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The Pitt time-sharing system for the IBM system 
360: Two year's experience 

by GEORGE F. BADGER, JR., E. ANDREW JOHNSON 
and RICHARD W. PHILIPS· 

University of Pittsburgh 
Pittsburgh) Pennsylvania 

INTRODUCTION 
Overview of the system 

The University of Pittsburgh has developed a 
console-based Time-Sharing System,l and has had 
it in service since March of 1966. This paper is 
to serve as a report on the utilization of such a sys
tem and on certain conclusions we have come to 
regarding Time-Sharing Systems. 

First, we would like to describe the services 
available under this system. The services range 
from a highly conversational and interactive lan
guage called the Pitt Interpretive Language (PIL) 
to languages on which no substantial advantage is 
gained by use of a console. PIL is fully inter
pretitive and has placed heavy emphasis on mak
ing things easy for the user. A great deal of care 
is placed on giving meaningful diagnostics and 
easy error correction. Decisions in the initial im
plementation between coding efficiency and ease 
of use were always made in favor of the user. In 
8, second version of the interpreter some emphasis 
is being put on efficiency while retaining the error 
handling facility. The ability to service a number 
of programs such as PIL, with the required speed 
of interaction, is our justification for calling this 
a Time-Sharing System. 

The second class of services are those which are 
partially interactive or in which the user gains 
some advantage by working from a console. These 
include an OS compatible Assembly Language, 

*Currently with White, Weld & Company 

lThis system was completely written by Computer Center 
Staff and has no dependencies on other operating systems. Parts 
of the system are compatible with OS/360, and several language 
processors are fully compatible. 

1 

anda portion of the OS macro compiler capability, 
a FORTRAN IV compiler with a pre-editor, a con
versational contex editor, and a file maintenance 
package. Again in the case of the shared file sys
tem, great care was exercised in preserving ease 
of use. 

During his use of the system the user may take 
advantage of any or all of the facilities. He may 
switch processors as often as desired, and may 
intermix certain command language statements 
while working within a processor, e.g., list part of 
a file while preparing a program which will work 
with it. 

This entire set of services runs on an IBM Sys
tem/360 Model 50, utilizing a 2361 large capacity 
storage (LeS) unit. The configuration and some 
idea of the storage utilization are presented in 
Figure 1. The most imlJOrtant components of this 
system are the large capacity storage and the 2314 
disk system. The system .runs with the user stor
age being contained in LCS, both while the user is 
idle and while he is in execution.2 The high speed 
storage of the machine is utilized for one proc
essor and. the operating system as can be seen 
from Figure 1. The primary processor resident 
in high speed storage is the interactive language 
processor. Because input to the assembler forms 
:l large part of the service of the system, the as
sembler also is resident, but in LCS. Assembly is 
an I/O bound process compared to PIL which is 
compute bound. 

2When neCE'ssary, the system will resort to memory swaprin~ 
onto an IBM 2314 disk. This happens with approximatf'ly 30 
users signed on, otherwise memory is allocated in ('ontjguou~ 

blocks from a free pool when the user signs on. 
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The system services something identified as a 
user who consists of a principal input file end a 
principal output file. Of the 32 users on the sys
tem, as of April, 1968, 31 have a remote console 
for these principal files. We currently support 
IBM 2741 and 1050, Teletype 33 or 35, Friden 
7100 or 7102, and Sanders 720 scopes. 

Because of the structure of the system, it is also 
possible to introduce one or several pseudo-batch 
background users whose principal input and out
put files could be any devices on the system. As 
of April, 1968, one such user runs in the system 
from a 2540 card reader to a 1403 printer. The 
services available to this batch user are identical 
to those available from the remote console. The 
only difference in his treatment is that a fatal 
error results in going to the next job-rather than 
allowing further input which, in the case of "a con~, 
sole, could be attempts at correction. 

The system' favors those who are working in a 
conversational mode, and has a simple queueing 
system to allow very rapid response to minimal 
requests. Because of the emphasis on interaction, 
the completion of any I/O results in the user be
ing dispatched to a high priority queue which will 
get service as quickly as possible. Upon being put 

into this queue, the user will follow all those who 
arrived in the queue beforehand, and then re
ceives one-quarter second of central processing 
time. .During the one-quarter second, he may 
either run out of things to do (for example, be
cause of issuing requests for further I/O and 
waiting for their completion), or he may use the 
entire one-quarter second. In the latter case, he 
goes into a lower priority queue which receives 
service on a time available basis. The quantum of 
time given in this lower priority queue is increased 
to two seconds. This then is a general description 
of the system and its services. 

Patterns of sy'stem utilization 

The use of the system has increased very rapid
ly during the two years that the system has been 
in use. As of April, 1968, we run approximately 
5000 console sessions per month, and approximate
ly 3000 of the batCh jobs. The console sessions use 
all of the services, but the batch user typically re
stricts himself to the use of either the Assembly 
Language or the Fortran Processor. In the con
clusions of this paper we will make some comment 
on the choice by the user as to whether he runs in 
the interactive -or pseudo-batch mode. 

As far as the time utilization within the system, 
PIL accounts for approximately 23 % of the Cen
tral Processor time available. That is, during a 
ten~hour day, 21h hours ·are actually devoted to 
the execution of PIL programs.s User execution 
of other processors and generated code accounts 
for an additional 20 0/0. The processing of super
visor calls and general system overhead accounts 
for 15 %, and the Central Processor is in the idle 
state 17% of the time. The servicing of I/O in
terrupts, and disk unblocking with data transfer, 
accounts for the remaining 24 %.4,5 (The CPU is 
busy 83 % of the time.) 

Within this pattern of utilization we are in
terested in the demands put upon the system in 

SPIL, being fully interpretive, is very slow in execution. On a 
matrix inversion, for example, a PIL program will execute at 1/75 
the speed of a Fortran program. excluding its compilation. A 
second implementation of PIL will significantly modify this 
ratio. 

'All .statistics in this paper are representative, but do not 
necessarily hold for long periods, e.g., a month. 

5Because of the extremely heavy dependence of the System on 
the IBM 2314 disk with an associated file system, the CPU is de
voted to blocking variable length records. This is explained later in 
the paper. 
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more basic units. In particular, there is the ques
tion of how much CPU time is required as a time 
slice, since this partially determines the ability of 
a given system to support conversational users. 
Table 2 and Graph 1 present this data in some 
detail. 

These figures show an average time slot of 
(20±5)/300 seconds. The data, however, do not 
show the reason for termination of user execution. 
Since the user is primarily interested in being 
termiiIated because his work is complete, more 
important data are presented in Table 3. The data 
present the system as a finite Markov process6 

with the transition probabilities for the set of all 
users (the system) being given. 

The data presented in Tables 3 and 4 represent 
a composite of two periods, one relatively light 
and the other extremely busy.7 Values with the 
superscript (1) varied considerably with the prob
ability of going from user execution to SVC vary
ing from .7 to .3, the probability to I/O from .3 
to .7, and the average time spent in user execution 
taking the values 3.89 and .65 respectively. All 
other values of interest remain relatively stable. 

Since the user is frequently taken out of execu
tion due to an I/O interrupt, we are currently at
tempting to study the impact of masking these 
interrupts for a short period of time (approxi
mately 25/300 seconds-the level at which Graph 1 
flattens out). By doing this, approximately 95 % 
of all requests for service would be serviced in a 
single slice and without interruption. This should 
preserve the response time of the system for short 
requests, as well as utilizing peripherals effec
tively. This would make response time only slight
ly dependent on the system loading. On the other 
hand, it might allow quicker preparation of work 
which will finally require computation of longer 
duration. 

We could consider the strategy above as mini
mizing the maximum response time for a request 
up to some limited size. Since a stable level of re
sponse time appears to be at least as important 
as fast response, we are also considering the re-

8Treating this as a Markov chain, finding the steady state 
vector, and using this to predict percentages of time spent in 
the various states yields surprisingly accurate results. This will be 
studied further in a later paper. 

?The system seems· to be representable as a Markov chain, 
i.e., the transition matrix is constant for extended periods of time. 
It does seem to vary over time, but the variation is basically 
related to level of activity, or time in the idle state. 

verse. That is, never respond in a period less than 
the period the system is capable of sustaining. 
Such a level, if it fell between one and two seconds 
would give very good performance from the con
yersational users point of view. Further, it would 
provide increased flexibility in choice of schedul
ing. This last might be of great importance if a 
swapping or paging mechanism were in use since 
you could reduce channel activity by choosing 
opportune times for the transfer. 

The data presented above are representative 
but are not system parameters. They are intended 
only to give a picture of the relative activities 
within a time-shared environment. 

System states for Tables 1-4 

User execution-The system is running a user 
program including use of compilers, assemblers 
or interpreters or the file system. PIL execution 
plus other user executions. 

SVC-A request has been made for supervisor 
services via the SVC instruction-mainly I/O re
quests. 

I/O-An I/O interrupt is being processed. 
Overhead-A clock trap is being processed, the 

scheduler is running, or certain overhead routines 
are in use (queueing etc.). 

Idle-The CPU is in wait status, i.e., not run
ning. 

TABLE I-CPU Utilization 

STATE. PERCENT OF TIME 

PIL Execution 23 

Other User Exec. 20 

SVC Processing 5 

I/O Processing 24 

System Overhead 10 

Idle (CPU waiting) 17 

Some conclusions 

The utilization of the LCSs unit has proved to 
be extremely successful on the Model 50. Because 
of the overlapping of the rewrite cycle on core 
with Central Processor execution, many programs 
run almost as fast out of LCS as they did in Cen-

SLCS is an 8p. memory with a 4 byte fetch when used by a 
Model 50. In all other respects it is identical to main memory. 
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TABLE 2-Frequency of time slots actually given prior to 
seeking another user to execute 

Percent of Slots Percent of Slots 
Time in 1/60 Second Exactly This Size This Size or Smaller 

1 or less 48 48 
2 20 68 
3 6 74 
4 3 77 
5 2 79 
6to 14 8 87 
15 10 97 
16 to 120 ~' 100 

GRAPH 1 

Frequency of Time Slots Actually GiVen 
Prior to Seeking Another User to Execute 
versus Size of Slot in Percent 
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TABLE 3---: Transition probabilities of the system states 

Next State 

User Over-
Exec SVC I/O head Idle 

User (1) (1) 
Executing 0 .32 .66 .01 0 
SVC .45 .45 0 .10 0 

Current I/O .90 0 0 .10 0 
State Overhead .82 .0 0 .10 .08 

Idle 0 0 95 0.1 .04 

TABLE 4-Average time spent in current state before moving to 
next state in 1/300 second 

User 
Executing 

Current SVC 

State I/O 

Overhead 
Idle 

Next State 

User Over-
Exec SVC I/O head Idle Mean 

(1) 
0 1.77 1.17 49.29 0 1.49 

.75 3.08 0 .91 0 1.81 

.92 0 0 1.25 0 97 

.20 0 0 1.0 1.54 .38 
0 0 14.65 237.39 8.73 15.74 

tral Memory. In the case of PIL, the interpreter 
itself is resident in the main storage while its 
data, or the text of the user's program, is resident 
in LCS. Timing tests have indicated that while 
there is some degradation of PIL's speed due to 
this (20% or less), it probably is not significant 
when compared to either swap or batch mechan
isms for other Time-Sharing Systems. 9 While the 
LCS proves to be very economical on the Model 
50, its effectiveness would be somewhat reduced 
on a M'Odel 65, and probably greatly reduced on 
a Model 75 because of their greatly increased in
ternal speeds. If we were to move the system to a 
Model 75, it is quite likely. that rather than execut
ing out of LCS, we would use the LCS as a swap 
device analogous to a drum. One of the reasons 
that the LCS has proved very effective is that 
many 'Of the requests within a Time-Sharing Sys
tem are for very minimal amounts of Central 
Processor time. Of all the times when a user' is 
put into execution, the majority of these times he 
has requested execution for the purpose of enter
ing a single line to a processor such as the as
sembler 'Or the interpreter. These requests can be 
serviced in a matter of several thousandths of a 
second, and the relative lack of speed on the large 
capacity storage has no significant effect on per
formance. 

The second area in which we have drawn some 
conclusions with regard to the Time-Sharing Sys
tem is that the file system is probably the most 
important single part of the system. This is true 
both 'in the sense of being a major concern, of 
users, and of being a major potential bottleneck 
if handled poorly. Consistent with data presented 
in earlier papers by other auth'Ors, each request 
for' service by a user generates a demand for 
several thousand characters of data to be trans
mitted from the disk system.10 Our early imple
mentation of the file system was a very straight
forward, unblocked and unbuffered tape simula
tion. The file' system· was sequentially structured. 
It soon became evident that the pattern of requests 
by users was such that a tremendous amount of 
head movement was necessary for this unblocked 

'Considerable work has been done on the use of LCS as the 
swap/paging mechanism, and this provides great promise for 
future development. It is currently not possible to page on the 
Model 50, and this limits the value of this alternative. 

lOThis is user owned data and does not include any "overhead" 
transmission. 
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mechanism. To improve the performance we have 
come to quite a different concept on the disk sys
tem. The basic unit of physical activity on the 
disk system is now the reading or writing of 2,048 
character rec'Ords. The logical records, as seen by 
the user, are all treated as being variable length 
and are blocked automatically by the system. Here 
also LCS is of great value since 50-lOOK of buffers 
make system performance more efficient. 

A descriptor, prQviding a record of the blQck
ing, is associated with each 2,048 byte recQrd and 
the system can pull these records apart very rapid
ly UPQn request by the users. On a single physical 
read 'Or write, the user nQW makes available tQ 
himself 25 card images, fQr example, thereby 
causing 1/25th 'Of the number 'Of seeks and inter
rupts tQ be prQcessed. This has had a tremendous 
impact 'On the perfQrmance of the system both in 
the amQunt of time that the system has kept idle 
because of having tQ access disk recQrds, and the 
amQunt of elapsed time while a user is doing 
sQmething such as assembling, IQading 'Or CQm. 
piling. The imprQvement was 'On the order 'Of 30 
tQ 1. Given a high speed file system such as this, 
a.nd a very easy mechanism for using it, the users 
rapidly learn tQ take advantage 'Of the facility. 
This is important nQt 'Only to the user whQse time 
is saved, but it is alsQ extremely impQrtant tQ the 
system since it can accQmplish much more wQrk
ing frQm disks than it could wQrking frQm 'Other 
devices. Further, it expands the size 'Of jobs which 
are feasible under the system. Als'O, it greatly de
creases the prQbability that an I/O request will 
require physical activity, entailing possible chang
ing 'Of users which may alsQ require swapping 'Or 
paging. It will alsQ reduce the number 'Of inter 
rupts. 

A third area in which we have drawn SQme con
clusions regards the integrity 'Of perfQrmance 'Of 
a Time-Sharing System. We have learned 'Over 
the CQurse 'Of tWQ years, nQt always in a painless 
manner, that the user 'Of a Time-Sharing System 
is quite different in his demands than the user of 
any other system. He expects the system tQ be on 
when it is scheduled tQ be 'On, and to perform in 
a rather stable manner while it is 'On. In particu
lar, he expects the file system tQ perform perfectly 
at all times S'O that any wQrk he dues will never 
have tQ be redQne. The user 'Of such a system typi
cally has a scheduled time at which he and the 
system are tQ wQrk tQgether and if the system is 
nQt available at the time, he cares very little why 

'Or what kind 'Of excuses you can present. The user 
is typically quite reasQnable if yQU give him ade
quate warning that the system will not be avail
able at any given time. 

Maintaining the sQftware prQgrams 'Of such a 
system is of considerable difficulty and shQuld nQt 
be further cQmplicated by the intrQductiQn 'Of ma
chine perfQrmance prQblems. The area in which 
we have incurred the mQst difficulty is that manu
facturers dQ nQt understand systems which are to 
run reliabily fQr extended periQds 'Of time. There 
seems tQ be no cQmfQrtable middle grQund between 
extreme safety built into systems such as the FAA 
and 'Other military systems, and thQse systems of 
the secQnd generatiQn which ran adequately fQr a 
batch processing envirQnment. This lack 'Of un
derstanding is found 'On many levels but perhaps 
most significant is the lack of any facility fQr in
fQrming the user when malfunctiQns have 'Oc
curred and the system is 'Off the air. In general, 
there are many small rQugh edges in present 
equipment. An area of difficulty is that SQme part 
of the configuratiQn usually is in marginal condi
tiQn. The installatiQn does nQt wish to terminate 
service cQmpletely fQr an extended periQd. The 
Inaintenance 'Of the machine typically requires 
this. The machine nQrmally runs in a partially 
crippled cQnditiQn 'Or not at all. An 'Overall change 
in the maintenance methQdQlogy must 'Occur SQQn. 

A fQurth area 'Of experience relates to the use 
'Of the consQle system versus the use 'Of its batch 
equivalent. Since the user has accessible identical 
facilities under each envirQnment, we CQuld ex
pect him tQ mQve tQ that manner 'Of QperatiQn 
which perfQrmed best fQr his jQb. This experi
ence must be regarded carefully since the batch 
system often requires a IQng walk whereas, CQn
sole service is available I Qcally. 

Clearly, in the area 'Of interactive languages 
with emphasis 'On CQnversatiQn, yQU would expect 
the user tQ remain 'On the CQnsQle and this has 
been 'Our experience. It is very unusual tQ find 
any user submitting a batch jQb which is a PIL 
'Or cQntext editQr run. One 'Other use 'Of batch is 
the creatiQn 'Of tape and disk files fQr use frQm 
the cQnsQle. 

The Assembler and FQrtran are nQt 'Overly CQn
versatiQnal and dQ nQt take great advantage 'Of 
the fact that the user is available. In the case 'Of 
FQrtran, the work is ab'Outequally divided between 
jobs submitted under the batch system, and j'Obs 
executed from the c'Ons'Ole. The Assembler, which 
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gets its main use by students in beginning pro
gramming courses, is probably used more under 
the batch system than under the console system.ll 
After programs are running in either of these 
languages, the user typically will leave his object 
program on disk and will revert back to using the 
console for execution or for final debugging. It 
should be noted here that in addition to the Time
Sharing System on the Model 50, the Center makes 
available a batch processing system on an IBM 
7090. There seems to be a rather clear dividing 
line rapidly discovered by the users between the 
jobs which should be done on the 7090, and jobs 
which should be done on the Model 50. The two 
machines are of approximately the same ctapabili
ties as far as speed and storage space are con
cerned. Those jobs which are heavily compute 
bound remain on the 7090 as do any jobs which 
gain little 'Or nothing by interaction. 

Because of the lack of success of other installa
tions in using a Time-Sharing System for all of 
their computing and because 'Of our own success 
with the two independent systems, we plan to 
provide a 360 batch system (OS/360) on a second 
M'Odel 50 to maintain systems which are fitted to 
th.e differing demands by our users. Running the 
two facilities in parallel should give a clearer pic
ture in the future of the relative advantages of 
time-sharing and batch processing. 

Future direction8 

The system is still under development and we 
are continuing to add facilities if we find them 
useful as manpower permits. We are in the proc
ess of adding other pr'Ocessors including Algol, 
PL/1 and further extensions of Fortran. We als'O 
plan to implement some kind of a random access 

llThis is at least partly due to the fact that some understanding 
is required to be able to effectively debug machine language at a 
console. 

and index sequential file structure although it is 
not clear that these will be implemented within 
the shared file structure we currently use. 

Another useful service that we plan to imple
ment is the ability t'O submit jobs to either Model 
50 system from the remote consoles. In order to 
implement this, we will· put a channel-to-channel 
attachment between the two Model 50's as well as 
making parts 'Of the 2314 disk available t'O both 
systems. How far we will push this effort is un
determined at present. Finally, in an effort t'O 
reduce the number 'Of interrupts presented to the 
system, and in 'Order t'O maintain effective utiliza
tion of unit rec'Ord equipment, we are putting to
gether a spooling package for the printer, punch 
and card reader. This will allow blocking to be 
done by the channel program with one interrupt 
per block. These sp'Oolers will w'Ork in such a way 
as to present a j 'Ob stream which runs from one 
disk file t'O another in the same manner as the 
batch job stream currently runs from the card 
reader to the printer. 
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Debugging in a time-sharing environment 
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INTRODUCTION 

In the past 10 years, rapid advances have been made in 
computer engineering and programming. Among the 
significant achievements have been the development of 
more powerful computers, multiprocessing systems, 
high-level language compilers, multiprogramming oper
ating systems, and time-sharing systems. 

But there is one area in programming in which pro
gress has been comparatively slow. This is the area of 
program debugging aids. The problem of finding and 
correcting program bugs remains perplexing and costly. 

When computers were used to run stand-alone pro
grams or to run programs under small operating sys
tems, conventional debugging tools - such as console 
key procedures and system-provided dump, trace, and 
status information - met most debugging needs. But, 
as programming systems have become more complex, 
existing debugging tools have become barely adequate 
for tracking down and correcting program bugs. 

With the introduction of time-sharing systems, the 
conventional tools have become almost worthless. This 
has forced a reappraisal of debugging procedures. It has 
become apparent that a new type of debugging tool is 
needed to handle the special problems created by a 
time-sharing system. These special problems result from 
the dynamicoharacter of a time-sharing system - a 
system in which the program environment is con
tinually changing, a system in which a user is unaware 
of the actions of other users, a system in which program 
segments are r~Iled in and out of storage locations, and a 
system in which one copy of code can be shared by 
many users. To debug in this dynamic environment, 
the programmer needs a debugging support system - a 
set of debugging programs that operate largely indepen
dently from the operating syste~ they service. 

This paper examines conventional debugging tools 
and appraises their adequacy in view of programming 
advances. It then discusses the characteristics of a sup
port system that meets the debugging and program mod-

ification needs of a time-sharing system. This support 
system can be an important vehicle for advancing de
bugging technology. 

Currem debugging tools 

Two kinds of debugging tools have been available to 
programmers running stand -alone programs or running 
programs under an operating system; machine-level tools 
and system-level tools. 

Machine-level tools consist of procedures available at 
the system operator's console. These include such 
items as the stop key, start key, instruction step, 
address stop, and displaying and altering the machine 
state. 

System-level tools are debugging tools provided as part 
of the programming system itself - including facilities 
to produce such things as storage dumps, traces, and· 
system error recovery data. 

These tools could be used to obtain the information 
needed to start debugging. To be useful, this informa
tion must include: 

• The hardware configuration at the time the error 
occurred. 

• The version of the operating system that was 
being used. 

• The input parameters for the program. 
• The condition that indicated the error (stop, 

loop, erroneous output, etc.). 

With this information, the programmer begins de
bugging. He is likely to follow the four classical steps in 
the debugging procedure: 

7 

1. Attempt to duplicate the failing condition so he 
can obtain status information at the point of fail
ure. 

2. Initiate system-level debugging procedures, in
cluding acquisition of storage maps and collection 
of intermediate results from internal tables and/or 
data areas. 
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3. Initiate machine-level debugging procedures to 
isolate the cause of the error. This step is neceS.5ary 
when a peculiar condition (such as a timing depen
dency) produced the error but was not reflected in 
the system-level debugging data. 

4. Correct the error. 

To summarize, the solution of a program bug requires: 
(1) a complete report of the conditions under which the 
error occurred, (2) use of system-level debugging tools, 
and (3) if necessary, use of machine-level debugging 
tools. 

Evolution oj debugging tools 

Each step forward in computer operations has pro
duced the need for new and better debugging tools. This 
has been evident in the transition from stand -alone exe
cution to operating system execution, and now in the 
transition to time-sharing execution. 

Before the existence of operating systems, the pro
grammer was concerned with a single program with 
which he was totally familiar. In most cases, he could 
debug that program with machine-level tools. But the 
process was time-consuming and many programmers 
started to build hooks into their programs to obtain 
intermediate results for later analysis. This marked the 
beginning of system-level debugging tools. 

The introduction of operating systems - and espe
cially multiprogramming systems-has forced program
mers to be more reliant on system-level debugging tools. 
The use of console debugging has been discouraged and 
in many cases, it has been prohibited entirely. Without 
aCcess to the console, programmers learned to rely on 
debugging aids built into the operating system. 

Today, the operating system programmer assigned to 
the debugging task must depend upon a fixed set of sys
tem-level debugging tools. These tools and their output 
are predefined - often consisting of a dump in a pre
scribed format. The tools lack flexibility, and they pro
vide only limited information. 

These built-in tools have a major drawback. As an 
operating system grows, system-level tools must con
stantly be updated (or new tools must be created) to 
serve the new functions being added to the system. 
It is apparent that the growth of operating systems 
has already obsoleted the once effective and efficient 
debugging tools originally designed for their main
tenance. The addition of more tools merely forestalls the 
inevitable - the appearance of one more bug, one 
more unanticipated situation. 

It becomes necessary, therefore, to turn to a new 
type of debugging tool - a debugging support system. 
Such a system should be part of, but function separately 
from, the operating system it services. The support sys
tem must be flexible enough to cover the widest range of 

potential debugging and maintenance needs of the "par
ent system/' yet it must be simple enough in structure 
to be bug-free within itself. 

N eedJor a debugging support system 

Impetus for the development of a debugging support 
system has resulted primarily from the introduction of 
time-sharing systems. Several major considerations 
have fostered design of such a system. 

First, the three most important pieces of informa tion 
required to start debugging (hardware configuration, 
description of input parameters, and description of 
output condition) are not available in a time-sharing 
system. Note the following: 

• Hardware Configuration: Because there are many 
users of a time-sharing system, it is impossible 
for an installation to report the number of 
devices, central processing units, storage ele
ments, channels, etc., that were in use at the 
moment the problem occurred. 

• Description oj Input Parameters: In an extreme 
case (such as an error in a shared program), it is 
important to know the input parameters intro
duced by all users of the system. Depending on 
the number of users the chance of obtaining this 
information ranges from the remotely possibl e 
to the literally impossible. 

• Description of Output Condition: A description of 
the state of the machine at the moment the prob
lem occurred is needed. If a user does not know 
what caused a bug, the contents of all storage de
vices for all users must be printed. Using the fast
est available printing devic~, this action is pro
hibitively time-consuming and cumbersome. 

A second major consideration is the need for an "on
site" debugging tool for each terminal user in a time
sharing system. When a bug is detected, a time-sharing 
user does not want to transmit the problem to a central 
location and await its solution. The tool must be imme
diately available for debugging at the moment and under 
the conditions in which the problem occurs. 

Another major consideration is the· need for a "con
versational" tool that permits the terminal user to make 
repeated attempts to locate and correct his bug. If the 
user fails in his first attempt to locate the bug, he can 
try again and again and again without interfering with 
other users of the system. 

And finally, there is a need for total flexibility. The 
debugging support system should provide generalized 
functions that the user can then employ as necessary. 
This circumvents the problem of predefined tools and 
gives the l,lser a high degree of flexibility in defining his 
own debugging procedures. Provision of generalized 



functions also increases the life-span of the support 
system by making it unnecessary to add to the support 
system as the parent system grows. 

Definition of a ,time-sharing support system. 

Since the authors' experience has been in writing 
general purpose control programs, assemblers, compil
ers, input/output supervisors, and similar programs, 
the term "system program" has take~ on a particular 
meaning. In this discussion, the term "system pro
gram" is used to designate those programs not function
ing directly to solve a specific data processing problem 
(e.g., data reduction, payroll processing, model simula
tion, etc.) but rather those general-purpose programs 
that perform generalized functions for many users (e.g., 
a supervisor, a program loader, a compiler, etc.). 

The support system described in this paper need not, 
however, be limited to this type of system progra.m. The 
function of the support system requires that it be at 
least relatively independent of (i.e., not utilize) those 
programs being supported. An axiom of the concept of 
support systems is that an functions upon which the 
support system depends must work perfectly. It is, 
therefore, technically simpler to construct a support 
system for "non-system" programs since the functions 
of the parent system (e.g., the I/O supervisor, the pro
gram loader) are readily available for use .. 

The terms "debug" and "bug" are and will be widely 
used alUong progralUlners and in other development en
vironments. In this discussion, the term "bug" is used 
to mean any programming failure due to faulty logic, 
clerical errors, or timing considerations. It does not refer 
to failures of hardware. 

By now is it apparent that the debugging tools that 
served us so well in the past are no longer adequate. 
They must be replaced by a meaningful debugging sys
tem - a system that can be used to solve the perplexing 
problems posed by the time-sharing environment. 

It is feasible to produce that system today. The 
talent, experience, and knowledge needed to create a 
highly sophisticated on-line debugging system are avail
able. 

What IS needed for time-sharing. is a debugging sup
pt",rt system that meets the following requirements: 

• The system should permit a system progralUlner 
at a user terminal to debug system progralUs 
associated with his task. When used in this man
ner, the support system should operate in a time
sliced mode. 

• When used to debug a separate task, the support 
system should provide the facility to modify a 
system progra.m in relation to that task, without 
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affecting the program as executed in relation to 
other tasks. 

• When a system program bug cannot be located 
and repaired from a user terminal, the support 
system should permit a skilled system program
mer at a central location to suspend time-sharing 
activity until the error is located and repaired. 
The support system should then permit time
sharing activity to be resumed as though there 
had been no interruption. 

• The support system should permit a system 
programmer to monitor the progress of any task 
from a remote terminal or from the user's termi
nal. 

• The support system should contain the facility 
to remain dormant until activated by a specified 
condition. When activated by the condition, the 
system should be able to gather specified data 
automatically and then permit processing to con
tinue. 

• In its dormant state, the support system should 
not impact the perfonnance of the parent tinle
sharing system. 

• The support system should use a minimum of 
main storage and reside primarily on high-speed 
external storage. 

• The support system should be completely inde
pendent of the time-sharing system (that is, it 
must use none of the facilities of the parent sys
tem), and it must be simple enough to eliminate 
any requirement for a support system of its own. 

An effort is currently under way to produce a time
sharing support system that meets these requirements. 
The next section describes the characteristics of that 
system. 

Description of a time-sharing support system. 

This section describes a time-sharing support system 
in very general terms, concentrating more on the user 
interface than either the parent system or the specific 
implementation.; While the discussion is general and 
applicable to the time-sharing system concept, it should 
be noted that the authors' experience has been with only 
one time-sharing system and is limited in scope. 

The support system consists of a command language, 
a set of verb-processing programs, and supporting ele
ments (such as an independent input/output super
visor). 

The support system is interrupt-driven as are all 
time-sharing systems. The primary driving force is sup
plied by an input/output interruption that originates 
at a system progranuner's terminal, where the system 
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programmer directs the debugging activity by using a 
conversational command language. 

Any time -sharing system consists of a set of programs 
that dynamically reconfi~e themselves to fit the de
mands of a variable set of terminal users. No other pro
gramming system has presented thedata-capturingprob
lems posed by a time-sharing system. The design of 
a debugging support system must, therefore, approach 
the data-capturing problem with new techniques. These 
techniques must be oriented to and operate with the 

.. total time-sharing system. 
j' 

The inclusion of the support system requires very few 
additions, extensions, or changes to the basic time-shar
ing program. The most important change is in the tech
nique of handling interruptions from input/output 
channels and passing them to the processing programs. 
When the support system is dormant, the time-sharing 
system stacks all interruptions and processes them im
mediately. But, when the support system is active, the 
support system interruptions are filtered out of the in
terrupt stream and passed to the support system for im
mediate processing. The parent system interruptions 
are stacked, but they are not serviced until the system 
programmer allows production processing to resume. 

The support system consists of two major components 
- a Supervisor Support System which interfaces with 
the Supervisor of the time-sharing system and Problem 
Program Support System which interfaces with those 
portions o~ the system available to the user (system 
services, shared code, "virtual storage," compilers, as
semblers, etc.). 

The "user" of the support system can be either of the 
following: 

• A Master System Programmer (M SP) : This is a sys
tem-oriented user at a single terminal assigned to 
the Supervisor Support System. He has the privi
lege of examining or altering information or setting 
up controls anywhere in the system. This gives him 
the power to alter control programs that perform 
services for all tasks in the system. 

• A Task System Programmer (T SP): This is a system
oriented user at a terminal associated with a task 
currently active in the time-sharing system. Task 
debugging operations can be performed concur
rently from more than one terminal. The debugging 
operations at each terminal are under control of the 
Problem Program Support System. The task sys
tem programmer may perform actions that affect 
only the task with which he is identified. 
NOTE: In the remainder of this paper, the term 
system programmer is used to refer to both the 
master system programmer and the task system 
programmer. 

The support system is designed to aid a system pro
grammer in finding the cause of a failing system com
ponent. It is intended, to help uncover logical flaws or 
clerical errors in the system software. Thus, its func
tion goes far beyond that of a built-in error correction 
routine (such as an input/output error routine) that is 
used merely to correct a transient failure. 

The system programmer uses a terminal command lan
guage to control the support system. The commands en
able the system programmer to perform a variety of func
tions. They allow him to check on the progress of the 
time-sharing system, to modify the parent system dur
ing its execution, to capture static data from a fluid sys
tem for dump or display, and to localize a system pro
gramming problem in the parent system. The com
mands provide a set of generalized functions that the 
system programmer can use to perform a wide range of 
debugging procedures. 

~1ore specifically, the system programmer has the 
ability to do the following: 

• Display data fields and instruction locations any-
where within the system. 

• Display contents of machine registers. 
• l\lodify variables within the system. 
• Specify instruction locations within the parent 

system at which execution is to be stopped. The 
user can then intervene to alter or display data 
before time-sharing execution is resumed. 

• Specify locations within the parent system at 
which data displays, alter actions, or dumps are to 
be executed automatically. 

• Establish logical expressions to control continua
tion or termination of execution of a support sys
tem command string. 

The most-difficult of all program bugs to analyze are 
timing errors. This difficulty arises primarily because 
the exact conditions causing the error are not known or 
are,not reproducible. The injection of a support system 
activity into an operating system, wherein multiple 
events are occurring simultaneously, will obviously alter 
the time relationships. The SCOPE command which 
would attempt to minimize this alteration is discussed 
under" Future prospects for the support system." 

By its very nature, the support system is limited to 
. the conversational mode. Interpretation and execution 
of commands entered by the system programmer are 
performed in a manner similar to that of an interpretive 
compiler. First, the syntax and symbols in a command 
are checked. Errors are reported immediately to the sys
tem programmer's terminal, along with the appro
priate 'diagnostic messages to guide him in correcting 
the command. 

Commands may be executed in immediate or delayed 



modes. In the immediate mode, each command is edited 
and executed as it is encountered in the input command 
string. That string may consist of single or multiple 
commands. 

When the system programmer specifies delayed 
mode, the entire command string is saved to be executed 
subsequently. In this mode, the system programmer 
designates an event that is to trigger that execution. 
The event is usually arrival of processor control at a 
given machine instruction. 

The support system vocabulary contains most of our 
old functional friends from machine-level debugging
DISPLAY, PATCH, STOP, RUX, etc. The DISPLAY 
and DUMP commands specify output of data from 
main storage or external storage. The only difference 
between the commands is the destination of the output 
data. DISPLAY writes the data at the system prograln
mer's terminal, while DUMP writes the data to an out
put device specified by the system programmer. Thedata 
format is the same in both cases, although DU.J1P im
plies printing of certain control data such as machine 
registers, status information, or other general data 
areas. 

It is frequently necessary for the system programmer 
to suspend the parent system processing and cause it to 
be resumed on command. The STOP and RUN com
mands provide these facilities. The STOP command 
indicates that processing in the parent system is to be 
halted. The RUN command causes processing to be re
sumed from the point it was suspended - or from some 
other point. Note that a STOP command from a task 
system programmer means "stop my task," while a 
STOP command from a master system programmer 
means "stop the system." The RUN command, of 
course, means the inverse of STOP in each case. 

In a debugging session, the system programmer fre
quently wants to gather system data dynamically. For 
example, he may want to save the status of the last 100 
input/ output interruptions. To do this, the system pro
grammer uses the COLLECT command, specifying the 
particular event that is to trigger collection of the data. 
(For example, specified data could be collected each 
time processor control was passed to the first instruc· 
tion of an in put/ output.interruption processing routine.) 
Note that, while the COLLECT command is primarily 
a debugging tool for a failing system, it can also be used 
to save performance data or other surveillance data in a 
non-failing environment. 

No matter how much a system programmer knows 
about a failing system, that knowledge is useless unless 
the instructions and data of the time-sharing system can 
be altered. We used to call this a "patch" function. In 
the support system, the PATCH function has been ex
tended to include external direct-access storage devices 
as well as the conventional elements of main storage and 
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registers. Obviously, in a paging environment, the 
system programmer will want to PATCH the "official" 
resident copy of a program in addition to the copies 
currently being used. 

In a time-sharing system, terms such as "storage" 
take on different meanings according to the current 
state of the system. A particular segment of code may 
be in one or another area of main storage, or it may be 
on an external storage device, depending on the partic
ular point in execution of the program. Because of this, 
the system programmer must be allowed to qualify conl
mands to specify the exact item or the exact location of 
the item in which he is interested. The QUALIFY com
mand provides this facility. It allows specification of 
real or virtual storage, task identification, external 
devices, program modules, etc. The system pro
grammer can find out the location or status of a particu-
1ar item, and then use the QUALIFY command to pin
point that item. 

An IF clause is included in the support system com
mand language to permit the system programmer to 
specify the condition (or conditions) under which ac~ion 
is to be taken. Through use of the IF clause, the system 
programmer can cause a statement of logical, arithme
tic, and relational expressions to be evaluated to deter
mine whether the remainder of a command string is to 
be executed. 

The system programmer uses the DISCONNECT 
command to end his use of the support system. He can
not use the support system again until he re-establishes 
that communication link. 

Two commands, DEFINE and SET, give the system 
programmer a quasi-programming ability in the com
mand language when combined with the IF clause. The 
system progranuner can DEFINE certain private sym
bols, manipulate them with the SET command, and 
make decisions based on their values. 

If the system programmer were required to enter each 
statement when he wanted it to be executed, his abiJity 
to use the system would be severely restricted. There
fore, he is given the AT phrase to designate an event 
upon which a given command string is to be executed. 
The AT phrase empowers the system programmer to 
perform al1 the funct.ions of the support system "on the 
tiy." This facility endows the language with a power 
only alluded to in prior systems but absolutely necessary 
to capture relevant data in a tune-sharing system. 

Just as the system progranuner can establish controls 
using the' AT phrase and alter data using the PATCH 
command, he is also allowed to negate those commands. 
To accomplish this, he uses the RE:\10VE command. 
This command erases the appropriate controls or restores 
the original data that have been patched. 

FinalJy, the system programmer can invoke a .pre
defined set of commands by using the CALL command. 
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This conunand makes it possible to define a standard 
debugging procedure, and then have that procedure exe
cuted in response to the CALL command. 

From this general beginning, the system programmer 
can proceed to specific debugging steps guided by his 
experience and the support system output. The impact of 
CALL is to extend the language to an "automatic" level 
quite beyond the concepts of current debugging sys
tems. 

The commands described in the preceding paragraphs 
are summarized in Table 1. 

TABLE I-Summary of support system command functions 

Command 

DISPLAY 

DUMP 

SET 

COLLECT 

PATCH 

STOP 

RUN 

QUALIFY 

DEFINE 

IF 

AT 

CALL 

REMOVE 

Function 

To display specified values at the terminal 
being used by the system programmer. 

To dump specified values on a printer or equiv
alent output device specified by system pro
grammer. 

To change the value associated with a symbol. 

To collect specified v~lues into program area. 

To change the value associated with a symbol, 
to save the replaced value, and to record the 
patching action. 

To halt operation of the parent system or 
operation of a specific task. 

To resume the parent system operation at a 
specified address. 

To specify qualifiers sub.:;equently to be ap
plied to implicitly defined symbols. 

To enable the system programmer to define 
new symbols and, if necessary, to allocate 
space for the symbols. 

To make execution of a statement dependent· 
upon existence of one or more specified con
ditions. 

To specify events at which a statement is to 
be executed. 

To cause a prestored set of statements to be 
executed. 

To remove previously entered AT or P A TCR 
statements originated by the system program
mer. 

DISCONNECT To specify that a terminal is to be discon
nected from the support system. 

In creating the support system command language, 
the need for flexibility was a prime consideration. Just 
as the designers of a machine language cannot antici-

pate every use of the finished product, neither can the 
designers of a support system language. The support 
system command language is intended to provide a 
general set of commands that impose no functional re
strictions on the system programmer. The generality of 
the language makes it a highly flexible debugging tool. 
The commands can be used in many combinations to 
achieve a large number of debugging functions. 

Although design of the command language is an im
portant aspect of creating a debugging support system, 
the solution of internal implementation problems also 
offers significant chal1enges. To integrate a support sys
tem into a time-sharing system requires the implement
ors to overcome several complex problems. 

A key implementation problem is that of making the 
support system transparent to the time-sharing system. 
When the support system is invoked, machine and pro
gram status must be saved so that operations can be re
stored at the end of support system operations. The 
integrity of the time-sharing system must be preserved 
during the support system activities. 

This requisite transparency is achieved by utiJizing 
preallocated, private work space on external storage in
to which is written that data necessary to restore main 
storage after the support systems use. In addition, the 
interrupt-handling modules of the parent system remain 
in main storage and are used to "stack" all interrupts 
directed to the parent system. The support system re
quires that the parent system be able to recognize only 
its activation signal, after which other surveillance tools 
are activated and the hardware is actually controlled by 
the support system. 

Another example of the complexity of these prob
lems is the implementation of a stand-alone Input/Out
put Supervisor (lOS). The lOS must be simple and 
straightforward, while providing flexibility in the fluid 
time-shared environment. 

In retrospect, the system being implemented meets 
all the requirements as previously stated except one. 
The support system is not completely independent of 
the parent system, though that independence has been 
approximated in the most critical areas - the I/O 
supervisor and the user interface. Complete indepen
dence may be neither possible nor desirable except 
where it could justify a separate control processing unit, 
memory, and I/O system. 

Future prospects/or the support system 

As mentioned previously, the flexibility of the sup
port system prevents it from being "outgrown" by the 
demands of its parent system. Even as the parent sys
tem is expanded, the support system will remain ca
pable of solving the next program bug. Butevenmorein-:
teresting than this are implications of more sophisti-



cated applications of the system. Implied in its struc
ture are the capabilities of forestalling the next program 
bug, decreasing the probability that the bug will occur, 
and perhaps ult¥nately eliminating bugs from the 
parent system. 

Among the future prospects for the system are the 
following: 

~ 
/' 

• Provision of the ability to have predefined debug-
ging steps automatically executed when a problem 
occurs, thus enabling a system programmer to de
bug effectively even though he is not present at the 
terminal at the moment the problem occurs. 

• Provision of the ability to interrogate the system 
at the micro-second level, thus easing the problem 
of capturing data at the split second a problem is 
encountered. 

• Provision of the ability to monitor a system so 
closely that the system can be rapidly adjusted to 
achieve high-level performance. 

• Provision of facilities to collect, compare, and eval
uate data on program bugs, and ultimately 
(through selection of alternative solutions) to have 
a system restructure itself to avoid previously-rec
ognized bugs. 

These prospects are discussed in the following sec
tions. It is important to realize that the basic knowledge 
needed to implement these functions exists today. 

Provision of predefined debugging steps 

The support system described in this paper gives the 
user an on-line real-time debugging capability. This 
capability is overshadowed by another more powerful 
capability inherent in the support system's on-site con
cept. 

The systems programmer, in charge of solving user
detected systems problems, is impaired by the fact that 
he was not present to perform certain actions at the time 
the program bug appeared. It is indeed frustrating when 
an answer must be returned to the user containing a set 
of debugging instructions he must perform if and when 
the problem reappears. 

The support system can be extended to include pro
visions for predefining the debugging steps to be per
formed when a problem occurs and for making those 
procedures a part of the total time-sharing system. An 
example will illustrate the extent of this capability. 

There are certain "should not occur" points within a 
language compiler, i.e., there are points at which a com
pilation or assembly is aborted because of a program
ming or logic error. Instead of merely aborting the job, 
a predefined set of support commands could be executed 
to collect pertinent data (internal tables, transient rec
ords, etc.), to aid in debugging. The user, aware that hiR 

Debugging in a Time-Sharing Environment 13 

compilation has been aborted, need not interfere in any 
way with time-sharing operation. He merely allows the 
system to perform the predefined debugging steps and 
then forwards the diagnostic data to the systems pro
grammer. 

Under this procedure, the systems programmer is 
sure that the data received from the user is what he 
needs to solve this particular type of problem since he, 
himself, defined the support system procedures to 
be performed at the error points. 

The inclusion of a new command, ON, would provide 
this function. The following set of commands, compris
ing the debugging data set (DEBUG), could be used to 
accomplish predefined debugging function. 

ON FORTNOGOCALLDEBUGFORT 

ON ASSEl\1NGO CALL DEBUGASSElVI 

etc., for all language compilers/assemblers. 
The phrase ON FORTNOGO or ON ASSEMNGO 

would cause the support system to implant AT phrases at 
all points within the Assembler or FORTRAN at which 
abort action could be initiated. Note that the user 
would not have to know the location of these 
points. The exit points and the procedures to be per
formed (as defined by the data sets DEBUGFORT and 
DEBUGASSEIVI) would be defined and supplied by 
the system programmer. Control over collecting data at 
these program error points would then be assumed by a 
central source, the systems debugging group. The total 
debugging efforts throughout the range of users could 
then be organized to yield optimum results. To use the 
predefined facilities, users would merely call the total 
debugging data set (DEBUG) before initiating time
sharing operations. 

Gathering data at the micro-second level 

The power of the support system could be greatly ex
tended-by introducing the SCOPE command, a special
ized debuggingtool. The multi-CPU environment innlany 
time-sharing systems can be used to solve programming 
problems in areas that require micro-second level inter
rogation and response. The SCOPE command would 
specify that one CPU is to execute a series of operations 
continuously while the other CPU's function nonnal1y. 

With the use of the SCOPE command, one could 
truJy debug at a micro-second level. An example of the 
conlmand would be: 

SCOPE IF LOCKBYTE - 255 DISPLAY MODID 

The command would force one CPU to continuously 
test the field LOCKBYTE for the value 255. When this 
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condition was satisfied, the module that changed the 
value to 255 would be identified in output. In this 
way, a systems progranuner may deter:mine which 
routine altered a parameter, and when the parameter 
was altered. More importantly, the entire system's 
activity could be suspended while automatic debugging 
routines were executed, and while an instantaneous 
"snapshot" of the parent system was taken for complete 
analysis. 

Monitoring system performance 

Since the support system is basically a meta-system 
for surveillance and data collection in the parent sys
tem, it is obvious that the support syst,em may be used 
to monitor a "healthy" parent system as well as aid in 
debugging a "sick" one. 

It is through the combined functions of system moni
toring and the support system command language that 
the first steps can be taken to improve perfor:mance for 
a particular user. For example, a user could decide to 
monitor the number of FORTRAN compilations re
quested per time interval. Then he could request that, 
for his installation, FORTRAN modules be moved to a 
slower or faster input device, depending upon the pre
viously monitored infor:mation. 

Potential for the parent system to correct itself 

The most far-reaching implication of the support sys
tem is that it creates the possibility of parent system 
self-correction. More specifically, it paves the way for a 
system that can learn to debug itself. 

The support system provides extensive facilities for 
gathering infor:mation on operations in a time-sharing 
environment. Under current debugging procedures, this 

.infor:mation is analyzed by the system programmer who 
decides on a way to correct or circumvent the program , 
bug. The system progranuner then evaluates the effect of 
the change and makes further nlodifications if necessary. 
Involved in this process is a series of selections and re
evaluations. Eventually, the systenl programnler learns 
the best thing to do in each of a variety of situations. 

It is feasible to incorporate this human debugging 
process into the operating system or time-sharing sys
temitself. 

Consider the learning process involved in the gradual 
refinement of game-type programs (checkers, chess, 
etc,). These programs examine a current situation, se
lect what appears to be the best action to take under 
a particular condition, take and record the action, and 
later evaluate it. Through extensive· interplay of one 

game program against another, the programs build up 
statistics and knowledge of the best actions to be taken 
under each of a mUltiplicity of conditions. With this 
accumulated knowledge, the game program "learns" to 
select the best alternative for a given condition. 

The same type of system self-correction could be in
corporated into an operating system or time-sharing 
system by building a selective process based on the re
corded results of previous actions. 

If we define the term "complex system" to mean the 
debugged system in its purest form, the following state
ment describes how to achieve the "bug-free" system: 

"Selectivity through environmental feedback, and previous 
experience as a source of selectivity (machine learning) leads to 
the creation of the complex system through the creation of stable 
intermediate forms upon which resulting more complex forms are 
built."-The Architecture of Complexity, Herbert A. Simon in 
General Systems, Vol. X, 1965. 

Environmental feedback (i.e., knowledge of what has 
happened previously) is provided by the monitoring 
facility of the support system. Selectivity (i.e., the deci
sion on the action to be taken) can be derived from the 
monitored infor:mation and from the recorded results 
of previous actions under the same or similar conditions. 
Whereas selectivity was previously deter:mined by· the 
debugging programmer's knowledge, skill, experience, 
and learning power, it could now be part of the system 
itself. 

Since the basic mechanisms required to induce 
machine learning (feedback through system monitoring 
and selectivity through extended use of the support sys
tenl) are available, the self-debugging system is a fea
sible concept. 

ACKNOWLEDGMENT 

The basic capabilities (with the exception of the ON and 
SCOPE functions) of the Tinle Sharing Support Sys
tem described in the paper have been implemented by 
IBM as a Type I program under TSS/360. The authors 
wish to acknowledge the effort of the original designers 
of the Support System described herein. 

Mr. M. E. Sherck 

Dr. 1. Rezucha 

Mr. R. Heistand 

The authors also wish toa(:knowledge the efforts of 
Mr. R. L. Bean in the editorial preparation of this 
document. 



TSS /360: A time-shared operating system 

by ALEXANDER S. LETT and WILLIAM L. KONIGSFORD 

International Business M aehines Corporation 
Yorktown Heights, New York 

INTRODUCTION 

Experience with TSS/360 design, development, and 
application has been varied and interesting. For ex
ample, as we began putting the initial system together, 
significant performance problems were observed that 
had not been predicted by the earlier simulation efforts. 
These problems had not been anticipated because ,the 
paging characteristics assumed in the model develop
ment were significantly better than the actual system 
characteristi cs. 

Measurements and analysis soon indicated that one 
significant problem was in the organization of the dyna
mic loader tables. This was overcome by splitting these 
tables into functional sub-tables, which greatly re
duced paging during the loading process. 

However, the paging problem was widespread. In 
most cases, the size of the actual code was two to three 
times the size expected by the model. In addition to the 
adverse effects on the available core space, this caused 
the paging input/ output traffic to be significantly 
larger than expected, the level of possible multipro
gramming to be smaller than expected, and the number 
of tasks wholly contained on the paging drum to be 
fewer than expected. 

During the mu1ti-terminal testing phase of TSS/360, 
another significant paging problem was discovered. 
Core-space control was based upon dynamically Jimit
ing the number of tasks active in core to the maximum 
that their estimated core usage would allow. A greater 
number of tasks would cause a high rate of unproduc
tive paging within the system; a lesser number would 
not fully utilize the system facilities. The core-space 
control was not functioning properly due to bugs .. A 
temporary solution was to restrict the number of active 
tasks in core to a fixed number. This reduced the per
formance problem but, when the same test cases were 
later run under the correctly operating dynamic. al
gorithm for core-space control, the dynamic algorithm 
was found to be consistently more effective than the 

static algorithm had been. This generally vaIld con
clusion has been demonstrated'in all area of TSS/360. 

Since the initial release of TSS/360 in October 1967, 
performance has improved significantly with each sub
sequent release. The initial emphasis was on building a 
stable system, followed by extensive measurement-and
analysis efforts to identify potential system modifica
tions. Then, through comparatively small changes in 
coding and resource management algorithms, the sys
tem performance was significantly improved. 

From the material presented in this paper, we feel 
that several conclusions-which are supported by our 
operating experience-can be drawn: 

15 

• Paging is a sound concept. As expected, it is· a 
direct solution to the dynamic-core-storage-al
location problem. 

• Paging also allows for a hierarchy of auxi1iary 
storage which, in the case of TSS/360, involves 
high-speed drum and slower-speed but larger
capacity disk files. A larger number of users 
can be supported economically on a system by 
subdividing each user's space requirements 
between drum and disk storage. From experience, 
sound algorithms can be developed for manage
ment of this storage, which is critical to the over
all performance of the system. 

• A data set access method based on page-size fixed 
block images has the same simplicity of implemen
tation and elegance of application as in the core
storage situation. 

• In the improved command system, we have found 
that a highly adaptive, open-ended system is not 
only more valuable to terminal users, but simpler 
to implement. 

• The best strategies for resource allocation are 
those that address the allocation of all system 
resources in an integrated way, rather than op
timizing specific sub-portions. In general, the 
simple round-robin strategy is fai~ly good, but 
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the need to emphasize certain characteristics 
(such as response time to conversational requests) 
requires the separation of resource requests by 
priority. 

It is the purpose of this paper to highlight the key 
elements of TSS/360-control system organization, 
user services, and task structure-in order to describe 
and explain the design of a time-shared operating sys
tem. 

Control system organization 

There are many possible resolutions to the questions 
concerning the division of functions within a control 
program, the interfaces between portions of the control 
program, and the decision as to which portions are to be 
resident in main storage and which nonresident. 

In the design of TSS/360,the historical exaWples of 
the lVIIT Compatable Time Sharing Systeml an~ the 
IBM Time Sharing Monitor system2 led towards the 
concept of a small, fullS re~ident monitor whose primary 
function would be to crefl.te a multiprocessing, multipro
gramming enviornment. 

In TSS/360, this monitor is called the Resident 
Supervisor. The Resident Supervisor is interrupt driv
en, and is responsible for controlling the real resources 
of the system and for performing services in response to 
requests originating from tasks. A task represents the 
environment in which a user's processing is performed. 
There is one task for each conversational user of the sys
tem. A fundamental design decision was to provide 
within each task the facilities of a full operating system. 
Figure 1 depicts thi~ overall system structure. 

Task processing is always performed in relocation 
mode with the dynamic-address-translation feature 
activated. Tasks are therefore said to operate in 
virtual memory. 

The Resident Supervisor, on the other hand, does not 
use dynamic address translation-that js, instructions 
within the Resident Supervisor have main storage ad
dresses, not logical addresses, as operands. The decision 
to make the Resident Supervisor operate in the non
relocation mode was based upon the efficiency resulting 
from eliminating dynamic-address-translation overhead 
and upon the increased protection resulting from the 
fact that no location within the Resident Supervisor can 
be addressed by a program operating in virtual memory. 
Resident Supervisor routines, however, are capable of 
addressing all of main storage and of executing all of the 
instructions in the System/360 instruction set. 

Another basic TSS/360 design decision was to have 
-tasks be interrupt driven like the Resident Supervisor. 
It was felt that this structure provided the maximum of 
flexibility in task development. Accordingly, task-con-

FIGURE I-TSSj360 program structure 

trol structure is in many ways analogous to the control 
structure of the Resident Supervisor. 

In order to provide a wide variety of control program 
services, while at the same time protecting user tasks 
from each other, task virtual memory routines are di
vided into two classes: 

• privileged routines, which operate in the priv
ileged state; 

• nonprivileged routines, which operate in the non
privileged, or user, state. 

As the term implies, routines operating in the priv
iliged state are authorized access to many supervisor 
services denied to routines operating in the user state. 
In this way, most par~meter validation and other pro
tection checking can be eliminated from the Resident 
Supervisor. In addition to decreasing the overall size 
of the Resident Supervisor, this arrangement allows su
pervisor services to be more general and powerful. 

The way in which the privileged state is implemented 
is as follows: 

• In a task's virtual memory, pages that are allo
cated to privileged routines (and their associated 
tables and work areas) are assigned a storage pro
tection key that differs from that assigned to user 
programs. This will cause a storage-protect inter
ruption if the privileged part of a task's virtual 
memory is addressed by a user program. Priv-



ileged routines, on the other hand, can address 
all of the task's virtual memory. 

• The dynamic loader service routine will not 
treat modules from a user's library as privileged 
routines. Thus, an ordinary user cannot cause his 
own version of a system routine to be loaded and 
executed as a privileged routine, a facility avail
able to the systems programmer. 

• A user program normally requests system services 
through instructions whose esecution cause 
an interrupt to the Resident Supervisor. (In sys
tem/360 such interruptions are termed supervisor 
calls.) In response to the supervisor call, the Re
sident Supervisor, by manipulating CPU status, 
creates a task interruption to invoke a privileged 
system services routine. The privileged rQutine 
can then determine if the user's request is valid. If 
it is, the privileged routine may then invoke other 
TSS /360 supervisor calls while in the process of 
performing services. If the request is not valid, it 
will be rejected, thus preventing a nonprivileged 
routine from causing incorrect system operation. 
The reason for communicating between non
privileged and privileged state via the Resident 
Supervisor is that only the Resident Supervisor 
can execute the instruction that alters a task's 
protection key and, therefore, its state. 

The privileged system service routines constitute the 
bulk of the TSS/360 operating system. These routines 
are either shared by all tasks or are located in indepen
dent service tasks. Printers, for example, are serially 
shareable and thus are serviced through an independent 
task. On the other hand, the dynamic loader provides 
service to each task and is therefore shared in par~llel. 

System control elements 

The Resident Supervisor is primarily composed of an 
interrupt stacker, a queue scanner, several processors, a 
number of error handling and service subroutines, a 
dispatcher, and the tables that form the system's data 
base. 

Entry into the Resident Supervisor i~ via an inter
ruption. Some interruptions are processed immediately 
either because of their urgency (e.g., interruptions de
noting CPU malfunctions) or for efficiency (e.g., inter
ruptions which require a change of task state). 

For most interruptions, however, the interrupt 
stacker builds a record called a generalized queue entry 
(GQE), into which a description of the interruption is 
placed. This GQE is then placed upon an appropriate 
queue. A GQE is a standard control block used through
out the Resident Supervisor to contain a description of 
the work to be done by a device or facility that is con-
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trolled by the Resident Supervisor. Quite frequently, 
one control block may belong to several queues and con
tain forward and backward pointers to each of them. In 
processing these multi-threaded lists, the Resident 
Supervisor becomes, in effect, a list processor. 

Interruptions are disabled during processing in the 
interrupt stacker. However, in contrast to many sys
tems, the Resident Supervisor generally executes with 
interruptions enabled to facilit~te processing of inter
ruption queues, on a priority basis, without regard to 
sequence of arrival. When the interrupt stacker com
pletes processing, it generally exits to the queue scan
ner. 

Every system needs some facility for sequencing the 
work to be performed by the control program. In sys
tems which operate with interruptions disabled, the 
hardware priority-interruption system provides this 
function for the interrupt-handling routines, and some 
other control-program routine provides a similar func
tion for the system's resource-allocation routines. With
in TSS/360, these two functions have been combined 
into one centralized queue scanner and a scan table. 
Each system queue is anchored in the scan table. 

Because the queue scanner is a central facility within 
the Resident Supervisor, it must operate efficient1y if 
the Resident Supervisor is to operate efficiently. To 
achieve this efficiency, the queue entries in the scan 
table are organized to minimize the number of entries 
that must be inspected when the scanner is searching for 
work. Moverover, the organization of scan-table entries 
reflects an awareness of the possible interactions among 
queues so that, for example, an exit is not made to a 
processor only to find that a needed facility (such as an 
I/O path) has been allocated to some other request. 

When the queue scanner finds work that can be done, 
it passes control to the appropriate processor; when it 
determines that there is no currently available super
visor work, control is transferred to the scheduler and 
dispatcher. 

TSS /360 was designed for a generalized multiprocess
ing environment in which multiple CPU s may be 
simultaneously executing the single copy of the Resi
dent Supervisor. To facilitate multiprocessing, it was 
necessary to define a number of programmed interlock 
flags to prevent unwanted recursion and logical race 
conditions. In general, TSS /360 used the approach of 
defining a small number of interlocks, each covering a 
wide scope. These interlocks generally guard entrance to 
the queue processors and to the major system data 
bases. 

The purpose in minimizing the number of interlocks is 
two fold: 

• First, placing interlocks at the entrance to the 
queue processors tends to prevent a CPU from 



18 Fall Joint Computer Conference, 1968 

entering a path of logic only to soon be forced to 
await the resetting of an interlock., When the 
queue scanner finds an interlocked queue proces
sor, it simply bypasses inspecting that queue and 
proceeds to the next entry in the scan tab1e. 

• Second, in a multiprocessing situation, it is desir
able to permit one CPU to perform error-recovery 
procedures whenever another CPU encounters a 
processor or storage unit error. Because all pro
cessors use the single copy of the Resident Super
visor, it may be necessary for the recovery CPU to 
reset programmed interlocks initially set by the 
malfunctioning CPU. This means that the re
covery CPU must be aware of the reason why the 
interlock was set. The fewer the system inter
locks, the simpler the recovery procedures can be. 

In general, a queue processor locks its associated 
queue upon entry and unlocks the queue as soon as the 
processor has dequeued a GQE for processing. In certain 
cases a queue processor may lock a queue until some 
specific future event or condition has occurred. Each 
scan table entry has indicators reserved for such use. 

TSS/360 has adopted a policy of concentrating the 
physical locations of the interlock flags in an orderly 
fashion within a very few key system tables. This has 
proved to be a valuable aid to the development pro
grammers, who can determine the status of the Resident 
Supervisor by inspecting or displaying these system 
tables. 

The following is a brief description of the major pro
cessors within the Resident Supervisor: 

• Task Core Allocation: Controls the overall core 
storage space; it processes requests for space allo
cation and responds with the location assignments 

• Auxiliary Storage Allocation: Controls auxiliary
storage space; it processes requests for drum and 
disk page-space allocation. 

• Page Drum Reguest: Processes input or output re
quests for the auxiliary paging drum. Because of 
the unique mechanical characteristics of the drum 
(several pages per track with instantaneous 
switching), the requests are sorted by angular 
position to maximize throughput. 

• Page Drum Interrupt: Processes interruptions that 
are the result of paging drum input/output opera
tions. This processor will attempt to keep the 
drum I/O channel busy by adding drum requests 
to an active drum I/O channel program. It calls 
the page-posting routine to process the results and 
releases core space when appropriate. 

• I/O Device Request: Processes requests for I/O 
operations to devices other than the auxiliary stor
age drum; it first determines, by calling the path-

finding subroutine, if a free path to the requested 
I/O device is available and, if possible, reserves a 
path. 

I/O device requests are either disk paging re
quests or other I/O requests. For disk paging re
quests, a subprocessor is called to convert the re
quest into an I/O channel program. For other 
I/O requests, a request control block chained from 
the queue entry already contains the I/O channel 
program. This I/O program is normally created 
by the task requesting the I/O. The I/O opera
tion is started by the request processor, which re
turns to the queue scanner. 

• Channel Interrupt: Processes input/output inter
ruptions that originate in other than the paging 
drum. It determines if the interruption is syn
chronous or asynchronous by verifying if a re
quest on the corresponding devi ce-request queue 
had initiated the operation. If the interrupt is syn
chronous, various processing is performed. If the 
interrupt is asynchronous, an interrupt entry is 
queued for the task currently associated with the 
device. If no task is currently associated with the 
device, and it is a terminal, the channel interrupt 
processor will call a routine to create a new task 
that will then be dispatched. The newly created 
task will begin execution of the appropriate task
initialization routines in response to its initial 
interrupt. 

• Timer Interrupt: Processes timer interruptions; it 
determines if a task has reached the end of its 
time-slice or whether a task-specified time interval 
has elapsed. At time-slice end, various processing 
is performed. For task-specified intervals, a task
simulated timer-interrupt entry is queued for the 
task. 

TSS/360 error recovery and retry procedures are de
signed to dynamically correct errors or to minimize the 
effect of errors on the system as a whole. Although the 
specific recovery procedures differ for each type of error, 
the general approach to recovery is the same. Failing 
operations are retried where possible, failing hardware 
devices (e.g., a CPU or I/O device) are checked and 
intermittent failures retried. vVhere an operation can
not be retried at all or is retried without success, n, 

"hard" failure is recognized and fault localization, to 
the component level, is invoked. The failing element or 
device is removed from the system in an orderly man
ner, so that only the affected tasks are disrupted. An 
environment record is genera ted for later a'lw,lysis by 
service personnel and the system continues operation. 
It is only as a last resort, when recO\"ery is not possible 
and when removal of the failing component would 



render the system inoperative, that the system is shut 
down. 

In addition to the queue scanner's sean table, the 
Resident Supervisor contains data bases to describe 
task status and to describe I/O path status. 

Each task has associated with it a control table that is 
separated into portions. The first portion is needed fo~ 
scheduling and control purposes, so it is kept con
tinuously resident in main storage. The second portion 
contains the task's relocation tables that must be in 
main storage during a task's time-slice, but not neces
sarily between a task's time-slices. 

To allow a user's program to be highly device-inde
pendent and to allow the ResideI;it Supervisor to remain 
relatively insensitive to dynami~ changes in system con
figuration, TSS/360 users nclrmally employ device
class codes that describe a devjce as a member of a class 
of like devices. Furthermore;' the TSS/360 access me
thods employ symbolic addresses to designate devices. 

The Resident Supervisor uses a group of tables, called 
pathfinding tables, to translate a symbolic device ad
dress into a hardware address that specifies a path 
through a channel control unit, channel, and device con
trol unit to the device. The supervisor-maintained path
finding tables are used to determine if a device is busy 
instead of attempting to physically address the device. 
In a typical environment, it is expected that there will 
be multiple paths to most devices. In such a situation, 
the efficiency of I/O processing will be increased by re
ducing the number of "busy" or "unavailable" condi
tions encountered during an attempt to initiate an I/O 
operation. The use of common pathfinding tables also 
assists in synchronizing I/O processing in a multiproces
sing environment, because an I/O interruption may be 
accepted by any available CPU, not just the CPU that 
initiated that operation. 

In retrospect, the design of the Resident Supervisor 
has proved to be sound and remains, in outline, essenti
ally as initially described in 1965.3 Experience has 
shown that it is nearly impossible to predefine an opti
mal overall system. A significant amount of tuning of 
resource-control algorithms and processing procedures 
must be expected. We have found that the best method 
to do this tuning is by modification and measurement of 
the running system. 

Task control elements 

TSS/360 includes a scheduling algorithm for deter
mining the sequence of allocation of CPU time to com
peting tasks. As implemented initially, the scheduling 
algorithm divided tasks into conversational and non
conversational groups. 

The original algorithm followed a round-robin sched
ule for the active tasks (those not waiting for the com-

TS.s/360 19 

pletion of some event, such as terminal input). Con
versational tasks were scheduled for dispatch in con
secutive order to the end of the list. At this point, a test 
was made to determine if an installation-specified real
time interval had elapsed. If not, the system devoted 
the remainder of the interval to the round-robin execu
tion of the nonconversational tasks. If the interval had 
been exceeded, the system went back to redispatch the 
first active conversational task. 

As a result of system experience, this algorithm was 
modified. All active conversational tasks are noW dis
patched in round-robin fashion until no further active 
conversational tasks are available. Then the system be
gins to dispatch active nonconversational tasks, but 
With provision for pre-emption whenever a conver
sational task becomes active. Instead of round-robin 
execution of the nonconversational tasks, the system 
tends to run to completion as many nonconversational 
tasks as can be effectively multiprogrammed within the 
available core resource. This modification was incor
porated because round-robin scheduling for the non
conversational tasks served no useful purpose and re
duced system throughput by causing the system to do 
additional paging in switching resources. 

The scheduling algorithm outlined above is not con
sidered to be the optimum for general time-sharing 
operation in any specific customer's installation. Ex
perience with scheduling algorithms and their effect 
upon the system dictated the need to provide a flexible 
facility for modifying the task-scheduling algorithm. 
TSS/360 is adding this facility, called the table-driven 
scheduler, in which table entries are made to define se
quences of states and attributes that a task can assume. 
When created, each task is assigned an initial table 
entry in which specific parameters explicitly state: 

• the relative priority of every task associated with 
that table entry 

• whether such tasks may be interrupted by a 
higher priority task 

• the time-slice quantum to be ttllocated to the task 
• the maximuin core space to be allocated to the 

task 
• other parameters concerned with the action to be 

taken when execution of a task is suspended. 

Execution of a task can be suspended for reasons such 
as time-slice end, terminal-wait condition, or excessive 
paging. Associated with each of these conditions is a 
value specifying the table entry to be assumed by the 
task on the occurrence of that condition. 

The collectIon of schedule table entries, which can be 
prepared at each installation, specify the .Scheduling al
gorithm to be followed by the system. The table 
entries can range from extremely simple ones that 
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simulate a round-robin queue, through exponentially 
related algorithms, to complex time-and-priority al
gorithms. 

The allocation of the CPU resources to tasks, to best 
carry out the sequence selected by the scheduling al
gorithm, is controlled by the dispatcher. The dispatcher 
first determines if a new task can be placed into execu
tion. This is determined by comparing an estimate of 
the core pages a task is expected to require during its 
next time-slice with the number of unreserved and 
available core pages. The estimate of a task's page 
requirements is based on its activity in the preceding 
time-slice. If enough core pages are available, the count 
of available core pages is reduced by the estimated 
number and the task is prepared for execution. This 
dynamic control of the number of tasks allowed to con
currently execute in core storage is vital to avoid over
loading a paging system such as TSS/360. 

A modification has been made to the dispatcher to 
dynamically detect CPU -bound tasks. When more than 
one task is ready for immediate execution, non-CPU
bound tasks are dispatched before CPU-bound tasks. 
Through this strategy, the system dynamically maxi
mizes its probability of multiprogramming (overlapping 
I/O with computing). 

When a task is selected for immediate CPU execu
tion, a task-interrupt-control routine in entered. The 
need for a task-interruption mechanism arises because 
the Resident Supervisor processes requests for system 
services in a logically independent fashion, that is, the 
Resident Supervisor may be concurrently performing 
several services for a task. There is no way to forecast 
the order or time of completion of processing of each of 
these services. 

Therefore, for a task to operate asynchronously with 
respect to the completion of system services, a task-in
terruption mechanism has been created that is anal
ogous to the hardware-interruption mechanism that 
allows the Resident Supervisor to operate asynchro
nously with respect to the real computer system; Opera
tion of task interruptions is similar to hardware inter
ruptions. The major difference is that the hardware in
terruptions convey a change in the status of the entire 
system to the Resident Supervisor, while the task inter
tuptions represent a change in status of only that por
tion of the system currently allocated to the task being 
interrupted. 

A task interruption is requested by a Resident Super
visor routine when it discovers an event, such as I/O 
completion, whose further processing is a task's re
sponsibility. However, a task is not always prepared to 
receive an interruption; further, the task for which the 
interruption is destined may not be the next ta.sk to be 

dispatched. So there is a software queueing-and-masking 
facility that is analogous to the hardware facility. 

Before control is given to a task, the dispatcher trans
fers control to the task-interrupt-control routine, which 
checks the task's interruption queues for unmasked 
pending interruptions. If none is found, control is given 
to the task at the location saved in its control table. 

If pending interruption is found, the task-interrup
tion-control routine changes the location pointer to 
point to an appropriate interruption processor of the 
Task Monitor. Now, control will go to the interruption 
processor. This action of influencing the dispatcher's 
transfer of control is called a task interruption. 

The Task :\lonitor consists of a group of privileged ser
vice programs that receive and process task interrup
tions on a priority basis via queueing, scanning, and 
dispatching mechanisms analogous to those of the Resi
dent Supervisor. The Task ~Ionitor may thus be consid
ered a task-interruption handler, whereas the Resident 
Supervisor is a hardware-interruption handler. 

The Task ~lonitor performs these major functions: 

• Provides an interface with the Resident Super
visor for receiving and analyzing task-oriented 
interruptions. 

• Provides linkage to required service routines or 
user routines, either by immediate dispatching 
or by queueing the interruption for later dis
patching in a priority sequence. 

• :\laintains the integrity of the task and service 
routines that are dispatched, primarily through 
save-area management. 

The Task ~\Ionitor is designed to provide for flexible 
handling across a wide range of interruptions. Thus, it 
provides an ability to dynamically specify task-inter
ruption-handling routines and to dynamically arm, dis
arm, and change the relative priority of theRe routines. 
As with the queue scanner of the Resident SuperviRor, 
provision has been madp to URe thiR gPIlPralizpd proCPHR 
in an efficient manner. 

User .~ervice8 

Because TSS/360 is a comprehensive operating sys-
tem, it offers a wide variety of user services4, such as: 

Command system 
Program control subsystem 
System programmer support system 
Catalog management 
Page-oriented data management 
:Ylagnetic-tape and unit-record data management 
Dyn9mic program loading 
Virtual memory allocation 
External storage allocation 



• Resource control and accounting 
• Task-interruption control 
• Language processors 
From this list, we have chosen to describe in this sec

tion the command system, the page-oriented data
management services, and the dynamic-program-load
ing services. Not only does each of these represent a 
key aspect of TSS/360, but each has relevance to prob
lems of general interest. 

Command system 

The command system is the principal interface be
tween a time-sharing system and its users. Therefore, it 
has a position of special importance in TSS/360. 

Initially, the TSS/360 project attempted to define a 
set of commands that would be satisfactory for all users. 
The result was a rigid set of commands that compJetely 
satisfied no one. This experience led to the conclusion 
that it is better to implement a command system than a 
command language. 

As a result, TSS/360 now contains a flexibile com
mand system that is delivered with a set of simple com
mands that can either be employed as is or be com
pletely replaced and expanded in a straightforward 
fashion. This approach allows each installation and, 
more important, each user at an installation to cus
tomize the system-user interface to his own needs. 

In TSS/360, the syntax of the command system has 
been separated from the semantic content of command 
statements. This regularization of syntax and structure 
has resulted in a simpler implementation utilizing a 
single, centralized command analyzer and execution 
facility. 

The command-system syntax is simple and natural. 
Each command consists of an operation name, which is 
usually followed by one or more operands. As supplied 
with the system, the delimiting character for the opera
tion name is a blank or tab; the delimiter between 
operands is a comma; the deliniiter between commands 
is either a semicolon or the end of a line of input; and 
the line-continuation flag is a hyphen entered as the last 
nonblank character of a line. 

When an individual enters his commands conversa
tionally, he is told of the acti ons taken by the system in 
response to each command and, when necessary, he is 
prompted for additional non-defaultable inform~tion 
needed to complete an action, is informed of errors (if his 
command entry is either incomplete or incorrect), and is 
told of the options he may exercise in response to an 
error. Special care has been taken to make the types of 
options consistent for all commands. Nothing, for ex
ample, could be more frustrating to a user than to be re
quired to resubmit an operand with. delimiters in one 
situation and without delimiters in another. 
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Each user can establish his own spellings, abbrevia
tions, or operation· names for commands through a 
SYNONYM facility. Use of this facility sets up one or 
more equivalences for the original name but does not 
destroy it. 

Any command operand may be entered either by 
position or by keyword. Keywords may appear in any 
order and have the general form KEYWORD = value, 
where KEYWORD is the name of the operand and 
"value" is the actual value of the operand. For each 
command operand, the user may select the form that is 
most convenient for him. A keyword has a global mean
ing since it is associated with the value to be passed, not 
with the particular command invoked. Therefore, the 
SYNONYM facility, available for command operation 
names, is also available for keywords. In contrast to 
many other systems, almost every command operand 
has a default value. Moreover, the user need not accept 
rigid default values for operands, for he can easily over
ride those supplied with the system. For example, a 
standard default for the FORTRAN compiler might be 
to produce an object code listing~ Any TSS/360 user can 
individually change this default so that, in his case, the 
language processor will not produce an object listing un
less he specifically requests it. 

TSS/360 maintains a special prototype data set that 
is copied into the user's library when he is initially 
joined to "the system. This data set, called a user pro
file, contains three tables: the first specifies the initial 
default values for command operands; the second con
tains his character~translation list (to allow redefinition 
of printing characters and control characters); and the 
third contains command operation names and equiva
lences. The user can modify any of the entries in these 
three dictionaries, which, in conjunction with the com
mand system, define his command language. 

The command system includes as a fundamental fea
ture a command procedure facility, which permits the 
user to create a stored procedure comprising com
mands and logical statements that control the flow of 
command execution. Invocation of a command proce
dure is identical to invocation, ef a system-supplied 
command. The command statement consists of the pro
cedure name followed by a series of parameters, whose 
values are inserted by the command system at the prop
er points in the procedure. The resultant statements 
will be interpreted as though they had originated in the 
input stream. For maximum power, command proce
dures can be nested and/or recursive. When defining a 
procedure, a user can utilize the facilities of the 
TSS/360 text editor. Once defined, a procedure may be 
edited, shared, copied, etc., as with any other file. 

Another interesting feature of the command system 
is the use of "null conunands." For example, immedi-
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ately after a user has signed on the system but before 
control is returned to the terminal, TSS/360 auto
matically invokes a command procedure called ZLO
GON. As initially supplied with TSS/360, ZLOGON is 
.a "null" command-it does nothing. However, the in
dividual may redefine the ZLOGON command proce
dure to perform functions to augment the initialization 
of his task. Thus, "null" ·commands are conceptually 
similar to the "user exits" frequently associated with 
general-purpose programs. 

The command system also provides a facility for de
fining new command primitives. Efficiency can be en
hanced through use of this "Built-in" facility as the 
command system can directly bypass much of the inter
pretive processing required in the expansion of com-
mand procedures. . 

Still another feature of the command system avail
able to the user is the ability to augment system-mes
sage handling: 

• He can request explanation of system messages or 
of key words in such a message; word explanations 
may continue to a number of levels. 

• He can dynamically specify the classification of 
messages he is to receive; this filtering, or 
masking, capability provides different message
severity levels and message lengths. 

• He can construct a personal message file that will 
be issued in lieu of the corresponding system-sup
plied messages .. 

The command system also provides a flexible system 
for handling attention interruptions that is quite use
ful. For instance, suppose a user has forgotten to iden
tify a library that contains a subroutine required by his 
mainline program. When he receives a system diagnos
tic message, he can use the attention button to re-enter 
the command mode, define the library, and then resume 
processing at the point where the message was issued. 

The program control subsystem of the command sys
tem is a powerful facility that permits a user to inspect 
and modify programs during execution. These dynamic 
control facilities eliminate the need for user-written de
bugging and control instructions that must be pre
planned, coded into the user's programs, and then later 
removed. 

The output from the TSS/360 language' processors 
may optionally include a dictionary containing the 
values and other attributes associated with the symbols 
or variables used in the source program. Through the 
use of this dictionary, the program control subsystem 
can properly interpret debugging statements utilizing 
source program symbols and can properly format its in-

. put and output. 
Even during the initial shakedown of TSS/360, there 

were many users who insisted upon using the system 
only because of the power associated with a dynamic 
execution-control system. This has made clear that an 
essential element of any interactive system must be a 
dynamic symbolic debugging and control facility. 

Page-oriented data mana,gement 

The access methods that support page-oriented data 
management in TSS/360 are called virtual access 
methods. The name "virtual" was given to these access 
methods to reflect the fact that they utilize only one 
physical bl~ck size-that of a page. The virtual ac
cess methods were specifically designed for a time-shar
ing environment and present a clear division between 
data set management and physical device management. 
Each of the three virtual access methods provides ac
cess and processing capability for a specific type of data 
set organization: 

• Virtual sequential access method (VSAl\1) 
• Virtual index sequential access method (VISAM) 
• Virtual partitioned access method (VP AM) 

In all three of these access methods, only data set 
management is performed in virtual memory; the con
struction and execution of channel programs and error 
recovery (Le., physical-device management is performed 
by the Resident Supervisor. The direct-access volumes, 
on which TSS /360 virtual organization data sets are 
stored, are entirely formatted into fixed~length, page
sized data blocks. No key field is required. The record
overflow feature is utilized to allow data blocks to span 
tracks as required. 

The page-sized block for data storage was selected for 
a number of reasons. For example, rotational delay is a 
significant factor in direct-access throughput, since it 
cannot be overlapped as mechanical-seek time can. Any 
block size significantly smaller than a page would be 
extremely wasteful of total direct-access capacity unless 
elaborate strategies were utilized to avoid rotational 
delay. 

The need for a large block size is also apparent when 
the simultaneous. direct-access activities of multiple 
users are considered~ Due to conflicts in demands for ac
cess arms, a mechanical seek may frequently be re
quired before accessing a data block. A larger block size 
makes better use of the total access cycle while, at the 
same time, reducing the frequency of access requests by 
each user. 

The direct-access volume-packing efficiency is also 
quite high for page-sized blocks. First, the data-record
ing space is utilized at better than 90% of the theoreti
cal capacity that could be obtained by t.he use of cylin
der-length blocks. Second, the smallest external-storage 



allocation unit is a single page; hence, a large number of 
small data sets can be kept on one volume. Further
more, large data sets need not be allocated physically 
contiguous external storage space. This contributes to 
higher volume packing efficiency by reducing external
storage space fragmentation. 

The physical representation of a typical virtual se
quential organization is shown in Figure 2. The speci
fication of any virtual data set is contained within the 
data set's external page map, which is stored on the 
direct-access volume together with the data pages. 
There is one entry in the external page map for each 
page-sized block occupied by the data set. The content 
of an entry specifies the location of a block in external 
storage. The position of the entry within the external 
page map signifies the relationship of the associated 
block relative to the other blocks in the data set. 

For the three-page data set shown in Figure 2, the ex
ternal page map shows that the first data block is 
between the other two pages of the data set. This ex
ample emphasizes that block relationships in the data 
set are determined by the contents of the external page 
map rather than by their physical position within the 
volume. This concept allows the virtual access methods 
true device mdependence across the range of direct-ac-

PaQ' Formatted Disk 

Ext,rnal PaQG Map 

PAGE I POINTER 

PAGE 2 POINTER 

PAGE 3 POINTER 

FIGURE 2-Typical virtual sequential organization 
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cess devices. That is, it is perfectly feasible for a data 
set to have physical records recorded on, say, the IB::\I 
2311 Disk Storage Drive and the IB::\1 2314 Direct 
Access Storage Facility in any mixture. Furthermore, 
because information is referenced relative to the begin
ning of the data set and not by its location with respect 
to an external-storage device, it is entirely practical to 
move data sets (or portions of data sets) among a 
hierarchy of devices. 

In a typical virtual index sequential organization, 
three classes of blocks can be specified within the ex
ternal page map: directory pages, data pages, and over
flow pages. One entry, corresponding to the lowest re
cord key in each data page, is placed in the directory. 
Records are maintained in collating sequence within the 
the data set by key value. To find a given record, the 
directory is searched and then the data page containing 
the record is searched. Locator entries, corresponding to 
each record within a data page are stored in the back of 
the data page. Space in overflow pages will be assigned 
when record insertions exceed the capacity of a data 
page. The record locators in the primary data page will 
point to secondary locators within the overflow page. 
The placement of data and locators within the same 
block is a significant convenience associated with choos
ing a fixed block size, and is in contrast to many con
temporary systems. 

In a typical virtual partitioned organization, two 
classes of page blocks can be specified within the exter
nal page :directory pages and member pages. The 
partitioned organization directory contains an entry 
describing each member, which is specified as a con
tiguous group of entries within the member-data por
tions of the external page map. Members are subsidiary 
data groups that may have sequential or index sequen
tial organizations (or any combination of the two). 
Members can be expanded or contracted by simply 
adding or deleting entries within the external page map. 
The partitioned organization allows a user to manipu
late individual members or to conveniently treat a 
group of data sets as a single entity for purposes such as 
creating libraries or sharing data sets through the system 
catalog. 

Two types of interlocks are provided to coordinate 
simulatenous access to shared data sets by more than 
one user: 

• Read interlock: prevents another user from writ
ing into the interlocked data space; other users 
may have read-only access at the same time. 

• Write interlock: prevents another user from read
ing or writing the interlocked data space; can be 
set only when no other interlock is set. 

Interlocks are established at various data space 
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intervals, depending on the data set organization. Vir
tual sequential organizations are interlocked at the 
entire data set level. Virtual partitioned organizations 
are interlocked at the individual-member level. Virtual 
index sequential organizations, however, are interlocked 
only at the individual data-page (block) level; this 
allows a much finer level of sharing than is available in 
most other systems. The control mechanism for sharing 
has been simplified significantly by the choice of placing 
interlocks at the level of the physical block, rather than 
at the level of the individual record. 

When a logical record is wanted (in a straightforward 
case), the flow of control is as follows. The appropriate 
external-storage address of the record's page is obtained 
from the external page map. This address and the 
virtual memory address of a buffer are passed to the 
Resident Supervisor in a request list. 

The Resident Supervisor places the symbolic device 
address and relative block number in the relocation
table entry associated with the buffer's virtual addres8. 
However, the page itself is not yet read into main stor
age. It is only when a user addresses a record in his vir
tual memory buffer that a paging-relocation-exception 
interruption occurs, causing the Resident Supervisor 
paging processors to bring the page into main storage. 

The virtual access methods write onto external stor
age only those pages of the buffer that have been modi
fied. When it is necessary to write a buffer page onto ex
ternal storage, the appropriate virtual access method 
routine obtains an external-storage address for the page 
from the external page map and passes the virtual 
memory address of the buffer, together with this exter
nal-storage address, to the Resident Supervisor. The 
appropriate Resident Supervisor routines then write the 
buffer page into the data set on external storage. 

The external page table maps the external-storage 
locations of a given portion of the data set into a vir
tual memory buffer. The size of the buffer controls the 
extent of virtual memory allocated to the data set. This 
second level of mapping allows the user to process a 
page-oriented data set that can be as large as 65,000 
pages, which is a great deal larger than the 4096 pages 
available in a 24-bit-addressed virtual memory. 

TSS/360 brings into the buffer only those pages of the 
data set that are currently needed. The size of this buf
fer need not be limited to one page; it may be as large a~ 
a segment (256 pages), thereby allowing a user to ad
dress all or a portion of a data set in the same manner as 
main storage. 

The TSS/360 user thus has a choice that allows him 
to treat a properly organized data set as a file or as one
level storage. There are several advantages, however, 
involved in the use of traditional data management 
macro instructions, such as GET and PUT. For ex-

ample, while information \vithin auxiliary storage is 
vulnerable to a systcm failure, information that is main
tained through macro instructions is updated directly 
on external stora,gc, and is thus preserved across system 
failures. In addition, macro instructions directly slgnal 
when buffer contents are no longer required and thus en
hance efficient auxiliary space management. 

As described, the virtual access methods perform a 
programmed search of data set indexe8 in virtual stor
age. Conceptually, this amounts to combining the bene
fits of paging large indexes with the benefits of sub
stituting high-Rpeed auxiliary drum storage for slower 
speed disk storage. 

This concept of programmed searches can be ex
tended by user progrDms to secondary indexcs for data 
sets. For example, the TSS/360 Assembler macro 
library is maintained as a line data set for maintemtIlce 
purposes. However, the library must frcqucntly be ac
cessed alphabetically on the basis of macro instruction 
name. A list of such names combined with the line num
bers locating the macro instruction i8 maintained, 
alphabetically sortcd, in a, separate sequential data set. 
When it is desired to locate a pa,rticular macro instruc
tion, the entire alphabetically arranged name list is 
brought into virtual memory and a programmed search 
is performed to locate the appropriate index (i.e., line 
number) to the macro library. 

We have found that implementation of the virtual ac
cess methods required significantly fewer lines of code 
than were required for a corresponding set of TSS/360 
access methods used to support physical-sequential de
vices, such as printers and magnetic-tape units. It is 
apparent that the removal of device-dependent opera
tions (with complex channel programs), the standardiza
tion of block size, and the elimination of exceptional 
procedures (such as end-of-volume operations) sim
plified the actual coding for the virtual access methods. 
Furthermore, the separation of data set management 
from physical device management simplified debugging. 

Program loading services 

In TSS/360, program loading is dynamic; that is, 
during execution one program may reference another 
program that has not been previously processed by the 
dynamic loader. Although not unique to TSS/360, this 
is another of the means by which a user is given flexibil
ity during his terminal sessions. 

In most conventional systems, there are a number of 
difficult design trade offs associated with dynamic load
ing. For example, the available memory space must 
be apportioned in some way between the storage re
quirements of the link-loader and the option to leave 
the program to be loaded in main storage. As another 



example, the cost of performing basic linking and un
linking functions during program execution must be 
traded off against the potential inefficiencies of passing 
inter-module parameters by value. 

In TSS/360, the loading process is performed in vir
tual memory. The large virtual memory environment of 
TSS /360 permits a disassociation of claims on address 
space from claims on main storage, and thus allows the 
allocation of storage to be optimized on a system-wide 
basis. Moreover, because of the large virtual store en
vironment, it is seldom necessary to unlink program 
modules. This makes it unnecessary to place system 
restrictions upon the form of intermodule references. 

A program .module generated by a language processor 
resides in the system as a member of a partitioned data 
set before being loaded and, in this state, consists of at 
least two parts: text and module dictionary. A third 
part, an internal symbol dictionary, used by the pro
gram control subsystem, is optional. 

The text of the program module is divided into con
trol sections. This division is determined by source 
language statements for output generated by the As
sembler, and automatically for output generated by the 
FORTRAN compiler. 

From a system standpoint, the purpose of control 
sections is to allow a program to be divided into portions 
whose virtual memory locations can be adjusted 
(independently of other sections) by the dynamic 
loader without altering or impairing the operating logic 
of the program. 

For the user, a control section is a segment of coding 
or data that can usually be replaced or modified with
out reassembling an entire program. A control section 
also represents a segment of coding or data to which 
attributes can be assigned independently. 

At the time the user creates a control section, he may 
assign a variety of attrihutes to it, such as: 

• fixed length 
• variable length 
• read-only 
• privileged 
• shared 

The module dictionary consists mainly of a group of 
control-section dictionaries, one for each control sec
tion of the program module. A module dictionary de
scribes the text: its length, attributes, external-symbol 
references and definitions, and information to be used in 
relocating address constants. Collecting all linkage data 
into one module dictionary allows the TSS/360 dynam
ic loader to calculate linkage addresses without bring
ing the larger text portion of the module into main stor
age. 

In TSS/360, the dynamic loader resides in virtual 
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memory. The basic functions of the loader are to load 
programs into virtual memory-not into main storage
and to relocate only those address constants that are in 
pages of text actually referenced during execution of the 
program. 

The process of loading a program into virtual memory 
does not involve the movement of any text and is per
formed in the allocation phase of the dynamic loader. 
Loading a program into virtual memory consists, in 
largt part, of establishing the addressabiIit.l of the pro
gram within the cirtual store. 

When the dynamic loader's allocation phase is in
voked, it utilizes the virtual access methods to locate 
the program library containing the requested object 
program module. 

Utilizing information from the module dictionary, the 
loader requests the allocation of a virtual memory for 
the object module text. Virtual memory allocation in
volves the creation of relocation table entries for the text 
and the assignment of protection keys according to the 
attributes of each contr()l section. The loader next 
places the external-storage addresses of the module's 
text pages into the relocation table entries just created. 
Locations within a program are addressed through base 
registers, index registers, and displacements. Base reg
isters generally contain values obtained from address 
constants. For each text page that contains address con
stants, an "unprocessed by loader" flag will be set in the 
appropriate relocation-table entry. 

Among other functions during this phase, the dynam
ic loader examines all external references of the mod
ule, and obtains and processes the module dictionaries 
for any additional object modules required to satisfy 
these external references. This process results in the 
dynamic loader recursively invoking itself as long as 
additional dictionaries must be obtained. 

When the allocation phase is complete, the dynamic 
loader exits, supplying location values that correspond 
to entry points in the loaded program. 

The second phase of the dynamic loader is invoked 
when a page containing address constants is referenced 
and consequently brought into main storage during pro
gram execution. Address constants on the page are ad
justed to reflect the values calculated during the al
location phase of the loader. 

A secondary function of the dynamic loader is to en
force the TSS/360 protection rules concerning the load
ing and referencing of program modules. 

During the allocation phase of the dynamic loader, 
the content of each module dictionary is placed in a pri
vate task table. Called a task dictionary, this table con
tains the information needed to load (and unload) mod
ules for particular task. A task dictionary consists of a 
header containing three hash tables, and a body con-
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taining one module dictionary for each module loaded 
for the task. 

To link programs dynamically, the dynamic loader 
must be able to look up all external-symbol definitions 
in an efficient manner; hash tables, consisting of headers 
and a number of hash chains, are used for this purpose. 

To reduce the number of pages referenced during the 
loading process- and to prevent a nonprivileged user 
from accidentally linking to a system routine or a sys
tem routine from erroneously linking to a nonprivileged 
user routine, three symbol tables are defined: privileged
system, nonprivileged-system, and user. 

The privileged-system table contains external sym
bols defined in control sections with the privileged 
attribute. 

The nonprivileged-system table contains nonpriv
ileged external symbols defined in control ~ections 

with the system attribute. A further conventIOn has 
been adopted: the initial entry points of nonprivileged 
system routines directly invoked by a no~pri:ileged 
user (such as a language processor) may begIn wIth ~er
tain reserved characters. This has the effect of makIng 
these routines "execute-only" to the user. 

With the two system symbol tables, instead of just 
one the dynamic loader does not need to search a hash 
chain containing a large number of privileged symbols 
when looking up nonprivileged symbols. As will be 
shown the loader does not normally reference the priv-, . 
ileged system symbol table during system operatIO~. 

The third symbol table, constructed for the user, IS 
primarily protective. It provides close cont:ol over the 
interface between the user and system routInes by sep
arating the user's symbols from system symbols. 

Although the loading and protection facilities just de
scribed are quite powerful, it has already become ap
parent that future computer systems might requ~re ex
tensions to these facilities. This is currently a subJect of 
study within IBM and elsewhere.5 •6 

Task structure 

Within TSS/360, tasks function in the environment 
of a large, segmented virtual store. Our knowledge of 
the proper way to utilize this environment evolved as 
the system was built and used. 

Because of the large size of this address space, the 
need for specifically declared overlays is eliminated. 
This does not remove the need to plan program or
ganization when efficient execution is desired; it merely 
makes it possible to minimize planning. In a time-shar
ing environment, where there is ~ premium pla~e~. upo.n 
solving a problem quickly, thJS added flexIbIhty IS 
significant and frequently desirable. 

Initial virtual memory 

During the initial stages of development, it was real
ized that certain system service routines must reside 
in each task's virtual store when the task is initiated 
(e.g., the dynamic loader). This virtual-store image 
would be created during system startup. As the system 
developed, it became apparent that efficiency could be 
enhanced by including a large number of other system 
routines in this initial virtual memory. 

The TSS/360 routines that currently make up initial 
virtual memory include all privileged system service 
routines and Inany nonprivileged system programs, 
such as the FORTRAN compiler. 

By tightly pre-loading most system. programs at sys
tem startup, the overhead usually associated with 
library searches, binding, and unbinding is significantly 
decreased. The trade off here is time versus the auxil
iary-storage space needed to hold the fully bound copy 
of those routines included in initial virtual memory. 

Still another advantage is obtained by binding at 
system startup. Efficiency in a paging system is closely 
associated with the degree of locality of reference over a 
time-slice. In a highly modular system, it frequently 
occurs that there are groups of routines that follow a 
pattern such that all members of the group tend to be 
referenced within a short period of time whenever any 
one of them is referenced. Page-reference patterns as
sociated with system programs can be significantly im
proved by ordering routines with an affin~ty for e~c? 
other so that they are packed, as a group, Into a mIm
mum number of pages. 

In TSS/360, this ordering is based upon a control sec
tion name list that can be altered easily to optimize the 
packing of system programs to minimize paging. This is 
especjally significant in TSS/360 because many control 
sections are much less than a page in length. 

Sharing 

Virtual memory sharing i~ TSS/360 is utilized in 
three ways: 

• When users share programs, they share the pure
procedure sections of the program. Each user re
C'eives a private copy of any modifiable data con
tained in the program. 

• When users share data sets, they share a common 
external page map control table. 

• All tasks share certain common control tables 
(such as the I/O device allocation table). 

Program modules designed for simultaneous sharing 
by more than one task are called re-entrant. Such mod
ules are characterized by their division into a shareable 



control section that does not change in any way during 
execution and a private control section (PSECT) that 
contains modifiable data and address constants. 

While most system programs are re-enterable modules 
with PSECTs, it is not necessary to use a PSECT when 
composing a TSSj360 program. With greater effort for 
special cases, it is possible to write re-enterable programs 
where all parameters are held in CPU registers or where 
working space is dynamically acquired. 

When a re-enterable program is composed, all modifi
able data, work areas, and address constants may be 
placed within a PSECT. Allowing the composer of a 
program to create the PSECT relieves the caller of that 
program of the requirement to know precisely what ad
dress constants the called program req uires. 

The use of PSECTs has effects upon the structure of 
programs within TSSj360. Whenever a user loads a 
shared re-enterable module, a private copy of its PSECT 
is placed into the user's private virtual memory, while 
shared access is established to a single copy of the pro
gr-am's re-enterable control sections. Programs are 
shared in such a way that the PSECTs and the re-enter
able portions of the called routines are separately 
mapped in to the task's virtual memory. 1\1 oreover, be
cause each user's virtual memory is allocated dynami
cally and independently, the singh=- physical copy of a 
re-entrant control section may be mapped into different 
virtual memory locations for each concurrent user (see 
Figure 3). Therefore, to perform linkage to are-entrant 
routine, two virtual memory addresses must be supplied 

The first address specifies the location at which execu
tion of the program module will begin when control is 
transferred. This is the conventional external reference 
value. 

The second address can be used to specify where the 
PSECT of the linked module has been mapped within 
the task's virtual memory. If this pointer were not sup
plied, the re-entrant module wOlild have no way of 
knowing, for instance, where the appropriate private 
modifiable data are located since the PSECT may be 
placed in different virtual memory loc~tions in each con
current task. 

Putting all address constants and modifiable instruc
tion sequences into one or more PSECTs does not 
guarantee that the resulting routine will be re-enterable 
under all conditions. While this provides for intertask 
re-enterability (i.e., sharing by a number of tasks), 
intratask re-enterability must be considered. 

A single task can re-enter the same program when it 
receives a task interruption, while executing a system 
routine or when a routine is called recursively. In such 
a situation, the PSECT' will not protect task integrity, 
since within a single task there is only one copy of the 
PSECT. This is why the Task Monitor provides either 
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FIGURE 3-Sharing of programs in TSS/:~~() 

a push-down save-area or a means by which a routine 
can protect itself from unwanted intratask re-entrancy. 

A PSECT is generally used to hold the register save
area for a re-entrant routine. Placing a save-area within 
a PSECT, rather than into a push-down stack, reduces 
overhead and facilitates tracing linkages during de
bugging. 

The sharing of programs in virtual memory is based 
on many users aciively using pure-procedure sections 0, 

the same program (such as the FORTRAN compiler)f 
with resultant decreases in the paging overhead and 
utilization of main storage. Because of the amount of 
shared code in TSSj360, the probability that shared 
pages will be simultaneously used is high only for a few 
system routines. The primary value of shared code thus 
lies in its read-only attribute, which allows only one 
copy of a page of code to be on auxiliary storage. Dur
ing the lifetime of the average task, there is a high prob
ability that a number of users will lllvoke, say, the 
FOR TRAN compiler. Thus, instead of many copies of 
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the compiler eXIsting on auxiliary storage, ther€' is only 
one copy of its pure-procedure sections. 

When users share a data set, they share the external 
storage map table. They do not share buffers because 
there is a low probability of two or more users fre
quently accessing the same data at nearly the same time. 
Further, each user can independently modify his copy in 
the buffer without affecting other users. 

When users share a program or a data set control 
table, they share a common pag~ table (see Figure 3). 
This leads to a great deal of fle~ibility. For example, a 
common page-table entry can b~ pointed 1;6 by segment
table entries for several differen.t tasks. However, shar
ing of each such page table c~ be restricted to specific 
groups of users. The way -in which this sharing is accom
plished is as follows: 

Virtual memory service routines cannot directlyad
dress shared page tables. Therefore, the Resident Super
visor must provide a method of.symbolically associating 
the shared item with the page table that maps it. 
A control table, located in shared virtual memory, 
serves as the repository of sharing information. When
ever a user invokes a program from a shared library or 
opens a shared data set, the system searches the shared 
data table. 

Because each system user can catalog a shared pro
gram or data set using any name he wishes, the search of 
the shared data table is, by convention, based upon the 
name established by the item's owner. If the entity has 
not been previously referenced during the session, then 
an entry for this name will be created in the table. 

Next, shared virtual memory is obtained for the 
entity. The Resident Supervisor creates the required' 
number of shared-page-table entries and sends back the 
symbolic identification number of the shared page table 
and the location of the requested allocation within the 
segment. This information is stored into the shared 
data table. Thus, there is now an association between 
the name of the entity to be shared and the page table 
that maps the entity. 

When another user invokes the shared module or 
optns the shared data set, a search of the shared ,data 
will yield a match on the name. The symbolic page table 
number can then be used in a ~upervisor call to request 
that a segment-table entry for this user be made to 
point to the proper shared page table. 

Virtual memory sharing requires the use of pro
grammed interlocks to prevent destructive intertask 
interference. The use of interlocks for sharing, however, 
requires careful control. For instance, system operation 
can be severely affected if one task sets an interlock in a 
system table and then becomes inactive for a long time. 
Furthermore, substantial system overhead is incurred if 
tasks waiting for the interlock to be reset are con
tinually being dispatched only to find that the interlock 
is still set. This type of problem is representative of the 
many subtle considerations involved in the control of 
extensive sharing among tasks in a time-sharing en
vironment. Weare still gaining experience and insight 
into this aspect of the TSSj360 time-shared operating 
system. 
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INTRODUCTION 

Data processing systems are liable to both .hard
ware and system software failure. In first and sec
ond generation systems the impact of such fail
ures was typically limited by the scope of the 
system itself to the one or limited few programs 
operating at the time. Resumption from the be
ginning of the program or preplanned checkpoint 
typically constituted complete recovery. 

Third generation systems have Increased in 
complexity. They have assumed responsibility for 
the management and retention of user files, and 
they support and automatically schedule the con
current operation of increasing numbers of batch 
and interactive tasks. Information maintained 
both on direct access devices and in memory is 
critical to continuing system operation. Much of 
-this information is dynamically updated in place 
and as a consequence even partial loss may dis
continue and delay system operation. Rapid and 
smooth restoration of service subsequent to hard
ware and software failure has become a necessity. 
Considerations for system protection and recovery 
are, therefore, critical aspects of third generation 
system design. 

The types of failure that a system must con
tend with include processor or memory malfunc
tion and the unreadability of data on a direct ac
cess volume. No complete solution 'to all the po
tential problems exists. Cures for each type of 

sickness are apparent, though widely variant in 
scope and cost. Tradeoffs exist in terms of dollars 
invested and overheads incurred in hardware and 
software procedures that might be employed. In
creasing such costs can lessen the probability or 
localize the impact of a failure. 

A processor or memory malfunction may termi
ate the operation of the system abruptly. Salvag
ing the information in memory under such abor
tive circumstances tends to be extremely compli
cated and time consuming, if feasible at all. Proc
essing cannot be resumed from the point of 
failure. All tasks in process must generally be 
prematurely terminated and restarted, and some 
data in files that were being modified may not be 
retrievable. The second section of this paper is 
devoted to a discussion of this topic. 

A major volume related failure, such as a head 
scoring the recording surface, could destroy a sig
nificant amount of data. Without some means of 
protection, a loss of this magnitude could effec
tively cause total loss of the system. This subject 
is pursued in section 3. 

A minor volume related failure such as the un
readability of a single track of data could cause 
the loss of one or more files, or could prevent the 
initiation of accepted tasks or prevent the com
pletion of one or more initiated tasks. Preventa
tive 'software techniques are helpful, but limited. 
Online procedures to monitor and identify mar-
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ginal performance of the processor, memory and 
I/O operations may warn of imminent failure or 
permit avoiding the use of marginal elements. For 
example, a routine which vigorously exercises the 
tracks of a volume and inhibits the use of marginal 
tracks will significantly reduce the probability 'Of 
track unreadability. 

Such techniques reduce the probability of fail
ure. They do not prevent failure. Consequently, 
provisions for recovery from failure are still es
sential. In sections 4 and 5 this area is considered 
in terms of system files and user files~ respectively. 

At the current state of the art it is not feasible 
to consider system recovery procedures independ
ently of the structure and organization of the 
system to be protected. Consequently, the orienta
tion herein is directed toward techniques con
sidered for the protection of the time sharing 
operating system on the Spectra 70/46. Particular 
emphasis is placed upon the system and user in
formation retained on online direct access vol
umes. 

The relevant system characteristics which 
bound the areas of discussion are: 

• a single central processor, employing a single 
memory bank. 

• direct concurrent access to the system by 
mUltiple interactive users. 

• user program and data files, as well as system 
information, maintained on mass storage. Al
locating of file space as well as file access and 
retrieval are fully managed by the system. 
File size is essentially unrestricted. 

• task (workload) control fully managed by the 
system. Tasks submitted to the system are 
maintained on online devices and scheduled 
by the system for multiprogrammed opera
tion concurrent with interactive processing. 
Output is directed to printers and punches by 
the system based upon resource availability. 

System restart after a memory loss 

In systems employing hierarchial control mem
ories and micro programmed processor logics, 
memory failure tends to produce less than an or
derly system failure. Recovery of memory infor
mation under such circumstances may, in fact, 
be impossible. Similarly, in systems without motor 
generator sets, the abruptness of power failure 
typically makes it impossible to recover the in
formation in memory. Recovery under these cir
cumstances tends to reduce to making the system 
usable again. Automatic restart of the work in 

progress at the time of failure is not feasible. 
Terminal users must reconnect to the system and 
background tasks must be resubmitted after up
date-in-place files that were being modified have 
been reset to an original or checkpoint state. 

One approach to system restart after a memory 
loss is to periodically record the status of the 
system (e.g., all the information on all the direct 
access volumes) when no one is using the system. 
'Vhile this permits re-establishing the system at 
the chronological point at which the status was 
recorded, it requires repetition of all file modifica
tion subsequent to the reset point and re-entry 'Of 
all workload awaiting initiation at the time of 
the failure. Such an approach places a major bur
den of recovery on the users of the system. 

An alternative method is to re-establish the util
ity of the system by correcting system status in
formation. This information reflects status for 
tasks in process at the time of failure. It is invalid 
at restart time in view of the necessity to initiate 
all processing anew. The need for such a correc
tive procedure is dependent upon the probability 
of memory loss. Its complexity is determined by 
the extent of the dynamic control information 
that is maintained in memory as contrasted with 
that maintained on direct access volumes. 

Information necessarily in memory includes the 
precise status of tasks actually initiated, and file 
content and file structure modifications actually 
in process. 

Information not subject to such dynamic updat
ing and consequently, logically allocatable to 
either the memory system or direct access volumes 
includes: 

• file accessibility information. 
• direct access space allocation information. 
• Rystem workload information. 

Considerations for the protection and recovery 
of the above three categories of information are 
presented in the following discussions. 

File accessibility information 

The files in the system may be accessed by mul
tiple users on a password restricted basis. Input 
access may be granted to any number of concur
rent users. Output and inplace update access is 
restricted to one user at a time. 

To control access to sharable files; the system 
maintains the status of file usage for each opened 
:file. Indications of granted output or update access 
and of the number of input users are employed to 
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prevent interference among simultaneously in
compatible accesses. If this information is main
tained on a direct access volume, system restart 
procedures must reset these indications. Other
wise files being accessed at the time of failure 
would be incorrectly restricted. If this informa
tion is maintained in memory, the reset procedure 
is unnecessary. Moreover, fewer updating accesses 
to the volume would be required during normal 
system operation. 

In addition to the tradeoffs of processing effi
ciency and memory space usage, the restart con
sideration is involved in the placement of the in
dicator information. It appears highly desirable 
that the system identify files that were being 
created or modified at the time of failure. These 
files may require special processing before a valid 
program restart may be initiated. File content 
may be imprecise. Records modified or created and 
in the output process at the time of failure may 
not be reflected completely or ·correctly on the vol
ume. Moreover, the loss of memory contained file 
structure information could prevent retrieval of 
the entire file. Advising subsequent users of the 
file would appear to be a minimum requirement 
upon the system. 

Hence, if usage indications are maintained on a 
direct access volume, the system restart procedure 
should search file directories, reset the indicators 
and establish flags which will notify subsequent 
users of the potential need for specialized file 
correction procedures. If the usage indications are 
maintained in memory, some auxiliary method of 
identifying the files in the process of modification 
at failure must be devised. 

Direct access space allocation 

Space allocation is typically maintained on di
rect access volumes to avoid memory loss and, in 
some systems, to permit full ultilization of re
movable disc packs. Such information may not 
accurately reflect tire allocation if failure occurs 
while it is being modified. Moreover, the actual 
file bounds within an allocated space may not ac
curately reflect the additions which were being 
created at failure. To attempt to reconstruct such 
files and re-establish the space allocation properly 
is extremely complicated, and appreciable delay 
in restarting the system may be anticipated. How
ever, since it is reasonable, per the previous sec
tion, to identify all files possibly requiring special 
processing, it also seems reasonable that the allo
cation information be assumed correct. Thus, 

questionable file marking may be employed to 
warn of potential allocation problems as well as 
advising users of potential data loss within a file. 

System workload information 

Tasks queued on direct access volumes and 
awaiting system initiation may be processed just 
as though the system was being restarted after 
a normal shutdown. Tasks which had been dis
rupted by the failure, however, cannot be re
initiated. Before such tasks may be restarted, up
date files must be returned to the status they 
possessed at a previous checkpoint. Since it is not 
possible to economically retain knowledge of 
which tasks had actually performed such file 
modifications, all tasks which had been initiated 
must be purged from the system by the system 
restart procedure. Appropriate notification must 
also be given to the operator so that file resetting 
and restart may be properly initiated. 

If in controlling output print and punch opera
tions, the system retains all data on direct access 
volumes until the entire operation is completed, 
these operations may readily be restarted subse
quent to a failure. Restart of an operation from 
an intermediate point may be desirable in certain 
instances, such as printing. Such restart requires 
special operator communication. 

Summary of memory loss considerations 

In guarding against memory loss, the appro
priate use of direct access storage for control in
formation and data provides an economical meth
od for protection. It limits the impact of failure 
to the actual . tasks and files in process. Execu
tion of such file correction procedures, as described 
subsequently, and restarting of the related tasks, 
appears to provide an adequate level of protec
tion. 

A minimal protection scheme would therefore 
involve purging of in process tasks, warning file 
users of suspect file structures, restart of print 
and punch output, and normal processing of 
tasks awaiting initiation. 

Major volume loss 

The preceding section described procedures 
which a system could employ to resume operation 
subsequent to the loss of information in memory. 
Such procedures are heavily dependent on the 
availability in direct access store of pertinent con
trol fields. Failures of the direct access store 
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therefore are 'Of critical concern in the design 'Of 
system recQvery prQcedures. This sectiQn ad
dresses prQtectiQn and recovery frQm a maj 'Or di
rect access vQlume lQss. 

Head sCQring 'Of the recQrding surface, ex
traneQus 'Output signals generated by device CQn
trQl electrQnics, 'Or maj 'Or sQftware errQrs CQuld 
destrQy a significant PQrtion 'Of the infQrmatiQn 'On 
a vQlume. RecQvery frQm such a catastrQphe is 
dependent largely 'On hQW direct access space is 
allQcated. If critical system infQrmatiQn is re
stricted tQ a single vQlume, it is PQssible tQ re
cQnstruct the vQlume. This requires making a 
CQPy 'Of the vQlume cQntents at the clQse of each 
prQcessing periQd and maintaining ('On a different 
vQlume) recQrds reflecting all significant changes 
tQ the vQlume. Similarly, if each user file is al
IQcated tQ a single vQlume and a vQlume catalQg 
is maintained tQ identify all files 'On the vQlume, 
it is PQssible tQ retrieve backup cQpies 'Of the files 
tQ re-establish the destrQyed vQlume. Alternative
ly, in this instance, a full vQlume CQPy 'Of the in
fQrmation 'On the vQlume CQuld alsQ be used tQ 
reCQver frQm a vQlume loss. 

Many systems permit file infQrmatiQn tQ crQSS 
vQlume bQundaries in 'Order tQ 'Obtain mQre flexible 
system perfQrmance and better 'Overall utiliza
tiQn 'Of the available space. As a result, individual 
vQlume cQpies and retrieval 'Of backup files be
CQmes less practical. A full vQlume CQPy tends tQ 
be useless as it will, if used, result in incQnsisten
cies within the files that reside 'On mQre than 'One 
vQlume. MQreQver, the retrieval 'Of backup cQpies 
fQr all the files allQcated 'On the vQlume may in
vQlve a large number 'Of files and require signifi
cant space allQcatiQn and deallQcatiQn 'On un
effected vQlumes. 

FQrtunately, full vQlume lQSS tends tQ be a 
rare 'Occurrence. TherefQre, a reasQnable apprQach, 
fQr systems that permit files tQ crQSS vQlume 
bQundaries, seems tQ be tQ use a CQPy 'Of the full 
set 'Of direct access vQlumes as a system reset 
PQint. 

System file considerations for minor volume 
related failures 

The unread ability 'Of infQrmatiQn stQred 'On di
rect access devices is significantly mQre prQbable 
than entire vQlume lQss. TQ prQtect against such 
lQss, the sQftware may perfQrm preventative mar
ginal track tests .. TQ accQmplish this requires a 
rQutine which vigQrQusly exercises the tracks 'Of 
the vQlume and inhibits further use 'Of marginal 

tracks. FQrming a tempQrary CQPy 'Of the vQlume 
and relQading the CQPy data cQmpletiQn 'Of the 
exerciser may significantly reduce the number 'Of 
unreadable tracks encQuntered during system QP
eratiQn. 

Regardless 'Of the use 'Of such preventative func
tiQns, cQnsideratiQn must be given tQ the prQtec
tiQn and recQnstructiQn 'Of critical system files. In 
this sectiQn prQtectiQn and reCQvery techniques 
fQr the fQl~Qwing system files are discussed: 

• user identificatiQn infQrmatiQn. 
• reSQurce usage infQrmatiQn. 
• file related infQrmatiQn. 
• vQlume space allQcatiQn infQrmati'On. 
• system wQrklQad infQrmati'On. 

User identification information 

TQ identify legitimate users 'Of the system the 
administratQr enters pertinent infQrmatiQn intQ 
a file. BefQre prQcessing any task submitted, the 
system interrQgates this file tQ verify that the 
user has been authQrized access. Typically, rec
ords 'Of this file include user identificatiQn, an 
access passwQrd, permissable accQunt numbers, 
the highest priQrity he may use, and the amQunt 
'Of file space he is permitted t'O use and has used 
tQ date. 

With the 'One exceptiQn 'Of the permanent space 
usage field, every change made tQ this file is 
initiated by the administratQr. Each such change 
is alsQ recQrded in hard CQPy fQrm at the ad
ministratQr's terminal. TherefQre, prQtectiQn 'Of 
this file may be readily achieved byperiQdically 
recQrding a backup CQPy. In the event 'Of file lQss, 
the administratQr may retrieve the backup C'OPY 
and reapply the few changes he has made since 
the CQPy was made. The changes tQ the space 
usage field, which are nQt directly available tQ 
him in hard CQPy fQrm, may be retrieved frQm 
the reSQurce usage file and applied t'O the re
created versiQn. 

Resource usage information 

An accQunting file is nQrmally maintained t'O 
serve as the basis fQr charging fQr the use 'Of sys
tem reSQurces. Dynamic PQsting 'Of usage tQ this 
file is perfQrmed as tasks terminate pr'Ocessing. 

The types 'Of infQrmatiQn included in this file 
are the user identificatiQn number, the applicable 
accQunt number, a task sequence number, time 
stamps f'Or task entry int'O the system and f'Or 
task initiati'On and terminati'On, pri'Ority level 
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exercized, prQceSSQr time used, mem'Ory space 
used, increment 'Of permanent file space used, 
maximum tempQrary file space used, number 'Of 
I/O 'Orders issued, and number 'Of types 'Of private 
devices required. 

Since this infQrmatiQn is bQth critical and lQW 
in vQlume, it may be dually recQrded 'On separate 
vQlumes and the tw'O cQpies may be retained 'On
line. Alternatively, SQme reductiQn in system 'Over
head may be effected by maintaining a single base 
C'Opy and recQrding a supplementary file. In sys
tems where accQunting transactiQns are merely 
appended tQ the base file, the supplementary file 
will cQntain the identical recQrds PQsted tQ the 
base CQPy. Where accQunting transactiQns are 
used tQ update entries in the base CQPY, the 
transactiQns are typically placed in the supple
mentary file. If the base file is cQpied periQdical
Iy t'O create a backup, the supplementary CQPy 
will 'Occupy less space and need be maintained 
'Only between the periQds in which cQpies are 
made. T'O achieve still greater prQtectiQn, each 
supplementary file may be printed bef'Ore it is 
destr'Oyed. 

File related information 

Systems emplQying remQvable direct access 
vQlumes typically maintain file related infQrma
tiQn in a file directQry 'Or catalQg, and als'O in 
vQlume related labels. CatalQg entries include the 
filename, creatiQn date, access passwQrds, access 
restrictiQns, and PQssibly, current access (usage) 
indicatQrs. AlsQ included are fields indicating the 
number 'Of vQlumes and the actual vQlumes 'On 
which the file resides, and QptiQnally, the lQcatiQn 
'Of the backup CQPy. VQlume related lables describe 
areas 'Of the vQlume allocated tQ the file and, fQr 
index sequential type files, the related cQntrQl 
indices. 

A degree 'Of prQtectiQn fQr the catalQg may be 
achieved by periQdically prQducing a backup CQPy. 
HQwever, recQnstructiQn 'Of a catalQg frQm such a 
CQPy may prQve tQ. be incQmplete and errQneQUs. 
If a file is mQdified 'Or mQved subsequent t'O the 
creation 'Of the backup, the vQlume infQrmatiQn 
within the CQPy may be undetectably errQne'Ous. 
Subsequent allQcatiQn and deallQcati'On CQuld pre
sent a different set 'Of vQlumes 'Or a different 
'Ordering amQng the same vQlumes. VerificatiQn 
checks might be emplQyed t'O minimize, but n'Ot 
eliminate PQssible ambiguities. MoreQver, changes 
tQ certain infQrmatiQn such as access limitatiQns 
and file type CQuld nQt be reCQnstructed. 

A mQre satisfactQry apprQach requires main
taining a lQg 'Of changes made tQ the catalQg. The 
use 'Of such a lQg in cQnjunctiQn with a priQr CQPy 
'Of the catalQg permits accurate and cQnlplete 
recQnstructiQn. The system user is affected 'Only 
if he shQuld attempt tQ access the file befQre re
cQnstructiQn is accQmplished. In general, this 
means th at he may nQt be able to cQmplete SQme 
prQcessing, but that he is able tQ resubmit and 
resume his prQcessing at a later time with a 
minimal PQtential IQss· and with nQ resPQnsibility 
fQr catalQg recQnstructi'On. 

PrQtectiQn 'Of the vQlume related labels presents 
a sQmewhat different issue. LQSS 'Of a vQlume label 
may make it impQssible tQdetermine the areas 
'On the vQlume in which the file is lQcated. In 
general, this means that it is impQssible tQ read 
the file. InformatiQn relative tQ a backup CQPy 
shQuld still be available and it may be retrieved 
in lieu 'Of the CQPy 'On the direct access vQlume. 
Alternatively, an analysis 'Of the vQlume labels 'Of 
the 'Other files 'On the vQlume and 'Of the unal
IQcated vQlume space infQrmation CQuld be used t'O 
determine the space that was allocated to the file 
in questiQn. This information CQuld the:.'1 be used 
tQ read the appropriate areas of the volume and 
tQ retrieve the file. The sequence of the data WQuld 
then have to be verified and reorganized by the 
owner. ·Both logging procedures and dual record
ing of the labels would provide for more CQm
prehensive protection, but at a significant increase 
in overhead. 

Volume space allocation information 

Unallocated volume space inf'Ormation is typi
cally maintained on each volume. Loss of this in
formation makes it impossible tQ safely allocate 
additional file space on the volume, but d'Oes n'Ot 
affect the retrieval of existent files. Protection 'Of 
this inf'OrmatiQn does nQt seem tQ be warranted. 
The file space allocated to each file 'On the v'Olume 
may be determined, using the file labels on the 
volume, and the unallocated space may be de
duced. A more basic appr'Oach w'Ould copy all files 
allocated to the volume and reinitialize the vol
ume. However, in systems where tiles cross volume 
boundaries significant space allocation and deal
location will be required 'On otherwise uneffected 
volumes. 

System workl'Oad information 

The tasks representing the system wQrkl'Oad are 
generally identified by entries in variQus queues. 
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Normally, a single system routine maintains the 
queues and the file space in which the necessary 
information is stored. Proper maintenance of 
these queues is so critical to continuing success
ful operation of the system that dual recording 
is typically justified. If appropriately considered 
in designing the system it is possible to accom
plish the required level of redundancy without the 
cost of total duality. 

An approach to the appropriate level of 
redundancy is achieved by dividing the relevant 
file space into index and task areas. In the index 
area, there is one entry for' each task, each entry 
containing a task sequence number, an indicator 
identifying current status, a priority indicator, 
resource requirement information and a pointer 
to a task header block. Similarly, in the task area, 
there is a task header· block for each task con
taining the detailed information nece~sary to 
initiate a task, interim resource and time stamp 
information and a pointer to the file which con
tains the information required to process the task. 

The loss of a track containing indices could re
sult in the· loss of information necessary to ini
tiate or account for a significant number of tasks. 
The loss of a track containing task header blocks 
could result in a similar loss for the tasks in
volved. 

The inclusion in the task header block of a 
backward pointer to an index entry makes it pos
sible to identify the task header blocks associated 
with an index. With this information an index 
which is unreadable may be reconstructed. The 
backward pointer identifies the task header blocks 
associated with the lost index and the informa
tion in the header blocks and the file to which it 
points is sufficient to reconstruct the index. 

An additional pointer in the index, identifying 
the file to which the h~ader block points would 
similarly make it possible to reconstruct lost 
header blocks. However, the addition of a pointer 
to a file, which may be a rather lengthy filename, 
significantly reduces the number of header blocks 
that may be stored and consequently affects the 
efficiency of the system. 

The absence of the file pointer in the index 
block implies that loss of a track of header blocks 
requires these tasks to be resubmitted, if they 
are to be run. The operator can be apprised of 
the tasks involved to facilitate this action, since 
the sequence numbers are available in the index. 
The choice here, as so often, is one of efficiency 
versus full protection by the system. 

Summary of minor volume related failure 
considerations for system files 

System files contain information relating to 
the entire user community. Loss of a singletrack 
of data from one of these files could result in im
paired service and significant inconvenience to 
many users. A loss of user identification informa
tion could result in denial of service to all users 
affected. Loss of resource information might be 
reflected in lost revenues, loss of file related in
formation could cause the loss of many files stored 
within the system, while loss of sytsem workload 
information might impose appreciable delays and 
rework of tasks accepted by the system. Mecha
nisms to minimize the impact of these losses have 
been discuss.ed above. The techniques cited range 
from manual administrator adjustment to full 
redundancy .. 

In the following section the subj ect of protec
tion and recovery is developed from the point of 
view of individual user files. 

User file protection 

Increased utilization of direct access devices 
have enhanced the operation of third generation 
systems in a number of ways. Direct access vol
umes and files may be concurrently shared by more 
than one user providing the user community as a 
whole with greater availability and utility of the 
system. Files, and low activity files in particular, 
may be updated on a record basis and the need 
for recopying of entire files is reduced. Such up
dating in place is in many situations the only 
feasible approach to updating large files with the 
frequency required by some applications. 

File shareability has introduced the need for 
accessibility procedures alluded to in preceding 
sections. Update-in-place has similarly increased 
the need for more sophisticated protection pro
cedures. File update procedures employing third 
generation access methods affect both the data 
content of the file and, in the case of non-serial 
organizations, the very structure of the file. 
Should a memory failure occur while a file is 
being updated, consideration must be given to re
construction of both file content and file structure. 
Reinitiation of an aborted task or resumption of 
it from a checkpoint established prior to the fail
ure will otherwise prove unsatisfactory. Addi
tionally, the loss of any system control informa
tion identifying the file or the inability to read 
a track of data within the file may cause the loss 
of the entire file. 
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In this section protection and recovery of user 
files is developed in terms of consideration for: 

• file content 
• file structure 
• protection by file copy 
• file reconstruction procedures 

Certain of these considerations fall within the 
province of system responsibility, while others 
may be achieved effectively only by the applica
tion programmer. 

File content 

Typical magnetic tape system recovery pro
cedures entailed either reinitiation of a task with a 
new set of output or "update" tapes or reposition
ing the tapes to the position they held at the time 
of a prior checkpoint and resumption of execution 
from that checkpoint. This is not sufficient in di
rect access update-in-place operations since proc
essing performed subsequent to a checkpoint and 
prior to a failure will have updated records. Re
sumption from a checkpoint will involve "double
updating" of these modified records if corrective 
procedures are not employed. To illustrate, if the 
file processing involved updating the accounts re
ceivable, activity such as subtracting a payment 
or adding the value of a new shipment must be 
undone before the transaction may be reapplied. 
Alternatively, procedures may be developed to 
avoid redundant application of the transaction. 

File structure 

Direct access device file organizations have be
come more sophisticated. Typical magnetic tape 
systems possessed only a serial organization 
wherein the primary structural consideration was 
the end of recorded information on tape. Since 
typical procedures merely repositioned the tapes 
to their location at a prior checkpoint, the difficul
ty of detecting the true end of data was avoided 
by subsequently executed recovery procedures. 
No greater difficulty is encountered in recon
stituting a serially organized direct access file. 

Linked file structures, and partially linked 
structures such as index sequential, are often 
consider to be immune to the effects of failure 
since allocation information and file sequence are 
embedded within the file itself., However, the 
manner in which the next available record posi
tion is maintained, for example, is extremely 
critical where insertion or deletion, or size modi
fication of records is permitted. Typically, the 

next available record position is maintained in 
memory for efficiency purposes. Subsequent to a 
memory failure, the only value available is that 
from the volume. This value may be significantly 
out-of-date. Utilization of an obsolete value may 
cause the improper reuse of an allocated file sec
tion, destroying records and aborting link se
quences. Similarly use of an obsolete value from 
a checkpoint can cause the file to be impacted by 
the pre-restart file correction procedure. The 
seriousness of the situation is increased in en
vironments where records completely unrelated 
to the user's file transactions may be placed in 
an overflow area to make space available for an 
insertion or space modification. Use of an obsolete 
value of the next available record position in this 
case may result in the undetected loss of inactive 
records. 

Protection by file copy 

A variety. of protection procedures are possible, 
depending on file size, organization and frequency 
of modification. In a number of instances, the file 
to be processed may be small enough to fit into 
the memory system. This is particularly the case 
when the file is to manipulated by an interactive 
language processor or file-editing processor. In
deed, some systems specifically constrain files to 
such a size. In this environment, copying the file 
into the memory system prior to processing pro
vides file protection against memory loss or soft
ware failure during the update process. At worst, 
the processing which immediately preceded the 
failure must be repeated. In additio~, since the 
updated file copy is returned to the device only 
when a process is successfully terminated, the ap
plication programmer is afforded the lUXUry of 
experimenting with a file without invalidating its 
contents or structure. 

In the general case, protection against file loss 
still implies maintaining a second copy of the file, 
regardless of its size. In the extreme, this could 
he taken to mean that the file should be dually 
recorded on line. The cost in space and processing 
time does not normally warrant such a procedure, 
and for the case of memory loss, it is reasonable 
to expect that two copies could be lost as readily 
as one. A safer and less costly procedure is to copy 
the file after each processing session in which 
the file is modified. This provides two current 
copies of the file, one of which may be used as a 
current backup in the event any loss should occur 
in the other. 



36 Fall Joint Computer Conference, 1968 

The space required to maintain backup file 
copies presents a different set of considerations. 
The lower access time, higher transfer rate di
rect access devices are best used for frequently 
accessed files. File copies generally do not fall 
into this category and typically need not be on
line at all. If a system configuration includes 
mass storage equipment of sufficient capacity to 
contain such backup copies, the space problem is 
essentially eliminated. 

For such a configuration, systems should be 
equipped to readily locate and maintain files in the 
mass store for retrieval to the faster, normal 
working store. System commands and procedures 
for such file transfer operations provide essential 
support to file recovery procedures. 

In systems without mass on-line storage, the 
capability to copy a file to tape becomes an 
equivalently important system feature. A stand
ard copy function, however, tends to underutilize 
the capacity of magnetic tape reels and to bur
den the application programmer with the man
agement of multiple, unrelated tape reels or single 
tape reels containing sets of unrelated files. To 
offset this, a system function may be provided 
to manage backup tapes for all users. Commands 
may also be provided to request creation or re
trieval of a backup copy and the system should 
manage the backup library while ensuring file 
privacy by prohibiting direct user access to the 
library. 

File reconstruction procedures 

To make a copy of a file each time it is modified 
reduces the value of updating the file in place. 
Certainly the reduction in I/O operations achieved 
by only reading and writing records which are 
to be modified is totally negated. However, a 
gain may still be achieved in this regard since 
it is not necessary to copy a file every time it is 
modified. Rather, it is possible to copy it after 
some time period or after some number of modi
fications have been made. Periodic copying of a 
file is almost a necessity on larger, low-activity 
files. In situations where such an approach is 
taken;-consideration must be given to file recon
struction procedures, more specific to the file and 
application than the general file copy procedures 
previously discussed. Procedures specifically con
cerned with file content may typically be planned 
best by the application programmer. File struc
ture considerations are more specifically within 
the province of the system. 

Application program techniques 

Subsequent to a failure resulting in the loss 
of information in memory, typical recovery pro
cedures entail a resumption of processing from a 
checkpoint. Difficultie's arising from redundant 
pre-failure and post-failure application of transac
tions may be avoided either by reconstituting rele
vant records to· their status at the time of check
point or by eliminating the redundant application 
of the appropriate trans·actions. The feasibility of 
the particular approach is heavily dependent upon 
the actual application. Accordingly, although the 
system may provide the application programmer 
with tools which will facilitate his development of 
appropriate procedures, it is generally not feasible 
for the system to undertake the full procedure. 

To re-establish a file so that it contains precisely 
the same data as when a checkpoint was taken, it 
is necessary to maintain an auxiliary file which is 
synchronized with the checkpoint. Prior to up
dating a record, the unmodified input image of 
the record is recorded in the auxiliary file. A file 
of such "pre-images" is thus constituted. When 
a new checkpoint is established, the auxiliary file 
may be erased and a new series of pre-images 
supplementing the current checkpoint may be 
initiated. Subsequent to a failure, the pre-image 
file may be read in reverse order and used to re
turn every record to its status as of the related 
checkpoint. 

Alternatively, procedures to avoid redundant 
application of transactions, would either mark 
effected transactions or store effected transactions 
in an auxiliary file analagous to that above. Un
fortunately, such procedures are not perfect. If 
transactions are marked before the primary rec
ord is updated, a failure before update will cause 
the transaction to be eliminated; while if the 
primary record is updated prior to marking the 
transaction, an intervening failure will cause the 
transaction to be applied a second time. 

Subsequent to the loss of data in a file or the 
inability of the system to retrieve the file because 
of the loss of some vital control-information, the 
user must generally rely on a backup copy to 
recreate his file. If a new backup copy is not made 
each time the primary file is modified, it is nec
essary to augment the backup copy with an 
auxiliary file. This auxiliary file could contain 
either the transactions which were used to modify 
the primary file or the after image of the records 
that were modified subsequent to recording the 
backup copy. With an auxiliary transaction file, 
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the reconstruction must essentially repeat the 
update processing for each transaction to produce 
a current file. With an auxiliary file of after im
ages, the processing required entails only the ap
plication of the after images to the records of 
the retrieved backup copy. 

System reconstruction considerati'Ons 

File content recovery c'Onsiderations are pecu
liar to the application and, accordingly, they are 
left to the application pr'Ogrammer for solution. 
File structure considerati'Ons require the reten
tion of inf'Ormation typically unavailable to him. 
As a result, procedures, if any, f'Or this latter pur
P'Ose require system functions. T'O illustrate, a 
system function could be empl'Oyed t'O reconstitute 
the structure of the linked file discussed previ'Ous
lYe With full knowledge of how the space is al
located to the file, a special procedure could be 
employed to retrieve rec'Ords from the suspect 
structure and create a new linked file. Such a pr'O
cedure would utilize the link addresses t'O retrieve 
all data. Since the s~spect file would be employed 
for input, concern f'Or unavailable file structure 
inf'Ormation is irrelevant. 

Procedures such as the above are highly de
pendent on actual file organization and typically 
require reprocessing 'Of the entire file. Therefore, 
it appears that file C'OPy techniques are b'Oth m'Ore 
feasible and more basic. 

Summary of user file protection considerations 

The need to safeguard both the data within files 
as well as the information relating t'O the 'Or
ganization of the files has added to the c'Omplexi
ties of file protecti'On in third generation systems. 
File update-in-place has transformed the creation 
'Of backup-files from an automatic by-product 'Of 

the update process t'O a planned design require
ment. These additional resP'Onsibilities must be 
shared by both the system and the applicati'On 
programmer. 

SUMMARY 

Modern data processing systems require soft
ware protection and recovery. Nevertheless, the 
virtually limitless possibilities of malfunction can
not be completely managed by a software system 
simultaneously required to pr'Ovide efficient per
formance. Necessarily, the uncertain probability 
of the occurrence of malfunctions and their im
pact on continuing system operati'On are m'Ost 
significant parameters in the decision that must 
be made to include or exclude each specific pr'O
tection mechanism. 

In addressing itself to the protection 'Of inf'Or
mation on direct access volumes, this paper has 
considered the impact of mem'Ory loss, v'Olume 
loss and track loss and described factors weighed 
in the design of a given system. Preventative tools 
such as track and memory exerciser routines have 
been mentioned. Dual recording, backup file proce
dures, transaction logs, dual recording of updated 
records prior to and after update, and redundant 
recording 'Of selective information have all been 

The impact of recovery and reconstruction pro
cedures on the system has been reviewed and the 
'Often ignored necessity of sharing the burden 
'Of recovery with the system administrator, the 
system operator and the system user indicated. 

There is no single solution to the myriad prob
lems that exist. Nor will the problems vanish 
until the Utopia of hardware and software per
fection is reached. In the meanwhile, pr'Ogress 
can only result from a solid facing of the problems 
and a judicious weighing of the practical S'Olu
tions. 
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INTRODUCTION 

The requirement for error recovery procedures has 
existed as long as computers themselves. Since the 
earliest computers, one of the goals of design has been to 
increase the reliability and availability of the computer 
to the user. While great strides have been made in this 
direction, the need of error recovery is still as present 
today as ever and at this time, the need is actually 
amplified and more pressing than ever before. 

With the many advanced techniques in programming 
such as multiprogramming and multiprocessing, the 
cost of an error has increased dramatically so that no 
longer are the consequences of an error limited "merely" 
to the loss of a job and the imposition of the need for a 
subsequent rerun. 

Error today can: 

• Cause the termination of concurrently executing 
tasks. 

• Cause an environmental control system to go down. 
• Cause the loss of teleprocessing messages. 
• Cause the generation of a report to be delayed 

No longer can rerunning the job be accepted as a 
prime means of "error recovery. The situation existing 
when running under an Operating System, and execut
ing a number of jobs in the computer at the same time, 
makes improved error recovery procedures mandatory. 
. It is recognized that the Engineering Community is 

diligently striving to improve the hardware itself and 
thus for a complete solution it is necessary to look at 
the other half of the question of error recovery-what 
can be done to improve reliability~ to improve avail
ability, to improve error recovery through program
ming? 

In order to do this, we have to first consider in a 
general way error recovery procedures or Recovery 
Management Support. The next step is to look specifi
cally at some of the work which has been done in 
Operating System/60 with the Recovery Management 
Support for the Model 65. 

39 

System incidents 

An examination of system incidents reveals that such 
incidents are due to a number of sources. Among these 
are Hard Core errors (including errors in the CPU, 
memory and channels), errors from Input/Output 
devices and control units, procedural and operational 
errors. Each of these is made up of a number of different 
errors but from a gross point of view, it seems reason
able to state that there are three general types of system 
interruptions: 

• Hardware malfunctions. 
• Design errors (both hardware and software). 
• Operator or user injected errors. 

Systems planning must therefore be influenced by the 
facts that machines will malfunction, neither hardware 
nor software is perfect and that operators are still likely 
to make as many mistakes a.s they have in the past. 

Recovery management 

The primary objective in any error recovery pro
cedure or Recovery :\ianagement Support should be to 
alleviate the burden of system interruptions to the user. 
In order to accomplish this we must: 

1. Reduce the number of interruptions to which the 
user is exposed and, 

2. :\iinimize the impact of these interruptions when 
they do occur. 

Recovery :\-ianagement therefore Hhould provide the 
user with a higher degree of system. availability (more 
time for more jobs) by minimizing the impact of 
system malfunctions upon his operations. 

With this objective as the target, error recovery takes 
on a broader meaning and scope than has been applied 
to the concept in the past. In an environment of multi
programming, the system becomes all important and it 
is most necessary that no matter what happens, the sys-

. tem must continue to function. It often becomes a situ-
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ation of sacrificing a part so that the "whole" may sur
vive. In order to accomplish this, Recovery Manage
ment facilities may follow a pattern similar to one where 
the support attempts to reduce the number of system 
interruptions by retrying the operation which was in
terrupted by the malfunction or it may terminate the 
task affected and continue system operation. If this is 
not possible, then the second step toward accomplishjng 
the primary objective of error recovery becomes of para
mount importance-to minimize the impact of the inter
ruption. This is done by preparing the system for a 
simple restart or it may indicate that repair by main
tenance personnel is required. 

Instruction retry. 

This pattern, which has just been outlined, suggests a 
nUlllber of functions which can be performed to achieve 
the objectives of Recovery Management. The first of 
these functions is instruction retry. The concept of 
instruction retry is not really new. It is something which 
IBM has been doing for years, particularly in the I/O 
area. Instruction retry has been standard procedure 
whenever an error was en'countered in reading or writ
ing a tape. But it is possible to extend this retry ca
pability and to employ it when a CPU or memory mal
function occurs. 

A relatively large number of malfunctions are inter
mittent in nature rather than solid failures and there
fore, there is a high probability of success of execut.ion 
and recovery if an instruction retry can be attempted. 
The first thing which must be determined then is 
whether instruction retry is feasible and then if feasible, 
to execute the retry. 

The determination of instruction retry feasibility is 
usually quite dependent upon the characteristics of the 
particular machine. Ordinarily for feasibility to exist, 
the "environment" of the computer must be valid or 
free from error. Dependent upon the specific machine, 
this may include the data contained in general purpose 
registers, floating point registers, machine log-out areas, 
permanent storage areas, etc. Arbitrarily, the criteria of 
validity can be keyed on parity. If the parity of the 
data is good, the environment is assUllled valid and 
therefore retry is feasible. If parity is bad, then no fur
ther retry action can be taken. 

Having ascertained that instruction retry is feasible, 
it is necessary to continue the analysis and determine if 
a specific instruction is retryable. To do this, it is first 
necessary to locate the failing instruction. The ·proce
dure involved here is again dependent upon the particu
lar machine and what type of fetch or pre-fetch logic is 
employed and whether or not the instruction counter is 
accurate. In one case, a comparison of the internal reg
isters in the machine log-out can provide the clue as to 

whether the instruction counter is accurate; in another 
it may be a function of when the machine check oc
curred and what updating cycles the instruction counter 
was executing at the time. 

It is obvious, therefore, that it is not always easy or 
possible to locate the failing instruction but if the in
struction counter is accurate and it is possible to locate 
the failing instruction, an analysis can be performed to 
ascertain whether the retry threshold of the interrupted 
instruction has been exceeded. (The retry threshold is 
that point in the instruction cycle after which retry can
not be attempted and is usua]]y indicated by a bit set 
by the hardware.) The retry threshold has been ex
ceeded when during the normal instruction cycle one or 
more of the original operands has been changed. If the 
threshold has not been exceeded, it is possible to cause 
another attempt at executing the failing instructions. 
If, however, the threshold is exceeded, it may be pos
sible to extend the threshold by examining the instruc
tion type to determine whether a copy of the original 
operand might still be intact in some internal register 
and if it is, by restoring it. This is accomplished by re-

,building (in a special execution area) the instruction 
from the contents of the log-out or the internal registers 
or main storage. 

Therefore, from an analysis, it is possible to determine 
that an instruction is either: 

I-Retry able , that is the retry threshold has not been 
exceeded or if it has been exceeded, the damaged 
operand can be restored and therefore instruction 
retry can be attempted or 

2-Non-retryable, that is instruction retry is not pos
sible because either the threshold has been ex
ceeded or the damaged operand cannot be restored, 
an invalid environment exists because of incorrect 
parity or the value of the instru~tion counter is in
determinate. If the second condition is the case, 
then it is necessary to look for another way to 
handle the error recovery. 

Refresh main [)torage 

The occurrence of a parity error in main storage ob
viates instruction retry therefore, one function which 
could be of value would be the ability to "Refresh" main 
storage. By this is meant to repair the damage which 
either caused or was caused by a malfunction by loading 
a new copy of the affected module into main storage. (A 
module is a program unit that is di'screte and identifiable 
with respect to compiling, combining with other units 
and loading.) The use of refreshable code requires a good 
deal of foresight in coding since in order to be refresh
able, a module must not modify itself or be Inodified by 
another module; for example, it must not set switches, 



contain dynamic storage areas, or store registers or ad
dress pointers within the body of its code. The foresight 
is well rewarded, however, when it is possible to load this 
refreshable code and then continue execution without 
changing either the sequence or the results of the pro
cessing. 

The attribute "refreshable" is similar to "reentrant". 
Most reentrant modules meet the requirements specified 
above and in addition, a reentrant module is one that 
may be utilized by more than one task at a time (some 
modules classified as reentrant deviate from these re
quirements by operating in a psuedo disabled manner, 
thus actually allowing modifications during a short 
period of time). The difference between the two is that 
"reentrant" is based on the operational characteristics 
of the module within the system while "refreshable" is 
based only on the fact that the code is not modified in 
any manner. 

Selective termination 

The functions of instruction retry and refreshable 
code are most desirable since they render the error re
covery procedure transparent to the user and require no 
intervention on his part. Unfortunately, it is not always 
possible to attain this level of recovery. When this is the 
case, it is necessary to accept some degradation in order 
to keep the system operational. One way to accomplish 
this is to implement a function of Selective Termina
tion. Such a function would enable the system to exam
ine the failing environment, determine what problem 
prograln was executing and then proceed to terminate 
this program while continuing all other jobs which were 
executing at the time of the malfunction. This is really 
a type of job-abort which frees the resources of the sys
tem allocated to the job and makes theln ava,ilable for 
future use. If a problem program was utilizing system 
code when the malfunction occurred, selective termina
tion could be effective if the system code was transient 
rather than resident in nature. This process results in 
the loss of a specific job but it does enable the system to 
continue without interruption. 

Another function which would aid in the error re
covery process when a memory malfunction occurs is 
the ability to logically carve out or remove that portion 
of the memory in which the malfunction occurred. Since 
this type of error recovery would result in job termi
nation and might not return resources (Storage, I/O de
vices, etc.) to the system, such a procedure would ob
viously introduce undesirable side effects, such as loss 
of availability of I/O devices, loss of part of core and, 
loss of the terminated job, but it would preserve the sys
tem and operation would continu~ until an orderly cor-
rection could be made. . 
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I/O Recovery 

The functions which have been discussed so far have 
been directed mainly to errors which occur in the CPU 
or memory. From an examination of system inciden~s, 
it is evident that a significant portion of errors occur In 
the I/O area. Is there anything which can be done to 
improve error recovery procedures for I/?? . 

In the first place, there is I/O retry whlCh IS avaIlable 
through the ERPs (Error Recovery Proce~ure~) for 
the different I/O devices. As indicated earlIer, It has 
been standard procedure to retry I/O instructions when 
errors occur. A number of errors (unit check, unit excep
tion wrong-length indication, protection check· and 
som~ chaining checks) can be corrected by this means. 
An I/O Supervisor performs an analysis and selects, 
according to device, the proper ERP to attempt re
covery. After retry is attempted, the ERP regains con
trol to determine whether or not the retry has been suc
cessful. If it was successful, the I/O retry is transparent 
to the user. 

There is another group of I/O errors-channel 
checks (channel control check, channel data check 
and interface control check)-which need not be 
disastrous but which after analysis of the conditions 
causing the error, it may be possible to recover .. Such an 
analysis would determine the type of operatIOn t~at 
failed the type of device affected, the sequences whlCh 
occur~ed across the I/O interface following the error and 
whether a retry can be attempted. 

The I/O device or medium can malfunction and if a 
retry is not successful,. there may be other ways to 
continue the execution of the job. One such way would 
be to have the ability to switch data sets (devices), that 
is to change a tape or disk pack from one drive to an
other and then to retry the operation with the new 
drive. Another possibility (if the malfunction was really 
related to the Channel or Control Unit) would be to try 
another route to the same device. In this circumstance 
it would be an attempt to use the device by accessing it 
through a different route, that is by addressing it 
through a different channel or control unit. 

Other system incidents 

Another group of system incidents is due to proce
dural and operator errors. Several things can be done to 
decrease this and as such, it certainly deserves concen
trated attention. The first is, of course, better trained 
personnel but from a programming ~oint of view, .sev
eral possibilities exist. It is most deSIrable to reqUlre a 
minimum of user intervention and interaction in order 
to accomplish execution. Control information should 
be minimal. When interaction is required, messages 
should be clear and concise - to the point of outlining 
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possible choices. A conversation mode could be optional 
which would permit correction or confirmation of opera
tor action. All these points are generally grouped under 
a concept of Operator Awareness and have a very defi
nite place in the planning of any error recovery support. 

All of these functions are aimed at continuing the 
operation of the system but unfortunately this is not 
always possible to accomplish. Therefore, the next best 
thing is to minimize the effect of the malfunction. This 
can be done by attempting to preserve information con
cerning the malfunction and to make it available to 
assist knowledgeable personnel to determine what 
caused the error and what can be done to correct it. 
This will have the most desirable effect of shortening 
the Duration of the Unexpected Interrupt and get the 
system back in operation as quickly as possible 

RMS/65 

The Recovery Management for the System/360 
Model 65 (RMS/65) has provjded a number of these 
functions in the operating system. These functions are 
contained in two programs which make up RMS/65. 
These are the Machine Check Handler (MCR) which 
is directed at CPU and memory malfunction and Chan
nel Check Handler (CCR) which is oriented to I/O 
problems. The RMS/65 has provided a hierarchy of 
recovery which involves four levels: 

I. Functional Recovery 
II. System Recovery 

III. System-Supported Restart 
IV. System Repair 

Functional Recov:ery is the successful retry of an 
interrupted instruction. MCR handles the operation 
for the CPU and main storage through its Machine 
Analysis and Instruction Retry (MAIR) facilities. The 
MAIR facilities perform an analysis of the machine 
environment at the time of the machine check inter
ruption to determine the feasibility of retrying the inter
rupted instruction. MAIR then retries the interrupted 
instruction when retry is feasible. The CCH performs 
the analysis function for the channel checks discussed 
earlier. This is accomplished by intercepting I/O inter
ruptions before the I/O Supervisor receives them and 
performing an analysis of the existing conditions. If 
feasible, the status bits are manipulated to make the 
channel check look like a failure for which ERP exists 
and then control is transferred to the appropriate ERP 
for action. Functional recovery is of course the desired 
goal because in this case the malfunction is transparent 
to the user. 

System Recovery is the second level of recovery and 
is required when functional recovery is either not fea
sible or fails. The objective is to preserve the system and 

to continue processing all unaffected jobs. This is done 
by means of a Program Damage Assessment and Repair 
feature which attempts to analyze the malfunction en
vironment, to isolate and repair the program damage if 
possible and to report permanent failures to the pro
gram and operator. This feature also incorporates the 
mechanism to provide the capability of selective termi
nation of a task. 

The function of System -Supported Restart is called 
on when both Functional and System Recovery have 
fail~d but a stop for repair is not required. The operator 
is informed that such a condition exists and that it is 
necessary to restart the system. 

The fourth level of recovery support provided by 
RMS/65 is System Repair. In a way, this is perhaps 
one of its most important functions since the detailed 
error analysis information which is provided can be of 
great assistance in the determination of the cause of 
failure and in suggesting the proper correction for the 
problem. Once the repair is completed, initialization is 
required to restart the system. 

Figure 1 shows the relationship of these levels of re
covery to one another and to the main objective ofRe
covery l\1anagement Support which is to keep the sys
tem in operation. 

Each level of recovery performs the important func-

FIGURE 1 



tion of recording information concerning what hap
pened, the status of the computer at the time of the 
incident, what action was taken and the results of such 
an action. This information which is recorded on a spe
cial data set S YSI.LOGREC, is then available through 
execution of the Environment Record Editing and 
Printing utility (EREP) which runs under the control 
of the Operating System/360. This program edits and 
prints the records generated by MCH and CCH (as well 
as by several other recording functions) and provides 
the information for interpretation by the experienced 
Customer Engineer. A Standard Operating Procedure in 
a Computer Center using MCH and/or CCH should be 
to execute EREP on a regular basis and then the infor
mation should be available to the CE as an aid or indi
cator to anticipate serious trouble. For example, if a 
particular pattern appears indicating possible degrada-
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tion, preventative maintenance can be performed before 
the occurrence of a serious incident. 

CONCLUSION 

RMS/65 is a step in the direction which error recovery 
must take if the requirements of computer technology 
are to be met in this area. l\/fore and more the question 
of error recovery canr:tot be relegated to hardware or 
programming alone but rather these two must form an 
effective partnership and attack the problem together 
in order to provide. a satisfactory solution. Every sign 
indicates that this is being accomplished and it appears 
that some meaningful steps such as Rl\/fS/65 are being 
taken toward the goal of reducing the number of inter
ruptions to which a user is exposed and to minimizing 
the impact of these interruptions when they do occur. 
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INTRODUCTION 

Computer Test & Diagnostic (T&D) Program
ming Development and usage in the past ten years 
have undergone very few changes. As a result of 
this, the philosophy and attitude towards T&D's 
are passe. From basically simple systems, to the 
very complex, the T&D's for the early systems 
were completely off-line-either the customer 
work was run, or T&D, but nQt both. 

Being a dynamic industry, hardware and cus
tQmer software systems grew in complexity, SQ
phisticatiQn, and custQmer dependence. The third 
generation systems brought with them multi-prQ
gramming, compute and input/output 'Overlap, 
multi-processQrs, and the heavy custQmer 'On-line 
work lQads. 

The failure 'Of a peripheral device such as a 
magnetic tape handler, card reader, etc., dQes nQt 
always necessitate the lQSS of the tQtal system, due 
tQ the ability of reallQcatiQn of a replacement 
device to the jQb. HQwever, the system thrQugh
put is decreased by an amount proportiQnal to the 
work capacity 'Of the lost device. Should the fail
ure be 'Of such a nature, the customer is faced 
with two choices: (1) give the entire system tQ 
the maintenance persQnnel so that off-line T&D's 
can be run to determine the specific malfunctiQn, 
'Or (2) keep on running at a reduced capacity. In 
'Only the most extreme circumstances will the 
customer chQose the first alternative. 

If the customer cQntinues to run, then the failed 
device cannQt be examined 'Or repaired until the 
normal maintenance period. This turns out tQ be 

~he work performed herein was accomplished at the Gener
al Electric Co., Phoenix, Arizona. 

**Formerly with General Electric Co., Phoenix, Arizona 

a double edged sword which hurts the customer, 
due to reduced capacity and the maintenance staff, 
as they must wait in order to start taking CQrrec
tive actiQn. 

The General Electric Company recognized that 
in many cases this awkward situation CQuld be 
greatly reduced or possibly eliminated if on-line 
T&D's were available. Active development of on
line T&D's for the GE 625/635 computer systems 
started approximately fQur years ago. This has 
evolved from the early peripheral exercisers to the 
present comprehensive On-line Peripheral Test 
System-OPTS-600. 

