, 1982
Texas

ONAL
OMPUTER

AFIPS
CONFERENCE
PROCEEDINGS

NATI
June 7-10
Houston

G
CONFERENCE

mE

A

e

i

i

e
o
e

-
S

e .
- . . . , , - -
e . . T ; ,Miﬂwwwwm“%wmﬁm e ; o
e , . .
e

=
it

il

n

i

e
f

% L
- . =
Sy S 5 3 | - : 5
s : £ 3 5 LA et
. , - -
. . - il £ - ,s%ﬂWﬁMMWUMwMMWM 2]
o S e I ! . s
ﬂwmmwsxwwwﬁwwmwmw&wwx . 5 :
S e - ;
T - o t
- - - - ; - ; Ul
- . - : 5 - > . . ety , S
Sa e e e G ; - L e e T s -
o - L : o

i
i

g

i

al
i

s
e

o

e
i
s

i

e

v
el
o
i
i
i
ol
:
e

i
i
o

o
i

i e 5

"

i

e
i

i

%] . R
NF i %

i

o

. = @
i S AT e e a e

L s e P ENE e e s ;
. e : 5 % = zﬂxswwwimmmwumtﬂwww - s ﬂc»ﬁawmwsw,mswwwﬁwmmwﬂwxmwwwww 3 o
- - , N : g - - e o . - N e
. = . N , p o L
e . = - : £ ;

11

o

-
o

s
s
:

o

8
e
e

ot

e

il
2

i
!

:
i
s
v
e
i
o
i
7

i

s
o
it

i

L
i
i

,s
o

xs
o
:
2
T
i,
;
o

.
.
/
.
o
o
o

o

.

e
s

F

L - ; s
e e - o

e

i

e oy o el B

e
-
ot
:

e
i

.
!
id

y

b

.
.
i

o

t eiaee
e s L

A
i

o
i
i

e
Leatoaan S
i iR
Eo o e

ot
e
e
i
o
2
or
e
i
;‘

i

e WWW&MMW G e s S
L e : y - -

il
5
gl
b

|
i
!
v
el

iial

i

o
e
&)

Lt
SRS o wRlaE % 4 T =t
.. = e e 2
- 7

oo x .

e

e

ae

i
s b
et
hetd] it
o1
el

i
¢t

!

s

o

)
o
e
foir
i
el
i

o
i
e

i
e
i
L
el
ey

i
0l

- - . sw@@«m&«%idau
et e . e
e .
. , - T
B e . e -
%%me%ww%@“m e o e
, @W:;,MWMW%%%@WMW o s : e ,mW%, . MLWWEM@MW%@W&M@ sn@uﬁw .
e , Sl A

=

The ideas and opinions expressed herein are solely those of the authors and are not
necessarily representative of or endorsed by the 1982 National Computer Confer-
ence or the American Federation of Information Processing Societies, Inc.

Library of Congress Catalog Card Number 80-649583
ISSN 0095-6880
ISBN 0-88283-035-X
AFIPS PRESS
1815 North Lynn Street
Arlington, Virginia 22209

© 1982 by AFIPS Press. Copying is permitted without payment of royalty provided

that (1) each reproduction is done without alteration and (2) reference to the AFIPS

Proceedings and notice of copyright are included on the first page. The title and

abstract may be used without further permission in computer-based and other

information-service systems. Permission to republish other excerpts should be
obtained from AFIPS Press.

Printed in the United States of America

Preface

RUSSELL K. BROWN
1982 NCC Chairman

The purpose of the National Computer Conference is to
provide an atmosphere in which designers, suppliers, users,
managers, educators, and representatives of government and
society at large can meet and interact. Discussions of new
technical developments, as well as national and international
issues and challenges facing the information processing com-
munity, are encouraged.

This year’s discussions and developments are contained, for
the most part, in this anniversary Volume 51 of the Proceed-
ings of the National Computer Conference, completing its
first decade as the world’s premier computer exposition.

The decision to chair a National Computer Conference may
well be one of the more major choices one makes in even a
complicated lifetime. Certainly, this choice was compounded
by the change in site from New York to Houston, made only
thirteen months prior to the Conference date. Perhaps a few
words on that move are in order.)

In spring 1981 the NCC Committee and Board were faced
with a dilemma of some magnitude. The Conference exhibits
had grown so large that plans to house them in New York
became unrealistic. To have held NCC ’82 there would have
dictated a requirement to cut back the number of companies
exhibiting, the maximum exhibit size, or both. After much
arranging by the AFIPS staff, a plan was presented to use New
York to its absolute limits. To do this, we would have had to
split the show across the convention facility, some number of
hotel ballrooms, and a covered pier on the East River. Even
then, booth size would have had to be cut and the rather
spectacular island concept with which you are familiar in our
exhibit areas would have been affected severely.

As a long-time Houstonian, I was well aware of the poten-
tial abilities of my city to handle an NCC. In a very short time,
we were able to arrange the use of the Astrohall and Arena,
reserve 12,000 hotel rooms, and make other arrangements
necessary to effect the move.

Naturally there were a few rough edges. Because of the
timing, we had to spread out our hotels much more than will
be the case when we return for NCC ’84. But we feel that,
given less than half the normal preparatory time accorded

ii

most Conference Steering Committees, you will see few short-
cuts or shortcomings.

What you will see is a display of 650 companies filling 3,200
booth units for a new NCC record. You will be exposed to a
high-quality program, high-quality Professional Development
Seminars, four major invited addresses, a special Pioneer Day
program, and numerous other attractions that we feel will
make this a noteworthy week. It is the intention of the CSC
to give you, the attending registrant, all the positive values of
a move to our city and make any negatives as invisible as
possible.

An example of this is the expenditure of nearly $200,000 for
busing to assist you in the various round trips between your
hotel and the Conference.

If I may return to our program, possibly I can elicit in you
a feeling of satisfaction to match the pride I feel. The program
is made permanent by the archival record of the Proceedings.
Here we capture for posterity the most current reports on
recent achievements and new applications, on advances at the
frontiers of computer science and technology.

Dr. Howard Morgan of the Wharton School was buffeted in
mid-preparation of this program and these Proceedings by the
move. Through all the personnel shuffling and turmoil, he
managed to steer a straight course toward a superior
presentation.

Howard recognized, early on, that the registrant has only
three days, on the average, to assimilate all aspects of an
NCC. His first decision was to direct that, with a superior
Professional Development Program together with ten football
fields of exhibits, the program as defined in the past be in-
tensely screened for shortcomings. His Committee introduced
a much finer mesh in their screen than has ever been used
before. The number of papers and sessions are down slightly
from what you have seen in previous NCCs, but we are con-
fident that their value to you will be high. We will be surprised
if you depart early from any of our sessions.

Volunteers, for a Conference of this magnitude, number in
the hundreds. They are members of the NCC Sponsoring
Societies and the other AFIPS Constituent Societies. To these

groups and their participating members I would like to give
my heartiest thanks, particularly in view of the truncated
schedules on which we were all operating.

To the NCC Board and Committee, who well knew the
danger to NCC 82 if plans were not well organized, my thanks
for your confidence and support.

To the AFIPS Headquarters Staff and all the members of

our CSC, thank you for your dedication, time, and effort. You
have contributed to an ongoing tradition of excellence.
To my wife, who only once asked, “Why?” but a hundred
times asked, “How can I help?”’ you know my thoughts.
And finally, to the nine NCC Chairmen of the past, thank
you for your assistance, guidance, and inventiveness. Much of
what you created is embodied here.

Introduction

HOWARD LEE MORGAN
1982 NCC Program Chairman

“Advancing Professionalism” is the theme for the 1982 Na-
tional Computer Conference. It is our belief that these Pro-
ceedings represent a contribution to the professionalism of
you who are reading them or those who attended the confer-
ence. The computing field now incorporates many types of
professionals: designers, analysts, programmers, managers,
and users of office and personal computing systems. Parts of
our program are aimed specifically at each of these types of
users. More important, we hope that people will integrate and
broaden their knowledge with the help of the wide spectrum
of sessions, panels, and papers presented, which cover all
major aspects of the computing field as we know it today.

With this theme as the base, the NCC 82 program has
been structured into eight major areas. These include the
following:

1. Hardware and computer architecture: providing more
power and newer structures than those that have been
traditional for hardware designers.

2. Software engineering: techniques to aid in the building
of correctly working and properly engineered software.

3. Personal computing: included this year for the first time
in the main NCC program and undergoing explosive
growth in both business and home use.

4. The social and organizational implications of computing:
this area indicates how totally computers now impinge
on our daily lives.

5. Office Systems: this area addresses the concerns of those
involved in the growing office automation environment.

6. Decision support and management issues: to aid those
whose job it is to manage computing or to provide ser-
vices directly to top executives.

7. Language and database processing: two key applications
systems tools.

8. Finally, the applications of computing themselves.

As a special feature, the history of computing and Pioneer
Day focus on FORTRAN and its early development. We are
fortunate to have several key papers in these Proceedings.

We have reduced the number of sessions this year to 86, as
opposed to the 105 to 120 of previous years. This has had
the favorable effect of permitting us to select and work with
higher average quality levels, but some worthwhile paper and
session proposals were not able to be included in the confer-
ence. We are sure that the panels and paper sessions in the
program provide detailed, high-quality presentations in their
specific areas. These Proceedings are organized according to
the areas of interest, as noted in the conference program. The
conference program contains a page number key to these
specific papers, for easy reference by attendants. Because
space is limited, summaries of the panel discussions are not
printed in these Proceedings; but they are available in the
conference guide.

The plan and organization of the 1982 NCC program re-
quired the concerted, dedicated, and extreme efforts of many
individuals: the Program Committee members; the session
organizers and leaders; the panelists, presenters, and authors
of technical papers; and the referees, who helped us select the
papers to be presented in these Proceedings. In addition, the
entire NCC committee structure and the staff organizations at
AFIPS have played an important role in the smooth operation
of the conference. The committee assistants, Francoise
Aubert-Santelli and Susan O’Leary, performed far beyond
the call of duty. I wish to extend my sincere thanks to all of
these individuals and most especially to our Program Commit-
tee. It is through their efforts that the NCC °82 program and
these Proceedings have come alive. It is our sincere hope that
your attendance at the program will prove a fruitful and enjoy-
able activity to those of you who were fortunate enough to
come and that these 1982 NCC Proceedings will join their
predecessors as a useful reference for many years.

CONTENTS

26 4= 1! iii
Russell K. Brown

3L e Y6 Vo1 0 o VR e v
Howard Lee Morgan

HARDWARE/COMPUTER ARCHITECTURE

Firmware quality aSSUTANCEt uut ittt ittt ettt e i it aa e, 3
Helmut K. Berg, Prakash Rao, and Bruce D. Shriver

The 5.25-inch fixed/removable disk driveouuuuiii i it e e e e 11
Don Minami

Practical CMOS MCTOPTOCESSOT SYSIEIIIS & ¢+ v v vt v v e v vt ettt et ettt et et e et enaeeeenanteneeneeeennnns 19
Bill Huston

The MC68000 family and distributed Processingouuiiuuiiiiiiiii it enninaennns 29
John F. Stockton

Using operational standards to enhance system performanceouiuuinutieennennenneenneennnnnns 37
David R. Vincent

Distributed processing with the Z8000 family. i e 53
Richard Mateosian and Janak Pathak .

Distributed processing with iAPX 186 microprocessor systetﬁs ... 59
Tony Zingale

High-performance, high-capacity single-chip microcomputers.ttt i, 67

Ed Peatrowsky

Expanded single-chip principles in practical applications...............oiiiiiiiiiiiiii i 73
Randy M. Dumse

Making the most of VLSI in MiCTOCOMPULETS. . ..ottt ittt ettt ettt it ee e ainereneenannnenns 81
Jerry L. Corbin

Single-chip microcomputers can be easy tO program.c...oveeeineinn... e e 85
Bill Huston

Speak software and carry a strip Chip. it e 95
Michael Shapiro

A distributed operating system for a powerful system with dynamic architecture............................. 103
Steven I. Kartashev and Svetlana P. Kartashev

Software testing techniques for universal building blocks of multimicrosystems 117
M. Annaratone and M. G. Sami

A methodology for the development of special-purpose function architectures.................... 125
Raymond A. Liuzzi and P. Bruce Berra

Applications of SIMD computers in signal ProCESSINGiiuuiiiut it 135
Laxmi N. Bhuyan and Dharma P. Agrawal

A list-processing-oriented data flow machine architecture............. ... i i 143
Makoto Amamiya, Ryuzo Hasegawa, Osamu Nakamura, and Hirohide Mikami

vii

Lookahead NEtWOTASottt ittt ittt et e e e 153
G. Jack Lipovski, Ambuj Goyal, and Miroslaw Malek

Reconfigurable multicomputer networks for very fast real-time applications..................... 167
Carl Davis, Svetlana P. Kartashev, and Steven 1. Kartashev

MPP: a supersystem for satellite image ProCessingiuuiiit ittt 185
Kenneth E. Batcher

Optimal design of a distributed SUPETSYStEM.ttt i i e e 193
David F. Palmer, James P. Ignizio, and Catherine M. Murphy

Distributed processing with the NS16000 family i i 199
Leslie Kohn

SOFTWARE ENGINEERING

Exploiting parallelism for the performance enhancement of non-numeric applications 207
David J. Dewitt and Dina Friedland

Performance engineering of software systems: a case study..........ot 217
C. U. Smith and J. C. Browne

A systolic processor for signal Processingouuiiiuii i e 225
G. A. Frank, E. M. Greenawalt, and A. V. Kulkarni

Parallel-processing a large scientific problem i e 233
Robert Hiromoto

Design of software for distributed/multiprocessor SyStems.ouuirt ittt 239
Terrence R. McKelvey and Dharma P. Agrawal

The use of performance models in systematic design it 251
K. M. Chandy, J. Misra, R. Berry, and D. Neuse

Performance modeling in the design PrOCESSttt e i aiiieeae s 257
William Alexander and Richard Brice

MEDOC: A methodology for designing and evaluating large-scale real-time systems 263
Eric Le Mer

The research queueing package: Past, present, and future o il 273

Charles H. Sauer, Edward A. MacNair, and James F. Kurose

Audience identification for end user doCumMENtatioN.ttt e 281
Janis G. Raymond

Computer-aided documentation ittt e e 287
Saul Rosenberg

The development of software engineers: a view from @ User. ..., 293
Walter P. Warner and Richard E. Nance

An industrial software engineering methodology supported by an automated environment 301
Michael S. Deutsch

An approach to the definition and implementation of a software development environment................... 309
James F. Elwell

A JOVIAL programming SUPPOIt NVIIONMENT.o\ttt ettt ettt ettt i i e it an e enes 319
Edith M. McMahon

The impact of Ada on software engineeTing.ouuuut ittt e ittt 327
Kenneth L. Bowles

The importance of Ada programming SUpPOIt NVIFONMENES uvt vttt et ittt iaieie e e raannnnes 333
Thomas A. Standish

Challenges and requirements for new application generatorsiiuiiitii ittt iineenineeeninennn. 341
Alfonso F. Cardenas and William P. Grafton

Program generators and their effect on programmer productivityo il
Richard L. Roth

Application generators at IBM e
Aaron M. Goodman

Application generators: @ CaSe STUAY v inut ottt e
James H. Waldrop

Requirements definition and its interface to the SARA design methodology for computer-based systems
James W. Winchester and Gerald Estrin

The role of requirements analysis in the system lifecycle o .. P
Yuzo Yamamoto, Richard V. Morris, Christopher Hartsough, and E. David Callender

Application generators: an introduction i e et
Jerrold M. Grochow

Software product quality @SSUTANCE.\ttt ittt ittt e
John R. Ryan

A quality assurance program for software maintenanceuiiuoniiit it iineaieaneaanaaaaa..
John W. Center

The independent role: verification and validation, and compliance testingooveviineniinn....
Barbara J. Taute

Quality assurance in a large commercial data processing installation................. .. oviiiiiiiii ...
C. W. Lybrook

PERSONAL COMPUTING

Data server desigil dSSUESttt ettt ettt e ettt e e e e
Fred Maryanski

SOCIAL AND ORGANIZATIONAL IMPLICATIONS

Acceptance criteria fOr COMPULET SECUTILYot v ittt et ettt ettt ettt e i ae it eaeeaaaanannnns
William Neugent

Private sector needs for trusted/secure computer systems e
Rein Turn

Impacts of information system vulnerabilities on sOcCiety
Lance J. Hoffman

Uniform help facilities for a cooperative user interfaceoiii il e
Philip J. Hayes

Natural-language help in the Consul SYstemt e
William Mark

Programs as data for their help Systems. it e
Elaine A. Rich

The implementation of a cryptography-based secure office systemo L
Christian Mueller-Schloer and Neal R. Wagner

Criteria for a standard command language based on data abstraction.oiveiiinniiininne....
David Beech

Integration of bottom-up and top-down contextual knowledge in text error correction........................
Sargur N. Srihari, Jonathan J. Hull, and Ramesh Choudhari

Dialogue: Providing total terminal independence i
David Vaskevitch

The Star user interface: an overviewoooiiua.... PP
David Canfield Smith, Charles Irby, Ralph Kimball, and Eric Harslem

X

351

359

363

369

381

389

393

399

409

415

429

441

449

461

469

475

481

487

493

501

509

515

MFS: a modular text formatting SYSteML. oo ottt ittt et e e e e,

James D. Mooney

MANAGEMENT ISSUES/DECISION SCIENCE SUPPORT SYSTEMS

Complex business systems: a strategy for SUCCESSttt i i i i e

Naomi Lee Bloom

The role of the user at Standard Oil Company (Indiana) in the development of large-scale business systems

James E. Jackson

The role of data center personnel in the development of a large-scale business system........................

David A. Cox

What life? What cycle? o e e e e e

Nicholas Zvegintzov

LANGUAGE AND DATABASE PROCESSING

Data model PrOCESSINEttt i i e i e e e e e

Matthew B. Koll, W. Terry Hardgrave, and Sandra B. Salazar

Automatic database system conversion: schema revision, data translation,

and source-to-source program transformationl i i e i e

Ben Shneiderman and Glenn Thomas

Fair timestamp allocation in distributed systems i i i e e

Said K. Rahimi and William R. Franta

Data abstraction for Pascal programmers S

Viswanathan Santhanam and John R. Potochnik

SPIRIT-III: an advanced relational database machine introducing a novel data-staging architecture

with Tuple Stream Filters to preprocess relational algebra i ittt i,

Noriyuki Kamibayashi and Kazuo Seo

Data language requirements of database machines............ ..ottt R

Dawei Luo, Daozhong Xia, and S. Bing Yao

Performance analysis of database join ProCessorsot iiiii ittt it e

Fu Tong and S. Bing Yao

Evaluating database management SYStEIMIS.o vuut ittt ii it i i i,

Edward Davidson

Performance study of a dual CDC Cyber 170/750 SyStemoutiniiniinitiniiit i et enneenns,

M. Seetha Lakshmi and Tom W. Keller

Computational lexicology: A research program.......ot

Robert A. Amsler

Use of Webster’s Seventh Collegiate Dictionary to construct a master hyphenation list

James L. Peterson

Models, languages, and heuristics for distributed computing......... e e e e e

Robert E. Filman and Daniel P. Friedman

Weakest environment of cCOMMUNICAtING PTOCESSES . . . o ot v tvvutnettre ittt teetstnareereeereenanennnnnanns

Zhou Chaochen

Adaptive structuring of distributed databases. i e

K. Dan Levin

Distributed scheduling of resources on interconnection NEtWOIKSutviitereir i eaieeeiinneennn.

Benjamin W. Wah and Anthony Hicks

APPLICATIONS OF COMPUTING

A microcomputer system for color Video piCture ProCESSINE vvu vttt e et er et et areeeenn,

Yoshikuni Okawa

e

529

561

571

579

589

595

605

617

627

639

649

657

665

671

679

691

697

713

The importance and futility of device independence in computer graphics.ot

Anders Vinberg

Optimal three-dimensional flight control of a supersonic fighter i i,

Ching-Fang Lin and Khai Li Hsu

Structured D-chart: A diagrammatic methodology in structured programming.................ceooeuuvinnn...

C. Jinshong Hwang

Planning for software tool implementation: experience with Schemacode

Pierre N. Robillard and Réjean Plamondon

Distributed processing of problem-solving applications for farmers............ ..ol

Robert Gammill and Lynn Thorp

RIPS net: The impact of an optical communication networkottt

Koji Yada, Masanori Honda, and Seiji Fujino

A coherent scheme to support location-independent references in internetwork environment..................

Ray Cheng and J. W. S. Liu

Issues and methods for practical distributed data processing applications—I............. et

Maurice Blackman and Hugh Ryan

Issues and methods for practical distributed data processing applications—II................. ... oot

Maurice Blackman and Hugh Ryan

PIONEER DAY

A technological review of the FORTRAN I compilerttt

F. E. Allen

Computing prior to FORTRAN
R. W. Bemer

History of FORTRAN standardization
Martin N. Greenfield

DYSTAL: Nonnumeric applications of FORTRAN
James M. Sakoda

xi

719

727

735

749

759

767

775

785

793

805

811

817

825

HARDWARE/COMPUTER
ARCHITECTURE

Firmware quality assurance

by HELMUT K. BERG and PRAKASH RAO

Honeywell Corporate Computer Sciences Center
Bloomington, Minnesota

and
BRUCE D. SHRIVER

University of Southwestern Louisiana
Lafayette, Louisiana

ABSTRACT

The paper reviews problems, solutions, and trends in the area of firmware quality
assurance. Firmware quality assurance is considered to be the certification of the
fact that a firmware system meets its requirements with respect to functional cor-
rectness as well as performance, operational, and implementational properties. The
emphasis of the paper is on formal correctness proofs, firmware testing, and the
automatic synthesis of microcode and associated hardware structures. Firmware
specifications, high-level microprogramming languages, and automated support
tools are discussed as they relate to these areas. The impact of advances and trends
in very large-scale integration (VLSI) on the techniques and tools for firmware
quality assurance is reviewed. The observation is made that valuable results have
been obtained in the areas of firmware correctness proofs and firmware testing.
However, further improvements are needed to cope with the complexity of VLSI.
An alternative that may overcome the limitations of these two approaches is auto-
mated synthesis of firmware and hardware and design for testability.

Firmware Quality Assurance 5

A. INTRODUCTION

For products of any kind, assurance needs to be gained that
they meet their product requirements before they are dedi-
cated to serve their intended purpose. This need applies to
end-user or consumer products as well as to the individual
components to be integrated into such products. The product
requirements may be stated in a variety of forms, including
assessments of market needs, functional product specifica-
tions, and specifications of nonfunctional product attributes.
The form of these requirement statements changes as the
development of a product proceeds from the marketing prod-
uct definition through the product design and implementation
to the use and maintenance of the product. This process is
referred to as the product life cycle, and it comprises various.
stages in each of which the ability of the product to meet its
requirements is established. These certification steps may be
summarized under the term quality assurance.

Ideally, firmware is developed and deployed in a life cycle
that includes the following steps. The development begins
with a step called requirements engineering. Given the pur-
pose of the system, this step identifies the functional require-
ments and attributes of the system. Nonprocedural design
formalizes these requirements and attributes in the form of
functional and property specifications. The procedural design
uses the specifications to produce “blueprints” for the imple-
mentation. The implementation step embodies the blueprints
in system modules and microprograms. The integration step
combines and tests the modules and microprograms so that
the assemblage results in an operational firmware system. In
the installation step, the firmware system is integrated into the
overall system and submitted to operation. Maintenance is
concerned with corrections and extensions to the operational
firmware.

Every step in the firmware life cycle is associated with an
appropriate validation step. For example, it needs to be dem-
onstrated that the requirements and attributes conform to the
statement of the purpose. The correspondence between re-
quirements and specifications needs to be demonstrated. Ob-
viously, it should be verified that each step in the development
process was conducted correctly.

The quality of the firmware refers not only to the functional
cerrectness of the integrated microprograms, but also to the
performance, operational, and implementational properties
of the system. Among the properties of a firmware system, we
may find execution time, object microprogram size, reli-
ability, robustness, and viability. Hence, firmware quality
assurance may be defined as the certification of the fact that
a firmware system meets its requirements in an optimal way.
In this definition, optimality is not assumed to be an absolute
measure. In fact, the optimization of some of the firmware

properties listed above has been shown to be NP-hard.! Fur-
thermore, absolute functional correctness cannot be estab-
lished by testing, and formal correctness proof methods,
which theoretically have the ability to demonstrate the ab-
sence of errors, have generally not reached the point of
being rigorously applicable in firmware development
environments.”

The need for firmware quality assurance has been discussed
widely in the literature. The necessity for the verification of
functional correctness’® stems from two intrinsic characteristics
of firmware:

® microprograms control all native hardware resources.
Thus, microprogram errors result in an erroneous virtual
machine, and

® microprograms very often reside in read-only storage me-
dia. Thus, modifications and error corrections can be
both difficult and costly.

The need for the optimization of execution speed and ob-
ject microprogram size® is dictated by the desire to

¢ realize faster and functionally more powerful machines,
with available technology, and

® obtain the extensive benefits of high-level microprogram-
ming languages in the firmware development process.

The need for firmware quality assurance is intensified by
technological advances, most importantly by very-large-scale
integration (VLSI).* Hardware performing specialized func-
tions is being replaced by regular arrays of logic and memory.
The functionality of the firmware is changing from conven-
tional instruction set emulators to more extensive and power-
ful instruction sets, diagnostic programs, interpreters for high-
level languages, and operating system functions. In addition,
the integration of microprogrammed control schemes into
VLSI places more stringent requirements on tools and tech-
niques for firmware quality assurance, which cannot be met
by traditional microprogramming aids.

In summary, the major concerns in firmware quality assur-
ance are

® the specification of functions and properties of firmware
systems,

® the realization of correct and optimal microcode, to-
gether with appropriate hardware structures, and

® automated tools that aid the designer in exploring alter-
native designs and in keeping track of design and imple-
mentation details.

It is not possible in this paper to treat entire methodologies
and engineering environments for firmware development and

6 National Computer Conference, 1982

quality assurance. We restrict our attention to areas of formal
firmware correctness proofs, firmware testing, and the auto-
matic synthesis of microcode and associated hardware struc-
tures. Firmware specifications, high-level microprogramming
languages, and automated support tools are discussed only as
they relate to these areas.

B. VERIFICATION OF FIRMWARE

Firmware verification through formal correctness proofs is an
area of firmware engineering that received considerable atten-
tion over the last decade.® Although several approaches to
firmware correctness proofs have been developed and demon-
strated, problems remain at all levels. Among these problems
are the development of appropriate theoretical foundations,
the definition of design disciplines that support correctness
proofs, tool support for correctness proofs, and the education
of users regarding formal techniques. Despite these problems
and the controversies surrounding formal correctness proofs
in general,” some workers report that no matter how ex-
pensive it is to find errors by firmware verification it is still a
magnitude cheaper than finding errors when a product is
shipped.®® This section reviews firmware verification by sum-
marizing some efforts in the area, discussing their contribu-
tion to quality assurance, and indicating possibilities and lim-
itations in their use.

B.1 Approaches to Firmware Verification

Approaches to firmware verification generally draw from
results obtained in software verification.'® Given the current
state of the art, correctness proof processes are inherently
complex, and cannot be fully automated. Human interaction
with verification systems is required to suggest proof goals, to
partition proofs, and to interpret results obtained from the
proof system to direct the continuation of the proof process.

The STRUM system'' is an advanced verification system
that is based on Floyd’s inductive assertion technique' and
uses a Pascal-like high-level microprogramming language.
The automated proof process is integrated into the translation
process.

Another successfully applied verification system is the IBM
Microprogram Certification System (MCS)." This system is
based on Milner’s technique of the simulation between pro-
grams®' and the symbolic execution of programs.” A similar
approach is being pursued at the Information Science Institute
of the University of Southern California.”> The MCS ap-
proach considers both the description of the host system on
which the microcode is to run and of the target system that is
being emulated by the microcode. The verification system
accepts the host microcode and its specification, including
proof commands, to establish the equivalence of both firm-
ware definitions by symbolic execution and the proof of simu-
lation relations.

A third approach that has received considerable attention is
the microprogramming language schema $*.>* This approach
defines an axiomatic basis for microprogramming similar to
Hoare’s axiomatic definition of programming languages.”
The axiomatic basis is a set of schemas that define the seman-

tics of a Pascal-like microprogramming language. These sche-
mas constitute the axioms and inference rules of a deductive
system in which formal correctness proofs can be carried out
using the defined logical inferences. For each particular ma-
chine, the schematic semantic definitions can be instantiated
to capture the machine-dependencies influencing the execu-
tion of the firmware on that machine. Thus, after the instanti-
ation, the microprogrammer works with a machine-depen-
dent, but high-level, axiomatic proof system.

For a survey of other approaches to firmware verification,
the reader is referred to Davidson and Shriver (1980).°

B.2 Status of Firmware Verification

Successful application of firmware correctness proofs has
established firmware verification as a viable approach to firm-
ware quality assurance. Two major observations need to be
made, however. First, correctness proofs are complex in na-
ture; thus the verification process needs to be incorporated
into an overall firmware engineering discipline that is suppor-
tive of correctness proofs; additionally, the proof process it-
self needs to be supported by automated tools. Second, qual-
ity assurance is not restricted to the functional correctness of
firmware, but is also concerned with execution time and
memory efficiency of the executable code- as well as with the
reliability of firmware systems in general. Thus, verification
approaches need to be developed based on high-level micro-
programming languages that facilitate abstract representa-
tions of firmware systems and allow code optimization. It is
imperative that the user be able to understand what the sys-
tem is supposed to do.

The systems described above partially satisfy these require-
ments. The STRUM system has been applied to the develop-
ment of the emulator for the Hewlett-Packard HP-2115."
Besides the verification of the microcode written in the high-
level language, the resulting code could be optimized to match
an independently generated, hand-optimized version of the
same microcode. The success of the microcode verification
system used for the Fault-Tolerant Spaceborne Computer
(FTSC) is partially due to the guiding principle of that proj-
ect.” It concentrates on the practical side of the verification
problem, solving the theoretical problems as they arise. Em-
phasis is placed on ways of making the user understand what
the system is doing and writing the microcode with the sub-
sequent verification in mind. The FTSC project is explicitly
seeking an approach to a disciplined firmware design and
development process. Additionally, software engineering ap-
proaches can be enhanced further for the production of more
reliable microcode. For example, techniques such as code
inspections, walk-throughs, or step-wise refinement may be
integrated into the firmware engineering discipline.

In summary, languages and quality assurance techniques
are needed that help the microprogrammer with machine de-
pendent problems such as microparallelism, microcode opti-
mization, and the variability in computer micro-architectures,
on the one hand, and support abstract representations of firm-
ware systems, on the other hand. Progress made toward these
seemingly conflicting goals is best reflected by high-level mi-
croprogramming languages such as MPL,” STRUM,"

Firmware Quality Assurance 7

EMPL,” VMPL,* and S*.** Most of these languages effec-
tively attack the problem of code optimization,’ but problems
remain in the area of verification.

B.3 Summary

Limitations in firmware verification techniques result from
several fundamental weaknesses of the proposed approaches.
The weaknesses include the inadequate specification of the
timing characteristics of the control flow in semantic defini-
tions of microinstructions. Furthermore, the deductive sys-
tems (i.e., the set of available logical inferences) for carrying
out firmware correctness proofs are not related closely
enough to the characteristics of the underlying hardware.
These weaknesses limit the practicality of firmware cor-
rectness proofs even for moderately sized microprograms.
The inclusion of parallelism, synchronization, and microin-
struction execution subcycles will considerably increase the
complexity of the correctness proof. Powerful interactive ca-
pabilities may mitigate this deficiency of verification systems.
Correctness proof techniques need to acquire conceptual
foundations that bridge the gap between high-level machine-
independent firmware representations and specific micro-
program running environments, in order to cope with the
firmware complexity anticipated for VLSI.

Several approaches to the solution of this problem have
been proposed. These approaches require that the firmware
quality assurance process be carried out in a high-level-
language environment in which mappings to machine specific
environments can be automated. The approaches include
axiomatization of the running environment,”**® explicit de-
scriptions of the microprogram running environment,”* and
machine virtualization.?®** Although most of these ap-
proaches still need to be demonstrated for problems of the
scope anticipated for VLSI, it is certain that they will be viable
alternatives to firmware verification only if they are supported
by sophisticated tools that automate design, coding and
verification.

C. TESTING OF FIRMWARE

Firmware testing is the assurance of firmware functionality for
a specified set of input values. By definition, then, firmware
testing does not necessarily assure functional correctness for
all legitimate input values and is not as strong an argument
about the correctness of microprograms as that provided by
formal correctness proofs. Under the restriction imposed by
the absence of sufficiently versatile verification methods,
firmware testing is one of the alternatives available for assur-
ing the quality of firmware.>?

Firmware testing has traditionally been viewed as an exten-
- sion to the testing of software.” With the impact of VLSI, it is
no longer possible to separate the functionality of the under-
lying hardware from the microprograms that control it.* The
increasing degree of integration of microprograms with their
hardware environment also requires a unified approach to the
design of the firmware and its supporting hardware. This de-
sign approach, called “design for testability,”* incorporates
the important concept of testability directly into the synthesis

procedure and thereby enhances the assurance of firmware
system quality. The discussion of design for testability is de-
ferred to the next section.

C.1 Firmware Testing

Microprogram testing has been addressed by Berg.” Formal
techniques of firmware testing and test data selection have
been specified. Three levels of microprogram testing have
been identified. These are

® Tests at the microprogram level that consider complete
microprograms by either analyzing their code or investi-
gating the machine states resulting from their execution.

® Tests at the microinstruction level that consider single
microinstructions by either analyzing the assignment of
micro-operations to them or investigating the machine
states resulting from their execution.

® Tests at the micro-operation level that consider individ-
ual micro-operations by monitoring their execution.

An error detected at the microprogram level may be caused
by any number of faulty microinstructions or micro-opera-
tions in the microprogram. The manifestation of such errors
is defined by the identification of a set of faulty microin-
structions and micro-operations. To identify faulty microin-
structions or micro-operations in an erroneous micropro-
gram, tests at the microinstruction level may be necessary. An
error detected at the microinstruction level is located if the set
of faulty micro-operations in the microinstruction can be
identified.

The selection of tests and test data for firmware testing at
each of these three levels is based on the methods described
by Goodenough and Gerhart.® The basis for correct function
is the program specification. The method distinguishes be-
tween test data and test predicates.

C.2 Hardware Testing

Hardware testing has traditionally been viewed in isolation,
despite increasing trends towards the implementation of sys-
tems as microprogrammed control structures. With the inte-
gration of hardware and firmware in VLSI a major problem is
the diminishing observability and controllability of the hard-
ware due to pin limitations. Hardware testing will therefore
entirely devolve on the micro-operations that it supports. As
a consequence, hardware must be tested at the register trans-
fer level, where a description of the system is specified in
terms of the hardware resources and their interconnection.
This requirement necessitates that the degree of encoding of
microinstructions be restricted to keep testability as an objec-
tive during the design process.

A significant step toward the testing of hardware through
the microprogramming level and the implementation of ser-
viceability features was taken during the design of the IBM
System/360 as reported in Carter et al. (1964).™

Hardware test strategies for microprogrammed units use a
partitioning of the unit into an operative part and a control
part.”® The operative part consists of the hardware resources

8 National Computer Conference, 1982

and the control part of the algorithms for their operation and
sequencing. A methodology for generating an internal micro-
program to test a microprogrammed unit is described by
Ciaramella.” The dynamic testing of control units has been
reported by Robach and Saucier.*®

Identification of the control and operative parts of the sys-
tem is performed from a behavioral description of the system
hardware function. This description can be given using a high-
level design language such as a register-transfer language
(RTL) or a multiple-level design language such as LALSD—
Language for Automated Logic and System Design'*—or
SIMPL (Simple Identity Microprogramming Language)."
Techniques for generating tests from such behavioral descrip-
tions are mentioned by Su and Hsieh® and Levendel and
Menon.” The area of behavioral-level testing of digital sys-
tems is still in a period of evolution. This problem is further
complicated by the fact that hardware access is limited to the
microprogramming level. Techniques for the development of
hardware support functions needed for firmware system qual-
ity assurance still need to be formalized. The evolution of
abstract fault models at the behavioral level will be of great
assistance in the development of test-generation algorithms
for testing microprogrammed units. Developments in this
direction have been started in the area of microprocessor
testing.”’

C.3 Summary

The problem of firmware testing can be divided into two
subtasks: the testing of microprograms and the testing of the
underlying hardware. The problem of microprogram testing is
addressed by borrowing concepts from software testing. Ap-
proaches to hardware testing using a high-level description of
the hardware resources and their interconnection is still in its
infancy. This problem will be increasingly aggravated as more
and more firmware systems are implemeted in VLSI.

D. AUTOMATED SYNTHESIS AND
DESIGN FOR TESTABILITY

In this section, we take a look at the future growth of firmware
and microprogrammed systems and highlight issues of test-
ability that arise owing to the increased complexity and the
reduced access to the hardware as dictated by the restricted
pin count.

D.1 Characteristics of the Design Environment

The future of microprogramming will be greatly affected by
the characteristics of VLSI design. With the cost advantage
and support of design tools for fast turnaround, single-chip
designs in VLSI will become increasingly common. Complex
structures such as parallel architectures will be designed rou-
tinely using sophisticated design aids for hardware and micro-
code.* Trends in the development of high level microprogram-
ming languages as described in Section B contribute to this
development. The microprogram verification problem has
therefore been brought closer to a solution in terms of facili-
ties for looking at analogs in the software field.

The migration of microprogrammed control units of very
high complexity into VLSI brings in all the problems that
VLSI designers of digital systems have been facing. The in-
crease in complexity, the choice of design styles, architec-
tures, and implementation technologies provide a design envi-
ronment in which a number of tradeoffs have to be made
between several objectives. The most important of these ob-
jectives are

® to minimize cost by minimizing silicon area and pin
count,

® to maximize performance in terms of speed,

® to increase chip functionality by providing more powerful
instructions,

® to increase chip fault tolerance,

® to provide an enhanced user interface,

® to achieve reasonably fast design turnaround time and
minimize design costs, and

® to minimize power consumption.

Usually, a tradeoff is made between economy of silicon area
and performance, fault tolerance, ease of use, and design
turnaround time. This often implies that fault tolerance has to
be traded off for real estate on silicon. Thus, there is a need
for building fault tolerance into the design itself and to min-
imize the overhead that caused the tradeoff for real estate.
Specific design rules that aid the testability of VLSI must be
developed.

With the increase in complexity and with the design prob-
lem constrained to be an optimization of multiple objectives,
designers of the future will have no other alternative but to
employ automated tools. To be viable, these tools must aid in
the design of the microcode as well as in the synthesis of the
hardware implementing the design specification. The need for
quality assurance, therefore, dictates the requirement that
these tools have testability as an objective.

Research in microprogram design aids has been classified
into three classes:*

® microcode verification

® microcode generation from a high level language

® synthesis of microcode and microcontroller hardware
from high-level specifications.

These research areas have been dealt with in the litera-
ture.11’34’35’36

D.2 Testability and Automated
Hardware/ Firmware Synthesis

Automated synthesis has been attempted with varying de-
grees of success. The MIMOLA system™ provides interaction
between user and system. It generates microcode based on the
input of user-declared data paths and hardware resources.
Hardware measures are provided to aid in monitoring the
efficiency of the design and to identify critical paths. The
designer interactively varies hardware restrictions to satisfy
the performance and cost requirements. There is no design for
testability built into the generation procedure for microcode.

Firmware Quality Assurance 9

The microcode generated has a degree of encoding restricted
to function-select lines and multiplexers.

The problem of providing adequate testability may be ad-
dressed at two levels by

® incorporating design for testability at the structural or
implementation level of description when the logic is be-
ing committed; or by

® incorporating design for testability techniques at the be-
havioral or specification level.

Traditional methods of design for testability have taken the
first approach. At the implementation level, additional hard-
ware is provided to enable the input of test patterns and the
breaking of feed-back loops. The latter reduces the testing
problem to the more tractable task of testing combinatorial
circuits. An extensive survey of design for testability methods
of this type is reported in the literature.*® In this approach,
design rules are formulated with design edicts laid down to
ensure that access for testability is provided.

The incorporation of design for testability at the behavioral
or specification level is relatively new and results of a substan-
tial nature are yet to be reported. In this approach, testability
is incorporated into the synthesis procedure as an objective.
The design of the micro-operation and microinstruction struc-
tures and the generation of microprograms is conducted with
the testability of the registers and functional units in mind.
Inaccessible registers are not permitted and the length limita-
tion on the longest checking sequence needed to test func-
tionality in functional blocks and registers is one of the con-
straints in the synthesis procedure.

D.3 Summary

We conclude that there is a future trend toward single-chip
implementation of firmware systems bringing with it the use
of automated-synthesis tools and microprogram-design aids.
There is a need to build testability into the synthesis pro-
cedure at a high level in the design process. There is consid-
erable need for further research in this area. Until substantial
results have been obtained designers will continue to use the
conventional techniques of utilizing additional hardware over-
head to provide adequate testability.

REFERENCES

1. Robertson, E. L.. “Microcode Bit Optimization Is NP-Hard”, SIGMICRO
Newsletter, Vol. 8, 1977, pp. 40-43.

2. Berg, H. K. “Firmware Testing and Test Data Selection”, Proceedings of
the 1981 National Computer Conference, Vol. 50 AFIPS Press, Arlington,
Va., 1981, pp. 75-80.

3. Landskov, D.; S. Davidson, B. Shriver, P. W. Mallett. “Local Microcode
Compaction Techniques,” Computing Surveys, Vol. 12, No. 3, 1980, pp.
261-294.

4. Parker, A. C., W. T. Wilner. “Microprogramming—The Challenge of
VLSI,” Proceedings of the 1981 National Computer Conference, Vol. 50,
AFIPS Press, Arlington, Va., 1981, pp. 63-68.

5. Goodenough, J. B., S. L. Gerhart. “Toward a Theory of Test Data
Selection” IEEE Transactions on Software Engineering, Vol. 1, No. 2, 1975,
pp. 20-37.

6. Davidson, S., B. D. Shriver. “Firmware Engineering: An Extensive Up-
date,” in Firmware, Microprogramming and Restructurable Hardware.
North-Holland Publ. Co., New York, 1980, pp. 1-40.

10.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

24,

25.

27.

29.

30.

31

—

. DeMillo, R. A., R. J. Lipton, and A. J. Perlis. “Social Processes and Proofs

of Theorems and Programs,” Communications of the ACM, Vol.22,No. 5.,
1979, pp. 271-280.

. Husson, S. S. (panel chairman). “Microcode Verification—Summary of the

Panel Discussion,” in Firmware, Microprogramming and Restructurable
Hardware, North-Holland Publ. Col., New York, 1980, pp. 105.

. Carter, W. C., “Microcode Verification,” Presentation in the Session on

Microprogramming—The Challenge of the 1980’s, 1981 National Com-
puter Conference, Chicago, Il.

Berg, H. K., W. E. Boebert, W. R. Franta, and T. G. Moher. Formal
Methods of Program Verification and Specification, Prentice-Hall, Engle-
wood Cliffs, N.J., 1982.

Patterson, D. A. “STRUM: Structured Microprogramming System for Cor-
rect Firmware,” IEEE Transactions on Computers, Vol. 25, No. 10, 1976,
pp. 974-986.

Floyd, R. W. “Assigning Meaning to Programs,” Proceedings of Symposia
in Applied Mathematics, American Mathematical Society, Vol. 19, 1967,
pp. 19-32.

Joyner, W. H., W. C. Carter, and G. B. Leeman. “Automated Proofs of
Microprogram Correctness,” SIGMICRO Newsletter, Vol. 7, No. 3, 1976,
pp. 51-35.

Carter, W. C., H. C. Montgomery, R. J. Preiss, and H. J. Reinheimer.
“Design of Serviceability Feature for the IBM System/360,” IBM Journal,
1964, pp. 115-126. ‘

Levendel, Y. H., and P. R. Menon. “Test Generation Algorithm for Non-
procedural Hardware Description Languages”, IEEE FTCS-11, 1981, pp.
200-105.

. Su,S.Y.H.,and C. L. Huang. “A Multi-Level Hardware Design Language

LALSD II and its Translator,” Proceedings of the 1981 International Sym-
posium on CHDL’s and Their Application, 1981.

Tsuchiya, M., and L. V. Ramamoorthy. “Design of a Multi-Level Micro-
programmable Computer and a High-Level Microprogramming Lan-
guage,” University of Texas at Austin, Tech. Report 135, 1972.

Hill, F. J., and B. Hueg. “SCIRTISS: A Search System for Sequential
Circuit Test Sequences,” IEEE Transactions on Computers, Vol. C-26, No.
S5, 1977, pp. 490-502.

Ciaramella, A. “Testing of Microprogrammed Units,” IEEE FTCS-9, 1979,
pp. 161-163.

Su, S. Y. M., and Yu-I Hsieh. “Testing Functional Faults in Digital Systems
Described by Register Transfer Language,” 1981 IEEE Test Conference,
1981, pp. 433-439.

Milner, R. “An Algebraic Definition of Simulation between Programs,”
Proceedings of the 2nd International Joint Conference on Artificial Intel-
ligence, 1971, pp. 481-489.

Darringer, J. A., and J. C. King, “Application of Symbolic Execution to
Program Testing,” Computer, Vol. 11, No. 4, 1978, pp. 51-60.

. Crocker, S. D., L. Marcus, and D. van-Mierop. “The ISI Microcode Veri-

fication System,” Firmware, Microprogramming and Restructurable Hard-
ware, North-Holland Publ. Co., New York, 1980, pp. 89-103.

Dasgupta, S. “Some Implications of Programming Methodology for Micro-
programming Language Design,” Firmware, Microprogramming and Res-
tructurable Hardware, North-Holland Publ. Co., New York, 1980, pp.
243-252.

Hoare, C. A. R. “An Axiomatic Basis for Computer Programming,” Com-
munications of the ACM, Vol. 12, No. 10, 1969, pp. 576-583.

. Eckhouse, R. H. “A High Level Microprogramming Language (MPL),”

Proceedings of the 1971 Spring Joint Computer Conference, AFIPS Press,
Arlington Virginia, 1971.

Dewitt, D. J. “Extensibility—A New Approach for Designing Machine
Independent Microprogramming Languages,” SIGMICRO Newsletter,
Vol. 7, No. 3, 1976, pp. 33-41.

. Malik, K., and T. G. Lewis. “Design Objectives for High-Level Micropro-

gramming Languages,” SIGMICRO Newsletter, Vol. 9, No. 4, 1978, pp.
154-160.

Carter, W. C.; W. H. Joyner, and D. Brand. “Microprogram Verification
Considered Necessary,” Proceedings of the 1978 National Computer Con-
ference, AFIPS Press, Arlington, Virginia, 1978, pp. 657-664.

Berg, H. K., and W. R. Franta. “Firmware Engineering: Critical Remarks
and a Proposed Strategy,” Firmware, Microprogramming and Restructur-
able Hardware, North-Holland Publ. Co., New York, 1980, pp. 41-64.
Richter, L. “High-Level Language Extensions for Micro-Code Generation
and Verification,” Firmware, Microprogramming and Restructurable Hard-
ware, North-Holland Publ. Co., New York, 1980, pp. 233-242.

10

National Computer Conference, 1982

32

33.

34.

Davidson, S., and B. D. Shriver. “MARBLE: A High Level Machine
Independent Language for Microprogramming,” Firmware, Micropro-
gramming and Restructurable Hardware, North-Holland Publ. Co., New
York, 1980, pp. 253-266.

Williams, T. W. and K. P. Parker. “Design for Testability—A Survey,”
1EEE Transactions on Computers Vol, C-31, No. 1, 1982, pp. 2-15.
Marwedel, P. “A Retargetable Microcode Generation System for a High-
Level Microprogramming Language,” SIGMICRO Newsletter, Vol. 12, No.
4, 1981, pp. 115-123.

35.

36.

37.

38.

Van Mierop, D., S. Crocker, and L. Marcus. ‘““Verification of the FTSC
Microprogram,” SIGMICRO Newsletter, Vol. 9, No. 4, 1978, pp. 118.
Zimmermann, G. “The MIMOLA Design System: A Computer Aided
Digital Processor Design Method” Proceedings of the 16th Design Auto-
mation Conference, 1979, pp. 53-58.

Thatte, S. M. and J. A. Abraham. “Test Generation for Microprocessors,”
IEEE Transactions on Computers, Vol. C-29 (1980), pp. 429-441.
Robach, C., and G. Saucier. “Dynamic Testing of Control Units,” IEEE
Trans. on Computers, Vol. C-27, July 1978, pp. 617-623.

The 5.25-inch fixed/removable disk drive

by DON M. MINAMI

DMA Systems Corporation
Santa Barbara, California

ABSTRACT

The fixed/removable 5.25-inch Winchester drive provides combined computer pe-
ripheral support functions, such as mass storage, input/output, and backup. The
13.5-MByte total capacity (6.75 MBytes fixed/6.75 MBytes removable) is packaged
in a unit about the size of a shoebox.

Reliability has been the major factor in determining the design parameters of the
fixed/removable drive. Not only has Winchester reliability been enhanced, but
preventive maintenance has been eliminated.

11

The 5.25-Inch Fixed/Removable Disk Drive 13

INTRODUCTION

Reliable mass storage at a relatively low cost is the driving
force behind the trend toward increased use of Winchester
disk technology for small computer systems. Although the
conventional Winchester drive offers high reliability due to its
nonremovable media, it requires some form of data file back-
up. One solution is to use a tape drive for backup; this allows
adequate backup storage capacity, but it is too slow and not
form-factored for many small computer systems. Another
solution is to use a flexible disk drive, but it does not provide
sufficient mass-storage capacity without resorting to multiple
diskettes.

A better solution is a Winchester disk drive for both fixed
and removable media in a single unit that provides mass stor-
age, input/output, and backup. The 5.25-inch Micro-Magnum
5/5 (see Figure 1) from DMA Systems is the first such drive

Figure 1—Micro-magnum 5/5

with a fixed disk and a removable disk cartridge built to the
proposed ANSI standard. The Micro-Magnum 5/5 offers sig-
nificant reliability and performance advantages which include
the following:

oy

No preventive maintenance or head alignment required

2. Heads retracted from the media surface, thus preventing
damage

3. The necessity of external backup devices and their con-
trollers is eliminated

4. Reduced space and power requirements

5. Faster backup time because of a higher disk transfer rate
6. Reduced component count
7. Reduced overall system cost

The origin of the Micro-Magnum 5/5 and the product design
specifications were derived from a market survey. This survey
included inputs from system manufacturers, system integra-
tors, component suppliers, and computer industry consul-
tants. The result of this survey was a product specification
which emphasized reliability in terms of product life, data
integrity, data interchange, and freedom from preventive
maintenance.

GENERAL SPECIFICATIONS
The Micro-Magnum 5/5 is designed with 6.75 MBytes (5.0
formatted) fixed and 6.75 MBytes (5.0 formatted) removable.
The drive uses an ANSI-proposed 5.25-inch removable disk
cartridge (see Figure 2) with 5.0 MBytes of formatted data.
The front panel face is 3.25 inches high by 5.75 inches wide,
which is typical of 5.25-inch Winchester drives.

The 5 MBytes per disk formats 306 tracks with 33 sectors

Figure 2—Micro-magnum cartridge compared to the traditional
14-inch disk cartridge

14 National Computer Conference, 1982

(one spare sector) and 256-byte sectors on each surface. The
recording density is 8600 fci using MFM encoding, and the
track density is 450 tpi.

TRACK FOLLOWING

Accurate and repeatable positioning of the read/write heads is
a necessity in the fixed/removable drive in order to maintain
data interchangeability. The primary complication is the re-
movable cartridge being used as a means for data interchange
and transportability.

The drive, in conjunction with the disk cartridge, must
allow for mistracking errors, cartridge registration errors,
temperature gradients, spindle runout, and head-track width
tolerances. This mechanical error budget requires a track-
following system which will compensate for these variations.
The elimination of precise head alignment is also as impor-
tant; the market survey indicated that any such field mainte-
nance procedures would not be tolerated.

To overcome the errors due to thermal expansion, the prob-
lems of cartridge interchange, and the elimination of field
maintenance, embedded servo positioning was selected for
the Micro-Magnum 5/5. Embedded servo data (see Figure 3)
is prerecorded during the manufacturing of the drive and the
cartridge, and it is contained in the 26 bytes at the start of each
sector. The embedded servo format has been submitted to
ANSI for standardization. (A copy of the proposed servo
format can be obtained by contacting DMA Systems or
ANSL)

-— Erbedded et (User)
Servo Track
Data Data
B _
Track 101 —
A -
Track 100 8 por——
Track 99 mammed
R A
Sector/Index Coarse
And Timing Position Fine
Field {Track Position
Number)

Figure 3—Embedded servo data

Embedded servo positioning is a two-step process. First,
course positioning allows the proper track to be located; sec-
ond, the fine positioning locates the read/write over the center
of the desired track. As the desired track is being sought,
the course-positioning process is activated. The course-
positioning process uses a Gray code for each track number
and is prerecorded as part of a 26-byte servo format. As the
desired track is approached, within half a track, fine posi-
tioning takes over. Prerecorded signal segments A and B (see
Figure 3) define the fine-positioning servo bursts. The edges
of A and B are along the centerline of the tracks, so that a
head centered exactly on a track will read equal amplitudes

from both segments. If the head is off-center, one amplitude
will read higher and the other, lower. The difference is de-
tected and used as an error signal to drive a linear motor
positioner to seek a zero error to maintain the proper track
centerline position.

LINEAR MOTOR

The linear motor, in conjunction with the embedded servo
track-following system, provides not only fast access time (40
msec average) but also reliability. Figure 4 shows the Micro-
Magnum 5/5 linear motor positioner assembly.

Figure 4—Carriage head and linear motor

The reliability features of the linear motor positioner are
the following:
1. The heads are allowed to be fully retracted off the disk
surface and latched into position inside the drive.
2. Contamination control is improved due to the smaller
cartridge and drive-door openings.
3. Head gaps move in a radial line, giving the best possible
tolerance for cartridge interchange.
. The structural resonance is better controlled.
. Manufacturing of the head-carriage assembly is sim-
plified.

(S

HEAD-MEDIA CONTACT

Two problems can result from head-media contact; the head
and/or the media surface can be damaged. Therefore, optimal
data reliability can only be obtained by making it impossible
for the head to ever make contact with the media. In the
Micro-Magnum drive, the heads are never allowed to make
contact with the disk. This is achieved by a patented head
design (see Figure 5) which allows a Winchester air bearing to
be loaded dynamically onto a spinning disk. (Forty-thousand
load/unloads have been successfully completed with no dam-
age to head or media.) The heads are also retracted com-
pletely off the media when the drive is shut down.
Reliability is significantly enhanced using a dynamic load/
unload head design. Avoided are reliability compromises that
exist with typical Winchester drives, which allow heads to

The 5.25-Inch Fixed/Removable Disk Drive 15

Figure 5—DMA systems composite head assembly

start/stop on the media. Eliminated problems are the follow-
ing:

1. The heads wringing onto the media

2. The heads landing on top of contaminants even after a
purge cycle

3. Heads and/or media being damaged during transit, dur-
ing shipment, or when the system is transported from
one desk top to another

CONTAMINATION CONTROL

In typical office environments, contaminants such as smoke
and dust can cause severe damage to the heads and media.
Contamination control is therefore a very important reliability
consideration. Figure 6 shows the Micro-Magnum’s high-
capacity closed-loop air system.

SYSTEMS

[
RECI

Figure 6—Closed-loop air filtration

\TING SYSTEM

The closed-loop air filtration system is designed so that an
impeller generates sufficient system air flow to move a volume
of air through the recirculating filter once per second. (The

filter has a design life of five years, with no filter change
required in a normal office environment.) During a purge
cycle, this allows efficient removal of contaminants that may
have been introduced during the cartridge insertion.

The Micro-Magnum 5/5 drive, as well as the cartridge, have
self-sealing doors to preclude contaminants from entering
their respective compartments. The drive has a door that seals
the head port opening and keeps contaminants from entering
the drive’s clean air compartment. It is not necessary to take
any precautionary measures to assure that the cartridge in-
sertion door is secured and closed. The cartridge also has a
door that closes the head openingand a clamp that secures the
hub against the cartridge to prevent contaminants from enter-
ing the cartridge. Because the drive compartment is sealed
and not accessible, the total volume of contamination that can
enter the clean-air system is limited to the cartridge at the time
of insertion.

ELECTRONIC SYSTEM

The electronic packaging of the Micro-Magnum 5/5 was no
minor task, considering all the electronic functions that had to
be housed in a 3.25-inch by 5.75-inch by 10.50-inch volume.
Complicating the design was the necessary circuitry for the
embedded servo and voice-coil positioner.

The Micro-Magnum’s electronic block diagram is shown in
Figure 7. A dual-microprocessor system was employed to
conserve space and partition functions in order to make firm-
ware design simpler. MPU1 is dedicated to the interface and
status functions that include all controller input and output
lines, front panel functions, safety checks, and fault algo-
rithms. MPU2 receives embedded servo information from the
servo decode circuit (LSI2). This serves the basic servo func-
tions, such as track follow, seek, re-zero, load, and retracking
of the heads.

