
(

Macintosh, MacWorkStation111

Programmer's Guide

Production Draft
June 19, 1989

Apple Confidential

Networking and Communications Publications

CommuniTree Group
415-441-3088
AppleLink: X0541

C APPLE COMPUI'ER, INC.

This manual is copyrighted by
Apple or by Apple's suppliers,
with all rights reserved. Under the
copyright laws, this manual may
not be copied, in whole a in part,
without the written consent of
Apple Computer, Inc. This
exception does not allow copies
to be made for others, whether or
not sold, but all of the material
purdwed may be sold, given, or
lent to another person. Under the
law, copying includes translating
into another language.

C Apple Computer, Inc., 1988
20525 Mariani Avenue
Cupertino, CA 95014
(~)9%-1010

Apple, the Apple logo, AppleShare,
AppleTalk, and Macintosh are
registered trademarks of Apple
Computer, Inc.

APDA, Finder, LocalTalk,
MacWorkStation, MPW,
Multifinder, QuickOraw, and
ResF.dit are trademarks of Apple
Computer, Inc.
DEC is a trademark of Digital
Equipment Corporation.

Ethernet is a registered trademark
of Xerox Corporation.

IBM is a registered trademark of
International Business Machines
Corporation.

MacDraw, Machint, and
MacWrite are registered
trademarks of Claris Corporation.

MasterCird is a registered
trademark ci Masterfard
International, Inc.

M~ is a registered trade­
mark of Microsoft Corporation.

VISA is a registered trademark ci
VISA International Service
Association.

Simultaneously published in the
United States and Canada.

Disclaimer of Warranty

The manual and media are
provided •as is,• without
warranty of any kind, either
exp~ or implied, including
without limitation any warranty
with respect to its
merchantability or its fitness for
any particular pu~. The entire
risk as to the quality and
perfamance ci the manual and
media is with you. Should the
manual or media prove defective,
you (and not Apple or an Apple­
authorized representative) assume
the entire cost of all necessary
servicing, repair, a correction.

Apple does not warrant that the
functions contained in the manual
and media will meet your
requirements or that the
operation ci the manual and
media will be uninterrupted or
error free a that defects in the
manual and media will be
corrected.

Some states do not allow the •
exdusion of implied warranties, so
the above exclusion may not ·
apply to you. This warranty gives
you specific legal rights, and you
may also have other rights which
vary from state to state.

..

(.
Contents

Figures and tables I vi

Preface About This Guide I Ix

Who should read this guide? I x
What this guide contains I x
Conventions used in this guide I xi
What you need I xi
The MacWorkStation Developer's Kit I xii
Development system documentation I xiii

1 What Is MacWorkStation? I 1
The MacWorkStation-client system I 2

(What MacWorkStation does I 3
Types of MacWorkStation-client systems I 4
Why a Macintosh interface? I 5

Human interface guidelines I 5
Three qualities of a good program I 6

Responsiveness I 6
Permissiveness I 6
Consistency I 6

General suggestions for application programs I 7
Modes I 7
Graphics arxi color I 8

2 Using MacWorkStation I 9
Creating the MacWorkStation-client system I 10
Starting a MacWorkStation-client system I 11
The client application I 12

The event loop I 13
About the •HeJlo.c• sample application I 15
The •HeJlo.c• sample application I 16

The MacWorkStation document I 19

c·· _
_ ,./

Production Draft 0989 June 19) Contents iii

..
MacWorkStation-client communications I 20

Communication Command Language (CO.) scripts I 20 ("
c.ommunication modules I 23

3 Directors and Messages I 25
MacWorkStation directors I 26
MacWorkStation messages I 28

The structure of a message I 'l9
Oass I 30
Identifier I 30
Parameters I 30
Using aliases I 32
F.xamples I 32

4 Using Directors I 33
About the "Bear CaJ• application I 34
The Alert Director I 35
The Cursor Director I 36
The Dialog Director I 37

Dialog item types I 38
Control iteim I 38 'o,

A dialog box routine I 39 '"" . .-"/

Oustering items I 41
The File Director I 42
The Graphics Director I 43

Coordinates in graphics windows I 43
Graphics commands I 44

The Li.5t Director I 46
The Menu Director I 48
The Proces.5 Director I 49
The Text Director I 49
The Wmdow Director I 50

Wmdow kinds I 50
Wmdowshapes I 51
~itioning windows I 52
Wmdow options I 52

The Exec Director I 55

iv Contents Production Draft 0989 June 19)

(Appendix "Bear Cal" Program Source Code I 57

Glossary I 91

Production Draft (1989 June 19) Contents v

vi

Figures and tables

CH APT E R 1 What Is MacWorkStation? I 1

Figure 1-1 MacWorkStation ~ge protocol I 2
Figure 1-2 A modal dialog box I 7

CH APT E R 2 Using Mac'\VorkStation I 9
Figure 2-1 The MacWorkStation-client system I 11
Figure 2-2 Screen created by a simpl~ applicatioTI5
Figure 2-3 Oloa;e-script dialog box I 20
Figure 2-4 Script-edit window with Command Help window I 21
Figure 2-5 New script name dialog box I 22

CH APT E R 3 Dftectors And Messages I 25

Contents

Figure 3-1 Dialog box from the Bear Cal sample applicatioT28
Figure 3-2 Macintosh menu example I 29

Table 3-1 Oasses and directors I 30

PRODUCflON DRAFT (06/19/89)

/

C HAP TE R 4 Using Directors I 33

Figure 4-1 Alert created with the Alert Director I 35
Figure 4-2 Wr~twatch pointer created with the Cursor Director I 36
Figure 4-3 Reservatio~ dialog d~play with clusters I 40
Figure 4-4 Screen d~play created with the Graphics Director I 44
Figure 4-5 Flight schedule created with the L~t Director I 46
Figure 4-6 Pull-down menu example I 48
Figure 4-7 Window shapes I 51
Figure 4-8 L~t window created with the Window Director I 54

Table 4-1 Cursor resource IDs I 36
Table 4-2 Keywords and dialog item types for the MacWorkStation Dialog

Director I 38
Table 4-3 Window kinds I 50
Table 4-4 Window options I 53

PRODUCI10N DRAfI' (06/19/89) Contents vii

Preface

APPLE CONFIDENTIAL

About This Guide

S I N C E TH E A P P L E® M A C I N T 0 S H® computer was first

introduced, many people have wanted to interact with Macintosh users from

other computers, such as mainframes or other personal computers, through

the human interface provided by the Macintosh computer. The

MacWorkStationn1 applicaton (MWS) makes this possibility a reality. Now, by

using MWS, you can write applications that let Macintosh users communicate

with another computer by means of windows, pull-down menus, dialog

boxes, and other features of the Macintosh desktop interface. This guide

introduces you to MWS and how it works with the other computer's

application.

In explaining the various elements of a MacWorkStation system, this guide

assumes that you are familiar with one or more programming languages and

that you have had some experience using a Macintosh computer. You also

need to be familiar with the other computer you will be using, and how to

program it. •

Production Draft (1989 June 19)

APPLE CONFIDENTIAL

Who should read this guide?
This guide is designed for programmers who are new to writing application progra~ that use the
Macintosh desktop interface. If you haven't already done so, take some time to explore the
Macintosh computer by using programs such as MacPaint, MacWrite, and MacDraw.

Notice the use of windows, menus, desk accessories, dialog boxes, and scroll bars. Become
familiar with such t~ as dick and drag. Be sure you know the meaning of mouse and icon. Try
actions such as cutting, pasting, and copying. If necessary, review the Macintosh owner's guide
before you begin writing your own applications. If you want to learn more about the Macintosh
interface, you will find it helpful to read some of the material recommended at the end of this
preface.

Using this manual and the MacWorkStal10n Programmer's Reference, you will be able to write
a variety of application programs that use the Macintosh desktop interface.

What this guide contains
This guide is divided into four chapters and one appendix that contain the following information:

• Chapter 1, "What Is MacWorkStation?" describes how the MacWorkStation application works,
discusses the Macintosh user interface and the elements in a good Macintosh application, and
offers general suggestions for writing applications.

• Chapter 2, •using MacWorkStation; tells how to create a MacWorkStation application. It
presents a simple MacWorkStation application program that demonstrates basic concepts
common to all applications.

• Chapter 3, •Directors and Messages: presents an overview of the various MacWorkStation
components and how they interface with the Macintosh computer, and describes how MWS
communicates with the application running on the cxher computer.

• Chapter 4, •using Directors; examines parts of a sample MacWorkStation program written in C
and shows how the various director commands are used.

• The appendix, ••Bear Cal' Program Soorce Code,• gives the complete listing of the program
discussed in Chapter 4.

Each chapter builds on material from preceding chapters, so you should go through them in order.

MacWorkStation Programmer's Guide Production Draft 0989June19)

APPLE CONFIDENTIAL

(. ,, Conventions used in this guide
This guide uses typographic conventions to distinguish between different kinds of words and
symbols.

• Temis in boldface are defined in the glossary at the end of this book.

• Elements of computer language are printed in a fixed-width font.

• Message parameters that are variables are printed in ttalics. These terim can be replaced by any
appropriate value or by a variable symbol in your application.

• Keywords, which may be used for some message parameters, are specified in uppercase and
appear exactly as they should in parameter lists. For example, the Add Item (Do o 9) command
of the Dialog Director uses the keyword TEXT to add an editable text field.

,6. Important Text set off this way gives important information that you should read
carefully. t::.

The spaces in the examples are optional and are not significant. However, you may want to avoid
using extra spaces, since they increase message tralfte.

The examples in this guide illustrate only a few of the many po.5Sible ways to write an
application to work with MWS.

What you need
To use the MacWorkStation applicaton, you will need one or two Macintosh computers running
System ftle version 6.0.2 and Finder™ 6.1, or later versions. MWS will run on the Macintosh Plus and
later members of the Macintosh family of computers-currently the Macintosh Plus, Macintosh SE,
and Macintosh II computers-and requires only a single BOOK disk drive.

+ Note: Some features of MWS are available only if you are using System file 6.0, or later
versions, including text styles and pop-up menus. Also, RGB color and dialog box text styles
are available only if you are using a Macintosh computer with Color QuickDrawTM software.
Currently, the Macintosh II, Macintosh IIx, Macintosh IIcx, or Macintosh SE30 have Color
QuickDraw.

If you are using two computers, they must have the proper physical connections in order to
communicate with one another. MWS and your application must use the same communication
protocol so that messages and data can be sent between them correctly.

Production Draft (1989 June 19) P RE F A C E About this Guide xi

APPLE CONFIDENTIAL

The MacWorkStation Developer's Kit

The MacWorkStation Developer's Kit consists of these items.

• MacW<ri.Sladofs Program Disk
CJ MacWorkStation--the application program
CJ Bear QU-.a sample MWS document for use with MWS and the TestHost program

CJ Apple Exec-another sample MWS document

• MacWoriSlation Samples Disk
CJ TestHost-the MacWorkStation prototyping program

CJ Bear Cal script-a document containing a script that runs with TestHost
CJ Apple Exec script-another sample script

Cl TestHost folder

• MacWork.Slation Programmer's Guide (this manual)

• MacWorlr.5falbs Programmer's Reference

• Human Interface Guidelines: 1he ApJ* Desktop Interjace

The MacWorkStation Developer's Kit includes two Macintosh disks. You should immediately make
copies of both disks and save them as backups. One disk, labeled Mac Work.station Program Dtsk,
contains the application and several MacWorkStation documents. The documents are examples for
use with the MacWorkStation TestHost application, which is explained in the MacWorkStation
Programmer's Referenc.e.

The second disk, labeled MacWorkStation Samples Dtsk, contains TestHost, an application that
lets you team more about MWS. (This disk was called the MacWorkStation TestHost Program DiSk
for MacWorkStation 3.0.) It also contains several TestHost script documents that work with the
MacWorkStation document used with TestHost. The TestHost application lets you make
prototypes of your MacWorkStation application, and test your code and resources. To use
TestHost, you will need two Macintosh computers connected by a serial line or by LocalTalkTM
cables, or a single Macintosh computer running MultiFinderTll system software.

xii MacWorkStation Programmer's Guide Production Draft (1989 June 19)

/

(

(

APPLE CONFIDENTIAL

Development system documentation

The Apple Techn1cal Library, published by Addison-Wesley, is a set of technical books from Apple
Computer, Inc. that explain the hardware and software of the Macintosh family of computers:

• Human Interface Guidelines: The Apple Desktop Interface. This book describes the Apple user
interface for the benefit of people who want to develop applications.

• Inside Macintosh, Volumes I, II, and III. These books cover the Macintash User Interface
Toolbox and Operating System for the original 64K Macintosh ROM, along with user interface
guidelines and hardware information.

• Inside Macintosh, Volume IV. This book provides additional information about the Macintosh
Plus and Macinta;h 512K enhanced computers.

• Inside Macintosh, Volume V. This book provides additional information about the Macintosh
SE and Macintosh II computers.

• Inside Macintosh X-Ref This reference contains comprehensive indexes, routine lists, and a
gla;sary for Inside Macintosh and other Macintosh programming books.

• Programmer's Introduction to the Macintosh Family. This book provides an overview of
software development for the Macintosh family of computers. It focuses on the differences
between event-driven programming and more traditional programming techniques. It covers
such topics as QuickDraw graphics, screen displays, and the Macintosh User Interface Toolbox.

• Technical Introduction to the Macintosh Famtly. This book provides an introduction to the
hardware and software design of the Macintosh family and serves as a starting point for the
Apple Technical Library. It is oriented primarily toward the Macintosh Plus, Macintosh SE, and
Macintosh II computers, but it also touches on differences in the earlier versions of the
Macintosh computer.

Other books that may be helpful include the following, which are available from the APDA™ group
(the Apple Programmers and Developers Association).

• Macintosh Programmer's Workshop Reference. This guide covers the Macintosh Programmer's
Workshop (MPW™) Shell and utilities, including the resource editor (ResEdit'"'), resource
compiler (Rez), linker, Make facility, and debugger.

• MPW Assembler Reference. This reference tells you how to prepare source files to be assembled
by the Macintosh Programmer's Workshop Assembler.

• MPW Pascal Reference. This manual provides information about the MPW Pascal language and
the use of the MPW Pascal programming system.

• MPW C Reference. This manual tells you how to write C programs that you can link with
programs written in MPW Pascal.

Production Draft (1989 June 19) P R E F AC E About this Guide xiii

APPLE CONFIDENTIAL

APDA provide.5 a wide range of Apple and third-party technical products and documentation for
programmers and developers who work on Apple equipment. Additional copies of this guide and
the MacWorkSlalion Programmer's Reference can also be obtained through APDA. For information
about APDA, contact

Apple Programmers and Developers Association
Apple Computer, Inc.
20525 Mariani Avenue, Mailstop 33G
Cupertino, California 95014~299

1-8)().282-APDA (l-&>0-282-2732)
FAX: ~562-3971
Telex: 171-576
AppleLink: DEV.OiANNEI.S

If you plan to develop hardware 0r software products for sale through retail channels, you can get
valuable support from Apple Developer Programs. Write to

Apple Developer Programs
Apple Computer, Inc.
20525 Mariani Avenue, Mailstop 51W
Cupertino, California 9501 ~299

D. Important This manual does not address the issues of licensing the MacWorkStation
application. To use MacWorkStation messages or to copy and/or distribute
the MacWorkStation program, you must have a valid MacWorkStation
License Agreement, which is available from Apple Computer, Inc. 6

xiv MacWorkStation Programmer's Guide Production Draft (1989 June 19)

(

APPLE CONFIDENTIAL

Chapter 1 What Is MacWorkStation?

THE MAC W 0 R KS TA TI 0 N"' APPL I CA TI 0 N rum on a

Macintosh® computer and provides an environment for the Macintosh user

to interact with another application, usually running on another computer.

This chapter describes the relationship between the MacWorkStation

application and this other application, and explaim the role of MWS. This

chapter also discusses the design principles ci Macintosh applications. •

Production Draft (1989June19) 1

APPLE CONFIDENTIAL

The MacWorkStation-client system
The MacWorkStation application rum on a Macintosh computer, and makes it possible for another
application to manage the Macintosh user interface presented to the MWS user. This other
application that works with the MacWorkStation application is called the cBent application. The
MWS user interacts with the client application through the Macintosh user interface.

Usually the client application runs on a computer other than the Macintosh computer. This
other computer, called the client computer, can be a mainframe computer (such as those made by
IBM or DEC) or a personal computer, including another Macintosh computer. In fact, the client
application and MWS can run on the same Macintosh computer, using MultiFinderTll. The Macintosh
computer using MWS is the server computer.

