
c::/

Software Applications
in a Shared Environment

Final Draft: 8/6/87

Communications and Networking Technical Publications

Copyright © 1987 Apple Computer, Inc. All rights reserved.

APPLE COMPUTER, INC.

This manual is copyrighted by Apple, with all rights reserved. Under the copyright laws,
this manual may not be copied, in whole or in pan, without the written consent of Apple
Computer, Inc. This exception does not allow copies to be made for others, whether or not
sold, but all of the material purchased may be sold, given or lent to another person. Under
the law, copying includes translating into another language.

©Apple Computer, Inc., 1988
20525 Mariani A venue
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo, AppleTalk, and LaserWriter are registered trademarks of Apple
Computer, Inc. Macintosh® and AppleShare are trademarks of Apple Computer, Inc.

Simultaneously published in the United States and Canada.

•

,(

(..

NOTICE

The information in this document reflects the current state of the product.

Every effort has been made to verify the accuracy of this information;

however, it is subject to change. Preliminary Notes are released in this

form to provide the development community with essential information in

order to work on compatible third-party products.

(

.
c

Software Applications in a Shared Environment

Table of Contents

1
2
3
3
4
4
6
6
7
7
7
7
8
8
11
11
11
12
12
12
13
14
14
14
15
15
15
16
16
17
17
17
17
17
18
18
18
18

Preface
Introduction to the Sha.red Environment
File Servers
Introduction to AppleSha.re
AppleTalk Filing Protocol

Permissions
Translation of the "Original" Permissions

Opening Files
Browsing Only Access
Exclusive Access
Single Writers or Multiple Readers Access
Single Writers and Multiple Readers Access
Sha.red Access

Network Programming Guidelines
Byte Range Locking
How to Use Byte Range Locking
Updating a File
Appending Data to a File
Truncating a File

Network Application Development
Single-user/Single-launch Application

The Single-launch Application
The Single-user Application

Multi-user/Single-launch Application
The Multi-user Application

Single-user/Multi-launch Application
The Multi-launch Application

Multi-user/Multi-launch Application
Becoming Network Aware

Example 1: Memory Based Applications
Considerations for a Shared Environment

. Suggested Modifications
Example 2: The "Switch"

Considerations for a Shared Environment
Suggested Modifications

Example 3: Disk Based Applications
Considerations for a Shared Environment
Suggested Modifications

Apple Computer i August 6, 1987

Software Applications in a Shared Environment

A-1 Appendix A: Macintosh HFS File System Calls For Shared Environments
A-1 How HFS Calls Get Installed
A-1 Does Your HFS Support The New Calls?
A-1 Error Reporting
A-2 Call Data Structures
A-5 Shared Volume HFS File System Calls
A-5 GetVolParms
A-6 GetLoglnlnfo
A-7 GetDirAccess
A-7 SetDirAccess
A-8 l\1aplD
A-8 MapName
A-9 Copy File
A-10 MoveRename
A-11 OpenDeny
A-12 OpenRFDeny
A-13 Modified Existing HFS Calls
A-13 GetCatlnfo

Apple Computer August 6, 1987

(

List of Figures

Page Figure Number

4
13

Apple Computer

1
2

Software Applications in a Shared Environment

Title

The Basic File Access Model
Network Application Development Model

August 6, 1987

.
(~

Software Applications in a Shared Environment

Preface
The shared environment is usually thought to mean several workstations connected to a file
server. A file server allows users on a network to share data, applications, and disk
storage over the network. A multi-tasking operating system or software application such as
Switcher™ can also be considered a shared environment These software environments
allow sharing applications as well as data sharing between applications. The increased use
of AppleTalk networks and data sharing applications requires that applications for the
Macintosh computer follow guidelines that will ensure application compatibility in the
shared environment.

Application developers will find useful information in this document. Guidelines for
application development using the shared environment will be discussed. All application
developers benefit from the guidelines by having a framework that assists in developing
applications that will operate properly in the shared environment It is assumed that
programmers developing applications are already familiar with the software environment
they will use.

The contents include eight sections covering:

• Introduction to the Shared Environment

• File Servers

• Introduction to AppleShare

• AppleTalk Filing Protocol

• Opening Files
• Network Programming Guidelines

• Network Application Development

• Becoming Network Aware

Where to go for more information:

• Inside Macintosh, Volume 2, Chapter 10: The AppleTalk Manager

• Inside Macintosh, Volume 2, Chapter 6: The Device Manager
• Inside AppleTalk, Section XI: AppleTalk Session Protocol (ASP)

• AppleTalk Filing Protocol, Version 1.1
• Inside Macintosh, Volume 4, Chapter 19, "The File Manager''; Chapter 15, ''The

Standard File Package"
• AppleShare User's Guide

• AppleShare Administrator's Guide

Apple Computer 1 August 6, 1987

Software Applications in a Shared Environment

Introduction to the. Shared Environment

The shared environment provides the opportunity for application and data sharing among
users attached to the network. Applications usefulness increases as data sharing between
users increases. Networking further provides the ability to communicate and share data
among users. Again, it should be emphasized that multi-tasking and applications such as
Switcher share the same considerations and potential problems as found in a networking
environment. If you are unfamiliar with a networking environment and want more
information, refer to AppleShare Administrator's Guide or AppleShare User's Guide for a
description of the AppleShare file server. Terminology and requirements for the
AppleShare server environment are discussed there in depth.

Sharing can be done at a file and sub-file level. File level sharing can be divided into two
categories, data file sharing and application file sharing. Data file sharing could be a project
schedule that would be read by many users simultaneously but could be updated by only
one user at a time. Simultaneous updates to the file must be prevented in order to protect
the data in the file. A word processor, for example, might be an application shared as a
read-only file among many users. A correctly written application, with a proper site
license, would allow many users to use the same copy of the application at the same time.

Sub-file level sharing would be appropriate for applications such as data bases,
spreadsheets, or any similar application. Several parts of the file could be updated by users
simultaneously remembering that each part of the file can be updated by only one user at a
time.

Certain file system operations normally taken for granted must be monitored to insure their
successful completion. It can no longer be assumed that a computer is a single-user/single­
machine situation. Availability of resources in a network or shared environment cannot be
assumed. Appropriate error messages should be returned to the user to indicate the failure
of an operation. Examples in a networking environment might be:

- a file read or write fails because the file has been removed, the file
server has been shut down, or a break in the network has occurred

- creation of a file on the server fails due to an existing duplicate name
- a file cannot be opened for use because another user has already opened the file or
the user does not have the proper access privileges.

Preflighting system operations becomes important in the shared environment Preflighting
is checking. the availability of a resource before you attempt to use the resource. For
example, if an application creates temporary files, the application should check to see if the
names it gives to the temporary files already exist. If the name already exists, the
application can then give the temporary files another name or warn the user of the
impending problem. This example is especially true for computers attached to a network
because file storage may not be local to the computer.