The OPTS-600 System is an integral part 'Of the 
total General Electric Comprehensive Operating 
Supervisory (GECOS) System (see Figure 1). 
The test executive, OPTS-600, operates within the 
frame work 'Of GECOS-III, but provides fQr all 
test dispatching, peripheral device allQcation, lan-
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guage processing, issuing of test input/ output, . 
data transfers, memory space management and 
error output. The test executive will control from 
one to eight individual peripheral tests in a multi
program environment, concur-rent with normal 
customer operation. 

The use of an on-line test system is relatively 
low when compared to the utilization of G ECOS 
subroutines, libraries, compliers, and assemblies. 
For this reason the OPTS System is not main
tained permanently in memory, but called in from 
system file storage on demand by customer or 
maintenance engineer. 

Console request verbs describe the exact type of 
test to be executed on the desired peripheral. Re
questing a test on a specific device results in a test 
page being . called in for execution. Test pages 
represent tests explicitly designed for a particular 
peripheral device. The OPTS-600 system con
tains a complete library of comprehensive test 
pages which are available for selection by the 
maintenance engineer. The test pages are written 
in a test and diagnostic English type language, 
which is also available to the maintenance engi
neer via conversational console entries. In this 
manner the maintenance engineer can write and 
execute tests of his own design concurrent with 
customer operation. 

OPTS-600-0n-line peripheral test syst'em 

The purpose of the On-Line Peripheral Test 
System (OPTS-600) is to provide the on-line ca
pability, under GECOS-III, of comprehensive test
ing and on-line trouble-shooting of malfunctioned 
equipment. This is accomplished without unduly 
interfering with the overall system capability to 
continue the processing of customer jobs. 

A secondary function is that during slack pe
riods of customer operation, or idle peripheral 
availability, equipment testing can be accom
plished. This allows the normal schedule preventa
tive maintenance time to be utilized more effec
tively in the actual corrective maintenance of 
equipment rather than the running of tests. 

The OPTS-600 System is an integral part of 
GECOS-III, similar to the Time-Sharing System 
which is also a part of GECOS-III. 

It is not necesary for all segments of the 
GECOS-III System to operate in the unrestricted 
memory access mode (master mode) at all times. 
Most functions can be executed in the restricted 

memory access mode (slave mode) . and would 
require only occasional excursions into Master 
Mode. Systems programs such as OPTS-600 are 
allowed this privilege of going into master mode 
when necessary. !tis under this Privileged Slave 
Mode (going into master mode when the need 
arises) that the OPTS-600 system operates. By 
operating in the Privilegea Slave Mode instead 
of directly in master mode, GECOS-III System's 
programs are afforded greater fail soft protection 
against malfunctions camdng systems disasters. 
Should a malfunction occur in a systems program, 
only that program will be eliminated. This is par
ticularly useful to the OPTS-600 System because 
of the probability of testing malfunctioned equip
ment. OPTS-600 is called into memory from sys
tem file storage via console demand. 

The OPTS-600 Executive requires 5000 words 
of memory and can control up to eight different 
test pages at once in a multi-test program environ
ment. The OPTS-600 Executive consists of four 
main modules. (See Figure 2). 

1. Master Mode Service 
2. Language Processor/Dispatcher 
3. Error Output 
4. Test Page 

The Master Mode Service module is the only 
portion of the OPTS System that operates in the 
unrestricted memory access mode. Five main 
service functions are provided by this module: 

1. Peripheral allocation and request buffering. 
2. Test Page loading, initialization, 2nd memory 

space management. Memory is allocated dy
namically as required, so as to keep require
ments at a minimum. 

3. System Termination. 
4. Fault protection and processing. 

FIGURE 2 



5. Issuing of Input/Output data transfers. 

The Language Pr'Ocess'Or /Dispatcher is the main 
'Operating m'Odule within the OPTS system. The 
maj'Or P'Orti'On 'Of this m'Odule c'Ontains the Test 
and Diagn'Ostic language pr'Ocessing functi'On. 
Pr'Ocessing 'Of the T&D Language entails the f'Ol
I'Owing functi'Ons: 

1. Interpret s'Ource language c'Ode. 
2. Set up Input/Output (I/O) test sequences as 

directed by the s'Ource language. 
3. Perf'Orm err'Or checking 'On behalf 'Of previ'Ous 

test I/O. 
4. Execute 'Operat'Or selected operating 'Opti'Ons. 

The dispatcher c'Ontr'Ols fr'Om 'One t'O eight test 
pages. Input/Output is maximized in the dis
patcher by dispatching c'Ontrol t'O the Test Page 
that has had its I/O c'Ompleted f'Or the l'Ongest pe
ri'Od 'Of time. 

The err'Or 'Output m'Odule f'Ormats and trans
mits err'Ormessages f'Or the test page t'O the c'On
s'Ole that 'Originally initiated the request, the sys
tems acc'Ounting file f'Or hist'Orical err'Or develop
ment, 'Or b'Oth depending UP'On the selected 'Operat
ing 'Opti'Ons. 

The OPTS System is capable 'Of directing err'Or 
output and c'Ontr'OI input requests f'Or a test page 
t'O any 'One 'Of f'Our I'Ocal c'Ons'Oles. This pr'Ovides 
the maintenance engineer the ability t'O initiate a 
test request 'On a sub'Ordinate c'Ons'Ole, thus reduc
ing the 'Output and interference 'On the main sys
tem c'Ons'Ole which receives the bulk 'Of the system 
message traffic (e.g., a maintenance c'Ons'Ole). 

F'Or the systems that have Real-time capability, 
OPTS-600 pr'Ovides the ability t'O use a rem'Ote 
teletype (TTY) as if it were a I'Ocal c'Ons'Ole. A 
small percentage 'Of device malfuncti'Ons will re
quire that the I'Ocal maintenance engineer 'Obtain 
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the assistance of centrally located device specialist, 
in 'Order t'O c'Orrect the pr'Oblem. By using the 
TTY, the specialist can dial int'O the c'Omputer 
system and be aut'Omatically c'Onnected t'O the 
OPTS system. He n'Ow has available t'O him the 
full range 'Of 'Operating features 'Of OPTS-600 
Test Pages and pr'Ograms 'Of his 'Own design. The 
TTY n'Ow bec'Omes in reality, a l'Ocal c'Ons'Ole 'On a 
I'Ong extensi'On c'Ord. All err'Or messages f'Or the 
device under test will be directed t'O the l'Ocal c'On
s'Ole, the rem'Ote TTY, with the additi'Onal ability 
t'O transmit c'Opies 'Of the ·err'Or message t'O still 
'Other TTY's f'Or m'Onit'Oring. In getting first hand 
kn'Owledge ab'Out the malfuncti'On via OPTS-600, 
the specialist may be able t'O instruct the I'Ocal en
gineer as t'O the type 'Of c'Orrective acti'On t'O take. 
By res'Olving the pr'Oblem in this manner, d'Own 
time will be c'Onsiderably reduced due t'O the de
vice being 'Out 'Of service f'Or a sh'Orter peri'Od 'Of 
time. 

The OPTS system pr'Ovides the maintenance en
gineer the capability 'Of accumulating all 'Of the 
OPTS-600 err'Or messages 'On a Systems Acc'Ount
ing File which is dedicated file f'Or all 600 Sys
tems. In the case 'Of r'Outine device testing, the ac
cumulate m'Ode 'Of err'Or c'Ollecti'On will bypass 
c'Ons'Ole err'Or message type'Outs. Then, at a m'Ore 
c'Onvenient time the maintenance engineer can 
dump all accumulated err'Or messages t'O the print
er. These messages are identical t'O what W'Ould 
have been typed 'Out 'On the c'Ons'Ole, plus the engi
neer n'Ow has a permanent and detailed hist'Orical 
err'Or rep'Ort. 

Test pr'Ograms may be called in three ways. The 
operat'Or may initiate a test pr'Ogram by typing the 
verb "TEST." The request verb is f'OII'Owed by 
the descript'Ors which exactly define which pe
ripheral, the type 'Of test desired, and the desired 
'Operating 'Opti'Ons. See Figure 3. 

03 

COMPREHENSIVE 
TEST PAGE 

LOOP HALT 
ON AFTER 

ERROR 

FIGURE 3 
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This would request. a comprehensive test page 
(C), to be executed on Input/Output controller 
00 (IOC), Channel 02 of the IOC, and Peripheral 
Device 03 'On that channel. The operating 'Options 
specify that execution is t'O start at test 32 (T32), 
loop on that test (L), and halt after each err'Or 
(H). 

It is recngnized that a specific peripheral device 
may n'Ot be available fnr test at the time the main
tenance engineer enters a request. Sn, to prevent 
him frnm having to stand guard at the console, and 
attempt tn use the "TEST" request bef'Ore the 
G ECOS system allncates the device to annther 
job, he may enter the "TSTQ" request. This re
quest is identical to the "TEST" request except 
that it says the device is obviously nnt available 
right nnw, sn queue the test request and perindical
ly check the availability of the device. Once the 
device is found to be available, start a test as 
specified by the request parameters. 

During errnr recovery by the GE 625/635 super
visory system 'On behalf 'Of a custnmer job, the ma
chine nperatnr may be interrogated as tn the de
sired recovery actinn to be taken. The nperatnr 
has a varied combination 'Of responses that he may 
evnke. The "T" nptinn can be used at this point 
in conjunction with 'Other respnnses. For ex
ample: he cnuld reply "RT," this would cause the 
error recovery tn be retried and the specific device 
marked for testing befnre it is allncated t'O another 
user. The "T" response is the machine 'Operator's 
counterpart t'O the "TSTQ" request. 

To minimize the number 'Of 'Operatnr messages 
and reSP'Onses required, operating 'Options can be 
used tn cnntr'Ol the testing 'Of a device. Any cnmbi
nation of up t'O five 'Option characters may be en
tered with the "TEST" 'Or "TESTQ" requests. 
After a Test Page has gone int'O executinn, any 
cnmbinatinn 'Of twelve nptinn characters may be 
used. Figure 4 is a list 'Of the 'Operating 'Options 
that may be applied tn a specific Test Page. 

Peripheral Test Pages are written in a macrn 
Test and Diagnostic Language (TDL). Each Test 
Page requires 2000 words of memnry, and is di
Yided into a series of tests. The tests are escalating 
in complexity, starting with very basic cnmmuni
cations, and advancing tn the more c'Omplex events 
'Of sequencing and data sensitivity. Each test per
fnrms a particular testing function and is capable 
of being Inoped 'On indefinitely, or 'Of being exe
cuted without requiring the previnus execution of 
any other test. When errnrs 'Occur, part 'Of the 

A • ACCU1lUlate on Accounting file for Historical Error Development 

B • Bypass console error messages 

C - No transient error recoveries 

H • Halt on error for n_ operating options 

L • Loop on current test 

N '" Negate next option character 

o • Go to enter options for more operating options 

R - Recycle entire Test Page 

S .. Skip .to next subtest 

Txx • Start execution of test xx 

(eg: ABL - !cCU1lUlate errors on accounting file. !>'Pass console 

error messages. 1.Oop on error.) 

FIGURE 4 

errnr message cnntains a direct reference to the 
test that failed, the line of code that was in execu
tion, and the exact peripheral instruction being at
tempted. This errnr reference is also the para
graph number in the documentation that contains 
a. prose descriptinn 'Of the purpose and methnd fnr 
the test and operatinn invnlved. 

When the OPTS System is called intn memnry 
via an auxilliary consnle, the master cnnsnle is 
nntified 'Of the request by a Ing-nn message, giving 
the System Identification, Revision Level, Date 
and Time. See Figure 5. 

Once the requested peripheral device is allncated 
and the test page called in, a start message is is
sued t'O the 'Originating c'Onsole. See Figure 5. 

Within the parentheses is the -identificatinn 'Of 
input/'Output cnntrnller, channel, device number, 
and the type 'Of test page that will be executing. 
This infnrmatinn prefixes all messages related to 
a device under test. The message further states 
that it is a start 'Of Test & Diagn'Ostics f'Or Device 
Type 10, C'Omprehensive Testing Program, Revi
sinn Level A. The device type is further explained 
as being Standard Magnetic Tape, Seven Chan
nel, C'Omprehensive Test Page. Unless the 'Opera
t'Or has requested specific c'Ontr'Ol 'Over the test 
page, 'Or the device becnmes in'Operable due t'O an 
Dttentinn cnnditinn, n'O further nperatnr interven
ti'On is required. Up'On cnmpleti'On 'Of the test page, 
a terminati'On message is typed. 

In additinn t'O the m'Ore detailed err'Or messages 
which accnmpany each device error as they 'Occur, 
a summary is typed with the terminatinn message. 
This terminati'On message will summarize all er
rnrs encnuntered during executinn, plus the 
amount 'Of channel time in millisec'Onds that the 
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test ran. See Figure 5. 
Upon the completion of all test pages, the OPTS 

System will type a log-off message to the master 
console. This message will be the same as the log:
on format, with the exceptioI1- that the amount of 
processor time that the entire OPTS-600 System 
was in execution is given in milliseconds. All mem
ory will then be released back to the main level 
operating system (GECOS). 

The OPTS-600 System also provides the unique 
ability to the maintenance engineer to manually 
write and execute special tests on-line, concurrent 
with customer operation. This is provided by the 
"Manual Test Pages" which are available for all 
peripherals. The "Manual Test Page" contains no 
coding: the maintenance engineer provides the 
coding from the console, or remote teletype. By 
specifying a manual test page he may then enter 
the Test and Diagnostic Language coding of his 
own design. This provides the needed flexibility 
for custom designed T&D to cover as needed situa
tions, or more convenient on-line trouble-shooting. 
The maintenance engineer has the same instruc
tion repertoire available as the diagnostic pro-

grammer. The OPTS Executive will monitor the 
instructions and inform him of any illegal instruc
tions or sequences that could cause system prob
lems. 

All test pages are written in TDL (Test & Diag
nostic Language) which is a Macro Language 
that causes a complete sequence of events to be 
executed for each Macro encountered. 

The "TDL" Instruction Set consists of Macros 
for all normal test and diagnostic functions with 
provisions for adding Marcos to perform special
ized functions when necessary. 

There is basic information that must be used 
when issuing I/O commands to a peripheral sub
system. This is true regardless of what language 
the test is written in. The information normally 
required· is given in Figure '6. 

Obviously, if all this information has to be de
fined for each command issued, any test program, 
even a fairly simple one, would be somewhat com
plex to write and understand. "TDL" combines 
these items into two groups. 

The first six items are combined into each pe
ripheral operation instruction. 
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1. Peripheral Op-Code-..operation code directed to a peripheral such 
as read magnetic tape, punch card binary, etc. 

2. IOC COIIIIIand---------The cOllllland directed to the Input/Output 
controller, such as transfer data, skip over 
data. This is used in conjunction with the 
op-code. 

3. Record Count--------The number of blocks of data to transfer. 

4. Major Status Expected-The major classification of the state of 
peripheral. This is reflected back to the 
computer at the completion of each peri
pheral operation. 

5. Substatus Expected----A further break down in the classification 
of a peripherals condition. 

6. Interrupts Expected---A signal sent by the peripheral at the 
completion of an operation. 

7. IOC Number------------There can be up to four Input/Output cont
rollers on one system. 

8. Channel Number--------The specific channel on an IOC, as there 
can be sixteen. 

9. Device Number---------The specific device connected to a channel, 
this also may be one of sixteen. 

10. Record Length---------The number of weE" ds to transfer 

11. DeW List------------~Data Control Word. This word specifies 
where in memory the data will be transferred 
to or from. 

12. Type of Data---------"Octal, decimal, random. 

FIGUHE 6 

F'Or example: 

"WTB"-Sets up Peripheral Op-C'Ode 15 (Write 
Tape Binary), IOC C'Ommand 00 
(Data Transfer), Rec'Ord C'Ount 'Of 1 
('One bl'Ock t'O be transferred), Maj'Or 
and Substatus Expected 00 (Ready), 
Wand Terminati'On Interrupt Expected. 

"BKF"-Sets up Peripheral Op-C'Ode 47 (Back
space File) IOC C'Ommand 01 (N'On
Data Transfer), Recerd C'Ount 'Of 1, 
('One bl'Ock t'O be shipped) , Maj 'Or 
status 04 (End 'Of file), Substatus 'Of 
17, and expects a terminati'On inter
rupt. 

Because they can apply t'O many peripheral 'OP
erati'Ons within a. pr'Ogram, the last six items in 
the list may be st'Ored in "Standards" and applied 
te each subsequent peripheral 'Operati'On. Stand
ards may be 'Overridden by defining any 'Of these 
items immediately f'Oll'Owing the peripheral 'Opera.
tion mnem'Onic. 

"T.D·L" has instructi'Ons f'Or defining different 
types 'Of test data, e. g.: 

D707070707070 .Data in 'Octal 

AD010101010101 Add t'O existing data pat
tern in standards 

DRAN Generate rand'Om data 
pattern 

DROT R'Otate data 'One character 
P'Ositi'On left 

D·LNXX Use data· fr'Om "TDL" 
Line XX 

DREAD Write data fr'Om. read 
area 

Instructi'Ons f'Or defining any 'Or all inf'Ormati'On 
necessary fer 1/0 executi'On are pr'Ovided as well 
as utility instructi'Ons f'Or I'O'Oping, branching, 'Out
putting special messages, e.g.: 

LP05.49 L'O'OP t'O line 05 a t'Otal 'Of 50 
times bef'Ore g'Oing t'O next in
structi'On. 

LP85.SVI L'O'OP t'O Line 85 and save return 
address in return register 'One. 

RET1 + 1 Return via save return register 
'One plus 'One field. 

SUMMARY 

Realizing that c'Omputer equipment d'Oes fail, 
and 'Of all failures peripheral devices, such as card 
readers, card punches, and magnetic tape han
dlers, represent the largest pr'OP'Orti'Onal share 'Of 
these failures, On-line C'Ompresensive Test and 
Diagn'Ostic Systems can be very beneficial in im
pr'Oving t'Otal system availability, and cust'Omer 
satisfacti'On. 

T'O this end, the OPTS-600 System is currently 
being used by the maintenance engineers en the 
GE 625/635 c'Omputer systems. Thr'Ough the 
utilizati'On 'Of the 'On-line test and diagn'Ostic sys
tem, the engineers preventative maintenance 
(P.M.) time is used t'O actually d'O P.M. 'Or c'Orrec-
tive maintenance (C.M.), rather than running 
tests in 'Order t'O determine if additi'Onal main
tenance is warranted. 

An additi'Onal advantage is achieved by the 
T&D System, in that tests are executed in the 
same envir'Onment that the cust'Omer experiences. 
By being 'On-line and an integral part 'Of the t'Otal 
'Operating system, the cust'Omer is able t'O estab
lish a higher equipment c'Onfidence level due t'O 
the OPTS-600 System being subjected t'O the same 
I'Oading and interference situati'Ons. 



Fail-safe power and environmental facilities 
for a large computer installation 

by R. C. CHEEr\: 

Westinghouse Electric Corporation 
Pittsburgh, Pennsylvania 

INTRODUCTION 

For a modern large-scale computer installation, the 
reliability of the power supply and environmental con
ditioning systems is as important a consideration as the 
reliability of the computing equipment itself. This is 
especially true of installations which involve on-line 
real-time and time-sharing operations, in which no con
venient re-start point is available for re-;;umption of op
erations after an outage. It is becoming more and more 
important in batch operations, many of which have 
grown in scale to the point where the expense of lost 
time due to re-starts can be a major economic factor. 

Reliability of power supply, as the term will be used 
in this paper, refers not only to the continuity of power 
but also to its quality in terms of constancy of voltage 
and frequency and its freedom from momentary 
transients and surges. From the ~tandpoint of general 
continuity, the typical electric utility power supply is 
excellent. However, this continuity is achieved by the 
provision on the power system of redundant line.; and 
circuits equipped with fault-detecting relays, so that a 
line on which a fault occurs can be automatically and 
quickly removed from the system. Inevitably, the fault 
itself creates a transient voltage surge which is prop
agated generally over the system, and the switchin.g 
operations required to isolate the faulty line create addI
tional transients. These transient voltages often find 
their way into users circuits. They go relatively un
noticed by the average user, but they may induce a deli
cate flip-flop circuit in a computer to flip when it should 
flop and play havoc -with a program in the process of 
being executed. As will-- be pointed out later in this 
paper, such transients may be transferred -by induction 
between circuits which upon casual study appear to be 
completely isolated electrically as far as metallic con
nections are concerned. For example, they may appear 
in the output of a motor-generator set by induction due 
to the proximity of the generator output wiring to the 
motor input wiring. 
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The continuity of service required of environmental 
conditioning equipment is only slightly less critical than 
that required of electrical power. A failure or outage of 
a few seconds to a few minutes can usually be tolerated 
before performance of the computer system begins to be 
affected. This means that suitable temperature and 
humidity detectors can be used to sense trouble con
ditions and sound alarms in time to permit stand-by 
equipment to be manually switched into service and 
avert a computer shutdown. However, it is obviously 
better to plan the system in such a way that manual 
intervention is not necessary in case of failure of a par
ticular component. 

The provision of fail-safe electric power and reliable 
environmental conditioning for the computing facilities 
of the vVestinghouse Tele-Computer Center was a mat
ter of serious concern from the outset of the planning 
for the Center in 1961. The measures eventually taken 
to achieve these goals considerably exceed those initially 
thought to be adequate; so it is obvious that a few les
sons were learned along the way. The purpose of this 
paper is to describe the evolution of these facilities; to 
recount some of the problems encountered and their 
solutions; and generally to share with others the benefits 
of some experience in this relatively neglected area of 
planning for computer systems which must provide a 
high degree of operating reliability. . . 

It should not be inferred that the solutIOns deSCrIbed 
in this paper are the only suitable ones. Recent de
velopments have placed a variety of approaches to ~~ese 
problems at the disposal of the planner of a new faCIlIty. 
In the evolution of the systems at the Center, the de
signs were based on the best available balance between 
economy and the degree of reliability desired, using the 
approaches available at the time. 

Power supply facilities at the Westinghouse 
Tele-C omp'llter Center 

The vVestinghouse Tele-Computer Center is the cor-
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porate-Ievel computing and data communications facil
ity of the Westinghouse Electric Corporation. Opera
tions began late in 1962 with a single UNIVAC 490 
Real-Time System, initially performing teletype mes
sage switching on the Corporation's private teletype 
network, along with a variety of straightforward batch 
processing applications. The Center is located at a site 
in suburban Pittsburgh, where the only available utility 
power supply was a conventional 4160-volt radial distri
bution circuit, serving many small commercial establish
ments and residences in the vicinity. It was obvious at 
the outset that this circuit was inadequate to serve the 
needs of the Center, not only from the standpoint of 
reliability but even its ability to provide enough power 
under normal conditions to supply the projected load. 
It was therefore necessary to have power at 23-kv 
brought to the site by the utility from a 23-kv sub
transmission circuit approximately a mile away which 
interconnected two of the utility's 23-kv substations. 
This would have provided adequate capacity, but con
siderations of reliability led to the decision to have a 
second 23-kv feeder brought into the site from a geo
graphically separate 23-kv interconnection approxi
mately three miles away. The two 23-kv feeders were 
built on separate pole-lines on each side of the road 
along which they run together for several hundred yards 
before entering the property, and they share common 
poles only after entering the site. It was also decided 
to install a private substation on the site, in order to 
incorporate in it special relaying and switching equip
ment for transfer of the load from one line to another in 
case of failure. 

The substation (Figure 1) incorporated two identical 
1500 kva transformers, 23 kv to 4160 v01ts regulated, 
either of which alone could supply adequate power for 
the whole building to the 4160-volt bus in the outdoor 
substation. The 7.50-kva power center inside the build
ing, supplied from this bus, stepped the 4160 volt power 
down to 120/208 volts for distribution within the build
ing. The power distribution unit for the UKIV AC 490 
computer system was supplied by one feeder from this 
power center. I t supplied power directly to blowers, 
motors, and other "non-critical" units in the computer 
system, as well as to a motor-generator set which in turn 
provided regulated voltage, presumably free of surges 
and transients due to external system disturbances, to 
the central processor, communications control units, 
and other units which were deemed to be critical in sensi
tivity to power fluctuations. 

Both the "raw" power and the "regulated" power 
were distributed throughout the computer room in en
closed common wireways, separate from signal cabling 
which was laid in open cable trays. 

The original scheme of operation was to supply the 
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Figure l-Original configuration of power-supply system 

total power requirement of the site from one of the 
23-kv lines with its associated transformer. The other 
transformer was kept energized by its 23-kv circuit, but 
its 4160-volt breaker to the bus was kept open. An 
undervoltage relay on the 4160-volt bus detected loss of 
voltage on the bus due to failure of voltage on the 23-kv 
circuit normally in use and transferred the load to the 
other transformer and line by sequentially opening the 
breaker from the faulty source and closing the breaker 
to the other. Relaying and circuit breaker operating 
times were adjustable to considerably less than a sec
ond, and it was felt that the inertia of the m-g set sup
plying the critical computer units would be sufficient to 
maintain adequate speed to keep these units supplied 
with power during this period. Also, it was felt that any 
fluctuations in frequency at tb.e output of the generator 
would be gradual and therefore not disturb the opera
tion of the system it supplied. 

These assumptions were probably correct, and the 
theory of operation described was probably very good, 
as far as it went. However, during repeated tests of the 
transfer scheme during the remainder of the winter of 
early 1963, and upon the one or two occasions when 
power actually did fail and initiate a transfer, the trans
fer was never accomplished without resulting damage to 
the programs running in the UNIVAC 490 and an 
abrupt shutdown of the entire computer system. Dur
ing this period more and more units of the computer 
system were moved to the isolated supply, on the theory 
that perhaps some of them which previously were 
deemed noncritical were actually injecting false inter-
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rupts or other spurious signals into the central processor 
and affect,ing its operation. The transfer time 'vas 
shortened to the minimum possible, less than half a sec
ond. However, these efforts were to no avail, and al
though the possibilities of this line of approach were ex
hausted, the transfer scheme was still unsuccessful. 

But the worst was yet to come. With the advent of 
spring came the thunderstorm season, and it was 
quickly learned that when the skies began to darken 
with thunderclouds it was good tactics to get the re
covery-program tapes out of the racks and ready to 
mount, because an outage was probably imminent. It 
was also found that even an instantaneous transfer 
scheme would not have solved the problems, because 
surges due to lightning strokes and resulting switching 
operations on remote parts of the utility's power system 
of duration sufficient only to cause a momentary light 
flicker at the site, were enough to shut down the com
p u ter system. 

It was then concluded that it was these transients in 
the "raw" power source, induced into the wiring of the 
presumably isolated power source due to their proxim
ity in the common wireways, which were causing the 
trouble. Furthermore, it was apparent that no scheme 
for transferring to an alternate source of power would 
work under these conditions, because the switching 
transients set up by the transfer itself would defeat its 
major purpose. 

A solution might have been to rewire the entire com
puter system, isolating the wiring for critical units in 
separate wireways and keeping it separate throughout 
allpartsofthesystem. However, thiswouldnotonly have 
been quite expensive but would have required extensive 
shutdowns of the system, which was not feasible at the 
time. It was decided to take a "brute-force" approach 
and supply the entire computer system with isolated 
power from a single large motor-generator set, with the 
output power leads from the generator well separated 
from the raw power source to the motor. 

The motor-generator system selected is called the 
"constant-frequency" or "CF" system, in which a con
ventional m-g set is mechanically coupled to a higher
speed flywheel through a controllable eddy current 
coupling or electrical clutch (Figure 2). Under normal 
conditions the motor receives power from the input 
line and drives the generator in the conventional way. 
The flywheel, disconnected from the system by the 
electrical clutch, is driven by a separate motor at a 
higher speed. Upon failure of normal power, which is 
sensed by voltage and frequency sensors on the input 
line, the clutch is energized under control of a frequency 
regulator at the output of the generator. The coupling 
of the flywheel to the m-g set is controlled in such a way 
that the flywheel gives up its energy to the system at a 

INPUT 
120/208 V·60 -

~~=-ss----.j) 1) 1) 
BREAKER 

OUTPUT 
1201208 V·59.8 -

Figure 2-"Constant-frequency" motor-generator system 

rate which maintains the speed and therefore the fre
quem'y and voltage of the generator until the flywheel 
slows down to the speed of the m-g set. 

Such a system, rated at 80 kilowatts, with a flywheel 
sufficient to supply full output for a minimum of 12 
seconds after loss of input power, was ordered for in
stallation before the lightning season of 1964. Upon 
installation of this system, it was immediately possible 
to realize the planned benefits of the alternate power 
transfer scheme. Several failures of the normal power 
line subsequently occurred. Except for a momentary 
outage of the computer room lights (which were on a 
separate circuit from the comp':lter system), computer 
operating personnel would have been unaware of the 
fact that transfer to an alternate power source had 
taken place, because the computer system was unaf
fected. Furthermore, during the lightning season of 
1964 alone, this system averted many outages and the 
loss of information and time that would have resulted 
from the many power-line disturbances that were noted. 

Although several failures of the normally-used 
power line have occurred each year, they have been of 
very short duration. And in every case but one, the 
alternate source was available, and the transfer was 
made automatically and successfully without inter
ruption to the real-time operations. Fortunately the 
one case referred to, in which the alternate source 
failed simultaneously with the normal source, occurred 
during a weekend when real-time operations were al
ready suspended. 
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The computing facilities of the Center have ~xpanded 
tremendously from the single UNIVAC 490 system 
with which operations were begun. These facilities 
(Figure 3) now include dual UNIV AC 494 central pro
cessors in addition to the original 490, which is still in 
service; a dual CDC 6600 system with a 6416 scheduler 
and control processor; and an IBM 360/50-75 system 
in an ASP configuration. This concentration of process
ing power correctly suggests that the volume and 
variety of the applications handled by the Center have 
expanded greatly also, and it is no exaggeration to say 
that a prolonged loss of power could have very serious 
consequences to the operation of the entire Westing
house Electric Corporation. 

The construction of a second building at the Center 
during 1966 and 1967, larger than the first, required re
planning of the power supply facilities. The lessons of 
the widely publicized Northeast power blackout led to a 
reappraisal of the initial policy of complete dependence 
upon the public utility supply for power. The decision 
was made to install a quick-starting diesel-engine
driven generator as an alternate supply. With each of 
the three major systems supplied by its own constant
frequency m-g set, capable of providing full power for 
12 seconds after failure of the prime source, it is possible 
to sense the failure, start the engine and bring it up to 
full speed in 10 seconds, adequate time to pick up the 
load of all three systems without interruption. The engine
driven generator is rated at 800 kilowatts, sufficient to 
supply all the computer systems as wen as the critical 
auxiliary items needed to maintain computer opera
tions. These critical auxiliaries are listed in Table I. 
The control system is arranged to drop automatically 
from the power centers all loads except these critical 
items whenever the engine-generator must be brought 
into gervice. 

Figure 3-Computer configurations at the Westinghouse Tele
Computer Center 

TABLE I-Westinghouse Tele-Computer Center 
Critical computer and auxiliary load 

Computer Systems 

UNIVAC 494 Systems (CF Set) 
IBM ASP System (CF Set) 
CDC 6600 System (CF Set) 

Air Conditioning Compressors 

IBM and CDC Chiller Compressor 
UNIV AC Air Conditioning Compressors 

Fans and Pumps 

IBM Room Fans 
CDC Room Fan and Pump 
UNIV AC 494 Room Fans 

Cooling Tower Auxiliaries 

KVA 

125 
260 
260 

160 
40 

30 
30 
15 

Pump 15 
Diesel Heat Exchanger Pump 10 

Chiller System 

Electric Heater for Humidity Control 30 
Lighting-All Critical Areas 20 

Total 995 

An important factor to consider in planning a system 
using an engine-generator is the ability of the generator 
to supply the starting KV A requirement of any large 
motors which may be dropped during the outage. In the 
case of the CF units, because the motor-generator com
bination is kept at rated speed by the flywheel until the 
engine-generator is ready to providepower, there is a 
momentary transient lasting only a few cycles, while the 
motor adjusts itself to the supply frequency. The con
trol system allows a short time delay for this to occur 
before re-connecting the chillers, air-handling units, and 
pumps to the 208-volt bus. The KV A capacity of the 
generator is adequate to start the chiller units, which are 
by far the largest motors on the system and the only 
ones which might present any problem. 

In this system (Figure 4), the bus-tie breaker is nor
mallyopen. Undervoltage relays detect loss of power on 
the portion of the 4160-volt bus normally used to supply 
the computer systems. If the other portion of the bus is 
still energized, the transformer breaker is opened, the 
bus-tie breaker is closed, and the other 23-kv source 
supplies power to the entire bus. Meanwhile, the same 
signal is used to energize the cranking system for the 
engine-generator. If poweris not available from the 
other 23-kv source, the tie breaker remains open and 
the generator is connected to the 4160-volt QUs as soon 
as it achieves rated speed and voltage, provided normal 
power has not returned in the interim. Once the engine
generator is connected to the bus, the system does not 
reverse itself automatically even though the normal sup
ply is re-energized. The transfer back to normal power 
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Figure 4-Present configuration of power-eupply system 

supply is performed manually, In this case again, the 
OF units provide a l2-second period during which the 
generator may be removed from the bus and the trans
former breaker. energized to restore normal s!1Pply 
from the main power transformer. 

Static inverter power supplies 

An alternative to the use of motor-generator sets for 
reliable power supply has been developed since the sys
tem described for the Center was designed. Rapidly in
creasing power capability and decreasing costs of power 
semiconductors have now made static inverter systems 
feasible as power supplies for large computer instal
lations. 

The basic elements of a typical inverter system are 
shown in Figure 5. The system consists essentially of a 
battery charger (static rectifier), a battery, and a static 
inverter. The rectifier converts input a-c power to d-c, 

NORMAL D-C 
RECTIFIER -.. 

A-C SUPPLY -. ~ 
BATTERY 

INVERTER ~ loCTO 
LOAD 

Figure 5-EsElential elements of rectifier/battery/inverter power
supply system 
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maintaining the charge on the battery as it supplies d-c 
to the inverter, which converts the d-c back toa-ctosup
ply the load. In case of failure of the input power, the 
battery supplies d-c to the inverter, maintaining the 
power to the load without interruption for a period de
pending upon the battery rating (several minutes in a 
typical installation). 

In addition to providing a temporary source of power 
until alternative supply sources can be brought into 
service, the battery performs another important function. 
It acts at all times as a filter of almost infinite capacity 
to prevent power-line transients and surges from being 
transmitted through the system to the load. 

Being completely static, the rectifier/battery /invert
er system requires little maintenance and is clean and 
free of noise. 

Such systems are now available with ratings from 1 
kva to 400 kva, and several systems can be paralleled if 
necessary to achieve still higher total power capability. 

Although the initial cost of a typical complete system 
is generally somewhat higher than that of a motor-gen
erator set, the lower installation and maintenance 
costs and the operating advantages make the system an 
extremely attractive alternatve. 

A ir-conditioning systems 

In the planning of the air-conditioning system for the 
original 490 computer installation, it was concluded 
that a total of 20 tons of compressor capacity would be 
adequate to supply the units of the system which used 
room air for cooling. Certain critical units, including 
the central processor, were cooled by a separate ducted 
system, for which 20 tons of cooling also was sufficient. 
Each system had adequate cooling capacity for future 
expansion. Here again a stand-by system was designed, 
and the system finally selected used two 10-ton recip
rocating units each for the room and the closed supp]y. 
For each system, an additionallO-ton unit was provided 
as a stand-by for each20-ton combination. Air-to-air 
systems were used, partially to avoid the dependence 
upon continuous water supply that would have been in
herent in a condensing-water system. 

The controls were designed so that on each system, 
one 10-ton unit supplied the base cooling requirement, 
the additional compressor being cycled on and off under 
thermostatic control to supply the incremental cooling 
requirement. The system provided for manually-con
trolled substitution of the stand-by compressor for 
either of the normally-used compressors. Each of three 
compressors supplied its own separate set of cooling 
coils in the air ducts to the room system and the closed 
system respectively. 

The initial control design provided for damping or 
modulation of the air flow by means of thermostatically 
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controlled vanes in the air ducts, so that control of tem
perature could be maintained within one degree despite 
the "on-off" cycling of the second compressor in each 
system. Since there was more than adequate cooling 
capacity provided when both compressors were on, the 
vanes cut down on air flow under this condition to main
tain steady supply-air temperatures in the room and in 
the equipment. 

The most important lesson learned from experience 
with this scheme was that a simple, reliable control sys
tem with a minimum of complication is far preferable to 
a complex, sophisticated one which theoretically pro
vides more precise regulation. One of the requirements 
of a reciprocating compressor is that once itis started it 
should be run for some minimum period of time in order 
to insure proper lubrication (in this case a minimum 
time of four minutes). The contr~l system was arranged 
so that once aeompressor was started it automatically 
ran for this minimum time, even though there was no 
longer a cooling requirement for it. The result was that 
the air-flow modulation system occasionally closed the 
vanes in the ducts so far that ice formed on the cooling 
coils due to the restricted air flow. Once this began, the 
effect was cumulative, and it was not long before the 
cooling coils completely restricted air flow in the system. 
The result was a complete loss of air flow until all com
pressors had been shut down long enough to permit the 
ice to melt away. . 

The high-precision temperature control system was 
quickly abandoned, and the vanes in the air ducts were 
permanently propped wide open. The temperature was 
allowed to decrease as it would during the minimum 
cycle time of the cycling compressor on each system 
Although this sometimes meant 9 variation of tempera
ture in the ducts of as much as three or four degrees 
below the control temperature, this cured the icing 
problem and provided much more reliable operation. 

Another restriction involved in the use of an air-to-air 
system is that it is harmful to the compressor units to 
operate such a system when outside air temperature 
drops below a certain minimum figure, in this case 1.5 
degrees Fahrenheit. The control system was arranged 
to shut down the compressors and use outside air direct
ly for cooling when this outside temperature was 
reached. This involved another complicated system of 
controls and vanes to mix outside air with recirculated 
air to maintain proper temperatures, one with which 
adequately reliable results were never obtained. 

In general, experience with the air-to-air system and 
reciprocating compressors was not good, and in the 
planning for expansion a chilled-water system was de
signed, using centrifugal compressors (chillers), which 
are theoretically much more reli~ble. This has proven 
to be the case. Before adopting this system, however, 
arrangements were made for water supply from 
alternate directions to the water input line to the site, 

with isolating valves on each side of the tap, so that 
a water-main break in either direction could be quickly 
isolated. 

The system as it is now operating uses two 120-ton 
centrifugal chillers, providing. chilled water to the 
water-to-air heat exchangers in the CDC-6600 and IBM 
computer rooms. The chillers in turn are supplied with 
condensing water circulated through outdoor cooling 
towers. Although the chillers are physically essentially 
in parallel, the control system operates the chillers in 
sequence. Qne chiller is sufficient to supply the entire 
cooling requirement of both computer rooms. The other 
is normally de-energized, and its condensing-water and 
chilled-water pumps are stopped. Thus, the first chiller 
takes the entire load. If, however, it should fail, or if any 
of its auxiliaries should fail, the resulting rise in 
chilled-water output temperature will cau.se the second 
chiller and its auxiliaries to be energized automatically, 
restoring normal cooling capacity without manual inter
vention. 

Experience with this system has been very satisfac
tory. The centrifugal chillers are very quiet, reliable, 
and vibration-free. The water-to-water system presents 
no seasonal problems as does the air-to-air system. Be
cause chilled-water supply temperature to the air-han
dling units in the computer rooms is a minimum·of 45 de
grees, there are no cooling-coil icing problems. Also, as 
described, the system provides its own back-up protec
tion without manual switching. 

SUMMARY AND CONCLUSIONS 

1. For important computer installations, it is desir
able to provide a back-up source of power which can be 
brought into service without interruption of continuous 
power to the computer system. 

2. Unavoidable transients and surges on a utility 
power system can cause malfunction of a computer, and 
the power supply system should be designed so that 
these transients do not appear in the supply lines to the 
computer system. 

3. lVlotor-generator sets with controlled-energy fly
wheels and rectifier/battery/inverter systems constitute 
two alternative means of isolating a computer system 
from transient voltages and maintaining continuous 
power while an alternative source is brought into ser
vice. 

4. Simple environmental control systems with less 
precise regulation are preferable from the standpoint of 
reliability to more complicated systems with greater 
precision. 

5. Operating experience at the Westinghouse Tele
Computer Center has proved chilled-water cooling sys
tems with centrifugal compressors to be more reliable 
than air-to-:-air systems with reciprocating compressors, 
despite the requirement for essentially continuous water 
supply. 



A generalized methodology for computer simulation of 
numerically controlled production systems 
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Sperry Rand Corporation 
Philadelphia, Pennsylvania 

INTRODUCTION 

Numerical control (N/C) is generally acclaimed as the 
largest single advance made in the techniques of indus
trial production in the last decade. It represents a key 
technical innovation that has significant effects on pro
ductivity, engineering design, product marketing, fac
tory organization, employment and industrial relations. 

The basis of these new types of production systems is 
the numerically controlled machine tool. In most types 
of metal-working operations the cutting or formjng tool 
is told exactly what to do by 'means of a pre-recorded 
program. The direction in which the tool moves, its 
speeds and feeds, type of machining operation, together 
with auxiliary machine tool commands, are directed by 
digital instructions read from a punched tape or a mag
netic storage. The N/C concept, as it applies to machine 
tools, emphasizes the significance of this new form of 
automation: the merging of information handling sys
tems with production facilities. 

Numerically controlled machine tools can be looked 
at primarily as information utilization devices which 
operate at the periphery of a digital computer. Their 
function is the utilization of information to give output 
in the form of finished physical parts. Computing power 
is necessary to prepare and organize the machining in
structions which, when fed to the machine tool, repre:' 
sent a "fixed logic" program describing product dimen
sions, machine member direction, speeds, feeds and 
other process control data. 

At present, a variety of numerically controlled ma
chines are encountered in various industries, all of them 
requiring data processing services of various complexity 
and frequency. In the metal-working machine tool area, 
N /C machines such as turrent drills, jig borers, lathes, 
multi-axis milling machines, engine lathes and multi
purpose machining centers are most common in large 
manufacturing companies but are also found in medium 
and small machine. shops. Other numerically controlled 
devices that are being used extensively are drafting 

machines 'flame cutting machines, riveters, tube 
benders ~elding machines, and inspection machines. 
Figure i shows a general-purpose N/? machi~e to?l 
considered in the simulation model dIscussed In thIS 
paper. 

The concept of computer-based numerical control is 
not relegated to the machine tool itself but can embrace 
the full spectrum of N /C production in an engineering 
and manufacturing company, Indeed, the entire process 
may go from functional specifications of the piece-part 
through production control, individual part manufac
ture assembly testing and follow-on statistical per
for~ance evaluation. In addition, there is a definite 
trend for computer support in N/C manufactur
ing for part selection, machine center load~ng and 
scheduling in order to improve N/C/machme ~ool 
utilization. Information processing for numerIcal 
control is carried out, in all three of the major 
phases required in the production of a part. Phase 1, .in
formation generation, constitutes the process of defimng 

Figure 1-Numerically controlled machining center 
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a part. This process aims at arriving at some specific and 
detailed specification of the configuration of the part to 
be produced and at its method of machining. Phase 2, 
machine tool program generation, has the objective of 
providing the computations required for the production 
and verification of the complete set of machine tool in
structions. Phase 3, information utilization, covers the 
final phase where the instructions in the machining pro
gram are used at the machine tool site for actual pro
duction of the desired part as visualized in the part de
sign. The main objective in programming an N/C 
machine tool is the solution of the overall machining 
problem, i.e., the optimum application of an automated 
machine tool to a given piece of work according to pre
defined geometry and the attainment of the highest 
speed in the machine operation compatible with ma
chine dynamics and efficient metal-working techniques. 

Computer-based programming systems for numeri
cal control remove the part programmer from direct 
contact with detailed machine tool coding and allow 
him to define the machining problem in broader and 
more meaningful terms. He can describe his problem 
and procedures with a symbolic or graphical language 
which is problem oriented and has little relationship to 
the computer itself. The data coming out of the compu
ter are in the language that the machine tool di
rector can understand. A symbolic-type manufacturing 
language (APT) with English-like terms can be used by 
production people to "talk" to the computer. In this 
language, which should be easy to master, the part pro
grammer may describe the profile, surfaces or hole 
patterns which define the part to be machined, and spec
ify the sequence of required tool motions to generate 
the desired geometry jn metal forgings or castings. 

As shown in Figure 2, the present state of the art in 
the use of general-purpose computers in machine too I 
programming reflects the recent advances reached in 
computer technology in general. Experimental graphi-

Figure 2--Information flow in a computer-controlled machine tool 

cal part-programming systems are in existence today 
that permit, through the use of a cathode-ray tube dis
play equipped with a light-pen device, the definition of 
the part, and subsequently, of the machining prob
lem. The part programmer can immediately see the 
results of the process as the solution of the problem pro
gresses. 

These programs can also produce true perspective pic
tures of any curvilinear segment of series of lines includ
ing coordinate axes, and provide the part programmer 
with an added degree of flexibility in controlling what he 
sees on the scope. By manipulation of console switches, 
the operator may rotate the three-dimensional view of 
the part being shown about many axes and thus observe 
it from various aspects as an aid in deciding if it has 
correctly defined the part configuration. The graphic 
communication capability is expected to increase part 
programmer efficiency and decrease the preparation 
time of verified N I C tapes. 

Formulation of the generalized model 

The formulation of a generalized model for N/C pro
duction stipulates parameters that provide the prime 
operating modes of the production system, and describes 
means for evaluating alternative design solutions. 

A simulation methodology in numerical control re
quires the definition of a framework achieving integra
tion of physical processes and information handling pro
cesses. Figure 3 shows a simplified representation of 
such process integration. There are essentially four 
component systems or subsystems considered in the 
modelling philosophy presented here. There are the 
N IC Data Processing System, the Physical Processing 
System, the Emergency Repair Support System and the 
Production Information System. 

The Numerical Control Data Processing System has 
the function of generating machine tool control informa-
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Figure 3-General model for N /0 production systems-Basic 
schematic diagram 
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tion from engineering drawings and process planning 
data. 

operations and flows illustrated in elemental form in 
Figure 3. 

The Physical Processing System covers the produc
tion processes carried out by the N /C machine tools and 
the Emergency Repair Support System provides the 
services needed for repair of machine tool breakdowns. 

The flows as indicated in the diagram are of four 
distinct types. The solid-black line network shows the' 
materials flow from raw material storage to finished 
part storage, going through the numerical control ma
chining operation. The double-line network provides 
the carrier for all information issued from the arrival 
point of the engineering drawings to the issuance of 
numerical control tapes for the production process, 
going through various points for processing of the 
numerical control programs. The broken lines identify 
information flow for machine repairs. The thin-line net
work links all the other three networks and their work 
stations to an information center designed for the 
measurement of system performance during the simula
tion. 

The Production Information System encompasses all 
the activities of the three principal systems metioned 
above. Sensing elements report to this information sys
tem events that take place in the subsystem. The end 
result of the information arriving at the Production 
Information System is a series of images that describe 
the activities within the subsystems. 

The generalized model treats the numerical control· 
plant as a man-machine system of discrete-type pro
duction and it makes use of feedback links within each 
subsystem and between the subsystems themselves. 
The production system may be composed of procedures, 
equipment, information, methods to compile and evalu
ate the information, as well as the people who operate 
and use the information. The basic schematic model of 
the generalized N / C production system is shown in 
Figure 4. The model is a detailed representation of the 

Shop orders are treated as purely exogenous inputs, 
accompanied by engineering drawing releases and pro
cess planning data. These orders represent the trans
actions which g6 through the system in a stochastic 
flow. Based upon decisions on the extent to which plant 
capacity is used, the model allows incoming orders to 
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enter the system or to be routed to "sinks" which repre-
• sent subcontracting functions. Orders entering the sys-

tem are routed to the numerical control part program
ming function which handles all the operations neces
sary to code, process, validate and machine-tool test the 
information necessary to run the N /C machines. The 
computer processing operation simulated in the model 
produces families of N /C tapes to be used in the major 
routings considered in the model. The machining pro
grams are released to the machine centers for tape 
proofing prior to the final release to production. 

The highly aggregated function blocks shown in the 
general schematic, as well as the various linkages of direct 
flow and feedback loops, may be broken down to a much' 
greater level of detail through the use of the General 
Purpose Systems Simulator (GPSS) language. GPSS 
is the computer simulation language which was used in 
the experimentation connected with the development of 
this methodology. Flows through the numerical control 
parts programming function, for example, can be de
scribed with a finer resolution when put through the sub
functions of Part Programming proper, Computer N /C 
Processing, Graphic Verification and Control Tape 
Proofing. Within the Breakdown Repair function bound
ary logical blocks are introduced representing sources 
of machine breakdown events, together with blocks rep
resenting repair functions and termination of repair 
operations. 

The Numerical Control Machining Centers may have 
one or more machine tools of the same type operating in 
the center. Parameters affecting the machining center 
operations are the number of working shifts per 'day, the 
length of the individual shift and the number of working 
days' per manufacturing week. Wide flexibility exists in 
programming shifts for the various centers, including the 
assignment of different shifts of varied duration. 

The scheduling program requires a description of 
available facilities per 'center in terms of a facility iden
tification, number of shifts of operation, and number of 
machine hours of capacity. The, scheduling function 
operates on the given job information to calculate for 
each job the probable number of manufacturing days 
needed to process the job and the manufacturing week 
number in which the job processing will start at the ma
chine center. It determines the load that would exist at 
each machinnig center according to the over-all job lot 
processing time and to the frequency of job order a~d 
tape arrivals. 

Design criteria and structttte of the N / C 
production systems simulator 

A methodology of simulation of N /C production sys
tems requires a fOrn'lulation of the various characteris
tics of total system components, subsystem interde-

pendencies, system flows, and stochastic functions. The 
resulting structure may be called an N /C Production 
System Simulator, which is a computer program capa
ble of tracing the actitivities of the N/C production 
system as they change in time. 

The composition of the N /C Data Processing System 
and of the Physical Processing System can be described 
by program modules representing part programming 
functions, computer processing functions and machining 
functions. The simulation of the flow of the job orders 
and part programs through the production system can 
be achieved by transmitting "transactions," represent
ing job orders and part programs through the network 
of simulated queues and processing. stations. The ar
rangement of the queues and the processing station ele
ments also includes information feedback loops which 
are required by the nature of numerically controlled 
operations .. 

Production system input characteristics 

The first task in the definition of the input character
istics is to identify the various types of transactions 
which flow in the various information streams of the 
GPSS model and in its control strings. The latter are 
GPSS model segments operating outside of the main 
model, which control events taking place in the simula
tor, such as machine breakdowns, or control duration 
and number of work shifts at the machining centers of 
N /C data processing units. 

Production orders entering a shop generally follow 
two main streams-new orders and reorders-flowing as 
transactions into the network of the model. The new 
orders require production planning, the definition on 
work routings, setups, part programming and prepara
tion of N /C tapes. The reorders have the necessary N / C 
tapes .already available from previous job-lot runs. 
These tapes are usually stored in the tool room and are 
treated as any other tool which may be required for set
up and fabrication of the specific job lot. 

Each transaction entering the model represents a pro
duction order for new parts or for additional production 
of parts identical to ones produced in previous orders. 
The transactions are assigned to certain parameters de
fining the production order configuration and the char
acteristics of the processing centers through which the 
order is expected to go, either for N/C information pro
cessing and/or parts fabrication. Due to the different 
nature of the operations carried out in the N/C Data 
Processing System and in the Physical Processing Sys
tem, the same transaction may have entirely djfferent 
parameters assigned when it goes through the two sub
systems. The GPSSparameter assignment is made ac
cording to the system in which it operates or to the seg-
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ment of the specific system in which the transaction is 
active at the moment. 

An analysis of the functions and elements of the 
various subsystems should be preceded by a review of 
the assumptions made in relation to the generalized mod
el structure, the subsystem interfaces and total system 
inputs. Technological constraints pertaining to the 
metal-working processing should also be considered. 

The model represents a data processing operation 
used to produce numerical control tapes, which is inte
grated with a numerically controlled machining com
plex that manufactures parts. It does not recognize ad
jacent departments such as shipping or purchasing. 
Arrivals from outside the system may come from de
partments such as purchasing or engineering, or they 
may be direct customer order arrivals, as in the case of 
small job shops. A production order can coincide with a 
shop order in the context of this simulation. In practice 
shop orders are released 10-15 days before the first 
operation is scheduled to begin, since a preparation pe
riod is required to make sure that raw materials and 
proper tooling are available when needed. In the case of 
numerically controlled manufacturing this process prep
aration should take place concurrently with the opera
tions necessary to produce and test the numerical con
trol tapes for the specific job on order. 

It should be noted that the model does not recognize 
transit times between one center and the other. The 
transaction that leaves one center simply joins the 
waiting line (if any) of the next station. During simula
tion of job shop operations the simulator does not take 
into consideration certain standing shop practices such 
as lap phasing, job-lot splitting and the saving of setups. 
Lap phasing is a form of parallel scheduling in which a 
lot can be simultaneously processed on at least two ma
chines. As far as capacity is concerned, the model, once 
defined in its structure and mode of operation for a spe
cific simulation run, reflects only a fixed machine tool 
capacity. 

As discussed previously, the processing facilities are 
grouped in centers along specific routings. The trans
action of the part program which follows a common 
routing in the N /C data processing system is channelled 
in a specific routing as soon as it reaches the physical 
processing system, according to part configuration and 
to the technology of the machining process. The differ
ences in the machining process are primarily dictated by 
the geometry of the piece-part, the type of N/C ma
chine tool, the way in which material is removed and 
the type of material being machined. The model takes 
into consideration machining centers of entirely different 
nature where the discrete and/or continuous process of 
metal removing produces parts shaped as solids of rev
olution (lathe operation), or bounded by surfaces ma-

chined in three-coordinate cartesian space (milling 
operations) or by removing metal at discrete positions 
as by drilling or spot facing (multi-purpose machine). 
No exchange of routings is allowed for a transaction in 
case of excessive machine loads or machine breakdowns. 

There is no allowance for interaction among similar 
production orders at the various facilities. The possibil
ity of accumulating jobs requiring nearly identical set
ups in order to save setup times is not considered. Other 
important assumptions concerning the shop operations 
are the absence of delays due to the work piece not being 
available at the scheduled time at the machine site, or 
delays due to cutting tools, holding fixtures, special 
tooling, and N /C tapes not available at scheduled ma
chining time. 

Rejects or scrap due to fabrication errors or machine 
tool programming errors recorded in the tape program 
are assumed impossible in the simulation. Although in 
the case of conventional machine shops this assumption 
may seem quite un.:realistic, it may hold true in many 
cases of efficiently run numerical control shops where 
validation procedures in tape programming and tape 
testing are enforced and machine tool operator inter
vention is kept at a minimum. It is also assumed that 
maching breakdown does not cause any scrap or inter
ruption of the machine cycle during a specific part pro
duction cycle. 

In the simulation of the man-machine system de
scribed in this paper, consideration of the human ele
ment leads to the following basic assumptions. Part pro
grammers can be assigned to any part programming job 
irrespective of the N /C machining process or type of 
N /C machine tool requiring programming. The part pro
grammer responsible for the symbolic programming of a 
specific drawing also runs the drafting machine for 
visual verification of the part contours and tool paths 
and attends the first machining tool run for the tape 
proofing operation. 

Although machine tool operators cannot be ex
changed for part programmers, complete flexibility is 
assumed in shifting operators from one N/C machining 
center to another. lVlachine tool operators in this model 
need no additional training or special skills, even though 
the same man may run an N/C lathe or a 3-axis N/C 
milling machine, which in practice is a reasonable as
sumption. Machine tool operators and part program
mers are assumed always present at processing stations 
as no consideration in the simulation is given to fatigue, 
personal time and absenteeism. Machine tool opera tors 
are expected not to intervene during the machining pro
cess, while in real life situations the operator may slow 
down cutting rates and feed rates due to piece-parts 
showing different characteristics in their raw material 
piece form or in the quality of the raw material. 
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Secondary operations are not needed as supporting 
machinery of conventional type is assumed not present 
in the system. Shop operations sometime~ used in prep
aration of forgings and castings for the N jC process 
are not considered necessary or relevant for the simula
tion. Deburring, degreasing or heat-treat operations 
are not included. Part inspection is not considered in the 
simulation model although inspection with measuring 
devices mounted on the NjC machine, or use of tape
controlled inspection machines is technically feasible. 

Preventive maintenance does not occur in the sched
uled production work period and all emergency main
tenance takes place during scheduled work time. No 
attempt is made to combine the two types of maintena
nce operations. Finally, adequate storage space is as
sumed available in front of machining centers and in 
job-lot staging areas; saturation of storage areas is not 
considered in the simulation in case of extreme build-up 
in machine center queues. 

A few constraints in the simulation described in this 
paper are concerned with the limitations in system def
inition imposed by the GPSS program itself. Computer 
simulation programs, by necessity, have boundaries in 
the amount of data they can retain at any stage of the 
process, the number of attributes that can be assigned to 
transactions, the number of variables and composition 
of variables that can be defined in the system and, ob
viously, the computer time that can be economically 
spent on anyone simulation run. 

The physical processing system 

The Physical Processing System represents the phys
ical processes and the resources required to produce the 
end product, i.e., machined parts. To control the scale of 
the model built with the methodology discussed here, 
the physical processing facilities were limited to three 
multi-machine centers of different type. However, from 
one to four numerically controlled machine tools can be 
operated within each center. The organization of the 
machine' centers is of sufficient detail to permit useful 
evaluation of congestion conditions in shop-order flow 
through the centers. It also allows the analysis of the ef
fects of overloading in the Numerical Control Data Pro
cessing System and of the effects of intervention by the 
Emergency Repair Support System in case of machine 
breakdown at any of the centers. 

Each machine tool is characterized by a capacity rep
resented by the maximum work time period that may 
be allowed daily for the machine in the shop. Machine 
capacity is measured in minutes and makes reference to 
the three capacity levels set by first, second or third shift 
of work. Provision is made for the machines to work five 
days, six days or seven days per week. Flexibility is pro
vided by the model in the number of daily shifts or du-

ration of the weekly work period. This arrangement is 
quite similar to act~al working situations in numerical 
control machining operations since numerical control 
machines on determined shop routings are, in practice, 
shut down without affecting the operation of the 
remaining centers. If desired or deemed necessary, ma
chine centers can be operated independently on entirely 
different schedules one from the other. One of the 
striking characteristics of numerically controlled ma
chinery is the consolidation of many machine tools of 
conventional type in one processing center. 

The emergency repair support system 

The simulation of breakdown repair operations in a 
machine shop has all the elements of a queueing situ
ation. Machine breakdowns in the shop require repairs 
which are treated as jobs to be performed. The main
tenance man becomes the service facility for which com
petition may generate when more than one machine is 
down at any given time. The tjme necessary to repair the 
facility represents the service or processing time. 

In the NjC production system simulation break
downs occur as a result of the intervention of a separate 
GPSS model, which is run concurrently with the main 
program to simulate the emergency maintenance opera
tions required to repair the malfunction or malfunctions 
which have occurred in a single facility unit. Simulated 
breakdowns are classified by type of fault: i.e., electron
ic, hydraulic or mechanical, and by the type of ma
chine, with faults occurring on multi-purpose machines, 
milling machines and lathes. 

The production information system 

The Generalized Model Schematic Diagram of Figure 
4 illustrates the various linkages of the Production 
Information System. The sensing elements shown in the 
schematic diagram allow management to follow the flow 
of shop orders through the Numerical Control Data 
Processing System and the Physical Processing System, 
and the stoppage of shop orders through the Emergency 
Repair Support Subsystem. It is then possible to study 
the effects of congestion caused by the need of accessing 
processing stations, or caused by limitations in the 
capacity of sections of the network. 

Corrective action may be issued to affect the opera
tions of one or more subsystmns. Chahges are not issued 
during a particular simulation itself, but they are rather 
the result of decisions made in view of the output sup
plied at the end of the simulation, which covers a pre
determined time span. Changes in scheduling proce
dures, manpower and machine capacities, or changes in 
incoming order configuration can be introduced in order 
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to improve the over-all performance and to evaluate 
specific measures of effectiveness. 

The generalized simulation methodology is designed 
to study the flow of job orders through the N IC pro
duction system and to analyze how the system reacts to 
various conditions of operation. The output data ob
tained from the simulation is, therefore, in terms of phys
ical performance of the total system, its subsystems 
and their components. There are many measures 
of physical performance of the total system, its sub
systems and their components, which can be generated 
for any given set of decision rules through the reporting 
function. These measures include the transit times re
quired for an order to flow through the system or sec
tions of the system, the number of orders in delay, the 
length of delay times at various points of congestion, 
the degree of utilization of the facilities or the utilization 
of manpower. The total flow time-or time from the re
ceipt of a production order to the completion of that or
der for delivery to another department or directly to the 
customer--represents the best over-all measurement of 
physical performance. This measure does not provide a 
direct economic evaluation of performance. The mea
sures of performance which can be obtained from the 
N IC Production Systems Simulator may be grouped in 
the five categories which follow: 

I. Output Data on Queues Forming at Processing 
Centers 

• Distribution of queue delay times at N IC pro
cessing centers and N/C data processing centers. 

• Maximum and average contents of queues at pro
processing centers. 

• Average length of time spent by production order 
in queue of specific processing center. 

• Record of queue lengths as a function of time 
taken at selected queues of the system. 

II. Output Data on Facilities Control 
• Time covering period of operation of facilities. 
• Average utilization of each facility based on 

period of operation. This also constitutes the 
loading factor of the facility. 

• Total loading levels and capacity levels at each 
N/C machine center, over period of operation 
considered. 

III. Output Data on Production Order Control 
• Total number of job-lot orders accepted and 

completed by system during period of operation 
considered. 

• Average flow time of new orders through N/C 
data processing system and through total pro
duction system, including physical processing 
system. 

• Average flow time of reorders through physical 

system, and average flow time of reorders and 
new orders combined through total system. 

IV. Output Data on Operating Schedule Control 
• Number of manufacturing days and manufactur

ing weeks covered by scheduling. 
• Number of manufacturing days expected to pro

cess specific new order or reorder, and number of 
manufacturing weeks when specific new order or 
reorder is expected to be processed at machine 
center. 

V. Output Data on Breakdown Repair Control 
• Distribution of queue delay times at machine 

center for the handling of repair order. 
• Total number of breakdowns which occurred at 

specific machine center. 
• Maximum and average contents of, queue for 

handling of repairs at machine center. 
• Average time spent for repairs at machine center. 
• Average utilization of repair technicians assigned 

to machine center. 

Experimental investigation 

The system configurations analyzed in the experi
ment comprised the majority of components expected 
to be found in an integrated computer-based N IC pro
duction system. It is felt that the type, the number and 
relationship of components used in the model, as well 
as the operating policies employed in the simulation, 
give a complete demonstration of the use of the method
ology. The physical processing subsystem and the N IC 
data processing subsystem defined in the model used, 
have been structured to incorporate, as much as pos
sible, the dynamic complexity to be found in numeri,,
cally controlled manufacturing operations using com
puter-assisted programming. 

The primary objective of the experiments was to de
termine whether significant differences in performance 
could result from changes in selected design aspects of 
the two major subsystems. The discussion of the prob
lem which prompted the subject of the research indi
c~ted that fully integrated computer-based N/C manu
facturing systems are not in wide use in industry today. 
Of the few in operation, integration was achieved as an 
evolutionary process rather than on the basis of a com
pletely new approach to N IC production system design. 

The formulation of the simulation model was based 
on a large amount of data on N/C machine characteris
tics and NjC production operations obtained from 
various industry sources over a period of several years. 
Information processing times, physical plant character
istics and actual performance factors of man-machine 
components of the system· were obtained from aero
space manufacturers and research institutions. 



64 Fall Joint Computer Conference, 1968 

The tests showed that the behavior of the model is 
acceptable and contained within realistic limits. During 
the many runs preceding the final tests, the model was 
manipulated over wider ranges of operations than the 
ones which are normally encountered in actual system 
operations. The effects of changes in critical design 
parameters were examined and the computer results 
compared with results obtained from a base configura
tion of the system structures under study. 

The objectives of the experiments carried out were as 
follows: 

1. To structure the model in such a form to ade
quately represent a typical N IC production system 
of metal-working manufacturing. 

z. To set up the model in such a way as to use operat
, ing policies normally encountered in N IC job-shop 
operations. 

3. To obtain steady-state statistics for a variety of 
configurations in the numerical control data pro
cessing subsystem. 

4. To carry out a statistical analysis on the change of 
system performance and to compare statistics 
generated for the new system configurations. 

5. To study the dynamic relationships between 
queueing conditions in the N IC data proce~sing 
system and the physical processing system. 

As to the characteristics of the particular model used 
in the experiments, assumptions were made on the load
ing of the production system and the system operating 
rules based on actual operating data. The generalized 
model is structured so that it produces a collection of 
statistics for later analysis and for conducting, through 
changes in model geometry and through operations 
manipulations, more experiments to obtain further 
statistics for comparative purposes. 

The study of the behavior of the N IC production sys
tem model, carried out as part of the experimental in
vestigation, was based on eight different measures of 
performance. "Flow time" was defined as the difference 
between the time at which an order (or transaction) ar
rives at the system or subsystem, and the time at which 
the same order (or transaction) leaves the same system 
or subsystem. For convenience, the term "transit time" 
may be used alternatively for flow time. 

The first four measures of performance investigated 
were: 

1. Flow times of new orders through the numerical 
control data processing system. 

2. Flow times of new orders through the total pro
duction system. 

3. Flow times of reorders through the physical pro
cessing system. 

4. Flow times of all orders through the total produc
tion system. 

The flow times of reorders relate' to the physical pro
cessing system only. It should be recalled that reorders 
in N/C production do not require the preparation of 
machine tool tapes by the N/C data processing system 
since these N/C tapes can be made available simply 
by requesting them at the tool room where they are 
kept in storage racks after being used for the processing 
of previous production orders. 

Although this paper does not cover the complete set 
of experiments performed and related analyses, one of 
the most interesting conclusions drawn from studying 
the simulation output is the behavior of the model un
der a configuration of the system operating with three 
part programmers. The flow times through the physical 
processing system and total system appeared to be con
sistently shorter when the simulation is run with three 
part programmers. This seems to confirm the practice 
in industry which aims at assigning one part program·· 
mer per N/C machIne. This assignment is particularly 
necessary when programming ·jobs are of complex na
ture, as in the case of milling machine tape preparation. 
The low flow-time levels of the specific configuration in
vestigated may also be the result of interaction between 
new orders and reorders when congestion develops at the 
part programming center. One effect of this interaction 
is the reduction of new order arrivals at the N I C 
machine ceniers. 

Separate dynamic analysis runs were carried out for 
each one of the system configurations chosen for the· 
study. The different 'configurations were characterized 
by the part programming function simulated with one 
part programmer, three part programmers and nine 
part programmers, identical to those introduced to 0 b
tain steady-state statistics. The results of dynamic 
behavior tests showed a high degree of interaction be
tween the part programming operation and the machin
ing operations at the N IC centers, with marked changes 
in the rate of build-up and decay of waiting lines at the 
various processing points. These variations seemed to 
be quite evident in the system configuration having 
three part programmers. It should be noticed that the 
peaks at the part programming queue were followed 
closely by peaks of varying amplitude at the N/C 
machine centers. It was apparent that the build-up of 
queues at the part programming center depended upon 
the arrival rates of new orders and the part program 
processing rates. The build-up was also influenced by 
the three feedback loops of the APT diagnostics check
out, the N/C drafting machine output check-out and 
the N/C tape proofing operations. It should be recalled 
that the part programming operation, as represented in 
the model, is constrained by work shifts which are dis
similar from the work shifts governing theN IC machine 
center operation. The different operating rules caused a 
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pulsing effect in the qperation of N/C data processing 
facilities. 

The physical processing system seemed to be quite 
sensitive to variations in the part programming center 
queue. The release of N/C tapes is an intermittent 
operation, which is paced by work shifts. It may pre
sent peaks of different intensity, according to factors 
such as part complexity and number of reworkings of 
part programming jobs. Correspondingly, build-up at 
the waiting lines in front of the machining centers may 
"well depend on the size of part programs, size of j ob-
lots, timing of N/C tapes releases and on the processing 
rates governing the operation at the N/C machine cen
ter. 

To summarize, the comparisons made for the four 
different measures of performance and the dynamic 
analysis show, both by visual comparison and by statis
tical test, that the simulator is highly sensitive to 
changes in the part programming manpower levels. 

CONCLUSIONS 

Numerical control is a production technology that 
forces management to look at a manufacturing enter
prise as a whole, in the interdependency of all the steps 
from product conceptualization through the processes 
that yield the finished product. Fundamental to in
creasing the success of numerical control and the rate of 
acceptance of N/C machinery, is the systems approach 
to forward thinking in this new area. This mode of at
tack views all components of a N IC production system 
in the light of their interrelationships and their func
tional objectives. It has been applied with outstanding 
success in the development and operation of complex 
computing and communication networks, especially by 
the requirements of intricate and interlocking systems 
of military installations. 

It is felt that the use of advanced techniques of digital 
simulation may become in the near future a major con
tribution to the development of a body of knowledge on 
application of numerical control to discrete-type pro
duction and to job-shop manufacturing systems. A pur
pose that may be pursued by research through examin
ing large-scale models could be to show howN I C pro
duction and related activities, particuiarly decision
making and control of shop operations, can be explicitly 
modelled. The research should be aimed at the major 
goal of developing and refining a methodology for build
ing production models embodying the new princi
ples of N I C manufacturing through the use of computer 
simulation. 

Finally, it can be said that the discipline of reducing 
production organizational concepts to precise formula
tions, and the requirements of specifying decision 

rules and procedures in a straightforward unambiguous 
fashion is undoubtedly an education in itself, whether 
for the N IC user or the the manufacturers of computers 
and numerical controls. 
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Subsets and modular features of standard APT 

by CLARENCE G. FELDMANN 
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Cambridge, Massachusetts 

INTRODUCTION 

The APT (Automatically Programmed Tool) NjC lan
guage was developed in 1956 at M.I.T.'s Servo
mechanisms Laboratory by D. T. Ross.1 Since that 
tiine, the language has been widely used at NjC in
~~allations in the United States for all categories of 
NjC programming. Since 1961, further APT System 
development has been directed by the Illinois Institute 
of Technology Research Institute under Dr. S. 
Hori.2 ,3,4,5,6 Use of the APT Language became so 
universally accepted that in 1963, the American Stan
dards Association (now the United States of America 
Standards Institute). initiated an activity to generate 
a United States standard for the APT Language. 

Since the original organizational meeting in 1963, 
the USASI X3.4.7 Subcommittee has been preparing 
a Standard for the APT NjC language. This activity 
early encountered a unique problem in that the APT 
language had been,· since its first industrial use in 
about 1958, an evolutionary computer system, designed 
for any user who had the computing facilities to add 
useful modules onto the system. Although the APT 
language began as a problem-oriented language for 
three-dimensional milling, through the process of 
evolution, it soon added language for drafting, lofting 
analysis, turning, boring, flame-cutting, lathe control, 
and whatever other user's peripheral areas of interest 
came along. 

One of the basic criteria agreed upon by the members 
of USASI X3.4.7 is that a standard language would be 

*The work reported in this document has been made possible 
through support and sponsorship extended to the M.I. T. Elec
tronic Systems Laborat?ry by the Manufacturing Technology 
Laboratory, RTD, Wrlght-Patterson Air Force Base under 
Contract F33 615-67-C-1530. Project DSR 70429. 

The work reported herein was supported (in part) by Project 
MAC, and M.LT. Research Program sponsored by the Advanced 
Research Projects Agency, Department of Defense, under Office 
of Naval Research Contract NOnr-4102(01). 
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of little use if no user or computing equipment manufac
turer could reasonably implement a processor for the 
language. On the other hand, if only a small "core" 
subset of APT were standardized, this would not be 
very useful to industry either. 

APT subsets and modules 

To resolve this problem, it was decided to standardize 
the entire language, and to also designate certain 
classes of language syntax rules in APT as belonging 
to a particular "subset" or "modular feature" of the 
language. 

The terms "APT Subset" and "APT Modular 
Feature" take on very specific connotations, and must be 
carefully defined befot:e proceeding. In general, the total 
APT Language is divided into five basic subsets, where 
each subset is designed for a specific level of NjC pro
gramming and hardware. The subsets are "nested" in 
that each subset wholly contains all statements in the 
next smaller subset. The five APT Subsets are pictured 
below. 

FIGURE I-APT subsets 
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The APT Subsets are designed as "core" languages, 
i. e., they contain just enough basic facilites to provide a 
usable language for the indicated level of N /C program
ming .. The largest subset (Multi-Axis Contouring) 
the'refore does not contain all APT statements. It was 
the vote of the USASI X3.4.7 subcommittee that it 
would be undesirable· to specify large, unwieldy lan
guage subsets in which many: of the statements are not 
used at most APT installations. Instead, the "core" 
subset philosophy was adopted, and the less-essential, 
special-purpose language "packages" which have been 
developed over the years by APT users were cate
gorized into a set of "modular features" which can be 
selected by anyone having a particular need for that 
feature and "plugged in" to a core subset. There are 
at present 25 such modular features being considered 
byX3.4.7 

Another aspect of the 1Vlodular Feature approach is 
that each module has a "natural" subset below which its 
use is not feasible. For example, it does not make sense 
to plug in the "Fitted Surfaces" modular feature to a 
point-to-point subset. Each APT modular feature 
therefore has a "minimum subset" associated with it. 

Relation to USASI XS.J,. criteria 

The USASI Subcommittee for "Common Program
ming Languages" (X3.4) is currently working on a doc
ument entitled "Procedures for the Standardization 
Process" 7 which, among other things, contains a section 
on "Determination of Language Subsets." At this 
point, it is of interest to discuss their work in this area 
a~d show the relationship of the X3.4. 7 language break
down. 

The X3.4 document discusses language subsets, but 
does not describe a "modular feature" setup as adopted 
by X3.4. 7. In defining subsets, they state: 

"It is assumed to be a basic requirement of any 
establishment of subsets that there be two clearly 
recognizable extreme cases: the maximal language, 
L, and the minimum feasible subset, N (for nucle
us) . The nucleus language, N, is the agreed upon 
minimum version of the language. At least N must 
be completely specified as a single standard lan
guage. 

The maximal language, L, includes all facilities 
incorporated as features in a single language. L 
need not be a standard language. 

Whether or not L is a standard language, it is de
sirable that there be a complete specification for L. 

If there are, as well, additional subsets 11, 1 2, ... , 

1m then it is required that (1) each Ij be a proper 

subset of Land (2) N be a proper subset of each Ij. 

In set-theoretic notation, 

NeIl n 12 n ... n 1m n L (2) 

where" U " denotes the union of features and" n " 
denotes the intersection of features (selection of 
only those common to both the two operands)." 

The APT subsets comply with these criteria, where 
N corresponds to the APT "Minimum System" subset 
and L corresponds to all statements in all subsets and 
modular features taken together. In fact, we have seen 
that the APT subsets satisfy the further criterion (not 
required by X3.4) of being nested. Stating this in an 
a.dditional formula, 

(3) 

The USASI X3.4 document describes a module 
approach as an equivalent way of defining language 
subsets. However, this description does not fit the APT 
modular feature approach and the two should not be 
confused. 

In an attempt to put the modular feature approach 
into set-theoretic notation, consider the modular 
feature element 

MFsm 

where s is a minimum recommended subset number and 
m is a modular feature number. An APT Language At 
may thus be built from any combination of the form 

or 

or 

etc. 

for any subset number k ~ j and p ~ j, 
where Ii represents APT Subset j. 

(4) 

(5) 

(6) 

To complete the definition of APT modular features, 
the following additional relationship should be stated: 

Ii. n MFhm = cp (the null set) (7) 

for all j, s, and m. 
In other words, no modular features have any state

ments in common with any of the subsets. 
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Sub~et and module breakdown 

With the above definitions in mind, we shall now 
describe the various subsets and modules of the APT 
Language breakdown.s You will recall that there arE;: 
five basic subsets: 

(1) Minimum 
(2) Advanced Point-to-Point 
(3) lVIinimum Contouring 
(4) Three-Dimensional Contouring 
(5) Multi-Axis Contouring 

The modular features associated with each of these 
subsets is as follows: 

Subset 1: (Minimum System) 
(1) Feedrate attached to motion commands. 
(2) Copy statements to duplicate sequences,with 

or without translation and/or rotation. 
(3) Synonyms for APT vocabulary words. 

Subset 2: (Advanced Point-to-Point) 
(1) Matrix transformations and rotations 
(2) Macro facilities 
(3) Nested definition capability 
(4) Special printing, punching, and reading (I/O 

language). 
(5) Point patterns 
(6) Control of multiple postprocessing. 
(7) Program looping and computing (algebraic 

calculations, functions for square roots, etc.) 
(8) Advanced point-line-circle definitions. 

Subset 3: (Minimum Contouring) 
(1) Conic Section contouring, including "LOFT 

conics" 
(2) Surface "thickness" capability 
(3) Condhion al cut termination program control 

(what to do next depending upon how the last 
cut sequence terminated) 

(4) Deletion of specified cutting sequences (turning 
off output for tool positioning). 

(5) Pocket clean out language 
(6) Assignment and manipUlation of symbolic names 

of surface variables. 
(7) Tabulated CylinderSurfaces 
(8) Special "offset" startup language 

Subset 4: (Three-Dimensional Contouring) 
(1) Generalized cutter capability 
(2) Additional three-dimensional surfaces 
(3) Additional vector definitions 
(4) Additional cutter-to-part control language 
(5) Fitted Surfaces 
(6) Individual surface tolerance on all surfaces. 

There are no modular features having SUbset 5 as a 
recommended minimum set. 

In addition, a set of post processor language modular 
features are being defined, but are not sufficiently 
finalized to be presented at this time. Also, this rather 
large number of modules is not necessarily the final 
breakdown in the standard, but is the status at the 
writing of this paper. 

We will next go into more detail on each subset of the 
language. Finally, a unique computer system for de
fining and maintaining the standard will be described. 

Minimum subset 

The basic criterion which was used when deciding 
how small to make the minimum subset was that the 
subset be the bare minimum which could still be con
sidered usable. Quoting from a draft of the X3.4.7 work
ing paper on subsets,S "The minimum numerical con
trol system contains no geometric definition capability. 
The motion commands are limited to those using 
position coordinates or delta motions." 

Specifically, the minimum subset contains the fol
lowing APT Statements: 

(1) Cutter orientation statement: 
FROM/x coord, y coord, z coord 

(2) Motion command: 
GOTO / x coord, y coord, z coord 
GODLTA / delta x, deltay, delta z 

(3) Program boup.ds: 
P ARTNO (identifying string of characters) 
FINI 

In addition, the minimum system postprocessor 
commands are included. 

Clearly, the minimum language as presented above 
is so minimal that, except for the postprocessing control 
functions, it represents little more than a technique for 
converting the tool positions into the input format re
quired by a machine tool. It is debatable whether some 
additional features such as symbolic names on points 
should also be included, but it was decided that a user 
might very well· wish to use this simple language, es
pecially if he has only a very small computer at his dis
posal, or if he is supplied cutter orientation data from 
some non-APT computer analysis routine. The latter 
case occurs frequently with sub-contracted jobs to 
small shops. 

Modular features which make useful additions to the 
minimum subset include the ability to add feedrate 
values to motion commands, to define synonyms for the 
APT basic vocabulary words, and to COpy a point 
a specified number of times with or without rotation 
and translation. 
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Advanced point-to-point subset 

This subset contains the minimum system syntax 
plus the ability to process geometric definitions and as
sign symbolic names to definitions of lines, circles, and 
points. Since the subset is still a point-to-point lan
guage, the motion commands are limited to positioning 
commands. A limited "ZSURF" capability is included 
to permit setting the Z coordinate of intersection 
point definitions of point definitions containing only 
X and Y coordinates. · 

One of the outstanding features of the minimum 
subset is the extremely limited geometric capability 
which includes only points specified by coordinates and 
delta motions. The advanced point-to-point subset adds 
six line definitions, four circle definitions, and six point 
definitions, listed below: 

Line definition 

(1) Through two points described by coordinates. 
(2) Through two points described by symblos. 
(3) Through a point and tangent to a circle. 
(4) Tangent to two circles. 
(5) Through a point and making a specified angle 

with the positive X axis. 
(6) Through a point and parallel to another line. 

Circle Definitions 

(1) By coordinates of center, and radius value 
(2) By center point and radius value. 
(3) By center point and line to which it is tangent. 
(4) By a center point and circle to which it is tangent. 

Point Definitions 

(1) By x, y, and z coordinaks. 
(2) By x and y coordinates. 
(3) By the intersection of two lines. 
(4) By the intersection of a line and a circle. 
(5) By the intersection of two circles. 
(6) On the circumference of a circle, located by 

angular measurement from the positive X axis. 

From examining the above set of definitions, we see 
that they afford a flexible basic set of definition formats 
for ruler-and-compass type. constructions for point 
definitions. Clearly, many more APT definitions exist 
in the library and could have been included, but this 
set was chosen (based on part programming experience) 
as the most basic. 

Modular features which could reasonably be added 
include matrix operations, a macro facility, nested 
definition formats, special input-output statements for 
printing and I punching of both cutter paths and can-

onical geometric definition data, point pattern definition 
and motions, algebraic and geometric operations 
and functions (+, -, *, /, SQRTF, SINF, etc.), 
and a part program looping facility. The extended set of 
geometric point, line, and circle definitions is also a nat
ural module to add to this subset. 

Minimum contouring subset 

The Minimum Contouring Subset incorporates all 
features of smaller subsets and adds the ability to cal
culate cutter offset paths for line and circle, two
dimensional cuts. Since most common line and cjrcle 
definitions were included in the previous, point-to
point subset, the most significant additional language 
added by this subset consists of the cutter definition 
statement and contour motion statements, along with 
a series of additional plane definitions. 

Specifically, the following features are added: 

(1) Establish part surface 
(2) Cutter specification by diameter and end radius 
(3) Specify cutter path inside and outside tolerance. 
(4) Establish a sense of direction for future motions 
(5) Motion commands to go right, left, forward, and 

back 
(6) Startup procedure to place the tool relative to a 

new curve to be machined. 
(7) Cutter position commands to orient the cutter to 

the left, right, or on the curve. 
(8) Additional and plane definitions: 

(a) By coefficients of a plane equation. 
(b) By three points not in a straight line. 
(c) Through a point and parallel to a given 

plane. 
(d) Parallel to and offset from a given plane. 

Reasonable modular features which could be added to 
the minimum contouring subset include definitions for 
the conic sections, and tabulated cylinders, surface 
"thickness" capability, conditional check surface con
trol (motion depending upon which of several check 
surfaces are reached first), an automatic pocket clean
out feature, more generalized startup facilities, a 
"DNTCUT-CUT" feature for turning off cutter motion 
output during cutter positioning, and additional flex
ibility in obtaining and naming values in canonical 
geometric definitions. 

Three-dimensional contouring subset 

The Three-Dimensional·Contouring Subset adds the 
vector definition language, three-dimensional cone 
and cylinder definition language, and a three-dimen
sional startup procedure. The motion commands re-
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main the same except for the addition of GOUP and 
GODOWN. 

Specifically, the following features are added: 

(I} Motion commands GOUP and GODOWN 
(2) Vector Definitions: 

(a) 'By x, y, and z components 
(b) By two points 

(3) Cone Definition: 
(a) By coordinates of vertex, axis, vector 

components, and cosine of half angle. 
(b) By vertex point, axis vectop, and cosine of 

half angle. 
(4) Cylinder Definition:. 

. (a) By coorinates of point on axis, axis vector 
components, and radius. 

(b) By point on axis, axis vector, and radius. 

(5) Three-Dimensional Startup Procedure GOI ... 

J~~ 1,81;82, ... 
lPAST~ 

The modular features which are natural additions 
include a more general cutter definition format, addi
tional vector and three-dimensional geometric defi
nitions, independent tolerance controls on all surfaces, 
and additional control of the cutter-to-part-surface 
relationship. 

Multi-axis contouring subset 

The Multi-Axis Contouring Subset adds the ability to 
control the cutter axis .. This may be done by explicitly 
specifying the axis vector values or by specifying that 
the axis is to remain normal to the Part Surface or 
Drive Surface. 

Summary 

In summary, we see that each subset represents a 
basic language for one level of numerical control pro
gramming. The smaller subsets are. clearly processable 
on small computers, and additional modular features 
could easily be made available for special applications 
or to make a more flexible language. We have also seen 
that each modular feature has a "natural" subset level 
at which it may be applied. Clearly, the same features 
could also be applied to larger subsets, but application 
at a lower than the recommended level either makes no 
sense or destroys the natural subset hierarchy logic. 

Lastly, it should be pointed out that a' complete 
subset and modular feature breakdown has also been 
prepared for the Postprocessor language area. This 

breakdown adds as much again as what has been. dis
cussed above, and is not presented in this paper. 

Computer implementation 

All of the above discussion has been a quick, high
level look at the APT Standard subsets and modules to 
give the reader a feeling for the ground rules used in 
breaking down the language. We now shift to the prob
lem of rigorously defining and maintaining the actual 
standard. · 

One commonly-used technique is to produce an elab
orate document, carefully defining each syntax rule by 
means of an appropriate "meta-language" and then 
further elaborating meaning through use of semantics 
and examples. The document, therefore, is the physical 
representation of the standard. 

The APT Standard is likewise defined via a list of 
syntax rules, semantics statements, and examples. 
However, the physical standard exists as a computer 
data deck rather than a printed document. There also 
exists a computer program to read this data deck and 
produce a syntax and semantics document which is 
very similar to other language standard documents.9 

The use of a data deck as the physical standard rep
resents a significant step in rigorously specifying and 
updating the. standard. Computer checking programs 
can be written to check syntax rules for completeness 
and for ambiguities. New meta-language prints can be 
produced automatically by the computer whenever 
changes or additions to the data deck are made. 

More significant for the subject at hand, by including 
subset and modular feature data with each rule in the 
data deck, the complex job of producing and maintain
ing the subsets and modular features isgreatlysimp1ified. 
For example, a computer run might change a series of 
data cards and then produce a new print of selected 
subsets and modular features, as dictated by con
trol options of the program. The resulting print rep
resents the very latest version of the standard and 
shows any inconsistencies which might have been 
introduced by the changes. 

Subset and modular feature data 

The subset and modular feature data are punched in
to specifi card columns reserved for this purpose. The 
data are associated only with the syntax rule data, and 
not with the data cards which define the vocabulary 
words or semantic statements. In this way, the subset 
and modular feature data need be punched only once, 
and the related basic word and semantic data are 
brought in through chaining of references, starting 
with the syntax rules. We shall see exactly how this 
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works in the current IBM 360 implementation of the 
APT Standard routines. 

Data deck example 

The APT Standard data deck is divided into decks for 
the basic words of the language, the semantics, and the 
syntax. Each deck is identified by a deck number 
punched in a column reserved for this purpose. The 
syntax deck contains a rule and subrule number for the 
rule being defined, and a series of positive integers, 
where integers less than a certain size represent syntax 
rule referents, and larger integers refer to basic words of 
the APT language. 

For example, let us examine the syntax rule for a 
"point specification" as used in 

GOTO / (point) 

or 

L = LINE / (point), (point) 

where the first statement causes the cutter to move to 
the point specified, and the second statement defines a 
line "L" which passes through the two points specified. 

The syntax rule which defines a point specification 
("(poin~)", above) is given in the syntax data deck as 

Rule Subrule 
No. No. Syntax 

52 1 
2 
3 

42 
2040 2334 2047 452 2041 
2040 42 2061 2334 2047 452 2041 

By substituting the entry in the semantics deck for 
rule 52, replacing the large (2000 series) numbers by the 
actual basic words, and printing in a "prettier" form, 
the rule becomes . 

52 POINT SPECIFICATION 

IS(I)42 

OR(2) (POINT / 452) 

OR(3) (42 = POINT / 452) 

This is known as the "short form" produced by one 
of the available computer print routines. 

By substituting the names of the rule referents 42 
and 452 and using the accepted Backus-Normal form, 
the print becomes 

<POINTSPECIFICATION> ::~ 
<IDENTIFIER> · 

(POINT / <POINT PARAMETER LIST> ) 

«IDENTIFIER> = POINT / <POINT 
PARAMETER LIST> ) 

Subset and module numbers 

The data giving the subset and module numbers 
for each rule and subrule in the syntax deck are main
tained as a separate card deck. Columns are reserved 
in this deck for the subset or modular feature number 
for each rule, as well as columns for the recommended 
subset, if the rule falls into the modular feature cate
gory. For example, 

Rule No. Subrule Subset Modular Feature Recommended Subset 

16 
18 
50 

142 

1 
1 
1 
1 

12345 12345 

1 01000 
01111 

1 01000 
00111 

where each number shown is punched in a specfic 
card column. These selected rules shown above give a 
representative sampling of the subset and module deck. 
We see that rule 16(1) is part of a modular feature 
which has subset 2(01000). as a minimum recommended 
subset. The modular feature number is given by the 
column in which the "I" appears. Rule 18(1) is a 
member of Subset 2. The nested subset characteric is 
evident from the fact that any member of a subset also 
has a "I" in every higher subset card column (e.g., 
01111 for rule 18(1». 

CONCLUSION 

In conclusion, it should be noted that the information 
contained in this paper represents a particular level of 
the work of USASI X3.4.7. By the time the reader sees 
this paper, it is likely that changes will have occurred, 
and the latest information may be obtained by con
tacting the committee. 

. It should also be made clear that all of the work on 
the APT Standard has been performed by representa
tives of the Numerical Control community, including 
the Aerospace Industry, computer manufacturers, 
machine tool manufacturers, and universities. This 
background has made for an APT Standard which is 
generally agreed upon by a representative group of 
users, and should therefore be readily acceptable. 
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A remote processing system for the APT language 
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Princeton, New Jersey 

INTRODUCTION 

With the advent of time shared computers and 
the development of remote terminals capable of 
providing fast access to these computers it be-. ' came eVIdent that processors could be developed to 
greatly increase the efficiency of an N/C part pro
grammer. In general, a majority of the errors 
which occur in the processing of N/C programs 
are errors of syntax, and these errors cause nearly 
as much loss of time in processing as the more 
complex arithmetic errors. Therefore, any sys
tem which could provide a. partial or complete 
interactive APT processing capability would be 
a valuable aid in' reducing processing time. A 
system has been devised whereby a part pro
grammer can sit at a remote console (teletype, 
etc.), and directly communicate with the com
puter. This system can produce output for im
mediate display or for punching onto a tape. Such 
a system requires a highly specialized processor 
which can accept APT language statements, check 
each statement for detailed errors in syntax, and 
then perform the necessary computations needed 
to produce an N/C output tape. 

SY8tem description 

The APT language is very large and complex 
and generally follows quite unique, and rather 
rigid guidelines. Studying the APT language, one 
sees that, with very few exceptions, each state
ment consists of well-defined, syntactical elements. 
Thus, for the most part, it is possible to describe 
the language in "Backus' Naur Form" (BNF).1 
Some work has been previously reported and dem .. 
onstrates methods of describing APT in BNF.2 

A language which can be described in BNF can 
be readily analyzed by a compiler type program 
for correctness of syntax. The RCA Basic Time 

Sharing System, available on the SPECTRA 70/45 
computer,a contains a compiler, the syntax of 
which allows one to alter compiler functions and 
perform ones which are nonstandard Fortran.4 
This computer feature allows the user to specify 
the general format (syntax) and the output (se
mantics) of his own special purpose statements, 
which can later be used as he desires. Thus, the 
user may take control of the compiler process to 
any extent he desires, from the addition of special
purpose extensions to the compiler, to designing 
a wholly new, on-line, interactive compiler. 

The RCA Fortran PI compiler (a subset of 
USASI Fortran IV) has special non-Fortran lan
guage elements in it which are especially useful 
in describing the syntax of a language. The spe
cial symbol ": =" (colon equals) is interpreted to 
mean "is" (or "is defined as") and the symbol 
"I" is interpreted as a logical "or." Parentheses 
may be used to enclose syntactic elements or 
strings of elements, and thus can serve as de
limiters. The symbol "$" is used to mean the 
"arbitrary sequence of" a given character, string, 
or syntactic element. Other features which are 
part of the compiler language are seman tic oper
ators which allow backup in case of error, opera
tors to do label table lookup, operators to scan 
real or integer expressions,' etc. There is also a 
feature which enables the user to generate arbi
trary machine language instructions for immedi
ate execution or for placement in the output area 
for execution at run time. With the availability 
of these features it is easy to completely describe 
the syntactic elements, as well as the semantics of 
a language such as APT. 

Program operation 

An APT programmer may sit at his teletype 
,console and type statements, a record at a time. 

75 
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Upon completion of each record (signified by a 
carriage return), the computer syntax analysis 
takes place. After each correct statement the 
computer returns a line feed, carriage return, and 
a sequence .number awaiting further input. The 
execution of the interactive APT processor is the 
same as that of most compiler programs. After 
the interpretation and compilation has taken 
place, the' program can be executed. There is a 
feature available on the RCA time-shared system 
which allows the execution of statements a 'line 
at a time, after they are compiled. This feature 
facilitates the use of on-line plotting of state
ments, one at a time. 

The user may make corrections or modifications 
to his APT program by using the text editor avail
able as part of the RCA Basic Time Shared Sys

. tem. T}le editor allows insertion of recOrds any
where in' the program or corrections to existing 
records. 

Syntax checking (compilation) 

Using the time-shared Fortran PI compiler, an 
interactive APT processor has been written. The 
program operates in much the same manner as a 
typical time-shared, interactive computer pro
gram. Each input record (APT statement) is 
scanned to determine its validity according to the 
syntactic rules set forth in BNF. This scanning 
process (compilation) produces' machine language 
instructions which then can be executed in order 
to produce APT output. 

As each APT statement is scanned, it is classi-
fied according to type (cutter motion statement, 
surface definition statement, APT post-pr()cessor 
word, etc.). If the statement is determined to be 
an allowable APT postprocessor word, the pro
gram branches to that section (subroutine) which 
then checks the entire record (calling other sub
routines as needed) for the proper occurrence and 
usage of syntactic elements. The presence of the 
word "GO" as the first two characters of a record 
may signify a cutter motion statement and causes 
a transfer to a subroutine which checks the re
mainder of the record for correctness of syntax. 

If the record does not fit one of these two cate
gories, it is tested to determine if it is a surface 
definition statement. Such a statement, in a rec
ord by itself, will always be headed by a symbolic 
name. Thus, the statement is first tested to as
certain if the symbol is a valid one. If the symbol 

is acceptable, it is placed in a ,label table (the same 
label table used by the Fortran PI Compiler). 
Upon determination of the type of surface defini
tion specified, the label table is again entered, and 
the label is e1assifiedaccording to the type of sur
face defined. This is especially important because 
nested definitions and backward references to sym
bolically defined surfaces are allowed. After classi
fying the label, the surface definition is checked 
for completeness and accuracy. The number and 
type of APT surface definition statements is large, 
and therefore the interactive syntax checker must 
carefully check each possibility, and back up in 
case of error to check other logical branches, 
where applicable. The APT Compiler completely 
checks all symbols, flagging multiply defined ones, 
and checking all referenced symbols to determine 
if they are properly used . 

An APT Surface is often defined ill terms of 
other symbolically defined surfaces, and it is pos
sible that these referenced surfaces can be nested. 
This means that the APT compiler must be able 
to analyze any arbitrary surface definition while 
it is scanning definition or motion statements. It 
is a simple matter to define a surface in terms of 
a similar surface type (i.e., to define a line which 
is parallel to another line). Such a statement is 
analyzed by the compiler by use of recursive sub
routine calls, another special feature of the RCA 
Fortran PI Compiler. 

During the compilation process the compiler, as 
it scans a record, generates executable machine 
language code. In the case of a surface definition, 
the code which is generated is that which will 
place the named variables into Fortran Common 
for subsequent execution. For cutter motion state
ments, the code for moving the canonical forms 
of all referenced, surfaces (drive, part and check 
surfaces) into the next available common location 
is generated. Finally, at the conclusion of the 
analysis of each record, a link is generated to the 
appropriate Fortran subroutine where further 
analysis will occur at run time. 

The program scans each record, a character at 
a time, halting when an error is detected. Thus if 
there is more than one error in anyone statement, 
only the first will be detected and flagged. When 
an error is found, the computer responds with a 
print of the characters immediately preceding the 
incorrect ones and will insert a question mark 
after the character (or string of characters) in 
error. 
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Because the APT compiler is actually embedded 
in, and is in fact an adjunct to the Fortran PI 
Compiler, it is possible to intermix APT state
nlents and Fortran statements in any desired 
rnanner. It is feasible to use all the computati'On 
features of the full Fortran PI compiler to help 
describe the mathematical shape of some surface. 
In addition, the standard Fortran looping capabili
ties are available (arithmetic and logical IF 
statements, DO loops, computed GO TO statements, 
etc.). It is als'O possible to use all the read and 
write features available in the Fortran PI lan
guage, and therefore, the user has available a 
much broader language capability than is normal
ly provided· by the APT language. 

The number and type of APT statements which 
can be interpreted by the interactive syntax analy
eis program is limited 'Only by the size of the pro
gram which can be operated in the RCA Basic 
Time Shared System. The interactive APT proc
essor contains not only syntax analysis programs, 
but also a number of Fortran subroutines used for 
producing APT output. Due to the present limited 
size of the programs which can be run efficiently 
on the time-shared system, the number of allow
able APT statements has been restricted to those 
which are vital to a two-dimensional APT part 
program. A list of these statements appears in 
rrable 1. A syntax analysis program which doeR 
not generate any semantics has been written and 
encompasses a large part of the allowable APT 
statements, including all point, line, circle and 
plane definitions, all cutter motion statements, and 
a considerable number of miscellaneous APT vo
cabulary definitions. This program could easily 
be expanded to handle the syntax analysis of the 
entire APT vocabulary. 

Progra1Jl- execution 

Upon c'Ompletion of the syntax analysis of any 
input record, the generated code can be executed. 
The executi'On of an APT surface definition state
ment begins by branching to a Fortran Subroutine 
where the canonical form 'Of that surface is gen
erated. The program has the capability of gen
erating canonical forms f'Or a number of different 
definition formats of points, lines, circles, and 
planes. Each surface is handled by a unique sub
r'Outine. The output of each surface generation 
subr'Outine is left in the lowest available common 
l'Ocations, and upon return to the calling program, 

TABLE I -Allowable APT statements 

I. Surface Definition Statements 
A. Point Definitions 

1. SYM = POINT /X,Y,Z 
2. SYM=POINT/X,Y 
3. SYM=POINT/(*), INTOF, (SYM. LINE), (SYM. 

CIRCLE) 
4. SYM=POINT/(*), INTOF, (SYM. CIRCLE), 

(SYM. CIRCLE) 
5. SYM =POINT/INTOF, (SYM. LINE), (SYM 

LINE) 
B. Line Definitions 

1. SYM =LINE/X,Y,Z,Xl,Yl,Zl 
2. SYM =LINE/X,Y,Xl,Yl 
3. SYM =LINE/(SYM. POINT), (SYM. POINT) 
4. SYM =LINE/(**), TANTO, (SYM. CIRCLE), 

(**), TANTO, (SYM. CIRCLE) 
5. SYM =LINE/(SYM. POINT), (**), TANTO, 

(SYM. CIRCLE) 
C. Circle Definitions 

1. SYM = CIRCLE/X, Y,Z,R 
2. SYM=CIRCLE/X,Y,R 
3. SYM = CIRCLE/CENTER, X,Y,Z, RADIUS, R 
4. SYM=CIRCLE/CENTER, (SYM. POINT), 

RADIUS,R 
5. SYM = CIRCLE/(*) , (SYM. LINE), (*), (SYM. 

LINE), RADIUS, R 
D. Plane Definitions 

1. SYM =PI,ANE/I,J,K,D 

II. Cutter Motion Statements 
A. Point-to-Point 

1. GOTOjX,Y,Z 
2. GOTO/(SYM. POINT) 
3. GODLTA/X,Y,Z 
4. FROMjX,Y,Z 
5. FROM/(SYM. POINT) 

B. Continuous Path Motion Statements 
1. GO/(***), (SYM. SURFACE) 
2. GO/(***), (SYM. SURFACE), (***), (SYM. 

PLANE) 
3. GO/(***), (SYM. SURFACE), (***), (SYM. 

PLANE), (***), (SYM. SURFACE) 
4. (****)/(SYM. SURFACE), (***), (SYM. SUR

FACE) 

(*) = XLARGE, XSMALL, YLARGE, 
YSMALL 

(**) = RIG HT, LEFT 
(***) = TO, ON, PAST, OR NOTHING 

(****) = GOLFT, GORGT, GOFWD, GOBACK 

III. Other Statements 
A. TOLER/(VALUE) 
B. OUTTOL/(VALUE) 
C. INTOL/(VALUE) 
D. CLPRNT 
E. CUTTER/(VALUE) 
F. MACHINj(VARIABLE LIST) 
G. ORIGIN /X,Y,Z 
H. FINI 
I. SCALE/(VALUE) 
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this canonical form is stored in the reentrant stQr
age area, by the calling prQgram. A reference tQ 
that· area in reentrant storage had been previQusly 
generated during the CQmpilatiQn prQcess, and 
thus backward references tQ these surfaces are 
permitted. 

The algQrithms used to· generate the surface 
canQnical:rorms resemble, as much as possible, 
thQse cQntained in the standard APT system. The 
fQrmat 'Of the canonical fQrms is alsQ the same as 
in the APT system, with the exceptiQn that a circle 
is defined 'Only as its center coordinates and radius, 
but dQes nQt include the cQmpQnents 'Of the unit 
nQrmal vectQr thrQugh its center. Each canQnical 
fQrm is described by five wQrds in· CQre, the first 
'Of which is a cQde describing the type 'Of surface, 
and the remaining four being the canQnical fQrm. 
FQr a PQint, the canQnical fQrm cQnsists 'Of the x, 
y, z cQQrdinates; the fQurth wQrd is always zerQ. 
FQr a line, the can'Onical f'Orm c'Onsists 'Of the 
c'OmpQnents 'Of a unit n'Ormal vect'Or t'O the line, 
and the absQlute value of the distance fr'Om the 
'Origin tQ the line. The can'Onical f'Orm· 'Of a plane 
is the same as that f'Or a line because in APT 
usage a line is cQnsidered to be a plane· which is 
n'Ormal t'O'the X-Y plane. 

During the c'Ompilati'On 'Of a cutter m'OtiQn state
nlent, code is generated f'Or moving the canonical 
fQrm 'Of the named surfaces into the lowest avail
able CQmmQn IQcatiQn. If the named drive 'Or check 
surface is nested, the rQutine which generates the 
canQnical f'Orm leaves this data in the IQwest avail
able CQmmQn IQcati'On. TherefQre, the rQutine 
which cQmputes the cutter center path can always 
find the required surface data in, a specific CQm
mQn locatiQn. 

The determinati'On 'Of the prQper drive and 
check surface intersection is handled by devel'Op
ing tWQ new surfaces (line 'Or circle) which are 
parallel ('Or c'Oncentric) to the 'Original surfaces, 
but displaced frQm them an amQunt equal tQ Qne
half ,the cutter diameter (fQr cutter 'Offset c'Ondi
tiQn). When the tWQ new surfaces have been de
termined, the pr'Oper intersectiQn 'Of these sur
faces is fQund, and this exact intersectiQn PQint 
is used as the cutter stopping PQint fQr that par
ticular symbQlic instructiQn. 

Since the present interactive APT system is 
limited tQ only fQur surface types, there are 'Only 
fQur intersectiQn prQblems which must be sQlved
namely,. the s'OlutiQn 'Of line drive surface tQ line 
check surface, line drive surface tQ circle check 

surface, circle drive surface tQ line check surface, 
and circle drive surface tQ circle check surface. 
Since the line and plane have the same can'Onical 
fQrm, they are treated as 'One. The intersectiQn 
solutions are fQund fQr any value 'Of cutter 'Offset, 
and in the case 'Of a circle drive surface, the cir
cular interpQlatiQn data is aut'Omatically cQmputed 
to facilitate p'Ost processing. In the case 'Of the 
circle drive surface tQ circle check surface, both 
intersecti'Ons are cQmputed, a line is cQnstructed 
through these points, and the prQblem is then re
duced to that 'Of the circle drive surface t'O line 
check surface. 

The problem of cutter path generation is greatly 
simplified 'Over the traditi'Onal APT cutter path 
solutiQn(which is an iterative prQcedure) because 
'Of the fact that the interactive APT prQceSSQr is 
limited to tWQ dimensi'Ons. Since 'Only the inter
section 'Of circles and lines need be solved, it is 
p'Ossible to find an exact, cl'Osed form solution to 
the cutter center path. The limitati'Ons of a pro
gram t'O 'Only tWQ-dimensi'Onal parts is nQt as se
vere as might be thQught because a great majQrity 
of N/C parts are limited t'O 'Only tWQ dimensiQns. 

Circular interpQlatiQn is perfQrmed whenever 
the cutter is mQving al'Ong a circle drive surface. 
The starting and ending PQints are used tQ de
termine the angle thrQugh which the cutter must 
mQve, and the number 'Of steps needed tQ main
tain the specified tQlerance is cQmputed. The in
termediate p'Oints are calculate'd with a straight· 
fQrward trigQnQmetric cQmputatiQn. TQlerance is 
specified in the usual APT manner with a tQler
ance statement. A default tQlerance 'Of .002 inch 
is used if n'O t'Olerance is specified. 

During executi'On, the APT, cutter center path 
output is passed t'O a F'Ortran subrQutine which 
generates 'Output in a f'Ormat acceptable f'Or pl'Ot
ting 'On a stQrage 'Oscill'Osc'Ope 'Or a digital incre
mental pl'Otter. This f'Ormulated 'Output data. is 
transmitted fr'Om the c'Omputer back t'O . the tele
type c'Ons'Ole, then thr'Ough a hardware interface 
tQ 'One 'Of the plQtting devices.5 With the added ca
pability 'Of 'On-line instantaneQUS plQts 'Of 2-dimen
siQnal APT part prQgrams, errQrs of part de·· 
scriptiQn and cutter m'OtiQn can be quickly de· 
termined by visual inspectiQn. That is, it iSPQs· 
sible tQ type, analyze, and plot APT statements 
a line at a time. Thus one can very quickly de
termine the validity 'Of 'One's part program and 
drastically reduce turn ar'Ound time. 

At the time of writing, no post processors have 
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been developed for the interactive APT compiler, 
but it would not be a difficult task to generate 
them as needed. It is not likely that a post proc
essor would fit in the same file as the interactive 
APT proceSSQr due tQ the present program size 
limitations of the RCA Basic Time Shared System. 
TherefQre, it is expected that any post proceSSQrs 
whi&l are develQped WQuld have tQ operate as a 
separate autQnQmous prQgram. This "is not con
sidered to be a limitation, hQwever, because one 
can be reasQnably certain that his prQgram is 
valid by using the interactive cQmpiler and in
stantaneous plotting capabilities. 

Remote batch processing of APT 

If one finds that the capabilities of the inter·· 
active APT processor do not fulfill his needs, it is 
PQssible to use the remote terminal to cQmmuni
cate with the APT batch processing system. The 
part programmer can create his symbolic source 
file (in the time-shared envirQnment) in exactly 
the same manner as described earlier. The inter
active syntax analysis program is used tQ de
termine the validity of each statement, as it is 
typed. 

After analysis of each record, its symbolic 
source code as well as the generated 'Object code 
can .be deleted. The original APT program can 
be saved 'On an auxiliary file for prQcessing by the 
APT batch prQcessing system. Such a file would 
cQnsist 'Of a series of card image records (72 char
acters maximum) which would then serve as in
put to the batch prQcessing APT system. The 
prQcessed APT input file is headed by a pair 'Of 
records which indicate that it is a file t'O be trans
ferred frQm the time shared environment (via a 
switching mQdule) tQ the Tape-Disc Operating 
System (TDOS) mQnitor batch input tape for 
subsequent prQcessing. Thus, it is necessary that 
all contrQI recQrds be an integral part of the file. 

As a part of system hQusekeeping, the ti~e
shared files are checked periodically to determine 
whether there is any data for transferral tQ the 
TDOS monitQr batch input tape, and if SQ, the 
data is cQpied withQut remQving it physically'frQm 
the user's file iJ? the time-shared system. In 'Order 
t'O aVQid redundant pr'Ocessing 'Of this data, a new 
header recQrd is written by the executive rQutine, 
indicating the date and time 'Of transferral. 

At the cQnclusiQn 'Of APT batch prQcessing, the 
user has several options available to him. He may 

prQceed to the cQmputer center tQ examine his 
'Output. If it appears satisfactory, he can then 
ask tQ have the 'Output punched. If there was a 
pr'Ogram errQr, he then must make corrections tQ 
his SQurce file. He may, by using the time-shared 
system's text editQr, make corrections t'O his s'Ource 
file, and the job can then be submitted for another 
run. Such a process dQes nQt save much turn 
ar'Ound time, but dQes allQw one to cQmmunicate 
with the batch prQcessing system thr'Ough phone 
lines frQm a distant station, and does guarantee 
a source prQgram which is free of syntax errors. 

It is possible, if the 'Output file is nQt tQO large, 
that the user may request his 'Output be switched 
tQ his time-shared users file f'Or subsequent proc
essing. In this mode 'Of Qperati'On the user may 
examine the APT 'Output data (CLFILE), and 
print all err'Or diagnQstics at his teletype. He may 
also selectively scan the CLFILE in 'Order tQ de
termine if the prQper tQQI path has been generated. 
Naturally, if an errQr was made, he may elect to 
edit his data file, withQut reprQcessing the APT 
jQb. It will then be suitable fQr PQst pr'Ocessing. 

Once all APT prQceSSQr errQrs are eliminated 
and postprQcessing is complete, the user has 
several QptiQns available tQ him. He may request 
that his tape be punched at the cQmputer center 
and mailed tQ him, 'Or, if the jQb is 'Of a relatively 
shQrt nature, he can ask that the 'Output be trans
mitted tQ him fQr punching at his teletype. 

CONCLUSIONS 

The system described in this paper has been de
velQped with' the idea 'Of prQviding an N/C part 
prQgrammer with the capability 'Of pr'Oducing his 
N/C tapes as quickly as PQssible. The interactive 
APT system with its 'On-line graphic 'Output prQ
vides an N/C prQgrammer an extremely efficient 
meth'Od 'Of generating and debugging his part pr'O
gram. It is nQW PQssible tQ prQduc.e a plQt 'Of an 
APT prQgram as quickly as· 'One can type APT 
statements at a teletype cQnsQle. PQst prQcessing 
fQr a specific machine tool can be acc'Omplished 
very rapidly after final debugging of the part pro
gram. Thus, the pr'Ogrammer has the ability t'O 
sit at his cQnsQle (which can be lQcated in his 
'Office), and produced an N/C machine tQQI cQntr'OI 
tape within a matter 'Of minutes, rather than hQurs 
'Or days . ('Or longer), as is generally the case with 
batch processing computer systems. 
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Software compatibility: What was promised, what 
we have, what we need 

by JOHN A. GOSDEN 

The MITRE Corporation 
Bailey's Crossroads, Virginia 

INTRODUCTION 

S'Oftware compatibility is an extremely complex 
and pervasive topic. Unfortunately it is not well 
defined nor well documented. To say anything 
useful within the space and time constraints we 
must confine ourselves to generalities and readily 
admit in advance that there are many exceptions. 

What Is software compatibility? 

Many people confuse compatibility (which is a 
state to be achieved) with standardizati'On or com
monality (which are techniques by which com
patability may be achieved). In default of being 
a.ble to define the terminology formally, we define 
software compatibility by examples. 

If we assume that "software" implies "not 
hardware," then we can implicitly define software 
compatibility as: 

(a) common man/system interfaces-e. g., 
the abiltiy to move a user, programmer, 
or operator from one type of computer 
to another without further training; 

(b) program exchange-e. g., the ability t'O 
move a program from one type of com
puter to another without any changes; 

(c) data exchange-e. g., the ability to send 
data from one program to an'Other with 
only automated changes; 

(d) program pooling-e. g., the ability to as
semble, combine together, various sub
programs from diverse s'Ources into. one 
program; 

(e) data pooling-e. g., the ability to com
bine diverse source files into an inte
grated data base. 

81 

Varieties of compatibility 

In default of formal definitions, it is useful to 
attempt to describe a few of the properties of com
patability. 

Kinds of compatibility 

There are three usefully distinct kinds of com
patibility: 

(a) Identicat-i.e., one thing is exactly the 
same as another, or two things can in
terface directly; 

(b) Convertible-i.e., a Rimple set of algo
rithms exist for two-way translation. If 
we translate "X" to "Y" and back to 
"X" then the resulting "X" is identical 
to the original "X"; 

(c) Tram lata ble-i.e., some complex process 
is needed for translating the output of 
one thing to the input of another. 

Degree of (how much) compatibility 

There are only two pragmatically useful degrees 
of compatibility: 

(a) complete, or algorithmic-can be fully 
automated 

(b) close, 'Or nearly algorithmic-can be au
tomated except for a few exceptions. 

A complete shnulator and a COBOL-to-machine
code compiler are examples of (a). 

EXODUSl and LIBERATOR2 are examples of 
(b) ; they translate most of a program from 'One 
computer to another and flag some exceptions that 
must be hand-coded. 
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Extent of compatibility 

The extent of compatibility can be characterized 
in two ways: 

(a) Entire-i.e., everything in "X" is com
patible with "Y"; 

(b) Limited-Le., a set of limiting but ac
ceptable conventions exists such that 
anything in "X" conforming to the con
ventions is compatible with "Y." 

A simple example is that for a program at installa
tion "X" to be transferable to "Y" it must usually 
satisfy two criteria: 

(1) conform to a POL standard-both "X" 
and "Y" accept an identical program
ming language; 

(2) conform to a set of conventions, such as 
limits on storage space and peripherals 
needed. 

We call this limited compatibility from "X" to 
"Y." 

Directions of compatibility 

Direction of compatibility can be characterized 
in three ways (assume "Y" represents a greater 
capability than "X") : 

(a) Upward--i.e, there is "entire" compati
bility from "X" to "Y", but "Y" to "X" 
is unspecified. 

(b) Downward-i.e., there is "entire" com
patibility from "X" to "Y" and "limited" 
compatibility from "Y" to "X"; 

(c) Complete-i.e., there is "entire" compati
bility from "X" to "'Y" and "Y" to "X." 

Compatible zones 

All the previous characteristics were pair-wise 
considerations of compatibility. A more useful 
concept is a compatibility "zone." A compatibility 
zone is a collection of ED·P centers all of whom 
are downward compatible with some notional 
"zone model." The zone model is a set of conven
tions such that anything-be it a program, a file, 
or a language-that conforms to the zone conven
tions is as a result, automatically entirely compati
ble with all other members of the zone. 

Now we can readily see that any EDP center 
is a potential member of many zones, e.g., 

(a) one computer at the center 
(b) two different makes of computers at the 

center 
(c) three of the same make of computer at 

different centers 
(d) all computers in one corporation 
(e) all computers in SHARE 
(f) all computers in Air Force Logistics 

Command. 

In general, the more extensive the,zone the more 
restrictive the conventions, and for each thing de
veloped, a tradeoff decision must be made between 
the extent of compatibility desired and the conse
quent restrictive conventions to be followed. 

lVhat were we promised? 

In this paper we are restricting ourselves to 
promises made by those who thereby commit 
themselves to deliver-we are excluding prophets 
who only make predictions. Searches of the litera
ture showed that few of these promises are re
corded in print, and the best evidence for them 
lies in the lack of explicit disclaimers. Overall we 
were not promised a great deal and the promises 
were largely implicit rather than explicit. Let us 
number the promises Pi. 

Common man/system interfaces 

With reference to common man/system inter
faces, we were promised that, using POL's, we 
would: 

P1-not have to learn a new language when 
we moved to a new computer; 

P2-be able to use the same language on 
many computers with no relearning; 

P3-have upward compatible subsets of each 
language that would be available on dif
ferent sized computers. 

Now these promises were not all-embracing, and 
not all were meant to cover each POL on all com
puters; the general concept was clear, but the 
scope was vague. P1 and P2 were made in the 
late 50's and P3 during formal standardization 
during the early 60's after COBOL "electives" 
caused many problems. 

Note that we were not promised interfaces for: 

(a) operating systems (control input or er
ror messages)-

(b) diagnostics (variety available or format) 



(c) utilities (facilities available or control 
input) 

(d) on-line dialogs (semantics 'Or syntax). 

Program exchange 

With regard to program exchange, a general 
search of the literature shows three. interesting 
things. First, except for a recent study by the 
author that also discusses commonality,S nearly all 
the literature cites standardization and conven
tions as the basic ways to 'Obtain compatibility. 
Second, most authors, notable A. Holt' in 1960, 
SHARE5 in 1961, and more recently Morenoff and 
McLean6 in 1966 have explicitly concentrated on 
program exchange as being the essence of soft
ware c'Ompatibility-although Morenoff and Mc
Lean also mention data exchange as well. These 
people have looked to computer independent lan
guages as a solution. Third, the developers and 
proponents of common programming languages, 
notably Bromberg7 and Heising,8 have noted that 
the prime objective is to simplify programming 
and that they only offer a first step to compati
bility.. Sammet9 also notes that the goal is pro
gram compatibility, not automatic transfer, and 
certainly not data tapes. 

Overall we were apparently promised a great 
deal: 

P4-that a progr~m written in a POL on one 
type of. machine could easily be run on 
a different type by using a comnion 
source language program and the ap
propriate compHer on each computer 
type. 

We are excluding the promise of running the 
same object program on several computers of the 
same family because that is hardware compati
bility. 

There' is no doubt that many people thought 
such a promise existed and their disappointments 
are recorded many times. As an example, see 
G'Ordon.10 However, the promises one can find in 
print are a little vague: a statement by Rosenl]. in 
1964 of a requirement that the first Philco 2000's 
have a compiler that would accept 704 FORTRAN 
substantially without change; a loose statement 
by Luebbert and Colloml2 in 1959 that compilers 
will be available to automatically translate a pro
gram "for any computer desired"; a mention by 
ShawlS in 1961 that suggests the only cost of mov-
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ing programs coded in JOVIAL from one com
puterto another are those of writing a new com
piler; an expectation by Schwalbl' in 1963. that 
GECOM programs could, with no change, be com
piled on future G E computers. On the other hand, 
RCA 15. in 1960 clearly stated that COBOL only P\lt 
them into a better position to cooperate in achiev
ing compatibility. 

One major problem about program exchanges 
was that although the caveats and conditional 
clauses were explicitly stated7,8,l6 as early as 1960 
and again in 1964, they were not remembered. The 
concept of conventions for zones of compatibility 
was not developed and emphasized. In 1961, 
SHARE did make one attempt/ but Gremsl7 and 
Sanborn18 immediately criticized it as grossly in
adequate, and the false notion of a kind of "uni
versal" zone became a myth of our time. 

Data exchange 

With reference to data exchange, we were 
promised that we could: 

P5-send a file from one program to another 
program of the same kind (typically 
COBOL)- and use a common data de
scription for both within the same en
vironment. 

We were not promised any equivalent ability for 
data between programs in the same language on 
different computers let alone for data between 
programs produced in different languages, al
though it was stated to be feasible and desirable 
by Mahoney1.9 'Of GAO in 1964. 

Program pooling 

With reference to program pooling, we were 
promised that we could: 

P6-combine various subprograms written in 
a comm'On POL 'Or in assembly language. 

We were not promised that we could mix routines 
written in different POL's. 

Data pooling 

With reference to data pooling, we wer.e prom
ised that we could: 

P7 -merge, amalgamate, and subset files 
within one POL family. 
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We were not promised that we could do this with 
arbitrary files. 

Summary of promises 

The interesting thread through all the promises 
is that they tended to promise only "intra-soft
ware-family" compatibility, where a software 
family is, for example; "all programs written in, 
and the files described in, COBOL." 

What do we have? 

Common man/system interfaces 

It does seem that the basic promises concerning 
c.ommon man/system interfaces have been largely 
fulfilled. 

P1...,.-We do have widespread c'Ompilers for 
COBOL and FORTRAN, and others 
coming along slowly, but at least im
proving every day. 

P2-We do have sul?stantial compatibility; 
various COBOL's generally do look alike. 

P3-Weare getting reasonable subsets. 

Program exchange 

P 4-Weare only just beginning to be able to 
exchange programs-there is a long way 
to go. Even today papers such as those 
by Morenoff and McLean6 are still sug
gesting conventions for zones of com
patibility. Only a few groups such as 
Westinghotlse2o,21 have established such 
zones by careful planning and manage
ment. 

Data exchange 

P5-In some cases, we can exchange files 
within a software family on similar sys
tems; unfortunately, physical files are 
not operating-system-independent, and 
this is a major problem. Even so, in 
cases such as Westinghouse21 the ex
change is based upon prior agreement 
of formats. In other cases, at present it 
is necessary to build a converter for each 
file, and no general purpose converter 
exists for any pair of s'Oftware families. 

Program pooling 

P6-We only have a very limited amount of 

program pooling, being restricted usual
ly to one software family, with the ma
jor exception being an "escape" to as
sembly language. We have some partial 
solutions in combining tasks into·a job, 
but these are severely limited by the 
lack of compatibility in data exchange. 

Data pooling 

P7-We are able to merge, amalgamate, and 
subset files within a software family. To 
construct a data base from diverse· files 
it is necessary to construct individual 
file converters, but· most data base sys
tems are limited in the structures that 
they can accept. 

TVkat do we need? 

To put it simply, we need all the five items listed 
earlier: 

(a) common man/system interfaces 
(b) program exchange 
(c) data exchange 
(d) program pooling 
( e) data pooling 

Most of the important ones are missing because 
we did not anticipate the need. What we were 
promised was largely . 

"intra-software-family compatibility·' 

and we are moving towards it with reasonable 
speed. What we were not promised, but now see 
that we need, is 

"!nter-software-family compatibility." 

This divides into four problem areas: 

(a) language compatibility-the general 
ability to mix statements or procedures 
written in different programming lan
guages (e.g., COBOL statements in a 
data management system query) ; 

(b) data exchange-the sending of files from 
a program of one family to one of an
'Other family (e.g., a FORTRAN pro
gram using a COBOL file) ; 

(c) operating system compatibility-similar 
and compatible services expected by and 
provided to each software family and to 
each human family-operators, program
mers, and users; 



(d) data pooling-the ability to build an in
tegrated data base from diverse sources. 

Language compatibility 

If we want to be able to mix routines written in 
different languages we have two possible solutions. 
We need either: 

(a) one comprehensive language which cov
ers all needs so that mixtures are not 
necessary, or 

(b) a harmonious (compatible) family of 
languages. 

Alternative (a) is unattractive. Some steps have 
been taken in that direction. PL/I is an amalgam 
of the scope of COBOL and FORTRAN, but we 
agree with Barton22 that languages will prolifer
ate. Proliferation will .occur in two dimensions at 
least: 

(1) languages for special groups of users; 
(2) languages for different levels of sophisti

cation of users. 

To try to blend all these is likely to lead to a 
"kludge." All these points were recognized by 
SHARE23 in 1958 when they published the UN -
COL concept, which they noted had "been around" 
since 1954. This provides a mechanism upon which 
to build an unlimited number of compatible lan
guages. 

Data exchange* 

There is a growing need for data exchange, par
ticularly the passing of files of data between pro
grams that were produced independently. This 
will be needed in the development of computer net
works and data bases; for example, a head office 
installation collecting files from various divisions 
of a corporation to build a data base. Both the de
velopment of formal and informal computer net
works as well as the economic feasibility of large 
data bases are favoring the development of ar
rangements for a considerable volume of data ex
change, whether directly over communication 
systems or by the dispatch of reels of tape and 
boxes of cards. These are very significant areas 
of growth that are just beginning to emerge in 
commercial EDP and are already creating prob
lems within the Federal government. 

·Th~ text of this section is largely drawn form referenee 24. 
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The development of data interchange is 
straightforward when the correspondents have 
agreed on the format, but where there has been 
no prior agreement, conversion usually involves 
considerable manual intervention. Some typical 
problems are that: 

(a) The sender's format may not be specified 
rigorously and an informal description 
may have to be debugged. 

(b) The sender's format may not be express
ible in the receiver's system. 

(c) The sender's format descriptions may be 
embedded in the program. 

(d) The format in the sender's system may 
vary from rec'Ord to record and be em
bedded in the data. 

Any of these problems may arise when either 
an existing application is converted to a new sys
tem, or a new member of a cooperating network 
has a system different from that of any existing 
member. 

There are two basic problems: 

(a) Few existing systems have any ability 
to deal with a new format automatically, 
and those that do are limited to data de
scribed in the same system. 

(b) The number of different, and often in
compatible, ways of describing data is 
increasing; e.g., Format statements in 
FORTRAN, Data Description in CO
BOL, COMPOOL in JOVIAL, FFT's in 
FFS. 

Any solution to this pr'Oblem should not restrict 
participants in the use, within their own local 
system, of any internal data structure they like 
or any programming or query language they like. 
Therefore we ·need a standard data description 
language for data exchange. It is expected that 
systems should interface with a single way of de
scribing data for interchange and provide conver
sion processes in their interfaces. If a suitable in
terface is to be developed, we will not want to 
standardize formats, which would be absurd, but 
we would want to standardize ways to describe 
formats. We also will want to attach the data de
scriptions to the data, so that the transmission 'Of 
both data and its description can be performed 
without manual intervention. 

A data description language for data inter
change does not principally have to be read and 
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understood by humans. It can be thought of as a 
complicated coding to be generated and inter
preted by the interface modules of systems in a· 
network. In a well-designed system a user would 
describe data .in the form provided for local use, 
and the system would translate to data inter
change conventions. Therefore, the data descrip
tion language should be generally compatible with 
data descriptions in current programming lan
guages. Later, developments in programming 
languages may be influenced by a desire to remain 
compatible with data interchange conventions. 

Operating system compatibility 

Operating systems differ because they interface 
closely with those parts of hardware that vary a 
great deal, and because there is still a great va
riety among operating system design philosophies. 
As a result, compatibility among operating sys
tems provided by different suppliers is minimal. 
There are some rare exceptions: at North Ameri
can Aviation, the UNIVAC 1107 operating system 
was modified to provide control card compatibility 
with the IBM 7090; and currently, Lockheed is at
tempting to develop a sUb-executive to provide a 
common input-output interface between COBOL 
. programs and future operating systems. 

The solution is to develop a standard operating 
system specification. We need to concentrate on 
the external standards that have a primary effect 
upon the compatibility goals; they include: 

(a) System Control Cards 
(b) Message Formats 
( c ) Calling Sequences 
( d) . Security Procedures 
(e) Label Conventions. 

However, the future for operating system stand
ardization does not look optimistic and USASI 
standards are not likely to be agreed upon and 
implemented before the next generation of com
puter systems. It was only as recently as 1967 
that Halst~ad25 noted the need for operating-sys
tem-independent programs. The only current ac
tivity is that M. Perstein of s.ntC has recently be
gun to try to determine if there is sufficient in
terest in operating system standards to form a 
USASI working group. On the other hand, there 
has been some progress in a few of the basic in
terfaces (e.g., the adopted, but not yet widely ac-

eepted, ASCII code ;26 and the drafted, but not yet 
approved, USASI standard for labels .. 27 

The ideal long-range (fourth generation?) so
lution is to have a standard machine-level inter
face provided to the outside world by an "extended 
computer.·" An "extended computer" is the hard
ware plus the operating system and any micro
programs or read-only storage, and is one level of 
the extensible machine concept of Goodroe and 
Leonard.28 This could be the long awaited "UN
COL, "23 or the standard machine language advo
cated by Barton. 22 

Data pooling 

We are right in the middle of a series of develop
ments that are addressed to the concept of data 
pools. These are the data management systems. 
Unfortunately they have given little attention as 
yet to the problem of amalgamating varieties of 
existing data files except by special converters 
built for each specific file. 

There are two possible solutions to this prob
lem: 

(a) build a set of converters for each data 
management system-each data manage
ment system needs two for every other 
system with which it wants to interface; 

(b) use a common data description language 
for data exchange. 

We favor the second alternative. The next need 
is to ensure that each data management system 
can handle all possible data structures. A recent 
CODASYL report29 addressed this topic in a 
straightforward manner, and Mealy30 points out 
the need for . later binding and more explicit rep
resentation of data description in programs. A 
data description language would provide a means 
to send a self -describing file to another installa
tion, the file might include code tables, format de
scriptions and pointers. It is the "internal" speci
fication discussed by Moores.31 His external for
mat is for man/machine use but we believe more 
than one standard will be needed for data de
scription by men, just as many programming lan
guages will be needed. 

Summary of needs 

What we need is a radical change in software 
architecture to handle all these problems. One 



obvious solution is separate explicit specifications 
of procedures and data: 

(a) a standard "extended computer" inter
face (UNCOL); 

(b) a standard data description language for 
data exchange. 
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Interactive systems-· -Promises, 
present and future 

by JULES I. SCHWARTZ 

SY8tem Development Corporation 
Santa Monica, California 

INTRo.DUCTION 

In recent years, "interactive" systems have be
come. synonymous with "time-shared" systems for 
n10st people. Time-sharing has been emphasized 
by those interested in providing interactive (on
line) access to a computer. On the other hand, 
there are a number of other kinds of systems that 
provide interactive service. First, there are sys
tems like SAGElo and the airline reservation sys
tems (Ref.26

, for example). These are single-pur
pose systems providing the capability for users to 
communicate directly with a computer to accom
plish a well-defined task. Then there are the nu
merous third-generation operating systems, gen
erally considered to be multiprogrammed systems. 
There is an increasing tendency for these systems 
to provide an interactive capability t9 some set of 
users. 

These multiprogrammed systems provide a 
number of interesting examples of interactive ap
plication programs. But generally~ they limit the 
truly interactive use to one user or one application 
at a time; that application receives response satis
factory for interactive activity, but little oppor
tunity exists for others to do the same. These sys
tems also tend t'O limit the core storage available 
tC' a given user, so that operation on small con
figurations is impractical. Also, the number of 
simultaneous programs is limited by core memory 
on most multiprogrammed systeIlls. Time-sharing 
systems, on the other hand, attempt to provide a 
certain "aura" of user orientation which usually 
doesn't exist on typical multiprogrammed systems. 
'rime-sharing systems are designed to serve the 
on-line user (although off-line service is also pro
vided by most time-shared systems today). Con-

sequently, there is an attempt to orient the serv
ices and communications to the person at the con
sole, making them concise, forgiving, and easy-to
learn, while muItip·rogrammed systems tend to 
base their interactive access on the 'Off-line meth
ods normally asociated with batch-processing sys
tems. 

There are, of course, exceptions to the general
izations mentioned above. The Michigan Time
Sharing System (MTS) ,36 which was derived 
from a standard multi programmed system, now 
services 30 or m'Ore simultane'Ous users in what 
appears to be a normal interactive fashi'On. Other 
systems (e.g., Allen-Babc'Ockl) , have adapted 

< OS/360 in such a way that the interactive user
although limited in capability-apparently has 
the interactive characteristics provided in m'Ore 
complete time-sharing systems, while the basic 
OS/360 system services non-interactive pr'Ograms. 

89 

Essentially, the major difference between time
sharing and 'Other multipr'Ogrammed systems lies 
in the meth'Od of scheduling. The c'Oncept of the 
"time-slice" is' characteristic of most time-sharing 
systems, whereas the 'Other operating systems rely 
on pri'Orities to provide rapid service t'O a subset 
of users. Als'O, most time-sharing systems rely on 
"swapping" t'O pr'Ovide access to' many programs 
'Of up to full physical core size. (IncidentaIiy, the 
systems mentioned in the preceding paragraph 
are n'Ot swapping systems.) 

In summary, time-sharing systems concentrate 
on the interactive user, and have been in the f'Ore
front in providing this service. Consequently, this 
discussion will c'Oncentrate mostly 'On the devel'OP
ment 'Of time-sharing systems per se, while n'Ot 
overlooking the fact that interesting work 'On in-
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t(lractive activities has gone on in non-time-shared 
systems. In fact, future interactive computing 
services may be provided by either. 

Promises 

The early ideas and hopes 

It is always difficult to recount the history of an 
idea. In this case, some of the first ideas are re
corded. In 1959, Strachey hypothesized a time
sharing computer and operating system. 34 In 
1962, McCarthy fQresaw: "We can envisage com
puting service companies whQse subscribers are 
connected to them by telephQne lines. Each sub
scriber needs to pay only fQr the capacity that he 
actually uses, but he has access tQ all program
ming languages characteristic 'Of a very large sys
tem."21 

In 'One of the first papers 'On an operatiQnal time
sharing system, CQrbato et al. 5 stated that a time
sharing system of the kind described in their pa
per would "improve the ability to prQgram by one 
'Or two 'Orders 'Of magnitude" and "several new 
forms of computer usage" WQuld be 'Opened up. 
This paper alsQ discussed SQme 'Of the prQblems 
aSSQciated with building such a system, including 
file handling, debugging techniques, mingling 'Of 
foreground and backgrQund, and scheduling. AI
thQugh the paper was generally 'Optimistic (based 
'On some limited experience), it ended-interest
ingly enQugh-with a warning: "it is essential 
fQr future system design and implementation that 
all· aspects 'Of time-sharing system prQblems be 
explQred and understQQd in protQtype fQrm 'On 
present computers so that majQr advances in CQm
puter organization and usage can be made." 

WithQut dQubt, 'One 'Of the first and mQst in
fluential papers 'On the subject was presented by 
Licklider in 1960. 18 His basic theme was that in 
solving prQblems, men do SQme things well, such 
as developing hypotheses, while cQmputers are 
much better at the lengthy computational tasks. 
By fQrming a partnershill-a symbiotic relation
ship-they can help each other and thus speed the 
solution 'Of problems. He stated, "It seems reason
able to envision, for a time 10 or 15 years hence, 
a 'thinking center' that will incQrporate the func
tions of present day libraries together with antici
pated advances in information stQrage and re
trieval and the ,symbiotic functions suggested 
earlier in this paper. The picture readily enlarges 
itself into a network of such centers, connected to 

one another by wide-band cQmmunication lines 
and to individual users by leased-wire services. In 
such a system, the speed of the computers would 
be balanced, and the CQst of the gigantic memories 
and the sophisticated programs WQuld be divided 
by the number of users." In sum, he discussed the 
equipment and programming concepts which hs 
thought would assist the human in his contact 
with the computer. 

In addition to these papers, numerous other 
statements have been made 'On the future of time
sharing. To mentiQn but a few: "All computing 
will be on-line by 1975," "Ninety percent of all 
computing will be done on-line by 1970," and 
"checkQut will be 100 'Or more times faster 'On
line" -all made possible by time-sharing. 

The first systems 

In 1963, the ideas of some of the early papers 
began to be demQnstrated. At MIT~6 SDC30,31 
and BBN, 3 time-sharing systems that were more 
than demQnstration vehicles came into existence, 
and communities 'Of users began to form. The 
number of simultaneous users permitted on sys
tems such as these (using second-generation hard
ware) ranged from 5 tQ about 30, although some 
predicted that a time-sharing system could serve 
100 users on the IBM 7090.3 

The next steps 

It seemed easy to extrapolate to hundreds of 
users once the hardware had been built specifi<;ally 
for time-sharing. Consequently, preparation for 
third-generati'On time-sharing machines began in 
earnest in 1964. Dennis8 described a scheme 
whereby names-representing "pages" rather 
than arbitrary bl'Ocks-would be associated with 
locations thr'Ough associative hardware. Pages 
would be part of a larger memory hierarchy called 
"segments," sufficiently large so that expanding 
dynamic requirements for data space would not 
require c'Ontinual reallocation of space. Implemen
tati'On 'Of these hardware c'Oncepts was begun on 
several major computers (GE 645 and IBM 360/ 
67). In theory, they WQuld ease the problems of 
storage management for large-scale time-sharing 
systems by prQviding automatic access only to 
those portions 'Of data space that were required, 
and by providing considerably more flexibility in 
the mapping 'Of larger random-access storage 'Onto 
core storage~ 
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By 1965, these hardware systems .were part of 
rather ambitious plans to provide the next major 
steps in large-scale general-purpose time-sharing 
at MIT and IBM. MIT embarked on the develop
ment of the MULTICS System. 7 This system 
promised-by 1966 or 1967-to be the first ver
sion of a true "computer utility," whjch would 
serve several hundred to a thousand simultaneous 
users solving major problems on the GE 645 
(Ref.9

). IBM followed soon ~fter with plans for 
a similarly ambitious effort ./on the ~BM 360/67 
(TSS). In addition to the /addressi:dg hardware 
described earlier, both of th~se machines were the 
first time-sharing computefs that would contain 
dual processors-this is, essentially balanced sys
tems where more than on~ control and computing 
element would have equal access to the total ma
chine. This dual capability.was to provide more 
power to time-sharing systems, which until then 
were severely limited in computing power. 

Special-purpose systems 

One other important area in time-sharing his
tory should be discussed at this point. While the 
initial efforts at the development and· use of large
scale general-purpose time-sharing systems were 
under way at places like MIT and SDC, efforts in 
the development of special-purpose systems tai
lored to a problem-oriented user environment were 
being pursued (frequently on relatively small 
computers). One of the first was JOSS,33 which . 
was a system devoted exclusively to the solution 
of computational problems by people unsophisti
cated in computer usage. Another was BASIC,15 
an extremely s!mple but reasonably efficient sys
tem for handling small computational problems. 
These systems promised to be an effective tool 
within a prescribed problem area for a number 
of simultaneous users. 

The present 

Dr. Licklider, who has been a great stimulus in 
the field of time-sharing, recently stated informal
ly that he was surprised and pleased by the num
ber of current time-,sharing systems, but was dis
appointed at the lack of coherence in them. It is 
interesting to note that in the past few years the 
number of systems labeled "time-sharing" has 
increased from around five experimental systems 
to about 30 different commercial systems operating 
in 70 installations (as of early 1968), and prob-

ably several hundred experimental or research 
systems. 37 This is particularly surprising since 
most computer manufacturers-who traditionally 
lead the field in operating system development
have tended either to ignore, -or treat as subordi
nate, the development of time-sharing. Several 
attributes of these systems can be isolated, but the 
general picture is rather incoherent. Relatively 
few standards apply, and an examination of these 
systems shows that the definition of time..;sharing 
is by no means simple. (See Ref.32 for further dis
cussion.) 

Commercial· time-sharing 

Most commercial services now are effectively 
one-language systems: GE's BASIC, Allen-Bab
cock's version of PL/I, BBN's TELCOMP 
(JOSS), and IBM's QUIKTRAN· (FORTRAN) 
are examples of such systems. Other systems 
stress one kind of application-for example, KEY
DATA for business applications, and the IBM 
Text Data Service. 

It also appears that few large-scale general
purpose systems have made the grade yet on a 
commercial basis. One system that has at least 
some general-purpose attributes is the SDS 940 
Time-Sharing System, which began as an experi
mental vehicle at the University of California at 
Berkeley, but is now in commercial use at a num
ber of installations. Other than the fact that the 
computer is rather small and file capacity is 
limited on this system, the 940 Time-Sharing Sys
tem shows promise that a multi-purpose system 
can be commercially successful. The G E BASIC 
System,15 which started as a university and one
language system, is now also beginning to offer 
multi-language facilities commercially. 

Laboratory systems 

There are still a large number of systems in 
the laboratory. Systems like MULTICS and 
IBM's TSS, which were presumed by many to 
represent the next major step in large-scale inter
active computing, still haven't fulfilled their prom
ise. At this writing, MULTICS is just beginning 
to work in a minimal way, and the IBM system 
is being used in scattered installations with con
siderably fewer simultaneous users and services 
than one might have envisioned for this time. The 
reasons for the relatively slow progress of these 
systems are many. For one, they require large 
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programming system efforts on relatively new 
hardware. These kinds of efforts are always much 
slower in production than smaller efforts. Also, 
they are attempts at order-of-magnitude improve-
. ment in quantity and quality of service. Whether 
these hardware and software designs will result 
in dramatically improved performance is, of 
course, a subject of ~ebate at this time. Theo
retically it seems possible, but perhaps the pre
viously noted admonition by Corbato et al. 5 should 
be re-examined in assessing these systems. An 
attempt at assessing the effects of hardware and 
software decisions on efforts such as these was 
made by Nielson.:l3 One result of his study was 
the (not unexpected) finding that there are a con
siderable number of parameters affecting the per
formance in complex systems like these, and 
thorough simulations of them ar~ in themselves 
quite difficult, but should be a requirement. 

Other reasonably general systems are -n'Ow op
erating on third-generation computers at the Uni
versity of Michigan, Lincoln Laboratory, Liver
more Laboratory, 8.DC, and the California Insti
tute of Technology. These systems can handle 
about 30 'Or more simultaneous users on single
processor configurations. 

In suni, then, we have not yet achieved orders 
of magnitude improvements in service over that 
offered in the early days of time-sharing. The 
original systems at SDC and MIT are- still run
ning, and still approximate the current limit on 
capability of large-scale general-purpose time
sharing systems. Many of the special-purpose 
c.ommercial systems, however, now serve between 
40 and 100 simultaneous users on reasonably small 
computers. Thus, it seems quite possible that popu
lations 'of many hundreds could share a large com
puter where· the application was limited. 

Applications of interactive systems 

So far we have discussed the progress of time
sharing in terms of raw power (i.e., amount of 
service provided). It now remains to discuss the 
ways in which interactive systems have been used 
in recent years. Even though the amount of serv
ice provided is imp'Ortant (particularly commer
cially) , a more interestin~ aspect of these systems 
concerns the kind of service provided. Under time
sharing, certain kinds of processing can be ac
complished which would not be economically pos
sible on systems that do not take advantage of the 

lag in human response time to service other users' 
computation requirements. In the last few years, 
a wide-ranging set of interesting applications 
have been exercised on general-purpose time
shared systems. These include game-playing, on
line simulations, computer-assisted· instruction, re
trieval of information from data banks, and nu
merous others which take advantage of keyboard 
devices. Experimentation with devices other than 
keyboards on some general-purpose systems has 
resulted in a number of interesting applications, 
including examination of three-dimensional fig
ures through rotation on a display, graphical data 
analysis and plotting, real-time recognition of 
handwritten characters and mathematical ex
pressions, and hypothesis-testing utilizing a dis
play to present the alternatives and relative 
w-eights of factors. 

Some operatink systems have been devoted to 
specialized interactive applications. For example, 
in the APEX System 20 at Lincoln Laboratory, the 
structure, language, and data forms of the system 
are oriented toward the construction of a variety 
of graphical applicati'Ons. Applications on this 
system include aids to drafting, electronic com
ponent design, analysis of three-dimensional fig
ures and the hidden line problem, and the analysis 
of electronic circuits and program flo,v diagrams. 
For another example, Jacks 1.4 has reported on an 
interesting applicati'On of an interactive system to 
automated design. Several simultaneous users 
were able to utilize displays in the design and 
study of automobile components. 

Earlier in this paper we quoted Licklider's view 
that by 1975 n~tworks of interactive computers 
would be available to service users. How far have 
we progressed in this area? Marril and Roberts1.9 
have written a rep'Ort on the current state of 
networking. By actual count, there have been few 
real applications of the networking concept in con
junction with interactive computing. Experi
mental two node networks have been formed be
tween various installations. Three examples in
clude SDC's Q-32 TSS and SRI's CDC 160A; the 
Q-32 and Lincoln Laboratory's TX-2; and the 
TX-2 and a PDP-9 in Washington. The concept 
generally demonstrated was the use of a small, re
mote, on-line device-driver utilizing a distant large 
computer forc'Omputing ,power-a concept also 
used in other installations, but not under the "net
work" label. The TX-2 to Q-32 link did go fur-
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ther, however. In this case,. programs running on 
one computer were able to invoke and run pro
grams on the other, thus permitting quite incom
patible computers to share capabilities (for ex
ample, a LISP compiler on the Q-32 was used by 
a display program running on the TX-2). 

Thus far, slow progress has been made in shar
ing information among a network of interactive 
computers, which would provide a massive library 
at a user's fingertips .. Many reasons exist for this 
slow progress in the information-network field. 
The handling of information itself (even on one 
computer) is a subject of considerable technologi
cal complexity. Also, experiments in networking 
are expensive, requiring several or more com
putersand high communication costs. Few agen
cies are willing to investigate an expensive con
cept until it is, in fact, proven economical. 

Evaluations 

Like most new concepts, interactively-oriented 
systems have generated their share of controversy. 
One area of debate lies in the pure "economics" 
of running such systems. In order to sustain a 
large number of simultaneous user' programs with 
rapid response times, one must be willing to pay 
some overhead in swap-time and program man
agement (and perhaps in equipment) when oper
ating under time-sharing; such overhead is not 
required in more sequentially· oriented systems. 
rrhe amount of overhead is a subject of some ques
tion and, of course, varies widely on different 
systems. Some early quantitative studies of this 
subject were made by Scherr29 and Fine and 
McIsaac. 11,22 

For several reasons, it is hard to draw firm con
clusions from studies such as these. For one thing, 
there is little basis on which to compare the "effi
ciency" of a particular time-sharing system with 
~l. non-interactive system. There are few quantita
tive studies of time-sharing, but there are prob
ably fewer (relatively) for other kinds of sys
tems. Comparing raw percentages of the time in 
object program state on a time-sharing system 
(such as the 60-70 percent demonstrated for the 
Q-32 TSS) versus the efficiency of a particular 
batch-processing system (such as OS/360) 
doesn't really give much insight into the problem. 

Furthermore, it is argued by some that the gain 
in productivity using a computer interactively is 
so great that a considerable loss in "computer 

efficiency" can be tolerated. This theory has been 
generally accepted, but since the early days of 
time-sharing the feeling that interaction with a 
computer greatly increased productivity has been 
primarily intuitive. There have been some at
tempts at testin~ this hypothesis over the last 
few years. For· the most part, these attempts 
have consisted of experiments comparing program 
production and problem-solving under time-shared 
and non-interactive systems. 

A discussion of five such studies was presented 
by Sackman. 28 Attempting to summarize here 
what is in effect a summary of a controversial set 
of experiments is obviously precarious, but a few 
of the conclusions given by Sackman might be 
mentioned. Using interactive systems, fewer 
man-hours but more computer time is utilized in 
solution of problems. (The differences demon
strated in these experiments are much smaller 
than the orders of magnitude predicted in the 
early days.) User preference for interactive over 
conventional off-line operation was evident. Also, 
in many cases individual subject differences in the 
experiments overshadowed any differences in the 
modes of computer operation. Sackman also came 
to other conclusions, and .made a plea for improve
ments in methodology in several areas which 
would make future experiments more meaningful. 
It should be mentioned that there are some who 
disagree with this kind of experiment, or at least 
the experiments that have been performed so far. 
This criticism has included-among others-ac
cusations that inadequate or obtuse sets of statisti
cal methods were used; that the experimental de
sign was poor; that unrepresentative systems were 
used in the experiments (what is a representative 
time-sharing system ?); and that since time-shar
ing is relatively new, most systems used had to be 
experimental. A particularly vitriolic critique of 
an experiment was made by Lampson. 17 Pat
rick27 was slightly-very slightly-more reserved 
in his critique of some of this work. (Interest
inglyenough, Patrick and Lampson differ strong
ly over the value of time-sharing.) 

O'Sullivan 24 has made a number of interesting 
observations on existing time-sharing systems. In 
its work (primarily computational), his installa
tion used a fairly large set of different commercial 
systems. Among other things, he pointed out that 
none was perfect, some had unique advantages, 
and the variety of pricing schemes as well as 
range of capabilitjes warranted the use of a com-
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puter to automate access to the various systems. 
Thu~ an assessment of the current state of time

sharing and interactive systems is difficult to sum
marize. Such systems ~ppear to be proliferating. 
A large number of enthusiastic users exist, as well 
as a wide variety of systems. Access to a commer
cial system for on-line computing requires only a 
decision as to which one to use. Many interesting 
applications are now being supported. Home early 
predictions and hopes fQr the future have not yet 
been attained. Some people are trying to produce 
experimental evidence of the gains (or losses) due 
to this technology. Others are seemingly satisfied 
with the intuitive evidence (whichever it happens 
to be for them). 

The future 

On what basis can one predict the future of in
teractive systems? In some sense, one should be 
able simply to extrapolate from current systems 
and make assumptions on improvements in com
puter power that will provide a parallel improve
ment in capability. But of course such predictions 
are risky. For example, some new third-genera
tion· developments (which were based on proto
type large-scale time-sharing systems on second
generation computers) have not yet reached the 
power of the second-generation efforts, let alone 
surpassed it. This is partly due to the fact that 
designers are generally not satisfied just to im
prove the capability of an old system. They al
ways want to add considerably more, even revolu
tionary, capabilities to the system. In computing, 
these ambitions can delay, if not do away with, 
visible progress. Consequently, simple extrapola
tions from old systems don't work. 

. On the other hand, a total lack ot' confidence 
isn't in order, either. One can comfortably predict 
that within the next five years, at least some spe
cial-purpose time-sharing systems will be capable 
of handling a thousand simultaneous users. 
Whether or not one computer's handling of many 
hundreds of users makes commercial sense de
pends to a large extent on the communications in
dustry. Current rate structures make communica
tions the most expensive· part of conversational 
computing for all but close centers. There are 
efforts to change this situation, but the obstacles 
are great. 

Perhaps as large-scale general-purpose systems 
on third-generation machines get shaken down 

over the next several years, we shall see their 
capacities rise to the one or two hundred" user 
class. But until the advent of fourth-generation 
computers, or the economical and efficient utiliza
tion of three or more multi-processors, general
purpose systems will not have the user capacity 
of special-purpose systems. 

Multi- or parallel-pr<;>cessing will certainly tend 
to facilitate increased capability in time-shared 
systems. Systems now exist on some computers, 
such as the Burroughs B5500 and CDC 6600, 
which take advantage of multiple processors. These 
are not now strictly interactive systems, but ob
viously demonstrate the usefulness of truly simul
taneous processing capability. The two major ef
forts at using multi-processor computers (IBM 
360/67 and GE-645) for large-scale time-sharing 
have not yet progressed to the point where this 
value for interactive computing is demonstrable. 

Access devices 

Most interactive system terminals today use 
typewriter-like devices. Their prime advantages 
are their relatively low price and the use of a hard
copy medium, which provides automatically a rec
ord of all input and output. Cathode-ray tu:be de
vices avoid some of the problems of typewriters. 
They can operate rapidly, and are considerably 
more flexible in format and editing control. CRT's 
are gradually becoming more widely used as term
inal devices, and over the next few years should 
be used as much as typewriter devices. Obstacles 
to their acceptance into the field have included 
high cost per terminal and communication limita
tions, which make the rapid data-rate necessary 
to update and maintain distant displays prohibi
tively expensive or impossible. Prices are coming 
down, slowly, and the recent influx of reasonably 
inexpensive keyboard-CRT alphanumeric displays 
has accelerated the trend away from paper out
put devices. Thus systems of the future should 
be largely CRT terminal oriented. This should 
tend to further stimulate interest in interactive 
systems, since the use of CRT's consistently at
tracts more attention than applications oriented 
to other devices. 

Other techniques are being investigated which 
will facilitate new methods of dialogue with com
puters in the future. These include direct use of 
touch-tone telephones; hand-written· input via de
vices such as the RAND Tablet or Grafacon; 
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voice input and output through a set of software 
and hardware constructions. Both of the latter 
are far from becoming generally useful. Interest
ing demonstrations of on-line hand-written input 
have been given,2,13 but the mass use of this tech
nique currently would be prohibitively expensive 
as well as somewhat limited in capability. With 
a few minor exceptions, use of voice-recognition 
or output equipment with computers is strictly a 
laboratory exercise at this time. 

