
Macintosh® Programmer's
Guide to
MultiFinder

APDA™

June 3, 1988

C Apple Computer, Inc. 1988

ti APPLE COMPUI'ER, INC.

This manual is copyrighted by
Apple or by Apple's suppliers,
with all rights reserved. Under
the copyright laws, this manual
may not be copied, in whole or
in part, without the written
consent of Apple Computer,
Inc. This exception does not
allow copies to be made for
others, whether or not sold, but
alf of the material purchased
may be sold, given, or lent to
another person. Under the law,
copying includes translating into
another language.

C Apple Computer, Inc., 1988
20525 Mariani Avenue
Cupertino, CA 95014
(408) 9%-1010

Apple, the Apple logo,
HyperCard, LaserWriter, and
Macintosh are registered
trademarks of Apple Computer,
Inc.

APDA, Finder, MPW, and
MultiFinder are trademarks of
Apple Computer, Inc.

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dingbats are registered
trademarks of International
Typeface Corporation.

MacPaint is a registered
trademark of Claris Corporation.

Microsoft is a registered
trademark of Miaosoft
Corporation.

POSTSCRIPT is a registered
trademark of Adobe Systems
Incorporated.

Varityper is a registered
trademark, and VT6oo is a

trademark, of AM International,
Inc.

Simultaneously published in the
United States and Canada.

\

\

Contents

Pref ace Welcome to MultlRnder xx
Organization of this manual xx

Chapter 1

About the Apple Programmer's and Developer's Association xx
Some conventions used in this manual xx

Introduction to MultlFlnder xx

The traditional Macintosh user's model xx
The MultiFinder user's model xx

The desktop metaphor remains xx
Applications, windows, and the menu bar xx

The MultiFinder programmer's model xx
Cooperative multitasking xx
Background processing and event calls xx
Background notification xx

The three types of Macintosh applications xx
Well-behaved applications xx
MultiFinder-aware applications xx

Faster switching xx
A better dti2Jen xx
More flexible memory management xx

Special-purpose applications xx
Embedded services xx
Facel~ background tasks xx
Desk accessories xx

Chapter 2 Well-Behaved AppllcaHons xx
Windows, menus, and screens xx

Don't modify Window Manager data structures directly xx
Don't manipulate Menu Manager data structures directly xx
Don't draw on the desktop xx

Iii

iv Contents

WMgrPort and GrayRgn xx
Don't write directly to the screen xx
Don't save the contents of windows xx
Handle update events xx
Use null events properly xx
Support keyboard commands for editing xx

Memory management xx
Don't depend on the relative positions of the system and

application heaps xx
Free space and heap size xx
Stack si2le xx
The application heap xx

The A5 world xx
Trap patches and global data xx
Completion routines xx
VBL tasks xx
Tune Manager tasks xx
Defprocs xx

Miscellaneous guidelines xx
Low memory xx
.Asynchronous system calls xx
Exit time restrictions xx
System resources xx

Chapf• 3 MuUIFlnder·AWGM Appllcatlon1 xx

Suspend and resume events xx
Handling activate and deaaivate xx
Take care if masking out app4Evts xx
AC example of how to handle suspend and resume events xx

The SIZE resource xx
The SIZE resource flags xx
Preferred memory si7.e xx
Minimum memory si7.e xx
How to create your own SIZE resource xx
How can I tell if my application is running in the

background? xx
Null events xx

WaitNextEvent xx
The mouseRgn parameter xx
The sleep parameter xx
Yielding time gracefully xx
Using unused null event time xx
Don't call SystemTask xx

(

When exactly are applications moved between the foreground
and the background? xx

How can I tell if WaitNextEvent is implemented? xx
Temporary memory allocation calls xx

How can I tell if the temporary memory allocation calls are
implemented? xx

Launching and sublaunching xx
Working directories xx

Chapter 4 Special-Purpose Appllcatlons xx

Embedded services xx
Faceless background tasks xx
Desk acressories xx

Self-sufficient desk accessories xx
Dependent desk accessories xx
Error checking xx

Appendix A AC Example of a MultlFlnder·Aware AppllcaHon xx

Appendix B A Pascal Example of a MultlRnder·Aware Application xx

Appendix C Resource Descriptions tor the Example MultlFlnder-Aware
Appllcatlon xx

Appendix 0 The NotlflcaHon Manager xx

How a notification happens xx
Creating a notification request xx
Notification Manager routines xx

NMinstall xx
NMRemove xx

Appenclx E A Summary of the Multlflnder Traps xx

Temporary memory allocation calls xx
WaitNextEvent xx

Index xx

Contents v

Preface

Welcome to MultiFinder

Programmer's Guide to Multi.Finder introduces MultiFinderTM, a new set of operating
system functions designed to increase the efficiency and functionality of the
Macintosh® family of computers. In addition, it outlines specific programming
guidelines intended to help software developers write MultiFinder-compatible
applications.

This book is directed toward the proficient Macintosh application developer. For an
introductory discussion on how to write a Macintosh application, consult the
introductory volumes of the Macintosh Technical Library.

This is not a dedicated reference manual While the Macintosh programming
paradigm remains largely unchanged, MultiFinder does reflect a departure from the
original one-application-open-at-a-time desktop environment. To appreciate the
nuances of how MultiFinder works and to achieve the highest degree of compatibility
with MultiFinder-present and future versions-you should read this entire book. Take
a moment to scan the section •some Conventions Used in This Manual"; this section
is particularly important in this book. Programmer's Guide to MultiFinderincludes

o a description of the traditional Macintosh user's model, the MultiFinder user's
model, and the MultiFinder programmer's model

o definitions of the three types of MultiFinder-friendly applications: well-behaved,
MultiFinder-aware, and special-purpose

o detailed descriptions of the new Macintosh programming features: the SIZE
resource, the event call WaitNextEvent, the Notification Manager, suspend and
resume events, and the new temporary memory allocation calls

o descriptions of cooperative multitasking and background notification

o programming guidelines for ensuring MultiFinder compatibility

o guidelines for designing well-behaved, MultiFinder-aware, and special-purpose
applications

vii

o code examples for handling the new suspend and resume events, saving A5 and
CurrentA5, writing completion routines for asynchronous Device Manager calls,
determining whether WaitNextEvent and the temporary memory allocation calls
are implemented, and writing MultiFinder-aware applications

Programmer's Guide to Mult1Finder does not include information about

o programming in general

o getting started as a developer

To use this book, you should already be familiar with the information that's in Inside
Macintosh and have experience writing Macintosh applications.

For information about becoming a developer or obtaining developer support, write to

Developer Programs
Mail Stop 51-T
Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

Organization of this manual
This manual is organized as follows:

o Chapter 1, "Introduction to MultiFinder," describes the traditional Macintosh
user's model, the MultiFinder user's model, the MultiFinder programmer's model,
and the different types of MultiFinder-friendly applications.

o Chapter 2, "Well-Behaved Applications,• describes the characteristics of
applications that will work well in the MultiFinder environment. Included here are
general programming guidelines for the user interface and memory management,
as well as a detailed discussion of the A5 world and some miscellaneous
programming hints.

o Chapter 3, •MultiFinder-Aware Applications,• introduces the concept of an
application that takes maximum advantage of the background processing time now
available under MultiFinder. Also included in this chapter are descriptions of the
SIZE resource; the two new types of app4Evts, suspend and resume; WaitNextEvent;
the new temporary memory allocation calls; and launching and sublaunching.

o Chapter 4, •special-Purpose Applications,• describes three different special
applications: embedded services, faceless background tasks, and desk accessories.

o Appendix A, •A C Example of a MultiFinder-Aware Application,• gives a C
example of an application that is MultiFinder-aware.

o Appendix B, •A Pascal Example of a MultiFinder-Aware Application,• gives a
Pascal example of an application that is MultiFinder-aware.

viii Preface: Welcome to MultlAnder

o Appendix C, •Resource Descriptions for the Example MultiFinder-Aware
Application,• lists the necessary resource descriptions for the MPwn' Rez tool used
in the C and Pascal program examples of a MultiFinder-aware application.

o Appendix D, •nie Notification Manager,• provides a detailed description of this
new manager.

o Appendix E, •A Summary of the MultiFinder Traps,• summarizes the new traps
available to applications under MultiFinder.

About the Apple Programmer's and Developer's
Association
The Apple Programmer's and Developer's Association (APDA TM) is an excellent
source of technical information for anyone interested in developing Apple­
compattble products. Membership in the association allows you to purchase Apple
technical documentation, programming tools, and utilities. For information on
membership fees, available products, and prices, please contact

APDA
290 SW 43rd Street
Renton, WA 980SS
(2o6) 2S 1-6548
AppleLink: APDA
MCI: 312-7449
CompuServe# 73527,27

Some conventions used in this manual
The following conventions have been adopted for use in this book:

• The AS world consists of an application's own global variables and its private set of
QuickDraw globals (both are accessed through A5), the set of low-memory globals
associated with the application by MultiFinder, and the application's heap and
stack. The single-FinderTM environment only allowed one AS world at any given
time. With MultiFinder active, there is an AS world for each open application.

• Cooperative multitasking is the result of a foreground application and one or
more applications concurrently running in the background interactively and
sharing a limited amount of resources.

• An embedded service is a special-purpose application that runs only in the
background

Some conventions used In this manual Ix

• Event calls refer to GetNextEvent, WaitNextEvent (see Chapter 3 for a detailed
desaiption of this new event call), and EventAvail.

• A faceless background task is another special-purpose application that is almost
invisible. It is minimal in siz.e and has no user interface-no icon will appear in the
Apple menu and no windows will be displayed.

• A MultiFfncler-aware applic:adon is one that calls WaitNextEvent, handles
suspend/resume events, specifies a SIZE resource, and optionally performs some
background work without significantly affecting the responsive nature of any
application running in the foreground.

• Null event processing time is the time when most applications sit idle because
there are no events initiated by the user or no windows to be redrawn.

• A well-behaved application is one that follows the programming guidelines
outlined in Chapter 2.

x Preface: Welcome to MultlAnder

Chapter 1

Introduction to MultiFinder

This chapter introduces the new set of multitasking operating system functions for
Macintosh® computers, MultiFinderTM. The name •MultiFinder" is actually
misleading-MultiFinder is not part of the FinderTM. Instead, it is a set of additional
operating system functions designed to allow an increased level of functionality with a
minimal impact on the Macintosh programming model. MultiFinder is compatible
with the Macintosh Plus, Macintosh SE, and Macintosh II computers and resides in the
System Folder.

The additional functionality MultiFinder provides is essentially the ability to run
multiple applications on the Macintosh, all of them sharing the available desktop.
Great care has been taken to introduce this new functionality without noticeably
altering the familiar Macintosh desktop.

You should take note of a couple of important issues here. First, at present, a user
retains the ability to turn MultiFinder off or not run it at all--£eserving single­
application capability if desired Second, MultiFinder will eventually represent the
exclusive Macintosh desktop environment

This chapter provides an overview of the traditional Macintosh desktop and the new
MultiFinder desktop environments, and explains cooperative multitasking and its role
in the new MultiFinder programming model. Finally, this chapter ends with a
discussion of the different types of Macintosh applications.

The traditional Macintosh user's model
The original Macintosh user interface presented a powerful metaphor of the everyday
desktop to both the Macintosh customer and software developer. The Macintosh user
has an enormous amount of freedom to custom.ire a personal desktop work space and
clearly benefits from the high degree of compatibility among Macintosh applications.

Each application running in the Macintosh single-Finder environment has control of
the entire desktop because it knows the state of the entire Macintosh machine. As part
of this original implementation, the desktop disappears while an application runs,
and only one application can run during each work session.

The Multifinder user's model
MultiFinder introduces some welcome changes to the Macintosh desktop
environment Users can have any number of applications open at the same time,
including the Finder, and can easily switch between them.

For example, a user could have a word processing program, an accounting package, a
communications program, and HyperCard® all open simultaneously.

When running under MultiFinder, the Finder is not closed when another application is
opened. The user can activate the Finder or any open application in one of three
ways: by clicking the appropriate name and icon in the Apple menu, by clicking the
small icon in the upper-right corner of the menu bar (until the correct icon appears),
or by clicking the desired window on the desktop.

The desktop metaphor remains
MultiFinder has not restricted or limited the familiar desktop metaphor. Since many
applications can now be open at the same time, their windows can overlap each other
and users can quickly switch between them-MultiFinder actually models a real
working desktop better than the single-Finder environment does.

Applications, windows, and the menu bar
When a user opens an application under MultiFinder, that application becomes active
and begins running in the foreground The menu bar will contain the active
application's menu titles and a small icon that represents the application in the
rightmost corner of the menu bar. Also, all the active application's windows will come
to the frontmost layer of the desktop.

2 Chapter 1: Introduction to MultlFinder

(
For example, a user could have a word-processing application running in the
foreground with three windows open for three different documents, as well as a
number of other applications open simultaneously. If the user brings one of the other
applications to the foreground, performs some work, and then once again brings the
word-processing application to the foreground, all three of its windows will come to
the frontmost layer of the desktop.

The MultiFinder programmer's model
The user interface is the most important element of the Macintosh environment
Although the MultiFinder engineers have taken great care to preserve the look and feel
of the Macintosh interface, a similar responsibility also rests with developers who will
write-MultiFinder-compatible applications. While MultiFinder has dramatically
extended the user interface of the Macintosh, the programming model remains
basically intaCL MultiFinder supports a new concept for the Macintosh-background
processing-that allows applications not currently running in the foreground to make
use of processing time that is unused by the current foreground application.

MultiFinder uses this null event processing time-the time when most applications
sit idle because there are no events initiated by the user or no windows to be
redrawn-to allow other applications not running in the foreground to perform useful
work. The Finder, for example, now uses this time to keep the view within its windows
and on the desktop consistent (disk insertions, files being added or removed, and so
on). Since this time is essentially wasted in the single-Finder environment,
MultiFinder does not inhibit or noticeably slow the response time of the application
running in the foreground

In addition, if an application wants to take advantage of this unused null event
processing time and perform some work in the background, it must take on some
additional responsibility. Applications running in the background must know how to
coexist with foreground applications because the user is interacting with the
foreground application and expects it to respond immediately.

Cooperative multitasking
Cooperative muldtasklng is the result of a foreground application and one or mote
applications concurrently running in the background interactively sharing a limited
amount of resources-the sort of kindness you might expect among individuals with
good manners.

The MUltlFlnder programmer's model 3

While most operating systems regulate this •sharing• by having the system parcel out
contro~ MultiFinder relies on the willingness of foreground and background
applications to share the available resources. (MultiFinder does regulate the sharing
of most resources, including microprocessor time; however, the application is
allowed to decide when it will give up control of the miaoprocessor.) This •kindness
of strangers• philosophy between applications running in the foreground and those
running in the background fonns the basis for MultiFinder's friendly cooperation.

The burden of responsibility for this sharing of resources lies with all applications.
Due to the cooperative nature of MultiFinder, if one application holds on to the
microprocessor too long, the other applications will appear unresponsive.

Background processing and event calls
Applications running in the background receive processing time when the foreground
application releases the microprocessor with a call to an event call and no events for
the foreground application are pending. Exceptions to this rule are mouse
movements outside a predefined area, and after a predefined sleep value set by the
foreground application has expired (see the desaiption of WaitNextEvent in
Chapter 3, •MuJtiFinder-Aware Applications,• for more information on how your
application can take advantage of these new programmer-defined parameters).

Background notification
Applications running in the background cannot use the standard methods of
communicating with the user, such as alert or dialog boxes, since such windows
woUldn't necessarily be visible under the windows of the foreground application.
Also, in the single-Finder environment, some applications used nonstandard and
unsupported notification techniques. Now, under MultiFinder, if something occurs
that requires the user's immediate attention, applications should use the Notiftcadon
Manager (see Appendix D) to notify the user.

It is suggested that your application adopt a three-level notiftcadon hierarchy for
communicating with the user as a user interface standard:

1 . A diamond displayed next to the application's name in the Apple menu.

2. An icon for the application alternating with the Apple icon menu title in the menu
bar (and any other background-resident application icons that need attention),
and a diamond displayed next to the application's name in the Apple menu.

3. Both the application's icon and the diamond are displayed, and an alert box is
displayed on the frontmost layer to notify the user that something needs to be
done.

4 Chopter 1: Introduction to MultlRnder

(.

The user should be allowed to set the desired level of notification in a dialog window
(for example, PrintMonitor's Preferences dialog window). The default should be level
two (display the background application's icon in the menu bar and display a
diamond next to the application's name in the Apple menu). Sound can also be used
for levels two and three; however, the user should have the option of turning it off.
Sound, alert boxes, and icon use should all be optional. 1he most important idea
here is that the user should have the final say in how the notification process will work.

Users should also be able to tum background notification off altogether, except in
cases where damage would oca.u or data would be lost (for example, a file server going
down in two minutes). Background-resident applications should not do anything that
might affect the foreground application, such as changing the pointer or altering the
menu bar.

The three types of Macintosh applications
Applications generally fit into three categories while running under MultiFinder.
Well-behaved applications work fine--they just don't take advantage of the new
expanded functionality. MultiFinder-aware applications take advantage of some or all
of MultiFinder's new specific capabiliti~perhaps doing some work in the
background. Finally, special-purpose applications perform most or all of their work
in the background. While desk accessories are not applications, they represent a
special case and will be disrussed at the end of Chapter 4, •special-Purpose
Applications.•

Well-behaved applications
A well-behaved application is one that generally follows the standard Macintosh
programming procedures outlined in Instde Macintosh.

Applications that write directly to the screen, directly modify Window Manager or
Menu Manager data structures, rely on the contents of low memory, or use other
shortcuts to save time are not compatible with MultiFinder.

A well-behaved application regularly makes an event call (GetNextEvent,
WaitNextEvent, or EventAvail) to provide frequent times when the application may be
suspended, follows the standard Macintosh notification procedures, and can function
properly anywhere in memory.

See Chapter 2 for further information on well-behaved applications.

