€.

Inside Special K

- Written by Robert Berkowitz
N&C Publications

Beta Draft

June 22, 1989

Apple Confidential



& APPLE COMPUTER, INC.

Copyright © 1989 by Apple Computer, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, mechanical, electronic, photocopying, recording, or otherwise, without prior written
permission of Apple Computer, Inc. Printed in the United States of America.

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the “keyboard” Apple logo (Option-
Shift-K) for commercial purposes without the prior written consent of Apple may constitute trademark
infringement and unfair competition in violation of federal and state laws.

© Apple Computer, Inc., 1988, 1989
20525 Mariani Avenue

Cupertino, CA 95014

(408)996-1010

Apple, the Apple logo, AppleShare, AppleTalk, ImageWriter, LaserWriter, and Macintosh are registered
trademarks of Apple Computer, Inc. ‘

APDA, Finder, MultiFinder, HyperCard, and LocalTalk are trademarks of Apple Computer, Inc.
MacPaint is a registered trademark of Claris Corporation.

ITC Zapf Dingbats is a registered trademark of International Typeface Corporation.
Varityper is a registered trademark, and VT600 is a trademark, of AM International, Inc.

-



Contents

Figures and tables / xi

Preface / xiii

1 About Special K / 1

About this Chapter / 2
What Comprises Special K / 2
Routines and tools: What's the difference? / 4
Technical Details / 5

2 How to Program with Special K / 7

About this chapter / 8
Code that handles menu events / 8
Handling menu choices / 8
Opening a connection / 9
Closing the connection / 10
Killing the connection / 11
Sending files / 11
Receiving Files / 12
Configuring a connection / 13
Configuring a terminal emulation / 14
Configuring a file transfer / 14
Making a new session document / 16
Code that handles other events / 18
Activate events / 18
Resume events / 19
Update events / 20
Key events / 21
Mouse events / 22
Sample application main program loop / 24

3 Connection Manager / 29
About this chapter / 30



About the Connection Manager / 30

Connection channels: data, attention, and control / 32

The connection record / 32
The connection record data structure / 33
procID / 33
- flags / 33
errCode / 34
refCon / 34
userData / 34
defProc / 35
config / 35
oldConfig / 35
reserved0, reservedl, and reserved2 / 35
private / 35
bufferAmay / 36
bufSizes / 36
mluField / 36
asyncCount / 36
Connection Manager routines / 37
Preparing to open a connection / 38
Custom configuration of a connection tool / 42
Scripting language interface / 45
Opening, using, and closing the connection / 46
Reading and writing data / 52
Handling events / 55
Localizing strings / 56
Miscellaneous routines / 57
About completion routines / 59
Summary / 60
Data Types / 63
Data structures / 64
Constants / 65
Error Codes / 66
Connection Manager routine selectors / 66

Terminal Manager / 69

About this chapter / 70
About the Terminal Manager / 70
The terminal emulation window / 72
The terminal emulation region / 72
The cache region / 73
The terminal record / 73
The terminal record data structure / 74
Terminal Manager routines / 80



Preparing for a terminal emulation / 81

Custom configuration of a terminal tool / 85
Scripting language interface / 88

Using terminal emulation routines / 89
Searching the terminal emulation buffer / 92
Manipulating selections / 93

Handling events / 94

Localizing strings / 96

Miscellaneous routines / 97

Routines that must be in your application / 102

Sample routine for sending data / 103
Sample showing how to break a connection / 104
TMClick / Click looping / 105

Sample terminal environment routine / 106
Summary / 107

Routines in your application /111

Data types / 111

Constants / 113

Searching / 114

Terminal Manager routine selectors: / 115

File Transfer Manager / 117

About this chapter / 118
About the File Transfer Manager / 118
The file transfer record / 120

File transfer record data structure / 120
File Transfer Manager routines / 126
Preparing for a file transfer / 127
Custom configuration of a file transfer / 131
Scripting language interface / 134
Transferring files / 135
Handling events / 137
Localizing strings / 138
Miscellaneous routines / 139
Routines your application provides / 141

Sample send routine / 142

Sample receive routine / 143

Sample connection environment routine / 144
Summary / 145

Data types / 147

Constants / 148

Error codes / 149

File Transfer Manager:Routine Selectors / 149



6 Communications Resource Manager / 151

About this chapter / 152
About the Communications Resource Manager / 152
Device management / 153
Resource management / 154
The communications resource record / 154
The communications resource record data sructure / 154
qlink / 155
qType / 155
crmVersion / 155
crmPrivate and crmReserved / 155
crmRefCon / 155
Communications Resource Manager routines / 156
CRMGetVersion./ 157
CRMGetHeader / 157
Resource management routines / 158
CRMGetNamedResource and CRMGet1NamedResource / 159
CRMGetindex / 159
CRMReleaseResource / 159
CRMGetIndToolName / 159
Resource mapping routines / 161
CRMLocalToRealID / 161
CRMRealToLocalID / 161
Guidelines for how to register a device / 163
Data structures / 163
version / 164
inputDriverName / 164
outputDriverName / 164
name / 164
devicelcon / 164
ratedSpeed / 164
maxSpeed / 164
Searching for serial port devices / 165
Summary / 166
Constants / 166
Data types / 167
Communications Resource Manager roytine selectors / 167

7 Special K Utilities / 169
About this chapter and the utilities / 170
Special K utilities / 171
About variation codes / 173



After the pop-up has been created / 174

Other pop-up menu control characteristics / 174
Manipulating dialog item lists (DITLs) / 175

Special ways to append items / 177
Showing AppleTalk entities: NuLookUp and NuPLookUp / 178
Customizing the dialog box with hook and filter procedures / 182
Summary / 186

Special resources / 188

Constants / 188

Resource formats / 188

Utility routine selectors / 189

Fundamentals of Writing Your Own Tool / 191

About this chapter / 192

About writing a tool / 192

The six essential resources / 193

The bundle resource / 194

The validation code resource / 194
cmValidateMsg / 195

The setup definition code resource / 197
cmSPreflightMsg / 199
cmSsetupMsg / 199
cmSitemMsg / 200
cmSfilterMsg / 201
cmScleanupMsg / 201

The scripting interface code resource / 202
cmMgetMsg / 202
cmMsetMsg / 203

The localization code resource / 207
cml2English and cmL2Int / 207

Summary / 208

Messages / 208
Data structures / 209
Definition procedures / 210
Resource types / 210

Writing Connection Tools / 213

About this chapter / 214
Your connection tool’s main code resource / 214
cmResetMsg / 215
cmMenuMsg / 215
cmlListenMsg / 216
cmidleMsg / 216



cmEventMsg / 217
cmAbortMsg / 217
cmAcceptMsg / 217
cmActivateMsg and cmDeactivateMsg / 218
cmSuspendMsg and cmResumeMsg / 218
cminitMsg / 218
cmDisposeMsg / 219
cmReadMsg and cmWriteMsg / 220
cmStatusMsg / 222
cmOpenMsg / 223
cmCloseMsg / 223
cmBreakMsg / 224
cmlOKillMsg / 225
cmEnvironsMsg / 226
Summary / 228
Constants / 228
Data structures / 230
Definition procedures / 230

10 Writing Terminal Tools / 233

About this chapter / 234

Your terminal tool's main code resource / 234
tmlnitMsg / 235
tmDisposeMsg / 235
tmKeyMsg / 236
tmStreamMsg / 236
tmActivateMsg and tmResumeMsg / 237
tmDeactivateMsg and tmSuspendMsg / 237
tmResizeMsg / 237
tmidleMsg / 238
tmUpdateMsg / 238
tmClickMsg / 238
tmMenuMsg / 238
tmGetSelectionMsg / 239
tmSetSelectionMsg / 239
tmScrollMsg / 239
tmResetMsg / 240
tmClearMsg / 240
tmGetLineMsg / 240
tmPaintMsg / 241
tmCursortMsg / 241
tmGetEnvironsMsg / 241
tmEventMsg / 242
tmDoTermKeyMsg / 242
tmCountTermKeyMsg / 243
tmGetINDTermKeyMsg / 243

.
\



Summary / 243
_ Constants / 243
( Definition procedures / 245

11 Writing File Transfer Tools / 247

About this chapter / 248

Your file transfer tool's main code resource / 248
ftnitMsg / 249
fiDisposeMsg / 249
fiStartMsg / 250
fiCleanupMsg / 250
fiExecMsg / 251
ftAbortMsg / 251
ftActivateMsg and ftResumeMsg / 251
ftDeactivateMsg and ftSuspendMsg / 252
ftMenuMsg / 252
ftEventMsg / 253
Summary / 254
Constants / 254
Data types / 255
Definition procedures / 255

Appendix A Guidelines for Communications Tools / 257

( , About this appendix / 258
. Design goals / 258

Keep your tool self-contained / 258
Keep your tool task-specific / 259

User interface considerations / 259
Modeless tool operation / 260
The configuration dialog box / 260
Windows and status dialog boxes / 261
Menus / 262
Handling errors / 262
Using the right words / 262

Compatibility Requirements / 263
Terminal tool considerations / 263

Appendix B Useful Code Samples / 265
About this appendix /266
Using FTExec and TMIdle effectively / 266

Determining events for Special K managers / 271
Custom tool-selection dialog boxes / 276



CHOOSEA / 276

CHOOSEP / 276

CHOOSER / 292
Determining if the managers are installed / 295
Getting the procID / 295
Finding the tool ID / 296



CHAPTER1

CHAPTER3

CHAPTER 4

CHAPTERS

CHAPTER6

CHAPTER7

Figures and Tables

About Special K / 1

Figure1-1 ~ Where Special K fits in / 3

Figure 12 How Special K managers interact with applications and
tools. / 5

Connection Manager / 29

Figure3-1  Data flow into and out of the Connection Manager.. / 31
Figure 3-2  The Standard tool-selection dialog box. / 41

Terminal Manager / 69

Figure 41  Data flow in and out of the Terminal Manager. / 71
Figure 42  Major parts of a terminal emulation window. / 72
Figure 43  Bounds of viewRect and termRect. / 77

Figure 44  selTextNormal text selection / 79

Figure 45  selTextBoxed text selection / 79

- Figure46  The Standard tool-selection dialog box / 84

Figure 47  Additional space in the terminal emulation region / 101

File Transfer Manager / 117

Figure5-1  Data flow into and out of the File Transfer Manager/ 119
Figure 5-2  The standard tool-selection dialog box / 130

Communications Resource Manager / 151

Figure6-1  Data flow in and out of the Communications Resource
Manager/ 153

Special K Utilities / 170

Figure7-1  Pop-up menu control / 172

Figure 72 Pop-up menu control when system justification is
teJustRight. / 175

Figure 7-3  Initial dialog box and to-be-appended items / 176

Figure74  Dialog box after appended items are overlaid. / 176

Figure 7-5  Dialog box after items appended to the right. / 176

Figure76  Dialog box after items appended to the bottom. / 176

Figure 77  DITL displayed after an append relative to item 2. / 177



Figure 78 Network look-up dialog box / 178



Preface

About this document

Inside Special K provides definitive information for application software
developers, communications tools developers, and hardware developers who
want to use services provided by Special K. For application software
developers, this document describes and shows how to use the four Special K
managers that make it easier to write communications software for the
Apple® Macintosh®. For communications tools developers, this document
shows how to develop communications tools that can be used by the Special K
managers. And for hardware developers, this document shows what protocols
to follow to register hardware—like internal modems or serial cards—with the
Special K Communications Resource Manager. ‘

This document contains an overview of Special K in Chapter 1and a sample
application that uses Special K in Chapter 2. The next five chapters discuss the
Special K managers and utilities. This is where the routines and data structures
that an application uses are described. Chapter 8 through Chapter 11 tells you
how to create a tool to add to Special K. While tool developers will be
interested in reading these chapters, application developers may have little need
to read them. Appendix A contains guidelines that communications tool
developers should read to insure that the tools they create are fully compatible
with Special K. Appendix B shows you sample code solutions to common
programming problems.

Inside Special K is written for experienced programmers. It is assumed that
you know both how to program the Macintosh and have some familiarity
with communications or networking applications. To use each manager
requires specific programming knowledge; suggestions on where to find more
infomation are included at the beginning of each chapter. In addition, the
following section suggests reference information that will help you
understand the technical concepts used in this document.

Where to Go for More Information

Refer to the following Addison-Wesley books for additional information about
the subjects covered in this manual:

®  Designing Cards and Drivers for Macintosh I and Macintosh SE
®  Human Interfaces Guidelines: The Apple Desktop Interface

8 Inside Macintosh (Volumes I-V, X-Ref)

®  Programmer’s Introduction to Macintosh



8 Technical Introduction to Macintosh
& [nside AppleTalk

You may also refer to the following documents from APDA™:
m  Software Development for International Markets: A Technical Reference
B Macintosh Technical Notes

APDA provides a wide range of development products and documentation,
from Apple and other suppliers, for programmers and developers who work on
Apple equipment. For information about APDA, contact

APDA

Apple Computer, Inc.

20525 Mariani Avenue, Mailstop 33-G

Cupertino, CA 950146299

(800) 282-APDA (800-282-2732)

Fax: 408-562-3971

Telex: 171-576

AppleLink: APDA

If you plan to develop Apple-compatible hardware or software products for
sale through retail channels, you can get valuable support from Apple Developer
Programs. Write to

Apple Developer Programs

Apple Computer, Inc.

20525 Mariani Avenue, Mailstop 51-W
Cupertino, CA 95014-6299
Conventions

The following notations are used in this document to draw attention to
particular items of information:

& Note: a note that may be interesting or useful

& Assembly Note: a note of interest to assembly-language
programmers only

A Important a note that is particularly important
A  Warning a point that you need to be cautious about

Names of routines (procedures or functions), constants, or code fragments
appear in courier typeface.

xiv  Special K Alpha Draft Apple Confidential



Chapter 1 About Special K



About this Chapter =

This chapter gives you an overview of Special K. It starts out by telling you about the managers
and utilities that are part of Special K, and then discusses a fundamental concept, the difference
between routines and tools. The last part of the chapter provides technical details, such as system
hardware and software requirements, as well as how to install Special K.

What Comprises Special K

Inside of Special K are four managers and one set of utilities . These managers and utilities are an
extension to the Macintosh Toolbox and provide basic networking and communications services.
Just as the Macintosh Toolbox makes it easier for you to develop stand-alone Macintosh
applications, Special K helps you develop networking and communications applications.

Each of the managers in Special K handles a different aspect of networking and
communications: connection management, terminal emulation management, file transfer
management, and communications resource management. The managers provide routines that
your application can call to indirectly interact with the operating system. Figure 1-1 shows how
Special K fits between your application and the operating system.

2 Special K Alpha Draft—Apple Confidential



C

Figure 1-1 Where Special K fits in

Application

T

Operating system

J

Macintosh hardware

While the managers in Special K handle distinctly different aspects of networking and
communication, your application might need to call routines from more than one of the managers
to implement a feature. For instance, in order to perform terminal emulation, your program might
make use of Connection Manager routines to maintain the data connection and Terminal Manager
routines to handle the specifics of the terminal emulation. Using routines from more than one of
the managers in your application is an acceptable development technique.

However, your application does not have to use Special K routines to perform all of its
networking and communications functionality; your application can maintain the data connection
itself and use only the Terminal Manager to perform a terminal emulation. Keep in mind, though,
that by not using Special K routines, your application will not be as modular and might have a more
difficult time interfacing with new tools as they become available.

Apple Confidential Chapter 1: About Special K



Routines and tools: What's the difference?

There are two interfaces (besides the user interface) to consider when programming with Special K.
One is the interface between the application and Special K and the other is between Special K and the
Macintosh operating system.

The interface between an application and Special K is defined by the routines in each of the
managers. By calling routines, an application can request basic networking and communications
services. If you are writing applications (not tools), this is the interface with which you need to be
most concemed; it is discussed in Chapter 3 through Chapter 7.

The interface between Special K and the Macintosh operating system is controlled by tools.
Tools are units of code that implement requested networking and communications services. When
an application calls a Special K routine, it does so without concern for the underlying protocols. It is
the job of the tool to implement basic networking and communications services according to a
specific protocol. If you are writing tools (not applications), this is the interface with which you
need to be most concerned; it is discussed in Chapter 8 through Chapter 11. Tool writers need to
read at least two of these chapters: Chapter 8, which discusses concepts common to all types of
tools, and one of the other chapters that deals with a specific type of tool.

Figure 1-2 shows the interaction between an application and one of the Special K managers, which in
this case is the Connection Manager. Notice that the application interfaces with the Connection
Manager, which in tumn interfaces with the connection tool. The connection tool, in turn,
communications with a driver and passes back to the application any relevant information (a
complete discussion of the Connection Manager is in Chapter 3, “Connection Manager”).

4 Special K Alpha Draft—Apple Confidential



Figure 1-2 How Special K managers interact with applications and tools.

(' Communications \

Toolbox

Data retumed
to application

~ | Toterminal
Dl tofile transfer
to...

Data tosend to
remote computer

A4

Technical Details

Special K can be run on all Macintosh computers that have at least 1 Mb of RAM, the Macintosh Plus (128K)
ROMs or later, and System 6.0.2 or later. Minimum disk space requirements are two floppy disks, a single FDHD
floppy disk, or a hard disk (which is recommended).

¢ Note: On a 1Mb Macintosh running MultiFinder™ , you may only be able to run a single
application with the Finder coresident. You also may be unable to run HyperCard® under
MultiFinder on a 1Mb Macintosh with Special K installed.

You can install additional tools into Special K by dragging the icon for the tool into the Communications folder,
which is inside the System folder.

Apple Confidential Chapter 1: About Special K 5






Chapter 2 Programming with Special K

Ciinrrooon Nl
— R - ,
| e S e o ey e
180,
Hey he,
i
I=l

i
¢ ]
1]

o'm\mm

ITII!IIIIIII\\IIIIIIIlllll]]

| ]
..’_




About this chapter

This chapter provides an example of how an application can use Special K to implement
communications services.

The sample code is not a complete program. Instead, it contains the parts of a program that
handle communication functions; the rest of the program has been replaced with comments to
limit the focus to programming Special K rather than Macintosh programming in general. This
sample shows you where in an application to put the hooks to which you can attach Special K
routines.

The sample application (if it were a real, working program) allows you to perform functions
that span the three major Special K managers : the Connection Manager, the File Transfer Manager,
and the Terminal Manager. Specifically; the application allows you to:

* Openand dose a connection,

o Send and receive files,

* Configure connections, terminal emulations, and file transfers
e Clear the screen

¢ Reset the terminal.

The sample code is split into three sections to make it easier to understand. The first section
shows how your application can deal with events that result from menu selections; the sample
application contains routines that handle basic communications services, like opening a connection
and sending a file. The second section shows how your application can deal with events like
scrolling and mouse clicks. The last section shows the sample application’s main code loop.

Code that handles menu events

Handling menu choices

PROCEDURE DoCommand (mResult : LONGINT);

VAR
theltem : INTEGER;
theMenu : INTEGER;
theName : STR255;
savedPort : GrafPtr;
garbage : INTEGER;
err ¢ OSErr;
BEGIN

8 Special K Beta Draft Apple Confidential



theltem := LoWord(mResult);
theMenu := HiWord(mResult);
theTerm := GethTerm(FrontWindow); { is it a terminal? }
IF theTerm <> NIL THEN
IF TMMenu(theTerm, theMenu, theltem) THEN
Exit (DoCommand) ; - { yup }

theConn := GethConn(FrontWindow); { is it a connection? }
IF theConn <> NIL THEN
IF CMMenu(theConn, theMenu, theltem) THEN
Exit (DoCommand) ; { yup }

theFT := GethFT(FrontWindow); { is it a file transfer? }
IF theFT <> NIL THEN
IF FTMenu(theFT, theMenu, theltem) THEN
Exit (DoCommand) ; { yup }
{ menus are mine here! }

END;
Opening a connection
PROCEDURE Dolnitiate;
VAR
theWindow : WindowPtr;
theErr :.CMErr;
sizes : BufferSizes;
status : LONGINT;
BEGIN

{DebugStr('enterring DolInitiate');}

dirtyMenu := TRUE;
theWindow := FrontWindow;
theConn := GethConn(theWindow);
IF theConn = NIL THEN

BEGIN

SysBeep (5);

Exit (DoInitiate);

END;

theErr := CMStatus(theConn, sizes, status);
IF BAND(status, CMStatusOpen + CMStatusOpening) = 0 THEN

theErr := CMOpen(theConn, FALSE, NIL, 0);
END;

Apple Confidential Chapter 2: How to program with Special K



Closing the connection

PROCEDURE DoClose;

VAR

BEGIN

END;

10

theWindow : WindowPtr;

theWIndowPeek :

WindowPeek;

pWindow : WindowP;

theWindow := FrontWindow;

IF theWindow <> NIL THEN

BEGIN

theWindowPeek := WindowPeek (theWindow);
:= theWindowPeek”.windowKind;

garbage

IF garbage < 0 THEN
CloseDeskAcc (garbage)

ELSE
BEGIN

pWindow := WindowP (WindowPeek (theWindow)~.refCon);

theTerm := GethTerm(theWindow):;
IF theTerm <> NIl THEN
BEGIN

TMDispose(theTerm) ;

END;

theConn := GethConn(theWindow);
IF theConn <> NIl THEN

BEGIN

CMDispose(theConn);

END;

theFT := GethFT(theWindow);
IF theFT <> NIL THEN
BEGIN

FTDispose (theFT);

END;

DisposPtr (Ptr(pWindow)) ;
DisposeWindow(theWindow) ;

END;
END;

Special K Beta Draft

Apple Confidential



Killing the connection

PROCEDURE DoKill;

VAR

BEGIN

END;

theWindow : WindowPtr;
theErr : CMErr;

sizes : BufferSizes;
status : LONGINT;

dirtyMenu := TRUE;
theWindow := FrontWindow;
theConn := GethConn(theWindow);
IF theConn = NIL THEN

BEGIN

SysBeep(5);

Exit (DoKill);

END;

theErr := CMStatus(theConn, sizes, status);

IF BAND(status, CMStatusOpen + CMStatusOpening) <> 0 THEN
BEGIN
theErr := CMClose(theConn, FALSE, NIL, 0, TRUE);
IF theErr <> 0 THEN
SysBeep(5);
{
DebugStr(‘there was a problem closing');
X .
END
ELSE
BEGIN
SysBeep(5) ;SysBeep (5);
{
DebugStr('cannot close for some reason');
}
END;

Sending files

PROCEDURE DoSend;

VAR

Apple Confidential

theWindow : WindowPtr;
theReply : SFReply:
where : Point;
numTypes : INTEGER;

Chapter 2: How to program with Special K

1



typelist : SFTypelist;

pWindow : windowP;
anyErr : OSErr;
BEGIN )
theWindow := FrontWindow;
pWindow := windowP (GetWRefCon (theWindow));
theFT := GethFT(theWindow);
IF theFT = NIL THEN
BEGIN
SysBeep(5);
Exit (doSend);
END
ELSE BEGIN
SetPt (where, 100, 100);
typelist([0] := 'TEXT';
numTypes := -1;
IF BAND(theFT~"~.attributes, FTTextOnly) <> 0 THEN
numTypes := 1;
SFGetFile(where, 'A Cruel Moose, indeed', NIL, numTypes,
typelist, NIL, theReply);
if theReply.good then begin
anyErr := FTStart(theFT,FTTransmitting,theReply);
if (anyErr <> noErr) then
SysBeep(5);
end;
END;
END;

Receiving Files

PROCEDURE DoReceive;

VAR
theWindow : WindowPtr;
theReply : SFReply;
where : Point;
typelist : SFTypelist;
anyErr : OSErr;
pWindow : WindowP;
theConn: ConnHandle;
BEGIN

theWindow := FrontWindow;
theFT := GethFT(theWindow);
pWindow := WindowP (WindowPeek (theWindow) ~.refCon);

12 Special K Beta Draft

Apple Confidential



IF theFT = NIL THEN BEGIN
SysBeep (5);
Exit (DoReceive);

END

ELSE BEGIN
theReply.vRefNum := 0;
theReply.fName := '*‘;

theConn := GethConn(theWindow);
IF theConn <> NIL THEN
IF theFT"~.autoRec <> '' THEN
BEGIN
CMRemoveSearch (theConn,

pWindow”.searchBlk);

pWindow” .searchBlk := 0;

END;

anyErr := FTStart (theFT,FTReceiving,
if (anyErr <> noErr) then
SysBeep(5)
END;
END;

Configuring a connection

PROCEDURE DoConnectionConfig;

VAR
theWindow s WindowPtr;
theConn : ConnHandle;
result : INTEGER;
where Point;

BEGIN
SetPt (where, 10, 40);
theWindow := FrontWindow;

theConn := GethConn(theWindow);
IF theConn = NIL THEN
BEGIN
{DebugStr ('No Connection Record');}
Exit (DoConnectionConfig);
END;
result := CMChoose(theConn, where, NIL);
SethConn(theWindow, theConn);
IF result = ChooseDisaster THEN
BEGIN
DoDeepshit;
DoClose;

Apple Confidential Chapter 2

theReply) ;

: How to program with Special K

13



END;

IF (result = ChooseOKMajor) OR (result = ChooseOKMinor)

DirtyDocument (theWindow) ;
END;

Configuring a terminal emulation

PROCEDURE DoTerminalConfig;

VAR
theWindow : WindowPtr;
theTerm : TermHandle;
result : INTEGER;
where Point;

.o

BEGIN
theWindow := FrontWindow;

SetPt (where, 10, 40);

theTerm := GethTerm(theWindow);
IF theTerm = NIL THEN
BEGIN
{DebugStr ('No Terminal Record');}
Exit (DoTerminalConfig);
END;
result := TMChoose(theTerm, where, NIL);
SethTerm(theWindow, theTerm);
IF result = ChooseDisaster THEN
BEGIN
DoDeepshit;
DoClose;
END;

IF (result = ChooseOKMajor) OR (result = ChooseOKMinor)

DirtyDocument (theWindow) ;
END;

Configuring a file transfer

PROCEDURE DoFileTransferConfig;

VAR
theWindow : WindowPtr;
theFT : FTHandle;
theConn : ConnHandle;
result H INTEGER;
where : Point;

14 Special K Beta Draft

THEN

THEN

Apple Confidential



BEGIN

pWindow
tempString : STR255;

WindowP;

.

SetPt (where, 10, 40);
theWindow := FrontWindow;
pWindow := WindowP (WindowPeek (theWindow)~.refCon);

theFT := GethFT(theWindow);
theConn := GethConn(theWindow);
IF theFT = NIL THEN
BEGIN
{DebugStr('No File Transfer Record');}
Exit (DoFileTransferConfigq);
END;
result := FTChoose(theFT, where, NIL);
SethFT(theWindow, theFT);
IF result = ChooseDisaster THEN

BEGIN

DoDeepshit;

DoClose;

Exit (DoFileTransferConfig);
END;

IF (result = ChooseOKMajor) OR (result = ChooseOKMinor) THEN
DirtyDocument (theWindow) ;

tempString := theFT"*".autoRec;
if (tempString <> '') then
begin

{ store the searchblock some where, so we can remove it later }
IF BAND(theFT~~.flags, FTIsFTMode) = 0 THEN
IF pWindow”.searchBlk = 0 THEN
pWindow”.SearchBlk := CMAddSearch(theConn,
tempString, 0, Q@AutoRecCallback);
IF pWindow".searchBlk = =1 THEN

BEGIN
DebugStr ('cannot add search');
pWindow”.searchBlk := 0;
END;
end
else
begin

{ grap searchblock from the place stored it }

{ assume if the search block was not added before,

CMRemoveSearch do nothing - <check this later }

IF pWindow”.searchBlk <> 0 THEN
CMRemoveSearch(theConn, pWindow”.SearchBlk) ;

Apple Confidential Chapter 2: How to program with Special K

15



pWindow".searchBlk

[
o
~

end;

END;

Making a new session document

PROCEDURE MakeNew (termID, ftID,connID: integer);

VAR
err ¢ OSErr;
theWindow : WindowPtr;
theWIndowPeek : WindowPeek;
pWindow : WindowP;
theRect ¢ Rect;
sizes : BufferSizes;
termEnvironment : TermEnvironRec;
testV: LONGINT;
boof: STR255;

BEGIN

theWindow := GetNewWindow(128, NIL, POINTER(-1));
SetPort (theWindow) ;

ClipContent (theWindow) ;

TextFont (monaco) ;

pWindow := WindowP (NewPtr (SIZEOF (WindowR)));
theRect := theWindow”.portRect;

InsetRect (theRect, 3, 3);

theRect.right := theRect.right - 15;
theRect.bottom := theRect.bottom - 15;

SetWRefCon (theWindow, LONGINT (pWindow));

WITH pWindow”~ DO

BEGIN
hTerm := NIL;
hConn := NIL;
hFT := NIL;
END;
if (termID = GET_FIRST_TOOL) then { Get the first tool }
termID := FindToolID(NEWTM);
if (termID = GET_FIRST_TOOL) then { No tools found }

Exit (MakeNew) ;

16 Special K Beta Draft Apple Confidential



«

pWindow”.hTerm := TMNew(theRect, theRect, TMSaveBeforeClear,
termID, theWindow, @sendProc, @cacheProc, @breakProc, NIL,
@TermGetConnEnvirons, 0, 0);
if (pWindow”.hTerm = nil) then
BEGIN
DebugStr ('no TMNew found!');
Exit (MakeNew) ;
END;
pWindow”.cachelinecount := 0 ;
pWindow”.viscacheline := 0
0

~.  ~e

pWindow”.cachetopline :=
pWindow~.clineInfoPtr := mylineInfoPtr( 0 );

theRect := theWindow”.portRect;

sizes[CMDataIn] := 1
sizes[CMDataOut] :=
sizes[CMCntlIn] := 0;
sizes[CMCntlOut] := O0;
sizes[CMAttnIn] := 0;
sizes[CMAttnOut] := 0;

24;
024;

= O

if (connID = GET_FIRST_TOOL) then " { Get first tool }
connID := FindTocolID(NEWCM);

if (connID = GET_FIRST_TOOL) then {No tools found }
BEGIN

DebugStr(‘no CMNew found');

Exit (MakeNew) ;
END;

pWindow~.hConn := CMNew(connID, CMData, sizes, 0, 0);
if (pWindow”.hConn = nil) then

Exit (MakeNew) ;
CMSetRefCon (pWindow”~.hConn, LONGINT (theWindow));

TMSetRefCon (pWindow” .hTerm, LONGINT (theWindow));

if (ftID = GET_FIRST_TOOL) then { Get first tool}
ftID := FindToolID(NEWFT);

if (ftID = GET_FIRST_TOOL) then { No tools found}
BEGIN

DebugStr('no file transfer "found') ;

Exit (MakeNew) ;

Apple Confidential Chapter 2: How to program with Special K

17



END;

END;

pWindow”~ .hFT := FTNew(ftID, O, @FTsendProc, @FTreceiveProc, NIL,
NIL, Q@FTGetConnEnvirons,theWindow, ORD4(theWindow), 0);
if (pWindow”.hFT = nil) then ‘

Exit (MakeNew) ;

pWindow”.searchBlk := 0;
if (pWindow” . hFT~~.,AutoRec <> '') then
begin
{ store the searchblock some where, so we can remove it later }
IF BAND(pWindow”~.hFT~~.flags, FTIsFTMode) = 0 THEN
BEGIN
boof := pWindow~.hFT"“~.autoRec;
pWindow".SearchBlk := CMAddSearch(pWindow".hConn,
boof, 0, @AutoRecCallback);
IF pWindow”.searchBlk = -1 THEN
BEGIN
DebugStr('cannot add search'):;
pWindow”.searchBlk := 0;
END;
END;
end;

FTSetRefCon (pWindow" .hFT, "LONGINT (theWindow));

pWindow”.wasFTMode := FALSE;
pWindow”.startFT := FALSE;

Code that handles other events

Activate events

PROCEDURE DoActivate(theEvent : EventRecord);

VAR

BEGIN

18

theWindow : WindowPtr;

processed : BOOLEAN;

hScroll,

vScroll : ControlHandle;
savedPort: GrafPtr;

GetPort (savedPort) ;

Special K Beta Draft Apple Confidential



END;

theWindow := WindowPtr (theEvent.message);
SetPort (theWIndow) ;

processed := BAnd(theEvent.modifiers, activeFlag)
theTerm := GethTerm(theWindow);

theConn := GethConn(theWIndow);

theFT := GethFT(theWIndow);

hScroll := GetHScroll (theWindow);

vScroll := GetVScroll(theWindow);

IF theTerm <> NIL THEN
TMActivate(theTerm, processed);

IF theConn <> NIL THEN
CMActivate(theConn, processed);
IF theFT <> NIL THEN
FTActivate (theFT, processed);

Resume events

PROCEDURE DoResume (theEvent : EventRecord);

CONST

VAR

BEGIN

Apple Confidential

resumeFlag = 1;
scrapModifiedFlag = 2;

theWindow : WindowPtr;

boo : BOOLEAN; { resuming }

savedPort : GrafPtr;

theWindow := FrontWindow;
IF theWindow <> NIL THEN
BEGIN
boo := BAND(theEvent.message, resumeFlagq)
IF boo THEN
BEGIN
SetPort (theWindow) ;
IF scrapVis THEN

<> 0;

<> 0;

BEGIN
ShowWindow (scrapWindow) ;
GetPort (savedPort) ;
SetPort (scrapWindow);
InvalRect (scrapWindow” .portRect);
SetPort (scrapWindow);
END

Chapter 2: How to program with Special K

19



END

ELSE
BEGIN '
IF scrapVis THEN
HideWindow (scrapWindow) ;
END;

theTerm := GethTerm(theWindow);

IF theTerm <> NIL THEN

theConn

TMResume (theTerm, boo);
t= GethConn(theWindow) ;

IF theConn <> NIL THEN

theFT

CMResume (theConn, boo);

GethFT(theWindow) ;

IF theFT <> NIL THEN

FTResume (theFT, boo);

END; ({if window nil }
END;
Update events
PROCEDURE DoUpdate (theEvent : EventRecord);
VAR
theWindow : WindowPtr;
savedPort : GrafPtr;
savedClip : RgnHandle;
pWindow : windowP;
termEnv : termEnvironRec; { terminal environment }
err ¢ OSErr ;
drawRect : Rect ;
oldptrl : Ptr ;
oldptr2 : Ptr ;
i : INTEGER ;
skip : INTEGER ;
curwidth ¢ INTEGER ;
oldlinesize : INTEGER ;
alinelInfoptr: mylineInfoPtr ;
thelineInfoRec: LineInfoRec ;
cacheheight : INTEGER ;
linedraw : INTEGER ;
leftcol ¢ INTEGER ;
BEGIN
savedClip := NewRgn;
theWindow WindowPtr (theEvent .message) ;
pWindow := windowP (GetWRefCon (theWindow));
.\l Special K Beta Draft Apple Confidential



GetPort (savedPort);
SetPort (theWindow) ;
GetClip(savedClip); { Get the old
ClipAll (theWindow);

BeginUpdate (theWindow) ;
EraseRect (theWindow”.portRect);

DrawControls (theWindow) ;
DrawGrowIcon (theWindow) ;
theTerm := GethTerm(theWindow);
ClipRect (theTerm~”.viewRect);
IF theTerm <> NIL THEN
TMUpdate(theTerm, theWindow”.visRgn);

EndUpdate (theWindow) ;
SetClip(savedClip);

DisposeRgn(savedClip);
SetPort (savedPort);

END;

Key events

PROCEDURE DoKey(theEvent : EventRecord):;

VAR
theKey : CHAR;
processed : BOOLEAN;
result : LONGINT;

BEGIN
theTerm := GethTerm(FrontWindow);

{ IF theTerm <> NIL THEN }

{ TMKey (theTerm, theEvent) ; }
theKey := CHAR(BAND (theEvent.message, charCodeMask));
processed := FALSE;

IF BAND(theEvent.modifiers, cmdKey) <> O THEN

BEGIN

result := MenuKey(theKey);

IF HiWord(result) <> 0 THEN
BEGIN
processed := TRUE;
DoCommand (result);
END;

IF NOT processed THEN
BEGIN

Apple Confidential

area

}

Chapter 2: How to program with Special K

21



IF theTerm <> NIL THEN
TMKey (theTerm, theEvent);

END;
END
ELSE
BEGIN
IF theTerm <> NIL THEN
TMKey (theTerm, theEvent);
END;
END;
Mouse events
PROCEDURE DoClick(theEvent : EventRecord);
VAR
thePart : INTEGER;
theWindow : WindowPtr;
theWindowPeek : WindowPeek;
savedPort : GrafPtr;
result : LONGINT;
theRect : Rect;
err : OSErr;
BEGIN

thePart := FindWindow(theEvent.where, theWindow);
CASE thePart OF

inGoAway:
IF TrackGoAway(theWindow, theEvenf.where) THEN
DoClose;
inDesk,
inSysWindow:

SystemClick (theEvent, theWindow);

inZoomIn, inZoomOut:
BEGIN
IF theWindow = FrontWindow THEN
IF TrackBox(theWindow, theEvent.where,
thePart) THEN
BEGIN
GetPort (savedPort);
SetPort (theWIndow) ;
ClipAll(theWindow);

EraseRect (theWindow”.portRect);

ZoomWindow (theWIndow, thePart, FALSE);
ClipAll(theWindow) ;

2 Special K Beta Draft Apple Confidential



InvalRect (theWindow”.portRect).;

(ﬁ ClipContent (theWindow) ;
SetPort (savedPort) ;
END;
END;

inMenuBar:
BEGIN
result := MenuSelect(theEvent.where); { gee mr
menu, what have we here? )}

DoCommand (result) ; { chop chop chop }
HiliteMenu(0); { fix the menu bar }
END;
inGrow:
BEGIN
IF theWindow = scrapWindow THEN
BEGIN
GrowScrap (theEvent.where);
END
ELSE
DoGrow(theWindow, theEvent.where) ;
END;
inDrag: BEGIN
. theRect := theWindow”.visRgn~”~.rgnBBox;
( DragWindow(theWindow, theEvent.where,
" dragRect) ;
END;
inContent:

IF theWindow <> FrontWindow THEN
SelectWindow(theWindow)

ELSE BEGIN
theTerm := GethTerm(theWindow);
IF theTerm <> NIL THEN

TMClick (theTerm, theEvent):;
END; {of inContent}
END; {case}
END;

Apple Confidential Chapter 2: How to program with Special K 23



Sample application main program loop

PROCEDURE MainLoop;

VAR
theEvent : EventRecord;
theWindow : WindowPtr;
theWindowPeek : WIndowPeek;
theControl : ControlHandle;
savedPort : GrafPtr;
theKey : CHAR;

result : LONGINT;
hFT: FTHandle;
hConn: ConnHandle;
hTerm: TermHandle;

BEGIN
WHILE NOT done DO
BEGIN
SystemTask;

DoIdle;
IF WaitNextEvent (everyEvent,theEvent, 0, NIL) THEN
BEGIN
IF theEvent.what = activateEvt THEN
dirtyMenu := TRUE;

hFT := IsFTEvent (theEvent);
IF hFT <> NIL THEN
FTEvent (hFT, theEvent)
ELSE
BEGIN
hConn := IsConnEvent (theEvent);
IF hConn <> NIL THEN
CMEvent (hConn, theEvent)
ELSE
BEGIN
hTerm := IsTermEvent (theEvent);
IF hTerm <> NIL THEN
TMEvent (hTerm, theEvent)
ELSE
BEGIN
CASE theEvent.what OF
autoKey, keyDown: { no
command-key equivalents

24 Special K Beta Draft Apple Confidential



on a mac plus }
DoKey (theEvent) ;

mouseDown:
DoClick (theEvent);

updateEvt:
DoUpdate (theEvent) ;

app4Evt:
DoResume (theEvent) ;

activateEvt:
DoActivate(theEvent);

END; ({case}

END; {is not TermEvent }
END;{( is not CMEvent }
END; {is not FT Event }
END; {wne}

IF dirtyMenu = TRUE THEN
UpdateMenus;

END; ({while not done}

END;

Apple Confidential Chapter 2: How to program with Special K 2






Chapter 3 Connection Manager




About this chapter

This chapter describes the Connection Manager, which is the Special K manager that allows
applications to establish and maintain connections. This chapter starts out by describing some of
the fundamental concepts about the Connection Manager. Then it describes the connection record,
which is the most important data structure to the Connection Manager. After a detailed functional
description of the routines that the Connection Manager provides, the chapter finishes with a
summary you can use as a quick reference to routines and data structures.

Often refered to in this chapter is the term “your application”, which is the application you are
writing for the Macintosh, and which will implement communication services for users. Be careful
not to confuse the services your application is requesting with the services that tools provide.

To use the Connection Manager, you need to be familiar with the concept of data connections, as
well as the following: ‘

®  Resource Manager (see Inside Macintosh, Volumes: 1, IV, V)
®  Device Manager (see Inside Macintosh, Volumes: II, IV, V)

About the Connection Manager

By using Connection Manager routines, your application can implement basic connection services
without having to take into account underlying connection protocols. Connection tools, which are
discussed in Chapter 9: “How to Write a Connection Tool,” are responsible for implementing
connection services according to specific protocols.

To the application, the Connection Manager provides a basic abstraction of a connection as
being a two-way channel that carries data between two entities, or processes running on computer.
These entities can be different processes running on the same CPU or one process running on a
Macintosh and the other running on a mainframe (or any other type of computer).

Here's what happens inside the Connection Manager. An application makes a request of the
Connection Manager when it needs it to do something, such as open a connection. The Connection
Manager then sends this request on to one of the tools it manages. The tool, in turn, takes the
request and executes the service according to the specifics of the connection protocol that is
implemented on the data connection. Once the tool has finished, it passes back to the application
any relevant parameters and return codes.

The data sent along the connection is represented in a stream, rather than a transaction-by-
transaction basis. Flow control, error correction, error detection, and encapsulating the data into
packets are not implemented with the connection, although a tool or application can provide these
features. The Connection Manager does, however, provide function that tells if a connection is
reliable (that is, it will transmit without errors and in the correct sequence ).

Figure 3-1 shows the data flow into and out of the Connection Manager.

30 Special K Beta Draft Apple Confidential o



Figure 3-1: Data flow into and out of the Connection Manager.

Communications \

] Data retumed
to application " « | Toterminal
» < to file transfer
\ " | to..
Application
Data to send to
remote computer
O e
d
(o] ]
O
N
Dy

The most important data structure maintained by the Connection Manager is the connection
record, which is where all the specifics about a connection are stored. For example, the connection
record might show that a connection is a direct serial port connection transmitting at 9600 baud.

Two reasons why the connection record is so important to the Connection Manager are that its
existence allows for both protocol-independent routines and multiple instances of the same tool.
Protocol-independent routines are what allow applications to use Connection Manager services
without regard for the underlying communications protocols. In other words, when an application
wants to read data from a remote entity, it tells the Connection Manager to read, and the
Connection Manager figures out exactly how to implement a read on a given connection. Multiple
instances of the same tool allows for the same tool to be used by different processes at the same
time, like in 2 MultiFinder environment, or by different threads in a given application. The
connection record is described in greater detail later in this chapter.

Besides providing basic connection routines, the Connection Manager includes routines that make it
easy for applications to configure a connection tool, either through presenting the user with a
dialog box or by interfacing directly with a scripting language. The Connection Manager also
contains routines that make it easier for you to localize your applications into foreign languages.
You can use the Connection Manager in conjunction with other parts of Special K to create a
communications application with file transfer and terminal emulation capabilities. Or, you can use

Apple Confidential Chapter 3: Connection Manager

31



the Connection Manager from Special K, but substitute some other data transfer or terminal
emulation service on top of Special K's Connection Manager. You can also write your own .
connection tool and add it to the Connection Manager. (This procedure is discussed in Chapter 8, !
"Fundamentals of Writing Your Own Tool."). e

Connection channels: data, attention, and control

When data is sent along a connection there is a certain amount of overhead that sometimes
accompanies it. This “extra” information could be a warning that the connection is about to go
down or that the sending entity should slow its rate of transmitting data. Some connection
protocols are designed in such a way that this sort information can be sent simultaneously with
the data stream on a channel. The Connection Manager supports up to three channels on each
connection—data, attention, and control—that can be thought of as three separate lines of
communication between each entity. The data channel, however, is for all protocols the primary
channel for transmitting information between entities. The other two channels are used by only
some connection protocols.

When you design your application, keep in mind that some protocols support all three channels
while others support only one (the data channel). Your application should be able to handle
different connection tools such that users can change tools and still be able to use your program.

The connection record

The connection record contains both information that describes a connection, as well as
pointers to Connection Manager internal data structures. The Connection Manager uses this
information to "translate* the protocol-independent routines used by an application or tool into a
service implemented according to a specified protocol. Most of the fields in the File Transfer record
are filled in when an application calls CMNew, which is described later in this chapter.

Because the context for a given connection is maintained in a connection record, an application
can communicate on more than one connection at the same time. All the application has to do is
create a new connection record every time it initiates a new connection.

A Important  Your application, in order to be compatible with future releases of the
Connection Manager, should not directly manipulate the fields of the
connection record. The Connection Manager provides routines that
applications and tools can use to change connection record fields. a

h

32 Special K Beta Draft Apple Confidential



(¢

The connection record data structure

TYPE

ConnHandle
ConnPtr

ConnRecord

END;

procID

procID is the connection tool ID.

flags

Apple Confidential

proclID

flags
errCode

refCon
userData

defProc

config
oldConfig

reserved0
reservedl
reserved?

private

bufferArray
bufSizes

mluField

asynchCount

o oo

..

.o ..

~“ConnPtr;
~ConnRecord;
RECORD
INTEGER;

LONGINT;
CMErr;

LONGINT;
LONGINT

ProcPtr;

Ptr;
Ptr;

LONGINT;
LONGINT;
LONGINT;

Ptr;

Buffers;
BufferSizes;

LONGINT;

BufferSizes;

This value is dynamically assigned by the Connection Manager.

_ flags isa bit field that indicates certain specifics about a connection when the connection record -
is first created. The bit masks for £1ags.are:

Chapter 3: Connection Manager

33



CONST

cmData = 1; { data channel available }

emCntl = 2; { control channel avail }

cmAttn = 4; { attention channel avail }

cmDataClean = 8; { reliable data channel available }
cmCntlClean = 16; ( reliable control channel available }
cmAttnClean = 32; { reliable attention channel available }
cmNoMenus = 64; { don't display custom menus }

cmQuiet = 128 {(don't display alert dialogs };

Your application can specify if the CMNoMenus or CMQuei t bits should be on when it calls
CMNew (which is discussed later in this chapter). The connection tool will set the rest of these bits

Ifthe cmData, cmCntl, or cmAttn bitsare set, a data, control, or attention channel
is available foruse. Ifthe cmDataClean, cmCntlClean, or cmAttnClean bits
are set, a reliable (error-free, in-order delivery) data, control, or attention circuit is available.

If the cmNoMenus bit is set, the connection tool will not display any custom menus. If the
cmQuiet bit is set, the connection tool will not display any dialog boxes to alert the user of error
conditions. These two bits are typically used to when interfacing with a scripting language.

errCode

errCode contains the last error encountered by the Connection Manager. Valid error codes are:

CONST
cmRe jected = 1;
cmFailed = 2;
cmTimeOut = 3;
cmNotOpen = 4;
cmNotClosed = 5;
cmNoRequestPending = 6;
cmNotSupported = 1;
cmNoTools = 8;

refCon

refCon is a four-byte field for use by the application. In a multiple-connection record
environment, re£Con is used to distinguish one connection record from another.

userData

userData is a four-byte field that the application can use to store and access values for any
purpose.