Network preflighting also involves checking resources prior to their use. Checking if a
server volume is writeable before trying to write to the volume is an example of a preflight
that would allow the return of an error message indicating the system operation could not
be completed.

Apple Computer 2 August 6, 1987

C~'

Software Applications in a Shared Environment

File Servers
A file server is a combination of a computer , special software, and one or more large­
capacity disks attached to other computers via a network. In the file server context, the
other computers attached to the network are known as workstations. The computer
network allows communication between the file server and workstations. Users have easy
access to programs, data, and disk storage provided by the file server.

In the case of private information, files can be protected by placing access restrictions on
the folders that contain the files. These restrictions prevent access to files just as a locked
file cabinet protects documents. Access to the information can be set up such that
information in a folder can be shared only within a group. This would allow people in the
group to share information, for example, about a project under development. When the
project reaches completion, the access privileges could be changed to allow sharing the
information with anyone that might need the information.

Introduction to AppleShare
The server application available from Apple Computer is AppleShare™. Explanation of the
AppleShare file server environment should provide parallels for other shared environments.

Each hard disk attached to the server is called a file server volume. A selected server
volume will appear on the workstation's desktop as an icon and can be used just like any
Macintosh disk drive.

Access to the information contained in folders on the disk can be controlled by use of
access privileges. These privileges allow a folder to be kept private, shared by a group of
registered users, or shared with all users on the network. New users are registered, given
passwords, and organized into groups. The user can belong to more than one group to
provide better access to needed information. The information about the users and groups is
stored in a data base on the server and is used to determine the access privileges the user or
group has when they access an object on the server. Each folder has access privileges
assigned for each of the three categories of users: owner, group and everyone.

In the AppleShare file server environment, access privileges control who has what kind of
access to the contents of the folders _contained on a volume. The access privileges are
assigned on a folder by folder basis. This mechanism provides protection against
unauthorized use of applications or access to data files in folders on file server volumes.

Access privileges function as follows:

• The owner of a folder specifies that folder's access privileges for the following user
categories:

Owner - user who currently holds ownership

Group - any group established by the AppleShare administrator (AFP supports
only one group designation per folder)

Everyone - every user who has access to the file server (registered users and
guests)

Apple Computer 3 August 6, 1987

Software Applications in a Shared Environment

• Access privileges for a particl!l~ folder control the ability for each user category to:
See folders - privilege to see other folders in the folder

See files - privilege to see the icons and open documents or applications in that
folder as well

Make changes - create. modify. rename. or delete any file or folder contained in the
particular folder (note: folder deletion requires other privileges as
well).

An in depth discussion of access privileges can be found in the AppleShare User's Guide.

AppleTalk Filing Protocol
Applications access files on Macintosh-initializ.ed volumes by making calls to the File
Manager. Calls requesting services from a local volume are handled by the native file
system. ' Calls that refer to files on a server are routed through an external file system
translator and are converted into AFP requests to the file server. The server provides the
requested services to the workstation. The interaction with the network was implemented
in a way that provides transparent access to the mounted server volumes and files. The
AFP was carefully designed to allow its extension in a very general way. This was done to
enable future suppon of additional types of workstation file systems.

Workstation

Program ~ .-Translator

~ Network

File Manager .. Local Disk ...

Permissions

Native Filing
Interface

Apple Talk
Filing Interface

Figure 1. The Basic File Access Model

File Server

)

The File Manager was originally designed with three file-access modes: read/write. read­
only. and read/write if possible. otherwise. read-only. File servers introduced a situation
where more than one user might simultaneously access a file. The original file-access rule.
known as "single writer and/or multiple readers". was found to be inadequate.

Apple Computer 4 August 6, 1987

...~,,

L',

(

(-___ ---
-

Software Applications in a Shared Environment

AppleShare provides methods of specifying file access permissions that will prevent
simultaneous writes to a file if the-permissions are properly used. These new modes are
known as deny modes and are used in two new file-opening calls: OpenDeny and
OpenRFDeny. The setting of bits in the permission byte adds extra options to allow
denial of read or write access to other users. This gives the caller the ability to deny access
to other users and to specify the access required by the caller. Refer to Appendix A for a
description of the new HFS calls used in supporting shared environments. The format of
the new permission byte (used in the field ioPermssn) is as follows:

bit
7

llili
0
1
4
5

bit bit
6 5

Deny
Write

Mask;
$01
$02
$10
$20

bit bit
4 3

Deny
Read

Meanjn2:

bit
2

bit
1

Write

bit
0

Read

Set if read permission requested
Set if write permission requested
Set to deny other readers to the file
Set to deny other writers to the file

All other bitS must be clear and ioFLVersNum must be zero. The permissions value for a
given access mode can be determined by adding the masks for the desired bits together.
For example, read/write/deny-writers would be: $01 + $02 + $20 = $23.

It is important to remember that these deny mode permissions take into account existing
access paths to a file and other attempts to open new access paths to the file. This means
that if you attempt to open a file with read/deny-writers permission (normal read-only
access), the call will succeed only if no write access paths currently exist to the file and no
access paths were opened with deny read. Additionally, attempts to open the file for write
will fail until the read/deny-writers path is closed.

Another point to remember is that the access modes and deny modes are cumulative. The
modes combine to form the access currently available for a file. Each successful open of a
file combines its deny modes with previous deny modes. For instance, if the first open
sets a deny mode of deny read and a second open sets a deny write, the file has a current
deny mode of deny read/write. Access modes are also cumulative and combine to form the
current access mode for a file.

Apple Computer 5 August 6, 1987

Software Applications in a Shared Environment

Translation of the "Origi~a_I" Permissions

AppleShare uses the new permissions exclusively. So existing applications will work. the
external file system used by AppleShare (on each workstation) translates the original
permissions into the new permissions. To prevent applications from damaging files, the
basic rule of file access for AppleShare volumes has been changed to "single writer OR
multiple readers, but not both". Now two applications cannot have access to the same file
unless both open the file read'."only. This eliminates the problem of a reader reading a file
when the file is in an inconsistent state.

Note: This change in the basic rule currently applies only to AppleShare volumes when
the "original" permissions are used. In the future, Apple system software may
incorporate this change for local volumes. Be aware that if your application expects
to get more than one read-write path to a file at the same time, it will fail.

Here is how the original permissions translate to the new permissions:

0 . . I P ' ' CJK1Daerm1ss1ons;

fsRdWrPerm (read/write)

fsRdPerm (read-only)

fsWrPerm (write-only)

fsCurPenn
(read/write if possible, otherwise, read-only)

New Permjssjons;

read/write/deny-readers/deny-writers,
or read/deny-writers

read/deny-writers

read/write/deny-readers/deny-writers,
or read/deny-writers

read/write/deny-readers/deny-writers,
or read/deny-writers

The or in the translation of fsRdWrPerm, fsWrPerm, and fsCurPerm means that
if the call cannot be completed successfully with the first set of permissions, it is
automatically retried by the translator using the second set of permissions. The deny
portions of the translation are important for enforcing the updated basic rule of file access.
If a read or write access path to a file being opened already exists with fsCurPerm, the
first set of permissions will fail. The second set of permissions will succeed only if there is
no existing write path to the file. Note that fsRdWrPerm and fsWrPerm are also retried
read-only. Inside Macintosh states that fsRdWrPerm is granted even if the volume is
locked. An error will not be returned until a PBWrite, SetEOF, or PBAllocate call is
made.