The fhree types of Macintosh opplicattons 5

MultlFlnder-aware applications
A MultiFincler-aware application is one that handles suspend and resume events,
calls WaitNextEvent, includes a SIZE resource (see Chapter 3 for a detailed description
of these three new programming features), and uses normally unused null events for
effective background work, while not significantly affecting the responsive nature of the
application running in the foreground.

Faster switching

A MultiFindet-aware application can speed up the switching process by being
· .. responsible for converting its own private Clipboard when a user clicks on another

application. By following the new programming guidelines outlined in Chapter 3,
"MultiFinder-Aware Applications,• applications can ensure that switching between
open applications will be even faster.

A better citizen

To be considered tNly MultiFinder-aware, applications should call WaitNextEvent to
allow other applications to use any unused processing time. Since MultiFinder allows
many applications to share the available resources, if you don't need them, allow
someone else the opportunity. Because certain MultiFinder-unfriendly applications
may not call WaitNextEvent, applications running in the background cannot be
guaranteed any microprocessor time.

Supporting the responsive nature of the foreground application is an important issue
for applications running in the background The foreground application, however, is
not required to provide the same service to other applications. The idea here is not to
slow down the responsive nature of the foreground application, but rather to allow
other applications the opportunity to make use of time that would normally be wasted

More flexible memory management

Applications should not depend on running in a particular area of memory and
should not require large amounts of memory to function properly just because they
were given control of the entire machine in the single-Finder environment.

MultiFindet does provide a means for applications to get additional memory;
however, this memory should only be used for very short-term needs and should be
returned as soon as possible. It is not to be used for long-term storage (see Chapter 3,
•MultiFinder-Aware Applications,• for more information on these temporary
memory allocation calls).

6 Chapter 1: Introduction to MultlAnder

Special-purpose applications
Embedded services, faceless background tasks, and desk accessories (for the purpose
of this manual) each represent different types of special applications that will run with
MultiFinder. See Chapter 4, •special-Purpose Applications,~ for more information
on these applications.

Embedded services

An embedded service runs only in the background This type of application is
normally not visible and interacts heavily with the Notification Manager (see
Appendix D).

One example of an embedded service is PrintMonitor-a background printing utility
supplied with MultiFinder.

Faceless background tasks

A faceless background task is almost invisible. It is minimal in size and has no user
interface-no icon will appear in the Apple menu, no windows will be displayed, and
no port exists. If any user interaction is required, it uses the Notification Manager.

A faceless background task sets the canBackground and backgroundOnly bits in the
SIZE resource (see Chapter 3 for more information on the SIZE resource) and can't
display a user interface.

A good example of a faceless background task that looks for printer spool files is
BackGrounder.

Desk accessories

MultiFinder has eliminated the unique advantages that gave desk accessories increased
functionality over applications. While it's true that MultiFinder continues to support
the standard desk accessory model, you are encouraged to write small applications in
the future.

It's important to note here that desk accessories are now loaded into the system heap
instead of the application heap (except when the Option key is held down).
Therefore, desk accessories that rely on being loaded in a specific application's heap
will not function properly under MultiFinder.

The three types of Macintosh appllcatlons 7

{

Chapter 2

Well-Behaved Applications

If you have been following the programming guidelines specified in Inside
Macintosh, your application will probably work as expected under MultiFinder. This
chapter outlines a number of programming guidelines that applications should follow
to ensure future compaubility with MultiFinder.

A well-behaved application regularly makes an event call (GetNextEvent,
WaitNextEvent, or EventAvail) allowing for frequent suspension times, follows the
standard Macintosh notification procedures, can function properly anywhere in
memory, and follows the other guidelines specified in this chapter.

Be aware that MultiFinder allows special types of applications: applications that
perform part of their work in the background while another application is running in
the foreground, and applications that do all their work in the background. A well­
behaved application should make event calls to ensure that such applications will be
able to use any null event processing time.

Windows, menus, and screens
Save your window positions; there is nothing more irritating to the Macintosh user who
sets up a MultiFinder work space on the desktop than to have to reposition the windows
of applications every time the Macintosh is turned on.

Applications that lay out their control panels and palettes in separate windows need to
be careful of •gaps• in the layout If a user accidentally clicks in one of these gaps,
another application could be switched to the foreground unintentionally.

9

The user should maintain control over the initial positioning of free-floating palettes
(for example, the MacPaintGD 2.0 Command-T option that allows the user to position
the Tool palette right at the present location of the cursor). Otherwise, the initial
position of these palettes should be within a few pixels of the window. Mini-windows
and tear-off menus should disappear when an application is switched out and reappear
when the application returns to the foreground

+ Note: MultiFinder suspends a well-behaved application (which isn't aware of
MultiFinder) by creating a situation similiar to that which occurs when a user opem
a desk accessory; that is, the application receives a deactivate event for its front
window. Similarly, MultiFinder causes a well-behaved application to resume by
·sending the application an activate event

There have always been a number of suggested •don•ts• connected with data structure
manipulation-now, under MultiFinder, these suggestiom are no longer optional.

Don't modify Window Manager data structures directly
Don't let your application modify Window Manager data structures directly. 1be
Window Manager owm the Window Manager data structures. These include all the
low-memory values defined by the Window Manager, in addition to any of the fields
(including the grafPort fields) contained in the window record itself. Because the
procedural interface to the Window Manager is so effective, direct data structure
modification is rarely done (one exception is windowKind), but beware nonetheless.

Because MultiFinder provides a shared environment, it is particularly important to
avoid circumventing the Wmdow Manager.

+ Note: Don't modify the visRgn field of the GrafPort in the window record;
MultiFinder relies on this field

Don't manipulate Menu Manager data structures directly
Much of MultiFinder's functionality depends on using the Apple menu in novel ways.
This includes controlling the menu data structures of the Apple menu. For this reason,
items should be enabled and disabled through traps provided for that pwpose; direct
manipulation of data structures should be avoided completely.

10 Chapter 2: Well-Behoved Applications

(

Don't draw on the desktop
Your application no longer •owns• the desktop under MultiFinder, so don't draw on
the desktop. This means on the menu bar, desktop, or windows that belong to other
applications. To remain MultiFinder-compatible with future systems, draw only in
response to an update event or as part of the feedback for a user action (for example,
while tracking the mouse).

+ Note: DeskHook, a low-memory vector that allowed applications to draw on the
desktop, is no longer called by the Window Manager.

WMgrPort and GrayRgn

WMgrPort has its visRgn set to include all active screens. Its clipRgn is initially set to
"wide open• (the rectangle -32767, -32767, 32767, 32767), although Window Manager
routines like Clip.Above will change it. Consider this grafPort to be read-only. The
global variable GrayRgn is a region that is equal to the WMgrPort's visRgn minus the
menu bar area.

You should use GrayRgn to find out the shape, size, and coordinates of the screens.
You will never have to use the WMgrPort directly, and should not call GetWMgrPort
under any circumstances.

Don't write directly to the screen
Drawing to the screen should only be done within windows via QuickDraw. Off-screen
bitmaps should be copied to the screen via CopyBits.

Don't save the contents of windows
Don't save the bitmap contents of windows to save time when displaying dialog boxes
or pop-up menus; the window you save might not be yours and it might change while it
is being covered up.

Handle update events
Remember that update events are very important; applications running under
MultiFinder must pay close attention to them. All applications will receive update
events, not just the application currently running in the foreground. When an
application receives an update event, it must update the appropriate window without
doing anything else.

Windows. menus. and screens 11

MultiFinder feeds update events to the application when the application makes an
event call and continues to feed update events to the application until it actually
processes them. Applications should respond (that is, draw) as a direct response to
receiving the update event.

In general, if you are using an event call, you should be prepared to receive and
respond to update events immediately. Do not defer update processing to a later
time.

Use null events properly
Null events have a different meaning under MultiFmder. Originally, an application
would receive a null event when no other event occurred Under MultiFinder,
however, a well-behaved application receives null events when it is in the foreground
and no background task is pending.

Periodic garbage collection and similar time-consuming actions should not be
perfonned on every null event received Use absolute time rather than the number of
events.

Support keyboard commands for editing
Support the appropriate keyboard equivalents for menu editing commands; for
example, Undo (Command-Z), Cut (Command-X), Copy (Command-C), and Paste
(Command-V).

Memory management
Applications that do not supply a SIZE resource (see Chapter 3, •MultiFinder-Aware
Applications,• for more information on this new resource) are launched into the
defauk partition sii.e of 384K. Thus, you will encounter trouble if your application
requires more than this amount of memory. You may want to include a SIZE resource
in your application to inform MultiFinder that you require a particular partition sii.e.

To ensure that your application remains compatible under MultiFinder, follow these
memory management guidelines.

12 Chapter 2: Well-Behaved Appllcatlons

(

(.
•.

Don't depend on the relative positions of the system and
application heaps
Don't make assumptions about the memory model concerning the relative positions
of the various heaps. The system heap is not necessarily adjacent to the application
heap.

Free space and heap size
Heap size is not as important as the amount of free space. Use FreeMem, PurgeSpace,
and MaxBlock to verify how much free space is available.

The size of your heap is given only by the bkLim field of the heap zone header. You
can find this by dereferencing the ApplZone pointer in low memory (or calling the
ApplicZone in either C or PascaO. For instance, in C:

(unsigned long) ApplicZone () - (unsigned long) ApplicZone ()

Stack size
If your application has unusual stack requirements you can check the size of your stack
by calling Stack:Size.

If you must resize your stack, call SetAppJLimit immediately before or after initializing
the various Toolbox managers. This will indirectly change your stack size.
SetApplLimit sets the limit of the application's heap size. Only the original
application zone can be expanded. See Inside Macintosh, Volume Il for more
information.

The application heap
The only permanent memory available to your application is your application heap
and your stack. If you need to allocate additional heaps, they must exist within this
area.

Memory management 13

The AS world
The AS world consists of an application's own global variables and its private set of
QuickDraw globals (both are accessed through A5), the set of low-memory globals
associated with the application by MultiFinder, and the application's heap and stack.
The single-Finder environment only allowed one A5 world at any given time. With
MultiFinder active, each open application has an A5 world

Most applications don't need to worry about their AS world since MultiFinder
automatically ensures that the application's A5 world is set up whenever the
application is given processor time. 1bere are, however, circumstances where some
portion of an application will need to make certain that it is operating in its own A5
world. Before the specific details and guidelines for these circumstances are
described, comider the three possible A5 situations that can occur under MultiFinder:

• AS and low memory both valid-register AS points to the application's globals
and low memory contains the set of Toolbox and OS globals appropriate for the
application (including the global CurrentAS). This is the normal situation when an
application is running.

• AS invallcl, low memory valid-register A5 points nowhere in particular;
however, low memory contains the set of Toolbox and OS globals appropriate for
the application (including the global CurrentAS). This situation can sometimes
occur in trap patches where the A5 register is temporarily used to store a value other
than the A5 world pointer.

• AS and low memory both imallcl-register AS points to another application's
globals and low memory contains the wrong set of Toolbox and OS globals
(including the global CurrentA.5). This situation can occur for routines run at
interrupt time-such as completion routines, VBL tasks, Time Manager tasks-and
in application-specific window definition procedures (WDEF's).

Trap patches and global data
If you are patching traps, use the SetrrapAddress calls rather than writing into the
dispatch table in low memory. To ensure that MultiFmder will only run your trap
patches while your application is running in the foreground, place your patch­
receiving routines in your application heap and not in the system heap.

Remove all your patched traps before exiting from your application. Under
MultiFinder, patches are local to your application and no longer exist after the
application quits. However, to remain compauble with the single-Finder
environment, your application must remove them.

14 Chapter 2: Well-Behaved Appllcotlons

(
For those traps that cannot be called from interrupt routines (such as calls to
QuickDraw), you cannot assume that the value of A5 points to your application's
globals when a trap is made. This means that if you patch a trap and the code you
install references your application's global data, you must manually save A5, set it to
CurrentA5, do your work, and restore the original A5 when you are finished

CompleHon routines
Many VO completion routines (for asynchronous I/O) run at interrupt level; this
implies that any A5 world could be active. Applications cannot rely on A5 or
CurrentA5 to contain the correct value when the VO completion routine is called

Place the value of CurrentA5 that "belongs• to your partition in a place where you can
find irfrom within your completion routine. Since it is guaranteed that AO will be
pointing to your parameter block when your completion routine is called, you can put
the value of CurrentA5 at a known offset from the beginning of your parameter block
and then reference it from AO. 1be following section on VBL tasks gives a simple
example of how to do this.

VBL tasks
VBL tasks (tasks performed during the vertical retrace interrupt) in the application
heap only run if the creating application is frontmost. VBL tasks in the system heap
run all the time, and as in the case of interrupt routines, absolutely no A5 world
context can be guaranteed.

As with VO completion, the A5 value can be prefixed to the VBL queue element-this
should be done whether the VBL tasks are in the application or the system heap.

The following short MPW examples show how to do this using INLIN&. Please note
that this technique does not involve writing into your code segmenL 1be value of
CurrentA5 is placed in a position where the application can find it from within the VBL
task. These examples rely on the fact that at the time your VBL task is run, register AO
points to the VBLTask structure associated with your VBL task. Since you store your
CurrentA5 into the 4 bytes before the VBLTask, you can get the correct CurrentA5
from -4(AO).

This example also serves to demonstrate how you might write a completion routine for
an asynchronous Device Manager call. It is not intended to be a complete program,
nor to demonstrate optimal techniques for displaying information. Jn MPWTM Pascal:

PROGRAM InlineVBL;

USES
{$PUSH}
{$LOAD PasDump.dump}

save compiler options
load symbol table dump

lhe AS world 15

Memtypes,QuickOraw,OSintf,Toolintf,Packintf,MacPrint,WLW,JimLib;
{$LOAD} { turn off LOAD
{$POP} { restore compiler options
{$D+) { debug symbols

CONST
Interval K 6;

CurrentAS $904;

TYPE
MyVBLType - RECORD

how often you want your VBL
called, in ticks

low-memory global

CurAS: Longint;
MyVBL: VBLTask;

END; {MyVBLType}

put CurAS where you can find it}
the actual VBLTask }

VAR
Err
MyVBLRec
Counter
MyEvent

Integer;
MyVBLType;
Integer;
EventRecord;

PROCEDURE _Datainit;
EXTERNAL;

PROCEDURE PushAS;
INLINE $2FOD;

PROCEDURE PopAS;
INLINE $2ASF;

PROCEDURE GetMyAS;
INLINE $2A68,$FFFC;

{ MOVE.L AS,-(SP)} {push AS onto the stack}

{ MOVE. L (SP)+, AS} {pop the stack into AS}

{ MOVE.L -4(A0),AS

Get the value of AS you've stored before the parameter block and)
put it in AS. Since you know that when a VBL task is called, AO)
will point to your parameter block, you also know that the value l
of CurrentAS that you stored will be at -4 (AO) • l

PROCEDURE DoVBL; { your VBL task }

BEGIN DoVBL }

First, make sure you have the AS that you stored before your
parameter block.)

PushAS;
GetMyAS;

push the value of AS onto the stack
get your AS from right before the

parameter block
now you can access your globals:

16 Chapter 2: Well-Behaved Appllc:atlons

(

MyVBLRec.MyVBL.vblCount ·- Interval;
Counter ·= Counter + l;

PopAS;
END; (DoVBL}

run again to show that you can
set a global

put back the original AS

!------------------------------Main Program-------------------------------}

BEGIN (main PROGRAM}
MaxApplZone; (grow the heap to ApplLimit
UnloadSeg (@_Datainit); (unload data init code before any allocations
InitMac; (initialize Macintosh managers
InitWW (NIL) ; (initialize WritelnWindow with default window

Counter := O; initialize this

WITH MyVBLRec,MyVBL DO BEGIN

CurAS :- LongPtr(CurrentAS)";
vblAddr ·= @DoVBL;
vblCount • • Interval;

qType : = ORD (VType) ;
vblPhase ·= O;

END; (With}

Err ·= VInstall(@MyVBLRec.MyVBL);
writeln ('VInstall err = ',Err);

REPEAT
writeln(Counter);

get current value of CurrentAS
point to your task
set up the interval where you' 11

be called
this is also necessary

(install your VBLTask }

UNTIL GetNextEvent(mDownMask,MyEvent);
write out counter
this allows a switch

Err := VRemove (@MyVBLRec.MyVBL);
writeln ('VRemove err • ',Err);

you're finished, remove the task

beep; (show the user you•re finished

END.

· Now for the MPW C example-first, the assembly routines:

CASE ON ; for C

PushAS PROC EXPORT;

MOVE. L (SP) +,Al
MOVE. L AS, - (SP)
JMP (Al)

ENDP

pushes AS onto·ti.e---tack -- BE CAREFUL NOT TO
DISTURB AO here, since GetMyAS relies on it
get return address off the stack
push AS
return to caller

The AS wortd 17

PopAS PROC EXPORT
MOVE. L (SP) +,Al
MOVE.L (SP)+,AS

get return address off the stack
; pop into AS

JMP (All return to caller

ENDP

get return address off the stack
GetMyAS PROC EXPORT
MOVE.L (SP)+,Al
MOVE. L -4 (AO) ,AS
JMP (Al)

; get saved value of AS and put it in AS
return to caller

ENDP

END

Now the MPW C program:

tinclude <types.h>
tinclude <quickdraw.h>
tinclude <resources. h>
tinclude <fonts.h>
t include <windows. h>
tinclude <menus.h>
tinclude <textedit.h>
tinclude <events.h>
tinclude <retrace.h>
tinclude <packaqes.h>

extern void PushA5 () ;
extern void PopA5 ();
extern void GetMyA5 () ;

I* MOVE.L A5,-(SP) */
I* MOVE.L (SP) +,A5 */
/* MOVE.L -4(AO),A5 */

/* push A5 onto the stack */
I* pop the stack into A5 */

I* Get the value of A5 you've stored before the parameter block and put it in *I
/* A5. Since you know that when a VBL task is called, AO will point to your */
I* parameter block, you also know that the value of CurrentA5 that you stored */
/* will be at -4(A0). *I

void DoVBL () ;

typedef struct MyVBLType

long
VBLTask

MyVBLType;

CurA5;
MyVBL;

MyVBLType MyVBLRec;
short Counter;

/* put CurA5 where you can find it
/* the actual VBLTask

/* a variable of the above type
/* this needs to be global so the
/* VBL task can get to it

18 Chapter 2: Well-Behaved Applications

*/
*/

*I
*/
*I

(

(~\

"'/

main()
{

#define Interval 6 /* how often you want your VBL called, *I
I* in ticks */

#define CurrentAS Ox904 /* low-memory qlobal */

WindowPtr MyWindow;
Rect myWRect,rectToErase;
OSErr err;
EventRecord MyEvent;
char my5tr[40]; /* this should be enouqh room */

InitGraf(&qd.thePort);
InitFonts ();
FlushEvents(everyEvent, 0);
InitWindows();
InitMenus ();
TEinit () ;.