To achieve the required packing density, two CMOS gate
array custom IC’s were developed. LSI1, a 200-gate array, is
used to control spindle servo. LSI2, a 500-gate array, is used
to perform decoding of digital information in the embedded
servo fields.

An all-important electronic function is the control of the
write operation to prevent overwriting the embedded servo
fields. Overwriting the embedded servo field could result in
the loss of removable and/or fixed data. The Micro-Magnum
5/5 drive, therefore, has a series of hardware and software
safety checks that are performed before a write operation is
allowed. Hardware functions are gated directly to the write
current enable function of the head read/write chip. Also, all
the following conditions must be true simultaneously before
the logic circuits allow write current to be enabled:

1. Spindle speed must be within 0.1%.

2. Heads and head circuits must be in a safe condition; i.e.,
no shorts or opens, only one head selected, MFM data
being received.

3. All power supplied must be in tolerance.

4. Power must be safe, spindle must be on, write gate sig-
nals must be enabled on the interface, and the drive must
be selected. '

16 National Computer Conference, 1982

MICRO - MAGNUM 5/5

SYSTEM BLOCK DIAGRAM

CONTROLLER

RECORDING
HEADS

INTERFACE DISKS
INTERFACE SERVO
PROCESSOR PROCESSOR LINEAR MOTOR
DRIVER o
CONTROL :R"E'CN; meu] meu gg: LINEAR MOTOR

INPUT 8 BIT | 2 8 BIT POSITIONER

v VERTER

ERS BUS 8US
NO.! ND.2
INPUT
CONTROL C LINE + SERVO (LSI NO.2) '15:3 SPINDLE
ouTRUT bRIVERS ouTPUT DECODE - "S’::\T’g MOTOR
BuFFERS
1 1

LINE

DRIVE
DATA @ ! READ/WRITE SPINDLE 1 srnaty
IN/OUT RECEI- CONTROL

VERS

FRONT

PANEL

Figure 7—System block diagram

5. The previous embedded servo field must be decoded
properly, including a correct sector/index field and
clock-shift check code.

6. Servo system must indicate that the head is within the
“on track” limits as determined from the fine position
information.

7. A redundant spindle-speed check circuit must indicate
that the spindle is within the allowed 0.5% of normal.

8. The write protect switch for the disk to be written must
not be activated.

REDUNDANCY

There is always a possibility that data errors can occur during
system operation. Therefore, the disk drive must have the
capability to provide data redundancy and error correction in
a manner that is transparent to the user. This can be achieved
by providing spare sectors and alternate tracks on the disk, as
well as data formats that allow the controller or host computer
to provide user-transparent correction techniques.

In the Micro-Magnum 5/5, one spare sector per track and
five spare tracks per surface are provided to replace those
found to be defective. This allows 4.5% media redundancy for
the accommodation of defects. The defect-tolerant system is
further enhanced by provisions for CRC (cyclic redundancy
checking) and ECC (error-correction coding) in the data
formats.

Error-correcting technology serves to verify header and
data field accuracy, plus providing the capability for correc-
tion of errors. Most errors can be corrected by the combina-
tion of CRC and ECC techniques, and no data will be iost.
This is accomplished by using an intelligent controller or the

host computer in conjunction with the CRC and ECC formats
of the Micro-Magnum system.

Defective track correction can be handled in two ways by
the intelligent controller of host computer. These are:

1. After aseek to a defective track has been completed, the
Bad Track Flag in the first sector tells the controller that
an alternate track has been assigned. The data field in-
formation is then read and a new seek is issued to the
assigned alternate.

2. Alternatively, the alternate track catalog can be read
and stored by the controller upon the initial spindle-up
sequence after a cartridge is installed. If a seek to a bad
track occurs, the controller automatically issues a seek to
the assigned alternate track. The same algorithm can be
implemented by the host computer.

“Hard” errors can usually be corrected to protect data,
using the error-correction techniques. If a defect cannot be
error-corrected, it should be mapped into the defective sector
category and spared out by the appropriate method. If the
sector is spared while it is still a correctable defect, no data
will be lost.

When a new defect is spared and an alternate track is re-
quired, the alternate-track catalog must be updated along
with the data field information on the bad track.

DATA TRANSPORTABILITY/
INTERCHANGEABILITY

Use of a removable cartridge using embedded servo permits
a reliable mass-storage system that is transportable and inter-

The 5.25-Inch Fixed/Removable Disk Drive 17

changeable with other similar systems. The disk cartridge has
been accepted as a proposed ANSI standard for the mechan-
ical configuration of the removable cartridge; this allows the
mechanical standard to be used in all similar systems. How-
ever, no standard has yet been established for the data formats
on the 5.25-inch fixed/removable Winchester drive. With the
hope that a standard can be established that provides data file
compatibility, the following information on the data formats
for the Micro-Magnum 5/5 is presented.

Using MFM (modified frequency modulation) encoding,
the disk is organized into tracks of 10,890 bytes each of un-
formatted capacity. Each track is divided into 33 sectors of 330
bytes each. When formatted, each sector contains 256 bytes of
data, 48 bytes of format information, and 26 bytes of em-
bedded servo information. Figure 8§ shows the organization of
each sector. It is detailed below:

1. Embedded Servo Field—Track and sector location in-
formation is embedded in 26 bytes.

2. PLO (Phrase-Locked Oscillator) Sync—Consists of 12
bytes of 000’s transmitted for data separator synchro-
nization.

3. ID and Data Address Marks—a 1-byte address mark,
made unique by omitting the clock transition between
bits 4 and 5, precedes both the ID and Data Addresses.
The 1-byte, FE (hex), identifies the ID Address Mark;
and the 1-byte, F8 (hex), identifies the Data Address
Mark.

4. Write Splice—This byte is provided between the ID
field and Data field PLO Sync to turn on the write
current if data is to be recorded in the Data field.

5. Data Pad—To guarantee data integrity, a 1-byte pad is
provided between the final ECC field and the speed
buffer area.

6. Speed Buffer—A 5-byte buffer at the end of the sector
accommodates spindle-speed variations up to + 0.75%.

7. Sector Interleave—As recorded at the factory, a Sector
Interleave factor of 4 is applied to the sector ID field.
This sequence of sector ID fields is as follows: 0, 8, 16,
24,1,9, 17,25, 2, 10, 18, 26, etc.

8. CRC—This 2-byte field is used to implement the
CCITT CRC polynomial, (X*®+ X + X° + 1), for er-
ror detection in both the ID and Data fields.

9. ECC—A 3-byte field reserved for appending an error
correction code to both the ID and Data fields.

The three bytes associated with format information provide
additional data:

10. Cylinder/Head/Sector—Provision is made to address up
to 1024 cylinders, 8 heads, and 64 sectors. The head
byte also contains the two MSBs of the 10-bit cylinder
code and three 1-bit control flags listed in the following
items (11 and 12).

11. Write-Protect Sector Flag—A ONE set in this bit lo-
cation indicates to the controller that this sector is
“write-protected” and cannot be overwritten by the
host computer.

12. Bad Sector/Bad Flag Track Flags—These 1-bit flags
alert the controller that either a bad sector or a bad
track has been detected; this allows them to be replaced
by space sectors or tracks.

DHA STANDARD FORMAT

SECTOR PULSE

10

Koo
ADDRESS. ESS
MARK
-— 15'1'“-— R WRITE SpLICE X
F
18

- PLO | AJF PLO
HBECDED SERVO | oyee (3l SYRC SATA FIELD
BAA L. 000 ... s

|]

SPEED
A | BUFFER

o=
8
=

=T
= &mn

e

N ome

o ewmo
S

26 12 11| 41 12 141 - 256

NOTES:
CYLINDER HEAD SECTOR N
1. Capacity (Bytes)
Sector: Servo

718|s{43f2 1|afe|sfx|x|x| 21 |x|x|s |23 |21 2
Format 48
Data 256

iR] Sector 3%

L0 ORDER sPRRES S Track = 10,80 3 T Sectors

CYLINDER 2. Data Rate 5 Mbit/sec

L Hean (8) 3. Speed 3443 RPH & 0.5%

4. Encoding = WFH

BAD SECTOR FLAG
"1% = BAD

MSB's
CY';,{';%‘)“ — WRITE PROTECT SECTOR FLAG
*1% = WRITE NOT ALLOWED
BAD TRACK FLAG
"1t = ad

Figure 8—Data format

CONCLUSIONS

By virtue of its relatively low cost, high data reliability, and
small volume, the Micro-Magnum 5/5 5.25-inch Winchester
disk drive is destined to be a widely used mass-storage device
for small computer systems. The drive employs a number of
proven, mature technologies that are integrated for the first
time to provide a capability never before available. The only
remaining consideration is the establishment of standard data
formats that will allow universal interchangeability and
transportability.

Practical CMOS microprocessor systems

by BILL HUSTON

Motorola, Inc.
Austin, Texas

ABSTRACT

Many have felt that complementary metal-oxide silicon (CMOS) has not yet be-
come a practical semiconductor technology for microprocessor-based systems.
Recent progress has made that impression obsolete. A selection of CMOS micro-
processors is available at speeds matching N-channel metal-oxide silicon micro-
processor units (NMOS MPUs). CMOS memories have also become broadly avail-
able in the last few years. The needed peripheral circuits are now appearing. A
CMOS parallel interface peripheral provides 24 interface pins and is bus-compatible
with practically all the new-generation CMOS microprocessors. The last element
needed to assemble practical all-CMOS microprocessor systems are the small-scale
integration/medium-scale integration (SSI/MSI) logic functions. Gates, decoders,
latches, and flip-flops are typically needed to operate a bus structure of a multichip
system.

This report concentrates on the newest methods of achieving a full-performance
all-CMOS microprocessor system. The focus is on the parallel interface peripheral
and on using CMOS logic functions in practical bus connections.

19

Practical CMOS Microprocessor Systems 21

PRACTICAL CMOS MICROPROCESSOR SYSTEMS

CMOS, as a semiconductor technology, has for years had a
series of recognized benefits. Microprocessors have of course
created whole arrays of new electronic uses as well as recon-
figuring many conventional electronic products. But until
now, combining the CMOS traits with the proliferation of
microprocessors has occurred in only a small percentage of
the applications. Most of the reasons for the slow acceptance
of CMOS as a practical microprocessor technology have now
dissipated.

CMOS AS A PRACTICAL MICROPROCESSOR
TECHNOLOGY

Most of the attraction of CMOS is associated in some way with
battery powering or power saving. There are other CMOS
benefits—better noise immunity is a key one—but most
CMOS microprocessor applications use batteries for primary
or backup power. Some use other low-power energy sources,
such as solar cells or very large capacitors.

There is a long-standing impression that CMOS is too slow
for many microprocessor uses. The CMOS-is-too-slow image
is no longer valid. Metal gate MOS, whether single-channel
(NMOS or P-channel MOS [PMOS]) or complementary, is
much slower than silicon gate MOS. Most of the high volume
MOS processes today are silicon gate, which have the same
throughput capability in N-channel (NMOS and high-density
N-channel [HMOS]) as in CMOS, given the same device sizes.
However, many CMOS users intentionally slow the system
down to extend battery operating time.

Some prospective CMOS microprocessor users may have
hesitated because of a narrow choice of processors. Until a
year or so ago, only two processors were available. Some
considered the architectures difficult to accept when com-
pared to the many familiar 6800 and 8080 types of proces-
sors available in NMOS. Now, in addition to the traditional
(such as the 1802), users have 8080 derivatives (NSC-800
and 80C35) and 6800 derivates (the MC146805E2) to choose
from. Higher-performance CMOS processors are rumored in
both traditional NMOS camps. Hesitating to use CMOS
microprocessors because of limited architectural choices is
outmoded.

Another potential source of hesitation is the fear that
CMOS microprocessors are produced only in low volume and
thus will always be high-priced. It surprises some to learn that
the 1802 is Number 5 in production microprocessor volume,
according to Dataquest, behind only the 8080, 6800, Z80, and
6502. CMOS is attractive in certain volume automotive situ-

ations. Some of the newer CMOS microprocessors are part of
a family of single-chip’ microcomputers. Read-only-memory
(ROM)-based single-chips are built for dedicated volume ap-
plications. The ROM-less MPUs benefit from the volume-
driven learning curve of the single-chips when they use the
same processor and production process. There are volume
applications in a number of fields for 8-bit CMOS single-chip
microcomputers. Production volume allows costs to be low-
ered, which should reduce any hesitancy to consider CMOS a
practical microprocessor technology.

PRACTICAL SYSTEM NEEDS

Assembling a multichip all-CMOS microprocessor system
is now practical. The various elements of such a system
are considered in turn, including the microprocessor, mem-
ory, peripherals, and interconnecting glue (SSI/MSI logi
functions). ’
A typical mid-range CMOS microprocessor is the
MC146805E2. The instruction set is a control-optimized de-
rivative of the MC6800, including single-instruction bit modify
and test and low-power stand-by instructions. The interface
bus connects to external memory and peripherals using
address-then-data multiplexing, as on many newer N-channel
processors. Included are 112 bytes of on-chip RAM for stack
and data storage. A 15-stage counter is used for timer func-
tions, such as periodic interrupt generation, pulse width
measurement, and event counting. Sixteen bidirectional /O
pins are addressable as individual bits or as 8-bit ports. In
smaller systems the only external element needed is a pro-
gram ROM or electronically programmable ROM (EPROM).
The second set of elements for an all-CMOS system is
memories. Bus-compatible ROM is available with the
MCM65516, which contains 2K bytes of mask ROM in a
compact 18-pin package. The multiplexed bus is compatible
with the MC146805E2, as well as the NSC-800 and 80C35
microprocessors. Nonmultiplexed bus EPROMs such as
27C16s are now available for program storage in lower-
volume applications. One source offers an address-latched
version called the 67C16 for use with multiplexed bus micro-
processors. For data storage 4K CMOS static RAMs have
been available for some time in industry standard 4K X 1 and
1K X 4 configurations. The availability of 16K static CMOS
RAMs may improve soon. Both bus-compatible and industry-
generic CMOS memories are available for microprocessors. It
is beyond the scope of this report to survey memories deeper.
The third major element of an all-CMOS microprocessor
system is peripherals. Fortunately, CMOS users do not need
as many peripheral integrated circuits (ICs) as NMOS MPU
users. CMOS MPUs are seldom used with mechanical and

22 National Computer Conference, 1982

electrical devices that consume large amounts of power, such
as floppy disks and cathode ray tubes (CRTS).

The most basic interface element is parallel-port input/
output (I/O) connections. The MC146823 provides three 8-bit
parallel interface ports along with handshaking port control
signals in a bus interface peripheral. The latter portion of this
report focuses on this parallel interface peripheral, since its
bus interface allows direct connection to all new-generation
CMOS microprocessors announced to date.

A frequent function of a CMOS MPU system is to keep the
time of day, and often a calendar as well. The MC146818
Real-Time Clock Plus RAM maintains the time in seconds,
minutes, and hours. It maintains a 100-year calendar, includ-
ing day of the week, leap year, and daylight-saving changes.
Some of the auxiliary system functions included are 50 bytes
of uncommitted RAM, a periodic interrupt, an alarm inter-
rupt, a square-wave output pin, and a microprocessor clock
oscillator.

Other peripheral functions are available in the market. Ge-
neric asynchronous universal receiver and transmitters
(UARTS) have been available for some time from two or three
sources. Though not directly bus-compatible, they are easily
interfaced. The RCA 1802 family includes some peripheral
functions that could be useful with other CMOS processors.
Some examples are a multifunction timer and an arithmetic
chip. A little interface adapting is needed to use such parts
with the MC146805E2 type of buses, but there are situations
where it would be worthwhile. The two peripherais intro-
duced with the NSC-800 are usable on other processors with
very little adapting. The RAM plus I/O part is useful in low-
volume cases where the needed memory-to-I/O ratio is close
to that included in the part.

The fourth major element needed to assemble an all-CMOS
system is the interconnect SSI and MSI logic. Few complex
systems can be assembled totally with large-scale integrated
(LSI) circuits. Until recently the CMOS standard logic func-
tions have been slow; this trait frustrated attempts to take
advantage of the available microprocessor performance. Full-
speed “glue” parts are now becoming available in the 74HC00
family from Motorola and National. This line includes all the
popular 74LS00 family functions, at the same speed as the
low-power Schottky transistor transistor logic (LS-TTL) fam-
ily, but with CMOS power usage.

The next section of this report looks at some of the bus
interface uses for the CMOS SSI glue parts in the 74HC00
family. .

BUS INTERFACING

The practicalities of putting together an all-CMOS MPU sys-
tem are, of course, applications-dependent. This section out-
lines a few techniques that might be useful. The goal is to
trigger user creativity with ideas, not to establish a standard
way to interface to a microprocessor. For example, some ap-
plications need more memory than the program can directly
access, s memory expansion techniques are appropriate.
Many generic memories cannot accept the MPU bus control
signal formats provided.

Bus Control Signals

Frequently the bus control signals that emanate from a
microprocessor need to be modified for use by memories and
peripherals. Figure 1 shows that the MC146805E2 micro-
processor creates an Address Strobe (AS), a Data Strobe
(DS), and a Read/Write level. Figure 2 shows how these three
control signals are associated with read and write bus cycles.
The memory and I/O cycles are identical, since a common
address architecture is used. Figure 3 shows how three new
control signals may be generated. Generic memories (industry
standard Joint Electronic Device Engineering Council
(JEDEC) pin functions, as opposed to directly bus-
compatible) usually require a low-going read pulse, frequently
called output enable. RAM writes are indicated by a low-
going write pulse. Many peripherals accept similar signals.
Figure 3 shows that two gates and an inverter create the
needed read and write pulses.

ADDRESS STROBE s
DATA STROBE bs
READIWRITE °
READ
AUXILIARY [ore RB
CONTROL
MC146805E2 SIGNALS |ENABLESTROBE _
‘cMoS . —
MICROPROCESSOR |/) s
\r J/ DATA BUS

As—m] OCTAL

LATCH j
8
A Z_\ 15-BIT

5)15 UNMULTIPLEXED

- ADDRESS BUS

2 2

18

ADDRESS
EXPANSION

Figure 1—CMOS microprocessor bus interface adaptations

Static memories are not always fully static today. Though
memory retention may be static, the internal decoders and
buses may need to be cleanly waked up to initiate a successful
bus cycle. Careful reading of data sheets reveals that chip
enable inputs can no longer accept address decoding transi-
tions. Once chip enable is asserted, it must remain, without
bounce, until the access cycle is complete. The Data Strobe
microprocessor signal is a clock with clean edges that can be
ANDed with address decoding to create a clean chip enable.
The problem is that fast memories are then needed, since DS
begins quite a while after the addresses are stable. Figure 3
shows how an earlier chip enable strobe can be generated
using less than one-and-a-half packages of SSI logic. Figure 2
shows that the Enable Strobe (ES) begins with the falling edge
of Address Strobe and lasts until the end of Data Strobe. The
address is stable at the leading edge of ES, and the un-
multiplexed address remains stable for the duration of ES.

Practical CMOS Microprocessor Systems 23

ADDR VALID

ADDR VALID

.

ADDRIDATA xz‘xx (XXX pata)-—(XXADDRXXXXX DATA

~t————— ONE READ CYCLE —{-——— ONE WRITE CYCLE ———3»1

/

S\

AW

ADDRESS
ADDRESS BUS
AND DATA
BUS
SIGNALS
-
ADDRESS
STROBE AS _/—\
CONTROL
SIGNALS
GENERATED J DATA o
BY THE STROBE \
MC146805E2
MICROPROCESSOR
READ/ 7
WRITE RW /// //7/
~
("ReaD)
CONTROL
SIGNALS -
THAT CAN BE j WRITE WR
DERIVED
ENABLE
STROBE ES f
N

/\l

/
/]

N/ A\

Figure 2—Auxiliary bus control signal timing

Address Expansion

The second step in generating a larger system is to create an
extended unmultiplexed address bus. Figure 4 shows a typical
example. Most new-generation microprocessors time-multi-
plex portions of the address onto the data bus. Address bits
appear on the bus during the first part of the bus cycle and are
identified with an Address Strobe signal (Address Latch En-
able [ALE] in other processors). Then, after the memory

READ OR
RW READ/WRITE OUTPUT ENABLE -
DATA WRITE LE —
STROBE D RITE ENAB WR
DS
ADDRESS ;“
AS §l’3935____[>o__c SOME MEMORIES
3 REQUIRE A CHIP
R ENABLE STROBE
LL WITH NO ADDRESS
VoD DECODING
MC74HC00 TRANSITIONS.
MC74HC04 DQ = ES
MC74HC74 c ENABLE
= | |STROBE ES

Figure 3—Creating auxiliary bus control signals

begins its access time, the bus is switched over to carry data
during the latter portion of the bus cycle. Data Strobe identi-
fies the data portion of the bus cycle (Read and Write with
other processors). Figure 2 shows the time- mult1plex1ng
relationships.

An increasing percentage of available memories and pe-
ripherals are including address latches. Some accept an AS

DATA BUS WITH
MULTIPLEXED - 8-BIT
LOW-ORDER * DATA BUS

ADDRESS .
B7 v *

AS_ | OCTAL LATCH | DEMULTIPLEX THE
ADDRESS STROEE MC74HC373 | LOW-ORDER ADDRESS BITS

=

. 15-BIT
* UNMULTIPLEXED

BA7 BUS
BAS

A8
HIGH-ORDER :

A

|14
-]
»
2
5

DUAL ONE-
Vpp— OF-FOUR

SELECTOR
MC74HC153

PAO

1O PORT
BITS

i

ik

PAS

|

USE PORT BITS TO EXPAND THE
ADDRESS RANGE WITH PAGES

Figure 4—Extended unmu]tiplexe& address bus

i

24 National Computer Conference, 1982

(ALE) signal directly, whereas others need an ES signal as a
part of a chip enable input. Since many memories still need
unmultiplexed addresses, Figure 4 shows an octal latch to save
the low-order eight address bits.

The address expansion technique illustrated in Figure 4 uses
one MSI part, a dual one-of-four selector, and six port bits to
add two bits to the 13 address bits created by the micro-
processor. Figure 5 shows the resulting page-addressing
arrangement. A program sees 8K of logical address space split
into four 2K byte pages. A common convention would be for
the interrupt and other I/O routines to be in the fourth page,
along with a centralized page-changing routine. The remain-
ing three 2K byte pages could freely include programs and
data in whatever mix was appropriate. Each of the three log-
ical user pages can be mapped to one of four physical pages
of 2K bytes. The physical address space would include 12
pages of 2K bytes each (24K bytes total), of which only 6K
bytes are visible at any time. When a program needs data that
are not visible, it calls the executive in the fourth page (proba-
bly with a software interrupt instruction) to have the pages
switched. The executive can switch pages via the /O port
without losing control, since the fourth page is reserved as
always visible.

26K BYTES TOTAL
PHYSICAL ADDRESS SPACE

2K
S U —
8K BYTES TOTAL SNEOF P =2t o
LOGICAL ADDRESS FOUR PHYSICAL | 2K _]
SPACE PAGES SELECTED 2K
2K " _2K
USER PAGE ONE OF FOUR 2K
2K PHYSICAL PAGES [~ ok |
USER PAGE SELECTED | — — —
2K 2K
ONEOF FOUR | —“'—u _
USER PAGE PHYSICAL PAGES | _ 2K |
2K SELECTED
EXEC PAGE -
NOT
MAPPED

Figure 5—Expanded addressing with paging

The address expansion scheme outlined above is an exam-
ple of one of the possible techniques. Figure 6 shows that
other variations of the method can allow addressing to over a
quarter of a million bytes by using only three glue parts and
only the 16 I/O pins included on the MC 146805E2 processor.
Other expansion techniques could be as easily used, but they
are beyond the scope (or space) of this report. The processor
program may only have a 13-bit address, but it can access as
much memory as is needed.

Typical Expanded System

It has been shown that generalized bus control signals can
be easily created and that an unmultiplexed address bus of 15

T0
OBTAIN ONLY THESE GLUE USING THE
THIS PARTS ARE NEEDED THESE THE THE SIZE | NUMBER
TOTAL MC146805- | ADDRESS { OF THE
ADDRESS- | MC74- MC74- E2 PORT BUS LOGICAL | LOGICAL
ABILITY | HC151 HC142 PINS SIZE IS PAGE IS | PAGES IS
8K] 0 [1] 13 8K 1
15K 1 0 7 14 1K 8
26K 0 1 6 15 2K 4
29K 2] 14 15 1K 8
44K 3 0 16 16 1K 8
98K 0 2 12 17 2K 4
290K 0 3 16 19 2K 4

Figure 6—Various extended memory sizes

bits or more can be easily generated. The next step is to look
at a typical extended system. Figure 7 shows an extended
address map that fills the space available with a 15-bit address
bus created as in Figure 4. Most of the first 128 bytes are the
on-chip RAM, T/O, and timer locations. Then 16K bytes of
off-chip RAM is included, of which two 2K bytes pages would
be mapped into the logical address space at a time. The third
logical page consists of one of four 2K byte EPROMs. The
fourth logical page is not mapped and contains the control
programs in a 2K byte ROM. Of the 2K of ROM space, 192
bytes are used for I/O functions, in particular a real-time clock
and eight parallel interface peripherals. The latter would in-
terface to 192 pins, allowing for large systems.

ON-CHIP OFF-CHIP /0
- ADDRESS
ADDRESS 128 BYTES DDRES
SPACE OFF-CHIP
RAM EIGHT
PO?ESB&[E:ER 32 4K RAMs MC146823
16K BYTES PARALLEL
ON-CHIP FOUR 16K INTERFACES
EPROMSs OR 128 BYTES
112 BYTES s
ROMs 8K BYTES MC146818
REAL-TIME
1 ICLOCK 64 BYTE
16K ROM OR ROM OR EPROM
EPROM 1.8K 54 BYTES
BYTES VECTORS,
22K 256 BYTES 10 BYTES

Figure 7—Typical expanded address map

Figure 8 shows how the above address map could be easily
decoded with available glue parts. Three-to-eight decoders
are shown to decode chip enable signals for the RAM, ROM/
EPROM, and the multiple parallel interfaces. NAND gate
address range detection is shown for the peripherals. The
fourth page ROM is disabled when the peripherals are ac-
cessed. In systems where demultiplexing is not needed, the
decoders could include an address latch—the MC74HC137,
for example.

Bus Interface Flexibility

The typical extended system above includes one micro-
processor, nine LSI peripherals, and 41 memory parts. Only
10 SSI/MSI glue parts are needed to assemble a practical

Practical CMOS Microprocessor Systems 25

R‘ASI:I(:;TRJEXY 8K BYTES EPROM 2K BYTES ROM
32 MCM6514s 4 MCM27C16s MCM65516

® ONLY CHIP ENABLE
CONNECTIONS SHOWN

P F

ADDRESS DECODE ADDRESS DECODE
UNMULTIPLEXED 2 MC74HC138s MC74HC138
ADDRESS o f

BUS
15

L Ll
ADDRESS DETECT ADDRESS DECODE | { ADDRESS DETECT
MC74HC30 MC74HC138 MC74HC133

L 8

<

® A FEW ADDRESS BITS NEED PARALLEL REAL-TIME
INVERTING (ONE MC74HC04). INTERFACES CLOCK
8 MC146823s MC145818

Figure 8—Typical expanded address bus

system with an impressive set of features. The processor is a
powerful 8-bit control-oriented MPU. Interfacing to 192 inter-
face pins is provided, of which up to 32 could be interrupt
sources. The memory includes 16K bytes of RAM and 10K
bytes of EPROM or ROM. In addition, the time of day is
automatically maintained in a peripheral.

With all that system power, it is not valid to consider an
advanced larger all-CMOS microprocessor system to be im-
practical or too expensive.

PARALLEL INTERFACE PERIPHERAL

CMOS microprocessors such as the MC146805E2 include
some parallel I/O pins on the MPU part. When the on-chip
I/O is insufficient, a parallel I/O peripheral part is needed.
The MC146823 provides 24 I/O pins to an MC146805E2,
NSC-800, 80C35, or 80C48.

Figure 9 shows the 8-bit bus interface on the left and the 24
parallel I/O pins on the right. The I/O ports are looked at first,
followed by the handshake functions and the generalized pro-
cessor bus interface.

CMOS

ADDRESS/ PORT
. *
BUS 20 TO 24 PARALLEL
PORT A PORT PINS
PROCESSOR HANDSHAKE
BUS
INTERFACE BUS PORT 070 4 INTERRUPT
CONTROL B INPUTS
PORT B 0.4 POR
HANDSHAKE 0TO4 T
e MTERBUPT HANDSHAKE PULSES
INTERRUPT
RESET CONTROL PORT
—— C
20PINS
Figure 9—MC146823 Parallel Interface peripheral
Three Parallel Ports

The processor program establishes the purpose of the 24
parallel I/O pins. Figure 10 illustrates the program selection
features.

Each 8-bit port includes a data direction register. With

BUS
| 4 |
| DATA DIRECTION| | | PIN FUNCTION
REGISTER SELECT
I I
INTERRUPTS | |
HANDSHAKE DATA
- controL |P™| Reaister [|
1, |
1 1
| T l
| | FrROMPORTC
BUFFERS |~ BUFFERS
[I
BT |
PCRTS AAND BONLY | PORTS A, B,ANDC | PORT CONLY

Figure 10—Parallel interface ports

power-on reset the data direction is initialized so that all pins
are inputs. All output drivers are in the high impedance state
to avoid a situation in which two circuits try to drive the same
pin to opposite states. After power-on, the program estab-
lishes each pin as an input or an output. Each data direction
register bit establishes the corresponding port pin as an output
or an input. There are no restrictions on the number of input
or output pins, nor on which pins of an 8-bit port are inputs
or outputs.

The data register associated with each port is used primarily
for output storage. When the data direction register bit indi-
cates output, the state of the corresponding data register is
driven onto the I/O pin by the output buffers. When a pin is
designated as an input, a program read transfers the state of
the I/O pin to the processor bus, bypassing the data register.
For output bits the data register is a read/write register. A
program read of an output pin gets the state of the data
register, not the I/O pin. This permits read/modify/write
cycles, such as the MC146805E2 bit manipulation instruc-
tions, to read the port, change one or more bits, and write the
result back to the port data register.

The data register in Port A has one additional use. A hand-
shaking pin causes input data to be latched for subsequent
program reading when this feature is enabled by the program.

Four of the pins on Port C may be either handshake control
signals or Port C parallel pins. Port C thus has a pin function
select register that allows the processor program to establish
which pins serve handshaking rather than parallel I/O pur-
poses. Many system applications need only parallel interface
pins and can thus disable the handshake features.

Port Handshake Control

The four handshaking control signals on Port C may serve
the following functions:

Digital inputs

Digital outputs

Interrupt inputs

A latch enable for Port A input data
An output pulse when Port A to read
An output pulse when Port B is written

mHmoowe

26

National Computer Conference, 1982

DIGITAL INPUTS

CA1/PC4 >
CA2/PC5 >
CB1/PC6 > UP TO
CB2/PC7 > EIGHT
PCO > PORT C
PC1->] INPUTS
PC2->—
PC3 -
(A)

DIGITAL OUTPUTS

B CA1/PC4
CA2/PC5
UP 7O - CB1/PC6
EIGHT = CB2/PC7
PORT C > PCO
OUTPUTS p=PC1
> PC2
> PC3
{B)

INTERRUPT INPUTS

CA1—»]
CA2 —»=
CB1—»

CB2—»

UP TO FOUR
INTERRUPTS
MAY BE
INITIATED

LATCHED

©

INPUT DATA

OUTPUT PULSE WITH

INPUT DATA
ipon‘r A} A PROGRAM
READ OF
PORT A
CAUSES A
PULSE ON
CA2 = CA2

(E)

OUTPUT PULSE WITH
OUTPUT DATA

A PROGRAM |pPORTB >
WRITE TO
PORT B
CAUSES A
PULSE ON

CcB2 —» CB2

F

REQUEST AND RESPONSE
SIGNALS FOR
INPUT DATA

A PROGRAM
READ OF

PORT A PORT A
CAUSES A CA2

OUTPUT
TRANSITION
WHICH IS
CLEARED WITH
CA1—>= A CA1 INPUT

TRANSITION

(G)

REQUEST AND RESPONSE
SIGNALS FOR
OUTPUT DATA

A PROGRAM
WRITE TO
PORT B

CA2 =

CAl—>

INPUT PORT A
DATA LATCHED
WITH CA1
TRANSITION

(>

CAUSES A CB2
OUTPUT
TRANSITION
WHICH 1S
CLEARED WITH
A CB1 INPUT
TRANSITION

PORTB)

—a CB2

~—CB1

(H)

Figure 11—Port handshaking modes

MPU Systems

Practical CMOS Microprocessor Systems 27

G. Request and response signals for Port A input data
H. Request and response signals for Port B output data

A series of compound combinations of the above functions
are useful. For example, Items D, C, and E allow an external
source to write a byte into the MC146823, which initiates an
interrupt; then, when the program reads the data, a pulse is
returned to the external source. Figure 11 shows the eight
handshaking functions graphically. The digital input and out-
put modes are the Port C usage as already discussed.

Part C of Figure 11 shows that all four handshake pins may
initiate interrupts. Each interrupt is separately enabled; con-
trol bits are provided by the program in control registers and
separately identified in a status register available to the pro-
gram. Interrupt overrun is also separately indicated in a status
register for consecutive interupts that are not serviced fast
enough. The four interrupt functions are ORed together onto
the one output interrupt pin to the processor.

Function D in Figure 11 allows an externally provided signal
edge to latch input data into Port A. This is a convenient way
to accept asynchronous data bytes from a serial I/O, another
processor, a mechanical peripheral, or other parts.

In Parts E and F of Figure 11, a program read or write
causes the Paralle] Interface to send a pulse one bus cycle
wide. In the case of a Port A read, the output pulse is a
response signal. The output pulse with a Port B write allows
a byte of data to be latched into external hardware.

Closed-loop handshaking is provided with Functions G and
H. One input and one output handshake control pin is associ-
ated with input data on Port A and two separate pins hand-
shake with Port B output data. One signal requests data flow
with an edge; the other signal responds with an edge on the
other pin. One use for handshaking interlinking like this is to
interconnect two processors.

There is not enough space in this report to look at all the
useful combinations of the eight modes outlined above.

Bus Interface

The bus interface consists of eight bidirectional bus pins and
four input control pins.

During the first portion of the bus cycle the 8-bit bus in-
cludes four address bits to select one of the 15 addressable
MC146823 register locations. During the latter portion of the
bus cycle, the processor provides a write data byte or the
peripheral provides a read data byte.

A Chip Enable (CE) input pin tells the peripheral to accept
or ignore the current bus cycle. As such, CE must be true after
the address is stable and remain until the data is transferred.
The Address Strobe pin allows the address on the bus to be
latched within the peripheral.

Figure 12 shows the above bus functions as well as the two
interpretations of the other two bus control pins. The two
logical interpretions are called the MOTEL concept (for MO-
Torola and IntEL compatible). This allows direct connection
to processors, creating control signals in either de facto bus
standard.

In the Motorola MOTEL mode the DS input is a positive
pulse during the data portion of each bus cycle. The R/W pin

indicates during the DS pulse whether a read or a write cycle
isin progress. The other MOTEL interpretation is a low-going

MULTIPLEXED
ADDRESS & ADPINS ZQZQI’ OO0 oata 'A0DH DATA
BOTH —
“MOTEL” CHIPENABLE TEPIN W\
diad HIl Bl /
SmosE on ~\
ADDRESS _ ASPIN /\ /
LATCH ENABLE oNE A "
DATA STROBE DS PIN \ / 5\ / \
MOTOROLA
“MOTEL" MODE
READWRITE RWPIN 7/ 777/ AL .
RERD DSPIN \ /
COMPETITIVE
“MOTEL" MODE
WRITE RWPIN \ /

WAVE PATTERNS IN EITHER OF THE ABOVE FORMATS MAY BE USED AS
INPUTS TO THE DS AND RAW PINS

Figure 12—Bus interface signals

read pulse on the DS pin and a low-going write pulse on the
R/W pin. The peripheral automatically decides which inter-
pretation to use by sampling the DS pin at the time of the AS
pulse.

Used With Any CMOS Microprocessor

The MOTEL bus interface concept allows a peripheral or
memory IC to interface directly with any new-generation mul-
tiplexed bus microprocessor. The MC146823 peripheral was
designed for use with the MC146805E2 processor. But the
MOTEL concept allows it to also be used with other CMOS
microprocessor and expandable single-chip microcomputers.
Figure 13 shows the interface on a Motorola type of bus, while

. ~ [Mciasszs
ADO-/ ADO-
AD7 [\MUXED ADDRIDATA BUS av) AD7

CHIP
ENABLE|__
MOTOROLA A8-2DDR) ADDRESS =F

MULTIPLEXED Axx DECODE
BUS
MICROPROCESSORS

ADDRESS STROBE

MC146805E2 AS AS
MET%; 05, E DATA STROBE oS
. READ/WRITE _ -
G| <_INTERRUPT REQUEST |-~
RESET

RESET

Figure 13—Typical processor interface, Motorola bus

Figure 14 shows the same peripheral directly connected to
other processors. No intervening glue is needed to adapt the
peripheral to the other processor buses. Universal peripheral

28 National Computer Conference, 1982

and memory applicability has finally been achieved. (Inci-
dentally, the MC146818 Real-Time Clock Plus RAM and the
MCM65516 2K x 8 ROM also use the MOTEL concept.)

" [Mciagezs
ADO- ADO-
\Do. (‘ MUXED ADDRIDATABUS) Py
CHIP
ENABLE
As- ADDRESS —
OTHER Axx LAPPR X “hecopE CE
MULTIPLEXED
BUS
MICROPROGESSORS AL gL ADDRESS LATCHENABLE _|,
NSC800 a0
80C48 =
ETC. RD DS
WR WRITE RIW
INTFil<__INTERRUPT REQUEST |-
RESET RESET
RESET

Figure 14—Typical processor interface, other bus

Memory-Mapped Registers

The port hardware functions and the bus interface capabil-
ities of the MC146823 have been reviewed. The remaining
element is the program use of the features.

From the program vantage point, the Parailel Interface is a
block of 16 addressable locations, of which 15 are used. Figure
15 lists the seven major functions, shows which of the three
ports the function is used with, and lists the hexidecimal ad-
dress of the register within the 16 addressable locations.

HEX ADDRESSES

PORT[PORT[PORT
FUNCTION A lB |cC
PORT DATA REGISTER 2 | 3 | 4
PORT DATA DIRECTIONREGISTER | 6 | 7 | 8
PIN FUNCTION SELECT REGISTER — | =18
HANDSHAKE CONTROL REGISTER 9 | A | —
PORT DATA REG./CLEAR INTERRUPTS| 0,1 |C,D | —
INTERRUPT STATUS REGISTER E
OVER-RUN WARNING REGISTER F

Figure 15—Register functions

The port data registers are read/write locations for each of
the three ports. Each port also has a read/write data direction
register to establish pins as inputs or outputs. Port C has a
4-bit function select register to individually enable the hand-
shaking function.

Two 5-bit registers establish the handshaking modes for

Ports A and B. These bits establish whether the active input
edge of the handshake function is a rising or a falling edge.
Each of the four interrupts include an enable bit. The input
latching, output pulsing, and closed-loop response functions
are also established with bits in these registers.

A read-only status register contains flag bits for each of the
four interrupt sources. Each flag bit represents a status condi-
tion denoting whether the corresponding interrupt has been
enabled by the program. When a status flag is set and the
corresponding interrupt has been enabled, the interrupt pin is
asserted and an interrupt OR bit appears in the status register.

The program clears an interrupt by reading or writing a
specific port data byte. When a handshaking byte transfer is
to be acknowledged, the data read and write do so auto-
matically. But in many cases, the data port is not directly
associated with the interrupt function. In such cases a port
read and write could cause a pending interrupt to be lost.
Therefore the ports can also be read and written without
effecting the interrupts. Three port data addresses are associ-
ated with each of the two handshake ports. One address does
not affect the interrupt flags. The second address clears the
interrupt status associated with one interrupt source as well as
performing the data transfer. The third address does the same
thing with the second port interrupt. An interrupt can thus be
cleared with a psuedo-read of a port. The test (TST) in-
struction in the MC146805E2 does so without disturbing the
accumulator.

The last addressable location is the overrun warning regis-
ter, which indicates that a previous interrupt had not yet been
serviced when a new one appeared. The 4-bit read-only regis-
ter allows the program to find out that one or more events or
data elements have been lost.

Feature-Packed Parallel Interface

Comparisons can be made to the popular N-channel paral-
lel interfaces to see that the MC146823 includes more features
than most. Three full 8-bit ports are included in a 40-in pack-
age where some others have fewer bits. The program estab-
lishes every bit separately as an input or an output, rather than
establishing direction by groups of bits. Four separately select-
ed interrupts are included, and the interrupts may be sepa-
rately cleared. All registers are directly accessed by the pro-
gram; none are hidden. Many handshake modes are included
to allow easy interfacing to existing equipment.

CMOS IS NOW A PRACTICAL MICROPROCESSOR
TECHNOLOGY

Many have waited a long while for full-performance micro-
processor systems to be implementable entirely in CMOS.
The CMOS MPU era has finally arrived. The microprocessors
and memories are available. This report has shown that the
needed parallel interface peripheral function is now covered,
and the gate and flip-flop glue functions needed in larger
MPU systems are also now practical in CMOS.

The MC68000 family and distributed processing

by JOHN F. STOCKTON

Motorola Semiconductor Inc.
Austin, Texas

ABSTRACT

The key philosophy today is to build parts that will be upward compatible with
multiple processor systems of the future so that there is a migration path from
existing single-bus systems to the higher-performance, multiple-local-bus systems of
the future. An important parameter of these systems will be system performance,
and the need for this performance is increasing faster than vendors can increase
single-processor performance.

The need for multiple-processor systems is clear in the future. Knowing this, the
designers of the MC68000 made sure to include all the necessary hooks into the
processor design to support multiple processor architecture in the future. Some
features of the existing processor that might not be used often today will become
very important to future members of the MC68000 peripheral family. Some of these
features and systems will be discussed here.

29

The MC68000 Family and Distributed Processing 31

THE NEED FOR DISTRIBUTED PROCESSING

As office-oriented computer systems become more user-
friendly, and as more of the operating systems and applica-
tions programs are written in high-level languages, there is a
much higher demand placed on microprocessor vendors to
keep offering ever increasing amounts of performance for
approximately the same cost as before. To meet this higher
performance requirement, microprocessor vendors cannot
simply rely on single-bus structures to keep increasing per-
formance. The solution to increasing performance will be to
rely heavily on multiple processors, each having its own local
bus, operating independently. To take advantage of this solu-
tion, microprocessor vendors must build in this upgradability
early in the design of their microprocessor families.

FAMILY PHILOSOPHIES

The key philosophy today is to build parts that will be upward
compatible with multiple-processor systems of the future so
that there is a migration path from existing single-bus systems
to the higher-performance, multiple-local-bus systems of the
future. The key parameter of systems of the future will be
system performance, and the need for this performance is
increasing faster than single-bus processor systems can in-
crease their performance. The need for multiple-processor
systems is clear in the future. Knowing this, the designers of
the MC68000 made sure to include all of the necessary hooks
into the processor design to support multiple-processor archi-
tectures in the future. Some features of the existing processor
that might be used often today will become very important to
future members of the MC68000 peripheral family. Some of
these things will be discussed specifically here.

The MC68000 was specifically designed to support high-
level languages; the register set of the processor was inten-
tionally kept general-purpose, with no dedicated registers that
compilers have a difficult time using. Each register was de-
fined so that it could be used as a pointer register as well as a
data register. Special-purpose instructions were added to in-
crease efficiency of procedure calls and re-entrant routines.
These instructions were the “link,” “unlink,” ‘“load effective
address,” and “push effective address” instructions. As well,
instructions were added to streamline context switches via the
“move multiple” instruction, which can stack any portion of
the register set onto the stack with one single instruction.
Operating system support was also an important design con-
sideration in the design of the MC68000. Distinctions like
user/supervisor separation were included to help increase sys-
tem reliability without a large amount of software overhead.
Another important feature is the “TEST-AND-SET” instruc-
tion, which allows for truly indivisible read-modify-write

cycles on the 68000 local bus, even when there are multiple
bus masters. This instruction depends heavily on the asyn-
chronous nature of the 68000 bus, since it is possible to lock
out other accesses by maintaining ownership of the bus
control lines. Because of this, it is possible to keep other bus
masters off and make the read-modify-write cycle truly
indivisible.

Another important philosophy was that the processor ex-
tensively checks to insure that only legal instructions are being
executed, that word operations occur on word boundaries,
and that users do not try to execute privileged instructions.

The new family of peripherals will also consistently support
these philosophies. One very important philosophy that the
68000 supports is the notion of an address space. The function
code lines and the bus grant acknowledge (BGACK) lines
form four additional address lines that are used to indicate
which address space is currently being used. The Memory
Management Unit (MC68451) uses these function codes to
provide translation and protection according to the current
address space in use. These function codes are shown in Fig-
ure 1. The advantage of using these is that all transfers can
take place in logical space and be mapped and privilege-
checked by the Memory Management Unit, thus increasing
system reliability.

The family of peripherals will all consistently support the
asynchronous bus structure of the 68000 as well. These philo-
sophies will allow systems to be built with the MC68000 family

FC3 FC2 FC1 FCO STATE

RESERVED

USER PGM

USER DATA
RESERVED
RESERVED

SUPV PGM

SUPV DATA

IAK CODE

BUS SLAVE SPACE

el R e Nl e e oleoNo e o N w)
HPHEHPOOOOHHMEHOOOO
RS OOFRFOOFRFOORKELFOO
HOFFOHROROROHHOH,HOFHO

Figure 1—Support of bus masters and bus slaves in logical and physical
memory space by function codes supported by the 68000 family

32 National Computer Conference, 1982

that will be upward expandable and not require redesigning to
keep increasing performance in the future.

In the future, as mentioned previously, the two things that
will need processor performance will be high-level languages,
and user-friendly software. The high-level languages place a
high demand on systems because of their inefficiencies rela-
tive to assembly language programming and the protection
and checking that they offer at run time. A fairly efficient
compiler today still produces between 2 and 2.5 times as much
code as a comparable program written in assembly languages.
Many times the compiler-generated code can be optimized,
but the ratio still rarely drops below 2. As more of the oper-
ating systems are written in high-level languages, these ineffi-
ciencies are carried along and compounded, since both the
application program and the operating system are much larger
than they need to be. These performance degradations are the
cost of easing demands on programmers and making software
more portable. The other thing that will affect system perfor-
mance will be user-friendly software, which has extensive
error checking/recovery, and user aids in the sense of online
documentation and “help” commands. These things were not
a problem previously, because the available processors simply
did not have enough performance. Now microcomputers offer
performance comparible to minis and low-end mainframes, so
it is reasonable to employ these practices. The problem now
is that the growth of inefficiency is faster than the increase of
system performance offered by microprocessor vendors. The
solution is to get on a faster performance growth curve than
single-processor systems can offer.

The way to do this is obviously to depend on multiple pro-
cessors, each having its own local resources, and a commu-
nication mechanism between each two elements. To take full
advantage of this, the problem being solved must be highly
parallel; fortunately, today in the office environment, the
problems are fairly parallel. Additionally, in an effort to re-
duce the cost of CRT terminals, by using microprocessors
with local resources as the heart of the CRT controller design,
the basis of a distributed processing system has been estab-
lished. Tightly coupled multiprocessor systems will be devel-
oped for solving specific problems that are limited in scope,
and both moderately and loosely coupled systems will be de-
veloped because of economic pressures.

WAYS TO SOLVE THE PERFORMANCE PROBLEM

As previously mentioned, multiple processors will offer the
raw performance required to do the job in the future, but their
interconnection topology is a critical issue. The basic three
ways to use multiple processors are (1) tightly coupled, (2)
moderately coupled, and (3) loosely coupled. The tightly cou-
pled systems typically share one instruction bus and rely on
each processor’s taking a large number of internal cycles for
each external (bus) cycle. The moderately coupled systems
have multiple processors, each with its own resources on its
own local bus, and depend on some mechanism for commu-
nications with the rest of the system. Usually this mechanism
is a high-speed DMA channel or a dual-ported mailbox. Each
solution offers a fairly high bandwidth communications chan-
nel to the processor. The loosely coupled processors depend

again on multiple processors, each with its own resources; but
this time the communications mechanism is a serial data com-
munications link, which typically has about one-tenth of the
bandwidth of the moderately coupled solution. The loosely
coupled solution does have the advantages of allowing each
processing node to be some distance from the other nodes.

WHY NOT TIGHTLY COUPLED SYSTEMS?

There are several disadvantages to tightly coupled muiti-
processor systems, the main one being that the system quickly
becomes bus-bound. Figure 2 shows a typical tightly coupled
system block diagram. Each processor added competes for an
ever smaller percentage of the available bus bandwidth until
there is none left. An example of this would be to try to tightly
couple two MC68000s. Each MC68000 executes on the aver-
age 5 cycles internally for each 4 external cycles. The fact that
the average instruction time is close to what the bus cycle time
is means that one 68000 uses between 80% and 90% of the
available bus bandwidth. The MC68000 makes better use of
the bus than many other processors, and because each proces-
sor will try to get as much of the available bandwidth as
possible, the addition of a second processor on the bus would
allow it to have a maximum of 20% of the bus bandwidth. The
second processor would at best be running at 25% of the
throughput that it could have if it were on its own local bus.
The net improvement in performance resulting from the addi-
tion of the second processor would be at best a 25% increase,
and more than likely would not be more than 10% because of
bus arbitration overhead. In some instances it does make
sense to tightly couple processors on one local bus, but this is
the case when the second processor can execute some partic-
ular instructions much faster than the current processor. An
example of this would be the addition of a floating-point co-
processor, which can do floating-point calculations an order of
magnitude faster than the current MC68000 can. The effect on
performance is positive in this instance rather than negative
because there is an inherent isolation in what each processor
would be trying to do, so processors would not compete heav-
ily for the bus. The guideline for deciding to add a coprocessor
to the system should be that the problem be isolated well
enough that the communications overhead would not be more
than 10% of the total time taken to solve the probiem. This
insures that the additional performance of the dedicated co-
processor is not offset by the communications overhead of the
addition.

The trend in the future will be for processors to take fewer
cycles on the average for each instruction, thus trying to oc-
cupy 100% of the available bus bandwidth. When the pro-
cessor has instructions that execute that quickly, performance
improvements must then come from providing more memory
bandwidth. This is usually done by either adding a hierarchial
memory scheme or widening the bus interface. These trends
will help the problem; but the message is still clear that the bus
is a scarce resource and that the way to get more performance
in the future is not to try to tightly couple processors, except
when they do not compete for memory bandwidth resources.

Another way of solving the performance problem is to de-
pend on a loosely coupled network of processors, all commu-

The MC68000 Family and Distributed Processing 33

18 BIT 16 BIT
MICROPROCESSOR 1 MICROPROCESSOR 2
MC88000 MC68000
DATA A _DATA
128K | ADDR ADDR_| 128K
——4"‘" RAM
LOCAL BUS LOCAL BUS
DATA A 1 2 N_DATA
BOOT | ADDR NADDR_| oot
ROM ROM
REQ REQ
ACK D4 ACK
cn k| |
A1-23 K| PCL PCL
L DONE |—t—a— < . DONE j
DO-15 (9 HANDSHAKE orc
LOGIC
DMAC DMAC
GAB GBA
MCB8450 oc oC MCB8450
RIW, AB BA RIW,
GAB 1—]s1
RIW, s2
GBA
RIW, 745226(4)
BUS TRANSCEIVERS

Figure 2—Tightly coupled multiple 68000 system

nicating over a serial data communications link. This topology
works particularly well when the problem to be solved is
highly parallel and isolated, with a low communications re-
quirement. An example of this would be a distributed word
processing system, where editing is done locally, with a local
processor and local memory resources, and a datacom line to
link the work station to a file server or a printer. The system
performance in this instance is much higher than previously,
because the problem is parallel enough to allow concurrent
operations. It is intuitively known that this solution works best
in applications like distributed word processors but starts to
suffer from contention problems when the application is heav-
ily dependent on the distant resources. An example of this
second application might be an airline reservation system,
where the time spent editing the data locally is small in com-
parison to the time required to transmit it. Figure 3 is a block
diagram of a loosely coupled multiprocessor system.

Yet another solution has the advantages of the loosely cou-
pled topology and does not suffer from the low bandwidth
interconnection between processing elements. This is the
moderately coupled system. In this instance each processor is
still on its own local bus, but the interconnection to the other
processors is done through either a dual-port RAM or a DMA
channel. This approach again lends itself to problems that are
inherently concurrent, but does not suffer as much when the
problems are communications-dependent. Figure 4 shows a
typical moderately coupled multiprocessor system.

Motorola has two products that depend on this topology to
allow for concurrent processing. These products are the
MC68120 Intelligent Peripheral Controller and the MC68122
Cluster Terminal Controller.

HC68000 MC68000

LOCAL
RESOURCES

LOCAL
RESOURCES

SERIAL DATA SERIAL DATA

COMM
INTERFACE

L] COMM
INTERFACE

l

R

HIGH SPEED SERIAL DATA LINK

Figure 3—Loosely coupled processor topology

THE MC68120 INTELLIGENT
PERIPHERAL CONTROLLER

The MC68120 Intelligent Peripheral Controller is a general-
purpose peripheral controller that consists of an 8-bit CPU, 2
Kbytes of read-only-memory, 128 bytes of RAM, a 16-bit
timer, a serial communications interface, and 23 parallel 'O
lines. These I/O lines can be used to connect to peripherals
directly, or, more importantly, can be used to form an
MC6800-type bus that can be used for general-purpose VO
processing. With the 68120 in this mode, I/O burdens can be
removed from the central CPU and more time can be devoted
to instruction processing, resulting in increased performance

34 National Computer Conference, 1982

BAM IN A MC68000 LOCAL BUS

ue ADDRESS BUS
DATA BUS
R]
80
8GACK
MEMORY o
8G BR
BR DBR7
ue
BG DBG7
MCO8452
J BGACK BAM
oisk | BR _ DBAe
coNTR L 89 DBOG
] BGACK
BR DBRS
¢RTC 80 bBos
BOACK BGACK

Figure 4—Moderately coupled multiprocessor topology

due to the parallelism. Communications is done through the
dual-port RAM that is on board the 68120, and access permis-
sion is controlled via the six semaphore registers. Each regis-
ter contains a bit that indicates whether the resources it de-
scribes are currently in use and a bit that identifies which
processor (master or slave) used it last. These registers are set
up under software control to correspond to common resources
between the MC68000 and the MC68120 and are not strictly
limited to the dual-port RAM.

Figure § is a block diagram of the MC68120 connected in a
system with a private bus, acting as an I/O processor.

The Cluster Terminal Controller

The MC68122 Cluster Terminal Controller is an example of
an MC68120 that has been programmed to act as an interface
processor between a cluster of terminals and a host processor.
The CTC uses the private bus to communicate with multiple
Asynchronous Communications Interface Adapters and the
dual-port RAM as a message buffer. The CTC can support
four terminals at 9600 baud, or as many as 32 at 300 baud. This
restriction comes about as a result of using the dual-ported
RAM as a mailbox mechanism. If the mailbox were larger, a
correspondingly larger number of terminals could be sup-
ported; however, it was found that this ratio of terminais to
processors was quite acceptable. The performance advantage

18 INT 1T
WICROPROCESSOR | MICROPROCESSOR 2
WCH000 MC$0000
DATA
ADDR | 12K
RAM
LOCAL BUS
2 N_DATA
N ADDR | pooT
ROM
—>{REQ |
> ACK
—
PCL »
D W [
|’

oTC

745226(8)
BUS TRANSCEIVERS

Figure 5—System block diagram of an MC68120 being used as an I/O
processor

is obvious, since now the Cluster Terminal Controller has
effectively reduced the number of interrupts to the host sys-
tem from around 4000 per second to 60 per second. Assuming
that the interrupt latency of the 68000 system was around 30
microseconds per interrupt and the return overhead was
around 20 microseconds per interrupt, the operating system

The MC68000 Family and Distributed Processing 35

overhead can be reduced from 19% to 3% (this calculation
assumed four terminals each running at 9600 baud, shipping
average buffers of 64 characters through the dual-port RAM
buffer).

The performance increase speaks for itself in this instance.
Figure 6 shows the Cluster Terminal Controller in a typical
system environment.

SUMMARY

In summary, the processors and peripherals of tomorrow will
be more performance-oriented and will have to be well
thought out so that they can be upwardly expanded without
requiring a major system redesign. In this situation the cus-
tomer will be in a critical position, since it will become in-
creasingly more difficult to mix vendors’ parts and the vendor
will have a stronger influence over the customer’s system. For
these reasons the customer should give special consideration

MC88122 TYPICAL SYSTEM CONFIGURATION

MC68000/
MC6809

MS 68122
CLUSTER
TERMINAL
CONTROLLER

SYSTEM BUS

Figure 6—Block diagram of the CTC system

to the vendor chosen to make sure that there is a consistent,
well-thought-out growth path from current products to the
products of the future.

