
Macintosh®

()
J

Zorro
Programmer's Guide

Working Draft #3
Writer: Bill Harris

September 14, 1988

Apple Confidential

ti APPLE COMPUTER, INC.

Copyright© 1988 by Apple
Computer, Inc.

All rights reserved. No part of
this publication may be repro­
duced, stored in a retrieval
system, or transmitted, in any
form or by any means, mechan­
ical, electronic, photocopying,
recording, or otherwise, without
prior written permission of
Apple Computer, Inc.

Apple, AppleTalk, ImageWriter,
LaserWriter, and Macintosh are
registered trademarks of Apple
Computer, Inc.

IBM® is a registered trademark
of IBM.

NuBus™ is a trademark of Texas
Instruments.

Working Draft #3

(
Apple 3270 API Programmer's Guide September 74, 7988

Contents

Figures end tcbles Iv

Pref ace About this document v

What you should know vi

Chapter 1

What this document includes vi
Suggested reading vii

Macintosh computer documents vii
Documents related to 3270 API viii

Conventions used in this document viii

The Apple 3270 API Architecture 1-1

What the 3270 API supports 1-4
IBM and Apple display buffers 1-5

The IBM attribute buffers 1-5
The Apple attribute buffers 1-7

Using the Apple 3270 API 1-9
The Apple 3270 API request block 1-9
Specifying API configuration information 1-12
Checking for a completed request 1-15
Issuing a 3270 API call 1-16
Building a 3270 API application 1-18
C interface and the API routines 1-20

The API calls and API support 1-22
About sessions 1-22
EBCDIC, DBC, ASCII, and scan codes 1-22
Color support 1-24
Passthrough data and structured field support 1-24
Printer support 1-25
Alternate screen size 'support 1-26
S:\"A considerations 1-27
Multiple outstanding API requests 1-27
Using a custom I/0 completion routine 1-28

Working Draft #3

ii Contents

Apple 3270 AP/ Programmer's Guide

Chapter 2 3270 API Application Guidelines 2-1

Writing 3270 applications 2-2

September 14, 1988

Writing a 3270 terminal emulation application 2-2
Transferring files 2-2

Sample 3270 application 2-3
DFTerm.c file 2-3
Term.c file 2-19
Translate.c file 2-25

Chapter 3 API Service Requests 3-1

Documentation format of each API call 3-2
Activate_Prt_Sess 3-4
Check_Session_Bind 3-8
Close_Host_ Connection 3-11
Connect_To_PS 3-12
Copy _From_Buffer 3-22
Copy _From_Field 3-25
Copy_OIA 3-27
Copy_To_Field 3-29
Copy_To_PS 3-32
Deactivate_Prt_Sess 3-35
Disconnect_From_PS 3-37
Do_Special_Func 3-39
Find_Field 3-41
Get_Cursor 3-44
Get_DSC_Prt_Data 3-45
Get_Host_Connection_Info 3-49
Get_LUl_Prt_Data 3-55
Get_Passthru_Data 3-59
Get_Update 3-62
Init_3270_API 3-69
Open_Host_Connection 3-70
Post_Passthru_Reply 3-7 4
Post_Prt_Reply 3-76
Search_String 3-78
Send_Keys 3-81
Send_Passthru_Data 3-85
Send_Prt_Control 3-87
Set_Cursor 3-89
Set_Color_Support 3-90
Term_3270_API 3-92

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Chapter 4 Apple 3270 API Device Drivers 4-1

Input inhibited conditions 4-3
Supporting API calls 4-3

Appendix A

Appendix B

Appendix C

A special driver function 4-5
Writing a DFT-CU driver 4-5

Supporting passthrough data 4-5
Close_Host_Connection and DFT-CU drivers 4-5
Connect_To_PS and DFT-CU drivers 4-5
Deactivate_Prt_Sess and DFT-CU drivers 4-6
Disconnect_From_PS and DFT-CU drivers 4-6
Get_Host_Connection_Info and DFT-CU drivers 4-7
Get_LUl_Prt_Data and DFT-CU drivers 4-7
Open_Host_Connection and DFT-CU drivers 4-8
Post_Prt_Reply and DFT-CU drivers 4-8
Send_Keys and DFT-CU drivers 4-8
Send_Passthru_Data and DFT-CU drivers 4-8

Writing a CUT driver 4-9
Close_Host_Connection and CUT drivers 4-9
Connect_To_PS and CUT drivers 4-9
Disconnect_From_PS and CUT drivers 4-9
Get_Host_Connection_Info and CUT drivers 4-10
Open_Host_Connection and CUT drivers 4-10
Send_Keys and CUT drivers 4-10

Error Codes A-1

Control Key Codes B-1

Request Codes C-1

Glosscry G-1
Bibllogrcphy 1
Index 1-1

Contents ii

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 1988

Figures and tables

Chapter 1 The Apple 3270 API World 1-1

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5

. Logical 3270 API architecture 1-2
A view of the presentation space 1-6
Basic DAB byte format 1-7
Extended DAB byte 1-8
conn_id, port_id, ps_id 1-12

Appendix A Error Codes A-1

Table A-1 Generic error codes A-2
Table A-2 API interface error codes A-3
Table A-3 Apple CUT/DFT driver error codes A-3
Table A-4 Apple CUT card error codes A-4
Table A-5 Apple DFT card error codes A-4
Table A-6 APPLELINE error codes A-4
Table A-7 SIMWARE error codes A-4
Table A-8 AVATAR CUT error codes A-5
Table A-9 AVATAR DFT error codes A-5
Table A-10 DCA CUT error codes A-5
Table A-11 DCA DFT error codes A-5
Table A-12 CXI CUT error codes A-5
Table A-13 CXI DFT error codes A-5

Appendix B Control Key Codes A-1

Table B-1 3270 DFT-CU control key codes B-1

Appendix C Request Codes C-1

Table C-1 3270 API request codes C-1
Table C-2 3270 API alternate defines C-2

iv Figures and tables

()

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

('

Preface

About this document

(

v

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 14, 7988

What you should know
This document is intended for programmers who want to write
applications for the Apple® 3270 Application Programming
Interface and for developers who want to develop drivers that
support such applications.

The document assumes that you have extensive development
experience with the Apple Macintosh® computer, or that you plan
to learn about the computer from other documents (such as those
listed in "Suggested Reading" later in this preface). You should also
know how to work with rhe IBM presentation space, and how to use
the C programming language.

In summary, this document assumes that you are an experienced
IBM 3270-type application programmer who wants to learn how to
program the same type of applications using the Apple 3270
Application Programming Interface.

What this document includes
This document is divided into these chapters and appendixes:

o Chapter 1, "The Apple 3270 API Architecture," explains the
logical architecture of the Apple 3270 Application Programming
Interface (API), briefly describes the presentation space, and
shows how to issue an API call and how to build an API
application.

o Chapter 2, "3270 API Application Guidelines," provides some
guidelines about how to write terminal-emulation and file­
transfer applications, and lists DFTerm, which is a sample API
terminal-emulation program.

o Chapter 3, "API Service Requests," provides a complete
description of the API routines, and itemizes and defines each
parameter for each verb.

o Chapter 4, "Apple 3270 API Device Drivers," contains
information that you should consider if you are developing a
3270 API driver.

o Appendix A, "Error Codes," lists the 3270 API error codes.

- Appendix B, "Scan Codes," lists the 3270 API control keys and
their scan codes.

vi Preface: About this document

Working Draft #3 Appfe 3270 APf Programmer's Guide September 7 4, 7 988

o Appendix C, "Request Codes," lists the 3270 API request codes
and some alternate C definitions for convenience.

The document also includes a glossary, a bibliography, and an
index.

Suggested reading
The Apple Technical Library, published by Addison-Wesley, is a set
of technical books from Apple Computer, Inc., that explains the
hardware and software of the Macintosh family of computers. The
descriptions that follow may help you decide which of the books will
be most useful to you.

Macintosh computer documents
The Apple Technical Library, published by Addison-\'\'esley, is a set
of technical books from Apple Computer, Inc., that explains the
hardware and software of the Macintosh family of computers. The
descriptions that follow may help you decide which of the books will
be most useful to you.

o Inside Macintosh, Volumes I, II, and III. These books cover the
Macintosh Toolbox and Macintosh Operating System for the
original 64K Macintosh ROM, along with user interface
guidelines and hardware information.

o Inside Macintosh, Volume IV. This guide covers only what is new
for the Macintosh Plus and Macintosh 512K enhanced computers
(128K ROM).

'--' Inside Macintosh, Volume V. This guide covers what is different
about the Macintosh SE and Macintosh II computers (256K
ROM).

c: Technical Introduction to the Macintosh Family. An
introduction to the hardware and software design of the
~Iacintosh family, this book serves as a starting point for the
Apple Technical Library. It is oriented primarily toward the
Macintosh Plus, Macintosh SE, and ~Iacintosh II computers, but
it also touches on earlier versions of the Macintosh where these
differ from the Macintosh Plus.

Suggested reading vii

Working DrO'ft #3 Apple 3270 AP/ Programmer's Guide September 14, 1988

,t '",,
\

CJ Programmer's Introduction to the Macintosh Family. This '-/
book provides an overview of sofovare development for the
Macintosh family of computers. The book focuses on the
differences between event-driven programming and more
traditional programming techniques. It covers such topics as
QuickDraw graphics, screen displays, and the Macintosh user
Interface Toolbox.

o Human Interface Guidelines: The Apple Desktop Interface. This
guide describes the Apple user interface for anyone who wants to
develop applications.

o Inside Macintosh X-Ref This reference contains
comprehensive indexes, routine lists, and a glossary for Inside
Macintosh and other Macintosh programming books.

Other books that may be helpful include the following, which are
available from the Apple Programmer's and Developer's
Association (APDA ™).

o Macintosh Programmer's Workshop Reference: A guide to the
Macintosh Programmer's Workshop (MPW™) Shell and utilities,
including the resource editor (ResEdit), the resource compiler
(Rez), the Linker, the Make facility, and the debugger.

CJ MPW C Reference. This manual describes how to write C
programs in MPW C.

Documents related to 3270 API
The following publications are useful for anyone writing 3270 API
applications:

o IBM 317413274 Control Unit to Device Product Attachment
Information (Oct 16, 1986).

o IBM 3270 Information Display System Character Set
Reference (GA27-2837).

o IBM 3270 High Level Language Application Program Interface
Programming Guide (59X9474).

Conventions used in this document
In this document, terms are printed in boldface when they are
introduced. These terms are also included in the glossary.

viii Preface: About this document

0

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 1988

Terms that are taken from the C programming language are shown
in Courier.

For an explanation of the conventions used to document each API
call, see the beginning of Chapter 3.

Conventions used In this document ix

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 7 4, 7 988

Chapter l

The Apple
3270 API Architecture

1 -1

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 1988

A Macintosh can communicate to an IB.M mainframe or System 3x
by using the following:

o an Apple 3270 Application Programming Interface application

o the Apple 3270 API

o a 3x74, 3270, or 5250 device driver

o a NuBus™ API card, such as the Apple 3270 API card

Figure 1-1 illustrates the logical structure of the Apple 3270
architecture.

(figure is on next page)

Figure 1-1
Logical 3270 AP! Architecture

1-2 Chapter 1: The Apple 3270 API Architecture

3x74 CU driver

3x74 CU Serial
emulation card connector

Apple 3270 AP! applications
(terminal emulation, file transfer)

Apple 3270 API

3270 CUT or DIT driver

3270
card

Coaxial
connector

= c:::::::::l •••

==· ==· . c:::::::3i::::::::i •
• • • • t:::=:l c::::::3 • ==·

........

IBM
mainframe

5250
card

5250 driver

Twin axial
connector

IBM
System 3x

()

Working Drott #3

(
Apple 3270 AP! Programmer's Guide September 74. 7988

As the figure indicates, Apple Computer or third-party vendors
could add enhancements that support other 3270-type devices.

Your Apple 3270 API application will typically be one of the
following:

o a 3270 terminal-emulation application with file-transfer
capability

o an implementation of IBM's Enhanced Connectivity Facilities

The Apple 3270 API allows you to write your application with some
degree of device independence. As shown in Figure 1-1, the Apple
3270 API separates a 3270 API application from the underlying
device driver and API card. Thus, the following are possible:

o An Apple 3270 API application can be used with any device
driver that adheres to the API call specification.

o New drivers can be installed without change to the application.

o New cards can be designed that take advantage of existing
drivers.

A 3x74, 3270, or 5250 driver (referred to as the driver in this
document) is a system or application resource that contains object .
code to be downloaded to an API card.

Many drivers support CUT or DFT-CU devices. CUT stands for
Control Unit Technology. Devices that fit this class are 328x printers
or compatible printers, and the classic "dumb" terminals such as
the 3178 and the 3278. With this type of technology, the burden of
the processing is shifted to the control unit, and the device is
limited to providing physical display of the data and input to the
controller. CUT devices can support only one logical terminal per
device.

OFT stands for Distributed Function Technology. As the name
implies,devices of this type are used in networks that distribute the
processing among the members of a network. Devices that fie this
class are the 3270 PC and other PC-based workstations. \X'ith this
type of technology, the burden of the processing is shared between
the host and the terminal. As a result, DFT devices can support up
to five separate logical terminals with one or more hosts at once.

The driver also provides the NuBus interface between the ~v!acintosh
application and the card. When a user restarts the "'1acintosh,
object code from the driver is loaded into the system memory of
the f>facintosh. Many different drivers can reside in the system
heap and be available to the application.

1-3

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

The driver is usually a system resource installed by the user into the
System Folder, or can be a temporary driver available only for the
life of the application. See Chapter 4 for more information on how
to construct a driver.

A 3270 A.PI-type card, of which the Apple 3270 API card is an
example, supplies the hardware support and physical connection to
the host. Note that Figure 1-1 illustrates the connections as existing
on separate cards; while this structure is logically true, the functions
can be combined on one physical card. For the specifications of a
particular 3270 A.PI card, see its hardware manual. However, in
most circumstances, you won't have to worry about the particular
hardware being used; in fact, that's the concern of the APL

What the 3270 API supports
The Apple 3270 A.PI supports the following:

o establish and terminate connections to a host

o position the cursor in the 3270 Presentation Space

o examine and change fields in the 3270 Presentation Space

o send 3270 keystrokes to the host

o wait for the host to update the 3270 screen

o send and receive raw data to and from the host

o host-initiated printing, including SCS and DSC

o maintain multiple host sessions

o the Macintosh user interface

r::::: the ability to suspend a 3270 application and switch to another
Macintosh application (when running under .MultiFinder)

The Apple 3270 AP!, at the time of publication of this guide, does
not support the following:

o explicit partitions

:J double byte coded character sets (DBCS), such as that for Kanjii

::::; entry assist

o programmed symbol sets in CUT mode

o printer emulation support in CUT mode

r IPDS

1-4 Chapter l : The Apple 3270 API Architecture

Working Draft #3

(

Apple 3270 AP/ Programmer's Guide September 14, 1988

IBM and Apple display buffers
The Apple 3270 API defines four buffers; each buffer, if it is used,
must be the same size as the screen being emulated. The buffers are
as follows:

o Presentation space (PS), which contains the displayed data
and the field anribute bytes

o Extended attributes buffer (EAB), which contains the
extended field attributes and the character attributes

o Display attributes buffer (DAB), which contains a composite
definition for each displayed character that indicates the
highlighting, color, and intensity of the character

o Extended display attributes buffer (DABE), which contains a
composite definition for each displayed character that indicates
the character set, the Modified Data Tag (MDD, and some
format details

The PS and the EAB are buffers defined by IBiv1; the DAB and the
DABE are buffers defined by Apple Computer. Each of the buffers
is described in more detail in the following sections.

The IBM attribute buffers

The PS and the EAB are buffers defined by IBM. The following
sections describe these buffers in more detail.

Presentation space

Regardless of the physical connection used, 3270 API applications
copy data to and from a logical equivalent of the 32-:-0 screen. This
logical equivalent of the screen is called the presentation space
(PS), and is the main buffer that a 3x74 CC writes or that a DFf
terminal maintains. The presentation space contains the data and
the field attribute bytes, and is illustrated in Figure 1-2.

IBM and Apple display buffers 1-5

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 1988

(figure is on next page)

Figure 1-2
A view of the presentation space

The presentation space is considered to be unformatted if it does
not contain any fields, or considered to be formatted if it does
contain fields.

The Operation Information Area COIA), on row 25 at the bottom of
the screen in Figure 1-2, is a status line. For example, if an input­
inhibited condition exists, it indicates that keyboard input is not
allowed. An X followed by a string of symbols appears in the OLA. to
indicate this condition.

Extended attribute buffer

The extended attribute buffer (EAB) is the secondary buffer to
which the 3x74 control unit writes if the 3270 device is able to
support extended attributes. In this buffer, each field starts with an
extended field attribute byte that has additional information about
how the field is to be displayed. Also, each individual data byte has
a character attribute byte that may specify whether the the extended
field attribute is to be overridden for that byte.

Many applications, including most terminal emulation packages,
don't need to use this buffer. Instead, you can use the Apple­
defined display attribute buffer, as described in the next section.

1-6 Chapter l: The Apple 3270 API Architecture

I •

()

(

Presentation space (PS)

·" 4A • x G>

•
Operator information area COIA)

I

(·· .
... '

,. . '·
•

(.,

_./

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74. 7988

The Apple attribute buffers

The Apple attribute buffers allow your application to read the
relevant information for each byte from its own attribute byte,
rather than decoding the information from several scattered
attribute bytes. The two Apple attribute buffers are the Display
Attribute Buffer (DAB) and the Extended Display Attribute Buffer
(DABE). The following sections describe these buffers in more
detail.

Display attribute buffer

The display attribute buffer (DAB) is a composite buffer derived
from the PS and the EAB, and is intended to support a terminal­
emulation application. For each byte in the PS passed to the
application, there is a corresponding byte in the DAB This basic
DAB byte provides the highlighting and color information
associated with the PS byte.

Most applications, especially text-only terminal emulation
application, require only the use of the DAB byte. The format of the
basic DAB byte is shown in Figure 1-3 .

(figure is on next page)

Figure 1-3
Basic DAB byte format

•:• f\:ote: The values for the color bits in the basic DAB byte have
been assigned by IB,\1. However, there is nothing to prevent an
application from assigning other color values.

IBM and Apple display buffers 1-7

• •

c

I 7 I 6 I 5 I 4 I 3 I 2 i 1 Ho!
Mode characteristic J

Normal= 00
Blink= 01

Reverse video = 10
Underline= 11

Color characteristic
Default color= 000

Blue• 001
Red= 010

Pink• 011
Green• 100

Turquoise= 101
Yellow= 110
White= 1ll

Display characteristic
Normal display (only possible value if PS is Unformatted) • 00

Normal display = 01
Intensified display= 10

Non-display = 11

Reserved: must be 0 fil1l

Fig 1-3 1-2-B (L02) Basic DAB byteformat
Zoro

Apple Computer, Inc.
Deborah Dennis
Illustrator 88

0

('

,(
•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 14, 1988

Extended display attribute buff er

Applications that support APL or programmed symbol sets, or
applications that need detailed attribute information, use the
display attribute buffer extended byte (DABE byte) in addition
to the basic DAB byte. When combined with the corresponding
byte in the DAB, the DABE byte supplies the rest of the information
to fully describe the highlighting, color, attribute, and symbol set
information associated with the PS byte.

The DABE byte immediately follows each basic DAB byte in the
destination buffer. The format of the DABE byte is shown in Figure
1-4.

(figure is on next page)

Figure 1-4
Extended DAB byte

1-8 Chapter 1: The Apple 3270 API Architecture

•

(" • •

•

l116lsl41312l1lol

PS is currently unformatted; bits 6, 5, 4, and 0 are invalid• 0
Unformatted/formatted PS J J

PS is currently for.natted; bits 6, 5, 4, and 0 are valid" l

Fig. I-.+ I -3 -B (L03) Extended DAB byte
Zoro

Apple Computer, Inc.
Deborah Dennis
Illustrator 88

Data/attribute
Byte is in data portion of a field = 0

Byte is a field attribute = l

Unprotected/protected field
Byte is in an unprotected field .. 0

Byte is in a protected field " 1

Alphanumeric/numeric field
Byte is in an alphanumeric field = 0

Byte is in a numeric field = l
Symbol set

Base character set = 000
APL= 001

PSS 1 = 010
PSS 2 • 011
PSS 3 • 100
PSS4=101
PSS 5 • 110
PSS 6 = 111

Unmodified/modified field
MDT is set =0

MDT is not set = l

/{""
\~

• •

Working Draft #3

(

• <
•

Apple 3270 AP! Programmer's Guide September 74. 7988

Important

Using the Apple 3270 API
This section describes how you use the Apple 3270 API to build an
application.

The Apple 3270 API request block

The Apple 3270 API request block stores information about the PS
and the session. The block either can be nonrelocatable memory in
the application's stack or global area, or can be a block of memory
that you ob~in from the Memory Manager and lock down.

Some drivers act upon the full 32 bits of an address. If your
application passes a 24-bit address. the application must clear
to 0 the high-order 8 bits of the pointer to the request block.
This same rule applies to all pointers passed in AP! requests .

The following type definition shows the structure of the request
block in C:
typedef struct api_req_fmt
{

Handle api_vars;
LONG q_link;
BYTE req_code;
AddrBlock net_addr;
BYTE conn_id;
BYTE port_id;
BYTE ps_id;
WORS rest:lt.;

LONG ref_ccn;
PrccPtr io_compl;
union

OPEN HOST CONNECTIO~ - -
CLOSE_HOST_CONNECT!ON
GET_HOST_CCNNECTION IN:O
COt<c<ECT '.:'0 PS
DISCO~Nsc: FRO~ ?S

CO?Y TO PS

COPY_FROM_3~FFER

co:;::ec-:_:G_ps;

cc;?y_:.c_ps;

Using the Apple 3270 API 1-9

Working Draft #3 Apple 3270 API Programmer's Guide

COPY_TO_FIELD
COPY_FROM_FIELD
COPY_OIA
SEARCH_STRING
FIND_FIELD
GET UPDATE
GET_CURSOR
SET_CURSOR
SET_COLOR_SUPPORT
SEND_PASSTHRU_DJ>.TA
GET_PASSTHRU_DATA
POST_PASSTHRU_REPLY
DO_SPECIAL_FUNC
ACTIVATE_PRT_SESS
DEACTIVATE_PRT_SESS
GET_DSC_PRT_DATA
GET_LUl_PRT_DATA
POST_PRT_REPLY
SEND_PRT_CONTROL
CHECK_SESSION_BIND

} req;

API_REQ;

September 7 4, 7 988

copy_to_field;
copy_from_f ield;
copy_oia;
search_string;
find_f ield;
get_updace;
get_cursor;
set_curso~;

set_colo:::_s'.lp::iorc;
send_passchru_data;
get_passchru_dai:a;
post_passchru_reply;
do_special_func;
activate_prt_sess;
deactivate_prt_sess;
get_dsc_prt_data;
get_lul_prt_data;
post_prt_reply;
send_prt_control;
check_session_bind;

The definition includes the following:

o a header with the request parameters that must accompany every
call

o a union of structures, each of which specifies the parameter
values for a call

•:• .l\'ote: For the parameter values, you can use the exact wording,
or the shorter names shown in the section "C Interface and the
API Routines" in this chapter, or names that you create.

The parameters in the API request block are as follows (for many
3270 API calls, your application must fill in the values for those
parameters shown in boldface):

api_vars

q_link

This parameter is the handle returned by the
Init_3270_API call. All other API calls
should include this value.

This parameter is set by drivers that support
the queuing of API requests.

1-10 Chapter 1 : The Apple 3270 APl Architecture

• •

0

Working Draft #3

(, .

•

Apple 3270 AP! Programmer's Guide September 7 4, 7 988

req_code

net addr

conn id

port id

ps id

result

ref con

This parameter is the request code
associated with an API call (set automatically
by the API interface routines). The driver
examines this field to determine the type of
request received from the interface routines.

This parameter specifies an AppleTalk
internet address. Set the aNode field within
the address block to 0 if the request is to be
processed locally. (At the time of
publication of this guide, this parameter was
ignored.)

This parameter identifies the driver or
connection method as returned by the
Open_Host_Connection call. All other
API calls referring to the same connection
must include this value.

This parameter indicates the logical address
of a physcial device; for example, it can
indicate a slot or serial port assigned to a
particular session. Data transmitted into
and out of a presentation space is routed
through the port or slot assigned this ID. All
API calls should include this ID except
Open_Host_Connection.

This parameter returns the presentation
space identification from the
Connect_To_PS call, or a printer session
ID from an Activate_Prt_Sess call. All API
calls should include this ID except
Open_Host_Connection and
Close_Host_Connection.

This parameter is set by the driver. Your
application must examine this parameter to
verify that a call was processed successfullv.

This parameter is for optional use by the
application.

Using the Apple 3270 API 1 -11

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

io_compl This parameter is a pointer to a routine
called by a driver that is capable of receiving
an interrupt when an API request completes.
The application defines this 1/0 completion
routine; see "Using a Custom I/O
Completion Routine" in this chapter. Set
this parameter to 0 if you're not going to use
a custom I/O completion routine.

The conn_id, port_id, and ps_id parameters work together
as illustrated in Figure 1-5.

(figure ls on next page)

Figure 1-5
conn_id, port_ld, ps_id

Specifying API configuration information

Your 3270 API application must know what slots and what type of
driver are being used, along with other information about the
driver. You specify that information in a data structure and then
supply a pointer to that data structure in the
Open_Host_ Connection call.

The following sections define the structures and the values for the
configuration information for the DFT and CUT drivers produced
by Apple.

•:• Note: The values for drivers developed by third parties should be
listed in their documentation.

l -12 Chapter 1: The Apple 3270 API Architecture

• •

(_

Apple 3270 API application

Apple 3270 AP!

conn id 1 conn id 2 - -

port_ id=C
port_ id=9 port_ id=B

lps_id=ll ps_id=ll

lps_id=l I lps_id=21 ps_id•21

lps_id=31 ps_id=31

ps_id=41

ips_id=sj

Fig.1-5 1-6-Comp (L06) conno id, port id,ps id
Zoro - - -

1\pple Computer, Inc.
Deborah Dennis
lllustrator 88

conn id 3 -

port_ id=O

lps_id=ll

• •

Working Draft #3

,(
•

Apple 3270 AP/ Programmer's Guide September 74, 7988

Apple 3270 OFT configuration

The configuration information in the Apple 3270 DFT driver
supplies the following:

o slot numbers of the slots controlled by the driver, and the status
of the card in the slot

o information on the LU types and presentation space
characteristics supported by each active slot

The data structure that supplies this information for the Apple DFT
driver is as follows:

typedef struct apple_dft_conf ig_inf o

WORD slot_map;
WORD slot_status[NUM_PORTSJ;
struct

BYTE lu_type[MAX_DFT_SESS];;
BYTE ps_status[MAX_DFT_SESS];
slot_info[NUM_PORTS];
APPLE_DFT_CONFIG_INFO;

/* passed */

/* returned */

/* passed */

/* rec:\lrned */

The parameters for this data structure are described in the following
paragraphs .

slot_map: This parameter is a bitmap specifying the slots the
driver will control. Bit 0 corresponds to slot 0, bit 1 to slot 1, and so
on. For each bit set, the driver downloads code to the card.
Subsequent API requests are passed to the slot or card as directeci by
a request's port_id.

slot_status: This parameter returns a value indicating the
status of the slot. If the card is brought up successfully,
slot_status is equal to NO_ ERR (OxOOOO); if the card is not
brought up successfully, the driver returns an error code indicating
the reason for failure. A special value of OxFFFF indicates that the
slot was not specified in slot_map. If your application attempts to
send a call to a card with a failed or unused slot status, the driver
rejects the attempt. Valid slots for the Macintosh II are 9 through E.

slot_info: This parameter is an array with each element
corresponding to a slot. Active slots are identified in slot :r.ap.
Each slot can support up to five PS/SNA sessions.

Using the Apple 3270 API 1-13

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Important An application should check the result field in the API
request block before checking returned values in the
slot_info array. Returned values are invalid if result is
nonzero.

Within the slot_info array are the following fields:

lu_type This field is an array whose elements correspond to
the five underlying logical terminals. Valid values
for the elements are as follows:

ADFT LU TYPE 1 - - -
ADFT LU TYPE 2

ADFT_LU_TYPE_3

LU type 1 (printer)

LU type 2 (display)

LU type 3 (printer)

ps_status This array returns a value indicating what
presentation spaces the DIT software will support,
as follows:

ADFT PS SUPP This value (1) indicates that
the PS is supported.

ADFT PS UNSUPP This value (0) indicates that
the PS is unsupported.

If your application attempts to access an
unsupported PS, the driver returns
PS UNSUPP ERR. - -

Apple 3270 CUT configuration

The configuration information in the Apple 3270 CUT driver
supplies the satus and the slot numbers of each slot controlled by
the driver.

The data structure that supplies this information for the Apple CCT
driver is as follows:

typedef struct apple_cut_config_info

WORD slot_map;

WORD slot_status[NUM_POR:S];

BYTE term_id (NUM_?OR'!S ~ L 5 j i

-P..??L=:_ C:JT_ CG:JF!G _ I~:FO;

1-14 Chapter 1: The Apple 3270 API Architecture

•

Working Draft #3

(

. (
•

Apple 3270 AP! Programmer's Guide September 74, 1988

The parameters for this data structure are described in the following
paragraphs.

slot_map: This parameter is a bitmap specifying the slots the
driver will control. Bit 0 corresponds to slot 0, bit 1 to slot 1, and so
on. For each bit set, the driver downloads code to the card.
Subsequent API requests are passed to the slot or card as directed by
a request's port_id.

slot_status: This parameter returns an array, with each
element in the array indicating the status of a card. If a card has
been brought up successfully, its corresponding element is equal to
NO_ERR (OxOOOO); if the card is not brought up successfully, the
driver returns an error code indicating the reason for failure. A
special value of OxFFFF indicates that the slot was not specified in
slot_map. If your application attempts to send a call to a card with
a failed or unused slot status, the driver rejects the attempt. Valid
slots for the Macintosh II are 9 through E.

term_id: This parameter is a 5-element array. Each of the 16
possible slots where a card can reside has an associated term_id
array. Byte 0 of term_id is sent by the card to the control unit
when the control unit issues a Read Terminal ID command .
(Keyboard type and PS size information are present in this byte.)

Bytes 1 through 4 of term_ id are returned in response to a Read
Extended Terminal ID command. (The driver ignores these bytes if
byte 0 indicates that the control unit should not issue a Read
Extended Terminal ID.) Refer to the IBM 317413274 Control Unit
to Device Product Attachment Information specification for a
description of the terminal ID byte and the extended terminal ID .
bytes.

The driver will extract keyboard type and PS size information from
term id. The driver returns errors for invalid values.

Checking for o completed request

You can make most API calls either synchronously or
asynchronously by setting the asyncF lag parameter in the call
to ASYNC or SYNC.

If you set asyncFlag to SYNC, your application doesn't regain
control until the request is completed.

Using the Apple 3270 API 1-15

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Important Be aware that. If you set asyncFlag to SYNC. your application
can't issue a WaitNextEvent call. That call supports
cooperative processing in the MultiFinder environment; thus.
issuing a synchronous call also prevents all other applications
from executing until the request is completed.

If you set asyncFlag to ASYNC, your application regains control
immediately with the result of the operation set to zero if the API
code accepted the call or nonzero if the code did not accept the
call. Your application can then proceed with other processing if
the operation result is 0 or it can hand.le the error if the operation
result is nonzero.