Networks 

It is unlikely that sufficiently powerful com
puters will be developed within the next decade 
to handle the large volume and variety of informa
tion and applications required by populations of 
interactive users. It is also questionable whether 
use of a single, monolithic computer is the best 
technical approach. A network of computers, each 
with an independent set of information files and 
applications, may represent the ultimate potential 
for the interactive user. 

Experience in this area is limited. Experimen
tation is expensive, and again, remote communica
tion is relatively costly and is limited by present 
facilities. The programming problems are also 
significant. Procedures f'Or minimizing communi
cation paths and optimizing loads on computers 
must be developed. The ,1ecision to maintain cen
tralized or decentralized directories of data and 
programs is one not yet solved in the general case. 
Standards f'Or data formats and query languages 
must evolve. These and other problems will have 
to be solved before networks of cOlnputers can be
come a reality. 

Considering the difficulties and expense involved 
in evaluating networks as a viable technique for 
providing the ultimate capability for p'Opulations 
of users, it is clear that a major sponsor or set of 
sponsors who can fund and coordinate these ac
tivities is necessary. One such effort is now be
ginning. The Informati'On Processing Technique 
Office of ARPA, which was largely responsible 
for the development of time-sharing over the 1ast 
five years, has begun the first large-scale network 
effort in this country. In 1969, they expect to have 
a nation-wide network of about 20 interconnected 
c'Omputers operating in a preliminary fashion 
(most of these will have interactive operating 
systems running on dissimilar hardware). At 
each installation, a satellite computer will serve 

as the buffer and language translator between the 
home computer and adjacent nodes of the net
work. Efforts such as these are necessary to de
velop the technology needed to put multi-com
puter power at people's fingertips. 

Improving communication and understanamg 

The major emphasis of most interactive systems 
to date has been in the area of individual problem
solving. It may be, however, that the ultimate 
value of these systems will lie in their ability to 
bring together and assist in assimilating diverse 
ideas from large c'Ollections of users. Licklider 
and Taylor have discussed these ideas at some 
length. 35 They have described a meeting at Stan
ford Research Institute, at which speakers and 
attendees had direct access to a shared computer. 
'Vith this mechanism, speakers and listeners were 
able to refer quickly to significant background 
and demonstration material, so that the discus
sions could proceed at a reasonable pace while 
permitting all participants to stay involved. Ex
trapolating from this point, they envisioned the 
eventual formation of "user communities" com
ll1unicating and mutually developing ideas over a 
widespread network of computers. 

Interactively oriented systems as operating 
systems 

An examination of the characteristics 'Of large
scale general-purpose time-sharing systems raises 
an interesting question: Could they be used as 
the basic operating system in a variety of installa
tions, instead of the more common form of batch
processing or multiprogrammed systems? 

Time-sharing systems have a range of response 
characteristics; they are always "up"; they have 
been shown to be evolutionary, and at least in 
truly general-purpose systems, they don't exclude 
any kind of application. Several ma~ufacturers 

. have recognized the basic capabilities 'Of time
sharing and have promoted it as their operating 
systems. Digital Equipment Corporation provides 
an example of this with their PDP-6 system. Sci
entific Data Systems also emphasizes time-sharing 
on some of their line. At SDC, a system called 
ADEPT,16 is designed for this purpose on third
generation hardware. 

If time-shared systems really provide the capa~ 
bilities described here, one might legitimately ask 
why they have not yet come to predominate third-
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generation computers. The major third-generation 
operating systems, although generally multipro
grammed and with some capability for on-line in
teraction, are primarily 'Oriented to the off-line, 'Or 
nonterminal user. One reason, mentioned before, 
is reluctance on the part of most nlanufacturers to 
make time-sharing the major 'Operating system. 
To s'Ome extent, this is due to the necessity for 
manufacturers to cater t'O the tradition existing 
in most c'Omputing installati'Ons. Computer cus
tomers have been used to operating in a non-inter
active envir'Onment. The manufacturers believe 
their customers would n'Ot accept willingly a rapid 
change in this c'Ondition. 

Another reason that general-purpose interactive 
systems have been slow in coming to the fore is 
the fairly slow emergence of the better known 
time-sharing eff'Orts. It is quite P'Ossible that, had 
the MULTICS and IBM TSS efforts strongly 
demonstrated in 1967 the value 'Of large-scale gen
eral-purp'Ose time-sharing, the momentum would 
have increased in favor of time-sharing. Of c'Ourse, 
from the days of the early systems, there have 
been controversies 'Over the relative values 'Of in
teractive systems and more traditi'Onal systems. 
The volume 'Of demand f'Or "hard facts" regarding 
interactive operati'On is probably unprecedented 
in computing history. Whether this requirement 
for statistics is necessary or not, it certainly serves 
to make a now reasonably conservative industry 
hesitate to take seemingly r8.dical steps. 

There is little question that on-line interaction 
f'Or certain kinds 'Of applications is desirable. On 
the other hand, there will always be problems for 
which human interacti'On is undesirable. How
ever, we must avoid thinking in terms of closed 
systems. Some think that time-sharing systems 
permit only interactive use, and batch-processing 
systems do not allow on-line access. As stated be
f'Ore, this is not true. Both types 'Of systems are 
providing the two kinds of service. Third-genera
tion time-sharing systems emphasize the avail
ability of batch-pr'Ocessing services in the back
ground, and in a similar fashion third-generation 
batch-processing systems provide interactive capa
bility. In fact, some of the standard operating 
systems are even beginning to use the word "time
sharing" to describe part 'Of the services provided 
(see Ref.3

) • Thus, one can predict with 
some degree of confidence that all systems will 
eventually provide some interactive capability to 
more than one application or user class. Time-

slicing may well be part of the scheduling scheme, 
although it may be c'Oupled with priority. assign
ments. Swapping may be used in configurations 
where large, fast, rand 'Om-access devices exist but 
'Operating storage is small, although in a few 
years, operating mem'Ories may be large and cheap 
en'Ough so that swapping won't be necessary. The 
command language for interactive users will be 
simple enough so that on-line access will not re
quire preparation equivalent to that needed for 
preparation of 'Off-line inputs. Whether these sys
tems will evolve from current time-sharing or 
batch-pr'Ocesing systems is n'Ot very clear, and 
probably not too important. What is important is 
that in order to be successful, the batch-processing 
'Operations will have to be efficient, and the inter-

. active access will have to satisfy the principles 
learned in today's time-sharing installations. 

CONCLUDING REMARKS 

Today we take for granted the airline clerk's 
interactive use of a remote computer to make in
q uiries and reservations for our flights. S'Oon he 
will be able to plan meals, schedule flights on other 
airlines, and make hotel reservations at the same 
terminal. Ultimately, he will pr'Obably make use 
of other 'services to check the credit status of the 
cust'Omer making the plans, as well as call up dis
plays pointing out the variety of routes and costs 
'On planned itineraries. U sing interactive systems 
for school management, engineering computations, 
business data processing, program composition, 
various military activities, and other purposes is 
bec'Oming common. The use of these systems to 
assist engineers, architects, draftsmen, and others 
using elaborate' display techniques is now in its 
infancy. Communication facilities, computers, 
terminal devices, and operating systems are being 
adapted to accommodate c'Ommunities of interac
tive users. Techniques for integrating software 
and hardware complexes are being investigated 
in order to provide truly large amounts of in
formation to many users. There is no question 
that the future generation will find their access 
t'O computers immediate and an essential part of 
their daily life, whether at home, school, business, 
or in the library. (Parkhill's book 25 c'Onsiders the 
future possibilities and problems of the computer 
"utility" in much greater detail.) 

Recently, an informal conversation was held 
discussing the possibility of starting an experi-
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ment with a "computerized town." All industry, 
school, utility, financial, and domestic facilities 
would have direct access to a network of com
puters. This would ultimately eliminate money 
transactions, lengthy individual income tax cal
culations, uncoordinated record keeping, many 
problems in transportation, and an unlimited va
riety of other conditions. The social and psycho-. 
logical problems involved in installing such a sys
tem were apparent in this discussion (but not 
attacked). It was significant to note, however, 
that the technical problems mentioned-although 
not deemed trivial-were within our grasp. In no 
small measure, this is due to the experience gained 
during this decBN~ in interactive computing. 
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Multiprogramming-Promise, performance 
and prospect 

by THOMAS B. STEEL, JR. 
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Santa Monica, California 

INTRODUCTION 

"Multiprogramming'! is the label given to the concept 
of a dynamic sharing of the resources of a given com
puter system among two or more programs. An operat
ing mUltiprogramming system presents to external 
observers the appearance of effecting the concurrent 
execution of several object programs. There mayor 
may not be truly simultaneous operation of more than 
one program, but it will be the case that a second pro·· 
gram begins execution before the first program has 
rUn to completion. Simple sharing of storage among 
several programs in a systematic way to facilitate 
serial execution is insufficient to qualify an operating 
system as incorporating multiprogramming. There 
must be an oscillation of control among the several pro
grams for multiprogramming t~ come into play. 

In order to make a rational analysis of the relation' 
between the claims for multiprogramming and the 
actual performance of multiprogramming systems 
it is essential to have a clear understanding of th~ 
motivation for attempts to develop such systems. It is 
unexceptionable that the primary justification for 
multiprogramming systems is the economic advantage 
that accrues from their use. Many areas on the frontier 
of information processing science, such as artificial 
intelligence and mechanical translation, draw their 
research and development energies from the desire to 
augment the functional capabilities. of computing 
systems; others, such as programming language de
velopment, are pursued in the hope of improving the 
ability of humans to cope with the computer. Multi
programming is intended to improve the performance 
of a machine qua machine. A mUltiprogramming system 
provides no capability that could not be obtained in 
its absence at a price. It must be kept in mind, however, 
that there are certain everyday activities that, while 
they could be accomplished in the absence of multi
programming, could not be afforded with contemporary 

hardware. A case in point is giving every gr..aduate 
student his own computer. 

To explicate the essentially economic nature of mulH
programming it is necessary to examine the usual jus
tifications for its use.! Three arguments are advanced: 
(1) improved throughput by maximizing utilization 
of machine components, (2) time-sharing, with all it 
implies, and (3) real time response. 

Improved throughput is currently the most prevalent 
reason for employing multiprogramming and is likely 
to remain so for the foreseeable future, time-sharing 
advocates notwithstanding. In this context, multi
programming requires some multiprocessing capability 
in the hardware. If it is not possible for two or more 
explicitly programmable functions to occur in parallel, 
nothing can be gained from multiprogramming in the 
way of improved throughput and the attendant over
head is merely expensive waste motion. For this reason, 
multiprogramming did not arrive on the computing 
scene until the advent of elementary multiprocessing.2 

If coupled systems and satellite computers are dis
regarded as irrelevant in the present context, * the 
only pertinent parallelism in generally used computers 
has been, and continues to be, overlap of computing 
and input-output. Typically, the computing time re
quired to service an input or output device is far less 
than the time required for that device to perform its 
function. Thus, unless another part of the program 
initiating the input-output operation, or another pro
gram altogether, can employ the computing circuits of 
the machine while the input or output request is being 
processed, time is lost and throughput is diminished. 
Most multiprogramming systems are designed explic
itly to overcome this loss. Improved throughput means 

*The satellites and the drivers of coupled systems should be 
regarded as external, asynchronous signal sources and their 
relationship to multiprogramming is, therefore, to be found in the 
real time context. 

99 



100 Fall Joint Computer Conference, 1968 

more computing per unit time which means more com
puting per dollar. Here the motivation for multipro
gramming is palpably economic. 

The relationship between multiprogramming and the 
technology of on line, multi-access systems, unfortu
nately almost universally mislabelled "time-sharing," 
must be carefully delineated in order to absolve multi
programming from unmerited responsibility for the 
many difficulties that have plagued on-line systems. 
An on-line system involves multiprogramming in a 
special way only in the event that it is also a multi
access system. The purpose of this multiprogramming 
by rapid cycling through many users is to provide an 
economic impedance match between slow men and a 
fast computer. If, as may some day happen, machines 
were inexpensive enough it would be reasonable 
to provide every user with'· his own computer, a 
tour de force eliminating the need for "time-sharing." 
Admittedly, this observation ignores certain significant 
elements of multi-access systems such as mutually' 
interacting users and shared files, but it does illustrate 
the primacy of the economic motivation for multi
programming in this context. 

Real time systems pose something of a problem for 
this discussion as it is not clearly appropriate to view, 
say, an airline reservation system in the performance 
of its principal duty as a multi programmed s~ stem. 
Terminal servicing of this sort under control of a mas
ter program is really more akin to the treatment of 
conventional programs in machines with arithmetic 
overflow and zero divide interrupts. There is a hint of 
multiprogramming in the situation but it is extremely 
primitive. The full employment of mUltiprogramming 
in real time systems occurs when it is found desirable 
to occupy machine resources that would otherwise be 
idle while waiting for an external signal. Here the back
ground task filling the idle time could be performed on 
another computer at additional cost. Again, the moti
vation is primarily economic, although dynamic access 
to a changing data base by the background program 
may be a factor. 

Having evoked maximization of the cost effectiveness 
of computer resources as the dominant excuse for 
mUltjprogramming systems, it follows that instances 
of these systems must be judged primarily in economic 
terms. Care must be taken, however, to examine all 
aspects of the cost equation, for capturing idle machine 
time at the expense of programmer and operator frus
tration may well be a poor trade. It will be seen below 
that this is a nonempty caveat. 

Promise 

The first explicit mention of multiprogramming in 
the general literature was, as noted above, in the con-

text of overlapping computing with input-output.2 

Here, as elsewhere initially, there was no hint of a 
multiprogramming system, merely the suggestion of 
employing the technique in a single program. These 
early claims were modest and generally remained so in 
the responsible literature. As might be expected, per
formance claims got a little out of hand in the sales 
brochures of equipment manufacturers, a recurrent 
theme that will generally be disregarded in this ac
count. 

In the case of certain early military applications of 
computer systems for comma~d and control, such as 
SAGE,3 it is at least arguable, in hindsight, that the 
rudiments of what would now be called a multipro
grammIng system were in evidence. Since for reasons of 
military security the details of such systems were not 
generally available, their development exerted little 
direct influence on the future course of multiprogram
ming. The indirect impact of these military activities 
was considerable, however, as a technical expertise un
available to the less affluent civilian sector was acquired 
by the personnel engaged in the development of these 
big, complex and advanced systems. With the passage 
of time this expertise percolated to all corners of the 
industry. It is not within the scope of this paper to 
discuss the hopes and realities of these military sys
tems. 

Probably the first, and certainly the most ambi
tious, early attempt to create a. mUltiprogramming 
capability in an operating system context where the 
object programs were expected to be totally independ
ent was the SHARE 709 System (SOS).4 SOS was de
signed for the IBM 709, a machine with a multiple 
channel, asynchronous input-output capability'. Among 
the design objectives was the ability to perform, 
in parallel, input for job N + 1, compute for job N, and 
output for job N - 1. The conceptualization and de
sign of this capability to the level of detailed flow 
diagrams was complete by the Fall of 1957 and the 
prospect of snch facilities was widely accepted soon 
thereafter. 

The next major step in the advocacy of multipro
gr~ng systems was the explicit recognition by 
Strac~ey of the hierarchical natur~ of .imm~diacy ~n 
computer time demands.5 The key Idea In thIS work IS 
not, as is usually claimed, the invention of the multi
access concept; it is the introduction of the "director," 
a program element now usually referred to as a "sched
uler." In the example detailed by Strachey there was 
only a single on-line user envisioned, but given the 
concept of an on-line user with priority overall off
line users, and the director, only a modicum of imag
ination is required to arrive at the rest of the multi
access, on-line system concept. Subtract the on-line 
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user, however, and what remains is a reasonable pre
scription for a modern batch mUltiprogramming sys
tem. The real advance in this approach over the ideas 
inherent in the SOS structure was freeing the system 
from the constraint that object programs must pass 
through the system in a lock step order that is dictated 
by the initial invut stream sequence. 

By the end of 1961 a number, far more. than cited 
here, of intuitive claims and theoretical analyses of 
mUltiprogramming behavior had appeared.6- 8 The 
consensus of these studies was that effective multipro
gramming was feasible, valuable and imminent. The 
meaning of "effective" varied, of course, from ~uthor 
to author. Two measures of multiprogramming effec
tiveness have generally been given: (1) the amount of 
time devoted to the overhead activity of keeping the 
system operating, and (2) the improvement of through
put over that encountered in a strict batch system. 
Both are normally quoted as percentages, and neither 
is really satisfactory as a measure of multiprogramming 
effectivity. 

The first measure indicates the minimum distance 
from perfection-'-the unrealizable state where all of the 
machine is busy on useful work all of the time-that 
the system could attl;Lin with an ideal job mix. It gives 

. an absolute measure of the best case. The second mea
sure indicates the relative improvement in performance 
but provides no indication of how this relates to the 
ideal. Even' taken together the two measures do not 
close the gap. Something else is needed, perhaps a set of 
stantlard job mixes, but this paper must stand on the 
available data. 

These early claims varied but generally suggested 
overhead figures of between one and fifteen percent and 
throughput improvements of up to several hundred 
percent. The low figures for overhead were quoted by 
manufacturers, such as Honeywell for its Model 800, 
who planned to employ hardware for much of the over
head activity. The extra hardware costs money, how
ever, and this cost is normally not factored into the 
equation. 

By 1962, and continuing to date, the scientific litera
ture began to carry reports of actual experience with 
mUltiprogramming systems.9- 14 l\1ost of these reports 
were made by representatives of hardware 'manufac
turers and,therefore, exhibited a natural tendency to 
minimize difficulties. Since this time, the performance 
claims for multiprogramming systems have remained 
more or less static in the responsible literature. Two 
revealing changes have occurred: (1) the word "multi
programming" no longer contains a hyphen, pro
viding at least linguistic legitimacy to the concept, and 
(2) the availability dates for most multiprogramming 

systems have slipped, often considerably, but happily 
at somewhat less than real time. 

At the present time most large, commercially avail
able computing systems are designed with the expecta
tion that they will be multiprogrammed in many 
environments. Generally they are accompanied by a 
manufacturer supplied, batch multiprogramming sys
tem. Some are vehicles for on-line, multi-access sys
tems that are now in being. Since these things exist and 
can be evaluated by the customer, current claims tend 
to be rather realistic and representative of the actual 
situation, at least with respect to performance. Ease of 
use is another matter altogether. 

Performance 

Having reviewed in deliberately general terms the 
promises for multiprogramming, it is nOw necessary to 
review in equally general terms what has actually been 
accomplished in providing multiprogramming capa
bility. As noted above, the early claims were modest 
and made in the context of multiprogramming within 
the confines of a single object program. Even here the 
claims went a bit beyond reality. While substantial 
gains in program performance were obtained through 
overlapping computing with input-output operations, 
the results were less gratifying than it seemed they 
ought to be. Two reasons for this can be isolated. 

In the first place, insufficient information was pro
vided by the hardware for programmers to make com
pletely effective use of the actual capabilities of the 
machine. The extent of the requisite interaction be
tween hardware and program for efficient handling of 
asynchronous interrupts was long unrecognized, de
spite some careful studies on the subject.5 Indeed, 
this subject is not perfectly understood today, but at 
least there seems no doubt that, at long last, machine 
designers are aware of the problem. Attention to its 
resolution cannot fail to improve the performance of 
future systems. 

The second difficulty with early mUltiprogramming 
efforts was more subtle and went unappreciated until 
attempts were made to instrument computing systems 
to determine, among other things, just how much over
lap of computing and input-output actually went on. 
The depressing nature of the results could be traced to 
the fact that the average programmer simply was not 
good enough to make full use of the multi-channel 
hardware capability, even where the problem cried out 
for its use. It was the recognition of this situation that 
paved the way for the design of the first multiprogram
ming systems. 

SOS was a failure if measured by its impact on the 
community. It is the author'.s contention-exhibiting 
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a bias justified in one of the designers-that the failure 
was in implementation, not in design. To put the matter 
bluntly, IBM blew it! The system that finally came out, 
to be distributed and maintained by the vendor, was a 
pale ghost of the original conception (in many aspects, 
not just in the multiprogramming features) that even
tuallyevolved into IBSYS, a tolerably good batch pro
cessing system, but hardly a multiprogramming system. 
The fact that reasonable approximations of the original 
were used by the RAND Corporation, the Applied 
Physics Laboratory and others indicts the IBM effort. 
The multiprogramming aspect of this situation must be 
carefully weighed. It was possible to get approximately 
the same amount of overlap between computing and 
input-output in both IBSYS and SOS, but it required 
much more programmer effort in IBSYS. This differ
ence is significant in view of the difficulty programmers 
have with this problem. 

The multiprogramming aspects of large, real time 
systems and on-line, multi-access systems are some
what more severe than those found in batch multi
programming systems, due to the added pressure of 
vital time requirements on the scheduler not usually 
found in batch situations. Nevertheless, the literature 
'reveals that the serious problems in these more complex 
systems really lie el~ewhere in such areas as command 
language, paging, multi-access files and lack of re
entrancy in generated code.16-17 It is a slight oversim
plification, but not amiss in principle, to a~ert that the 
current performance of mult~programming' in real time 
and multi-access systems has about the same relation
ship to the earlier promises as can be shown to -apply in 
batch systems. 

The literature now abounds in reports on the per
formance of various multiprocessing systems,18-23 but 
with some notable inadequacies; e.g., for OS/360. The 
trouble with these reports is that they don't say very 
much concrete. The lack of carefully defined measures 
hurts the analyst and the lack of hard data hurts him 
even more. In view of this situation the author has for
borne from constructing a table of performances of the 
specific existing systems. It would be invidious to at
tempt an explicit comparison from the available data, 
and no individual has had sufficient experience with 
several systems to permit the gathering of even intui
tive judgments. What evidence there is suggests that 
all of the major systems share roughly the same 
strengths and weaknesses. Thus, it makes sense to 
compare a kind of generic, current multiprogramming 
system against the industry's broad claims for what it, 
collectively, expected to,produce. 

Viewed in these terms, the situation is rather better 
than one might expect. While it is only in special situa
tions that throughput improvement has attained the 

several hundred' percent initially claimed, the average 
figures of between thirty and seventy percent are but 
a binary order of magnitude below the claims. More or 
less the same factor of two appears in the overhead' 
figures; ten to thirty percent in the real situation as 
against half that in the projections. The serious problem 
has been in delivery dates, a not uncommon element 
of software development. As has been observed, much 
of this is due to inadequacies in the hardware. Good 
multiprogramming systems simply were not-in the cards 
until the current class of machines were available. 

The glaring failure of current multiprogramming 
technology is the complications it has introduced for 
the programmer and operator. The current Job Con
trol Languages (JCL) required to specify what the 
system is to do are, by and large, disasters. It takes far 
too much of a programmer's time to construct the 
appropriate JCL statements, and an even larger amount 
of time to debug them, not to mention the effect on 
morale of aborted runs deriving from trivial JCL errors. 
The implications of JCL in the machine room are even 
worse. The operators must be a good deal smarter 
(and, therefore, necessarily, paid more) than has been 
standard in the past. Computer center managers are 
faced with the realization that poor operations will 
destroy and overwhelm any gain in throughput ,with 
no trouble at all. 

Prospect 

In considering where multiprogramming may be 
expected to go from here, it is worth noting the reason 
why this technology fares considerably better than 
most when measured against the early claims of its 
proponents. In muitiprogramming there is a well de
fined, finite upper limit for improvement in capability. 
The most one could ever claim was to use all of the 
machine all of the time. This is hardly true in other 
cases; witness artificial intelligence where the more 
flamboyant claims defy the imagination. As multi
programming technology approaches its natural limit, 
it clearly ceases to make sense to expend much effort 
trying for the last fraction. Satisfaction is obtained by 
near optimum performance at acceptable cost. 

Some performance improvement can be obtained 
through judicious use of the various empirical24 and 
theoretical25-27 studies of multiprogramming, and 
through attention to the problem of hardware-soft
ware interaction. It is likely that use of a firmware 
approach to multiprogramming supervisors by placing 
them in read-fast, write-slow storage units will pro
vide the last big reduction in overhead cost. Improve
ments beyond a factor of two or three will probably 
cost more than they are worth. Of course, the introduc-
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tion of multiple, interacting arithmetic, logic and con
trol units may start a whole new ball game. 

The real improvements in multiprogramming systems 
must come in the area of making them easier to pro
gram and to operate. As indicated above, much is left 
to be done in this area, and it shows little sign of hap
pening so far. Programmers sweat, operators err and 
managers complain, but JCL marches on. 
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An algorithm for finding a solution of simultaneous 
nonlinear equations 

by R. H. HARDAWAY 

Collins Radio Company 
Dallas, Texas 

INTRODUCTION 

In many practical problems the need for a solution of a 
set of simultaneous nonlinear algebraic equations arises. 
The problems will vary greatly from one disciplin,e to 
another, but the ba'sic mathematical formulation re
mains the same. A general digital computer solution 
for all sets of simultaneous nonlinear equations does not 
seem to exist at the present time; however, sever~l 
recent techniques make the solution of certain systems 
more feasible than in the past. 

The algorithm described here is a slight variation of 
one of the methods described by C. G. Broyden1 in 
"A Class of Methods for Solving Nonlinear Simul
taneous Equations." This modified version of Newton's 
method converges quadratically for a convex space. It 
includes Broyden's technique of approximating the 
initial Jacobian and the~ updating its inverse at each 
step rather than recomputing and reinverting the Ja
cobian at each ite:r;ation. A procedure is given which 
helped to circumvent the difficulty of an initially 
singular Jacobian in several test cases. 

The examples given include applications in several 
engineering fields. A simple hydraulic network and the 
equivalent nonlinear resistive network are given to 
show the identical mathematical formulation. Applica
tions to the stress analysis of a cable, to the analysis of 
a hydraulic network, to optimal control problems, to the 
determination of nonlinear stability domains and to 
statistical modeling are mentioned as examples of usage. 

Statement of the problem 

Let a system of n nonlinear equations in n unknowns 
be given as 

fl(XI, X2, "', xn ) = 0 
f2(xI, X2, "', xn ) = 0 

(1) 

This may be represented more concisely in vector 
notation as 

f(x) = 0 (2) 

where x is a column vector of independent variables and 
fis a colll;mn vector of functions. 

A solution of the system of n equations is a vector x 
which satisfies each fj in the system simultaneously. 

Newton's method 

In Newton's method for a one dimensional case, the 
iterative procedure is given by 

(3) 

The need for a good ini~ial estimate, the computation 
of the derivative, and failure to find multiple roots are 
usually cited as major dis~dvantages of the method. 
However, from a "good" initial estimate, convergence' 
of the method has been frequently proven and has been 
shown to be quadratic. 

For an n dimensional system we will expand this 
notation. The initial limitations and the advanta,ge of 
quadratic convergence are maintained. For proofs on 
the convergence, see Henrici's Elements of Numerical 
Analysis.2 

105 

Rather than a single independent variable, we have 
an n dimension;:tl vector of Independent variables x. 
An n dimensional vector of functions f replaces the 
single function equation and the Jacobian replaces the 
derivative of the function. The Jacobian is defined as 
an (n X n) matrix composed of the partial derivatives 
of the functions with respect to the various components 
of the x vector. A general term of the Jacobian J may 
be denoted as aij = afj/axi where fj and Xi are com
ponents of the fand x vectors, respectively: Since in 
equation (3) the derivative appears in the denominator 
we must consider the inverse of the Jacobian and 
evaluate it as Xi. This will be denoted as J rl. 
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Therefore, for an n dimensional case, Newton's 
method may be rewritten as 

(4) 

The obvious difficulties of the method lie in choosing an 
initial vector Xo and in computing and evaluating the 
inverse Jacobian. Despite the oversimplification, it will 
be assumed that enough knowledge of the system exists 
to enable one to make a "good" initial guess for Xo. 

The Jacobian is considerably more difficult. With the 
method that was presented by Broyden not only can 
an initial approximation to the Jacobian be used, but 
also at each iteration the inverse Jacobian may be 
updated rather than recomputed. 

Broyden's variatwn of Newton's method 

Notation 

Xi i'th approximation to the solution 

fi = f(Xi) set of func~ions evaluated at Xi 

J i or J rl Jacobian or its inverse evaluated at Xi 

Ai or A i-l i'th approximation to Jacobian or its 

t 

Method 

inverse evaluated at Xi 

scalar chosen to prevent divergence 

the difference in f i+l and f i 
Yi = fi+l - fi 

the negative product of Ari and fi 
Pi :::; -Ai-1fi 

the transpose of Pi 

It is assumed that an initial approximation of the 
Jacobian Ao exists. The iterative procedure seeks to 
find a better approximation as it also seeks to find the 
solution of the system. In this process the function 
vector f will tend to zero and indicate the convergence 
of the system. 

If we let Pi = - Arlfi as given above, then equation 
(4) becomes 

(5) 

where t i is a scalar chosen to prevent the divergence of 
the iterative procedure. The value of ti is chosen so 
that the Euclidean norm of fi+l is less than or equal 
to the Euclidean norm of f~; hence, convergence is not 
ensured but divergence is prevented. A complete dis
cussion of the backward differencing method used is 
given in a followinig paragraph. 

In order to define the modification method for the 
inverse Jacobian, we let 

(6) 

Then the vector of functions of f(x') may be considered 
a function of a single variable t. The first derivative of 
f with respect to t will exist since the Jacobian has 
previously been assumed to exist. 

It follows that 

df = afax' 
dt ax' ati (7) 

When we determine df / dt, we have established a 
necessary condition on the Jacobian. 

To approximate df/dt, Broyden suggests a differ
encing method where each component of f may be 
expanded as a Taylor series about s as follows: 

df fi = f(t i - s) = fi+! - S - - ••• 
dt 

(8) 

Disregarding the higher terms, an approximate expres
sion for df / dt is 

df fHl - fi Yi 
-~---
dt ~ s s (9) 

The choice of s is such that the approximation to the 
derivative is as accurate as possible, but care must be 
taken that the rounding error introduced in the division 
is not significant. Since we have chosen Broyden's 
method of full step reduction, ti is set equal to sand (9) 
becomes 

(10) 

If we now combine equations (7) and (10) we have 
another necessary condition which the Jacobian will 
satisfy, 

(11) 

Since Ai, an approximation to the initial Jacobian, 
exists, we are seeking a better approximation and J is 
replaced in equation (11) with Ai +1, 

(12) 

This equation gives the relationship between the change 
in function vector f and the change in the X vector 
in the direction Pi. Since we have no knowledge of chang-
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es in any direction other than pi, we will ,assume that 
there is no change in the function vector f in any direc
tion orthogonal to Pi. Using this assumption and equa
tion (12), A i+1 can be determined uniquely and is 
expressed as follows: 

Since we actually need the inverse of A i+l, Broyden 
uses a modification given by H<!>useholder3 which 
enables us to obtain a modification formula for the 
inverse from the information we already have. House
holder's formula is 

(14) 

where A and (A + xyT) are nonsingular matrices and 
x and yare vectors all of order n. Therefore, 

rt .p' - A .-ly .J P .T A .-1 A -1 - A -1 + . t 'I 'I 'I 'I 'I 

HI - i TA -1 Pi i Yi 
(13) 

is the modification we have Deen seeking. 
This method of updating the inverse of an initial 

approximate Jacobian was shown by Broyden to give a 
better approximation as i increases if the terms omitted 
in the Taylor series expansion are small. Since s = t i 
is always chosen to be less than or equal to I} this 
condition is satisfied. 

With this improved approximation of the inverse a 
new Pi is computed and the iteration is repeated. 

As Xi approaches the solution, the convergence be
comes quadratic as Henrici3 has shown. The function 
vector tends to zero and the Jacobian tends to the 
actual Jacobian evaluated at the solution vector. AAY 
one of several methods citnbe used to determine the 
accuracy of a solution. 

Since the computation of partial derivatives has been 
simplified by the approximation procedure, this method 
presents advantages over those which require explicit 
evaluation of partial derivatives. 

The step size at each iteration is such that the norm 
is reduced rather than minimized. The time spent in 
evaluating the set of functions repeatedly and the 
storage required to save various vectors to determine 
the minimum, negate the advantage of norm minimi
zation. This method combines the use of initial approxi
mations with an iteration procedure that is computa
tionally simple, to produce an efficient algorithm. 

Computational procedure 

Details on the implementation of this algorithm are 

given in the next paragraphs. The general flow chart 
in Figure 1 summarizes the procedure. 

The initial vector 

The initial vector Xo may be selected arbitrarily or 
from knowledge of the system, With a nonlinear resis
tive network, for example, the elemental values cou~d 
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be used. If no knowledge at all exists, a unity vector is 
generated as Xo. 

The Jacobian 

Since the initial Jacobian may be approximated' 
several methods are available to compute this matrix· 
The simplest is to let the inverse equal a given value and 
not attempt to compute or invert the Jacobian. So 
much valuable information is lost that, despite the 
simplicity, this method is not chosen. 

At the opposite extreme is the possibility of comput
ing all the necessary partial derivatives, evaluating 
the Jacobian at Xo, and then inverting the matrix. The 
evaluation of the partial derivatives is gener~lly very 
laborious so this method was not considered. Further, 
the assumption thatAo may be approximated makes 
this degree of precision unnecessary. 

The third alternative is to approximate the partia\ 
derivatives. This will provide better information than 
the first case and give less computational difficulty than 
the second case. 

Since any term of A may be denoted as aij = afj / aXi, 
we have 

. fj(xi + h) - f,(xi) 
ai, = hm h (16) 

i_O 

where fi and Xi are components of f and x. For purpose 
of evaluating Ao1 a relatively small value of h is selected 
and equation (16) used to generate each element. 

For the test program, a value for h was computed as 
.001 of Xi. 

The inverse Jacobian 

When the Jacobian has been evaluated, the next 
step is to invert it. If the Jacobian is nonsingular, the 
inversion is performed and the iteration proceeds. A 
standard Gaussian inversion routine is used. 

If, however, the Jacobian is singular, the inverse doe~ 
not exist. The first solution given in the previous section 
is one method of sidestepping this problem. 

During the testing of the algorithm an attempt was 
made to determine an optimum arbitrary matrix. One 
choice was to use the results that had been stored in the 
inverse matrix by the Gaussian elimination procedure 
at the time the singularity was detected. This will give 
a reasonably good approximation for some entries in 
the inverse. At the next step, the modification pro
cedure will improve the initial approximate inverse. 
This is the matrix that was used if the Jacobian was 
singular. 

Seletion of the Scalar ti 

The Euclidean norm of the vector fi should approach 
zero as a solution is reached. When t i is selected so th'Bt 
the norm of fi is a nonincreasing function of i, the 
divergence is prevented. 

The first guess for t i is always + 1. If this satisfies the 
condition that the Euclidean norm of fi+l(Xi + tiPi) 
is nonincreas~ng with respect to the norm of fi, then 
ti = 1 is used. If not, then a quadratic minimization 
procedure similar to one given by Broyden1 is used. 
Ten attempts are made to find a good value of t i. At 
that point the final value of ti is used and the correspond
ing modifications are made on the inverse Jacobian 
and the f and x vectors. Obviously, the Euclidean norm 
may not be decreased but at the next step the direction
al change in the correction vector will result in norm 
reduction with relative ease. 

In the process of selecting t i ,ji+1, Xi+l and the norm of 
fi+l are all computed. These values are all saved for 
future use in the ~omputational procedure. 

Convergence 

. The necessary degree of accuracy should be deter
mined by the application and specified for each case. 
The norm of the function vector can be used as a con
vergence criterion; the absolute value of each element in 
f can be checked to see how closely it approaches zero; 
ora comparison between the norm of Pi and the norm 
of Xi may be used. This last method implies that if the 
norm of the vector Pi which is used to cor~ct the solu
tion Xi is less than some epsilon times the norm of the 
solution, then convergence is already attained. Since 
Pi = -Arlfi,animplicittestismadeonfi. 

This last criterion presents an advantage because the 
prediction vector as well as the function vector is con
sidered, so this was the criterion selected. 

If the iterative procedure is not converging, provision 
must be made to terminate the problem. A value equal 
to 2n2, where n is the order of the system, is computed. 
The maximum of this value or 50 is used as an upper 
limit on the number of iterations allowed. Terminati.on 
is enforced when this number of iterations has been 
attained whether or not a solution has been found. 

Modifieation of inverse Jacobian 

If the convergence criterion is not satisfied, then the 
inverse Jacobian is modified accoraing to equation (15). 
The new values of Xi and f i that are stored as Xi+! and 
fi+! are placed in the appropriate vectors. 
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Continuing the iterative process 

The value of i is set equal to i + 1. If the max mum 
number of iterations will not be exceeded, the iteration 
is repeated from the evaluation of Pi. 

The subprogram 

The procedure described was programmed in general
ized subroutine form using variable dimensioning and 
making use of the option of an external subroutine to 
evaluate the set of functions. The external subroutine 
can be varied from one application to the next without 
affecting the main subroutine that performs all the 
other invariate calculations. 

As a second option, the subroutine that evaluates the 
initial approximation to the Jacobian is declared ex
ternal.The usual approximation is given as follows, 

(17) 

where h (.001) (Xi). This approximation has been 
programmed into a subroutine. 

However, in any specific case if a better method of 
approximation exists, a subroutine which evaluates this 
approximation may be declared external and replace 
the first approximation subroutine. Results using the 
first approximation were so satisfactory that this second 
option was not utilized in the cases discussed here. 

Timing and accuracy 

The method was programmed in Fortran V on. the 
Univac 1108 for single precision input and output. 
TABLE I, which follows, reflects the order of the sys
tem, the accuracy of the result, the number of iterations 
and the time required on the Univac 1108 for ten sample 
problems. Following the table the defining equations 
are given for each system. 

Order N Accuracy Iterations Time in sec. 

1. 3 10--6 19 .02 
2. 3 10-6 11 .01 
3. 2 10-5 15 .01 
4. 2 10-& 11 .01 
5. 2 10-7 21 .23 
6. 4 10--6 7 .02 
7. 5 10-7 10 .02 
8. 10 10-7 13 .09 
9. 20 10-7 17 .40 

10. 30 10-7 18 .90 

TABLE I-Timing and accuracy of the subprogram 

The defining equations, the initial vector, and the 
solution obtained in each test case are given as follows. 

1. fl = X 12 + X22 + Xa2 - 5 
f2 = Xl + X 2 - 1 
fa = Xl + Xa - 3 

[ -VsJ .[ 1 ] Xo = 1 + V5 X = 0 
3 + V5 2 

F. H. Deist and L. Sefor'. 

2. same as 1. 

x·=[U [ 

1.66667 ] 
X = -.66666 

1.33333 

3. f 1 = X12 + X22 - 1.0 
f2 = 0.75 Xla - X 2 + 0.9 

(18) 

[ 
-.4 ] X = [ -.98170. ] 

Xo = -.1 (19) 
.19042 

V. A. l\latveev6 • 

4. same as 3. 

Xo = [ 1.3] X = [ .35697 ] 

-.3 .93412 

5. fl = 10(X2 - X12) 
f2 = 1 - Xl 

x. = [: ] X = [: ] (20) 

H. H. Rosenbrock6• 

6. fl = 20Xl - COS2X2 + Xs - sin Xs - 37 
f2 = cos 2Xl + 20X2 + log (I + X42) + 5 
fa = sin (Xl + X 2) - X 2 + 19Xa + arctan Xa - 12 
f4 = 2 tanh X 2 + exp( -2Xa2 + .. 5) +. 21 X4 

O. G. Mancino? 

r 1.896513l 
X _ -.210251 -l .542087 J 

.023885 (21) 
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7., 8., 9., 10. Are all defined by the. same general 
equations 
fl = - (3 - .5Xl) Xl + 2X2 - 1 
f, = X'-l - (3 - .5Xi) Xi + 2X'+1 - 1 
i = 2, "', n - 1 
f" = X,,-l - (3 - .5Xn ) X" - 1 

C. G. Broyden.1 

ApplicationDf the subprogram 

Equivalent systems 

(22) 

To demonstrate the equivalent mathematical for
mulation of a set of . defining equations for different 
systems, a very simple example of a dual application 
will be given. 

Consider the nonlinear resistive network given in 
Figure 2. 

Let the voltage drop across each resistor be Vi = 

RiI/'. Then from Kirchoff's laws the system may be 
completely described by the following three equations 
and II, 12, and Is may be determined uniquely. 

----+ 
II 

Asa second example, consider the hydraulic network 
in Figure 3. 

Let the pressure drop across each member be ex
pressed as Pi = (aL i /D i 4.86) Ql·85 = B i Qi·85, where a 

is a constant, Li is the length, Di is the diameter, and 
Qi is the flow. The flow through each member may be 
determined from the following equations which describe 
the system. 

PUMP 

1--E 

FIGURE 3-A nonlinear hydraulic network 

FIGURE 2-A nonlinear resistive network 
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Equations (23) and (24) are identical in form al
though they originated from different sources. The, 
solution to either example may be determined by solv
ing the same set of nonlinear equations. 

From th}s second example an additional feature of the 
subprogram may be pointed out. The subroutine that 
evaluates the set of functions may be dependent on 
other calculations for the elements in the expressions. 
When the determination of a single element becomes 
involved, a subroutine may be used for this calculation. 
Finally, depending on the states of the system, control 
may be transferred to various segments of the subpro
gram and the appropriate operation performed. The 
versatility of a particular subprogram may be greatly 
increased in this manner. 

Cable tension program 

An application to which this'method of 'Solution was 
applied was the stress analysis of a suspended cable. 
Analysis for a uniformiy loaded cable does not give an 
acourate picture of what actually happens under envi
ronmental conditions such as wind and ice or for concen
trated loads. 

The cable in Figure 3 is suspended between two points, 
A and B. The stress conditions may be considered 
forces acting on the cable at certain positions and are 
represented by the k weights. 

By writing the static equilibrium equations for each 
elemental segment, a set of equations for expressing the 

1-- 7~'O"'~ 1c r /11 

/1---------

W
N

_
1 

w, 

FIGURE 4-Suspended cable under stress 

change in each direction as a result of each load is 
obtained. From these equations for eaoh segment, the 
total stress on the cable in each direction may be deter
mined. 

The position of B calculated by this method will not 
coincide with the actual position of B. A set of nonHl1ear 
equations expresses the change in the position 0 .. B. 
As this change is minimized, the calculated tension L 1. 

the cable approaches the actual tension. 
The loads on the cable may represent any environ

mental conditions either singly or multiply. Analysis of 
the stress performed in this way gives a much more 
accurate solution that the assumption of a uniformly 
loaded cable which was previously used. 

This problem is a good example of the extended 
capabilities that are available with the external sub
routine to compute the function evaluations for the 
nonlinear solution subprogram. The external subroutine 
which we will call CNTRL acts as a monitor to deter
mine what operations· will be performed in a second 
subroutine, CABLE. The CABLE subroutine reads the 
data, computes the function evaluations and calculates 
the final state tension. CABLE, in turn, calls a second 
subroutine ELEM to evaluate the components of the 
equations which are evaluated in CABLE. The com
plexity of the equations and of the individual elements 
is such that this approach greatly simplifies the pro
gramming. 

Applications to functional optimization 

Finding a minimum of a functional of several varia
bles is a frequently encountered problem. Many optimal 
control problems fall within this category; so with an 
appropriate set of equations for the problem this sub
program may be used to find a solution. 

Both a minimization problem and an optimal control 
problem will probably have constraints on the solution. 
In a control problem both initial and terminal con
straints on the state and costate variables and inequal
ity constraints on the state and control variables may 
be expressed as a penalty function in the formulation of 
the problem. Lasdon8 and others have derived a method 
of approach involving the conjugate gradient technique 
which may be adopted to the given subprogram. 

The determination of stability domains for nonlinear 
dynamical systems also involves functional optimiza
tion. As in the optimal control problem; provision must 
be made for the constraints that operate on the given 
system. 

The second method of Liapunov may be used as a 
theoretical basis for stability determination. 

A nonlinear dynamical model may be expressed as 
the following n~dimensional system of autonomous 
state differential equations, 
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--.--------------------------------------------------------------------------------------
x = Ax + f(x) = g(x), g(O) = 0 . . (25) 

where f(x) contains all the nonlinear terms. 
The method is based on choosing a quadratic Lia

punov function V which yields the largest estimate of 
the domain of attraction for the system given in equa
tion (25). 
. Figure 5 shows the projection in two dimensions of 
the quadratic Liapunov function. 

To find the optimal or largest stability domain, one 
needs to maxiI:niz'e the area of the ellipse represented by 
Vex) = C subject to the conditions Vex) ~ 0 and x ~ O. 
A complete discussion of this problem is given by 
G. R. Geiss.' 

Hydraulics network 

The analysis of a hydraulic cooling system is a specific 
example of how the subprogram may be used in net
work analysis. 

The temperature drop across any heat exchanger may 
be calculated if we know the corresponding pressure 
drop. If we assume that the positions of the valves are 
held stationary, then from the conservation equations 
that describe the system, one can determine the pressure 
drop across each heat exchanger. With the known 
environmental conditions, the external temperature in 
the vicinity of each heat exchanger may ultimately be 
determined. 

On the other hand, if a specific external temperature 
is desired, the position of each valve may be calculated 

Ii(x)<o 

OOMAINOF 
ASYMPTOTIC 
STABILITY 

Ii(x) >0 

Ii(x) >0 

~ .( __ ...::::.v..:::. 

ONE OF A SET OF 
NESTED ELLIPSES V(X)=.C 

v(x)<o 

FIGURE 5-Two dimensional portrayal of region of stability 

to give the proper flow through each member to cause 
an appropriate preSsure drop. A very general program 
may be written to analyze a very general network. The 
elements and their connections may be read into the 
computer along with the various parameters that are 
necessary. The complete process of analyzing and 
solving the network is supervised by a program which 
will eventually use the subprogram for solution of 
simultaneous nonlinear equations. 

As networks become more complex, this approach 
will greatly reduce the time spent in tedious calcula
tions. 

Application to statistical modeling 

Many statisticians are involved in constructing 
models on the basis of experimental data. The model 
may then be used to draw conclusions and predict 
future outcomes. Frequently these models are non
linear and will result in nonlinear equations. After' a 
model has been developed, its accuracy must be con
stantly verified. 

Using the equations of the model and the equations 
that describe the data the validity of the model may 
be determined. Since the model is assumed to be 
nonlinear, the resulting analysis will involve simul
taneous nonlinear equations. 

Other statistical applications that may require the 
solution of a set of simultaneous nonlinear equations 
are nonlinear regression analysis, testing likelihood 
estimator functions and survival time analysis. The 
many fields that use decision theory would then have 
the same applications. 

As a simple illustration of the preceding application, 
suppose that it has been observed that in a sample of 
two hundred persons, twenty-two possess a certain 
genetic characteristic. Suppose, further, that the char
acteristic is inherited according to a hypothesis which 
predicts that one-eighth of those sampled can be ex
pected to possess the characteristic. The model would be 
a frequency function that would enable the observer 
to infer' future outcomes and detect disagreements with 
his theory. The solution of an appropriate set of non
linear equations will express the relationship between 
the model and outcome. By this type of analysis the 
hypothesis may be accepted or rejected or reformulated. 

CONCLUSIONS 

The algorithm presented here can be programmed for 
a digital computer with relative ease. The speed of 
computation, the number of iterations and the accuracy 
of the solution compare very fav.orably with other 
methods in current use. Since the information from 
each preceding iteration can be used to modify the 
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inverse Jacobian, the time involved and the complexity 
of operations in each iteration are minimized. In this 
way the inversion of the Jacobian at each iteration is 
avoided. 

The examples presented demonstrate usages in 
mathematics, statistics, and several engineering fields, 
and -these examples do not begin to exhaust the appli
cation areas. The usages ar,e so numerous that it would 
seem desirable to have this type program widely avail
able particularly in -any software library designed for 
application purposes. 
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An economical method for calculating the 
discrete Fourier transform 

byR. YAVNE 

RaytMon Company 
Bedford, Massachusetts 

INTRODUCTION 

With the advent of digital computers it became possible 
to compute the Discrete Fourier Transform for a large 
number of input points in relatively reasonable times. 
However, for certain uses a demand developed to com
pute the Discrete Fourier Transform in a very short 
time or even in real time. Also, a demand developed for 
computing the Fourier Transform for a very large num
ber of input points. These demands resulted in a re
quirement for computing the Fourier Transform in the 
fastest time possible. A very economical way for com
puting the Fourier Transform was developed a few years 
ago and is known as the Cooley-Tukey Algorithm. This 
article describes another algorithm for computing the 
Discrete Fourier Transform where the required number 
of additions and subtractions is the same as in the 
Cooley-Tukey Algorithm; but the required number of 
multiplications is only one half of that in the Cooley
Tukey Algorithm. 

The discrete Fourier transform and the Cooley-Tukey 
algorithm 

The Descrete Fourier Transform may be expressed by 
the following equation: 

N-I . ZwkDT N-I _j~ 
NF = I l e -J NT I,_ l'I 

n k=O k k=O K e forn=O.I.Z ••••• N_1 (I) 

In this equation, f 1c is the kth equally spaced discrete in
put point of the time function to be transformed. N is 
the number of samples entering the transformation. 
F" is the nth term (the nth filter) of the Discrete 
Fourier Transform. The symbol T represents the time 
interval between input samples. Each term has a fre-

2r 
quency bandwidth of NT and is centered at the fre-

115 

2rn 
quency NT-

The Cooley -Tukey Algorithm is a very economical 
way of numerically computing equation (1). (It uses a 
small number of additions and multiplications.) This is 
especially true when N is a power of 2 only. To develop 
this Algorithm for N = 2V we first note that: 

. ( + 2'11'kn) • 211'kn - J 11'11 -,;r n - J -,;;r 
e = (-1) e 

(2) 

Therefore equati,on (1) can now be rewritten as: 

N-I ZIIka!t- I 
~ -j,,- , [ ] , Zilka NFn = ~ 'k- .. r + (_Un' • -J.,,-

k=O k=O ,'k 'N + It for n=O.I •••• H-I 
T (3) 

Let 

(4) 

and 

(5) 

For n even we can write n = 2t and obtain: 

~- 1 H 1 
_j~ r - _j Z., 

NFU= r alt- : r 0:_ N7I for,'=O.I., .... ~_1 (6) 
ltd ltd k , 

Equation (6) is identical in form to equation (1) but it 
has half the number of input points and double the time 
interval be~ween two points, since only the even num
bers of the sample points were used. As a result of this, 

the O"s may be treated as a new set of ~ input points 
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for a Discrete Fourier Transform. 

For n odd = 2.t + 1 we get: 

N N 
r - 1 -J Zwk(A' + I) r - I· ( -J~) _j Zwk' 

NF Zl + I· r Ike • r 'Jte .."'R7I 
k=O k=O 

lor' = O. 1 ••••• ¥- _ 1 (7) 

2-irk 
After the a,e'S are multiplied by e-1 N they can also 

be treated as a set of new input points to a Discrete 
Fourier Transform but, with half the number of points 
and double the time interval between samples. This 
nrst step which divides the input points into O"'s and a's 

d I . l' h . 27rk an . mu tIP les tea's by the approprIate e-1 N is 

~hown in Figure 1 in a flow chart form for eight points. 
After this, the process is repeated with two groups, 

each containing N 12 input points. The next repetition 
will be with four groups, each containing N 14 input 
points. This continues until N = 2V groups are obtained, 
each containing N IN = 1 input point. These last input 
point.s are the desired NF ,.'s of the Fourier Transform. 
A complete flow chart of eight input points is shown in 
Figure 2. 

As seen in Figure 2, the output is riot in the regular 
numerical order. The transformed order may be ob
tained by expressing the numbers 0, 1, 2, ... N-1 in a 
hinary system, using 1) digits for each number, and re
versing the bit order of each number. The new binary 
number will show the order of the output. As a result, 
we may say that the output is in a bit reversed order. 
The hit reversal for N = 8 = 23, is shown in Figure 3. 

Another method for obtaining the desired output 
order is as follows: start with zero. Divide N by two and 
add this to the zero to obtain the second number. 

Divide ~ by two and add this to the zero and the 

(U) 
'0 "0 

'. ... 
'z "2 

" .. , 
'4 • _1 2

;0:. 
80 .1 

Z"" 

'5 
.-1. . _jZ", 

a.e .-

I, • _I
Z
:

Z 
:-i -is2 

• -i~:_Je-I~' 2'" 
'7 -is,.iT 

FIGURE I-Conversion of a set of 8 input points into 2 new ~ets 
fo 4 input points each 

IU) 

'0 ""0 
NF4 

'2 NFz 

'3 NF6 

'4 NF, 

'5 NF5 

'6 NF3 

'7 ""7 

FIGURE 2-Complete flow chart for the Cooley-Tuke-y Fourier 
transform for 8 input points 

lUI 

DEC'MAl REPRESENTATION BINARY REPRESENlIIITlON BINARY DECIMAL 

OF NUMERICAL ORDER OF _ERICAL ORDER BIT REVERSAL OUTPUT 

000 000---0 

001 100---4 

010 0'0---2 

011 110---6 

100 00'--_ I 

101 10'---5 

------ 110---_ 011--_ 3 

------ 111---- 111--_ 7 

FIGURE 3-Bit reversal method for 8 input points 

(0 + ~) to obtain two more numbers. Divide ~ by 

two and add to the four generated numbers to obtain 
four more numbers. Continue until N IN is obtained, 
which is also added to all the previously generated 
numbers. This completes the process. 

A demonstration of this method for N = 8, and 
~ = 16 is shown in Figure 4. 

It is worth noting that in the bit reversed order, the 
numbers in the case N appear as every other number is 
thecase2N. 

There are many variations of the Cooley-Tukey 
Algorithm. However, all require either the same or more 
arithmetical operations as the method described Pt:e
viouslyand shown in the flow chart in Figure 2. This 
paper, however, is mainly concerned with a new 
algorithm, which uses the same number of additions, 
but only half as many multiplications as needed by the 
Cooley-Tukey Algorithm. 

The number of additions and multiplications re
quired for the Cooley-Tukey Algorithm can be obtained 
by inspection of Figure 2. They are as follows: 
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CU) 01 
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' 
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14 
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• 

FIGURE 4-Method for generating the bit reversal order 

Number of complex additions and subtractions: 

Additions = N LogZN = Nv 

Number of complex multiplications: 

Multiplications ::: ~ (v-I) 

D I t · h ul . I" . 21r0 d e e lng t e m tIP !CatIOns e -1 N = 1; an 

(8) 

. 21r N / 4 . h' h d b I e -, ~ = -J, w l~ are not compute y mu-

tiplying, we obtain: 

N N N 
Multiplication. = 2 (y - 1) - 2(2 - 1) = 2 (y - 3) + 2 

(10) 

Expressing equations (8) and (10) in terms of real 
additions and multiplications we have: 

Ileal addition. = 2Nv + 2 f ~ (v - 3) + 2] = 3N (v·- 1) +.
(11) 

and real multiplications = 2N (v - 3) + 8 

(12) 

The extra increase in the number of additions is based 
on the fact that a complex multiplication is made up of 
four real multiplications and two real additions. 

The amouilt of savings in operations is easily ob
served when compared with the straightforward pro-

cessing of equation (1) which requires multiplications 
and additions each of the order of N2. 

As shown above, the Cooley-Tukey Algorithm is 
economical in the required number of add and multiply 
operations. However, this is not yet optimum. The 
search for a more economical way of solving equation 
(1) results in a new algorithm which is more economical 
than the Cooley-Tukey Algorithm. The required num
ber of real additions is the same in both algorithms; 
however, the required number of real multiplications 
has been cut in half to: 

Real multiplications = N (v - 3) + 4 
(13) 

This algorithm is believed to be optimum as far as the 
number of required operations is concerned; however, it 
is more complicated, and therefore may result in a more 
difficult control problem when it is processed by a 
digital computer. 

The new algorithm 

The analysis of the new algorithm is restricted to 
, numbers of inputs, N, which are pmyers of 2, namely, 
N = 2V. The start of the algorithm is the same as in the 
Cooley-Tukey Algorithm. The input points are divided 
into O"s (sums) and 8's (differences). The O"S are again 
treated as a new set of input points, as shown by equa
tion (6). However, the 8's are not multiplied, as in 
equation (7), but are processed as shown by the follow
ing equation: 

~- I 
Co -J hle(fI + I) 

NF2,f + I" ~o \e " [10 + (-I)' (-j) I ~ ] 

't- I 

+ t.1 {[ \ + (-I)' (-J) I l! . J -[IN -(-I)' H) I J} 
.. - r- Ie ~+Ie 

co. Z1Ik(fI + I) .. [10 + (-I)' (-j) I ~J + f -I ["Ie - 6 N 
•. Ie=1 r - Ie) 

+ H),f H) (I N+ I N 'J co. 11Ik~A; + I) 
T- k T+ k 

This equation is valid fort = 0,1,2, .... (~ - 1). 

Equation (14) was derived with the aid of the follOWIng 
equations: 

2*1' + I) 
-j N z"k(ZI + 1) _j liD hk(W + I) e a COl N (15) 

N N 
211k(A

' 
+ I) I z"q- - k)(ZI + I) I h(T + k)(ZI + I) 

COl .. (-I) liD N a(_1) lID N (16) 

N 
11Ik(W + I) Zw'T - k.(II + 1) 

COl a-COl N (17) 
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Equation (14) actually requires as many multiplications 
as equation (7). However, the complex multipliers of 
equation (7) are replaced by real cosine multipliers in 
equation (14). A multiplication of a complex number by 
a complex number requires, in general, four real multi
plications and two real additions. A multiplication of a 
complex number by a real number requires only two real 
multiplications and no real additions. The saving in the 
number of real multiplications holds for the new algo
rithm, but the saving in additions does not hold since 
the new processing requires exactly as many new addi
tions as has been saved by the real cosine multipliers. In 
equation (14) it is seen that if .e = 2m is even, then the 
term (-I).e is equal to + 1, and if .e = 2m + 1 is odd, 
then the term (-ll is equal to -1. Therefore, we may 
break up equation (14) into the following two equa
tions: 

For.t even we have: 

¥- - I 

NF 4m+l = (6
0 

- j 6 N) + r [(~ . 6 N ) • j (6 N + 6 N ) ] 
4' 1t=1 '1'"- It T - It 4' + k 

coa Zwlt(t' + 1) 

a.nd for .t odd we have: 

coa hk(~m+3) 

N 
Both equations hold form = 0,1,2, ... , ("4 - 1) 

If we reverse the order in equation (19) we obtain: 

NF 4M+3 = (60 + j 6 N) + 
4' 

coa hkIJM+3) 

¥- - I 

L [(6k • 6 N ) + j (6 N + 6 N ) ] 
k:1 T . k 4' - k 4' + k 

¥--t 
=(60 +j6 N )+ r [(~.6N ) 

T k=1 T - k 

For M" <¥- - I). <¥- - Z), <¥- - 3) .... (¥- -¥-) 
aDd m,. 0, I, Z, .... (¥- - 1) 

aince: 

(18) 

(1') 

(20) 

Zwk [ ~ • ttl + 3] [] 
coa . N • coa hk(~ - 4" "co. hk ~"tU + I (zOe) 

To simplify the expression of equations (18) and (20) 
we introduce the following notation: 

(U) 

(ZZ) 

(Z3) 

[ (6k - 6 N. ) + j (6 N + 6 N . )] :: ~ 
T- k T- k T+ k 

(Z4) 

coaine Zwk (:;n+l) ::Ck (4m+l) (Z5) 

With these notations we obtain for equations (18) and 
(20) : 

¥-.I f-I 
NF 4m+l .. Po + 1: P k Ck (4m+I) .. r 

k-I ,1( .. 0 

for m:O, I, 2, ..... (¥-. 1) 

~. 1 

NF4M+3 = Q + r 
o k=1 

f. I 
~ Ck (4m+l) = r 

k .. O 
~ Ck(4m+l) 

for M:: (f· I), (¥-. Z), <¥-. 3) .. ;Z, I, 0 

aDd m: 0, I, Z, ... cf - 3), (f -2), (f· I) 

(26) 

(27) 

Equations (26) and (27) will require identical pro
cessing procedures. However, the outputs for the odd t's 
will reverse their order as compared to the even t's 
(which will appear in the bit reversal order, as will be 
shown later in this paper) . 

A flow chart for a sixteen point input case for process
ing the ci's up to the Pk and Qk terms is shown in Figure 
5. 

Equations (26) and (27) are of the same form as equa
tion (1) but with real cosine multipliers instead of the 
complex exponential multipliers of equation (1). Un
fortunately, the method of processing which leads to the 
Cooley-Tukey Algorithm is not. applicable to equations 
(26) and (27). The reason for this is that an exponential 
multiplier can be split in a manner shown in the follow
ing equation: 

e - j (a + b) = e. - ja • e - j b (28) 

This does not hold for a cosine multiplier, since III 

general: 

cos (a + b) =1= cos a • cos b (29) 

A new processing algorithm, which has the same order 
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FIGURE 5-Generation of ·the P and Q set from a set of 16 
input points 

of efficiency as the one used in the Oooley-Tukey 
Algorithm, had to be designed for the cosine multipliers. 

Since the PIc'S and <be's require identical processing, 
only the PIc'S need be discussed. First, we multiply the 
PIc'S by the Ok (4m + 1)'s. Figure 6 show the multi
plication process of the P's for the case N = 16. To ob-

CO: I 
Po 0 o Po 

PI 0 
CI 

o PI CI 

P2 0 
C2. o P2 C2 

P3 0 
C3, o P3 C3 

FIGURE 6-First multiplier set for the P set for the case N = 16 

tain the NF4m+1 output term, add all the multiplied 
PIc terms. The order of obtaining the output terms de
pends upon the order of selecting the m's. For simplic
ity, we start with m = O. The first output term will 
therefore be NFl. This output term also is the first odd 
term in the bit reversal order. The next output term in 
the bit reversal order is NF N . The calculation of this 

'2+1 

output term is related to the calculation of the term 
NFl, and therefore will be computed next. To obtain 
the NF N output term we must subtract the sum 

2' + 1 

of all the odd multiplied PI: terms. This is easily seen 
from equation (26) which results in the following equa
tion: 

~- 1 

NFN = L 
T + 4m+l k=O 

~- 1 

P k Ck (f + 4m+l) = L 
k=O 

¥- + 4m+l 
Pkco.2wk~ 

(30) 

To make best use of equation (30) we place a constraint 
on the method of adding, that is, the even multiplied Pi 
terms should be added separately from the odd PIc terms. 
At the end, the sum of the even terms and the odd terms 

will yield NFl, and the difference of the even terms and 

the odd terms will yield NFN . One method of adding 
2+ 1 

the (~ - 1) terms, which fulfills the above/mentioned 

constraint, is as follows: First, add Po and the middle 
N . N 

term P~ 0(8); next add Pk Ok and P ~-k 0(4 - k) 
8 4 

for k = 1, 2, 3, .... (~ - 1). The output is ~ terms 

added by pairs. The reason for selecting this method of 
addition becomes clear from the following analysis. To 
simplify further analysis we introduce the new notation 

PkCYk= U Y k (31) 

with this notation, the first process of addition yields 
two results 1AI and 1BI,k where: 

(32) 

and: 

(33) 

We repeat the same process of addition with 1A1 and the 
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lB1,,, 's, which consist of ~ terms, and obtain: 

IBZ.k = [IBI.k + IBI,N _ ] = [IUk + IUN i 
'8 k "ilk 

k = I.Z.3 ••• (~ - l) 

After the ith repetition we have: 

+ I U N + I U 3N + I U 5N +. •• • + lUi ] 
. zt+T 2m":IiI" (Z(l)N 

Z . Z + 

lor k = 1.2.3 •••••• (-:rVr • I) 
. 2 

After h.· 3) repetition. we ha .. : 

(34) 

(35) 

(36) 

(37; 

+I U4N +I U4N ]fork=I=(~_I) (39) (n - I) - k (n - I) + k Z"- + 

A simple inspection of equations (38) and (39) shows 
that Av-s contains all the even U terms and Bv-s,l con
tains all the odd U terms. Adding and subtracting 
yields: 

NF 1 = lAv_3 + 1 B v_3 , 1 (40) 

NF' = A - B 
N + 1 1 V - 3 Iv - 3, I 
Z (41) 

A .Bow chart for adding the U's is shown in Figure 7 for 
the case of N = 64. 

(U) 

FIGURE 7-Addition of the "U" set for the case N =64 

I t is naturally not enough to be able to compute two 
output terms. It should be possible, in the adding pro
cedure, to. produce new terms so that at the end of the 
summation . all the output terms will be available. To 
accomplish this, each time we add terms, we also sub
tract them. It will be shown that the difference terms 
can be used. to produce new terms for computing the 
other output terms. The principle of producing the new 
terms is based on the following formula: 

z cos a. cos f3 = cos(a.+f3) + cos(a.-J3) (42) 

Before using this formula return to the first step in 
the addition process, as given in equations (32) and (33). 
The difference terms are produced as follows: 

IDI =[IUO - lU~] =[po - p~c~] 

(43) 

lEl.k = [IUk - lU~ -k] fork = I.Z,3 .... (~ - 1) (44) 

Multiply equation (44) by (-2C2k), and using equa
tion (42) obtain: 
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(45) 

The terms IBI,k were already computed. Adding them 
1,0 equation (45) we obtain: 

The expressions 3AI and - 3BI,k are the result of the 
first step in the previously discussed addition process, 
except that the 3BI,k'S have a minus sign in front of 
them. We may continue: 

3
A

Z = [3
Al - ( -3

Bl'¥r;) ] 

and: 

-3
B

Z,k = [-3
B

I'k +(-3BI'l! _ k.) ] 

for K .. I, Z, 3 ... (N - 1). 
17) 

(46a) 

(46b) 

continuing this process we obtain the terms aAlJ-3 and 
- 3BIJ- 3,1; but, 'aAV-3 = N-aAlJ-3, and - 3BIJ- 3,1 = 
- N-3BIJ- S,I, since 

C1\k = cOline Z ;('k = cOline Zwk~N-n) = C(N-1t)k (47) 

Adding the terms N-aAV-3 and -N-3BIJ- 3,1 we obtain 
the output term NF N+N~3 which is equal to NF N-3. 

2 2 
Subtracting the term - N-3B IJ- 3 I from N_3AIJ- s we 
obtain the output term NF N-S. We cannot obtain the 
output terms NF N+3 and NF 3 because these output 

2" 
terms are constructed by the Q expressions and not 
bytheP's. 

After completing the first step of adding and sub
tracting, and after mUltiplying the subtracted term-s 
by the appropriate cosines we will have two sets of 
terms, those prefixed by ones (IAI and the IB1,k'S) and 
those by threes (3AI and the -3B1,k'S). At this point we 
repeat the addition and subtraction process for each of 
the sets to obtain lA2 and the IB2,k'S and ID2 and the 
IE2,k'S. We also obtain' aA2 and the -3B2,k'S and SD2 
and the -sE2,k'S. Figure 8 is a flow chart for N = 64, 
which shows the first two steps of the addition and sub
traction process discussed above, and also the pro
cessing of equation (46). Notice that the results after 
processing equation (46) are in reverse order and there-

iJo ,A. 

p, ,11,1 

/.I. ,Ia,a 

,us ~ 

P4 Pz 

1-11 ,.~ 

~ "1,1 

IlJ7 ~l,I 

,lie sDz 

,lie ;El,I 

,lI,o iEz,! 

p" ",E~ 

,lJ,z sAz 

,UIS ilz,s 

,u", '111,1 

,UIS T'i, 
N=64 

FIGURE 8-Proces~ing of the "U" set into A,B,E, and D sets of 
the second order 

fore the' appropriate second step of the addition and 
subtraction process had to be reversed. 

The described method of processing is general and 
applies also for the case where m is not equal to zero. In 
this case, the appropriate multipliers would' be 
-2C2K(4m + 1) as seen from the following equation: 

[Pk Ck(4m+l) - PN C(¥ - k)(4m+l)] [-ZCZk(4m+l)] + P Ck(4m+1) 
.-k k 

N 
+ P N C(. -k) (4m+1) '" - P k C3k(4m+l) - P C3(~ _ k) (4m+l) 

.-k ¥-k ... 

(48) 

- Pk C(N-3)k(4m+l) - P N C(N-3) (¥ - k) (4m+l) 
• - k 

for k '" 0,1, Z, ... , (l! _ 1) 

Actually two new pairs of data can be obtained by 
multiplying by 2C(22r+lk) (4m + .1) for any positive 
integer of r. However only the multiplication by 2C2k 
(4m + 1) results in two pairs of data where one pair is 
already available and. can be subtracted to obtain the 
new pair. 

The substraction terms in the second step of the data 
processing are similar to the addition terms given in 
equations (34) and (35), and are as follows: 
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= ~z (49) 

w •• 1eo hay.: 

(50) 

For II = I, Z, 3 • • • • , (it - I) 

We multiply equation (50) by + (2C4k) and obtain: 

I
E 2,1I(2C41t) " [ SUII + SUN + SUN + SUN ] + [ u + U 

.-11 T-It T+ 1t 31t 3~_k 

(51) 

+ 3 UN + 3 UN ]" B + B For T - It T + It 5 2,It 3 2,It 

k =1,2 •••• , (-11- - I) 

The terms -aB2;k have already been computed, and by 
adding them to equation (51) we obtain: 

From equation (46). and (46h we have: 

(53) 

and 

(54) 

Multiplying equation (54) by (2C4k)-we obtain: 

- 3E Z,k(ZC4k) = - [7Uk + 7UN + 7UN + 7UN ] .-k T-kT+k. 

For k = 1. Z • • •• • ( "* _ 1) 

The terms IB2,k have already been computed, and by 
adding them to equation (55) we obtain: 

- 3E Z, k (ZC4k) + 1 B Z, k = - 7 B Z, k 
(56) 

Completing the addition· process for the two sets we 
will obtain: (6AV-3 ± ~v-a) which are equal to the 
respective output terms NF6 and NFN We will also 

2"+6 

obtain 7AV-S± (-'lBv-a) which are equal to the 

respective output terms NFN and NFN- 7 (see equa-
. 2"-7 

tion (47». 
In the second step of processing we see that the data 

in the two sets get interchanged. The first set results in . 
'lA2, and, 6B2k, and the second set in 6A2, and -7B2,k. To 
simplify the processing, we exchange the places of the 
lE2,k and the -aE2,k terms before they are multiplied by 
the 2C4K terms. Figure 9 is a flow chart for the case 
N = 64, showing the second step of addi~on and sub
traction, the exchange of terms, and the multiplication 
by the 2C4K terms. 

Inspection of Figure 9 shows that from this point the 
processing becomes repetitious. We started with two 
sets of data (lAl; lBl,k) and (SAl; sBl,k), and finished 
with double the amount, namely four sets of data, one 
step further in the processing. We ended with (lA2; 
lB 2,k), (7A2; -7B2,k), (SA2; 6B2,k) and (SA2; -3B2,k). The 
sets with a prefix equal to one, modulo four, have plus 
Bk's, and appear in the chart with larger k's going down 
the column. The sets with a prefix equal to 3, modulo 
four, have minus Bk's, and appear in the chart with 
larger k's going up the column. Figure 10 shows the next 

N=64 

A I IA Z 

B 1,1 I BZ,I 

18 1.Z IB2,2 

IB I.3 18 Z,3 

IB I,4 7 A Z 

18 1,5 t 8 Z,3 

18 1,6 7 B Z,Z 

BI,7 7 8 Z,I 

3A I 5A Z 

3 8 1,7 5 BZ.I 

3 8 11 6 5 8 Z,2 

38 1,5 5 B2,3 

38 ',4 3 A Z 

,1 1,3 :;8Z,3 

3 8 1, Z 38 2,2 

38 1.1 :;82,1 

FIGURE 9-Processing of 2 set.s of A and B of the first order into 
4 sets of A and B of the second order 
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-,8, .. NF .. 
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FIGURE 10-Processing of 4 sets of A and B of the second order 
into 16 final outputs for the case N =64 

step in the processing for N = 64 and also the last step 
and the final outputs. 

Inspection of Figure 10 shows that the output terms 
based on the P's occupy the first half of the odd num
bered output terms in the bit reversed order for N = 64. 
Reviewing the method of processing it is seen that we 
began with the set of data (lUO; lU k) for k = 1, 2, 3, ... 
N . 

(4" - 1). This set may be renamed as (lAo;lBo,k). After 

addition, SUbtraction, and multiplication by (- 2C2k) 
we arrived at the two sets (lAl ; lBl,k) and (sAl;-sBl,k). 
From this point the method became repetitive. We 
added and subtracted the two sets of data; we ex
changed positions of the two neighboring E's and multi
plied each set by (2C4k). This resulted in four sets of 
data, namely, (lA 2 ; lB 2,k), (SA2; -3B 2,k), (SA2; sB2,k) and 
(7A2; -7B2,1:). This process may be continued until the 
final outputs are obtained, as shown in Figure 10. The 
author proved that this continuation is always pos
sible. The proof is based on a full induction method. 
However, for brevity the proof is not included in this 
paper. The author also proved that the final result will 
be in the bit reversed order. This proof is also based on a 
full induction approach. A complete flow chart for this 
process is shown in Figure 11 for the Case N = 64. It is 
seen from Figure 11 that the flow chart pattern is re
peated every three columns. The first nine columns do 

FIGURE ll-Flow chart for the discrete fourier transform for the case ~ =64 
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not show certain details of the pattern because the co
lumns of the flow chart are terminated at the Nth input 
point, while the missing details in the first nine columns 
should appear after the Nth input point. 

It should also be noted that when using this algo
rithm the dat~ processing can be decomposed into two 
identical channels, each using real numbers only. 
The real parts of the input points would go into the 
first channel and the imaginary parts of the input points 
would go to the second channel. The data processing 

" would be identical in both channels. A multiplica
tion by - J would mean a multiplication of the data 
of the first channel by -1 and a transfer of these data 
(after the multiplication by -1) to the identical places 
in the second channel, while the data from the second 
channel are transferred to the identical vacated places 
in the first channel. 

The number of operations required for this algorithm 
can now be easily established by inspection. The num
ber of multipliers is the same.in this algorithm and in 
the Cooley-Tukey Algorithm .. However; since the 
multipliers in the new algorithm are all real, the actual 
number of real multiplications is cut in half and is there
fore (based on equation (12» equal to: 

Real multiplications = N(II-3)+4 (57) 

Equation (57) is, naturally, the same as equation (13). 

Also, in general, every complex by a complex multi
plication requires two real additions, while no additions 
are required for a complex by a real multiplication. This 
will result in a saving of N(v - 3) + 4 real additions in 
the new algorithm. However, the new algorithm re
quires extra addition operations, which do not appear 
in the Cooley-Tukey Algorithm. Inspection of Figure 11 
shows that there is one extra complex addition with 
every multiplication by cosine of two times an angle. 
There are no extra additions required for a multiplica
tion by cosine of one times the angle. However, Figure 
11 shows that there is an extra addition and subtraction 
processing step prior to the cosine one time angle 
multiplications which requires exectly the same number 
of complex additions and subtractions as there are co
sine one time the angle multiplications. Therefore, the 
total number of extra complex additions and subtrac
tions is equal to the number of the complex by real 
multiplications. This exactly wipes out the saving of the 
N(v - 3) + 4 real additions mentioned previously. The 
total number of real additions required for the new al
gorithm will therefore be equal to the number required 
by the Cooley-Tukey Algorithm. This number is given 
in equation (11) and is rewritten here: 

Real adds = 3N( 11-1 )+4 (58) 

We have thus far treated the case where the input data 
was complex. Considerable simplifications and saving 
in operations is achieved when the input data is real. 

We first observe that in any case the multipliers are 
real cosine numbers. Therefore, even in the complex in
put case, the data processing can be divided into two 
parallel channels. The real part of the input data will be 
the input to the first channel and the imaginary part of 
the input data will be the input to the other channel. The 
data processing in each channel will be the same and will 
be real. The only difference between the two channels 
will be in the interpretation of a multiplication by -j. In 
the first channel the data is multiplied by - 1, and trans
ferred to the identical place in the second channel. In 
the second channel, a multiplication by ..:..j will mean 
that the data are transferred to the same place in the first 
channel (without a multiplication by -1). When the in
put data are real, the second channel stays empty in the 
beginning. Only when the data processing reaches the 
first set of multiplication by -j will data be transferred 
to the second channel. There will be no data to be trans
ferred from the second to the first channel. After each 
set of -j multiplications, there is an addition and sub
traction operation as shown in Figures 5 and 11. If no 
data are transferred from the second channel to the first, 
the addition and subtraction would result in the Q's 
being equal to the respective P's. Since the Q's and the 
P's have identical data processing, and no more multi
plications by -j, this means that two id·entical sets of 
output terms will be obtained. It is therefore clear that 
we can process only the P's and leave the spaces for the 
Q's empty. Physically this could be achieved by elimi
nating the diagonal lines in the addition and subtrac
tion process which follows the -j multiplications. 

Now, instead of transferring the data from the first 
channel to the second, the data are left where they are, 
since the -j lines are also the empty Q lines. We will now 
have a new interpretation for a multiplication by-j. It 
will mean that the numbers become second channel 
numbers. (That the Q lines become second channel 
lines.) The required multiplication by minus one will be 
correctly performed since the processing of the Q's re
quires a multiplication by minus one. The final result 
of this analysis is that one channel can process the 
Fourier Transform when the input data are real. The two 
channels can therefore process two independent sets of 
real input data with a saving in the number of opera
tions as co~pared to the complex data input case. A 
complete flow chart for processing eight complex and 
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FIGURE 12-Flow chart for the new data processing method of 
the fourier transform for the case N = 8 

N = 8; REAL INPUTS 
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FIGURE 13-Flow chart of the new processing method for the 
case of 8 real inputs 

eigh.t real input points is shown in Figures 12 and 13, 
respectively. 

In Figure 13 we changed the output numbers which 
are larger than four to output numbers smaller than 
four by use of the following formula: 

(59). 

This formula results from the foldover of the data 
when only real inputs are used. This can be seen from 
Figure 12, when only real data are used, since SF2, SF! 
and SF1h will be equal to SFe, 8F7 and SFs respectively 
due to the Q's being equal to the P's. 

To compute the required number of operations, start 
with the addition and subtraction operations. From 
Figures 12 and 13 we see that after every -j multiplica
tion there is a saving of two additional operations. The 
number of -j multiplications is easily seen, by inspection 

of Flgure 11, to be equal to (~ - 1). Therefore, the 

number of saved addition and' subtraction operations is 
equal to: 

N 
Z. (z - I) = N - Z 

(60) 

Equation (5S) shows the total number of real addi
tions and subtractions for the complex case. For real in
puts we will have half the number of additions and 
subtractions. Combining this with the savings given by 
equation (60), the total number of additions and sub
tractions in the real input case is: 

Real additions and subtractions 

Real additionlland lIubtractionll = i N(II-l)+Z-N+Z = ~ (311-5)+4 (61)" 

The number of multiplication operations for the 
real input case is the same as for the complex case. The 
number of multiplication operations for the complex 
case is given by equation (10). Therefore, the total 
numLel' 0: real rr.."!Jlti:;::,lications for the real input case is 
equal to: 

Real multiplications = ~ (1I-3)+Z. 
(62) 

Presently, the described method for computing the 
Discrete Fourier Transform is limited to numbers of 
data points which are powers of two. It is the belief of 
the authpr that the method can be extended for any 
number of data points. This belief is based on similar 
types of calculations for the special cases N = 6 and 
N = 12. The author also believes that the described 
method requires, in general, the minimum number of 
additions and multiplications for both the complex and 
the real case. This is aJso based on analyzing the cases 
for small values of N. 

Since there are many variations of the Cooley-Tukey 
Algorithm, the author hopes that other, more stream
lined, variations will be developed· for this algorithm. 
Such streamlining should reduce the problems in the 
control logic when this algorithm will be programmed 
for computation. by a digital. computer. In any case, 
this algorithm should result in considerable saving in 
time when extended calculations with a large number of 
data points are required. 

The method for the real case was developed together 
with Mr.13ertram Goldstone, a friend of the author who 
works at Raytheon Company, Bedford, Massachusetts. 
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INTRODUCTION 

Time-sharing techniques have created an environment 
that is ,capable of supporting a sophisticated generation 
of mathe~atical programs. This paper discusses one 
s~c~ pro~ram fo~ non-li,near stepwise regression .analy
SlS In an InteractIve mode. The principal improvements 
of this implementation over standard regression pro
grams are the inclusion of the programmer in the con
troll(JOp (thereby allowing on-line modification of the 
stepwise regression analysis and non-linear term selec
tion procedures) and the ability of the program to mod
ify itself, i.e., learn, from the results of previous passes 
of the analysis over the data. 

Regression analysis is a powerful technique for sum
marizing (modeling) collections of data. The great 
speed of digital computers now makes it a practical 
tool as well. Basically, this form of modeling formulates 
a regression equation which optimally fits data sets 
that have typically been gathered via experimenta
tion. Since the resulting equation concisely summarizes 
the characteristics or patterns of the data it can be 
used to predict future (causal) relationship~ or to de
~cribe an entire past process (random), based upon the 
information sampled. 

In order to fully appreciate the flexibility and in
creased utility of the interactive program described in 
this paper, one must be aware of the historical develop
ment of mathematical programs designed fQr general 
use. In order to fill the ever increasing demand for spe-

*Fermerly with Com-Share, Incorporated, Ann Arbor, Michi
gan 

cial purpose programs not supplied by the manu
facturer or developed "in house" by or for the user, it 
has usually been necessary to utilize existing batch 
processing programs whose limited flexibility often 
diminished their usefulness in particular applications. 

For example, batch processing implementations of 
regression analysis have been complex numerical pro
grams that allow minimal interaction (if any) between 
the man and the machine. Moreover, even the best of 
these regression analysis programs were hampered by 
the profusion of control cards needed to communicate 
with the program, the likelihood and frequency of er
rors on data cards, and the lengthy turnaround time 
between runs. Then, once the regression equation had 
been formulated, a superfluity of printed output had to 
be scanned in order to evaluate the data and the re
sulting equation. 

Time-sharing, i.e., the ability to allow many users to 
"simultaneously" share the same computer facilities, 
has given birth to the "computer utilities." These com
panies usually provide their subscribers access not only 
to the computer hardware and programming languages, 
but also to a library of application programs. 

For one such computer utility the author has created 
a flexible general purpose program for non-linear step
wise regression analysis in the form of an indepen
dent subsystem. The design of the program (called 
COMSTAT) reflects advantages in the following areas: 

127 

1. Tailoring the program to the user 
2. Implementing the statistical method 
3. Integrating the subsystem into the time-sharing 

environment. 
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Tailoring the program to the user 

COMSTAT allows the user to become an active 
participant in the program's activity. At critical points 
in its execution, the program allows the user, via the 
teletypewriter, to exert control over the program's flow 
and output. COMSTAT provides for personalized data 
storage allotment so that on a small data run the user 
will not be penalized for the large data capabilities also 
possible in COMSTAT. 

As will be seen, the user can insert or delete terms 
from the equatio,n as the equation is developing. Thus, 
a scientist may use COMSTAT as an effective tool for 
model development. He can examine different models 
on several runs and gain insight into the inter-relation
ship of the variaples of interest. These powerful abilities 
are available to the scientist who is not a sophisticated 
programmer, since the program design stresses a simple 
execution for the user. 

Implementing the statistical method 

. COMSTAT's designers recognized that the large 
size of the program an4 the need to store large quan
tities of data for an analysis would require a sizeable 
amount of core storage; additional storage was neces
sary for a square correlation coefficient matrix needed 
in the stepwise method. Finally, learning techniques 
required storage to save the significant results of pre
ceding passes for use in future passes. The program, 
therefore, has utilized the dynamic memory relocation 
capability of the Com-Share operating system to handle 
these memory requirements in a most efficient manner. 

Integrating the subsystem into the time-sharing 
environment 

By writing COMSTAT as a subsystem, it was pos
sible to have the program simultaneously accessible to 
many users of the system. Implied in this decision is 
that COMSTAT, like all other subsystems, would 
contain a "command dispatcher" which recognizes the 
user's command and executes the appropriate block of 
machine instructions. 

The capabilities of the Com-Share System substan
tially influenced the objectives and design of this pro
gram. These capabilities include: the size of core storage, 
data and program storage and accessibility, the exten
sive on-line editing capabilities available, the virtual 
elimination of turnaround tim~, and the memory relo
cation capabilities. 

Mathematical development 

Before discussing the implementation of user inter
action and learning procedures, it will be useful to pre-

sent a brief-formulation of the classical stepwise regres
sion method. 

Statistics 

Multiple regression analysis is a modeling technique 
principally concerned with finding a mathematical 
relationship of the form: 

Y = bo + a1f1(xl,X2, ... x,,) + a2f2(xl,X2, ... x,,) 

+ ... + a"f,,(xl, X2, ... x,,) (1) 

where bo is a constant term to be included, if necessary. 
f,(xl, X2, ... x,,) represents a general term that can be 
either linear or non-linear, as the examples below show: . 

a) fl(XI, X2, ... x.) = Xl2X7Xai -a non-linear term with 
highest power two 

b) f2(xl, X2, .. '-f x,,) = XaX7 -a non-linear term with 
highest power one 

c) fa(Xl, X2, ... x,,) = Ln(x2) -a non-linear term 

- a linear term 

The method arrives at an equation of the form of 
Eq. (1) which gives a "best" fit of the data according 
to the least squares criterion described herein. 

The statistics presented here will be developed for the 
linear case without loss of generality since a substitu
tion can be made to transform a non-linear term into a 
linear term. 

Example: 

Y = alx12xa + Ln (J4) + aax7 
would be transformed according to: 

b) Z2 = Ln ("') 

c) Za = X7 

into the linear regression equation: 

Y = alZI + a2Z2 + aaza which is a linear equation in 
the new parameters, Zl, Z2~ 

and Za. 

The regression equation aims to minimize the sum 
of the squared residuals, (the deviations between the 
observed points and 'the predicted points). If Y1, Y2, 
... Y m are observed points for m sets of observations 
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and Y 1', Y 2', . . . Y fT.' are the estimated or predicted 
values for use in some predicting equation, then what 
is to be minimized in order to obtain the regression 
equation is: 

m 

L: (Yj - Yi)" 
i-I 

where: m is the number of observed points. 

This minimization is called a least squares criterion 
since the quantity to be minimized is the sum of the 
squared deviation; where (Y i - Y /)2 is called the 
squared deviation of the observed value of the depend
ent variable, Y, from the estimated value of the depend
ent variable, Y', for the ith-observation. 

This type of analysis is used in causal relationships 
between several independent variables and one depend
ent variable, i.e., a causal relationship is developed to 
predict a future -effect based upon gathered past ob
servations. 

Random processes can also be described by a regres
sion equation, but there is no guarantee for extending 
the resulting equation to other data sets of random 
variables. In this case, the regression equation de
scribes a past relationship based upon a sample of 
the past and nothing can be said about the future in a 
random process unless more is known about the nature 
of the process. 

Normality and a common variance are assumed for 
the data so that th~ F Test for significance can be ap
plied with reliability in term selection. A 2-tailed F Test 
is used with the level of significance set by the user. 

In order to measure the quality of the regression 
equation developed, certain statistics are computed at 
each step in the analysis. The Standard Error of Y, 
also known as the Standard Error Estimate, is com
puted to estimate that part of the variance in Y left 
unexplained by the present regression equation. The 
CoefficIent of Determination is the fraction of the 
total variance in Y which is accounted for by the pres
ent regression equation. The Multiple Correlation Co
efficient is the positive square root of the Coefficient of 
Determination, and ranges between 0 and 1. This sta
tistic is preferred over the Coefficient of Determination 
in estimating the amount of variance in Y explained by 
the regression equation. 

The stepwise process for· constructing the multiple 
regression equation proceeds by inserting the most 
significant term not included (if its significance exceeds 
the criterion set by the user). Then it checks all terms 
in the equation to insure that they still contribute sig
nificantly. If one is found that doe~ not meet the in-

. elusion criterion, it is del~ted from the equation. This 
stepwise proce~s continues until there are no longer any 

terms significant enough to include, nor do there remain 
any included terms that should be deleted. 

Note that during the stepwise process terms are often 
included which are not found in the final equation. This 
is because a combination of terms may be present at a 
later step that may account for most of that portion of 
the variance of the dependent variable attributed to 
an earlier term. The earlier term's remaining contribu
tion to the variance is then insignificant and so the term 
is removed from the equation. Figure 1 illustrates an ex
ample of this sequence. 

Useful statistical definitions in conjunction with a 
How diagram are included as an appendix. The appen
dix, together with the references cited should provide 
the interested reader with sufficient background for 
further work in this area. 

Interaction with the stepwise process 

Because COMSTAT operates in a time-sharing en
vironment it becomes practical to allow on-line inter
action since the computer is not forced to wait for a user 
response, but rather can process other tasks during the 
delay. Thus at each step in the equation development 
COMSTAT allows the user, if he desires, to insert or 
delete terms, i.e., the user can modify the equation at 
any step. 

Since the user has had the benefit of inspecting the 
intermediate statistical results, he may want to try 

Variance of Y Varian"ceof Y 

1. 2. & 3. 

PROCEDURE 

1. Xl makes the greatest significant contribution, therefore it 
is included first. 

2. X2 is included next because it accounts for the greatest re
maining amount of the variance of Y 

3. X3 is included since it still accounts for a significant portion 
of the variance. 

4. W,-" Xl is tested, it is found no longer to be significant, 

since most of its Contribution is subsumed by either X2 or X3' 

It is therefore excluded. 

Variance of V 

4. 

FIGURE I-Term inclusion-exclusion procedure 
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some combination of terms not chosen by cOMSTAT. 
Also, since the form of the equation may depend on the 

I order of term selection (particularly in the non-linear 
, case), the ability to steer the course of equation develop

ment may allow the user, to develop alternate models 
for his data. It should be noted, however, that if the 
user adds a term that is not significant on the basis of 

, . 

the existing equation, cOMSTAT will reject it. Also, if 
the user rejects a term that has been chosen, either by 
COM STAT or himself, and that term remains signifi
cant on the basis of this and subsequent equation mod
ifications, it will be automatically reinserted. 

Thus, while the user may m6difY the ,development of 
the equation, he is preventeg from including insignifi
cant terms or leaving out tenus that must be included. 
The alternate models developed can be compared and 
may suggest new and fruitful lines of inquiry. 

Learning 

In order to accommodate reasonably complex non
linear terms, cOMSTAT must have the capacity to 
select the significant terms from a number of possible 
non-linear terms that could be too large for analysis in 
a single run, and perhaps so large as to make complete 
analysis prohibitively expensive. A method has been 
incorporated into cOMSTAT which will run a series of 
passes over the data, and analyze sets of non-linear 
terms chosen from the set of all possible non-linear 
terms in such a way as to converge on a regression equa
tion. Since this method stores information about the 
nature and makeup of terms found significant in pre
vious passes for use in the selection of terms for subse- . 
quent passes, the method is called learning. 

During each pass of regression analysis a new set of 
non-linear terms, which include the non-linear terms 
found to be significant in the previous pass, is tried. 
This "insures that the resulting regression ,equation will 
be at least as significant as that of the pass before .. The 
additional terms in the set are selected in. a manner 
that takes advantage of knowledge about term charac
teristics gained from previous passes; terms may also 
be inserted int~e set by the user through interaction. 

To explain the learning mechanism more fully, it is 
necessary to examine the nature of term selection. The 
relevant characteristics of a non-linear term are: 

1) the number of interactions of pure variables to be 
allowed in a general term; 

2) the actual pure variables which are to interact; 
3) the functions (powers) of each pure variable se

lected. 

If M were the possible number of pure variables, K 
the possible number of interactions, and N the number 

of possible exponents, then one may write a closed ex
pression for the number of possible non-linear terms.: 

= t ( M! ) (NJ ) 
J=l J! (M - J)I 

In the following example, there are six pure variables. 
If a maximum of four of these variables, each with an 
exponent of 1 or -1, can interact in a term, the number 
of possible terms would be: 

T = ~21 +~22+~28 +~24 
1J 51 2141 31 31 41 21 

= 6 X 2 + 15 X 4 + 20 X 8 + 15 X 16 

="472 

Since the relevant characteristics listed above form 
3 populations each containing an independent finite 
number of elements, the learning mechanism justifiably 
utilizes techniques for random sampling from finite 
populations in generating the non-linear terms used in 
each pass. 

The process for generating a term to be tested in a 
pass of the regression analysis begins with the selection 
of the number of interactions that will be included in 
that term. This selection is from a population that has 
as members the numerical values of all allowable levels 
of interaction. Associated with. this population is an
other .population which contains as elements the se
lection probabilities for each corresponding element in 
the first population. 

Example: 

Assume the maximum level of interactions is ten. 
These levels form a set containing 10 elements as 
shown: 

element number: 1 2 3 4 5 6 7 8 9 10 

levels of intera8tWn: 1 2 3 4 5 6 7 8 9 10 

SetA 

For this example let us assume the user has no prior 
knowledge (as would usually be the case in a first pass' 
over the data). In this case equal probabilities would be 
assigned to every interaction level, i.e., each element 
would be assigned a probability of Xo as shown: 
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element number: 

probability for 
corresponding 
level of interaction: 

1 2 3 4 5 6 7 8 9 10 

111 1 1 1 1 111 
10 10 10 10 10 10 10 10 10 10 

SetB 

'N ext, a random number between zero and one is 
generated. Then the term-generating mechanism pro
ceeds to add together the probabilities of elements 
(starting with the element that corresponds to' the 
lowest level of interaction) until the random number is 
exceeded. The level of interaction chosen for the terin is 
the level whose probability was the last one added with-:
out exceeding the random number. 

In the above example, a random number 0.76 was 
generated. Thus, the probabilities of levels are added 
until 0.76 is exceeded. The last level added is 7 and so 
this term will contain seven interactions. 

The mechanism then selects the 'pure variables to be 
included in the term. This is done in a manner similar 
to that for selecting the level of interaction. Each vari
able is assigned a probability of being chosen; with no 
prior knowledge, the probability for each variable = 

1 
(N f V . hI ) . The program generates as many o. 0 ana es 
random numbers as there are interactions, and then 
utilizes the same sununing scheme as outlined above. 
However, if a variable has already been chosen for in
clusion in a term, and it is selected again, the mechan
ism rejects it and generates a new random number. 

Finally, the mechanism must select an exponent for 
each variable in the term. This procedure is similar to 
that for the pure variable selection except that here 
duplication is allowed. 

In each pass of the analysis a specified number of 
temis are selected in this manner . Upon completion of 
the pass, the results are used to bias the learning arrays, 
which contain t4e probabilities associated with the 
elements of each of the three populations, thereby 
biasing all future passes. 

Example: 

In a pass XIX3-t was found to be significant and 
X1XaXe was found to be insignificant. The fol
lowing probability modifications would be made: 

1) probability of 2 interactions is increased; 
2) probability of pure variables Xl and Xa are in

creased; 
3) probability of exponents 1 and -% are in

creased for the respective variables; 
and 

4) probability of 3 interactions is decreased; 

5) probability of pure variables Xl and Xa and Xe 
are decreased; 

6) probability of exponent 1 is decreased for the 
respective variables. 

The form of these learning arrays and the biasing 
procedure will be discussed in some detail later in the 
paper. 

COMS'T AT' 8 implementation 

In programming a subsystem, the programmer must 
utilize the computer system's inherent capabilities. This 
section examines the actual implementation of the de
sign. The first part discusses the time-sharing system's 
contribution to COMSTAT, and the second discusses 
the software features incorporated into COMSTAT, 
with examples. Figure 2 summarizes these relationships. 

System's capabilities utilized by COMSTAT 

The regression analysis subsystem can handle input 
and_ output on-line via the teletype or paper tape. How
ever, initially placing the correct input on a disc file can 
save time for a user during program execution in many 
input/ output tasks. These files may be used for program 
or data storage and may be in binary or symbolic form. 

The storage and retrieval of files created by a user are 
automatically handled anywhere within the Com-Share 
System by the EXECUTIVE system. This feature al
lows a user the flexibility of accessing the same file in 
any subsystem. Thus, a user is able to create a data 
file within the text-editor subsystem, QED, and then 
use it within the regression analysis subsystem. 

Ample file protection is provided by the system $0 

that one user may not access another's files unless the 
file owner has defined the file for public use. This gives 
a user the flexibility to access files created or used in 
separate accounts. Practically, this can aid the user by 
allowing him to be in one account and executing COM
STAT while someone else, in another account, could be 
simultaneously creating or editing data files to be used 
in another analysis. 

Core memory in the Com-Share System is divided 
into discrete segments called pages. Each of the 32 pages 
in memory has a capacity of 204810 words (cells). Each 
user is ~llowed a maximum of eight pages at a time, of 
which some may belong only to him (private pages) and 
some may be shared simultaneously by .any number, of 
users (shared pages). Although these pages may no~-be 
contiguous in core, they appear to be so, to the user" as 
a result of the virtual memory mapping technique. The 
pages (private and shared) allocated to the user are' 
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referred to in his map. Referencing for this core memory 
is provided by pseudo-page numbers. 

The dynamic memory relocation capability enables 
COMSTAT to maneuver the pseudo pages within core or 
in and out of core; the physical process of maneuvering 
these pseudo pages is referred to hereafter as relabeling. 

To make relabeling both practical and economically 
feasible, pages relabeled out of core are placed on a rap
id access device (RAD). This is done because "swap" 
time between the RAD and core is much faster than 
when the disc units are accessed. 

Since stepwise regression analysis can be functionally 
broken down into section& with no loss in continuity 
between sections, the technique lends itself well to im
plementation on a time-sharing system with dynamic 
memory relocation capabilities. This statistical analy
sis requires such capabilities since the quantity of pro
gram code alone required to handle this application is 
sizeable, not to mention the vast quantities of data 
storage a user may need in a single run. 

Also, it is this relabeling technique that makes it 
~ossible for the text-editing subsystem, QED, to be 
mcorporated into COMSTAT. 

The ability to rerun COMSTAT on the same data 
with the same or different subsets of variables without , 
restarting the entire subsystem is provided by COM-

STAT since it provides for the relabeling of a master 
data table in and out of core for each run. This allows 
a user to experiment with the modeling process by 
specifying differen,t subsets of variables for each run. 

In the non-linear case where many passes are required 
to produce a significant non-linear model, relabeling is 
essential in handling the added tasks placed on COM
STAT in th~ term selection process and in saving the 
learning arrays from pass to pass. 

The use of QED, the on-line editing subsystem, with
in COMSTAT is noteworthy since both are independent 
subsystems which are usually accessed through the 

_ EXECUTIVE system. COMSTAT sets up linking in
formation in a specific area for QED, and then transfers 
control to an area of code in COMSTATwhich relabels 
COMSTAT's code out of core and onto the RAD, while 
it relabels QED's program code into core from the 
RAD. Now, with QED in core, the program location 
counter continues specifying instructions from the same 
area as it did before the relabeling had occurred, except 
that now QED's code will be executed. QED saves the 
linking information so that it can relabel and restore 
COMSTAT, without interruption, when QED has com
pleted its job. In addition, QED passes to COMSTAT 
the edited pages of text or· data for direct transfer into 
COMSTAT's allocated storage area. The effect upon 

Conversational 
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System Capabilities Utilized Above: 
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FIGURE 2-Functional representation of COM STAT with related capabilities 
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the user at the teletypewriter is only the change of sub
system readiness symbols and commands; response time 
is continually steady as in normal use. 

However, by utilizing QED within COMSTAT, the 
user is afforded the same range of capabilities as avail
able in the QED sybsystem, thereby simplifying and en
hancing the input procedure as well as error corrections. 

Inherent in a time-sharing environment is the on
line man-machine interaction, "conversational" ability. 
This permits a wide range of valuable activites as has 
been discussed. 

Software features 

In COMSTAT, three pages of shared code are allot
ted for the program. The program is divided into a con
trol page, an input and learning page, and a statistical 
analysis and output page. 

Depending upon the user's data requirements, COM
S TAT will also use 4 to 11 private pages of core storage. 
The number of data storage pages required can be 
approximated by: 

and 

pages ~ 2 + f(n + 1)21 + fen) X (m)l 
1024 1024 

where f 1 represents the smallest integer not 
exceeded by the contents. 

n = total number of variables 

m = maximum data set number 

Control page 

Whenever COMSTAT is used, the control page re
mains resident in core and commands other pages to be 
relabeled or swapped into and out of core from the RAD 
as needed, thus controlling the entire subsystem inter
nally. 

This internal control is triggered by the user via a 
teletype through the use of "commands" to COM
STAT. These commands are translated, in the control 
page, into internally understood commands by a section 
of program code referred to as the command dispatcher. 

Presently, there are ten such commands. Those com
mands that are unique to COMSTAT (not standardized 
system commands), are English words whose meanings 
are evident. 

In a very real sense, this section-by -section coinmand 
of the program execution in a time-sharing environment 
gives COMSTAT a "conversational" quality. Further
more, in the course of executing a command, vital in
formation may be needed from the user. COMSTAT 

obtains such information, as needed, through a conver
sational exchange with the user. 

Input and learning page 

This page handles all the input activities and learning 
procedures incorporated into COMSTAT. The full text
editing capabilities of QED are provided ih most of the 
input commands. 

Presently, the subsystem is capable of performing 
analyses on a maximum of 614410 data entries, or 6 
pages of data. The total number of variables in an 
analysis pI'edeterminesthe number of data sets allowed. 
Thus, if an analysis were to be done for 30 variables 
(29 independent variables plus 1 dependent variable), 
153 data sets could be analyzed, for a total of 612010 data 
entries. 

There are, however, limits to this flexibility in dimen
sioning. The upper limit presently on the number of 
variables is 44 (43 independent, 1 dependent). The 
upper limit on the number of data sets is 1000. 

The data requirements for regression analysis vary 
so widely between users that the large data capacity 
just described necessitates different use of storage for 
each user. Conversatioll\al dimensioning has 'been im
plemented to allow each user to define his specific re
quirements for data allotment and structure. Likewise, 
the program sets aside only enough storage to' handle 
the user's data. Thus, the fewer the variables and/or 
data sets in an analysis, the less storage will be used. 
This means that fewer page swaps will occur, and con
nected line time to the computer via the teletypewriter, 
and central processing unit (CPU) time used will be 
reduced appropriately. Thus, the user with a small 
amount of input will not be penalized because the pro
gram is also designed to accommodate large data input. 

In the input sequence, all errors detected by COM
STAT are communicated to the user, via a printed 
teletypewriter message. The user is provided with an 
opportunity at the time of detection to correct the 
input errors; therel?y eliminating the need to correct 
and resubmit the input, or to completely restart COM
STAT, as would be the case in a batch processing en
vironment. 

Also, on this page of code is COMSTAT's learning 
mechanism which is oriented around 3 learning arrays 
("order of interaction" array, "variables entering inter
action" array, and the "exponents of the variables" 
array). It is from these 3 arrays, that COMSTAT de
velops a specified number of non-linear terms for each 
pass over the dataaccording.to the method outlined. 

There are limits set on each learning array. Presenty, 
a limit of 4 is set on the number of variables allowed to 
interact in anyone term. T.his restricts the "order of 
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interaction" array to contain 4 entries, (1, 2, 3 and 4 
interactions). The maximum number of entries in the 
"pure variables entering interaction" array is preset by 
the maximum number of independent variables allowed 
in any analysis, (43). In the "exponents of the var.i
abIes" array, the permissible exponents are; 

f(l) f(8) = 
1 

+1 -
3 

f(2) 1 f(9) = 3 

f(3) 
1 

f(IO) - 2 
-3 

f(4) 
-1 

f(Il) 
1 

2 - 4 

f(5) f(12) 
-1 

=2 -
4 

f(6) -2 f(I3) = 4 

f(7) 
1 

-
3 

f(I4) = -4 

This last array is a doubly dimensioned array of max
imum size 602 locations (14 by 43). 

In each pass of non-linear regression analysis, a spec
ified number of non-linear terms are chosen by COlV1-
STAT to be tried in that pass. Some of these terms are 
developed by utilizing the learning arrays and op
tionally some are specified by the user; the remainder 
are the terms from the last pass which were found to be 
significant enough to include in the evolving regression 
equation. 

Terms inserted by the user during the term genera
tion process alter the selection process and will there
fore affect the form of the learning arrays for the next 
pass. 

If it is possible to try 10% or more of the possible 
terms in a single pass, C01VrSTAT gives the user the 
option of deciding whether the term generation process 
is to be done by the learning mechanism or in an ordered 
manner. This means that whenever the total number of 
terms could be tried in a "reasonable" number of passes, 
the learning selection process is often more costly and 
time consuming than generating all of the terms in an 
ordered manner and trying a specified number in each 
pass until all of them have been tested. 

The biasing of term characteristics for each term 
tried in a pass is done by "rewarding" the characteris
tics of terms found to be significant enough to include 

in the present regress~on equation, and "punishing" the 
characteristics of insignificant terms. 

This "rewarding" is done by multiplying the elements 
(probabilities) in each learning array which correspond 
to the respective term characteristics of the significant 
terms, by the respective learning constants. Likewise, 
"punishing" term characteristics is done in the same 
manner as "rewarding," except that each respective 
array element (probability) is multiplied by the inverse 
of the learning constants. 

Learning Array Rewarding Punishing 

(~ )'" 113 
order of interaction 

.. 5 
(.5) 

Gr 113 
variables entering (.5) 
interaction 

C5)~ 
1 

exponents of variables (.5)1.5 

After all the passes have been made for a non-linear 
analysis, COl\1STAT provides the user with a way to 
save the learning arrays on a disc fIe for future use and/ 
or onto the RAD for immediate reuse in a new analys:,s 
over the same data. 

Statistical analysis and output page 

The statistics computed on this page are those out
lined in a previous section. In addition, in COl\I{STAT's 
stepwise term selection process, the user is provided 
with the ability to actively interact at each step byspeci
fying a term to include or delete from the present re
gression equation. This interaction does not harm the 
stepwise process at all, as explained in the previous 
part. 

Selective statistical output is produced by this page. 
The user conversationally specifies what output he 
desires by answering the pertinent questions posed by 
COMSTAT. 

One further point to be noted, which is applicable to 
all 3 pages of program code, concerns error detection. 
As part of the natural logic flow of COl\1STAT, error 
traps have been placed strategically throughout the 
code to assist a user in any difficulties he may encounter 
while executing. Wherever relevant, detected errors 
critical to proper program execution are pointed out to 
the user for correction before processing continues. For 
example issuing a command out of sequence which 
will later result in an ambiguous program state is de-
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tected whenever possible and noted to the user, failing 
to supply critical information as input will be flagged as 
an error, or incorrectly answering any of the conversa
tional COMSTAT questions will be noted followed by 
the opportunity to reanswer the question. 

Execution examples 

The ten commands which can be issued to COM
STAT are: 

Command Function 

1. TITLE- Inp~t via QED a title to be used as a 
heading on output. 

2. MAIN- Input via QED the names of all the 
variables in the analysis. 

3. SUBSET~ Input via QED the names of a specific 
subset of variables in a run. 

4. NUlVIBER-Specify the number of variables in the 
run without naming them. This com
mand does not allow for subsets to be 
run. 

5. DATA-

6. FILE-

7. RUN-
8. HELP-

9. QED-

Input via QED the data sets for all the 
possible variables. 
Inputs a title, the-main variable 
names, the data, and any number .of 
subsets, from a disc file. 
Begins a run of regression analysis. 
Gives a summary of how to execute 
COMSTAT and what general conven
tions are used throughout. 
Gives the user complete QED text
editing capabilities. 
Used to exit from COIVISTAT back to 
EXECUTIVE system. 

Any of these commands may be abbreviated by typ
ing 1 or more letters. 

In the following examples note that the user-generated 
type is underlined, while the computer-generated is not. 
A right parenthesis, D], in the first position of a line is 
COMSTAT'S readiness symbol, whereas a star (*) is 
QED'S readiness symbol. These readiness symbols 
indicate the respective subsystem's readiness to accept 
a legal subsystem command from the user. Letters 
with a superscript c, (for example, Ge) are non-printing 
and represent a set of characters interpreted by the sub
system to accomplish certain activities.· For example, 
in QED a Dc is interpreted as an indication that the 
present input or line is complete up to, but not including 
the Dc. 

Figure 3, outlines the simplest complete execution of 
the subsystem-specifying the three COMSTAT com
mands NUMBER, DATA and RUN. One can see the 

typical COMSTAT-user conversational exchange with
in the first 2 commands. Two QED commands are (AP
PEND and EDIT) used internally in the DAtA com
mand to input the data and to edit the first line of the 
input, respectively. The SCO command is a special 
QED command which is interpreted by QED as the end 
of all QED tasks and an indication to return to the 
original subsystem. 

The less than sign, «), on the end of the input is 
placed there to be interpreted by COMSTAT a.s an 
indication that the input sequence is terminated. 

The control character, Ze, within the QED EDIT 
command is just an indication to QED that the user 
wishes to copy the line to be edited up to the characters 
typed immediately following the Ze, in this instance, 
up to the first four, (4). 

Within the RUN command, many alternative execu
tions can be effected by answering the conversational 
questions differently. One such execution is outlined in 
Figure 4. When the int~rmediate steps are to be printed, 
the user is given, at each step, the statistics computed. 

)!lliM 

NUMBER OF UNNAMED V ARIABLES= .l. 

)~ 

IS THE DATA TO BE WEIGHTED? N 

MAXIMUM DATA SET NUMBER= -± 

INPUT DATA: 

*APPEND 

2,1.3,1, .998, 3, 1.007, 1.15, 1.4; 7, 

.979,1.2,1.005( DC 

*1.!ill.!! 

2,1.3, 1, .998,3, 1.007, 1.15, 1.4,7, 

C U 2, 1.3, 1, .998, 3, 1.007, 1.15, 1.4z.1.. 

)B!lli. 

FIGURE 3-Basic COMSTAT input 
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FIGURE 4--Sample interactive execution and output 

)!!lli 
IS THIS ANALYSIS LINEAR? .x.' 
IS THERE A CONSTANT TERM IN THE REGRESSION EQUATION? ..L 
USE STANDARD PROBABILITY LEVELS FOR ENTERING AND DELETING TERMS? .L 
PRINT INTERMEDIATE STEPS? ..L. 
USER INTERACTION IN TERM SELECTION? L 
STANDARD ERROR OF Y= 1.223383287 
VARIANCE= 1.496666667 

STEP NO. 1 : 

COMSTATS NEXT CHOICE: INCLUDE A 
VARIANCE CONTRIBUTION FOR THIS VARIABLE= 0.996318557 
I? N 

IN STEP 1 VARIABLE NUMBER 1 (A) ENTERED. 

F LEVEL= 811.8977962 
STANDARD ERROR OF Y= 0.090911i66 
MULTIPLE CORRELATION COEFFICIENT: 0.998157581 
COEFFICIENT OF DETERMINATION= 0.996318557 
CONSTANT TERM~ 0.196499239 

VARIABLE 
A 

COEFFICIENT 
0.95281583 

PRINT CORRELATION MATRIX? .1L 

STANDARD ERROR OF COEFFICIENT 
0.040954715 

COMSTAT SEES NO FURTHER SIGNIFICANT CHOICES. 

I? Y 

STEP NO.2: 

DELETE TERM? N 
INCLUDE TERM? 'Y 

NAME OF TERM TO ENTER: .Jl 
IN STEP 2 VARIABLE NUMBER 2 (B) ENTERED, 

F LEVEL= 10.7681248 
STANDARD ERROR OF Y= .089976531 
MULTIPLE CORRELATION COEFFICIENT= .998917872 
COEFFICIENT OF DETERMINATION= .997214587 
CONSTANT TERM= .069542187 

VARIABLE COEFFICIENT 
A ~32154726 

STANDARD ERROR OR COEFFICIENT 
.072342179 

B .147321789 

PRINT CORRELATION MATRIX? N 

STEP NO. 3 : 

COMSTATS NEXT CHOICE: DELETE B. 

.029432178 

VARIANCE CONTRIBl]TION FOR THIS VARIABLE= .5670453!S 
I? Ji 
IN STEP NO. 3 VARIABLE NUMBER 2 (B) DELETED, 

F LEVEL;: 10.7681248 
. STANDARD ERROR OF Y= .089976531 
MULTIPLE CORRELATION COEFFICIENT: .998917872 
COEFFICIENT OF DETERMINATION= .~97214589 
CONSTANT TERM= .196499239 

VARIABLE 
A 

COEFFICIENT 
.95281583 

PRINT CORRELATION MATRIX? N 

STANDARD ERROR OF COEFFICIENT 
.040954715 

COM STAT SEES NO FURTHER SIGNIFICANT CHOICES. 

I? N 

COMPLETED NO. OF STEPS FOR THIS ANALYSIS= 3 

PRINT PREDICTED VS. ACTUAL VALUES? 1:L 
RUN ANALYSIS ON THESE DATA SETS WITH NEW SUBSET? N 

RUN ANALYSIS ON NEW DATA SETS? N 
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FIGURE 5-Flow diagram for statistical and learning processes 

Note 1: The sign of VNSI is a bookkeeping notation whlch 
indicates whether the variable is presently in the 
regression equation; th 

VNS1 ) 0, I variable not in regression 
equation. 

vNS
1 
(0, Ith variable in regression 

equation. 

• Remove variable from regression equation 

t Include variable in regression equation 

Trans(orm matrix elements, ai,j 

J;ES 
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In addition, if the user requested interaction in term 
selection, he is given an opportunity to interact at each 
step, as noted in Figure 4 by "I?". 

CONCLUSION 

Although regression analysis is a powerful and useful 
tool for constructing mathematical models, many scien
tists have not utilized the technique. This is perhaps due 
in part to inadequate statistical knowledge and in part 
to the complex programming techniques required to 
employ the batch-processing programs currently a vail
able. COMSTAT's statistical capabilities in combina
tion with its conversational execution should interest 
many experimenters who have not previously used 
regression analysis techniques. 

The availability of intermediate results and the user 
interaction incorporated into COMSTAT have added 
a dimension of utility that the experienced user will also 
find very beneficial in the formation of models. Neither 
the new user nor the experienced statistician need have 
much experience before he becomes proficient in the use 
of COM STAT. 

In summary, we s,ee that the subsystem approach to 
mathematical programming in a time-sharing environ
ment has great potential. It is hoped that the develop
mental details presented in this paper will be helpful to 
programmers in developing future mathematical pro
grams for general use. 

APPENDIX 

In the interest of completeness, this appendix details 
the statistical and learning procedures of COMSTAT 
in the form of a flow chart, Figure 5, with the standard 
definitions listed separately. 

The conventions used throughout the diagram and 
definitions are: .. 

(1) n 

(2) m 

(3) mn 

(4) X •• k 

1 to the number of variables in the 
analysis. The first (n -1) vari
ables, (Xl,X2,XS, • • • Xn-l), refer to 
the independent variables (terms), 
and the nth variable, x n , refers to 
the dependent variable, y. 

refers to the number of data sets. 

refers to the number of non-linear 
terms to be tried in a pass of 
regression analysis. 

Xl.k,X2,k •••• X(n-l) refer to the raw values 
for the kth data set and the i th 

variable. k = 1 to m, i = 1 to n. 

weighting factor for the k th data 
set. k = 1 to m. 

(7) (TZt 

elements of the correlation coeffi
cient matrix. i and j = 1 to n. 

the standard deviation of the it" 
variable. i = i to n. 

(8) Xi = (Xi + n) the mean value of thei th variable 
Xn = (xn + n) over all the data sets. i = 1 to n. 

the regression coefficients for the L 
variables included in the equation. 

The weighting factor, Wk, is assigned to each data 
set. This allows an experimenter to convey to the pro
gram the relative amount of importance (credence), to 
be given to that data set. Thus data gathered under 
ideal conditions can be weighted more heavily than 
data gathered under more trying conditions. 

Standard statistical definitions 

1. Standard Deviation for i th variable, Xi: 

m(m - 1) (1) 

2. Mean of ph variable, Xi: 

m 

2: (Xi'; X Wi) 
i-I 

(2) 

3. Correlation Coefficient for the i th and j th vari
ables: 

(3) 

(Txi X (Tzi 

4. Standard Error Estimate for the k variables 
(terms) in the regression equa.tion presently: 

S,,1l23 ... k = V< 1 k 1)f: (y, - y',)' 
m - - i==1 (4) 

where: y i represents the. observed points for m sets 
of observations, and y,/ represents the predicted points 
from the regression equatIOn. 
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5. Coefficient of Determination: 

r2 = 1 _ [em - k - 1) X Su2h23 ... kJ 
(m - 1) X S.,2 

where: 

m m 

mL y2, - (L: y2,) 
i=1 i=1 

m(m - 1) 

6. Multiple Correlation Coefficient: 

=Vf2 

(5) 

(6) 

(7) 

7. Variance contribution to the regression equation 
for the i th independent variable: 

where: 
N=n 

VNS, = a',N X aN,i 

a"i 

i = 1 to (n - 1) 

(8) 

and ai,j is an element of the correlation coefficient 
matrix 

8. Regression Cd efficient : 

b L = a"n X UZn. (9) 
U:Jt 

where: 
L = 1 to the number of variables presently in

cluded in the regression equation, 
i = the index of the variable included, 

and n = the dependent variable ind,ex. 

9. The Standard Error of the Regression Coefficient: 

S - S.,/123 . . . . . k X - r:
bL - vas., 

U:Jt 

(10) 

10. Linear transformation on the existing correlation 
coefficient matrix' elements for t~rm to be entered 
or deleted: 

1 

a"k X ak,j for: i ¢ k, j ¢ k 
ak,k 

for: i = k, j ¢ k 

'for: i ¢ k, j = k 

for: i = k, j = k 

(11) 

where k is the index of the variable to be included or 
deleted from the regression equation. 
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Recursive fast Fourier transforms 

by G. EPSTEIN 

ITT Gilfillan Inc 
Los Angeles, California 

The development of the Fast Fourier Transform in 
co~plex notation has obscured the savings that can be 
made through the use of recursive properties of trigo
metric functions. A. disadvantage of the Fast Fourier 
Transform is that all samples of the function must be 
stored in memory before processing can start. The com.,. 
putation in the Fast Fourier Transform occurs after the 
receipt of the last sample of the function; there is no 
processing of the incoming data prior to this point. Thus· 
if there are N samples of each function, and G different 
functions (in G "gates" or "channels"), then a total 
of GN words must be stored in memory. 

The recursive approach provides methods whereby 
these memory requirements maybe reduced. These re
ductions in memory are accompanied by increases in 
total computation time; the computation time required 
after the reciept of the last sample, however, decreases. 
This is accomplished by performing recursive computa
tions on the incoming data as they are being received. 

Since savings in memory size must be balanced 
against increases in total computation time, it is neces
sary for any given problem to select that recursive 
method which satisfies the given time and memory re
quirements. For some problems, it is also important to 
distribute the computation time in a particular way; 
e.g., to minimize computation time after receipt of 
the last sample with bounds on computation time dur
ing receipt of samples, as might be the case in a real time 
spectral analyzer. These considerations are discussed 
completely for the example case when N is a power of 2. 

In January 1958, Gerald Goertzel, in the paper 
"An Algorithm for the Evaluation of Finite Trigono
metric Series" in the American Mathematical Monthly, 
described an algorithm for reducing the computation 
time of finite Fourier series. The method which follows 
makes two essential alterations in this algorithm. 
First, Goertzel's equations require all samples of the 
function to be received before the algorithm can be 
applied. Second, his algorithm does not make use of the 

arbitrary factor technique used in the Fast Fourier 
Transform. 

These alterations lead to the following equations. Let 
the input function be denoted by f(x), so that the spec
tral components to be obtained are given by 

(1) 
N-I 2 

AK = I: f(x) cos..!!:. Kx 
~-O N 

N-l 2 
BK = I: f(x) sin..!!:. Kx, 

~-O N 

K = 0,1, ... , N - 1. 

Let N have a factor Pl. The method now to. be described 
is called Recursive Method 1. Recursive Method 1 
computes recursively on PI recursion quantities. Thus 
this method requires PI words of memory. These PI 
recursion quantities are denoted by R i , i = 0, 1, ... , 
(PI - 1), and each Ri recurses on the N/pi samples 

f(PIX + i), X = 0, 1, "', (: - 1). The recursive 

equations for each Ri are given by 

R i (l) = f(i) 

( 
21rPlk) ( ) Ri(X) = 2cos~ Ri x-I 

x = 2, 3, "', (:, -1 ); k = 0, 1, "', ( :, - 1 ). 

Thus in Recursive Method 1 no computation is per-

141 
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formed during receipt of the first PI samples, and 
after that one multiplication and two additions 
are performed for each recursive quantity R i , i = 0, 
1, "', (PI - 1). This occurs for each value of k = o. 

1, "', ( :, - 1 ). 

The values AK and BK are computed at the end, after 
receipt of the last sample, by 

(3) 

- R.(:' - 2 ) + f(N - PI + i) 

and, setting K = k + wN , by 
PI 

(4) 

w = 0, 1, "', (P, - 1); k = 0, 1, "', (:. - 1) . 

These results follow from the arbitrary factor tech
niqueused in the derivation of the Fast Fourier Trans
form, and from the following recursive property of 
trinonometric functions: 

(5) If S(O) = 0 

S(I) = 1 

S(y) = (2 cos 2;'k) S(y - 1) - S(y - 2) 
y = 2,3, ... , 

th . (27rP1kY ) S()' (27rP1k) en Sln --- = y SIn --
N N 

and cos ( 21T;,kY) = S(y) cos ( 2;;k ) 
-(Sy-l) 

The components AK and BK for each value of K may 
be obtained through equations (3) and (4) by 6Pl multi
plications and 6Pl additions. These operations occur 
after receipt of the last sample of the function, f(N-I). 

For each value of K equation (2) requires N -2Pl 
multiplications and 2(N-2pl) additions. Thus, the total 
computations using Recursive Method 1 for each 
value of K are N +4Pl multiplications and 2(N + PI) 
additions. If there are G functions to be sampled, the 
total number of recursion quantities in memory is Gpl' 

This same technique may be applied ii(:') has a 

factor P2' This case is called Recursive Method 2, for 
which there are PIP2 recursion quantities stored in 
memory, and each recursion quantity recurses on 
N 
-- samples of the function. The extension of the 
PIP2 
above equations for this case is obvious. The total num-
ber of recursion quantities in memory for Recursive 
Method 2 increases to GpIP2, and the total computation 
time decreases from that required by Rescursive 
Method 1, although the computation time required 
after receipt of the last sample goes up. 

Continuation of this process for factors PI, P2, .. gener
ates Recursive Methods 1, 2, ... The selection of the 
appropriate recursive method depends on the total 
number of words required for the recursion quantities 
(given by G7rPi), the total computation time allowable, 
and the time margin allowed for computation after re
ceipt of the last sample of the function. These considera
tions will be illustrated completely for the case when 
N is power of 2, N = 21li

• 

When N=2n , Pm = 2 for m = 1, 2, ... , n. Thus, 
Recursive Method'm for a single function (G = 1) re
quires 2m recursion quantities to be stored in memory. 
The computation times for AK and BK , K = 0, 1, ... , 
(N-I) may be indicated by the number of multipli
cations that must be performed to obtain these values. 
These are given in Figure 1, starting with Recursive 
Method 0, the case where there is no factorization of 
N; periodic symmetries are used to obtain the number 
of multiplications given in this figure. 

RECURSIVE 
METHOD 

MAX, NO. OF MULT. 
DURING RECEIPT 

OF SAMPLES 

FIGURE 1 

MAX. NO. OF MULT. 
AFTER RECEIPT 

OF LAST SAMPLE 

(Zm+l)N 

MAX. NO. OF 
TOTAL 

MULTIPLICATIONS 



NUMBER OF RECURSIVE 
WORDS IN MEMORY 

16 

Recursive Method 3 

Recursive Method 0 

~----------~------------~----NO.OF 
MULTIPLICA TIONS 

FIGURE 2 

MAY6,1968 

2345678910 N-I N 

RECURSIVE METHOD 0, I. ............ .. --
RECURSIVE METHOD I, 

RECURSIVE METHOD 2, 

RECURSIVE METHOD 3, 

FIGURE 3 

It is seen that as m increases, the number of multi
plications required after· receipt of the last sample in
creases to the number of multiplications required for the 
Fast Fourier Transform, while the total number of mul
tiplications, that those required during receipt of the 
samples, decreases. These results are illustrated graphi
cally in Figure 2. 

The distribution of the computation time in these 
different methods is shown in Figure 3 by the shaded 
area following the bars, the latter representing the times 
of sampling. 
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It should be clear that the actual computation times 
are less than depicted, due to the existence of trivial 
multiplications and factorizations. In addition, there 
are further factorizations in the recursive methods. 
For example, using the notation 

(6) kR(x) = 2kR(x - 1) cos kO - kR(x - 2) 

+ f(x - 1) = kAz - kR(x - 2) + f(x - 1), 

expansion and simplification yields 

N-l [N~- N-l 

(7) 8R(n) = L ai(s,n) f(i) + L L: ~j cij(s,n) 
i-o i-l i ... l 

for each s in the range ~ ~ s < ~' where ai(s,n) and 

Cij(s,n) are integers or zero. 
Since (7) does not require any full-length. multiplica
tions, it f()1.lows that the number of multiplications 
required during receipt of the input samples may be 
halved at the cost of increased additions and shifts 
after receipt of the last sample. That is, Ri(N -1) 
and Ri(N - 2) in (3) may be obtained directly 

N 
through (7) for each s>-. -4 
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A file management system for a large corporate 
information system data bank 

by HONIEN LIU 

Pacific Gas and Electric Company 
San Francisco, California 

INTRODUCTION 

A corporate information system has several char
acteristics that distinguish it from a conventional 
"batch-oriented" data processing system. 

1. It has a well-planned integrated data base 
which is logically organized to facilitate the 
natural information flow in a corporation. 
By contrast, a conventional batch system is 
quite often fragmented into "information 
islands" with rigid . boundaries, each de
signed for a single function. 

2. It is a real life computerized model of a 
corporation. This model will reflect the 
corporation's performance on a continuous 
basis. If management wishes to evaluate 
any segment of the organization, they may 
'Obtain an up-to-date picture of that segment 
upon request. 
A conventional batch system usually is a 
discontinuous . record-keeping mechanism, 
designed for a predetermined cut-off date, 
with the tabulated results reporting past 
performance of those organizational seg
ments which had been previously defined. 

3. It is a flexible system designed to serve a 
c'Orporation at all levels of information proc
essing. For instance: 

• High-volume, detailed business trans
actions related to every day business op
erations will be processed as scheduled. 
Summary reports of management control 
information (required to speed up con
trol action) will be available on demand. 
Operating standards may be computer 
monitored with notice of nonstandard 
performance being swift enough to per-

mit the proper management level to take 
prompt corrective action. 

• Strategic planning information as
sembled to aid top management in its 
policy decision making will be available 
on special request. 

• Computer service will be extended to the 
entire company by telecommunication 
network thus improving the efficiency 
and accuracy of the information flow in 
the organization. 

The key factors in the implementation of a 
corporate information system are the establish
Inent of a corporate data bank and the design of 
a file management system that will provide for 
efficient and effective use of this data bank. The 
remainder of this paper describes the require
Inents, strategy, design, and implementation of 
such a file management system. 

System requirement8 

The following requirements are essential for an 
effective file management system of a corporate 
information system. 

Centralized control of data definitions 

Because the elements of the data bank of a 
corporate information system interact upon each 
other, a logical intertie must be built to ensure: 

145 

• Consistency of .Data Definitions: 
That is, agreement on name, meanings, 
usage, timing, and scope of each data ele
ment definition. 

• A piece of Information Should Be Recorded 
Only Once: 

This not only allows for efficiency of opera-
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tion and reduction of storage requirements, 
but also is necessary for maintenance sim
plicity. It will guarantee that once a piece 
of data is updated, all the users will be pro
vided with identical and current informa
tion. 

Independence of data from individual programs 

The contents of the data bank change as the 
needs of an organization change. The same data 
bank will be used by hundreds or probably thou
sands of programs; the reprogramming cost will 
be prohibitive if the data and programs are de
pendent upon each other. 

File protection and security 

Security of a File at the Field or Element 
Level: 

Since the data bank is shared among many 
users, certain sensitive data should be avail
able only to authorized personnel. 

• Exclusive Control Over Concurrent Up-
dating: 

During concurrent updating of the data 
bank in the multiprogramming mode, it is 
possible to destroy previously updated in
formation, thus some preventive procedures 
must be designed. 

• Checkpoint and· Restart Facilities: 
A large data base usually h~s long file main
tenance runs and it is quite possible that the 
system will encounter certain fatal input
output errors causing the system to abort 
the job. An adequate checkpoint and restart 
facility must be provided to enable the job 
to skip the error record and achieve normal 
completion. 
For the on-line real-time situation, the sys
tem should have a facility to degrade grace
fully and still give partial service in the 
event part of the data bank· has· been dam
aged. 

Effective use of file space 

The data bank of a large corporation may very 
well require ten . to forty billion characters of 
storage. If we attempt to store all these data on 
a direct access device with reasonable access speed 
and reliability, the price could be prohibitive (see 
Table 1). 

If we cannot resolve the mass storage space 

management problem, economically and tech
nically, we cannot build the kind of data bank we 

Number of units required for 
a ten billion character data. 
base* 

IBM-2311 IBM-2314 IaM-2321 
DISK DISK DATA 

DRIVE ARRAY CELL 

2,000 60 34 
Monthly rental in dollars 
Sequential loading time in 
hours 

$1,200,0~O $360,000 $120,000 

125 30 340 

Approximate direct access device requirement for a ten billion 
character data base using conventional programming technique. 

* Assumed net usable capacity after considering overhead of 
aadressing, indexing, etc, 

TABLE 1 

need. One of our solutions has been to design 
several data compaction routines which allow us 
to substantially reduce the amount of storage 
space required for these data. In Table 2 an ex
ample is given of the amount of savings that can 
be obtained with data compaction for P. G. and 
E.'s customer information master file using 8-
drive disk units. The storage of the unpacked 
data would require the equivalent of 90 IBM-
2314's. Besides the impracticality 'Of housing these 
many disk units, their annual rental would ap
proximate $6,500,000. With well designed data 
compaction software, we can cut costs to an an
nual rental of a little over $500,000; about $6,-
000,000 savings in annual rental. However, the 
question may be raised whether there wouldn't 
be an offsetting cost in the system time that would 
be used to compact the data. An examination of 
Table 2 shows that it takes 45 hours to sequentially 
load a file of unpacked data and only four hours 
to load a file of compacted data; a difference of 41 
hours. Our compaction routines will use consider
ably less time . than this, and hence we will re
ceive an overall time advantage as well as reduce 
storage costs. 

A facility to capture management planning and 
control information 

Certain data elements in the corporate data 
bank have the characteristics of controlling the 
operation of business activity. Others provide 
vital information for strategic planning; for in
stance, information on customer orders and cus
tomer usage are us~d in forecasting demands, in 



Record Type 

Fixed, No Compaction 
Variable Increments, No' 

Compaction 
Variable Increments, 

Compaction 

Nows: 

Average 
Record 

Size 
(Bytes) 

4500 

700 

400 

Storage 
Requirements Number 

(Billions of 2314 
of Bytes) Units 

(1) (2) 

15.8 90 

2.5 15 

1.4 8 
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Sequential 
Loading Approximate 

Time Monthly 
(Hours) Rental 

(3) (4) 

45 $540,000 

7.5 90,000 

4 48,000 

1. Storage requirements based on 3.5 million customers 
2. Storage based on 75% of capacity or 175 milllion b~s per 2314. 
3. Assume 30 minutes for eight drives. 
4. Cost per 2314 approximately $6,000 per month. 

TABLE 2 

designing facilities, and in constructing plants. 
Since planning and control information require

ments change from time to time, the system must 
identify such information and establish adequate 
relationships among them so that proper summary 
reports can be prepared without tedious program
ming efforts. 

Provide usage statistics on each data element 

This information will detect dead fields or low 
usage fields versus high activity fields and thus 
allow for improving the usefulness of the data 
bank. 

Efficient and easy appliea,tions programming 

The advantage gained by coding in high level 
languages such as COBOL or PL/l should be con
sidered for application programming. 

Strategy of the 8ystem 

. Separate the input/output (I/O) functions from 
the application programs 

This will reduce the effort required by the ap
plication programmer in programming, de
bugging, and testing the input/output routines as 
well as providing several other advantages. 

Figure 1 shows a conventional program struc
ture in a multiprogramming environment where 
each application program has its own data and 
file definitions,. I/O buffers, and I/O routines. 

If we change our concept in structuring the 
program to that shown in Figure 2 and cent:ralize 
all four I/O components in one location, we will 
achieve the following advantages: 

Multitasking: 

In Figure 1 the program contains I/O buf
fers and therefore cannot be re-entrant. 
Once a task is initialized for this program, 
variable data contained in the program be
long to this task. If a second task begins 
before the first task is completed, it will de
stroy the data required by the first task. 
However, in Figure 2 there are no variable 

PROGRAM t PROGRAM 2 PROGRAM 3 

PROCESSING PROC£SSING PROC£SSING 
ROUTINE ROUTINE ROUTINE 

DATA DATA DATA 
DEfINITION DEfINITION DEFINITION 

F'lLE .FILE FILE 
DEFINITION DEFINITION DEFINITION 
l,tl BUFFER I/o BurFER I/O BurrER 

I/O ROUTINE VO ROUTIN.E I/O ROUTINE' 

• NON-REENTRY CODE • REPETITION IN: 
DATA DEFINITION - F'lLE DEFINITION 

IA> BUrrER - I/O ROUTINE 

FIGURE I-Conventional program structure in 
multi-programming environment. 

data within the program, and the coding in 
the program does. not alter any portion of 
the program (i.e., the program is a read
only copy). These programs now may be
come reentrant modules. Any number of 
tasks can be initialized in the module with
out waiting for completion of the previous 
tasks. 

Reduction in Core Memory Requirements: 
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PROGRAM f PROGRAM 2 

'RE-ENTRY CODE. MUlTI·TASKING • SHARED: 
DATA DEF'lNITION - FILE DEFINITION 

I/O BUFFER POOL - I/o ROUTINE 

FIGURE 2-Program structure with centralized I/O function 
in multiprogramming environment 

I/O routines can be identical if all 
the programs share the same data 
bank. 
I/O buffers can be shared by differ
ent files. 
In general, these four components 
will represent a high percentage of 
the core requirements for the appli
cation program. 

Speed-Up Program Loading: 

In the on-line real-time environment, 
the program loading activity con
sumes a good percentage of the time 
available. It is obviously not econom
ical to load a message processing 
program of 8.0,000 bytes merely to 
process a short message of 20 bytes. 
Since the sizes of the applications 
programs are greatly reduced, more 
programs can be allowed to reside in 
the core, thus reducing roll-out roll-in 
time. 
The size of the program library will 
also be reduced thus allowing it to 
be concentrated in very few cylinders 
on the disk, resulting in reduced disk 
arm movement and less I/O time. 

Central Control: 

It is necessary to have centralized 
I/O in order to achieve consistency 
of data definition, protection/securi
ty, usage statistics, mass storage 
space management, and concurrent 
updating. 

Flexibility : 

Reconstruction and redesign of a file 

will have very limited impact on most 
of the application programs. 

There are, however, some disadvantages in 
separating I/O from the application pro
grams: 

Adequate Software is N ot Available: 
System programs to handle centralized I/O 
functions are not supplied as standard pack
ag,es by the computer manufacturer at the 
present time. Some uncommitted trial pack
ages exist; however, and in general, the per
formance of these packages is not satisfac
tory for ultra-high volume systems. 

Nonconventional Usage of High Level Lan-
guage: 

The normal use of high level languages such 
as COBOL requires that the I/O, file, and 
data handling routines be within the pro
gram. Some programmers accustomed to 
this method of programming may feel 
strange if they must change their ways. Doc
umentation, programmer orientation, and 
training in the new programming concepts 
are necessary to achieve optimum results. 

• Increased CPU Overhead: 

The data description compiled within the 
application program has one definite advan
tage in that the code is already generated 
within the program. No further interpreta
tion process is required for the I/O function. 
Additional CPU time may be required for 
the centralized I/O routine to interpret the 
record for the application program. How
ever, the amount of time saved in program 
loading should more than compensate for 
this additional CPU interpretation time. 

Separate tables and search routines from the 
a,ppIieation program 

To demonstrate the concept of centralized tables 
and table search routines, compare the following 
figures: 

• Figure 3 shows the fixed table concept with 
the tables and search routines coded within 
the applications programs. Its major dis
advantages are: 
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ROUTINE 
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ROUTINE 
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ROUTINE 

I A I F" I 
PROCESSING 

ROUTINE 

a, f, 
a2 f2 

a3 f~ 
a4 f4 

an fn 

TABLE SEARCH 

FIGURE 3-Fixed table 

Duplication 'Of tables and search r'Ou
tines in the c'Ore. 
Inefficient table search r'Outines. 
Inflexibility 'Of tables; that is, when 
a table is changed, the pr'Ogram must 
be rec'Oded and rec'Ompiled. 

F~gure 4- illustrates the dynamic table build
ing concept. Here table space is reserved 
within the applicati'On pr'Ogram; a Build
Table-R'Outine (BT ABLE) is called by the 
applicati'On pr'Ogram and linkage edited with 
the pr'Ogram. .During pr'Ogram executi'On 
time, the BT ABLE r'Outine will read the 
table fr'Om the 'On-line c'Ode list file. The im
pr'Ovement 'Of this appr'Oach 'Over the fixed 
table coricept is that the table is relatively 
independent 'Of the pr'Ogram. When the· 
table must be m'Odified, if the reserved space 

TABLE TABLE 
SPACE SPACE 

CALL STABLE CALL STABLE 

TABLE TABLE 
SEARCH . . . SEARCH 
[IIEJ C!:IIJ 

PROCE.SSII-IG PROCESSING 
ROUTINE R.OUTINE 

BUILD TABLE: BUILD TABLE 
ON-LINE ON-LINE 

'BTABLe' 'BTABLE' 

TABLE SPACE 
COMPILED HJ: 

APPLICATION PROGRAM 
: \ I 

CALL STABLE ROUTINE 

TABLE SEARCH ROUTINE 
'IF' & 'GOTO' STATEMENTS 

I ARGUMENT I· AlNGTlON I 
PROCESSING PROGRAM 

DYNAMIC TABLE BUILDING 
ROUTINE (SUB ROUTINE) 

TABLE 
SPACE 

CALL BrABLE 

TAB~.E ... SEARCH 

pkt,J§sIJG 
R.OUTINE 

BUILD TABLE 
ON-LINE 

'srABLE' 

.- :::: 
CODE 
LIST 
FILE 

.... -

FIGURE 4-Dynamic table building 

D 
F 

is n'Ot violated, the pr'Ogram is n'Ot affected. 
• Figure 5 sh'Ows the centralized table c'On

cept. Here the tables as well as the table 
search pr'Ograms are separated fr'Om appli
cati'On pr'Ograms and c'Ollected int'O 'One cen
trally contr'Olled area, 'Offering the foll'Owing 
advantages: 

Savings 'Of C'Ore Storage: 
C'Ore st'Orage utilizati'On is 'Optimized 
by I'Oading 'Only 'One c'Opy 'Of the search 
m'Odule 'Or any given table in a multi
programming envir'Onment. 

Optimum Resource All'Ocati'On: 
Res'Ource all'Ocati'On is 'Optimized by 
dividing the tables into tw'O groups
a high activity gr'Oup, which resides 
in the main st'Orage (eliminates fre
quent I'Oading 'Of these tables fr'Om 
the mass st'Orage device) ; and a l'Ow 
activity gr'Oup, which is l'Oaded into 
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AIF' A F' A F' 

PROCESSING PROCESSING PROCESSING 
ROUTINE ROUTINE ROUTINE 

I 
RESIDENT 

. TAaLES· 
oeM SWARED LI: TRANSIENT 

RECORD TABLE LOOK TABLE 
COMPo UPMooULES AREA 

~ 

eli CORE 

fl 
IMAGE 

3. TA8LE 
LIBRARY -

DIRECT TABLE LOOK-UP 
(BASE DISPLACEMENT) 

FIGURE 5-PG and E centralized table system 

a transient area of the main storage 
only when requested. 

Prevent the Creation of Redundant 
Coding Schemes: 

The centralized control of code tables 
prevents each application project 
from designing its own coding scheme 
for the same subject; e.g., an account
ing program might use a different 
construction job code than an engi
neering program although they both 
refer to the same physical job. It also 
guarantees the consistency of code 
definition since there is only one 
copy of each table in the system. 
When this copy is updated, all the 
users get the latest version of that 
table. 
Efficiency in Searching: 
Most high-level languages, such as 

COBOL, are not able to use the base 
and displacement facility of the ,third 
generation computer. However, if 
we can load the beginning address of 
a table in the base register and then 
load the displacement of the argu
ment entry into the index register, 
we can immediately pick up the func
tion and argument from the entry 
without a search. For large tables, 
this means a large saving in CPU 
time. 

Ease of Maintenance: 
It is obvious that one must store the 
displacement instead of the argument 
in the data bank to obtain the above 
efficiency. This adds another advan
tage to this approach; if the tables 
are updated, the data base can re
main unchanged. 

System design 

To design a software package satisfying all the 
requirements stated previously is quite challeng
ing. The name of the game, however, is not just 
to meet these requirements but rather to satisfy 
them ina simple and efficient way. The package 
we have designed is logically subdivided into four 
parts: . 

Data control manager (DCM) 

A real-time file management control program: 

• It is the central clearing house of all the 
input/output requests from all the tasks in 
a multiprogramming environment. 

It performs the centralized input/output 
buffer pool management. 

It is. the intercept point for file protection, 
security· clearance, and exclusive. control for 
concurrent updating. 

• It opens and closes all the on-line files, keeps 
the file and table directories, and captures 
usage statistics on each data· element as well 
as all the entries on certain resident code 
tables. 

It interfaces with the Mass Storage Space 
Manager and the Dynamic Table Manager 
through the Record Structure Descriptor 
Table. 



Mass storage space manager 

A group of data compaction routines driven by 
the Record Structure Descriptor Table (RSDT) 
to serve the following functions: 

• Centralized Data Definition: 

Interpret the contents of the data base to 
the application programs thus eliminating 
data descriptions and making the data in
dependent of applicati'On programs. 

• Provide Various Internal Data Structures 
to the Data Base: 

That is, variable length records each con
structed by a combination of the following 
types CYj.. increments. 

Fixed length increment with incre-
ment bit map: 

If increments are not used in certain 
records, they are not stored in the 
file. The presence or absence of an 
increment is signified by a bit switch 
in the increment "bit map" for that 
particular record. For instance, if 
there are four increments in a maxi
mum rec'Ord, and only the first, sec
ond, and fourth are present for a par
ticular record, its bit map would be 
1101. The three "l's" indicate incre
ments that are present and the "0" 
indicates an absent increment (Fig
ure 6). 
Variable length increment with field 

bit map: 

Similar technique applied to field 
level. 
Variable length increment with field 

counter: 
A group of fields of the same length 
with a counter to tell how many of 

L..--
BA_S_E _1L...-"_" ·_····....I-1 _, 1L--2 ---L._3_...L1 _4 -l1--.J5 ) In. 

BASE 1"0, ..... 1 f I 2 I 4 

BASE 1'011 ..... 1 1 I 3 4 
1 

BASE 1011 ' ..... 1 2 3 I 4 

FIGURE 6-Incremental structure 
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these fields are actually present in 
this increment. 

Utilizing nesting logic, 'One can construct a 
great number of different internal record 
structures; one special example would be 
the tree structure (Figure 11). 

• Data Compression: 

Information units should be precisely 
defined to the bit level; thus, a binary 
variable (switch) should only occupy 
one bit instead 'Of one byte ( eight 
bi:ts> . 
Absent data elements should not oc
cupy storage space with blanks. 
The variable length record concept 
can be extended to the field level; e.g., 
a name field in the persennel file is 
usually defined as a fixed length of 30 
characters so that it can handle the 
longest name in the file; thus, a shert 
name will occupy a 30 character space 
padded with unnecessary blanks. 
A more efficient coding structure can 
be utilized to increase the informatien 
density ; e.g., if a long data field of 
alphanumeric information is stered 
in the eight bit EBCDIC code, by 
simply changing it te a six bit BCD 
coding scheme 25 percent sterage 
space can be saved. 
Tailored routines can be designed te 
compact frequently occurring data 
elements fer greater saving; e.g., a 
six-digit "date" can be stored in a 
two-byte field witheut loss 'Of inf'Or
mation. 
Store numerical information in bi
nary form; e.g., a f'Our byte binary 
field can accommodate nine digits 'Of 
decimal data. 

Dynamic table manager 

R'Outines are provided that will I'Oad, delete, 
search, and maintain a centralized table facility 
for all of the applicati'On programs. These rou

. tines serve the following functi'Ons: 

• Reduce the number of tables required since 
all pr'Ograms desiring similar infermation 
will use the saine table. 

• Facilitate code table maintenance. If a c'Ode 
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is changed, added, or deleted, only one 
change need be made to the code table rather 
than having to change several tables in 
several applications programs. 

• Relieve· the applications programmer of 
writing table search routines, some of which 
are quite tedious. 
Centralize control of code tables to insure 
that different applications don't design dif
ferent coding schemes for the same subject 
matter. 

File maintenance interface 

Since batch processing and on-line message 
processing programs share the same data bank, 
certain facilities such as the Mass Storage Space 
Manager and the Dynamic Table Manager must 
be available for use by a file maintenance run. 

The heart of the file management system pre
sented in this paper· is the Record Structure De
scriptor Table (Figure 7) • This table is divided 
into two major sections, one containing the data 
coordinates anp the other containing control in
formation: 

1. The Data Coordinate Section Shows the Fol
lowing Attributes: 

• Before Expansion: 

The relative location of the data element 
when the record is residing in file storage 
(Ds, Ls) in the compacted form (Figure 8). 
After Expansion: 
The relative location of the data element 
after the record has been expanded and 
moved into~ the user area (Du, Lu). 

• Units of Information: 

The "bit switch" and the "hex" attributes 
define' the units of information at the bit 
level. 

• Variable Length Element Switch: 
When data elements are stored in the vari
able length form, this switch will be turned 
on. 

2. The Control Information Section Contains: 

• Usage Statistics for Each On-Line Data 
Element: 

Periodically, a system service program will 
dump these accumulated statistics on a stor
age device, such as magnetic tape, for future 
analysis. 

• A Security Code Attached to Each Data 
Element: 

Each on-line request for access to the ele· 
ment will have its security code checked 

FIGURE 7-Record structure descriptor table 

CONTROL INFORMATION DATA COORDINAT£S 

BITS 
r-----+---~---r~--+-----~--~----4_--~----~--+_--_+_44444~ 

BYTES 
r-----+---~~-r~--+-----~~~~--4_--~----~~+_~_4_44444~ 

1 .... ·~---4 

INCREMENT 
ORGANIZATION 

T'IIOBITS 
00 -Fix,' Itt'fll, J"tfMI,,,f 

o I . ~fi~bl, l"'fll, Met"",,,! 
"i'f, Iii" Bi! N;p 

10 -V'rt"J/''' 1""If, btertIIRIIl 
,,;II, !!tid (qq,,;'" Byk 

4 

* . Bit Rest'rttl n,r IiIfv~ lise ** -Bif 011 illlliufes fI~,,;'''le 
le"f'h Fielt! ** *-I"fo""lllo" ,sll',lclt 

0" - PI~""i"9 1"/ofm~/io,, 
Ofl -·c.,,,ftol 1"Io_JlitJ" 

tUUUf-Col1fnrl Swifclt 
0" -/rf311lgemtl1l Co,,1101 

Off -Ope,t1I;ol1~1 Co"IN/ 



~ I I ({ I 

FIGURE 8-Record compaction/expansion 

against that of the data element before ac
cess is allowed. 

Compaction, Expansion, or Table Search 
Routine Displacement: 

This attribute serves as a pointer to the cor
rect routine to interpret the data element 
(Figure 9). 

Code Table Address Displacement: 

If the data element is a code that requires 
interpretation, this attribute will locate the 
correct code table for the table search rou
tine. If the table is not in the main storage, 
the control program will load the table into 
the core. If it is a low activity table, the 
system> will delete the table after the search 
function is completed thus freeing the core 
for other usage. 

Information Switch: 

If a data element is identified as manage
ment planning information, this bit switch 
will be turned on. 

Control Switch: 

If a data element is identified as manage
ment control information, this bit switch 
will be turned on. 

• The increment number, the increment or
ganization, and the increment· chain dis
placement attributes will provide the ability 
to access information in the following forms 
from the data base: 

A record: 

If the user desires, he may have the 
entire record expanded and presented 
to him. 

d, 

d3 
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FIGURE 9-File directory ent.ry 

An increment: 

A logical group of elements within 
the record. The increment· chain dis
placement attribute indicates the lo
cation of the next element in the 
increment and thus provides the 
ability to supply a complete logical 
increment to the user. 

Increment by circular ring: 

Since the increment chain displace
ment is constructed in a circular ring 
fashion (see Figure 10), a user can 
obtain a logical increment by identi
fying the class of information desired 
in the lead column of his report. For 
example, a user requests a listing 'Of 
an employment directory from the 
data base; he may choose to have his 
employees listed first by name or by 
telephone number, 'Or by social securi
ty number, or by addres, or by de-
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FIGURE 100Increment chain and circular ring 

partment number, etc. without ad
ditional programming. 

Branch of a tree structure: 

By combining different increment 
organizations in one record, a limited 
tree structure can be formed with a 
record (Figure 11); e.g., an inven
tory record using the material code 
as the major ~ey has a base incre
ment describing the characteristics 
of the item followed by a certain 
number of increments which describe 
those stores that carry this item, and 
each store increment in turn will be 
followed by a certain number of in
crements which will describe all the 
local vendor information concerning 
this item. Furthermore, each vendor 
increment can have a number of vol
ume and price increments. If we 
consider this as an internal informa
tion tree, a branch of the tree may 
appear as: list the price information 

FIGURE 11-Tree structure 

onmateria..l item (XYZ), store (i), 
vendor (1), volume (p). 
An element: 

A unique element control number as
signed to each field when the RSDT 
is created allows the application pro
gram to request individual elements 
and thus free the program from be
ing cluttered with elements that it 
does not use. 

Implementation of the system 

The system program package has been written 
in IBM -360 Operating System Assembly Lan .. 
guage (ALC). 

1. It is fully interfaced with the IBM-360 op
erating system, under either MVT (multi
programming with variable number of 
tasks) or MFT (multiprogrammirig with 
fixed number of tasks). The package is not 
tied to any particular release of 0/8; hence, 
if a new version is released, there should be 
little or no effect on this package. 

2. The data bank management package takes 
full advantage 'Of the existing operating sys
tem facilities. 

3. It is intended to interface with all the oper
ating system supported languages (COBOL 
interface will be implemented first). 

4. The entire packag'e has been designed to be 
dynamic in nature; that is, all programs are 
load modules. They are not linkage edited 
into the application program; thus, the 
package may be redesigned and improved 
without any appreciable effect on the appli
cation programs. 

5. The entire package has been programmed in 
re-entrant code. 

6. The system has been coded in a modular 
fashion. Each routine was individually 
coded, tested in detail, subgroup ed, and 
finally all routines were combined together. 

• To increase the efficiency of the package, 
the following measures were taken: 

Unnecessary saving of registers 
and store register operations were 
avoided by branching between 
modules rather than using sub
routine calls. 
All modules \vere carefully ex-



amined to the bit level to insure 
tight coding. The total coding 'Of 
the package may use less than one 
percent of the total main core 
memory. 

7. The hardware anticipated over the next 
several years includes two large central 
processors with a million bytes of main 
memory, supported by smaller satellite com· 
puters and a score of multi-drive disk stor
age units. The system is being designed to 
support several hundred terminals most of . ' 
whIch are expected to be high speed CRT 
display units. 

