g

€.

Macintoshs MacWorkStation-~
Programmer’s Guide

Production Draft
June 19, 1989

Apple Confidential

Networking and Communications Publications

CommuniTree Group
415441-3088
AppleLink: X0541

& APPLE COMPUTER, INC.

This manual is copyrighted by
Apple or by Apple’s suppliers,

with all rights reserved. Under the
copyright laws, this manual may
not be copied, in whole or in part,
without the written consent of
Apple Computer, Inc. This
exception does not allow copies
to be made for others, whether or
not sold, but all of the material
purchased may be sold, given, or
lent to another person. Under the
law, copying includes translating
into another language.

© Apple Computer, Inc., 1988
20525 Mariani Avenue
Cupertino, CA 95014
(408)9%6-1010

Apple, the Apple logo, AppleShare,
AppleTalk, and Macintosh are

registered trademarks of Apple
Computer, Inc.

APDA, Finder, LocalTalk,
MacWorkStation, MPW,
MultiFinder, QuickDraw, and
ResEdit are trademarks of Apple
Computer, Inc.

DEC is a trademark of Digital
Equipment Corporation.

Ethemnet is a registered trademark
of Xerox Corporation.

IBM is a registered trademark of
International Business Machines
Corporation.

MacDraw, MacPaint, and
MacWrite are registered
trademarks of Claris Corporation.

MasterCard is a registered
trademark of MasterCard

International, Inc.

Microsoft is a registered trade-
mark of Microsoft Corporation.

VISA is a registered trademark of
VISA International Service
Association.

Simultaneously published in the
United States and Canada.

Disclaimer of Warranty

The manual and media are
provided “as is,” without
warranty of any kind, either
express or implied, including
without limitation any warranty
with respect to its
merchantability or its fitness for
any particular purpose. The entire
risk as to the quality and
performance of the manual and
media is with you. Should the
manual or media prove defective,
you (and not Apple or an Apple-
authorized representative) assume
the entire cost of all necessary
servicing, repair, or comrection.

Apple does not warrant that the
functions contained in the manual
and media will meet your
requirements or that the
operation of the manual and
media will be uninterrupted or
error free or that defects in the
manual and media will be
corrected.

Some states do not allow the ~
exdusion of implied warranties, so

- the above exclusion may not -

apply to you. This warranty gives
you specific legal rights, and you
may also have other rights which
vary from state to state.

Preface

Contents

Figures and tables / vi

About This Guide / ix

Who should read this guide? / x

What this guide contains / x

Conventions used in this guide / xi

What you need / xi

The MacWorkStation Developer’s Kit / xii
Development system documentation / xiii

What Is MacWorkStation? / 1

The MacWorkStation-client system / 2
What MacWorkStation does / 3
Types of MacWorkStation-client systems / 4
Why a Macintosh interface? / 5
Human interface guidelines / 5
Three qualities of a good program / 6
Responsiveness / 6
Permissiveness / 6
Consistency / 6
General suggestions for application programs / 7
Modes / 7
Graphics and color / 8

Using MacWorkStation / 9

Creating the MacWorkStation-client system / 10
Starting a MacWorkStation-client system / 11
The dient application / 12
The event loop / 13
About the “Hello.C” sample application / 15
The “Hello.C" sample application / 16
The MacWorkStation document / 19

Production Draft (1989 June 19) Contents

iii

MacWorkStation-client communications / 20
Communication Command Language (CCL) scripts / 20 N
Communication modules / 23 N

3 Directors and Messages / 25

MacWorkStation directors / 26
MacWorkStation messages / 28
The structure of a message / 29
Class / 30
Identifier / 30
Parameters / 30
Using aliases / 32
Examples / 32

4 Using Directors / 33

About the “Bear Cal” application / 34

The Alert Director / 35

The Cursor Director / 36

The Dialog Director / 37
Dialog item types / 38
Control items / 38
A dialog box routine / 39
Clustering items / 41

The File Director / 42

The Graphics Director / 43
Coordinates in graphics windows / 43
Graphics commands / 44

The List Director / 46

The Menu Director / 48

The Process Director / 49

The Text Director / 49

The Window Director / 50
Window kinds / 50
Window shapes / 51
Positioning windows / 52
Window options / 52

The Exec Director / 55

iv Contents Production Draft (1989 June 19)

Appendix “Bear Cal” Program Source Code / 57

Glossary / 91

Production Draft (1989 June 19)

Contents

v

Figures and tables

CHAPTER 1 What Is MacWorkStation? / 1

Figure 1-1 MacWorkStation message protocol / 2
Figure 1-2 A modal dialog box / 7

CHAPTER 2 Using MacWorkStation / 9

Figure 2-1 The MacWorkStation-client system / 11

Figure 2-2 Screen created by a simple applicatioT15

Figure 2-3 Choose-script dialog box / 20

Figure 2-4 Script-edit window with Command Help window / 21
Figure 2-5 New script name dialog box / 22

CHAPTER 3 Directors And Messages / 25

Figure 3-1 Dialog box from the Bear Cal sample applicatioT28
Figure 3-2 Macintosh menu example / 29

Table 3-1 Classes and directors / 30

vi Contents PRODUCTION DRAFT (06/19/89)

s,

CHAPTER 4 Using Directors / 33

Figure 4-1 Alert created with the Alert Director / 35
Figure 4-2 Wristwatch pointer created with the Cursor Director / 36
Figure 4-3 Reservations dialog display with clusters / 40
Figure 4-4 Screen display created with the Graphics Director / 44
Figure 4-5 Flight schedule created with the List Director / 46
Figure 46 Pull-down menu example / 48
Figure 47 Window shapes / 51
- Figure 4-8 List window created with the Window Director / 54

Table 4-1 Cursor resource IDs / 36

Table 42 Keywords and dialog item types for the MacWorkStation Dialog
Director / 38

Table 43 Window kinds / 50

Table 44 Window options / 53

PRODUCTION DRAFT (06/19/89) | Contents vii

Preface

APPLE CONFIDENTIAL

About This Guide

SINCE THE APPLE® MACINTOSH® computer was first
introduced, many people have wanted to interact with Macintosh users from
other computers, such as mainframes or other personal computers, through
the human interface provided by the Macintosh computer. The
MacWokatation"‘ applicaton (MWS) makes this possibility a reality. Now, by
using MWS, you can write applications that let Macintosh users communicate
with another computer by means of windows, pull-down menus, dialog
boxes, and other features of the Macintosh desktop interface. This guide
introduces you to MWS and how it works with the other computer’s

application.

In explaining the various elements of a MacWorkStation system, this guide
assumes that you are familiar with one or more programming languages and
that you have had some experience using a Macintosh computer. You also
need to be familiar with the other computer you will be using, and how to

program it. m

Production Draft (1989 June 19)

ix

APPLE CONFIDENTIAL

Who should read this guide?

This guide is designed for programmers who are new to writing application programs that use the
Macintosh desktop interface. If you haven't already done so, take some time to explore the
Macintosh computer by using programs such as MacPaint, MacWrite, and MacDraw.

Notice the use of windows, menus, desk accessories, dialog boxes, and scroll bars. Become
familiar with such terms as click and drag. Be sure you know the meaning of mouse and icon. Try
actions such as cutting, pasting, and copying. If necessary, review the Macintosh owner’s guide
before you begin writing your own applications. If you want to learn more about the Macintosh
interface, you will find it helpful to read some of the material recommended at the end of this
preface.

Using this manual and the MacWorkStation Programmer’s Reference, you will be able to write
a variety of application programs that use the Macintosh desktop interface.

What this guide contains

This guide is divided into four chapters and one appendix that contain the following information:

= Chapter 1, “What Is MacWorkStation?” describes how the MacWorkStation application works,
discusses the Macintosh user interface and the elements in a good Macintosh application, and
offers general suggestions for writing applications.

® Chapter 2, “Using MacWorkStation,” tells how to create a MacWorkStation application. It
presents a simple MacWorkStation application program that demonstrates basic concepts
common to all applications.

8 Chapter 3, “Directors and Messages,” presents an overview of the various MacWorkStation
components and how they interface with the Macintosh computer, and describes how MWS
communicates with the application running on the other computer.

® Chapter 4, “Using Directors,” examines parts of a sample MacWorkStation program written in C
and shows how the various director commands are used.

® The appendix, “Bear Cal’ Program Source Code,” gives the complete listing of the program
discussed in Chapter 4.

Each chapter builds on material from preceding chapters, so you should go through them in order.

x MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

Conventions used in this guide

This guide uses typographic conventions to distinguish between different kinds of words and
symbols.

® Terms in boldface are defined in the glossary at the end of this book.
® Elements of computer language are printed ina fixed-width font.

® Message parameters that are variables are printed in italics. These terms can be replaced by any
appropriate value or by a variable symbol in your application.

m Keywords, which may be used for some message parameters, are specified in uppercase and
appear exactly as they should in parameter lists. For example, the Add Item (D0 09) command
of the Dialog Director uses the keyword TEXT to add an editable text field.

A Important Text set off this way gives important information that you should read
carefully. a

The spaces in the examples are optional and are not significant. However, you may want to avoid
using extra spaces, since they increase message traffic.

The examples in this guide illustrate only a few of the many possible ways to write an
application to work with MWS, ‘

What you need

To use the MacWorkStation applicaton, you will need one or two Macintosh computers running
System file version 6.0.2 and Finder™ 6.1, or later versions. MWS will run on the Macintosh Plus and
later members of the Macintosh family of computers—currently the Macintosh Plus, Macintosh SE,
and Macintosh I computers—and requires only a single 800K disk drive.

¢ Note: Some features of MWS are available only if you are using System file 6.0, or later
versions, including text styles and pop-up menus. Also, RGB color and dialog box text styles
are available only if you are using a Macintosh computer with Color QuickDraw™ software.
Currently, the Macintosh II, Macintosh IIx, Macintosh Ilcx, or Macintosh SE30 have Color
QuickDraw.

If you are using two computers, they must have the proper physical connections in order to
communicate with one another. MWS and your application must use the same communication
protocol so that messages and data can be sent between them correctly.

Production Draft (1989 June 19) PREFACE About this Guide

xi

APPLE CONFIDENTIAL

The MacWorkStation Developer’s Kit

The MacWorkStation Developer’s Kit consists of these items.

® MacWorkSation Program Disk
O MacWorkStation—the application program
O Bear Cal—a sample MWS document for use with MWS and the TestHost program
O Apple Exec—another sample MWS document

u MacWorkStation Samples Disk
O TestHost—the MacWorkStation prototyping program
O Bear Cal script—a document containing a script that runs with TestHost
O Apple Exec script—another sample script
O TestHost folder

® MacWorkStation Programmer’s Guide (this manual)

® MacWorkSiation Programmer’s Reference
B Human Interface Guidelines: The Apple Desktop Interface

The MacWorkStation Developer's Kit includes two Macintosh disks. You should immediately make
copies of both disks and save them as backups. One disk, labeled MacWorkStation Program Disk,
contains the application and several MacWorkStation documents. The documents are examples for
use with the MacWorkStation TestHost application, which is explained in the MacWorkStation
Programmer’s Reference.

The second disk, labeled MacWorkStation Samples Disk, contains TestHost, an application that
lets you leam more about MWS. (This disk was called the MacWorkStation TestHost Program Disk
for MacWorkStation 3.0.) It also contains several TestHost script documents that work with the
MacWorkStation document used with TestHost. The TestHost application lets you make
prototypes of your MacWorkStation application, and test your code and resources. To use
TestHost, you will need two Macintosh computers connected by a serial line or by LocalTalk™
cables, or a single Macintosh computer running MultiFinder™ system software.

xii MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

Development system documentation

The Apple Technical Library, published by Addison-Wesley, is a set of technical books from Apple
Computer, Inc. that explain the hardware and software of the Macintosh family of computers:

Human Interface Guidelines: The Apple Desktop Interface. This book describes the Apple user
interface for the benefit of people who want to develop applications.

Inside Macintosh, Volumes I, 11, and III. These books cover the Macintosh User Interface
Toolbox and Operating System for the original 64K Macintosh ROM, along with user interface
guidelines and hardware information.

Inside Macintosh, Volume IV. This book provides additional information about the Macintosh
Plus and Macintosh 512K enhanced computers.

Inside Macintosh, Volume V. This book provides additional information about the Macintosh
SE and Macintosh II computers.

Inside Macintosh X-Ref. This reference contains comprehensive indexes, routine lists, and a
glossary for Inside Macintosh and other Macintosh programming books.

Programmer’s Introduction to the Macintosh Family. This book provides an overview of
software development for the Macintosh family of computers. It focuses on the differences
between event-driven programming and more traditional programming techniques. It covers
such topics as QuickDraw graphics, screen displays, and the Macintosh User Interface Toolbox.

Technical Introduction to the Macintosh Family. This book provides an introduction to the
hardware and software design of the Macintosh family and serves as a starting point for the
Apple Technical Library. It is oriented primarily toward the Macintosh Plus, Macintosh SE, and
Macintosh IT computers, but it also touches on differences in the earlier versions of the
Macintosh computer.

Other books that may be helpful include the following, which are available from the APDA™ group
(the Apple Programmers and Developers Association).

Macintosh Programmer’s Workshop Reference. This guide covers the Macintosh Programmer’s
Workshop (MPW™) Shell and utilities, including the resource editor (ResEdit™), resource
compiler (Rez), linker, Make facility, and debugger.

MPW Assembler Reference. This reference tells you how to prepare source files to be assembled
by the Macintosh Programmer’s Workshop Assembler.

MPW Pascal Reference. This manual provides information about the MPW Pascal language and
the use of the MPW Pascal programming system.

MPW C Reference. This manual tells you how to write C programs that you can link with
programs written in MPW Pascal.

Production Draft (1989 June 19) PREFACE About this Guide

xiii

APPLE CONFIDENTIAL

APDA provides a wide range of Apple and third-party technical products and documentation for
programmers and developers who work on Apple equipment. Additional copies of this guide and N
the MacWorkStation Programmer’s Reference can also be obtained through APDA. For information

about APDA, contact

Apple Programmers and Developers Association
Apple Computer, Inc.

20525 Mariani Avenue, Mailstop 33G

Cupertino, California 95014-6299

1-800-282-APDA (1-800-282-2732)
FAX: 408-562-3971

Telex: 171-576

AppleLink: DEV.CHANNELS

If you plan to develop hardware or software products for sale through retail channels, you can get
valuable support from Apple Developer Programs. Write to

Apple Developer Programs

Apple Computer, Inc.

20525 Mariani Avenue, Mailstop 51W
Cupertino, California 95014-6299

A Important This manual does not address the issues of licensing the MacWorkStation
application. To use MacWorkStation messages or to copy and/or distribute
the MacWorkStation program, you must have a valid MacWorkStation
License Agreement, which is available from Apple Computer, Inc. a

xiv MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

Chapter 1

APPLE CONFIDENTIAL

What Is MacWorkStation?

THE MACWORKSTATION™ APPLICATION munsona
Macintosh® computer and provides an environment for the Macintosh user
to interact with another application, usually running on another computer.
This chapter describes the relationship between the MacWorkStation
application and this other application, and explains the role of MWS. This
chapter also discusses the design principles of Macintosh applications. ®

Production Draft (1989 June 19)

APPLE CONFIDENTIAL

The MacWorkStation-client system

The MacWorkStation application runs on a Macintosh computer, and makes it possible for another
application to manage the Macintosh user interface presented to the MWS user. This other
application that works with the MacWorkStation application is called the client application. The
MWS user interacts with the client application through the Macintosh user interface.

Usually the client application runs on a computer other than the Macintosh computer. This
other computer, called the client computer, can be a mainframe computer (such as those made by
IBM or DEC) or a personal computer, including another Macintosh computer. In fact, the client
application and MWS can run on the same Macintosh computer, using MultiFinder™. The Macintosh
computer using MWS is the server computer.

This guide refers to all the elements that make-up a single implementation of MWS as the
MacWorkSiation-client system. The MacWorkStation document used with a particular client
application is a major element in a MacWorkStation-client system. See “The MacWorkStation
Document” in Chapter 2.

The MacWorkStation application and the client application communicate through messages.
Messages sent from the client application to MWS are called commands. Messages sent from MWS$
to the client application are called events. Figure 1-1 shows how these messages pass between
MWS and the client application.

® Figure 1-1 MacWorkStation message protocol

MacWorkStation Client
server software application
Macintosh Client computer

2 MacWork$Station Programmer’s Guidc Production Draft (1989 June 19)

APPLE CONFIDENTIAL

What MacWorkStation does

The MacWorkStation application provides two main functions. First, MWS provides the
environment in which the Macintosh user will work when interacting with the client application.
MWS does tasks such as opening windows, saving and opening files, and displaying the standard
Macintosh menus. Typically, the user will start a session by opening an MWS document that has
been set up previously by the client application programmer. This documents contains any
necessary components for the application. It usually includes a Communication Command
Language (CCL) log-on script to establish communications between the server computer and the
client computer. It may also include resources used by the client application, such as dialog box or
menu bar descriptions.