•!• Note: W'hen an API error occurs, the API also sets the result
field in the request block to the same value as the error. Thus,
your application could check result later instead of
immediately checking the result of the operation. The
disadvantage of using this technique is that the application
doesn't immediately detect interface routine errors.

Before forwarding the request to the driver, the API code sets the
result field in the API request block to RSP_PENDING. Your
application can then periodically check result to see if it has
changed; when it has, the request has been completed.

Issuing a 3270 API call
After you have allocated memory for the API request block, take the
following steps each time you make an API call:

1 . Fill in the required fields, if any, in the header portion of the API
request block.

2 . Provide values for the parameters associated with the particular
API request.

3. Make the API call using the following format:

API_Call_Name (&req_blk, asyncFlag);

Use the call names as listed in this guide for the
API_Call_Name. If the call needs to access the request block,
include the &req.blk parameter. You can set the asyncFlag
parameter to SYNC or ASYNC.

1-16 Chapter l : The Apple 3270 API Architecture

• •

Working Draft #3

,('
•

Apple 3270 AP! Programmer's Guide September 74, 7988

4. If you set the asyncF lag parameter to ASYNC, periodically
check the result field in the API request block for a change to
determine when the request actually completes. See "Checking
for a Completed Request" in this chapter for more information.

5 . After you issue the request, do not modify the contents of the API
request block until a response is returned.

The following code fragment shows a typical API calll:

API_REQ

BY'TE

BYTE

BYTE

WORD

api_blk;

keys_buf[2);

saved_conn_id;

saved_ps_id;

err;

api_blk.conn_id

api_blk.port_id

saved_conn_id;

Ox OE;

api_blk.ps_id = saved_ps_id;

api_blk.req.send_keys.num_keys_to_send = l;

api_blk.req.send_keys.keys_bufp &keys_buf;

keys_buf[O] = NO_KEY_MODS;

keys_buf[l] = Ox72;

err= Send_Keys (&api_blk, ASYNC);

if (err)

... API glue rejected the call ...

else

[Check result code per!odica::y. 1

while (api_blk.resu:t == RS?_?ENS:N~l

.. . attend to ot~e= ~a~~e~s :.:..ke

{Call completed. 1

if (api_blk.result == NO_E??O?)

eo .ca:: s~cceeded ...

e:se

... cal.:. ::a.:...:e:i ...

Using the Apple 3270 API 1 -1 7

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Building a 3270 API application

Using the API calls, your application can pass data between the
Apple 3270 application and the 3270 presentation services of the
device driver you are using. The basic API calls that establish and
terminate an API application are shown in Figure 1-6.

(figure is on next pcge)

Figure 1-6
The basic API calls

In more detail, to establish a session with the host, your application
must take the following steps:

1. Include the API header file.

2. Initialize the Apple 3270 API by using an Init_3270_API call,
which returns a handle that you must save and use in subsequent
API calls.

3. Allocate memory for the API request block. Either reserve
nonrelocatable memory in the application's stack or global
area, or obtain a block of memory from the J\1emory Manager
and lock it down.

The structure and function of the request block is shown in "The
Apple 3270 API Request Block," earlier in this chapter.

1-18 Chapter l: The Apple 3270 API Architecture

r •

•

('

Init_3270_API I
~ . (~ Open_Host_ Connection I
~ •

Connect_To_Ps I
Disconnect_From_Ps I
~

Close_Host_ Connection I
~

Term_3270_API I

• •

Working Draft #3

•

Apple 3270 AP/ Programmer's Guide September 74. 1988

4. Allocate memoty for the configuration block. The
configuration block tells the application what values to use for
the driver.

5. Specify the API configuration information for the appropriate
driver by defining the appropriate data structure. See the
section "Specifying API Configuration Information" earlier in
this chapter.

6. Assign the address of the configuration block to a pointer.

7. Make the Open_Host_Connection API call. This call
downloads configuration and routing routines from the device
driver to the API card, and requests that a physical connection
be established with the host. The host specifies the
characteristics of the presentation spaces for each session.

8. Save the connection ID returned by the
Open_Host_Connection call and place it in the appropriate
API request block for use by subsequent A.PI calls.

9. Fill in the required fields in the header portion of the API
request block; in this case, supply the ps _id that was returned
by the Open_Host_Connection call.

10. Make the Connect_To_PS API call, which reserves a
presentation space for a particular host session by either
specifying or requesting a presentation space ID. Specify the
call as either asynchronous or synchronous, and use the
technique described in "Checking for a Completed Request" in
this chapter to determine when the API request actually
completes.

•!• Note: Alternatively, you could set up an I/O completion routine
to post an event in the event queue when the request has been
completed. See "Using I/O Completion Routines" in this
chapter for more information.

11. Save the PS ID returned by the call; any other A.PI call using the
same presentation space needs the PS ID.

12. Continue to make A.PI calls, filling in request header values and
allocating space for the call parameter blocks when necessary.

13. If you need to activate a print session, take the steps listed in
"Issuing a Print Request" earlier in this chapter.

14. If you need to activate more than one session, see "Multiple
outstanding API requests" later in this chapter.

15. To terminate your application, make the
Disconnect_From_PS call, which deallocates the session ID
and thus breaks the logical connection to a presentation space.

Using the Apple 3270 API 1-19

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 14, 1988

16. Make the Close_Host_Connection API call, which terminates
a connection by sending an "LU offline" message to the host
and stopping all tasks running on the Apple 3270 API card.

17. Make a Term_3270_API call, and supply the handle that was
returned by the Init_3270_API call. Doing this shuts down the
APL

A skeleton application that issues the basic API calls is shown in
Chapter 2.

C interface and the API routines

The api327 0. h header ftle contains several bit definitions. If
you are not familiar with C, here are tvvo ways you can use these
definitions:

To set a bit or a group of bits, you can use the bitvvise inclusive OR
operator CI). For example, the following constants exist for the
Get_Update call:

#define GU IGNORE PS OxOOOl
#define GU-IGNORE-CURSOR Ox0002
#define GU=IGNORE=OIA Ox0004

To set 3 bits at once, you could use a statement like this:

api_blk.req.get_update.rnodifiers = GU_IGNORE_PS
GU_IGNORE_CURSOR I GU_IGNORE_OIA;

To determine if a bit is set, use the bitvvise AND operator(&), as
shown here:

#define GI PSS Ox00000008
if (api_blk.getinfo.dev_feats_supp & GI_PSS)
{ PSS is supported
}

else
{ PSS is unsupported
l

1-20 Chapter l: The Apple 3270 AP! Architecture

• •

c

Working Draft #3

.(
•

Apple 3270 AP/ Programmer's Guide September 74, 7988

The API header file also provides alternate definitions that allow
you to use fewer characters when you access a field within a
particular request. For example, using the alternate definitions, the
statement:

blk.openhc.open_type OC_WARM;

is equivalent to

blk.req.open_host_connection.open_type = OC_WARM;

You can also add your own definitions to shorten other names.

The alternate definitions are as follows:

#define openhc req.open_ host connection -
#define closehc req.close_ host connection -
#define get info req.get_ host connection info - -
#define connps req.connect_to_ps
#define dis cps req.disconnect_from_ps
#define sendkey req.send_keys
#define cpytops req.copy_to_ps
#define cpyfbuf req.copy_ from buff er
#define cpytf ld req.copy_ to field -
#define cpyffld req.copy_ from field
#define cpyoia req.copy_oia
#define srchstr req.search_string
#define findfld req.find_ field
#define getupd req.get_update
#define get curs req.get_cursor
#define set curs req.set_cursor
#define set color req.set_ color_support
#define sndpdata req.send_passthru_data
#define getpdata req.get_passthru_data
#define postpass req.post_passthru_reply
#define spec req.do_special_func
#define actprt req.activate_prt_sess
#define dactprt req.deactivate_prt_sess
#define getdsc req.get_ dsc _prt_data
#define getlul req.get_ lul _prt data -
#define postprt req.post_prt_reply
#define sndpctl req.send_prt_control
#define chkbind req.check_session_bind

The API calls and API support 1-21

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 14, 1988

The API calls and API support
The API calls have designed to support various 3270 features. The
following sections introduce you to some of the features of the A.PI
and indicates what calls support what features.

About sessions
There are 3 session types supported by the API: LU 1, 2, and 3. LUs
1 and 3 are printer LUs, while LU 2 is display-oriented. Besides
supporting PS-oriented data, LU 2 also supports higher level non­
PS data destined for applications such as the INDSFILE file transfer
program, SRPI, and so on.

EBCDIC, DBC, ASCII, and scan codes
Communication in the 3270 world occurs in several "languages."
For the application to succeed, it usually has to translate from one
language to another, as discussed in the following sections.

EBCDIC and DBC

EBCDIC is the language of the IBM mainframe world. If your •
application is using a DFf or CU driver, the application must supply
translation tables that perform the translation from EBCDIC-to-
DBC and from DBC-to-EBCDIC when the host and the
presentation space communicate.

Your application points to the translation tables in the
Connect_To_PS call. The format of the tables, and more details
about how to use.them, is presented in the description of the
Connect_ To_PS call in Chapter 3.

3270 Device Buffer Code and ASCII format

All connection methods maintain an image of the presentation
space in 3270 device buffer code (DBC) format. This allows your
application to issue API calls in the same manner regardless of the
underlying connection method.

1-22 Chapter 1: The Apple 3270 AP! Architecture

•

Working Draft #3

.(
•

Apple 3270 AP/ Programmer's Guide September 14. 7988

All calls that interact with the presentation space pass or receive
data in DBC format. An application is responsible for mapping
device buffer code to the appropriate format for display; usually the
format is ASCII unless APL/Text and programmed symbol sets
(PSS) are supported. Your application points to the translation
tables in the Connect_To_PS call. The format of the tables, and
more details about how to use them, is presented in the description
of the Connect_To_PS call in Chapter 3.

You can also use the various NO TR.1'.NS constants in the
modifiers parameter of appropriate calls to specify that the call
should not perform any translation.

To copy data to the PS, an application should map the data to DBC
format. The API calls that map the data provide pointer parameters
that point to translation tables that you define. Sample DBC-to­
ASCII and ASCII-to-DBC tables have been provided in the sample
application in Chapter 2, and can be modified to suit the
application.

To distinguish between a normal, APL/Text, or PSS character in the
presentation space, an application that supports APL/Text or PSS
should examine the DABE-for the associated character set value. (If
an application doesn't support APL/Text or PSS the application can
simply map each DBC value to a displayable ASCII value.) The
values are as follows:

0 Indicates the base character set

1 Indicates APIJText

2-7 Specifies PSS sets 1 through 6

Checking the value of the character in the PS is incorrect because
APL/fext and PSS characters occupy the same range of values in the
PS as the default character set used for normal display.

For the DBC values of APL/fext characters, refer to the APL Device
Buffer Code table in the IBM 317413274 Control Unit to Device
Product Attachment Information.

The AP! calls and API support 1-23

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Dead key and dead key terminator scan codes

On certain keyboards (for example French AZERTY), using the
accent characters causes individual accents (such as circumflex,
grave, diaresis) to appear on the display, but the cursor does not
move. These accent functions are referred to as dead keys. A
subsequent character that receives the accent must be keyed next. If
the subsequent character is valid, a unique composite character is
formed. You use the descriptor type in the *ktab_rec of
the Connect_To_PS call to support the use of dead keys.

See IBM 32 70 Injonnation Display System Character Set
Reference (GA27-2837) for further information.

Color support

The API supports the following color modes:

o No color, with the DAB color bits always set to 000

o Two base col05s, without extended colors

o Four base colGrs, without extended colors

o Two base colors, with extended colors

o Four base colors, with extended colors ..
Your application originally defines its color supportt in the
Connect_To_PS call, and may change the color support while the
application is running by issuing a Set_Color_Support call. For
more information about how those calls define the color, see the
descriptions of those calls in Chapter 3.

Passthrough data and structured field support

When an application connects to a presentation space, it also
implicitly connects to its underlying session. Consequently, non­
PS data transmitted over the session can be passed through by the
API without having to establish a separate session connection.

Such passthrough data is usually destined for a higher-level
application function. The most common passthrough data is
structured field data, such as for DO structured fields (for the
INDSFILE file transfer method) or APA structured fields (vector
graphics support).

1-24 Chapter l : The Apple 3270 API Architecture

"'-/.
•

0

Working Draft #3

.(
•

Apple 3270 AP/ Programmer's Guide September 74, 7988

The API supports passthrough data by providing the
Get_Passthru_Data, Send_Passthru_Data, and
Post_Passthru_Reply calls.

For example, the API issues Send_Passthru_Data and
Get_Passthru_Data calls to send and receive structured fields
containing requester Server-Requestor Programming Interface
(SRPI) data and control information to establish a SRPI connection.
Use of SRPI on a session does not prevent an application from
issuing concurrent API requests on other sessions.

Printer support
To print using the 3270 API, you need to use either the LUl or the
LU3 print data streams. Both of the data streams use structured
fields to accomplish the sending of print data; thus, CUT drivers
cannot support printing through the APL

The calls that provide 3270 printer support are as follows:

Activate_Prt_Sess
Deactivate_P rt_Sess
Get_DSC_Prt_Data
Get_LUl_Prt_Data
Post_Prt_Reply
Send_Prt_Control
Check_Session_Bind

Until you begin the print sequence with the Activate_Prt_Session
call, attempts by the host to establish contact with the session are
rejected with a "device unavailable" error.

Your application would typically issue the calls in the sequence
shown in the following pseudocode:

Activate_P rt_Sess;

Check_Session_Bind;

{allocate a session to the application)

{wait for host application to establish
contact}

if lu_type is equal to LU type 1

while result is not equal to NO HOST SESS ERR

Get_L U 1 _P rt_D a ta;

{validate the print data}

if data_end is equal to GLP END REPLY

p OS t_P rt_Re ply;

The API calls and AP! support 1-25

Working Draft #3 Apple 3270 AP/ Programmer's Gulde September 74, 7988

else

endwhile;

{lu_type must be LU type 3}

while result is not equal to NO_HOST_SESS_ERR

Get_DSC_Prt_Data;

endwhile;

Deactivate_Prt_Sess; {deallocate session}

Certain LUl host applications may require a PAl signal or a PAZ
signal from the printer. The Send_Prt_Control call is used for this
purpose. The call is not typically part of the data acquisition and
reply loop.

Alternate screen size support
If the application is emulating a Model 3, 4, or 5 display, the host
program or the operator can change the screen size. The driver
notifies the application by returning a result of
CHG_TO_DEFAULT_SCR_ERR or CHG_TO_ALT_SCR_ERR to the
next request that deals with the affected PS. These requests are:
Send_Keys, Copy_ To_PS, Copy _From_Buffer,
Copy_ To_Field, Copy _From_Field, Search_String, Find_Field,
Get_Update, Get_Cursor, and Set_Cursor.

If a Get_Update call is outstanding when a screen size change
occurs, it completes immediately with a screen size change error.
When the application receives notification of a change in screen
size, it hould adjust its representation of the PS. However, a change
isn't necessary if the terminal emulation is already in the screen size
specified by the error.

After performing any necessary changes, the application may re­
issue the request if desired.

•:• CW note: CUT drivers return a notification of a screen size
change only if the screen column width changes from 80 to 132 or
vice versa. Applications never receive such notifications for
Models 3 and 4 because the column width is the same for both
alternate and default screen sizes. Thus, the application should
assume that the larger alternate screen is always in effect and issue
calls accordingly.

1-26 Chapter 1: The Apple 3270 API Architecture

C'.' ,.

0

Working Draft #3

.f

Apple 3270 AP! Programmer's Guide September 74, 7988

SNA considerations
Certain calls and parameters have been defined to address the
specific requirements of DFT and CU environments. These calls
and parameters have an SNA orientation. Some of these calls and
parameters have no meaning in the non-SNA environment; they
are ignored or re-interpreted by a non-SNA driver.

An example of this is the sense_code parameter passed in the
Post_Passthru_Reply call. The driver substitutes an Op-Check
sense for a non-zero sense code. Another example is the
Check_Session_Bind call. For an SNA attachment, it indicates if
the host has bound the session, and if so, also returns the session
type. For a non-SNA attachment, the call indicates if the session
(logical device) has been selected and received data, and if so, also
returns the data type.

Multiple outstanding API requests
Given the hierarchical arrangement of the conn_id, port_id, and
ps_id-as illustrated in Figure 1-2 earlier in this chapter-an
application may have multiple outstanding API requests. What
happens to each different type of multiple request is discussed in the
following sections.

•:• Note: Most applications won't need to use multiple requests.

Requests to different conn_ids

Since different conn_ids are independent of each other,
multiple requests to different conn_ids may be processed in
parallel fashion.

Requests to the some conn_id, different port_ids ·

These requests are processed independently of each other, and
may be processed in a parallel fashion.

The API calls and API support 1-27

Working Drott #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Requests to the same port_id, different ps_ids

Requests destined for the same port will, in all cases, be processed
in a serial fashion. There is relatively little advantage to stacking
requests. If a preceding request completes in error, it might affect
the processing of stacked requests. It's far safer for an application to
issue just a single request at a time, check result, and then issue
the next request

Requests to the same ps_id

In most cases, the driver completes a request before it deals with
the next request to the same port. The exceptions to this rule are
requests such as Get_Update, Get_Passthru_Data, and
Wait_Session_Bind which wait for data or an event in order to
complete. Such requests are held by the driver if it cannot satisfy
them immediately.

While requests are being held, other requests to the port may be
sent by the application. They are processed to completion in the
usual fashion or may become held requests. The driver rejects a
request with the error REQ_OUTSTANDING_ERR if the request's
req_ code and ps _id are similar to any of the requests currently
held; that is, for a particular presentation space, only one of each
kind of request may be held.

Using a custom 1/0 completion routine
Your application can define a custom I/0 completion routine and
point to it by using the io _ compl parameter in the API request
block.

An I/O completion routine is executed at the interrupt level; thus,
all the guidelines for creating Macintosh interrupt-level routines
apply, including the following:

o Make sure that the routine executes quickly.

o Don't make Memory Manager calls, either directly, or indirectly
by making Macintosh Toolbox calls that issue such calls.

o Save registers on entry and restore them on exit.

o Call SetUpAS and RestoreAS to access the application's globals
(although, at the time of this guide's publication, MultiFinder
doesn't provide a way to access globals from an interrupt-level
routine).

1-28 Chapter 1: The Apple 3270 API Architecture

0

•

0

Working Draft #3

. r·
•

Apple 3270 AP/ Programmer's Guide September 74, 7988

For more information about writing interrupt-level routines for the
Macintosh, see the Device Manager chapter and the descriptions of
SetUpA5 and Restore AS in Inside Macintosh.

For example, an application-defined completion event could post
an event into the event queue when the request has been completed.
Thus, instead of periodically examining result, the application
could wait for the completion event. The drawback of this approach
is that events can be discarded(and thus the application may not be
notified of the I/O completion), if the application and desk
accessories don't hand.le events quickly enough.

If you expect your application to run under MultiFinder, your I/O
completion routine must recognize whether the application is
running in the background. If the application isn't currenrly
executing, another application may intercept any posted events .

The API calls and API support 1-29

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Chapter 2

3270 API
Application Guidelines

.(

2-1

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Besides the 3270 issues that you will have to deal with as you develop
your application, you '11 need to know how to program in the
Macintosh environment. As usual, you should consider volumes I
through V of Inside Macintosh to be your major source of
information on how to write Macintosh applications.

This chapter presents some general guidelines and specific tips that
should help you develop 3270 applications.

Writing 3270 applications
As you begin to write your 3270 API application, one important
thing to remember is that Macintosh applications are normally
event-driven; such applications center around a main event loop
that waits for the user to do something. When the user causes an
event, the main event loop takes action to service the event, and
then returns to waiting for something to happen.

If you're not familiar with event-driven programming, read the
Event Manager chapter in Inside Macintosh.

Writing a 3270 API terminal emulation application

Apple has designed the DAB so that, for many terminal emulation
applications, you only need to use it and the PS, thus sparing your
application from dealing with the EAB and the DABE.

Transferring files

Terminal-emulation applications written using the Apple 3270 API
can also be used to transfer files to and from the host.

OFT file transfer

To accomplish DFT file transfer, you can use the passthrough data
mechanism to send and receive structured fields. For example, you
can use Send_Passthru_Data and Get_Passthru_Data to send and
receive DO structured fields with the I!'-."DSFILE 3270 PC file transfer
method (anything else???). ·

2-2 Chapter 2: 3270 API Application Guidelines

0 '

(

Working Draft #3

* in TERM.C. *
*/

/*
* ?ile DFTe:rm.c

Apple 3270 AP/ Programmer's Guide September 14, 1988

CUT file transfer

CUT drivers cannot support structured fields. If you want to
accomplish this type of file transfer, you can send and receive
unformatted presentation spaces to and from the host (anything
else???).

Sample 3270 application
This section presents the DFrerm application. This application is
essentially a skeleton that sets up one working DIT session.

The application is contained in the three files contained in this
section, as follows:

DFTerm.c

Term.c

Translate.c

Contains the main part of the application

Contains the routines that actually support the 3270
terminal operations

Contains the tables that handle the key translation
from MAC II keyboards to 3270 keys

The OFTerm.c file

This file contains the main part of the DFrerm sample application.

* Cc_::::y::::ig:-.:: ;.._::::p:..e Ccr.;:::c..:::e:::-, :r.c. :985-1987
K~~ =~g~~s =ese=ved.

* :his ;:::rcg::::am exe::::sizes the 3270 OFT te::::minal capabi:..ities cf the APP:E 327: API
w ~n:e=~a=e. 8nly cne session is developed. The reader sho~ld ~nders:and :~a~ o~:y
w ~~e ~8::o~~~q A?I ca~:s are ~sed:

C8:::--.ec:: tc ?S
Ser,d_?Ceys

Close Host Ccn~ection - -
Disconnec~ Frc~ ?S
Get_Update
Term_3270_API

·a ~ey ::::::a:'s:..a::ic:' f::::cm ~AC !! ?Ceyboards to 3270 keys is ha:'d!ed -·

w :~e rc~~~~es ~~a~ ac~ually supper~ the 3270 termi~al cpera~~c~s are cc~~a~~ea

Sample 3270 application 2-3

Working Drott #3 Apple 3270 AP! Programmer's Guide

* in TERM.C. When launched, the code in DoSlotPick.C,presents a dialog
* box requesting slot information.When the ZORRO ROMs are completed,
* the support routine FindServers will accomplish this function.
*/

#include ''dfterm.h 11

#include "Trantab.c" /* The default keyboard mappings */

September 74, 7988

/*--".
/* Global Defines */

/*--*:
/*
*Resource ID constants.
*/

#define
#define
#define

#define
#define

#define
#define

#define
#define
#define
#define
#define
#define

apple ID
file ID
edit ID

appleMenu
aboutMeCommand

fileMenu
quitCommand

editMenu
undoCommand
cut Command
copyCommand
pasteCommand
clearCommand

#define menuCount
/"

128
129
130

0
1

1
l

2
1
3
4
5
6

3

~ ?o= the one and only tex~ window
"/

#cie:i;;e w2.ndowIJ
/"

... /
#de: :.::e
#define
.:cef ine
#def .:..:1e

abou~MeDLOG

okButton
au:hcrite:::
language:te!"1

128

128
1
2
3

/* This is a resource ID */
/* ditto *I
/* ditto *I

/* MyMenus[] array indexes*/

/" Fer Se::Text */
; .. For Se:::Text */

=cefine SETRECT(rectp, left, _top, _right, _bottom) \
(rectp)->left = (_left), (rectp)->top = (_top), \
(rectp)->right = (_right), (rectp)->bottom = (_bcttcm)

I ..

.. /

~:!e::.:-.e ~=~·:c.;_J \a=.,8;--;g) (((a~c:-tg) >> :6) & CxF?FF)
=de~ine :c~CRJ(aLongl (laLcng) & OxFFFF)

2-4 Chapter 2: 3270 AP! Application Guidelines

(

Working Draft #3 Apple 3270 AP/ Programmer's Guide

/*
* HIBYTE and LOBYTE macros, for readability .
.. I

#define HIBYTE(aWord) (((aWord) >> 8) & OxOOFF)
#define LCBYTE(aWordl ((aWord) & OxOOFF)

#define T7 5 0
#define Tl02 1

September 14, 1988

/*-- ..
/* Global Data objects */

/*-- ..
extern char cursorActive; /* in TERM.C .. /
extern _Datainit();
MenuHandle
Boole a:-,
Re ct
Re ct
struct dft session

WindcwPtr
BYTE
BVm"O'

CPDBO REC
UPD80 REC
API_REQ
API_REQ

*dft[MAX_SESSIONS];
Handle
BYTE

api_vars;
session;

MyMenus[rnenuCount];
DoneFlag;

/* The menu handles
/* Becomes TRUE when File/Quit chosen

dragRect;
growRect;

myWindow;
ps_id;
last_request;
ps [25];
dab[25J;
req_blk;
Gps_blk;

/* limit rect for dragging rectangles on the screen
/* limit rect for growing rectangles
/* for each dft lu-lu terminal session
/* Macintosh window for this session
/* presentation space id

/* last open/close/send keys request
/* Presentation Space Buffer
/* DAB Buffer
/* Request block for open/close/send keys
/* Requst Block for Get_Update

/* Heap Memory needed by interface */
/* lu-lu session number, 1-5 .. /

'ti:/

xsta~ = ''--'';

BYTE
BYTE
short.

kbtype;
Slot;
num_sessions;

saved_conr. id;
CONF:G INFO
DFT_CFG;

3':'7::: ~<ey_~_ir:ciex = C;

~de:ine KE~ B~: s:zE 64
'Jr.ic:-t keys {

BY':'E key [2 J ;
WCRD key_ou:;

/* determined by user in DLOG */

/* OFT config structure .. /

/* indicates wtict key bu:fe= ~s c~==e~~ ~;

/* nine is the max see~ i~ p=ac~~ce ~1

/* single key buffer; and cv:er:lcw ~ey

~b~:_q:2~ [~E~_3U?_SIZEJ; /*double buffering overflew keys~=okes xi

B~7~ sess~cns s~a~ted = O; /* num sessions started */

;~--·

!ss~es ~~e O~e~_Hos~ Connec~io~ .. /

Sample 3270 application 2-5

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

C:
/*--w
cha::: Init_API ()

WORD relSlot;
BYTE sess_num;

relSlot = Slot;
/* First get some memory from application heap for the API */

api_vars = Init_3270_API(l;
/* Issue an Open_Host_Connection, which returns immediately */

dft[OJ->req_blk.api_vars = api_vars;
dft[OJ->req_blk.net_addr.aNode = O;
dft[O]->req_blk.port_id = Slot;
dft[OJ->req_blk.io_compl =nil;
dft[OJ->req_blk.openhc.conn_type = OC_APPLE_DFT;
dft[OJ->req_blk.openhc.open_type = OC_COLO;
dft[OJ->req_blk.openhc.config_infop • &DFT_CFG;
dft[OJ->req_blk.openhc.config_info_len = sizeof(DFT_CFG);
DFT_CFG.slot_map • 1;
DFT_CFG.slot_map <<= Slot;

fo::: (sess_num = O; sess_num < S; sess_num++)
DFT_CFG.slot_info[relSlot] .lu_type[sess_num) = O;

for (sess_num = O; sess_num < num_sessions; sess_num++)
DFT_CFG.slot_info[relSlot] .lu_type[sess_num) = ADFT_LU_TYPE_2;

if (err= Open_Host_Connection(&(dft{O]->req_blk)))
ErrorMessage("Open_Host_Connection Error",err);
Term_3270_API(api_vars);
return O;

if ((err= DFT_CFG.slot_status[relSlotJ) !• NO_ERR)
ErrorMessage ("Slot Status Non-Zero", err);
Term_3270_API(api_vars);
return O;

'" ((er::: = DFT_CFG. slot_info [relSlot] .ps_status [0]) != ADFT_PS_SUPP)
::::::ror~essage ("Ap?le !JFT Not Supported", err);
:erm_327C_API(api_vars);

saved_conn id dft[Oj->req_blk.openhc.ret_conn_id;

retu:-:i '!'RUE;

/*--·
IT Init_Connecc

issues the API Connect_To_PS call
*/

/*--7
c~ar =~~t_Connect{sessicr.)