APPENDIX 1 

Record 8tructure de8criptor table 

Control information 

1. Reserved area-A two byte reserved area 
for control function; e.g., use it as 16 bit 
switches each associated with a management 
report. 

2. Usage Statistics 
A. A two byte binary counter is used to 

maintain a count of the number of ac
cesses made· to each partiCUlar element. 

B. When maximum value (65,535) is ex
ceeded, an overfl'Ow routine stores the 
element control number in an overflow 
area in the record structure header, adds 
one to the two byte binary overflow 
area, and clears the original counter. 

3. Increment Number/Organization 
A. Indicates which increment within a rec

ord c'Ontains the element described in 
the table entry. 

B. Increment number occupies six high 
order bits (maximum value - 63). 

C. Increment organization: Two low order 
bits. 
1.) 

2.) 

3.) 

00 - Indicates fixed length incre
ment. 
01 - Variable length increment 
with field bit map. The presence 
or absence of certain fields in an 
increment depends on the on or off 
of the related bit switch in the bit 
map. 
10 - Variable length increment 
with a field counter byte f'Ollowed 
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by a group of fields of same length. 
4. Security Code 

A. Consists of a security or protection code 
for the element described in this entry. 

B. Designed to prevent certain information 
in the files from being 'Obtained by un
authorized individuals. 

C. Occupies one byte (maximum value-
255). 

5. Increment Chain Displacement 
A. Provides a pointer to the next logical 

element description for the record (or 
increment) . 

B. Provides record structure independence 
from data changes in description and/or 
additions or deletions of elements by 
allowing a nonsequential physical record 
structure table organization. 

C. The chains are constructed in a circular 
ring fashion; i.e., the last element 
pointed to the .beginning element of an 
increment, or in the case of single level 
structure, the last field pointed to the 
beginning field of a record. 

D. Occupies two bytes. 
6. Compaction/Expansion or Table Look-Up 

Routine Displacement 
A. Used by the DCM modules to determine 

the correct compaction/ a~pansion or 
table look-up module to be invoked. 

B. Occupies six bits, maximum 64 routines. 
7. Code Table Address .Displacement 

A. Points to an entry in a table directory 
which identifies the table required to 
convert the code in the record to the 
value obtained from the table. 

B. Occupies ten bits. 

Data coordinates 

1. Element Length 
A. Length User - Indicates the length of 

the elen:tent when expanded to user for
mat. Occupies one byte. 

B. Length Storage - Indicates the length 
of the element in its compacted format 
as stored upon the DASD. Occupies one 
byte. 

2. Element Displacement 
A. User Displacement - Indicates the rela

tive location 'Of the element in relation to 
the beginning of the record ('Or incre
ment) as expanded to user format. Oc-
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cupies twelve bits. 
·B. Storage Displacement ~ Indicates the 

relative location of the element in rela
tion to the beginning of the record (or 
increment) as compacted to storage for
mat. Occupies twelve bits. 

3. Bit Displacement 
A. Occupies three' bits which indicate the 

relative displacement within the byte of 
the particular bit switch. 

4. Hex Switch Indicator 
A. Indicates if data normally contained in 

1h byte has been combined at compac
tion time with similar data. 

B. Occupies one bit. 
5. Variable Length Field Indicator 

A. If on identifies the element as a variable 
length field or if off as a fixed length 
field. 

B. Occupies one bit. 
6. Information Switch - Occupies one bit. 

A. If on identifies the data in this element 
as planning information. 

B. If off identifies the data in this element 
as control information. 

7. Control Switch - Occupies one bit. 
A. If on - management control. 
B. If off - operational control. 

8. The last bit is not used at this time, but is 
held in reserve. 
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Omnibus: 
A large data base management system 

byROYP.ALLEN 

IndU8trial Indemnity Company 
.San Francisco, California 

INTRODUCTION 

In designing a third-generation data base and a'system 
for interrogating and maintaining it, Industrial Indem
nity Company set the following general objectives: 

1. The management and retrieval system should be 
oriented to providing its services in a simple and 
8traightforward way to application programs written in 
a high-level langUage, such. as PLII or COBOL. 

2. The data base should be compact. Its second
generation predecessor was a pair of files occupying to
gether some 35 reels of magnetic tape; but the new data 
base, which would need to meet significantly expanded 
data requirements, was to fit onto a single IBM 2321 
data cell drive (capacity about 390 million bytes). 

3. It should be possible to design, program, and im
plement the system with a configuration of machines 
and personnel commensurate with the anticipated benefits. 

4. Provision should be made for storage, retrieval, 
and -maintenanoe of data elements with widely varying 
8pace requirements. Well over half of our policies have no 
olaims at all, but a few policies for very large companies 
acquire claims in the thousands. 

5. Both sequential and direct accessing, in a variety of 
oombinations, should be feasible, in order to accommo
date file-scanning applications, efficient updating, and 
an open-ended variety of inquiry and reporting applica
tions. 

6. Retrieval8hould be BWift enough to maintain rapid 
response to inquiries coming from several dozen remote 
inquiry terminals. 

7. A very high level of data integrity must be main
tained, with protection inplemented in at least three 
ways: detection of improper attempts to alter the con
tents of the data base; prevention of incorrect updating; 
and recovery from data, program, or machine failures in 
a minimum of elapsed time and with a high level of 

justified confidence in the restored version of the data 
base. 

8. Both the data base structures and its manage
ment system should be flexible enough to permit new 
and unforeseen data requirements to be accommodated in 
the future with a minimum of disturbance to either 
operational application programs or the data base 
management system itself. 

I would like to describe to you "Omnibus," the sys
tem developed to meet these objectives. The description 
will be presented in five topics: the logical structure of 
the data; data interfacing and retrieval; protecting data 
integrity; accommodating changing data requirements; 
and patterns of retrieval. 

Data structure 

At the most general level, data managed by Omnibus 
are clustered by one primary and one secondary identi
fier. Since Industrial Indemnity is an insurance carrier, 
our primary identifier is the insurance policy number; 
each data item is related to a single, specific policy. 
Data that apply to a policy as such, rather than to its 
individual claims, have no secondary identifier; data re
lating to specific claims, however, are grouped by claim 
number, the secondary identifier. Each claim is subsid· 
iary to the specific policy on which the claim is made. 

The terms "policy" and "claim" apply specifically 
in the insurance industry, but the philosophy and tech
niques of Omnibus are applicable for any large data 
base that can be similarly structured according to one 
primary identifier and a very small number of subsid
iary identifiers. For the sake of concreteness, the appli
cation-oriented terms "policy and "claim are used 
throughout this discussion. 

The basic unit of data organization in Omnibus is the 
field string; a field string is defined as a group of one or 
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more fields structured according to a corresponding 
Format, and a Format is defined as a fixed pattern of re
lated fields. Since Omnibus can accommodate a variety 
of data requirements, few or many Formats may be de
fined to the system at a given point in time. Formats are 
identified by Format numbers in the range 1-2/; For
mats numbered 1-63 apply to field strings such that 
each relates to its respective policy, but not to any 
specific claim; whereas Formats numbered 64-127 
apply to field strings such that each relates to a specific 
claim on a specific policy. Each field string carries with 
it the Format number of its corresponding Format. 

Field strings are logically and physically grouped in 
sections; a section is defined as a group of one or more 
related field strings such that Omnibus is required to 
treat the group as indivisible in mass storage. Specifi
cally, a policy section is defined as the group of field 
strings rel~ting to a particular insurance policy but not 
specifically to individual claims, and a claim section is 
defined as the group of field strings relating to a partic
ular claim on a policy. Each policy section consists of 
one field of Format 1 (the policy summary Format), 
followed by zero or more field strings (for the same pol-

Each rectangle represents a field string of .the Format indicated. 

POLICY 678-9015 

I Format .l - policy summary Format 

r- Format 3/12 (repeatable) I 
r- Format 3/17 (repeatable) I 
r- Format 6/01 (repeatable) I 
'- Format 8 

CLAIM 04-00003 on policy 678-9015 

H Format 64 - claim sUDmlary Format 

l-1 Format 65 I 

CLAIM 07-00001 on policy 678-9015 

--1 Format 64 - claim sUDmlary Format 

r- Format 65 I 
f- Format 73 

f- Format 75/02 (repeatable) 

-- Format 75/05 (repeatable) 

CLAIM 07-00002 on policy 678-9015 

L{ Format 64 - claim summary l'ormat 

I 

I 

I 

J 
I 
I 

I 

I 

Policy 
section 

} 
Claim 
section 

} 

Claim 
section 

Claim 
section 

FIGURE l-Logical structure of a policy's data 

icy) numbered 2 - 62*; each claim section consists of 
one field string of Format 64 (the claim summary 
Format), followed by zero or more field strings (for the 
same claim) numbered 65-127. 

The complete data recorded in the data base for any 
given insurance policy, then, consist of one policy sec
tion followed by zero or more claim sections. 

Data are transferred between application programs 
and Omnibus in either standard form or long form, where 
the form is defined as the sequence of field strings that is 
assumed in such a transfer. Standard form consists of 
one, two, or three field strings: the field string of direct 
interest is always last; if that field string is numbered 
greater than 64, it is preceded by the same claim's For
mat 64, or claim summary, field string; in any case the 
first field string is the policy's Format 1, or policy sum
mary, field string. Thus a data item is always accom
panied by the most closely related summary data. 

Long form consists of a variable number and ar
rangement of field strings, depending on the amount 
and complexity of the data recorded for the given policy 
or cla,fm. In long form, all the field strings in a specified 
section are transferred, in ascending order by Format 
number; if the specified section is a claim section, the 
Format 1 field string of the related policy precedes the 
claim field strings. An application program receives 
data in long form when it specifies a Format number of 
zero; otherwise, transfers are in standard form. 

This much is all the a:pplicatiQn programmer needs to 
know about the data structure in Omnibus. 