Second, MWS provides the set of messages that MWS and the client application use to
communicate with one another. For example, the client application might send messages to MWS,
instructing it to display a particular dialog box. When the user makes a selection or closes the dialog
box, MWS sends a message to the client application, reporting the user’s choice. MWS also provides
communication-level support through communication modules, and extensibility through
executable code modules.

As you create a MacWorkStation-client system, you will notice the following features:

® MacWorkStation messages let developers use the Macintosh interface without having to
program on the Macintosh computer. Using MWS, you can develop a variety of applications on
different computers, each of which provides a standard human interface on the Macintosh
family of computers.

® From a user’s standpoint, the MacWorkStation application gives a familiar human interface to
information processing provided by the client application.

® The MacWorkStation application will take care of printing, saving files, editing text, and other
tasks for the client application.

® MacWorkStation communication modules allow client applications running in different
environments and using different communications media, such as standard serial, AppleTalk®,
and Ethernet protocols, to use Macintosh display, printing, and file-handing utilities.

Production Draft (1989 June 19) CHAPTER 1 What Is MacWorkStation?

3

APPLE CONFIDENTIAL

Types of MacWorkStation-client systems

A MacWorkStation-client system can be either “generic” or “tightly coupled.” In a generic system,
all the data for such things as menus, graphics, prompts, and windows come directly from the
client application. In this system, MWS waits for an action by the MWS user and then transmits the
appropriate data back to the client application. It is up to the dient application to decide what
response is required, if any, at all times. To implement generic systems, programmers need to know
only the features of the Macintosh user interface (menus, dialog boxes, and windows) as
implemented in MacWorkStation messages. Programmers do not need to know the details of
Macintosh program development.

In a tightly coupled system, the client application and MacWorkStation components are
designed to work together closely. The dient application relies more on MWS to handle user actions.
Also, the MWS document used with the client application contains user interface resources, scripts
for logging on to the client application, executable code modules, and other elements needed by the
system. Examples of such applications are a “universal® database query interface and a graphics-
based financial modeling system.

In either the generic or the tightly coupled model, the following services are provided by the
MacWorkStation application:
® Text editing—All standard text-editing operations, such as text entry, cutting, copying, and

pasting, are available.
® Menu management—The standard Apple, File, Edit, Font, and Style menus are provided with

MWS. The client application can determine which of these menus to display, but from then on

« MWS controls them in a totally “local” fashion. Their actions have no effect on the client
application.
® Window management—The MacWorkStation user can change window size, scroll windows,
send windows to the back, select a window, and move windows without assistance from the
client application.
B File access—The MacWorkStation user can save the contents of a window to a disk file and
retrieve the contents of a disk file without directly involving the client application.

4 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

Why a Macintosh interface?

There are many reasons why you'd want to use the Macintosh desktop interface for your
applications rather than the typical interface of a “dumb” terminal. Perhaps the most important one
is that the Macintosh computer is easy to use. From the moment users first see the welcoming
message, they feel comfortable with Macintosh applications and feel a sense of control over them.
The MWS applications you write can provide users with the interface they have come to expect.
Users can directly manipulate documents they are working on. They see on the screen what they
are doing, and they can select actions from alternatives presented on the screen.

Human interface guidelines

The ease of use that users expect from the Macintosh computer is the result of close attention paid
to the many ways people use computers. A study of users’ actions has resulted in a set of
ergonomic principles, detailed in a publication called Human Interface Guidelines: The Apple Desktop
Interface. You should study these guidelines, which are part of the MacWorkStation package,
before you begin programming with MWS.

As explained in Human Interface Guidelines, a human interface is more than a visual display. In
fact, it is possible to have a human interface without any visual display. A human interface is the
sum of all communication between the computer system and the user. The human interface
presents information to the user and accepts information from the user. It is the way in which the
user accesses the power and information of the computer.

Among the points expressed in these guidelines is the idea that Macintosh applications should
be easy to learn and to use. Applications should build on skills people already have, not require them
to learn new ones unnecessarily. The user should feel in control of the computer, not the other way
around. MacWorkStation messages let you make your applications attractive and easy to use, as
recommended in Human Interface Guidelines. As you read the sections that follow, refer to these
guidelines, if you have questions about how standard Macintosh features should work.

Production Draft (1989 June 19) CHAPTER 1 What Is MacWorkStation?

5

APPLE CONFIDENTIAL

Three qualities of a good program

If you are familiar with programs written for the Macintosh computer, you know that they have
certain characteristics that give them a “feeling” of belonging on a Macintosh computer. It is this
“feeling,” provided by the user interface, that you will want to incorporate into your programs.

A good Macintosh application embodies three qualities: responsiveness, permissiveness, and
consistency. :

Responsiveness

With a responsive application, a user’s actions tend to have direct results. If a user chooses an italic
font, the words on the screen change to italic right away. If a user selects an icon, the icon is
highlighted immediately. With pull-down menus, the user can choose a command directly and
instantaneously.

Permissiveness

Users make mistakes. They also explore the application in order to learn to use it. If your application
is permissive, it allows users to make mistakes and to explore without penalizing them for doing
something wrong. Your application should let users accomplish their tasks spontaneously and
intuitively. If the user makes a mistake, your application should present a clear and instructive
message about the problem. However, these messages should occur in your program only when

necessary.

Consistency

All applications should be consistent, so that a user moving between applications does not need to
learn a new interface. Consistency is easy to achieve for a MacWorkStation-client system because
the MacWorkStation messages call the same routines used to implement the Macintosh user
interface in other applications.

6 MacWorkStation Programmer's Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

General suggestions for application programs

Here are some suggestions to follow when developing a MacWorkStation application that will
make your application more user-friendly. A more complete list of suggestions can be found in the
Human Interface Guidelines.

Modes

A mode is a part of an application that the user has to formally enter and leave. Modes restrict the
operations that can be performed while they are in effect. Modes can vary from picking a different-
sized paintbrush in a graphics editor to holding down the Shift key. You do not need to completely
avoid using modes. However, you should use them sparingly, because using them too often will
give users the feeling that the application is unnecessarily restrictive and unfriendly.

Your application should always give a clear, visual indication of the current mode. The visual
indication that you display should be near the object most affected by the mode. You should make
it easy to get into or out of the mode. However, entering and leaving the mode should be the direct
result of the user’s actions. For example, a modal dialog box has a standard appearance in Macintosh
applications. Figure 1-2 shows an example. A modal dialog box informs the user of the result of
some action, and requires the user to explicitly dismiss it (by clicking the OK button, for example)
before doing anything else.

" Figure 12 A modal dialog box

" Please Choose f Meal:

@ Chicken Dinner

QFish Dinner

O Special Meal

Production Draft (1989 June 19) CHAPTER 1 What Is MacWorkStation?

7

APPLE CONFIDENTIAL

Graphics and color N

You can take advantage of the high-resolution Macintosh screen by creatively using graphics in
your applications, even in places where other applications might use text. As much as possible,
commands, features, and parameters of an application should appear as graphic objects on the
screen that suggest the use of the object. In the Macintosh user interface, objects such as the trash
can icon resemble the familiar objects whose functions they emulate. Objects that act like push
buttons will “light up” when pressed.

Dialog boxes and menus are other examples of the use of graphics that are familiar to
Macintosh users. You will probably want to use them in your applications.

MacWorkStation messages support the color capabilities of RGB monitors, so you may wish
to use color in your applications. Be sure to consider that some people have problems distinguishing
colors and that not every user may have an RGB monitor. Generally, you should not base the ability
to use your software on a user’s ability to identify colors, although colors can enhance the overall
look of your applications.

8 MacWorkStation Programmer’s Guide ' Production Draft (1989 June 19)

Chapter 2

APPLE CONFIDENTIAL

Using MacWorkStation

THE MACWORKSTATION-CLIENT SYSTEM consists of
several elements that work together to provide a service to a Macintosh user.
This chapter explains what these elements are and what you need to do to
create the MacWorkStation-client system. Some of the terms used in this
chapter may be unfamiliar to you. They will be explained in detail later in this
guide. For now, just read along to get the general idea. ®

Production Draft (1989 June 19)

APPLE CONFIDENTIAL

Creating the MacWorkStation-client system

The MacWorkStation-client system consists of a client application, a Macintosh computer running
the MacWorkstation application, an MWS document with a CCL script, and a2 communication
module available in the MacWorkStation application or the MWS document. Typically, the client
application will be running on another computer, so you will need a hardware connection between
the computers. Your system may also use custom alerts, cursors, dialog boxes, graphics, menus,
windows, and executable code modules, which can be stored as resources in the MWS document.
Here are the things you need to do to set up a MacWorkStation-client system:

® Write a client application that will tell MWS what to do.
® Create a MacWorkStation document to use with your system.

m Create a Communication Command Language (CCL) script in the MacWorkStation document
that will establish the communication link between your client application and MWS.

® Be sure the correct communication module for your application is stored as a resource either in
the MacWork$Station application or the MWS document. The communication module manages
the communication protocol. The CCL script must call this module during the log-on
procedure. Communication modules for two serial protocols and AppleTalk are provided with
MWS. You can also use communication modules that you create. See the Mac WorkStation
Programmer’s Reference for more information about communication modules.

® Create executable code modules for any modifications you need to make to MWS, and store
their code resources in the MWS document. See the MacWorkStation Programmer’s Reference
for more information about executable code modules.

m Create any user interface resources your system needs, such as custom dialog boxes or menus,
and store these resources in the MWS document. See the MacWorkStation Programmer’s
Reference for more information about using resources.

10 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

Figure 2-1 shows the relationship of these elements in the MacWorkStation-client system.

® Figure 2-1 The MacWorkStation-client system

Client
corrfgnugi"cgion Events N application
modules <R
Commands

MacWorkStation

Custom
communication
modules

CCL

scripts pe------ . %

Exec
modules f-------

Custom
resources

.........

MacWorkStation MacWorkStation user
document

Starting a MacWorkStation-client system

When you have prepared the various elements for your MacWorkStation-client system, you need to
do these things to start up the system.

® Set up the hardware connection between the computers.

® Start your client application. The client application needs to be ready to receive and process a
message from the MacWorkStation applicaton in order to start the session.

= Open your MacWorkStation document. You can open the MWS document from the Finder™ or
use Open from the MWS File menu.

® If you have never used the document to log on to the client application, you will be asked to
select the CCL script to use. MWS then attempts to log on to the client application, using the

Production Draft (1989 June 19) CHAPTER 2 Using MacWorkStation

11

APPLE CONFIDENTIAL

CCL script you select and the communicaton module that the script indicates. (If the CCL script
logs on successfully, MWS will use this script in the future to log on to the client application
whenever the document is opened.)

When the script logs on to the client application, MWS sends a message to the client application and
waits for a reply. After replying, the client application can begin the session, interacting with MWS
and the user as the session continues.

When the session is finished, the CCL script should do what's necessary to log off from the
client application. Typically, the session is ended when the user chooses Disconnect from the Apple
menu, or Close or Quit from the File menu.

The client application

You can write your client application in any programming language that works with the client
computer. During initial development, you may wish to use TestHost with MWS. TestHost is an
application that allows you to emulate your client application by sending commands to MWS and
responding to events sent from MWS, Since TestHost also runs on a Macintosh computer, you'll
find it easy to use to design your application’s user interface, and to test and debug your program.
You can also use TestHost to create dialog boxes and save them as resources in your MWS
document. TestHost is explained in the MacWorkStation Programmer’s Reference.

You may also use MWS Event Handler to create a prototype of your application. You can use
MWS Dialog Builder to create and edit dialog boxes you use with your client application. MWS Event
Handler and MWS Dialog Builder are available from APDA™. (Information on how to contact APDA
appears in the Preface.)

The client application must be running in order to receive an event sent by MWS at the start of
each session. This message is called the MacWorkStaton Online (P25 6) event, which MWS sends
after the log on is successful. The client application must then send the Host Online (P001)
command to MWS in order for the session to begin.

After this exchange of messages, your client application can be in complete control. However,
you can let the MacWorkStation application take care of many tasks, which saves you development
time and reduces communications traffic. These tasks include opening, closing, and saving files;
redrawing windows; printing; supporting text editing; and many others.

You probably want your application to respond to the user’s actions in the flexible manner
familiar to Macintosh users. You can achieve this Macintosh-type behavior by using event loop

programming techniques described next.

12 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

The event loop

The event loop is the central routine of any Macintosh application that supports the Macintosh
user interface. Using the event loop, an application doesn't expect events to occur in a particular
order. Instead, it constantly checks for inputs, such as mouse actions and keystrokes, that can
occur in any order. The client application can then respond to any event in an appropriate way.

This approach to programming contrasts with programs that require the user to make requests
or perform tasks in a specific order. Instead, the emphasis is on responding to any request the user
makes at any time. This approach enables the widest possible range of user activities. For example,
there’s no reason not to let the user set printing options before there’s anything to print.

Using the event loop, a client application can easily handle events generated in response to
commands it sends, by simply waiting for MWS to return a response. The client application can also
use the event loop to process events initiated by the user, by first identifying the event, then
responding to it.

The basic structure of an event loop is very simple. Here is an example of the main routine of a
client application using event loop programming.

Production Draft (1989 June 19) CHAPTER 2 Using MacWorkStation

13

APPLE CONFIDENTIAL

main ()

{
char EvtClass;
int EvtiD;
char EvtParms [256];

AllInit ();
do
{ GetMWS (4EvtClass, &EvtID, EvtParms);
switch(EvtClass)
{ case 'A':
DoAEvent (EvtID, EvtParms):;
break;

case 'D':
DoDEvent (EvtID, EvtParms):;
break;

case 'F':
DoFEvent (EvtID, EvtParms);
break;

case 'G':
DoGEvent (EvtID, EvtParms);
‘break;

case 'L':
DoLEvent (EvtID, EvtParms);
break;

case 'M':
DoMEvent (EvtID, EvtParms):;
break;

case 'P':
DoPEvent (EvtID, EvtParms);
break;

case 'T':
DoTEvent (EvtID, EvtParms);
break;

case 'W':
DoWEvent (EvtID, EvtParms);
break;

default:
break;
}
while (!AllDone);

AllDispose();

14 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

About the “Hello.C” sample application

The example application called “Hello.C” is familiar to most Macintosh programmers. It is a simple
Macintosh application program that illustrates the prinicples of creating the Macintosh user
interface. Although 1 is too simple to be a practical, it shows the overall structure that a client
application will have, and it does several of the things that any client application will do.

“Hello.C” creates a single window, “Sample Window,” which displays the message “hello,
world” (Figure 2-2). The window has a title bar, title, dose box, and resize box. The user can resize
the window by dragging the resize box, and can move the window around the desktop by dragging
it by its title bar. The application displays four menus: the standard Apple menu, from which the
user can choose desk accessories, and File, Edit, and Display. Using the File menu, you can open
existing text files. If the window is too small to display all the text it contains, the scroll bars
become active so you can view the text. You can also print and save files. You can type new text,
and select text in order to edit it. Using the Edit menu, you can cut, copy, and paste the text.
Clicking the close box closes the window.

® Figure 2-2 Screen created by a simple application

& Flle Edit Display

I SRS Somple Window
hello, world

Production Draft (1989 June 19) CHAPTER 2 Using MacWorkStation

15

APPLE CONFIDENTIAL

The “Hello.C” sample application

The “Hello.C" client application produces the screen shown in Figure 2-2. Comments are included in
the listing so that you can see which groups of MacWorkStation messages are being used and what
operation is being performed.
/* This is a sample client application which:

1) displays the standard (Apple, File, and Edit) menus;

2) puts up a standard text window;
3) displays the string 'Hello world' in the window.

*** This version runs under VMS or UNIX. It should work with any C. *=**
*** However, it may not run under other versions of C unless changes **x
*** are made so that the MWSPut and MWSGet routines address a badaded
x gerial port. badadel

*/
#include <stdio.h>

static char quitMWS = 0; /* This will be set to 1 in response to a
Quit event (P257) from MWS
*/

main ()

/* The main loop of the program simply waits for an event from
MWS, then responds to the event. Note that in this simple
example, the only events recognized are:

P256 - MacWorkStation Online
P257 - MacWorkStation Offline

*/

{
char evtClass;
int evtID;

char evtMsg([512]};

e

printf ("%s", "MWS GO\n"):; /* Send this so the CCL knows we're running

do {
if (MWSGet (¢evtClass, &evtID, evtMsg))
if (evtClass == 'P!')
doPEvt (evtID, evtMsg);
} while (! quitMws):;

16 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

*/

doPEvt (evtID, evtMsg)

APPLE CONFIDENTIAL

/* The doPEvt function responds to Process events from MWS.

P256 is the first event sent when MWS commences.
P257 is sent when MWS is quitting.

*/

int evtID;
char *evtMsg;

switch (evtID) {
case 256 :
appStartup();
break;
case 257
quitMWs = 1;
break;

appStartup()

/* The appStartup function first responds to the P256 event, then

puts up the menu bar, displays a text window,
sample text to the window.