Using operational standards to enhance system performance*

by DAVID R. VINCENT

Boole & Babbage
Sunnyvale, California

ABSTRACT

There are only three reasons for a data center to vary from service level objectives,
i.e., volume, mix, and efficiency. The first two are aspects of user behavior, while
only the third is under the full control of the data center. With the proliferation of
online systems, user behavior is affecting the data center in realtime. Management
processes, technology and software tools exist to provide the basis for scientific
management of the data center. Key to this endeavor is the ability to model the
system and present in graphic form the relationship between the system and user
behavior characteristics. This paper points out the source of data, existing software
tools, and graphic methods and includes data and the results from a study and
simulation of a data center.

*Published in the 1981 CMG-12 Conference Proceedings, New Orleans, December 1981. Phoenix: Computer Mea-
surement Group, Inc., 1981.

37

Using Operational Standards 39

One of the most outstanding individuals to come out of the
American Industrial Revolution was a young man by the name
of Frederick W. Taylor.t Taylor’s “scientific management”
had a large effect on the tremendous surge of affluence we
have experienced in the last seventy years which has lifted the
working masses in the developed countries well above any
level experienced before, even that of kings and queens of old.
Taylor’s analysis of work and resultant method improvements
resulted in production gains unequaled in history.

His analysis of work in the 1880’s was exemplified by his
study of shoveling iron ore in a steel mill. In this study, he
found gross inefficiencies in the actual process of shoveling.
By breaking the motions and actions of the workers down into
measurable segments, he was able to develop better work
methods (something like tuning a computer) and standards of
performance so that output could be judged on a day-to-day
basis.

This work was finally completed, as we now know it, shortly
after he passed on during World War I, at which time Amer-
ican industry in general began to adopt his principles. Some of
Taylor’s disciples carried on his work thereafter; notably,
Frank and Lillian Gilbreath (who were the subject of a movie
“Cheaper by the Dozen”) and Henry Gantt, who initiated
project scheduling in a Gantt Chart. The common interest
uniting those people was the analysis of work and translating
that analysis into more productive and efficient procedures
and flows of work.

The analysis of work involves the following:

1. The identification of all processes necessary to produce
an end product or result

2. The rational (and manageable) organization of the se-
quence of operations so as to make possible the optimal
flow of work

3. The analysis of each individual operation or process in-
cluding measurement and historical trending

4. The integration of the above into an overall process of
producing a product or result

This established process has been used successfully for dec-
ades in American industry (and Japanese, and German, and
...). It is my contention that the size and complexity of the
data center has now evolved to a point where this method-
ology may be applied in greater depth to realize significant
economic benefits.

The role of the data center in the organization to which it

‘+Actually, Taylor was preceded in philosophy by another “irascible genius,”
Charles Babbage, who documented some of the earliest forms of scientific
management in his most successful book, On the Economy of Machinery and
Manufactures (1832). However, it took Taylor to rediscover and implement
practical scientific management in America.

belongs has increased from simple payroll and accounting
applications in the 60’s (remember “tab runs”); through in-
ventory and distribution systems in the 70’s; to online, real-
time management and operational applications in the 80’s. A
good example of the online operational application of the 80’s
is the automated teller systems in banks. In this case, the data
center has gone to a point where it actually interacts with bank
customers.

As the data center evolves towards a utility-like process, the
end product of the data center is service. With the prolif-
eration of online systems, service has become highly visible to
the user and a much more tangible element in top manage-
ment consideration. In fact, service levels have become so
visible to the world outside the data center that, to a large
extent, they are considered the measure of the data center’s
performance. The perception of service falls into three basic
categories: £

1. Online response time
2. Batch turnaround
3. Availability

When one of these is outside a user’s expectation, the DP
manager’s phone begins to ring with compliants. Moreover,

‘the business environment in which the DP manager now lives

is one that expects him to manage his operation the same as
any other functional unit of the enterprise. At this point,
many DP managers are beginning to feel the strain of trying
to negotiate and maintain service levels without the benefit of
having fully implemented traditional scientific management
principles in their data centers.

One major element of scientific management is the need to
understand the elements of the service to be performed and
the variables that can affect them. These variables have one of
two sources: data center operation or user behavior. There
are many data centers that have not yet quantified the differ-
ence in, say, response time caused by data center inefficiency
as opposed to that caused by user behavior. This is because
the analysis of work has not been related to these two factors.

These data centers are usually perceived by their users as
being poorly run because all variances from negotiated re-
sponse times are attributed to the inefficiency of the data
center. When analyzing work, there are in fact only three
universal causes of deviation from a standard which will cause
response time to be better or worse than plan:

1. Volume
2. Mix
3. Efficiency

tThese were the first three items listed in a poﬂ done in Arizona with 150 DP
managers. Appendix A contains a full list prepared during the 1981 EDP
Performance Management Conference.

40 National Computer Conference, 1982

TABLE I—Workload utilization report

Workload Standard Total SWU’s (000)
work units -
Job P A V (000) P A v
Al123 4 6) 170 680 1020 (340)
B357 8 3 5 80 640 240 400
C896 10 15 5) 300 3000 4500 (1500)
Totals 22 24 (2) 4320 5760 (1440)

The financial term for these deviations is variance and sim-
ply means the difference between planned versus actual re-
sults. The first two variances are attributable to user behavior.
The third variance is the only one that can be attributed to the
operating of the data center. In essence, the planning and
anticipation of the volume and mix considerations (user be-
havior) are much of what capacity management is all about.

In this paper, I will explore methods of determining the
relationship of volume, mix, and efficiency in the current
system and how we might predict performance at various
levels. The goal will be to define performance curves giving
standard levels of service at varying levels of volume and mix.

Volume is a measure of activity in terms of jobs or trans-
actions by job or transaction type. The various jobs or
transactions in types result from the differences in computer
resources consumed to process that particular job or trans-
action. Differences in volume can be measured by comparing
forecast or plan to actual. For example, the running of Job
A123 resulted in the following volumes:

Plan times Actual times Variance
Job run run (Plan—actual)
A123 4 6 2

The volume variance in this case is expressed as 2 jobs over
plan. In terms of resources expressed in standard work units**
it is 2 times planned resource per run of Job A123. Let’s say
Job A123 should use:

Units
(000)
CPU standard work units =170
I/O *
Memory *

Total standard work units =170

Therefore, the volume variance is 2 times 170,000 SWU’s
units or 340,000. This may also be expressed in terms of dol-
lars if a standard cost per SWU’s can be calculated and
applied.

Now let’s take an example where there is a volume and mix
variance. Let’s suppose that we have 22 jobs that require a
total of 4,320,000 SWU’s (an average of 196,364 per job).

**For this example, a standard work unit will be considered for the case of CPU
only. The standard work unit is basically CPU time factored for the relative
power of the CPU.

The actual activity turns out to be 24 jobs requiring a total
of 5,760,000 SWU'’s for a variance of 1,440,000. The matrix of
the above with additional information is then constructed as
shown in Table I.

The volume variance is calculated:

Planned SWU’s

Planned Workload Y0 ume Variance

Variance of job runs X
The volume variance is calculated:

Planned SWU’s
Planned Workload

Variance of Job Runs X

= Volume Variance

1. The variance of job runs is calculated by subtracting the
actual total jobs run (24) from the plan (24) with a re-
sultant 2 jobs run over plan. The brackets indicate that
this variance will have an unfavorable impact on data
center performance.

2. Planned SWU'’s divided by planned workload is in fact
the planned rate of SWU consumption for a job from
this workload.

3. The volume variance is then a function of the jobs run
over or under plan times the planned resource (SWU)
consumption rate. This isolates those resources con-
sumed over or under plan as a result of users running a
different number of jobs than planned.

4. The numeric calculation of volume variance is then:

4320

(2) X T = (392.8)

The mix variance is calculatedt{+ as follows:

Planned SWU’s
Planned Workload
calculated for use in the volume variance.

2. The actual SWU rate is the key element in the calcu-
lation of the mix variance because the difference be-
tween the planned and actual SWU rates is a result of a
workload with different elements.

3. The difference in the SWU rates is multiplied by the
actual workload.

4. The numeric calculation of this example is then:

1. The planned SWU rate () was just

mix variance = (%—0- - %) x 24 = (1047.2)

The mix variance is the amount of standard work units
consumed over or under plan as a result of having differ-

11In this case, the SWU’s per job are not varied. As can be seen in the next
example, they are varied and this will result in an efficiency variance. The
formula for calculating mix variance would be modified to reflect the fact that
both mix and efficiency variance contribute to the difference between the
planned and actual SWU rate. The revised formula would then be:
Planned SWU'’s Actual SWU’s .
Planned Workload ~ Actual Workload ~ °tua! Units

—Efficiency Variance = Mix Variance

Using Operational Standards 41

TABLE II—Workload utilization report

Standard
work units Total SWU’s
Workload (000) (000)

Job P A \'% P A \'% P A A%
Al23 4 6 2) 170 165 5 680 990 (310)
B357 8 3 5 80 100 (20) 640 300 340
C896 10 15) 300 500 (200) 3000 7500 (4500)
Total 122 24 2) 4320 8790 (4470)

ent jobs run than were planned which, in turn, con-
sumed different amounts of resources. The summary of
the variance is then:

Volume Variance (392.8)
Mix Variance (1047.2)
Total Variance (1440.0)

Now we can expand the same example to demonstrate an
efficiency variance. Let’s say that we have the data in Table II.
In this case, the SWU’s consumed per job were different than
planned. Since we have kept everything the same except the
actual SWU’s per job, the volume and mix variances are ex-
actly as previously calculated.

The efficiency variance is calculated by:

(Planned Job SWU;, — Actual Job SWU,)

X
Actual Jobs, = Efficiency Variance,
+
(Planned Job SWU, — Actual Job SWU,)
X

Actual Jobs, = Efficiency Variance,

1. The total efficiency variance is a sum of the individual
efficiency variances calculated for each job run.

2. Each job variance is calculated by multiplying the actual
runs of the job times the job’s SWU variance (planned
minus actual SWU’s to process each run of the job).

3. The calculation would then be:

Actual

times Efficiency
Job job ran SWU Variance Variance
A123 6 5 30
B357 3 (20) (60)
C896 15 (200) (3000)
Total Efficiency Variance (3030)

The new total variance summary is then:

Volume variance (392.8)
Mix variance (1047.2)
Efficiency variance (3030.0)

(4470.0)

This says that the data center performance of running these
jobs, especially Job C896, suffered either because of (1) a bad
application program, (2) some system deficiency, (3) a bad
estimate of what it would take to run the job, or (4) a bit of
all three.

It should be noted that user behavior caused 32% of the
total variance. Often, the user behavior element contributes
even more to the total variance, especially at peak periods.

Where can SWU’s be obtained? Most computer systems
have some kind of log that accumulates resource usage. CPU
time is the easiest measure, but relative CPU power differ-
ences dictate that adding pure CPU time from different CPU’s
might be erroneous over time. IBM has offered a solution
with MVS by providing service units which are internally cal-
culated. These service units are indeed CPU time times an
internal power factor which result in theoretically compatible
service units over a variety of IBM CPU’s.

The Institute for Software Engineering has also provided a
great deal of literature in this area which deals with software
physics. The direction of this work is somewhat similar to the
service unit methods built into IBM and PCM systems, but is
much more complex.

So far, the analysis of variance has focused on service units
or the amount of work going through a data center. How do
these translate to levels of service?

The data processing work plan basically consists of putting
out the required volume and mix of work as a basic require-
ment, and on a timely basis as a second but equally important
requirement in most shops. We can be sure that capacity has
been exceeded when the data center physically cannot process
the required workload even if it were to run a full three shifts
per day, seven days a week. But below this level, there are
other considerations that become practical limitations of
available hours to do data processing work. The variances
analyzed earlier in this paper will affect the timeliness of the
data turnaround, especially in online systems. Plans of user
workload are especially important during the peak online re-
quirement that occurs during the normal five-day work week.
This is especially important if the data center is very involved
in the basic business of the company with which it works, such
as a bank or department store.

What we’re really talking about here are the end user’s
work schedules and how that affects the ability of the data
center to plan and deliver services matching their schedules as

42 National Computer Conference, 1982

postulated in the User Behavior Elasticity Theorem, 11 which
states that the degree to which the data center can influence
end-user behavior is inversely proportional to the degree that
data processing is involved in the basic business of the orga-
nization. This can be illustrated by two examples.

The first is in the banking industry where automated tellers
are being implemented. The data center cannot influence the
end users of this application to any noticeable degree because
the bank’s basic business depends upon having the automated
tellers operating when its clients (e.g., depositors, with-
drawers) want to make a transaction. Chargeback schemes,
management pressure, and the like will have little or no effect.
On the other hand, a company producing buggy whips that
has not integrated data processing into its basic business will
tend to be much more flexible in terms of end-user behavior
because production and distribution will continue whether the
data center runs or not. Hence, it is more elastic as charging
schemes and management pressure are applied.

We are also talking about the necessity for conscious man-
agement decisions regarding the economic benefits of achiev-
ing a given online response time versus the system costs that
will be required to provide that level of response. Or, as in
another case, the adding of another application to the online
system in light of its potential impact on the response time of
current users and applications may or may not be possible
under the current configuration because of the impact it will
have on the service required for other applications. This is
where performance management comes in, specifically, the
analysis of performance data. What we want to know is which
user-controlled variables, i.e., volume and mix, will affect
service level performance. Those of us who have been track-
ing this type of data over time know what happens when a
CPU gets over 90% busy and are well aware of the exponen-
tial degradation of service levels that occurs beyond this level.
This is also true for many other areas within the system,
depending on where the system bottleneck is. Are there tools
that will identify such sensitive areas in the system? If so, how
might they be applied?

The software tools and sources of data needed to perform
this kind of analysis are readily available. You probably have
some of them installed on your system already.

For the purpose of this paper, I will deal with those products
that operate in the IBM MVS environment. However, other
systems collect data on a similar basis; so the concepts
presented here will apply to other environments as well.

In 1972 IBM introduced MVS with almost no software tools
for control. Even today, IBM provides only a minimum of
such tools. However, as MVS (and such subsystems as TSO,
IMS, and CICS) has matured and taken hold in the market-
place, a number of independent software firms have devel-
oped and are marketing many tools which are available for the
data center to use. These tools also go a long way towards
freeing the expensive and scarce systems programming staff to
concentrate on day-to-day system optimization and produc-
tivity, rather than long-term system monitoring and capacity
management.

$1This is my theorem developed from personal observations and many discus-
sions about chargeback systems.

Since their initial introduction in the late 1960’s, these tools
have become easier to use and the outputs easier to interpret.
The expertise of a veteran systems programmer is no longer
required to implement effective performance controls.

Another major change is a conceptual one. In the beginning
these control tools were introduced on a piecemeal basis.
Now, however, many have been integrated into a cohesive
architecture for capacity management at the system level.
Exhibit 1 [Appemdix B] is an example of such an integrated
approach with the following distinct levels of data center con-
trol activities:

Level 1— Systems programmers and operations personnel
are working at this level on the day-to-day task of getting the
work out and maintaining system availability and response to
user-specified service levels. In this level of effort, realtime
monitors show system and subsystem internal status so that
problem areas may be detected and resolved. Early warning
mechanisms driven by operator-defined thresholds simplify
the task of identifying problem areas and systematically alert
console operators. Another objective of this level is to opti-
mize system performance by tuning.

Level 2—The objective of this level is aimed at the next step
above monitoring system internals. The major concern is
achieving end-user service levels and establishing the extent of
system availability for processing the various types of work.
The basic orientation of this level is towards the fulfiliment of
end-user response and availability requirements. Standards of
performance derived from the configuration capability and
user requirements are established and monitored here. Basic
cost accounting concepts are applied at this level to track
financial performance.

Level 3—This ultimate level is aimed at the DP manager’s
ability to predict the results of future workload and service
level objectives based on various alternative hardware and |
software configurations. This is a level of vital concern to him
because a job well done here will substantially increase his
chances of success in future demand situations.

If effective and sufficient effort has taken place at all three
levels outlined above, the data center manager will have a
properly tuned system and will be ready to take the next step
into capacity management. Let’s stop here for a moment and
cover these basic tools:

What Are Realtime System Monitors?

The word “realtime” is broadly defined to mean techniques
relating to online display capability. In this case, a realtime
monitor displays what is currently going on in the internals of
the system. This is different from realtime inquiry to a data
base of performance data that has been collected and can be
displayed at any given time. A good realtime monitor will
have the following major characteristics:

. Early-warning mechanisms

. User-defined threshold values

. Clear and easy-to-understand screens

. Graphic displays showing current system performance in
current time periods

5. Menu-driven screen selection

AW RN e

Using Operational Standards 43

6. Availability of comprehensive data for system event
monitoring

7. Sufficient information for problem definitions, resolu-
tion, and corrective action

Early-warning mechanisms and user-defined threshold val-
ues will relieve the system programmer of the task of con-
tinuously monitoring the system and looking for areas of
potential or actual problems. By having warning messages
flashed to the console operator, the system programmer
would be called in only in the case of an actual problem where
his skills are needed.

For example, a master terminal operator using an IMS real-
time monitor may get a warning that an important short-
running transaction cannot be processed because a long-
running job of lesser importance is using the data base record
needed by the short-running transaction. In this case, the
problem can be resolved by the operator rather than calling in
an IMS system internalist. The operator may cancel the long-
running job, thereby allowing the short-running transaction
access to the data base, and then reschedule the long-running
job to be run later.

On the other hand, the master terminal operator may get a
warning that scheduling failures are up 30%. Now an IMS
system internalist is needed to determine why. By using the
realtime monitor and the screen menu, he may quickly call up
that information he will be needing to resolve the problem.
Clear and easy-to-understand screens along with graphic dis-
plays will assist the operator in defining problem areas when
he calls for assistance. Menu-driven screen selection assists
everyone using the monitor to get where they want to be in
terms of displays. The availability of comprehensive data in
sufficient detail will help to minimize problems when they
occur. Exhibit 2 [Appendix B] shows some of the major real-
time software monitoring products available in the market
today.

What Are Continuous System Monitors?

Whereas realtime monitors show information on system
internals as they happen, continuous monitors gather statistics
on user-defined key variables all the time that the system is
operating. These statistics are available for presentation as
batch reports or may even be available on a realtime inquiry
basis.

These statistics show how the system is being utilized over
time and what kinds of demands are being made by the end
users. A good continuous monitor will have the following
prime characteristics:

. Low overhead to operate

. User-selectable areas to be monitored

. User-defined units of work and/or centers of activity
. Exception reporting

. History file

Summary and-detail reporting

. Extensive graphics and management reporting

. Batch reporting as well as realtime inquiry

. Low maintenance

VPN AW

When acquiring a monitor, whether realtime or continuous, a
significant consideration is what system overhead will be in-
curred as a result of installing the monitor. Some monitors in
the market require substantial system overhead and, in effect,
disturb what they are mmeasuring. The object is to increase
performance, not further degrade the system.

The system overhead to run an MVS/TSO monitor, for
example, should not exceed 1%—-2% in the continuous moni-
toring mode. Some monitors may also collect much more
detailed data on an intermittent monitoring basis. In such an
intermittent mode, the overhead should not exceed 5%. In
the case of a subsystem monitor such as IMS or CICS, the
overhead will depend on transaction volume but generally
ranges from 5% to 10% of that particular subsystem.

By having user-selectable areas to be monitored with user-
defined units of work or centers of activity, the monitor will
collect data that end users can understand in those areas which
need attention. For example, a user will generally understand
such units as job or transaction and centers that relate to the
accounting system. This means that the reporting may be in
terms of turnaround or response time by work area.

Related to the user-defined variables, standards of per-
formance that can be monitored will yield reporting on an
exception basis. Why collect detailed data when the system is
meeting standards? A history file of the collected data (both
date and time stamped) will provide workload data over time.
This will assist the data center management in characterizing
the user workload and relating this to future system demand.
For example, online peak periods and growth rate can be
determined by the user, and response time for each daily time
period can be reported. This data is the basis for a service level
contract between the data center and the end user. Further-
more, it is measurable.

Summary and detail reporting enable the data to be
presented to the system programmer or the operations man-
ager, depending on the type or report needed. Extensive
graphics and management reporting will be directed at service
level performance and workload behavior.

Batch reporting as well as realtime inquiry allow immediate
or day-after data analysis and reporting. Finally, because the
monitors extract system data (and there are many techniques
for doing this), low maintenance is a critical item. The product
should be usable through releases of the operating system and
its subsystems. Some of the major continuous monitoring soft-
ware products are also shown in Exhibit 2 [Appendix B].

When the data center has analyzed the effects of user be-
havior and workload, the next logical step is to relate them to
the capability of the system. Peak-period performance will
probably be the main ingredient in any service agreement.
The first step in predicting system capability is to know what
the system can do now. By implementing performance report-
ing, there will be data relating to user workload character-
istics. These can then be related to service level achievement.

First, we must assume that the system is properly tuned. A
second assumption is that the workload has been shifted to the
extent possible (i.e., batch work at night so as not to interfere
with online work). At this point, the theorem of user behavior
elasticity applies. The next logical step is to develop the oper-
ational standards of performance in terms of service levels

44 National Computer Conference, 1982

based on the current configuration and end-user service-level
objectives.

In the case of predictive models, such questions as “What
effect on service levels will be experienced by adding another
channel or DASD device?” can be modeled and the results
calculated against the current workload. Future anticipated
workload growth can also be modeled to see future service
level achievement with the current system. Shifts in volume
and mix as compared to plan, when modeled, will illustrate
service degradation caused by user behavior.

Alternative hardware and software options may be consid-
ered to find what is needed to maintain negotiated end-user
service-level requirements. Additions to the current system or
other alternative systems may also be modeled to measure the
impact. Exhibit 2 [Appendix B] shows some of the models in
use at present.

The major characteristics of a good predictive model are
the following:

—

Results can be easily validated

Easy to use

3. Will distinguish the various hardware and software char-
acteristics of available products

4. Can easily integrate user historical data to define work-
load characteristics

5. Economical to run

6. Easy to interpret reports

L

The first and foremost requirement is that the model be easy
to validate. The value of a predictive model is in its prediction!

The second and very important requirement is that the
model be easy to use. This will reduce the need for highly
technical systems people or, at the very minimum, a mathe-
matical theoretician to use the product. Rather, the model
should be usable by a trained business analyst. Most errors
made by models are created from erroneous input. Compli-
cated models tend to be resplendent with such opportunities
for error.

The predictive model ideally will easily incorporate hard-
ware and software alternatives available to the data center, so
that the analyst can play “what if?” games. That is, various
configurations can be matched against various workload and
service-level requirements to determine which configurations
would be optimal. This type of analysis lends itself extremely
well to the decision-making needed in the process of appropri-
ating capital goods (i.e., data center hardware or software).
From this data, various suitable configurations can be selected
and the cost effectiveness of each evaluated. The cost of var-
ious user service levels may also be calculated. Both the cap-
ital and service analysis will assist in establishing the financial
requirements for the data center.

It is important that the model be fed from a historical data
base fed by the various system monitors so that workload data
can be easily integrated. This may be used to define current
standards of performance as well as defining trends for predic-
tive modeling.

The model should be economical to run, that is, it should
not consume much computer time. Since this process will be
interactive and many passes of the model will be required to

determine the new performance curve, each pass should run
in a couple of minutes or less.

And finally, the output must be easy to interpret and readily
presentable for management reporting. Again, a business an-
alyst should be able to interpret the output and be able to
input various alternatives as a result of the output from any
given pass of the model.

The objective of this measuring analyzing, and modeling
will be to derive performance curves that can become oper-
ational standards of performance that show the relationship of
service-level achievement versus user behavior. Exhibit 3
shows the process involved in establishing such standards. It
is an interactive process that involves tuning and end-user
negotiations until finally an agreed standard of performance
has been set. However, the standard is dynamic. Exhibit 4
[Appendix B] is a generalized performance curve with user-
controlled variables along one axis and service-level perfor-
mance along the other. User-controlled variables are, in fact,
the various levels of volume and mix for each of the various
categories of work.

In this case we will discuss TSO transaction response as a
function of the volume of user activity. The data for this graph
may be obtained from CMF, RMF, or SMF. In the case of a
DOS or in non-IBM environments, the system log that
records the volume of activity and system resources consumed
should provide the necessary data. Exhibit 5 [Appendix B] is
an example of a System Workload Summary$$§ from which the
following data can be obtained:

1. Volume of transactions by performance groups
2. Service units used in each system area

Exhibit 6 [Appendix B] is the CPU Utilization Report, which
shows:

1. CPU busy data
2. CPU queue data

Exhibit 7 is a TSO Subsystem Performance Report, which
shows:

1. TSO response by time period
2. TSO response by command
3. Concurrent TSO users

The above data was fed into the SAS statistical program to
determine which data showed a relationship between TSO
response and another variable. The variable with the closest
relationship turned out to be the CPU queue time,*** which
is directly affected by user volume and mix. In the case of our
system, we are currently CPU-bound, so this is not a sur-
prising bottleneck. As you can see in Exhibit 8 [Appendix B],
alinear regression line has been drawn with the standard error
shown as a dotted line on either side. In this case the standard
error is 1.1 seconds on either side of the regression line.
Basically this says that two-thirds of the time, observances of

§8Exhibits 5, 6, and 7 were produced by CMF for an IBM MVS system.
***As calculated by Little’s Rule, L =AQ, or the mean length of a queue is
equal to throughput times queueing time.

Using Operational Standards 45

TSO response versus CPU queue time will fall within the area
bounded by the dashed lines.

The same analysis was done for TSO mix in Exhibit 9
[Appendix B]. This line turned out to be flat and was essen-
tially meaningless because of the variation in data. Again, this
corresponded to what we wish the system to do. TSO has a
high priority; so even at high CPU busy levels, the TSO ser-
vice should not suffer.

Exhibits 10 and 11 [Appendix B] show the effect on TSO
response caused by total service units consumed and concur-
rent users respectively. In both cases there is a direct rela-
tionship, even though the standard error is larger. As you can
see, using historical data, system interrelationships with user
behavior can be derived. However, this kind of data tends to
be linear, and does not answer the question of how the system
will react to user behavior at levels not yet experienced.

A third problem is that the system is never exactly the same
from one period to the next. For this reason, it is extremely
important to correlate performance data from the system to
data logged from a change management tracking system. A
change management tracking system is basically a problem
reporting system for all hardware, software, and applications
problems and changes made to the system. There have been
many times that a one-byte code change on Sunday night
caused a system to come to its knees on Monday morning with
resultant days of analysis before the change was found. Each
system change needs to be documented and available for anal-
ysis when performance data shows a major deviation. This
analysis goes a long way towards explaining the efficiency
variance we discussed earlier and should be mapped to each
change in the performance of the system.

Using a Model to Plot a Curve

Because graphing historical data will not always answer the
questions of future system behavior for future user workloads,
a model is often used to simplify the process. By using a
model, curves may be defined for each system limitation as
well as an overall curve for the present system capability. This
requires many iterations of a model to define the points on the
curve and even more iterations to define other possible
curves. It is also important to validate the model to actual
system results. That means, if we pick a point on the per-
formance curve and take the corresponding volume and re-
sponse, how close does this match reality? In other words, will
the point fall within the bounds defined in the linear
projection and standard errors graphed in the analysis of his-
torical data, as was shown in Exhibit 10 [Appendix B]?

If indeed the model can be validated and the results are
consistent, we have in fact defined an “operational standard.”
“Operational standard” as used here means that there is a
standard-performance characteristic for a given level of user
activity in the current system. This becomes an extremely
powerful tool for negotiating service levels with users. A ma-
jor misunderstanding with users can be avoided if they realize
that for some levels of user activity, response will be lower.
This is especially true if there are peak periods with extreme
activity for short periods during the day and that activity
causes the “knee” of the curve to be reached.

Exhibit 12 [Appendix B] comes from an actual case where

a factory made a union agreement to clock out all employees
in 10 minutes. This agreement brought the system to its knees.
The exhibit shows a performance curve for a 370-148 which
averages 2.0-second response time for about 10,000 trans-
actions during an 8-hour period. If, however, 625 transactions
come in between 4:00 and 4:10 and must be processed in the
same 2-second response time, a different system will be re-
quired. This is due to the fact that 625 transactions in a 10-
minute period are equal to 30,000 transactions in an 8-hour
period. A curve is drawn for a 3033 to illustrate the system
expansion needed to accommodate the 10-minute traffic at
2-second response. In this case, the company management
will have to weigh the service requirement against the addi-
tionai investment. If user behavior is relatively inelastic, there
will soon be a 3033 installed.

Exhibit 13 [Appendix B] is a performance curve of the
Boole & Babbage data center that was made as an example
for a case study. This system is composed of:

CPU MBS0 (370-148) plus 6MB memory
Disc 6x 3330

8x STC 3630 (3350)
Tape 3x STC 4534
Channels 4 plus byte multiplexor
Operating
System MVS/JJESZTSO/SPF/VAM/CICS
Response time shown by the model degraded significantly
after 20 concurrent users and 1.1 transactions per second. In
further analysis of this case, we found that we are indeed
CPU-bound. This means that as the CPU resource is con-
sumed by a workload or variations in user behavior patterns,
degradation of service will be a direct result. A 4341 Model 2
with expanded CPU capacity is on order, and we hope to see
some relief this fall when it is installed. The next step in this
process will be to model the performance curve of the new
system. We may then find some other system bottleneck such
as I/O or DASD. In the meantime, we now have our oper-
ational standard of performance for TSO.

The Future of Performance Curves

The modeling of a workload against a given system is not
only necessary, but is feasible with currently available tools
and technology. The computation of and comparison to
planned performance curves has value in determining:

. Data center efficiency

. The effects of user behavior (volume and mix)

. Benefits of tuning

. The ability of the data center to meet various levels of
activity

5. The benefits of various system alternatives

BN =

Because of these benefits and the fact that future models will
get even more involved in simulating operating system param-
eters (i.e., SRM under MVS), performance curves should be
available on a realtime basis. This means linking the Change
Management Tracking System and realtime system monitor/

46 National Computer Conference, 1982

model so that early warning mechanisms can be implemented.
Realtime monitors will in effect simulate system changes and
signal when the performance curve has changed from plan.
This will provide an effective tuning tool by displaying these
changes, much like the IPS parameters, in which domains and
multiprogramming levels are displayed, in the IBM Initializa-
tion and Tuning Guide.

By monitoring the effects of user behavior, both on a con-
tinuous after-the-fact basis as well as in models, the data pro-
cessing operation has implemented an important element of
scientific management. The work analysis is done by the sys-
tem itself while the manager deals with the question of user
behavior and the integration of DP into the business.

APPENDIX A—Measures of productivity in DP operations

Results of Votingtit

Measurement factor

Online response time
On-time reports
System uptime

User satisfaction
Rerun performance

Reports distributed w/o mistakes
Number of interrupts in online service

Problem resolution time

CPU utilization

Cost of operation

Actual vs. scheduled run time
Demand batch turnaround
Recovery time from failure

Time sharing interactive response

Late jobs fault of operator
Outages by category
Application program abends

Number of projects within budget
Hardware/software reliability, INTFAC
Number and time of tape mounts

Jobs completed per computer hour
People turnover

Absentee rate

$f1Based on a survey of a meeting of data center managers at the 1981 EDP
Performance Conference in Phoenix, Arizona, February 23-26, 1981.

ONIIDYEBYE ? 31008 1861 1uBAdOD

Using Operational Standards

47

APPENDIX B—Exhibits

EXHIBIT 1)

PERFORMANCE
SPECIFICATIONS INSTRUMENTATION
SN
™| A| SUBSYSTEMA (A | S—
["ie| sussysTem 8 s
—— {1
N OuBSYSTEM NN |
s T e
Y Y
,‘ OPERATING |4
T SYSTEM T !
3 E
Hl L
SYSTEM 1 [_
T
»
[
(]
SUPPORT FOR / Y
' OPERATIONS /, N
A
e
PERFORMANCE)
SPECIFICATIONS INSTRUMENTATION ’/" »
AN
LN
B
x
SUBSYSTEM W [N 4 x
@ Al r'e
o % NouRY
8 oPEmATING Iy PERIGDKC L
< svaTem T SYSTEM AORAGE
I
4 2 Lig]
§ SYSTEM N ey
T
g REALTIME :
AND 1
=4 e EARLY '
m WARNING ' !
- SUPPORT FOR !
2 OPERATIONS i
@ i
g L - n FEEDBACK l
% O LEVEL 1 O LEVEL 2 B LEVEL 3
z /
o

Exhibit 1—Integrated S/W approach with levels 1, 2, 3

LEVEL 1 LEVEL 2 LEVEL 3 l
Realtime Continuous Predictive -
~eLEMENT
CHANGES
MVS/TSO: MONITORS
MVS/TSO: s
MF (Bool b GAMMA (Boole & Batbage)
RESOLVE (Boole & Babtage) CMF (Boole & Babbage) 9 s
RMF (IBM) BEST/1 (BGS)
LOOK (ADR)
TSO/MON (Morno Associites) CADS (info Research Assoc) CHANGES RENEGOTWTE
OMEGAMON (Cundle Corp) SERVICE CAN BE NO SERVICE
QCM (Nuauesne Systems) SCERT (PSI) Ve eves [
QCM (Duguesne Systems) oA Now WiTH UseRs.
SNAPSHOT (IBM)
CMF (Booi & Bt buage) IMS:
BMF (BM) CONTROL/IMS (Boole & Bubibuge)
MANAGE IMS (C.iprix) .
IMS IMS PARS (IBM) '§ RUN PREDICTIVE.
CONTROL.IMS Rue.itm.- H ez o plissipd)
(Booke & Batit. CICS: z = sensmvITy
& OBJECTVES ANALYSE
CONTROL . CICS (Booi- & Batit.a
cies: (B & Bataed E ves
PAl (T &
RESOLVE (Book: & Butitoag) :
SICS PARS (BA H
100K (ADR) CICH PARS (BA) H
CICH VS MONITOR (lohnsen Systiers) 3
OME GAMON (Cantle: Corge) 2
z
2

\

Exhibit 2—Available software tools

Exhibit 3—Establishing operational standards

48 National Computer Conference, 1982

4 EXHIBIT 4)

WORSE

SERVICE
LEVEL

/

~

/

BETTER -

USER CONTROLLED VARIABLES

JM'IOVABYE T 11008 1961 1BAI0D

Exhibit 4—Generalized performance curve

4 EXHIBIT 5)

SYSTTY WCAKLLAY BFTIVITY memnRT

SFOVICE USAMF MREANUGeN Av PEREOSMANCE GROUP

-- PERFMUFANCE GINUP 2

PEPENNWINCE TCM SEevIre SAm SFRyICE 1/C SFRVICE mEM MERVICE ToTa RYICE SE AVG TRX T

GRAP/PER/TS €171 090 PLT S/1000 BC Y SuUrt 000 P Y 271333 -(r,v su/'io?): !E? 31“ -Hi c%'&‘-'v ‘nﬁ ""?"'-h-‘“
271 s 8.0 T.a N/ N/A T 1A w33 2).w 214.7 2%.4 18,0 1a.e 227 972 0.00.04.12%
212 see 1.6 3.1 N/ N . 1.5 Sel 2.1 2406 2.9 19,3 1% 57 203 0TI
2% sw. 18.2 2.7 wra a/A PR F YT 1.6 2.3 26,3 21.0 17 % 2.00.21.338
274 so. .o 2.1 N/ A LYoel2 2ev .2 15.7 1.9 0.3 LIS s 1 0.09.8%.122
Summan y P23 FURER YR S PR NIA 1.9 28,8 M.l 24.0 2T3.8 32,6 1T a2 304 1233 0.90.06.120

‘ONI'3DVYEAYVE Y 31008 1961 WuBuAdOD &

Exhibit 5—CMF system workload summary

Using Operational Standards

49

‘ONI'3DVAEYE Y 31008 18681 BUAdOD @

'ONI'IDY8EYE® 37008 1861 WBAdOD @

PENQAICE " AY CME(].4,7]
AOOLF AND RARRAGE. TN .

aysoanc

TILIZATION
B
1Sy prRrENT

Tea won,
Nove £NARL

o
saove A il
140

-
e cen eing
fueLen
“BLED
{l'\’AL 'nn -n(r
gy €
£renhen

TOTAL TNARLEN TP

nerr cno pATCH
crg Tem
WEER Enp STADTm R Tacxe

“n
3
>

BVERACE mICARLT neLaY
nre av

RLITIRTI AT

B OPUQUELE EXISTED LFLECUTABLE ASIDSLUPCT IF EXT.
H

SYSTOM [hLF -~
=3 mvu. £ne
v A€ rara

e vm-l

rag
“s. 7

(gemamng)

enr rF oFxr,

TINE

(AVERAGE QUEIE
N CPU,
BATCH

.8,
NO leNN‘L :NU N\. DEvICE BusY

£ Siforer vases

Tewe) =

T °F Cop ausy
64.9

<902 798

Tt

CP UTILIZATINN REPNRT

- SUMMARY SFCTION

T
mAXTMUN uufut SIZE a
(8CT NE En. TIeE)
9.3 3 QL CRUTBUSY £ne BATCH
23.2 ! Of CPU BuSY FQOR
135 OF CPi} BUSY IR svnrrn TASKS

€9 0 (Q0u2T6) SECTIN

reI1 BUSY BERCENT

esesescsasases

e oesrostatddd

esesscssasaces

D Y Y PR Py

EXHIBIT 6)

LMF EXTRACTNR JVERWEAD (PCT OF EXT.

= 42.3

= W80

TImE) = 3.7

<Py BUSY DIsTaIML

=
)

MAzmMRBCANO 1O ~Ov
~
»

svesrcasee

CRiessessnans
oco=1

BUSY PERCENT
FACH "o QEORESENTS 5 T

Exhibit 6—CMF CPU utilization report

PROMICET RY CME(].6.0)
RONLE 840 apdaaGr, Iue .

Ten
- rumann
LI DCATF
ANASPTAD
[Ms) NNF
nt

€

cxec

c

ence
t<ok
LN
[
acgereyy
oRIF LE
coc

Sudwt T
TERMINAL
veer

TATAL 7AVG

INTERYAL TNTE VAL
natr Trer

2219

16 »ap F1 1
[RETCEC

aveonnes

sy
1eaec

B N e

[RINSEDE]
1e’

aveRans

e g

2
1.
a,1

P
11.22

AFSPONSE
Trur

QEENOCLEUN OB FOT A
305 10 WRERFoR e N 10

.

yeRaGE 9 cen
YN TSR
27.9
ials

412 23.2

TN rruMAND S IMMARY QFPDT

feM LNy S IMuaARY

HSAGE

DRSO Gups

Teessanes

sssee

P R

U U P

-
2 1S 4GE 71

NTEE yalL SimMwagyY

EXHIBIT 7)

RESPONSE
SRR A

SSPRUIe St

saesd
H
38.6¢

RESPONSE

PO G-I

. 1 .
1

0.0 RE SPONSF

Exhibit 7—CMF TSO subsystem performance report

50

National Computer Conference, 1982

2@

‘ONI‘3DYEEYO ¥ 31008 1961

‘ONI'3DVBEYE % 37008 1861 UBHAdOD &

EXHIBIT 8

—
~
10 -
~
~ /
~
~

7
TSN_PFSP
3

\

Exhibit 8—Linear regression—TSO response/CPU Q

EXHIBIT 9

ST AT IS T Ay AMALYS TS sy erEw
PLOT COF ¥ RESCETSO mix LEGEND: & = 1 CBS, B = 2 CAS, £TC.
Ptg' rqv Vng‘ND"S”_"ESF LEGEND: & = | NABS, B = 7 CAS, FTC.
12 i .
11 -
|)
10 i
a l. R
e i
- . .
0
Tsn_prco l .)
3 + a
l »
)
Y "
s .

.
3 a

> Y .

I .

4 2

? ¢ . . [}

‘ . .
1 .
a .

B LR e P P F L BEET et oo - [— ———e-

Y 3 10 15 20 25 30 3% an 5¢ S 0

Exhibit 9—Linear regression—TSO response/TSO mix

Using Operational Standards

51

"ONI'IDYEa8YE Y 31008 1961 1buAdOD B

"ONI'39VE8YVE? 31008 18611UBIAdOD B

STATIST I AL

T TSN _RESPeTAT_Sy
R AR U

12

11

T
TID_#FSP
6

EXHIBIT 10)

ANALYSTS

LEGEND: &
LEGEND: &

TITTTUNEE T aoYs nizs | 1irs 1228

Exhibit 10—Linear regression—TSO response/SU’s

ST T

12

’
TSO_PESE
6

TS T s

oLnT OF TSN REPETSH _yseo LEGEN <
PLOT OF TA=RnaTsn S L B

EXHIBIT 11)

ACiA L YST S S
A =
EGENN: A =]

.

P—

..__,_‘.__.___._.,_.__‘

. .- - [—aee .
e “.n LT T.? .. LS 9.9 L LY 19.2 10.m 11.4 12.0 12.¢6 13.2 13.¢ 16,4
TSO_usEr

Exhibit 11—Linear regression—TSO response/concurrent users

52

National Computer Conference, 1982

ON'IDYEEVEY 31008 | 881 WOHAJDD

RESPOSE

(SECONDS)

EXHIBIT1Z)

TSO

TIME

TSO TRANSACTIONS J

Exhibit 12—Performance curve for 370-148

APPENDIX C—A bibliography for further study

1.

10.

Armnold O. Allen, Probability, Statistics and Queueing
Theory with Computer Science Applications, Academic
Press, New York, N.Y. (1978).

. C. Warren Axelrod, Computer Effectiveness: Bridging the

Management/Technology Gap, Information Resources
Press, Washington, D.C. (1979).

. L. Bronner, Capacity Planning: An Introduction, IBM

Technical Bulletin GG22-9001-00 (January 1977).

. L. Bronner, Capacity Planning: Implementation, IBM

Technical Bulletin GG22-9015-00 (January 1979).

. J. P. Buzen, “Queueing Network Models of Multipro-

gramming,” Ph.D. Thesis, Harvard University, Cam-
bridge, Mass. (1971).

Computer, April 1980, IEEE Computer Society (contains
several articles of interest).

Peter F. Drucker, Management: Tasks-Responsibilities-
Practices, Harper & Row, New York, N.Y. (1974).
Jeffrey L. Forman, Change Communication: A Manage-
ment System, IBM Technical Bulletin GG22-9154-00 (Ju-
ly 1979).

An Architecture for Managing the Information Systems
Business, Volume I: Management Overview, IBM,
GE20-0662-0 (January 1980).

Problem and Change Management in Data Processing—A
Survey and Guide, IBM GE19-5201-0 (August 1976).

4 EXHIBIT 13)
44)1:‘5
-]
Exhibit 13—Performance curve for B/B DC

11. IBM Systems Journal, Volume Nineteen, November 1,
1980, “Installation Management, Capacity Planning.”

12. H. Kobayashi, Modeling and Analysis: An Introduction to
System Performance Evaluation Methodology, Addison-
Wesley, Reading, Mass. (1978).

13. J. D. C. Little, “A Proof of the Queueing Formula,
L =\W,” Operations Research 9, pgs. 383-387 (1961).

14. J. Martin, Design of Real-Time Computer Systems,
Prentice-Hall, Englewood Cliffs, N.J. (1972).

15. J. Martin, Systems Analysis for Data Transmission,
Prentice-Hall, Englewood Cliffs, N.J. (1972).

16. Montgomery Phister, Jr., Data Processing Technology
and Economics, Santa Monica Publishing Company, San-
ta Monica, Calif. (1977).

17. Charles H. Sauer/K. Mani Chandy, Computer Systems
Performance Modeling, Prentice-Hall, Englewood Cliffs,
N.J. (1981).

18. David R. Vincent, “Software Tools for Service Level
Management,” Data Management, pgs. 25-29, March
1981.

19. David R. Vincent, “Measuring Performance Online,”
ICP Interface, Data Processing Management, Summer
1980.

20. David R. Vincent, “Service Level Management,” 1980
CMGXI Proceedings, pgs. 196-207.

21. David A. Wren, The Evolution of Management Thought,

John Wiley & Sons (1979).

Distributed processing with the Z8000 family

by RICHARD MATEOSIAN and JANAK PATHAK

Zilog
Campbell, California

ABSTRACT

The Z8000 Family plan philosophy envisions a distributed processing approach to
many Z8000 applications. The Z8000 Family consists of CPUs, CPU support cir-
cuits, and a full complement of VLSI peripherals. These components are all inte-
grated by the Z-BUS, which defines the interconnections and transactions among
them. The basic philosophy of the family plan is that of distribution of intelligence
and function among complementary VLSI components. Of the several possible
realizations of this philosophy, the one chosen has the following major aspects: "

1. Synchronization primitives in bus and component architectures

2. Extensively programmable VLSI peripherals and CPU support circuits
3. Bus support for cooperative transactions

4. Built-in support for interprocess message passing

53

Distributed Processing with the Z8000 Family 55

SYNCHRONIZATION PRIMITIVES

The Z-BUS has two features specifically designed for inter-
component synchronization in a distributed processing envi-
ronment:

1. The “bus lock” status code
2. The resource request lines

Each of these bus features is designed to work with specific
CPU instructions.

The “Bus Lock” Status Code

The “bus lock” status code is one of the 16 possible codes
representable on the status lines ST5-ST, of the Z-BUS. This
status occurs during the fetch cycle of the Test and Set (TSET)
instruction, which is available on all Z8000 CPUs. The TSET
instruction is used to implement semaphores. Its job is to test
a specified memory location for a predefined “available” code
and to set the contents of the memory location to “not avail-
able.” The inclusion of these two actions in a single instruction
prevents any access to the specified location between the test-
ing and the setting. That is, it prevents access by any other
process running on the same CPU, which might happen if an
interrupt occurred between separate testing and setting in-
structions. When other devices, such as another CPU or a
DMA controller, have access to the same memory as the CPU
executing the TSET instruction, the testing and setting oper-
ations must be inseparable at the bus transaction level. This
inseparability is implemented through use of the “bus lock”
status code.

The Resource Request Lines

In some distributed systems, several CPUs that do not share
a common memory may need to share a common resource. In
this case, the TSET instruction cannot be used. For such
situations, the resource request lines of the Z-BUS have been
provided. Figure 1 shows a prosaic example of their use: three
CPUs sharing a line printer. When a CPU needs to use the
line printer, it executes the MREQ instruction, which con-
ducts a transaction on the four resource request lines; condi-
tion code settings indicate to the program whether or not the
CPU gained control of the line printer through this trans-
action. If not, the MREQ instruction is executed again; if so,
the line printer is used, then released through execution of the
MRES instruction. If another CPU executes an MREQ in-
struction while the line printer is being held, the resource
request transaction results in a “not available” indication.

PROGRAMMABLE VLSI COMPONENTS

The use of extensively programmable VLSI peripherals and
CPU support circuits brings aspects of distributed processing
into most Z8000 applications, even those with only a single
CPU. The principal programmable VLSI components of the
Z8000 Family are summarized below.

Memory Management Unit (MMU)

The MMU provides address translation and access protec-
tion, using internal tables transmitted from the CPU. Because
of the Z8000’s segmented addressing, which allows segment

+5y
T
A = ‘

M | RESOURCE s

(P CONTROL [“TmRa

L I'w L6IC |

MMAO

_ ARAT

M | RESOURCE |mer

CPU [~ conTROL [“Fmra

2 I'm LOGIC

MMAD

M | RESOURCE [~k
CPU CONTROL [“fmRe]

5 [0 Lo6Ic [

MMAO

PRINTER

MHAT
o ﬁ FHST
~ MMRG

— —V

]

I D o L

Figure 1—Resource lines provide non-memory-based synchronization

56 National Computer Conference, 1982

identity to be output by the CPU before completion of the
indexing portion of address computations, the segment-re-
lated address processing done by the MMU occurs in parallel
with the CPU’s indexing. This parallel processing approach
minimizes the overhead of external address translation and
access protection.

DMA Transfer Controller (DTC)

The DTC can carry out high-speed block data transfers and
searches independently of the CPU’s operation. Control of
the DTC by linked lists of command blocks in memory allows
the DTC and CPU to carry out joint functions asynchro-
nously. When an MMU is in the configuration, the DTC can
work with logical or physical addresses. A special control line
and a bit in the MMU access control registers allow the MMU
to protect certain blocks of memory from DMA transfers and
to prevent CPU access to blocks of memory while they are
being changed by a DMA transfer.

FIFQO Input/Output Interface Unit (FIO)

The FIO allows asynchronous parallel data transfers be-
tween processors, making it a key element in distributed
multi-processor systems (see Figure 2).

The FIO is simply a 128-byte, first-in-first-out buffer, ex-
pandable in width and depth, equipped with bidirectional
parallel interfaces at each “end” of the buffer and a set of
message registers for interprocessor communications that by-
pass the buffer. The FIO is designed to cooperate with the
DTC in “flyby” transfers (described below) to initiate DMA
transfers without CPU involvement and to terminate DMA
transfers on the basis of patterns recognized in the transferred
data.

The Counter/Timer and Parallel I/O Unit (CIO)

The CIO has many functions related to real-time I/O pro-
cessing. It is not a separate I/O processing CPU for use with
the Z8000, but it does perform many of the same functions:
bidirectional parallel I/O with a variety of handshake modes,
counting and timing of external signals, and priority interrupt
control.

The Serial Communications Controller (SCC)

The SCC, like the CIO, carries out many of the functions of
a dedicated CPU working with the Z8000. It performs all of
the tasks associated with serial communications on two in-
dependent 1Mbit/second channels, using any of a variety of
protocols.

COOPERATIVE TRANSACTIONS

An essential element of the Z8000’s distributed processing
Family plan is the use of cooperative transactions. The prin-
cipal examples are:

@ ZF0

28002 — -
DMASTE REQ

<:> zoTC

SYSTEM DMASTB REG

MEMORY

<:> zro K

owasra :> -

SR

CHANNEL A

CHANNEL 8

PORT 2
<8>

B

PORT 3
<8>

T

SYSTEM
MEMORY

Z-BUS Z80 BUS

Figure 2—FIO links processors and cooperates in DMA transfers

1. CPU/MMU generation of physical addresses
2. Extended processing architecture
3. DTC/FIO “flyby” transfers

The common theme behind cooperative transfers is that each
device has specific capabilities and that when a task requires
a combination of capabilities, it is better to allow several
devices to participate in the task than to replicate capabilities
in several devices. Thus, for example, rather than equipping
the FIO with DMA transfer capabilities, it was deemed more
sensible to provide for joint DTC/FIO transfers.

Of the three examples of cooperative transfers listed above,
CPU and MMU cooperation has already been discussed. The
other two examples will now be described.

Extended Processing Architecture

An important goal of the Z8000 Family design was to ac-
commodate additional processing capabilities (such as what
would be provided by a floating point chip) with no redesign
of the overall system or software. This goal was achieved with
a scheme that allows certain CPU instructions either to cause
traps (allowing simulation of an absent chip’s function) or to
be executed cooperatively by the CPU and an extended pro-
cessing unit (EPU). With this cooperative approach, the
CPU’s addressing capabilities are used to fetch or store the
arguments, and the EPU performs the operations. EPU oper-
ation can proceed in parallel with the execution of subsequent
instructions by the CPU; synchronization is achieved by the
EPU’s assertion of the CPU’s STOP line if the CPU fetches

Distributed Processing with the Z8000 Family 57

another EPU instruction before the EPU is ready to execute
it. Figure 3 illustrates the cooperation of the EPU and the
CPU.

The Extended Processor Architecture gives designers a
great deal of flexibility. For example, an EPU doing floating
point operations could be used interchangeably with floating
point software controlled by the same instruction stream; only
a single bit in the CPU’s Flag/Control Word (FCW) control
register would need to change. Thus, a high-performance
floating point chip could be an optional feature of a product
that used floating point operations. The “slow” version would
use software execution of the floating point instructions, and
the “fast” version would use the chip to execute instructions.
Both versions would have identical applications program code
and circuitry.

< TS
78000 / TRANSAC]TI()lN CONTROL MENORY
FAMILY >ﬁ l I l [SYSTEH
CPU
STATUS BUS
\‘7
.
SToP -

Figure 3—CPU and EPU cooperate to execute instructions

The EPU monitors the status lines, looking for “Instruction Fetch, First
Word” status. When this occurs, it examines the instruction presented on the
A/D bus. If the instruction is for that EPU, it either asserts STOP
(if it is still busy executing a previous instruction)
or initiates execution of the indicated instruction.

The EPU instruction can be entirely internal to the EPU, or it can include
one or more transfers of data between the EPU and CPU or EPU and
memory. For each of these cases, the CPU generates the appropriate status
signal (ST;-ST,) and transaction control (R/W, B/W, AS, MREQ, DS) lines,
and the EPU takes or supplies data as appropriate.

Flyby Transfers

A “flyby” transfer is a DMA transfer in which the data
never enters the DMA controller circuit. The DMA controller
provides all necessary memory addressing, transfer counts,
and bus control signals, but at the point in the transaction
when data must pass from one component to another, an
intelligent peripheral (like the FIO) supplies or takes the data.
Flyby transfers are, therefore, approximately twice as fast as
ordinary DMA transfers, in which one transaction is required
to fetch the data from the source and to latch it in the DMA
controller, and a second transaction is required to pass the
data from the DMA controller to the destination.

SUPPORT FOR MESSAGE PASSING

The support for message passing in the Z8000 Family plan is
predicated on the assumption that interprocess communica-
tion in Z8000 systems can be conducted effectively through
messages. Other means of interprocess communication are
not precluded, but message passing is the only interprocess
communication method supported by special architectural
features.

Since message passing is generally implemented through
the movement of blocks of characters from one location to
another, one of the principal means of supporting message
passing in the Z8000 Family plan is the multi-level support of
block data movement. The block I/O and memory transfer
instructions of the CPU, the capabilities of the DTC, and the
features of the FIO are all designed to complement each other
in providing efficient, flexible block data movement through-
out Z8000 systems.

Another instance of message passing occurs in the commu-
nication protocol defined between the Z8000 CPUs and the
Universal Peripheral Controller (UPC). The UPC is a Z8-
based single-chip microcomputer designed for use in device
controllers. It functions as a slave processor to the CPU, and
because it is directly tied to the operation of a physical device,
it is essential that a faulty CPU program not cause the UPC
to fail.

The fail-safe protocol for CPU/UPC communication calls
for designation by the UPC of specific blocks of its internal
memory for use as shared message buffers. The CPU has
direct access to the designated buffer area but cannot access
any other portion of the UPC’s memory until the UPC desig-
nates that portion as the message buffer. The CPU always sees
a single address in its I/O address space as “UPC message
buffer,” but the UPC maps this address internally into the
desired area of its memory.

SUMMARY

Distributed processing with the Z8000 Family is not a special
case. The distribution of function among CPU and extensively
programmable VLSI components demands that the basic
mechanisms of communication and synchronization be in-
cluded in the design of the Z-BUS and all the Z8000 Family
components. In addition, specific attention has been given to
multi-CPU system problems through use of specific CPU in-
structions and bus protocols and through use of the First-In-
First-Out Interface Unit (FIO) as a flexible buffer between
asynchronously functioning systems. Cooperative transac-
tions, in which the functions of several components must com-
bine to carry out the desired action, bring distribution of
function to the bus and component level. Finally, architec-
tural features supporting message passing facilitate distrib-
uted processing at the software and application structuring
level.

Distributed processing with iAPX 186 microprocessor systems

by TONY ZINGALE

Intel Corporation
Santa Clara, California

ABSTRACT

In most early computer systems, large central computers, minicomputers, or micro-
computers were used to perform all the necessary data processing activities in the
system. The overall performance of the entire system was limited by the ability of
the central CPU to bring in data, process it, and output it in some usable format.
This often resulted in large data input/output bottlenecks in I/O-intensive applica-
tions where the CPU time required to service I/O functions left little time for data
processing. The obvious result is a slow, nonoptimum data processing system. Now
many applications are moving in the direction of simpler and easier-to-use dis-
tributed systems, where a central CPU delegates some of the processing tasks to
distributed processing subsystems. Not only are costs lower with the distributed
system approach, but the time needed to implement such systems is substantially
less.

For example, a network transaction processing system can now use numerous
automatic tellers to process data at a variety of dispersed geographic locations. The
tellers, or distributed nodes, can then collect, process, output, and eventually pass
on necessary information to the central host computer, located at some detached
location, without burdening the central computer with handling each simple trans-
action. The host becomes involved with an individual node only when the intelligent
node requires the timely interaction. The heart of a distributed node itself must be
an intelligent processing device capable of handling all the processing and I/O
requirements needed by the node.

The iAPX 186 is a new highly integrated 16-bit microprocessor. It combines 10
of the most common microprocessor system components onto one. The 80186 is
essentially a 16-bit CPU board integrated onto a single silicon chip. By combining
a limited number of peripheral support components with memory together with an
iAPX 186, one can achieve a condensed, cost-effective system on one board, mak-
ing the 80186 an optimal microprocessor for distributed processing nodes. This high
level of integration is accomplished through an advanced HMOS 1I silicon gate
technology. For the first time it provides a system cost saving significantly greater
‘than that of the previous 16-bit microprocessor design alternatives. The 80186, an
upgrade from the industry standard iAPX 86 and 88, offers two to three times the
system throughput of a standard iAPX 86. The iAPX 186 adds 10 new instruction
types to optimize existing iAPX 86 or 88 application code or streamline new iAPX
186 application code. All these hardware and software attributes make distributed
processing with iAPX 186 systems a cost-effective, easy 16-bit microprocessor
solution.