34 Special K Beta Draft Apple Confidential



«

defProc

defProc is a procedure pointer to the main code resource of the connection tool that will
implement the specifics of the connection protocol. The connection tool’s main code resource is of
type “cdef.”

config

config isa pointer to a data block that is private to the connection tool. It can contain
information like baud rate, parity, or handshaking for direct asynchronous connections, phone
numbers for modem connections, or an NBP address for an AppleTalk connection, but this varies
from tool to tool. The connection tool uses this record to store connection information. You can
find a description of con£ig later in this book in Chapter 8, “Fundamentals of Writing Your Own
Tool.” However, as an application developer, you don't need to be concerned with this field. All
you need to know is that the connection tool, when selected, will fill in config. To see how this
is done, read “How to Select a Connection Tool” on page nn.

oldConfig

oldConf£ig isa pointer to a data block that is private to the connection tool and contains an
“old” version of the configuration block.

reserved0, reservedl, and reserved2

reserved0, reservedl,and reserved?2 are fields that are reserved for the Connection
Manager.

A Waming: Donot alterthe reserved0, reservedl, or reserved? fields
in the connection record. A

private

private isa pointer to a data block that is private to the connection tool. Your application
should not use this field.

Apple Confidential Chapter 3: Connection Manager

35



bufferArray

bufferArray is a set of pointers to buffers for the data, control, and attention channels. ,
These are the buffers that are used to read data in or write data out of the entity. These fields are .
the exclusive property of the connection tool. To have your application specify the size of these

buffers it must specify the size it desires in desiredSizes, a parameter to the CMNew routine

(which is discussed later in this chapter). To have the tool set the size of these buffers to tool-

desired sizes, your application must pass a 0 in the desiredSizes parameter to CMNew.

These buffers are the exclusive property of the connection tool and should not be used by an

application. The data type for buf ferArray is Buf fers and is defined under the description

of bufSizes.

bufSizes

bufSizes contains the actual sizes of the buffers and it too should not be manipulated directly by an
application. The data type for bufSizes is Buf ferSizes, and are defined as:

TYPE
Buffers = ARRAY [BufFields] OF Ptr;
BufferSizes = ARRAY [BufFields] OF LONGINT;

The indexes of the arrays are the same and are:

CONST
cmDataln = 0;
cmDataOut = 1;
cmCntlIn = 2;
cmCntlOut = 3;
cmAttnIn = 4;
cmAttnOut = 5;
mluField
mluFieldisa pointer to a private data structure that the Connection Manager uses when
searching the data stream.
asyncCount

asyncCount is used by completion routines to indicate how many bytes were actually
transmitted or received on a particular channel. Completion routines are discussed in more detail
later in this chapter.

36 Special K Beta Draft Apple Confidential



Connection Manager routines

This section describes the routines that tools and applications can use to access Connection
Manager services. These routines are protocol-independent; your application does not need to be
familiar with the specifics of a particular communications protocol in order to use the connection.

InitCM / nn

CMNew / nn
CMValidate / nn
CMSetupPreFlight / nn
CMSetupFilter / nn
CMSetupCleanup / nn
CMGetConfig / nn
CMOpen / nn

CMAbort / nn

CMIdle / nn

CMAccept / nn
CMWrite / nn
CMRemoveSearch / nn
CMIOKill / nn
CMActivate / nn
CMEvent / nn

CMReset / nn
CMGetConnEnvirons / nn
CMEnglishToIntl / nn
CMGetRefCon / nn
CMGetUserData / nn
CMGetCMVersion / nn

Apple Confidential

CMGetProcID / nn
CMDefault / nn
CMChoose / nn
CMSetupSetup / nn
CMSetupItem / nn
CMSetupPostFlight / nn
CMSetConfig / nn
CMClose / nn
CMDispose / nn
CMListen / nn
CMRead / nn
SearchCallBack / nn
CMClearSearch / nn
CMStatus / nn
CMResume / nn
CMMenu / nn

CMBreak / nn
CMIntlToEnglish / nn
CMSetRefCon / nn
CMSetUserData / nn
CMGetVersion / nn
MyCompletion / nn

Chapter 3: Connection Manager

37



Preparing to open a connection

Before your application can open a connection, it must first initialize the Connection Manager
(InitCM), find out the proc ID of the todl it requires (CMGet ProcID), create a connection
record (CMNew), and then configure the connection tool (CMChoose).

InitCM

Function

Description

Initializing the Connection Manager

InitCM initializes the Connection Manager. Your application should call this routine
after calling the standard Macintosh Toolbox initialization routines. If your application
uses either the Communications Resource Manager or the Special K Utilities, it should
initialize them before initializing the Connection Manager.

InitCM : CMErr;

InitCM retums an operating system error code if appropriate. If no tools are installed
in the Connection Manager, it returns cmNoTools. Your application is responsible to
check for the presence of the Communications Toolbox before calling this function.

CMGetProcID Getting current procID information

Your application should call CMGetProc ID just before creating a new connection
record to find out the procID of a tool.

Function CMGetProcID (name: STR255): INTEGER;
Description name specifies a connection tool. If a connection tool exists with the specified name,
its tool ID is returned. If name references a nonexistent connection tool, -1 is returned.
38 Special K Beta Draft Apple Confidential é



(

CMNew

Function

Description

CONST
cmData
cmCntl
cmAttn

Creating a connection record

Before your application can open a connection, it must first create a connection record so
the Connection Manager knows what type of connection to establish. CMNew creates a
new connection record, fills in the fields that it can based upon the parameters that were
passed to it, and returns a handle to the new record in ConnHandle. The Connection
Manager then loads the connection tool’s main code resource and locks it. If memory
constraints prevent a new connection record from being created, CMNew passes back
NILinConnHandle.

CMNew (theProcID : INTEGER; theFlags : LONGINT;
desiredSizes : BufferSizes; theRefCon : LONGINT;
theUserData : LONGINT) : ConnHandle;

theProcID isdynamically assigned by the Connection Manager to tools at run time.
Applications should not store procIDs in settings files. Instead, they should store tool
names, which can be converted to proc IDs with the CMGetProcID routine Your
application should use the ID that CMGetProcID returns for theProcID.

theFlags is a bit field with the following masks:
= 1; { data channel reequest }

= 2; { control channel request }
= 4; { attention channel request }

cmDataClean = 8; { reliable data channel request }
cmCntlClean = 16; ( reliable control channel request }
cmAttnClean = 32; { reliable attention channel request }

cmNoMenus
cmQuiet

Apple Confidential

= 64; { don't display custom menus }
= 128 { don't display alert dialogs };

theFlags represents a request from your application for a level of connection service.
Your application can set only two of these bits, cmNoMenus and cmQuiet. If your
application sets cmNoMenus, the connection tool will not display any custom menus.
If your application sets cmQuiet, the connection tool will not display any dialogs to
alert the user of error conditions. These two bits are typically used when interfacing with
a scripting language.

The other bits are set by the connection tool. The level granted by the
tool is returned in the £ 1ags field of the connection record, which is
described on page nn, “The connection record data sturcture.”

The bits of t heF Lags that are not shown in this manual are reserved
for Apple Computer, Inc. Do not use them or your code may not work in the
future.

Chapter 3: Connection Manager 39



desiredSizes specifies buffer sizes that your application requests for its read,
write, control read, control write, attention read, and attention write channels. Your
application can specify the sizes that it wants when it calls cmNew, but the connection
tool might not provide the requested sizes. To have the tool set the size of these buffers,
your application should pass 0 in this field.. These buffers become the exclusive property
of the connection tool and should not be manipulated by the application in any way. The
actual buffer sizes are kept in the bufSizes field of the connection record.

theRefCon andthe UserData are fields for use by the application. Ina multiple-
connection environment theRe £Con takes on special meaning in that it is used to
distinguish among connection records. '

CMDefault

Procedure

Description

Initializing the configuration record

CMDefault fills the specified configuration record with the default configuration
specified by the connection tool. This procedure is called automatically by CMNew when
filling in the con£fig and o1dConf£ig fields in a new connection record.

CMDefault (VAR theConfig: Ptr; procID: INTEGER; allocate:
BOOLEAN) ;

If allocate is TRUE, the tool allocates space for theCon£ig in the current zone.

CMValidate

Function

Description

Validating the configuration record

CMValidat e validates the configuration and private data records of the connection
record by comparing the fields in the connection record with the values that are specified
in the connection tool. This routine is called by CMNew and CMSet Config after they
have created a new connection record to make sure that the the record contains values
identical to those specified by the connection tool.

CMvValidate (hConn: ConnHandle): BOOLEAN;

If the validation fails, the connection tool returns FALSE and fills the configuration
record with default values by calling CMDefault.

40 Special K Beta Draft Apple Confidential



C

CMChoose

Function

Description

Apple Confidential

Configuring a. connection tool

An application can configure a connection tool three ways. The easiest and most
straightforward way is by calling the CMChoose routine. This routine presents the user
with a dialog box similar to Figure 3-2. The second way an application can configure a
connection tool is by presenting the user with a custom dialog box. This method is much
more difficult and involves calling six routines. The routines are described under “Custom
configuration of a connection” on page nn and some example code is provided in
“Appendix B: Useful code samples” to help you implement this functionality. The third
way your application can configure a connection tool is by interfacing directly with a
scripting language. This method allows your application to bypass user interface
elements.

To present the user with the standard tool-configuration dialog box,
your application needs to call CMChoose, which will present the user with
the dialog shown in Figure 3-2.

CMChoose (VAR hConn:ConnHandle; where: Point; idleProc:
ProcPtr): INTEGER;

where is a point in global coordinates specifying the top left comer of where the dialog
should appear. It is recommended that your application place the dialog as close to the
top and left of the screen as possible.

idleProc isa procedure that the Connection Manager will automatically call every
time your application loops through the setup dialog filter procedure.

s Figure 32 The Standard tool-selection dialog box.

Connection Configuration

Method:

Modem Settings Port Settings .
O Answer phone after (2 | ring(s)

Baud Rate:
Partty:  [hone]

Data Bits:

stpBits: [_1_]

Chapter 3: Connection Manager 41



CMChoose will retum one of the following values:

CONST
chooseDisaster -2;
-1;
0;
1;
2;
3;

chooseFailed
chooseAborted
chooseOKMinor
chooseOKMa jor
chooseCancel

wowonononon

chooseDisaster means that the CMChoose operation failed and destroyed the
connection record.

chooseFailed means that the CMChoo se operation failed and the connection
record was not changed.

chooseAborted means that the user tried to change the connection while it was still
open, thereby failing to complete the CMChoose operation. °

chooseOKMinor means that the user selected OK in the dialog box, but did not
change the connection tool being used.

chooseOKMa jor means that the user selected OK in the dialog box and also changed
the connection tool being used. The Connection Manager then destroys the old
connection handle by calling CMD1ispose (the connection is closed down and all
pending reads and writes are terminated), and a new connection handle is returned in
hConn.

chooseCancel means that the user selected Cancel in the dialog box.

Custom configuration of a connection tool

To present the user with a custom tool-configuration dialog box, your application needs to call a
series of six Connection Manger routines: CMSetupPreflight, CMSetupSetup,
CMSetupItem CMSetupFilter, CMSetupCleanup, and
CMSetupPostflight. Using these routines is more involved than calling CMChoose,
but they provide your application with much more flexibility. The code sample in Appendix
“Useful code samples” shows how an application calls these routines.

~ Tobuild a list of available connection tools, use the routine CRMGet IndToolName, which
is described in Chapter 6, “Communications Resource Manager.”

42 Special K Beta Draft Apple Confidential



«

CMSetupPreflight

Function

Description

CMSetupPreflight returns a handle to a dialog item list from the connection tool
that the calling application will append to the configuration dialog box. (The calling
application uses AppendD I'TL which is discussed in Chapter 7, “Special K Utilities.”)
CMSetupPreflight retumsa value inmagicCookie that should be passed

 into the other procedures.

CMSetupPreflight (procID: INTEGER; VAR magicCookie:
LONGINT) : Handle;

procID is the ID for the connection tool that is being configured. Your application
should get this value by using the CMGet Proc ID routine, which is discussed later in
this chapter.

The connection tool can use CMSetupPreflight toallocate a block of private
storage and to store the pointer to that block in magicCookie. This value,
magicCookie, should be passed to the other routines that are used to setup the
configuration dialog.

The ref con of the custom dialog box should point to a data structure in which the
first two bytes are the tool proc ID and the next four bytes are magicCookie.

CMSetupSetup

Procedure

Description

Apple Confidential

CMSetupSetup tells the connection tool to set up controls (like radio buttons or
check boxes) in the dialog item list returned by CMSetupPreflight .

CMSetupSetup (procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR magicCookie: LONGINT);

procID is the ID for the connection tool that is being configured. Your application
should get this value by using the CMGe t Proc ID routine, which is discussed later in
this chapter. ‘

theCon£ig isa pointer to the configuration record for the tool being configured.
count is the number of the first item in the dialog item list appended to the dialog box.
theDialog is the dialog box performing the configuration.

magicCookie is the value returned from the CMSetupPreflight.

Chapter 3: Connection Manager 43



CMSetupFilterx

Function

Description

CMSetupFilter should be called as a filter procedure prior to the standard modal
dialog filter procedure for the configuration dialog box. This routine allows connection
tools to filter events in the configuration dialog box.

CMSetupFilter (procID: INTEGER; theConfig: Ptr;
count : INTEGER; theDialog: DialogPtr; VAR theEvent:
EventRecord; VAR theItem: INTEGER; VAR magicCookie:
LONGINT) : BOOLEAN;

count is the number of the first item in the dialog item list appended to the dialog box.
theConfig isa pointer to the configuration record for the tool being configured.
theDialog is the dialog box performing the configuration.

theEvent is the event record for which filtering is to take place.

theItem can return the appropriate item clicked on in the dialog box.
magicCookie is the value retumed from CMSetupPreflight.

If the event passed in was handled, TRUE is returned. Otherwise, FALSE indicates that
standard dialog filtering should take place.

CMSetuplIt eni

Procedure

Description

CMSetupItem processes mouse events for controls in the custom configuration
dialog box.

CMSetupltem(procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR item: INTEGER; VAR
magicCookie: LONGINT);

procID is the ID for the connection tool being configured. Your application should get
this value by using the CMGet Proc ID routine, which is discussed later in this chapter.

theConfig is the pointer to the configuration record for the tool being configured.
count is the number of the first item in the dialog item list appended to the dialog box.
theDialog is the dialog box performing the configuration.

itemis the item clicked on in the dialog box. This value can be modified and sent back.
magicCookie is the value returned from CMSetupPreflight.

44 Special K Beta Draft . ' Apple Confidential -



«

CMSetupCleanup

Procedure

Description

CMSetupCleanup disposes of any storage allocated in CMSetupPreflight
and performs any other clean-up operation. If your application needs to shorten a dialog
box, it should do so after calling this routine.

CMSetupCleanup (procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR magicCookie: LONGINT);

procID isthe ID for the connection tool that is being configured. Your application
should get this value by using the CMGet Proc ID routine, which is discussed later in
this chapter.

theCon£ig isa pointer to the configuration record for the tool being configured.
count is the number of the first item in the dialog item list appended to the dialog box.
theDialog is the dialog box performing the configuration.

magicCookie is the value retumed from CMSetupPreflight.

CMSetupPost£flight

Procedure

Description

CMSetupPost £1ight will dose the tool file if it is not being uséd by any other
sessions.

CMSetupPostflight (procID:INTEGER);

procID is the ID for the connection tool that is being configured. Your application
should get this value by using the CMGet Proc ID routine, which is discussed later in
this chapter.

Scripting language interface

Apple Confidential

Your application does not have to rely on a user making selections from dialog boxes in
order to configure a connection tool. CMGetConfig and CMSetConfig provide
the function that your application needs to interface with a scripting language.

Chapter 3: Connection Manager 45



CMGetConfig

CMGetCon£fig returns a null-terminated string from the connection tool (an example
of which is shown after the description of the next routine) containing tokens that fully
describe the configuration of the connection record.

Function CMGetConfig(hConn: ConnHandle): Ptr;

Description If an an error occurs, CMGet Config will return NIL. It is the responsibility of your
application to dispose of Prt.

CMSetConfig

CMSetConfig passes a null-terminated string (an example of which is shown under “A
sample null-terminated configuration string”) to the connection tool for parsing. The
string, which can be any length, is pointed to by thePt r, must contain tokens that
describe the configuration of the connection record, and is parsed from left to right.

Function CMSetConfig(hConn: ConnHandle; thePtr: Ptr): INTEGER;

Description Items not recognized or relevant are ignored; this causes CMSet Con£fig to abort
parsing the string and to return the character position where the error occurred. If parsing
is successfully completed, CMSet Config will return noErr. CMSetConfig may
also return -1 to indicate a general problem with processing the configuration string..

The parsing operation is the responsibility of the individual tool.

A sample null terminated configuration string

Baud 9600 BitsPerChar 8 Parity None StopBits 1 Port
ModemPort HandShake None HoldConnection False
RemindDisconnect False \0

Opening, using, and closing the connection

Once your application has performed the required tasks described above, it can then open and use a
connection.

46 Special K Beta Draft Apple Confidential



«

CMOpen

Function

Description

Opening a connection
CMOpen attempts to open a connection based on information in a connection record.

CMOpen (hConn: ConnHandle; theAsync: BOOLEAN; completor:
ProcPtr; timeout: LONGINT): CMErr;

hConn points to the connection record for the new connection.

theAsync specifies whether or not the opening request is asynchronous. If an
asynchronous request is made, noEx r is returned immediately.

completor specifies the completion routine to be called upon completion of the open
request. Completion routines are discussed in greater detail later in this chapter under
“About completion routines” on page nn. '

t imeout specifies a time period, in ticks, within which CMOpen must be completed
before a cmTimeOut error is retumed. For no timeout, use -1. For a single attempt to
open the connection, use 0.

If no error occurs during the open attempt, CMOpen returns noErr. If the value
returned is negative, an operating system error occurred. If the value returned is positive,
a Connection Manager error occurred.

CMClose

Function

Description

- Apple Confidential

Closing a connection

There are two ways to close a connection: CMClose and CMAbort.

CMClose (hConn: ConnHandle; theAsync: BOOLEAN; completor:
ProcPtr; timeout: LONGINT; now: BOOLEAN): CMErr;

theAsync specifies whether or not the close request is asynchronous. If an
asynchronous request is made, noEr r is immediately retumed.

completor specifies the completion routine to be called upon completion of the close
request. Completion routines are discussed in greater detail later in this chapter under
“About completion routines” on page nn.

t imeout specifies a time period, in ticks, within which the close must be completed
before a cmT imeOut error will be returned. For no timeout, use -1. For a single try to
close the connection, use 0.

Chapter 3: Connection Manager 47



CMAbort Aborting a connection
CMAbort tells the Connection Manager to stop trying to open a pending asynchronous
open request.
Function CMAbort (hConn: ConnHandle): CMErr;
CMDispose Disposing of a connection record
CMDispose disposes of the connection record and all associated data structures. It is
up to the connection tool to decide wether or not to wait for all pending reads and writes
to complete before closing and disposing of the connection.
Applications and tools need to distinguish between closing a connection
with CMDispose and CMClose.
Procedure CMDispose (hConn: ConnHandle);
CMIdle Idle procedure
Your application should call CMId1e at least once every time it goes through its main
event loop so that the connection tool can perform idle loop tasks.
Procedure CMIdle (hConn: ConnHandle);
Description hConn specifies the connection for which idle loop tasks are to be performed.
CMListen Listening for incoming connection requests
CMListen “listens” for a connection request from another entity.
Function CMListen (hConn: ConnHandle; theAsync: BOOLEAN; completor:
ProcPtr; timeout: LONGINT): CMErr;
Description theAsync specifies whether or not the opening request is asynchronous. If an

asynchronous request is made, noErr is returned immediately. If a synchronous
request is made, CMListen stays in a "listen loop® until it receives the connection
request. :

48 Special K Beta Draft Apple Confidential



C

completor specifies the completion routine that the Connection Manager calls after it
is done listening for the connection request. Completion routines are discussed in greater
detail later in this chapter under “About completion routines” on page nn.

t imeout specifies a time period, in ticks, within which a connection request must be
received before a CMT imeOut error is retumed. For notimeout, use 1. For a single
listen, use 0.

CMAccept

Function

Description

Accepting or rejecting a connection request
CMAccept accepts or rejects an incoming connection request.
CMAccept (hConn:ConnHandle; accept:BOOLEAN): CMErr;

Typically, an application will perform some actions after a CML1isten, the results of
which determines whether or not to accept the request.

CMIOKill

Function

Description

Stopping an asynchronous input/output request

CMIOKill terminates any pending input/output (1/0) requests on the specified
subcircuit.

CMIOKill (hConn: ConnHandle; which: INTEGER): CMErr;

whi ch indicates the subciruit, and can take on the following values:

CONST
CMDataln = 0;
CMDataOut = 1;

CMCntlIn = 2;
CMCntlOut = 3;

CMAttnIn = 4;
CMAttnOut = 5;

CMReset

Apple Confidential

Resetting the connection

CMReset causes the connection to be reset. The exact state to which the connetion is
reset is dependent upon the connection protocol being implemented. All local read and
write buffers are cleared.

Chapter 3: Connection Manager 49



Procedure

CMReset (hConn: ConnHandle);

CMBreak

Procedure

Description

Sending breaks

CMBreak effects a break operation upon the connection. The exact effect of this
operation depends upon the tool that is being used.

CMBreak (hConn: ConnHandle; duration: LONGINT; theAsync:
BOOLEAN; completor: ProcPtr);

durat ion specifies in ticks how long the connection tool should perform the break
operation.

completor specifies the completion routine to be called upon completion of the break.
Completion routines are discussed in greater detail later in this chapter under “About -
completion routines” on page nn.

CMStatus

Function

Description

Getting connection status information
CMStatus returns a variety of useful status information about a connection.

CMStatus (hConn: ConnHandle; VAR sizes: BufferSizes; VAR
flags: LONGINT): CMErr;

sizes isan array of six LONGINTS that contains the number of characters to be read
or written in the data, control, and attention channels. The indexes of the array are:

CONST
cmDataln = 0;
cmDataOut = 1;
cmCntlIn = 2;
cmCntlOut = 3;
cmAttnln = 4;
cmAttnOut = 5;

flags, is a bit field with the following masks:

CONST
cmStatusOpening = $0001;
cmStatusOpen = $0002;
cmStatusClosing = $0004;
cmStatusDataAvail = $0008;
cmStatusCntlAvail = $0010;

50 Special K Beta Draft Apple Confidential



cmStatusAttnAvail = $0020;

(/ cmStatusDRPend = $0040;
{data read pending}

cmStatusDWPend = $0080;
{data write pending}

cmStatusCRPend = $0100;
{cntl read pending}

cmStatusCWPend = $0200;
{cntl write pending}

cmStatusARPend = $0400;
{attn read pending}

cmStatusAWPend = $0800;

{attn write pending}

cmStatusBreakPending = $1000;
cmStatusListenPend $2000;

CMGetConnEnvirons  Getting the connection environment

CMGetConnEnvirons returns the connection environment record for the
connection specified by ConnHandle.

. Function CMGetConnEnvirons (hConn : ConnHandle; VAR theEnvirons :
( ‘ ConnEnvironRec) : OSErr;
Description CMGet ConnEnvirons returns an appropriate operating system error

(envVer sTooBiq) if the version requested is not available.

theEnvirons should contain the version requested in the version field of
ConnEnvironRec, which for version 0 is:

TYPE
ConnEnvironRecPtr = ~ConnEnvironRec;
ConnEnvironRec = PACKED RECORD;
version = INTEGER:
baudRate = LONGINT;
dataBits = INTEGER;
channels = INTEGER;
swFlowControl = BOOLEAN;
hwFlowControl = BOOLEAN;
eomAvailable = BOOLEAN;
reserved = BOOLEAN;
END;

The connection tool is responsible for filling in the fields of ConnEnvironRec with
either a value (in fields for which it has a valid value to supply) or 0.

(‘ Apple Confidential Chapter 3: Connection Manager 51



Reading and writing data

The Connection Manager provides routines to read and write data from a buffer. Your application
can also use the Connection Manager routine that reads data, CMRead, to search the incoming data
stream for a specified pattem of bytes, the method for which is discussed under "Data Stream

Searching.”

CMRead

Function

Description

Reading data

" CMRead reads data into a block of memory. Your application can not queue multiple

reads for the same channel on the same connection. However, your application can have
both a pending read and a pending write can on the same channel at the same time.

CMRead (hConn: ConnHandle; theBuffer: Ptr; VAR toRead:
LONGINT; theChannel: INTEGER; theAsync: BOOLEAN;
completor: ProcPtr; timeout: LONGINT; VAR theEOM:
BOOLEAN) : CMErr;

theBuffer specifies the buffer into which the connection tool should read data.
toRead specifies the number of bytes to be read.

theChannel specifies the channel on which reading is to take place; acceptable values
are:

CONST
cmData = 1;
cmCntl = 2;
cmAttn = 4;

theAsync specifies whether or not the request is asynchronous. If an asynchronous
request is made, noErr is returned immediately.

completor specifies the completion routine to be called upon completion of the read
or write request. Completion routines are discussed in greater detail later in this chapter
under “About completion routines” on page nn.

timeout specifies a time period, in ticks, within which the read must completed before
a timeout error will occur. For no timeout, use -1. For a single read attempt, use 0.

52 Special K Beta Draft ‘ Apple Confidential



theEOM indicates whether or not an end-of-message indicator was received. An end-of-
message indicator needs to be supported by the particular communications protocol being
used; if an end-of-message indicator is not supported by a connection protocol, your
applicaiton should ignore this indicator.

CMWrite

Function

Description

Apple Confidential

Writing data

- CMWrite writes data from block of memory. Your application can not queue multiple

writes for the same channel on the same connection. However, your application can have
both a pending read and a pending write can on the same channel at the same time

CMWrite (hConn: ConnHandle; theBuffer: Ptr; VAR toWrite:
LONGINT; theChannel: INTEGER; theAsync: BOOLEAN;
completor: ProcPtr; timeout: LONGINT; theEOM: BOOLEAN) :
CMErr;

theBuf fer specifies the buffer from which the connection tool should get the data
to write.

toWrite specifies the number of bytes to be written.

theChannel specifies the channel on which writing is to take place; acceptable values
are shown below.

CONST
CMData = 1;
CMCntl = 2;
CMAttn = 4;

theAsync specifies whether or not the request is asynchronous. If an asynchronous
request is made, noErr is returned immediately.

completor specifies the completion routine to be called upon completion of the write
request. Completion routines are discussed in greater detail later in this chapter under
“About completion routines.”

t imeout specifies a time period, in ticks, within which the write must completed
before a timeout error will occur. For no timeout, use -1. For a single write attempt,
use 0.

theEOM indicates whether or not end-of-message indicator should be sent. An end-of-
message indicator needs to be supported by the particular communications protocol being
used; if an end-of-message indicator is not supported by a connection protocol, your
applicaiton should ignore this indicator.

Chapter 3: Connection Manager 53



CMAddSearch

Funétion

Description

Data stream searching

When a tool or application is reading in data with CMRead , you can have the stream
searched for one or more patterns of bytes. To perform the search, the Connection
Manager needs to be given information such as the connection on which the data stream
is coming in and the sequences of bytes for which to look. CMAddSeaxch tells the
Connection Manager to perform the search, passing it search-specific information as well.
Each time your application calls CMAddSear ch, the Connection Manager will search for
another sequence of bytes.

CMAddSearch (hConn: ConnHandle; theString: STR255; flags:
INTEGER; callBack: ProcPtr): LONGINT;

£lags isa field that describes the search to be performed. The appropriate values are:

CONST
CMSearchNoDiacrit = 1; { ignore diacriticals }
CMSearchNoCase = 2; { ignore case }

callBack is a pointer to a routine the Connection Manager will call during CMRead in
the event that 2 match is found. The calling conventions for the callBack procedure
is shown under “What to do when a match is found.” The value that is returned by
CMAddSearch is a search reference number that is used by the CMRemoveSearch
routine (described under “Stopping the data stream search®). If CMAddSeaxrch returns
-1, the search was not successfully added.

SearchCallBack What to do when a match is found

Procedure

Description

The Connection Manager will pass control to a search call-back procedure in the event that
a match is found in the incoming data stream.

SearchCallBack (hConn: ConnHandle; matchPtr: Ptr; refNum:
LONGINT) ;

mat chPtr points to the last matched character in the read buffer.

SearchCallBack returns a reference number, re £Num, that is used to distinguish
which sequence of bytes was found in the event that more than one search was taking
place. refnum is the same value retumed from CMAddSearch.

54 ‘Special K Beta Draft Apple Confidential



CMRemoveSearch Stopping the data stream search

CMRemoveSearch removes a search with the specified reference number for the

specified connection record.
Procedure CMRemoveSearch (hConn: ConnHandle; refNum: LONGINT);
Description refnumis the same value returned from CMAddSearch.

CcMClearSearch Clearing all searches

CMClearSearch removes all searches associated with the specified connection
record. 4

Procedure CMClearSearch (hConn: ConnHandle);

Handling events

The Connection Manager event processing routines provide useful extensions to the Macintosh
Toolbox Event Manager. There is example code in Appendix B, “Useful code samples” that shows
how an application can determine if an event needs to be handled by one of these procedures.

CMActivate Activate events

CMAct ivate processes an activate or deactivate event (for instance, installing or
removing a custom tool menu) for a window that the connection is associated with.

Procedure CMActivate (hConn: ConnHandle; act: BOOLEAN);
Description If act is TRUE, an activate event is to be processed. Otherwise, a deactivate event is to
' be processed.

Apple Confidential Chapter 3: Connection Manager 55



CMResume Resume events
CMRe sume processes a resume or suspend for a window that the connection is
associated with.

Procedure CMResume (hConn: ConnHandle; res: BOOLEAN);

Description If res is TRUE, then a resume event is to be processed.

CMMenu Menu events
Your application should call CMMenu in response to a selection from a menu that is
installed by the connection tool.

Function CMMenu (hConn: ConnHandle; menulD: INTEGER; item: INTEGER):
BOOLEAN;

Description CMMenu retuns FALSE if the menu item was not handled by the connection tool.
CMMenu returns TRUE if the connection tool was able to handle the menu item.

CMEvent Other events
CMEvent is called only in response to receiving an event for a window that is
associated with the connection; an example of such a window is a status dialog box that
is created by the connection tool.

Procedure CMEvent (hConn: ConnHandle; theEvent: EventRecord);

Windows (or dialog boxes) that are associated with the Connection Manager should have a
connection record handle stored in the re £Con field for windowRecord.

‘Localizing strings

Special K provides two routines that make it easier to localize strings.

56 Special K Beta Draft Apple Confidential



CMIntlToEnglish

Function

Description

CMInt1ToEnglish converts a configuration string, which is pointed to by
inputPtr, toan American English configuration string that is pointed to by
outputPtr.

CMInt1lToEnglish (hConn: ConnHandle; inputPtr: Ptr; VAR
outputPtr: Ptr; language: INTEGER): OSErr;

language specifies the language from which the string is to be converted.
The connection tool allocates space for outputPtr.

If the language specified is not supported, noEr r is still returned, but out putPtr is
NIL.

The function returns an operating system error code if any internal errors occur.

CMEnglishToIntl

( Function

Description

'CMEnglishToIntl converts an English configuration string, which is pointed to by

inputPtr, to a configuration string that is pointed to by outputPtr.

CMEnglishToIntl (hConn: ConnHandle; inputPtr: Ptr; VAR
outputPtr: Ptr; language: INTEGER): OSErr;

language specifies the language to which the string is to be converted.
The connection tool allocates space for out putPtr.

If the language specified is not supported, noEr r is still returned, but out putPtr is
NIL.

The function returns an operating system error code if any internal errors occur.

Miscellaneous routines

CMSetRefCon

( N Apple Confidential

CMSetRefCon sets the connection record’s reference constant to the specified value.

Chapter 3: Connection Manager 57



Procedure CMSetRefCon (hConn: ConnHandle; rC: LONGINT);

CMGetRefCon
CMGetRe£Con returns the connection record’s reference constant.

Function CMGetRefCon (hConn: ConnHandle): LONGINT;

CMSetUserData
CMSetUserData sets the connection record’s userDat a field to the specified
value. It is very important that your application uses this routine to change the value of
the userData field instead of changing it directly.

Procedure CMSetUserData (hConn: ConnHandle; uD: LONGINT):;

CMGetUsezrData
CMGetUserData retumnsthe connection record’s userData field.

Function CMGetUserData (hConn: ConnHandle): LONGINT;

CMGetVersion
CMGetVersion returns a handle to a relocatable block that contains the information
that is in the connection tool’s “ver s” resource with ID=1. This handle is not a resource
handle.

Function CMGetVersion (hConn:ConnHandle) : Handle;

CMGetCMVersion
CMGet CMVersion returns the version of the Connection Manager being used.

58 Special K Beta Draft Apple Confidential



“Function CMGetCMVersion: INTEGER;

About completion routines

This section describes the syntax and conventions that a completion routine in your application
should follow.

MyCompletion  Writing a completion routine

The completion routine has the same restrictions as standard device manager completion
routines. For example, allocating memory is not allowed.

Procedure MyCompletion (hConn: ConnHandle):

Description When the Connection Manager passes control to MyComplet ion, A0 points to the parameter
block, if one is available. If no parameter block is available, AQ is NI L. If the completion routine
cannot be given the connection handle, hConn is NIL.

Also at the time the Connection Manager calls MyCompletion, the appropriate part of
the asynchCount field in the connection record should be filled with appropriate

‘ B values.

( : ;‘ Apple Confidential Chapter 3: Connection Manager 59



Summary

Connection Manager routines

CMAbort (hConn: ConnHandle): CMErr;

CMAccept (hConn:ConnHandle; accept:BOOLEAN): CMErr;

CMActivate (hConn: ConnHandle; -act: BOOLEAN);

CMAddsSearch (hConn: ConnHandle; theString: STR255;
flags: INTEGER; callBack: ProcPtr):

LONGINT;

CMBreak (hConn: ConnHandle; duration: LONGINT;
theAsync: BOOLEAN; completor: ProcPtr);

CMChoose (VAR hConn:ConnHandle; where: Point;
idleProc:ProcPtr): INTEGER;

CMClearSearch (hConn: ConnHandle);

CMClose (hConn: ConnHandle; theAsync: BOOLEAN;
completor: ProcPtr; timeout: LONGINT;
now: BOOLEAN): CMErr;

CMDefault (VAR theConfig: Ptr ; procID: INTEGER;
allocate: BOOLEAN);

CMDispose (hConn: ConnHandle);

CMEnglishToIntl (hConn: ConnHandle; inputPtr: Ptr; VAR
outputPtr: Ptr; language: INTEGER):
INTEGER;

CMEvent (hConn: ConnHandle; theEvent: EventRecord):;

CMGetCMVersion: INTEGER;

CMGetConfig(hConn: ConnHandle): Ptr;

CMGetConnEnvirons (hConn : ConnHandle; VAR theEnvirons
: ConnEnvironRec) : OSErr;

CMGetConnName (procID: INTEGER; VAR name: STR255);

CMGetProcID (name: STR255): INTEGER;

60 Special K Beta Draft

Seepage
nn
nn
nn

nn

nn

nn

nn

nn

nn

nn

nn
nn
nn

nn

nn

nn

Apple Confidential



(«

CMGetRefCon (hConn: ConnHandle): LONGINT; nn

CMGetUserData (hConn: ConnHandle): LONGINT; nn

CMGetVersion (hConn:ConnHandle) : Handle; nn

CMIdle (hConn: ConnHandle):; nn

CMIntlToEnglish(hConn: ConnHandle; inputPtr: Ptr; VAR nn
outputPtr: Ptr; language: INTEGER):

INTEGER;

CMIOKill (hConn: ConnHandle; which: INTEGER): CMErr; nn
CMListen (hConn: ConnHandle; theAsync: BOOLEAN; nn
completor: ProcPtr; timeout: LONGINT):

CMErr;

CMMenu (hConn: ConnHandle; menuID: INTEGER; item: nn

INTEGER) : BOOLEAN;

CMNew (theProcID: INTEGER; theFlags: LONGINT; nn
desiredSizes: BufferSizes; theRefCon:

LONGINT; theUserData: LONGINT):

ConnHandle;

CMOpen (hConn: ConnHandle; theAsync: BOOLEAN; nn
completor: ProcPtr; timeout: LONGINT):

CMErr:;

CMRead (hConn: ConnHandle; theBuffer: Ptr; VAR toRead: nn

LONGINT; theChannel: INTEGER; theAsync:

BOOLEAN; completor: ProcPtr; timeout:

LONGINT; VAR theEOM: BOOLEAN): CMErr;
CMRemoveSearch (hConn: ConnHandle; refNum: LONGINT); nn .
CMReset (hConn: ConnHandle): nn
CMResume(hConﬁ: ConnHandle; res: BOOLEAN); nn
CMSetConfig(hConn: ConnHandle; thePtr: Ptr): INTEGER; nn
Apple Confidential Chapter 3: Connection Manager

61



CMSetRefCon (hConn: ConnHandle; rC: LONGINT):; nn

CMSetupCleanup (procID: INTEGER; theConfig: Ptr; count: nn
INTEGER; theDialog: DialogPtr; VAR
magicCookie: LONGINT);

CMSetupFilter (procID: INTEGER; theConfig: Ptr; nn
count:INTEGER; theDialog: DialogPtr; VAR
theEvent: EventRecord; VAR theltem:

INTEGER; VAR magicCookie: LONGINT):
Boolean;

CMSetupItem(procID: INTEGER; theConfig: Ptr; count: nn
INTEGER; theDialog: DialogPtr; VAR item:
INTEGER; VAR magicCookie: LONGINT);

CMSetupPostflight (procID:INTEGER) ; nn

CMSetupPreflight (procID: INTEGER; VAR magicCookie: nn
LONGINT) : Handle;

CMSetupSetup (procID: INTEGER; theConfig: Ptr; count: nn
INTEGER; theDialog: DialogPtr; VAR
magicCookie: LONGINT) ;

CMSetUserData (hConn: ConnHandle; uD: LONGINT); nn

CMStatus (hConn: ConnHandle; VAR sizes: BufferSizes; . nn
VAR flags: LONGINT): CMErr;

CMvalidate (hConn: ConnHandle): BOOLEAN; nn
CMWrite (hConn: ConnHandle; theBuffer: Ptr; VAR nn
toWrite: LONGINT; theChannel: INTEGER;
theAsync: BOOLEAN; completor: ProcPtr;
timeout: LONGINT; theEOM: BOOLEAN) :
CMErr;

InitCM: CMERR nn

Routines in your application : seepage

SearchCallBack (hConn: ConnHandle; matchPtr: Ptr;
refNum: LONGINT);

MyCompletion (hConn: ConnHandle);

62 Special K Beta Draft Apple Confidential



8

Data Types

Comnection Record

TYPE

ConnHandle
ConnPtr
ConnRecord

END;

Apple Confidential

proclID

flags
errCode

refCon
userData

defProc

config
oldConfig

reserved0
reservedl
reserved?2

private

bufferArray
bufSizes

mluField

asynchCount

~“ConnPtr;
~“ConnRecord;
RECORD
INTEGER;

LONGINT;
CMErr;

LONGINT;
LONGINT

ProcPtr;

Ptr;
Ptr;

LONGINT;
LONGINT;
LONGINT;

Ptr;

Buffers;
BufferSizes;

LONGINT;

BufferSizes;

Chapter 3: Connection Manager

63



Connection Environment Record

TYPE
ConnEnvironRecPtr
ConnEnvironRec
version
baudRate
dataBits
channels
swFlowControl
hwFlowControl
eomAvailable
reserved
END:
Data structures
dataBuffer
TYPE
dataBufferPtr =
dataBuffer =
thePtr
count
channel
flags :
END;
CompletorRecord
CompietorPtr =
CompletorRecord =
async :
completionRoutine
END;
SetupStruct
SetupPtr =
SetupStruct =
theDialog :
count :
theConfig :
proclID :
END;
64 Special K Beta Draft

= ~“ConnEnvironRec;
= PACKED RECORD;

= INTEGER;

- LONGINT;

= INTEGER;

= INTEGER;

= BOOLEAN;

- BOOLEAN;

= BOOLEAN;

= BOOLEAN;

~dataBuffer;
RECORD

Ptr;
LONGINT;
INTEGER;
BOOLEAN;

~CompletorRecord;
RECORD
BOOLEAN;

ProcPtr;

~SetupStruct;
RECORD
DialogPtr;
INTEGER;

Ptr;

INTEGER

Apple Confidential



( Constants

Connection record flags bit masks

CONST
cmData = 1; { data channel available }
cmCntl = 2; { control channel avail }
cmAttn = 4; { attention channel avail }
cmDataClean = 8; { reliable data channel available )}
cmCntlClean = 16; ( reliable control channel available }
cmAttnClean = 32; { reliable attention channel available }
cmNoMenus = 64; { don't display custom menus }
cmQuiet = 128 {don't display alert dialogs };

Buffers
cmDataln = 0;
cmDataOut = 1;
cmCntlIn = 2;
cmCntlOut = 3;

. cmAttnIn = 4;
( cmAttnOut = 5;

Search flags
CMSearchNoDiacrit = 1; { ignore diacriticals }
CMSearchNoCase = 2; { ignore case }

Values returned by CMChoose

CONST

{ Choose return values }
chooseDisaster = -2
chooseFailed = -1;
chooseAborted = 0;
chooseOKMinor = 1;
chooseOKMa jor = 2;
chooseCancel = 3;

( Apple Confidential Chapter 3: Connection Manager 65



Connection status flags

cmStatusOpening = $0001;

cmStatusOpen = $0002;

cmStatusClosing = $0004;

cmStatusDataAvail = $0008;

cmStatusCntlAvail = $0010;

cmStatusAttnAvail = $0020;

cmStatusDRPend = $0040;
{data read pending}

cmStatusDWPend = $0080;
{data write pending}

cmStatusCRPend = $0100;
: {cntl read pending}

cmStatusCWPend = $0200;
{cntl write pending}

cmStatusARPend = $0400;
{attn read pending}

cmStatusAWPend = $0800;

{attn write pending}

cmStatusBreakPending = $1000;

cmStatusListenPend = $2000;

Error codes

CONST
cmRe jected = 1;
cmFailed = 2;
cmTimeOut = 3;
cmNotOpen = 4;
cmNotClosed = 5;
cmNoRequestPending = 6;
cmNotSupported = 7;
cmNoTools = 8;

Connection Manager routine selectors

CMAbort .EQU 271 CMAccept .EQU 269
CMActivate .EQU 275 CMAddSearch .EQU 294
CMBreak .EQU 293 CMChoose .EQU 292
CMClearsSearch .EQU 296 CMClose .EQU 270
CMDefault .EQU 280 CMDispose .EQU 265

66 Special K Beta Draft Apple Confdmﬁﬂ



«

CMEnglishToIntl

CMGetCMVersion

CMGetConnEnvirons

‘CMGetRefCon

CMGetUserData
CMIdle
CMIOKill
CMMenu

CMOpen
CMRemoveSearch
CMResume
CMSetRefCon
CMSetupFilter
CMSetupPostflight
CMSetupSetup
CMStatus

CMWrite

Apple Confidential

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

289

300

259

261

266

297

277

267

295

258

290

299

281

272

274

CMEvent
CMGetéonfig
CMGetProclID
CMGetToolName
CMGetVersion
CMIntl1ToEnglish
CMListen

CMNew

CMRead

CMReset
CMSetConfig
CMSetupCleanup
CMSetupItem
CMSetupPreflight
CMsetUserData
CMvValidate

InitCM

Chapter 3: Connection Manager

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

298

284

263

262

288

286

268

264

273

278

285

283

282

291

260

279

257

67






Chapter 4 Terminal Manager

m; EDIT DIEW MENU 57
mp = e W




About this chapter | ' o

This chapter describes the Terminal Manager, which is the Special K manager that allows
applications to perform terminal emulations independent of specific terminal characteristics. This
chapter starts out by describing fundamental concepts about the Terminal Manager. Then it
describes both the terminal emulation window and the terminal record, which is the most
important data structure to the Terminal Manager. After a detailed functional description of the
routines the Terminal Manager provides, this chapter finishes by describing the routines that need
to be in your application. There is a summary at the very end of this chapter that you can use as a
quick reference to routines and data structures.

Often refered to in this chapter is the term “your application®, which is the application you are
writing for the Macintosh, and which will implement communication services for users. Be careful
not to confuse the services your application is requesting with the services that tools provide.

To use terminal tools in an application, you need to be familiar with general terminal emulation
topics, as well as:

m  Resource Manager (see Inside Macintosh,Volumes: I, IV, V)

QuickDraw (see Inside Macintosh,Volumes: I, V)

Event Manager (see Inside Macintosh,Volumes: I, IV, V)

Scrap Manager (see Inside Macintosh,Volume I)

Dialog Manager (see Inside Macintosh,Volumes: I, IV, V)

Connection Manager (see in this manual Chapter 3, “Connection Manager”)

About the Terminal Manager

By using Terminal Manager routines, your application can implement terminal emulations without
having to take into account specific terminal characteristics. Terminal tools, which are discussed in
Chapter 10, “How to Write a Terminal Tool,” are responsible for implementing the specifics of a
terminal emulation.

To the application, the Terminal Manager provides a basic abstraction of a terminal emulation as
being an interaction between the Macintosh and a host computer. This abstraction is best
described with an example. Suppose your application needs to tell a2 mainframe at the other end of
an existing connection that the user has typed the letter “a”. Your application will first detect that
the user has pressed a key and pass this event on to the Terminal Manager by calling the TMKey
routine. Then, the Terminal Manager will pass this event on to the terminal tool, which had
previously been selected. The terminal tool will figure out what the appropriate value is to transmit
for “a” and send this value out on the connection. The example, of course, is a very simple one. But
it is meant to give you a high-level feel for what goes on inside the Terminal Manager. The rest of
this chapter goes into much more detail. ‘

70 Chapter 4: Terminal Manager Special K Beta Draft, Apple Confidential e



Figure 4-1 shows the data into and out of the Terminal Manager.

Figure 4-1: Data flow in and out of the Terminal Manager.

Communications
Toolbox
T o
Events, incoming data, Data connection to
keystrokes other entity
4 C—Z—ZD
Application
7
Data to transmit

‘ Toolbox

The most important data structure maintained by the Terminal Manager is the terminal record,
which is where all the specifics about a terminal emulation are stored. For example, the terminal
record might show that your application is emulating a VT320 terminal, and that the Terminal
Manager should try to cache the terminal window before clearing it.

Two reasons why the terminal record is so important to the Terminal Manager are that its
existence allows for both protocol-independent routines and multiple instances of the same tool.
Protocol-independent routines are what allow applications to use Terminal Manager services
without regard for the underlying communications protocols. In other words, when an application
wants 1o transmit a keystroke to a host computer, it tells the Terminal Manager to transmit the
keystroke, and the Terminal Manager figures out exactly how to transmit the keystroke for a given
terminal emulation. Multiple instances of the same tool allows for the same tool to be used by
different processes at the same time, like in a MultiFinder environment, or by different threads in a
given application. The terminal record is described in greater detail later in this chapter.

Besides providing basic terminal emulation routines, the Terminal Manager includes routines that
make it easy for applications to configure a terminal tool, either through presenting the user with a
dialog box or by interfacing directly with a scripting language. The Terminal Manager also contains
routines that make it easier for you to localize your applications into foreign languages.

