.c

• Dynamic global data structure management

ADT.h

ADT.c

U.StenerGlue.a

• Echo task

Echo Task.make

F.cho.h

Genera.Lb

EchoBlastTask.c

EchoTask.c

EchoTask.r

• MR·DOS and SNAP interface

Externals.h

SNAP-Interface.h

Echo-Interface.h

MREcho-Interfacc.c

MRSNAP-Interface.c

118 C I Echo Task Program Example

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

Dynamic download
The following program mes show the make file for the dynamic download process and the source
code that launches the download process.

DynDownloadExamp.make

file:
".'argec:

DynDownLoadExamp.make
JynDown~oadExa~p

:Jy:--:JoW"n =..oad. c Sou::ces:
Monday, :ar.;.ia::y 30, :989 8:48::3 AM

DynDownLoad.c,o f DynDownLoadExamp.make DynDownLoad.c
C DynDownLoad.c

SOURCES = DynDownLoad.c
OB.;ECTS DynDownLoad.c.o

Jyn~ownLoadExamp ff DynDownLoadExamp.make (OB~EC7S}

:ink -~ -t APPL -c 1 ???? 1 d
·:os:EC:S} o
"!CLibraries}"CR;.intime.o o
''{~ibraries}''Inter~ace.c a
"ICLibraries}"St:dCLib.o o
''(CLibraries}''CSANELib.c a
"(CLibraries}"Math.o o
"(CLibraries}"Ciricerface.o o
-o DynDownLoadExamp

C / Echo Task Program Example 119

Medusa Programmer's Guide, Beta Draft

DynDownLoad.c

File: OynOownLoad.c
Written by Eric M. Trehus

Apple Confidential

Copyriqht Apple Computer, Inc. 1988-1989
All riqhts reserved

•include <Files.h>
•include <Resources.h>
•include <TTUtil.h>
#include <Memory.h>

/*

*

This is the tiny Application that downloads our EchoTask proqram onto a Token Talk NB
Card in slot A. It makes assumptions about the location and name of the file. It also
downloads LLC onto the card if it hasn't been loaded.

s~atic TTOtil?tr GlobalUtilPtr:
static short TTRefNum;

TTUtilPtr GetTTUtilPtr(char *PrepFile,short VRefNum,short •refptr)

Handle utlhdl;
short t:trefnum;
ttrefnum • OpenRFPerm<PrepFile,VRefNum,fsRdPerm);
if (ttrefnum -1)

!• Er:or in Opening ~he ~ile •/
return(O);

i!((utlhdl a GetlResource('ttut',0)) 0)

/* Er:or in qettinq the resource •/
CloseResFile(ttrefnum);
return(O);

•refptr • ttrefnum;
returnl(TTOtilPtrlStripAddress(*utlhdl));

~ong FindCards(long mask)

return< c•GlobaltJtilPtrl <TTFindCards,maskl l;

13> C I Echo Task Program Example

(
Medusa Programmer's Guide, Beta Draft

long FindBootedCards(long mask)
(

Apple C.Onfidential

return ((*Glo.balUtilPtr) (TTFindBootedCards, mask));

long FindUn.bootedCards(long mask)
(

return ((•Glo.balUtilPt r) (TTF indUn.bootedCards, mask)) ;

long BootCards(long mask>

return((*Glo.balUtilPtr) (TTBootCards,mask));

lo~g ForceBoot(long ~ask>

return ((*Glo.balUtil.Ptr) <T:'ForceBoot,mask));

long DynamicDL(TTDDLP *Parameters)
(

return ((*Glo.balUtilPtr> (T'!'DynamicDL, (long) Parameters));

Bootit(long How, long MyMask)

long Booted.Mask;
long Mask;
.!.ong type = -1;

long Cards;
Cards• FindCards(-1);

/* Assumes that a PREP file has been opened */

/* Find all the cards •/

if (<How •• TTForceBootl I I FindUnbootedCards <MyMask))

BootedMask • (*Gio.balUtilPtr) <How,MyMask); /* Perform Download here */

Mask= FindBootedCards(Cards); /* Look through all cards to find booted ones */

void :nit~~C(void) /* Call :his once before executing any tests */

SysEnvRec sysrec;

if(SysEnvirons<l,&sysrec))
(

I* Error in SysEnvirons call •/
return;

Glo.balUtilPtr • GetTTUtilPtr("\pTokenTalk Prep",sysrec.sysVRefNum,&TTRefNum);
BootitCTTBootCards,-l);

CI Echo Task Program Example 121

Medusa Programmer's Guide, Beta Draft Apple c.onfidential
void DoDynamicDownLoad(voidl

main()

122

long type • -1;
short Re•RetNum;
SysEnvRec sysrec;
TTDDLP *DynamicDownLoadParms;
long DownLoadTID;
Handle OynamicOPHandle;
long DynOownLoadSlot;

OynOownLoadSlot • OxOA;

/*

In this example, .we expect a file in the system folder named "Echo :'ask", wn.:.=:-:
contains the '?ARM' resource that indicates how to Download the code onto t~e
Token Talk NB Card. We are also assuming that the Token Talk NB Card is
in slot A for simplicity.

"I
if(SysEnvirons!l,&sysrec))
{

/" Error in SysEnvirons call "/
return;

ResRefNum • OpenRFPerm("\pEcho Task",sysrec.sysVRefNum,fsRdPerm);

DynamicDPHandle • GetlResource('PARM',0);
ifCDynamicDPHandlel
{

HLock(OynamicDPHandlel;
DynamicDownLoadParms • <TTOOLP *) ("OynamicDPHandle);
OynamicOownLoadParms->SlotNo • DynOownLoadSlot;

OownLoadTIO • OynamicOL<<TTODLP ")StripAddress((char ")OynamicOownLoadParms));
HGnlock<DynamicDPHandle);

CloseResFile(ResRefNum);

InitLLC(); /"Make sure the card is initialized"/
OoDynamicDownLoad(); /"Now put my task there 0 */

C I F.cho Task Program Example

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

Dynamic global data structure management
The following program mes show how to set up and manage the global data structure in a dynamic
download enviromnenl Chapter 7 di.scusses the problems that can occur when the task's pointers
are managed incorrectly. An assembly language routine shows how to capture and restore the
dynamic download task's AS register so that it points to the correct global data structure.