This guide refers to all the elements that make-up a single implementation of MWS as the
MacWorlzSta11on-d1ent system. The MacWorkStation document used with a particular client
application is a major element in a MacWorkStation-client system See -Tue MacWorkStation
Document• in Chapter 2.

The MacWorkStation application and the client application communicate through messages.
Messages sent from the client application to MWS are called commaiub. Messages sent from MWS
to the client application are called events. Figure 1-1 shows how these messages pass between
MWS and the client application.

• Figure 1·1 MacWorkStation message protocol

D D
Events·

MacWonstaUon ...
8Cl'VU software

.._
....- Commutds

Macintosh Oientcomputer

2 MacWorkStation Programmer's Guide Production Draft (1989 June 19)

(

(

APPLE CONFIDENTIAL

What MacWorkStation does

The MacWorkStation application provides two main functions. First, MWS provides the
environment in which the Macintosh user will work when interacting with the client application.
MWS does tasks such as opening windows, saving and opening fdes, and displaying the standard
Macintosh menus. Typically, the user will start a session by opening an MWS document that has
been set up previously by the client application programmer. This documents contains any
necessary components for the application. It usually includes a Communication Command
language (CCL) log-on script to establish communications between the server computer and the
client computer. It may also include resources used by the client application, such as dialog box or
menu bar descriptions.

Second, MWS provides the set of messages that MWS and the client application use to
communicate with one another. For example, the client application might send messages to MWS,
instructing it to display a particular dialog box. When the user makes a selection or closes the dialog
box, MWS sends a message to the client application, reporting the user's choice. MWS also provides
communication-level support through communication modules, and extensibility through
executable code modules.

As you create a MacWorkStation-client system, you will notice the following features:

• MacWorkStation messages let developers use the Macintosh interface without having to
program on the Macintosh computer. Using MWS, you can develop a variety of applications on
different computers, each of which provides a standard human interface on the Macintosh
family of computers.

• From a user's standpoint, the MacWorkStation application gives a familiar human interface to
information processing provided by the client application.

• The MacWorkStation application will take care d printing, saving files, editing text, and other
tasks for the client application.

• MacWorkStation communication modules allow client applications running in different
environments and using different communications media, such as standard serial, AppleTalk®,
and Ethernet protocols, to use Macintosh display, printing, and file-handing utilities.

Production Draft (1989 June 19) c HA p T E R 1 What Is MacWorkStation? 3

APPLE CONFIDENTIAL

Types of MacWorkStation-client systems
A MacWorkStation-diert system can be either •generic" or •tightly coupled.• In a generic system,
all the data for such thin~ as menus, graphics, prompts, and windows come directly from the
client application. In this system, MWS waits for an action by the MWS user and then transmits the
appropriate data back to the client application. It is up to the client application to decide what
response is required, if any, at all times. To implement generic systom, programmers need to know
only the features of the Macintosh user interface (menus, dialog boxes, and windows) as
implemented in MacWorkStation messages. Programmers do not need to know the details cl.
Macintosh program development

In a tightly coupled system, the client application and MacWorkStation components are
designed to work together closely. The client application relies more on MWS to handle user actions.
Also, the MWS document used with the client application contains user interface resources, scripts
for logging on to the client application, executable code modules, and other elements needed by the
system. Examples of such applications are a •universal• da~base query interface and a graphics­
based flllancial modeling system.

In either the generic or the tightly coupled model, the following services are provided by the
MacWorkStation application:

• Text editing-All standard text-editing operations, such as text entry, cutting, copying, and
pasting, are available.

• Menu management-The standard Apple, File, Edit, Font, and Style menus are provided with
MWS. The client application can determine which of these menus to display, but from then on

• MWS controls them in a totally •tocal" fashion. Their actions have no effect on the client
application.

• Window management-The MacWorkStation user can change window size, scroll windows,
send windows to the back, select a window, and move windows without assistance from the
client application.

• File access-The MacWorkStation user can save the contents of a window to a disk file and
retrieve the contents of a disk file without directly involving the client application.

4 MacWorkStation Programmer's Guide Production Draft (1989 June 19)

(

APPLE CONFIDENTIAL

Why a Macintosh interface?
There are many reasons why you'd want to use the Macintosh desktop interface for your
applications rather than the typical interface of a "dumb" terminal. Perhaps the most important one
is that the Macint05h computer is easy to use. From the moment users first see the welcoming
message, they feel comfortable with Macint05h applications and feel a sense of control over them.
The MWS applications you write can provide users with the interface they have come to expec.t.
Users can directly manipulate documents they are working on. They see on the screen what they
are doing, and they can select actions from alternatives presented on the screen.

Human Interface guidelines

The ease of use that users expect from the Macintosh computer is the result of close attention paid
to the many ways people use computers. A study of users' actions has resulted in a set of
ergonomic principles, detailed in a publication called Human Interface Gutdeltnes: '/he Apple Desktop
Interface. You should study these guidelines, which are part d the MacWorkStation package,
before you begin programming with MWS.

As explained in Human Interface Gutdeltnes, a human interface is more than a visual display. In
fact, it is possible to have a human interface without any visual display. A human interface is the
sum of all communication between the computer system and the user. The human interface
presents information to the user and accepts information from the user. It is the way in which the
user accesses the power and information of the computer.

Among the points expressed in these guidelines is the idea ·that Macint05h applications should
be easy to learn and to use. Applications should build on skills people already have, nct require them
to learn new ones unnecessarily. The user should feel in control d the computer, not the other way
around MacWorkStation messages let you make your applications attractive and easy to use, as
recommended in Human Interface Guideitnes. As you read the sections that follow, refer to these
guidelines, if you have questions about how standard Macint05h features should work.

Production Draft (1989 June 19) c HA p TE R 1 What Is MacWorkStation.' 5

APPLE CONFIDENTIAL

1bree qualities of a good program

If you are familiar wkh programs written for the Macintosh computer, you know that they have
certain characterSics that give them a •feeling• of belonging on a Macintosh computer. It is this
•feeling,• provided by the user interface, that you will want to incorporate into your p~.

A good Macintosh application embodies three qualities: respomivenes,,, permissiveneM, and
consistency.

Responsiveness

With a respomive application, a user's actiom tend to have direct results. If a user chooses an italic
font, the wor~ on the screen change to italic right away. If a user selects an icon, the icon is
highlighted immediately. With pull-down menus, the user can choose a canmand directly and
instantaneously.

Permissiveness

Users make mistakes. They also explore the application in order to learn to use it If your application
is permissive, it allows users to make mistakes and to explore without penalizing them for doing
something wrong. Your application should let users accomplish their tasks spontaneously and
intuitively. If the user makes a mistake, your application should present a dear and instructive
message about the problem. However, these messages should occur in your program only when
necessary.

Consistency

All applications should be consistent, so that a user moving between applications does not need to
learn a new interface. Consistency is easy to achieve for a MacWorkStation-client system because
the MacWorkStation messages call the same routines used to implement the Macintosh user
interface in other applications.

6 MacWorkStation Programmer's Guide Production Draft (1989 June 19)

(

APPLE CONFIDENTIAL

General suggestions for application programs

Here are some suggestions to follow when developing a MacWorkStation application that will
make your application more user-friendly. A more complete list of suggestions can be found in the
Human Interf aa Gutdeltnes.

Modes

A mode is a part of an application that the user has to formally enter and leave. Modes restrict the
operations that can be performed while they are in effect. Modes can vary from picking a different­
sized paintbrush in a graphics editor to holding down the Shift key. You do not need to completely
avoid using modes. However, you should use them sparingly, because using them too often will
give users the feeling that the application is unnecessarily restrictive and unfriendly.

Your application should always give a clear, visual indication d the current mode. The v~ual
indication that you display should be near the object most affected by the mode. You should make
it easy to get into or out of the mode. However, entering and leaving the mode should be the direct
result of the user's actions. For example, a modal dialog box has a standard appearance in Macintosh
applications. Figure 1-2 shows an example. A modal dialog box info~ the user of the result of
some action, and requires the user to explicitly d~miss it (by clicking the OK button, for example)
before doing anything else.

(• Figure 1-2 A modal dialog box

Please Choose I Meal:

® Chicken Dinner

Orl•h Dinner

0 Speclel Meal

Production Draft (1989 June 19) c H A p T E R 1 What Is MacWorkStation? 1

APPLE CONFIDENTIAL

Graphics and color

You can take advmage of the high-resolution Macintosh screen by creatively using graphics in
your applications, even in places where other applications might use text AJ much as ~ible,
commands, features, and parameters of an application should appear as graphic objects on the
screen that suggest the use of the object. In the Macintosh user interface, objects such as the trash
can icon resemble the familiar objects whose functions they emulate. Objects that act like push
buttons will •tight up• when pressed.

Dialog boxes and menus are other examples of the use of graphics that are familiar to
Macintosh users. You will probably want to use them in your applications.

MacWorkStation messages support the color capabilities of IGB monitors, so you may wish
to use color in your applications. Be sure to consider that some people have problam distinguishing
colors and that not every user may have an RGB monitor. Generally, you should na base the ability
to use your software on a user's ability to identify colors, although colors can enhance the overall
look of your applications.

8 MacWorkStation Programmer's Guide Production Draft (1989June19)

(

(

APPLE CONFIDENTIAL

Chapter 2 Using MacWorkStation

T H E M A C W 0 R K S T A TI 0 N - C L I E N T S Y S T E M consists of

several elements that work together to provide a service to a Macintosh user.

This chapter explains what these elements are and what you need to do to

create the MacWorkStation-client system. Some of the terms used in this

chapter may be unfamiliar to you. They will be explained in detail later in this

guide. For now, just read along to get the general idea. •

Production Draft (1989 June 19) 9

APPLE CONFIDENTIAL

Creating the MacWorkStation-client system
The MacWorkStation-dient system consists of a client application, a Macintosh computer running
the MacWorkstatioo application, an MWS document with a CCL script, and a communication
module available in the MacWorkStation application or the MWS document Typically, the client
application will be running on another computer, so you will need a hardware connection between
the computers. Your system may also use custom alerts, cursors, dialog boxes, graphics, menus,
windows, and executable code modules, which can be stored as resources in the MWS document.
Here are the things you need to do to set up a MacWorkStation-client system:

• Write a client application that will tell MWS what to do.

• Create a MacWorkStation document to use with your system

• Create a Communication Command Language (CCL) script in the MacWorkStation document
that will establish the communication link between your client application and MWS.

• Be sure the correct communication module for your application is stored as a resource either in
the MacWorkStation application or the MWS document The communication module manages
the communication protocol. The ca saipt must call this module during the log-on
procedure. Communication modules for two serial protocols and AppleTalk are provided with
MWS. You can also use communication modules that you create. See the MacWorkStaUon
Programmer's Reference for more information about communication modules.

• Create executable code modules for any modifications you need to make to MWS, and store
their code resources in the MWS document. See the MacWorkStaJton Programmer's Reference
for more information about executable code modules.

• Create any user interface resources your system needs, such as custom dialog boxes or menus,
and store these resources in the MWS document See the MacWorkStatton Programmer's
Referenc,e for more information about using resources.

10 MacWorkStation Programmer's Guide Production Draft (1989 June 19)

•

(

APPLE CONFIDENTIAL

Figure 2-1 shows the relationship of these elements in the MacWorkStation-client system.

• Figure 2-1 The MacWorkStation-client system

Sranclard
communication

modules
Events

Commands
M2CWorkStation

Custom
communication

modules -------
CCL ~ ---- --- [!] scripts

• • ~-------Exec
modules

~------- • Custom
resources

M2CWorkStation MacWorkSwion user
d001ment

Starting a MacWorkStation-client system

When you have prepared the various elements for your MacWorkStation-client system, you need to
do these things to start up the system.

• Set up the hardware connection between the computers.

• Start your cliett application. The client application needs to be ready to receive and process a
message_ from the MacWorkStation applicaton in order to start the session.

• Open your MacWorkStation document. You can open the MWS document from the Finder111 or
use Open from the MWS File menu.

• If you have never used the document to log on to the client application, you will be asked to
.select the CCL script to use. MWS then attempts to log on to the client application, using the

Production Draft 0989 June 19) c H A p T E R 2 Using MacWorkStation 11

APPLE CONFIDENTIAL

CCL script you select and the cornmunicaton module that the script indicates. (If the CCL script
logs on successfully, MWS will use this script in the future to log on to the client application
whenever the document is opened.)

When the script logs on to the client application, MWS sends a message to the client application and
waits for a reply. After replying, the client application can begin the session, interacting with MWS
and the user as the session continues.

When the session is finished, the CCL script should do what's nec~ry to log off from the
client application. Typically, the session is ended when the user chooses Disconnect from the Apple
menu, or aose or Quit from the File menu.

The client application
You can write your client application in any programming language that works with the client
computer. During initial development, you may wish to use TestHost with MWS. TestHost is an
application that allows you to emulate your client application by sending commands to MWS and
responding to events sent from MWS. Since TestHost also runs on a Macintosh computer, you'll
find it easy to use to design your application's user interface, and to test and debug your program.
You can also use TestHost to create dialog boxes and save them as resources in your MWS
document TestHost is explained in the MacWorkStatton Programmer's Reference.

You may also use MWS Event Handler to create a prototype of your application. You can use
MWS Dialog Builder to create and edit dialog boxes you use with your client application. MWS Event
Handler and MWS Dialog Builder are available from APDA ni. (Information on how to contact APDA
appears in the Preface.)

The client application must be running in order to receive an event sent by MWS at the start of
each session. This message is called the MacWorkStaton Online (P 2 5 6) event, which MWS sends
after the log on is successful. The client application must then send the Host Online (Po o 1)

command to MWS in order for the session to begin.
After this exchange of messages, your client application can be in complete control. However,

you can let the MacWorkStation application take care of many tasks, which saves you development
time and reduces communications traffic. These tasks include opening, closing, and saving fdes;
redrawing windo'ws; printing; supporting text editing; and many others.

You probably want your application to respond to the user's actions in the flexible manner
familiar to Macintosh users. Yoo can achieve this Macintosh-type behavior by using event loop
programming techniques described next.

12 MacWorkStation Programmer's Guide Production Draft 0989 June 19)

•

•

•

APPLE CONFIDENTIAL

The event loop

The event loop is the central routine of any Macintosh application that supports the Macintosh
user interface. Using the event loop, an application doesn't expect events to occur in a particular
order. Instead, it constantly checks for inputs, such as mouse actions and keystrokes, that can
occur in any order. The client application can then respond to any event in an appropriate way.

This approach to programming contrasts with programs that require the user to make requests
or perform tasks in a specific order. Instead, the emphasis is on responding to any request the user
makes at any time. This approach enables the widest ~ible range of user activities. For example,
there's no reason not to let the user set printing options before there's anything to print.

Using the event loop, a client application can easily handle events generated in response to

commands it sends, by simply waiting for MWS to return a response. The client application can also
use the event loop to process events initiated by the user, by first identifying the event, then
responding to it.

The basic structure of an event loop is very simple. Here is an example of the main routine of a
client application using event loop programming.

Production Draft (1989 June 19) c H A p T E R 2 Using MacWorkStation 13

APPLE CONPIDENTIAL

main()

char EvtClass;
int EvtIO;
char EvtParms (256];

Allinit ();
do

GetMWS(&EvtClass, &EvtIO, EvtParms);
switch(EvtClass)

{ case 'A':
OoAEvent(EvtIO, EvtParms);
break;

case •o•:
DoDEvent(EvtID, EvtParms);
break;

case 'F':
DoFEvent(EvtID, EvtParms);
break;

case 'G':
DoGEvent(EvtID, EvtParms);

·break;

case 'L':
DoLEvent(EvtID, EvtParms);
break;

case 'M':
DoMEvent(EvtID, EvtParms);
break;

case •p•:
DoPEvent(EvtID, EvtParms);
break;

case 'T':
DoTEvent(EvtID, EvtParms);
break;

case •w•:
DoWEvent(EvtID, EvtParmsJ;
break;

default:
break;

while (!AllDone);

AllDispose();

14 MacWorkStation Programmer's Guide Production Draft (1989June19)

•

•

•

(

<:

C,\

APPLE CONFIDENTIAL

About the "Hello.C" sample application

The example application called •ttello.c• i.s familiar to most Macintosh programmers. It is a simple
Macintosh application program that illustrates the prinicples of creating the Macintosh user
interface. Although l is too simple to be a practical, it shows the overall structure that a client
application will have, and it does several of the things that any client application will do.