Apple Confidential Chapter 4: Terminal Manager

71



You can use the Terminal Manager in conjunction with other parts of Special K to create a
communications application with basic connection, terminal emulation, and file transfer capabilities.
Or, you can use the Termianl Manager from Special K, but substitute some other connection service
or file transfer service in place of Special K's Connection Manager and File Transfer Manager. You can
also write your own terminal tool and add it to the Terminal Manager. (This procedure is discussed
in Chapter 8, "Fundamentals of Writing Your Own Tool.”) Regardless of which you choose, your
application should be able to handle different terminal tools such that users can change tools and
still be able to use your program.

The terminal emulation window

The Terminal Manager provides terminal tools with a terminal emulation window. Other than the
standard user interface elements, there are two major parts to the terminal emulation window: the
terminal emulation region and the cache region. Figure 4-2 shows the major parts of a terminal
emulation window.

= Figure 42 Major parts of a terminal emulation window.

E[J=== Terminal Emulation Window ===0E|
*,

cache region

terminal emulation region

The terminal emulation region

The terminal emulation region is the area of the terminal window in which the terminal tool
displays data in a manner that emulates a specific terminal. Each line in the terminal emulation
region has a corresponding record in the terminal emulation buffer, which is stored in a
TermDataBlock data structure that supports both styled text and graphics information. The
format of TermDataBlock is:

TermDataH = ~“TermDataPtr;

TermDataPtr = ~“TermDataBlock;

TermDataBlock = RECORD
flags H INTEGER; {type of block}
theData : Handle; {text or picts}
auxData : Handle; {any styled info}
reserved : LONGINT; {general fudge factor)}

72 Chapter 4: Terminal Manager Special K Beta Draft, Apple Confidential



«

theData isa handle that references the text.

The cache region

The cache region is the area of the terminal window in which your application can display lines
of data that would have otherwise scrolled off of the top of the terminal emulation region. Your
application does not need to provide a cache region if you don't want it to. But because terminal
tools do not support this area of the terminal emulation window, your application must provide all
the necessary code if you want a cache region. Your application can take advantage of Terminal
Manager routines to implement this feature.

The terminal record

The terminal record contains both information that describes a terminal emulation, as well as
pointers to Terminal Manager internal data structures. The Terminal Manager uses this information
to "translate® the protocol-independent routines used by an application or tool into a service
implemented according to a specified terminal emulation. Most of the fields in the File Transfer
record are filled in when an application calls TMNew, which is described later in this chapter.

Because the context for a given terminal emulation is maintained in a terminal record, an
application can maintain more than one terminal emulation at the same time. All the application has
to do is create a new terminal record every time it initiates a terminal emulation.

A Important  Your application, in order to be compatible with future releases of the
Terminal Manager, should not directly manipulate the fields of the
terminal record. The Terminal Manager provides routines that applications
and tools can use to change terminal record fields. &

Apple Confidential Chapter 4: Terminal Manager

73



The terminal record data structure

TYPE

TermHandle

TermPointer
TermRecord

END;

proclD

proclD

flags
errCode

refCon
userData

defProc

config
oldConfig

environsProc
reservedl
reserved2

private

sendProc
breakProc
cacheProc
clikLoop

owner
termRect
viewRect
visRect

lastIdle

selection
selType

mluField

.o

..

..

.o

~“TermPointer;

~TermRecord;
RECORD
INTEGER

LONGINT;
TMErr;

LONGINT;
LONGINT;

ProcPtr;

Prt;
H Ptr;

ProcPtr;
LONGINT;
LONGINT;

Ptr;

ProcPtr;
ProcPtr;
ProcPtr;
ProcPtr;

WindowPtr;
Rect;
Rect;
Rect;

LONGINT;

TMSelection;
INTEGER;

SearchBlockPtr;

procID is the terminal tool ID. This value is dynamically assigned by the Terminal Manager.

74 Chapter 4: Terminal Manager

Special K Beta Draft, Apple Confidential



flags

flags is a bit field with the following masks:

CONST
tmInvisible = 1;
tmSaveBeforeClear = 2;
tmNoMenus = 4;
tmSaveBeforeDV = 8;

If your application sets TMInvisible, the Terminal Manager will not display the terminal emulation.

Instead, it will maintain a virtual terminal emulation; the application can use this virtual terminal emulation to

create some other presentation service.

If your application sets TMSaveBeforeClear, the terminal tool will try to cache the entire terminal
emulation region in response to any clear screen operation. Clear screen operations are generated from either a

user’s request, a clear screen character sequence, or a terminal reset character sequence.

If your application sets TMNoMenus, the terminal tool will not put up any custom menus.

If your application sets TMAut 0Scrol1l, the terminal tool will automatically scroll the terminal emulation

window (if needed) while the user is highlighting a selection.

errCode

errCode is not used by the Terminal Manager in this release.

refCon

refCon isa LONGINT that the application uses to distinguish one terminal record from another in a
MultiFinder environment.

userData

userData is a four-byte field that the application can use to store and access values for any
purpose.

defProc

defProc is a pointer to the main code resource of the terminal tool that will implement the
specifics of the terminal emulation.. The terminal tool’s main code resource is of type cdef .

Apple Confidential Chapter 4: Terminal Manager

75



config

config isa pointer to a data block that is private to the terminal tool. The terminal tool uses
this record to store terminal information. You can find a description of con £ i g later in this
manual in Chapter 8, “Fundamentals of Writing Your Own Tool.” However, as an application
developer, you don't need to be very concerned with this field. All you need to know is that the
terminal tool, when selected, will fill in config. To see how this is done, read “Configuring a
Terminal Tool” on page nn. '

oldConfig _

oldConfig is a pointer to a data block that is private to the terminal tool and contains an “old” version of
config. This data block is used to implement “undo” operations.

environsProc

environsProc is a pointer to a routine in your application that the terminal tool can call to obtain a record
describing the connection environment.

reservedl and reserved2

reservedl and reserved?2 are reserved for the Terminal Manager.

private

private isa pointer to a data block that is private to the terminal tool. Your application should not use this
field.

sendProc

sendProc is a pointer to a routine that your application will call when it needs to send data to another
application. A more detailed description of sendProc is later in this chapter under the heading “Routines that
must be in your application” on page nn.

breakProc

breakProc is a pointer to a routine in the application that performs a break operation. The effect the break
has depends on the terminal emulation being used. A more detailed description of breakP roc is later in this
chapter under the heading “Routines that must be in your application” on page nn.

cacheProc

cacheProc is a pointer to a routine in the application that is used to save lines that scroll off the top of the
terminal emulation region. This routine is also used to save the terminal screen before a dlear screen operation (if
the TMSaveBeforeClear bit is set in the flags field of the terminal record). A more detailed description
of cacheProc is later in this chapter under the heading “Routines that must be in your application” on page
nn.

76 Chapter 4: Terminal Manager Special K Beta Draft, Apple Confidential



clikLoop

clikLoop isa pointer to a routine that is in the application that handles mouse clicks. The terminal tool calls
the click loop repeatedly during click and drag operations. A more detailed description of c1ickLoop is later
in this chapter under the heading “Routines that must be in your application” on page nn.

owner

owner is a pointer to the grafPort where the terminal emulation is performed.

termRect

termRect isthe portRect of the current window, which represents the boundaries of the terminal
emulation region. Figure 4-3 shows how t ermRect relates to the terminal emulation window.

viewRect

viewRect isa subset of the t ermRect, which represents the boundaries of the visible part of the terminal
emulation region. Figure 4-3 shows how viewRect relates to the terminal emulation window.

visRect

visRect is a rectangle that represents the currently visible rows and columns in the terminal emulation region
(for text terminals). It is the same dimensions as viewRect, but is defined by coordinates that represent
rows and column numbers. Numbering of rows and columns begins with the number 1.

visRect.topand visRect.left is the top-most line and left-most column that is visible in the
terminal emulation region. visRect .bottomand visRect .right isthe bottom-most line and right-
most column that is visible in the terminal region. These are used by the application to determine scroll-bar
values.

»  Figure 4-3 Bounds of viewRect and termRect.

[EC=== Terminal Emulation Window ==D=|

1 ID

cache region
bounds of

termRect

bounds of
viewRect

e

EEEE

terminal emulation region

&

lastIdle
lastIdle s the last time (in ticks) that the idle procedure was called for the specified terminal record.

Apple Confidential Chapter 4: Terminal Manager 77



selection

selection is a data structure that describes the extent of the current selection in the terminal emulation
window. Since selection can describe either a rectangle or a region, it describes the selection in one of two
kinds of data structures: a Rect or aRgnHandle.

TYPE .
TMSelection = RECORD
CASE INTEGER OF
1: (
selRect : Rect;
)
2% (
selRgnHandle : RgnHandle;
)i
END;

selRect.is of type Rect and describes the rectangle that has been selected. On text terminals it contains
the row/column pairs, with counting beginning at 1. For graphics terminals, it contains pixel coordinates, with
(1,1) being the topLe £t of the terminal region.

If the terminal is a graphics terminal and the selection is a MacPaint-style lasso, selection is a se1RgnHandle
that represents the selection region.

selType is afield that further describes a selection; it indicates the highlighting mode that is
used to show the selection. Valid values are:

CONST )
selTextNormal = 1;
selTextBoxed = 2;
selGraphicsMarquee = 4;
selGraphicslLasso = 8;

Figure 4-4 and 4-5 show that even though two selections may have the same coordinates, different values for
selType yield different highlighting results.

78 Chapter 4: Terminal Manager Special K Beta Draft, Apple Confidential



selTextNormal is the text selection mode shown in Figure 4-4.

= Figure 44 selTextNormal text selection

IECJ=== Terminal

The SUIEENSRTIRLE
ERRAERERY dog.

jumpe=d

selTextBoxed is also a text selection, but yields different highlighting results as shown if Figure 4-5.

» Figure 45 selTextBoxed text selection

EO=== Terminal =—=013|

The SMIEEEIRAWN fox jumped
(‘\ over U ESE dog.

selGraphicsMarquee is a standard MacPaint-style marquee. selGraphicsLassoisa
standard MacPaint-style lasso.

mluField

mluField isa pointertoa linked list of searchBlock data structures. The fieldsina searchBlock
are shown in “Searching the terminal emulation buffer” on page nn.

( Apple Confidential | Chapter 4: TerminalManager 79



Terminal Manager routines

This sections describes the routines that applications use to access Terminal Manager services.

InitTM / nn

TMNew / nn

TMValidate / nn
TMSetupPreFlight / nn
TMSetupFilter / nn
TMSetupCleanup / nn
TMGetConfig / nn
TMStream / nn

TMIdle / nn
TMRemoveSearch / nn
TMGetLine / nn
TMClear / nn
TMResize / nn
TMSetSelection
TMMenu / nn
TMResume / nn
TMKey / nn
TMEvent / nn
TMEnglishToIntl / nn
TMGetTermName / nn
TMGetRefCon / nn
TMGetUserData / nn
TMGetTMVersion / nn
TMDoTermKey / nn
TMGetIndTermKey / nn
MyBreak / nn

MyCache / nn

TMClick / nn
MyGetConnEnvirons / nn

/ nn

80 Chapter 4: Terminal Manager

TMGetProcID / nn
TMDefault / nn
TMChoose / nn
TMSetupSetup / nn
TMSetupItem / nn
TMSetupPostflight / nn
TMSetConfig / nn
TMPaint / nn
TMAddSearch / nn
TMClearSearch / nn
TMScroll / nn
TMReset / nn
TMDispose / nn
TMGetSelect / nn
TMActivate / nn
TMClick / nn
TMUpdate / nn
TMIntlToEnglish / nn
TMGetTermEnvirons / nn
TMSetRefCon / nn
TMSetUserData / nn
TMGetVersion / nn
TMGetCursor / nn
TMCountTermKeys / nn
MySendProc / nn
Sending a break / nn
SearchCallBack / nn
Click looping / nn

Special K Beta Draft, Apple Confidential



«

Preparing for a terminal emulation

Before your application can start a terminal emulation, it must first initialize the Terminal Manager
(InitTM), find out the procID of the tool it requires (TMGet ProcID), create a terminal
record (TMNew), and then configure the terminal tool (TMChoose).

InitTM

Function

Description

Initializing the Terminal Manager

InitTM initializes the Terminal Manager. Your application should call this routine after
calling the standard Macintosh toolbox initialization routines. If your application uses
either the Communications Resource Manager or the Special K Utilities, it should initialize
them before initializing the Terminal Manager.

InitTM: TMErr;

InitTM will retum an operating system error code if appropriate. If no tools are
installed in the Terminal Manager, it will retum tmNoTools. Your application is
responsible to check for the presence of the Communications Toolbox before calling this
function.

TMGetProcID

Function

Description

Getting current procID information

Your application should call TMGet ProcID just before creating a new terminal record
to find out the proc ID of a tool.

TMGetProcID (name: STR255): INTEGER;

name specifies a terminal tool. If a terminal tool exists with the specified name, its tool
ID is returned. If name references a nonexistent terminal tool, -1 is returned.

TMNew

Apple Confidential

Creating a terminal record

Once the Terminal Manager has been initialized, your application needs to create a terminal
record to describe the terminal emulation that is to take place. TMNew creates a new
terminal record , fills in the fields that it can based on the parameters that were passed to
it, and returns a handle to the new record in TermHandle. The Terminal Manager then
loads the terminal tool’'s main definition procedure, moves it high in the application heap,
and locks it. If memory constraints prevent a new connection record from being created,
TMNew passes back NIL in TermHandle.

Chapter 4: Terminal Manager 81



Function

Description

TMNew (termRect: Rect; viewRect: Rect; flags: LONGINT;
procID: INTEGER; owner: WindowPtr; sendProc: ProcPtr;
cacheProc: ProcPtr; breakProc: ProcPtr; clikLoop: ProcPtr;
environsProc: ProcPtr; refCon: LONGINT; userData:
LONGINT) : TermHandle;

termRect is a rectangle in local coordinates that represents the boundaries of the
terminal emulation region. Your application initially sets this value by passing it as a
parameter to TMNew, but the terminal tool may resize it.

viewRect isa subset of the t ermRect, which the terminal tool can actually write
into. Your application initially sets this value by passing it as a parameter to TMNew, but
the terminal tool may resize it.

flags isa bit field with the following masks:

CONST
tmInvisible = 1:
tmSaveBeforeClear = 2;
tmNoMenus = 4;

IftmInvisible is set, the Terminal Manager will not display the terminal emulation.
Instead, it will maintain a virtual terminal emulation; the application can use this virtual
terminal emulation to create some other presentation service.

If tmSaveBeforeClear is set, the terminal tool will try to cache the entire terminal
emulation region in response to any clear screen operation. Clear screen operations are
generated from either a user’s request, a clear screen character sequence, or a terminal reset
character sequence.

If t mNoMenus is set, the terminal tool will not put up any custom menus.

procIDs are dynamically assigned by the Terminal Manager to tools at run time.
Applications should not store procIDs in “settings” files. Instead, they should store
tool names, which can be converted to procIDs with TMGetProcID. Use the ID
that TMGetProcID returns for procID.

owner is a pointer to the window in which your application is displaying the terminal
emulation. If tmInvisibleis FALSE, owner shouldbeagrafPort thatthe
terminal tool has control over.

sendProc is a pointer to a routine that your application will call when it needs to send
data on a connection. A more detailed description of sendProc is later in this chapter
under the heading “Routines that must be in your application” on page nn.

cacheProc is a pointer to a routine that is in your application that is used to save lines
that scroll off the top of the terminal emulation region. This routine is also used to save
the terminal screen before a clear screen operation (if TMSaveBeforeClear is set).
A more detailed description of cacheProc is later in this chapter under the heading
“Routines that must be in your application” on page nn.

82 Chapter 4: Terminal Manager Special K Beta Draft, Apple Confidential



breakProc isa pointer to a routine in your application that performs some sort of
break operation. The effect the break has depends upon the terminal emulation tool that
your application is using. A more detailed description of breakProc is later in this
chapter under the heading “Routines that must be in your application® on page nn.

clikLoop is a pointer to a routine in your application that is called when the mouse
button is held down. The terminal tool calls the click loop repeatedly during click and drag
operations. A more detailed description of c1ickLoop is later in this chapter under the
heading “Routines that must be in your application” on page nn.

environsProc isa pointer to a routine that your application can call when it wants
to get information about the connection. Read Chapier 3, “Connection Manager” to find
out about environsProc.

userData and refCon are fields for use by the application. refCon takes on
special meaning in a multiple-connection environment and is used to distinguish one
connection record from another.

TMDefault

- Procedure

Description

Initializing the terminal record

TMDefault fills the configuration record pointed to by theConfig with the
default configuration, which is specified by the terminal tool with the given procID.
This procedure is called automatically by TMNew when filling in fields in 2 new terminal
record.

TMDefault (VAR theConfig: Ptr; procID: INTEGER; allocate:
BOOLEAN) ;

Ifallocate is TRUE, the tool allocates space for theConfig in the current zone.

TMValidate

Function

Description

Apple Confidential

Validating the terminal record

TMValidate validates the current configuration and private data records of the
terminal record by comparing the fields in the terminal record with the values that are
specified in the terminal tool. This routine is called by TMNew and TMSetConfig
after they have created a new terminal record to make sure that the the record contains
values with those specified by the terminal tool.

TMValidate (hTerm: TermHandle): BOOLEAN;

If the validation fails, FALSE is returned and the configuration record is filled with '
default values for the specified terminal tool.

Chapter 4: Terminal Manager 83



TMChoose

Function

Description

Configuring a terminal tool

An application can select a terminal tool three ways. The easiest and most
straightforward way is by calling the TMChoose routine. This routine presents the user
with a dialog box similar to the one shown in figure 4-6. The second way that an
application can select a terminal tool is by presenting the user with a custom dialog box.
This method is much more difficult and involves calling six routines. The routines are
described later in this section under “Custom configuration of a terminal tool” and some
example code is provided in Appendix B, “Useful code samples” to help you implement
this functionality. The third way that your application can select a terminal tool is by
interfacing directly with a scripting language. This method allows your application to
bypass user interface elements.

To present the user with the standard tool-selection dialog box, your application
needs to call TMChoose.

TMChoose (VAR hTerm: TermHandle; where: Point; idleProc:
ProcPtr): INTEGER;

where is a point in global coordinates specifying the top left comer of where the dialog
box should appear. It is recommended that your application place the dialog box as close
to the top and left of the screen as possible.

idleProc is a procedure that the Terminal Manager will automatically call every time
your application loops through the setup dialog box filter procedure.

TMChoose will present the user with a dialog box that looks similar to Figure 4-6

s Figure 4-6 The Standard tool-selection dialog box

Terminal Configuration

Emulation:

Terminal Mode: | ANSI/VT100 Text Cursor
o 5 g OBlook
L'" EM“ - @“ jerline
@1 ] Locakcho

[ shew Status Bar
[ show Tab Ruter

Answerback Message |

TMChoose will retum one of the following values:

84 Chapter 4: Terminal Manager Special K Beta Draft, Apple Confidential



CONST
T chooseDisaster
( chooseFailed
chooseAborted
chooseOKMinor
chooseOKMajor
chooseCancel L= 3;

[ I |
o 1
-~ N

|
N
~

chooseDisaster means that the choose operation failed and destroyed the
connection record.

chooseFailed means that the choose operation failed and the connection record
was not changed.

chooseAborted means that the user tried to change the connection while it was still
open, thereby failing to complete the CMChoose operation.

chooseOKMinor means that the user selected OK in the dialog box, but did not
change the connection tool being used.

chooseOKMa jor means that the user selected OK in the dialog box and also changed
the connection tool being used. The Connection Manager destroys the old connection
handle by calling CMD i spose (the connection is closed down and all pending reads and
writes are terminated) and a new connection handle is returned in hConn.

chooseCancel means that the user selected Cancel in the dialog box.

Custom configuration of a terminal tool

To present the user with a custom tool-configuration dialog box, your application needs to call a
series of six Terminal Manger routines: TMSetupPreflight, TMSetupSetup,
TMSetupItem, TMSetupFilter, TMSetupCleanup, and TMSetupPostflight.
Needless to say, using these routines is a bit more involved than calling TMChoose, but they
provide your application with much more flexibility. There is a code sample in Appendix B, “Useful
code samples” that shows how an application calls these routines.

To build a list of available terminal tools, use the routine CRMGet IndToolName, which is
described in Chapter 6, “Communications Resource Manager.”

( Apple Confidential Chapter 4: Terminal Manager 85



TMSetupPreflight

Function

Description

TMSetupPreflight retums a handle to a dialog item list from the terminal tool
that the your application should append to the configuration dialog box. (Your application
can use AppendD ITL which is discussed in Chapter 7, “Special K Utilities.”)
TMSetupPreflight retumsa value inmagicCookie that should be passed
into the other procedures.

The terminal tool can use TMSet upPreflight toallocate a block of private
storage, and to store the pointer to that block in magicCookie. This value,
magicCookie, should be passed to the other routines that are used to setup the
configuration dialog box.

TMSetupPreflight (procID: INTEGER; VAR magicCookie:
LONGINT) : Handle;

procID isthe ID for the terminal tool that is being configured. Your application should
get this value by using the TMGet Proc ID routine, which is discussed later in this
chapter.

The refcon of the custom dialog box should point to the procID of the tool being
configured.

TMSetupSetup

Procedure

Description

86 Chapter 4: Terminal Manager Special K Beta Draft, Apple Confidential

TMSetupSetup tells the terminal tool to set up controls (like radio buttons or check
boxes) in the dialog item list returned by TMSetupPreflight.

TMSetupSetup (procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR magicCookie: LONGINT);

procID isthe ID for the terminal tool that is being configured. Your application should
get this value by using the TMGet ProcID routine, which is discussed later in this
chapter.

theConf£ ig is the pointer to the configuration record for the tool being configured.
count is the number of the first item in the dialog item list appended to the dialog box.
theDialog is the dialog box performing the configuration.

magicCookie is the value returned from the TMSetupPreflight.



TMSetupFilter

Function

Description

TMSetupFilter should be called as a filter procedure prior to the standard modal
dialog box filter procedure for the configuration dialog box. This routine allows terminal
tools to filter events in the configuration dialog box.

TMSetupFilter (procID: INTEGER; theConfig: Ptr;
count : INTEGER; theDialog: DialogPtr; VAR theEvent:
EventRecord; VAR thelItem: INTEGER; VAR magicCookie:
LONGINT) : BOOLEAN;

prociD is the ID for the terminal tool that is being configured. Your application should
get this value by using the TMGe t ProcID routine, which is discussed later in this
chapter. ,

count is the number of the first item in the dialog item list appended to the dialog box.
theConf£ig is the pointer to the configuration record for the tool being configured.
theDialog is the dialog box performing the configuration.

theEvent is the event record for which filtering is to take place.

theItem can return the appropriate item clicked on in the dialog box.
magicCookie is the value retuned from TMSetupPreflight.

If the event passed in was handled, TRUE is returned. Otherwise, FALSE indicates that
standard dialog box filtering should take place.

TMSetupItem

Procedure

Description

Apple Confidential

TMSetupItem processes mouse events for a control in the custom configuration
dialog box.

TMSetupItem(procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR item: INTEGER; VAR
magicCookie: LONGINT);

procID is the ID for the terminal tool being configured. Your application should get
this value by using the TMGet Proc ID routine, which is discussed later in this chapter.

theConfig is the pointer to the configuration record for the tool being configured.
count is the number of the first item in the dialog item list appended to the dialog box.
theDialog is the dialog box performing the configuration.

Chapter 4: Terminal Manager 87



itemis the item clicked on in the dialog box. This value can be modified and sent back.
magicCookie is the value returned from TMSetupPreflight.

TMSetupCleanup

TMSetupCleanup disposes of any storage allocated in TMSetupPreflight
and performs any other dean-up operation.

Procedure TMSetupCleanup (procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR magicCookie: LONGINT) ;
Description procID is the ID for the terminal tool that is being configured. Your application should
get this value by using the TMGet ProcID routine, which is discussed later in this
chapter. .
theConfigq is the pointer to the configuration record for the tool being configured.
count is the number of the first item in the dialog item list appended to the dialog box.
theDialog is the dialog box performing the configuration.
magicCookie is the value returned from TMSetupPreflight.
TMSetupPostflight
TMSetupPost f£1ight either shortens or disposes of the dialog box. It will close the
tool file if it is not being used by any other sessions.
Procedure TMSetupPostflight (procID: INTEGER) ;
Description procID isthe ID for the terminal tool that is being configured. Your application should

get this value by using the TMGet ProcID routine, which is discussed later in this
chapter.

Scripting language interface

The two routines described below make it easier for your application to configure a terminal record
by interfacing with a scripting language, thus bypassing the user interface dialog boxes.

88 Chapter 4: Terminal Manager Special K Beta Draft, Apple Confidential



TMGetConfig

TMGet Con£ig returns a null-terminated string from the terminal tool (an example of
which is shown after the description of the next routine) containing tokens that fully
describe the configuration of the terminal record.

Function TMGetConfig (hTerm: TermHandle): INTEGER;

Description If an error occurs, TMGet Con£ig will return NIL. It is the responsibility of your
application to dispose of Pt r.

TMSetConfig
TMSetConf£ ig passes a null-terminated string to the terminal tool for parsing (an
example of which is shown under “A sample nullterminated configuration string”) that is
pointed to by t hePt r. The string, which can be any length, must contain tokens that
describe the configuration of the terminal record, and is parsed from left to right.

Function TMSetConfig (hTerm: TermHandle; thePtr: Ptr): INTEGER;

Description Items that are not recognized or relevant are ignored; this causes TMSet Configto

abort parsing the string and to return the character position where the error occurred. If

parsing is successfully completed, TMSet Config will retum tmNoErr.

TMSetConf ig may also return -1 to indicate a general problem with processing the
configuration string..

The parsing operation is the responsibility of the individual tool.

A sample nullterminated configuration string

FontSize 9 Width 80 Cursor Underline Online True
LocalEcho False AutoRepeat True RepeatControls False
AutoWrap False Newline False SmoothScroll False
Transparant False SwapBSDelete False \0

Using terminal emulation routines

Once your application has performed the required tasks described above, it can then use the routines
described next to perform terminal emulations.

Apple Confidential

Chapter 4: Terminal Manager 89



TMStream Putting data into the terminal emulation buffer
Your application should use TMSt ream to tell the terminal tool where to find data to
put into its terminal emulation buffer.

Function 'TMStream (hTerm: TermHandle; theBuffer: Ptr; length:
LONGINT) : LONGINT;

Description theBuffer is the data that is to be placed in the terminal emulation buffer. Typically
the data that is pointed to by theBuf fex has been provided by the connection tool
that your application is using.

TMSt ream returns the number of bytes that it processed.

TMPaint Drawing into the terminal emulation region
The TMPaint draws the data in theTermData into the rectangle t heRect,
which is in local window coordinates.

Procedure TMPaint (hTerm: TermHandle; theTermData:TermDataBlock;
theRect: Rect):

Description theTermData.theData mustbe ahandle toa block onthe heap.

TMIdle Providing necessary idle time
Your application should call TMId1e at least once every time it goes through its main
event loop so that the terminal tool can perform idle loop tasks (like blinking the cursor).

Procedure TMIdle (hTerm: TermHandle):;

TMGetLine  Getting lines from the terminal emulation buffer
TMGetLine returns a line from the terminal emulation buffer.

Procedure TMGetLine (hTerm: TermHandle; lineNo: INTEGER; VAR
theTermData:TermDataBlock) ;

Description lineNo specifies the line number of a line of data in the terminal emulation buffer(line

numbering in the buffer begins with the first line being numbered 1). theTermData
contains line data,character attributes, and line attributes.

90 Chapter 4: Terminal Manager Special K Beta Draft, Apple Confidential

~



Your application must allocate theTermData.theData withalength of 0
(theTermData.theData=NewHandle (0)). The terminal tool copies the
information it needs, and increases the size of the handle if it needs to.

TMScroll Scrolling the terminal emulation region
TMScroll causes the terminal emulation region to scroll either horizontally, vertically, or
both. '

Procedure TMScroll (hTerm: TermHandle; dH, dV: INTEGER);

Description dH and 4V specify the number of pixels to scroll horizontally and vertically. ~ By
specifying positive values for dH and AV, the terminal emulation region will scroll down
and to the right. By specifying negative values, the terminal emulation region will scroll
up and to the left.

TMClear Clearing the terminal emulation region
TMClear causes the terminal to clear the display screen and to place the default cursor
in the home position. Nothing is transmitted to the remote computer.

( Procedure TMClear (hTerm: TermHandle);

TMReset Resetting the terminal
When your application calls TMReset , the terminal tool puts the specified terminal into
a state that makes it appear as if the terminal had just been tumed on. In actuality, the
screen representation structure and internal state tables (if the tool has one) are reset to
the values specified by the terminal tool, and the configuration record for the terminal is
reset to its last saved state.

Procedure TMReset (hTerm: TermHandle);

TMResize Resizing the terminal region

( Apple Confidential

TMRes1ize resizes the terminal emulation region to the coordinates specified in
newViewRect.

Chapter 4: Terminal Manager 91



Procedure TMResize (hTerm: TermHandle; newViewRect: Rect);

TMDispose Disposing of a terminal record

TMDispose disposes of the terminal record and all associated data structures and
controls.

Procedure TMDispose (hTerm: TermHandle);

A Important Your application must call TMDi spose before disposing of the owning
window with DisposeWindow. Since DisposeWindow clears all
controls in the control list, a subsequent call to TMD1i spose may cause
problems.a

Searching the terminal emulation buffer

Searching the terminal emulation buffer can take place anytime that an application or tool wants it
to, but typically a tool will perform a search during its idle procedure. To tell a tool to search for a
specified string, your application needs to call the TMAddSearch routine. To tell the terminal
tool to stop performing a search, your application must use TMRemoveSearch. Totell the
terminal tool to stop all searches, your application must use TMClearSearch.

TMAddSearch

Function TMAddSearch (hTerm: TermHandle; theString: STR255; where:
Rect; searchType: INTEGER; callBack: ProcPtr): INTEGER;

Description This function returns a reference number that is assigned to each search, or -1 if the search
was not successfully added. The tool will search for theSt ring in the area specified
by where. where is a rectangle that contains two row/column pairs, with numbering
of rows and columns starting with the number 0.

By specifying a -1 as a value in the row/column pairs, your application can limit the
search to one row, one column, or the intersection of one row and one column. The next
table shows how your application can use -1as a search region delimiter.

92 Chapter 4: Terminal Manager Special K Beta Draft, Apple Confidential

1/(



rectangle bounded by n,m,0,p (n,m) (0,p)

fow n ,-DE,-D

column m ¢(1,m 1D

rows n-o (inclusive) (n,-1) (o,-1)

column m-p (inclusive) -1,m(1,p)

anywhere i ¢1,-DCL-D

searchType is one of the two below, examples of which can be seen in Figures 4-4
and 4-5.

CONST

selTextNormal = 1;
selTextBoxed = 2;

callBack is a procedure the tool will automatically call when it finds a match.

callBack must be supplied by your application, and is described later in this chapter

under “Routines that must be in your application” on page nn.

TMRemoveSearch
TMRemoveSear ch stops the search specified by re £Num.

Procedure TMRemoveSearch (hTerm: TermHandle; refNum: INTEGER);

TMClearSearch
TMClearSearch stops; all searches for the terminal record.

Procedure TMClearSearch (hTerm: TermHandle);

Manipulating selections

The terminal manager provides two routines that make it easier for your application to manipulate
selections. TMSet Select ion highlights a selection in the terminal emulation window and
TMGetSelect goes out and gets the selection.

Apple Confidential Chapter 4: Terminal Manager

93



TMSetSelection
TMSetSelection setsthe current selection to be defined as theSelection.

Procedure TMSetSelection (hTerm: TermHandle; theSelection:
TMSelection; selType: INTEGER);

Description selType determines the type of highlighting for the selection (examples of which can

be seen in Figures 44 and 4-5) and may be:

CONST
selTextNormal = 1;
selTextBoxed = 2;
selGraphicsMarquee = 4;
selGraphicsLasso = 8;

TMGetSelect
TMGetSelect retums either the number of bytes in the selection in the terminal
emulation window or an appropriate operating system error code.

Function TMGetSelect (hTerm: TermHandle; theData: Handle; VAR
theType: ResType): LONGINT;

Description theData must be a handle to a block of size 0. TMGetSelect will resize this block
as necessary.

theType retums the type of data selected. If there is no selection that is active,
TMGetSelect returns0.

Handling events

The Terminal Manager event processing routines provide useful extensions to the Macintosh
Toolbox Event Manager. The section below explains the six routines that Special K provides. There

* is example code in Appendix B, “Useful code samples” that shows how an application can determine
if an event needs to be handled by one of these procedures.

TMMenu Handling menu events

Your application must call TMMenu when the user has made a selection from a menu
that is installed by the terminal tool.

94 Chapter 4: Terminal Manager Special K Beta Draft, Apple Confidential -



C

Function

Description

TMMenu (hTerm: TermHandle; menulD: INTEGER; item: INTEGER):
BOOLEAN;

TMMenu returns FALSE if the menu item was not handled by the terminal tool.
TMMenu returns TRUE if the terminal tool did handle the menu item.

TMActivate

Procedure

Description

Activate events

TMActivate processes an activate or deactivate event for a terminal window. The
addition or removal of special menus from the menu bar is an example of an operation
that would be performed in response to an activate or deactivate event.

TMActivate (hTerm: TermHandle; activate: BOOLEAN);

If activate is TRUE, an activate event is to be processed. Otherwise, a deactivate
event is to be processed.

TMResume

Procedure

Resume events

TMRe sume processes a resume or suspend event for a terminal window. Resume and
suspend events are processed only if a tool has a custom menu to install or remove from
the menu bar. If resume is TRUE, then a resume event is to be processed. ‘

TMResume (hTerm: TermHandle; resume: BOOLEAN);

TMClick

Procedure

Mouse events

TMC1ick processes amouseDown in the terminal emulation region. The routine
pointed to by clikLoop, which is discussed under “Routines that must be in your
application” on page nn, is called repeatedly by TMC1ick

TMClick (hTerm: TermHandle; theEvent: EventRecord);

TMKey

Apple Confidential

Keyboard events

' TMKey processes a keyDown of aut oKey event. The keystroke will typically be

translated into a sequence of bytes that are then transmitted by calling your application’s
MySendProc. (MySendProc isdiscussed later in this chapter under “Routines
that must be in your application” on page nn.)

Chapter 4: Terminal Manager 95



Procedure ‘

TMKey (hTerm: TermHandle; theEvent: EventRecord);

TMUpdate Update events
Your application will typically call TMUpdat e between BeginUpdate and
EndUpdate.

Procedure TMUpdate (hTerm: TermHandle; visRgn: RgnHandle);

Description visRgn specifies the region to be updated.

TMEvent Handling other events
Your application can call TMEvent in response to receiving an event for a window that
belongs to the Terminal Manager. An example of such an event is when the user clicks on
a button in a dialog box that a terminal tool is displaying

Procedure TMEvent (hTerm: TermHandle; theEvent: EventRecord);

Description Windows (or dialog boxes) that belong to the Terminal Manager should have a terminal

record handle stored in the re £Con field of the windowRecord.

Localizing strings

Special K provides two routines that make it easier to localize strings.

TMIntlToEnglish

Function

Description

TMInt1ToEnglish converts a configuration string that is pointed to by
inputPtr in the given language to an American English configuration string that is
pointed to by outputPtr.

TMIntlToEnglish (hTerm: TermHandle; inputPtr: Ptr; VAR
outputPtr: Ptr; language: INTEGER): OSErr;

language specifies the language from which the string is to be converted.
The terminal tool allocates space for out putPtr.

If the language specified is not supported, tmNoErr is still returned, but out putPtr
iISNIL.

96 Chapter 4: Terminal Manager Special K Beta Draft, Apple Confidential



The function returns an operating system error code if any internal errors occur.

TMEnglishToIntl

Function

Description

TMEnglishToInt 1 converts a configuration string that is pointed to by
inputPtr in English to a configuration string in the given language that is pointed to
by outputPtr.

TMEnglishToIntl (hTerm: TermHandle; inputPtr: Ptr; VAR
outputPtr: Ptr; language: INTEGER): OSErr;

language specifies the language to which the string is to be converted.
The terminal tool allocates space for out putPtr.

If the language specified is not supported, tmNoEr r is still returned, but out putPtr
iSNIL.

The function returns an operating system error code if any internal errors occur.

Miscellaneous routines

TMGet TermName

Procedure

Description

TMGet TermName retumns in name the name of the tool specified by 1d.
TMGetTermName (id: INTEGER; VAR name: STR255);

If 1 d references a terminal tool that does not exist, the Terminal Manager sets name
to an empty string.

TMSetRefCon

Apple Confidential

TMSetRe£Con sets the terminal record’s reference constant to the specified value.

Chapter 4: Terminal Manager 97‘



Procedure TMSetRefCon (hTerm: TermHandle; rC: LONGINT);

TMGetRefCon

TMGetRefCon returns the terminal record’s reference constant.

Function TMGetRefCon (hTerm: TermHandle): LONGINT;
TMSetUserData
TMSetUserDat a sets the terminal record’s userData field to the value specified
by uD.
Procedure TMSetUserData (hTerm: TermHandle; uD: LONGINT);
TMGetUserData

TMGet UserData returns the terminal record’s userDat a field.

Function TMGetUserData (hTerm: TermHandle): LONGINT;

TMGetVersion

TMGetVersion returns a handle to a relocatable block that contains the information
in the terminal tool’s t ver s resource. The terminal tool must have the same ID as that
specified by hTerm. This handle is nota resource handle.

Function TMGetVersion (hTerm: TermHandle): Handle;

TMGet TMVersion

TMGet TMVersion returns the version number of the Terminal Manager.

98 Chapter 4: Terminal Manager Special K Beta Draft, Apple Oonﬁ&cntial



Function TMGetTMVersion: INTEGER;

TMGetCursor
TMGetCursor retums the current position of the cursor.
Function TMGetCursor (hTerm: TermHandle; cursType: INTEGER): Point;
Description Valid values for cursType are:
CONST
cursorText = 1;
cursorGraphics = 2;
TMDoTermKey
TMDoTermKey emulates a special terminal key specified by theKey.
Function TMDoTermKey (hTerm: TermHandle; theKey: STR255): BOOLEAN;
Description If the key specified by theKey is not understood, this routine returns FALSE.
( Otherwise, if the key specified is processed, this routine retums TRUE.
The example below shows how an application can use TMDoTermKey to emulate the
pressing of a PF1 key.
IF TMDoTermKey (hTerm, 'PF1') THEN
BEGIN
END;
TMCountTermKeys

TMCount TermKeys returns the number of special terminal keys that the tool
supports.

( Apple Confidential Chapter 4: Terminal Manager 9



Function

TMCountTermKeys (hTerm) : INTEGER;

TMGetIndTermKey

Procedure

TMGet IndTermKey retums in t heKey the terminal key specified by ID. If ID
specifies a key that does not exist, this routine returns an empty string.

TMGetIndTermKey (hTerm: TermHandle; ID:INTEGER; VAR
theKey:STR255) ;

TMGetTermEnvirons  Getting general terminal tool information

Function

Description

TMGet TermEnvirons retums theEnvirons, which reflects the internal
conditions of the terminal tool.

TMGetTermEnvirons (hTerm: TermHandle; VAR theEnvirons:
TermEnvironRec): TMErr;

This routine routine will return tmMNoErr, envVer sTooBig, or an operating
systerm error code. The fields in theEnvirons are:

TYPE

TermEnvironPtr = ~“TermEnvironRec;

TermEnvironRec = RECORD
version H INTEGER;
termType : INTEGER;
textRows H INTEGER;
textCols : INTEGER;
cellSize : Point;
graphicSize : Rect;
slop : Point;
auxSpace H Rect;

END;

versaion is the version of the requested terminal environment record, which is 0 in this
release of the Terminal Manager.

termtype is the type of terminal, which is one of the following:

CONST
TMTextTerminal = 1;
TMGraphicsTerminal = 2;

textRows is the number of rows in the terminal emulation region.

100  Chapter 4: Terminal Manager Special K Beta Draft, Apple Confidential



&

textCols is the number of columns in the terminal emulation region.
cellSize is the height and width of each cell.

graphicSize is the size of the graphics terminal tool default rectangie measured in
pixels.

s lop is the border of the terminal region.

auxSpace is a rectangle that specifies any additional space that is required at the top,
bottom, right, or left of the terminal region, as shown in Figure 4-7

s Figure 47 Additional space in the terminal emulation region

Apple Confidential

Terminal Region
auxRect.top
slo
"
auxRect left ‘ auxRect.right
~
N Vo

|
auxRect.bottom

Chapter 4: Terminal Manager 101



Routines that must be in your application

Not all of the code necessary to perform a terminal emulation is provided in any of the terminal
tools; your application must provide the necessary code (or at least pointers to code provided by
other managers). Below are the routines that must be in your application, which tell the tool

ju]

o o o o

o

how to send data on the connection

what to do with lines that scroll out of the terminal emulation region

what to do when a specified string is found in the terminal emulation buffer
what to do when the user whats to effect a break on the terminal

what to do when the user is dragging the mouse in the terminal emulation region
what the connection environment is like.

MySendProc Sending data out along the connection

When a tool needs to send data out to the other application, it will ook to your
applicationto find MySendProc. MySendProc may simply be the routine that
the Connection Manager is using to send data (as is the case in the next example), or you
can write a send routine of your own.

Function MySendProc (thePtr: Ptr; theSize: LONGINT; refCon:

LONGINT) : LONGINT;

Description thePtr isa pointer to the data to be sent.

102  Chapter 4: Terminal Manager

theSize is the number of characters to be sent.
refCon is the reference constant field of the sending terminal’s terminal.

MySendProc returns the actual number of characters sent.

Special K Beta Draft, Apple Confidential



(ji;

Sample routine for sending data ‘
FUNCTION SendProc(thePtr : Ptr; theSize : LONGINT; refcon : LONGINT;

flags: INTEGER) : LONGINT;
VAR
theWindow : WindowPtr;
pWindow : WindowP;
theErr : CMErr;
BEGIN
theWindow := WindowPtr(refcon);
theConn:= GethConn (theWindow);
SendProc := O0;
IF theConn= NIL THEN
Exit (SendProc);
IF WindowPeek (theWindow) *“.windowKind <> userKind THEN
Exit (SendProc);
pWindow := WindowP (GetWRefCon(theWindow));
theTerm := pWindow”.hTerm;
theConn := pWindow”.hConn;
theErr := CMWrite(theConn, thePtr, theSize, CMData, FALSE, NIL,
0, flags):
SendProc := theSize;
END;
MyBreak Sending a break
Your applications needs to contain information about how to break a connection. While it
can contain the code that performs the break operation, your application can also point to
a connection tool routine to do it, as does the next sample.
Procedure MyBreak (duration: LONGINT; refCon: LONGINT);
Description duration is a time value in ticks that specifies how long the break should last.
refCon is the reference constant field of the terminal record.
Apple Confidential Chapter 4: Terminal Manager 103



Sample showing how to break a connection .
PROCEDURE BreakProc(duration: LONGINT; refcon : LONGINT);

VAR
theWindow : WindowPtr;
pWindow : WindowP;
theErr : CMErr;
BEGIN
theWindow := WindowPtr(refcon);
theConn:= GethConn(theWindow);
IF theConn= NIL THEN
Exit (BreakProc);
IF WindowPeek (theWindow) ~.windowKind <> userKind THEN
Exit (BreakProc);
pWindow := WindowP (GetWRefCon (theWindow));
theConn := pWindow”.hConn;
CMBreak (theConn, duration, TRUE, @BreakCompletion);
{asynchornous with break completion routine BreakCompletion}
END;

MyCache Caching lines from the terminal region

Your application can cache lines that scroll up out of the terminal emulation region and,
perhaps, display them in the terminal emulation window. If you want your application to
do this, you have to provide the code to support this. If you do not want your
application to support this, then your application should specify NIL for MyCache

when it calls TMNew.

Function MyCache (refCon: LONGINT; theTermData:TermDataBlock):
LONGINT;

Description refCon is the reference constant for the terminal record.

theTermData is a data structure of type TermDataBlock:

104  Chapter4: Terminal Manager Special K Beta Draft, Apple Confidential



TermDataH = “TermDataPtr;

TermDataPtr = ~“TermDataBlock;

TermDataBlock = RECORD
‘flags : INTEGER; {type of block}
theData : Handle; {text or picts}
auxData : Handle; {any styled info}
reserved : LONGINT; {general fudge factor}

theTerm.theData must be ahandle to a block onthe heap. Your application can
calculate the size of this heap with Get HandleSize. Your application must copy any
data it needs (it can use HandToHand) because theTermData belongs to the
terminal tool and may not exist after MyCache has completed.

MyCache must return tmNoErr if no error occurred during processing, otherwise
it must return an appropriate error code.

SearchCallBack Responding to a matched search parameter

Your application can selectively filter data in the terminal emulation buffer by making use
of a search call-back procedure. Since a tool will automatically call SearchCallBack
when it finds a match to the search string, your application can respond any way that you
program it to.

Procedure SearchCallBack (hTerm: TermHandle; refNum: INTEGER;
foundRect: Rect);

Description re £Numi s a reference number associated with a particular search. These values are
assigned by the Terminal Manager when a search is added to a terminal record with the
TMAddSearch routine.
foundrect describes in row/column format where the match was found.

TMClick  Click looping
This routine is called when the user is dragging the mouse in the terminal emulation
window. Initially, your application should process a mouse down event by calling
TMC1ick, which in turn calls this routine.

Function MyClikLoop (refCon: LONGINT): BOOLEAN;

Description TRUE is returned while the mouse is clicked within the terminal region.

Apple Confidential Chapter 4: Terminal Manager 105



MyGetConnEnvirons  Getting connection environment information

Function

Description

Your application might need to pass information about the connection environment to
the terminal tool. To accomplish this, the terminal tool will call a routine in the
application, M\yGet ConnEnvirons.

MyGetConnEnvirons (refCon: LONGINT; VAR theEnvirons:
ConnEnvironRec) : CMErr;

refCon is the reference constant for the terminal tool.

theEnvirons is a data structure containing the connection environment record. Your
application can either construct theEnvirons or use the Connection Manager routine
CMGetConnEnvirons. For more information about theEnvirons, read Chapter
3, “Connection Manager.”

The next sample shows how MyGetConnEnvirons can point to a Connection
Manager routine to retrieve information about the connection environment.