ADT.h

E~ndef

ildefi:'.e

File: ADT.h
Written by Eric M. Trehus
Copyright Apple Computer, Inc. 1988-1989
All rights reserved

ADT - -
"'~ _,..,.u __

fi~c!ude <7ypes.h>

typedef struct ELEMENT
{

struct ELEMENT *Next;
}ELEMENT;

typedef struct QUEUE

)Qt:EUE;

£:.EME~T •Head.;

~o~g Size;
Boolean !nUse; /* Optional Flag •/

void InitQueue(QUEUE •Queue);
void EnQueue(void *Element,QUEUE •Queue);
void •serveQueueCQOEUE •Queue);

ilendif

CI Echo Task Program Example 123

Medusa Programmer's Guide, Beta Draft Apple Confidential

ADT.c

*
File: ADT.c
Written by Eric M. Trehus

* Copyriqht Apple Computer, Inc. 1988-1989
All riqhts reserved

•include <ADT.h>
•include <STD!O.h>
iinclude <strinqs.h>
Hnclude <os.h>

/*

..

This file provides Queue Manipulation routines. It ensures mutual exclusion during
critical code reqions through the use of Reschedulinq .

.. I

void :nitQueue(QUEUE *Queue) /* Initializes a queue as empty */

Queue->Head NULL;
Queue->Tail • NULL;
Queue->Size • 0;
Queue->InUse • false;

void EnQueuelvoid *Element,QUEUE *Queue)

"I

short. oldSchedMode;

ol~SchedMode • Reschedule<OS_3LOCK_IMMEDl;

if <Queue->Sizel

/* Adds an element to the end of the queue

Queue->Tail->Next • (ELEMENT *)Element;
Queue->Tail • (ELEMENT *)Element;

/* Link in the new Element */
/* Update Tail */

else

Queue->Head • (ELEMENT *)Element;
Queue->Tail • (ELEMENT *)Element;

Queue->S.i.ze++;

U4 C I Echo Task Program .Example

/* The Queue is empty •/

I* Head and Tail is the same Element •/

I ... Show that cha Queue has grown *I

(
Medusa Progranuner's Guide, Beta Draft Apple C.Onfidential

if(oldSchedMode == OS_SLICE_MODEl
Reschedule(OS_SLICE_MODE);

void *ServeQueue(QUEUE •Queue) /" Removes the first element from the queue,
and returns a pointer to it •/

ELEMENT *ptr;
short oldSchedMode;

oldSchedMode = Reschedule(OS_BLOCK_IMMED);

:.f(Queue->Sizel

else

ptr = Queue->Head;

Queue->Head = ptr->Next;
Queue->Size--;

ptr = NOLL;

if<oldSchedMode == OS_SLICE_~ODE)
Reschedule(OS_SL!CE_MOJE);

re: urn (pt.r):

/* FIFO */

/* Update Head to point to Next Element •
/* show that the Queue has shrunken •/

/" No Elements in the Queue •/

C I Echo Task Program Example 125

Medusa Programmer's Guide, Beta Draft Apple C.OnfidentiaJ"

ListenerGlue.a

Written by Eric M. Trehus
Copyright lCJ Apple Computer Inc., 1988.

•• All Rights Reserved . ..
Glue code so that AS is set up when our EchoListener function is called.

** Save AS - Save AS in code space.
CASE ON
?roe
Expor": Save AS

SaveAS LEA EchoAS, AO

Move.L AS, <AO)
RtS

EchoAS DC.L 0

EchoL!sten - Set JP :o ca~! Ec~o :!s:ener.

Export EchoListen
Import EchoListener

Echo Listen
Move.L AS, -<A7)
MoveA.L EchoAS, AS
JSR EchoListener
~oveA.L (A7J •, AS
RtS
Endp
End

12Ji C I E.cho Task Program Examole

Case is important to C.

Get location to keep AS
Put AS in that location
Return

Keep AS Here.

Save AS on stack
Set AS
Call listener
Restore AS
Return

(

(.. ·

Medusa Programmer's Guide, Beta Draft Apple Confidential

The echo task

The following program are the major components of the echo task that is dynamically downloaded
to the TokenTalk NB carcl. The make file, header files, and source files for the echo task are
induded.

Echo Task.make

EchoBlast~as~.c.o f 'Scho 7asK 1 .~ake Scho8last7ask.c

: iCompi!erOptions~ EchcBlast!ask.c

EchoTask.c.o f 'Echo Task' .make EchoTask.c
C (CompilerOptions) EchoTask.c

ADT.c.o f 'Echo Task'.make ADT.c
C {CompilerOptions) ADT.c

MRSNAP-!nterface.c.o f 'Echo Task' .make MRSNAP-!nterface.c
C ICompi:erCptionsl MRSNA?-!nterface.c

~REcho-:nter!ace.c.o f 1 Ec~o :ask' .ma~e MREcho-!~te=face.c
C {CompilerOptions) MREcho-:n:erface.c

'Echo Task' ff 'Echo Task'.make EchoTask.r
Rez EchoTask.r -append -o 'Echo Task'

'Listener Glue.a.a' f 'Echo Task' .make 'Listener Glue.a'
asm 'Listener Glue.a'

SOURCES = Echc~ask.r ~RSNAP-!~ter:ace.c Ec~~:ask.c AD~.c ~REcho-!~:erface.c SctoB:as:~as~.=

~B:ECTS • MRSNA?-Interface.c.o EchoTask.c.o ADT.c.o MREcho-:n:erface.c.o EchoBlastTask.o.o
1 :!stener Gl~e.a.0 1

'Echo Task' ff 'Echo Task' .make {OBJECTS)
Link !LinkOptions) -t Card -c mash a

{OBJECTS) o
"{IPCLibraries)"osglue.o a
"{LLCLibraries)"LLCSupportLib.o o
-o "!SystemFolc:ier)"'Echo Task'

CI Echo Task Program Example 127

Medusa Programmer's Guide, Beta Draft Apple Confidential

Echo.h

File: Echo.h .. Written by Eric M. Trehus
Copyright Apple Computer, Inc. 1988-1989
All rights reserved

*

•ifndef _Echo_
ildefine _Echo_
!!include <L:.OC.h>
/* mCodes for Echo Protocol */

!define EchoOpen OxOECO
tdefine EchoClose OxOEC2
!define EchoReceive OxOEC4
fdef ine EchoTransmit OxOEC6

tdefine EchoNoErr OxOOOO
•define EchoBadRe fNum OxOlOl
ildefine EchoClosed OxOl 02
tdefine Echo':'ocMany '.:x0103
4define EchoTruncated Ox0104

/*

/*

/*

/•

/•

No Errors, good result */

Bad refnum passed in */

Echo was closed •/

No =esouces .:.eft •/

Buffer not large enough */

/* mOData of IPC will contain the following structure for EchoOpen, EchoClose •/

typedef struct EchoRefNumOData
(

unsigned short RefNum;
)EchoRefNumOData;