59

Distributed Processing with iAPX 186 Microprocessor 61

CLASSICAL DISTRIBUTED PROCESSING

The concept allows the use of dispersed processing sites or
nodes to offload a sophisticated central computer, minicom-
puter, or microcomputer. The real payoff from the distributed
processing approach is the increased responsiveness to the
user’s needs of the data processing function, achieved by pro-
viding an effective, fast, powerful processing mechanism at
the lower levels. The declining costs of microcomputers and
memories have provided the economic justification for dis-
tributed computing. The approach now is to let micro-
computers located near the data do much of the real-time
processing and send only a summary to the host computer
(Figure 1).

Distributed Processing Node Requirements
The data processing node must be

1. More cost-effective than similar approaches

2. Easy to implement, thus making possible a fast end-
product time to market

3. Compatible with existing software, if any

4. Capable of high-speed execution rates

In addition to the general requirements stated above, there
are a set of hardware requirements to be satisfied.

Terminals Terminals

Processor.
mmnicomputer.
or computer

Processor.
imntcomputer.
or computer

Terminals
Central
computer
Terminals Terminals
Processor. Processor.
minicomputer. minicomputer.
or computer or computer

Figure 1—Distributed STAR network

1. High-speed, flexible DMA is needed by any I/O sub-
system to accomplish data transfers between I/O devices
connected to the distributed node (i.e., keyboards,
disks, printers, modems) and local system memory or
vice versa. This is a key requirement for moving blocks
of data in and out of a distributed node that can improve
system performance and execution time.

2. Flexible hardware timers are always required to time
external events occurring in the system. Timed external
events usually correspond to some sychronized system
activity. For example, the number of words that have
been printed may signify to the CPU that it needs to start
a new page or generate some type of interrupt to the
CPU to stop printing.

3. In a time-sensitive distributed system there is a definite
need for the handling of a large number of real-time
interrupts. For example, if several intelligent terminals
are connected to a single distributed node in addition to
the standard I/O devices, multiple interrupts will appear
at the node simultaneously. These interrupts must be
acknowledged, prioritized, and handled cleanly and
rapidly.

4. Address decoding hardware is needed to provide the
system with a systematic convention for selecting mem-
ory spaces and peripheral devices; wait-state generating
circuitry is required to insure timing compatibility with
memories and peripherals at the proper speeds. This
hardware can require an appreciable portion of the
board space of the distributed node.

This feature set is optimal in that it provides all the basic
requirements of a distributed processing node. The iAPX 186
integrates these common system functions into a single silicon
chip.

Cost-Effective, Optimal Integrated Feature Set

A block diagram of the iAPX 186 integrated hardware fea-
ture set is shown in Figure 2, followed by a summary of each
on-chip feature.

Clock generator: The 80186 provides an internal clock oscil-
lator, which requires a single external crystal or TTL-level
frequency source. The system clock output is a standard
8-MHz, 50% duty cycle clock at half the crystal frequency, or
16 MHz. This output can be used to drive the clock inputs of
other system components and hence make additional clock
generation devices unnecessary. Synchronous and asynchro-
nous ready inputs are supplied for flexible peripheral-device
synchronization.

62 National Computer Conference, 1982

{00k
| |
YYVY VY
cLock || cPU 'F:f,f.;‘ TIMERS
' @mremm.ausu @ S
: <
oMA CHIP
CHANNELS sf‘;'él‘g
* N
] N N

Figure 2—iAPX 186 CPU (80186) block diagram

Timers: Two independent 16-bit programmable timer/
counters are provided to count time external events, external
events, and generate nonrepetitive waveforms. A third 16-bit
programmable timer, not connected externally, is useful for
implementing time delays and as a prescaler for the two exter-
nally connected timers. The iAPX 186 integrated timers are
very flexible and can be configured to time/count a variety of
distributed I/O types of activities.

Each of the three timers is equipped with a 16-bit timer
register that contains the current value of the timer. It can be
read or written at any time, independent of whether the timer
is running. Each timer is also equipped with a 16-bit max
count register containing the maximum value the timer will
reach. In addition, the two externally connected timers each
have a second 16-bit max count register, which enables the
timers to alternate their count between two different max
count values as programmed by the user. When a terminal
count is reached, an interrupt may be generated, and the
timer value is reset to zero.

The timers have several flexible programmable options in
their mode of operation. All three timers can be set to halt or
continue on a terminal count value, so no external event or
device need wait for a timer reset. The two externally con-
nected timers can select between internal and external clocks,
alternate between max count registers or use only one, and be
set to retrigger on external events.

DMA channels: The on-chip DMA controller unit in the
iAPX 186 contains two independent high-speed DMA chan-
nels. DMA transfers can occur between memory and I/O
spaces (i.e. M-I/O) or within the same space (i.e. M-M,
I/O-1/O). The latter feature allows I/O devices and memory
buffers to be freely located anywhere in the distributed sys-
tem. For example, memory-mapped I/O can be handled with-
out any external decode logic to select the required I/O space
or device. Each DMA channel maintains two 20-bit source
and destination pointers that can be incremented, decre-
mented, or left unchanged after each transfer. Data transfers
are programmed by the user to be either byte or word trans-
fers and can occur anywhere in the 1 megabyte of directly
addressable memory space. This allows a maximum transfer

rate of 1 MWord/second or 2 MBytes/second. The user can
specify several different modes of DMA operation via the
on-chip 16-bit DMA channel control word.

By using the 80186 DMA facilities, data can be input onto
local system memory, processed, passed on to the host com-
puter (if needed), and output to another I/O device, all by
the use of the two independent, high-speed, on-chip DMA
channels.

Interrupt Controller: The 80186 interrupt controller re-
solves priority among interrupt requests that arrive simulta-
neously. It can accept interrupts from up to five external
hardware sources (NMI +4) and internal sources as well
(timers, DMA channels). Each interrupt source has a pro-
grammable priority level and a preassigned interrupt vector
type, used in deriving an address to a table in memory where
interrupt service routine addresses are located. This enhance-
ment of predefined vector types makes the interrupt response
time about 1.5 times faster than the typical iAPX 86 response
time. The 8259A programmable interrupt controller (PIC)
interrupt modes, like fully nested and specially fully nested,
are provided by the 80186 as well. In addition, multiple
8259As can be cascaded to provide the system with up to 128
external interrupts. There is also an RMX-86 real-time oper-
ating system mode of operation for maximum user flexibility
that provides many of the same interrupt features described
here.

Chip select/ready generation: The iAPX 186 contains pro-
grammable chip select logic to provide chip select signals for
memory components, peripheral components, and program-
mable ready (wait states) generation logic. The result of this
integrated logic is a lower system part count, since as many as
11 TTL packs will be saved. In addition to a lower system cost,
the speed/timing performance of the system will improve as a
result of the elimination of external propagation delays. An-
other advantage involves flexibility in the choice of memory
component size and speed. Three memory ranges (lower,
middle, upper) can be programmed to variable lengths (1K,
2K, 4K, ..., 256K) so that a variety of memory chip sizes can
be used. Further, anywhere from zero to three wait states can
be programmed so either high-speed or low-cost, slower
memories can be used. With respect to the peripheral chip
selects, as many as seven different peripheral components can
be addressed via I/O or memory space. Again, programmable
wait states may be injected to synchronize slower peripherals
with the 80186 itself or memory.

The chip select/ready logic contributes heavily to making
the iAPX 186 an optimum, low-cost choice for a distributed
processing node. In the past, this necessary logic had to be
designed, debugged, and programmed. Now, with the 80186,
the design, debug, and programming are done by initializing
the associated 16-bit on-chip control registers.

CPU internal registers: The added functionality of the
iAPX 186 (i.e., timers, DMA, interrupt controller, and chip
selects) uses on-chip 16-bit control registers for each inte-
grated device. They are contained in a 256-byte control block
(see Figure 3) included in the 80186 CPU register architec-
ture. The control register block may be either I/O or memory-
mapped, based on initialization for a new control block
pointer in the CPU. Except for these additions, the register
architecture of the iAPX 186 is identical to the iAPX 86.

Distributed Processing with iAPX 186 Microprocessor 63

Fros ="~ 7 1 '
:Ax A A
|: z: : DMA CONTROL
ox[s D
SP
BP
Sl CHIP SELECT CONTROL
DI

256 BYTES

TIMER
CONTROL

33|48

INTERRUPT
CONTROL

I
|
!
1
|
|
|
A
[T
1
1
i
|
[}
I

MEMORY OR I/O MAPPED
I CONTROL BLOCK POINTER I —

Figure 3—iAPX 186 register architecture

Software Compatibility

Since software costs are influencing most microcomputer
decisions today, system designers must take this enormous
investment seriously when choosing microcomputers for fu-
ture product upgrades. This is especially true in the cost-sen-
sitive distributed processing area, where virtually hundreds of
nodes will be designed and programmed to interface to a
central host computer. Software compatibility between the
nodes and the central host makes the overall system easier to
use and will shorten the design cycle considerably. For future

product upgrades, software compatibility must be a decision -

variable in today’s product. If not, when bringing a new prod-
uct to market, engineers may spend all of their time rewriting
hundreds of lines of general-purpose software rather than
writing new streamlined application code. All this can be
saved by using the iAPX 186. Since the 80186 is completely
object-code-compatible with the iAPX 86 or 88 or 286, soft-
ware investments are intact for future product offerings. Not
only is the 80186 totally software-compatible with the 8086 or
8088; it adds 10 new instruction types as well. Instructions like
block move (running at bus bandwidth or 2MBytes/sec), push
or pop all the registers (push/pop all), and multiply immediate
are all new to the basic iAPX 86, 88 instruction set. These
instructions help enhance existing iAPX 86 or 88 application
code, if needed, or produce optimum, high-speed iAPX 186
code.

iAPX 186 Performance Comparisons

The iAPX 186 overall performance speed is two to three
times faster than the SMHz iAPX 86 and 30% faster than the
8MHz iAPX 86. Many instructions, specifically those for in-
teger arithmetic (i.e., multiply and divide), execute 5 to 6
times faster than on a SMHz iAPX 86 (see Table I). In bench-
marks based on Intel standard applications, operations like
block translation, bubble sort, and automated parts inspec-
tion show that the iAPX 186 yields a 1.66 times performance
increase over the S8MHz iAPX 86 (see Table IT). These bench-
marks were selected to evaluate the performance of 16-bit
microprocessors and demonstrate the capabilities necessary

TABLE [—Relative execution comparisons:
iAPX 186 (8MHz clock rate) vs. iAPX 186

instruction 8086 (5SMHz) | 8086-2 (8MHz) | 8086-1 (10MHz)
‘| MOV REG TO MEM 2.0-2.9X 12-1.8X 1.0-1.4X
ADD MEM TO REG 20-29X 1.2-1.8X 1.0-143X
MUL REG 16 >5.4X >34X >2.7X
DIV REG 16 >6.1X >3.8X >3.0X
MULTIPLE (4-BITS)
SHIFT/ROTATE MEMORY | 3.1-3.7X 1.95-2.3X 1.6-1.8X
CONDITIONAL JUMP 1.9X 12X 1.0X
BLOCK MOVE 34X 21X 17X
(100 BYTES)

for intensive I/O operations, general integer arithmetic, and
data manipulation operations necessary for real-time business
and EDP applications. Naturally the most likely environment
for finding a distributed processing system lies in these appli-
cation areas. The iAPX 186 satisfies the high-speed execution
requirement for a distributed node by surpassing the existing
high-performance standards set by the iAPX 86 and at the
same time is totally software-compatible to the iAPX 86, 88,
and 286.

TABLE II—Relative throughput benchmark, iAPX 186 vs. S8MHz
iAPX (based on Intel standard application benchmarks)

j 1.66
15
1.0 - 10
5 - ows ows
8086-2 iAPX 186

64 National Computer Conference, 1982

TYPICAL DISTRIBUTED SYSTEM CONFIGURATION

A sophisticated central host computer capable of handling
multiple users in a real-time environment is obviously a major
need for an effective distributed processing system. This de-
vice is responsible for controlling all the distributed nodes in
the system. This requires an extremely large memory space to
handle the multiple-nodes memory and I/O space require-
ments and also requires some form of system integrity mech-
anism that would insure that each node executes independent
of the others. The microcomputer that fits this requirement
best is the iAPX 286 (see Figure 4). Not only is the 80286
software compatible with the iAPX 86, 88, 186, providing six
times the performance of an 5 MHz iAPX 86; it also offers
on-chip memory management and memory protection. The
iAPX 286 is capable of directly managing up to 16 megabytes
of teal memory and up to 1 gigabyte (2°° bytes) of virtual
memory. It can provide memory protection for each distrib-
uted node by verifying each specific task’s address range and
access rights for every memory access. These integrated fea-
tures of the 80286 satisfy the requirements of a central host
and of controlling the distributed nodes in a system, since each
will require some independent memory space and also some
form of protection from the other nodes in the system.

As Figure 4 shows, communications between the iAPX 286
host computer and the iAPX 186 distributed nodes takes place
by passing messages and data through a dual-port RAM. The
dual port is used to isolate the iAPX 186 systems or nodes
from the protected bus structure of the iAPX 286, maintaining
full system integrity.

One design variable to consider in a distributed node
scheme is error detection and correction in and out of the
dual-port RAM. The Intel 8206 Error Detection and Cor-
rection unit performs this function with one device. The 8206
serves as an interface between large memory systems (i.e.,
iAPX 286 systems) and the system bus of the iAPX 186. The
EDC unit will internally detect all one-bit errors and most

u:gszfs MAIN
ol MEMORY

]

< PROTECTED SYSTEM BUS >

[r=——————————— @——_--___iAT:x-m'E-EAEEB'
i 10 SUBSYSTEM:
i DUAL
1 oo PORT MEMORY 1
1 RAM 1
1 1
1 I
! 1
: \ MULTIMASTER SYSTEM BUS { :
| 1
1 !
1 {
: PERIPHERAL PERIPHERAL PERIPHERAL :
I

Figure 4—Distributed iAPX 286—iAPX 186 system

multiple-bit errors and automatically make corrections. Obvi-
ously, errors can occur in any system configuration when data
are written incorrectly to memory, a memory cell loses data,
or a complete memory component is missing or dead. These
errors can be carried throughout the system and affect end
results unless detected and corrected. In Figure 4 a dual-port
RAM scheme is used to interface the iAPX 286 protected
system bus to the iAPX 186 local bus. The 8207 Advanced
Dynamic RAM Controller is capable of controlling two
memory ports at the 8-MHz speed for both microcomputers
and supporting a megabyte of address space. The 8207 pro-
vides the necessary control and timing signals to interface
memory to the 8206 EDC component as well (see Figure 5).
Previously this mechanism, the combined 8206 and 8207 com-
ponents, took as many as 50 TTL components. Together the
two peripheral devices provide a cost-effective, error-free,
highly reliable memory subsystem for a distributed processing
node.

30186 LOCAL BUS

80186
cPu <_]

CONTROL
1 XCVR

ADR RAM

-

“ =l T

A DATA

ADDRESS

JL

80286 PROTECTFD SYSTEM BUS

Figure 5—Dual-port RAM control with EDC

CONCLUSIONS

The iAPX 186 exceeds all the stated requirements for use as
an effective distributed processing node. This optimal inte-
grated feature set of the 80186 is streamlined to manage the
necessary I/O hardware and real-time/high-speed software
needs of a distributed system. It is very cost-effective, easy to
use, high-performance, and compatible with any iAPX 86 or
88 existing software; and it can also be tightly coupled with an
iAPX 286 central host and provide highly reliable memory
subsystems through the use of the 8206 EDC and the 8207
peripheral devices.

REFERENCES

1. Thierauf, Robert J. “Distributed Processing Systems.” Englewood Cliffs,
New Jersey: Prentice-Hall, 1978.

2. Down, P. ., and F. E. Taylor. “Why Distributed Computing?” Rochelle
Park, New Jersey: Hayden Book Company, 1977.

Distributed Processing with iAPX 186 Microprocessor 65

3.

4.

S.

Moore, W. G. “Going Distributed.” Mini-Micro Systems, 10 (1977), pp.
41, 44, 46, 48.

Klovstad, J., and S. Kopec. “iAPX 186 Target Specification Revision 2.”
Intel preliminary design document. October 16, 1980.

Klovstad, J., and S. Kopec. “iAPX 186 Architectural Overview Revised
May 1981.” Intel overview document, available from Intel Corporation,
Santa Clara, California.

6. Heller, P. “The Intel iAPX 286 Microprocessor.” IEEE Wescon Trade
Show Proceedings, San Francisco, 1981.

7. Kop, H. “16-Bit Microprocessor Benchmark Report: iAPX 86/10, Z8000,
MC68000.” Intel Corporation, 1981.

8. Intel Corporation. Perperal Design Handbook, Available from Intel Cor-
poration, Santa Clara, California. 1981.

High-performance, high-capacity single-chip microcomputers

by ED PEATROWSKY

Motorola Inc.
Austin, Texas

ABSTRACT

The MC6801 Single-Chip Microcomputer has long been recognized as a high-
performance microcomputer. This paper provides a brief look at the complete
M6801 family and then discusses the enhancements made to the Timer and Serial
Communications Interface circuitry of the basic MC6801 to develop the new
MC6801U4 microcomputer.

The MC6801U4 strengthens the M6801 family position in the high-performance
single-chip microcomputer marketplace.

67

High-Performance, High-Quality Single-Chip MCUs 69

INTRODUCTION

The past several years have brought about expanded markets
for Single-Chip Microcomputers (MCUs). Some of these new
markets are demanding higher-performance MCU s for future
products. Higher performance does not mean merely an in-
ternal memory map expansion; it also means improved fea-
tures and functions, along with versatility in application.

Requirements in industrial control, communications, auto-
motive, and many other such applications are constantly de-
manding higher-performance MCUs.

The M6801 family has met this high-performance and ver-
satility need and continues to improve as its product portfolio
grows. The M6801 family follows the compatible evolutionary
expansion that was established throughout the development
of the M6800-based microprocessor family.

Table I shows the products in the current M6801 family and
the basic features associated with each member.

VERSATILITY

The M6801 family has the ability to operate in two worlds—as
a microcomputer or as a microprocessor. The fundamental
operating modes of the members in the M6801 family prod-
ucts are these:

1. Single-chip
2. Expanded nonmultiplexed
3. Expanded multiplexed

Within these fundamental operating modes the resources of

the microcomputer are briefly summarized in the following
paragraphs and allocated as shown in Figure 1.

Single-Chip

In the single-chip operating mode the MC6801 operates
with all internal memory resources. This operating mode

makes maximum use of the input/output capabilities with no
address or data buses.

Expanded Nonmultiplexed

The expanded nonmultiplexed operating mode uses in-
ternal memory resources and allows the modest increase of
256 bytes of read/write locations. This mode uses separate
data and address buses, thereby reducing the number of input/
output functions available.

Expanded Multiplexed

The expanded multiplexed operating mode removes some
or all of the internal memory resources and allows the
MC6801 to function as a high-performance microprocessor.
In this mode the external address space can be expanded up
to 64K bytes for external resources.

THE ENHANCED FAMILY ANSWER

The M6801 family is continuously growing. The latest mem-
ber is the MC6801U4, which is an enhanced MC6801 that is
pin- and object-code-compatible. All addressing modes and
features of the MC6801 remain intact. The enhancements are
increased ROM, increased RAM, and improved Timer and
Serial Communications Interface circuitry.

Where the additional features of the MC6801U4 require
additional input/output, more of the port pins have been made
multifunctional, as shown in Figure 2.

The internal ROM of the MC6801U4 has been doubled in
size, from 2048 bytes to 4096 bytes. The interrupt vector lo-
cations are maintained as in the MC6801 for compatibility.

The internal RAM has been increased from 128 bytes to 192
bytes. The standby RAM portion of this memory has been
decreased from 64 bytes to 32 bytes. This decreases the
amount of standby current required to maintain the memory
contents during power down.

TABLE I—The M6801 family

Single-Chip Microcomputers Microprocessors
Feature 6801 68701 6801U4 Feature 6803 6803E 6803U4
ROM size 2K bytes — 4K bytes RAM size 128 bytes 128 bytes 192 bytes
EPROM size — 2K bytes — Stdby RAM size 64 bytes 64 bytes 32 bytes
RAM size 128 bytes 128 bytes 192 bytes I/O lines 29 1/0 2 ctrl 29 /0 2 ctrl 29 VO 2 ctrl
Stdby RAM size 64 bytes 64 bytes 32 bytes Timer 16-bit/3 funct 16-bit/3 funct 16-bit/6 funct
I/O lines 29 I/O 2 ctrl 29 I/O 3 ctrl 29 VO 2 ctrl SCI/baud rates Full/4 selec Full/4 selec Full/8 selec
Timer 16-bit/3 funct 16-bit/3 funct 16-bit/6 funct
SCI/baud rates Full/4 selec Full/4 selec Full/8 selec

70 National Computer Conference, 1982

Single-Chip (Mode 7)
128 bytes of RAM; 2048 bytes of ROM
Port 3 is a parallel I/0 port with two control lines
Port 4 is a parallel I/0 port
Expanded Non-Multiplexed (Mode 5)
128 bytes of RAM; 2048 bytes of ROM
256 bytes of external memory space
Port 3 is 8-bit data bus
Port 4 is an input port/address bus
Expanded Multiplexed (Modes 0,1,2,3,6)
Four memory space options, (total 64K address space)
(1) Internal RAM and ROM (Mode 1)
(2) Internal RAM no ROM (Mode 2)
(3) No internal RAM or ROM (Mode 3)
(4) Internal RAM, ROM with partial address bus (Mode 6)
Port 3 is multiplexed address/data bus
Port 4 is address bus (inputs/address in Mode 6)
Test Mode (Mode 0):
May be used to test internal RAM and ROM
May be used to test Ports 3 and 4 as 1/0 ports

Any mode can be irreversi bly entered from Mode O

Resources Common to all Modes:
Reserved Register Area
Port 1 Input/Output Operation
Port 2 Input/QOutput Operation
Timer Operation

Serial Communications Interface Operation

Figure 1—Summary of M6801 fundamental operating mode resources

TIMER

The timer features and registers of the MC6801 have been
maintained and expanded. Three additional registers have
been added, along with an additional input capture register
and two additional output compare registers. Figure 3 is a
basic block diagram of the MC6801U4 timer circuitry.

Dual Counter Register

The MC6801U4 has a duplicate timer control register. This
Dual Counter Register allows software to examine the
counter without the resetting of the Timer Overflow Flag in
the Timer Control and Status Register.

Timer Control Register 1

A second counter register has been added, Timer Control
1, which allows the MC6801U4 to control the states of the
pins associated with the output compare and input capture
registers.

Timer Control Register 2

Timer Control 2 has been added for handling timer inter-
rupts from the output compare and input capture registers.
This allows software testing of the timer counter without
clearing any of the associated status bits.

Input Capture Registers

A second input capture register has been added. The two
input capture registers can be programmed independently to
take a “snapshot” of the timer counter register at an appropri-
ate transition on their associated input pin.

Output Compare Registers

The output compare feature has been extended by adding
two additional output compare registers. These three registers
can be programmed independently to respond to a match in
the counter register and cause an appropriate transition on the
associated output pin.

Serial Communications Interface

All the serial communications interface functions remain
identical to those of the MC6801, and four more baud rates
have been added. Table II shows the baud rates available for
three given crystal frequencies.

SUMMARY

The MC6801 has been a leader among the available high-
performance microcomputers in the marketplace for several
years. The MC6801 continues to gain momentum in control
and processing applications.

The enhancements added to the newest member of the
family, the MC6801U4, allow the momentum already estab-
lished by the existing MC6801 family of products to continue.

Diverse applications will continue to demand more and
more powerful microcomputers. The MC6801 family products
demonstrate that they are able to meet the challenge.

High-Performance, High-Quality Single-Chip MCUs 71

vce

t— V5§

Mode

ht— XTALY

bt— EXTAL2

>t

bt— RO
RESEY

lt— WM

Expanded Muluplexed MPU

Expanded Non-Muluplexed
I I—— Single Chip
P37 A7/D7 D7 110 =
P35 A6/D6 D6 1/0 <> Mux
P35 A5/D5 D5 /O < Port ¢>
PM A4/D4 D4 1/0 @ 3
P33 A3/D3 D3 /0O <

» P20 TIN) 1710

Port < P21 TOUTY 110
—lrJ» P22 .SCLK 110
—»P23 RRTA |0

> p24 TDATA /o

iy,

X
)

P32 A2/D2 D2 /0O -t 30k

P31 AUDI DI /O <& H <
P30 A0/D0 DO /O g A >

SC2 R/W R'W 033 - (Timer

SC1 AS 03 53 > A g

P47 A15 A7 11O < v >P10 TN 1O
Pa6 Al4 A6 10 K Address < P11 TOUTZ 110
P45 A3 A5 110 w{ POt Port »p12 TOUT3 1,0
Pas A12 A4 110 @« ¢ Ve P13 10
P43 A1l A3 10 - < P4 1”0
Pa2 A0 A2 1/0 < <«———————————— P15 /0
Pa1 A9 Al /0 - Data) e«————————————»-P16 110
P40 AB A0 /0 e——————————— P17 170
RAM ROM
Figure 2—MC6801U4 8-bit microcomputer-block diagram
-—_—_l INPU l TABLE II—Sci bit times and rates
CAPTURE 2
4f— 2.4576 MHz 4.0 MHz 4.9152 MHz
AT TNPU 4.) .
| ke K: — cerore |— 1 614.4kHz 1.0MHz 1.2288 MHz
EBE SS1:SS0 E Baud Baud Baud
_ 0 0 0 =16 38400.0 62500.0 76800.0
1 commn — 0 0 1 +128 4800.0 7812.5 9600.0
0 1 0 <1024 600.0 976.6 1200.0
“TNTERROPT 0 1 1 <409 150.0 244.1 300.0
CONTROL <: —_—l ‘:>|‘TTMTR_€0NW 1 0 0 =64 9600.0 15625.0 19200.0
Mo conres_| AND STATUS 1 0 1 =25 2400.0 39063 4800.0
1 1 0 +512 1200.0 1953.1 2400.0
1 1 1 +2048 300.0 488.3 600.0
TRPUT EDGE — Cowme — External (P22)* 76800.0 125000.0 153600.0
AND
ouTPUT *7Jqi 1
LEVEL K:—_ ! ! Using maximum clock rate

— LT ::‘ COMPARE 2 I

i

: COMPARE 3 I

Figure 3—MC6801U4 timer-block diagram

Expanded single-chip principles in practical application

by RANDY M. DUMSE

Rockwell International

ABSTRACT

For the past two decades the semiconductor industry has been in a headlong rush
to pack more and more features on a single piece of silicon. The creation of the
microprocessor as a single LSI device naturally gave inspiration for further ad-
vances. The microcomputer on a chip followed quickly and was again a technolog-
ical stepping point rather than a final goal. New generations and process devel-
opment variations made possible larger, faster, and more powerful systems on a
chip. There is, however, a limit on the amount of CPU, ROM, RAM, and special-
purpose devices that can be placed on a single, easily manufactured silicon die with
current technology. In order to give the cost-reducing features of a one-chip com-
puter with the flexibility of a multichip set, the expanded single-chip computer was
developed. This paper will explain the theory behind that development, and then
explore its application in a specific example.

73

Expanded Single-Chip Principles in Practical Application 75

INTRODUCTION

~ For the past two decades, the semiconductor industry has
been in a headlong rush to pack more and more features on
a single piece of silicon. The creation of the microprocessor as

" a single LSI device naturally gave inspiration for further ad-
vances. The microcomputer on a chip followed quickly and
was again a technological stepping point rather than a final
goal. New generations and process development variations
gave larger, faster, and more powerful systems on a chip.

Along the way, many applications already designed in mul-
tichip systems were redesigned using advanced generation
single chippers to take advantage of substantial systems cost
reduction. Other designs which were not cost-effective pre-
viously in multichip versions were plausibly marketable, with
one-chip computers providing substantial reductions. Of
course, there are some applications where only a one chipper
will suffice due to size, weight requirements, etc. The solu-
tions in these areas using single-chip computers have grown in
number and complexity as the more sophisticated parts have
become available.

Still, between the realm of what has been and what could
be, current applications of microcomputers to the world in
which we live have barely scratched the surface. The future
will bring new and exciting designs. These designs will make
possible consumer products that will challenge the imag-
ination of man while easing his burdens.

Limiting factors

A closer look at the reason we are no further along in that
endeavor will show three major facets that regulate advances.
The first is time. Time moderates progress in several ways.
Most obviously, as new microelectronic devices are perfected
by the semiconductor manufacturers, there will be an appre-
ciable delay before ideas on their use come into hand. In-
vestors, engineers, and entrepreneurs will come together
within the business world and move their dreams from design
to production and distribution. The span between concept and
product is time. It is less apparent, however, that time not
only modulates the activity of these people but also their
numbers. Educational systems cannot keep pace with the
production of industry. There are more positions needing
design engineers than there are design engineers. It is im-
portant to remember the reason for this phenomenon. Indus-
try has found more ways of condensing features and functions
on a piece of silicon than educational facilities have found to
cram equal amounts of understanding of the use of these
features into a single human head.

The second factor controlling progress is the level of ad-
vancement of the currently available microcomputer hard-
ware. Along the scale of what can be implemented (in at least
some form of computerized electronic system) and what can-
not, single-chip computer systems fall far short of center. The
reasons are obvious. There are only so many CPU, ROM,
RAM and special-purpose devices that can be placed on a
single, easily manufactured, silicon die with current tech-
nology. Certainly, technology will increase production capa-
bilities, but it is probably unreasonable to expect a single-chip
microcomputer with over-a kilobyte of RAM in the next two
years, for example.

The last controlling factor to be mentioned is, of course,
cost. The principle of anything which costs nothing and does
everything will make the inventor a millionaire applies here.
Overall system cost has limited many ideas from becoming
realities. Certainly, if electronic calculators were still being
done in costly multiple LSI sets, there would be several orders
of magnitude fewer of them in the world today. Many applica-
tions which will become commonplace are unknown today
because of cost.

Stretching the limits

Although time is an uncontrollable factor, system sophisti-
cation and cost factors are not. A closer examination of both
is warranted. First, it should be pointed out that, to date,
these two items have been counter points. System sophistica-
tion could not be improved substantially while independently
reducing cost (at least while remaining at a given tech-
nological level).

Sophistication is generally improved by the addition of fea-
tures. These may include new instruction sets or even revised
architectures in the CPUs, more RAM and/or ROM, more
input/output lines, addition or expansion of special purpose
devices such as counter/timers, edge sensitive lines, latches,
PLA’s and the like. Almost all of these added features require
their own portion of silicon. The more silicon per chip, the
greater the likelihood of a small imperfection ruining that
entire chip, resulting in lower numbers of good parts (from
both less die per wafer and a higher degree of failure) and
increased cost per chip. :

Costs are generally held down with several techniques. The
cost of the single-chip computer itself may be insignificant
compared to that of the overall system. The amount of sup-
port hardware surrounding the microcomputer will to some
degree be determined by the complexity of the applications.
It is not always as obvious that the microcomputer itself may
determine the cost and complexity of the support devices.

76 National Computer Conference, 1982

Internalizing more functions in implemented hardware or pro-
grammed software will reduce production costs. Of course,
the programming required by such an approach will probably
increase the engineering effort, but this added cost can be
amortized over the production run.

Ideally it would seem every possible combination of ROM,
RAM, I/O and special purpose devices like A to D converters,
etc., should be included on a one-chip if maximum cost sav-
ings are to be realized. The assumption is based on a false
economy, since such a device would be too large to manu-
facture with current technology or unique enough to have only
one possible user. Remember, the main reason for using a
microcomputer over discrete logic is the cost savings found in
doing a custom programming of an existing part over a custom
layout of a new logic design. It is the case then that an opti-
mization between the device manufacturer and user must oc-
cur if both are to realize maximum profit (from reduced cost).
The manufacturer should offer only a few options of micro-
computers, the range of which combines the most often de-

sired features in the best proportion for most users. This will

ensure high volumes and low prices for the parts. There will,
of course, be applications where these high-volume-oriented
designs simply do not have the resources to handle the job.
Now the cost balance between a custom-chip or a multiple-
chip set must be made.

EXPANDED SINGLE-CHIP PRINCIPLES

The above discussion highlights the need for a compromise
between single-chip and multiple-chip sets. A scheme is
needed to give the cost-reducing features of a consumer one-
chip computer with the flexibility of a multichip set. If an
external bus stfucture were available on a single-chip com-
puter, the problem would be solved. When the micro-
computer did not have sufficient internal ROM, RAM, I/O
and/or special function devices, they could be added exter-
nally. Cost would be held down by virtue of the fact that only
the extra devices needed would be added externally, reducing
chip counts.

This is exactly the principle of expanded single-chip com-
puters. Designs already exist that not only incorporate a good
deal of computing power on a chip with the support devices
for most common applications included internally, but also
allow flexible expansion externally. Two such microcomputers
are the Rockwell R6500/1-11 and the R6500/1-41. A detailed
look at these devices is in order.

The Rockwell R6500/1-11

The R6500/1-11 (called the R-11 hereafter for simplicity), is
one of the most advanced multifeature one-chip microcom-
puters available commercially. Based on an enhanced version
of the R6502, the part has an extremely powerful 8-bit CPU
with four new instruction set groups added. These groups are
Set Memory Bit (SMB), Reset Memory Bit (RMB), Branch
on Bit Set (BBS), and Branch on Bit Reset (BBR). These new
instructions, coupled with the parts, high level of throughput
(one ps minimum instruction cycle time), give an I/O inten-

sive and very powerful general purpose microcomputer. A
generous portion of 3K bytes of ROM is designed into the chip
Also, 192 bytes of RAM are provided. In the 64 pin QUIP up
to seven I/O ports are available, each with 8 individual lines
for a total of 56 lines. Four of these lines can act as edge
sensitive inputs. A complete, double buffered, full duplex,
advanced feature serial channel is incorporated in the part. It
will operate either synchronously or asynchronously. The in-
clusion of two 16-bit timers, one with a 16-bit latch and one
with two 16-bit latches with multiple modes, gives the device
many real-time signal processing and generation capabilities.
This brief listing does not mention all the features of the R-11
but does point out that the designers included as much capa-
bility on a single chip as is feasible. To accommodate applica-
tions where these features are not sufficient to meet the prod-
uct designers’ needs, they also included two external bus
modes that are program selectable so that external parts could
augment a one-chip microcomputer.

The first of these modes, the Abbreviated Mode, provides
an external data bus and six address lines, as well as the
control signals required to affect data transfers. This mode
supports 64 external locations and is most suitable for the
addition of memory mapped I/O or special function devices.
The second mode, the Multiplexed Mode, provides fourteen
addressing lines, eight of which must be latched, as they time-
share with the data bus. This mode gives a 16K contiguous
memory map external to the part. Any type of device such as
ROM, RAM or special function I/O device could be accom-
modated singly or in combination.

The Rockwell R6500/1-41

The R6500/1-41 (called the R-41 hereafter for simplicity) is
an interesting device which can be characterized as an Intel-
ligent Peripheral Controller (IPC). Designed to reside on a
host processor’s memory or input/output busses, this device
can be programmed to control a given set of preassigned real
world tasks. Although it contains an enhanced 6502 central
processor of its own, it would appear to the host as a special
purpose input/output or control device, as would any other
LSI controller device such as a floppy disk or CRT controller.
Based on the control and data words written into the R-41, it
could execute commands and sequences programmed in its
1.5K internal ROM. Also available are 64 bytes of RAM.
Besides the three state port on the host bus, the R-41 can host
up to 6 input/output ports or 48 individual I/O lines in the 64
pin QUIP version. Two of these lines have edge detect cir-
cuitry. Much like the previous generation R6500/1 single-chip
computer, the R-41 also hosts a multifunction, multi-mode
16-bit counter/timer with full 16-bit latches. Like the R-11, the
R-41 has two external bus modes of its own and can support
other LSI controllers or memory in its own memory map.
Although the R-41’s external bus modes have the same names
as those of the R-11, there is a slight variance in function
between the parts. The Abbreviated Mode of the R-41 has
four address lines and two control signals. This provides for 16
contiguous external memory address. The Multiplexed Bus
Mode provides an additional eight data lines time multiplexed

Expanded Single-Chip Principles in Practical Application 77

on with the data bus. This provides a full 4K of external
memory map for RAM, ROM or devices.

EXPANDED SINGLE-CHIP APPLICATIONS

To highlight these expanded single-chip computer principles,
a specific example of possible application will now be ex-
plored. Consider the current market state of electronic type-
writers. Most are still largely mechanical with servo enhance-
ment of the operators keystrokes. A great deal of mechanical
complexity could be replaced by microprocessor logic and a
cost savings realized. In all likelihood, improved features
could be added with little additional effort. A specification
will be formulated in the following paragraphs to make good
use of the R6500/1-11 and R6500/1-41 features in this applica-
tion.

Application specifics

The actual printer mechanism to be considered will be a
daisy wheel type. The most basic of features will require scan-
ning of the keyboard and control of the printer servo mechan-
ical devices. The wheel motor and position timing, hammer
timing and control, carriage positioning (left and right), and
platen control (paper advance or positioning) are included. A
typing speed of 10 characters per second more than covers the
speed at which an above average typist could enter key-
strokes. This would be the equivalent of about 120 words per
minute, so this will be the basis for all timing specifications.

The print wheel timing and positioning could be accom-
plished in a number of different ways. Almost all of these
combinations, however, fall into two categories, i.e., either a
stepper motor to give a character change per step or a D.C.
servo. Both would require a start point reference input.

Hammer control would be used once the daisy wheel was in
position for the impact. Since different size letters would print
with a different tonal intensity if the impact was not cali-
brated, the force used to strike the letter must be modulated.
This might require combinations of different coils or ener-
gizing a single coil with different width pulses for the different
characters.

The common type spacings are pica or elite, which place a
character every twelfth or tenth of an inch. The common
denominator between the two type sizes is 120th of an inch.
Assuming a stepper motor was used to position the carriage,
it would make 10 to 12 steps to move between character pos-
itions (Vso of an inch is also possible).

Even if subscript or superscript positioning were required,
the mechanics of the paper feed could be fairly straight-
forward and done with a single stepper motor.

To meet requirements of printing 10 characters per second,
all the functions of paper movement, carriage positioning,
wheel positioning, and hammer impact would have to be ac-
complished within 100 milliseconds. Of course, other func-
tions would be going on concurrently. The keyboard must be
scanned every 20 milliseconds or so in order not to miss any
key closures.

Design details

Beyond the most basic requirements, many other features
are possible when microprocessing power is added to the sys-
tem. A single-line display, correction and editing of a line
prior to printing, page-at-a-time memory, interfaces to mass-
storage devices, and even computer interfaces are possible at
very little cost difference over the basic typewriters. These
additional features will make good examples of the expanded
microcomputer principles and will, therefore, be included in
this example specification. .

This design will include, therefore, a single-line, 80-
character display unit. It will allow an entire line to be entered
on the display before it is printed. It will also be memory
expanded and will “remember” an entire document, up to
four pages of typed material. Once the document is in this
memory, the typist will be able to review and make any cor-
rections needed prior to reprinting. An RS232 channel will
also be included to allow communications with a host com-
puter or RS232 compatible mass-storage devices. It will,
therefore, be useful not only as a typewriter but also as a
computer terminal, a data recorder, and a limited-application
stand-alone word processor.

Now that the requirements are stated, the details of the
implementation can be revealed. Although there are many
possible combinations of R6500/1-11’s and R6500/1-41°s that
could meet these needs, the design selected here represents
only one. It is offered only as a reasonable example. A single
R-11 would host the entire system (see Figure 1). Support
devices, as needed, reside on this part’s external bus. In this
particular implementation, the multiplex bus mode will be

|_ 80 CHARACTER DISPLAY

SERIAL 1/0

R-11
PA <£>I TO KEYBOARD,
SWITCHES

AND STATUS LAMPS
L —

PC{ _ADDRESS BUS U i

LATCH 4K x8 ||4Kx8 |AKx 8

RAM RAM || ROM

DEMULTIPLEXERS

DRIVERS

R-41 1PC

PD DATA BUS

R-41 IPC

L R J

DRIVE INTERFACE |

: N
CARRIAGE
o

POSITIONING

7 WHERL
POSITIONING

Figure 1—Typewriter block diagram

78 National Computer Conference, 1982

selected on the R-11 to allow a full 16K bytes of external
memory to be addressed. In that address range of the system
host will be 8K bytes of RAM, one ROM chip, and two
R-41’s.

System description

The tasks assigned to the host include the scanning and
processing of all keyboard and panel switches, management of
the RS232 serial port, maintenance of the entered document
in RAM, performing the word processing functions, and com-
manding the actions of the two R6500/1-41’s. One of these
R41’s is assigned to control all the stepping motor functions.
The other is dedicated to the display. The tasks are organized
in this manner to reduce the impact of small changes in the
mechanics and display units on the overall system. This will
allow future models to use more elaborate features in these
areas without requiring any modification of the host system.
Only the R41 involved with that portion would need re-
programming. As such, a great cost savings in new devel-
opment could be realized.

The keyboard is a matrix of 47 alphanumeric key caps ar-
ranged in standard QWERT format with typewriter place-
ment of the shifted characters (as opposed to teletype). Ten
additional keys are required, comprised of the BACK
SPACE, LINE FEED, RETURN, DEL, ESC, TAB, CTRL,
LOCK and two SHIFT keys. A numeric key pad area and
several selection buttons for system control are not required,
but desirable for typewriter operations. Some of these addi-
tional keys can be in the matrix while others should occupy
individual input positions. The CTRL and SHIFT keys are
examples of the latter, since they will be closed simulta-
neously with other keys in the matrix.

Although there is some controversy about the type of roll-
over processing that is really required in a keyboard operated
by a high-speed typist, N-key rollover is still the most popular
and the reigning standard. Some terminal manufacturers are
beginning to turn away from the concept, using 2-key rollover
or lockout instead. N-key rollover programming requirements
are considerably more complex for little or questionable per-
formance improvement. Still, because it is the highest stan-
dard, the N-key design will be used in the example.

CONTROL
voanlfreer e et
Formi 1S [lFoRM

R OB uc

LF jloY

MARG

Il cont

T
ORI R

The RS232 port will be very easily implemented by using
the serial port of the R-11. All the features of this channel are
programmable to meet almost all common applications (in-
cluding parity as required). When the typewriter LOCAL
switch is active, the RS232 port could be connected to a se-
lected RS232 compatible mass-storage device. Many such de-
vices are available, the most suitable for this application
probably being data cassette types. On command from the
keyboard, the document contained in memory could be stored
on the data tape. If iPPwere desirable to review or edit it, the
saved document could be retrieved later from storage. If not
in the local mode, the key functions and printing would be
independent. Keys depressed would be passed from the type-
writer to an external device. The external device returns
would be printed as received. This is exactly the essence of a
full duplex terminal. Instead of a video screen for display,
however, the output would be letter quality print.

Since internal RAM is limited to 192 bytes, it is necessary
to expand the RAM with external parts. The internal RAM
will be used for the processor stack and system constants such
as tab settings, margins, etc.; and system variables will be used
for calculations, keymask patterns, and the N-key stack. In
order to provide N-key rollover, two images of the keyboard
must be maintained. The differences from one scan to the next
represent the new key information. As each new key is de-
pressed, it is added to the N-key stack. A keyboard matrix can
be rather large, so the two images will be stored in external
RAM. In order to enter a line at a time and also do editing
functions, a current line buffer will also be maintained in
external RAM. A page of typed information requires 2000
bytes of storage or less, so 8K bytes are necessary external to
the R-11 host.

The 3K bytes of internal ROM in the R-11 will be sufficient
for the management of all features and communications with
the possible exception of the keyboard key cap assignments
for the SHIFT and CTRL combination, if the pattern is non-
standard, and perhaps some of the more complex text editing
features that might be added. These features’ programs could
be maintained in an external ROM. It is doubtful that any-
thing larger than a 4K byte ROM would be needed even if the
features included centering commands and formatting with
pagination functions.

NAERC

aus (

121806000 00EBISHC
FUNCTION

J o0

Figure 2—Example keyboard layout

Expanded Single-Chip Principles in Practical Application 79

All the features of the host have been described. Now atten-
tion will be turned to the slave processors functions. The two
Intelligent Peripheral Controllers (R-41’s) manage the output
functions of the system. The first to be discussed controls the
printer mechanism.

This R-41 would receive characters and commands through
its data port from the host R-11’s processor bus. The dis-
tinction between commands and characters would be made by
the previously written control registers port. In this manner,
the host would send characters in a stream to the R-41. The
R-41 will determine spacing, paper feed, and print wheel and
hammer control (in short, all the functions necessary to put
the character to the paper). If special carriage control were
required (line feed, carriage return, back space, superscript
positioning, etc.), the host would send the specific associated
control word instead.

The functions of the display could probably be processed by
either the host R-11 or the printer R-41, but in order to give
a flexible system design for future expansion as previously
described, the second R-41 will be used to control the display.
Such a design would also be advantageous by virtue of the fact
that no additional I/O or timing burdens would be placed on
the host or printer subsystems. After all, the simpler the mod-
ules, the quicker the system can be completed at a lower
development cost.

The interface between the host R-11 and the display R-41
would be nearly identical to that of the printer slave processor.

Buffered with transistors, some of the R-41’s output lines
could drive patterns for a long vacuum fluorescent display
tube. Other port lines could be demultiplexed to give the
select for a particular character position. Beyond these parts,
only a power supply for the required V.F. display voltage
would be needed to complete this module.

SUMMARY

The specification and design details are now complete, at least
to the scope of this paper. Only six LSI MOS chips would be
required for this entire system (an R-11, two R-41’s, two
4K X 8 quasi static RAM and one ROM). The cost of the parts
in OEM quantities for this application is under $50. The entire
electronics assembly with display could probably be made for
under $90, meaning it is reasonable to conceive of a high-
quality typewriter, terminal text processor that could be mar-
keted for under a $400 retail price tag.

The principle of using expanded single-chip computers to
reduce costs is, therefore, proven. Development of a custom
processor chip to handle all the features described could ap-
proach one million, if possible at all in current technology.

A multichip set approach would at least double the chip
count and probably the cost of electronics, while offering no
additional features. The application of expanded single-chip
computers fits the needs of today’s market.

Making the most of VLSI in microcomputers

by JERRY L. CORBIN

Texas Instruments Incorporated
Houston, Texas

ABSTRACT

An introduction to the innovative SCAT design philosophy for VLSI microcom-
puters of Texas Instruments (TI) is presented. The recently announced 8-bit
TMS7000 Microcomputer family is used as an example of a SCAT design. TMS7000
benefits resulting from SCAT include a very dense bar for lower chip costs and
microcomputer prices; a unique microprogrammability feature that will allow a user
to modify the instruction set for the few applications that require it; and the archi-
tectural flexibility that will allow TI to bring many new microcomputer devices to
the marketplace quickly and easily.

81

Making the Most of VLSI in Microcomputers 83

THE MICROCOMPUTER LAYOUT PROBLEM

Design techniques for large-scale integrated microcomputer
circuits have traditionally followed those of printed circuits.
Separate design teams typically pack desired functional per-
formance into separate functional blocks. The job of inter-
connecting the functional blocks is left as the last step.

Thus, in comparison with memory chips, microcomputer
designs tend to sprawl over large areas of silicon. As the
complexity of microcomputers has increased, the interconnec-
tions between the various subunits can consume a significant
portion of the available silicon. If random logic is used, its
irregularity makes the problem worse.

SCAT ARCHITECTURE

Texas Instruments made an important step toward moving
microcomputer design into the VLSI era with the introduction
of the Strip Chip Architectural Topology (SCAT). SCAT inte-
grates architecture and layout into a dense, memorylike,
array-structured chip. SCAT replaces as much random logic
as possible with regular structures such as read-only memories
(ROM) and transistor arrays. TI’s recently announced
TMS7000 family of single chip, 8-bit microcomputers repre-
sents the culmination of the SCAT design philosophy.

With SCAT, the chip’s layout is not left until the end of the
design process, but is an integral part of it. For example, the
TMS7000’s registers for the timer, I/O control interrupt han-
dling, and arithmetic logic unit are arranged in a strip. The
chip appears to be a tightly stacked set of 8-bit-wide bricks
that are interconnected through a data bus (see Figure 1).

Since the memory-intensive subunits are aligned in vertical
strips, practically all the interconnection paths run over silicon
that has already been used for active devices. The polysilicon
and metal interconnections are made with an absolute min-
imum of signal path length, which also lessens the required
size for the line drivers.

The net result of TI’s SCAT is a very powerful microcom-
puter packed into a small chip size. The 2K ROM TMS7020
microcomputer, for example, has a chip area of 35,000 square
mil using conservative 4.5 micrometer design rules that can
easily be shrunk to 3.0 pM rules.

The costs of fabricating a microcomputer chip are expo-
nentially related to chip size. For example, a microcomputer
chip with only a 10% increase in silicon area (with the same
design rules) could cost up to twice as much to manufacture!
Small microcomputer chips equate to lower chip costs and
thus to lower pricing to microcomputer customers.

MICROPROGRAMMABILITY

To take advantage of the silicon efficiency of ROM over ran-

dom logic, TI replaced the traditional programmed logic array
and associated random logic with a Control ROM to imple-
ment internal control of the TMS7000 microcomputer. The
Control ROM stores the microcode that determines the in-
struction execution sequence.

Microcoding of the TMS7000 is extremely simple because
of the general technique of instruction decode. The CPU has
no microprogram counter; instead, the present Control ROM
state supplies the address of the next state. With micropro-
gramming, all the necessary control signals are contained in a
single microinstruction lying lengthwise down the Control
ROM. No complex routing or combinational logic is required.
Most instructions executed by the TMS7000 share microstates
with other instructions. This simple microarchitecture and
microcode-sharing technique result in a reduced chip size
while increasing tremendously the flexibility of the TMS7000.

Probably the single most unusual feature of the TMS7000 is
the flexibility the microprogramming feature offers the cus-
tomer. The already powerful standard TMS7000 instruction
set can be altered or customized for applications that require
unique performance, memory, or I/O features. These user-
defined instructions are substituted for standard TMS7000
instructions on the Control ROM.

In some user applications, microprogramming will enhance
TMS7000 performance. By combining or modifying the exist-
ing microinstruction execution sequence to perform critical
tasks or subroutines in less instruction clock cycles, the
throughput or “speed” of the TMS7000 in the user’s applica-
tion is enhanced.

Another advantage to microprogramming is that in specific
applications it can allow more efficient use of the limited
on-chip program memory. By combining or modifying the
standard microinstruction execution sequence for unique re-
petitive tasks or subroutines, the total overall application pro-
gram may require fewer steps and less on-chip program
memory.

In effect, microprogramming can be also thought of as a
safety net for the design engineer should he/she overestimate
his/her software capability or underestimate the application
system requirements.

Microprogramming could also be useful in providing in-
creased system security for TMS7000 customers competing in
very competitive business environments. Reverse engineering
of a system implemented on a TMS7000 microcomputer with
a unique user-defined instruction set would be difficult.

ARCHITECTURAL FLEXIBILITY

Because of the unique structure of the SCAT design philos-
ophy, the orthogonal control and data paths are readily avail-
able to modify or enhance the TMS7000 chip.

84 National Computer Conference, 1982
Aol R |pelinT| T PRESCALER 1 ar| A | Asf Az [Ay Ao
SET} 1 3 CONTROL
B2
CLK =
GEN x |& TIMER
DECODER |3 By
>{ /0 CONTROL
0sC, INTERRUPT > Bo
o o~
ENTRY POINT = 2
& Sle %‘ B,
0SC, = IR ol2|E] 2
g _z_ o hrg w
s STATUS USER- HEE R 8
= PROGRAMMABLE [S1Z1Z] < °
CLK 2 BCD MASKED ROM |2]=|<) 2 ’
GEN MICRO- | SHIFTER {2-K BYTE) =|z|g] 2
CONTROL{ 25 sl<|12] 2 | Vs
READ 1= ALU 232 &
Ao~Az = APORTS 0 MEMORY |5 ot A~
ALU = ARITHMETIC AND LOGIC UNIT 7 2 m = & Bs
Bo-B; =BPORTS = T & &
BCD = BINARY-CODED DECIMAL CHECKER Ds z
Co-C; .= CPORTS 2 PCH B4
CLKGEN = CLOCK GENERATORS = PCL
Do-D; = DPORTS Ds S SP 8
10 = INPUT/QUTPUT MAL 3
INT = INTERRUPT INPUT Ds
IR = INSTRUCTION REGISTER %DE;EESRS RAM
MAL = MEMORY-ADDRESS LOW BYTE u } REF
MC = MEMORY CONTROL D v !
MD = MEMORY-DATA GATES : AT‘EMGURRDYU,E%NEE%%LER X DECODER BUFFER CDDDEE MC
0SC,-0SC, = OSCILLATOR CRYSTAL INPUTS D CONTROL
PCH = PROGRAM-COUNTER HIGH BYTE
PCL = PROGRAM-COUNTER LOW BYTE D,
REF = REFERENCE D1 Do C(; c'| CQ 03 C,, C5 Cﬁ C7
sP = STACK POINTER Vee
T = TEMPORARY REGISTER

Figure 1—TMS7020 chip layout

For example, TI created the TMS7040 4K ROM version
from the 2K TMS7020 2K ROM version without redesigning
the chip. The chip design was separated at the memory bor-
der, and the additional 2K of memory was singly inserted by
the design computer. Likewise, additional features such as

more ROM, RAM, or different I/O structures can be added
with a minimum of design resources and time.

TI plans to take advantage of SCAT by adding many device
members to the TMS7000 family in the near future. EPROM,
CMOS, communications devices, and more are in design.

Single-chip microcomputers can be easy to program

by BILL HUSTON

Motorola Inc.
Austin, Texas

ABSTRACT

Most single-chip microcomputers (MCUS) use the split-memory Harvard architec-
ture. A few single-chips trace their architectural heritage to large computers due to
the common-memory Von Neumann organization. The major differences are that
a Harvard-based MCU costs less in its undistorted form, and a Von Neumann-based
MCU is more expandable and easier to program.

Since the traits of Harvard-based single-chips are quite well known, though
perhaps not by that name, the focus is placed on the programming benefits of a Von
Neumann MCU. Programming costs can be lowered while increasing program
reliability. Data organizations can be more flexible in both RAM and ROM. Pro-
gram changes can be incorporated more quickly. The generalized instruction set is
easier to understand. The M6805 family of MCU s is used to illustrate these benefits.

85

Programming Single-Chip MCUs 87

ARCHITECTURAL COMPARISONS

Like most major products, the single-chip microcomputer has
evolved in a series of stages rather than being the inspired
creation of a genius. All of the popular 4-bit single-chip micro-
computers (MCUs) and many of the 8-bit MCUs are derived
from the evolution of the calculator. Some 8-bit MCUs have
instead evolved down from larger computers. These two di-
verse evolutionary paths are identified by comparing the two
architectures that have resulted.

Harvard Architecture

The unique trait of the architecture shown in Figure 1 is the
separate memory organization for programs (ROM) and data
(RAM). Each type of memory has a dedicated address regis-
ter. The ROM address register is the program counter, but the
RAM address register has various names. Separate address

INCREMENT —» ——
ROM
ey —’nggéf)g Rom [™] DECODE
!' REG | e
¥ S]]
INPUT
E LINES
™ f.?.;‘.'q RAM RAM |—>$ELECT AR;TH
™ REG DECODE . '-3,“3"19 —
Accum LINES
1 REG

SELECT

OUTPUT
LINES

Figure 1. Harvard architecture single-chip MCU

registers permit register lengths and interconnections to be
optimized. For example, a 6-bit RAM address can be used
with a 10-bit ROM address.

With the separate memory architecture, data read from
ROM are fed directly to the instruction decoder. Similarly,
the RAM output goes only to the ALU. Thus, data widths of
4 bits in the RAM and ALU are not incompatible with an 8-bit
ROM instruction size.

The split program and data memory architecture is some-
times called the Harvard architecture (or Aiken architecture).
This designation contrasts it to the Von Neumann (or Prince-
ton) architecture of all large computers today. The Harvard
architecture was used in some of the very first electromechan-
ical and electronic computers, built under the direction of
Professor Howard Aiken at Harvard. Memory technology was
of course very rudimentary in the 1940s. Since separate stor-
age techniques were used for programs (paper tape) and data
(telephone 10-step relays), the separate memory architecture

was a natural. As with MCUs today, the hardware compo-
nents and the interconnections are fewer with split dedicated
memories.

The Harvard Mark I computer was used for over 10 years
as a high-precision calculator of mathematical reference data
such as navigation and ballistics tables. When the processor
usage is straightforward, the Harvard architecture is fine,
even superior. The problems arise when the needs become
more complex.

For example, to allow a subroutine, a program counter save
register is placed beside the PC. This does not dramatically
disturb the interconnect efficiency of the Harvard architec-
ture. The Harvard benefits dissipate quickly when three or
more PC save registers are cascaded together into a costly
amount of silicon. Sometimes the program is permitted to
read and write into the PC save register, which adds more
dedicated interconnects to Figure 1, as well as encountering
the problem of unequal word sizes. Sometimes an MCU in-
cludes a stack pointer and saves the PC in RAM, which dou-
bles the RAM read/write paths in Figure 1.