Opening Files
There are several ways to open, use, and protect files using the new permissions. The
following examples will show ways to share files and protect the files using the new
access/deny permissions.

Apple Computer 6 August 6, 1987

lr".
'--···

C
~~\

/

c:

Software Applications in a Shared Environment

Browsing Only Access: r-ead/deny-writers

Opening a file with browse only access allows multiple readers with no writers because the
file can only be opened "read-only". These permissions would be used with commonly
used files such as help files, dictionaries, or any file that is read by many readers but never
modified by the readers. It might be appropriate to add a "Browse Only" checkbox to
SFGetFile dialog, with a user prompt during a document open from the Finder, so the file
could be explicitly opened as read-only.

Exclusive Access: read/wri tel deny-readers/deny-writers

Files opened with exclusive access allow only one user to read or write the file. Exclusive
access to the file is provided and the other calls will succeed only if there is no existing path
to the file. Any additional access path to the file will be denied until the current path is
closed. Most "single-user" applications will probably use this access mode. Most existing
applications use this mode by default by using f sCurPerrn permissions.

On AppleShare, the call will fail if this method is used to open a path to a file in a folder to
which you do not have both See Files and Make Changes privileges. A user could then,
with an appropriate message, be offered a Browse Only copy of the file. If the user
refuses, then close the Browse Only path.

Single Writers or Multiple Readers Access: read/write/deny­
write/deny-read for writers, read/deny-write for readers

Opening files with single writers or multiple readers access allows only one user read/write
access to a file. A read/write request for the file is returned as read-only if the file is
currently in use. If the file is currently being modified, a message should be issued to a
user requesting read access indicating the file is being written, access will be granted after
the write is complete. This method might be the most easily implemented by existing
applications that want to share data.

Single Writers and Multiple Readers Access: read/write/deny­
write for writers, read for readers

Opening files with single writers and multiple readers access allows only one user
read/write access to a file. If a write access path is open to the file, a request to open the
file for write will be denied, but a request to open the file for read will be granted. This
type of application would be more difficult to implement. The application is responsible for
control of the file while it is being written to prevent other users from reading the file while
it is being modified. During modification, the writer should Range Lock the part of the file
being written. Also, applications should return a message to the user telling them that the
file is being modified and is currently not available.

Apple Computer 7 August 6, 1987

Software Applications in a Shared Environment

Shared Access: read/write -(deny none)

The shared access method of opening files supports full multi-user access to its files. All
users are allowed read and write access to any file concurrently. Range locking would
have to be used by the application to prevent other users from accessing files while they are
being modified. Error messages for the user become extremely important in this shared
environment to make the user aware of what is happening. An example would be an error
message letting a user know that a file is currently in use and they will have to wait to
access the file.

Network Programming Guidelines
This section contains some additional guidelines for areas that could cause compatibility
problems in a network environment.

Use the new HFS system calls.

The new calls would allow the application to determine if the file is stored on a server
volume. The privileges could then be checked and feedback sent to the user if necessary.
It is important in the shared environment to provide information to the user about normal
situations in this environment that do not normally occur in a "single machine/single user"
environment. Refer to Appendix A for a description of the new Hierarchical File System
calls used in supporting the shared environments.

Try opening files with the new HFS OpenDeny and OpenRFDeny calls.

It is recommended to structure your code such that you try the new open calls first. Then
check to see if paramErr is returned. This would indicate that the file does not reside on a
server volume. If so, make the equivalent old style open call. Attempts to make the new
calls specifying a local (non-AppleShare) volume will return a paramErr indicating that the
local file system does not know how to handle the call.

An application should not write to itself (either data or resource forks).

Applications should not be designed to save information by writing into their own file.
When information specific to one user (set-up parameters etc.) is saved in the the
application's own file and that application is "shared" by two or more users, information
owned by the first user may be overwritten by the second user, and so on.

Apple Computer 8 August 6, 1987

C\
\

/

c

Software Applications in a Shared Environment

Multi-user applications should n-ot use the Resource Manager to structure
their data in a resource fork.

The Macintosh Resource Manager assumes that when it reads the resource map into
memory (during OpenResFile), it will be the only one modifying that file. If two write
access paths existed to a resource fork, neither would have any way of notifying the other
that the file had changed (and in fact, no way to re-read the map). So, only "sole writer" or
"multiple-reader" access will work. (fsShared permission could cause inconsistent files or
other problems, without returning an error.)

This means that if your application uses resource files for document storage, you cannot
share data (for multi-user access); if you want to create a multi-user, or multi-launch
version of your application you must find another way to store your data.

An application should not close a file while in the process of making
changes to its contents.

When the application is written so that it opens a file, reads the file's contents into memory,
and then closes the file, the application has checked out a copy of the file. After the file is
closed, another user can open the file, read the contents of the file into memory, and then
close it Two copies of the file are now checked out to two different users.

Each user, after changing his checked out copy of the file, decides to save the changes to
the original file. User one opens the file and writes the changes back into the original and
closes the file. Then, user two opens the file and writes the changes back into the original
and closes the file. The second user's write operation wipes out the first. This is a
significant problem because neither user is aware of what has happened and neither has a
way of finding out. The best method to prevent a problem is to keep the file open while in
use. This will prevent other users from obtaining an access path and modifying the file
while it currently open.

An application that intends to share data should use AFP open permission
with access deny modes.

Each access path to a file has open permission information indicating whether data can be
written to it or not through that path. When you open a file, you request an access path
with permission to read from it or write to it or both. If the open permission assigned to
an already existing access path doesn't allow I/Oas requested by your call, a result
indicating the error is returned.

The AppleShare workstation translator has been modified to prevent inadvertent file
damage when used correctly. Applications should be designed with the new permissions
and shared environment in mind to prevent compatibility problems.

Apple Computer 9 August 6, 1987

Software Applications in a Shared Environment

An application should inform ·the user what access was granted to the
document during the open process.

Shared environment applications should respond appropriately to errors returned by the file
system. A more precise error reporting mechanism is used to communicate between the file
server and an application program running in a workstation. Currently, most applications
are not prepared to respond to this error reporting correctly. This has serious
consequences since the user is not usually informed about the file access granted during the
open process.

An application must be intelligent about how it manages temporary files.

Many programs that create and open temporary files give these files fixed names. If such
an application is shared by many users, it is possible that a second user will launch the
same application and the program will attempt to create a new temporary file and give the
same name as that used by the first user. This situation is clearly not expected by most
applications and can have serious consequences including crashing the application.