/* Given from EchoOpen */

/• ~OData of :?c wi~l contai~ t~e following st~uc~ure for an EchoTransmit Y/

/• ~DataPt: ~i:l pci~t to ~he buffer to be ~ransmitted •/

/• mDataSize is the size of t!1e information to be transmitted •/
typedef struct Ec!1o7ransmitOData

Jns!gned short RefNum;
LANHdr • Hdr;

}EchoTransmitOData;

/* Given from EchoOpen •/
/* Hdr to use on Echo Frame •/

/* mOData of !PC will contain the following structure for an EchoReceive •/
/* mOataPtr will point to the buffer for information to be placed */
/* mDataSize is the size of the buffer •/
typedef struct: EchoReceiveOOata
(

unsigned short RefNum;
Jns4gned snort InfoLen;
LANHdr *Hdr;

}EchoReceiveOOata:

128 C I Echo Task Program Example

/* Amount of information placed in the buffer •/

..

(
Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

General.h

File: General.h
Written by Eric M. Trehus
Copyright Apple Computer, Inc. 1988-1989
All rights reserved

itdefine Sync 0
itdefi.:?e Async l
ifdef i.ne CannotGet~essageBuf!er!::rr 8xFE

idef ine byte unsigned char
idefine word unsigned short

ifdefine ODataAs(x,y)
ifdefine SDataAs(x,y)
#define DPAs(x,y)

((X •)

((X •)

((yl ->mOData> >
((y) ->mSData))
((X *) ((y) ->mDataPtr))

C I Echo Task Program Example 129

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

EchoBlastTask.c

File: EchoBlastTask.c
• Written by Eric M. Trehus

Copyright Apple Computer, Inc. 1988-1989
All rights reserved

it include <os.!l>
Hnclude <managers.h>
<!include <mrdos.h>
'-include <siop.h>
tinclude <LLC.h>
tinclude <types.h>
Hnclude <Echo.h>
tinclude <Echo-!nterface.h>
iinclude <Externals.h>

1•

EchoBlastTask continueously broadcasts frames using our Echo Protocol.
•/

static void EchoBlastTask()

word
LANHdr
message
char
word
word

Result;
!idr;

*Message;
•TransmitData;
BrodcastAddr[3J;
RefNum;

/• Get a Hdr ~or ~ransm~:~ir.g •/

3rodcastAddr(OJ • OxCOOO;
3roacastAddr[l] = OxFFFF;
3rodcastAddr[2J • OxFFFF;

TransmitData = "Sending Echo Frames to everyone as fast as I can";
Result• Echo_Open(Sync,,RefNum);
Result• SNAP_GetHdr(Sync,3,0,0,0,&Hdr,6,BrodcastAddr);
Result Echo_Transmit(Async,RefNum,&Hdr,80,TransmitData);

13> C I Echo Task Program Example

*

Medusa Programmer's Guide, Beta Draft Apple Confidential

for (;; l

Message• Receive<0,0,0,0);

SwapT:D<Message);
Message->mCode &= Ox7FFE;
Send<Messagel;

/* Prepare to reissue the transmit request •/
/* Fix the mCode •/
/* Re-Queue the transmit •/

Result • Echo_Close(Sync,RefNum);

void StartEchcBlastTask(l /• Create the EchoBlastTask •/

stpb, *pb;

pb • &stpb;
pb -> CodeSegment = NULL;
pb -> DataSegment • NULL;
pb -> Start?armSegment = NULL;
pb -> stack = l2COO;
pb -> heap = O;
pb -> priority = 31;
pb -> InitRegs.?C = EchcBlastTask;
po-> InitRegs.A_Registers [5) = GetMyASll;
pb -> ?aren:T:~ = Get~:D();
i: (StartTask <pbl == OJ

illegal ();

CI Echo Task Program Example 131

Medusa Programmer's Guide, Beta Draft Apple Confidential.

EchoTask.c

\. J
~

132 C I Echo Task Program Example

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

File: EchoTask.c
Written by Eric M. Trehus
Copyright Apple Computer, Inc. 1988
All rights reserved

/•

The Echo protocol consists of 4 commands:

Ec!'-.oOpen:

EchoReceive:

Al:ccates resources for the client, and assigns a refnum so :ha:
the c~ient can accumulate the responses via EchoRece~ve.

When an EchoReply is received a search is made for a matching
EchoReceive request.

EchoTransmit: Transmits a SNAP frame with our Echo Protocol Descriminator, and
the clients refnum, and data.

EchoClose: Deallocates resources allocated from EchoOpen, and cancels all
pending EchoReceive requests.

The pre-processor symbol UseEchoListener can be used to create 2 different versions
of the EchoTask. If UseEchoListener is defined, then SNAP's listener function is
used. This is more efficient than using SNAPReceive, however it is slightly more
complicated to use. Otherwise SNAPReceive's are posted, and reposted as they
complete.

The EchoTask that is started here responds to EchoRequests when received.

*/

-*ciefi:-.e ~C?

lli:-.c::.de <os.h>
~include <managers.h>
•include <mrdos.h>
•include <siop.h>
•include <SNAP.h>
tinclude <types.h>
tinclude <ADT.h>
tinclude <Externals.h>
•include <SNAP-Interface.h>
•include <Echo.h>

#define UseEchoListener
•define ~axOPen :J
~cef!~e ~~eEc~cL~scener

/• Use SNAPs listener function vrs SNAPReceive •/
.'• ~aximum number :}f EchoQueue•s to be ?pened •I

CI Echo Task Program Example 133

Medusa Programmer's Guide, Beta Draft

typedef struct
{

char
short

PD [5 l;

RefNum;

EchoHeaderStruct;

tid_type GlobalSNAPTID;
tid_type GlobalEchoTID;
long GlobalLLCMessagePriority;

stat~c QUEUE EchoQueue[MaxOpenj;
wora Echo?DRefNum;

NOpen;

Apple C.Onfidential

/* SNAP PD and Clients RefNum goes here */

/* Task Identifier of SNAP on this card */
/* Task Identifier of Echo Protocol on this card */
/* Priority of messages used in this system */

static char *EchoBufferl,*EchoBuffer2,*EchoBuffer3;
static LANHdr EchoHeaderl,EchoHeader2,EchoHeader3;
~

word EchoPDRefNum;

LLCGetConfigBuffer ConfigBuffer;

*/

~e wi:l use :he ?rotocol Jesc=~~i~ator as t~e indicator for both Echo Req~ests,
and Echo Repy's as follows:

Echo Request PD is EE EE EE EE EE.
Echo Reply PD is EE EE EE EE EF.