SetRect(&myWRect,50,260,150,340);
MyWindow = NewWindow (nil, &myWRect, "\pVBL", true, O, (WindowPtr) -1, false, 0);

SetPort(MyWindow);

counter = O;

MyVBLRec.CurA5 = * (lonq *) (CurrentA5);

MyVBLRec. MyVBL. vblAddr - DoVBL;
MyVBLRec.MyVBL.vblCount Interval;

/* initialize this

/* qet the current value
/* of CurrentA5
/* point to your task

*/

*I
*I
*/

/* set up the interval at which you• ll be called *I

MyVBLRec.MyVBL.qType = vType;
MyVBLRec. MyVBL. vblPhase - 0;

err • VInstall (&MyVBLRec. MyVBL) ;

PenMode(patXor);

SetRect(&rectToErase,60,20,100,50);
MoveTo(l0,76);
Drawstrinq("\pClick to quit•);

while (!GetNextEvent(mDownMask,&MyEvent))
{

MoveTo(20,20);

LineTo(20,50);LineTo(50,50);LineTo(50,20);
LineTo(20,20);LineTo(50,50);
MoveTo(20,50) ;LineTo(S0,20·1 ;MoveTo(60,43);

EraseRect(&rectToErase);

/* this is also necessary */

/* install your VBLTask */

/* so you can see the */
I* drawinq flicker */

/* this allows a switch *I

/* draw a box *I

/* erase the last number */

lhe AS wortd 19

NumToString(Counter,myStr);
DrawString(myStr);

err = VRemove (&MyVBLRec.MyVBL);

if (err != noErr) debugger();

/* draw the current value *I
/* of Counter *I

/* you' re finished, remove */
I* task */

/* wait around until the user clicks before exiting */

while (!Button());
while (Button ()) ;

/*main*/

void DoVBL ()
{

/* your VBL task
I* DoVBL

/* First, make sure you have the AS that you stored before your
/* parameter block. */

*I
*I

*I

PushAS(); /* push the value of AS */
/* onto the stack *I

GetMyAS(); /* get your AS from right */
/* before the parameter *I
/* block */

/* now you can access your globals: */

MyVBLRec. MyVBL. vblCount • Interval; /* to run again */

Counter += 1; /* to show you can set a *I

PopAS ();

I* END DoVBL*/

Time Manager tasks

/* global */
/* return the original AS */

Again, no A5 world context is guaranteed; however, unlike VBL tasks (and completion
routines), a Time Manager task is not called with AO pointing to the task block (AO
points to the task's routine instead). So, if you need to get at your application's globals
from your Time Manager task, you'll have to write the value of CurrentA5 into your
code segment at a time when you know that CurrentA.5 is valid, and then use that value
to set up A5 when your Tune Manager task is called.

There may be some circumstances when your application will have to change the value
in AS; just make sure that you restore A5's previous value when you are finished.

20 Chapter 2: Well-Behoved Applications

(

(· ..

..

Defprocs
Since window defprocs are used by the layer Manager (a new manager called only by
the Window Manager), the A5 world present when the defproc is called might belong
to any application. For example, a window frame may need to be redrawn while
another application is running in the foreground (the foreground application has a
window in front of another application's window and the frontmost window is moved).
In this case, the Window Manager calls the WDEF to draw the frame and posts an
update event for the application that owns the window to redraw the window contents.
However, if the WDEF is part of your application, it may be called to draw a window
frame while another application is active. Suddenly, A5 does not point to your
application's globals.

Therefore, window defprocs cannot depend on A5 being valid. If your application
instafls a window defproc that neech to access global variables from your application,
store a copy of your A5 safely by using the technique described in the previous section
(VBL tasks) or place it in the refCon (reserved) field of the window.

Miscellaneous guidelines
Someday, the Macintosh will expect applications to run in the 68o:XO user mode (as
opposed to today's supervisor mode), so in preparation for that day avoid using any
of the 68oXO privileged instructions. Also avoid making 68o:XO TRAP or TRAPV calls .

All types of utilities, as well as applications, need to be aware of MultiFinder's shared
environment For example, screen savers should make sure that background
processing continues.

Remember that applications should avoid direct manipulation of the Apple menu.

low memory
The less your application accesses low memory, the better. Writing to low memory,
however, is much more objectionable than reading, and should be avoided. In the
long run, low memory will disappear, so try not to depend on it

Interact with the global scrap by using the Scrap Manager whenever possible; avoid
direct manipulation of the low-memory Scrap Manager data structures or the
Clipboard file itself.

Try not to use the low-memory notification procedures (for example: IAZNotify,
EjectNotify, DeskHook, and so on) unless absolutely necessary.

Miscellaneous guldellnes 21

Asynchronous system calls
MultiFinder will wait until all currently active fde system requests are completed before
it brings another application to the foreground. This means that during any pending
asynchronous fde system request, MultiFinder will not allow activation of a different
application.

+ Note: This is not the last word on this issue. future releases of MultiFinder will
examine the compatibility of switching while asynchronous Fde Manager calls are
still pending. Currently, in MultiFinder, Device Manager calls do not delay
application switching.

Exit time restrictions
Do not assume that at exit time you can clear the screen to save code.

Do not destroy fields in system data structures, such as the window list, before you exit.

Remember to e:x:tt gracefidly-clean up, call ExitToShell (don't assume that you can
do anything you want before you call ExitToShell; even though your application is
exiting, there may be other applications running), don't call InitWmdows again, and
soon.

System resources
As stated earlier, resources from the System fde that were formerly loaded into the
application heap are now loaded into the system heap for use by all applications. If a
resource came from the System fde, it will be loaded into the system heap even if the
resSysHeap bit isn't seL

Your applications should not make assumptions about where resources other than
those in your own resource files have been loaded (the system or application heap).
The best way to get your own copy of a system resource is to use HandToHand rather
than DetachResource.

Since other applications may need to use system resources, applications should not
call ReleaseResource or DetachResource for system resources such as pointers and
fonts-nor should they change resource attributes or modify the resource data
directly.

22 Chapter 2: Well-Behaved Appllcotlons

("

Chapter 3

MultlFinder-Aware
Applications

A MultJFincler-aware application is one that handles suspend and resume events,
includes a SIZE resource, calls WaitNextEvent, and uses normally unused null events
for effective background work, while not significantly affecting the responsive nature of
the application currently running in the foreground. This chapter will desaibe each
of these important aspects of the MultiFtnder-aware application.

When an application stops executing in the background and begins running in the
foreground, it has all the rights and responsibilities of any foreground application.
These include being a good citizen while running in the foreground by calling
WaitNextEvent (see information on this new event call later in this chapter) to allow
other applications the opportunity to perform some work while running in the
background.

After an application begins running in the foreground, it can receive user events and
use any Toolbox service (File Manager, QuickDraw, Window Manager, and so on).
Keep in mind that the same application executing in the background can also use any
Toolbox or OS service, but won't see user events until it begins running in the
foreground

When a user attempts to bring a second application to the foreground, the Event
Manager checks to see if the applications involved can handle suspend/resume
events. Here, the user is trying to switch between two layers. If your application
doesn't handle suspend/resume events, the operation of the Macintosh will appear
sluggish.

23

Suspend and resume events
Two new types of app4Evts (type 4 application events) have been aeated within the
Event Manager: suspend and resume. Their primary function is an optimization to
tell the application when it should process the saap. A secondary function is to tell
the application whether it is in the foreground or background.

+ Programming ttp: It's a good idea to have a variable (for example, InForeground,
initialized to TRUE) that keeps track of whether the application is in the foreground
or background. When your application is launched, asNme that you are in the
foreground. If you receive a suspend event, you're going to the background; if you
receive a resume event, you're going to the foreground.

If you intend to have your application perform work in the foreground and the
background, you need to process these two events.

Table 3-1 lists the meanings of the bits in the suspend/resume event message field.

Table 3·1
The suspend/resume message fteld

Bit Meaning

0 0 =suspend event
1 = resume event

1 0 == Clipboard conversion not required on resume
1 • Clipboard conversion required on resume

2-23 reserved
24-31 high-byte value of $01 indicates a suspend or resume event

high-byte value of $FA indicates a mouse-moved event

Handling activate and deactivate
Suspend/resume events have to be handled whenever you get them; usually, this
happens in the main event loop. By supporting suspend/resume events, the
application is taking responsibility for activating or deactivating its front window at
suspend/resume time.

24 Chapter 3: MultlFlnder-Aware Appllco11ons

(
If the multiFinderAware bit has been set in the application's SIZE resource (see the
following seaion for more information on this new resource), then the application
must take responsibility for performing a deaaivate after receiving a suspend event
and an activate after receiving a resume event

Take care If masking out app4Evts
Suspend/resume events are not queued, so be careful when masking out app4Evts.
You will still get switched out; however, all that will happen if you mask out app4Evts is
that your application won't know when it is going to be switched out (your application
will still be switched out when you call WaitNextEvenr). If your application sets a
boolean to tell whether or not it's in the foreground or the background, you definitely
don't want to mask out app4Evts.

A C example of how to handle suspend and resume events
If an application doesn't support the suspend/resume events, MultiFinder has to trick
the application into performing scrap coercion to ensure that the contents of the
Clipboard can be transferred from one application to another. This process adds to
the time it takes to move the foreground application to the background and vice versa
and makes the user interface appear cumbersome.

An application responds to a suspend event by moving its private scrap into the
Clipboard and then returning to the main event loop. When the application receives
a resume event, and if the Clipboard has been altered, the application copies the
Clipboard and converts it back to its private saap. After this transformation, the
application resumes executing.

+ Note: Applications should hide their Clipboard window when not running in the
foreground. The contents of the Clipboard window are not valid unless the
application is frontmosl

MultiFinder sets bit 1 of the EventRecord of resume events if the scrap has changed
while the application was suspended.

Here is a C example of how to handle the suspend/resume events (this code example
also uses the new MultiFinder call WaltNextEvea.t; see the seaion on this call
presented later in this chapter):

/* --- Useful macros for determining- specifics of suspend/resume events ----*I

tdefine App4Selector (eventPtr) (* ((unsiqned char *I '(eventPtr)->messaqe) I
/* top byte of messaqe field is the selector */

tdefine SOSPEND_RESOME_SELECTOR OxOl

SUspend and resume events 25

I* selector of this value is suspend/resume */

#define SuspResisResume(evtMessaqe)
/* low bit on signifies resume */

((evtMessaqe) & OxOOOOOOOl)

#define SuspResisSuspend(evtMessaqe)
/* low bit off signifies suspend */

(!SuspResisResume(evtMessage))

#define ScrapDataHasChanged(e.vtMessage) ((evtMessage) & Ox00000002)
/* only valid for suspend/resume messaqes */

I* ---------------------- Necessary qlobal variables ----------------------- */

Boolean wneisimplemented;

Boolean inForeground;

WindowPtr clipboardWindow;

/* --------------------------

/* Is _WaitNextEvent implemented? */

. /* Is this application in the foreground under *I
/* MultiFinder? *I

/* This is a pointer to the Clipboard window, */
/* which is only made invisible when the user *I
I* closes it. The next time it is opened *I
/* make it visible aqain to speed up the *I
I* process. */

The main event loop -------------------------- *I

/* pick the biggest possible timeout for _WaitNextEvent */

#define BIG_TIMEOUT

void
EventLoop ()
{

Event Record
void
void
void
void
void

for (;;)
{

OxFFFFFFFF

my Event;
HandleMouseDownEvent(EventRecord *pEvent);
HandleKeyDownEvent(EventRecord *pEvent);
HandleUpdateEvent(EventRecord *pEvent);
HandleActivateEvent(EventRecord *pEvent);
HandleApp4Event(EventRecord *pEvent);

/* standard method for looping forever */

/* check the followinq each time throuqh loop */

CheckClipboardWindow();

if. (wneisimplemented)
{

/* qet an event *I

if (!WaitNextEvent(everyEvent, &myEvent, BIG_TIMEOUT, nil))
continue; /* keep loopinq until you qet a valid */

else
{

SystemTask();

/* event */

/* the system will call this itself if */

26 Chapter 3: Multlflnder-Awore Applications

(\

/

I* _WaitNextEvent is used
if (!GetNextEvent(everyEvent, 'myEvent))

continue;

switch (myEvent.what)
{

case mouseDown:
HandleMouseOownEvent(,myEvent);
break;

case keyDown:
HandleKeyDownEvent(,myEvent);
break;

case updateEvt:
HandleUpdateEvent(,myEvent);
break;

case activateEvt:
HandleActivateEvent(,myEvent);
break;

case app4Evt:

default:

HandleApp4Event(,myEvent);
break;

break;

*I

/* ----------------------------ConvertPrivateScrapToDesk------------------------- */
void
ConvertPrivatescrapToDesk()

/* If the application uses a private scrap for the Clipboard contents, then this*/
/* is the place to make it public. This would normally be called after */
/* receiving a suspend event (so that it gets to a location from which it can be*/
/* sent to other applications), when the application quits, or when a desk *I
/* accessory is activated.*/

{

}

/* ---------------------------convertDeskScrapToPrivate-------------------------- */
void
ConvertDeskScrapToPrivate()

/* The complement to ConvertPrivateScrapToDesk (), this converts the public */
/* (desk) scrap to the application's private scrap, if it exists (one example */
/* is the textedit scrap). This would normally be called after receiving a */
/* resume event, when the application starts up, or when a desk accessory is *(
/* deactivated. */

{
}

/* ------------------------------HandleApp4Event--------------------------------- */
void

SUspend and resune events 27

HandleApp4Event(pEvent)
Event Record *pEvent;

/* Handle the app4Evt (as determined by pEvent->what -= 15) if and only if it• s * /
I* a suspend/resume event. * /

I* NOTE: This code only applies if the multiFinderAware flag is set in the *I
/* application's SIZE resource. * /

void
void

.void
void

MyDeactivateWindow(WindowPtr pWindow);
MyActivateWindow(WindowPtr pWindow);
HideClipboard();
ShowClipboard();

if (App4Selector (pEvent) == SUSPEND_RESUME_SELECTOR)
/* if it's not suspend/resume then ignore it */
{

register WindowPtr frontWindow = FrontWindow ();
static Boolean clipboardVisinFG;

/* If visible in the foreground, you have to hide it before going to *I
/* the background, but then show it later. This is important because the *I
/* Clipboard contents are not valid unless the application is in the *I
/* foreground (i.e., in the frontmost layer). *I

/* It's either suspend or resume, based on the low bit of the message field.*/
/* You have to treat suspend as a deactivate on the front window and resume *I
/* as an activate on it because you have the multiFinderAware flag set *I
/* in the SIZE resource. */

if (SuspResisSuspend(pEvent->message))
{

/* -------------------------- Suspend Event --------------------------- *I
inForeground = false;
/* suspend event signifies you are moving to the background */

if (ScrapDataHasChanged(pEvent->message))
/* on a suspend, this signifies whether the user has changed the Clipboard *I

ConvertPrivateScrapToDesk();
if (frontWindow !• nil)

MyDeactivateWindow(frontWindow);
/* treat the suspend event as you would a deactivate event */

if (clipboardWindow !• nil ''
((WindowPeek)clipboardWindow)->visible)

HideClipboard () ; /* hide the Clipboard when you' re in the background *I
clipboardVisinFG • true;

else
clipboardVisinFG = false;

28 Chapter 3: MultlFlnder-Aware Applications

(

else

/* ---------------------------- Resume Event ---------------------------*I

inForeground = true;
/* resume event signifies that you are returning to the foreground */

if (ScrapDataHasChanged(pEvent->message))

ConvertDeskScrapToPrivate();
if (frontWindow != nil)

MyActivateWindow(frontwindow);

/* if new scrap, then */
/* reset your private one */

/* have to treat the resume event as you would an activate event*/
if (clipboardVisinFG)

ShowClipboard();

The SIZE resource
The SIZE resource (see Table 3-2) is used to communicate information from the
application to MultiFinder. You are responsible for creating and maintaining the
information for this resource.

When an application is launched under MultiFinder, it is placed into a memory
partition that cannot change in size. It is the application's responsibility to inform
MultiFinder just how large a memory partition it will require.

The SIZE resource consists of a 16-bit flap field, used to communicate to MultiFinder
the level of responsibility an application will handle, directly followed by a 32-bit
minimum size field and a 32-bit preferred size field, which indicate the minimum
and preferred sizes the application will operate within. The minimum sire is the actual
limit below which your application will not run. The preferred sire is the memory sire
at which your application can run effectively.

Table 3-2
The SIZE resource

Bit Meaning

0-8 reserved

9 getFrontClicks

10 only Background

11 multiFinderAware

The SIZE resource 29

12 canBackground

13 reserved

14 acceptSuspendResumeEvents

15 reserved

16-48 preferred si7.e

49-81 minimum si7.e

The SIZE resource flags
Here are the SIZE resource ~:

• acceptSuspendResumeEvents-when set, this bit signifies that the application
knows how to process suspend/resume events. When true, MultiFinder notifies the
application before making it inactive and after reactivating it In this way, the
application knows when to process the global saap.

Failure to support this optimization requires MultiFinder to trick the application
into performing saap coercion to ensure that the contents of the Clipboard can be
transferred from one application to another. 'Ibis process adds to the time it takes
to move the foreground application to the background and vice versa. MultiFinder
will also create a false window to cause the foreground application's window to be
deactivated unless the multiFinderA ware bit is set.