Sample terminal environment routine
FUNCTION TermGetConnEnvirons(refCon: LONGINT; VAR theEnvirons:

ConnEnvironRec) :
VAR
theWindow
pWindow :

BEGIN
theWindow
theConn:=

OSErr;
: WindowPtr;

WindowP;

:= WindowPtr(refcon);
GethConn (theWindow) ;

TermGetConnEnvirons := envNotPresent;
IF theConn= NIL THEN
Exit (TermGetConnEnvirons);

IF WindowPeek (theWindow) ~.windowKind <> userKind THEN
Exit (TermGetConnEnvirons);

pWindow :

theConn

= WindowP (GetWRefCon (theWindow));
= pWindow”.hConn;

TermGetConnEnvirons := CMGetConnEnvirons(theConn, theEnvirons);

END;

106  Chapter 4: Terminal Manager Special K Beta Draft, Apple Confidential



Summary

Terminal Manager routines Seefiage
InitTM:0SErr; nn
TMActivate (hTerm: TermHandle; activate: BOOLEAN); nn
TMAddSearch (hTerm: TermHandle; theString: STR255; where: nn

Rect; searchType: INTEGER; callBack:
ProcPtr): INTEGER;

TMChoose (VAR hTerm: TermHandle; where: Point; idleProc: nn
ProcPtr): INTEGER;

TMClear (hTerm: TermHandle): nn
TMClearSearch (hTerm: TermHandle): nn
TMClick (hTerm: TermHandle; theEvent: EventRecord):; nn
TMCountTermKeys (hTerm) : INTEGER; nn
TMDefault (VAR theConfig: Ptr; procID: INTEGER; allocate: nn
BOOLEAN) ;
TMDispose (hTerm: TermHandle); nn
TMDoTermKey (hTerm: TermHandle; theKey: STR255): BOOLEAN; nn
TMEnglishToIntl (hTerm: TermHandle; inputPtr: Ptr; VAR nn

outputPtr: Ptr; language: INTEGER): INTEGER;
TMEvent (hTerm: TermHandle; theEvent: EventRecord): nn
TMGetConfig (hTerm: TermHandle): Ptr; nn

TMGetCursor (hTerm: TermHandle; cursType: INTEGER): Point; nn

TMGet IndTermKey (hTerm: TermHandle; ID:INTEGER; VAR nn
theKey”STR255) ;

Apple Confidential Chapter 4: Terminal Manager 107



TMGetLing(hTerm: TermHandle; lineNo: INTEGER; VAR nn
theTermData:TermDataBlock)

TMGetProcID (name: STR255): INTEGER; nn

TMGetRefCon (hTerm: TermHandle): LONGINT; nn
TMGetSelect (hTerm: TermHandle; theData: Handle; VAR nn

theType: ResType): LONGINT;

TMGetTermEnvirons (hTerm: TermHandle; VAR theEnvirons: nn
TermEnvironRec): TMErr;

TMGetTermName (id: INTEGER; VAR name: STR2S5S5); nn
TMGetTMVersion: INTEGER; nn
TMGetUserData (hTerm: TermHandle): LONGINT; nn
TMGetVersion (hTerm: TermHandle): Handle; nn
TMIdle (hTerm: TermHandle): nn
TMIntlToEnglish (hTerm: TermHandle; inputPtr: Ptr; VAR nn

outputPtr: Ptr; language: INTEGER): INTEGER;
TMKey (hTerm: TermHandle; theEvent: EventRecord): nn

TMMenu (hTerm: TermHandle; menulD: INTEGER; item: INTEGER): nn
BOOLEAN;

108 Chapter 4: Terminal Manager Special K Beta Draft, Apple Confidential



TMNew (termRect: Rect; viewRect: Rect; flags: LONGINT;
procID: INTEGER; owner: WindowPtr; sendProc:
ProcPtr; cacheProc: ProcPtr; breakProc:
ProcPtr; clikLoop: ProcPtr; environsProc:
ProcPtr; refCon: LONGINT; userData:
LONGINT) : TermHandle;

TMPaint (hTerm: TermHandle; theTermData:TermDataBlock;
theRect: Rect):;

TMRemoveSearch (hTerm: TermHandle; refNum: INTEGER):
TMReset (hTerm: TermHandle);

TMﬁesize(hTerm: TermHandle; newViewRect: Rect);
TMResume (hTerm: TermHandle; resume: BOOLEAN) ;
TMScroll (hTerm: TermHandle; dH, dV: INTEGER):;
TMSetConfig (hTerm: TermHandle; thePtr: Ptr): INTEGER;
TMSetRefCon (hTerm: TermHandle; rC: LONGINT);

TMSetSelection (hTerm: TermHandle; theSelection:
TMSelection; selType: INTEGER);

TMSetupCleanup (procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR
magicCookie: LONGINT);

TMSetupFilter (procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR theEvent:
EventRecord; VAR theItem: INTEGER; VAR
magicCookie: LONGINT): BOOLEAN;

TMSetupItem(procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR theItem:
INTEGER; VAR magicCookie: LONGINT);
TMSetupPostflight (procID:INTEGER);

TMSetupPreflight (procID: INTEGER; VAR magicCookie:
LONGINT) : Handle;

TMSetupSetup (procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR
magicCookie: LONGINT); :

TMSetUserData (hTerm: TermHandle; uD: LONGINT):;

Apple Confidential Chapter 4: Terminal Manager

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

109



TMStream(hTerm: TermHandle; theBuffer: Ptr; length: nn
LONGINT) : LONGINT;

TMUpdate (hTerm: TermHandle; visRgn: RgnHandle); nn

110  Chapter 4: Terminal Manager Special K Beta Draft, Apple Confidential



TMValidate (hTerm: TermHandle): BOOLEAN;

Routines in your application

MySendProc (thePtr: Ptr; theSize: LONGINT; refCon:
LONGINT) : LONGINT;

MyBreak (duration: LONGINT; refCon: LONGINT);

MyCache (refCon: LONGINT; theTermData:TermDataBlock):
LONGINT;

SearchCallBack (hTerm: TermHandle; refNum: INTEGER);
MyClickLoop (refCon: LONGINT): BOOLEAN;

MyGetConnEnvirons (refCon: LONGINT; VAR theEnvirons:
ConnEnvironRec) : CMErr;

Terminal Record

TermHandle = ~“TermPointer;

TermPointer = ~“TermRecord;

TermRecord = RECORD
proclD = INTEGER
flags : LONGINT;
errCode TMErr;
refCon LONGINT;
userData LONGINT;
defProc ProcPtr;
config : Prt;
oldConfig : Ptr;
environsProc : ProcPtr;
reservedl : LONGINT;
reserved2 LONGINT;
private : Ptr;
sendProc : ProcPtr;
breakProc ProcPtr;
cacheProc : ProcPtr;
clikLoop : ProcPtr;

Apple Confidential Chapter 4

nn

nn

nn

nn

nn
nn

nn

: Terminal Manager

111



owner : WindowPtr;
termRect : Rect;
viewRect : Rect;
visRect : Rect;
lastIdle : LONGINT;
selection : TMSelection;
selType : INTEGER;
mluField : SearchBlockPtr;
END;
TYPE
TMSelection = RECORD
CASE INTEGER OF
1: (
selRect : Rect;
)
2: (
selRgnHandle : RgnHandle;
filler : LONGINT;
)
END;
searchBlockPtr = ~searchBlock;
searchBlock = RECORD
theString : - StringHandle;
where : Rect;
searchType : INTEGER;
callBack : ProcPtr;
refNum : INTEGER;
next : searchBlockPtr
END;
TermDatal = ~TermDataPtr;
TermDataPtr = ~“TermDataBlock;
TermDataBlock = RECORD
flags : INTEGER; {type of block}
theData : Handle; {text or picts}
auxData : Handle; {any styled info}
reserved : LONGINT; {general fudge factor}
112 Chapter 4: Terminal Manager Special K Beta Draft, Apple Confidential



TYPE

TermEnvironPtr

TermEnvironRec
version
termType
textRows
textCols
cellSize
graphicSize
slop
auxSpace

END;

END;

Constants

CONST

= ~“TermEnvironRec;
= RECORD

: INTEGER;

: INTEGER;

H INTEGER;

: INTEGER;

: Point;

: Rect;

: Point;

: Rect;

{ bit masks for flags field of terminal record }

tmInvisible =
tmSaveBeforeClear =
tmNoMenus =
tmSaveBeforeDV =

{ values returned from initTM
tmNoErr
tmNoTools

{ selection types }
selTextNormal
selTextBoxed
selGraphicsMarquee
selGraphicsLasso

{ search modifiers }
tmSearchNoDiacrit
tmSearchNoCase

}

1;

2;

4;

8;

= 0;
= 8;
= 1;

= 2;
= 4;
= 8;
= 256;
= 512;

{ terminal types in TermEnvironRec data structure }

tmTextTerminal
tmGraphicsTerminal

Apple Confidential

= 1;
= 2;

Chapter 4: Terminal Manager °

113



{ Choose return values

chooseDisaster = -2;
chooseFailed = -1;
chooseAborted = 0;
chocoseOKMinor = 1;
chooseOKMa jor = 2;
chooseCancel = 3;
Searching
rectangle bounded by (n,m) (o,p)
n1m107p
row n (,-D¢L,-D
column m -1, m(-1,1)
rows n-0 (inclusive) (n,-1) (o,-1)
column m-p (inclusive) (-1, m) (-1, p)
anywhere -1,-DC,-D
Terminal Manager routine selectors:
InitTM .EQU 769 TMNew
TMDispose .EQU 771 TMKey
TMUpdate .EQU 773 TMPaint
TMActivate .EQU 775 TMResume
TMClick .EQU 777 TMStream
TMMenu .EQU 779 TMReset
TMClear .EQU 781 TMResize
TMGetSelect .EQU 783 TMGetLine
TMSetSelection .EQU 785 TMScroll
TMIdle .EQU 787 TMValidate
TMDefault .EQU 789 TMSetupPreflight

114  Chapter 4: Terminal Manager

}

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

770

772

774

776

778

780

782

784

786

788

790

Special K Beta Draft, Apple Confidential



C

TMSetupSetup .EQU
TMSetuplItem .EQU
TMGetConfig .EQU

TMInt1ToEnglish .EQU

TMGetProcID .EQU
TMSetRefCon .EQU
TMSetUserData .EQU
TMGetVersion .EQU
TMAddSearch .EQU
TMClearSearch .EQU

TMGetTermEnvirons .EQU
TMEvent .EQU
TMCountTermKeys .EQU

TMSetupPostflight .EQU

Apple Confidential

791

793

795

797

799

801

803

805

807

809

811

813

815

817

TMSetupFilter .EQU
TMSetupCleanup .EQU
TMSetConfig .EQU

TMEnglishToIntl .EQU

TMGet ToolName .EQU
TMGetRefCon .EQU
TMGetUserData .EQU
TMGetTMVersion .EQU
TMRemoveSearch .EQU
TMGetCursor .EQU
TMChoose .EQU
TMDoTermKey .EQU

TMGet IndTermKey .EQU

Chapter 4: Terminal Manager

792

794

796

798

800

802

804

806

808

812

814

816

115



TMSetupPostflight .EQU 817

116  Chapter 4: Terminal Manager Special K Beta Draft, Apple Confidential



Chapter 5 File Transfer Manager

IV EDIT DIEW  MENU
il /< Z




About this chapter -

This chapter describes the File Transfer Manager, which is the Special K manager that allows
applications to implement file transfer services without having to take into account underlying file
transfer protocols. This chapter starts out by describing fundamental concepts about the File
Transfer Manager. Then it describes the file transfer record, which is the most important record to
the File Transfer Manager. After a detailed functional description of routines the Terminal Manager
provides, this chapter finishes with a summary you can use as a quick reference to routines and data
structures.

Often refered to in this chapter is the term “your application®, which is the application you are
writing for the Macintosh, and which will implement communication services for users. Be careful
not to confuse the services your application is requesting with the services that tools provide.

To use the File Transfer Manager, you need to be familiar with the following topics.
®  Resource Manager (see Inside Macintosh, Volumes: 1, IV, V)

B File Manager (see Inside Macintosh, Volumes: I1, IV, V)

®  Standard File (see Inside Macintosh, Volumes: I, IV)

& Connection Manager (see in this manual Chapter 3, “Connection Manager”)

About the File Transfer Manager

By using File Transfer Manager routines, your application can send files to or receive files from
another application without having to take into account underlying file transfer protocols. File
_transfer tools, which are discussed in Chapter 11, “Writing File Transfer Tools,” are responsible for
implementing file transfer services according to specific protocols.

To the application, the File Transfer Manager provides a basic abstraction of a file transfer
between two entities. These entities could be different processes running on the same CPU or one
process running on a Macintosh and the other running on a mainframe (or any other type of
computer). :

Here's what happens inside the File Transfer Manager. An application makes a request of the
File Transfer Manager when it needs it to do something, such as send a file. The File Transfer
Manager then sends this request on to one of the tools it manages. The tool, in turn, takes the
request and executes the service according to the specifics of the file transfer protocol that is
implemented on the data connection. (You can find information about connections in Chapter 3,
“Connection Manager”) Once the tool has finished, it passes back to the application any relevant
parameters and return codes.

Figure 5-1 shows the data flow between into and out of the File Transfer Manager.

118  Special K Beta Draft Apple Confidential



Figure 5-1: Data flow into and out of the File Transfer Manager.

Communications
Toolbox

—!

. Data connection to
Serg:;ﬁzwe other entity

¥
8
g
g

The most important data structure maintained by the File Transfer Manager is the file transfer
record, which is where all the specifics about a file transfer are stored. For example, the file transfer
record might show that the File Tranfer Manager should use the XMODEM tool to perform file
transers, and that the tool should not display any custom menus while transfering files.

Two reasons why the file transfer record is so important to the File Transfer Manager are that
its existence allows for both protocol-independent routines and multiple instances of the same
tool. Protocol-independent routines are what allow applications to use File Transfer Manager
services without regard for the underlying communications protocols. In other words, when an
application wants to transfer a file from a remote entity, it tells the File Transfer Manager to get
the file and the File Transfer Manager figures out exactly how to implement the transfer for a
specific protocol. Multiple instances of the same tool allows the same tool to be used by different
processes at the same time, like in a MultiFinder environment, or by different threads in a given
application. The file transfer record is described in greater detail later in this chapter.

Besides providing basic file transfer routines, the File Transfer Manager includes routines that make
it easy for applications to configure a file transfer tool, either through presenting the user with a
dialog box or by interfacing directly with a scripting language. The File Transfer Manager also
contains routines that make it easier for you to localize your applications into foreign languages.

Apple Confidential Chapter 5: File Transfer Manager

119



You can write applications that use the File Transfer Manager with other parts of Special K to
create a communications application with basic connection, terminal emulation, and file transfer
capabilities. Or, you can use the Special K File Transfer Manager and substitute some other
connection service and terminal emulation service in place of Special K’s Connection Manager and
Terminal Manager. You can also write your own file transfer tool and add it to the File Transfer
Manager. (This procedure is discussed in Chapter 8, *Fundamentals of Writing Your Own Tool.")
Regardless of which you choose, your application should be able to handle different file transfer
tools such that users can change tools and still be able to use your program.

The file transfer record

The file transfer record describes the file transfer; it contains information like whether to send
data or receive data, and where to find the routines that perform the actual sending and receiving of
files. The file transfer record also contains pointers to File Transfer Manager internal data
structures. Most of the fields in the File Transfer record are filled in when an application calls
FTNew, which is described later in this chapter.

Because the context for a given file transfer is maintained in a file transfer record, an application
can use the same tool more than once at the same time. This allows an application to, amongst
other things, perform multiple file transfers (on separate data connections) by creating multiple file
transfer records. How to create a file transfer record is described under “Creating a file transfer
record” on page nn.

File transfer record data structure

A Important Your application, in order to be compatible with future releases of the File
Transfer Manager, should not directly manipulate the fields of the terminal
record. The File Transfer Manager provides routines that applications and
tools can use to change the fields in the file transfer record. &

TYPE

FTHandle = “FTPtr;

FTPtr = ~“FTRecord;

FTRecord = PACKED RECORD
proclD H INTEGER;
flags : LONGINT;
errCode : FTErr;
refCon : LONGINT;
userData : LONGINT;
defProc : ProcPtr;

120  Special K Beta Draft Apple Confidential



config : Ptr;

oldConfig : Ptr;
environsProc : ProcPrt;
reservedl : LONGINT;
reserved2 : LONGINT;
Private : Ptr;
SendProc H ProcPtr;
RecvProc : ProcPtr;
WriteProc : ProcPtr;
ReadProc H ProcPtr;
owner : WindowPtr;
Direction : INTEGER;
theReply : SFReply:
WritePtr : LONGINT;
ReadPtr : LONGINT;
TheBuf : ~“char;
BufSize : LONGINT;
autoRec : Str255;
attributes : INTEGER;
END;
procID

procID is the file transfer tool ID. This value is dynamically assigned by the Terminal Manager.

flags

£1ags is a bit field that your application can use to determine when a file transfer has completed
and if the file transfer was successful. Valid values are:

CONST
ftIsftMode = 1;
ftNoMenus = 2;
ftQuiet = 4;
ftSucc = ' 128;

FTISFTMode indicates whether or not a file transfer is in progress. A tool will tum this bit on
just prior to performing the actual file transfer and will tum it off when the file transfer stops.

FTNoMenus indicates that your application should not display any custom menus. This bit is
typically used when your application is interfacing with a scripting language.

Apple Confidential . - Chapter 5: File Transfer Manager 121



FTQuiet indicates that your application should not display any dialog boxes to alert the user of

error conditions. This bit is typically used when your application is interfacing with a scripting e
language. S
FTSucc is a bit that is set by the file transfer tool when a file transfer completes successfully.

Your application can first check to see if FTIsFTMode toggles from on to off to find out when

the file transfer has completed. Then, it can check FTSucc to see if the file transfer was
completed successfully .

The other bits of £1ags are reserved by Apple Computer, Inc.

errCode

errCode contains the last error reported to the File Transfer Manager. If errCode is negative,
an operating system error occurred. If errCode is positive, a File Transfer Manager error occured.
Valid values are:

CONST .
ftNoErr = 0;
ftRejected = 1;
ftFailed = 2;
ftTimeOut = 3;
ftTooManyRetry = 4;
ftRemoteCancel = 6;
ftWrongFormat = 71;
ftNoTools = 8;
ftUserCancel = 9;

refCon

refConisa LONGINT for use by the application. In a multiple-file-transfer-record
environment, refCon is used to distinguish one file transfer record from another.

userData

userData is a four-byte field that the application can use for any purpose.

defproc

defproc isa pointer to the file transfer tool's main definition procedure, which is contained in a
code resource of type £de £.

122 Special K Beta Draft - ' Apple Confidential e



(ﬁi;

config

config isa pointer to a data block that is private to the file transfer tool. It can contain
information like retry and timeout values, but this varies from tool to tool. You can find a
description of con £ ig in Chapter 8, “Fundamentals of Writing Your Own Tool.” However,
application developers do not need to be concerned with this field; the file transfer tool your
application selects will fill in config. Tosee how this is done, read *Selecting a file transfer tool”

on page nn.

oldConfig

0ldConfig is a pointer to a data block that is private to the file transfer tool and contains an “old” version of
configq. This data block is used to implement “undo” operations.

environsProc

environsProc is a pointer to a routine in your application that the file transfer tool can call to obtain a
record describing the connection environment. For more information about environsProc, see “Getting
connection environment information” on page nn.

reservedl and reserved2

reservedl and reserved2 are fields that are reserved for the Terminal Manager.

private

private is a pointer to a data block that is private to the file transfer tool. Your application should not use
this field.

SendProc

SendProc is a pointer to a function that the application will use to send data. This function is
discussed under “Sending data” on page nn.

RecvProc

RecvProc isa pointer to a function that the application will use to request data . This function
is discussed under “Receiving data” on page nn.

WriteProc

WriteProc isa pointer to a function in your application that writes data to a file. The file
transfer tool checks this field to see if your application has a WriteProc. If it does, the tool lets
the Wr it eProc handle writing data. If NIL, the file transfer tool performs standard file
operations (which is writing to a disk).

This function can be used to perform post-processing upon a file being received, it is discussed
under*Writing data” on page nn.

Apple Confidential Chapter 5: File Transfer Manager 123



ReadProc

ReadProc isa pointer to a function in your application that reads data from a file. The file
transfer tool checks this field to see if your application has 2a ReadProc. If it does, the tool lets S
the ReadProc handle writing data. If NI L, the file transfer tool performs standard file
operations (which is reading data from a disk).

This function can be used to perform preprocessing upon a file being sent; it is discussed under
“Reading data” on page nn.

owner
owner is'a pointer to a window, relative to which the file transfer status dialog box is positioned.
If this field is NI L, the File Transfer Manager will not display a file transfer status dialog box.

Direction

Direction is a field that indicates whether a file is being sent to or received from another entity.
Your application will pass this field as a parameter to FTStart (described on page nn). Valid

values in this field are:
CONST
ftReceiving = 0;
ftTransmitting = 1;
theReply

theReplyisan SFReply datastructure. The SFReply data structure should contain
both the working directory reference number of the default volume for files being sent or received,
as well as the name of the file to be sent (when sending a file) or a file name to use (when receiving
a file). If the file transfer protocol already specifies the received file name, pass an empty string for
theReply.filename.

WritePtr, ReadPtr, TheBuf, and BufSize

WritePtr, ReadPtr, TheBuf, and BufSize are properties of a particular file transfer tool.

autoRec

autoRec is a string that represents the start sequence that a remote entity sends, causing the
Macintosh to enter a file reception mode. If this string is of length 0, remote-entity-initiated file
transfers are not supported by the file transfer tool. It is the application’s responsibility to make
use of this field by searching the data stream for this sequence of characters. The Connection
Manager, which is described in Chapter 3, “Connection Manager,” provides routines your application
can use to search an incomming data stream for a specified sequence of characters.

124  Special K Beta Draft Apple Confidential



«

attributes

attributes is a field that describes the file transfer protocol supported by the file transfer
tool. The bits in attributes are: )

CONST
ftSameCircuit T = 1;
ftSendDisable = 2;
ftReceiveDisable = 4;
ftTextOnly o= 8;

FTSameCircuit indicates whether the file transfer tool creates its own data connection or if it
expedts the application to provide the connection. If this bit is set, the file transfer tool uses the
data connection provided by the application. This field is set by the file transfer tool.

FTSendDisabled indicates that the file transmission is not supported by the file transfer tool.
This bit is used with protocols that do not support sending files and is set by the file transfer tool.

FTReceiveDisabled indicates that a file reception is not supported by the file transfer tool.
This bit is used with protocols that do not support receiving files and is set by the file transfer tool.

FTTextOnly indicates that the file transfer tool can handle sending or receiving only text files
(files of type TEXT or data forks); the tool will not handle resource forks . This field is set by the
file transfer tool.

The other bits of this field are reserved by Apple Computer, Inc.

Apple Confidential Chapter 5: File Transfer Manager

125



File Transfer Manager routines

This section describes the routines that tools and applications can use to access File Transfer
Manager services.

InitFT / nn FTGetProcID / nn
FTNew / nn : CMDefault / nn
FTValidate / nn FTChoose / nn
FTSetupPreFlight / nn FTSetupSetup / nn
FTSetupFilter / nn FTSetupItem / nn
FTSetupCleanup / nn FTSetupPostFlight / nn
FTGetConfig / nn FTSetConfig / nn
FTStart / nn FTExec / nn

FTAbort / nn FTCleanup / nn
FTDispose / nn FTActivate / nn
FTResume / nn FTEvent / nn

FTMenu / nn FTIntlToEnglish / nn
FTEnglishToIntl / nn - FTSetRefCon / nn
FTGetRefCon / nn FTSetUserData / nn
FTGetUserData / nn FTGetToolName / nn
FTGetVersion / nn FTGetFTVersion / nn
ReadProc / nn SendProc / nn
RecvProc / nn WriteProc / nn

MyGetConnEnvirons / nn

126  Special K Beta Draft Apple Confidential



Preparing for a file transfer

Before your application can start a file transfer, itmust first initialize the File Transfer Manager
(InitTM), find out the procID of the tool it requires (FTGet Proc ID), create a file transfer
record (FTNew), and then configure the file transfer tool (TMChoose).

InitFT Initializing the File Transfer Manager
InitFT initializes the File Transfer Manager. Your application should call this routine
after calling the standard Macintosh toolbox initialization routines. If your application
uses either the Communications Resource Manager or the Special K Utilities, it should
initialize them before initializing the File Transfer Manager.

Procedure InitFT;

Description InitFT retums an operating system error code if appropriate. If no tools are installed in
the File Transfer Manager, it returns £t NoTools. Your application is responsible to
check for the presence of the Communications Toolbox before calling this function.

( FTGetProcID Getting current procID information
Your application should call FTGetProcID just before creating a new file transfer
record to find out the procID of a tool.

Function FTGetProcID (name: STR255): INTEGER;

Description name specifies a file transfer tool. If a file transfer tool exists with the specified name,

' its tool ID is returned. If name references a nonexistent file transfer tool, -1 is returned.

FTNew Creating a file transfer record

(’ Y Apple Confidential

Before your application can transfer files, it must first create a file transfer record.
FTNew creates a new file transfer record, fills in the fields that it can based upon the
parameters that were passed to it, and returns a handle to the new record in FTHandle.
FTNew automatically makes two calls to FTDefault (which is described on page
nn) to fill in configand o1dConf ig. The File Transfer Manager then loads the file
transfer tool’s main definition procedure, moves it high in the application heap, and locks
it. If memory constraints prevent a new file transfer record from being created, FTNew
passes back NIL in FTHandle.

Chapter 5: File Transfer Manager 127



Function

Description

FTNew (procID: INTEGER; flags: LONGINT; theSendProc:
ProcPtr; theRecvProc: ProcPtr; theReadProc: ProcPtr;
theWriteProc: ProcPtr; theEnvironsProc: ProcPtr; owner:
WindowPtr; theRefCon: LONGINT; theUserData: LONGINT) :
FTHandle;

ProcID specifies the file transfer tool the File Transfer Manager will use to transfer
data.

flags isa bit field with the following masks:

CONST
FTIsFTMode = 1;
FTNoMenus = 2;
FTQuiet = 4;
FTSucc = 128;

FTIsFTMode indicates whether or not a file transfer is in progress. A tool will tum
this bit on just prior to performing the actual file transfer and will turn it off when the
file transfer stops.

FTNoMenus indicates that your application should not display any custom menus.
This bit is typically used when your application is interfacing with a scripting language.

FTQuiet indicates that your application should not display any dialog boxes to alert
the user of error conditions. This bit is typically used when your application is interfacing
with a scripting language.

FTSucc is a bit that is set by the file transfer tool when a file transfer completes
successfully.

Your application can first check to see if FTIsFTMode toggles from on to off to find
out when the file transfer has completed. Then, it can check FTSucc to see if the file
transfer was completed successfully .

The other bits of £1ags are reserved by Apple Computer, Inc.
theSendProc is a pointer to a routine that the application uses to send data.
theRecvProc is a pointer to a routine that the application uses to request data.

ReadProc isa pointer to a routine in your application that reads data from a file. The
file transfer tool checks this field to see if your application has a ReadProc. If it does,
the tool lets the ReadP roc handle writing data. If NIL, the file transfer tool performs
standard file operations (which is reading data from a disk).

This function can be used to perform preprocessing upon a file being sent; it is
discussed later under “Routines your application provides” on page nn.

128  Special K Beta Draft * Apple Confidential



WriteProc isa pointer toa routine in your application that writes data to a file. The
file transfer tool checks this field to see if your application hasa WriteProc. Ifit
does, the tool lets the Wr it eProc handle writing data. If NI L, the file transfer tool
performs standard file operations (which is writing to a disk).

This function can be used to perform post-processing upon a file being received; it is
discussed later under “Routines your application provides” on page nn. -

environsProc is a pointer to a routine that your application can call when it wants
to get information about the connection. Read Chapter 3, “Connection Manager” to find
outabout environsProc.

owner is a pointer to a window, relative to which the file transfer status dialog box is
positioned. If this field is NI L, the File Transfer Manager will not display a file transfer
status dialog box.

theRefCon isa LONGINT for use by the application. In an environment with more
than one file transfer record, an application can use theRe£Con to distinguish one file
transfer record from another.

theUserData is the file transfer record reference value field, which the application can
use for any purpose.

CMDefault

Procedure

Description

Initializing and validating the file transfer record

CMDefault fills the specified configuration record with the default configuration
specified by the connection tool. This procedure is called automatically by CMNew when
filling in the config and 01dCon£1ig fields in 2 new connection record.

FTDefault (VAR theConfig: Ptr; procID: INTEGER; allocate:
BOOLEAN) ;

Ifallocate is TRUE, the tool allocates space for theCon£fig in the current zone.

FTValidate

Function

Description

Apple Confidential

FTValidate validates the configuration and private data records of the file transfer
record by comparing the fields in the file transfer record with the values that are specified
in the file transfer tool. This routine is called by FTNew and FTSet Config after they
have created a new file transfer record to make sure that the the record contains values
with those specified by the file transfer tool.

FTValidate (hFT: FTHandle): BOOLEAN;

If the validation fails, FALSE is returned and the configuration record is filled with
default values.

Chapter 5: File Transfer Manager ~ 129-



FTChoose

Function

Description

Configuring a file transfer tool

An application can configure a file transfer tool three ways. The easiest and most
straightforward way is by calling the FTChoose routine. This routine presents the user
with a dialog box similar to the one shown in Figure 5-2. The second way that an
application can configure a terminal tool is by presenting the user with a custom dialog
box. This method is much more difficult and involves six routines, which are described
below (example code is provided in Appendix B, “Useful code samples” to help you
implement this feature). The third way that your application can configure a terminal
tool is by interfacing directly with a scripting language. This method allows your
application to bypass user interface elements.

To present the user with the standard tool-selection dialog box, your application
needs to call FTChoose.

FTChoose (VAR hConn:ConnHandle; where: Point; idleProc:
ProcPtr): INTEGER;

where is a point in global coordinates specifying the top-left comer of where the dialog
box should appear. It is recommended that your application place the dialog box as close
to the top and left of the screen as possible.

idleProc is a procedure that the File Transfer Manager will automatically call every
time your application loops through the setup dialog box filter procedure.

FTChoose will present the user with a dialog box that looks similar to the one shown
in Figure 5-2.

s Figure 5-2 The standard tool-selection dialog box

File Transfer Configuration

Protocol:

Method: [_XMODEM Text Transfer Options:

Transfers data file, converting . Reoeived File Options
line endings between computers. g

Files can be opened by the
application “TeachText ”

Creator D:

Select...

Jtise Menamer 360t by remesie cogsier.

130 Special K Beta Draft Apple Confidential o



FTChoose will return one of the following values:

CONST

-2;
-1;
0;
1;
2;
3;

chooseDisaster
chooseFailed
chooseAborted
chooseOKMinor
chooseOKMa jor
chooseCancel

chooseDisaster means that the choose operation failed and destroyed the file
transfer record.

chooseFailed means that the choose operation failed and the file transfer record
was not changed.

chooseAborted means that the user tried to change the file transfer method while
the transfer was still in progress, thereby failing to complete the FTChoo se operation.

chooseOKMinor means that the user selected OK in the dialog box, but did not
change the file transfer tool being used.

chooseOKMa jor means that the user selected OK in the dialog box and also changed
the file transfer tool being used. The old file transfer handle is destroyed by the File
transfer Manager, by calling FTDispose (the file transfer is closed down and all
pending reads and writes are terminated) and a new file transfer handle is retumed in

hConn.

chooseCancel means that the user selected Cancel in the dialog box.

Custom configuration of a file transfer

To present the user with a custom tool-configuration dialog box, your application needs to call a
series of six File Transfer Manager routines: FTSetupPreflight, FTSetupSetup,
FTSetupItem FTSetupFilter, FTSetupCleanup, and FTSetupPostflight.
Using these routines is more involved than calling FTChoose, but they provide your application
with much more flexibility. There is a code sample in Appendix B, “Useful code samples” that
shows how an application calls these routines.

To build a list of file transfer tools, use the routine CRMGet IndToolName, which is
described in Chapter 4, “Communications Resource Manager.”

Apple Confidential Chapter 5: File Transfer Manager

131



FTSetupP:eflight

Function

Description

FTSetupPreflight returns a handle to a dialog item list from the file transfer tool
that your application should append to the configuration dialog box. (Your application can
use AppendDITL which is discussed in Chapter 7, “Special K Utilities.”)

The file transfer tool can use FTSetupPreflight toallocate a block of private
storage, and to store the pointer to that block in magicCookie. This value,
magicCookie, should be passed to the other routines that are used to setup the
configuration dialog box.

FTSetupPreflight (procID: INTEGER; VAR magicCookie:
LONGINT) : Handle;

procID is the ID for the file transfer tool that is being configured. Your application
should get this value by using the FTGet Proc ID routine, which is discussed later in
this chapter.

The refcon of the custom dialog box should point to the proc ID of the tool being
configured.

magicCookie should be passed to the other routines that your application uses to
setup the configuration dialog box

FTSetupSetup

Procedure

Description

FTSetupSetup tells the file transfer tool to set up controls (like radio buttons or
check boxes) in the dialog item list returned by FTSetupPreflight.

FTSetupSetup (procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR magicCookie: LONGINT) ;

procID is the ID for the file transfer tool being configured. Your application should get
this value by using the FTGet ProcID routine, which is discussed later in this chapter.

theCon£ig is the pointer to the configuration record for the tool being configured.
count is the number of the first item in the dialog item list appended to the dialog box.
theDialog is the dialog box performing the configuration.

magicCookie is the value returned from the FTSetupPreflight.

132 Special K Beta Draft Apple Confidential



«

FTSetupFilter

Function

Description

FTSetupFilter should be called as a filter procedure prior to the standard modal
dialog box filter procedure for the configuration dialog box. This routine allows file
transfer tools to filter events in the configuration dialog box.

FTSetupFilter (procID: INTEGER; theConfig: Ptr;
count : INTEGER; theDialog: DialogPtr; VAR theEvent:
EventRecord; VAR theItem: INTEGER; VAR magicCookie:
LONGINT) : BOOLEAN;

procID is the ID for the file transfer tool that is being configured. Your application
should get this value by using the FTGet Proc ID routine, which is discussed later in
this chapter.

count is the number of the first item in the dialog item list appended to the dialog box.
theConfig is the pointer to the configuration record for the tool being configured.
theDialog is the dialog box performing the configuration.

theEvent is the event record for which filtering is to take place.

théIt em can return the appropriate item clicked on in the dialog box.
magicCookie is the value retumed from FTSetupPreflight.

If the event passed in was handled, TRUE is returned. Otherwise, FALSE indicates that
standard dialog box filtering should take place.

FTSetupItem

Procedure

Description

Apple Oonﬁdénlial

FTSetupItem processes mouse events for controls in the custom configuration
dialog box.

FTSetupItem(procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR item: INTEGER; VAR
magicCookie: LONGINT);

procID isthe ID for the file transfer tool being configured. Your application should get
this value by using the FTGet ProcID routine, which is discussed later in this chapter.

- theConfig is the pointer to the configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog box.
theDialog is the dialog box performing the configuration.
item is the item clicked on in the dialog box. This value can be modified and sent back.

Chapter 5: File Transfer Manager 133



magicCookie is the value returned from FTSetupPreflight.

FTSetupCleanup

FTSetupCleanup disposes of any storage allocated in FTSetupPreflight
and performs any other dean-up operation.

Procedure FTSetupCleanup (procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR magicCookie: LONGINT);

Description procID is the ID for the file transfer tool that is being configured. Your application
should get this value by using the FTGet ProcID routine, which is discussed later in
this chapter.

theConfig is the pointer to the configuration record for the tool being configured.
count is the number of the first item in the dialog item list appended to the dialog box.
theDialog is the dialog box performing the configuration.

magicCookie is the value retumed from FTSetupPreflight.

FTSetupPostflight

FTSetupPostflight either shortens or disposes of the dialog box. It will close the
tool file if it is not being used by any other sessions.

Procedure FTSetupPostflight (procID:INTEGER) ;

Description procID is the ID for the file transfer tool that is being configured. Your application
should get this value by using the FTGetProcID routine, which is discussed later in
this chapter.

Scripting language interface

Your application does not have to rely on a user making selections from dialog boxes in order to
configure a file transfer tool. FTGetConfig and FTSetConfig provide the function that
your application needs to interface with a scripting language.

134 Special K Beta Draft Apple Confidential



FTGetConfig

Function

Description

FTGetConfig returns a null-terminated string (an example of which is shown after the
description of the next routine) containing tokens that fully describe the configuration of
the file transfer record.

FTGetConfig (hFT: FTHandle): Ptr;

If an an error occurs, FTGet Con£ ig will retun NIL. It is the responsibility of your
application to dispose of Pt r.

FTSetConfig

Function

Description

FTSetConfig passes a null-terminated string to the file transfer tool for parsing (an
example of which is shown under “A sample null-terminated configuration string”) that is
pointed to by thePt r. The string, which can be any length, must contain tokens that
describe the configuration of the file transfer record, and is parsed from left to right.

FTSetConfig (hFT: FTHandle; thePtr: Ptr): INTEGER;

Items that are not recognized or relevant are ignored; this causes FTSet Configto

abort parsing the string and to return the character position where the error occurred. If
parsing is successfully completed, FTSetConfig retums noErr. FTSetConfig
may also return -1 to indicate a general problem with processing the configuration string..

The parsing operation is the responsibility of the individual tool.

A sample null terminated configuration string

InterCharDelay 0 InterLineDelay 0 WordWrap
False Ending CR \O

Transferring

files

Once your application has performed all of the necessary preparation for a file transfer calling
initFT, creating a file transfer record with FTNew, and choosing a file transfer tool with
FTChoose (or equivalent means), it is ready to start transfering files. There are two steps that
your application must take to do this: first, it must call FTStart to open the file and initialize

tool-private variables;

second, it must call FTExec to process a packet of data every time it goes

through its main event loop.

Apple Confidential

Chapter 5: File Transfer Manager 135



FTStart

Besides opening the file that is going to be involved in the file transfer and initializing
tool-private variables, FTStart also sends or receives the file transfer’s first packet.

The appearance of a status dialog box is controlled by the value in owner in the file
transfer record.

The code that controls the actual sending, receiving, reading, and writing of data is the
responsibility of your application. Your application specifies these procedures when it
creates the file transfer record. A description of the parameters that will be passed to
these routines is discribed later in this chapter under “Your application’s send, receive, read,
and write functions” on page nn.

Function FTStart (hFT: FTHandle, direction:INTEGER,
fileInfo:SFReply): FTErr;

Description Once the file transfer has started, your application needs to call FTExec every time that
it goes through its main event loop. This gives the tool time to send and receive a packet
of data.

There is sample code in Appendix B, “Useful code samples” that shows you an
effective strategy for calling FTExec.

FTExec
Your application should call FTExec every time it goe through its main event loop to give
the file transfer tool time to send and receive data.

Procedure FTExec (hFT: FTHandle);

FTAbort Stopping a file transfer

FTAbort aborts afile transfer in progress.

136 Special K Beta Draft Apple Confidential



Function

FTAbort (hFT: FTHandle): FTErr;

FTDispose  Disposing of a file transfer record
FTDispose disposes of the file transfer record and all associated data structures. Any
file transfer in progress (as specified by the file transfer record) is aborted.

Procedure FTDispose (hFT: FTHandle);

FTCleanup Cleaning up after a file transfer
FTCleanup is not typically called by an application. The File Transfer Manager uses this
call internally to close the file and to deallocate the memory that had been allocated for
the file transfer.

Function FTCleanup (hFT: FTHandle; now: BOOLEAN): FTErr;

Handling events

The File Transfer Manager event processing routines provide useful extensions to the Macintosh
Toolbox Event Manager. The section below explains the three procedures that Special K provides:
FTActivate, FTResume,and FTEvent. There is example code in Appendix B, “Useful code
samples” that shows how an application can determine if an event needs to be handled by one of

these routines.

FTActivate

Procedure

Description

Apple Confidential

Activate events

FTActivate processes an activate or deactivate event (for instance, installing or
removing a custom tool menu) for a window that the file transfer is associated with.

FTActivate (hFT: FTHandle; act: BOOLEAN);

If act is TRUE, an activate event is to be processed. Otherwise, a deactivate event is to
be processed.

Chapter 5: File Transfer Manager 137



FTResume Resume events

FTResume is called in response to the application receiving a suspend or a resume
event. The file transfer tool may decide to change timeout values or other parameters
depending on whether or not the application is in the foreground.

Procedure FTResume (hFT: FTHandle; res: BOOLEAN);

. FTMenu Menu events

Your application should call FTMenu in response to a menu selection from a menu that is
installed by the file transfer tool.

Function FTMenu (hFT: FTHandle; menulID: INTEGER; item: INTEGER) :
BOOLEAN; ,
Description FTMenu returns FALSE if the menu item was not handled by the file transfer tool.

FTMenu returns TRUE if the file transfer tool did handle the menu item.

FTEvent Other events

FTEvent is called in response to receiving an event for a window that belongs to the
file transfer tool. Windows (or dialog boxes) that belong to the File Transfer Manager
should have a file transfer handle stored in refCon of windowRecord.

Procedure FTEvent (hFT: FTHandle; theEvent: EventRecord);

Localizing strings

Special K provides two routines that make it easier to localize strings.

FTIntlToEnglish

FTInt1ToEnglish converts a configuration string that is pointed to by inputPtr
in the given language to an American English configuration string that is pointed to by
outputPtr.

138  Special K Beta Draft Apple Confidential



Function

Description

FTIntlToEnglish (hFT: FTHandle; inputPtr: Ptr; VAR
outputPtr: Ptr; language: INTEGER): OSErr;

language specifies the language from which the string is to be converted.
The file transfer tool allocates space for outputPtr.

If the language specified is not supported, noErx is still returned, but out putPtr is
NIL. -

The function returns an operating system error code if any intemnal errors occur.

FTEnglishToIntl

Function

Description

FTEnglishToIntl converts a configuration string that is pointed to by inputPtr
in English to a configuration string in the given language that is pointed to by
outputPtr.

FTEnglishToIntl (hFT: FTHandle; inputPtr: Ptr; VAR
outputPtr: Ptr; language: INTEGER): OSErr;

language specifies the language to which the string is to be converted.
The file transfer tool allocates space for outputPtr.

If the language specified is not supported, noErr is still returned, but out putPtr is
NII.

The function returns an operating system error code if any internal errors occur.

Miscellaneous routines

FTSetRefCon

Procedure

FTSetRefCon sets the file transfer record's reference constant to the given value.

FTSetRefCon (hFT: FTHandle; rC: LONGINT) ;

FTGetRefCon

Apple Confidential

FTGetRefCon returns the file transfer record’s reference constant.

Chapter 5: File Transfer Manager 139



Function

FTGetRefCon (hFT: FTHandle): LONGINT;

FTSetUsexrData

FTSetUserData sets the file transfer record's use rDat a field to the given value. It
is very important that your application uses this routine to change the value of the
userData field instead of changing it directly.

Procedure FTSetUserData (hFT: FTHandle; uD: LONGINT);
FTGetUserData
FTGetUserData returns the file transfer record’s userbata field.
Function FTGetUserData (hFT: FTHandle) : LONGINT;
FTGetToolName
FTGet ToolName returns in name the name of the tool specified by procID If
procID references a file transfer tool that does not exist, the File Transfer Manager will
set name 10 an empty string. -
Procedure FTGetToolName (procID: INTEGER; VAR name: STR255);
FTGetVersion
FTGetVersion retumns a handle to a relocatable block that contains the same
information as is contained in the £ver resource. The file transfer tool must have the
same ID as that specified by FTHand1e. This handle is nota resource handle.
Function FTGetVersion (hFT: FTHandle): Handle;
FTGetFTVersion
FTGetFTVersion retumns the version number of the File Transfer Manager.
Function FTGetFTVersion: INTEGER;

140  Special K Beta Draft : Apple Confidential



Routines your application provides

Your application is responsible for providing routines it will use to read, send, receive, and write data
during a file transfer. Your application might also need to provide a routine that can provide
information to the file transfer tool about the connection environment. When your application
creates a new file transfer record, it specifies pointers to these routines.

Both sending and receiving files is a two-step process. In the case of sending a file, your
application must first read the data from a file into a buffer (with ReadP roc) and then send it to
the remote application (with SendProc). Inthe case of receiving a file, your application must
first read the remote application’s data into a buffer (with RecvProc) and then write it to disk
(with WwriteProc).

Of the five routines below, your application must include the send and receive routines. The
other routines are optional.

ReadProc Reading data

Function ReadProc (VAR count: LONGINT; bufPtr: Ptr; refCon:
LONGINT) : OSErr;

N Description count is the number of bytes to read into the buffer. After ReadProc has
( completed, count must contain the actual number of bytes that were read.

bufPtr points to the buffer into which the data was read.
refCon is the reference constant of the file transfer record.

ReadProc must return an error code when appropriate.

SendProc Sending data

Function SendProc (thePtr: Ptr; theSize: LONGINT; refCon: LONGINT;
channel: INTEGER) : LONGINT;

Description thePtr isa pointer to a block of data in memory that is to be sent.
theSize is the length of that block.
refCon is the reference constant of the file transfer record.

channel specifies the data channel that the file transfer tool can use. Your application
should specify one of the following values for channel: CMData, CMCnt1, or
CMAttn.

C Apple Confidential Chapter S: File Transfer Manager 141



SendProc must return the actual number of bytes that were sent.

Sample send routine ~

FUNCTION FTSendProc(thePtr : Ptr; theSize : LONG‘INT; e
refcon : LONGINT; channel:

INTEGER; flags: INTEGER) : LONGINT;

VAR

theWindow : WindowPtr;
pWindow : WindowP;

theErr : CMErr;
EOM : BOOLEAN;

BEGI.N
theWindow := WindowPtr(refcon);
theConn:= GethConn(theWindow);
FTSendProc := O0;
IF theConn= NIL THEN
Exit (FTSendProc);

IF WindowPeek (theWindow) ~.windowKind <> userKind THEN
Exit (FTSendProc);

pWindow := WindowP (GetWRefCon(theWindow));
theTerm := pWindow”.hTerm;
theConn := pWindow".hConn;

theErr := CMWrite(theConn, thePtr, theSize, channel, FALSE, NIL, O,
flags);

FTSendProc := theSize;
END;

RecvProc Receiving data

Function RecvProc (thePtr: Ptr; theSize: LONGINT; refCon: LONGINT;
channel: INTEGER) : LONGINT;

Description thePtr isa pointer to a block of data in memory where the incomming data is to be-
placed.
theSize is the length of that data.
refCon is the reference constant of the file transfer record.

channel specifies the data channel that the file transfer tool can use. Your application
should specify one of the following values for channel: CMData, CMCnt1, or
CMAttn.

142 Special K Beta Draft Apple Confidential



RecvProc must return the actual number of bytes received.

( Sample receive routine

FUNCTION FTReceiveProc(thePtr : Ptr; theSize : LONGINT; refcon : LONGINT;

flags: INTEGER)

channel: INTEGER; VAR

: LONGINT;

: WindowPtr;

: WindowP;

CMErr;

VAR
theWindow
pWindow
theErr :
EOM : BOOLEAN;
BEGIN

theWindow := WindowPtr(refcon);
theConn:= GethConn (theWindow);
FTReceiveProc := O0;
IF theConn= NIL THEN

Exit (FTReceiveProc);

IF WindowPeek (theWindow) ~.windowKind <> userKind THEN
Exit (FTReceiveProc);

pWindow
theTerm
theConn

:= WindowP (GetWRefCon (theWindow));
:= pWindow”.hTerm;
:= pWindow”.hConn;

( EOM := TRUE;

theErr := CMRead(theConn, thePtr, theSize, channel, FALSE, NIL, O,
flags);
FTReceiveProc := theSize;
END;
WriteProc Writing data
Function WriteProc (VAR count: LONGINT; bufPtr: Ptr; refCon:
LONGINT) : OSErr;
Description count is the number of bytes to write. After WriteProc has completed, count

(* Apple Confidential

must contain the actual number of bytes that was written.
bufPtr isa pointer to the data in memory.
refCon is the reference constant of the file transfer record.

WriteProc must return an error code when appropriate.

Chapter 5: File Transfer Manager

143



MyGetConnEnvirons  Getting connection environment information -

Your application might need to pass information about the connection environment to
the file transfer tool. To accomplish this, the file transfer tool calls a routine in the
application, M\yGet ConnEnvirons.