:espona to Echo ?eq~ests on tne token :ing network. The second one ~s to sea::

w~~ =l!e~: whi=h ~ses ou= ~cho ?~Jtoco: se=vices. ~i~al:y we ~all i~:~ a !oop a~d
=~e ~!~e~:s of 8Ur Ec~o ?rotoccl seno :~ei: ~essages here.

134 C I Echo Task Program Exarn~le

Medusa-Programmer's Guide, Beta Draft Apple Confidential
:nain ()

messaqe *Messaqe;

GlobalSNAPTID a findMySNAP!);
GlobalEchoTID • GetTID(); /•Alternatly we could reqister a name, and let our

clients find us usinq the name manaqer. Then our protocol could
be used by tasks everywhere. You get more bussiness if
you advertise! */

GlobalLLCMessagePriority • O;
SNAP_GetConfig(false,sizeof(LLCGetConfiqBufferl,&ConfigBuffer);

•ifdef UseEchcListener

.ilendi~

tifndef

+endif

SaveA5(); /• Use Glue, EchoLiscen will access a variable noc based on AS :c ge: ~5

StartEchoTask();
StartEchoBlastTask();

/* Sets up the Echo Protocol */

/* Client of the Echo Protocol */

for (;;)

Message= ~eceive(0,0,0,0);
swicch(Message->mCodei

case EchoCper.:
StartEchoOper.(Message);
break;

case EchoClose:
StartEchoClose!Message);
break;

case EchoReceive:
StartEchoReceive!Message);
break;

case Echo!ransmit:

OseEchoListener

-startEchoTransmit(Message);
break;

case SNAPReceive I l: /* If it completes */

EchoComplete(Message);
break;

CI Echo Task Program Example 13S

Medusa Programmer's Guide, Beta Draft

static tid_type FindMySNAP()

Apple C.Onfidential.

short index • 0;
returnlLookup_Task("•","SNAP",GetNameT!O(),&index));

#ifdef OseEchoListener
extern void EchoListen();

#endif

InitEchoProtocol() /• Initializes the Echo Protocol •/

char EchoReplyDescriminator[S);
.:.ong BufferSize;
word Result;
void EchoListen();

BufferSize • ConfiqBuffer.MaxrrameLen - ConfiqBuffer.MaxHeader;
EchoReplyDescriminator[OJ • OxEE;
EchoReplyDescriminator[l] = OxEE;
EchoReplyDescriminator[2J = OxEE;
EchoReplyDescriminatcr[3J • OxEE;
EchoReplyCescriminator(4) • OxEF;

/• Allocate 3 buffers •/
EchoBufferl • GetMem<BufferSizeJ;
EchoBuffer2 = GetMem<BufferSize);
EchoBuffer3 • GetMem<BufferSize);

fifndef UseEchoListener
Result• SNAP_Attach(Sync,&EchoPCRefNum,0,NOLL,EchoReplyDescriminator);
Result • SNAP_Receive(Async,EchoPDRefNum,0,&EchoHeaderl,BufferSize,EchoBufferl>:
Res~lt = SNAP_Receive<Async,EchoPDRefNum,0,&EchoHeader2.BufferSize,EchoBuffer21;
El.es~.:.:; SNA?_Receive1Async,EchoPDRefNum,O,&EchoHeader3,BufferSize,EchoBuffer31;

::\esu.:.: =

SNA?_Attach(Sync,&EchcPDRefNum,ListenerF~nc:ion,EchoListen,EchoReplyDescriminatorl;

ifendif

1~ C I Echo Task Program Example

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

static void EchoTask() /*Turns around any Echo Request into an Echo Reply */

word Result;
PDRefNum;
!idr[3J;
*Bufferl;
*Buffer2;
*Buffer3;
*Message;

word
LANHdr
char
char
char
message
char
char
long
l.ong

Errorcount;
EchoRequestDescriminator[SJ;
ReceiveBufferSize;
ID;

ErrorCoun::. = O:

EchoRequestDescriminator[OJ = OxEE;
EchoRequestDescriminator[lJ • OxEE;
EchoRequestDescriminator[2l OxEE;
EchoRequestDescriminator[3J = OxEE;
EchoRequestDescriminator[4] = OxEE;

Receive3uffer5ize = ConfigBuffer.MaxframeLen - ConfigBuffer.MaxHeader;

3ufferl

3uf fer2
GetMem(Receive3uffer5ize);
GetMem(Receive3ufferSize);

Buffer3 = GetMem(Receive3uffer5ize);
if(Bufferl && 3uffer2 && 3uffer3) /* If we got memory in all requests */

/* Queue up 3 Receive requests */

Result= SNAP_Attach(Sync,&PDRefNum,0,NULL,EchoRequestDescriminator);

::\esul: SNAP_Receive(Async,PDRefNum,0,&Hdr[OJ,ReceiveBufferSize,3uffer:1;

~esul~ SNAP_Receive(Async,PDRefNum,0,&Hdr[lJ,Receive3uffer5ize,3uffer2);

Result = SNAP _Receive (Async, PDRefNum, 0, &Hdr [2), Receive3uffer5ize, 3uffe::3);

for (;;)
(

/* Do this until told otherwise */

Message• Receivet0,0,0,0);
if(Messaqe->mStatus)
(

FreeMsg!Message);

ErrorCount+•;
iftErrorCount =• Jl

break;

/* After 3 errors,
we will no longer echo */

/* !hats it, 3 strikes */

CI Echo Task Program Example 137

Medusa Programmer's Guide, Beta Draft Apple Confidential

else

SwapTID(Message); /* Prepare to echo reply */

LLCSwapHdr(ODataAs(LLCTxRxOData,Message)->Hdr,OxAA);
Message->mCode = SNAPTransmit;
ID = Message->m!d;
Message->mDataPtr[4J • OxEF; /•Make it an Echo Reply •/
Send(Message): J• The packet is on its way •/
Message• Receive(I0,0,0,0); /•Wait for transmit

to complete •/

SwapT!D<Message); /* Prepare to reissue SNAPReceive •/
Message->mCode = SNAPReceive;
ODataAs(SNA?ReceiveOData,Message)->PDRefNum = ?DRefNum; /•

Transmit Messed me up •/
SendCMessage);

Result = SNAP_Detach(Sync,PDRefNum);
FreeMem<Bufferl);
FreeMem<Buffe"2);
FreeMem(Buffer3);