Whenever an application calls one of the event calls, MultiFinder can return a
suspend event After receiving a suspend event, an application does not actually
become inactive until the next event call. At this time, the application should
convert any local scrap into the global scrap and hide mini-windows, selectiom,
and soon.

When control returns to the application, MultiFinder returns a resume event. 1be
application may now convert the global saap back into its own private scrap, if
necessary. As part of the resume event, MultiFinder also lets the application know if
the Clipboard has changed since the application was suspended by setting bit 1 of
the message field of the EventRecord of resume events.

+ Programming tip: If you set the acc:eptSuspendResumeEvents bit, set the
multiFinderAware bit as well.

• canBackgrouncl-when set, this bit means that the application wants to receive
null events while in the background. If your application has nothing to do while in
the background, don't set this bit

30 Chapter 3: MultlRnder-Aware AppUcattons

(
• multiFinderAware-when set, this bit means that an application takes

responsibility for activating and deactivating any windows in response to a
suspend/resume event. This means that if the application was suspended and the
acceptSuspend.ResumeEvents flag was set and the multiFinderAware flag was not set,
then the application would still receive an activate event. If you set the
multiFinderAware flag, the application won't receive activate events--you must take
care of activation and deactivation yourself when you receive the corresponding
suspend or resume event.

Because you have taken responsibility for deactivation, if the application's window
is on top, the suspend event should also be treated as though a deactivate event were
received as well (if both the multiFinderAware and acceptSuspend.ResumeEvents
fla~ were set). For example, scroll bars should be inactivated, blinking insertion
points should be hidden, selected text should be deselected if your application
moves to the background, and so forth. If you don't set this bit, MultiFinder has to
create a window to force the activate/deactivate events to occur.

+ Remember: Your application cannot take full advantage of the speed
increases obtained from the suspend/resume events unless you set the
multiFinderAware bit.

• onlyBackground-set this flag if your application does not have a user interface
and will not run in the foreground

• getFrontClicks-set this flag if you want to receive the mouse-down and mouse-up
events used to bring your application to the foreground when the user clicks in one
of your application's windows while it is suspended Ordinarily, the mouse-down
and mouse-up events that trigger such a switch are not sent to the application.

Preferred memory size
The preferred size is an amount of memory in which an application will run effectively,
and which MultiFinder will attempt to secure upon launch of the application. If this
amount of memory is unavailable, the application is placed into the largest contiguous
block available providing that it is larger than the specified minimum size. Users can
modify the preferred size through the Finder's Get Info window.

+ Note: If the amount of available memory is between the minimum and preferred
sizes, MultiFinder will display a dialog box asking if the user wants to run the
application.

Minimum memory size
The minimum size is an actual limit below which the application will not run. The only
way users can see the minimum size is if they try to create a partition smaller than the
minimum size or open the Finder's Get Info window.

The SIZE resource 31

How to create your own SIZE resource
There is no simple formula for determining the appropriate size requirement for all
applications. Since there are so many factors that affect memory requirements, only
general guidelines are applicable.

An application's memory requirement depends on a number of factors-the static
heap size, dynamic heap, A5 world, and the stack. The static heap size includes
objects that are always present during the course of execution of the application (these
could be code segments, Toolbox data structures for window records, and so on).
Dynamic heap requirements come from various heap objects created on a per­
document basis (which may vary in size proportionately with the document itself) and
objects that are required for specific commands or functions. The size of the A5 world
depends on the amount of global data and intersegment jumps the application
contains. The stack contains variables, return addresses, and temporary information.

How much memory will an application require? Ma.csbug and its heap-exploring
commands can be helpful in empirically determining the application's appetite for
memory. Checking to see what resides in the application's heap at key times while
performing all the application's functions would be quite worthwhile.

The preferred size should be chosen to allow the application to perform almost all of
its functions without problems. On the other hand, the application shouldn't be too
greedy. Remember that in the MultiFinder environment, multiple applications are
sharing the machine.

The minimum size should be chosen such that the application would never cause a
system error if required to run within that amount of memory.

The SIZE resource, specified by the application, is of type 'SIZE' with ID (-1). This will
tell MultiFinder what you suggest as the preferred and minimum sizes. The user has the
option of changing the application's preferred size, but not below the minimum size.
Rather than lose the original preferred size, a second SIZE resource (SIZE, 0) is created
to show the user's specified preferred size. When MultiFinder prepares to launch an
application, it first checks the (SIZE, 0) resource. If this doesn't exist, MultiFinder
then looks for the (SIZE, -1) resource.

Applications should not modify the preferred or minimum memory requirements of
the SIZE resource; however, if this is absolutely necessary, you must change both the
(SIZE, -1) and the (SIZE, 0) resources to affect the attributes mentioned above.

How can I tell If my application Is running In the background?
An application can tell if it is running in the background if it has received a suspend
event but not the corresponding resume event.

32 Chapter 3: MultlFinder-Aware Applications

To run in the background under MultiFinder, an application must have set the
canBackground bit (bit 12 of the FLAGS word) in the SIZE resource. In addition, the
acceptSuspendResumeEvents bit (bit 1-0 should be set.

Null events
As stated in Chapter 2, null events have a different meaning under MultiFinder. A
MultiFinder-aware application receives null events when it is in the foreground and no
background task is pending, or if the application is in the background and the
canBackground bit is set in the SIZE resource.

Also remember that periodic garbage collection and similar time-consuming actions
shoul~ not be performed on every null event received

WaitNextEvent
In MultiFinder, there is a new Event Manager call-WaitNext:Event-that will allow
the system to run more efficiently. There are two important differences between
WaitNextEvent and GetNextEvent. WaitNextEvent allows the caller to specify, in
addition to an event record and mask, a time (sleep) during which the application
relinquishes the processor if no events are pending; and it also allows the caller to
specify a region (mouseRgn) from which control will not be returned until the mouse is
moved outside that region.

+ Note: GetNextEvent is equivalent to WaitNextEvent with a sleep value of 0 and a
mouseRgn value of 0. Also, an application will now receive suspend/resume events
when calling GetNextEvent

The interface for WaitNextEvent is:

Function WaitNextEvent (eventMask
VAR theEvent
sleep
mouseRqn

The mouseRgn parameter

INTEGER;
EventRecord;
Lonqint; tick units
RqnHandle) : BOOLEAN;

By taking advantage of the •automatic• mouse-tracking feature (mouseRgn) of
WaitNextEvent, you can considerably simplify the application's cursor tracking. The
application will receive a mouse-moved event only when the mouse strays outside the
specified region.

WaltNextEvent 33

The application can compute the region where the pointer shape should remain the
same. When the mouse moves outside this region, the application receives the
mouse-moved event and can change the pointer, recompute the new region for this
pointer, and call WaitNextEvent again. The region is given in global coordinates. If
you pass an empty region or a nil region handle (0), mouse-moved events are not
generated

The sleep parameter
The sleep parameter (specified in ticks) allows an application to •sleep• until an event
occurs or the specified time has elapsed Passing a 0 in the sleep parameter for
WaitNextEvent means that yow application wants to regain control as soon as
possible. This will still yield a minimal amount of time to other applications.

An application running in the background will not receive null events~ the
canBackground bit is set in its SIZE resowce. If an application needs to perform some
work in the background, you can specify how often it nee<k to receive null events by
adjusting the sleep parameter (for example, if yow application only needs to receive
one null event per second, set the sleep parameter to 6o).

+ Programming tip: Currently, MultiFinder will not suspend yow application when
the frontmost window is a modal dialog box with a window of type dboxProc--so if
you want your application to perform work while in the background, don't display a
dbox:Proc window.

Vle~ding time gracefully
In general, you should use WaitNextEvent instead of GetNextEvent. Any foreground
application that uses WaitNextEvent with the appropriate sleep and mouseRgn values
will give the maximum amount of time to any applications running in the background.
Each application running in the background should also use WaitNextEvent as a means
to sleep between succeMive invocations.

Because MultiFinder doesn't support preemptive scheduling, any application running
in the background must call WaitNextEvent at regular intervals to retain the responsive
nature of the application currently operating in the foreground Poor response time is
a sign that your application is not calling WaitNextEvent often enough while running in
the background

When an application using background time has control, user events destined for the
frontmost application will not be handled until the application running in the
background calls WaitNextEvent.

34 Chapter 3: Multlflnder-Awore Applications

c

Using unused null event time
Only a user can activate an application to run in the foreground Each time any
application is scheduled, it runs until it makes an event call. MultiFinder schedules an
application ready to perform work in the background when the application running in
the foreground has no rurrent events pending and no window updates are needed As
long as the application running in the background periodically calls WaitNextEvent,
the foreground application will continue to get null events at regular intervals so that
pointer tracking and imertion point blinking can continue.

Don't call SystemTask
If you call WaitNextEvent, MultiFinder will be responstble for giving time to drivers
(that is, the system will call SystemTask). The important point here is that since
applications running in the background are not guaranteed processing time and may
be in a sleep state at any time, they cannot call SystemTask a sufficient number of
times.

When exactly are applications moved between the
foreground and the background?
Applications are moved between the foreground and background when you make an
event call. If you have the acceptSuspend.ResumeEvents bit set in the SIZE resoiJrce,
you will receive suspend/resume events. When you receive a suspend event from an
event call you will be moved from the foreground to the background the next time you
make an event call. When an application receives a suspend event, it is going to be
switched, so don't do anything to try to retain control.

+ Programming tip: Masking out the suspend event is not a good Macintosh
programming technique. This is particularly important if you are setting a flag to
tell if your application is in the foreground or background.

How can I tell If WaltNextEvent Is Implemented?
WaitNextEvent is part of Finder version 6.0. Most applications should not need to
know if MultiFinder is running since furure systems might include WaitNextEvent
whether or not MultiFinder is running. Most of the time, the application really needs
to know something like: •How can I tell if WaitNextEvent is implemented?•

WaltNextEvent 35

The following Pascal and C code fragments are included here to demonstrate how to
check whether WaitNextEvent is implemented (this code compares the trap for
WaitNextEvent with the unimplemented trap). Common to both of these code
examples is a useful routine, called TrapAvailable, to check if a particular trap is
available. Here is the Pascal code for TrapAvailable:

FUNCTION TrapAvailable(tNumber: INTEGER; tType: TrapType): BOOLEAN;

CONST
UnimplementedTrapNumber .. $A89F; (trap number of "unimplemented trap"}

BEGIN (TrapAvailable}

{Check and see if the trap exists. On 64K ROM machines, tType will be iqnored.}

TrapAvailable :- (NGetTrapAddress(tNumber, tType) <>
GetTrapAddress(UnimplementedTrapNumber));

END; {TrapAvailable}

Here is the C code for TrapAvailable:

Boolean
TrapAvailable(tNumber, tType)
short tNumber
TrapType tType
{

tifndef _Unimplemented
fdefine _Unimplemented OxA89F
#endif

/* define trap number for old MPW or non-MPW c */

/* Check and see if the trap exists. On 64K ROM machines, tType will be iqnored. */

return (NGetTrapAddress (tNumber, tType) !• GetTrapAddress (_Unimplemented)) ;
}

Here's the Pascal code segment that shows how you should set up the call to the
function that will actually check to see if WaitNextEvent is implemented, followed by
the skeleton for calling either WaitNextEvent or GetNextEvent and
SystemTask-depending on the outcome:

{Note that you call both GetNextEvent and SystemTask if WaitNextEvent isn't
available.}

hasWNE :• WNEisimplemented;

IF hasWNE THEN BEGIN { call WaitNextEvent }

36 Chapter 3: MultlFlncler-Aware Applicattons

~.·

(

END ELSE BEGIN { call SystemTask and GetNextEvent

END;

Here's the Pascal code segment that checks to see ifWaitNextEvent is implemented:

FUNCTION WNEisimplemented: BOOLEAN;

CONST
WNETrapNumber - $A860;

VAR
theWorld : SysEnvRec;
discardError : OSErr;

BEGIN {WNEisimplemented}

{trap number of WaitNextEvent

{used to check if machine has new traps
{used to ignore OSErr return from
(SysEnvirons

Since WaitNextEvent and HFSDispatch both have the same trap number ($60), you
can only call TrapAvailable for WaitNextEvent if you are on a machine that
supports separate OS and Toolbox trap tables. Here, call SysEnvirons and
check if machineType < O.}

discardError := SysEnvirons(l, theWorld);

Even if you get an error from SysEnvirons, the SysEnvirons glue has set }
up machineType. }

IF theWorld.machineType < 0 THEN
WNEisimplemented ·- FALSE

ELSE

this ROM doesn •t have separate trap
tables or WaitNextEvent
check for WaitNextEvent

WNEisimplemented := TrapAvailable(WNETrapNumber, ToolTrap);

END; { WNEisimplemented

Here's the same example in C:

/* Note that you call both GetNextEvent and SystemTask if WaitNextEvent isn't *I
I* available. */

hasWNE - WNEisimplemented ();

if (hasWNE) /* call WaitNextEvent *I

else /* call SystemTask and GetNextEvent *I

WaltNextEvent 37

Boolean
WNEisimplemented()
{

I* define trap number for old MPW or non-MPW C */

tifndef WaitNextEvent
#define ::=waitNextEvent OxA860
tendif

SysEnvRec theWorld; /* used to check if machine has new traps */

/* Since WaitNextEvent and HFSDispatch both have the same trap number ($60), you */
I* can only call TrapAvailable for WaitNextEvent if you are on a machine that * /
I* supports separate OS and Toolbox trap tables. Call SysEnvirons and check if */
I* machineType < 0 • * /

SysEnvirons(l, &theWorld);

/* Even if you qet an error from SysEnvirons, the SysEnvirons qlue has set up */
/* machineType. */

if (theWorld.machineType < 0) {
return (false) /* this ROM doesn •t have separate trap tables or WaitNextEvent */

else {
return(TrapAvailable(_WaitNextEvent, ToolTrap)); /* check for WaitNextEvent */

+ Note: WaitNextEvent does not conflict with any OS trap, so the above test is valid on
64KROMs.

Temporary memory allocation calls
To reduce the memory requirements of an application's heap, MultiFinder provides a
set of temporary memory allocation services that can be used for large transient
memory requirements.

An application now has the option of using MultiFinder's temporary memory
allocation calls to get additional memory; however, don't rely on always getting it
because this additional memory may not be available. The application should still
work if there is no additional memory available when you need it Also, this memory
is meant to be transitory; the application should use the memory for a limited time
and then return it to the system for other applications to use.

This temporary memory should be released before you call WaitNextEvent again.
Make the call, use the memory, and then release it

38 Chapter 3: MultlFlnder-Aware Applications

(

It is important to remember a number of thin~ when using this memory. First, you
must use the temporary memory allocation calls when referencing these relocatable
blocks because of the different handle requirements. Second, be sure to release the
blocks of memory as soon as possible to allow other applications to use them, and to
allow the user to launch new applications. Finally, never structure your application
such that it depends on the availability of any of this temporary memory. 1bis means
having a backup plan in place should no temporary memory be available (most likely
reserving an emergency amount of memory within your heap zone to complete the
common procedures).

+ Note: Do not treat these calls as Memory Manager blocks. For example, don't call
GetHandleSize or SetHandleSize. Also, don't call Toolbox routines that will call
GetHandleSize or SetHandleSize.

For example, the Finder now uses these temporary memory calls to secure copy buffer
space to be used during me copy operations. Any available memory (unused by
running applications) is dedicated to this purpose. The Finder releases the memory as
soon as the copy is completed, thus making the memory available again to other
applications, or to MultiFinder for launching new applications.

If the Finder cannot allocate this large temporary copy buffer, it will perform the copy
using a reserved small copy buffer from within its own heap :zone. 1bis is dearly more
desirable than refusing to copy (or worse yet, crashing) because no temporary
memory was available.

There are several temporary memory allocation calls:

• FUNCTION MFFreeMem : LONG INT

MFFreeMem returns the total amount of free memory available for temporary
allocation, in bytes.

• FUNCTION MFMaxMemCVAR grow:Size) : Size

MFMaxMem compacts the MultiFinder heap :zone and returns the number of bytes
of the largest contiguous free block for temporary allocation.

• FUNCTION MFTempNewHandle(logicalSize:Size;VAR
resultCode:OSErr) :Handle

MF'fempNewHandle attempts to allocate a new relocatable block oflogicalSize
bytes for temporary usage and return a handle to it. The new block will be unlocked
and unpurgeable. If an error occurs, MFfempNewHandle will return nil.

Result codes: noErr
memFullErr

• FUNCTION MFTopMem: Ptr

No error
Not enough room

MF'fopMem returns a pointer to the top of the addressable RAM space.

+ Note: Do not use this call to calculate the size of your application's memory
partition. This call provides the total amount of useable machine memory-.not
the amount of memory available to your application.

Temporary memory allocation calls 39

• PROCEDURE MFTempDisposHandle (h:Handle; VAR resultCode :OSErr)

MFI'empDisposHandle releases the memoiy ocrupied by the relocatable block
whose handle is h.

Result codes: noErr
memWZErr

No error
Attempt to operate on a free block

• PROCEDURE MFTempHLock (h:Handle; VAR resultCode:OSErr)

MFI'empHLock locks the specified relocatable block, preventing it from being
moved within the MultiFinder heap zone.

Result codes: noErr
nilHandleErr
memWZErr

No error
Nil master pointer
Attempt to operate on a free block

• PROCEDURE MFTempHUnlock (h:Handle; VAR resultCode:OSErr)

MFI'empHUnlock unlocks the specified relocatable block, allowing it to move.

Result codes: noErr
nilHandleErr
memWZErr

No error
Nil master pointer
Attempt to operate on a free block

How can I tell if the temporary memory allocation calls are
·implemented?
The technique that's used to determine this is similar to the technique for determining
if WaitNextEvent is implemented. In Pascal:

FUNCTION TempMemCallsAvailable: BOOLEAN;

CONST
OsDispatchTrapNumber • $ABBF; (trap number of temporary memory calls }

BEGIN (TempMemCallsAvailable }

Since OSDispatch has a trap number that was always defined to be a Toolbox
trap ($8F), you can always call TrapAvailable. If you are on a machine that
does not have separate Os and Toolbox trap tables, you'll still qet the riqht
trap address.