POLICY. NO. 678-9015 r------.., 
~~~TN~~. 1 I Format 1 - policy 8ummary 

STRING ID* 

POLICY NO. 678-9015 ,--------,.....-----.... 
CLAIM NO. Format 1 - policy summary Format 3/17 (repeatable) 
FORMAT NO. 3 ...... ------....... -----~ 
STRING ID* 17 

POLICY NO. 678-9015 

~~TN~~. 07-00~! ... IF_orma_t _1 -_P_Ol_iC_y _SUllllD8_r_y_1 F_orm_a_t _64_-_c_la_im_summa_r_y ....... 

STRING 10* 

POLICY NO. 678-9015 ,--------,.....-------'r---...... 
CLAIM NO. 07-00001 Format 1 - policy summary Format 64 - claim summary 
FORMAT NO. 73 ...... ------'-------__ "'-__ ..... 
STRING 10* 

*When a Fomrat is defined as t'epeatabZe (meaning that a given section may contain mot'e than 
one instance Of that Fonnat) > the instances >Jithin a section aPe distinguished from one 
anothet' by a 2-digit string identifiet'. This tenn has no appLication to non-t'epeatabZe 
Fomrats. 

FIGURE 2-8tandard form 

*Format 63 applies to field strings used for indexing the claims 
of "HVC" policies, as described in the following section of this 
paper; its instances constitute separate sections, called "claim 
index sections," for Omnibus internal use only. 



POLIC! RO. 678-9015 
CLAIM 110. 00-00000 
FORlfAT 110. 0 
STRIIIG ID 

POLIC! 110. 678-9015 
CLAD! 110. 07-00001 
PORIfAT 110. 0 
STRING ID 

---------' 

FIGURE 3-Long form 

Data interfacing and retrieval 

Internally, however, different classes of fields, claims, 
and policies are accessed in different ways, according 
to their individual characteristics. 
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For instance, even though each policy and claim has 
only field strings of such Formats as are appropriate 
to its particular requirements, it is still true that 
much of the space in most field strings is, in varying 
degree, wasted: inapplicable fields are empty (blank 
or zero) ,amounts are substantially smaller than the 
maximum for which space is allocated, character fields 
contain many low-order blanks. 

To reduce the amount of comparatively expensive 
direct-access storage so wasted, Omnibus defines two 
representations of data for each Format: expanded and 
condensed. In expanded representation, the number of 
fields, and the size and usage of each field, for a given 
Format, is fixed, and applies identically to every field 
string of that Format. In condensed representation of a 
field· string, unused fields are omitted, and noted as such 
in a bit matrix stored with the data; high-order zeroes 

FIGURE 4-Examples of expanded & condensed representation 

"t$ 
"t$ 
~ 

~~ (Q 
~~ 

~i-.) ~i-.) 

~~ Condensed ]~ 
Field name Ewpanded representation ~~ C) ~ 

Techni~e ~ 

(Matrix) 2 

1. Policy number ,6,7,8,9,0,1,5, 3 Zoned~binary 

2. Insured's ,P,., ~·I rl11N'f$, ~;rgtB§ I I I' , I I , 25 t111111P.·1 ~., J.gtiES eT~ j} Variable-
3. name I III III IIIII IIIII I IIIIIIII 25 omitted (see matrix) length 
4. and ,1J?i IBlWADl eT~,T, , I I' , , I I I I 25 10Fi!t~ ~ eT.R.U.T, character 
5. address ,HMIiLsTPN,!, .NF,W, l,9¥1 , I , , ' I I 25 112,'IIJNW.I.G9N,!, IN¥J 1lpPE.. string 

6. Zip code 11 ,5 10,4,st 5 ,15 ,"04 I 5-t, 

:J Zoned 
7. Agent number ,9 ,8 I 7 , 6 ,5t 5 198 176 1S+. 

~packed 

8. Effective date ,12 125166, 6 ~16 (359-66,0) :} Zoned MoDaYr 

9. 
~binary 

Expiration date 112 ,24,67, 6 ~ .. (358-67,,,) DayYr 

10. Date cancelled ,00 ,00, 001 6 omitted (see matrix) 0 

11. Date reinstated ,00 ,00, oq 6 omitted (see matrix) 0 

12. Premium 100 ,00l45 ,13 15:!! 5 ~..J..2:b 

:J 
Variable-

13. 
length 

No. claims 100 ,00, 3:!! 3 ~ packed 
decimal 

14. Claims amount ~010014312010i1 5 e3 120 ,0+. field 

15. Binary flags 1 ,0 11 ,I, 0 10 10 ,0 ,I, 8 ~'6 (01100001,) :} '0 
Zoned~binary 

16. Binary flags 2 ,I, ° 11 , 1 , 1 ,1 10 11"0 8 !!?l .. (10111101~) 

TOTALS 170 77 
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are dropped from numeric fields; numeric character 
fields are stored either in two-digits-per-byte form or in 
binary; and so on. For each Format defined to it,Omni
bus uses a Format map to specify for itself the relation 
between the condensed and expanded representations of 
the fields that make up the field strings of that Format. 
Each two-byte field descriptor in the map specifies, for 
one field (or group of similar adjacent fi,eld~) of a For
mat, the particular technique of expandIng and con
densing to be used, and the conditions under which 
the field can be' omitted in condensed representation. 
This characteristic alone of Omnibus reduces the stor
age requirements for o,ur data base by about sixty per
cent, a savings in mass storage cost that appears to 
constitute a sufficient cost justification for the design 
and programming effort. 

Policies are recorded in, and retrieved from, direct
access storage in one of three modes, depending on the 
size of their condensed representations. 

(1) A "one-track" policy is one such that its policy 
section and all its claims (if any) will fit, in condensed 
representation, on a single direct-access track (on the 
data cell drive, 2000 bytes or less); these policies have 

from zero to about 15 claims each, and account for 
nearly all policies, but scarcely more than half of all 
claims. A particular section, ,when requested, is located 
by Omnibus by simply searching the single logical 
record for that policy on the single track that contains 
all the policy's sections. 

(2) A "two-track" policy is one that is too large, in 
condensed representation, to fit onto a single direct-ac
cess track, but will fit onto two consecutive tracks with
out requiring any section to straddle them; these policies 
have about 15 - 35 claims each, and account for a small 
percentage of the total number of policies. Omnibus lo
cates a particular section of a two-track policy by check
ing the last section in the single logical record on the . 
policy's first track to determine which track should con
tain the requested section, then searching the appro
priate track. 

(3) A "high-volume-of-claims," or "HVC," policy is 
one, the' condensed representation of which is too 
large to fit onto two tracks; these policies have from 
about 35 to several thousand claims. They represent 
a relatively small number of policies, but they account 
for nearly a third 0 f all claims. Two levels of index are 

FIGURE 5-Exa.mples of one-tra.ck and'two-tra.ck policies 

Traak 47 - aontains five one-traak poliaies 

Policy 678-9012 
I 

678-9014 678-9015 678-9016 678-9018 
I 

Traak 53 - aontains the first-traak portion of a two-traak policy 

Policy 679-0017 (first part) 
I I 

Traak 54 - aontains the remainder of the tw~-traak policy's data~ and three one-traak poliaies 

Policy 679-0017 (second part) 
I I, 

679-0018 
I 

679-0020 679-0021 
I 

Each rectangle above represents a section: blanks represent policy sections, and claim sec
tions are marked as such. Each separate logical record is marked off by a heavy black out
line; a single logical record contains data for one and only one policy. 



used to proceed from an HVe policy's policy section to 
a specified claim section. The first level is stored within 
the policy section itself, in a field string of a special-pur
pose Format, not accessible to application programs; 
this index points to the direct-access track(s) on which 
the second-level index record(s) reside(s), normally 
either the same track as the policy section or the ones 
immediately following. A second-level index record for 
an HVe policy contains one entry for each claim, with
in its range of claim numbers, recorded for that policy; 
each entry points to the track on which its claim is cur
rently recorded. Thus, when Omnibus has secured the 
policy section of an RVe policy, and it seeks a particu
lar claim on that policy, it searches that policy's first
level claim index for the pointer to a second-level claim 
index whose number range includes the claim number 
sought. Using that pointer, it secures the appropriate 
second-level index, and binary-searches it for the entry 
for the desired claim number, which points to the track 
on which that claim is recorded. Some effort is ex
pended, both when reorganizing the data base and when 
maintaining it, to assure that all sections of an Hve 
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policy are recorded on the same data cell strip if at all 
possible, in order to avoid excessive seek time. 

Physically, the data base is divided into four regions: 
a Prime area, where one-track and two-track policies are 
stored sequentially by policy number whenever the 
data base is reorganized, packed tightly into one- track 
blocks; an HVC area, where high-volume-of-claims 
policies are stored sequentially at reorganization time, 
with overflow space reserved at the end or' each strip in 
order to minimize the chance of a policy -being forced 
by additions or modifications to straddle a strip; and a 
pair of Activity areas (one each for the Prime and HVe 
areas) to receive new policies and claims and relocated 
data, as required, during the cycle between one reor
ganization and the next. 

Whenever updating or adding data causes enlarge
ment of the condensed representatioIJ. of a section, it is 
possible that the new, larger, condensed data will no 
longer fit its old home location. This could occur be
caused a previously unused field comes into use, because 
a . new field string is added, because an amount field 
oomes to have fewer high-order zeroes, or for any of 

FIGURE 6-Example of high-volume-of-claims policy . 

. Tpaok 5096 'Olioy 777-1234 Poliay 777-1234 

Format 1 /Format 2 IFormat 3/02 !Format 3/07 Format 6/01 1 Format 63 

\ 
\ 
I 

----- -- - ---
Claim index - level J 

----- ---:----- - --

Claim no. 01-00103 01-00435 01-00767 04-00091 04-00423 99-99999 

Track no. 5096 5140 - 5193 7183. 

Tpaok 5140 777-1234 

Format 63 

--- --- -I Claim index - level 2 

Claim no. 01-00436 01-00437 01-00440 01-00441 01-

Track no. 5141 

Tpaok 5141 Poliay 702-1111 ~~iay 777-123~ 

5250 

Poliay 605-6543 

Claim 03-00222 I 03-00223 

.... _--. 
-. ---

I 

01-00766 01-00767 

5191 7040 

I 

1 Claim 09-019921 09-007401 09-007441 Claim 01-00436 I 01-004371 01-00441 1 Ol-OOij 01-004531 



162 Fall Joint Computer Conference, 1968' 

sevel'al other reasons. When this occurs, one general 
rule obtains: the home track of data separable from that 
being moved because of its own enlargement always re
mains the same. For example, if a one-track policy en
larges so that it will no longer fit its old space, Omnibus 
does not move any data for other policies that may be 
sharing the same track, but instead moves only the af
fected policy; if an RVe claim section enlarges so much 
that it no longer fits, no policy section, claim index sec
tion, or other claim section is relocated because of that 
claim's move. In the case of a two-track policy, both 
parts are moved together, even though only one may 
have expanded. After data are moved from a track, the 
data remaining on that track, if any, are packed to
gether, so that no trace remains on that track of the 
removed data, and all its space is available for other 
subsequent use, such as the expansion of some of the re
maining data. Any affected pointers in indexes are, of 
course, updated immediately when data are moved. 

In spite of the breaks in physical sequence that may 
be caused by additions, relocations, and the use of sep
arate regions for RVe and other policies, Omnibus 

can find any policy, a~d therefore any section, fairly 
swiftly, using a very simple two-level indexing scheme. 

A one-for-:-one index of policies is maintained on disk, 
in sequence by policy number; it lists, for each policy 
in the data base, its policy number, certain bit flags that 
may obviate the necessity for retrieval, and a pointer to 
the track in the data base on which the policy section is 
currently recorded. This index is recorded in fixed
length, keyed blocks of 134 entries each, with each block 
having as its key the policy number of its last (highest
numbered) entry; four keyed blocks are recorded per 
track. 

To access this index efficiently, a core-resident index 
of some 1200 entries is used; this index consists of the 
key, or last policy number, of the last block on each 
track in the disk-resident index, in ascending order by 
policy numbel. The relative position of each entry in 
the core-resident, or first-level, index implies the rela
tive track number of the corresponding track in the 
disk-resident, or second-level, policy index. Thus the 
nineteenth entry in the core-resident index consists of 
the highest policy number indexed on the nineteenth 

BEFORE FIGURE 7-Moving a policy because of adding a new claim 

Track 47 (Prime area) 

I Claim IClm I clml Clm II II I Claim II ~ 
678-9012 678-9014 678-9015 678-9016 678-9018 

~ 
I ) I 

Policy 
I I 

Track 1345 (Prime Activity area) 

Policy 701-6992 

AFTER 

Track 47 

II 
Policy 678-9012 678-9014 678-9016 678-9018 

Track 1345 

f " IClm I Claim IClmlclmlclaim IClai~ I Claim 

Policy 701-6992 678-9015 
I 



track of the disk-resident index, the one-thousandth 
entry in core corresponds to the one-thousandth 
disk track, and so on. To secure the direct-access 
address of a. particular policy, then, Omnibus per
forms a binary . search of the first-level index for 
the first entry at least equal to the sought policy 
number. The relative entry number of the selected 
entry is used as a relative track number for the second
level.index, and the first block on that track hav
ing a key at least equal to the sought policy number is 
read into core. This block, in turn, is binary-searched 
for the entry matching the sought policy number; the 
matching entry points directly to the track on which 
the policy section is currently recorded. Failure to 
find a matching entry in the second-level index ends the 
search by establishing that no policy of that number is 
recorded in the data base. 

Thus Omnibus requires, at most, one disk seek and 
one data cell drive seek to reach a specified policy, and 
at most one disk seek to find that the specified number 
is not in the data base. This is significantly swifter than 
would be the case, for lIl:stance, witlt IBM's Indexed 
Sequential Access Method applied to a data base this 
size, which would require at best three or four relatively 
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time-consuming data cell drive seeks, whether the pol
icy were present or not. 

Data integrity 

It was mentioned at the outset that Omnibus has as 
one of its design objectives the maintenance of a 
high level of data integrity, to be implemented through 
error detection and prevention schemes, and through a 
reasonably quick and very reliable means of recovery 
from damage of one kind or another. 

The detection requirement is approached in three 
ways. First, when an application program presents new 
or modified data for inclusion in the data base, Omni
bus' field string condensing routines include checking 
each field for proper data type. Detection of improper 
data type, such as non-numeric data in what should be a 
numeric field, is considered to render the entire request 
unexecutable. This serves principally as a safeguard 
against an incompletely debugged updating program, or 
a program that has not yet been recompiled to reflect a 
changed Format definition. 

Second, Omnibus maintains a set of control totals 
based on certain key summary fields· in the claim and 

FIGURE 8-Policy indexing 

Entry no. 

Entry 

Policy index - level 1 

Tpaak 196 of Policy index - level 2 (disk-pesident) 
I blo,~c!k_1!.====:1 I block 2 I , blo~c!k....;3:!.===::t 

1678-900911 11678-9140 II 11678-92681~1 _---' 
I block 4~. ------~ 

1678-9397 ,I 
key data key _ - data - -k~ data 

~ ----. ------
key data 

---I 

Policy no. 678-9010 678-9012 678-9014 678-9015 6 5 678-9136 67-8-9138678-9140 

Track no. 46 47 1222 

Tpaak 1345 of Data base (data aell pesident) 

\Clm I Claim I clml Clm I Claim II 
Policy 701-6992 

I I 

678-9015 
I 

52 1721 52 

'I Claim I Claim 
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policy summary field strings. All of these totals, together 
with a count of policies recorded, are maintained by 
Omnibus at the volume and data set levels; the claim 
summary totals are also maintained by Omnibus (not 
by application programs) in the Format 1 field strings 
of the corresponding policies. These various totals are 
used to detect certain kinds of etrors, as follows: When 
a data base updating program opens Omnibus, Omni
bus provides to that program a copy of the then-current 
data base grand totals. As the program prepares each 
request for the insertion, deletion, or updating of data, 
it is to compute the effect the change should have on 
the control totals, then post that ~ffect to its copy of 
the data base grand totals. On receiving the request, 
Omnibus computes what the actual effect of the change 
would be and compares the result to the program's copy 
of the control totals. If they do not agree, the request is 
rejected, and the application program is so notified. 
This procedure assures, essentially, that the application 
program "knows" what it is doing, and it keeps the pro
gram and Omnibus locked in step with each other on an 
up-to-the-second basis. 

Third, as Omnibus actually carries out its output 
operations, it computes the net effect on volume and 
data set control totals of the changes it makes to each 
track; if either the sum of all track changes or the sum 
of all volume changes caused by a request fails to bal
ance to the expected net change, Omnibus catches it
self in the error. 

Error prevention methods in Omnibus are oriented to 
two different types of errors: those caused by faulty 
application programs, and those caused by mutual 
interference of concurrently executing programs in a 
multiprogramming environment. 

Two aspects of the prevention of certain kinds of ap
plication program errors have already been touched 
upon, namely, rejecting requests with improper 
data in one or more fields, and rejecting requests that 
incorrectly predict control totals. But nothing men
tioned so far would affect the situation in which several 
changes al'e to be made concerning a single policy or 
claim, and at least one of them is faulty and detected as 
such; under most circumstances, it would be deRirable to 
rej ect all those changes as a package, so that they can 
be "resubmitted later, in corrected form, as a· unit. To 
accomplish this, Omnibus- collects all consecutively 
issued requests for insertion, deleting, or updating relat
ing to a single section into a queue, checking each request 
for validity and control total balance as it is received. 
The requests so enqueued are not executed until the 
queue is complete, that is, until all the requests affectihg 
that section have been issued and the program has ex
plicitly requested queue execution. At this point, Omni
bus executes all of the enqueued requests if and only 

if each of them was valid and in balance; if any of them 
was detected as being0faulty, the entire queue is purged 
without execution, aud the application program is so 
notified. This removes the difficulty for the application 
program, or for a person later attempting to correct 
data errors, of trying to recover from the partial exe
cution of an integrated group of transactions, and it 
eliminates one way in which conflicting data could come 
to be recorded in the data base. 

Two types of mutual interference by concurrent pro
grams are prevented by Omnibus procedures: (1) If two 
updating programs run concurrently, each could acci
dentally undo some of the work of the other by concur
rently working on the same track or tracks, and neither 
would be able to maintain valid control totals. (2) If 
an updating program and one or more other programs 
use Omnibus concurrently, the situation could arise of 
one of the other programs using a pointer (such as an 
index entry) that was secured before the update program 
happened to move the data in question to a different 
track, but used after the move, with the result that the 
program doesn't find the data where the pointer points. 

The former of these situations is prevented very 
simply: Omnibus permits only one program to have 
its updating facility in an open state at a time. 

Sequence, Update program , Inquiry program 
T--------~-----------------------------,------------------------------, 

: 1. , Reads policy 123-4567 from ,Idle. ' 
, data base track 40. ' 
,- - - - I- - - - - - - - - - - - - - - I- - - - - - - - - - - - ___ , 
, 2. , Manipulates data in core, , Receives a request for data : 
, preparing to add a new concerning policy 123-4567. , 
, ' field string of Format 8. , , 
,- - - - r - - - - - - - - - - - - - - r - - - - - - - - - - - - - - , 
,3. Moves policy 123-4567 from Reads the disk-resident , 
, ' track 40 to track 916. , policy index record for , 
, , , policy 123-4567 (points to , 
, track 40). , 
,- - - - I- - - - - - - - - - - - - - - I- - - - - - - - _______ , 
,4. , Updates the disk-resident , Reads data base track 40, , 
, policy index record for expecting to find policy , 
, 'policy 123-4567, so that it '123-4567. , 
, , now points to track 916." , , ,- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
,5. , Proceed with processing ,? ? ? ? ? ? ? ? ? ? ? ? ? ? : 

l ________ ,_~~~~_~~~~~~~~:~~: ____________ , _____________________________ J 

T--------r----------------------------r---------------------------, 
,4. Updates the disk-resident Waits for update program to 
, ' policy index as above. , release exclusive use of the 
, , , data base. ,- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
,5. , Proceeds with processing , Reads track 40, expecting to 
, , next transaction, until , find policy 123-4567. 
, next OMNIBUS request. ,- - - - L. - - - - - _ - _______ L. _____________ _ 

,6. , Waits until exclusive use , Re-examines the policy in-
, of the data base is avail- dexes; finds pointer for 
, ' abl~ again. 'policy 123-4567 pointing to 
, , , track 916. ,- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
, 7. , Waits. , Reads track 916, finds 
, , , policy 123-4567. 
-------------------------------------------------------------------

FIGURE 9-"Musical sections" 



The latter situation is a bit more complex. It could be 
avoided by shutting out ali other access to the data 
base during execution of an updating program, but 
that seemed unduly restrictive. Instead, we assign to 
the update program a relatively low priority, and we 
assign a higher priority to inquiry programs. Omnibus 
secures for the updating program temporary exclusive 
use of the data base each time it begins accessing a new 
section; this exclusive use, is retained until the up
dating program is through with that particular sec
tion, as indicated by-the purging with or without exe
cution of a queue of output:requests for the section, or 
the receipt of a request from the updating program 
applying to a different section. At that point, exclusive 
control is released, and all inquiry requests that have 
accumulated in the meanwhile take shared use of the 
data base until they have all been carried out; once that 
is done, exclusive control returns to the updating pro
gram. This technique does not make it impossible for an 
inquiry program to find a pointer before a change of lo
cation and use it after, but it does make it possible for 
Omnibus, once such a situation is encountered (as indi
cated by data not being found where a pointer pointed), 
to re-examine the indexes with the assurance that the 
updating program cannot change the data base or any 
of its indexes again until after the inquiry program's 
data are found and secured from their new location. 

In spite of these error detection and prevention 
procedures, however, it is a commonplace that data, 
program, and hardware failures can and do still occur; 
means must be at hand to recover reasonably quickly 
and very reliably from such failures. In a magnetic tape 
oriented environment, such backup is provided by 
the "grandfather" system, whereby, after each update 
of a file, we would still have the tape from before the 
update, permitting a corrected rerun if needed. In di
rect-access environments, however, with updating in 
place, the predecessor of an updated block is lost; in 
case of an error, either the file must be rebuilt or the
individual changes must be reversed. For dire~t-access 
files of modest proportions (e.g., one occupying a single 
disk pack), a simple and only moderately inefficient 
prodecure is to copy the file onto tape before updating 
it, so that, in the event of a glitch of whatever sort, the 
file can be restored by simply copying the tape back 
onto direct-access. With a very large data base, how
ever, this approach would be most costly, in both time 
and money: to dump the full contents of a data cell 
drive to tape requires more than three hours and about 
22 reels of magnetic tape. A reliable way had to be 
found to individually reverse individual changes. 

Omnibus accomplishes this as follows: each time the 
contents of a track in the data base are to be altered, 
we first write onto a magnetic tape file a single block 
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Track 1345 (contents before downdating begins): 

I Policy 701-6992 IpOliCY 678-9015 " 
'---------'---------:-------- equal 

Backup tape records for track 1345 (descending order by time, date): 
track no. date time "before" image "after" image 

1345 Dec. 6 111:59 pm 1701-69921 

This image is 
written onto track 
1345. 

Track 1345 (being in the Prime Activity area) is reset to empty 
state by the regional reorganization program. 

Backup tape records for track 1345 (ascending order by time, date): 

1345 Dec. 3 1 3 : 30 pm I 

1345 Dec. 6 111:59 pm 1701-69921 

1701-69921 

1701-6992 1 

equif' 

701-69921678-90151 

This image is 
written onto track 
1345. 

FIGURE lO-Using the backup tape for error recovery 

containing the address of the track being changed, the 
date and time of the change, and an image of the track 
both before and after the change. If, after executing all 
or part of an update run, it is discovered that errors 
have occurred, the run can be reversed by sorting the 
before-and-after tape into descending sequence by 
time within date within track address, then passing the 
sorted result against the updated file, writing onto each 
affected track the "before" image from its oldest back
up record. The presence of both "before" and "after" 
images provides a check on the validity of the proce
dure, since the contents of the track before reversal 
should be, bit for bit, identical with the newest "after" 
image on the tape. If several days' runs need to be re
versed at a time, their backup tapes can be sorted to
gether, and the same procedure is followed. Since the 
control totals are recorded within the data base, .this 
procedure will effectively restore them as welL The 
disk-resident policy index is backed up by simply dump
ing it to tape before each update run; consequently, it 
can be restored in a conventional manner. This proce
dure (using the "before-and-after" tape) is both swifter 
and more reliable than attempting to reverse the up
dates with another application program: swifter be
cause tracks are restored in physical sequence (thus 
minimizing access time); and more reliable because- it 
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does not require decisions about which transactions to 
reverse and how, and because it is carried out by a very 
simple program that is not sensitive to changing appli
cation and data specifications. 

Similarly, this method provides backup in the event 
of hardware problems, such as mangling a strip, scraping 
a recording surface, or even losing an entire cell. The 
last preceding data base reorganization is, in this event., 
rerun, but time is taken only to recreate the affected re
gion, not t~e entire data base. At this point, all of the 
data base except the affected region is at current status, 
and· the affected region is at the status it had after re
organization, but before the intervening updates 
occurred. All of the backup tapes created by updates 
silice that reorganization are searched for before-and
after records of tracks in the affected region; these rec
ords are sorted into ascending sequence by time within 
date within track address, then -passed against the data 
base. This time, however, the first "before" image 
should match the initial status of an affected track, and 
the last "after" image should be written to bring it 
up-to-date. Again, by proceeding in physical sequence, 
and by processing only the area that needs restoring, 
this procedure is relatively swifter than reorganizing 
the entire data base and then rerunning all intervening 
updates; and it is more reliable for the reasons men
tioned above, not to mention the elimination of the need 
to use more than one version, in proper sequence, of any 
updating program that was changed in the meanwhile. 

The procedure whereby we step backwards from the 
current status of the data base to undo bad updates we 
call "downdating"; the procedure whereby we step for
wards to reconstruct It region of the data base we call 
"unclobbering." Each is a very conservative, self-check
ing procedure. 

Accommodating chariging data requirements 

In the "noImal" data processing environment, once a 
decision is reached to include additional data in a file's 
records (perhaps to accommodate a new application or 
to enrich the reporting vocabulary), a trauma must 
occur in which each program that uses the file must be 
revised, recompiled, and (possibly) retested; then a pro
gram to convert the records from the old format to the 
new one must be written, debugged, and run; and steps 
must be taken to assure that the coversion is total, so 
that only new versions of programs are run against the 
file in its new format. The next time a new field or set 
of fields is required, the same sort of trauma must. be 
endured again. In practice, this has the consequence 
either that improvements to the system are made at 
considerable cost and some danger, or (possibly worse) 

that improvements are not made because of the cost 
and risk involved in revision. 

This sort of problem probably cannot be avoided 
entirely. Omnibus does, however, possess several charac
teristics that materially increase our flexibility in the 
face of unanticipated new data requirements. 

When a new application arises, it will typically re
quire, not just one or two, but a whole cluster of re
lated new fields for each affected entity. With Omnibus, 
such a cluster would be defined as a new Format. It 
would be assigned an available Format number, in the 
appropriate number range according to whether it 
should be considered a policy or a claim Format. The ex
panded and condensed representations of the new For
mat would be designed, then defined to Omnibus in the 
form of a new Format map. This would alter neither the 
condensed nor the expanded representation of any 
existing field strings, so no operational program would 
need to be changed simply in order to continue valid 
operation at the current level. No massive, all-at-once 
conversion of data base and programs is entailed; pro
grams that recognize, use, insert, and maintain the new 
data may be put into operation when and as they are 
ready. 

When only a few new fields are to be added, they will 
m05t probably be implemented as an addition to some 
existing Format, rather than as a- new format; this 
approach requires a little more effort. The map of the 
affected Format must be updated to include definition 
of the new fields; but, as when adding a new Format, 
the data base need not be rebuilt, since it will simply 
show these new fields as being empty and therefore 
omitted from the individual condensed field strings. 
Programs that use field strings of the affected Format do 
have to be recompiled, in order to reflect the new ex
panded representation; to minimize this effort, among 
other reasons, we maintain in direct-access storage a 
cataloged description of the expanded representation of 
each Format currently defined, coded in a form suit
able for inclusion in source programs written in a high
level language.* Consequently, when a Format is 
changed, we simply alter the cataloged description of it 
accordingly, theIl' recompile (without any further 
change) each of the programs that use field strings of 
that Format. This technique removes the need for a 
massive file conversion effort and for individual, manual 
revision of each affected program. 

"'In a COBOL shop, these cataloged descriptions would con
sist of data definition statements for ~corporation in thc Data 
Division 'by means of COpy statements. Fur PL/l, each would 
consist of a structure declaration for incorporation by means of a 
%INCLUDE statement. 



Patterns of retrieval 

The data base structure used by Omnibus permits 
considerable flexibility in the patterns of retrieval to be 
made available to application programs, while requiring 
linkage maintenance techniques of only moderate 
quantity and complexity. 

First, and most simply, a program may proceed di
rectly to the policy, section, and field string it specifies, 
or it may sequentially retrieve consecutive instances of 
a particular (repeatable) Format from a given section, 
consecutive field strings in a given-section, field strings 
for consecutive claims on a policy, or field strings for 
consecutive policies within the data base, in any de
sired mix of directness and sequentiality. Since a large 
share of our transactions currently carry with them the 
policy and claim numbers to which they apply, this 
provides efficient access for most of our current needs. 

To provide effective and efficient ways' of collating 
data related in other ways, however, a number of addi
tional list processing techniques are feasible when using 
Omnibus; it is anticipated that they will find extensive 
application. 

Some sections are related in rings: that is, each mem
ber of a group of related sections contains a pointer to 
the next section, and to the preceding section, of the 

The following policies constitute a six-member ring; they are all 
policies for the same insured. 

Poliay Nut poliay Nezt poliay 
number "Zel:twards " "d:s.htwards " 

678-8930 678-8934 678-9015 
- - - - - - - .- - - -

678-8934 678-9008 678-8930 
- - - - - - - - - - -

678-9008 678-9034 678-8934 
- - - - - - - - - - -

678-9034 678-9124 678-9008 
- - - - - - - - - - -

678-9124 678-9015 678-9034 
- - - - - - - - - - -

678-9015 678-8930 678-9124 
---------------------

In the diagram be~ow. each rectang~e represents a poZiay in the data base. 

FIGURE II-Ring structure example 
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The following poliCies constitute a six-member simple list· they 
represent succeeding "generations" of policies on the same' risk. 

Poliay In force during Renewa~ of Renewed by 
_number /iear endi?:!£l. rzoZi!:Ji. no. rzoZi!:Ji. no. 

678-8927 December, 1964 678-8955 - - - - - - - - - - - - - - - - - - - -
678-8955 December, 1965 678-8927 678-8989 - - - - - - - - - - - - - - - - - - - -
678-8989 December, 1966 678-8955 678-9015 - - - - - - - - - - - - - - - - - - - -
678-9015 December, 1967 678-8989 678-9125 

- - - - - - - - - - - - - - - - -
678-9125 December, 1968 678-9015 678-9138 - - - - - - - - - - - - - - - - - - - -
678-9138 December, 1969 678-9125 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - "-'-

678-8910 

678-8934 

678-8954 

678-8962 

678-8982 

678-8991 

678-9012 

678-9017 

678-9053 

678-9092 

678-9100 

678-9129 

678-9137 

FIGURE 12-,...Simple list structure example 

group; stepping though in either direction from any 
member of the ring will eventually bring you back to 
your starting point, having in the meanwhile retrieved 
every member of the ring in turn. One use for the ring 
structure is to link together different policies currently 
in force for the same insured party. 

Other sections are related in simple lists: that is, they 
point to one another in a string, but no attempt is made 
to close the ends of the list together to form a ring. One 
use for the simple list structure is to point from each 
generation of coverage on a single risk both backward 
(to the policy of which it was a renewal) and forward (to 
the policy, if any, that is a renewal of it); the list termi
nates at one end with the oldest policy Oil that risk in 
the data base, and at the other endwith (typically) the 
policy currently in force. 

A wide variety of othel' patterns of retrieval is to be 
available to us in an efficient way by means of inverted 
lists, to be maintained on disk. **Each such list is a string 

**Thc file containing these inverted lists is not managed by 
Omnibus, and Omnibus does not include the routines for main
taining or using any of these list structures. They are mentioned 
here to illustrate some of the uses to which a data base managed 
by Omnibus is susceptible. 
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To secure data concerning, for eXlllllple, the~ffect of the 
1969 Duckburg earthquake (catastrophe nU1llber 77) on the customers of 
tbe Drake Insurance Agency (producer nU1llber 69000), retrieve the data 
at tbe intersections of the following pair of lists; that is, 
retrieve ·the clai1ll8 ~n the first list the policy nU1llbers of which 
also occur 1n the seconci list. 

List 1. 
Claims al'ising /'l'CMI 
aatastl'ophB '1'1 
(poUay no./olaim nO.) 

678-8930 / 07-00004 
678-8937 I 02-00105 
678-8937 I 02-00106 
678-8937 I 02-00108 
678-8981 I 07-00004 
678-8981 I 07-00005 
678-9010 I 07-00003 
678-9015 I 07-00001 
678-9034 I 02-00047 
678-9099 I 02-00012 
678-9124 I 02-01005 
678-9124 I 07-00999 
678-9124 I 07-01005 
678-913f I 0·7-00023 
678-9136 I 07-00024 
700-1234 I 07-00001 

List 2. 
Po Uoi.es pl'oduoed by 
pl'oduoel' numbel' 69000 
(poUay numbel') . 

678-8927 
678-8935 
678-8981 
678-9014 
678-9015 
678;9017 
678;:'9095 
67~-9124 
67~-9138 
678-9140 
678-9220 
678-9221 
'678-9227 
678-9817 
678-9819 
678-9820 

678-9909 
701-6992 
702-1111 
777-1234 
777-1235 
777-1236 
777"-1238 
77/1-1239 

Thus, the relevant data consist of the following claims (expressed as 
policy no. I cla1lll no.): 

678-8981 I 07-00004 
678-8981 I 07-00005 
678-9015 I 07-00001 
678-9124 I 02-01005 
678-9124 I 07-00999 
678-9124 I 07-01005 

FIGURE 13..:.....-Intersections of inverted lists 

of pointers to policies or claims related in some way. For 
instan.ce, maintaining, for each insurance agency that 
produces policies for us, a list of all the policies produced 
for us by that agent, and also maintaining, for each sep
arate disaster (such as a flood, civil disorder, or major 
fire), a list of all the claims we have received arising 
from that disaster, would enable us to swiftly find, for a 
specified agent, a variety of data concerning the disas
ter's impact on that agent's customers. A very exten
sive library of such inverted lists is anticipated; they 
entail no modification of the data base. 

What makes such an extensive network of list struc
tures feasible is the swift and direct indexing scheme by 
policy number used by Omnibus. The pointers in each 
list of policies are maintained simply as policy numbers, 
not as direct-access addresses; since the me of the.index 
increases the total elapsed time to find a policy by less 
than 20% as compared with having the policy's address 
Ito start with, * this does not seriously degrade retrieval 
Speed. The use of the policy number (or the policy num
ber / claim number pair) as a pointer has, of course, the 
desirable consequence that changing the location of a 
section in mass storage does not require finding and up-

*It causes no increase at all if some other task is concurrently 
using the data cell drive, so that the one task's index lookup can 
be carried out during time that would be spent waiting in any 
case. 

dating the related lists. This is a major simplification of 
the list maintenance task. 

SUMMARY 

In summary f I should like to review the ways in which 
the Omnibus system addresses itself to the objectives we 
defined for it. 

1. Retrieval and maintenance functions are simplified 
for high-let'el language application programs because a 
group of shared routines, previously written and 
debugged, provides the index searching, input/output, 
condensing, expanding, relocating, control, and backup 
functions required for execution of a simply -specified 
task, and because use of source program library facilities 
reduces the burden of keeping up with data base revi
sions. 

2. The data base is made compact by the condensing 
technique for omitting unused fields and portions of 
fields. 

3. The cost of implementation is kept in proportion to 
the benefits, secured by means of the condensing tech
nique (which helps minimize hardware costs) and the 
philosophy of maintaining lists by policy and claim 
number rather than by a.ctual address (which reduces 
the complexity of data base maintenance). 

4. Data elements of widely varying space requirements 
are accommodated by means of the structuring of sec
tions into variable configurations of field strings, and by 
the use of three different schemes to store and find 

\ 

policies claims, depending on the space requirements of 
each individual policy and its claims. 

5. A high level of flexibility with respect to patterns of 
access IS maintained by providing facilities suitable for 
use through extensive and varied list-structuring and 
list-processing techniques, so that the most effective 
technique can be selected individually for each separate 
pattern of relation. 

6. Swiftness of retrieval is achieved by implementing a 
simple, fast policy indexing structure, and by planning 
for the use of inverted lists in high-speed mass storage 
for most list-processing and logical search applications. 

7. Data integrity is protected by forcing an updating 
program to keep its control totals in step with those of 
Omnibus, and by saving the before and after images of 
each block being changed, as it is changed. 

8. Flexibility in accommodating new data elements is 
achieved by means of the open-ended Format structure 
of the data base, and by the use of a changeable set of 
Format maps (in combination with the condensing/ ex
panding routines) to define the individual Formats. 

Thus Omnibus provides significant advantages with 



respect to each of the primary objectives of our large 
data base management system. 

ACKNOWLEDGMENT 

The system described in this paper was·developed at 
Industrial Indemnity Company during 1967 and 1968 
by a team consisting of Donald Dewey, James Bolen, 
James Otagiri, Dennis O'Donnell, Albert Holman, and 

Omnibus 169 

the author, with assistance from Lee Jensen, of Infor
mation Systems Design, Inc. 

BIBLIOGRAPHY 

A METAXIDES 
Data base management 
Special Interest Group on Business Data Processing Newsletter 
Number 4 February 1968 





A design approach to user customized information 
systems 

by ROB'E.R:T G. RANGEL 

International Business Machines Corporation 
Endicott, New York 

Complex· information systems such as plant or 
corporation manufacturing information systems, 
serve a wide range of users and manufacturing 
areas. These systems are often characterized· by 
the requirement· to provide user options in order 
to maintain the integrity of local procedures. Al
though there may be a strong effort at standard
ization throughout the system, the fact remains 
that the system must serve different levels of 
manufacturing, from components to end product, 
and must interlace with a variety of personnel, 
from manufacturing line operator to management. 
Although a system such as this is normally re
quired to fulfill a general set of needs, the system 
design cannot ignore local requirements. The end 
result can be a system consisting of numerous 
programs, many serving similar functions but 
each containing some distinctive feature. 

This is particularly true in systems which have 
traditionally been regarded as process or product 
sensitive. A wide variety of manufacturing con
trol systems, . including process control, quality 
control and testing, are characterized by "special" 
requirements. Normally, these systems start by 
serving a limited number of process or product 
centers .. Gradually, over a period of time, addi
tional products and processes are added to the 
system. The programming burden in such an en
vironment is compounded as the system expands 
its coverage and as added peculiarities must be 
served. 

This problem can be alleviated by the develop
ment of a number of generalized application pro
grams which, as a group, can satisfy the overall 
system requirement. At the same time, these pro
grams provide, and in fact require, an extensive 
degree of user (e.g., quality or process engineer
ing) participation to customize the general set 

of facilities to his requirements. The programming 
burden is reduced by minimizing the amount of 
specialized programming effort and providing the 
user with the tools to do individual application 
tailoring. After these tools are developed, systems 
and programming become less involved with the 
peculiarities of each new installation. In addition, 
the user has a much more responsive application. 
He may now interface directly with the system to 
input new or updated processing specifications, 
without going through the inherent delays of 
design and programming effort. 

Since the user now becomes deeply involved 
in the design of the system and the subsequent 
processing provided by the system, software sup
port must be provided to control the use of his 
specifications. This support, in the form of a logic 
control subsystem, is an integral part of all phases 
of the overall application system. The logic con
trol subsystem provides: (1) support for pro
grammer specification of allowable options dur
ing application program development, (2) process
ing of option specifications at installation time, 
and (3) support for controlling the use of the 
user specifications at execution time. 

This logic control subsystem is being developed 
to control user specifications in a manufacturing 
quality assurance system which forms a portion 
of a larger manufacturing information system. 
The information system consists of a number of 
local plant sites connected to a central site through 
an interplant teleprocessing network. Each local 
system will utilize "in-plant" terminals connected 
to a dual processor configuration. 'Application 
processing at each site will be performed in a 
System/360 Model 50 or 65 with one background 
partition and from three to seven teleprocessing 
partitions. Application programs, written in As-

171 
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sembler Language or PL/1, will run under Oper
ating System/360 using Multiprogramming with 
a Fixed number of Tasks (MFT). 

The quality assurance portion of the informa-
. tion system, which will utilize the logic control 
subsystem, is required to provide a wide range of 
services in each manufacturing plant. These serv
ices vary with the type of product, process and 
people being supported and also varies in the 
amount of control and information desired. The 
system must support both process control and 
management information type tasks. Process con
trol jobs involve interfacing with manual, semi
automatic and automatic manufacturing processes 
for the collection and distribution of quality con
trol data. Management information must be sup
plied to a number of management levels. 

Although a general set of needs have been de
fined by the users, these needs vary within plants 
and from plant to plant within the corporation. Be
cause of this environment the logic control sub
system is being implemented to allow extensive· 
quality engineer participation in defining process
ing requirements .. The quality engineer will inter
face directly with the system to specify his re
quirements. Application programs will then use 
these specifications under the direction of the 
logic control subsystem. 

The manner of structuring application pro
grams must lend itself to operation in the logic 
control subsystem environment. It is important 
to note, however, that this activity takes place 
under the direction of the user specification: The 
design principles used in system structuring are 
as follows: 

1. Modularity 
This is an established concept which is re
quired in the system architecture. Software 
is developed in small, independent and easily 
controlled modules, each with a limited func
tion. Modules are designed to be independent 
of their configuration with other modules. 
This allows the building of programs by 
linking modules in different combinations. 

2. Generalization 
Programs and the modules from which they 
are structured are generalized to permit 
their use over a wide range of processes. 
Modules are generalized by coding in a 
skeletal form. A number of internal param
eters which affect the type and logic of 
processing are left blank within the mod
ules. VVhen these parameters are assigned 

values, the module becomes customized to a 
particular process. Programs are general
ized by the inclusion of both required and 
optional modules. The program becomes cus
tomized when the selection is made of the 
actual modules to be used for a particular 
manufacturing process or product. 

3. A bility to Customize 
The user is given the ability to customize 
processing for his particular need. Services 
are provided to input, store and access user 
specified options. To a large degree, the user 
has the ability to construct and modify the 
system. Logic control information resulting 
from user specifications is stored on a data 
set. This information consists of two types 
of options: (1) internal module parameters 
which affect the mode of processing within 
the modules and (2) routing information 
which specifies the sequence of processing 
from module to module within the applica
tion program. 

4 .. Execution Control 
Programs are built from independent .and 
generalized modules which require the con
trol information described above for proper 
execution. This control is provided by a logic 
control module contained in each applica
tion program. This module accesses control 
information, passes the processing param
eters to the application modules within 
the program, and directs the sequence of 
execution from module to module. Applica-

. ~ion programs remain generalized until they 
are actually used, since the control infor
mation required for tailoring is not accessed 
and used until execution time. The logic 
control module, therefore, plays a critical 
role in the execution of any application se
quence. 

The logic control subsystem, which provides 
the software support necessary to handle user 
specifications,. is involved with the application sys
tem in three separate phases. (See Figure 1.) 

Phase 1-System Development 

a. At the time application modules are de
veloped, the programmer's definitions of 
module parameters are input to the logic 
control subsystem for storage. These param
eters are later assigned values by the 
user to· vary the internal processing of the 
module. The number of parameters defined 
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SYSTEM 
INSTALLATION 

SYSTEM 
OPERATION 

Program 

1 
Application 

FIGURE I-Logic control subsystem 

and stored depends on the degree of module 
generalization. 

The parameter definition inforlnation pro
vided by the programmer includes the fol
lowing-

Module ID-the identification of the 
module containing the parameter. 

Parameter ID-the unique parameter 
identification within the module. This 
will be referenced later by a user spe
cification. 

Data Type-indication of character, deci
mal, binary, etc. 

Length & precision-indication of the 
length and precision of the parameter. 

Count-the number of values which the 
user may assign to the parameter. 

Range-valid high and low limits for 
numeric data. 

Valid values-valid values for character 
data. 

Default value-value to be assigned to 
the parameter when no user value is 
specified. 

Parameters ar.e identified by the parameter 
ID and by the module in which the param-

eter is used. Parameters are not identified 
by the program which contains the module. 
This permits the same· parameter informa
tion to be used when the module is utilized 
in more than one program. At the time of 
user input of processing specifications, the 
parameter identification is employed to en
sure that the user value is assigned to the 
·correct parameter. The parameter ID is 
also utilized during application program 
execution to identify the values passed to 
the modules within the program. The record 
format of the parameter directory is shown 
in Figure 2. 

I 
Repeated for each parameter in module 

(or) 

List of 
Valid Values 

FIGURE 2-Paramet.er directory record 

b. When the individual modules are combined 
into application programs, processing se-. 
quence information is input to the logic 
control subsystem. These routing rules in
dicate the range of choices in which proc
essing is permitted to proceed from one 
module to the next within a program. The 
actual sequence is determined by both 
execution time decision and as the result 
of user option selection. 

A typical program layout js shown in Fig
ure 3. The resulting program load module 
consists of standard and optional modules 
which are user selectable. If specified by 
the user, optional modules will be used in 
place of or in addition to standard modules. 

All modules return completion codes after 
execution. The completion code is used by 
the logic control module to determine the 
next module to execute. At execution time, 
if an optional module has been specified, 
control will pass to the optional module 
rather than the standard module which had 
originally been in its place. 

Each module in a program is assigned a 
node identification. The node ID is used by 
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Xode 4 ______ . 0 

Optional ~ C 
Module ~ 

I 0 ~--C~~ 

~: 0 . ~ E 

'---------cB 
FIGURE 3-Typical program 

the programmer to indicate which portions 
of the standard program may logically be 
replaced by optional modules. 

When one or more option modules can re
place an unlike number of standard modules, 
dummy modules are included in the routing 
information in order to maintain a one to 
one correspondence' between optional and 
standard modules. This facilitates module 
replacement and ensures that information 
is not included in the logic control record for 
modules which will not be used during exe
cution. 

The programmer routing information in
put to the system is composed of the follow
ing items. 

Program ID-program name 

Standard Routing: 

Node ID-unique node number within 
the program 

Module ID-name of the module which is 
assigned to the node 

Completion Code-completion code re
turned by the module at execution time 

Next Node-next node to gain control for 
the paired completion code. This also 
indicates whether or not the calling 
module expects control to be returned 
at the completion of execution of the 
module at the next node. 

Optional Routing: 

Option ID-a unique option identifier 
which will be referenced by a user 
specification. 

Node ID-node at which this module will 
replace a standard module. 

Module ID-name of the optional module 
Completion Code-same as standard rout

ing 
Next Node-same as standard routing 

The resulting routing descriptor record 
shown in Figure 4 is generated for the pro
gram illustrated in Figure 3. 

c. The development of the user option lan
guage is a joint responsibility of systems 
and user personnel. This definition is simply 
a list of user keywords cross-referenced to 
the module processing parameters and 
routing options which they affect. A single 
keyword may be cross-referenced to one 
option in one mod:ule or to a number of 
options in modules contained in different 
programs. This allows a user specification 

Standaru Routing 

Program Node Module CC Next CC 
ID ID Node 

Prog. X LiJ __ ~ .-+-1_°-,,--1 --1-_ 
2 1 

2~-~~[:~_1--,-o I----lo 5 ? 

2 3=~I~~~~L_~1 __ ° I 4 ( 

(-;-r--~-----r-~--o 

(~~ __ E I 0 I End? 

OptiOllUl Routing 
Option Node Module CC Next 

ID In Node 

2 01 2 D1 0 5 ? 
( 02 4 C1 0 5 ( 

2 5 I DU1l\IIId __ ~- End I 
FIGURE 4-Routing descriptor record 

Next 
Node 

1_3 -? 



Design Approach to User Customized Information Systems 175 

to have as broad an affect as desired. 
The user takes an active part in defining 

the keywords which make up his language. 
This permits him to input option specifica
tions in terminology familiar to him. The 
user option language is completely independ
ent of application programming since its 
definition consists merely of a cross-refer
ence. This means that it can be changed and 
expanded with little effect on the application 
programs. In addition, the logic control 
system processing required to handle user 
specifications is minimized. There is no 
unique processing required for each key
word specification since all user input is 
handled through the cross-reference list. 

The sequence in which keywords are listed 
in the cross-reference data set determines 
the order of keYword processing at user 
specification time. This is normally a strict
ly sequential mode of processing. To vary 
the processing sequence, the programmer 
may define "instructions" to the logic con
trol subsystem. These instructions are in
cluded in the cross-reference data set and 
allow non-sequential processing at the· time 
user specifications are read into the system. 
The instructions provide the ability to de
fine parameter subsets and hierarchies. 

A . conditional branch type instruction 
causes bypassing of keywords in the cross
reference data set when certain values are 
specified by the user. For example, "if KEY
WORD 1 = VALUE 1, go to KEYWORD 
10, otherwise continue with KEYWORD 2." 
A looping type instruction allows a set of 
keywords, for instance KEYWORD 1 
through KEYWORD 10, to be repeated by 
the user with different values specified each 
time. 

The language definition and resulting 
cross-reference data set consist of the follow
ing· elements as shown hi Figure 5. 

keyword-user language keyword 
module and parameter ID-list of all 

parameters in. the parameter directory 
which are affected by this keyword. 

(or) 
program and routing option ID-list of 

all routing options in the routing 
descriptor data set which are affected 
by this keyword. 

loop indicator-indicates the start or end 
. of a group of keywords. 

number of loops-indicates the maximum 
number of times the group of keywords 
may be repeated by the user ~ 

value and next keyword-indicates the 
next keyword to be processed if the 
. user inputs the specified value. 

Optional - for looping and branching 

~--------~---------~ 

I (or) : 

l
'pr~-l;~;;I~ 
Routing Option 
ID List 

Value-Next 
Keyword List 

FIGURE 5-Language cross-reference record 

Phase 2-System Installation 

At local installation of the information sys
tem for a specific process or product, the 
user inputs his local processing options via 
the user option language. The user specifica
tions, in conjunction with the previously 
developed data sets, are used to generate 
logic control records. These records are 
used to control . the processing of the ap
plication programs at execution time. The 
user specifications are also placed in a 
catalog, to be referenced later when updates 
are required to a previous specification. 

Logic . control records, therefore, contain 
user selected subsets of the options defined 
in the parameter directory and routing 
descriptor data sets. These values are se
lected by keywords which point to the de
sired options through the cross-reference 
data set. Values are also selected by default, 
when the user omits keywords which' are 
not required in the input stream. 

Each logic control record is keyed by pro
gram ID and user ID. At execution time, 
inputs which invoke the application pro
gram contain the same key, allowing the 
correct logic control record to be accessed 
for the particular use of the program. 

The resulting logic control record, as 
shown in Figure 6, contains the following 
elements. 
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FIGURE 6-Logic control record 

, Program ID-program identification 
User ID-identification of the program 

user. This element and the program 
identification form the record key. 

Module ID-identification of modules 
within the program. 

Completion code-completion codes re
turned by the module at completion of 
execution. 

Next module pointer-pointer to the next 
module to execute for the correspond
ing completion code. 

Parameter ID-unique identification of 
parameters used by the module 

Parameter value-values of the param
eters used within the module. 

Application modules access the parameters 
'in the logic control record by parameter ID 
rather than by the parameter position in 
the record. This simplifies addition and de
letion of parameters used by the module, 
since changes in position do not affect ac
cessing of the parameters. Additionally, 
parameters are separated by module in the 
logic control record. Therefore, parameter 
changes for one module will not affect pa
rameter' accessing in other modules of the 
program. 

Phase a-System Operation 

Each application program contains a logic 
control module which serves as the inter
face between the logic control. data set and 
the application modules within the program. 
The control module is a common module 
which is independent of the application pro
gram being controlled. It provides control 

in either a background or real-time mode. 
When the application program is invoked, 
control is initially passed to the logic con
trol module. The user identification con
tained in the input is used to access the 
correct logic control record. The control 
module determines the first module which 
will execute, as specified in the control 
record, and gives it control. At this time 
the module receives its parameters as con
tained on the record. The parameter values, 
in effect, customize the function performed 
by the module, as previously specified by 
the user. 

When the application module completes 
processing it returns control to the logic 
control module and passes back a comple
tion code. This code is matched against all 
completion codes which may be returned by 
the module. When a match is found, the 
pointer to the next module, contained on 
the logic control record, is used to determine 
the next module for execution. Control and 
parameters are passed to this module and 
the process continues until program com
pletion. The application program layout is 
illustrated in Figure 7. 

The fact that control information is not ac
cessed and used until the program is invoked 
means that the program remains generalized 
until execution time. This permits an individual 
program to serve many users, each with varying 
requirements. Users do not require individual 
systems and programming at \ention, since re-

r- - - Logic 
r---_-.l.I_-;.oI Con trol 

Mouule 

Control 
and 

Parameters 

i-- > 

i 
I 
I--

I 

Application 
Mouule 

r 

I 

1------1 - - +I 
Application 

Mouulc 

I 
I 

+------l- - .I 
1-- Application 

Module 
I 
I 

t-----l- - ..;J 
Completion 

Code 

FIGURE 7-Application program layout 
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quirements are specified through the user option 
language and stored until needed. The logic con
trol subsystem, which is independent of the ap-

plication being controlled, provides· the necessary 
support to control the specification and utilization 
of processing options. 





B-LINE, Bell line drawing language 

by AMALIE J. FRANK 

Bell TelephOne Laboratories, bworporated 
Murray Hill, New Jersey 

INTRODUCTION 

General De8cription 

Over the past few years increasing interest has been 
shown in the application of digital computers in the 
graphics arts and publishing industries. Considerable 
effort has already been made in developing systems for 
the editing and publishing of text. Early work resulted 
in the formulation of algorithms for hyphenation and 
justification, followed by systems for page composition 
and correction of text stored internally within the com
puter system. Initially, the output function of these sys
tems was to control a conventional hot-lead typesetting 
device. More recently,systems have been designed to 
control the formation of images on the face of a cathode 
ray tube (CRT). An image thus displayed is captured 
by a camera aimed at the CRT, and the resulting film 
is used to produce plates or mats for off-line volume 
printing. Systems of this type have been successfully 
implemented and are in full operation, as for example 
the MACEI (Machine-Aided Composing and Editing) 
system in use at Bell Telephone Laboratories, and the 
PAGE12 (Page Generation) system developed by the 
RCA Graphic Sys tems Division. 

Paralleling the need to automate the handling of 
text, is the need to produce graphic arts quality line 
drawings with an equal amount of ease and economy. 
This is of particular concern in the production of tech
nical publications. To date, a number of computer pro
grams have been developed to produce line drawings on 
a CRT for specific applications, as for example· the 
AUTODRAFT3 system for engineering drafting and 
design, and the XYMASK4 system for generation of 
integrated circuit masks. In addition, various FOR
TRAN subroutines have been written, as for example 
TPLOT6 for drawing graphs, and the graphic subrou
tine package proposed by the SHARE Standard Graphic 
Output Language Committee.6 At present, a need exists 
for a common computer language facility aimed at the 
production of graphic arts quality line drawings. In 

order for such language to be useful, it must have cer
tain basic properties. 

First of all, this language must be concise and easily 
learned. It should permit the user to specify the various 
features of a drawing in the natural order in which they 
occur to him and in a continuous stream rather than in 
segmented form in separate statements. For publica
tion purposes, it must give the user direct and ultimate 
control of every line drawn if he so desires. Yet, where 
applicable, the user should be able to cause a particular 
version of a whole superstructure to be generated by the 
system merely by specifying a few simple options. To
ward this end, the language should include the facility 
to construct higher level statements from the basic 
language statements. It is envisioned that a set of such 
"user defined" statements could be developed by an 
experienced. programmer for a particular application. 
Once defined, such statements could then be used by 
non-programmers without knowledge of their genesis. 
Preferably, the language should meet the needs of users 
of widely varying computer experience. At one end of 
the scale it should appeal to a user essentially un
trained in computer programming for the simple tran
scription of drawings from a rough draft. At. the other 
end of the scale it should satisfy a user desiring to 
generate pictures controlled by algorithm at execution 
time. Drawing on a conditional basis is particularly 
attractive for applications such as circuit drawings and 
the production of musical scores. Finally, the imple
mentation of this language should readi1y accommodate 
minor changes in syntax dictated by user experience. In 
addition, it should be designed to run easily on a variety 
of computers, and hopefully on a variety of terminal 
CRT systems, such as the Stromberg· Carlson 4060 or 
the RCA Videocomp. 

The B-LINE language was designed to meet the re
quirements indicated above. Initial application of the 
language is to be made to the production of the illustra
tions in the Bell System Technical Journal. The re
mainder of this paper is devoted to a description of the 
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B-LINE language. The following section summarizes 
the general features of the language. A later section de
scribes the composition of draw-strings in greater detail. 
The last section contains a summary of the basic state
ments. 

General features 

The B-LINE~]anguage includes a set of eight basic 
statements, which describe the drawing features to the 
system in textual form. Included is the faciJity for the 
user to define other graphic statements, germane to a 
particular application. In addition, the user may 
employ any of the FORTRAN IV statements in ad
mixture with the graphic statements, thus supplying 
the usual arithmetic and control functions. The total . 
input describing a picture is a collection of B-LINE 
basic, B-LINE user-defined, and FORTRAN state
ments. In any case, this input need not be a complete 
FORTRAN program. 

The formats of the eight basic statements are shown 
in illustration 1; they are summarized in the next sec
tion. In brief, these statements perform the following 
functions: 

DRA W describes a part of a drawing by means of a 
draw-string, consisting' of a string of elements which in
dicate a sequence of drawing functions. The effect of 
DRAW is to resolve the draw-string into a set of line 
segments to be drawn. 

DEFINE gives the definition of a graphic variable. 
It is roughly equivalent to a FORTRAN assignment 
statement. However, the value of a graphic variable is a 

BASIC GRAPHIC STATEMENTS 

Statement Arguments 

DRAW NAME, XSCALE, YSCALE: STRING 

DEFINE SYMBOL: STRING 

DEFINE SYMBOL, ORIGIN, XSCALE, YSCALE: STRING 

ERASE 

EXPAND 

OPFORM 

SIZOUT 

BORDER 

SIZIN 

TYPE, SKIN, XSCALE, YSCALE, Xl, Yl, X2, Y2 

SYMBOL, EXPANSION 

NAME, RESULT, TYPEl, TYPE2, 

BOTTOM, LEFl', LABEL, PAGEl, PAGE2 

LOCATION, SCALE, BASE, FIRST, LAST 
SCALAB, AXlLAB, NODRAW 

SIZEl, SIZE2 

ILLUSTRATION 1 

string of elements, which themselves comprise a draw
string. 

ERASE causes a set of line segments, which had been 
previously specified to be drawn, to be deleted. 

EXPAND gives the definition of a symbol, which is 
used in place of a contiguous part of the input describing 
a picture. It is used to minimize preparation time where 
it is anticipated that a set of pictures of a similar nature 
are to be drawn and where certain parts of the input are 
the same for each member of the set. 

OPFORM indicates the structure hf a user-defined 
statement or a graphic function. 

SIZEOUT, BORDER, and SIZIN primarily estab
lish the necessary scaling factors. 

The various statements describing a drawing are 
composed of characters from the standard character set. 
This set consists of 64 symbols, as defined in Appendix 
A. Each of the graphic statements, basic or user-defined, 
consists of an optional label, followed by the name of 
the statement, followed by a set of arguments. Labels 
and statement names are to conform to FORTRAN 
standards for labels and variable names respectively. 
A statement must be followed by a space. Spaces are 
significant only following a statement name or within a 
string of characters representing text to be drawn. 
Other spaces are ignored by the system and may be 
used freely to give ~isual separation. At present, input 
is on punched cards. Two successive statements on 
the same card are separated by a semi-colon. In each 
graphic statement there are a fixed number of initial 
arguments. In some statements, such as the DRAW 
statement, the terminal argument itself consists of a 
string of elements, which indicate a sequence of draw
ing functions. A string of this type is called a draw
string. Commas are used to separate initial arguments. 
A colon is used to separate the last initial argument and 
a terminal draw-string. 

The elements of a draw-string may assume various 
forms: a coordinate pair, a symbol for a graphic variable, 
a graphic expression, a text element, a range function 
call, a graphic subroutine call, or a code for a control 
operation. These are discussed in detail in section 3 
below. The various elements of a draw-string may be 
free]y intermixed, thus permitting the user to specify 
the various features of a section of the drawing in a 
continuous stream. Drawing data, such as coordinates 
defining line segments, names of variables or predefined 
substructures, text, and control parameters like line 
thickness and font selection, may flow in the same 
order as they occur to the user. Concatenation proceeds 
naturally from the order established in a draw-string, 
i.e., the last point specified for a draw-string element 
becomes the concatenation point for the next element, 
unless superseded where desired. Concatenation points 



may also be variable. At execution time, a draw-string 
is resolved into a set of line segments defined in terms 
of CRT raster coordinates. 

Of particular note is the handling of graphic vari
ables. A graphic variable assumes two forms: a string 
variable or a point variable. A string variable is itself 
defined as a draw-string, which in turn may contain any 
of the elements listed above for a draw string, including 
other variables. A point variable consists of a pair of 
elements, representing the abscissa and ordinate of a 
point in the picture. A variable is assigned a symbol, 
which may be used in various contexts in the initial 
arguments of the graphic statements, or within a draw
string. A graphic variable may assume various values 
thoughout the course of the drawing process. Thus, a 
drawing feature may be represented in variable form, 
and a specific form determined by algorithm at execu
tion time. This is in contrast to describing each part of 
the drawing explicitly in the input data. Variables are 
discussed further in the following section. 

In many cases, the user needs to arrive at the position 
of various key points within the drawing, or such fac
tors as the distance between two points, or the slope of 
a given line. These factors may be calculated manually, 
,albeit somewhat laboriously, by the familiar techniques 
of analytic geometry. To relieve the user of this burden, 
the system includes the facility to perform graphic 
arithmetic, which manipUlates entities representing 
points within the picture or scalar quantities. Expres
sions involving such entities may be used in various 
contexts in the initial arguments of a graphic state
ment or within a draw-string. Such expressions are 
evaluated at execution tine by means of the graphic 
arithmetic facility. This is discussed further in a later 
section. 

For a given application, considerable economy can be 
effected by incorporating user-defined statements. To 
do so, the user first determines the actions that are to be 
performed when the statement is used, and gives a 
name to and determines the form of the arguments of 
the statement. The user then writes a subroutine bear
ing the name of the statement and performing the indi
cated actions. In the main body of input describing the 
picture, the user includes an OPFORM statement 
declaring the name and format of the statement. The 
user is then free to use the indicated statement in the 

,main body of input. A user-defined statement may be 
used as a separate graphic statement or as a graphic 
subroutine call element in a draw-string. Either type of 
usage results in a cal1 to' a subroutine bearing the name 
of the statement. Such a subroutine may itself be writ
ten using the basic graphic statements, other user-de
fined statements, and any FORTRAN IV statements. 
The arguments of a user-defined statement may assume 
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all of the forms permissible under ,FORTRAN. In addi
tion, they may assume a number of other Jorms, and in 
particular the terminal argunlent may be a draw-string. 

A set of user-defined statements have been defined 
for the production of graphs, and are outlined in illus- . 
tration 10. User-defined statements are particularly 
applicable where a class of structures to be drawn can be 
specified in generalized form by means of a user-defined 
subroutine. In this case, the statement is defineq so that 
at a particular use of the statement, the argUments sup
ply parameters which cause a particular version of the 
structure to be drawn. 

Implementation of the language is made using a 
macro-processor written in the BSTRING7 language. 
BSTRING is a string langl,lage, with special features 
added to facilitate macro-generation. Its syntax is some
what less pleasant than, but more powerful than SNO
BOL, in particular permitting arbitrary recursion within 
statements. 

The macro-processor ingests the input describing a 
picture, and treats each statement as a macro-instruc
tion, which either expands into a sequence of FOR
TRAN statements, or causes the macro-processor to 
use the indicated arguments to control the translation 
of subsequent graphic statements. For the basic graphic 
statements the code generated consists essentially of a 
call or a series of calls to a collection of system subrou
tines. For example, the appearance of a coordinate pair 
(2, X) as an element of a draw-string of a DRAW 
statement results in a call to a system subroutine, 
which . performs the following minimal actions. The 
values of the constant 2 and the variable X are con
verted to r3tSter coordinates, if required. The con
verted values are incorporated into an instruction as re
quired by the output CRT device, and the instruction 
is added to an output stack. The code generated for a 

USER DEFINED OPERATIONS FOR TIlE PRODUCTION J2!!...<!~ 

Operation Arguments Feature I'jrawn 

L.'JGRID B()RDER, MAJORDIST, MAJORTYPE, MINORQUAN, MINORTYPE linear grId 

WGRID B:)RDER, BASE, MAJORTYPE, (MINORMULT, MINORTYPE) log gr1d 

SCALAB BORDER, (LABEL) scale labels 

SCALABA BORDER, LABEL, INCREMENT 

DENTAL B()RDER, TYPE, DIST, XSCALE, YSCALE: • STRING 

AXIMB BORDER, POSITION: STRING 

AXILABA BORDER, DIST: STRING 

LEGEND 

LEGTXT 

UNITXT 

DPOINT 

CORNER, X, Y, WIDTH, HEIGHT, LINES, BORDER 

ALIGN: STRING 

CORNER, X, Y: STRING 

TYPE, CURVE, RADIUS, (X, Y.) 

LEADER WISE, RADIUS, XSCALE, YSCALE, Xl, Yl, X2, Y2, 

LDIMEN 

ADIMEN 

CURVE, X3. Y3, Xlt J ylt 

SIDE, Xl, Yl, X2, Y2: .. STRING. 

SIDE, XC, YO, Xl, Yl, X2, Y2, RADIUS: STRING 

ILLUSTRATION 10 

incidental grid line, 
tick, scale label 

axis label .. 

legend area 

legend line of text 

single line of text 

data point 

leader 

linear dimension 

angular dimension 
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user-defined statement consists of a call to the subrou
tine, which bears the name of the statement. In the 
case of either a basic or a user-defined statement, a 
certain amount of in-line code may also be generated to 
manipulate the arguments prior to calling the indicated 
subroutine, or to indicate dimensions, perform initiali
zations, provide missing organizational statements, etc. 
FORTRAN statements appearing in the input are 
copied directly into output FORTRAN statements. 

The total output of the macro-processing phase is a 
complete FORTRAN program or subprogram, as 
applicable. The resulting FOR1.iRAN program unit is 
then translated by a FORTRAN compiler into a 
machine program. Upon execution, the machine pro
gram stores the instructions for the CRT device onto a 
tape or other storage medium. The tape is used to drive 
the CRT device off-line. The machine program may also 
be wrjtten to drive the CRT device on-line where 
applicable. Note that only those user-defined sub
routines referenced in a particular run need be bound 
in the object program for that run. 

Draw-strings 

A draw-string consists of a string of elements which 
indicate a sequence of drawing functions. Draw-strings 
appear as the terminal argument of the DRAW and 
DEFINE statements. In addition, a draw-string may 
appear as the terminal argument of a user-defined 
statement. The elements' of a draw-string may assume 
various forms: a coordinate pair, a symbol for a graphic 
variable, a graphic expression, a text element, a range 
function call, a graphic subroutine call, or a code for a 
control operation. Immediately below is a preliminary 
discussion of the handling of these elements with respect 
to origin, scaling, and concatenation. Following this is a 
description of the various types of draw-string elements. 

Drawings are composed with reference to a pair of 
scaled axes. The rectangular area described by these 
axes is called the picture proper, and the lower left-hand 
corner of this area is called the global origin. The size 
and placement of this area of the CRT is determined 
by means of the SIZOUT statement. In general, coordi
nate values in a draw-string are given with respect to 
the glob&l origin. In some cases, an alternate origin is 
used. This is discussed further below. 

The scaling of the elements of a draw-string may be 
given by the' user in one of fO)lr ways: in terms of a data 
scale, in inches as measured on an existing copy, in 
inches in the final output print, or in CRT raster posi
tions. For the DRA W statement, the scaling of the 
elements given in the draw-string is primarily indicated 
by means of the XSCALE and YSCALE initial argu
ments. However, for an element of a draw-string that is 
a variable, the scaling may also be indica ted in the 

DEFINE statement defining the variable. Where this 
is done, the scaling so indicated supersedes the scaling 
indicated in the XSCALE and YSCALE arguments of 
the DRAW statement. For user-defined statements, 
the scaling of elements given in a terminal draw-striuv, 
is defined by the user. 

At various tim.es in processing a draw-string, the sys
tem stores the coordinates of the ending point of the 
last drawn Hne segment in the system variable CAT, 
called the concatenation point. This variable consists 
of a string of two elements, one representing an X coordi
nate, and the other a Y coordinate, relative to the global 
origin. This variable may be referenced in the same 
manner as a user assigned point graphic variable. An 
example of such a usage is contained in illustration 8. 
The value of CAT at any particular point may be saved 
by the user for tater reference. This may be done by 
means of a DEFINE statement, which sets a user 
assigned variable equal to CAT. It may also be done 
within a draw-string by mea;ns of a set control opera
tion, as described below. At the start of processing an 
element in a draw-string, the concatenation point has 
a particular value. The drawing of an element is re
lated to the value of the concatenation point. An 
element, in turn, may cause the system to change 
the value of the concatenation point. 

The system includes the option to process any partic
ular draw-string on an immediate or on a deferred basis. 
Where drawing is done on an immediate basis, the 

EXAMPLE OF GRAPHIC ARITHMETIC 

GIVEN: Graphic point variables A and B 

DRAW:, AB 

GE \I AB and length = 2/3 AB 

EC 1 AB and length = 35 units 

CD 1 AB and length = 35 uni ts 

DF \I AB and length = 2/3 AB 

DRAW FORK, XDATA, YDATA: A, B, $S, 

P¢L(A, ANG(A,B) + 90, 35), 

P¢L(CAT, ANG(A,B), DIS(A,B)*2/3), 

P¢L(CAT, ANG(A,B) - 90, 70), 

P¢L(CAT, ANG(B,A), DIS(A,B)*2/3) 

ILLUSTRATIO~ S 



draw-string is resolved into a set of raster coordinates 
which are outputted to cause the indicated line seg
ments to be drawn. Where drawing is done on a deferred 
basis, the draw-string is likewise resolved into a set of 
raster coordinates, but they are not actually outputted. 
However, all of the control operations imbedded in the 
draw-string, and in particular, the set control operation, 
are performed. DraWing on a deferred basis is used in 
determining distances required for composition, partic
ularly for the placement of text. 

The various types of elements of a draw-string are 
discussed below. 

(a) A coordinate pair 
This element is of the form (X,Y) , where X and 

Y represent an abscissa and ordinate relative to 
the global origin. X and Y may individually be an 
explicit numerical value, or a FORTRAN real or 
integer variable or expression, or a graphic 
expression. Ail explicit numerical value takes the 
form of an option a] sign, followed by a sequence 
of decimal digits with or without a dedmal point. 
A graphic expression is one using one or more of 
the graphic operators, or referencing a graphic 
function. Graphic expressions are discussed fur
ther at point (c) below. In the present context, 
where a graphic expression is used as a com
ponent of a coordinate pair , it is assumed to 
yield a single value. 

The effect of a coordinate pair is to draw a line 
connecting the concat~nation point, CAT, to the 
point described by the coordinate pair, except 
where the precedin~ draw-string element is a 
space control opera.tion, $S. In any case, the 
final action is to change the value of CAT to the 
value of the coordinate pair. An example of 
coordinate pairs is shown in illustration 2, where 
the components of the coordinate pairs are a11 
explicit numerical values. 

(b) A symbol for a vanable 
A variable appearing as a separate element of a 

draw-string must be a graphic variable. A 
graphic variable takes two forms: a string 
variable or a point variable. These are discussed 
separately below. Where a variable is referenced 
as an element of 9, draw~string, the value of 
the variable is in effect· substituted in place of 
the sumbol for the variable. The value of a graphic 
variable luay be null. 

Point graphic variable 

A point graphic variable consists of a pair of 
elements, representing the abscissa and ordinate 
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EXAMPLE OF DRAW-STRING ELEMENT: COORDINATE PAIR 

120 

100 

80 

40 

20 

o L-_----L-__ L-_---L ___ ---'--__ ----'-_____ _ .1 ___ _ 

o 20 40 ,"0 80 120 

DRAW EIGHTH, XDATA, YDATA: (70,38), (68,45), (65,48), 

(61,51), (55,53), (46,53)' (37,55), (34,48), 

(30,44), (27,40), (25,35), ... 

ILLUSTRATION 2 

of a point in the picture. A point variable is rep
resented by a FORTRAN symbol. The symbol 
for a point variable may be used as a separate ele
ment in a draw-string. It may also be used as an 
initial argument of a graphic function call, or a 
graphic subroutine call, or a graphic statement. 
In addition, a _point variable may be referenced 
in any FORTRAN statement. In fact, in the 
FORTRAN program generated in the macro-pro
cessing phase, a FORTRAN complex variable is 
set up for each point variable. Point variables 
thus afford a bridge between the graphic state
ments and FORTRAN statements. 

The value of a point variable may be changed 
by a FORTRAN statement, or by a DEFINE 
statement, or by a set control operation. At 
executjon time, a point variable defined by a 
DEFINE statement is evaluated immediately at 
the appearance of the DEFINE statement. 

Examples of point variables are contained in 
illustrations 7, 8, and 9. In illustration 9, LEFT 
and END are point variables. 

String graphic variable 

A string graphic variable consists of a draw
string, which may contain any of the elements 
described herein for draw-strings, including other 
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--------------------------------- ----------1 
EXAMPLE OF GR~PHIC ARITHMETIC 

QV P 

I 

R 

GIVEN: Graphic Point Variables P, Q, and R 

DRAW: PR or QR, whichever is shorter 

IF (DIS(P,R) - DIS(Q,R» 5, 5, 10 

5 S = P 

GO TO 15 

10 DEFINE S: Q 

15 DR~W SH¢RT, XDATA, YDATA: S, R 

L __________________ --__ --------- ------- - _ _ _____ __ ____ J 
ILLUSTRATION 7 

~--------------- ---

I 
i EXAMPLE OF SET CONTROL OPERATIO~ 

THE §ATIVE MAXIMUM I VALUE OF 'i' IS CD . 
Input: 

DRAW TEXT, XDATA, YDATA: $U, "THE", $SET(LEFT), 

"RELATIVE MAXIMUM", #Br;tx, "VALUE !3F ", &PSI, 

" IS ", $SET(LEFT), "3", #Br;tx," ." 

DEFINE #Br;tx, GL0'BAL, XRAST, YRAST: $SET(END), 

$S, LEFT + (-4,4), LEFT + (-4,-34), 

END + (4, - 34), END + (4, 4), $S, END 

Variables LEFr and END: 

LEFT- ~END t RELATIVE MAXIMUM 
LEFT¥END 

ILLUSTRATION 9 

variables. A string variable is identified by a 
symbol starting with a # and followed by any 
combination of characters from the standard 
character set, except the arithmetic symbols and 
the punctuation symbols used as delimiters. The 
symbol of a string variable may not be sub-

scripted. A string variable is used only as a sepa
rate element in a draw-string. A string variab1e 
may not be referenced in any FORTRAN state
ment. 

The value of a string variable is set by a DE
FINE statement and may vary throughout the 
course of the drawing program. The number of 
elements in the defining draw-strings may vary 
from one definition to the next for the same 
variable. At execution time, a string variable is 
evaluated not at the appearance of the DEFINE 
statement defining the variable, but at the execu
tion of a DRAW statement referencing the 
variable. 

The origin and the scaling of the coordinates 
in the draw-string defining a string variable may 
be specified to be the same as the parent draw
string referencing the variable, or, they may be 
specified independently in the DEFINE state
ment defining the variable. In the second case, 
the coordinates may be given with reference to 
the global origin. They may 'also be given with 
reference to an hypothetical origin. In this case, 
the variable is called an image, which may be 
"floated" to various positions in the picture. At a 
particular use of the variable in a draw-string, a 
point, P, within the picture is established. The 
hypothetical origin of the imag.e is super
imposed on the point P, and the image is cppied 
into the picture about this origin. The position of 
point P is specified by means of the ORIGIN 
argument of the DEFINE statement which de
fines the variable. P may be specified to _ be -the 
concatenation point, CAT, or the value of a co
ordinate pair given in theform indicated in (a) 
above, or the value of a graphic variable or ex
pression which resolves into two numeric values. 
The X and Y coordinates of point P may be con
sidered as relocation factors. The X factor is 
added to all X coordinates in the draw-string de
fining the variable, and the Y factor is added to 
all of the Y coordinates. Provision is also made to 
rotate and size images. 

An example of a variable which is an image is 
shown in illustration 3. It is to be noted that the 
first line segment drawn in an image need not 
emanate from the concatenation point. A slight 
change in the placement of the hypothetical ori
gin will cause a different effect, as shown in the 
illustration 4. Note that in _both cases, in the 
DEFINE statement for the image #FLAG, the 
ORIGIN argument is CAT. Accordingly, for the 
first reference of FLAG in the DRAW statement, 



,- ----,- ,_ .. _------- ----,---- -------------------------~ 

'I' EXAMPLE OF DRAW-STRING ELEMENT: STRING VARIABLE i 

, 'p~finition of the variable: I 
r---, ,,,,,-, ~ I 

4,- f------> 

L 

I I 

,. _.J 

DEFINE #FLAG, CAT, XRAST, YRAST: (0,60), 

( 40, 50), ( 0, 40), $S, ( 0 , 0 ) 

Use of the variable: --------

, 
-I 

1. __ 

DRAW EARNINGS, XDATA, YDATA: (1,2), (2,3), (3,6), 

#FLAG, (5,2), (7,7), #FLAG, (8,3) 

ILLUSTRATION 3 

EX~PLE OF DRAW-STRING ELEMENT: STRING VARIABLE 

Definition of the variable: 

4..; f· 

,"L l_~ 

40 

DEFINE #FLAG, CAT, XRAST, YRAST: $3, (0,20), 

( 0 , 80), (40, 70), ( 0, 60), $S, ( 0, 0 ) 

Use of the variable: 

---L--._._ .L __ .. _ ... __ --1-
4- ,; p. 

DRAW EARNINGS, XDATA, YDATA: (1,2), (2,3), (3,6), 

ILLUSTRATION 4 

the point P, as indicated above is (3,6), and for 
the second reference P is (7, 7). 

Au, image may be used in building another 
image. A few simple examples, are the building 
ofa prism from a triangle, of an eighth note from 

i 
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a quarter note, of a magnetic core inductor from 
an inductor, as shown in illustration 5. 

In the illustrations indicated above, the defini
tion of the string variable yields a fixed image, 
An example of a string variable which varies de. 
pending upon the context in which it is reference
is shown in illustration 9. Note that in this cased 
in the DEFINE statement for the image #BOX, 
the ORIGIN argument is GLOBAL, thus setting 
the point P, as indicated above, at (0, 0). 

(c) A graphic expression 

i' 

'I 

A graphic expression is one using one or more 
of the graphic operators, or referencing a graphic 
function. The graphic operators invoke the sys
tem facility to perform "graphic arithmetic" at 
execution time. This arithmetic manipulates 
operands which are ordered pairs and in some 
cases scalars. An ordered pair represents the 
coordinates of a point within the picture. A num
ber of graphic functions are supplied by the sys
tem. Provision is also made for the user to de
fine other graphic functions. A graphic expression 
may also contain the usual algebraic operators 
and FORTRAN function references. At execu
tion time, the expression is evaluated, and the 
resulting value is in effect substituted in place of 
the variable. In the present context, where a 

CONSTRUCTION OF IMAGES FROM IMAGES 

E1ementar¥ Image Compounded Image 

-- r-07") 7D-lJ -
I \,/ 

Inductor MagnetiC Core Inductor 

Quarter Note Eighth Note 

r 
-1'(.":< :.. 

L_.. .....J 
-1.- IC 

l ____ •• l__ 1 .......• J 

o 20 40 ",0 

Triangle Prism 

DEFINE #TRIANGLE, CAT, XDATA, ¥DATA: (10,-17.3), 

(-10,-17.3), (0,0) 

DEFINE #PRISM, CAT, XDATA, YDATA: $S, (40'-26)~" 

(0,-17.3), (10.0), (50,-8.7), #TRIANGLE 

... - ... _- ---.--..... _-

ILLUSTRATION 5 
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graphio expression is used as a separate element 
of a draw-string, it is assumed to yield an 
ordered pair. 

The graphio operators and funotions supplied. 
by the system are indicated in illustration 6. The 
graphio operators parallel the arithmetio opera
tors for complex numbers. For addition and sub
traction, the operands represent points within 
the pioture, or displacements from such points. 
For multiplication and division, in general one 
operand represents a point within the picture, 
and the other operand oomprises rotation and 
sizing faotors. The results of any of these graphio 
operations is an ordered pair. 

The system graphio functions operate on a list 
of arguments each of which is an ordered pair or 
scalar as applicable. These functions are sum-
marized as follows: ' 

ANG(PI, P2) gives the angle that the line join
ing the two points PI and P2 makes with the 
hOlizontal, originating at PI and extending to 
the right. 

DIS(PI, P2) gives the absolute distance be
tween the two points PI and P2. 

POL(P, ANGLE, LENGTH) gives the oarte
sian coordinate pair oorresponding to the point 

GRAPHIC OPERATORS AND SYSTEM GR~PHIC FUNCTIONS 

GRAPHIC OPERATORS 

(Xl, Yl) + (X2, Y2), = (Xl + X2,Yl + Y2) 

(Xl, Yl) - (X2, Y2) = (Xl - X2, Yl - Y2) 

- (Xl, Yl) = (-Xl, -Yl) 

(Xl, Yl) * (X2, Y2) = (XIX2 - YIY2, X2Yl + XIY2) 

(Xl, Yl)/(X2, Y2) =( X1X2 + YIY2, X2Y1- XIY2 ") 
X22 + Y22 X22 + Y22 

SYSTEM GRAPHIC FUNCTIONS: 

DI(l/ P2 
p~~P2) 

ANG, DIS, POL, PER, TAN 

POL(P ,40,5)", 

~/ ) 
0_ 

ILLUSTRATrON 6 

given in polar coordinate form. As shown in 
illustration 6, the components indioate a vector 
originating at the point P, and making an angle, 
ANGLE, with the horizontal extending to the 
right from P. The length of the veotor is given by 
the argument LENGTH. The value of this func
tion are the coordinates of the end point of the 
indicated vector. 

PER (PI, P2, P3) gives the coordinate pair 
which is the intersection of the perpendicular 
extending from a point PI to a line, defined by 
two pointsP2 and P3. 

TAN (PI, P2, R, K) gives the coordinate pair 
which· is the point of tangency of the line passing 
through the point PI and tangent to the circle 
with its center at point P2 and of radius R. The' 
parameter K indicates which of the two possible 
points of tangency is to be used. 

The user may define other graphic funotions 
either by means of a DEFINE statement, cor
responding to a FORTRAN arithmetic state
ment function, or by an external subprogram. In 
any case, the user must include in t~e main body 
of input describing the picture, an OPFORM 
statement declaring the form of the arguments of 
the function and the number of elements in the 
result draw-string returned by the function. 

Exampies of graphic arithmetic are given in 
illustrations 7 and 8. 

(d) A text element 
A text element represents textual matter to be 

drawn. It takes two forms: a text string, and a 
special character symbol as discussed below. 

The primary form of a text element is a text 
string, which is a sequence of characters drawn 
from the standard character set, preceded and 
succeeded by the double quote character. The 
standard character set consists of 64 characters, 
and is listed in Appendix A. For each character in 
this set, the system contains an internal defini
tion of the line segments to be used to draw the 
character and additional factors for concatenat
ing successive characters. In processing a text 
string, the system accesses the appropriate def
inition for each character in the strjng, and 
causes the indicated strokes to be drawn. The 
font style for the standard character set is 
News Gothic English. 

In addition to the standard character set, the 
system includes a set of special character def
initions for the Greek alphabet and various 
mathematical and other symbols. Associated 
with each of these characters is s system name 
starting with an & and followed by a combination 



of characters from the standard character set ex
cept the arithmetic symbols, and the punctuation 
symbols used as delimiters. To cause a special 
symbol to be drawn, the user includes its system 
name as a separate element of a draw-string. 

For the English alphabetics, definitions are 
provided for upper and lower cases, in Roman, 
bold, and italic faces. For the Greek alphabetics, 
definitions are provided for upper and lower 
cases. The case and face applicable for a text 
string or special character element is indicated 
by a preceding draw-string element that is a text 
control operation, and is explained below. 

Standard and special characters are defined 
relative to an hypothetical origin. This origin is 
assumed to be generally to the left and above the 
character. Where a character is not preceded by 
another character, the hypothetical origin of the 
character is simply superimposed on the con
catenation point which was defined at the end of 
the previous element in the draw-string. Where a 
character is preceded by another character, co.n
catenation proceeds according to an algorithm 
which permits the spacing between any two 
characters to be a function of the spatial relation
ship between the particular characters involved. 8 

Provision is also made to rotate and size charac
ters. 

See illustr~tion 9 for an example of the two 
forms of a text element. 

(e) A range function call 

In its simplest form, a range function . call 
identifies the name of an independent variable, 
and states a function of the variable. The system 
evaluates the function for successive values of 
the independent variable within a specified range 
at appropriate small increments. The resulting 
sequence of coordinate pairs is substituted in the 
draw-string in place of the range function call. 
The function may be stated in non-parametric or 
parametric form. Where the non-parametric 
form is used, the range function call is stated in 
one draw-string element, consisting of an equals 
sign, followed by the function of the independent 
variable, X, followed by optional suffixes specify
ing the range, as shown in the example below. 
Where a range suffix is deleted, the function is 
evaluated over the entire range of the data scale. 

= LOG (X) + BTU (X = 2, UPPER) (Y = 
A+6, DIS (P, Q)) 

When the function is stated In parametric 
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form, the range function call requires two suc
cessive draw-string elements, one for each para
metric equation. The first element states a func
tion of the parametric variable, P, and the second 
element states a function of the independent 
variable, X. The range of computation is specified 
for the parametric variable only. The range suffix 
is appended to the first element, and must always 
appear. 

(f) A graphic subroutine call 
This element is a user-defined statement im

bedded in a draw-string. The only difference 
between a user-defined statement used as a 
separate graphic statement, and one used as an 
element in a draw-string, is that in the latter case 
the entire set of arguments is enclosed in paren
theses. The action taken is the same in either 
case. 

(g) A code for a control operation 
Control operations cause the system to take 

internal aci,ions relating to the handling of a 
draw-string. There are five control operations: 
set, dash-dot, weight, space, and text. These are 
explained individually below. 

Set operation 

The set operation 'consists of the characters 
$SET followed by one or two arguments. The 
arguments are separated by a comma, and en
closed by one set of parentheses. The first argu
ment is always the symbol for a point graphic' 
variable. This operation causes the system to set 
the value of the variable to the current value of 
the concatenation point, CAT. The second 
argument is a code indicating the scale to be used 
in setting the value of the variable. The variable 
set by a set operation may be referenced at some 
later point in the drawing process, either in 
the same draw-string or in a separate context. 
This feature is provided because the user will not 
always explicitly know the exact position of the 
concatenation point unless he performs cumber
some manual calculations. This is particularly 
true where text or successive images are being 
processed. Illustration 9 shows an example of how 
the set operation is used to draw a rectangular 
box around part of a line of text. 

Dash-dot operation 

The dash-dot operation consists of the charao
ters $D either alone or followed by an argument 
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enclosed in parentheses. Where .. an argument is 
present, this operation causes the ensuing draw
string ~lements to be drawn in a pattern of dashes 
and/or dots. The argument is either a code indi
cating one of four standard patterns (long 
dashes; short dashes; dots; alternating dashes 
and dots), or it is a variable indicating a u~er-de
fined pattern. Where $D Q.'t)pears alone, ,cursive 
drawing is resumed. 

Weight operation 

The weight operation' consists of the characters 
$W followed by an argument enclosed in paren
~heses. The argument is a code indicating lines 
of varying heaviness. This operation causes the 
ensuing draw-strin~ elements to be drawn with 
the idicatedline weight. In the absence of any 
weight operation the lightest weight is assumed. 

Space operation 

The space operation consists of the characters 
$S, and causes a space to occur between the line 
segment indicated by the previous draw-st~ng 
elements, and the following draw-string element. 
In effect, it causes the concatenation point CAT 
to be reset to the pair of coordinates specified 
. by the following draw-string element. 

Test operations 

These operations consist of a $ followed by an 
alphabetic character as shown below. They con.; 
trol the case and face settings for ensuing text 
elements in the,draw-string. The case setting is 
applicable for both the English and Greek 
alphabetics. The face setting is applicable for the 

'English alphabetics only. In the absence of a 
case setting, $U is assumed, In the absence of a 
face setting, $R is assumed. 

Operation Effect on ensuing text elements 

Upper case $U 
SL 
SF 

$R 
$I 
SB 

Lower case 
First character upper case; succeeding characters 
lower case 
Roman face 
Italic face 
Bold face 

Summary of basic statements 

Draw statement 

DRAW NAME, XSCALE, YSCALE: STRING 

This statement supplies a name to, and describes a 
part of a drawing, referred to as a structure. 

NAME is a unique symbol, consisting of any com
bination of characters from the standard character set, 
except the arithmetic operators and the punctuation 
symbols used as delimiters. In addition the initial 
character may not be a #, &, or $, which identify a 
string variable, a special character symbol, and a con
trol operation respectively. 

XSCALE indicates the scale used in specifying the X 
coordinates contained in the STRING argument. It 
may assume one of the codes XDATA, XCOPY 
XFINE, XRAST, which correspond to the four ways 
in which the. scale may be given: in terms of a data 
scale, in inches as measured on an existing copy, in 
inches in the final output' print, and in CRT raster 
positions. XSCALE may also be null. In this case, 
XDATA is assumed~ 

YSCALE indicates the scale of the Y coordinates in 
the STRING argument. It may assume one of the 
values YDATA, YCOPY, XFINE, XRAST, or it may 
be null. 

STRING is a draw-string, specifying the structure to 
be drawn. Provision is also made to specify the structure 
to be drawn in a separate set of cards prepared by sub
jecting an existing drawing to a digitizer. 

Define statement 

DEFINE SYMBOL: STRING 

DEFINE SYMBOL, ORIGIN, XSCALE, 
YSCALE: STRING 

The DEFINE statement defines a graphic variable or 
a graphic function. 

The first form of the DEFINE statemep.t is used 
where origin and scaling data for the defining draw
string either are not applicable or assumes the same 
values defined for the parent draw-string containing the 
variable. This form is always used to define a point 
variable. It may be used to define a string variable 
where applicable. . 

The second form of the DEFINE statement is used 
where the origin and scaling data for the draw-string are 
stated explicitly in the ORIGIN, XSCALE and 
YSCALE arguments. This form of the DEFINE state
ment may be used to define a string variable only. 

SYMBOL is the name of the graphic variable or 
graphic function and consists of any combination of 
characters from the standard character set except the 
arithmetic symbols and the punctuation symbols used 
as delimiters. In addition the initial character may not 
be & or $ which identify a special character symbol and 



a control operation respectively. An initial character of 
# is permissible, and identifiies a string variable. Where 
the oper~tion defines a graphic function, the symbol is 
followed by the dummy argument names, separated by 
commas, and all enclosed in parentheses. 

ORIGiN indicates the origin of the coordinates in the 
STRING argument. ORIGIN may assume various 
values as follows: 

(a) the code GLOBAL to indicate that the coordi
nates are given relative to the global origin. 

(b) the code CAT to indicate that the coordinates 
are given relative to an hypotheticaZ origin. At a 
particular use of the variable in a draw-string, the 
hypothetical origin of the image is superimposed 
on the current value of the concatenation point, 
CAT. 

(c) a graphic variable or expression which resolves 
into two numeric values. 

(d) the form of a coordinate pair (X, Y) as explained 
in section I, 3 above. 

YSCALE and XSCALE take the same form as these 
arguments for the DRAW statement indicated above. 

STRING is a draw-string defining the graphic vari
able or stating the algorithm defining a graphic function. 
Provision is also made to specify an image on a separate 
set of cards prepared by subjecting an existing drawing 
to a digi~izer. 

Erase statement 

ERASE TYPE, SKIN, XSCALE, YSCALE, 
Xl, Yl, X2, Y2 

This statement specifies a part of the picture to be 
erased. 

TYPE indicates the type of entity to be erased and is 
coded with one of the values: BOX, CIRCLE, or a 
variable name, or the name ofa structure specified by a 
DRAW statement. Xl, Yl, X2 and Y2 give the various 
parameters of the entity to be erased. Where TYPE is a 
variable name, the area to. be erased is described by a 
DEFINE statement defining the variable. Where 
TYPE is the name of a structure specified by a DRAW 
statement, the structure is erased starting at the point 
with coordinates Xl, YI, and ending with the point with 
coordinatesX2, Y2. 

SKIN indicates if the borders of the indicated area, 
as well as the internal area, or if only the internal area 
is to be erased. 

XSCALE and YSCALE indicate the scale used in 
specifying the arguments Xl, X2, YI and Y2. XSCALE 
and YSCALE are coded in the same manner as indi-
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cated for these arguments in the DRAW statement. 

Expand statement 

EXPAND SYMBOL, EXPANSION 

This statement defines a symbol which is used in 
place of a contiguous part of the input describing a pic
ture. The value of the symbol is substituted for the sym
bol at macro-processing time. 

SYMBOL is the name of the entity begin defined. It 
is constructed as indicated for the NAME argument of 
the DRAW statement. 

EXPANSION is the definition of the symbol. 
This statement is used where a set of pictures of a 

similar nature are to be drawn, and where certain parts 
of the input specifications are the same for each mem
ber of the set. A common part is written once and as
signed a name, SYMBOL. For a particular picture, the 
user includes the symbol at the appropriate place in the 
input. It is envisioned that a user may build a library 
tape containing the EXPAND definitions pertinent to 
his application. 

Opform statement 

OPFORM NAME, RESULT, TYPEl, 
TYPE2, ... 

This statement indicates the structure of the argu
ments of a user-defined statement or a graphic function. 
The code generated by the macro-processor for a user
defined statement or graphic function consists essen
tially of a call to a subroutine which bears the name of 
the statement or function. The arguments of the CALL 
statements are derived from the arguments of the user
defined statement or graphic function. Depending upon 
the type of the argument of the user-defined statement 
or graphic function, the macro-processor takes different 
actions to set up the corresponding argument of the 
CALL statement. The OPFORM statement declares to 
the macro-processor the number of arguments, and the 
type of each argument. For a graphic function, the 
OPFORM statement also indicates the number of ele
ments in the result draw-string return by the function. 

N AM E is the symbol of the user-defined statement 
or graphic function. This is constructed as indicated for 
the NAME argument of the DRAW statement. 

RESULT is the number of elements in the draw
string returned by a graphic function. 

TYPEI, TYP E2, ... declare the types of successive 
arguments in the user-defined statement or graphic 
function, as indicated below. 
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TYPE 
code 

FOR 

GRl 

GR2 

LIT 
STA 

NAM 

Form of Argument 

FOR TRAN numeric or logical con
stant, variable, expression 
Graphic expression yielding 1 argu-
ment 
Graphic expression yielding 2 argu
ments, or graphic point variable, or a 
coordinate pair as described above 
Literal constant 
Executable statement number or FOR
MAT statement number 
External function or subroutine name 
or N AMELIST name 

STR Draw-string 

Any contingent set of TYPE arguments may be ap
plied repetitively by enclosing them in parentheses and 
preceding by a repeat count. A terminal set of TYPE 
arguments may be repeated as many times as is required 
at a particular use of the user-defined statement by 
enclosing them in parentheses without a repeat count. 

Provision is also made to specify default values for 
null arguments. 

Sizeout statement 

SIZEOUT BOTTOM, LEFT, LABEL, PAGEl, 
PAGE2 

This statement causes the system to determine a 
subsection of the CRT within which to compose the 
drawing. 

BOTTOM and LEFT are the dimensions in inches of 
the "drawing area" of the output picture to be pro
duced. This area does not include page margins. 

LABEL is coded LABIN, LABEX, or LABNO 
respectively for the cases where the drawing area indi
cated above does or does not include space for scale 
and/or axis labels, or where there are no labels. 

Provision is made to handle two types of drawing 
situations: a "stand-alone" drawing which bears no 
relationship to any other drawings, and "series" draw
ings, which comprise a set of drawings to appear within 
the pages of a single volume. The arguments PAGEl 
and P AGE2 are used for series drawings only and spec
ify the maximum drawing area of a page in the volume. 
For stand-alone drawings, the system determines a 
rectangular CRT area, A, called the picture proper. 
The bottom and left borders of this area comprise a 
pair of scaled reference axes, intersecting in a point 
called the global origin. The scaling of the reference 
axes is determined from the appropriate BORDER 
statements. In general, coordinate values in a draw-

. string are given relative to the global origin. Where 
they occur, scale and axis labels appear exterior to the 
area A. For a series drawing, the system first determines 
a CRT area, T, corresponding to the maximum drawing 
area of a page in the volume. The system then deter
mines the area A to be the appropriate subsection of 
area T. By following this procedure, the same enlarge
ment ratio is used to form prints from any microfilm 
frame in the series. This insures that the line weights are 
uniform for all of the drawings in the series, and limits 
the number of standard type sizes required. Area A is 
determined to usurp the maximum CRT area possible 
to obtain the finest resolution possible. 

Border statement 

BORDER LOCATION, SCALE, BASE, 
FIRST, LAST, SCALAB, AXILAB, 
NODRAW 

This statement specifies the range of the data scale 
for a border of the picture proper and indicates if the 
border is to be drawn. This statement may also give an 
~ndication of the space required for the scale and axis 
labels along the indicated border. 

LOCATION indicates which border is being specified 
and is coded with one of the v:;tlues: BOTTOM, 
LEFT, TOP, RIGHT. 

SCALE indicates if the scale is linear or logarithmic, 
and is coded LIN or LOG as applicable. 

BASE is the base of the scale if it is logarithmic. 
FIRST and LAST give the initial and terminal 

values in the data scale of the indicated border. They 
must be specified for at least one of the borders TOP or 
BOTTOM, and at least one of the borders LEFT or 
RIGHT. 

SCALAB indicates the number of characters in the 
longest scale label along the indicated border. 

AXILAB indicates the number of lines in the axis 
label along the indicated border. 

NODRA W is coded NODRA W if the indicated border 
line is not to be drawn. Otherwise it is null. 

Sizing statement 

SIZIN BOTTOM, LEFT 

This statement is used where an existing drawing is 
being used as a model for the drawing to be made by the 
system. Various structures in the existing drawing are 
subjected to a digitizer. This statement, in conjunction 
with the SIZOUT statement, indicates to the system 
how to convert the digitized data into raster positions. 

BOTTOM and LEFT indicate the dimensions in 
inches of the picture proper of the existing drawing. 
They are assumed to cover the same range of the data 



scale, as specified in the BORDER statement above. 
Note that the physical proportion of the width to height 
of the area in the existing drawing need not be the same 
as that for the CRT area. 

APPENDIX A 

Standard character set 

Symbol Description 

A through Z 
o through 9 

+ 
/ 

* 
$ 

, 
( 
) 

" 

& 

? 

# 
% 
[ 
] 

Alphabetics 
Numerics 
Plus 
Minus 
Virgule (Divide, Slash) 
Equals 
Asterisk (Multiply) 
Dollar Sign 
Period 
Comma 
Open Parenthesis 
Close Parenthesis 
Apostrophe (Close Single Quote) 
Double Quote 
Colon 
Semi-colon 
Ampersand 
Exclamation 
Question Mark 
Short Dash 
Long Dash 
Number Sign 
Percent 
Open Bracket 
Close Bracket 

1\ 
I 

< 
> 
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Symbol Description 

Logical And 
Logical Not 
Less Than 
Greater Than 
Space 
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Interactive languages: design criteria and 
a proposal 

by RICHARD K. MOORE and WALTER MAIN 

Tymshare, Inc. 
Palo Alto, California 

INTRODUCTION 

Algebraic languages currently available on time sharing 
systems can be divided into two categories: batch
oriented languages and conversational languages. The 
batch languages (ALGOL, FORTRAN, PL/l:, though 
quite powerful in their ability to express complicated 
algorithms, are in many ways unsuited to an interactive 
environment. 

Batch languages unsuited as conversational tools . 

The "Complete Program" requirement 

Let us use ALGOL as an example. An ALGOL pfo
gram is a single compound statement, usually a block. 
Thus it starts with 

begin 

and terminates with a matching 

end 

Within· the program must occur: deciarations for all 
mentioned variables, the bodies of all calledprocedures, 
the locations of all referenced labels, and matching end 
for each begin. If any single component of the program 
is missing or syntactically incorrect, the program as a 
whole is invalid. 

Preparing and testing a complete, well thought-out 
program is quite appropriate to a batch environment, 
where maximum output from each run is an economic
ally sound goal. In a conversational environment how
ever, the preferred practice should be to test and debug 
each section of a program as soon as possible. Thus, the 
number of untested statements in a program at anyone 
time remains small, and debugging is straightforward. 
Such incremental testing of programs is difficult in the 
batch languages and usually can be accomplished only 
in spite of the syntax. 
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The "Deck of Cards" assomption 

No meta-statements are provided in the batch lan
guages to allow manipulating or altering a program. 
(The "compile time statements" of PL/l form a per
manent part of any given program.) The assumption is 
that a program will be altered by changing physically 
the position of a card in the deck, or by punching a new 
card and inserting it into the program. For time sharing 
systems, text editors must be provided to accomplish 
this card shufHing. Thus a programmer must learn two 
unrelated languages to write programs effectively. 

The "Perfect Program" assomption 

No provision is made in FORTRAN or ALGOL for 
the problems of debugging. The ON CONDITION 
statement of PL/l is really more for detecting bad data 
that for program debugging. Such features as core 
dumps (shudder!) and variable tracing are considered 
part of the specific "implementation" and usually are 
not even adequate for the requirements of a batch en
vironment. 

In an interactive environment there is great potential 
for computer aided dynamic bug detection. A language 
which does not tap this potential must be considered 
lacking. 

The "Professional Programmer" assumption 

A fairly bright non-programmer would probably need 
50-100 hours of study before he could solve even trivial 
programming problems in the batch languages. Be
cause of the "complete program" requirement, consider
able over-learning is required before. the student can ap
proach the computer without apprehension. In training 
a professi onal programmer, 50 hours is certainly a small 
investment, but for an engineer who needs a simple cal
culation performed by a computer, 50 hours is more 
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time than he can spare. Thus even for trivial program
ming tasks, an intermediary, the professional pro
grammer, stands between the computer and its primary 
user. This leads to inefficiency, communication diffi
culties, extra expense, and prohibitive delays. A 
superior language can exploit its interactive environ
ment to use the computer as a teaching aid. As the be
ginner types in his first program, diagnostic feedback 
will terminate any erroneous learning path, immediate 
confirmation of each correct statement will reassure 
him; rapid display of program results will encourage 
him to pursue the complete solution of his problem. 

The introduction of specialized conversational languages 

The need for conversational languages is clear. Two of 
these languages, JOSS and BASIC, overcome most of 
t he objections raised against the batch languages. The 
most striking feature of JOSS and BASIC is their lack 
of syntax structure. For example, 

1. READX 

2. PRINT SQRT (X), SIN (X) 

is already a valid, executable program in either lan
guage. In fact, any collection of statements forms a 
"complete program" provided only that each state
ment is individually complete. A call to an undefined 
function is simply a run-time fault, much like an at
tempt to divide by zero. The programmer this is en
couraged to exploit the conversationality of his environ
ment through modular program development. 

An integral part of each program statement is its line 
number. The line number serves two purposes. It de
termines the order in which statements occur, and it 
serves as a reference label for GO TO statements or 
other control statements. A new statement can be in
serted simply by typing in the new statement with a line 
number which falls numerically in the desired position. 
A section of the program can be referenced as a whole by 
mentioning the first and last line numbers of the section. 
For example, in BASI C, the command 

LIST 1-5 

displays att statements whose line numbers are between 
1 and 5 inclusive. Line numbers, together with meta
commands such as LIST, LOAD, MOVE, SAVE, and 
EDIT, provide facilities within the framework of the 
language itself to allow a program to be modified,cor
rected, and displayed. 

Apart from "'modular program creation," there are 
two features of the conversational languages which ease 
the debugging burden. 

First, there are immediate statements. Whenever a 
statement is typed in without a line number preceeding 

it, the statement does not become a permanent part of 
the program, but is executed immediately. Thus if a 
program is halted due to a run-time error, values of key 
variables can be determined through an immediate 
PRINT statement. Also, immediate statements can be 
used to preset a program to some singular state, so that 
particular paths can be tested. 

The second debugging feature is partial execution. 
Since every subset (by lines) of a program is also a pro
gram, the programmer can set his variables to reason
able values and then execute just that portion of a pro
gram which seems to be giving incorrect results. Taken 
together, these two features allow the programmer and 
the computer to interact in a dynamic way to pinpoint 
any faulty program logic rapidly. 

Despite their many virtues, the currently existing 
conversational languages fall short of being ideal al
gebraic languages for an interactive system. 

Conversational languages cramped by batch language 
styles 

An unnecessarily rigid subroutine structure has been 
inherited from ALGOL and FORTRAN. In JOSS for 
example, the basic program unit is the PART. "PART 
4" refers to all statements from 4.000 through 4.999. 
"DO PART 4" executes those statements from another 
part of the program. As an algorithm is being developed, 
the programmer must take care to group together those 
statements which eventually will be part of the same 
subroutine. This vestige of the "complete program" 
requirement forces the programmer to think ahead to 
the total structure of his program at a time when he 
would rather concentrate on translating a few simple 
ideas into program statements. 

The situation in BASIC is only slightly more flexible. 
In BASIC, a group of lines can be called remotely by a 
GOSUB statement. For example, 

GOSUBloo 

transfers control to line 100 and executes statements in 
normal order until a RETURN statement is encoun
tered. At that time control returns to the dynamically 
matching GOSUB. The specification of subroutine 
boundaries is thus more flexible in BASIC than in 
JOSS. A certain asymmetry arises in BASIC however; 
whereas the beginning of a subroutine can vary dynami
cally from one call to another, the end (RETURN) is 
relatively static. For example, the statement 

GOSUBloo 

calls a routine one line longer than does the statement 

GOSUBIOI 



but both must terminate on the same RETURN (bar
ring conditional transfers). 

While static subprogram boundaries are best not re
quired in a conversational language, certain other fea
tures of the batch languages must be borrowed to allow 
the clear, concise expression. of complicated algorithms 

Conversational languages jound to be ove>rly restrictitle 

Long variable names 

The first conversational languages were implemented 
under a somewhat unique' set of circumstances. The 
machines were of smaH capacity, and the assumption 
was that only small programs would be attempted in 
the relatively "inefficient" real time mode. A restriction 
of variable names to two characters (a let.ter-digit pair) 
was seen to yield considerable compiling advantage at 
minimal sacrifice in the readability of small program~. 
As the capacity of time sharing systems has increased, 
and as the technique of incremental compilation has be
come more widely used, this restriction has become less 
beneficial and more bothersome. 

Symbolic labels 

The twofold function of line numbers is to be com
mended for its economy. Often a programmer will need 
to refer to some statement as the operand of a control 
statement, but no suggestive label for that statement 
will come to mind. On the other hand, program read.:. 
ability is enhanced if those statements in a program 
which have a definite and easily named function in the 
mind of the programmer can be distinguished and 
referenced by alphanumeric labels. Such examples as 

GO TO DONE; 

GO TO ERROREXIT IF X <0; 

substantiate this claim. 

Local variables 

The concept of identifier scope should not be imposed 
on the beginning programmer (as it is in FORTRAN 
and ALGOL). JOSS and BASIC allow procedural pro
gramming while maintaining globality of all variables. 

. Although total globality is easily learned and adequate 
for the most elementary programs, the advantages 
gained by the ability to isolate symbolically sections of 
a larger program are clear. In keeping with the spirit of. 
incrementality however, this feature should be specified 
in such a way as to avoid static structural forms such as 
begin-end pairs. 
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Full-fledged subroutines and functions 

Formal subroutines should not be required in simple 
programs. The kind of control flow which can be 
handled by a DO PART or a GOSUB should continue 
to be handled by some direct, concise control statement. 
However for more complicated tasks, provisions must 
be made for mnemonically named subprograms with 
multi-statement bodies, and with call-by-name' and 
call-by-value parameters. Again, we wish to specify 
this feature in such a way as to avoid the "complete 
program" requirement. We do not want static struc
tural forms. 

The TCL synthesis 

The result of these conE'iderations is TCL (Tymshare 
Conversational Language). The salient features of TCL 
include long variable names, symbolic statement lal?els, 
totally dynam.ic statement. grouping, dynamically 
bound variables, full-fledged subprograms with param
eters, .and the ability to handle recursive procedural 
algorithms. 

Long variable names 

Arbitrarily long strings of letters and digits beginning 
with a letter are 1I.Ilowed as identifiers. 

Examples 

HEIGHT 
ALPHA 
HP124 

"The names of the variables thus can suggest that which 
they represent. 

Statement labels 

Any line of the program may be labelled by an identi
fier (optionally subscripted by a constant) followed by a 
colon. The statement then can be referred to either by 
its line number or by its label. 

Examples 

TOP: 
NEXT: 
L(I): 
L(2): 

Label'subscripts allow convenient .computed transfers. 

Example' 

GO TOL(I) 
GO TOENTRY(I+2*J+4*K) 
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If all GO TO's and other statement references in a 
given program use labels rather than line num bers, that 
program is, but for order, independent of its line num
bers. The program can be saved on a file without line 
numbers and then can be merged easily into other pro
grams in any convenient line number range. Hence, 
independently tested routines can be combined into one 
program. The problem of identifier scope will be treated 
belo)V. 

StateEnentgronps 

TeL allows any group of statements to be called in 
the most direct possible way. Thus, . 

DO 1 :10, 120, 15 

would execute line 1 through line 10, line 120, line 15, 
and then return control to the statement immediately 
following the DO. Marginal statements (initialization, 
debugging. or I/O statements perhaps) can be included 
or excluded as the "routine" is called from various 
places. 

Type declarations 

Declaring variable types usually is unnecessary in 
TeL. Variables dynamically assume the type of any 
value assigned to them and are considered global by de
fault. When declarations are used, they provide scope 
information and allow TeL to reduce storage require
ments and decrease system overhead. The storage sav
ings are most significant where arrays are concerned. 

Scope of identifiers 

Declarations, when they do appear, are executed in 
the normal order of program flow. Declared variables 
remain defined only until termination of the inn~rm'Ost 
group in which the declaration is included dynamically. 
The scope is dynamic rather than static; that is, lines 
which are called as part of a group perform as if their 
text ,appeared at the point of call. 

Example 

1. D03:5 
2. D06:8 
3. REALA(10) 
4. A(I) = OFORI=l TO 10 
5. WRITE:A 
6. INTEGER A 
7. A= 7 
8. D05 

When line 5 is called from line 1, the array A is printed 
out; but when line 5 is called by line 8 (as part of the 
range of line 2) the integer-scalar A is printed. 

A local variable of unspecified type can be declared by 
the statement 

DYNAMIC X(10), Y 

X is then a local array each element of which can hold a 
value of any type, and Y is a local simple variable. 

Dynamic binding of variables accommodates the 
most sophisticated recursive algorithm and the simplest 
program with equal ease and economy. Thus, 

a. The novice programmer needs neither scope nor 
type declarations. He simply uses unique names 
for each of his variables. When inside a called 
group, an of his variables are available to him. If 
he incorporates a library routine into his pro
gram, it is required only that the library program 
exp1icitly declare all of it..~ local variables. The 
user's variables win reappear (in case of any con
flict) after exit from the library routine. 

b. The sophisticated user will find dynamic binding 
the functional equivalent of the conventional 
block structured static binding. The dynamic ap
proach actually will be more flexible in some cases. 
Most important, the mechanism. of dynamic bind
ing is m.ore transparent to the program.mer than 
the subtle situations which can al'ise in a static 
language like ALGOL ; for example, up level ad
dressing and generalized call-by-name. 

Subroutines and functions 

A subroutine is declared by specifying the statement 
group which comprises the subroutine body: 

DEFINE SeX, Y) AS 10, A:B 

's' now names a subroutine of two formal parameters 
('X' and 'Y'). When'S' is called by the statement 

DO SeT, 14.5) 
any currently defined variable named 'X' or 'Y' will be
come temporarily unavailable; 'X' will be identified 
with the object 'T', and 'Y' will become a variable with 
initial value 14.5. Statements 10, and 'A' through 'B' 
wouldthenbeexecuted.Upon termination of'B', 'X' and 
Y' would recover their prior d'efinitions and valueE. 

Such a subroutine may become part of the definition 
of a later subroutine: 

DEFINEP(U, V, W) AS Ll :L2, S(U, V + 1), 15 

In general, a subroutine ca11\ may appear as part of a 
statement group: 

DO TOP: BOTTOM, P(l, 2,5), S(O, 1) 



. A function may be declared by specifying the desired 
evaluation expression: 

DEFINE LENGTH (X, Y) = SQRT (X t 2 + 
Y1'2) 

Or the evaluation can be deferred until completion of a 
specified function body: 

DEFINE F(A, B) = (B-A)/(T + V) AFTER 
F1:F2 

The function body has the same allowed generality of 
structure as any other statement group' 

DEFINE PROCESS(T1, T2) = T2-T1 AFTER 
ORIGIN(T1), TOP: BOT, TERl\1(T2) 

Thus, TCL subprograms impose a procedural struc
ture upon a program quite like that permitted in a lan
guage like ALGOL, but, unlike ALGOL, the structure 
comes into existence onJy at the time the subprogram is 
called. Not only does TCL thereby permit the modular 
program development so convenient in conversational 
programming, but a structural flexibility is introduced 
that far exceeds such ad hoc inventions as the PL/1 
"multiple entry" feature. As a simple example, con
sider the following TCL subroutine declaratjon': 

DEFINE SCI, J, X, Y) AS L(I): L(J) 

The following sample TCL session is intended to im
part the flavor of TCL as a dynamic programmjng tool. 
A detailed specjfication of TeL syntax can be found in 
the Appendix. NOTE: Underscored copy in the follow
ing example indicates what is typed by the user. All 
other text is typed by the computer. 

A sample session in the TC L system 

>1. S = 0 
>2. S= S+X(I) FORI= 1 TON 

A test array is created by direct statements: 

>REALX(10) 
>X(I) = I FORI= 1 T010 

Summation statements can be tested immediately: 

>D01:2FORN= 10 
> WRITE:S 

55 

The global function SUM js e::tsily defined and 
tested: 

> DEFINE SUM(X, N) = S AFTER 1:2 
> WRITE:SUM(X,9) 

45 
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SVM is used in an "adding machine" program: 

>3. READ:N 
>4. REAL A(N) 
>5. READ: A (I) FOR I = 1 TO N 
>6. WRITE: SUM(A, N) 

The adding machine is checked out: 

>D03:6 
5,100,120,105,130,110 

565 

SUM js used to create an averaging function MEAN: 

>DEFINE MEAN (X, N) = SUM(X, N)/N 
> WRITE: MEAN(X, 10) 

5.5 

The mu1ti~line standard deviation function STD is 
created. The function (not array) Y can be passed to 
SVNI. 

>7. M= MEAN (D,N) 
>8. DEFINE Y (I) = (D(I)-M) 1'2 
> DEFINE STD(D, N) = SQRT(SUM(Y,N)(N-

1» AFTER 7:8 
> WRITE STD(X, 3) 

1.581138 

Finally a complete conversational program makes use 
of the tested functions. 

>9. WRITE: 'NUMBER OF VALUES =' 
>10. WRITE: 'ENTER VALUES:' 
>11. WRITE: 'SUM =', SUM(A, N), 'MEAN 

=',MEAN(A,N), 
'STANDARD DEVIATION = " STD 

(A,N) 
>DEFINE ANALYZE AS 9, 3:4, io, 5, 11 
>DOANALYZE 
NUMBER OF VALUES = 5 

ENTER VALVES: 10,12,14,21,8 
SUM = 65 MEAN = 13 STANDARD DEVI

ATION= 5 

Now that the program is finished, X is unnecessary. 
> DELETE X 

The current program, including direct declarations is 
printed on the t~rminal: 

> LIST 

DEFINITIONS: 
SUM (X, N) = S AFTER 1:2 
MEAN(X,N)= SUM(X,N)/N 
STD(D, N) = SQRT(SUM(Y. N)/(N-l) 

AFTER 7:8 
ANALYZE AS 9, 3:4,10,5,11 
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STEPS: 
1. S = 0-
2. S= S+X(I)FORI=l TON 
3. READ:N 
4. READA(N) 
5. READ:A(I) FORI= 1 TON 
6. WRITE: SUl\!J:(A, N) 
7. M = MEAN(D, N) 
8. DEFINEY(I)= (D(I)-M)t2 
9. WRITE:'NUMBEROFVALUES=' 
10. WRITE:'ENTERVALUES:=' 
11. WRITE: 'SUM =', SUM (A, N), 'MEAN =', 

MEAN(A, N), 'STANDARDDEVIATION=', 
STD(A, N) 

. The program is saved for future use: 

> LIST ON "ANALYSIS" 
NEW FILE 

> 

CONCLUSION 

The sample session shows the ease with which a simple 
problem can be solved in TOL. Not only can the pro
gram be built up and tested incrementally. but the final 
program is concise and readable. 

TCL js thus a self-documenting, conversational lan
guage, free of artificial structural specifications. Further
more, the language natrually accommodates the state
ment and solution of increasingly complex tasks. 

APPENDIX - TCL LANGUAGE SUMMARY 

1. Language Elements 

• identifier or ident 
Definition: 

Alphanumeric string beginning with letter. 
Examples: 

A 
B12S 
ALPHA 

• expression 
Definition: 

Usual definition. 
Examples: 

A + B 
(S AND T) OR L7 

• line number 
Definition: 

Decimal constant from .001 to 999.999 
Examples: 

37.5 
12 
190.002 

• label reference 
Definition: 

ident or ident (expression) 
Examples: 

A 
LOOP (3) 
START (1+2) 

• line ref 
Definition: 

line number or label reference 
Examples: 

12.21 
L(A(J)) 

• range 
Definition: 

line ref or line ref:line ref 
Examples: 

1:10 
7 
A(I) :A(I) 
I:NLUP 

• subroutine ref 
Definition: 

subroutine name (expression list) 
Examples: 

SUBL(7, X + Y) 

• object 
Definition: 

subroutine ref or range 
Examples: 

SeX, Y) 
A:I0.2 

• group 
Definition: 

object list 
Examples: 

1 :10,50, sex, Y) 
1,5 

• condition 
Definition: 

Boolean expression 
Examples: 

AANDX<Y 

• iteration-part 
Definition: 

expression [BY expression] [TO expression] 
Examples: 

1 BY 2 TO N 



• filename 
Definition: 

"string without quote" 
Examples: 

"PROG" 
"A" 
",/." 

• mode 
Definition: 

REAL or INTEGER or BOOLEAN or 
DOUBLE 'or COMPLEX or STRING or 
DYNAMIC 

Examples: 
REAL 
DYNAMIC 

s. Primary Statements 

• GO TO line ref 
Definition: 

Transfer control to referenced line. 
Examples: 

GO TO A(I) 
GO TO 3.4 

• DOgroup 
Definition: 

Execute referenoed lines and subroutines. 
Examples: 

DO 3.4 
DO 6.1, S(X, Y), A:B 

• variable = expression 
Definition: 

assignment 
Examples: 

X = (A+B)/3.4 

• OPEN file name FOR [BINARY] 

AS FILE integer expression 
Definition: 

{
INPUT } 
OUTPUT 

Prepare file for READ or WRITE. 
Examples: 

OPEN "AI" FOR INPUT AS FILE 4 

{
READ} { FILE integer expression } 

WRITE STRING string expression 

{

IN FORM string expression } 
IN IMAGE string expression :expression list 
DATA 

Definition: 
PerfoITll input/output operation: 

Examples: 
Free Form Input From Terminal: 

READ:X,Y,Z 
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Free Form Output to Disk: 
WRITE FILE 4 :A, B, C 

Formatted Input From Terminal: 
READ IN FORM SI :A(I) 

• CLOSE FILE integer expression 
Definition: 

Tenninate input/output operation on a file. 
Examples: 

CLOSE FILE 7 

• MAP array name (subscript bounds) 
Definition: 

Allocate or reallooate storage for an array. 
Examples: 

MAPA(O:N) 
MAPX(M,N) 

3. Meta-Statements 

• LIST [range list] [ON file name] 
Definition: 

List portion of sym bolic program. 
Examples: 

Print Entire Program On Terminal: 
LIST 

Write Selected Lines On Disk: 
LIST L :10,20 ON "SAVE" 

• DELETE range list 
Definition: 

Erase portion of program. 
Examples: 

DELETE A:B, 21.2 

• LOAD file name 
Definition: 

Merge contents of file into sym bolic program. 
Examples: 

LOAD "PROGl" 

• RUN 
Definition: 

Execute program. 
Examples: 

RUN 

• SET range list 
Definition: 

Set breakpoints in program. 
Examples: 

SET 1,2,5:10, LOOP 

• RESET range list 
Definition: 

Erase seleoted breakpoints. 
Examples: 

RESET 6:10 
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• ED IT range list 
Definition: 

Allow modification of selected 'program lines 
under control of a text editor. 

Examples: 
EDITA:B 

• RENUMBER [range] [AS range] [BY line num
ber] 

Definition: 
Assign new line number to a portion of pro
gram. 

Examples: 
RENUMBER A:B AS 20:30 BY 2 
RENUMBER 1 :100 BY 1 

4. Modifiers 

• IF condition 
Definition: 

Execute modified statement if condition IS 

true. 
Examples: 

X= YIFX>Y 

• UNLESS condition 
Definition: ~ 

Execute modified statement if ·condition IS 

false. 
Examples: 

Y= SQRT(X)UNLESSX<O 

• WHILE condition 
Definition: 

Execute modified statement repeatedly as 
long as condition is true. 

Examples: 
DO SEARCH (A, B) WHILE (B-A»EPS 

• UNTIL condition 
Definition: 

Execute modjfied statement repeatedly as long 
as condition is false. 

Examples: 
DO 1 :10 UNTIL C1 OR C2 

• FOR variable iteration-part list 
Definition: 

Repeat modified statement assigning each 
value in iteration-part list to indicated variable. 

Examples: 
DO TOP:BOTTOM FOR YEAR = 1960 TO 
1970 

("BY I" ASSUMED) 

A(I) = B(I)/C(I) FOR I TO N ("_= 1 BY 1" 
ASSUMED) 

WRITE: SQRT(X) FOR X = 0 BY. 01 
T02.5 

5. Declarations 

• mode variable list 
Definition: 

Type declara ti on. 
Examples: 

REAL A, B(10), CO ("C" later will be the 
object of "MAP") 

DYNAMIC I, J, K, X(lO) 

DEFINE ident [(parameter list)] = expression 
~~[AFTER group] 
Definition: 

Function declaration. 
Examples: 

DEFINE DISTANCE (X,Y) = SQRT 
(Xt 2 +Yt 2) 

DEFINE F(X, Y, Z) = (A+B)/2 AFTER 
F1:F2 

• DEFINE ident [(parameter . list)] AS statement 
group 

Definition: 
Subroutine declaration. 

Examples: 
DEFINE PSUM(X,Y) AS WRITE:X+Y 
DEFINE PROCESS (TIME1, TIME2) AS 

INIT 
(TIME1),(UPDATE(TIME) FOR TIME 
= TIMEl TO TIME 2), SUMMARY 
(TIME2) 

DEFINE PART 1 AS 1:1.999 

• ident [ (integer)] : 
Definition: 

label declaration 
Examples: 

A: 
LOOP: 
T13: 
T(5): 
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META PI-An on-line interactive compiler-coDlpiler 

by JOHN T. O'NEIL, .fr. 

RCA Laboratories 
Princeton: New Jersey 

It is difficult to specifically date the origin of the 
research efforts within the programming discipline 
that are directed at describing and implementing a 
language which would produce compilers. 

The motivation for these efforts stems from meta 
languages such as Backus Normal Form (BNF)l 
which attempt to describe in a mathematical nota
tion the syntax (structure) of a programming language. 
The thinking is that if a given language (FORTRAN, 
ALGOL, etc.) could be described in rather precise form, 
then it should be possible to construct a translator that 
would accept statements, say, in BNF and output the 
appropriate compiler. This processor is shown schemat
ically in Figure 1. 

The actual construction of the compiler-compiler has 
proved to be an elusive goal; the efficient implementa
tion of the theoretically possible turned out to be far 
more difficult than originally anticipated. 

In early 1966 work began at the RCA Laboratories, 
Princeton, on what has since evolved into RCA BTSS 
II (Basic Time Sharing System, Version II). During 
the design discussions for this system it was decided 
that the interactive language would be based on FOR
TRAN IV. It was further decided to implement the 
language, so far as possible, using a compiler-compiler. 
The final compiler was named FORTRAN PI and 
its compiler-compiler parent, lVIETA PI. It is the opin
ion of the author based on implementation experience 
and user acceptance that the viability of the compiler
compiler has been amply demonstrated by·the research 
effort which produced META PI and FORTRAN PI. 

Before discussing META PI it will be necessary to 

Compiler· statements (for example FORTRAN_ statements) 

l 
compiler.-Compiler ~I ~ Object I 
statements ~C::::~.I-+ ~ -+ Code 

FIGURE 1 

discuss BTSS II since it is the operational environment 
within which META PI functions. 

RCA BTSS II provides the on-line user the ability 
to create, modify, execute and correct programs on an 
interactive basis. The user accesses the system services 
through three main software components: 

A Command Language. 
A Text Editor. 
The FORTRAN PI compiler and META PI 
compiler-compiler. 

FORTRAN PI and META PI were designed as far 
as possible to be independent of a given control system 
and I/O package. Both FORTRAN PI and META PI 
interface with the system via an interactive executive. 

RCA BTSS II is implemented on an RCA SPECTRA 
70/45 computer system with 131K of memory. 
The SPECTRA 70/45 is a third generation computer 
system with an instruction set which is compatible 
with System 360. It does not have hardware fea
tures (paging, read memory protect, etc.) specifi
cally designed for time sharing. (The RCA SPECTRA 
70/46 does have these features, and a version of the 
PI compiler is operating on it.) 

FORTRAN PI was the first language implemented 
with META PI. A discussion of its design and the 
structure of the object code produced by it will be help
ful in providing the reader insight into the design and 
function of l\1ETA PI. 

The reader is cautioned to keep in mind the various 
possible levels of translator activity, that is, the 
initial creation of FORTRAN PI via META PI, the 
on-line creation of the user's program via FORTRAN 
PI, and the on-line creation of the user's compiler (or 
compiler-compiler) . 

During the preliminary design phase for BTSS the. 
fundamental decision was made to use a FORTRAN 
like language as the problem solving language of the 
system. Three considerations provided the framework 

. for all subsequen t design decisions. 

201 
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First, to gain insight into the viability of compiler
compiler approaches, the implementation of FOR
TRAN PI would proceed only after the structure of the 
META PI compiler- compiler was described in detail. 
As much as possible of the FORTRAN PI compHer 
would be implemented via META PI. . 

SecoIid, trade offs would be made in the total META 
PI approach if, in implementing FORTRAN PI, effi
ciency of the production compiler would be seriously 
impaired by this approach. 

Third, FORTRAN IV standards would be adhered 
to wherever possible, but since the language was to be 
utilized in a time sharing environment, departures 
from FORTRAN IV standards would be effected wh~n· 
ever the convenience of the terminal user would suffer 
otherwise." 

In retrospect, considering the rather ambitious design 
constraints, FORTRAN PI was able to meet the bulk of 
its design objectives. Over 80% of the object code of 
FORTRAN PI is generated from META PI. The 
compiler itself is remarkably similar to FORTRAN IV 
when one considers the conflicts of user utility that 
arise when one attempts to reconcile a language de
signed for the batch user with the requirements of 
interactive time sharing. 

For example, some of the present FORTRAN PI 
alterations to FORTRAN IV are: 

1. Free field input format to both compiler and I/O 
Formatter. 

2. Format statements are optional. 
3. Recursive functions and subroutines. 
4. Arbitrary SUbscripts. 
5. N egati'Ve increments in DO loops, etc. 
6. Symbolic variable tracing, flow tracing, and 

other debugging aids. 

Further alterations are, of course, easily implemented 
via META PI. 

The FORTRAN PI compiler has the following 
characteristics: 

1. Statements are accepted and compiled a line at a 
time on an interactive basis. 

2. The object code generated is read only and is capa
ble of immediate execution. (The FORTRAN PI 
compiler is a OIle pass compiler.) 

The above characteristics are desired for several 
reasons. First, it was desired that programs be com
piled "rather than interpreted for greater run time 
efficiency. 

Second, the read only feature of the object code 
permits the executive to omit writing the code back to 
disc when each run time execution slot terminates. 

Third, the immediate compilation allows several 

important additional advantages to accrue to the in
teractive user. Among these are: 

A. The compiler can be used as a desk calculator. 
B. Complete symbolic debugging aids (the principal 

advantage of interpreters) are still available due 
to the easy access of the compiler and symbol 
table at run time. 

a. The user can symbolically alter variables in a 
running program without re-compiling or re
starting. 

D. The user can cause each program statement 'to 
be executed (incremental execution) while it is 
being compiled a line at a time (incremental 
compilation) . 

The compiler itself is composed of two sections; a set 
of subroutines which are hand coded and the code 
generated by META PI. The subroutines fall into 
two classes. 

a. Those which are not sensitive to the language 
being compiled. These routines are used by both" 
FORTRAN .PI and ~IETA PI and as such can be 
used for generating new compilers. An example of 
this class of subroutines if INUM; this subroutine 
tests the input stream for a digit string of arbitrary 
length. 

b. A set of subroutines whose generality is a function 
either of the hardware on which the compiler is 
being implemented or the particular source lan
guage itself. For example, the routine EFFI de
tects the occurrence of certain instruction pairs 
and replaces this pair with a single instruction. 
This replacement is obviously dependent on a 
specific hardware instruction set. Another routine 
FLB is used to detect valid FORTRAN PI FOR
MAT statements. Such a routine is unique to 
FORTRAN and is not useful in the implementa
tion of other languages. These non-transferable 
routines comprise less than 5% of the total FOR
TRAN PI object code. 

The second section of FORTRAN PI is composed 
entirely of code generated by META PI. This coding 
performs a left to right scan of the source text, testing 
for syntactic units exactly as specified by the input to 
META PI. The structure of the input to META PI wHI 
be taken up shortly. 

FORTRAN PI accepts source statements from ter
minal users and generates the machine code necessary to 
to carry out the intent of the statement. The compiler 
uses five regions in creating the users object program. 
These regions are created in U page blocks. A ~ 
page is 2048 memory locations (bytes); this is the 
minimum size block that can be memory protected on 



the Spectra 70/45. The number of ~ pages allocated 
to each region is user specifiable at the time his pro
gram is created. The five regions are allocated as 
follows: 

Regions 1 and 2 

Contains the compiler's working storage, a specially 
constructed statement "table and the source program 
label table. 

The statement table is u~ed for symbolic debugging; 
it enables the user to trace his program on selected 
criterion. For example, the program can be halted at 
any st3,tement number, or the user can cause a symbolic 
printout when the value of specified variables change. 

The label table contains information on every pro
gram 1.'ariable and statement which contains a state
mentnumber. 

Region 3 

This area contains the user's compiled code. The 
generated code is "read only" and self-relocating. As a 
result the code ~ pages need never be written when 
the program is being staged out at the end of an exe
cution time slot (the maximum time slot, is ~ second). 

Since the code generated is self-relocating it can be 
used as shared code on virtual memory hardware even 
though the current implementation is on a processor 
without virtual memory capabilities. 

Region 4, 

This region contains constants that appear in the 
user's source statements and all variables that have 
been declared in COMMON statements. 

Region 5 

This area contains the value of variables not in 
COMMON, DO loop indices and the recursive function 
stack area. 

FORTRAN PI functions and subroutines are re
cursive. The dynamic memory requirement needed to 
efficiently support a recursive process is obtained from 
Region 5. Thus the actual storage 'used in Region 5 
expands and contracts dynamically during execution 
of the user's object program. 

Since FORTRAN PI is implemented in the main 
by META PI its structure, which is designed for 
efficiency in the time sharing environment, is in fact 
determined by META PI. The implication is that 
any other language implemented using META PI 
would also have this region oriented structure; this 
without any special effort on the part of the language 
implementer using META PI. 

META PI 203 

The full implication of the nature of the compilers 
generated by META PI will be amplified when the 
implementation of Dartmouth BASIC using META 
PI is discussed in a later document. 

META PI is a problem oriented language, that is, 
it is designed for use by individuals implementing en
tire compilers, syntax checkers, or for extending the 
capability of current compilers to satisfy special lan-' 
guage requirements. 

It has long been proposed that the structure of 
languages must be placed within the domain of the 
user; the logic is that only the user can be truly sensi
tive to his own specific needs. It is the purpose of 
problem oriented languages to achieve just this end, 
that is, they provide the user with a language that en· 
abIes him to solve problems with special structural 
characteristics that would be either extremely difficult 
or, from the economic point of view, impossible to 
solve with procedure or assembly level language. 

One of META PI's problem oriented objectives aims 
at providing the user the ability to create languages 
suited to his own needs without requiring that the user 
be familiar with specific computer hardware or the basic 
internal structure of compilers. This goal has yet to 
be achieved in its entirety, but META PI has demon
strated that the concept is feasible and thai it's only a 
matter of time before the user will be provided with the 
capability for developing his own languages just as he 
is now able to create his own programs; the only re
maining problems to be solved relate to the extent to 
which symbolics should be used within the compiler
compiler languages themselves. 

In order to define a problem oriented languall,'e it is 
first necessary to examine the characteristics of the 
problem that the language is to slove 

The language of a compiler-compiler (MET A PI) 
must be designed to solve the· problem of compiler 
generation. 

Compilers perform two basic functions: 

1. They scan input statements in order to determine 
their validity within the definition of the language. 
The valid statements within a language is estab
lished by the syntax of that language. For example 
the Dartmouth BASIC statement 

is valid 
while 

10LETX=X+l 

10LETX = JOHN + 1 

is not, since in Case 2 the variable JOHN is not 
permitted in the language and hence is syntacti
cally incorrect. 
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2. The second requirement of a compiler is the 
generation of the necessary computer intructions 
for effecting the execution of syntactically correct 
statements. This phase of the compiler implies 
that a meaning (semantics) is to be associated to a 
given statement. The meaning supplied takes the 
form of generated object code. 

A compiler-compiler then must contain structural 
elements necessary to provide, in the compiler it pro
duces, the ability both to scan for correct statements 
(syntactical structures) and also to produce object 
code. The user of such a language is freed of all the 
details that are involved in the actual generation of 
machine code required to implement the compiler itself. 

META PI uses as its basic language structure the 
META series of compiler-compilers described by 
D. V. Schorre2 and his associates at the UCLA com
puting facility. Its implementation, however, unlike 
the META series of compiler..;compiler of the UCLA 
group is intended primarily for interactlve software 
system. It has been used to generate two interactive 
compilers that are used on a production basis. 

The basic parsing algorithm of the META type 
compiler is top-down left to-right, and deterministic. 
Briefly, "top-down" means the compiler first decides 
which rule should be satisfied next and then checks the 
input (or calls new rules) according to the alternatives 
of the ru1e. A "bottom-up" parser would, on t,he other 
hand, first check the nature of the input and then 
determine which rules could be used to describe it. A 
top-down, deterministic algorithm was selected for 
three principle reasons. 

1. Coding can be generated immediately for the 
META statements as they are read in. This meshes 
with the goal of having incremental compilation. 

2. Errors are. easily pinpointed in deterministic 
parser. Backup is provided only when explicitly 
specified in the META PI language. 

3. Deterministic parsers are faster than non-deter
ministic parsers. 

As has been stated, the first requirement of a com
piler-compiler language is to provide the language it 
creates a syntax checking capability. Fortunately, 
the syntactical descript.ion of programming languages 
has been provided a powerful symbolism in the Backus 
Normal Form (BNF). 

BNF achieved its fame from its use in ALGOL '60 
but is suited for describing a broad class of languages. 
It provides an excellent vehicle for the statement 
structure of a compiler-compiler. In order to enable the 
generated compiler to syntactically test the input 
statement, a BNF description is converted by META 
PI to generated code that will perform snytactic tests 

on the input statement. Though it is well suited to the 
syntactic phase of a compiler's work BNF was not 
designed with the intent of attaching semantic me~ing 
to the statements involved. 

It is iIi the area of semantics that the major effort in 
design has occurred in the development and definition 
of META PI. 

META PI is computer program written for the RCA 
Spectra 70 that accepts the description of a language 
in extended Backus Normal Form. Both the syntactic 
and semantic functions of the compiler to be generated 
are contained within a single META PI statement. 
The output of the interactive version of META PI is 
(read only, sharable) Spectra 70 machine code which is 
the compiler for the language being"described. This out
put code is unique to a given on-line user and does not 
interfere in any way with other on-line users who are 
sharing META PI interactively. The user of META 
PI can in fact have any number of different languages 
in various stages of development; the system does not 
distinguish between programs written in FORTRAN 
PI and those written in META PI; FORTRAN PI, 
META PI and the user's compiler form an integrated 
language system in RCA BTSS II. 

The object code produced by META PI consists 
primarily of a set of subroutine calls which perform a 
recursive left to right scan of the source statements of 
the particu1ar compiler language it describes. 

META PI statements are designed to resemble 
Backus Normal Form. It was important, however, to 
extend BNF in order to include semantic operations 
(code generation) within the syntax structure de
scribing the language and to simplify the description 
of the language. Four extensions were invloved: 

1. The inclusion of factoring and the addition of an 
iterative operator. For example the BNF statement 

A:: = B/AC/AD 

becomes 

A: = B$ (C/D) 

These changes were necessary for two reasons. 
First, the use of the $ sign enables the compiler to 
identify an iterative operation immediately on 
the appearance of the dollar sign ($). This greatly 
simplifies the compilation process. Second, since 
META PI is an interactive language the $ notation 
reduces input requirements thus increasing termi
nal efficiency. Furthermore, from the purely 
descriptive point of view, it simplifies the identi
fication of proper strings defined by the statement, 
since the $ can be interpreted to me~n "followed by 



an arbitrary sequence of." Hence the sample 
META PI statement above is read as: 
"AnA is a B followed by an arbitrary sequence of 
C's or D's." 
From just the visual examination of the string 

BCCDDDCCCDDDDD 

it. is diffi,cult to determine using the BNF descrip
tor whether or not the string is valid. With the 
extended BNF descriptor of META ,PI however 
it is immediately obvious that the above is in fact 
a valid string, that is a B followed by an arbitrary 
sequence of C's or D's. 

2. The semantics are included within the syntax of 
a statement. This allows for object code to be gen
erated as the scan of the source statement pro
ceeds; in the vast majority of statements scanned, 
the complete generation of code and end of scan 
will occur simultaneously. 

3. The ability to backup the code generation to 
some previous scan point is provided through 
special commands that are part of the META PI 
statement structure. This feature allows for effi
cient identification of those statement strings 
belonging to a language but not immediately 
identifiable on a left to right scan basis as a partic
ular statement type. Consider for example the 
FORTRAN PI statement 

DOlI = 1.5 

This statement is a valid assignment statement 
which assigns the value 1.5 to the variable DOlI. 
If the syntax analysis, however, begins analyzing 
the statement as a DO statement It WJll not be 
rejected as such until the analysis of the statement 
is nearly completed. The backup facility of META 
PI provides an efficient means for re-evaluating 
the input string as a different statement type. 
It must be noted that the backup facility is pro
vided for the scan of the source statement to the 
compiler being generated. It is never necessary to 
backup during the scan of a META PI statement 
since META PI is a deterministic language. 

4. The compiler writer is provided with the capabil
ity of generating compile time error comments 
via a special error command which is also an 
integral part of the META PI statement struc
ture. (This feature is not avaible in the interactive 
version of META PI described here.) 

Before proceeding with a discussion of how META PI 
statements are written a discussion of META PI vs. 
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BNF syntax is in order. The following conventions will 
hold: 

META PI BNF 

.. -. - .. -
/ I 
ABC <ABC> 
: ABC ABC 

In addition: 

1. A ; will terminate a META PI statement (un
necessary in the on -line version) . 

.~. () [parentheses] will be used to simplify BNF and 
will indicate factoring. 

3. A $ replaces BNF finite state recursion. 

To solidify META PI syntactical symbolism a few 
Dartmouth BASIC statements are shown below in 
BNF and META PI. 

BASIC READ statement 

BNF 

< READ statement> :: = READ < read list> 

META PI 

READST : = : READ: READLST 

BASI C read list 

BNF 

< read list> :: = < variable> I < read list> , 
<variable> 

META PI 

READLST: = VAR$ (:,:VAR) 

BASIC FOR statement 

BNF 

<FOR statement> :: = FOR <simple variable> 
= < expression> TO 

< expression> < OPTEXP > 

< OPTEX > :: = STEP < Expression> 
<EMPTY> 

META PI 

FORST:=: FOR: SIMVAR :=: EXP : TO 
EXP (: STEP: EXP / . EMPTY) 

These examples are included to illustrate the similar
ities of BNF and META PI syntax. For the purpose of 
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these illustrations an effort has been made to name 
syntactic components to convey the same meaning 
they had in the BNF statement. For example the 
BNF < expression> became EXP. 

It should again be emphasized that BNF does not 
include any facilities for including semantics operations 
within syntax operations hence none of META PI's 
semantic operations were shown. 

META PI statements contain 3 types of elements: 
1. Syntactic elements; these elements are compiled 

into code in the user's compiler that will test for 
syntactic elements in the source input to the user's 
compiler. These elements, then, are used to gener
ate the "sieve" statement identifier 01' syntax 
checker of the user's compiler. 

2. Semantic elements; the elements are compiled 
into code in the user's compiler that will effect 
the generation of object code. 

3. META syntactic elements; these elements are 
compiled into code in the user's compiler that 
will enable it to efficiently resolve possible conflicts 
(ambiguities) in the newly defined input source 
statement via a backup facility. The user con
structs META PI input statement.s by combining 
these three elements so as to produce his own com
piler. 

The general form for a META PI statement is: 

LABEL: = expression 

The left hand side is a unique identifier which serves 
as a reference to the expression on the right hand side 
(a META PI identifier is defined as a letter (A-Z) 
followed by an arbitrary sequence of letters or digits). 
For example the META PI statement which defines a 
digit would appear as: 

DIGIT: = :0:/:1:/:2:/:3:/:4:/:5:/:6:/:7:/:8:/:9: 

The name DIGIT can then be used on the right hand 
side of an expression to effect the test for a digit. 

The character pair : = serves as a delimiter and 
distinguishes META PI statements from FORTRAN 
PI statements. The reader is reminded that META 
PI and FORTRAN PI are one integrated language 
pookage. 

The expression is compiled into code· in the user's 
compiler which is recursive, that is, the expression can 
contain a reference to itself either directly or indirectly. 

When META PI generates the code for the expres
sion within the user·'s compiler it will be generated such 
that it can have one of t1u:ee results after being called. 

1. True. This results if the input scanned as a result 
of being called satisfies the expression. The called 
routine will return with a truth indicator set, the 
input pointer will be moved past the data cor
rectly scanned. 

2. False. The input does not satisfy the expression, 
in this case the input pointer wi.ll be unaltered. 
The truth will be set indicat.ing false. 

3. Error. The expression prefix is correctly identified 
but the suffix is not. For example the statement 

GO TO 20.3 

is an invalid GO TO statement. The prefix GO TO 
is (possibly) correct but the suffix 20.3 is not. 
When this occurs an error routine is called, the 
input pointer is partially updated, the error 
routine will then insert a ? (question mark) after 
the last character successfully scanned. 

These three condItions describe the behavior of the 
code that is generated in the user's compiler by a 
META PI expression. Some of the elements that com
prise these expressions will now be discussed in detail. 

Syntactic elements 

:xxx ..... x: 

ABC 

The X's represent any character 
string. This syntactic element will 
create code in the user's compiler 
to test the current input for the 
string within the colons. In the 
DIGIT statement, shown previ
ously, code would be genera.ted 
that would test for a 0 or a 1 or 2 
etc. 

This results in the generation of 
code in the user's compiler whIch 
wIll result in a call to the routine 
named (ABC in this case). This 
routine will presumably be written 
by the user with META PI. DIGIT 
defined above is such a routine; it 
could be used, for example to iden
tify a number. 

INUM: = DIGIT$DIGIT 

The name could also designate one 
of the currently existing FOR
TRAN PI routines. This syn
tactic element is one of two possible 
methods available for linking to 
subroutines within META PI. The 



. ID 

. EMPTY 

.INT 

. NUM 

second method involves preceding 
the routine name with a period. 
When the period notation is used 
META PI will assume that the 
routine called is not recursive and 
that a truth indicator is to be re
turned. When a routine is called 
without a period recursion is then 
possible by the routine called; a 
truth value will be returned by the 
called routines in either case. 

This is the test for an identifier . 
Code is generated to link to the 
ID routin,e. N otethe use of the 
period. The implication is that the 
ID routine does not subsequently 
link to itself. 

This is a special snytactic test 
which forceS the true setting of the 
truth indicator. 

This is a test for a FORTRAN 
integer. 

This is a test for a number which 
could (approximately) be defined 
by the following META PI state
ment: 

NUM: = $DIGIT(:.:/.EMPTY) 
$DIGIT(:E:(:+ :/: -:/ . EMPTY) 

DIGIT (DIGIT / .EMPTY)/ 
.EMPTY) 

The code generated for this state
ment wiil identify numbers such as 

1.23E-Ol 

. OO137lE-15 

1.361,0123, lEI 

the definition could be read as: 

"A NUM is equivalent to zero or 
more digits followed by an op
tional period followed by zero or 
more digits followed by the optional 
sequence; E followed by an 
optional plus or minus followed by 
a digit followed by an' optional 
digit." 

The· NUM definition is relatively 

LKUP 
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simple yet it illustrates factoring, 
iteration ($), tests for syntactic 
elements and the use of .EMPTY; 
a clear understanding of these ele
ments will benefit the reader when 
other examples are given later in 
this document. 

This results in code being gener
ated in the user's compiler that will 
link to the LKUP routine; this 
routine scans the label table for the 
last input detected. Label table 
entries are statement numbers or 
variable . names. Each entry also 
contains appropriate control in
formation such as type, memory 
address and program level. The 
routine will return one of three 
possible results. 

1. The input was in the label 
table and assigned memorY 
location is defined. ~. , 

2. The input was not found in 
the label table . 

3. The label was found but its 
memory location is yet to be 
defined. This type of entry 
is caused by forward refer
ences. For example a GOTO 
statement that specifies a 
statement number that has 
not yet been entered. 

. TVPE(:NNYY:) This routine looks up "the input 
passed . ,to it in the label table and 
tests if the type byte is in the class 
allowed by the argument NNYY. 
One function of this routine is to 
check for mixed mode errors . 

.XXXX Here the X's represent an arbitrary 
identifier. The use of this notation 
will cause META PI to genera.te 
linkage to the subroutine named 
by the symbol. The execution of the 
subroutine is assumed to effect a 
test on th~ input string. The results 
of this test will set the truth indi
cator which is returned to the call
ing routine. This notation is, in 
fact, the vehicle used by META 
PI in generating linkage to those 
syntactic routines previously dis
cussed (.ID, .LKUP, etc.). In 
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addition to the symbols already 
defined, the user of META PI 
can link directly to those routines 
(written in META PI) that are 
used in creating the FORTRAN 
PI compiler; there are over 100 
such ,routines most of 'Which per
form functions common to alge
braic compilers. The META PI 
implementation of FORTRAN PI 
appears in Appendix 1. 

Semantics-Code generation in META PI 

The syntax operations permit the user who is imple
menting his own compiler to perform the statement 
identification function of the compiler being generated. 
The code generation that will effect the intent of a 
given source statement is handled by the semantic 
functions, these functions are imbedded in the META 
PI statement structure. 

The semantic functions are composed of two sub 
elements: 

1. Semantic commands. 
2. Semantic operations. 

Semantic operations are always contained within 
sEIDlantic cQmmands. The general form is 

sematic-command (semantic-Operations). 

Semantic commands 

Every semantic command has a direct effect on code 
generated by the compiler. When META PI encoun
ters a semantic command in the input statement it will 
generate in the user's compiler the object code necessary 
to generate an element of an object program. There 
are five basic semantics commands. 

.OUT(. .. ) This command causes the current 
contents of the output area (a tem
porary area where code is being 
created by the user's compiler) to 
be converted to internal form and 
placed in the user's code area. The 
output area is a staging area for 
intermediate output that is in a 
semi-symbolic form. The code area 
contains the precise object code that 
will be executed by the computer. 
The output itself (the strings that 
are entered into the output area) is 
produced by the semantic opera
tions that are speclfied within the 

.LABEL( ... ) 

.IGN( ... ) 

.NOP( ... ) 

.DO( ... ) 

parentheses (which are shown above 
as ( .... ) ). Three alternate actions 
can occur depending on the struc
ture of the semantic operations 
contained within the .OUT( ... ) com
mand. 

1. If the first character is not a 
letter or a digit, then all sub
sequent characters are copied 
directly into the code area un
til a final colon ( :) pair is 
detected. 

2. If the fourth character is a 
period or a space it is assumed 
that the output is an instruc
tion using an index register 
and with a symbolic address 
following the period or space 
located in position 4. The 
symbolic address will be 
looked up in the label table 
and from information con
tained there a real machine 
address will be generated. 

3. If the above two cases fail, 
the character string is assumed 
to be machine code and it is 
converted - directly into the 
code area. 

This takes the current contents of 
the output area and places it into 
the label table. An error results if 
the label is already defined. The 
current value of the code area 
location counter will be associated 
with the label. 

This command will ignore . ( delete) 
the contents of the output area. 
This is useful since several semantic 
operations produce side efiects, 
such as releasing registers, In addi
tion to generating code. 

ThIS command is used to produce 
the effect of the semantic operations 
without doing anything else. The 
results of the semantic operations 
will be left in the output area. 

This is a specialized command 
whose effect is to cause META 
PI to execute immediately the 
instructions contained within the 
parentheses. 



Semantic operations 

The semantic operations are used to generate code in 
the output area. The code generated in the output area 
by these operations is in a symbolic form and not 
immediately executable; additionally these operations 
are generally constrained not to alter the input pointer 
or the truth indicator. A pointer is maintained to 
remember the next available location in the output 
area. 

This pointer is updated after each semantic oper
ation. These operations are listed below. 

:CCC ... C: 

* 

s 

R 

I 

x 

Suffix the string between the colons 
to the output area. Note that no 
ambiguity exists with syntactic 
elements contained within colons 
since this notation has unique 
meaning depending on whether it 
has occurred inside or outside of a 
semantic command. 

Suffix the current input to the con
tents of the output area. This is 
generally used in conjunction with 
a successful .ID test. To emphasize 
the different roles being played by 
META PI, the user's compiler 
source statement which is input 
to the user's compiler, and the 
resulting object code, this simple 
operation will be explained further. 
When the * is found in a META 
PI string, code will be generated in 
the user's compiler to effect the 
placement of the last input into 
the output area. This code is part 
of the user's compiler. When a 
source statement is supplied to this 
compiler the user's compiler will 
effect symbolic code generation in 
the output area. This output area 
will then be converted into ex
ecutable machine code. 

Save a copy of the current contents 
of the output area in a pushdown 
list and push the list. 

Restore (suffix to the output area) 
the top of the pushdown list and 
pop the list. 

Ignore (pop) the top element in 
the pushdown list. 

Swap the top two elements in the 
pushdown list. 

*1 
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Generate a globally unique 4 byte 
character string beginning with the 
character #. This string will be 
locally constan t and serves as a 
convenient way to label and refer
ence locations in the generated code. 

There are a set of semantics routines which facilitate 
the use of the general purpose and floating point regis
ters of the Spectra 70 processor in the output code. A 
type of pushdown list for both of these register types is 
maintaine<;l at run time. There are 6 general purpose and 
4 floating registers available to these semantic opera
tions. If more registers are needed, coding will auto
matically be generated to implement saving and re
storing of registers. This save and restore operation is 
a side effect of the following semantic routines. 

OF 

o 

+ 

+2 

-2 

Output the current general purpose 
register. 

Output the current floating point 
register. 

Output the next free general pur
pose register and make it current. 

Output the next free floating point 
register and make it current. 

Output two general purpose regis
ters. The first one is the previous 
register, the second is the current 
register. When the operation com
pletes the previous register will be 
made current. The output is always 
a digit pair. This format is special
ized to take advantage of the 
register to register operations avail
able on the Spectra 70 class of 
processors. 

Output a pair of floating point 
registers~ The action is the same as 
the semantic operation for general 
purpose register pairs. 

One final set of elements of a META PI statement 
have yet to be discussed namely the lVleta Synta,ctic 
Commands. These commands are included primarily to 
permit efficient backup facilities in the user's compiler. 

META syntactic commands 

. LATCH (name) This causes code to be generated 
in the user's compiler that will re
sult in the routine named in pa
rentheses being called. In addition, 
if the routine (or any routine sub-
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sequently called by the latched 
routine) exits to the error routine, 
backup will be affected. 

This command can occur wherever 
a semantic operator can occur; it 
causes code to be generated in the 
user's compiler that will suppress 
the occurrence of a .LATCH in the 
calling routine. This command is 
generally used when initial ambigu
ity in a sub-expression has been 
resolved. Typical examples· are 
when·the first comma is detected in 
a FORTRAN DO statement, or 
when the logical operator is de
tected in a logical IF statement. 
Backup will not. occur if a sub
sequent syntactic error is dis
covered and the error pointer will 
more clearly reflect the location of 
the error in the input statement. 

. CLAMP This command can occur wherever 
C can occur. It directs the compiler 
to suppress all preceding .LATCH's 
that are still in effect. .CLAMP is 
useful when .LATCH did not occur 
on the immediately preceding level, 
or when it is desired to inhiblt the 
PI compiler or META PI from 
later attempting to scan input 
intended for the user's compiler. 
The reaqer isteminded that META 
PI, FORTRAN PI and the user's 
compiler are, in fact, part of an 
integrated language system. 

The task now is to describe how the META PI 
elements are formed into statements which are used to 
create a user's compiler. The approach to be used in 
accomplishing this end will be via example. First sev
eral simple examples will be described. Then the en
tire META PI implementation of FORTRAN PI will 
be included as an appendix. 

EXAMPLE 1. 

FORTRAN PI allows the user to include comments 
in each statement after a concluding semicolon. If the 
user did not want this feature, but rather. desired to 
permit multiple statements on one line (similar to 
ALGOL), he could write the following META PI 
command: 

U8ERCC: = LABST.NOP(.CLAMP)$LABST 

where LABST refers to the FORTRAN PI definition 
of a (possibly) labelled statement (see Appendix). The 
meta syntactic command .CLAMP disables the backup 
mechanism, and allows the error pointer to clearly re
flect the location of a possible error in the subsequent 
arbitrary sequence of labelled statements ($LABST). 
Thus, the program segment 

could become 

X= i+Y 

Z = SIN(X) +W 

Y = Y + 10 

PRINT 1,X,Y,Z 

x = 1 + Y;Z = SIN(X) + W;Y = Y + 10; PRINT 
1,X,Y,Z 

EXAMPLES. 

There is no efficient way to shift lofrically in the 
FORTRAN IV language. A FORTRAN PI user at 
RCA Laboratories required such a shift in order to 
improve the efficiency and readability of his program 
in which he made extensive use of bit manipulation. He 
used the following META PI statement: 

USERCC : = :SHIFT~ .NOP(.CLAMP) (:L: .SAV 
(:89:) / . 

:R: .SAV(:88:)) .ID (INTV) :,: IEXPI 

.OUT(:58102000:R:103000:).OUT 
(:50102000 05E9,:- .E901) 

This permitted him to enter statements like 

SHIFTRJ,3 shift the variable J 3 bits to the 
right. 

SHIFTL K, J + 5 shift the variable K J + 5 bits 
to the left. 

Note the use of .SAV( ... ) to save the op-code of the 
shift instructions. INTV and IEXP1 are references to 
FORTRAN PI syntax. The "05E9" (BALR 14,9) 
constitutes a return to the executive and allows vari
able tracing (and other debugging aids). The fact that 
this is an assignment statement is communicated at 
compile time via the .E901 function. 

EXAMPLES. 

To further illustrate how META PI can be used to 
create new compilers, two statements from the imple-



mentation of Dartmouth BASIC language alluded to 
later will be discussed. The BASIC statements have 
been selected on the basis of their ability to convey the 
structure of META PI statements and not on the 
simplicity or complexity involved in their actual imple
mentation. 

The BASIC READ statement 

This statement has the BNF format 

< READ statement> : : = READ < read list> 

In META PI the statement becomes 

READ: = :READ:RIDS(:,:RID):;: 

META PI will scan the statement from left to right 
generating the following code: 

1. A test for the word READ. 
2. Linkage to the definition RID. This is a definition 

contained within the META PI definition of 
BASIC. 

3. Instructions to effect iterative loop that will test 
for a comma followed by a read identifier. 

4. A test for the line termination character";". This 
character is appended to the statement inter
nally. 

This META PI definition is t~tally syntactic. The 
semantics for the READ statement are handled in the 
RID definition. . 

Handling relational operators 

BASIC allows six relational operators; these opera
tors are used within the BASIC IF statement; the 
operators permitted are: 

. !J T ( : :3 7 i'.\ : ) 

BASIC operator 

<> 
<= 
>= 
= 

< 
> 
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Interpretation 

not equal 
less than or equal to 
greater than or equal to 
equal to 
less than 
greater than 

The META PI definition for a relational is as follows: 

REL = :< >: .SAV(:7:)/:< =: .SAV(:6:)/ 

:> =: .SAV(:A:)/:=: .SAV(:8:)/ 

:<: .SAV( :4:)/: > : .SA V(:2:) 

META PI will generate the code equivalent to a 
sieve on the six possible relational operators. When one 
of the operators is detected a single character is entered 
into the pushdown list. This is effected by the .SAV 
semantics routine. This character is in fact the actual 
machine code representation of the branching condition. 
The REL definition is a sub definition of the IF state
ment. During the scan of the IF statement the char
acter previously entered into the stack by REL will be 
popped into the output area and the complete branch 
instruction will be generated. 

EXAMPLE 4.. 

The preceding example have shown how META 
PI provides a vehicle to allow user controlled genera
tion of code which may be executed later at run time. 
The following example shows that the user can also 
control the generation of code to be executed at com
pile time, that is, he can generate a compiler-compiler. 
The example shows, first, the definition of a familiar 
language called BNF. Then in the new BNF language 
a simple syntax checker is defined. Then some test 
strings are entered. 

... . . . : : : :=:::>\1 :;:.0 

23 3X1: =3X2!·(:! : .OllT( :531::. :*1) .OUT( :'0781::: )3X2) .LAEEL(*l) 

32 ~X2:=BX3.0~T(:53E.:*1).OUT(:~77E:)$(BX3.0UT(:477.E~~:)).LA3~L<*J) 

42 BX3:=:c:(:E~PTY:.OJr(:0420:)/.ID.OUr(:41E.:*).OUT(:45J.LATC:»:>: 

/srRING.OUT(~45E.TESr~).OUT(:::'R:::) 

53 3TRI~3 := ~LPHABET .SAV<.) $(ALPHABET .SAV(R*» 
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63 'LPH~SET := LETTER lilIGITI :?:I:":I:$:I:':I:X:/ETC 

7a LETTER := :A:/:J:/:C:I:D:/:E:I:f:I:G:I:H:I:I:/:J:I:K:I:L:/ETC 

82 DISIT := :2:/:1 :/:2:1:3:/:4:/:5:/:6:/:7:1:8:1:9: 

92 <SNF> ::= Z ! 1<3Nf>1 

lIZ 11Z11 

12;3 11 1 1 11 1 1 II! 1 1 1 11 1 1 1 I 01 1 II! 1 1 11 ill I 1 1 1 1 1 1 1 

ICO IjE 

1 33 lIZ 1 1 ! 

130 ERR0~ 11dl1? 1; 

133111;)11 

13:3 11Z11? 

132 



/PRINT' 

Ul USERCC := .Nope.CLAMP) BNF :;:I:<:.ID.LABEL<*):>: u: I:: :=: BX1 

:;:. OUTe :07FA:) 

20 BX1 := BX2$<:1:.0UTe:58E.:*1>.OUT<:078E:)BX2).LABELe*1> 

30 BX2 :: BX3.0UTC:58E.:*1>.OUTC:077E:)$CBX3.0ulc:477.ERR:» 

.LABELC*1> 

40 BX3 : = : <: C: EMPTY: .OUT<:0420:) I. ID.OUTC: 41 E. :*) .OUTC :450.LATCH:» 

: >1 ISTRI NG.OUTC:45 E. TEST:) .OUTe:: :IRu:) 

50 STRING := ALPHABET .SAVC*) $CALPHABET .SAVCR*» 

60 ALPHABET := LETTER I DIGIT I :1:1:-:I:II/:$:I:%:I:&:I:'I/:C:/I)11 

I*I/ETC 

70 LETTER 1= :AI/:B:I:C: I: DIIIEI II F:I:H:I: I:I:J:/ETC 

80 DIGIT 1= 10:/111/:2:1:3:1:4:1:5:1:6:1:7:1:8:1:9: 

90 <BNF> ::= 0 r I<BNF>1 

Ul0 101 

110 11011 

120 11111111111111111111011111111111111111111 

/CODE 

130 111011 

130 ERROR 11011 1 ; 

130 111011111 

130 ERROR 101111 11; 

130 

Mter the FORTR:AN PI compiler was succeSsfully 
implemented the challenge to implement a different 
language using META PI was irresistible for two 
reasons: 

1. Since META PI and FORTRAN PI evolved 
simultaneously there was some question as to 
whether or not the generality of META PI had 
been seriously affected by efforts to accommodate 
the peculiarities of FORTRAN. 

2. Evidence had to be accumulated that would tend 
to demonstrate the leverage that can be gained by 
using the compiler-compiler approach, 

It was decided to use Dartmouth BASIC as a test 
case for gathering data to support conclusions for the 
above hypotheses. The results of the implementation 
of BASIC with META PI were startling, even to the 
author. 

With no pre-preparation of any kind the project to 
implement BASIC began on April 15, 1968. On May 6, 
1968 BASIC was available to users of BTSS lIon an 
interactive basis; total elapsed time to implement the 
language was 3 weeks. 
. The entire implementation was done interactively. 
The implementation hours for man, console and pro
cessor time are as follows: 

* Totfl,l Man Hours-9o 
* Total Console Hours-33 
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This is the time the Teletype was connected to 
the computer. 

* Total Processor Hours - Less than .1 hour 
This is the time the CPU was performing func
tions for the implementation of BASIC. 

The results have in the author's mind further 
strengthened the conviction that availability of inter
active on-line compiler-compilers such as META 
PI can increase language implementation efficiency by 
an order of magnitude and provide computers which 
the much needed capability of creating and modifying 
languages to suit individual user's own special needs. 
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APPENDIX 

The following pages list the actual input to an off
line version of the compiler-compiler. The off-line 
version has several ininor differences from the on-line 
compiler-compiler, and one major difference. The major 
difference is that the off-line output is a symbolic 
Spect~a 70 assembly input tape from . which the FOR
'r.RAN PI compiler is assembled, rather than the 
direct ma.chine code generated on-line. 

Some other ditierences are: 

1. "=" as statement delimiter rather than ": = " . 
2. Absence of "." as delimiter before some semantic 

operations (E2, E3, E986, E987, E1, E900, E901, 
... , E908). 
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3 .. EL is a pseudo semantic operation. It actually 
performs a test for a ; and "return"s or generates 
the "SHOULD END HERE" message. 

4 .. ERR(: .... :), when used, denotes the actual error 
message to be displayed if the preceding test fails. 

5. EFF OFF and EFF ON are special commands to 
the off-line compiler tell it to turn off and on some 
special internal optimizing code. 

6. The X semantic operation he~e is identical to the 

on-lineZ. 
7. There are several subroutines referenced but not 

defined. This is usually because they have been 
partially hand coded. At any rate, the explana
tion of all the features of the off-line compiler
compiler is beyond the scope of this document. 

Any of these FORTRAN PI routines can be accessed 
by the user (via his own compiler). 



A-I 

INTV=(.IIO,OU1(:41:+: :.)/.IPR.OUT(:58:+; :*»SUBEXP; 
RLV::( .FJD,PUT( :41 :+: ,:*)/,SPR.OUT( :5S:+: :~q )SU6EXP; 
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RLDV::(, TYJ'EC :t::~~0:) .OUT( ;41 :+; :*)/,TVPE( ;EF82t) ,UUTe :58:+; :*) )OSUl ; 
CMPXV=(.TYPE(:E~AO:).OUT(:41:+: :~)/.TYPE(:EFA2:)~OUT(;58~+: ;*~)CSUOXP; 
IEXP1=IEX~2$C;+:lTERM.OUT(:lA:~E2)/;-:ITERM.OUT(lio:-E2»; 
SEXPl=SEXP2$C;+:STERM.OUTL!3A;-2E~)/:-:STERM.OUT(:3B:-2E2j); 
DEXPl=DEXP2$C:+:OTERM.OUT(:2A;-2E2)/:-;OTERM.OUTC:2B:-2EZj); 
C E X P 1 = C E X P? $ C ( : + : • S A V ( : A : S ) I : - : • S A V ( : 8 ; S ) ) C T E R'" • OUT ( : 2 : R - 4 , • OUT ( : 2 : R "" 4 ) ),; 
B~XP1=BTE~M~(:+:BTERM.OUT(:16:-E2»; , - - - -
SUB2ST=,OUT(:47F09ED40080:R:OO:),ic:SUBRSC.DUTt:947FIOO:R)S):/.EMPTV 

.00T(:~OOO:».NOP(.EL); , 
EQST=.LATtH(OUSr'/EQ2ST; 
NEQ$T=DEC~T/LABST/ENOST/SURST/FCARD; 
EQ2ST::.LAiCH(LI~ST)/.RLATCH(IUST)/ASSTJ 
LABST=GUStl.LATC~I(IFST)/;RE1URN;:.OUT(;47F09E98:E908}IENDOST; 
OOST=:OU!;SAV(*l),INT.SAVC*: ;).16.IID.SAV(*),SAV(E981S).UUT(:41:+; 1*>:=;IEXPl 

~(lUT( :;0302000;):,:. IGNCC-) IEXP1,F.RR( :NOT INTEGER:) (:,: IEXP1.ERR( 
jNOT INTEGER:)/.EMPTY.OUT(:41:+:00001:»,OU~(;411:RE986).OUTi:45E09f22' 

---E901).LABEL(*1).NOPC.~L); -
llFS1=:IF~:C.LArCH(LSUnlX).UUT(;19:~E2).IGN(-)1 
-DEXP1(R~LOP.NUP(C»DEXPl.ERR(:NLJT AN EXP;).OUT(129:-2E2).lGN( ... 2»):): 

.ERR(:MIssiNG ):>.OUT(~~8E ;*1).UUT(:47:R:09034:)L2ST.~R~(:NOT A ~TATEMENT; 
- ).LA8ELC*1); , 

GUST=;GUTU:C.lNt,OUTC:58E :*>.OUT(:47F0904C:F o 02)/,(:.OUT(:58E :*1).OUT(:05;+: 
E: >.OUT(:4120000141F090 /fC: )COHn.ERR( :NOT AN INTEGER~ )$(:, :GOJNT,ERR , 
( : NOT A t~ I N lEG l: R : ) ) : ) : .E R f< ( : MIS SIN G ):), 0 U T ( : 4 5 tOt) 0 1 8 : ) • LAB E L ( * 1 ) • (J P T ( : I : ) 

~Expi.uUT(:07F2 :--E902».NOPC.EL); ,. 
END~T=:ENU;:.UltIC:47F09038IE900)ENasn.'ERR(;UNTERMINATEO 00 LOOP;») 
ENOUST=:CUNTINUl;;.OUT(:O~E9:~9001/CA(LST/LIFST/C~T/IUST/;.: 

(:UU1(i.STRJNC.OUT(*E900)/:1AB~L(:,STRING.LAB~L(*»::):; 
ST::!NOP(C,(.LATCH(CCST)/~UOEND~lNT,LABEL(*): :C.EQUAlSCEQZST)1 

ENDOST).ERK(:INVALIO DU ENO:) 
DOGEN}: :(.lQUALSCEQST)/NEQST)/:a:BODLST/.INT,lABEl(*,::,ERR(:BAD LABfl:> 

(.EQUKL5(EQST)/LABST)/FCARDI.EHPTY: I.E~R(:DAD (ABEL2»;IGN()~IGN().IGN(); 
FCARD=(:F' :1:l:X;ERNAL:)' ".' 

.ID.EKR(!SAD LABEL:)CALLSBS(J,:.ID.ERR(:SAD LA8EL;)CALLSB),NOP(~EL); 
L2ST=.EQUALS(~Q2Sr)/LABST; 
IEX~2=:-:iTERM.UUT(:13:0FOF)/:+:ITERM/ITERM; 
SEXP2=:-:~TERM.UUT(:33:00)/~+:STERM/STERM; -
DEXP2=:+:UTERM/~-:OTERM.OUT(:33:00)/DTERM; 
BIEKM=BPRIM$(:*:BPRIM.OUT(:14:-E2»; 
ITERM=IPRiN$(:*:lPRIM.OUT(:181;OF~2).IGNC~).OUT(;lCO:OF:1620F:l:)1 

:/:.sAV(O~)lPRIH.OUT(:180:R:8E0000201uo:or),IGN(-).OUT(:lS:OF;l:»; 
STERM=SPRlM$C:*:SPRIM.OUT(:3C;-2EZ)/:/'SPRIM.UUT(:3D:-2EZ»; 
OTERM=DPRiM$(:*:DPRIM.OUTC:2C:-2E2)/:/;OPRIM.DUT(;2D:-2E2i); 
CEX~2~:+:tTERM/:-:CTERM.OUT(:33:00:33;XX)/CTERM; , 
CTERM=CPRiM$«(:*:.SAveXX)CPRIM/:/:.SAveXX)CPRIM.OUT(:45Eo9BOCO:XX;O:» 

, ,OUTt;45tO~BBOO:R:O :-2),IGN(-2»J ' " 
SUBtXP=SUUSCL .OUT (: lE: OF: 1: ) I. ENPTV; .
OSUBXP=SUBSCL~OUTe:1EII1E;OF:1:)/.EMPTY; 
CSUBXP=SUUSCL~O~Te:1EII1E1IIE:OF:ii)/.~MP1V; 
ASS 1 = • I 0 ( 1 NT V l : = : • E t{ R ( : E X P f C T l: 0 = HER E I ) C • LA T C H ( I t X P 1.) • 0 UTe : 50302000 : - ) / 

t.RLATtH(StXPl)/.RLA1CHCDEXP1)/CEXP1.lGNC-2».UUT(:45E69E60500Q2000 :-2»/ 
kLVL:=;.ERR(:~XPECTED =HERE:)(RHIEXP/ 

.LATCHCSEXPl)/.'RLATCH1DEXP1)/CfXP1.IGNC-2» 
• ERR ( : NOT AN EXPRESS J ON; ). UUT C : 70002000 ; -2) IRLDVL: =: • ERRC : EXPECTED .= HERE:) 
, (RHIEXpi.lATCHCDEXP1)/CEXP1.IGN(-2» - , 
.ERR(:~OT AN EXPRESSI0NZ).DUTCi60002000 ;-2)iCMPXVL:=:,ERR(;EXPECTED = HERE') 
, (RHI~XP.UU1(:2F:+20)/CEXP1).ERRC:NOT AN lXPRESS10N:)' 
.OUT(:6020200sor~02000 :-2-2».OUTe:05E9 ;-E901),NOP(.EL~; 
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A-2 

RHI~XP=.lATCH(ItXP1).UUT(;lH0345E09~OO :-+2); 
J f S 1 = : IF: ( ; ( •. L ATe H ( H: X P 1 ) v 0 U T ( : 1 2 22 : - ) I ( • f'L ATe II ( 5 E: X r 1 ) / DE X Pl.) 

, , .E:RR(:BAD l:XPRESSIUN:)~OUT(:3200 t-Z»U:END.f:RR(;HISSING );); 
BUOlST=.DUF.NO.INT,LABEL(*): :BASS1Cl)OGEtO/(,un.LA£3El.(';Q: :/: ~ )(,EQUALS 

(B~SST)/bIFST); , . 
o U G L~ N = !, ( • l) UI ( : 4 1 ~ : RE 986 ) • U U T ( : 4 1 2 : R I ) • 0 U r ( : 5 BE: K ) • 0 UTe : It 5 F- 09 E ') C : [ 903 ) • M 0 R E:: DO ) ; 
C C S I = (: : I • EM P T Y ) (-, LA T C It ( uc C ) / • I D. LAB E.l ( * ) : : = : • NOP ( C ) C C X 2 $ ( : / : • UU T ( : 078 A: ) 

CCX2):;:.llUl(:O"FA:»; . ,-' 
CST = ( : F L IJ \'i n N : • S A V ( : 02 8 : ) / : f L (j ~~ 0 F F ; • S A V ( : 02 C : ) / : S T LJ P : • S A V ( ; 038 : ) / : P AU S l : • 0 I,J i ( 

:9210HOOO: ).SAV( :Ot't: )/1CI;;Sl' " 
.00T(:45~09:KE900)~NUP(.EL)/NICEST; 

SUBST:( :SlIBROUT!NE:I:SLlBR,: ).ID.ERR( :lNVAkIO ~IA~'E; ).OUT( :47F09038;E900)SUlIRSAe 
~UB2ST).OUT( :O~E9:); 

III S 1 ::. ( A L G 'lOS T / . 
« (:t~EI\D(: .SAV( :OlU: )/:\AJRITE::(: .SAV( :()OO:) )IEXP1.ERR( :NJT A.N INTE::GER:):.I: 

.INT(H.B).I:RK(;AAD FURI'lAT lABEL:),.SAV(;581 :*>;):.E:RIU:MISSING ,;)/ 
(:PRiNr: .SAV( :000: )/:READ: .SAV( :018:) " 

(.INT(FLB).~AV(:581 :*)/.lMrTY.SAV(:4110B02C:».OUT(:lF2:~».OUT(R).OUT(:5BFoU 
iR).oui(:O~Et :-).orT(;J:)(IOSlQ$(:J:IUS[Q)/,E~PTY) -' 

,OUTt :'t5f:OfOOC:)/ 
( : R E WIN [) : • !> A V ( : 008 : ) 1 : B I~ C K SPA C t : , S A V ( : 00 C : ) ) 1 EX Pl. ERR ( : N J TAN I NT l: G E R : ) 

.OUT(:~BFOb00045~Of:R: :-»).OUT(:05E9:E900),NOP(,EL); 
GUINT=.lNr.our< :lF32: ).ULJl( :58E p~).fJUT( :O?2F:); - ' 
LsutilX=IE~Pl(KELOP)lfXP1; 
RELlIP=:.: (:LE: .~AV( :3: )/:£Q: ,S/l.V( :7: )/:NE: .Sf\V( :9: )/:(;T: .SAV( :[); )/:GE:: .SAV( :5:)1 

,- : l T : • !) A V ( : b : ) ) , £: R k ( : R ADD PER A 1 (J R : ,) ; • : t [R R ( : 5 H (j U LOB EAt : ) 1 : < ; • S A V ( : rj ; ) 

/:=:.~AV(:7:)/:>:.SAV(:D:); ,. - ' , 
BAS S T = • I 0 ( I NT V L / R l V L ) : = : • t: R K ( : S H 0 U L () B E =;) 8 E X Pl. l:: R R ( : NOT B J 0 LEA tH ) , U l) T ( : !> () 3 0 

200005E9 %--E901).NLlP(.El); • 
SUBSCL=;C:GJNUlX.ERR(:NUT AN ARRAY:)IEXP1.ERR(:Nor INTEGER EXPRESSI0N~) 

(~q[XPS)/.)OUT(: 180:0'r :45EOE064 :-):); ,ERRe PllSS1NG );); 
B P RIM::: • C He ON .Ull l( : 58 : + • C 4 G EN) / ( : • FA L S E • : 1 : 0: ) • DU T ( : 1 F : + 0 F ) / 

.Rcnr~s'T .UUT,C :5a:+.BCGEN)/:-':IJPRH1.UUT( :57:0F:0I301C:)i 
( : • TRUE, : 1 : i : ) . UU T ( : 48: + : 0 B Ole: ) / : ( : B l: X P 1 : ) : • ERR C : MIS ~ I \~G ):) I 

.ID(INTV/KLV).OUT(:58:0F:O:OF:OOO:El); . 
CAL L S l' = : CAL L : ( : (. H fI It H: I I;: X P 1 : ) : • (; R IU n.q 5 S H l G );" II U T ( : 0 h 0 1 : - ) 1 

.1~CAlLSB.SAV(*)(:(:PLISl :):,ERR(;EXPECTEO ):) 
/PLIST) .UlrJ (:58F :R» .UUT( :05EF:E90 / .. ) .NOP( .EL); 

ICE ~ T :: ( : T RAe [ : ( : 11 N : • S /\ V ( : 0 It It : ) 1 : 0 F F : • S A V ( : 04 8 : ) ) I ; 0 lJ M P : • S A V ( : 0 3 c.: : ) 
/:PDUM~): ,SI\V( :040:) )PlIST; -

IPR1M={PRl.; 
S P R i ~, = S P R i $ ( : t.' * : ( . L ATe II ( I P R I ) • 0 U T ( : 1 80 : 0 F E 2 ) • I G N ( - ) • 0 U T ( : 45 E 09 F BE 0 ; 00 : 1 : ) / 

. .OUT ( : 45tO'iFOIIO: 00:).: ) SPI{ I. OUT ( : 3C: -2: 45E09FtCO: 00: 1: »); 
o P R H1:: D P R 1 $ ( : ;:n;,: ( • L i\ T C H ( I P R 1 ) • D U T ( : 1 80 : 0 F l2 ) • I G N ( ~ ) • 0 U T ( : 4 5 ~ 0 9 F B EO: 00 : 0: ) I 

.oUTi:45t09F040:00:0:)UPKI . 
~ERR(: ILLEGAL tXPONENT:) ,[JUT( :2Cl-2:45E09FCCO:OO;O:»); 

CPRIM=CPRi$(:**~.UUT(:45E09CBOO:XX:O:).SAV(XX)CPRi,UUT(;4~E09~BOO:R:O :-2).IGN 
( - 2 ) • (H) T ( : 't 5l 09 C £> (, 0 : X X : 0 :»;' - . 

IUS£:Q=:(:~nLJT(:!>8E :*1,.DUT(:05:+:Eln;+:1:)$.LA-CH(PARCOH).lD.IIDtOLJT(~'1f :*> 
• S A V ( [ '-J U -, S ) • (Ill T ( : 4 1 1 : r,~ E 9 8 (, ) • U U 1 ( : It 5 E 09 t F C 1 8 1 : 0 1-: : - )" ' 
~ 0 l) T ( : 0 7 A : () F : 0 7 r- 1 : ) • L 1\ 1.3 E L ( ::( 1 ) , S A V ( :~ ) : = : • I;: R F: ( : t X PEe '1 f:. D = HER E : ) • N 0 P ( • C L A t1 P ) 
I E X Pl. t; R R ( : BAD E X P R F. ~ S 1 [l N : ) • () U T ( : 5 () : 0 F; : R ) ~ I G N ( - ) : J : ~ r. R R. ( : ~l r s SIN G ,;) 
1 EX Pl. t:, R R C : BAD E X PRE S S I ON : ) ( : , : 1 EX Pl. F; R R ( : fl AD f:: X PRE: S S I UN: ) 1 • E. r", P T Y 
~OUT( :/t1 :+:00001:» .UUl (:1,,11 :Rf:986) ,(JUT(; ItIO:Of: :-) .()UT(: 181- :OF: :-) 
, • nUT ( : 90 r 0 1. () 0 0 0 51 : 0 f-=: : - ) : ) : • E. R I~ ( : i11 5 S r N G ):, 

1 • S A V ( : 0 : S ) I IJ P '~R AM. (J lJ r ( ; '+ 5 [ Q 9 [ 86 : ) ; 
PARCO~1= 1 U!:)EQ: J :; 

I N T V L = • T Y P E ( : r F It 5 : ) • LEV l • ERR ( : I. E F 1 S' I D [ I S F lJ ~ 1 C T 1 UN: ) , D U T ( ; 4 1 : + : 0 DO 30: ) lIN TV; 
RLVL=,TYf)f( :FFC5:) .LEVL.EP.R( :lEFT SIDE IS FUNcrllJN:) ,Dl'T( :41:+:00030: )/f?LV; 

R L 0 V L :: , T Y P E ( : 1- F 05 : ) • l. ElL. E P. R ( : l. [ r T SID E I S F U f'l C -n UN: ) • [J U T ( : it 1 : + ; 0 DO 3 0 : ) , R.l D V ; 
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c: N P X V L :: _ T Y P f.: ( : F f II ~ : ) • LEV L • £: R h ( : L [ F 1 SID I: I S F lJ NeT IlJ N : ) • 0 U T ( : 4 1 : + : 0 DO :3 0: ) ! C ~1 P X VJ 
R J F S T == : 1. F ( ! B [ X P ). • E R k ( : NC T B U U L E l'l. N ; ) • 0 U T ( : 1 2 2 2 : - ) i FEN 0 • ERR ( : S H nUL 0 B t: A');,; 
IFEND=:) :'.INl.U{R( :j"U"j AN' 11~TEGER; >,OUT( :41F0904C: );OUT( :~aE :*).DUT( :O-'4F:) 

: , : • l ~~.I~ { : I~ j S!> I N G ~:). I NT. E j{ R ( : N D TAN I NT (:: G E R : ) • 0 U T ( ; 58 t: : * ) . U u 1 ( : () 7 C F : E 3 ) 
:,:.l~~{:r'11S~ING ,:).Ir~T.F.'{K(:NfJr AN INTEGER:)~Ol.JT(:S8E :*~.UUT(:()7FF:t3 
E(02).NUP( .l.L); 

CCX2=~CCDtccx::n .UUT (:;)~H:. :*1) ,OUl (:077E: )$(CCO/CCX3.0UT( :47-(.ERK:» 
.LAUF.LP:'·ll90); 

N 1 C f:: S T:: ( ( : r:: X E cur f: : .. DO ( ; S R (;,8 : ) / ; S A V E ~ 
(.unc :LA 8,30:) :Sl1UPCr.:; I.DU( :LA b,B:) ;lJnJECT: I.DU( ;LA 8,44:) .OPTC .EMPTV»I 

: S QlH: E l E : • on ( : L /\ A, 16 : ) I : CALC; .. OPT ( : l) LA Ti:JR : ) • DO ( i L A8, i 6 ; ) , 
.DP I (,Ei"lPTY» .OPT(UNOFF) .OPl'e .E~·lPTY) 
I:BATCH:.OO(:LA A,Z/i:»;;:.ERR(:SHOUL.DtND HEREl),DO(:L 1,SAVSTK;) 

.DO(:EX 0,~"+8(B):).O(J(:B *+56".DD(:USIN('; SlACK,l;) 
~ [) U ( ; n 1- S ~J, 1 : ) • f)[1( : N I S \-1" 2 5't ; ) • 0 (J ( ,N I S \~ I 253 : ) • 00 ( ; 0 1 !) tv I 2 : ) 
; DtJ( : t-U <.: L HJ E, 251 : ) • Dn ( : U I C LIN E 14; ) • DO ( fLJ I ,C LIN t, 126; ) . 
~DO(:Cli SW,131:).OU(:NI S~1/12/t:) - , 
~ n n ( : N i s W, 1 2 7 : ) ~ 0 [J ( : 0 I S \.J, 1 2 H : ) • DO ( : N I S W, 1 2 5 : ) • D J ( : DIS \'J I 1:3 0 : ) 
. " 0 U ( : DR 0 P -1; > • DO ( : S P M 2: j; 

A L. G 1 Cl S T ;.: ( : RE h D ( < : • S t .. V ( : () : , / : f-' R I IJ T ( < : • 51\ V ( : It : ) ) • (l U T' ( : 580 : * 1 ) . 
,OUT(:~OOOL00"5000C06C~).OUT(:~8fOU02:R)rWORDC$(:,<:PWOR6c) 

• 0 LJ T ( : 1 r t.: E !> 0 L: 0 L 06 : : n.5 H I:: 0 C 0 (> C () 7 r 9 ; E 900 ) • l /\ BEL ( * 1 ) : ) : • ERR ( H1 r S 5 I N G ):). NO P ( • E L ) ; 
URG f~lGIUS1+14 FUR Tfd)l.,E CE:NERATION ONLY 

CPR~=.lATLH(CtLLMF)CExrl:):.OUT(:4~EOY:R:O:X~:O: )1 
XCON(:, :XCflN.(:RR( :NUT I~ r~U~W[R: )/,Ei"',PTY.UUT( %2F:+20»1 

.L/l.Ttil(XCDNSf;I:(:C[XP1:):.£:Rr~(:~H!)SIN& ):)1 
- .10(CMPXV.UUT(:68:+2:0:0F:00068:+2:0:0F~OOB :-)/,TYPf(:F5A5:)FCN 

• S A V ( R S ) • U U T ( : 68 : 'i' 2 ; 0 : R: 030 (,8 : + 2 : 0 : fU 038 : ) II.) P RID. [) U 1 ( : 2 F : + 2 0 ) ); 
D P,'R 1 = • L l'~ T C H ( F.l: U-' F ) 0 t X P 1 : ) : • uuq : tIl S SIN G ):). 0 U T ( : I~ 5 EO') F ; p. () 0 : 0 : ) i . L ATe H ( A 8 SF) 

DE X P 1 : ) : c un\( : HIS S I :.~ G ):), 0 U T ( : 30 ; 00 ) I XC [) N! ! ( : DE X P 1 : ) ; • ERR ( : MIS SIN G );) I 
• 1 D ( Dr Pin) • t R R ( : B fl 0 TY P l : ) ; . 

DPRID=RLnV.OUI( ~68:+2:0:0F:OOO:tl).IGN(-)I.TYrE(;F585: )FCN 
.OlJrC:6i$:+2:0:R:030:)1 -

R LV. ~ A V ( : 7 b :'+ 2 : 0 : 0 F : 000 : r.: 1 ) • LJ U 1 ( : 2 F : 00 ) • 0 U T ( K: : - ) 1 • T Y P E ( : F 5 C 5 : ) ( FeN) 
,[JUT( :?F:+"LO:7fj:O:O:P,:030: )/ITURD; 

S P R 1 ::. , L f~ T t. II ( [ L E 1'1 F ) S L X P t : ) : • t R K ( : ~H 5 5 I N G );). 0 u T ( ; 4 51: 09 f : ROO ; 1 : ) I 
- .CHCGN.OUT{:IB:+2.C4GEN)/.BCUNST,OUT(:78:+2,SCGEN)/ 

_ '. i~J U t-' • U U I ( : -( d : + ? • N G [ N ) 1 : ( : SEX P 1 : ) : • ERR ( ; M I ~ SIN G ):) 1 
" .• If,TCHetIHSF)SEXPl.:): .UUlC :30:00)/, IU(SPRID); 

I P R 1 :: , I NT. fJ U T ( :- ~ R : + • I G £.: r~ ) I • C He (J N • 0 U T ( : 5 a : .... C It G EN) 1 
- .BCUNST~OUT(:SB:+.RCGEN)/:(:IEXPl;);.ERR(:MiS$ING );) 
r.lA)CH(~n~F)IEXP1: ):.ERR(;MISSING );)~OUT(:lO:OFOF) 
I.II)( INTV.lIUT( :58:QF:O:OF:OOO:El)!.TYPE( :F54!>: )FCN.ouT( :58; ... :O:R:030;»; 

M 1 E X P S = : J : I E X Pl. f R R ( : NO 1 Hn f: G E R [ X PRE S S HI N ; ) 
tMIEXrS),OUT(:1BO:OF:05EE ;-)/.EMPTY,OUT1:41E09F4E1Fll:R); 

SPR 1 D=R LV. (JUT ( : 18: +2: 0: OF: 000: E 1) , I GN (-) I. TYPL ( : F!)C 5: ) FeN, OJT ( : 78: +2; 0; fU 030: ) I 
I10KO; . 

ITO~D=(INTV.OUT{ :,SQo:or:ooo :[;1-'1 
• T Y r t e : F , I. ~ : ) ( FeN ) ~ U U T ( : 5 800 : Po : 030 : ) ) • [J U I ( : 4 5 E If I T J R : + 2 ) ; 

FCN=.SAV(~):(:PLIST:):.ERR(:MlSSING ):),OUT(:5~F iR).UUT(:O~Ef:t904),SAV(;1:) 
/ • f:: H P T Y , LEV L • t; I< k ( : EA. D F l)N C T I LIN C i\ L L ; ) , S A V ( I : D: ) ; 

P L I !> T :: • U U r ( : 5 U : + :·0 0 0 0 0: ) • S A V ( 0 r ) • U U T ( : 't 1 : + : 0 : F, : 0 3 (,; : ) 
( P A f~ " n 2 • S A V ( : 0 : ) $ ( : 1 : PAR /1.111 • E K R ( : r~ U 1 A P" F. A M E j E R : ) • S A V ( I : 4 : ) ( : , : PAR A HZ 

,ERR( :hnT A P~R/\HE1[:h:) .~AV( I :0: )/,EUPTY» ,OUT( :C)660:0~:OO:R)/ .. Et1PTY 
.Q0T(:~~lo:or:oou: ».lGN(-).IGN(-)j 

'" B S f- = : 1\ B S': ,u r I ( : F : ) : { : _: . . 
ELENF::( :SqHT: ~SI\V( :0(0: )/:SIN: .SAve :[40; )/:COS: ,SAve :ECO: )/( :LOG:/:ALOG: ),SI\V 

( : () 4 0: ) / : f. x p : ~ 51\ V ( : C C () : ) I : /\ T Ar~ :. S A V ( ; C 60: ) I : 1 AN~{ : • S h V e : F 40: ) ) • uP T (.: r : ) ; ( : ; 
X C [) N S T = : ( : D I': X F 1 : , : • :~ 0 P ( C ) D E X P 1 , r.: R K ( : NUT A N E X V) n. E: 5 !) I [) I'J : ) : ) ; • ERR ( : ~1I 5 SIN G ):); 
XCUN~.DNUM~OUI (:6B:+2.0GEN)/.C~UCUN.OUT(:6B:+2.CBGEN)/.BaCO~ST 
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.UU1( ~6u:+2.BaGEN)/; .PI: .OUT( :68:+2:09DFO:); 
PARAHl=.S~V(,:4:~)PAkAM; , 
PAR 1\f·12 = • S (" V ( :, ti : !) ) PAR A t·1 • u\rr< : '+ 1 ; 0 F ~ 0 : 0 f ; 008 : ); 
eEL EMF = ( :!) Q R T : • ':> A V ( : C 90 : ) I : SIN: • S A V ( : coo: ) I ; CDS: • ~ A V ( : C 0 8 , ) 1 ( : LOG I 1 : A LOG: ) 

• S A V ( : C B 0 : ) / ( : r;j A G : I : A B S : ) • S " V ( : C 14 : ) I : A R G ; • S A V ( : C 2 C : ) 1 - , 
: EX P : ~ S f~V ( : (; 6 (): ) I : A TAN: • S A V (: U 3 A: ) 1 : TAN H : • S A V ( : [) 0 2 : ) ) ; 0 P r ( ; F : ) : ( ;, ; 

IJ N 0 f F = aJN i 1 : n t- r : , D U ( : L A 8 J 4 ( 0 J 8 ) : ) ; . '. -' 
ceo:: ( : .. OUT ( : / : • 1 G N ( : • OUT ( : 92 F f 900 A : ) ) $ ceo 1 : ,) : , OUT C: 05 E 9 : ) 1 

;.LABE({:$~c01;):.UUT(:45E.lABE:)/:.DO(:$(.SR.UUT(*):::):):I:,OPT(;CCX1:):1 
: • S A V (: $ (,; C U 1. : ) : • 0 U T ( : 4 !j E • S A V ; ) / :, N Ll P ( : $ ceo 1 : ) :; 

ceo 1 = C C U S ~J B • 0 U T '( : it 5 E. : * ) 1 : C : • LJ U T ( : 920 15000 : ) / • S R , U U T ( : 05 E 4 : ) • 0 U T ( PI : # *: : : ) : : :; 
EFF OFF ' ,..... 

CCOSUB=:*l:/:R:/;I:/:+2:/:+:I:S:/:-.2:11-4:1:-:I:X:/:OF;1:0:1:*;/:#:/'; .. :,10; 
EfF ON ' 
C C X 3 = • 10. UU T ( : 41 E ~ : * ) • [) U T ( : 0503: ) / 4! SR. OUT ( : 45 E • T f. S T : > • flU T ( ; # : 1# * ; : : ) : c : 1 

, : ( : C C Xl: ) : / : • E r'l P T Y : • 0 U T ( : 0 '+ 20: ) / : $ : • LAB E L ( * 1 ) C C X 3 • 0 U T ( : !) 8 C. ; * l ) • U U T ( : 078 E : ) 
.DUT( ;0420: )/:.LATCH( :.lD.DUT( :41E. ;~c).OlJT(·:4!)O,LATC:): ):1 
:.TYP~(:.SR~OUT(:4~E.TYP:).UUT(*)::::):1 .. 
:.:.ID.OUr(~45E.:*);' , 

C C Xl:: C C X 2 ~ ( : / : • UU T ( : 58 E • : * 1 ) • our ( ; 078 t • ) CC X 2 ) t LAB E l, ( * 1 , ; 
FCNS1=:~UNCTIUN~.lD.ERR(:INVALIU NAME:)~OUT(:47F09038:E900)FC~SB(SUBZSr) 

.OUTt:45fO~~BE:.X2)J ' 
SUBV=.TYPl:( :l!>O!>: ).(JUT(:58:+: ;*» 
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INTRODUCTION 

On-line terminals, which we shall call "list selec
ti'On terminals," are being investigated here and 
elsewhere as input devices f'Or inf'Ormati'On sys
tems. These display lists 'Of alphanumeric entries 
fr'Om which a user may select entries by p'Ointing. 
Whereas users 'Of m'Ost terminals (including 'Ours) 
P'Oint with a light-pen, users 'Of the C'Ontr'OI Data 
Digiscribe select by t'Ouching electrically c'Onduc
tive regi'Ons 'On the faceplate with a finger, thus 
c'Ompleting a radi'O-frequency circuit. The lists 
are displayed 'On either a cath'Ode ray tube 'Or an 
'Optical rear-pr'Ojecti'On screen, and they may be 
changed rapidly under c'Omputer contr'Ol. The user 
c'Omposes input t'O the system by selecting w'Ords 
and phrases fr'Om the lists. As he pr'Oceeds, new 
lists are displayed as required. 

This appr'Oach t'O c'Omputer input takes ad
vantage 'Of the wide bandwidth 'Of this class 'Of 
displays, and 'Of the human eye, t'O rapidly c'Onvey 
informati'On t'O the user; he may then resP'Ond 
manually at a l'Ow rate. It is particularly useful 
f'Or users, such as physicians and managers, wh'O 
generally are not go'Od typists. Alth'Ough their 
entry selection rate with a light-pen is l'Ower than 

. their hunt-and-peck typing rate, the inf'Ormati'On
input rate when using selecti'Ons is generally high
er than with a keyb'Oard because entries each c'On
sist 'Of many characters. In one application, the 
input of medical laboratory test 'Orders, the entry 
rate was c'Omparable to handwriting. Alth'Ough 

dictati'On is a faster method 'Of inf'Ormati'On entry, 
it interposes a stenographer and results in delay 
between the user and the computer system. 

This approach has several features that impr'Ove 
user accuracy and system acceptability. This 
user, presented with a list of acceptable and mean
ingful resp'Onses t'O the system, is 'Only required 
to rec'Ognize an acceptable resp'Onse rather than 
to recall it from his mem'Ory. In this sense, the 
system is tut'Orial. The tut'Orial aspect can be fur
ther exploited by including explanat'Ory material 
on the displays themselves. Because an ent~y can 
be transmitted t'O the c'Omputer with a single se
lection, it is n'Ot necessary to substitute an abbre
viation 'Or a numeric c'Ode f'Or the entry in 'Order 
t'O sh'Orten the input transmissi'On time. Thus, the 
err'Ors inherent in manual enc'Oding are eliminated. 
Spelling err'Ors are eliminated, and thr'Ough the 
pr'Oper organization 'Of the displays, most syntac
tic err'Ors can be eliminated as well. 

F'Or many applications, the entries are arranged 
int'O a hierarchy c'Omparable t'O that used in in
f'Ormation st'Orage and retrieval systems such as 
AESOP.l This hierarchy is essential as an index 
t'O the many possible responses that the user may 
make in entering inf'Ormati'On. Through the entry 
process, he becomes familiar with the structure 
of the hierarchy, and thus, he is familiar with the 
organizati'On 'Of the c'Ontent within this system 
when he desires t'O retrieve. The entries, alth'Ough 
appearing in full f'Orm f'Or the user, may have in
visible coding associated with them f'Or use by the 
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computer system. Thus, there is an inherent 
translation from a man-understandable to a ma
chine-understandable form. The syntactic struc
ture of the user's responses also can be preserved 
for further processing by the system. Thus, the 
time-c'Onsuming scanning and analysis of char
acter strings that are normally done in informa
ti'On retrieval systems are not required. The syn
tax can be tightly c'Ontrolled when the computer 
must act on the input data and may be left un
controlled when only narrative input is required 
for the subsequent reading by users. 

In the remainder of this paper, we shall discuss 
the 'Organization 'Of informati'On hierarchies, 
search strategies, and the manual and automatic 
f'Ormatting 'Of displays. The examples will be taken 
from medical informati'On systems f'Or entering 
lab 'Oratory test 'Orders, 2 ~edical hist'Ories,3 and x
ray reports.4 

Hardware 

For our experiments we are using an experi
mental Lockheed Vide'O-Matrix Terminal2,5 shown 
in Figure 1. The word "matrix," which refers to 
a display page, was derived from the row-and
column arrangement of the entries. This terminal 
of the cathode ray tube has a 24 row-by-40 column 
display, 7 by 9 inches in size. Although the pres
ent display is adequate f'Or the routine entry of 
medical orders, we would prefer a larger display, 
f'Or example, 24 by 64 characters, for the entry of 
narrative data and especially for information re-

Figure I.-Display and use of light-pen, with experimental 
video matrix terminal. 

trieval. Selecti'Ons are made ,by use of the light
pen, and the output signal from the light-pen is fed 
back int'O the vi4eo signal S'O that the characters 
that are aimed at are brightened. Except for in
f'Ormation retrieval and automatic f'Ormatting ex
periments, this system has maximal response time 
of 0.5 second. Such fast reSP'Onse is essential to 
av'Oid interrupting the user's th'Ought pr'Ocess. 

Function codes 

The bott'Om two rows of the screen (Figure 1) 
c'Ontain light-pen selectable functi'On codes through 
which the user initiates system actions. In the 
n'Ormal Operational M'Ode, the c'Ode ERR enables 
the user to sequentially cancel the effects of as 
many as 16 previous light-pen selecti'Ons. The 
c'Ode BACK permits him t'O sequentially back up 
t'O 16 previ'Ous matrices. As the user makes light
pen selecti'Ons, New Text is accumulated, the last 
tW'O lines 'Of which appear at the top of the screen. 
The entire page 'Of New Text is aut'Omatically 
presented to him (New Text M'Ode) when a full 
page of message has been accumulated. The user 
also may enter the mode by selecting NEW TEXT. 
In either the Operational or New Text Modes, a 
typing cursor is displayed when a key is depressed. 
This cursor indicates where the keyed character 
is to appear and may be positi'Oned either with the 
light-pen 'Or with the carriage return, backspace, 
tab, and space keys. Characters may be keyed in 
'Or erased at the positi'On designated by the cursor. 
In the New Text M'Ode, the functi'On code ASBL 
(ASsemBLe) closes in any gaps left by erasure. 
The New Text may be entered permanently into 
this system with code ENTER or may be totally 
erased by CLR (CLeaR). The permanent patient 
record may be accessed by the functi'On code OLD 
TEXT. The user may page through this rec'Ord 
in the f'Orward direction either a full page 'Or a 
half page at a time by NEXT 'Or HALF or in a 
backward directi'On by BACK. The Operati'Onal 
Mode is entered by selecting RETURN. 

Matrices may be created and modified on-line 
in the Edit M'Ode, accessible to systems program