*/

MWSPut ("POO1", "");

MWSPut ("M004", "O;FILE;EDIT;TEXT;");
MWSPut ("W001l", "1;TEXT;Sample Window;;TRUE; TRUE");
/* Create a text window */

MWSPut ("TO010", "l;Hello World"):; /* Put some text in the window */

Production Draft (1989 June 19)

and sends some

B

/* Issue handshaking sequence */
/* Install default menus */

CHAPTER 2 Using MacWorkStation

17

APPLE CONFIDENTIAL

MWSGet (evtClass, evtID, evtMsg)

/* The MWSGet function gets a message from MWS and breaks it into its
components. The protocol expected is:

[message begin character
(data) message contents
\n message end character (simplifies using gets)
This conforms to the ID=2 transport-layer protocol.
*/

char *evtClass;

int *evtID;

char *evtMsg;

char begMsg;
char mwsMsg[512];

gets (mwsMsg) ;
sscanf (mwsMsg, "$c%c%3d", &begMsg, evtClass, evtID);

if (strlen(mwsMsg) > 4)
strcpy(evtMsg, &mwsMsg(4]):;
else
*evtMsg = '\0°';
return 1;

MWSPut (cmdClass, cmdParms)
/* The MWSPut function sends a message to MWS. The protocol is:

[message begin character
(data) message contents

\n message end character
This conforms to the ID=2 Serial transport-layer protocol.
*/
char *cmdClass;
char *cmdParms;

printf("%csss¥ssc", '[', cmdClass, cmdParms, '\n');
) .

/* End of Hello.c */

18 MacWork$Station Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

The MacWorkStation document

The MacWorkStation document is the user’s access to any MacWorkStation-client system. Users
interact with the client application through the MacWorkStation document. Usually a user will need
to open a specific MWS document to work with a particular client application. The user opens the
document to start the session with the client application.

When you launch the MacWorkStation application, you are asked to choose a document to
open, or to create a new one. To create a new MacWorkStation document when MWS is running,
you choose New from the File menu. When you create a new MWS document, you are also asked to
create a CCL script for the document. The CCL script is used to establish communications between
the computers.

The MacWorkStation document will store many of the elements of your MacWorkStation-
client system. It will contain the CCL script. It might store a custom communication module used
by the script.

The MWS document can also store resources you have created to use with your system.
Menus, dialog boxes, cursors, windows, and many other features of the Macintosh interface are
resources. You can create your own resource whenever a standard MacWorkStation resource does
not meet your needs. Several programs are available for creating your own resources. MWS Dialog
Builder, ResEdit™, and MPW™ Rez are programs available from APDA. (Information on how to
contact APDA appears in the Preface.) Resources are a unique feature of Macintosh applications.
Refer to Inside Macintosh to learn more about resources.

The MWS document may also include executable code modules that extend the functionality of
the MacWorkStation application. See the MacWorkStation Programmer’s Reference for additional
information.

Production Draft (1989 June 19) CHAPTER 2 Using MacWorkStation

19

APPLE CONFIDENTIAL

MacWorkStation-client communications

For the MacWorkStation application and the client application to interact, they must establish some
form of communication. Besides the actual hardware, two elements are required to make the link:
the CCL script, and the communication module. These two elements are stored in MWS or the MWS
document. The only requirement of the client application is that it be able to send data over the
communication link you have chosen.

You create the CCL script and save it in the MWS document. The CCL script establishes the
actual communication link between MWS and the client application when the MWS document is
opened. If the CCL script logs on successfully, the session can proceed. The CCL script may also
contain instructions for disconnecting at the end of the session. The Communication Command
Language provides the necessary commands to set up and control the communication session. The
CCL commands and the process of creating a CCL script are explained fully in the MacWorkStation
Programmer’s Reference. ’

The communication module handles the low-level aspects of the communication session. Apple
Computer, Inc. provides a number of communication modules, including two serial protocols and
an AppleTalk protocol. If none of these protocols is acceptable, you can develop a custom protocol
or use an acceptable protocol from a third-party developer.

Communication Command Language (CCL) scripts

CCL scripts contain the instructions for logging on and logging off the client application by using
the Communicaton Command Language. CCL scripts make it possible for the user to log on and log
off automatically without having to decipher different operating-system prompts or enter
commands. The first task of the CCL script is to designate the communication module used in the
session. Then, the CCL script waits for prompts from the client computer and responds
appropriately to requests for information. The CCL script can also request information from the
user, such as a password or identification code.

You are asked to create a new CCL script when you create a new MacWorkStation document.
After naming the MacWorkStation document, you will see the choose-script dialog box shown in
Figure 2-3.

® Figure 2-3 Choose-script dialog box

ECESSSNNN $emple Document NN
®

(=

s © (&)

] (Remove] (Connect)

20 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

When you click the Add button, you'll see a CCL script-edit window, in which you will type the
commands to create the CCL script. If you need help, you can choose a command from the
Commands menu. A brief description will appear in the Command Help window. Figure 2-4 shows a
CCL script-edit window with the Command Help window.

» Figure 24 Script-edit window with Command Help window

& Flle Edit Display Search Commands
Sample Document

'. CEl CREECT n e HERB AR 4 O g M A S R e o e e B

-~ SRTING R KEHANY | | D RN N

K| e % NI | s e
Command Help

Halt for one of the defined strings to match. Terainate wait after ¢tlu¢ub
ticks, string satches, or user presses the Cancal button.

To write a CCL script, you must know exactly what prompts will come from the client application.
CCL scripts may also contain commands needed to log off from the client application when the
session is completed. The commands in the log-off sequence are preceded by an asterisk (*). Here is
an example of a log-off command:

*xmit "logout"

All the log-off commands must appear together at the beginning of the CCL script, before any
commands in the log-on sequence.

Production Draft (1989 June 19) CHAPTER 2 Using MacWorkStation

21

APPLE CONFIDENTIAL

After you type your script, you choose Save from the File menu. The dialog box shown in
Figure 2-5 appears so that you can name your CCL script. You type in a name for the script and click
the OK button. You have now created a CCL script.

w Figure 2-5 New script name dialog box

0N Edit Display Search Commands
Sample Document

- Untitied - 1
Enter script name:
[ADsH | (Cancer) |

-

WL sk b s b B s s s e sl E‘IE‘E

Command Help

Load transport iayer <id>, with 9 optiona! paraneters.Serial driver:
pi=sbaudRate, p2eparity (Ownone, imodd, 2meven), pImdataBits, p4mstopBits,
pS=xon/xoff Ci1=input, 2=moutput, 3I=both) pb=xonChar, p7=xof {Char pS=msgBeg,

The next time you open the MWS document, you will be prompted to select the CCL script to use
to log on to the client application. Once you have logged on successfully with a CCL script, that
script is executed whenever the document containing it is opened. You can prevent the automatic
execution of the CCL script by holding down the Option key when you open the document. You
will see the choose-script dialog box shown in Figure 2-3. You can then add a new CCL script to the
document, modify or remove scripts, or select a different script to use to log on.

22 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

Communication modules

A communication module manages a communication (transport-layer) protocol for the connection
between MWS and the client application. Communication modules are code resources stored in the
MWS document and called by the CCL log-on script, using the CCL TRANSPORT command.

A wide variety of communication networks can be used by a MacWorkStation-client system.
Several communication modules are provided with MWS:

m A serial communication module that uses start and stop message characters.

® A serial communication module that sends a Begin Message character and then a 2-byte count
of the number of bytes in the message.

® A communication module that sends and receives messages over the AppleTalk network.
AppleTalk is Apple’s local area network for connecting Macintosh computers with each other
and with other shared resources. If you want to use this communication module, your client
application must have access to AppleTalk and be capable of supporting the AppleTalk Data
Stream Protocol (ADSP). The ADSP connection includes error checking, a benefit of using
AppleTalk as the communication medium.

Other communication modules may be available from APDA. (Information on how to contact
APDA appears in the Preface.) You can also use custom communication modules.

See MacWorkStation Programmer’s Reference for more information about communication
modules. Information about creating custom communication modules is available from APDA.

Production Draft (1989 June 19) CHAPTER 2 Using MacWorkStation

23

APPLE CONFIDENTIAL

Chapter 3 Directors and Messages

MACWORKSTATION COMMANDS AND EVENTS are
grouped together by function into directors. There are eleven directors. This
chapter gives an overview of the function of the directors. This chapter also
discusses the structure of MacWorkStation messages. Additional information
about the MacWorkStation directors can be found in the MacWorkStation
Programmer’s Reference. ®

Production Draft (1989 June 19)

25

APPLE CONFIDENTIAL

MacWorkStation directors

Each MacWorkStation director is a group of commands and events involved with a particular aspect
of the application. For example, the Cursor Director provides commands to change and control the
cursor. Many of the directors’ commands interface with routines belonging to the Macintosh
Operating System and the User Interface Toolbox managers. The managers are groups of
functionally related commands available to Macintosh applications. See Instde Macintash for more
information about the Macintosh Operating System, the User Interface Toolbox, and the toolbox
managers.

Here is a brief description of the MacWorkStation directors. A fuller explanation of the directors,

with examples, can be found in Chapter 4. The commands and events for each director are described
in the MacWorkStation Programmer’s Reference.

26

Alert Director—Allows a client application to display notes and warning messages to the
user. Alerts can range from “stop alerts,” which warn the user that some problem is about to
arise, to “note alerts” that simply require users to acknowledge the alert by clicking the OK
button. The client application can use the standard alerts, including a speaker beep, stop alert,
note alert, caution alert, message banner, and picture banner. The client application can also use
custom alerts, which might include color, that are saved as resources in the MWS document.

Cursor Director—Makes it possible for a client application to hide or change the form of the
pointer visible to the MWS user. Your application can use the standard cursors, including the
arrow, wristwatch, and I-beam. Custom cursors, including color cursors, may also be displayed.

Dialog Director—Lets a client application present Macintosh dialog boxes. The client
application specifies what each dialog box should look like and what it should do. A dialog box
can have mixed text fonts, sizes, and styles, as well as horizontal and vertical scroll bars, and size
and zoom boxes. Dialog boxes can include text input fields, different types of buttons, and
pop-up menus. Dialog boxes or items within them may be displayed in color. Dialog boxes can
be saved as resources in the MWS document for use with the application. The client application
calls each of these dialog boxes by using its unique resource ID.

File Director—Lets a client application manipulate Macintosh files. The client application can
create, delete, and rename files, get and set file information, and open and close files. Macintosh
files consist of a resource fork and a data fork, and independent transfer of both file forks is
supported. File information may include specific access rights when opening the file, and byte
ranges to be locked within a file. The application can set directory access privileges or check a
directory’s access privileges.

Graphics Director—Provides access to many of the QuickDraw™ graphics routines that are
built into the User Interface Toolbox. These routines allow the client application to draw lines,
geometric shapes, patterns, and text. The application can draw graphic items in color.
QuickDraw pictures can be transferred between the client application and Macintosh windows.
The contents of graphics windows can be saved as MacDraw PICT documents.

MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

List Director—Lets the client application present information in a list format or in a format
similar to a spreadsheet. List windows can be saved as Microsoft Excel TEXT documents.
Records and fields can be transferred between the client application and Macintosh windows.
Individual fields may be edited. Records can be sorted in ascending or descending order, based
on one or more fields, and applications can be set up to read only those records modified since
the last reading,

Menu Director—Lets the client application choose from several standard menus such as File,
Edit, Font, and Size. MWS handles any actions caused by the user’s choice of items from these
menus. The client application can use the Menu Director to create custom menus, including
hierarchical and color menus. The Menu Director is also used to create pop-up menus, which can
then be used in dialog boxes. The dient application can use several menu bars, each tiedto a
different document window on the Macintosh computer.

Process Director—Handles certain administrative tasks, such as placing the Macintosh
computer in a wait state while the client application performs other tasks.

Text Director—Allows the client application to create and manipulate text in text windows.
Text windows may contain mixed fonts, sizes, and styles, as well as color text. The client
application or user can display and edit the text, and save it into MacWrite TEXT documents.
Text can be transferred between the client application and Macintosh windows.

Window Director—Lets the client application create windows of various sizes, shapes, colors,
and functions. Your application can check for a user action on a window such as activate,
deactivate, move, or resize. Other directors, such as the Text, List, or Graphics Director, provide

~ the window’s contents. Windows can represent editing areas, display areas, or entire Macintosh
documents. '

Exec Director—Lets you use your own executable code modules (exec modules). You use exec
modules to extend and modify MWS. The Exec Director includes commands that initialize,
terminate, and control executable code functions. The structure of executable code is explained
in the MacWorkStation Programmer’s Reference.

Production Draft (1989 June 19) CHAPTER 3 Directors and Messages

27

APPLE CONFIDENTIAL

MacWorkStation messages

At the heart of the MacWorkStation-client system are the messages exchanged between the client
application and MWS, These messages are either commands or events. A command is a message
sent from the client application to the MacWorkStation application, instructing it to perform some
action, such as creating a window.

An event is a message sent from MWS to the client application. Events are sent under two
conditions. First, some events are sent in response to commands from the client application. For
example, a client application might send F013 1; (the Get File Fork Size command). MWS might
respond with F261 1;5432; (the Get File Fork Size Response event). This event tells the
client application that the size of the requested file is 5432 bytes.

Second, some events are sent in response to user actions. For example, if a user chooses a menu
item, MWS will send M256 0;1;2; (the Menu Selection Event). It tells the client application
that the user selected item number 2 from menu number 1 in menu bar 0.

Here is another example. The dialog box in Figure 3-1 is from the Bear Cal sample application. If a
user clicks the OK button in a dialog box, MWS will send D257 1;T; (the Control Item Pressed
event). This event is generated whenever the user clicks a button (such as OK , Cancel, or one of the
credit card buttons) in the dialog box.

® Figure 3-1 Dialog box from the Bear Cal sample application

Bear Lal Reservation System

Passenger: [C. Hutson | Cox)

Destination: I I (Cancer)

Depart: [::] Return: E:] (Coneer)
|

Rirline: |

Time: [_ - .]

Gate: []

Incidentals: Class: Seating: ! Payment:
O Smoking O First O Window MagterCard
O binner @ Coach @ Center ’ tj
O Movie QO Business O Risle i N

[Rental Car
\

The next sections describe the parts of a MacWorkStation message in more detail.

28 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

The structure of a message

A MacWorkStation message is a stream of bytes consisting of three parts: a class, an identifier
(ID), and parameters, if any. The message class indicates the MWS director involved in the
message. The ID designates a particular command or event. Finally, many of the commands and
events send additional information in parameters. How the messages are formed and sent between
the computers is an issue for lower-level communications software.

Here is an example of a command message where the class is M, the identifier is 004, and
there are several parameters. This is a Menu Director message that creates the Assets menu, shown
in Figure 3-2.

M004 0;Assets,20,Cash,Accts receivable, Inventories,Other assets<B,
Land,Buildings/B,Equipment;

® Figure 3-2 Macintosh menu example

Cash
Accts receivable
Inventories
Other assetls
Land

Buildings B
Equipment

Production Draft (1989 June 19) CHAPTER 3 Directors and Messages 29

APPLE CONFIDENTIAL

Class

The class is a single uppercase ASCII character that determines which MacWorkStation director the
message refers to. Table 3-1 gives the MacWorkStation classes and their respective MacWorkStation
directors.

® Table 3-1 Classes and directors

Class Director

A Alert Director

C Cursor Director
D Dialog Director
F File Director

G Graphics Director
L List Director

M Menu Director

P Process Director
T Text Director

w Window Director
X Exec Director
Identifier

The identifier specifies the particular command or event of the director. It is composed of three
ASCII digits, such as 123. All three digits must be given, so an identifier of 1 would be represented
as 001. Command identifiers range from 001 to 255. Event identifiers range from 256 to
511.

Parameters

A list of parameters may follow the class and identifier. These parameters provide additional
information for the execution of the command or event. Parameters may be required or optional.
Some parameters can be repeated a number of times in the same message. For example, to create
menus, the client application must indicate the names and items for the menus. These names and
items would appear as parameters in the command message.

Parameters may be different data types. Parameters can be strings, integers, Boolean
operators, or binary data. With the exception of binary data, the bytes that make up a
MacWorkStation command or event are displayable, extended 8-bit ASCII characters. For instance,
the numeric value 42 will appear in a parameter list as 42, not as a binary value.

30 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

Some parameters are combinations or variations of the basic types. These parameters are
indicated in the examples in this guide, and in the MacWorkStation Programmer’s Reference, by
using special parameter types and keywords.

Because parameters can have a number of components, delimiters are used to separate them.
Semicolons delimit parameters. Commas delimit the components of compound parameters. For
instance, the item list of a2 menu is delimited by semicolons, but the component strings of the item
list are separated by commas.

MacWorkStation messages use these parameter types:

B String—A sequence of characters whose length should not exceed 255 characters. A string may
be enclosed by single or double quotation marks. A string must be enclosed in quotation marks
if it contains a semicolon or comma.

® Integer—A sequence of characters, each of which has a value in the range 0-9, with an optional
leading minus sign (). An integer value must be within the range that can be specified by a 32-
bit binary value.

® Flag—Boolean values that are either true or false. The value of a flag parameter may be
specified as a string with a first character that is either Tor ¢for true, or For ffor false.

B Bytes—An arbitrary string of 8-bit bytes delimited only by the end of the message. A
parameter of this type may vary in length up to the maximum message size (512 bytes), and
may contain any characters (including semicolons or other delimiters).