(check for OSDispatch

TempMemCallsAvailable :• TrapAvailable (OSDispatchTrapNumber, Tool Trap);

END; (TempMemCallsAvailable}

Now, the same example in C:

40 Chapter 3: MultlAnder-Aware Applications

"-·.

(
Boolean
TempMemCallsAvailable()
{

/* define trap number for old MPW or non-MPW c */

iifndef _OSDispatch
tdefine _OSDispatch OxABBF
tendif

/* Since OSDispatch has a trap number that was always defined to be a Toolbox * /
I* trap ($BF). you can always call TrapAvailable. If you are on a machine that */
/* does not have separate OS and Toolbox trap tables, you' 11 still get the */
/* right trap address. */

return(TrapAvailable(_OSDispatch, ToolTrap)); I* check for OSDispatch

Launching and sublaunching
Certain types of applications, such as development systems, need to launch other
applications. MultiFinder provides a new platform for applications to interactively
communicate with such applications. The application launched by your application
will become the foreground application. A sublaunch is the mechanism for allowing
your application to call another application. Unlike the single-Finder environment,
under MultiFinder when the user quits the application that you sublaunched, control
does not necessarily retum to your application, but rather to the next frontmost layer.

To launch another application and keep your rurrendy active application open, set
both high bits of LaunchFlags, that is

LaunchFlags:• $COOOOOOO;

Here is the Launch parameter block description:

typedef struct LaunchBlock {

StringPtr
unsigned short
unsigned short

name;
soundBuffers;
launchBlockID;

idefine EXTENDED BLOCK ID ((unsigned short) 'LC')
unsigned -long - extendedBlockLen;

tdefine IS EXTENDED BLOCK(pLaunchBlock)
((pLaunchBlock'i->launchBlockID •• EXTENDED_BLOCK_ID \
' ' (pLaunchBlock)->extendedBlockLen >• 4)

unsigned short finderFileFlags;

*I

Launching and sublaunchlng 41

idefine FINDER_FILE_FLAG_MULTILAUNCH ((short) (1<<6))
unsiqned short launchFlaqs;

tdefine
tdefine
tdefine

LAUNCH_FLAG_SUBLAUNCH ((short) (1<<15))
LAUNCH_FLAG_TWITCHLAUNCH ((short) (1<<14))
IS_TWITCH_LAUNCH(pLaunchBlock) (IS_EXTENDED_BLOCK(pLaunchBlock) \

U (pLaunchBlock->launchFlaqs ' LAUNCH_FLAG_TWITCHLAUNCH) l

) LaunchBlock;

Unlike the single-Fmder model, if you set both high bits of LaunchPlap, your
application will continue to execute after calling Launch, so be prepared. Calling
Launch with both high bits of LaunchPlap set can be thcught of as a request to launch
an application. The actual execution of that application's code (and hence suspend of
your application) won't happen in the Launch trap, but at a later time (after a call or
two to WaitNextEvent).

+ Wamtng:· The interface to the Launch trap will eventually change. Unless you are
implementing an integrated development system, your application should not
launch other applications.

Launch under MultiFinder will currently return an error if there isn't enough memory
to launch the desired application, if the desired application can't be located, or if the
desired application is already open. In the latter case, that application will not be
made active.

If you sublaunched, control will return to your application; if not, your application will
be terminated and the next frontmost layer will become active. If you didn't
sublaunch and an error occurred, MultiFinder will do a SysBeep since your
application will be terminated If you sublaunched and an error occurred,
MultiFinder will not beep and your application will have to report the error to the user.

Launch returns the error in register DO if you are sublaunching. You can check for
DO < 0 after the sublaunch to see if the launch failed If DO >- 0, then the application
will be launched The following Pascal code segment will return an error if launch
fails:

FUNCTION Launchit (pLnch: pLaunchStruct) :OSErr;
INLINE $205F, {MOVE.L (SP) +,AO ;pointer to parameters in AO)

$A9F2, { Launch)
$3E80; {MOVE.W DO, (A7) ;qet function result from DO)

42 Chapter 3: MultlFlnder-Aware Applications

Working directories
A new Working Directory Control Block (WDCB) must be created and set as the
current directory when your application is run under MultiFinder (unless the current
application represents the root or exists on an MPS volume).

Under MultiFinder, when you call PBOpenWD, the ioWDProcID that you pass in is
ignored. MultiFinder overrides your ioWDProcID with a unique process ID for your
application so that it can deallocate all working directories that you allocated when
your application terminates. Thus, you cannot use the ioWDProcID to identify your
working directories when running under MultiFinder.

Therefore, whenever you open a working directory with PBOpenWD, you should pass
your application's signature as the ioWDProcID and close the working directory as
soon as possible with PBCloseWD. Also, remember to deallocate each WDCB, since
the sublaunching process is recursive and there is a limit to the number of WDCB's
that can be created A good programming practice is to check for errors after calling
PBOpenWD. A tMWDOErr (-121) error indicates that all available WDCB's have
been allocated.

Launching and sublaunching 43

(

(··.~· ~

Chapter 4

Special-Purpose Applications

Three special types of applications are described in this chapter: embedded services,
faceless background tasks, and desk accessories.

Embedded services and faceless background tasks are applications that perform
almost all their work in the background. Desk accessories represent another special
type of application that must follow certain programming guidelines to remain
compatible with MultiFinder.

Embedded services
An embedded service is a special-purpose application that runs only in the
background. Tilis type of application is normally not visible and interacts heavily with
the Notification Manager (see Appendix D for a detailed description).

A good example of an embedded service that prints and uses heavy amounts of
background time is PrintMonitor.

PrintMonitor allows the user to interactively monitor what is being printed. While
PrintMonitor is running in the background, a user can bring it to the foreground to see
which jobs are being held in the print spooler, alter the document printing order,
cancel or suspend any or all waiting documents, or set times for particular documents
to be printed Tilis allows the user to print out large doruments during times when the
LaserWriter® might be idle or rarely used.

45

Faceless background tasks
A faceless background task is almost invisible. It is minimal in size and has no user
interface-no icon will appear in the Apple menu, no windows will be displayed, and
no port exists. If any user interaction is required, it uses the Notification Manager.

A faceless background task sets the canBackground and backgroundOnly bits in the
SIZE resource and should not significantly affect the responsive nature of the
application running in the foreground

An example of a faceless background task is Backgrounder, a continually active but
user-transparent program. Its main function in life is to seek out and identify the
creation of a printer spool file. Spool files are created under MultiFinder when a user
wants to print a document in the background When Backgrounder sees a spool file, it
sets the printing process in motion by launching PrintMonitor.

Desk accessories
Desk accessories were originally designed for the Macintosh environment because
they offered two distinct advantages over applications. First, they incorporated a
limited degree of multitasking. Second, by using the Oipboard, they offered a
primitive type of interprocess communication. MultiFinder now makes these
advantages available to applications as well as desk accessories.

Since MultiFinder will eventually represent the sole Macintosh desktop environment,
you will be better served in the future if you design and write a small application rather
thari a desk accessory. This does not mean that desk accessories are not compatible
with MultiFinder. While small applications are now preferable to desk accessories,
MultiFinder does support the standard desk accessory model; however, there have
been some changes.

The major change is that desk accessories in the System file are now loaded into the
system heap rather than the application heap (except when the Option key is held
down). This means that certain desk accessories that rely on being opened in the
application heap of specific applications may not work under MultiFinder. Also, when
a user opens a desk accessory or clicks on one already open, MultiFinder brinp all
open desk accessories to the foreground

Desk accessories can be divided into two different categories: self-sufficient and
dependent Self sufficient desk accessories will continue to work as intended under
MultiFinder.

46 Chapter 4: Special-Purpose Applications

(

(

Self-sufficient desk accessories
Self-sufficient desk accessories do not rely on the presence of specific applications to
function-that is, they don't need to be in a partirular application's heap in order to
work correctly. The standard desk accessories from Apple, such as the Scrapbook and
Notepad, are examples of self-sufficient desk accessories. A self-sufficient desk
accessory also doesn't care about the rest of the world while it's running. Under
MultiFinder, a desk accessory has no way of knowing which application was active when
the user opened it

Dependent desk accessories
A dependent desk accessory relies on an information exchange with a specific
application that allows it to perform its particular function. However, under
MultiFinder, this exchange breaks down because in general, the desk accessory does
not load into the application heap and has no way of determining which application
opened it.

An example of a dependent desk accessory is a spelling checker that only works with
certain word processing applications. This sort of desk accessory won't work under
MultiFinder. Such desk accessories usually use the scrap to keep the text they're going
to check and rely on posting events to tell the word processing application to save the
text to the scrap. Unfortunately, at accRun time, the desk accessory doesn't know
which MultiFinder partition (specific application heap) called it. This means that
spelling checker desk accessories can no longer post events to begin the text retrieval
process.

Error checking
While it is true that MultiFinder will enlarge the system heap to make room for desk
accessories if possible, all desk accessories need to contain thorough error checking to
see if they have enough memory to load

A desk accessory will not have any indication that MultiFinder has loaded it, or that
there is additional room in the system heap. To prevent possible memory problems,
desk accessories can check to see if there is enough memory to load by trying to
allocate all the memory they need and exiting gracefully if there is not enough
available.

Desk accessories 47

{

Appendix A

A C Example of a MultiFinder­
Aware Application

The following C program is an example of a MultiFinder-aware application.

I* ---*/
/* *I
/* MultiFinder-Aware Sample Application */
/* */
/* Copyright C 1988 Apple Computer, Inc. */
I* All rights reserved. */
/* */
/* This sample application was written by Macintosh Developer Technical */
/* Support. It displays a single, fixed-size window in which the user *I
/* can enter and edit text. *I
/* */

/*--*/

/* Segmentation strategy:

This program consists of three segments. Main contains most of the code,
including the MPW libraries, and the main program. Initialize contains
code that is only used once, during startup, and can be unloaded after the
program starts. •ASinit is automatically created by the Linker to initialize
globals for the MPW libraries and is unloaded right away. */

/* SetPort strategy:

Toolbox routines do not change the current port. However, this program uses
a strategy of callinq SetPort whenever you want to draw or make calls that
depend on the current port. This makes you less vulnerable to bugs in other
software that might alter the current port (such as the buq (feature?) in
many desk accessories that change the port on OpenDeskAcc). This strategy

49

also makes the routines from this proqram more self-contained,
since they don't depend on the current port settinq. */

I* Clipboard strateqy:

This proqram does not maintain a private scrap. Whenever a cut, copy, or paste
occurs, you import/export from the public scrap to TextEdit • s scrap riqht away,
usinq the TEToScrap and TEFromScrap routines. lf you did use a private scrap,
the import/export would be in the activate/deactivate event and suspend/resume
event routines. */

tinclude <Values.h>
tinclude <Types.h>
tinclude <QuickDraw.h>
tinclude <Fonts.h>
tinclude <Events.h>
tinclude <Controls.h>
tinclude <Windows.h>
tinclude <Menus.h>
tinclude <TextEdit.h>
tinclude <Dialoqs.h>
#include <Desk.h>
tin elude <Scrap.h>
tinclude <ToolUtils.h>
#include <Memory.h>
tinclude <SeqLoad.h>
tinclude <Files.h>
tinelude <OSUtils.h>
tinclude <Traps.h> /* MPP 2.0.2 Traps.h is missinq an tendif */

/* MaxOpenDocuments is used to determine whether a new document can be opened */
/* or created. You keep track of the number of open documents, and disable the*/
/* menu items that create a new document when the maximum is reached. If the *I
I* number of documents falls below the maximum, the items are enabled aqain. */

idefine maxOpenDocuments 1

/* SysEnvironsVersion is passed to SysEnvirons to tell it which version of the */
I* SysEnvRec is understood. */

#define sysEnvironsVersion 1

I* OSEvent is the event number of the suspend/resume and mouse-moved events *I
/* sent by MultiFinder. Once you determine that an event is an osEvent, */
I* look at the hiqh byte of the messaqe sent with the event to determine *I
/* which kind of osEvent it is. To differentiate suspend and resume events, */
I* check the resumeMask bit. *I

tdefine osEvent

idefine suspendResumeMessaqe

app4Evt

1

/* event used by
/* MultiFinder
/* hiqh byte of suspend/

50 Appendix A: A C Example of a MultlRnder-Aware Application

*/
*I
*I

(

(~

I* resume event message *I
tdefine resumeMask 1 I* bit of message field *I

I* for resume vs. suspend *I
tdef ine mouseMovedMessage OxFA I* high byte of mouse- *I

I* moved event message *I

I* The following constants are all resource IDs. They correspond to resources *I
/* in Sample.r. See Appendix c. *I

fdefine rMenuBar 128 I* application's menu bar *I
tdefine rAboutAlert 128 I* about alert *I
tdefine rDocWindow 128 I* application's window *I

/* The following constants are used to identify menus and their items. The menu *I
I* constants are menu IDs, and the individual item constants are item numbers *I
/* within the menus. *I

fdef ine mApple 128 I* Apple menu *I
tdefine iAbout 1

tdef ine mFile 129 I* File menu */
#define iNew 1
tdefine iClose 4
#define iQuit 12

fdefine mEdit 130 I* Edit menu *I
fdefine iUndo 1
fdefine iCut 3
#define iCopy 4
tdefine iPaste 5
fdefine iClear 6

I* A Document Record contains the WindowRecord for one of the document windows, *I
/* as well as the TEHandle for the text being edited. Other document fields *I
I* can be added to this record as needed. For a similar example, see how the */
I* Window Manager and Dialog Manager add fields after the grafPort. *I

typedef struct {
WindowRecord
TE Handle

DocumentRecord,

window;
te;

*DocumentPeek;

/* GMac is used to hold the result of a SysEnvirons call. This makes
/* it convenient for any routine to check the environment.

SysEnvRec gMac; I* set up by Initialize

*I
*I

*/.

I* GHasWaitNextEvent is set at startup, and tells whether the WaitNextEvent *I
I* trap is available. If it is false, GetNextEvent must be called. */

Boolean gHasWaitNextEvent; I* set up by Initialize *I

AC Example of a MultlAnder-Aware Application 51

/* GinBackground is maintained by the osEvent handling routines. Any part of * /
/* the program can check it to find out if it is currently in the background. * /

Boolean ginBackground; /* maintained by Initialize and DoEvent */

/* GNumDocuments is used to keep track of how many open documents there are at * /
/* any time. It is maintained by the routines that open and close documents. *I

short gNumDocuments; /* maintained by Initialize,
/* DoCloseWindow

Do New, and *I
*I

/* Here are declarations for all the C routines. In MPW 3. O you can use */

I / actual prototypes for parameter type checking.

void Event Loop (I;
void DoEvent (/* EventRecord *event */) ;
void AdjustCursor(/* Point mouse, RgnHandle region */) ;
void DoOpdate (/* WindowPtr window *I) ;
void DoDeactivate (/* WindowPtr window */) ;
void DoActivate(/* WindowPtr window*/);
void DoContentClick (I* WindowPtr window, EventRecord *event *I) ;
void DoKeyDown(/* EventRecord *event */);
long GetSleep (I ;
void Do Idle (l ;
void DrawWindow(/* WindowPtr window */ l;
void AdjustMenus (I ;
void DoMenuCommand (/* long menuResult *I l;
void DoNew (l ;
void DoCloseWindow (I* WindowPt r window *I) ;
void DoCloseBehind(/* WindowPtr window */ l;
void Terminate (l ;
void Initialize();
Boolean IsAppWindow (/* WindowPtr window *I l ;
Boolean IsDAWindow(/* WindowPtr window */);
Boolean TrapAvailable (/* short tNumber, TrapType tType */ l;

/* Define HiWrd and LoWrd macros for efficiency. *I

tdefine HiWrd (aLongl (((aLong) >> 16) & OxFFFF)
tdefine LoWrd (aLong) ((aLong) & OxFFFFI

/* Define TopLeft and BotRight macros for convenience. Notice the implicit */
/* dependency on the ordering of fields within a Rect. */

tdefine TopLeft (aRect)
tdefine BotRight (aRect)

extern void _Dataini t Cl ;

(* (Point *l
(* (Point *l

& (aRect) .top)
&(aRect) .bottom)

/* This routine is automatically generated by the MPW Linker. This external *I
/* reference to it is made so that its segment, tASinit, can be unloaded. *I

52 Appendix A: A C Example of a MulflFlnder-Aware Applicaflon

(

idefine _SEG_ Main
main()
{

UnloadSeg ((Ptr) _Datainit);
MaxApplZone();

Initialize ();

/*
I*
/*

/*

NOTE: _Datainit must not be in Main
expand the heap so code segments

load at the top

initialize the program
UnloadSeg ((Ptr) Initialize); /* NOTE: Initialize must not be in Main

Event Loop (); /* call the main event loop

I* Get events forever, and handle them by calling DoEvent. Also call */
/* Adjustcursor each time through the loop. */

idefine _SEG_ Main

void Event Loop ()
(

RgnHandle cursorRgn;
Boolean ignoreResult;
Event Record event;

cursorRgn - NewRgn ();
do {

if (gHasWaitNextEvent
ignoreResult - WaitNextEvent (everyEvent, &event,

GetSleep(), cursorRgn);
else {

SystemTask();
ignoreResult - GetNextEvent (everyEvent, &event);

AdjustCursor(event.where, cursorRgn);
DoEvent(&event);

while (true) ; I* loop forever *I
/*EventLoop*/

*I
*/
*/

*I
*/

*/

/* Do the right thing for an event. Determine what kind of event it is, and call* I
I* the appropriate routines. */

fdefine SEG Main
void DoEvent (event)

EventRecord *event;

short part;
WindowPtr window;
char key;

switch event->what

A C Example of a MultlRnder-Aware Application 53

case nullEvent:
Doidle ();
break;

case mouseDown :
part • FINDWINDOW (event->where, &window) ;
.switch (part l (

case inMenuBar:
AdjustMenus ();
DoMenuCommand(MENUSELECT(event->where));
break;

case inSysWindow:
SystemClick (event, window) ;
break;

case inContent:
if (window ! • FrontWindow ()) (

else

SelectWindow(window);
/*DoEvent(event);*/ I* use this line for

/* "do first click"