mers. Each light-pen selectable entry is termi
nated by the entry marker character (:1:), which 
is visible 'Only in the Edit Mode. By means of 
special functi'On c'Odes and the cursor-positioning 
features, entries may be moved vertically and 
horizontally. New entries also may be inserted. 
After an entry has been selected in the Edit Mode, 
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a function code enables the control data f'or that 
entry to be accessed. These c'Ontrol data define 
the f'Oll'Owing f'Or the Operati'Onal M'Ode: 

1. The character string t'O be added t'O the 
New Text. This may be fr'Om any matrix. 

2. The next matrix t'O be displayed. This is 
often the present matrix. 

3. Punctuati'On t'O precede the new character 
string bef'Ore it is added t'O the New Text. 

These c'Ontr'Ol data may be m'Odified in the Edit 
M'Ode. The ability t'O d'O 'On-line editing has enabled 
the rapid devel'Opment 'Of 'Our present set 'Of ab'Out 
2,000 matrices. 

A l'Ogging feature enables us t'O rec'Ord and 
subsequently rec'Onstruct the acti'Ons 'Of' a user at 
a terminal. All light-pen selecti'Ons and the time 
interval preceding- each may be printed 'Out. L'Ong 
intervals indicate areas 'Of user difficulty t'O the 
matrix designer. This feature is als'O a potential 
s'Ource 'Of success'Or pr'Obabilities f'Or use in the 'OP
timal design of hierarchies as described bel'Ow. 

l)ata hierarchies 

T'O facilitate their retrieval, selectable entries 
are arranged int'O a multilevel hierarchy. An ex
ample 'Of such an entry hierarchy is a set 'Of medi
cal 'Order matrices rep'Orted' by Siekert and ass'O
ciates2 fr'Om which physicians may 'Order any 
c'Ombinati'On 'Of ab'Out 500 lab'Orat'Ory tests (Figure 
2). Since these test names will n'Ot fit on a single 

matrix, it is necessary to organize them into a 
number 'Of matrices. It is further necessary t'O in
dex these matrices S'O that the user may find the 
matrix c'Ontaining the test that he wishes t'O 'Order. 
There are numer'Ous ways in which these test 
names may be classified. Let us examine several 
'Of them. M'Ost c'Omm'Only used and easily under
Ht'Ood is the' alphabetic arrangement 'Of entries. 
The t'Op level matrix can c'Ontain the letters A t'O 
Z. Selecti'On 'Of a letter such as "A" takes the user 
t'O the matrix c'Ontaining tests beginning with 
"A" (l'Ower left c'Orner 'Of Figure 2). In this in
stance, tW'O matrices are required t'O c'Ontain all 'Of 
the tests named. The entries 'On these matrices can 
be arranged in alphabetic 'Order, but if the user 
wishes an entry appearing near the end (f'Or ex
ample, Aut'Ohem'Olysis-RBC), he must page 
thr'Ough t'O the last matrix in 'Order t'O select it. 
If such an entry 'Occurs with great frequency, this 
is a nuisance. T'O reduce the number 'Of selecti'Ons 
required t'O reach a c'Omm'On item, a sec'Ond classi
ficati'On method may be used: that 'Of frequency 'Or 
pr'Obability. The c'Omm'On tests beginning with the 
letter "A" may be placed 'On the first matrix, the 
less c'Omm'On 'On succeeding matrices. Because a 
test name can be 'Overlooked, we have f'Ound it de
sirable t'O repeat the c'Ommon tests with the less 
c'Ommon t'O ensure that they can be f'Ound. 

Such alphabetic hierarchies w'Ork efficiently 
when 'Only a single test is t'O be 'Ordered. Often a 
gr'Oup 'Of perhaps 10 tests is required. T'O facili-

Figure 2.-Hierarchy of laboratory test ordering. 
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tate the selection of such ,groups of entries, several 
alternate classification methods have been de
veloped. The user· may use any or all. of them as 
he wishes. In particular, test names have been 
classified by the specimen on which they are per
formed (such as cerebrospinal fluid), the labora
tory in which they are performed (blood chemis
try), and the disease category (hypertension) 
with which they are most commonly associated. 
Tpe disease categories are most commonly used 
because the users are generally able to order a 
number of tests rather than just one from a given 
disease test matrix. 

In any classification system based on meaning, 
different people may place the same item in differ
ent categories. To ensure that a user will find 
an entry in the category to which he assigns it, en
tries are placed in all applicable categories. Users 
may use different names for a given test or differ
ent permutations of the words in the test name. 
All such synonyms are included. Thus, the test 
for serum alkaline phosphatase is listed both un
der "alkaline phosphatase-serum" and under 
"phosphatase, alkaline-serum." It should be noted 
that the probability of a given test being ordered· 
varies with different users or different classes of 
users. Furthermore, the probabilities vary with 
time, as various tests are introduced and in turn 
superseded by newer tests. If the number of se
lections required to select a test is to be mini
mized, then the system should have the capability. 
to modify the matrix content for each user and as 
the probabilities of ordering vary. The automatic
formatting procedures described in subsequent 
sections are a step toward this capability. 

Search strategy 

Let us organize the hierarchy so that the user 
can select the entries he wishes with a minimal 
number of selections. One selection is required 
either to go from one list to any other to which it 
is connected or to select an entry on a list. Initial
ly, let us consider the selection of a single leaf (an 
entry which does not link to another list) with the 
user starting at the top of the structure. We shall 
consider only the probability of an entry's being 
selected and shall in general follow the synthesis 
procedure developed by Huffman.6 If all of the 
items are equally probable, then an optimal hier
archy is one· in which the entries are on the lowest 
level, with the higher levels being indices to the 

lower level lists. If some items are much more 
probable than others, however, then these higher 
probability entries should occur higher in the 
hierarchy. The criterion for placement follows 
Huffman's synthesis of minimal length codes. As
sume that we have N items to be organized into 
a hierarchy of lists, each list having a capacity of 
B items. We rank the items by their probability 
and assign the B lowest probability items to a list. 
(In practice we may have to add dummy items to 
make all of the lists full during the synthesis; 
these are deleted when the synthesis is complete.) 
We replace the B items on the list thus formed by 
a new item that is assigned a name and has a 
probability equal to the sum of the probabilities 
of the items in the list. We have thus eliminated 
B-1 items from the. pool of those to be assigned. 
We re-rank the pool and repeat the assignment. 
Doing this until all items are continually assigned, 
we reach the point at which names (that is, lists) 
are being assigned, and the synthesis of the next
to-the-bottom level in the hierarchy has begun. 
With the creation of the top level list, the pool is 
exhausted. 

Although this procedure has produced an op
timal hierarchy, it has not satisfied the condition 
that the user must know which list a given item 
is on. The lists must contain meaningful combi
nations of items, and the list names must relate 
meaningfully to their contents. Fortunately, items 
may be reassigned to different lists at the same 
Ie"Vel so as to meet semantic criteria without affect
ing optimality. 

Thus far we have considered the selection of a 
single entry. If a sequence of entries is to be se
lected for which the probabilities are independent 
of previous selections, then we may still achieve 
optimality merely by automatically transferring 
the user to the top of the hierarchy after each se
lection of a leaf. In practice, successive entries are 
generally related so that a single hierarchy is not 
optimal. If the size of the structure were no limi
tation and we knew the conditional probabilities, 
given a choice of succeeding selections, then we 
could use these conditional probabilities in the 
Huffman synthesis to yield an optimal set of hier
archies. Weare deterred from this approach by 
the difficulty of storing or dynamically generating 
such a large set. Extensive training is required to 
bring the user's selection rate up .to a satisfactory 
lev:el for the large number of matrices which re
sult. In practice, we approximate the optimal set 
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by providing upward and lateral transfers to pre
viously selected lists and to related lists at the 
same level. 

Optimal list size 

If we assume all lists to be of equal length, then 
the number of leaves in the structure equals the 
list length raised to the number of levels. To mini
mize the number of selections required to reach 
a leaf, we minimize the number of levels by maxi
mizing the list size. The maximal list size is limit
ed by the number of entries that can be placed on 
a matrix, as will be discussed in the section on 
display formatting. Experienced users have mem
orized the position of entries on matrices and can 
find a given entry in an interval of time that is 
relatively independent of the number of entries 
on a matrix. With fewer lists, fewer list names 
need be assigned, and this simplifies the problem 
of list identification, as discussed by Fuller:; 

Tests of inexperienced users revealed an addi
tional psychologic constraint on list length. These 
users scanned lists entry by entry until they found 
the entry they desired. They did this even when 
lists were alphabetized and more efficient search 
strategies were possible. Assume a hierarchy 
with N leaves and B items per list, a selection time 

t and a scan time of ! per entry. Assume also 
r 

that, on the average, a user scans half of a list 
to find an entry which he then selects (although 
some will scan the entire list to ensure that they 
have not overlooked anything). The total time to 
select a leaf is given by the expression 

(U Bt + t) I N 
---- OgB • 

r 

Differentiating this expression with Nand t con
stant, we obtain a minimum 

r = UB (In B-1), 

which is graphed in Figure 3. Typically, the scan 
time is 0.5 second per entry, and the selection 
time is 2 seconds per entry, so that r equals 4. 
The corresponding value of B is 7.7, which is the 
minimal list length that is optimal under these 
conditions. Because experienced users know the 
positions of the entries they wish to select and 
also can scan the lists more . efficiently than with 
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Figure 3.-0ptimal relative scan time per entry versus list length. 

the method used in the above model, practical 
values of B range from 10 to 40. Because a matrix 
usually is "composed of several different lists, the 
optimal numbe.r of entries per matrix is greater 
than B. 

Display formatting 

The following is a summary of some empiric 
rules for display formatting. Lists in column fornl 
may be scanned more easily than those in row 
form; at least three columns of blank character 
should be left between lists. Matrices should be 
given meaningful titles, and lists themselves 
should be titled when more than one appears on a 
matrix, although this latter requirement can be 
ignored for certain classes of experienced users. 
To facilitate learning, each area within a class 6f 
matrices should have the same function. For ex
ample, transfers to other matrices are usually 
placed in the lower right-hand corner. Although 
it is possible to include explanatory material with
in the matrices, we have preferred the alternative 
of keeping the organization simple enough so that 
it can be used without explanations after a few 
hours of training. We have introduced several 
cueing symbols to guide the users. N onselectable· 
entries are either underlined or bracketed, and en
tries that cause transfers to other matrices are 
preceded by an arrow. Abbreviations, when used, 
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should be familiar to all users of a set of matrices. 
Full terms may be inserted into the message area 
for clarity, even though the entries are abbre
viated. Although users tend to concentrate on 
light-pen selection and to ignore the message, the 
use 'Of full terms does facilitate communication be
tween groups of users who are unfamiliar with 
each other's abbreviations. For example, VERT 
P is an abbreviation for VERTICAL PORTION 
OFT'HE ANTERIOR COMMUNICATING AR~ 
T'ERY (Figure 5). 

A utomatic display formatting 

In many of the classes of displays we have de
veloped, a small number of format types is suffi
cient. Examples include displays for drug order
ing, alphabetic lists of lab'Oratory tests, and de
scriptions of medical symptoms. In such cases it is 
feasible to separate the data and the format just 
as in FORTRAN programs. This makes it pos
sible to standardize the format for a class of dis
plays and to revise the f'Ormats of the entire class 
merely by revising one format definition. Sepa-

. rate procedures may be used for revising the con
tent, which now takes the form of a set of lists. 
In'developing displays for the input of medical 
histories, for example, the physician selects the 
descriptors relevant to a symptom from a master 
list of descriptors. Thus, a headache location, for 
example, may be BE HI N.D' EYE, FRONTAL, 
GENERALIZED, or MAXILLARY. A headache 
m~y be precipitated by ALCOHOL, BENDING, 
and so forth. This approach enables the user to 
develop display content directly in many cases 
without knowing either computer programming 
'Or display programming. Further, it greatly sim
plifies display updating and maintenance as, for 
example, when new drugs are made available for 
use. Although at present our formatting rules 
are incorporated within the formatting routines, 
we hope to develop programs in the near future 
that will accept external format definitions. A 
system could be designed to maintain statistics on 
the frequency 9f selection of each item (either for 
each user or for all users as a group) and to auto
matically revise the hierarchy based on these sta
tistics, thus making common items easier to se
lect. 

Sample matrices 

The following . examples indicate the range of 

Figure 4. -Acetylsalicylic acid matrix for drug ordering. 

applicability of the list selection approach. Figure 
4 is a matrix for ordering the drug acetylsalicylic 
acid. This matrix, one of 500 drug matrices is 
displayed whenever the physician selects either 
acetylsalicylic acid (generic name) or one of the 
two equivalent names, aspirin or ASA. This 
series is the first of olir automatically formatted 
matrices. The data specific to each drug are stored 
in compressed form and are expanded into the for
mat shown when the matrix is selected. It is an 
example of what we call the "Forcing Technique" 
in which the user cannot leave a matrix until he 
makes a selection from each of the columns. This 
technique ensures c'Ompleteness of the message by 
forcing the user to remain on the present drug 
matrix until all three selections are made, for ex
ample, "600 Mg-PO, Q4H, PRN PAIN" (600 
milligrams by mouth every 4 hours as indicated 
for pain). Although users can be trained to use 
this technique, any condition in which the system 
does not respond to the user leads to frustration 
and confusion. In this case, if the user attempts 
to leave this matrix without completing his order 
it is desirable to display a message informing hi~ 
of his omission. 

Narrative generation is exemplified by the Ar
teries matrix in Figure 5, yhich is part of the sys
tem developed by Uber and Baker for reporting 
roentgenographic findings of the blood vessels 
(angiograms) of the head. An experienced neuro
radiologist can use this matrix for generating 
such -statements as "LEFT DISPLACEMENT OF 
THE ANTERIOR CEREBRAL ART E R Y, 
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Figure 5.-Arteries matrix for neuroradiologic reporting. 

MARKED ELEVATION OF THE CALLOSO
MARGINAL ARTERY, AND DILATATION OF 
THE MIDD·LE MENINGEAL ARTERY. DE
PRESSION OF THE SYLVIAN TRIANGLE." 
The system is ab'Out half as fast as dictatiQn. 

A second example 'Of narrative generatiQn is 
frQm the ,medical histQry entry system repQrted 
by Kiely and assQciates.a The matrix (Figure 6) 
exemplifies the use 'Of the digital keyset. A typi
cal phrase relating tQ severity 'Of chest pain is 
"MILD AT ONSET, VARIABLE PAST 2 
MONTHS, and SEVERE AT PRESENT." 

In bQth 'Of these examples 'Of narrative genera
tiQn, the user is free tQ select the entries in any 

, sequence he desires .. He may, if he wishes, type 

Figure 6.-Severity matrix for medical history. 

in wQrds that are n'Ot present 'On the matrix fr'Om 
the consQle. If the applicatiQn requires it, it is 
PQssible tQ pr'Ohibit type-in entries and tQ restrict 
sequences 'Of entries tQ thQse that are syntactically 
CQrrect. This CQuid be dQne either by m'Odifica
tiQns 'Of the "FQrcing Technique" 'Or by displaying 
'Only thQse entries that are cQrrect. This apprQach 
has prQved useful fQr 'On-line prQgramming in 
systems such as, AESOP.1. In a prQgramming 
language such as COBOL, the key w'Ords such as 
BEGINNING-FILE-LABEL CQuid be single en
tries. N ames 'Of variables CQuid be typed in 'Once 
and subsequently selected frQm lists. 

DISCUSSION 

The art 'Of designing man-machine systems is still 
in its infancy. List selectiQn terminals, by placing 
the 'Output burden 'On the data system, are able to 
increase the input rate that an untrained uS,er 
can achieve. By SQ dQing, terminal 'Operati'On is 
made feasible fQr a much brQader class 'Of users. 
SQ far this apprQach has prQved useful in applica
ti'Ons in which the vQcabulary is limited tQ several 
hundred w'Ords. We are just beginning tQ devel'OP 
the aut'Omatic f'Ormatting prQcedures that will ex
pedite the design 'Of the next generatiQn 'Of ma
trices. The potentials 'Of inf'OrmatiQn systems that 
adapt tQ the user's reSPQnse patterns are yet t'O 
be realized. T'O the retriever, this appr'Oach 'Offers 
the ability tQ c'OntrQI the quality 'Of the data at the 
time that they are entered with'Out, we hQpe, plac
ing an undue burden 'On the enterers. (FQr 'Other 
experIments with 'On-line terminals see the paper 
by DQuglas C. Engelbart elsewhere in this Pro
ceedings.) AlthQugh we have been heartened by 
'Our limited successes in' facilitating man-machine 
cQmmunicatiQn, we have at the same time been 
humbled and challenged by 'Our ignQrance 'Of hQW 
a dialQgue shQuld be structured, hQW we shQuld 
m'Old the machine t'O fit the man. It is perhaps in 
this area that the next advances will be made. 
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Projections of lllultidimensional data for use in 
man-computer graphics 

by THOMAS W. CALVERT 

Carnegie-Mellon- University 
Pittsburgh, Pennsylvania 

INTRODUCTION 

The utility of man-computer graphics as an engineering 
design tool is now well recognized. 1 With the use of an 
interactive visual display it is possible for a designer to 
input information graphically or digitally, observe the 
results of his input and then modify his data to achieve 
a more satisfactory result. By using preprogrammed 
subroutines the designer can quickly perform quite com
plex manipulations on data and observe the result. 

Unfortunately, this very powerful design tool, which 
allows a designer to use both sophisticated mathemati
cal techniques and his own intuition has found little ap
plication to a class of problems where the data are essen
tially multidimensional. Typical problems of this class 
jnclude: 

a) signal design where a signal js represented as a 
point in a multidimensional space of time or fre
quency samples, 

b) controls ystem design where systems are de
scribed by multidimensional state vectors, and 

c) pattern recognition where pattern feature vec
tors are multidimensional. 

Although in a few cases, it may be possible to obtain 
a useful graphical representation of multidimensional 
data with an orthogonal projection onto two dimensions, 
in general this is not feasible. This paper presents a 
method of obtaining a meaningful two dimensional rep
resentation which can be applied to a wide class of prob
lems. 

Projections of multidimensional data 

Multidimensional data can be represented as a col
lection of vectors. Consider m vectors each with n di
mensions say XI, X2, ••• , xm • These might represent points 
on a hyperobject (e.g., vertices of a hypercube), feature 

vectors describing patterns or state vectors of control 
systems. The n-dimensional vectors can be projected 
into a two-dimensional space by a linear transformation 
e.g. y = T'x (prime denotes transpose) where y is a two
dimensional vector, and T is a matrix with n,rows and 2 
columns 

then Yl = x . tl 

Thus tl and t2 are two basis vectors for the two-dimen
sional subspace. It will be seen that there are an infinite 
set of choices for T, some of which may give a useful 
representation of the data and most of which will not. 
Perhaps an obvious transformation to try is that where 
tl and t2 are chosen to be orthogonal and to represent the 
data with minimum mean square error. These can be 
calculated by finding the eigenvectors of a grammian 
matrix.2 Define a mean vector 

1 m 

p, = - LXi 
m i=l 

and matrix X (nxm) = [(Xl - p,), (X2 - p,), ... , (Xm - p,)]. 

Then the grammian matrix G for the data is 

G (nxn) = XX'. 

The eigenvalues Xj and eigenvectors Uj for j = 1, ... , n 
are found by solving GUj = XjUj. The basis vectors U 1 

and U2 corresponding to the two largest eigenvalues X J 

and X2 give the transformation which projects to a plane 
with minimum mean-square error. An example of this 
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projection is shown in Figure 1 where a four-dimen
sional hypercube is projected to two-dimensions. Most 
observers find this projection of a simple hyperobject 
through a modest decrease in dimensionality too diffi-
cult to interpret. . 

This problem has been studied by N 0113 who used per
spective projections to produce two slightly different 
displays side by side. When these displays were viewed 
appropriately a stereoscopic effect was obtained, so that 
the observer could obtain a three dimensional impres
sion of the four-dimensional hypercube. Noll's interest
ing results included the effects of rotating the hyper
cube. They showed that it was possible to obtain some 
intuition about a hyperobject from perspective projec
tions if the original dimensionality was four, but that 
for hyperobjects of five or more dimensions the displays 
became confusing. 

"Pseudo" projections 

From the above discussion it seems clear that it would 
be desirable to have some "pseudo" projection from 
multidimensional space to two dimensions where the 
only requirement is that result be meaningful and easy 
to interpret. No such technique can possibly give a com
plete representation of n-dimensional data in two di
mensions. However; in another context, Shepard and 
Carro1l4 have developed an approach which gives poten-
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FIGURE l-Orthogonal projection of a 4-dimensional hypercube. 
(Vertices are indicated by an "x" and cube edges are shown). 
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FIGURE 2-Pseudo projection of a 4-dimensional hypercube. 
(Vertices indicated by an "x" are slightly displaced so that cube 

edges can be added). 

tially useful results. Their method consists of "unfold
ing" hyperobjects into two-dimensions by maintaining 
the interrelationships between points which were origi
nally close together. The application of this technique to 
a four-dimensional hypercube is illustrated in Figure 2. 
Another example, which has been taken from Shepard 
and Carroll is shown in Figure 3 where points originally 
on a three-dimensional torus embedded in four dimen
sions are shown unfolded into· two dimensions. It is 
claimed that this method is useful since a point in the 
new two-dimensional space bears approximately the 
same relationship to its neighbors as it did in the origi
nal space. Thus local interrelationships between points 
can be studied, conveniently. Since unfolding a hyper
object involves "cutting" it open, points on the edge of 
the two-dimensional representation may originally have 
been neighbors to points on the opposite edge of the dis
play (c.f. two-dimensional projections of the world). 

Shepard and Carroll's method, which was developed 
to study psychological data, depends on maintaining 
"continuity" between the original and the new space. 
This is done by minimizing a criterion function K which 
is defined as 

K= 



FIGURE 3(a)-An example from Shepard and Carroll.' A three
dimensional torus embedded in four dimensions. 

FIGURE 3 (b)-Two dimensions. 
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where i,j = 1,2, ... ,m are the points defining hyper
object, 

dij = distance from point i to point j in origi
nal n-dimensional space, 

D ij = distance from point i to point j'in new 
two-dimensional space, 

S = normalizing function to ensure K does not 
depend on scale of D ij, 

W ij = weighting function to ensure neighbor
ingpoints (i.e., shortest distances) have 
most effect on K. 

I t will be seen that K has an absolute minimum when 

Ddi~, is constant for each pair of points. In general this 
~) 

will not be possible if the dimensionality of the new 
space is less that that of the original, and a constrained 
minimum will result. The procedure starts with an ar
bitrary set of m points in two-dimensions and uses gra
dient methods to iteratively move each point to mini
mize K. The weighting function W i~ is chosen to de
crease with interpoint distance so that neighboring 
points tend to maintain their interrelationships in the 
new two-dimensional space. Satisfactory results have 
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been obtained with W ij = D

i
), , D2 ,.' and :oa " 
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With W ij = Dl .. 2 the expression for K becomes 
1) 

L dir 

ij Dij2 

K~[ 
L 1 ]' 
ii Dil 

The algorithm to minimize this function can be effi
ciently implemented, and has been ~sed as a subroutine 
with an interactive graphic display system. The dimen
sionality of the original space has little effect on the 
computation since the di/s are only calculated once. 
The efficiency is mainly determined by the number of 
points m since there are m (m-l)/2 interpoint distances. 

A n application to pattern recognition 

Patterns are generally described by n-dimensional 
feature vectors.2 It is a serious problem to choose a good 
measurement system and to extract from the measure
ments an efficient set of features so that patterns be
longing to different categories are easily classified. Al
though mathematical techniques are available to test 
whether classes of patterns are separable on a given set 
of features, the techniques give little intuition as to 
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which features should be changed if categories cannot be 
separated. Thus any graphical display system which 
gives some indication of interrelationships between pat
tern classes can be useful in designing feature extraction 
systems. 

In principle the approach described above could be 
applied directly. Suppose there are PI examples of class 
1, P2 of class 2, and so on up to Pr of class r, then the 

r 

total number of feature vectors is m = L: Pi. Un-
i=l 

fortunately this is typically quite large (80 in an ex-
ample below), and the procedure becomes very in
efficient. A more efficient approach is to represent each 
of the r pattern classes by one or more representative 
feature vectors. This can simply be the mean feature 

pi 

vector for each class, Zi = L' Xij where Xij is the jth 
j=l 

example feature vector of class i. If the classes are 
multimodal, this can be detected and each mode 
represented by its mean. Then the class representatives 
Zi, i = 1, 2, ... , r are projected into two dimensions as 
described above. 

A two-dimensional display of class means is interest
ing in itself, but it is also useful to display all examples 
of each class. A transformation from the original n-di
mensional space to two dimensions can be obtained by 
applying linear regression to the class means. Let. 

Z (n%r) = [ZI, Z2, ••• ,Zr] represent the original class 
means and let Y(2%r) = [Yl, Y2, ... , Yr] represent the new 
class means in two-dimensional space. Then the well
known linear regression approach gives Y = T Z where 
T = Y (ZZ') -1 Z' if ZZ' is nonsingular or more generally 
T = Y Z+ if Z+ is the generalized inverse of z.e 

This approach is a compromise between the "psuedo" 
transformation which "unfolds" the hyperobject de
scribed by class means and a linear transformation 
which linearly projects members of each class about 
their means. That satisfactory results can be obtained 
is shown by the examples below. 

This technique was applied to data obtained from 
hand drawn characters. There were 8 examples of each 
of the 10 digits from 0-9. These were drawn on a 4 X 5 
grid and 20-dimensional data resulted. Thus r = 10, 
n = 20, PI = P2 = ... = PI0 = 8 and m = 80. There
suIts of the pseudo projection are illustrated in Figure 4. 
If this diagram is studied it will be seen that some 
classes were linearly separable and all others could be 
linearly separated with only one error each. Thus the 
original features were quite useful, but could be refined 
by changing the measurement. scheme and observing 
the new display to see if the classes were more separable. 
An orthogonal projection to minimize the mean square 
error (as described above) resulted in a display with 
several classes completely overlapping each other. 

FIGURE 4-Pseudo projection of hand-drawn character data. 
There are ten categories (digits 0, 1, ... ,9) and eight examples of 
each. The original data were 20 dimensional. Class boundaries are 
added for clarity and points falling outside the boundaries are 

surrounded by a square. 

Another example involves data from what might be 
described as a speaker recognition experiment. (In fact, 
this was not the motivation, and the data resulted from 
research into synthetic spelled speech used in a reading 
aid for the blind.) The data consisted of 4 examples of 
each of the 5 subjects making the same sound at the 
same pitch. The features describing each speaker were 
the amplitudes of the first 24 harmonics of the funda
mental frequency. Thus r = 5, n = 24, Pl = P2, = ... 
= P6 = 4 and m =. 20. The results are illustrated in 
Figure 5. It can be seen that the speakers are linearly 
separable on these features and in addition some judg
ment can be made as to the differences and similarities 
between the speaker's voices. 

DISCUSSION 

The examples described here show that it is often pos
sible to obtain useful two-dimensional representations 
of multidimensional data. For research on pattern re
cognition the procedure described has been imple
mented as a subroutine in ALGOL-20. It is used in con
nection with the Philco graphic display "SCOPES" con
nected on a time-shared basis to Carnegie-Mellon 
University's CDC G-21 digital computer. It has al
ready been found that with this "pseudo" projection 
technique it is possible by a man-machine interaction to 



S2 

FIGURE 5-Pseudo projection of speaker recongition data. 
There are five subjects (S1, ... , S5) and four examples of each. 
The original data were 24 dimensional. Class boundaries are add-

ed for clarity. 

efficiently investigate a wide set of features for a num
ber of pattern recognitjon problems. It appears that the 
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approach should enable a number of other problems in
volving multidimensional data to be solved more sim
ply by use of a computer and an interactive visual dis
play. 
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The on-line firing squad simulator* 

by R. M. BALZER and R. W. SHIREY 

The RAND Corporation 
Santa Monica, California 

INTRODUCTION 

The purpose of this study is to investigate man/ma
chine interaction in the context of solving a concep
tually difficult, formal problem. We want a problem 
that requires no specialized knowledge, so that a fair 
comparison can be made between computer-aided and 
unaided attempts at solution. We also want a problem 
that is graphic. The firing squad synchronization prob
lem satisfies these criteria extremely well. It has the 
added advantage that no optimal solution has yet been 
produced. 

The system designed for these purposes is essentially 
a collection of problem-solving aids that can be divided 
in~o three main groups: the first includes bookkeeping 
aids, useful displays of information, ability to get hard 
copy, and other basic services; the second, means for 
testing and simulating solutions; the third, specialized, 
high level heuristic aids for creating solutions. All three 
groups attempt to extend the user's power in exploring 
the universe of the problem, enabling and encouraging 
him to approach the problem in ways that might other
wise be prohibited by immense amounts of necessary 
hand calculations or the human tendency toward error. 

We hope that this system will result in interesting 
new solutions to the firing squad problem, and will pro
vide new information on the reactions of humans in such 
man/machine interactive environments. 

We begin by stating the problem and noting some 
of its inherent difficulties. Next, we discuss the neces
sary tasks for solving the problem, and then go on to 
show how and why some of these tasks should be auto
mated. Tlien, finally, we make general recommenda
tions concerning the design of similar computer systems, 
based on the experience gained while constructing this 
one. 

*This research is supported by the Advanced Research Pro
jects Agency under Contract No. DAHC15 67 C 0142. Any views 
or conclusions contained in this Memorandum should not be 
interpreted as representing the official opinionor policy of ARPA. 

Problem statement 

This Memorandum concerns a problem publicly 
first presented in 1964 by E. F. Moorel : 
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The problem known as the firing squad synchroni
zation problem was devised about the year 1957 by 
John Myhill, but so far as I know the statement of 
the problem has not yet appeared in print. It has 
been widely circulated by word of mouth, and has 
attracted sufficient interest that it ought to be 
available in print. The problem first arose in con
nection with causing all parts of a self-reproducing 
machine to be turned on simultaneously. The.prob
lem was first solved by John McCarthy and 
Marvin Minsky, and now that it is known to have a 
solution, even persons with no background in logi
cal design or computer programming can usually 
find. a solution in a time of two to four hours. The 
problem has an unusual elegance in that it is di
rectly analogous to problems of logical design, sys
tems design, or programming, but it does not 
depend on the properties of any particular set of 
logical elements or the instructions of any particu
lar computer. I would urge those who know a solu
tion to this problem to avoid divulging it to those 
who are figuring it out for themselves, since this 
will spoil the fun of this intriguing problem. 

Consider a finite (but arbitrarily long) one dimen
sional array of finite-state machines, all of which are 
alike except the ones at each end. The machines 
are called soldiers, and one of the end machines is 
called a generaL The machines are synchronous, 
and the state of each machine at time t + 1 de
pends on the states of itself and of its two neighbors 
at time t. The problem is to specify the states and 
transitions of the soldiers in such a way that the 
general can cause them to go into one particular 
terminal state (i.e., they fire their guns) all at 
exactly the same time. At the beginning (i.e,. 
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t = 0) all the soldiers are assumed to be in a single 
state, the quiescent state. When the general under
goes the transition into the state labeled "fire 
when ready," he does not take any initiative after
wards, and the rest is up to the soldiers. The signal 
can propagate down the line no faster than one sol
dier per unit of time, and their problem is how to 
get all coordinated and in rhythm. The tricky part 
of the problem is that the same kind of soldier with 
a fixed number K of states is required to be able to 
do this, regardless of the length n of the firing 
squad. In particular, the soldier with Kstates 
should work correctly, even when n is much larger 
than K. Roughly speaking, none of the soldiers is 
permited to count as high as n. 

Two of the soldiers, the General and the soldier 
farthest from the General, are allowed to be slightly 
different from the other soldiers in being able to act 
without having soldiers on both sides of them, but 
their structure must also be independent of n. 

A convenient way of indicating a solution of this 
problem is to use a piece of graph paper, with the 
horizontal coordinate representing the spatial posi
tion and the vertical coordinate representing time. 
Within the (i, j) square of the graph paper a symbol 
may be written, indicatiug the state of the ith sol
dier at time j. Visual examination of the pattern of 
propagation of these symbols can indicate what 
kinds of signaling must take place between the sol
diers. 

Any solution to the firing squad synchronization 
problem can easily be shown to require that the 
time from the General's order until the guns go off 
must be at least 2n-2, where n is the number of 
soldiers. Most persons solve this problem in a way 
which requires between 3n and 8n units of time, 
although occasionally other solutions are found. 
Some such other solutions require 5/2n and of the 
order of n-squared units of time, for instance. U ntH 
recently, it was not known what the smallest pos
sible time for a solution was. However, this was 
solved at M.I.T. by Professor E. Goto of the Uni
versity of Tokyo. The solution obtained by Goto 
used a very ingenious construction, with each sol
dier having many thousands of states, and the solu
tion required exactly 2n-2 units of time. In view of 
the difficulty of obtaining this solution, a much 
more interesting problem for beginners is to try to 
obtain some solution between 3n and 8n units of 
time, which as remarked above, is relatively easy 
todo.* 

*Ref. 1, pp. 213-214. 

Goto's solution 2 apparently has not been published. 
However, Abraham Waksman 3 has found a 16-state 
minimal-time solution using essentially the same ideas 
presented in the next section. P. C. Fischer 4 has also 
used these ideas in discussing other properties of one
dimensional iterative arrays of finite-statemachines. The 
best solution to date is R. M. Balzer's Ii 8-state mini
mal-time solution. 

Common approaches and basic considerations 

The firing squad synchlonization problem can be 
solved by successively subdividing the. line into any 
number of equal parts, then subdividing each of these 
parts similarly, and so on, until all the members of the 
line become division points, at which time they all fire. 
Most existing solutions use this technique, and it can 
provide solutions of minimal time, 2n-2. Balzer's solu
tion Ii divides the line into halves, quarters, eighths, etc. 

Finding a solution entails construction of a finite
state machine by defining for the machine a transition 
function that yields appropriate behavior when placed 
in the iterative array. Although automata are usually 
defined by state tables, here it is easier to interpret a 
function as a set of rules called productions. These rules 
take ihe fotm 
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This rule states that if, at time t, a machine is in state 
M, and the machine on its left is in state L, and the ma
chine on its right is in state R, then the machine's state 
at time t + 1 is S. We call S the "resultant" of the prow 
duction. 

In particular, we are concerned only with minima]~ 
time solutions. To treat the problem resulting from the 
soldiers at each end of the line, we use an additional 
state as an end marker, and, at each end of the line, a 
virtual additional machine which forever remains in the 
marker state. Since no other machine is ever in them ark
er state, a single set of productions can be defined fOJ all 
machines in the array. 

Exhaustive search for the function is out of the ques
tion, even with the help of a computer, because the 
number of possible state tables is far too large. For ex
ample, if we seek a solution with ten states (plus the end 
marker), there will be 93 + 2.92 - 2 = 889 productions. 
(The problem statement excludes certain productions 
and fixes the resultant of two others.) Each of the 889 
productions can assume ten values, for a total of 10889 

functions. 

Solution by hand 

While building a function, say with ten states, the 



experimenter faces a number of separ~te tasks-some 
routine, some challenging, many time-consuming and 
tedious. He obviously must maintain a large production 
table. Given some table, perhaps only partially com
pleted, he will need to test it on firing squads of different 
lengths. This simply involves retrieving values from. the 
table and copying them onto graph paper. Both tasks 
are routine; nevertheless, performing them will con
sume much of the experimenter's time. 

After several attempts, he may discover that somepro
ductions are more important than others, that they are 
keys to the solution, and he might wish to mark these in 
order to remind himself that their values should not be 
altered without special consideration. 

The challenging tasks are the creative ones, and the 
foremost of these is the creation of ingenious approaches 
to the problem. These schemes usually appear as a two
dimensional plan for propagation of signals along the 
squad through time. One method for simultaneously 
implementing and testing an approach is to draw on the 
graph paper a skeleton diagram of the intended func
tion behavior, and then force the productions to con
form to this plan. This method of defining productions 
eliminates many false steps. 

Special cases arise when the squad is quite short, say 
less than fifteen men. After a large portion of the pro
duction set is defined, especially key productions, and 
the function has been tested on longer squads, exhaus
tive search may become feasible for filling in the special 
productions required for these cases. 

If an error occurs in a simulation, such as a soldier 
firing too early or too late, or if contradictions arise 
while attempting to fit productions to a behavior skele
ton, some production must be changed. The experiment
er then becomes interested in why be originally made 
this definition. Therefore he finds it useful to keep a his
tory of production usage, particularly a table of first 
usages in the simulation he is currently considering. 

In all these tasks there is a high probability of human 
error due to the large size of the tables, the large num
ber of separate acts to be performed, and, of course, the 
repetitious nature of most of the work. 

Solving with computer aids 

The mechanically repetitious nature of some tasks 
naturally leads to thoughts of automating them-pro
viding computer aids for the experimenter. The obvious 
candidates for automation are those tasks which pri
marily consist of information storage and retrieval, su~h 
as table maintenance and simulation. Exhaustive 
search, where feasible, is handled best by a computer. 
Having provided these basic services, other more 
sophisticated tools become possible as well. Finally, the 
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graphic nature of both the problem and the methods 
previously described influences the choice of computing 
hardware; graphic input and output quickly come to 
mind. 

The use of interactive graphic equipment is implied 
because the reactions of humans to a computing system 
are highly important. A rapid interaction between man 
and machine tends to stimulate the intuition and per
ceptivity of the experimenter; immediate response from 
the machine maintains a high level of human cerebral 
activity. Just as not having cOIIlPuter aids at all, using 
them off-line would slow the response from a second or 
less to hours. Progress might become so slow that the user 
would lose interest in the problem. 

Summary remarks on the problem 

Let us summarize the above discussion-of the prob
lem and the comparison between attempts at solution 
with and without computer aids-in order to draw some 
conclusions about the value of this study. 

The problem is interesting enough to have attracted 
wide attention, but difficult enough that no optimal so
lution has been demonstrated. It requires no special 
background, and is simple enough that at least an in
efficient solution can be found by hand in a few hours. 
Conversely, it is rich enough to suggest a computer im
plementation of a number of tools and techniques to aid 
the investigator. Also, it is naturally oriented toward 
the use of interactive graphic hardware. 

Furthermore, since exhaustive search for a solution 
is not practical, the computer aids are only tools, and 
the user still must provide the creative insights and 
approaches necessary to finding a solution. Thus, the 
firing squad synchronization problem is a particularly 
suitable vehicle for evaluating the effectiveness of 
interactive, graphical problem-solving aids by compar
ing their effects with the results of unaided efforts. 

The system in general 

The Firing Squad Synchronization, Simulation and 
Solution System (FS5) is a highly interactive, graphical 
computer system. It furnishes three basic groups of 
tools: the first includes bookkeeping for tables; the 
second deals with simulation and testing; a third con
tains the more sophisticated tools, including the ability 
to draw and implement a skeleton plan, request exhaus
tive searches, and other functions not obviously needed, 
but included on the basis of experience with the problem. 
Associated with these three main categories is a corona 
of minor devices (e.g., for obtaining hard copy of dis
plays). 
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Hardware, software and interaction 

The FS5 program is written in IBM system/360 
PL/I language and runs on an IBM System/360Model 
40. A user communicates with the computer via a 
RAND TabletS in conjunction with an IBM 2250 
cathode ray tube (CRT) display. The tablet hardware 
consists of a horizontal 10.24-inch-square writing sur
face and a pen-like writing instrument, together having 
a resolution of 100 lines per inch along both Cartesian 
coordinates. 

As the user moves the stylus near the tablet surface, 
a (hardware generated) dot on the CRT follows the 
stylus motion; this direct feedback helps the user to 
position the stylus for pointing or drawing. When he 
presses the stylu5 against the tablet writing surface, a 
switch in the stylus closes, notifying the computer that 
the user is beginning a stroke. As he moves the stylus 
across the tablet, the stylus track is displayed (via 
software) on the CRT; the stylus thus seems to have 
"ink." When the stylus is lifted, its switch is opened 
notifying the computer of a stroke oompletion, and 
"inking" ceases. A user may "point" at an area on the 
CRT by closing and opening the stylus switch on the 
corresponding area of the tablet surface. 

The FS5 program uses a set of graphics subroutines 
written at RAND and called the Integrated Graphics 
System (IGS). Both character and geometric pattern 
recognition are included in IGS 7. A character written 
by the user is replaced on the display by the corre
sponding machine-generated character. 

The FS5 system presents the Usel with a picture of a 
contlol panel (Figure 1). The controls are used as if they 
were physical buttons; they are "pushed" by .touching 
them with the stylus. Problem information is displayed 
in three main areas. On the left, FS5 shows the simu
lations of firing squads from length one to length 25. 
On the right, there is a scroll display of production
usage history. At the top center, FS5 offers a variety of 
messages concerning its own use and status. The use and 
function of the controls are described in the following 
sections. 

Number of states and external state names 

Suppose an experimentel wishes to search for a 10-
state solution. He begins by writing "10" in the space 
provided: 

# OF STATES /10 

For mnemonic purposes, he well find it convenient to 
have the states represented by alphabetic characters or 
other symbols. For example, he might use acronyms: 
"Q" for the quiescent state; "G" for the general; "F" 

for the firing state. Thus, after the number of states is 
selected, FS5 displays an initial alphabetic choice for 
the state names: 

STATES ABCDEFGHIJ 

At any time, the experimenter may write over this dis
play to replace these choices by his own. 

The message center 

If we remove the burden of tedious work only to re
place it with a large set of system rules and procedures 
to be learned, the experimenter has gained very little. 
To avoid this pitfall, FS5 has a MESSAGE CENTER . 
which plompts the user on system usage, informs him 
of conditions, and suggests actions to take when errors 
occur. In other words, FS5 supplies copious run-time 
diagnostics. 

For example, when the experimenter begins to write 
in a value for the number of states, FS5 prompts him 
with 

ENTER NUMBER OF STATES 
SWEEP TO EXIT. 

If he begins to reWlite the external state names, he sees 

ENTER NAMES OF STATES 
1 = QUIESCENT 2 = GENERAL 
LAST = FIRING 
SWEEP PEN TO EXIT 

Furthermore, FS5 guards against such illegalproce
dures as trying to enter one of the three reserve state 
narnes--"#", ".", "?"- in this case by refusing to ac
ceptthem. 

The policy on a user error is to announce it, correct 
it and leave the system in a usable condition whenever 
possible, or else inhibit further action until the user 
makes a correction, and advise him how to do so. 

Entry, storage and retrieval of function values 

For a 10-state solution, as many as 891 function 
values might be needed. As a complication, a large num
ber of productions might be undefined at any given 
time. FS5 provides several ways to entel, retrieve and 
alteI productions, and takes appropriate aotion when an 
undefined production is referenced. 

To illustrate, the experimenter may enter a produc
tion by writing 

DEFINE FROZEN QQG~G 



If he later wishes to reo all this value, he writes 

DEFINE FROZEN QQG~? 

and FS5 replaces the "?" by the value; here "G", or by 
"." if the produotion is undefined. 

Alternatively, the system might have been designed 
to display the entire state table upon request. However, 
at anyone moment the expelimenter is usually in
terested in only one produotion. Moreover, many table 
entries might never be of interesi, beoause no simulation 
needs them. 

Simple simulation of a firing squad 

After defining several produc,tions, the experimenter 
will want to test the function on firing squads of various 
lengths; FS50fIers several modes of simulation and test
ing. For a simpie case, suppose that a simulation is de
sired for length 4. The user enters the "4" with the 
stylus: 

LENGTH 4 

FS5 responds by initializing the firing squad: 

o Q Q Q G 
1 
2 
3 
4 
5 
6 F F F F 

In addition, the system always provides two produc
tions: 

where" #" represents the end-marker state. These are 
the two productions required by the problem statement. 

Let us further suppose that the user has entered 

QG# ~ G, QQG;~ G, QGQ ~ Q, and #GQ ~ G. 

He starts the simulation by touching 

START SQUAD 

Then the message center will display 

FIRING IN PROGRESS. 

Simulation proceeds from time 1 down, left to right on 
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successive rows. Because the QGG production is 
undefined, simulation will cease at time 2. 

o Q Q Q G Undefined. 
1 Q Q G G 
2 Q G 
3 
4 
5 
6 F F F F 

The message center will contain 

ERROR: FUNGNULL & SQAD FREE, 

and the undefined production will be displayed, 

DEFIN'E FROZEN QGG~ 

ready for the experimenter to enter a value. 
A simulation may be temporarily halted at any time 

to check its progress. During these manual stops, FS5 
continues to advise on system status; and messages are 
also provided for automatic stops. 

Entering constraints 

With these simple services at his disposal, the ex
perimenter can turn his attention to finding good solu
tion approaohes. FS5 enables him to enter two-dimen
sional skeleton plans which really are a set of con
straints on the function behavior. 

The state at time zero and the constraints at the firing 
time are fixed by the problem statement and provided 
by the system. To enter other constraints, first the user 
touches 

DEFINE CONSTRAINT 

after which FS5 replies with instructions. N ext, the 
user touches two points to define a line segment on the 
simulation display, and then a name in the STATE dis
play. 

0 Q Q Q G 
1 G Constraint to be entered. 
2 G 
3 G 
4 
5 
6 F F F F 

In other words, a constraint is a line segment of states 
which is "drawn" on the display. 



238 Fall Joint Computer Conference, 1968 

Any number of constraints may be entered, and one 
may be drawn over another. The "." 's in the display are 
intended as guides in determining straight lines, and FS5 
automatically provides other temporary guides and 
markers. If an error is made or a change de"sired, the 
last constraint entered may be erased: 

REMOVE LAST 

The ability to enter constraints becomes a powerful 
tool when used in conjunction with the simulation 
modes described in the following two sections. 

Simulation withconstralnts 

If the experimenter starts a simulation for length 4 
with all productions undefined except for # QQ ~ Q 
and QQQ ~ Q, and with the three-position constraint 
of the previous example, then FS5 will define the pro
duction QQG ~ G from the constraint. However, the 
simulation will terminate as shown below because 
neither is QG # defined nor is the simulation con
strained at the position where QG # is first required. 

0 Q Q Q G Defined by constraint 
1 Q Q G Undefined 
2 G 
3 G 
4 
5 
6 F F F F 

The ability to draw large numbers of complicated con
straints thus relieves the experimenter of the task of 
tailoring many individual productions to produce the 
same behavior; all the necessary definitions are made by 
the system. 

The system also detects contradictions between con
straints and previously defined functions. Such an error 
would have occurred had the resultant of QQG been set 
to Q. These contradictions often escape notice when 
simulations are performed by hand. 

As an alternative to drawing constraints, a language 
to describe them might be devised. However, it is hard 
to imagine a language as easy or as natural to use as the 
FS.5 method. 

Simulation with backtracking 

As mentioned above, exhaustive search for a function 
might become feasible when relatively few productions 
remain undefined. The use of constraints also can make 
exhaustive search feasible, because these constraints act 
as implicit definitions. To take advantage of constraints 
FS5 was equipped with a widely used method of effi-

cient search called the "backtrack" technique. &-10 

For readers not familiar with backtracking, or who may 
know it by another name, a brief review is in order. 

Many combinatorial problems can be stated in the 
form, "Find a vector (SI, S2, ... , sm) which satisfies Pm," 
where SI, S2 ... , Sm are to be chosen from a finite set of N 
distinct objects, and pm is some property. The "brute 
force" approach is to form in turn each of the Nm pos
sible vectors, testing whether or not it satisfies Pm. A 
backtrack algorithm is designed to yield the same re
sult with far fewer trails. 

The backtrack method consists of defining properties 
Pk for 1 ~ k ~ m in such a way that whenever (SI, B2, 
... , Sm) satisfies Pm, then (SI, ... , Sk) necessarily satis
fies Pk. The computer is programmed to consider only 
those partial solutions (SI, ... , Sk) which satisfy Pk; if Pi: 
is not satisfied, then the Nm-k vectors (SI, ... , Sk, Sk + 1, 
... , Sm) are not examined by the program. When all 
choices for Sk are exhausted, the program backtracks to 
make a new choice for Sk-l. If the properties Pk can be 
chosen in an efficient way, comparatively few cases are 
considered. 

In the firing squad problem, the vector (SI, S2, ... , Sm) 
consists of production definitions. The backtrack 
method applied in FS5 serially defines the productions 
as they are needed in the simulation of a firing squad 
of fixed length n. 

The method begins with all productions undefined 
except the two required by the problem statement. 
After initializing the firing squad for length n, the 
program begins to find the new state of each posi
tion in the simulation according to the productions 
which are already defined. If a production is encoun
tered which is not already defined, and this occurs at an 
unconstrained position, then the resultant is set·· to 
either the firing state ·or another state, depending on 
whether or not this occurs at firing time. If the positiDn 
is constrained, the resultant is set to the constraint 
value. 

The process of serial definition continues until an 
error occurs. An error is defined to be either a soldier 
going into the firing state before firing time, a soldier 
not firing at firing time, of a conflict between a con
straint and a production already defined. When an error 
occurs, FS5 backtracks to find the most recently defined 
production whose resultant is not the firing state, which 
is first used where there is no constraint, and for which 
all the choices of a resultant have not been exhausted. 
All productions defined after this are now undefined, 
and this production is set equal to a value which has 
not yet been tried for it. The program then returns to 
the positiol1 in the firing squad simulation where this 
production was first defined, and simulation continues 
from there. 

The above process of finding the new state of a soldier 



and defining productions as needed is continued until 
either a solution is found for length n or else no pro
ductions remain which are alterable. In the latter case, 
we have tried all possibilities which could lead to a solu
tion for the given length with the given constraints and 
a given number of states. Thus there is no solution in 
this form. 

The e~perimenter can request FS5 to simulate in 
"AUTO" mode, in which case backtracking will be ap
plied to any undefined productions which are needed. 
Backtrack mode may be used with or without either 
constraints or explicit production definitions having 
been entered. Simulation will only cease if either a suc
cessful function is found or all possibilities are ex
hausted. 

Frozen and free productions 

The experimenter can . 'freeze" the value of a production 
if he wishes to prevent its alteration without his explicit 
consent; the key productions are of this nature. Frozen 
productions are not altered by any simulation mode. 
Hence, a frozen production is another form of constraint 
and, if used, may further reduce backtracking effort. 
Other productions are termed "free" because the back
tracking mechanism is free to alter them. 

Snap view and bright positions 

While in backtracking mode, it is useful and neces
sary to view the progress of the simulation. Sometimes 
the experimenter can notice an area where much back
tracking occurs, and enter explicit frozen productions or 
additional constraints to eliminate such bottlenecks. 
Furthermore, if the constraints are neither numerous 
nor strong, the number of search possibilities could still 
be astronomical. In this case, if the experimenter 
periodically views the progress of the simulation, he can 
decide when it should be aborted. 

With the "SNAP VIEW" option "ON," redisplay of 
the simulation occurs after each row is completed and 
also whenever the system must backtrack. Otherwise 
(and in all cases of "STOP" mode) , redisplay occurs only 
when simulation terminates. Since a position in a simu
lation at which a production is first used is of special 
interest, all such positions may be brightened by pushing 
a button: 

BRIGHT 

Both features are optional because frequent redisplay 
significantly increases running time. 

History scroll, freezing and deletion 

Although the experimenter may never be interested 
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in seeing the entire production table at one time, he 
may have occasion to view significant portions of it. A 
scroll display gives him the list of productions used in 
the current tenninated simulation, in order of original 
usage, and indicates which are frozen. 

If production definitions were generated by con
straints or backtracking, he might want to freeze some 
or discard others. Either can be done by pushing the 
appropriate button 

FREEZE VALUE 

DELETE VALUE 

and touching productions on the scroH. 

Image solutions 

Experience with the problem, and general considera
tion of the form that any solution must take, led to giv
ing FS5 another heuristic tool, which requires explana
tion because its motivation is less obvious that that of 
other program features. 

In any Golution, signals must travel the entire length 
of a squad in both directions because the general, before 
he can fire, must know that the order to fire has reached 
the last soldier on the opposite end of the squad. If the 
signal sent by the general is 1, and the signal returned 
by the last soldier is 2, then we may think of signal 2 as 
being the image produced by the reflection of signal 1 
from the end of the squad. In other words, the general 
bounces signal 1 off the end of the squad; the image
echo- returns to him as signal 2. 

Experience with various solution methods has demon
strated many other instances in which the image anal
ogy is helpful. For example, suppose that we are apply
ing the techniques of successive subdivision, and have 
contrived a partial skeleton plan: 

0 G 
1 1 G 
2 1 G 
3 1 3 G 
4 1 3 G 
5 1 3 G 
6 2 3 G 
7 2 3 G 
8 2 3 G 
9 G G 

10 1 G 4 G 
11 1 G 4 G 
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The general emits signal 1, and it travels to the left at 
the maximum possible rate of one man per unit of time. 
This signal arrives at the end of the squad and produces 
an image, signal 2, which travels at the same rate in the 
opposite direction. 

The general also emits signal 3, and it travels ,at one
third the rate of signal 1. Thus, signals 2 and 3 meet at 
the midpoint of the squad and produce the first division 
point. This central soldier is then promoted to general, 
and the process can be repeated for each of the two 
halves. 

To repeat the process, the central general sends signal 
1 to the left as before, but now a signal 4 is also sent to 
the right. 8ignal 4 is intended to behave in the same 
manner as 1, except that 4 travels in the opposite direc
tion. 8igna14 is, therefore, an image of signal 1, created 
by reflection about the center of the squad. 

Images imply that certain symmetries will probably 
exist between sets of productions and between pairs of 
states. Therefore, an additional heuristic for the prob
lem is to look for solutions having the property that for 
every production LMR ~ S, there exists a production. 

Image (R) Image (M) Image (L) ~ Image (8) 

where the Image function maps the set of states onto it
self such that Image (Image (8)) = 8 for all states S. 

In F85, if the image-solution mode is selected and the 
user defines a proper image mapping, then whenever a 
production is defined, the image production is also de
fined. The image method may be used separately or in 
combination with constraints and backtracking. Ob
viously, the image method also improves the feasibility 
of exhaustive search because the number of free produc
tions is again reduced. 

Miscellaneous 

Other controls allow for reinitializations, for simu
lation testing over any range of lengths up to 500 men, 
and for hard copy of displays and tables. 

Implementation experience and prerequisites 

Any system like FS5 endeavors to provide the re
searcher with tools and response time that encourage 
and allow him to apply methods of so~ution which might 
otherwise be impractical. On the other hand, if the labor 
of writing the software' s greater than the hand calcula
tion it eliminates, a researcher finds small en"'lourage
ment. In general, if the cost of building an ·interactive 
system exceeds the importance of the problem area, the 
system will not be built. Our feeling is that the cost of 
F85 is reasonable, and that costs relative to more im
portant problems will be significantly lower. 

The requir-ed hardware includes a digital computer, a 
CRT display with appropriate graphic input device, 
and associated interface equipment. The choice of input 
device is crucial to human react on. A light pen is at 
best a clumsy pointing instrument, and a typewriter 
keyboard with display cursor is an unnatural tool. Had 
these been the only devices available, many FS5 fea
tures would have been neither conceived nor imple
mented. An appliance used in the manner of a pencil, 
such as the RAND Tablet, is central to the efficacy of 
interactive problem-solving systems. 

FS5 required three software types, exclusive of pro
gramming language and operating system: a graphic 
software system (IGS); routines to service displays and 
controls; and routines providing non-graphical aids. 
IGS allows the user to think globally about displays for 
his problem, rather than about intricate hardware and 
bit patterns. Routines to generate and manage displays 
consist primarily of calls to IGS. Non-graphical rou
tines, such as table maintenance and backtracking, 
were no different than they would have been if all out
put was printed. 

Thus the major efforts in writing FS5 were to design 
displays and to interface with the existing graphic soft
ware. With such high-level languages as PL/I or FOR
TRAN, and a good package such as IGS, this is not a 
very difficult task. 

CONCLUSION 

An on-line, graphical, man/machine interactive com
puter system can provide greatly increased research 
power over a system lacking these attributes. This is 
true even when a problem is not inherently graphical. 
Anyone who is planning a computer system to investi
gate a difficult problem area should consider extending 
the design to make it graphical and interactive. Since 
most medium and large computer facilities already have 
the necessary hardware and basic software, and since 
construction of routines to generate and to manage dis
plays is quite simple, the added cost should be very 
small compared to the extra utility gained. 
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Interactive telecommunications access by computer 
to design characteristics of the 
nation's nuclear power stations* 

by D. W. CARDWELL 

Oak Ridge N aiional Laboratory 
Oak Ridge, Tennessee 

INTRODUCTION 

Computer-aided information storage and retrieval 
systems have been pointed to, frequently, as a 
means for efficient handling of large masses of 
data so that users of such systems can rapidly 
find selected specific items with a minimum de
gree of effort.! In engineering and scientific fields 
(except for certain rather specialized areas), 
major progress toward such an objective has been 
limited to bibliographic sorting of technical pub
lications by keyword· search of authors, titles, or 
abstract context.2 The developme:p.t of a com
prehensive system to provide varied users with 
access to factual technical data, on a broad basis, 
has awaited a need sufficiently important. to war
rant the substantial effort required for such an 
undertaking. 

The remarkable sudden surge, since 1965, in 
electric utilities "going nuclear" has placed a 
back-breaking burden upon the U. S. Atomic 
Energy Commission's Division of Reactor Licens
ing to fulfill their responsibilities in reviewing 
engineering design proposals for each nuclear 
power plant to evaluate the adequacy of safety 
provisions. Figure 1 (a) and (b) show on maps of 
the United States locations of the many large 
nuclear power plants now committed for construc
tion as contrasted to the few units that were com
mitted three years ago. In January 1967, the 
Reactor Division of the Oak Ridge National 
Laboratory, aided by Union Carbide Nuclear Com
pany Computing Technology Center, was com-

*Research sponsored by the U.S. Atomic Engery Commission 
under contract with Union Carbide Corporation. 
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missioned to develop a computerized system ca
pable 'Of responding to selective search requests 
with readout of factual data to a family of tele
communications terminals used by reactor engi-
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neering specialists who are engaged in nuclear 
power plant design evaluations. 

This project was given the acronym label of 
CHORD-S to represent "Computer Handling of 
Reactor Data-Safety." The CHORD-S telecom
munications system became initially operational 
during 1968, processing information in certain 
technical categories of greatest current int~rest 
to the Atomic Energy Commission. Expanding 
the data bank volume, improving man-machine 
dialogue capabilities, and adding to the number 
and versatility of terminals are a continuing op
eration, each of these activities directed toward 
increasing the real value of the system to its 
potential family of users. 

The CHORD-S information system has been 
designed to include the following unique com
bination of features: 

1. Factual technical data organized in ten level 
hierarchical structure for input to the Data Bank. 

2. Computer input formatted on magnetic 
typewriter/converter, to provide 

a. Off-line localized verification by origina
tors. 

b. Reductions in turn~round time, cost, and 
frequency of errors as compared to con
ventional punchcard input. 

3. Multipurpose central computer storage ca
pacity of several hundred million characters, re
trievable by rapid random access. 

4. Direct access via telephone line from family 
of remote terminals, in time-sharing mode, at 
distances up to several hundred miles from com
puter center. 

5. CRT display included in terminal capabili
ties, in addition to conventional telecommunica
tions typewriter. 

6. On-line dialogue (conversational mode), em
ploying almost exclusively common English lan
guage words, queries, and responses. 

7. "Lead-in" program allowing user option of 
being guided rapidly by the computer to selected 
areas of interest without advance knowledge of 
file structure or reference to code books. 

8. "Compare" program wherein computer auto
matically contrasts values of large blocks of de
sign parameters for several power plants to pro
vide "Readout by Exception," only where differ
ences are significant, withholding undesired 
alphanumeric data that has no significant value 
to user's query. 

9. Open-ended file maintenance provisions for 

frequent efficient up-dating, additions or dele
tions. 

10. Optional tutorial program wherein computer 
gives user step-by-step online instructions for 
operation in any of the available modes. 

11. Access from terminals to key-worded bib
liographic nuclear safety reference files and 
computational programs that already reside in 
the central computer. These and other residual 
resources of the computer serve to enhance the 
primary capabilities of CHORD-So 

The unprecedented combination of user 
oriented features provided by the CHORD-S sys
tem, should be applicable to many technical areas 
(in addition to nuclear power plants), where 
large masses of factual data must be efficiently 
searched to yield specific responses to queries 
posed by professional personnel who are en
gaged in sequential progressive activities wherein 
real-time output is essential. 

System design philosophy 

Initial development of design philosophy for 
CHORD-S was materially aided by use of hard
ware plus operating experience available from an 
existing computerized (key word bibliographic) 
information system that has successfully func
tioned within the overall ORNL Nuclear Safety 
Program since ,1963. That operating system is the 
Nuclear Safety Information Center (NSIC).4 By 
such direct observations and intensive study of 
current reports on other automated information 
storage and retrieval systems,5,10 plus knowledge 
of the specific needs of potential users, we di
rected the development of the CHORD-S system 
within the following primary guidelines: 

1. Queries originated by users must be as free 
as practicable from regimented "computereeze" 
language and format, with heavy dependence 
upon natural language expressions, limited in 
number. 

2. Potential users cannot afford delays oc
casioned by manual look up in extensive code 
books. 

3. For the inexperienced user, computer pro
grammed "lead-in" techniques must be readily 
called forth in response to simple commands, 
to automatically reveal the contents of file struc
ture and provide rapid guidanc'e to areas of in
dividual interest. 

4. For experienced users, optional short-cuts, 
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directed to selected bodies of data, must· be avail
able to avoid unsolicited, time consuming path
finding. 

5. Responses to queries at telecommunications 
terminals must be compatible in speed to normal 
human sensory perceptions to minimize breakinu 
"trains of thought." 

6. Data drawn from source material must be 
expressed and organized for file entry in fashions 
appropriate to conventions prevailing in each 
technical category, and be carefully screened to 
include only items of greatest significance to po-
tential users. . 

7. File structure in the computer memory must 
be flexible and open ended to easily accommodate 
frequent additions, revisions, and updating, to 
keep pace with changes in the nuclear power in
dustry. 

8. Output options to telecommunications con
soles should include a capability for rough rapid 
scan to reveal highlights of data file, to then be 
followed by progressively deeper selective probes 
for ultimate retrieval of specific data desired by 
indjvidual users. 

9. Terminal readout should allow rapid visual 
display of information of only transitory value, 
accompanied by user control of commands for 
producing selective hard copy of printout. 

10. Priority should initially be given to obtain
ing alphanumeric output. The extent. of capability 
for graphical, diagramatic, or pictorial type in
formation to be provided must be determined by 
evaluation of cost of such features against their 
relative worth to users. 

11. System hardware and software must be 
designed to handle a progressively increasing 
number of terminaIs- to the network and have 

. flexibility for innovations of an unpredictable na
ture determined from early experience to be of 
practical benefit to users. 

12. Selection from the many options available 
for long distance communications transmission 
must be based on a utility/economy optimization 
of several factors such as speed, capacity, relia
bility, and adaptability to newly developed I/O 
devices. 

13. Compatibility features for future interface 
connection with other information systems being 
developed for the U. S. Atomic Energy Commis
sion must be provided whenever logical and prac
ticable. 

It was obvious to us that fulfillment of so de
manding a set of criteria required a merging of 

the talents of several specialized disciplines: (1) 
computer technologists (software and hardware), 
(2) CHORD-S project nuclear information engi
neers, (3) communications engineers, and (4) 
nuclear reactor power plant safety specialists 
from potential user organizations. Although it is 
always difficult to combine talents of personnel of 
contrasting technical backgrounds and interests, 
we believe that we have gradually fulfilled most 
of that mission. It is our strong belief that the 
road to success for a complex computerized in
formation system must be paved by an established 
willingness on the part of computer technologists 
to understarid and accommodate genuine needs of 
potential system users; and those same potential 
users must exert significant effort to obtain at 
least a surface working knowledge of the capabili
ties and limitations of computer related hardware 
and software. Also, where telecommunications is 
to be· employed, practical up-to-date technical 
knowledge of current advances in the field of 
communications engineering is an essential in
gredient. Rather than seeking rare so-called 
"generalists" to bridge gaps between the estab
lished disciplines, we have depended upon strong 
overall leadership guidance, with some forcing to 
the extent necessary for acco:rt:lplishing essential 
merging of specialties. 11 

The man-machine interactive concept 

Information storage and retrieval systems, un
til recently, have been limited mainly to batch 
processing of . queries by the computer, requiring 
that the user wait an appreciable length of time 
between successive sets of data readout. The ad
vent of third-generation digital computers, with 
greatly increased capacity and versatility of 
hardware and software, have made it feasible for 
users to communicate directly on-line with a cen
tral computer in essentially continuous conver
sational dialogue. 12 CHORD,-S provides such cana
bility for reactor specialists who are engaged in 

. assessing the design of existing or proposed 
nuclear power stations. 

For automated on-line information systems to 
serve responsible busy professional people, such 
systems must possess dominant operational 
features that match the natural habits of these 
people. 13 We look upon dialogue between user and 
the system in a closed loop cybernetic sense. Al
though the human being in the loop may, for 
varying justifiable reasons, be relatively slow in 
formulating and entering queries at his remote 
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terminal, he has a right t'O expect intelligent, 
efficient reSP'Onses pr'Ovided in a f'Orm and at a 
speed m'Ost c'Onductive to his understanding. 1.4 

Figure 2 presents an elementary diagram t'O quan
titatively emphasize s'Ome 'Of the fundamental 
traits of man in c'Onsrast with the capabilities 'Of 
digital c'Omputers as they have ev'Olved fr'Om the 
first t'O the current third-generati'On machines. The 
m'Ost striking difference apparent in this· diagram 
is that 'Of speed; as each new generati'On 'Of ma
chines has made its appearance, the magnitude 'Of 
this disparity has bec'Ome greater. C'Ommercial 
time-sharing c'Omputer systems whereby 20 'Or 
m'Ore c'Ons'Oles c'Onverse, essentially simultane'Ous
ly, with a single central c'Omputer have capitalized 
'On this difference. Central pr'Ocessing units (CPU) 
'Of m'Odern c'Omputers 'Operate at near electr'On 
speeds (micr'Osec'Onds and nan'Osec;'Onds) ,whereas 
acti'Ons by human beings ar.e limited t'O tenths 'Of 
sec'Onds. 

In systems such as CHORD-S, users I'Ocated 
many miles fr'Om the c'Omputer center depend 
UP'On I'Ocal c'Ons'Ole equipment with built-in speed 
limitati'Ons as sh'Own, c'Onnected t'O c'Omputer P'Orts 
by s'Ome f'Orm 'Of public c'Ommunicati'Ons link. 
C'Onventi'Onal v'Oice-grade teleph'One lines are I'Ogi
cally empl'Oyed f'Or such service because 'Of their 
ready availability, dependability, and relative 
economy.15 As noted in the diagram, data mes
sages are transmitted via 'Ordinary teleph'One lines 
at rates 'Of 120 t'O 400 char/sec. Suchc'Onventi'Onal 
rates 'Of transmissi'On fix an additi'Onal time limit
ing parameter 'On the 'Overall system. 

In the CHORD-S interactive system where dia
I'Ogue flows back and f'Orth rapidly between a user 
and the computer, each link 'Of the I'O'OP needs t'O 
be 'Optimized in design t'O pr'Ovide time reSP'Onses 
appr'Opriate to the key human perceptive senses. 
As may be seen ill Figure 2, man's voice is the m'Ost 
efficient medium f'Or formulating queries at a 

FIGURE 2 

TRANSMISSION SYSTEM MACHINE 

A. His Communication Capabilities 
1. Sensing Senses 

a. Speech: S-2U charlsec 
b. Handwriting: 3-10 charI sec 
c. Typing:l-s charI sec 

2. Receiving Senses 
a. Sight 

-Pictorial: Very fast 
-Reading: 10-15 charI sec 

b. Hearing: Fast 

B. His Memory Capabilities 
a. Total Storage: Up to (10)15 char 
b. Prompt Recall: 1-10% of total· 
c. Speed of Recall: 

-Up to 10% fast; remainder 
slow (and inaccurate) 

C. His Psychological Reactions 
a. Rational - Likely predictable 
b. Emotional - Unlikely predictable 

A. Terminal 1/0 Equipment 
1. Telecom Typewriter 

Printing Speed: 10-15 charlsec 
Char/line: 72-156 

2. Cathode Ray Tube (CRT) 
Display Speeds: 240-100,000 
char/sec 

Total no. of char: 
1,000-4,000 

3. Remote Batch Printers 
Printing Speed: 

600-660 charI sec 

B. Telephone Network 
1. Voice Grade - Single Channel 

Speed: l20-400·charlsec 
2. Broad Bank - Multi-Channel 

Speed: Up to 23,000 charlsec 

(Third Generation Digital Computer) 

A. Central Processing Unit 
1. Execution rate 106_l0B 
2. Memory cycle time: 

Microsec to nanosec 
3. Core memory capacity: 

10(10)3_10(10)6 

B. Peripheral Storage 
1. Access Speed: Up to 

300(10)3 char/sec 
2. Capacity: 

Up to 1.~(10)9 char 



Interactive Telecommunications Access by Computer 247 

terminal. Although rapid advances are currently 
being made in voi.ce communication with com
puters, we have concluded that, except for limited 
vocabularies, such an approach is not yet ready 
for broad exploitation. This leaves only man's 
sense of touch for initiating communications, 
which usually is applied by operation of a type
writer keyboard, an inefficient avenue for self ex
pression by most technical people. Handwriting 
is usually more rapid than typing, and for some 
circumstances that medium ("Rand tablet," etc.) 
is used for computer input, although it may not 
now be practical for application to a broad data 
base system, such as CHORD-So The most en
couraging development for speeding up manual 
direction of computer operation involves the use 
of a Jight pen, or cursor, to select from computer 
generated cathode ray tube (CRT) displays 
items for further exploration. 16 Also, CRT ter
minals, when of the vector type, can display on 
screens complex graphical output, a form of 
communications very effective in appealing to 
man's facutly for quick pattern recognition. 17 In 
any event, it has been clear that terminals for 
the CHORD-S interactive system should require 
mInImum amounts of input from the user to 
eliminate excessive tedious efforts by amateur 
typists. 

It has been obs,erved18 that for psychological, 
as well as for practical reasons, technical person
nel seeking on-line responses from the data bank 
become impatient and dissatisfied whenever the 
time between the end of their query and the be
ginning of response extends beyond a few seconds. 
For the system to be acceptable, readout at the 
terminal should approach the rate for natural 
efficient comprehension by the user. Comprehen
sion, at present, depends almost solely upon the 
human's exercise of vision accompanied by his 
mental reaction, which, depending upon the com
plexity of the information received, is fairly 
rapid. Consequently the speed, format, size, etc., 
of visual display provided at the terminal is 
closely related to user acceptability, and hence 
the success of the system. 

In addition to man-machine considerations 
given to terminal hardware ·characteristics, the 
ease of entering CHORD-S queries and obtaining 
useful rapid responses from a computer is highly 
dependent upon the degree of naturalness of ter
minal language employed for information ex
change. 19 The development of a terminal language 
for CHORD-S has included involved original ideas 

as well as ideas found to have been successful in 
other IS&R systems. Opportunity to use the CTC 
IBM 360/50 general purpose computer for initial 
operation of the CHORD-S system has presented 
advantages in early availability of equipment with 
basic telecommunications and operational pro
gramming. However, in order to pursue the theme 
of optimum man-machine response throughout 
the entire l<;>op, considerable ingenuity has been 
necessary in the development of special CHORD-S 
programming to assure compatibility with fixed 
features of the computer center. 

In addition to accommodating form and speed 
of dialogue considerations: we have extrted consid
erable effort to make certain that users are pro
vided with built-in programming options that al
ways allow them full control over any decision 
making processes that they wish to exercise. This 
minimizes any chances of the automated system 
"jumping to unwarranted conclusions." 

Functions of the information network 

A general layout of the CHORD-S system as an 
information storage and retrieval network is 
shown in Figure 3. The following steps are fol
lowed by CHORD-S project personnel to establish 
flow of information between sources and users of 
the system: 

1. Technical data are primarily drawn from 
documentary material that has been prepared by 
nuclear reactor power plant designers and opera
tors for license application submitted to the U. S. 
Atomic Energy Commission. Auxiliary inform a-

FIGURE 3 
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tion of pertinence comes from other sources such 
as those shown on the diagram. 

2. Reactor specialists originate standardized 
power plant system characteristics listings of 
greatest significance to nuclear safety with spe
cific data for each plant organized systematically 
for efficient computer handling. The multi-hier
archial structure of the data file demands that 
careful attention be given to recognizing logical 
technical relationships between major headings 
and successive sublevels as items of information 
progress from the general to the more specific. 
Examples of data retrieval, to be given later, will 
show how this type of file structure· when intelli
gently organized for input, off·ers users an 'Oppor
tunity to obtain readouts that collectively en
compass spans of subject matter individually self
sufficient in the evaluation of specified areas of 
engineering design. 

3. Technical and clerical personnel, with the aid 
of automated magnetic tape typewriter equipment 
(IBM-MT /ST with Digidata Converter), 20 struc
ture reactor data in standardized formats, pro
ducing at the point of origin, magnetic tapes suit~ 
able for direct entry into the computer, eliminat
ing keypunching. Where prime responsibility for 
originating complete and accurate file additions 
resides with individual technical specialists, there 
is considerable advantage in applying this newly 
developed data entry technique because it pro
vides centralized capability for rapid and efficient 
off-line verification. 

4. Data on reels of seven-track magnetic tape 
are entered and stored in the memory of the IBM 
360/50 computer at the Oak Ridge Computing 
Technology Center (CTR) 21 by means of special 
programming developed by CTC specialists. The 
basic Data Bank is built as an over-night batch 
operation, on-line input from remote terminals 
being· unnecessary. Output of data at the com
puter center. can be obtained whenever desired as 
a batch processing operation from several conven
tional types 'Of readout devices as shown in Figure 
3. Such batch output may be a partial file dump for 
checking the accuracy of updating operations, or 
it may be a selected set of engineering data con
sidered too lengthy for efficient remote terminal 
readout. Ports providing interactive access to the 
CHORD-S Data Bank from remotely situated ter
minals are indicated in the diagram' by symbolic 
telephone lines emanating from the computer 
center. 

5. A representative operating telecommunica-

tions terminal is shown at the lower left of Figure 
3 time sharing with other terminals. Meaningful 
conversational exchanges via telephone line be
tween terminals and the central computer employ 
query and response techniques developed jointly 
by CTC programming personnel and ORNL re
actor engineers. As' illustrated in Figure 3, a tele
communications typewriter transmits queries, and 
prints at a rate of 15 char/sec output data selected 
for preservation in hard copy. An alphanumeric 
CRT console provides rapid (up to 200 char/sec) 
visual display of transitory output information. 
(Rapid responses displayed by the CRT hasten 
progressive dialogue up to the point of obtaining 
ultimate search objectives.) A vector-type CRT 
may be employed to provide graphic displays for 
the system users to gain the advantage of infor
mation in pictorial form.22 Diagrammatic illustra
tions and voluminous material, not readily adapt
able to computer storage, are referenced in the 
data bank to guide automated retrieval from local 
terminal auxiliary files which are mechanized- by 
microfilm storage-readout devices. 

Entry of data into computer 

Figure 4 shows how CHORD-S data has been 
entered in the central computer and how the spe
cial programming has been handled.23 Note how 
new or revised technical data are merged with 
basic CHORD-S update and input programs to 
produce revis,ed master files for data cell storage 
and terminal access. The computer input program 
makes a diagnostic scan of the data to check for 
errors. Obvious errors, such as improper formats, 
incorrect field type and length, and the absence of 
flags and delimiters are detected by the present 

FIGURE 4 
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program. Another class of errors, known as logi
cal errors, is much more difficult to detect. These 
errors can only be found by providing the com
puter with a greater knowledge of the ranges that 
variables may assume and the possible conflicting 
attributes of data items. That being impractical, 
these types of errors are found and corrected by 
the nuclear engineers who originated the computer 
input information by systematic review of batch 
dump output. (It is important to note that check
ing of input data for accuracy throughout is the 
responsibility of the originator. Any erroneous 
information in this Data Bank could have an ef
fect of delaying the construction of one or more 
$100,000,000 nuclear power stations.) 

After being screened for errors, the input data 
are sorted by the computer S'O that they are in the 
same order as that on the master file. The file 
maintenance program mat.ches the updated infor
mation against the master file, and records are 
added, deleted, or replaced as required. The up
dated file is now written onto a disk or data cell, 
and an index file, consisting of keycodes with 
pointers to records in the master file, is created 
on a disk to permit direct access. 

Writing the master file and index file on direct 
access devices permits the remote terminal and 
batch query programs to retrieve the data in a 
nonsequential manner. Later additional index files 
can be created and used to index the master file 
on the basis of other parameters. 

File organization for such large volumes of data 
is a .critical problem especially when using direct 
access, devices to support remote consoles. The 
problem is one of minimizing the external storage 
requirements and at the same time providing ef
ficient computer use and fast terminal response. 
This problem has been solved, in part, by the local 
implementation of several computer software rou
tines which provide for variable length record 
blocking and track overflow capabilities. 

Modes of access 

Several modes of access to the CHORD-S data 
file have been developed and placed into operation 
to accommodate various needs of users. One out
put program responds toa direct .command of 
"$ Display" from the user to read out factual data 
selected by subject matter key codes. In another 
mode of retrieval ("$ Compare"), the computer 
scans selected lists of data from various reactors 
for major differences and reports these as "read
out by ex.ception" thus selecting only that data 

relevant to the user's interest. Here, a variable 
element in the query is set to fit the degree of dif
ference desired by the user. In the third mode of 
operation ("$Lead-in"), the computer assists an 
inexperienced user in finding information he needs, 
by automatically guiding him into the data file 
structure without requiring familiarity with the 
organization of information. Options are avail
able for each mode of access whereby slight 
changes in user queries will either restrict or 
broaden the degree of detail of readout. For all 
of these retrieval modes, the user sits at a remote 
console and participates in an interactive dialogue 
with the computer. As his search progresses, he 
calls on whichever retrieval mode that satisfies 
his immediate needs. A built-in tutorial program 
advises the terminal user of the nature of any 
error in query structure. If desired, the "tutorial 
program" can be called to read out step-by-step 
instructions to the t.erminal for any program avail
able. 

Examples of dialogue via remote terminal 

In the following search sequence, we assume the 
user has not had previous experience with the 
CHORD-S console; he, therefore, first uses the 
"lead-in" program which instructs him in the use 
of the console and guides him into the data bank. 
(On subsequent uses, he may remember from his 
earlier experience the way information is organ
ized except for details and could enter the search 
sequence at a more advanced stage.) Since there 
is no need to preserve hard .copy of initial lead-in 
dialogue, the user elects to save time by employing 
the CRT terminal. as illustrated in Figure 5. By 
simply typing "A.$lead-in." there is flashed upon 
the screen major "Summary Section" subject 
matter headings of the file with corresponding key 
codes. Assuming that the engineer, in this evalua
ti'On, wishes to investigate design features of the 
core of certain nuclear reactors, he continues his 
guided search by typing in or moving the CRT 
cursor to AC. The next computer response will be 
a list of subheadings in that area of the data bank. 
By successive continuation of this rapid pathfind
ing query-resp'Onse technique the more detailed 
subject matter file structure is revealed. Each file 
entry has a unique key code label which can be 
used in requesting readout of detailed informa
tion on individual characteristics of selected nu
clear power plants. An example of CRT readout 
is given in Figure 6 where the "$compare" pro
gram was employed to retrieve from the computer 
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FIGURE 5 

summary data on reactor core fuel characteristics 
(key codes ACBB to ACBC) of two plants de
signated by name abbreviations. From evaluation 
of the data shown, the user then called on the 
"Sdisplay" query to simply find the· value of one 
related parameter of interest to him, "Maximum 
Fuel Thermal Output" (key code ACACH). 

Up to this point, the user elected to employ CRT 
display, so that turnaround on the dialogue pro
ceeded about as rapidly as his natural senses nor
mally function. If he should decide that he needs 
to retain hard copy of CRT display, he signals the 
typewriter to automatically copy from the local 
terminal controller memory. Where time required 
for mechanical machine copying would handicap 
the user's next deliberations, this can be avoided 
by use of a speedy photo-optical device (if such 
recently developed equipment is available at the 
terminal). 

As users of the system become familiar with 
their most frequently used code designations, they 
can address their queries directly to individual 
codes or to code ranges, for immediate readout of 
descriptive data, skipping "$leadin." 

The "$compare" query is a development orig
inal with this project, that places tremendous 
power in the hands of terminal users to contrast 
at various levels' of detail, design characteristics 
of one or more nuclear power stations. This im
portant feature functions as follows: Nuclear 
safety information engineers, when the original
ly establish their standard characteristics list
ings, assign for storage in the computer memory 
a ".Delta Factor." This represents their profes-

sional opinion of parametric deviations of signifi
cance, such as +10ro. When a user wishes to make 
a rapid scan of large volumes of data to find con
trasting design features of different power plants, 
he uses "$compare" with a controllable modifier 
"m." Different degrees of course or fine compari
son are obtained by the terminal user designating 
larg~ or small values of "m." Efficient "readout by 
exception" is then accomplished by means of com
puter programming which causes the system to 
ignore data values (where numerical) that con
trast by a lesser difference than that requested. 
By successively varying the value of "m" from 
large to fractional values for different sections of 
the file, the user can rapidly "close in" on items 
wherein the degree of difference corresponds to 
his specific search interest. The "$compare" fea
ture of the CHORD-S information system could 
be given broad application to other information 
systems. 

In the following example, employing "variable 
depth compare" with typewriter readout, the en
gineer is exploring design data on three nuclear 
plants in the area of "Heat Transfer at Initial 
Full Power (IFP) " 

ac~c al"a<1.cl il sl.m=3 
~coIllPare. 

C-Yfa( 

SETCI 
n!~·PT·2 

r.F.TOl 
SL:R!l:Y·l 

SFTOI 

I-tEATTIlANS/,TIFP 
Ar;ACA AVr. PI)~iFt: 0[11, K:I/l 
ACACq ::[t! ON'!: (IJ-3) t')~ CI'!:IT HEAT FluX [lATlO 
ACAce AVr. PF.L TO CLA£) GAP TIJf."t' CO·IOUCT,CTl.j/lm.~nI:T-r:F.r;F 

AVr:. FUEL THHr' DUTPIJT,Kt.:/FT 

.. ~ 
2.S2 

NS 
'J5 

1.81 
1, ooo.~. 

l.SU 
1,000. 

G.2 

.J(}~ rQr'PArlr. [w)rr-. T lI~r: CPI' ::0011112. ELAP!)F:) '" DC: 10,07. 

ExplanationofSymbols1nPrintout. 

NS - Data not supplied in source references. 

* - ~o significant deviation from data shown in first column. 

On his first approach, he assigned no value to 
the multiplier "m" so the computer automatically 
selected for readout differences based on a delta 
factor of 1. If we assume that he had been work
ing with a much larger span of subject matter 
than is practical to illustrate here, he could de
cide that the volume of readout is too massive 
for isolating major differences. In that case, he 
may choose to enter another query specifying that 
m=3. This effort on his part then would produce 
the following output at his terminal, which much 
more clearly highlights the major differences in 
design that he seeks: 
acacacad.r:lilsl 
$cnrnpare. 

c-Ym: IN('I-PT-2 SURRY-l 
CHARACTERISTIC AND UNITS 

f-IEATTRANSATIFP 
ACACA AVG PC!:m D!:tI,KH!L 
ACACq MI~1 ON8 (W·3) OR CRI T HEAT FLUX RATIO 

AVGPElTOCLADGAPTHERp.4CONDUCT,8TU!HR·SDFT-Cr-r.F 
ACT I VF. I~F.AT TRAN~ SURF AQ[A, SQFT 

ACACF AV(',H(AT FLUX, 'Hl'jI-lR-SOFT 
ACACF l'AXIIEATFLUX,8T1'!f-IR-SOFT 
ACAce AVG FUEL THER,., OUTPUT,KWFT 
ACACH MAXFUELTHERMCUTPl:T,KWjFT 
ACAC I ~lAX CLAU SURF TEMP ,OEGF 

JOr. co~·rARE. nmED. TIME: CPU "00ilIt1, ELAPSED" 00:08.73. 

SO 01 

, ~ s 
2.82 

"$ 
35,900. 

135,1100. 

il21,50~S 

13.7 
625. 

SFTOl SETOl 

" 92.8 
1.81 1.86 

1,000. 1,OOO~ 
52,200. 

175,r,OO. 191,000. 
570,800; 538,700. 

6.2 
18.5 17.5 
659. 6S7. 
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The tabular output format of the previous ex
amples is popular with engineers, but has an 
obvious built-in limitation on the number of col
umns of data that can be displayed. In order to 
overcome that restraint, responses from the 
CHORD-S system that would exceed horizontal 
space limitations automatically shift to a vertical 
listing, such as shown in the following example: 

acac acach. c1 i1 sl 01 
$compare. 

ACAC HEAT TRA~S AT IFP 

ACi\CA AVG PO~JrR OEtl, KW/l 
C1 N5 
Sl 92.8 
01 79.6 

ACACB 
C1 
11 
Sl 
01 

ACACC 
C1 
11 
51 

ACACD 
C1 
11 
01 

ACACF. 
C1 
11 
51 
01 

MIN UNB (W-3) OR CRIT HEAT FLUX RATIO 
2.82 
1.81 
1.86 
1.6 

AVG PEL TO CLAD GAP THERM CO~OUCT,BTU/HR-SQFT-CFGr 
rlS 

1,000. 
1,000. 

ACTIVE HEAT TRANS SURF ARFA,SQFT 
35,900.-
52,200. 
48,578. 

AVG HEAT FLUX , BTU/HR-SQFT 
136,400. 
175,600. 
191,000. 
167,620. 

ACACF t!AX HEAT FLUX,BTU/HR-5QFT 
C1 421,500. 
11 570,800. 
51 538,700. 
01 543,000. 

ACACG AVG FUEL THERt: OUTPUT ,K~~/FT 
Cl N5 
Sl G.2 
01 5.4 

JOB COMPARE. ENDED. TIME: CPU =00485, ELAPSED = 00:09.85. 

Cl Conn. Yankee 

II Indian Point' 

SI Surry 1 

01 Oconee 1 

The foregoing examples of data retrieval have 
mainly focused on cases where °a user of CHORD-S 
wishes to make an efficient comparison of selected 
gesign features of two or more nuclear power 
plants. That is because of the uniqueness of this 
capability, and its great utility to design evalu
ators. There are othe:r important capabilities of 
the system that are not included in the examples. 
A simple query can be placed that will yield com-

FIGURE 6 

plete bodies of data covering the design of a single 
designated plant. Where desired, sets of para
metric design values can be obtained representa
tive of different assumed accident conditions. 
Sources of data can be called for yielding stored 
bibliographic reference information. Employing a 
computational program . available from the gen
eral purpose computer (TERMTRAN), 24 a ter
minal user can perform a wide range of calcula
tions using design data retrieved from CHORD-So 

Future outlook 

Development of CHORD-S has produced an op
erating system that provides conversational mode 
access from telecommunications terminals to a 
central computer data bank. Data stored, thus far, 
is representative of some of the more important 
factual design characteristics of certain U. S. nu
clear power reactOr plants. As additional informa
tion is added, Atomic Energy Commission person
nel will be engaged in evaluating the worth of this 
IS&R system from actual operating experience. 
The nature of further development of CHORD-S 
will be guided by results from such experience. 

The particular.computer and the initial terminal 
hardware employed to demonstrate feasibility and 
long range future potentials of CHORD-S has been 
based largely upon the matter of ready availabil
ity. Commitments for a permanent system require 
the completion of extensive evaluations of the 
wide ranges of hardware and software offered by 
industry to achieve the most desirable operating 
features within limits of reasonable economy. 

As CHORD-S is developed to full potential, the 
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data bank in addition to increasing substantially 
in volume, will encompass deeper levels of design 
detail than can readily be expressed in concise 
alphanumeric terms. Information structures will 
~eed to accommodate more lengthy narrative de
~criptions, diagrams, graphs, etc. The most effi-

I 

cient· methods for presenting such material to 
terminal users in meaningful forms are under in
tensive study, evaluating the applicability of so-
phisticated hardware and software, much of which 
is just becoming available from commercial 
vendors. 

If the data bank increases in size for more com
plete inclusion of design characteristics and pro
gressively builds to receive input from larger num
bers of nuclear power stations (around 30 cur
rently being committed each year), many hun
dreds of millions of characters will need to be 
stored. File structure and search techniques will 
likely be altered as necessary to assure rapid 
cross-reference access to individual areas of spe
cialized interest. 

Long range plans include a gradual increase in 
the number of terminals to accommodate various 
groups of AEC Headquarters personnel in the 
Washington area. Also, it is intended that the net
work will be expanded to provide terminals at 
other locations throughout the United States. Re
quirements for extensive telecommunications fea
tures are being preliminarily evaluated to make 
certain that the system can be efficiently expanded 
without basic overall reworking of hardware and 
software provisions. 

In \riew of the pioneering features of much of 
the CHORD-S undertaking, care is continually 
exercised to assure compatibility with other in
formation systems of the government, particu
larly those of the Atomic Energy Commission. Op
portunities for certain interconnections are al
ready obvious and can be expected to increase 
rapidly in the future. 
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Computer-driven display facilities for an experimental 
computer-based library* 

by DONALD R. HARING 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 

BACKGROUND 

Project Intrex (information transfer experiments) is a 
program of research and experiments intended to pro
vide a foundation for the design of future information
transfer systems. The library of the future is conceived 
as a computer-based communications network, but at 
this time we do not know enough details about such a 
network to design it. Lacking are the necessary experi
mental facts, expecially in the area of user's interaction 
with such a system. To discover these facts, we want to 
condll:ct experiments not only in the laboratory, but 
above all, in the real-life environment of a useful opera
ing library. 1.2 

The initial efforts of Project Intrex have been con
cerned with the problems of access-bibliographic ac
cess through an augmented library catalog, and access 
to full text. This paper describes the design of the initial 
computer-driven display facilities being developed for 
the Project Intrex experimental computer-based li
brary. To provide further background information, we 
will first give some details of the augmented library 
catalog and the text-access system that are being devel
oped. 

For a number of reasons, computer-based libraries 
that service a wide spectrum of users, such as is found in 
a university, will be faced with operating on two basi
cally different types of data-that which is digitally 
stored and that which is photographically stored in 
some micro-film form. The latter will be images of the 
original full text of the documents contained in the 

*The research reported here was made possible through the 
support extended the Massachusetts Institute of Technology, 
Project Intrex, the Electronic -Systems Laboratory, Under Con
tract NSF-C472 from the National Science Foundation and the 
Advanced Research Projects Agency of the Department of De
fense, and under Grant CLR~373 from the Council on Library 
Resources, Inc. 
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library whereas the digital data will constitute the 
augmented catalog of the library from which the 
library user gleans information about the library data 
and documents by conducting on-line computer 
searches. 

One of the concerns of Project Intrex is to conduct a 
series of experiments to determine how the traditional 
library catalog can be effectively augmented and com.
bined with on-line computer operation to provide users 
with a more powerful, comprehensive, and useful guide 
to library resources. Present plans call for augmenting 
the traditional library catalog in scope, depth, and 
search means. For example, the augmented calatog will 
contain entries for reports and individual journal arti
cles as well as the traditional entries for books. Further
more, in addition to the title and author of each item, 
such things as the bibliography, an abstract, key words, 
and key phrases of each item will be included as part of 
its catalog entry.2,3 A user will be able to conduct 
searches on nearly any combination of the data con
tained in a catalog entry. Present plans also call for pro
viding alphanumeric communications between user and -
computer by means of a high-speed, flexible display con
sole. 

Another concern of Project Intrex is to conduct a 
series of experiments in an effort to devise a workable 
system that will ultimately provide guaranteed, rapid 
access to the full text of journal articles, books, reports, 
theses, and other library materials at stations that are 
remote from the central store. This goal has several 
implications. Guaranteed accessibiHty implies that text 
never leaves its store and is therefore available to users 
at all times. Availability with minimum delay at remote 
locations implies transmission of text in electrical signal 
form, except in special, limited situations where physi
cal transmission (perhaps by pneumatic tubes) might be 
appropriate. Remote accessibility implies more conven-
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ient library use, and in addition is a preliminary step to
ward realization of a network of computer-based 
libraries coupled together by means of data communica
tionlinks. 

In order to conduct meaningful experiments, a small
scale experimental total computer-based library system 
containing some 10,000 systematically-chosen docu
ments in materials science and engineering is being de
signed and constructed at M.LT. The computer-driven 
display facilities discussed here are a part of this sys
tem. Figure 1 illustrates the general organization of this 
experimental library. The library operates roughly as 
follows: The digital data and the photographic images 
are created from the original documents. The former are 
placed into the storage of the time-shared computer (an 
IBM 7094 system) and the latter are placed into a 
microfiche storage and retrieval unit (a modified Hous
ton Fearless CARD machine). The stored data are then 
accessed through the augmented-catalog user consoles 
and the text-access user terminals, respectively. This 
paper is concerned with the display facilities required by 
the experimental library , for more details about other as
pects of the experimental library see References 2 and 3. 

Several consideration.8 have led to the decision to 
construct the experimental display facilities at M.LT 
as opposed to purchasing a commercial system that al
most satisfies the needs of the experiments. First, 
there is no commercially available system in which the 
"almost" is close enough to the requirements of the ex
periments. Second, these experiments are designed to 
identify the functional characteristics of a system 
ide~lly suited for a computer-based augmented catalog 
and 'full-text access. Duling the course of these experi
ments, the system is expected to experience modifica
tions which can be more easily performed on lo~ally 
designed and con.structed equipment. Third, an objec
tive of Project Intrex is to develop competence in the 
field of information-transfer engineering at M.LT. 

10,000 JOURNAL ARTICLES, ~-J'-~ r REPORTS THESES" BOOKS MULTI-ACCESS ~jjl- ~:}iI I INFORMATION 
IN MATERIALS SCIENCE" COMPUTER ~I ! .. - - - - - STORAGEs RETRIEVAL L 
r".1

1 

"'1 ENGINEERING ~' ~ PROGRAMS 

'l~'~ ...... ~ ... "",(,. .. , ~ "" , .... ,,' 
Lll~ , 1 CATALOG ~ ;2 ~ ; 

-A. ~ ~ l.;8 

• • . 
· ·~A . . . .. ' IIIICROFILMf REMOTE TEXT ' 

10,000 DOCUMENTS fff: ; j ~ STORAGE :SYSTEM ~ RETRIEVAL SYSTEM 

ON MICROFICHE W ,,---'_/ S~~~:N STru~- ~~= 
MICROFILM STATION 

FIGURE I-Project Intrex expeiimentallibrary storage and 
retrieval system 

Several points concerning the Intrex program should 
be emphasized. First, through operational experimenta
tion we wish to obtain information that will be helpful 
in defining attributes of a large-scale system; that is, 
our goal is to make full text and its attendant aug
mented catalog available to a selected well-chosen com
munity of users in order to test user reactions to equip
ment as well as learn about capabilities and limitations 
of the technologies used in the equipment. For a dis
cussion of the selection processes used in the choice of 
the community of users and choice of the material 
contained in the experimental library to serve them, 
see References 2 and 3_ 

Second, in our experimental program, close attention 
is being given to its scalability. Although the first expeli
mental store of textual material is only a representa
tive fraction of a full-scale library, our purpose is to 
employ only' those techniques and technologies that 
show promise of being extendable to full library con
text. Third, the research program envisioned is evolu
tionary; therefore, the experimental system now being 
developed is the first of a series that will be needed be
fore the characteristics of a full-scale augmented-catalog 
and text-access system can be postulated. 

The plan of this paper is to first discuss the require
ments of the display facilities and then to describe the 
present Intrex facilities that are being developed. Be
cause of the differences between the storage form and 
content of the catalog (digital, alphanumeric) and the 
full text (photographic images, graphic), and because 
of the differences between user interaction with the 
catalog and full text, we find it convenient first to de
scribe the two facilities separately, and then to describe 
the operation of the integrated facilities by means of an 
example of its use during a library-user's session. 

The augmented-catalog display-console requirements 

Effective testing of user interaction with the aug
mented catalog requires a remote computer console op
timally suited to the task. Currently available consoles, 
however, exhibit serious shortcomings as regards 
catalog experimentation. Impact-printing teletype
writers operating at ten to fifteen characters per second, 
for example, are clearly too slow for rapid scanning of 
large quantities of bibliographic data. The cathode-ray
tube (CRT) alphanumeric display terminals now 
offered by several manufacturers do allow for more 
rapid, quiet display of computer-stored data. However" 
they, too, lack features essential to effective user inter
action with the augmented catalog. For instance, there 
is generally a lack of flexibility in operating modes, in 
formats (e.g., no superscripts and SUbscripts) and a 
servere limitation on the size of the character set. On the 
other hand, the CRT graphic display terminals that are 



currently available can be programmed to circumvent 
these deficiencies but are very expensive as regards orig
inal cost, communications requirements, and utilization 
of computer time. 

As a result, a study program was initiated to identify 
the functional characteristics of a console ideally suited 
for augmented-catalog experimentation. Space does not 
permit a full exposition of the study program. The pro
gram involved an investigation of the reactions of 
various types of users to the terminal facilities serving 
present time-shared computer utilities, for example, 
Project MAC,7 and some experimental specialized co~
puter-based information networks, for example RE
CONS and TIP. 9 The program also involved an investi
gation of promising relevant new technologies and dis
cussions with many people as regards their thoughts on 
the input/output requirements of a computer-based 
library system. The most important items considered in 
this study program were: (1) the user community that 
will be served by the augmented-catalog, (2) the type of 
data that will be contained in the augmented catalog, 
and (3) the operation of the computer-based library 
system. The salient point of each of these general consid
erations are now discussed. The interested reader can 
find greater detail in References 1-4. Results of the ex
periments performed on the console system described 
here will be reported by Project Intrex as they become 
available. 

The user community 

The background of the community of users ranges 
from first year students to researchers on the outer 
fringes of science, technology, etc. They may be interest
ed in finding such things as the specific heat of carbon 
steel or the latest theory about semiconductor surfaces. 
They may use the console occasionally, as in the case of 
most students, or use the console daily, as in the case of 
many librarians. It is safe to say that the majority of 
users will not be computer "buffs" and that they will 
be demanding of the system. The users will want to be 
able to operate the system with a minimum amount of 
re-learning at each session, that is to say, they will want 
to maintain a useful level of competence as regards the 
system and have tutoring on specific features of the sys
tem operation as needed in a session. Furthermore, the 
console should not be tiring to use. This effects not only 
the manner of displaying the data but the layout and or
ganization of the console manual inputs as well. 

The augmented-catalog data 

The data contained in the augmented catalog are 
basically alphanumeric' and are contained in a special 
disc file attached to a time-shared computer system. Of 
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particular consequence to both the display-console de
sign and the entire computer-based library is the large 
number of alphanumeric symbols that is required. The 
set of 128 USASCII standard symbols is insufficient, 
and thus must pe augmented. Furthermore, provisions 
for superscript~, subscripts and underlines must be in
cluded to properly display to users in forms with which 
they are familiar, such items as chemical formulas and 
mathematical equations. 

Relationships among key words and phrases jn the 
catalog as shown in a .thesaurus are perhaps most easily 
displayed as a tree. Thus, as an aid to the user, the dis
play consol~ should have the graphical capability to 
display a simple tree structure amongst word phrases. 

The computer-based library operation 

Central to the Intrex computer-based library opera
tion is the concept of an on-line, remote access, interac
tive time-shared computer system. The advantages and 
disadvantages of such a computer system are now fairly 
well known. Of course, the design of the computer-based 
library should make fullest use of this knowledge. 

As opposed to the usual type of short statements 
interchanged between the users and the computer in the 
present time-shared computer operations a library user 
frequently will require a large quantity of data to be 
sent to him so that he might scan through it. On the 
other hand, the library user will spend most of his 
central processor time on generating search specifica
tions rather than generating programs or numerical 
data. 

A library continually receives new acquistions and 
library procedures change from time to time. Hence, 
the augmented-catalog display console must be able to 
evolve and. gracefully accept various types of changes 
witJ:1 a minimum of disruption to library services and at 
a minimum cost. 

Since a computer-based library will operate for a long 
period of time before being replaced, cost of ownership, 
which not only includes original cost but recurring costs 
of such items as maintenance, communications and up
dating, is of great importance. 

The augmented-catalog display-console facility 

Several basic hypotheses resulted from the study pro
gram and have been used in the formulation of the 
initial design concepts. First, it is advantageous to han
dle many routine operations at the console in order to 
minimize communication between the console and the 
time-shared computer. This approach reduces the de
mands on the central computer and should result in 
more rapid access to the central machine when required. 
It further reduces the cost of transmitting information 
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from the time-shared computer to I the console, an im
portant consideration in any large operational system. 
Second, careful attention should be given to the size and 
content of the console alphabet, the ability to produce 
superscripts and subscripts, and to the human engineer
ing aspects of the console in order to ensure favorable 
user reaction to the console and to the overall system. 
Third, it must be possible for the uninitiated user to be
come familiar with the operation of the console and the 
catalog system rapidly and easily. Finally, the 
design of the console should be such that it can be 
economically rep~oduced. This feature is a necessary 
prerequistite to the wide-scale use of computer-based 
library systems. Consideration of these hypotheses has 
led to the formulation of the design concepts described 
in the following paragraphs. 

A console has been built that uses a cathode-ray tube 
(CRT) display with approximately 1,800 alphanumeric
character capacity. The data communication between 
central computer and console is 120 characters per sec
ond with provisions for higher data rates. Several 
character sets are possible in addition to the English 
alphabet. User communications are entered by means of 
a typewriter keyboard, and special function buttons 
which designate frequently encountered commands. 
The user's message is displayed on the CRT prior to the 
transmission to the time-shared computer, and editing 
of displayed commands is possible. As the user's conver
sation with the catalog system progresses, certain data 

supplied by the computer may be stored locally for fu
ture ref erence, edited as required, and eventually 
printed in hard-copy form. 

In order to reduce the cost of individual consoles, it is 
advantageous to cluster consoles around a local station 
which includes data storage and processing that is com
mon to all clustered consoles. Initial investigations indi
cate that it should be possible to design economical 
console systems which cluster about ten consoles at 
distances of a thousand feet from a local station. Thus, 
the consoles could be placed in several different rooms of 
a single building. Interconnections between the consoles 
and the station are made with coaxial cables, while thp. 
connection between the station and the time-shared 
computer utility are made by common carrier. In the 
future, a high-speed photographic printer will be located 
in the vicinity of the console to produce hard copy on 
command from any of the consoles. 

Basic Augmented.Catalog Console 
System Description 

Figure 2 shows the present Intrex display facilities 
that are being developed. The major components of the 
augmented-catalog console system are identified by 
broken line!'!. Note that individual user console has the 
following components: 

1. A CRT to display information. 
2. A set of lights to display information about the 

FIGUR'E 2-An experimental display system for project Intrex 
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status of the display system and time-shared 
computer. 

3. A set of CRT programmable buttons or function 
switches that are mechanically operated by the 
user to select the modes of console operation and 
the frequently used operations. The labels and 
functions are determined by the computer pro
gram and the labels ale displayed on the CRT 
screen. 

4. Mechanical function switches to supplement the 
CRT programmable buttons. 

5. A typewriter keyboard to enter specific informa
tion into the system. 

6. A light pen to point to information on the CRT 
screen. 

7. A character generator to produce a large alphabet 
of alphanumeric symbols on the CRT. 

8. A format generator to produce the approximately 
1800 character spaces on the CRT screen, ;and pro
vide superscripts and subscripts. 

9. Control logic under the direction of the console's 
CRT programmable buttons, light pen, and func
tion switches and the buffer/controller. 

Specific details of these components are discussed in 
Reference 5. Briefly, the console is organized as follows: 
All information displayed on the CRT must be stored 
on a magnetic-drum track located in the buffer/control
ler (B/C) and pass through the character generator lo
cated at the console. A special character geneIator based 
ona lensless, flying-spot scanner is being developed for 
Project Intrex and is thoroughly described in Refer
ences 2 and 5. It can produce up to 192 high-quality 
characters. Since the character set is specified by a 
photographic slide, the set can be easily changed. Each 
console has its own character generator to provide a 
flexible system in which each console can operate with 
a different alphabet. The format generator, which is al
ways connected to the CRT, periodically produces a 
raster of 31 lines with spaces for 56 characters per line. 
Human factors studies indicate that the character size 
resulting from this format is good for the viewing dis
tances at which the console will be operated.lO •n The 
format generator is synchronized to the magnetic drum 
so that one complete revolution of the drum corresponds 
to one complete raster. Consequently, drum addresses 
correspond to specific positions on the CRT screen, 
thereby simplifying logic. With a refresh rate (con
trolled by the drum speed) of approximately 57.5 re
freshes per second, and 10 bits per character, approxi
mately 1,175,000 bits per second are transferred from 
the drum to the character generator, hence a coaxial 
connection between the user console . and the B/C is, 
therefore, required. The time per character is approx
imately 8.5 microseconds, which is ample time for the 
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character generator. Since one of the displayed lines of 
characters must be devoted to the labels for the CRM 
programmable buttons, approximately 1700 character 
spaces are available for textual information. 

The control logic of the console interprets commands 
generated by either the console or the processor in the 
B/C and through these commands the control logic 
establishes the console's "state" and hence its mode of 
operation. Through the console commandEl, the control 
logic establishes interrupts to the processor which in 
turn processes these interrupts when its own time is 
available to treat the console's interrupt. The major 
items specified by the console state are as follows: 

1. The drum track that is being displayed. One track 
corresponds to one complete display on the CRT 
and is referred to as a frame. 

2\. Whether data are being transferred to or from a 
particluar drum track or to or from the time-shared 
computer. 

3. The labels of the CRT programmable buttons, and 
hence the function of these buttons. 

4. Disposition of data generated by the keyboard. 

The control logic is itself under the direction of the 
CRT programmable buttons, the mechanical function 
switches ~nd light pen, and the processor in the B/C. 

The second part of the console system, the B/C, con
tains four major components. The memory drum, with 
its associated electronics and logic, stor~ the display 
information for the consoles, labels for the CRT pro
grammable buttons, routines for the controller, and 
-instructions on the use of the consoles. The processor, 
which is actually a small digital computer (a Varian Data 
Mochin.es 620 I), controls the operating modes of the 
consoles and the data flow among consoles, drum, and 
central time-shared computer. The input-output buffer 
~nd its electronics matches the different data rates in 
the drum, consoles, and communication link. The buffer 
also defines code groups corresponding to characters. 
Direct data communication is provided between the 
central time-shared computer and B/C. 

The low-cost Vermont Research VRI004S drum 
memory being used can provide up to 128 data tracks. 
Each track represents one complete CRT display, 
which is called a "frame." One console has five frames 
dedicated to its exclusive use. Also, a drum track is de
voted to the possible labels for the CRT programmable 
buttons. Another set of drum tracks is devoted to in
structions for the use of the console, and still another 
set to tpe processor's use. N ondedicated data tracks will 
be dynamically allocated, giving an individual user a 
potentially large number of frames viewable instan
taneously with no action required by the time-shared 
computer. 
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When data phones are used in the communication 
link, experience with existing display systems indicates 
that several data phones are required to handle many 
user consoles from a single B/C. Data phones now 
available for switched telephone networks provide up to 
2000 bits per second of data, but within the near future 
this rate will be approximately doubled. ~2 Since one 
CRT frame contains approximately 20,000 bits, at least 
ten seconds is required to transmit a complete single 
frame. Fortunately, the majority of the messages be
tween the user and the time-shared computer are in the 
order of one line of text requiriig only onh-third of a sec
ond. However, since a single tiser might' wish to request 
up to five frames at a time, ,n maximum of 50 seconds 
might be required to serve' a single user. In' order to 
avoid prolonged delays in,service to other users who 
may be awaiting service at that instant, one 2000-bps 
data phone must be dedicated to a small number of con
soles, or the servicing of the consoles must be interlaced, 
or combinations of these two must be employed. At the 
present time, our thinking runs toward use of one data 
phone for every three consoles, and interlacing the ser
vice to provide response time of less than 30 seconds 
under worst-case conditions. Since, in actual practice, 
users most frequently will be sending and receiving 
much less than a complete frame and furthermore, 
since the probability that several users will be communi
cating data simultaneously is very small, as regards the 
communications delays, the service would typically be 
less than a second. 

The processor in the BIC is a small digital computer 
which operates as the process controller and has inter
rupt features. A commerically available small computer 
is being used instead of a specially built computer. This 
provides a very powerful and flexible console system 
on which to conduct the Intrex experiments. Although 
the data rates are high in the CRT channel, by proper 
organization of the control logic in the user consoles the 
control data rate, which is the rate important to the 
processor,. can be si~ificantly reduced. 

Further details of the augmented-catalog display facil
ity can be found in References 2,4, and 5. 

The text-access display requirements 

Much of discussion concerning the augmented-cata
log display-console requirements in a previous section 
are applicable here. The difference between the two sets 
of requirements are due to the differences of the storage 
medium and types of user interaction with the stored 
data. The catalog data are digitalJy stored in a file that 
is attached to the time-shared computer and is accessed 
through and processed by that computer. The library 
user can conduct computer searches on this data and 
modify his copy of the data. Thus, if he wants hard-

copy of this data he can have the data organized in any 
desired form. On the other hand, the full-text data are 
photographic images that are accessed through a me'" 
chanical storage and retrieval unit that is attached to the 
display facility. These data do not pass through either 
the time-shared computer or the buffer/controller 
computer. Their form cannot be modified (except for 
magnification) and the user cannot conduct computer 
searches on the data. The only access to full-text data is 
is by call number. Once the data are obtained, the user 
can read it, can ask for other pages of the same docu
ment or ask for a magnification of portions of the page 
of the document. In short, the dynamics and the dialog 
between man and computer are considerably different 
between the two display facilities. 

With the original text stored in image form, the prob
lem of remote access of text becomes that of reproduc
ing a high-quality image at a remote point. Our experi
ments have shown that at least 2000 scan lines, with 
comparable system resolution, appear to be needed .for 
remote reproduction of microfilmed technical docu
ments (18-to-l reduction ratio) having average quality 
and containing the subscripts, superscripts and. mathe
matical symbols that frequently appear in these texts.2 

Closed-circuit TV requires high bandwidth (80 MHz) 
to achieve the desired resolution of 2000 lines per page. 
Also, because the image is continually refreshed, a sep
arate scanner and transmission line would be required 
for each simultaneous user. Hence, a facsimile-like sys
tem is used in which each text page is scanned and' 
transmitted only once, and the information is captured 

. and stored at the receiver for transient viewing (soft 
copy) or printing (hard copy). This organization permits 
a tradeoff between signal bandwidth and transmission 
time, and also permits time multiplexing of the micro
fiche on which the image is stored, the microfiche stor
age and retrieval device, the scanner and the transmis
sion line to serve a number of users. For example, with a 
transmission time of ~a second per page, signal band
width for a 2000-line scan is reduced to about 4.5 MHz 
(standard TV channel bandwidth) and a single text· 
access system can perhaps service 20 to 30 receivers, as
suming that users would request new pages at 10 to 15 
second intervals. 

Let us now describe the present Intrex text-access 
.system being developed in order to further specify the 
display requirements. The salient features of the text
access system are shown in Fig. 2, and are seen to be an 
automatic microfiche storage-and-retrieval device (a 
modified Houston Fearless CARD machine) capable of 
accommodating 750 microfiche (each with a standard 
60-pageCOSATI format) and of being operated under 
computer control, a single-scan, 2000-line flying-spot 
scanner for converting microfiche images. to video sig-



nals, a 4.5 MHz bandwidth transmission system, two 
types of receiver stations and a spare station, and the 
necessary control logic to access documents through the 
augmented-catalog console. One receiver station pro
vides 35-mm microfilm as its output, a second station 
produces a visual display of text on a storage tube, and a 
third station is available for installation of other forms 
of output equipment as such equipment becomes avail
able. 

The document collection for the experimental systems 
is the full text of the documents in the augmented cata
log. Therefore, both catalog and full-text information 
is available at stations that are remote to the c.entral 
time-shared computer. 

The text-access system is controlled by the augmen
ted catalog buffer/controller unit through its connection 
to the central-station control unit. Control of the text
access system resides mainly in the buffer/controller 
(B/C). Thus, for example, if a user requests the trans
mission of an entire do(;ument, the B/C remembers the 
number of pages to be transmitted and keeps track of 
the access and transmission operations so as to issue an 
appropriately timed command for each page. The access 
number of a document occupies a field in its augmented
catalog entry that is stored in the central time
shared computer. The document number is retrieved 
automatically whenever a document title is retrieved 
and thus is available to the B/C for issuance of 
the text-access command. Our decision to connect 
the text-access system to the augmented catalog 
B/C rather than to the central computer is based 
on our belief that the full-text accessing process 
could be slowed down by the wait-time of our present 
time-shared facility. 

The text-access display facility 

The usefulness of future operational text-access sys
tems will depend to a great extent on the capabilities of 
the users' terminals. Low cost for the terminals will ob
viously be of paramount importance. In addition, we 
are presently facing, in the realm of terminals, severe 
technological limitations, especiallY'In the area of tran
sient displays (Le., soft-copy displays in which the user 
cannot take a copy of the displayed data with him). 
Substantial research and development activities in the 
industrial sector should, if successful, contribute mark
edly to text-access-terminal advancements. In light of 
these external pending developments we plan, for the 
present, to employ a minimum number of terminals~ 
We shall have one terminal for each major type of out
put device, that is, a terminal for transient display of 
text, another for film copy, and a third for experiment
ing with new devices as they come along. We also expect 
to have a separate terminal for making paper copy. 
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Weare favoring the transient-type terminal, since it 
approaches most closely the capability of providing 
immediate text access and is potentially the least expen
sive to operate. Unfortunately, no fully satisfactory de
vice is available for our purpose; however, the Tektronix 
eleven-inch storage tube does afford limited capabilities 
and it will be incorporated into one terminal. The sec
ond class of terminal, the film terminal will also enable 
us to test the acceptability of film as a primary hard
copy output; that is, we shall be able to decide if film, is 
an acceptable substitute for the more expensive paper 
copy. 

Storage-tube terminal 

The storage-tube terminal, diagrammed in Fig. 3 
makes use of the Tektronix Type 611, eleven-inch stor
age display unit. An evaluation of an experimental 
engineering model of the Tektronix direct-view storage
tube display indicates that the resolution and brightness 
of this display are adequate for the reader who wishes to 
make a preliminary examination of text in order to 
verify its relevance to his requirements.2 Resloution 
may be marginal, however, for perception of poor-qual
ity print or small symbols and characters. (It is esti
mated that an improvement of approximately 25~) in 
resolution is required). To overcome the resolution limi
tation, an enlarged version of anyone of nine overlap
ping portions of a page of text can be requested. 

Operation of the storage-tube terminal is straightfor
ward. Upon receipt of an ERASE command from the 
demodulator, any image appearing on the screen is 
erased. One-half second later the BEGINSWEEP com
mand will be received, followed by the video signal for 
one page of text. After being written on the screen the 
text remains on the tube face until the next ERASE 
command. Because the writing speed of the Tektronix 
Type 611 display is relatively slow, the scanning of a 
frame of the original microfilm and the transmission of 
the corresponding signal must be extended from the de
sired one-half second writing time to four seconds. 

Video 
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Display Unit 

FIGURE 3-Storag~tube terminal 
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Microfilm-facsimile terminal 

The microfilm-facsimile terminal, shown in Figure 4, 
consist of a high-resolution cathode-ray tube with its as
sociated sweep and focus circuitry, an automatic camera
processor, and control logic required to operate the ter
minal. On command from the central station the micro
film-facsimile terminal will reconstruct on the face of a 
high-resolution cathode-ray tube the image of a full 
page of text from a video sign9.1 of 4.5-MHz bandwidth 
transmitted from the central station. The automatic
camera and film-processor unit will record on 35-mm 
film the image of the text displayed on the cathode-ray 
tube and deliver to the user a fully processed strip 
of film in a convenient form for viewing in a microfilm 
reader. 

The operation and configuration of the high-resolu
tion cathode-ray tube with its associated sweep and 
focus circuitry is described in the Intrex Semiannual 
Activity Report dated 15 March 19672 and Reference 6. 
The operational requirements for the camera and film 
processor are as follows: 

1. The automatic-camera and film-processor unit 
shall record on 35-mm film the image of a full page 
of text which is obtained in a single scan and dis
played on the screen of a high-resolution cathode
ray tube. It shall also deliver to the user a fully 
processed strip of film in a convenient form for 
use in a microfilm viewer. 

2. Each strip of film will contain a mini.mum of one, 
and a maximum of ten, adjacent images. 

3. The maximum combined length of unexposed 
leader and trailer on each film strip shall be five 
inches. 

4. The film transport of the camera and processor 
shall handle unperforated 35-mm film. 

5. The microfilm-facsimile terminal shall not require 
an attendant for normal operations and the cam
era and processor shall not require routing main-
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FIGURE 4-The 35-mm film copy terminal 
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tenance, other than the loading of film and chemi
cals, more than once per week. 

6. The camera-and-processor unit shall be designed 
for operation by electrical-control signals. 

7. In view of the experimental nature of the terminal, 
the camera-and-processor unit shall be designed 
with emphasis on flexibility; that is, it shall be 
possible to change the type of film, the size of the 
image on the film, the type of chemicals utilized, 
or the lens, without major equipment alterations. 

Since no camera-and-processor unit that satisfac
torily meets all the above requirements was found to 
be commercially available, a Kodak MCD-II micro
film camera and G AF Transflo Type 1206 leaderless 
film processor were purchased and have been merged 
into a camera-and-processor unit.2 

Display software 

Display software operates in the time-shared comput
er and the small computer contained in the buffer/con
troller. The time-shared-computer software' provides 
the more sophisticated segments of the man-machine 
dialog, handles the thesaurus, and the search routines. 
The small-computer software provides the user with 
the simple segments of the man-machine dialog, simple 
editing procedures, buffer/controller storage manage
ment, and communications control between the user 
console and the time-shared computer. 

The combination of these two software packages 
makes a very versatile system such as is required in the 
types of experiments to be conducted by Project Intrex. 
Console software2 is being developed simultaneously 
with the console hardware with close communications 
between the two development programs in order to ef
fect design modifications in both programs so as to pro
duce realizations of tasks that simultaneously make 
efficient use of hardware and software. This paper will 
not discuss the details of the software packages. 

An example 

Let us illustrate some of the ~eatures that are being 
included in the lntrex augmented-catalog and t?xt-ac
cess system by means of a simple dtalog that could occur 
during an operating session using the display facilities 
described here. 

The User establishes his right to use the information
transfer system by typing on the console keyboard the 
appropriate identification. The System (S) indicates 
that it is prepared to servic~ th~ User (U) by displaying 
READY at the console. The dia'og may then continue 
as follows: 

. U: Search for infonnation on display consoles. 



S: Search being made for informat:on on display con-
soles. Search will be completed within X seconds. 

(Two features are noted !n the system's reply. First it 
repeats the query made in order to ensure that it has 
received the proper request. Second, the number X is 
determined by the present demands on the System. If 
it is lightly loaded, for example, X would be very small, 
whereas a heavily loaded System would have a larger 
value of X.) 

... By X seconds, the dialog continues ... 

S. Five hundred documents found. Do you wish 
titles? 

(The number of documents that is found in a search is 
usually an easy criterion for a user on which to base his 
next step.) 

U: No. Search only for documents on digital .. com
puter display consoles. 

S: Fifty documents found. Do you wish titles? 
U : No. Search only for documents on alphanumeric 

consoles published since 1966. 

(Two qualifiers [more could be usedJ have been used 
in this request, plus, the user simply says "consoles" 
instead of "display consoles" since all documents now 
being searched are concerned with display consoles.) 

S: Ten documents found. Do you wish titles? 
U: Yes. 

(Ten documents is a manageable number.) 

S: (Displays author, title, publication data, and the 
library identification numbers of the ten docu
ments on the console CRT.) 

U. Erase documents number 2 and number 7. 

(By inspection the User knows he does not want to see 
these two documents. He can make this command in 
several ways. First, he could point to the document 
descriptions 0)1 the screen with the light pen and push 
the ERASE function switch. Second, he could point 
with the cursor and push the ERASE function switch. 
Third, he could type the command directly.) 

S: (Displays the remaining eight documents, renum 
bering them 1 through 8.) 

U ; Display technical levels of the documents and 
group the documents together that are of the same 
technical level. 

S: (Display three groupings of documents. The first 
group of two documents are under the "primer" 
heading, the second group of five documents is 
under the "company report" heading, and the 
third group of 1 document is under the "recent ra-
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search" heading. Documents are again renum
bered in the order in which they are displayed.) 

U: Display the abstracts of these documents. (The 
. User points to documents number 2 and number 8 
with light pen.) 

S: (Display the two abstracts). 
U: Print out abstract and previous data on document 

number 2. 
S: (Makes a hard copy of author, title, pUblication 

data, library identification number, technical 
level and abstract of document number 2.) 

U: Is the full text of this document available? 
S: It is available in the text-access retrieval unit, on 

microfilm and in bound volume. Volume on loan. 
Due· back in five days. Call number is 617 369 
2257. 

(At this point the User could place himself on the wait
ing list for the volume, he could order a microfilm copy 
of the document, or he could place the console into a 
"text-access mode." Suppose he does the latter.) 

U: Go into text-access mode, and show me page 1 of 
document number 1. 

S: In text-access mode, document number 617 369 
2257, page 1 is being displayed on the text-access 
console. (This page is displayed on the Storage
Tube Terminal which is adjacent to the augment
ed catalog console.) 

U: Show me the next page of the document. 
S: (Displays page 2 on Storage-Tube Terminal.) 

(At this point the User can access all pages of the docu
ment by "remotely turning pages" back and forth. If, 
on this inspection, he decides that he wants a copy of a 
certain page(s) he .could request a microfilm copy [or in 
future systems, paper copy] to be generated at the Film 
Output Terminal that is located in close proximity to 
himself. If he found the name of a new reference, or ob
tained a new lead upon reading the document, he could 
return· to the augmented-catalog mode, and conduct a 
new search.) 

This example can only give one the most rudimentary 
idea as to the operation of the display facilities being 
implemented at Project Intrex. Space considerations do 
not allow further elaborations in the area of operation of 
facilities. 

(J oti)Jole mechanical design 

Heretofore not much has been said about the me
chanical design features of the consoles. A great deal of 
design effort is being applied to the human engineering 
aspects of the consoles since it is imperative that the 
user's initial contact with the consoles, the only part of 
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the Intrex experimental library which the average user 
sees, be a pleasant one. The objectives here are to re
tain sufficient flexibility in the initial consoles to permit 
effective user evaluation of various features and options 
while at the same time to maintain a finished look to the 
consoles. 

The augmented-catalog console takes the form of a 
two-pedestal desk. One pedestal houses the console 
electronics and the second pedestal is free for storage 
of user's materials. Figure 5 is an artist's sketch of the 
console. The display CRT is in a movable mount that is 
attached to the center rear of the desk. This places the 
display directly in fro~t of the user at a comfortable 
distance from his eyes and hands. The mount allows the 
display CRT to be moved up or down, left or right, and 
to be tilted up or down to accommodate user preference. 
The movable mount is normally firmly locked to its sup
porting member and is released with a single pushbut
ton for adjustment. Since the mount is counterweighted, 
its position can be changed with a minimum amount of 
effort while the user is sitting down. 

The CRT programmable buttons are on the display
CRT mount located at the bottom of the CRT, as 
shown schematically in Fig. 2. The keyboard is con
nected to the console with a cable of sufficient length to 
permit positioning it anywhere on the surface of the 
desk. 

The text-access user terminals are receiving similar 
attention. Furthermore, integration of the text-access 
and augmented-catalog user terminals is under study. 

SUMMARY 

Two basically different computer-driven display facil
ities for an experimental computer-based library have 
been described. The first facility is for catalog access. It 

FIGURE 5-Augmented-catalog console 

is designed to· operate on digitally-stored catalog data 
in an interactive mode. It consists of several user con
soles that are connected by means of coaxial cables to a 
station containing a drum memory, and a small digital 
computer. The station in turn is connected by common 
carrier lines to a time-shared computer to which the data 
banks for the augmented library catalog are attached. A 
user console has an alphanumeric, refreshed-CRT dis
play (which is maintained by the drum memory in the 
station), a typewriter keyboard, mechanical function 
switches with fixed and dynamically- programmable 
labels, and a light pen. The small digital computer in the 
station allows the user to do simple operations on the 
displayed data and to obtain a certain amount of tutor
ing on system use without recourse to the central time
shared computer, thus relaxing demands of a single 
catalog user on the resources of the time-shared com
puter and the communications facilities serving it. 

The second display facility is for text access. It is de
signed to operate in the full-text photographic images of 
the documents in the library. It consists of several user 
terminals and microfilm-processor terminal which are 
connected to a microfiche storage and retrieval unit by 
coaxial cable. The storage and retrieval unit in turn is 
connected to the station containing the drum memory 
and small digital computer by common carrier lines. A 
user terminal has a storage CRT that is driven in a fac
simile mode to produce a soft copy of the images, and 
some mechanical function switches. Control of the ter
minal is through the augmented-catalog console. The 
microfilm -processor terminal produces microfilm copies 
of the text image when requested to do so by a user at 
a text-access telminal. 

The display facilities are presently being constructed 
at the Electronic Systems Laboratory of M.LT. and is 
scheduled to become operational the fall of 1968. It is 
expected that the Intrex experiments will provide new 
insights into the functional characteristics of· display 
facilities ideally suited for a computer-based augmented 
library catalog and full-text access. As new functional 
characteristics are identified they will be incorporated 
into the facilities described here. Thus, we view the fa
cilities described here. as the first of a series of experi
mental display facilities to be implemented. 
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Response time in man-computer conversational 
transactions 

by ROBERT B. MILLER 

International Business Machines Corporation 
Poughkeepsie, N ew York 

INTRODUCTION AND MAJOR CONCEPTS 

The literature concerning man-computer trans
actions abounds in controversy about the limits of 
"system response time" to a user's command or 
inquiry at a terminal. Two major semantic iss,ues 
prohibit resolving this controversy. One issue 
centers around the question of "Response time to 
what?" The implication is that different human 
purposes and actions will have different acceptable 
or useful response times. 

This paper attempts a rather exhaustive listing 
and definition of different classes of human action 
and purpose at terminals of various kinds. It will 
be shown that "two-second response" is not a uni
versal requirement. 

'The second semantic question is "What is a need 
or requirement?" In the present discussion, the 
reader is asked to accept the following definition: 
"A need or requirement is some demonstrably bet
ter alternative in a set of competing known alter
natives that enable a human purpose or action to 
be implemented." This definition intentionally 
ignores the problem of value versus cost. It is not 
offered as a universally useful definition of "need." 
It does enable us to get into a systematic exposi
tion of problems, alternatives and implications. A. 
value-based definition, in contrast to the rational 
one given here, inevitably leads to a vicious regress 
that dead-ends only with the 'agreement that all 
that humans really need are food, water, and a 
place to sleep. 

Another point of view, compatible with the 
present one, is that need is equivalent to what is 
demanded and what can be made available; need, 
therefore, is a cultural and technical outcome. It 
is the outcome of many vectors, at least one of 
which is what the marketplace has to offer and 
the number of Joneses who have one, too. 

267 

Operating needs and psychological needs 

An example of an operating need is that unless 
a given airplane's velocity exceeds its stall speed, 
the airplane will fall to earth. Velocity above stall 
speed is an undebatable operating need. In a su
perficially different context, it is a "fact" (let's 
assume we know the numbers) that when airline 
customers make reservations over a telephone, any 
delays in completing transactions above five min
utes will reduce their making future reservations 
with this airline by 20%. A related form of need 
in this context is that the longer it takes to process 
one reservation, the larger the number of reserva
tion clerks and reservation terminals that will be 
required. These are just two examples of the con
text of. operating needs. This report will not look 
into the problems of operating needs except to 
mention when they may be more significant than 
a psychological need. The following topics address 
psychological needs. 

Response to expectancies 

Psychological "needs" (in the information pro
cessing context) have two major forms, with over
lap. One is in the nature of response to an expec
tation. If you address' another human being, you 
expect some communicative response within x sec
onds-perhaps two to four seconds. Even though 
his response may not have the message context 
you want, you expect him to respond within that 
time in some fashion, if by no more than a clearing 
of the throat or a grunt. In conversation of any 
kind between humans, silences of more than four 
seconds become embarrassing because they imply 
a breaking of the thread of communication. This 
is similar to a phone line going dead. Conditioning 
experiments (which, of course, should be intro-



268 Fall Joint Computer Conference, 1968 

duced only with great caution in the context of 
cognitive activities) suggest an almost magical 
boundary of two-second limits in the effectiveness 
of feedback of "knowledge of results," with a peak 
of effectiveness for very simple responses at about 
half a second. There is much evidence to suggest 
that two seconds in human behavior is a relatively 
long time. Of course even the lower animals can 
be conditioned (acquire expectancies) to delays, 
although as the delay is extended the reliability of 
the performance rapidly deteriorates. The param
eters differ for different species. 

These points are made only to suggest that the 
behavior of organisms is time-dependent, and that 
time spans in the order of one to ten seconds have 
significance for some f'Orms of behavior involving 
information transactions with an environment. 

Activity clumping and psychological closure, 

There is a second class of psychological need in 
communications. This need recognizes that hu
mans spontaneously organize their activities into 
clumps that are terminated by the completion of 
a subjective purpose or subpurpose. When I search 
in a phone book for a telephone number with 
which to dial a person I want to talk with, I have 
a sense of temporary completion when I find the 
telephone number. I have another when I have 
completed dialing the number. I will more readily 
tolerate an interruption or delay after such a com
pletion than during the activities preceding thiR 
completion. Psychologists call this subjective 
sense of completion a "closure" and that is the 
term used henceforth in this report. Tl}e rule is 
that more extended delays may be made in a con
versation or transaction after a closure than in 
the process of obtaining a closure. 

Human short-term memory 

Here is a rationale for this phenomenon. Per
forming any task calls for holding a body of in
formation in mind-I call this short-term memory. 
When I am .looking up the telephone number, I 
am holding in mind the image of the name I am 
searching for as well as the goal-which. is lo
cating this name in the list. . When I shift from 
temporarily memorizing the telephone number to 
dialing it, short-term memory is holding this set 
of digits and the goal action of completing the 
dialing. An interruption or delay in achieving a 
goal usually results in a degree of frustration. The 

longer a content must be held in short-term mem
ory, the greater the chances of forgetting or error. 
Thus, on both counts (short-term memory and 
goal aspiration), waiting times within a clump of 
activities have deleterious effects. A psychological 
closure results in at least a partial purging of 
short-term memory or the internal activities that 
support it. 

In very complex problem solving, short-term 
memory is heavily filled. It is becoming clear in 
the psychological literature that the degree of com
plexity of problems that can be solved by a human 
is dependent on how much information (and in 
what form) he can hold in short-term memory. 
~uman memory is never passive. Spontaneous 
noise from within the thinking system, as well as 
(ii~tracti'Ons from outside, can interfere with 
short-term memory contents, and of course these 
effects rapidly increase when the individual has an 
awareness of waiting. This awareness comes as 
soon as several second s-two seconds still seem to 
be a good number here. 

That is why the tasks which humans can and 
will perform with machine communications will 
seriously change their character if response delays 
are greater than two seconds, with some ,possible 
extension of another second or so. Thus, a system 
with response delays of a standard ten seconds 
will not permit the kind of thinking c'Ontinuity 
essential to sustained pr'Oblem solving, and espe
cially where the kind 'Of problem or stage of its 
solution contains a high degree of ambiguity. 
Such a system will have uses, but they will be 
different from those of a two-second system. 

Psychologi,cal step-down discontinuities with 
increasing response delays 

The point here is that response delays are not 
merely matters of "convenience" to the user, un
less the word "convenience" is made to mean more 
than it usually does. There is not a straight-line 
decrease in efficiency as the response delay in
creases; rather, sudden drops in mental efficiency 
occur when delays exceed a given point. These 
sudden drops at given delay points can be thought 
of as psychological step-down discontinuities. 
Thus, a ten-sec'Ond response system (aside from 
operating inefficiencies) may be no better for 
the human-in some tasks at least-than a 'One
minute resnonse or a five-minute response. If the 
human diverts his attention from the thought 
matrix (e. g., waiting to be filled or completed by 
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system response to some other train of thought), 
the significance of response delay changes dramat
ically. 

The statement that "In the past it took two 
days to get an answer to a question that now is 
given in fifteen minutes" means, perhaps, an in
crease in operating efficiency for the system, but 
does not in itself materially change the cognitive 
(psychological) behavior of the person getting 
the information. 

Psychological closure comes in different degrees. 
In the telephone example, I get a partial closure 
when I find the name in a telephone book, another 
when I complete dialing the number, and another 
when I am talking to the right person. Talking 
to the person I have in mind completes the closure 
of the series of transactions that led to hearing 
his voice and name. Just as there is a hierarchy 
of closures in a given task or goal-directed be
havior sequence, so there are probably varying 
amounts of acceptable delays. The greater the 
closure, the longer the acceptable delay in prepar
ing for and receiving the next response following 
that closure. 

A general rule for guidance would be: For 
good communication with humans, response delays 
of more than two seconds should follow only a 
condition of task closure as perceived by the hu
man, or as structured for the human. 

Response time, or system response time, has 
not yet been defined in this report, so that the 
two-second rule applies to "meaningful replies" 
to _ human requests or commands, and these are 
defined, along with others in the pages to follow. 
In addition to definitions and examples of in
quiry and response modes, estimates are made of 
acceptable response times. 

Som,e qualifications about the analysis 

The analysis of qualitative behavior and con
version of the analysis into quantitative limits -is 
prone to misinterpretation. This is especially true 
when the subject is human behavior. Therefore, 
the following provisos are made explicit. 

1. The ,classes of response categories are not 
exhaustive. 

The seventeen types of response category 
and response time cited in the next section 
of this report are certainly not exhaustive 
of all the possibilities. Without too much 

strain, however, they seem to cover a large 
proportion of interactive behavior between 
humans and information-processing sys
tems. 

2. A response signal can ,communicate several 
messages at the same time. 

A signal can communicate several messages 
to the user concurrently. Thus, if the sys
tem replies to a user query or command 
with the statement that is the equivalent of, 
"I've started doing your work," the user 
knows (a) his request has been listened to, 
(b) his request has been accepted, (c) that 
an interpretation of his request has been 
made, and (d) that the system is now busy 
trying to provide him with an answer. 

In the next section, the elements listed 
above are differentiated into four different 
kinds of response, but in system operation 
they may (or may not) be combined into a 
single communication. If so, the response 
time that should be met is that demanded by 
the component in the group which demands 
the fastest response time. 

3. The language in the text does not indi,ca te 
the form of inquiry or response. 

In most cases, a topic will be introduced 
by a title such as "Response to 'Here I am, 
what work should I do next?'" This ex
pression is intended to simplify communica
tion to the reader of the report. It does not 
imply that these words would be entered as 
such into the system. In many cases, the 
expression of the inquiry, or of the system's 
response, may be implicrt in some other 
behavior. Thus, lifting the telephone re
ceiver and putting it to my ear has the 
implicit question, "Are you listening to me 
and can you give me service?" The dial tone 
says that it can. 

The reader, therefore, is urged to look 
at the context under a topic title for proper 
orientation. 

4. Tasks can be done in other than the conver
sational mode. 

Whereas in traditional batch activities by 
computer or by humans, responses to queries 
may have taken days, a' response time of 
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two seconds may be stipulated in the fol
lowing pages. Therefore, the critic will ask: 
"Isn't a response time of 30 seconds or even 
an hour, better than 24 hours? If so, why 
isn't it good enough?" The answer must be, 
"Yes, 30 seconds is better than 24 hours 
for some purposes, but it is not good enough 
to maintain the continuity of human thought 
processes." Where discontinuities in human 
thought processes are irrelevant or unim
. portant, both to effective problem solving 
and to effective use of the professional's 
time, then the conversational mode is beside 
the point. But it will be easily demonstrated 
that many inquiries will not be made, and 
many potentially promising alternatives will 
not be examined by the human if he does 
not have conversational speeds-as defined 
in this report-available to him. But tasks 
will still be completed as indeed they have 
been in the past, without conversational in
teraction, and at least some of them will be 
completed more poorly by any criterion. 
This assertion is certainly a testable hy
pothesis. 

5. Permissible ranges of variation are not cited. 

Any specification intended for implementa
tion should include not only a nominal value 
but acceptable tolerance values within which 
the nominal value may randomly fluctuate. 
These tolerance limits are not generally 
specified for most of the response time 
values cited in the following pages. In 
principle, the range of acceptable variation 
of delay in a given category of response 
time is that range within which the human 
user cannot detect differences under actual 
conditions of use. By "use" is meant the 
context of the human performing a task in 
which the delay of the response element 
occcurs. 

Some laboratory data * of indirect refer
ence are available for making preliminary 
estimates of response time tolerances. Sub
jects judged intervals between clicks as 
"same" or "shorter" or "longer" than a 
comparison or reference interval between 
clicks. They gave their full attention to 

*See in S. S. Stevens, Handbook of Experirnental Psych')[ogy, 
Chap. 32, "Time Perception" by H. Woodrow. 

making these judgments. When the dura
tion of the interval was between 2.0 to 4.0 
seconds, the subjects made 75% correct 
judgment of "same" or "different" at the 
limits of an interval between minus 8 % of 
the stimulus and plus 8 % of the stimulus. 
For example, 75% of the time an interval 
of 1.84 seconds was judged shorter than 2.0 
seconds, and an interval of 2.16 was judged 
longer than 2.0 seconds. This is about the 
same as giving a "tolerance" range of 160/0 
of the value of the stimulus. This value of 
161'0 applies in the range of 2.0 to 4.0 
seconds. 

The most accurate jUdgments of time 
(under these experimental conditions) were 
between 0.6 and 0.8 seconds where the toler
ance range is somewhat less than 10% of 
the value of the stimulus duration (e. g., 
10% of 0.6 seconds delay between clicks). 
With intervals longer than 4.0 seconds such 
as 6.0 to 30 seconds, the equivalent tolerance 
ranges were shown to be 20 to 30%. Sub
stantially the same .relationships held where 
the interval was started and stopped with 
a pulse of light. 

The foregoing results were based on care
fully controlled stimuli and full attention 
to the interval by the subjects. Where the 
stimulus changes from one display to an
other, and where there is subjective varia
bility introduced by the human operator 
making a control response that initiates a 
machine delay, it is likely that response 
time variations may exceed these tolerances 
substantially. By exactly how much would 
require empirical data from subj ects in 
simulated task environments. 

Of indirect significance to this report are 
the findings by a number of investigators 
(cited by Stevens) that the time interval 
that bounds what is subjectively felt as the 
"psychological present" is between 2.3 to 3.5 
seconds, although under some special condi
tions the boundary may extend to 12 seconds. 
This interval contains "the physical time 
over which stimuli may be spread and yet 
all perceived as present . . . the maximal 
physical time over which may extend a 
temporal stimulus pattern . . . which is 
perceived as a whole." 
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Basis of response-time estimates 

The estimates of delay times offered in the fol
lowin'g pages are the best calculated guesses by 
the author, a behavioral scientist, who has spe
cialized in task behavior, including thinking and 
problem solving. These estimates are based on 
rationales, some of which are cited above and 
others in context. They should, indeed, be verified 
by extended systems studies-not in artificial 
laboratories using abstract tasks-but in care
fully designed, real life task environments and 
problems. The human subjects in these studies 
must have had many dozens of hours practice in 
acqu~ring .r,elevant task skills (and not merely in 
manIpulatIng the controls at the console) in order 
for the findingst 0 be useful. Novices have their 
short-term memory registers heavily filled with 
what they are trying to learn; therefore they 
~re not guides as to what the problem-;olving 
user (or other user) will be able to do and want 
to do when he is highly skilled. Traditional re
search practices in psychological laboratories 
would delay, answe~s on these questions for years, 
however, and perhaps provide them after a new 
generation of large data-base systems are already 
on the market. 

Nevertheless, the reader should accept the 
parameters cited as indicative rather than con
clusive. It is relatively easy to arrange demonstra
tions for the skeptic about short response times 
that will impress him 'with how long four seconds 
can seem to be. The demonstration requires merely 
that he become absorbed, motivated, and emo
tionally aroused by the demonstration task. 

De~itions of response time 

. Response to human inC'tiry, with few excep
tIons, serves as feedback to a continuity of 
thought. Human behavior occurs at a variety, of 
information handling levels. Different kinds of 
response and response delay will be appropriate 
at different behavior levels. The definitions that 
follow depend in part for their time estimates 
on psychological rationales given in Part I of' this 
report. 

Topic 1. Response to control activa:tion 

This is the indication of action given, ordinarily, 
by the movement of a key, switch or other con
tro~ member tha~ signals it has been physically 
actIvated. The chck of the typewriter key, or the 

change in control force after moving a switch 
past a detent position are examples. They indi
cate responsiveness of the terminal as an object. 
This response should be immediate and perceived 
as a part of the mechanical action induced by the 
operator. Time delay: No more than 0.1 second. 
See also Topic No. 13, "Graphic Response from 
Light Pen." 

A second form of feedback to the user at a key
board is evidence of the key's being struck. In a 
typewriter, this is given by the printed character 
on the paper. This appears practically simultane. 
ously ,( to the user) to striking or activating the 
key. Even if printed feedback of text being en
tered by the user goes through the computer be
fore it is printed on the platen or CRT, the delay 
between depressing the key' and the visual feed
back should be no more than 0.1 to 0.2 seconds: 

(Note that this delay in feedback may be far too 
slow for skilled keyboard users. These people are 
able to attend to the display, not the keyboard, 
while activating keys, and they will be aware of 
an out-of-synchronization relationship between 
ey~ and hand. Some' adaptation can be made-the 
mechanical pipe organ had delays estimated at be
tween 0.1 and 0.2 seconds. Part of the organist's 
skill was learning to adapt to this delay. Recog
nize, however, that the sense of hearing is more 
time-dependent than the sense of vision.) 

If the light pen is used to select characters for 
a message, confirmation by brightening the se
lected character should be identifiable by the user 
within 0.2 second. 

Topic 2. Response to "System, are you 
listening?" 

The hum of the dial tone is the response the 
telephone gives to' this implicit query. No dial 
tone means: "There's no point in trying to do any
thing further on this channel now." 
Time delay: Up to three seconds. The time for 
onset of this response may be variable, but at some 
cost in user confidence. Confidence will, of course, 
be highest if the response signal begins within a 
second after activating the ON ·switch. 
Comment: These statements apply only, to the 
condition in which the user is becoming "initial
ized" in a session with the console. If he is active
ly engaged in a working conversation with , the 
console, he must get immediate (as perceived by 
him) attention for making an input to the system 
such as pressing a control key or other form of 
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·entry. Having to wait four seconds, or even half 
a second for any reason, when he wishes to enter 
information is violently disrupting to thinking. 

This question has two levels. On the first level, 
the user wants to know if the system is available 
to )Vork for him. After favorable acknowledg
ment, the user-depending on his task--will speci
fy the programs and data he requires for his 
"private working area" at this session. 

Topic 3 Response to "System, can you do 
work for me?" 

A. Because in many cases a "yes" or "no" to 
the question of system availability may depend on 
the kind of work to be done, the user must key 
in'a request for a given service. As the user does 
this, he is becoming psychologically locked into a 
conversation, and his capacity for annoyance' with' 
the quality of service is increased. 
Time delay: For a routine request (as defined by 
the user perf'Orming a task) the acknowledgment 
should he within two seconds. A routine request 
is likely to be a demand for an information image 
in the store. For an impromptu, complex request, 
the delay may extend to five seconds. 

B. The loading of the programs and data called 
for by the user should be within 15 seconds, al
though delays of up to one minute should be toler
able. The user will spend his time during this de
lay in arranging whatever notes he has, and in 
organizing his thoughts preparatory to work. 

C. Response to the user requesting "Set up my 
job f~om where I left off yesterday" should be 
within 15 seconds for most favorable acceptance, 
up to one minute fur acceptance. 

Topic 4. Response to "Sy!stem, do you 
understand me?" 

This implicit query may precede Topic 3, or be 
concurrent with it. Assume the user has entered 
a 7 -digit telephone number as a single, meaning
ful operation. If he has made an error that the 
system can detect, he should be allowed to com
plete his s·egment of thought hefore he is inter
rupted 'Or told he is locked out. After two seconds 
and before four seconds following completion 'Of 
keying in his "thought," he shQuld be informed of 
his error and either "told" to try again, or told 'Of 
the error he made. 
Comment: It is rude (i.e., disturbing) to be inter
rupted in mid-thQught. The annoyance 'Of the in-

terruption makes it more difficult tQ get back to 
the train of thought. The two-second pause en
ables the user to get his sense of completion fol
lowing which an error indication is more accept
able. 

Topic 5. Response to Identification 

Assume a badge-reader type of terminal. The 
user is on his way to his work station 'Or. is at his 
work station. 

He inserts the card, badge, or other identifying 
medium. Ideally, he should have two kinds 'Of 
feedback. 

1. Feedback to correctly positioned card. This 
should be in the 'Order of direct mechanical 
response, such as activating a detent or pro
ducing a click 'Or snap, with a delay 'Of less 
than 0.4 to 0.5 second. If failure to position 
the card properly occurs rarely, this form of 
feedback is unnecessary. 

2. Feedback saying the equivalent" of "OK, I've 
read you." This reSPQnse time should be 
within two seconds, and be a fixed length of 
time. In general, people on their way to an 
activity experience mild annoyance at hav
ing their progress interrupted in' order to 
be identified as an employee. The annoyance 
may be mitigated by making the interrup
ti'On brief, simple, and standardized so that 
it can be accomplished practically by a 
series of reflex actions. That is why the 
confirmation of the identification shQuld be 
made. to the user in a standard length of re
sponse time. When a user clocks out, he is 
apt to be even more impatient with impedi
ments. Then, a two-second delay will seem 
four times as long as a 'One-second delay. 

Another factor in identification speed is . 
th~ bottleneck likely to exist at entrances tQ 
work locations where many employees ar
rive at about the same time. Small lines 'Of 
employees were informally observed as they 
punched hi at time clocks. Cycle time per 
. employee-when he had his time card in 
his hand-was about three seconds at the 
clock. The clock itself had a response time 
of about one second after the time card was 
seated. Cutting this response time to 0.5 
second would reduce the cycle time per em
ployee by 16 %, assuming other factors re
m~ined constant. But if the response time 
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was four seconds, and it were to be cut to 
one second (and the 'Other factors remained 
c'Onstant), people would pass through the 
line twice as fast with a one-second delay 
as with a four-second delay imposed by the 
action of the mechanism. 

Comment: The delays prop'Osed in this secti'On are 
intended t'O apply only to that kind of identifica
tion implied by the statement, "Here I am and 
ready t'O go to work." Where the user sits at an in
quiry terminal and says, symbolically, "This is 
who I am and I want to use your facility," a longer 
delay in acknowledgment is likely to be accept
able-say, up to five or seven seconds. (Note that 
this estimate is consistent with that 'Of "Response 
to, 'System, can you do w'Ork f'Or me?' " when the 
user is initiating an impr'Omptu, c'Omplex request. 
See T'Opic 3.) 

Topic 6. Response to "Here I am, what work 
should I do next?" 

This inquiry is that of aproducti'On worker in 
a factory who has completed an assignment, ac
knowledged its completi'On, and requests fr'Om the 
terminal his next assignment. It is likely that this 
will be displayed to him in the form of a printed 
slip or card prepared at and by the terminal. Ac
ceptable delays could range from 10 to 15 seconds. 

This c'Ondition d'Oes not apply t'O the user in con
versati'On with a terminal, such as in computer
assisted instruction. If the student has completed 
a segment of study and wishes to continue into 
another. topic, the delay should be less than five 
seconds. 

Topic 7. Response to simple inquiry of listed 
information 

This f'Orm of inquiry presumes that the query 
addresses an existing record, or record-string, 
which can be directly retrieved and displayed. Ex
ample: Part #123456: give physical description. 
Or, Richard R. Roe: give man number. Or, Stand
ard circuit #12345: give description. 

If a terminal is frequently used by an employee 
for this kind of inquiry (say, m'Ore than once an 
hour), the response should be within· two seconds. 
The employee is likely to have in mind some spe
cific issue which the display response may resolve. 
It is als'Olikely that the employee may have to scan 
several responses to his queries before hitting on 
the frame that fits his intent. 

Topic 8. Response to simple inquiry of status 

An example would be: "Current order status 'Of 
inventory Part Number 123456." This is a simple 
inquiry because it asks for one category of in
formation about an unambiguously identified ob
j ect. The system may have to do s'Ome searching 
and processing from several storage locations to 
assemble the response. Where the user recognizes 
this requirement, the two-second delay limit may 
be relaxed to seven to ten seconds. 

The user will be holding an idea in mind while 
waiting for the response, but it will be a single 
idea rather than a complex one. For example, 
"Can I or can't I take an order for 2000 items of 
this part number?" 

Topic 9. Response to complex inquiry in 
tabular form 

A complex inquiry is one which· requires c'Ol
lecting and displaying data on the basis of logical 
relationships among categories. It assumes an 
"image" 'Of the displayed response does not preex-

. ist in the system. An e.."'{ample : "How many 'Orders 
for Product X, placed since January 1, 1967, have 
been cancelled to date?" Assume that master rec
ords are filed by custome'r name to which details 
of the order are added as attributes. These at
tributes include "date that order was placed," and 
"status" -of which "cancelled" is a subcategory. 
The system must search these records (perhaps 
via indexes) and pull out the relevant items. (This 
is a simple example of c'Omplex inquiry.) 

The user will certainly have a continuity of 
ideas in mind when he makes complex inquiries. 
This particular inquiry should get a complete re
sponse within four seconds. 

Assume, however, the user had asked the same 
question for Product X, Y and Z. It would now be 
acceptable to display the answer about Product X 
within four seconds, about Product Y within four 
seconds after that, and about Product Z within 
the next four seconds. 

The principle here is that it takes time for the 
user to assimilate the elements in a complex pat
tern. In many situations, four sec'Onds per item 
would be longer than necessary, and two-second 
delays would in all cases be preferable. 

If the display is graphic rather than tabular in 
format, additional considerations will apply. (See 
Topics 13 through 16 on graphics.) 
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Topic 10. Response to request for next page 

Assume a graphic or high-speed printer output 
at the display. The user has completed reading 
or skimming a section of text which overruns into 
another "frame." The user activated the "Next 
Page" control. 

Here, time delay should be no more than one 
second until (at least) the first several lines of text 
on the new page appears. You can test the annoy
ance of longer delays by becoming engrossed in 
some' text and, when you are about to turn the 
page, be restrained from doing so to a slow count 
of four by an associate. 

Delays of longer than one second will seem in
trusive on the continuity of thought. 

There is another page-turning condition. This 
is when the user is searching for some item of con
tent which may lie on any of several pages or 
frames. A half second is a relatively long time, 
subjectively, for getting a page turned while 
searching for items of information. 

A problem may be created when the user wants 
to scan through category indexes and therefore 
would like to flip pages quickly, unless the index 
already exists as an "image." In some cases, how
ever, the index may have to be custom-built on the 
basis of the user's specific request. Where this 
occurs, the user must be informed that he can ex
pect two-second delays when requesting the next 
frame of index terms. 

If delays in advancing from a previous frame 
to a next frame in a viewing series are more than 
two seconds, it is increasingly unlikely that the 
user will use this medium for scanning and search
ing. It seems possible that adequate design of the 
application, however, can minimize the need for 
impromptu organizations of new indexes on im
mediate demand. 

Skipping a number of pages or frames should 
be manageable with the help of a displayed index 
on one segment of the screen. The user should be 
able to skip ten pages all at once, as rapidly as the 
next page would appear. 

Topic 11. Response to "Now run my problem." 

Assume that an engineer or scientist has writ
ten a short program to solve a specific equation. 
He has written the program at the terminal. He 
presses the GO button. 

(a) How long he will wait with patience will 

be partly a function of how long he took to 
write the program and enter the data. 

(b) His patience will also depend on the num
ber of additional data runs or changes he 
expects to make before selecting a particu
lar set of parameters. 

(c) His patience will also depend on how anx
ious he is to get back to other work for 
which the calculated result is a step to
wards solution. 

If the result is returned to him within 15 sec
onds, he may remain at the terminal "in the prob
lem-solving frame of mind." If the delays are 
longer, he will, to a corresponding degree, tend not 
to think of the terminal and system as in-line with 
his thinking, and attempt to fill in the wait times 
with secondary activities-probably an unsatisfac
tory arrangement to him, but less so than staring 
at a blank screen, or waiting hours for a response 
from the Computation Center. These interrup
tions may also tend to make him satisfied with a 
result after less experimentation than if he could 
continue uninterruptedly. (We assume he wants 
to see an "answer" before he tries another hypoth
esis. ) This is a net loss to both system -utiliza
tion and a user's problem-solving potential. 

Topic 12. Response to delay following keyboard 
entry vs. light-pen entry of category for in
quiry 

Let us distinguish between light-pen entry of a 
category of information (such as a request for a 
given image or format by touching the light pen 
to a code name), and using the light pen as a 
stylUS or drawing instrument. In this topic only 
the use of the light pen as category or function
selector is relevant. 

Because it is easier for a nontypist to select in
structions by light pen than by keyboard, he will 
expect a faster response to light pen. The differ
ence may be that between the two-second response 
time to the light pen, and three-second response 
time to the keyboard. We can also expect a one 
to one-and-a-half second adaptation time required 
by the user for shifting his attention from the 
keyboard to the display. 

This distinction disappears, however, when the 
user is activating a "page-tu'rning" function on the 
display he is viewing. If he is continuing the read
ing of text (graphic or perhaps even tabular rna.., 
terial) from one displayed frame to another, one-
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second delay after activating the control, (light 
pen or function key) is a maximum. This is too 
long if he is scanning pages while searching for 
some specific content. (See Topic 10 which calls 
for less than one-second response time.) The user 
who is scanning a series of frames will- keep his 
finger (or the stylus) poised over the "Advance to 
N ext Frame" control, and activat'e it without 
shifting his attention from the screen. 

Topic 13. Graphi,c response from light pen 

There are two 'major ways in which the light 
pen is used as a stylus (as contrasted with its use 
as a control selector or alphameric message com
poser). One is that of drawing lines on the scope 
face where the direction and shape of the line have 
significance. That is, the actual path travelled by 
the light pen is the input to the system. 

Where the lines are drawn with deliberation by 
the user-relatively slowly as compared with 
slashing sketch strokes-a delay of up to 0.1 sec
ond seems to be acceptable. There must not be 
variability perceived by the user in this delay. 

Another way of using the light pen for graphics 
is to compose an image from a "menu" of image 
parts. For example, a glossary of references at 
the side of the image frame may be symbols of 
resistor, diode, transistor, and so forth. The user 
places his light pen over one of these symbols and 
moves the light pen to the position on the frame 
that he wants the symbol to be. A copy of the sym
bol follows the light pen. The response delay in 
the image following the light pen may be as much 
as one second because the user is not tracing a line 
but positioning an image that, for him, is com
pleted when his stylUS touches the destination for 
the image. 

Similar delays of up to one second would be ac
ceptable when the user is constructing the format 
for a graphic display of, say, a bar chart or line 
graph from a menu of symbols. 

Topic 14 Response to complex inquiry in 
graphic form 

Assume the same kind of inquiry as described in 
Topic 9 "Response to Complex Inquiry in Tabular 
Form" except that the response will be a display 
of bar chart, schematic, or graph. 

The graphical response should begin within two 
seC'onds and certainly be completed within ten sec
onds if the user is to maintain thought continuity 

in an ongoing task-example, localizing the cause 
of an exception by means of category search. 
Other - examples of such continuity in thinking 
would be the use of historical files during problem
solving sessions where the outcomes of these ses
sions would result in plans and hypotheses for or
ganizational changes (operations research) or for 
growth (systems analysis). 

Note: Many variables cited in p·revious topics 
also apply here. 

Topic 15. Response to graphic manipulation of 
dynamic models 

It is, of course, possible to animate a diagram
matic representation of a logical system (such as 
a computer), or a process system (such as a fac
tory or inventory), or a topological system (such 
as transportation routings and flow). Pulses can 
simulate messages or transactions~ and the thick
ness of a bar at the input to a symbolic work sta
tion may r.epresent the size of a queue. Dynamic. 
changes in the distributions of wait times at each 
of many stations can be shown on bar charts, 
whereas changes in the profiles of the bars show 
different patterns of queues or delayg. 

Experience with this kind of display is not suf
ficiently widespread to suggest the limits of ana
lytical perception of human viewers of this kind of 
graphical simulation. We can expect that after 
many hundreds of hours of stUdious effort with 
this form of display, great improvements in per
ceptual sensitivity, retention, and interpretation 
will be achieved by at least some individuals with 
talent for it. 

The problem-solving user will want at least 
three special properties in this kind of display. 
One is that of enlarging a segment of a display 
field. A second is that of selectively suppressing 
details in the representation of action or struc
ture-similar in principle to going from lower 
levelt 0 higher level diagrams of a mechanism. A 
third will be an easy means of visually enhancing 
some given path or paths in a complex representa
tion, while suppressing the remaining content into 
visual phantoms. 

Response-time limits for these functions are not 
even readily c'onjectured. The serious problem 
solver will, of course, be prepared to spenq many 
hours planning and executing the design, optimi
zation, or simulated test of a complex system fa
cility. Flexibility in his ability to get the display 
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to shift rapidly from one degree of time compres
sion or ,expansion in simulated system behavior, 
or from one level of detail to another, will be im
portant. This flexibility. will determine how much 
and how well he can perceive, interpret, hypothe
size, control, and modify. But putting minimum 
limits to the words "flexibility" and "shift rapid
ly" in the preceding sentences would be premature 
beyond the guess that whatever "scenario" of 
events the user must comprehend and work with 
should be compressible into 50-minute periods of 
time. Even this may be 10 times greater than the 
chunk of information that even' a problem-solving 
specialist can hold in mind and work with as a de
signer or evaluator. 

It is here that we need inventive, developmental 
studies somewhat similar to that conducted by the 
RAND Corporation in the early 1950's about how 
rnucha SAGE operator could assimilate-and un
der what conditions. 

Statements about response times for graphic 
simulation of dynamic models will, therefore, not 
include even guesses at this point in knowledge. 

Topic 16. Response to graphic manipulation in 
structural design 

Examples of structural modelling are a highway 
engineer's designing a bridge, or an engineering 
architect's designing a building. 

When the designer adds an element to the de
sign, one system requirement is that of applying 
sets of algorithmic rules to that design element. 
For example, "Only one physical body can occupy 
a given space at onet ime/' or "Building codes re
quire that .... " Another system requirement is' 
remembering what the design~rhas already done. 
A third requirement is translating sketch re
sponses into the equivalent of appearance render
ings and engineering renderings. 

The intensity of design conceptualization de
mands rapid response from the medium onwhi~h 
the designer is working. But the designer will 
have to accept some constraints (disciplines) in 
how he attacks and sequences or stages his design 
effort in order to obtain reasonable system re
sponse (I.e., two-second response time, to be in
formed that he just sketched in a dimension that 
violates a rule, or type of rule). 

During creative effort, idle time beyond a couple 
of seconds by' the designer, while he waits to see 
the consequence of a unitary action, will be inhibit-

ing and intolerable. But, after the designer has 
completed working out an idea-a chunk made up 
of a number of individual actions-he will be in
clined to wait a minute or two, while the system 
"catches up to him." 

Comment: People engaged in creative activities 
recognize the relatively large amounts of work 
that can be executed during concelltrated and con
tinuous "mental heat" 'in a single session. This 
heat can cool off in interruptions lasting less than -'. 
a minute. It is this heat of attention that the sys
tem should attempt to preserve. 

Graphic motion that the designer perceives as 
relevant to the design task will help keep his at
tention and state of arousal, at least if it contin
ues for no longer than ten seconds in consummat
ing some design action. In other words, it is pos
sible to present artifacts to the designer that will 
maintain his psychological "coupling" to the' sys
tem. . The concept precludes setting fixed response 
time limits to various response functions, except 
that their limits will be in seconds (usually) 
rather than in minutes. 

Topi,c 17. Response to "Execute this command 
into the operational system." 

An example of such a command is a manager's 
intervening in an automatic ordering process and 
designating an alternate vendor. Or, the manager 
may insert a command which, when effected, re
sults in a change in scheduling of some manufac
turing operation. Or, as a result of simulation and 
modelling of certain activities of the business, a 
revised operating budget is introduced and its 
implications for a number of affected departments 
are exploded and disseminated. 

Although the user should be informed by the 
system within four seconds that it has understood 
and can interpret the co~mand, its' execution and 
final confirmation to the user that the command 
has been executed may have long and variable de
lays of minutes. The user hasterminated one level 
of activity when he enters the command. It will 
be psychologically incomplete only to the degree 
that he expects a feedback telling him of interfer
ence with its execution. These delays, howe~er, 
are partly dependent on operating activities out
side the scope of the automatic system, such as a 
remote manager's being unable to accept a budget 
cut or change in schedule. 
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Postcript 1 

Discontinuity of waiting time at 15 seconds 

Assume an inquiry of any kind has been made. 
The user-and his attention-is captive to the 
terminal until he receives a response. If he is a 
busy man, captivity of more than 15 seconds, even 
for information essential to him, may be more 
than an annoyance and disruption. It can readily 
become a demoralizer-that is, a reducer of work 
pace and of motivation to work. 

If, therefore, response delays of more than 15 
seconds will occur, the system had better be de
signed to free the user from physical and mental 
captivity, so that he can turn to other activities 
and get his displayed answer when it is convenient 
to him to do so. 

A possible, but doubtful, exception may arise 
when the user is in series with some process or 
continuity that demands (as soon as possible) the 
answer from him, which, in turn, depends on in
formation he is trying to get at the terminal. In 
this case, the operating demands dictate accept
able time delays. 

In any event, response delays of approximately 
15 seconds, and certainly any delays longer than 
this, rule out conversational interaction between 
human and information systems. 

Postcript 2 

Time recovery from errors and failures 

A dimension of response time is the question, 
"How quickly can I get going on my task again 
after something goes wrong?" What may have 
gone wrong could have been a machine failure, a 
failure in an operating program, an operator er
ror, or an error by the user in mid-task. 

The design of the system, including the applica
tion, should simplify both the effort and shorten 
the time required for recovery as perceived by 
the user. 

If the user was in simple-inquiry mode, he will 
probably have a record of his last inquiry at the 
terminal, and can input the inquiry again. 

If the user was in complex-inquiry mode, the 
last index of categories that he was using before 
the failure should have been retained and made 
available to him, so that he can pick up his inquiry 
from a position of good context. 

If the user was in conversational problem-solv
ing mode, there should have been retained a copy 
of all the parameters and starting structure of the 
model he constructed. Reconstructing this model 
would, from the user's standpoint, be the most 
arduous and unreliable of activities. (As an ex
ample of this almost universal dread of work get
ting lost, many writers and engineers save their 
yellow-sheet draft sketches in desk drawers until 
the job is entirely completed.) One can tolerate 
the loss of a machine run, which can be rerun 
later, but the loss of even an hour's creative work 
is obviou~ly demoralizing. Rarely does one feel 
confidence that the reconstruction has all of the 
magic contained in the original. 

When a system failure occurs, from whatever 
cause, the user is likely to feel an irrational sense 
of failure if his job has been lost. In some degree, 
it will be remembered as personal failure, and var
ious psychological defenses will be inevitable. (One 
form of defense is to avoid the cause of the threat 
in the future.) It is therefore desirable, for moti
vational reasons as well as operating reasons, to 
attempt to restore the system as quickly as possible 
so that he can pick up and continue. "As quickly 
as possible" means "while he is still in dialogue 
(or work session) with the system"-and that 
means within 15 seconds, or failing that, within 
less than five minutes. The system should tell him 
how long he may have to be patient, and it should 
do so immediately ·after the failure, whatever it 
may be. 
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Linguistic methods in picture processing-A survey* 
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INTRODUCTION 

By "picture processing" we mean the analysis and gen
eration of pictures by, computer, with or without 
human interaction; this definitjon includes both com
puter graph~cs and digital patt~rn recognjtion. 

A number of people have ad,,\rocated til at picture pro
cessing problems be attacke9 with linguistic methods; 
perhaps the strongest early t exponents were N arasim
hanl and Kirsch.2 The basic:idea was to extend the no
tions of syntax and semanti~s to n-dimensional patterns 
(n> 1) and then apply some adaptation of the tech
niques of natural and artifical language processing 
Several researchers have attempted to develop this con
cept during the last few years. While the work is still 
experimental, several practical uses have been demon
strated and ideas seem to be emerging that could form 
the basis of a picture theory. 

This paper surveys research in linguistic methods for 
describing and processing pictures. The next section 
discusses the rationale and application area for a lin
guistic approach. We then present a .general lingujstic 
picture processing model as a basis for the survey dis
cussion.The central idea within this model is that of 
a formal picture description. The survey itself is con
tained in section IV. In the concluding section we ex
tract some common features and difficulties, and indi
cate directions for future research. 

Models for picture processing 

The term "model" denotes the general framework or 
"paradigm" 3 within which workers pose and solve 
problems. Until recently, most theoretical work in pic
ture analysis ,has, either implicitly or explicitly, been 

, *Work supported by U.S. Atomic Energy Commission and 
National Science Foundation, Grant GP-7615. 

**Present Address: DE>partment of Computer Science Cornell 
University, Ithaca, N.Y. ' 
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based on the receptor / categorizer . model (RCM) 
described in Marill and Green.4 

The analysis of pictures (or pattern recognition) pro
ceeds within the RCM: A picture is first reduced to a 
"feature set" by the receptor; this is a set of quantities 
which may range from the raw digitized values at one 
extreme to the results of a complex feature extraction 
process on the other. The feature set is then assigned to 
one of a finite number of classes or patterns by the 
categorizer. The assignment is the recognized pattern 
class to which the picture supposedly belongs. Most of 
the theory has dealt with the problem of categorization 
or classification. The principal technique is one of treat
ing the feature or measurement set as a point in a muJti
dimensional space. The task of the categorizer then be· 
comes one of partitioning the space so that measure
ments from pictures belonging to the same pattern class 
are ,"close" (according to some metric) and measure
ments from pictures of different classes are far apart. 
(Sebestyen5 and Nilsson6 are references for the RCM.) 

The RCM is the basis for a number of recognition sys
tems, notably in character recognition.7 The model fails 
to be useful for analyzing complex pictures where the 
structure and interrelationships among the picture com
ponents are the important factors. To illustrate this 
point in a simple setting, consider the one-dimensional 
pattern recognition task required of a pro~ramming lan
guage. translator. One purpose of the syntax analysis 
phase of the compiler is to categorize an input program 
into one of two mutually exclusive classes-the class of 
syntact.ically correct programs and its complement. 
Theoretically, one can envision a receptor which pro
duces a feature vector from an input program; the 
categorizer then determines in which of the two possible 
subspaces the feature vector lies. While this can be cone 
in principle, it is never considered seriously because of 
the complexities involved; for example, what is the fea
ture set for a program? Even if this approach were 
practically feasible for program classification, it would 
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not produce the most i.mportant by/product of a suc
cessful analysis, i.e., a description of the structure of the 
input program. 

Richly-structured pictures that are difficult, if not 
impossible, to analyze within the RCM include those 
produced in particle detector chambers by high
energy particle physics reactions; text and standard 
two- dimensional mathematical notation (not isolated 
characters); line drawings, such as flow charts, circuits, 
and mechanical drawings; and complex biomedical 
pictures. What is required in these examples is a descrip
tion of the pictures in which the meaningful relations 
among their subparts are apparent. The appropriate 
place to apply the RCM is for the recognition of the 
basic components of the pictures. In a series of papers, 
Narasjmhanl ,8,9,10 has forcefully stated this case: 

"Categorization, clearly, is only one aspect of 
the recognition problem; not the whole of it by 
any means. It is our contention that the aim of 
any recognition procedure should not be merely 
to arrive at a 'Yes,' 'No,' 'Don't know decision 
confusion about aims might have been avoided 
if, historically, the problem had been posed as 
not one of pattern recognition but of pattern 
analysis and description. "I 

Much of the research in computer graphics* has been 
concerned -primarily with data structuresll and com
mand and control languages. Picture descriptions are 
embedded in the data structures; in fact, the data struc
ture is the description. This could be viewed as a linguis
tic specification of a picture since the structure (syntax) 
and values or interpretations of each structure (seman
tics) are explicitly contained in the data structure in 
most cases. However, the processing (analysis or syn
thesis) of the pictures is not directed by the data struc
ture description but rather towards them through the 
mand and control languages. 

In this survey we shall consider only those works 
where some attempt is made to describe pictures and 
classes of pictures, and use these descriptions to direct 
the processing. The analogy to linear language pro
cessing is evident and hence the term "linguistic 
model"** is employed. 

A general linguistic picture processing model 

The linguistic model for picture processingl2 is com
prised of two parts: 

*"Computer graphics" has usually referred to that set of tech
niques for computer processing of pictures using on-line displays 
and plotting equipment. 

**Narasimhan1 first used this term as applied to picture pro
cessing. 

1. a general model within which pictures may be 
described (i.e., a meta-description formalism) 
and 

2. an approach to the analysis and generation of pic
tures based directly on their descriptions. 

The description, D, of a picture, a, will consist of 
two parts-a primitive or terminal symbol description T, 
and a hierarchic description H. T specifies the elemen
tary patterns in the picture and their relationship to one 
another and H describes groupings of the elements into 
higher level structures. This can be written D(a) = (T 
(a), H(a)). T and H, in turn, each have a syntactical (or 
structural) component Ts and H s , and a semantic (inter
pretation or value) component Tv and Hv. That is, 

H(a) (Hla), Hv(a)) . 

Ts(a) names th~ elementary component classes or 
primitives in a and their relationship to one another; 
T v(a) gives the values or meaning of the primitive com
ponents of a. The primitives in T sea) will denote classes; 
tet <P(T 8) be the set of all pictures with primitive struc
ture T s. We present a simple example of a pri.mitive 
description T. 

Example 1 

Let e name the set of all straight line segments and c 
name the set of all circles. e and c are picture primitives. 
Let 0 denote the geometric relationship of intersection. 
Then, if a picture a contains a line segment a1 inter-
'secting a circle a2, its primitive description T(a) might 
be: 

where Vt(x) is the pair of endpoint coordinates of the 
line x and v,(x) is the center coordinates and radius of 
thec ircle x. <P (e 0 c) is the set of all pictures consisting of 
a line segment intersecting a circle. 

Consider a set of rules or grammar 9 generating a 
language £(g) whose "sentences" are primitive struc
tural descriptions. Then, 9 is said to describe the 
pictureclass<P = T U ()<P(Ts). For a given picture 

9 sE £ 9 
aE<P ,the hierarchic structural description H.(a) is the 9 -
ordered set of rules of 9 that were used to generate 
T sCa); that is, Hs(a) is the "linguistic" structure or 
parse of T8(a) according to g. A one-to-one correspond
ence exists between the elements of a set {/ of semantic 
or interpretation rules and the elements of g. HvCa) is 



defined as the result of obey'ng the corresponding 
semantic rule for each rule of 9 used in H8(a). 

Example 2 

Let 9 be the phrase structure grammarUl
: 

9 = {LC~L,LC~C,LC~L0C,L~t,C~c}. 
Then cC(g) = {t, c, t0c} and CP 9 = cp(t) U)cp(c) u 
CP(t0c). We interpret the terminal symbols t, c, and 0 
as in Example 1 and let 

£/ = {VLC: = VL, VLC: = Vc, VLC: 

VL:= V.e, VC: = vel. 

The kth rule of :3 corresponds to the kth rule of 9 for 
k = 1, "', 5. Within a rule, V i designate~ the value 
associated with the syntactic unit i in the corresponding 
grammar rule; xsect is a function that computes the 
intersection(s) of a line with a circle, and v.e and Vc are 
defined in Example 1. If T8(a) = t0c for a given aeCP g' 

RCa) could be represented by"the simple tree of Figure 1 
where a = al U a2, alECP(t), ~2ECP(C), Ye = v.e(al), and 
Vc = v c(a2). 

It is important to emphasize that the "meaning" of a 
picture will be expressed in both its primitive and 
hierarchic descriptions. Thus, several grammars may be 
used to generate the same class of primitive descrip
tions, but the hierarchic descriptions, and hence the 