Function MyGetConnEnvirons (refCon: LONGINT; VAR theEnvirons:

ConnEnvironRec): CMErr;

Description refCon is the reference constant for the file transfer tool

theEnvirons is a data structure containing the connection environment record. Your
application can either construdt theEnvirons or use the Connection Manager routine

CMGetConnEnvirons. For more information about theEnvirons, read Chapter
3, “Connection Manager.”

Sample connection environment routine

FUNCTION FTGetConnEnvirons(refCon: LONGINT; VAR theEnvirons:
ConnEnvironRec): OSErr;

VAR

BEGIN

END;

144

theWindow : WindowPtr;
pWindow : WindowP;

theWindow := WindowPtr(refcon);
theConn:= GethConn(theWindow);

FTGetConnEnvirons := envNotPresent;
{ pessimism }
IF theConn= NIL THEN
Exit (FTGetConnEnvirons);

IF WindowPeek (theWindow) “.windowKind <> userKind THEN
Exit (FTGetConnEnvirons);

pWindow := WindowP (GetWRefCon(theWindow));

theConn := pWindow”.hConn;

FTGetConnEnvirons := CMGetConnEnvirons(theConn, theEnvirons);

Special K Beta Draft Apple Confidential



Summary
File Transfer Manager routines seepage
FTAbort (hFT: FTHandle): FTErr: nn
FTActivate (hFT: FTHandle; act: BOOLEAN); nn
FTChoose (VAR hFT: FTHandle; where: Point; idleProc: nn
ProcPtr): INTEGER;
FTCleanup (hFT: FTHandle; now: BOOLEAN): FTErr; nn
FTDefault (VAR theConfig: Ptr; procID: INTEGER; allocate: nn
BOOLEAN) ;
FTDispose (hFT: FTHandle); nn
FTEnglishToIntl (hFT: FTHandle; inputPtr: Ptr; VAR nn
outputPtr: Ptr; language: INTEGER): INTEGER;
FTEvent (hFT: FTHandle; theEvent: EventRecord): nn
FTExec(ﬁFT: FTHandle) ; nn
FTGetConfig (hFT: FTHandle): Ptr; nn
FTGetFTVersion: INTEGER; nn
FTGetName (procID: INTEGER; VAR name: STR255); nn
FTGetProclID (name: STR255): INTEGER; nn
FTGetRefCon (hFT: FTHandle): LONGINT; nn
FTGetUserData (hFT: FTHandle) : LONGINT; nn
FTGetVersion (hFT: FTHandle): Handle; nn
FTIntlToEnglish (hFT: FTHandle; inputPtr: Ptr; VAR nn
outputPtr: Ptr; language: INTEGER): INTEGER;
FTMenu (hFT: FTHandle; menuID: INTEGER; item: INTEGER): nn
BOOLEAN;
Apple Confidential Chapter 5: File Transfer Manager



FTNew (procID: INTEGER; flags: LONGINT; theSendProc: nn
ProcPtr; theRecvProc: ProcPtr; theReadProc:
ProcPtr; theWriteProc: ProcPtr;
theEnvironsProc: ProcPtr; owner: WindowPtr;
theRefCon: LONGINT; theUserData: LONGINT):

FTHandle;
' FTResume (hFT: FTHandle; res: BOOLEAN); nn
FTSetConfig (hFT: FTHandle; thePtr: Ptr): INTEGER; nn
FTSetRefCon (hFT: FTHandle; rC: LONGINT); ‘ nn
FTSetupCleanup (procID: INTEGER; theConfig: Ptr; count: nn

INTEGER; theDialog: DialogPtr; VAR
magicCookie: LONGINT);

FTSetupFilter (procID: INTEGER; theConfig: Ptr; count: nn-
INTEGER; theDialog: DialogPtr; VAR theEvent:
EventRecord; VAR theItem: INTEGER; VAR
magicCookie: LONGINT): BOOLEAN;

FTSetupltem(procID: INTEGER; theConfig: Ptr; count: nn
INTEGER; theDialog: DialogPtr; VAR theltem:
INTEGER; VAR magicCookie: LONGINT);

FTSetupPostflight (procID:INTEGER) ; nn

FTSetupPreflight (procID: INTEGER; VAR magicCookie: nn
LONGINT) : Handle;

FTSetupSetup (procID: INTEGER; theConfig: Ptr; count: nn
INTEGER; theDialog: DialogPtr; VAR .
magicCookie: LONGINT);

FTSetUserData (hFT: FTHandle; uD: LONGINT):; nn
FTStart (hFT: FTHandle): FTErr; nn
FTValidate (hFT: FTHandle): BOOLEAN; nn
InitFT; nn

146  Special K Beta Draft Apple Confidential



Routines in your application seepage
MyGetConnEnvirons (refCon: LONGINT; VAR theEnvirons: nn
ConnEnvironRec): CMErr;
ReadProc (VAR count: LONGINT; bufPtr: Ptr; refCon: nn
LONGINT) : OSErr;
RecvProc (thePtr: Ptr; theSize: LONGINT; refCon: LONGINT; nn
channel: INTEGER) : LONGINT;
SendProc (thePtr: Ptr; theSize: LONGINT; refCon: LONGINT; nn
channel: INTEGER) : LONGINT;
WriteProc (VAR count: LONGINT; bufPtr: Ptr; refCon: nn
LONGINT) : OSErr;
Data types
File transfer record
TYPE
FTHandle = ~“FTPtr;
FTPtr = ~“FTRecord;
FTRecord = PACKED RECORD
proclD INTEGER;
flags LONGINT;
errCode FTErr;
refCon LONGINT;
userData LONGINT;
defProc ProcPtr;
config : Ptr;
oldConfig : Ptr;
environsProc : ProcPrt;
reservedl : LONGINT;
reserved2 : LONGINT;
Private : Ptr;
Apple Confidential Chapter 5: File Transfer Manager

147



END;

Constants

CONST
{ send & receive }
ftReceiving
ftTransmitting

{

{

file

file

148

transfer attributes

SendProc
RecvProc
WriteProc
ReadProc

owner

Direction
theReply

WritePtr
ReadPtr
TheBuf
BufSize
autoRec
attributes

ftSameCircuit
ftSendDisable
ftReceiveDisable
ftTextOnly

transfer flags }
ftIsftMode
ftNoMenus
ftQuiet

ftSucc

Choose return values

chooseDisaster
chooseFailed
chooseAborted
chooseOKMinor
chooseOKMajor
chooseCancel

Special K Beta Draft

}

.

.

LY

.

ProcPtr;
ProcPtr;
ProcPtr;
ProcPtr;

WindowPtr;

INTEGER;
SFReply;

LONGINT;
LONGINT;
“char;
LONGINT;
Str255;
INTEGER;

Apple Confidential



Error codes

CONST
ftNoErr = 0;
ftRejected = 1;
ftFailed = 2;
ftTimeOut = 3;
ftTooManyRetry = 4;
ftRemoteCancel = 6;
ftWrongFormat = 1;
ftNoTools = 8;
ftUserCancel = 9;

File Transfer Manager Routine Selectors

InitFT .EQU 513 FTSetRefCon
FTGetRefCon .EQU 515 FTSetUserData
FTGetUserData .EQU 517 FTGetToolName
FTGetProclID .EQU 519 FTNew

FTDispose .EQU 521 FTExec

FTStart .EQU 523 FTCleanup

FTAbort .EQU 525 FTResume
FTValidate .EQU 527 FTDefault
FTSetupPreflight .EQU 529 FTSetupSetup
FTSetupFilter .EQU 531 FTSetupltem
FTSetupCleanup .EQU 533 FTGetConfig
FTSetConfig .EQU 535 FTInt1lToEnglish
FTEnglishToIntl .EQU 537 FTGetVersion
FTGetFTVersion .EQU 539 FTChoose

FTEvent .EQU 541 FTSetupPostflight
FTMenu .EQU - 543 FTActivate

Apple Confidential Chapter 5:

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

File Transfer Manager

514

516

518

520

522

524

526

528

530

532

534

536

538

540

542

544






Chapter 6 Communications Resource Manager




About this chapter =

This chapter describes the Communications Resource Manager, which is the Special K manager that
makes it easier for your application to manage devices (like internal modems and serial cards) and
resources.

After an introduction to the Communications Resource Manager, this chapter describes the
data structures and routines your application can use to implement device management. Then it
describes the routines your application can use to perform resource management. A summary at
the end provides a quick reference to these features.

Often refered to in this chapter is the term “your application”, which is the application you are
writing for the Macintosh, and which will implement communication services for users. Be careful
not to confuse the services your application is requesting with the services that tools provide.

In order to use the Communications Resource Manager, you need to be familiar with the following
topics:

m  Resource Manager (see Inside Macintosh, Volumes: 1, IV, V)
Device Manager (see Inside Macintosh, Volumes: I, IV, V)
Memory Manager (see Inside Macintosh, Volumes: 1, IV, V)
Operating System Utilities (see Inside Macintosh, Volume 11)

MultiFinder programming environment <<<anyone have a book to reference for this one? >>>

About the Communications Resource Manager

There are two reasons an application would use the services provided by the Communications
Resource Manager: to manage devices and to manage resources. Device management is essential
when your application needs to know about new cards that have been installed in a Macintosh.
Resource management is required when your application is sharing resources with other applications
(as it does when a Macintosh runs MultiFinder). The resource management services provided in the
- Communications Resource Manager are an extension to the services provided by the Resource
Manager in the Macintosh Toolbox. Although the tasks of device management and resource
management are somewhat different in nature, the routines and data structures your application
needs to perform these tasks are provided in one place, the Communications Resource Manager.

The way your application interfaces with the Communications Resource Manager is very similar
to the way it interfaces with other Special K managers. Your application calls a Communications
Resource Manager routine, which upon completion, returns to your application any relevant
parameters and return codes. Figure 6-1 shows the data flow into and out of the Communications
Resource Manager. :

152 Special K Beta Draft—Apple Confidential



Figure 6-1: Data flow in and out of the Communications Resource Manager.

Communications
Toolbox
—)
Status, other information
) Applications
Tools
. Drivers
Register/Release
Resources/Devices

Directory

In memory

Device management

The way Macintosh applications interact with special interface cards varies from card to card,
making the task of programming the Macintosh to use these cards quite complex. Special K solves
this problem by providing applications with standardized routines and data structures that your
application can use to keep track of communications devices (typically in the form of add-in cards)
that users have installed.

The data structure that is most important in supporting communications device management
is the Communications Resource Record, which is stored as a linked list. The Communications
Resource Record is comprised of fields containing information like what type of device the record
represents and whether or not the device is available for use and is described on page nn.

The Communications Resource Manager and your application keep track of communications
devices by placing 2 Communications Resource Record into the linked list for each communications
device. Initially, when your application calls Init CRM (which is discussed later under
“Initializing the Communications Resource Manager” on page nn), this linked-list contains two
elements, one for each of the serial drivers. Your application then adds and deletes communications
resource records.

Apple Confidential Chapter 6: Communications Resource Manager

153



By making use of Special K routines, your application can register new devices, allocate devices,
and look for specific kinds of devices. Also device drivers, if properly coded, can resolve conflicts
that arise out of the need for more than one application to use the same communications resource
at the same time. The need to contend with this type of problem is becomming increasingly
common as more users run under MultiFinder.

Resource management

When you application shares resources with other applications, problems can arise if one of the
sharing applications accidentally ruins or disposes of a resource that is needed by another
application. Special K provides routines that your application can use to share resources and avoid
this kind of problem. These routines index (or number) resources as they are requested. Then, when
your application releases a resource, it can specify the index on it’s copy of the resource. This
enables the Communications Resource Manager to keep track of which resources are still being used.

The communications resource record

The most important data structure to the Communications Resource Manager is the
communications resource record. It is so important because it contains information like the name
and type of devices and whether or not a device is in use.

At start-up time, the Communications Resource Manager builds a linked-list of
communications resource records. If the Communications Resource Manager is installed, the linked-
list will consist of a2 minimum of two devices of type crmSerialDevice.

When your application installs a new record into the linked-list, it must fill in all the fields of the
communications resource record with one exception, CRMDeviceID. The Communications
Resource Manager fills in this field.

The communications resource record data sructure

TYPE

CRMRecPtr = "~CRMRec;

CRMRec = RECORD
qlLink : QElemPtr;
qType : INTEGER;
crmVersion : INTEGER;
crmPrivate : LONGINT;
crmReserved : INTEGER;
crmDeviceType : LONGINT;
crmDeviceID H LONGINT;
crmAttributes : LONGINT;
crmStatus H LONGINT;
crmRefCon : LONGINT;

END;

154  Special K Beta Draft—Apple Confidential



qLink

gLink points to the next CRMRec in the Communications Resource Manager's linked-list of
communications resource records..

qType
qType is a constant that your application must fill with a 9.

crmVersion

crmVersion is the version number of the CRMRec data structure. At this time there is only
one version, so your application must fill this field in with a 1.

crmPrivate and crmReserved

crmPrivate and crmReserved are private to the Communications Resource Manager; your
application must not use them for any reason.

crmDeviceType

crmDeviceType is the type of device (for example, a serial port).

crmDevicelID

crmDeviceID isan identifier that your application can use to distinguish between multiple
devices of the same device type. The Communications Resource Manager fills in this field when
your application calls the CRMInstall routine

crmAttributes

crmAttributes specifies the attributes of a specific device type. This field can hold either a
pointer to the data or the actual data that describes the device. There is a sample
crmAttributes data sturcture for a serial device on page nn.

crmStatus

crmStatus specifies the status of a device. Your application can use this field for device
arbitration purposes.

crmRefCon

crmRefCon is available for rent.

Apple Confidential Chapter 6: Communications Resource Manager

155



Communications Resource Manager routines

This section describes the routines that applications use to access Communications Resource

Manager services. :
S

InitCRM / nn CRMInstall / nn

CRMSearch / nn CRMRemove / nn

CRMGetCRMVersion / nn CRMGetHeader / nn

CRMGetResource / nn CRMGetlResource / nn

CRMGetIndResource / nn CRMGetlIndResource / nn

CRMGetNamedResource / nn CRMGet 1NamedResource / nn

CRMGetIndex / nn CRMReleaseResource / nn

CRMGetIndToolName / nn CRMLocalToReallID / nn

CRMRealTolLocallD / nn
A~
N

156  Special K Beta Draft—Apple Confidential



InitCRM

Function

Description

Initializing the Communications Resource Manager

InitCRM initializes the Communications Resource Manager. This function should be
called after calling the standard toolbox initialization routines and before any of the other
Special K manager initialization routines.

InitCRM:0SErr;

InitCRM will return an operating system error code if appropriate. Your application
should check for the presence of the Communications Toolbox before calling this
function. '

CRMInstall

Procedure

Description

A

Installing devices

CRMInstall installs a device into the Communications Resource Manager’s linked-list.
Devices in the Communications Resource Manager’s linked-list typically have their
CRMRecs allocated in the system heap. If your application installs a CRMRec  at start-
up time, be sure that it increases the size of the system heap appropriately. If your
application installs a CRMRec during run-time, make sure that enough system heap

- space is available, or use the application heap.

For more information on how to register a device with the Communications Resource
Manager, read “How to Register a Device” on page nn.

CRMInstall (TheCRMReqPtr: QElemPtr);

CRMInstall returns in TheCRMRegPtr a pointer to the new communications
resource record.

Warning CRMRecs allocated in the application heap need to be removed prior to
reinitialization of the application heap; otherwise, the Communications
Resource Manager's linked-list may be damaged. a

CRMSearch

Apple Confidential

Searching for devices

Your application can use CRMSear ch to order the Communications Resource Manager's
linked-list, or to add new elements on to the end of the linked-list.

Chapter 6: Communications Resource Manager 157



Function

CRMSearch (crmRegPtr: QElemPtr): QElemPtr;

Description This function takes the CRMRe ¢ pointed to by crmReqPt r and searches for a device
in the Communications Resource Manager’s linked-list that has two characteristics: the
same deviceType and a deviceID greater than the deviceID in the specified
record. CRMSearch will return a pointer to the first record that it finds that meets
these two conditions. Or, if no records meet the search criteria, it will retun NIL.

When searching for the first element in the linked-list, your application must pass 0 in
devicelD.

CRMRemove Removing devices
CRMRemove removes a device from the Communications Resource Manager'’s linked-
list.

Function CRMRemove (crmRegPtr: QElemPtr): OSErr;

Description crmReqgPt r specifies the device to be removed..

CRMGetVersion
CRMGetVersion returns the version of the Communications Resource Manager.

Function CRMGetCRMVersion: INTEGER;

CRMGetHeader
CRMGetHeader retums a pointer to the head of the Communications Resource
Manager’s linked-list.

Function CRMGetHeader: QHdrPtr;

158  Special K Beta Draft—Apple Confidential



Resource management routines

The eight routines that are described below make it easier for your application to manage
communications resources. Your application should use these routines so that the
Communications Resource Manager can maintain a list that, among other things, indicates how
many times a resource is simultaneously in use.

You will probably recognize the names of these routines because they are so similar to the
names of Resource Manager routines available in the Macintosh Toolbox. They also operate very
similarly; in fact, most of these routines make use of their similarly-named counterparts in the

Macintosh Toolbox.

CRMGetResource and CRMGet1Resource

Function

Function

CRMGetResource and CRMGetlResource all GetResource and
Get 1Resource respectively, and return a handle to the specified communications
resource. The Communications Resource Manager then adds the handle to the list of
resources that it is managing and increases by one the value that indicates how many
times a resource is simultaneously in use.

CRMGetResource (theType: ResType; theID: INTEGER): Handle;

CRMGet1Resource (theType: ResType; theID: INTEGER): Handle;

CRMGetIndResource and CRMGetlIndResource

Apple Confidential

CRMGet IndResource and CRMGetlIndResource call
GetIndResource and GetlIndResource respectively, and return a handle
to the specified communications resource. The Communications Resource Manager then
adds the handle to the list of resources that it is managing and increases by one the the
value that indicates how many times a resource is simultaneously in use.

Chapter 6: Communications Resource Manager 159



Function

Function

CRMGetIndResource (theType: ResType; index: INTEGER):
Handle;

CRMGetlIndResource (theType: ResType; index: INTEGER):
Handle;

CRMGetNamedResource and CRMGet 1NamedResource

CRMGetNamedResource and CRMGetlNamedResource all
GetNamedResource and GetlNamedResource respectively, and retuna
handle to the specified communications resource. The Communications Resource
Manager then adds the handle to the list of resources that it is managing and increases by
one the the value that indicates how many times a resource is simultaneously in use.

Function CRMGetNamedResource (theType: ResType; name: STR255):
Handle;

Function CRMGet 1NamedResource (theType: ResType; name: STR255):
Handle;

CRMGetIndex
CRMGet Index returns the number of times a resource is simultameoursly in use for
the specified handle. CRMGet Index returns 0 if it does not find the handle in the
Communications Resource Manager’s linked-list.

Function CRMGetIndex (theHandle: Handle): LONGINT;

CRMReleaseResource

CRMReleaseResource releases the resource that is specified by theHandle.

Procedure CRMReleaseResource (theHandle: Handle);

A Warning  Your application must only release communications resources by calling
CRMReleaseResource . Ifit tries to release resources itself, you
might not like the consequences.

CRMGetIndToolName

CRMGet IndToolName retums the name of 2 tool in t ool Name.

160  Special K Beta Draft—Apple Confidential



Function

Description

Apple Confidential

CRMGetIndToolName (bundleType : OSType; index : INTEGER;
VAR toolName : STR63) : OSErr;

bundleType specifies the type of tool: ClassCM (for connection tools),
ClassTM (for terminal tools), or C1lassFT(for file transfer tools).

index specifies which occurence of a particular type of tool to return. For example, if
index =2, the Communications Resource Manager will return the second occurence of a
particular class of tool that has been registered with it.

Chapter 6: Communications Resource Manager 161



Resource mapping routines

All resources used by a tool should be referenced by a local ID, which the operating system (using
the tool bundle resource) maps into the appropriate physical ID. Special K contains two functions
that will help you keep things straight: to map from physical ID to local ID, use
CRMRealToLocalID; tomap from local ID to physical ID, use CRMocalToReallID.

CRMLocalToReallID

CRMLocalToRealID maps a local resource ID to a physical resource.

Function CRMLocalToReallID (bundleType: ResType; toolID: INTEGER;
theKind: ResType; locallD: INTEGER): INTEGER;
Description bundleType specifies the type of tool (connection, file transfer, or terminal) for
which the mapping is to take place.
t001ID specifies the bundle resource for the tool.
The appropriate values for bundleType are:
CONST
ClassCM = ‘cbnd’';
ClassFT = 'fbnd*';
ClassTM = ‘tbnd';
CRMRealToLocallD
CRMRealToLocalID maps a physical resource ID to a local resource ID.
Function CRMRealToLocallD (bundleType: ResType; toolID: INTEGER;
theKind: ResType; reallID: INTEGER): INTEGER;
Description bundleType specifies the type of tool (connection, file transfer, or terminal) for

which the mapping is to take place.

‘The format for a connection tool bundle resource is shown next (in Re z format). The
same resource type declaration holds for terminal tools and file transfer tools. More
information about the bundle resources can be found in the individual chapters on the
Connection Manager, the Terminal Manager, and the File Transfer Manager.

162  Special K Beta Draft—Apple Confidential



type ‘cbnd' { /* or tbnd, or fbnd
integer = $S$CountOf(TypeArray) - 1;
array TypeArray {
literal 1longint; /* Type */

integer = $S$CountOf (IDArray) - 1;
wide array IDArray {
integer; /* Local ID */
integer; /* Actual ID */

}:

Apple Confidential Chapter 6: Communications Resource Manager

*/



Guidelines for how to register a device

Here are some basic guidelines for writing drivers, which are similar to the standard serial port
drivers: '

private storage All private data storage can be referenced off of the dCt1Storage
field of the DCt 1Ent ry for the drivers involved.
low memory Do not use any.
driver naming Use driver names that will be guaranteed to be unique. For example, do
. not use .CIn/.COut.
driver csCodes Support all of the csCode calls supported by the standard serial

drivers. If you need additional csCodes, contact Developer Technical
Support to reserve csCodes. csCodes below 256 are reserved for
Apple Computer, Inc.

driver arbitration Your drivers should not allow multiple dr vrOpen calls to succeed.

Data structures

Each device in the Communications Resource Manager’s linked-list has a CRMRec associated with
it. Forthe crmDeviceType field, Apple Computer, Inc. has defined the following value for
serial port devices:
CONST

crmSerialDevice = 1;

When adding a CRMRec to the Communications Resource Manager’s linked-list with the
CRMInstall routine, pass 0 for the crmDeviceID field. The device identifier will be
assigned by the Communications Resource Manager.

The crmAt tributes field in the CRMRec points to a serial port device-specific data
structure: ‘

164  Special K Beta Draft—Apple Confidential



TYPE

CRMSerialPtr = ~CRMSerialRecord;

CRMSerialRecord = RECORD
version : INTEGER;
inputDriverName : StringPtr;
outputDriverName : StringPtr;
name : StringPtr;
devicelcon : Handle;
ratedSpeed : LONGINT;
maxSpeed : LONGINT;
reserved : LONGINT;

END;

version

version is the version of the CRMSerialRecord data structure. This is version 0 of
CRMSerialRecord

inputDriverName

inputDriverName is a pointer to a null-terminated string, which is the name of the input
driver for the given serial port. This driver should behave like the standard input serial port drivers
(.AInand .BIn)and support the same csCode calls as the standard drivers.

outputDriverName

outputDriverName is a pointer to a null-terminated string, which is the name of the output
driver for the given serial port. This driver should behave like the standard output serial port drivers
(.AOut and . BOut) and support the same csCode calls as the standard drivers.

name

name is a pointer to a null-terminated string, which is the name associated with a given port.

devicelcon

deviceIcon isa handle to a relocatable block that contains an icon and a mask associated with
the given port. Pass NIL if no icon is available.

ratedSpeed
ratedSpeed is the maximum recommended speed in bits per second.

maxSpeed

maxSpeed is the maximum speed in bits per second that the hardware is capable of.

Apple Confidential Chapter 6: Communications Resource Manager

165



Searching for serial port devices

The following routine will search the Communications Resource Manager’s linked-list for devices of
a given type.
PROCEDURE FindSerialPorts;
VAR
theCRM CRMRecPtr;
theCRMRec : CRMRec;
theErr : CRMErr;
theSerial : CRMSerialPtr;

old : INTEGER;

BEGIN
theErr := 0; { error status }
old := 0; { index number of ports }
WHILE (theErr = noErr) DO
BEGIN
WITH theCRMRec DO
BEGIN
crmDeviceType := crmSerialDevice; { search for port with index
number greater than "old"}
crmDeviceID := old; { to be filled in later }
END;
theCRM := @theCRMRec;
theCRM := CRMRecPtr (CRMSearch(QElemPtr (theCRM)));
IF theCRM <> NIL THEN { got one! }
BEGIN
theSerial := CRMSerialPtr (theCRM".crmAttributes);
old := theCRM".crmDevicelD;
WITH theSerial” DO
BEGIN
END;
END
ELSE
BEGIN
theErr := 1;
END;
END; ({while}
END;

166  Special K Beta Draft—Apple Confidential



Summary

Communications Resource Manager routines

CRMGetlIndResource (theType: ResType; index: INTEGER):
Handle;

CRMGet1NamedResource (theType: ResType; name: STR255):
Handle;

CRMGet1lResource (theType: ResType; theID: INTEGER): Handle;
CRMGetCRMVersion: INTEGER;

CRMGetHeader: QHdrPtr;

CRMGetIndex (theHandle: Handle): LONGINT;

CRMGetIndResource (theType: ResType; index: INTEGER):
’ Handle;

CRMGetIndToolName (bundleType : OSType; index : INTEGER;
VAR toolName : STR63) : OSErr;

CRMGetNamedResource (theType: ResType; name: STR255):
Handle;

CRMGetResource (theType: ResType; theID: INTEGER): Handle;
CRMInstall (crmRegPtr: QElemPtr);

CRMReleaseResource (theHandle: Handle);

CRMRemove (crmReqPtr: QElemPtr): OSErr;

CRMSearch (crmRegPtr: QElemPtr): QElemPtr;

InitCRM:CRMErr;

LocalToRealID (theClass: INTEGER; toolID: INTEGER; theKind:
ResType; localID: INTEGER): INTEGER;

RealTolLocalID (theClass: INTEGER; toollID: INTEGER; theKind:
ResType; realID: INTEGER): INTEGER;

Constants

See page

nn

nn

nn
nn
nn
nn

nn

nn

nn

nn
nn
nn
nn
nn
nn

nn

nn

Apple Confidential ' Chapter 6: Communications Resource Manager



CONST

{ Communications Resource  Manager’s linked-list type }
crmType = 9:
{ Version of CRMRec data structure }
crmRecVersion = 1;
{ local/real resource ID mapping }
ClassCM = ‘cbnd’;
ClassTM = ‘tbnd’;
ClassFT = ‘fbnd’;
Data types
TYPE
CRMRecPtr = ~“CRMRec;
CRMRec = RECORD
qLink : QElemPtr;
qType : INTEGER;
crmVersion : INTEGER;
crmPrivate : LONGINT;
crmReserved : INTEGER;
crmDeviceType : LONGINT;
crmDevicelD : LONGINT;
crmAttributes : LONGINT;
crmStatus H LONGINT;
crmRefCon : LONGINT;
END;

Communications Resource Manager routine selectors

CRMGetlIndResource .EQU 1290 CRMGet 1NamedResource.EQU
CRMGet1lResource .EQU 1288 CRMGetCRMVersion .EQU
CRMGetHeader .EQU 1282 CRMGetIndex .EQU
CRMGetIndResource .EQU 1289 CRMGetIndToolName .EQU
CRMGetNamedResource .EQU1291 CRMGetResource .EQU
CRMInstall .EQU 1283 CRMLocalToRealID .EQU
CRMRealTolLocallID .EQU 1296 CRMReleaseResource L.EQU
CRMRemove .EQU 1284 CRMSearch .EQU

168  Special K Beta Draft—Apple Confidential

1292

1286

1294

1297

1287

1295

1293

1285



C

InitCRM

Apple Confidential

.EQU

1281

Chapter 6: Communications Resource Manager

169






Chapter 7

Utilities

(XTh [



About this chapter and the utilities

This chapter describes the Special K utilities, which are a set of routines that make it easier for you
to write applications. The Special K utilities are intended to be used for three specific tasks:
manipulating dialog item lists, controlling pop-up menus, and searching a network for AppleTalk
entities. Also described in this chapter are two routines your application can use to initialize the
utilities and obtain the version number of the utilities.

Of the seven routines, two of them (NuLookup and NuPLookup) can be used only for
networking or communications programming; the others can also be used in stand-alone
applications.

This chapter contains a description of the routines and data structures that are the Special K
utilities. At the end of the chapter is a summary that provides a quick reference to routines and
data structures. :

To use the dialog item list manipulation routines, you need to be familiar with:

¢ Dialog Manager (see Inside Macintosh, Volumes: IV, V)

« Control Manager (see Inside Macintosh, Volumes: I, IV, V)

* Resource Manager (see Inside Macintosh, Volumes: 1, IV, V)

To use the network look-up utilities, you need to be familiar with:

o AppleTalk (see Inside Macintosh, Volumes: 11, V) .

¢ Custom Standard File dialog boxes (see Inside Macintosh, Volumes: 1, IV) R

170  Special K Beta Draft Apple Confidential .



@

Special K utilities

This section explains the routines and data structures that are the Special K utilities.

InitCTBUtilities
AppendDITL
ShortenDITL /
NuPLookup /
MyZoneFilter

Apple Confidential

NewControl / nn
CountDITL / nn
NuLookup / nn
MyNameFilter / nn
MyHookProc / nn

Chapter 7: Special K Utilities

171



InitCTBUtilities Initializing Special K

Function

InitCTBUtilities initializes the Special K utilities. Your application should call
this routine after calling the standard Macintosh Toolbox initialization routines and before
calling other Special K initialization routines, with one exception: If your application uses
the Communications Resource Manager, it must initialize that before the Special K utilities.

Your application should check for the presence of the Special K before calling this
function.

InitCTBUtilities: CTBErr;

CTBGetCTBVersion Getting the Special K version number

Function

CTBGetCTBVersion returns the version of the Special K utilities.

CTBGetCTBVersion: INTEGER;

NewContzrol

172 Special K Beta Draft Apple Confidential

Enhanced pop-up menu control

Special K includes a control definition procedure (CDEF) that extends the function of
PopUpMenuSelect, which is a part of the Menu Manager in the Macintosh Toolbox.
This CDEF, with resource ID=2, is available on Maintosh computers running System 4.2 or
later.

Your application creates a pop-up menu control the same way as any other Macintosh
control. However, when your application specifies the Special K NewCont rol routine,
some of the parameters have different meanings than the Macintosh Toolbox
NewControl parameters. Figure 7-1 shows a pop-up menu control.

Figure 7-1 Pop-up menu control

Baud Rate: v300

1200
2400
9600
19200
57600




«

Function ‘

Description

Apple Confidential

NewControl (theWindow: WindowPtr; boundsRect: Rect;
title:STR255; visible: BOOLEAN; value: INTEGER; min,max:
INTEGER; procID:. INTEGER; refCon: LONGINT): ControlHandle;

theWindow is the window the new pop-up menu will belong to. All coordinates
pertaining to the pop-up menu will be interpreted in this window’s local coordinate
system.

boundsRect is the rectangle that encloses the pop-up menu; it determines the size
and location of the rectangle. Your application must specify boundsRect in the local
coordinates of theWindow.

title is thetitle of the pop-up menu. Be sure the title will fit in the pop-up menu’s
enclosing rectangle; if it doesn't fit, it will be truncated on the right for check boxes and
radio buttons, or centered and truncated on both ends for simple buttons. To create a
pop-up menu that has no title, have your application pass an empty string in this field.

visible specifies whether or not NewControl will draw the pop-up menu.

value specifies the manner in which the text in the menu is to be justified and
highlighted. Valid values for value are:

popupTitleBold =$00000100;
popupTitleltalic =$00000200;
popupTitleUnderline =$00000400;
popupTitleOutline =$00000800;

popupTitleShadow =$00001000;
popupTitleCondense =$00002000;
popupTitleExtend =$00004000;
popupTitleNoStyle =$00008000;
popuplLeftJust =$00000000;
popupCenterJust =$00000001;
popupRightJust =$000000FF;

To have NewCont rol draw the pop-up with more than one of the characteristics
listed above, pass in value the sum of all required characteristics.

Once a pop-up menu has been created, NewCont rol will set value to its minimum
valid value. Your application can reset value with SetCtlValue.

min represents the resource ID of the menu that will be displayed in the pop-up control.
max contains the width of the pop-up title area.

procID should be an integer equal to 16°2+the appropriate variation code. Variation
codes are discussed under “About variation codes.”

Chapter 7: Special K Utilities 173



If re £Con contains a value, NewCont rol typecasts it to ResType .
NewControl then calls AddResMenu for the menu associated with the pop-up
menu control. For example, if refCon is LONGINT ( 'FONT '), the menu in the pop-
up menu control contains the names of all of the fonts currently installed. If refCon is
NIL,NewContxrol does not do this.

About variation codes

variation

code value
1

Your application specifies variation codes when it passes a value in procID. Variation
codes alter the characteristics of pop-up menu controls. To specify the appropriate
variation code, your application sums the values that correspond to the desired pop-up
menu characteristics. Below are the valid values:

description

Provides constant control width. If your application specifies
this value, NewCont rol will not resize the control. The

" width of the pop-up box will equal the width of the control

minus the width of the pop-up title your application specified
when it created the control. If the contents of the pop-up box
do not fit into the control, the title will be truncated to a size
that does fit and the utility will append an ellipsis (...).

Uses color QuickDraw. If your application specifies this value,
NewControl will use the colors stored in the menu color
table (mct b) for the color of the pop-up box when Color
QuickDraw is available. If Color QuickDraw is not available, the
utility will draw the pop-up box in black and white.

If the owning grafPort is an old-style (classic QuickDraw)
grafPort, the pop-up menu control will attempt to create
acGrafPort to draw the pop-up menu control colors and
then dispose of it when finished drawing. By using a
cGrafPort, the control avoids converting Color QuickDraw
colors to classic QuickDraw colors.

If your application specifies this value, the pop-up CDEF will
take the re £Con field and treat it as a Res Type and
perform an AddRe sMenu with this resource type on the
menu. The NewControl routine gets re £Con from your
application. The GetNewControl routine gets refCon
from the control template.

174  Special K Beta Draft Apple Confidential



8 Varies the font and size in the control If your application
o specifies this value, the utility will draw the pop-up with the
( font and size of the owning grafPoxrt. The pop-up menu,
. when “popped-up” will also use the font and size specified by
the grafPoxrt that owns the control, instead of using the
standard system font.

After the pop-up has been created

After NewControl has created the pop-up menu, min contains 1, max contains the
number of items in the menu that is associated with the control, and re £Con becomes
available for the application to use.

In the process of creating the new control, NewControl may modify
boundsRect to reflect the actual width of the pop-up box.

Other pop-up menu control characteristics

There are three pop-up menu control characteristics that you need to be familiar with :
how the width of the control is resized, how the control changes in regards to system
justification, and how your application can access the menu handle.

Whenever the pop-up control is redrawn, the utility recalculates the size of the menu
associated with the control to handle the potential addition of new items in the menu by
calling CalcMenuSize. NewControl also updates the width of the pop-up menu
( . control to the sum of the width of the pop-up title, the width of the longest item in the
! menu (the menuWidth field of the menu information record), and some slop. As
previously described, your application can override this characteristic by specifying
variation code 1.

When the system justification is teJustRight, the pop-up control will be drawn
similar to Figure 7-2.

Figure 7-2 Pop-up menu control when system justification is teJustRight .

300 Baud Rate:

1200
2400
9600
19200
57600

Note that the positions of the pop-up box and the pop-up title are reversed from the
standard positions show previously.

( Apple Confidential Chapter 7: Special K Utilities 175



Your application can obtain the menu handle and the menu ID for the menu associated
with the pop-up control by dereferencing the contr1Data field of the control record.
The contr1Data field is a handle to a block of private information, the first four
bytes of which is the menu handle, the next two bytes are the menu ID for the menu
associated with the control.

Manipulating dialog item lists (DITLs)

As a logical extension to the Dialog Manager routines in the Macintosh Toolbox, Special K provides
three procedures to append, shorten, and count the number of items in dialog item lists. These
routines can be used regardless of whether or not you are programming a communications
application or tool.

AppendDITL Appchding to a dialog item list

Appeth ITL lets your application append dialog items to an already exisiting dialog

box.

Procedure AppendDITL (theDialog: DialogPtr; theDITL: Handle; method:
INTEGER) ;

Description theDialog is a pointer to the dialog box into which you want to append an item list.

theDITL specifies the item list that you want to append. method specifies the
manner in which you want the new item list appended: overlay, right, or bottom. Below
are the acceptable vaules for met hod, followed by examples of the results of each
method.

CONST
overlayDITL = 0;
appendDITLRight = 1;
appendDITLBottom = 2;

Figure 7-3 shows the initial dialog box, containing item 1, item 2, and the items to be
appended, namely item 3 and item 4.

Figure 7-3 Initial dialog box and to-be-appended items

initial Dialog Box To-be-appended items

176  Special K Beta Draft Apple Confidential



«

Apple Confidential

If your application uses over 1ayDITL, AppendDITL overlays the items in the to-
be-appended dialog item list onto the dialog item list associated with theDialog,as
shown in Figure 7-4.

Figure 74 Dialog box after appended items are overlaid.

Ctens)  (Cimi)

(item4) (item2)

If your application uses appendDITLRight, AppendDITL offsets the items in
the to-be-appended dialog item list by the top/right coordinates of
theDialog”.portRect, asshown in Figure 7-5. Then AppendDITL appends
the list to the end of the dialog item list associated with theDialog. AppendDITL
automatically expands the dialog box as needed.

Figure 7-5 Dialog box after items appended to the right.

If your application uses appendDITLBot tom, AppendDITL offsets the items in
the to-be-appended dialog item list by the bottom/left coordinates of
theDialog”.portRect, asshown in Figure 7-6. Then AppendDITL appends
the list to the end of the dialog item list associated with theDialog, and expands the
dialog box as needed.

Figure 7-6 Dialog box after items appended to the bottom.

If you know your application will need to restore a window to its size before an
AppendDITL, yourapplication should save that size before it calls AppendDITL.
ShortenDITL, which isthe procedure that shortens dialog item lists (and is
described on page nn) will not automatically resize the dialog box.

Because AppendDIT1 modifies the contents of theDITL, your application can get
rid of theDITL after calling AppendDITL. A typical calling sequence is :

Chapter 7: Special K Utilities 177



theDITL := GetResource('DITL', thelID):
AppendDITL (theDialog, theDITL, appendDITLBottom);
ReleaseResource (theDITL);

Special ways to append items

Your application can append a new dialog item list relative to the location of specific items
in the dialog box, rather then appending new dialog items relative to the coordinates of
Dialog”.portRect. Todo this, your application uses a negative number in the
method parameter, where the number corresponds to the item that is to be the point of
reference. For instance, if method is -2, then the items in the to-be-appended dialog
item list will have their item boxes offset by the t opLe £t of the item box for item 2 in
theDialog. Figure 7-7 shows how item 3 and item 4 were appended relative to the
position of item 2.

Figure 7-7 DITL displayed after an append relative to item 2.

CountDITL Counting the number of items in a list
CountDITL returns the number of items in the dialog item list that is associated with
theDialog.

Function CountDITL(theDialog:DialogPtr): INTEGER;

ShortenDITL Shortening a dialog item list
ShortenDITL removes items from the end of the given dialog item list, but does not
automatically resize the dialog box. If you know that your application will need to resize
the dialog box, save this size prior to calling AppendDITL.

Procedure ShortenDITL (theDialog: DialogPtr; numberItems: INTEGER); |

Description theDialog specifies the dialog box to be shortened.
numberItems specifies the number of items to be removed.

"178  Special K Beta Draft Apple Confidential

“\



Showing AppleTalk entities: NuLookUp and NuPLookUp

The network look-up utilities, NuLookup and NuP Lookup, allow your application to present
the user with a dialog box that contains AppleTalk entities. By providing either NuLookup or
NuPLookup with the proper parameters, your application can include in the dialog box one or
more different types of AppleTalk entities. Both NuLookup and NuPLookup perform much
the same task, but NuPLookup gives the programmer a bit more flexibility.

The Special K utilities also include filter and hook routines that your application can take
advantage of to customize the dialog box or to filter out information that would otherwise be
included in it. These routines are described below under “Customizing the dialog box with hook and
filter procedures.”.

The results of NuLookup and NuPLookup are displayed in a dialog box similar to Figure 7-
8, which shows the results of a search for LaserWriter printers in the zone “Evangelism/Events”.

= Figure 7-8 Network look-up dialog box

Looking for Laserilriter in Zone
Eﬁtsksr‘a Spacial O Development Tools

S Evengelistwriter Plus
= Poor Nemeless Printer
=} Sooper Fest Monterey
S suzettewriter |1 NTX
B szetelawriter ||

S clsuvenus Spooler 'EJTS'/PI':_?rargs N
Glz=ni ngineering Suppo
= ol EtherKnott

Gasséeville
Gumby Zone

Hidden Valley

=P The wayBeck Machine

NuLookp Network lookups

NuLookp returns to your application the name/object/zone tuple and AppleTalk
node/network/zone numbers tuple for the item that the user selected..

When your application first calls NuLookup, a zone list is built if possible). Then
NuLookup makes a synchronous NBP lookup for the specified objects. Next, the
preliminary object list is built, and the dialog box is presented to the user. At all times
while the dialog box is displayed, an asynchronous NBP lookup with long retry and
timeout is kept going. Objects in the name list are aged, so that if an object misses several
consecutive asynchronous NBP lookups, it is removed from the list.

(“’“v’ Apple Confidential Chapter 7: Special K Utilities 179



Function

Both the zone and name lists are alphabetized using the international utilities. Since they
use the standard Macintosh application font, they support the different script systems
for Macintosh.

NuLookup (where: Point; prompt: STR255; numTypes: INTEGER;
typelist: NLType; nameFilter: ProcPtr; zoneFilter:
ProcPtr; hookProc: ProcPtr; VAR theReply: LookupReply) :
INTEGER;

where indicates in global coordinates where NuLookup should place the top left
comer of the look-up dialog box. prompt is a string that is displayed at the top of the
look-up dialog box. In Figure 7-8, the string “Looking for LaserWriter® was passed to
NuLookup.

numTypes is the number of object types that will be included in the lookup.

typeList is a structure of type NLType, which is an array of AppleTalk object types,
along with a handle to an icon. If no icon is required, pass NIL for theIcon.

TYPE
NLType = ARRAY[0..3] OF RECORD
theIcon : Handle;
typeStr : Str32;
END;

& Assembly Note. From assembly language, more than four object types may be
specified by passing a pointer to an array with the required number of items.

nameFilter isa pointer to a procedure that will filter out name/object/zone tuples
from the network look-up dialog box. zoneFilter is a pointer to a procedure that
will filter out zones from the network look-up dialog box. hookProc isa pointertoa
hook procedure that can be used to modify the behavior of items in the dialog box or to
call a background procedure. These three procedures are described “Customizing the dialog
with hook and filter procedures” on page nn. If you do not need these routines in your
application, specify NIL.

theReply is the look-up reply record that contains the name/object/zone tuple for the
objedt, if any, that was selected by the user, as well as the AppleTalk address consisting of
node/network/zone numbers.

LookupReply = RECORD

theEntity : EntityName;
theAddr : AddrBlock;
END;

180  Special K Beta Draft Apple Confidential



When your application is initially passes the theReply data structure into the
NuLookup procedure, theReply . theEnt ity should contain the default zone
and name. If the specified object is not in the list of accepted objects in t ypeList, the
specified object is ignored, and only the default zone is set. If an appropriate match is
found in the initial look up, when the dialog box comes up, the specified zone will be
selected, as well as the specified name of the given objedt.

Pressing the Return key acts the same as pressing the OK button. Cancel is selected by
holding down the Command key and pressing the Period key. The Up Arrow key and the
Down Arrow key change the selected name to either the cell above or the cell below.
Holding down the Command key while pressing the Up Arrow key or the Down Arrow
key will change the selected zone up or down one cell.

NuLookup will return one of three values:

CONST
nlOk = 0;
nlCancel = 1;
nlEject = 2;

n1Ok is returned when the user selects the “OK” button in the dialog box. n1lCancel
is returned if the user selects the “Cancel” button. n1E ject is returned if the dialog box
is aborted somehow through use of the hook procedure.

NuPLookup

Function

Apple Confidential

A more versatile network lookup

NuPLookup performs much the same task as NuLookup, except that it gives the
programmer even greater control over customization of the NuLookup dialog box.
Additional parameters that can be specified are userData, dialogID, and
filterProc.

NuPLookup (where: Point; prompt: STR255; numTypes:
INTEGER; typelist: NLType; nameFilter: ProcPtr;
zoneFilter: ProcPtr; hookProc: ProcPtr; userData:
LONGINT; dialogID: INTEGER; filterProc: ProcPtr; VAR
theReply: LookupReply): INTEGER;

userData is a field that the user can specify. It may be referenced from the hook
procedure or the filer procedure with the

refCon field of the dialog box record. refCon is a handle to the userData value.

The following code fragment demonstrates how to access the userDat a field:

TYPE
LongH = ~LongPtr:;
LongPtr = ~LONGINT;

Chapter 7: Special K Utilities 181



Item number

O 00 N N W B W N e

1013

BEGIN
myUserData := LongH (GetWRefCon (theDialog))”*;
END;

dialogID is the resource ID for a dialog box (and for the corresponding dialog item
list) that is to replace the standard look-up dialog box. All of the items in the replacement
dialog item list must correspond to items in the standard dialog item list, although they
can be moved around. The list of standard items and their placement is shown below:

Type Rectangle (top, left, bottom, right)
OK button (175, 240,195,310}
Cancel button (175, 320, 195, 390}
Default hilite (userltem) (175, 240, 195, 310}
Title (staticText) {5, 15, 19, 226}
Item list (useritem) {25, 15, 192, 210}
Zone list title (staticText) {5, 240, 19, 391}
Zone list (useritem) {25, 240, 147, 391}
Line (userltem) {25, 225,19, 226}
Version (useritem) {200, 360, 210, 400}
Reserved

filterProc isastandard dialog box filter procedure that is called after the standard
NuLookup modal dialog box filter procedure. The format of the filter procedure is the
same as a standard modal dialog box filter procedure.

Customizing the dialog box with hook and filter procedures

You can customize the operation of the dialog box for specific applications by using the
filter procedures and the hook procedure. Filter procedures are used to filter out zones for
inclusion in the zone list or to filter out objects from the object list. The hook procedure
is used to modify the behavior of items in the dialog box and can also be used to call a
background procedure.

MyNameFilter Name filters

Before each item name is induded,in the network look-up dialog list, it is passed to the
name filter procedure for processing. Specify NIL for no filter procedure.

182  Special K Beta Draft Apple Confidential

_—
h



C

Function

MyNameFilter (theEntity: EntityName): INTEGER;

'This filter procedure is passed the network entity in theEnt ity and will return an
integer with one of the following values:

CONST
nameInclude = 1;
nameDisable = 2;
nameReject = 3;

nameInclude results inthe theEnt ity being included in the name list of the
network look-up dialog box. nameDisable includes theEntity but disables it;
the item in the list will be visible (although dimmed), but not selectable. nameRe ject
causes theEnt ity not to appear in the lists.