One solution is not to create any temporary files on disk, holding all information in
memory. Another solution is to save temporary files in the system folder of the user's boot
volume (startup disk) which is usually available for the system file writing. This solution
is not perfect, however, since a person's boot volume may be a diskette with extremely
limited space. A third solution is to generate unique names for temporary files.

Developers need to be aware that switch launching to the file server volume is not allowed
because there are no workstation-accessable system files located on file server volumes.

Use the Scrap Manager to access the Scrapbook.

Don't implement your own scrap mechanism. Use the Rom Scrap Manager so that
resources in the scrap can be shared among applications.

Do not directly examine or manipulate system data structures, such as file
control blocks (FCB) or volume control blocks (VCB), in memory.

Use file manager calls to access FCB and VCB information.

When the application directly examines the list of data structures related to volumes that are
currently mounted without using the appropriate calls to the File Manager, it is possible that
these structures will not accurately reflect the structure of the data on file server volumes.

To give the file system the opportunity to update information, use GetVollnfo to determine
volume information and GetFCBinf o to determine open file information.

The Allocate function is not supported by AppleShare.

Instead, use SetEOF to extend a file by setting the logical end-of-file.

Apple Computer 10 August 6, 1987

. c:

Software Applications in a Shared Environment

Program segmentation swapping- should be kept to a minimum.

The effect of program segmentation swapping is exaggerated when the application is
launched from the file server, because segments are dynamically swapped in over the
network. This will reduce the performance of the file server.

Use Byte Range Locking if your application will allow multiple users to
concurrently read and write the same file.

Byte Range Locking

The LockRng call locks a range of bytes in an open file opened with shared read/write
permission (mode 4). Call LockRng before writing to the file to prevent another user from
reading from or writing to the locked range while you are making your changes.

When using byte-range locking:

o You can lock and unlock ranges within a file at any time while you have it open.

o You can keep other users from reading or writing a range.

o All range locks set by you are removed automatically when you close the file.

o You cannot read from or write to a range that's been locked by another access path
with the LockRng call.

How To Use Byte Range Locking

On a file opened with a shared read/write permission, LockRng uses the same parameter
block (HParamBlockRec) as both the Read and Write calls; by calling it immediately before
Read or Write, you can use the information present in the parameter block for the Read or
Write call.

Note: The ioPosOffset field is modified by the Read and Write calls and therefore must be
set up again before making an UnLockRng call.

When finished using the range, be sure to call U nlockRng to free up that portion of the file
for other users.

When calling LockRng, the ioPosMode field of HParamBlockRec specifies the position
mode; bits 0 and 1 indicate how to position the start of the range, the same as the
FileManager.

Updating a File

When updating a particular record and that update affects other records within the file, first
determine the range of bytes affected by the updated information. Then call Lock:Rng to
lock out any other user from accessing this range of data. If the lock request succeeds, the
required changes to the data can be made. Then release the lock and make the data available
to other users again. If the lock fails, several retries should be done. After several
unsuccessful retries.an error message could be issued to indicate that the file is busy and try
again later .

Apple Computer 11 August 6, 1987

Software Applications in a Shared Environment

Without this lock on the data, another user can read the range of data that you are in the
process of manipulating, causing the data to appear inconsistent. For example, when
implementing a data base or spreadsheet application with the intent of ma.king files available
for reading and writing by a group of users, you can use byte-range locking to preserve
the integrity of the data within the files.

Appending Data to a File

Lock a range including the logical end-of-file and including the last possible addressable
byte of the file ($7FFFFFFF-Hex) and then write to that range. This actually locks a range
where data does not exist. Practically speaking, locking the entire unused addressable
range of a file prevents another user from appending data until you unlock it.

Truncating a File

To truncate a file, lock the entire file, truncate the data, and then unlock the file. This will
prevent another user from using a portion of the file while you are in the process of
truncating it.

Network Application Development

AFP file servers will enable new kinds of applications to be created that will need additional
sharing guidelines in addition to the general guidelines listed above. Some of these
applications will be ones that can be put on a file server and launched and used by several
people at the same time. Others will allow several users to update the same file at the same
time. In order for these types of functions to happen properly in a shared environment,
the applications and their associated document files must be managed correctly. Figure 2
shows four network application program categories.

The network application development categories are defined by the following key terms:

Single-user (private data) applications allow only one user at a time to make changes to a
file.

Multi-user (shared data) applications allow two or more users to concurrently make
changes to the same file.

Single-launch applications allow only one user at a time to launch and use a single copy
of the application.

Multi-launch applications allow two or users at a time to launch and use a single copy of
the application.

When single-user and multi-user are seen as describing data file sharing modes and single­
and multi-launch describe the application launching characteristic of the applications, four
categories of network applications emerge. These four categories shown in Figure 2 each
have a combination of these two basic characteristics.

Apple Computer 12 August 6, 1987

r·
'N'.

c

(..

Single­
Launch

Application
Sharing Mode

Multi­
Launch

Software Applications in a Shared Environment

Network Application Categories

File Sharing Mode

Single-User (Private) Multi-User (Shared)

Category 1: Single-Launch
Single-User

The application allows:

-only one user at a time to
launch and use a single copy
of the application.

-only one user at a time to
make changes to a file.

Category 3: Multi-Launch
Single-User

The application allows:

-two or more users to
concurrently launch and use a
single copy of the application.

-only one user at a time to
make changes to a file.

Category 2: Single-Launch
Multi-User

The application allows:

-only one user at a time to
launch and use a single
copy of the application.

-two or more users may
concurrently make changes
to the same file.

Category 4: Multi-Launch
Multi-User

The application allows:

-two or more users to
concurrently launch and use a
single copy of the application.

-two or more users may
concurrently make changes to
the same file.

Figure 2. Network Application Development Model

Single-user/Single-launch Application

Some applications will fall into this category for these reasons:

• Making an application multi-launch is a philosophical/business issue (site licensing,
etc.) and some developers may not wish to develop multi-launch software.

• Many applications are not well suited to multi-user (shared data) versions. Where a
database application is a likely candidate for a multi-user (shared data) version, a
word processor may not be a likely candidate.

Apple Computer 13 August 6, 1987

Software Applications in a Shared Environment

Applications that may be developed for this category include but are not limited to:

Word processingS preadsheets
Databases
Accounting
Page Layout
Programming Languages
Project Management
Terminal emulation
Bit-oriented graphics
Object-oriented drawing
Games
Utilities

The Single-launch Application

The single-launch application allows only one user at a time to launch and use a single copy
of the application.

The Single-user Application

The single-user application allows only one user to have write access to a document at a
time.

The application could keep the document open while it is in use and by using the access
deny modes which deny access to subsequent users of the document write access. The ·
application might allow multiple-readers, but only if the application were capable of
coordinating updates to the file with read-only users.