•ttello.C- creates a single window, •sample Window,• which displays the message •hello,
world• (Figure 2-2). The window has a title bar, title, dose box, and resize box. The user can resize
the window by dragging the resize box, and can move the window around the desktop by dragging
it by its title bar. The application displays four menus: the standard Apple menu, from which the
user can choose desk accesrories, and File, Edit, and Display. Using the File menu, you can open
existing text files. If the window is too small to display all the text it contains, the scroll bars
become active so you can view the text You can also print and save files. You can type new text,
and select text in order to edit it. Using the Edit menu, you can cut, copy, and paste the text
dicking the close box closes the window.

• Figure 2-2 Screen created by a simple application

Production Draft (1989 June 19) c H A p TE R 2 Using MacWorkStation IS

APPLE CONFIDENTIAL

The "Hello.C" sample application

The "Hello. C' client application produces the screen shown in Figure 2-2. Comments are included in
the listing so that you can see which groups of MacWorkStation messages are being used and what
operation is being perfooned

I* This is a sample client application which:

*/

1) displays the standard (Apple, File, and Edit) menus;
2) puts up a standard text window;
3) displays the string 'Hello world' in the window.

This version runs under VMS or UNIX. It should work with any C.
However, it may not run under other versions of c unless changes
are made so that the MWSPut and MWSGet routines address a
serial port.

#include <stdio.h>

static char quitMWS = O;

main ()

I* This will be set to 1 in response to a
Quit event (P257) from MWS

*/

/* The main loop of the program simply waits for an event from
MWS, then responds to the event. Note that in this simple
example, the only events recognized are:

*/

P256 - MacWorkStation Online
P257 - MacWorkStation Offline

char evtClass;
int evtID;
char evtMsg[512J;

printf("'s", "MWS GO\n"l; /* Send this so the CCL knows we're running

do

16

if (MWSGet(,evtClass, &evtID, evtMsg))
if (evtClass •• 'P'l

doPEvt(evtID, evtMsg);
while (! quitMWSl ;

MacWorkStation Programmer's Guide Production Draft (1989June19)

•

*/

•

(

C\
/

APPLE CONFIDENTIAL

doPEvt(evtID, evtMsg)

/* The doPEvt function responds to Process events from MWS.
P256 is the first event sent when MWS commences.
P257 is sent when MWS is quitting.

*/

int evtID;
char *evtMsg;

switch (evtID) {
case 256 :

appStartup ();
break;

case 257 :
quitMWS = l;
break;

appStartup ()

/* The appStartup function first responds to the P256 event, then
puts up the menu bar, displays a text window, and sends some
sample text to the window.

*/

MWSPut ("POOl", ""); /* Issue handshaking sequence */
MWSPut("M004", "O;FILE;EDIT;TEXT;"); /* Install default menus*/
MWSPut ("WOOl", "l; TEXT; Sample Window;; TRUE; TRUE");

/* Create a text window */

MWSPut("TOlO", "l;Hello World"); /*Put some text in the window*/

Production Draft 0989 June 19) c H A p T E R 2 Using MacWorkStation 17

APPLE CONFIDENTIAL

MWSGet(evtClass, evtID, evtMsg)

/* The MWSGet function gets a message from MWS and breaks it into its
components. The protocol expected is:

[message begin character
(data) message contents
\n message end character (simplifies using gets)

This conforms to the ID=2 transport-layer pro_tocol.
*/

char *evtClass;
int *evtID;
char *evtMsg;

char begMsg;
char mwsMsg[512];

gets(mwsMsg);
sscanf(mwsMsg, "%c%c%3d", &begMsg, evtClass, evtIDl;

if (strlen(mwsMsgl > 4)

strcpy(evtMsg, &mwsMsg[4]);
else

*evtMsg .. '\O';
return l;

MWSPut(cmdClass, cmdParms)

/* The MWSPut function sends a message to MWS. The protocol is:
[message begin character
(data) message contents
\n message end character

This conforms to the ID=2 Serial transport-layer protocol.
*/

char *cmdClass;
char *cmdParms;

printf("\c\s\s\c", '[', cmdClass, cmdParms, '\n');

/* End of Hello.c */

18 MacWorkStation Programmer's Guide Production Draft 0989 June 19)

APPLE CONFIDENTIAL

The MacWorkStation document

The MacWorkStation document is the user's access to any MacWorkStation-client system. Users
interact with the client application through the MacWorkStation document. Usually a user will need
to open a specific MWS document to work with a particular client application. The user opens the
document to start the session with the client application.

When you launch the MacWorkStation application, you are asked to choose a document to
open, or to create a new one. To create a new MacWorkStation document when MWS is running,
you choose New from the File menu. When you create a new MWS document, you are also asked to
create a CCL script for the document The CCL script is used to establish communications between
the computers.

The MacWorkStation document will store many of the elements of your MacWorkStation­
client system. It will contain the CCL script. It might store a custom communication module used
by the script.

The MWS document can also store resources you have created to use with your system.
Menus, dialog boxes, cursors, windows, and many other features of the Macintosh interface are
resources. You can create your own resource whenever a standard MacWorkStation resource does
not meet your needs. Several programs are available for creating your own resources. MWS Dialog
Builder, ResEditni, and MPWTM Rez are programs available from APDA. (Information on how to

contact APDA appears in the Preface.) Resources are a unique feature of Macint~h applications.
Refer to Inside Macintosh to learn more about resources.

The MWS document may also include executable code modules that extend the functionality of
the MacWorkStation application. See the MacWorkStation Programmer's Reference for additional
information.

Production Draft (1989 June 19) c H A p T E R 2 Using MacWorkStation 19

APPLE CONFIDENTIAL

MacWorkStation-client communications
For the MacWorkStatioo application and the client application to interact, they must establish some
form of communication. Besides the actual hardware, two elements are required to make the link:
the ca. script, and the communication module. These two elements are stored in MWS or the MWS
document The only requirement of the client application is that it be able to send data over the
communication link you have chosen. .

You create the CO. script and save it in the MWS document The CO. script establishes the
actual communication link between MWS and the client application when the MWS document is
opened. If the CCL script logs on successfully, the session can proceed. The CCL script may also
contain instructions for disconnecting at the end of the session. The Qxnmunication Command
Language provides the necessary commands to set up and control the communication session. The
CCL commands and the process of creating a CCL script are explained fully in the MacWorlzSlat1on
Programmer's Reference.

The communication module handles the low-level aspects of the communication session. Apple
Computer, Inc. provides a number of communication modules, including two serial protocols and
an AppleTalk protocol. If none of these protocols is acceptable, you can develop a custom protocol
or use an acceptable protocol from a third-party developer.

Communication Command Language (CO.) scripts

CCL scripts contain the instructions for logging on and logging off the client application by using
the Communicaton Command Language. CCL scripts make it possible for the user to log on and log
off automatically without having to decipher different operating-system prompts or enter
commands. The first task of the CCL script is to designate the communication module used in the
session. Then, the CCL script waits for prompts from the client computer and responds
appropriately to requests for information. The CCL script can also request information from the
user, such as a password or identification code.

You are asked to create a new ca. script when you create a new MacWorkStation document
After naming the MacWorkStation document, you will see the choose-script dialog box shown in
Figure2-3.

• Figure 2-3 Choose-script dialog box

sample Document

o~
Rdd Modify (nemo11e) (connec1)

20 MacWorkStation Programmer's Guide Production Draft 0989June19)

(-

(

APPLE CONFIDENTIAL

When you click the Add button, you'll see a ca. script-edit window, in which you will type the
commands to create the CCL script. If you need help, you can choose a command from the
Commands menu. A brief description will appear in the Command Help window. Figure 2-4 shows a
CCL script-edit window with the Command Help window.

• Figure 2-4 Script-edit window with Command Help window

llrllt f• - of the d9f1Md strl"9S to Mtdl. T-lnate wit •ft .. <tl-t>
ticks, strir19 •tc:hes, _. _. ~ U. C:.-1 button. ,

To write a CCL script, you must know exactly what prompts will come from the client application.
CCL scripts may also contain commands needed to log off from the client application when the
session i.s completed The commands in the log-off sequence are preceded by an asteri.sk (•). Here i.s
an example of a log-off command:

*xmit "logout"

All the log-off commands must appear together at the beginning of the CCL script, before any
commands in the log-on sequence.

Production Draft (1989 June 19) c H A p T E R 2 Using MacWorkStation 21

APPLE CONFIDENTIAL

After you type your scrip~ you choose Save from the File menu. The dialog box shown in
Figure 2-5 appears so that you can name your ca script. You type in a name for the script and click
the OK button. You have now created a CCL script.

• Figure 2-S New script name dialog box

ult 0 Enter script name:

jRDSfl
(Saue J
[Cancel]

The next time you open the MWS document, you will be prompted to select the CCL script to use
to log on to the client application. Once you have logged on successfully with a CCL script, that
script is executed whenever the document containing it i.5 opened You can prevent the automatic
execution of the CCL script by holding down the Option key when you open the document You
will see the choose-script dialog box shown in Figure 2-3. You can then add a new CCL script to the
document, modify or remove scripts, or select a different script to use to log on.

22 MacWorkStation Programmer's Guide Production Draft (1989June19)

APPLE CONFIDENTIAL

Communication modules

A communication module manages a communication (transport-layer) protocol for the connection
between MWS and the client application. Communication modules are code resources stored in the
MWS document and called by the CCL log-on script, using the CCL TRANSPORT command.

A wide variety of communication networks can be used by a MacWork:Station-client system.
Several communication mcxlules are provided with MWS:

• A serial communication module that uses start and stop message characters.

• A serial communication rncxlule that sends a Begin Message character and then a 2-byte count
ci the number of bytes in the message.

• A communication module that sends and receives messages over the AppleTalk network.
AppleTalk is Apple's local area network for connecting Macintosh computers with each other
and with other shared resources. If you want to use this communication module, your client
application must have access to AppleTalk and be capable of supporting the AppleTalk Data
Stream Protocol (ADSP). The ADSP connection includes error checking, a benefit ci using
AppleTalk as the communication medium.

Other communication modules may be available from APDA. (Information on how to contact
APDA appears in the Preface.) You can also use custom communication rncxlules.

See MacWorkStation Programmer's Reference for more information about communication
modules. Information about creating custom communication modules is available from APDA.

Production Draft (1989 June 19) C HAP TE R 2 Using MacWork:Station 23

(

'

APPLE CONFIDENTIAL

Chapter 3 Directors and Messages

MACWORKSTATION COMMANDS AND EVENTS are

grouped together by function into directors. There are eleven directors. This

chapter gives an overview of the function of the directors. This chapter also

discusses the structure of MacWorkStation messages. Additional information

about the MacWorkStation directors can be found in the MacWorkStatton

Programmer's Reference. •

Production Draft (1989 June 19) 25

APPLE CONFIDENTIAL

MacWorkStation directors

Each MacWorkStatioo director is a group of commands and events involved with a particular aspect
of the application. Pa example, the Cursor Director provides commands to change and control the
cursor. Many of the directors' commands interface with routines belonging to the Macintosh
Operating System and the User Interface Toolbox managers. The managers are groups of
functionally related commands available to Macintosh applications. See Inside Mactntosh for more
information about the Macintosh Operating System, the User Interface Toolbox, and the toolbox
managers.

Here is a brief description of the MacWorkStation directors. A fuller explanation of the directors,
with examples, can be found in Oiapter 4. The commands and events for each director are described
in the MacWorkStatton Programmer's Reference.

• Alert Director-Allows a client application to display notes and warning messages to the
user. Alerts can range from "stop alerts,• which warn the user that some problem is about to
arise, to "note alerts• that simply require users to acknowledge the alert by dicking the OK
button. The client application can use the standard alerts, including a speaker beep, stop alert,
note alert, caution alert, message banner, and picture banner. The client application can also use
custom alerts, which might include color, that are saved as resources in the MWS document.

• Cursor Director-Makes it possible for a client application to hide or change the form of the
pointer visible to the MWS user. Your application can use the standard cursors, including the
arrow, wristwatch, and I-beam. Custom cursors, including color cursors, may also be displayed.

• Dialog Director-Lets a client application present Macintosh dialog boxes. The client
application specifies what each dialog box should look like and what it should do. A dialog box
can have mixed text fonts, sizes, and styles, as well as horizontal and vertical scroll bars, and size
and zoom boxes. Dialog boxes can include text input fields, different types of buttons, and
pop-up menus. Dialog boxes or items within them may be displayed in color. Dialog boxes can
be saved as resources in the MWS document for use with the application. The client application
calls each of these dialog boxes by using its unique resource ID.

• File Director-Lets a client application manipulate Macintosh files. The client application can
create, delete, and rename files, get and set file information, and open and close files. Macintosh
files consist of a resource fork and a data fork, and independent transfer of both file forks is
supported. File infonnation may include specific access rights when opening the file, and byte
ranges to be locked within a fde. The application can set directory access privileges or check a
directory's access privileges.

• Graphics Director-Provides access to many of the QuickDrawTll graphics routines that are
built into the User Interface Toolbox. These routines allow the client application to draw lines,
geometric shapes, patterns, and text. The application can draw graphic items in color.
QuickDraw pictures can be transferred between the client application and Macintosh windows.
The contents of graphics windows can be saved as MacDraw PICT documents.

26 MacWorkStation Programmer's Guide Production Draft (1989June19)

(

(

APPLE CONFIDENTIAL

• list Director-Lets the client application present information in a list format or in a fonnat
similar to a spreadsheet List windows can be saved as Microsoft Excel TEXT documents.
Records and fields an be transferred between the client application and Macintnsh windows.
Individual fields may be edited Records can be sorted in ascending or descending order, based
on one or more fields, and applications can be set up to read only thn;e records modified since
the last reading.

• Menu Dltector-Lets the client application chon;e from several standard menus such as File,
F.dit, Font, and Size. MWS handles any actions caused by the user's choice of items from these
menus. The client application can use the Menu Director to create custom menus, including
hierarchical and color menus. The Menu Director is also used to create pop-up menus, which can
then be used in dialog boxes. The dient application can use several menu bars, each tied to a
different document window on the Macintnsh computer.

• Process Director-Handles certain administrative tasks, such as placing the Macintnsh
computer in a wait state while the client application performs other tasks.

• Text Ditedor-Allows the client application to create and manipulate text in text windows.
Text windows may contain mixed fonts, sizes, and styles, as well as color text. The client
application or user can display and edit the text, and save it into MacWrite TEXT documents.
Text can be transferred between the client application and Macintnsh windows.

• Window Director-Lets the client application create windows of various sizes, shapes, colors,
and functk>m. Your application can check for a user action on a window such as activate,
deactivate, move, or resize. Other directors, such as the Text, List, or Graphics Director, provide
the window's contents. Windows can represent editing areas, display areas, or entire Macintosh
documents.

• Exec Director-Lets you use your own executable code modules (exec modules). You use exec
modules to extend and modify MWS. The Exec Director includes commands that initialize,
terminate, and control executable code functions. The structure of executable code is explained
in the MacWorkStatton Programmer's Reference.

Production Draft (1989June19) c HA p TE R 3 Directors and Messages 27

APPLE CONFIDENTIAL

MacWorkStation messages

At the heart of the MacWorkStation-client system are the messages exchanged between the client
application and MWS. These messages are either commands or events. A command is a message
sent from the client application to the MacWorkStation application, instructing it to perform some
action, such as creating a window.

An event is a message sent from MWS to the client application. Events are sent under two
conditions. First, some events are sent in response to commands from the client application. For
example, a client application might send F o 13 1 ; (the Get File Fork Size command). MWS might
respond with F2 61 1; s 4 32 ; (the Get rtle Fork Size Response event). This event tells the
client application that the size of the requested file is 5432 bytes.

Second, some events are sent in response to user actions. For example, if a user chooses a menu
item, MWS will send M2 5 6 o ; 1 ; 2 ; (the Menu Selection Event). It tells the client application
that the user selected item number 2 from menu number 1 in menu bar 0.

Here is another example. The dialog box in Figure 3-1 is from the Bear Cal sample application. If a
user clicks the OK button in a dialog box, MWS will send .D 2 5 7 1 ; T ; (the Control Item Pressed
event). This event is generated whenever the user clicks a button (such as OK , C'ancel, or one of the
credit card buttons) in the dialog box.

• Figure 3-1 Dialog box from the Bear C'al sample application

Bedt l di Ae\Pt t•dt1on '>lj\ tern

Passenger: le. Hutson OK

Destination: (Cancel)
Depart: Return:

Alrllne:

Time:

Gate:

Incidentals: Closs: See ting: Payment:
O Smoking QFlnt QWlndow fJij ODlnner @Coach @Center
OMoule QBuslness QfHsle CIC 0 Rental Cer

The next sections desaibe the parts of a MacWorkStation message in more detail.