® Color—Some commands use the eight original QuickDraw color keywords: BLACK, BLUE,
CYAN, GREEN, MAGENTA, RED, WHITE,and YELLOW. If Color QuickDraw is available,
some commands can set RGB color as a compond parameter. RGB color is denoted by three
integers in the range of 0 to 65535, separated by commas.

® Compound—A parameter that consists of a combination of parameter types.

® Directory—A parameter that specifies the name of a volume, folder, file, or the pathname for
a folder o file.

® Keyword—A string-type parameter with a fixed set of values that your application may send.
Keywords are specified exactly as they should appear in the parameter list and are always in

uppercase. For example, when creating menus, you may use a keyword to indicate a standard
MacWorkStation menu. Standard menu keywords include FILE, EDIT,and FONT.

B Point—Two integer values that specify a coordinate. They appear in the parameter list as “A,
¢/ (horizontal and vertical coordinates). Notice that the integers are separated by a comma.

® Rect—Four integer values that specify a rectangle. They appear in the parameter list as *Jeft,
top, night, W Notice that the integers are separated by commas.

® Signature—A sn'hg of exactly four characters, usually used to indicate the type or creator of a
file. A signature is case sensitive, so the value 'text' will not be the same as TEXT".

Production Draft (1989 June 19) CHAPTER 3 Directors and Messages

31

APPLE CONFIDENTIAL

Using aliases

Each object created by the MacWorkStation-client system, whether it is a window, dialog box, or
open file fork (resource or data), is assigned an alias when it is created. The object's alias is one of
the parameters used in the commands and events that control the object. The client application and
MWS both refer to the object by its alias. If the object is created by the client application, then the
programmer specifies the alias to use. For example, if the client application wishes to create a
window, it must supply a unique alias that the client application and MWS can use to refer to that
window in subsequent messages. In this case, the alias is an arbitrary number. Objects are
sometimes created by the MacWorkStation application independent of the client application. In this
case, MWS will provide the unique alias for the object it generates. For instance, if the user chooses
New from the standard File menu, MWS will create a new text window.

Examples

Here are some examples of commands and events, with an explanation of their features.
W00l 5; TEXT; Daily News

This is a window command, so the class is w; the identifier is 001, which falls within the range of
a command (1-255). This command will cause the Macintosh computer to put up a standard
document window. There are three parameters, separated by semicolon delimiters. The window has
an alias of 5. This alias was assigned by the application programmer and will be used subsequently
to refer to the window. The keyword TEXT specifies 2 window with a text view and scroll bars.
The title of the window is Daily News.

M004 0; FILE; EDIT; Mail, 6, Send, Receive, Address Book

This is a menu command: The class is M; the identifier is 004, which falls within the range of a
command. This command will cause MWS to add three menus to the menu bar: File, Edit, and Mail.
There are four parameters, separated by semicolon delimiters. The first parameter, 0, is an alias
referring to the default menu bar where the menus will be added. The second and third parameters
are keywords that specify the File and Edit menus, which are standard menus managed by MWS,
The fourth parameter is a compound type consisting of several subparameters separated by
commas. The Mail menu has an alias of 6 and three items: Send, Receive, and Address Book.

M256 0; 6; 3

This is a menu event: The class is M; the identifier is 256, which falls within the range of an event.
There are three parameters, separated by semicolons. In this case, MWS is informing the client
application that the user has chosen menu bar 0, menu 6, item 3. This choice corresponds to the
Address Book menu #tem from the previous example.

32 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

Chapter 4

APPLE CONFIDENTIAL

Using Directors

MACWORKSTATION DIRECTORS provide programmers with
the tools necessary to create their MacWorkStation-client systems. This
chapter uses examples from a simple client application to explain the use of
the director commands and events. The MacWorkStation Programmer’s
Reference gives a complete description of all the commands and events used

in the examples. ®

Production Draft (1989 June 19)

33

APPLE CONFIDENTIAL

About the “Bear Cal” application

“Bear Cal” is a simple example of a client application. The application is designed to be used by
reservation clerks of a fictional airline, called Bear Cal, to schedule reservations and perform other
tasks. You will find the source code for “Bear Cal” in the appendix, as well as on the MacWorkStaton
Samples Disk. “Bear Cal” is written in MPW 3.0 C.

After initialization, the application enters an event loop to wait for the first action to process.
The event loop begins with the do command and ends with the while (!AllDone)
command. The event loop first processes messages with the MWSGet () routine. This routine
identifies the director class of the message, which is then used in the event loop to determine the
appropriate routine to handle the event.

The first event received from MWS will be the MacWorkStation Online (P25 6) event. When
“Bear Cal” receives this event, it executes a startup routine that first responds with the Host Online
(P001) command. “Bear Cal” then creates menus, several windows, and a dialog box. When it has
finished, the application displays the Flight Schedule window and again waits for the reservation
clerk’s next action.

The reservation clerk’s actions may include scheduling a new reservation or changing an existing
reservation. The reservation clerk can indicate the method of payment, and receive an authorization
code for some methods. The reservation clerk can set up meals for a reservation, including
instructions for special meals, and note whether the customer wants to rent a car.

Other routines of the “Bear Cal” application handle such tasks as determining which menu item
a reservation clerk has chosen, or what items have been selected or entered in a dialog box. Finally,
when the reservation clerk chooses Disconnect from the Apple menu, or Close or Quit from the File
menu, “Bear Cal” processes the event sent by MWS and discontinues the session.

34 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

The Alert Director

The Alert Director commands make it possible for your application to inform users of error
conditions or other situations that require their attention. An alert can be a simple beep from the
Macintosh speaker or an alert box asking the user whether to continue or cancel an action. You
can use the standard alerts provided by MWS, or you may choose to create your own.

An alert places the MacWorkStation application in a modal state. The user must respond to the
alert before the application can continue. Inside Macintosh explains the use of alerts in detail. Figure
4-1 shows an example of an alert.

m Figure 4-1 Alert created with the Alert Director

WARNING: Bear Cal does not
allow smoking on flights.

The following command created the alert displayed in Figure 4-1:

MWSPut ("A002", "F; WARNING: BearCal does not allow smoking on flights.");

® 2 is the class for the Alert Director.
® 002 is the identifier for the command Stop Alert.

®m F is the flag for the respond parameter In this case it is false, indicating that no event will be
returned to the client application when the user dismisses the alert.

® The final parameter is the message that will be displayed in the alert box.

The alert created by this command contains the standard note icon, an OK button, and the text of
the message.

Production Draft (1989 June 19) CHAPTER 4 Using Directors

35

APPLE CONFIDENTIAL

The Cursor Director

The Cursor Director makes it possible for the client application to change and control the mouse
pointer on the Macintosh screen. Generally, it is best to let the MacWorkStation application control
the pointer, which is the default situation. However, the client application can determine the
appearance of the pointer, hide the pointer, or show the pointer.

The pointer can relay information to the user about the state of the application or the options
available, as well as reassuring the user about what's happening, For instance, changing to the
wristwatch informs the user that a time-consuming action is taking place.

Several pointers are predefined by MWS. They are shown in Table 4-1 together with their
resource IDs, which are used in the Set Cursor (C002) command. You can define your own pointers
and save them as resources in the MWS document.

®m Table 4-1 Cursor resource IDs

Image Name 'CURS' resource ID
* Arrow 0
I I-beam 1
+ Crosshair 2
@ Crossbar 3
@ Wristwatch 4

In the routine that sets up the Reservations dialog box, the Set Cursor command is used to change
the pointer to a wristwatch while the dialog box is being created. Figure 4-2 shows the screen with
the wristwatch pointer.

® Figure 4-2 Wristwatch pointer created with the Cursor Director

/N Passenger List q
Passenger Name Destination

2l [t

36 MacWorkStation Programmer’s Guide Production Draft (1989 june 19)

APPLE CONFIDENTIAL

Let’s examine the command in detail.
MWSPut ("C002", "4") ;
B C is the class for the Cursor Director.

B 002 is the identifier for the Set Cursor command.

® 4 is the alias for the cursor type, a wristwatch. The wristwatch shows that a lengthy
procedure is taking place. The cursor image is set to the cursor specified by the cursoriD
parameter. The cursor will remain a wristwatch regardless of mouse movement.

This command sends the Auto-Track command (C001):

MWSPut ("C001","");

The Auto-Track command returns control of the cursor to the MacWorkStation application.

The Dialog Director

Dialog boxes are used to get information from the user. Using the mouse and keyboard, the user
can adjust controls and enter data into editable text fields. Controls in dialog boxes appear as push
buttons, check boxes, and radio buttons.

The Dialog Director lets the client application specify what the dialog box will look like, what
items it should have, where the items should be placed, whether any items or the box itself should
be displayed in color, and how items should behave. Any combination of text fonts, sizes, and
styles is permissible within a dialog box. Other dialog box options include vertical and horizontal
scroll bars, and size and zoom boxes. The Dialog Director also lets the client application save the
dialog box as a resource in the MWS document. The dient application can then open the dialog box
by using its resource ID number, rather than reconstructing it.

Once the dialog box is constructed, the client application can have MWS do all the work of
managing the dialog box while the user is making selections or entering text. When the user changes
a control or enters text, MWS sends an event to the application with the user’s selections and
entries.

Production Draft (1989 June 19) CHAPTER 4 Using Directors

37

APPLE CONFIDENTIAL

Dialog item types

Your client application creates a dialog box by specifying a dialog box window, then adding dialog
items to it. As each item is added, it is assigned an index number. The first item added is item 1, the
second is item 2, and so on. Dialog items are referred to by this index number.

The dient application add a variety of dialog box item types. A dialog box can be as simple as a
picture with an OK button, or very complex with a number of buttons, pictures, editable text fields,
and scrolling-entries items. Table 4-2 lists the keywords for each of the dialog item types.

m Table 42 Keywords and dialog item types for the MacWorkStation Dialog Director

Keyword Abbreviation Dialog item type
BUTTON B Button

CHECK c Check box

EDIT E Editable text field
ICON I Icon

LINE L Line divider

MENU M Pop-up menu
PICTURE P Picture

RADIO R Radio button
SCROLL S Scrolling-entries item
TEXT T Static text field
USER U User item (custom control)

Control items

Buttons, check boxes, radio buttons, and user items (custom controls) are control items. Control
items are managed by the Macintosh User Interface Toolbox Control Manager. A control item can
work like a switch (off and on), or a volume control (range). The control is set up with minimum,
maximum, and current values. Users can adjust the control, changing the current value. A control
has an indicator of some sort to show the current value. A standard control that works like a
switch has only two values: 0 and 1. Check boxes and radio buttons are examples.

Another feature of controls is that they can be enabled or disabled. This capability is referred to
as setting a control’s highlighting, or its active state. An inactive control cannot be changed by the
user—it appears to be dimmed and usually indicates no value.

38 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

A dialog box routine

The messages below create the dialog box shown in Figure 4-3. The routine sets the cursor type,
disables the Bear Cal menu, and sets up the title, fields, clusters, and buttons for the dialog box. It
then returns control of the cursor to MWS.

MWSPut ("C002", "4")

.
’

MWSPut ("D001", "4;F;Bear Cal Reservation System;16;F;30,50,482,335");

MWSPut ("DOO9", "4;
MWSPut ("DOOS", "4;
MWSPut ("DO0O9", "4;
MWSPut ("D0OO9", "4;
MWSPut ("D0O0O9"™, "4;
MWSPut ("D0O0O9", "4;
MWSPut ("D0O0O9", "4;
MWSPut ("D0O0O9", "4;
MWSPut ("DO0O9", "4;
MWSPut ("DO0O9", "4;
MWSPut ("D00O9", "4;
MWSPut ("DO0O9S", "4;
MWSPut ("DO09", "4;
MWSPut ("D009", "4;
MWSPut ("D0O0O9", "4;
MWSPut ("D0OOS"™, "4;
MWSPut ("D00O9", "4;
MWSPut ("D009", "4;
MWSPut ("D0O09", "4;
MWSPut ("D009", "4;
MWSPut ("D009", "4;
MWSPut (*DO0O9", "4;
MWSPut ("D0O0O9", "4;
MWSPut ("D0O0O9™, "4;
MWSPut ("D0O09"™, "4;
MWSPut ("DOOS", "4;
MWSPut ("D0O0O9S"™, "4;
MWSPut ("DO09"™, "4;
MWSPut ("D0O09", "4;
MWSPut ("DO0O9™, "4;
MWSPut ("D0OO9", "4;
MWSPut ("D009", "4;
MWSPut ("DO0OS", "4;
MWSPut ("D009", "4;
MWSPut ("DOO9", *4;
MWSPut ("D0O09", "4;
MWSPut ("DOO9", "4;
MWSPut ("D0O0O9"™, "4;
MWSPut ("DOO9", "4;
MWSPut ("D0O0O7", "4"™)
MWSPut ("CO01"™,"");

XX VO3 OOOO
e ~e ~e - - e e ~ - - ~ AT

.
’

380,10,440,30; OK; F; T; 1%);
380,40,440,60; Cancel; T; F; 0");
10,10,110,26; Passenger:");
115,10,360,26; F; 1; T;"):
10,35,110,51; Destination:");
115,35,360,51; F; 0; T:; A; (™)
10,60,110,76; Depart:");
115,60,185,76; F; 0; T;"):

; 205,60,285,76; Return:");

290,60,360,76; F; 0; T;");
12,85;440,85;");

10,95,110,111; Airline:");
115,95,330,111; F; 0; T:™);
10,120,110,136; Time:");
1345,1120,1400,1136; Hidden:");
115,120,330,136; F; 0; T;"™);
1405,1120,1440,1136; F; 0; T;™);
10,145,110,161; Gate:");
115,145,330,161; F; 0; T;"™);
1235,1145,1295,1161; hidden:");
1300,1145,1440,1161; F; 0; T;™);
12,170;440,170;");
370,180,440,196; Payment:");
375,240;101;F;F;1");
375,200;100;F;F;1™);
360,175;360,275;");
10,180,110,196; Incidentals:");
15,200,110,216; Smoking; T; T; 2; 0; 0;");
15,220,110,236; Dinner; T; T; 2; 0; 0;™);
15,240,110,256; Movie; T; F; 2; 0; 0;™);
15,260,110,276; Rental Car; T; T; 2; 0; 0;");
130,180,230,196; Class:");

135,200,230,216; First; T; F; 3; 0; 0:");
135,220,230,236; Business; T; F; 3; 0; 0;"):
135,240,230,256; Coach; T; F; 3; 0; 1;");
250,180,350,196; Seating:");
255,200,350,216; Window; T; F; 4;
255,220,350,236; Center; T; . F; 4;
255,240,350,256; Aisle; T; F; 4; O;

;0™
BT AN]

")

0
0

~. ~e

Production Draft (1989 june 19) CHAPTER 4 Using Diredors 39

APPLE CONFIDENTIAL

® Figure 43 Reservations dialog display with clusters

Bear Cal Resetvation System-

Passenger: " _ | (ox)
Destination: | — | (Cancel)
Depart: : Return: l l

firline: | |
Time: I _ |

Gate: | - |

Incidentals: Class: Seating:

[0 smoking QOFirst O Window

[Dinner @ Coach @® Center

O Movie O Business O Risle

[Rental Car

The following line of code is the first command using the Dialog Director:

MWSPut ("DOO1", "4;F;Bear Cal Reservation System;16;F;30,50,482,335");

D is the class for the Dialog Director.

001 is the identifier for the command New Dialog.

4 is the alias for this particular dialog box.

F is a flag indicating that the dialog box is not modal.

Bear Cal Reservation System is the title of the dialog window.

16 signifies the shape of the window, as explained in “The Window Director,” later in this
chapter.

F is a flag that denotes that the dialog box does not appear when it is created. The command
Show Dialog (D007) actually draws the dialog box.

30, 50, 482, 335 specifies in global screen coordinates the dimensions of the dialog
box.

40 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

Clustering items

Clustering allows dialog box items to be grouped together. For example, if you cluster radio
buttons, then only one button at a time can be selected. When the user clicks a button that is not
selected, it becomes selected and the other one is deselected. You specify an item’s cluster in the
Add Item (D009) command. Giving an item a cluster identifier of zero (0) indicates that it does not
belong to a cluster.

Here is an Add Item message that assigns the item to a cluster:

MWSPut (*D0O09","4; C; 15,220,110,236; Dinner; T; T; 2; 0; 0;");

® D is the class for Dialog Director.

009 is the identifier for the command Add Item.

4 is the alias for this dialog box.

C is an abbreviation for the item type, CHECK, which adds a check box to the list.

15, 220, 110, 236 specifies in local window coordinates the rectangle in which the
item will be drawn.

Dinner is the title that will appear to the right of the control item.
The active flag is true (T), enabling the check box for the user to check.
The report flag is true (T), so an event will be generated when the user clicks in the control.

2 is the cluster identifier. Since the identifier is not 0, the item is part of the cluster with other
items that have a 2 identifier in this position.

® The oversee parameter is 0. This value indicates that the item does not oversee a cluster.
Overseeing is explained fully in the MacWorkStation Programmer's Reference.

= Valid values for the last item are 0 and 1. The 0 means that the check box is not checked.

The following lines illustrate the use of clusters in dialog boxes.