MyZoneFilter  Zone filters

Function

Before each zone item is included in the network look-up dialog list, it is passed to the
zone filter procedure for processing. Specify NIL for no filter procedure. The format for

~ the filter is shown below:

MyZoneFilter (theZone: STR32): INTEGER;

This filter procedure is passed the AppleTalk zone in theZone and returns an integer
with the following values:

CONST
zonelnclude = 1;
zoneDisable = 2;
zoneReject = 3;

zoneInclude resuls in the the Zone being included in the zone list in the network
look-up dialog. zoneDisable indudes theZone but disables it; the item in the
zone list will be visible (although dimmed), but not selectable. zoneRe ject causes
theZone not to appear in the zone list.

MyHookProcedure The hook procedure

Apple Confidential

The hook procedure is called by NuLookup immediately after ModalDialogis
called and before the standard hook procedure is called. ModalDialog retumnsa
number that corresponds to the item hit in the dialog box. NuLookup employs a modal
dialog box filter procedure that retumns the item number for physical items hit in the
dialog box, as well as the item numbers that correspond to virtual items.

Chapter 7: Special K Utilities 183



Function

MyHookProc (item: INTEGER; theDialog: DialogPtr): INTEGER;

Appropriate virtual and real dialog items are:

CONST
hookOK = 1;
hookCancel = 2;
hookOutline = 3;
hookTitle = 4;
hookItemList = 5;
hookZoneTitle = 6;
hookZoneList = 1;
hookLine R 8;
hookVersion = 9;
hookReservedl = 10;
hookReserved2 = 11;
hookReserved3 = 12;
hookReserved4 = 13;
{ virtual items in dialog item list }

hookNull = 100;
hookItemRefresh = 101;
hookZoneRefresh = 102;
hookEject = 103;
hookPreflight = 104;
hookPostflight = 105;
hookKeyBase = 1000;

The first thirteen items correspond to physical items in the dialog item list. The other
items are “virtual® items that correspond to certain actions that may need to be

performed.

hookNull is a fake event that corresponds to a null event. The standard modal dialog
box filter procedure retumns hookNul1l in itemHit for null events.

hookItemRefresh causes the item list in the look-up dialog box to be discarded
and regenerated.

hookZoneRe£fresh causes the zone list in the look-up dialog box to be discarded and
regenerated. This will also cause a hookItemRe£fresh event to be generated
afterwards, as a side effect.

hookE ject causes all outstanding NBP lookups to be terminated and NLe jectto
be returned by NuLookup.

184  Special K Beta Draft Apple Confidential



hookPreflight is processed afier the zone and object lists are formed, but before
the dialog box is displayed.

( hookPost£1ight is processed before the dialog box is disposed of.

Items greater than hookKeyBase are actually the ASCII value of the key that is
pressed, offset by hookKeyBase. Forexample, an it emHit of 1032 decimal would
correspond to a keyDown event with the character generated being a space (ASCII 32
decimal).

(\ Apple Confidential Chapter 7: Sbecial K Utilities 185



Summary

Uiility routine

InitCTBUtilities;

AppendDITL(theDialog: DialogPtr; theDITL: Handle; method:

INTEGER) ;

CountDITL(theDialog: DialogPtr): INTEGER;

ShortenDITL(theDialog: DialogPtr; numberItems: INTEGER):;

NuLookup (where: Point; prompt: STR255; numTypes: INTEGER;

typelist: NLType; nameFilter: ProcPtr;
ProcPtr; hookProc: ProcPtr; VAR
theReply: LookupReply): INTEGER;

zoneFilter:

NuPLookup (where: Point; prompt: STR255; numTypes: INTEGER;

typelist: NLType; nameFilter: ProcPtr;
ProcPtr; hookProc: ProcPtr;
userData: LONGINT; dialogID: INTEGER;
filterProc: ProcPtr; VAR theReply:
LookupReply) :

zoneFilter:

Routines in your applicatin .

INTEGER;

MyNameFilter (theEntity: EntityName): INTEGER

MyZoneFilter(theZéne: STR32) : INTEGER;

MyHookProc (item: INTEGER;

Data structures
TYPE
NLType
thelcon
typeStr
END
LookupReply
theEntity
theAddr
END;

186  Special K Beta Draft

o ee

.

theDialog: DialogPtr): INTEGER;

ARRAY[0..3]
Handle;
Str32;

OF RECORD

RECORD
EntityName;
AddrBlock;

Seepage
nn

nn

nn
nn

nn

nn

Seepage
nn

nn

nn

Apple Confidential



¢

Constants

Rectangle (top, left, bottom, right)

CONST
nl k = 0;
nlCancel = 1;
nlEject = 2;

{ values that name filterProc returns }
namelnclude = 1;
nameDisable = 2;
nameRe ject = 3;

{ values that zone filterProc returns }
zoneInclude = 1;
zoneDisable = 2;
zoneRe ject = 3;

{ dialog items for hook procedure }
hookOK = 1;
hookCancel = 2;
hookOutline = 3;
hookTitle = 4;
hookItemList = 5;
hookZoneTitle = 6;
hookZoneList = 7;
hookLine = 8;
hookVersion = 9;
hookReservedl = 10;
hookReserved2 = 11;
hookReserved3 = 12;
hookReserved4 = 13;

{ virtual items in dialog item list }
hookNull = 100;
hookItemRefresh = 101;
hookZoneRefresh = 102;
hookE ject = 103;
hookPreflight = 104;
hookPostflight = 105:;
hookKeyBase = 1000;

Standard item placement

Item number Type
1 OK button {175, 240, 195, 310}

Apple Confidential

Chapter 7: Special K Utilities

187



2 Cancel button {175, 320, 195, 390}
3 Default hilite (useritem) {175, 240, 195, 310} )
4 Title (staticText) 5,15, 19, 226}
5 Item list (userltem) (25, 15,192, 210} o
6 Zone list title (staticText) . 5,240, 19, 391}
7 Zone list (userltem) {25, 240, 147, 391}
8 Line (useritem) {25, 2?5, 196, 226}
9 Version (useritem) {200, 360, 210, 400}
1013 Reserved
Special resources
Pop-up meny control
Parameter Before NewControl After NewControl
min ID of menu to use 1
max width of pop-up title number of menu items
value currently selected item currently selected item
refCon resource type to append to available to application
menu using AddResMenu
Constants )
CONST
{ DITL manipulation constants }
overlayDITL = 0;
appendDITLRight = 1;
appendDITLBottom = 2;

Resource formats

type ‘cbnd' ({ /* or tbnd, or fbnd */
integer = $S$CountOf(TypeArray) - 1;
array TypeArray
literal 1longint; /* Type */
integer = $$CountOf (IDArray) - 1;
wide array IDArray
integer; /* Local ID */
integer; /* Actual ID */
] }:
}i
}:
188  Special K Beta Draft Apple Confidential



8

Utility routine selectors

InitCTBUtilities .EQU
CountDITL .EQU
CTBGetCTBVersion .EQU

NuPLookup . .EQU

Apple Confidential

1025

1027

1029

1031

AppendDITL
ShortenDITL

NuLookup

.EQU 1026
.EQU 1028
.EQU 1030

Chapter 7: Special K Utilities

189






“Chapter 8 Fundamentals of Writing Your Own Tool

__Lene T view  meNu

e =S | |




About this chapter

This chapter provides general information about writing a connection, file transfer, or terminal
emulation tool. You can find more specific information on writing these tools in Chapter 9,
“Writing Connection Tools,” Chapter 10, “Writing Terminal Tools,” and Chapter 11, “Writing File
Transfer Tools.” You need to read at least two chapters to leam how to write a tool: this chapter,
and the chapter that deals specifically with your type of tool. The information in this chapter is
common to all three types of tools.

This chapter starts off with high-level information about writing a tool. Then, it describes the
six code resources that are an essential part of any communications tool meant to be used with
Special K. After that, the chapter provides example code to give you a better idea of what you need
to do to write a tool.

To write your own communications tool, you need to be familiar with the chapter in this book
that discusses the manager with which your tool will interface, either Chapter 3, “Connection
Manager,” Chapter 5, “Terminal Manager,” or Chapter 6 “File Transfer Manager.” You should also be
familiar with the Apple guidelines for communications tools, which is discussed in Appendix A,
“Guidelines for Communications Tools.”

You need to know the following topics:

] Serial Driver (see Inside Macintosh, Volumes: 11, IV)

= AppleTalk (see Inside AppleTalk and Inside Macintosh, Volumes: IL, IV, V)
] Dialog Manager (see Inside Macintosh, Volumes: 1, IV, V)

] Script Manager (see Inside Macintosh, Volume V)

] Creating stand-alone code (see Apple Technical Note 110)

About writing a tool

The Communication Toolbox managers interact with an application in the same way that the
Macintosh Toolbox managers interact with an application; the application calls a routine, which the
appropriate manager handles by sending a message off to a tool. For example, when an application
requires a connection service such as reading data from a remote entity, it calls the CMRead
routine. The Connection Manager takes this request and passes it on by issuing a message,
cmReadMsg, to the main code resource of the appropriate tool.

Most of the messages that the Special K managers send out are similar to the messages that
the other Special K managers send out. This is because all of the managers have to handle similar
tasks, like tool selection, record validation, and string localization. Notice the similarity of messages
in a request to perform tool-selection: the Connection Manager sends a CMChoose, the Terminal
Manager sends a TMChoose, and the File Transfer Manager sends a FTChoose.

Special K Beta Draft-Apple Confidential

192



Because the majority of messages in one of the managers are similar to those in the others, this
chapter shows you how to handle only Connection Manager messages. While you may not be
writing a connection tool, you can still lean from the sample code that shows how a connection
tool handles messages from the Connection Manager, and apply this knowledge toward writing
your own tool. .

To find a functional description of the routine associated with a message, read the appropriate
section earlier in this book.

The six essential resources

You need to create sex resources to make your own tool. Five of these are code resources and the
other is a tool-related resources. All the resources must have the same resource ID for a given tool.
Remember, the description below is for a connection tool. Resource descriptions for a terminal tool
are provided in Chapter 10, “Writing Terminal Tools” and resource descriptions for a file transfer tool
are provided in Chapter 11, “Writing File Transfer Tools.”

There is one tool-related resource that you need to form a tool:

cbnd bundle resource, which has the name of the tool and contains information on
what resources “belong” to the tool. For terminal emulation tools this resource
is called tbnd, and for file transfer tools, this resource is called fond.

There are five code resources that you need to form a tool:

cdef main code resource that performs the basic communications functions, such as
CMNew, CMRead, and CMWrite. This resource is discussed in Chapter 9,
“Writing 2 Connection Tool.” For terminal emulation tools this resource is called
tdefand is discussed in Chapter 10, “Writing Terminal Tools” ; for file transfer
tools this resource is called fbnd and is discussed in Chapter 11, “Writing File
Transfer Tools.”

cval validation resource that validates connection records with CMValidate and
also fills in configuration record default values with CMDefault  For
terminal emulation tools this resource is called tva/, and for file transfer tools,
this resource is called fual

cset setup resource that performs operations necessary to support putting up user
interface elements that configure a connection record associated with a tool.
For terminal emulation tools this resource is called tsef, and for file transfer tools,
this resource is called fset.

cscr scripting interface resource that handles the interface between a scripting
language and the tool. For terminal emulation tools this resource is called fscr,
and for file transfer tools, this resource is called fscr.

doc localization resource that handles localizing configuration strings. For terminal
emulation tools this resource is called toc, and for file transfer tools, this
resource is called floc.

Apple Confidential Chapter 8: Fundamentals of Writing Your Own Tool 193



The bundle resource

The connection bundle contains the master list of resources that are associated with your
connection tool. Besides the six standard resources, the connection bundle should contain any
additional resources that your tool requires, like dialogs or menus. The connection bundle should be
a named resource, with the name of the resource being the name of the connection tool.

The Connection Manager accomodates multiple uses of the same tool at the same time by
using the bundle resource. It does this by keeping track of the specifics of each instance of a tool in
a connection record. However, because of this correspondence between a given instance of a tool
and its associated connection record, be sure to index all resources when they are allocated and
released so that the integrity of this one-to-one correspondence is maintained.

Also, your connection tool should refer to resources with local IDs that the Connection
manager can map to actual resource IDs (the Communications Resource Manager
CRMLocalToReallID and CRMRealToLocalID routines help you do this). The
connection bundle resource, the format of which is shown next, must provide a data structure to
accomodate this mapping.

type ‘'cbnd' |

integer = $$CountOf(TypeArray) - 1;
array TypeArray {
literal longint; /* Type */
integer = $$CountOf (IDArray) - 1;
wide array IDArray {
integer; /* Local ID */
integer; /* Actual ID */

}i
}:

The validation code resource

The purpose of the validation code resource is to parse two possible messages from the manager—
in the case of the Connection Manager these are cmValidateMsgand cmDefaultMsg. An
application or tool will request one of these services when it requires your tool to check the values
in the connection record (for terminal tools this record is called the terminal record and for file
transfer tools this record is called the file transfer record) or when it requires your tool to reset the
connection record to its default values (your connection tool should contain the default values for
the connection record).

The validation code resource, an example of which is below, should be a resource of type cval
and be able to accept the parameters shown:

FUNCTION cval (hConn: ConnHandle; msg: INTEGER;
pl, p2, p3: LONGINT): LONGINT;

Special K Beta Draft-Apple Confidential

14



VAR

pConfig: ConfigPtr;
BEGIN
CASE msg OF
cmValidateMsg: { hConn is valid here }
BEGIN
cval = DoValidate (hConn);
END;
cmDefaultMsg: { hConn is not valid here }
BEGIN { pl is a pointer to the configPtr }

{ p2 is allocate or not }
{ p3 is the procID of the tool }
IF p2 = 1 THEN
BEGIN
pConfig := ConfigPtr(NewPtr (SIZEOF (ConfigRecord)));
ConfigHandle(pl)® := pConfig;
{ real programmers check errors here }
END '
ELSE
BEGIN
pConfig := ConfigHandle(pl)*;
END;
DoDefault (pConfig);
END;
END; {case}
END;

The messages accepted by the validation code resource and their associated values are:

CONST

{ validation code resource messages |}
cmValidateMsg = 0;
cmDefaultMsg = 1;

For each of the messages defined above, p1, p2, and p3 take on different meanings, which are
discussed under the description of each message.

cmValidateMsg

Your tool will receive cmVa lidat eMsg when the application requires your tool to validate the
fields in the connection record. Your tool should compare the values in this record with the values
specified in your tool.

The sample code below shows how your tool can respond toa cmValidateMsg.

After executing the code necessary to respond toa cmValidateMsg, your code should
pass back 0 if there were no errors, or 11if the configuration record had to be rebuilt. p1, p2, and
p3 should be ignored. ‘

Apple Confidential Chapter 8: Fundamentals of Writing Your Own Tool 1%



{ perform validate here }
FUNCTION DoValidate(hConn: ConnHandle): LONGINT;

VAR
pPrivate: PrivatePtr;
pConfig: ConfigPtr;
BEGIN
DoValidate := 0; { optimism reigns }

pConfig := ConfigPtr (hConn*~~.config):
pPrivate := PrivatePtr (hConn~~.private);

IF pConfig”.foobar = 0 THEN

Dovalidate := 0 { okey dokey }
ELSE .
DoValidate := 1; { uh-oh }
END;
cmDefaultMsg

Your tool will receive cmDe faultMsg when the application requires your tool to fill in the fields
of a connection record. Default values should be specified in your tool. The example code below
shows how your tool can handle cmDefaultMsg.

After executing the code necessary to respond to cmDe faultMsg, pl should pass back a
pointer to the configuration record pointer. p2, if it contained 1 when CMDefault was called,
should allocate the configuration record and return the pointer in p1. If it was 0, then simply use
the configuration pointer obtained by dereferencing p1.

PROCEDURE DoDefault (theConfig : ConfigPtr);

VAR boo : STR255;

BEGIN
WITH theConfig”® DO
BEGIN
{ default is 9600 8 N 1 no handshaking }
baudrate := 9600;
databits := data8;
stopbits := stopl0;

paritybits := noParity:;

WITH theConfig”.shaker DO
BEGIN
£fXOn := 0;
fCTS := 0;
xOn := CHAR($11);
xOff := CHAR(S$13);

Special K Beta Draft-Apple Confidential

1%



errs := 0;

. evts := 0;
( fInX := 0;
e fDTR := 0;
END;
portName := GetFirstSerial;
flags := 0;
END;
END;
END.

The setup definition code resource

You might want your tool to present to users a custom dialog box that will allow them to
configure their own connection or select a connection tool. The Connection Manager routines
CMSetupPreflight, CMSetupSetup, CMSetupItem CMSetupFilter, and
CMSetupCleanup support this feature; your tool should be able to handle the messages
associated with these routines.

The connection tool setup code resource should be a function called cset and be able to handle the
( following parameters: .

{ main entry point for cset resource }
FUNCTION cset (pSetup: SetupPtr; msg: INTEGER;

pl, p2, p3: LONGINT): LONGINT;
TYPE

LocalHandle = “LocalPtr;

LocalPtr = “LocalRecord;

LocalRecord = RECORD { private tool setup
context }

foobar: LONGINT;
END;

IntPtr = ~INTEGER;
EventPtr = ~“EventRecord;

BEGIN
CASE msg OF
cmSpreflightMsg:
BEGIN
theCookie := CookiePtr (NewPtr (SIZEOF (CookieRecord))):;
CookieHandle (p3)~ := theCookie; { send back theCookie }
cset := Preflight (pSetup, theCookie):
END;

( Apple Confidential Chapter 8: Fundamentals of Writing Your Own Tool 197



cmSsetupMsg:
BEGIN
theCookie := CookieHandle(p3)*; { get the magic cookie } ‘
Setup (pSetup) ; { do the setup } ‘K
END;

cmSitemMsg:
BEGIN
theCookie := CookieHandle(p3)“~;: { get the magic cookie }
Item(pSetup, theCookie, IntPtr(pl)); { process the items hit }
END;

cmSfilterMsg:
BEGIN
theCookie := CookieHandle(p3)*; { get the magic cookie }

cset := Filter(pSetup, theCookie, EventPtr(pl), IntPtr(p2});

END;

cmScleanupMsg:
BEGIN
theCookie := CookieHandle (p3)~; { get the magic cookie }
DisposPtr (Ptr (theCookie)); { and get rid of it }
END;

END; ({case}

END;

Valid values for ms g are:

CONST
cmSpreflightMsg = 0;
cmSsetupMsg = 1;
cmSitemMsg = 2;
cmSfilterMsg = 3;
cmScleanupMsg = 4;

For each of the messages defined above, p1, p2, and p3 take on different meanings, which are
discussed under the description of each message. When your tool handles these routines, it should
use a data structure called SetupStruct.

TYPE
SetupPtr = ~SetupStruct;
SetupStruct = RECORD
theDialog : DialogPtr;
count : INTEGER;
theConfig : Ptr;
proclID : INTEGER
END;
Special K Beta Draft-Apple Confidential



cmSPreflightMsg

Your setup definition code resource should perform function similar to that shown below when it
receives cmSpref 11ightMsg fromthe Connection Manager.

When passed to your connection tool, p3 will be a pointer to a LONGINT that gets passed
along to the other routines during setup definition. p3 should serve as a magic cookie if the setup
definition procedure requires some private context.

After executing the code necessary to respond to cmSpref1lightMsg, your connection
tool should return a handle to a dialog item list. This handle should then be disposed of by the caller
of this function.

FUNCTION Preflight (pSetup: SetupPtr; theCookie: LocalPtr): LONGINT;
CONST

locallD = 1; { we want DITL local ID 1 }
VAR

hDITL: Handle;

theID: INTEGER;

o0ldRF: INTEGER:

BEGIN
theCookie”.foobar := 0; { setup theCookie }

thelD := CRMLocalToRealID(ClassCM, pSetup”.procID, 'DITL',
locallD);
IF theID = -1 THEN

Preflight := 0 { no DITL found }
ELSE
BEGIN
0ldRF := CurResFile;
UseResFile (pSetup”.proclD); { procID is the tool refnum }

hDITL := GetlResource('DITL', thelD);
UseResFile (0ldRF) ;

IF hDITL <> NIL THEN
DetachResource (hDITL) ; { got it so detach it }

Preflight := LONGINT(hDITL);
END;
END;

cmSsetupMsg

Your setup definition code resource should perform function similar to that shown below when it
receives cmS set upMsg from the Connection Manager.

When passed to your connetion tool, p3 will be a pointer to a LONGINT magic cookie value.

Apple Confidential Chapter 8: Fundamentals of Writiné Your Own Tool

19



PROCEDURE Setup(pSetup: SetupPtr);
CONST

myFirstItem = 1;

mySecondItem = 2;

VAR

first: INTEGER; { first item appended (0 based)

pConfig:ConfigPtr;

BEGIN
WITH pSetup” DO
" BEGIN
first := count - 1;

pConfig := ConfigPtr(theConfig) ;.

GetDItem(theDialog, first+myFirstItem, itemKind, itemHandle,

itemRect);

{ count is 1 based )}
{ get the config ptr }

SetCtlValue(ControlHandle (itemHandle), pConfig”.foobar);

GetDItem(theDialog, first+mySecondItem, itemKind, itemHandle,

itemRect);

SetCtlValue (ControlHandle (itemHandle), 1-pConfig”.foobar):;

END; ({(with}
END;

cmSitemMsg

Your setup definition code resource should perform function similar to that shown below when it
receives cmS it emMsg from the Connection Manager.
When passed to your connection tool, p1 will contain an item that was selected from the

dialog item list and p 3 will contain a pointer tomagicCookie.

PROCEDURE Item(pSetup: SetupPtr; plItem: IntPtr);
CONST
myFirstItem = 1;
mySecondItem = 2;
VAR
first: INTEGER; . { first item appended (0 based)

pConfig:ConfigPtr;
value: INTEGER;

BEGIN
WITH pSetup” DO
BEGIN
first := count - 1;
pConfig := ConfigPtr(theConfig):

CASE pltem~=-first OF

Special K Beta Draft-Apple Confidential

{ count is 1 based }
{ get the config ptr }



myFirstItem:
BEGIN
GetDItem(theDialog, first+myFirstItem, itemKind,
itemHandle, itemRect);
value := GetCtlValue(ControlHandle(itemHandle))
value := 1 - value;
pConfig”.foobar := value; { stick into config record }
SetCtlValue (ControlHandle (itemHandle), value); { update
control }
END;
mySecondItem:
BEGIN
SysBeep(S):
FlashMenuBar (0) ;
END;
END; {case)
END; ({with}
END;

cmSfilterMsg

Your setup definition code resource should perform function similar to that shown below when it
receives cmS£1i1t erMsg from the Connection Manager.
When passed to your connection tool, p1 will contain a pointer to an event record, p2 will

contain a pointer to an item hit in the dialog list, and p3 will contain a pointer tomagicCookie.

If the event that was passed-to this function was handled, then your connection tool should
return 1, otherwise it should return 0.
FUNCTION Filter (pSetup: SetupPtr; theCookie: LocalPtr; pEvent:

EventPtry;
pltem: IntPtr): LONGINT;

BEGIN
Filter := 0; { not hungry }
IF pEvent”.what = keyDown THEN { eat all keyDowns }
BEGIN
SysBeep(5):
Filter := 1; { processed )}
END;
END;
cmScleanupMsg

Your setup definition code resource should perform function similar to that shown below when it
receives a cmcleanupMsg from the Connection Manager.
When passed to your connection tool, p3 will contain a pointer tothe magicCookie.

Apple Confidential Chapter 8: Fundamentals of Writing Your Own Tool

21



PROCEDURE myCleanup(p3: LONGINT);
BEGIN
DisposPtr( Ptr(p3) ): { dispose of magicCoockie }
p3 := 0; A
END;

The scripting interface code resource

Your connection tool’s scripting interface code resource is responsible for handling the interface
between your tool and a scripting language. Your scripting interface code resource will have to
handle two messages: cmMGetMsg and cmMSetMsg.

Your connection tool scripting interface code resource should be a resource of type cscr and
be able to handle the parameters that are shown below:

FUNCTION cscr (hConn: ConnHandle; msg: INTEGER; pl, p2, p3: LONGINT):

LONGINT;
VAR
pConfig: ConfigPtr;
BEGIN
cscr := 0; { for now }

CASE msg OF
cmMgetMsg: . N
cscr := LONGINT (GetConfig(hConn)); R
cmMsetMsg:
cscr := SetConfig(hConn, Ptr(pl));
END; {case}

END;

Valid values for msg are

CONST
cmMgetMsg = 0;
cmMsetMsg = 1;

For each of the messages defined above, p1, p2, and p3 take on different meanings, which are
discussed under the description of each message.
cmMgetMsg

Your tool will receive cmMgetMsg from the Connection Manager when the application requires a
string that describes the connection record. The sample code below shows how your application
can handle cmMgetMsg.

Special K Beta Draft-Apple Confidential



After executing the code necessary to respond to cmMge tMsg, your connection tool should
return NIL if there was a problem parsing the configuration string. Otherwise, it should return a
( ' pointer to a null-terminated string that contains tokens in American English that represent the
- configuration record pointer to by con £ i g in the connection record.

FUNCTION GetConfig(hConn: ConnHandle): Ptr;

VAR
thePtr: Ptr;
pConfig: ConfigPtr;
theString,
string2: STR255;

BEGIN
pConfig := ConfigPtr (hConn”~”.config); { get the config record }
theString := 'FOOBAR '; { attribute name is FOOBAR }
NumToString(pConfig~.foobar, string2); { get the attribute value }
theString := CONCAT(string, string2); { make the config string }

tthtr := NewPtr (SIZEOF (LENGTH (theString)+1));

IF thePtr <> NIL THEN

BEGIN
BlockMove (Ptr (LONGINT (@theString) +1),
thePtr, LENGTH(theString)); { copy it }
Ptr (LONGINT (thePtr) +LENGTH (theString))”~ := 0; { 0 terminate it }
END;
T GetConfig := thePtr; { bye bye }
( END;
cmMsetMsg

Your tool will receive cmMsetMsg from the Connection Manager when the application requires
your tool to set the fields of the connection record to values that are specified in a string. The
Connection Manager will pass a pointer to this string as a parameter to this call. The sample code
below shows how your tool can handle cmMsetMsg.

When passed to your connection tool’s scripting interface code resource, p1 will be a pointer to
an American English null-terminated string that contain tokens representing a configuration record.
Your tool should return 0 if there is no problem with the string, or a 1 if processing was aborted.

Your tool should call CMValidate after it has completed executing this routine.

FUNCTION SetConfig(hConn: ConnHandle): LONGINT;

VAR
pConfig : configptr;
i, local : integer; {loop index}
myToken : TokenRecPtr; {each TokenRec}
theval : longint;
aTokenPtr : TokenBlockPtr; {the whole TokenRec block}
returnvVal : longint;

( Apple Confidential Chapter 8: Fundamentals of Writing Your Own Tool



tokelIndex, {string index for TokenRec strings}

vallndex : integer; {string index for value strings}
tokeStr : str255; {TokenRec as string} o
begin e
pConfig := ConfigPtr (hConn~“.config);
returnVal:= -1; {always the pessimist}
{£fill it with a whole lotta junk}
if InitTokenBlock (aTokenPtr) <> noErr then
begin
SetConfig:= =-1;
EXIT (SetConfig); {abort, abort}
end;
aTokenPtr”.source := theStr; {what to parse}
aTokenPtr~.sourcelength := strlen(theStr); {just how long}
if IntlTokenize(aTokenPtr) <> tokenOK then {Thanks, SM 2.0}
begin
SetConfig:= =-1;
EXIT (SetConfig);
end;
{for every TokenRec}
for 1 := 1 to aTokenPtr~.tokenCount do
begin
myToken := TokenRecPtr (ord(aTokenPtr~.tokenList) +
(i-1) *sizeOf (TokenRec)) ;
BlockMove (myToken”.position, Ptr(ORD(@tokeStr)+1l), myToken”.length); ’ e
tokeStr (0] := Char(myToken”.length);
if myToken".theToken = tokenAlpha then
begin
IF tokeStr = 'FOOBAR' THEN
begin
{index to next alpha TokenRec that matches values}
while (i < aTokenPtr”.tokenCount) do
begin
is= 1 + 1;
myToken := TokenRecPtr (ord(aTokenPtr~.tokenList) +
(i-1) *sizeOf (TokenRec)) ;
BlockMove (myToken”.position,
Ptr (ORD (RtokeStr)+1l), myToken~.length);
tokeStr(0] := Char(myToken”.length);
if myToken”.theToken = tokenNumeric then
begin
StringToNum(tokeStr,theVal);
pConfig”.foobar := theVal; {set the new value}
returnVal:= 0; {no errors, mate}
Special K Beta Draft-Apple Confidential



leave; {while 1loop)}
end; (if}
: if i = aTokenPtr~.tokenCount then
(‘ returnVal:= 1;
end; {while}
end; {interval}
end; {An Alpha TokenRec}

end; {for every TokenRec}
DisposPtr (Ptr (aTokenPtr~,TokenList));
DisposPtr (Ptr (aTokenPtr)); {clean it up, boys}

SetConfig:= returnval; (g'déy, mate}

end; ({SetConfig}

( T 22 R X X222 22X X2 2 X2 R 22 X2 2 R 2R X & J )
{ Returns the length of a c-string }
( T2 XXX XEXEXESESZSEES LSRR RR RS RS )

function strlen(theString:Ptr):longint;
var
endPtr : Ptr;

begin
endPtr:= theString;
o while endPtr” <> 0 do {scan until we find \0 termination}
( endPtr:= ptr(ord(endPtr) + 1);
- strLen:= ord4 (endPtr) - ord4(theString);
end;
( I R R 22 RER2 222232322 X222 S22 222 28R 28 s st s )
{ initialize the TokenRec block for tokenize call }
{ I R R E 222222222 2X2 RS2 X222 Rl st sy )

function InitTokenBlock(var aTokenPtr:TokenBlockPtr): longint;

const

TOKE_MAX = 10; {Max # of tokens to support}
var

itl4 : itl4Handle;
begin

itl4 := itl4Handle(IUGetIntl(4));
HLock (Handle (itl14));
aTokenPtr := TokenBlockPtr (NewPtr (sizeof (TokenBlock))); {gimme space}
if aTokenPtr = nil then begin
InitTokenBlock:= MemError;
EXIT(InitTokenBlock)
end;
aTokenPtr”.tokenlList := NewPtr(sizeof(TokenRec) * TOKE_MAX); {gimme more}

( Apple Confidential Chapter 8: Fundamentals of Writing Your Own Tool 25



end;

if aTokenPtr~.tokenList

begin
InitTokenBlock:= MemError;

EXIT(InitTokenBlock);

end;

aTokenPtr~.tokenLength

nil

then

:= TOKE_MAX;

aTokenPtr”.tokenCount :=

aTokenPtr~.stringlength
aTokenPtr”.stringCount

aTokenPtr~.doString :=
aTokenPtr~.doAppend :=

fa
fa

aTokenPtr”~.doAlphanumeric
aTokenPtr~.doNest := false;

aTokenP:r“.leftDelims[O]

o=
:

aTokenPtr~.leftDelims[1]

aTokenPtr~.rightDelims[0]
aTokenPtr~.rightDelims (1]

aTokenPtr~.leftComment [0]
aTokenPtr~.leftComment (1]
aTokenPtr~.leftComment [2]
aTokenPtr~.leftComment [3]

0;

aTokenPtr~.stringList := NIL;
=o;

0;

lse;
lse;

.
=

{unused for my purposes}

false;

token2Quote; {a whole lotta junk}

:= token2Quote;

o=
.

=

aTokenPtr”.rightComment [0] :=
aTokenPtr”~.rightComment (1] :=
aTokenPtr~.rightComment [2] :=
aTokenPtr”~.rightComment [3] :=

aTokenPtr”.escapeCode
aTokenPtr”.decimalCode
aTokenPtr~.itlResource
aTokenPtr~.reserved(0]
aTokenPtr”~.reserved(1l]
aTokenPtr”~.reserved(2]
aTokenPtr~.reserved(3]
aTokenPtr”.reserved(4]
aTokenPtr~.reserved(5]
aTokenPtr”~.reserved(6]
aTokenPtr~.reserved([7]

HUnlock (Handle (itl14)):;
InitTokenBlock:= noErr;
{InitTokenBlock}

o=
H

o=
.

Special K Beta Draft-Apple Confidential

0;
0;
0:
0:
0;
0;
0;
0;

token2Quote;
token2Quote;

tokenRoot;
tokenRoot;
tokenRoot;
tokenRoot;

tokenRoot;
tokenRoot;
tokenRoot;
tokenRoot;

:= tokenEscape;
tokenPeriod;
Handle(itl14);

{pas de probléme}



The localization code resource

Your connection tool’s localization code resource is responsible for handling the function necessary
to localize your tool. It will have to be able to handle two messages: CMGetConfig and
CMSetConfig.

Your localization code resource should be a resource of type c1oc; it should be able to handle
the parameters that are shown below.

FUNCTION cloc (hConn: ConnHandle; msg: INTEGER; pl, p2, p3:
LONGINT) : LONGINT;

Valid values for msg are

CONST
cmL2English = 0;
cmL2Intl = 1;

For each of the messages defined above, p1, p2, and p3 take on different meanings, which are
discussed under the description of each message.

cmL2English and cmL2Intl

Your tool will receive cmL2Eng1li sh from the Connection Manager when the application
requires your tool to localize a string to English. When the parameters p1, p2, and p3 are passed to
your tool, p1 will contain a pointer to a localized null-terminated string that contains tokens
representing a configuration record, p2 will contain a pointer that points to a pointer. Your tool
will have to allocate space for this pointer, which contains the American English null-terminated
configuration string. p3 will contain a language identifier, which is defined in the Script Manger
documentation.

Your tool will receive cmL2Int 1 from the Connection Manager when the application requires
your tool to localize a string to a language other than English. When the parameters p1, p2, and
p3 are passed to your tool, p1 will contain a pointer to an American English null-terminated string
that contains tokens representing a configuration record, p2 will contain a pointer to a pointer.
Your tool will have to allocate space for this pointer, which contains the localized configuration
string. p3 will contain a language identifier, which is defined in the Script Manger documentation.

The next section of sample code shows how your tool can handle both cmL.2English and
cmL2Intl.

After executing the code necessary to respond to a cmL2English or cmL2Int 1, your
routine should return NIL if there was a Memory Manager error or if the language requested is not
available. 1t should also return any appropriate error code in the status field of the connection
record.

{ main entry point for cloc resource }
FUNCTION cloc(hConn: ConnHandle; msg: INTEGER; pl, p2, p3: LONGINT): LONGINT;

Apple Confidential Chapter 8: Fundamentals of Writing Your Own Tool



TYPE
PtrPtr = “Ptr;

VAR
outPtr: Ptr;
proclD: INTEGER;

begin
outPtr := PtrPtr(p2)*; { get output pointer }
case msg of
cmL2English:
cloc := Translate( Ptr(pl),outPtr,p3,verUs);
cmL2Intl:

cloc := Translate( Ptr(pl),outPtr,verUs,p3);
end; {case}
PtrPtr(p2) "~ := outPtr; { return output pointer }

end; (mytscrDEF}

Translates an input config string from one language to another
returns 0 if no problem, non zero if there is a problem
This routine needs to allocate outputStr.

function Translate( inputStr: Ptr; var outputStr: Ptr;
fromLanguage, tolanguage: longint): longint;

BEGIN

end; ({Translate}

if language is not supported, return 0 but leave outputStr NIL .

— e e

Summary

Messages

CONST

Special K Beta Draft-Apple Confidential



. { validation code resource messages }
( cmValidateMsg = 0;
cmDefaultMsg = 1;

{ setup code resource messages }

cmSpreflightMsg = 0;
cmSsetupMsg = 1;
cmSitemMsg = 2;
cmSfilterMsg = 3;

cmScleanupMsg = 4;
{ scripting interface code resource messages }
cmMgetMsg = 0;

cmMsetMsg = 1;

{ localization interface code resource messages |}

cmL2English = 0;
cmL2Intl = 1;
Data structures
SetupPtr = ~“SetupStruct;
SetupStruct = RECORD
theDialog : DialogPtr;
- count : INTEGER;
( ‘ theConfig : Ptr;
proclID : INTEGER
END;

( Apple Confidential Chapter 8: Fundamentals of Writing Your Own Tool



Definition procedures

FUNCTION cdef (hConn: ConnHandle; msg: INTEGER; pl, p2, p3:

LONGINT) : LONGINT;

FUNCTION cval (hConn: ConnHandle; msg: INTEGER; pl, p2, p3:

LONGINT) : LONGINT;

FUNCTION cset (pSetup: SetupPtr; msg: INTEGER; pl, p2, p3:

LONGINT) : LONGINT;

FUNCTION cscr (hConn: ConnHandle; msg: INTEGER; pl, p2, p3:

LONGINT) : LONGINT;

FUNCTION cloc (hConn: ConnHandle; msg: INTEGER; pl, p2, p3:

LONGINT) : LONGINT;

Resource types

type ‘cbnd'
integer = $$CountOf (TypeArray) - 1;
array TypeArray {

literal longint; /* Type
integer = $$CountOf (IDArray) - 1;
wide array IDArray
integer; /* Local ID
integer; /* Actual ID

}:
}:

Special K Beta Draft-Apple Confidential

*/

*/
*/

210



Chapter 9 Writing Connection Tools

e JETI viEw  MENU
M




About this chapter

This chapter tells 'you how to write the main code resource for a connection tool. There are at least
five other code resources that you will need to include as part of your tool; they are described in a
Chapter 8, “Fundamentals of Writing Your Own Tool.” You should read that chapter, as well as
Chapter 3, “Connection Manager,” before reading this chapter. :

This chapter describes all the messages, parameters, and data structures that the Connection
Manager will pass to your tool's main code resource. Also included in this chapter is sample code
(with pseudocode mixed in) that will help you understand what your application should do in
response to receiving any of the messages. A summary at the end of the chapter shows you what
you should names your six connection tool resources, as well as all the messages the Connection
Manager will send to your tool.

Your connection tool’s main code resource

The purpose of the main code resource is to parse messages from the Connection Manager and then
to branch to a routine that can handle each message. The main code resource should be a resource
of type cde £ and be able to accept the parameters shown below.

FUNCTION cdef (hConn: ConnHandle; msg: INTEGER; pl, p2, p3:
LONGINT) : LONGINT;

The messages accepted by the main code resource, and their associated values, are:

214 Special K Beta Draft—Apple Confidential



(f;f;;_

CONST

cmInitMsg = 0;
cmDisposeMsg = 1;
cmSuspendMsg = 2;
cmResumeMsg = 3;
cmMenuMsg = 4;
cmEventMsg = 5;
cmEnvironsMsg = H
cmActivateMsg = 50;
cmDeactivateMsg = 51;
cmIdleMsg = 16;
cmAbortMsg = 52;
cmResetMsg = 53;
cmReadMsg = 100;
cmWriteMsg = 101;
cmStatusMsg = 102:;
cmListenMsg = 103;
cmAcceptMsg = 104;
cmCloseMsg = 105;
cmOpenMsg = 106;
cmBreakMsg = 107;
cmIOKillMsg = 108;
cmEnvironsMsg = 1089;

For each of the messages defined above, the three parameters cdef retums , p1, p2,and p3, take
on different meanings. These parameters are described in the following sections that go into detail
about how your tool should respond to each incoming message.

cmResetMsg

The Connection Manager will send cmRe setMsg to your tool when the application requires your
tool to reset the connection. The specific state to which your tool should reset the connection is
dependent upon the connection protocol.

The sample code below shows you a basic template into which you can code your tool's
response to cmResetMsg.

PROCEDURE myReset (hConn: ConnHandle);
BEGIN
END;

cmMenuMsg

The Connection Manager will send cmMenuMsg to your tool when a menu event has occurred
in the application. When passed to your tool, p1 will contain the menu ID and p2 will contain the
menu item.

Apple Confidential Chapter 8: How to Write a Connection Tool 215



The sample code below shows you a basic template into which you can code your tool’s
response to cmMenuMsg. When done, your tool should pass back 0 if the menu event was not
handled and 1 if it was.

FUNCTION myMenu(hConn: ConnHandle; mID: INTEGER; mItem: INTEGER): LONGINT;
BEGIN
myMenu := 0; { pessimism }
{ if mine then
myMenu := 1;

END;

cmListenMsg

An application will call the CML1 st en routine when it requires your tool to wait for in incoming
string of data. When passed to your tool, p1 will contain the address of CompletorRecord
and p2 will contain the timeout value in ticks.

The sample code code shows you a basic template into which you can code your tool’s
response to cmListenMsg. When done, your tool should pass back an appropriate error code.

FUNCTION myListen (hConn: ConnHandle; completor: CompletorRecord;
' timeout: LONGINT): CMErr;
BEGIN
myListen := noErr; { optimism }
{ if connection is already open, return error condition }
{ if listen is pending, return noErr }
{ if the value for timeout is 0, try once }
{ if the value for -1, there is not timeout }
IF completor.async THEN
BEGIN
END
ELSE
BEGIN
END;
END;
cmidleMsg

Your tool will receive cmId1eMsg when the application requires idle time, such as when it needs
your tool to check the status of an asynchronous routine. An application can not call CMIdle
from interrupt level.

The sample code shows you a template into which you can code your tool's response to
cmIdleMsgq.

216 Special K Beta Draft—Apple Confidential



PROCEDURE myIdle (hConn: ConnHandle);
BEGIN
END;

cmEventMsg

The Connection Manager will pass cmEventMsg to your tool when an event occurred ina
window associated with the connection tool. The sample code shows a template into which you
can code your tool’s response 0 cmEventMsg.

When passed to your tool, p1 will be a pointer to the event record. The reference constant field
of the window record will contain the connection handle.

PROCEDURE myEvent (hConn: ConnHandle; theEvent: EventRecord);
BEGIN

{ process the event }

END;

cmAbortMsg

The Connection Manager will pass cmAbortMsg to your tool when the application has requested
that a pending open o listen be aborted. The sample code below shows a template into which you
can code your tool’s response to cmAbor tMsg.

PROCEDURE myAbort (hConn: ConnHandle);

BEGIN
END;

cmAcceptMsg

The Connection Manager will pass cmAcceptMsg to your tool when the application has called
the cmAccept routine. When passed to your tool, p1 will contain 1 if your tool should accept the
open request or 0 if it should rejedt it.

The sample code below shows a template into which you can code your tool’s response to
cmAcceptMsg. When finished, your tool should return an appropriate error code.

FUNCTICON myAccept (hConn: ConnHandle; accept: INTEGER): CMErr;
BEGIN
IF accept = 1 THEN
BEGIN { accept }
END
ELSE
BEGIN { reject }
END;
END;
Apple Confidential Chapter 8: How to Write a Connection Tool

217



cmActivateMsg and cmDeactivateMsg

The Connection Manager will pass cmAct ivateMsg or cmDeact ivateMsg to your tool
when the application requires your tool to perform an action, such as installing or removing a menu
from the menu bar.

The sample code below shows a template into which you can code your tool’s response to
cmActivateMsgand cmDeact 1vateMsg It is possible that your tool will respond
identically to each message.

PROCEDURE myActivate(hConn: ConnHandle);

BEGIN
END;

PROCEDURE myDeactivate (hConn: ConnHandle);
BEGIN
END;

cmSuspendMsg and cmResumeMsg

The Connection Manager will pass cmSuspendMsg or cmRe sumeMsg to your tool when the
application requires your tool to perform an action, such as installing or removing a menu from the
menu bar.

The sample code below shows a template into which you can code your tool’s response to
cmSuspendMsg and cmRe sumeMsg . It is possible that your tool will respond 1denncally to
each message.

PROCEDURE mySuspend(hConn: ConnHandle);
BEGIN
END;

PROCEDURE myResume (hConn: ConnHandle);
BEGIN
END;

cminitMsg

The connection Manager will pass cmInitMsg to your tool after the following sequence of
events. When a tool or application calls CMNew, the Connection Manager allocates space for the
connection record. It then fills in some of the fields based upon information that was passed in the
parameters to the call. The Connection Manager fills in the configand o1dCon£1ig fields by
calling CMDe fault. Then the Connection Manager passes cmInitMsg to your tool. After
your tool has finished responding toa cmInitMsg, the Connection Manager calls
CMvValidate.

218 Special K Beta Draft—Apple Confidential



The sample code below shows how your tool can respond toa cmInitMsg. After executing
the code necessary to respond to a cmInitMsg, your code should pass back an appropriate
OsErr orCMErr.

FUNCTION myInit (hConn: ConnHandle): CMErr;

VAR
state: SignedByte;

BEGIN
myInit := noErr; { optimism }
state := HGetState(Handle (hConn)); { save handle state }
HLock (Handle (hConn)); { lock it down }

WITH hConn~~ DO
BEGIN
flags := BOR(flags, cmData); { yes we do data }
IF BAND(flags, cmAttn) <> 0 THEN ( turn off attention }
flags := BXOR(flags, cmAttn);
IF BAND(flags, cmCntl) <> O THEN { turn off control }
flags := BXOR(flags, cmCntl);

errCode := noErr; { optimism reigns

{ need to check MemErr here }
bufferArray(CMDatalIn] := NewPtr(bufSizes[CMDatalInl]);
bufferArray(CMDataOut] := NewPtr(bufSizes[CMDataOut]);

private := PrivatePtr (NewPtr (SIZEOF (PrivateData)));
WITH private~ DO

BEGIN ({ fill in private data structure here }

END;

END;

HSetState (Handle(hConn), state);
END;

cmDisposeMsg

Atool or application will call CMDispose when it requires your tool to disposeof a connection
record and all the data structures that are associated with it. If the connection is open when the
application calls CMD1i spose, your tool should first make a synchronous call to CMClose (with
the immediate bit set).

The sample code below shows how your tool can respond to cmDisposeMsg. After
executing the code necessary to respond to cmDi sposeMsg, your code should pass back 0 if it
was successful or 1 if it was not

Apple Confidential Chapter 8: How to Write a Connection Tool

}

219



FUNCTION myDispose (hConn: ConnHandle): CMErr;

VAR
pPrivate: PrivatePtr; { tool privates }
BEGIN
myDispose := noErr;
{ if the connection is open then call CMClose on it }
DisposPtr( Ptr(hConn~~,private) ):;
DisposPtr( Ptr(hConn~”.bufferArray(CMDataln]) );
DisposPtr( Ptr(hConn~”~.bufferArray[CMDataOut]) );
END;
cmReadMsg and cmWriteMsg

A tool or application will call CMRead when it requires your tool to read data from a remote entity.
Likewise, a tool or application will call CMWr it e when it requires your tool to write data to a
remote entity. The Connection Manager will handle these calls by passing cmReadMsg or

cmWr it eMsgq to the appropriate connection tool

If a channel is requested that is not supported by your tool (for example, a read is requested on
the attention channel when the attention channel is not supported), your tool should return
cmNotSupported. '

After executing the code necessary to respondto a cmReadMsg or cmWriteMsg, your
tool should pass back both an appropriate OSExr or CMEr r, as well as the following values for
pl,p2,and p3: inpl apointerto dataBuffer, in p2 the timeout value in ticks, and in
p3 apointer to CompletorRecord.

When the Connection Manager passes cmReadMsg or cmWriteMsg toatool, it will also pass
the dataBuf fer record and the CompletorRecord.

Before learning how your tool should respond to cmReadMsg or cmWr it eMsg, first you
need to know about the records that are passed along with the message.