28 MacWorkStation Programmer's Guide Production Draft (1989 June 19)

',, /

(

(

APPLE CONFIDENTIAL

The structure of a mes.uge

A MacWorkStation message is a stream of bytes con.si5ting of three parts: a class, an identifier
(ID), and pal'l1lldal, if any. The message class indicates the MWS director involved in the
message. The ID ~ a particular command or event F'mally, many of the commands and
events send additional information in parameters. How the messages are formed and sent between
the computers is an i5.sue for lower-level communications software.

Here is an example of a command message where the class i5 M, the identifier is o o 4, and
there are several parameters. This is a Menu Director message that creates the Assets menu, shown
in Figure 3-2.

M004 O;Assets,20,Cash,Accts receivable,Inventories,Other assets<B,
Land,Buildings/B,Equipment;

• Flgutt 3-2 Macinta>h menu example

Cash
Rcct1 recelueble
lnuentorles
Dt111er ••••t•
Lend
Bulldlng1 XB
Equipment

Production Draft (1989June19) c HA p TE R 3 Directors and Messages 29

APPLE CONFIDENTIAL

Class

The class is a single uppercase ASOI character that determines which MacWorkStation director the
message refers to. Table 3-1 gives the MacWorkStation classes and their respective MacWorkStation
directors.

• Table 3-1 Oasses and directors

Class Director

A Alert Director

C Cursor Director
D Dialog Director

F File Director

G Graphics Director
L List Director

M Menu Director

P Process Director

T Text Director

W Window Director

X Exec Director

Identifier

The identifier specifies the particular command or event of the director. It is composed of three
ASOI digits, such as 123. All three digits must be given, so an identifier of 1 would be represented
as o o 1. Command identifiers range from o o 1 to 2 5 5. Event identifiers range from 2 5 6 to
511.

Parameters

A list of parameters may follow the class and identifier. These parameters provide additional
information for the execution of the command or event Parameters may be required or optional.
Some parameters can be repeated a number of times in the same message. For example, to create
menus, the client application must indicate the names and items for the menus. These names and
items would appear as parameters in the command message.

Parameters may be different data types. Parameters can be strh:lgs, integers, Boolean
operators, or binary data With the exception of binary data, the bytes that make up a
MacWorkStation command or event are displayable, extended 8-bit ASCI characters. For instance,
the numeric value 42 will appear in a parameter list as 42, not as a binary value.

30 MacWorkStation Programmer's Guide Production Draft 0989 June 19)

(

APPLE CONFIDENTIAL

Some parameters are combinations or variations of the basic types. These parameters are
indicated in the enmples in this guide, and in the MacWorlzStatton Programmer's Reference, by
using special parameter types and keywords.

Because paramderS can have a number of components, delimiters are used to separate them.
Semicolons deliml parameters. Commas delimit the components of compound parameters. For
instance, the item list <i a menu is delimited by semicolons, but the component strings <i the item
list are separated by commas.

MacWorkStation messages use these parameter types:

• Strina-A sequence of characters wh<R length should not exceed 255 charac:ters. A string may
be encl<:Rd by single or double quaation marks. A string must be encaed in quaation marks
if it contains a semicolon or comma.

• Integer-A sequence of characters, each of which has a value in the range 0-9, with an optional
leading minus sign(-). An integer value must be within the range that can be specified by a 32-
bit binary value.

• Flaa-Boolean values that are either true or false. The value rJ a flag parameter may be
specified as a string with a first character that is either Tor tfor true, or.For /for false.

• Bytes-An arbitrary string <i 8-bit bytes delimited only by the end cl the message. A
parameter of this type may vary in length up to the maximum message size (512 bytes), and
may contain any characters (including semicolons or other delimiters).

• C.Olor-Some commands use the eight original QuickDraw color keywords: BLACK, BLUE,

CYAN, GREEN, MAGENTA, RED, WHITE, and YELLOW. If Color QuickDraw is available,
some commands can set RGB color as a compond parameter. RGB color is denoted by three
integers in the range of O to 65535, separated by canmas.

• C.Ompound-A parameter that consists of a combination of parameter types.

• Directory-A parameter that specifies the name of a volume, folder, file, or the pathname for
a folder or file.

• Keyword-A string-type parameter with a fixed set of values that your application may send.
Keywords are specified exactly as they should appear in the parameter list and are always in
uppercase. For example, when creating menus, you may use a keyword to indicate a standard
MacWorkStation menu. Standard menu keywords include FILE, EDIT, and FONT.

• Poi1lt-Two integer values that specify a coordinate. They appear in the parameter list as •h,
ti (horizontal and vertical coordinates). Notice that the integers are separated by a comma.

• Keet-Foor imfaer values that specify a rec:tangle. They appear in the parameter list as •left,
top, right, Notice that the integers are separated by commas .

. . ~,:

• Signature-A llriD& of exactly four characters, usually used to indicate the type or creator of a
file. A signature is case sensitive, so the value 'text' will not be the same as 'TEXI".

Produc:tion Draft (1989 June 19) c H A p TE R 3 Directors and Messages 31

APPLE CONFIDENTIAL

Using aliases

Each object created by the MacWorkStation-client system, whether it is a window, dialog box, or
open fde fork (reswrce or data), is assigned an alias when it is created The object's alias is one of
the parameters used in the commands and events that control the object. The client application and
MWS bah refer to the object by its alias. If the o~ is created by the client application, then the
programmer specifies the alias to use. For example, if the client application wishes to create a
window, it must supply a unique alias that the client application and MWS can use to refer to that
window in su~quent messages. In this case, the alias is an arbitrary number. Objects are
sometimes created by the MacWorkStation application independent of the client application. In this
case, MWS will provide the unique alias for the object it generates. For instance, if the user chooses
New from the standard File menu, MWS will create a new text window.

Examples

Here are some examples of commands and events, with an explanation of their features.

WOOl 5; TEXT; Daily News

This is a window command, so the class is w; the identifier is o o 1, which falls within the range of
a command (1-255). This command will cause the Macintosh computer to put up a standard
document window. There are three parameters, separated by semicolon delimiters. The window has
an alias of 5. This alias was assigned by the application programmer and will be used su~quently
to refer to the window. The keyword TEXT specifies a window with a text view and scroll bars.
The title of the window is Daily News.

M004 O; FILE; EDIT; Mail, 6, Send, Receive, Address Book

This is a menu command: The class is M; the identifier is o o 4, which falls within the range of a
command. This command will cause MWS to add three menus to the menu bar: File, Edit, and Mail.
There are four parameters, separated by semicolon delimiters. The first parameter, 0, is an alias
referring to the default menu bar where the menus will be added. The second and third parameters
are keywords that specify the File and Edit menus, which are standard menus managed by MWS.
The fourth parameter is a compound type consisting d several subparameters separated by
commas. The Mail menu has an alias of 6 and three items: Send, Receive, and Address Book.

M256 O; 6; 3

This is a menu event The class is M; the identifier is 2 56, which falls within the range d an event.
There are three parameteJS, separated by semicolons. In this case, MWS is informing the client
application that the user has chosen menu bar o, menu 6, item 3. This choice corresponds to the
Address Book menu item from the previous example.

32 MacWorkStation Programmer's Guide Production Draft (1989June19)

APPLE CONFIDENTIAL

Chapter 4 Using Directors

M A C W 0 R K ST AT I 0 N D I R E CT 0 R S provide programmers with

the tools necessary to create their MacWorkStation-client systems. This

chapter uses examples from a simple client application to explain the use of

the director commands and events. The MacWorkStation Programmer's

Reference gives a complete description of all the commands and events used

in the examples. •

Production Draft (1989 June 19) 33

APPLE CONFIDENTIAL

About the "Bear Cal" application
"Bear Cal" is a simple example of a client application. The application is designed to be used by
reservation clerks cJ a fictional airline, called Bear Cal, to schedule reservations and perform other
tasks. You will find the source code for "Bear Cal" in the appendix, as well as on the MacWorkStaton
Samples Disk. "Bear Cal" is written in MPW 3.0 C.

After initialii.ation, the application enters an event loop to wait for the first action to process.
The event loop begins with the do command and ends with the while (! AllDone)

command. The event loop first processes messages with the MWSGet < > routine. This routine
identifies the director class of the message, which is then used in the event loop to determine the
appropriate routine to handle the event

The first event received from MWS will be the MacWorkStation Online (P 2 5 6) event. When
"Bear Cal" receives this event, it executes a startup routine that first responds with the Host Online
(Po o 1) command. "Bear Cal" then creates menus, several windows, and a dialog box. When it has
finished, the application displays the Flight Schedule window and again waits for the reservation
clerk's next action.

The reservation clerk's actions may include scheduling a new reservation or changing an existing
reservation. The reservation clerk can indicate the method of payment, and receive an authorii.ation
code for some methods. The reservation clerk can set up meals for a reservation, including
instructions for special meals, and note whether the customer wants to rent a car.

Other routines of the "Bear Cal" application handle such tasks as determining which menu item
a reservation clerk has chosen, or what items have been selected or entered in a dialog box. Finally,
when the reservation clerk chooses Disconnect from the Apple menu, or Close or Quit from the File
menu, "Bear Cal" processes the event sent by MWS and discontinues the session.

34 MacWorkStation Programmer's Guide Production Draft (1989 June 19)

•

(

APPLE CONFIDENTIAL

The Alert Director

The Alert Director commands make it possible for your application to inform users of error
conditions or other situations that require their attention. An alert can be a simple beep from the
Macintosh speaker or an alert box asking the user whether to continue or cancel an action. You
can use the standard alerts provided by MWS, or you may chcne to create your own.

An alert places the MacWorkStation application in a modal state. The user must respond to the
alert before the application can continue. Inside Macintosh explains the use of alerts in detail. Figure
4-1 shows an example of an alert.

• Figure 4-1 Alert created with the Alert Director

I OK J

WARNING: Beer Cal does not
allow smoking on flights.

The following command created the alert displayed in Figure 4-1:

MWSPut("A002".,"F;WARNING: BearCal does not allow smoking on flights.");

• A is the class for the Alert Director.

• o o 2 is the identifier for the command Stop Alert.

• F is the flag for the respond parameter In this case it is false, indicating that no event will be
returned to the client application when the user dismisses the alert.

• The final parameter is the messagethat will be displayed in the alert box.

The alert created by this command contains the standard note icon, an OK button, and the text of
the message.

Production Draft (1989 June 19) c H A p T E R 4 Using Directors 3S

APPLE CONFIDENTIAL

The Cursor Director

The Cursor Director makes it pos.sible for the client application to change and control the mouse
pointer on the Macintosh screen. Generally, it is best to let the MacWorkStation application control
the pointer, which is the default situation. However, the client application can determine the
appearance of the pointer, hide the pointer, or show the pointer.

The pointer can relay infonnation to the user about the state of the application or the options
available, as well as reassuring the user about what's happening. For instance, changing to the
wristwatch informs the user that a time-consuming action is taking place.

Several pointers are predefined by MWS. They are shown in Table 4-1 together with their
resource IDs, which are used in the Set Cursor (co O 2) command. You can define your own pointers
and save them as resources in the MWS document

• Table 4-1 Cursor resource IDs

Image Name 'CUIS' resource ID

~ Arrow 0

I I-beam 1

+ Cross hair 2

~ Crossbar 3

~ Wristwatch 4

In the routine that sets up the Reservations dialog box, the Set Cursor command is used to change
the pointer to a wristwatch while the dialog box is being created. Figure 4-2 shows the screen with
the wristwatch pointer.

• Figure 4-2 Wristwatch pointer created with the Cursor Director

P111sen1er List ~ .. _........_ DntNtton

~

K>
lQl 4r;:t IC

36 MacWorkStation Programmer's Guide Production Draft 0989 June 19)

(

(

APPLE CONFIDENTIAL

Let's examine the command in detail.

MWSPut("C002","4"l;

• c is the class for the Cursor Director.

• O O 2 is the identifier for the Set Cursor command.

• 4 is the alias for the cursor type, a wristwatch. The wristwatch shows that a lengthy
procedure is taking place. The cursor image is set to the cursor specified by the cursor/D
parameter. The cursor will remain a wristwatch regardless of mouse movement.

This command sends the Auter Track command (COOl):

MWSPut("COOl",""l;

The Auter Track command returns control of the cursor to the MacWorkStation application.

The Dialog Director
Dialog boxes are used to get information from the user. Using the mouse and keyboard, the user
can adjust controls and enter data into editable text fields. Controls in dialog boxes appear as push
buttons, check boxes, and radio buttons.

The Dialog Director lets the client application specify what the dialog box will look like, what
items it should have, where the items should be placed, whether any items or the box itself should
be displayed in color, and how items should behave. Any combination of text fonts, sizes, and
styles is pennissible within a dialog box. Other dialog box options include vertical and horizontal
scroll bars, and size and zoom boxes. The Dialog Director also lets the client application save the
dialog box as a resource in the MWS document. The dient application can then open the dialog box
by using its resource ID number, rather than reconstructing it.

Once the dialog box is constructed, the client application can have MWS do all the work of
managing the dialog box while the user is making selections or entering text. When the user changes
a control or enters text, MWS sends an event to the application with the user's selections and
entries.

Production Draft (1989 June 19) C H A P T E R 4 Using Directors 37

APPLE CONFIDENTIAL

Dialog item types

Your client application creates a dialog box by specifying a dialog box window, then adding dialog
items to it. As each item is added, it is assigned an index number. The first item added is item 1, the
second is item 2, and so on Dialog items are referred to by this index number.

The client application add a variety of dialog box item types. A dialog box can be as simple as a
picture with an OK button, or very complex with a number of buttons, pictures, editable text fields,
and scrolling-entries items. Table 4-2 lists the keywords for each of the dialog item types.

• Table 4-2 Keywords and dialog item types for the MacWorkStation Dialog Director

!Cq'word Abbn:vJatfon Dialog .item type

BUTTON B Button
CHECK c Oleckbox

EDIT E Editable text field
ICON I Icon
LINE L Line divider

MENU M Pop-up menu
PICTURE p Picture
RADIO R Radio button
SCROLL s Scrolling-entries item
TEXT T Static text field
USER u User item (custom control)

Control items

Buttons, check boxes, radio buttons, and user items (custom controls) are control items. Control
items are managed by the Macintosh User Interface Toolbox Control Manager. A control item can
work like a switch (off and on), or a volume control (range). The control is set up with minimum,
maximum, and current values. Users can adjust the control, changing the current value. A control
has an indicator of some sort to show the current value. A standard control that works like a
switch has only two values: 0 and 1. Check boxes and radio buttons are examples.

Another fe2lure d controls is that they can be enabled or disabled. This capability is referred to
as setting a cottrol's highlighting, or its active state. An inactive control cannot be changed by the
user-it appears to be dinuned and.usually indicates no value.

38 MacWorkStation Programmer's Guide Production Draft (1989June19)

(

APPLE CONFIDENTIAL

A dialog box routine

The messages below create the dialog box shown in Figure 4-3. The routine sets the cursor type,
di.5ables the Bear cal menu, and sets up the title, fields, clusters, and buttons for the dialog box. It
then returns control of the cursor to MWS.