Address calculations are another example of Harvard archi-
tecture difficulties. Figure 1 shows that all MCU implemen-
tations have a path from the RAM address register to the
ALU to permit calculations. RAM data structure sizes are
limited when a 4-bit ALU is used with a 6-bit RAM address.
Harvard MCUs use one or more instructions to calculate the
content of the RAM address register. Then one or more in-
structions are used to obtain and operate on the RAM con-
tent. There are no single instructions that calculate the RAM
address and then operate on the RAM content.

Some MCUs have no provision for calculating ROM ad-
dresses. The ROM address register is not available to the
ALU, so relative addressing is not possible. In such cases it is
not possible to read the content of a data table in ROM. Thus,
a straightforward BCD-to-7-segment conversion has to be im-
plemented in an I/O PLA. In some cases the Harvard archi-
tecture is further distorted to allow a program to read and
write to a ROM address register. In such cases there are now
two inputs to the ROM decoder in Figure 1, the program
counter and a program-accessible ROM address register.

As the computer pioneers of the late 1940s and early 1950s
discovered, the Harvard architecture has severe limits when it
comes to generalized uses. Thus the Harvard architecture in
today’s more advanced single-chip MCUs includes numerous
distortions. As a result, the economic motivation for the Har-
vard architecture in a calculator is lost in a general-purpose
MCU. Extra dedicated registers and ALU data paths are
added to the silicon area of an MCU, which increases the
price. The Harvard architecture is also more difficult (ex-
pensive) to program.

It has been successfully shown with the M6805 family that
a Von Neumann architecture MCU can be both lower in cost
(less silicon die area) and easier to program.

88 National Computer Conference, 1982

Von Neumann Architecture

Figure 2 shows the fundamental architectural difference to
be a common addressable area for RAM and ROM, and I/O
as well. Rather than use point-to-point interconnecting as in
Figure 1, Figure 2 shows common data and address busses.
The program registers are also more generalized.

INTERRUPT PROGRAM
REGISTERS
LATCH Vo
CONTROL A,TH P PORT
INSTRUCTION ' _>LOGIC
DECODE UNIT
.
LATCH
LATCH
10
Gy
I T DATA BUS PORT
_ N J ADDRESS BUS
ROM RAM 10 ADDR [Vo
DECODE | ROM || DECODE| RAM || DECODE LATCH | ™ pogt

Figure 2. Von Neumann architecture single-chip MCU

Professor John Von Neumann at Princeton first docu-
mented the concept of a program stored in a common memory
space with data. The chief benefit is the inherent ability to
operate upon addresses as easily as data. Program and data
table pointers can be saved in RAM. Indexing the other ad-
dress calculations can be included.

The Von Neumann architecture has some shortcomings.
The common bus saves interconnect area only when there are
enough points tapping onto the bus to justify the three-state
control needed to manage the use of the bidirectional bus. All
address and data elements must be standardized to the bus
width.

In current implementations, 8-bit busses, registers, and
ALU are used, which means that some elements are larger
than in 4-bit MCUs. Elements larger than the bus—addresses,
for example—occupy more than 1 bus cycle. With an 8-bit
bus, expansion to 16 bits of addressability is as easy as han-
dling a 10-bit address.

The remainder of this paper focuses on the program bene-
fits of the Von Neumann architecture, particularly as applied
to the M6805 MCU family.

PROGRAM AND PROGRAMMER EFFICIENCY

It was once considered sufficient simply to have a very low-
cost programmable IC. The programs written were short, and
the programming effort was to be amortized over a large
number of units. This view is obsolete today in many applica-
tions. The applications are more complex than the microwave
ovens of a few years ago. Programs are not just written once
and forgotten; they are changed, in some cases many times.
Program changeability costs should also be considered when
amortizing program costs.

The Von Neumann type of MCU architecture also permits
greater program design flexibility. Memory use tradeoffs are
more easily made. System hardware functions can be taken

over by the program. The tools are available to allow pro-
grams to be more reliable. The most important efficiency
factor for MCU programs is efficiency of ROM use—fitting
the most features into a given ROM size.

Program Changeability

Only unsuccessful programs are never changed. Since a
project is seldom started that is planned to be unsuccessful, all
projects need to plan for program changeability. Field testing
of a prototype points up faults in the original program as well
as desirable improvements. The sources of program require-
ments (customers and marketers, for example) frequently
conclude that what they asked for is not exactly what is
needed. Similarly, the managers, marketers, and customers
always come up with new features that would be desirable.
These are just some of the sources of changes to the original
product.

There are also changes to the program that generate deriv-
ative products. It is difficult to hide the fact that the single-
chip is programmable. Everyone wants to take advantage of
the programmable IC to suggest derivative products. Change-
ability must be designed in from the beginning.

Programming costs thus include the cost of incorporating
program changes as well as the initial programming effort.
Frequently the changes are incorporated by a different pro-
grammer. Program changeability costs thus also include the
time it takes a new programmer to figure out what the original
programmer did.

The MCU architecture can limit future extensions of the
program to include additional functions. In such cases the
program changeability costs include reprogramming for a new
MCU. Specialized programming techniques that take advan-
tage of odd MCU features or use unused memory in odd ways
also limit future changeability. Major reprogramming costs
can be avoided by using generalized MCU architectures,
which do not tempt the programmer to use odd quirks in the
inevitable attempts to get seven pounds of functions into a
five-pound ROM sack. The features of the end product can be
so tightly interwoven with each other and with the given
memory organization that changes, even some apparently
simple ones, can send the programmer back to Square 1.

The architecture of a single-chip MCU has more impact on
the cost of program changes than at first suspected. The Von
Neumann architecture allows programs to be written faster
initially, understood more quickly by a different programmer,
and changed more rapidly.

Fewer Lines of Code

“The programming time is directly proportional to the num-
ber of program statements.”

This axiom has been widely accepted for programming
projects, from compiler-language business-data-processing
programs to assembly-language microprocessor applications.
The axiom is also applicable to single-chips.

The functional definition, functional flow chart, and user
documentation effort are rather independent of the MCU
chosen. However, the detail flow charts, coding, program

Programming Single-Chip MCUs 89

checkout, and program documentation phases are propor-
tional to the number of lines of code. In typical projects,
coding and checkout represent the bulk of the programming
effort.

If an MCU architecture permits the program to be written
with fewer lines of code, it saves programming expense.
Benchmarks have shown that that M6805 family programs
need about half as many lines of code to accomplish a given
task as a typical 4-bit MCU. The benchmarks include full
applications as well as typical comparison subroutines. Thus
50% of the program coding and checkout time can be saved.

More details of the M6805 family architecture are included
later, but a few of the features that contribute to the program
savings are listed here. Address calculations, including table
look-up indexing, are a part of the instruction, not separate
instructions that must precede the operation. In two-operand
instructions such as add, AND, and compare, one operand is
an addressable memory byte, which saves frequent register
loading. Memory bits and bytes can be modified directly,
without disturbing any registers, in a single instruction such as
set a bit and increment a byte. All I/O pins may be set,
cleared, or tested with one instruction. Interrupts automati-
cally save and restore all registers.

As applications become more complex, programming time
is becoming a larger part of the end product cost. A larger
benefit in many cases is that the end product will be available
sooner. Many products using MCUs go into competitive mar-
ketplaces where saving a few months can measurably increase
market share. When changes can be incorporated faster, the
new product variations can also reach the market ahead of the
competition.

ROM Versus RAM Tradeoffs

MCU programmers frequently get caught with not enough
memory. Product cost targets can block switching to an MCU
with more memory. So effort must be expended in redesign-
ing the program until it fits.

When only ROM or RAM is overloaded, tradeoff tech-
niques can be used to decrease the use of one at the expense
of the other. The common memory field of the Von Neumann
architecture is again shown to be an advantage. ROM and
RAM are equally accessible, so functions can more easily be
moved back and forth.

The flexibility of having any number of subroutine levels
gives the user considerable control over the mix of ROM and
RAM used. The more subroutine levels needed, the more
RAM used for subroutine return addresses. So when spare
RAM is available, the code can be shortened with more sub-
routines. When RAM is overfilled, fewer subroutine levels
can be used by increasing ROM usage.

Efficient bit and byte handling instructions, such as that of
the M6805 family processors, allow RAM data to be packed,
multiple elements per byte.

1O Versus ROM Tradeoffs

The increased instruction and addressing mode sophistica-
tion of a Von Neumann MCU sometimes allows previous
hardware functions to be taken over by the software. Since

hardware-versus-software tradeoffs are application-depen-
dent, only generalized examples are cited.

Some MCU applications use an off-chip A/D converter.
There are a series of alternative approaches that can be con-
sidered. One approach is to use an MCU that includes an
on-chip A/D. Second, the analog value can also be converted
to a variable frequency or pulse width, which is measured
either with a timer on the MCU or with a program. A third
method is to use an interrupt program to count the cycles it
takes for an external ramp to match on an external compara-
tor. Perhaps money can also be saved in the analog sensor or
in the accuracy of the A/D conversion. A lower-cost sensor
might produce nonlinear outputs, but the program could com-
pensate for the nonlinearity by using an indexed conversion
table or a smoothing formula.

The goal is the lowest total system cost, not the lowest MCU
cost. There are frequently opportunities to consider doing by
program functions that require external hardware with other
MCUs.

Program Errors

Program reliability should be considered in relation to
single-chip MCUs. It may seem improbable for an error to go
undetected that is serious enough to require scrapping end -
products, but it has occurred. Such scrappage is part of the
cost of programming. Software costs are treated as amortiz-
able costs. The exception is program errors that turn into
recurring costs. Program errors occur as a result of insufficient
program checkout, which frequently is due to hurriedly incor-
porated changes.

Rather than initiating end product scrappage, program er-
rors more often cause a quirk to show up in the end product.
Such errors cause a series of recurring costs (costs propor-
tional to the quantities in use, not one-time costs). Instruction
manuals are expanded to explain the quirk. The service peo-
ple are trained not to interpret the quirk as a failure. Time is
taken to explain the quirk to complaining customers. These
are direct, measurable costs of program errors.

An indirect cost of program errors is loss of good will.
Customers who have to live with a recognized quirk are irri-
tated. Some will take their business to a competitor the next
time. These are not one-time programming costs.

Program unreliabilities also bring in the risk of legal liabil-
ity. Some program errors could be construed as causing loss
of life, limb, or property.

The use of sound programming techniques is clearly the
best way to reduce the risk of program unreliabilities. The
architecture of the MCU can contribute to encouraging good
programming techniques.

Errors are inclined to be proportional to the number of lines
of code it takes to write a given program. A processor that
uses fewer statements to perform a function, is also easier to
keep clear in the mind of the programmer. As implied earlier,
orderly change incorporation presents the best opportunity to
reduce the error risk. In this case, the otherwise unmeas-
urable factors of an easy-to-understand, consistent instruction
set with few oddities has major value. When the application
functions are tightly interlinked with memory and I/O traits,
changes can be extensive and thus error-prone.

90 National Computer Conference, 1982

The watchword is to be sensitive to program reliability and
to put some value on an MCU architecture that encourages
better programming.

ROM Usage Efficiency

Using the least ROM area is one of the more important
criteria used to select single-chip MCUs. The number of
single-byte instructions in the repertoire is not a good measure
of ROM efficiency. The question is not whether one thousand
instructions fit into a 1K ROM, but rather the number of
system functions that can be programmed into a 1K ROM.
This brings up the subject of benchmarks.

It is tempting to gather or devise half a dozen routines that
are felt to be typical of the intended application and imple-
ment them in two or three competing instruction sets. Such a
tradeoff is vulnerable to human bias, perhaps unintentional,
on two major fronts. First, the programmer is likely to be
more experienced in one processor and thus less likely to
produce optimal code on the alternate processors. Second,
the choice of the benchmark routines is clearly a simplification
of the application and likely to be slanted to the programming
techniques used on one or a few processors.

In spite of the risks, comparisons obviously need to be
made. Steps can be taken to reduce, as far as possible, these
biases. But why not go one more step?

The initial writing of an MCU program tends to be short
compared to programs on larger computers. Many single-
chips have been programmed in a month or two. So if two
MCUs are in contention, program them both for the complete
application. Then the comparison benchmark is not just a few
isolated routines, but also all the overhead that it takes to use
those routines in a practical application. Small benchmarks
can serve to evaluate speed-critical program paths in re-
sponse-time-sensitive applications. But MCU users are usu-
ally more concerned with ROM efficiency than with through-
put. ROM usage efficiency is not as easily judged from small
benchmarks.

THE M6805 FAMILY ARCHITECTURE

In covering the benefits and shortcomings of Von Neumann-
based single-chip microcomputer architectures, some of the
architectural traits of the M6805 family of MCUs have been
alluded to. This report is thus concluded with some details of
the M6805 family architecture. How well have these MCUs
capitalized on the shortcomings of the popular Harvard archi-
tecture MCUs? Is the M6805 family really easier to program,
and does programming ease have monetary value? The result
is an MCU architecture which is more economic (has a smaller
die area) than the popular 8-bit Harvard architecture MCUs
and at the same time includes the big-computer features that
are usable in a single-chip.

Such programming tools as indexed look-up tables, many
subroutine nesting levels, single-instruction memory modi-
fication, single-instruction bit test and modify, and common
access methods for all addressable locations, are direct user
benefits of the computer heritage as opposed to the calculator
heritage. With these tools, programs are written easier and
faster and are easier to modify and more reliable.

One Address Map

A striking feature of a Von Neumann architecture is the
common memory space for the ROM and RAM. The M6805
family extends the advantage by allocating space in the ad-
dress map for I/O registers. The common address map is
shown in Figure 3. The instructions include short addressing
modes for more ROM-efficient access to the first 256 address-
able locations. The most frequently accessed data elements
are thus concentrated in the quick-access 256-byte page zero.
Present implementations include 64 bytes and 112 bytes of
RAM in various versions, but future versions could easily
include more or less RAM.

SHORT ‘I Ramaro
ADDRESSING JSER Fom /o pomre
MODES | o5 ,5
OPTIONAL
USER ROM OP TR AL
USER ROM 64
BYTES
RAM
SELF CHECK
ROM
ROM VECTORS 127 } stack

THE TOTAL MEMORY SPACE VARIES AMONG M6805 FAMILY MEMBERS

Figure 3. Common address map

ROM Areas

A portion of the user ROM is included in the first 256
locations to allow quick access to frequently used subroutines
and to allow quick access to look-up tables.

In addition to the user ROM, all M6805 family ROM-based
MCU:s include self-check ROM. A small program is included
for factory wafer-level testing and is available for user testing
if desired. The self-check ROM area is not counted as user
ROM and does not in any way reduce factory final testing to
data sheet specifications. Some users are using the callable
self-check subroutines implemented in most versions for func-
tional confirmation when coming out of reset. Some are using
a low-cost self-check tester for functional screening of parts
before PC board assembly. The EPROM versions do not use
the small mask ROM for self-checking, but rather for boot-
strap self-programming of the user EPROM.

The highest memory addresses are user ROM for the inter-
rupt and reset vectors. The vectors are 16-bits (2 ROM bytes)
designating the interrupt program starting address. Separate
vectors are included for the external interrupt; the timer inter-
rupt; the software interrupt; the power-up reset program;
and, in the CMOS versions, the stand-by recovery (Wait
mode) program.

Addressable 1/0

The first 16 addressable locations are reserved for the on-
chip I/O registers. I/O is thus accessible to all instructions
using the ROM efficient short addressing modes. I/O data

Programming Single-Chip MCUs 91

may be read or written (load and store) as bits or bytes. But
I/O bytes may also be operated upon (AND, add, compare,
etc.).

Current MCUs include up to four 8-bit ports. Each port
read/write register occupies 1 memory byte. The ports include
a second byte, the data direction register, which determines
whether each I/O pin is an input or a driven output.

The 4 ports thus occupy 8 addressable bytes. The timer
accounts for 2 more bytes, one for the 8-bit counter and the
other for timer control. The second external interrupt avail-
able on some versions occupies 1 byte. The A/D converter on
some versions uses 1 byte for the digitized result and 1 byte for
A/D control. The EPROM versions include a register to con-
trol the self-programming of the EPROM. One family version
includes an on-chip phase-locked loop for frequency synthesis
that uses 2 I/O bytes for the variable divider.

The Register Set

Figure 4 shows that when a generalized address map is used,
only five program registers are needed to provide a powerful
instruction set. The specialized registers of the Harvard-type
architecture are not needed.

8 BITS A ACCUMULATOR
8 BITS X INDEX REGISTER AND

ADDITIONAL ACCUMULATOR
P _ SP STACK POINTER
[11TO13BITS | PC PROGRAM COUNTER
' CC CONDITION CODE BITS

S AND PC LENGTHS VARY WITH THE AMOUNT OF MEMORY
IMPLEMENTED

Figure 4. Register

The accumulator is used for arithmetic and logical opera-
tions. The program counter is from 11 to 13 bits long, de-
pending on the amount of memory implemented.

The index register has two uses. The three indexed address-
ing modes use X to contain a variable that is added to a value
provided within the instruction. The X register is also an
auxiliary accumulator. Many of the register manipulation in-
structions that operate on A also are used with X.

Additional general-purpose registers are not needed, since
instructions are available to modify RAM locations directly
without disturbing A or X. Examples are increment a byte, set
or clear a bit, and test a bit or byte.

The stack pointer is initialized to the highest RAM address.
The variable portion is 5 or 6 bits to limit the maximum stack
length to 31 or 63 bytes. A subroutine call uses 2 stack bytes
to save the return address. The automatic interrupts use 5
stack bytes to save the A, X, PC, and CC registers. The 5-bit
stack pointer thus permits up to 13 nested subroutines, as-
suming 1 interrupt level, (31-5)/2=13. The 6-bit stack
pointer allows for 29 subroutine levels. Both subroutine nest-
ing levels are safely beyond that which could normally be used
in a single-chip program. It is convenient, however, to let the

programmer determine the needed subroutine levels rather
than have the limit established by the architecture.

The condition code register is five individual status bits that
are treated as a register when an interrupt save occurs. Four
of the CC bits represent the results of the last data byte
accessed or register operation performed. These permit sub-
sequent testing with conditional branch instructions. The four
result conditions are carry (or borrow), half carry (for BCD
adds), all zeros byte, and negative (bit 7 set). The fifth CC bit
is the interrupt mask, which enables all on-chip interrupts.

Future Expandability

A frequent restriction of Harvard architecture MCUs is a
limit on expanding the memory or I/O size in future versions.
In most cases the maximum RAM size is limited within the
op-code field of instructions that load the RAM address regis-
ter. There are a number of popular architectures that cannot
use more than 64 bytes of addressable RAM.

A Von Neumann architecture has few restrictions on the
mix of ROM and RAM. The only address limit imposed by
the M6805 family architecture is that the maximum address-
ability is 64K, though no current versions include a full 16-bit
address. The program counter, all the long addressing mode
instructions, and the subroutine and interrupt save space all
accommodate a 16-bit address field with no architectural
changes.

Numerous System Configurations

A major benefit of architectural expandability is that many
family versions can be introduced in a short time. Eleven
versions of the M6805 family are already available, and more
are on the way.

Three technologies are presently represented: HMOS,
CMOS, and EPROM. ROM sizes range from 1K to 4K, with
RAMs from 64 to 112 bytes. The 28- and 40-pin packages
typically permit 20 and 32 I/O pins respectively. For evalua-
tion, prototyping, and smaller production runs, both EPROM
and ROM-less versions are offered. Some versions include an
on-chip 8-bit A/D converter. Another includes a frequency
synthesizer for RF applications. Standby RAM capability is
included in some versions. Most include high-current output
drivers.

Automatic Interrupts

Interrupts are the primary tool allowing a program to syn-
chronize to real-time I/O events. Single-chip MCU applica-
tions have become I/O-intensive. Inputs and outputs of di-
verse natures must be accepted and generated. Frequently,
tight timing relationships must be measured or maintained.
Multiple timing relationships must be coordinated, sometimes
at higher speeds.

Some Harvard-architecture-based MCUs have no interrupt
facilities because there is no place to store the return address.
The modernized Harvard MCUs have added an interrupt,
which is frequently only a fixed subroutine call. Fully auto-
matic interrupts save all program registers, not just the pro-

92 National Computer Conference, 1982

gram counter. The interrupt program thus need not waste
ROM bytes and time storing all of the registers.

Efficient interrupt tools make complex real-time MCU in-
terfaces possible.

Ten Addressing Modes

Another benefit of the Von Neumann architecture is that
the common address map allows the instruction set to be
enhanced by providing more addressing modes.

Figure 5 shows that the M6805 family has added four ad-
dressing modes to the M6800 instruction set while dropping
only one 16-bit mode. The new bit manipulation capability is
particularly appropriate to the controller environments that
use single-chip MCUs. The extra indexing modes ease the
table look-up task, the most useful indexing function in con-
trollers, as well as permitting better ROM use.

MC6800 | M6805

ADDRESSING MODE MC6801 | FAMILY
INHERENT Id I

(OPERAND IN OPCODE)

IMMEDIATE (OPERAND 8 BITS Id Id
FOLLOWS OPCODE) 16 BITS I —
ABSOLUTE (OPERAND 256 LOCATIONS (DIRECT) I 4
ADDRESS FOLLOWS OPCODE)| 64K LOCATIONS (EXTENDED) I I
RELATIVE PC +128 (BRANCHES) I Id
INDEXED EA = X — ”
(FOR TABLE ACCESSES) EA = X + 8-BIT VALUE I v
EA = X + 16-BIT VALUE — v
BIT MANIPULATION BIT SET'CLEAR — I
BRANCH ON BIT I'd
EA = EFFECTIVE ADDRESS 7 10

X = INDEX REGISTER CONTENT

Figure 5. Ten addressing modes

The inherent addressing mode includes the single-byte reg-
ister reference and control instructions, which do not refer-
ence memory. Immediate addressing is the inclusion of an
8-bit data value in the second byte of a 2-byte instruction.

Short and long absolute addressing, called the direct and
extended modes, includes the memory address in the in-
struction. The first 256 most frequently accessed bytes, the
RAM, I/O, and part of the ROM, are accessed with a 2-byte
instruction. A 3-byte extended instruction accesses any byte in
the address map.

Relative addressing allows the conditional branch in-
structions to reach a program within the range of —127 to
+129 of the instruction. An absolute jump can then reach
anywhere else in memory.

The three indexed addressing modes add flexibility in the
organization of the data in memory. In a single-byte indexed
instruction, the effective address is the contents of the index
register. The index register thus contains an 8-bit pointer to
the data byte to be accessed. As such, the X pointer can
reference any RAM byte, any I/O byte, or a portion of the
ROM. This no-offset indexing is similar to the only available
RAM access method on typical Harvard-architecture-based
MCUs. The program calculates an address, puts it in a RAM
address register, and then accesses the data. No-offset index-
ing is most frequently used in the M6805 family processor to
scan down a data table looking at each entry.

The second and third indexed addressing modes are short
and long table look-up indexing. The 8-bit contents of the
index register is added to an 8-bit or a 16-bit value contained
in the instruction to determine the effective address of the
data to be accessed. In table look-up use, the instruction
contains the address of the beginning of the table, and X
contains a displacement into the table. Short offset indexing
includes an 8-bit address within a 2-byte instruction; long
indexing uses a 3-byte instruction to include a 16-bit table
address. With short indexing the table must begin in the first
256 locations, but the displacement may create an effective
address up to 255 locations beyond page zero.

Most microprocessors and 8-bit single-chip microcomputers
have been good at byte manipulation. To be controller effi-
cient, the M6805 family has added single-instruction bit ma-
nipulation and test capability. Any bit of any byte within the
first 256 addressable bytes may be set or cleared. All the I/O
pin and all the on-chip RAM bits may thus be individually
changed. The addressed byte is read, the designated bit is
changed, and the modified byte is written back into memory,
all in one instruction. The two addresses—the direct (page
zero) byte address and the bit address—are both contained in
a 2-byte instruction. The read-modify-write cycle does not
disturb the A or X program registers.

The second bit addressing mode is the single-instruction bit
test capability. These are 3-byte instructions that include three
addresses. First is the 8-bit direct address of any byte within
the first 256 bytes. Second is a 3-bit address of the bit within
the byte that is to be tested. Third is an 8-bit relative condi-
tional branch displacement. One instruction is used to branch
anywhere within the range of —126 to +130 locations of the
instruction, depending on whether the designated bit is set or
clear.

Instruction Set

The 10 addressing modes presented above bring much of
the power to the M6805 family instruction set. The addressing
mode flexibility allows many specialized instructions to be
avoided. The instructions themselves are generalized; this fea-
ture, when combined with the addressing modes, produces a
remarkably powerful processor in a small silicon area.

Except for a few miscellaneous instructions, all instructions
are combined with one of the addressing modes to access
memory. The 10 addressing modes combine with 59 basic
instructions (61 instructions in the CMOS versions) to pro-
duce 207 total instructions (209 in CMOS). The programmer
gets the power of 207 (209) instructions while having to learn
only 59 (61) instructions plus 10 addressing modes.

The most frequently used M6805 family instructions are the
memory reference instructions. Included are four move in-
structions, four arithmetic instructions, three logical instruc-
tions, three compare instructions, and two jump instructions.
Except for the jumps, these are all two-operand instructions.
One operand is taken from memory via the addressing mode,
and the other operand is the A or X register. The result of the
arithmetic and logical instructions is put into the A accumu-
lator. The compare instructions perform a subtract (for mag-
nitude compare) or an AND (bit compare) of the two values
without modifying the registers or memory. Six of the major

Programming Single-Chip MCUs 93

addressing modes apply to each of the 16 memory reference
instructions. Both short and long absolute addressing allows
the memory operand (or jump address) to be anywhere in the
address map and to be more efficiently accessed if within the
first 256 locations. All three indexing modes are applied to all
16 instructions. An indexed table retrieval need not simply
load a byte; it may also add, AND, compare, etc., a table byte
with A. Immediate addressing is also usable with all the mem-
ory reference instructions, except the jumps.

Programming time is saved in several ways. Operations are
performed during the same instruction as a memory retrieval
(load). Magnitude and logical compares are accomplished
without first saving the state of a register. Diverse memory
data organizations can be used, since retrievals can use abso-
lute addressing, register pointer indexing, or table look-up
indexing. '

The next class of instructions are the register and memory
modification instructions. Included are the typical register
manipulation functions of increment, decrement, comple-
ment, clear, shift, and rotate. A test without modifying is also
included in this set. The unusual thing about these instructions
is that they may be used to operate on memory data as well as
both the A and X registers. An instruction like the memory
increment can displace up to five instructions in another pro-
cessor: Save the content of A, load memory byte, increment
A, store incremented byte, restore previously saved content
of A. All three short addressing modes are applicable to the
memory modification instructions. Short absolute and both
short indexing methods are included. Since ROM bytes are
not modifiable, the long addressing modes have little use with
these instructions.

The bit manipulation and test capability has already been
covered. The four instructions are bit set, bit clear, branch on
bit set, and branch on bit clear.

Ten of the 14 conditional branches test the condition code
bits for the result of the last data operation. This set includes
tests for zero, negative, carry, half carry, and above zero. The
states of the interrnpt mask bit and the interrupt pin are also
testable. All these conditional branches allow branching on
the true or false state. It is convenient that the branch is a
relative arithmetic displacement (+ or —128 nominally),
which has no page boundaries. In many MCUSs the branch is
permitted only within a fixed page.

The list of 13 miscellaneous instructions is short so that few
specialized instructions need be learned. A regular (general-
ized, not specialized) register set and instruction set leave very
few specialized functions to be performed. Six instructions are

register reference functions: interregister transfers and the
CC bit manipulations. There are four stack manipulation in-
structions associated with the interrupts and subroutines: re-
turn from subroutine and interrupt, call software interrupt,
and reset stack pointer. The M6805 family versions imple-
mented in CMOS include the Stop and Wait instructions.

Since CMOS ICs use dramatically less power when not
operating, two program-initiated standby modes are included.
The differences in the two modes are the conditions that cause
the processor to resume execution. In the Stop mode the
external interrupt pin causes the processor to restart. In the
Wait mode either the external interrupt or the timer interrupt
causes execution to restart. The timer interrupt permits the
processor to be restarted at regular intervals. The timer inter-
rupt can initiate a cycle consisting of scanning all inputs, pro-
cessing the inputs, saving needed results, ‘and generating
needed outputs. When this cycle is complete, the processor
can be put back into the Wait state. The battery drain is thus
the average of the operating current and the stand-by current
for the operating-to-stand-by duty cycle.

FULL PROGRAM PERFORMANCE

As single-chip microcomputer applications are becoming
more complex, the real-time program needs typical of larger
computers are becoming necessary.

Program costs must be kept down. The programs must be
capable of being easily changed for future products, and easily
documented to allow a different programmer to incorporate
changes. MCU architectures can permit efficient ROM use.
The classic computer types of architectures offer more tools
for memory optimization. RAM usage and I/O features can
be traded off with ROM use.

Generalized instructions with many addressing modes allow
large-computer performance for an 8-bit MCU. Single in-
struction table manipulations are included in the M6805 fam-
ily of MCUs. Single instruction memory bit and byte manipu-
lations are included. Memory bits and bytes can be tested
without disturbing the program registers. A common address
map is used to allow ROM and I/O space to be accessed with
as much flexibility and ease as RAM. The address map is
designed for instruction-efficient access to the most frequently
used data elements without making any memory inaccessible.
There are no architectural restrictions on the amount of
memory or on the implemented mixture of ROM and RAM.

The programmer’s single-chips are Von Neumann architec-
tures like the M6805 family.

Speak software and carry a strip chip

by MICHAEL SHAPIRO

Texas Instruments
Houston, Texas

ABSTRACT

A short description of TI’s innovative Strip Chip Architectural Topology is given.
" The key features of the TMS7000 8-bit Microlanguage Processor are listed, and each
of the current family members is discussed briefly. The architecture of the 7000
family is reviewed with emphasis placed on those aspects which enhance its pro-
gramming power. Addressing modes and other software highlights are discussed in
some detail, followed by an overview of microprogramming.

95

Speak Software and Carry a Strip Chip 97

INTRODUCTION

In the 1970’s the Texas Instruments team hit high and low,
scoring points with both the budget-cutting TMS1000 4-bit
microcomputer family and the cerebral TMS9900 16-bit mi-
croprocessor. While churning out yards of silicon in 4-bit
slices (more than 70 million chips), we also introduced the
industry’s first 16-bit single—chip microcomputer—the
TMS9940. Now, to center our offensive line, we have plunged
into the 1980’s with the innovative TMS7000 Microlanguage
Processor family, our new 8-bit star.

TI had no intention of being a look-alike in a marketplace
which already accepted several 8-bit architectures. Rather, by
using a unique design approach to lower chip costs, and by
implementing a rich instruction set to raise programming effi-
ciency, we embarked on a third-generation design which is
expanding into a powerful line of microcomputer products.
This paper will touch first on the design concept and hardware
features, concentrating later attention on the instruction set
highlights and other software considerations.

SCAT—STRIP CHIP ARCHITECTURE TOPOLGGY

SCAT is TI's term for the design philosophy that incorporates
the nonmemory elements of the microcomputer (the CPU
registers, the ALU, the control logic) into a strip of vertical
blocks in the logic design. Traditional design schemes have
attacked the individual functional blocks first, leaving the
problem of interconnect for last. Unfortunately, in the final
layout, the interconnect often squanders the real estate
prudently conserved in the early stages of design. To combat
this profligate process, TI planned both architecture and lay-
out from the beginning.

Figure 1 shows the layout of the TMS7020, the 2K ROM
version of the TMS7000 family. By placing most of the ran-
dom logic in the “strip,”” we were able to use control and data
paths that interconnect the active elements but take up almost
no additional silicon area. The logic of the elements in the
strip is implemented on a low level of the silicon bar, whereas
the data and address busses are constructed in metal over the
silicon. This avoids the wasteful dedication of bar area to
interconnect alone.

An additional space-saving feature of the SCAT design is
the use- of transistor arrays and ROM elements to replace
random logic. Not only are these structures more compact,
but the use of the micro-control ROM in place of the com-
monly used programmable logic array for the instruction
decode allows the necessary control signals to be fed horizon-
tally out of the control ROM right across to the strip. Tor-
turous routing problems are avoided, and no additional com-
binatorial logic is required. A valuable by-product of this

TMS 7000 MICROLANGUAGE PROCESSOR FAMILY
TMS 7000/7020 MICROCOMPUTER DEVICE BAR PLAN

RI1 1 PRE-SCALER
AS] AG Eln| n TiMer | |A7| A4 |a3|Az a1 A0
glt] T CONTROL
H1 Tj1] 3 B2
YB.
X TIMER
DECODE ‘{:' B1
H3 1/0 CONTR'L 2K BYTE 128
INTERRUPT BO
MICRO °
osc ENTRY POINT =
2 B7
m USER 0|8l |BYTE
H2 STATUS HHE
8 Old B5
=
CODE & el PROGRAMMABLE [&|<|2 v
H4 [ShiFTER 2|zl
H CHG P
2 ALU HEE
D7 | ER— L 86
x[_ MD- PN =
B MASK ROM 2
D6 = I RAM
PCH B4
=]
Rom 12 PCL
D5 2 SP
° B3
s MAL
D4 e
o« ADDR RAM
BUFFER REF
D3 MEMORY X-DEC Y-BUFF|X-DEC
CONTROL & GRP DECODE MC
ID CONTROL]
D2
p1 | o cofcr|cz]cz|ca|ces|ce| e
vee

Figure 1—TMS7000/7020 microcomputer device bar plan

approach is microprogrammability, which will be discussed
later in this paper.

KEY ELEMENTS OF THE TMS 7000 FAMILY

The most attractive components of the TMS7000 family in-
clude the microprogrammed 8-bit CPU, addressing capability
for up to 64K bytes of onboard and offboard memory, 32
individual I/O lines, multiple operating modes, unrestricted
stack for control and data storage, 8-bit timer with presettable
5-bit prescaler, and four levels of vectored interrupt. The first
family members have been implemented in high-density
NMOS technology. CMOS and LMOS versions will follow in
the months to come.

Family Overview

The TMS7000 family offers a variety of on-chip RAM and
ROM configurations plus packaging and technology options
to support the full scope of application requirements. The
current family members include the TMS7000, 7020, 7040,
70L22, and the soon to be released 70E40.

98 National Computer Conference, 1982

The TMS7000 is a ROM-less device with 128 bytes of RAM.
It functions as a powerful 8-bit microprocessor with on-chip
RAM, interfacing to as much as 64K bytes of external memo-
ry on an 8-bit data system bus. The TMS 7000 provides eight
input and four output I/O pins on the chip, each of which may
be set, reset, and tested individually. Utilizing the 8-bit data
bus, any of the common 8-bit I/O peripherals can be
easily interfaced to the TMS7000 in order to expand its I/O
capability.

The TMS7020 and 7040 are similar to the TMS7000 and
contain the same CPU, RAM, and on-chip /O when oper-
ating in the Microprocessor Mode. Moreover, these devices
contain 2K and 4K respectively of on-chip ROM for applica-
tion programming. The 7020 and 7040 may be configured in
several memory expansion modes where memory interface
pins are traded off for I/O pins. Besides the Microprocessor
Mode, the other choices are as follows:

1. Single-Chip Mode providing 32 I/O lines

2. Peripheral Expansion Mode for interfacing to 8-bit
peripherals

3. Full Expansion Mode to address 64K bytes of memory

4. System Emulator Mode for aiding program development

The most pertinent features of the TMS7020 and 7040 mi-
crocomputers are as follows:

. Microprogrammed 8-bit CPU

. 2048 bytes of on-chip ROM—TMS7020

4096 bytes of on-chip ROM—TMS7040

128 Memory-mapped registers (register file)

. Multilevel program/data stack

. 32 bits of general purpose I/O

. On-chip 13-bit timer/event counter with interrupt and
capture latch

8. Three maskable interrupts

N U AW

The TMS70E40 is functionally identical to the 7040 except
that the System Emulator Mode has been deleted and the
on-chip mask ROM has been replaced by a programmable
EPROM. One change has also been made in the instruction
set to allow the 70E40 to program its own internal EPROM.
This device is ideally suited for prototype fabrication or initial
field testing of a new application prior to masked ROM vol-
ume production.

The TMS70L22 is a lower-cost alternative to the 7020,
which retains most essential features, but gives up nine I/O
pins to accommodate the smaller (and cheaper) 28-pin pack-
age. Processed in our power-saving LMOS technology, the
70L22 also works a trade on the clock frequency, operating at
1 MHz versus 5 MHz, achieving a tenfold reduction in power
consumption. A new feature on the 70L22 is a slowdown
mode that allows the user to further reduce current to accom-
modate applications in which power must be conserved.

Architecture

All members of the TMS7000 family incorporate features
that take the best from both memory- and register-based ar-
chitectures. The first byte in the RAM register file, Register

A (RO), functions just like a dedicated accumulator to allow
for faster access times and the 1-byte instructions that are
inherent in a register type of machine. Similarly, the second
byte, Register B (R1), can perform the task of a dedicated
index register. However, the flexibility of the 7000 enables
any one of the on-chip RAM bytes to assume the accumulator
function by the addition of one byte to the instruction. True
register-to-register operations can be accomplished through-
out the 128-byte register space when a third byte is used in the
instruction to specify the second operand.

Registers

The 7000 family has three hard-wired CPU registers acces-
sible to the user. The 16-bit program counter (PC) contains
the address of the next instruction to be executed. The status
register (ST) contains three status bits that are used for condi-
tional jump instructions. Also present in this register is the
interrupt enable bit (I). The 8-bit stack pointer (SP) points to
the top (last) entry in the data stack, and it facilitates multi-
level subroutining and interrupts. The register file (RF) con-
sists of 128 bytes of on-chip RAM.

Peripheral File

Beyond the memory address space devoted to the register
file, there is a 256-byte region for memory-mapped peripheral
input/output control, called the peripheral file (PF). The 32
bits of general purpose I/O, available in the Single-Chip
Mode, are broken out into four 8-bit ports (see Figure 2) that
can be manipulated via six dedicated peripheral instructions.
Any of these bits may be individually set or cleared, or tested
in conjunction with an appropriate bit-test-jump instruction.

Not only can the dedicated input (A Port) and output (B
Port) ports be read from and output to, but the individual bits
of the bi-directional ports (C Port and D Port) can be config-
ured selectively as input or output by accessing their data
direction registers (DDR), which also reside in the peripheral
file.

To simplify use of the peripheral file, a special peripheral
file-addressing mode was established to reference all 256
locations. Inputs and outputs on the I/O lines are accom-
plished by reading or writing to the appropriate port. For
example, the B Port is implemented as port P6 in the periph-

INPUT
LINES

OUTPUT

LINES
B7

TMS 7020/7040

co BIDIRECTIONAL
LINES

c7

oo BIDIRECTIONAL

LINES

OoUN

D7

Figure 2—I/0O ports in single-chip mode

Speak Software and Carry a Strip Chip 99

eral file. Thus, writing to this port is handled by the
instruction

MOVP AP6

which takes the value in the Register A (R0) and stores it on
the B Port outputs.

In the Peripheral Expansion Mode, the peripheral in-
structions can be used to communicate with off-chip devices.
‘When a memory address not corresponding to an on-chip port
is used, the 7000 family device performs an external memory
reference enabling an 8-bit peripheral chip to respond.

Timer/Event Counter

The 7000 family is equipped to handle real-time control
applications by using a programmable 8-bit timer with a pre-
settable prescaler value of from 1 to 32. As shown in Figure
3, the timer may use an internal clock source divided down or
an external signal. On each positive edge transition of the
clock input, the prescaler register is decremented. When the
prescaler reaches zero, the decrement is performed on the
8-bit timer, and the prescaler is reloaded from the control
latch.

As with the prescaler, the timer register will decrement
until it reaches zero. The succeeding decrement will generate
an interrupt (INT2), and the timer register will be reloaded
from the timer latch. Since these registers reside in the periph-
eral file, the prescale latch value and the timer latch value may
be written to, and the current timer value may be read using
peripheral file instructions. Likewise, the timer on/off and the
clock source bit are under program control in the peripheral
file.

LATCH (PL) LATCH (TL)

PHI/E oLk l l
EXTERNAL 5B8IT 8-BIT TIMER
SIGNAL PRESCALER {CURRENT VALUE)

MODE

l 581T CONTROL] [8-BIT TIMER I

INT2 TIMER
VALUE

CAPTURE LATCH

CAPTURE
VALUE

Figure 3—Programmable timer/event counter

In the event counter mode, the counter will function as
described above, but the decrementer clock source will now
be line A7 of the A Port. This timer mode can also serve the
purpose of a real-time clock when an appropriate source is fed
to A7. The A7 input can also be used as a positive edge-
triggered interrupt by loading the prescaler and timer latches
with 0.

A unique feature of the 7000 timer is the 8-bit capture latch,
which saves the current value of the timer when an external
(INT3) interrupt occurs. This allows the processor to deter-
mine precisely when the external event took place by com-
paring the captured value to the value that is now current.

This capability can be essential if the external interrupt occurs
while the processor is servicing a higher-order interrupt.

Interrupts

There are three levels of maskable interrupts: the INT2
associated with the timer and INT1 and INT3, which are
externally triggered. The system reset cannot be masked, but
the other three interrupts can each be enabled separately by
bits in the /O control register, and as a group by the interrupt
enable bit (I) in the status register. When an interrupt is
recognized, the contents of the status register and the pro-
gram counter are pushed onto the stack. The processor then
branches to the location stored in the corresponding interrupt
vector location and starts execution of the interrupt routine.

Interrupts may be tested without actually recognizing them,
allowing for greater user flexibility. Interrupts may be edge—
or level-triggered, and no external synchronization is re-
quired. The signals are latched internally to catch short inter-
rupt pulses.

The TRAP instruction can be used to create a “‘software”
interrupt. There are 24 TRAP opcodes corresponding to 24
trap vector locations in the highest addresses of memory. As
in an interrupt, the trap vector will provide a branch address
at which a subroutine begins execution. Limitation on nesting
in subroutines or interrupts is only a function of the overall
stack capacity.

PROGRAMMING THE TMS7000

From the outset, the TMS7000 family was designed to opti-
mize programming efficiency by virtue of its architecture and
instruction set. The ease of access to the RAM, ROM, and
T/O is achieved by mapping all of these into a single address
space. Figure 4 illustrates the memory address scheme for the
7020/7040. This structure can be fully exploited by means of

>0000
REGISTER
>007F FILE
>0080 FUTURE
>00FF USE
>0100
PERIPHERAL
FILE
>01FF
>0200
OFF-CHIP
MEMORY
EXPANSION
>EFFF
>F000 ON-CHIP
ROM
PROGRAM MEMORY
>FFFF
Figure 4—TMS7040 memory map

100 National Computer Conference, 1982

nine separate addressing modes. Add to this a full comple-
ment of standard instructions (the usual byte-oriented in-
structions plus multiplication, single- and multiple-bit tests,
double precision arithmetic), and the design engineer has the
upper hand in dealing with almost every application.

Addressing Modes

The nine different addressing modes for the TMS7000 fam-
ily are listed below. The terms Register A and Register B are
synonymous with the first two bytes in the register file, R0 and
R1, respectively.

1. Register File—The byte(s) following the opcode specify
.any byte in the register file as the operand location(s).
This includes single operand instructions such as

Increment the contents of R56
Clear R99

INC R56
CLR R99

and dual operand instructions such as

ADD R68,R45 Add R68 to R45 and store in R45

2. Register A—The operand location is implied, and RO is
fetched from the register file. This is a special case of
register-file addressing, since Register A can be refer-
enced implicitly as A or explicitly as R0O; however, the
implied mode saves a byte in the instruction. For exam-
ple, the instruction

MOV R20, R30 Move R20 to R30
is three bytes versus two for the instruction
MOV R20,A

3. Register B—The operand location is implied, and R1 is
fetched from the register file. This is identical to Regis-
ter A addressing except now B is the implied register.

4. Peripheral File—The byte following the opcode specifies
a port in the peripheral file which contains the operand.
These instruction mnemonics are identified by a P suffix.
Each is a dual operand instruction with a peripheral file
as the second or destination operand. Examples of these

are

XORP A,P3 Exclusive OR A with P3 and
place the result in P3 (the timer
control register)

MOVP 9% > 60, Setup bits 1,2 of D PORT as

DDDR inputs

5. Direct—The two bytes after the opcode contain the ad-
dress of the byte in memory that contains the operand.
The notation for the direct memory address is the ex-
pression preceded by the @ sign. For example

LDA @ >E34D Copy the contents of memory lo-
cation >E34D to Register A

6. Indirect—The byte following the opcode specifies the
second of a RAM register pair which contains the ad-
dress of the operand. This addressing mode is indicated
by the * before the register as in the following in-
struction:

STA *R19 Copy the contents of A into the
memory location specified by R18
and R19

7. Indexed—The 16 bits following the opcode are added to
the B register contents to form the effective address of
the operand. The format for this instruction is given
below.

BR @HERE(B) Branch to the address specified
by the contents of B and the val-
ue of the symbol HERE

8. PC Relative—The byte following the opcode is used as
a signed offset to the current PC to produce the effective
address. This is the addressing mode used for all jump
instructions, and it eliminates the designer’s concern
about where in ROM his program is jumping to, since
the offset may lie anywhere in ROM.

9. Immediate—The byte following the instruction is the
operand. For example, the instruction

ANDP %COUNT, Logically AND the value of
P10 COUNT and the contents of P10
and copy results to P10.

illustrates the use of immediate addressing.

Because of the memory-mapped architecture, many modes
can apply universaily to any 16-bit address in the TMS7000
memory space. Thus ROM, RAM, or peripherals can be ref-
erenced with similar instructions possibly using common rou-
tines. The need for dedicated instructions in each category is
now eliminated.

A very flexible feature of the 7000 is the capability of freely
specifying two operands, the source and destination, within
the dual operand addressing modes. While most microcom-
puters would restrict one of the operands to a particular regis-
ter, the 7000 allows any RAM location to be named the source
or the destination.

Instruction Set Highlights

As mentioned before, the TMS7000 family provides the full
range of standard instructions. Rather than list the entire set,
we will discuss some of the more unique members.

The MPY (Multiply) instruction takes the product of a gen-
eral source and destination operand and places the 16-bit
result in either A or B. The 7000 can perform this 8-by-8-bit

Speak Software and Carry a Strip Chip 101

unsigned multiply in just 17.2 microseconds, assuming a 5
MHz clock.

The MOVD (Move Double) instruction is used to move a
16-bit value to a specified register pair destination. The source
for this move can be an immediate constant, another register
pair, or an indexed address.

The DAC (Decimal Add with Carry) and DSB (Decimal
Subtract with Borrow) instructions provide the unique feature
of performing fully corrected decimal addition or subtraction
on two packed binary coded decimal (BCD) bytes.

The DECD (Decrement Double) instruction allows a 16-bit
address to be easily decremented. This instruction can be
especially useful for referencing tabular information in
memory.

There are several jump instructions with especially useful
test conditions to dictate transfer of program control. The
BTJO (Bit Test and Jump if One) instruction looks at those
bits which are 1’s in the source operand and compares the
corresponding bits in the destination operand. If any of these
bits are also 1’s, the relative jump is taken. There is a similar
instruction BTJZ which does the comparison on bits which are
0’s. These instructions allow for single- or multiple-bit tests.

Instructions as powerful as these are usually only available
on more expensive high-end microcomputers (if at all). How-
ever, in the case where the designer has underscoped the task
or runs up against a particular application intricacy, micro-
programmability provides a possible out.

Microprogrammability

When TI implemented the TMS7000 instructions using a
control ROM rather than random logic, it opened up the
possibilities for user-defined “personalized” instruction sets,
because the control ROM can be altered and then mask-
programmed for production. Although the standard instruc-
tion set is very efficient for most applications, the user may
find a repetitive program sequence of several instructions that
could be reduced to a single command through microcoding.
This would both increase throughput and reduce memory us-
age. Approximately 75% of the standard instructions are des-
ignated as core instructions and must be maintained. The
remainder may be swapped out for user-created instructions
which are customized to best serve that particular application.
Software will soon be available to aid users in the design of
microcode for a custom instruction set.

SUMMARY

This paper has attempted to give a broad overview of the
TMS7000 family. We have given the reader only a brief taste
(with software seasoning) of the capabilities available in the
7000 larder. In addition to the stock of products now avail-
able, we will soon be introducing a CMOS implementation
and enhanced feature versions. To the hungry design engineer
in search of a satisfying microcomputer—bon appetit!

A distributed operating system for a powerful
system with dynamic architecture

by STEVEN I. KARTASHEV

Dynamic Computer Architecture, Inc.
Lincoln, Nebraska

and
SVETLANA P. KARTASHEV
University of Nebraska, Lincoln

ABSTRACT

The paper discusses the organization of a distributed operating system for dynamic
architecture. It shows that the operating system must feature two types of distribu-
tion: (a) functional or vertical, whereby it is distributed among functional units in
accordance with the types of conflicts that should be resolved; and (b) modular or
horizontal, whereby it is distributed among modules performing the same functions.

In a dynamic architecture there are three types of conflicts: memory, recon-
figuration, and I/O. This leads to the division of OS into three subsystems: (1) a
processor OS that resolves memory conflicts, (2) a monitor OS that resolves recon-
figuration conflicts, and (c) an I/O OS that resolves all types of I/O conflicts. The
paper presents a detailed organization for the processor operating system.

103

A Distributed Operating System 105

1. INTRODUCTION

The architecture of powerful parallel systems (Supersystems)
for fast real-time algorithms should take into account major
peculiarities of these algorithms, as follows:

1. Asarule, each such algorithm is characterized by a large
and variable number of concurrent instruction streams in
the range of hundreds and thousands. Severe time re-
strictions imposed on some portions of these algorithms
disallow their computation in an interrupted mode of
operation. This leads to the necessity of having one com-
puter dedicated to computing one instruction stream.’
As a result, the Supersystem must incorporate hundreds
and even thousands of computers; i.e., it must have
an enormous complexity in order to be adequate for
computations.

2. Typically, extensive data exchanges are required be-
tween information streams; i.e., the Supersystem must
possess a very flexible, very fast interconnection net-
work between its computers.

These two requirements are contradictory because of the
reasons stated below.

To interconnect hundreds or even thousands of computers,
the network must be multistaged, because the use of a single
staged network (crossbar) becomes cost prohibitive as a result
of the n® growth in the number of its connecting elements.
However, a multistaged network becomes very slow as a result
of the following undesirable characteristics:

1. It introduces long delays into signal propagation from
one computer to another, since each data path will
take logn connecting elements. Since n is in the range
of thousands, this delay becomes a significant factor
in slowing down information broadcast between
computers.

2. Since for a multistaged network one or more connecting
elements may belong to several data paths, there arises
the problem of blockages (conflicts) when several data
exchanges use the same connecting element(s).

Therefore, multistaged interconnection networks create
new types of conflicts in addition to conventional ones created
in conventional multiprocessor systems during program com-
petition for the processor and memory resources. As it turns
out, multistaged networks require conflict resolution in data
propagation through the connecting elements. A conven-
tional way to solve these conflicts is in repeated data broad-
casts of exchanges that are allowed. Therefore, not only is
each data exchange slowed down by log.n connecting ele-

ments in its path, but it must be broadcast in several passes to
eliminate blockages. In addition, extensive control overhead
is created during each blockage, since the OS must analyze the
priority of each data broadcast to find out whether it is al-
lowed or prohibited.

These two characteristics of multistaged interconnection
networks lead to a significant reduction in the Supersystem
throughput, making it unsuitable for computing a number of
fast real-time algorithms.

Another adverse factor is that the complexity of some real-
time algorithms constantly grows as a result of technological
progress. Therefore, in the future the problems discussed
above will have an even greater effect on the performance of
Supersystems.

The way out of these contradictions between the Super-
system throughput and its complexity lies in adopting the
following design strategies:

1. To overcome significant throughput loss introduced by
multistaged interconnection networks, it is desirable to
partition the entire Supersystem into several subsystems,
each of which uses one staged (crossbar) connection
between its computers. This will eliminate long delays in
both data broadcasts and blockages, since each data path
will go through a single and dedicated connecting ele-
ment. On the other hand, since each subsystem will have
a much smaller number of computers (tens), the prob-
lem of complexity caused by the necessity of having n’
connecting elements will also be significantly relieved.

2. To increase computational concurrency in each subsys-
tem without augmenting it with additional computers,
each subsystem must be provided with dynamic architec-
ture. Indeed, as was shown by Kartashev and Kartashev
and by Vick, Kartashev, and Kartashev’*” a dynamic
architecture can maximize the number of instruction
streams computed by the available resources. This
means that a dynamic architecture creates an additional
concurrency using available resources, or a required
concurrency may be obtained on a less complex sub-
system.® Therefore, a dynamic architecture allows a less
complex subsystem to become suitable for computing
more and more complex real-time algorithms during the
short periods these algorithms may need.

A dynamic architecture is assembled from building blocks
called Dynamic Computer (DC) groups. Each DC group is
capable of partitioning its resources into a selectable number
of dynamic computers with changeable word signs.

Each DC group contains n h-bit computer elements, CE,
where each CE includes an h-bit processor element, PE; an
h-bit memory element, ME; and an h-bit I/O element, GE

106 National Computer Conference, 1982

(Figure 1). In Figure 1 the DC group includes 4CE,i.e.,n = 4.
DC group may form dynamic computers Ci(k). Each dynamic
computer handles h-k-bit words; it is assembled from k con-
secutive CE(CE;, CEis1, ..., CEirx-1), and i subscript
shows the position code of its most significant CE. Kartashev
and Kartashev* showed that the most expedient h = 16 bits.
Then the word sizes formed are multiples of 16 (16, 32, 48, 64,
etc.), whereas the number n of CE may be 4, 8, and 16. Thus,
the DC group may be conceived as a subsystem of a Super-
system.

The following major characteristics of one DC group should
be mentioned here:

1. A DC group may assume a large number of different
architectural states. Each state is characterized by the
number and sizes of concurrent computers and arrays.
Transition from one state to another is performed via
software in several microseconds.

2. The same hardware resource of one DC group may as-
sume different types of architectures: multicomputer,
multiprocessors, array, and mixed. (The mixed architec-
ture is characterized by coresidence of several types of
architecture in the same system, whereby a portion of
the resource functions as a multicomputer/multipro-
cessor, another one acts as an array, etc.)

3. A DC group provides for very fast data exchanges be-
tween any pair of resource units belonging to the same
or different computers. It performs high-speed parallel
word exchanges with 16-k-bit words (where k=1, 2,

. , n) using 16-bit size of a communication bus.

One DC group assembled from n computer elements, CE,
may execute in parallel up to n concurrent programs. A Su-
persystem assembled from DC groups is conceived as a dis-
tributed parallel system in which each DC group is connected
with the others via one of the fast interconnection busses
described in the literature (crossbar, etc.).

Since, in a distributed Supersystem, the number of DC
groups is in the order of tens, the complexity of the commu-
nication bus is much smaller than that of the alternative one-
staged interconnection network. Therefore, the significant re-
duction in delays of data exchanges afforded by a one-staged
interconnection network is accomplished without paying the
price of excessive complexity.

On the other hand, equipping each subsystem (DC group)
with dynamic architecture significantly widens a level of con-
currency of a complex real-time algorithm or algorithms that
can be computed in a single subsystem.

This paper discusses the organization of fast data exchanges
between dynamic computers in a single DC group. This ex-
change is organized as follows:

If Computer B needs a data array stored in a memory page
of Computer A, then this page is connected with Computer B.
By loaning its page(s), Computer A does not interrupt its
program, whereas Computer B begins to work with a loaned
page as if it belonged to its own memory.

Loaning the memory resource for temporary use by an-
other computer requires interference of the local operating
system, which resolves conflicts arising each time two or
more computers request the same memory page of another
computer.

\4

Exte rnal AP | CU IMOS —— M(V)

1/0 Bus |

AP | CU [0S H_Mm,* AP | CU [0S = mx,)l

f 1

I
Shift Bus I

|
=
=

Figure 1—Block diagram of one DC group containing four computer elements

A Distributed Operating System 107

Memory conflicts are not the only type of conflicts that must
be resolved by the operating system for dynamic architecture.
Another type of conflict is that occurring during reconfigu-
ration when two computers existing concurrently in a current
architectural state N request transition into two different next
states N” and N” (N’ # N").

A third type of conflict is associated with the use of I/O
resources. The I/O conflicts may arise if memory-memory
data exchange is performed via an I/O bus or if there are
conflicts for the I/O terminals, or several I/Os make concur-
rent communications with the system monitor.

To solve the three types of conflicts outlined above (mem-
ory, reconfiguration, and I/O), the OS must be functionally or
vertically distributed; i.e., it must include three subsystems:

1. The processor operating system, POS, which resolves
memory conflicts

2. The /O operating system, /O OS, which resolves all
types of I/O conflicts

3. The monitor operating system, VOS, which resolves
conflicts during system reconfiguration

To be most efficient, these three OSs must reside in func-
tionally oriented units with matching dedication;i.e., the POS
must reside in the processor of a dynamic computer, the I/O
OS must reside in its I/O unit, and the VOS must reside in the
system monitor.

In addition to vertical or functional distribution, the oper-
ating system must feature horizontal distribution among sepa-
rate CEs of the dynamic computer. Indeed, since dynamic
computer, C;(k), consists of k CE and minimal k = 1, then the
same POS and IO OS must reside in every CE. Therefore,
not only is the entire OS vertically distributed because of the
three types of conflicts that should be resolved; it becomes
horizontally distributed to resolve memory and I/O conflicts
because of the modular structure of a dynamic computer.