meaning, may be different for different grammars. Even 
more generally, the same picture class may be described 
by totally different primitive and hierarchic descrip
tions; the intended interpretation of the picture dic
tates its description. 

With the description model, our approach to picture 
processing can now be formulated: 

1. The elementary components or primitives which 

(L, v; 
(I,' vi 

(C, v ) 
I c 

(c, v) 
c 

FIGURE I-Hierarchic description of a picture 
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may appear in a class of pictures are named and 
defined. 

2. The picture class is described by a generative gram
mar 9 and associated semantics £/. 

3. A given picture a is then analyzed by parsing it ac
cording to 9 and £/ to obtain its description D(a); 
that is, 9 and £/ are used explicitly to direct the 
analysis. 
Conversely, a picture a is generated by executing 
its description D (a) . 

Descriptions are then not only the results of an anal
ysis or the input to a generation, but they also define 
the algorithms that guide the processing. This approach 
provides a framework in which picture processing sys
tems may be implemented and theoretically examined. 
The arguments for treating analysis and synthesis prob
lems together, i.e., using a common description scheme, 
are generality, simplicity, and the universal use of com
mon description languages in science. We also note that 
most picture analysis applications have (and need) an 
associated generative system and vice versa; there are 
also many situations where both a synthesis and an 
analysis capability are equally important, for example, 
in computer-aided design. 

Syntax-directed translation of programming lan
guages14 ,16 can be interpreted within our model as the 
analysis of patterns of linear strings. In this case, the 
primitive description is obtained immediately-the in
put program corresponds to Ts and the meaning of the 
basic symbols of the language to Tv. The grammar 9 is 
generally a BNF grammar plus some constraints on 
the use of identifiers; the semantics £/ is most often a set 
of code-generating rules. The analysis of a well-formed 
program yields the syntactic structure of the program 
and an equivalent program in some other language. 

We find it most illuminating to evaluate picture pro
cessing research within the framework of the above 
model. In each case, the various components of the 
particular descriptive scheme-T s, Tv, H s, and H v-

are extracted and discussed in terms of their power and 
limitations. We are interested in the description mecha
nism both as a language of discourse about pictures and 
as a driver for analysis or generation systems. 

The survey 

The literature survey of Feder16 covers the few basic 
developments up to and including 1965; since then, 
there has been a relatively large surge of activity. 

Early Developments 

There are several early works that explicitly utilized 
primitive descriptions. Grimsdale et al.,17 produced geo-
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metric descriptions of hand-drawn line figures, such as 
alphabetic characters; the description consisted of an 
encoded list of the picture curves, their connectivity, 
and geometric properties. Sherman18 reduced a hand
printed letter to a graph, and then built a character de
scription out of the topological and geometric features 
of the abstracted picture. Neither T 8, nor Tv is defined 
formally in the above examples; picture analysis (re
cognition) occurs by comparing or matching picture 
descriptions with descriptions of standard patterns. 

Eden19 20 presented a formal system for describing 
handwriting. His primitive elements are a set of basic 
"strokes" or curves; the value of each stroke is a point 
pair (the endpoints) and a direction. Eden gives a set of 
rules 9 for concatenating or collating strokes to form 
letters and words. The description T s of a word of hand
writing is then a sequence of n-tuples of strokes, 
each n-tuple representing a letter. This is one of the 
first works where the author recognizes the benefits of a 
generative description: 

"Identification by a generative procedure leads 
to a clear definition of the set of permissible 
patterns. The class of accepted patterns is sim
ply the set which can be generated by the rules 
operating on the primitive symbols of the 
theory.' '2 

Eden did not report any attempts at using his scheme 
for recognition purposes; however, his descriptions were 
used for generation. 

In Minsky,21 we find one of the earliest arguments for 
the use of "articular" or structured picture descriptions 
in pattern recognition. Minsky suggests a description 
language consisting of expressions of the form (R, L), 
where L is an ordered list of sUbpictures or figures re
lated to one another by the relation R. For example, 
(~, (x, y» might indicate that the figure y is to the 
right of the x. Expression composition within the ele
ments of the list L permits the description of compli
cated structures; using the above notation, (~, 

«~,(a, b», c» means that b is to the right of a, and cis 
to the right of the subpicture containing a and b. Al
though it is not explicitly linguistic, this work has in
fluenced several later efforts (see discussion under 
Evans). 

Narasimhan 

The pioneering work in suggesting and applying a lin
guistic model for the solution of non-trivial problems in 
picture processing was done by N arasimhan.1, 8 ,9 ,1 0 ,22,23 
He first proposed a general linguistic approach in 1962, 
calling it a "linguistic model for patterns" ; he has since 
experimented with it in the analysis of bubble chamber 

photographs using a parallel computer,l,9,10,22 and in 
the generation of "handprinted" English charac
ters. lO ,23 Narasimhan restricts his model to the class of 
pictures containing only thin line-like elements. 

We first discuss the analysis model in Narasimhan's 
1962 paper. 1 Here, T s is a list of the "basic sets" and 
their connectivity. Basic sets refer to neighborhoods on 
the picture having specified topological properties, for 
example, the neighborhood about the junction of two 
lines or the neighborhood about an endpoint of a line. 
Two sets are said to be connected if there exists a 
"road" or line-like element between them. Tv is the 
value of the sets (their topological meaning) and the 
geometry of the connecting roads. An informal set of 
rules 9 then describes how strings of connected sets may 
be combined into other strings and phrases; phrases are 
of the form: <name> ( <vertex list> ), for example, 
8T(1, 2, 3), where the <vertex list> labels those points 
that may be linked to other phrases. Finally, there are 
additional rules of 9 for combining phrases into sen
tences. The hierarchic description Hs of a picture is a 
list of sentences and phrases. Analysis proceeds from the 
"bottom up," first labeling all points as basic sets or 
roads, then forming phrases and, last of all, sentences. 

Narasimhan does not define a general form for either 
9 or the description D. In the bubble chamber appli
cation, the hierarchic system of labeling imposed by 9 
is slightly different than above, starting with points at 
the most primitive level; 9 is implicitly defined by the 
computer porgram itself. On the other hand, the gener
ation of English "hand-printed" characters is explictly 
directed by a finite-state generative grammar 9 and an 
attribute list 9 , the latter specifying some geometric 
properties of the characters, for example, position, 
length, and thickness. The primitives are simple geo
metric forms, such as straight lines or arcs; the defini
tion of each primitive includes a set of labeled vertices 
to which other primitives may be attached. Produc 
tions or rewriting rules in 9 are the form: 

where 81 is a terminal symbol (primitive name) or non
terminal symbol (phrase name), 82 is terminal symbol, 
8 is a non-terminal symbol-the defined phrase-, 
ns 8 IS a list of nodes of concatenation between 81 and 
. 1 2 
S 2, .ns18 and n B2S define the correspondence between the 
nodes of 81 and 82 that those of 8, and ns is a node list 
labeling the nodes of 8. Figure 2 illustrates N arasim
han's rewriting rules for generating the letter "P ," the 
primitives required, and the generated letters. All nodes 
of possible concatenation must appear in the descrip
tion; this is cumbersome for simple pictures such as the 
English alphabet, and might be unmanageable for more 



.f. 

PE(l, 2,3) - v • d'(ll, 23; 2, 3; 2)/ 

r • d'(ll, 23; 2, 3; 2) 

P-PE 

Rewriting Rules 

1 

d' ~ 
~ 3 

Primitives 

or 

Pand PE 

FIGURE 2-Narasimhan's generation of the letter "P" 

complex pictures. The system can only describe con
nected pictures and some other mechanism is required 
when dealing with pictures whose subparts are not con
nected. This scheme has been used successfully as part 
of an experimental system for the computer generation 
of posters.23 To our knowledge, it has not been applied 
to other picture classes. 

Kirsch 

Kirsch,2 in a stimulating article, argues that the prop
er way to view picture analysis is within a linguistic 
framework. Following this line of thought he poses 
several problems: How does one 

1. express picture syntax or structure, 
2. generalize the idea of concatenation to several 

dimensions, 
3. describe geometric relations among picture com-

ponents, 
4. do syntax analysis of pictures, and 
5. define picture primitives? 

Kirsch gives a two-dimensional context-dependent 
grammar for 45° right triangles generated in a plane 
divided into unit squares; this is suggested as an illu
stration of the possible form of picture grammars. 
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{3 {3 

H a H O! 

H H I 

Sample Production: a € {L, I}, {3 €{H, w} 

W 

H L 

H I L 

H I I L 

V B B B R 

A Derived Triangle 

:FIGURE 3-Kirsch's rIght trIangle description 

Figure 3 contains a sample production and a derived 
triangle. Here, Ts is a two-dimensional 45° right 
triangle with labeled unit squares (the primitives); 
T v is the meaning of the labels. There is no semantic 
portion corresponding to the grammar. As Kirsch ad
mits, it is not evident how this approach may be gener
alized for other pictures; it is also a debatable point 
whether context-sensitive grammars are desirable since 
the analysis would be extremely complex. More re
cently, Lipkin, Watt, and Kirsch24 have argued per
suasively for an "iconic" (image-like or picture) gram
mar to be used for the analysis and synthesis of biolog
ical· images with a large interactive computer system; 
however, the search for suitable iconic grammars con
tinues. The work of Kirsch and his colleagues is notable 
for their clear and early recognition of the importance of 
a linguistic approach to picture processing problems and 
for their detailed enumeration of some of the difficulties. 

Ledley 

Ledley25 and Ledley et al. 26 employed a standard 
BNF grammar to define picture classes. Their pub-
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lished method for the analysis of chromosomes26 •27 il· 
lustrates this approach. Here Ledley's "syntax-directed 
pattern recognition" is embedded in a large picture pro
cessing system that searches a digitized picture for 
objects, recognizes the primitives of an object, per
forms a syntax analysis of the object description, and 
finally computes further classifications and some 
statistics on all the chromosomes found. The object 
primitives consist of five types of curves from which 
chromosome boundaries can be generated. An edge-fol
lowing program traces 'the boundary of an object in the 
picture and classifies each boundary segment into one of 
theprimitiveclasses; since the boundary is a closed curve, 
a linear string or ordered list of its segment types is 
sufficient for the description T 8' If T 8 represents a 
chromosome, the parse H. will contain a categorization 
of it as, for example, submedian or telocentric in type; 
otherwise the parse fails, indicating the original object 
was not a chromosome. Figure 4 contains samples from 
the ch.romosome syntax, examples of the basic curve, 
types, and some. chromosome descriptions. Ledley and 
Ruddle2' state that the human complement of 46 
chromosomes can be processed in about 20 seconds (on 

. an IBM 7094) using this system-a factor of 500 as 

A 

(arm) ::= B(arm>I (arm> BI A 

(side) : := B(side>l< Side> BIB I D 

<submedian chromosome) : := <arm pair> <arm pair> 

Sample Productions 

B 
'0 

C < D 

Basic Curve Types 

~ 

E 

BCBABDBABCBABDBA BCBABEBA 

Submedian Telocentric 

Chromosome Examples 

FIGURE 4-Ledley's chromosome description 

compared to manual methods- but no data are given 
on the quantity of pictures examined and error rates, or 
how their methods compare with others, for example, 
chromosome classification by moment invariants.28 Led
ley's work is an example of a direct application of artifi
ciallanguage analysis methods to picture classification. 
It is difficult to generalIze this approach to figures other 
than closed curves unless relational operators are in
cluded as part of 'T 8; in the latter case, the most difficult 
task is obtaining T s , not parsing the reSUlting string. 

Guzman 

Guzman29 ,30 q.escribes pictures consisting of sets of 
isolated points and concatenated straight line segments 
using a figure description language (FDL). The primi
tive syntax T 8 is given in FDL by listing every node in 
the figure and its immediate neighbors, and adjoining 
to this an arbitrary property list; Tv is a list of the 
actual coordinates of each node. Figure 5 contain~ two 

. possible descriptions of an isosceles triangle and one of a 
quadrangle and a rectangle. Hierarchic descriptions and 
the equivalent of a grammar may be specified in FDL by 
assigning names to both primitive descriptions, and sets 
of names and descriptions. This is illustrated at the bot
tom of Figure 5, where a POLY is defined as either a 
RECT or an ISOSl. Several figures may be concate
nated to form new ones by listing in a = TIE = state-

. ment the nodes of concatenation. The FDL language is 
used to drive some general scene analysis programs. A 
given scene is first preprocessed to produce a symbolic 
description in terms of points forming line segments and 
isolated points. A scene analysis program then accepts 
a series of "models" described in FDL and searches the 
scene for all or some instances of the models. Experi
ments with the system have served to pinpoint a num
ber of extremely difficult problems associated with the 
analysis of two-dimensional projections of three-dimen
sional objects. While restricted to concatenated straight 
line segments and isolated points, theFDL language has 
some very desirable features. Chief among these is the 
ability to define "open" or bound variables (X, Y, and 
Al in Figure 5) in the property Hst; this allows an e]e
gant description of the relations among picture com
ponents. 

Evans 

The earlier work of Evans31 •32 on solving geometric
analogy-intelligence test problems employed picture 
description methods similar to those suggested by 
Minsky.21 Recently, Evans33 has developed a linguistic 
formalism for picture description and an associated pat
tern analyzer that is driven by a "grammar" 9 written 
in the formalism. The syntax of a class of pictures is 
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(=OEF= I8OS1 « A (B C) C (B A) B (A C» ~«LENG A B X) 

(LENG B C X) (VARIABLES X) ») 

(=OEF= I8OS2 ( ( A (B C) C (B A) B (A C» ~ «ANGLE B A CAl) 

(ANGLE B C A Al) (VARIABLES Al»}) 

o 
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C 

(=OEF= QUADR ( A (B 0) B (C A) C (0 B) 0 (A C») 

(=OEF= RECT (QUADR ~ «LENG A B X) (LENG 0 C X) 

(LENG A 0 y) (LENG C BY) (ANGLE 0 A B 900) 

(VARIABLES X Y»» 

(=OEF= POLY (=OR= (RECT I8OS1) ) ) 

FIGURE 5-Guzman's FDL notation 

given by a set of rules, each of which has four compo
nents: (L R P I) (our notation). An exaJIlple of a rule 
that we will use in the discussion below is: 

(TRIANGLE (XYZ) ( (VERTEX X) (VERTEX Y) 
(VERTEX Z) (ELS X Y) (ELS Y Z) (ELS X Z) 
(NONCOLL X Y Z) )( (VERTICES (LIST X Y Z»». 

The first component, L, names the construct or pat
tern whose components are defined by Rand P; in the 
example, the pattern TRIANGLE is named. R is a list 
of "dummy" variables, one of which is associated with 
each constituent of the defined pattern. P is alistofpred
icates which names the pattern type represented by 
each dummy variable, and describes the relationships 
that must exist among these patterns. X, Y, and Z are 
named as type VERTEX; ELS is a predicate which 
tests for the existence of a line segment between two 
points, and NONCOLL tests for noncollinearity among 
3 points. The last part I of the syntax rule can 
specify any computation over the properties of the 
pattern components; during analysis, it assigns the re
sult to the new construct defined by the rule. After a 
successful analysis TRIANGLE will have attached to .. 
it the name VERTICES followed by a list of the values 
of X, Y, and Z. These attached properties can then be 
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used by predicates in subsequent syntax rules. In terms of 
our model, the I component can be viewed as part of the 
syntax in some instances or as an interpretation or se
mantic rule of £l in others. . 

Evan's pattern analyzer assumes that :;t picture is first 
preprocessed to produce a list of its primitive elements 
and their properties; this is the primitive description T. 
The patern analyzer (a LISp34 program) accepts a pre
processed picture and a grammar, and parses the picture 
to produce hierarchic descriptions of all patterns satis
fying the grammar; the library of predicates may first 
have to be extended if new relational predicates appear 
in the grammar. While the description and analysis sys
tems are very general, they have only been tested on 
simple examples and it is too early to predict how useful 
they will be. 

Shaw, Miller, and George 

In the Shaw papers12 ,35 a picture description language 
(PDL) is presented and applied. PDL is a language for 
expressing the primitive structural description T, of a 
picture. The basic components or primitives may be any 
pattern having two distinguished points, a tail and a 
head; primitives can be concatenated together only at 
these points. The PDL language can describe the con
catenations among any connected set of primitives. By 
allowing the definition of blank (invisible) and "don't 
care" primitives, a large class of pictures may be de
scribed in terms of concatenations and simple relations 
among their primitive elements; these include photo
graphs produced in high energy particle physics experi
ments, characters, text, flow' charts, and line drawings 
of all varieties. 

Figure 6 illustrates the use of PDL to describe a sim-

--h 

Primitive Classes 

T8(~=1 dp+ ( ( ( dp+dm 

l*hf+dmII til A 
4 
~ 

A 
Ts(F)=( vp + (h x (vp + h) ) ) 

FIGURE 6-8haw's PDL language 
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pIe "A" and an "F." For each primitive, the figure con
tains its class name, a typical member, and an arrow 
pointing from its tail to head; for example, h denotes the 
set of all horizontal line segments of a restricted length, 
with tail at the left endpoint and head at the right end
point. h can be defined more precisely either theoreti
cally or pragmatically by an equation, an attribute list, 
a recognition program, or a generation program. The 
tree beneath the "A" indicates how the letter is 
generated from its description. The operators +, x, and 
* describe particular combinations of tail/head con
catenations of their operands. Each PDL expression, 
and the pictures they describe, has a tail and head de
fined respectively as the tail of the first element and 
head of the last element in the expression. Thus 
(S1 + 82) has a tail equal to the tail of 81 and a head 
equal to the head of S2; the "+" describes the con
catenation of the head of S1 to the tail of 8 2• One more 
binary operator (-), a unary tail/head reversal opera
tor (""), and a "rewriting" convention complete the 
description scheme. PDL has a number of useful formal 
properties that permit descriptions to be transformed 
into more convenient forms for processing, and forms 
the basis of a picture calculus discus sed in Miller and 
Shaw. 36 The primitive semantic description Tv consists 
of a list of the primitives and their attributes. 

A hierarchic structure is imposed on a class of pictures 
by means of a restricted form of context-free grammar 
9 generating sentences in PDL. Figure 7 contains 
several productions from a flow chart grammar for a 
small ALGOL-like language. The tail and head of each 
primitive are labelled t and h respectively. The line 
segments with arrow heads leading from enter, in and 

, cond may be any sequence of concatenated segments 
thus allowing the head of these primitives to be placed 
anywhere in a picture relative to the tail. The box in in 
is a function box and pred represents a predicate or test. 
cond may be either the true or false branch of the pred
icate; the initial blank (dotted) part at its tail carries it 
to one of the vertices of the diamond. In the syntax') 
the / and superscript labels indicate "rewriting" so that 
both appearances of TEST in the STEPUNTIL rule 
refer to exactly the same entity. The hierarchic struc
tural description Hs is defined as the parse of T s ac
cording to g; no mechanism for attaching arbitrary se
mantics to 9 has been developed vet. 

A goal-oriented picture parser (analyzer) (8haw12) ac
cepts a pattern recognition routine for each primitive 
class and a grammar and uses the latter to direct the 
recognizers over pictures and produce their primitive 
and hierarchic descriptions; tail and head pointers are 
moved over the two- or three-dimensional picture space 
in a manner analogous to the movement of a string 
pointer in linear language analysis. An implemented sys-

enter t Or----.~ h 

• h 

cond or 

Primitives 

STMNT - BASIC I CNDTNL 

BASIC -ASSIGN I FOR I BLOCKb 

FOR - STEPUNTIL I WHILE 

exit 
tOh 

to 
pred 

• h 

STEPUNTIL - (INIT + ( ( ( (TESTsU + cond) + STMNTs~ 

*( - INC) ) x ( (/TESTS~ + cond) ) ) 

INIT-fn 

INC-fn 

TEST-pred 

Partial Flow Chart Syntax 

Stepuntil Element 

FIGURE 7-Example of Shaw's flow chart descriptions 

tem has been applied to the analysis of some digitized 
spark chamber film. Each picture consisted of a data box 
with 22 identification digits; 4 fiducial markers C"X"s); 
and 2 views of 6 spark chambers containing sets of iso
lated and collinear sparks. 39 syntax rules were used to 
describe the possible contents of all pjctures. The 
description DCa) of each picture a was produced in 
approximately 7 seconds on an IBM 360/50. With the 
picture parser available it took less than 2 man months 
to put together the spark chamber system. The spark 
chamber application, even though experimental, has 
demonstrated certain pragmatically useful advantages 
of the above methods. These may be summarized as fol
lows: There can be significant simplifications in 
implementing and modifying picture analysis systems 



and one need not pay an exorbitant price in computer 
processing time when compared with the more ad hoc 
systems in use in various physics laboratories. 

GeorgeS7 and George and Miller36 employ PDL as the 
basis of an interactive graphics system. Pictures are 
generated and modified on-line by manipulating PDL 
descriptions. Pictures can be stored and retrieved by 
assigning names to their descriptions; the picture data 
structure is the PDL description itself so that the 
machine always contains a structured representation. 
Any changes to a named sUbpicture are immediately re
flected in all pictures that refer to it as a component. 
The chief limitations of the descriptive scheme are the 
restricted set of relations that may be expresed, the 
practical constraints resulting from only two points of 
concatenation for a primitive and the absence of a 
general mechanism for hierarchic semantics. 

Anderson 

Anderson39 ,4o syntactically analyzes standard two
dimensional mathematical notation after the primitive 
elements or characters have been classified by conven
tional pattern recognition techniques. The value T 11 of a 
primitive is its name and 6 positional coordinates: 
Xmin, Xcenter, Xmax, Y min, Y center, Y max, where (Xmin, 
Xmar, Y min, Y max) define the smallest enclosing rec
tangle of the character and the point (Xcenten Ycenter) 
is its typographic center. Each syntax rule consists 
of four structural parts (elements of 9 ) and one se
mantic part (element of £1). Figure 8 contains a typical 
syntax rule. The meaning of the notation is as follows: 

Si: the ith syntactic unit of the right part of the rule. 
Pi: a partitioning predicate that Si must satisfy. Cij 

is the jth positional coordinate of Si; the posi
tional coordinates above are numbered from 1 to 
6 so that C13 represents the 3rd coordinate 
(Xmax) of syntactic unit Sl. Coj refers to ·the jth 
coordinate of an arbitrary character in the syn
tactic unit. 

R: a predicate testing the spatial relationship among 
successfully parsed elements of the right part of 
syntax rule. 

Oi: each higher level structure (syntactic unit) is 
given 6 positional coordinates similar to those of 
a primitive. Oi i = I ... 6 defines the 6 coordi
nates assigned to the left part of the syntax rule 
in a successful parse. 

M: the semantic rule indicating an action to be taken 
or the meaning to be given to the rule. 

The mathematical expression a
2 + b satifies the syn-

. c 
tax of "term" in the figure; the typographic center is 
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term 

term---

81: expression 

82: horizline 

83: expression 

R: ¢ 

M: (Sl)/(S3) 

Graphical Form of Replacement Rule 

P1: cOl> c 21 and c03 < c23 

and c04 > c 26 

P2: ¢ 

P3: cOl> c 21 and c 03 < c23 

and c
06 

<: c24 

Tabular Form of Replacement Rule 

C1: c21 

C2: c 22 

C3: c 23 

C4: c 34 

C5: c 25 

C6: c
16 

FIGURE 8-Example of Anderson's syntax rules 

(02, 05) which is defined in the replacement rwe as 
(C22, C25), the center of the primitive "horizline." 
Anderson has described several non-trivial classes of 
pictures in this notation including two-dimensional 
arithemtic expressions, matrices, directed-graphs, and a 
proposed form for a two-dimensional programming 
language. 

A top-down goal-directed method is used for analysis; 
the basic idea is to use the syntax directly to partition 
picture space into syntactical units such that the predi
cates Pi and R are satisfied. The analysis algorithm 
has been implemented in several experimental systems 
and tested with hand-printed arithmetic expressions in 
an interactive mode. He assumes that the primitive· 
characters are correctly classified by recognition rou
tines and that the expressions satisfy some reasonable 
constraints on their form, for example, the limits above 
and below an integral sign must not extend further to 
the left than the leftmost edge of the integral sign. Sim
ple expressions can then be parsed. successfully in a rea
sonable amount of computer t;me. The expression 

IN Ix I dx takes approximately 5 seconds to analyze on 

an IBM 360/50 with an un optimized PL/I version of 
the general system; a program optimized especially for 
mathematical notation and running on the Digital 
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Equipment Corporation PDP-l takes le~s than half a 
1 + Z - Z2 

second to recognize the expression 1 _ 1 . 

Z 
One of the virtues of Anderson's model is the provi

sion for arbitrary predicates to test spatial relationships 
as part of the syntax. In order to handle this generality, 
the analysis algorithm must test a large number of pos
sible partitionings of the picture space before rejecting 
an inapplicable syntax rule. However, in the case of 
mathematical notation, increased efficiency can be ob
tained by taking advantage of its normalleft-to-right 
flow. While adequate for driving a picture analyzer for a 
restricted class of pictures, the descriptive scheme does 
not appear suitable for synthesis problems. (Anderson 
argues that these two aspects of picture processing are 
fundamentally different and should be treated by en
tirely different methods.) Anderson has demonstrated 
the feasibility of interactive mathematics using the 
above concepts; he concludes, and the authors concur, 
that future efforts could be directed towards engineering 
such systems. 

Other Works 

We conclude the survey by noting several other works 
which employ either linguistic methods or closely re
lated techniques. 

Clark and Miller41 use the language of graph theory to 
describe spark linkages and the topology of physics 
"events" appearing in spark chamber film. These de
scriptions are embodied in computer programs that 
apply elementary graph theory to assist in the decision
making process and perform the film analysis. The 
primitive elements of the pictures are sparks; a multi
list structural provides the description T, and T, of the 
spark' connectivies. Hierarchic descriptions result from 
combining sparks according to their geometric and 
graph properties to form tracks and events. While an 
explicit linguistic approach is not employed, the under
lying graph model acts as a formal description language 
much as in the work of Sherman and Narasimhan. The 
above program formed the basis for a practical produc
tion system that was used for several physics experi
ments. 

Clowes42 employs a set 9 of Boolean functions on pic
tures to define the syntactic classes for hand-written 
numerals; the successive execution of these functions 
from the bottom up serves to analyze and describe the 
pictures. More recently, he43 has been working on a 
scheme based on transformational grammars and 
Chomsky's model for natural language syntax; Other 
efforts which are explicitly linguistic in nature include 
Feder," Watt,45.46 Inselberg and Kline,47 Inselberg,48 
Breeding,49 Knote and Wiley,50 and Nir.51 

A related area of research has been pursued by 
Kirsch,2 and, more recently, by Coles52 and others. 
N aturallanguage statements about pictures are trans
lated into some formal notation, usually the predicate 
calculus; the predicate calculus statement then de
scribes a set of pictures-those for which the statement 
has the truth value of true. The natural language state
ment "Each polygon smaller than a black triangle is a 
square," could be translated into the predicate calculus 
as '(Vx) (P(x) /\ (a y) (B(y) /\ T(y) /\ Sm (s,y))~Sq 
(x) )" which may be read as "for all x, if x is a polygon 
and if there exists a y such that y is black and y is a 
triangle and x is smaller than y, then x is a square." The 
predicate calculus expression directs a picture analyzer 
to determine the truth value of the statement with re
spect to a given picture. By these methods, Coles52 is 
able to recognize some fairly complicated electric cir
cuits and chemical molecules drawn on a computer-con
trolled display. One of the aims of this research is to pro
vide interactive question-answering systems with a 
pictorial data base. A principal, and extremely difficult, 
problem is that of translating natural language input to 
the formal notation. In terms of our description model, 
the predicate calculus statement is the primitive struc
tural description T 8; hierarchic descriptions do not exist 
in these schemes. 

CONCLUSIONS 

As this survey indicates, there has been a great deal of 
research in picture description methods and associated 
processing systems; most of this is recent and is still in 
progress. A principal reason for this research has been the 
lack of adequate techniques for dealing with complex 
richly-structured pictures; we fell that relevant tech
niques are now emerging. All of the reported work is ex
perimental in'the sense that, to our knowledge, there do 
not exist any "production systems" that employ linguis
tic methods to any large extent. However, in several 
instances, notable in the work of Anderson4o and the 
authors,12.36 the benefits and practicality of these 
methods have been demonstrated. 

With the exception of Kirsch's triangle example,2 all 
of the descriptive schemes are basically linear. One sus
pects that the development of explicit two- and three
dimensional picture languages would lead to much 
greater insight into picture processing problems (and, 
quite possibly, human perception); we are still waiting 
for a breakthrough in this direction. Regardless of the 
detailed forms of the descriptive notation and gram
mars in the various systems, each syntax rule essentially 
specifies a list of patterns and a set of relations satisfied 
by them. Practical analysis systems will clearly have to 
restrict the class of pictures and the types of relations 
that may exist among the elements of a picture. This 



is entirely analogous to the linear language situation 
where extremely efficient parsers exist when the gram
mar form and class of languages are restricted, for ex
ample, in simple precedence grammars.53 One of the 
most difficult problems in pattern analysis is the classifi
cation of primitive patterns; in many situations, am
biguities and recognition failures can be resolved by 
examining the picture field surrounding the pattern in 
question, i.e., by using contextual information. Most of 
the surveyed works assume that the primitive elements 
have been_ classified before entering the analysis; in 
Shaw,12 the grammar 9 directs the primitive recog
nizers about the picture and assists the classification 
process by using the contextual information embedded 
in g. Work in this direction should be pursued further. 
Finally, we note that, with the exception of Eden19 •2o 
Narasimhan,Io.23 and Shaw, Miller, and George,12.35.36. 
8'1.38 the research has been concerned only with the 
analysis of pictures. As we argued in section III, there 
are advantages in treating both analysis and synthesis 
problems within the same formalism. However, picture 
generation using formal description schemes has not 
yet been examined in depth and remains a fruitful area 
for future work. 
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Decomposition of a visual scene into three
dimensional bodies 

by ADOLFO GUZMAN 

Massachusetts Institute oj Technology 
Cambridge, Massachusetts 

INTRODUCTION 

~ e consider visual scenes composed by the optical 
Image of a group of bodies. When such a scene is "seen" 
by a computer through a film spot scanner, image dis
sector, or similar device, it can be treated as a two-di
mensional array of numbers, or as a function of two 
variables. 

At a higher level, a scene could be meaningfully de
scribed as a conglomerate of points, lines and surfaces 
with properties (coordinates, slopes, ... ) attached t~ 
them. 

Still a more sophisticated description could use terms 
concerning the bodies or objects which compose such a 
scene, indicating their positions, inter-relations, etc. 

This paper describes a program which finds bodies in 
a scene, presumably formed by three-dimensional ob
jects. Some of them may not be completely visible. The 
picture is presented as a line drawing. 

When SEE-the pretentious name of the program
analyzes the scene TRIAL (see Figure 1 'TRIAL'), the 
results are: 

(BODY 1. IS :6 :2 :1) 

(BODY 2. IS :11 :12 :10) 

(BODY 3. IS :4 :9 :5 :7 :3 :8 :13) 

SEE looks for three-dimensional objects in a two
dimensional scene. The'scene itself is not obtained from 
a visual input device, or from an array of intensities or 
brightness. Rather, it is assumed that a preprocessing 
of some sort has taken place, and the scene to be ana
lyzed is available in a symbolic format (to be described 
in a later Section), in terms of points (vertices), lines 
(edges), and surface (regions). 

SEE does not have a pre-concieved idea of the form or 
model of the objects which could appear in a given 

scene. The only supposition is that the bodies are solid 
objects formed by plane surfaces; in this way, it can 
not find "cubes" or "houses" in a scene, since it does 
not know what a "house" is. Once SEE has partitioned 
a scene into bodies, some other program will work on 
them and decide which of those bodies are "houses." 

Thus, SEE is intended· to serve as a link between a 
pre-processor 1.2 which transforms intensity pictures 
into point or line pictures, 5 and a recognizer (such as 
TD 3 or DT 4), which handles this line picture and 
finds bodies, objects or zones matching with certain 
patterns or models. Instead of searching through the 
whole scene looking for parts to match its models, the 
work of the recognizer becomes simpler after SEE has 
partitioned the scene into bodies, because the data to be 
searched (matched) are smaller and better organized. 

The analysis which SEE makes of the different scenes 
generally agrees with human opinion, although in some 
ambiguous cases it behaves rather conservatively. Dis
tributed over these pages, the reader will find examples 
of scenes analyzed by SEE, and the peCUliarities and 
behavior of the program will become clear. 

The program SEE, written in LISP, has been tested 
in the PDP-6 machine of the Artificial Intelligence 
Group, Project MAC,at Massachusetts Institute of 
Technology. A preliminary version, written in CON
VERT,6 was used extensively for a quick test of ideas 
which shaped the program to its actual form. The analy
sis of a scene takes from 30 to 90 seconds, with the pro
gram running interpreted under the interpreter of the 
LISP programming system. 

A more technical description of SEE can be found in 
an unpublished memorandum. 7 

Related work 

Rudd H. Canaday 8 in 1962 analyzed scenes com
posed of two-dimensional overlapping objects, "straight-

291 
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14 

FIGURE l-TRIAL 

The program analyzes this scene and finds 3 bodies: 

(BODY 1 IS :6 :2 :1) 
(BODY 2 IS :11 :12 :10) 
(BODY 3 IS :4 :9 :5 :7 :3 :8 :13) 

sided pieces of cardboard." His program breaks the image 
into its component parts (the pieces of cardboard), de
scribes each one, gives the depth of each part in the 
image (or scene), and states which parts cover which. 

Roberts [9] in 1963 described programs that (1) con
vert a picture (a scene) into a 1ine drawing and (2) pro
duce a three-dimensional description of the objects 
shown in the drawing in terms of models and their 
transformations. The main restriction on the lines is 
that they should be a perspective projection of the sur
face boundaries of a set of three-dimensional objects 
with planar surfaces. He relies on perspective and 
numerical computations, while SEE uses a heuristic and 
symbolic (i.e., non-numerical ) approach. Also, SEE 
does not need models to isolate bodies. Roberts' work is 
probably the most important and closest to ours. 

Actually, several research groups (at Massachusetts 
Institute of Technology, 10 at Stanford University, 11 

at Stanford Research Institute 12) work actively to-

wards the realization of a mechanical manipulator, i.e., 
an intelligent automata who could visually perceive and 
successfully interact with its enviornment, under the 
control of a computer. Naturally, the mechanization of 
visual perception forms part of their research, and im
portant work begiris to emerge from them in this area. 

Organimtion of the paper 

It is formed by the following headings: 

• Introduction and related previous work. 
• Input Format. The representation of the scene as 

it is entered to the computer·. 
• Format of a Scene. The representation of the scene 

as SEE expects. 
• Type of Vertices. Classification of vertices ac

cording to their topology . 
• The program. Analysis of the algorithm, descrip

tion of heuristics. 
• Interesting examples. Discussion. Future work. 

Input Jormat 

For testing purp'oses, the scenes are entered by hand 
in a simplified fo.rmat (called input format), and then 
some routines convert this to the form required by SEE. 
Eventually, the data will come from a visual input de
vice, through a preprocessor .2.6 

Examples of a scene 

Suppose we want to describe the scene 'CUBE.' We 
begin by giving (in LISP) a value to 'CUBE.' (See Figure 
2 'Cube') 

(SETQ CUBE (QUOTE (A 1.0 1.0 (:1 B :4 G) 

B 1.0 5.0 (:1 E :2 C :4 A) 

C 3.07.0 (:2 D :4 B) 

D 8.0 7.0 (:2 E :3 F :4 C) 

E 6.0 5.0 (:2 B :1 G :3 D) 

F 8.03.0 (:3 G :4 D) 

G 6.0 1.0 (:1 A :4 F :3 E) 

)) 

Thus we associate with each vertex its coordinates 
and a list, in counterclockwise order, of regions and ver
tices radiating from that vertex. 

The conversion of the scene, as just given, iiIlto the 
form which SEE expects, is made by the funct~on 
LLENA; thus, (LLENA CUBE) will put in the prop-
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2 · A 
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o 2 6 8 

FIGURE 2-'CUBE'-A scene. 

erty list of CUBE the properties REGIONS and 
VERTICES; in the property list of each vertex, the 
propertiesXCOR, YCOR, NREGIONS, NVERTICES 
and KIND are placed; ahd in the property list of each 
region, it places the properties NEIGHBORS and 
KVERTICES. It also marks region :4 as part of the 
background. 

In other words, LLENA converts a scene from the 
'Input Format' to the 'Format of a Scene' described in 
the next section. 

Format of a scene 

A scene is presented to our program as a scene in a 
special symbolic format, which we now describe. 
Essentially, it is an arrangement of rela.tions· between 
vertices and regions. 

A scene has a name which identifies it; this name is an 
atom whose property list contains the properties 
'REGIONS,' 'VERTICES' and 'BACKGROUND.' 
For ex~mple, the scene ONE (see Figure 3 'ONE')' has 
the name 'ONE.' In the poperty list of 'ONE' we find 

REGIONS 

VERTICES 

-(:1 :2 :3 :4 :5 :6) 
Unordered list of regions composing 
scene ONE. 

-(AB CD E F G HI JK) 
Unordered list of vertices com
posing the scene ONE. 

BACKGROUND- (:6) 
Unordered list of regions compos
ing the background of the scene 
ONE. 

G 

6 

F 

A B 

FIGURE 3-'ONE.' A scene. Vertices and surfaces (regions) 
are the main components of a scene. 

Region 

A region corresponds to a surface limited by a simple 
connected curve. For instanc~, in ONE, the surface de
limited by the vertices ABC is a region, called :1, but 
GIJKDHisnot. 

Each region has as name an atom which possessesaddi
tionaJ properties describing different attributes of the 
region in quEtstion. These are 'NEIGHBORS,' 'KVER
TICES,' andY 'FOOP'. For example, the region in 
scene ONE formed by the lines AE, ED, DK, KC, CA, 
has' :2' at its name. In the property list of :2 we find: 

NEIGHBORS - (:3:4:6:1 :6) 
Counterclo~kwise ordered list of 
all regions whi~h are neighbors to 
:2. For each region, this list is 
unique up to cyclic permutation. 

KVERTICES (DEACK) 
Counterclockwise ordered list of 
all vertices which belong to the 
region :2. This list is unique up to 
cyclic permutation. 

FOOP (:3D :4E :6A:1 C :6K) 
Counterclockwise ordered list of 
alternating neighbors and kver .. 
tices of :2. This list is unique up to 
cyclic permutation. 

The FOOP property of a region is formed by a man 
who walks on its boundary always having this region to 
his left, and takes note of the regions to his right and of 
the vertices which he finds in his way. 
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Vertex 

A vertex is the point where two or more lines of the 
scene meet; for instance, A, G, and K are vertices of the 
scene ONE. 

Each vertex has as name an atom which posseses addi
tional properties describing different attributes of the 
vertex in question. These are 'XCOR,' 'YCOR,' 
'NVERTICES,' 'NREGIONS,' and 'KIND.' For 
example, the vertex H (see scene ONE) has in its prop
erty list: 

XC OR 3.0 
x-coordinate 

YCOR 15;0 
y-coordinate 

NVERTICES (I G D) 
Counterclockwise ordered list of 
vertices to which H is connected. 
This list is unique up to cyclic 
permutation. 

NREGIONS - (:3:5 :4) 
Counterclockwise ordered list of 
regions to which H belongs. 
This list is unique up to cyclic 
permutation. 

KIND - (:31 :5G :4 D) 
Counterclockwise ordered list of 
alternating nregions and nvertices 
of H. This list is unique up to cyc
lic permutation. 

The KIND property of a vertex is formed by·a man 
who stands at the vertex and, while rotating counter
clockwise, takes note of the regions and vertices which 
he sees. 

NREGIONS and NVERTICES are then easily de
rived from KIND: take the odd positioned elements 
of KIND, and its even-positioned elements, respec
tively. 

Type8 of vertice8 

Vertices are classified according to the slope, disposi
tion and number of lines which form them. The func
tion (TYPEGENERATOR L), where L is a list of ver
tices,performs this classification, putting in the prop
erty list of each one of the elements of L, the typa to 
which it belongs. 

The TYPE of a vertex is always a list of' two ele
ments; the first is the type-name: one oi'L,' 'FORK,' 
'ARROW,' 'T,' 'K,'·'X,' 'PEAK,' 'MU,LTI';thesecond 
element is the datum, which generally is a list, whose 

form varies with the type-name and contains informa
tion in a determined order about the vertex in question. 
(See Table I 'VERTICES'). 

TABLE I-'VERTICES' Classification of vertices of a scene. 

> 'L'.- Verta: where two 
line. meet. 

'ARROW'.- Three line ... eUng at a 
point, with one of the 
angle. bisaer than 180 o. 

'(. 
'It'.- Two of the vertic .. are CoUnear 

with the center, and the other 
two fall in the same side of such 
a line. . 

y 
'FORIt'.- Three line. fOl:lllina 

anale. _ller than 180 o. 

-I 
'T'.- Three concurrent line., two of 

them colinear. 

'X'.- TliO of the vertices are 
colinear with the center, 
and the other two fall in 
opposite Sides of such a 
line. 

~ * ' , 'MULTI'.- Vertices formed by 
PEAK .- Formed by four Or more four Or more lines, 

lines, when the YCOR and not falling in 
of the central vertex is any of the preceding 
higher than the YCOR's of types. 
any of its neighbors. 

The program 

The program named SEE accepts a scene expressed 
in the notation described above and produces outputs 
lists identifying and describing the bodies present in the 
scene. 

In this section we describe the program, and how it 
achieves its goals, by discussing the procedures, 
heuristics etc., employed and the way they· work. 
We begin with several examples. 
Example 1. Scene 'STACK' This scene (see Figure 4 
'STACK') is analyzed by SEE, with the following re
sults: 

(LOCAL ASSUMES (:5) (:13 :14) SAME BODY) 
(BODY LIS :1 :3 :2 :18 :17) 
(BODY 2. IS :4 :16 :15) 
(BODY 3. IS :7 :6 :11 :12) 
(BODY 4. IS :9 :8 :10) 
(BODY 5. IS :13 :14 :5) 
(BODY 6. IS :20 :19) 

Results for scene STACK 

Example 2. Scene 'BRIDGE.' With this example, 
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r 

~ ____ ~------lra 

na 

aa I-.... - .... -~....----

FIGURE 4-'STACK.' This scene is analyzed by SEE, with 
results detailed in Example 1. All bodies are correctly found. 
Some of the vertices appear in the drawing with their names; in 
other drawings we will omit the names; we are also omiting the 

coordinate axes. 

we will give details of the program's operation. We 
start by loading into LISP the programs for SEE and 
its auxiliary functions. 
Then, we evaluate: 

(UREAD BRIDGE SCEN3) l' Q 
This causes scene BRIDGE (see 
Figure 5 'BRIDGE'), to be read 
(in the format described pre
viously) and transformed to the 
proper form which SEE expects 
(also described before). 

Finally, we evaluate 

(SEE (QUOTE BRIDGE)) 
This calls SEE to work on 
BRIDGE. 

Results appear in Table II, 'RESULTS FOR BRIDGE.' 

(LOCAL ASSUMES (:18) (:19) SAME BODY) 
(LOCAL ASSUMES (:28) (:29) SAME BODY) 
(LOCAL ASSUMES (:10) (:8:11:5 t6 :4) SAME BODY) 
(LOCAL ASSUMES (:7) (:8:11 :5:6:4 :10) SAME BODY) 

(SINGLEBODY ASSUMES (:19 :18) (:16) SAME BODY) 

RESULTS 
(BODY 1. IS :24 :9 :21 :27 :12 :25) 
(BODY 2. IS :22 :26 :23) 
(BODY 3. IS :17 :3 :20) 
(BODY 4. IS :1 :2) Results for scene 'BRIDGE' 
(BODY 5. IS :14 :15 :13) 
(BODY 6. IS :19 :18 :16) 
(BODY 7. IS :29 :28) 
(BODY 8. IS :8 :11 :5 :6 :4 :10 :7) 

TABLE II-RESULTS FOR BRIDGE 

SEE finds eight bodies in scene 'BRIDGE' (See Figure 5 
'BRIDGE'). Unnecessary detail has been removed from the 
drawings; the reader must bear in mind that the complete scene 
contains vertices (whose names do not appear in the drawings) 
and their coordinates (which are also not shown), as well as edges 

and regions. 

FIGURE 5-'BRIDGE.' The long body :25 :24 :27 :21 :9 :12 is 
correctly identified. (See Table II) 



296 Fall Joint Computer Conference, 1968 

SEE and its parts 

The operation of SEE is quite straightforward; the 
program is not recursive and does not do any tree 
search. Its main parts, which are executed one after 
another, unless otherwise indicated, are: 

FILLSCENE. The properties SLOP and TYPE 
are generated for each vertex, if they were not already 
present. 

CLEAN. Old properties used internally by SEE are 
removed from vertices and regions. 

EVIDENCE. An analysis is made of vertices, regions 
and associated information, in search of clues that indicate 
that two regions form part of the same body. If evidence 
exists that two regions in fact belong to the same body, 
they are linked or marked with a "gensym" (both re
ceive the same new label). There are two kinds of links, 
called strong (global) or weak (local). 

LOCALEVIDENCE. Some features of the scene will 
weakly suggest that a group of regions should be con
sidered together, as part of the same body. This part of 
the program is that which produces the 'local' links or 
evidence. 

GLOBAL. The 'strong' links gathered so far are ana
lyzed; regions are grouped into "nuclei" of bodies, 
which grow until some conditions fail to be satisfied (a 
detailed explanation follows later). 

LOCAL. Weak evidence is taken into account for de
ciding which of the unsatisfactory global links should be 
considered satisfactory, and the corresponding nuclei of 
bodies are then joined to form a single and. bigger 
nucleus. Assumptions made by LOCAL are printed 
(see output of SEE). LOCAL may call GLOBAL again, 
or go on. 

SING LEBODY. If a single region does not belong to 
a larger nucleus, but is linked by one strong evidence to 
another region, it is incorporated into the nucleus of 
that other region. This part of the program may call 
GLOBAL or LOCAL again, if necessary, or continue. 
SINGLEBODY also prints its assumptions. 

RESULTS. The regions belonging to the background 
are screened out, and the results are printed. 

Operation 

Here is explained in considerable detail each of the 
parts of SEE that have been sketched above. This will 
help the reader understand the behavior of the program, 
its strength and deficiencies. 

Example. Scene 'TOWER.' First, we begin by show
ing a typical analysis of SEE with a somewhat compli
cated scene (see Figure 6 'TOWER'). Most of the scenes 
contain several "nasty" coincidences: a vertex of an ob
ject lies precisely on the edge of another object; two 
nearly parallel lines are merged into a single one, etc. 

This has been done on purpose, since a non-so
phisticated preprocessor will tend to make this kind of 
error. 

The output is given in Table III, 'RESULTS 
FOR TOWER.' 

FIGURE 6-'TOWER.' Neither LOCAL nor SINGLEBODY 
are necessary to correctly parse this scene into the bodies which 
form it. There are many 'strong' links in this scene . and SEE 

makes good use of them. (See Table III) 

(BODY 1. IS :3 :2 :1) 
(BODY 2. IS :5 :15 :4) 
(BODY 3. IS :23 :17) 
(BODY 4. IS :6 :7 :8) 
(BODY 5. IS :10 :11 :9) 
(BODY 6. IS :13 :14 :12) 
(BODY 7. IS :18 :22) 
(BODY 8. IS :20 :19 :21) 

Results for TOWER 

TABLE III-Results for Figure 6 'TOWER' 

FILLSCENE,· CLEAN. These two parts of SEE are 
simple; if necessary, FILLSCENE calls SLOPGENER
ATOR and TYPEGENERATOR; CLEAN removes 
some unwanted properties. 

EVIDENCE. Strong or global links are placed by 
this part of the program: Two functions are used: 
EVERTICES and TJOINTS. 
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EVERTICES. This function considers each vertex of 
the scene under the following rules: 

L. Vertiees of the type 'L' are not ,considered. 

FORK. If three regions meet at a vertex of 
the FORK type (Table IV (b)), and 
none of them is the background, links 
between them will be formed. For -instance 
in Figure 6 'TOWER,' we establish the 
links :19- :20, :19- :21, and :20- :21. 
Nevertheless, some of these links may not 
be produced: in Figure 7 'FORK,' the link 
between :3 and :2 is not produced because 
Q is a "passing T" ; the link between :1 and 
:3 is not generated because R is an 'L.' The 
link between :1 and :2 is generated. 

This heuristic is pow~rful, and (see Figure 
5 'BRIDGE') allows us, for instance, 
while working on vertex jb, to omit the 
link between regions :5 and :9 in scene 
'BRIDGE.' Nevertheless, this same heur
ristic puts a link between regions :8 and :9 
of the same scene. As we shall see later, 
this situation is not too bad. 

ARROW. This type of vertex (TableIV (c)) causes 
two of its regions (the 'left' and the 
'right' one) to be joined'; in Table IV (c), 
we will put a link between :1 and :2, which 
'counts as evidence that :1 and :2 belong to 
the same body. Nothing is said about :3. 

For instance, this type of vertex joints 1: 
and :2 in Figure 5 'BRIDGE.' 

X. Two cases are distinguished: 
(a) The X is formed by the intersection of 

two lines. No evidence is formed. 
(b) Otherwise (Table IV (f)), links :1- :2 

and :3- :4 are formed. This type of X 
occurs when we have piles of objects; 
for instance, in Figure 6 'TOWER,' 
:18 and :22 are considered as belong
i~ to the same body, due to this type 
of vertex. 

PEAK. All its regions (table IV (h)), except the one 
containing the obtuse angle, are linked to 
each other. See also Figure 14 'CORN.' 

T. A search is made for another T to match the 
vertex cUrrently analyzed; two T's match if 
they are colinear and "facing each other;" 
if there are several pairs, the closest is 
chosen. For instance (Table IV (d)), A and 

B are paired. An indicator 'NEXTE' is 
placed in such vertices. 
(a) Once the NEXTE is determined, 

EVERTICES establishes a link be
tween :1 and :2 (Table IV (d)), and 
another between :3 and :4. These 
links will not be produced if the re
sults of them is to associate-the back
ground with somethi_~g that is not 
the background. 

(b) The following test is done (Figure 8 
'PARALLEL') : If neither :1 or :2 is 
the background, but both have it as 
neighbor, and in some part of the 
boundary of :1 (and the same holds 
for :2) with the background, the seg
ment them (M - K in Figure 8 
'PARALLEL') is parallel to the cen
tral segment (O-P) of the T, then 
:1 and :2 are linked. For instance, in 
Figure 4 'STACK,' this analysis ap
plied to the vertex T will produce 
evidence that :13 and :14 belong to 
the same body (since ZA-AA, T
MA and OA-NA are parallel). This 
is a rather global heuristic although 
only useful for bodies with parallel 
faces. Also, EVERTICES classifies 
T's according to the slope of their 
central segments. 

A summary of the strong links put by 
EVERTICES is found in Table IV'GLO
BAL EVIDENCE.' 

T JOINTS. This function actuates on T's and es
tablished global evidence as described in part (a) of T 
(Table IV (d)). 

LOCALEVIDENCE. An arrow is a leg if one of its 
left or right vertices is a corner (if necessary, through a 
chain of matched T's) which has a side parallel to the 
central segment of the arrow. The function LEGS finds 
legs in the scene, and stores this information in a list of 
'weak' links (see Figure 9 'LEGS'). 

GLOBAL. Strong evidence is analyzed in this part of 
the program. When this section is entered, several links 
(strong and weak) exist among the different. regions of 
the scene. These links are shown pictorially in Eigure 10 
'LINKS,' for the scene 'BRIDGE' (see both). All the 
links to the background (:30) are deleted: the back-. 
ground cannot be part of any body. 

Definition: a nucleus (of a body) is either a region or a 
set of nuclei which has been formed by. the following 
rule. 
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TABLE IV-'GLOBAL EVIDENCE' The strong links are 
represented by dotted lines 

> y , 0_. 
b • 

.; 

.'" ... f> 

(A) (B) 

:1 

" O"'~ :3 ~"""'" 

············· .... ····~·~'··· ..... 2 
.... . 

'ow 

:4 (0) (E) 

(G) (H) 

R 

5 
FIGURE 7-'FORK.' 

:~ :3 

(C) 

:j;.1IT" '0:2 

IS' '. 

:3 ·:4 

(F) 

* 
(I) 

Rule: If two nuclei are connected by two or more 
links, they are merged into a larger nucleus by concatena
tion. 

(Two nuclei A and B are linked if regions a and bare 
linked where a E A and b E B). For instance, regions :8 
and :11 are put together, because there exists two links 
among them, to form the nucleus :8-11. Now, we see 
that region :4 (see Figure 10 'LINKS') has two links 
with this nucleus :8-11, and therefore the new nucleus 
:8-11 = 4 is formed. 

We let the nuclei grow and merge under the forner 
rule, until no new nuclei can be formed. When this is the 
case, the scene has been partitioned into several "maxi
mal" nuclei; between any two of these there are zero or, 

FIGURE 8-'PARALLEL.' A link is established between :1 
and :2 because they do not belong to the background, but the 
background is a neighbor of both of them, and the segment that 
separates :1 from the bacgkround (and the same is true for :2) 
is parallel to OP, the centrai segment of the T in question (:3 is 

the background). 

FIGURE 9-'LEGS.' 
Three different types of legs. 

at most, one. link. For example, figure 10 'LINKS' will 
be transformed into Figure 11 'NUCLEI.' 

LOCAL. If some strong link joining two "maxinuil" 
nuclei is also reinforced by a weak link, these nuclei are 
merged. 

For example, in scene BRIDGE (see Figure 5 
'BRIDGE') the following local links exist (among 
others): :9 to :4, :10 to :4, :28 to :29, :18 to :19. There
fore, the corresponding nyclei are merged and now 
figure· NUCLEI is transformed into figure 'NEW 
NUCLEI.' 

A weak link does not cause the regions which it links 
to be merged or considered as belonging to the same 
body unless there is, in addition, one strong evidence be
tween such regions. LOCAL may call GLOBAL again, 
if necessary. 
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FIGURE 10-'LINKS.' This figure represents scene 
'BRIDGE,' with the strong links between its regions (represented 
here by circles) shown. The dotted links represent the evidence 
generated by the vertex PB (see Figure 5 'BRIDGE'L The short 
arrows show the links put by vertex JBj note that a link between 
:5 and :9 is not put, because S (see Figure 5 'BRIDGE') is a pass
ing t-joint. Zig-zag links are produced by the mechanism de
scribed in part (b) of T. (See Figure 8 'PARALLEL'). Curled 
links are produced by vertex GBj even if this vertex were oc
cluded, and the links were missing, there is still enough evidence 
to identify regions :4 :5 and :6 as belonging to the same body. 

Weak links are not shown. 

SINGLEBODY. A strong link joining a nucleus and 
another nucleus composed by a single region is con
sidered enough evidence and the nuclei in question 
merged, if there is no other link emanating from the 
single region. For instance, in Figure 12 'NEW NU
CLEI,' nucleus :16 is merged with nucleus :18--:19 (see 
Figure 13 'FINAL'). Nucleus :28 - 29 is not joined with 
:26-22-23 or with :24-25-27-12-21-9. Even if 
nucleus :28-29 were composed by a single region, it 
still will not be merged, since two links emerged from it: 
two nuclei clajm its possession. 

RESULTS. After having screened out the regions 

FIGURE ll-'NUCLEI.' Mter joining all nuclei having two 
or more links in common, the representation for the scene 
'BRIDGE' changes from that shown in figure 10 'LINKS' to the 

one shown here. 

FIGURE l2-'NEW NUCLEI.' The figure shows the scene 
'BRIDGE,' after LOCAL transforms it from the representation 

in Figure 11 'NUCLEI' to the one shown here. 

that belong to the background, the nuclei are printed as 
"bodies." 

In this process, the links which may be joining some 
of the nuclei are ignored: RESULTS considers the 
links of Figure 13 'FINAL', for instance, as non-existent. 

Summary 

SEE uses a variety of kinds of evidence to "link" to
gether regions of a scene. The links in SEE are supposed 
to be general enough to make SEE an object-analysis 
system. Each link is a piece of evidence that suggests 
that two or more regions come from the same object, and 
regions that get tied together by enough evidence are 
considered as "nuclei" of possible objects. 
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FIGURE 13-'FINAL.' SINGLEBODY joints the lonely re
gion :16 with the nucleus :18-19. 

Some ~nteresting examples 

We present in this section several scenes with the re
sults obtained by SEE. 

Example. 'CORN.' The program analyzes the scene 
CORN (see figure 14 'CORN') obtaining the following 
identification of bodies: 

(SINGLEBODY ASSUMES (:2 :3 :1) (:4) SAME 
BODY) 

(BODY 1. IS :2 :3 :1 :4) 
(BODY 2. IS :7 :6 :5) 
(BODY 3. IS :13 :11 :12) 
(BODY 4. IS :15 :16 :14) Results for 'CORN' 
(BODY 5. IS :19 :18 :17) 
(BODY 6. IS :21 :20) 
(BODY 7. IS :8 :9 :10) 

The region :4 got a single link with :3, and SINGLE
BODY had to join it with the nucleus :1 :2 :3. Note 
that :4 and :12 did not get joined. The pyramid at the 
top was easily identified because its peak produces 
many links. 

Example. 'MOMO'. (See Figure 15 'MOMO'). The re
sults are as follows: 

(LOCAL ASSUMES (:17) (:9) SAME BODY) 
(LOCAL ASSUMES (:9 :17) (:18) SAME BODY) 
(BODY 1. IS :3 :2 :1) 
(BODY 2. IS :32 :33 :27 :26) 
(BODY 3. IS :28 :31) 
(BODY 4. IS :19 :20 :34 :30 :29) 
(BODY 5. IS :36 :35) 
(BODY 6. IS :24 :5 :21 :4) 
(BODY 7. IS :25 :23 :22) Results for 'MOMO' 
(BODY 8. IS :14 :13 :15) 

(BODY 9. IS :10 :16 :11 :12) 
(BODY 10. IS :18 :9 :17) 
(BODY 11 IS :7 :8) 
(BODY 12. IS :38 :37 :39) 

5 & 

22 

21 

FIGURE 14-'CORN.' Since a link between :4 and :12 is not 
established, the bodies found ill that part of the scene are 

:1 :2 :3 :4 and :11 :12 :13. 

FIGURE 15-'MOMO.' 
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Comments on the solution for 'MaMa': The central 
cubes are easily isolated. :21 gets a link with :5 and 
another with :24, so there is no need to use LOCAL in it. 
The same is true of :26 with :27 and :33. 

There is enough strong evidence to joint :28 and :31. 
The links for :29 :30 :34 :20 :19 and :9 :17 :18 are in

dicated in Figure 16 'M01VI9-LINKS.' 
The dotted links between,regions :30 and :34, and be

tween :20 and :19 (see Figure 15 'MOMO') are duetothe 
heuristic of parallel lines (of Figure 8 'PARALLEL'). 
These links made it possible to join the otherwise dis
connected nuclei :29- :30- :19 and :34- :20. In particular, 
if :34 or :20 did not have parallel sides, SEE would have 
failed to merge these nuclei, and would have reported 
two bodies. The disposition of regions in MOMO is such 
that no link is present between :29 and :34, since :28 
and :31 fall "exactly" parallel to :29 and :30. In a less 
extreme scene, some of these links would be present, al
lowing correct identification even if :29-:30-:34-:20-:19 
were not a prism. Anyway, SEE did not make any mis
takes. 

The triangle of links formed by :9, :18 and :17 nor
mally would have produced 3 separate bodies (since we 
need at least one double link to merge two regions); 
nevertheless, in this case, LOCAL makes some assump
tions and saves the situation. Again, if :9 were not a 
parallelogram, there would be no weak links between :9 
and :18 or between :9 and :17, and 3 bodies would have 
been reported instead of :9- :17..; :18. But we should no
tice that, in general, two links instead of one would be 
between :17 and :18. 

Links were extablished between :12 and :13, without 
serious consequences, because we need. two mistakes, 
two wrong strong links, to fool the program. But that 
could happen. 

FIGURE 16-MOMO-LINKS'. Some links of 
figure 15 'MOMO' 

Example. 'HOME'.-(see scene HOME). The results 
are in Table V 'RESULTS FOR HOME.' 

(SINGLEBODY ASSUMES (:38) (:39) SAME BODY) 
(SINGLEBODY ASSUMES (:34) (:33) SAME BODY) 
(SINGLEBODY ASSUMES (:25 :24 :22) (:23) SAME BODY) 
(SINGLEBODY ASSUMES (:20) (:21) SAME BODY) 
RESULTS 
(BODY 1. IS:3 :6:10 :2) 
(BODY 2. IS :14 :13:11 :12) 
(BODY 3. IS :9 :8) 
(BODY 4. IS :18) 

. (BODY 5. IS :15 :5) 
(BODY 6. IS :38 :39) 
(BODY 7. IS :7 :26 :27) 
(BODY 8. IS :20 :21) Results for HOME 
(BODY 9. IS :29:28) 
(BODY 10. IS :34 :33) 
(BODY 11. IS :31 :32 :30) 
(BODY 12. IS :25 :24 :22 :23) 
(BODY 13. IS :16) 
(BODY 14. IS :19) 
(BODY 15. IS :17) 
(BODY 16. IS :36 :37 :35) 

TABLE V-Results for HOME 

FIGURE 17-'HOME.' The hexagonal prisms did not create 
difficulties; SINGLEBODY was needed to group :34 with :33. 
The body :38-39 was identified as a single one, but :16-17 was 
reported as two. Note that there does not exist local link between 
:21 and :20; nevertheless, SINGLEBODY makes the correct 

identification. (See Table V). 

Comments on the solution to HOME: There is a certain 
degree of ambiguity in this scene which human beings 
tend to resolve by assuming parallelepipeds. :16 and :17 
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are reported as two separate bodies, instead of one, 
which is probably a more natural answer. 

In the picture from which 'HOME' was drawn, 
:19 and :18 were the two faces of a single parallelepiped 
leaning on :38-:39; SEE reports :19 as one body and :18 
as another. 

Nevertheless, SEE reports :38 and :39 as forming 
part of the same body (which was in fact the case in the 
picture in question), due to the fact that :4 and :1 are 
background. 

Example. 'SPREAD.'-(see Figure 18 'SPREAD'). 
The results are in Table VI 'RESULTS FOR SPREAD' . 

(LOCAL ASSUMES (:36) (:4) SAME BODY) 
(LOCAL ASSUMES (:30) (:31 :32 :29) SAME BODY 
(LOCAL ASSUMES (:16) (:17) SAME BODY) 
(LOCAL ASSUMES (:5) (:20) SAME BODY) 
(LOCAL ASSUMES (:3 :11 :9) (:12 :10) SAME BODY) 
(SINGLE BODY ASSUMES (:23) (:22) SAME BODY) 
(SINGLEBODY ASSUMES (:4 :36) (:37) SAME BODY) 
(SINGLEBODY ASSUMES (28 :26 :27) (:25) SAME BODY) 
RESULTS 

. (BODY 1. IS :39 :40 :38) 
(BODY 2. IS :23 :22) 
(BODY 3. IS :42 :41) 
(BODY 4. IS :4 :36 :37) 
(BODY 5. IS :24) 
(BODY 6. IS :28 :26 :27 :25) Results for SPREAD 
(BODY 7. IS :31 :32 :29 :30) 
(BODY 8. IS :20 :5) 
(BODY 9. IS :12 :10 :3 :11 :9) 
(BODY 10. IS :13 :7 :1) 
(BODY 11. IS :21 :6) 
(BODY 12. IS :8 :18) 
(BODY 13. IS :17 :16) 
(BODY 14. IS :45 :43 :44) 
(BODY 15. IS :19) 
(BODY 16. IS :15 :14) 

TABLE VI-Results for SPREAD 

Comments on the solution to SPREAD: The body 
:22-23-24, due to insufficiency of links, was split in two: 
:22-23 and :24. 

Since there is only one link between :6 and :5, this 
body gets split into two: :6-21 and :5-20. Note that :21 
is not the same face as :20, and there is where SEE gets 
confused and refuses to see evidence toward linking :21 
with :20. 

The long body :9-10-11-12-3 gets properly identified. 
Example. 'HARD.'-,-This scene is analyzed with the 
following results: 

(LOCAL ASSUMES (:11) (:12) SAME BODY) 
(LOCAL ASSUMES (:15) (:16) SAME BODY) 
RESULTS 
(BODY 1. IS :12 :11) 

1 

(BODY 2. IS :16 :15) 
(BODY 3. IS :32 :31 :30) 
(BODY 4. IS :9 :10 :8) 
(BODY 5. IS :18 :19 :20) 
(BODY 6. IS :13 :17 :14) Results for 'HARD' 
(BODY 7. IS :5 :4) 
(BODY 8. IS :1 ;:2 :33) 
(BODY 9. IS :24 :23 :22 :3 :21 :28 :29) 
(BODY 10. IS :25 :26 f27) 
(BODY 11. IS :7) 
(BODY 12. IS :6) 

FIGURE 18-'SPREAD.' :41 and :42 are identified as a 
single body. Nevertheless, :8-18-19 gests broken into :8-18 and 
:19. :28-27-26-25 gets correctly identified, as well as the funny 

looking :29-30-31-32. (See Table VI). 

Comments on the solution to HARD: :15 and :16 have 
to make use of weak evidence to get joined and recog
nized as forming part of the same body. Nevertheless, 
tois is not necessary with :28 and :29, because, through 
a chain of Ts, there is enough evidence in :3, :21 and :22 
to join successfully all that long and twice occluded body. 

There is one serious bug in this identification: regions 
:7 and :6 get identified as two separate bodies,and not 
as a single one, as one would normally do. This is caused 
by the fact that neither :7 nor :6 have visible 'useful' ver
tices, and there are not enough parallel lines in them to 
use the heuristic of Figure 8 'P ARALLEL.' 
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FIGURE 19-'HARD.' Body :21-22-3-23-24--28-29 is reported 
as a single object, which is correct. Nevertheless, regions :7 and :6 

get reported as two bodies. 

:33 was recognized as part of :1-2, as it should be: 

DISCUSSION 

We have described a program that analyzes a three-di
mensional scene (presented in the form ofa line draw
ing) and splits it i~to "objects" on the basis of pure 
form. If we consider a scene as a set of regions (sur
faces), then SEE partitions the set into approprirute sub
sets, each subset forming a three-dimensional body or 
object. 

The performance of SEE shows to us that it is possible 
to separate a scene into the objects forming it, without need
ingto know in detail these objects; SEE does not need 
to know the 'definitions' or descriptions of a pyramid, or 
a pentagonal prism, in order to isolate these objects in a 
scene containing them, even in the case where they are 
partially occluded. 

The basic idea behind SEE is to make global use of in
formation collected locally at each vertex: this informa
tion is noisy and SEE has ways to combine many dif
ferent kinds of unreliable evidence to make fairly re
liable global judgments. 

The essentials are: 

(1) Representation as vertices (with coordinat,es), 
lines and regions 

(2) Types of vertices. 
(3) Concepts of links (strong and weak), nuclei and 

rules for forming them. 

The current version of SEE is restricted to scenes pre-

sented in symbolic form. It does not have resources for 
dealing with curves, shadows, noise, missing lines, etc. 
So it represents a "geometric theory of object identity" 
at present. 

Since SEE requires two strong evidences to join two 
nuclei, it appears that its judgments will lie in the 
'safe' side, that is, SEE will almost never join two re
gions that belong to different bodies. From the analysis 
of scenes shown above, its errors are almost always of 
the same type: regions that should be joined are left 
separated. We could say that SEE behaves "conserv
atively," especially in the presence of ambiguities. 

Divisions of the evidence into two types, strong and 
weak, results in a good compromise. The weak evidence 
is considered to favor linking the regions, but this evi
dence is used only to reinforce evidence from more re
liable clues. Indeed, the weak links that give extra 
weight to nearly parallel lines are a concession to ob
j ect-recognition, in the sense of letting the analysis sys
tem exploit the fact that rectangular objects are com
mon enough in the real world to warrant special atten
tion. 

Most of the ideas in SEE will work on curves too. 
However, we do not yet have a good idea of how sensi
tive the system will be to "symbolic noise," i.e., missing 
misplaced, and false region boundaries. As indicated in 
the scenes above, the system seems to have good re
sistance to "accidents" in .which objects happen to 
to "line up" unusually well. This feature may be neces
sary if the preprocessor that (eventually) will feed data 
SEE decides to report two nearly colinear lines as one 
alone, or if it lumps several vertices into one, because' 
they lie close to each other. 

Extensions. (None of this incorporated in the actual 
program.) l\lore heuristics could be added to increase 
the number of links; in part.icular, given a good number 
of "link proposers," parameters set outside (by the 
user) would tell SEE which set of heuristics to use; for 
instance, if we knew that the scene is formed by prisms, 
we could use the heuristics that ask for parallel lines 
having a given CO,nfiguration, we could check the length 
of certain edges, etc. 

Different kinds of links could also be established; in 
this way, 'contradictory' links (such as the three links of 
Figure 13 'FINAL' which SEE just. igtiores) could be 
studied further, in order to discover ambiguities. In 
particular, a "conditional link" would be useful: regions 
:2 and :3 belong to the same body if region :4 does not. 

SINGLEBODY could be improved so as to analyze 
in more detail the regions that by themselves form 
bodies (that is, the bodies formed by only one region); 
in this way, we could hope to joint regions :6 and :7 of 
scene 'HARD.' 
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A limited speech recognition system* 

by DANIEL G. BOBROW and DENNIS H. KLATTt 

Bolt Beranek and Newman Inc 
Cambridge, Massachusetts 

INTRODUCTION 

A computer system which identifies words in continuous 
speech of an unknown speaker is beyond the current 
state of the art in speech recognition. LISPER, is a 
successful limited speech recognition system based on a 
set of assumptions which greatly simplify the recogni
tion problem; within these restrictions it allows 
experjmentation on the usefulness of a voice insertion 
system on the computer. 

LISPER operates within limitations along a number 
of dimensions. Rather than use continuous speech in 
which segmentation is a problem, we work with 
messages with easily delimited beginning and termina
tion points. The set of messages is limited in number; at 
anyone time the· vocabulary to be distinguished can 
contain up to about 100 items. However, an item need 
not be a single word, but may be any short phrase. 
A message list from a NASA mission context, shown in 
Table 1, was one of three used in testing the system. 
Note that LISPER recognizes each of these messages as 
a unit, and does not segment a multi word utterance into 
individual words for recognition. The system is not 
designed to work well simultaneously for a number of 
different speakers, or achieve good recognition scores 
for an unknown speaker. The system is useable by any 
male speaker, but must be first trained by him. The 
training period consists of a period of closed loop 
operation in which the speaker says an input message, 
the system guesses what he says, and he responds with 
the correct message. In this training phase, the system 
will learn the idiosyncratic variations of the speaker's 
set of input messages. In this closed loop system, it is 
not unlikely that the speaker will also learn something. 

*Thi.s research was supported principally by the National Aero
nautics and Space Administration, and in part by the Advanced 
Research Projects Agency. 

tAIso at Massachusetts Institute of Technology, Cambridge 
Mass. 
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The LISPER system was designed as a research 
vehicle, as well as a pattern recognition system. For this 

one 
two 
three 
four 
five 
six 
eight 
nine 
point 
plus 
stop 
zero 
seven 
minus 
pressure 
negative 
what is yaw 
what is pitch 
end repeat 
affirma.tive 
inclination 
distance to earth 

distance to dock 
fuel tank content 
time to sunrise 
time to sunset 
orbit apogee 
orbit perigee 
revolution time 
closing rate to dock 
midcourse correction time 
micrometeoroid density 
radiation count 
what is attitude 
remaining control pulses 
alternate splashdown point 
weather at splashdown point 
sea and wind at splashdown point 
visibility at splashdown point 
temperature at splashdown point 
skin temperature 
power consumption 
fuel cell capacity 
repeat at intervals 

TABLE I-Message list from NASA context 

reason, flexibility for data access and program modifica
tion were important. For this reason, LISPER was 
built in an extended LISP system. 1,2 This decision 
allowed an easy transfer during the research from a 
DEC PDP-1 to an SDS 940 computer. 

Any pattern recognition system must have three basic 
components: preprocessing hardware to extract a 
representation of the input; programs utilizing this raw 
data to compute properties of the unknown input (data 
reduction); and a recognition or decision algorithm. 
Figure 1 shows a block diagram of the organization of 
the LISPER system. The input speech signal may be 
obtajned from either a microphone or tape recorder. The 
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r---------------------------
I 

DISPLAY 

FIGURE i-Block Diagram of the Lisper system 

basic parameters of the input are extracted by a 
spectrum analyzer which consists of a pre-emphasis 
network followed by nineteen bandpass filters. Bandpass 
filter outputs are rectified, low-pass filtered, sampled, 
converted into logarithic units, and stored on digital 
tape, or in the memory of the computer. The 19 filters 
consist of 15 filter spaced uniformly up to 3000 HZ! the 
range encompassed by the first three resonances of the 
male voice; and 4 filters covering the range from 
3000-6500 Hz in which there is information about the 
noise component of speech. The four-pole Lerner 
bandpass filters each have a bandwidth of 360 Hz. An 
advantage of this filter system is that one does not see 
spectral peaks due to individual harmonics of the 
fundamental frequency of a male speaker; a spectral 
maximum in the filter outputs indicates the presence of 
one or more formants (resonances of the vocal tract 
transfer function). The spacing. between filters makes 
resolution of individual formants poor, and we do not 
use formant tracking in our recognition system. 

.The spectral representation of a word as derived from 
our input system consists of 200 spectral samples, 
corresponding to 2 seconds of speech material and 
approximates the log of the short term power spectrum 
of the speech signal. A spectral sample consists of the 
outputs of the 19 bandpass filters, all sampled at a 
particular instant of time. A filter output, in log units, 
is an integer ranging from 0 to 63, covering a 45 decibel 
range of intensity. 

The use of the logarithm of the short-time spectrum 
is well established as one approach to speech analysis 
and has often been used as the basis for recognition 
programs. 3 The principal contributions of this research 
have been the development of a set of interesting 
algorithms for extracting features which characterize 
speech utterances, and coupling this set with a recogni
tion algorithm capable of high quality message identifi
cation in the presence of redundant, inconsistent, or 
incorrect information from these properties. The 
recognition algorithm does not directly utilize the 

spectral data, nor is an intermediate phonemic transcrip
tion of the word produced. However, we have made use 
of the present day body of knowledge about acoustic 
phonetics, and the distinctive feature approach to 
phonological description. 4,5,6 We discuss below some 
problems of these two approaches and indicate how a 
number of these problems have been alleviated by 
techniques used in LISPER. 

Our system has been extensively tested, and recogni
tion scores have been obtained on three vocabularies 
with three different speakers. Typical of our results is 
attainment of recognition scores that approach 97% 
correct on a 54 word vocabulary after three rounds of 
training for a single speaker. These results compare 
favorably with the word recognition scores of other 
investigators. 7,8,9,10 

Property extraction system 

An unknown word is represented in the computer by 
a matrix of integers (filter number vs. sampled time vs. 
log-amplitude). The purpose of a property or feature 
extraction system is to reduce the information content 
of the input signal to a level that makes it possible for 
the decision or recognition algorithm to operate 
reasonably. The critical thing is that the information 
eliminated should be information which is irrelevant to 
the decision that the recognition algorithm must make. 

The techniques used in LISPER can best be appreci
ated by first exploring some problems involved in 
identifying a speech utterance on the basis of the 19 X 
200 array representing a 2 second sampling of its ene:r:gy 
spectrum. Pattern recognition schemes operating on 
data of this dimensionality are theoretically tenable 
(Sebestyen, 11), but only if repetitions of words cluster 
properly in the resultant vector space. It is by now 
well-known that speech patterns as initially stored in a 
computer do not cluster according to the word spoken. 
Some of the reasons for this are: 

1. The range of intensities encountered will vary 
because the overall recording level is not fixed. 
Recording level depends on vocal effort and the 
distance of a speaker from the microphone. 

2. An unknown word is difficult to register. at the 
same place within 200 spectral samples because 
word onset time is not a simple feature to detect 
reliably. For example, initial voiceless fricatives 
may be missed, prevoiced stops are hard to treat 
consistently, etc. We insure that all of an utterance 
is contained within· the two second interval by 
sampling the input line continuously, storing 
spectral samples in a computer-simulated digital 
tape loop, and stopping 1.8 seconds after the data 
first exceed a threshold. 



3. The total duration of a word is highly variable. In 
addition an increase in speaking rate is not 
manifested by a linear compression of the time 
dimension. Final syllables are often prolonged. 
Some transitions (for example, the release of a 
stop consonant) are not as greatly affected by 
changes in speaking rate as the steady-state 
portions of vowels. If shortened enough, vowels 
are likely to be reduced and consonants may not 
be carefully articulated, with resultant losses in 
spectral distinctiveness. 

4. A speaker attempts to generate an utterance so 
that it has a particular set of perceptual attributes 
(or features). We do not know in detail what the 
acoustic correlates of these attributes are. There 
is a great deal of variation allowed in the acoustic 
properties of the signal that will still give rise to 
the same utterance. There is also sufficient re
dundancy in the message to permit a speaker to 
leave out certain attributes entirely. For example, 
the degree of stress placed on a syllable will 
determine the extent to which the vowel may be 
reduced (Lindblom, 12). Consonants in unstressed 
syllables may contain less frication noise, a weak 
stop burst release, or incomplete stop closure. 
Vowels may be nasalized in nasal environments. 
The substitution of one incomplete gesture for a 
consonant cluster is also common in unstressed 

. syllables of natural speech. None of these effects 
would necessarily produce word recognition diffi
culties if they appeared consistently in the data. 
Unfortunately, they do not. 

5. If a speaker is instructed to speak distinctly and 
not rapidly, some surprising and unfortunate 
variability in speaking habits has been experi. 
mentally detected. In an attempt to help the 
system, our speakers released final stops, increased 
the length of some syllables, and articulated 
unstressed syllables more carefully then they 
would normally. Unfortunately, our speakers 
appear to have found these speaking habits 
unnatural, and could not remember from repeti
tion to repetition exactly what they had done to 
"help." For example, final voiced stop releases 
gave trouble by producing short vowel segments 
that varied greatly in amplitude, and the words 
four and core were sometimes pronounced as if 
they had two syllables. 

6. Individual speakers have vocal tracts of different 
sizes and shapes. It is physically impossible for 
two speakers to produce identical spectra for a 
given phone or word. A speaker makes an 
articulatory gesture that we, as listeners, interpret; 
possibly with respect to our knowledge of the 
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spectra that he is capable of producing (Gerst
man,13). The nature and importance of the normal 
ization process of a listener are not well under
stood. 

7. Different speakers have articulatory habits 
(idiolects) that may be quite distinct. Habits 
include the timing and dynamics of articulatory 
movements and the features that a particular 
speaker employs to manifest a phonemic distinc
tion. Whether recognition djfficulties can be 
attributed to individual speech habit structures is 
not known. Very little quantitative data are 
available on the characteristics that distinguish 
speakers. 

The variability of the spectrum of a word has led to 
the search for data reduct jon techniques to eliminate 
irrelevant information. An approach favored by several 
investigators has been to develop rules for detecting 
phonemes (Fry and Denes, 14; l\1artin et aI., 15 ; 

Reddy, 16. We believe that phoneme recognition is a 
much more difficult problem than word recognition 
because it presupposes a good understanding of the cues 
that distinguish phonemes in arbitrary phonetic 
environments. For example, allophones of the phoneme 
/p/ may be: 

'1. normally aspirated, as in the word "peak" [phik] 
2. weakly aspirated, as in the word "supper" 

[s] 1\ 'phaA] 
3. non-aspirated, as in the word "spin" [spin] 
4. non-released, as in the word "top" [thap7] 

There is no need for a word recognition program to 
attempt to group this disparate set of physical signals 
together into one phoneme. However, to the extent that 
algorithms for deriving a detailed phonetic-feature 
description of an utterance can be found, they can be of 
considerable help to a practical· speech recognition 
system. Examples of feature approaches that are 
relevant include the work of Hughes, 17; Hemdal and 
Hughes, 6; Gold, 7; and Marti net. aL 15. 

The properties of speech which are used by the 
recognition program are based on the energy measures 
derived from the input system. The output of each 
filter is an elementary function of the speech input 
signal. We use the notation Fn(i) for the output of filter 
n at sample interval i; that is FI(i), F2(i), ... , FI9(i) 
are used for the output of filters 1 through 19 at sample 
interval i. The filter number n ranges from 1 for the low 
frequency filter to 19 for the high frequency filter; and 
i = 1 for the first sample interval to i = 200 for the 
last time sample of a two second utterance. 

l\10re complicated functions of the speech input signal 
can then be defined in terms of these elementary (base) 
functions, FI, .. , FI9, in the LISP system. For 
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example, the following function has been found to 
correlate with perceived loudness, independent of vowel 
quality. 

Loud(i) = Fl(i) + F2(i) + F3(i) + F4(i) + 
FI2(i) - F7(i) 

The output of the seventh filter is subtracted from the 
sum of the first four filters . and filter 12 to compensate 
for the fact that low vowels are inherently more intense 
when produced with the same vocal effort. We will 
indicate later how a modified version of this function 
Loud (i) can be used to correct for differences in 
recording level between repetitions of the same word. 

Loud(i) is useful jn reducing the information that 
must be processed by the decision algorithm, since it 
helps to normalize the input with respect to a variable 
which is not important to recognition, namely, the 
recording level of the input sjgnal. We describe in this 
section a number of techniques which are used to reduce 
the information content of the incoming signal in ways 
that preserve the invariance of message identity over 

i ranges of parameters which are irrelevant to the decision 
about the identity of the message. 

One important way we have found to reduce the 
information content of a function is to reduce its range 
of values. Thus, for example, we may define a reduced 
information property Amp2(i) based only on the output 
of filter F2. 

Amp2(i) = +1 if F(2) > 40; 
o if F(2) > 20; 

-1 otherwise 

Amp2(i) is thus a 3 valued function, where we ascribe 
no significance to the names of the three values. As 
described later, a set of non-linguistic threshold proper
ties similar to Amp2 can be used as a basis for recogni
tion. However, we note the following problem. If the 
signal in F2 were varying around either of the thresh
olds, 20 or 40, then there would be little significance of 
the change of state from -1 to 0 or 0 to 1 and back; it 
would be much more likely due to noise than to a real 
variation in the input signal 

To make such properties less sensitive to noise, we 
introduce a hysteresis region around the thresholds to 
insure that a change of state js significant. A revised 
definition of Amp2(i) is 

Amp2(i) = + 1 if [F2(i) > 40]' or [F2(i) > 37 and 
F2(i -1) = 1]; 

o if [F2(i.) > 20] or [F2(i) > 17 and 
F2(i -1) ¢ -1]; 

-1 otherwise 

Most of the features we use are functions of sampled 
time having a range limited to a small number of 
distinguishable states. These functions are very sensitive 
to slight changes in time scale and origin; these 
variations in the data are irrelevant for recognition. 

The time dimension is removed from a feature by 
transforming the time function into a sequence of 
transitions of states, as is illustrated in the following 
example: 

i 1 234 567 8 9 
Voice (i) 0 0 1 1 1 1 1 1 0 
Voice = 0 1 0 

This transformation reduces the amount of data that 
must be manipulated by the program. Due to the nature 
of spoken language, the exact time when features 
change value will vary from repetition to repetition -of 
the same word, but the essence of the word remains in 
the sequence of state transitions of an appropriate set 
of features. 

No information about the word onset time, speaking 
rate, and speaklng rhythm can be recovered from the 
sequence unless these parameters have an effect on the 
actual states that are reached. To this extent, recogni
tion will be unperturbed by variations in word onset 
time, speaking rate, and speaking rhythm. 

A problem that arises from' collapsing the time 
dimension is an inability to tell whether two features 
were in specific states at the same time. Time removal 
assumes that features independently characterize a 
word. This is obviously false. A clear example is 
provided by the words "sue, zoo" which can only be 
djstinguished by knowing whether the strident is 
simultaneously voiced or not. It is . possible to retain 
some timing information by the. inclusion of features 
that count the number of time samples between 
temporal landmarks in the data and change state if the 
count exceeds a threshold, or to include states which are 
entered only upon simultaneous satisfaction of two 
conditions. 

For example, the state" -1" corresponds to voiceless 
segments in the definition of the spectral quality 
[r]-like(i). In this way we indjcate in which voiced 
segment an [r]-like phone occurred. The sequence 
produced for the word "ratio" should be -1, 1,0, -1, 
0, -1. A more detailed localization of the [r] is not 
necessary for limited vocabulary word recognition, and 
would certainly be more difficult. We find that very 
gross timing information is satisfactory for recognition. 
Two features are used to make a preliminary division 
of a word or message into one or several segments. One 
feature divides a word into voiced and voiceless 
segments and the other divides it into syllables. Voice(i) 



and Syllable(i) are then used to introduce time markers 
in the definitions of other features. 

Features which classify the vowel quality of the 
stressed syllable of an utterance into one of 10 cate
gories have been found to be very useful in recognition. 
The stressed syllable is identified with the aid of a 
fllnction Loud(i) that computes an approximation to 
the perceived loudness of a vowel. These features of a 
stressed syllable are less likely to be affected by the 
natural variability that characterizes the speech pro
cess (Stevens 18). 

Recognition algorithm 

The recognition algorithm is a program that learns to 
identify words by associating the outputs of various 
property extractors with them. During learning, the 
vocabulary of words is presented a number of times, and 
information is accumulated about the different ways 
that the speaker may pronounce each word. For 
example, the result of the training procedure applied to 
the feature sequence Voice after 5 presentations of the 
4-word vocabulary "one, two, subtract, multiply" 
might be: 

N umber of times 
Word Sequence sequence occurred 
one 010 5 
two 010 5 

subtract 01010 5 
multiply 0101010 3 
multiply 01010 2 

The two versions of the word "multiply" exemplify a 
common problem. No matter where we place threshold 
boundaries, there are some words that are 'treated 
inconsistently by ,the feature detectors. 

However, our recognition algorithm is powerful 
enough to deal with ambiguity in the voicing assign
ment of some vocabulary items, and thus we need not 
develop a more sophisticated voicing algorithm. We 
made no attempt to use rate. of voicing onset, offset, 
time between burst and energy build-up for stops, etc., 
as additional cues to a better feature definition. In all 
of the features used, the ambiguity remains at a level 
tolerable to the recognition algorithm. The redundancy 
inherent in the complete set of feature definitions allows 
recognition of variations of the same message. Another 
way of putting it is to say that there appear to be no 
absolute boundaries along the property dimensions we 
have chosen. The recognition algorithm takes this 
fundamental limitation into account and makes a best 
guess given the imperfect nature of the properties. 

In. the training process the program reorganizes the 
data for each property into a list of those sequences 
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which have occurred. The list for Voice for our example 
is shown below: 

Sequence 

010 
01010 

0101010 

(Word, frequency) 

one 5, two 5 
subtract 5, multiply 2 
multiply 3 

If a new utterance is presented to the program for 
recognition, and the feature Voice(i) produces the 
sequence 01010, then Voice will register one vote for the 
word "subtract" and one vote for the word "multiply." 
The unknown word is identified as the vocabulary word 
eliciting votes from the most features. Typically, 'he 
identified word receives a vote, signifying a perfect 
match for that property, from only about 80 percent of 
the features. 

In case of ties, the program makes use of information 
concerning the number of times a word appears at a 
node. Thus, if "subtract" and "multiply" tie for first 
place in the voting from all the features and Voice = 
01010, then Voice will register 5 votes for "subtract" 
and 2 votes for "multiply" in the run-off between these 
two candidates. 

The final decision procedure is an attempt to find the 
message from the set of possible inputs which is most 
similar to the current input message. Because there is a 
wide variation in the way people say things, the 
decision procedure does not insist that the current input 
must be like one of the prototype input strings in all 
ways that it was categorized; that is, it need not be 
suggested by all properties. In this sense, the decision 
procedure allows a generalization of the original training 
and learning by looking for a best fit without putting a 
bound on the goodness of this fit. 

The property sequences have been considered as 
independent characterizations of the input message. In 
this case, by independent we do not mean that the 
computations themselves are necessarily independent, 
but that these descriptors of the input message are 
treated independently in the decision process. With the 
assumption of independence, the voting procedure is 
similar to a maximum likelihood estimate. The a priori 
probabilities of all messages are the same. Therefore, 
the most likely message is the one for which the product 
of the a posteriori probabilities (or the sum of their 
logarithms) is a maximum. For each property, every 
message, M" previously associated with the current 
input sequences Si is given a (scaled) log probability of 
100 + N i, where N i > 1 is the frequency with which 
Mi was seen for Si. Messages not associated with Si in 
training are given log-probability 0 and can therefore 
be ignored in the summation. These assignments of 



310 Fall Joint Computer Conference, 1968 

probabilities achieve in one step a score which allows a 
single search to determine the most likely message. 

It has been experimentally determined that the voting 
scheme works as well or better than a number of other 
measures that make use of the same information. For 
example, we tried the adjusted weight used by Teitel
man 19 in ARGUS, a hand printed character recognizer 
(a similarly structured pattern recognition system) ; and 
log (1 + N i) which is a good small sample probability 
estimate of the a posteriori probability of message i. 

Functions and properties used in recognition 

The principal results of this research have been the 
development of properties which characterize speech 
input signals in a way to make recognition possible. Two 
different sets of recognition properties are included here. 
The first is a set of properties and functions which tend 
to describe the speech signal in more linguistic terms. 
Transitions of these properties describe features of the 
input message which can be understood in terms of the 
ordinary linguistic descriptions of such messages. In 
this way, they tend to more speaker independent .than 
the second, more abstract set of properties which are 
described. 

The second set of properties extract features of the 
spectral shape of a message. Their extreme simplicity 
makes them seem ideal for hardware implementation, 
and their high accuracy in recognition suggests that 
they capture most of the invariant qualities of our input 
message set. 

Linguistic features. 

We distinguish functions, such as Loud (i) , which 
have a domain equal to the input spectral representation 
of an unknown word; features, such as Voice (i) , which 
are functions that are used in recognition and have a 
range limited to a small number of states; and feature 
sequences, such as Voice, which are the result of 
removing the time dimension from a feature. The 
following functions are used in the definitions of a set 
of 15 features. 

Functions 

1. Loud(i) = Fl(i) + F2(i) + F3(i) + MAX [F2(i) , 
F4(Ql + MAX [2(F3(i) - F4(i)), 0]. 

This function is intendeq to provide a measure 
of the perceptual loudness of vowels. Percep
tualloudness is related to vocal effort whereas 
the acoustic energy in a vowel depends in part 
on the voc~l tract configuration as well as 
vocal effort. For example, the low vowel, [a], 
for which the vocal tract is relatively open will 
have a greater natural intensity than the high 

vowel, [i], for which the vocal tract is more 
closed (Lehiste and Peterson, 1959; Fant, 
1960). The function is intended to compensate 
for the reduced level associated· with· a low 
first formant. 

2. ah(i) = F3(i) + F4(i) - Fl(i) - F2(Q. 

This function a~d the following two functions 
are used to characterize the spectral quality of 
the vowel nuclei of a word. The vowels 
[i, a, u] represent limiting articulatory posi
tions for the tongue body. The vowel [a], as 
in "pot," is produced by placing the tongue as 
far back and as low as possible without 
producing a constricted vocal tract (and 
therefore a consonant). An acoustic correlate 
of this articulation is a high first formant, 
resulting in a greater output.in filters 3 and 4 
than in filters 1 and 2. The function ahO) will 
therefore be a maximum for vowels with a 
high first' formant. 

3. ee(i) = F9(i) + FI0(i) + Fll(i) + FI2(i) 
2F6(i) - 2F7(i). 

The vowel [i] as in "beet" is produced by 
positioning the tongue body as high and as 
forward in the mouth as possible. An acoustic 
correlate of this articulation is a low first 
formant and a high second and third formant, 
resulting in an energy minimum in filters 6 
and 7, and an energy concentration between 
filters 9 and 12. The function ee(i) will 
therefore be a maximum for vowels similar 
to [i]. 

4. oo(i) = F3(i) + F4(i) + F5(i) - F8(i) - FI0(i) 
- FI2(i) - FI4(i) - FI6(i). 

The vowel [u] as in "boot" is produced by 
positioning the tongue body as high and as far 
back in the mouth as possible. An acoustic 
correlate of this articulation is a low first and 
second formant, resulting in a major energy 
concentration below F7 and reduced energy 
above F7. The function 000) will therefore be 
a maximum for vowels similar to [u]. 

5. er(i) = F7(i) + F8(i) - F4(i) - FI2(i). 

This function is similar to the vowel functions 
in form, but has the task of detecting spectra 
characteristic of the consonantal and syllabic 
allophones of [r]. The low third formant of [r] 
and [~] (as the vowel in "Bert") produces a 
distinct spectral shape with an energy concen
tration centered in filters 7 and 8, a dip in 



energy at filter 4 between the first and second 
formants, and an absence of energy above FlO 
due to the low third formant. The function 
er(i) will therefore be a maximum when phones 
similar to [r, e] are produced. 

li. str(i) = F16(i) + FI7(i) + FI8(i) + F19(i). 

This function is a maximum when high 
frequency frication energy is present. The 
strident phones produce intense high frequency 
energy, whereas a non-strident fricative pro
duces a small energy peak in filter 19. The 
function str(i) will therefore be a maximum for 
many allophones of [s, z, s, z, c, j, t, k], which 
are the first consonants in [sin, zen, shin, 
azure, chin, gin, tin, kin] respectively. 

7. dspect(i) = 1 ah(i) - ah(i - 1)1 + 1 ee(i) - ee (i) 1 
+ loo(i) - oo(i - 1)1 

This function is a computationally inexpensive 
approximation to a spectral derivative. The 
function will be a maximum when the 
spectrum is changing rapidly, as for example 
in a consonantal transition.· Dspect(i) is used 
as an aid in delimiting syllable boundaries. It 
is also used to distinguish ee-like· vowels from 
some consonant-vowel transitions that produce 
a momentary peak in the function ee(i). 

8. cv(i) = sum of FI(i) through FI6(i). 

This function tends to be greater for vowels 
than for adjacent consonants. This is because a 
constricted or closed vocal tract configuration 
results in a reduced acoustic output in the 
frequency range spanned by these filters. This 
function is used to detect syllable boundaries. 

9. damp(i) = sum of FI(i) through FI9(i) minus sum 
of Fl(i - 1) through FI9(i - 1). 

This function indicates a sudden increase in 
energy in all filters. It will be a ~aximum for 
stop releases and sudden voicing onsets. It is 
used to detect stop bursts. 

Features 

The preceding functions are used in the computation of 
the following features. The usual ,interpretation of the 
three feature values (states) is: "-1" implies that the 
property is irrelevant for this time interval; "0" means 
that the property is relevant but not present; and "I" 
means that the property is relevant and present. 
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1. Voice(i) = 1 if [F2(i) > tl] or [F2(i) > tI-5 and 

Voice(i -1) = 1] 

o otherwise 

tl = 34 

A hysteresis region of 5 units is employed about the 
threshold, tI, to ensure that a change of state is 
significant and not due to random fluctuations in level. 
The effect of the second conditional part of the definition 
is to keep Voice(i) in its current state for values of 
F2(i) between 30 and 34, the hysteresis region. 

An unknown word may vary considerably in overall 
recording level if the speaker moves with respect to the 
microphone or changes his vocal effort. It is much 
easier to compensate for recording level by modifying 
the threshold, tI, than by attempting to modify the raw 
data. The maximum value attained by the time function 
Loud(i) is used for this normalization: 

Maxloud = MaXi [Loud(i)] 

Loud(i) attains its maximum value near the midpoint 
of the stressed vowel nucleus. For a speaker positioned 
correctly in front of a microphone and speaking at a 
comfortable level, a typical value for Maxloud is 200. 
Threshold normalization is accomplished by computing 
a new threshold, tI', for each unknown word according 
to the following formulae: 

t'l = tl * (200/Maxloud) 

The method fails if the recording level increases to 
saturation or decreases below background noise. The 
effective range for recording level insensitivity is some
what less than the full 45 decibel range of the input 
system. 

The fundamental voice frequency of a male speaker 
will from about 90 to 180 Hz. The greatest energy due to 
voicing will appear in the low frequency filters because 
energy in the harmonics of the laryngeal source falls off 
at about 12 db per octave. Voice(i) looks at the energy 
in filter 2. If this energy exceeds a threshold, voicing is 
present, otherwise not. This simple definition has 
worked surprisingly well. The greatest difficulty has 
been in treating final voiced stop releases consistently, 
and in detecting voicing energy in some voiced fricatives. 

2. Syllable(i) = 1 when the function cv(i) is signifi-
cantly increasing 

o when the function cv(i) is signifi
cantly decreasing 
otherwise, set to same value as in 
previous time sample. 



312 Fall Joint Computer Conference, 1968 

The precise computation that implements this definition 
is too lengthy to be given here. The feature usually gives 
an accurate count of the number of syllables in a word 
and provides a rough segmentation. However, the times 
at which the feature changes state do not delimit 

. precise syllable boundaries. Examples of difficulties with 
Syllable(i) include a frequently missed third syllable in 
"binary" and the segmentation into two syllables of 
some repetitions of the words "four" and "core." 

3. Stress(i) = 1 if Loud(i) = Maxloud for the first 
. time. 

o if Syllable(i) = 1 

-1 otherwise 

Maxloud = Maxi [Loud(i)] 

This feature is designed to indicate which syllable of a 
word is the one which has the maximum loudness and is 
therefore the stressed syllabl2. Stress assignment has 
worked very well. The only word for which stress 
assignment has not consistently agreed with the ex
pected stress assignment is "overflow," and this may be 
due to variations in the actual stress given the word by 
our speakers. 

4. [a]-like(i) = -1 if V oice(i) = 0 

1 if [ah(i) > 1] or [ah(i) > -2 and 

raj-like (i - 1) = 1] 

o otherwise 

This feature indicates the presence of the vowels 
[a, ow, ), ae, A] in many phonetic environments (the 
vowels in [pot, boat, bought, bat, but] respectively). 

5. [i]-like(i) = -1 if V oice(i) = 0 

1 if [ee(i) > 16 or [[il-like (i -1) = 1 

and ee(i) > 8] and FI9(i) < 25 

and Dspect(i) < 30 

o otherwise 

This feature indicates the presence of the vowels 
[i,l, ell , E] (the vowels in [beat, bit, bait, bet]) in many 
phonetic environments. The two additional clauses 
involving FI9(i) and Dspect(i) are utilized to eliminate 
false responses to stridents and consonantal transitions 
which are momentarily [i)-like. 

6. ~u]-like(i) = -1 if [Voice(i) = 0] 

1 if [oo(i) > t2 or [[u]-like (i -1) = 1 and 000) > t2-7]] 
and F2(i) > Fl(i) 

o otherwise 

t2 = 32 

This feature indicates the presence of the vowels 
[u, v, OU,) ] (the vowels in [boot, book, boat, bought]) in 
many phonetic environments. The additional clause 
involving Fl(i) and F2(i) is intended to eliminate 
responses to consonants such as [m, n, 1, w]. It has been 
found necessary to ignore any transitions to the "I" 
state in the featur~s [i]-like(i) and [u]-like(i) if they last 
less than 6 time samples. Even with this additional 
constraint, a number of consonants are assigned one 
of these vowel-like qualities. In addition, there appear 
to be no natural threshold boundaries in the vowel
quality space so that a certain percentage of the 
vocabulary are treated inconsistently by each feature. 

7. [r]-like(i) = -1 if [Voice(i) = 0] 

1 if [[er(i) > 18 and 
F3(i) - F4(i) > 5] 

or [er(i) > 14 
and [r]-like (i-l)= 1]] 

o otherwise 

This feature indicates the presence of [r, e] in many 
phonetic environments. The clause involving F3(i) and 
F4(i) is intended to ensure that the first formant 
frequency is not high. The low third formant of these 
phones produces a spectrum that is distinct and 
relatively easily differentiated from all other speech 
spectra. The feature works consistently except following 
voiceless stops and in some unstressed intervocalic 
positions. 

8. Strident(i) = 1 when the function Str(i) is signifi-
cantly increasing . 

o when the function Str(i) is signifi
cantly decreasing 

- 1 otherwise set to same value as in 
previous time sample 

This feature indicates the presence of [s, z, s, z,] and alsy 
[t, d, k, g] in certain phonetic environments (generalol 
in stressed position and followed by a front vowel). 
A floating threshold is employed to divide a. sequence 
of two successive stridents (e.g., [st]) into two strident 
segments separated by the state "-1." 



9. Strid-stop(i) = 0 if Lstrident(i) = 1 

1 if Strident(i) = 1 

-1 otherwise 

Where Lstrident(i) is the same as Strident(i) except that 
the state "+ I" must occur for more than 6 time 
samples or it is transformed to the state -1. This 
property computes the length of a strident segment and 
places it in one of two categories. In general, a long 
strident is a continuant and a short strident is a stop. 
However, in some phonetic environments, voiceless 
stops may have an aspiration d,uration that is longer 
than the frication duration of an intervocalic fricative. 

10. Fricative(i) = 1 if [[[FI9(i) > t4] or [[FI9(i) > 
t4 - 4] and, [Fricative (i-I) 
= 1]] and [Lotid(i) < 120]] 

o if Voice(i) = -0 

-1 otherwise 

t4=6 

This feature looks for the high frequency energy 
characteristic of [f, v, 8, a], (the initial consonants of 
[fin, vend, thin, then]). Strident phones generally exceed 
the threshold and are also detected by FricativeO). The 
upper bound on Loud(i) is used to prevent a response to 
a loud vocalic sound in which energy is spread over the 
entire spectrum. A feature like Fricative(i) or Strident (i) 
sends a great deal of information about a word to the 
recognition algorithm, but neither feature is as con
sistent in its analysis of an unknown word as a simple 
feature such as Voice(i). 

11. Stop-burst(i) = 1 if [[damp(i) > 75] 

and [F19 (i -1) < 30] 

and [[F2(i) < 20] 

or [F2(i) -'- F2 (i - 1) < 1]]] 

o if V oice(i) = 1 

-1 otherwise 

This feature detects the sudden onset of energy in all 
filters that is characteristic of the release of a stop. The 
stop burst is distinguished from a rapid voicing onset by 
requiring the energy in F2(i) to either be low or not 
increasing. The. "-1" state following a burst is removed 
if it is less than 3 time samples long. This transformation 
is an only partially successful attempt to signal voiced 
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stops by the sequence "1,0" and voiceless stops by the 
sequence "1, -1, 0." 

12. Nasal(i) = -1 if Voice (i - 2) = 0 

1 if [Loud (i) - Loud(i-l) > 5 

or [Nasal(i -1) = 1 

and.Loud(i)-Loud (i -1) > 1]1 

and [ah(i) - ah (i -1) > 5 

or ah(i) - ah(i - 2) >] 8 

o otherwise 

This feature looks for a voiced segment followed by a 
sudden increase in loudness and a rising first formant 
frequency. A nasal followed by [i] does not satisfy this 
criterion, but nasals in many other environments are 
detected. Initial [t] is frequently also detected by the 
feature. Features that look for dynamic properties of 
the input spectra are not easy to define efficiently. This 
relatively simple algorithm does not give a very 
satisfactory definition of nasality. 
13-15. There are three other features of a somewhat 
different type. The~e features are intended to give a 
fairly precise characterization of the stressed vowel in 
the unknown word. The features, called raj-stress, 
[i}-stress, and [u}-stress respectively, characterize the 
spectrum at a single time sample, that point during the 
stressed vowel when Loud(i) reaches a maximum for 
the word. 

The ranges of the functions ah(i), ee(i), and oo(i) 
have been divided into 10 regions corresponding to the 
10 possible states of the three special features: 

tLPPER-BOOND ON REGION 

State: 1 2 3 4 5 6 7 8 9 10 

ah(i) none 14 9 4 0 -3 - 6 -11 -16 -27 
ee(i) none 80 60 40 20 0 -20 -40 -60 -80 
00 (i) none 80 60 40 20. 0 -20 -40 -60 -80 

A typical stressed [i] phone might be characterized by 
the states raj-stress = 9, [i]-stress = 1, and [u]-stress= 6. 
It has been found that this characterization is relatjvely 
stable for a given word. Most words fall into two or at 
most three states for each of the features. 

Non-Linguistic Properties 

A set of abstract properties was defined near the end 
of the research project in order to provide a comparative 
base for the performance of the linguistically motivated 
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features just described. These properties take advantage 
of some of the constraints that apply to speech spectra, 
but do not reflect the detailed phonetic content of the 
utterances. 

There are two distinct types of spectral shape 
properties that were used in this set. The first nineteen 
properties crudely categorize the shape over time of the 
output of each of the nineteen filters, individually, with 
no attention paid to correlation between filters. There 
are three regions of "interest" in the output. The 
spectral property is given the value" -I" if the output 
is in the lowest region, "0" in the middle region, and "1" 
in the highest region. A hysteresis region around the 
transition threshold is used to prevent many "un
interesting" transitions when the filter output is near 
the border of these regions. 

Formally, we define a set of 19 spectral amplitude 
properties, Sn(i), as follows, where the notation Fn(i) 
denotes the output of filter n at the ith sample interval: 

Sn(i) = 1 if (Fn(i) > B) or ([FnO) > B - 8] and 
[Sn(i - 1) = 1]] 

o if (Fn(i) > A] or [(Fn(i) > A - 8; and 
(Sn(i - 1) ~ -1]] 

-1 otherwise 

A and B, as a function of the filter number, are given in 
the following table: 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

A 373430252030~2015~21 18152015 17W17 13 

B 50 47 44 40 35 45 40 35 30 38 34 31 27 35 30 30 30 25 30 

The threshold values in this table should be modified 
if there is a change in recording level. This can be done 
in the same way as previously described for thresholds 
involving linguistic features. 

Another ten properties are used which roughly de
scribe the correlation between adjacent filters for the 
lower ten filters. These properties catagorize the differ
ences between energies in adjacent filters. The three 
alternatives are: the next higher band has significantly 
more energy, significantly less energy, or about the same 
energy, as its lower neighbor. These properties are given 
values "1," "-1," and "0" respectively in these cases. 
Formally, we define a set of 10 spectral difference 
properties, Dn(i), as follows, where n = 1,2, ... , 10 and 
m= n + 1: 

Dn(i) = 1 if [(Fm(i) - Fn(i) > 4] 
or [[Fm(i) - Fn(i) > -1] 

and [Dn(i - 1) = 1]]] 

~ 1 if [[Fm(i) - Fn(i) < 4] 
or [[Fm(i) - Fn(i) < 1] 

and [Dn(i - 1 = -1]]] 

o otherwise 

A change of state for one of these properties indicates 
that the spectral shape of the current time sample differs 
from the spectral shape of the previous time sample. 
A change of state is not produced by a simple change in 
level since it is the difference in energies which is 
significant. The large hysteresis region around the 
thresholds also prevents a property from changing state 
when there is no energy present in either filter. 

The thresholds for the two types of properties were 
selected so that each state could be reached by at least 
some of the vocabulary items. The 29 properties 
produce sequences of states used in recognition. We can 
compare directly these recognition scores with those 
produced by state sequences from the 15 linguistic 
features. 

Results 

As benchmark experimental data, we recorded a word 
list, Table 2, used by Ben Gold in other speech recogni
tion experiments. This list was recorded in a quiet room 
(SIN ratio > 35 db) as spoken 10 times by two 
speakers, KS and CW~ Both had been used as subjects 
by Gold. KS and CW were also recorded 5 times each 
on two other lists, an augmented International Word 
Spelling alphabet, Table 3, and a message list typical 
of one that might be used in a NASA mission context, 
shown earlier in Table.l. 

The messages were recorded on high quality magnetic 
tape at 7Y2 ips, with approximately two seconds gap 
between words. For almost all experiments we used a 
digital tape containing the 6 bit logarithms of the filter 
bank output sampled every 10 milliseconds. Only in the 
noise degradation experiment was the analog input used 
directly. No difficulty was encountered in finding the 
beginning and end of each message. 

A training round consists of one repetition of the 
entire word list in which the computer makes an 
identification attempt, is told the correct response, and 
stores the characterization of this message for use in 
future identification. With four rounds of training 
utilizing the linguistic properties, the system recognized 
correctly (gave as unambiguous first choice) 51 and 52 
out of 54 words of the Ben Gold list for· KS and CW 
respectively. Early experiments indicated that addi
tional training would not increase the recognition scores 
after reaching its asymptote, and these 95 + % correct 
scores were available after only 3 rounds of traini~g. 
Further experiments gave speaker KS 38 out of 38 



insert name 
delete end 
replace scale 
move cycle 
read skip 
binary jump 
save address 
core overflow 
directive point 
list control 
load register 
store word 
add exchange 
subtract input 
zero output 
one make 
two intersect 
three compare 
four accumulate 
five memory 
six bite 
seven quarter 
eight half 
nine whole 
multiply. unite 
divide decimal 
number octal 

TABLE 2-Word list from Ben Gold 

zero hotel 
one India 
two Juliet 
three kilo 
four Lima 
five Mike 
six November 
seven Oscar 
eight papa 
niner Quebec 
affirmative Romeo 
negative Sierra 
alpha tango 
bravo uniform 
Charlie Victor 
delta whiskey 
echo x-ray 
foxtrot yankee 
golf zulu 

TABLE 3-International word spelling alphabet and numbers 

correct on the International Word Spelling Alphabet 
and 43 out of 44 correct on the NASA message set, 
indicating the usefulness of these linguistic properties on 
other message sets. Recognition rates for the Gold list 
as a function of training rounds are shown in Table 5. 
Note the lack of improvement (and oscillation of scores) 
with more than 4 rounds of training. Part of the 
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difficulty is that these later rounds were recorded at a 
different time. This indicates that some degradation in 
performance may be expected under less well controlled 
conditions. 

Some incorrect responses are listed in Table 6 (for 
KS on the Gold list after 4 training rounds). These 
confusions give an indication of the types of phonetic 
information that is not well represented by the linguistic 
features. For example, the "four-core" confusion 
suggests that frication noise often falls below the lower 
thresholds of the filters, and that formant transitions 
are not sufficiently distinct to trigger different state 
transitions for this word pair. It is expected that some 
improvements could be made in the threshold settings 
by studying the data of Table 6. 

Previous Training 1 2 3 4 5 6 7 8 9 Perfect 
Ben Gold List 43 44 49 51 47 45 52 49 51 54 
Alphabet 30 36 34 38 38 
NASA List 35 37 43 43 44 

TABLE 5-Typical recognition scores (KS) 

Correct Answer 

Weather at Splashdown Point, 
Four 
Binary 
Load 

Guess 

Alternate Splashdown Point 
Core, or Whole 
Memory 
One 

T ABLE 0-Typical mistakes 

These asymptotic recognition scores also indicate the 
separability of this 54 word vocabulary with these 
linguistic properties. The three vocabularies were com
bined into a single vocabulary of 114 distinct messages 
(duplications between vocabularies were considered only 
one message). On this larger vocabulary, the recognition 
score was a remarkable 110 out of 114 for KS. All those 
messages identified correctly in the individual lists were 
also identified in this larger context after the same four 
training rounds. This indicates very little interference 
between messages on these different lists; and implies 
that fairly large noninterfering (phonetically balanced) 
vocabularies might be constructed while maintaining 
this high recognition rate. It should be emphasized that 
while messages were repeated in training and testing, 
the same speech utterance was never seen more than 
once by the system. 

To test the consistency of speakers uttering messages, 
we devised the spectral threshold properties described 
earlier. We tested these properties for recognition only 
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on the Ben Gold word list. After four rounds of training, 
the system was able to identify correctly 52 out of the 
54 input messages presented to it for KS; and 51 out 
of 54 for CWo This rate is as good as that discussed for 
the linguistic features. 

The spectral threshold properties appear to converge 
more rapidly to a higher recognition score on early 
training rounds. However, the linguistic properties may 
be slightly less speaker dependent. Neither of these 
tendencies is statistically significant so we are unable to 
make a definitive comparison. 

There are 29 spectral threshold properties and only 15 
linguistic properties. In addition, the spectral threshold 
properties tend to produce longer sequences. The 
comparable recognition rates of the two property sets 
suggests that the total information sent to the recogni
tion algorithm by each set is roughly the same order of 
magnitude. If this is true, then it can be concluded that 
the linguistic sequences embody a more concise and 
more consistent representation of the vocabulary. 

DISCUSSION 

We have outlined the reasons why word recognition 
based on spectral input data is not a straightforward 
problem in pattern recognition. The invariants in the 
speech code appear to be relatively complex functions 
of the spectral input. We have also outlined the reasons 
why phoneme recognition is not an appropriate inter
mediate step in a word recognition algorithm. Unsolved 
problems include the segmentation of speech spectra 
into phoneme sized chunks and the derivation of rules 
for recognizing all of the allophones of a given phoneme. 
Our approach is intermediate between pattern recogni
tion and phoneme recognition. 

A set of acoustic feature detectors have been defined. 
The time dimension is removed from each feature so 
that the learning program deals only with the sequences 
of states produced by the feature definitions. The 
feature sequence characterization of an input message is 
sufficiently redundant so that the recognition algorithm 
is able to deal successfully with errors and inconsis
tencies in some fraction of the features. 
The advantages of this approach are: 

(1) No precise segmentation of the utterance is 
required; features can change state in arbitrary 
time segments because the time dimension is 
removed from a feature in a way that js inde
pendent of the changes of state of other features. 

(2) A word need not be registered at exactly the 
same place in the 2 second speech sample; state 
sequences are independent of time origin. 

(3) Feature definitjons can be made insensitive to 
the recording level by adjusting threshold 

settings according to a measure of the loudness 
of the unknown word. 

(4) Feature definitions can be made less sensitive to 
noise by employing hysteresis regions about 
thresholds. 

(5) State transition sequences weight changes in 
spectra as the important cues to word recogni
tion (simple pattern-matching schemes will give 
undue weight to a sustained vowel). 

(6) Features may be defined to take advantage of 
natural acoustic boundaries between phones 
(Stevens, 1968b) and thereby minimize the 
variability in state transition sequences produced 
by a feature. 

(7) Features may be added to the system to provide 
redundancy for those decisions that are difficult. 
There is a direct control over the amount of 
redundancy sent to the recognition algorithm. 

(8) The feature approach permits the introduction 
and testing of linguistic hypotheses, such as 
placing greater emphasis on the properties of the 
stressed syllable. 

The disadvantages of this approach are: 

(1) Removal of the time dimension discards all 
information concerning the simultaneous occur
rence of specific states for two or more features. 
We have used the voicing feature to reintroduce 
some timing information. There exist pairs of 
English words for which this "time with respect 
to the voiced segments" is not enough to 
disambiguate the pair. Special features can 
always be defined to treat special cases, but our 
approach is not easily generalized to yield 
segmentation of an utterance into phone-sized 
chunks. 

(2) The features currently implemented are not 
speaker independent. Each speaker will have to 
train the system and this requires approximately 
3 or 4 repetitions of the vocabulary. 

(3) Our system will degrade in performance as the 
length of the vocabulary is increased or as the 
number of speakers that it can simultaneously 
recognize is increased. This property is of course 
true of any recognition program; however, it 
should be noted that, with our current sjmple
minded set of features, there is a high error rate 
in any feature characterization and we rely 
heavily on redundancy to "select the most likely 
input message. 

(4) For our limited objectives, the current imple
mentation is computationally fast and gives 
satisfactory results. However, more sophisticated 
and more reliable features would be desirable. 



The exponent in the function relating computa
tion time and feature performance is not known 
but may be restrictively large. 

A set of simple sum-:-and-difference properties was 
compared with the linguistically motivated features in 
the later stages of research. The comparable performance 
of this set of properties:has led to several conclusions 
concerning the desirable attributes of features that 
operate within this framework. 

A good feature includes a maximum amount of infor
mation in the sequences that it produces. Factors that 
influence information content are consistency of char
acterization and the number of vocabulary items that 
can be differentiated on the basis of the feature. 
A voicing feature that works perfectly does not contain 
as much information about the unknown word as any 
of the relatively jnconsistent spectral properties. In 
other words, a moderate amount of inconsistency is 
tolerable if accompanied by increased word separa
bility (and additional features to provide redundancy). 

The spectral properties compare favorably on the 
basis of recognition scores because the linguistic features 
are fewer in number and computationally similar in 
form to the spectral properties. We believe that, even 
for limited vocabulary word recognition, a set of 
phonetically oriented features exist which are better in 
some sense than simple pattern features. The reasons 
for this faith consist of arguments that: 

(1) there exist natural acoustic boundaries between 
phones (Stevens, 20). Thresholds placed at these 
boundaries will produce features with more 
consistent sequence assignments. Features se
lected on this basis will be less sensitive to the 
free variations that occur in speech spectra. 

(2) there exist invariant attributes in acoustic 
waveforms from different speakers. These in
variants, when incorporated into feature defini
tions, will produce recognition scores that are 
less sensitive to the individual speaker. 

The arguments in favor of phonetically oriented 
features are offset by the computational simplicity of 
the spectral properties. Not enough is currently known 
in acoustic phonetics to take advantage of these 
theoretical benefits without additional basic research. 
We argue that a carefully selected set of properties like 
our spectral properties represent a practical word 
recognition solution that may not be superseded for 
some time to come. . 

The so-called spectral shape features were not 
selected primarily on the basis of their pattern recogni
tion potential. They were carefully selected on the basis 
of what is known about the information bearing 
parameters of speech. An arbitrary set of parameters 
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will not work (for the reasons outlined in the introduc
tion). In that sense, the spectral shape features resemble 
acoustic phonetic parameters and are distinct from a 
number of other types of pattern characterizing func
tions that could have been chosen. Our results should 
not be interpreted to mean that a fundamental knowl
edge of speech is not needed when working on restricted 
problems such as limited vocabulary word recognition. 
On the contrary, it was only after developing a set of 
linguistic feature definitions within the context of our 
chosen recognition algorithm that we were able to 
devise a set of spectral shape functions possessing the 
necessary atrributes. 
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Computer models for speech and music appreciation 

by P. B. DENES and M. V. MATHEWS 

Bell Telephone Laboratories, Incorporated 
Murray Hill, New Jersey 

INTRODUCTION 

Computers have been used extensively in speech 
research for over 10 years now; they ,have been 
applied to the synthesis of musical sounds for a 
slightly shorter period. The results have produced 
models of sound production and perception which 
are intimately related to the synthesis rules pro
grammed in the computer and indeed the pro
gram is often the best available model of the 
production or perception process. 

The most difficult problem encountered in both 
speech synthesis and music composition is the 
introduction of the right kind of long range de
pendencies. In speech, excellent isolated sounds 
can be easily generated. Transition rules which 
synthesize high quality examples of two se
quential sounds tax both the state of our acoustic 
knowledge and our computer programs. Longer 
range effects such as, sentence stress have barely 
begun to be studied. In music, we cari produce 
single notes which "are either excellent imitations 
of existing instruments or interesting new tones, 
we can closely imitate a complicated style for a 
few notes with ,a composing algorithm, but we 
cannot generate minutes of sound which ap
proaches the cohesiveness of human composi
tions. 

In order to understand the underlying prob
lems of long range structure, the rest of this 
paper will survey speech synthesis procedures 
and composing algorithms with special emphasis 
on this structure. As will become clear, although 
there are some similarities between the speech 
and music structures, the differences far out
weigh the similarities. 

Speech synthesis 

Research on generating artificial speech has 
been going on more or less continuously for sev-

e!al centuries.1 More recently, a significant part 
of this effort has been devoted to "speech syn
thesis by rule," the process which converts 
sentences specified on a typewriter keyboard into 
readily understandable speech. Synthesizers of 
this kind are constructed to serve as models of 
the speech mechanism and are used for the study 
of the human speech process. They could also 
have practical applications, for example, for auto
'matic voice read-out from computer-based in
formation retrieval systems and from teaching 
machines, and for other ways of improving man
computer interaction. Unfortunately, however, 
nobody has yet been able to design a satisfactory 
method of speech sYnthesis by rule. This is not 
due to any lack of effort, but is more an indica
tion . of some unexpected complexities of the 
speech process. 

The basic speech generating process is decep
tively simple: natural speech is produced by the 
vibration of our vocal cords and this buzzy sound 
is transmitted through the tube formed by our 
throat and mouth. This tube, the vocal tract, has 
a number of resonances, called the "formants," 
and the frequency of the acoustic resonances 
depends on the shape of the vocal tract. The 
quality of the vocal cord buzz is modified by the 
formants when the sound is transmitted through 
the vocal tract. As speech sound after speech 
sound is pronounced, the movements of tongue and 
lips change the shape of the vocal tract; this will 
alter the frequency of the formants, and thereby 
the quality of the sounds produced. Intensive re
search in the 1940's and 1950's resulted in satis
factory explanations of what determines the 
acoustic resonances of non-uniform tubes of 
shapes like those of the vocal tract. The acoustics 
of speech production is therefore fairly well under
stood and a variety of working models are avail-
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able. The understanding of the relevant acoustics, 
however, is insufficient for explaining the speech 
process as a whole. Experiments carried out at 
Haskins Laboratories in New York,2,3 byOhman4 

and Lindblom, 5 and by others indicate that the 
acoustic features typical for a phoneme when pro
nounced in "isolation are modified extensively when 
this same phoneme is pronounced in a connected 
sentence. The changes are complex and are a func
tjon of a variety of contextual circumstances. The 
spectrogram of the sentence shown in Figure 1 
gives a number of exampl~s of this. The syllable 
"comp" occurs twice in this sentence, the first 
time in 3r stressed position and the second time 
unstressed. The difference in the corresponding 
acoustic features is obviously very large. Again, 
the phoneme III occurs in a word initial position 
and again in a final position and shows signifi
cant acoustic differences. Similarly for the 
phoneme Ip/· when followed by different vowels. 

Broadly speaking there are two classes of con
textual influences that are significant. One is a 
result of linguistic factors such as stress, inflec
tion, grammar and certain relations between 
speech sounds that vary from language to lan
guage. The other ·class is the result of articulatory 
context: our vocal organs are constituted in 
specific physical ways, their muscular control for 
continuous action is coordinated at some higher 
physiological level, their musculature allows only 
certain movements and the acceleration and 
velocity of their masses obeys the usual laws of 
dynamics. 

FIGURE I-Sound spectrograms plot time along the hori
zontal axis and formant frequency along the vertical axis and 
indicate sound intensity by the darkness of lines. This spectro
gram of the sentence, "It's a compact little computer" illustrates 
how phonemes vary according to context. Note the differences 
between the two "I" sounds in "little" and between the "comp" 
sounds in "compact" and "computer." These differences are 
influenced by many factors, which include sentence stress and 
inflee,tion. 

For many years our principal method for in
vestigating natural speech was by examination of 
speech spectrograms. All effects, acoustic as well 
as articulatory and linguistic, were therefore 
evaluated mainly in terms of formant specifica
tions. 

Naturally enough, the models of speech pro
duction were also controlled in terms of formants. 
Such models are called "formant synthesizers." 
They simulate the vocal cords by pulses that re
peat at the rate of the vocal cord vibrations: the 
frequency of these pulses determines the pitch of 
the synthesized speech sounds. The pulses are ap
plied to a number of resonators, each representing 
one of the formants of the vocal tract. The vocal 
cord generator and the resonators can be simu
lated by computation or by conventional electronic 
circuits. In either case it is relatively simple to 
use computer programs for controlling the fre
quency and amplitude of the vocal cord pulses 
and the frequencx and bandwidth of the reso
nators. Such computer programs would typically 
reset each of the above parameter values every 
10 msecs in order to produce the varying sound 
qualities appropriate for a spoken sentence. The 
schematic diagram of a computer-controlled elec
tronic formant synthesizer can be seen in Figure 
2 which shows the formant synthesis facilities of 
the Honeywell DDP 24, at Bell Laboratories.6 The 
DDP 24 'controls the electronic formant syn
thesizer 6a by outputting a set of 12 numbers 
every 10 msecs which set the 12 control param
eters of the formant synthesizer (pitch, ampli-

RAND TABLE I r---------,. 

FIGURE 2-Schematic diagram of computer controlled 
formant speech synthesizer. 
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tudes, formant frequencies and bandwidths, etc). 
The experimenter not only hears the synthesized 
speech in real time but he can also see any or 
all control parameters displayed as a function of 
time on the screen of the computer controlled 
cathode ray tube. Programs are available for con
trolling each of the 12 parameters in one of two 
ways: 

1. The experimenter can specify parameters 
as a function of time by drawing the appropriate 
curve using a Rand Tablet and he can listen to the 
c'Orresponding change in the synthesized speech. 

2. A sentence t'O be synthesized is typed int'O . 
the computer, phoneme by phoneme. A c'Omputer 
pr'Ogram then calculates the variations in time 
'Of each parameter by using values st'Ored f'Or·each 
ph'Oneme and by applying programmed alg'Orithms 
f'Or determining the phoneme-t'O-ph'Oneme transi
ti'Ons of these parameters. The computed param
eter curves are then 'Outputted t'O the synthesizer 
and to the display scope. Again, changes can be 
made with the Rand Tablet in real time. This 
second method is a typical example 'Of synthesis 
by rule. 

Sentences synthesized by rule usually have 
less than acceptable quality. At first it was 
th'Ought that this was caused by inadequacies 'Of 
f'Ormant synthesis. J'Ohn H'Olmes/ at the J'Oint 
Speech Research Unit in England, tested this 
assumpti'On by a fundamental experiment. He 
synthesized the same sentence in tW'O ways. 
First he controlled a synthesizer by c'OPying, as 
cl'Osely as he could, the spectrogram of a human 
utterance 'Of the sentence. The quality of the 
synthesized utterance was almost the same as 
that of the original human utterance. He then 
generated the same sentence by rule, using the 
same formant synthesizer, and by applying the 
most sophisticated rules available. The resulting 
speech quality left much to be desired. This ex
periment established that the inadequacies of 
synthesis by rule are due not to defficiencies in 
the synthesizing circuits but are caused by less 
than satisfactory understanding of the rules f'Or 
c'Ombining successive ph'Onemes into a continuous 
sentence. 

Many different sentence synthesis rules have 
been tried during the last few years. Certain of 
these rules are concerned with transiti'Ons of pa.
rameter values from one phoneme to the other: 
s'Ome c'Ompute simple linear transitions,8 others 
compute tw'O-part linear transitions," and 'Others 
again use exponential transitions.9 These rules 

almost never take into account the influence of 
m'Ore than three successive phonemes and are 
therefore essentially concerned with short term 
dependencies. Some 'Of the synthesis by rule pr'O
grams, however, also accept stress and punctua
tion marks as part of the typed input.8 ,9,1o These 
additi'Onal symbols are used by the program to 
c'Ontrol the formant values and durati'On of in
dividual elements, and the pitch cont'Ours through
out the sentence. These grammatical factors 
effect successive elements over entire sentences 
rather than just two or three phonemes. Further
more, as will be seen from the experiments de
scribed bel'Ow, the factors to be considered greatly 
influence each 'Other: 'Only by computer techniques 
can we hope to implement these complex long 
term dependencies with reas'Onable ease. 

The rest of this section will describe the 
synthesis by rule program written for the Bell 
Laboratories' DDP 24.8 The program c'Omputes 
short range dependencies by calculating param
eter values as a function of adjacent phonemes; 
it also c'Onsiders long range dependencies by com
puting duration and pitch values for each pho
neme that are a function of where the stressed 
syllables are in the sentence and also takes into 
account whether the sentence is a statement 'Or 
a question. The pr'Ogram also allows modification 
of the computed parameter values or durati'Ons 
either by using the Rand Tablet and the display 
oscillosc'Ope or by typewritten instructions. This 
latter feature of the program was used for pre
paring synthetic speech test material for psycho
ac'Oustic tests aimed at finding quantitative re
lations between sound durations and pitch on the 
one hand and stress and inflection on the other 
hand. l1 

The input to the pr'Ogram was 'Obtained by 
typing the sentence t'O be synthesized in phonetic 
transcription. In addition t'O the phonetic symbols 
(see Table 1) a special symbol has to be typed 
to mark the stressed syllables and a period or 
question mark is to be typed at the end of the 
sentence to indicate if the sentence is to be a 
statement or a question. 

Typically, each phoneme consisted of a central 
steady state segment, an initial transition and a 
final transition. 

Stored values were available for the steady 
state segments of each of. the phonemes for each 
of the 12 parameter values and also durations 
for each of the three segments and a "weight" 
for the transiti'Ons. Phoneme to phoneme transi
tions were computed as shown in the examples of 
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TABLE 1 

Phonetic Phonetic Phonetic 
Symbol Symbol Symbol 

Used Key Word Used KeyWord Used Key Word 

p Pan M Moon EE Heat 
T Tan N Noon I Hit 
K Can NG Sing E Head 
B Ban L Limb AE Had 
D Dan R Rim AH Hot 
.G Gun y Yes AW Ball 
F Fan W Win U Put 
TH Thin DH Then 00 Boot 
S Sin Z Zebra UH But 
SH Shin ZH Garage ER Sir 
H He V Victor 

Diphthongs were considered sequences of two vowels. 

LIST OF PHONEMES ACCEPTED BY SYNTHESIS PROGRAM 

Figure 3. The three examples show the influence 
of the relative "weights" of adjacent phonemes. 

The stress marks automatically doubled the 
stored duration of the steady state segment of 
the stressed vowels and halved the stored dura
tion of the unstressed vowels. 

The pitch was originally computed on a mono
tone. The pitch of each stressed syllable was 

55 
PHONEME I 

55 
PHONEME I 

SS 
PHONEME I 

55 
PHONEME 2 

ET ST 55 
PHONEME 2 

ET ST S5 

SS'STEADY STATE 
ET' END TRANSITION 

PHONEME 2 

ST· BEGINING TRANSITION 

FIGURE 3-Examples of transitions between phonemes for 
three different "weights." 

made to decrease: the start of this pitch fall 
could be above or at the monotone level and was 
a variable, selectable by a Rand Tablet operated 
light button . 

. The pitch change of the final stressed syllable 
in each sentence decreased or increased for state
ment or question respectively. The intelligibility 
of the sentences generated by this program 
varied greatly for different sentences. 

The same program was used to prepare test 
material for exploring quantitative relations be
tween stress and the duration and the pitch of 
vowels.1t The sentence "They are flying planes" 
was chosen for one of the tests. As is well-known, 
this is a grammatically ambiguous sentence. In 
one interpretation "are flying" is the verb and 
"planes" the object; in another way "are" is the 
verb and "flying planes" the noun phrase. The 
first version's 2413 grammatical stress pattern 
(1 is the greatest stres,s) becomes a 3521 if 
semantic stress is added to "planes"; the second 
interpretation's 2341, stress pattern becomes 3412 
if semantic stress is added to "flying." The clear 
difference in meaning due to the stress opposi
tions of the last two words of the sentences with 
semantic stress was explained carefully to the 
subjects. This ensured that their responses were 
in terms of the differences in meaning caused by 
the position of stress in the sentence and avoided 
the need to explain the concept of "stress" to 
the subjects. 
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The duration and pitch of the steady state ele
ments of the leading vowels of the diphthongs 
in "flying" and "planes" were varied systemati
cally. The pitch of the sentence was kept con
stant at 130 Hz except as required in the test 
vowels. The results are shown in Figures 4 and 
5. They indicate that increased duration and in
creased pitch of a vowel increase the likelihood of 
hearing the syllable that include that vowel as 
stressed. However, stress perception was in
fluenced not just by the duration and pitch of 
the vowel concerned but also by the duration of 
pitch of other vowels in the sentence. The re
sults also show a trade-off between duration and 
pitch: if stress is perceived on syllable A because 
of its higher pitch level then stress can be 
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figure. 

shifted to syllable B either by changing the 
duration or the pitch of its vowel. Another im
portant effect is that "flying" required consider
ably less pitch or duration increase to be heard 
stressed than did '~planes." This means that dif
ferent syllables have different requirements of 
relative pitch or duration in order to be heard 
stressed. 

This may have a number of explanations. It 
may simply be due to the different vowels in the 
two syllables, or because of their different 
phonetic environments. It could also have been 
due to the sentence-final position of "planes," or 
due to various semantic influences. Whatever the 
reason, it shows an important effect that was also 
observed in other synthesized sentences: equal 
duration or equal pitch of all the vowels of a 
sentence do not produce equal stress. Under these 
conditions of equality the stress falls on the 
syllable which for grammatical or semantic rea
sons should have the least stress. Yet another 
factor is that by principle the definition of vowel 
duration must be arbitrary: the particular ad hoc 
definition adopted could lead to difficulties when 
the same vowel is used in different phonetic en
vironments. 

In summary, the strong influence of vowel 
duration and pitch on stress perception can be 
easily demonstrated. The quantitative relation
ship, however, is variable and affected strongly 
by a great variety of phonetic, grammatical and 
semantic conditions. 

The outlook for good quality computer gen
erated speech is not quite as black as these re
sults might imply. Phonetic, grammatical and 
semantic constraints can be restricted by allow
ing only sentences made up from a small number 
of words and with a restricted grammar. The re
sulting ensemble of sentences could still. be sig
nificant for such applications as voice read-out 
of computer stored information and at the same 
time exhibit more manageable long range effects 
of stress on the duration, pitch and formants of 
speech sounds throughout the sentence. Work 
on such simpler schemes are in progress now 
and computers are indispensible to handle the 
exploration of the remaining complexities that are 
still formidable. The lessons learned from such 
simpler synthesis schemes may well give useful 
cues for more ambitious schemes later. 

Composing algorithms 

Music composed by machines has intrigued 
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musicians since Mozart's time, but until com
puters became available, only very simple proc
esses could be attempted. Now, almost any con
ceivable composition algorithm can be instru
mented. We will survey the methods that have 
been tried by describing four approaches which 
bracket most other efforts. In each description we 
will point out the kind of long range structure 
achieved by (or missing in) the procedure. 

As a pedagogical standard of structurelessness, 
with which to compare these processes, we will 
postulate an algorithm which generates succes
sive notes by a sequence of independent random 
choices. The parameters of the notes (pitches, 
durations, etc.) are chosen from uniform distribu
tions. If two or more voices are involved, they 
are completely independent. Such a process both 
is and sounds structureless. 

A number of the first programs12 ,13,14 were 
based on imposing sequential dependencies on the 
process we have just described. These algorithms 
produce note sequences in which (1) the proba
bilities of individual notes fit a pre specified dis
tribution, or (2) the probabilities of two succes
sive notes fit a pre specified second order distri
bution, or (3) the probabilities of three successive 
notes fit a prespecified third order distribution, 
etc. The processes have the advantage that these 
distributions can be estimated for existing com
positions and the composing algorithm can be 
set to imitate an existing style. 

The overwhelming conclusion from these proc
esses is: sequential dependencies are not a well 
appreciated, long range musical structure. First 
and second order control produced subjectively 
significant changes from structureless sequences. 
Olson and Belar were able to compose "another 
Stephen FO}Jter tune" in this way. Control of 
dependencies up to the 8th order were attempted 
(though accurate estimates of the higher order 
probabilities are not possible from the amount 
of existing music). Little more was achieved by. 
the higher order control. The highest depend
encies sounded repetitious and redundant. No 
intermediate length generated more interesting 
sequences than those produced with 1st or 2nd 
processes. Neither did the intermediate sequences 
closely resemble the styles on which their distribu
tions were estimated. 

These results are hardly surprising; sequential 
dependencies have proven to be poor describers 
of almost all time functions associated with in
telligent human activity. 

Sequential dependencies are intuitive to mathe-

maticians but have little association with music 
theory. A more inventive approach which in
corporated some music theory was developed by 
Hiller and Isaacson 15 and used to compose the 
Illiac Suite, a very respectable experiment. We 
shall denote the process as random generation 
plus rejection by rule. Hiller tried a version of 
the rules of first species counterpoint and ob
tained highly, if locally, structured results. 

To describe the process in more detail, a trial 
"next note" is produced by an entirely random 
selection. The note is then checked by a set of 
rejection rules. If it violates any of the rules, it 
is rejected and another random choice is made. 
The process is repeated until either an accept
able choice is found or the program gives up 
and the entire composition is abandoned. 

The great advantage of Hiller's method is that 
it can use very complicated rules which have 
strong and peculiar sequential dependencies. 
Some examples of the counterpoint rules which 
he used are: 

"In proceeding from one chord to the next, at 
least one of the four voices must move by 
stepwise motion or remain stationary." 
"Only consonant intervals between voices are 
permitted (unisons, octaves, perfect fifths, 
thirds, sixths." 
"Any melodic skip (minor third or greater) 
must be followed by a repeat or a stepwise 
motion." 

The complexity and number of the rules is 
limited only by the probability of rejecting the 
entire composition. Structures can be introduced 
by this rej ection process which would be very 
difficult to program by any constructive process. 
Moreover, rejection rules are the essence of many 
elementary composition courses. 

The Illiac Suite powerfully demonstrates style 
and local structure. A few bars exude the un
mistakable hymn like style of the· counterpoint. 
The style and short term structure is much 
stronger than that produced by sequential de
pendencies. However, if one continues to listen, 
in about 30 seconds he senses an aimless wander
ing. Hiller and Isaacson's rules did not include 
long range dependencies~ The absence of struc
ture is apparent. 

In a specific effort to control long range struc
ture, J. C. Tenney deveioped the third process 
which we will describe.16 It can be called con
trolled random selection. Each parameter of each 
successive note is selected randomly and inde-
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pendently from a uniform distribution. But the 
mean and limits of this distribution are selected 
by the composer and can change over the com
position. These changes constitute a long range 
structure. 

The process can best be described with an ex
ample. The specification of two parameters, dura
tion and loudness, for one voice is shown on Fig
ure 6. The solid line is the mean of the range 
and the dotted lines the extremes of the range. 
The abscissa goes from 0 to 420 seconds, the 
duration of the composition. At some times (0 
to 120 seconds) the composer can allow the com
puter great latitude as in choice of durations; 
at other times (300 seconds) he can allow no 
range and hence fix the computer's choice, as at 
300 seconds. Average values can be likewise 
manipulated. 

Tenney and Gerald Strang have used this 
method to achieve very marked long range struc
tures. The ranges and rates of change of the 
distributions must be carefully selected to be 
perceptible to the listener, but the composer can 
become highly skilled at making these selections. 
By contrast, the short range structure is not 
nearly as elaborate or as perceptible as that of 
Hiller and Isaacson. Short sections sound like 
groups of random notes, which mayor may not 
please the listener depending on his regard for 
John Cage's style. 

One further question may be asked-who is 
doing the composing, the composer or the pro
gram? The answer is both, since the perceived 
output depends on both of their activities. The 
long range structure is introduced by the com
poser; the individual notes are selected by the 
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FIGURE 6-Score for Random Composition Generated by the 
Tenney Algorithm. 

computer. Whatever is implied about authorship, 
it is a most effective process from the composer's 
viewpoint. He can quickly and easily construct 
the broad structure of the piece with sweeping 
strokes of the pen (light pen). The computer 
can then do the tedious tletails of filling in the 
myriad of notes. We will comment more later on 
the question of authorship and innovation. 

The three processes we have described so far 
have involved random number generators. An al
ternate method called algorithmic development 
has been tried by Mathews.17 In this approach, 
the computer is given a theme plus an algorithm 
which modifies or develops the theme. The method 
is not well defined in the sense that many 
algorithms are possible and the nature of the com
position as well as its success depend on the par
ticular algorithm. 

As an illustration, one example which has gen
erated interesting results is shown on Figure 7. 
The theme is considered as not one sequence of 
notes, but as a sequence of frequencies Fl. . . F 6 

and a sequence of durations Tl ... Ttl. Additional 
frequencies, F, and F~, are appended to the fre
quency sequence. The algorithm generates notes 
by proceeding cyclically through both the fre
quency and duration sequences, thus producing 
the notes Fl T1, F2, T2, ••• , F6 T6, F7 Th Fs F2, 

FIT;.;, etc. Since the frequency sequence is longer 
than th.e duration sequence, the phase between 
frequencies and durations is continually changing. 
The process is cyc~ic and will repeat itself after 
48 notes. 

The algorithm develops the theme in the sense 
of changing it perceptually but in a way so the 
developed theme can be associated with the orig
inal. The short repeated melodic and rhythmic 
sequences provide the perceptual clues which 
bridge the theme and the development. Achieving 
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FIGURE 7-Example of Cyclic DevelopmE:'nt of a Theme 
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perceptual but associable. changes appear to be 
two criteria of a useful development algorithm. 
Producing an interesting sequence of notes is 
a third criterion. 

A number of other techniques for modifying 
themes such as constructing "a weighted aver
age" between two existing themes have been 
tried by RosIer and Mathews18 and have gen
erally produced interesting results, particularly 
in rhythm. We will not describe the processes 
further here. 

Long range structure is provided by the per
ceptual association between the theme and its 
development. Short range structure is provided by' 
the theme itself. Hence, it has been possible to 
produce compositions with interesting structures 
over periods of several minutes. One can again 
ask how much is contributed by the algorithm 
and how much by the composer. 

In a specific sense the answer to the question 
of authorship is clear for any algorithm. In a 
philosophical sense, it is far from settled. The 
first three composing processes involve random 
number generators. However, computers do not 
produce true random numbers but, rather, they 
calculate long, periodic, deterministic sequences. 
Given the initial number and the algorithm, the 
sequence can be exactly anticipated and, hence, 
the composer could conceivably incorporate its 
details into his composition. As a practical mat
ter, of course, he does not. John Cage proposed 
that authorship is a subjective judgment on the 
part of the human composer. The notes or aspects 
of the composition which he has planned or antici
pated are his contribution; the parts which he is 
surprised by when he first hears the music are 
the machine's contribution. A successful algo
rithm produces desired rather than unwanted 
surprises. 

CONCLUSIONS 

The need for better long range structure is one 
of the most important unsolved problems for both 
speech synthesis and music composition by com
puter. In speech, the main question is how the in
dividual sounds are modified by the environment 
in which they occur, where environment means 
not only the adj acent sounds but also the entire 
sentence and the frame of mind or purposes. of 
the speaker. In music, the main question is how to 
relate the sounds in one part of a composition 
to the . sounds in another part in a perceptually 
meaningful and interesting way. 

The differences between long range structure 
in speech and music arise from the fundamental 
ways in which we perceive and use these sounds. 
Speech synthesis is usually judged by its articu
lation score (understandability) and preference; 
where preference is measured by naturalness or 
lack of accent. Articulation cannot be measured 
for music since the nature of its information is so 
different from speech. Perhaps the equivalent 
question is whether the style of the composing 
algorithm can be learned in the sense of distin
guishing examples from examples of some other 
algorithm. Preference can be measured, but here 
one asks questions about the overall piece rather 
than the naturalness of individual notes. Long 
term structure in speech is measured in seconds; 
in music it is measured in minutes. 

Despite differences, speech and music research 
have often been mutually reinforcing. Many 
questions about voice quality and the timbre of 
musical sounds appear to be different aspects of 
the same psychoacoustic phenomena. Certainly 
the same computers and similar programs are use
ful for speech and music research. Consequently, 
we believe it is useful to compare the long range 
structure of these processes. 
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A computer with hands, eyes, and ears* 

by J. McCARTHY, L .. n. EARNEST, 
D. R. REDDY and P. J. VICENS 
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Stanford, California 

INTRo.nUCTION 

The anthropomorphic terms of the title may sug
gest an interest in machines that look or act like 
men. To this extent it is misleading. Our interest 
is in extending the range of tasks to which ma
chines can be applied to include those that, when 
performed by a human, require coordination be
tween perceptual and motor processes. We at
tempt to suppress the egocentric idea that man 
performs these tasks in the best of all possible 
ways. 

In place of "eyes, ears, and hands" we could 
refer to "cameras, microphones; and manipula
tors," but find latter terms less suggestive of the 
functions that we wish to emulate. We leave the' 
term "robot" and the ideas that go with it to the 
science fiction writers who have made them so 
entertaining. 

Shannon, Minsky, McCarthy, and others had 
considered the possibility of a computer with 
hands, eyes and ears at one period or another dur
ing the latter part of the last decade. The main 
obstacles to the realization of the idea were the 
unavailability of suitable computers and 1-0 de
vices, and, the prohibitive cost of such a system. 
Ernst! and Roberts2 were among the first few who 
used a computer to realize these objectives. Glaser, 
McCarthy, and Minsky8 proposed that the first 
major attempt at the biological' exploration of 
Mars should be made by a computer controlled au
tomatic laboratory, containing a wide variety of 
visual input devices and mechanical manipulators 
which can under computer control perform many 
of the tasks of bio-chemical laboratory, requiring 

*This research was supported in part by the Advanced Re
search Projects Agency of the Department of Defense under Con
tract No. SD-l83. 
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only a limited supervision by the experimenter on 
earth. 

The work reported here and a related project 
at M.I.T. were undertaken several years ago to 
combine and improve techniques for machine per
c:eption and manipulation. Progress has been slow
er than we hoped because there have been many 
previously unrecognized problems and few simple 
solutions. Nevertheless, we have a system that 
does such things as recognize spoken messages 
that are combinations of terms . previously 
"learned," "see" blocks scattered on a table, and 
manipulate them in accordance with ins~ructions. 

The work is just beginning. Our existing sys
tem exhibits more problems than solutions, but 
that was its purpose. The following sections dis
cuss considerations leading to the choice of equip
ment, techniques used to convert the huge masses 
of television camera and microphone data into 
useful information, and the control of arms. 

System configuration 

Major considerations in the choice of system 
components have been off-the-shelf availability 
and ease of interfacing. This approach has both 
advantages and disadvantages. The main ad
vantage, of course, is a relatively quick start. 
Figure 1 shows major components of the existing 
system. Figure 2 is a photograph of 'the hand-eye 
system. 

At the center of the system is a time-shared 
PDP-6 computer with 131K words of core mem
ory of 36 bits each and an 11 million word fixed
head disk file. The PDP-6 was chosen for having 
a working time,-sharing system, ease of adding 
special 1-0 devices, and unrestricted data transfer 
rates of up to 30 million bits per second between 
memory and external devices 0 The Librascope 
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Key: ======== memory bus 

--otherdatapaths 

FIGURE 1-Stanford A.I. computer system 

disk file has a 24 million bit per second transfer 
rate and provides both swapping and permanent 
file storage. 

There are a number of local and remote tele
types, CRT displays, a line printer, plotter, and 
tape units for general user services. 

Our research objectives imposed several special 
requirements on the time-sharing system. When 
a person begins to speak, the system must ensure 
that the audio system is listening to him and must 
not swap out the program just because its time 
is up. Similar considerations apply to arms that 
are in motion. The system must also provide for 
communication between programs. The DEC 
time-sharing system was modified locally to meet 
these requirements. 

Visual input to the system is provided by a vidi
con television camera operating in accordance 
with EIA standards. The video signal is digitized 
to four bits (16 levels of light intensity) and 
sampled at an instantaneous rate of 6.5 million 
samples per second. Making use of interleaving, 
any rectangular portion of the image, up to 666 X 
500 points for the full field of view, may be read 
into memory under program control in two frame 
times (1/15 second). For static scenes, finer 
gray-scale resolution can be obtained by averag
ing measurements over multiple frames. 

The laboratory also has an image dissector 
camera which is capable of measuring the bright
ness of image points in arbitrary order. It is capa
ble of directly resolving better than 1000 X 1000 
points with a gray-scale resolution of 6 bits or 
more. It is relatively slow if a large number of 

FIGURE 2-A picture of the hand-eye equipment 

points are to be read and suffers from settling
time problems when large deflections are used. 

A comparative study of optical sensors for com
puters, including the possibility of u laser eye 
with direct depth determination, has been made by 
Earnest.4 

Audio input to the system is provided through 
an A-D converter connected to the PDP-6. Two 
different audio devices are currently attached. In 
'One, composed of a condenser micrQphone and a 
high quality amplifier, the speech signal is 
sampled at a rate of 20,000 samples per second and 
digitized to 9 bits. In the other, shown on Figure 
3, the output of a crystal microphone is amplified 
and filtered into three frequency bands. In each 
band, the maximum amplitude of the signal and 
the number of zero crossings are measured by 
analog circuitry. Every 10 milliseconds, each hold 
circuit is read by the A-D converter to 16 bits and 
then reset for the next 10 milliseconds. 

Input of the raw speech waveform without any 
preprocessing hardware, such as a filter bank, has 
the disadvantage of requiring more processing 
by the computer and more storage. But on the 
other hand, it provides the user with a very flex
ible means of analysis and permits all kinds of 
processes to be simulated. In fact, we believe that 
no solution should be implemented in hardware 
until it has been proven to be one of the best pos
sible solutions by computer simulation. Reddy5 

states that prosodic parameters of speech, requir
ing the use of segmentation and pitch detection 
are more easily determined from the direct speech 
signal than from the output of a bank of filters. 

The second audio-device- arises directly from the 
preprocessing program of Reddy and Vicens.6 
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FIGURE 3-A schematic of the speech preprocessing hardware 

They use tWQ smQQthing functions which prQduce 
apprQximatiQns 'Of the same parameters (maxi
mum amplitude and zerQ-crQssings). This kind 
'Of system is required when 'One wishes tQ analyze 
IQng utterances, because a direct analysis 'Of the 
speech wave W'Ould c'Onsume large am'Ounts 'Of c'Ore 
stQrage and prepr'Ocessing time. 

The example 'Of speech rec'Ogniti'On discussed 
bel'Ow uses the preprQcessing hardware. The 
sampling rate 'Of this device, being very sl'OW 
(3600 bps), all'Ows the central pr'Ocess'Or t'O pr'O-
cess the input as it c'Omes, which is an imp'Ortant 
c'Onsiderati'On if real time speech rec'Ogniti'On is 
desired. 

The electric arm was 'Originally designed as a 
device t'O be strapped t'O a paralyzed human arm. 
It has six degrees 'Of freed'Om which permits it t'O 
place the hand in arbitrary P'OsitiQns and Qrienta
ti'Ons within reach, plus a finger-cl'Osing m'Oti'On. 
It is PQwered by small permanent magnet gear
head m'Ot'Ors m'Ounted 'On the arm, giving j'Oint 
vel'Ocities 'Of 4 tQ 6 r.p.m. with small I'Oads. P'Osi
tion feedback is pr'Ovided by P'OtentiQmeters 
m'Ounted at each 'Of the six j 'Oints. The hand is a 
tW'O finger parallel grip device appr'Oximately the 
size 'Of a human hand and has a maximum finger 
'Opening 'Of 6.4 centimeters (3.5 inches). The max
imum reach is ab'Out 68 centimeters (27 inches), 
and its weight is ab'Out 7 kil'Ograms (15 p'Ounds). 
P'Ower tQ the mQtQrs takes the f'Orm 'Of 16 VQlt 
pulses wh'Ose width and repetiti'On rate are c'On
tr'Olled by the C'Omputer pr'Ogram. 

In its 'Original fQrm, this arm had a number 'Of 
maladies such as severe mechanical play in the 
jQints and imprecisi'On in the P'Otenti'Ometer read-
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ings due t'O unstable mQuntings. Despite several 
imprQvements, the arm is still rather sl'Ow, shakey, 
and inaccurate. The P'Ositi'On 'Of' the hand may 
differ fr'Om cQmputed values by as much as a cen
timeter. 

A hydraulic arm, recently c'Ompleted, is faster, 
sm'OQther, and mQre accurate in its m'OtiQns. It is 
alsQ capable 'Of dealing a fatal blQW tQ the experi
menter, exhibits 'Other antisQcial prQperties such 
as leaking hydraulic fluid, and tends t'O destrQy 
itself periQdically. 

Scene analysis lLnd description 

If we digitize the light intensity at every PQint 
in the wh'Ole fiela 'Of view 'Of the televisiQn camera, . 
the cQmputer will receive 666 X 500 'Or 333,000 
samples, 'Or 1,332,000 bits 'Of data per frame. The 
pr'Oblem of scene descripti'On i.s the f'Ormulati'On 'Of 
a pr'Ogram which will abstract meaningful de
scripti'Ons 'Of 'Objects 'Of interest in the scene and 
their P'OsitiQns. 

The pr'Oblem 'Of scene descripti'On must be dis
tinguished fr'Om the prQblem 'Of classifying pic
tures int'O categories with which much 'Of the pub
lished theQry deals. The first wQrking descripti'On 
pr'Ogram was reported by RQberts.2 Narasimllan7 

suggests that richly structured pictures such as 
bubble chamber pictures, line drawings, and 'Others 
are best studied in the f'Orm 'Of picture analysis 
and descripti'On and pr'OP'Oses the use 'Of a linguis
tic m'Odel. Recent w'Ork by Miller and Shaw,8 and 
Shaw9 illustrates the P'Ower 'Of the linguistic m'Od
els in the analysis and generati'On 'Of pictures. 

The linguistic m'Odels have the advantage that 
they can be used f'Or b'Oth analysis and generati'On 
of pictures, and that many 'Of the P'O'werful t'OQls 
devel'Oped f'Or syntax-directed analysis 'Of lan
guages can be directly utilized f'Or the analysis 'Of 
pictures. The weaknesses 'Of the present linguistic 
m'Odels, at least as far as the analysis 'Of images 
'Of 3-D scenes is cQncerned, are the f'Oll'Owing: 

Attempts at describing the c'Onnectivity 'Of 
3-dimensi'Onal obj ects, using a data structure 
primarily develQped f'Or the descripti'On 'Of strings 
'Often results in unwieldy and awkward descrip
ti'Ons leading 'One t'O dQubt whether such descrip
ti'Ons really facilitate analysis. Extensi'On 'Of the 
m'Odels t'O use list structures instead 'Of strings 
sh'Ould remedy this weakness. 

• The present linguistic m'Odels als'O suffer 
fr'Om many 'Of the pr'Oblems 'Of err'Or rec'Overy 'Of 
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syntax directed compliers. This is especially criti
cal when dealing with analysis of pictures; as a 
result of noise and jitter in the input device 
spurious lines and edges may appear all over the 
picture, and often some of the expected edges 
may be missing. 

One of the main problems with images of 3-D 
scenes is not so much how to describe what is 
visible but rather how to describe what is only 
partially visible. Heuristics for handling de
generate views of objects cannot be conveniently 
incorporated into presently proposed linguistic 
models. 

In view of the above consideration it appears 
that generalizations of linguistic models will be 
needed bef'Ore they can be used effectively for the 
analysis 'Of images of 3-D scenes. 

Our existing scene analysis program- is related 
to the one used by Roberts2 and has recently been 
described by Pingle, Singer, and Wichman.10 In
stead of repeating that description, we shall note 
some shortcomings of the existing system and 
some possible soluti'Ons. 

The existing eye pr'Ogram locates cubical bl'Ocks 
'Of various sizes scattered at random on a contrast
ing background. Its "w'Orld model" has room for 
just one block at a time and those that are partly 
obscured by others may be perceived only after the 
intervening blocks have been removed by the 
hand. Depth determination depends on the as
t-mmption that all objects rest on a known planar 
surface. 

The edge tracing program in~ use does not re
liably detect subtle differences in brightness be
tween adjacent surfaces of the same or similar 
objects. The block stacking tasks ,that have been 
undertaken to date do not require thIS information. 

A more general' world model, in the form 'Of a 
multiply-linked data structure, is being devised 
that will accommodate at least multiple objects 
bounded by combinations of planar surfaces in 
arbitrary positions. More powerful edge tracing 
procedures are being tested, and we plan to em
ploy some of the contiguity recognition techniques 
of Guzmanll together with three-dimensional 
plausibility tests of postulated objects. 

In related work, the problems of combining in
formation frum sever~l views and viewpoints into 
a single model is being attacked. We expect these 
combined efforts to produce a much more complete 
descripti'On of the work environment. 

Speech analysis and description 

If we plot the changes in air pressure produced 
bya speech utterance as a function of time we 
~ill see a waveform such as the one given in Fig
ure 4. This signal, as reflected by the changes in 
voltage generated by the microphone, is digitized 
in our system to 9 bit accurace every 50 P.s, re
sulting in a data rate of about 180,000 -bits per 
second of speech. In normal speech, ~very second 
of speech contains about 5 to 10 different sounds 
which usually require less than 50 bits to repre
sent in the written form. The problem of speech 
description, then, is the development of a set of 
procedures which will reduce the 180,000 bits of 
information to about 50 bits. Of course, human 
speech carries other information such as speaker 
identity, emotional state, his location, age, sex, 
health and other such features. But what is of 
primary interest to us here is the message uttered 
by the speaker. 

First attempts at speech recognition by a com
puter were restricted to the recognition of simple 
sounds like vowels and digits, just as preliminary 
attempts at picture recognition were restricted to 
the recognition of characters. The approaches de
veloped for the recognition 'Of simple sounds, such 
as the use of a metric in a multidimensional space 
partitioned by hyperplanes, are not easily extend
able for the analysis of a complex sequence of 
sounds which may be part of a spoken message. 
The structure of the message and the interrela
tionships among the sounds of the message are 

, the important factors. 
Speech is, perhaps, the most extensively investi

gated of all the human perceptual and motor proc
esses. And yet a large body of this research is not 
directly relevant for machine recognition of 
speech. Even the relevant literature on the 
acoustic characteristics of speech is more qualita
tive than quantitative and is meant for' use by 
men rather than by machines. Stevens12 has re
cently summarized much of' the known data on 
acoustic properties of speech sounds in a form 
amendable for machine processing. Recent at
tempts at computer speech recognition by Bobrow 
and Klattt3 and Reddy5 provide' models which can 
be used for the recognition of phrases, sentences, 
and connected speech. The latter forms the basis 
'Of present work. The model currently being used 
consists of four stages: segmentation, sound de
scription, phrase boundary determination, and 
phrase recognition. 



Segmentation 

If you consider the sound in Figure 4 you will 
see that it is not clear where one word ends and 
another begins or where a particular sound within 
a word ends and the next begins. This is because 
the shape of the vocal tract is continuously chang
ing and there is no clear cut point in time where 
we stop saying one sound and start another. To 
be able to associate discrete symbols with the con
tinuous speech wave, a machine must be able to 
segment a connected speech utterance into dis
crete parts. 

To be able to segment speech we need to answer 
questions such as "What is a sound?" and "How 
do you distinguish one sound from another?" One 
can define a sound on purely acoustical basis: a 
sound is a part of the speech wave in which the 
acoustic characteristics are similar (a sustained 
segment) or one in which the characteristics vary 
with time (a transitional segment). To dis
tinguish one sound from another according to the 
above definition we need a measure of similarity 
or closeness between two adjacent units of speech. 

Conventional metrics such as the Euclidean dis
tance fail to be satisfactory. To be usable the 
doseness function should be based on the follow
ing heuristics: 

• Since some parameters are more variable 
than others the closeness function should provide 
for appropriate weighting of parameters. 

• Although most of the parameters may be 
similar a drastic change in one parameter should 
resul t in a 'not-similar' indication. 

• If the difference between two corresponding 
parameters is less than a minimum, then the two 
parameters should be considered as identical. 

• The greater the parameter value, the greater 
should be the difference we are willing to accept, 
suggesting the use of a relative error function 
such as dy/y. 

• When the parameters are close to zero the 
relative error function dy /y can take abnormally 
large values, suggesting the use of a function such 
as k . oY/Vy 

A cloeeness function which satisfies the above 
heuristics and a detailed description of segmenta
tion are given by Reddy and Vicens. 6 The seg
mentation process can be summarized as follows. 
A preprocessing procedure divides the speech wave 
into 10 ms minimal segments and calculates esti
mators of four characteristic parameters: the 
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amplitude and zero crossings of the dominant fre
quency under 1000 cps and the amplitude and 
zero crossing of the dominant frequency under 
1000 cps. An alternative for this preprocessing 
task is to use special hardware;14 it divides the· 
speech wave into 10 ms minimal segments and ac
cumulates six parameters: amplitude and zero 
crossings of the signal in three frequency bands: 
150-900 Hz, 900-2200 Hz, 2200-5000 Hz. 

A primary segmentation procedure calculates 
closeness values and groups together adjacent 
minimal segments that may be regarded as sim
ilar. A secondary segmentation procedure divides 
these primary segments into smaller segments if 
the within-the-segment variation of parameters 
is too high. The closeness values are recomputed 
between the secondary segments, giving greater 
weight to the frequency components than the 
amplitude components. If two secondary segments 
are sufficiently close and are not local maxima or 
minima, they are combined to form larger seg
ments. 

Sound description 

The purpose of generating a sound description 
is to abstract, from the wide range of possible 
values of parameters, a label which would ade
quately describe the nature of a sound segment. 
The higher the level at which a sound is described, 
the easier it is for the pattern matching and 
recognition routines to determine what was said. 
At one extreme the description might consist of 
the average parameters of the segments and- the 
other a single label for the whole utterance. In 
between, descriptions can be attempted at· the 
level of phoneme groups, phonemes, diphones, or 
syllables. The nature of our segmentation is such 
that it is more appropriate for us to attempt de
scription in terms of phoneraes or phoneme 
groups. 

Phoneticians have classified the sounds we 'pro
duce according to the shape of our vocal tract. 
There are about 40 such different sounds (pho
nemes) in English. One natural description of a 
speech utterance is in terms of its phonemic tran
scription. For example the word picks could be 
described as consisting of four sounds, P, I, K, and 
S in that sequence. However, various allophones 
of the same phoneme exhibit widely varying 
acoustic characteristics depending on the context 
in which they occur. This ofte-n results in a sub
stantial overlap of characteristics among similar 
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FIGURE 4-Analysis of the waveform of "How now brown cow" 

phonemes. Thus it is not uncommon f'Or the word 
bits to have similar acoustic parameters to picks. 
This possibility of error prel:udes the use of simple 
pattern matching routines. At present, we gen
erate descriptions in terms of phoneme groups: 
vowel, nasal, fricative, stop, burst and so 'On. We 
will see later how such a description is useful in 
reducing the search space. 

The procedure used for the classification of 
segments into phoneme groups is an extension of 
the one given by Reddy.5 If a segment is noiselike, 
then it is labelled FRICS. Otherwise if the seg
ment-amplitude is a local maximum, then the 
segment is labeled VOWEL. Otherwise the seg
ment is labeled STOP, NASAL, CONSONANT de
pending on segment parameters. For example, the 
description generated for the word picks might 
be as follows: "The sound consists of a stop, fol
lowed by a transition,. followed by a vowel, fol
lowed by a stop, followed by a fricative each with 
the following parameters .... " 

Word and phrase boundary determination 

Like many other aspects of English, the prob
lem of determination of word boundaries in con
nected speech is ambiguous. For example the 
sound description / AISCREEM/ could have re
sulted from the words "I scream" or "ice cream." 
The problem of word or phrase boundary de
termination can be completely by-passed if the 
problem at hand requires only the recognition of 
a limited set of words, phrases 'Or sentences. Then 

the sound description of the whole utterance can 
be stored in the lexicon for future matching with 
a similar descriptive. However, as the lexicon gets 
larger and larger it becomes necessary to consider 
breaking up a connected speech utterance into 
words and phrases which can then be recognized 
by a phrase recognition program. 

One obvious solution to this problem is to re
quire the speaker to pause for a few milliseconds 
between words or phrases. But this gets to be 
annoying after a while. At present we are con
sidering connected speech utterances of the form 

<command> 

< argument list> 

.. -.. -

.. -.. -

< function name> < argu
ment list> 

< argument> I < argument 
list> < preposition> 
<argument> 

<function name> :: = PICK UP I STACK I 
ASSIGN I ADD I 
SUBTRACT I··· 

<argument> 

< preposition> 

:: = THE LARGE BLOCK I 
FAR LEFT I ALPHA I 
BRAVO I .. · 

:: = AT IOF I TO I FROM I .. · 

By carefully choosing the function names, the pos
sible arguments, and the ass'Ociated prepositions 
it is possible to determine the word or phrase 
boundaries. Certain keywords play an important 
part in this determination. A good example of 
such a word is BLOCK, starting with a silence 
(B) and ending with a silence (K). As a result 
~uch heuristics as 'scan until you find BLOCK' 
may be done with a low percentage of error. Use 
of restricted special purpose command languages 
for communication to the computer such as the one 
above, is not unreasonable in view of the fact that 
we have had to make a similar compromise for 
programming languages. How interesting the 
spoken languages can get will depend on how re
liably and precisely we can generate sound de
scriptions. 

Word and phrase recognition 

Given a sound description of a word or phrase, 
we need a description matching algorithm to de
termine what was said. If we can guarantee that 
the description is an error-free phonemic tran-



scription then all that is needed is a simple classi. 
fication net which grows as new sounds are ut
tered. Since such a guarantee will not be forth
sible errors in the sound description. Two utter
coming in the near future, if ever, we need a 
recognition procedure which will cater to the pos
ances of the same phrase by a single speaker can 
exhibit different descriptions even under the same 
environmental conditions. .Due t'O minor changes 
in the emotional state he may say it faster, slower 
or with slightly different stress and intonation re
sulting in a loss of segment, insertion of a seg
ment, or assignment of a wrong label, e.g., NASAL 
instead of STOP. This possibility of error in the 
description poses the well known lack of syn
chronization problem, i.e., if two descriptions of 
the same phrase differ by one or more segments, 
the problem of determining which one it is that 
is missing. 

Given two descriptions which are to be com
pared, a mapping procedure determines the pos
sible c'Orrespondences between segmental descrip
tions. It uses the heuristic that VOWEL and 
FRICS segments can be reliably detected and first 
maps VOWEL for VOWEL and FRICS for 
FRICS. The remaining unmapped segments are 
then mapped on the basis of similarity of 
parameters. 

Given the correspondences between segment de
scriptions, an evaluation procedure compares the 
parameters of the mapped segments to determine 
if they could p'Ossibly be two different utterances 
of the same phrase. Similarity of the parameters 
is given based on the heuristics given for the close
ness function in the section 'On segmentati'On. Of 
course, any unmapped segments have a detri
mental effect on the similarity measure. If the 
similarity value is over a certain threshold then 
the two descripti'Ons are considered the same. 

If no candidate was f'Ound during the first try, 
the program, assuming that it knows what was 
said, supP'Oses that the FRICS were not well de
termined and were classified as a high frequency 
st'OP (burst) or vice versa. If this is the case, a 
second search is attempted mapping 'Only VOWEL 
f'Or VOWEL. All the remaining unmapped seg
ments are then mapped on the basis 'Of similarity 
'Of parameters as in the first try (but with FRICS 
included) . 

If after this second try no satisfact'Ory candidate 
was found, two different actions may take place: 
in learning mode, the new descripti'On is entered 
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int'O the lexicon along with the print name; in 
recognition m'Ode, it is rej ected. 

Unless the candidates for pattern matching with 
an incoming description are chosen carefully from 
the lexic'On, it could take a long time t'O determine 
what was said. To minimize the search space, 
the lexicon is ordered 'On the basis 'Of the number 
'Of v'Owel segments and the number 'Of FRICS seg
ments, furtherm'Ore the v'Owels are classified in 
nine subclasses acc'Ording t'O the values of their 
zero crossing parameters. The direct matching 
'Of these subclasses easily eliminates s'Ome entries 
in the initial list 'Of the possible candidates. Each 
entry in the lexic'On consists 'Of a packed versi'On 
'Of the description and parameters generated by 
the sound descripti'On procedure. A detailed de
scripti'On and evaluation of the phrase recogni
tion procedure is given by Reddy and Vicens.~5 

Remarks 

The preceding subsections attempt to give an 
overview of the state 'Of acc'Omplishment in speech 
recognition at 'Our project. Segmentation and 
phrase recognition pr'Ocedures give correct results 
ab'Out 95 percent of the time. This can be im
pr'Oved slightly by using m'Ore s'Ophisticated pre
processing routines. Work has barely begun 'On 
the determination of classes 'Of words and/'Or 
phrases f'Or which boundaries can be determined 
unambigu'Ously in c'Onnected speech. A great deal 
'Of w'Ork remains t'O be d'One in the generation 'Of 
reliable s'Ound descripti'On. 

If a reliable descripti'On can be 'Obtained in the 
form 'Of a ph'Onemic transcription ('Or s'Ome such 
unit) we can reduce the search space 'Of the w'Ord 
and phrase recogniti'On routines c'Onsiderably, and 
we will be able t'O unambigu'Ously determine w'Ord 
b'Oundaries f'Or a larger class 'Of w'Ords. Only then 
can we hope t'O recognize words fr'Om a lexic'On 'Of, 
say, 20,000 w'Ords in cl'Ose t'O real time. We have 
already menti'Oned that the main difficulty in 'Ob
taining a reliable ph'Onemic transcripti'On is the 
wide variability 'Of acoustic characteristics 'Of a 
phoneme depending on c'Ontext. The'Oretically 
every phoneme can 'Occur in 1600 'Or S'O different 
c'Ontexts. Many of them d'O n'Ot occur in natural 
speech and the remaining can perhaps be gr'Ouped 
together int'O 10-20 contextual t!ategories f'Or each 
ph'Oneme. The huge task that remains to be d'One 
is the investigation and methodical cataloguing 'Of 
the m'Odificati'Ons t'O the features 'Of a ph'Oneme, 
and the development 'Of rules for transf'Ormati'Ons 
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on phonemic features based on context. It will 
perhaps be many years before such a study is 
complete but a great deal can be done in computer 
speech recognition even with incomplete results 
using the model proposed here. 

Control of a mechanical arm 

In order to carry out complex manipulation 
tasks, it is necessary to do planning for and con
trol of the arm at several levels. At the top level 
there is a goal-seeking process which integrates 
the activities of the various sensory, perceptual, 
model-building, and manipulation processes. Next 
there must be planning of subtasks. For example, 
if we are given a description of an 'Object to be 
assembled and a description of available com
ponents, we must plan which components will go 
in which locations and the order in which they are 
to be placed. 

Each subtask generates a sequence of motions 
(e.g., move hand H to point P and open fingers). 
At this point, the model of the environment should 
be checked for space occupancy conflicts (i.e., the 
arm shouldn't bump into things accidentally). In 
case of conflicts, we must replan the arm motions 
and, possibly, the order in which components are 
put in place. 

Given that the hand is to reach a certain posi
tion, we must calculate how each of the arm joints 
is to be positioned. For arms with certain geo
metric properties, this can be a very quick and 
reliable calculation. For others, it may involve a 
slow and uncertain iterative process. 

Finally, there is a process that servos the arm 
from place to place, possibly with constraints on 
the velocity or force to be employed. 

Our existing system exhibits each of these levels 
of planning and control in some form, but without 
much generality. In most cases, an ad hoc se
quence of subroutine calls takes the place of a 
flexible planning function. As one consequence, 
the arm readily runs into objects in its vicinity. 
The calculation of joint positions required to reach 
a given point is relatively straightforward for the 
arms we have and has been described by Pingle, 
Singer and Wichman. ~o 

An obstacle avoidance technique has been de
vised by Pieper.16 It attempts to make the point 
of closest approach greater than a specified value 
between all parts of the arm, modelled as a series 
of cylinders, and an environment containing 
planes, spheres, and cylinders. 

There is much to be done in the area of planning 
assembly tasks. Many of the things that we do 
instinctively, such as building things from the 
bottom up or from the inside out, need to be 
formalized and translated into programs. 

An example 

As an illustration of existing capabilities, we 
describe a system that obeys the experimenter's 
voice commands to find blocks visually and stack 
them as ordered. The grammar chosen for this 
example is as follows. 

Syntax 

<command> 

<command!> 

<order!> 

<command2> 

:: = <command!> I 
<command2> 

:: = <order! > I <order! > 
EMPTY 

:: = RESCAN I STOP 

:: = PICK UP <argument list> 

<argument list> :: = <size indicator> EMPTY 
<position indicator> 

< size indicator> 

<size> 

<position 
indicator> 

< position! > 

<position2> 

:: = EMPTY I <size> BLOCK 

:: = SMALL I MEDIUM I 
LARGE I EMPTY 

:: = EMPTY I <position! > 
< position2 > 

".. -
.. -.. -

<position> SIDE 

< position' > < position" > 
< position word> I 
< position" > < position' > 
< position word> 

<position word> :: = ANGLE I CORNER 

<position> 

< position' > 

<position" > 

Semantics 

:: = < position' > I < position" > 

:: = EMPTY I LEFT I RIGHT 

:: = EMPTY I UPPER I LOW~R 

The meaning of some of the terminal symbols 
is obvious, but some others, like RESCAN and 
EMPTY need explanation. 

The command "rescan" is used to indicate that 
the scene might be disturbed and that the vision 
program should generate a new scene description. 



The terminal symb'OI EMPTY means no speech 
utterance at all 'Or s'Ounds n'Ot rec'Ognized by the 
w'Ord rec'Ognizer. If any 'Of the n'On-terminal sym
b'Ols is finally reduced t'O EMPTY the middle value 
is assumed. F'Or example if < size indicat'Or > = 
EMPTY, a bl'Ock 'Of medium size will be assumed. 

Sentences like "pick up the small bl'Ock standing 
'On the upper right c'Orner," "rescan the scene,'" 
"pick up any bl'Ock" are c'Orrect acc'Ording t'O the 
grammar. 

After the preliminaries such as training the 
phrase rec'Ogniti'On system and calibrati'On 'Of the 
arm and eye c'O'Ordinate systems, the picture rec
ogniti'On pr'Ogram I'O'Oks at the image and gen
erates a scene descripti'On 'Of all the cubes present 
in the field 'Of view. The descripti'On f'Or each bl'Ock 
c'Onsists 'Of the I'Ocati'On, size, and 'Orientati'On 'Of the 
bl'Ock. 

Given a c'Ommand, the speech analysis pr'Ogram 
segments the speech and generates a s'Ound de
scripti'On. This description is then used by the 
scanner-rec'Ognizer which dec'Odes it and passes 
the result 'Of its analysis t'O the main program. 

The scanner-rec'Ognizer requires a g'O'Od w'Ord 
rec'Ognizer utility pr'Ogram. The rec'Ogniti'On is 
d'One by scanning the speech utterance descrip
tion f'Orward and backward using feedback fr'Om 
the grammar. The dec'Oding 'Of a sentence like 
"pick up the small bl'Ock standing 'On the right 
side" will be d'One as f'OII'Ows: 

Rec'Ognize PICK UP. 
Then scan until BLOCK. 
If BLOCK backtrace t'O find size attribute. 
Backtrace fr'Om the end t'O find SIDE. 
Backtrace t'O find RIGHT. 

At any step, feedback is used S'O that the 'Only 
candidates c'Onsidered are those that are syn
tactically c'Orrect. F'Or example, when the pr'O
gram is trying t'O reduce the n'On terminal symb'OI 
< size> the 'Only available candidates f'Or the 
matching pr'Ocess are the descripti'Ons 'Of LARGE, 
SMALL and MEDIUM, 

Based 'On the c'Ommand, the arm is directed t'O 
pick up or stack a bl'Ock. If it is t'O pick up, the 
I'Ocati'On and 'Orientati'On 'Of the bl'Ock are given. If 
it is t'O stack, the I'Ocati'On 'Of the stack is given. 
The m'Ovie, t'O be sh'Own, illustrates the reSP'Onse 
'Of the arm t'O vari'Ous c'Ommands, and presents the 
details 'Of vari'Ous analysis and descripti'On gen
erati'On pr'Ocesses displayed 'On a CRT. 
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CONCLUSIONS 

Many 'Of the pr'Oblems discussed at the end 'Of the 
preceding secti'Ons can and will be s'Olved in the 
next few years. H'Owever, it will pr'Obably be a 
I'Ong time before a c'Omputer can equal the per
cepti'On and dexterity 'Of a human being.· This will 
require n'Ot 'Only advances in the areas 'Of c'Omputer 
architecture and the quality 'Of the external de
vices, but als'O a better understanding 'Of percep
tual and m'Ot'Or pr'Ocesses. 

Even the limited pr'Ogress achieved S'O far can 
result in c'Omputer hand-eye-ear systems that are 
better suited f'Or s'Ome purp'Oses than human be
ings. F'Or example, they may see things and hear 
s'Ounds that a pers'On cann'Ot, and they may be 
faster, str'Onger, m'Ore ec'On'Omical, 'Or m'Ore ex
pendable. 

The fact that a c'Omputer may n'Ot be able t'O see 
all the things we can see 'Or carry 'On fluent c'On
versati'On sh'Ould n'Ot be a cause f'Or extra c'Oncern. 
C'Onsider the case 'Of pr'Ogramming languages. 
Alth'Ough we have n'Ot been able to c'Ommunicate 
with c'Omputers in 'Our natural language, we have 
managed t'O achieve a great deal using c'Ontrived 
and ad h'OC languages like F'Ortran. There is n'O 
reas'On t'O suspect that the same will n'Ot be the 
case with visual and v'Oice input t'O the c'Omputers 
or with c'Omputer c'Ontr'OI 'Of manipulat'Ors. 

We foresee several practical applicati'Ons that 
can pr'Ofitably use the techniques described in this 
paper. One that is m'Ost 'Often menti'Oned is the 
P'Ossible bandwidth reduction in picture and speech 
transmissi'On systems. We believe that c'Omputer 
c'Ontr'Olled carts which can navigate themselves, 
and aut'Omated fact'Ories, where c'Omputer con
tr'Olled manipulat'Ors with visual feedback can 
handle many situati'Ons which cann'Ot be presently 
handled by fixed sequence manipulat'Ors, are als'O 
within the range 'Of the present state 'Of the art. 
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Digital si~ulation of continuous dynamic systems: 
An overVIew . 

by JON C. STRAUSS 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

INTRODUCTION 

There has been a growing interes~ over the last decade 
both in this country and abroad,,:in the us~/of the digital 
computer to model continuous !fiynamic ~ystems. Prior 
to 1960, and still true in la~ge measure today this 
application area had been thei~xclusive province of the 
analog computer. The initial motivation for integrating 
the ordinary differential equations characteristic of 
continuous system simulation models on the digital 
computer was one of accuracy; given enough time, 
solutions of essentially unlimited accuracy could be ob
tained from the digital computer. These accurate but 
costly, solutions were then used as consistency checks 
on the many hundreds of solutions characteristic of a 
simulation study on a high speed electronic analog 
computer. 

This emphasis has changed somewhat over the years 
but not strictly on'a speed ratio alteratiori basis. While 
digital computers have become appreciably faster, 
analog computers have more than kept pace. In addi
tion, hybrid computers (combined systems of analog 
and digital computers) have been developed and are 
being employed in an attempt to exploit the best fea
tures of both analog and digital computation. It is still 
true that for many applications on a per solution basis 
all other things equal, the analog and/or hybrid com~ 
puter is several orders of magnitude faster than a digital 
computer of equivalent cost. 

Among the main items which have increased the rela
tive usage of digital computers in continuous system 
simulation are: 

1) guaranteed accur~cy of solution, 
2) accessibility, and 
3) the existence of problem oriented simulation lan

guages that smooth the interface between the ana
lyst and the computer. 

New developments in graphical hardware and con
versational software promise to increase the usage of 
digital computers in this application area even more
Thus while analog and hybrid computers continue to 
retain a marked speed and cost advantage over digital 
in certain problem areas, notably optimization and real 
time simulation, it appears that usage of digital com
puters in general continuous dynamic system simulation 
will continue to increase. 

The first attempts at digital computer simulation 
were characterized by the extremely long set up and 
checkout time associated with the coding and debugging 
of individual programs in machine language. With the 
advent of effective problem oriented algebraic compiler 
languages (e.g., Fortran, Algol, etc.) in the late '50s 
and early '60s, this delay time was somewhat reduced. 
Efficient numerical integration programs were, however, 
still very complicated and hence costly and time con
suming to write and debug on a single problem justifica
tion basis. Even the "packaged" numerical integration 
programs t~nded to require programming sophistication 
for their efficient utilization. lVloreover at this level of 
programming complication, it was still difficult to get 
the engineer who was, and is, concerned with the diffi
culties inherent in his problem. representation to be
come c;oncerned with the difficulties inherent in the 
problem solution. He would obviously have· been more 
willing to become involved if simulation programming 
involved mainly model representation, a~ on the analog 
computer, and he was somehow buffered from the solu
tion difficulties. 

It was this concern combined with the growing 
realization that a digital computer was more than just 
a large "number cruncher" that led to the design of the 
first problem oriented simulation languages. In format, 
the early languages resembled a combination of a three 
address absolute machine code and an operational block 
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description of an analog computer wiring diagram. In 
solution techniques, they generally weren't much bet
ter; most offered rectangUlar or some other low accuracy 
integration scheme. They did, however, make an im
portant contribution; i.e., they introduced the engineer 
interested in dynamics to the digital computer. 

More recently, simulation languages have be~n de
veloped that permit model description in an equation 
based representation that is independent of analog 
computer notation. Through provision of a varied set of 
functional operators, equation based notation can in':' 
clude block diagram based notation as a subset. 

A review of the literature gives the impression that 
there has been almost too much work reported on digital 
simulation languages (in the sense of lots of work and 
too little thought). In addition, much of this work has 
ignored the intimate relationship between the design 
and use of simulation languages, the structure of the 
simulation process, and the natural environment 
of numerical integration. A history of simulation lan
guage development is presented in several survevarti
cles.1 •2 There is, therefore, little need for rep~tition 
here. 

The riot of invention (and duplicated effort in all too 
many cases) together with the apparent neglect of the 
numerical integration process indicated the need for 
control and synthesis. In response, the Simulation Soft
ware Committee was organized under the auspices of 
SCI to develop standardization guidelines for con
tinuous dynamic system simulation languages. In an 
effort to dispel the vague generalities associated with 
many standardization efforts, it was decided to present 
the recommendations in the form of a communication 
language for dynamic system simulation. This language, 
the Continuous System Simulation Language (CSSL), 
was specified in a recent report.3 The CSSL report does 
not address the problem of optimal numerical integra
tion system design, but it does attempt to relate the 
structuring capabilities of CSSL to the inherent struc
ture of numerical integration and to a general structure 
for the simulation activity. It is these interrelationships 
that form the basis for the current discussion. 

Details of numerical integration system design are 
presented in Reference 4. Reference 5 describes a simu
lation language system that augments the recommended 
CSSL solution options by providing for steady state 
and frequency response in addition to the standard 
transient response calculation. Reference 6 introduces 
an area of dynamic system simulation that to date has 
received very little attention in terms of problem orien
ted simulation languages, namely, the simulation of 
spatially continuous systems. 

The character of simulation 

In a recent book,7 Evans, Wallace and Sutherland 
present an interesting discussion on the "nature of 
simulation." Their definitions are paraphrased and 
particularized here for the restricted environment of 
continuous dynamic system simulation. 

Continuous Dynamic System: System in which the 
response phenomena occur continuously in one or 
more independent variables; i.e., the response can be 
modeled by systems of algebraic, ordinary differen
tial, partial differential, and difference equations. 

Of primary concern here are difference equation 
models and/or ordinary differential equation models 
(which ultimately are reduced to iterated difference 
equation models as part of the numerical integration 
process). Reference 6 introduces the topic of simulation 
language design for partial differential equation models. 

Mathematical Model: A set of equations, the solutions 
of which represent some corresponding response 
phenomena in the system. The question of adequacy 
of the representation,. while certainly important, is 
not an issue here; suffice it to say that the solution 
of the model represents the behavior of the system 
against some criteria. 

For example, the solution, x(t), of the differential 
equation: . 

m x(t) + d x(t) + k~x(t) = gm (1) 

represents the position of the mass (parameter m) in a 
simple linear spring, mass, and dashpot mechanical 
system. The model of Equation 1 'assumes an ideal 
linear spr.ing (spring parameter k), an ideal linear dash
pot (parameter d), negligible air resistance (unless 
accounted for in d and k), and a known acceleration of 
gr-avity (g). 

Simulation: The process of solving the mathematical 
model for a particular set of parameters and condi
tions. The solution is said to represent the behavior 
of the system for the same set of conditions; i.e., 
it represents the true system behavior subject to the 
adequacy of the model. 
For example, the solution of the mathmatical model 

of Equation lover the interval 0 < t < tj with param
eters: 

d = 1, k = 1, m = 1 

and conditions:' 

x(O) = 0, x(O) = 0, tj = 10 
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constitutes a simulation. 

Simulation Study: One or more applications of simula
tion to a system. 
For example, the process of repeating the simulation 

of the last example five times increasing m by +.1 each 
time would be a simulation study of the effects of in
creasing mass on the dynamic response of the system. 

The mathematical model is the representation of the 
system. The simulation involves a command over the 
mathematical model (e.g., FOR "d = 1, k = 1, ... etc." 
SOLVE "Math Model" OVER "Range.") The simula
tion study involves an ordered sequence of simulations 
(or a procedural sequence of commands). 

These definitions provide a framework within which' 
the relationship of simulation languages and the numeri- ' 
cal integration process is easily presented. 

As mentioned in the introduction, a simulation 
language must obviously be concerned with the repre
sentation of the system being simulated; i.e., with the 
description of the mathematical model. It must also 
provide for the presentation of the parameters and 
conditions that specify a single simulation. To meet 
the requirements of the simulation study, it must, in 
addition, provide for the specification and monitoring 
of the experimental procedure that is a simulation 
study. 

It is of some interest to note the disparity of these 
requirements. The model of a continuous dynamic 
system is parallel in character; i.e., to solve the first 
order vector differential equation in Equation 2, 

z(t) = f(z(t), t) (2) 

it is necessary to know z(t) to compute f(z(t), t) to 
employ in the process of computing z(t), etc. Descrip
tion of the mathematical model involves the specifica
tion in a problem oriented notation of f(z(t), t) in 
Equation 1. Because this is a parallel model, it is 
clear that this description should be, in general, 
nonprocedural; i.e., it should be independent of the 
order of description. Moreover, the description should 
be in a notation convenient to the discipline in which 
the model originates; i.e., the operators of the language, 
whether blocks or general functions, should be appro
priate for the original level of description of the model. 
The specification of the simulation study procedure is, 
on the other hand, a standard procedural task. For the 
most part it is entirely satisfactory to describe such a 
task with a standard procedural language such as 
Fortran or Algol. In fact, as is discussed in Reference 3, 
one of the major design criteria for the CSSL effort was 
that it resolve these conflicting requirements of non
procedural model representation and procedural task 
specification. 

It is the function of the numerical integration system 
to solve the 'Ordinary differential equations of the model 
and in so doing perform a single simulation in the 
fashion dictated by the conditions and parameters of 
the simulation. The numerical integration system has 
the task of operating on the differential equations that 
describe the parallel model so as to give a reasonable 
approximation to the solution on the serial (sequential) 
digital computer. 

It thus becomes clear from the definitions that the 
simulation language must be concerned with the model 
representation and the simulation study activity while 
the numerical integration system has responsibility 
for the actual mechanics of the simulation (i.e., the 
solution of the model). 

Structure of a simulation 

A discussion of the general structure of a simulation 
of a dynamic system is best approached through a 
specific example of a numerical integration scheme. The 
scheme chosen for presentation here is the Euler 
IVlethod. This scheme has the virtue of illustrating the 
idea without requiring burdensome detail. The working 
hypothesis is that since a simulation is, by definition, a 