StartEchoTask (l /• Create the new task EchoTask */

st.ruct ST_PB

pb = &stpb;
pb -> Code Segment -NULL;
pb -> ::lataSegment. = NUr..L;

po -> Start?armSegment - ~c:.:..;

pb -> stack = :2000;
pb -> heap = 0;
pb -> priori~y = 3' . -·
pb -> InitRegs.PC -EchoTask;
pb -> InitRegs.A_Registers
pb -> Parent TIO -GetTID (l;
InitEchoQueue (l;
InitEchoProtocol();
if !StartTask lpb) Ol

illegal o;

[SJ

Start£choTransmit:messaqe •Message)

LLCList LBuffer(2J;
EchoHeaaerStruct EchoHeader:
""o:=. ?.efNurr.:

138 C I Echo Task Program Example

- GetMyAS ();

/* Requeue SNAP_Receive •/

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

RefNum • ODataAs(EchoRefNumOData,Message)->RefNum;

if(!EchoQueue[RefNum].InUse I! RefNum>=MaxOpen ii !RefNum)
/• Check for invalid refnum •/

else

Message->mStatus = E:choBadRefNum;

EchoHeader.?D[OJ = OxEE;
EchoHeader.?D[lJ • OxEE;
EchoHeader.?0(2] = OxEE;
EchoHeader.?0(3] = OxEE;
EchoHeader.?0[4] OxEE;
EchoHeader.RefNum = RefNum;

:..3i.;!!er 'D! .Count = sizeof (SchoHeaderl;
'..3u!'!er:O!.?tr =(char •)&EchoHeader;
LBi.;f!er [i: .Count = Message->mOataSize;
LBuffer[lJ .?tr= Message->mDataPtr;

Message->mStatus = SNAP_Transmit(Sync,sizeof(EchoHeaderl+Message->mDataSize,

ListOirected,3,00ataAs(EchoTransmitOOata,Message)->Hdr,
sizeof (LBufferl, (char •1 Lauffer);

Swai:ir:J (Message!;
~essage->mCode : = l; I• ~ark ::-.at it i.s a reply, Transmi': complete •/

Send (Message);

static InitEchoQueue()

int i.;

~or(~=C;i<MaxOpen;i•+)

:ni:Queue (&EchoQ:.:eue::.:);
/• Waste

SCpen = :;

static GetFreeEchoQueueindex(J

int i;

for(i•l;i<MaxOpen;i++l

if(!EchoQueue[i] .InUsel
break;

queue so refnums are never 0 T/

CI Echo Task Program Example 139

Medusa Programmer's Guide, Beta Draft

StartEchoOpen(message •Message)

word RefNum;

Message->mStatus = EchoNoErr;
if(NOpen >• MaxOpen)

Apple Confidential

Message->mStatus • EchoTooMany;

else

NOpen+•; /• We are going to allocate the resources •/
RefNum = GetFreeEchoQueueindex();
EchoQueue~RefNumJ .:ncse =true; /• Mark the queue busy •/
ODataAs<EchoRefNumOData,Messagel->RefNum = RefNum;

SwapT!D(Messagel;
Message->mCode I= l;

Send(Message);

/• ~his will cancel all of the Echo Receive Requests •/
StartEchoC:..ose(message •Message!

'.'T'lessage •mp:

;,;ord Ref!'lum;

Message->mStatus = EchoNoErr;
RefNum = ODataAs(EchoRefNumOData,Message)->RefNum;
if (! EchoQueue [RefNum ! . Inllse I I RefNum >• MaxOpen I I 1 RefNum)

/• Check for invalid refnum •/
Message->mStatus = EchoBadRefNum;

e:..se

whi:..e<mp = ServeQueue(&EcnoQueueiRefNum]))

~p->mStatus = EchoClosed;
SwapTID <mp);

mp->mCode I• l;
Send(mp);

EchoQueue[RefNumJ .Inllse • false;
NOpen--;

SwapTID(Message);
Message->mCode I• !;

Send <Message);

140 C I Echo Task Program Example

(

('

Medusa Programmer's Guide, Beta Draft Apple Confidential

StartEchoReceive(message •Message)

word RefNum;

Message->mStatus = EchoNoErr;

RefNum s ODataAs(EchoRefNumOData,Messagel->RefNum;
if(!EchoQueue[RefNumJ .InUse 11 RefNum >- MaxOpen 11 !RefNum)

e:se

Message->mStatus = EchoBadRefNum;
SwapT!D(Message);
Message->mCode I= l;
Send!Messagel;

EnQueue(Message,&EchoQueue[RefNumj);

wifndef UseEchoListener
EchoComplete(message •Message)

/* Check for invalid refnum •/

/• Handle SNAPReceive for EE EE EE EE EF Protocol Descriminator •/

~essage ,,.mp; /• A poin~er ~o the users EchoReceive Message structure •/
word :nfoLen; /• ~eng:h of i~for~at!on placed i~to user•s buffer •/

~crd Ref~u:TI;

int EchoHeaderSize;

EchoHeaderSize = sizeof(EchoHeaderStructl;
i:(!Message->mStatus) /• If there was an error */

/* Get Refnum from frame received •/
RefNum = ((£choHeaderStruct •) (Message->mDataPtr)) ->RefNum;

if(mp = ServeQueue(&EchoQueue[RefNumJI I

mp->mStat:is Ec!:oNcErr;
/• Assume ~o error ~ntil proven ot~erwise •/

:nfoLen - ODataAs(SNAPReceiveOData,Message)->InfoLen - Ec!:oHeaoerSize;

if(InfoLen > mp->mDataSize)
/* Error, got more than we were asking for •/

mp->mStatus • EchoTruncated;

InfoLen = mp->mDataSize;

ODataAs(EchoReceiveOData,mpl->InfoLen • InfoLen;

/*Copy the data into the user's buffer •/

CopyNuBus1Message->mDataPtr•EchoHeaderSize,mp->mOataPtr,:nfoLenJ;

.1* Copy the header into the user's header */
CopyNuBus <ODac;aAs (SNAPRece.iveOCac;a.:~essaqel

->~c=. :iDataAs ;,EchcRece..:.veODat.a.:np1 ->ridr, sizeor '.:.ANHc!=i,,

CI Echo Task Program Example 141

.\.ledusa Programmer's Guide, Beta Dr:ift Apple Confidential

fe.i.se

/• Send the message to the user •/
SwapTID <mp);
mp->mCode I• l;
Send(mp);

/* Re-issue the receive •/
SwapTID(Message);
Message->mCode • SNAPReceive;
Send(Message);