This paper discusses the organization of the processor oper-
ating system, POS. The results presented are implemented in
the POS designed for the system with dynamic architecture,
which is now under construction for the Ballistic Missile
Defense System Command of the U.S. Army (Contract
DASG60-80-C-0058).

2. DATA EXCHANGES BETWEEN
DYNAMIC COMPUTERS

Since each dynamic computer C;(k) is assembled from k CEs,
to organize a parallel data exchange between two dynamic
computers it is necessary to organize concurrent exchanges
between respective pairs CE,—CEg, where CE4 belongs to
Computer A and CEg belongs to Computer B. Assume that
in each type of A-B exchange, the exchange is requested by
B computer, whereas A loans its equipment; therefore the
direction of exchange is A—B.

Further, the DC group is provided with three system busses
(Figure 1): (1) a DC bus that connects all the PEs with all the
ME:s via separate instruction and data paths; (2) a P bus that
connects all PEs; and (3) the I/O bus, which connects all I/O
elements, GE. Therefore, the four types of exchanges be-

tween CE4 and CEg which are possible are as follows (Figure
2):

1. Memory-processor exchange, ME,—PEz, performed
via DC bus

2. DC memory-memory exchange, ME,—>MEg, per-
formed via DC bus

3. Processor-processor exchange, PE,—PEg, performed
via P bus

4. /O memory-memory exchange, ME,—>MEjg, per-
formed via I/O bus

To increase a system’s throughput, it is essential to provide
maximal concurrency in all the possible data exchanges listed
above. Further, since some programs require minimal time
of execution without interrupts, it is necessary to discuss
such organizations that do not interrupt currently executing
programs.

Since there are three dedicated busses in the DC group, any
two dynamic computers may perform up to three concurrent
data broadcasts.

Indeed, it is possible to organize the following types of
exchange concurrency in a system:

Type 1 Exchange Concurrency: (a) ME,—PEg (DC) via
DC bus; (b) PEs—PEg; and (c) ME,—MEz (I/O) via I/O
bus.

Type 2 Exchange Concurrency: (a) ME,—ME; (DC) via
DC bus; (b) PEs—PE3p; and (c) MEs—ME3 (I/O) via I/O
bus.

Since each exchange is requested by Computer B, Comput-
er A does not interrupt its program for all exchanges but

l
|
I
|
|
I
l
|

ME, - PEj,
or
ME, -ME},

Figure 2—Possible data exchanges with one CE

108 National Computer Conference, 1982

PE,—PEg. For the latter case, the A computer computes an
A operand for the B computer, whereas a B operand is com-
puted by B computer. In addition, one modification of the
ME ,—PEj exchange provides that the program computed in
B computer fetch one of the operands from the memory of A
computer. This fetch takes the same time as the fetch of an
operand from the B memory. The result of the computation
can be written to the memory of Computer A, Computer B,
or both (Figure 3).

Page
Address

PEA PEg

!

L |

| ACEg ,

\ Address (16 bits l ‘L»JLJ |

;| !

i ! :

1 |

% | |]

] - -

HIET 1 ey s Lo]

1 - DC Bus 3

| i
ME, L MEg S

Figure 3—ME ,—PEy exchange

Realization of concurrent data exchanges from Dynamic
Computer A to Dynamic Computer B without interrupting
the programs that are computed by these two computers re-
quires implementation of the following features:

1. For a dynamic computer, every memory element, ME,
of its primary memory must be multiport and recon-
figurable; i.e., ME should be provided with four infor-
mation ports and be capable of connecting all its pages
to the four ports (Figure 4). These ports are as follows:
a. A local data port that provides fetch of the local data

word for the program computed by the dynamic com-
puter A.

b. An instruction port that fetches instructions to all
PEs of the dynamic computer. Since instructions may
be stored in any ME of a dynamic computer, every
ME must have a separate instruction port.

¢. A DC port that fetches a data word stored in this ME
to another dynamic computer.

d. An I/O port that transfers a data word stored in this
ME to another dynamic computer, using an I/O bus.

2. Every computer element, CE4, of the dynamic com-
puter A must be provided with the two operating sys-
tems: POS and I/O OS. Further, to speed up conflict
resolution, it is essential to implement these two OSs via
hardware. The POS will resolve memory conflicts for the
pages of this ME,, and I/O OS will find what dynamic
computer B will participate in the memory-memory ex-
change ME ,—»MEg with ME, via the I/O bus.

2.1 Multiport and Reconfigurable Memory ME

As was indicated above, each CE is equipped with the
reconfigurable multiport ME that can access up to four 16-bit

Instruction Bus
PE; PE,
ﬂ [——»PE3

Data
Address Busses Local ! ICE, I DC Bus Local
Data Bus 3 1/0 Bus
GE,PE,PE, PE, PE, PEPE;PESPE, GE,
b 4 1 E3 A

Figure 4—Multiport reconfigurable ME with four information busses

data words concurrently. One ME has f pages: ME — Py,
ME -P,, ... , ME — P; (Figure 4). In the system, DCA-2,
that is now under implementation, f = 32; i.e., each ME has
32 pages, each of which has 64K words. The memory, ME, is
provided with four ports, each of which consists of a 24-bit
address bus and a 16-bit data bus. There are four data busses.

Let us discuss the designation of each of them.

1. The local data bus provides 16-bit word exchange be-
tween the local ME and PE. A dynamic computer han-
dles 16-k-bit words in parallel. Since a 16-k-bit word is
stored in a parallel cell of k ME specified with the same
address, A,, an access to this cell (read or write) is
specified by concurrent broadcast of the same address,
A,, by k PEs of the dynamic computer. This allows a
concurrent fetch of k 16-bit bytes of the same data words
via the respective local data buses to k PEs of the dy-
namic computer.

2. The instruction bus provides fetch of 16-bit words of one
instruction that is stored in one ME. One instruction
may be two-word (32-bit instruction) or three-word
(48-bit instruction). Further, it must be fetched to all k
PEs of the dynamic computer. The instruction broadcast
to k PEs of the computer is performed via a connecting
element, ICE.

3. The DC bus provides broadcast of a 16-bit word from the
given ME to any PE or ME of the DC group. For ME,,
belonging to Computer A, any of its pages may be con-
nected with any PEg or MEg belonging to Computer B
(Figure 5).

A Distributed Operating System 109

Sage
Address Jege acress

PEy PEg [

[ackg |

~ddress (1€ bits) L]ulvd‘ 3
‘ ulu uTulul
MCE scress MCE :
ppes

, &
ME, MEg

Figure 5—ME ,—MEjy exchange via DC bus

4. The local I/O bus provides broadcast of 16-bit data be-
tween local ME and /O (GE), belonging to the same
CE.

Therefore, multiport reconfigurable memory, ME, pro-
vides for concurrent connection of any combination of its four
pages with the four busses mentioned above. It may be fed
with up to four addresses leading to concurrent accesses of up
to four data words transferred to local PE and GE and non-
local transfer to PEg or MEg of another computer element
CEg.

As was mentioned above, each address bus is a 24-bit. It is
formed of two parts: an 8-bit page address and a 16-bit relative
address within one page.

Each ME. receives its addresses from the following
sources. All four 8-bit page addresses are received from the
local POS, belonging to the local PE,; 16-bit relative ad-
dresses for local data words and instructions that must be
fetched to local PE, are broadcast from the local control unit
CU(PE) of this PE,. A 16-bit data word that must be broad-
cast to a nonlocal PEg of another computer is defined via a
16-bit relative address broadcast from PEg.

Local GE, broadcasts a 16-bit address for the data to be
transferred via the local I/O bus (Figure 6). The same 8-bit

170 bus

Data Address Data Address

Page Address
& - PEA

ME,

Page Address

Figure 6—ME ,—MEj exchange via I/O bus

page addresses are fed continuously during program com-
putation, whereas 16-bit relative addresses are available only
during fetch clock period. A change in an 8-bit page address
is performed either via special instruction or via PO3,.

2.2 Memory-Processor Data Exchange ME ,—PEpg

Let us discuss the memory-processor data exchange of the
data word stored in ME, and fetched to PEg. Suppose that a
PEg of the B computer needs a data array stored in the page
ME,-P, of the ME 4 contained in the A computer. In this case
Computer A connects page ME4-P, with the DC bus. The
8-bit page address, P, is generated by the operating system
POS, in PE4 of the A computer and continuously fed to ME 5
during the entire exchange (Figure 3).

The B computer sends a 16-bit relative address to the ME o
via its connecting element ACEg and the address portion of
the DC bus. A data word fetched via an effective 24-bit ad-
dress is sent via connecting element MCE 4 to the data portion
of the DC bus that connects MCE 4 with PEg.

It should be noted that the delay introduced by the DC bus
in transferring addresses and data words is very insignificant
and equivalent to two gates delay. In addition, these delays
are permanent and independent of the location of ME, and
PEg5 in the resource. This allows organization of new types of
instructions. Each such instruction executed in Computer B
may fetch one operand from ME, and the second operand
from MEg and write the result either to MEg or ME 5. This
instruction is organized as follows: Computer B sends concur-
rently two 16-bit addresses; one via DC (address) bus is fed to
ME,, and another via local (address) bus is fed to MEg. Thus,
PEg receives two operands concurrently: one fetched via DC
(data) bus, another via local (data) bus. The page address for
ME:g is generated by PEg. The result of the operation can be
written either to ME, or to MEg.

Note that the fact that Computer A loans its page, ME 4-P,,
to Computer B does not prevent A from executing its program
because a loaned page, ME,-Py, is connected with the DC
bus, whereas program instructions computed in Computer A
are stored in another page connected with the instruction bus.
The data words for this program are stored in another page
connected with the local data bus. Sequencing of instruction
and data arrays stored in several pages is performed with
special instructions that change the page addresses connected
with instruction and local data busses.

Therefore, the ability of one dynamic computer to loan its
memory pages for use by the B computer eliminates the neces-
sity of using ME,-MEjg data exchange. If there are no con-
flicts for the page, ME,-P, of the A computer, then to transfer
a data array made of d words from ME, to PEg takes (d +t)
clock periods, where t is a small number of clock periods
required to generate the page address by POS,; thereafter
each word may be tran$ferred during one clock period.

Another advantage of such organization is as follows: Since
the DC bus is connected with all computer elements, it may be
used by the B computer for fetching one of its operands from
the local MEg; the second operand may be fetched concur-
rently from another page of the same MEg via a local data
bus. This results in a concurrent fetch of two operands that
leads to a significant speedup in data fetches.

110 National Computer Conference, 1982

2.3 Memory-Memory Exchange, ME ,—MEp

As was indicated above, there are two types of memory-
memory exchange between A and B computers, organized via
a DC bus and an I/O bus, respectively (Figures 5 and 6). Both
types of exchanges do not interrupt programs run on A and B
computers. The most typical use of both exchanges occurs
when the data array stored in A computer is transferred to B
computer before the program run in B computer actually
needs this array.

2.3.1 ME,—MEj3 exchange via DC bus

Since the DC bus is connected with each element, MCE,
the MCE,—MCEg connection will establish a data path for
data words fetched from ME, and to be written to MEg
(Figure 5). Since the program run on B computer requests this
exchange, B computer generates 16-bit addresses for ME
and MEg. In addition, B computer generates the page address
(8 bits) for MEg. This address connects the respective page in
MEgs to the DC bus. The page address for ME, is generated
by Computer A.

Two 16-bit addresses that define respectively the source and
destination of a data word in ME, and MEjg are generated
concurrently, and one data word is transferred in one clock
period from ME, to MEg. The same addresses are fed con-
tinuously to ME 4 and MEg during the entire broadcast of the
data array from the same page.

2.3.2 ME,—>MEj exchange via /O bus

Since the DC bus is often occupied by ME,—PEg ex-
changes, and the program on the B computer may often need
data words computed by A computer in the past, it is desirable
to organize another type of ME ,—~MEg exchange via I/O bus.

Since each ME may connect its pages to the local I/O bus,
one can organize ME ,—MEjg exchange via I/O elements GE
of A and B computers (Figure 6). The page addresses in ME,
and MEg are generated by PE, and PEg respectively. There-
fore, the following data path is established: During the first
clock period, T, a data word is fetched from ME, to GE;
during To® it is transferred via I/O bus to GEg; during To®
it is written to MEg.

This transfer is overlapped, so that each clock period fea-
tures one fetch of a new data word from ME, and the entire
transfer of a data array having d words from ME, to MEg
takes d + 2 clock periods.

This concludes the description of all data exchanges that
involve the operating system.

It should be noted that for PE,—PEg exchange, the OS is
not involved, since this exchange provides for concurrent re-
ception of the same operand by all PEs, which is useful for
array architecture. Thus, it will not be considered in this

paper.

3. DISTRIBUTED OPERATING SYSTEM

If the same page of the A computer is requested by two or
more other computers, the POS, residing in PE, has to de-

cide which computer request for MEs—PEg or ME,—MEjy
exchanges should be granted. Similar conflict resolution must
be provided by the I/O OS4 to decide which computer may
use ME ,—~MEjp (I/O) exchange via an I/O bus. To solve these
conflicts, each program is assigned the priority code, PC, that
shows the relative importance of this program among all
others that are being computed by the system. Also, each
request for a page is provided with another important charac-
teristic—the tentative duration of a data exchange, TDE.

These two codes will provide the user with a much better
quality of service, since the programs with low PCs and small
TDE may be granted requests because the requested ex-
change will take a short time. Should a page request be char-
acterized by the PC code alone, it would be impossible for a
program of low priority or priorities to request data exchanges
of short durations.

Thus, if a page of Computer A is requested, either POS, or
I/O OS. receive two characteristics of each page request: the
priority code, PC, of the requesting program and the tentative
duration, TDE, of the exchange. The POS, receives PC and
TDE, if a requested data exchange will use the DC bus; the
I/O OS 4 receives PC and TDE if the exchange will use the /O
bus.

POS, controls all four busses of ME,; i.e., it alone con-
nects memory pages to the busses. Therefore, if /O OS, has
a request on ME,—MEg (I/O) exchange, it requests the
POS,4 on the possibility of connecting a requested page to the
local /O bus.

Other functions of I/O OS, include finding the terminal
that should be connected with GE ,, communicating with the
V monitor, and similar functions. These functions of I/O OS 4
will not be considered in this paper.

3.1 Communication Between Different POSs

Since a dynamic computer, A, includes k CEs, it has k
POSs. Each POS, makes decisions concerning the pages of
the local ME 4 only. As will be shown below, such horizontal
distribution of functions allows parallel data exchanges both
with full 16-k-bit data words and with 16-f-bit bytes, where
1=f<k. Indeed, if two computers, A and B, are assembled
from the same number k of CEs, then parallel 16-k-bit data
exchanges mean concurrent communication by each CE of the
A computer with the respective CE of the B computer. In
Figure 7 this communication is shown for 32-bit computers A
and B, assembled from CE, and CE, for A and CE; and CE,

PEy PE, PE3 PEq
POS, POS, PO, POS,

orputer & - lomputee § =

Figure 7—Concurrent communications between different POSs of two
dynamic computers

A Distributed Operating System 111

for B. Thus POS, of PE, communicates with POS; of PE,, and
POS; of PE; communicates with POS; of PE,.

This means that each CE, of the A computer must generate
the same page address in order that this page be connected
with the DC bus in the locai ME 4. This will lead to a concur-
rent fetch of a 16-k-bit word from the same page of k ME,,
so that each ME, will produce one byte of this word. The
decision on what page should be connected with the DC bus
is performed by the local POS4 that receives the request from
the respective POSg of the B computer. Thus, if A and B
computers have the same number of CEs, then k communi-
cating pairs POS4,POSg are formed, where each POSg sends
the request to the respective POS 4. This request is organized
with a special communication request instruction, CR in-
struction, whose organization is described in the next section.

3.2 Organization of Communication Request Instruction

The CR instruction is fetched by all CEs of the B computer.
It stores the following codes: wg, ya, and xg, where

1. wyg is the position code of the most significant CE (CE.,,)
of the B computer that requests communication with its
analog of the A computer.

2. ya is the position code of the most significant CE (CE,)
of the A computer that receives requests from CE..

3. xg is the position code of the least significant CE (CE,)
of the B computer that participates in communication.

Let ig be a current position code of a CEg of Computer B,
where wg < ip < xg. Then position code j4 of CE A of Comput-
er A, which communicates with this CEg, is given as follows:

ja=ig+ (ya — Ws) ey

The execution of this instruction is organized as follows:
Having received a communication request instruction, each
CEp of the B computer compares its position code ig with wg
and xg. If wg <ip =xg, CEp finds j, of the CE, via Equation
1. Otherwise, the CR instruction is not executed. It should be
noted that this instruction can organize parallel byte ex-
changes as well as full data word exchanges. For byte ex-

changes wg and xg show positions of most and least significant

bytes for data words to be exchanged. For full data word
exchanges, there is no need to store xg, since the instruction
is received by all CEs of B computer and every CEg of B
computer will thus find the position code, ja, of its commu-
nication pair in the A computer.

Example 1. First, consider parallel exchange with 16-f-bit
bytes. Let a dynamic computer B = Cs(3) assembled from
CEs, CE¢, and CE; require that CE; send a request to CE,
and CEg send a request to CE,, where CE; and CE, belong to
Computer A = C,(3) that contains CE,, CE,, and CE; (Figure
8). The CR instruction stores the following codes: wg =15,
since CEs is the most significant slice of B computer that needs
exchange; y = 1, since CE, is the most significant slice of A
computer; xg = 6, since CEg is the least significant slice of the
B computer that needs exchange.

Each CEjy of the B computer compares its position code, ig,

\
!

f |
(e Ol =] O (o [l (=] (] =

C4(3) Cs(3)

|
ﬁﬁﬁwwﬁﬁ%

cyl4) 5(4)

1 |
[onn | [oma| [oma| o} [| [| [| [ew] ©
Cy(4) W

Figure 8—Establishment of POSs communication pairs for parallel 16-f-bit
exchanges where f=1, ... , k

with wg and xg; for CEs, ig =5; therefore, wg <ig <xg is
true (5=5=6). For CEq, iz =6, wg=<ip<Xxg is also true
(5=6=6). For CE, iz =7, therefore, wg =iz =xg is false
(5%7+%£6). Therefore, ja=5+(1—-5)=5-4=1;1i.e., CEs
sends a request to CE,. For CEg, ig=6. Therefore,
Ja=6+(1-5)=2; i.e., CE¢ sends a request to CE,. CE,
sends no communication request, since it did not pass via the
conditional test.

For full data word exchanges, the CR instruction stores only
wg and y, codes; i.e., Field xp is empty and each CEg, of the
B computer executes Equation 1.

In Figure 8(b) let the B computer, Cs(4), assembled from
CEs, CEs, CE,, and CEg, need 64-bit data words stored in a
computer, C,(4), assembled from CE,, CE,, CE;, and CE,.
The CR instruction stores wg =5, ya =1, and xg = 0. In CEs
the following j. is obtained: j, =5+ 1—5=1;i.e., CEs com-
municates with CE;. For CEg, ja=6+ (1 -5)=2;i.e., CEs
communicates with CE,. For CE;, ja=7+ (1-5)=3; i.e.,
CE; communicates with CE;. Similarly, CE; communicates
with CE,.

The power of the CR instruction is such that it can organize
data exchanges between different-size computers, A and B,
when the size of B may be either smaller or larger than the size
of Computer A. If the size of B is smaller than that of A, then
B may receive 16-f-bit bytes from Computer A that match the
size of B. If the size of B is larger than that of A, only a portion
of the CEs in the B computer will establish communication
requests with their pairs from A computer.

Computer A, assembled from f CE, will send full 16-f-bit
data words, which will be received only by f slices of Com-
puter B assembled from k CE, where f<k. The data ex-
change between different-size computers is exemplified by
Figure 8(c), in which 16-bit Computer B = Cq(1), assembled
from CEg, requests an array of 16-bit bytes stored in CE;; CE;
belongs to the A computer, C,(4), assembled from CE,
through CE,.

The B computer fetches the CR instruction that stores
wg =8, since CE; is the most significant in Cs(1); ya =3,
because CE; is the most significant CE in Computer A that
receives communication requests, and xg=0. Thus
ja=8+ (3 —8)=3, and CE; communicates with CE.

112 National Computer Conference, 1982

4. PROCESSOR OPERATING SYSTEM, POS

Every POS, of the dynamic computer A may perform the
following functions:

1. Generation of the page addresses for all four busses of the
local ME ,. Local POS , may generate concurrently up to
four 8-bit page addresses that specify what pages of the
local ME, will be connected with four data busses that
are available (local data, bus, instruction bus, DC data
bus, and local I/O bus).

2. Handling requests on the local memory resources. The
local POS 4 receives and handles requests concerning the
pages of the local ME , from any other POSg. Or POS4
may receive a request from the local I/O OS, contained
in the same CE.. Having received each type of request
(either from POSy or from I/O OS,), POS, finds
whether or not it is possible to connect a requested
memory page(s) to the DC bus and/or the local I/O bus.
In both cases the page requester is informed of the deci-
sion made.

3. Handling denied requests. If POS, cannot give a re-
quested memory page to its requester (either POSg or
/O 0S,), each denied request is stored. When a re-
quested page becomes free, a requester is informed of
this occasion.

4. Generation of page requests for the nonlocal memory
resource. If a local program needs a nonlocal memory
page of MEc, then the local POS,4 sends a page request
to another POSc local with MEc.

5. Handling program interrupts. If a requested memory
page is not received, so that a local program cannot
perform further computations, the local POS, handles
program interrupt(s) of the program computed by CE4.
To this end it evacuates all the related data words stored
in data registers of PE, to the local memory ME, and
initiates computation of another program that waits in
queue.

6. Resumption of interrupted program(s). If the local POS o
is belatedly granted a page request for a program that
was interrupted because this request was not satisfied in
time, the POS4 resumes computation of the interrupted
program, provided its priority is higher than those of all
other interrupted programs waiting for computation. To
this end, the POS, completely restores a computa-
tion status of an interrupted program before the last
interrupt.

Let us now give organizations on each of the functions
introduced above except Functions V and VI, which have
been considered in Kartashev and Kartashev.*

4.1. Generation of Page Addresses

In each CE a local computing program may use two busses:
the local data bus, which receives data words from the local
ME; and the instruction bus, which broadcasts instructions
fetched from the local ME to all CEs of the dynamic com-
puter, provided a current program segment is stored in this
ME (Figure 4).

For convenience of programming, it is provided that the
data words needed by a current program may be stored not in
one but in four pages. The respective four-page addresses are
stored in four 8-bit registers, R1 through R4 (Figure 9). Each
data fetch instruction that organizes an operand fetch from
the local ME stores a two-bit code m that specifies which of
the registers R1 through R4 stores a current page address.
This register is then connected with the 8-bit local page ad-
dress for the local data bus. In Figure 9 the following m’s are
used: If m = 00, R1 stores a current page address; if m = 01,
it is stored in R2; etc.

m=1

SN g @
Local Data Instruction Data DC Local 170
Page Address Page Address Page Address Page Address

Figure 9—Page address registers

Similarly, it is provided that the instructions for a currently
executed program segment be stored in two pages whose ad-
dresses are stored in RS and R6, where R5 stores the page
address that is connected to the instruction bus and R6 stores
the next page address. If a program needs to jump to a page
address stored in R6, the following transfers are performed:
R5—R6 and R6—RS; i.e., a current address is saved in R6
and a new address is transferred to R5. This is done with a
special instruction that transfers control to a new program
segment whose page address was in R6.

For the DC bus and the local I/O bus, the respective page
addresses are stored in R7 and R8; i.e., a programmer may
work with one page for each of these busses. All these regis-
ters (R1 through R8) are included in the Page Set Registers of
the POS (Figure 10).

4.2. Handling Page Requests

All POSs of the DC group may exchange with 16-bit mes-
sages. Each message may belong to one of the following cate-
gories: (1) it may be a page request, or (2) it may be a Yes or
No response on a page request. There are other types of
messages that are not discussed in this paper.

A page request to a given POS, from all the POSg’s is
broadcast via connecting element SCE local with CE,. The
DC group has n SCE:s that are forming the P-bus considered
above. In Figure 10, n = 4; therefore the SCE has four 16-bit
channels, of which three are input channels for receiving page

A Distributed Operating System 113

GE

Connect to other SCE’s

To Z-bus .
Inter- Element Communicator

Deletion
Handler
To Z-bus
From {
Modular
Control
Device (MCD) |
Denied
| Resource Koy Do e Denied
| Request Registers Resource
To bevry GEEERE Mandier Handler
|
|
I Page
| Set
| Registers
|

Figure 10—Block diagram of the processor operating system

requests from other CEs and one is the output channel for
sending its own page request to other CEs. Further, as was
indicated above, every POS, may receive a 16-bit request
from the local I/O OS 4 via a 16-bit data bus that connects PE 5
with the local GEa.

Since each POS, may receive up to n — 1 concurrent page
requests from other POSs, these requests form a queue in the
Inter-element Communicator that allows only one request to
be handled at a time. After this request is finished, the next
request in a queue is processed, etc. Having received a page
request, each POS,, initiates a Resource Request Handler that
executes the actions discussed in the next sections.

4.2.1. Resource Request Handler

A received page address is compared concurrently with all
those stored in R1 through R8 to find out whether a requested
page, RP, is busy.

If it is free, the POS, performs the following functions:

1. Generates a ““Yes” response to the external requester,
POSg.

2. Writes this page address to the R7 register that connects
it to the DC bus.

3. Activates the data channel in the connecting element,
MCE.,, that connects the local memory element, ME,,
with its destination processor element, PEg, that re-
quested this page (Figure 5). This establishes the

ME ,—PEg data path whereby a local page in ME 4 was
loaned to Computer B.

If a requested page, RP, is busy, its address is stored in one
of the registers, R1 through R8. This means that this RP-page
is used by one of the following programs (Figure 9):

1. If it is stored in the R1-R6 registers, it is used by the
local program, AP, computed by Computer A.

2. If it is stored in the R7 register, it is used by another
computer, C, which borrowed this page via the DC bus.
Thus this page is used by the CP program.

3. If it is stored in the R8 register, it is used by the local
program, GEP, computed in the local I/O element,
GE...

To generate a Yes or No response to a page request, the
operating system, POS 4, must compare the received PCg and
TDEg parameters (where PCy is the priority code and TDEg
is the tentative duration of the data exchange of the requester
B) with those of the program that is currently using the re-
quested page, RP. It is either AP, CP, or GEP. The priority
code and tentative duration of each of these programs is
stored in the Resource Request Handler.

4.2.2 Estimate Table

To find out which of the programs must use the requested
memory page, RP, the POS, performs a priority analysis that
consists of the following: It analyzes a special estimate table
(Table I) whose rows are marked by priority codes, PC, and
columns are marked by TDE times.

TABLE I—Estimate table

Tentative duration (TDE)

Program

priority 10? 10° 10* 10° 10°
I 20 15 10 5 1
II 25 20 15 10 5
II1 30 25 20 15 10
v 35 30 25 20 15
A% 40 35 30 25 20
VI 45 40 35 30 25
VII 50 45 40 35 30

In the system under implementation, there are seven levels
of priorities; thus PC is a three-bit code and PC,>PCs>
...>PC,.

Assume that the TDE code ranges from 107 clock periods
to 10° clock periods. Thus the estimate table will have seven
rows and five columns.

The intersection (PC, TDE) of the given PC row and the
TDE column gives an integer called program weight, PW, that
shows what actions should be taken by the POS,. For in-
stance, in Table I, if TDE = 10* and PC =1, then PW = 20. If
TDE = 10* and PC =1V, PW =25, etc.

It should be noted that the estimate table is made up on the

114 National Computer Conference, 1982

basis of statistical analysis of algorithms that are computed by
the DC group. Each estimate table can be augmented with
new columns and new rows to reflect given computational
requirements. Further, since the estimate table is stored in the
memory, its expansion requires no hardware changes. Row
and column entries may also be changed to reflect a change in
a set of programs that are under execution.

4.2.3 Decisions made by the POS,

To make a decision concerning a requested page, RP, the
POS 4 must find two program weights, PWy, and PWg, where
PWy is the program weight of the program that is currently
using a requested page and PWg is the program weight of the
program that is requesting this page. If PWy=PWyg, a re-
quester, POSg, receives a No response. If PWy <PEg, a re-
quester, POSg, receives a Yes response.

Handling the No response is considered in Section 4.3. As
for the Yes response, the type of actions undertaken by the
POS ,—following comparison of PWy, and PWg—depends on
what type of programs have been using a requested page, RP.
As follows from the material above, there are four cases of
this usage:

A requested page, RP, has been used by one of the
following:

& Case (a): Local AP program using a local data bus

® Case (b): Local AP program using an instruction bus
® Case (c): External CP program using a DC bus

® Case (d): Local GEP program using a local I/O bus

Case (a): Local AP program using a local data bus. If a
requested page, RP, is used by the AP program, for data
fetches, its address is stored in one of the registers, R1-R4
(Figure 9). If this page is granted to the B computer, its
address should be written to the R7 register connected with
the DC bus, whereas the register that stored it before should
be reset. However, the local AP program may continue its
execution until it starts data fetches from the requested page.
In this case the AP program will become interrupted only
when it fetches a data fetch instruction with 2-bit code m that
connects a requested page granted to B computer with the
data page address. Such an organization allows elimination of
unnecessary interrupts. Thus the AP becomes interrupted
only when such interrupt is absolutely necessary.

Case (b): Local AP program using an instruction bus. If a
requested page, RP, is used by the AP program for instruction
fetches, its address is stored either in RS or in R6 registers. If
the request on this page to POSg is granted and a requested
page is stored in the R5 register, R5 is reset and the AP
program is interrupted. If a requested page, RP, is stored in
the R6 register, R6 is reset and the execution of Program AP
proceeds until it fetches the instruction that transfers control
from R6 to RS.

Case (c): External CP program using a DC bus. If a re-
quested page, RP, is used by the external CP program, its
address is stored in Register R7. If the POS, decides to give
the requested page to the POSg, then the following acticns are
performed: (1) The Resource Request Handler of the POSA

sends a message to POSc that a page in ME, will be denied
for further use by CP program; (2) having received this mes-
sage, POSc acknowledges its reception; (3) POS, establishes
a new path in the DC bus by connecting ME 5 with PEg; and
(4) POS, sends a Yes response message to POSg, indicating
that its page request is granted.

Case (d): Local GEP program using a local I/O bus. Actions
similar to those in Case (c) are performed if a requested page
has been used by the local GEP program.

4.3 Denied Resource Handler

If the POS4 denies a page request made by the POSg, this
request is remembered in the denied resource table (Table II)
that is stored in the Denied Resource Handler unit (Figure
10).

TABLE II—Denied resource table

CE, 5,VI,3 6,15 7,V,10 22,11,10
CE, 6, 1,5 51V,2 — —
CE, — — — —
CE, 16, VL, 5 — — —
CE, 5,1V, 4 — — —

4.3.1 Denied resource table

This table has n + 1 rows, where n rows are assigned for n
CE:s of the system and the last row is assigned for the local I/O
element, GE4.

The table contains d columns, where d specifies the number
of denied requests from one POSg that can be stored. Each
row marked by CEg stores denied page requests made by the
POSg residing in CEg. Since local POS, does not make page
requests to itself, the row CE, is empty. This is accomplished
to preserve the circuit identity of all POSs. The last row, GE,,
stores denied page requests made by local I/O OS,4. For in-
stance, if the DC group has four CE (n = 4) and it is selected
that d = 4, then Table II has five rows and four columns. The
entry (i, j) of the ith row and the jth columns stores the
following page request parameters: the address RPA of re-
quested page, RP; the priority code PC of the program that
requests RP; and the tentative duration of an exchange, TDE.

Example 2. For the DC group with four CEs (n = 4), con-
sider Table II stored in POS; local with CEs. This means that
Row CE; is empty; in the first four rows this table will store
all page requests on the pages of ME; made by POS;, POS,,
and POS,. In the last (fifth) row, the requests made by local
I/0 OS; will be stored. The row CE; stores all page requests
made by POS,;. There are four such requests. Request 1 is on
Page 5, for the program with PC = VI. The page is needed
during 10 clock periods. Request 2 is on Page 6 for the pro-
gram with PC = III during 10° clock periods; etc. The local
GE, row stores only one page request cn Page 5 for the
program with PC = IV during 10* clock periods.

A Distributed Operating System 115

4.3.2 Handling denied requests

For each POS 4 Table II stores two types of denied requests:
external and internal. External denied requests are from all
other POSs. Internal requests are from the local /O OS,4.

To satisfy an external request requires that the DC bus be
free and the requested page, RP, be free. To satisfy an inter-
nal page request requires that only the requested page be free.
Consider handling external denied requests only, since han-
dling internal denied requests is a simple extension of this
more general procedure. Each time the DC bus is free and
one page of ME, is released—i.e., its address called released
page address, RPA, is taken away from one of the registers,
R1-R8—the RPA address is sent to the Denied Resource
Handler.

Thereafter, RPA is compared with all page addresses
stored in Table II.

If it is not stored in Table II, the next released page is
analyzed.

If it is stored in Table II, assume that it is stored in Row B
and Column 1—i.e., it is requested by POSs, for the first time.
Upon fetching this request, the POS, informs the POSg that
the requested page can be connected to the computer element
CEg. If the POSg agrees to accept this page, the POS, writes
this RPA address to register R8—which is connected with the
DC bus—and deletes this request from Table II. If POSz does
not agree to accept this page, then again this page request is
deleted from Table II. If the same released page address,
RPA, is stored in several entries of Table II, this means that
the same page is requested by several programs. All such
requests having the same RPA are fetched; and, using Table
I, their program weights, PW, are found. Thereafter the re-
quest with the highest PW is satisfied and deleted from Table
I1. The remaining requests continue to be stored in Table II.

Example 3. Suppose that the DC bus is free and ME; re-
leases Page 5 (i.e., RPA =5). In Table II, the same RPA =5
is stored in three requests: Request 1, made by POS,; request
2, made by POS;; and request 1, made by the local /O OS;.
Using Table I, we find that the program weights of these
requests are as follows: '

PW, = 40 (row VI, col. 10°%)
PW, =35 (row IV, col. 10%)
PW; =25 (row IV, col. 10%)

Request #1 (POS;)
Request #2 (POS,)
Request #1 (/O OS;)

Since PW, is the highest program weight, Request 1 (POS,)
is granted. This means that POS; informs POS; that Page 5
can be connected with CE;.

If POS; agrees to accept this page, POS; writes RPA =5 to
register R8 and deletes this request from Table II (Figure 9).

If POS,; informs POS; that it does not currently need Page
5, Request 1 (POS,) is deleted from Table II.

4.4 Generation of Page Requests

Consider the organization of page requests on a nonlocal
memory resource. Let the program B computed in CEg re-
quest a page, RP, belonging to ME,. This page request is
organized with the communication request instruction (CR
instruction) introduced in Section 3.2. Whereas Section 3.2

discussed how the CR instruction finds the destination, POS,,
which controls all accesses to the requested page, RP, this
section will discuss other actions of the CR instruction on
generating a page request.

In all, the following information is stored in the CR in-
struction: requested page address, RPA; position codes wg,
Ya, and xg, which allow finding destination position code j, of
the POS, via Equation 1; and tentative duration of the ex-
change, TDE.

When fetched to the control unit, the CR instruction is
transferred to the local POSg, which begins its execution inde-
pendent of Program B. Such organization leads to concur-
rency in establishing a needed data exchange with execution
of the main program. This allows setting up a needed ex-
change before this exchange is needed in computation. This is
achieved as follows: The program B will have two identical CR
instructions. The first one, the CR; instruction, is stored
somewhere in a program segment that goes far ahead of the
instructions handling the data array stored in the requested
page, RP. The second one, the CR; instruction, is immedi-
ately followed by the first instruction that handles data words
from the requested page, RP.

If the CR, instruction receives the requested page, RP, the
CR; instruction is ignored. For this case, the time of establish-
ing a data exchange from Computer A to Computer B will be
reduced to 0, since Computer B will receive the requested
page, RP, before this page is needed in computation. If the
CR; instruction is denied the requested page, RP, Program B
continues execution until it reaches the CR, instruction.

If the CR; instruction is denied the requested page, RP,
Program B is interrupted until the requested page, RP, be-
comes released. During this interrupt, Computer B may begin
other executions.

Therefore, by allowing executional concurrency in com-
puting CR instructions (CR; and CR;) with the main program
B, one can obtain a complete overlap in data exchange with
execution of the main program, provided its program weight
is high. Indeed, in this case, by assigning a high PW to the
main program, it is possible for the requested page to be
received even by the CR, instruction, i.e., long before it is
actually needed in computations.

When the CR instruction is received by the local POSg, it
forms a 16-bit page request message that stores: (1) the re-
quested page address, RPA; and TDE time taken from the
CR instruction; and (2) the priority code PC, stored in a
special priority register of POSg. This request is formed in the
Resource Request Handler (Figure 10). Thereafter it is trans-
ferred to the Inter-element Communicator and local con-
necting element SCEg. Selection of the bus that connects
SCEj with SCE 4 is made with Position Codes wg, ya, and X,
discussed in Section 3.2.

This section concludes the introduction of the major or-
ganizations for a distributed operating system in a system with
dyaamic architecture.

CONCLUSIONS

This paper has introduced major concepts for the distributed
operating system of dynamic architecture. This system is now

116 National Computer Conference, 1982

under implementation (Federal Contract DASG60-80-C-
0058) for a system with dynamic architecture for ballistic mis-
sile defense applications.

To be most effective, the operating system incorporates two
types of distribution:

1. Functional or vertical distribution whereby it is distrib-
uted, in accordance with three major functions it must
perform (resolution of reconfiguration conflicts, I/O
conflicts, and page conflicts)

2. Modular or horizontal distribution when the same oper-
ating system (POS and I/O OS) is distributed among
different CEs of a dynamic computer as a result of the
modularity concept implemented in this computer

It is shown in the paper that such duality in distributed
functions leads to extreme effectiveness in the organization by
the operating system of various data exchanges between vari-
ous dynamic computers that are formed from the resources.
Indeed, a portion of the memory resource of one computer
can be very easily attached to that of the second computer.
This computer now has the loaned memory units, with the
needed data arrays, incorporated into its own primary mem-
ory. This eliminates most of the delays caused by data trans-
fers from one memory to another that must be spent in con-
ventional systems for organizing data exchanges between
different computers.

Other advantages of dynamic architectures for very fast
real-time applications are not discussed in this paper, since
they were extensively treated by Kartashev and Kartashev,
Vick and Kartashevs, and Baer.*®

Summarizing what has just been said, one can state that a
system with dynamic architecture provides a significantly
higher throughput than a conventional system, provided that
both types of systems exhibit the same complexity of re-
sources (the number of processor and memory elements and
the complexity of the interconnection network) and are built
from the same types of components.

REFERENCES

1. Davis, Carl G. and Robert L. Couch. “Ballistic Missile Defense: A
Supercomputer Challenge.” Computer, 13 (1980), pp. 3748.

2. Lincoln, Neil R. “Technology and Design Trade-offs in the Creation of
a Modern Supercomputer.” Accepted for publication in IEEE Trans-
actions on Computers, Special Issue on Supersystems, May 1982.

3. Kartashev, S. I., and S. P. Kartashev. “Dynamic Architectures: Problems
and Solutions.” Computer, 2 (1978), pp. 26-40.

4. Kartashev, S. I., and S. P. Kartashev. ‘“Multicomputer System with
Dynamic Architecture.” IEEE Transactions on Computers, C-28, No. 10
October 1979, pp. 704-721.

5. Vick, C. R., S. P. Kartashev, and S. I. Kartashev. ‘“Adaptable Architec-
tures for Supersystems.” IEEE Transactions on Computers, C-29 (1980),
pp. 1114-1132.

6. Baer, J. L. “Multiprocessing Systems.” IEEE Transactions on Computers,
C-25 (1976), pp. 1271-1277.

Software testing techniques for universal building blocks of
multimicrosystems

by M. ANNARATONE and M. G. SAMI

Politecnico di Milano
Milan, Italy

ABSTRACT

VLSI components testing—in particular, concerning microprocessors—is an essen-
tial step during design and production of fault-tolerant complex systems. Actually,
an efficient general method should adapt to such different phases as incoming
acceptance, periodical testing, maintenance, and even design of self-testing and
fault-tolerant units.

Most authors presenting this problem in recent papers advocated functional
approaches as the most promising, or even the only possible, ones. In the present
paper the problem is analyzed with the purpose of identifying a general criterion
capable of leading to semiautomatic test pattern generators through formal defini-
tion of the test approach itself. To this end, microprogramming is adopted for
creating the functional model of a VLSI programmable device, starting from user-
available information.

The approach aims at identifying the presence of faulty behavior error rather than
at localizing its physical source fault. This appears to be reasonable, given the
testing criterion applications listed above. It will be seen that, although a degree of
freedom exists in defining device model and error model , basic characteristics are
independent of it and lead to necessary conditions for error coverage.

117

Software Testing Techniques for Multimicrosystems 119

1. INTRODUCTION

Testing LSI and VLSI circuits is a basic problem both for
manufacturers and users because of the intrinsic complexity of
the devices and of the testing algorithms that could be derived
by classical approaches. Users in particular are confronted
with the problem of performing acceptance tests on complex
devices without having adequate information about the de-
vices’ internal structures. Moreover, devices characterized as
“identical” as far as external performances are concerned
(typically, second-source products) may actually have com-
pletely different internal structures.

Several authors have already suggested the adoption of
functional approaches to VLSI circuit testing; in fact, they
advocate such approaches as the only possible ones. A widely
known approach has been suggested by Thatte and Abra-
ham.' They introduce a graph-theoretic model for micro-
processor architectures, allowing the use of microprocessor
organization and instruction set as parameters for test gener-
ation procedures. An oriented graph representing data flow
among registers is derived for the instruction set, and a label-
ing procedure is introduced, subsequently allowing the con-
struction of a rational test procedure going from lower to
higher label values. Functional-level fault models are intro-
duced for basic functions, and the graph model is used as a
guide for generating test procedures covering such faults. An
assumption already presented® identifies faults as related to
operators rather than to structures. Although this does not
exclude the introduction of structural, even physical, fault
considerations, it also permits operation on a purely func-
tional level.

The approach introduced by Courtois® can be considered
somehow intermediate, in that, although functional faults are
considered, a fairly detailed knowledge of microprocessor in-
ternal structure is required. In fact, the author foresees the
possibility of gathering test information not simply “at the
pins”—as Thatte and Abraham do and as it is discussed also
in the present paper—but also by access to internal registers.
The approach can thus be seen as oriented to manufacturers
or to fairly sophisticated users capable of gaining such insight.

The problem presented by Sridhar and Hayes* can be con-
sidered as rather different, since the authors refer to bit-sliced
microprocessors rather than to monolithic ones (as the pre-
vious ones do). This type of structure intrinsically allows far
more detailed information as regards both microprocessor
organization and test points availability. Actually, the case of
bit-sliced microprocessors interests us because it leads to the
use of an organization model based upon microprogramming
concepts. Such a model can be used in cases where detailed
architectural information is available, as well as in a mainly

functional approach, as will be seen in the present paper.

An assumption consistently made in most papers is that the
model should be derived simply from user-available informa-
tion. In general, testing performed is of a static type, in the
sense that timing problems are not considered; on the other
hand, problems introduced by particular instructions and/or
control signal sequencing are analyzed. The internal units
considered in most cases are registers and functional units;
i.e., faults considered are operator faults. This philosophy can
be practiced even while testing the ““fetch and decode” phase,
since operators such as “instruction decode” and ‘‘register
decode” can be used.’

The above assumptions are employed also in the present
paper. Here it is suggested that a functional description of the
microprocessor be derived, one that consists of a set of micro-
programs from user-available information such as instruction
set, operational characteristics, and timing charts. Micro-
programming as a means of abstractly representing a com-
puter is a classical approach, and it does not necessarily reflect
a physical implementation. In fact, it will be seen in the sequel
that the definition of the microinstruction set strongly de-
pends on the internal organization model derived for the mi-
croprocessor, so that different microinstruction sets can be
associated with the same device; on the other hand, it will be
seen that other microprogram characteristics (basic to test
procedure definition) are independent of the model and typi-
cal of a given microprocessor.

Basically, the test problem will be seen as detection of
errors, i.e., detection of faulty execution of microinstructions
or of faulty sequencing, rather than faults. Again, this reduces
to seeing faults as related to operators rather than to physical
devices. When error modes are listed for microinstructions
and/or micro-orders, it is possible to introduce modes deriving
from physical considerations. Further, we assume a “‘well-
defined” microprocessor; i.e., we assume that no errors arise
from faulty architecture design.

It is obvious that a purely functional approach such as the
one described in the present paper cannot lead to sufficient
conditions for error coverage; but some necessary conditions
for defining test procedures capable of fault coverage will be
introduced. From these conditions, criteria permitting the
definition of test procedures will be derived. Although at
present it does not seem reasonable to configure a completely
automated test procedure generation, a computer-assisted
method is outlined.

The criterion here described is being used not only for
writing incoming acceptance test programs of VLSI de-
vices, but also for implementing periodical test routines and
for designing a self-testing CPU in a high-reliability multi-
MiCTOprocessor system.

120 National Computer Conference, 1982

2. DEFINITION OF THE MODEL

The information we consider in order to derive the micro-
processor model is the conventional user-available informa-
tion, defining the following:

1. The set of internal registers and functional units (control
unit, ALU, and similar items) as they appear to the user
through the operation of the microprocessor

2. The set of instructions and of asynchronous control sig-
nals (such as interrupts and DMA requests)

3. The behavior of signals at external pins and of internal
operations in correspondence of each clock semicycle, as
derived from timing charts

Information 1 makes possible the definition of a simple func-
tional model of the microprocessor. Actually, it is usually
possible to provide several models, more or less detailed; as
will be seen in the sequel, above a minimum level correspond-
ing to actual functionalities, further detail may lead to better
error localization, not to higher error coverage.

Given this model, its operation answering the various in-
structions is described by means of a corresponding set of
microprograms. Any given microinstruction may consist of a
number of concurrent microorders; the detail of the model
obviously reflects upon the choice of microorders. The testing
problem becomes, in this context, the problem of identifying
erroneous execution of microorders, microinstructions, or er-
roneous microinstruction sequencing. The microorders we
consider belong to three classes: Class 1 consists of transfers
either between internal registers or between an internal regis-
ter and an external unit; Class 2 consists of commands to
internal functional units (this includes also the control unit
and associated decoding operators); Class 3 consists of branch
and jump microorders. This reflects the usual classification
adopted for instructions ; obviously, at microorder level such
operations as decoding also have to be taken into account.

In order to better explain how microprograms can be de-
rived, we refer to a sample case: the Z80 microprocessor as a
fairly complex and very widely known 8-bit device. The inter-
nal model is given in Figure 1. Consider first one of the sim-
plest possible instructions, NOP; it only consists of “fetch”
and “decode’ phases. The corresponding microprogram can
be derived in detail as follows:

(PC) — address bus

request read operation from memory
above signals are kept stable

(two s.c. delay of the control unit)
(data bus) — data buffer;

(refresh address) — address pins;
refresh signal

(data buffer) — control unit;

(PC) +1— PC;

instruction decode.

1st clock semicycle

2nd clock semicycle

3rd, 4th clock
semicycle

5th clock semicycle

6th to 8th semicycle

The incomplete knowledge available to the user, when inter-
nal transfers and operations timing are concerned, leads to the
fact that we cannot introduce a one-to-one correspondence
between microinstructions and clock semicycles without in-

Microprogram
Memory

I i
S

Sequencer

ALU

y
nuIodm—Hn—0Om>xn

Address Buffer Data Buffer

| i
\ Y

Figure 1—A general microprogrammed processor architecture

creasing the risk of creating false error localization cases.
Therefore, in the sequel, we will refer to sequences of micro-
instructions rather than of semicycles. The “fetch and
decode” phase repeats identically for all 1-byte instructions;
for longer instructions, “fetch” is modified simply by the in-
troduction of further read-and-transfer operations. There-
fore, we do not here consider in detail other instances of
“fetch.” Consider now a simple ‘‘transfer” instruction, such as
LD A,n (the value n is loaded into register A): its “execute”
phase is translated by the microinstruction sequence:

1st microinstruction (PC) — address bus

2nd microinstruction request read operation from memory

3rd microinstruction (data bus) — data buffer;
(PC)+1—PC

4th microinstruction (data buffer) — A

Microprograms for “manipulation’ instructions—e.g., ADD,
ROTATE—are derived in the same way. It is worthwhile to
examine in detail the “execute” phase of a branch instruction,

e.g.
JP cc,nn (if condition code is set, jump to location nn)

1st microinstruction test condition code
2nd microinstruction conditional transfer of either (PC) or
nn on address bus

When developing the set of microprograms for all the in-
structions, “‘execute” phases are obviously expanded into mi-
croinstructions sequences independently for each instruction
(and addressing mode). As regards the “fetch” phase, we split
it into two subphases. The first one is concerned with address
generation and byte(s) fetching, and it is tested at the begin-
ning of the test procedure, independently of results of “exe-

Software Testing Techniques for Multimicrosystems 121

cute” phases; the other one concerns instruction decoding,
and it can be validated only after the whole instruction set has
been tested.

When defining a microprogram, any transfer operation or
command must necessarily involve only registers and/or func-
tional operators that can be (explicitly or implicitly) accessed
or modified by at least one instruction; in other words, they
must be derived from user-available descriptions. Therefore,
while it is acceptable to represent any given register, if so
desired, as the interconnection of two semiregisters operated
on by parallel microorders, it is useless and actually unac-
ceptable to represent it as the cascade of a buffer (transparent
to external purposes) and a register. As a consequence, the
number of microprogram steps (i.e., microinstructions) de-
scribing any given instruction is independent of the detail of
the model, whereas the ‘“‘width” of the microinstructions (i.e.,
the number of concurrent microorders) depends on it.

We distinguish, in a given instruction set, directly observ-
able and not directly observable instructions. Again, this dis-
tinction is independent of the model, and it only depends on
the function(s) performed by the instruction.

We say that instruction I* is completely observable if, at the
end of its “execute” phase, signal sequences read at the pins
transfer outside the result of all functions performed by I*.
(This holds also for the instruction-sequencing function of the
control unit, since at the end of any given “execute” phase,
excepting HALT, the next instruction address is available.)

We say that instruction I* is partially observable if, at the
end of the “execute” phase, at least one of the functions
performed has been made observable at the pins. Unless I* is
an instruction operating only on the program counter, we
require that at least one function apart from instruction se-
quencing be made observable.

Finally, we say that instruction I1* is not directly observable
if, at the end of its “execute” phase, none of its functions
apart from instruction sequencing has been made observable
to external pins.

Obviously, in any well-designed microprocessor, for any
partially observable or not directly observable instruction
there exists an instruction sequence allowing the various func-
tions to be observable at the pins. For instance, consider an
ADD instruction: it falls, for most microprocessors, in the not
directly observable class. By means of a “write to memory”
instruction, the main result is made observable, while the
Carry can also be made observable either by a conditional
Branch on Carry (if available) or by a sequence “‘rotate-write
to memory.” The same observability definitions can be ex-
tended to microinstructions and microorders. For this last
purpose, a microorder that cannot be made observable by
means of any sequence of instructions, however complex, cor-
responds to an internal function totally ““transparent” to the
user, and therefore it is meaningless in a functional approach
to testing. Should any such microorder be introduced when
defining the model, it can subsequently be deleted.

We now introduce the concept of instruction cardinality.
Cardinality is evaluated with reference to the ‘“‘execute”
phase. The “fetch and decode” phase is conventionally given
cardinality 0, whatever the number of words constituting the
instruction itself. Instructions consisting only of ‘‘fetch and
decode,” without any further functions (typically, NOP) are

defined as having cardinality 0. Cardinality is defined as the
number of independent accesses (possibly through functional
transforms) to registers. Two clarifying statements are in
order:

1. Any functional transform of a register’s content must be
interpreted as two subsequent accesses; that is, “read”
followed by “write” after functional transform.

2. By “independent” accesses we mean actions that are not
performed through parallel commands upon parallel
units logically interpretable as single entities. Thus, an
ADD operation accesses in the “write” cycle two regis-
ters (Accumulator and Carry) that, in this context, may
be interpreted as one.

Now, from the set of microprograms describing ‘“‘execute”
phases for all instructions, we derive each instruction’s cardi-
nality. While the complete set of cardinalities for Z80 is re-
produced in the Appendix, we consider here in detail some
meaningful examples:

1. A “load immediate” instruction consists of the simple
transfer from data buffer to named register; that is, its
cardinality is 1.

2. LD r,(HL) implies two separate register accesses: the
first one from register pair HL to address buffer, the
second one from data buffer to r. The cardinality is 2.

3. LD r,(IX + d) implies three separate register accesses;
that is, read from IX, write (IX) added with displace-
ment d into address buffer, load from data buffer to r.
The cardinality is 3.

4. POP qq: two accesses are implied; i.c., the contents of
two adjacent stack words are transferred to memory and
in correspondence SP is updated. The cardinality is 2.

5. JP cc nn: two accesses are implied; i.e., the Condition
Code register is read and evaluated, then value nn is
written in the address buffer. The cardinality is 2.

6. JR Z,e: in this case, the cardinality is 3, since the inde-
pendent accesses are: read flag bit Z and evaluate, read
PC contents, add e to PC contents, and write into PC.

Having identified the cardinality of each instruction, the in-
struction set is reordered into subsets identified by common
cardinality. In the next section we will see how the model now
introduced leads to the definition of testing criteria.

3. DEFINITION OF TESTING CRITERIA

The scope of testing, in our approach, is to verify for each
microprocessor instruction whether at least one operation
condition in the corresponding microprogram leads to faulty
results, i.e., errors. To this purpose, a suitable instruction
sequence will be run, possibly with different initial data sets;
actually, assumptions on fault modes may be transferred into
the definition of possible errors. Consider, for instance, an
“LD r,n” instruction; errors in the “LD r”” microorder may be
defined, in the simplest case, as the incapacity for writing 0 or
1 into any single bit of r (the testing sequence will be run for
the two separate instances), but they could also be made to

122 National Computer Conference, 1982

reflect far more complex interdependences among the various
register bits. We are concerned here in verifying whether, for
any given instruction with which an error set has been associ-
ated, it is possible to define a test sequence leading to (non-
ambiguous) coverage of all errors. How close the eiror set is
to real error instances depends not on the “functional’” model
but rather on structural and physical fault assumptions under-
lying error definition.

It must be underlined that, given a basically functional ap-
proach, test coverage can be considered only with reference to
microorders and to instructions; functional units are defined
in a virtual way, and it would be meaningless to consider
errors and error coverage as related to them. In the same way,
it is not possible to employ any assumption of single or multi-
ple faults. Rather, in the sequel we assume that in any micro-
program there are never two microorders whose errors lead to
error masking.

In the sequel, we denote by {ix} the set of all instructions
having cardinality k, by E (I;) the error set associated with I,
(i.e., the set of all errors that can be originated by microorders
in I, or by their faulty sequencing).

Theorem 1: for any I, belonging to {ir}, with k > 1, there is
at least one I, belonging to {i,—,} such that

E (It-1) C E (I

Proof: Cardinality k >1 can be reached by one of the two
following instances:

1. Two (or more) independent registers are accessed in
separate ‘“‘write’’ operations (possibly with a functional
command interposed).

2. Two (or more) independent registers are accessed, but at
least one of them is accessed through a ‘“‘read” com-
mand.

In Case 2 it can be immediately noted that, unless an in-
struction with cardinality # <k is allowed to perform a
“write”” operation on the register(s) from which a “read” is
performed in I, Instruction Ir would operate on registers
whose content is random: in other words, a design error would
be present. Case 1 actually, in a well-designed micro-
processor, necessarily leads again to case 2: unless the differ-
ent registers were accessed in parallel through one “‘write”
operation (and this would not increase cardinality), there
should be another “read” operation interposed, if for nothing
more than to address separate “write” operations. Thus, it
can be concluded (in the assumption of a well-designed and
testable system) that the theorem is proved.

Corollary 1.1: The necessary condition for achieving non-
ambiguous error coverage with reference to {iz}, kK >1, is
completion of tests giving error coverage for {iy_1}.

Proof: Assume that coverage for {ix—;} has not been
achieved. This means that at least one register access (possibly
through a functional operator) has not been tested and that
one or more errors in at least one E([,_,) have not been
covered. Since there may be an I, containing a microorder
capable of masking such error(s), ambiguity in testing may

result. Moreover, since an access error in £ () may counter-
balance a previous access error in E (I;_;), error coverage may
not be achieved.

Up to now we have made use of the concept of “instruction
sequence” as the means for testing an instruction I;; in fact,
while in the simplest case of a directly observable instruction
not requiring any setup for testing such sequence consists of
the instruction itself, in all other cases there will be a sequence
... .

Theorem 2: The necessary condition for a nonambiguous
error coverage for a not directly observable instruction
I, € {i,} is the existence of a testing instruction sequence
I’ ... I consisting only of instructions with cardinality not
greater than k.