Multi-user/Single-launch Application

Applications in this category must adhere to the single-lauch guidelines listed above.

Applications that may be developed for this category include but are not limited to:

Spreadsheets
Databases
Page Layout
Project Management
Object-oriented drawing
Mail
Personal Calendars
Games

Apple Computer 14 August 6, 1987

('

Software Applications in a Shared Environment

The Multi-user Application

The multi-user application allows two or more users to have write access to a document at a
time. This type of application also correctly locks records while they are being modified.

Allowing and coordinating multiple writers to a single document can be accomplished by
keeping the document open while it is in use and by using an open mode in the file system
that specifically allows subsequent users of the document write access.

The multi-user application also has an update mechanism so that all users of a document
receive updates when a record is changed.

The application must also use byte range locking (available as a standard HFS call) to
permit only one writer in a byte range at a time.

Single-user/Multi-launch Application

This will be a new class of application at least partially enabled by file servers. Many users
will desire it as it has distinct advantages in version control and in perceived economies for
the customer (site licenses).

Applications that may be developed for this category include but are not limited to:

Word processing
Spreadsheets
Databases
Accounting
Page Layout
Programming Languages
Project Management
Terminal emulation
Bit-oriented graphics
Object-oriented drawing
Games
Utilities

This category of application must provide single-user data handling in addition to the multi­
launch capabilities described below.

The Multi-launch Application

The multi-launch application allows two or more users to concurrently use one copy of an
application.

Making an application multi-launch is more complex than making it single launch. The first
step is setting the multi-launch or shared bit in the application's finder information. Use
ResEdit or FEdit to set the shared bit.

Apple Computer 15 August 6, 1987

Software Applications in a Shared Environment

The multi-launch application may or may not limit the total number of concurrent users of a
given copy of the application.

Limiting the number of concurrent users requires that the application implement some
method to count the users as they launch and quit the application.

Counting can get a little complex, for example, counting temporary files works but the
temporary files may not all be in the same place and may in fact be in the user's boot
volumes. Counting temporary files would also require some cleanup method to check
whether or not the temporary files in existence were really in use or merely the remnants of
a user crash.

One method to make things easier for the programmer is to require that a multi-launch
application be able to create temporary files in the folder containing the application. You
would, of course, have to document this so users would know that the application could
not be launched from a read-only folder.

Multi-user/Multi-launch Application

This category of application combines both multi-user and multi-launch techniques to
provide the most complex of network smart applications.

Applications that may developed for this category include but are not limited to:

Spreadsheets
Databases
Page Layout
Project~anagement
Object-oriented drawing
~
Personal Calendars
Games

Becoming Network Aware

Applications written under the assumption that it is being used in a "single user/single
machine" environment may encounter problems when that application is used in the server
environment. Applications now should use the new HFS calls that support the shared
environment. The new calls are defined and explained in Appendix A. The new
permissions will allow applications to operate properly in the shared environment.
Applications should also handle temporary file names in a manner that will prevent
duplicate file name problems.

Three general application types will be discussed. Examples of considerations necessary to
make the examples "network aware" will be included. The first example will be an
application that is "memory based". A data file is read into memory, worked with, and
written back to the original file. The second example, "the switch", is also memory based
but differs in the filing method. The third example is an application that is disk based,
meaning the application operates primarily out of disk files.

Apple Computer 16 August 6, 1987

..

..

c

Software Applications in a Shared Environment

Note: These are suggestions for applfcations that do not allow multiple writers to make
changes to documents at the same time. These suggestions will allow the
applications to work in a shared environment in which files are shared serially but
not concurrently.

Example 1: Memory Based Applications

A memory based application opens the data file, reads it into memory, then closes the data
file. The data is manipulated by the application. The data is then saved. The save
operation consist of opening the data file and writing the data to a disk file and closing the
file. Care should be exercised not to close the file while it is in use. Allowing another user
write access to the file while it is currently being modified could easily damage the file.
This type of problem is known as the "checkout" problem.

Considerations for a Shared Environment

Workstation A opens a file. Workstation B opens the same file while workstation A has
the file open. Workstation A now saves the file. Workstation B now saves the file
destroying the changes made by workstation A.

Suggested Modifications

1. The 'open' operation should leave the file open until the user is through with the file and
has issued a 'close' to the file.

2. The file could be opened explicitly for read/write. If the file is busy, report that the file
is in use and offer to give a read-only copy of the file if possible. The application
should RangeLock the file when changes are being made to prevent a reader or browser
from reading an inconsistent file.

Example 2: The "Switch"

This is not a recommended way to handle files. These suggestions will minimize potential
problems if your application works this way.

The "switch" type application is also memory based. The application opens the data file,
reads the file into memory, then closes the file. The 'save' operation consists of creating a
new file, copying the Finder information from the old file, writing the updated data to the
file, closing the file, deleting the old data file, and renaming the new data to the old data file
name. This allows the old data file to be protected until the new data file is safely written.

Considerations for a Shared Environment

Workstation A opens a file. Now workstation B has opened the same file concurrently.
Workstation A modifies the file while workstation B modifies the file. Workstation A
saves the file and workstation saves the file. Workstation A deletes the original file.
Workstation B attempts to delete the original file but receives an error because workstation
A has already deleted the original file. Workstation A renames the file. Workstation B
attempts to rename the file but receives an error because workstation A has already renamed
the file.

Apple Computer 17 August 6, 1987

Software Applications in a Shared Environment

Suggested Modifications

1. Copy the Finder information during the 'open' operation in case the original file gets
deleted before the 'save' operation.

2. Check for errors deleting the source, particularly fileNotFound. This error would mean
that someone else has modified the file. A dupFnErr from the rename would also mean
that someone else had modified the file. The user could then be given the opportunity to
save the file elsewhere or under a different name.

Example 3: Disk Based Applications

Disk based applications open the data file and leave the file open for the duration of the
modification. A temporary file could be created to hold the changes, the changes could be
written immediately, or the changes could be held for the short term in memory. A "save"
operation consists of writing the changes to the data file and flushing the volume.

Considerations for a Shared Environment

The application should either exclude other readers and writers or be able to deal with
concurrent operations through some type of locking mechanism.

Suggested Modifications

The file should be opened explicitly for read/write. If the file is busy, report that someone
else has the file open.

Apple Computer 18 August 6, 1987

...

('

/

· -- - Appendix A

Macintosh HFS File System Calls For
Shared Environments

Network Systems Development
© 1987 Apple Computer Inc.

This appendix describes the interface to the new Hierarchial File System (HF'S) calls used in
supporting shared environments (e.g. network-based file servers). These calls are not documented
in the File Manager chapter of Inside Macintosh Volume IV. Though the calls are not necessarily
specific to AppleShare, most of this appendix keeps the implementation of AppleShare in mind
when describing examples.

All of these calls are HFSDispatch ($A260) calls with an index value passed in register DO. This
document only describes the low level assembly language interface. Higher level Pascal-like glue
routines are unimplemented at this time. Please refer to Inside Macintosh for information on how
to make HFSDispatch calls.