DoContentClick(window, event);
break;

case inDraq:
DRAGWINDOW(window, event->where,

&qd.screenBits.bounds);
break;

case inGoAway:
if (TRACKGOAWAY(window, event->where)

DoCloseWindow(window);

break;
case keyDown:
case autoKey:

break;

key • event->messaqe & charCodeMask;
if ((event->modifiers & cmdKey) ! • O

I* Command key down */
if (event->what •• keyDown) (

AdjustMenus(); /* enable/disable/check */
/* menu items properly */

DoMenuCommand(MenuKey(key));

} else
DoKeyDown(event);

break;
case activateEvt:

window • (WindowPtr) event->messaqe;
if ((event->modifiers & activeFlag) !• O)

DoActivate(window);
else

DoDeactivate(window);
break;

case updateEvt:
DoUpdate((WindowPtr) event->message);
break;

54 Appendix A: A C Example of a MultlAnder-Aware Application

*I
*/

(

case osEvent:
switch (event->message >> 24)

case mouseMovedMes sage:
I* high byte of message *I

Doidle(); /* mouse moved is also an *I
I* idle event *I

break;
case suspendResumeMessage:

window - Front Window() ;
if (event->message & resumeMask

ginBackground = false;
DoActivate(window); /* Have to treat

/* suspend/resume
/* as deactivate/

*I
*I
*/

/* activate as well.*/

break;

/*DoEvent*/

else {

break;

ginBackground - true;
DoDeactivate(window);

/* Change the cursor• s shape, depending on its position. This also calculates *I
I* a region that includes the cursor for WaitNextEvent. *I

tdefine SEG Main
void Adjustc,J;"sor (mouse, region)

Point mouse;
RgnHandle region;

WindowPtr frontmost;
RgnHandle arrowRgn;
RgnHandle iBeamRgn;
Re ct iBeamRect;

frontmost = Front Window() ; /* only adjust the cursor when *I
/* you are in front *I

if (! ginBackground) " (! IsDAWindow (frontmost))) {
I* calculate regions for different cursor shapes */

arrowRgn = NewRgn () ;
iBeamRgn = NewRgn () ;

/* start arrowRgn wide open */
SetRectRqn(arrowRqn, -32768, -32768, 32767, 32767);

/* calculate iBeamRgn *I
if (IsAppWindow{frontmost)

iBeamRect = (* ({DocumentPeek)
SetPort(frontmost);

frontmost)->te)->viewRect;
/* make a global version of the
/* viewRect

*/
*/

A C Example of a MultlAnder-Aware Application 55

LocalToGlobal(&TopLeft(iBeamRect));
LocalToGlobal(&BotRight(iBeamRect));
RectRgn (iBeamRgn, &iBeamRect);

I* subtract other regions from arrowRgn *I
DiffRgn (arrowRqn, iBeamRqn, arrowRqn);

I* change the cursor and the region parameter */
if (PTINRGN (mouse, iBeamRgn)) {

SetCursor(*GetCursor(iBeamCursor));
CopyRgn(iBeamRgn, region);

else {
SetCursor(&qd.arrow);
CopyRgn(arrowRgn, region);

/* qet rid of local regions */
DisposeRqn(arrowRgn);
DisposeRgn(iBeamRgn);

/*AdjustCursor*/

/* This is called when an update event is received for a window. It calls */
/* DrawWindow to draw the contents of an application window. */

#define SEG Main
void DoUpdatelwindow)

WindowPtr window;

if (IsAppWindow(window)
BeqinOpdate(window);
if (! EmptyRqn (window->visRgn)

DrawWindow(window);
EndUpdate(window);

/*DoOpdate*/

/* this sets up the visRqn
/* draw if updating is needed

/* This is called when a window is deactivated. */

#define _SEG_ Main
void DoDeactivate (window)

WindowPtr window;

if (IsAppWindow(window))
TEDeactivate (((DocumentPeek) window) ->te);

/*DoDeactivate*/

/* This is called when a window is activated. */

tdefine _SEG_ Main

56 Appendix A: A C Example of a Mulflflnder-Aware Appllcaflon

*I
*/

(
void DoActivate (window)

WindowPtr window;

if (IsAppWindow(window)
TEActivate(((DocumentPeek) window)->te);

/*DoActivate*/

I* This is called when a mouseDown occurs in the content of a window. */

tdefine SEG Main
void DoContentClick (window, event I

WindowPtr window;
Event Record

Point
Boolean

*event;

mouse;
shiftDown;

if (IsAppWindow(window)
SetPort (window);
mouse - event->where;
GlobalToLocal(,mouse);

I* extend if Shift is down *I

/* qet the click position
/* convert to local coordinates

shiftDown = (event->modifiers ' shiftI<ey) ! .. O;
TECLICK (mouse, shiftDown, ((DocumentPeek) window) ->tel ;

/*DoContentClick*/

/* This is called for any keyDown or autoI<ey events, except when the Command
I* key is held down. It looks at the frontmost window to decide what to do
I* with the key pressed.

tdefine SEG.:._ Main
void DoKeyDown (event)

EventRecord *event;

WindowPtr
char

frontmost;
key; ,

frontmost • FrontWindow();
if (IsAppWindow(frontmostl

key .. event->messaqe ' charCodeMask;
TEKey(key, ((DocumentPeek) frontmost)->te);

/*DoI<eyDown*/

*I
*I

*I
*I
*I

/* Calculate a sleep value for WaitNextEvent. This takes into account the thinqs*/
I* that Doidle does with idle time. */

tdefine SEG Main
lonq Get Sleep (I

A C Example of a MultlRnder-Aware Appllcatlon 57

lonq sleep;
WindowPtr trontmost;
TEHandle te;

sleep • MAXLONG;
if (! qinBackqround) {

frontmost • Front Window () ;
if (IsAppWindow(frontmost)

te • ((DocumentPeek)

I* default value for sleep */
I* if you are in front and the. • *I
I* front window is yours. • • *I

(frontmost))->te;

if ((*te) ->selStart •= (*te)->selEnd
sleep • GetcaretTime ();

return sleep;
/*GetSleep*/

I*
I*
I*
I*

I*
I*
I*

and the *I
selection is */
an insertion •r
point */

you need to make *I
the insertion */
point blink *I

I* This is called whenever you qet a null event or a mouse-moved event. It *I
I* takes care of necessary periodic actions. For this proqram, it calls TEidle. */

tdefine _SEG_ Main
_void Doldle ()
{

WindowPtr frontmost;

frontmost - Front Window () ;
if (IsAppWindow (frontmost)

TEidle(((OocumentPeek) trontmost)->te);
/.*Doldle*/

/* Draw the contents of an application window. *I

tdefine _SEG_ Main
void DrawWindow (window)

WindowPtr window;

SetPort(window);
TEUpdate(&window->portRect, ((DocumentPeek) window)->te);

/*DrawWindow*/

I* Enable and disable menus based on the current state. This is called just */
/* before MenuSelect or MenuKey, so it can set up everything for the Menu •i
I* Manaqer. Since these are the times that the user can see the menus or choose*/
/* a menu item, you only need to enable/disable items then. */

ldef ine SEG Main
void AdjustMenus o

58 Appendix A: A C Example of a MulttFlnder-Aware Appllcatton

/
I

(

WindowPtr
Menu Handle
Boolean
Boolean
Boolean
TEHandle

frontmost;
menu;
undo;
cutCopyClear;
paste;
te;

frontmost = Front Window () ;

menu - GetMHandle (mFile);
if (9NumDocuments < maxOpenDocuments

Enableitem(menu, iNew);

else
Disableitem(menu, iNew);

if (frontmost !- nil)

Enableitem(menu, iClose);
else

Disableitem(menu, iClose);

menu = GetMHandle (mEdit);
undo • false;
cutCopyClear = false;
paste .. false;

if (IsDAWindow(frontmost)
undo - true;

cutCopyClear = true;
paste • true;

else if (IsAppWindow(frontmost)

/* New is enabled when you can
I* open more documents

I* Close is enabled when there
/* is a window to close

I* all editin9 is enabled for
I* DA windows

te ((DocumentPeek) frontmost)->te;
if (*te) ->selStart < (*te) ->selEnd

cutCopyClear • true;

I* Cut, Copy, and Clear are enabled for application windows */
I* with selections */

paste - true;/* Paste is enabled for application windows */
}

if undo)
Enableitem(menu,

else
Disableitem(menu,

if (cutCopyClear)
Enableitem(menu,
Enableltem(menu,
Enableitem(menu,

else {
Disableitem(menu,
Disableitem(menu,
Disableitem(menu,

iOndo);

iOndo);
{

iCut);
iCopy);
!Clear);

iCut);
iCopy);
iClear);

*I
*/

*I
*/

*/
*/

A C Example of a MJltlAnder-Aware Appllcatlon 59

if paste)
Enable!tem(menu, iPaste);

else
Disable!tem(menu, iPaste);

/*AdjustMenus*/

I* This is called when an item is chosen from the menu bar (after calling *I
I* MenuSelect or Menu Key) • It does the right thing for each command. * /

fdefine _SEG_ Main
void DoMenuCommand(menuResultl

long menuResult;

short
short
short
Str255
short
OSErr
OS Err
TE Handle

menu ID;
menu Item;
itemHit;
daName;
daRefNum;
error;
ignoreResult;
te;

menu ID - Hi Word (menuResult);
menuitem - LoWord (menuResult);
switch (menuID) {

/*use macros for efficiency to get •• *I
/* menu item number and menu number *I

case mApple:
switch menu Item

case iAbout: /* bring up alert box for About */

itemHit - Alert (rAboutAlert, nil);
break;

default: /* all non-About items in this menu */
/* are DAs */

break;
case mFile:

GETITEM(GetMHandle (mApple), menuitem, &daName);
daRefNum = OPENDESKACC (&daName);
break;

switch (menuitem)
case iNew:

break;
case mEdit:

DoNew();
break;

case iClose:
DoCloseWindow(FrontWindow());
break;

case iQuit:
Terminate () ;

break;

/* call SystemEdit for DA editing and MultiFinder

60 Appendix A: AC Example of a MultlFlnder·Aware Application

*/

(

,~

if (! SystemEdit(menuitem-ll
te - ((DocumentPeek) Front Window ()) ->te;
switch (menu!tem) {

case iCut:
TECut (te); /* after cutting,

I* the TE scrap
error - ZeroScrap ();
if (error == noErr)

ignoreResult - TEToScrap();
break;

case iCopy:
TECopy(te); /* after copying,

I* the TE scrap
error - ZeroScrap();
if (error -= noErr)

ignoreResult - TEToScrap();
break;

case iPaste: /* import the TE

export

export

scrap
I* before pasting

break;

error • TEFromScrap ();
if (error == noErr)

TEPaste(te);
break;

case iClear:
TEDelete(te);
break;

*/
*I

*/
*/

*I
*/

HiliteMenu(O);
/*DoMenuCommand*/

I* unhighlight what MenuSelect or MenuKey highlighted *I

/* Create a new document and window. */

#define _SEG_ Main
void DoNew ()
{

Boolean good;
Ptr storage;
WindowPtr window;

storage • NewPtr (sizeof (DocumentRecord));
if (storage !- nil) {

window • GetNewWindow(rDocWindow, storage, (WindowPtr) -1);
if (window !• nil) (

gNumDocuments +• l;

good • false;
SetPort(window);

/* this will be decremented when * l
/* you call DoCloseWindow *I

((DocumentPeek) window)->te • TENew(&window->portRect,
&window->portRect);

A C Example of a MultlAnder-Aware Appllcatlon 61

if ((CDocumentPeek) window)->te !• nil)
qood m true; /* if TENew succeeded, the

I* document is qood
if C qood)

ShowWindow(window); I* if the document is qood,
I* the window visible

else
DoCloseWindow(window);

else
DisposPtr(storaqe);

/*DoNew*/

tdefine SEG Main
void OoCloseWindow (window)

WindowPtr window;

I* otherwise
I* created

I* qet rid of
I* is never

reqret you ever
it

the storaqe if
used

I* Close a window. This handles desk accessory and application windows. *I

TEHandle te;
if (IsDAWindow (window)

CloseOeskAcc(((WindowPeek) window)->windowKind);
else if (IsAppWindow(window)) {

te = ((OocumentPeek) window) ->te;

make

it

if (te ! • nil)
TEDispose(te);

OisposeWindow(window);
qNumOocuments -- l;

I* dispose the TEHandle

/*DoCloseWindow*/

*I
*I

*I
*I

*I
*I

*I
*I

*I

I* Close the window that is passed and all windows behind it. This is used to */
I* close all the windows when the proqram quits, so it is in the Terminate *I
I* segment. Note that it closes windows from back to front, by calling itself */
I* recursively, which minimizes window updating. */

tdefine _SEG_ Terminate
void OoCloseBehind (window)

WindowPtr window;

if (window !• nil) {

DoCloseBehind((WindowPtr)
DoCloseWindow(window);

/*DoCloseBehind*/

I* if you are passed a window, close
I* other windows behind it first

(((WindowPeek) window)->nextWindow));
/* now that all the windows behind are
I* closed, close this one

62 Appendix A: A C Example of a Multlflnder-Aware Application

*I
*I

*I
*I

(
/* Clean up the application and exit. Close all of the windows so they can *I
/* update their documents. */

tdefine _SEG_ Terminate
void Terminate ()
{

DoCloseBehind(FrontWindow());
Exit To Shell () ;
/*Terminate*/

/* close all windows *I

/* Set up the whole world, including global variables, Toolbox managers, menus, */
/* and a single blank document. * /

fdefine _SEG_ Initialize
void Initialize()
{

OSErr ignoreError;

I* Ignore the error returned from SysEnvirons; even if an error occured, the */
I* SysEnvirons glue will fill in the SysEnvRec. */

ignoreError = SysEnvirons (sysEnvironsVersion, &gMac);
if (gMac. machine Type < 0 l /* old machines have. • • *I

gHasWaitNextEvent = false; /* no separate trap table; no *I
I* WaitNextEvent *I

else
gHasWaitNextEvent = TrapAvailable(_WaitNextEvent, ToolTrap);

ginBackground = false;

InitGraf ((Ptr) &qd. thePort);
InitFonts ();
InitWindows();
InitMenus ();
TEinit () ;
InitDialogs(nill;
Initcursor ();

SetMenuBar(GetNewMBar(rMenuBar));
AddResMenu(GetMHandle(mApple), 'DRVR');
DrawMenuBar();

gNumDocuments = O;

/* do other initialization here */

DoNew();
/*Initialize*/

/* read menus into menu bar
/* add DA names to Apple menu

*/

*I

I* create a single empty document *I

/* Check if a window belongs to the application. */

tdefine _SEG_ Main
Boolean IsAppWindow (window)

A C Example of a MultlRnder-Aware Application 63

WindowPtr window;

if (window -- nil
return false;

else /* application windows have non-neqative windowKinds */
return ((WindowPeek) window)->windowKind >• O;

/*IsAppWindow*/

/* Check if a window belonqs to a desk accessory. *I

tdefine _SEG_ Main
Boolean IsDAWindow (window)

WindowPtr window;

if (window •• nil
return false;

else /* DA windows have neqative windowKinds */
return ((WindowPeek) window)->windowKind < O;

/*IsDAWindow*/

/* Check to see if a qiven trap is implemented. This code is· only used by the */
/* Initialize routine in this proqram, so it is in the Initialize seqment. */

tdefine _SEG_ Initialize
.Boolean TrapAvailable (tNumber, tType)

short tNumber;
TrapType tType;

/* Check and see if the trap exists. On 64K ROM machines, tType will be iqnored. */

return NGetTrapAddress (tNumber, tType) !• GetTrapAddress (_Unimplemented);
./* TrapAvailable */

64 Appendix A: A C Example of a MultlFfnder-Aware Appllcatlon

Appendix B

A Pascal Example of a
MultiFinder-Aware Application

The following Pascal program is an example of a MultiFinder-aware application.

{---}
{ }

{ MultiFinder-Aware Sample Application }
{ }

{ Copyright C 1988 Apple Computer, Inc. l
{ All rights reserved. }
{ }

{ This sample application was written by Macintosh Developer Technical }
{ Support. It displays a single, fixed-size window in which the user can }
{ enter and edit text. }
{ }

{---}

PROGRAM Sample;

{Segmentation strategy:

This program consists of three segments. Main contains most of the code,
including the MPW libraries, and the main program. Initialize contains
code that is only used once, during startup, and can be unloaded after the
program starts. tASinit is automatically created by the Linker to initialize
globals for the MPW libraries and is unloaded right away.}

{SetPort strategy:

Toolbox routines do not change the current port. However, this program uses a
strategy of calling SetPort whenever you want to draw or make calls· that

65

depend on the current port. This makes you less vulnerable to bugs in other
software that might alter the current port (such as the bug (feature?) in many
desk accessories that change the port on OpenDeskAcc) • This strategy also makes
the routines from this program more self-contained, since they don't depend on
the current port setting.)

{Clipboard strategy:

This program does not maintain a private scrap. Whenever a cut, copy, or paste
occurs, you import/export from the public scrap to TextEdit • s scrap right away,
using the TEToScrap and TEFromScrap routines. If you did use a private scrap,
the import/export would be in the activate/deactivate event and suspend/resume
event routines.) ·

USES

CONST

MemTypes, QuickDraw, OSintf, Toolintf;

{MPW 3.0 will include a Traps.p interface file that includes constants for
trap numbers. These constants are from that file.)