Proof: Assume first [> k. I is of necessity observable (at
least partially), but if the condition in Corollary 1.1 has been
satisfied, I,b has not yet been tested; therefore, it is possible
that I masks error(s) in I.. Now let the sequence be I ... I,
... I, with m >k, while all instructions following I, and
comprising I, have cardinality <k. We can assume that all
instructions following I;, have already been tested and that
they do not therefore introduce further error possibilities; the
problem, then, relates only to I, and it can be reduced to the
previous considerations.

Obviously, the instruction set of a microprocessor can be such
that Theorem 2 is not satisfied; for instance, Z80 exhibits this
problem. In fact, we may have two different instances:

1. there is the not directly observable instruction I whose
simplest testing sequence, making it observable, re-
quires use of an I,'l (with & = k) that in turn requires
in its setup sequence. For instance, a “‘load register im-
mediate” (k = 1) can be made observable by means of a
“write register to memory” (h = 2) (any other possible
instruction sequence would involve instructions of no
lower cardinality), but this in turn requires in its own test
sequence at least one “load immediate” for setup. We
can accept a “temporary” test result for the pair I—1I,.
At the end of the testing actions, if there is at least one
sequence relating to cardinality / (or higher) that

-does not involve the pair I,—1I; .

-is not critical for testing any instruction I,

-makes I, observable by means of separately tested

instruction(s),
then I, (and possibly) can be separately tested, and
nonambiguous error coverage can be reached. Other-
wise, the test is valid only with respect to the pair I,— I,
and error masking is possible.

2. Any test sequence for I, involves instructions with higher
er cardinality, but none of these requires I, in its test
sequence. Testing on I, will be “suspended” until all
instructions in its test sequence have been validated.

Note that, while conclusions in Theorem 2 are independent of
error hypotheses, possible instances of ambiguity and error
masking when Theorem 2 is not satisfied strongly depend on
definition of microinstructions and of error hypotheses. All

Software Testing Techniques for Multimicrosystems 123

the above leads to identifying error coverage and non-
ambiguities when defining test sequences. In the next section
we outline testing procedures based on such considerations
and accounting also for fast test sequences.

4. DESIGN OF TESTING PROCEDURES

We do not at present consider it possible to implement auto-
matic definition of testing procedure following our approach;
rather, the criteria we introduce allow computer-assisted de-
velopment of such procedures (it is possible to make such
steps as congruence verification and minimization automatic).

The first step, definition of microorders and error set, must
necessarily be performed by hand. Subsequently, cardinalities
are computed for all instructions, and an error set is associated
with each instruction. Error sets of two different instructions
may have a nonvoid intersection, but they cannot completely
overlap, since (at least) instruction decoding errors will be
different. Thus it will not be possible to exclude any in-
struction from the set of test sequences; on the other hand,
whenever a subset of the error set has already been covered by
other test sequences, it becomes unnecessary to introduce the
related test actions in new test sequences. Actually, this crite-
rion has been widely adopted in hardwired-logic testing; here,
we simply extend it in the context of programmable logic.

The instruction set can be further reordered on the basis of
“functional families” (e.g., Load, Add). In each of these
families, minimum cardinality is identified; an automatic con-
gruence validation is now possible regarding evaluation of
cardinalities, through a comparative examination of the vari-
ous families. In each family, instructions are ordered follow-
ing increasing cardinalities; obviously, this does not imply that
in any given family (or, in fact, in the whole instruction set)
cardinalities corresponding to all integers between minimum
and maximum values will be present.

Having completed this “setup,” the basic functions of the
“fetch” phase (excluding instruction decode) are tested by
using O-cardinality instruction(s). When variable-length in-
structions, and thence “fetch” phases, are present, the corre-
sponding “fetch” sequences will be tested once by means of
the instruction of corresponding length with simplest func-
tionality.

Afterwards, considering the set i;,, ..., i, of cardinality
values, and starting with the minimum value i;, instructions
are tested following criteria outlined in the previous section.
- For each instruction we look for the fastest test sequences
allowing us to cover all (or the maximum number) of the
associated error set, or, better, all such errors not already
covered by previous test sequences. Whenever more than one
such sequence is identified, preference is given to the one
better satisfying the criteria given in Section 3. Inside a given
set {i.}, a practical rule may be to start by defining, whenever
possible, test sequences for instruction belonging to families
with simplest functionality—following a “‘start-small” philos-
ophy, as advocated by most researchers in the field.

Obviously, our approach allows to “reduce” the length and
complexity of test sequences set, not to definitely minimize
them, since the possibility of reduction of test sequences for
any I, strongly depends on choices performed previously for
all other I, (/ <k) already considered. Examples of in-

struction ordering and error set definition and the outline of
a testing procedure (related to Z80) are given in the Appen-
dix.

5. CONCLUDING REMARKS

An approach in terms of microprogramming to functional
modeling of microprocessors makes it possible to guide testing
procedures so as to satisfy some necessary conditions for error
coverage. Error classes are defined as corresponding to micro-
orders, i.e., again in functional terms; the complete error set,
on the other hand, derives from physical fault assumptions.
Model and error classes can be built from user-available infor-
mation; coverage is considered with respect to error classes.

The approach is completely general, and it can be used also
in the case of intrinsically microprogrammed bit-sliced sys-
tems. It seems possible to adopt it also for a wider class of
programmable microdevices, such as intelligent interfaces.

Though the functional criteria used are (at least partially)
present in previous literature, use of a formal methodology
such as microprogramming and of ordering and classification
methods related to it makes it possible to formulate semi-
automatic systems for test procedure generation.

Test procedures for one microprocessor are being com-
pleted; their use will allow an experimental evaluation of the
approach.

REFERENCES

1. Thatte, S. M., and J. A. Abraham. “Test generation for general micro-
processors architectures.” Ninth IEEE Fault Tolerant Computing Sym-
posium, 1979, pp. 203-210.

Thatte, S. M., and J. A. Abraham. “A methodology for functional ievei

testing of microprocessors.” Eighth IEEE Fault Tolerant Computing

Symposium, Toulouse, 1978.

3. Courtois, B. “On line oriented functional testing of control sections of
integrated CPUs.” Proceedings of Euromicro 81, Paris, September 1981.
Amsterdam: North-Holland, pp. 221-231.

4. Sridhar, T., and J. P. Hayes. “A functional approach to testing bit-sliced
microprocessors.” IEEE Transactions on Computers, C-30 (1981), pp.
563-571.

[

APPENDIX

Classification of the Z80 complete instructions set, following
the ordering on increasing cardinality-increasing func-
tionality, is given in Table I. Let us consider a simple example
in order to outline the definition and choice of test sequences.
Consider ADD A,rn (k = 2). Criteria introduced in Sections
3 and 4 make it possible to state that when testing it, all
Cardinality-1 instructions will have been tested (at least in a
preliminary way), and so will branch and transfer instructions
of Cardinality 2. In particular, therefore, errors related to
microorders—*‘access register A (read/write)” and ‘“access
data buffer”—will have been covered; only errors related to
“ADD command to ALU” and “access carry bit (write)”
must be covered, besides instruction decoding. Thus, test se-
quence will be as follows:
LD A,m Values of m, n are chosen (and the sequence
is repeated)

124 National Computer Conference, 1982

1 Classific.
ADD A,n ogly with reference to the ADD and Carry Class of Card, | CRSSific. Instructions
microorders error set
LD qq,HL Branch CALL ccann / dR c.e / IR NC.e / JR Z,e
. . JR NZ,e / RST
LD (HL),A Add microorder is made observable e/ RTp
RRC A T
LD r,(1X+d) / LD r,(IY+d) / LD (1x+d) r
LD (HL),A Carry is made observable H Transfer LD (I¥+d),r / (Ix+d),n / LD {IY+d),n
R
o . . . ADC HL,ss / ADC A,s / ADD A,(HL)
If now ADD A, r (still with Cardinality 2) is considered, only E BIT b, (HL) / NEG / RES b, (IX+d)
. . . ; RES b,(I¥+d) / RL (IX+d) / RLC (IX+d)
the instruction decode will be tested, since accesses to r, A, E RR (IX+d} / RRC (IX+d) / RL (IY+d)
ip. RI Iv+d
and ALU have already been covered. Manip R f\? ,)sficRﬁLfiZ:‘})sg'fcbf}}'ﬁ%))
i ; : SET b, (I¥+d) / SLA (IX+d) / SLA (I¥+d
The same holds at Carv.:hnahty.3 for instructions such as SRA (Pxed) / SRA-(1Y+d) 4 SRL (1X+d)
ADD A, (HL). Actually, instruction decode testing involves SRL (I¥+d)
a full sequence related to basic functionalities, but it need not
. . Branch DINZ e
be repeated for access or operators validation; all func-
tionalities deriving not from instruction decode and micro- Lo HL,?.,.% /W ‘(’d’§""’ /LD %X,gnn)
: : : 0 Transfer LD I¥,(nn) / LD (nn),HL / LD (nn},dd
program sequencing, but from correct operator working, will D (nn)oIX 7 LD (nn)oI¥ 7 EX (SP)HL
also be excluded from the sequence (in our example, the test v EX (SP),1X 7 EX (SP), 1Y
i R
on carry Settmg). ADD A, (IX+d) / ADD A,{IV+d)
Manip. BIT b, (IX+d) / BIT b,{IY+d) / DEC (HL)
INC (HL) / RLD / RRD
Classific. FIVE Manip. DEC (IX+d) / DEC (IY+d) / INC (IX+d)
Class of Card. of instruc. Instructions INC (IY+d)
Branch 3P nn / RET / RETI / RETN / JP(HL) Transfer EXX / INI / IND / OUTI / OUTD
JP(IX) / JP(1Y) SIX
Manip. CPD/ CPI
0 LD r,r' / LDr,n/ LDA,I/ LDA,r
LD I,A / LD R,A / LD dd,nn / LD IX,nn
N Transfer LD IY,nn / LD SP,HL / LD SP, IX SEVEN Transfer INIR / INDR / OUTIR / OUTDR
LD SP,IY / IN A,{n) / IN r.{C}
E OUT (n),A / OUT (C),r
TABLE Ib—Instructions ordered by their cardinality
CP s / CPL / DAA / RES b,r / RLA / RRA
Manip. RLCA / RRCA/RLr /RRYr /RLCT
RRC v / SCF / SET b,r / SLA v / SRA v
SRL r
Other HALT / DI /EI / IMOQ/ IM1/ IM2
Branch CALL nn / JP cc,nn / JR e / RET cc
LD ry(HL) / LD (HL),r / LD (HL),n
LD A,(BC) / LD A,(DE) / LD A,(nn)
LD (BC),A / LD (DE),A / LD (nn),A
T Transfer PUSH qq / PUSH IX / PUSH 1Y
POP qq / POP IX/ POP IY Classific.
W EX DE,HL / EX AF,AF' Class of Card. of instruc. Instructions
0
ADD A,n / ADD A,r / ADD HL,ss NINE Transfer LDI / LDD
ADD IX,pp / D IY,rr / AND s / BIT b,r
CCF / DEC 1X / DEC IY / DEC ss / DEC r
Manip. INC v / OR s / RES b,(HL) / RL (HL) TEN Transfer LDIR / LDDR
RR (HL) / RLC (HL) / RRC (HL)
SET b, (HL) / SLA (HL) / SRA (HL)
SRL (HL) / SUB s / XOR s (*) NOP instruction -+ cardinality zero

TABLE Ia—Instructions ordered by their cardinality

TABLE Ic—Instructions ordered by their cardinality

A methodology for the development of
special-purpose function architectures

by RAYMOND A. LIUZZI*
Rome Air Development Center
Griffiss Air Force Base, New York
and

P. BRUCE BERRA

Syracuse University
Syracuse, New York

ABSTRACT

The research described in this paper concerns a generalized methodology for the
development of special-purpose function architectures (SPFA). The development
methodology can be used to introduce the concept of an SPFA approach to an
organization.

The methodology provides an organized set of processes that can be followed to
tailor the development of SPFAs to specific applications. This methodology consists
of processes for identification, creation, testing, evaluation, and substitution of
SPFAs. It permits a user to carefully select sets of database management functions
as candidates to be moved from software into hardware, develop one or more
SPFAs that perform this function, and evaluate the consequences of having the
function performed as a new hardware architecture. A set of tools/components with
which to carry out this methodology are included in the environment of a proposed
database machine architecture development facility.

*This research was performed while the author was pursuing the Ph.D. degree at Syracuse University.

125

Development of Special-Purpose Function Architectures 127

INTRODUCTION

Interest in computer architecture research, as applied to data-
base management, has recently increased because of the ad-
vancing state of the art in inexpensive, fast new hardware
components. Hardware technology is advancing primarily in
three areas: central processing units (CPU), semiconductor
random-access memory (RAM), and all-electronic bulk
memories. The cost-to-performance ratio of CPUs will de-
cline rapidly over the next 10 years. Low-cost CPUs with the
performance capabilities of today’s medium-priced mini-
computers will be available for hundreds of dollars in the
1980s. New technologies in memories using bubbles or
charge-coupled devices will rival existing fixed-head discs.

These trends have made it feasible to examine new hard-
ware architectures that can perform database management
system (DBMS) functions currently performed in software.
How to determine which functions to implement in hardware
and how to choose their optimal architecture, for a given user
application, becomes a very difficult task. In order to help
ease this transition, database machines have been introduced
as new hardware architectures designed to perform DBMS
functions.’

The notion of a database machine (DBM) has evolved pri-
marily because of the need to accomplish database manage-
ment tasks more efficiently. The evolution to the current class
of DBMs can be traced by viewing Figure 1. DBMSs were
originally developed to execute on large sequential systems
and had to rely on the services of a generalized host execution
system to perform many of their tasks. Examples of this class
of system include the IDS system on an H6000, IMS on an
IBM 360/370, and System 2000 on several large machines.”
However, much of the processing efficiency of these systems
is compromised by the inefficiency of I/O operations for pro-
cessing data. The operating systems on these large machines
must multitask a number of activities.

PERFORMANCE
AND FUNCTION
\ARSE S€0 SYSTEM 2000-UNIVAC
UENTIAL) 1100-COC 5000
DATA BASE MANAGEMENT SYSTEMS . COMPUTERS Wi
1056000
BACK-END DBMS COMPUTER
BACK-END DATA BASE SEQUENTIAL MADMAR-PDP 11/45
MANAGEMENT SYSTEMS MMICOMPUTERS) XOMS-D.5. META4
DATA COMPUTER

CASSM
SPECIALIZED DATA BASE | CONTENT ADDRESSING | RAP
MACHWES AND CONCURRENCY ;‘FT“‘"?&“ COMPUTER (D6C)

|——' “ MERGE PROCESSOR
SPECALIZED
|‘"‘1“”“zl' - {seemy | arcTEcTUREs ~ {um DICTIONARY PROCESSOR

SPECIAL PURPOSE FURCTION ARCHITECTURES

Figure 1—Database machine evolution

As minicomputer development progressed, it became ap-
parent that many database management tasks could be ac-
complished more efficiently by removing them from the large
sequential machine to a machine dedicated entirely to data-
base management. Such a machine is called a back-end ma-
chine. Canady et al. outlined an architecture for performing
various DBMS tasks on a back-end Digital Scientific Meta-4
Computer.” Numerous advantages were cited, including secu-
rity, reliability, and efficiency.

Further development in semiconductor technologies has
produced the microprocessor and the microcomputer, along
with the notion that it is economically feasible to develop
computers that are primarily designed for database manage-
ment. Previous research efforts have substantiated the fact
that computer architectures that provide concurrency and
content-addressing constructs can provide order-of-magni-
tude increases in the performance of certain database man-
agement functions.”?® As a result, a new class of machines
has emerged, with various unique architectures designed to
provide these constructs. Liuzzi and Berra'” have defined a set
of characteristics for a range of these DBMs that consists of
the following:

1. An overall architecture composed of one or more
special-purpose function architectures (SPFAs)

2. An architecture based on parallelism and content
addressing

3. A set of compatible memory units for the storing and
efficient retrieval of data

4. An architecture that is a back-end machine.

Several types of machines have been reported in the litera-
ture with these characteristics; some are given below.

The logic per track architecture of the University of Flori-
da’s Context Addressed Segment Sequential Memory Or-
ganization (CASSM) System,® the multicell CASSM system,”
and the University of Toronto’s Relational Associative Pro-
cessor (RAP) system>*?® attain concurrency by moving logic
from the central processing unit to the individual disk heads
that read data from each track on a fixed-head disk. The RAP
system has recently been extended to include a semiconductor
charge-coupled device (CCD), random-access memory
(RAM), or bubble memory.

The Ohio State Data Base Computer (DBC) proposed by
Hsiao'"® consists of a unique architecture that interconnects
several specialized processors aimed at supporting secure
large-scale databases. Each database is stored on content-
addressable moving-head disk devices, and emerging tech-
nologies such as magnetic bubbles and CCDs have been cho-
sen for part of the system.

The INFOPLEX system proposed by Madnick'® takes

128 National Computer Conference, 1982

advantage of new memory and processor technologies to
organize a smart memory hierarchy to handle the storing and
retrieval of information. Its information management func-
tions are decomposed into a functional hierarchy imple-
mented by a hierarchy of microprocessors.

The DIRECT system proposed by DeWitt® is a multi-
processor organization for supporting relational DBMSs.
DIRECT has a multiple-instruction, multiple-data stream ar-
chitecture. It can simultaneously support both interquery and
intraquery concurrency.

Associative processors have been experimentally examined
for database management applications. Early studies by
DeFiore, Stillman, and Berra®*® using the Goodyear Associa-
tive Memory and later the STARAN Associative Array Pro-
cessor established that searching a database was significantly
improved by associative techniques.

The RELACS system proposed by Oliver” is a DBMS
using associative processors to implement the relational data
model. RELACS is capable of supporting many functions of
a database management system including retrieve, updating,
deletion, modification, and addition.

In addition to this class of DBMs, a set of specialized archi-
tectures have emerged. As Figure 1 indicates, these special-
ized architectures can form portions of a DBM. They are
primarily designed to optimize a single database management
function and are called special-purpose functional architec-
tures. Several different types of database functions have been
designed as SPFAs.

Roberts™ has proposed a specialized parallel computer ar-
chitecture for high-speed searching of large textual files. The
database to be searched is partitioned among independent
high-speed serial-access memories that are searched in paral-
lel by dedicated microprocessors connected to a common
communication bus.

Hollaar" has proposed a specialized merge processor that
combines data from sorted input lists into a sorted output file.
This processor is designed with architectural constructs that
form the merge operation. Stellhorn”” proposed an inverted
file processor that uses a specialized architecture to access
files of document identifiers and perform the processing asso-
ciated with a Boolean search request. Hollaar and Stellhorn™
propose a specialized architecture for textual information re-
trieval. The basic architecture of the system consists of several
paraliel search modules connected to a disk via a parallel/
serial interface. This architecture is especially suited for list
merging, updating, and sorting operations. Hollaar'” has also
extended this work to include the design of a list-merging
network.

Mukhopadhyay* has proposed specialized hardware algo-
rithms for nonnumeric computation. These algorithms can be
implemented with various LSI technologies for high-speed
pattern-matching needs.

Capraro® has proposed to integrate a data dictionary as an
SPFA using associative processors. Singhania and Berra have
designed a special-purpose function architecture using asso-
ciative memories for pipelining a directory to a very large
database. The results of this study indicated that the pipeline
system provides faster retrieval than sequential inverted list
systems, especially in the case of multiple-key retrievals. Kar-
lowsky and Leilich'* from the Technical University of Braun-

schweig have proposed an SPFA called a search processor to
search data stored on a mass memory without using the CPU
and I/O of a host computer.

The Content Addressable File Store (CAFS) is a special-
ized hardware architecture that performs parallel processing
techniques for implementing multifactor selection across
either single files or the join of multiple files.”® This SPFA
performs concurrent execution of powerful selection and re-
trieval functions on multiple data streams arising from the
simultaneous reading of many disk channels.

The introduction of these SPFAs has provided users with a
new approach to gaining specialized improvements in their
database applications. Each of the SPFAs described can re-
place a DBMS function or functions currently being per-
formed in software on a sequential machine. This notion that
software functions can be either improved or replaced by
hardware has been characterized as the SPFA approach. This
paper examines the effect the SPFA approach can have on an
organization, describes the need for an organized meth-
odology to introduce the SPFA approach to an organization,
and presents a generalized methodology that can be used to
help in the development of SPFAs.

NEED FOR METHODOLOGY

The emergence of various types of SPFAs has prompted the
need for an organized methodology that can be used to devel-
op SPFAs for specific user applications. Typically, an exam-
ination of a DBMS shows that it is composed of several types
of functions. First, a set of basic functions for each DBMS is
used to manipulate data into a form acceptable to the applica-
tion program. Examples of these functions are search, update,
and modify. A second set of functions maintain data in a data
dictionary or a database. The functions permit a logical ex-
pression of the database and maintain a physical access to the
stored data. Next, a set of functions provide user interface
capabilities via query generation modules and request gener-
ation modules. These functions provide various levels of natu-
ral user interface to a DBMS. Finally, a set of application
modules is used to support functions that provide various
editing capabilities to a DBMS user. Each of these functions
are typically performed in software and are candidates to be
developed as SPFAs.

If an organization wishes to seek ways to upgrade a current
DBMS capability, it might want to introduce one or more of
these functions as SPFAs in the form of hardware assist mod-
ules into its current environment. However, in order to ex-
ploit this SPFA approach fully, several questions must be
examined:

1. What are the important factors to consider when choos-
ing a function that can be developed as an SPFA?

2. What are the various algorithmic approaches and archi-
tecture considerations to implement the function in
hardware?

3. How will new hardware technology affect the function’s
implementation in terms of performance, cost, re-
liability, and other relevant matters?

Development of Special-Purpose Function Architectures 129

For each database management function that is a candidate
for a move to hardware, several architectural options may be
available. To evaluate each option, designers may have to
build the actual hardware. If more than one architecture is
being considered, several options may have to be built. Once
these hardware options are built, procedures to test and eval-
uate them need to be established. However, if several SPFA
options exist for a given function, the actual hardware con-
struction may not always be feasible because of the following
three problems:

1. The expense of actually developing a number of hard-
ware options -

2. Time constraints

3. Inability to alter each SPFA easily after it has been built

Finally, several factors must be considered in choosing the
actual hardware technology used to implement a SPFA. The
technology chosen by a user depends on specific user applica-
tion requirements. For instance, a comparison of competitive
technologies that may be used for an implementation may
indicate that one is faster than the other but is less reliable.
Another factor may indicate that one may improve per-
formance, but at a higher cost.

Thus, a generalized methodology can be very useful in pro-
viding an organized mechanism to introduce SPFAs for im-
proving overall DBMS capability. The methodology must
consider choice of DBMS functions, architecture options for
the function, and implementation strategies for the function
for each specific user application. A methodology has been
developed’® and can be used in conjunction with a database
machine architecture development (DMAD) facility. This
methodology and a brief description of the DMAD facility are
now described.

METHODOLOGY TO DEVELOP SPFAs

A methodology to develop SPFAs requires the following set
of processes:

Select candidate function.
SPFA create.

SPFA test.

SPFA evaluate.

SPFA substitute.

SAlE o e

The select-candidate-function process helps determine
DBMS software functions that are candidates for replacement
as hardware architecture SPFAs.

The create process transforms a description of each SPFA
from a set of architectural considerations to a set of language
statements. This set represents a functional description of an
architecture that performs the DBMS function.

The test process functionally verifies that the SPFA per-
forms the desired DBMS function. This process permits the
DBM architect to examine the architectural constructs of the
SPFA to insure that it meets its design goals. o

' The evaluate process enables the DBM architect to evaluate
competing SPFAs. An architecture evaluation is conducted to

[i 1]
ENVIRONMENT ENVIRONMENT ENVIRONMENT ENVIRONMENT ENVIRONMENT
INITIALIZATION INITIALIZATION INITIALIZATION INITIALIZATION INTIALIZATION

SELECT CANDIDATE CREATE TEST EVALUATE SUBSTITUTION
FUNCTION
1 1 | l 1 1
SELECT
CANBIDATE CREATE TEST EVALUATE SUBSTITUTE
FUNCTION

i ! i

Figure 2—Development process flow model

generate performance timings of the SPFAs. These timings
are based on using an assumed set of hardware characteristics
to perform operations required by each SPFA.

Finally, the substitute process is composed of a set of pro-
cedures to enable the DBM architect to selectively integrate
an SPFA within a DBMS capability. The substitute process
helps the DBM architect assess the effect on the system of
having a DBMS software function replaced by hardware.

The complete development is illustrated by a process flow
model in Figure 2. The flow of this model indicates that the
environment is initialized for each process request. This ini-
tialization configures the tools needed to complete a process.
Several feedback loops are provided in this model to allow
refinements during the development of the SPFA. These
loops permit reuse of the complete set of tools for all pro-
cesses. For instance, after an evaluation process is completed,
the DBM architect may choose to alter an SPFA by modifying
a portion of the architecture description. This may result in
the recreation of the SPFA. Similarly, a single process can be
repeated interactively so that an exhaustive series of tests or
evaluations can be performed.

In addition, the final process, substitute, permits the DBM
architect to assess the effect of the newly developed SPFA on
the DBMS system. This process is used to integrate the SPFA
into the DBMS and to help determine potential problems.
The data collected following this process can help determine
if the function is a logical candidate to be moved to hardware
for a specific application.

The use of the process flow model also permits a user to
tailor an SPFA development to a specific application. This
helps insure that the developed SPFA meets the unique re-
quirements of the application.

ARCHITECTURE/INTERFACES OF THE DMAD
FACILITY

A database machine architecture development facility has
been proposed'® as a specialized environment that hosts the
tools and components needed to perform each of the pro-
cesses in the generalized methodology. The DMAD facility
consists of the following components, illustrated in Figure 3:

1. a service host machine (SHM) that is responsible for
monitoring requests in the DMAD facility, staging input
for the database function execution machine (DBFEM),

130 National Computer Conference, 1982

nevwork |,1” MACHINE
MACHINES FACRATY STORAGE
E RESOURCES i
SERVICE MASTER g:;:
PROCESS CONFIGURATION
HosT o controL e FUNCTION
REQUEST MACHINE MACHINE EXECUTION
(SHM) - (MCCM) MACHINE
(DBFEM)
LIBRARIES
I LIBRARY DATA BASE MACHINE
CONFIGURATION OF f—1 ARCHITCTURE CONFIGURATION
IDENTIFICATION f MACHINES ARRAY (DMCA)
MACHINE
(cim) TRING | REALIZATION TIMING
SSIGNMENTS| CONTROL ARRAY (RTCA)

Figure 3—Aurchitectural/interfaces of the DMAD facility

and providing a programming environment to described
SPFAs. The SHM interfaces to network machines that
may help in the execution of a SPFA.

2. adatabase function execution machine (DBFEM) that is
responsible for hosting the execution of SPFAs as ma-
chines in the facility. This machine serves as a back end
to the SHM and is capable of emulating a variety of
computer architectures.

3. a master configuration control machine (MCCM) that
interfaces the SHM and DBFEM. This machine acts as
the configuration manager for process requests to the
DMAD facility. In this capacity the machine controls
resources needed to support execution of an SPFA ma-
chine on the DBFEM.

4. a configuration identification machine (CIM) that inter-
faces to the SHM and is used to identify configuration
requirements needed to execute SPFA machines. Spe-
cialized libraries are maintained and can be loaded on
the CIM to help identify these requirements.

ILLUSTRATION OF THE SPFA APPROACH

An example of introducing the SPFA approach to an organi-
zation is shown in Figure 4. Assume that an organization
requires improving performance and reliability in merging
lists for its present applications. This MERGE function is
currently being performed in software, as part of a DBMS, on
a sequential computer. However, several competitive new
merge hardware architectures can also perform this func-
tion."?” This organization needs to choose the merge hard-
ware architecture that can optimize the overall performance
and reliability of the MERGE function for this application.

Within a DMAD facility the merge hardware architectures
are created as SPFA machines to perform the DBMS
MERGE function. For instance, illustrated in Figure 4 is a
MERGE SPFA machine that is created from among several
architecture options and is introduced to the DMAD facility.
The SPFA is described in hardware description language. This

—— =N

r,%_

~
mm;nmn N
cmcun \
0 HARDWARE ™ 1
COMPONENT.

'\D

LANGUAGE DBMS FUNCTION -

PROCESS CREATE SPFA
DESCRIPTION < SPFA NAME- MERGE
MERGE .

THIRD GENERATION SEQUENTIAL COMPUTER

| - |
\ A ' .
| APU APU |
DBMS SYSTEM - soFrwaRe | / |
MODILE 1 < DBMS 1 !
; MODULES

MODULE ! HPROC :

. |
! SOFTWARE '
MERGE (:th,un) <= apuichion | “MERGE" SPFA MACHINE !
PROGRAM | !
| 1
I |

DATA BASE MACHINE ARCHITECTURE
DEVELOPMENT (DMAB) FACIITY

Figure 4—Developing a special-purpose function architecture

description is compiled and debugged to produce an exe-
cutable version. When this version is complete, it is con-
figured in the DMAD facility to produce a MERGE SPFA
machine. During execution, complete control of the SPFA
machine is maintained by a user with access to the facility.
This permits the examination of all states of execution. Test-
ing in this environment is done with a set of tools to verify that
the SPFA performs its intended DBMS function.

After testing, an evaluation of the SPFA is performed. This
evaluation consists of accumulating the time needed by the
SPFA machine for a sequence of its operations. The timing of
these operations is chosen by examining possible hardware

_implementations and associated timings.

For instance, in this example, since both performance and
reliability improvements are sought, a user can examine hard-
ware technologies that have high reliability characteristics as
candidates for the MERGE SPFA machine’s operations.

In order to assess the effect of varying these choices, one or
more realization assumptions can be described. Each choice
becomes a separate realization of the SPFA and is used to
generate separate sets of data on performance and reliability.

Once performance and reliability data are established for a
specific SPFA description, the procedure described above can
be repeated by varying some architectural features of the
original SPFA description or developing one of the com-
petitive MERGE SPFAs. This process can continue for a
number of architectural options that may be available for this
function.

Once a MERGE SPFA is chosen, the next development

‘stage can be its substitution within a current DBMS. This

process can be performed as illustrated in Figure 5. First, a
computer system that can support a set of database manage-
ment functions is referred to as a DBMS machine. Next,
assume that this DBMS machine is emulated to execute in the
DMAD facility. A DBMS software application program
(SAP) is chosen to execute on the DBMS machine and call the
services of the DBMS functions supported. The SAP typically
calls a sequence of DBMS functions such as FIND, ORDER,
MERGE, CLOSE, etc., as illustrated in Figure 5. Whenever
the MERGE function is called, the option chosen for the

Development of Special-Purpose Function Architectures 131

MERGE SPFA machine is executed instead of the original
MERGE function. The actual interfaces and the effect of
substituting the MERGE SPFA can now be examined in terms
of pertinent hardware/software tradeoff issues.

A positive assessment of the SPFA’s integration may lead
the organization to choose to actually build a hardware proto-
type Merge SPFA.

SPFA DEVELOPMENT METHODOLOGY PROCESS
FUNCTIONS

Described in this section are a set of procedures for the gener-
alized methodology to help develop SPFAs. This meth-
odology can be divided into the following phases:

1. identification of candidate DBMS functions
2. creation of SPFA’s
3. execution of an SPFA machine

Identification of Candidate DBMS Functions

The identification of candidate DBMS functions to be
moved from software to hardware is made by examining the
typical requirements of a range of applications. Pertinent fac-
tors include current usage of the function, the ability to clearly
define interfaces to the function, and the potential of the
function for improving system performance and cost. This
process requires examination of several functions that are
portions of a current DBMS. :

A DBMS machine identification procedure is used to con-
figure emulations of machines that support current DBMSs.
Each machine is configured with a DBMS, required system
support software, and sample application programs. A set of
DBMS functions within the DBMS are then identified as can-
didates for being replaced by hardware. These functions are
currently performed by sets of software modules that are exe-
cuted when the function is called.

A variety of criteria may be used in selecting candidate
functions. These include the frequency of a function’s use

{Eoﬁwﬁz_urm_mﬁ aniaiu—s /
| FIND : /
: V4 APU > APU
I A
| ORDER 7! \ /
: /7
|
| MERGE I meroc
|]
N ~ \. “MERGE" SPFA
L} '
]
Lo o ——— __ |

DBMS MACHIRE SPFA MACHINE
DATA BASE FUNCTION EXECUTION MACHINE

Figure 5—Substitution of a special-purpose function architecture

(i.e., number of calls), the amount of time taken to execute
the function, the complexity of the function in relation to
other functions within the DBMS, and the potential for im-
provement in DBMS system quality if the function is moved
from software to hardware.

Statistics on use of a specific function can be obtained by
establishing break points at the entrance to the software mod-
ule performing the function during execution. The rate of use
can be determined from the number of times the break point
is encountered. Another procedure is to use a performance
monitoring tool to identify frequency of calls for a DBMS
function. Such a capability may also be provided in conjunc-
tion with the description of each emulated DBMS machine by
establishing a count for a specific instruction execution. For
instance, the SMITE hardware description language provides
a performance capability® that permits a software monitor to
accumulate the number of times an instruction is encountered
during execution.

Once data on use are collected, the actual execution path of
frequently called functions can be examined. This path is
examined by actually stepping the execution of the function,
instruction by instruction. This permits all entrances and exits
to and from the function to be properly identified and docu-
mented. This procedure helps to identify the complexity of
this function in relation to other functions and to identify all
the interfaces required to and from the function within the
DBMS.

Next, quality considerations may be examined. Such an
analysis is based on assessing the overall improvement in the
quality of the system that may be obtained by moving the
function to hardware. For instance, will the movement of
this function to hardware increase DBMS system performance
but at the same time decrease the system’s portability or
reliability?

Questions such as these may be examined by establishing
metrics for specific quality factors concerning the DBMS func-
tion. These metrics can be computed for such factors as re-
liability, maintainability, and flexibility.* If the movement of
this function to an SPFA can improve the quality of the DBMS
in relation to a given application, then it may become a candi-
date function.

In summary, the choice of specific DBMS functions to be
moved from software into hardware may be based on criteria
such as use, performance and complexity, and quality im-
provements gained within the system. Once one or more can-
didates are selected, competitive SPFAs that can perform the
desired DBMS functions must be examined. ’

Creation of SPFAs

A create process is selected to describe an SPFA that
performs a candidate DBMS function. The objective of the
create process is to translate a conceptual architectural de-
scription of an SPFA into an executable SPFA machine. This
process consists of two procedures:

1. SPFA description development
2. SPFA introduction

132 National Computer Conference, 1982

The SPFA description development procedure requires the
specification of a set of architectural constructs that, when
executed as a machine, perform a DBMS function. These
constructs can be specified in a hardware description language
that defines a machine representation of an SPFA.

A specialized programming environment that exists within
the DMAD facility is used to describe each SPFA in a hard-
ware description language (HDL). This includes identifying
the machine representation of the SPFA in terms of registers,
interconnections, flow of information, and specific oper-
ations. Both control and concurrency dependencies among
SPFA operations are described. As part of a description, each
SPFA is created in such a way as to be fully compatible with
the same interfaces as the software function it will replace.
Once completed, a compilation procedure translates this
SPFA description into a source and subsequently into an ob-
ject file. The source file is debugged within the programming
environment to eliminate source programming errors. If er-
rors are identified, the SPFA description is modified and re-
compiled. This procedure continues until a correct SPFA is
described. The SPFA compilation also produces an object file
that consists of a set of microinstructions that are compatible
with the DBFEM. These microinstructions are used to trans-
form the facility into an SPFA machine using an SPFA intro-
duction procedure.

This procedure identifies each SPFA to the DMAD facility.
SPFAs introduced to the facility are entered into a database
machine architecture configuration array (DMCA). This ar-
ray is used to identify configuration requirements needed for
executing each SPFA as a machine in the facility.

Execution of an SPFA Machine

An SPFA machine is ready for execution once all config-
uration resources are made available. These resources include
access to the database function execution machine and any
other specialized resource support. When an SPFA machine
begins execution, the processes of testing, evaluation, and/or
substitution can be performed.

The objective of the testing process is to determine whether
the SPFA machine accurately performs the desired DBMS
function. The testing process consists of execution of the
SPFA machine by means of test cases, verification of the
proper sequence of SPFA machine states, and debugging the
SPFA machine.

In order to begin testing, a set of test cases are specified.
They consist of specific input to the SPFA machine to insure
that it executes properly.

The SPFA machine executes by moving from state to state.
A state can be specified at the SPFA source description level
or at the microinstruction level. The microinstruction level
permits identification of states at a much lower level than the
source level. The level may be needed for detailed verification
or debugging the SPFA machine. Types of testing capability
include tuning, verification, probe, and visual examination of
the machine.

One verification technique that can be used is the exam-
ination of the states of the machine at given instants of time.
This examination can be conducted by establishing control

points in the SPFA description. When these control points are
reached during execution of the SPFA machine, a DBM archi-
tect performs an extensive verification of the state of the
SPFA machine. For instance, registers, information re-
sources, and control indicators can be examined. If they con-
form to preselected values, the state verification of the SPFA
machine is established. However, if an error or inconsistency
is found at one of these control points, the SPFA machine may
not be verified, and debugging procedures are necessary.

A specific procedure that can be used to formally verify
states of a SPFA has been proposed by Crocker.” This pro-
cedure examines the execution of an SPFA machine and re-
fers to a state change as a state delta. These state deltas are
then examined in relation to predefined lists. If a state delta
results in the formation of an improper list, the execution of
the SPFA machine during the delta is questioned for possible
error.

The debugging procedure performed in the facility for an
SPFA machine consists of the identification of an error and
the isolation of its causes by the DBM architect, who isolates
the error by verifying the SPFA machine states until the error
occurs. This isolation can be performed at the source descrip-
tion level or at the microinstruction level, if necessary, to
insure that the error is found.

During debugging the DBM architect views the actual rep-
resentations of the SPFA machine. This permits all name
variables and conditions in the SPFA description to be in-
spected. During the debugging exercise the DBM architect
has complete control of the SPFA machine and can step it
through various execution states.

After the SPFA machine has been tested, the evaluation
process may be requested. The objective of this process is to
evaluate SPFA machines by using hardware operations identi-
fication and SPFA performance procedures.

The hardware operations identification procedure exam-
ines each SPFA description to identify specific hardware oper-
ations. A realization assumption (RA) defines a set of spe-
cialized hardware implementation characteristics for these
operations, and these characteristics are used to generate tim-
ings for the specific hardware operations identified for an
SPFA. The times are entered into a realization timing control
array (RTCA) for each realization assumption. Each SPFA
machine is then executed, and the results of separate exe-
cutions are collected and analyzed.

Once an SPFA has been evaluated, the final execution pro-
cess is substitution. The objective of this process is to investi-
gate the effects of substituting an SPFA for a candidate soft-
ware DBMS function. The substitution process consists of
DBMS/SPFA machine identification, selective integration,
and evaluation.

The DBMS/SPFA machine identification procedure con-
sists of identifying the configuration requirements used to
transform the DMAD facility into a DBMS/SPFA machine. A
set of requests are executed on the DBMS/SPFA machine that
call the supported DBMS functions. These functions are per-
formed by the appropriate sets of software modules. How-
ever, when a request is made for the specific DBMS function
supported by the SPFA, the SPFA machine is automatically
called to perform the DBMS function.

A DBMS/SPFA machine selective integration function pro-

Development of Special-Purpose Function Architectures 133

cedure performs the actual substitution of the SPFA machine.
A virtual database machine monitor (VDMM) can be used as
the tool for this procedure. The VDMM is designed as a
virtual machine monitor that supports control of both a
DBMS machine and an SPFA machine on a micro-
programmable execution machine. The VDMM permits the
switching of control between a DBMS machine and an SPFA
machine. Each time an SPFA machine is called, it completes
the DBMS function, then returns control to the DBMS
machine.

A DBMS/SPFA machine evaluation procedure enables a
user to assess the impact of integrating an SPFA machine and
a DBMS machine. This procedure includes executing the
same set of requests to supported DBMS functions with and
without the presence of the SPFA machine. This procedure is
used to identify any further interface problems that may result
from the presence of the SPFA machine, helps assess the
system feasibility of having the function performed as an
SPFA, and enables performance comparisons to be made.

CONCLUSIONS AND FUTURE RESEARCH

The effect of continuing advancements in hardware tech-
nology is promoting the feasibility of having SPFAs perform
many database management functions.

This notion, referred to as the SPFA approach, can serve as
a vehicle for increasing the overall DBMS capability in an
organization. A DMAD facility, used in conjunction with the
methodology defined in this paper, can serve as a specialized
model to help introduce SPFAs to an organization via the
SPFA approach. This methodology is organized and pre-
sented as a set of specific processes. Each of these processes
is designed to permit a user to tailor the development of an
SPFA to a specific application.

A set of tools/components to perform specific procedures
for this methodology are also included in the proposed envi-
ronment of the DMAD facility.

The extensive use of this methodology can also be directed
.toward examining critical tradeoff issues for defining a proper
hardware/software mix in an overall system for a specific ap-
plication. The methodology, used in this fashion, can serve as
a vehicle to help choose which functions should migrate from
software to hardware from an overall system architecture
view.

In order to use the methodology in system optimization,
further research is needed to expand use of specific optimi-
zation methods that can be used to formulate a direct re-
lationship between SPFAs and sets of user requirements. In
order to assume this role, modeling techniques may be added
as procedures to follow each of the development processes of
the generalized methodology. These procedures include sev-
eral evaluation techniques, among them mathematical mod-
eling and simulation. Some specific techniques that can be
used in a hardware/software system tradeoff have been pro-
posed by Vemuri.*! Further work is needed to expand the
detailed use of these techniques.

REFERENCES

1.

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

Banerjee, F., D. Hsiao, and K. Kannar. “DBC—A Database Computer
for Very Large Databases.” IEEE Transactions on Computers, C-28
(1979), pp. 414-429.

. Canaday, R. H., R. D. Harrison, E. L. Ivie, J. L. Rvder, and L. A. Wher.

“A Back-end Computer for Data Base Management.” Communications of
ACM, 17 (1974), pp. 575-582.

. Capraro, G. R. “A Data Base Management Modeling Technique and

Special Function Hardware.” Ph.D. Dissertation, Syracuse University,
February 1978.

. Cavano, J. P., and J. A. McCall. “A Framework for the Measurement of

Software Quality.” Proceedings of Software Quality Assurance Workshop,
San Diego, California, November 1978. New York: ACM, 1979, pp.
133-140.

. Champine, G. A. “Current Trends in Data Base Systems.” Computer, 12

(1979), pp. 27-41.

. Copeland, G. P., G. J. Lipovski, and S. Y. W. Su. “The Architecture of

CASSM: A Cellular System for Non-Numeric Processing.” Proceedings of
First Annual Symposium on Computer Architecture, December 1973, New
York: ACM, 1974, pp. 121-128.

. Crocker, S. D. “State Deltas: A Formalism for Representing Segments of

Computation.” Ph.D. Dissertation; Information Systems Inc. Research
Report ISI, Marina del Rey, California, October 1977.

. DeFiore, C. R., and P. B. Berra. “A Quantitative Analysis of the

Utilization of Associative Memories in Data Base Management.” IEEE
Transactions, 23 (1974), pp. 121-123.

. DeWitt, D. J. “Direct—A Multiprocessor Organization for Supporting

Relational Data Base Management Systems.” JEEE Transactions on Com-
puters, C-28 (1979), pp. 395-406.

Hollaar, L. A. “An Architecture for Efficient Combining of Linearly
Ordered Lists.” Second Workshop on Computer Architecture for Non-
Numeric Processing, Gainesville, Florida, 1976. New York: ACM, 1976.
Hollaar, L. A., and W. E. Stellhorn. “A Specialized Architecture for
Textual Information Retrieval.” Technical Report UNIVCDCS-R-74-637,
Department of Computer Science, University of Illinois, 1975.

Hollaar, L. A. “A Design for a List Merging Network.” IEEE Transactions
on Computers, C-28 (1979), pp. 406-413.

Hsiao, D. K., and S. E. Madnick. “Data Base Machine Architecture in the
Context of Information Technology Evaluation,” Proc. Third Int. Confer-
ence on Very Large Data Bases, ACM, NY, 1977.

Karlowsky, I., H. O. Leilich, and H. C. H. Ziedler. “Content Addressing
in Data Bases by Special Peripheral Hardware: A Proposal Called “Search
Processor.” Infomatch Fahrberichte 4, Computer Architecture Workshop of
the Gesellschaft Fiir Infomatch, Erlangen, May 1975, pp. 113-131.
Koehr, G. I, I. T. Connolly, P. P. Rhymer, B. L. Girken, and E. V.
Sahr. Data Management Systems Catalog. Mitre Technical Report 139,
Mitre Corp., Bedford, Massachusetts, January 1973. ’
Liuzzi, R. A. “The Specification of a Data Base Machine Architecture
Development Facility and a Methodology for Developing Special Purpose
Function Architecture.” Ph.D. Dissertation, Syracuse University, April
1980.

Liuzzi, R. A., and P. B. Berra. “A Data Base Machine Design and
Evaluation Facility.” Proceedings of IEEE-CS Comp Sac 78, Computer
Software and Applications Conference, November 1978, Chicago, Illinois.
Piscataway, New Jersey: IEEE, 1979, pp. 716-721.

Madnick, S. E. “Infoplex: A New Concept in Data Base Management
Technology.” Proceedings of the Third International Conference on Very
Large Data Bases, October 1978. Piscataway, New Jersey: IEEE 1978.
Maller, V. A. I. “The Content Addressable File Store—CAFS,” ICL
Technical Journal (ICL Research and Advanced Development Centre).
(1979). International Computer Ltd., United Kingdom.

Molder, R., “An Implementation of a Data Base Management System on
an Associative Processor,” AFIPS, Proceedings of the National Computer
Conference (Vol. 42), 1974, pp. 171-176.

Mukhopadhyay, A. “Hardware Algorithms for Non-Numeric Computa-
tion.” IEEE Transactions on Computers, C-28 (1979), pp. 384-394.
Oliver, E. J. “RELACS, An Associative Computer Architecture to Sup-
port a Relational Data Model.” Ph.D. Dissertation, Syracuse University,
June 1979.

. Roberts, D. C. “A Special Computer Architecture for High-Speed Text

Searching.” Second Workshop on Tomputer for Non-Numeric Processing,
Gainesville, Florida, 1976. New York: ACM, 1976.

134

National Computer Conference, 1982

24.

25.

26.

27.

Schuster, S. A., E. A. Ozkarahan, and K. C. Smith. “A Virtual Memory
System for a Relational Associative Processor.” Technical Report CSRG-
64, University of Toronto, December 1976.

Schuster, S. A., H. B. Nguyen, E. A. Ozkarahan, and K. C. Smith.
“RAP.2—An Associative Processor for Data Bases and Its Applications.”
IEEE Transactions on Computers, C-26 (1979), pp. 446-458.

Singhania, A. K., and P. B. Berra. “A Multiple Associative Organization
for Pipelining a Directory to a Very Large Data Base.” Spring Computer
Conference 76 Digest of Papers, 1976, pp. 109-112.

Stellhorn, W. E. “An Inverted File Processor for Information Retrieval.”
1EEE Transactions on Computers, C-26 (1977), pp. 1258-1267.

. Stillman, N. J., C. DeFiore, and P. B. Berra. “Associative Processing

29.

30.

31.

of Line Drawings,” AFIPS Conference Proceedings, Second Joint Com-
puter Conference (Volume 38), 1971, pp. 557-562.

Su, S. Y. W., L. H. Nguyen, A. Eman, and G. J. Lipovski. “The
Architectural Features and Implementation Techniques of the Multicell
CASSM.” IEEE Transactions on Computers, (1979), pp. 430-445.
TRW Defense and Space Group. Advanced SMITE Reference Manual.
Contract F30602-78-C-0016, CDRL 007, RADC-TR-80-66, TRW,
Redondo Beach, California, February 1980.

Vemuri, V., R. A. Liuzzi, J. P. Cavano, and P. B. Berra. “Issues in the
Performance Evaluation of Data Base Machine Designs.” 1980 Computer
Architecture for Non-Numeric Processing Conference, Asilomar Confer-
ence Center, March 1980. Piscataway, New Jersey: ACM, 1980.

Applications of SIMD computers in signal processing

by LAXMI N. BHUYAN and DHARMA P. AGRAWAL

Wayne State University
Detroit, Michigan

ABSTRACT

This paper analyzes in detail how far the proposed Single Instruction Multiple Data
(SIMD) computers with interconnection networks are applicable in the signal pro-
cessing area. Decimation in the time radix-2 fast Fourier transform (FFT) algorithm
is considered here for implementation in a multiprocessor system with shared bus
and an SIMD computer with interconnection network.

Results are derived for data allocation, interprocessor communication, approxi-
mate computation time, speedup, and cost effectiveness for an N-point FFT with
any P available processors. Further generalization is obtained for a radix-r FFT
algorithm. N X N point, two-dimensional discrete Fourier transform (DFT)
implementation is also considered, with one or more rows of input matrix allocated
to each processor.

Various curves are plotted and a comparison in performance is carried out be-
tween a shared-bus multiprocessor and SIMD computer with interconnection net-
work. It is shown that the latter gives much higher speedup for P > 16 and is more
cost-effective even with the high cost of switches. N, P and r, considered here, are
all powers of 2.

135

Applications of SIMD Computers in Signal Processing 137

I. INTRODUCTION

There is a growing interest in the area of parallel processing,
and it is worthwhile investigating how far the proposed paral-
lel systems are suitable for different applications. A Single
Instruction Multiple Data (SIMD) type of computer usually
consists of a single control unit and a number of processing
elements (PEs) connected through an interconnection net-
work. The control unit broadcasts each instruction, and those
are executed by the active PEs. The interconnection network
makes possible simultaneous transfer between the PEs. In this
paper the advantage of using such parallel systems in the area
of signal processing will be studied.

Real-time signal processing is a potential field of applica-
tion of parallel computers because of the time limitation in
processing data. Fast Fourier transform (FFT) forms the core
of signal processing, and hence its implementation will be
studied in detail. In a highly parallel algorithm like the fast
Fourier transform (FFT), the computation time in various
organizations of P processors is almost the same. The commu-
nication overhead due to interprocessor data transfer is ex-
tremely important and decides the actual performance of an
algorithm on a certain multiprocessor architecture.”

Although considerable work has been done in the design of
special-purpose FFT processors, very few researchers have
studied the performance of the FFT algorithm on a general-
purpose multiprocessor system. Among them Bergland’s
algorithms® on the PEPE type of computer and Wallach’s
analysis® on the Alternating Sequential Parallel (ASP) com-
puter are noteworthy.

The FFT, as it is, is a highly parallel algorithm; and there
seems to be no need for exploiting further parallelism in it.
Siegel et al.* developed Single Instruction Multiple Data
(SIMD) algorithms for both one- and two-dimensional dis-
crete Fourier transforms (DFT) using an interconnection net-
work. They presented decimation in frequency algorithms for
implementation in N/2 and N/4 number of processors without
any analysis. Though these types of computers are yet to be
commercially available, much research in the area indicates
their potential advantage in various types of applications. The
Shuffle Exchange network of Stone® and the indirect bi-
nary n cube network of Pease® are very suitable for FFT
implementation.

In this paper, decimation-in-time FFT algorithms are con-
sidered. The input data and number of butterfly computations
are divided equally between the P-available processors, and
the amount of time spent during interprocessor communica-
tion has been worked out. The performance of an algorithm
in a computer depends heavily on the machine constants.
Under a few basic assumptions, expressions for speedup and
cost effectiveness are worked out for a multiprocessor with

shared bus and SIMD computer with Pease’s indirect binary
n cube network. It has been assumed throughout that the
individual processors take care of data allotment in the proper
location of their local memory, once the data are available to
them.

II. RADIX-2 FFT COMPUTATION

In a decimation in time N point radix-2 FFT algorithm,
n =log,N stages of computation is required with N/2 butterfly
computations at each stage. With P number of processors,
N/2P butterfly computations are carried out in each processor
per stage. As an example, partitioning of a 16-point FFT with
four processors is shown in Figure 1. The algorithm works as
follows:

1. Each processor computes N/2P butterflies per stage un-
til log N/2P stages.

2. Processor i sends N/2P data items to processor j. 1 =i,
Jj=P.

3. Each processor computes N/2P butterflies.

The process is continued until z stages are completed. It will
be assumed throughout this paper that the data allocation at
the proper location in a local memory is exclusively the job of
the local processing element, and hence does not add to the
communication time. The following definitions are needed.

Digit reversal of a number 0 =x =N — 1 in radix r is given
by

pf(x) = pr(xn,—l xn,—z o xo)

= (xoxl . x,,,*l),
x,¢{0, 1, 2,...,r — 1} and n,=log,N

Processor 1

W = o

Processor 2

~N oo

‘OCOI

Processor 3

Processor &

Figure 1—16-point radix-2 FFT computation in 4 processors

138 National Computer Conference, 1982

- Bit reversal is a special case of digit reversal where r =2.

p2(x) = p(x) = p(Xn-1Xn-2. . . Xo) = (XoX1. .. Xn-1),
x; £{0, 1}

Speedup o = %

where
t =time taken for FFT implementation in a single processor
T = time taken for FFT implementation in P processors

Cost efficiency &= EUI—’

where C = a cost factor dependent on the architecture in con-
sideration.

For a multiprocessor with shared bus, C will be assumed to
be unity.

In a decimation in time algorithm, the inputs are bit re-
versed and the outputs are ordered. We assume that the input
data x are numbered from 0 to N —1; the processors are
numbered from 1 to P and P =2™. The following general
results are obtained.

1. Number of butterfly computations per processor per
stage = N/2P.

Assuming each butterfly computation takes one unit
of time, computation time per stage = N/2P, since the
rest of the butterflies in that stage are also simulta-
neously computed by other processors. Hence, for n
stages, total time of butterfly computation = n(N/2P)
units.

2. For an N-point FFT with P available processors, number
of data per processor = N/P. The input data are bit re-
versed and the output data are ordered. Hence, the ith

processor will contain input data p[-]}; i-1) to

(%]i - 1)} and give output data [% i—-1to (‘éV—Pl - 1)
and %(i -1 +%to (—2-N?i— 1) +%] 0 =input data x,
outputdata X =N —land 1=i=P.

3. Each processor contains N/2P butterflies. Transfer is
needed only after N/P point FFTs are calculated inter-
nally. Then a P-point FFT between the processors yields
the result. After (n —m) stages, the processors are
grouped with a difference of 2, 4, 8, 16, etc., until n
stages are completed, so the difference grows as a power
of 2.

The processors i and j are exclusively involved in data
transfer for kth stage of computation. The difference
between i and j with respect to k is given by

forlsk=(n-m)

=Pown for (n-m)<k=n

III. ANALYSIS FOR RADIX-2 FFT

A. Multiprocessor With Shared Bus

The organization of this type of system is shown in Figure
2. In addition to the main memory, each processor has its local
memory. Interprocessor communication is achieved by first
sending the data to the main memory and transferring them
again to another processor from the main memory. This is
achieved under a central control. Hence, a single data transfer
between processors i and j will involve two data transfer times
7. As mentioned, in an FFT calculation no data transfer is
necessary for k = (n — m). For stages k > (n — m), each pro-
cessor i keeps one item of data out of each butterfly for com-
putation in the next stage and transfers the other data to
processor j. With N/2P number of butterflies per processor,
these data are transferred sequentially over the bus for all
1=i,j=P. A time 27 is necessary for transfer of a single item
of data. Each processor takes N/P 7 time per stage. For P
processors and m stages, time consumed = mNT.

Main
Memory
Control JI JJ ” _ﬂ >
...... P
Pl P2 P
Hl M2 Mp

Figure 2—A multiprocessor with shared bus

Speedup and cost efficiency

Let B = time for calculating a single butterfly.

) . N
Time taken on a uniprocessor =t =n -E-B.

Butterfly computation time in P processors = n %—, ‘B.

Approximate transfer time needed=m N 7.

Hence, time taken for FFT=T:=n N B +mNr~.

2P
Speedup o; = Ti = ———Iim—-T—
1+2P (;) (E)
Cost efficiency &, = Z’% = ——lm——
T2 ()

Cost factor C; has been assumed to be unity. It is also assumed
that no additional synchronization time is needed for the con-
troller to set up the transfer. Although this assumption may
seem unrealistic, it stands well in comparison with the analysis
of the interconnection network under different assumptions.

Applications of SIMD Computers in Signal Processing 139

B. SIMD Computer With Interconnection Network

This type of computer will consist of P processors con-
nected through an interconnection switch. An example of
eight processors connected through indirect binary n cube
network® is shown in Figure 3. Each processor can have inde-
pendent input and output registers for efficient implementa-
tion of an algorithm.

P . P
Py —— F,
P3 P3
P
4 A P,
y N P
5
s
Fe ‘ / \ Fe
—] y ?y
Py
Ps PS

Figure 3—SIMD computer with Indirect binary n cube network

If a processor is expressed in binary as
@mPm-1.-.pqg---p1), then cubeq(i)=@mpPm-1-.-Dq.--
p1) and cube, (i) ~i=(00...1...0), 1 being at the gth posi-
tion with weight 277",

The intercommunication involved in FFT calculation is ba-
sically a PM?2I connection with j=cube,(i). Hence,
q = (k —n + m) for the kth stage of computation.