The dataBuffer record

dataBuf fer contains information about where the read or write buffer is located, how many
bytes are supposed to be read or written, the channel that is to be used, and an end-of-message
flag. Your tool should be able to accomodate the data structure defined here:

TYPE

dataBufferPtr = ~dataBuffer;

dataBuffer = RECORD
thePtr : Ptr; { ptr to buffer }
count : LONGINT; { # to read/write }
channel : INTEGER; { channel desired }
flags : BOOLEAN; { end of message }

END;

These are the valid values for channel:

220 Special K Beta Draft—Apple Confidential



CONST

. cmData = 1;
(j cmCntl = 2;
cmAttn = 3;

The CompletorRecord record

A CompletorRecoxrd record is sent with every message that involves either an asynchronous
or synchronous operation. This includes cmReadMsg and cmWriteMsg. This record allows
your tool to execute a completion routine after the read or write has finished.

TYPE
CompletorPtr = “CompletorRecord;
CompletorRecord = RECORD
async : BOOLEAN;
completionRoutine : ProcPtr;
END;
cmReadMsg

FUNCTION myRead(hConn: ConnHanlde; dPtr: dataBufferPtr;
timeout: LONGINT; completor: CompletorPtr);

BEGIN
{ if connection is not open then return cmNotOpen }
SR IF dPtr~.channel <> cmData THEN { this tool only supports Data }
( { need to check to see if call is requesting proper channel }
- BEGIN
myRead := cmNotSupported;
Exit (myRead);
END;
{ timeout = -1 is infinite retry }
{ timeout = 0 then try once }
IF completor”~.async THEN { asynchronous read }
BEGIN
END
ELSE
BEGIN
END;
END;

(\ Apple Confidential Chapter 8: How to Write 2 Connection Tool 221



cmWriteMsg

FUNCTION myWrite(hConn: ConnHanlde; dPtr: DataBufferPtr;
timeout: LONGINT; completor: CompletorRecord);

BEGIN
{ if connection is not open then return cmNotOpen }
IF dPtr~.channel <> cmData THEN { this tool only supports Data }
{ need to check to see if call is requesting proper channel }
BEGIN
myWrite := cmNotSupported;
Exit (myWrite);
END;
{ timeout = -1 is infinite retry )}
{ timeout = 0 then try once }
IF completor.async THEN { asynchronous read }
BEGIN
END
ELSE
BEGIN
END;
END;
cmStatusMsg

The Connection Manager will send cmStatusMsg to your tool when an application requires your
tool to send it information about a connection. .

The sample code below shows how your tool can respond to cmStatusMsg. After
executing the code necessary to respond to cmSt at usMsg, your code should pass back both an
appropriate OSErr of CMErr. Also, p1 should contain a pointerto Buf fersizes,and p2
should contain a pointer to a variable that retums the connection status flags.

Connection status flags are a bit field, with each bit corresponding to a particular status
attribute. You can find a description of the different status attributes in Chapter 3 “Connection
Manager.”

222 Special K Beta Draft—Apple Confidential



FUNCTION myStatus (hConn: ConnHandle; VAR sizes:
BufferSizes; VAR flags: LONGINT): CMErr;

BEGIN
flags := 0; { start at square 1 }
##4# MPW Shell - Missing End command.
{ if connection is open then
flags := BOR(flags, cmStatusOpen);
}
{ if read data is available then
£fill in the appropriate field of sizes and
flags := BOR(flags, CMStatusReadAvail
}
END;
cmOpenMsg

Your tool's main code resource will receive cmOpenMsg from the Connection Manager when an
application or tool requires your tool to open a connection.

The sample code below shows a template into which you can code your tool’s response to
cmOpenMsg. After executing the code necessary to respond to cmOpenMs g, your code should
pass back an appropriate OSExrr or CMErx, p1 should contain a pointer to
CompletorRecord, and p2 should contain the timeout value in ticks.

FUNCTION myOpen (hConn: ConnHandle;
- completor: CompletorPtr; timeout: LONGINT): CMErr;
BEGIN
myOpen := noErr; { optimism }
END;
cmCloseMsg

Your tool’s main code resource will receive cmCloseMsg from the Connection Manager when an
application or tool requires your tool to close a connection.

The sample code below shows how your tool can respond to cmCloseMsg. When passed to
your tool, p3 will contain the timeout value in ticks. If p2 is passed in nonzero, abort all
outstanding reads or writes. Otherwise, when the outstanding reads and writes complete, close
the connection.

Apple Confidential Chapter 8: How to Write a Connection Tool 223



After executing the code necessary to respond to a cmC1oseMsg, your code should pass
back both an appropriate OsExrr or CMExrr.  p1 should contain a pointer to
CompletorRecord and p2 should contain 1 if immediate or 0 otherwise.
FUNCTION myClose (hConn: ConnHandle; completor: CompletorPtr; now: LONGINT;
timeout: LONGINT);
BEGIN

{ timeout = 0 then try once
timeocut = -1 the try infinitely

IF now = 1 THEN
BEGIN

kill pending breaks, reads and or writes

END
ELSE
BEGIN

wait for pending breaks, reads and or writes

END;
END;

cmBreakMsg

Your tool's main code resource will receive cmBreakMsg when an application or tool requires
your tool to effect a break operation upon a connection.

The sample code below shows how your tool can respond to a cmBreakMsg. After
executing the code necessary to respond to a cmBreakMsg, your code should pass back an
appropriate OSExrr or CMExrr. pl should contain duration inticks and in p2 should
contain a pointer to CompletorRecord.

224 Special K Beta Draft—Apple Confidential



FUNCTIOn myBreak (hConn: ConnHandle; duration: LONGINT;
completor: CompletorPtr):
CMErr;
VAR
pPrivate: PrivatePtr;
pConfig: ConfigPtr;
err: OSErr;
foo: LONGINT;
BEGIN
myBreak := noErr; {optimism}
pPrivate := PrivatePtr(hConn~~.private);
pConfig := ConfigPtr(hConn~~.config);
if ( BAND(pPrivate~.status, cmStatusOpen) == 0 ) THEN { not open }
BEGIN
myBreak := cmNotOpen;
Exit (myBreak);
END;
IF (pPrivate”.breakPending) THEN {
break pending }
BEGIN
myBreak := cmNotOpen;
Exit (myBreak);
END;

IF completor~.async THEN

BEGIN

END
ELSE
BEGIN

END;
END;

cmlOKillMsg

{ do it asynchronously }

{ start the break )}

{ start a timer (VBL or such)
turn off the break and
if necessary }

{ start the break }
Delay(duration, foo0);
{ end the break }

when it completes it will
then call the completion routine

Your tool's main code resource will receive cmIOKi11Msg when a tool or application requires
your tool to terminate a pending asynchronous input or output request.

Apple Confidential

Chapter 8: How té Write a2 Connection Tool 225



The sample code below shows how your tool can respond to a cmIOKillMsg. After
executing the necessary code to respond to a cmIOKi11Msg, your tool should pass back an
appropriate OSErr or CMErr, and p1 should point to the channel that was affected.

FUNCTION myKill(hConn: ConnHandle; channel: INTEGER): CMErr;
BEGIN

{ make sure that we are using a supported channel }

{ if not supported then

myKill := cmNotSupported;

{ kill pending input or output on the specified channel }
myKill := noErr;

END;

cmEnvironsMsg
The Connection Manager will send cmEnvironsMsg to your tool when an application requires

your tool to send it information about the connection environment.
The sample code below shows how your tool can respond to cmEnvironsMsg.

226 Special K Beta Draft—Apple Confidential



FUNCTION myEnvirons(hConn: ConnHandle; VAR theEnvirons: ConnEnvironRec): CMErr;

VAR
(W pConfig: ConfigPtr;
BEGIN
pConfig := hConn*“.config; ’ { get the config handle }
myEnvirons := noErr; { optimism }
IF environs.version < 0 THEN
myEnvirons := envBadVers { bad environment version }
ELSE
BEGIN
IF environs.version > 1 THEN { too advanaced for me }
myEnvirons := envVersTooBig; { but give it a whirl }
WITH environs DO
BEGIN
CASE pConfig”.dataBits OF
datab5:
dataBits := 5;
dataé6:
dataBits := 6;
data7:
dataBits := 7;
data8:
dataBits := 8;
END; ({case}
‘V baudrate := pConfig”.baudrate;
o swFlowControl := ((pConfig”.shaker.fInX) AND
(pConfig~.shaker.fXOn));
hwFlowControl := ((pConfig”.shaker.fDTR) OR
(pConfig”.shaker.fCTS));
flags := 0; { no special flags supported }
channels := cmData; { data channel only }
END;
END;
END;

( Apple Confidential Chapter 8: How to Write a Connection Tool 227



Summary

Constants

CONST

228 Special K Beta Draft—Apple Confidential



«

{ main definition procedure messages }

cmInitMsg
cmDisposeMsg
cmSuspendMsg
cmResumeMsg
cmMenuMsg
cmEventMsg
cmEnvironsMsg
cmActivateMsg
cmDeactivateMsg
cmldleMsg
cmAbortMsg
cmResetMsg
cmReadMsg
cmWriteMsg
cmStatusMsg
cmListenMsg
cmAcceptMsg
cmCloseMsg
‘cmOpenMsg
cmBreakMsg
cmIOKillMsg
cmEnvironsMsg

= 0;
= 1;

~e

]
w

]
(S I

L]
o
O I O S Se Se Se

]
= un v

]
[
o
(Ve
~.

{ validation code resource messages }

cmValidateMsg = 0;
cmDefaultMsg = 1;
{ setup code resource messages }
cmSpreflightMsg 0;
cmSsetupMsg = 1;
cmSitemMsg = 2;
cmSfilterMsg = 3;
cmScleanupMsg = 4;
{ scripting interface code resource messages }
cmMgetMsg = 0;
cmMsetMsg = 1;
{ localization interface code resource messages }
cmL2English = 0;
cmL2Intl = 1;
Apple Confidential Chapter 8: How to Write a Connection Tool

229



Data structures

TYPE
dataBufferPtr = ~dataBuffer;
dataBuffer = RECORD
thePtr Ptr;
count LONGINT;
channel INTEGER;
flags BOOLEAN;
END;
CompletorPtr = ~“CompletorRecord;
CompletorRecord = RECORD
async BOOLEAN;
completionRoutine
ProcPtr;
END;

Definition procedures
FUNCTION

cdef (hConn:

ConnHandle; msg: INTEGER; pl, p2, p3:

LONGINT) LONGINT;
FUNCTION cval (hConn: ConnHandle; msg: INTEGER; pl, p2, p3:
LONGINT) LONGINT;
FUNCTION cset (pSetup: SetupPtr; msg: INTEGER; pl, p2, p3:
LONGINT) LONGINT;
FUNCTION cscr (hConn: ConnHandle; msg: INTEGER; pl, p2, p3:
LONGINT) LONGINT;
FUNCTION cloc (hConn: ConnHandle; msg: INTEGER; pl, p2, p3:
LONGINT) LONGINT;
Resource types
type ‘cbnd' (
integer = $$CountOf (TypeArray) - 1;
array TypeArray
literal longint; /* Type */
integer $S$CountOf (IDArray) - 1;
wide array IDArray {
integer; /* Local ID */
integer; /* Actual ID *x/

}:

230

Special K Beta Draft—Apple Confidential



Chapter 10 Writing Terminal Tools




About this chapter

This chapter tells you how to write the main code resource for a terminal tool. You will need to
include six code resources you as part of your tool; they are described in Chapter 8, “Fundamentals
of Writing Your Own Tool.” You should read that chapter, as well as Chapter 5, “Terminal
Manager,” before reading this chapter.

This chapter describes all the messages, parameters, and data structures that the Terminal
Manager will pass to your tool’s main code resource. Also included in this chapter is sample code
(with pseudocode mixed in) that will help you understand what your application should do in
response to receiving any of the messages. A summary at the end of the chapter shows you both
how to name your terminal tool resources as well as all of the messages that the Terminal Manager
will send to your tool.

Your terminal tool's main code resource

The purpose of the main code resource is to parse messages from the Terminal Manager and then to
branch to a routine that can handle each message. The main code resource should be a resource of
type tde £ and be able to accept the parameters shown below.

FUNCTION tdef (hTerm: TermHandle; msg: INTEGER; pl, p2, p3:
LONGINT) : LONGINT;

The accepted messages are:
CONST

: tmInitMsg = 0;
tmDisposeMsg = 1:
tmSuspendMsg = 2;
tmResume = 3;
tmMenuMsg = 4;
tmEventMsg = 5;
tmActivateMsg = 50;
tmDeactivateMsg = 51;
tmIdleMsg = 52;
tmResetMsg = 54;
tmKeyMsg = 100;
tmAut okeyMsg = 101;
tmStreamMsg = 102;
tmResizeMsg = 103;
tmUpdateMsg = 104;
tmClickMsg = 105;
tmGetSelectionMsg = 106;
tmSetSelectionMsg = 107;
tmScrollMsg = 108;

Special K Beta Draft-Apple Confidential



C

tmClearMsg = 109;

tmGet LineMsg = 110;
tmPaintMsg = 111;
tmCursorMsg = 112;
tmGetEnvironsMsg = 113;
tmDoTermKeyMsg = 114;
tmCount TermKeyMsg = 115;
tmGet INDTermKeyMsg = 116;
tmInitMsg

The Terminal Manager will pass tmInitMsg to your tool after the following sequence of events.
When a tool or application calls TMNew, the Terminal Manager allocates space for the terminal
record. It then fills in some of the fields based upon information that was passed in the parameters
to the call. The Terminal Manager fills in the conf ig and 01dCon£1i g fields by calling
TMDefault. Then the Terminal Manager passes tmInitMsg to your tool. After your tool has
finished responding to tmInitMsg, the Terminal Manager calls TMValidate.

The sample code below shows how your tool can respond to a tmInitMsg. After executing
the code necessary to respond to a tmInitMsg, your code should pass back an appropriate
OsErrorTMErr.

FUNCTION myInit (hTerm: TermHandle): LONGINT;

VAR
pPrivate: PrivatePtr;
BEGIN
myInit := O; ' { optimism }
pPrivate := PrivatePtr (NewPtr (SIZEOF (PrivateRecord)));
° _hTerm~~.private := pPrivate;
IF pPrivate = NIL THEN
myInit := MemError;
END;
tmDisposeMsg

A tool or application will call TMDi spose when it requires your tool to get rid of a terminal record
and all the data structures that are associated with it.

The sample code below shows a template into which you can code your tool’s response to
tmDisposeMsg. After executing the code necessary to respond to tmDisposeMsg, your
code should pass back 0 if it was successful or 1 if it was not.

PROCEDURE myDispose (hTerm: TermHandle);
BEGIN
DisposPtr( Ptr(hTerm~~.private) );

Apple Confidential Chapter 10: Writing Terminal Tools

235



END;

tmKeyMsg R

Your tool will receive t mKe yMsg in response to a key down, key up, or autokey event in the
application. Your tool should be able to handle these events, as well as pasting text from the
keyboard. The sample code below shows how your tool can respond to these messages.

When passed to your tool, p1 will point to the event record associated with the event. In the
case of pasting text, the keyCode field of the event record contains 0; only charCode
contains information.

PROCEDURE myKey (hTerm: TermHandle; pEvent: EventPtr);

VAR"
theChar: Char;
ticket: INTEGER;
foo: LONGINT;
BEGIN
theChar := Char (BAND(pEvent”.message, charCodeMask)):;
ticket := BitShift(theChar, -8); { shift 8 bits to the left }
foo := CallSendProc(Ptr(@ticket), 1, hTerm~~.refCon, 0, hTerm”~~.sendProc);
{ this returns # characters sent
passed in pointer to buffer
passed in length of data to send
passed in terminal record refcon
passed in end of message flag (0)
- }
END;
tmStreamMsg

The Terminal Manager will pass tmSt reamMsg to your tool when the application has requested
the TMSt ream routine. When passed to your tool, p1 will point to the buffer of incoming data
and p2 will contain the length of the buffer in bytes. The sample code below shows a template
into which you can code your tool’s response to tmSt reamMsg .

After executing the code necessary to respond to 2 t mSt reamMs g, your tool should return
the number of characters it processed.

FUNCTION myStream(hTerm: TermHandle; theBuffer: Ptr; thelength: LONGINT): LONGINT;
BEGIN
myStream := thelength; { optimism }

Special K Beta Draft-Apple Confidential



{ process character interpreting into screen buffer and drawing if necessary |}

END;

tmActivateMsg and tmResumeMsg

Your tool will receive tmAct i veateMsg or tmResumeMsg when the application requires
your tool to process an activate event (such as inserting menus into the menu bar, modifying a
selection, or making the cursor blink) for a window that belongs to the Terminal Manager. The
sample code below shows a template into which you can code your tool’s response to
tmActivateMsg or tmResumeMsq.

PROCEDURE myActivate (hTerm: TermHandle);
BEGIN
END;

PROCEDURE myResume (hTerm: TermHandle);
BEGIN
END;

tmDeactivateMsg and tmSuspendMsg

Your tool will receive t mDeact iveateMsg or tmSuspendMsg when the application
requires your tool to process a deactivate event (such as removing 2 menu from the menu bar,
modifying a selection, or making a cursor stop blinking) for a window that belongs to the Terminal
Manager. The sample code below shows how your tool can respond to tmDeactivateMsgor
tmSuspendMsg.

PROCEDURE myDeactivate (hTerm: TermHandle);
BEGIN
END;

PROCEDURE mySuspend(hTerm: TermHandle);
BEGIN
END;

tmResizeMsg

Your tool will receive from the Terminal Manager tmRe s i zeMsg when the application requires
your tool to resize the terminal emulation window. When passed to your tool, p1 will point to the
rectangle that describes the new view. The code sample below shows how your application can
handle tmResizeMsg.

PROCEDURE myResize (hTerm: TermHandle; pl: RectPtr);
BEGIN

Apple Confidential Chapter 10: Writing Terminal Tools



{ should recalculate visible rows and columns, etc...}
END;

tmIdleMsg

Your tool will receive t mIdleMsg from the Terminal Manager when the application requires your
tool to make the cursor blink or when your tool should process a tmC1ickMsg. The sample
code below shows a template into which you can code your tool’s response to tmIdleMsg.

PROCEDURE myReset (hTerm: TermHandle);
BEGIN
END;

tmUpdateMsg

Your tool will receive tmUpdat eMsg from the Terminal Manager when the application requires
your tool to update the terminal emulation window. When passed to your tool, p1 will be a handle
to the region that needs to be updated. The sample code below shows a template into which you
can code your tool’s response to tmUpdateMsg.

PROCEDURE myUpdate (hTerm: TermHandle; updateRgn: RgnHandle);
BEGIN
END;

tmClickMsg

Your tool will receive tmC11ickMsg from the Terminal Manager when the application requires
your tool to handle a mouse down event in the terminal emulation window. Your tool should
support placing and dragging the cursor. When passed to your tool, p1 will contain a pointer to the
event record.

The sample code below shows a template into which you can code your tool’s response to
tmClickMsg.

PROCEDURE myClick (hTerm: TermHandle; pl: EventPtr);
BEGIN
END;

tmMenuMsg

Your tool will receive tmMenuMsg from the Terminal Manager when the application has selected
an item from a menu that belongs to your terminal tool. When passed to your tool, p1 will
contain the menu ID and p2 will contain the menu item. The sample code below shows a template
into which you can code your tool’s response to t mMenuMsg.

Special K Beta Draft-Apple Confidential



After your tool has performed the function necessary to handle 2 tmmenuMsg, it should
return 0 if it did not handle the menu event and 1 if it did.

FUNCTION myMenu (hTerm: TermHandle; mID: INTEGER; mItem: INTEGER): LONGINT;
BEGIN
myMenu := 0; { pessimism - not processed }
{ if mine then myMenu := 1 }
END;
tmGetSelectionMsg

Your tool needs to be able to handle tmGet Select ionMsg to support cut and copy
operations in the terminal emulation window. The sample code below shows a template into
which you can code your tool’s response to do this..

After performing the necessary function to respond to tmGet SelectionMsg, your tool
should pass back a handle to the data in p1, a pointer to the size of the data in p2, and a pointer to
the scrap type (ResType) in p3. Your tool should also retur an error code, if appropriate.

FUNCTION myGetSelect (hTerm: TermHandle; theHandle: Handle;
theType: ResType): LONGINT;
BEGIN
myGetSelect := noErr; { optimism }
END;
tmSetSelectionMsg

An application will call tmSet Selection when it requires your tool to highlight an area of the
terminal emulation window. When passsed to your tool, p1 will point to field that needs to be
highlighed and p2 will describe the type of selection. The code below shows a template into which
you can code your tool’s response to tmSet Select ionMsg.

PROCEDURE mySetSelect (hTerm: TermHandle; selRect: Rect; selType: INTEGER);
BEGIN
END;

tmScroliMsg

An application will call tmScroll when it requires your tool to scroll the screen either
horizontally or vertically. When passed to your tool, p1 will contain the amount of horizontal

Apple Confidential Chapter 10: Writing Terminal Tools 239



scrolling and p2 will contain the amount of vertical scrolling. The code below shows a template
into which you can code your tool’s response to tmScrollMsg.

PROCEDURE myScroll (hTerm: TermHandle; dH, dV; INTEGER);
BEGIN
END;

tmResetMsg

Your tool will receive tmResetMsg when the application requires your tool to reset the terminal
emulation window. This reset operation should purge all local screen buffers and be a local
operation.

The code sample below shows a template into which you can code your tool’s response to
tmResetMsag.

PROCEDURE myReset (hTerm: TermHandle);
BEGIN
END;

tmClearMsg

Your tool will receive tmC1learMsg when the application needs your tool to clear the terminal
emulation window. This clear operation should purge all local screen buffers and be a local
operation.

The code sample below shows a template into which you can code your tool’s response to
tmClearMsg.

PROCEDURE myClear(hTerm: TermHandle);
BEGIN
END;

tmGetLineMsg

An application will call TMGet 1ine when it requires your tool to send it a TermDataBlock
(which contains the data, character attributes, and line attributes) for a specified line. When passed
to your tool, p1 will contain the line number.

The sample code below shows a template into which you can code your tool’s response to
tmGetLineMsg. Your tool should retum in p2 a pointer to the TermDataBlock for the
requested line.

PROCEDURE myGetLine(hTerm: TermHandle; lineNo: INTEGER; VAR theTermData:TermDataBlock);

BEGIN

Special K Beta Draft-Apple Confidential .
240

,,,,,



END;

tmPaintMsg

An application will call TMPaint when it requires your tool to display the contents of a
TermDataBlock . When passed to your tool, p1 will point to the TermDataBlock and
p2 will point to the rectangle into which your tool is to display the line.

IftheTermData.theData isa handle to plain text (not styled), your tool can calculate
the number of characters to paint by calling Get HandleSize. If your tool requires the data in
theTermData after it passes control back to the calling application, it must make a copy of this
data, since the application may change or destroy it.

The sample code below shows a template into which you can code your tool’s response to
tmPaintMsg.

PROCEDURE myPaintLine (hTerm: TermHandle; theTermData:TermDataBlock; -theRect:
BEGIN
END;
tmCursorMsg
An application will call TMCur sor when it requires your tool to pass it the current location of the
cursor. When passed to your tool, p1 will specify the type of cursor.

The sample code below shows a template into which you can code your tool's response to
tmCursorMsg. Yourtool should return the current cursor position.
FUNCTION myGetCursor (hTerm: TermHandle; cursType: LONGINT): Point;
BEGIN
END;
tmGetEnvironsMsg
Your tool will receive tmGet EnvironsMsg when the application has called the
TMGetTermEnvirons routine. When passed to your tool, p1 will point to the
TermEnvironRec; your tool should fill in this record.

The sample code below shows a template into which you can code your tool’s response to
tmGetEnvironsMsgqg . '
FUNCTION myEnvirons(hTerm: TermHandle; VAR theEnvirons: TermEnvironRec): TMErr;
BEGIN

IF theEnvirons.version < 0 THEN ( check version number of record }

Apple Confidential Chapter 10: Writing Terminal Tools 241

Rect) ;



BEGIN
myEnvirons := envBadVers;
Exit (myEnvirons);

END;

IF theEnvirons.version > 0 THEN

myEnvirons := envVersTooBig
ELSE
myEnvirons := noErr;
WITH myEnvirons DO : { £fill her up.. }
BEGIN
END;
END;
tmEventMsg

The Terminal Manager will pass tmEventMsg to your tool when an event occurred in a window
associated with the terminal tool. The sample code shows a template into which you can code
your tool’s response to tmEventMsg.

When passed to your tool, p1 will be a pointer to the event record. The reference constant field
of the window record will contain the connection handle.

PROCEDURE myEvent (hTerm: TermHandle; theEvent: EventRecord);
BEGIN

{ process the event }

END;

tmDoTermKeyMsg

Your tool will receive tmDoTermKeyMsg when the application has called the TMDoTermKey
routine. When passed to your tool, p1 will point to a string that corresponds to the key that was
pressed. For example, if the user pressed the PF1 key, the string will containg “PF1.” If there is no
key that corresponds to the string , your tool should do nothing.

The code sample below shows a template into which you can code your tool’s response to
tmDoTermKeyMsg. When completed, your tool should pass back 0 if it understood the string
or 1 if it did not.

PROCEDURE myDoTermKey (hTerm: TermHandle; pl: StringPtr);

BEGIN
IF pl® = 'F13' THEN
DoF13 (hTerm) ;
IF pl~® = 'Fl14' THEN
DoF14 (hTerm) ;
END;

Special K Beta Draft-Apple Confidential
242 /



tmCountTermKeyMsg

Your tool will receive tmCount TermKeyMsg when the application requires your tool to pass it
the number of special terminal key names that it supports.

The sample code below shows how your tool can respond to tmCount TermKeyMsg.
FUNCTION CountTermKey(hTerm: hTerm): LONGINT;
BEGIN

CountTermKey := 2;
END;

tmGetINDTermKeyMsg

The Terminal Manager will pass to your tool t mGet INDTermKeyMsg when the application
requires your tool to pass it the name of a special terminal key (for example, PF1, PA1, or DUP).
When passed to your tool, p1 contains the index (number) of the key.

The code sample below shows a template into which you can code your tool’s response to
tmGet INDTermKeyMsg . When completed, your tool should pass back a pointer to a STR255
return value that describes the key, or a pointer to an empty string if the index is invalid.

PROCEDURE myGetIndTermKey (hTerm: TermHandle; pl: LONGINT; p2: StringPtr);
BEGIN

p2~ = ''; { pessimism }
CASE pl OF
1:
p2° := 'Fl13';
2:
p2° := 'Fl4‘';
END;
END;
Summary
Constants
CONST
{ main definition procedure messages }
tmInitMsg = 0;
tmDisposeMsg = 1;
tmKeyMsg = 3;
tmAut okeyMsg = 4;
tmStreamMsg = 5;
Apple Confidential Chapter 10: Writing Terminal Tools 43



tmActivateMsg = 6;

tmDeactivateMsg = 7:

tmSuspendMsg = 8;

tmResumeMsg = 9;

tmResizeMsg = 10;
tmIdleMsg = 11;
tmUpdateMsg = 12;
tmClickMsg = 13;
tmMenuMsg = 14;
tmGetSelectionMsg = 15;
tmSetSelectionMsg = 16;
tmScrollMsg = 17;
tmResetMsg = 18;
tmClearMsg = 19;
tmGetLineMsg = 20;
tmPaintMsg = 21;
tmCursorMsg = 22;
tmGetEnvironsMsg = 23;
tmEventMsg = 24;
tmDoTermKeyMsg = 25;
tmCount TermKeyMsg = 26;
tmGet INDTermKeyMsg = 27;

{ validation code resource messages }

tmValidateMsg = 0;
tmDefaultMsg = 1;
{ setup code resource messages |}
tmSpreflightMsg = 0;
tmSsetupMsg = 1;
tmSitemMsg = 2;
tmSfilterMsg = 3;
tmScleanupMsg = 4;
{ scripting interface code resource messages }
tmMgetMsg = 0;
tmMsetMsg = 1;
{ localization interface code resource messages }
tmL2English = 0;
tmL2Intl = 1:

Special K Beta Draft-Apple Confidential



C

Definition procedures

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

tdef (hTerm: TermHandle; msg: INTEGER; pl, p2, p3
LONGINT) : LONGINT;

tval (hTerm: TermHandle; msg: INTEGER; pl, p2, p3
LONGINT) : LONGINT;

tset (pSetup: SetupPtr; msg: INTEGER; pl, p2, p3:
LONGINT) : LONGINT;

tscr (hTerm: TermHandle; msg: INTEGER; pl, p2, p3
LONGINT) : LONGINT;

tloc (hTerm: TermHandle; msg: INTEGER; pl, p2, p3
LONGINT) : LONGINT;

Resource types.i.Terminal Tools:Resource Types;

type ‘'tbnd' {

integer = $S$CountOf(TypeArray) - 1;
array TypeArray {
literal longint; /* Type
integer = $$CountOf (IDArray) - 1;
wide array IDArray {
integer; /* Local ID
integer; /* Actual ID

}i
}2

bi

type ‘tver' as ‘'vers';

Apple Confidential

Chapter 10: Writing Terminal Tools

*/

*/
*/

A5






Chapter 11 Writing File Transfer Tools




About this chapter

This chapter tells you how to write the main code resource for a file transfer tool. You will need to
include six other code resources as part of your tool; they are described in Chapter 8, “Fundamentals
of Writing Your Own Tool,” as well as Chapter 6, “File Transfer Manager,” before reading this
chapter.

This chapter describes all the messages, parameters, and data structures that the File Transfer
Manager will pass to your tool’s main code resource. Also included in this chapter is sample code
(with pseudocode mixed in) that will help you understand what your application should do in
response to receiving any of the messages. A summary at the end of this chapter the shows you
the names all six of your file transfer tool resources, as well as all of the messages that the File
Transfer Manager will send to your tool.

Your file transfer tool’s main code resource

The purpose of the main code resource is to parse messages from the File Transfer Manager and
then to branch to a routine that can handle each message. The main code resource should be a
resource of type £de £ and be able to accept the parameters shown below.

FUNCTION fdef (hTerm: TermHandle; msg: INTEGER; pl, p2, p3:
LONGINT) : LONGINT;

The accepted messages are:

CONST
ftInitMsg = 0;
ftDisposeMsg = 1;
ftSuspendMsg = 2;
ftResumeMsg = 3;
ftMenuMsg = 4;
ftEventMsg = S;
ftActivate = 50;
ftDeactivate = 51;
ftAbort = 52;
ftStartMsg = 100;
ftCleanupMsg = 101;
ftExecMsg = 102;

For each of the messages defined above, the three parameters that £def£ returns, p1, p2,and p3,
take on different meanings. These parameters are described in the following sections, which go
into detail about how your tool should respond to each incoming message.

248 Special K Beta Draft Apple Confidential



ftinitMsg

The File Transfer Manager will pass £t InitMsg to your tool after the following sequence of
events. When a tool or application calls FTNew, the File Transfer Manager allocates space for the
file transfer record. 1t then fills in some of the fields based upon information that was passed in
the parameters to the call. The File Transfer Manager fills in the configand o1dCon£fig fields
by calling FTDefault. Then the File Transfer Manager passes £ IniftMsg to your tool.
After your tool has finished respondingtoa £t IniftMsg, the File transfer Manager calls
FTValidate.

After executing the code necessary to respond to a £t Initmsg, a sample of which is shown
below, your code should pass back an appropriate OSErr or FTErx.

FUNCTION myInit (hFT: FTHandle): CMErr;
VAR
state: SignedByte;
BEGIN
myInit := noErr; { optimism }
state := HGetState(Handle(hFT)); { save handle state }
HLock (Handle (hFT)); { lock it down }

WITH hFT~* DO

BEGIN
errCode := noErr; { optimism reigns }
private := PrivatePtr (NewPtr (SIZEOF (PrivateData)));
WITH private~ DO
BEGIN ({ fill in private data structure here }
END;
END;

HSetState (Handle (hFT), state);
END;

ftDisposeMsg

A tool or application will call £t Dispose when it requires your tool to dispose of a file transfer
record and all the data structures that are associated with it.

The sample code below shows a template into which you can code your tool’s response to
ftDisposeMsq. After executing the code necessary to respond to £t DisposeMsg, your
code should pass back 0 if it was successful or 1 if it was not.

Apple Confidential Chapter 11: Writing File Transfer Tools

249



PROCEDURE myDispose(hFT: FTHandle):
VAR
err: FTErr;

BEGIN
IF BAND(hFT~"~.flags, FTIsFTMode)
BEGIN
err := FTAbort (hFT);
progress }
FTExec (hFT);
END;

DisposPtr( Ptr (hFT~*.private) );

END;

ftStartMsg

{ abort FT in

{ for cleanup }

Your tool will receive ££ St artMsg from the File Transfer Manager when the application requires
your tool to start a file transfer. The sample code below shows a template into which you can code

your tool’s response to ftStartMsg.

After executing the code necessary to respond to an £t StartMsg, your tool should pass

back 0 if it was successful and 1 if it was not.

FUNCTION FTStartup(hFT: FTHandle): FTErr;

BEGIN
FTStart := noErr;
optimism }

WITH hFT~~ DO
BEGIN
errCode := 0;

flags := BOR(flags, ftIsFTMode);

progress }
END;

END;

ftCleanupMsg

{ file transfer in

The File Transfer Manager will send £t CleanupMsg to your tool when the application has
called the ft Set upCleanup routine. Your tool should respond to this message by confirming
the file name of the received file, closing appropriate files, resetting flags, an releasing any

temporary memory that it had allocated.

The sample code below shows a template into which you can code your tool’s response to

ftCleanupMsq.

250 Special K Beta Draft

Apple Confidential



PROCEDURE myCleanup (hFT: FTHandle);
BEGIN

WITH hFT~~ DO

BEGIN

flags := BAND(flags, BNOT(ftIsFTMode) );

off FTMode bit }

END;
END;

ftExecMsg

An application will call £tExec to provide time for buffers to be either filled or emptied during file
transfer, depending upon if a file is being sent or received. The sample code below shows a
template into which you can code your tool’s response to £t ExecMsg.

PROCEDURE FTExec (hFT: FTHandle);

BEGIN
{ called when file transfer is in progress so do your
' stuff here...
}

END;

ftAbortMsg

Your tool will receive £t AbortMsg from the File Transfer Manager when the application requires
your tool to abort  file transfer. The sample code below a template into which you can code your
tool’s response to ft AbortMsg.

If your tool is unable to successfully abort, it should pass back an appropriate error code.
FUNCTION FTAbort (hFT: FTHandle): FTErr;

BEGIN
WITH hFT*" DO

{ turn

flags := BAND(flags, BNOT(ftIsFTMode) ); { turn off bit }

{ abort the file transfer in progress here }
END;

ftActivateMsg and ftResumeMsg

Your tool will receive ftAct iveateMsg or £tResumeMsg when the application requires
your tool to process an activate event (such as inserting menus into the menu bar, modifying a
selection, or making the cursor blink) for a window that belongs to the File Transfer Manager. The
sample code below shows a template into which you can code your tool’s response to
ftActivateMsgor ftResumeMsqg.

PROCEDURE myActivate (hFT: FTHandle);
BEGIN

Apple Confidential Chapter 11: Writing File Transfer Tools

21



END;
pl, p2, p3 are ignored

This routine may perform actions such as removing a menu into the
menubar.

PROCEDURE myResume (hFT: FTHandle);
BEGIN

END;

pl, p2, p3 are ignored

This routine may perform actions such as removing a menu into the
menubar. This routine may perform the same actions as myDeactivate

ftDeactivateMsg and ftSuspendMsg

Your tool will receive ftDeactiveateMsg or £t SuspendMsg when the applicaiton
requires your tool to process a deactivate event (such as removing a menu from the menu bar,
modifying a selection, or making a cursor stop blinking) for a window that belongs to the File
Transfer Manager. The sample code below shows how your tool can respond to a
ftDeactivateMsg message or ft SuspendMsg.

PROCEDURE myDeactivate (hFT: FTHandle);
BEGIN

END;

PROCEDURE mySuspend (hFT: FTHandle);
BEGIN

END;

ftMenuMsg

The File Transfer Manager will send CMMenuMsg to your tool when a menu event has
occurred in the application. When passed to your tool, p1 will contain the menu ID and p2 will
contain the menu item.

252 Special K Beta Draft Apple Confidential



¢

The sample code below shows you a basic template into which you can code your tool’s
response to CMMenuMsg. When done, your tool should pass back 0 if the menu event was not
handled and 1 if it was.

FUNCTION myMenu (hFT: FTHandle; mID: INTEGER; mItem: INTEGER): LONGINT;
BEGIN
myMenu := 0; { pessimism }
{ if mine then
myMenu := 1;

END;

ftEventMsg

Your tool will receive £t EventMsg from the File Transfer Manager when an event has occurred
in the application. When passed to your tool, p1 will point the the event record, in which reference
constant field contains the file transfer handle.

The sample code below shows a template into which you can code your tool’s response to
ftEventMsaq.

PROCEDURE myEvent (hFT: FTHandle; theEvent: EventRecord);
BEGIN

{ process the event }
END;

Apple Confidential Chapter 11: Writing File Transfer Tools

253



Summary

Constants

CONST
{

messages for main definition procedure )}

ftInitMsg = 0;
ftDisposeMsg = 1;
ftSuspendMsg = 2;
ftResumeMsg = 3;
ftMenuMsg = 4;
ftEventMsg = 5;
ftActivate = 50;
ftDeactivate = 51;
ftAbort = 52;
ftStartMsg = 100;
ftCleanupMsg = 101;
ftExecMsg = 102;

validation code resource messages }
ftvalidateMsg = 0;
ftDefaultMsg = 1;

setup code resource messages }

ftXpreflightMsg = 0;
ftXsetupMsg = 1;
ftXitemMsg = 2;
ftXfilterMsg = 3;
ftXcleanupMsg = 4;

scripting interface code resource messages }
ftMgetMsg = 0;
ftMsetMsg = 1;

localization interface code resource messages

ftL2English = 0;
ftl2Intl = 1;

Special K Beta Draft

}

Apple Confidential



&

Data types

TYPE
SetupPtr = ~SetupStruct;
SetupStruct = RECORD
theDialog : DialogPtr;
count : INTEGER;
theConfig : Ptr;
END;

Definition procedures

FUNCTION fdef (hTerm: TermHandle; msg: INTEGER;
LONGINT) : LONGINT;

FUNCTION fval (hTerm: TermHandle; msg: INTEGER;
LONGINT) : LONGINT;

pl, p2, p3:

pl, p2, p3:

FUNCTION fset (pSetup: SetupPtr; msg: INTEGER; pl, p2, p3:

LONGINT) : LONGINT:

FUNCTION fscr(hTerm: TermHandle; msg: INTEGER;
LONGINT) : LONGINT;

FUNCTION floc (hTerm: TermHandle; msg: INTEGER;
LONGINT) : LONGINT;
Resource types.i.File Transfer Tools:Resource Types;

type 'fbnd' {

integer = $S5CountOf (TypeArray) - 1;
array TypeArray
literal longint; /* Type
integer = §$5CountOf (IDArray) - 1;
wide array IDArray {
integer; /* Local ID
integer; /* Actual ID
}:
}:
}i
Apple Confidential Chapter 11: Writing File Transfer Tools

pl, p2, p3:

pl, p2, p3:

*/

*/
*/

255






Appendix A -~ Guidelines for Communications Tools



About this appendix

This appendix contains software design and human interface guidelines for communications tools.
Guidelines are necessary so that tools from different communications environments can work with
each other to extend the users’ reach from the desktop to the world of networking and
communications. The guidelines presented in this appendix, while not hard and fast rules, will help
insure that your tool can interface with future releases of Special K, with other tools, and also with
applications that use Special K.

This appendix starts out with the design goals your tool should implement. Then it discusses
human interface considerations. At the end of this appendix are hardware and software
compatibility requirements.

To fully understand what is being discussed in this chapter, you ‘should first read Chapter 8,
“Fundamentals of Writing a Tool,” and at least one of the following chapters: Chapter 9, “Writing a
Connection Tool,” Chapter 10, “Writing a Terminal Tool,” or Chapter 11, “Writing a File Transfer
Tool.”

Design goals
You should design your tool such that it is:

o Self-contained: Your tool should contain all the resources it needs in its bundle resource, and
not need to make use of other tools or applications.

o Task-specific: Your tool should be either a connection, terminal, or file transfer tool. It
should respond to all the messages that the manager sends to it, but not to any messages that
Special K intends a different tool to respond to. For instance, a terminal tool should not
respond to Connection Manager messages.

Keep your tool self-contained

From the user’s perspective, installing communications tools should simply be a matter of dragging
the icon for that tool into the Communications folder on their desktop. To achieve this level of
simplicity, your tool should be totally self-contained; all the resources that it needs to properly
operate should be in the resource bundle.

There are, however, two exceptions to this. The first is when your tool uses a specific
hardware interface that requires a driver to be loaded at INIT time. This circumstance is
unavoidable, so it is an allowable exception to this guideline. The second exception is when your
tool provides access to special data files (for example, a file of network addresses) that are kept on
the user’s system. Such data files provide your tool with a convenient way to store and distribute
configuration information. In a case like this, your tool should save in the session document all user
settings; your tool should not require external files to reestablish a previously configured
connection. Whenever your tool does require an external file to operate properly, it should check for
the existence of that file and notify the user if the file is not present.

28 Special K Beta Draft Apple Confidential



Keep your tool task-specific

Special K supports three kinds of communications tools: connection, terminal, and file transfer.
Your tool should be one of these types and should not implement any services that another type of
tool is intended to provide. For instance, if you are writing a terminal tool, it should not provide
any connection services. This guideline helps insure that tools will not interact with each other in
undesireable ways. The services that each type of tool is meant to provide are:

« For connections tools: control the data path and its specifications. This includes altering the
data path as needed or stripping high bits.

« For terminal tools: control user input and output. This includes input from the moust or
keyborad and output to the terminal emulation window.

o For file transfer tools: conrol disk files. Only file transfer tools should manipulate disk files
or the hierarchical file system (HFS).

Tools written for Special K are meant to be used such that users can change one part of a
communications configuration and still have the application work. For instance, a user running a
VT100 terminal emulation over an XMODEM connection should be able to run the emulation over an
X.25 connection and not notice any changes.

However, if a terminal or file transfer tool requires a specific type of connection (due to the
protocol or standard being implemented) that is not in place, your tool should send an error back to
the application. In fact, any tool you write that works only when operating with another specific
tool should be able to detect the presence or absence of that tool and send back appropriate return
codes to the application. A tool should never cause a system-level error when a user tries to use it in
the “wrong” configuration.

When writing a tool to implement an existing communications standard, you might find that
the functions included in the standard span more than one type of tool. In cases like this, try to
keep your tool task-specific by making use of the Macintosh interface. For example, if a connection
protocol requires that your tool have status information constantly available, your tool can display
this information in a separate window. You can also implement the standard by writing two task-
specific tools that must be used together.

User interface considerations

This section describes the user interface considerations you should keep in mind when designing
your tool. The following topics are included in this section:

* Modeless tool operation

¢ Contents of the configuration dialog box

 Appearance of windows and status dialog boxes

e Using menus

¢ Error handling

» Using the right words

Apple Confidential Appendix A: Guidelines for Communications Tools 259



Modeless tool operation

Your tool should operate modelessly because the Communications Toolbox (and most
applications that use it) allow for multiple simultaneous communications sessions; yours may not
be the only session running (and your tool may be in use in more than one session at a time). Also
keep in mind that even if the user is running a single session, he or she may be running under -
MultiFinder. '

Although specific applications can present other user interfaces, the user will usually configure a
tool from within an application using the Configure dialog box, open or close the connection with
menu items, and send or receive files with menu items. These are the basic aspects of the user
action interface.

The user will usually create a new document, configure it using the configuration dialog box,
and save it. Your tool should save all user settings in the session file, typically in a separate resource
for each of the communications tool types (connection, terminal, and file transfer). The design of
Special K assumes that the application will save settings in session documents so that a user can use
a preconfigured document to open a connection; a user who uses several setting combinations is
expected to prepare and use a separate document for each combination.

User should not need to perform more configuration when they open a connection or transfer
a file; the only dialog boxes that should appear at this time are status dialog boxes. Therefore, your
tool should fill in appropriate default settings when it is first selected in the Configure dialog box.

The configuration dialog box

Since users can use different tools inside the same application, the configuration dialog boxfor each
tool should be visually compatible with those of other tools. This allows users to transfer
knowledge they have about configuring. one type to tool to configuring another type of tool. The
six tools that come with this realease of Special K implement the visual interface that your tool
should look like.

This visual style is similar to the usual style for modal dialog boxes but has some extensions for
communication tools. Since many communications tools require more user-settable parameters
than can be displayed nicely in 2 modal dialog box the size of the Macintosh Plus screen, your tool
should use 9-point Geneva for tool controls instead of 12-point Chicago, which it would normally
use.

The tools included in this release of Special K use small graphics to provide feedback on user
settings. These graphics sometimes change appearance in response to a setting change (for
example, to visibly show the effect of inverse video). This type of graphic information can help the
user determine the effect of a setting change. Such small pictures should not be controls; they
should not respond to mouse clicks. Rather, they should change appearance (if appropriate) in
response to the user making a setting change using the usual controls.

If your tool is complex and requires more controls than can fit in a modal dialog box, even using
9-point Geneva, it should divide these controls among two or more screens. Your tool should allow
users to select which screen of controls to view by selecting an icon in a scrolling list at the left
edge of the dialog box, in a manner similar to the Control Panel desk accessory. The controls should
be grouped according to function. Your tool should place the controls a user is most likely to select
in the first screen displayed when the configuration dialog box comes up; it should place*power
user” controls in subsequent screens.

%0 Special K Beta Draft Apple Confidential



If your tool displays a control that is dependent (that is, is enabled or disabled depending on the
setting of another item), your tool should place the control under or alongside its controlling item
and the item should be grayed out when it is disabled.

Since the configuration dialog box is modal, your tool should not use additional modal dialog
boxes that pop-up on top of the configuration dialog box. If your tool requires a cascading dialog
box, it should be limited to selection dialog boxes like SFGetFile, which controls settings that
do not usually need to be changed. Your tool should never have more than two layers of modal
dialog boxes on the screen at the same time.

If a field allows only certain types of data input (for example, only numbers), your tool should
perform error checking by intercepting and checking keystrokes. In general, your tool should alert
the user as soon as he or she makes the error, rather than waiting until the screen is dismissed. This
helps the user find where the error occured on complex dialog boxes.

Windows and status dialog boxes

The terminal window is the only window that any of the communications tools display during
normal operation. However, since a connection or file transfer tool should not place text in the
terminal window, these tools should display their own window or modeless dialog boxes.

Status dialog boxes are the most common way for tools to request input or display output.
When a tool performs an operation that will take a long time—for example, transferring a file or
establishing a complex connection—the tool should post a status dialog box. This status dialog box
should:

¢ be modeless

* incorporate quantitative status information, such as a progress thermometer, when
appropriate '

e contain a Cancel button to allow the user to abort the operation. (The command-period
method of cancellation be problematic because multiple sessions may be running; the user could
inadvertantly cancel dialog boxes other than they one they intend to cancel by hitting the
command-period key combination several times.)

A tool might also put up its own window for user input and output during a session. For example,
a connection tool might provide a command window that allows users to type in commands
directly to control the connection. Your tool should either display this kind of window when the
application initially selects your tool, or install a custom menu item that toggles in 2 manner similar
to Hide Clipboard/Show Clipboard. Keep in mind that all command functions should be available
through standard Macintosh controls, such as menu items and configuration dialog box settings.
If your tool displays a command-line mode for compatibility with an existing standard, your tool
should supplement the standard Macintosh interface rather than replacing it.