MWSPut ("D0O09","4; T; 130,180,230,196; Class:");
MWSPut ("D0O09", "4; R; 135,200,230,216; First; T; F; 3; 0; 0;™);
MWSPut ("D0O09","4; R; 135,220,230,236; Business; T; F; 3; 0; 0;™);
MWSPut ("DOO9","4; R; 135,240,230,256; Coach; T; F; 3; 0; 1;");

This series of messages sets up a text label, Class:, for three radio buttons. The parameter
immediately after each of the class titles—First, Business,and Coach—of the three radio
buttons is the active flag. This flag is true for each button, indicating that the button is enabled
when the dialog box is displayed. Notice that all of the buttons have the same cluster identifier (3).
When the user dicks one of the radio buttons, it will be selected and given a value of 1. Because the
radio buttons are a cluster, the other items will be deselected and their values set to zero (0).
Coach is the default for this cluster, which is set by the last parameter.

Production Draft (1989 June 19) CHAPTER 4 Using Directors

41

~ APPLE CONFIDENTIAL

The File Director f

The File Director controls the exchange of information between the client application and files on
the Macintosh computer. The File Director allows the client application to create and open files and
access the information they contain. Your application can also delete and rename files, open and
close either fork of a Macintosh file, read and write data, and get or set information about the files.
Your application may lock specific byte ranges within a file to prevent changes, and can specify the
permission level for files on AppleShare® volumes. ‘

The client application can get information about volumes, including the volume name, free
blocks available, and the number of files on the volume. It can also get or set access privileges for
directories of AppleShare volumes.

A Macintosh file consists of two file forks, called the data fork and the resource fork. When a
MacWorkStation file is created, both forks are created, each with a logical size of zero (0). When a file
is deleted, both forks are deleted. However, the forks behave as individual files in all other respects.

A fork is a finite sequence of numbered bytes. The first byte is byte zero (0), the second byte is
one (1), and so on, up to the logical end-of-file. The current position, or mark, is the number of the
next byte that will be written or read. The mark automatically moves forward one position for
every byte read or written. If the mark reaches the logical end-of-file while writing, both the mark
and the logical end-of-file are moved forward one position for every byte written to the file. The
value of the mark can never exceed the value of the logical end-of-file.

Normally, client applications will operate only on the data fork. The data fork is often used for
storing ASCII text, such as that generated by MWS in text and list windows. The resource fork is
used to store resources. Ordinarily, you would not change individual bytes of the resource fork. You

would use the File Director to copy an entire resource fork.

This routine first creates an Excel text file. It then generates data that is in turn written to the
file's data fork. The data is then read back in and written to the Flight Schedule window.
MWSPut ("F001", "Schedule;XCEL; TEXT") ; /* Create new file */
MWSPut ("F004", "1;Schedule"); /* Open file data fork */
WriteFlight();

MWSPut ("FOO6","1") ; /* Close file data fork */
Here is an explanation of the first message:

® F is the class, indicating the File Director.

® 001 isthe identifier for the command Create File/Folder.

® Schedule is the filename.

B XCEL is the four-character creator.

®m TEXT is the four-character file type.

42 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

The Graphics Director

The Graphics Director is used to create images in graphics windows. With the Graphics Director, the
client application can draw lines, geometric shapes, text, icons, and complicated pictures.

A MacWorkStation graphics window “remembers” what has been drawn, so the client
application does not have to redraw the image should its window be hidden temporarily.

Coordinates in graphics windows

Many of the graphics commands require values to specify where to draw. These values represent
points or rectangles in the coordinates of the window’s drawing plane. The left-top comer of the
window’s drawing plane is the point (0,0). The drawing plane is limited to the size of one U.S. letter-
sized printed page. This page translates to a drawing rectangle 576 pixels wide by 720 pixels tall.

The window’s content area is the visible area of the window where drawing occurs. When a
graphics window is created, the left-top corner of the content area is set to the left-top corner of
the drawing plane (0,0). When a window is scrolled, the left-top comner of the content area changes,
while the coordinate system of the drawing plane remains the same. Because the graphics
commands are specified in the coordinate system of the drawing plane, the client application
doesn't have to deal with scrolling; MWS handles it.

On windows without scroll bars, the coordinates of the window’s content area always coincide
with the window’s drawing plane. Because the user will not be able to scroll the window, you
should be careful not to draw outside the window’s content area.

Production Draft (1989 June 19) CHAPTER 4 Using Diredtors

43

APPLE CONFIDENTIAL

Graphics commands

This listing illustrate the use of several graphics commands. They create the “Welcome to Bear Cal
Airlines” display shown in Figure 4-4.

MWSPut ("WOO1™,"8;G;;2;F;F;5,25,507,340;0;0") ;
MWSPut ("G024", "8;40,40;1500") ;

MWSPut ("G024", "8;380,40;1000") ;

MWSPut ("GO14", "8;Geneva") ;

MWSPut ("GO15", "8;18");

MWSPut ("GO16", "8;B") ;

MWSPut ("GO08™, "8;105,20") ;

MWSPut ("G018", "8;Welcome to Bear Cal Airlines™);
MWSPut ("WO03", "8") ;

® Figure 44 Screen display created with the Graphics Director

& Flle Edit Bear Cal Exec Modules
Welcome to Bear Cal Airlines

=

Here is a detailed description of the first two Graphics Director messages.

MWSPut ("G024","8;40,40;1500") ;

G is the class of the Graphics Director.

024 is the identifier for the Draw Picture command.

8 is the window alias.

40, 40 are the coordinates for the left-top corner of the picture.

1500 is the resource ID of the 'PICT" resource used for the graphics. This 'PICT' resource
contains the airplanes and some of the clouds.

44 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

\

APPLE CONFIDENTIAL

MWSPut ("G024","8;380,40;1000");

® 380,40 are the coordinates for the left-top corner of the picture.

® 1000 is the resource ID for this 'PICT. This 'PICT' contains the graphic of the clouds with
the sun.

The last four lines in the example create the banner “Welcome to Bear Cal Airlines.” Let’s look at each
line in detail.

MWSPut ("GO15","8;18");

® 015 is the command to Set Text Size.

®m 8 is the alias for the window.

® 18 is the point size of the text.

MWSPut ("GOlé","8;B");

m 016 is the Set Text Style command.
m 8 is the alias for the window.
® B is the string name for the style, in this case boldface.

MWSPut ("G008"™, "8;105,20") ;

® 008 is the Set Pen Location command.
® 105,20 are the coordinates for the left-top corner of the banner.
MWSPut ("G018", "8;Welcome to Bear Cal Airlines");

® 018 is the Draw Text command. It draws text in the window with the alias of 8. The text is
Welcome to Bear Cal Airlines.

Production Draft (1989 June 19) CHAPTER 4 Using Directors

45

APPLE CONFIDENTIAL

The List Director =

The List Director allows the client application to display textual data in a variety of list formats, and S
provides editing facilities for the user. The client application can use list windows to present

information in tables or spreadsheet format. The list might be a collection of items the user can

choose from, or information the user is looking for. Figure 4-5 shows an example of a list window.

® Figure 4-5 Flight schedule created with the List Director

& File Edit Bear Cal Exec Modules

FLIGHT SCHEDULE

Time

1:50 am
10:20 am
$:35 am
1130 am
2:50 pm
4:43 pm
7:50 am
1:30 pm

Both the client application and the user can add, delete, and change the contents of individual
records and fields in the list. The user can select, cut, copy, and paste records and fields.

The client application can set titles over list columns, set tab stops for the columns, and choose
display options such as fonts, font sizes, and grid lines. The user can choose the font and size of
text in the list window, if the application provides the standard Font and Size menus.

The list window can be printed or saved to a document. The document is created as a
Microsoft Excel-text-formatted file. The contents of the file are ASCII text with fields separated
by horizontal tab characters (ASCII $09), and with records separated by carriage returns (ASCII $0D).
This format is compatible with most spreadsheet and database programs.

Here is a routine that creates a new flight schedule window, like the one in Figure 4-5, and uses
List Director commands to set appropriate tabs and titles:

MWSPut ("WOO1", "9;L;FLIGHT SCHEDULE;O0;F;F;20,75,492,315;0;0");

MWSPut ("LO19","9;1,200;2,350"); /* Tab breaks */
MWSPut ("L016","9;Airline\tTime\tGate");

46 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

The first message is a Window Director command that creates a new list window called FLIGHT
SCHEDULE with the alias of 9.

L indicates that the kind of window is List.
0 specifies the shape of the window.

The first F means that the close box flag is false, so there is no close box in the leftmost
corner of the title bar.

The second F means that the visible flag is false, so the window is initially invisible.
The coordinates for the location of the window are 20, 75, 492, 315.
0 indicates that the window uses the default menu bar.

The cursor parameter is 0, indicating that a crossbar cursor will appear, which is the default for
List windows.

The next two messages are List Director commands.

The command L019 is Set Tab Stops. In this case, the tab stop coordinates are 200 for
tabstop 1 and 350 fortabstop 2.

Command L1016 is Set Headings. It allows the client application to place titles above the
columns in the window. In this case, the titles are Airline, Time,and Gate.

Production Draft (1989 June 19) CHAPTER 4 Using Directors

47

APPLE CONFIDENTIAL

The Menu Director

The Menu Director lets you create menus. In Macintosh applications, menu titles appear across the
top of the screen in the menu bar. The Macintosh user simply positions the cursor over a menu title
in the menu bar and presses the mouse button. The menu then appears, displaying the list of menu
items. As long as the mouse button is held down, the menu is displayed. Dragging the mouse over
the menu items causes each item to be highlighted in turn. If the mouse button is released over an
item, that item is “chosen.” ‘

The client application can instruct MWS to display any of the standard Macintosh menus: the
File, Edit, Font, Size, Search, and Display menus. The Apple menu is always displayed. The client
application can also display menus it defines either through commands or as resources, including
hierarchical and color menus. To add menus containing commands unique to your application, you
can send strings describing the titles of the menus and their items. Figure 4-6 shows a sample
custom menu. You can also use menus that are stored as resources in the MWS document.

MWS manages all the menu items (commands) that the user chooses from the standard menus.
However, when the user chooses an item from a client application menu, the selection is sent to the
client application as an event by MWS. '

® Figure 4-6 Pull-down menu example

mlont %R

Show Flight Schedule XF

Hide Log %L

About Bear Cal %A

The following messages create the menu in Figure 4-6.

MWSPut ("M0O4", "0;Bear Cal,l,Reservations/R,Show Flight Schedule/F, (-,"):
MWSPut ("MO06","0;1;Hide Log/L, (-, About Bear Cal/A");

B M js the class for the Menu Director.

® 004 is the identifier for the Add Menus to Menu Bar command.

® Zero (0) is the alias for the default menu bar.

® FILE and EDIT are keywords for standard menus.

® Bear Cal, inthe second command, is a custom menu name.

® The alias for this particular menu is 1.

(]

Reservations and Show Flight Schedule are the first menu items listed in the
Bear Cal menu. The parenthesis and hyphen in the list will display a disabled, dashed line after
the menu items. The Command-key equivalents for the menu items are /R, /F, /L,and /A

48 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

® MOO6 is the Append Items to Menu command. This command adds the Hide Log and
About Bear Cal items to the menu. The Command-key equivalents for these menu
items are /L,and /A. Another disabled, dashed line is displayed in the menu.

Consider this message:

MWSPut ("MOO8","0;1;1");

This Menu Director command enables a menu item so that it can be selected by the user.
® 008 is the Enable Item command.

m Zero (0) refers to the default menu bar, the first 1 refers to the Bear Cal menu, and second 1
is the item to enable.

If the item was already enabled, Enable Item does nothing.

The Delete Menu From Menu Bar (M0 05) command allows your client application to delete
from the menu bar all menus except the Apple menu. You can append items to a menu by using
Append Items to Menu (M0 0 6). You might also want to add a check mark to the left of a menu
item’s text, to denote the status of an item or of the mode it controls. You can add a check mark
with the Check Item and Exclusively Check Item commands. See the MacWorkStation
Programmer’s Reference for a complete discussion of each command.

The Process Director

The Process Director handles program control and administration. Such tasks include protocol
handshaking, getting machine and software versions, setting user wait states, and quitting the
Macintosh application.

The following message sends the Host Online (P001) command:

MWSPut ("POO1","");

The client application must send this command at the beginning of each session in response to the
MacWorkStation Online (P25 6) event. The MacWorkStation Online event is sent after the MWS
document is opened and its CCL script logs on to the client application.

The Text Director

The Text Director handles the contents of text windows. It allows the user to view, scroll, edit, save, and print
text windows. The client application may call on the Text Director to transfer text to and from a text window,
or to alter the window display. It can select a specific range of text; locate text; specify mixed fonts, font sizes,
and styles; and find out text characteristics. Text windows can hold up to 32K of text.

Production Draft (1989 June 19) CHAPTER 4 Using Directors 49

APPLE CONFIDENTIAL

The Window Director o

The Window Director lets the client application create and manipulate windows on the Macintosh
computer screen. Through other MacWorkStation directors, text and graphic information can be
exchanged between the dlient application and the user. A window’s contents can be retrieved from
or saved to Macintosh documents in formats accepted by other Macintosh applications.

When a window is created, it is assigned a window kind that determines which MWS director
will control it. MWS supports graphics, text, and list windows. Also, a client application can create
windows by using parameters stored in the "WIND' resource.

Window kinds

The window kind specifies which MacWorkStation director is responsible for the contents of the
window. When the client application creates a window, the window kind is specified as a keyword
parameter. The client application then manipulates the contents of the window by making calls to
the corresponding director. A window’s kind cannot be changed. _

For example, the client application creates a graphics window by specifying the window kind as
GRAPHICS. Then the client application makes calls to the Graphics Director to draw graphics into
the window.

The window kind also specifies the type of Macintosh document used when saving the
contents of the window. MWS supports file formats for three widely used applications: MacDraw,
MacWrite, and Microsoft Excel. i

Table 4-3 lists the keywords for the window kinds, their corresponding document kinds, and R
the directors that manage the windows. The creator and type are Macintosh file components,
described in “File Director,” in Chapter 2 of the MacWorkStation Programmer’s Reference.

® Table 43 Window kinds

Keyword Abbreviation Document kind Creator Type Director
GRAPHICS G MacDraw MDRW PICT Graphics Director
LIST L Excel Text XCEL TEXT List Director
TEXT T MacWrite Text MACA TEXT Text Director
RESGRAPHICS RG MacDraw MDRW PICT Graphics Director
RESLIST RL Excel Text XCEL TEXT List Director
RESTEXT RT MacWrite Text ~ MACA TEXT Text Director

If the window kind is RESLIST, RESPICT, or RESTEXT, then MWS looks for a "WIND'
resource in the document. You can use this "WIND' resource to specify the window’s title, shape,
size, whether it has a closebox, and whether it is visible.

50 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

Window shapes

Windows can have different shapes, sizes, controls, and characteristics. A window may or may not
have a title bar. It may have a close box where the user clicks to close the window. It may also have
a zoom box, where the user clicks to zoom the window. You specify the window shape, size, title,
and other characteristics when you create it. Figure 4-7 shows the various shapes of windows.

® Figure 4-7 Window shapes

Shape =1 Shape = 2 Shape =3
DBoxProc *PainDBoxProc* *AltDBoxProc*

O=Title == == Title =1z 0= Title =H=
——
Shape = 4 Shape = 12 Shape = 16
"No GrowDocProc* *ZoomNoGrow* *RDocProc’

The default diameter of the curvature of a rounded-corner window is 16 pixels. Smaller and greater
curvatures can be specified, ranging from 17 to 23 pixels.

Production Draft (1989 June 19) CHAPTER 4 Using Directors

51

APPLE CONFIDENTIAL

Positioning windows

When you create a window, you give the rectangular coordinates where the window will be drawn N
on the Macintosh screen. The left-top comer of the Macintosh screen is the point (0,0). As with

other applications, MWS allows several windows to be open at the same time. The frontmost

window is the only active window at any given time. The active window is the one in which the

user is currently working. Windows can be on top of other windows, so that any window may

partially or completely obscure the others. Windows with title bars can be moved by the user in

order to see hidden windows. If the user clicks in a window, it becomes the frontmost, active

window.

Window options

Window management is normally handled by MWS. By using the standard menus, the client
application lets the user create, open, close, save, and print windows, edit text, and change fonts.
However, your application can control this behavior by setting the window options. You also use
window options to have MWS inform the client application when a user has activated, deactivated,
moved, or resized a window.

MacWorkStation window options can be set or cleared for an existing window or as defaults
for new windows as they are created. The window options are listed in Table 4-5.