How HFS Calls Get Installed

For AppleShare startup volumes, these calls get installed by an INIT resource patch contained
within the AppleShare file. Currently, this means that only startup volumes with the AppleShare
file located in its System Folder will support these new HFS calls. Future versions of HFS may
contain these calls in the ROM or a patch could be inserted to add these calls to the existing HFS.

This resource (Type INIT; ID=32; "ASFSinit") is executed by the INIT 31 resource in the System
3.3 (or later) file. The resource patch installs itself above the stack and all HFSDispatch calls are
sent to it Since this patch currently only handles external volumes, calls to local volumes will
return with an error; however the AppleShare external file system code will get all calls made to
AppleShare volumes. The file manager may be changed in the future to also handle these new
calls.

Does Your HFS Support The New Calls?

The simplest way to determine if your HFS supports these new calls is to just make the
GetVolParms call to a mounted volume. If a 'paramErr' error is returned in DO and you have set
the correct parameters, then the volume does not support these new calls. Making successive
GetVolParms calls to each mounted volume is a good way to tell if any of the volumes support
these calls. Once you find a volume that returns 'noErr' to the call, examine the information to see
if that volume supports various functions (like access privileges, CopyFile, etc) that you may need.

Error Reporting

Whenever possible, error codes returned by these new HFS calls map directly into existing
Macintosh error equates. For various reasons though, some error codes cannot translate into an
existing error equate. Because of this reason, new error equates have been defined for these error
codes. These are detailed below:

Apple Computer A-1 August 6, 1987

Appendix A HFS Calls for Shared Environments

VolGoneErr -124" - - Connection to the server volume has been
disconnected, however the VCB is still around and
marked offline

AccessDenied -5000 The operation has failed because the user does not
have the correct access to the file/folder

DenyConflict -5006 The operation has failed because the permission or
deny mode conflicts with the mode in which the fork
has already been opened.

NoMoreLocks -5015 The byte range locking has failed because the server
cannot lock any additional ranges

RangeNotLocked -5020 User has attempted to unlock a range that was not
locked by this user

RangeOverlap -5021 User attempted to lock some or all of a range that is
already locked

The AppleTalk AFP protocol returns errors in the range of -5000 to -5030. Since it is possible,
though unlikely, to receive error codes in this range, it would be wise to handle these
undocumented error codes in a generic fashion. If you require it, the complete list of these error
codes can be found in the AppleTalk AFP Protocol specification document

Call Data Structures

Described below are some of the new data structures used by these calls. Specific information
about the placement and setting of parameters is described later in the appropriate call section.

For GetLogininfo, ioObjType contains the log in method where the following values are
recognized:

0
1
2
3-127
128-255

Apple Computer

guest user
registered user - clear text password
registered user - scrambled password
RESERVED by Apple for future use
User defined values

A-2 August 6, 1987

•

''" ~,i

Appendix A HFS Calls for Shared Environments

For MapName and MapID, ioObjType contains a mapping code. The MapID call recognizes these
codes:

1 map owner ID to owner name
2 map group ID to group name

and MapName recognizes these codes:

3 map owner name to owner ID
4 map group name to group ID

For GetDirAccess and SetDirAccess, ioACAccess is a Longlnt which contains access rights
information in the format 'uueeggoo', where uu = user's rights, ee = everyone's rights, gg =
group's rights, and oo =owner's rights. Unused bits should always be set or returned cleared. A
pictorial representation is shown below (high order bit on the left):

r Owner bit

x 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

Write

Read

Search

x x
x x
x x
x x

t

x
x
x
x

User's rights

Everyone's rights

Group's rights

Owner's rights

The User's rights information is the logical 'OR' of Everyone's rights, Group's rights, and
Owner's rights. It is only returned from the GetDirAccess call; it is never passed by the
SetDirAccess call. Likewise, the Owner bit is only returned in the GetDirAccess call. To change a
folder's owner, you must change the Owner ID field of the SetDirAccess call.

AppleShare 1.0 and 1.1 uses the Write bit to represent 'Malce Changes' privileges. The Read bit is
used for 'See Files' privileges and the Search bit is used for 'See Folders' privileges.

Apple Computer A-3 August 6, 1987

Appendix A HFS Calls for Shared Environments

For OpenDeny and OpenRFDeny, ioDenyModes contain a word of permissions information. This\,_/
is pictured below (high order bit on the left):

Bit

lololololololololololxlxlololxlxl

15-6
5
4
3-2
1
0

-deny other writers _j !_J
deny other readers

request write permission

request read permission

RESERVED; this should be zeroed
If set, deny other writers to this file
If set, deny other readers to this file
RESERVED; this should be zeroed
If set, requesting write permission
If set, requesting read permission

For GetCatlnfo, ioACUser (a new byte field) returns the user's access rights information for a
directory whose volume supports access controls in the following format:

lxlololololxlxlxl

directory owner _j t J

Bit 7

6-3
2

1

0

Apple Computer

write privileges

read privileges

search privileges

If set, user is not the owner of the directory
If clear, user is the owner of the directory
RESERVED; this is returned zeroed
If set, user does not have Write privileges to the directory
If clear, user has Write privileges to the directory
If set, user does not have Read privileges to the directory
If clear, user has Read privileges to the directory
If set, user does not have Search privileges to the directory
If clear, user has Search privileges to the directory

A-4 August 6, 1987

•

(

(~-

Appendix A HFS Calls for Shared Environments

Shared Volume HFS File--System Calls

Get Vol Parms

Trap: $A260; DO = $30

Parameter Block:

-> 12 long
<- 16 word
-> 18 long
-> 22 word
<- 32 long
-> 36 long
<- 40 long

ioCompletion
ioResult
ioFileName
ioVRefNum
ioBuffer
ioReqCount
ioActCount

; optional completion routine ptr
; error result ccxie
; volume name specifier
; volume refNum
; ptr to vol parms data
; size of buff er area
; length of vol parms data

The GetVolParms call is used to return volume level information. ioVRefNum or ioFileName
contain the volume identifier information. ioReqCount and ioBuffer contain the size and location
of the buffer in which to place the volume parameters. The actual size of the information is
returned in ioActCount.