BY':E sess:.~~;

2-6 Chapter 2: 3270 API Application Guidelines

0

•

(.
Working Draft #3 Apple 3270 AP/ Programmer's Guide

unsigned int junk;

/*

~1

Issue a Connect To PS. Test for complete in the main lcop */
dft[session]->req_blk.api_vars = api_vars;
dft[session]->req_blk.net_addr.aNode = O;
dft[session]->req_blk.port_id = Slot;
dft[session]->req~blk.io_compl =nil;
dft[session]->req_blk.conn_id = saved_conn_id;
dft[session]->req_blk.ps_id = OxFF;
dft[sessionJ->req_blk.connps.keybd_tabp = ktab;
dft[session]->req_blk.connps.keybd_tab_len = sizeof (ktab);
dft[session]->req_blk.connps.dbc_ebc_tabp dbc_ebc;
dft[session]->req_blk.connps.ebc_dbc_tabp ebc_dbc;
dft[session]->req_blk.connps.dbc_asc_tabp dbc_asc;
dft[session]->req_blk.connps.asc_dbc_tabp asc_dbc;
dft[session]->req_blk.connps.color_supp = CP_4_COLOR_EXT;
dft[session]->req_blk.connps.num_lock =FALSE;
dft(session]->req_blk.connps.scrn_emul = CP_MOD_2;
dft[session]->req_blk.connps.query_reply_len = O;
dft[sessionJ->req_blk.connps.query_replyp =nil;
dft[session]->req_blk.connps.type_pass_data_len = O;
dft[sessionJ->req_blk.connps.type_pass_datap =nil;
dft[sessionj->req_blk.connps.modifiers = NO_MODS;

/* ErrorMessage("Connect_To_P8 session",session); */
/* junk= & (dft[session]->req_blk); */
I* Debugger();*/ ·

;~ (err= Connect_To_PS(& (dft[session]->req_blk) ,ASYNC))
ErrorMessage("Connect_To_PS Error",err);
Close_Host_Connection(&dft[session]->req_blk);
Term_3270_API(api_vars);
return FALSE;
)

dft[session]->last_=equest
~et'..l=n TRUE;

RC_CONNECT_TO_PS;

ca:ls ~he rcuti~es in TER~.C to display the buffer
=e~~=~ed cy Ge~ PS_Jpda~e

September 14, 1988

;~--'
vc!d s~ow3~f(sessicn,disp:ay)
3'.:'':S sess!on;
3Y:~ display; /* w=ite to the c~=rent graph port ? */

int
WORD

::ow,
cc:;

(~·;o?J) &d::.~sessio:::->Gps_blk.getupd; /"tt: no~ func:..:.c:--.a.:.. s:.a:.er:ie:--.:. :c:: deb·..:gg.:.:-.g 11:/

#i:~de: J23CG ~2

Sample 3270 application 2-7

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 1988

for (i=O; i< dft[session]->Gps_blk.getupd·.nurn_dab_recs; i++) {

#e::.se

if (dft[session]->dab[ij .row < 0 I I dft[session]->dab(i] .row > 24)
ErrorMessage("DAB row",dft[session]->dab(i] .row+l);
j=(intl &dft [session]->Gps_blk.getu'pd;
Debugger-();

else if (dft[session]->dab[i] .col+l < 0 I I dft[session]->dab[i] .col> 80)
ErrorMessage("DAB col",dft[session]->dab[i] .col+ll;
j=(int)&dft[session]->Gps_blk.getupd;
Debugger();

else if (dft[session]->dab(i] .len < 0 I I dft(session]->dab[i] .len > 80) I
ErrorMessage ("DAB len", dft [session]->dab(i]. len);
j=(int)&dft[session]->Gps_blk.getupd;
Debugger();

else cpyAttr(dft(session]->dab[i] .row+ 1, dft(sessicn]->dab[i] .col + 1,
&(dft[session]->dab[i] .data[O]), dft(session]->dab[i] .len,session);

for (i=O; i < dft[session]->Gps_blk.getupd.nurn_dab_recs; i++) (
if(dft[sessicn]->dab[i] .row>= 0 I I dft(session]->dab[i] .row< 25)

cpyAttr(dft[session]->dab(i] .row+ 1, dft(session]->dab[i] .col+ 1,
&(dft[session]->dab[i] .data[O]), dft[session]->dab[i] .len,session);

#endif DEBUG ME
for (i=O; i< dft[session]->Gps_blk.getupd.nurn_ps_recs; i++) {

if (dft[session]->ps(i] .row== Oxffl
dft[sessicn]->ps[i] .row= 25;

showLine(dft[sessionJ->ps[i] .row+ 1, dft[session]->ps(i] .col + 1,
&(dft[session]->ps[i] .data[O]), dft[session]->ps[i] .len,UPDATE,display,sessior.);

row= dft[sessicn]->Gps_blk.getupd.cursor_row + 1; col= dft[session]->Gps_blk.getupd.cu:::-scr_cc
cursor_position(row, col,session);

/"--·
/ "}("

-r set.Ge::.

sets up and issues the Get_Update request
"/

/"--·
3cc::.ean setGet(session)
3Y:::: sessic::;

/* ErrorMessage!"Setget session", session); */
/" Er:::-crMessage("Setget ps_id",dft[sessicn]->ps_id); */

df: sessio~~->Gps_b!ko~e~_addr.aNode = C;
df~ sessic~J->Gps_b~~.a9i_va=s = a~~_vars;

d~- sessio~]->G~s_bl~opo:t_id = s:o~;

2-8 Chapter 2: 3270 API Application Guidelines

()

Working Draft #3 Apple 3270 AP/ Programmer's Guide

dft[session]->Gps_blk.conn_id = saved_conn_id;
dft[session]->Gps_blk.ps_id = dft(session]->ps_id;
dft[session]->Gps_blk.getupd.wait_time = OxFFFF;
dft(session]->Gps_blk.getupd.ps_recp = &(dft[session]->ps[O]);
dft[session]->Gps_blk.getupd.dab_recp = &(dft(session]->dab[O]);
dft(session]->Gps_blk.getupd.dabe_recp = O;
dft[session]->Gps_blk.getupd.eab_recp = O;
dft[session]->Gps_blk.getupd.modifiers = NO_MODS;
if (err= Get_Update(&dft[session]->Gps_blk,ASYNC))

ErrorMessage("Glue Get Update Error",err);
return FALSE;

return TRUE;

September 74, 7988

/*--~/
/* ClearConnect

* does a close & term
"I

/*--·'
void ClearConnect()

Close_Hcst_Connection(&dft[session]->req_blk);
Term_3270_APICapi_vars);

/*--~---·:
/* MAIN */

/*--•!
int mai!". ()

/* local variables */
Graf Ptr
Re ct
lo:tg
Sve~-:?-ecord

~·;i.:1dowP:r

exter:-. void
exterr\ void
c:-..ar

int

s'"~"~,. SysE:-:v?.ec
str:..:ct SysEnvRec
c::ar * t.::-tp;

/•

•/
G:1loaCSeg(_Ja~a:r.i:);

=~~:G=a~(&qd.~~ePc=~);

::1:._"':?C!:<:S ();

tmpWindow;
dragRect;
newSize; /* new window size ret\.:rned by GrowWindow(J •/
!"."':y:C:vent.;
theAct.iveWindow;
whic::Wi:idow;
set:..:pMen\.:s ();
doCo:c:cand () ;
ch;
l.;

j;
rtnErr;
world;
*theWorld;

Sample 3270 application 2-9

Working Draft #3 Apple 3270 AP! Programmer's Guide

FlushEvents(everyEvent, 0);
InitWindows();
InitMenus () ;
TE In it () ;
InitDialogs(nil);
InitCursor ();
/*

* setupMenus is execute-once code, so we can unload it now.
*/

setupMenus(); /* Local procedure, below*/
UnloadSeg(setupMenus);

September 74, 7988

num_sessions = Ox03;
if (!DoNumSessions(&num_sessions))

return FALSE;

/* set default as 3 sessions */
/* Display the dialog */

/* get non relocatable memory from the application heap for each session */
for (session = O; session < num_sessions; session++) {

dft[session] = (struct dft_session *) NewPtr(sizeof(struct dft_session));
if (dft[session] ==NULL) {

ErrorMessage("No Applic Heap Memory",dft[session]);
return 0;

/* clear the heap screen buffer */
tmp = (char *) dft[sessionj;
for (j=O; j < sizeof(struct dft_session); j++)

* (tmp + j) = 0;

theWorld = &world; /* Determine MAC II keyboard type */
rtnErr = SysEnvirons(l,theWorld);
if (theWorld->keyBoardType == 4) {

kb-:ype Tl02;

e.2.se

s.:..c:: = CxCC;
'~ (1 DoSlot?ick (&Slot))

:-e-:u:rr. FALSE;

; ~ (! Init_l>.PI ())
return FA:..,s::;

/* set default slot as c */
/* Dlsplay the dialcg ~;

/* Open host connection */

/* open windows for each session, initailize */
fer (session = C; session < num_sessions; s~ssion++)

2-10

dft[session]->myWindow = GetNewWindow(windowID+session, 0, (WindowPtr) -:l;
Se~Pc=~Cdf~~sess!c~J->myWindcw);

Se~~ec:(&d=agRect,qd.scree~Bi~s.bou~ds~:e:t+4,

qd.screenBits.bc~~Cs.~o?~24,

qd.screenBits.bc~nds.=ight-4,

Chapter 2: 3270 API Application Guidelines

•

(.
•

•

(

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 7 4, 7 988

qd.screenBits.bounds.bottom-4);

/*
* growRect will be used in GrowWindow() to limit a window's size during growing
* top is min height, left is min width
* bottom is max height, right is max width
*/

SetRect (&growRect,100,
100,
qd.screenBits.bounds.right,
qd,screenBits.bounds.bottom);

/* setup the terminal
* and initialize the interface
*/

dft[session]->ps id OxFF; /* first available session */

InitPage(session);
showLine(25,l,stat,80,UPDATE,session);

/* in TERM.C */
/* display the bar */

/* make it work first time through the main for loop */
dft[session]->Gps_blk.result RSP_PENDING;

if (!Init_Connect(session))
return FALSE;

/* connect to each presentation space • ·
/* SHUTDOWN SHOULD BE CLEANED UP EE?E •/

kbuf current kbuf_q[kbuf_toggle]; /*initialize key buffer pointer */

/*
* Ready to go.
* Star~ wi~h a c~ea~ event slate, and cycle the main even: loop

until the File/Quit menu item sets DoneFlag.

• It would not be good practice for the doCommand() routine to
* simply ExitToShell() when it saw the Quititem -- to ensure
* orderly shutdown, satellite routines should set global state,
• and let the main event loop handle program control.
•!

Do~eE'lag

:or (; ;
fa:se;

if (Sone!"2.ag)
brea:<;

/*

•/
Sys~e:.1~asi< () ;

/* from main event loop */

Sample 3270 application 2-11

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

theActiveWindow = FrontWindow(); /* Used often, avoid repeated calls */
for (session = O; session < num_sessions; session++) {

if (theActiveWindow == dft[session]->myWindow) {
if ((dft[session]->last_request) && (dft[session]->req_blk.result != RSP_PENDit-:G))

swicch (dft [sessionJ->last_request) {
case RC_CONNECT_TO_PS:

if (dft[session]->req_blk.result != NO_ERR) {
ErrorMessage ("Rslt Connect_to_PC Error", dft [session J ->req_ blk. res·.:::.:) ;
DoneFlag = TRUE;
Clearconnect();
return O;

/* bounds check ps_id received from card */
if ((dft[session]->req_blk.connps.ret_ps_id < 1)

I I (dft[session]->req_blk.connps.ret_ps_id > 5))
ErrorMessage("Invalid Session ID = '',dft[sessionJ->req_blk.connps.re:_p
DoneFlag = TRUE;
ClearConnect();
return O;

I* save the returned ps_id */
dft(session]->ps_id = dft[session]->req_blk.connps.ret_ps_id;
dft[session]->req_blk.ps_id = dft(session]->ps_id;

if (!setGet(session))
DoneFlag = TRUE;
Clearconnect();
return O;

/* post get_update on this session */

dft[session]->last_request O;
break;

case RC_SEND_KEYS:
if (dft(session]->req_blk.result != NO_ERR)

E::!:'orYies sage { "SendKey Ret ~=n E::-ror", c:: [ses s :.o:-: ~ ->:-eq_ ~~~~:-es u.:..:.
SysBeep(l);

if (]<ey _q_index) { /• keys s-::rokes are buffereci • /

dft(session]->req blk.sendkey.nu:r. keys tc ser:ci key_c:_ir:dex;
key_q_index = O; - - - -
dft (session] ->req_blk. sendkey .keys_bufp = car:::: •) kcu:_c:.;rre'.'.'.:;

if (err= Send_Keys(&(dft[session]->req_blkl ,AS~~C))
ErrorMessage(''G~UE Send Keys Er=or'',e~=l;
ClearCor:nect();
return O;

else { /• key strokes not buffered •/

2-12 Chapter 2: 3270 AP! Application Guidelines

•
•

(
•

•

Working Drott #3 Apple 3270 AP/ Programmer's Guide September 14, 1988

dft[session]->last_request O;

break;
case RC_DISCONNECT_FROM PS:

if (dft[session]->req_blk.result !=NO ERR)
ErrorMes sage ("Rtn Disconnect Error", dft [ses sic:-.; ->req_ :O.i.i<. ::es:.:.:.:) ;

if (err= Close_Host_Connection(&dft[session]->::eq_blk))
ErrorMessage("Close Host Error", err);

DoneFlag = TRUE;
Term_3270_API(api_vars); /*
return O;
break;

release memory */
/* Exit_to_She.i.l */

/* switch case API request completion code */
/* if the last request just completed */

if (dft[session]->Gps_blk.result != RSP_PENDING)
/* ErrorMessage("Get_Update Completed",0); */
if (dft[session]->Gps_blk.result != NO_ERR) {

ErrorMessage("Get_Update Error",dft[session]->Gps_blk.result);
ClearConnect();
DoneFlag = TRUE;
return FALSE;

GetPort(&tmpWindow);
/* Only draw text on the currently active window */
if ((WindowPtrJtmpWindow == dft[session]->myWindow)

showBuf(session,DISPLAYJ;
else

showBuf{session,NO_DISPLAY);
if (! setGet (session)) {

DoneFlag = TRUE;
ClearConnect();
return O;

:Creak; /* active window found, break out of ": c:- eac!": c:-: w .:..::dew" ~"'"· .. ._, x /

/x end for each dft w~ndow loop ~;
if ('Get'.\extEvent (eve::yEvent, &myEvent)) { /* null event * /

switch (myEvent.what)
case ;r,c'JseDcw:1:

switch <FindWindcw(&myEven:.where, &whichWindcw))
case inSysWindow:

SystemClici<(&myEvent, whichWindow);
break;

case in~er."JEar:

doCcm~and(~e~~Selec~(&rr.yEver.t.where));

break;

Sample 3270 application 2-13

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 14, 1988

case inDrag:
DragWindow(whichWindow, &myEvent.where, &dragRect);
break;

case inGrow:
/* There is no grow box. (Fall through) ~;

/* no, let's grow the window */
newSize = GrowWindow(whichWindow, &myEvent.where, &growRect);
SizeWindow(whichWindow, (short) LOWORD(newSize), (short) HIWORD<newSize),

case inContent:
if (whichWindow != theActiveWindow)

SelectWindow(whichWindow);

break;

default:
break;

}/*endsw FindWindow*/
break;

case keyDown:
case autoKey:

for (session = O; session < num_sessions; session++)
if (dft[session]->myWindow •• theAcfiveWindowJ {

if (myEvent.modifiers & cmdKey) {
doCommand(MenuKey(myEvent.message & charCodeMask));

}
else {

ch = (myEvent.message & keyCodeMask) >> 8;
if (Map_Key (kbtype, ch, myEvent .modifier,s)

SysBeep(l);
break;

OxOOOO) { /* char maps tc

if (!dft[session]->last_request) { /* no keys buffered w;
kbuf_current->key_buf = Map_Key(kbtype, ch, myEvent.~cdifiers);

dftisessionJ->:ast_request = RC_SEND_KEYS;
dftisessionJ->req_blk.sendkey.num_keys_tc_send = :;
key_q_index = 0;
dft[session]->req_blk.sendkey.keys_bUf? = (3Y:E w) :.Cbu:'.' :::urrent;

if (err = Send_Keys (&dft [sessionJ->req_blk, ASY?\C))
ErrorMessage("GLUE Send Keys Error", err);
ClearConnect();
return O;

kbuf_current • kbuf_q[kbuf_toggle A= l]; /w sw:.:.:cr. b-..:::'.fers w /

else (;~ buffer keystrokes */
(kbuf_current + key_q_index)->key_buf
~'-!-':<ey _ ~-iriciex;
/w SysBeep(l); */

2-14 Chapter 2: 3270 API Application Guidelines

~a?_Key !kbtype,

•

•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

break;
} /* endif myWindow */
/* end for each session */

break;

case ac~~vateEvt:
whichwindow = (WindowPtr) myEvent.message;
for (session=O; session < num_sessions; session++

•• (whichWindow == dft[session]->myWindow)

break;

if (myEvent.modifiers & activeFlag) {
SetPort(whichWindow); /*make SURE drawing works */
Disableitem(MyMenus[editMenu], 0);
DrawMenuBar(); /*and redraw the menu bar*/
if (!cursorActive)

start_cursor(); /* crank up the cursor */
else {

Enableitem(MyMenus[editMenu], 0);
DrawMenuBar();
if (cursorActive)

stop_cursor(); /* stop the cursor */

break; /* window found and [de]activated, exit for !cop */

case updateEvt:
whichWindow = (WindowPtr) myEvent.message;
for (session=O; session < num_sessions; session++

if (whichWindow == dft[ses•ion]->myWindow)
GetPort(&tmpWindow);
SetPort(whichWindow); /* set port*/
BeginUpdate(whichWindow);

brea:<;

de:au2.~:

c!"ea.<;

term_redraw(session);
EndUpdate(whichWindow);
SetPort(tmpWindcw); /* restore previous pert */
break;

}/~endsw ~yEve~c.whatx/

}/*endfor Main Event loopx/
1~

"" c.:ea~:.zp he!:'e.
?<:I

~or (sessic~=C; session < nure sessions; session+~

c:cse~~~dcw(d!~~sessionJ->myWindcw);

~is?os?~~(d:~~sess~c~J);

Sample 3270 application 2-15

Working Draft #3 Apple 3270 AP/ Programmer's Guide . September 7 4. 7 988

return O; /*Return from main() to allow C runtime cleanup•/

/*--"
/*---SEGMENT--"
/*--x,
/*
* Demonstration of the segmenting facility:
*
* This code is execute-once, so we toss it in the "Initialize"
* segment so that main() can unload it after it's called.
*
* There really isn't much here, but it demonstrates the segmenting facility.
*/

/*
* Set the segment to Initialize. BEWARE: leading and trailing white space
*would be part of the segment name!
*/

#define SEG Initialize - -
/*--"
I* set :ip~ ... ienus

/*--·'
/*

* Set up the Apple, File, and Edit menus.
• If the MENU resources are missing, we die.
*/

void setupMenus()
{

extern
register

MenuHandle
MenuHandle

MyMenus [1;
*pMenu;

/*
" Set up the desk accessories menu.
*The "About Sample ... " item, followed by a grey line,
• is presumed to be already in the resource. We then
" append the desk accessory na~es from the 'DRVR' resources.
"I

~y:~e:: ~s '. G??ieMenu ~ = GetMe:1u (apple ID) ;
Add::<.esXen;..; (Y:yMenus [appleMenu], (Res~ype) 'DRVR •);
/•

* New the File and Edit menus.
•I

~yMen~s[fileMen~]

MyXenus[editMenu]
/*

GetMenu(fileID);
GetMenu(editID);

"Jlr Now insert all cf the application me~us in the menu bar.

* ":<..ea2." C ~rcgramr=:ers never use ar::-ay indexes
• un:e~s they're constants :-)
*/
~er CpXen~ = &~yMe~us[o:; pMe~~ < &~yxe~~s~~e~~~c~~~~; ·-=Xe~~)

::J.se:-:.Y!enu {"JlrpMenu, 0);

2-16 Chapter 2: 3270 API Application Guidelines

•
•

('
•

•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 7 4, 7 988

DrawMenuBar();

return;

/*---,
I*--------------------------- - -------------SEGMENT------------ - - ----- - - --- - - - ---- - --- - -- - -- - - - - - - - - ,'

/*--~--:

/*
* Back to the Main segment.
*/

#define SEG Main

/*--~,·
/* showAboutMeDialog */

/*--•/
/*
* Display the Sample Application dialog.
* We insert two static text items in the DLOG:
* The author name

The so~rce language
* Then wait until the OK button is clicked before returning.
*/

void showAboutMeDialog()
(

GrafPtr
DialogPtr
short
Handle
Re ct
short

savePort;
theDialog;
itemType;
itemHdl;
itemRect;
itemHit;

GetPort(&savePort);
theDialog = GetNewDialog(aboutMeDLOG, nil, (WindowPtr) -1);
Se~?crt(t~e8ialog);

Ge:.J:~e~(~~eDialog, au~ho=::e~, &itemType, &itemHdl, &i:e~~ec~);

Se-:::ex:. (i:.e7:2d.2.., "Ge!"::y A. 3:-own 11);

Ge~8I~e~(t~eD~alog, languageiter, &ite~Type, &ite~Edl, &i~e~Rec~);

Se~::::ex:. (:.:.e~.Edl, 11 : .. !?W C");

de r

::oda.2.Jialc; (r:.:.:.., &i~e:=:~i:);

~ while (i:emHit := okB~t:cn);

ClcseD~alog{theDia:og);

Se:Pcr:(savePor:);

/•--·
/* dcComma:1d */

Sample 3270 application 2-17

Working Draft #3 Apple 3270 AP! Programmer's Guide September 7 4, 7 988

l~".\

/*--\•-..",/
/*

* Process mouse clicks in menu bar
*/

void doCommand(mResult)
long mResult;

int theMenu, theitem;
char daName[256];
GrafPtr savePort;
extern MenuHandle MyMenus[];
extern Boolean DoneFlag;
extern TEHandle TextH;
extern void showAboutMeDialog();

the Item
theMenu

LOWORD(mResult);
HIWORD(mResult); /* This is the resource ID */

switch (theMenu) {
case appleID:

if (theitem == aboutMeCommand)
showAboutMeDialog();

else {
Getitem(MyMenus[appleMenu], theitem, daName);
GetPort(&savePort);
(void) OpenDeskAcc(daName);
SetPort(savePort);

break;

case fileID:
switch (theitem)

case quitCommand:
if (!dft[session]->last_request) {

dft[session]•>req_blk.discps.modifiers

r=8rMessage(' 1 Cisconnecting session'',session);

NO_MODS;

r:::·cr:-'.es sage ("Sis connecting ps _id is", dft [session j -> req_ blk. ps _id) ;
.: :: (err = ~isccnnect_~rcrn_PS {&df:. [session J->!'"eq_c::.<:, ,;s'.:'::c))

ErrorMessage(1'Glue Disc_?S E=rcr'',err);
DcneFlag = TRUE;
Clea:-Connect();

dft[sessicn}->last_request
break;

defa1.1lt:
break;

case edi::::
SystexEdi~{theite~-1);

!\C _DISCCNNECT_FRC~~~_? S;

2-18 Chapter 2: 3270 API Application Guidelines

•
•

c ;)

(
•

•

Working Draft #3 . Apple 3270 AP/ Programmer's Guide September 74, 1988

break;

case edit ID:
SystemEdi': (theitem-1);
break;

}/*endsw theMenu*/

HiliteMenu(O);

return;

I*
* te~m.c

The Term.c file

This file contains the routines that actually support the 3270
terminal operations.

* Responsible for maintaining the 3270 display screen
*!

#include "dfterm.h"

#define False
#define True
#define FALSE
#define TRUE
#define MAXLIN
#define MAXCOL
#define l.,INEH2IGHT
#defir.e CHARWIDTH
#de:ine TOPMARGIN
idefine 3CTTOMMARGIN

0
1
0
1

26
80
11

6
3 /* Terminal display cor.si::ar.ts *I

(LINEHEIGHT * MAXLIN + TOPMARGIN)
3

(CHARWIDTH * MAXCOL + LEFTMARGIN)
3

OxOd
/* Amount of cl'lar :Oelcw base li!".e * /

#defi:-:e CR
sta-:..:..c Kee:. pe::!Rect;
s':.at.::.c Font::::nfo fon-i:stuff;

/* c;irscr variables */
char- c:.;rsorAc't.:.ve; /* Global - referenced by main *I

/* Edges of adjustable window *I

:.ex-:s:.y.::...e=:;;

Sample 3270 application 2-19

Working Draft #3 Apple 3270 AP/ Programmer's Guide

BYTE curlin, curcol;
BYTE savcol, savlin;

screen(MAX_SESSIONS];

/* Cursor position */
/* cursor save variables */

/**/
/* cursor stuff •/
void getPenRect(r)

Rect *r;
Point pt;
GetPen(&pt);
r->top = pt.v;
r->bottom = pt.v + fontstuff.descent;
r->left = pt.h;
r->right = pt.h + fontstuff .widMax ;

}

void start_cursor()
{

cursorActive • True;
getPenRect(&penRect);
ForeColor(blackColor);
InvertRect(&penRect);

void stop_cursor()

cursorActive = False;
get?enRect(&penRect);
InvertRect(&penRect);

)

/****~**W**/

/* Connect support routines */

Init?age(session)
BYTE session;

:ext~cdeCsrcCopy);

:ext:o::t (8 6) ;
':'extSize(9);
GetFon~:nfo(&fontstuff);

i::it_ter~(session); /• Set up some terminal variables •/
hcme_curscr(sessior.l; /*Go to the upper left */
cursor_save(session); /•Save this position •/
star<:::_curscr <);

home_cursor(session)
BYTE session;

abs~cve{8,C,session);

2·20 Chapter 2: 3270 API Application Guidelines

September 14. 1988

•
•

0

(
•

•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

cursor_save(session)
BYTE session;
(

screen[session] .savcol
screen[sessicn; .savlin

screen[session) .curcol; /• Save the current line and column •/
scree:1[session] .curlin;

cursor_restore(session)
BYTE session;

absmove{screen[session] .savcol,screen[session] .savlin,session); /• Mcve to old cursor pcsiticn

/*
* Move to absolute position hor char and ver line.
*
*/

absmove(hor,ver,session)
BYTE hor,ver,session;
'.

Move To (hor-CEARWIDTH+LEFTMARGIN, (ver+l) *LINEHEIGHT+TOPVARGIN-LINEAD.:-);
screen[session] .curcol her;
screen[session] .curlin = ver;

cursor_position{line,col,session)
BYTE line;
BYTE col;
BYTE session;

if (line > 24)
retu:-n;

line--;
col--;
stop_cursor{);
aCs~ove(col,lir.e,session};

c~=sor save(sessio~);

star:: cu:::-sc:::- \) ;

te:::-~ :::-edraw(sessio:1)
3Y'I':2 ses s.i.cn;

BV"'~ _,
3v'T'F. *ast.r;

#ifde: DE3GG
Debugs:.:: ("Er.t.e::-i.:rg ter:n_redraw"} ;

=e::.c.:.:

as::::-= &(screen:sessicr.: .sc:::-[ii [OJ);
shcwLine(i+l,l,ast:::-,80,NO_GPDATE,DISPLAY,session);

Sample 3270 application 2-21

Working Draft #3 Apple 3270 AP/ Programmer's Guide

Ufdef DEBUG
DebugStr("Exiting term_redraw");

lfendif
}

init_term(session)
BYTE session;
(

int i;
int j;

for (i=O; i<MAXLIN; i++) {
for (j=O; j<MAXCOL; j++)

screen[session] .scr[i] [j] = • •;
screen[session] .attr[i] [j] = O;
}

September 74. 7988

screen[session].scr[i] [MAXCOL] = '\0'; /*Terminate the lines as strings•/

/*---·,'
/*

setAttr - sets the screen attributes sent by the controller
*/

/*--;
setAttr(pattr)
BYTE pat tr;
(

BYTE temp;

/*

* Set Display Characteristics
*/

temp = (pattr >> 1) & Ox03;
ShowPen();
if ((temp == 0) I I (terr.p == ll) {

TextFO:'lt (86);

else if (te~p == 2)
TextFc::-:: (87);

else

/•
Set Mode Characteristics

•/
temp = (pattr >> 6) & Ox03;
TextMode(srcCopy);
TextFace(normal);
BackColor(whiteColor);
if (te:r.p == 0) (

TextFace(:'lormal);

else if (temp == ll (

/* Normal display */

/* Intensified display •/

/* non - display handled by ~~~ s~cwi::g • ·

/* Normal video */

/* Blink video */

2-22 Chapter 2: 3270 AP! Application Guidelines

•
•

0

•
•

(

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

BackColor(yellowColor);
}

else if (temp == 2)
TextMode(notSrcCopy);

else {
TextFace{u~de::line);

/*
* Set Color Characteristics
*/

temp = (pat tr >> 3) & Ox07;
switch (temp)

case 0:
ForeColor(blackColor);
break;

case 1:
ForeColor(blueColor);
break; ·

case 2:
ForeColor(redColor);
break;

case 3:
ForeColor(magentaColor);
break;

case 4:
ForeColor(greenColor);
break;

case 5:
ForeColor(cyanColor);
break;

case 6:
ForeColor(yellowColorl;
break;

case 7:
ForeColor(blackColor)
break;

/* Reverse video */

/* underline video */

/* Should be white */

;~---·
/*

*

*
•/

showLine - called from 3270 to output the string to the terminal
and actually does a drawscreen to the screen. The screen coordinates
are external:y rows l - 24; and columns 1 - 80; The OIA is supported
on the screen at row 26. Main displays a dashed-line in row 25.

/•---Y,
showLine(lir.e,col,astr,ler.,update,display,session)
BYTE line; /* line number to modify */

5v-;:-

3v-1"

3'f:'~

•as:.::;
:.e:-:;
'..!'Oci.a:.e;
display;

/•
; ..
/"
/"
/*

starting colume
- to 80 BYTEs ,.-~

!"'.GW many BYTEs
update the scr
display in the

dsip2.ay "I
-~ de */

c·..:::e:::-? " I
curre:-.t g:: a?:-.::;c :::--:

"I

?

Sample 3270 application

.. I

2-23

Working Draft #3 Apple 3270 AP/ Programmer's Guide

BYTE
(

BYTE
BYTE
BYTE
BYTE
BYTE
Boolean
BYTE

Hfdef DEBUG

session;

tcol;
scol;
tlen;
i;
*tstr;
cursorWasActive;
tattr;

DebugStrC"Entering showLine"J;
#endif

line--;
col--;
cursor_saveCsession);
if (cursorWasActive • cursorActive)

stop_cursor ();
if Cline == 25 && update)

StXlateCastr,lenJ;

/* which screen ?

/* Make line & col O rel */

/* if the OIA, translate */

September 74, 7988

*/

tstr = astr; /* Copy string to scr buffer */
if (update)

for Ci=O; i < len; i++l {
screen[session] .scr(line] [col+i] = *tstr++;

/* if Cline== 25) DebugStrC&(screen[session) .scr(line] (col])); */
tlen = O;
scol = col;
while Clen)

scol = scol + tlen;
tattr • screen(session] .attr[line] [scol];
/* cDebugStrC"\004CALL"); */
setAttr Ctattr);
t.len = l;
len--;
':col = scol + l;
whi:e (len && (ta=tr

t.le~++;

tcol++;
ler:--;

if (display)

screen[session] .attr[line] [tcol]))

'" ((tattr & Ox06) != Ox06) (
absmove<scol,line,session);
DrawText(astr, (scol-colJ,tlen);

cursor_restore(session);
i: (cu=sorWasActive) start_cursor();

~.::def

Jeb~gSt~(11 Exiting shcwLine'');
#end!!

2-24 Chapter 2: 3270 API Application Guidelines

•
•

0

•
•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 14, 1988

/*---"/
/* cpyAttr */

/*---~/
void cpyAttr(row,start,bfr,len,sessicn)
BYTE row;
BYTE start;
BYTE *bfr;
WORD len;
{

row--;
start--;
while (len)

screen[session} .attr[row] [start++]
len--;

/* copy attributes to our array */

*bfr++;

Term.c Contains the routines that actually support the 3270
terminal operations

The Translate.c file
This file contains the tables that handle the key translation from
MAC II keyboards to 3270 keys .

/*
*Translate. c
* Does the actual mapping from MAC II keyboards (regular and enhanced) to
*the 3270 keyboard mappings.
* Also does the mapping cf the inbound OIA.
*/

#include <types.h>
Ainclude "api3270.h"
A.:.~cl~de <events.h>

a type o- ~eybca:-d ... a:-~ ~ ~ ~I

~1

iiie:.:.~e r:'75 0
s:.a:..:..c f;Q!<.!J M2K3 [256:
{8xC860, Cx0072, CxOC63, Cx0065,

CxC'J62, CxC075, CxCCC8, OxCC6l,
Cx0878, Cx0073, Ox0C2:., Ox0022,
:JxOCll, Ox0029, Ox0027, Ox0030,
~x0074, Ox0813, Ox0068, Ox006?,
~x006A, Ox007E, OxC0:!.8, OxCC33,
8xC036, cxco:..o, Cx8CCC, OxOC3l,
2x8800, OxCCOO, CxOCCS, ~x'.)SOO,

:xccoc, OxC052, OxOOCO, CxOOOC,

Ox0067, Ox0066,
Ox0070, Ox0076,
Ox0023, Ox0024,
Ox0028, Ox0020,
OxOOOB, Ox006B,
Cx00l4, Ox006D,
OxOOOO, Ox003D,
OxOOOO, OxOOOO,
OxOOOO, OxOOOD,

Ox0079, Ox0077, /* O:J v:

Ox0064, Ox007::.,
Ox0026, Ox0025, /" :.o :F
Ox0015, Ox006E,
Ox0069, Ox0012, /* 20 - 2?
Ox006C, Cx0032,
OxOOOO, Ox0008, /* 3S - . -
OxOOOO, CxOOCC,
OxOOOO, Ox0040, /* ~c - 4?