MWSPut("C002","4");
MWSPut("D001","4;F;Bear Cal Reservation System;16;F;30,50,482,335");
MW5Put("D009","4; B; 380,10,440,30; OK; F; T; 1");
MW5Put("D009","4; B;
MWSPut("D009","4; T;
MWSPut("D009","4; E;
MWSPut("D009","4; T;
MWSPut("D009","4; E;
MWSPut("D009","4; T;
MWSPut("D009","4; E;
MWSPut("0009","4; T;
MWSPut("D009","4; E;
MWSPut("D009","4; L;
MWSPut("D009","4; T;
MWSPut("D009","4; E;
MWSPut("D009","4; T;
MWSPut("D009","4; T;
MWSPut("0009","4; E;
MWSPut("D009","4; E;
MWSPut("D009","4; T;
MWSPut("D009","4; E;
MWSPut("D009","4; T;
MWSPut("D009","4; E;
MWSPut("D009","4; L;
MWSPut("0009","4; T;
MWSPut("0009","4; P;
MWSPut ("D009", "4; P;
MWSPut("D009","4; L;
MWSPut("D009","4; T;
MWSPut("D009","4; C;
MWSPut("D009","4; C;
MWSPut("D009","4; C;
MWSPut("D009","4; C;
MWSPut("D009","4; T;
MWSPut("D009","4; R;
MWSPut("D009","4; R;
MWSPut("D009",•4; R;
MWSPut("D009","4; T;
MWSPut("D009","4; R;
MWSPut("D009","4; R;
MWSPut("D009","4; R;
MWSPutC"D007","4");
MWSPut ("COOl", "");

380,40,440,60; Cancel; T; F; 0");
10,10,110,26; Passenger:");
115,10,360,26; F; 1; T;");
10,35,110,51; Destination:");
115, 35, 360, 51; F; O; T; A; ["l;

10,60,110,76; Depart:");
115,60,185,76; F; 0; T;");
205,60,285,76; Return:");
290,60,360,76; F; 0; T;");
12,85;440,85;");
10,95,110,111; Airline:");
115, 95,330, 111; F; O; T;");
10,120,110,136; Time:");
1345, 1120, 1400, 1136; Hidden: "l;

115,120,330,136; F; O; T;");
1405,1120,1440,1136; F; O; T;");
10,145,110,161; Gate:");
115,145,330,161; F; O; T;");
1235,1145,1295,1161; hidden:");
1300,1145,1440,1161; F; O; T;");
12,170;440,170;");
370,180,440,196; Payment:");
375,240;101;F;F;l");
375,200;100;F;F;l");
360,175;360,275;");
10,180,110,196; Incidentals:");
15,200,110,216; Smoking; T; T; 2; O; 0;");
15,220,110,236; Dinner; T; T; 2; O; 0;");
15,240,110,256; Movie; T; F; 2; 0; O;");
15,260,110,276; Rental Car; T; T; 2; O; 0;"1;
130,180,230,196;
135, 200, 230, 216;
135, 220, 230, 236;
135,240,230,256;
250,180,350,196;

Class:");
First; T; F;
Business; T;
Coach; T; F;
Seating: "l ;

3; O; 0: ..) ;

F; 3; O; 0; ") ;
3; O; l; ");

255,200,350,216; Window; T; F; 4; O; 0;");
255,220,350,236; Center; T; .F; 4; O; l;"l;

255,240,350,256; Aisle; T; F; 4; O; 0;");

Production Draft (1989 June 19) c H A p T E R 4 Using Direaors 39

APPLE CONFIDENTIAL

• Figure 4-3 Reservations dialog display with clusters

Passenger: OK

Destination: (Cancel)
Depart: Return:

Rlrllne:

Time:

Gate:

See ting:
I

Incidentals: Class: I Payment:
O Smoking O First 0Wlndow I []iij 0Dinner @Coach @Center

0Moule OBuslness O lllsle I~ 0 Rental Car

The following line of code is the first command using the Dialog Director:

MWSPut("D001","4;F;Bear Cal Reservation System;l6;F;30,50,482,335");

• D is the class for the Dialog Director.

• O O 1 is the identifier for the command New Dialog.

• 4 is the alias for this particular dialog box.

• F is a flag indicating that the dialog box is not modal.

• Bear Cal Reservation System is the title of the dialog window.

• 16 signifies the shape of the window, as explained in "The Window Director,n later in this
chapter.

• F is a flag that denotes that the dialog box does not appear when it is created. The command
Show Dialog (Do o 7) actually draws the dialog box.

• 3 o , 5 o , 4 8 2 , 3 3 s specifies in global screen coordinates the dimensions of the dialog
box.

40 MacWorkStation Programmer's Guide Production Draft 0989 June 19)

APPLE CONFIDENTIAL

Clustering iteim

Clustering allows dialog box items to be grouped together. For example, if you cluster radio
buttons, then only one button at a time can be selected. When the user clicks a button that is not
selected, it becomes selected and the other one is deselected. You specify an item's cluster in the
Add Item (o o o 9) command. Giving an item a cluster identifier of zero (o) indicates that it does not
belong to a cluster.

Here is an Add Item message that assigns the item to a cluster:

MWSPut("D009","4; C; 15,220,110,236; Dinner; T; T; 2; O; 0;");

• o is the class for Dialog Director.

• o o 9 is the identifier for the command Add Item.

• 4 is the alias for this dialog box.

• c is an abbreviation for the item type, CHECK, which ad~ a check box to the list

• 15 , 2 2 o , 11 o , 2 3 6 specifies in local window coordinates the rectangle in which the
item will be drawn.

• Dinner is the title that will appear to the right of the control item.

• The active flag is true (T), enabling the check box for the user to check.

• The report flag is true (T), so an event will be generated when the user clicks in the oontrol.

• 2 is the cluster identifier. Since the identifier is not 0, the item is part of the cluster with other
items that have a 2 identifier in this position.

• The oversee parameter is o. This value indicates that the item does not oversee a duster.
Overseeing is explained fully in the MacWorltStatton Programmer's Referenc,e.

• Valid values for the last item are 0 and 1. The o means that the check box is not checked

The following lines illustrate the use of clusters in dialog boxes.

MWSPut("D009","4; T; 130,180,230,196; Class:");
MWSPut("D009","4; R; 135,200,230,216; First; T; F; 3; O; 0;");
MWSPut("D009","4; R; 135,220,230,236; Business; T; F; 3; O; O; ");
MWSPut("D009","4; R; 135,240,230,256; Coach; T; F; 3; O; 1; ");

This series of ~ges sets up a text label, Class : , for three radio buttons. The parameter
immediately after each of the class titles-First, Business, and Coach-of the three radio
buttons is the active flag. This flag is true for each button, indicating that the button is enabled
when the dialog box is ~played. Notice that all of the buttons have the same cluster identifier (3).
When the user dicks one of the radio buttons, it will be selected and given a value of 1. Because the
radio buttons are a cluster, the other items will be deselected and their values set to zero (0).
Coach is the default for this cluster, which is set by the last parameter.

Production Draft (1989 June 19) c H A p TE R 4 Using Directors 41

APPLE CONFIDENTIAL

The File Director

The File Direc.tor cortrols the exchange of information between the client application and files on
the Macintosh canputer. The File Direc.tor allows the client application to create and open files and
access the information they contain. Your application can also delete and rename files, open and
close either fork of a Macintosh file, read and write data, and get or set information about the files.
Your application may lock specific byte ranges within a file to prevent changes, and can specify the
pemtission level for files on AppleShare® volumes.

The client application can get information about volumes, including the volume name, free
blocks available, and the number of files on the volume. It can also get or set access privileges for
direc.tories of AppleShare volumes.

A Macintosh file consists of two file forks, called the data fork and the resource fork. When a
MacWorkStation file is created, both forks are created, each with a logical size of zero (0). When a file
is deleted, both forks are deleted. However, the forks behave as individual files in all <Xher respects.

A fork is a finite sequence of numbered bytes. The first byte is byte zero (0), the second byte is
one (1), and so on, up to the logical end-of-file. The current po;ition, or mark, is the number of the
next byte that will be written or read. The mark automatically moves forward one position for
every byte read or written. If the mark reaches the logical end-of-file while writing, both the mark
and the logical end-of-file are moved forward one position for every byte written to the file. The
value of the mark can never exceed the value of the logical end-of-file.

Normally, client applications will operate only on the data fork. The data fork is often used for
storing ASOI text, such as that generated by MWS in text and list windows. The resource fork is
used to store resources. Ordinarily, you would not change individual bytes of the resource fork. You
would use the File Direc.tor to copy an entire resource fork.

This routine first creates an Excel text me. It then generates data that is in tum written to the
file's data fork. The data is then read back in and written to the Flight Schedule window.

MWSPut("FOOl","Schedule;XCEL;TEXT");
MWSPut("F004","l;Schedule");
WriteFlight ();
MWSPut ("F006", "1");

Here is an explanation of the first message:

• F is the class, indicating the File Director.

/'*
/'*

/'*

Create new file '*/
Open file data fork '*/

Close file data fork '*/

• o o 1 is the identifier for the command Oeate File/Folder.

• Schedule is the filename.

• XCEL is the four-character creator.

• TEXT is the foor-character file type.

42 MacWorkStation Programmer's Guide Production Draft (1989 June 19)

(

(

APPLE CONFIDENTIAL

The Graphics Director
The Graphics Director~ used to create images in graphics windows. With the Graphics Director, the
client application can draw lines, geometric shapes, text, icons, and complicated pictures.

A MacWorkStation graphics window •remembers• what has been drawn, so the client
application does nct have to redraw the image should its window be hidden temporarily.

Coordinates Jn graphics windows

Many of the graphics commands require values to specify where to draw. These values represent
points or rectangles in the coordinates of the window's drawing plane. The left-top comer of the
window's drawing plane is the point (0,0). The drawing plane is limited to the size of one U.S. letter­
sized printed page. This page translates to a drawing rectangle 576 pixels wide by 720 pixels tall.

The window's content area is the visible area of the window where drawing occurs. When a
graphics window is created, the left-top comer of the content area is set to the left-top comer of
the drawing plane (O,o). When a window is scrolled, the left-top comer of the content area changes,
while the coordinate system of the drawing plane remains the same. Because the graphics
commands are specified in the coordinate system of the drawing plane, the client application
doesn't have to deal with scrolling; MWS handles it.

On windows without scroll bars, the coordinates of the window's content area always coincide
with the window's drawing plane. Because the user will not be able to scroll the window, you
should be careful not to draw outside the window's content area.

Production Draft (1989 June 19) C H A PT E R 4 Using Directors 43

APPLE CONFIDENTIAL

Graphics commands

This listing illustrate the use of several graphics commands. They create the "Welcome to Bear Cal
Airlines• display shown in Figure 4-4.

MWSPut("W001","8;G;;2;F;F;S,25,507,340;0;0");
MWSPut("G024","8;40,40;1500");
MWSPut("G024","8;380,40;1000");
MWSPut("G014","8;Geneva");
MWSPut("G015","8;18");
MWSPut("G016","8;B");
MWSPut("G008","8;105,20");
MWSPut("G018","8;Welcome to Bear Cal Airlines");
MWSPut("W003","8");

• Figure 4-4 Screen display created with the Graphics Director

9 Fiie Edit Beer Cal EHec Modules

Welcome to Bear Cal Airlines

Here is a detailed description of the first two Graphics Director messages.

MWSPut("G024","8;40,40;1500");

• G is the dass d the Graphics Director.

• o 2 4 is the idedifier for the Draw Picture command.

• 8 is the window alias.

• 4 o, 4 o are the coordinates for the left-top comer of the picture.

• 15 o o is the resource ID of the 'PICT' resource used fa- the graphics. This 'PICT' resource
contains the airplanes and some of the clouds.

MacWorkStation Programmer's Guide Produc.tlon Draft (1989 June 19)

(

-, (-_··-

APPLE CONFIDENTIAL

MWSPut ("G024 ", "8; 380, 40; 1000");

• 3 8 o , 4 o are the coordinates for the left-top comer of the picture.

• 1 o o o is the resource ID for this 'PICT. This 'PICT contains the graphic of the clouds with
the sun.

The last four lines in the example create the banner "Welcome to Bear Cal Airlines." Let's look at each
line in detail.

MWSPut("G015","8;18");

• o 15 is the command to Set Text Size.

• 8 is the alias for the window.

• 18 is the point size of the text

MWSPut("G016","8;B");

• o 16 is the Set Text Style command.

• 8 is the alias for the window.

• B is the string name for the style, in this case boldface.

MWSPut("G008","8;105,20");

• o o 8 is the Set Pen Location command.

• 1 o s, 2 o are the coordinates for the left-top corner of the banner.

MWSPut("G018","8;Welcome to Bear Cal Airlines");

• O 18 is the Draw Text command. It draws text in the window with the alias of 8. The text is
Welcome to Bear Cal Airlines.

Production Draft (1989 June 19) C H A P T E R 4 Using Directors _ 45

APPLE CONPIDENTIAL

The List Director

The Llst Director allows the client application to display textual data in a variety of list formats, and
provides editing facilides for the user. The client application can use list windows to present
information in tables or spreadsheet format The list might be a collection of items the user can
choose from, or information the user is looking for. Figure 4-5 shows an example of a list window.

• Pigurc 4-S Might schedule created with the List Director

TN

I :SO 1111

10:20 -
s :JS 1111 4

ti :lJO - 12

2 :SO"" II
4:41 pm " 7:50 1111 22
I :IO pm 21
IO:SOllft 14

Both the client application and the user can add, delete, and change the contents of individual
records and fields in the list The user can select, cut, copy, and paste records and f1elds.

The client application can set titles over list columns, set tab stops for the columns, and choose
display options such as fonts, font sizes, and grid lines. The user can choose the font and size of
text in the list window, if the application provides the standard Font and Size menus.

The list window can be prilled or saved to a document The document is created as a
Microsoft Excel-text-formatted file. The contents of the file are ASOI text with fields separated
by horWxttal tab characters (ASOI $09), and with records separated by carriage returns (ASOI SOD).
This format is compatible with most spreadsheet and database programs.

Here is a routine that creates a new flight schedule window, like the one in Figure 4-5, and uses
List Director commands to set appropriate tabs and titles:

MWSPut("W001","9;L;FLIGHT SCHEDOLE;O;F;F;20,75,492,315;0;0");
MWSPut("L019","9;l,200;2,350");
MWSPut("L016","9;Airline\tTime\tGate");

46 MacWorkStation Programmer's Guide

I* Tab breaks */

Production Draft (1989 June 19)

(

(',

/

APPLE CONFIDENTIAL

The first message is a Window Director command that creates a new list window called FLIGHT

SCHEDULE with the alias of 9.

• L indicates that the kind of window is List.

• o specifies the shape of the window.

• The first F means that the close box flag is false, so there is no close box in the leftmost
comer d the title bar.

• The second F means that the visible flag is false, so the window is initially invisible.

• The coordinates for the location of the window are 2 o , 7 s, 4 9 2 , 315.

• o indicates that the window uses the default menu bar.

• The cursor parameter is o, indicating that a cr~bar cursor will appear, which is the default for
List windows.

The next two messages are List Director commands.

• The command LO 19 is Set Tab Stops. In this case, the tab stop coordinates are 2 o o for
tab stop 1 and 350 for tab stop 2.

• Command LO 16 is Set Headings. It allows the client application to place titles above the
columns in the window. In this case, the titles are Airline, Time, and Gate.

Prcxiuction Draft (1989 June 19) c H A p T E R 4 Using Directors 47

APPLE CONFIDENTIAL

The Menu Director
The Menu Director lets you create menus. In Macintosh applications, menu tides appear across the
top of the screen in the menu bar. The Macintosh user simply pa5itions the cursor over a menu tide
in the menu bar and presses the mouse button. The menu then appears, displaying the list of menu
items. As long as the mouse button is held down, the menu is displayed Dragging the mouse over
the menu items causes each item to be highlighted in tum. If the mouse button is released over an
item, that item is •chosen.•

The client application can instruct MWS to display any of the standard Macintosh menus: the
rde, Edit, Font, Size, Search, and Display menus. The Apple menu is always displayed. The client
application can also display menus it def mes either through comman~ or as resources, including
hierarchical and color menus. To add menus containing oomman~ unique to your application, you
can send strings describing the titles of the menus and their items. Figure 4-6 shows a sample
custom menu. You can also use menus that are stored as resources in the MWS document.

MWS manages all the menu items (comma~) that the user chO<Rs from the standard menus.
However, when the user chooses an item from a client a~plication menu, the selection is sent to the
client application as an event by MWS.

• Figure 4-6 Pull-down menu example

Reseruetlons XR
Show Fllght Schedule Xf

Hide Log XL

Rbout Beer Cal XR

The following messages create the menu in Figure 4-6.

MWSPut("M004","0;Bear Cal,l,Reservations/R,Show Flight Schedule/F, (-,");
MWSPut ("M006", "0; l; Hide Log/L, (-,About Bear Cal/A");

• M is the class for the Menu Director.

• o o 4 is the identifier for the Add Menus to Menu Bar command

• Zero (0) is the alias for the default menu bar.

• FILE and EDIT are keywor~ for standard menus.

• Bear Cal, in the seoond command, is a custom menu name.

• The alias for this particular menu is 1 .

• Reservations and Show Flight Schedule are the f1rst menu items listed in the
Bear C1I menu. The parenthesis and hyphen in the list will display a disabled, dashed line after
the menu items. The Command-key equivalents for the menu items are /R, /F, /L, and I A.

48 MacWorkStation Programmer's Guide Production Draft 0989 June 19)

(

APPLE CONFIDENTIAL

• M006 is the Append Items to Menu command. This command adds the Hide Log and
About Bear Cal items to the menu. The Command-key equivalents for these menu
items are I L, and I A. Another disabled, dashed line is displayed in the menu.

Consider this message:

MWSPut("M008","0;1;1");

This Menu Director command enables a menu item so that it can be selected by the user.

• o o a is the Enable Item command.

• Zero (0) refers to the default menu bar, the first 1 refers to the Bear Cal menu, and second 1

is the item to enable.