Again, no data transfer is necessary for k = (n —m). After
that, all the P processors are capable of transferring data
simultaneously at a single transfer time, once the switch has
been set. After each stage of computation, each processor will
send N/2P data items. For m stages, the total data transfer
time for an N-point FFT implemented on P processors with
interconnection network is m - N/2P units.

Speedup and cost efficiency

The control setting of an indirect binary n-cube will require
0(Plog,P) time, and each data transfer will undergo O(log,P)
gate delays. It is assumed here that, once the control switch
has been set, N/2P data items are transferred from each
processor in N/2P+ time. The combinational gate delays are
neglected.

Even further time can be saved if the controller is allowed
to set the switches by a table lookup while the processors are
involved in butterfly computation.

Allowing a switching time of m - P -1,

N (N
P B+m —2P~r+mPT)
mP2>

N N(
.ﬁ B+m ﬁ?l"'zN
P

t
speedup o, =T 5
2 m mp (1)
1+(n)(1+2 N) B

. . g2
and cost efficiency & = TP

From the above results, it is clear that the speedup depends
heavily on factors (7/B) and (a/B). These are machine-
dependent constants and vary from one computer to other. In
Figure 4 we have plotted the speedup for a multiprocessor
with shared bus having P = 16 for various realistic values of
(1/B). As expected, the speedup reduces with increase in
(7/B). Speedups obtained in different computers with P =8,
16, and 32 are plotted in Figure 5. (+/B) and (a/B) are as-
sumed to be 0.02 and 0.2 respectively. oy is the speedup
obtained in an SIMD computer with interconnection network
when the control switching time is avoided by setting the
switches during butterfly computation. The cost effectiveness
depends on the cost factors C;, C,, and C;. The exact values
of these constants are difficult to predict. For comparison C;
was assumed to be unity and curves were drawn with proba-
bilistic values of C, between 1.2 and 1.5. This showed an
overall degradation in cost efficiency with increase in the num-
ber of processors. For higher values of N and for higher num-
bers of processors, the interconnection network proved to be
more cost-effective than the other.

IV. RADIX-r FFT COMPUTATION

In this section the results obtained in Section II are extended
for a radix-r implementation of N-point FFT with P available
processors; r is assumed to be a power of 2 and N and P are
powers of r. The algorithm works in exactly the same way.

1. Each processor computes N/rP butterflies per stage till
log, N/P stages.

2. Processor i sends N/rP data items each to (r — 1) other
processors.

3. Each processor computes N/rP butterflies.

“T/B) =0.01

,//,‘—i 0.02

—— T T 0.03

Figure 4—Variation of speedup with (v/B) on a shared bus organization

140 National Computer Conference, 1982

(¥/B) = 0.02

(a/B) = 0.2

32

24

20

12

Figure 5—Speedup for radix-2 FFT computation in different organizations
o;: Shared bus organization.
o, SIMD computer with interconnection network.
20: Interconnection network without control setting time.

The process is continued till #,=log, N stages are complete.
The previous results are modified as below.

1. The total butterfly computation time for an N-point
radix-r FFT with P processors is n, N/rP units, n,=log,N .

2. The ith processor will contain input data p,[—?,—l (i—1)to

(%i - 1)] and will give output data [g -1+ g-a to

ﬁi - 1+E-aJ forO0sa=r—-land1=i=P.
rP r

The input data x and output data X range between 0
and N — 1.

3. In a radix-r FFT algorithm, » number of processors are
involved in data transfer for kth stage computation.

|i —j| =0 for k =n,—m,, m,=log,P
_, P
=t5
€=1,2,...,(r—1

-r*=Y for n,—m,<k =n,.

(a) Multiprocessor with shared bus

Each processor computes N/rP butterflies per stage. Out of
this, one item of data is sent to each (r — 1) processor. Again,
each data transfer requires 27 time, so each processor will
keep the bus busy for 2(r — 1)+ N/rP 7 time. For P processors
and m, stages of data transfer, the total data transfer time for
a radix-r N-point FFT implemented on P processors with a
shared bus is 2-m,(r — 1)+ N/r units.

Speedup and cost efficiency

Let B,=time for a single radix-r butterfly computation.

Tyv=n, riv}—, ‘B, +2m, {r —1)-Nir-n.

Time taken in a uniprocessor t,.=n,*N/r* B,.

Speedup a1,= b~ P
r— 7
Ty 2P(%’) r —1) (g—)

¢, =cost efficiency = g 1},
1

(b) SIMD computer with interconnection network

The transfers are effected in a similar manner, except that
at each stage the control switch has to be set up (r — 1) times,
thus causing a degradation in performance.

Cyclic shift within segments type of permutation' is neces-
sary before the kth stage of computation in radix-r FFT algo-
rithm. This type of permutation can be easily implemented
with an Indirect binary n-cube network.

After computation of (n,—m,) stages, (r — 1) outputs will
be sent to (r —1) processors from each butterfly through
(r —1) cyclic shift permutations. However, simultaneous
transfer occurs from each processor through the inter-
connection network. Hence for N/rP butterflies and in m,
stages, the total number of data transfers in a radix-r FFT
implemented on P processors with interconnection network is
m, - (r —1) N/rP units.

Speedup and cost efficiency

N N
T.,=n, 7P *B,Am,(r—1) (H,g T+ mPT)

Speedup o> = P
2r — 2
1+ (—”’11) 1) (1 + P)wiB,)

O2r

CzP :

and cost efficiency {,=

The speedup obtained for a radix-4 algorithm in P = 16 and
64 processors is plotted in Figure 6 with (3/B,) assumed to be
0.005, i.e., B,=4B. The comparison is shown between a
shared bus computer and SIMD computer with interconnec-
tion network. As expected, for higher values of N, the inter-
connection network gives speedup close to ideal.

V. TWO-DIMENSIONAL DFT COMPUTATION

A 2-D, N X N discrete Fourier transform (DFT) is given by
Siegel et al.:*
N—-1N-1

F(u,w) = 2 E X(e,m) Wu€ me,

£=0 m=0
W=e > andO0=u, w=N-1.

Applications of SIMD Computers in Signal Processing 141

70

(T/By = 0.005

64

Figure 6—Speedup for radix-4 FFT computation in different organizations
oy : Shared bus organization.
o, : SIMD computer with interconnection network.

This can be decomposed to two one-dimensional DFTs:

N-1
GU,w)= 2 Xem W™, 0=€ w=N-1

m=0

and

N-1
Fu,w)= > G(Lw)W“0=u, w=N -1

£=0

These one-dimensional DFTs are usually implemented by
using FFT techniques. The input data x can be visualized to be
arranged in an N X N matrix. G, alsois an N X N matrix, each
row of which is computed by taking a 1 — D FFT on a row of
x. For any available number of P processors, P =2"and =N,
one or more rows of x will be allotted to each processor. For
computing each column of matrix F, a column of G is neces-
sary so that FFT techniques can be applied.

Unfortunately, G is stored row-wise in the processors.
Hence a matrix transpose operation with one or more rows in
each processor has to be obtained before another 1 — D FFT
computation can be carried out to yield matrix F. This in-
volves data transfer between the processors, thus affecting the
speedup.

The algorithm works as follows:

1. Each processor computes N/P number of N point radix-
2, 1-D FFT to yield N/P rows of G.

2. A matrix transpose operation is carried out between the
processors.

3. Each processor computes N/P number of N point radix-
2, 1-D FFT to yield N/P columns of the result F.

We get the following results:

1. Nrows of x will be divided between P processors. There-
fore each processor will calculate N/P rows of G. Each
row of G takes n-N/2 time units for FFT calculation.
Therefore each processor will take n+ N%/2P time units.
Again, each column of F requires n - N/2 units of time
and n - N%2P time for N/P columns. Hence, total butter-
fly computation time = n - NP units.

2. Number of rows per processor = N/P. The first pro-
cessor contains rows 0 to N/P — 1, second from N/P to
2N/P — 1, and so on. Hence, the ith processor will con-
tain rows € = N/P (i — 1) to N/Pi — 1 of input data x),
for0=¢, m=N-1,1=i=P.

3. After each processor calculates N/P rows of G, a matrix
transpose operation is to be performed.

If matrix G(¢,w) is partitioned into P X P square sub-
matrices, for a transpose operation processor r will transfer
N?*P? elements of submatrix G(i,j) to processor j; 1=i,
j=P.

It is assumed that the individual processors take care of the
internal data arrangement of N*P? elements in their local
memories.

(a) Multiprocessor with shared bus

A data transfer between processors i and j will involve a
time of 27. Each processor i sends N - N/P — N*/P? data items
to all other processors.

Hence, the total data transfer time foran N X N, 2D DFT
calculation in P processors with shared bus is 2(N*/P) (P — 1)
units.

Speedup and cost efficiency

Time taken on a single processor=¢=2-N-n-N/2B

=n-N*-B.
NZ NZ
Ta=n '?'B +2'? (P - l)T.
Speedup o4 = P P 1
1 -\-2(——)(1-/3)
n
. o)
cost efficiency {4 = P

(b) SIMD computer with interconnection network

Each processor i will be connected to processors j = (i + k)
mod P for 1=k=P -1, involving (P —1) stages of data
transfer. At each stage N%/P? elements will be transferred
from each processor. This is a cyclic shift operation realizable
by Indirect binary n cube network through a single pass.

The total data transfer time for an N X N, 2D DFT imple-
mented on P processors with interconnection network
N?*P?*(P —1) units.

142 National Computer Conference, 1982

Speedup and cost efficiency
N? N?
Ts=n B ‘B + (P -I)(FT-l-m °PT>
Speedup a5 = P
s 3
®-1 (.1_ m .P_)
1+ Gty (7/B)

. . _ Os
and cost efficiency {s = P

The performance of a multiprocessor with shared bus is
compared with respect to interconnection network in Figure
7. For a number of processors greater than 16, the shared bus
computer works fairly well compared to the 1 — D case and is
more cost-effective because C, < C,.

VI. CONCLUDING REMARKS

The exact performance of a computer is ascertained only after
carefully observing its working for many years. In this paper
an approximate evaluation of speedup and cost efficiency has
been made for FFT implementation in two types of parallel
processors. These values depend heavily on machine con-
stants, as shown in Figures 4 and 5. The comparisons are made
between a multiprocessor with shared bus and an SIMD com-
puter with interconnection network. For one dimensional
radix-2 and radix-4 algorithms, the shared bus computer
shows close to ideal performance for P = 16. For small values
of N, the interconnection network gives very low speedup
because of the overhead involved in setting the control switch-
es. However, as N increases, the speedup increases and is
close to ideal for large N. At this point it becomes more
cost-effective than the shared bus system, even with the high
cost of switches. When P, N are very large, the shared bus
system is completely unsuitable because of high congestion in
the single bus. A similar analysis was also performed for the
2 — D case. The shared bus system behaves much better than
the 1 — D case. For P = 32in Figure 7 the speedup is very high
when compared to Figure 5. If the number of processors
available for an N X N, 2 — D DFT implementation is more
than N, completely different results will be obtained, because
for each 1— D transform also, the interprocessor commu-
nication will be necessary.

REFERENCES
1. Aho, A. V., J. E. Hopcroft, and J. D. Ullman. “The Design and Analysis

of Computer Algorithms.” Reading, Massachusetts: Addison-Wesley,
1976.

10.

32

28

24

20

16

12

n -+

Figure 7—Speedup for 2-D DFT in different organizations
o,: Shared bus organization
o5: SIMD computer with interconnection network

. Lint, B., and T. Agerwala. “Communication Issues in the Design and

Analysis of Parallel Algorithms.” IEEE Transactions on Software En-
gineering, SE-7 (1981), pp. 174-188.

. Bergland, G. D. “A Parallel Implementation of the Fast Fourier Transfer

Algorithm.” IEEE Transactions on Computers, C-21 (1972), pp. 366-370.

. Siegel, L. J., P. T. Muller, and H. J. Siegel. “FFT Algorithm for SIMD

Machines.” Proceedings of the 17th Annual Allerton Conference on Comm.,
Control, and Computing, University of Illinois, Urbana-Champaign, Oct.
1979, pp. 1006-1014.

. Stone, H. S. “Parallel Processing with Perfect Shuffle.” IEEE Transactions

on Computers, C-20 (1971), pp. 153-161.

. Pease, M. C. “The Indirect Binary n Cube Microprocessor Array.” IEEE

Transactions on Computers, C-26 (1977), pp. 458-473.

. Abidi, M. A., and D. P. Agrawal. “On Conflict-Free Permutations in

Multistage Interconnection Network.” Journal of Digital Systems, (Special
Issue on Parallel Processing) 4 (1980), pp. 115-134.

. Wallach, Y., and A. Shimor. “Alternating Sequential Parallel Versions of

FFT.” IEEE Transactions on Acoustics, Speech and Signal Processing,
ASSP-28 (1980), pp. 236-242.

. Rabiner, L. R., and B. Gold. “Theory and Applications of Digital Signal

Processing.” Englewood Cliffs, New Jersey: Prentice Hall, 1975.
Lenfant, J. “Parallel Permutations of Data: A Benes Network Control
Algorithm for Frequently Used Permutation.” IEEE Transactions on Com-
puters, E-27, (1978), pp. 637-647.

A list-processing-oriented data flow machine architecture

by MAKOTO AMAMIYA, RYUZO HASEGAWA, OSAMU NAKAMURA, and HIROHIDE MIKAMI

Musashino Electrical Communication Laboratory, N.T.T.
Tokyo, Japan

ABSTRACT

This paper analyzes some issues concerning list processing under a data flow control
environment from the viewpoint of parallelism and also presents a new type of
list-processing-oriented data flow machine, based on an association memory and
logic-in-memory.

The mechanism of partial execution in each function is shown by example to be
effective in exploiting the parallelism in list processing. The lenient cons mechanism
is shown to exploit maximally parallelism among activated functions.

143

A List-Processing-Oriented Data Flow Machine Architecture 145

1. INTRODUCTION

A data flow machine, whose basic idea was offered by J. B.
Dennis' and for which several research efforts are being pur-
sued at several places in the world,>® is a very attractive
concept as a future computer architecture, from the following
viewpoints:

1. A data flow machine exploits the parallelism inherent in
problems.

2. Recent noteworthy advances in VLSI technology have
been made. A data flow machine makes effective use of
numerous VLSI devices and makes possible the imple-
mentation of a distributed control mechanism.

3. Functional programming will become increasingly im-
portant to the improvement of software productivity. A
data flow machine effectively executes programs written
in a functional language.

4. Nondeterministic execution’ will become an important
mechanism in future computer systems. A data flow ma-
chine is expected to execute nondeterministic programs
effectively because of its parallelism.

However, many problems remain to be solved in order to
achieve an actual -data flow machine in a real environment.
Especially when considering Items 3 and 4 just cited, it is
necessary to clarify the data flow machine’s applicability to
nonnumerical problems.

This paper discusses list processing, which is typical of non-
numerical data processing, on a data flow machine, keeping
the Lisp data structure and operations in mind. The main
reasons why Lisp was considered are that Lisp has a simple
and transparent data structure and that it contains the basic
problems in structured data manipulation.

First, parallelism in list processing is discussed, and it is
pointed out that this can be achieved by parallel evaluation of
function arguments and partial execution of the function
body. Then it is shown that parallelism increases dramatically
with introduction of a lenient cons concept into the data flow
execution control. Next, list-processing-oriented data flow
machine architecture and structure memory construction
methods are presented. Finally, a garbage collection algo-
rithm, based on the reference count method, is discussed.

All programs throughout this paper are described in
VALID® language, which is designed as a high-level pro-
gramming language for the data flow machine presented in
this paper.

2. LIST PROCESSING UNDER A DATA FLOW
CONTROL ENVIRONMENT

The noteworthy data flow execution control effects are as
follows:

1. Tt exploits the maximal parallelism inherent in a given
program both on a low level (primitive operation level)
and on a high level (function activation level).

2. It effectively executes programs constructed on the basis
of the concept of functional programming, which has no
notion of program variables and side effects (i.e., re-
writing the global variables).

The parallelism of the primitive operation level is achieved
by the data-driven control principle; that is, each operation is
initiated without attention to other operations when all of its
operands have arrived. Function-activation-level parallelism
is obtained by the partial evaluation mechanism:

1. Each argument of a function is evaluated concurrently.

2. The execution of a function is initiated when one of the
arguments of the function is evaluated, and the caller
function resumes its execution when one of the return
values is obtained in the invoked function execution.

In this section these parallel execution mechanisms are ex-
amined through several examples.

2.1. Parallel Evaluation of Arguments

Programs written in VALID are transformed to equivalent
pure functional representation, i.e., the form of prefix no-
tation, and equally translated to data flow graphs. For in-
stance, Program1, which reverses a given list in each level, is
translated by the VALID compiler into the data flow graph
shown in Figure 1. Block1 in Programl is equivalently repre-
sented in the prefix notation

fulrev(cdr(x), cons(fulrev(car(x), nil), y)).

In this expression the two arguments cdr(x) and cons(. . .)
for the function fulrev are evaluated in parallel; and before
evaluating the argument cons(...), its two arguments
fulrev(...) and y are evaluated in parallel, and so on. Thus,
the evaluation of a function, in general, proceeds from the
inner to the outer (i.e., innermost evaluation). This results in
highly parallel evaluation of the innermost arguments. In
other words, each evaluation is independent of the other eval-
uations under the condition that the evaluation is initiated
only when all values of arguments are obtained (which is
called data-driven control).

Program1l—Mirror image of tree
fulrev: function (x,y) return (list)

146 National Computer Conference, 1982

= case
null(x) —vy;
atom(x)—X;
others —clause
u = cdr(x);
v = fulrev(car(x),nil);
blockl | w = cons(v,y);
return fulrev(u,w)
end

end

2.2. Partial Execution of Function Body

The parallelism, based on the parallel evaluation of argu-
ments for each function, is limited because the nesting of
arguments is limited in source text. This restriction on paral-
lelism, however, can be overcome by executing the function
body partially.

If the data-driven control principle is applied to the function
activation, as in the case of primitive operations, every func-
tion is activated only after all its arguments are evaluated. In
this case, time is wasted unnecessarily in each function activa-
tion through waiting for the completion of all its argument
evaluations. However, if each value is passed into the function

@ nutl

S |

blockl

Figure 1—Data flow graph for fulrev

body immediately when it is evaluated, and the function body
execution proceeds partially every time the value is passed in,
efficient execution can be obtained, because the unnecessary
waiting is cut out at function activation time.

The function activation and argument-passing mechanism
for the partial function execution is implemented as shown in
Figure 2. The data flow graph in Figure 2(c) represents the
activation control for the function

L y2, ..., yn]l=f(x1, x2, ... xm).

The call node, which creates a new environment for the
activated function, is initiated by the “or” gating nodes, when
one of the tokens (values) has arrived. Here, the call node
creates the body first if the body does not exist. Otherwise, it
creates only an instantiation name. The “or”’ gate implemen-
tation uses a t/f switch, as shown in Figure 2(b).

X1 Xz X K] Xm

Y] YZ L) Yr‘l

(a) Function invocation node

Yi e+e Yn (0ld ™in")

(c) Function activation control

Figure 2—Function activation mechanism

A List-Processing-Oriented Data Flow- Machine Architecture 147

When the new environment is created and the body is ready
to run, the token “in” (instantiation name of the activated
function) is sent to link nodes and rlink nodes. Each link node
passes each argument value x1, x2, . . . , xm to the body of the
activated function every time each value has arrived. Each
rlink node passes information regarding the place where the
return value is sent. These bits of information y1', y2', ...,
yn', each of which is determined at compilation time corre-
sponding to y1, y2, ..., yn, are attached to each return value
to identify its destination. As each return value is passed back
to the calling function as soon as it is generated, the calling
function can resume and proceed with the execution parti-
ally every time the return value is passed back from the
called function. Here each function is permitted to return
multiple values (i.e., the tuple of values) under the data flow
environment.

2.3. Lenient Cons and Parallelism by Pipelined Processing

Although the partial execution of function yields higher
parallelism, it is not sufficient for maximally exploiting the
parallelism inherent in the given program.

In program2, for instance, the function partition in sort
body divides a list into three lists, y1,y2,y3, each of which
contains elements less than, equal to, and greater than the
first element. As the sort and append are activated immedi-
ately after each of y1,y2,y3is generated, it is expected that the
maximal parallelism among functions is obtained. However,
parallelism by partial execution of the function body does not
work well for reducing the execution time in the order, since
the time spent to sort the list of length n is proportional to the
square of n in the worst case. (Though it is proportional to n
in the best case.) The reason is that since each of the values
y1, y2, and y3 is not returned until the append operation is
completed in the partition body, the execution of the sort
function, which uses those values, must wait until they are
returned, and the waiting time is proportional to the length of
the list data made by the append operation.

program2—Quicksort program
sort: function (x) return (list)
=if x=nil then x
else clause
y = list(car(x));
[y1,y2,y3] = partition(cdr(x),y);
return
append(sort(y1),append(y2,sort(y3)))
end;
partition: function (x,y) return(list,list,list)
= if x=nil then (nil,y,nil)
else clause
[wl,w2,w3] = partition(cdr(x),y);
x1 = car(x); y1 = car(y);
return
case
x1=yl—(wl,append(list(x1),w2),w3);
x1<yl—(append(list(x1),w1),w2,w3);
x1>yl—>(wl,w2,append(list(x1),w3))
end
end;

If the former parts of the list, which are partially generated,
are returned in advance during the period when the latter
parts are appended, the execution which uses the former parts
of the list can proceed. Thus the producer and the consumer
executions overlap each other. As the append is the repeated
application of cons, as Program3 shows, this problem can be
solved by introducing leniency into the cons operation.

Program3—append
append: function (x y) return (list)
=if x=nil then y
else cons(car(x),append(cdr(x),y))

Lenient cons, which is slightly different from the idea of
“suspended cons,””® means the following: For the operation of
cons(x,y), the cons operator creates a new cell and returns its
address as a value in advance before its operand x or y arrives.
Then the x and y values are written in the car and cdr field of
the cell, respectively, when each of them has arrived at the
cons node.

In the implementation the cons operator is decomposed
into three primitive operators, getcell, writecar and writecdr,
as shown in Figure 3. The getcell node is initiated on the
arrival of a signal token, which is delivered when the new
environment surrounding the cons operation is created. The
getcell operator creates a new cell and sends its address to the
writecar node, the writecdr node, and the nodes waiting for

that cons value.

Each memory cell has, in addition to the garbage tag, the
l(Ej'xr-ready tag and the cdr-ready tag, each of which controls
ead accesses to the car field and the cdr field. The getcell
operator resets both ready tags to inhibit read accesses. The

signal X Y
getcell
z=cons(x,Y)]
9 writecar Xk writecd r)
Z

{(a) Cons mechanism

attribute | c ar cdr

garbage
car-ready
cdr-ready

(b) Data cell structure

Figure 3—Lenient cons implementation

148 National Computer Conference, 1982

writecar (or writecdr) operator writes the value x (or y) to the
car field (or cdr field), and sets the ready tag to allow read
accesses to the field.

Lenient cons has a great effect in list processing. It naturally
implements the stream processing feature, in which each list
item is processed as a stream*'° for programs that are nor-
mally written according to the list processing concept, without
the notion of stream.

3. DATA FLOW MACHINE ARCHITECTURE

The data flow machine is composed of five components: con-
trol modules (CMs), an inter-CM communication network
(CN), structure memories (SMs), an arbitration network
(AN), and a distribution network (DN), as shown in Figure 4.
The CM, which is the kernel of data flow execution control,
consists of a memory for data flow machine instructions and
the enabled instruction fetch mechanism. The CN connects
CMs with each other. The SMs store structured data such as
list data. The AN and DN connect CMs and SMs.

Communication Network
1 CM 2

CM

¢ ¢

T T |]

D. Network

¥ £ v [¥ T
A. Network

| | | | b

2. As function bodies of a program are distributed in each
of the CMs, and each CM controls the execution of each
function body concurrently, parallelism is achieved
among CMs. The call/return parameters among func-
tions are passed through the CN, which logically realizes
dynamic tree structure.

3. Operation units are embedded in structure memory.
The structure memory is composed of a number of
banks, in each of which structured data operation units
are equipped.

4. The AN and DN provide paths between CMs and SMs.
The AN decodes the operand address in the instruction
packet and sends the packet to the addressed SM bank.
The DN accepts the result packet, which contains the
destination CM address, from SM, and delivers it to the
specified CM. The AN and DN are constructed using
routing network technique.

This data flow machine architecture can exploit high paral-
lelism due to the concurrent executions among IMs and the
pipelined processing between IM and SM.

4. EXECUTION CONTROL

The CM memory which contains data flow machine codes is
composed of an IM and an OM, as mentioned before. The IM
and OM organization is shown in Figure 5.

©0--0/|0®..-®

cells cells

SM 1 SM 2 SM n

Figure 4—Data flow machine organization

The characteristics of this machine architecture, which is
mainly based on the associative memory concept, are as
follows:

1. Effective memory utilization can be achieved as a result
of dividing the CM memory into instruction memory
(IM) and operand memory (OM). The IM, which is a
read-only associative memory, contains data flow pro-
gram (i.e., function body). Here, destination instruc-
tions that await a result value are retrieved associatively.
The OM acts as a buffer for arriving operands.

func# vn opr opr n | op in { vn val |r |t
code
nl n2 l

__L const indicator

Figure 5—IM and OM field organization

Each memory cell of the IM consists of several fields, func-
tion name field (func#), value name field (vn), first operand
name field (oprn1), second operand name field (oprn2), oper-
and number field (n), and operation code field (opcode). The
OM consists of five fields, instantiation name field (in), value
name field (vn), operand value field (val), first/second oper-
and indicator (r), and garbage tag (t). The instantiation name
is assigned to a result value so as to share the function body.

The mechanism to deliver result value and fetch an enabled
instruction is shown in Figure 6.

When a result packet has arrived at the IM, the func# and
oprnl or oprn2 are examined associatively, using the key
(func#, vn), both of which are extracted from the result
packet as a search key. If the matched instruction is a one-
operand type, an instruction packet is immediately con-
structed from the matched instruction code and the result
value contained in the result packet and sent to the AN.

If the matched instruction is a two-operand type, on the
other hand, the in and vn field in the OM are examined for

A List-Processing-Oriented Data Flow Machine Architecture 149

result packet

Eelee[valvag

instructicn packet

[in]£#]vn*ope[vail[valz]

M
controller

oM
controller

e | | = vn-| [va1]

Figure 6—Executive control mechanism

matching associatively against the key (in) in the result packet
and the key (vn) extracted from the matched instruction at
IM.

If an OM cell is matched, which means one of the two
operands has arrived already, the matched data are read out
from OM. Then a two-operand type of instruction packet is
constructed along with the operand value contained in the
result packet and sent to the AN.

If no OM cells are matched, the garbage tag field is accessed
associatively to find a free cell. Then, the (in, vn, val) in the
result packet and tag r, which indicates whether the val is the
first operand or the second operand, are written into the cell
taken out.

5. STRUCTURE MEMORY

The method of structured data manipulation is an important
problem in the data flow machine architecture.* In this sec-
tion, structure memory design philosophy and its construction
method are described from the viewpoint of parallel list pro-
cessing. In this data flow machine, list structured data are
stored in the structure memory, and their pointers to each
entry flow in the machine as data tokens.

5.1. Primitive Operation in List Processing
and Memory Function

Pure Lisp primitive operations that have no side effect are
considered as a basis for structured data manipulation.
Among the five primitive operations (cons, car, cdr, atom,
and eq), only the cons operation creates a new data cell and
writes car and cdr pointer into the cell. Once the value is
written into the cell, its contents are never modified. As other
operations only refer to the cell, and as programs composed
of these five functions have no side effects, the new cell may
be created at any location.

List processing is regarded as memory operations which
mainly contain readout operations. How to execute the
memory operation effectively is a key problem. Memory con-
tention and side effects are serious for exploiting the paral-
lelism in list processing. The parallel execution among mem-
ory operations is obtained by preserving functionality, as in
pure Lisp.

The data-driven control makes possible the pipelined pro-
cessing between execution control and memory operation. If
the pipe capacity is large enough, execution control is not
affected by memory access overhead. Therefore, uninter-
rupted access to memory cells is possible.

As a new cell may be created by cons at any location, the

problem of memory contention can be solved by dividing the
structure memory into many banks. In addition, parallelism
among memory operations is obtained by providing an oper-
ation unit for each memory cell. This idea results in a logic-in-
memory concept. When the tradeoff between parallelism and
cost is considered, it can be decided whether to embed the
operation in a memory device.

5.2. Garbage Collection

As many data elements are copied in the course of the
side-effect free data manipulation, how to use structure
memory cells effectively is an important problem. Although
mark-scan methods are generally used as a garbage collection
method in a conventional machine, a reference count method
is adopted here, for the following reasons:

1. Since pointers to list data entries are scattered in various
parts of the machine, such as instruction memory units,
operation units and networks,'®! it is very difficult to
extract the active cell without suspending execution.

2. As list manipulations have no side effect, no circular lists
exist.

In the reference count method, each structure memory cell
or memory block has a reference counter field which is up-
dated every time operations, such as car, cdr, etc., are per-
formed. Reference count handling overhead will be serious if
the reference count is updated in not only primitive opera-
tions but also in T/F switch and function linkage operations.
However, this problem can be solved by reducing the refer-
ence count update frequency. The method adopted here
makes use of VALID language features, that is, (1) block
structure and locality of value name, (2) uniqueness of the
value name definition (single assignment rule). The reference
count management explicitly updates the reference number of
the cell by performing the increment and decrement oper-
ations. It is not necessary to update the reference number of
cells referenced in a block every time operations are per-
formed. Instead, the reference number of the cell which is
newly denoted in a block is incremented when the block is
opened and decremented when the block is closed.

5.3. Structure Memory Organization

Unlike numerical processing, which handles regular data
structures such as vectors and arrays, it cannot be expected
that manipulating list-structured data yields locality of access
to each list item, since many functions refer to sublists or
superlists of a list which is produced by some function, and the
sublists and superlists are produced variously during the exe-
cution of many functions. In such a case, whether to achieve
the locality of access in each function or to distribute access
without copying sublist is a tradeoff point in design.

The copying overhead is serious in list processing, be-
cause many sublists and superlists are produced in various
places in an execution. Therefore, distributing access to lists
thoroughly is more effective than copying lists in the data flow
machine architecture. New cells are generated in such a way

150 National Computer Conference, 1982

as to distribute cells uniformly in SM banks, since appropriate
cons strategy enables each cell address to be distributed, due
to the functionality of list processing, as mentioned above.

The structure memory is composed of a number of memory
banks which can control access independently, as shown in
Figure 7. The SM bank construction can resolve the memory
access bottleneck, because new cells are taken out and distrib-
uted uniformly in each SM bank. The reference count man-
agement module (cleanup) for garbage collection is provided
in each SM bank. As the reference count methed is adopted
as described above, the function such as a logic-in-memory is
required in order to solve the neck of the reference count
update operation.

Network

Structure
memory bank 1

CM 1

S Structure
CH 2 memory bank 2
CM m .

cleanup n

Structure
memory bank n

Figure 7—SM structure

The SM bank organization is shown in Figure 8. Data cells
in an SM are constructed of three independent blocks, ref,
car, and cdr blocks, so as to enhance the primitive-operation-
level parallelism. The car(cdr) block consists of car(cdr) ready
tag, attrl(attr2) field and car(cdr) pointer field. The attrl
(attr2) field indicates the attribute of the cell pointed by car
(cdr) field, i.e., number atom or literal atom or nonatom.
Attribute information extracted from the field is also held in
an instruction and result packet. The ref block consists of
garbage tag and reference counter field which holds the ref-
erence number. The ref block is implemented with RAM
incorporating the increment and decrement circuits. (The in-
crement and decrement functions are integrated in the mem-
ory, based on logic-in-memory concept, so as to reduce the
reference count handling overhead in garbage collection
management.)

4 i3

l A-net interface J { D-net interface ,
g S g
7

Attr opu

1

|

|

T

| T
I[t attr jcdr
|

!

!

|

!

Fr—mm | —

Figure 8—SM bank organization

Specialized operation units are devised for each primitive
operation according to the field (i.e., car, cdr, attr and ref)
accessed by their operations, as shown in Table I. Car(Cdr)
opn performs operations which read the car(cdr) field. Attr
opn performs operations which examine the attribute data.
Ref opn controls reference count management and performs
the getcell operation. Lenient cons operation is decomposed
into three operations, getcell, writecar and writecdr, each of
which is executed in the Ref opn, car opn, and Cdr opn,
respectively. The AN is designed so as to distribute getcell
operations uniformly among SM banks.

TABLE I—Primitive functions in SM

OPN FUNCTION OPERATION
INCREMENT increments a reference count

REF DECREMENT decrements a reference count
GETCELL gets a new cell
ATOM tests for atomic cell

ATTR EQ tests for equality on atomic symbols
NULL tests for emptiness
WRITECAR writes a value in the car field

CAR CAR reads a value from the car field
(CAR-G) decrements a reference count of

the cell pointed by the car field

WRITECDR writes a value in the cdr fieid

CDR CDR reads a value from the cdr field
(CDR-G) decrements a reference count of

the cell pointed by the cdr field

How an operation car(x) is performed is illustrated by an
example. The car opn takes an instruction packet from the
instruction queue in AN interface and examines attribute in-
formation in the instruction packet. If the attribute data indi-
cate that the cell is an atom, the error state is set into the result
packet. Otherwise, the memory cell specified by the val field
in the instruction packet is read from the ref block and the
ready tag is checked. If the ready tag is on, a value z, which
is read from the car field of the cell x, is returned to the IM
as a result value. If the tag is off (which means the value has
not yet arrived), the instruction packet is taken back to the tail
of the instruction queue.

The garbage collection mechanism in Ref opn, which uti-
lizes reference counter field, garbage tag field and garbage
cell address buffer, is illustrated in Figure 9. The reference
number is set to 1 when a getcell operation is executed and
explicitly updated by increment or decrement operation.

When the reference count for a cell x becomes zero as a
result of the decrement operation, the garbage cell address
buffer is checked. If it is not full, the address of the cell x is
stored in the buffer. Otherwise, a tag is set at the correspond-
ing address in the garbage tag field. When room is made in the
garbage cell address buffer by performing a getcell operation,
the garbage tag field is searched and the address of the cell
whose tagis set is stored in the buffer. Read and write accesses
to the garbage cell address buffer are performed concurrently.

A List-Processing-Oriented Data Flow Machine Architecture 151

CAR-G,CDR-G >| DECREMENT (CAR-G,CDR-G QE
7
Queue -
garbage cell address
Garbage tag Ref count
field field ™
tag set
address 0 0
— 1
2 0
3 0 i
5 search a1 K
3 5 0
2 :
0 n 6
N\
—,_] Garbage cell
address buffer
- 1
~

Figure 9—Garbage collection mechanism

The garbage tag search operation is interleaved with tag set
operation; it does not itself set a tag. By using the garbage cell
address buffer, a free cell address can be quickly obtained in
the getcell operation.

6. CONCLUSION

This paper has presented an analysis of some issues concern-
ing list processing under a data flow control environment from
the viewpoint of parallelism and has also presented a new type
of list-processing-oriented data flow machine, based on an
associative memory and logic-in-memory.

The mechanism of partial execution in each function has
been shown by example to be effective in exploiting the
parallelism in list processing. The lenient cons mechanism has
been shown to exploit maximally parallelism among activated
functions.

In the list processing under data flow control, memory con-
tention and garbage collection are serious problems. The
problem of memory contention can be solved by dividing the
structure memory into many banks and by uniformly distrib-
uting access in each bank, since new cells may be taken out
from any bank.

The reference count is effective as a garbage collection
method under a data flow control environment. The garbage
collection algorithm presented here works well in the sense
that cells are reclaimed whenever they are useless, concur-
rently with the foreground list operations.

Many problems remain to be solved for the data flow ma-
chine to be available for practical use. Several works are in
progress to examine the effectiveness of the machine
presented here. These include software simulator construc-

tion, experimental hardware system design, and VALID com-
piler implementation.

The simulator, which collects statistical information con-
cerning the lenient cons effect, cons strategy and memory
partition effect, and garbage collection overhead, etc., is now
running. The experimental hardware system to estimate the
cost performance is under development. The VALID com-
piler written in MacLISP is now under development on the
DEC System 20.

ACKNOWLEDGMENTS

The authors wish to thank Dr. N. Kuroyanagi, the director of
basic research division, and Mr. K. Yamashita, the director of
first research section, for their continuing support and en-
couragement. They also wish to thank the architecture re-
search group members in the first research section for fruitful
discussions.

REFERENCES

1. Dennis, J. B. “A Preliminary Architecture for a Basic Data Flow Pro-
cessor.” The Second Annual Symposium on Computer Architecture, Jan.,
1975, pp. 126-132.

2. Plas, A. “LAU System Architecture: A Parallel Data-Driven Processor
Based on Single Assignment.” Proceedings of the International Conference
on Parallel Processing, 1976, pp. 293-302.

3. Watson, I., and J. Gurd. “A Prototype Data Flow Computer with Token
Labelling.”” AFIPS, Proceedings of the National Computer Conference (Vol.
48), 1979, pp. 623-628.

4. Arvind, K., P. Gostelow, and W. Plouffe. “An Asynchronous Program-
ming Language and Computing Machine.” Report TR 114a, Department of
Information and Computer Science, University of California, Irvine, Cali-
fornia, December 1978.

5. Davis, A. L. “The Architecture and System Method of DDM1: A Recur-
sively Structured Data Driven Machine.” Proceedings of the Fifth Annual
Symposium of Computer Architecture, April 1978, pp. 210-215.

6. Keller, R. M., G. Lindstrom, and S. Patil. “An Architecture for a Loosely-
Coupled Parallel Processor.” UUCS-78-105, University of Utah, Salt Lake
City, Utah, 1978.

7. Dijkstra, E. W. “Guarded Commands, Non-determinacy, and Formal
Derivation of Programs.” Communications of the ACM, 18 (1975), pp.
453-457.

8. Amamiya, M. “A Design Philosophy of High Level Language VALID for
a Data Flow Machine.” Proceedings of IECEJ Annual Conference, 1981,
NO. 1486. In Japanese.

9. Friedman, D. P., and D. S. Wise. “CONS Should Not Evaluate Its Argu-
ments.” S. Michaelson and R. Milner (eds.), Autornata, Language and
Programming, Edinburgh: Edinburgh University Press, 1976.

10. Dennis, J. B., and K. S. Weng. “An Abstract Implementation for Concur-
rent Computation with Streams.” Proceedings of International Conference
on Parallel Processing, 1979, pp. 35-45.

11. Amamiya, M., R. Hasegawa, and H. Mikami. “A List Processing Oriented
Data Flow Machine and Its Software Simulator.” Proceedings of Meeting on
Computer Architecture, IPSJ, 40-8, 1981. In Japanese.

Lookahead networks

by G. JACK LIPOVSKI
AMBUJ GOYAL

and

MIROSLAW MALEK

University of Texas
Austin, Texas

ABSTRACT

A fail-soft and easily reconfigurable interconnection network is proposed that can
function like a bus or like a shift register ring. Its performance as a bus exceeds the
performance of an Ethernet, and its performance as a ring is similar to that of a
distributed local computer network (DLCN). It can be reconfigured to a sufficient
degree to prune out faults or to partition the network into subnetworks that can use
possibly different protocols that are the most suitable for the subnetwork. Its
multiple-level priority arbitration appears very useful for mixed voice-data net-
works, to give guaranteed response times to voice packets. Finally, though it func-
tions like a bus or shift register ring, it is physically connected like a tree; so its cost
is linear and delay is logarithmic with the number of processors in the network, and
it is relatively easy to install in a building by using practices similar to those used in
telephone line networks. This paper describes functions of network-level and some
data link and physical-level protocols and develops several key mechanisms to
achieve ease of diagnosis and fail-softness.

153

Lookahead Networks 155

INTRODUCTION

Interest has recently grown in local-area, or establishment,
networks, whose work stations (usually processors) are about
ten to several hundred meters from each other. Two of the
best contending networks for this application are bus ori-
ented, principally the Ethernet,' and ring oriented,>** prin-
cipally the distributed local computer network (DLCN),?
which is based on the shift register insertion mechanism. Two
DLCN implementations have been introduced. The first,” em-
ploying one simplex channel between processors, is referred
to here as the simplex DLCN. The second,’ employing a pair
of contradirected channels between processors, is referred to
here as the full duplex DLCN. Although the bus and the shift
register ring have some advantages over each other, we will be
able to show a network that includes both these networks as
special cases and has superior characteristics. It is upward
compatible to both.

This paper discusses mainly a specific aspect of the proto-
cols used in the proposed lookahead network. The specific
aspect, in the parlance of the X.25 protocol,'® is the network
level where the interconnection of processors and the deter-
mination of routes for messages are defined. We do not dis-
cuss at length the link level, where frames or packets are
defined, or the transport level, where the breakup and reas-
sembly of user files into frames is defined; and we only focus
on a few of the issues at the physical level, where actual
physical connections and voltage levels and timings are dis-
cussed. The physical-level, link level, and transport level as-
pects of the protocol can be varied, as determined by further
study, to be combined with the aspects described in this paper.
Some of our earlier work® developed the physical level for
optical high-speed interconnections in more detail, and anoth-
er paper’ tentatively explored the shift register ring capability.

The following sections describe the lookahead network. In
Section 2, a functionally equivalent but much simpler network
is introduced. The notions of shift register ring, broadcast bus,
and simplex broadcast link are described, using this simpler
network; and the priority hardware used for the broadcast bus
and the simplex broadcast link is discussed. Section 3 shows
some simple applications of the network introduced in Section
2, and thus of the lookahead network. Section 4 introduces
the conversion of the simpler network into the lookahead
network and describes further ways of reconfiguring the look-
ahead network to accommodate failures and multiple proto-
cols. Section 5 examines the question of timing at the physical
level and proposes a basic structure for the frame at the link
level of the protocol. Finally, Section 6 presents some conclu-
sions in support of the claim that this network is better than
the Ethernet and comparable to the DLCN network.

2. A FUNCTIONALLY EQUIVALENT NETWORK

The network shown in Figure 1la is similar to the proposed
network. It is a ring of AND-OR gates, where each processor
has an AND-OR gate by which it can insert data into the OR
gate, by means of the GENERATE input, and by which it can
permit or inhibit the passage of data through it by means of
the PROPAGATE input. The input to each processor is la-
beled C, and the network is called a ripple network because of
its similarity to the ripple carry in a full adder. An important
special case is one in which the input X is applied to an AND
gate, as shown in Figure 1b. Each processor has a two-input
multiplexer (MUX) whose switch position is controlled by
variable K, realized by the two AND gates and the OR gate
of Figure 1b, as shown in Figure 1c. This basic function of the
ripple network is similar to the network recommended for the
ADLC chip of Motorola MC6854,'® when operated in the ring
mode. However, a ripple network is capable of realizing prior-
ity circuits as well, as shown in this section.

Trivially, the ripple network can realize the shift register
ring or the bus. To realize the shift register ring, put a shift
register in each processor whose input is connected to C and
whose output is connected to X in Figure 1c, and position each
MUX switch to the down position by making K equal 0 in each
each processor. To realize a bus, select exactly one processor
to broadcast data to all the others (in a manner to be discussed
shortly). If exactly one processor is selected to broadcast data,
that processor’s MUX is switched down by making K equal 0
in it, and the data are inserted into its X input while all other
processor’s MUXs are switched to the top position by making
K equal 1 in them. Then all the processors receive that data
on their C input.

A function intermediate between the broadcast bus and the
shift ring is the simplex broadcast link. If the MUX in Pro-
cessors 1 and 4 are positioned downward while all others are
switched upward, then the X input in Processor 1 is received
as the C input to Processors 2, 3, and 4, and the X input in
Processor 4 is received as the C input in Processors 5, 6, and
1. The section of the network beginning with Processor 1, but
not including it, and extending to Processors 2, 3, and 4 is a
simplex broadcast link; and the section beginning with Pro-
cessor 4, but not including it, and extending to Processors 5,
6, and 1 is another simplex broadcast link. The ripple network
can be partitioned into any number of contiguous nonover-
lapping simplex broadcast links at any time. This function is
used in the DLCN protocol. Note that the broadcast bus is a
special case of this function for one section equal to the entire
ripple network and the shift register ring is a special case for
each section equal to just one processor in the ripple network.

The broadcast bus and the simplex broadcast link must have

156 National Computer Conference, 1982

GENERATE

h
D
o
T
p-3
[n]
P Jp—
3
m

|
| ¢ | GENERATE ¢
PROPAGATE :

_______ B

PROPAGATE

(a) Basic circuit

PROCESSOR 6 5

3
(c)Equivalent multiplexer

Figure 1—The ripple network circuit

a method to select exactly one, or one or more, broadcasters
that will supply data. If this is done by a priori analysis and is
then stored in a control memory, the network can be con-
trolled by feeding the output of the control memory to the
MUXs.? A similar protocol on a broadcast bus is described by
Jensen'” in which every node is provided with a list of the
order in which each may send. We will show that the DLCN
uses a simplex broadcast link but uses an extra buffer to
permit data to be output without knowledge of the state
(transmitting or idle) of the other processors. In this case, no
priority circuit is needed. In the Ethernet and the Contention
Ring networks,'? exactly one broadcaster is selected by intro-
ducing collision detection and random delay capabilities in
each node, thereby avoiding the requirement of a priority
circuit. Otherwise, an arbiter or priority circuit is needed. In
the following discussion, two types of priority circuits are
described for the broadcast bus and a priority circuit is de-
scribed for the simplex broadcast link.

The ripple network contains the logic needed to build a
priority circuit for itself so that it can be used as a broadcast
bus or a simplex broadcast link. Referring to Figure 1a again,
a fixed-priority circuit or a round-robin priority circuit can be
implemented for a broadcast bus, as discussed in the following
paragraphs.

For a fixed-priority circuit, say with Processor 1 as the dom-

inant processor in the priority evaluation, let PROPAGATE
be 0 in Processor 6 alone (or equivalently, do not connect the
output of Processor 6 to the input of Processor 1, thus break-
ing the ring into a chain), and let PROPAGATE be 1 in all
other processors. Then if a processor (except Processor 6)
requests the use of the bus, it asserts a 1 on GENERATE.
Note that this 1 will be received by all processors to the left in
the chain. For example, if Processor 3 requests the use of the
bus, the Cinputs to Processors 4, 5, and 6 are 1. The processor
is granted use of the bus if it requests it (GENERATE = 1)
and no processor to its right requests it (C = 0). For example,
if Processors 3 and 5 request the use of the bus, then both
assert GENERATE and no other processor asserts GENER-
ATE. Cis 1 in Processors 4, 5, and 6. Only Processor 3 has
C=0and GENERATE = 1, so Processor 3 is granted the use
of the bus. This implements a fixed-priority circuit.

A round-robin priority circuit is subject to an error condi-
tion in which either no processor is granted use of the bus or
two processors are granted the use of the bus at the same time.
An (error-free) round-robin priority circuit is implemented
simply by breaking the ring at the processor that last got the
grant to use the bus, so that it becomes the lowest priority
processor. If Processor i is granted the use of the bus, it sets
PROPAGATE to 0, while all others set PROPAGATE to 1.
If Processor i again requests use of the bus, it does not assert

Lookahead Networks 157

GENERATE, but instead it simply receives the grant if its C
input is 0 because no other processor requests use of the bus.
All other processors operate as in the fixed-priority case,
asserting GENERATE if they request the use of the bus and
getting a grant if they have GENERATE =1 and C=0. In-
cidentally, if Processor i needs to use the bus for longer than
a normal cycle, it can retain GENERATE =1 until it is
through, because this will assert C =1 in all processors, thus
preventing them from getting the grant. This implements the
(error-free) round-robin priority circuit.

This round-robin scheme is similar to token passing,’ but
there is only a short delay through combinational logic in
bypassing processors that do not need service, whereas the
token-passing scheme required each station to hold a token
for a memory clock cycle. Moreover, this delay in the round-
robin scheme will be further reduced in the lookahead net-
work to be a logarithmic function of the number of processors.
This speedup might be significant for fast (optical) networks.
It allows successive evaluations of priorities of different prior-
ity levels, so that voice packets can have priority over data
packets, and bridge or window sources can have priority over
other servers, as we will discuss in Section 5. This capabil-
ity may prove to be critically important in mixed data-voice
systems.

A fixed-priority circuit for a simplex broadcast bus can be
deliberately or accidentally created if two or more processors
set PROPAGATE to 0 while all others set PROPAGATE to
1. Then each partition of the ring through which propagate is
1 has a separate priority circuit, and each will grant the use of
the bus. If the bus is configured as a simplex broadcast bus,
over which each partition block has a separate priority circuit,
then the priority circuit can serve to grant the use of that block
to a requesting processor in that block. That is a mildly useful
feature.

However, an error can occur in a round-robin full broadcast
bus priority circuit in one of two ways. Either a processor that
did not get the grant can accidentally set PROPAGATE equal
to 0, so two processors have set PROPAGATE equal to 0; or
a processor that got a grant can accidentally set PROPA-
GATE equal to 1, so that no processor sets PROPAGATE to
0. (This is similar to the error in token-passing protocols
where two tokens are created, or the token is lost.)

If two processors set PROPAGATE equal to 0, then the
priority circuit grants use of the bus to two processors, so the
data output on X of a processor will not be received in input
C of the same processor for both processors. The data are
separated, rather than ORed together, because in the broad-
cast bus the processor that sends data also sets PROPAGATE
to 0 when it is sending data, so the two processors that are
sending data will receive data from the other processor.

If two processors are granted use of the bus, both pro-
cessors will have to request that the fixed-priority circuit
mechanism be used in the next cycle, and the next cycle only,
and that the data just received be ignored. This request is sent
by means of a signal sent into the GENERATE input while
the PROPAGATE is set as for the previous broadcast in all
processors. Both processors send out a signal, which will be
the same signal. One processor will send this signal to all the
processors in the ring up to the second processor that broad-
cast data, and it will send the signal to the other processors up

to the first processor. The same effect will be created when
more than two processors appear to get grants, and the result
will correct the fault.

If no processor sets PROPAGATE equal to 0, then a pro-
cessor setting GENERATE equal to 1 will automatically set
itsown C = 1, so no processor will broadcast at all. This is due
to the fact that the GENERATE output will propagate
through each processor, all the way around the loop, setting
the C input to 1 in the same processor that set GENERATE
equal to 1. We will assume that the protocol has a frame called
a null frame (or idle signal), which appears on the network
when no processor is sending a frame, and that this null frame
is never sent by any processor as data. If a processor detects
that it had requested use of the bus, and that subsequently a
null frame appeared on the bus, indicating that no processor
used the bus, the same request signal that was used to signal
multiple grants is asserted, which causes the fixed-priority
mechanism to be used in the next cycle and the current cycle
to be ignored. (The bus temporarily has PROPAGATE = 1 at
all processors, so it acts as a set-clear flip-flop and is “set”
by any processor that wanted to use the bus. This flip-flop
latching effect is terminated when one processor breaks the
loop to become the lowest-priority processor in the fixed-
priority circuit.)

The broadcast bus frame protocol will be defined to have a
frame priority error bit for either the generation of multiple
grants or the loss of a grant. This bit will appear at the end of
the frame.

3. SOME EXAMPLES OF THE USE OF THE
RIPPLE NETWORK

Before passing to the lookahead network, we would like to
establish the advantages of the simpler ripple network relative
to the conventional broadcast bus (Ethernet) and the ring
(DLCN). This will be done in a qualitative but fairly rigorous
way in this section.

The Ethernet is a contention bus protocol. That means that
when two or more processors request use of the bus, they send
a signal and listen to the bus. They do not get the signal they
sent when two or more processors request the bus, because
each processor sends a different signal. They wait a random
amount of time and then send the signal again. When one
finally makes a request while the other is waiting and not
making a request, then that one gets a grant and uses a bus.
Although this does not degrade a lightly loaded network sig-
nificantly, as the load increases, more processors will send
signals, more collisions will occur, and more tries will be
needed before a processor will eventually succeed in getting a
grant. No practical backoff algorithm exists that can reach the
theoretical lower limit of 1.72 collisions (on an average) per
successful transmitted frame.’ In fact, the contention protocol
busses, like the Ethernet, become unstable and provide exces-
sive response times as the throughput is increased beyond the
67% of the capacity of the channel.’

By comparison, the ripple network has a built-in hardware
priority circuit. It uses a different priority mechanism but is
still a bus protocol like Ethernet. (The lookahead network can
implement a contention protocol that uses digital codes rather

158 National Computer Conference, 1982

than analog levels to determine contention.) When two or
more processors request use of the bus, they assert their
GENERATE inputs simultaneously, and one processor re-
ceives the C = 0 that indicates it may have the bus at the end
of a time ¢ that is independent of the number of requesting
processors. In the ripple network ¢ is proportional to the total
number of processors in the circuit, whereas in the lookahead
network it is proportional to the logarithm of the number of
processors, as will be shown later. This shows that the per-
formance of the ripple network is superior to the performance
of the Ethernet in that capacity is significantly increased.

The simplex link DLCN network® uses a variable-length
shift register in each processor that is sending data and a
zero-length shift register in processors that do not send data.
As data is sent by a processor, the data that are coming into
the processor from the previous processor in the ring are
stored in the shift register so that it can be sent out after the
data from this processor are sent out. In this way each pro-
cessor can make a decision about whether to send data based
only on local information (comparing the amount of data to be
sent to the amount of room left on the variable-length shift
register to buffer the incoming data that it will replace), and
a priority circuit is not needed. The simplex DLCN network
is just a ripple network in which the MUXSs in each processor
have more than two inputs, so that data can be taken from
different taps in a shift register or from the data being input
to the processor to implement a variable-length shift register
with a bypass. Thus, the simplex DLCN network is a special
case of the ripple network (Figure 1a) that is different from
the special cases studied above (Figure 1b, Figure 1c). The
duplex DLCN network will be compared to the lookahead
network later.

The ripple network is capable of being used as a broadcast
bus, with similar characteristics, but with better performance
than contention busses like the Ethernet and as a shift register
ring like the simplex DLCN. The bus protocols are advan-
tageous when a command or some data have to be seen by all
processors. The DLCN protocol can have twice the capacity
of the bus protocol for randomly generated messages because,
on the average, the message will use only half the network and
the other half can be used for another message. The ripple
network can be used in either mode.

In addition, the ripple network can be used in special cases
as a simple shift register ring—for example, in the analysis of
data acquired in oil exploration (linear filtering, convolution
integration, and correlation), in some office systems (multi-
ple-query analysis on the same stream of data), and in pipe-
lined processes, such as those that might be created in a UNIX
operating system. When these special cases exist, the simple
shift register protocol can maintain constant capacity between
two processors as the number of processors increases, while
the other protocols would reduce capacity between any two
processors proportionally to the number of processors in the
network. (This weakness of the bus and DLCN protocols is
partially ameliorated in the lockahead network.) The simplex
broadcast link protocol has some advantages where a pro-
cessor tends to broadcast data to a limited group of processors
that can be placed after it in the ripple ring, such as in pro-
cessing arrays of data where each processor stores a subarray.

Each protocol has significant advantages for some class of

problems, and there is no unchallenged claim to universal
superiority. But the ripple network and later the lookahead
network are capable of performing as these networks do.
Moreover, Bokhari' is investigating techniques where local
optimization is done using the ring type of interconnection,
and global optimization is done using a bus. Since global
optimization involves o (n **2) complexity, whereas local opti-
mization involves o (n) complexity, local optimization permits
the parameter n to be reduced before it is squared. This
flexible bus allows such algorithms to be used without the cost
of implementing two separate interconnection networks.
However, the entire ripple network will have to function in
one mode or another at any given time. We would like to be
able to partition the network so that different parts of it could
use different protocols that are adapted to the problem being
executed in that part. Also, a failure of any processor, espe-
cially a stuck-at-one failure where it keeps broadcasting data
forever, will bring down the entire network. For these rea-
sons, we introduce the lookahead network in the next section.

4. THE LOOKAHEAD NETWORK

The ripple network can be used as a chain of MUXs, which
may realize many different networks, as we have demon-
strated in the last two sections. It is structurally the same as
the ripple carry circuit that is used in the parallel adder. As is
well known in computer design, one can create a circuit func-
tionally equivalent to any combinational circuit in two levels
of logic, just using the sum-of-products expansion; and the
sum-of-products expansion of the ripple carry circuit is the full
carry lookahead circuit. While it features constant (two-level)
delay for arbitrary n (number of bits added), it is a complex
circuit, even when put in one chip, and is certainly too com-
plex to be used as a local-area network. Between these two
extremes, the ripple circuit and the full lookahead circuit, a
recursively defined lookahead circuit can be implemented in
a tree structure. Basically, for an n-bit adder, f bits are com-
bined in a group, and this group, as a 2**f-ary digit, is added
with other similar groups to combine them into a group of bits
equivalent to a (2**f)**2-ary digit, using a full carry look-
ahead circuit to implement addition in each group. This com-
bination into larger groups is repeated until the entire n-bit
number is one group. This creates a tree having log n base f
levels, and each nonleaf node in the tree is a carry lookahead
circuit. The most common such circuit is that for which f = 4,
and widely available ICs such as the “carry-lookahead gen-
erator” 74182 and the 2902 can be used. The simplest circuit
to describe, however, is that for which f = 2 (see Figure 2). We
will discuss that circuit in this paper, but the theoretically
optimum network has f = 3;* and results will apply to any
fixed f, and for that matter