~1

... I
*/

-.: /

"1
I

Sample 3270 application 2-25

Working Drott #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

OxOOOC, OxOOOO, OxOOOO, Ox0042, Ox0018, OxOOOO, OxOOOO, OxOOOO,
OxOOOO, Ox0041, OxOOOO, Ox0049, Ox004A, Ox004B, Ox0046, Ox0047, /* SO - SF */
Ox0048, Ox0043, OxOOOO, Ox0044, Ox004C, OxOOOO, OxOOOO, OxOOOO,
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, /* 60 - 6f */
OxOOOO, OxOOOO, CxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO,
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, /* 70 - 7f *I
OxOOOO, OxOOOO, OxOOOO, Ox0016, OxOOlA, Ox0013, OxOOOE, OxOOOO,
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, /* 80 - SF *I
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO,
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, /* 90 - 9F * /
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO,
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, /* AO - AF *I
OxOOOO, OxOOOO, OxCOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO,
OxOOCO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, /* BO - BF *I
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO,
CxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, /* CO - CF *I
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO,
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, /* DO - DF */
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO,
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, /* EO - EF */
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO,
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, /* FO - FF */
OxOOOC, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO};

/*
* MAC II ENHANCED KEYBOARD

*
* maps to a type 87 keyboard
*/

#define Tl02 1
s~atic WORD MACENC[S12]
{ Ox0060, Ox0072, Ox0063, Ox0065, Ox0067, Ox0066, Ox0079, Ox0077, /* 00 - OF *I

Ox0062, Ox0075, OxOOOO, Ox0061, Ox0070, Ox0076, Ox0064, Ox0071,
Ox0078, Ox0073, Ox0021, Ox0022, Ox0023, Ox0024, Ox0026, Ox0025, /* 10 - lF */
OxOOll, Ox0029, Cx0027, Ox0030, Ox0028, Ox0020, OxOOlS, Ox006E,
Ox0074, OxOOlB, Ox0068, Ox006F, OxOOOO, Ox006B, Ox0069, Ox0012, /* 20 - 2F */
Cx006A, Ox007E, Ox0035, Ox0033, Ox0014, Ox006D, Ox006C, Ox0032,
8x8C36, OxCOlO, Ox003D, Cx0031, OxCCOO, OxCOOO, OxOOOO, OxCOOO, /* 30 - 3F */
:)xC:c:, OxCCC·C, OxOOCC, CxOCCO, OxCOOO, OxOOOC, OxCOOO, CxOCCC,
8x~C8C, Ox::8CC, OxOCCC, Cx0800, OxOCCC, OxOCOO, CxCOCC, 8x8C40, /* 40 - 4? ~l

Ox8C:JC, 8xCCOO, OxOOCG, OxCC42, Ox0018, OxCOOO, OxOOOG, OxCOOC,
C:xOCCC, Cx004l, OxOCOO, Ox0049, Ox004A, Ox004B, Ox0046, Ox0047, /* 50 ~- */
Ox0048, Ox0043, OxOOOC, Ox0044, Ox004S, OxOOOO, OxOOOO, OxOOOO,
Cx0825, Ox0826, Ox0827, Ox0823, Ox0828, Ox0829, OxOOOO, Ox0830, /* 60 - 6F ~;

CxCOOO, Ox0040, OxCOOO, Ox0041, OxCOOO, Ox0820, OxOCOO, Ox0811,
OxOCOC, Ox0042, OxOOSO, OxOOSF, Ox0052, OxOOOC, Ox0824, OxOOOD, /" 70 - 7-=- .. ;
Ox0822, Ox0034, OxC821, Ox0016, Ox0013, OxOOlA, OxOOOE, OxOOOO,
CxOCOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, / .. SC - SF .. /
OxOOOO, OxOOOO, CxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO,
CxOOOO, OxOOOO, OxOOOO, OxOOOO, OxCOOO, OxOOOO, OxOOOO, OxOOOO, /* 90 - 9F .. /
CxC~8C, CxCOOO, OxOOCC, OxGOOO, OxOCCO, OxOOOO, OxOOOO, CxOOOO,
0x08::;C, CxCOCO, CxCCOO, OxOOC~, OxCOOO, OxCOOC, OxCOOO, OxOOCC, 171: AC - A: ~/

CxC8~8, OxC:JV'.J, OxOOOO, OxOOOO, OxOOOO, OxOOOO, Ox0800, CxC800,
OxOCOC, OxCOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, /* BC - 3? *I

2-26 Chapter 2: 3270 AP! Application Guidelines

•
•

(
•

•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

OxOOOO,
OxOOOO,
CxOOOO,
OxOOOO,
OxOOOO,
OxOOOO,
OxOOOO,
OxOOOO,
OxOOOO,

static
/*

*/
/*

/* 0 */
/* 1 */
/* 2 */
/* 3 */
/* 4 */
/* 5 */
/* 6 */
/* 7 */
/* 8 */
/* 9 */
/* a */

/* b */
/* c */
/* d */
I* e */
/* f */
);

OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO,
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, /* co - CF */
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO,
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, /* DO - DF */

CxOCOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO,
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, /* EO - EF */
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO,
OxCOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, /* FC - FF */
OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO, OxOOOO);

/* status line xlate table */
BYTE sl_tbl [j

Second digit

0 1 2 3 4 5 6 7 8 9 a b c d e f *I

Ox20,0x20,0x0c,Ox0a,Ox20,0x0d,Ox20,0x20,0x3e,0x3c,Ox5b,Ox5d,Ox29,0x28,0x7d,Ox7b,
Ox20,0x3d,Ox27,0x22,0x2f,Ox5c Ox7c,Ox7c,Ox3f,Ox21,0x24,0xa2,0xa3,0xb4,0xa5,0xa5,
Ox30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0xa7,0xc4,0x23,0x40,0x25,0x5f,
Ox26,0x2d,Ox2e,Ox2c,Ox3a,Ox2b,Oxc2,0xdl,Oxal,Ox20,0x5e,Ox7e,Oxac,Ox60,0xab,Oxa5,
Ox88,0x8f,Ox93,0x98,0x9d,Ox8b,Ox9b,Ox79,0x88,0x8f,Ox8e,Ox93,Cx98,Cx9c,Ox9f,Ox8d,
Ox8a,Ox91,0x95,0x9a,Ox9f,Ox89,0x90,0x94,0x99,0x9e,Ox87,0x8e,Ox92,0x97,0x9c,Ox96,
Oxcb,Ox83,0x49,0x4f,Ox55,0xcc,0xcd,0x59,0x41,0x45,0x45,0x49,0x4f,Cx55,0x59,0x43,
Ox80,0x45,0x49,0x85,0x86,0xcb,Ox83,0x49,0xcd,Ox86,0x81,0x83,0x49,0xcd,Ox86,0x84,
Ox61,0x62,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x6b,Ox6c,Ox6d,Ox6e,Ox6f,Ox70,
Ox71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0xbe,Oxbf,Ox8c,Ox8d,Cx3b,Ox2a,
Ox41,0x42,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,Ox4b,Ox4c,Ox4d,0x4e,Ox4f,Ox50,
Ox51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,Oxae,Oxaf,Ox81,0x8d,Ox3b,Ox2a,
Ox20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x2C,Ox20,0x20,0x20,0x20,
Oxe0,0xel,Oxe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,Oxeb,Oxec,Oxed,Oxee,Oxef,
Ox20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x2C,Ox2C,Ox20,
Oxf0,0xfl,Oxf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa,Oxfb,Oxfc,Oxfd,Oxfe,Oxff

/*--~----------*,
/* Map_key
* Depending on keyboard, maps to 3270 Typewriter Scan Codes.
*/

/*---'
~O?D ~ap_Key(kb:ype,code,mcdifier)

E~:'Z :..:b:ype;
B'::'':"C:: code;
WO~J mcd.:..::.er;

WO?,C ou'C.p;

lkbtype == T75l { /* map MAC II -> 87 keyboard */
'" (rr;odifier & controlKey) (

'"(code== CxJ::i) (/* CTL-A ->ATTN key*/

:.: (r:-.od:.f.:e:- & op:.icr,!<ey)
ou:p '= (A~T_s2::: << 8);

Sample 3270 application 2-27

Working Draft #3 Apple 3270 AP/ Programmer's Guide

if (code == OxOF) { /* CTL-R -> RESET key */
outp = Ox0034;

outp
}

else {
outp
}

if (modifier & optionKey)
outp I= (ALT_SHIFT << 8);

return outp;

M2KB(code]; /*key-> 327x key*/

/* map ENHANCED -> 87 keyboard */
MACENC[code];

if (!outp) /*handle modifiers*/
if (modifier & optionKey)

outp I= (ALT_SHIFT << 8);
if ((modifier & shiftKey) I I (modifier & alphaLock))

outp I= (UP_SHIFT << 8);

return outp;

September 74, 1988

/*---'
/* StXlate
* translates the OIA characters for output.
*/

/*---•/
void StXlate(bptr,len)

BYTE *bptr;
BYTE len;

BYTE i;

•
for (i=O; i<len; i++)

(bptr+i) = sl_tbl[((bptr+i))];

2-28 Chapter 2: 3270 AP! Application Guidelines

ic. ~·".·
' ;

•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 14, 1988

Chapter 3

API Service Requests

(~
•

•

('.·
-';

3-1

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74. 1988

Purpose

Format

Parameters

Definitions

Documentation format of each API call
This chapter contains the specifications for all of the API calls. The calls are
described in alphabetical order by call name, with each call beginning on a new page
with the name of the call at the top.

•:• Note-. For a functional grouping of the calls, see Table 1-X in Chapter 1 of this
manual.

The description of each call contains the following categories in the following format:

This section defines the intent of the call.

This section shows the structure of the call in the following format:

API_call (&req_block, asyncFlag);

This section lists the parameters and their types, and includes a comment about
whether the parameter is passed, returned, or passed and returned, as shown here:

TYPE
TY?E

*firstParm
second_parm;

/* passed */
/* returned */

Some calls use a modifiers parameter. Such calls, if you don't specify any of the
supplied constants, have a default mode of operation. If the default mode doesn't suit
the needs of the application, the application can use the supplied constants to tailor a
call to its requirements.

For example, Disconnect_From_PS normally breaks the logical connection bet'<;veen
the application and a presentation space and terminates the underlying host session
that supports the presentation space. However, if you supply the
DP_KEEP_SESSION constant to the modifiers parameter, the driver breaks the
logical connection but does not terminate the underlying host session.

A particular driver may support none, some, or all of the modifier values. If a request
has an unsupported modifier set, the driver returns MOD_UNSUPP_ERR.

•!• Note: The API Get_Host_Connection_Info call returns information about the
calls and modifiers supported by a particular connection method.

This section defines each of the parameters.

3-2 Documentation format of each AP! call

•
•

0

Working Draft #3

Description

Example

Errors

•
•

Apple 3270 AP/ Programmer's Guide September 14, 1988

This section provides any additional description not covered by the purpose (some
calls do not require additional description).

This section, when present, provides an example of the call in the following format:

req_blk,api_req.ref_con = API_REQ_CONNECT_SESS;

last_request = API_REQ_CONNECT_SESS;

req_blk.api_req.sess_id = -1;

if (err = Conne~t_Session(&req_blk))

ErrorMessage("Connect_Session Error",err);

return 0;

Do_Get = FALSE;

Do_Disp = FALSE;

return l;

The example is taken from the sample terminal-emulation application given in
Chapter 2.

This section lists the most notable errors that the -interface code or the driver can
return, iri the following format:

NAME OF ERR Description of the error as it applies to the call

Errors that can occur for all calls-such as invalid connection ID, PS ID, or
parameter values-aren't listed.

Documentation format of each API call 3-3

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 1988

Purpose

Format

Parameters

Definitions

Activate_Prt_Sess

This 3270 AP! call instructs the driver to allocate a connection to a printer session and
make that session available to the host.

•!• CUTnote: A CUT driver cannot support this call.

If an underlying host session exists at the time this call is issued, and the
AP S _KEEP_ SES s ION modifier is specified, the driver ignores all of the passed
parameters except ret_ps_id and retains the printer session parameters in effect
prior to the call.

Activate Prt Sess (&req_block, asyncflag);

BYTE prt_type; /* passed */

WORD prtbuf_size; /* passed */

BYTE *query_replyp; /* passed */

WORD query_reply_len; /* passed .,. I

BYTE *ebc_dbc_tabp; /* passed */

BYTE modifiers; /* passed */

BYTE ret.__ps_ id; /* returned */

/*modifiers */
#define APS_KEEP_SESSION OxOl

asynci'laq

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

ASYNC

SYNC

ps_id

Specify this constant to return control immediately to the caller.

Specify this constant to prevent control from returning until the request
completes.

For this call, this parameter in the request header specifies the printer session ID
rather than the presentation space ID.

3-4 Activate_Prt_Sess

•
•

0

Working Draft #3

(
~· ..

··.
o'

v, ~~

•

Apple 3270 AP/ Programmer's Guide September 74, 7988

If you want your application to connect to any available printer session rather than to
a specific session, place OxFF in ps_id. The driver returns the ID-in the
ret _ps _id parameter-of a specific printer session that can support at least one of
the types of printer data specified in the prt_type parameter.

To connect to a particular printer session, place a specific printer session's ID in
ps_id. If the call is successful, the driver duplicates the printer session ID in
ret_ps_id.

prt_type

This BYTE normally specifies the type of printer data that the application can
support, as follows:

APS DSC

APS LUl

APS DSC_OR_LUl

DSC support

LU type 1 support (SCS or SCS/IPDS support)

Both DSC and LU 1 support.

However, if a driver is employing the SNA host protocol, prt_type specifies what
type of Bind the driver will accept, as follows:

APS DSC

APS LUl

APS DSC OR LUl

prtbuf_size

LU type 3 bind

LU type ·1 bind

Either LU type 1 or LU type 3 bind

For DSC mode, this WORD specifies the size of the print buffer that the application can
support.

For SCS mode, this WORD specifies to the driver the size of the buffer the driver should
create to manage incoming data from the host. For this mode, the buffer size affects
the maximum RU size and pacing count that can be accepted by the driver in the
Bind.

For both modes, the buffer size should be at least 4K to allow full emulation of a
3287printer or a 3289 printer. The maximum size that the application can specify is
limited by the driver's buffer capacity returned in the max_prtbuf size
parameter of a Get_Host_Connection_Info call.

*query_replyp

Activate_Prt_Sess 3-5

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

This POINTER points to a buffer that contains Query Reply structured fields indicating
the features the session can support. The Query Reply structured fields must be
contiguous in the buffer. The driver supplies Query Reply (Null), Query Reply
(Summary), or both as needed when a Read Partition (Query) structured field is
received. If your application uses Query Reply fields, it must supply all other Query
Replys.

If you do not want to provide Query Reply fields, pass a J'.:1L pointer for this
parameter. The driver then formats Query Reply fields for Color, Highlighting,
Implicit Partition, Usable Area, and Character Set for DSC sessions only. No Query
Reply fields are formatted for LUl sessions.

If your application supports SCS or IPDA data, the application must format the
appropriate query replys and send them to the host by way of a Send_Prt_Data call.

query_reply_len

This WORD specifies the length, in bytes, of the Query Reply structured fields.

*ebc_dbc_tabp

This POINTER points to a table that translates EBCDIC values to 3270 device buffer
codes. This parameter.applies only when the Prt_Type parameter is set to one of the
constants that indicate that DSC is supported.

The table is used to translate EBCDIC code received from the host application to
device buffer codes. The driver uses this table to maintain an image of the printer
buffer in DBC format.

The 256-byte array is indexed by an EBCDIC value. Each array element contains a •
3270 device buffer code point falling in the range OxOO through OxBF. (The range OxCO
through OxFF is reserved for attributes.)

modifiers

This BYTE contains the modifiers for the Activate_Prt_Sess call, as follows:

APS_KEEP_SESSION

ret_ps_id

Specify this constant to instruct the driver to retain the current host
session if it exists and to ignore all other parameters specified in this
call. If you don't specify this constant, the host session is
terminated (if it exists) before being re-established.

This I3YrE returns the specific printer session ID.

3-6 Activate_Prt_Sess

C' I :
'

•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 1988

Description

Errors

For the types and formats of the Query Reply s to be sent to the host, see the 3270
Data Stream Programmer's Reference (GA23-0059) published by IBM.

If the driver is employing the SNA host protocol, the following notes apply:

For a DSC Bind,you can specify a print buffer larger than 4K. Such a buffer is useful
for supporting host applications that are not display-oriented and can take full
advantage of a larger buffer size to increase throughput. For more details about the
relationship between the bind and print buffer use, see the 32 74 Description and
Programmer's Guide (GA23-0061) published by IBM.

For an SCS Bind, tne smaller the buffer, fewer and/or smaller RCs that can be stored
and the longer the driver must wait to send a pacing response. A 4K buffer is
recommended as the minimum; a 32K buffer is more than necessary. Refer to the
IBM 3174 Functional Description (GA#???) for more information.

None

Activate_Prt_Sess 3-7

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Check_Session_Bind

Purpose This 3270 API call allows an application to check whether a host session exists, and to
wait for the session to be established if the session doesn't exist.

Important Check_Session_Bind applies only to SNA connections.

Format

Parameters

Definitions

If the LU session is type 2 or 3, the call also indicates the sizes of the default and the
alternate presentation spaces.

Check_Session_Bind (&req_block, asyncFlag);

LONG wa:.:_-::..me; /* passed */

/* returned '"/
WORD default_ps_size; /* returned */

WORD alt_ps_size; /* returned */

asyncFl.ag

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

ASYNC

SYNC

ps id

Specify this constant to return control immediately to the caller.

Specify this constant to prevent control from returning until the request
completes.

This parameter in the request header specifies the PS or the printer session ID.

wait time

This LONG parameter specifies the maximum amount of time that the driver should
wait for PLC-SU..: session establishment. If the timeout period expires, the driver
returns TI.V.i.EOUT ERR.

3-8 Check_Session_Bind

•

•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 14, 1988

Description

The value passed represents a number of 100-millisecond ticks. There are two special
values, as follows:

OxFFFFFFFF

0

lu_type

Specify this value to instruct the driver to wait forever; that is, the
driver will never return a TIMEOUT ERR.

Specify this value to instruct the driver to return TIMEOUT ERR
immediately if the PLU-SLU session doesn't exist at the time of the
call.

This BYTE returns the LU type of the current session as follows:

WSB LUl

WSB LU2

WSB LU3

Indicates that the current session is an LU type 1 session.

Indicates that the current session is an LU type 2 session.

Indicates that the current session is an LU type 3 session.

default_ps_size

This WORD IS valid only if lu_type is set to the WSB_LU2 or WSB_LU3 constant.
The parameter contains the default presentation space dimensions passed when the
session was bound. The number of rows is in the high-order byte; the number of
columns is in the low-order byte .

If lu_type is set to WSB_LU3, and this parameter and the alt_ps_size
parameter are both 0, the host is indicating that the printer (that is, the application)
should use the full capacity of its print buffer. The capacity of the print buffer is
specified in the prtbut_size parameter of the Activate_Prt_Sess call.

alt_ps_size

This \X-'ORD IS valid only if lu_type is set to the WSB_LU2 or WSB_LU3 constanr.
The parameter contains the alternate presentation-space dimensions passed in the
Bind. The number of rows is in the high-order byte; the number of columns is in the
low-order byte. If lu_type is set to WSB_LU3, and this parameter and the
default_ps_size parameter are both 0, the host is indicating that the printer
(that is, the application) should use the full capacity of its print buffer. The capacity
of the print buffer is specified in the prtbut_size parameter of the
Activate_Prt_Sess call.

If the underlying host protocol is S:-.JA, an application can issue this call to verify that a
host session exists before it issues calls to retrieve printer data.

Check_Session_Bind 3-9

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Errors TIMEOUT ERR This error indicates that the time specified in
wait time was exceeded before the session was
established.

3-10 Check_Session_Bind

•

c /

(

•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 1988

Purpose

Format

Parameters

Definitions

Description

Example

Errors

Close_Host_Connection

This 3270 API call closes a connection method. Issue the call when your application
no longer requires the services of a particular connection method.

This call immediately terminates the connection method, and any held
requests-such as Get_ Update-are discarded.

Close_Host_Connection (&req_block, asyncFlag);

None

asyncFlag

This flag is ignored for this call.

The system reads the conn_id parameter in the specified &req_block to
determine which driver and connection method to close.

The following example, taken from the sample application presented in Chapter 2 of
this guide, shows a statement that closes the host connection if an error is made in the
Connect_ To_PS call.

if (err= Connect_To_PS(& (dft[session]->req_blk) ,ASYNC))
ErrorMessage("Connect_To_PS Error",err);
Close_Host_Connection(&dft[session]->req_blk);
Term_3270_API(api_vars);
:-et.:.::::: .:ALSE;

:\"one

Close_Host_ Connection ,... , ,
,j- ! :

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 14, 1988

Purpose

Format

Parameters

Connect_To_PS

This 3270 API call requests a presentation-space ID so that an application can
establish a logical connection to a presentation space. The call also provides the
application with the option to retain an existing underlying host session and its
parameters.

Presentation space IDs (ps _id) range from 1 to the maximum number of
presentation spaces supported by a particular connection method. You can get the
IDs of the available presentation spaces by using an Open_Host_Connection call or
a Get_Host_Connection_Info call.

(• DFT-CU note: If the host connection method is OFT-based or CU-based, you must
pass additional translation tables as parameters to configure the underlying
presentation-services component. These parameters allow an application written
for a CUT emulation to be used transparently in a DFI'- or CU-emulation
environment.

If an underlying host session exists at the time this call is issued and the modifiers
parameter specifies the CP_KEEP_SESSION constant, all the passed parameters
except the ps_id parameter are ignored. The session parameters in effect prior to
the call are retained.

Ccnnect_To_PS (&req_blk, asyncFlag);

BYT::: *asc_dbc_tabp; /* passed */

BYTE *dbc_asc_tabp; /* passed */
BYTE color _supp; I* passed */

B':::"r'E modifiers; /* passed "/

/" ::~e :c:.lcwir.g :Passed pa!'a:ne1:.e~s apply O:lly -~ :J?:' ~·· T/ wV v- vv

s-.: ruc-c !<tab rec *keybd_tabp; /" passed - DFT v.
,.. .. ': cr.:..y'Jf1 ' - vv

f;OR:i ... l<eybd_-:ab_len; / ... passed - ~-~ ~·· :::::y "/ :..,t ... v-
BYTE '*dbc _ebc_~abp; /* passed - "~~ o.1: - or ,... .. '!

"'" o::::..y "I I

3Y'T'l:" "ebc dbc _tabp; /* passed - - DF: or c:; or.::..y "I
BY"'"' *query-replyp; ; ... passed J!'':' or ~·· o::_y T/ '-v

WOR:J query-re?2..Y_ len; /* passed - :;:: er Ct: o~.:.J' "I
3v~,,. ··- wtyp~_pass_da~ap; /* passed - :JF: ~ ... ~., o::::..y ... / vv

WORD type_pass~ciata_le~; /* passed - JF: er ..-r':'
'-v or.2..y "I

BYTE scrn er:lul; - /" passed - !)E'~ ~~

"'- c:; o::::.·1 ... I

BY:~ :"'~U~l loc~; ; ... passed - J?: ~- ~~ o::-.:.y w I -
/* re-ct:r:;ed 'Ill'/

3-12 Connect_ To_PS

c

•

0

•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

/*modifiers */

Definitions

#define CP_KEEP_SESSION

struct ktab rec

} ;

BYTE descriptor;
BYTE shift_code;
BYTE scan_code;
BYTE value;

conn id

OxOl

This field appears in the request header, and specifies the connection method to be
used for this connection.

port_id

This field appears in the request header, and specifies the ID of the port to be used for
this connection.

ps id

This field appears in the request header. If you want your application to connect to
any of the available presentation spaces, place OxFF in ps_id. Connect_To_PS
then returns a specific presentation-space ID in ret_ps_id.

If you want your application to connect to a specific presentation space, place the ID
of that space in ps_id. Presentation-space IDs (ps_id) can be from 1 to the
maximum number of presentation spaces supported by a particular connection
method. If the call is successful, Connect_To_PS then duplicates the specified
presentation-space ID in ret_ps_id.

asyncFlag

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

• i:\.SYNC

SYNC

Specify this constant to return control immediately to the caller .

Specify this constant to prevent control from returning until the request
completes.

Connect_To_PS 3-13

Working· Draft #3 Apple 3270 AP! Programmer's Guide September 14, 1988

*asc_dbc_tabp

This POI:\'TER points to a table that translates Macintosh ASCII into 3270 device­
buffer codes. The driver uses this table to map Macintosh ASCII codes received in an
API request. The 256-byte array is indexed by an ASCII value. Each array element
contains a 3270 device- buffer code point in the range OxOO through OxBF. If you want
your application to send only device-buffer codes to the driver, set this pointer to ~1L
to indicate that no translation is required.

*dbc_asc_tabp

This POII\'TER points to a table that the driver uses to convert 3270 device-buffer
codes into Macintosh ASCII codes before presenting the codes to the application.
The 256-byte array is indexed by a device buffer code (index values OxOO through OxBF
are data code points; OxCO through OxFF are attribute code points). Each array
element contains an ASCII code point If you want your application to send only
device buffer codes to the driver, set this pointer to NIL to indicate that no translation
is required.

color_supp

This BITE specifies the type of color support that the application needs. The type of
color support affects how the driver sets the color bits in the DAB.

•:• Note: If the presentation space is unformatted, the color returned by the driver is
always green unless the CP _NO_COLOR constant is specified.

You can specify the following color support modes:

CP _NO_COLOR Specify this constant to always set the DAB color bits so that they do
not support color (x'OOO').

CP_2_COLOR

CP 4 COLOR

3-14 Connect_To_PS

Specify this constant for two base colors and no extended colors.
The driver examines only the field attribute to determine the color
setting for the DAB. The driver returns CK_WHITE if the
intensified bit is set in the field attribute; if the bit is not set, the
driver returns CK GREEN.

Specify this constant for four base colors and no extended colors.
The driver examines only the field attribute to determine the color
setting for the DAB, and returns one of the following colors:

CK_GREEN
CK RED

CK BLUE
CK_ WHITE

Unprotected, normal intensity
lJnprotected, intensified
Protected, normal intensity
Protected, intensified

•

0

•

c··

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 1988

CP 2 COLOR EXT
Specify this constant to support extended colors with two base
colors.

The color setting in the DAB is a copy of the EA.B color setting with
this exception: When extended color is in effect (that is, when the
base color override bit is set to 1) and when the color bits in the
EAB are set to the default values, the driver examines the field
attribute and sets the DAB to either white for intensified fields or
green for non-intensified fields. When base color is in effect (that
is, when the base color override bit has been reset to 0), the driver
ignores the EAB and sets only white and green, in the same fashion
as for CP 2 COLOR.

CP 4 COLOR EXT - - -

modifiers

Specify this constant to support extended colors with four base
colors. Doing this causes much of the same behavior as
CP_2_COLOR_EXT except that, when base color is in effect (that is,
when the base color override bit has been reset), colors are set in
the same fashion as for CP 4 COLOR.

This BYTE contains the modifiers for the Connect_To_PS call, as follows:

CP KEEP SESSION

*keybd_tab

Specify this constant to instruct the driver to retain the current host
session if it exists and to ignore all parameters except ps _id in
the next Connect _To_PS call. If you don't specify this constant,
the host session is terminated (if it exists) before being re­
established.

This POINTER points to a keyboard translation array.

•!• CUT note: CCT drivers ignore this parameter.

Each element in the variable-length array must contain a value specifying the
following information:

descriptor This BYrE identifies the type of key as one of the following:

KT REGULAR

KT CONTROL

KT DE.P-.D KEY

OxOO

OxOl

Ox02

Text or numeric character

Control key

Dead key

Connect_io_PS 3-15

Working Draft #3

shift code

scan code

value

Apple 3270 AP/ Programmer's Guide September 74, 7988

KT DEAD KEY TERM
- - - Ox03

KT APL TEXT Ox04

Dead-key terminator

APL key

Specify KT_DEAD_KEY or KT_DEAD_KEY_TERM only if the
keyboard type being emulated supports dead keys. See the
description of this call for more details about the descriptor
records.

This BYTE can be one of the following:

KT_NO_SHIFT

KT_UP_SHIFT

KT ALT SHIFT - -

OxOO

OxOl

Ox02

This BYTE contains the scan code for the keyboard type being
emulated. Do not define scan codes for the shift keys Shift Lock
(Caps Lock), Left Shift, Right Shift, and Alt Shift; shift_ code
provides the scan code definitions.

In the case of KT_REGULAR, KT_DEAD_KEY, and
KT_DEAD_KEY_TERM descriptor records, this BYTE is a
displayable EBCDIC code value. In the case of a KT_ CONTROL
descriptor record, value identifies a particular 3270 control key.
See Appendix Bin this guide for a table of control-key values.

keybd_tab_1en

This WORD. specifies the length, in bytes, of keybd_tab.

•:• CUT note: Cl,JT drivers ignore this parameter.

*dbc_ebc_tabp

This POI'.\1ER points to a table that translates 3270 device-buffer codes to EBCDIC
values.

•!• CUT note: CCT drivers ignore this parameter.

If the driver is maintaining the PS in EBCDIC, the driver uses the specified table to
translate device-buffer codes received from an application request or through the
ASCII-to-DBC table. If the driver is maintaining the PS in DBC format, the driver uses
the specified table when data is transmitted to the host. The 192-byte array is indexed
by a 3270 device-buffer code point (OxOO through OxBF). Each array element contains
an EBCDIC code point.

3-16 Connect_To_PS

•

0

('

(
•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

*ebc_dbc_tabp

This POINTER points to a table that translates EBCDIC values into 3270 device buffer
codes.

•:• CUT note: CUT drivers ignore this parameter.

The driver uses the table to translate EBCDIC code received from the host and
keyboard scan codes received from an application into device-buffer codes. The 256-
byte array is indexed by an EBCDIC value. Each array element contains a 3270 device
buffer code point falling in the range OxOO through OxBF. (The range OxCO through
OxFF is reserved for attributes.)

*query_replyp

This POINTER points to a buffer containing Query Reply structured fields that indicate
the featues the application can support.

•:• CUT note: CUT drivers ignore this parameter.

The Query Reply structured fields must be contiguous in the buffer. If your application
uses Query Reply fields, the driver supplies Query Reply (Null), Query Reply
(Summary), or both as needed when a Read Partition (Query) structured field is
received. Your application must supply all other Query Reply fields.

If you do not want to provide Query Reply fields, pass a NIL pointer for this
parameter. This technique allows the driver to use configuration information from
the Open_Host_Connection call and other information in this call to format Query
Reply fields for color highlighting, implicit partition, reply mode, usable area, and
character set.

query_reply_len

This WORD specifies the length, in bytes, of the Query Reply structured fields.

•:• CUT note: CUT drivers ignore this parameter.

*type_pass_datap

The POINTER points to a number of structured field descriptors, with each descriptor
structured as follows:

Byte 2 reply/no-reply flag

Byte 1 High-order byte of structured field ID or OxFF

Byte 0 Low-order byte of structured field ID

•!• CUT note: CCT dri,·ers ignore this parameter.

Connect_To_PS 3-1 7

Working Draft #3 Apple 3270 AP! Programmer's Guide September 14, 7988

This POINTER applies only if the driver supports the Get_Passthru_Data call. If the
driver doesn't support the Get_Passthru_Data call, it ignores the pointer. Set this
parameter to ~11 if your application doesn't issue Get_Passthru_Data calls.

The array is terminated with an OxFFFF. Structured field IDs that are 2 bytes long
occupy bytes 1 and 0. Structured field IDs that are 1 byte long have OxFF in byte 1 with
the ID in byte 0.

Byte 2 indicates if a response is required from the application to the structured field.
Certain structured fields do not require a response at the host communication level;
any detected errors are dealt with at the application level (for example, DO structured
fields). If so, byte 2 should be set to the value of the constant CP _NO_ REPLY.