If the item was already enabled, Enable Item does nothing.
The Delete Menu From Menu Bar (MO 05) command allows your client application to delete

from the menu bar all menus except the Apple menu. You can append items to a menu by using
Append Items to Menu (MO o 6). You might also want to add a check mark to the left of a menu
item's text, to denote the status of an item or of the mode it controls. You can add a check mark
with the Check Item and Exclusively Check Item commands. See the Mac Work.station
Programmer's Reference for a complete discussion of each command.

The Process Director
The Process Director handles program control and administration. Such tasks include protocol
handshaking, getting machine and software versions, setting user wait states, and quitting the
Macintosh application.

The following message sends the Host Online (PO O 1) command:

MWSPut ("P001", "");

The client application must send this command at the beginning of each session in response to the
MacWorkStation Online (P2 s 6) event The MacWorkStation Online event is sent after the MWS
document is opened and its ca. script logs on to the client application.

The Text Director
The Text Director handles the contents of text windows. It allows the user to view, scroll, edit, save, and print
text windows. The client application may call on the Text Director to transfer text to and from a text window,
or to alter the window display. It can select a specific range of text; locate text; specify mixed fonts, font sizes,
and styles; and find out text characteristics. Text windows can hold up to 32K of text

Production Draft (1989 June 19) C H A P T E R 4 Using Directors 49

APPLE CONFIDENTIAL

The Window Director

The Window Director lets the client application create and manipulate windows on the Macintosh
computer screen. Through other MacWorkStation directors, text and graphic information can be
exchanged between the client application and the user. A window's contents can be retrieved from
or saved to Macintosh documents in formats accepted by other Macintosh applications.

When a window is created, it is assigned a window kind that detennines which MWS director
will control it. MWS supports graphics, text, and list windows. Also, a client application can create
windows by using parameters stored in the 'WINO' resource.

Window kinds

The window kind specifies which MacWorkStation director is responsible for the contents of the
window. When the client application creates a window, the window kind is specified as a keyword
parameter. The client application then manipulates the contents of the window by making calls to

the corresponding director. A window's kind cannot be changed.
For example, the client application creates a graphics window by specifying the window kind as

GRAPHICS. Then the client application makes calls to the Graphics Director to draw graphics into
the window.

The window kind also specifies the type of Macintosh document used when saving the
contents of the window. MWS supports file formats for three widely used applications: MacDraw,
MacWrite, and Microsoft Excel.

Table 4-3 lists the keywords for the window kinds, their corresponding document kinds, and
the directors that manage the windows. The creator and type are Macintosh file components,
described in •File Director,• in Cllapter 2 of the Mac WorkStalion Programmer's Reference.

• Table 4-3 Window kinds

Keyword Abbteriation Documt.nt kfnd Cteato.r Type Dl.recto.r

GRAPHICS G MacDraw MDRW PICT Graphics Director

LIST L Excel Text XCEL TEXT List Director

TEXT T MacWrite Text MACA TEXT Text Director

RESGRAPHICS RG MacDraw MDRW PICT Graphics Director

RES LIST RL Excel Text XCEL TEXT List Director

RES TEXT RT MacWrite Text MACA TEXT Text Director

If the window kind is RESLIST' RESP ICT, or RES TEXT, then MWS looks for a 'WIND'
resource in the document You can use this 'WIND' resource to specify the window's title, shape,
size, whether it has a closebox, and whether it is visible.

so MacWorkStation Programmer's Guide Production Draft (1989 June 19)

(

(

c

APPLE CONFIDENTIAL

Window shapes

Windows can have different shapes, sizes, controls, and characteristics. A window may or may na
have a title bar. It may have a close box where the user clicks to close the window. It may also have
a zoom box, where the user clicks to zoom the window. You specify the window shape, size, title,
and other characteristics when you create it. Figure 4-7 shows the various shapes of windows.

• Figure 4-7 Window shapes

!Cl= Title ==5

Shape•O
'Doc:umentProc'

Shape •4
"NoGrowDocProc'

Shape•!
'DBoxProc'

!:::::::::::::::::::::

Shape•8
'ZoomDocProc'

Shape•2
'PlainDBoxProc'

Shape• 12
'ZoomNoGrow'

Shape• 3
'AltDBoxProc'

D litle

Shape• 16
'RDocProc'

The default diameter of the curvature of a rounded-comer window is 16 pixels. Smaller and greater
curvatures can be specified, ranging from 17 to 23 pixels.

Production Draft (1989 June 19) C H A PT E R 4 Using Directors Sl

APPLE CONFIDENTIAL

Positioning windows

When you create a window, you give the rectangular coordinates where the window will be drawn
on the Macintosh screen. The left-top comer of the Macintosh screen is the point (0,0). As with
other applications, MWS allows several windows to be open at the same time. The frontmost
window is the only active window at any given time. The active window is the one in which the
user is currently working. Windows can be on top of other windows, so that any window may
partially or completely obscure the others. Windows with title bars can be moved by the user in
order to see hidqen windows. If the user clicks in a window, it becomes the frontmost, active
window.

Window options

Window management is normally handled by MWS. By using the standard menus, the client
application lets the user create, open, close, save, and print windows, edit text, and change fonts.
However, your application can control this behavior by setting the window options. You also use
window options to have MWS inform the client application when a user has activated, deactivated,
moved, or resized a window.

MacWorkStation window options can be set or cleared for an existing window or as defaults
for new windows as they are created. The window options are listed in Table 4-5.

S2 MacWorkStation Programmer's Guide Production Draft (1989June19)

APPLE CONFIDENTIAL

• Table 4-4 Window options

<:- Option c.ode Default Description

All 0 T TRUE: All window options are TRUE.

FALSE: All window options are FALSE.

Saveable 1 T TRUE: A user can save the contents ci the window to disk.
FALSE: A user cannot save the contents of the window.

Printable 2 T TRUE: A user can print the contents ci the window.
FALSE: A user cannot print the contents of the window.

Fonts 3 T TRUE: A user can change the font and point size of text
FALSE: A user cannot change the font and point size.

Editable 4 T TRUE: A user can edit the contents of the window, if the Edit
menu is installed.
FALSE: A user cannot edit the contents of the window.

Copyable 5 T TRUE: A user can copy the contents of the window if the
Edit menu is installed.
FALSE: A user cannot copy the contents of the window.

Selectable 6 T TRUE: A user can select part of the window's contents.
FALSE: A user cannot select part of the window's contents,
only the window's entire contents.

Oaseable 7 T TRUE: A user can close the window by choosing dose from
the File menu, or clicking in the window's close box.

(FALSE: A user cannot close the window.

Dismiss 8 T TRUE: MWS closes windows without sending an event.
FALSE: MWS sends an event when the user chooses dose
from the File menu, or clicks in the window's close box.

Activate 9 F TRUE: MWS sends an event when a window is activated
FALSE: MWS does not send the event.

Deactivate 10 T TRUE: MWS sends an event when a window is deactivated.
FALSE: MWS does not send the event.

Move 11 F TRUE: MWS sends an event when a window is moved.
FALSE: MWS does not send the event.

Resize 12 F TRUE: MWS sends an event when a window is resized.
FALSE: MWS does not send the event.

Mixed Styles 13 F TRUE: A user can have mixed text characteristics in the
window.
FALSE: A user cannot have mixed text characteristics. All text
must be the same font, point size, text style, and color.

(/
Production Draft (1989 June 19) c H A p TE R 4 Using Directors S3

APPLE CONFIDENTIAL

Figure 4-8 shows a list window created with the Wmdow Director.

• Figure 4-8 List window created with the Window Director

Passe1!9._er list

QI

The following message creates the window shown in Figure 4-8:

MWSPut("W001","7;L;Passenqer List;O;F;F;20,75,492,315;0;0");

• w is the class for the Window Director.

• o o 1 is the identifier for the command New Window.

• 7 is the alias of this window.

• L means that this is a list window.

• Passenger List isthetitleofthewindow.

• o indicates the shape of the window, as shown in Figure 4-7.

• The first F is the close box flag. In this case it is false, so there is no close oox in the window.

• The next F is the visible flag, which in this case is false, so the window is invisible until the
Show Window command makes it visible.

• 2 o , 7 5, 4 9 2 , 315 are the coordinates for the location of the window.

• o specifies which menu bar should be shown when the window is the frontmost window.

• The next parameter, o, specifies which cursor is displayed when the mouse pointer is over the
content regial <i the active window. In this case, the cursor is the crossbar, which is the
default.

This message calls the Toss Window (woo 2) command to dispose of the window created in the
previous example:

MWSPut("W002","7");

MacWorkStation Programmer's Guide Production Draft (198«) June 19)

•

(

(\
/

APPLE CONFIDENTIAL

The Exec Director

The Exec Director allows you to use executable code modules (exec modules). You can create an exec
module to perform operations unique to your client application. An exec module ~ stored in the
MWS document as a 'CODE' resource. (See MacWorkStat1on Programmer's Referena for more
infonnation about exec modules.) These messages load and invoke an exec module:

MWSPut("XOOl","l;");
MWSPut("X003","l;");

The first command, Load Exec Module (XO o 1), places the exec module's code in the Macintosh
computer's memory. The Invoke Exec Module (XO o 3) command executes the module's code. An
exec module does not start running until it ~ invoked. An exec module remains in memory until .it ~
unloaded Th~ message unloads the exec module:

MWSPut("X002","l;");

Production Draft (1989 June 19) c H A p T E R 4 Using Directors SS

..

•

(

APPLE CONFIDENTIAL

Appendix "Bear Cal" Program Source Code

T H I S A P P E N D I X C 0 N T A I N S the source ccxie for •Bear Cal," a

demon.5tration client application written in MPW C 3.0. Bear Cal i.s a fic.tional

airline. Thi.s client application handles the airline's reservations. • ·

Prcxiuc.tion Draft (1989 June 19) 57

APPLE CONFIDENTIAL

/**•*******************

*
*
*
*
*
*

Bear Cal Demo

"Bear Cal" is a simple client application that uses many of the
features of MWS. A version of this program is supplied on the
MacWorkStation Samples Disk, and may have more recent changes.

*
*
*
*
*
*

~**************/

#include
#define
#define

<stdio.h>
false O
true 1

static int AllDone = false;
static int ExecOpen = false;
static int DlgRes = false;
static int OnPayment = false;
static int SecondPayment = false;
static int OnShow = true;
static int OnFlight = false;

static char *FlightStr(] = {

SS

"American Airlines\tl:SO am\t37\r",
"Bear Cal Airlines\t10:20 am\tl\r",
"Bear Cal Airlines\t5:35 am\t4\r",
"Continental Airlines\tll:SO am\t12\r",
"Continental Airlines\t2:50 pm\tl3\r",
"Eastern Airlines\t4:43 pm\t19\r",
"Republic Airlines\t7:50 am\t22\r",
"Republic Airlines\tl:30 pm\t23\r",
"United Airlines\tlO:SO am\t14\r"
} ;

MacWorkStation Programmer's Guide Production Draft (1989 June 19)

(

(

c/,

static char *Fliqhtl[J •
"American Airlines",
"Bear Cal Airlines",
"Bear Cal Airlines",
"Continental Airlines",
"Continental Airlines",
"Eastern Airlines",
"Republic Airlines",
"Republic Airlines",
"United Airlines"
} ;

static char *Fliqht2[] • {
"1:50 am",
"10:20 am",
"5:35 am",
"11:50 am",
"2:50 pm",
"4:43 pm",
"7:50 am",
"l :30 pm",
"10:50 am"
} ;

static char *Fliqht3(] =
"37",
"l ",

"4 n'

"12",
"13",
"19",

"22",
"23",
"14"
} ;

APPLE CONFIDENTIAL

Production Draft (1989 June 19) A P P E ND IX Program Source Qxle S9

APPLE CONFIDENTIAL

/***

* The Main event loop of the program. *
**/

main Cl

char
int
char

EvtClass;
EvtID;
EvtParms [256];

MWSinit ();

do
MWSGet(&EvtClass, &EvtID, EvtParms);
switch(EvtClass) {

case I A': DoAEvent (EvtID, EvtParms);
break;

case 'D': DoDEvent(EvtID, EvtParms);
break;

case 'F': DoFEvent CEvtID, EvtParms);
break;

case 'G': DoGEvent(EvtID, EvtParms);
break;

case 'L': DoLEvent (EvtID, EvtParms);
break;

case IM t: DoMEvent(EvtID, EvtParms);
break;

case 'P': DoPEvent (EvtID, EvtParms);
break;

case 'T': DoTEvent (EvtID, EvtParms);
break;

case 'W': DoWEvent (EvtID, EvtParms);
break;

case 'X': DoXEvent (EvtID, EvtParms);
break;

while (! All Done) ;

MWSQuit();

60 MacWorkStation Programmer's Guide Production Draft 0989 June 19)

(

(

APP,LE CONFIDENTIAL

MWSinit ()

/***

* Do anything special to start the program. *
**/

printf("%s","GO BEARCAL\n"); /* Signal to MWS CCL script */

MWSQuit ()

/***

* Do anything special to stop the program. *
**/

DoAEvent(EvtID, EvtParms)

int
char

EvtID;
*EvtParms;

/***

* Process Alert Director events. *
**/

/

Production Draft (1989 June 19) A p p END Ix Program Source Code 61

APPLE CONFIDENTIAL

DoDEventCEvtID, EvtParms)

62

int
char

EvtID;
*EvtParms;

/***

* Process Dialog Director events. *
**/

char Alias [10 J;
char ItemNum[lO];
char OnStatus;
int Counter = O, Count;
int Startitem, StartOn;
int i• 0, j= O;

while (EvtParms[Counter] != ';')

Alias[i++] = EvtParms[Counter++J;
i--;

Start!tem = ++Counter;

/* Put Alias into array *I

I* Put Alias length into i *I

while (EvtParms(CounterJ != ';') /*Put ItemNum into array */
ItemNum(j++] = EvtParms(Counter++J;

j--; /* Put ItemNum length into */

Counter += 3;
StartOn = Counter;
OnStatus = EvtParms[Counter];

if (EvtID == 257) /* Control item pressed */
if ((Alias(OJ '4') 11 (Alias[OJ '5') 11

(Alias[O] == 1 6 1) 11 <Alias[O] == '8')) {
switch(ItemNum(O]) {

case • 1':
if (Alias[OJ == '4')

ProcOK();

/* OK button *I

else if (Alias(O] '5')
AnswerSC () ;

else if (Alias[O] == '6')
AnswerGCC () ;

break;

MacWorkStation Programmer's Guide Production Draft 0989 June 19)

(

APPLE CONFIDENT.JAL

case '2':
if (j > 0) (

switch (ItemNum[l])

else

case '4': ProcGCC();
break;

case •s•: ProcSC();
break;

case '8':

if(OnStatus == 'l')
ProcSmoke();

else
ProcNotSmoke();

break;
case '9':

if (OnStatus == 'l')
ProcDinner();

else
ProcNoDinner();

break;

if (Alias[O] -- '4')

ProcCancel();
if <Alias[OJ =• '8')

ProcRentOK();

break;

case '3':

break;

if (j > 0) (

switch (ItemNum[l])
case 'l':

else

if(OnStatus == 'l'l
ProcRent();

else
ProcNoRent();

break;

if (Alias[OJ == '8')

ProcRentCancel();

Production Draft (1989 June 19) A p p E N D I x Program Source c.ode 63

APPLE CONFIDENTIAL

DoFEvent(EvtID, EvtParms)

int
char

EvtID;
*EvtParms;

/***

* Process File Director events. *
~***************/

DoGEvent(EvtID, EvtParms)

64

int
char

EvtID;
*EvtParms;

/***

* Process Graphic Director events. *
~*****************/

MacWorkStation Programmer's Guide Production Draft 0989 June 19)

(

DoLEvent(EvtID, EvtParms)

int
char

EvtID;
*EvtParms;

APPLE CONFIDENTIAL

/***

* Process List Director events. *
~***************/

char
int
char

RecNum [10 J;
recno;
str[255];

if (EvtID == 256) /* User double-clicked a record */
if (EvtParms[OJ == '7')

strncpy (&RecNum, &EvtParms (2 J, (strlen (&EvtParms [2 J) - ll);
RemoveFromLog(RecNum);

if (EvtParms[O] == '9')

I* Removes record from Log * /

/* Put flight information into
dialog box */

recno = EvtParms[2] - '0' - l;
MWSPut("DOll",strcat(strcpy(str,"4;13;"),Flightl[recno)));
MWSPut("0011",strcat(strcpy(str,"4;16;"),Flight2[recno)));
MWSPut("D011",strcat(strcpy(str,"4;19;"),Flight3[recnoJ)J;
OnFlight = !OnFlight;
DisposeFlight();
MWSPut("M007","0;1;2;Show Flight Schedule");