The format of the buffer is described below. Version 01 of the buffer is shown below along with
offsets into the buffer and their equates:

offset 0 vMVersion word version number (currently 01)
2 vMAttrib long attributes (detailed below)
6 vMLocalHand long handle used to keep information necessary for shared

volumes
10 v MServer Adr long AppleTalk server address (zero if not supported)

On creation of the VCB (right after mounting), vMLocalHand will be a handle to a 2 byte block of
memory. The Finder uses this for its local window list storage, allocating and deallocating memory Js
needed. It is disposed of when the volume is unmounted. For Apple Talk server volumes,
v MServerAdr contains the Apple Talk internet address of the server. This can be used to tell which
volumes are for which server.

vMAttrib contains attributes information (32 flag bits) about the volume. These bits and their
equates are defined as follows:

bit 31

30

29
28
27

26

25

bLimitFCBs

bLocalWList

bNoMiniFndr
bNoVNEdit
bNoLclSync

bTrshOffLine

bNoSwitchTo

Apple Computer

If set, Finder limits the number of FCBs used during copies
to 8 (instead of 16)
If set, Finder uses the returned shared volume handle for its
local window list
If set, Mini Finder menu item is disabled
If set, volume name cannot be edited
If set, volume's mcxiification date is not set by any Finder
action
If set, anytime volume goes offline, it is zoomed to the Trash
and unmounted
If set, Finder will not switch launch to any application on the
volume

A-5 August 6, 1987

Appendix A HFS Calls for Shared Environments

24-21

20
19

18

17

16

15

14

13

1 ,_

il-0

. - _ RESERVED - server volumes should return these bits set,
all other disks should return these bits cleared

bNoDeskltems If set, no items may be places on the Finder desktop
bNoBootBlks If set, no boot blocks on this volume - not a startup volume.

SetStartup menu item will be disabled; boot blocks will not
be copied during copy operations

bAccessCntl If set, volume supports AppleTalk AFP access con trol
interfaces. The calls GetLoginlnfo, GetDirAccess,
SetDirAccess, MapID, and MapName are supported.
Special folder icons are used. Access Privileges menu item
is enabled for disk and folder items. The privileges field of
GetCatlnfo calls are assumed to be valid.

bNoSysDir If set, volume doesn't support a system directory; no switch
launch to this volume

bExtFSVol If set, this volume is an external file system volume. Disk
init package will not be called. Erase Disk menu item is
disabled.

bHasOpenDeny If set, supports _OpenDeny and _OpenRFDeny calls. For
copy operations, source files are opened with enable
read/deny write and destination files are opened enable
write/deny read and write.

bHasCopyFile If set, _CopyFile call supported. _CopyFile is used in copy
and duplicate operations if both source and destination
volumes have same server address.

bHasMoveRename If set, _MoveRename call supported. (Finder 5.4 does not
use this call)

bHasNewDesk If set, all of the new desktop calls are supported (e.g.
OpenDB, Addlcon, AddComment, etc).
RESERVED - these bits should be returned cleared

GetLoglnlnfo

Trap: $A260; DO = $31

Parameter Block:

-> 12 long
<- 16 word
-> 22 word
<- 26 word
<- 28 long

ioCompletion
ioResult
ioVRefNum
ioObjType
ioObjNamePtr

; optional completion routine ptr
; error result code
; volume refNum
; log in method
; ptr to log in name buffer

GetLoglnlnfo returns the method used for log in and the user name specified at log in time for the
volume. The log in user name is returned as a Pascal string in ioObjNamePtr. The maximum size
of the user name is 31 characters. The log in method type is returned in ioObjType.

Apple Computer A-6 August 6, 1987

•

(GetDirAccess

Trap: $A260; DO = $32

Parameter Block:

-> 12 long
<- 16 word
-> 18 long
-> 22 word
<- 36 long
<- 40 long
<- 44 long
-> 48 long

Appendix A HFS Calls for Shared Environments

ioCompletion
ioResult
ioFileName
ioVRetNum
ioACOwnerID
ioACGroupID
ioACAccess
ioDirID

; optional completion routine ptr
; error result code
; directory name
; volume refN um
; owner ID
; group ID
; access rights
; directory ID

GetDirAccess returns access control information for the folder pointed to by the
ioDirID/ioFileName pair. ioACOwnerID will return the ID for the folder's owner. ioACGroupID
will return the ID for the folder's primary group. The access rights are returned in ioACAccess.

A 'fnfErr' is returned if the pathname does not point to a valid directory. An 'AccessDenied' error
is returned if you do not have the correct access rights to examine this directory.

SetDirAccess

Trap: $A260; DO= $33

Parameter Block:

-> 12 long
<- 16 word
-> 18 long
-> 22 word
-> 36 long
-> 40 long
-> 44 long
-> 48 long

ioCompletion
ioResult
ioFileName
ioVRefNum
ioACOwnerID
ioACGroupID
ioACAccess
ioDirID

; optional completion routine ptr
; error result code
; pathname identifier
; volume refNum
; owner ID
; group ID
; access rights
; directory ID

SetDirAccess allows you to change the access rights to a folder pointed to by the
ioFileName/ioDirID pair. ioACOwnerID contains the new owner ID. ioACGroupID contains the
group ID. ioACAccess contains the folder's access rights. You cannot set the owner bit or the
user's rights of the directory. To change the owner or group, you should set the ioACOwnerID or
ioACGroupID field with the appropriate ID of the new owner/group. You must be the owner of
the directory to change the owner or group ID.

A 'fnffirr' is returned if the pathname does not point to a valid directory. An 'AccessDenied' error
is returned if you do not have the correct access rights to modify the parameters for this directory.
A 'paramErr' is returned if you try to set the owner bit or user's rights bits.

Apple Computer A-7 August 6, 1987

Appendix A HFS Calls for Shared Environments

MaplD - -

Trap: $A260; DO = $34

Parameter Block:

-> 12 long ioCompletion ; optional completion routine ptr
<- 16 word ioResult ; error result code
-> 18 long ioFileName ; volume identifier (may be NIL)
-> 22 word ioVRefNum ; volume refNum
-> 26 word ioObjType ; function code
<- 28 long ioObjNamePtr ; ptr to returned creator/group name
-> 32 long ioObjID ; creator/group ID

MapID returns the name of a user or group give its unique ID. ioObjID contains the ID to be
mapped. The value zero for ioObjID is special cased and will always return a NIL name.
AppleShare uses this to signify '<Any User>'. ioObjType is the mapping function code; it's 1 if
you're mapping an owner ID to owner name or 2 if you're mapping a group ID to a group name.
The name is returned as a Pascal string in ioObjN amePtr. The maximum size of the name is 31
characters.

A 'fnffirr' is returned if an unrecognizable owner or group ID is passed.

Map Name

Trap: $A260; DO = $35

Parameter Block:

->
<­
->
->
->
->
<-

12
16
18
22
28
26
32

long
word
long
word
long
word
long

ioCompletion
ioResult
ioFileName
ioVRefNum
ioObjN amePtr
ioObjType
ioObjID

; optional completion routine ptr
; error result code
; volume identifier (may be NIL)
; volume refNum
; owner or group name
; function code
; creator/group ID

MapName returns the unique user ID or group ID given its name. The name is passed as a string
in ioObjNamePtr. If a NIL name is passed, the ID returned will always be zero. The maximum
size of the name is 31 characters. ioObjType is the mapping function code; it's 3 if you're
mapping an owner name to owner ID or 4 if you're mapping a group name to a group ID. ioObjID
will contain the mapped ID.