Other structured fields requiring a response at the the host communication level (that
is, Load PS) should have the byte set to the CP_REPLY constant. Based upon this
byte, the driver sets the data_end ·parameter to GPD_END or GPD_END_REPLY
in the Get_Passthru_Data call.

When the driver receives a structured field with an ID that matches one of the IDs in
the array, it buffers the structured field. The structured field is posted to the
application when it issues a Get_Passthru_Data call or passed immediately if a
Get_Passthru_Data call is outstanding. If the structured field requires a reply, the
driver is suspended from any further processing on the session until the application
issues a Post_Passthru_Reply.

You should specify those structured fields in this array which the driver cannot
process, but which are the application's responsibility. Thus, the array is intended to
provide your application access to special structured fields, such as DO structured
fields (to support IND$FILE file transfer) or APA structured fields (to support vector
graphics support). Normally, your application should entrust the processing of the
other structured fields to the driver. Refer to the driver's documentation to find out
what structured fields it can support.

If an application specifies the destination/origin structured field (OxOF02) in the
array, the following applies:

- ~·hen the driver receives a destination/origin structured field whose ID is other
than 0 (the value associated with the display), it for>vards the destination/origin
structured field to the application and all structured fields that follow, whether or
not their types are specified in the array, until the destination reverts to the
display. At that time, only specified structured fields types are again forwarded to
the application.

:J To allow access to the INCTRL field, all destination/origin structured fields will be
passed to the application, whether the ID field is set to the base display (OxOOOO) or
to a particular destination.

type_pass_data_len

3-18 Connect_ To_PS

•

C
~··

I ,

(

•

Working Draft #3 Apple 3270 AP! Programmer's Guide September 74, 7988

Description

This WORD specifies the length, in bytes, of the data pointed to by the
*type_pass_datap parameter. You can obtain the number of structured field
descriptors by dividing this parameter by three.

•!• CUT note: CUT drivers ignore this parameter.

scrn ernul

This BYTE specifies the screen size of the 3278 terminal that the application is
emulating, as follows:

Model Constant Default screen size Alternate screen size

Model 2 CP MOD 2 1920 1920

Model 3 CP MOD 3 1920 2560

Model 4 CP MOD 4 1920 3440

Model 5 CP MOD 5 1920 3564

•!• CUT note: CUT drivers ignore this parameter.

nurn lock

If set to TRUE, this BYTE instructs the driver to support numeric lock.

•!• CUT note: CUT drivers ignore this parameter.

If num_lock is TRUE, and the application attempts to write data other than the
characters 0 through 9, decimal sign, minus sign, or DUP into a numeric field, the
driver displays an input-inhibited condition of X-NUM in the OIA.

If set to FALSE, this BITE disables numeric lock.

ret_ps_id

This returned BITE identifies the PS reserved for a particular host session.

Scan codes associated with regular, dead key, and dead key terminator descriptors
should map to displayable EBCDIC code points. You can use regular scan codes for
normal text and numeric characters.

•!• DFTnote: For a DFT connection, the presentation-space ID (ps_id) returned by
the Connect_To_PS call always maps to the same underlying logical terminal; that
is, PS ID 1 maps to logical terminal 1, PS ID 2 maps to logical terminal 2, and so on.

Connect_To_PS 3-19

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Example

Two descriptor types-<lead key and dead-key terminator-support the use of dead
keys. The dead key descriptor record identifies the dead key scan code and its
EBCDIC value. Immediately following this record is at least one dead-key terminator
record. The dead-key terminator records inform the driver of each legal scan code
that can be combined with the preceding dead-key scan code. Each dead-key
terminator value gives the EBCDIC value of the composite character. See IBM 3270
Information Display System Character Set Reference (GA27-2837) for further
information.

Scan codes associated with control keys map to special encoded values which identify
3270 control keys. The scan codes and keys associated with them are shown in
Appendix B of this guide.

The following example, taken from the sample application presented in Chapter 2 of
this guide, sets up the API request block and issues the Connect_To_PS call.

dft[session]->req_blk.api_vars = api_vars;
dft[session]->req_blk.net_addr.aNode = O;
dft[session]->req_blk.port_id =Slot;
dft[session]->req_blk~io_compl =nil;
dft(session)->req_blk.conn_id = saved_conn_id;
dft[session]->req_blk.ps_id = OxFF;
dft[session]->req_blk.connps.keybd_tabp = ktab;
dft[sessionJ->req_blk.connps.keybd_tab_len = sizeof(ktab);
dft[session]->req_blk.connps.dbc_ebc_tabp dbc_ebc;
dft[session]->req_blk.connps.ebc_dbc_tabp = ebc_dbc;
dft[sessionj->req_blk.connps.dbc_asc_tabp dbc_asc;
dft[session]->req_blk.connps.asc_dbc_tabp = asc_dbc;
dft(session]->req_blk.connps.color_supp = CP_4_COLOR_EXT;
dft[sessionJ->req_blk.connps.num_lock =FALSE;
dft[session]->req_blk.connps.scrn_emul = CP_MOD_2;
dft[session]->req_blk.connps.query_reply_len = O;
dft(sessionJ->req_blk.connps.query_replyp =nil;
dft(sessionJ->req_blk.connps.type_pass_data_len = O;
dft[session}->req_blk.connps.type_pass_datap = n~l;
dft~sessicn]->=eq_b:%.co~~psorncd~fiers = NC_~c:s;

!* ErrorMessage(''Co~nect_To_PS session'',sess~o~); ~;

/• junk= & (d:t[sessionj->req_blk); */
/•Debugger();•/

~·& (err = Cor.nec:._To_?S { & (dft [sess:..onj ->req:_b:.~J, ASY~C))
ErrorMessage ("Cor.nec:._To_PS E:::-:::-or", e:?:'r);
Close_Hos~_Connec~ion(&df~[sessionj->~eq_Olk);

Term_3270_A?I(api_va=s);
re-:u=n FALSE;

~C_CC~N~c:_:c_PS;

re:.:.;::n !R:JE;

3-20 Connect_To_PS

•

Working Draft #3

Errors

(
•

Apple 3270 AP/ Programmer's Guide September 74, 7988

PS UNSUPP ERR

PS UNAVAIL ERR

This error indicates that a logical terminal does not
support the presentation space or that the specified
ps_id was not in the range of valid IDs.

If OxFF was passed in ps_id, this error indicates that
no more presentation spaces are available. If a
specific ID was passed, this error indicates that the
caller (or another application) has already
established a connection with that PS.

Connect_ To_PS 3-21

Working Drott #3

Purpose

Format

Parameters

Definitions

Apple 3270 AP/ Programmer's Guide September 14, 1988

Copy _From_Buff er

This 3270 API call copies all or a portion of the PS, DAB, DABE, or EAB into the
application's corresponding destination buffers. Characters from the PS are
normally presented to the application in ASCII format; however, you have the option
of receiving them in DBC format by using the CFB_NO_TRANS constant in the
modifiers parameter.

Copy_ From_Buffer (&req_blk,

BYTE *ps_bufp;

BYTE *dab_bufp;
BYTE *dabe_bufp;
BYTE *eab_bufp;
WORD de st offset; -
WORD num_bytes_to _copy;
WORD src_offset;
BYTE modifiers;

WORD num_bytes_copied;

/* modifiers */
#define CFB WRAP
#define CFB_NO_TRANS

asyncFlaq

asyncFlag) ;

/* passed */

/* passed */
. I* passed */

/* passed */
/* passed */
/* passed */
/* passed *I
/* passed */

/* returned*/

OxOl
Ox02

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

ASYNC

SYNC

Specify this constant to return control immediately to the caller.

Specify this constant to prevent control from returning until the request
completes.

*ps_bufp

This POINTER points to an application buffer designated to receive data from the PS.
Set this parameter to ;\lL if you do not intend to copy the PS.

3-22 Copy_Frorn_Buffer

,~

,~_j

•

0

•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

*dab_bufp

This POINTER points to an application buffer designated to receive data from the
Display Attribute Buffer. Set this parameter to NIL if you do not intend to copy the
DAB.

*dabe_bufp

This POI'.'<'TER points to an application buffer designated to receive data from the
Extended Display Attribute Buffer. Set this parameter to I\11 if you do not intend to
copy the DABE.

*eab_bufp

This POINTER points to an application buffer designated to receive data from the
Extended Attribute Buffer. Set this pararneter to l\11L if you do not intend to copy the
EAB.

dest offset

This WORD specifies the offset for the application buffers pointed to by the
*ps_bufp, *dab_bufp, *dabe_bufp, and *eab_bufp parameters. The
driver begins writing data to these destination buffers at the location indicated by the
offset.

src offset

This WORD specifies the offset in the source buffer at which point the driver begins
transferring data. This value cannot exceed the size of the PS minus 1.

num_bytes_to_copy

This WORD specifies the number of bytes to be copied into one or more of the
application's buffers. This number applies to each buffer for which a pointer is
supplied; that is, the driver will copy the same number of bytes into each destination
buffer specified. This number cannot exceed the size of the PS or, for that matter, the
DAB or the EAB, which are the same size as the PS.

modifiers

This BYTE contains the modifiers for the Copy _From_Buffer call, as follows:

CFB WRAP Specify this value to cause the copy operation to wrap to the
beginning of the PS if the operation encounters the end of the PS
before it finishes copying bytes from the source buff er.

Copy _From_Buffer 3-23

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 1988

CFB _NO_ TRANS Normally, the driver translates 3270 device-buffer codes into ASCII
characters using the table pointed to by the *dbc_asc_tabp
parameter of the Connect_To_PS call. However, if you specify
CFB _NO_ TRANS, the driver does not perform the translation. This
option allows your application to receive device-buffer codes in a
PS destination buffer. This applies only to the destination PS buff er
and has no bearing upon the destination DAB or EAB buffers.

num_bytes_copied

This WORD returns the number of bytes that were copied into each buffer.

Errors INP INHIBITED ERR

3-24 Copy_From_Buffer

This error indicates that the copy operation was
completed but that an input-inhibited condition was
present.

•

C.
'

•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 14, 7988

Purpose

Format

Parameters

Definitions

Copy _From_Field

This 3270 API call allows an application to copy a field from the PS to an application­
defined data area. Characters from the PS are normally presented to the application
in ASCII format; however, you have the option of receiving them in DBC format by
using the CFF NO TRF-.NS constant in the modifiers parameter.

Copy_rrorn_rield (&req_blk, asyncFlag);

WORD ps_offset;

BYTE *dest_bufp;

WORD rnax_bytes_to_copy;

BYTE *modifiers;

WORD nu:n_by~es_copied;

/* modifiers "/

#define CFF NO TRANS

asyncFlag

/* passed */

/* passed */

/T passed */

/* passed */

/* ret:irned

OxOl

*/

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

ASYNC Specify this constant to return control immediately to the caller.

SYNC Specify this constant to prevent control from returning to the caller until
the request completes.

ps off set

This WORD specifies a location in the PS where the driver begins to transfer data.

*dest_bufp

This POINTER points to a buffer that receives the field copied from the PS.

max_bytes_to_copy

This \VORD specifies the maximum number of bytes that the driver can copv into the
application's buffer. If the length of the field exceeds the \·alue of this parameter. the
dri\·er returns the error DA'.:'P.. X?ER TR.JNC ERR.

Copy _From_Field 3-25

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74. 7988

Description

Errors

modifiers

This BYTE contains the modifiers for the Copy_From_Field call, as follows:

CFF NO TRANS Normally, the driver translates 3270 de·vice buffer codes into ASCII
characters using the table pointed to by the *dbc_asc_tabp
parameter of the Connect_To_PS call. However, if you specify
CFF _NO_ TRANS, the driver does not perform the translation. This
option allows your application to receive device buff er codes in a PS
destination buffer, This applies only to the destination PS buffer
and has no bearing upon the destination DAB or EAB buffers.

num_bytes_copied

This WORD returns the number of bytes that the driver copied before the call
terminated.

The copy begins at the location specified in ps_offset and stops at the end of the
field. If ps_offset is positioned on an attribute byte, the driver copies the
attribute byte through the end of the field The driver returns an error message if it
reaches the end of the PS or the end of the destination buffer before it finishes
copying a field. Issue a Find_Field call to ascertain a field's starting point and length.

If the copy operation terminates normally at the end of the field, the driver returns
NO ERR.

DATA_XFER_TRUNC_ERR

END OF PS ERR - - -

INP INHIBITED ERR

PS_UNFMT_ERR

This error indicates that the driver encountered the
end of the application's destination buffer before the
driver finished copying a field from the PS.

This error indicates that the driver encountered the
end of the PS before it finished copying a field.

This error indicates that the copy operation
completed, but that the input-inhibited condition was
present.

This error indicates that the PS is currently
unformatted, so no fields exist.

3-26 Copy _From_Field

•

0

("•,

•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Purpose

Format

Parameters

Definitions

Copy_OIA

This 3270 API call obtains an untranslated copy of the operator information area
COIA). The call can also obtain the corresponding EAB image of the OIA.

Copy_OIA (&req_blk, asyncFlag);

BYTE

BYTE

BYTE

*oia_bufp;

"'oia_eabp;

modifiers;

/*modifiers*/

#defi~e CO_GET_GRP_INDS

asyncFlag

/* passed */

/* passed */

/* passed */

OxOl

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

Specify this constant to return control immediately to the caller. ASYNC

SYNC Specify this constant to prevent control from returning to the caller until
the request completes.

*oia_bufp

This POINTER points to the buffer designated to receive the image of the OIA. This
buffer must be at least 80 bytes long. If you also want the OIA group indicators to be
returned, the buffer must be 122 bytes long. Set this pointer to .:'\IL to prevent the
copying of the OL\ (and optional group indicators). See "The Presentation Space" in
Chapter 1 for more information about group indicators.

*oia_eabp

This POINTER points to the buffer designated to receive the E..'\.B image of the OL\.
This buffer must be 80 bytes long. Set this pointer to 0 to ~lL to prevent the copying of
the EAB image.

Copy_OIA 3-27

Working Draft #3 Apple 3270 AP/ Programmer's Gulde September 14, 1988

Errors

modifiers

This BYTE contains the modifiers for the Copy_To_OIA call, as follows:

CO GET GRP INDS
- - Specify this option to copy the OIA group indicators. The driver

None

returns the indicators in 42 bytes that immediately follow the 80-
byte OIA image pointed to by the *oia_bufp parameter.

3-28 Copy_OIA

•

0

(c
•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Purpose

Format

Parameters

Definitions

Copy _To_Field

This 3270 API call copies a string of data into a field in the PS. ASCII characters
supplied by the application are normally translated into DBC format; however, if you
prefer, you can also write DBC codes directly by setting the CTF NO TRANS

constant as described under the modifiers parameter.

Ccpy_Tc_Field (&req_blk, asyncFlag);

BV'T''t"
··~ *strp; /* passed *I

WORD num_bytes_to_copy; /* passed */

WORD ps_ off set; I* passed *I
BYTE: *modifiers; /* passed */

WO?-D nu~_bytes_copied; /* returned "'I

/* modi!iers */

#define CTF COPY MULT OxOl -
#define CTF NO TRANS Ox02 -

asyncE'lag

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

ASYNC Specify this constant to return control immediately to the caller.

SYNC Specify this constant to prevent control from returning to the caller until
the request completes.

*strp

This POINTER points to the source buffer containing the string that the driver will
copy into the PS.

num_bytes_to_copy

This WORD specifies the number of bytes to be copied from the application's source
buffer.

ps off set

Copy_To_Field 3-29

Working Draft #3

Description

Apple 3270 AP/ Programmer's Guide September 74, 7988

This WORD specifies a location in the PS where the driver begins writing data. The
location is where the copy should begin; that position cannot be part of the attribute
byte.

modifiers

This BYTE contains the modifiers for the Copy_To_Field call, as follows:

CTF COPY MULT
- This modifier allows a string to be dispersed into a number of

unprotected fields, beginning with the current field. The driver
copies bytes from the string buffer into contiguous unprotected
fields in the PS. The driver ignores autoskip fields (protected and
numeric bits set) in the midst of these unprotected fields.

The initial field to which ps_offset is positioned must be an
unprotected field or the driver will immediately return the error
WRITE_PROT_FLD_ERR. The copy operation terminates when
string data runs out or when the driver encounters a non-autoskip
protected field, in which casethe driver returns the error
WRITE PROT FLD ERR.

CTF NO TRA.."JS Normally, the driver translates characters in the source buffer to
3270 DBC format by using the translation table pointed to by the
*asc_dbc_tabp parameter in the Connect_To_PS call. By
setting the modifiers parameter to the value of
CTF _NO_TRANS, you instruct the driver to not translate the codes.
This allows your application to copy codes in DBC format directly •
into fields.

num_bytes_copied

This WORD returns the number of bytes copied to the PS before the call terminated.

The copy operation begins at the location specified in the ps_offset parameter
and stops at the end of the field. The driver returns an error message if it reaches
either the end of the source buffer or the end of the PS before it finishes copying or
writing a field. Attempts to write data into a protected field or the wrong type of data
into a field also generate errors.

The control unit must receive an AID key before it will transmit changes in the PS to
the host. Use the Send_Keys request to send an AID scan code.

The passed offset identifies where the copy operation should begin in the field. The
offset cannot be positioned on the attribute b-y1e.

Changes to unprotected fields cause the .Modified Data Tag (~!DD to be set.

3-30 Copy_To_Field

·c·····."·.· . '

•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Errors

Copy_To_Field allows only nonattribute data values to be written to a field. Use a
Copy_To_PS call with the modifier parameter set to the CTP_NO_CHECK
constant to copy data with values that fall into the range of attributes.

If the copy operation terminates normally at the end of the field, the driver returns
NO ERR.

DATA XFER TRUNC ERR

DATA ERR

END OF PS ERR - - -

INP INHIBITED ERR

PS UNFMT ERR

WRITE ATTR ERR

WRITE PROT FLD ERR

This error indicates that the driver encountered the
end of the application's source buffer before it
finished copying a field.

This error indicates that the data copied from the
source buffer contained an attribute value (OxCO
through OxFF) or that there was an attempt to copy
nonnumeric data into a numeric field.

This error indicates that the driver encountered the
end of the PS before it finished overwriting a field.

This error indicates that the copy operation
completed, but that the input-inhibited condition was
present.

This error indicates that the PS was unformatted.

This error indicates that the passed offset was
positioned on an attribute .

This error indicates that the application attempted to
write data into a protected field in the PS.

Copy_To_Field 3-31

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 7 4, 7 988

Purpose

Copy_To_PS

This 3270 API call permits an application to copy data directly into a presentation
space. ASCII characters supplied by the application are normally translated into DBC
format; however, if you prefer, you can also write DBC codes directly by setting the
modifiers parameter to the CTP _NO_TRANS constant.

Data from the source buffer specified by the application overlays some or all of the
PS. The driver preserves attributes and protected fields and checks data integrity as
part of the normal copy operation. You can override this feature, and write data to
any portion of the PS, by setting the CTP _NO_ CHECK constant as described under
the definition of the modifiers parameter.

Changes to unprotected fields cause the Modified Data Tag (MD1) to be set, unless
the modifiers parameter is set to the CTP _NO_ CHECK constant. Writing into a
protected field is not allowed unless the modifiers parameter is set to the
CTP NO CHECK constant.

Important Use the CTP _NO_CHECK constant with care. For example, an app:ication
supporting file transfer can use this value to write any data value into any
position in the PS, and the API won't protect the application if it does
something wrong.

Format

Parameters

Definitions

Copy_To_Ps (&req_blk, asyncFlag);

BYTE

WOR'.)

WOR'.)

wo:o

*src_bufp;

srG ~ff set.;

:'lum_Cy:.es;
ps_cf:se:.;

modi.fi.e:::s;

/* mcdifie:-s */
#de:ine CTP NC CHECK
#define CTP WRAP
#defi.~e CTP ~o TRA~S

asyncFlag

/* passed

/* passed
/* passed
;-. passed
;-. passed

OxOl
Ox02

Ox04

*/

*/

-.;
.. I

.. I

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

3-32 Copy _To_PS

•

. C·

Working Draft #3

(
•

Apple 3270 AP/ Programmer's Guide September 74, 7988

ASYNC

SYNC

Specify this constant to return control immediately to the caller.

Specify this constant to prevent control from returning to the caller until
the request completes.

*src_bufp

This POINTER points to a buffer whose contents are to be copied to the PS.

src offset

This WORD specifies the offset into the source buffer from which the copy operation
should begin.

num_bytes

This WORD specifies the number of bytes to copy from the source buffer to the PS. The
number of bytes cannot exceed the size of the PS.

ps off set

This WORD specifies the offset in the PS where the copy operation should begin. The
number of bytes cannot exceed the size of the PS minus 1.

modifiers

This BYTE contains the modifiers for the Copy_To_PS call, as follows:

CTP NO CHECK Normally, the driver validates data that is written to the PS, as
follows:

CTP WR!'.?

o Bytes in the source buffer that have attribute counterparts in an
unprotected field in the PS must match; if they do not, the
driver returns the error WRITE ATTR ERR.

o Bytes in the source buffer having nonattribute counterparts in
the PS must have data values that fall in the non-attribute range,
OxOO through OxBF; if they do not, the driver returns the error
DATA_ERR is returned. (If numeric lock is in effect, attempting
to write nonnumeric data into a numeric field also causes the
driver to return a DATA_ERR.)

Setting this modifier suppresses data validation; it allows an
application to write any data value into any position in the PS.

If this constant is specified, and the driver encounters the end of the
PS as it copies bytes from the source buffer, the copy operation
wraps to the beginning of the PS.

Copy_To_PS 3-33

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

01
CTP_NO_TRANS Normally, the driver translates characters in the source buffer to _)

Description

Errors

3270 DBC format by using the translation table pointed to by the
*asc_dbc_tabp parameter in the Connect_To_PS call. By
setting the modifiers parameter to the CTP_NO_TRANS
constant, you instruct the driver to not translate the codes. This
allows your application to copy codes in DBC format directly inro
the presentation space.

The Copy_To_PS request enables your application to copy data into a presentation
space. Data from the application's source buffer can overlay all or a portion of the
PS. The task that performs this operation preserves attributes and protected fields and
checks data integrity unless you specify modifier options in the call. For more
information about writing data to specific fields in a PS, see the Copy_To_Field call.

Changes to the PS are not transmitted to the CU until the application sends an AID key
by way of a Send_Keys call.

This request does not affect the DAB, EAB, and cursor position.

If a Get_ Update call is outstanding when this call is issued, changes to the PS caused
by a Copy_To_PS will be returned to the application.

DATA XFER TRUNC ERR - - -

DATA ERR

INP INHIBITED ERR

WRITE ATTR ERR

WRITE_PROT_FLD_ERR

This error indicates that the driver encountered the
end of the application's soUI:ce buffer before it
finished copying to the PS.

11lis error indicates that there was an attempt to write
an attribute value (OxCO through OxFF) into a
nonattribute position.

This error indicates that the copy operation was
aborted because an input-inhibited condition was
present.

This error indicates that an attempt was made to
overwrite an attribute with a different value.

This error indicates that the application attempted to
write data into a protected field in the PS.

3-34 Copy_To_PS

•

0

•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74. 7988

Purpose

Format

Parameters

Definitions

Deactivote_Prt_Sess

This 3270 API call instructs the driver to immediately deallocate a printer session,
dispose of any buffered data, and discard any held requests (such as a Get_ Update
request). The driver also makes the session unavailable to the host unless the
DPS_KEEP_SESSION constant is specified for the modifiers parameter.

•:• CUT note: CUT drivers cannot support this call.

After the application issues this call, attempts by the host to communicate with the
session will be rejected with a device unavailable error.

Deactivate_Prt_Sess (&req_block, asyncFlag);

modifiers; / passed */

/* modifiers */

#define DPS_KEEP_SESSION OxOl

asyncFlag

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

ASYNC

SYNC

Specify this constant to return control immediately to the caller.

Specify this constant to prevent control from returning until the request
completes.

ps_id

For this call, this parameter in the request header specifies the printer session the
application wants to deactivate.

modifiers

This BITE allows you to select options that control the way data in the presentation
space or the related application buffer are manipulated. These options are:

DPS KEEP SESSION
This option instructs the driver to not terminate the host session
supporting the PS.

Deactivate_Prt_Sess 3-35

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Errors PS INACTIVE ERR - -

3-36 Deactivate_Prt_Sess

This error indicates that the specified printer session
was never activated.

,0
·~,

•

0

('

•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 14. 1988

Purpose

Format

Parameters

Definitions

Example

Disconnect_From_PS

This 3270 API call instructs the driver to immediately break the logical connection to a
PS and discard any held requests (such as a Get_Update request), The driver also
makes the session unavailable to the host unless the DC_KEEP_SESSION constant is
specified for the modifiers parameter.

Disconnect_From_PS (&req_block, asyncFlagl;

BYTE modifiers; /* passed */

/*modifiers*/
#define DC KEEP SESSION OxOl

asyncFlag

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

ASYNC

SYNC

ps_id

Specify this constant to return control immediately to the caller.

Specify this constant to prevent control from returning to the caller until
the request completes.

For this call, this parameter in the request header specifies the printer session that the
application wants to deactivate.

modifiers

This BYTE contains the modifiers for the Disconnect_From_PS call, as follows:

DC KEEP SESSION - -
This modifier instructs the driver not to terminate the host session
supporting the PS.

The following example, taken from the sample application presented in Chapter 2 of
this guide, shows a case statement that terminates the connection when the user
quits the application.

case fi.leID:

Disconnect_From_PS 3-37

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

/*

switch (theitem) {
case quitCommand:

if (!dft [session]->last_request) {
dft[session)->req_blk.discps.modifiers NO_MODS;

ErrorMessage("Disconnecting session", session);
ErrorMessage("Disconnecting ps_id is",dft[session]->req_blk.ps_id);

*/ if (err= Disconnect_From_PS(&dft[session]->req_blk,ASYNC))

Errors

38

ErrorMessage("Glue Disc_PS Error",err);
DoneFlag = TRUE;
ClearConnect();
}

dft[session]->last_request
break;

default:
break;

break;

RC_DISCONNECT_FROM_PS;

PS INACTIVE ERR - - This error indicates that the application never
activated the specified printer session.

Disconnect _Fro m_PS

•

("
•

(•,

.

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74. 7988

Do_Special_Func

Purpose This 3270 API call allows an application to request that the driver execute a function
unique to itself. You could, for example, set operational parameters, initiate a
diagnostic, retrieve specific information pertaining to a driver, and so on.

Important Use this call sparingly, if at all. It defeats the purpose of an API if an application
has to know many details about a driver.

Format Do_Special_Func<&req_blk, asyncFlag);

Parameters

Definitions

BYTE

BYTE
BYTE

func_code;

*passed_infop;
*ret_infop;

asyncFlag

/* passed */

/* passed */

/* passed "/

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

Specify this constant to return control immediately to the caller. ASYNC

SYNC Specify this constant to prevent control from returning to the caller until
the request completes.

port id

For this call, this parameter in the request header specifies a particular port where the
function should be executed. If you want the function to apply to all ports, or to the
driver in general, pass OxFF for this parameter.

ps id

Set this parameter in the request header to one of the following values:

OxFF For the function to apply to all connected PSs

OxOO

A specific PS ID

For the function to apply to no connected PSs

For the function to apply to a particular PS

Do_Special_Func 3-39

Working Drott #3 Apple 3270 AP/ Programmer's Guide September 74. 1988

Errors

func_code

This BYTE specifies the function to be performed.

*passed_inf op

This POINTER points to a block of parameters that the routine needs to execute.

*ret_infop

This POINTER points to a block of memory into which the routine will return function
results.

SPEC_FUNC_FAILED_ERR This error indicates that the special request failed.

3-40 Do_Special_Func

•

0

(

,~,,

Working Drott #3 Apple 3270 AP! Programmer's Guide September 74, 1988

Purpose

Format

Parameters

Definitions

Find_Field

This 3270 API call searches for a field within a PS. The call can search the current,
next, or previous field. In addition, you can limit the search to protected fields or
unprotected fields.

The call returns the following items:

c an offset from 'i:he beginning of the PS to the beginning of the data portion of the
found field; that is, the offset to the byte immediately following the field attribute

o the field attribute

o the length of the data portion of the field

o an indication if the field wraps

Find Field (&req_blk, asyncFlag);

WORD ps_ offset; /* passed */

BYTE srch _type; /* passed ~1

WORD fnd offset; /* returned */ -
WORD len; /* returned */

WORD wrap_ len; /* returned ~1
BYTE at tr; /* returned */

/* srch _type*/
#define FF CUR FLD 1 -
#define FF NXT ANY 2
#define FF NXT UNPROT 3 - -
#de:'.:ir.e ?F NXT ?RC': 4 - -
#def i~e FF PRV A~':'. 5

#define FF P!<.V U~?:KO? 6 - -
#define FF PRV ?RO:' 7 - -

asyncFlag

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

ASYNC Specify this constant to return control immediately to the caller.

SYNC Specify this constant to prevent control from returning to the caller until
the request completes.

Find_Field 3-41

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

ps_offset

This WORD specifies the location in the PS where the search will begin for the type of
field specified in the srch_type parameter.

srch_type

This BITE specifies the type of field to be found, as follows:

FF_CUR_FLD

FF NXT ANY - -
FF NXT UNPROT

FF NXT PROT

FF PRV ANY - -
FF PRV UNPROT - -
FF PRV PROT - -
fnd offset

Finds the current field Oocated at the off set)

Finds the next field regardless of type

Finds the next unprotected field

Finds the next protected field

FindS the previous field regardless of type

Finds the previous unprotected field

Finds the previous protected field.

This WORD returns the offset from the beginning of the PS to the first byte following the
field attribute. If the designated field wasn't found, the driver sets the parameter to
OxFFFF.

len

This WORD returns the length of the field found, not including the length of the
attribute byte. If the field wraps to the beginning of the PS, the length returned
includes only the number of bytes from the beginning of the data portion of the field
to the end of the PS. For example, if an attribute occupies the last position in the PS,
len would be 0, and the wrap_len parameter would contain the length of the data
portion of the field.

wrap_len

If this WORD is not 0, it indicates that the field wraps to the beginning of the PS, and the
value of wrap_len is the number of bytes from the beginning of the PS to the end of
the field.

at tr

This BYTE returns the attribute associated with the field. See IBM 317413274 Control
Unit to Device Product Attachment Information (October 16, 1986) for an
explanation of the attribute-byte format.

3-42 Find_Field

0

Working Drott #3

Errors

Apple 3270 AP/ Programmer's Guide September 74, 1988

NOT_FOUND...._ERR

PS_UNFMT_ERR

This error indicates that the driver did not find the
specified type of field.

This error indicates that the PS was not formatted.

Find_ Field 3-43

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 1988

Purpose

Format

Parameters

Definitions

Errors

Get_ Cursor

This 3270 API call returns the position of the cursor in the PS.

Ge~_Cursor (&req_blk, asyncFlag);

WORD offset; /* returned */

asyncli'laq

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

ASYNC

SYNC

off set

Specify this constant to return control immediately to the caller.

Specify this constant to prevent control from returning to the cJ.ller until
the request completes.

This WORD returns the position of the cursor as an offset from the beginning of the PS.

None

3-44 Get_Cursor

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Purpose

Format

Parameters

Definitions

Get_ DSC _P rt_ Data

This request allows an application to retrieve DSC printer session data. The call is
held by the driver until data is received from the host The call completes when the
driver detects that the "Start Print" bit in the WCC has been set. The setting of this bit
indicates that the host has completed updating the print buffer and is a signal to
initiate printing of the buffer co~tents.