52 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

® Table 44 Window options

APPLE CONFIDENTIAL

(; Option

Code Default Description
All 0 T TRUE: All window options are TRUE.
FALSE: All window options are FALSE.
Saveable 1 T TRUE: A user can save the contents of the window to disk.
FALSE: A user cannot save the contents of the window.
Printable 2 T TRUE: A user can print the contents of the window.
FALSE: A user cannot print the contents of the window.
Fonts 3 T TRUE: A user can change the font and point size of text.
FALSE: A user cannot change the font and point size.
Editable 4 T TRUE: A user can edit the contents of the window, if the Edit
menu is installed.
FALSE: A user cannot edit the contents of the window.
Copyable 5 T TRUE: A user can copy the contents of the window if the
Edit menu is installed.
FALSE: A user cannot copy the contents of the window.
Selectable 6 T TRUE: A user can select part of the window’s contents.
FALSE: A user cannot select part of the window’s contents,
only the window’s entire contents.
Closeable 7 T TRUE: A user can close the window by choosing Close from
the File menu, or dlicking in the window’s close box.
: { FALSE: A user cannot close the window.
- Dismiss 8 T TRUE: MWS closes windows without sending an event.
. FALSE: MWS sends an event when the user chooses Close
from the File menu, or clicks in the window’s close box.
Activate 9 F TRUE: MWS sends an event when a window is activated.
FALSE: MWS does not send the event.
Deactivate 10 T TRUE: MWS sends an event when a window is deactivated.
FALSE: MWS does not send the event.
Move 11 F TRUE: MWS sends an event when a window is moved.
FALSE: MWS does not send the event.
Resize 12 F TRUE: MWS sends an event when a window is resized.
FALSE: MWS does not send the event.
Mixed Styles 13 F TRUE: A user can have mixed text characteristics in the

window.
FALSE: A user cannot have mixed text characteristics. All text
must be the same font, point size, text style, and color.

Production Draft (1989 June 19) CHAPTER 4 Using Directors

53

APPLE CONFIDENTIAL

Figure 4-8 shows a list window created with the Window Director.

—
® Figure 4-8 List window created with the Window Director
R Possenger List IR
Passenger Name Destination 1O
|
< =
The following message creates the window shown in Figure 4-8:
MWSPut ("WO01","7;L;Passenger List;0;F;F;20,75,492,315;0;0");
m W is the class for the Window Director. B
B 001 is the identifier for the command New Window. k
® 7 is the alias of this window.
® L means that this is a list window.
B Passenger List isthe title of the window.
m 0 indicates the shape of the window, as shown in Figure 4-7.
® Thefirst F is the close box flag. In this case it is false, so there is no close box in the window.
m Thenext F is the visible flag, which in this case is false, so the window is invisible until the
Show Window command makes it visible.
® 20, 75, 492, 315 are the coordinates for the location of the window.
® 0 specifies which menu bar should be shown when the window is the frontmost window.
® The next parameter, 0, specifies which cursor is displayed when the mouse pointer is over the
content region of the active window. In this case, the cursor is the crossbar, which is the
default.
This message calls the Toss Window (W0 02) command to dispose of the window created in the
previous example:
MWSPut ("W002", "7") ;
W

54 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

The Exec Director

The Exec Director allows you to use executable code modules (exec modules). You can create an exec
module to perform operations unique to your client application. An exec module is stored in the
MWS document as a 'CODE' resource. (See MacWorkStation Programmer’s Reference for more
information about exec modules.) These messages load and invoke an exec module:

MWSPut ("X001","1;");
MWSPut ("X003","1;");

The first command, Load Exec Module (x001), places the exec module’s code in the Macintosh
computer's memory. The Invoke Exec Module (%0 03) command executes the module’s code. An
exec module does not start running until it is invoked. An exec module remains in memory until it is
unloaded. This message unloads the exec module:

MWSPut ("X002","1;");

Production Draft (1989 June 19) CHAPTER 4 Using Directors 55

Appendix

APPLE CONFIDENTIAL

“Bear Cal” Program Source Code

THIS APPENDIX CONTAINS the source code for “Bear Cal,” a
demonstration client application written in MPW C 3.0. Bear Cal is a fictional
airline. This client application handles the airline’s reservations. ® -

Production Draft (1989 June 19)

57

APPLE CONFIDENTIAL

/i*****************tt**t*t***t*t********i**i**t****ﬁ*********tt***t*tﬁ***

* Bear Cal Demo *
* *
* "Bear Cal" is a simple client application that uses many of the >
* features of MWS. A version of this program is supplied on the *
* MacWorkStation Samples Disk, and may have more recent changes. *
* *

***************tt*******t****t***t***tt*!*it*!****t**it***t**tt*ti**t**tt/

#include <stdio.h>
#define false O
#define true 1

static int AllDone = false;
static int ExecOpen = false;
static int DlgRes = false;

static int OnPayment = false;
static int SecondPayment = false;
static int OnShow = true;

static int OnFlight = false;

static char *FlightStr(] = {
"American Airlines\tl:50 am\t37\r",
"Bear Cal Airlines\tl10:20 am\tl\r",
"Bear Cal Airlines\t5:35 am\td4\r",
"Continental Airlines\tl11:50 am\tl2\r",
"Continental Airlines\t2:50 pm\tl3\r",
"Eastern Airlines\t4:43 pm\tl1l9\r",
"Republic Airlines\t7:50 am\t22\r",
"Republic Airlines\tl:30 pm\t23\r",
"United Airlines\t10:50 am\tl4\r"
}:

58 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE

static char *Flightl[] = {

"American Airlines",
"Bear Cal Airlines",
"Bear Cal Airlines",
"Continental Airlines",
"Continental Airlines"”,
"Eastern Airlines",
"Republic Airlines™,
"Republic Airlines",
"United Airlines"

1

static char *Flight2(] = {

"1:50 am",
"10:20 am",
"5:35 am",
"11:50 am",
"2:50 pm",
"4:43 pm",
“7:50 am",
"1:30 pm",
"10:50 am"
}i

static char *Flight3[] = {

"3qw,
"1"'
"4"'
"i2w,
"13w,
"190"
n22n,
"23n,
"14“
}:

Production Draft (1989 June 19)

CONFIDENTIAL

APPENDIX Program Source Code 59

/i*****t***i*i*****t*****t****ti*********t*******t**tttt*t******tt*t**

*

i’l*i‘t*******'ﬁ*‘.*f’*******************iﬁi******i'i******************iti/

APPLE CONFIDENTIAL

The Main event loop of the program.

main ()

60

char EvtClass;

int EvtID;
char EvtParms[256];

MWSInit();

do {

MWSGet (§EvtClass, &EvtID, EvtParms);
switch(EvtClass) {

case
case
ca;e
case
case
case
case
case
case
case

}

IAI:

lDl:

lFl:

'Gl:

'Ll:

lMl:

lPI:

lT!:

lwl:

lxl:

DoAEvent (EvtID,
break;
DoDEvent (EvtID,
break;
DoFEvent (EvtID,
break;
DoGEvent (EvtID,
break;
DoLEvent (EvtID,
break;
DoMEvent (EvtID,
break;
DoPEvent (EvtID,
break;
DoTEvent (EvtID,
break;
DoWEvent (EvtID,
break;
DoXEvent (EvtID,
break;

} while (!AllDone):;

MWSQuit () ;

MacWork$Station Programmer’s Guide

EvtParms);
EvtParﬁs);
EvtParms);
EvtParms) ;
EvtParms);
EvtParms);
EvtParms);
EvtParms) ;
EvtParms);

EvtParms);

Production Draft (1989 June 19)

*

%

APPLE CONFIDENTIAL

MWSInit ()

/**t*tﬁﬁ***'i**i*'t‘ﬁi’*tttt*!**iﬁﬁi**'*tt***t't*titt**ti*t*t*itf*f*ﬁ"*

* Do anything special to start the program. *
ttt*t**t*tttt***ti’***ti*****'lt**it!*t**tt**t****t****t*itt**titt*tt*'*/
{
printf("%s", "GO BEARCAL\n"); /* Signal to MWS CCL script */
}
MWSQuit ()

/***I’**t*"***t***f****tti****"*i***i****t******i**ii*ﬁ*tt***********'*

* Do anything special to stop the program. *

*****************ti*it****tt**t**t***tt****tit****l**t*******'t**'t'tt/

DoAEvent (EvtID, EvtParms)

int EvtID;
char *EvtParms;

/***********t************’**t****i*ﬁ**'**'t**it**ﬁt*’t*’**t*tt*****tﬁt

* Process Alert Director events. *

******i******************tﬁ****!'***ﬁ**i*****t!****t***t*t*******t****/

Production Draft (1989 June 19) APPENDIX Program Source Code 61

APPLE CONFIDENTIAL

DoDEvent (EvtID, EvtParms)

62

int EvtID;
char *EvtParms;

/t't****ti**i**i**t*******ti*t**ti**ttt*i**i******t***i*i****tttii*tif

* Process Dialog Director events. *
****i****i*t*****i**t****ttfi*tt*ttt*i'**i*******it**i*tt*ii**t**iittt/

char Alias[10];

char ItemNum[10];

char OnStatus;

int Counter = 0, Count;
int StartItem, StartOn;
int i= 0, j= 0;

while (EvtParms([Counter] != ';"') /* Put Alias into array */

Alias[i++] = EvtParms(Counter++];
i-=; /* Put Alias length into i */

StartItem = ++Counter;

while (EvtParms(Counter] != ';"') /* Put ItemNum into array =*/
ItemNum([j++] = EvtParms[Counter++];
==z /* Put ItemNum length into j */

Counter += 3;
StartOn = Counter;
OnStatus = EvtParms([Counter];

if (EvtID == 257) ({ /* Control item pressed */
if ((Alias{0] == '4') || (Alias(0] == '5') ||
(Alias (0] == '6') || (Alias(0] == '8'")) ({
switch(ItemNum(0]) {
case 'l1': /* OK button */

if (Alias[0] == '4"')
ProcOK();

else if (Alias([0] == '5')
AnswerSC() ;

else if (Alias([0] == '6"')
AnswerGCC() ;

break;

MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

case '2':
if (3 > 0) |
switch (ItemNum(1l]) ¢
case '4': ProcGCC();
break;
case '5': ProcSC();
break;
case '8':
if (OnStatus == '1"')
ProcSmoke () ;
else
ProcNotSmoke () ;
break;
case '9':
if (OnStatus == '1")
ProcDinner () ;
else
ProcNoDinner () ;
break;
}
} else {

if (Alias[0] == '4')
ProcCancel () ;

if (Alias([0] == '8')
ProcRentOK() ;

}

break;
case '3':
if (3 > 0) {
switch (ItemNum{1l]})
case '1':
if (OnStatus == '1"')
ProcRent () ;
else
ProcNoRent () ;
break;
} else {

if (Alias(0] == '8')
ProcRentCancel();

}
break;

Production Draft (1989 June 19)

APPENDIX Program Source Code 63

APPLE CONFIDENTIAL

DoFEvent (EvtID, EvtParms)

int EvtID;
char *EvtParms;

/*t!**t**it*.*’tt*l**!*tﬁ****tt*it*tittti*i**ti********ﬁ**t**t*****t**

* Process File Director events. *
ttti*titt*tt**ttt****t!********tti*****t*t*t*t*ﬁittt?ii**ttﬁ*i**#t**t*/

DoGEvent (EvtID, EvtParms)

int EvtID;
char *EvtParms;

/*********'*i******’**'**i*'***'*i*!**'**'fiﬂ******f’t*itti**i**t*t*ft

* Process Graphic Director events. *
*****ii**********!***t*'**#***t**t***t**t*tt*tf*t*'tf**tii**ttt***t*!t/

64 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

DoLEvent (EvtID, EvtParms)

int EvtID;
char *EvtParms;

/*******ti*iti*****t*i*t****i*t**tt*****tt***t***t****it***titi*"tr*t

* Process List Director events. *

LA LA AL LS LS E ALl AR iR SRttt Rl ALl El sty

char RecNum([10];

int recno;
char str[255];
if (EvtID == 256) { /* User double-clicked a record */

if (EvtParms(0] == '7') ({
strncpy (&§RecNum, éEvtParms (2], (strlen(&§EvtParms(2]) - 1));
RemoveFromLog (RecNum) ; /* Removes record from Log */
}
if (EvtParms (0] == '9') { /* Put flight information into
dialog box */
recno = EvtParms(2] - '0' - 1;
MWSPut ("DO11", strcat (strcpy(str,"4;13;"),Flightl(recno]));
MWSPut ("DO11", strcat (strcpy(str,"4;16;"),Flight2(recno]));
MWSPut ("DO11",strcat (strcpy(str,"4;19;"),Flight3[recno]));
OnFlight = !OnFlight;
DisposeFlight();
MWSPut ("M0O07","0;1;2;Show Flight Schedule");

Production Draft (1989 June 19) APPENDIX Program Source Code 65

APPLE CONFIDENTIAL

DoMEvent (EvtID, EvtParms)

int EvtID;
char *EvtParms;

/****t******'ﬁi*i*t*****ti***********ﬁ************i**i**************t*

* Process Menu Director events. *
*****t******t****t*****i**t****t*itt*i*t*******i***t*tt*t**i***t*tt***/

char MenuBar;

char MenulD;

char Menultem;

int error = false;

MenuBar = EvtParms([0];
MenulID = EvtParms[2];
MenulItem = EvtParms(4];

if ((MenuBar == '0') && (MenuID == 'l1')) {
switch (Menultem) (

case '1':
DoReservations();
break;

case '2':
OnFlight = !OnFlight;
if (OnFlight) {

DoFlightPrep(); /* Get new window */
error=DoFlight (); /* Write to window */
if (terror) {

ShowFlight () ; /* Show flight window */

MWSPut ("M0O07","0;1;2;Hide Flight Schedule");
}
} else {
DisposeFlight();
MWSPut ("M0O07","0;1;2;Show Flight Schedule™);
}
break;

66 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

if

APPLE CONFIDENTIAL

case '4': /* Show and Hide Log */
OnShow = !OnShow;

if (OnShow) {
ShowlLog () ;
MWSPut ("MOO7","0;1;4;Hide Log"):
} else {
Hidelog();
MWSPut ("MOO7","0;1;4;Show Log");
}
break;
case '6':
AboutBearCal();
break;

((MenuBar == '0') && (MenulD == '2')) { /* Load exec module */
if (ExecOpen) {
MWSPut ("X002","1;");
MWSPut ("MOO7","0;2;1;Start Example");
} else {
MWSPut ("X001","1;");
MWSPut ("X003","1;");
MWSPut ("MOO7","0;2;1;Stop Example");
}
ExecOpen = !ExecOpen;

Production Draft (1989 June 19) APPENDIX Program Source Code 67

APPLE CONFIDENTIAL

DoPEvent (EvtID, EvtParms)

int EvtID;
char *EvtParms;

/******t********t********tit**t*t*t***********ti****t**t*t***t*****t*t

* Process Process Director events. *
*******t**********t*****t*****t**ti*tt***i*t*tt**t*tt*ti***ii*tti**i**/

switch (EvtID)

case 256 : Startup();
break;

case 257 : AllDone = true;
break;

case 258 : Quit ();
break}

DoTEvent (EvtID, EvtParms)

int EvtID;
char *EvtParms;

/******************ﬁ************ﬂ****ﬁ**t*l****i**********************

* Process Text Director events. *
**********t*************ti****'t********t**i**t**********'***tii*t***t[

68 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

DoWEvent (EvtID, EvtParms)

int EvtID;
char *EvtParms;

/******tt***i**i**i***’**!tt**t***it*t*f**i****i*tt*****ﬁt***ttﬁt*i*t*

* Process Window Director events. *

t*i**i***ﬂ*t’l***it***i*ii*i*i**i****f*'R'.!'*****i’i****t****'****iii***i/

DoSEvent (EvtID, EvtParms)

int EvtID;
char *EvtParms;

/****t*i******i***t**t*******fi***i*!**t*****i****i**it*******'i***t'kt

* Process Exec Director events. *

*******i'l‘*i*t*t******************tt***i****ii***ﬁ*'*'*t*f’k*****t*fittt,

Production Draft (1989 June 19) APPENDIX Program Source Code 69

APPLE CONFIDENTIAL

Startup()

/********f*'****’t******i*******t**ﬁ*******t******f*'***t******t****ﬁt*

* This routine is called once at the start of the program. *
* It sets up the menu bar, splash screen graphics, *
* Passenger Log window, the Meal Selection Dialog, *
* and the Special Meal window. *

*******i*****’****ﬁ*******************’**'**ﬁ**************i********i***/

MWSPut ("POO1","");

MWSPut ("PO13","F;:1%);

MWSPut ("MOO1"™, "0");

MWSPut (“*M004"™, "0;FILE;EDIT");

MWSPut ("M0O0O4","0;Bear Cal,1l,Reservations/R,Show Flight Schedule/F, (-,");

MWSPut ("M006", "0;1;Hide Log/L, (-,About Bear Cal/A");

MWSPut ("M004", "0;Exec Modules,2,Start Example");

MWSPut ("M0OO3", "0") ;

MWSPut ("WOO1","7;L;Passenger List;0;F;F;20,75,492,315;0;0");

MWSPut ("LO19","7;1,200;2,350"); /* Tab breaks */

MWSPut ("LO15","7;T;4"%); /* Draws Horizontal grid
lines in Log */

MWSPut ("LOl16é","7;Passenger Name\tDestination\tDeparture Date");

AboutBearCal();

MWSPut ("D0O1","3;T;Dinner;3;F;106,82,406,282"); ;
MWSPut ("DO0O9","3;T;20,20,280,45;Please Choose A Meal:"); R
MWSPut ("D0O0O9","3;R;30,60,150,80;Chicken Dinner;T;F;1;0;1");