Production Draft 0989 June 19) A P P E N D I X Program Source Code 65

APPLE CONFIDENTIAL

DoMEvent(EvtID, EvtParms)

66

int
char

EvtID;
*EvtParms;

/***

* Process Menu Director events. *
**/

char
char
char
int

MenuBar
Menu ID
Menu Item

MenuBar;
MenuID;
Menu Item;
error • false;

• EvtParms[OJ;
EvtParms[2];
EvtParms [4 I;

if ((MenuBar •• '0') && (MenuID =• 'l'll (
switch (Menuitem)

case 'l':
DoReservations();
break;

case '2':
OnFliqht • !OnFliqht;
if (OnFliqht) {

DoFliqhtPrep () ;
error=DoFliqht();
if (!error) {

ShowFlight();

/* Get new window *I
/* Write to window */

/* Show fliqht window *I
MWSPut("M007","0;1;2;Hide Fliqht Schedule");

else
DisposeFliqht ();
MWSPut("M007","0;1;2;Show Flight Schedule");

break;

MacWorkStation Programmer's Guide Production Draft (1989 June 19)

(

APPLE CONFIDENTIAL

case '4': I* Show and Hide Log *I
OnShow = !OnShow;
if (OnShow) {

ShowLog();
MW5Put("M007","0;1;4;Hide Log");

else {
HideLog();
MW5Put("M007","0;1;4;5how Log");

break;
case '6':

AboutBearCal();
break;

if ((MenuBar == '0') && (MenuID == '2')) {
if (ExecOpen) {

MWSPut ("X002", "l;");
MW5Put("M007","0;2;1;5tart Example");

else {
MWSPut ("XOOl", "l; ");
MW5Put("X003","l;"l;
MW5Put("M007","0;2;1;5top Example");

ExecOpen = !ExecOpen;

/* Load exec module *I

Production Draft 0989 June 19) A P P E N DI X Program Source Code 67

APPLE CONFIDENTIAL

DoPEvent(EvtID, EvtParms)

int
char

EvtID;
*EvtParms;

/***

* Process Process Director events.
~***************/

switch (Evt!D)
case 256 :

case 257

case 258

Startup();
break;
AllDone a true;
break;
Quit();
break;

DoTEvent(EvtID, EvtParms)

68

int
char

Evt!D;
*EvtParms;

/***

Process Text ~irector events. *
**/

MacWorkStation Programmer's Guide Production Draft (1989June19)

(

APPLE CONFIDENTIAL

DoWEvent(EvtID, EvtParms)

int
char

EvtID;
*EvtParms;

/***

* Process Window Director events. *
**/

DoSEvent(EvtID, EvtParms)

int
char

EvtID;
*EvtParms;

/***

* Process Exec Director events. *
**/

Production Draft (1989 June 19) A P P E N D I x Program Source c.ode 69

APPLE CONFIDENTIAL

Startup()

70

/**

*
*
*
*

This routine is called once at the start of the program.
It sets up the menu bar, splash screen graphics,
Passenger Log window, the Meal Selection Dialog,
and the Special Meal window.

*
*
*
*

~****************/

MWSPut("P001","");
MWSPut("P013","F;l");
MWSPut("MOOl","0");
MWSPut("M004","0;FILE;EDIT");
MWSPut("M004","0;Bear Cal,l,Reservations/R,Show Flight Schedule/F, (-,");
MWSPut("M006","0;l;Hide Log/L, (-,About Bear Cal/A");
MWSPut("M004","0;Exec Modules,2,Start Example");
MWSPut ("M003", "0");
MWSPut("W001","7;L;Passenger List;O;F;F;20,75,492,315;0;0");
MWSPut("L019","7;1,200;2,350"); /* Tab breaks */
MWSPut ("L015", "7; T; 4 "); /* Draws Horizontal grid

lines in Log */

MWSPut("L016","7;Passenger Name\tDestination\tDeparture Date");

AboutBearCal();

MWSPut("D001","3;T;Dinner;3;F;l06,82,406,282");
MWSPut("D009","3;T;20,20,280,45;Please Choose A Meal:");
MWSPut("D009","3;R;30,60,150,80;Chicken Dinner;T;F;l;O;l"l;
MWSPut("0009","3;R;30,90,150,llO;Fish Dinner;T;F;l;O;O");
MWSPut("D009","3;R;30,120,150,140;Special Meal;T;T;l;O;O");
MWSPut("D009","3;B;220,60,2'10,85;0K;T;F;2");
MWSPut("D009","3;B;220,120,270,145;Cancel;T;F;2");

MWSPut ("MOOl", "2");
MWSPut("M004","2;EDIT;FONT;SIZE");
MWSPut("W001","3;T;Special Meal;O;T;F;S0,50,462,314;2;1");
MWSPut("T004","3;12");
MWSPut("T003","3;Chicago");
MWSPut("T005","3;Bold");
MWSPut("W010","3;F;8");

ShowLog();

MacWorkStation Programmer's Guide Production Draft (1989 June 19)

(

APPLE CONFIDENTIAL

AboutBearCal (l

/***

'*
'*

This routine supplies the calls to set-up the graphics used in
the AboutBearCal graphics window. '*

'*

MWSPut("C004","");
MWSPut("W001","8;G;;2;F;F;5,25,507,340;0;0");
MWSPut("G024","8;40,40;1500");
MWSPut("G024","8;380,40;1000");

MWSPut("G014","8;Geneva");
MWSPut("G015","8;18");
MWSPut("G016","8;B");
MWSPut ("GOOS", "8; 105, 20") ;
MWSPut("G018","8;Welcome to Bear Cal Airlines");

MWSPut ("W003", "8");

sleep (10);

MWSPut ("W002", "8");
MWSPut ("C003", "");

DoFlightPrep ()

/***

'*
'*

This routine gets a new flight schedule window and sets
appropriate tabs and titles.

'*
'*

MWSPut("W001","9;L;FLIGHT SCHEDULE;O;F;F;20,75,492,315;0;0");
MWSPut ("1019", "9; 1, 200; 2, 350"); /'* Tab breaks '*I
MWSPut("L016","9;Airline\tTime\tGate");

Production Draft (1989 June 19) A p p E N D I x Program Source Code 71

APPLE CONFIDENTIAL

DoFlight ()

/***

*
*

This routine first creates an EXCEL file, then generates data
that is then written to the file. The file name is 'Schedule'.

*
*

int error = false;

MWSPut("FOOl","Schedule;XCEL;TEXT"l;
MWSPut("F004","l;Schedule");

WriteFlight ();

MWSPut C"F006", "1");
return(error);

/* Create new file */

/* Open file data fork *I

/* Close file data fork *I

WriteFlight ()

72

/***

* This routine writes 'hard-coded' data to a file. *

int i;

MWSPut("FOlO","l;O;F;;");

for (i=O; i<9; ++i)
MWSPut("FOll",FlightStr[i]);

MWSPut ("F012", "");
MWSPut C"F016", "1;0");

/* Write data to the file */

/* Set file fork mark back to zero *I

MWSPut C "LOl 0", "9") ; /* Send data to the list window * /
for (i=O; i<9; ++i)

MWSPut ("L011", FlightStr [i));
MWSPut("L012","");

MacWorkStation Programmer's Guide Production Draft 0989 June 19)

APPLE CONFIDENTIAL

ShowFlight ()

/***

* This routine shows the Flight Schedule window. *

MWSPut ("W003", "9");

DisposeFlight ()

/***

* This routine disposes of the Flight Schedule window. *
**/

MWSPut ("W002", "9");

Production Draft (1989 June 19) A P P E N D I X Program Source Code 73

APPLE CONFIDENTIAL

DoReservations ()

74

/***

* This routine sets up the Reservations dialog box. *
**/

MWSPut("TOOl","3"); /* Cleans Up Previous Passenger Info */

MWSPut("T010","3;Please Enter Special Meal Instructi-ons ">;
MWSPut("T010","3;(close this window when done): ");
MWSPut ("D014", "3;2;1");
MWSPut("D014","3;3;0");
MWSPut("D014","3;4;0");

MWSPut("M009"," 1;1;1");

if (DlgRes)
MWSPut ("0006", "4;");

else {
OlgRes • true;
MWSPut("C002","4");

I* Show the hidden dialog *I

/* Create the dialog *I

MWSPut("0001","4;F;Bear Cal Reservation System;16;F;30,50,482,335");
MWSPut("D009","4; B; 380,10,440,30; OI<; F; T; 1");
MWSPut("0009","4; B; 380,40,440,60; Cancel; T; F; 0");
MWSPut("0009","4; T; 10,10,110,26; Passenger:");
MWSPut("D009","4; E; 115,10,360,26; F; 1; T;");
MWSPut("D009","4; T; 10,35,110,51; Destination:");
MWSPut("D009","4; E; 115,35,360,51; F; O; T; A; [");
MWSPut("D009","4; T; 10,60,110,76; Depart:");
MWSPut("D009","4; E; 115,60,185,76; F; O; T;");
MWSPut("D009","4; T; 205,60,285,76; Return:");
MWSPut.("0009","4; E; 290,60,360,76; F; O; T;"J;
MWSPut("D009","4; L; 12,85;440,85;");
MWSPut("D009","4; T; 10,95,110,111; Airline:");
MWSPut("D009","4; E; 115,95,330,111; F; O; T;");
MWSPut("D009","4; T; 10,120,110,136; Time:");
MWSPut("D009","4; T; 1345,1120,1400,1136; Hidden:");
MWSPut("D009","4; E; 115,120,330,136; F; O; T;");
MWSPutC"0009","4; E; 1405,1120,1440,1136; F; O; T;");
MWSPut("D009","4; T; 10,145,ll0,161; Gate:");
MWSPut("D009","4; E; 115,145,330,161; F; O; T;");
MWSPut("D009","4; T; 1235,1145,1295,1161; hidden:");
MWSPut("D009","4; E; 1300,1145,1440,1161; F; O; T;");
MWSPut("D009","4; L; 12,170;440,170;");
MWSPut("D009","4; T; 370,180,440,196; Payment:");
MWSPut("D009","4; P; 375,240;101;F;F;l"J;
MWSPut("D009","4; P; 375,200;100;F;F;l");
MWSPut("D009","4; L; 360,175;360,275;");

MacWorkStation Programmer's Guide Production Draft (1989 June 19)

•
APPLE CONFIDENTIAL

MWSPut("D009","4; T; 10,180,110,196; Incidentals:");
MWSPut("D009","4; C; 15,200,110,216; Smoking; T; T; 2; 0; 0;");
MWSPut("D009","4; C; 15,220,110,236; Dinner; T; T; 2; O; 0;");
MWSPut("0009","4; C; 15,240,110,256; Movie; T; F; 2; O; 0;");
MWSPut("0009","4; C; 15,260,110,276; Rental Car; T; T; 2; O; 0;");

MWSPut("0009","4; T; 130,180,230,196; Class:");
MWSPut("0009","4; R; 135,200,230,216; First; T; f; 3; O; O; ");
MWSPut("0009","4; R; 135,220,230,236; Business; T; F; 3; O; O; ");
MWSPut ("0009", "4; R; 135,240,230,256; Coach; T; F; 3; O; 1; ") ;

MWSPut("0009","4; T; 250,180,350,196; Seating:") ;
MWSPut("0009","4; R;
MWSPut ("0009", "4; R;
MWSPut("D009","4; R;

MWSPut ("0007", "4");
MWSPut ("COOl", "");

OnPayment • false;

ProcCancel()

255,200,350,216; Window; T;
255,220,350,236; Center; T;
255,240,350,256; Aisle; T;

F; 4; O; O; ");

F; 4; O; 1; ") ;
F; 4; O; 0; ") ;

/***
* This routine is called if the user selects 'Cancel' from the *
* Reservations dialog box. It disposes of the Reservations dialog *
* box and enables the Reservations menu item. *
**/

MWSPut ("0008", "4");
MWSPut ("MOOS", "0; l; l "l;

Production Draft 0989 June 19) A P P E N D I X Program Source Code 75

APPLE CONFIDENTIAL

ProcOK ()

76

/***
* This routine is called if the user clicks 'OK' in the
* Reservations dialoq box. It checks to see if payment was made
* the processes the payment.

*
*
*

**/

char
int
char
int

EvtClass;
EvtIO;
EvtParms [256);
TempLoop • true;

if (OnPayment) {
SendToLoq();
MWSPut("0008","4");

/* Enter passenqer info into loq *I

/* Hide Reservation dialoq *I

MWSPut("M008","0;1;1"); /* Enable Bear Cal reservation item */
else {

MWSPut("0001","9;T;;l;T;50,65,462,275");
MWSPut("0009","9; P; 10,lO;lOl;T;F;l");
MWSPut("0009","9; P; 343,lO;lOO;T;F;l");
MWSPut("0009","9; B; 340,170,400,190; Cancel; T; F; 0");
MWSPut("0009","9;T;l0,80,402,140;You have not purchased your tickets yet.");

MacWork:Station Programmer's Guide Production Draft (1989 June 19)

•

(

(

(· ..
..

.. /

APPLE CONFIDENTIAL

while (TempLoop) {

ProcSC ()

MWSGet(&EvtClass, &EvtIO, EvtParms);
if (EvtParms [OJ == '9') {

if (EvtParms[2J = .. 'l'l {

if (EvtParms[6] 'l'l
Send To Log() ;
ProcGCC ();
MWSPut ("0005", "9");
MWSPut ("0008", "4 ");
MWSPut("M008","0;1;1");
SecondPayment • true;

if CEvtParms(2J =• '2') {
if (EvtParms(6J == 'l')

SendToLog(l;
ProcSC();
MWSPut("0005","9");
MWSPut ("0008", "4 "l;
MWSPut("M008","0;1;1");
SecondPayment • true;

if (EvtParms(2] •= '3')
MWSPut ("0005", "9");
MWSPut ("0008", "4");
MWSPut ("M008", "0; l; l"l;

TempLoop • false;

/* Generic Credit Card
selected */

/* Super Card selected *I

/* Cancel selected I

/***

*
*
*
*

This routine is called if the user selects the Super Card
payment option. It displays a dialog box and copies the
Passenger name from the Reservations dialog box into the 'Name'
field of the Super Card dialog box.

*
*
*
*

**/

MWSPut ("0002", "5;T");
WaitForResponse();
CopyName(5);

I* Get Super Card dialog *I
/* Pass over response */
/* Copy name into SC dialog */

Production Draft (1989 June 19) A P P E N D IX Program Source c.ode 77

APPLE CONFIDENTIAL

ProcGCC ()

/***

*
*
*
*

This routine is called if the user selects the Generic Credit
Card payment option. It displays a dialoq box and copies the
Passenqer name from the Reservations dialoq box into the 'Name•
field of the GCC dialoq box.

*
*
*
*

**/

MWSPut("0002","6;T");
WaitForResponse();
CopyName(6);

/* Get GCC dialoq *I
/* Pass over response */
/* Copy name into GCC dialoq *I

AnswerSC ()

78

/***
* This routine is called when the user has entered the information *
* required in the Super Card dialoq box. After it checks the *
* payment, the routine displays an authorization number and *
* thanks the user for flyinq Bear Cal airlines. *
**/

MWSPut("0009","5;T;l0,160,J00,176;Authorization Granted (78342)");
sleep(l);
MWSPut ("0005", "5'.'l;

if (SecondPayment)
MWSPut("M008","0;1;1");

OnPayment = true;
SecondPayment • false;

MacWorkStation Programmer's Guide Prcxiuction Draft (19$ June 19)

APPLE CONFIDENTIAL

AnswerGCC ()

/***

* This routine is called when the user has entered information *
* required in the GCC dialog box. After it checks the payment, the *
* routine displays an authorization number and thanks the user for *
* flying Bear Cal airlines. *
**/

MWSPut("D009","6;T;l0,160,300,176;Authorization Granted
sleep(l);
MWSPut ("0005", "6");

if (SecondPayment)
MWSPut ("MOOS", "0; 1; 1 "l;

OnPayment = true;
SecondPayment = false;

ProcSmoke ()

(3459) ");

/***

*
*

This routine is called when the user turns on the 'Smoking'
checkbox. The routine displays an alert.

*
*

**/

MWSPut("A002","F;WARNING: Bear Cal does not allow smoking on flights.");

ProcNotSmoke (l

/***

*
*

This routine is called when the user turns off the 'Smoking'
checkbox. The routine displays an alert.