The application can specify whether it wants to copy the PS, DAB, DABE, or EAB
buffers. The number of bytes transferred to each buffer is equal to the current size of
the driver's buffer as specified by the host application (that is, either the default or
alternate size). The size of each of the buffers associated with ps_bufp,
dab_bufp, dabe_bufp, and eab_bufp should equal (or exceed) the value of
the prtbuf_size parameter in the Activate_Prt_Sess call.

The presentation-space data is returned in DBC format as specified in the table
pointed to by the *ebc_dbc_tabp parameter of the Activate_Prt_Sess call.

Get_DSC_Prt_Data <&req_blk, asyncFlag);

BYTE *ps_bufp; /* passed */
BYTE *dab_bufp; /* passed */
BYTE *dabe_bufp; /* passed */
BYTE *eab_bufp; /* passed */

LONG wait_time; /* passed */

WORD num_bytes_rcved; /* returned"/
BYTE buf - size - state; /* returned"'/
BV"!"'t" wee; /* returned"/
3V"'1'" end. ~,.,,~.

~ ...,.., , /" returned•/

asyncFlaq

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

Specify this constant to return control immediately to the caller. A SYNC

SYNC Specify this constant to prevent control from returning to the caller until
the request completes.

*ps_bufp

Get_DSC_Prt_Data 3-45

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 1988

3-46

This POINTER points to a buffer designated to receive data from the PS. Set this
. pointer to 1';1L if you do not intend to copy the PS.

*dab_bufp

This POINTER points to a buffer designated to receive data from the DAB. Set this
pointer to NIL if you do not intend to copy the DAB.

*dabe_bufp

This POINTER points to a buffer designated to receive data from the DABE. Set this
pointer to NIL if you do not intend to copy the DABE.

*eab_bufp

This POIJ\.'TER points to space designated to receive data from the EAB. Set this
pointer to NIL if you do not intend to copy the EAB.

wait time

This LO:NG parameter specifies the maximum timeout period that the driver should
wait for data. If the timeout period expires, the driver returns TIMEOUT_ERR.

The value passed represents a number of 100-millisecond ticks. There are two special
values, as follows:

OxFFFFFFFF

0

Specify this value to instruct the driver to wait forever for data; that
is, the driver will never return TIMEOUT_ERR.

Specify this value to instruct the driver to return TIMEOUT ERR
immediately if update data doesn't exist at the time of the ;.11.

num_bytes_rcved

This WORD returns the number of bytes that the driver transferred into one of the
application's receive buffers. The number of bytes transferred is the same for all
specified receiving buffers.

buf_size_state

This BYTE indicates whether the buffer is currently in its default or alternate size, as
follows:

GDP DEF1'.ULT S~ZE

TI1is value indicates that the buffer is currently in its default size.

GDP ALT SIZE This value indicates that the buffer is currently in its alternate size.

Get _DSC_Prt_Dota

(",,,

/

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

wee

This BYTE returns a copy of the Write Control Character (WCC). Bits 2 and 3 (using
IBM's numbering scheme) describe the printout format.

end_job

This BYTE, if returned as TRUE, indicates that the driver received notification at the
protocol level that the current print job has completed. If the notification has not
been received, the parameter is returned as FALSE.

Important This parameter is valid only if the underlying host communications protocol is
SNA. If the protocol is not SNA. the parameter always returns FALSE.

Description Other calls issued by the application to the session, with the exception of
Deactivate_Prt_Sess, are rejected while this call is outstanding.

A copy of the WCC is returned to permit the application to examine the printout
format bits. Because DSC data is validated by the driver before being conveyed to the
application, a DSC print operation can only fail because of external problems such as
a printer malfunction, or, for an application acting as a print spooler, for problems
such as a disk file becoming full, a disk volume becoming unavailable, and so on. An
application should deal with such non-recoverable conditions by sending a
Deactivate_Prt_Sess to render the session unavailable to the host.

Once print data is successfully retrieved via this call, it is lost at the driver level; that
is, another Get_DSC_Prt_Data does not complete until the host application once
again updates the print buffer and sets the "Start Print" bit in the WCC.

To increase throughput, an application may wish to employ a double-buffering
scheme. As soon as a Get_DSC_Prt_Data call completes, another one can be issued
immediatelyusing a different request block and receive buffers.

If the underlying host protocol is SNA:

'""' An application can continue to issue Get_DSC_Prt_Data calls until a
NO_HOST_SESS_ERR is returned. At that time, the application can issue a
Deactivate_Prt_Sess call to either deallocate control of the printer session or
retain control of the session and wait for another bind.

Get_DSC_Prt_Data 3-47

Working Draft #3

Errors

Apple 3270 AP/ Programmer's Guide September 74, 1988

o LU type 3 protocol is the same as LU type 2 protocol in that they both deal with a
presentation space and receive and process the data stream in an identical
manner. The chief difference is that printer orders may be embedded in the
presentation space. As with LU type 2, the current size of the PS depends on the
Erase/Write and Erase/Write Alternate commands received from the host
application and the Bind received. ·The current size of the PS is reflected in the
buf_size_state parameter. See the 3274 Description and Programmer's
Guide (GA23-0061) for more details about the relationship between the Bind and
Erase/Write and Erase/Write Alternate commands.

DAE UNSUPP ERR - -
DAEE_UNSUPP_ERR

EAE UNSUPP ERR - -
NO_HOST_SESS_ERR

PS_INACTIVE_ERR

TIMEOUT ERR

SESS_TYPE_ERR

This error indicates that the driver does not support
the DAB.

This error indicates that the driver does not support
the extended DAB.

This error indicates that that the driver does not
support the EAB.

This error indicates that the underlying host session
no longer exists.

This error indicates that the specified printer session
was never activated.

This error indicates that the interval specified in
wait_time was exceeded.

This error indicates that the application sent the print
request to the wrong type of session; the request is
valid only for DSC printer sessions.

3-48 Get_DSC_Prt_Data C~".· '.. I

Working Draft #3

Purpose

For mot

Porometers

Apple 3270 AP/ Programmer's Guide September 74, 7988

Get_H ost_ Connection_lnfo

This 3270 API call returns information about the connection method specified by the
conn_id parameter in the request block.

Get_Host_Connection_Info (&req_blk, asyncflag);

CCNN :NFC *conn_infop; /* passed and =etu=~edw/

typedef struct conn_info

st rue~

BYTE prod_id[4];
BYTE version[4];

·BYTE misc[B];
vendor;

BYTE conn_means;
BYTE drvr_type;
BYTE io_compl_supp;
BYTE timeout_supp;
BYTE eab_supp;
BYTE dab_supp;
BYTE dabe_supp;
LONG dev_feats_supp;
WORD reqs_supp[NUM_API_REQS];
WORD port_:r:ap;
s-:=·~c-:

s- ,

BYTE supported;
BYTE lu_type;
BY:'E: scrn_e!".:u2.;
BYTE connected;
WORD max_prtbuf_size;

ps ~NUM_PS];
port_info[NUM_PORTS];

CC:\~J :NFC;

Get_Host_Connection_lnfo 3-49

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Definitions conn_ id

3-50

This field appears in the request header, and specifies the connection method about
which information will be returned.

po:r:t id

This field appears in the request header, but is ignored for this call.

ps_id

This field appears in the request header, but is ignored for this call.

asyncFlag

This flag is ignored for this call.

*conn_infop

This POINTER points to a buffer in which the following information is returned:

vendor This parameter is a structure containing the following three fields:

prod_id

version

misc

Get_Host_Connection_lnfo

This field supplies a 4-byte ASCII string containing
one of the following constants:

ADFT Apple OFT

ACUT Apple CUT

SIMW Sim ware

DCAC OCA CUT

DCAD OCA OFT

APPL AppleLine

AVTC Avatar Ct:T

AVTD Avatar OFT

CXIC CXI Ct:T

CXID CXI OFT

This field supplies the version of the driver as a 4-byte
displayable ASCII string.

This field supplies 8 bytes of driver-specific
information.

C\
J

Working Draft #3

(',

,

conn_means

drvr_type

Apple 3270 AP/ Programmer's Guide September 74. 7988

This BYTE indicates that the emulated underlying connectivity
means is one of the following:

CUT

DFT SNA

DFT LOCAL

CU SNA

CU_LOCAL
OTHER

This BYTE indicates that the type of driver supporting the
connection is one of the following:

GI_TEMP_DRVR A temporary driver residing in the
application's heap

GI_PERM_DRVR A permanent driver residing in the system
heap

io comol supp
- • - This BYTE is set to TRUE if the driver can support a call to an I/O

completion routine at the interrupt level; the byte is set to FALSE if
not.

timeout_supp This BYTE is set to TRUE if the driver can support timeouts; the byte
is set to FAISE if not If the driver cannot support timeouts, then it
ignores timeout values in calls that specify them, such as
Get_Update and Get_Passthru_Data. The driver treats such calls
as though they were issued with a timeout value of wait forever
(OxFFFFFFFF).

eab_supp This BYTE is set to TRUE if the driver supports an EAB; the byte is
set to FALSE if not. If the driver does not support this type of buffer,
then it rejects calls that attempt to retrieve data from the EAB with
an EAE_UNSUPP_ERR error. See "The IB;\1 Attribute Buffers" in
Chapter 1 for more information.

dab_s"1pp This DYTE is set to TRUE if the driver supports a display attribute
buffer, FA.I.SE if not. If the driver does not support this type of
buffer, then it rejects calls that attempt to retrieve data from the
DAB with a DAB_UNSUPP_ERR error. See "Apple Attribute
Buffers" in Chapter 1 for more information.

Get_Host _ Connectlon_lnfo 3-51

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

3-52

dabe_supp This BYfE is set to TRUE if the driver supports extended DAB bytes
in the DAB, FALSE if not If the driver does not support this type of
buffer, then it rejects calls that attempt to retrieve data from the
DABE with a DAEE_UNSUPP_ERR error. See "Apple Attribute
Buffers" in Chapter 1 for more information. This byte is set to
FALSE if dab_supp is FALSE.

dev feats supp
- - This LONG parameter is a bitmap that indicates if a driver can

support the following device features:

reqs_supp

GI_APL_TEXT APL/Text

GI_DEAD_KEYS

GI_ATTR_SELECTION

GI PSS

Bits 4-31

Dead keys

Attribute selection (PSHICO)

Programmed symbol sets (PSS)

Undefined at the time of publication

This parameter is an array of 16-bit words indicating the API
requests and modifiers that the driver can support. The high-order
bit (15) of a word is set if the request is supported. If the request
supports keybds_supp modifiers, bits 0 through 14 indicate the
specific modifiers supported. The bit settings match the modifier
values. ,

Your application can access array elements by the symbolic names
defined for the request codes, as follows:

Get_Host_Connection_lnfo

Working Draft #3

(

port_map

par-: info

Apple 3270 AP/ Programmer's Guide

Word 0
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7
Word 8
Word9
Word 10
Word 11
Word 12
Word 13
Word 14
Word 15
Word 16
Word 17
Word 18
Word 19
Word 20
Word 21
Word 22
Word 23
Word 24
Word 25
Word 26
Word 27

Open_Host_Connection
Close_Host_Connection
Get_Host_Connection_Info
Connect_To_PS
Disconnect_From_PS
Send_Keys
Copy_To_PS
Copy _From_Buffer
Copy _To_Field
Copy _From_Field
Copy_OIA
Search_String
Find_Field
Get_ Update
Get_ Cursor
Set_ Cursor
Set_ Color_Su pport
Send_Passthru_Data
Get_Passthru_Data
Post_Passthru_Reply
Do_Special_Func
Activate_P rt_Sess
Deactivate _Prt_Sess
Get_DSC_Prt_Data
Get_LUl_Prt_Data

. Post_Prt_Reply
Send_Prt_Control
Check_Session_Bind

September 74, 7988

This WORD is a bitmap indicating the specific ports the driver is
managing. A value of 1 indicates that driver controls the port; a
value of 0 means indicates that the driver does not control the port.
For slots, bits 0 through 15 represent slots 0 through 15. For serial
ports, bits 0 and 1 represent the modem port and primer port,
respectively.

This parameter is a 16-elemem array. An array element is valid only
if its corresponding port_map bit is set to 1. Each array element
contains information about the presentation spaces or the printer
sessions that the port supports, as follows:

supported This BYI'E is TRCE if the driver supports the PS or
printer session. If the byte is set to FALSE, me
lu_type byte in this array is set to G:_xo_::.:: .. 7

and connected by:.e in this arrav is set to
FALSE.

Get_Host_Connection_lnfo 3-53

Working Drott #3

Errors

Apple 3270 AP! Programmer's Guide September 74, 7988

connected

lu_type

scrn ernul

This BYTE indicates whether the PS is currently
connected by a Connect_To_PS call, or whether
the printer session has been activated by an
Activate_Prt_Sess call. TRUE indicates the PS is
connected or the session is activated; FALSE
indicates the PS is not connected or the session is
activated. If a PS is unsupported, connected is
FALSE.

This BYI'E specifies the configured session type.
Possible values are as follows:

GI_NO_LU Not an SNA connection
method

GI_LU_l LU 1

GI LU 2 LU 2

GI_LU_3 LU 3

GI_LU_l_OR_3 A generic printer that supports
both LU 1 and LU 3

This BYTE specifies the type of 32i8 model that
the application is emulating in terms of screen
size. This parameter applies only if the lu_type
byte in this array is GI_LU_2. Possible constant
values and the screen sizes they represent are as
follows:

GI_MOD_2

GI_MOD_3

GI_MOD_4

GI MOD 5 - -

Model 2, screen size is 1920

Model 3, screen size is 2560

Model 3, screen size is 3440

Model 3, screen size is 3564

max_pr~_buf _size

Df..B 'GNSUPP ERR

DABE UNSUPP ERR

This \VORD specifies the buffer capacity of the
driver for handling print data from the hosL The
field applies only if if lu_type in this array is
set to handle type. 1, or type 3, or both.

This error indicates that the driver does not suppon
the DAB.

This error indicates that the driver does not support
the DABE.

This error indicates that the driver does not support
the EAB.

3-54 Get_Host_Connection_lnfo c

(

Working Draft #3 Apple 3270 AP! Programmer's Guide September 74, 7988

Purpose

Formot

Porometers

Definitions

Get_LU 1 _Prt_Data

This 3270 API call allows an application to gain access to SCS or IPDS printer data.The
driver holds the call until printer data is received from the host. While this call is
outstanding, the driver rejects other calls issued by the application to the session,
with the exception of Deactivate_Prt_Sess.

Get_LUl_Prt_Data (&req_blk, asyncFlag);

B'fTE *rcv_bufp; /* passed */

WORD max_bytes_to_rcv; /* passed */

LONG wait -time; /* passed "I

WORD num_bytes_ rcved; /* returned */
gv~l:' -"- data_type; /* returned */

BYTE data_ end; /* returned */

B'fTE end_job; /* returned*/

asyncFlag

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

Specify this constant to return control immediately to the caller. ASYNC

SYNC Specify this constant to prevent control from returning to the caller until
the request completes.

*rcv_bufp

This PO!i\'TER points to the application buffer where the driver will return data.

max_bytes_to_rcv

This WORD specifies the maximum number of bytes that the driver will transfer to the
buffer.

wait_time

This LO\"G parameter specifies the ma.ximum timeout period that the driver should
wait for data. If the timeout period expires,the driver returns the error

Get_LU 1 _Prt_Data 3-55

Working Draft #3 Apple 3270 API Programmer's Guide September 14, 1988

The value passed represents a number of lOO~millisecond ticks. There are two special
values, as follows:

OxFFFFFFFF

0

Specify this value to instruct the driver to wait forever; that is, the
driver will never return TIMEOUT_ERR.

Specify this value to instruct the driver to return TIMEOUT_ERR
immediately if no data is present at the time of the call.

num_bytes_:cved

This WORD returns the number of bytes that the driver transferred. A count of 0 is
valid.

data_type

This BYTE returns the type of data transferred, as follows:

GL!? FMH

GL!? SF

This value indicates that the data was FMH 1.

This value indicates that the data was structured field data.

GLP SCS_DATA This value indicates that the data was normal SCS data.

This value will be the same for all portions of print data transferred until the end of the
data unit (data_end set to either GLP_END or GLP_END_RE!?LY).

data_end

If this BYTE returns GLP _NOT_END, it indicates the driver has not completed
sending the data unit to the application. The application should continue issuing
Get_LUl_Prt_Data calls until this flag becomes GLP _END_ RE!? LY, at which time
the application must issue Post_Prt_Reply before issuing Get_LUl_Prt_Data calls
again.

If this parameter is set to GL!? _END, it indicates that the sending of the data unit has
been aborted and that no reply is necessary.

end_job

This BYTE, if returned as TRCE, indicates that the driver received notification at the
protocol level that the current print job has completed. If the notification has not
been received, the parameter is returned as FALSE.

3-56 Get_LU 1 _Prt_Data

(~'.

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74. 7988

Description In addition to SCS data, the driver conveys structured fields and function­
management headers (type 1) with attached data unchanged to the application. Your
application is responsible for validating function management headers, structured
field types, and data. The driver presents only one function-management header with
attached data, or one structured field, or one chain of regular SCS data in each series
of calls that end with the data_ end parameter set to the GLP _END_ REPLY

constant.

A driver might have more data buffered or might be waiting for further data from the
host. In such cases, the driver sets the data_end parameter to GLP _NOT_END to
inform the application that more data is coming. An application should issue
Get_LUl_Prt_Data calls until the data_end parameter becomes
GLP _END _REPLY. The application must then issue a Post_Prt_Reply call to inform
the driver of the validity of the previous data received.

After issuing Post_Prt_Reply the application can again begin to issue
Get_LUl_Prt_Data calls.

•:• Note: Instead of posting a reply, your application can also issue, at any time, a
Deactivate_Prt_Sess call to deallocate the printer session and terminate contact
with the host.

A larger buffer decreases the number of Get_LUl_Prt_Data calls that the application
needs to repeatedly issue to retrieve data. For maximum performance, the
application's receive buffer should be as large as the buffer maintained by the driver.
Refer to the max_prtbuf_size parameter in the description of the
Get_Host_Connection_Info call in this chapter to determine the driver's buffer
capacity.

To increase throughput, you may want to employ a double-buffering scheme. As soon
as a Get_LUl_Prt_Data call completes, issue another one immediately using a
different request block and receive buffers.

If the underlying host protocol is SNA, the following are true:

- An application can continue to issue Get_LUl_Prt_Data calls until a
NO_HOST_SESS_ERR is returned. At that time, the application can issue a
Deactivate_Prt_Sess call to either deallocate control of the primer session or
retain control of the session and wait for another bind.

- The d_a ta_ end parameter is set to GLP _END when the host abnormally
termates a chain (for example, Cancel) or if the application issues a
Send_Prt_Control call with a Cancel request. The data unit transferred to the
application in this case should be considered suspect and incomplete.

Get_LU 1 _Prt_Dcto 3-57

Working Draft #3

Errors

Apple 3270 AP/ Programmer's Guide September 74, 7988

o A print job sent to the host is not always terminated by an end _job notification
or an Unbind. Usually, print jobs are spooled and handled by a host system utility
which delimits print jobs within brackets. Some custom host print applications,
however, begin a bracket and send multiple print jobs without ever ending the
bracket. Therefore, your application should terminate a print job based on both
the reception of either a NO_HOST_SESS_ERR or an end_job notification,
and also inactivity for a sufficiently long timeout interval (the timeout can be set in
the wait_time parameter).

LOST_DATA ERR

NO HOST SESS ERR - - -

PS INACTIVE ER?.

TIMEOUT ERR

SESS_TYPE_ERR

STATE ERR

This error indicates that the driver received data and
couldn't save it because of insufficient buffer space.
No data is transferred when this error occurs. The
driver returns the error only once to an application.
Subsequent Get_LUl_Prt_Data calls should receive
data successfully unless another lost data condition
arises.

This error indicates that the underlying host session
no longer exists. The error also signals that a print
job has been completed or aborted.

This error indicates that the underlying host session
no longer exists. This signals either the completion
or abortion of a print job in progress.

This error indicates that the interval specified in
wait time was exceeded. - .
This error indicates that the print request was sent to
the wrong type of session; the request is valid only for
LUl printer sessions.

This error indicates that the request" is inappropriate;
the application must reply to the driver with a
Post_Prt_Reply call before it can issue another
Get_LUl_Prt_Data call.

3-58 Get_LU 1 _Prt_Data 0

(

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74. 7988

Get_Possthru_Doto

Purpose Th.is 3270 API call is issued by the application in order to receive data from the host
that has not been mapped to the PS task. If a Get_Passthru_Data request is not
outstanding when the driver receives data, the driver will buffer this data until the
application issues the request

Important Only a DFT or CU driver can support Get_Passthru_Data.

Format Get_Passthru_Data (&req_block, asyncFlag);

Parameters

Definitions

:SYTE *rcv_:Oufp; /* passed *I
WORD max_bytes_to_rcv; /* passed */
WORD wait_time; /* passed */

WORD num_bytes_rcved; /* returned "'I
BYTE data_end; /* returned */

asyncFlag

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

ASYNC

SYNC

Specify this constant to return control immediately to the caller.

Specify this constant to prevent control from returning to the caller until
the request completes.

*rcv_bufp

This POI:\TER points to the application's destination buffer that will receive data from
the host.

max_bytes_to_rcv

This WORD specifies the number of bytes that the driver can write to the destination
buffer.

Get_Passthru_Data 3-59

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74. 7988

Description

wait_time

This WORD specifies the maximum amount of time the driver should wait for data. The
value, passed represents the .number of 100-milliseconds ticks. If the timeout period
expires, the driver will return TIMEOUT_ERR. A value of OxFFFF instructs the driver
to wait forever for data. A value of 0 instructs the driver to return TIMEOUT_ERR
immediately if it finds no data at the time of the call.

num_bytes_:rcved

This WORD returns the number of bytes of data that the driver transferred to the
destination buffer.

data_end

If this BYTE is set to GPO NOT END, it indicates that the driver has not sent the
entire structured field to the application. The application should continue issuing
Get Passthru Data calls until the value becomes GPD END or GPD END REJ?LY. - - - - -
You use Get_Passthru_Data primarily to receive structured field data that is not
intended for processing by a PS component but by a higher-level function. The
structured field types to be monitored and passed to the application by way of this call
are specified in the Connect_To_PS call in the type_pass_datap parameter.

If no passthrough data is available at the time the call is received, the driver holds the
request and waits for more updates. Other API requests to the PS can be sent by the
application while a Get_Passthru_Data request is outstanding.

If a Get_Passthru_Data request is not outstanding at the time data is received, the
driver buffers the data until such time as the request is issued. An application should
issue Get_Passthru_Data calls in a timely fashion; if ti doesn't, processing of host
data could be delayed for the session.

If the specified application buffer is not large enough to receive an entire structured
field or if the structured field has not been completely received from the host, the
driver sets the data_end flag to GPD_NOT_END in the request. The application
should continue issuing Get_Passthru_Data calls until the data_end flag is set to
either GPD_END or GJ?D_END_REP!.Y ..

Only one structured field is conveyed in a series of Get_Passthru_Data calls that
terminates with dar.a end set to GPD END or Gl?D END RE!?!.Y. The structured
field header containing the length field a~d ID will appear in -the first buffer in the
series.

You can use Get_Passthru_Data and Send_Passthru_Data to send and receive DO
structured fields with the L"'\DSFILE 32i0 PC file-transfer method.

3-60 Get_Passthru_Dota

C'
'

0

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Errors TIMEOUT. ERR

NO_HOST_SESS_ERR

LOST DATA ERR

This error indicates that the value specified in
wait time was exceeded.

This error indicates that the underlying host session
no longer exists.

This error indicates that the driver received data and
could not save it because of insufficient buffer space;
no data was transferred .. The driver returns the error
only once to an application. Subsequent
Get_Passthru_Data calls should receive data
successfully, unless another lost data condition arises.

NO_PASS_DATA_TYPES_ERR This error indicates that the application did not
specify any structured fields to be received in the
Connect_To_PS call.

STATE ERR This error indicates that the call was inappropriate;
that is, if a previous Get_Passthru_Data call
completed with a GPD_END_REPLY notification,
the application must issue a Post_Passthru_Reply call
before it issues another Get_Passthru_Data call.

Get_Passthru_Data 3-61

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Purpose

Format

Parameters

Get_ Update

This 3270 API call returns information to the application describing changes to the
PS, DAB, DABE, EAB, OIA, cursor position, or alarm state. Get_wpdate is
designed primarily to support an application acting as a terminal emulator.

An update record identifies a row in the PS, DAB, DABE, EAB that was changed.
The driver writes update records contiguously and in ascending sequence by row
number. Only one update record is returned for each changed row. Gaps between row
numbers often occur, however, since the host commonly updates a presentation
space in bits and pieces.

Updates to the PS are normally presented to the application in ASCII format;
however, you have the option of receiving them in DBC format by using the
GU_NO_TRANS constant in the modifiers parameter.

Get_Update C&req_block, asyncFlaql;

WORD

UPDSO_REC
UPDSO_REC
UPDBO_REC
UPDBO_REC
BYTE

BYTE
BYTE
BYTE

EYTE

wait_time;

*ps_recp;
*dab_recp;
*dabe_recp;
*eab_recp;
modifiers;

cursor_row;
cursor_col;
alarm;
scr:1_w:.o.:.t;

~u:n_dabe_::ecs;

num_eab_recs;

/* rr.cdi!:.e:-s */
#defi~e GU_:GNCR~_?S

~ae:i~e G~_!GNORE_CORSOR

#defi:1e G~_:G~~CRE_C:A

#defi~e GO_NC_7RANS

/* passed */
/* passed */
/* passed */
I* passed *I
/* passed */
/* passed */

I* returned
I* returned
/* returned
/" re!: urned
I" :-e4:...:=~ed

/" :-e-: ::::-~ed

I" =et."Jr::ed

/" re':"Jrned

OxOOO:!.
OxC002
Ox0004
cxoooe
OxCClC

*/
*/
*/

"/

"I

"I

"!

"I

3-62 Get_Update

0

Working Draft #3

Definitions

Apple 3270 AP/ Programmer's Guide

typedef struct upd80_rec
BYTE row;

BYTE col;
WORD len;
BYTE data[80];

} UPDSO_REC;

typedef struct updl32_rec
BYTE r-:>w;

BYTE col;
WORD len;
BYTE data[l32];

UPD132_REC;

/* alarm */

#define GU_ALARM_ON
#define GU_ALARM_CFF

asyncFlag

1

0

September 74, 7988

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

ASYNC

SYNC

Specify this constant to return control immediately to the caller.

Specify this constant to prevent control from returning until the request
completes.

wait time

This LONG parameter specifies the maximum timeout period the driver should wait for
an update. If the timeout period expires, the driver returns the error T IMEOU'!' _ERR.

The value passed represents a number of 100-millisecond ticks. There are two special
values, as follows:

OxFFFFFFFF

0

Specify this value to instruct the driver to wait forever; that is, the
driver will never return TIMEOUT ERR.

Specify this value to instruct the driver to return TIMEOUT ERR

immediately if no update data is present at the time of the call.

Get_ Update 3-63

Working Draft #3 Apple 3270 API Programmer's Guide September 74, 7988

3-64

*ps_recp

This POINTER points to a buffer in which the driver returns an array of PS update
records. Set this pointer to NIL if you don't want those update records. When the call
completes, only ps_recp (0 J through ps_recp (num_ps_recs minus 1 J are
valid in the buffer.

*dab_recp

This POIJ:'.il'ER points to a buffer in which the driver returns an array of DAB update
records. Set this pointer to ~1L if you don't want those update records. When the call
completes, only dab_recp [OJ through dab_recp (num_dab_recs minus 1) are
valid in the buffer.

*dabe_recp

This POINTER points to a buffer in which the driver returns an array of DA.BE update
. records. Normally, update records are sent only if symbol set information (bits 3-1

within a DABE byte) changes. However, you can also use the GU_ CHECK_ ALL_ DABE
constant in the modifiers parameter to cause the driver to send update records
for any portion of a DABE byte that changes.

Set this pointer to NIL if you don't want those update records. When the call
completes, only dabe_recp [OJ through dabe_recp (num_dabe_recs minus 1]
are valid in the buffer.

*eab_recp

This POINTER points to a buffer in which the driver returns an array of EAB update
records. Set this pointer to NIL if you don't want those update records. When the call
completes, only eab_recp [OJ through eab_recp [num_eab_recs minus 11 are
valid in the buffer.

upd80_rec or updl32_rec update record

These structures each contain three fields and an array:

row

Get_Update

This BITE identifies the row in either the PS, the DAB, the EAB, or
the OIA where an update occurred. For changes to the PS, DAB,
and EAB, the row number ranges from 0 to the number of rows in
the PS minus 1. A row-number value of OxFF identifies updates to the
OIA, which has only one row. The OL>\ update record is placed last
in a set of update records. In addition, the driver sends no DAB
update record for the OIA.

0

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

col

len

data

modifiers

This BYTE identifies the starting column number in the row
containing the update. Column number 0 is the first column in a
row.

This WORD contains the number of updated bytes in the row, starting
from col.

This array contains the updated bytes. The updated bytes start at
data[OJ, not data[coll.

This BITE contains the modifiers for the Get_Update call, as follows:

GU IGNORE PS This value instructs the driver not to check for updates to the PS. As
a result, the driver will not write PS, DAB, or EAB update records to
the destination buffer. However, setting this value does not
suppress the writing of OIA update records. To accomplish that,
use GU IGNORE OIA. - -

GU IGNORE CURSOR
This value instructs the driver not to check for a ·change in cursor
position in the PS.

The cursor position is still presented when the Get_Update request
completes, even though a change in cursor position does not cause
the completion.

GU IGNORE OIA
This value instructs the driver not to check for changes to the OIA.
Thus, the driver doesn't write an OIA update record (row = OxFFFF)
in any of the PS or DAB update buffers.

GU NO TRANS :\'ormally, the driver translates 3270 device buffer codes into ASCII
characters using the table pointed to by the *dbc_asc_tabp
parameter of the Connect_To_PS call. However, if you specify
GU_NO_TRANS, the driver does not perform the translation. This
option allows your application to receive device buffer codes in a PS
update buffer.

GU CHECK ALL DABE

cursor row

This value instructs the driver to send DABE updates if any part of a
DABE byte changes. :\"ormally, DABE updates are sent only if bits
3-1 (symbol set information) change.

Get_Update 3-65

Working Draft #3 Apple J270 AP/ Programmer's Guide September 74, 7988

Example

3-66

This BYTE returns the current row position of the cursor. The first row begins at 0.

cursor_col

This BYTE returns the current column position of the cursor. The first column begins
at 0.

alarm

This BYTE returns the state of the alarm, as follows:

GU_ ALARM_ ON Alarm on

GU_ALARM_OFF Alarm off

scrn width

This BYTE returns the current screen width as 80 or 132 columns.

num_ps_recs

This BYTE returns the number of PS update records that the driver wrote.

n.um_dab_recs

This BYTE returns the number of DAB update records that the driver wrote.

num_dabe_recs

This BYTE returns the number of DABE update records that the driver wrote.

num_eab_recs

This BYTE returns the number of EAB update records that the driver wrote.

The following example, taken from the sample application presented in Chapter 2 of
this guide, shows the code that sets up the Get_Updace request block and retrieves the
update.