MWSPut (*D009","3;R;30,90,150,110;Fish Dinner;T;F;1;0;0");

MWSPut ("D009","3;R;30,120,150,140;Special Meal;T;T;1;0;0");

MWSPut ("DO09", "3;B;220, 60,270,85;0K; T;F;2");

MWSPut ("D0OO9","3;B;220,120,270,145;Cancel;T;F;2");

MWSPut ("M0OO1", "2");

MWSPut ("MOO4","2;EDIT;FONT;SIZE");

MWSPut ("W001", "3;T;Special Meal;0;T;F;50,50,462,314;2;1");
MWSPut ("T004","3;12");

MWSPut ("T003", "3;Chicago");

MWSPut ("TOO0S", "3;Bold");

MWSPut ("WO10","3;F;8");

ShowLog () ;

70 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

AboutBearcCal ()

/**t***ii*t******t*i*i*i**i*t***i***ttittit******t**t**'k****i*!t**t***

* This routine supplies the calls to set-up the graphics used in *

* the AboutBearCal graphics window. *
(222228222222 22222222 X232 X222 222222222222 222222222 2X22222Z22Z222X XX RX2 X X2

MWSPut ("C004","");

MWSPut ("wWO0O1","8;G;;2;F;F;5,25,507,340;0;0");
MWSPut ("G024","8;40,40;1500");

MWSPut ("G024"™, "8;380,40;1000");

MWSPut ("G014", "8;Geneva");

MWSPut ("GO15","8;18");

MWSPut ("GO16"™,"8;B");

MWSPut ("G0O0O8"™, "8;105,20");

MWSPut ("G018","8;Welcome to Bear Cal Airlines");

MWSPut ("WO03","8");
sleep(10);

MWSPut ("W002","8") ;
MWSPut ("CO03", "n) ;

DoFlightPrep()

/********************i'***t*'k*'l"k**'l'**'k'l******i*******t*t*i****t***t****

* This routine gets a new flight schedule window and sets *

* appropriate tabs and titles. *
(22228 AS R 222222 RRR2R22 22l 222t i A2 X2 X222 222222 R R 3

MWSPut ("W0O1", "9;L; FLIGHT SCHEDULE;O;F;F;20,75,492,315;0;0");

MWSPut ("L0O19","9;1,200;2,350"); /* Tab breaks */
MWSPut ("L016","9;Airline\tTime\tGate");

Production Draft (1989 June 19) APPENDIX Program Source Code 71

APPLE CONFIDENTIAL

DoFlight ()

/*******t*".**'******i*t*t***i*tt**t*ﬁ***t*"'ii***i****it*i**i*****t**

* This routine first creates an EXCEL file, then generates data *
* that is then written to the file. The file name is 'Schedule’. *

L2222 2222222222222 R 22222 2222222222 2222222222222 R 2222222222222t 2 2]

int error = false;
MWSPut ("F001", "Schedule; XCEL; TEXT") ; /* Create new file */
MWSPut ("F004", "1;Schedule"); /* Open file data fork */

WriteFlight();

MWSPut ("F006™,"1") ; /* Close file data fork */
return(error); '

WriteFlight ()

/********i****'t****t******i************'ﬁ***'l***'**i*t*ttt***ﬁ********

* This routine writes ‘hard-coded' data to a file. *
(22222222222 22222RR22222 222222222222 X2 222222 222222 222222222222 22 X2 2 2 X2 2

int i;
MWSPut ("F010","1;0;F;;"); /* Write data to the file */
for (i=0; 1i<9; ++1i)

MWSPut ("FO11",FlightStr(i]);

MWSPut ("F012","");
MWSPut ("FO16é","1;0"); /* Set file fork mark back to zero */

MWSPut ("LO10","9"); /* Send data to the list window */
for (i=0; 1i<9; ++i)

MWSPut ("LO11",FlightStr(i]);
MWSPut ("LO12",""™);

72 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

ShowFlight ()

/**i**'k***f’*"t***'******tt****f*?t"’*****tt*******tit****t’*****t**

* This routine shows the Flight Schedule window. *

I 22 R X2 RS2SRRSR 2222222232222ttt il i iol sl i i ol st itz i a8 2R)

MWSPut ("WO03","9");

DisposeFlight ()

/****ti**tt***!*i*******i*!******t!****i**i**i*****t****t***tt****it*i
* This routine disposes of the Flight Schedule window. *

i*********t*f********t‘k*****!t***********ii*******i**t*i**t*i***/

MWSPut ("W002", "9") ;

Production Draft (1989 June 19) APPENDIX Program Source Code 73

APPLE CONFIDENTIAL

DoReservations ()

/i****"it"*'*!t*!***t*i***it****'i*t****'t********t**t'*******tt*t**

* This routine sets up the Reservations dialog box. *
*It*t'ttt*i'i*'*i**t*tt*t********!*iit******tttt****t**i*tttt**i**t'*t/

MWSPut ("TOO1"™,"3"); /* Cleans Up Previous Passenger Info */
MWSPut ("T010","3;Please Enter Special Meal Instructions ");

MWSPut ("T010","3; (close this window when done): ");

MWSPut ("D014","3;2;1");

MWSPut ("D014","3;3;0");

MWSPut ("D014","3;4;0");

MWSPut ("MOO9"," 1;1;1%);

if (DlgRes)

MWSPut ("D0O06"™,"4; ") ; /* Show the hidden dialog */
else {
D1gRes = true; /* Create the dialog */

MWSPut ("C002","™4");
MWSPut ("D001","4;F;Bear Cal Reservation System;16;F;30,50,482,335");
MWSPut ("DOO9","4; B; 380,10,440,30; OK; F; T; 1");

MWSPut ("D0O0OS", "4; B; 380,40,440,60; Cancel; T; F; 0");:
MWSPut ("DOOS","4; T; 10,10,110,26; Passenger:");
MWSPut ("DOO9S","4; E; 115,10,360,26; F; 1; T:;");

MWSPut ("*DOO9","4; T; 10,35,110,51; Destination:");
MWSPut ("DOOS","4; E; 115,35,360,51; F; 0; T; A; (")
MWSPut ("D0OOS","4; T; 10,60,110,76; Depart:");

MWSPut ("DOOS","4; E; 115,60,185,76; F; 0; T;"™);

MWSPut ("D0OO9","4; T; 205,60,285,76; Return:");

MWSPut ("D009", "4; E; 290,60,360,76; F; 0; T;");

MWSPut ("DO0O9","4; L; 12,85;440,85;");

MWSPut ("D009", "4; T; 10,95,110,111; Airline:");
MWSPut ("D009","4; E; 115,95,330,111; F; 0; T;™);
MWSPut ("D009","4; T; 10,120,110,136; Time:");

MWSPut ("D009","4; T; 1345,1120,1400,1136; Hidden:");
MWSPut ("D009","4; E; 115,120,330,136; F; 0; T;");
MWSPut ("D009","4; E; 1405,1120,1440,1136; F; 0; T;");
MWSPut ("DO0O9", "4; T; 10,145,110,161; Gate:");

MWSPut ("D009","4; E; 115,145,330,161; F; 0; T;"™);
MWSPut (*D009","4; T; 1235,1145,1295,1161; hidden:");
MWSPut ("D009","4; E; 1300,1145,1440,1161; F; 0; T;");
MWSPut ("DO09","4; L; 12,170;440,170;");

MWSPut (*DO09"™,"4; T; 370,180,440,196; Payment:");
MWSPut ("DO09","4; P; 375,240;101;F;F;1");

MWSPut ("D009", "4; P; 375,200;100;F;F;1");

MWSPut ("D009","4; L; 360,175;360,275;");

74 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

MWSPut ("DOO9","4; T; 10,180,110,196; Incidentals:");

MWSPut ("D009"™,"4; C; 15,200,110,216; Smoking; T; T; 2; 0; 0;™);
MWSPut ("DOO9","4; C; 15,220,110,236; Dinner; T; T; 2; 0; 0;");
MWSPut ("D009"™,"4; C; 15,240,110,256; Movie; T; F; 2; 0; 0:;");
MWSPut ("DO0O9","4; C; 15,260,110,276; Rental Car; T; T; 2; 0; 0;");

MWSPut ("DOO9","4; T; 130,180,230,196; Class:");

MWSPut ("D009","4; R; 135,200,230,216; First; T; F; 3; 0; 0;™);
MWSPut ("D0O09","4; R; 135,220,230,236; Business; T; F; 3; 0; 0;");
MWSPut ("D0O0O9","4; R; 135,240,230,256; Coach; T; F; 3; 0; 1;");

MWSPut ("D009","4; T; 250,180,350,196; Seating:");

MWSPut (“D0O09","4; R; 255,200,350,216; Window; T; F; 4; 0; 0;");
MWSPut ("DOO9S"™, "4; R; 255,220,350,236; Center; T; F; 4; 0; 1;");
MWSPut ("DO0O9", "4; R; 255,240,350,256; Aisle; T; F; 4; 0; 0;");

MWSPut ("DOO7™, "4");

MWSPut ("COO01™, "");
) ‘
OnPayment = false;

ProcCancel ()

/***Q**t***i************'k****t***t*****************i***i***t**********

* This routine is called if the user selects 'Cancel' from the *
* Reservations dialog box. It disposes of the Reservations dialog *
* box and enables the Reservations menu item. *

*******it****t‘lt****tt*'i**i******t***t**ti’****t*i******tt*i****i**iit/

MWSPut ("DOO8", "4") ;
MWsSPut ("MOO8"™,"0;1;1");

Production Draft (1989 June 19) APPENDIX Program Source Code 75

APPLE CONFIDENTIAL

ProcOK()

76

/****i*t**t!'t***t*i***t***i**ttt*i*****i**tit**tt*ti**titt*ti**i**t*t

* This routine is called if the user clicks 'OK' in the *
* Reservations dialog box. It checks to see if payment was made *
* the processes the payment. *

****ttt*tt*t*t**t**t*t**t**tti*ti*t*t**!i**t****t*t***it******t***i***/

char EvtClass;

int EvtID;

char EvtParms [256];
int TempLoop = true;

if (OnPayment) {

SendToLog() ; /* Enter passenger info into log */

MWSPut("DOOG",“4“):‘ /* Hide Reservation dialog */

MWSPut (*MOO8","0;1;1"); /* Enable Bear Cal reservation item */
} else ({

MWSPut ("DOO1","9;T;;1;T;50,65,462,275");

MWSPut ("DOO9","9; P; 10,10;101;T;F;1");

MWSPut ("DO0O9","9; P; 343,10;100;T;F;1");

MWSPut ("D009","9; B; 340,170,400,190; Cancel; T; F; 0%);

MWSPut ("D0O09","9;T;10,80,402,140;You have not purchased your tickets yet.");

MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

while (TempLoop) {
MWSGet (&EvtClass, &EvtID, EvtParms);
if (EvtParms[0] == '9') {
if (EvtParms(2]) == '1') { /* Generic Credit Card
selected */
if (EvtParms(6] == '1') {

SendToLog () ;
ProcGCC ()
MWSPut ("DOO5", "9") ;
MWSPut ("D0OO0O8", "4") ;
MWSPut ("M008","0;1;1");
SecondPayment = true;

}
if (EvtParms(2] == '2') ({ /* Super Card selected */
if (EvtParms(6] == '1') {
SendToLog () ;
ProcSC();
MWSPut ("DOOS"™, “9") ;
MWSPut ("D0OO0O8", "4");
MWSPut ("*M008","0;1;1");
SecondPayment = true;

}

if (EvtParms[2] == '3') { /* Cancel selected /
MWSPut ("DOOS*"™, "9") ;
MWSPut ("D008™,"4") ;
MWSPut ("MOO8","0;1;1");

}

TempLoop = false;

ProcsScC()

/***********i*t*"**********t***t*t***t*******i*t"**i'**'****f********

* This routine is called if the user selects the Super Card *
* payment option. It displays a dialog box and copies the *
* Passenger name from the Reservations dialog box into the 'Name' *
* field of the Super Card dialog box. *

******t*t**************t*******t***t*****'ﬁ*i**tt***ttttt*t*t*t**ttt***/

MWSPut ("D002","5;T"); /* Get Super Card dialog */
WaitForResponse(); /* Pass over response */
CopyName (5) ; /* Copy name into SC dialog */

Production Draft (1989 June 19) APPENDIX Program Source Code 77

APPLE CONFIDENTIAL

ProcGCC ()

/*t*****t**tt**ti*t**ti***i****i*******i*t*t****iitt*********'****t**t

* This routine is called if the user selects the Generic Credit *
* Card payment option. It displays a dialog box and copies the *
* Passenger name from the Reservations dialog box into the ‘'Name' *
* field of the GCC dialog box. *

*****i**t***!ﬁ***t*********tt*****tit**t*ttit******t**tit*!t*tt*t**t*i/

MWSPut ("D0O02","6;T"); /* Get GCC dialog */
WaitForResponse() ; /* Pass over response */
CopyName (6) ; /* Copy name into GCC dialog */
}
AnswerScC()

78

/*******ﬁ*************!*******’**it*i***t**t**i****'*****i*****i**t***
* This routine is called when the user has entered the information =*
* reduired in the Super Card dialog box. After it checks the

* payment, the routine displays an authorization number and *
* thanks the user for flying Bear Cal airlines. *

t*t***t*i*i*t********i****t**t***t**t**’t*******t********ttit***i*/

MWSPut ("D009","5;T;10,160,300,176;Authorization Granted (78342)");
sleep(l);
MWSPut ("DOOS", “5") ;

if (SecondPayment)
MWSPut ("M0OO8","0;1;1");

OnPayment = true;
SecondPayment = false;

MacWork$Station Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

AnswerGCC ()

/**ii*i*tiit'***itt*********i*****it*******i*i**t**ii*t******t'*****t*

* This routine is called when the user has entered information *
* required in the GCC dialog box. After it checks the payment, the *
* routine displays an authorization number and thanks the user for *
* flying Bear Cal airlines. *

********i*i***********i*t********ti**i*t*'***tt*i***************t****i/

MWSPut ("D009","6;T;10,160,300,176;Authorization Granted (3459)");
sleep(l);
MWSPut ("DOO5™, "6") ;

if (SecondPayment)
MWSPut ("MOO8"™,"0;1;1");

OnPayment = true;
SecondPayment = false;

ProcSmoke ()

/**************************t*t***********i**************t**********"i

* This routine is called when the user turns on the 'Smoking’ *

* checkbox. The routine displays an alert. *
t********i************itt******************t****t!***i*************t**/

MWSPut ("A002", "F;WARNING: Bear Cal does not allow smoking on flights.");

ProcNotSmoke ()

/***t*ti’*tt**'k*'k******t******t***t**t*******t***t**t*!t*tt*t****i*ttt*

* This routine is called when the user turns off the 'Smoking’ *

* checkbox. The routine displays an alert. *
******f*ti*it***t***i**i*******ti***t*t**i*t*'***tt**tt*f*t*t*t*t***it/

MWSPut ("AQ02", "F; THANK YOU: We are pleased that you will not smoke.");

Production Draft (1989 June 19) APPENDIX Program Source Code 79

APPLE CONFIDENTIAL

ProcRent () P
/***t****f*********t****tti**t**t**t**i**t**t*****t*t***t**i**t****t** P
* This routine is called when the user turns on the 'Car Rental' *
* checkbox. The routine displays a scrolling window of the cars *
* available for rent. *

t*****t*tt*********t****t*****iti*t****t*t***********t**i*t***t*/

MWSPut ("DOO1", "8;F;Rental Options;0;T;100,50,412,300");
MWSPut ("D0O0O9","8;S5;10,10,302,190;T;1;F");

MWSPut ("D0OO9","8; B; 10,200,70,220; OK; F; F; 1™);
MWSPut ("DOO9","8; B; 242,200,302,220; Cancel; T; F; 0");

MWSPut ("DO16","8;1;Economy - Ford Festiva");
MWSPut ("D016", "8;1;Economy - Nissan Sentra");
MWSPut (*D016", "8;1;Economy - Chevrolet Sprint");

MWSPut ("D0l16", "8;1;Compact - Ford Escort");
MWSPut ("DO16","8;1;Compact - Toyocta Corolla");
MWSPut ("DO16","8;1;Compact - Mazda 323");

MWSPut ("DOl16","8;1;MidSize - Ford Taurus");
MWSPut ("DOl16", "8;1;MidSize - Mazda 626");
MWSPut ("DOlé","8;1;MidSize - Chevrolet Cavalier");

MWSPut ("D0O16é","8;1;Luxury - Lincoln Continental"):;
MWSPut ("D016","8;1;Luxury - Acura Legend");
MWSPut ("DO16","8;1;Luxury - Cadillac Seville"):;

MWSPut ("DOl16","8;1;Sport - Ford Mustang GT");
MWSPut ("D016", "8;1;Sport - Nissan 300 ZX");
MWSPut ("D0O16","8;1;Sport - Chevrolet Corvette");

MWSPut ("DOl6","8;1;Exotic - Lamborghini Contach");

MWSPut ("DO16","8;1;Exotic - Ferrari Modial");
MWSPut ("D016", "8;1;Exotic - Porsche 911 sC");