_WaitNextEvent
_Unimplemented

• $A860;
• $A89F;

{MaxOpenDoeuments is used to determine whether a new document can be opened
or created. You keep track of the number of open documents, and disable the
menu items that create a new document when the maximum is reached. If the
number of documents falls below the maximum, the items are enabled again.)

maxOpenDocuments - l;

{SysEnvironsVersion is passed to SysEnvirons to tell it which version of the
SysEnvRec is understood.)

sysEnvironsVersion l;

{OSEvent is the event number of the suspend/resume and mouse-moved events sent
by MultiFinder. Once you determine that an event is an osEvent, look at the
high byte of the message sent with the event to determine which kind of
osEvent it is. To differentiate suspend and resume events, check the
resumeMask bit •)

osEvent app4Evt;
suspendResumeMessaqe• l;
resumeMask l;
mouseMovedMessaqe $FA;

{event used by MultiFinder)
{hiqh byte of suspend/resume event message}
{bit of message field for resu- vs.suspend}
{high byte of mouse-moved event messaqe)

{The following constants are all resource IDs. They correspond to resources
in Sample. r. see Appendix C.)

rMenuBar
rAboutAlert

128;
- 128;

{application• s menu bar)
(about alert)

66 Appendix B: A Pascal Example of a MultlRnder-Aware Appllcatlon

(

TYPE

VAR

rDocWindow - 128; (application's window}

(The followinq constants are used to identify menus and their items. The menu
constants are menu IDs, and the individual item constants are item numbers
within the menus.}

mApple -128; (Apple menu}
iAbout -1;

mFile 129; (File menu}
iNew .. 1;
iClose - 4;
iQuit 12;

mEdit -130; (Edit menu}
iUndo 1;
iCut = 3;
iCopy - 4;
iPaste - 5;
iClear -6;

(A DocumentRecord contains the WindowRecord for one of the document windows,
as well as the TEHandle for the text beinq edited. Other document fields
can be added to this record as needed. For a similar example, see how the
Window Manaqer and Dialoq Manaqer add fields after the qrafPort. }

DocumentRecord = RECORD
window
te

WindowRecord;
TEHandle;

END;

DocumentPeek .. "DocumentRecord;

(GMac is used to hold the result of a SysEnvirons call. This makes
it convenient for any routine to check the environment. }

gMac SysEnvRec; (set up by Initialize}

(GHasWaitNextEvent is set at startup, and tells whether the WaitNextEvent
trap is available. If it is false, GetNextEvent must be called. }

qHasWaitNextEvent : BOOLEAN; (set up by Initialize}

(GinBackqround is maintained by the osEvent handlinq routines. Any part of
the_ proqram can check it to find out if it is currently in the backqround:}

ginBackground : BOOLEAN; (maintained by Initialize and DoEvent)

(GNumDocuments is used to keep track of how many open documents there are
at any time. It is maintained by the routines that open and close documents.)

A Pascal Example of a MultlRnder-Aware Application 67

gNumDocuments

($S Initialize}

INTEGER; {maintained by Initialize, DoNew, and
DoCloseWindow}

FUNCTION TrapAvailable(tNumber: INTEGER; tType: TrapType): BOOLEAN;

{Check to see if a given trap is implemented. This is only used by the
Initialize routine in this program, it is in the Initialize segment.}

BEGIN
{Check and see if the trap exists. On 64K ROM machines, tType will be ignored.}

TrapAvailable := NGetTrapAddress(tNumber, tType} <>
GetTrapAddress(_Unimplemented);

END; {TrapAvailable}

{ $S Main}
FUNCTION IsDAWindow(window: WindowPtr): BOOLEAN;

(Check if a window belongs to a desk accessory.}

BEGIN
IF window = NIL THEN

IsDAWindow := FALSE
ELSE {DA windows have negative windowKinds}

IsDAWindow := WindowPeek (window) A. windowKind < O;
END; {IsDAWindow}

{ $S Main}
FUNCTION IsAppWindow(window: WindowPtr): BOOLEAN;

(Check if a window belongs to the application.}

BEGIN
IF window = NIL THEN

IsAppWindow :• FALSE
ELSE {application windows have non-negative windowKinds}

I sAppWindow : • WindowPeek (window) A. windowKind >= O;
END; {IsAppWindow}

{ $S Main}
PROCEDURE DoCloseWindow(window: WindowPtr);

{Close a window. This handles desk accessory and application windows.}

BEGIN
IF IsDAWindow(window) THEN

CloseDeskAcc(WindowPeek(window)A.windowKind)
ELSE IF IsAppWindow(window) THEN BEGIN

68 Appendix B: A Pascal Example of a MultlFinder-Aware Application

(

(

WITH Document Peek (window) A DO
IF te <> NIL THEN

TEDispose(te);
DisposeWindow(window);

{dispose the TEHandle}

gNumDocuments := gNumDocuments - 1;
END;

END; {DoCloseWindow)

{ $S Main}
PROCEDURE Do New;

{Create a new document and window.}

VAR

BEGIN

good
storage
window

BOOLEAN;
Ptr;
WindowPtr;

storage : = NewPtr (SIZEOF (Document Record));
IF storage <> NIL THEN BEGIN

window := GetNewWindow {rDocWindow, storage, WindowPtr {-1) l;
IF window <> NIL THEN BEGIN

END;
END; {DoNew}

gNumDocuments :• gNumDocuments + 1; { this will be decremented
when you call DoCloseWindow

good := FALSE;
SetPort(window);

WITH windowA, DocumentPeek (window) A DO BEGIN
te := TENew(portRect, portRect);
IF te <> NIL THEN

good := TRUE;

END;
IF good THEN

ShowWindow(window)

ELSE
DoCloseWindow(window);

END ELSE
DisposPtr(storage);

{if TENew succeeded, the
document is good }

{if the document is good, make
the window visible }

{otherwise regret you ever
created it}

{get rid of the storage if it
is never used}

{$S Initialize}
PROCEDURE Initialize;

{Set up the whole world, including global variables, Toolbox managers, menus, and a
single blank document.}

A Pascal Example of a Mul11Flnder-Aware Appllca11on 69

VAR

BEGIN

ignoreError OSErr;

{Ignore the error returned from SysEnvirons; even if an error occurred,
the SysEnvirons glue will fill in the SysEnvRec.}

ignoreError :• SysEnvirons (sysEnvironsVersion, qMac);
IF gMac.machineType < 0 THEN (old machines have ••• }

gHasWaitNextEvent :• FALSE (no separate trap table; no
WaitNextEvent}

ELSE
gHasWaitNextEvent :• TrapAvailable (_WaitNextEvent, Tool Trap);

ginBackground :• FALSE;

InitGraf(@thePort);
InitFonts;
InitWindows;
InitMenus;
TEinit;
InitDialogs(NIL);
InitCursor;

SetMenuBar(GetNewMBar(rMenuBar)); (read menus into menu bar}
AddResMenu(GetMHandle(mApple), 'DRVR'); (add DA names to Apple menu}
DrawMenuBar;

gNumDocuments := 0;

(do other initialization here}

DoNew; {create a single empty document l
END; {Initialize}

{ $5 Terminate}
PROCEDURE DoCloseBehind(window: WindowPtr);

(Close the window that is passed and all windows behind it. This is used to close
all the windows when the program quits, so it is in the Terminate segment. Note
that it closes windows from back to front, by calling itself recursively, which
minimizes window updatinq.}

BEGIN
IF window <> NIL THEN BEGIN {if you are passed a window, close other

END;

windows behind it first}
DoCloseBehind(WindowPtr(WindowPeek(window)".nextWindow))_;
DoCloseWindow (window); {now that all the windows behind are closed,

close this one}

END; {DoCloseBehind}

{ $S Terminate}

70 Appendix 8: A Pascal Example of o MulflRnder-Aware Application

PROCEDURE Terminate;

{Clean up the application and exit. Close all the windows so they can update their
documents.}

BEGIN
DoCloseBehind(FrontWindow);
ExitToShell;

{close all windows}

END; {Terminate}

{$S Main}
PROCEDURE AdjustMenus;

{Enable and disable menus based on the current state. This is called just
before MenuSelect or MenuKey, so it can set up everything for the Menu Manager.
Since these are the times that the user can see the menus or choose a menu item,
you only need to enable/disable items then.}

VAR

BEGIN

frontmost WindowPtr;
menu MenuHandle;
undo BOOLEAN;
cutCopyClear BOOLEAN;
paste BOOLEAN;

frontmost ·- FrontWindow;
menu ·- GetMHandle(mFile);

IF gNumDocuments < maxOpenDocuments THEN
Enable Item (menu, iNew); { New is enabled when you can open more }

{ documents }
ELSE

Disableitem(menu, iNew);
IF frontmost <> NIL THEN

Enableitem(menu, iClose)
ELSE

Disableitem(menu, iClose);

Close is enabled when there is a
window to close }

menu
undo
cutCopyClear
paste

:• GetMHandle(mEditl;
:• FALSE;
:= FALSE;
:= FALSE;

IF IsDAWindow (frontmost) THEN BEGIN
undo :• TRUE; {all editing is enabled for DA windows
cutCopyClear :- TRUE;
paste : = TRUE;

END ELSE IF IsAppWindow(frontmost) THEN BEGIN
WITH Document Peek (frontmost I". te"'" DO

IF selStart < selEnd THEN
cutCopyClear : • TRUE;

A Pascal Example of a MultlFlnder-Aware Application 71

Cut, Copy, and Clear are enabled for application
windows with selections}

paste := TRUE;
END;
IF undo THEN

Enableitem(menu, iUndo)
ELSE

Disableitem(menu, iUndo};
IF cutCopyClear THEN BEGIN

Enableitem(menu, iCut);
Enableitem(menu, iCopy);
Enableitem(menu, iClear);

END ELSE BEGIN

END;

Disableitem(menu,
Disableitem(menu,
Disableitem(menu,

IF paste THEN
Enableitem(menu,

ELSE

iCut) ;
iCopy);
iClear);

iPaste)

{Paste is enabled for application windows}

Disableitem(menu, iPaste);
END; {AdjustMenus}

I $S Main}
PROCEDURE DoMenuCommand (menuResult: LONGINT);

{This is called when an item is chosen from the menu bar (after calling
MenuSelect or MenuKey) • It does the right thing for each command.}

VAR

BEGIN

menu ID INTEGER;
menu Item INTEGER;
itemHit INTEGER;
daName Str255;
daRefNum INTEGER;
error OSErr;
ignoreResult OSErr;
te TEHandle;

menu ID : - HiWrd (menuResult l;
menuitem := LoWrd(menuResult);
CASE menu ID OF

{use built-ins (for efficiency) ••• }
{to get menu item number and menu number}

mApple:
CASE menuitem OF

iAbout: {bring up alert box for About}
itemHit :• Alert (rAboutAlert, NIL);
OTHERWISE BEGIN {all non-About items in this

menu are DAs}
Getitem(GetMHandle (mApple), menu Item, daName);
daRefNum := OpenDeskAcc(daName};

72 Appendix B: A Pascal Example of a MultlAnder-Aware Application

END;
END;

mFile:
CASE menuitem OF

iNew:

END;

DoNew;
iClose:
DoCloseWindow(FrontWindow);
iQuit:
Terminate;

mEdit: {call SystemEdit for DA editing and MultiFinder}
IF NOT SystemEdit (menuitem-1) THEN BEGIN

pasting)

END;
END;
HiliteMenu(O);

END; {DoMenuCommand)

{$S Main}

te := DocumentPeek(FrontWindow) A.te;
CASE menuitem OF

END;

iCut: BEGIN

END;

TECut (te); {after cutting, export the TE
scrap}

error : - ZeroScrap;
IF error - noErr THEN

ignoreResult : = TEToScrap;

iCopy: BEGIN
TECopy(te); (after copying, export the TE

END;

scrap}
error :- ZeroScrap;
IF error • noErr THEN
ignoreResult : = TEToScrap;

iPaste: BEGIN {import the TE scrap before

END;
iClear:

error : = TEFromScrap;
IF error = noErr THEN

TEPaste(te);

TEDelete(te);

(unhighlight what Menu Select or MenuKey highlighted}

PROCEDURE DrawWindow (window: WindowPtr);

{Draw the contents of an application window.}

BEGIN
SetPort(window);
TEUpdate(windowA.portRect, DocumentPeek(window)A.te);

END; {DrawWindow}

A Pascal Example of a MulttFlnder-Aware Appllcatton 73

{ $5 Main}
FUNCTION Get5leep: LONGINT;

{Calculate a sleep value for WaitNextEvent. This takes into account the thinqs
that Doidle does with idle time.}

VAR

BEGIN

sleep
frontmost

LONG INT;
WindowPtr;

sleep :- MAXLONGINT;
IF NOT qinBackqround THEN BEGIN

frontmost :- FrontWindow;

{default value for sleep}
{if you are in front ••• }
{and the front window is yours ••• }

IF IsAppWindow(frontmost) THEN BEGIN

END;
END;

WITH Document Peek (frontmost) ". te"" DO
IF sel5tart - selEnd THEN {and

{

sleep :• GetCaretTime;

Get5leep •• sleep;
END; {Get5leep}

{$5 Main}
PROCEDURE Doidle;

the selection is
an insertion point •••

{you need to make the
insertion point blink}

{This is called whenever you qet a null event or a mouse-moved event. It takes care
of necessary periodic actions. For this program, it calls TEidle.}

VAR
frontmost WindowPtr;

BEGIN
frontmost := FrontNindow;
IF IsAppWindow (frontmost) THEN

TEidle(DocumentPeek(frontmost)".te);
END; (Doidle}

{ $5 Main}
PROCEDURE DoKeyDown (event: EventRecord);

{This is called for any keyDown or autoKey events, except when the Command key is
held down. It looks at the frontmost window to decide what to do with the key
pressed.}

VAR
frontmost
key

WindowPtr;
CHAR;

74 Appendix B: A Pascal Example of a MultlRnder·Aware Application

BEGIN
frontmost := FrontWindow;
IF IsAppWindow(frontmost) THEN BEGIN

END;

key :• CHR(BAnd(event.messaqe, charCodeMask));
TEKey(key, DocumentPeek(frontmost)A.te);

END; {DoKeyDown}

{$S Main}
PROCEDURE DoContentClick (window: WindowPtr i event: EventRecord);

{This is called when a mouseDown occurs in the content of a window.}

VAR

BEGIN

mouse
shiftDown

Point;
BOOLEAN;

IF IsAppWindow(window) THEN BEGIN
SetPort(window);
mouse:= event.where; {qet the click position}
GlobalToLocal (mouse); {convert to local coordinates}
shiftDown :• BAnd(event.modifiers, shiftKey) <> O;
{extend if Shift is down}

TEClick(mouse, shiftDown, DocumentPeek(window)~.te);

END;
END; {DoContentClick}

{$5 Main}
PROCEDURE DoActivate {window: WindowPtrl;

{This is called when a window is activated.}

BEGIN
IF IsAppWindow(window) THEN

TEActivate(DocumentPeek(window)~.te);

END; {DoActivate}

{$5 Main}
PROCEDURE DoDeactivate (window: WindowPtr);

{This is called when a window is deactivated.}

BEGIN
IF IsAppWindow(window) THEN

TEDeactivate(DocumentPeek(window)A.te);
END; {DoDeactivate}

A Pascal Example of a MultlFlnder-Aware Appllcatlon 75

($5 Main}
PROCEDURE DoUpdate (window: WindowPtr);

(This is called when an update event is received for a window. It. calls DrawWindow
to draw the contents of an application window.}

BEGIN
IF IsAppWindow(window) THEN BEGIN

BeginUpdate(window);

END;

IF NOT EmptyRgn(window".visRgn) THEN

Drawwindow(window);
EndUpdate(window);

{this sets up the visRgn}
{draw if updating needs to be

done}

END; {DoUpdate}

{$5 Main}
PROCEDURE AdjustCursor (mouse: Point; region: RgnHandle);

{Change the cursor• s shape, depending on its position. This also calculates a region
.. that includes the cursor for Wait Next Event. }

VAR

BEGIN

frontmost
arrowRgn
iBeamRgn
iBeamRect

WindowPtr;
RgnHandle;
RgnHandle;
Rect;

frontmost : • FrontWindow; { only adjust the cursor when you are in front}

IF (NOT ginBackground) AND (NOT IsDAWindow(frontmost)} THEN BEGIN
{calculate regions for different cursor shapes}
arrowRgn : = NewRgn;
iBeamRgn := NewRgn;

{start arrowRgn wide open}
5etRectRgn (arrowRgn, -32768, -32768, 32767, 32767);

{calculate iBeamRqn}
IF IsAppWindow(frontmost) THEN BEGIN

END;

iBeamRect : • DocumentPeek (frontmost l ". te"". viewRect;
5etPort(frontmostli {make a global version of the viewRect}

WITH iBeamRect DO BEGIN
LocalToGlobal(topLeft);
LocalToGlobal(botRight);

END;
RectRgn(iBeamRqn, iBeamRect);

{subtract other regions from arrowRgn}
DiffRgn (arrowRgn, iBeamRqn, arrowRgn);

76 Appendix B: A Pascal Example of a MuHIRnder-Aware Appllcation

(

END;

{change the cursor and the region parameter}
IF PtinRgn (mouse, iBeamRgn) THEN BEGIN

SetCursor(GetCursor(iBeamCursor)AA);
CopyRgn(iBeamRgn, region);

END ELSE BEGIN

END;

SetCursor(arrow);
CopyRgn(arrowRgn, region);

{get rid of local regions}
DisposeRgn(arrowRgn);
DisposeRgn(iBeamRgn);

END; {AdjustCursor}

{SS Main)
PROCEDURE DoEvent (event: EventRecordl ;

{Do the right thing for an event. Determine what kind of event it is, and call
the appropriate routines.}

VAR

BEGIN

part
window
key

INTEGER;
WindowPtr;
CHAR;

CASE event. what OF
nullEvent:

Do Idle;
mouseDown: BEGIN

part : = FindWindow (event. where, window);
CASE part OF

inMenuBar: BEGIN

END;

AdjustMenus;
DoMenuCommand{MenuSelect(event.where));

in Sys Window:
SystemClick (event, window);

inContent:

inDrag:

IF window <> FrontWindow THEN BEGIN
SelectWindow(window);

{DoEvent(event);}
{use this line for "do first click")

END ELSE
DoContentClick(window, event);

DragWindow(window, event.where, screenBits.bounds);
inGoAway:

IF TrackGoAway(window, event.where) THEN

A Pascal Example of a MultlFlnder-Aware Application 77

DoCloseWindow(window);
END;

END;
keyDown, autoKey: BEGIN

END;

key :- CHR(BAnd(event.message, charCodeMask));
IF BAnd(event.modifiers, cmdKey) <> 0 THEN BEGIN
{Command key down}

IF event. what - keyDown THEN BEGIN

END;

AdjustMenus; {enable/disable/check menu
items properly}

DoMenuCommand(MenuKey(key));

END ELSE
DoKeyDown(event);

activateEvt: BEGIN
window := WindowPtr(event.message);
IF BAnd(event .modifiers, activeFlag) <> O THEN

DoActivate(window)
ELSE

END;
updateEvt:

DoDeactivate(window);

DoUpdate(WindowPtr(event.message));
osEvent:

CASE BSR(event.message, 24) OF {high byte of message}

END;

mouseMovedMessage:
Doidle; {mouse moved is also an idle event}

suspendResumeMessage: BEGIN
window := FrontWindow;
IF BAnd (event .message, resumeMask) <> O THEN BEGIN

ginBackground := FALSE;
DoActivate(window);

END;

{ Have to treat suspend/resume
{ as deactivate/activate as well

END ELSE BEGIN

END;

ginBackground := TRUE;
DoDeactivate(window);

END;
END; {DoEvent}

{ $S Main}
PROCEDURE EventLoop;

{Get events forever, and handle them by calling DoEvent.
each time through the loop.}

VAR
cursorRgn RgnHandle;

Also call AdjustCursor

78 Appendix B: A Pascal Example of a MulttAnder-Aware Appllcatton

BEGIN

ignoreResult
event

BOOLEAN;
EventRecord;

cursorRgn := NewRgn;
REPEAT

IF gHasWaitNextEvent THEN
ignoreResult :• WaitNextEvent (everyEvent, event, GetSleep,

cursorRgn)
ELSE BEGIN

SystemTask;
ignoreResult :• GetNextEvent (everyEvent, event);

END;
AdjustCursor(event.where, cursorRgn);
DoEvent(event);

UNTIL FALSE; {loop forever}
END; {EventLoop}

PROCEDURE _Datainit; EXTERNAL;

{This routine is automatically generated by the MPW Linker. This external reference
to it is made so that its segment, 'ASinit, can be unloaded.}

{ $S Main}
BEGIN

END.