3colean se:Ge:(ses~icnl
3Y:E sessic::;

/" E:::::::crMessa:;e("Secgec session",session); •/
1~ ~==c:~essaqa{''Se:ge~ ps_id'',d!:[sess!o~~->~s_!d); •/

~=:. :sess:~~ · ->i:;ps_:=.:..:< .!'":e::_ad.::i!'. a::c~e = :;
d!:.:sess~c~ ->G?s_t~~.a;~_va:s = ap!_va:s;
C!:.~sess:~~ ->G9s_=:~.?C:~_:c = s:c~;

Get_Update 0

Working Draft #3

Description

Apple 3270 AP/ Programmer's Guide September 14, 1988

dft[session]->Gps_blk.conn_id • saved_conn_id;
dft[session]->Gps_blk.ps_id • dft[session]->ps_id;
dft(session]->Gps_blk.qetupd.wait_time • OxFFFF;
dft[session]->Gps_blk.qetupd.ps_recp • &(dft[sessionj->ps[OJ):
dft(session]->Gps_blk.qetupd.dab_recp • &(dft(sessionj->dab[C]);
dft(session]->Gps_blk.qetupd.dabe_recp • O;
dft(session]->Gps_blk.qetupd.eab_recp • O;
dft[session]->Gps_blk.qetupd.modifiers = NO_MODS;
if (err= Get_Update(&dft[session]->Gps_blk,ASYNC))

ErrorMessaqe("Glue Get_Update Error",err);
return FALSE;
)

return TRUE;

The format of the basic DAB and extended DAB bytes are described in the section
"The Apple Attribute Buffers" in Chapter 1.

The type for the *ps_recp, *dab_recp, *dabe_recp, and *eab_recp
buffer pointers is defined as UPD 8 0 _REC simply because an 80-column screen is
most commonly emulated. If a 132-column display is being emulated (that is, a
Model S screen has been specified in the scrn_emul parameter in the
Connect_To_PS call), you should cast the pointers in UPD132_REC format. For
Model S emulations, the driver always formats 132-byte update records even if the
current screen size is 24 by 80.

If the driver has not updated PS, DAB, EAB, OIA, cursor position, or alarm state at
the time the call is received, the driver holds the request awaiting updates. Other AP!
requests can sent by the application while a Get_Update request is outstanding.
(Thus, an application must maintain two request blocks, one for Get_Update calls
and another for other API calls.)

The call completes when a timeout occurs or the driver detects a change in one of the
following items:

PS (if row OxFF, then it was a change in the OLA.)
DAB
EAB
cursor position
alarm state

The driver returns update information in the buffers specified in the call. The driver
decides when update information should be presented to the application by simply
setting res:.ilt, as with other requests. The driver may decide either to send update
information immediately upon detecting any type of change or to wait until the
buffors under surYeillance have been been scanned in their entirety for accumulated
changes.

Get_Update 3-67

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 14, 1988

Errors

3-68

Within an application's update buffers, the driver will return a series of update records
in ascending sequence by row number. Typically, there will be gaps in the row
number of the update records. The last record is an OIA record if a change to the OIA
occurred.

Your application must allocate update buffers large enough to accommodate worst­
case situations in which the entire screen is updated. For example, to support a 24 x
80 screen, you must allocate a buffer of (25 • size of (Ul?D 8 O _REC)) bytes. (The 25th
record is for the OIA.)

By setting GU_IGNORE_l?S and GU_IGNORE_CURSOR, your application can
monitor only the OIA for changes, such as an X-Clock or X-System drop: You should
set *ps_recp to point to a buffer in which the driver returns the OIA record (row=
OxFF). Set *eab_recp if you also want the EAB image of the OIA.

A DAB update record is never sent for the OIA. Display modes other than normal
display (intensified, non-display, highlighted, blinking, and underline modes) are
not relevant to the OIA. You can obtain color information for updated OIA bytes
from the EAB update record.

The codes sent in the PS update record for the OIA are 3270 device-buffer codes as
described in IBM 317413274 Control Unit to Device Product Attachment
Informatton (October 16, 1986).

DAB_UNSUl?l?_ERR

DABE_UNSUl?l?_ERR

EAB_UNSUl?P_ERR

TIMEOUT ERR

Get_Update

'Ibis error indicates that the driver does not support
the DAB.

This error indicates that the driver does not support
the extended DAB.

This error indicates that the driver does not support
the EAB.

'Ibis error indicates that the interval specified in
wait_time was exceeded.

0

Working Draft #3

Purpose

Format

Parameters

Example

Errors

Apple 3270 AP! Programmer's Guide September 74, 7988

lnit_3270_API

This 3270 AP! call initializes the 3270 AP! and returns a hand.le that subsequent API
calls must pass as the value of the api_ vars field in the API request block.

:nit_3270_API();

none

This example from DFTerm.c sets the api_ vars field of the request block to be
equal to the handle that Init_3270_API returns.

api_vars Init_3270_API();

none

lnit_3270_API 3-69

Working Draft #3 Apple 3270 AP! Programmer's Guide September 7 4, 7 988

Open_Host_ Connection

Purpose This 3270 API call opens the driver for the specified connection type, such as for the
Apple 3270 CUT or the Apple 3270 DFI' connection type, and specifies the
configuration information for the driver.

lmportcnt Your application must make an Open_Host_Connectlon call before it makes any
other API calls that access that particular host connection.

When this call invokes its corresponding interface routine is invoked by this call, the
interface routine attempts to open the driver associated with the specified host
connection method. Once initialized, the driver establishes communication with a
3270 host.

Format Open_Host_Ccnnection (&req_blk, asyncFlag);

Parameters LONG

BYTE

conn_ type;

open_ type;

BYTE *conf ig_infop;

WORD config_info_len;

BYTE ret_conn_id;

/* conn_type values */

#define NUM_CONN_TYPES 10

#def!ne OC_APPLE_C~T 0

#define OC_SIYlWA?S 3

#define C:_AVA7.A'i<._:~': 4
=def!ne OC_AVA:AR_:r: 5

~def~~e cc_:cA_:F: 7

~ae:~~e cc_cx:_c:: a
#defir.e cc_cx:_DF7

#de: :..:-:e ,.....,_ .. ,,..,.,.., ..,, ,..... ..
'"''""-:"\- ... -. .._.'"':

9

2

3-70 Open_Host _Connection

/* passed */

/* passed */
/* passed */

/* passed */

/" ret:urned */

Working Draft #3

Definitions

(

Apple 3270 AP/ Programmer's Guide September 74, 7988

asyncFlag

This flag is ignored for this call.

conn_ type

This LONG parameter indicates the type of 3270 connection desired, as follows:

OC APPLE CUT Apple CUT - -
OC APPLE DFT Apple DFI' - -
OC APPLELINE Apple AppleLine

OC SIMWARE Sim ware

OC_AVATAR_CUT Avatar CUT

OC AVATAR DFT Avatar DFI' - -
OC DCA CUT DCA CUT

OC DCA DFT DCA DFI' - -
OC CXI CUT CXI CUT - -
OC CXI DE'T CXI DFI' - -
open_ type

This BYTE specifies the method for establishing a connection with the driver specified
in conn_type, as follows:

OC COLD

OC WARM

OC AT'!'ACH

This value loads or reloads a driver.

This value establishes a connection to a driver that is already
loaded. Because o(.. WARM does not reset the driver, your
application can resume interacting with a presentation space to
which it had previously connected. If the driver isn't currently
loaded, OC_WARM acts like OC_COLD.

This value causes the same behavior as oc _WAR.Iv! except that
OC_ATTACH does not attempt to load the driver if it isn't already
present. You can use this value to connect to an executing driver
that has already been passed configuration information.

Open_Host_Connection 3-71

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 14, 1988

Description

Example

*config_infop

This POINTER points to configuration information for the 3270 driver selected in
conn_ type. The driver ignores the •config_infop if the open_type is
oc ATTACH. All configuration information must be present in the block pointed to
by ~config_infop, that is, no pointers to other data may be included in the
configuration block. See "Configuration Information" in Chapter 1 for more
information about the configuration of the Apple DFT and CUT drivers.

config_info_len

This WORD specifies the length of the configuration information block.

ret_conn:._id

This BYTE returns the ID for the opened driver. All subsequent API calls to this
connection must pass this value in the conn_id request block parameter.

To determine if a driver of a specified connection type exists in the system, an
application can issue an Open_Host_Connection call with the conn_type equal
to the value of OC_ATTACH without issuingcalls to the connection.

This example from DF'I'erm.c sets up the request and issues the
Open_Host_Connection call.

I* Issue an Open_Host_Connection, which returns immediately •/
dft[OJ->req_blk.api_vars • api_vars;
dft(OJ->req_blk.net_addr.aNode • O;
dft[OJ->req blk.port id• Slot;
dft[OJ->req=blk.io_c;mpl =nil;
dft[OJ->req_blk.openhc.conn_type • OC_APPLE_DFT;
dft(OJ->req_blk.cpenhc.open_type = OC_COLD;
df~[OJ->:eq_Cl~.cpenhc.ccnfig_i~fop = &DF:_CFG;
d!~~:;->req_b:~.ope~ic.con~ig_i~!c_:e~ sizec=(J?T_C?GI; - , . - . '
DFT_CFG.sloc_~ap <<= Slot;

for (sess_num = O; sess_num < 5; sess_num~+)

DF!_CFG.slot_info[relSlct] .lu_type(sess_num] = O;
fer <sess_num = O; sess_num < num_sessions; sess_nu~--l

:F~_CFG.slc~_:nfo[relSlotJ .lu_~ype[sess_nu~} = ADF:_::_:~P£_2;

if (err= Open_Host_Ccnnection(&(dft(OJ->=eq_blk)))
ErrorMessage("Open_Host_Ccnnection Errc=",err);
Ter~_3270_API<api_vars);

I !e::-= = ::::_:;:;. s.2.~-:._s-:a-:.·..:s ~ :e:..s:.o-:}) : = :JC_!.?.?.J

====~r~·!essa.ge (0 s.:..~:. S:.a~·.ls :-;cr:i-Ze::::", er:-);

3-72 Open_Ho~_Connection

Working Draft #3

Errors

Apple 3270 AP! Programmer's Guide September 74, 7988

Term_3270_API(api_vars);
return O;
}

if ((err= DFT_CFG.slot_info(relSlot] .ps_status[O]) != ADFT_PS_SUPPl
ErrorMessage("Apple OFT Not Supported",err);
Term_3270_API(api_varsl;
return O;

saved_conn_id dft[OJ->=eq_blk.openhc.ret_conn_id;

GLU DRVR OPEN ERR - - This error indicates that the interface could not
establish communication with the driver. Usually,
this means that the driver does not exist.

CONFIG ERR

Driver-specific errors

This error indicates that the configuration
information is invalid.

Other errors can be defined and returned by
particular drivers.

Open_Host_Connection 3-73

Working Draft #3 Apple 3270 AP! Programmer's Guide September 74, 7988

Post_Passthru_Reply

Purpose This 3270 API call informs the driver of the validity of the received data. The driver
then sends an appropriate response to the host. Your application should issue
Post_Passthru_Reply when the data_end parameter is set to GPD_END_REPLY
in a Get_Passthru_Data call.

Important Only DFT or CU driver can support Post_Passthru_Reply.

Format Post_Passthru_Reply (&req_blk, asyncFlag);

Parameters

Definitions

LONG

BYTE
sense_code;

*pss_infop;

asyncFlag

/* passed */

/* passed */

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

ASYNC

SYNC

Specify this constant to return control immediately to the caller.

Specify this constant to prevent control from returning until the request
completes.

sense_code

This LONG parameter, if 0, indicates that no error should be returned to the host. A
nonzero value indicates that the data was in error, and the value is also the specific
sense code to be returned to the host.

The high-order 2 bytes of the sense code contains the major sense information and
the low-order 2 bytes contains minor sense information. In most cases, minor sense
information is set to OxOOOO.

The sense codes commonly returned for errors in structured fields are as follows:

OxlOOlOOOO RU data error

Ox10030000 Function not supported

Ox10050000 Parameter error

:\'on-S:\'A drivers will send Op-Check if sense code is non-zero.

3-7 4 Post_Passthru_Reply

Working Draft #3 Apple 3270 AP/ Programmer's Guide September T 4. T 988

Errors

You can find dditional sense codes in the 3270 Data Stream Programmer's
Reference (GA23-0059).

*pss_infop

This POINTER points to a 6-byte array containing Local Character Set IDs (LCID) to
inform the driver of updates to LCID-to-PSS assignments. Set this parameter can be
set to NIL if the application doesn't support programmed symbol sets or if no changes
are required to the current LCID-to-PSS assignments. The initial state of the driver is
that no LCID-to-PSS assignments are in effect

The application updates this array when it processes a Load PS structured field. Using
this array, the driver maps an LCID-as received in Start Field Extended (SFE), Set
Attribute (SA), or Modify Field (MF) order-to a PSS ID value which is then set in the
DABE. The first element in the array specifies the LCID associated with PSS 2, the
second element specifies the LCID associated with PSS 3, and so on. An LCID value of
OxFF indicates the particular PSS is not assigned.

STATE_ERR This error indicates that the application issued the
call inappropriately. Either the previous
Get_Passthru_Data call specified GPD_END,
instead of GPD_END_REPLY, or a
Get_Passthru_Data call had not been issued.

Post_Passthru_Reoly 3-75

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74. 7988

Purpose

Format

Parameters

Definitions

Post_Prt_Reply

This 3270 API call informs the driver of the validity of received LU cype 1 data. A
Post_Prt_Reply call should follow all Get_LUl_Prt_Data calls that complete with
data_end set to GLP_END_REPLY.

Your applicat,ion may post a status of no error or an error status in the form of SNA
sense cod~. The driver conveys these sense codes to the host application within
negative SNA responses.

As an alternative to issuing this call, an application can deal with a nonrecoverable
error by issuing a Deactivate_Prt_Sess call.

Post_Prt_Reply C&req_blk asyncFlaq);

LONG sense_ code; /* passed */

async:::rlaq

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

A SYNC

SYNC

Specify this constant to return control immediately to the caller.

Specify this constant to prevent control from returning until the request
completes.

sense_code

If this LONG parameter is zero, indicates the received data was valid. If sense code
is nonzero, the data was in error, and the value is also the specific sense code to be
returned to the host.

The high-order 2 bytes of the sense code contains the major sense information, and
the low-order 2 bytes contains minor sense information. In most cases, minor sense
information is set to OxOOOO.

The sense codes commonly returned for errors in printer data are as follows:

Ox10010000 RU data error

Ox10030000 Function not supported

Ox10050000 Parameter error

Oxl0080000 Invalid function-management header

3-76 Post_Prt_Reply

0

Working Draft #3

Errors

Apple 3270 AP/ Programmer's Guide September 74, 7988

Non-SNA drivers will send Op-Check and a Sense byte if sense_code is nonzero.

You can find additional sense codes in the 3270 Data Stream Programmer's
Reference (GA23-0059).

NO HOST_SESS_ERR

PS INACTIVE ERR

SESS TYPE ERR

STATE ERR

This error indicates that the underlying host session
no longer exists.

·This error indicates that the application never
activated the specified printer session.

This error indicates that the application sent the print
request to the wrong type of session; the request is
valid only for printer sessions.

This error indicates that the request is inappropriate;
the application must issue additional
Get_LUl_Prt_Data calls until data end becomes
GLP_END_REPLY.

Post_Prt_Reply 3-77

Working Drott #3 Apple 3270 AP/ Programmer's Guide September 74. 7988

Purpose

Format

Parameters

Definitions

Seorch_String

This 3270 API call searches for a string within a field or searches all or part of the PS.
The call can perform forward or backward searches from an offset in the PS. A search
does not wrap; that is, forward searches terminate at the end of the PS, and backward
searches terminate at the beginning. ASCil characters supplied by the application are
normally translated into DBC format; how:ever, if you prefer, you can also compare
DBC codes directly by using the SS_NO_TRANS constant in the modifiers
parameter.

Search_Strinq (&req_blk asyncFlaq);

BYTE *strp; /* passed */

WORD len_or_eos; /* passed *I
WORD ps_ offset; /* passed */
BYTE modifiers; /* passed "'/

WORD fnd_off set; /* returned "/

/* modifiers */
ltciefine SS_SRCH_FLD OxOl
ltdefine SS_SRCH_BACK Ox02
#define SS_NO_TRANS Ox04

asyncFlaq

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

ASYNC

SYNC

*st:rp

Specify this constant to return control immediately to the caller.

Specify this constant to prevent control from returning to the caller until
the request completes.

This POI!'.'TER points to a string in the application's source buffer that will be matched
in the PS.

3-78 Search_ String

if~"'-.,

\.. ... ,/

0

(

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Errors

len or eos

This WORD specifies, in bytes, the length of the string to be matched. However, if the
value in the high-order byte is OxFF, the contents of the low-order byte is an end-of­
string marker. The driver will match the string up to, but not including, the marker in
the PS. If a string is too long to be found in the PS with the specified ps_offset
value, the driver returns the error PARM_ ERR.

ps_off set

This WORD specifies an address in the PS where the search should begin. Use the
Find_Field call to determine the starting location of a field.

modifiers

This BYTE allows you to specify the type of search to be performed.

SS_SRCH_FLD Specify this constant to restrict the search to the current field. The
search begins at the location specified in ps_offset, and
continues to the end of the field, to the end of the PS, or to the
length specified in the len_or_eos parameter. If
SS_SRCH_EACK is in effect, the search will proceed in the opposite
direction. If the PS is unformatted-that is, no field attribute exists
in the entire space-the driver returns the error P s _ UNFMT _ERR.

SS_SRCH_EACK Specify this constant to cause the search to proceed from the
location specified in ps_offset either to the beginning of the
field or to the beginning of the PS. The search begins at
ps_offset and ends at the beginning of the PS.

SS NO TRANS Normally, the driver translates characters in the source buffer to
3270 DBC format by using the translation table pointed to by the
*asc_dbc_tabp parameter in the Connect_To_PS call. By
setting the modifiers parameter to CTF_NO_TRANS, you
instruct the driver to not translate the codes. This allows your
application to compare codes in DBC format directly to codes in
the PS. For example, this technique could be useful if you wanted to
search for a ·particular field attribute.

fnd_offset

This WORD returns the location of the matching string in the PS. If no match is found,
this parameter is set to OxFFFF.

NOT FOUND ERR This error indicates that the specified strmg was not
found.

Search_String 3-79

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 14. 7988

PS UNFMT ERR This error indicates that the PS was not formatted. - -

3-80 Search_ String C
~·.

'
'

(

(M

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Purpose

Format

Parameters

Definitions

Send_Keys

Tilis 3270 AP! call sends IBM scan codes to either a 3x74 control unit (for CUT drivers)
or a PS component (for DFT and CU drivers). The CU component or the PS
component receiving these scan codes maps them to the corresponding character
codes for each key.

As a means of conveying data to the host, Send_Keys is relatively slow. It's especially
slow if the underlying connectivity means is CUT since the CU must process each
keystroke; speed is limited to 10 to 12 keystrokes per second. A much quicker
technique is to copy data into the PS (using Copy_To_PS or Copy_To_Field) and
then to issue Send_Keys with an AID scan code to prompt the CU to read the PS.

Send_Keys (&req_blk, asyncFlag) ;

WORD num_keys_to_send;

BYTE *keys_bufp;

WORD num_keys_sent;

/*shift key values*/
itdefine NO_SHIFT
itdef ine UP SHIFT
itdefine AL:::'_SHIFT

asyncFlag

0

2
8

/* passed */

/* passed ""/

/* returned */

Tilis flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

ASYNC

SYNC

Specify this constant to return control immediately to the caller.

Specify this constant to prevent control from returning to the caller until
the request completes.

num_keys_to_send

Tilis WORD specifies the number of Shift key-scan code pairs that the driver will send
to the PS. The number of bytes in the keystroke buffer is twice the value of this
parameter.

Send_Keys 3-81

Working Draff #3 Apple 3270 API Programmer's Guide September 74, 7988

Description

*keys_bufp

This POINTER points to the keystroke buffer. Each keystroke contains two bytes of
information. The high-order byte specifies a Shift key; the low-order byte indicates a
scan code. Use the symbolic values shown in Shift key values in this call to specify the
high-order byte.

num_keys_sent

This WORD rerurns the number of Shift key-scan code pairs s\Jccessfully sent The value
returned may not equal num_keys_to_send if either an input-inhibited condition
occurs or an AID (Attention ID), SYSREQ, or ATIN key precedes the last key in the

·keystroke buffer. The driver does not send keystrokes following one of these keys.

Shift key values

These values allow you to specify the type of keyboard character, as follows:

NO_SHIFT

UP SHIFT

ALT_SHIFT

Specify this value if you want the scan code is to be sent without a
Shift key in effect.

Specify this value if you want the scan code is to be sent with the Up­
Shift key in effect.

Specify this value for you want the scan code to be sent with the ALT
Shift key in effect

Use of IBM scan codes instead of ASCII character codes in the Send_Keys call
enables the API to support other languages besides English. The CU component or
the PS component maps each scan code to the appropriate character code based
upon the customized language.

An application acting in the role of a terminal emulator is responsible for mapping
key codes or character codes from the event queue to a. Shift key-scan code pair. An
application can also generate Shift key-scan code pairs without requiring keyboard
input.

The driver checks for an input-inhibited condition before sending the first keystroke
and then after each successive keystroke. Should this condition occur, the driver
immediately terminates the Send_Keys call and rerums INP _INHIEITED_ERR.

To clear most input-inhibited conditions, the initial keystroke should be a RESET.
The input-inhibited conditions not cleared by RESET are Time, Printer Busy, Printer
Very Busy, and Printer Not Working. Besides RESET, these keys can function under
the following input-inhibited conditions:

c Time, SYSREQ, and ATIN are valid. (ATIN, though valid, may still be rejected
with an invalid function indication (X-t) in the OIA if the A TIN is inappropriate.)

3-82 Send_Keys 0

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

o Printer Busy, Printer Very Busy, Printer Not Working: DEVICE CA.'l'CEL is valid
and serves to clear these particular input-inhibited conditions.

The driver does not process keystrokes following an AID in the buff er; the call
terminates once the AID is sent.

You don't have to send makeor break scan codes for the modifiers; the driver takes
care of the process based upon the setting of the Shift key for each scan code.
However, your application can send a scan code for a modifier key by setting the Shift
key byte to NO_SHIFT and placing the Shift key's scan code in the scan-code byte.

Important Sending scan codes in this manner Is appropriate only for a CUT emulation and
renders the application Incompatible with a OFT or CU emulation.

Example

For information about mapping scan codes to a character set, refer to IBM 3270
Information Display System Character Set Reference (GA27-2837) and the IBM
317413274 Control Unit to Device Product Attachment Information (October16,
1986).

The following example,' taken from the sample application presented in Chapter 2 of
this guide, shows a case statement that sends keys to the host.

case RC SEND KEYS: - -if (dft[session]->req_blk.result != NO_ERR) (

ErrorMessage("SendKey Return Error",dft[sessionJ->req_blk.result);
SysBeep(l);

if (key_q_index) (/" keys strokes are buffe:::ed "I

dft[session]->req blk.sendkey.num keys to send= key_q_index;
key_q_index = 0; - - - -
dft[session]->req_blk.sendkey.keys_bufp = (BYTE-.,,) kbuf_current;

if (err= Send_Keys(&(dft[session]->req_blk) ,ASYNC) r
ErrorMessage("GLUE Send Keys E:::ror",err);
ClearConnect();
return o;

kbuf_current = kbuf_q[kbuf_toggle ~= l]; /*switch buffe:::s "/

else (/* key strokes not buffered */
dft[sessioni->last_request 0;

break;

Send_Keys 3-83

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Errors INP INHIBITED ERR

CU_NO_RSP_ERR

3-84 Send_Keys

This error indicates that an input-inhibited condition
either existed prior to any keystrokes being sent or
developed as they were sent You can check the
number of keys sent by examining the
num_keys...,.sent parameter.

This error indicates that the CU hasn't acknowledged a
sent keystroke. The CU has failed, or the connection
between the device and CU has broken, or the coax
hardwareor firmware failed.

c

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 7 A, 7 988

Send_Passthru_Data

Purpose This 3270 API call enables the application to send structured field data directly to the
host, bypassing the PS component in the driver.

Important Only DFT and CU drivers can support Send_Passthru_Data.

Format

Parameters

Definitions

The driver does not examine the data to be sent. Your application must create one or
more valid structured fields in their entirety in the send buff er.

In the SNA environment, the data passed becomes a request unit (RU) or a series of
RUs to which the SNA LU 2 function attaches the appropriate transmission and request
headers. The data_end parameter is a signal to the driver to mark the last RU
formaned from the passed data buffer as a last-in-chain (LIC) RU.

You can use Send_Passthru_Data and Get_Passthru_Data to send and receive DO
structured fjelds with the IND$FILE 3270 PC file-transfer method.

For an LU type 1 session, you can use this call to send inbound IPDS structured fields
(such as an Acknowledge Reply).

Send_Passthru_Data (&req_block, asyncFlag);

WORD

3Y'.::E

.. send_bufp;

num_byces_to_send;

data_end;

/ .. passed .. /

/ .. passed .. /

/ .. passed .. /

asyncFlag

Th.is flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

Specify this constant to return control immediately to the caller. ASYNC

SYNC Specify this constant to prevent control from returning to the caller until
the request completes.

*send_bufp

This POINTER points to the buffer containing the bytes to be sent.

Send_Passthru_Data 3-85

Working Draft #3 Apple 3270 AP/ Programmer'$ Guide September 14, 1988

Errors

3-86

num_bytes_to_send

This WORD specifies the number of bytes of data to send.

data_end

This BYTE, if set to TRUE, indicates that the buffer to be sent completes transmission
of a structured field or a number of structured fields. In either case, the data present in
the buffer must contain the last portion of a structured field or one or more complete
structured fields.

DATA XFER_TRUNC_ERR

NO_HOST_SESS_ERR

STATE ERR

Send_Passthru_Data

This error indicates that the driver did not send the
number of bytes specified by the
num_bytes_to_send parameter.

This error indicates that the underlying host session
no longer exists.

This error indicates that the call was inappropriate;
that is, if a previous Get_Passthru_Data call
completed with a Gl?D _END _REPLY notification, the
application must issue a Post_Passthru_Reply call
before it issues a Send_Passthru_Data call.

' C·.

Working Draft #3 Apple 3270 API Programmer's Guide September 74, 7988

Purpose

Formot

Porometers

Definitions

Errors

Send_Prt_ Control

This 3270 API call enables the application to send the SCS printer controls PAl, PA2,
and Cancel.

PAl and PA2 either signal a host application of the occurrence of an event or act as a
prompt for a particular action. The host application defines their meaning. A PA key
sent while one is already outstanding is ignored, and the driver does not return an
error notification.

Cancel causes the driver to terminate the current chain of data being sent from the
host application. The next or currently outstanding Get_LUl_Prt_Data request have
data_end set to GLP_END if the application sends Cancel while receiving a chain.
If the application is not receiving a chain when it sends Cancel, Cancel has no effect,
and the driver does not return an error notification.

Send_Prt_Control(&req_block, asyncFlag);

BYTE ctrl; /* passed */

asyncFlag

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

ASYNC

SYNC

Specify this constant to return control immediately to the caller.

Specify this constant to prevent control from returning until the request
completes.

ctrl

This BYI'E specifies the type of control to be sent, as follows:

SPC PAl

SPC PA2

SPC Cancel

Specify this constant to send a P Al printer control.

Specify this constant to send a P A2 printer control.

Specify this constant to send a Cancel printer control.

NO HOST SESS ERR This error indicates that the underlying host session
no longer exists.

PS INAC'!'IVE ERR This error indicates that the application never
activated the specified printer session.

Send_Prt_ Control 3-87

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

SESS_TYPE_ERR This error indicates that the application sent the print
request to the wrong type of session; the request is
valid only for LU 1 printer sessions.

STATE_ERR

3-88 Send_Passthru_Data

This error indicates that a previous
Send_Prt_Control call is still outstanding; the driver
ignores this request.

Working Draft #3 Apple 3270 AP! Programmer's Guide September 74, 7988

Purpose

Format

Parameters

Definitions

Errors

Set_ Cursor

This 3270 AP! call moves the cursor directly to a specified position in the PS. You can
also use this call to select a field by positioning the cursor and then sending a Cursor
Select scan code via a Send_Keys call.

•:• Note: You can also set the cursor by issuing a Send_Keys call with individual
horizontal and vertical keystrokes, although that technique is usually more
cumbersome than setting the cursor directly .

Set Cursor (&req_blk, asyncFlagJ;

WORD offset; /* passed */

asyncFlaq

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

ASYNC Specify this constant to return control immediately to the caller.

SYNC Specify this constant to prevent control from returning to the caller until
the request completes.

offset

This WORD specifies the location in the PS to which the cursor will be moved as an
offset from the beginning of the PS.

INP INHIBITED ERR

PARM ERR

This error indicates that an input-inhibited condition
existed; the write operation to the PS was disallowed.

This error indicates that the specified offset was out of
range for the current screen size.

•!• CUT note: For a CUT driver, the PARM_ERR error does not mean that the
application made a mistake. CUT drivers don't notify the application the
application of a screen size change for Models 3 and 4 when they revert to their
default 24 x 80 screen size. If the application attempts to set the cursor outside of the
24 x 80 area when the default screen size is in effect, the driver returns PARM_ ERR.

Set_Cursor 3-89

Working Draft #3 Apple 3270 APf Programmer's Guide September 74. 7988

Purpose

Format

Parameters

Definitions

Set_Color_Support

This 3270 AP! call allows your application to change the color support mode for an
existing session. The color support mode is for a session is initially specified in the
Connect_To_PS call; Set_Color_Support allows your application to change the
c9lor mode while the session is in progress.

After your application performs a Set_Color_Support call, all subsequent API calls
that retrieve the DAB will show the change in color settings. Also, changing the color
support mode causes the entire DAB to be returned in the next Get_Update call that
requests DAB update records.

Se~ Cursor (&req_blk, asyncFlaq);

3YTE color_supp; /* passed */

asyncFlaq

This flag may be one of the following (see "Checking for a Completed Request" in
Chapter 1 for more information):

ASYNC

SYNC

Specify this constant to return control immediately to the caller.

Specify this constant to prevent control from returning to the caller until
the request completes.

color_supp

This BYTE specifies the type of color support the application needs, which affects how
the driver sets the color bits in the DAB.

•!• Note: If the presentation space is unformatted, the color returned by the driver is
always green unless the scs_NO_COLOR constant is specified.

You can specify the following color support modes:

scs NO COLOR Specify this constant to always set the DAB color bits to not support
color (x'OOO').

SCS_2_COLOR Specify this constant for two base colors and no extended colors.
The driver examines only the field attribute to determine the color
setting for the DAB. The driver returns CK WHITE if the
intensified bit is set in the field attribute; if the bit is not set, the
driver returns CK GREEN.

3-90 Set_Color _Support C. .

Working Draft #3

Errors

Apple 3270 AP/ Programmer's Guide September 7 4, 7 988

scs 4 COLOR Specify this constant for four base colors and no extended colors.
The driver examines only the field attribute to determine the color
setting for the DAB, and returns one of the following colors:

CK_GREEN Unprotected, normal intensity

CK_RED Unprotected, intensified

CK BLUE Protected, normal intensity

CK WHITE Protected, intensified

SCS 2 COLOR EXT - - -
Specify this constant to support extended colors with two base
colors.

The color setting in the DAB is a copy of the EAB color setting with
this exception: When extended color is in effect (base color
override bit set to 1), and the color bits in the EAB are set to the
default values, the driver examines the field attribute and sets the
DAB to white for intensified fields and green for non-intensified
fields. When base color is in effect (base color override bit reset to
0), the EAB is ignored and the only two colors set are white and
green, in the same fashion as for SCS_2_COLOR.