80 MacWorkStation Programmer’s Guide Production Draft (1989 Junet9)

APPLE CONFIDENTIAL

ProcNoRent ()

/*******i*tt*'**tt*ti*t*it**t*i****t**********ﬁ*i****t**tt***t***'*t**

* This routine is called when the user turns off the 'Car Rental' *

* checkbox. The routine displays an alert. *
i'*ti*tii*********t*i****t*****it*i*i***itti******ti**i****it***tiiiit/

MWSPut ("A002","F;Sorry that you have decided to cancel your car rental.");

}

ProcRentOK()
/i********iti**t**tt**i***it****’t*t*ittitti**t't*it*ttitit**ii****it*
* This routine is called when the user clicks the 'OK' button *
* of the Car Rental dialog box. *
****i*********t*t***t**********************t*****t*t******tft**t**'*i*/

{

MWSPut ("DOOS5", "8") ;

ProcRentCancel()

/*t**t*****'*t*i****tt*********t*******t**t******t*t****i********tit*t

* This routine is called when the user clicks the 'Cancel' *

* button in Car Rental dialog box. *
******i*i******t*t******i****ttti**i*t*t*t*i***!*t**t**ii****ﬁ*i*i*i**/

MWSPut ("*DOOS5", "8") ;
MWSPut ("D014™,"4;31;0");

Production Draft (1989 June 19) APPENDIX Program Source Code 81

APPLE CONFIDENTIAL

ProcDinner ()

82

/i**t*t***!tit**t*t*ttt**i*t*t*i**t*tt****ﬁ**t**********'**Q*itt*tt*t*

* This routine is called when the user turns on the 'Dinner' *
* checkbox. It presents a dialog box that allows the user to *

* choose a meal. *

*ﬁ**t*i*'*'*'t*t***t*****t*****t*'*i*i**t***t****ti**i*t*i*'**t**t*tt*/

int TempLoop = true, EvtID;
char EvtClass, EvtParms[256];

MWSPut ("DOO7","3") ; /* Make Meal Selection Dialog visible */
while (TempLoop) {
MWSGet (§EvtClass, &EvtID, EvtParms);
if ((EvtClass == 'D') && (EvtID == 257)) {
MWSPut ("D0O0O8", "3") ;
switch(EvtParms(2]) {
case '4': SpecialMeal();
break;
case '5': TempLoop = false;
break;
case '6': TempLoop = false;
MWSPut ("D014","4;29;0");
break;

MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

ProcNoDinner ()

/*ﬁ****i*'ﬁﬁ*t*i*!*i**t**t*t**********i*f*****"**i*****t****t*t*t*t**

* This routine is called when the user turns off the 'Dinner' *
* checkbox. It presents a dialog box that allows the user to *
* cancel or change dinner. *

*'kt'!’*t*t**“*t“****i‘***i‘**t*******t*tt*t*t****i’********t*“****t**i****'/

int TempLoop = true, EvtID;
char EvtClass, EvtParms(256];

MWSPut ("D0O1","0;T;Dinnermod; 3;F;166,122,356,242");
MWSPut ("DOO9","0;T;20,10,180,60;Do You Wish To Change or Cancel your
meal?");
MWSPut ("D0OO9","0;B;20,75,75,95;Change; T;F;1");
MWSPut ("D00O9","0;B;105,75,160,95;Cancel;T;F;1");
MWSPut ("DOO7", "0");
while (TempLoop == true) {
MWSGet (§EvtClass, &EvtID, EvtParms);
if ((EvtClass == 'D') && (EvtID == 257)) {
TempLoop = false;
MWSPut ("D0O0O5", "0") ;
if (EvtParms(2] == '2') {
MWSPut ("D014","4;29;1");
ProcDinner ()

Production Draft (1989 June 19) APPENDIX Program Source Code 83

APPLE CONFIDENTIAL

SpecialMeal ()

/***t***tt*'***iittt*t****t*i*****!**i*tti**t**i**t**it'***t****t**tt*

* This routine displays the Special Meal Text Window so that *
* special meal instructions can be entered. *
********i**'*tﬁ*ti*tt**t**t*t***i********t**ti*t**i**ﬁ*ttit*iitﬁ*'**t*/
{
int TempLoop = true, EvtID;
char EvtClass, EvtParms([256];
MWSPut ("W003","3");
while (TempLoop) {
MWSGet (&EvtClass, &EvtID, EvtParms);
if ((EvtClass = 'W') && (EvtID == 257)) {
MWSPut ("WOOS", "3") ;
MWSPut ("DOO7","3");
MWSPut ("MO03", "0");
TempLoop = false;
}
}
}
ShowLog ()
/***i**tt**i*t*ttt*i******t**iiit*t*t*tttt*t*ttttt*ittt*******t*tt****
* This routine displays the Passenger Log window. *
*t**t**t*************i*’****t****!ittt*ftt*t*tttt*tttttt*tttt*t*****tﬁ/
{
MWSPut ("WO03","7");
}
Hidelog ()
/*********t*****t****'*t*****i**tt***I**tt!**tt*i'****tt*ttttttt******
* This routine hides the Passenger Log window. *
****t****iit*iit***iii*it***t*i*ii*tt*tt**ii*'*t***titttt***t*ttt*t**i/
{
MWSPut ("WO05%,"7") ;
}

84

MacWorkStation Programmer’s Guide Production Draft (1989 june 19)

APPLE CONFIDENTIAL

SendToLog ()

/it******i**t*i**ﬁ**"**1’**!’1***i*"**i’*itt"tt**tt‘.*'Iil*i?if'i'ttittt

* This routine adds Passenger Data to the Passenger Log. *
*1‘***?**i*f.i*it***t*i*i*******ti**tttt*tit*t*ttitt**ttt*tti*ti*ttt*t*/

int TempLoop = true, length;
int i;

char EvtClass;

int EvtID;

char EvtParms(256];

char Allstr([512];

char Count = 0;

for(i = 0; 1 < 128; i++)

EvtParms[i] = 0;
for(i = 0; 1 < 256; i++)
Allstr(i] = O;

Allstr[0] = '7';
Allstr(l] = ';*;
Count += 2;

MWSPut ("D010", "4;4");
while (TempLoop) {
MWSGet (&EvtClass, &EvtID, EvtParms);
if ((EvtClass == 'D') && (EvtID == 258)) {
if (EvtParms[0] == '4') {
if (EvtParms[4] == 'E') {
length = strlen(&EvtParms(6]);
strncpy (&§AllStr(Count], &EvtParms(6], (length - 1));
Count += (length - 1);
AllStr(Count] = '\t';
Count++;
TempLoop = false;

Production Draft (1989 June 19) APPENDIX Program Source Code 85

APPLE CONFIDENTIAL

MWSPut ("DO10™,"4;6");
TempLoop = true;
while (TempLoop) {
MWSGet (&EvtClass, &EvtID, EvtParms);
if ((EvtClass == 'D') && (EvtID == 258)) {
if (EvtParms(0] == '4') ({
if (EvtParms(4] == 'E') {
length = strlen(&EvtParms[6]); i
strncpy (§AllStr[Count], &EvtParms(6], (length - 1));
Count += (length - 1);
Allstr([Count] = '\t';
Count++;
TempLoop = false;

MWSPut ("DO10","4;8");
TempLoop = true;
while (TempLoop) (
MWSGet (§EvtClass, &EvtID, EvtParms);
if ((EvtClass == 'D') && (EvtID == 258)) {
if (EvtParms([0] == '4') {
if (EvtParms(4] == 'E') {
length = strlen(&EvtParms([6]);
strncpy (&Al1Str[Count], &EvtParms([6], (length - 1));
Count += (length - 1);
AllStr(Count] = '\0d';
TempLoop = false;

}
MWSPut ("LOO9",6AllStr);

86 MacWorkStation Programmer’s Guide Production Draft (1989 june 19)

APPLE CONFIDENTIAL

(RemoveFromLog (RecNum)

char *RecNum;

/****’l*ﬁ**f*i*tt**i*"*******tt*ii*ii*i*ﬁ****ﬁ*ﬁ*fii*i**********t'**t**

* This routine removes the record RecNum from the Passenger Log *

* after the user double-clicks on the record in the list window. *
t****t********I*'******i*tt****i**titt*t***t**t*ti*tt*ﬁ****t*t*'tti**t/

char Allstr(15]), EvtClass, EvtParms[256];
int EvtID, TemplLoop = true;

MWSPut ("D0O02", "2;T");
WaitForResponse() ;
MWSPut ("A001","");
AllStr(0] = '7°*;
Allstr[l] = ';*;
while (TempLoop == true) {
MWSGet (&EvtClass, &EvtID, EvtParms);
if ((EvtClass == 'D') && (EvtID == 257)) ({
TempLoop = false;
if (EvtParms([2] == '2') {
strcpy (§Al11Str (2], RecNum);
MWSPut ("L0OO1",AllStr);

} else {
{ Allstr(2] = 'F';
Allstr(3] = *';';

strcpy (&A11Str (4], RecNum):;
MWSPut ("L002",AllStr);

}
MWSPut ("DOOS", "2") ;

Production Draft (1989 June 19) APPENDIX Program Source Code 87

APPLE CONFIDENTIAL

CopyName (InInt)

int InlInt;

/**********tﬁ*ttt*t************i'**i*****************it*t**t******t**i

* This routine reads the passenger name from the Bear Cal dialog *
* box and writes the name into the 'Name' item of the appropriate *
* dialog box.) *

*i*i********t*t*******t*****t*******i**t*t******i***t******ttit***i***/

int TempLoop = true, length;
char EvtClass;
int EvtID;

char EvtParms [256];
char Allstr[256];
int Count = 0;

int i;

for(i = 0; i < 128; i++)
EvtParms(i] = 0O;

for(i = 0; 1 < 128; i++)
Allstr(i] = 0;

if(InInt == 5)
Allstr(0] = '5°';

else if(InInt == 6)
Allstr(0] = '6';

Allstr(l] = ';*;
AllSstr(2] = '8';
Allstr(3] = ';';

Count += 4;
MWSPut ("DO10","4;4");
while (TempLoop) {
MWSGet (&EvtClass, &EvtID, EvtParms);
if ((EvtClass == 'D') && (EvtID == 258)) {
if (EvtParms[0] == '4') {
if (EvtParms[4] == 'E') {
length = strlen(&EvtParms[6]);
strncpy (§AllStr([Count], &EvtParms([6], (length - 1))
TempLoop = false;

}
MWSPut ("DO11",AllStr);

88 MacWorkStation Programmer's Guide Production Draft (1989 June 19)

APPLE CONFIDENTIAL

WaitForResponse()

/***ﬁ**t’*'ft'fﬁ**it******i****t**i**t**i**i**it****’tt****t'i********
* This routine waits for an event from MWS, then ignores it if it *
* is not a Dialog Director, List Director, Menu Director, Process *

* Director, or Text Director event. *
t'itt*tiit*tt*tt**it*i*iii*iit*i*t***i***i*t**tiit*i*****ttt**i***/

int TempLoop = true;
char EvtClass;
int EvtID;

char EvtParms(256];

while (TempLoop) (
MWSGet (§EvtClass, &EvtID, EvtParms);
if ((EvtClass == 'D') || (EvtClass == 'M') ||
(EvtClass == 'L') || (EvtClass == ‘'T') || (EvtClass == 'P'))
TempLoop = false;

Quit ()

/*t*ti*i*t**t***'*******’***************t*i****t*t*t*ttitt*itttt*tt**'

* This routine presents an alert that allows the user to cancel *

* a Quit command. *
****tﬁi*tttttt***tt*************iit*i*i*tt*ii*t*tt*t'**t'**itt'*t**t*t/

int TemplLoop = true, EvtID;
char EvtClass, EvtParms{256];

MWSPut ("A004", "T;Quit Bear Cal?");
while (TempLoop == true) ({
MWSGet (§EvtClass, &EvtID, EvtParms);
if ((EvtClass = 'A') && (EvtID == 256)) {
TempLoop = false;
if (EvtParms (0] == 'T')
MWSPut ("POO3","");

[P

} o

Production Draft (1989 June 19) APPENDIX Program Source Code 89

APPLE CONFIDENTIAL

MWSGet (evtClass, evtID, evtMsgq)

char *evtClass;
int *evtID;
char *evtMsqg;

/*****t*t**it**********t**t*******tt***ti*****t*ti*i*******t*****t****

* This function gets a message from MacWorkStation and breaks *
* it into its components. The protocol expected is: *
* [message begin character *
* (data) message contents *
* \n message end character *
* *

This conforms to the ID=2 transport-layer protocol.
******i*i*tﬁ*************ttt*i**fi*t*ttt*tt***i*it*i**i**t****t*****tf/

char begMsg;
char mwsMsg[512];

gets (mwsMsg) ;
sscanf (mwsMsg, "$c%c%3d", &begMsg, evtClass, evtID);
if (strlen(mwsMsg) > 4)
strecpy (evtMsg, &mwsMsg(4]);
else
*evtMsg = '\0';
return 1;

MWSPut (cmdClass, cmdParms)

char *cmdClass;
char *cmdParms;

/ti***t***********ﬂ***t***’**t*********i*t**t*****it**i****t***t****t*

* This function sends a message to MacWorkStation. *
* The protocol is: *
* { message begin character *
* (data) message contents - *
* \n message end character *
* This conforms to the ID=2 Serial transport-layer protocol. *

i*t*iii*t*'**i*'**ﬁ**ii**********it**t**t*'*******ttt**ti*i****t**/

printf("Sc¥s¥ssc”, '[', cmdClass, cmdParms, '\n');

/* End of BearCal.c */

90

MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

Glossary

alert box: A box that appears on the screen when
something has gone wrong or when something
needs to be brought to the user’s attention.

alias: A number assigned to an object. The
number is then used by MacWorkStation and the
client application to refer to the object.

ASCII: Acronym for American Standard Code for
Information Interchange. The code, which is used
for digital exchange of information between
computers, printers, and so forth, assigns bit
pattemns to characters and tokens.

Boolean operator: A value that is either true or
false.

CCL: See Communication Command Language.

CCL script: A resource stored in an MWS
document that contains Communication
Command Language commands. The script logs on
to the client application. The script runs when
the document is opened. The script may also
contain log-off instructions.

class: Part of a MacWorkStation message,
indicating the director to which the message
belongs.

client application: An application that interacts
with MacWorkStation.

client computer: The computer running the
client application.

cluster: A group of dialog box controls. A control's
cluster is set by a parameter in the command that
creates the control.
command: A string of characters sent from a

client application to MacWorkStation that
instructs MWS to perform some function.

Communicaton Command Language (CCL):
The set of commands used in CCL scripts to log
on and log off the client application.
communication module: Program code resource
stored in MacWorkStation or in an MWS document
that manages a communication protocol between
MacWorkStation and the client computer.

data fork: The part of a Macintosh file that
contains data. Macintosh files are composed of
two parts, or forks: the resource fork and the
data fork.

director: A set of MacWorkStation commands
and events responsible for a group of related
MacWorkStation functions, such as text display or
file management. Directors call the Macintosh User
Interface Toolbox managers.

event: A string of characters sent by
MacWorkStation to the client application that
informs the application about actions that the user
has taken or about a MacWorkStation state.

executable code module: Program code resource
stored in an MWS document that extend the
capabilities of MWS. .
flag: A MacWorkStation parameter thatisa .
Boolean operator, which is either true or false.
handshaking: The process of establishing a
connection between two computers in order to

exchange data.

identifier: The part of a MacWorkStation
message that describes the particular action to be
performed or event that has occurred.

integer: A MacWorkStation parameter type

composed of a sequence of characters, each of
which has a value in the range of 010 9.

keyword: A string-type parameter with a fixed
set of values used in commands.

log on: To establish a communication session
between two computers. Log-on procedures may
involve asking for identification, passwords, and so
on. In MWS, log-on procedures are contained in
CCL scripts.

PRODUCTION DRAFT (06/19/89) 9

manager: A set of Macintosh User Interface
Toolbox routines responsible for a group of related
functions, such as window or menu management.
mark: The current position in the sequence of
numbered bytes of an MWS file, designating the
next byte to be written or read.

message: A string of characters passed between
MacWorkStation and the client application.
Messages can be either commands or events.

mode: A mode is a part of an application that the
user must formally enter and leave. A mode
restricts the operations that can be performed
while it is in effect.

object: Any element of the MacWorkStation
display that can be treated as a single entity, such
as a window, menu, or dialog box.

parameter, parameter type: (1) Part of a
control message (command or event) that
specifies the action a director is to take. (2) A
setting that may assume more than one value.

resource: A formatted description of a user
interface element in a Macintosh application. A
resource can describe almost anything, including
icons, menus, text strings, and the program code.
Resources are stored in the resource fork of a file
and loaded into memory as needed.

resource fork: The part of a Macintosh file that
contains resources. Macintosh files are composed
of a resource fork and a data fork.

RGB monitor: A type of color monitor that
receives separate signals for the three colors: red,
green, and blue.

server computer: A Macintosh computer
running MWS and in communication with the
client application on the client computer.
string: A MacWorkStation parameter type
composed of a sequence of up to 255 characters.

92 MacWorkStation Programmer’s Guide Production Draft (1989 June 19)