Apple Confidential Appendix A: Guidelines for Communications Tools %1



Menus

Your tool can place a2 menu of its own in the menu bar of the application. However, it should avoid
doing this because the menu bar has limited available space and application designers tend to
assume they can use the entire menu bar. Also, since up to three tools can be active at once, up to
three tool menus might be displayed in addition to the menus owned by the application. Due to
the potential space problems, your tool should avoid displaying menus. If you do choose to
implement a menu for your tool, choose a menu name that is as short as practical to avoid
overflowing the menu bar.

Tool-specific menus are placed to the right of application menus. This means that if the menu
items of your tool have command-key equivalents, they will override any conflicting command
keys for application menus. If there two tool menus displayed at the same time, the menu
farthest to the right will override the other in a similar fashion. Furthermore, applications that
allow scripted selection of menu items will select the rightmost menu item in case of a name
conflict. Keep these potential sources of conflict in mind when designating names and command-
key equivalents for a tool menu.

Your tool can have hierarchical menus. However, because hierarchical menus take more time for
users to navigate through, your tool should use this kind of menu only for items that users do not
often select. Communications tools can use tearoff menus where appropriate for the function
being implemented(for example, for a keypad menu) and when supported by the System software.

Handling errors

Your tool should allow users to setup any communications configuration, even those that are
unusable. This allows a system administrator to configure and save a session document for

another person, who uses a configuration different from that on the administrator’s machine. In
cases like this, your tool should return an error only if the user attempts to open a connection, start -
a terminal emulation, or initiate a file transfer using an unusable setup.

Using the right words

Macintosh developers normally use terms that are intuitive and easy to learn, even for naive users.
However, this practice sometimes conflicts with the need to use established industry standard
terms, which may be difficult for the novice to understand. Since communication software
developers often implement pre-existing industry standards, this problem is especially common for
developers of communication tools.

Where standard terms for a function already exist and are widely accepted, you should use the
standard terms. This is both to ensure that your tool properly implements the standard and that
experienced communication users who are familiar with the standard terms are not confused.
However, you should attempt to make these terms as easily understandable as possible for
inexperienced users. You can do this in several ways; alternate standard terms are sometimes
available (for example, the terms Show Controls and Transparent Mode are used for the same VT102
terminal setting). You might also be able to embed the standard term in a longer description or use
small images to make meanings more clear.

% Special K Beta Draft Apple Confidential



Compatibility Requirements

Tools should be compatible with all configurations with which Special K is compatible. Special K
requirements are:

o Macintosh Plus (128K ) ROMs or later

¢ 1M of RAM minimum

o System 6.02 and later

In order to be compatible with future releases of system software, it is important that your tool
be 32-bit dean.

Terminal tool considerations

Terminal tools should support all Macintosh keyboards, including the original Macintosh keyboard
(with and without detachable keypad), the Macintosh Plus keyboard, as well as the Standard,
Extended, and Apple Iigs ADB keyboards. If arrow keys, function keys, the control key, or other
keys are required by your tool but are not on the keyboard, your tool should provide an alternative
means of accessing them (your tool could provide a keypad menu or allow the user to use the
command key as a control key.

Apple Confidential Appendix A: Guidelines for Communications Tools %3






Appendix B Useful Code Samples



About this appendix

This appendix shows you solutions to common programming problems:
* Implementing effective idle loops
* Determining events that need to be handled by one of the Special K managers
* Customizing the tool-selection dialog.
* Determining if the Special K managers are installed
* Finding the procID of atool
e Findinga t001ID

Using FTExec and TMIdle effectively

The following code sample shows when your application needs to call FTExec and TMIdle
during a file transfer.

PROCEDURE Doldle;

VAR
theWindow : WindowPtr;
theData : WindowP;
status : LONGINT;
sizes : BufferSizes;
theErr : CMErr;
flags ¢ INTEGER;
mouselLoc : Point;
oldLeft : INTEGER;
oldBottom ¢ INTEGER;
hScroll,
vScroll : ControlHandle;
doFT : BOOLEAN;
doTM : BOOLEAN;
savedPort ¢ GrafPtr;
tempString : STR255;
theReply : SFReply:;
toprow ¢ INTEGER ;
BEGIN

IF pigMode THEN
DoMissPiggy:;

GetPort (savedPort);

theWindow := FrontWindow;
WHILE theWindow <> NIL DO

%6 Appendix B: Useful Code Examples Apple Confidential %6



BEGIN
SetPort (theWindow) ;

theTerm := GethTerm(theWindow);
theConn := GethConn(theWindow);
theFT := GethFT (theWindow);

IF theConn <> NIL THEN
BEGIN
CMIdle(theConn);
theErr := CMStatus(theConn, sizes, status);
END; {theConn <> NIL }

doFT := FALSE;
doTM := TRUE;

IF theFT <> NIL THEN
BEGIN
theData := WindowP (GetWRefCon (theWindow));

IF BAND(theFT~"~.flags, FTIsFTMode) <> 0 THEN
BEGIN
IF NOT theData”.wasFTMode THEN
BEGIN
theData”.wasFTMode := TRUE;
DirtyMenu := TRUE;
END;

doFT := TRUE;

IF BAND(theFT~"~.attributes, FTSameCircuit) <> 0 THEN
doTM := FALSE;

END

ELSE

BEGIN

IF theData”.wasFTMode THEN
BEGIN
dirtyMenu := TRUE;
theData”~.wasFTMode := FALSE;

IF BAND(theFT"~~.flags, FTSucc) <> 0 THEN
BEGIN
END

ELSE
BEGIN
NumToString (theFT~".errCode,
tempString);
IF theFT~".errCode = 0 THEN

DoErrorAlert (errorFTAborted, '‘')
ELSE
DoErrorAlert (errorFTFailed,
tempString);
END;

{ need to check if the AutoRec has anything in it }
tempString := theFT”".autoRec;
IF (theData~.searchBlk = 0) AND (tempString <>

%7 Appendix B: Useful Code Examples Apple Confidential %7



'') THEN
theData”.SearchBlk :=
CMAddSearch (theConn, tempString, O,
@AutoRecCallback) ;

IF theData”.searchBlk = -1 THEN

BEGIN
DebugStr(‘cannot add search');
theData”.searchBlk := 0;

END;

END;

END;

IF theData”.startFT THEN

BEGIN
. theConn := GethConn(theWindow);
IF theConn <> NIL THEN
IF theFT""~.autoRec <> '' THEN
BEGIN
IF theData“.searchBlk <> 0 THEN
CMRemoveSearch (theConn,
theData”.searchBlk);
theData”.searchBlk := 0;
END;
theData”.startFT := FALSE;
theReply.vRefNum := 0;
theReply.fName := '';
theErr := FTStart(theFT,FTReceiving,theReply):;
END;
END;
IF doFT THEN
BEGIN
IF theFT <> NIL THEN
BEGIN
FTExec (theFT) ;
END;
END;

IF theTerm <> NIl THEN BEGIN
{Set cursor to arrow if outside the active tool}
if (theWindow = FrontWindow) then begin
GetMouse (mouseloc) ;
if NOT PtInRect(mouseloc,theTerm~~.viewRect) THEN
Initcursor;

{Set the scrol bar value correctly}
{ Put in idle loop because we're never sure when

{ the tool will scroll

}

hScroll := GetHScroll(theWindow);

vScroll := GetVScroll(theWindow);

if (hScroll <> nil) and (vScroll <> nil) then begin

%8 Appendix B: Useful Code Examples Apple Confidential 28



oldLeft := GetCtlValue(hScroll);
(V oldBottom := GetCtlValue(vScroll);
toprow := theTerm”~.visRect.top-1l +
theData”.cachelinecount;
if (theTerm~~.visRect.left <> oldLeft) then
SetCtlValue (hScroll,theTerm”~.visRect.left);
{ if (theTerm;”.visRect.bottom <> oldBottom)
then
SetCtlValue(vScroll,theTerm~~.visRect.bottom);}
{ we only want to adjust the scrollvalue according to the }
{ visRect.top if now cached line is visible }
if ( theTerm~~.viewRect.top = theTerm””~.termRect.top ) then
if ( toprow <> oldBottom) then
SetCtlValue(vScroll,toprow );
end;
end;

if doTM then
TMIdle(theTerm) ;
END;

IF doTM THEN

BEGIN
IF theConn <> NIL THEN
BEGIN
IF BAND(status, CMStatusOpen + CMStatusDataAvail) <>
. 4 0 THEN
( ‘ : BEGIN

M” IF sizes[CMDatalIn] <> O THEN
BEGIN ({sizes <> 0}
IF sizes[CMDataln] > myBufferSize THEN
sizes[CMDatalIn] := myBufferSize;
theErr := CMRead(theConn, myBuffer,
sizes[CMDatalIn], CMData,
FALSE, NIL, 0, flags):;

IF theData“.startFT THEN
{ we triggered a file transfer }
BEGIN
sizes[CMDataIn] :=
LONGINT (theData~.position) - LONGINT(myBuffer) - LENGTH(theFT"".autoRec);
IF sizes[CMDatalIn] > 0O THEN
sizes[CMDatalIn] :=
TMStream(theTerm, myBuffer, sizes[CMDataln], flags);
END
ELSE
BEGIN
sizes[CMDataIn] :=
TMStream(theTerm, myBuffer, sizes[CMDataln], flags);
END;

END; {sizes <> 0}

iR END; ({status oen }
o END; {conn<> NIL}

%9 Appendix B: Useful Code Examples Apple Confidential %9



END;

270

END;

theWindow :=
END;

SetPort (savedPort);

WindowPtr (WindowPeek (theWindow) ~.nextWindow) ;

Appendix B: Useful Code Examples Apple Confidential

270



Determining events for Special K managers

The following three routines show how an application can determine if an event needs to be
handled by one of the File Transfer Manager event processing routines. If you are not writing an
application that uses the File Transfer Manager routines, you can still learn from this example
because it deals with events and windows—concepts that are common to all Macintosh
programming.

The first routine, I sFTWindow, determines whether or not a window belongs to the File
Transfer Manager. Windows (or dialogs) that belong to the File Transfer Manager should have a
connection handle stored in the re f£Con field of the windowRecord.

The second routine, I SFTEvent, takes an event record and determines whether or not
FTEvent should be called.

The third routine demonstrates calling IsFTEvent in the main event loop of an application.

FUNCTION IsFTWindow(theWindow: WindowPtr): BOOLEAN;
VAR

pWindow: WindowPtr;

tempFT: FTHandle;

hFT: FTHandle;

BEGIN
IsFTWindow := FALSE;
IF WindowPeek (theWindow)*.windowKind <> dialogKind THEN
Exit (IsFTWindow) ;
tempFT := FTHandle(GetWRefCon(theWindow));
pWindow := FrontWindow;
WHILE pWindow <> NIL DO
BEGIN
hFT := GethFT(pWindow);
IF hFT <> NIL THEN
BEGIN
IF LONGINT(hFT) = LONGINT(tempFT) THEN
BEGIN
IsFTWindow := TRUE;
Exit (IsFTWindow);
END;
END;
pWindow := WindowPtr (WindowPeek (pWindow) ~.nextWindow);
END;
END;

FUNCTION IsFTEvent (theEvent: EventRecord): FTHandle;
VAR
theWindow : WindowPtr;

21 Appendix B: Useful Code Examples Apple Confidential

21



hFT: FTHandle;

BEGIN ;
IsFTEvent := NIL; N
theWindow := NIL;

CASE theEvent.what OF
autoKey, keyDown: { no command-key equivalents on a mac
plus }
BEGIN
theWindow := FrontWindow;
END;
mouseDown:
BEGIN
IF FindWindow(theEvent.where, theWindow)=0 THEN
i
END;
updateEvt:
BEGIN
theWindow := WindowPtr (theEvent.message);
END;
activateEvt:
BEGIN
theWindow := WindowPtr (theEvent.message);
END;
~END; ({case}
IF theWindow <> NIL THEN
BEGIN
IF IsFTWindow(theWindow) THEN
BEGIN
hFT* := FTHandle(GetWRefCon(theWindow));
IsFTEvent := hFT;
END
ELSE
BEGIN
hFT := GethFT(theWindow);
IF hFT <> NIL THEN
BEGIN
IF BAND(hFT~~.flags, FTIsFTMode) <> 0 THEN
IF BAND(hFT~~.attributes,
FTSameCircuit) <> 0 THEN
IF theEvent.what IN
[autoKey, keyDown] THEN
IsFTEvent := hFT;
END;
END;
END;
END;

{$S EventSeg}
FUNCTION IsConnEvent (theEvent: EventRecord): ConnHandle;
VAR

theWindow : WindowPtr;

22 Appendix B: Useful Code Examples ~ Apple Confidential 272



‘ plus }

hConn: ConnHandle;

BEGIN
IsConnEvent := NIL;
theWindow := NIL;
CASE theEvent.what OF
autoKey, keyDown: { no command-key equivalents on a mac
plus }
BEGIN
theWindow := FrontWindow;
END;
mouseDown:
BEGIN
IF FindWindow(theEvent.where, theWindow)=0 THEN
;
END;
updateEvt:
BEGIN
theWindow := WindowPtr (theEvent.message);
END;
activateEvt:
BEGIN
theWindow := WindowPtr (theEvent.message);
END;
END; ({case}
IF theWindow <> NIL THEN
BEGIN
IF IsConnWindow(theWindow) THEN
BEGIN
hConn := ConnHandle (GetWRefCon (theWindow)):;
IsConnEvent := hConn;
END;
END;
END;

{$S EventSeg}

FUNCTION IsTermEvent (theEvent: EventRecord): TermHandle;

VAR
theWindow : WindowPtr;
hTerm: TermHandle;

BEGIN
IsTermEvent := NIL;
theWindow := NIL;

CASE theEvent.what OF
autoKey, keyDown:

BEGIN

theWindow :=

END;
mouseDown:

273 Appendix B: Useful Code Examples

{ no command-key equivalents on a mac

FrontWindow;

Apple Confidential

273



BEGIN
IF FindWindow(theEvent.where, theWindow)=0 THEN
;
END;
updateEvt:
BEGIN
theWindow := WindowPtr(theEvent.message);
END;
activateEvt:
BEGIN
theWindow := WindowPtr(theEvent.message);
END;
END; ({case}

IF theWindow <> NIL THEN

BEGIN

IF IsTermWindow(theWindow) THEN
BEGIN
hTerm := TermHandle (GetWRefCon (theWindow));
IsTermEvent := hTerm;
END;

END;

END;

PROCEDURE MainLoop;

VAR
theEvent : EventRecord;
theWindow : WindowPtr;
theWindowPeek : WindowPeek;
theControl : ControlHandle;
savedPort : GrafPtr;
theKey : CHAR;

processed : BOOLEAN;
result : LONGINT;
hFT: FTHandle;

BEGIN
WHILE NOT done DO
BEGIN
SystemTask;

DoIdle; { application idle 1locop
procedure }
IF WaitNextEvent (everyEvent,theEvent, 0, NIL) THEN
BEGIN
hFT := IsFTEvent (theEvent);
IF hFT <> NIL THEN
FTEvent (hFT, theEvent)
ELSE
BEGIN
CASE theEvent.what OF
autoKey, keyDown:

24 Appendix B: Useful Code Examples Apple Confidential 274



END;

275

DoKey (theEvent) ;

END;
END; {gne}
END; (if done}

Appendix B: Useful Code Examples

mouseDown:

DoClick (theEvent);
updateEvt:

DoUpdate (theEvent) ;
app4Evt:

DoResume (theEvent) ;
activateEvt:

DoActivate(theEvent);
END; ({case}

Apple Confidential

275



Custom tool-selection dialog boxes

The sample code that follows shows how an application can use Connection Manager routines to
present the user with a custom dialog box that can be used to select or customize a tool. This code
calls a total of six Connection Manager routines..

CHOOSE.A
callldle PROC EXPORT
MOVEM.L DO-D7/A0-A6, - (SP)
MOVE.L 64 (SP),A0
JSR (A0)
MOVEM.L (SP)+,D0~D7/A0-A6
RTS
END
CHOOSE.P

UNIT Choose;
{

This unit performs the standard dialog for configuration and
selection of a communications tool.

}
INTERFACE

USES
MemTypes, QuickDraw, OSIntf, ToolIntf, PackIntf,
SpecialUnit,
CTBUtils,
TMIntf,
CMIntf,
FTIntf;

FUNCTION ChooseEntry (VAR theHandle:ConnHandle;
where : Point; idleProc:ProcPtr) : INTEGER;

IMPLEMENTATION
{SSETC debugging:=FALSE}

CONST
ChooseltemCK = 1;
ChooselItemCancel = 2;
ChooseltemOutline = 3;
ChooseltemTitle = 4;
ChooseltemVersion = 5;
ChooseltemDottedLine = 6;
ChooseltemPopup = 7;

26 Appendix B: Useful Code Examples Apple Confidential

276



TYPE
dialogInfoP = “dialogInfo; { storate private to the config dialog )}
dialogInfo = RECORD )
tempProcID : INTEGER; { MUST be the first item in record }
magicCookie : LONGINT; { MUST be the second item in the record }
tempConfig Ptr; { config record being used }
count : INTEGER;
title : STR255; { tool being displayed }
END; )
{ forward declaration }
FUNCTION DoNewConn (VAR hConn:ConnHandle; tempProcID:INTEGER;

tempConfig:Ptr): BOOLEAN; FORWARD;

PROCEDURE Drawline (theDialog : DialogPtr; itemNo : INTEGER); FORWARD;
PROCEDURE DrawTitle (theDialog : DialogPtr; itemNo : INTEGER); FORWARD;

PROCEDURE SetDTextInfo(theDialog : DialogPtr; procID: INTEGER); FORWARD;
PROCEDURE Callldle(idleProc:ProcPtr); EXTERNAL;

FUNCTION ChooseFilter(theDialog : DialogPtr; VAR theEvent:EventRecord;
VAR theltem:INTEGER) : BOOLEAN; FORWARD;

{=====s==ss=ss===s=====sSS====s======== P T T T T T T e e
{

theHandle is a (var) parameter which is the connection handle.

where is the upper left hand corner of the selection dialcg.

idleProc is a procedure pointer (with no parameters) that is

to be called from the dialog idle loop.
}
FUNCTION ChooseEntry (VAR theHandle: ConnHandle; where: Point;
idleProc: ProcPtr): INTEGER;

VAR
maxExtent : Rect; { max size of dialog in global coordinates
savedPort : GrafPtr; { saved port }
theWindow : WindowPtr; { for invalidating after DisposDialog }
theDialog : DialogPtr; { the choose dialog }
theControl : ControlHandle;
tempString : STR255;. { temporary placeholder }
tempTool H STR63; { currently selected tool name }
oldName : STR63; { initially selected tool name }
theltem : INTEGER; { for manipulating dialog items }
itemKind : INTEGER;
itemHandle : Handle;
itemRect : Rect;
oldSize : Point; { old size of dialog before resizing }

2n Appendix B: Useful Code Examples Apple Confidential

27



theType
thePtr

oldval
newVal

configSize
infoP
hTerm
hMenu
hDITL
theErr:
vRefNum:
diriD:

tempPort:

theContext:
err: OSErr;

BEGIN
ChooseEntry

IF BAND(idleProc, 1)

BEGIN

: ResType;
: Ptr;

: INTEGER;
: INTEGER;

LONGINT;
: dialogInfoP;
H TermHandle;
: MenuHandle;
: Handle;
OSErr;
INTEGER;
LONGINT;

GrafPtr;

CRMToolContext;

:= ChooseFailed;

Exit (ChooseEntry);

END;

InitCursor;

GetPort (savedPort) ;

<> 0 THEN

{ resource type to work with }
{ ptr to temporary configuration record } 7~

{ old control (popup menu)
{ current control value }

value }

{ size of the configuration record }

{ pointer to dialog data }

{ temporary variables }

{ handle to popup menu control's menu }

{ handle to DITL to append }

{ for building list of tools }

{ temporary holding place }

{ pessimistic happening }
{ check for negative idle proc case }

{ reset to arrow }
{ always the boyscout }

theDialog := GetNewDialog(chooseResourceBase, NIL, POINTER(-1));
IF theDialog = NIL THEN { perform safe dialog }
Exit (ChooseEntry);
SetPort (theDialog); { at 'em boy }
maxExtent := theDialog”.portRect; { my, how BIG }
infoP := dialogInfoP (NewPtr (SIZEOF (dialogInfo))); { internal data space }

IF infoP = NIL THEN

BEGIN

DisposDialog(theDialogq);
SetPort (savedPort) ;
Exit (ChooseEntry);

END;

SetWRefCon (theDialog,

218 Appendix B: Useful Code Examples

ORD4 (infoP)) ;

{ no memory }

{ clean up }
set the port back }
{ bye }

~—

{ set the refcon to
infoP }

Apple Confidential 278



{ get title of dialog
and set up title
drawing userItem }

GetIndString(infoP~.title, chooseResourceBase, 1);
GetDItem(theDialog, ChooseltemTitle, itemKind, itemHandle, itemRect);
SetDItem(theDialog, ChooseItemTitle, itemKind, @DrawTitle, itemRect);

WITH infoP~ DO
BEGIN
count := CountDITL(theDialog); { # items in DITL )}

GetDItem(theDialog,ChooseltemDottedLine, itemKind, itemHandle, itemRect);
SetDItem(theDialog,ChooseItemDottedLine, itemKind, @Drawline, itemRect);

tempProcID := theHandle”".proclD; { get the tool procID }
thePtr := theHandle"““.config; { get the config field }
CMGetToolName (tempProcID, tempString); { get the toolname }
oldName := tempString; { save the toolname }
IF oldName = '' THEN : { I am John Doe }
BEGIN
DisposPtr (Ptr(infoP)); { get rid of dlog data }
DisposDialog (theDialog); { clean up }
SetPort (savedPort) ; { set the port back }
Exit (ChooseEntry) ; { bye }
END;
configSize := GetPtrSize(thePtr); { get size of config record }
IF MemError <> noErr THEN { memory problem }
BEGIN
DisposPtr (Ptr (infoP)); { get rid of dialog data }
DisposDialog(theDialog); { clean up }
SetPort (savedPort) ; { set the port back }
Exit (ChooseEntry); { bye }
END;
tempConfig := NewPtr(configSize); { copy it if possible... }
IF tempConfig = NIL THEN { didn't get it }
BEGIN
DisposPtr (Ptr (infoP)); { get rid of dialog data }
DisposDialog(theDialog); { clean up }
SetPort (savedPort); { set the port back }
Exit (ChooseEntry); . { bye }
END;

BlockMove (thePtr, tempConfig, configSize); { copy it }

{ draw outline for
default button }
GetDItem(theDialog, ChooseltemOutLine, itemKind, itemHandle, itemRect);
SetDItem(theDialog, ChooseltemOutline, itemKind,
@GoodDrawOutlineButton, itemRect);

{ set up popup menu }
GetDItem(theDialog, ChooseltemPopup, itemKind, itemHandle, itemRect);
theControl := GetNewControl (chooseResourceBase, theDialog):;
IF theControl = NIL THEN

29 Appendix B: Useful Code Examples Apple Confidential 2P



20

BEGIN
DisposPtr (Ptr(infoP));
DisposDialog(theDialog);
SetPort (savedPort) ;
Exit (ChooseEntry);

{ get rid of dlog data }
{ clean up }

{ set the port back }

{ bye }

END;

hMenu := GetMHandle(chooseRescurceBase);
IF hMenu = NIL THEN
BEGIN

DisposPtr (Ptr(infoP));
DisposDialog(theDialog);
SetPort (savedPort) ;

{ get rid of dlog data }
{ clean up }
{ set the port back }

Exit (ChooseEntry); { bye }
END;
theltem := 1; { index thru tools }
theErr := noErr;
WHILE theErr = noErr DO { while no problems }
BEGIN
theErr := CRMGetIndTooclName( ‘'cbnd', theltem, tempString);
tempTool := tempString;
IF theErr = noErr THEN { no problems officer }
BEGIN
IF tempTool <> '' THEN { got one! }
BEGIN
AppendMenu (hMenu, 'X'); { this is to prevent }
SetItem(hMenu, theltem, StringPtr(QtempTool)");
{ problems with special
menu chars like / etc }
theltem := theltem + 1; { get the next one please }
END;
END;
END; {while}
theltem := CountMItems(hMenu); { How many tools? }

tempString := oldName;
oldval := FindMenultem(hMenu,
IF oldval = 0 THEN

BEGIN
{

tempString);

{ try to select the
appropriate item )}
{ in the popup menu }

{ Add the current tool if

it's not already there }

The user has moved the file out of the communications directory -

we can show the name,
}
theItem := theltem + 1;
oldval := theltem;

AppendMenu (hMenu, 'X');

but this menu item needs to be disabled

{Update these counts}

SetItem(hMenu,theltem, StringPtr (@oldName) ") ;

Appendix B: Useful Code Examples

Apple Confidential

20



A1

DisableItem(hMenu, theltem);{ disable it }

END;

IF theItem = 0 THEN

BEGIN
DisposPtr (Ptr (infoP)); { get rid of dlog data }
DisposDialog (theDialog) ; { clean up }
SetPort (savedPort) ; { set the port back }
Exit (ChooseEntry) ; { bye }

END;

SetCtlMax (theControl, theltem); { we've added items so

set up max of ctl }

GetIndString(tempString, chooseResourceBase, 2);{ get Popup Title }
SetCTitle(theControl, tempString); { set the title }

itemRect := theControl””.contrlRect; { fix rectangle size }
SetDItem(theDialog, ChooseIltemPopup, itemKind, itemHandle, itemRect);

oldSize := theDialog”.portRect.botRight; { old size of dialog }
UnionRect (maxExtent, theDialog”.portRect, maxExtent);
{ grow max dlog size }

newVal := oldVal;
SetCtlValue(theControl, oldvVal); { set up popup value }

hDITL := CMSetupPreflight (tempProcID, magicCookie);
{ get DITL to append }

SetDTextInfo(theDialog,theHandle””.proclD); { Set the dialog's text
info }

AppendDITL(theDialog, hDITL, appendDITLBottom); { append it }
IF hDITL <> NIL THEN
DisposHandle (hDITL) ; { done with the DITL }

CMSetupSetup(tempProcID, tempConfig, count+l, theDialog, magicCookie);
{ set up the items }

UnionRect (maxExtent, theDialog”.portRect, maxExtent);
{ grow max dlog size }
{ we need to do this
after every call to
appendditl }
MoveWindow (theDialog, where.h, where.v, TRUE); { move dialog }

ShowWindow (theDialog) ; { unveiling.. }
theltem := 0; { for now.. }
WHILE (theltem <> ChooseltemOK) AND (theltem <> ChooseltemCancel) DO
BEGIN '
IF idleProc <> NIL THEN { call the idle proc }

Callldle(idleProc);

Appendix B: Useful Code Examples Apple Confidential 21



ModalDialog(@ChooseFilter, theltem); { modal dialog }

IF theltem = ChooseltemPopup THEN { did popup get hit? }
BEGIN
newVal := GetCtlValue(theControl); { what is new value? }
IF newVal <> oldvVal THEN { it has changed! }
BEGIN

CMSetupCleanup (tempProcID, tempConfig, count+l,
theDialog, magicCookie);

{ cleanup the setup }

ShortenDITL(theDialog, CountDITL(theDialog) - count);
CMSetupPostflight (tempProcID); { decrement usecount
of tool }

SizeWindow(theDialog, oldSize.h, oldSize.v, TRUE);
{ change dialog size }

GetItem(hMenu, newVal, tempString); { get new tool name }
tempProcID := CMGetProcID(tempString); { get procID }
DisposPtr(tempConfig); { get rid of

old config }
tempConfig := NIL; { pessimistic }
CMDefault (tempConfig, tempProcID, TRUE);

{ and get a new one }

hDITL := CMSetupPreflight (tempProcID, magicCookie);

{ get a new DITL }
SetDTextInfo(theDialog,tempProclID);

IF hDITL <> NIL THEN { sanity chex }
BEGIN
AppendDITL(theDialog, hDITL, appendDITLBottom);

{ append it }
IF hDITL <> NIL THEN

DisposHandle (hDITL) ; { append and then

get rid of it }
END;

CMSetupSetup (tempProcID, tempConfig, count+l, theDialog,
magicCookie) ;
{ set up the items }
SizeWindow(theDialog, theDialog”.portRect.right,
theDialog”~.portRect.bottom, FALSE);

{ size the window }
oldval := newVal; { update value to

detect toolchange }
UnionRect (maxExtent, theDialog”.portRect, maxExtent);

{ grow max dlog size }
{ do this after every
appendditl }

END;
END; {(item = count }

IF theltem > count THEN { tool's item hit }
CMSetupItem(tempProcID, tempConfig, count+l, theDialog,

Appendix B: Useful Code Examples Apple Confidential -]



23

theltem, magicCookie);
END; {(while theltem NOT in 1..2}

HideWindow (theDialog) ; { hide the dialog }
newVal := GetCtlValue(theControl); { check name change}
Get Item(hMenu, newVal, tempString); { get the new name }

tempTool := tempString; { save the new name }

tempProcID := CMGetProcID(tempString);

{ this is to keep track of the maximum size of the dlog so that
we can invalidate the proper areas of the windows behind
when the dialog disappears

LocalToGlobal (maxExtent.toplLeft); { convert maxExtent }
LocalToGlobal (maxExtent .botRight) ; { to global coordinates }

{ spring cleaning }
CMSetupCleanup(tempProcID, tempConfig, count+l, theDialog,

magicCookie);
ShortenDITL(theDialog, CountDITL(theDialog) - count);

CMSetupPost flight (tempProcID);

DisposDialog(theDialog); { bye bye dialog }
SetPort (savedPort) ; ’ { don't leave port wierd }
IF theltem = ChooseltemOK THEN {OK}
BEGIN { has the name of tool
. changed?

be case INsensitive,
diacrit sensitive }
IF NOT EqualString(oldName, tempTool, FALSE, TRUE) THEN
BEGIN
ChooseEntry := ChooseOKMajor;
tempString := tempTool;
tempProcID := CMGetProcID(tempString);

IF NOT DoNewConn(ConnHandle (theHandle), tempProclID,
tempConfig) THEN
ChooseEntry := ChooseAborted;

IF theHandle = NIL THEN { disaster! }
BEGIN
ChooseEntry := ChooseDisaster;
END
ELSE
BEGIN
configSize := GetPtrSize(tempConfig);
BlockMove (tempConfig, theHandle~”.config, configSize):
IF CMvalidate(theHandle) THEN { validate for kicks }
;
END;
END
ELSE

Appendix B: Useful Code Examples Apple Confidential

23



BEGIN { same tool, so validate }

ChooseEntry := ChooseOKMinor;
configSize := GetPtrSize(tempConfig); ~
BlockMove (tempConfig, theHandle”".config, configSize);
IF CMValidate (theHandle) THEN
v
END;
END
ELSE

BEGIN
ChooseEntry := ChooseCancel;

{ use hit CANCEL }
END;

{ done with config }

DisposPtr (tempConfig);
{ get rid of dlog data }

DisposPtr (Ptr(infoP));

{ now we need to go through window list and update
all areas that were ever covered up by the
config dialog which has grown and potentially
shrunk. we have kept track of the largest size of
the dialog. we will now convert it to global coords
and invalrect everybody in the window list

GetPort (savedPort) ;

" theWindow := FrontWindow;

WHILE theWindow <> NIL DO

BEGIN : '
SetPort (theWindow) ; S
itemRect := maxExtent;

GlobalToLocal (itemRect.topLeft); { get max extent in

local coords }

GlobalToLocal (itemRect .botRight) ; { ditto }
InvalRect (itemRect) ;

theWindow := WindowPtr( WindowPeek (theWindow) *.nextWindow );

END;
SetPort (savedPort) ;

END; {with }
END;

{ this is to confirm shutting down the connection to modify it or not }

FUNCTION ReallyShutdown: BOOLEAN;
VAR
theDialog: DialogPtr;
theltem: INTEGER;
savedPort: GrafPtr;

itemKind : INTEGER;
itemHandle : Handle;
itemRect : Rect;
BEGIN .

ReallyShutdown := TRUE; { reckless } -

84 Appendix B: Useful Code Examples Apple Confidential 4



GetPort (savedPort);

{ save the port }

theDialog := GetNewDialog(ChooseResourceBase+l, NIL, WindowPtr(-1));

IF theDialog = NIL THEN
Exit (ReallyShutdown) ;

GetDItem(theDialog, 3, itemKind, itemHandle,

{ no dialog }

{ set up outline button }
itemRect);

SetDItem(theDialog, 3, itemKind, @GoodDrawOutlineButton, itemRect);

CenterWindow(theDialog) ;
SysBeep(5) ;
ShowWindow (theDialog) ;
SysBeep(5) ;
ModalDialog (NIL, theltem);
ReallyShutdown := (theltem = 1);
DisposDialog(theDialog);
SetPort (savedPort);

END;

{ change from one connection type to another }

{ center it )}

{ show it }

{ 1= ok, 2 = cancel }

{ rid o the dialog }
{ restore the port }

FUNCTION DoNewConn (VAR hConn:ConnHandle; tempProcID:INTEGER;

tempConfig:Ptr): BOOLEAN;

VAR
savedDesiredSizes : BufferSizes;
savedRefCon : LONGINT;
savedUserData H LONGINT;
savedFlags : LONGINT;
savedMLU : LONGINT;
savedReserved0 H LONGINT;
savedReservedl : LONGINT;
savedReserved2 : LONGINT;
status : LONGINT;
sizes : BufferSizes;
theErr : CMErr;

BEGIN

DoNewConn := TRUE;
theErr := CMStatus(hConn, sizes, status);
IF theErr = noErr THEN

{ get conn status }
{ OK }

IF BAnd(status, CMStatusOpen+CMStatusOpening) <> O THEN

BEGIN
IF NOT ReallyShutdown THEN
BEGIN
DoNewConn := FALSE;

Exit (DoNewConn) ;
END;
END;

WITH hConn”~" DO
BEGIN
savedFlags := flags;
savedDesiredSizes := BufSizes;

85 Appendix B: Useful Code Examples

{ conn currently open }

{ confirm this please '}

{ no confirmation }

so beat a quick
retreat }

-~

{ save any desired parameters }

Apple Confidential 25



savedRefCon := refcon;
savedUserData := userData;
savedMLU := MLUField;
savedReserved0 := reserved0;
savedReservedl := reservedl;
savedReserved?2 := reserved2;
END;

CMDispose (hConn) ;

hConn := CMNew(tempProcID, savedFlags,

savedUserData) ;
IF hConn <> NIL THEN
WITH hConn*~ DO
BEGIN
MLUField := savedMLU;

reserved0 := savedReservedO;
reservedl := savedReservedl;
reserved2 := savedReserved2;

END;
DoNewConn := TRUE;

END;

{ Choose dialog filter procedure }
FUNCTION ChooseFilter(theDialog : DialogPtr;
VAR thelItem:INTEGER)

VAR
theControl : ControlHandle;
where : Point;
result : BOOLEAN;
theKey : CHAR;
savedPort : GrafPtr;
theWindow : WindowPtr;
pDialogInfo : DialogInfoP;
itemKind : INTEGER;
itemHandle : Handle;
itemRect : Rect;
theKeys: KeyMap;

BEGIN

theltem := 0;

result := FALSE;

IF theEvent.what = keyDown THEN
BEGIN

theKey := CHAR(BAND(theEvent.message,

% Appendix B: Useful Code Examples

{ get rid of old conn }

savedDesiredSizes, savedRefCon,

{ sanity chex }

VAR theEvent:EventRecord;
BOOLEAN;

{ for event processing }

{ dialog private data }

{ nothing initially }

{ for now.. }

charCodeMask) ) ;

Apple Confidential p..



IF (theKey = CHAR($03)) OR (theKey = CHAR(SO0D)) THEN

’ { enter or return }
( BEGIN
theltem := ChooseltemCK; { OK button }
result := TRUE;
END;
IF (theKey = '.') AND (BAND(theEvent.modifiers, cmdKey) <> 0) THEN
BEGIN { emd- '.' }

theltem := ChooseltemCancel;
result := TRUE;

END;
IF result = TRUE THEN { hilite if we got a button }
BEGIN
GetDItem(theDialog, theltem, itemKind, itemHandle, itemRect);
HiliteControl (ControlHandle(itemHandle), 1):
END;
IF result THEN { we have preprocessed the
RETURN, ENTER,
and cmd-. }
BEGIN
ChooseFilter := TRUE;
Exit (ChooseFilter);
END;
(«1 END;
pDialogInfo := DialogInfoP (GetWRefCon (theDialogq)); { get the dlog data }
WITH pDialogInfo~ DO
BEGIN
result := CMSetupFilter (tempProcID, tempConfig, count+l, theDialog,
theEvent, theltem, magicCookie);
ChooseFilter := result; { TRUE or FALSE }
IF result THEN { it WAS processed }
Exit (ChooseFilter); { so exit }
END;
result := FALSE; { pessimism }
CASE theEvent.what OF { process the event }
updateEvt:
BEGIN
GetPort (savedPort) ; { get the port }
theWindow := WindowPtr (theEvent.message); { get the update owner }
SetPort (theWindow);
BeginUpdate (theWindow) ;
EraseRect (theWindow”.portRect); { erase )}
IF theWindow = theDialog THEN { process if ours }
UpdtDialog (theDialog, theWindow”.visRgn);
( EndUpdate (theWindow) ; { otherwise eat it }

287 Appendix B: Useful Code Examples Apple Confidential 287



SetPort (savedPort);

result := TRUE; { chomp chomp } ~
END;
activateEvt:
BEGIN
theWindow := WindowPtr (theEvent.message); { eat the activates }
IF BAND(theEvent.modifiers, activeFlag) <> 0 THEN
IF theWindow = theDialog THEN
SetPort (theWindow) ; { set port if activate }
result := TRUE;
END; '
mouseDown:
BEGIN
where := theEvent.where; { where was the mousedown }
GlobalToLocal (where) ; { convert to local coords }
{ did we click in control? }
IF FindControl (where, theDialog, theControl) <> 0 THEN
BEGIN
IF TrackControl (theControl, where, POINTER(-1)) <> 0 THEN
{ so track it }
BEGIN
result := TRUE; { we got the event }
theltem := FindDItem(theDialog, where) + 1;
{ so item hit }
END
ELSE
BEGIN { tracked out of it } )
result := TRUE; ’
theltem := 0; { so no item hit } e
END;
END;
END;
keyDown: { keyDown }
BEGIN
theKey := CHAR(BAND(theEvent.message, charCodeMask)):;
IF (theKey = CHAR($03)) OR (theKey = CHAR($0D)) THEN
{ enter or return }
BEGIN
theltem := ChooseltemOK; { OK button }
result := TRUE;
END;

IF (theKey = '.') AND (BAND(theEvent.modifiers, cmdKey) <> 0) THEN
BEGIN { emd- '.' }
thelItem := ChooseltemCancel;
result := TRUE;

END;
IF result = TRUE THEN { hilite if we got a button }
BEGIN
GetDItem(theDialog, theItem, itemKind, itemHandle, itemRect);
HiliteControl (ControlHandle (itemHandle), 1); : o
END; 4

28 Appendix B: Useful Code Examples Apple Confidential 28



END;
otherwise
BEGIN
END;
END; {case}
ChooseFilter := result;
END;

( draw title of the user item }
PROCEDURE DrawTitle(theDialog : DialogPtr; itemNo : INTEGER);

VAR

infoP : dialogInfoP;
itemHandle : Handle;
itemRect : Rect;
itemType : INTEGER;
itemKind : INTEGER;
savedFont : INTEGER;
savedSize : INTEGER;
BEGIN

infoP := DialogInfoP(GetWRefCon (theDialog)):
WITH infoP” DO
BEGIN
savedFont := theDialog”.txFont;
savedSize := theDialog”.txSize;

TextFont (0) ; { system font and size please }

TextSize (0);

GetDItem(theDialog, itemNo, itemKind, itemHandle, itemRect);

EraseRect (itemRect) ; { erase it please }

TextBox( Ptr( ORD4(@title) + 1), LENGTH(title), itemRect, teJustleft);

TextFont (savedFont) ; { restore font and size
TextSize(savedSize);
END;

END;

{ useritem to draw dotted line }

PROCEDURE Drawline(theDialog : DialogPtr; itemNo : INTEGER);
VAR

information }

itemHandle : Handle;
itemRect : Rect;
itemType : INTEGER;
itemKind : INTEGER;
thePattern : Pattern;
savedPen : PenState;
BEGIN
GetIndPattern(thePattern, sysPatListID, 4); { gray pattern }

29 Appendix B: Useful Code Examples

Apple Confidential

2



GetPenState (savedPen) ;
PenNormal;

{ PenPat (thePattern); }

GetDItem(theDialog, itemNo, itemKind, itemHandle, itemRect);
FrameRect (itemRect) ;

SetPenState (savedPen) ;
END;

{ this routine will set the dialog font and size
information based upon the finf resource
}
PROCEDURE SetDTextInfo(theDialog: DialogPtr; procID: INTEGER);
VAR

savedPort : GrafPtr;
thefinf : finfRecord;
myPeek : DialogPeek;
savedState : SignedByte;
info : FontlInfo;
curResRef : INTEGER;
theResource : Handle;
BEGIN
GetPort (savedPort) ; { safe porting }

SetPort (theDialog) ;

curResRef := CurResFile;
UseResFile(proclD); { look for finf in tool first }

theResource := GetlResource('finf',K chooseResourceBase);
if (theResource <> nil) then begin
GetIndfinf (@thefinf,chooseResourceBase,Window_Info);
{ Get the indexed info from finf resource }
UseResFile(curResRef);
end
else begin
UseResFile(curResRef);
GetIndfinf(@thefinf,chooseResourceBase,Window_Info);
end;

myPeek := DialogPeek (theDialog);

savedState := HGetState(Handle(myPeek”.textH)); { get handle state }
HLock (Handle (myPeek”.textH)); { get the TE handle }

with thefinf do
begin

TextSize (theSize); { Load in the grafport info }

TextFont (fontNum) ;
TextFace (theFace) ;

290 Appendix B: Useful Code Examples Apple Confidential 290



with myPeek”.textH~" do
(f begin "{ Load in the TE info }
txFont := fontNum;
txFace := theFace;
txSize := theSize;

WITH info DO
BEGIN { stuff fields in TERecord }
lineHeight := ascent + descent + leading;

fontAscent := ascent; { I-378 })
END;
end;
end;
HSetState (Handle (myPeek”.textH), savedState); { restore dialog }
SetPort (savedPort) ; { and now back to our

regular station }
END; { SetDTextInfo }

END.

21 Appendix B: Useful Code Examples Apple Confidential 01



CHOOSE.R

#include "SysTypes.r"
#include "Types.r"

#define ChooseResourceBase 256

#define Popup 32 /* 2 * 16 */
/* Font Info for dialog items */
resource 'finf' (ChooseResourceBase, purgeable) ({
{ /* array Fonts: 2 elements */
/* (1] */ . /* Window Font */
3, /* font number */
’ plain, /* style */
9, /* size
/* (2] */ /* Icon Font */
3,
plain,
9

Y

resource 'STR#' (ChooseResourceBase, "Titles for config dialog") {
{
"Connection Configuration®,
"Method:",
o
}
}e

resource 'DLOG' (ChooseResourceBase, "setup dialog") {
{o, o0, 70, 450},
dBoxProc,
invisible,
noGoAway,
0x0,
ChooseResourceBase,
"Setup Dialog Box"

resource ‘'DLOG' (ChooseResourceBase+l, "confirm closing connection") ({
{0, 0, 100, 300},
dBoxProc,
invisible,
noGoAway,
0x0,
ChooseResourceBase+l,
“confirmation dialog"

resource 'CNTL' (ChooseResourceBase, "Tools control ") {
{30, 5, 50, 300},
-1, /* right just */

22 Appendix B: Useful Code Examples Apple Confidential 02



visible,

( 90, /* width of title */
ChooseResourceBase, /* menu associated */
Popup, /* no options CDEF 10 = 16 * 10 + variation code */
0, /* reference menu 11000, popup title width 50 */
"title:"

}i
resource 'DITL' (ChooseResourceBase, "Basic configuration DITL™) ({
{ /* array DITLarray: 5 elements */
/* (11 */
{32, 370, 52, 440},
Button {
enabled,
nOK"
b,
/* (2] */
{5, 370, 25, 440},
Button {
enabled,
"Cancel"
Y,
/* [3] outline of OK button */
{28, 366, 56, 444},
/* {35, 370, 55, 440}, */
UserItem {
enabled

N }o
( ) /* [4] title */
(s, 5, 21, 200},
userItem {
disabled
},
/* [5] version */
(50, 85, 60, 130},
UserItem {
disabled

),
/* (6] dotten line separating static from dynamic portions */

{62, 0, 63, 9999},
UserItem {
disabled

b,
/* [7] select tool popup menu user item */

{30, 5, 50, 300},
UserItem ({
enabled

resource 'DITL' (ChooseResourceBase+l, "Confirmation DITL") (
{ /* array DITLarray: 5 elements */

( /* (1] */
e : {70, 220, 90, 290},

293 Appendix B: Useful Code Examples Apple Confidential 23



Button {

enabled,
"OK"
},
/* (2] */
{40, 220, 60, 290},
Button {
enabled,
"Cancel™"

},
/* [3] outline of OK button */
{66, 216, 94, 294}, ‘
UserItem {

enabled
Y.
/* [4] text */
{10, S5, 90, 200},
StaticText {

disabled,

"Modifying the current connection may cause the "

"connection to close. Proceed?"

resource 'MENU' (ChooseResourceBase, "Popup Menu") {
ChooseResourceBase,
textMenuProc;
allEnabled,
enabled,
"Choose Menu",
{
}

2% Appendix B: Useful Code Examples Apple Confidential 294



Determining if the managers are installed

FUNCTION Installed : BOOLEAN;
CONST
CommToolboxTrap = $8B;
UnimplementedTrapNumber = $9F;

BEGIN
Installed := TRUE;
IF NGetTrapAddress (UnimplementedTrapNumber, OSTrap) =
NGetTrapAddress (CommToolboxTrap, OSTrap)

THEN
BEGIN
Installed := FALSE;
END;
END;

Getting the procID

FUNCTION GetProcID(msg: integer; name : str255) : Integer;
BEGIN
( CASE (msg) OF
) NEWCM:
GetProcID := CMGetProcID(name);
NEWTM:
GetProcID := TMGetProcID(name);
NEWFT:
GetProcID := FTGetProcID(name);

END;

END;

25 Appendix B: Useful Code Examples Apple Confidential 25



Finding the tool ID

FUNCTION FindToolID(msg : integer): integer;

VAR

BEGIN

END;

2%

theType: ResType;

err: OSErr;
tempTool: STR255;

prociD: Integer;

FindToolID := =-1;
procID := -1;

GetIndString(tempTool, DEFAULTSTR, msg+1l);
{Try toc get the default}
if LENGTH(tempTool) > 0 then
procID := GetProcID(msg, tempTool);
{Get the ProcID if possible}

{ nothing doing }

tempTool) ;

if procID = -1 then
{ The default tool wasn't specified or doesn't exist}
BEGIN
CASE (msg) of
NEWCM:
theType := ClassCM;
NEWTM:
theType := ClassTM;
NEWFT:
theType := ClassFT;
END;
err := CRMGetIndToolName(theType, 1,
if err <> noErr then
BEGIN
DebugStr('FindTool - no tools');
EXIT(FindToolID);
END;
procID := GetProcID(msg, tempTool);
IF proclID = -1 THEN
BEGIN .
DebugStr (‘CTBGetProcID returned -1');
END;
END;

FindToolID := procID;

Appendix B: Useful Code Examples

Apple Confidential

2%

N