!• Handle SNA?Receive for EE EE EE EE EF ?rotocol Descriminator •/

Y'2CV89

vo1d Ec.'\oListener (long nul, long nu2, LANHdr •Hdr, char •suf!er, ini: len, ini: FrameTypeJ

message •mp; /* A pointer to the users EchoReceive Message s1:ructure */
word InfoLen; /* Length of information placed in1:o user's buffer */
word RefNum;
ini: EchoHeaderSize;

tpragma unused(null
tpragma unused(nu2l
tpragma unusedlFrameType)

tendit

EchoHeaderSize • sizeof(EchoHeaderStruct);

RefNum • (<EchoHeaderSt::uct *)<Buffer)) ->RefNum;
if<mp • ServeQueue(,EchoQueue(RefNum]ll

mp->mStatus • EchoNoErr; /• Assume no error until proven otherwise •/
:nfoLen • len - EchoHeaderSize;
!!i!n!o~en > mp->mDa:as:zeJ /• E:=or, goc more than we were asking for •/

mp->mStacus = Ecno!::uncated;
:~foLen = ~p->mCa:as:ze;

8DataAs(£choReceiveOData,mp)->!nfoLen • :nfoLen;

1• Copy the data into the Jser's buffer •/
CopyNuBus(Butfer+EchoHeaderSize,mp->mDataPtr,!ntoLenl;
/* Copy the header into the user's header */
CopyNuBus(Hdr,ODataAs<EchoReceiveOData,mpl->Hdr,sizeof<LANHdr));
/• Send the message to the user */

SwapTIO (mp):

lftJ)->mCode ! • 1;

Send(mpl:

142 C I Echo Task Program Example

(

\ledusa Programmer's Guide, Beta Draft Apple Confidential

EchoTask.r

File: EchoTask.r
Written by Eric M. Trehus
Copyright Apple Computer, Inc. 1988-1989

All rights reserved

3/2.Cv09

\•··;
type 'mash'

pnring;

resour::e 'mash' (01

SSFormat("Echo Task 's",SSDate)
} ;

type 'PARM'
(

/• Created resource type for dynamic download •/

/•·Resource type holding code to download•/
/• SlotNo •/
/• ?aramSize •/
/• CodeSegment: memory region on card !or code •I

/• DataSegment: memory region on card for global data•/

long int;
:ongint;
long int;
:ongint;
long int;
longint;
longint;
longint;

longint;

!• StartParmSegment: memory region on card for start parameters •/

) ;

l.ongi.n1:.;

:or.c;int;

lor:gi..:i.t:

lor.gin:;
:ong:n:;
:ongi.~t;

:or.g::.r.t;
long::.nt;
longint;

long int;
long int;
lonqint:
lonqint;
lonqint;
lonqint;
.:.nteger;

/• DO •/
/• Dl •/

/• D:Z •/

/• 03 •/

!• D4 •/

/• DS •/

/• :)6 •/

I• J7 •/

I• AO •I

• A: •I

/ • A2 • /

/• A3 •/

/• A4 •/

!• AS •/

/* A6 */

/* A7 */

/* PC;
/* stack;
/* heap;
/* retur:i

Proqram
initial
initial

code; -

Count:er
stack size <in bytes)
heap s~ze <in byt:es)

error ::ode if :ask not started (!id = 0)
'.lns1gned byte; /• prior::.ty; priority of :asK <in bytesl •/

longint; /• ParentT!D; TIO of Parent on. Network/Host

Cl E.cbo Task Program Example 143

•/

•/

•/

•I

•/

Medusa Programmer's Guide, Beta Draft Apple C.OnfldentiaJ.

resource 'PARM' <OJ ··", (

'CODE', /* Resource type holding code to download */ '~.?
10, /* Slot.No A, Assume this is the only place it will go */

0, /* ?aramSize */

0, /* CodeSegment: memory region on card for code •/

0, /* DataSegment: memory region on card for global data */

0, I'* StartParmSeqment: memory region on card for start parameters */

0, /* DO */

0, /* 01 */

0, /* 02 */

0. /* 03 */
,. /• 04 */ v,

C, /* 05 */

J, /• 06 */

" /* 07 */ v,

0, /* AO */

0, /• Al */

0, /* A2 •I

:::i, /* A3 */

o. 1• A4 */

o. /* AS */

" v, /• A6 •/

" /• A7 •/ v.

~. /• PC; ?rogram Cou::ter •/

32768, /• stack; initial stack size (in bytes) •/

0, /• heap; initial heap size (in bytes) •/

0, /* return_ code; error code if task not started (Tid = 0) •/

201 /* priority; priority of task (in bytes> */
,r

0 /* Parent TIO; TIO of Parent on Network/Host */ '"'
);

144 C I Echo Task Program Example

(

(

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

Interface to MR-DOS and SNAP

The final set of program files show how lo set up the interface to MR-DOS and SNAP by means of
header files that dcdarc the necessary parameters.

Externals.h

F~~e: Exte~nals.~

~r~~~en by Eric ~. Trehus

Copyright Apple Computer, Inc. :988-1989

All rights reserved

extern tid_type GlobalSNAPT!D;

extern tid_type GlobalEchoTID;

/* Task Identifier of SNAP on this card */

extern long GlobalLLCMessageP=iority;

pascal void illegal II

ext.ern Ox4afc;

unsigned long GetMyAS () ~ ! Ox200Dl;

/* Priority of messages used in this system •/

C / Echo Task Program Example 145

Medusa Progracruner's Guide, Beta Draft

SNAP-Interface.b

File: SNAP-Interface.h
Written by Eric M. Trehus

Apple Confidential

Copyright Apple Computer, Inc. 1988-1989

All rights reserved

•i:ndef SNAP INTERFACE~
•define ~SNAP!NTERFACE~

tinclude <General.h>
finclude <LLC.h>

·• word SNAP_Attach (int
word
word
void
void

word SNAP_Detach(int
word

word SNAP_GetConfig(int
long
LLCGetConfigBuffer

word SNAP_GetHdr(int
word
;;ord
byte
by::e
LANHdr
long
char

146 C I Echo Task Program Example

SyncFlaq,
·PDRefNum,
Options,
(*Listener) (),
*ProtocolDescriptor);

SyncF:ag,
RefNumJ;

SyncFlag,
ConfigBufferSize,
•configBuffer):

SyncFlag,
HdrType,
Opt.i.ons,

SSA?,
DSAP,
*Hd::,

AddressSize,
•Address1;

c:

(

(

Medusa Programmer's Guide, Beta Draft

word SNAP_Transmit(int
word
word
byte
LANHdr
long
char

word SNAP_Receive(int
word
word
LANHdr
long
c:tar

Apple Confidential

SyncFlag,
InfoLen,
Options,
FrameType,
•Hdr,
SufferSize,
•Buffer);

SyncFlag,
PDRefNum,
Opt:ions,
•Hdr,
3u::erS.ize,
•su::eri;

CI Echo Task Program Example 147

Medusa Programmer's Guide, Beta Draft

Echo-Interface.h

File: Echo-Interface.h
Written by Eric M. Trehus

Apple Confidential

Copyright Apple Computer, Inc. 1988-1989
All rights reserved

•~=~def __ Echointer!ace __
~define ~Echo!nterface~

#include <LLC.h>
#include <General.h>

word Echo_Open(int
word

word Echo_Close(int
'#Ord

word Echo_Receive(int

word
LANHdr
long
void

word Echo_~ransmit(int

word
LANHdr
:.cng

void

148 C I Echo Task Program Example

SyncFlag,
•RefNum);

SyncFlag,
RefNuml;

SyncFlag,
RefNum,
•Hdr,
SufferSize,
•Buffer);

RefNum,
•Hdr,

SyncFlag,

31..:f:erSize,
•Buf~er);

/

(

Medusa Programmer's Guide, Beta Draft

MR.Echo-Interface.c

File: MREcho-Interface.c

Written by Eric M. Trehus

Apple C.Onfidential

Copyright Apple Computer, Inc. 1988-1989

All rights reserved

•include <STDIO.h>

tinclude <Types.h>

lfincl·.;de <os.h>

•include <LLC.h>

tinclude <SNAP.h>

tinclude <Echo.h>

+include <Echo-Interface.h>

tinclude <Externals.h>

/*

MREcho-Interface.c provides a procedure interface to the ECHO protocol. This hides

many of the details of MR-DOS.

word ~cho_Open(int

/* Local Variables •/

message *Message;

word Result = O;

long ID;

iflMessage = GetMsg() I

word

SyncFlag,

•RefNum)

ID = Message->m!d;

Message->mCode • ~choOpen;

Message->mPriority = GlobalLLCMessageP~:ori:y;
Message->mTo • GlobalEchoTID;

if(SyncFlag) /*If Async */

{

Send(Message);

else /* Sync */

Send(Message);

Message• Receive(ID,O.C,J);

C I Echo Task Program Example 149

Medusa Programmer's Guide, Beta Draft Apple Confidential.

Result • Message->mStatus;
*RefNum • ODataAs(EchoRefNumOData,Message)->RefNum;
FreeMsg(Message);

else
Result • CannotGetMessageBufferErr;

return(Result);

word Echo_Close(int

J• Local Variables •/
message ·~essage:
word Result = O;
long ID;

if(Message = GetMsg())

SyncFlag,
word

!D • Message->mid;
Message->mCcde = EchoClose;

RefNum)

Message->mPriority = GlobalLLCMessagePriority;
Message->mTo = GlobalEchoT!D;

ODataAs(EchoRefNumOData,Message)->RefNum = RefNum;

else

if (SyncFlag)
(

else

Send (Message) ;

Send(Messagel;
~essage = ~eceive<I8,~,0,0);

Resu.:. t = Message->mSta:: ,,;s;
FreeMsg(Message);

Result • CannotGetMessageBufferErr;

return(Result);

1~ C I Echo Task Program Example

/* If Async */

/* Sync */

(
Medusa Programmer's Guide, Beta Draft Apple Confidential-
/*

In our example this procedure is not needed, however it is provided for completeness.
*/

word Echo_Receive(int

/* Local Variables */
message *Message:
word Result • O:
long :o;

if(Message = GetMsg())
{

ID • Message->mid:

Syncrlag,
word
LANHdr
long
void

Message->mCode • EchoReceive:

RefNum,
*Hdr,
BufferSize,
•Buffer)

Message->mPriority • GlobalLLCMessagePriority:
Message->mTo • GlobalEchoTID;
OOataAs(EchoReceiveOData,Message)->RefNum • RefNum:
ODataAs<EchoReceiveOData,Messagel->Hdr • Hdr:
Message->mDataSize • 3ufferSize:
Message->mData?tr • 3uffer;

if(SyncFlag) /* If Async */
{

Send(Message);

else

Send(Message);
Message• Receive<ID,0,0,0);
Result • Message->mStatus;
FreeMsg(Message);

e.!.se
Result • CannotGetMessageBufferErr;

return(Resultl:

word Echo_Transmit(int
word
LANBdr
lonq
void

/* Local Variables */
message *Message:
·.,ore .?.esult. * -J:

SyncFlaq,
RefNum,
*Hdr,
BufferSize,
*Buffer)

/* Sync •/

CI Echo Task Program Example 151

Medusa Programmer's Guide, Beta Draft Apple Confidential·

152

if<Hessaqe • GetMsq())
{

else

ID • Message->mid;
Messaqe->mCode • EchoTransmit:
Messaqe->mPriority • GlobalLLCMessaqePriority;
Messaqe->mTo • GlobalEchoTID:
ODataAs(EchoTransmitOData,Messaqe)->RefNum = RefNum:
ODataAsCEchoTransmitOData,Message)->Hdr • Hdr;
Message->mOataSize • BufferSize;
Messaqe->mOataPtr • Buffer;

if (Syncflaq)

else

Send(MessageJ;

Send<Messagel;
Message• Receive<!D,0,0,0);
Result • Message->mStatus;
FreeMsg<Message);

Result • CannotGetMessageBuf~erErr;

/* If Async */

/* Sync */

return<Resultl;

C I Echo Task Program Example /''·~-....,

v

(

Medusa Programmer's Guide, Beta Draft

MRSNAP-Interface.c

File: MRSNAP-Interface.c
Written by Eric M. Trehus

Apple C.Onfidential

Copyright Apple Computer, Inc. 1988-1989

All rights reserved

MRSNAP-Interface.c provides a procedure interface to SNAP. This hides many o: :~e
details of MR-DOS.