SCS_4_COLOR_EXT
Specify this constant to support extended colors with four base
colors. This causes much of the same behavior as
SCS_2_COLOR_EXT except that, when base color is in effect (that
is, the base color override bit is reset), colors are set in the same
fashion as for scs 4 COLOR.

INP_INHIBITED_ERR This error indicates that an input-inhibited condition
existed; the write operation to the PS was disallowed.

PARM ERR This error indicates that the specified offset was out of
range for the current screen size.

Set_ Color _Support 3-91

"

Working Draft #3 Apple 3270 AP/ Programmer's Gulde September 14. 1988

Term_3270_API

Purpose 'This 3270 API call shuts down the interface.

Format Term_3270_API(api_vars);

Parameters None

Example The following example, taken from the sample application presented in Chapter 2 of
chis guide,_

if <err• Open_Host_Connection(&(dft(O]->req_blklll
ErrorMessage("Open_Host_Connection Error",errl;
Term_3270_API(api_vars);
return O;

Errors None

Term_3270_API 0

Working Draft #3 Apple 3270 AP! Programmer's Guide

Chapter 4

Apple 3270 API
Device Drivers

September 74, 7988

4-1

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Most 3270 device drivers are distributed as system files containing
an 'INIT' 31 resource. During startup, a Macintosh looks at all the
files in the System Folder to determine if any file has an 'IN1T' 31
resource. If an 'INIT 31 resource is found, the resource is loaded,
executed, and closed, and the search for 'IN1T 31 resources
continues. Thus, a 3270 device driver must be contained in a single
ftle that also contains the 'INIT resource.

+ Note: The 'INlT' 31 system resource type is described in detail in
Mactntosh Technical Note :;; 14.

The user installs an 'INIT' 31 resource by simply dragging the ftle
containing the driver and 'INIT' resource into the System Folder. To
un-install the 3270 device driver, the user drags the file out of the
System Folder. Thus, if your 3270 API device driver is 'INIT' 31, you
don't need to write and distribute an installation utility.

The interface supports ·drivers that reside permanently in the system
heap and those that live temporarily in the application heap.
Drivers running on the system heap should be placed in an INIT file
that gets loaded at system boot-up. Drivers that live only for the
duration of the application will run in the application heap. A
driver of this type should be stored in an ordinary resource file. In
both cases, the files are placed in the startup volume's System
Folder.

An Apple 3270 Device Driver must conform to the rules for
Macintosh device drivers, as described in Inside Macintosh,
Volume II, in the Device Manager chapter, and in Chapter 9 in
Designing Cards and Drivers for the Macintosh, and Macintosh
Techntcal Note #14

Besides following the rules in those manuals, and adhering to the
3270 API interface as detailed in this manual, Apple 3270 Device
Drivers have some special characteristics. These characteristics are
described in detail in this chapter.

4-2 Chapter 4: Apple 3270 API Device Drivers

0

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Input inhibited conditions
Your driver must check for an input inhibited condition prior to
sending the initial keystroke, and after each keystroke. If an input
inhibited condition exists prior to sending the initial keystroke, the
initial keystroke should be a RESET.Others keys, with two
exceptions, will cause the call to be terminated immediately with an
INP _INHIBITED_ERR. The exceptions are the SYSREQ and A1TN
keys which are valid even when an input inhibited condition is in
effect.

During the course of sending keystrokes, if an input inhibited
condition arises, the driver must terminate the call.

Your driver must not send keystrokes that follow an AID, SYSREQ,
or ATIN in the keystroke buffer.

Supporting API calls
A driver which supports an API call must be capable of
implementing the call's default mode of operation. It may
optionally support none, some, or all of the modifiers. If a request
has an unsupported modifier set, the driver must return
MOD_UNSUPP _ERR.

To mark calls as supported or, set the high-order bit (bit 15) of the
word corresponding to the call in an array of 16-bit words, as
follows:

Supporting API calls 4-2

Working Draft #3 Apple 3270 AP/ Programmer's Guide

Word 0
Word 1
Word 2
Word 3
Word-4
Word 5
Word 6
Word 7
Word 8
Word9
Word 10
Word 11
Word 12
Word 13
Word 14
Word 15
Word 16
Word 17
Word 18
Word 19
Word 20
Word21
Word 22
Word 23
Word 24
Word 25
Word 26
Word 27

Open_Host_Connection
Close_Host_Connection
Get_Host_Connection_Info
Connect_ To_PS
Disconnect_From_PS
Send_ Keys
Copy_To_PS
Copy _Prom_Buffer
Copy _To_Pield
Copy _Prom_Field
Copy_OIA
Search_String
Pind_Pield
Get_ Update
Get_Cur~or
Set_ Cursor
Set_ Color_Su pport
Send_Passthru_Data
Get_Passthru_Data
Post_Passthru_Reply
Do_Special_Func
Activa te_P rt_Sess
Deactivate_Prt_Sess
Get_DSC_Prt_Data
Get_LUl_Prt_Data
Post_Prt_Reply
Send_Prt_Control
Check_Session_Bind

September 74, 7988

Array elements can be accessed by the symbolic names defined for
the request codes. (See the list of request codes defined in
Appendix C of this manual.)

If your driver supports a call, the driver must support all of the
errors documez:ited for the call must be supported by a driver if it
supports the call. In addition, other more general errors can also
occur, and the driver must be capable of passing those errors on to
the application.

4-4 Chapter 4: Apple 3270 AP! Device Drivers

0

Working Draft #3

(

Appfe 3270 AP/ Programmer's Guide September 7 4, 7 988

A special driver function
The AP! interface does provide a call just for the driver's use. The
Do_Special_Func call allows you to add a special function that
doesn't normally exist in the interface. However, don't use the call
unless you have to, since it defeatsthe purpose of the API if an
application has to concern itself with a lot of details pertinent to a
specific driver.

Writing a OFT-CU driver
This section describes anything special that a DFT or CU driver
must know about individual API calls. See Chapter 3 for the full
specifications of the AP! calls.

Supporting passthrough data
In order to support the Get_Passthru_Data and
Send_Passthru_Data calls, your driver must process structured
fields in a serial fashion. Each time an application passes a
structured field that requires a reply, your driver should suspend
processing for the session until the reply is received.

Close_Host_Connection and DFT-CU drivers

Your driver must always respond to this request and immediately
shut down the connection method, regardless of any requests that
may be held at the time.

When the application makes this call, the API interface code will
issue a PB_Control with csCode = CLOSE_HOST_CONNECTION
and a pointer to the Close_Host_Connection request block in
csPararn[OJ and csPararn[l].

Connect_To_PS and OFT-CU drivers

For the usual case where the KEEP_SESSION modifier is not
specified, a Connect_To_PS call should result in the following
session processing

Writing a DFT·CU driver 4-5

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 14. 1988

o For a DFT emulation, the driver presents an AEDV (Offline)
status to the CU. This prompts the CU to issue an Unbind and/or
Notify if the host protocol is SNA. If the host protocol is local
non-SNA, the CU returns a Unit Check when the session is
selected. The driver then sends an AEDV (Online) status.

o For a CU emulation, the driver issues an Unbind and/or Notify
indicating device unavailability to the host if the host protocol is
SNA. If the host protocol is local non-SNA, the CU returns a Unit
Check when the session is selected The driver then issues a
Notify indicating device availability.

If the DO structured field ID (OxOFOZ) is specified in the array
pointed to by the type_pass_datap parameter, the driver
should inspect each DO structured field and take appropriate
action based upon the ID field before passing the field on to the
application; for example, a destination ID of 0 should cause the
driver to stop forwarding subsequent structured field to the
application.

Oeactivate_Prt_Sess and OFT-CU drivers

Your driver must always respond to this request and immediately
shut down the connection method, regardless of any requests that
may be held at the time.

Oisconnect_From_PS and OFT-CU drivers

Your driver must always respond to this request and immediately
terminate the connection to the PS, regardless of any requests that
may be held at the time. Terminatethe connection by taking action
in one of the following ways, depending upon the type of driver:

o For a DFT driver, present an AEDV (offline) status to the CC,
which prompts the CU to do one of the following:

If the host protocol is SNA, the CU issues an Unbind and/c;ir a
NOTIFY.

If the host protocol is local non-SNA, the CU returns a Unit
Check when the session is selected.

o For a CU driver, send an UNBIND and/or a NOTIFY to the host if
the host protocal is SNA If the host protocol is local non-S).'A,
the CU returns a Unit Check when the session is selected.

4-6 Chapter 4: Apple 3270 API Device Drivers

0

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Get_Host_Connection_lnfo ond DFT-CU drivers

The misc parameter for this call allows you to supply any
information you wish, up to a limit of 8 bytes.

For this call, your driver will need to process drv r _type,
io_compl_supp, and port_map. The other parameters
should be left for the PS. Only the port_ info array element that is
associated with the card (obtain the port ID via a GetCard call)
should be filled in.

drvr_type indicates if the driver supporting the connection is
temporary (GI_TEMP_DRVR), residing in the application's heap,
or is permanent (GI_PERM_DRVR)), residing in the system heap.

When the application makes this call, the API interface code will
issue a PB Control with csCode =
GET_HOST_CONNECTION_INFO and a pointer to the
Get_Host_Connection_Info request block in csParam [0 J and
csParam[l].

Get_LUl_Prt_Doto ond DFT-CU drivers

When the underlying host protocol for this call is SNA, the buff er
size in this call has implications at the protocol level: the smaller
the buffer, the fewer and/or smaller RU's can be stored and the
longer the driver must wait to send a pacing response. A 4K buffer is
the minimum recommended size. A 32K buffer is overkill. Refer to
the 3174 Functional Description - SNA Protocol - Pacing (LU type;
1) and RU Lengths sections for further information.

When an FMH, structured field,.or last portion of a regular chain of
data is transferred to the application, the driver should set
data_end to GLP_END_REPLY. The driver can withhold a pacing
response to prevent its buffer from overflowing while a response is
forthcoming from the application If the application responds with
a non-zero sense code, the driver should dispose of the rest of the
chain (buffered and/or forthcoming from the host).

You should set the end_job parameter to 1RU when End Bracket
(EB) has been detected and the last segment in the last RU of the
chain is passed to the application.

If your driver can support FMHs and structured fields, perform the
following tasks:

Writing a DFT-CU driver 4-7

Working Draft #3 Apple 3270 APf Programmer's Guide September 7 4, 7 988

CJ If the FI bit is set on an MIC or UC RU, reject the RU and abort the
current chain. Respond to the next Get_LUl_Prt_Data request
by setting the data_end parameter to the GLP_END constant
to indicate that the data unit was aborted.

CJ Ensure that a Read Partition Query structured field in the chain,
that the CDI is present on the last-in-chain RU, and that EB is not
set for the chain. Otherwise, recject the chain with a Ox0829 sense
code and set the data_end parameter to the GLP _END
constant to indicate that the data unit was aborted.

Open_Host_Connection and OFT-CU drivers

When the application makes this call, the API interface code will,
after issuing a PB_Open, issue a PB_Control with csCode
OPEN_HOST_CONNECTION and a pointer to the
Open_Host_Connection request block in csParam [0] and
csParam[l].

Post_Prt_Reply and OFT-CU drivers

A non-SNA driver must map the sense code to an Op-Check and a
Sense byte if sense_code is non-zero.

Send_Keys and OFT-CU drivers

The driver must check for an input inhibited condition prior to

sending the initial keystroke and after each keystroke. The call
terminates when an input inhibited condition arises during the
course of sending keystrokes.

Send_Passthru_Oata and OFT-CU drivers

Send_Passthru_Data can be supported only by a DFT/SNA driver.
Data sent must be bypassed by the Presentation Services function in
the. driver; and sent directly to the SNA LU 2 function. The data
passed becomes a RU to which the SNA LU 2 funaion attaches the
appropriate TH/RH.

4-8 Chapter 4: Apple 3270 API Device Drivers

Working Draft #3

('

Apple 3270 AP/ Programmer's Guide September 74, 7988

Among other possibilities, this call and the Get_Passthru_Data
call are intended to support the use of Destination/Origin (DO)
Structured Fields. An example of an application that employs the
DO Structured Field Protocol is the IND$FILE 3270 PC file transfer
method.

Writing a CUT driver
This section describes anything special that a CUT driver must know
about individual API calls. See Chapter 3 for the full specifications
of the API calls.

Close_Host_Connection and CUT drivers
Your driver must always respond to this request and immediately
shut down the connection method, regardless of any requests that
may be held at the time.

When the application makes this call, the API interface code will
issue a PE_Control with csCode = CLOSE_HOST_CONNECTION
and a pointer to the Close_Host_Connection request block in
csParam[O] andcsParam[l].

Connect_To_PS and CUT drivers
For the usual case where the KEEP _SESSION modifier is not
specified, a Connect_ To_PS call should result in the driver
presenting FOR to a Poll from the Cl:.

Disconnect_From_PS and CUT drivers
Your driver must always respond to this request and immediately
terminate the connection to the PS, regardless of any requests that
may be held at the time. Terminate a conection by no longer
responding to poll commands from the CU.

Writing a CUT driver 4-9

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 7 4, 7 988

Get_Host_Connection_lnfo and CUT drivers
The misc parameter for this call allows you to supply any
information you wish, up to a limit of 8 bytes.

For this call, your driver will need to process drvr_type,
io_compl_supp, and port_map. The other parameters
should be left for the PS. Only the port_info array element that
is associated with the card (obtain the port ID via a GetCard call)
should be filled in.

drvr_type indicates if the driver supporting the connection is
temporary (GI_TEMP_DRVR), residing in the application's heap,
or is permanent (GI_PERM_DRVR)), residing in the system heap.

When the application makes this call, the API interface code will
issue a PB Control with csCode =
GET_HOST_CONNECTION_INFO and a pointer to the
Get_Host_Connection_Info request block in cs Par am [0 J and
csParam[l].

Open_Host_Connection and CUT drivers
When the application makes this call, the API imerface code will,
after issuing a PB_Open, issue a PB_Control with csCode
OPEN_HOST_CONNECTION and a pointer to the
Open_Host_ Connection request block in cs Pa.ram [0] and
csPa.ram[l).

Send_Keys and CUT drivers
The driver must check for an input inhibited condition prior to
sending the initial keystroke and after each keystroke. The call
terminates when an input inhibited condition arises during the
course of sending keystrokes.

4- 1 O Chapter 4: Apple 3270 API Device Drivers

,c· ,.N·,··.\
).' ;

j

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 14, 1988

Appendixes

Working Draft #3

('

••

C:
/

(\

/

Apple 3270 AP/ Programmer's Guide September 74, 7988

Appendix A

Error Codes

This append.ix describes the API error codes returned in the
result field of the API request block. A driver (or related software)
is responsible for filling in result. The majority of error codes
returned by a driver fall in the generic category; a driver should
return relatively few driver-specific codes.

The high-order byte of result determines the error category, as
follows:

Generic Ox80

API Glue Ox81

Apple CUT/DFT driver Ox90

Apple CUT card Ox91

APPLE OFT card Ox92

Appleline driver to be assigned

Simware driver to be assigned

Avatar CUT driver to be assigned

Avatar OFT driver to be assigned

DCA CUT driver to be assigned

DCA OFT driver to be assigned

CXI CUT driver to be assigned

CXI DFT driver to be assigned

A-1

Working Draft #3

Table A·l
Generic error codes

Name

NO_ERR

RSP_PENDING

REQ_CODE_ERR

CONN_ID_ERR

PORT_ID_ER

PS_UNSUPP_ERR

SRCH_STR_NOT_FND_ERR

PS_NOT_CONNECTED_ERR

DATA_XFER_TRUNC_ERR

PS_UNAVAIL_ERR

END OF PS ERR - - -
INP INHIBITED ERR - -

HOST_RSP_PENDING_ERR

_. PARM_ERR

DATA ERR

GLUE_ERR

HARDWARE ERR

REQ_OUTSTANDING_ERR

LOST DATA ERR

FIELD_NOT_FND_ERR

DRVR_ERR

CONFIG ERR

EAB_UNSUPP_ERR

DAB_UNSU?P_ERR

Apple 3270 AP/ Programmer's Guide September 74, 1988

The low-order byte of result contains the error code. The error
categories and codes are shown in the tables in this appendix.

Value

OxOOOO

OxOOOl

Ox8002

0x0003

Oxro04

Ox8005

Ox8006
Ox8007

Ox8008

Ox8009

Description

Request completed successfully

Reponse pending; changed by driver when processing of
request is complete

Invalid API request code

Invalid connection ID

Invalid port ID

Driver does not support specified PS

No matching string found

Specified PS not connected

Data passed to or from application was truncated

PS in use or no more PSs available

Ox800A Beginning or end of PS encountered during copy or search

Ox800B Input-inhibited condition exists; write operation to PS
disallowed

Ox800C AID key sent to host; X Clock/System present

Ox800D Invalid request parameter

Ox800E Invalid data passed

Ox800F

Ox8010

Ox8011

Ox8012

Ox8013

Ox8014

Ox8015

Ox8016

Ox8017

Internal API error

Hardware failure detected by driver

Request rejected because another is outstanding

Driver lost data because of buffer overflow

No field matched search criteria

Internal driver error

Invalid configuration information

EAB not supported by driver

DAB not supported by driver

A-2 Appendix A: Error codes

0

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

DABE UNSUPP ERR - -
MOD UNSUPP ERR - -
WRITE PROT FLO ERR - - -
CONN ALREADY OPEN ERR - ·-
CONN_NOT_OPEN_ERR

PSS_UNSUPP _ERR

Ox8018 DABE not supported by driver

Ox8019 modifer(s) specified not supported by driver

Ox801A Write operation attempted into a protected field

Ox801B Connection to driver or PS already present

Ox801C Open_Host_Connection call not previously issued

Ox801D Programmed Symbol Sets not supported by driver

TIMEOUT ERR Ox801E Request timed out

cu NO RSP ERR Ox801F CU not responding or device-to-CU connection break

WRITE ATTR ERR Ox8020 Write operation attempted to overwrite an attribute

PS_UNFMT_ERR Ox8021 PS currently unformatted

SPEC_FUNC FAILED_ERR Ox8022 Do_Special_Func request failed

STATE ERR Ox8023 Invalid request for current state

CHG_TO_DEFAULT SCR ERR Ox8024 Screen changed to default size

CHG TO ALT SCR ERR Ox8025 Screen changed to alternate size

NO_HOST_SESS_ERR

SESS TYPE ERR

REQ_UNSUPP_ERR

Table A-2
API interface error codes

Name

GLC RES FILE ERR

GLU_DRVR_CPEN_ERR

GLU VARS ERR - -
Table A-3

Ox8026 Host session no longer exists

Ox8027 Invalid request for session type

Ox8028 Request unsupported by driver

Value Description •

Ox8101 Resource ·me error

Ox8102 Driver could not be opened

Ox8103 Invalid handle to glue variables

Apple CUT/DFT driver error codes

Name Value Description

ADVR_SLOT_NOT_CNFG_ERR Ox9001 Slot not configured; application did not request that that slot
be downloaded

Jl_DVR_ 6 2 K _ :SLD ER?. Ox9002 Download of 68000 failed: check whether or not the APPLE
DFT 2 file is present in the System folder. If that file is
present, report the error to Apple.

Appendix A: Error codes A-3

Working Draft #3

ADVR_8344_DNLD_ERR

ADVR_INIT 68K_ERR

ADVR_INIT_8344_ERR

ADVR_SEND_ERR

ADVR_RCV_ERR

ADVR_PS_TASK_ERR

ADVR_GET_MSG_ERR

ADVR_RES_FILE_ERR

ADVR_NO_ICCM_ERR

ADVR_FILE_ERR

Table A-4
Apple CUT card error codes

Name

ACUT_STATE_ERR

more to be defined

Table A-5
Apple OFT card error codes

Name

to be defined

Table A-6
APPLELINE error codes

Name

to be defined

Table A-7
SIMWARE error codes

Name

to be defined

Apple 3270 API Programmer's Guide September 14. 7988

Ox9003

Ox9004

Ox9005

Ox9006

Ox9007

Ox9008

Ox9009

Download of DP8344 download ; check whether or not the
APPLE DFI' 3 ftle is present in the System folder. If that file is
present, report the error to Apple.

68000 initialization failed; report error to Apple

DP8344 initialization failed; report error to Apple

MRDOS Send failed; report error to Apple

MRDOS Receive failed; report error to Apple

Presentation services task does not exist; report error to
Apple

MRDOS GetMsg failed; report error to Apple

Ox900A resource ftle error; report error to Apple

Ox900B local ICCM does not exist; report error to Apple

Ox900C file error encountered; report error to Apple

Value Description

OxllOl internal state machine error

Value Description

Value Description

Value Description

A-4 Appendix A: Error codes 0

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

(~-

Table A-8
AVATAR CUT error codes

Name Value Description

to be defined

Table A-9
AVATAR DFT error codes

Name Value Description

to be defined

Table A-10
DCA CUT error codes

Name Value Description ·

to be defined

Table A-11
OCA OFT error codes

(~--
Name Value Description

to be defined

Table A-12
CXI CUT error codes

Name Value Description

to be defined

Table A-13
CXI OFT error codes.

Name Value Description

to be defined

Appendix A: Error codes A-5

Working Draft #3

(

(

(-,

Apple 3270 AP! Programmer's Guide September 74, 7988

Appendix B

Control Key Codes

Table B-1 lists the codes for one of the most common keyboards
(***which one???***).

Table B-1
3270 DFT-CU control key codes

Control key Definition Value

APL on or off CK APL ON OFF Ox41 - -
Attn CK ATTN Ox28

Backtab CK BACK TAB Ox37

Clear CK CLEAR Oxll

Cursor Left CK_CURS_LEFT Ox33

Cursor Right CK CURS RIGHT Ox34 - -
Cursor Up CK CURS UP Ox31

Cursor Down CK CURS DOWN Ox32 - -
Cursor Select CK CURS SELECT Ox2b -
Delete CK DELETE Oxle

Device Cancel CK DEV CNCL Ox27 - -
Dup CK DUP Ox20

Enter CK ENTER OxOl

Erase EOF CK ERASE ECF Ox2d

8-1

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Table B· 1 (continued)
3270 DFT-CU control key codes

Control key Definition Vclue

Erase Input CK_ERASE_INP Ox Of

Extended Selection CK_EXT_SELECT Ox40

Field Mark CK_FIELD_MARK Oxlf

Home CK HOME Ox39

Idem CK_IDENT Ox2a

Insert CK_INSERT OxOe

Newline CK_NEW_LINE Ox3a

PAI CK PAl Ox21

PA2 CK PA2 Ox22

PA3 CK_PA3 Ox23

PFl CK PFl Ox02

PF2 CK PF2 Ox03

PF3 CK_PF3 Ox04

PF4 CK l?F4 OxOS

PF5 CK PFS Ox06

PF6 CK PF6 Ox07

PF7 CK_PF7 Ox08

PF8 CK_PF8 Ox09

PF9 CK_l?F9 OxOa

PFlO CK PFlO Ox Ob

PFll CK_PFll OxOc

PF12 CK_PF12 OxOd

PF13 CK_PF13 Ox12

PF14 CK PF14 Ox13

PF15 CK_PFlS Ox14

PF16 CK_PF16 OxlS

PF17 CK PF17 Oxl6

8-2 Appendix 8: Control Key Codes

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

Table B-1 (continued)
3270 OFT-CU control key codes

Control key Definition Value

PF18 CK PF18 Oxl7

PF19 CK PF19 Oxl8

PF20 CK PF20 Oxl9

PF21 CK PF21 Oxla

PF22 CK PF22 Oxlb

PF23 CK PF23 Oxlc

PF24 CK PF24 Oxld

Print CK PRINT Ox26

Reset CK RESET Ox29

SysReq CK_SYSREQ Ox30

Tab CK TAB Ox38

(,, Test CK TEST Ox24

Text on or off CK TEXT ON OFF Ox36 - - -

Field Inherit

Color CK FI COLOR OxSO

Extended highlighting CK FI EXTHI OxSl

Symbol set CK FI SYMSET Ox52

Color

Blue CK BLUE Ox53

Red CK RED Ox54

Pink CK PINK OxSS

Green CK GREEN Ox56

Turquoise CK_TURQ Ox57

Yellow CK_YELLOW Ox58

White CK WHITE Ox59

Black CK BLACK Ox5A

Appendix B: Control Key Codes B-3

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74. 1988

Table B· 1 (continued)
3270 DFT-CU control key codes

Control key Definition Value

Extended Highlighting

Reverse video CK_REVERSE OxSB

Blink CK_BLINK OxSC

Underscore CK_UNDERSC OxSD

Symbol Set - A CK SYM A OxSE - -
Symbol Set - B CK SYM B OxSF - -
Symbol Set - C CK_SYM_C Ox60

Symbol Set - D CK SYM D Ox61

Symbol Set - E CK SYM E Ox62 - -
Symbol Set - F CK_SYM_F Ox63

B-4 Appendix B: Control Key Codes

Working Draft #3

(

(~

Apple 3270 AP/ Programmer's Guide September 14. 7988

Appendix C

Request Codes

Table C-1 lists the actual request codes and their values, which you
can use for debugging.

Table C·l
3270 At'I request codes

Reque$t code Value

RC_OPEN_HOST_CONNECTION OxOl

RC_CLOSE_HOST_CONNECTION Ox02

RC GET HOST CONNECTION INFO Ox03 - - -
RC CONNECT TO PS Ox04 - - -
RC DISCONNECT FROM PS Ox05

RC SEND KEYS Ox06

RC_COPY_TO_PS Ox07

RC_COPY_FROM_BUFFER Ox08

RC_COPY_TO_FIELD Ox09

RC COPY FROM FIELD OxOA - - -
RC COPY OIA Ox OB - -
RC_SEARCH_STRING OxOC

RC FIND FIELD Ox OD

RC GET UPDATE Ox OE - -

C· l

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 7 4, 7 988

RC_GET_CURSOR Ox OF

RC_SET_CURSOR OxlO

RC_SET_COLOR_SUPPORT Oxll

RC_SEND_PASSTHRU_DATA Oxl2

RC_RECEIVE_PASSTHRU_DATA Oxl3

RC_POST_PASSTHRU_REPLY Oxl4

RC_DO_SPECIAL_FUNC OxlS

RC_ACTIVATE_PRT_SESS Oxl6

RC_DEACTIVATE_PRT_SESS Oxl7

RC_GET_DSC_PRT_DATA Oxl8

RC_GET_LUl_PRT_DATA Oxl9

RC_POST_PRT_REPLY OxlA

RC_SEND_PRT_CONTROL OxlE

RC_CHECK_SESSION_EIND OxlC

RC_SET_COLOR_SUPPORT OxlC

Table C-2 provides a list of definitions for programmers who pref er
to write more terse code. Such definitions allow an application to
use fewer characters to access a field wichin a particular request. For
example, you could use the following statement:

blk. openhe. open_type • WARM;

as a short form of the following statement:

blk.req.open_host_connection.open_type = ~ARM;

If you wish, you can also add your own defines to shorten other
names.

Table C-2
3270 API alternate defines

Short form

openhc

closehc

get info

connps

dis cps

Long form

req.open_host_connection

req.close_host_connection

req.get_host_connection_info

req.connect_to_ps

req.disconnect_from_ps

C-2 Appendix C: Request Codes

•

Working Draft #3 Apple 3270 AP/ Programmer's Guide September 74, 7988

sendkey req.send_keys

cpytops req.copy_to_ps

cpyfbuf req.copy_from_buffer

cpytf ld req.copy_to_ field

cpyffld req.copy_from_field

cpyoia req.copy_oia

srchstr req .·search_ st ring

findf ld req.find_field

getupd req.get_update

get curs req.get_cursor

setcurs req.set_cursor

sndpdata req.send_passthru_data

rcvpdata req.receive_passthru_data

spec req.do_special_func

(~ actprt req.activate_prt_sess

dactprt req.deactivate_prt_sess

getdsc req.get_dsc_prt_data

getlul req.get_lul_prt_data

postprt req.post_prt_reply

sndpctl req.send_prt_control

chkbind req.check_ session bind

Appendix C: Request Codes C-3

:f~.~ ...
'_,.-?

Working Draft #3 Apple 3270 AP/ Programmer's Guide

Glossary

e••writer's note: the definitions for the glossary Keyword: Definition
items will be included in the next draft.•••)

API interface routines: Definition

API request block: Definition

DAB: Definition

DBC: Definition

Device driver: Definition

(Display attribute buffer: Definition

EAB: Definition

Extended attribute buffer: Definition

Formatted presentation space: Definition

Glue: Definition

Host: Definition

Input inhibited: Definition

Modifiers: Definition

Offset: Definition

OIA: See Operator Information Area

Operator Information Area: Status line shown
at the bottom of the screen on a 3270-type
terminal.

Presentation space: Definition

Unformatted presentation space: Definition

September 14, 1988

G-1

0

Working Draft #3

·(

Apple 3270 AP/ Programmer's Guide September 7 4, 7 988

Bibliography

(***Writer's Note: Standard bibliographic information to be
supplied when we decide how many of these we want to reference
here.•••)

IBM 317413274 Control Unit to Device Product Attachment
Information (Oct 16, 1986)

IBM 3270 Information Display System Character Set Reference
(GA27-2837)

IBM 3270 High Level Language Application Program Interface
Programming Guide (59X9474)

Inside Macintosh, Volumes I, II, and III.

Inside Macintosh, Volume IV.

Inside Macintosh, Volume V.

Inside Macintosh X-Ref

Human Interface Guidelines: The Apple Desktop Interface.

Macintosh Programmer's Workshop Reference

MPW C Reference.

Programmer's Introduction to the Macintosh Family.

Technical Introduction to the Macintosh Family.

0

C'
.

Working Draft #3

Index

A
Activate_Prt_Sess 3-4

c
Check_Session_Bind 3-8
Close_Host_ Connection 3-11
Connect_To_PS 3-12
Copy _From_Buffer 3-22
Copy_From_Field 3-25
Copy_OIA 3-27
Copy_To_Field 3-29
Copy_ To_PS 3-32

D
Deactivate_Prt'"'"Sess 3-35
Disonnect_Frorn_PS 3-37
Do_Special_Func 3-39

F
Find_Field 3-41

G
Get_Cursor 3-44
Get_DSC_PRT _Data 3-45
Get_Host_Connection_Info 3-49
Get_LUl_PRT _Data 3-55
Get_Passthru_Data 3-59
Get_L'pdate 3-62

Init_32":'0_:\Pl 3-69

Apple 3270 AP/ Programmer's Guide

a
Open_Host_ Connection 3-70

p
Post_Passthru_Reply 3-7 4
Post_Prt_Reply 3-76

s
Search_String 3-78
Send_Keys 3-81
Send_Passthru_Data 3-85
Send_Prt_Control 3-87
Set_ Cursor 3-89
Set_Color_Support 3-90

Terrn_3270_API 3-92

September 74, 1988

I- l

(·-\
/

THE APPLE PUBLISHING SYSTEM

Titis Apple manual was written,
edited, and composed on a
desktop publishing system using
the Apple Macintosh™ Plus and
Microsoft® Word. Proof and
final pages were created on the
Apple LaserWriter® Plus.
POSTSCRIPT™' the LaserWriter's
page-description language, was
developed by Adobe Systems
Incorporated.

Text type is ITC Garamond®
(a downloadable font distributed
by Adobe Systems). Display type
is ITC Avant Garde Gothic®.
Bullets are ITC Zapf Dingbats®.
Program listings are set in Apple
Courier, a monospaced font.