A 'fnfErr' is returned if an unrecognizable owner or group name is passed.

Apple Computer- A-8 August 6, 1987

Appendix A HFS Calls for Shared Environments

Copy File

Trap: $A260; DO = $36

Parameter Block:

-> 12 long ioCompletion ; optional completion routine ptr
<- 16 word ioResult ; error result code
-> 18 long ioFileName ; ptr to source pathname
-> 22 word ioVRefNum ; source vol identifier
-> 24 word ioDstVRefNum ; destination vol identifier
-> 28 long ioNewName ; ptr to destination pathname
-> 32 long ioCopyName ; ptr to optional name (may be NIL)
-> 36 long ioNewDirID ; destination directory ID
-> 48 long ioDirID ; source directory ID

CopyFile duplicates a file on the volume and optionally renames it. It is an optional call for
AppleShare file servers. You should examine the returned flag information in the GetVolParms
call to see if this volume supports Copy File.

For AppleShare file servers, the source and destination pathnames must indicate the same file
server, however it may point to a different volume for that file server. A useful way to tell if two
file server volumes are on the same file server is to make the GetVolPanns call and compare the
server addresses returned. The server will open source files with enable read/deny write and
destination files with enable write/deny read and write.

ioVRefNum contains a source volume identifier. The source pathname is determined by the
ioFileName/ioDirID pair. ioDstVRefNum contains a destination volume identifier. AppleShare
1.0 required that it be an actual volume reference number, however on future versions it can be a
WDRefNum. The destination pathname is determined by the ioNewName/ioNewDirID pair.
ioCopyName may contain an optional string used in renaming the file. If it is non-NIL then the file
copy will be renamed to the specified name in ioCopyName.

A 'fnfErr' is returned if the source pathname does not point to an existing file or the destination
pathname does not point to an existing directory. An 'AccessDenied' error is returned if the user
does not have the right to read the source or write to the destination. A 'dupFnErr' is returned if
the destination already exists. A 'DenyConflict' error is returned if either the source or destination
file could not be opened under the.access modes described above.

Apple Computer A-9 August 6, 1987

Appendix A HFS Calls for Shared Environments

MoveRename

Trap: $A260; DO = $37

Parameter Block:

-> 12 long ioCompletion
<- 16 word ioResult
-> 18 long ioFileName
-> 22 word ioVRefNum
-> 28 long ioNewName
-> 32 long ioBuffer
-> 36 long ioNewDirID
-> 48 long ioDirID

; optional completion routine ptr
; error result code
; ptr to source pathname
; source vol identifier
; ptr to destination pathname
; ptr to optional name (may be NIL)
; destination directory ID
; source directory ID

MoveRename allows you to move (not copy) an item and optionally rename it. The source and
destination pathnames must point to the same file server volume.

ioVRefNum contains a source volume identifier. The source pathname is specified by the
ioFileName/ioDirID pair. The destination pathname is specified by the ioNewName/ioNewDirID
pair. ioBuffer may contain an optional string used in renaming the item. If it is non-NIL then the
moved object will be renamed to the specified name in ioBuffer.

A 'fnfErr' is returned if the source pathname does not point to an existing object. An
'AccessDenied' error is returned if the user does not have the right to move the object. A
'dupFnErr' is returned if the destination already exists. A 'badMovErr' is returned if an attempt is
made to move a directory into one of its descendent directories.

Apple Computer A-JO August 6, 1987

•
(Open Deny

Trap: $A260; DO = $38

Parameter Block:

->
<­
->
->
<­
->
->

12
16
18
22
24
26
48

long
word
long
word
word
word
long

Appendix A HFS Calls for Shared Environments

ioCompletion
ioResult
ioFileName
ioVRefNum
ioRefNum
ioDenyModes
ioDirID

; optional completion routine ptr
; error result code
; ptr to pathname
; vol identifier
; file refNum
; access rights data
; directory ID

OpenDeny opens a file's data fork under specific access rights. It creates an access path to the file
having the name pointed to by ioFileName/ioDirID. The path reference number is returned in
ioRefNum.

ioDenyModes contains a word of access rights information. The format for these access rights is:

bits 15-6
5
4
3-2
1
0

RESERVED - should be cleared
If set, other writers are denied access
If set, other readers are denied access
RESERVED - should be cleared
If set, write permission requested·
If set, read permission requested

A 'fntErr' is returned if the input specification does not point to an existing file. A 'perrnErr' is
returned if the file is already open and you cannot open under the deny modes that you have
specified. An 'opWrErr' is returned if you have asked for write permission and the file is already
opened by you for write. The already opened path reference number is returned in ioRefNum. An
'AccessDenied' error is returned if you do not have the right to access the file.

Apple Computer A-11 August 6, 1987

Appendix A HFS Calls for Shared Environments

OpenRFDeny --

Trap: $A260; DO = $39

Parameter Block:

-> 12 long ioCompletion ; optional completion routine ptr
<- 16 word ioResult ; error result code
-> 18 long ioFileName ; ptr to pathname
-> 22 word ioVRetNum ; vol identifier
<- 24 word ioRetNum ; file retN um
-> 26 word ioDenyModes ; access rights data
-> 48 long ioDirID ; directory ID

OpenRFDeny opens a file's resource fork under specific access rights. It creates an access path to
the file having the name pointed to by ioFileName/ioDirID. The path reference number is returned
in ioRetNum. The format of the access rights data contained in ioDenyModes is described under
the OpenDeny call.

A 'fnfErr' is returned if the input specification does not point to an existing file. A 'permErr' is
returned if the file is already open and you cannot open under the deny modes that you have
specified. An 'opWrErr' is returned if you have asked for write permission and the file is already
opened by you for write. The already opened path reference number is returned in ioRetNum. An
'AccessDenied' error is returned if you do not have the right to access the file.

Apple Computer A-12 August 6, 1987

Appendix A HFS Calls for Shared Environments

Modified Existing HFS .Cans

GetCatlnfo

Trap: $A260; DO = $09 (_ GetCatlnfo)

Parameter Block (new fields only):

<- 31 byte ioACU ser ; access rights for directory only

GetCatinfo returns information about the file and directories in a file catalog. Please refer to Inside
Macintosh Volume N for the exact format of the parameter block.

For server volume directories, in addition to the normal return parameters the ioACUser field
returns the user's access rights in the following format:

Bit 7 if set, user is not the owner of the directory
if clear, user is the owner of the directory

6-3 RESERVED; this is returned zeroed
2 If set, user does not have Make Changes privileges to the directory

If clear, user has Make Changes privileges to the directory
1 If set, user does not have See Files privileges to the directory

If clear, user has See Files privileges to the directory
0 If set, user does not have See Folders privileges to the directory

If clear, user has See Folders privileges to the directory

For example, if ioACU ser returns zero for a given server volume directory. you know that the user
is the owner of the directory and has complete privileges to it.

Apple Computer A-13 August 6, 1987

I
- ~

1C'"\
~->'.