*
*

**/

MWSPut("A002","F;THANK YOU: We are pleased that you will not smoke.");

Prcxiuction Draft (1989 June 19) A P P E N D IX Program Source Code 79

APPLE CONFIDENTIAL

ProcRent ()

80

/***

*
*
*

This routine is called when the user turns on the 'Car Rental'
checkbox. The routine displays a scrolling window of the cars
available for rent.

*
*
*

**/

MWSPut("0001","8;F;Rental Options;O;T;l00,50,412,300");
MWSPut("0009","8;S;lO,l0,302,l90;T;l;F");
MWSPut("0009","8; B; 10,200,70,220; OK; F; F; l"l;
MWSPut("0009","8; B; 242,200,302,220; Cancel; T; F; 0");

MWSPut("0016","8;1;Economy - Ford Festiva");
MWSPut("D016","8;l;Economy - Nissan Sentra");
MWSPut("D016","8;l;Economy - Chevrolet Sprint");

MWSPut("0016","8;l;Compact - Ford Escort");
MWSPut("0016","8;l;Compact - Toyota Corolla");
MWSPut("D016","8;l;Compact - Mazda 323");

MWSPut("0016","8;l;MidSize - Ford Taurus");
MWSPut("D016","8;l;MidSize - Mazda 626");
MWSPut("D016","8;l;MidSize - Chevrolet Cavalier");

MWSPut("D016","8;l;Luxury - Lincoln Continental");
MWSPut("0016","8;l;Luxury - Acura Legend");
MWSPut("D016","8;l;Luxury - Cadillac Seville")1

MWSPut("D016","8;l;Sport - Ford Mustang GT">;
MWSPut("0016","8;l;Sport - Nissan 300 ZX");
MWSPut("D016","8;l;Sport - Chevrolet Corvette");

MWSPut("0016","8;l;Exotic - Lamborghini Contach");
MWSPut("D016","8;l;Exotic - Ferrari Modial">;
MWSPut("0016","8;l;Exotic - Porsche 911 SC");

MacWorkStation Programmer's Guide Production Draft (1989 June 19)

•.

•

•

(~

APPLE CONFIDENTIAL

ProcNoRent ()

/***

*
*

This routine is called when the user turns off the 'Car Rental'
checkbox. The routine displays an alert.

*
*

**/

MWSPut("A002","F;Sorry that you have decided to cancel your car rental.");

P rocRentOK ()

/***

*
*

This routine is called when the user clicks the 'OK' button
of the Car Rental dialog box.

*
*

**/

MWSPut ("0005", "8");

ProcRentCancel()

/***

*
*

This routine is called when the user clicks the 'Cancel'
button in Car Rental dialog box.

*
*

**/

MWSPut("0005","8");
MWSPut ("0014", "4; 31;0");

Production Draft (1989 June 19) A P P E ND IX Program Source c.ode 81

APPLE CONFIDENTIAL

ProcDinner()

82

/***

*
*
*

This routine is called when the user turns on the 'Dinner•
checkbox. It presents a dialog box that allows the user to
choose a meal.

*
*
*

**/

int
char

TempLoop • true, Evt!D;
EvtClass, EvtParms[256];

MWSPut("D007","3");
while (TempLoop) (

I* Make Meal Selection Dialog visible *I

MWSGet(&EvtClass, &EvtID, EvtParms);
if ((EvtClass •• 'D'l && (EvtID •• 257))

MWSPut("D008","3");
switch(EvtParms[2]) {

case '4': SpecialMeal();
break;

case •s•: TempLoop •false;
break;

case 1 6 1 : TempLoop •false;
MWSPut ("D014", "4;29;0");
break;

MacWorkStation Programmer's Guide Production Draft 0989June19)

•

•

'

(

(c

APPLE CONFIDENTIAL

ProcNoDinner()

/***

*
*
*

This routine is called when the user turns off the 'Dinner'
checkbox. It presents a dialog box that allows the user to
cancel or change dinner.

*
*
*

**/

int
char

TempLoop = true, EvtID;
EvtClass, EvtParms[256];

MWSPut("D001","0;T;Dinnermod;3;F;l66,122,356,242");
MWSPut("D009","0;T;20,10,180,60;Do You Wish To Change or Cancel your

meal?");
MWSPut("D009","0;B;20,75,75,9S;Change;T;F;l");
MWSPut("D009","0;B;lOS,75,160,9S;Cancel;T;F;l");
MWSPut("D007","0");
while (TempLoop == true) {

MWSGet(&EvtClass, &EvtID, EvtParms);
if ((EvtClass == 'D') && (EvtID -· 257)) {

TempLoop = false;
MWSPut("DOOS","0");
if (EvtParms[2] == '2')

MWSPut ("0014 ", "4; 29; l ");
ProcDinner();

Prcxfuction Draft 0989 June 19) A P P E N DI X Program Source axle 83

APPLE CONFIDENTIAL

Spec.!.alMeal()

/***

*
*

This routine displays the Special Meal Text Window so that
special meal instructions can be entered.

*
*

**/

int
char

TempLoop • true, EvtID;
EvtClass, EvtParms[256];

MWSPut("W003","3");
while (TempLoop)

MWSGet(&EvtClass, &EvtID, EvtParms);
if ((EvtClass • 'W') && (EvtID •• 257))

MWSPut ("WOOS", "3.");
MWSPut ("0007", "3");
MWSPut ("M003", "0");
TempLoop = false;

ShowLog ()

/***

* This routine displays the Passenger Log window. *
**/

MWSPut ("W003", "7") .;

HideLog()

/***

* This routine hides the Passenger Log window. *
**/

MWSPut("WOOS•,"7");

84 MacWorkStation Programmer's Guide Production Draft (1989 June 19)

•

(

APPLE CONFIDENTIAL

SendToLog ()

/***

* This routine adds Passenger Data to the Passenger Log. *
**/

int
int
char
int
char
char
char

TempLoop = true, length;
i;
EvtClass;
EvtID;
EvtParms (256);
AllStr [512);
Count = O;

for(i = O; i < 128; i++)
EvtParms(i) = O;

for(i = O; i < 256; i++)
AllStr (i I 0;

AllStr(O) =
AllStr [l) =

Count += 2;

I 7 Ii

I• I• , ,

MWSPut ("0010", "4;4");
while (TempLoop) {

MWSGet(&EvtClass, &EvtID, EvtParms);
if ((EvtClass == 'D') && (EvtID == 258))

if (EvtParms[O) == '4') {
if (EvtParms[4] == 'E') {

length= strlen(&EvtParms(6));
strncpy(&AllStr[Count), &EvtParms(6], (length - l));
Count+= (length - l);
AllStr[CountJ = '\t';
Count++;
TempLoop = false;

Production Draft 0989 June 19) A P P E N DI X Program Source c.ode 85

86

APPLE CONPIDENTIAL

MWSPut("0010","4;6");
TempLoop • true;
while (TempLoop) {

MWSGet(,EvtClass, 'EvtIO, EvtParms);
if ((EvtClass •• '0') '' (EvtIO •• 258))

if (EvtParms [OJ •• '4 ') {
if (EvtParms [4] •• 'E') {

lenqth • strlen(,EvtParms[6]);
strncpy(,AllStr[Count), 'EvtParms[6], <lenqth - 1));
Count+• (length - 1);
AllStr[CountJ • •\t';
Count++;
TempLoop • false;

MWSPut("0010","4;8");
TempLoop • true;
while (TempLoop) (

MWSGet(,EvtClass, 'EvtIO, EvtParms);
if ((EvtClass •• '0') '' !EvtIO •• 258))

if (EvtParms[O) •• '4') {
if (EvtParms[4J ... 'E'l {

length• strlen(,EvtParms[6));
strncpy(,AllStr[Count], 'EvtParms[6], (length - l));
Count+• (lenqth - 11;
AllStr[Count] • '\Od';
TempLoop • false;

MWSPut ("L009", AllStr);

MacWorkStation Programmer's Guide Production Draft (1989June19)

•

•

•

(

(

APPLE CONFIDENTIAL

RemoveFromLoq(RecNum)

char *RecNum;

/***
* This routine removes the record RecNum from the Passenger Loq *
* after the user double-clicks on the record in the list window. *
~***************/

char
int

AllStr[lSJ, EvtClass, EvtParms[256];
EvtID, TempLoop • true;

MWSPut("D002","2;T");
WaitForResponse();
MWSPut("AOOl",""l;
AllStr [OJ -= '7 1 ;

AllStr[l] = ';';

while (TempLoop -== true) (
MWSGet(&EvtClass, &EvtID, EvtParms);
if ((EvtClass •• '0') && (EvtID •• 257))

TempLoop • false;
if (EvtParms [2] -- '2') {

strcpy(&Al1Str[2J, RecNum);
MWSPut("LOOl",AllStr);

else (
Al1Str[2] = 'F';
Al1Str[3] = ';';
strcpy(&All5tr[4], RecNum);
MWSPut("L002",AllStr);

MWSPut("D005","2");

Produaion Draft (1989 June 19) A p p E N DI x Program Source Code 87

APPLE CONFIDENTIAL

CopyName<Inint)

88

int Inint;

/***
* This routine reads the passenger name from the Bear Cal dialog
* box and writes the name into the 'Name' item of the appropriate
* dialog box.

*
*
*

**/

int TempLoop = true, length;
char EvtClass;
int EvtID;
char EvtParms[256);
char Al1Str[256J;
int Count • O;
int i;

for(i = O; i < 128; i++)
EvtParms[i) = O;

for(i • O; i < 128; i++)
AllStr[i] = O;

if (Inint == 5)
AllStr[O) = '5';

else if(Inint == 6)
AllStr[O) = 1 6 1 ;

AllStr[l) = '. '. , ,
Al1Str[2J •
Al1Str[3) =

Count += 4;

I 8 I;
I• I• , ,

MWSPut ("0010", "4; 4 ");
while (TempLoop) {

MWSGet(&EvtClass, &EvtID, EvtParms);
if ((EvtClass == 'D') && (EvtID == 258))

if (EvtParms.[OJ •• '4') {
if (EvtParms [4 J •• • E •) {

length• strlen(&EvtParms[6]);
strncpy(&AllStr[Count], &EvtParms[6], (length - l));
TempLoop • false;

MWSPut ("DOll", AllStr);

MacWorkStation Programmer's Guide Production Draft (1989June19)

•

•

•

(

(

APPLE CONFIDENTIAL

WaitForResponse()

/***

*
*
*

This routine waits for an event from MWS, then ignores it if it
is not a Dialog Director, List Director, Menu Director, Process
Director, or Text Director event.

*
*
*

**/

int
char
int
char

TempLoop • true;
E~Class;

EvtID;
EvtParms[256];

while (TempLoop)

Quit()

MWSGet(,EvtClass, 'EvtID, EvtParms);
if ((EvtClass •• 'D') I I CEvtClass •• 'M') I I

(EvtClass •= 'L'l 11 (EvtClass •= 'T') 11 (EvtClass •• 'P'))
TempLoop • false;

/***

*
*

This routine presents an alert that allows the user to cancel
a Quit command.

*
*

**/

int
char

TempLoop • true, EvtID;
EvtClass, EvtParms[256];

MWSPut("A004","T;Quit Bear Cal?");
while (TempLoop -- true)

MWSGet(,EvtClass, 'EvtID, EvtParms);
if ((EvtClass •'A') '' (EvtID •• 256))

TempLoop • false;
if (EvtParms[O] •• 'T'l

MllSPut("P003",""l;

Production Draft 0989 June 19) AP PE N 0 IX Program Source c.ode 89

APPLE CONFIDENTIAL

MWSGet(evtClass, evtID, evtMsg)

char
int
char

*evtClass;
*evtID;
*evtMsq;

/***
* This function gets a message from MacWorkStation .and breaks *
* it into its components. The protocol expected is: *
* I message begin character *
* (data) message contents *
* \n message end character *
* This conforms to the ID•2 transport-layer protocol. *
**************************************~*******************************/

char
char

begMsg;
mwsMsg[Sl2J;

gets (mwsMsg) ;
sscanf(mwsMsg, "\c\c\3d", 'beqMsg, evtClass, evt!D);
if (strlen(mwsMsg) > 4)

strcpy(evtMsg, 'mwsMsq(4]);
else

*evtMsg - I \0 I;
return l;

MWSPut(cmdClass, cmdParms)

char
char

*cmdClass;
*cmdParms;

/***
* This function sends a message to MacWorkStation. *
* The protocol is: *
* [messaqe begin character *
* (data) messaqe contents *
* \n messaqe end character *
* This conforms to the ID•2 Serial transport-layer protocol. *
**/

printf(•tctatatc•, '[', cmdClass, cmdParms, '\n~);

/* End of BearCal.c */

90 MacWorkStation Programmer's Guide Production Draft 0989June19)

•

•

•

(

Ci
.

Glossary

alert box: A box that appears on the screen when
something has gone wrong or when something
needs to be brooght to the user's attention._

aDas: A number assigned to an object. The
number is then used by MacWorkStation and the
client application to refer to the object.

ASaI: Acronym for American Standard <:.ode for
Informal1on Interchange. The code, which is used
for digital exchange of infonnation between
computers, printers, and so forth, assigns bit
patterns to characters and tokens.

Boolean operator: A value that is either true or
false.

ca: See Communication Command Language.

ca. script: A resource stored in an MWS
document that contains Communication
Command Language commands. The script logs on
to the client application. The script runs when
the document is opened. The script may also
contain log-off instructions.

class: Part of a MacWorkStation message,
indicating the director to which the message
belongs.

client application: An application that interacts
with MacWorkStation.

cllco.t computer: The computer running the
client application.

cluster: A groop ct dalog box controls. A control's
cluster i.1 set by a pli2meter in the command that
creates the control.

command: A string of characters sent from a
client application to MacWakStation that
instructs MWS to perform some function.

Comm.1Ulk2too. Command Language (CO.):
The set of COOlllWXb used in ca. ICripta to log
on and log off the client application.

commuo.Jcation module: Program code resource
stored in MacWorkStation or in an MWS document
that manages a communication protocol between
MacWorkStation and the client computer.

data fork: The part of a Macintosh file that
contains data. Macintosh files are oomposed d
two parts, or forks: the resource fork and the
data fork.

director: A set <i MacWorkStation commands
and evco.ts respomible for a groop of related
MacWorkStation functions, such as text display or
file management. Directors call the Macintosh User
Interface Toolbox managers.

event: A string of characters sent by
MacWorkStation to the client application that
infonm the application about actions that the user
has taken or aboot a MacWorkStation state.

executable code module: Program oode resoorce
stored in an MWS documett that extend the
capabilities d MWS.

Oag: A MacWorkStation parameter that is a •
Boolean operator, which i.1 dher true or false.

handshaking: The process <i establishing a
connection between two computers in order to
exchange data.

ideo.titlcr: The part of a MacWorkStation
message that describes the particular action to be
performed a event that has occurred.

integer: A MacWorkStation parameter type
composed of a sequence <i cbaractas, each of
which has a value in the range of Oto 9.

keyword: A string-type parameter with ·a fixed
set of values used in commands.

log on: To establish a communication session
between two computers. Log-on procedures may
involve asking fa identification, passwords, and so
on. In MWS, log-on procedures are oontained in
ca. ICripta.

PRODUcnON DRAFr (06/19/81)) 91

manager: A set of Macintosh User Interface
Toolbox routines respomible for a group of related
functions, such as window or menu management

mark: The current position in the sequence of
numbered bytes of an MWS file, designating the
next byte to be wrlten or read.

message: A string of characters passed between
MacWorkStation and the client application.
M~ges can be either commands or evcnts.

mode: A mode is a part of an application that the
user must fonnally enter and leave. A mode
restricts the operations that can be performed
while it is in effect.

object: Any element of the MacWorkStation
display that can be treated as a single entity, such
as a window, menu, or dialog box.

parameter, parameter type: (1) Part of a
control ~ge (command or event) that
specifies the action a director is to take. (2) A

setting that may assume more than one value.

resource: A formatted description of a user
interface element in a Macintosh application. A
resource can describe almost anything, including
icons, menus, text strings, and the program code.
Resources are stored in the resource fork of a file
and loaded into memory as needed

resource fork: The part of a Macintosh file that
contains resources. Macintosh files are composed
of a resource fork and a data fork.

IGB monitor: A type of color monitor that
receives separate signals for the three colors: red,
green, and blue.

server oomputer: A Macintosh computer
running MWS and in communication with the
client applk:atloa cm the client computer.

string: A MacWorkStation parameter type

composed of a sequence of up to 255 characters.

92 MacWorkStation Programmer'_s Guide

•
,

Production Draft (1989 June 19)