UnloadSeg(@_Datainit);
MaxApplZone;

Initialize;
UnloadSeg(@Initialize);

Event Loop;

{note that _Datainit must not be in Main! }
{expand the heap so code segments load at the top}

{initialize the program}
{note that Initialize must not be in Main!}

{call the main event loop}

A Pascal Example of a Mu111Flnder-Aware Appllcaflon 79

(

(~

(~

Appendix C

Resource Descriptions for the
Example Multifinder-Aware
Application

Here are the resource descriptions for the MPW Rez tool used in
Appendixes A and B.

/*--*/
I* */
/* Resources for the MultiFinder-Aware Sample Application *I
I* */
I* Copyright IG> 1988 Apple Computer, Inc. */
/* All rights reserved. */
/* */

/*--*/

if include "Types.r"

I* these ifdefines correspond to values in the Pascal and c source code

if define rMenuBar 128 /* application's
ifdefine rAboutAlert 128 /* about alert *I
ifdefine rDocWindow 128 /* application's

ifdefine mApple 128 /* Apple menu
#define mFile 129 I* File menu
tdefine mEdit 130 /* Edit menu

/* we use an MBAR resource to load all the menus conveniently *I

resource 'MBAR' (rMenuBar, preload)
mApple, mFile, mEdit }; /* three menus */

*/

menu bar */

window */

*/
*/
*I

81

} ;

resource 'MENU' (mApple, preload)
mApple, textMenuProc,
OblllllllllllllllllllllllllllllOl,

enabled, apple,
{

"About Sample-",

I* disable dashed line, enable About
and DAs */

noicon, nokey, nomark, plain;
"-",

noicon, nokey, nomark, plain

resource 'MENU' (mFile, preload)

} ;

mFile, textMenuProc,
ObOOOOOOOOOOOOOOOOOOOlOOOOOOOOOOO,

enabled, "File",
{

"New",

"Open",

"-" ,

noicon, "N", nomark, plain;

noicon, "0", nomark, plain;

/* enable Quit only, program enables
others */

noicon, nokey, nomark, plain;
"Close",

noicon, "W", nomark, plain;
"Save",

noicon, "S", nomark, plain;
"Save As ... ",

noicon, nokey, nomark, plain;
"Revert",

noicon, nokey, nomark, plain;
"-",

noicon, nokey, nomark, plain;
"Page Setup-",

noicon, nokey, nomark, plain;
"Print-",

"-" ,
noicon, nokey, nomarl<, plain;

noicon, nokey, nomarl<, plain;
"Quit",

noicon, •Q11 , nomarl<, plain

resource 'MENU' (mEdit, preload)
mEdit, textMenuProc,
ObOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO,

enabled, "Edit",
{

/* disable everythinq, program does
the enabling *I

82 Appendix C: Resource Descriptions for fhe Example MultlFlnder-Aware Appllcotlon

(

(

) ;

"Undo",

"-" ,

"Cut",

noicon, "Z", nomark, plain;

noicon, nokey, nomark, plain;

noicon, "X", nomark, plain;
"Copy",

noicon, "C", nomark, plain;
"Paste",

noicon, "V", nomark, plain;
"Clear",

noicon, nokey, nomark, plain

I* this ALRT and DITL are used as an About screen */
resource 'ALRT' (rAboutAlert) {

} ;

{40, 20, 160, 292}, rAboutAlert,

} ;

OK, visible,
OK, visible,
OK, visible,
OK, visible,

silent;
silent;
silent;
silent

resource 'DITL' (rAboutAlert)

};

{88, 180, 108, 260),
Button {

enabled, "OK"
} ;
(8, 8, 24, 214},
StaticText

disabled,
} ;
{32, 8, 48, 237},
StaticText

disabled,
} ;
(56, 8, 72, 136),
StaticText {

disabled,
} ;
(80, 24, 112, 167},
StaticText

disabled,

"MultiFinder-Aware Application"

"Copyright @ 1988 Apple Computer"

"Brought to you by:"

"Macintosh Developer Technical Support"

resource 'WIND' (rDocWindow)
{64, 60, 314, 460),
noGrowDocProc, invisible, goAway, OxO, "untitled"

} ;

Resource Descriptions for the Example MultlFlnder-Aware Appllcatlon 83

I* put the latest SIZE template here to rez with MPW 2. O * /

type 'SIZE'
boolean dontSaveScreen,

savescreen;
boolean iqnoreSuspendResumeEvents,

acceptSuspendResumeEvents;
boolean enableOptionSwitch,

disableOptionSwitch;
boolean cannotBackqround,

canBackqround;
boolean notMultiFinderAware,

multiFinderAware;
boolean notOnlyBackqround,

onlyBackqround;
boolean dontGetFrontClicks,

qetFrontClicks;
unsiqned bitstrinq[9] = O;
unsiqned longint; /* preferred memory size in bytes */
unsiqned lonqint; /* minimum memory size in bytes */

l; /* iqnore the warninq caused by redefininq SIZE */

/* here is the quintessential MultiFinder friendliness device, the SIZE resource */
resource 'SIZE' (-1) {

};

dontSaveScreen,
acceptSuspendResumeEvents,
enableOptionSwitch,
canBackqround,

multiFinderAware,

notOnlyBackqround,

dontGetFrontClicks,

60 * 1024,

40 * 1024

/* You can backqround, althouqh not
/* currently; your sleep value */
I* quarantees that you don •t hog the
/* Macintosh while you are in the
I* backqround.

/* This says that you do your own
/* activate/deactivate. MultiFinder
/* does not trick the application.

*I

*I
*/
*I

*/
*/
*I

/* This is definitely not a background- */
I* only application! *I

/* Chanqe this is if you wan:t "do first */
I* click" behavior as in the Finder. *I

/* This (preferred) size is biqqer than */
/* the minimum size so you can *I
/* have more text and scraps. *I

/* A heap dump was viewed while the
I* program was running; it was usinq
I* about 27K, so 13K was added for
I* stack, text, and scraps.

*I
*/
*I
*l

84 Appendix C: Resource Descriptions for 1he Example MultlFlnder-Aware Appllcatlon

(

Appendix D

The Notification Manager

The Notiflcatloo Manager, in System version 6.0 and later, provides the user with an
asynchronous •notification• service. It is especially useful for background
applications running under MultiFinder that need to communicate with the
user-since windows can easily be obscured by other applications. However, the
Notification Manager can be used by any application; it is not limited to th~
applications that take advantage of the new MultiFinder environment

Each application, desk accessory, or device driver can queue any number of
notifications. For this reason, you should try to avoid posting multiple notifications,
since each one will be presented separately to the user ("you have mail,• •you have
man; ...).
Information descnbing each notification request is contained in the Notification
Manager queue; you supply a pointer to a queue element describing the type of
notification you desire. The Notification Manager queue is a standard Macintosh
queue, as described in the Operating System Utilities chapter of Inside Macintosh,
Volumell.

The Notification Manager provides a one-way communication path from the
application to the user. There is no path from the user to the application. If you
require this secondary communication link, do not use the Notification Manager. If,
however, the Notification Manager provides what you want, but not exactly how you
would J.ike-6ay you wanted the application's "icon to exhibit some special effea-th.en
you should use the Notification Manager because in the future, such features may be
poSS1ble.

Each entry in the Notification Manager queue is a static and nonrelocatable record of
type N'.Mllec with the following structure:

TYPE NMRec • RECORD
qLink:
qType:

QElemPtr;
INTEGER;

{next queue entry}
{queue type -- ORO(nmType) • 8}

85

END;

nmFlaqs:
nmPrivate:
nmReserved:
nmMark:
nmSicon:
nmsound:
nmStr:
nmResp:
nmRefCon:

INTEGER;
LONGINT;
INTEGER;
INTEGER;
Handle;
Handle;
StrinqPtr;
ProcPtr;
LONGINT;

{reserved}
{reserved}
{reserved}
{item to mark in Apple menu}
{handle to small icon}
{handle to sound record}
{string to appear in alert box}
{pointer to response routine}
{for application use}

If you want to use the Notification Manager, you must also use SysEnvirons to test the
System version. If the System is too old, put up an alert message to tell the user that
System 6.0 or later is needed to run your application, and then exit gracefully.

How a notification happens
When a notification is handled, one or more of the following occurs (in this order):

1 . the mark is put next to the application (or desk accessory) in the Apple menu

2. the icon is added to the list of icons that rotate with the Apple symbol in the menu
bar

3. the sound is played

4 . the dialog box is presented, and the user dismisses it

5. the response procedure is called

At this point, the mark in the Apple menu and the icon rotating with the Apple symbol
in the menu bar will remain until the notification request is removed from the queue.
The sound and the dialog box are only presented once.

Creating a notification request
To create a notification request, you must set up an NMRec with all the information
about the notification you want:

o nmMark contains 0 for no mark in the Apple menu, 1 to mark the current
application, or the refNum of a desk accessory to mark that desk accessory. An
application should pass 1, a desk accessory should pass is its own refNum, and a
driver should pass 0.

o nmSicon contains nil for no icon in the menu bar, or a handle to a small icon to
rotate with the Apple symbol. (A small icon is a 16x16 bitmap, often stored in a
SIGN resource.) This handle does not need to be locked, but must be
nonpurgeable.

86 Appendix D: The Notification Manager

(

(

'>

/

o nmSound contains nil for no sound,-1 to use the system beep sound, or a handle to
a sound record to be played with SndPlay. This handle does not need to be locked,
but it must be nonpurgeable.

o nmStr contains nil for no alert, or a pointer to the string to appear in the alert
message.

o nmResp contains nil if you don't want to supply a response procedure, -1 to use a
predefined procedure that removes the request immediately after it is completed,
or a pointer to a procedure that takes one parameter, a pointer to your queue
element

For example, this is how it would be declared if it were named My Response:

PROCEDURE MyResponse (nmReqPtr: QElemPtr);

+ No_te: When this response procedure is called, A5 and low-memory globals are not
set up for you. If you need to acceM your application's globals, you should save
your application's A5 in the nrnRefCon field as discussed below.

Response procedures should never draw or do •user interface• things. You should
wait until the application or desk acceMory is brought to the front before responding to
the user. Some good ways to use the response procedure are to dequeue and
deallocate your Notification Manager queue element or to set an application global
(being careful about A5) so that the application knows when the user has been notified.

You should probably use an nrnResp of-1 with audible and alert notifications to
remove the notification as soon as the sound has played or the alert box has been
dismissed. You shouldn't use an nrnResp of-1 with an nmMark or an nmSicon,
because the mark or icon would be removed before the user would see it Note that an
nmResp of -1 does not deallocate the memory block containing the queue element, it
only removes it from the notification queue. .

The nrnRefCon routine is available for your use. One convenient way to use it is to put
the application's A5 in this field so that the response procedure can aeceM application
globals. This is useful since the value of A5 is not guaranteed when the application
calls the response procedure (see Chapter 2 for more information on the A5 world).

Notification Manager routines
The Notification Manager is automatically initiali7.ed each time the system starts up.
To add a notification request to the notification queue, call NMinstall. When your
application no longer wants a notification to continue, it can remove the request by
calling NMRemove. NMinstall and NMRemove do not move or purge memory, and
can be called from completion routines or interrupt handlers, as well as from the main
body of an application and the response procedure of a notification request

Notlflcatton Manager routines 87

NMlnstall
NMinstall adds the notification request specified by nmReqPtr to the notification
queue. Here are the interface, glue, and result codes for NMinstall:

• FUNCTION NMinstall (nmReqPtr: QElemPtr) : OSErr;

INLINE $205F, $A05E, $3E80;

Trap macro _NMinstall ($A05E)

On entry AO: theNMRec (pointer)

On exit DO: result code (word)

NMinstall returns one of the result codes listed below.

Result codes: noErr No error

nmTypErr (-299) qType field isn't ORD(nmType)

+ Note: qType must be set to ORD(nmType).

NM Remove
NMRemove removes the notification identified by nmReqPtr from the notification
queue. Here are the interface, glue, and result codes for NMRemove:

• FUNCTION NMRemove (nmReqPtr: QElemPtr) : OSErr;

INLINE $205F, $A05F, $3E80;

Trap macro _NMinstall ($A05F)

On entry AO: theNMRec (pointer)

On exit DO: result code (word)

NMRemove returns one of the result codes listed below.

Result codes: noErr

qErr

nmTypErr (-299)

No error

Not in queue

qType field isn't ORD(nmType)

+ Note: qType must be set to ORD(nmType).

88 Appendix 0: The Notification Manager

(

(

Appendix E

A Summary of the MultiFinder
Traps

1bis appendix contains a summary listing of the new MultiFinder traps.

Temporary memory allocation calls
Here are the new MultiFinder temporary memory allocation calls.

• FUNCTION MFFreeMem : LONGINT

INLINE $3F3C, $0018, $A88F

MFFreeMem returns the total amount of free memory available for temporary
allocation, in byres.

• FUNCTION MFMaxMem(VAR grow:Size) : Size

INLINE $3F3C, $0015, $A88F

MFMaxMem compacts the MultiFinder heap zone, purges all purgeable blocks, and
returns the number ofbyteS of the largest contiguous free block for temporary
allocation.

• FUNCTION MFTempNewHandle (log icalSize: Size; VAR

resultCode:OSErrl :Handle

INLINE $3F3C, $0010, $A88F

MfTempNewHandle attempts to allocate a new relocatable block of logicalSiz.e
byres for temporary usage and return a handle to it The new block will be unlocked
and unpurgeable. If an error occurs, MFfempNewHandle will return nil

Result codes: noErr
memFullErr

No error
Not enough room

89

• FUNCTION MFTopMem: Ptr

INLINE $3F3C, $0016, $A88F

MFfopMem returns a pointer to the top of your application's memory partition.

+ Note: Do not use this call to calculate the size of your application's memory
partition.

• PROCEDURE MFTempDisposHandle (h: Handle; VAR result Code: OSErr I

INLINE $3F3C, $0020, $A88F

MFfempDisposHandle releases the memory occupied by the relocatable block
whose handle is h.

Result codes: noErr
memWZErr

No error
Attempt to operate on a free block

• PROCEDURE MFTempHLock (h: Handle; VAR resultCode: OS Err)

INLINE $3F3C, $001E, $A88F

MFfempHLock locks the specified relocatable block, preventing it from being
moved within the MultiFinder heap zone.

No error
Nil master pointer

Result codes: noErr
nilHandleErr
memWZErr Attempt to operate on a free block

• PROCEDURE MFTempHUnlock (h: Handle; VAR resultCode: OS Err)

INLINE $3F3C, $001F, $A88F

MFfempHUnlock unlocks the specified relocatable block, allowing it to move.

No error
Nil master pointer

Result codes: noErr
nilHandleErr
memWZErr Attempt to operate on a free block

WaitNextEvent
The interface for WaitNextEvent is:

Function WaitNextEvent (eventMask
VAR theEvent
sleep
mouseRqn

INTEGER;
EventRecord;
Lonqint; Tick Units
RqnHandle) : BOOLEAN;

90 Appendix E: A Summary of the MultlFinder Traps

(

(
.

. " \

/

C:

THE APPLE PUBLISHING SY5TEM

Tilis Apple manual was written,
eclited, and composed on a
desktop publishi~ system using
Apple Macintosh computers
and Microsoft• Word. Proof
pages were created on the Apple
LaserWriterGD Plus. Final pages
were created on the Varitype,e
Vf600111 • POSTSCRIPT•, the
LaserWriter page-description
language, was developed by
Adobe Systems Incorporated.

Text type is ITC Garamond•
(a downloadable font clistributed
by Adobe Systems). Display type
is ITC Avant Garde Gothid".
Bullets are ITC Zapf Dingbats•.
Some elements, such as program
listings, are set in Apple Courier,
a fixed-width font