•/

JI include <os.h>
JI include <LLC.h>
Hnclude <STOIO.h>
ii include <Types.h>
ii include <SNAP.h>
ii include <General.h>
~inc.:.:;de <Exter:1.a.ls, :0-.>

word SNAP_Attach(int
word
word
void
void

/• Local Variables •/
~essage ~Message;

~crd ~esu!: = O;
~ong :D;

::1Message = GetMsg())

/* IPC-MRDOS interface */

SyncFlag,
•PORefNum,
Options,
(*Listener)(),
•ProtocolOescriptor)

ID • Message->mid;
Message->mCode - SNAPAttach;
Message->l'llPriority • GlobalLLCMessagePriority;
Message->mTo • GlobalSNAPTIO;

Hessage->mOataPtr • ProtocolOescriptor;
Message->mOataSize = 5:
ODataAs(SNAPAttachOOata,Message)->Options •Options;
ODataAs(SNAPAttachOData,Messagel->Listener = Listener;

CI Echo Task Program Example 153

Medusa Programmer's Guide, Beta Draft
if (SyncFlag;
{

Send(Messagel;

else

Send(Message);

Apple Confidential·

Message= Receive(I0,0,0,0);
Result • Message->mStatus;

/ .. If Async "I

/ .. Sync •/

*PDRefNum = ODataAs(SNAPAttachOData,Message)->PDRefNum;

FreeMsgtMessage);

else
Result = CannotGetMessageBufferErr;

return(Resultl;

word SNAP_Detach(int
word

/* :ccal Variables •/
message •Message;
word Resi.;l-.: • O;

long ID;

if(Message = GetMsg())
(

ID • Message->m!d;

SyncFlag,
RefNi.;m)

Message->mCode = SNA?Detach;
~essage->mPrior~~y = ~looa:::c~essage?riori~y;

~essage->mTo = ~loba~SNAP:::;

:'.:DataAs (SNAP _?D _RefNum, !'!es sage) ->l?DRefNum = (sr.or-.:) RefNum;

if(Syncflag)

else

Send (Message>;

Send(Messagel;
Message• Receive(!D,0,0,0l;
Result = !'!essage->mStatus;
FreeMsgtMessagel;

154 C I Echo Task Program Example

/ .. If Async •/

/* Sync */

(
Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

else
Result • CannotGetMessageBufferErr;

return<Resultl;

word SNAP_Ge~Config(int

long
LLCGetConfigBuffer

I

SyncFlag,

ConfigBufferSize,
*Conf igBuf fer

message *Message;
wore Resul: = O;

C.or.g :::i;

ifiMessage = GetMsg())

ID = Message->mid;
Message->mCode = SNAPGetConfig;

Message->mPriority = GlobalLLCMessagePriority;
Message->mTo = GlobalSNAPTID;
Message->mDataSize = ConfigBufferSize;
Message->mDataPtr = (char •)Config8uffer;

e2.se

if(SyncF':agJ

else

Send(Messagel;

Send(Messagel;
Message= Receive(ID,0,0,0);

Result = Message->mStatus;
:reeMsgiMessagel;

Resul~ • CannotGetMessage8u!:erE:r;

return (Result);

word SNAP_GetHdr(int

word
word
byte

byte
LANHdr

long
char

Syncflag,

/* If Async •/

/* Sync •/

HdrType,
Options,
SSAP,

DSAP,

*H.dr,

ACidressSize,
*Address

CI Echo Task Program Example 155

Medusa Programmer's Guide, Beta Draft
message •Message;
word Resu1t • 0;
long ID;

if(Message • GetM.sg()J
{

ID • Message->mid;

Apple Conftdential·

Message->mCode • SNAPGetHdr;
Message->mPriority • GlobalLLCMessagePriority;
Message->mTo • GlobalSNAPTIO;
ODataAs<LLCGetHdrOData,Message)->HdrType • HdrType;
OOataAs<LLCGetHdrOOata,Messaqe)->Options •Options;
ODataAs(LLCGetHdrCOata,Message)->SSAP • SSAP;
O~ataAs(L.:.CGetHdrOData,Messaqe)->DSAP •~SAP;

CDataAs(L:.CGetHdrOOata,Message)->Hdr • Hdr;

else

Message->mOataSize • AddressSize;
Message->mDataPtr • Address;

if (SyncFlaq)
{

e1..se

Send(Message);

Send<Message);
Message• Receive<I0,0,0,0l;
if (Message)

Result • Message->mStatus;
FreeMsg(Message);

Resu:: = Canno~Get~essaqe3~f:er£:=;
:-e't;.;rn (rtesult. J;

word SNAP_Transmit! int
word
word

l:>yt•
IANBdr
long
char

SyncFlag,
InfoLen,
Options,
FrameType,
*Hdr,
BufferSize,
*Buffer

1~

message •Message;
word Result • 0;

C I Echo Task Program Example

/* If Async */

/* Sync */

(.
/

·Medusa Programmer's Guide, Beta Draft

if(Message • GetMsg())
{

IO • Message->mid;

Apple C.Onfidential

Message->mCode • SNAPTransmit;
Message->mPriority = GlobalLLCMessagePriority;
Message->mTo • GlobalSNAPTID;
OOataAs(SNAPTxOCata,Message)->InfoLen • InfoLen; /* This is ignored */

ODataAsCSNAPTxOCata,Message)->Options •Options;
OCataAsCSNAPTxOData,Message)->FrameType • FrameType;
ODataAs(SNAPTxOData,Message)->Hdr • Hdr;

Message->mCataSize = BufferSize;
Message->mDataPtr = Buffer;

if(SyncF:ag) /* If Async •/

Send(Message);

else

SendCMessage);
Message• ReceiveCID,0,0,0);
Result • Messaqe->mStatus;
FreeMsg(Messaqel;

else
Result • CannotGetMessageBufferErr;

returnCResult);

word SNAP_Receive(
word

""ord
:.ANHdr
:.ong
char

int

message •Message;
word Result • 0;
long ID;

if(Messaqe • GetMsg())
{

IO • Message->mid;

SyncFlag,
PDRefNum,
Opt.!.ons,

... Hdr,

BufferSize,
"9uf ferl

Messaqe->mCode • SNAPReceive;

/* Sync •/

Messaqe->mPriority • GlobalLLCMessage?riority;
Messaqe->mTo • GlobalSNAPT!D;
ODataAs(SNAPReceiveOCata.Message>->PCRefNum • PCRefNum;
ODataAs(SNA?ReceiveOData.Messaqe)->Options •Options;
:DataAs(SNAPReceiveOData.~essaqeJ->~dr = ~dr:

CI Echo Task Program Example 157

Medusa Programmer's Guide, Beta Draft Apple Confidenti31

Message->mDataSize BufferSize:
Message->mOataPtr = Buffer;

else

if (Syncflagl
(

Send(Message);

Result = CannotGetMessageBufferErr;

returnlResult):

158 C I Echo Task Program Examole

/* If Async */