solution procedure, the general structure of the con
tinuous system simulation process should be intimately 
related to the general structure of numerical integra
tion. 

Euler integration method 

The object is to integrate Equation 2 from point tn 
to point tn+!' Certainly the simplest, non-trivial result 
is to expand Z(tn+!) in a Taylor Series about z(t~), as in 
Equation 3, and save only the first two terms, as in 
Equation 4. 

( ) (t ) + . (t )( t ) + "( ) (tn+!-tn )2 + ... z tn+l = Z 11 Z n tn+1 -. 11 ,z t7/0 2 (3) 

or 

Zn+l = Zn + kfn (4) 
where: Zn = z(tn ) h = t n+1- tn 

Equation 4 is a satisfactory, but not very ,accurate, 
integration formula known as the Euler Method. Note 
that Equation 4 is an approximation for z(tn+!) which is 
represented exactly in Equation 3, but the terms in
volving the second and higher derivatives are, in. 
general, too unwieldy to calculate. The Euler IVIethod is 
of the prediction (extrapolation) type since it does not 
need any information concerning the derivative func
tion (f) at tn+l to integrate (extrapolate) to tn+!' 

A flow chart of a digital computer program to in-
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FIGURE I-Flow chart of Euler method use 

tegrate Equation 2 employing Equation 4 from to to t, 
in steps h is presented in Figure 1. 

General structure 

Inspection of the flow chart for the use of the Euler 
Method in Figure 1 reveals that certain of the. opera
tions are strictly a function of the particular prediction 
formula employed while others are strictly dependent 
on the model (namely the derivative calculation) and 
still others are strictly a function of the numerical in
tegration task. These latter operations (i.e., updating 
of the independent variable t, testing for completion, 
and routing of control between tasks) are referred to as 
the numerical integration environment. 

Figure 2 presents a general flow chart for a simulation 
of a system with the general mathematical model of 
Equations 5 and 6. 

z(t) = f(z(t), ps (t), x(t» 

yet) = h(z(t), pm (t), x(t» 
z(to) = Zo 

(5) 

(8) 

where (5) is the state equation, 
(8) is the measurement equation, 
z(t) is the state vector, 
ps(t) is the vector of parameters in the state 

variable model, 
x(t) is the vector of system inputs, 
yet) is the vector of measurable system out

puts. 
Pm(t) is the vector of parameters in the mea

surements model, 
Zo is the initial condition vector for z(t). 

The flow chart for the Euler Method in Figure lean, 
with only slight modification, be presented in the more 
general outline of Figure 2. There are several other 
salient features to this organization: 

1. The operations peculiar to the model are isolated 
in a routine that calculates the state variable de
rivatives, f, and in the calculations for the 
measured variables in the system, y. 

2. The initialization operations are isolated from the 
integration operations. 

3. The inputloutput operations are assumed to take 
place at a fixed frequency (II A in simulated time). 
This is reasonable in light of the interpretation 
demands of digital simulation; i.e., printouts and 

Simulation 
Termination 

termina
tion 
logic 

FIGURE 2-General simulation flow chart 

Integration 
Initialization 



Digital Simulation 'Of Continuous Dynamic Systems !l43 

pl'Ots are m'Ore easily read and und~rst'O'Od if in
f'Ormati'On is presented at a fixed interval in the 
independent variable. This interval, d, is kn'Own 
as the communication ~nterval. 

4. The c'Ommunicati'On interval is n'Ot necessarily the 
interval empl'Oyed in the numerical integrati'On 
being perf'Ormed under c'Ontr'Ol 'Of the integrati'On 
system. This 'Other interval, 8, is termed the 
calculation interval; it is n'Ot necessarily c'Onstant, 
but generally is an integral fact'Or 'Of d. The de
tailed design 'Of numerical integrati'On systems is 
n'Ot at issue here. (Reference 6 relates s'Ome 'Of the 
design c'Onsiderati'Ons t'O the general structure 
presented here.) 

5. The terminati'On I'Ogic terminates the simulati'On. 
The c'Ontr'Ol is then passed t'O a c'Ontr'Ol pr'Ogram 
c'Oncerned with attaining the 'Objectives 'Of the 
simulati'On study. This pr'Ogram might d'O n'Othing 
m'Ore than return e'Ontr'Ol t'O the simulati'On entry 
t'O read in new data (zo, pm, P8, x) f'Or an'Other 
simulati'On 'Of the m'Odel, 'Or it might m'Odify pa
rameters in the m'Odel based 'On the results and 
return c'Ontr'Ol f'Or an'Other simulati'On as part 'Of an 
'Optimizati'On alg'Orithm. 

Simulation study structure 

Figure 3 presents a general c'Ontr'Ol fl'OW structure f'Or a 
simulati'On study pr'Ogram. As might be expected fr'Om 
the definiti'On 'Of simulati'On study, this structure c'On
sists'Of a c'Ontr'Olled iterati'On 'Of the fl'OW chart 'Of a 
single simulati'On presented in Figure 2. It is interesting 
t'O n'Ote that the general structure 'Of Figure 3 is n'Ot 
peculiar t'O the digital simulati'On activity; rather any 
c'Ontinu'Ous system simulati'On study (digital, anal'Og, 
andl 'Or hybrid) can be c'Ouched in this structure. 

The'similarity between' Figures 2 and 3 clearly 
emphasizes the relati'Onship between the general struc
ture 'Of a simulati'On study and that 'Of the numerical 
integrati'On pr'Ocess. The relati'Onship 'Of the general 
structure t'O a c'Ontinu'Ous system simulati'On language 
is pr'Ovided by the regi'Ons den'Oted 'On Figure 3 as Ini
tial, Dynamic and Terminal. As is discussed in Refer
ence 3, CSSL pr'Ovides a pr'Ogrammable structure 
capability that enc'Ourages, at the s'Ource pr'Ogram level, 
the descripti'On 'Of acti'Ons t'O be taken by the simulati'On 
study pr'Ogram at the appr'Opriate P'Oint in the c'Ontr'OI 
fl'OW 'Of Figure 3. 

CONCLUSIONS 

The structure 'Of the numerical integrati'On pr'Ocess 
determines the structure 'Of a run time digital c'Omputer 
pr'Ogram f'Or the simulati'On 'Of c'Ontinu'Ous dynamic 
systems. If simulati'On languages are t'O facilitate the 

Simulation Study 

Setup', 

Simulation Setup 

Synchronous 

Action 

Integration 

Simulation 

Termination 

Study 

Termination, 

FIGURE 3-Simulation study control structure 

Initial 

Dynamic 

Terminal 

c'Omplete simulati'On study activity 'On the digital c'Om
puter, they must pr'Ovide appr'Opriate interfaces t'O the 
structure determined by numerical integrati'On and the 
simulati'On study requirements. 
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Mathematics of continuous system simulations 

by DAVID H. BRANDIN 

Informatics Inc. 
Sherman Oaks, California 

INTRODUCTION 

The purpose of this paper is to summarize briefly the 
state-of-the-art in numerical methods applied to simu
lation of continuous dynamic systems. * The principal 
concern is with numerical techniques encountered in 
general simulation problems. Because special purpose 
integration techniques and approximation methods 
which reduce systems of differential equations to sys
tems of algebraic equations are not commonly em
ployed, they are discussed only briefly.2.3.4 

This paper views the state-of-the-art in simulation 
mathematics from the engineer's point of view: What 
are the commonly used methods? Why are they used? 
How do they relate to accuracy, speed, and stability? 
What is their relation to digital simulation languages? 

The problem 

The purpose of a digital computer simulation of 
continuous dynamic systems is to generate the point
by-point solution along'the time axis to a set of simul
taneous differential equations which represent the 
mathematical model. The differential equations may be 
linear, nonlinear, partial, of any order, and mtve 
initial conditions, boundary values, and other con
straints and complexities. However, simple algebraic 
techniques and approximations reduce virtually all 
systems of this type to "a set of simultaneous ordinary 
differential equations of the first order. 5.6 The numerical 
methods employed in the simulation generate the solu
tion of these first order systems. 

The numerical procedures to generate the solutions 
are well known-Runge-Kutta and predictor-corrector 
algorithms. 

The application of these procedures on a digital 
computer presents practical difficulties. The constraints 
of the problem usually necessitate, computationally 

·The definition of a Continuous Dynamic System is presented 
in an earlier paper in this session-Reference 1. 
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efficient and accurate solutions-computationally 
efficient because digital computers are expensive and· 
thousands of runs may have to be made to validate a 
solution or perform a parameter variation study; 
accurate because refined models may be very sensitive 
to small variations in parameter values. Accuracy may 
also be needed to verify an analog computer solution 
or maintain a stable solution. 

Needle,ss to say, these two constraints have the 
unfortunate property that they are mutually contra
dictory. To improve speed (and reduce cost), prac
titioners suggest a minimum of extended precision 
arithmetic, low order integration algorithms, large 
integration step sizes, and "tight" programming. To 
improve accuracy practitioners suggest maximum use 
of extended precision arithmetic, stable, high order 
integration algorithms, and small integration step 
sizes. Numerical techniques for computer simulatiqn 
of continuous sys-aems are therefore bound to compro
mise either economy, accuracy, or both. 

The problem, then is not trivial. Intelligent tradeoffs 
must be made when selecting the mathematical tech
niques. The programmer (or simulation analyst) must 
understand the physical systenl,' the mathematical 
model, and the numerical techniques and their con
straints. 

Mathematical techniques 

Numerical integration 

The numerical. integration techniques commOinly 
encountered are extracted from the Runge-Kutta and 
predictor-corrector families. Most generalized simu
lation programs for a specific range of applications will 
have only one algorithm or one combination (e.g., 
predictor-corrector with a Runge-Kutta starter and 
variable step size) while many simulation languages 
will incorporate a variety of methods.7 .8.9.10 

The Runge-Kutta family is characterized as follows: 
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a) The methods are'self starting and do not require 
previous information, 

b) They require N evaluations of the derivative for 
an Nth order method, 

c) The trl1npation error at each step is proportional 
to hN+1 where h is the integration step size and 
N is the order. 

In contrast, the predictor-corrector family is char
acterized as follows: 

a) The methods are not self starting; they do 
require previous information, 

b) They may iterate the "corrector" until desired 
convergence is reached, ** 

c) They provide an excellent approximation to trun-, 
cation error if the predictor and corrector equa
tions are of the same order, 

d) Previous information must be retained. 

An argument can be made justifying the use of either 
of the families of integration algorithms. The choice is 
dependent on the nature of the systems of equations, 
required accuracy, costs, programming competence, 
etc. Defending the choice of any particular family for 
the general case is questionable since, for any given 
selection, a system of equations can be defined which 
are unsuitable for that method. The selection of a given 
algorithm within a given family is more controversial. 
Frequent selections are fourth order Runge-Kutta or 
Adams (Moulton) predictor-corrector. The Adams 
Family (a 2nd order method is displayed in Figure 1) 
has soine desirable characteristics 'Yith respect to 
efficiency. 11 

If one assumes fourth order algorithms and a fixed 
step size, then predictor-correctors (without repeated 
corrector iterations) require half the derivative eval
uations as the Runge-Kutta method. In this case, 
predictor-correctors are presumed to be two times 
faster than Runge-Kutta methods. Unfortunately, 
nothing in simulation is this simple, as the next section 
illustrates. 

It should be noted that the predictor-corrector algo
rithms require starting values which are usually pro
vided by Runge-'Kutta formulae. The incorporation of 
a variable step size and Runge-Kutta equations inevi
tably compounds the programming problems and makes 
it more difficult to demonstrate explicitly the superior
ity of one technique over the other. 

It is interesting to note that a large class of second 
order differential equations commonly encountered 
in physical problems can be solved explicitly with 

UN umerical integration subroutines are rarely programmed to 
perform repeated iterations of the corrector. See later section. 

GIVEN Y = dY f (t, Y) dt = 

yep) h 
(3 

. 
YN- I ) N+l = YN + '2 YN 

• (p) 
YN+1 = 

y(c) = 
N+l 

f(tN + h, y (p» 
N+l 

Re-iterate Corrector or Y 
N+I 

(c) 

= YN+1 

FIGURE 1-8econd order Adams predictor-corrector formulae 

Jtunge-Kutta formulae. These equations are of the 
form: 

y = f(t, y). 

Curiously, the techniques are described in the 
common literature12 however they are rarely used. A 
third order method is displayed in Figure 2. 

Variable step size 

The predictor-corrector algorithms provide an esti
mate of truncation error which is superior to estimates 
of the error in Runge-Kutta algorithms. If Y i (p) 

denotes a predicted point in the solution of the i-th 
equation and Y i (c) denotes the corrected point in the 
i-th solution, the truncation error Ei is given by 

where K depends on the specific predictor-corrector 
algorithm. With information of this type, it is common 
to vary the integration step size to take advantage of 
small truncation errors. One usually computes 

E = max IY·(p) _ Y·(c)1 i . i I 
{ \

y.(P) _ y.(c) } 

i ~ ., y,oo 

where either the absolute or relative error for each 
equation is computed based upon certain criteria, e.g., 
the magnitude IYi(CJI. Variable weight factors may be 
assigned to each error in order to vary its influence 
on the step size. Unfortunately, knowledge concerning 
th6 selection of the weight factors is usually limited and 
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Given f (t, y) 

= f (t , Y ) n n 

FIGURE 2-Runge-Kutta formulae for a class of 
second order equations 

they are frequently all set to the same value. The 
step size is commonly varied as follows: 

If E < E s, double the step size; 
If E > E z, halve the step size and restart the inte

grations; 
If Es :::; E :::; El the step size remains unchanged. * 

The problems encountered with this technique are 
due to the substantial variation in E from step to step, 
resulting in subsequent halving and doubling of the 
interval. This generates a large number of integration 
restarts, many iterations (frequently Runge-Kutta 
passes or backwards interpolations) to generate the 
required starting conditions, and a consequential loss 
in speed which the variable step size was intended to 
improve. Meaningful values of Es and El are therefore 
necessary if the benefits of a variable step predictor
corrector algorithm are to be reaped. Although it is 
not possible to define general values for El and E s, it 
is generally agreed that they should satisfy the rela
tionship: 

20 :::; ~: :::; 100 

The reader can conclude, therefore, that predictor-

*Some programs always halve or double the step size at each 
step.7 

corrector algorithms with variable steps are not uncon
ditionally faster than Runge-Kutta techniques of the 
same order. Based upon this conclusion, many people 
select a Runge-Kutta algorithm with fixed step size 
(usually fourth order) and assume that no improve
ments in running time can be obtained. 

Runge-Kutta algorithms are also used with variable 
steps. These techniques may employ two methods of 
different order and compare results at the comp letion of 
the full integration step. Another method is to integrate 
with the same algorithm but employing two different 
step sizes. Intermediate points in the solution common 
to both methods can be used by both algorithms to 
conserve running time.7 Other methods integrate in 
blocks of N steps utilizing information within each 
block. Ah:;o, by analyzing the behavior of the solution 
over N steps, estimates of the accuracy can be derived 
which compare in reliability with those for predictor
corrector methods. L3 

A commonly made suggestion encountered is to 
integrate different differential equations in the mathe
matical model with different integration step sizes. 
This technique is most commonly employed in hybrid 
calculations. Multirate integration techniques require 
good knowledge of the frequencies present in the mathe
matical model. If such a technique is implemented, the 
integration routines do become quite complirl,ted. 
Canned simulation programs and simulation languages 
rarely incorporate multirate integration algorithms 
although their use is becoming more popular .14 

Truncation and roundoff error 

We all realize that it is theoretically possible to re
duce the integration truncation error to zero at each 
step by driving the integration step size to zero. On a 
digital computer, however, this is impractical since the 
roundoff error will grow rapidly as the step size is de
creased. The general relationship between roulldoff and 
truncation error is illustrated in Figure 3. More exact 
curves can be drawn for specific algorithms. The error 
graphed in Figure 3 represents the error at each step. 
Clearly, the most desirable step size isone which will 
reduce the total error; that step size is somewhere in 
the vicinity of hM. The exact value of hM will depend 
on the specific shapes of the curves.1S 

Most analyses are directed at studies of truncation 
errors since these. are far easier to investigate than 
roundoff errors. However, for problems with wide 
dynamic ranges of the independent and depe,n,dent 
variable, roundoff error may actually dominate the 
solution. In this event, arbitrarily decreasing the step 
size only compounds the error. In addition, the round
off error may confuse the step size variation criteria and 
results may then become meaningless. 
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ER - Roundoff Error 

ET - Truncation Error 

FIGURE 3-Roundoff and truncation error 

A decrease in roundoff error can always be achieved 
by implementing extended precision arithmetic opera
tions (e.g., double precision floating point arithmetic). 
If a variable step size is implemented it is not necessarily 
true that double precis~on computations will be slower. 
If the step size does not increase in a double precision 
solution when compared to single precision it may 
indicate that previous results were incorrect.16 Double 
precision arithmetic does utilize twice as much storage 
for data as single precision, and "half double precision" 
techniques are frequently implemented to conserve 
storage. 

"Half double precision" techniques accumulate the 
integral asa double precision sum but convert the 
results to single precision before transmitting them to 
the simulation equations. This eliminates much of the 
roundoff error in the integration algorithms; however, 
roundoff error in the equations of the mathematical 
model may be severe. An interesting modification to 
this technique is illustrated in Figure 4. This tech
nique restarts the integrator, along with a suitable 
readjustment of the initial conditions, whenever the 
increment added to the integral b,ecomes small enough 
to border on the arithmetic limitations of the machine. 

Sampling considerations 

The selection of the integration step size, error 

t 

S(t) = s + It Sdt 
o 0 

S Represents State Variables 

Accumulated in Double Precision 

MODIFICATION 

t . 

It Sdt 

If o > K then . 
st,t 

FIGURE 4-Half-double precision integration and modification 

limits, and other integration parameters is an art 
bordering on black magic. Great care must be taken to 
account properly for high frequency effects in the 
mathematical model. The Shannon17 sampling theorem 
does not automatically apply to digital simulations· 
Shannon's theorem states that a function can be ac
curately reproduced if it is sampled from negative 
infinity to positive infinity with a frequency twice the 
highest frequency present in the function. The infinite 
range of the independent variable is impractical on a 
digital computer and rates of ten to one hundred times 
the highest frequency present are often' necessary in 
closed loop simulations. Sampling rat~s of one hundred 
times the highest frequency may not seem severe in 
many applications, but this can be misleading. 

Consider a digital simulation of a space vehicle in 
which the entire control system is simulated at the 
transfer function level. The highest frequency present 
in the vehicle may only be 5 cycles per second, however 
time constants in the control system components may 
be very small.9 This is illustrated in Figure 5. In this 
event, the step size must conform to the requirements 
for the smallest time constant present in the model
even though its effect on the vehicle may be negligible. 
This is one example in which weight factors applied to 
the integration error control are invaluable. 

Stability 

The stability of the integration algorithm must also 
be considered when selecting the algorithm and param
eters. Generally speaking, an integration method is 
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FIGURE 5-Relation of Gross system behavior to high frequency 
components in mathE'matical model 

said to be stable if the error introduced at each step 
decreases with increasing number of steps. It is said to 
be relatively stable if the error introduced at each step 
grows more slowly than the solution. I8 The stability of 
the solution is a function of the integration step size, 
the algorithms, and the time constants of the math
ematical model. 

In general, relative stability is the significant criteria 
in the numerical solution of differential equations.19 

Although predictor equations may often be unstable, 
one usually chooses correctors which are stable. In 
this event, the instability of the predictor has little 
effect, and, if the corrector is iterated, the predictor's 
instability is irrelevant. Curiously it is generally more 
desirable to decrease the step size tnan to perform 
repeated iterations of the corrector.19 

Real time? 

The speed of the simulation is a critical factor. One 
often hears demands for (or claims of) "real time" 
speeds or "faster than real time" speeds. These speeds 
are certainly feasible in many applications, and, in 
fact, many hybrid computer simulations actually de
pend upon these speeds. However, it appears that many 
people assume categorically that they can obtain real 
time speeds in virtually every digital simulation they 
perform. Examples are given, results cited, and general-

ized programs are frequently demonstrated with real 
time speeds. 

The speed of the simulation cannot be estimated 
until the natural frequency of the models are deter
mined, integration algorithms selected, stability prop
erties are studied, and intelligent decisions concerning 
the step size are made. 

The detail of the mathematical model is also sig
nificant. Detailed models are certainly more difficult 
to simulate in real time than less detailed configura
tions . 

The trap that many people fall into is characterized 
by "The Real Time Syndrome." Briefly, the Syndrome 
states: "It can be shown that any system can be sim
ulated in real time with a suitable number of significant. 
simplifications." The truth of this statement is self
evident .and should be considered when·making requests 
for, or claims of, real time speeds in a simulation. 

M athematic8 in simulation languages 

Numerical techniques embedded in most simulation 
languages generally conform to the techniques described 
in earlier sections, i.e., algorithms drawn from the 
Runge-Kutta and predictor-corrector families. Earlier 
languages used simple algorithms ;20 ,21 ,22 however the 
current languages generally use algorithms of at least 
fourth order.7 ,8,14 See, for example, Figure 6. 

Simulation languages are usually enhanced by the 
inclusion of "canned" mathematical functions in addi
tion to the integration routines. They include such 
things as transfer function blocks representing a variety 
of circuits, blocks representing nonlinearities such as 
dead zones, transport delays, etc.14,23 See Figure 7. 
Implicit algebraic.loops present in the model equations 
are not allowed in the use of simulation languages and 
the languages usually incorporate iterative and binary 
search techniques which enable the user to obtain the 
necessary algebraic solutions. 

LANGUAGE ALGORITHM VARIABLE STEP 

DAS RECTANGULAR NO 

MIDAS 5TH ORDER MILNE PRE- YES 
DICTOR CORRECTOR 

MIMIC FOURTH ORDER RUNGE YES 
KUTTA 

HSL VARIETY AVAILABLE ADAMS YES 
AND 4TH ORDER RUNGE 
KUTTA RECOMMENDED 

CSMP 7 AVAILABLE YES 

CSSL VARIETY RECOMMENDED YES 
(RECOMMENDED) 

FIGURE 6-8oine numerical integration algorithms 
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LANGUAGE FUNCTION EQUATION 

... 

DAB BANG-BANG 0 = 1121s1gn 11 

MIMIC DERIVATIVE 0 
d12 0(0)=13 = d1 ' 1 

DSL/90 DELAY e-:-1 ,s 

HSL FIRST ORDER 11 + 12S 
TRANSFER FTN. 

13 + 14S 

CSMP/360 2ND-ORDER 1 

CSSL 

LAG-COMPLEX 2. . 2 S +211128+12S 

IMPLICIT BREAKS SORT LOOPS 
o = IMPL"(11 ,12) 

FIGURE 7-.-Some mathematical functions of 
simulation languages 

The simultaneous nature of the differential equa
tions describing continuous dynamic systems creates a 
burden on the integration systems design in simulation 
languages. Because the digital computer is a sedal 
processor, it is necessary to construct an integration 
package to integrate all of the differential equations in 
a parallel manner. This is accomplished by using a 
centralized routine which integrates each derivative 
serially but holds the value of each integral until all 
integrals at a given time step are ev.aluated. Once all 
the integrals are evaluated, they are "simultaneously" 
updated, the independent variable is advanced, and 
the solution continues. 

The problem of parallel integration can best be 
explained by an example. Consider the system of two 
simultaneous differential equations: 

y = f(t,y,z) 

Z= g(t,z,y) 

The numerical solution at t + At is obtained by using 
some integration algorithm to evaluate 

yet) = f(t,y(t), z(t)) 

j t+dt 

yet + At) = yet) + t yet) dt 

z(t) = g(t,z(t), yet)) 

I
t+dt 

z(t + At) = z(t) + t z(t) dt. 

The problem appears in the evaluation of 

z(t) = g(t,z(t), yet)) 

If yet) is a specific storage location (usually the first 
location of an array) the value used in the calculation 
of the derivative z(t) cannot be the result of the integral 
since this represents the value y(t+At), not y(t\ The 
centralized integration subroutine, referenced in the 
DERIVATIVE section of a simulation language source 
program, will update all of the solutions in paralle1.24 

See Figure 8. 
An alternative method employed in some programs23 

is to start each computational pass by evaluating all 
of the integrals. This advances the solution of the 
state variables to the next point in time. It is then 
necessary to compute the derivatives of the state vari
ables for the given point in time. 

Using either technique, the parallel nature of the 
problem creates programming complications. Arrays 

r==~=1--~---I EVALUATE DERIVATIVES 
AND INTEGRALS 

~ - COMMUNICATIONS INTERVAL 

b - CALCULATION INTERVAL 

FIGURE 8-Integration systems design 
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THESE VALUES SHIFT 
DOWN ONE POSITIO~ 

MOST RECENT INTEGRAL 

Yi - l 

Yi - 2 

Yi - 3 

Yi - 4 

Yi - N 

Yi 

-"" 

U
TO 

DISCARDED 

TOP OF TABLE 

Y
i 

indicates value of the solution calculated on the 

i-th pass. The integration routine places Yi at the 

bottom of the table until time is advanced. During 

the UPDA~ phase the value is moved to the top of the 

table. 

FIGURE 9-Update table 

used to store current and past solutions are in a constant 
state of fluctuation. The buffers used to store the 
integrals temporarily also are used for retaining pre
vious information describing the solution for the 
predictor-corrector algorithms, and for storing inter
mediate points in the Runge-Kutta techniques. The 
number of locations occupied by each of the arrays is 
a function of the order of the integration algorithm. 
Buffers are required for both the derivative and solu
tion values. 

Figure 9 illustrates a typical "UPDATE TABLE."25 
The table is originally filled with Runge-Kutta values 
and then maintained by a predictor-corrector algorithm. 
Sufficient points are usually maintained to continue 
integrating if the step size is increased without requiring 
a Runge-Kutta restart. 

SUMMARY 

Mathematical techniques embedded in simulation 
applications cover virtually the entire mathematical 
spectrum from numerical analysis through classical 
analysis to algebra and the theory of numbers. It is 
clearly impossible to address all of these topics in a 
single paper, however this paper summarizes the common 
mathematical questions encountered in most general 
simulations. Special techniques, such as those dis-

cussed in the introduction, and others, for example 
discretization of continuous systems into sampled data 
systems using z transforms, adaptive filters, etc~,26 are 
not commonly employed in simulation applications 
and almost never in simulation languages. 

Selection of languages, integration algorithms, single 
or double precision, sampling rates and integration 
parameters are all perplexing problems at present, 
but these are the questions the engineer must address 
prior to simulation of a continuous dynamic system on 
a digital computer. Although a substantial amount of 
work is being done to attack these problems, it is the 
author's prediction that effective elimination of these 
numerical problems will come about sooner by the devel
opment of improved hardware than by the develop
ment of improved analytical and computational 
techniques. 
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SALEM-A programming system for the simulation of 
systems described by partial differential equations 

bySTANLEYM. MORRIS a.nd WILLIAME. SCHIESSER 

Lehigh U niver8ity 
Bethlehem, Pennsylvania 

INTRODUCTION 

Digital simulation has attained a broad and enthusiastic 
usage in recent years, due largely to the increased speed 
and flexibility of digital computer hardware and the 
notable efforts of the authors of simulation programs 
such as MIMIC,! DSL-90,2 PACTOLUS,3 and many 
others. All of these programs perform basically a single 
task: they solve a system of ordinary differential equa
tions of the initial value type. Indeed, the expression 
"digital simulation of continUOll.8 systems" has become 
synonymous with this definition. 

Users of these programs can study complex physical 
processes with little knowledge of computer program
ming or numerical analysis. Logically, they are never 
far removed from the differential equations, but they 
have all of the capability of the digital computer at their 
disposal. 

SALEM extends these concepts to partial differential 
equations, which always arise in the mathematical 
modeling of distributed parameter systems. Most 
physical systems are of the distributed type; that is, the 
dependent variables are functions of more than one 
independent variable. The ordinary differential equa
tions commonly encountered in mathematical models 
are usually simplifications of the partial differential 
equations whjch actually describe the system. 

A partial differential equation (PDE) simulator 
would enable a user to investigate distributed systems 
with the ease that he may presently investigate a dis
crete or ordinary differential equation (ODE) system. 
The problems involved in actually writing a PDE simu
lator, however, are far more complex and varied than 
those involved in an ODE simulator. There is no one 
universal method for numerically solving all the PDE's 
commonly found in engineering problems. Each 
different problem may require a unique method, a pos
sibility commonly attested to by authors of standard 
texts in the field. 

Therefore, SALE~VI is organized into two parts: an 
executive program capable of translating user-generated 
descriptions of partial differential equations into data 
usuable by a computer, and a library of calculation rou
tines which produce the solution. 

SALEM input format 

Every attempt has been made to allow a free-form 
algebraic input format. If we are interested in the so
lution to the equation: 

2a2c/ax2 - ac/at + 1/2C = 1 

we would program it as: 

(2.0)*D2(C, X) - Dl(C, T) + (0.5)*C = 1.0 

Note that D2(C,X) refers to the second derivative of C 
with respect to X. The coefficients may also be algebraic 
expressions or functions, expressed in Fortran notation. 

a2c/aR2 + (2.0/R)aC/aR - ac/at = 0 

D2(C, R) + (2.0/R)*Dl(C, R) - D1(C, T) = 0 

Initial and/or boundary conditions are expressed in an 
analogous fashion. 

ac / ax + C = 1, x = 0 

B0UNDARY C0NDITI0N, Dl(C, X) + c 
1.0, X = 0.0 

C = 1.5, t = 0 (t is time) 

INITIAL C0NDITI0N, C = 1.5, T = 0.0 

There are other statements which define (1) the 
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values of the independent variables for which the so
lution is calculated and pr:nted out, (2) the desired 
stopping point for open-ended equations, and (3) spe
cial statements which allow the calculation of complex 
equation coefficients. 

Table 1 lists the type~ of equations which can pres
ently be solved by SALEM, along with allowable 
boundary and initial conditions; 

Sample problem 

A simple sample problem will serve to illustrate the 
procedure involved in obtaining a solution to a PDE. 
Figure 1 illustrates a steel sheet which is initially at a 
uniform temperature of 100°. Two opposite sides are 
insulated, and the other two sides are suddenly raised to 
2000K. The following data can be used: 

k = 25.6 Btu/hr ft°F (thermal conductivity) 

D == 450 Ib/ft3 (density) 

The dimensions of the sheet are 1 ft X 1.2 ft, with the 
short sides being maintained at 200°. We will consider 
two cases: 

Cp = 5.145 Btu/lboF (average heat capacity) 
Cp = 3.37 + 0.0071(T) (temperature-dependent 

heat capacity) 
k/DCp(a2T/ax2 + a2Tjc1y2) - aT/at = 0 

aT / ax = 0., x = 0 
aT/ax = 0., x =1.0 

T = 200., y = 0 
T = 200., y = 01.2 
T = 100., t = 0 

The equation would· be linear for case 1 and non
linear for case 2. 

The SALEM input listing for case 1 is shown in 
. Figure 2. Card # 1 is the partial differential eGuation, 
where.T is temperature and TM is time. Cards 2-6 
specify the boundary and initial conditions. Card # 7 
sp.ecifies the print interval for each independent vari
able; X=.2 means that temperatures are to be calcu
lated at X = 0, .2, .4, .6, .8, and 1.0; Y = .. 2 means that 
temperatures are to be calculated at y = 0, .2, .4, .6, .8, 
1.0, and 1.2 for each value of x. This specifies a grid of 
6 X 7 = 42 points. TM = .1 specifies a complete solution 
for each time unit of 0.1. Card # 8 indicates that the 
PDE is parabolic. Card # 9 specifies the final value of 
time for which a solution is to be produced. Card # 10 
indicates the calculation program which is to be used to 
solve this PDE; the number is obtained from a stand
ard library list. 

Figure 3 shows the SALEM-produced solution at 

1.2 Ft. 

r ~1:4 __ x __ 2000 1 Ft. 

FIGURE I-Steel sheet 

SALEM input list 

1. (.62)*D2(T,X) + (.62)*D2(T,Y) - Dl(T,TM) =0 
2. BOUNDARY CONDITION, Dl(T,X) = 0., X = O. 
3. BOUNDARY CONDITION, Dl(T,X) = 0., X = 1. 
4. BOUNDARY CONDITION,T = 200., Y = O. 
5. BOUNDARY CONDITION, T = 200., Y = 1.2 
6. INITIAL CONDITION, T = 100., TM = O. 
7. PRINT INTERVAL, X = .2, Y = .2, TM = .1 
8. TYPE PARABOLIC 
9. SOLUTION END, TM = .2 

10. USE SUBROUTINE NUMBER 20 
11. END 

FIGURE 2-SALEM input list-case 1 

SALEM solution for TM = O. 
. ... X .... 

0 .2 .4 .6 .8 1.0 
Y = 0 150.0 150.0 150.0 150.0 150.0 150.0 
Y =.2 100.0 100.0 100.0 100.0 100.0 100.0 
Y=.4 100.0 100.0 100.0 100.0 100.0 100.0 
Y =.6 100.0 100.0 100.0 100.0 100.0 100.0 
Y =.8 100.0 100.0 100.0 100.0 100.0 100.0 
Y = 1.0 100.0 100.0 100.0 100.0 100.0 100.0 
Y = 1.2 150.0 150.0 150.0 150.0 150.0 150.0 

SALEM SOLUTION FOR TM = .2 
.... X .... 

0 .2 .4 .6 .8 1.0 
Y = 0 200.0 200.0 200.0 200.0 200.0 200.0 
Y =.2 173.0 173.0 173.0 173.0 173.0 173.0· 
Y=.4 152.7 152.7 152.7 152.7 152.7 152.7 
Y =.6 145.8 145.8 145.8 145.8 145.8 145.8 
Y = .8 152.7 152.7 152.7 152.7 152.7 152.7 
Y = 1.0 173.0 173.0 173.0 173.0 173;0 173.0 
Y = 1.2 200.0 200.0 200.0 200.0 200.0 200.0 

FIGURE 3-SALEM solution-case 1 



time t = 0 and .2. The solution at t = 0 provides a 
check on the initial conditions. Note that the tempera
ture gradient is zero in the y-direction; this is expected 
because of the perfect insulation at x = 0 and x = 1. . 

Figure 4 shows the SALEM input listing for case 2. 
Note that the constant 0.62 has been replaced by the 
variable A in the equation coefficients. A is defined in 
card 11, a special ARITH statement. The remainder of 
the listing is identical to case 1, with the exception of 
the subroutine (card 10). 20N refers to the nonlinear 
version of subroutine # 20. Figure 5' shows the SALEl\;'(
produced solution for case 2. 

Table I -Glasses of equations presently'solved by SALEM 

One dimensional parabolic 

ala2C/aX2 + a2aC/ax - asaC/at + a4C = a6 

One dimensional hyperbolic: 

a la2C/ax2 - a2a2C/at2 = as 

Two dimensional parabolic 

a2a2C/ax2 + a2a2C/ay + asaC/ax 
- a4aC/at + a6C = a6 

elliptic: 

ala~C/ax2 + a 2a2C/ay2 + asaC/ax + a4C = a6 

The coefficients can be zero, constant, or functions 
of any dependent or independent variable. This means 
that nonlinearities of the form f(C)aC/ay are allowed. 
Arowable boundary and initial condit ons: 

alaC/ax + a 2C = as, x = a4 

ai, a2, and as can ·be zero, constant, or functions of the 
independent variable. a4 must be zero or constant. 

Rectangular, cylindrical} and spher "al coordinate 
systems may be used. 

SALEM input 

1. (A)*D2(T,X) + (A)*D2(T,Y) - D1(T,TM) = o. 
2. BOUNDARY CONDITION, D1(T,X) = 0., X = O. 
3. BOUNDARY CONDITION, D1(T,X) = 0., X = 1. 
4. BOUNDARY CONDITION, T = 200., Y = O. 
5. BOUNDARY CONDITION, T = 200., Y = 1.2 
6. INITIAL CONDITION, T = 100., TM = O. 
7. PRINT INTERVAL, X = .2, Y = .2, TM = .1 
8. TYPE PARABOLIC 
9. SOLUTION END, TM = .2 

10. USE SUBROUTINE NUMBER 20N 
11. ARITH, A = 3.19/(3.37 + .0071 *T) 
12. END 

FIGURE 4-SALEM input list-case 2 
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SALEM solution for TM = .2 
.... X .... 

0 .2 .4 .6 .8 1.0 
Y = O. 200.0 200.0 200.0 200.0 200.0 200.0 
Y =.2 176.7 176.7 176.7 176.7 176.7 176.7 
Y=.4 159.7 159.7 159.7 159.7 159.7 159.7 
Y =.6 153.6 153.6 153.6 153.6 153.6 153.6 
Y =.8 159.7 159.7 159.7 159.7 159.7 159.7 
Y = 1.0 176.7 176.7 176.7 176.7 176.7 176.7 
Y = 1.2 200.0 200.0 200.0 200.0 200.0 200.0 

FIGURE 5--SALEM solution-case 2 

SALEM also possesses a full complement of error 
diagnostics to facilitate usage. Errors in problem for
mulation and programming, and problems encountered 
in the numerical solution (i.e., instability and con
vergence failure) automatically terminate the exe
cution. An explanatory comment is provided for the 
user. 

Methods used in calculation programs 

A brief description of calculation techniques will be 
given. Every effort was made to use simple, general 
methods in developing the library ·of subroutines, both 
to gurantee convergence and for programming simplic
ity. As a first example, we will consider the method 
used to solve the equation: 

(1) 

a2c/ax2 is replaced with a second order central 
difference representation, and ac/ax is replaced with a 
first order backward difference representation. 

a2c/ax2 = (Cr+l,8+1-2Cr,8+1+Cr-I,8+1)/h2 + 0(h2) 
ac/at = (Cr,8+1-Cr,s)/k + O(k) 

r refers to x, s refers to t 

Substituting these representations into equation (1), 
we obtain the following implicit finite difference 
equation: 

B Cr+1,s+1- (2B + l)Cr,s+l+B Cr- 1,B+1=Cr,8+F' 
B = a1k/a2h2 

F' = Fk/a2 (2) 

If we had nonderivative boundary conditions: 

C = as, x = 0 
C = a4, x = 1 
C = a6, t = 0 

we could write equation (2) for each internal mesh point 
Cr,s+1 0< r < 1. If there are N internal mesh points, 
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this will result in N equations in N unknowns. The set of 
equations is tridiagonal and can be solved explicitly by 
the method of Thomas. 4 This procedure is repeated for 
each time step. 

If we have the general boundary condition: 

we can replace the derivative'term with a second-order 
difference representation: 

(3) 

In this case, we do not directly know the boundary 
value, so we must write equation (2) for each mesh 
point, including boundary points. But this requires 
knowledge of the value of points outside the boundary. 
These can be calculated from equation (3): 

Therefore, for each time increment, we will have 
N +2 tridiagonal equation in N +2 unknowns, which 
can be solved by the method of Thomas. 

Finally, to increase the speed and accuracy of the 
calculated solution, we use truncation error correction 
(often referred to as the "deferred approach to the 
limit"). Examining the error due to replacing the time 
derivative with a finite difference representation, we 
can write: 

calculated answer + truncation error 
= actual answer (4) 

We can estimate the truncation error in the time 
direction from Taylor series: 

k a2c 
truncation error = '2 at2 (1/) to:::; 1/ ~ to + k 

Arbitrarily let k, the step size in the time direction, 
equal one. 

1 a2c 
truncation error (k = 1) = - - (1/) 

2 at2 

For k = 2: 

2 a2C 
truncation error (k = 2) - ('11') - '2 at2 ., 

(5) 

(6) 

From (4), (5), and (6) we can develop two more 
equations: 

calculated answer (k = 1) 
+ truncation error (k = 1) 

= calculated answer (k = 2) 
+ truncation error (k = 2) 

truncation error (k = 1) 1 a2C(1/)jat2 

truncation error (k = 2) = 2 a2C(1/')jat2 

(7) 

(8) 

If the calculated answers for k = 1 and k = 2 are 
sufficiently close, then a2C(1/)jat2 = a2C(1/')/at2, and 
combining (6) and (7): 

calculated answer (k = 1) 
- calculated answer (k = 2) 
= truncation error (k = 1) 

This leads to a powerful solution technique: 

1. Calculate the solution using the time and distance 
intervals specified by the user. 

2. Halve the time interval, and recalculate the solu
tion using two time steps. 

3. If the solution from step 1 and step 2 differ by at 
most a specified error, proceed to step 4; other
wise, halve the time step again and repeat. 

4. Calculate the truncation error and add this to the 
most recently calculated solution to obtain the 
final answer. 

By an analogous procedure, we can estimate the trun
cation introduced by replacing the x-derivative with 
the second-order finite difference representation 

truncation error (h = 1) 
= [calculated answer (h = 1) 

- calculated answer (h = 2)1/3. 

A study has been made to determine the efficiency of 
this procedure relative to the same procedure without 
truncation error correction. The following problem was 
used: 

2a~v jax2 - av jat = 0 
V = 0, t = 0 
V = t, x = -2 
V = t, x = 2 

We desire a solution for five time steps of ~t = .1. 
Several runs were made with ~x = 0.8, one with trunca
tion error correction, and several with no truncation 
error correction, at decreasing values of ~t. The calcu
lated answers at t = .. 5 are tabulated for x = - 1.2 and 
-.4 in Table 2. 

After expending three times as much computation 
time as the version with truncation error, the answer is 
still in error by 5%, compared to 0.3% for the corrected 



Table II -Truncation error correction rtudy 

Results IBM 360/30 

-1.2 -.4 
Calculation 

x= x= time, sec. 

Exact solution .1875 .0696 
Salem with 
truncation error 
correction .1876 .0698 11 
Salem without 
truncation error 
correction 

At = .1 .2016 .0904 2 
At = '.05 .1955 .0816 3 
At = .025 .1924 .0770 5 
At = .0125 .1908 .0746 9 
At == .003125 .1896 .0728 36 

solution. Even if At were much smaller, a 3% error 
would exist, due to the truncation error in the x direc
tion. Reducing the mesh size to Ax = .4 and retaining 
At = .003125 reduced the error to less than 1 %, but the 
solution time was 144 seconds, or 13 times as long as the 
method with truncation error correction. For long, com
plex problems this advantage could be enormous. 

All one-dimensional parabolic and hyperbolic PDE's 
are solved using variations of the above techniques. 
Two-dimensional parabolic and elliptic equations are 
solved using the Peaceman-Rachford method, which is 
documented elsewhere. In general, the method is an 
alternating-direction technique which results in sets of 
tridiagonal equations. The truncation error correction 
technique has been adapted to the Peaceman-Rachford 
equations, and has resulted in increased speed of solu
tion while maintaining a given accuracy. 

SUMMARY 

SALEM is more than Just a programming system for, 
the automated solution of PDE~s. It is a flexible simula
tion language with many user-oriented programming 
features. It is also modular in con.struction so that once 
a numerical technique is sucessfully developed for a 
particular type of PDE, a subroutine implementing the 
numerical algorithm can easily be added to the system. 
Hopefully the library of subroutines will be expanded 
and shared by the users, thereby reducing the duplica
tion of effort in the development of numerical methods 
for the solution of PDE's. 

Future research 

Development of SALEM is continuing at Lehigh 
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University. Emphasis is being placed on the following 
areas, which currently limit the applicability of 
SALEM: 

• Irregular geometries. 
• First order flow equations, where convection 

terms are more important than diffusion terms. 
• Coupled partial differential equations. 
It- Nonlinear boundary conditions. 

• Nonlinear terms of the form~(D(C)oC/ox) and ox 
!x(D(C)C) 

As of this writing, these additional features are being 
incorporated; and the program will be withheld until 
the changes are complete. The authors will publish 
papers relating to applications of SALEM in the near 
future, and these will demonstrate how simply a novice 
can use the system. 

More information concerning SALEM is. available in 
reference 6, or by contacting: 

or: 

S.M. Morris 
Esso Research and Engineering Co. 
P.O. Box 101 
Florham Park, New Jersey 07932 
Phone: 201-474-6379 

W. E. Schiesser 
pepartment of Chemical Engineering 
Lehigh University 
Bethlehem, Pennsylvania 18015 
Phone: 215-867-5071, ext. 229 
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TAF-A steady state, frequency response, and 
time response simulation programt 

by THOMAS E. SPRINGER and OTIS A. FARMER 

University oj California 
Los Alamos, New Mexico 

INTRODUCTION 

For over a decade, engineers have used the analog com
puter to simulate systems, models of which could be 
repres'ented by groups of nonlinear simultaneous first
order differential equations. As the digital computer 
became more prominent, it was often used to cross 
check, to set up, and to solve problems run on the ana
log computer. Many- digital codes were developed to 
complement, check out, and even replace the analog 
computer. Codes such as DAS, MIDAS, PARTNER, 
DYSAC, MIMIC, DSL/90 i and others came into wide 
use, and some of the reasons for their development have 
been ably reviewed by Brennan and Linebarger* and 
later by Clancy and Fineberg. ** 

Nuclear rocket engine development at the Los 
Alamos Scientific Laboratory led to use of digital com
puter programs in conjunction with analog computer 
programs. The equations solved were those representing 
the propellant system, the heat exchanger, the reactor 
kinetics, and the controls of nuclear rocket engines 
tested at the Nuclear Rocket Development Station in 
Nevada. The analog computer simulation was checked 
by means of a digital' computer. Originally this was 
done by programming and solving digitally, first, the 
steady-state equations representing the system and, 
second, the linearized, La Place transformed differen
tial equations representing the system. The steady
state results from the first code and the transfer func-

*Work perlormed under the auspices of the U.S. Atomic Energy 
Commission. 

*R. D. Brennan and R. N. Linebarger, "A Survey of Digital 
Simulation: Digital Analog Simulation Programs," Simulation, 
Vol. 3, No.6, (December, 1964). 

**J. J. Clancy and M. S. Fineberg, "Digital Simulation Lan
guages: A Critique and Guide," Fall 1965 Joint Computer Confer
ence, Vol. 27, Part I, Spartan Books, Inc. (1965) 

tions from the second code were checked with results 
from the analog computer, and corrections were made 
until both computer results agreed. The first code re
quired solving a set of non-linear algebraic equations 
usually by iteration. The second code required solving ~ 
complex matrix at each frequency for which the transfer 
functions were to be evaluated. It soon became desirable 
to obtain time solutions on the digital computer. To do 
this, the derivatives of the system were defined the 
initial conditions were obtained by solving the 'non
linear steady-stat~ equations, and the equations were 
integrated by using a fourth-order Runge-Kutta digital 
integration method. Most of the various subsystem 
studies involved programming three separate codes as 
well as linearizing and LaPlace' transforming by hand 
the equations. 

Of the three classes of digital solutions--steady state, 
frequency response, and time response- the last was the 
easiest to' program. It was only necessary to define the 
derivatives of the system in any order, and to integrate 
the derivatives with the Runge-Kutta subroutine. 
However, the programming of FORTRAN formats and 
of read-and-write statements for defining input-output 
data remained a necessary chore for all three classes of 
solutions. 

As the number of problems increased, so did the need 
for a flexible digital code that would quickly solve for 
steady state, frequency response,and time response. 
The only information needed to obtain these three 
classes of digital solutions are the derivatives of the sys
tem and their inputs. This led to the development of 
the TAF (Time and Frequency) code in which the 
derivatives of the system are defined in one FORTRAN 
subroutine called DER; the variables are identified, and 
certain preliminary calculations are performed in a 
second user-written subroutine called INPUT. The 
TAF code reads input data; finds steady state, transfer 
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functions, and time response; and lists or plots on micro
film the outputs. 

The digital codes mentioned earlier (DAS, MIDAS, 
etc.) that simulate the analog computer do not compute 
transfer functions (unless a sine wave is fed into the sys
tem) and must integrate to find a steady-state solution. 
However, many of these codes do not require an under
standing of digital computation. The user, as a rule, 
only defines the analog computer elements and all the 
inputs to these elements. For an engineer unacquainted 
with digital coding but familiar with analog computing, 
this offers an immediate advantage over the TAF code, 
which requires some knowledge of FORTRAN. How
ever, in defining a problem, the user must first describe 
the system in differential equations. If these are partial 
differential equations and if techniques are to be used 
that only allow ordinary differential equations, the 
original equations must be reduced into a set of first
order, non-linear differential equations. For us it 
appeared simpler to enter these equations directly into 
the computer instead of to enter an analog flow chart 
from which the computer extracts the original equations. 
Admittedly, the construction of flow charts may point 
out many mistakes; however, needless effort may be 
expended in their preparation if the equations them
selves can be entered directly into the computer. 

The TAF code is not a new simulation language. 
It is written in FORTRAN and requires that the user 
define the derivatives of the system in a FORTRAN sub
routine called DER. The programmer may use the 
integration variables and may define the derivatives in 
any order in programming the DER subroutines. How
ever, any other variables the programmer choses to use 
in algebraic equations must be defined before they are 
used. It would be possible, of course, to define the sys
tem model to be simulated by defining the equivalent 
analog computer wiring diagram using, for example, the 
Continuous System Simulation Language. * A user only 
familiar with analog computers could then easily obtain 
fast digital steady-state solutiorts and frequency re
sponse solutions as well as the time response solutions 
that other codes presently give" him. For the reason 
mentioned in the previous paragraph, however, we 
chose not to provide a new simulation language. 

DISCUSSION 

Approach 

The basic criterion in developing the T AF code was 
the ability to compute steady-state, frequency re-

*J. C. Strauss, et aI, "The SCI Continuous System Simulation 
Language (CSSL)," SIMULATION, Vol. 9, No.6, December, 
1967. 

sponse and time response from one group of non-linear 
simultaneous first-order diffierential equations. The code 
is intended for initial value problems only. The equa
tions can be described by 

where y i is a set of integration or state variables, and Xk 
is a set of system inputs defined as functions of time. 
The system-defining equations themselves are assumed 
to be already contained in Equation 1. 

Integration codes for steady-state and time-response 
calculations from differential equations are in common 
use, but do not include frequency response. We had to 
develop, therefore, a method of calculating frequency 
response from the same set of equations. This method 
uses a complex matrix whose elements are automatically 
defined. 

Assume a set of steady-state variables, yO i, for which 
dy· 

all dt ~ = O. To compute transfer functions, we 

linearize the equations for a given set of inputs,xk' 

where 0Yi is the variation in Yi from steady-state when 
the input is varied by OXk. By deleting the steady-state 
terms and by forming the La Place transform of oy i 
and OXk, we obtain the matrix equation, shown below 
for three variables and two inputs. Capital letters 
denote the LaPlace t.ransform. 

afl af l afl 
oYI --8 

aY2 ays aYI 

af2 af2 af2 
OY2 -- - s 

ays aYI aY2 

l Of, 
afs afs 

oYs - -s 
aYI aY2 ays 

af l afl 
-oXI -oX2 
aXI aX2 

af2 af2 
(3) -oXI -,oX2 

aXI aX2 

afs afs 
-oXI -oX2 
aXI aX2 



If BXk = 1, then BY i will be the transfer function 

BY i () "V· h· b· d oX
k 

s. . It .JW su stitute for s, the complex 

matrix may be solved for various specified values of WI 

Equation 3 represents the linearized LaPlace trans
formed system equations. The unique feature of the 
TAF code is the ability to evaluate the elements of this 
matdx equation automatically. The derivatives of the 
system, f i, may be "reasonably" non-linear. By "rea
sonably" we imply the same conditions that are gener
ally used when one applies linear control theory to non
linear systems. If the system has abrupt discontinuities 
such as stops on the controllers or a branch of equations 
at certain points, the frequency response should not be 
'evaluated in the immediate vicinity of these points. 
This is reasonable since the La Place transform is only 
defined for linear systems. 

The computer evaluates the partial derivatives with 
respect to Yj by the numerical formula 

af i f.o(yOl,· .. , 1.003yOj, ... yOn, Xk) 

ay j b,.yj 

- f(yOl, ... , J!l j, ... yOn, Xk) 

D.yj 
(4) 

. h· h A 003 0 Th d· . af i . 1 In w IC t..l.yj =. Y j. e eflvatlve - IS eva u-
aXk 

ated similarly with D.Xk = .003Xko The choice of .003 is 
arbitrary. For most of the engineering problems we have 
programmed, it has proved to be a good compromise 
between derivative non-linear effects and digital com
puter round-off error. The former occurs if D.y i is too 
large; the latter if D.y i is too small. In the previous 
paragraph, we mentioned avoiding the "immediate 
vicinity" of abrupt discontinuities. By "immediate 
vicinity" we, therefore, mean that no state variable 
shall be within 0.3 percent of the discontinuity. 

If y/ = 0, then D.yj = .003 and similarly for xl 
Because these. partial derivatives are evaluated at 
steady state, one might assume that the second term in 
the numerator of Equation 4 could be eliminated since 
it equals zero. However, in general, the term is not 
exactly zero, and its omission can lead to large errors. 

The transfer functions just described were computed 
about a steady-state that is consistent with the inputs 
to the system. The TAF code offers two possibilities 
for computing steady-state: (1) by integrating until 
the system achieves equilibrium, and (2) by a modified 
Newton-Raphson method. In general, the first possibil
ity requires a much longer computing time. 

The second method was developed from Equation 2. 
Here, y/ implies an initial guess as to the steady-state 
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condition, and oYj implies an error correction to Yj to 
set the time derivatives to zero. In Equation 2, both 
the left-hand side and OXk are zero in steady-state. The 
error, OYh is then found by solving the matrix equation. 

afl afl af1 
°Y1 - f1(y/) 

aY1 aY2 ays 

af2 af2 af2 
°Y2 - f2(y jO) (5) 

ay! aY2 ays 

afs afs af3 
OY3 - f3(Y jO) 

ay! aY2 ays 

Since the equations of the system are not necessarily 
linear, the steady-state solution may not be found in one 
iteration of the matrix equation only. Various tech
niques have been used to converge on steady state with 
the least number of iterations. 

The user of the T AF code may wish to ignore certain 
parts of his problem: he may shut off a bypass flow 
valve or turn off part of an electric network. In such 
cases, some of the derivatives of the system will be 
identically zero. This will lead to a row of zeroes in the 
coefficient matrix. There may also be a free integrator in 
the system with a zero input, which would lead to a 
column of zeroes in the coefficient matrix because no 
derivative is a function of the variable representing the 
integrator output. In the steady-state solution, the error 
being solved in the variable whose derivative is zero 
must also be zero. Thus, the row of zeroes and the cor
responding column may be deleted from the matrix, 
whose order would then be reduced by one. Likewise, a 
column of zeroes implies a free integrator whose output 
is arbitrary. The initial quess of the value for that vari
able is as good as any. The error correction can be con
sidered known to be zero, and all the columns of zeros 
and their corresponding rows can, therefore, be deleted: 

In the matrix solution for transfer functions, this 
same reasoning can be applied to delete a row of zeroes 
but can no longer be applied to a column of zeroes, since 
physically, a free integrator should have infinite gain at 
zero frequency. After deleting these rows of zeroes, the 
matrix will no longer be singular. 

Refinements 

The TAF code has been used successfully in solving 
various types of systems fo1' as many as 80 integration 
variables (y i) and three different inputs (Xk). The code 
has been refined over the years to include several 
secondary features such as the handling of implicit 
equations. These equations correspond to a high-gain 
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algebraic loop on the analog computer. For example, 
assume that g (Yl Y2, h) = 0, and that dYi/dt = fi 
(Yl, Y'J, h) where g is a function that cannot be solved 
explicitly for h. The digital-analog simulator codes use 
different methods for handling such implicit functions. 
The simplest method is to use values of h from the pre
vious time step. For codes not computing partial de
rivatives and for time increments much smaller than 
the time responses one wishes to observe, this method 
will prove satisfactory. One cannot compute the matrix 
elements for steady-state or frequency response with 
such an equation defining the derivatives, since the 
variables are changed by the factor of 0.003 one at a 
time (see Equation 4). In a time solution, such treat 
ment only introduces a time lag in the implicit variable. 
Obviously, it cannot be applied when computing partial 
derivatives. 

Another method of handling implicit functions is by 
interation.A Newton-Raphson, .Regula Falsi, or other 
method may be used to determine that value of h for 
which g(y;, h) = O. Since the value of h changes only a 
small amount when the y:'s change by a small amount 
following an integration step, a third method of han
dling implicit functions is possible and has been imple
mented in T AF. If h is treated as an integration vari
able, then the derivative dhjat may be computed auto" 
matically by the equation 

dh 

dt 

If several implicit functions are coupled together, a 
more -complex solution results. 

All the integration variables Yi are incremented to
gether by their respective time derivatives multiplied 

by the time step in the evaluation of g (Yi + ~~i At,h). 

The above equations are programmed automatically 
in a closed subroutine called EMDER, which defines 
the derivative of an implicit variable. 

Coding 

Figure I shows a basic block diagram of the TAF 
code. Since the entire code is written in FORTRAN IV, 
a user must understand the basic FORTRAN language. 
There are only two subroutines that require coding: 
INPUT and DER. Their coding has been greatly sim
plified by using specially designed subroutines that only 
require input data in addition to COl\1l\10N state
ments. Other parts of the program require only CO l\1-
MON statements and the allocation of permanent 

~ 
bad Parameters 

Set Initial Conditione 
Initial Calculations 

FIGURE I-Mass on a"spring schematic 

blocks of storage for all integration variables para
meters, integers, etc. 

If input parameters are identified by FORTRAN 
names, they must be added to the DER and INPUT 
COMMON lists. This permits the use of assigned names 
in programming DER and in reading the data c.ards. 

The actual coding of the DER and INPUT subrou
tines can best be explained on a sample problem. How
ever, let us explain first some of the specially designed 
subroutines that are available. 

BCDCON. This subroutine is used for data input and 
data output. FORTRAN names can be associated with 
storage locations and used with input and output data, 
as shown in the Appendix. 

The program is used by 

CALL BCDCON (R1, R2, - - -, C1, - - -, 

Z(l), Z(2), - - -, Zen)) 

where R1, R2, C1, etc. are FORTRAN names assigned 
to variables, and Z(l), Z(2), Zen) is a block of allocated 
storage. Variables may be a multisubscripted array, and 
any number may be defined. 



Defined data can be read into the program by using 
only the FORTRAN names followed by assigned data 
in any format. 

Consecutive runs only require a redefinition of the 
input data to be changed. 

To print data with FORTRAN names, one only 
needs to specify the i-th location of the first and of the 
last Zi to be printed. 

Many other options to print data (e.g., specified 
transfer functions, specified integration variables, etc.) 
have been built into the program. A sample printout is 
given in the Appendix. 

ENTER. This FORTRAN function is a table look-up 
routine for implementing non-linear algebraic functions. 
(The tabulated data had been stored when reading-in 
the input.) Coding requires only the following state
ment. 

v = ENTER (J,U) 

where J is the index number of the table, and U and V 
are the independent and the dependent variables, re
spectively. 

TCNSET and TCNTRL. A system being studied for 
TAF coding frequently contains controllers in the form 
of the following transfer function. 

Previously, this required the development of sub
routines for transforming the transfer functions into 
first-order differential equations and then for solving 
the resultant set of controller equations as a subset to 
the equations in DER. 

In TCNSET and TCNTRL, controllers are defined 
by input data, and the transformation to first-order 
differential equations occurs automatically as part of 
the program. TAF can handle up to 15 different control
lers. 

The only coding in DER is 

CALL TCNTRL (I, U, V) 

where I .. refers to the number of the controller being 
used, and U and'Varethe input and the output of the 
controller. 

Several other closed subroutines are being used in 
addition to those previously described: A complete 
description of all TAF programs can be found in the 
User's Manual, to be published around December, 1968. 
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The example presented in the Appendix has been 
chosen to show the typical coding involved in defining 
a system that can be represented by differential equa
tions. 
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APPENDIX 

T AF sample problem 

Problem: Mass on a spring, as shown below 

D ~--r---J - referuee poillt at laltlal colMllt1oa. 
1. _____ _ 

FIGURE 1 

The system of Figurf' 1 can be reprf'sented by the 
equation of motion for a linear damped spring mass 
system. 

m d2(D) d(D) 
dt2 + C ~ + KD = f 

where m = mass, Ibm 
C = damping constant, lb,/sec 
K = spring constant~ Ib,/sec2 

f = forcing function, Ib t-in./sec2 

D = displacement, in. 

The problem is set up for three solutions represented 
by Equations (1), (2), and (3). 

dv 

dt 

d(D) 

dt 
=v 

-2rwv - w2 (D - x) 

(1) 
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1)(s) W 2 

XeS) = S2 + 2tws + w2 (2) 

(3) 

dv 
dt - - 2twv Iv; -w2 (2 - x) 

where CI. 

C 
t = 2YKm 

f 
x =-

K 

Variable Name Solution 1 

D D DISPL Y(l) 
v V VEL Y(~) 

d(O) 
DDT YP(l) 

dt 

dey) 
VDT ' YP(2 

dt 

x X(l) 

The equivalence and BC1)CON statements in 
INPUT allow the use of different names and, at the 
same time, allow the main code to use specified values 
for Y i, YP i, Zj. For instance D, Y(l) and 1)ISPL are all 
the same variable. Y(l) is used by the main program~ 
1) may be used in coding equations and 1)ISPL will be 
printed with the correct data value. The INPUT sub
routine listing shows the use of different names for the 
same variable. Any of the three names may be used for 
input data or in coding, and the first name given in the 
BCDCON list will be printed to identify the output 
data. 

In addition to those listed above, other variables with 
their assigned FORTRAN names and storage assign
mentsare: 

These examples have been chosen to demonstrate 
specific features of TAF. Equation (1) represents the 
linear, damped, spring-mass system as a coupled set, of 
2 first order ordinary differential equations. Equation 
(2) represents the same problem in LaPlace transform 
notation to exemplify the TCNTRL (I, U, V) feature in 
TAF. Equation (3) represents a non-linear spring-mass 
system with velocity squared damping to illustrate the 
ability of TAF to obtain a steady state and a frequency 
response of non-linear systems. 

In each set, the integration variables are displace
ment (1)) and velocity (v), and the system input is dis
placement (x) 

In the TAF program, we can find all three solutions 
simultaneously since three inputs and 80 integration 
variables are available. However, before coding, the 
variables must be identified with FORTRAN names; 
The FORTRAN names for the derivative and integra
tion variables are listed below for all three solutions. 

FORTRAN NAMES 

Solution 2 Solution 3 

TCNDIS Y(4) DNL Y(5) 
VNL Y(6) 

DNLDT YP(5) 

VNLDT YP(6) 

X(2) X(3) 

Variable FORTRAN NAMES 

(.oJ WO NTFRQ Z(l) 
r ZETA ZETA Z(2) Storage 
m XM MASS Z(3) . 
K XK SPGCI Z(4) AssIgnment 

C XC DAMPF Z(5) 

INPUT Subroutine. The FORTRAN listing includes all 
the coding needed in this subroutine for solving all three 
sets of equations simultaneously. The input data 
are read by SYMBOL, and wand t are computed from, 
m,K,andC. 
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E(,)UIVALt::Nr.E{V( 1) ,U). (Y(2) ,V), (YPC1) ,nUT). tYPe?) .VDT), (Z(I) 'WO) 
1, (l (2) ,ZE T A) • C Z (3) • XM) , Cl (4) • XK) , (Z (C;) ,.XC) 
E(~UIVALE"'CE (Y(S) ,ONL), (Y(6) ,Vt'4L). (VP(S) ,L)NLnT), (YfJ(6) .YNLDT) 

CALL ~COCnN(4RHOISPL.VEL,ODT,ACCEl ~ 
1 ,D,~,OOT.VOT) 

CALL RCDCON(36HNTFRQ,ZETA ~ 
1 ,WC.Z(2» 

CALL HCDCON(]6HMASS,SPGCT.DAMPF ~ 
·1 ,XtJ,)(K.x.C) 

CALL"BCOCON(24HTCNINP.TCNOIS $ ,Y(3),V(4» 
CALL HCUCON(~l~O~L,VNL,D~lDT,VNLnT $ 

1 . ,Dt\L, VNL, ONLOT • VNl.nr) 

CALL .SYMAOL ( 1,5) 
. IF(IRU~.GE.l)kET~HN 

wO = SGRl(XK/XM) 
ZETA ~ XC/(?.*XM*WO) 
CR(l,)=w() 
CR(2,1):lETA 

The BCD CON statements and EQUIV AtENCE 
statements could be left out if all coding included only 
Y(I), YP(I), Z(J), andX(K) as variables. 

DER Subroutine The FORTRAN listing includes all 
the coding needed in this subroutine for solving all three 
sets of equations, simultaneously. The first four equa
tions are coded from (1) and (3). The solution of (1) 

shows an example of solving first-order differential 
equations, and the solution of (3) shows an example 
using second-order non-linear equations. The solution 
of Eq. (2), which should be identical to the solution of 
Eq. (l),is given to show how controller problems may be 
solved by using TCNTRL. The input data name, 
INFO, defines the number of terms in the numerator 
and denominator and DR and CR define their value. 

E (~u I V ALE NeE (V ( 1 ) ,D) , (Y ( 2) ,V) • (Y ~ ( 1 ) ,0 I) T) • (Y P ( ?) ,v 0 T) t (Z ( 1 ) ,w 0 ) 
1 • (' (2) ,Zf:. T A) • ( 1 (,3) ,XM) , (Z (4) • XK) , (z (C;) ,XC) 

c - -
EQUIVALENCE (V(~)'ONl)'(Y(6),YNL).(YP(S)tUNLnT),(yp(6)'VNLOT) - - -- - - - - - - - - - - - - - - - - - - - - - -
VNLOT=-2.*wn*7ETA·VNL*A~S(VNl)-WO**2*(ONL-X(1» 
DNLOT = VNL 
Vf)l = -2 .... ZETA*V1C*V -wCo*2*(O- X(l» 
Dr) T = V .~ 

CALL TCNTRL (1.X(2),nUT) 

Input Data. The input data consist of indices to define 
options and the number of variables Y(I), "Z(J), and 
X(K); of controller data; input variables; initial con
'ditions "Of integration variables; frequencies (w) at 

which frequency response data are to be calculated; and 
the time response variables af starting (TS), stopping 
(TSTOP), and interval (DT) times. Data cards are read 
until 1 is encountered in Column 1 of a data card. 

N V 6 N Z 5 N I .s N ell V 1 (1) 3 N Y T (1) 1 2 3 4 N SK I P 2 00 
NPAS5 25 155 2 rfREQ 1 IT IME 0 lCSS 1 leO 1 !YP 1 NfREQ 19 
NYTPR 4 NYfPR 6 NfPLOl 6 NYF 1 2 3 4 5 6 CV[RR.5 
INFO(!) 00001 ORCl.l) 1. CRti.l) 1.414214 CRf2.'I) .035360678 
X 16.1 16.1 lb.l Y(4.1b.l 
M AS S 1. S P GC T 2. DAMP r .2 82 8428 VEla. 0 I SP 1 5 • 
W • 01 ." 04 • 06 3 • 1 • 15 • 25 • 4 • 63 1. 1.4 14.21 " 1. 5 2. 5 4. 6. j 10. 
15. 25. 40. 63. 
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Output Data The first set of printed data lists the in- Y(I), Z(J), and X(K). A typical printout of input data 
diceEI, defines the problem conditions, and the input follows. 

1 SAMPLE PROBLEM MASS ,ON A SPRING 
TAF RUN NO. 1 CASE NC. 0 TTME 1.23A 01 01 0 

ISS IFREQ ITIME ISPNCH IFPNCH ITPNCH ITe leSS IYP 10" t8KFQ 
2 1 0 0 0 0 0 1 1 0 0 

"IV NZ NI ~c NYFPR NZFPR NYTPR' NZTPR NnATA NTPLOT NPASS 
6 5 3 1 6 0 4 0 0 0 25 

IYI II 3 0 0 (l 0 0 0 0 0 0 0 0 

INFO a 1 0 0 0 0 0 0 0 0 0 0 0 

NYF • 1 2 3 It 5 6 0 0 0 0 0 0 0 0 0 0 0 0 

NZF II (\ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NYT • 1 2 3 It 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A typical printout of variables after the steady-state solution is calculated follows. 

STEADY STATE VARIABLES AFTEH 1 PASSES 
THESE A~E DIFFERENTIAL EQUATION V-S 

1 DISPL .1~lE+02 ? Vfl O. 
b VNL o. 1 0 • 

3 TCNtNP .161(.02 
8 o • 

T~ES~ AHE X~S. INPUT VA~IARLES 
Xl .161£+02 X2 .161£+02 X3 .161E+O? 
THESE ARE-ALGEBRAIC E'UATION l~S 

1 NTFRQ .1 4 1E+Ol 2 ZfTA .100~+OO 3 MAS5 
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Typical printouts of the transfer function solution and the time response solution are shown below. 

TRANSFER FUNCTIONS OISPL 

(RAO./SEC.) MAGNITUDE 
.100E-Ol .100E·Ol 
,400E';Ol .100£+01 
.630E-Ol .100£+01 
.100E-+00 .100£+01 
.150E+00 .101E·Ol 
.250E.00' .103£+01 
.400E+00 .108E+Ol 
.630E·00 .124£+01 
.100E+Ol -.'192E+Ol 
.141E+Ol .500E·Ol 
.150E.Ol .406E+Ol 
.250E.Ol .464E+00 
,400E+Ol .142E+00 
,630E+Ol .530E-Ol 
.100E.02 .204E-Ol 
.150E·02 .897E-02 
.250E+02 
.400E+02 

.321E-02 

.125E-02 
.630E.02 .504E-03 

TIME DISPL VEL 
O. .1610E·02 O • 

.1000E+00 • 1594t+02 -.3164E+Ol 

.2000£+00 .1541E+02 -.6178£+01 

.3000E·OO .1471E+02 -.8986E+ol 

.4000E·OO .1.368E·02 -.1154E+02 

.5000E·00 .1241E+02 -.1379£+02 

.6000E·00 .1094E·02 -.1571£+02 

.7000£+00 .9284E+ol -.1727E+02 

.8000E·OO .7495E+Ol -.1844E·02 
,9000E+OO .5608E+01 -.1922E+02 
.1000E·Ol .3663E·Ol -.1960E·02 

A complete set of, Bode plots to show t~e frequency 
response of all three solutions is included III ~he foll~w
ing computer plots. The time response of the IntegratlOn 

IX(}) 

DECIBELS PHASE 
.000 -.081 
.007 -.324 
.017 -,511 
.043 -.@14 
.096 -1.229 
.270 -2.090 
.708 ~3.S19 

1.868 -6.343 
5.686 -15.793 

13.979 -90.000 
12.173 -120.509 
-6.666 -lTO.S54 

-16.930 -175.380 
-25.S13 -177.293 
--33.807 -178.347 
-40.947 -178.910 
-49.869 -179.350 
-58.050 -179.594 
-65.948 -179.743 

TeNOlS ONL VNL 
• 1610E·02 ,1610E+02 O • 
.1594E+02 .1594E+02 ·.3115£·01 
.1547E.02 ,1550E+02 -.5685[.01 
.1471£·02- .1483£+02 -.7465E+Ol 
.1368E+02 .1403£+02 -.8519E+Ol 
.1241E·02 .1315E+02 -.9039£+01 
;1094£+02 .1223E+02 -'.9210E+Ol 
.9284E·Ol .1131E+02 .,.9169E·Ol 
.7495E+Ol .1040E.02 -.9001E+Ol 
.5608E·Ol .9513E+Ol -.8759E+Ol 
.3663£·01 .8651E·Ol •• 8414E+Ol 

variables has also been included to show the typical 
plots available to users of the program. 
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The automated medical history 

by WILLIAM WEKSEL 

Cytek Information Systems Corporation 
New York, New York 

and 

PAUL N. SHOLTZ 

IBM Corporation 
Rochester, Minnesota 

and 

JOHN G. MAYNE 

Mayo Clinic 
Rochester, Minnesota 

INTRODUCTION 

It has often been suggested that computer tech
nology could help solve problems in medicine. The 
Automated Medical History (AMH) system is de
signed to help the physician collect data from the 
patient. The system's objective is to lessen phy
sician involvement in routine activities, thereby 
increasing his availability to provide patient care. 
The AMH should help alleviate the chronic short
age of medical personnel even as it extends the 
physician's capabilities to collect patient informa
tion. 

Collecting data from patients involves many 
related activities that can be roughly categorized 
as history taking, physical examination, and lab
oratory tests. It is difficult to determine precisely 
the relative importance of these activities. How
ever, physicians generally believe that the pa
tient's medical history has basic importance in 
interpreting medical findings. For this reason, the 
medical history is a logical starting point for de
veloping techniques to aid the physician in his 
data collection activities. 

We propose that information technology be used 
as an adjunct to the traditional physician-patient 
relationship, specifically for collecting medical his-

tory data. The feasibility of using computer tech
nology has been demonstrated and discussed in an
other paper.1 This paper describes the AMH sys
tem and briefly reviews the system's data collec
tion capabilities. It also discusses the possibility 
of using the AMH to evaluate the medical data 
collected. 

The Automated Medical History (AMH) 

The AMH is a medical questionnaire that is pre
sented to a patient on a display terminal. An IBM 
1050 Data Communication System is used to enter 
patient identification information and to print the 
summary of each patient's responses. This stand
ardized, legible, condensed summary is sent to the 
physician before the physician-patient interview. 

The display terminal projects photographic im
ages that are stored on 16 mm color film (Figure 
1). This terminal is a prototype of the recently 
announced IBM 2760 Optical Image Unit. Images 
can be selected in any order by the computer. Pa
tient responses are entered on the display terminal 
with an electronic light pen. An array of response 
areas is arranged in a 10 by 12 matrix, making 
possible 120 unique responses on each frame. 

Colors emphasize the three functional areas of 

371 
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Figure I-Experimental graphic display terminal 

Are you taking any medicines nl1N or have you taken any 

within the past month? 

DYes 

ONo 

D 
-Go back 

Figure 2-Frame 

each frame, which are the question, the response 
alternatives, and the instructions (Figure 2). 

Color photographs and pictorial techniques are 
also used to supplement written explanations of 
medical terminology. For example, if a patient 
does not understand a question about "skin can
cer" or some 'Other skin condition, a picture of the 
condition can be shown (Figure 3). Pictorial 
techniques also allow the patient more freedom of 
expression. For example, this illustration permits 
him to specify the location of abdominal pain 
(Figure 4). 

Computer-administered questioning permits the 
effective use of question branching. This means 
a questionnaire can he tailored to the individual 
patient, so that factors such as sex, age, education, 
and ability to understand· questions can be ac
counted for. Moreover, the patient answers only 
those questions which pertain to his own medical 
problems. 

Question branching is based on responses given 
by the patient. Specific uses of hranching in the 
AMH will be considered later in this paper. 

Computer administration permits control over 

This is an example of a skin cancer. 
Do you understand? 

DYes 

D 
-- Go back 

Figu~e 3-Skin condition 



Figure 4-Body 

the patient while he is answering the questions. 
That is, the patient must answer all questions be
cause the system can be designed so that the ques
tioning process will not proceed until an answer 
is given. The computer can also monitor patient 
performance by rec'Ording such things as undue 
delays and excessive erasures. 

AMH system description 

The graphic display terminal and the IBM 1050 
Data Communication System are controlled by an 
IBM 7040 Data Processing System. To permit effi
cient use of the computer, the operating system 
was m'Odified to permit concurrent operation of 
terminal service programs· and background pro
grams. Experience indicates only 1 % to 2 % of 
available computer time is required for terminal 
activities. 

A special purpose language was developed to 
permit c'Omputer control of the graphic display 
terminal activity at each step of the questionnaire. 
'This language was specifically designed to simplify 
the display of particular film frames, the manipu-
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lation of light pen coordinates, and the control of 
branching operations. Also included were exten
sive text composition facilities, for use in construc
tion of the summary statement. 

The experimental graphic display terminal 
seems ideally suited to this particular application. 
It has been 'Operated successfully by completely un
trained users (patients) who had very brief in
structions. There are two reasons for the suitabili
ty of this terminal: first, very high quality colored 
images are 'Obtained by photographic projection, 
and second, a very simple and direct method of 
response is made possible by the use of the light 
pen. 

T he questionnaire 

The questionnaire consists of broad, inclusive, 
screening questions organized according to c'On
ventional body systems. These questions attempt 
to detect the presence of actual or potential disease 
states. The questions are all of the fixed choice 
type. Response alternatives vary from a simple 
"yes," "no" to multiple choice check lists describ-

Figure 5-Question types 
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ing symptoms and conditions. The format usually 
is dictated by the objectives of a specific question 
(for example, see Figures 5, 6, 7). The number 
of questions asked varies from patient to patient 
because of question branching. It ranges from 
226 to 302 questions for females, and from 212 to 
283 for males. 

Currently, there are four uses for branching in 
the AMH: 

1) To ask the patient questions that pertain 
only to his specific problems. 

2) To explain questions and medical termi
nology that the patient does not understand 
F'Or example, if a patient does not under
stand a question about "yellow jaundice" 
(Figure 8), he is shown this explanation 
(Figure 9). If he indicates that he under
stands, he is shown the original question 
again. If not, he goes on to further ques
tions. The fact that he did not understand 
the "yellow jaundice" questi'On is recorded 
in the summary. 

3) To give the patient greater latitude when 

Figure 6-Question types 

Which of the following bring you to see the doctor now? 

Figure 7-Question types 

describing his medical problem. For ex
ample, if a patient indicates he has abdomi
nal discomfort (Figure 10) , question 
branching provides· various descriptions of 
such discomf'Ort (Figure 11). Although 
many of these terms are redundant and 
have no differential diagnostic value, the 
patient can give his answer in words fa
miliar and meaningful to him. 

4) To evaluate the significance of a positive 
response, using branching questions to dis
tinguish between common occurrences and 
significant medical symptoms. For ex
ample, if a patient complains of a head
ache, he is questioned on aspects of the 
headache such as severity, frequency, dura
tion, and his concern about it. These ques
tions permit assessment of whether or not 
the headache is a significant symptom that 
requires medical follow-up 'Or whether it is 
an' unimportant occurrence that requires 
no further investigation. This is an im
portant use' of question branching that 



Have you ever had yellow jaundice? 

o 
-Go back 

Figure 8-Yellow jaundice question 

takes the AMH beyond the task of data 
collection to that of data evaluati'On. 

A condensed summary of the patient's responses 
is provided for the physician. Negative responses 
(unless pertinent to other positive responses) are 
not provided in this summary. This summary is 
a prototype of a standardized, legible medical rec~ 
ord (Figure 12) . 

Evaluation of the AMH 

One hundred fifty~nine Mayo Clinic patients 
were randomly selected for AMH administration. 
The highlights of this experiment were: 

1) Patient reaction was extremely favorable. 
Of the 159 patients sampled, 154 partici~ 
pated; only two reacted ulJ.favorably. 

2) All patients were able to answer the ques
tionnaire and operate the terminal. Mean 
patient age was 50.1 years (95% confidence 
limits were 48.5 < p. < 51.7) and mean edu
cation level was 11.8 years (95% :11.4 < p. 

< 12~2). This suggests that a high educa-
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Figure 9-Yellow jaundice explanation 

tion level is not necessary for successful· 
participation. 

3) Physician reaction was favorable. The tone 
and extent of the criticisms received indi
cate physician acceptance of the AMH in 
its role as collector of medical histories. 

4) Mean questionnaire completion time for 
patients (95 % :62.2 < p. < 69.2) was 65.7 , 
minutes. 

5) The AMH obtained 95 % of the symptom 
information recorded by the physician in 
the traditional patient record. This study 
compared patient symptoms obtained by 
the AMH to those recorded by the examin
ing physician in the patient's Mayo Clinic 
Medical Record. 

6) Comparisons between the traditional ,pa
tient record and the AMH summary with 
respect to "past surgery" and "past illness" 
information . suggest that, given the total 
set of patient responses, the AMH data col
lection performance was significantly better 
than that 'Of th,e physician (Table I). 
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Table I 

Two-Way Comparison: AMH Data vs Physician-Recorded Data 

Item 

Past surgery* 

Past illness * 

Past family illness 
and cause of death 

Proportion of 
physician-recorded 
data also obtained 
by AMH (%) 

86 

59 

57 

*Difference statistically significant. P > P,05 

Proportion of 
AMH-obtained data 
also physician-recorded 
(%) 

62 

39 

62 

These results indicate that reliable medical his
tvry gathering techniques can be developed to aid 
the physician. 

Use of the AMH for the evaluation of medical 
symp'toms 

We have already indicated that branching can 
be used to evaluate the significance of positive 

Do you NOW (that is. within the past 3 months) have any type 
of abdominal discomfort? 

DYes 

D 
-Go back 

Figure lO-Abdominal pain question 

Figure II-Abdominal pain descriptions 

symptoms. Such an evaluation has two aspects. 
Given a positive response to a question, should it 
be followed up? If it is followed up, what is the 
best way-more questions, laboratory tests, or 
physical exam? We will consider the first aspect 
of the problem. 

We attempt to obtain additional information (on 
a positive symptom) that will help us decide 
whether or not the symptom is significant enough 
at the system review level to require more ques
tioning. For example, if a patient indicates that 
he has headaches, we need information regarding 
headache severity, frequency, and duration, as 
well as the degree of the patient's concern about 
his headaches. Some combination of these items 
should form the basis for deciding whether or not 
the patient's positive response to the headache 
question requires follow-up. 

We need to find which patient responses, singly 
or in combination, are the most important deter
minants of whether or not a physician follows up 
on his patient's complaint. This knowledge would 
allow us to assign relative weights to various pa-



Summa ry . S ta temen t 

1·lal e 
S.S.8: 000-00-0001 ~Iarried 
Educ: Ii igh schoo I 

I"Ihi te 
Brown Ha i r 
Brown Eyes 

U5/31/67 

Born: 9/22/19 
B i r thp I ace: Canada 
R i gh t handed 

Ivants general checkup. Referred by r·m. Health concerns: stomach and 
swallo",ing. Self evaluation: not in good health. Previous 
illnesses: ulcer, mumps. 

SYSTEI'lI C REV I Ell 
Q.Q.h.th...: Defective vision correctable with glasses. I'fears glasses. 
~: Freq. dYsphap;ia I.ith solids. Dec. dysphagia with liquids. 
Cilrdiov"sc : l~otes cold-induced acral blanching. 
CilJ Appet i te decrease past 3 mos. Dyspeps i a I.i th many foods, greasy or 

rich foods, spicy foods. now troubled by abd. discomfort described' 
as sour stomach, bloated feeling, cramps, nausea, boring pain, hear't 
burn, belly pain, sore belly, acid indigestion, knife-like pain, 
twisted knotted sensation. Location: umbill-cal. Thinks he has 
ulcer. Complains of belching. Dovlel movement less frequent past 6 
mos; In past yr. had occas. constipation. Has noted blood in bo",el 
mover,lents. In past year stool occ. characterized by excessively 
putrid odor, smaller diameter. l-/i thin past 6 mos. bothered by 
itch i ng and/or bu r n i ng rec tum. 
r·:ore than 3 mos. ago had abd. discomfort described as sour stomach, 
bloated feel ing, cramps, nausea, boring pain, sore belly, acfd . 
indigestion. Location: umbilical. 
Past I;D Dx: duodenal ulcer. Has had x-ray of stomach, gallbladder, 
complete Gl tract. 

~: Troubled vlith headache past 6 mos.; onset over 5 yrs. ago. NOt 
usually relieved by ASA or equiv. Has constant pain. 
Had same type headache in pas t. 

~: Occas. trouble sleeping in past few I.ks. 
Skel -l·'usc : Troubled I.ith upper back pain past 6 mos. Concerned re 

backache. 
Backache ove r 6 ",os. ago. 

F~: Blood relatives have died of high blood pressure. Has living 
blood relatives Hith high blood pressure. 

O~: tradesman. 
~: Smokes ci garettes (less than a pack/day). Has smoked more than 20 

years, inhales, increased cigarette smoking in past year. In' past 
year was on ulcer diet(s). Diet(s) follo",ed regularly; advised by 
1·10. In the past mont·h has taken unidentified medicine. 

Pt. didn'.t understand questions about nasal polyps. 

End of session. 

Figure 12-Summary statement 

tient responses when evaluating positive symp
toms. This knowledge would also give us a sta
tistical basis for determining the discriminative 
power of each individual question. Using this 
statistical basis, items with low discriminative 
power could be discarded. 

In our investigation, patients with positive re
sponses to questions regarding the incidence of 
"headache" were grouped. Then, on the basis of 
the inf'Ormation extracted from the patient record, 
this group of patients was subdivided into those 
who had a follow-up exam on headaches (here
after referred t'O as the f'Oll'Ow-up gr'Oup) and 
th'Ose wh'O did n'Ot have a f'OIl'Ow-up exam 'On head
aches (hereafter referred t'O as the non-f'Ollow-up 
group). "F'OIl'Ow-ups," then, had further investi
gati'On by the physician regarding their headache 
pr'Oblem. In some cases, this was in the form of 
a head x-ray; in 'Other instances it was a c'Onsulta
ti'On with a neurol'Ogist regarding the headache 
pr'Oblem, or a final diagnosis was made which sug
gester that the headache pr'Oblem had been f'Ol
lowed up. 

Tw'O statistical techniques were used t'O investi
gate the relative imp'Ortance of the items used t'O 
evaluate the r'Outine headache reSP'Onse. The first 
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'Of these was the "likelih'O'Od ratio" which is repre
sented by the relative frequency with which a 
symptom 'Or set 'Of sympt'Oms occurred in the f'Ol
I'Ow-up gr'Oups (P8!) as c'Ompared t'O the relative 
frequency with which the same sympt'Om or c'Om
binati'On 'Of symptoms occurred in the non-f'Ollow
up gr'Oups (pan!)' That is, the rati'O was 

The assumpti'Ons underlying the use 'Of 8 and its 
use for item analysis has been dealt with by 
Neyman2 and C'Ollens and will not be discussed 
here. These auth'Ors indicate that the resulting 8 

can be used as the basis for establishing sets 'Of 
values f'Or which a diagn'Osis will be P'Ositive and 
sets 'Of values f'Or~ which a diagnosis will be nega
tive. We have S'Ought t'O examine 'Only the discrim
inative value of the items in the question branches. 

Table II repeats these values f'Or the branch 'Of 
questi'Ons used to evaluate a P'Ositive headache re
~ponse. In this table, we sh'OW the relative fre
quencies 'Of occurrence of different categ'Ories f'Or 
headache. d.urati'On, frequency, severity, incidence 
of relief with simple medications, and the patient's 
concern ab'Out his headache. Clearly, durati'On-

Table II 

Discriminative Value of Features Which Describe Headaches (n = 77) 

a= 0.05 ps 

Feature ps ps statistical 9=_f_ 
f nf 

Significance 
s 

P
nf 

Duration 
2 

chi sq. n. S. x < 

< 1 year 0.33 0.41 0.81 

Between 1-5 yr 0.30 0.20 1.5 

More than 5 yr 0.36 0.39 0.92 

Frequency x 
2 

> chi sq. 

Increasing 0.52 0.25 2.1 

Same 0.39 0.34 1.1 

Decreasing 0.09 0.41 0.2 

Perceived Severitt 
2 

> chi sq. x 

Increasing 0.36 0.20 1.8 

Same 0.61 0.43 1.4 

Decreasing 0.03 0.36 0.08 

Relief with siml!le 
2 

> chi sq. x 
medicine 

Yes 0.39 0.71 0.55 

No 0.61 0.29 2.1 

Patient concern 
2 

> chi sq. x 

Yes 0.70 0.25 2.8 

No 0.30 0.75 0.4 
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that is, whether a headache has laster less than a 
year, between 1 and 5 years, or more than 5 years 
-seems to have no bearing on whether or not the 
physician follows up on a patient. There is no 
significant difference between the groups in this 
case. Whether or not the groups are significantly 
different is the basis for deciding whether or not 
the O's ar'e of any value. 

The other categories in the headache branch are 
more important, as significant differences were 
found between the patient groups. Notice that the 
ratio of the q'S to one another is high from the 
positive to the negative response. Someone who 
has anyone (or all) of the following: headaches 
that are increasing in· frequency, headaches that 
are increasing in severity, 'Or concern for his head
aches without being able ta obtain relief with 
simple medications, is likely to receive a follow-up 
examination. 

How do these features relate ta follow-up when 
they are combined? And, in combination, which 
of these items is the most important? To deter
mine this, a multiple correlatian analysis was done 
in which the criterian variable was membership 
in the follow-up group and the predictors were the 
items listed in Table II. The results of this analy
sis are listed in Table III. The multiple correla
tion is .54, which is statistically significant. The 
third column 'Of this table, which lists the regres
sion coefficients, shows the relative importance of 
each of the independent variables in influencing 
the criterian or dependent variable. We can see 
that the most important variable is the patient's 
concern, which has the largest regressian coeffi
cient. Note that this variable had the largest ratio 
between O's, as seen in Table II. 

Table III 

Prediction of Membership in Headache "Follow-Up" Group (criterion 
variable) Using Features Which Describe Headaches as Predictors. 

Predictor 
Variables 

Duration 

Frequency 

Perceived severity 

Relief w/simple medicine 

Patient concern 

Multiple R = 0.54 
F value = 4. 77, F > F. 05 

Zero Order 
Correlation 
(with criterion) 

0.03 

-0.36 

-0.34 

0.31 

-0.44 

Regression 
Coefficients 

0.06 

-0.07 

-0.06 

0.18 

-0.30 

Using this information, it is pas sible ta assign 
relative weights to respanses of future patients. 
The cambination 'Of these r,elative weights would 
be the decisian pracedure used to determine 
whether or nat physician follow-up is required. 

A similar analysis was perfarmed with respect to 
"neck pain." In this analysis, 'Only twa items were 
in the branch: assaciation of the pain with nerv
ousness, and past 'Occurrences 'Of neck pain. The 
theary was that neck pain cansistently assaciated 
with nervausness was not significant. Similarly, 
if the patient had previous neck· pain, it was not 
as impartant as if the neck pain was a new phe
namenon. Table IV bears this out. Patients with 
neck pain not cansistently assaciated with nerv
ousness were faund in the follow-up graup more 
often than in the nan-fallow-up group. The item 
regarding past 'Occurrences was less impartant. 

Table IV 

Discriminative Value of Features Which Describe Neck Pain (n = 56) . 
a= 0.05 pS 

Feature pS pS Statistical 9=_f_ 
f nf s 

Significance P
nf 

2 chi sq. Association with x > 
nervousness 

Occurs when nervous 0.70 0.22 3.1 

and at other times 

Can't really say when 0.25 0.44 0.5 

it occurs 

Occurs mainly when 0.05 0.33 0.1 

nervous or upset 

Pastoccu~ x
2 

> chi sq. 

Trouble with neck 0.45 0.28 1.6 
pain in past 

No trouble with neck 0.55 0.72 0.7 

pain in past 
I 

These findings are consistent with the mUltiple 
carrelation analysis presented in Table V. The 
assaciatian of neck pain with nervousness seems 
to be the mast impartant variable. 

It should be noted in bath the headache and neck 
pain cases that al~hough the multiple correlatians 
are significant, they are law enough in magnitude 
ta indicate that there are many other reasons 
which relate to being assigned to the follow-up 
group. Same of these reasons may be neuralogical 
complaints given in' respanse ta other questians. 



Table V 

. Prediction of Membership in Neck Pain "Follow-Up Group" (criterion 
variable) Using Features Which Describe Neck Pain as Predictors. 

Predictor 
Variables 

Association w/nervousness 

Past occurrences 

Multiple R = . 50 

F value = 8.6, F >F.05 

Zero 
Correlation 
(with criterion) 

-0.47 

-0.17 

Regression 
Coefficfents 

-0.28 

-0.15 

To establish these relationships with other ques
tions is a much larger p~oblem than the one we 
. have considered in this paper. At present, how
ever, it seems apparent that the techniques we 
have discussed will enable us to find criteria for 
deciding whether or not particular positive in
stances require further investigation or whether 
they can be considered unimportant occurrences. 

SUMMARY 

The Automated Medical History is a system to 
collect medical history information from patients 
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by using a computer-controlled display terminal. 
Computer administration permits effective use of 
branching techniques, thus making possible an in
dividualized questionnaire for each patient. Pa
tient responses are condensed into a concise sum
mary statement for the examining physician. 

The system was tested with 159 patients. Pa
tients and physician·s reacted favorably to the sys
tem. The AMH obtained approximately 95 % of 
the information recorded by the physician in the 
patient's medical record. 

The possibility of using the AMH to evaluate 
the significance of the data collected was also ex
plored. 
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The key to a nationwide capability for computer 
analysis of medical signals: 

The dedicated medical signal processor* 

by CESAR A. CACERES, GABRIEL KUSHNER ** , 
DAVID E. WINER and ANNA LEA WEIHRER 
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INTRODUCTION 

The Medical Systems Development Laboratory 
has demonstrated a system of computer analysis 
that encourages wider use of medical signals, 
reduces unit costs, and alleviates the shortage of 
physician manpower while c'Oncurrently improv
ing the quality of interpretations. It is' adaptable 
to hospital wards, outpatient departments, routine 
physical examinations, and health screening pro
grams. Its development anticipates the worsen
ing shortage of professionals able to analyze 
medical data. 

A . large number 'Of those concerned with the 
practice of medicine recognize that automated 
analysis is the only feasible answer. At the same 
time, most medical-service groups are reluctant 
to install systems in their own institutions be
cause existing computer hardware has not been 
adapted to meet their needs. Existing systems are 
expensive, bulky, and because of the flexibility 
for which they were designed require scarce com
puter technicians to 'Operate and maintain. The' 
need of most potential medical users is for quite 
the opposite: a small computer system that re
quires minimal maintenance and that can be oper
ated by the personnel usually available to medical 
groups. 

The aim of this paper, after a brief review of 
the background, is to describe a model for a com-

*From the Medical Systems Development Laboratory 
(MSDL) Heart Services Research and Development, National 
Center for U.S. Department of Health, Education, and Welfare, 
Washington. D.C. 

** Also Associate Professor of Medicine, George Washington 
University, Washington, D.C. 
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pact computer system designed for the needs of 
medical-service groups. The model is based on 
an existing "breadboard" system. 

Background of need 

The electrocardiogram was chosen as the m'Odel 
signal for automated pattern recognition and in
terpretation by computer because physicians are 
familiar with it and have 50 years of experience 
in relating its waveforms to specific meanings. 
But almost any other physiological signal-brain 
waves, vital capacity, heart s'Ounds, and others
could have been selected. In fact, we have since 
demonstrated that each of these signals is sub
ject to automated measurement and interpreta
tion. The computer measurements are accurate, 
and clinicians can accept the interpretations as 
readily as they accept those of other clinicians. 

Approximately 50 million electrocardiograms 
are interpreted annually in the United States by 
medical personnel. It is probable that changes in 
population age-groups and the impact of health 
legislation will double the volume of electrocardio
grams long before it is p'Ossible to train the re
required specialists. Conventi'Onal techniques of 
electrocardiography would make the cost of the 
projected increase prohibitive for disease control 
and prevention purposes in terms of physician
technician man-years. 

From a manpower viewpoint the most impor
tant factor is total reading time, including mea
surement and interpretation time by interns, resi
dents, technicians, and finally that of the physi
cian who signs the electrocardiogram report. 
Although some tracings can be read by card i-
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ographers in a few minutes, tot"al reading time
for problem as well as routine cardiograms
averages close to 15 minutes. Thus the reading 
of 50 million electrocardiograms, in terms of a 
2,OOO-hour man-year, takes up an estimated 6,250 
ECG reader man-years. In conventional systems, 
reading time accounts for 75 % of the cost. Use 
of a computer system can reduce reading time 
5- to- 7 fold and facilitates the reduction of secre
tarial (bookkeeping, filing) ,and technician (re
cording) time. 

The current computer system prints out all the 
significant measurements with a verbal diagnostic 
statement based on the criteria of a consensus of 
cardiologists. Electrocardiograms and spirograms 
are now being taken from patients in hospitals 
and clinics evaluating benefits of immediate on
line analysis by a computer system. 

More than 300 groups on their own initiative 
have asked the Medical Systems Development 
Laboratory to make available to them the use of 
the computer program currently available f'Or 
electrocardiogram analysis. Consultation has been 
given, but serious hardware limitations have re
stricted utilization within the medical setting. 
Duplication of laboratory type facilities such as 
our existing "breadboard" system is not generally 
practical in medical care units. Nevertheless, one 
group with a large staff (the Missouri Regional 
Medical Program), for lack of any other "off the 
shelf" alternative, has replicated the basic essen
tials of the breadboard processing configuration 
used at the Medical Systems Development Labora
tory. 

Alternative routes 

It is possible to construct, from products now 
on the market, large regional centralized multi
purpose, multi-signal computer facilities. How
ever, these would be impractical for routine clini
cal medical-signal analysis at this time because 
of their defects: staffing difficulties, the continu
ing high expense 'Of non-local analog telemetry, 
high acquisition and maintenance costs, the ab
sence of a workable time-sharing system for medi
cal-care purposes, and the changing character of 
medical systems due to computer use itself. Al
though the technological problems can be solved, 
largely because of the last reason it may not be 
economic to expend great effort for an overall 
solution until 10 years hence. 

This does not mean that we oppose large, re-

gionally centralized computer centers n'ow. On 
the contrary they are to be encouraged, but as 
central storage and retrieval centers serving net
works of small, dedicated computer systems. 
Translation of patient-care computer programs 
to the assembly, compiler, or machine languages 
'Of small computers for service-oriented hospitals 
of average size is thus a pressing vital step. 

This concept implies a need for development 
of small single-purpose computers for processing 
medical signals. Our experience with prototype 
systems adapted for general-purpose computers 
has proved that a specially designed dedicated 
computer can best meet the anticipated needs 'Of 
regional medical programs, mUltiphasic screen
ing programs, medium-to-Iarge hospitals, and 
local health departments.1. 

Our experience with commercial groups sug
gests that the systems dedicated to medical-data 
processing can be commercially available in 2 
years. A prototype, the Control Data C'Orporation 
"MESA" system, was developed from our speci
fications within a 6-m'Onth period about 1965 
a nd served to clarify our concepts of the systems 
required for the '70s. The proposed systems 
should be of office-desk size, completely modular 
self-contained units. 

A system with a processing capacity of 60,000 
or more medical signals annually could be mar
keted by industry for a cost under $100,000 (or 
rented for about $36,000 per year). With sup
port for the development of prototypes, a net
work of such computers could be established 
within 5 years to make routine computer analysis 
of electrocardi'Ograms, spirograms, or other medi
cal signals available anywhere in the United 
States. These could aid in increasing the quality 
of medical care and in controlling the rising cost 
of medical tests. 

These single-purpose medical computers would 
facilitate the creation of storage and retrie~al 

centers at strategic locations for much-needed 
medical data pools. This storage and retrieval is 
of course of secondary importance to immediate 
display for action. With data extracted by the 
dedicated clinical terminal from the human source 
and analyzed with defined accuracy, the analysis 
can be displayed, prepared f'Or insertion in the 
patient's record, and put to immediate use. This 
is the basic reason for considering storage and 
retrieval centers as secondary in any service
oriented medical computer project. 



Preliminary estimates of the basic cost of an 
electrocardiogram with a dedicated system, as
suming a 10-year equipment amortization and 
60,000 patients a year, show a unit processing 
cost of a few cents contrasted to dollars today. 
With mass volume, costs of the equipment are 
small when contrasted with costs of manpower 
training and utilizati'On. 

The breadboard 8Y8tem 

At the Medical Systems Development Labora
tory we have, as part of our work in automation 
of medical signals analysis, experimented with 
several different preprocessing and processing 
systems. We have kept in mind that in medicine, 
users or even combinations of users often do not 
generate sufficient quantities of data to warrant 
processing on large, fast computer systems. Costs 
for processing equipment are low as long as the 
system is kept busy, but are apt to be exorbitant 
if input rates are slower than throughput capa
bilities. Therefore we have chosen to work ini
tially with dedicated, single-input systems. 

Because computer personnel are not readily 
available at most hospitals or clinics, the system 
should not require skills beyond those of hos
pital technicians and nurses. Our experience indi
cates that processing can become medically re
liable in nearly any properly equipped computer 
room, but even there only if the system is ex
ceedingly simple to operate. Accordingly, our 
system specifications require no more of the tech
nician than to load and start an analog tape play
back and then check that a monitor light goes on. 

Before we could begin to specify requirements 
for routine service equipment, it was necessary 
to determine many system requirements, for ex
ample, the sampling rate, the filter settings, etc. 
An experimental processing system was con
structed having variable settings for nearly every 
component. After the first approximations were 
determined and necessary corrections made, there 
still remained the tasks 'Of statistical validation , 
reliability and maintainability studies, human fac
tors engineering, and analysis of operational 
problems encountered. To complicate matters, 
the original signal (the ECG) became only one of 
many undergoing automation at our lab. The 
system grew and changed, .all the while becoming 
m'Ore versatile, but also more complex and diffi
cult to operate and maintain. We recognized that 
this system would allow almost limitless varia-
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tions in experimental and research teclmiques but 
was not applicable to clinical processing. 

In routine operation the most difficult problem 
was with trouble shooting and maintenance. Basic
ally the engineering solution hinges on the use 
of replaceable modules which can easily be ex
changed in the event of fail1;lre. No wiring or 
special effort to connect the modules should be 
required. Repairs of components should be made 
at remote sites with well-equipped maintenance 
facilities while the user enjoys uninterrupted 
service. Basically the hospital or clinic shoul<;l 
be unconcerned about maintenance except for 
acceptance of a preventive maintenance c'Ontract. 
The system must be no more complex to operate 
than a home television set. It should be operable 
with the same amount of instruction, since hos
pital personnel do n'Ot have the specialized skills 
of electronic technicians or computer operators. 

The signal from the data acquisition devices is 
given to the first section of the system (the input 
unit), which contains an analog tape playback 
deck and monitor indicator. The tape deck uses 
lA-inch-wide tape on .7 -inch reels and operates at 
33A inches per second. After set-up, start/ 
stop is initiated by computer control. The moni
tor indicator automatically glows if the tape being 
played was not recorded on a pr'Operly aligned 
data acquisition system. If the recorder head was 
not aligned to specifications, a 6750-Hertz flutter 
compensation signal used in our data acquisition 
systems will not be. played back with sufficient 
amplitude. If the head is unaligned, the tape deck 
should stop automatically. Filter bandwidth f'Or 
processing clinically used medical signals is DC to 
45 Hz. 'The 3-db point should be at 45Hz. Rolloff 
above 45 Hz should be 24 db/octave. 

To enable heart sound processing, a bandwidth 
of 40 to 1000 Hz (± 1 db) is usually suggested. 
A filter with the 3 db points at 20 and 2000 Hz 
with rolloff of 6 db/octave is recommended .. Par
enthetically we can state that the envelope re
sulting from the rectified signals may be ade
quate for analysis and brings all medical signals 
to the same range. 

Amplifiers should be provided to compensate 
for losses incurred during transit of the signals 
through the filter networks and other media such 
as telephone lines, and to condition the signal 

. strength and circuit impedance to the optimum 
values required by the analog-to-digital converter. 
One, a high input impedance amplifier (minimum 
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10 rpegaohms), can be provided at the input to 
the filter networks. The second can be a signal 
level compensating amplifier at the output of the 
filter network. A calibrated gain control should 
be available with the compensating amplifier to 
enable adjustment of signal voltages to proper 
levels. 

The experience gained from our experiments 
suggests commercial incorporation of some of the 
above listed functions either as the terminal end 
of· a digital data-acquisition device (instead 
'Of an analog one) or the initial part of the dedi
cated computer as described here. The tape 
playback demodulator, amplifiers, filters, and/or 
telephone jacks are also in the input unit. An 
automatic answering feature can enable accept
ance and rec'Ording of the telephone data without 
operator intervention. Automated control circuits 
must be provided to coordinate the various 
functions. 

The second section is the medical-signal proces
sor. Its stored programs should have the capa
bility of modification by a procedure not normally 
available to the usual medical user. The system 
must utilize a minimum of external switches and 
human decisions. The hardware in this section 
consists of an analog-to-digital conversion unit, a 
central processing unit, data and program stor
age unit, printer, and the control panel. Our oscil
lator drives the· analog-to-digital converter at a 
fixed sampling rate of 500 cycles per second per 
channel used. This sampling rate is adequate. f'Or 
most medical signals. An unsigned 10-bit output 
is adequate for accuracy purposes over the range 
of ± 2.5 volts. A c'Ontrol circuit causes the analog
to-digital converter to· send a·10-bit word through 
the computer input register upon computer re
quest. Initial input requests . start and computer 
commands stop the analog tape deck. 

The sub-modules must be packaged in a single 
housing that need occupy a space of not more than 
20 square feet. The cabinet should resemble a 
desk and have a top usable as such .. Weight of 
the unit, excluding the optional attachments, 
sh'Ould not exceed 1,000 pounds, to be suitable 
for n'Ormal hospital and clinical building floor 
load. 

. The minimal functions that need be included 
are: input/output, arithmetic operations, periph
eral control, logical and/or, shift, c'Onditional 

and unc'Onditional transfers, and interrupts or 
timing devices. 

A typewriter or other low-cost printing device, 
capable of a printout speed of at least 720 char
acters per minute, is all that is necessary for con
ventional work. The unit should operate under 
program control, with buffering a desirable 
feature. 

An incremental plotter also under computer 
control could be utilized to produce a graphic 
output. 

A capability should be provided for attachment 
of a telephone for transmission of digital data 
(Le., the medical results obtained by the proc
essor) to central storage and retrieval computers. 

The internal memory can contain as little as 
a 16,000 1S-bit word memory core. This would 
suffice for the operational program. 

Provision for program entry or modification 
must be preplanned. Dedicated analysis systems 
must therefore be· compatible with an existing 
commercially and readily available computer, to 
enable manufacturers to make program modifica
tions to incorp'Orate medical advances. 

A random access storage unit can replace part 
of the core memory specified. Economy for the 
individual manufacturer should dictate the stor
age medium. The storage capacity will be de
pendent on the peripheral equipment and the com
puter's instructi'On repertoire. Approximately 
16,000 1S-bit word or 32,000 12-bit word capac
ity or equivalent would be· ample. 

The system should incorporate executive pro
grams to control program selection and the flow of 
inf'Ormation between input and ouput devices, 
patient code recognition, and data formatting. 
Checkout programs for the on-line equipment and 
the data acquisition system should also be part 
of the software. 

Utility programs to facilitate fault detection, 
modification of programs, and the addition of new 
programs are needed only by the manufacturer's 
checkout or maintenance crew. 

The MSDL electrocardiogram program for the 
160A consists of two parts. The first (pattern 
recognition) is approximately 6,000 lines in the 
OSAS assembly language. The second (diagnos
tic) is· 8,000 assembly statements. The MSD·L 
spirogram program consists of approximately 
5,000 assembly statements. The generality and 
numerous logic paths incorporated, in these pro-



grams indicate why translation and validation are 
time consuming. 

SUMMARY AND CONCLUSIONS 

Several factors should be considered to evaluate 
the system's 'adequacy f'Or medical operations. 
The medical signal pr'Ocessor must permit easy 
installation and keep maintenance requirements 
to a minimum. The unit must be capable of 
being maintained by replacement of easily re
moved components and modules. Reliability of 
operation must be considered to be of prime im
portance in the design and manufacture of any 
medical signal process'Or. Commercial sales can
not be expected to be great without due emphasis 
on this aspect. The validation must demonstrate 
the ability of the system to handle approximately 
60,000 medical signals over a l-year period when 
operated on a c'Ontinuous basis (exclusive of pre
ventive maintenance time). 

Large-scale screening or research proj ects both 
require utilization of more than one signal. In 
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lieu of "simultaneous" processing with one de
vice or a serial system, small dedicated systems 
used in parallel can achieve the high throughput 
rates required to keep up with voluminous data. 
Currently we believe these will offer the most 
economic courses to follow to solve existing vol
ume problems. A central storage and retrieval 
system can then collate the data. 

The medical community can be provided with a 
standardized processing system for medical sig
nals to meet volume requirements of J:1ealth care 
needs. .Diagn'Ostic printouts can be made in the 
standard format and terminology familiar to 
every physician. This alone will provide invalua
ble quality contr'Ol 'Of medical service delivery. 
Combinations 'Of small machines can be effective 
in producing the required volume and quality on 
a sound economic basis. 
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national medical data center* 
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INTRODUCTION 

Increasingly, medical professionals are concluding 
that a computerized national center to contain medical 
records of all persons has significant medical advan
tages. Moreover, such a project seems to be becoming 
technically feasible. However, uncertainty about the 
adequacy of physical and legal protections of the pri
vacy of the stored data (and the related compatibility 
of the system with the Fifth Amendment bar to invol
untary self-incrimination) appears to be the major 
stumbling block at this time. Study of that aspect re
veals that it is possible to achieve a level of privacy and 
an observance of Constitutional requirements that are 
entirely satisfactory on an absolute basis and especially 
in light of both the great social benefits in store and the 
degree of protection customary for the particular infor
mation involved. This article provides a blueprint of 
the types of legal inhibitions that should be sufficient 
for the purpose in view of technical measures available. 

To facilitate evaluation of the proposals being made, 
a fairly broad description of the operation of a national 
medical data center is set forth. Next, the types of 
potential jeopardies to privacy and Constitutional pro
tections are indicated. Then, suggested technical pro
tective measures are detailed. Finally, recommended 
legal steps and associated compliance audits are treated. 

It is hoped that this discussion will stimulate an ex
change of views on the important factor of privacy of 
the proposed recorded data so that a consensus can be 
reached fairly promptly on an acceptable approach. 
The potential medical benefits of the suggested central· 
file are so great, both for the persons whose records 
would be available through the system and for society as 
a whole, that the project should be initiated at the 
earliest possible moment. 

*The opinions expressed in this paper are entirely those of the 
author and are not to be attributed to Harbridge House, Inc. 
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The national medical data center 

Many responsible and respected professionals con
eerned with health care believe strongly that a national 
center should be established to contain the medical rec
ords of as many persons in this country as possible. 
This section describes the type of system presently en
visioned in sufficient detail to provide a basis for the 
legal proposals made later. Of course, if a system is set 
up, its actual features well might differ from the follow
ing description of the writer's concept in many respects. 

Medical records would be kept in a very large central 
file for all persons who decide voluntarily, either per
sonally or through their legal representatives (in the 
case of minors or incompetents), to take advantage of 
the opportunity. Such a decision would be manifested 
by signing a request form after at least reading a state
ment of the medical benefits and privacy risks involved 
in participation.1 Participants** would be free to dis
continue adding to their records at any time, simply 
by directing their doctors not to submit information. 
(The fact of discontinuance should be noted in the re
cord.) They also could ask, at any time, for the purging 
of their part of the file. Since the patient's medical re
cordhas been considered to be the property of the doc
tor keeping it (subject to use for the benefit of the pa
tient), the removed material probably would be sent to 
a healing arts practitioner designated by the with
drawing participant rather than to the participant him
self. 

Based upon voluntary participation, largely for their 
own benefit, of persons whose own records would be 
stored, the medical data center is different, in that re
spect, from practically aU other proposed data centers.2 
However, the fact should have no significance in deter
mining the extent to which privacy and Constitutional 
protections should be provided. It should not be neces-

**800 end of paper for footnotes numbered 1-11. 
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sary to sacrifice those protections in order to enjoy bet
ter medical care. 

Incidentally, patient consent might not be legally es
sential for practitioners to file medical information with 
the center. Practitioners may do so, in their own dis
cretion (which essentially could represent a decision to 
use the center as their own file), subject only to their 
general legal obligation to protect the privacy of their 
patients. Lawyers, who have similar professional duties 
to persons they serve, may disclose client identity to out
side data processors.3 The practitioners' obligation re
quires that they avoid disclosing medical information 
associated with the patient's identity to others without 
legal authorization. Such authorization covers disclo
sures of various types of identified sensitive information 
to the patient's family or prospective spouse (mental 
illness or venereal disease), government agencies (conta
gious diseases), and the police (apparent foul play). 
Practitioners who breach that obligation are subject to 
lawsuits for the penalty of money damages, which might 
not be provable. Despite the likelihood that they might 
be free to act on their own decision, most practitioners 
undoubtedly would prefer the validation of express pa
tient consent. 

It would have to be decided whether participants 
may pick and choose information to be included in their 
records while they are participating. There is much 
merit in deciding that only a practitioner may make the 
determination of what will be entered, especially if the 
data are to be used also by researchers and the Food 
and Drug Administration. This would tend to protect 
the reliability of the information. Moreover, that ap
proach is similar to current practice with respect-to 
records kept by doctors themselves. 

Since this article is intended to treat only the privacy 
aspects of the system, rather than its technical or eco
nomic feasibility, no consideration will be given here to 
those two important facets. They undoubtedly will be 
discussed in detail elsewhere, after it has been shown 
how adequate privacy can be achieved. Actually, tech
nical measures necessary for protection of privacy must 
be selected before accurate costs can be calculated. 

The data would be stored in the center's records in 
binary code in a large computer system so that they can 
be located rapidly and accurately and transmitted di
rectly to inquiring practitioners and can be supple
mented easily as further data become available. Infor
mation would be sent in in binary code in some con
venient manner and would be secured from the file by 
means of display-printer terminals (like TV screens) 
readily accessible to practitioners over the country. 
Very likely, data communication techniques would be 
used in both directions. 

Each participant would be identified by his Social 

Security number probably supplemented by the first 
four letters of his last name.4 Similarly, all practitioners 
in the country who would want to inquire about or add 
to the stored data would register themselves by filing 
their own Social Security numbers and information on 
their licenses to practice a healing art. 6 The licensing 
authorities so identified would be notified of such regis
trations and would be requested to inform the center 
when the registrants cease to be practitioners as a result 
of death, disqualification, or other circumstances. 
Likewise, vital statistics bureaus would be requested to 
report deaths to the center for entry in participants' 
records and for correction of the list of practitioners. 
Because, as indicated below, practitioners might have 
. to be issued replacement identification means from time 
to time, their codes might include their Social Security 
numbers plus supplementary numbers or symbols that 
might be varied occasionally. 

Medic9l information entered in the system would be 
alphanumeric only (although it might produce graphi
cal and tabular data as well as narrative statements). 
The precise formal nature of entries would be deter
mined by a study of the feasibility of using standard ab
stracts, formats, and nomenclatures.6 The information 
undoubtedly would include vital statistics, physical 
conditions with medical significance, diseases, treat
ments, allergies, immunizations, doctors' and hospitals' 
names, and like details. It probably also would have 
descriptions and locations of important physical items 
containing information, such as X-ray films and tissue 
slides. 

The stored data would make it possible to provide 
full medical histories to the participants' practitioners 
at all times, regardless of how much the particular per
son has moved or of the fact that he is being seen, in an 
emergency, by a practitioner unacquainted with him. 
(It would be advisable for persons participating in the 
system to carry their identification numbers or wafers 
at all times.) Under the system, it would be unneces
sary for practitioners to keep records on their patients 
except for data in addition to that f:;tored in the system. 
Hospitals also might be able to reduce the size of their 
files in the same manner, at least between confinements. 

The ready availability of the data should make it pos
sible to provide improved medical care in many cases 
based on more information. It also might furnish the 
means for learning of experiences with specific medica
tions, for locating persons who have received treatments 
subsequently discovered to be harmfuI,1 and for per
forming similar functions. 

Direct access, through the terminals, to the stored 
data of specific, identified participants would be per
mitted only to practitioners currently licensed, subject 
to the legal safeguards suggested below. To identify 
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themselves, practitioners would use embossed plastic 
wafers (like credit cards) or similar devices that can be 
read by machine. If additional precautions to control 
access are desired, it might be arranged for each partici
pant to have an identification wafer that would have to 
be inserted into the terminals, along with the practi
tioner's wafer, to release his information. However, 
that measure might prove to be too ~umbersome to be 
useful and might not be essential. 

I t would have to be decided whether participants 
would be permitted to receive print-outs of their data 
routinely, directly by mail, upon written request, 
rather than through their practitioners. It might be 
determined that, for medical reasons, at least some 
types of particularly sensitive medical information, if 
not the entire record, would not be released directly to 
participants. It appears to be current practice for medi
cal file information to be made available to patients 
through practitioners (except for hospital records sub
ject to inspection under statutory or other legal author
ity). 

As indicated, it must be recognized that the center 
file· would represent a medical information resource 
much too valuable to, be reserved solely for clinical 
practitioners. It would be a veritable gold mine for re
searchers, the Food and Drug Administration, the Public 
Health Service, and others, since it could disclose data, 
probably unavailable elsewhere either at all or to a simi
lar extent, on experience with particular treatments, on 
incidence of medical difficulties,8 and on other very 
pertinent matters. To protect privacy, such data could 
be made available directly by the center only to quali
fied reseachers and Government regulatory officers and 
then without an indication of the participants' names. 
The computer can omit those names very easily. If 
some identification is required for follow-up, special 
code numbers, whose deciphering can be-controlled by 
the center, could be used. 

To satisfy Constitutional inhibitions against compul
sory self-incrimination, direct access to the identified 
stored data furnished by participants would be denied 
specifically to all government agencies. In this manner, 
those agencies would be prevented from using the data 
in criminal proceedings against a participant without 
his voluntary action. 

So much for the general nature of the system. It now 
is in order to identify and -evaluate the types of jeop
ardies to privacy and Constitutional protections of the 
stored data that seem to be involved. 

Jeopardies to privacy and constitutional protections 

Privacy and Constitutional protection of data stored 
by the center ostensibly could be in jeopardy in a num
ber of different ways. Probably the major concern 

would be over possible intentional, direct access to per
sonal data by government personnel or by many types 
of persons in the private sector, such as employers, cred
it agencies, insurance companies, and private investi
gators. Also important is the hazard of accidental dis
closure of information to unauthorized persons. Finally, 
there is the danger of unauthorized access through the 
tapping of co:mmunications lines. It is helpful to assess 
the likelihood of those types of intrusions and to com
pare the potential jeopardies they represent with the 
present degree of privacy of the same kinds of medical 
data. 

Since neither the kinds of data to be stored nor the 
jeopardies are novel, it is interesting to note why a 
unique problem seems to arise from the establishment of 
the proposed data center. To many, the sheer assembling 
of the information in one place converts a matter of de
gree into a matter of real difference. Solely by main
taining the current fragmentation of medical files, it ap
pears as if the information is less readily reachable by 
persons not entitled to it. This probably is true if there 
is a real danger that the central file will be used improp
erly to locate specific persons for wrongful purposes by 
categories of information (such as type of disease, in
come, or location of residence). 

Actually, the present repositories" which are doctors' 
offices and hospital record rooms, are no more physically 
secure than the proposed data center and they even 
might be less so in many specific situations. Further
more, they are vulnerable not only to physical intru
sions and ruses but also to use of gover'nment influence, 
especially of police agencies. It is important to deter
mine if there is any actual difference and hence any 
greater danger to privacy and other legal rights from 
operation of a national center. 

Properly, the vulnerabilities of privacy through pres
ent and proposed recordkeeping systems cannot be 
compared in general. The comparison can be made only 
in terms of specific recorded information sought to be 
protected. Information so assessed has two aspects per
tinent to this inquiry, its variety {or comprehensive
ness) and its location. 

In many situations, only one particular medical item 
would be sought by an unauthorized person, and it 
would be in only a single file. That file might be more or 
less secure than the proposed central repository, de
pending upon the circumstances. It well could be much 
less secure in view of traditional handling of files by doc
tors and hospitals. If the person seeking the informa
tion knows where the file is located, then it might be 
more vulnerable than a central file. However, if he does 
not know, then it is uncertain whether locating and se
curing the individual file is more difficult than pene-
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trating the central record. That generally is one type of 
circumstance. 

On the other hand, where the improperly desired data 
are stored among fragmented files of the present type, 
then the relative difficulties of entering many files and 
the proposed central file should be weighed. If it is diffi
cult to identify which small files contain the data, then 
use of a central file at least indicates most readily the 
one that must be attacked. 

The other risks indicated inelude inadvertent disclo
sure (unassociated with ruses) and tapping of communi
cations lines. These risks probably are minimal in pres
ent methods of medical recordkeeping because infor
mation is transmitted by wire relatively infrequently 
and entirely sporadically and randomly and inquiries 
usually are made directly to people. When computers 
are used eventually, apart from the national center, to 
keep medical records for hospitals and quite likely for 
doctors in private practice as well, the danger of inad
vertent disclosure will become greater unless, as is to be 
expected, special precautIOns are taken.9 Then, wire 
communication would be used much more than pres
ently. In view of these likely developments, the dangers 
of a central file should be compared more properly with 
those of non-centralized computerized medicai record
keeping, rather than with present methods. And even in 
the ultimate situation, it is difficult to envision that wire 
tapping for selective information would be practical in 
view of the vast volume of communciation that would 
be involved. Furthermore, in many situations tapping 
of data communications will be substantially more diffi
cult than of voice messages. 

The existence of legal inhibitions and of means for 
auditing compliance with them also is pertinent to a 
comparison of present and potential privacy jeopardies 
to medical records. Presently, legal bars to improper 
disclosure exist almost exclusively in the common law 
rulings of the courts, and penalties, which are civil 
rather than criminal, are uncertain because of the diffi
culties of valuing the damages suffered in terms of dol
lars. Also, few, if any, means are provided now for un
dertaking to detect privacy breaches. Hence, proposed 
legal measures well might be much more effective in 
discouraging intrusions and in setting up ways to dis
cover violations. 

In point of fact, then, the absence of factual data on 
actual experience in the areas of risk identified makes it 
impossible to state with any conviction whether the pres
ent or the proposed method of storing medical data pre
sents a greater danger to the privacy and Constitutional 
rights of the persons involved. 

Nevertheless, despite the impossibility of concluding, 
at this time, that a central medical file introduces a new 
or greater risk in that respect, it is very much in order to 

consider the numerous technical protective measures 
available in the operation of such a file. 

Technical protective measures 

The effectiveness of technical measures to protect 
privacy and Constitutional rights when a data center of 
any sort is operated is influenced by developments in 
electronic digital computer and communications technol
ogies. As the technologies evolve, protective means 
that are more effective and economical become avail
able. Of course, it is unreasonable to recommend the 
adoption of a weak system in the expectation that 
necessary features will come into existence, and that is 
not being done here. Actually, substantial protective 
measures exist already, and they can be expected to be 
improved. It appears that those present measures, in 
conjunction with legal steps recommended below, will 
achieve the full level of protection realistically required 
for a medical data system. 

There are numerous physical protections against in
tentional and inadvertent file intrusions. lO They can be 
evaluated most effectively in light of the risks they are 
intended to cover. Some of those risks can be sug
gested by the types of precautions that are required. 
I t would be necessary, for example, to restrict direct 
access to licensed practitioners, to bar i:mpersonation of 
authorized practitioners, to prevent intentional phys
ical intrusion into the area where the records are 
stored, and to avoid accidental delivery of information 
different from that requested. The specific measures 
that are feasible for those purposes can be examined. 

Access to the file would be secured only by the use' of 
an identification wafer issued to a licensed practitioner. 
When the center learns that a practitioner ceases to be 
authorized or.that his wafer is out of his possession, the 
acceptability of that wafer could be terminated and in
quiries with which it is used would be rejected,u The 
assignment of code identifications and the creation- of 
wafers should be restricted to a small group of center 
personnel who are subject to rigid controls. 

It probably would be desirable to restrict the termi
nals from which inquiries may be made so that access 
could not be gained from outside terminals. To exclude 
intrusion into the wire network by means of other termi
nals, authorized input-output devices might create 
unique signals that can be recognized by the centralsys
tem. It even might be possible to arrange that indi
vidual practitioner's wafers would be acceptable only 
through particular terminals. This probably would be 
entirely satisfactory except in the rare cases in which a 
practitioner . undertakes emergency care away from 
home. 

I t should be possible to establish strict security con-
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trol over the premises in which the center's records are 
stored so that physical intrusions would be difficult. 

If participants' wafers are required, along with those 
of practitioners, in making inquiries, programming mea
sures would insure that only the proper 'files would be 
interrogated. In order to provide for emergencies in 
which the participant's wafer is unavailable, a special 
override should be provided for. If that approach is 
taken, uses of that privilege could be monitored to 
detect abuse. 

All inquiries should be recorded in each r.>articipant's 
record, without exception, and the opportunity to make 
programming changes should be controlled strictly. In 
this way, unauthorized inquiries originating at the cen
ter itself would be revealed. 

It also might be advisable to treat particularly sensi
tive data (such as that on -mental illness or venereal 
disease) specia:Ily, so that it· would be available only 
under very limited circumstances, rather than routinely. 

Although communications lines normally are the 
weakest link because of the possibility of tapping, auto
matic encrypting of messages during transmission is 
possible. However, unless there is great danger of intru
sion in that area, which seems to be very unlikely, the 
substantial cost of that measure probably could not be 
justified. 

The array of technical steps to protect privacy just 
described indicates that computer technology provides 
means of considerable effectiveness in view of the partic
ular risks involved. It also appears that the risks en
tailed in the proposed center are not clearly greater than 
those presently experienced or that will be encountered 
with increased computerization of fragmented records. 
In fact, the study of the feasibility of the center, which 
hopefully will take place soon, probably will reveal; as 
frequent1y is the case, that current arrangements for 
keeping medical records warrant greater attention to 
privacy, if the center is not set up soon. 

Legal protective measures 

Clearly, physical protections alone would not be 
sufficient. People involved in the operation of the sys
tem, including practitioners and center personnel, still 
would have considerable opportunities and incentives to 
breach the privacy of participants. Those people un
doubtedly are the weakest elements in the system. 
Hence, the physical steps must be accompanied by 
legal measures to control the conduct of those people. A 
number of those measures are suggested at this point. 

As in the case of the technical steps, it probably will 
be helpful first to identify the risks those legal restric
tions are intended to cover. They include primarily the 
dangers that persons enjoying access to the stored data 
(including both practitioners and center personnel) 

might misuse their status to pass information on to 
unauthorized persons and that unauthorized persons 
might try to force their way into the system. To mini
mize those risks, it is advisable to establish a series of 
penalties that will have very substantial deterrent 
values. 

Since the center would function nationwide and since 
its sponsorship is not yet identified, it is difficult to sug
gest the precise controlling legal structure that should 
be sought. There are a. number of possible ro~tes to 
arrive at the most reasonable set of legal rules and 
means for enforcing compliance compatible with prac
tical limitations. These routes include legislation, con
tract (including regulations adopted by the center), re
liance upon the common law (as created by the courts), 
and various combinations of those approaches. As 
usual, each o{the routes has its deficiencies. 

Although Federal legislation might be attractive be
cause it ostensibly would promulgate all the required 
rules in one fell swoop for the entire country, there are 
a number of drawbacks to that panacea. Resort to 
Federal help is resisted in some influential quarters. 
Furthermore, many measures might be considered in
appropriate for Federal action, particularly as they 
would add to the business of the Federal courts. Where 
legislation is deemed essential, the alternative is state 
enactment. But persuading all states to adopt laws 
individually could involve an extended, if not futile, 
effort. Support of the National Conference of Conunis
sioners on Uniform State Laws might be enlisted in such 
an effort. 

Since involvement in the center's program would be 
attractive to practitioners and center employees, much 
reliance could be placed on contracts with them. How
ever contractual commitments would bind only their , 
parties, thus leaving many types of troublesome per
sons unrestrained by that means. Furthermore, penal
ties for contract breach might be less effective than 
criminal sanctions and valuable injunctive relief might 
be unavailable. 

By their rulings in individual cases not covered by 
statute law, courts customarily have provided substan
tial protections of legal rights through the common law. 
For example, they have molded most of the various 
rights of privacy and some of the related privileges 
against disclosure of information. Thus, much assistance 
to the center's operations could be expected from the 
courts in the absence of legislation. However, the na
ture of the legal rules that will arise in that manner 
cannot be anticipated in advance and cannot be ex
pected to be uniform among the states, at least for some 
time to come. 

While the strategy is being planned for achieving the 
necessary legal rules that would make the contemplated 



392 Fall Joint Computer Conference, 1968 

center viable, it should be helpful to note the specific 
undesirable conduct vis-a.-vis the center's operations 
that should be discouraged. The acts appropriate for 
criminal or civil condemnation are set out below, and 
possible sanctions are considered. 

Ideally, the following conduct should be made crimi
nal, but much protection would be achieved if such 
action of center personnel and practitioners were barred 
merely by contract: 

1. Delivery by a practitioner or center personnel of 
any information secured from the center to a 
person who is not authorized to receive it under 
then existing law. 

2. Improper intrusion into the system in any way, 
either directly or through practitioners or center 
personnel. 

3. Counterfeiting of an identification wafer of a 
participant or practitioner. 

4. Use by a practitioner of his identification wafer 
while he is not authorized to do so. 

5. Use of someone else's identification wafer under 
any circumstances. 

6. Receipt or use of specifically identified informa
tion secured from the center for any purpose other 
than (a) to provide medical care to the person 
from whose record it came or (b) to transmit it 
under circumstances to which a legal privilege 
applies under then existing law . 

Similarly, it should be made the tort of invasion of 
privacy against a participant (or at least a breach of 
contract, as suggested above) for a practitioner or center 
employee to deliver his medical information to any 
person not specifically authorized to receive it either 
by the participa~t or by the laws on privilege. It like
wise should be made such a tort for a person to receive 
medical information under those circumstances. De
pending upon the circumstances, such a person might be 
guilty of inducing breach of the contract of the center. 

To make the foregoing criminal, civil, and contract 
prohibitions effective, the following penalties probably 
should be imposed by statute and remedies provided by 
contract: 

1. Substantial fines and imprisonment should be 
established as punishment for violations. 

2. Civil suits for money damages and for injunctions 
should be authorized to be brought by the injured 
participants or by the center on their behalf. 
Otherwise, the center would have to sue for breach 
of its contract and liquidated damages should be 
provided for to assure that the penality will be 
significant. 

3. Practitioners who misuse information they secured 

from the center ehould be barred from uee of the 
system. 

4. The writing of malpractice insurance to cover civil 
or criminal losses suffered by practitioners due to 
illegal conduct specified above might be forbidden. 

5. Data secured from the center that were supplied 
by a participant to his practitioner should be un
available to police and inadmissible in criminal 
proceedings against a participant without his 
consent. 

6. All discovery measures (including ordere for the 
production of documents, subpoenas duces tecum, 
interrogatories, and depositions) directed to the 
national center and relating to stored data should 
be forbidden. 

Brief explanation probably is in order concerning the 
recommendation that specified conduct be made crimi
nal. On the one hand, some acts are made criminal that 
are only civil wrongs presently, such as the improper 
delivery by a practitioner of medical information about 
a patient. The more stringent approach seems to be 
warranted in view of the notion that greater harm can be 
perpetrated by using the assembled data. On the other 
hand, the securing of information from center personnel 
or employees of practitioners or hospitals improperly by 
paying money or giving other valuable consideration 
probably is covered by state statutes forbidding com
mercial and government bribing. However, penalties 
for that conduct usually are relatively small and hence 
probably are ineffectual. Reference was made to the pos
sibility that delivery of center data by a practitioner to 
an outsider might be privileged. Statutes and case law 
authorize a doctor to tell persons standing in the posi
tion of the family and even a prospective spouse that his 
patient has a venereal disease, a mental illness, or 
another unusual medical condition. 

The precedent of the collection of census information 
should indicate that operation of a national data file is 
not ipso facto a danger to privacy. The Census Bureau 
apparently has adhered scrupulously to legal bars to its 
disclosure of specific information to anyone. With all of 
the Congressional oversight of Government agencies 
and the many incentives to engage in muckraking, no 
departure from the rules has been revealed. However, 
that experience probably is relevant only as the reliabil
ity of center personnel is concerned. 

The penalties and civil remedies also warrant a few 
words. Criminal penalties should be severe enough 
to discourage violations. Substantially all violations 
would be inspired by hope of personal gain and hence 
might be deterred by making the risk sufficiently great. 
Although many privacy breaches are remedial by 
money damages today, injunctive relief normally is not 
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thought of. That remedy should be provided specifi
cally. It would be useful in preventing further harm 
through the misuse of purloined medical data, for ex
ample, by requiring the taking of action on an insurance 
o! credit application without regard to the information 
secured improperly or the purging of the recipient's 
files of such information. 

IVlore novel is the recommendation that guilty practi
tioners be barred from using the center's system. That 
could be a severe and very effective penalty since use of 
the system would be an essential element of medical 
practice. Participants would want current medical data 
entered in the file and hence would shun a practitioner 
who could not accomplish that, especially if he were 
barred for data misuse. . 

The denial of malpractice insurance coverage for 
criminal privacy breaches involving center data is a 
severe penalty that might harm the injured participant 
more than it helps to prevent his injury. It might be as
sumed that lack of such insural\ce protection will deter 
practitioners from flirting with privacy breaches by ex
posing their personal resources to legal judgments. 
Many practitioners who would engage in violations 
probably would not be influenced by such a prospect 
and might be so marginal financially, as well as ethically 
that they could not compensate participants they in
jured. 

Respect for the spirit of Fifth Amendment protection 
would seem to require that data in the center's records 
furnished directly by a participant to a practitioner not 
be reachable by government prm~ecutors. That being 
so, prosecutors should not be able 10 use such data in 
evidence against participants. 

Finally, it might be advisable to authorize the center 
to bring civil suits on behalf of participants whose pri
vacy has been breached, especially if the intrusion were 
perpetrated by its own personnel. This remedy would 
be similar to that provided under the Wage and Hour 
Law for recovery of back pay through Government 
suits. Since many injured persons might lack resources 
to finance a suit, the assistance of the center could be 
very appropriate. Very similar results could be achieved 
if the center were to pay the legal expense of partici
pants who seek such relief directly, but the center's cost 
might be much greater. Of course, if the center would 
want to sue because of breach of its contracts, it would 
need no special authorization. 

Because injured participants frequently would not 
know of the privacy breaches (as usually they do not 
know presently of harm suffered at the hands of credit 
agencies using incorrect information), provision should 
be made for audits of compliance with the legal rules. 
Even if participants were able to secure copies of their 
own data, many could not analyze the entries that 

reveal inquiries and identify any SUSpICIOUS patterns. 
Moreover, they could not see the records of others, 
which might be necessary to uncover the abuse. Hence, 
only the center itself or an outside responsible agency, 
in the nature of an ombudsman, could conduct effec
tive audits to apprehend guilty practitioners or staff 
personnel. 

The audits would include such action as analyses of 
inquiries of practitioners to look for suspicious access, 
checks on internal activities involving program changes 
that might be used for improper inquiries, and periodic 
direct conununication with participants and practi
tioners to verify the genuineness of inquiries. A cor
rectly designed and efficiently executed audit program 
should be able to detect most of the relatively few pri
vacy breaches that will occur. Awareness of the effec
tiveness of such a program should deter attempts to per
petrate breaches. 

Also pertinent to privacy of center data is the avail
ability of that data in legal proceedings, to which brief 
reference already has been made. Presently, in many 
states, the physician-patient privilege bars disclosure by 
the doctor, without the patient's consent, of informa
tion given by the patient to the doctor in a medicalrela
tionship. In civil actions, the patient himself usually 
may refuse to reveal the information he so gave to his 
doctor. In criminal cases, however, it wou1d be pro
tected from involuntary disclosure by the patient by 
the right against self-incrimination. 

There is good reason to apply to the records kept in 
the proposed center the present privilege rule and re
lated protections against disclosure even by the patient 
himself involuntarily. For that purpose, discovery mea
sures, such as orders for the production of documents, 
subpoenas duces tecum, and interrogatories, would not 
be authorized to be directed to the center for any data. 
They would be available against the participant himself 
and his practitioners, within the framework of existing 
protective rules. Since doctors can be compelled, 
through legal process~ to testify about medical items 
other than information revealed by the patient, which 
would not exclude the fact that a consultation occurred, 
discovery measures should be permitted to be directed 
to the practitioner. 

When patients are confronted with discovery related 
to center data, they could rely upon their privilege and 
Constitutional protections, just as they do now. Simi
larly, at present, it frequently is left to the doctor to 
raise the barrier of the privilege in the first instance, 
although that patient's lawyer very often does so. The 
same procedure well could apply with respect to center 
data. Hence, discovery measures would be usable with 
respect to information in the proposed system with 
litt1e, it any, need to adopt special protective rules. 
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Both these results can be achieved largely by re
garding the center records legally to be the files of 
practitioners rather than separate files with indepen
dent legal status. 

CONCLUSION 

This review indicates that it is in order to pursue in
vestigations of the feasibility of a national medical data 
center without concern that privacy and Constitutional 
considerations constitute an insuperable barrier. Avail
able technical protective means bolstered by accept
able legal measures assure at least as much respect for 
individual rights in medical data as is enjoyed at pres
ent, if not actually more. The great health care bene
fits foreseen by proponents of the project warrant early 
attention to it and would seem to provide whatever 
justification is needed for the legislative action recom
mended. 

FOOTNOTES 

1. This approach resembles the requirement that persons in
vesting in securities subject to a registration st~tement filed with 
the Securities and Exchange Commission receive a copy of the 
prospectus. 

2. It thus is distinguished from employment and credit clearing 
houses. 

3. Informal Opinion 1002, Committee on Professional Ethics, 

American Bar Assn., 54 A. B. A. J. 474 (May 1968). 
4. This is the system used by the Internal Revenue Service in 

its ADP system for processing tax returns. 
5. Realistically, such participation would be open to many 

types of practitioners in addition to medical doctors. Hence, not 
only the name of the person submitting data but also the nature 
of his treatment approach should be recorded to guide subsequent 
inquirers in f'valuating the record. 

6. Such a study is in progress under Burgess L. Gordon, M.D., 
on the staff of the American Medical Association. See Gordon, 
B. L., Biomedical Language and Format, 39 Medical Record News, 
No.2, (April 1968), p. 34. 

7. In Schwartz v. United States, 230 F. Supp. 536 (E. D. Pa. 
1964), it was held that doctors have a duty to review prior records 
readily available and to warn patients of earlier treatment dis
covered to be harmful. 

8. At its Atlanta office, the National Communicable Disease 
Center of the Public Health Service collects data pertinent to . 
its surveillance of epidemics. 

9. For a discussion of some such precautions, see Freed, R. N., 
"Written signatures block the computer revolution," Modern 
Hospital (July 1968), p. 103. 

10. Ware, W., "Security and privacy in computer systems," 
Peters, B., "Security considerations in a multi-programmed com
puter system," Ware, W., "Security and privacy: similarities and 
differences," and Peterson, H. and R. Turn, "System implications 
of privacy." Proceedings AFIPS 1967 Spring Joint Computer 
Conf., pp. 279-300. . 

11. Such attempted misuse should trigger an investigation into 
an apparent effort to violate the system, especially if identifica
tion wafers are used with the result that innocent errors in the 
handling of identification codes are avoided. 
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1 SUMMARY 

laThis paper describes a multisponsor re
search center at Stanford Research Institute in 
man-computer interaction. 

lal For its laboratory facility, the Center 
has a time-sharing computer (65K, 24-bit 
core) with a 4.5 megabyte swapping drum 
and a 96 megabyte file-storage disk. This 
serves twelve CRT work stations simultane
ously. 

1 al a Special hardware completely removes 
from the CPU the burden 'Of display re
freshing and input sampling, even though 
these are done directly out of and into core. 

lalb The display in a user's office appears 
on a high-resolution (875-line) commercial 
television monitor, and provides both char
acter and vector portrayals. A relatively 
standard typewriter keyboard is supple
mented by a five-key handset used (option
ally) for entry of control codes and brief 
literals. An SRI cursor device called the 
"mouse" is used for screen pointing and 
selection. 

lalbl The "mouse" is a hand-held X-Y 
transducer usable on any flat surface; it 
is described in greater detail further on. 

la2 Special-purpose. high-level languages and 
associated . compilers provide rapid, flexible 
development and modification of the reper
toire of service functions and of their control 
proced ures (the latter being the detailed user 

*Principal sponsors are: Advanced Research Projects Agency 
and National Aeronautics and Space Agency (NASl-7897), and 
Rome Air Devebpment Center F30602-68-C-0286. 

actions and computer feedback involved in 
controlling the application 'Of these service 
functions) . 

1 b User files are organized as hierarchical 
structures of data entities, each composed of 
arbitrary combinations of text and figures. A 
repertoire of coordinated service features en
ables a skilled user to c'Ompose, study, and mod
ify these files with great speed and flexibility, 
and to have searches, analyses data manipula
tion, etc. exec~ted. In particular, special sets of 
conventions, functions, and working metho~s 
have been developed to air programming, lOgI
cal design, documentation, retrieval, project 
management, team interaction, and hard-c'opy 
production. 

2 INTRODUCTION 

395 

2a In the Augmented Human Intellect (AHI) 
Research Center at Stanford Research Institute 
a group of researchers is developing an experi
mental'laboratory around an interactive, multi
console computer-display system, and is work
ing to learn the principles by which interactive 
computer aids can augment their intellectual 
capability. 

2b The research objective is to develop prin
ciples and techniques for designing an "aug
mentation system." 

2bl This includes conc.ern not only for the 
technology of providing interactive computer 
service but also for changes both in ways of , .. 
conceptualizing, visualizing, and 'OrganIzIng 
working material/ and in procedures ane! 
methods for working individually and coop
eratively. 
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2c The research approach is strongly empirical. 
At the workplace of each member of the subject 
group we aim to provide nearly full-time avail
ability of a CR T wor~ station, and then to work 
continuously to improve both the service avail
able at the stations and the aggregate value de
rived therefrom by the group over the entire 
range of its roles and activities. 

2d Thus the research group is also the subject 
group in the experiment. 

2.dl Among the special activities of the group 
are the evolutionary development of a com
plex hardware.:.softwal'e system, the design of 
new task procedures for the system's users, 
and careful documentation of the evolving 
system designs and user procedures. 

2d2 The group also has the usual activities 
of managing its activities, keeping up with 
outside developments, publishing reports, etc. 

2d-3 Hence, the particulars of the augmenta
tion system evolving here will reflect the na
ture of these tasks-Le., the system is aimed 
at augmenting a system-development proj ect 
team. Though the primary research -goal is 
to develop principles of analysis and design 
so as to understand how to augment human 
capability, choosing the researchers them
selves as subjects yields as valuable secondary 
benefit a system tailored to help dpvelop com
plex computer-based systems. 

2e This "bootstrap~' group has the interesting 
(recursive) assignment of developing tools and 
techniques to make it more effective at carrying 
out its assignment. 

2el Its tangible product is a developing aug
mentation system to provide· increased capa
bility for developing and studying augmenta
tion systems. 

2e2 This system can. hopefully be transferred, 
as a whole or by pieces of c'Oncept, principle 
and technique, to help others develop augmen
tation systems for aiding many other dis
ciplines and activities. 

2/ In other words we are concentrating fully 
upon reaching the point where we can do all 
of our work. on line-placing in computer store 
all of our specifications, plans, designs, pro
grams, documentation, reports, memos, bibliog-

raphy and reference notes, etc., and doing all 
of our scratch work, planning, designing,- de
bugging, etc., and a good deal of our intercom
munication, via the consoles. 

2/1 We are trying to maximize the coverage 
of our documentation, using it as a dynamic 
and· plastic structure that we continually de
velop and alter to represent the current state 
of our evolving goals, plans, progress, knowl
edge, designs, procedures, and data. 

2g The display-computer system to support this 
experiment is just (at this writing) becoming 
operational. Its functional features serve a 
basic display-oriented user system that we have 
evolved over five years and through three other 
computers. Below are described the principal 
features of these systems. 

3 THE USER S.YSTEM 

3a Basic Facility 

$al As "seen" by the user, the basic facility 
has the following characteristics: 

3ala 12 CRT consoles, of which 10 are 
normally located in offices of AHI research 
staff. 

3al b The consoles are served by an SDS 
940 time-sharing computer dedicated to 
full-time service for this staff, and each 
console may 'Operate entirely independently 
of the others. 

3al c Each individual has private file space, 
and the group has community space, on a 
high-speed disc with a capacity of 96 mil
lion characters. 

3a2 The system is not intended to serve a 
general community of time-sharing users, but 
is being shaped in its entire design toward 
the special needs of the "bootstrapping" ex
periment. 

3b Work Stations 

3bl As n'Oted above, each work station is 
equipped with a display, an alphanumeric 
keyboard, a mouse, and a five-key handset. 

3b2 The display at each of the work s~ations 
(see Figure 1) is provided on a high-resolu
tion, cl'Osed-circuit television monitor. 
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FIGURE I-Typical work station, with TV display, typewriter 
keyboard, mouse, and chord handset 

3b3 The alphanumeric keyb'Oard is similar t'O 
a Teletype keyb'Oard. It has 96 n'Ormal char
acters in two cases. A third-case shift key 
pr'Ovides f'Or future expansi'On, and tW'O spe
cial keys are used f'Or system c'Ontr'Ol. 

3b4 )I1iemQ~seproduces tW'O anal'Og v'Oltages 
asthet W'O wheels (see Figure 2) r'Otate, each 
changing in pr'OP'Orti'On t'O the X 'Or Y m'Ove
ment 'Over the table t'OP. 

3b4a These v'Oltages c'Ontr'Ol-via an AID 
c'Onverter, the c'Omputer's mem'Ory, and the 
display generat'Or-the c'O'Ordinates 'Of a 
tracking SP'Ot with which the user may 
"point" to P'Ositi'Ons 'On the screen. 

3b4b Three butt'Ons 'On t'OP 'Of the m'Ouse 
are used f'Or special c'Ontr'Ol. 

3b4c A set 'Of experiments, c'Omparing 
(within 'Our techniques 'Of interacti'On) the 

FIGURE 2-Underside of mouse 

relative speed and accuracy 'Obtained with 
this and 'bther selecti'On devices sh'Owed the 
m'Ouse t'O be better than a light pen 'Or a j'Oy
stick (see Refs. English 1 and English 2). 

3b4cl C'Ompared t'O a light pen, it is gen
erally less awkward and fatiguing t'O use, 
and it has a decided advantage for use 
with raster-scan, write-thr'Ough st'Orage 
tube, pr'Ojecti'On, 'Or multiviewer display 
systems. 

3b5 The five-key handset has 31 ch'Ords 'Or 
unique key-str'Oke c'Ombinati'Ons, in five 
"cases." 

3b5a The first f'Our cases c'Ontain I'Ower
and upper-case letters and punctuati'On, 
digits, and special characters. (The ch'Ords 
f'Or the letters c'OrresP'Ond t'O the binary 
numbers fr'Om 1 t'O 26.) 

3b5b The fifth case is "c'Ontr'OI case." A 
particular ch'Ord (the same ch'Ord in each 
case) will always transfer subsequent in
put-ch'Ord interpretati'Ons t'O c'Ontr'OI case. 

3 b5 c In c'Ontr'Ol case, 'One can "backspace" 
thr'Ough recent input, specify underlining 
f'Or subsequent input, transfer t'O an'Other 
case visit an'Other case f'Or 'One character , 
'Or 'One w'Ord, etc, 

3b5d One-handed typing with the handset 
is sl'Ower than tw'O-handed typing with the 
standard . keyboard. H'Owever, when the 
user w'Orks with 'One hand 'On the handset 
and 'One 'On the m'Ouse, -the c'O'Ordinated in-



398 Fall Joint Computer Conference, 1968 

. terspersion of control characters and short 
literal strings from one hand with mouse
control actions from the other yields con
siderable advantage in speed and' smooth
ness of operation. 

3b5dt For literal strings longer than 
about ten characters, one tends to trans
fer from the handset to the normal key
board. 

.3b5d2 Both from general experience and 
from specific experiment, it seems that 
enough handset skill to make its use 
worthwhile can generally be achieved 
with about five hours of practice. Be
yond this,' skill grows with usage. 

3c Structure of Files 

3ct Our working information is organized 
into files, with flexible means for users to set 
up indices and directories, and to h'Op from 
file to file by display-selection or by typed-in 
file-name designations. Each file is highly 
structured in its internal organization. 

3cta The specific structure of a given file 
is determined by the user, and is an im
portant part of his conceptual and "study
manipulate" treatment of the file. 

3c2 The introduction of explicit "structur
ing" to 'Our working information stems from 
a very basic feature of our conceptual frame
work (see Refs. Engelbart1 and Engelbart2) 
regarding means for augmenting human in
tellect. 

3c2a With the view that the symbols one 
works with are supposed to represent a 
mapping of one's associated concepts, and 
further that one's concepts exist in a "net
work" of relationships as opposed to the 
essentially linear form of actual printed 
records, it was decided that the concept
manipulation aids derivable from real-time 
computer support could be appreciably en
hanced by structuring conventions that 
would make explicit (for both the user and 
the computer) the various types of network 
relationships among concepts. 

3c2b As an experiment with this concept, 
we adopted some years ago the convention 
of organizing all information into explicit 

hierarchical structures, with provisions for 
arbitrary cross-referencing among the ele
ments of a hierarchy. 

3c2bt The principal manifestation of 
this hierarchical structure is the break
ing up of text into arbitrary segments 
called "statements," each of which bears 
a number showing its serial location in 
the text and its "level" in an "outline" of 
the text. This paper is' an example of 
hierarchical text structure. 

3c2c To set up a reference link from State
ment A -to Statement B, 'One may refer in 
Statement A either to the location number 
of B or to the "name" of B. The difference 
is that the number is vulnerable to subse
quent structural change, whereas the name 
stays with the statement through changes 
in the structure around it. 

3c2ct By convention, the first word of 
a statement is treated as the name of the 
statement, if it is enclosed in paren
theses. F'Or instance, Statement 0 on the 
screen of Figure 1 is named "FJCC." 

3c2c2 References to these names may be 
embedded anywhere in other statements, 
for instance as "see (AFI) ," where spe
cial format informs the viewer explicitly 
that this refers to a statement named 
"AFI," or merely as a string of char
acters in a context such that the viewer 
can infer the referencing. 

3c2c3 This naminga nd linking, when 
added to the basic hierarchical form, 
yields a highly flexible general -structur
ing capability. These structuring con
ventions are expected to evolve relatively 
rapidly as our research progresses. 

3c3 For some material, the structured
statement form may be undesirable. In 
these cases, there are means for suppress
ing the special formatting in the final print
out of the structured text. 

3c4 The basic validity of the structured
text approach has been well established by 
our subsequent experience. 

3c4a We have found that in both off-line 
and on-line computer aids, the concep-
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ti'On, stipulation, and executi'On 'Of sig
nificant manipulati'Ons are made much 
easier by the structuring c'Onventions. 

3c4b Als'O, in w'Orking 'On line at a CRT 
c'Ons'Ole, n'Ot 'Only is manipulati'On made 
much easier and m'Ore P'Owerful by the 
structure, but a user's ability t'O get 
ab'Out very quickly within his data, and 
t'O have special "views" 'Of it generated 
t'O suit his need, are significantly aided 
by the structure. 

3c4c We have c'Ome t'O write all 'Of 'Our 
d'Ocumentati'On, notes, rep'Orts, and pr'O
P'Osals according t'O these c'Onventi'Ons, 
because 'Of the resulting increase in 'Our 
ability to. study and manipulate them 
during c'Omp'Ositi'On, m'Odificati'On, and 
usage. Our pr'Ogramming systems als'O 
inc'Orp'Orate the c'Onventi'Ons. We have 
f'Ound it t'O be fairly universal that after 
an initial peri'Od 'Of negative reacti'On in 
reading explicitly structured material, 
'One c'Omes t'O prefer it t'O material printed 
in the n'Ormal f'Orm. 

3·d File Studying 

3dl The c'Omputer aids are used f'Or tW'O prin
cipal "studying" 'Operati'Ons, b'Oth c'Oncerned 
with c'Onstructi'On 'Of the user's "views," i.e., 
the P'Orti'On 'Of his w'Orking text that he sees 
'On the screen at a given m'Oment. 

3dl a Display Start 

3dlal The first 'Operati'On is finding a 
particular statement in the file (called 
the "display start") ; the view will then 
begin with that statement. This is equiva
lent t'O finding the beginning 'Of a par
ticular passage in a hard-c'OPY d'Ocument. 

3dl b F'Orm 'Of View 

3dl bl The sec'Ond 'Operati'On is the speci
ficati'On 'Of a "f'Orm" 'Of view-it may 
simply c'Onsist 'Of a screenful 'Of text 
which sequentially f'Oll'Ows the P'Oint spec
ified as the display start, 'Or it may be 
c'Onstructed in 'Other ways, frequently S'O 
as t'O give the effect 'Of an 'Outline. 

3dlc In n'Ormal, 'Off-line d'Ocument stUdy
ing, 'One 'Often d'Oes the first type 'Of 'Opera
ti'On, but the sec'Ond is like a siss'Ors-and-

staple j'Ob and is rarely d'One just t'O aid 
'One's studying. 

3dld (A third type 'Of service 'Operati'On 
that will und'Oubtedly be 'Of significant aid 
t'O stUdying is, questi'On answering. We do 
n'Ot have this type 'Of service.) 

3d2 Specificati'On 'Of Display Start 

3d2a The display start may be specified in 
several ways: 

3d2al By direct selecti'On 'Of a statement 
which is 'On the display-the user simply 
P'Oints t'O any character in the statement, 
using the m'Ouse. 

3d2a2 If the desired display start is n'Ot 
'On the display, it may be selected in
directly if it bears a "marker." 

3d2a2a Markers are normally inVISI
ble. A marker has a name 'Of up t'O five 
characters, and is attached t'O a char
acter 'Of the text. Referring t'O the 
marker by name (while h'Olding d'Own 
a special butt'On) is exactly equivalent 
t'O P'Ointing t'O the character with the 
mouse. 

3d2a2b The c'Ontr'OI pr'Ocedures make it 
extremely quick and easy t'O fix and 
call markers. 

3d2a3 By furnishing either the name 'Or 
the I'Ocati'On number 'Of the statement, 
which can be d'One in either 'Of tW'O basic 
ways: 

3d2a3a Typing fr'Om the keyb'Oard 

3d2a3b Selecting an 'Occurrence 'Of the' 
name 'Or number in the text. This may 
be d'One either directly 'Or via an in
direct marker selecti'On. 

3d2b After identifying a statement by 'One 
'Of the ab'Ove means, the user may request 
t'O be taken directly there f'Or his next view. 
Alternately, he may request instead that 
he be taken t'O s'Ome statement bearing a 
specified structure relati'Onship t'O the 'One 
specifically identified. F'Or instance, when 
the user identifies Statement 3E4 by 'One 
'Of the ab'Ove means (assume it t'O be a 
member 'Of the list 3El thr'Ough 3E7), he 
may ask t'O be taken to 
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3d2b1 Its successor, i.e., Statement 3E5 

3d2b2 Its predecessor, i.e., Statement 
3E3 

3d2b3 Its list tail, i.e., Statement 3E7 

3.(i)2b4 Its list head, i.e., Statement 3El 

3d2b5 Its list source, i.e., Statement 3E 

3d2b6 Its subhead, i.e., Statement 3E4A 

3d2e Besides being taken to an explicitly 
identified statement, a user may ask to go 
to the first statement in the file (or the 
next after the current location) that c~n
tains a specified word or string of char
acters. 

3d2e1 He may specify the search string 
by typing it in, by direct (mouse) selec
tion, or by indirect (marker) selection. 

3d3 Specification of Form of Vie'w 

3.d3a The "normal" view beginning at a 
given location is like a frame cut out from 
a long scroll upon which the hierarchical 
set of statements is printed in sequential 
order. Such a view is displayed in Figure 1. 

3d3b Otherwise, three independently vari
able view-specification conditions may be 
applied to the construction of the displayed 
view: level clipping, line truncation, and 
content filtering. The view is simultaneous
ly affected by all three of these. 

3d3b1 Level: Given a specified level 
parameter, L (L = 1, 2, ... , ALL), the 
view generator will . display only those 
statements whose "depth" is less than 
or equal to L. (For example, Statement 
3E4 is third level, 3E second, 4B2Cl fifth, 
etc.) Thus it is possible to see only first
level statements, or only first-, second-, 
and third level statements, for example. 

3d3b2 Truncation: Given a specified 
truncation parameter, T (T = 1, 2, ... , 
ALL), the view generator will show only 
the first T lines of each statement being 
displayed. 

3d3b3 Content: Given a specification for 
desired content ( written in a special 
high-level content-analysis language) the 
view generator optionally can be directed 

to display only those statements that 
have the specified content. 

3.d3b3a One can specify simple strings, 
or logical combinations thereof, or such 
things as having the word "memory" 
within four words of the word "alloca
tion." 

3d3b3b Content specifications are writ
ten as text, anywhere in the file. Thus 
the full power of the system may be 
used for composing and modifying them. 

3d3b3e Anyone content specification can 
then be chosen for application (by select
ing it directly or indirectly). It is com
piled immediately to produce a machine
code content-analysis routine, which is 
then ready to "filter" statements for the 
view generator. 

3d3e In addition, the following format fea
tures of the display may be independently 
varied: indentation of statements accord
ing to level, suppression of location num
bers and/or names of statements, and sepa
ration of statements by blank lines. 

3d3d. The user controls these view speci
fications by means of brief, mnemonic char
actercodes. A skilled user will readjust 
his view to suit immediate needs very 
quickly and frequently; for example, he 
may change level and truncation settings 
several times in as many seconds. 

3d4 "Freezing" Statements 

3d4a One may also pre-empt an arbitrary 
amount of the upper portion of the screen 
for holding a collection of "frozen" state
ments. The remaining lower portion is 
treated as a reduced-size scanning frame, 
and the view generator follows the same 
rules for filling it as described above. 

3d4b The frozen statements may be inde
pendently chosen or dismissed, each may 
have line truncation independent of the 
rest, and the order in which they are dis
played is arbitrary and readily changed. 
Any screen-select operand for any com
mand may be selected from any portion of 
the display (including the. frozen state
ments). 
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3d5 Examples 

3d5a Figures 3 and 4 sh'Ow views generated 
fr'Om the same starting p'Oint with different 
level-clipping parameters. This example hap
pens t'O be 'Of a pr'Ogram written in 'Our Ma
chine-Oriented language (MOL, see bel'Ow). 

3d5b Figure 5, dem'Onstrates the freezing 
feature with a view 'Of a pr'Ogram (the same 
'One sh'Own in Figure 8) written in 'Our C'On
tr'Ol Metalanguage (CML, see bel'Ow). State
ments 3C, 3C2, 2B, 2Bl, 2B2, 2B3, and 2B4 
are fr'Ozen, and statements fr'Om 2J 'On are 
sh'Own n'Ormally with L = 3, T == 1. 

3d5b1 The freezing here was used t'O h'Old 
f'Or simultane'Ous view f'Our different func
ti'Onally related pr'Ocess descripti'Ons. 
The subr'Outines (+ BUGISPEC) and 
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FIGURE 3-View of an MOL program, with level parameter 
set to 3 and truncation to 1 

FIGURE 4-Same program as Figure 3, but with level parameter 
changed to 6 (several levels still remain hidden from view) 
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FIGURE 5-View of CML program, showing six frozen state
ments and illustrating use of reference hopping 

3e 

3/ 

( + WAIT were l'Ocated by use 'Of the 
h'Op-t'O-name feature described ab'Ove. 

File Modification 

3e1 Here we use a standard set 'Of editing 
'Operati'Ons, specifying with each 'Operati'On a 
particular type 'Of text entity. 

3e1a Operati'Ons: Delete, Insert, Replace, 
M'Ove, C'Opy. 

3e1 b Entities (within text 'Of statements) : 
Character, Text (arbitrary strings), W'Ord, 
Visible (print string) , Invisible (gap 
string) . 

3e1c Entities (f'Or structure manipula
ti'On): Statement, Branch (statement plus 
all substructure), Gr'Oup (sublist 'Of branch
es), Plex (c'Omplete list 'Of branches). 

3e2 Structure may als'O be m'Odified by j'Oin
ing statements, 'Or breaking a statement int'O 
tw'O at a specified p'Oint. 

3e3 Generally, an 'Operati'On and an entity 
make up a c'Ommand, such as "Delete W'Ord." 
T'O specify the c'Ommand, the user types the 
first letter 'Of each w'Ord in the c'Omm,and: 
thus "DW'" specifies "Delete W'Ord." There 
are 'Occasi'Onal cases where a third w'Ord is 
used 'Or where the first letter cann'Ot be used 
because 'Of ambiguities. 

File Output 

3f1 Files may be sent t'O any 'Of a number 'Of 
different 'Output devices t'O pr'Oduce hard 
c'Opy-an upper/I'Ower-case line printer, an 
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on-line high-quality typewriter,· or paper tape 
to drive various typewriters. 

3/1a In future it will be possible to send 
files "via magnetic tape to an off-line CRT
to-film system from which we can produce 
Xerox prints, M ultilith masters, or micro
form records. 

3/2 Flexible format control may be exercised 
in this process by means of specially coded 
directives embedded in the files-running 
headers, page numbering, line lengths, line 
centering, suppression of location numbers,. 
indenting, right justification (hyphenless), 
etc., are controllable features. 

3 g Compiling and Debugging 

3 g 1 Source-code files written in any of our 
compiler languages (see below), or in the 
SDS 940 assembly language (ARPAS, in 
which our compiler output is produced) may 
be compiled under on-line control. For de
bugging, we have made a trivial addition to 
the S.DS 940's DDT loader-debugger so as to 
operate it from the CRT displays. Though it 
was designed to operate from a Teletype 
terminal, this system gains a great deal in 
speed and power by merely showing with a 
display the last 26 lines of what would have 
been on the Teletype output. 

3 h Calculating 

3hl The same small innovation as mentioned 
above for DDT enables us to use the CAL 
system from a display terminal. 

3i Conferencing 

3il We have set up a room specially equipped 
for on-line conferencing. Six displays are 
arranged in the center of a square table (see 
Figure 6) so that each of twenty participants 
has good visibility. One participant controls 
the system, and 'all displays show the same 
view. The other participants have mice that 
control a large arrow on the screen, for use 
as a pointer (with no control function). 

3i2As a quick means of finding and display
ing (with appropriate forms of view) any 
desired material from a very large collection, 
this system is a powerful aid to presentation 
and review conferences. 

FIGURE 6-0n-line conference arrangement 

3i3 Weare also experimenting with it in 
project meetings, using it not only to keep 
track of agenda items and changes but also 
to log progress notes, action notes, etc. The 
review aid is of course highly useful here 
also. 

3i4 We are anxious to see what special con
ventions and procedures will evolve to allow 
us to harness a number of independent con
soles within a conference group. This obvi
ously has considerable potential. 

4- SERVICE-SYSTEM SOFTWARE 

4a The User's Control Language 

J,.al Consider the service a user gets from 
the computer to be in the form of discrete 
operations-L e., the execution 'Of individual 
"service functions" from a repertoire com
prising a "service system." 

4al a Examples of service functions are 
deleting a word, replacing a character, 
hopping to a name, etc. 

4a2 Associated with each function of this 
repertoire is a "control-dialogue procedure." 
This procedure involves selecting a service 
function from the repertoire, setting up the 
necessary parameter designations for a par
ticular application, recovering from user 
errors, and calling for the execution of 'the 
function. 

4a2aThe procedure is made up of the 
sequence. of keystrokes, select actions, etc. 
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made by the user, together with the inter
spersed feedback messages from the com
puter. 

J"a3 The repertoire of service functions, to
gether with their control-dialogue procedures, 
constitutes the user's "control language." 
This is a language for a "master-slave" dia
logue, enabling the user to control applica
tion of the computer's capabilities to his 'Own 
service. 

J"a3a It seems clear that significant aug
mentation of one's intellectual effectiveness 
from the harnessing of computer services 
will require development of a broad and 
sophisticated control-language vocabulary. 

J"a3b It follows that the evolution of such 
a control language is a very important part 
of augmentation-system research. 

J"aJ" For the designer of user systems, it is 
important to have good means for specifying 
the nature of the functions and their respec
tive control-dialogue procedures, so that a 
design specification will be 

J"aJ"a Concise, so that its essential features 
are easily seen 

J"aJ"b Unambiguous, so that questions about 
the design may be answered clearly 

J"aJ"c Canonical, so that information is 
easily located 

J"aJ"d Natural, so that the form of the de
scription fits the conceptual frame of the 
design 

J"aJ"e Easy to compose, study, and modify, 
, so that the pr~cess of evolutionary design 

can be facilitated. 

J"a5 It is also important for the user to have 
a description of the service functions and 
their control-dialogue procedures. 

J"a5a The description must again be con
cise, unambiguous, canonical, and natural; 
furthermore, it must be accur~te, in that 
everything relevant to the user about the 
service functions and their control-dialogue 
procedures is described, and everything de
scribed actually works as indicated. 

FIGURE 7-State-chart portrayal of part of the text-manipula
tion controlls,nguage 

J"b State-Chart Representation of Control-Lan-
guage Design 

J"bl Figure 7 shows a charting method that 
was used in earlier stages of our work for 
designing and specifying the control-pro
cedure portions of the control language. 
Even though limited to describing only the 
control-dialogue procedures, this representa
tion nonetheless served very well and led us 
to develop the successive techniques described 
bel'Ow. 

J"b2 Figure 7 shows actual control procedures 
for four service functions from the repertoire 
of an interactive system: Delete Word, De
lete Text, Place Up Statement, and Forward 
Statement. 

J"b2a The boxes contain abbreviated de
scriptions of relevant display-feedback 
conditions, representing the intermediate 
states between successive user actions. 
Both to illustrate how the charting con
ventions are used and to give some feeling 
for the dynamics of our user-system con
trol procedures, we describe briefly below 
both the chart symbols and the associated 
display-feedback conventions that we have 
developed. 

J"b2ul The writing at the top of each 
box indicates what is to be shown aF 
"command feedback" at the top of the 
display (see Figures 3, 4 and 5). 

J"b2ala An uparrow sometimes ap-
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pears under the first character 'Of one 
'Of the w'Ords 'Of C'Ommand Feedback. 

J"b2alal This indicates t'O the user 
that the next character he types will 
be interpreted as designating a new 
term t'O replace that being p'Ointed 
t'O-n'O uparrow under C'Ommand 
Feedback signifies that keyb'Oard ac
ti'On will n'Ot affect the c'Ommand 
designati'On. ' 

J"b2alb "Entity" represents the entity 
w'Ord (i.e., "character," "w'Ord, "state
ment," etc.) that was last used as part 
'Of a fully specified c'Ommand. 

J"b2al bl The c'Omputer 'Often "'Of
fers" the user an entity 'Opti'On. 

J"b2a2 The circle in the box indicates the 
character t'O be used f'Or the "bug" (the 
tracking sp'Ot), which alternates between 
the characters uparr'Ow and plus. 

J"b2a2a The uparr'Ow indicates that a 
select acti'On is appr'Opriate, and the 
plus indicates that a select acti'On is 
ina ppr'Opriate. 

J"b2a3 The string 'Of X's,' with under
lines, indicates that the selected char
acters are t'O be underlined as a means 
'Of sh'Owing the user what the c'Omputer 
thinks he has selected. 

J"b2b There is frequently an X on the 'Out
put line fr'Om a b'Ox on the chart. This indi
cates that the c'Omputer is t'O wait until the 
user has made an'Other acti'On. 

J"b2bl After this next acti'On, the c'Om
puter f'Oll'Ows a branching path, depend
ing up'On what the acti'On was (as indi
cated 'On the chart) t'O reach an'Other 
state-descripti'On b'Ox 'Or 'One 'Of the func
ti'On-executi'On pr'Ocesses. 

J"c The Control Metalanguage 

J"cl In search for an impr'Ovement 'Over the 
state chart, we lo'Oked for the f'Ollowing spe
cial features, as well as the general features 
listed ab'Ove: 

J"cla A representati'Onal f'Orm using struc
tural text S'O as t'O harness the power of 
'Our 'On-line text-manipulati'On techniques 

f'Or c'Omp'Osing, studying, and m'Odifying 
our designs. 

J"cl b A f'Orm that w'Ould all'Ow us t'O specify 
the service functi'Ons as well as the c'Ontr'Ol
dial'Ogue pr'Ocedures. 

J"clc A f'Orm such that a design-descrip
ti'On file c'Ould be translated by a c'Omputer 
pr'Ogram int'O the actual implementati'On 'Of 
the c'Ontr'Ol language. 

J"c2 Using 'Our Tree Meta c'Ompiler-c'Ompiler 
(described bel'Ow), we have devel'Oped a next 
step f'Orward in 'Our means 'Of designing, 
specifying, implementing and documenting 
'Our 'On-line c'Ontr'Ol languages. The result is 
called "C'Ontr'Ol Metalanguage" . (CML). 

J"c2a Figure 8 sh'Ows a p'Orti'On 'Of the de
scripti'On f'Or the current c'Ontr'Ol language, 
written in C'Ontr'Ol Metalanguage. 

J"c2al This language is the means f'Or 
describing b'Oth the service functi'Ons and 
their c'Ontr'Ol-dial'Ogue pr'Ocedures. 

J"c2b The C'Ontr'Ol Metalanguage Trans
lat'Or (CMLT) can' pr'Ocess a file c'Ontain
ing such a descripti'On, t'O pr'Oduce a c'Orre
sp'Onding versi'On of an interactive system 
which resp'Onds t'O user acti'Ons exactly as 
described in the file. 

J"c3 There is a str'Ong c'Orresp'Ondence be
tween the c'Onventi'Ons f'Or representing the 
c'Ontr'Ol pr'Ocedures in Contr'Ol Metalanguage 
and in the state' chart, as a c'Omparis'On 'Of 
Figures 8 and 7 will reveal. 

J"c3a The particular example printed 'Out 
f'Or Figure 8 was ch'Osen because it specifies 
s'Ome 'Of the same pr'Ocedures as in Figure 7. 

J"c3b F'Or instance, the steps 'Of display
feedback states, leading t'O executi'On 'Of the 
"Delete W'Ord" functi'On, can readily be f'Ol
l'Owed in the state chart. 

J"c3bl The steps are pr'Oduced by the 
user typing ".D," then "W," then select
ing a character in a given w'Ord, and then 
hitting "c'Ommand accept" (the CA key). 

J"c3 b 2 The c'Orresp'Onding steps are 'Out
lined bel'Ow f'Or the C'Ontr'Ol Metalanguage 
descripti'On 'Of Figure 8, pr'Ogressing 
fr'Om Statement 3, t'O Statement 3c, t'O 



Research Center for Augmenting Human Intellect 405 

Statement 3c2, to Subroutine + BUG
SPEC, etc. 

4c3c These same steps are indicated in 
Figure 8, starting from Statement 3: 

4c3b3 The points or regions in Figure 7 
corresponding to these statements and 
subroutines are marked by (3), (3C), 
(3C2), and (+ BUGISPEC), to help 

4c3cl ".D" sets up the state described in 
Statement 3C 

4c3c2 "W" sets up the state described 
in Statement 3C2 compare the two representations. 

'FIGURE 8-Metalanguage description of part of control language 

3 (wc:) zap case 

3A (b) [edit] dsp(backward tes*). case 
• 
• 
• 

38 (c) [edit] dsp(copy tes*) :s true .> <am>adj1: • case 

381 (c) s*·cc dsp(tcopy character) e*.c,character +bug2spec 
+cdlim(bl,p1,p2,p3,p4) +cdlim(b2,pS,p6,p7,p8) 
+cpchtx(b1,p2,p4,pS,p6) ; 

382 (w) s*·cw dsp(tcopy word) e*=w,word +hug2spec 
+wdr2(bl,pl,p2,p3,p4) +wdr2(b2,pS,p6,p7,p8) 
+cpwdvs(bl,p2,p4,pS,p6) ; 

383 (1) s*·cI dsp(tcopy line) e*=I,Iine +bug2spec 
+Idlim(b1,p1,p2,p3,p4) +Idlim(b2,pS,p6,p7,p8) :c st b1+sf(b1) p2, 
rif :p p2>p1 cr: then (cr) else (null) , pS p6, p4 se(bl): goto 
[s) 

384 (v) s*·cv dsp(tcopy visible) e*=v,visible +bug2spec 
+vdr2(bl,pl,p2,p3,p4) +vdr2(b2,pS,p6,p7,p8) 
+cpwdvs(bl,p2,p4,pS,p6) ; 
• 
• 
• 
3b10 endcase +caqm ; 

3C (d) [edit] dsp(delete tes*) • case 

3C1 (c) s*=dc dsp(tdelete character) e*=c,character +buglspec 
+cdlim(bl,pl,p2,p3,p4) +del; 

3C2 (w) s*=dw dsp(tdelete word) e*=w,word +buglspec +wdr 
(bl,pl,p2,p3,p4) +del ; 

3C3 (1) s*=dI dsp(tdelete line) e*-I,Iine +buglspec ••• 
• 
• 
• 
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4c3c3 The subroutine +BUG1SPEC 
waits for the select-word (1) and CA 
(2) actions leading to the execution of 
the delete-word function. 

4c3c3a Then the TWDR subroutine 
takes the bug-position parameter and 
sets pointers Pl through P4 to delimit 
the word in the text data. 

4c3c3b Finally, the + DEL subroutine 
deletes what the pointers delimit, and 
then returns to the last-defined' state 
(i.e., to where S* = DW). 

.t,d Basic Organization of the On-Line System 
(NLS) 

4d1 Figure 9 shows the relationships among 
the major components of NLS. 

4d2 The Tree Meta Translator is a processor 
specially designed to produce new translators. 

4d2a There is a special language-the Tree 
Meta Language-for use in describing the 
translator to ,be produced. 

4d-2b A special Tree Meta library of sub
routines must be used, along with the 'Out
put 'Of the Tree Meta Translator, to pro-:
duce a functioning new translator. The 
same library serves for every translator it 
produces. 

DISCRIPTlON, IN 
CONTROL META

LANGUAGE 

LIBRARY SUB-
ROUTINE DESCRIP-

TION IN MOL 

CRT WORK STATION 

OPERATING ON LINE 
SYSTEM (NLSI 

FIGURE 9-Basic organization of NLS showing use of compilers 
and compiler-compiler to implement it 

4d3 For programming the vari'Ous subrou
tines used in our 940 systems, we have de
vel'Oped a special Machine-Oriented Language 
(MOL), together with an MOL Translator to 
convert MOL program descriptions int'O ma
chine code (see Ref. Hay1 for a complete 
description) . 

4d3a The MOL is designed to facilitate 
system programming, by providing a high
level language for iterative, conditional, 
and arithmetic 'Operati'Ons, etc., along with 
a block structure and conventions for label
ing that fit our structured-statement on
line manipUlation aids. 

4d3a1 These permit sophisticated com
puter aid where suitable, and also allow 
the programmer to switch to machine
level coding (with full access to varia
bles, labels, etc.) where core space, speed, 
timing, core-mapping arrangements, etc., 
are critical. 

4d4 The NLS is organized as follows (letters 
refer to Figure 9) : 

4d4a The Control Processor (E) receives 
and processes successive user actions, and 
calls upon subroutines in the library (H) 
to provide it such services as the following: 

4d4a1 Putting display feedback on the 
screen 

4d4a2 Locating certain data in the file 

4d4a3 Manipulating certain working data 

4d4a4 Constructing a display view 'Of 
specified data according to given view
ing parameters, etc. 

4d4b The NLS library subroutines (H) 
are produced from MOL programs (F) , 
as translated by the MOL Translator (G). 

4d4c The Control Processor is produced 
from the control-language description (D), 
written in Control Metalanguage, as trans
lated by the CMLT (C). 

4d4d The CMLT, in turn, is produced from 
a description (A) written in Tree Meta, as 
translated by the Tree Meta Translator 
(B). 
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4d5 Advantages 'Of Metalanguage Approach 
to NLS Implementation 

4d·5a The metalanguage approach gives us 
impr'Oved means for c'Ontr'Ol-language spec
ification, in terms 'Of being unambigu'Ous, 
concise, can'Onical, natural and easy t'O com
p'Ose, study and m'Odify. 

4d5b M'Ore'Over, the Control Metalanguage 
specification promises to pr'Ovide in itself a 
users' documentati'On that is c'Ompletely 
accurate, and also has the ab'Ove desirable 
characteristics to facilitate study and refer
ence. 

4d5c Modifying the c'Ontrol-dial'Ogue pr'O
cedures for existing functi'Ons, or making 
a reasonable range 'Of changes 'Or additions 
to these fUllcti'Ons, can 'Often be acc'Om
plished s'Olely by additions or changes t'O 
the c'Ontrol-language record (in CML). 

J"d5cl With 'Our on-line studying, ma
nipulating and compiling techniques, 
system additions 'Or changes at this level 
can be thought out and implemented 
(and aut'Omatically documented) very 
quickly. 

4d5d New functions that require basic 
operations n'Ot available through existing 
subroutines in the NLS library will need 
to have new subr'Outines specified and pro
grammed (in MOL), and then will need 
new terms in CML to p~rmit these new 
functi'Ons t'O be called . upon. This latter 
requires a change in the record (A), and 
a new compilation 'Of CMLT by means 'Of 
the Tree Meta Translator. . 

"*d5dl On-line techniques for writing 
and m'Odifying the MOL source code (F), 
for executing the compilati'Ons, and f'Or 
debugging the r'Outines, greatly reduce 
the eff'Ort involved in this process. 

5 SERVICE-SYSTEM HARDWARE (OTHER 
THAN SDS 940) 

5a In additi'On t'O the SDS 940, the facility in
cludes peripheral equipment made by other 
manufacturers and. equipment designed and 
c'Onstructed at SRI. 

5b All 'Of the non-SDS equipment is interfaced 
through the special devices channel which con-

nects to the second. memory buss through the 
SDS memory interface connection (MIC). 

5bl This equipment, t'Ogether with the RAD, 
is a significant l'Oad on the second memory 
buss. Not including the pr'Op'Osed "special 
operati'Ons" equipment, the maximum ex
pected data rate is approximately ~64,OOO 

words per second or 'One 'Out 'Of every 2.1 
memory cycles. Howeve~, with th-e- 940 varia
ble pri'Ority scheme for memory access (see 
Pirtlel ), we expect less than 1 percent de
gradati'On in CPU efficiency due to this load. 

5b2 This channel and the controllers (with 
the exception 'Of the disc contr'Oller) were de
signed and c'Onstructed at SRI. 

5b2a In the design 'Of the hardware serv
ing the w'Ork stati'Ons, we have attempted 
to minimize the CPU burden by making 
the system as automatic as possible in its 
access t'O mem'Ory and by formatting the 
data in memory so as to minimize the 
executive time necessary to process it f'Or 
the users. 

5c Figure 10 is a block diagram 'Of the special
devices channel and ass'Ociated equipment. The 
major c'Omponents are as follows: 

5cl Executive Control 

5cla This is essentially a sophisticated 
multiplexer that allows independent, asyn
chronous a·ccess t'O core fr'Om any of the 
6 c'Ontrollers c'Onnected to it. Its functions 
are the f'Ollowing: 

.5clal Dec'Oding instructi'Ons fr'Om the 
computer and passing them al'Ong as 
signals t'O the contr'Ollers. 

5 cl a2 Accepting addresses and requests 
f'Or memory access· (input 'Or 'Output) 
fr'Om the controllers, determining rela
tive priority am'Ong the contr'Ollers, syn
chronizing t'O the c'Omputer cl'Ock, and 
passing the requests al'Ong to memory via 
the MIC. 

5clb The executive c'Ontr'Ol includes a com
prehensive debugging panel that allows 
any 'Of the 6 c'Ontr'Ollers t'O be operated off
line with'Out interfering with the 'Operati'On 
'Of 'Other controllers. 
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5c2 Disc File 

5c2a This is a Model 4061 Bryant disc, 
selected for compatibility with the con
tinued 940-system development by Berke
ley's Project GENIE, where extensive file
handling software was developed. 

5c2b As formatted for our use, the disc 
will have a storage capacity of approxi
mately 32 million words, with a data-trans
fer rate of roughly 40,000 words per second 
and average access time of 85 milliseconds. 

5c2c The disc controller was designed by 
Bryant in close cooperation with SRI and 
Project GENIE. 

5c3 Display System 

5c3a The display systems consists of two 
identical subsystems, each with display con-

troller, display generator, 6 CRT's, and 6 
closed-circuit television systems. 

5c3b The display controllers process dis
play-command tables and display lists that 
are resident in core, and pass along dis
play-buffer contents to the display genera
tors. 

5c3c The display generators and CRT's 
were developed by Tasker Industries to our 
specifications. Each has general character
vector plotting capability. They will accept 
display buffers consisting of instructions 
(beam motion, character writing, etc.) 
from the controller. Each will drive six 
5-inch high-resolution CRT's on which the 
display pictures are produced. 

5c3cl Character writing time is approxi
mately 8 microseconds, allowing an aver-

FIGURE 10-Special devices channel 
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age of 1000 characters on each of the six 
monitors when regenerating at 20 cps. 

5c3d A .high-resolution (875-line) closed
circuit television system transmits display 
pictures from each CRT to a television 
monitor at the corresponding work-station 
eons'Ole. 

5 c3 e This system was developed as a "best 
solution" to our experimental-Iab'Oratory 
needs, but it turned out to have properties 
which seem valuable for more widespread 
use: 

5c3el Since only all-black or all-white 
signal levels are being treated, the scan
beam current on the cameras can be re
duced to achieve a short-term image
storage effect t~at yields flicker-free TV 
output even when the display refresh 
rate is as low as 15 cps. This allows a 
display generator to sustain about f'Our 
times more displayed material than if 
the users were viewing direct-view re
freshed tubes. 

5 c3 e2 The total cost of small CRT, TV 
camera, amplifier-controller} and monitor 
came to about $5500 per work station
where a rand'Om-deflection, display-qual
ity CRT of similar size would cost con
siderably more and would be harder to 
drive remotely. 

5c3e3 Another cost feature which is 
very important in some system environ
ments favors this TV approach: The ex
pensive part is centrally located; each 
outlying monitor costs only about $600, 
so terminals can be set up even where 
usage will be low, with some video 
switching in the central establishment to 
take one terminal down and put another 
up. 

5c3e4 An interesting feature of the video 
system is that with the flick of a switch 
the video signal can be inverted, S'O that 
the image picked up as bright lines on 
dim background may be viewed as black 
lines on a light backgr'Ound. There is a 
definite user preference for this inverted 
form of display. 

5c3i In addition to the advantages noted 
above, the television display also invites 
the use of such commercially available de
vices as extra cameras, scan converters, 
video switches, and video mixers to enrich 
system service. 

5c3jl For example, the video image of a 
user's computer-generated display could 
be mixed with the image from a camera 
focused on a collaborator at another ter
minal; the tw'O users could communicate 
through both the computer and a voice 
intercom. Each user would then see the 
'Other's face superimp'Osed on the display 
of data under discussion. 

5c3i2 Superimposed views from cameras 
focused on film images or drawings, or 
on the computer hardware, might also 
be useful. 

5c3i3 We have experimented with these 
techniques (see Figure 11) and found 
them to be very effective. They promise 
to add a great deal to the value of re
mote display terminals. 

5c4 Input-Device Controller 

5c,4,a In addition to the television monitor, 
each work-station console has a keyb'Oard, 
binary keyset, and mouse. 

5 c4b The controller reads the state of these 

FIGURE ll-Television display obtained by mixing the video 
signal from a remote camera with that from the computer

generated display 
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devices at a preset interval (ab'Out 30 milli
sec'Onds) and writes it int'O a fixed I'Ocati'On 
table" in c'Ore. 

5c4bl Bits are added t'O inf'Ormati'On 
fr'Om the keyb'Oards, keysets and m'Ouse 
switches t'O indicate when a new char
acter has been received 'Or a switch has 
changed state since the last sample. If 
there is a new character 'Or switch 
change, an interrupt is issued after the 
sample peri'Od. 

5c4b2 The m'Ouse c'O'Ordinates are f'Or
matted as a beam-P'Ositi'Oning instructi'On 
to the display generat'Or. Pr'Ovisi'Ons are 
made in the display c'Ontr'Oller f'Or in
cluding an entry in the m'Ouse-P'Ositi'On 
table as a display buffer. This all'Ows 
the m'Ouse P'Osition t'O be c'Ontinuously 
displayed with'Out any attenti'On fr'Om the 
CPU. 

5c5 Special Operati'Ons 

5c5a The b'OX with this label in Figure 10 is 
at this time 'Only a pr'Ovisi'On in the execu
tive contr'Ol fur the additi'On 'Of a high-speed 
device. We have tentative plans f'Or add
ing special hardware here t'O pr'Ovide 'Opera
ti'Ons n'Ot available in the 940 instructi'On 
set, such as character-string m'Oves and 
string-pattern nlatching. 

5c6 Low-Priority Devices 

5c6a This c'Ontr'Oller acc'Omm'Odates three 
devices with relatively l'Ow data-transfer 

rates. At this time 'Only the line printer is 
implemented, with provisions f'Or adding 
an 'On-line typewriter (Dura), a pl'Otter, 
and a terminal f'Or the proposed ARPA 
computer network. 

5c6al The line printer is a P'Otter M'Odel 
HSP-3502 chain printer with 96 print
ing characters and a speed 'Of about 230 
lines per minute. 
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An approach to simulation model development for 
improved planning* 

by JAMES L. McKENNEY 

H arvard University 
Cambridge, Massachusetts 

INTRO.D·UCTION 

This paper proposes an approach to planning 
which relies 'On involving the manager in the de
velopment of a simulation model. The purpose of 
this involvement is to improve the manager's un
derstanding of his environment; and' therefore, 
the appropriateness of his plans. The approach is 
hased upon the premise that active planning is a 
learning process. This premise is the result of 
experience in several modeling projects and a 
clinical study of _a manager developing a simula
tion mode!.1-

Active planning involves the manager in a con
tinuous search and analysis of the significant 
causal factors influencing the future of his busi
ness. This search process is normally conducted 
by creating comprehensive plans which commit 
resources of the business for three to five years. 
These plans are then revised and extended as the 
environment changes, in accordance _ with some 

-periodic schedule. The function of the simulation 
model in the planning process per se is to serve as 
an experimental device to allow the manager to 
evaluate alternative plans and in the process con
sider different concepts of his business.-By con
cept we mean an articulation of the significant 
factors influencing the profitability of a firm and 
how they see-m to relate to the firm. A simulation 

*This study was supported in part by funds made available 
by the Ford Foundation to the Graduate School of Business, 
Stanford University. The conclusions, opinions, and other state
ments contained in this publication are, of course, those of the 
author, This working paper should not be quoted or reproduced 
in whole or in part without the written consent of the author. 
Comments are solicited and should be addressed directly to the 
author. 
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model is an explicit representati'on of· how these 
influences could affect the firm. As such it pro
vides a manipulatable structure with which to 
represent alternative actions the firm could take 
and define the economic outcome of such responses. 
We suggest the model can also serve as a stimulus 
to create a broader range 'Of testable concepts 
which improve as to their pertinence in explaining 
and identifying forces influencing the future of 
the firm through time, thus, a stimulus to learning. 
It is for this reason that simulation model develop
ment is a unique and powerful approach to plan-
ning. 

Pri'Or to the present era, planning structures or 
models were often rigorous economic models con
cerned with long-term predictability rather than 
specific opportunities. In addition, the model was 
typically characterized in symbolic terms foreign 
to the experience 'Of the manager and difficult to 
relate directly to decision problems. He typically 
dealt with the model and the model builder as most 
other staff activities within a business by gauging 
their usefulness in resolving planning issues. If 
the staff man was persuasive, the manager over 
time would rely upon the modeler and his model 
to help him commit future res'Ources. It would 
seem, we are approaching a stage of conceptual 
expertise wherein computer programs can be :ftex
ibleenough to adapt to a manager's concepts of his 
business, and of equal "importance a growing num
ber of m'Odelers have the capacity to operationally 
represent managerial concepts, 

An operational model can serve as a dynamic 
set of hypotheses with which to develop a con
sistent codified set of concepts about a business. 
The model allows prompt evaluation with data or 
judgment and then easy modification of the hy
potheses for further testing, The richness of the 
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vocabulary available to the mQdeler and the broad 
spectrum 'Of alternative methods of representing 
data, allow a full range of tools tQ be utilized in 
distilling the essence of the manager's concepts. 
Further, they can be prQgrammed to generate 
output statements pertinent tQ decision problems. 
In addition, programs allQw detailed documenta
tion including flow-charts so that they can be 
understandable to the manager. We propose this 
opportunity to explicitly define and test business 
concepts which can be a PQwerful process to im
prove planning if the manager becomes invQlved in 
developing the model. In brief, we see a great ad
vantage in bringing the power of the scientific 
method to the manager directly, by allowing him 
to assume an active rQle in the design and evolu
tion of simulation mQdels. An appropriate mQdel
ing prQject can cQmbine the insight of the man
ager with the analytic capacity 'Of the scientist. 

Guidelines for model development 

The follQwing guidelines 'Outline one approach 
to mQdel development which has -been successful 
in obtaining the active involvement of the man
ager in a prQject. The~guidelines are as follows: 

1. Simulation model development should be 
conducted as a project to aid the planning 
process. 

2. An important characteristic of the project 
is the evolution 'Of gQals~ uses and specifica
tiQn of the model, as it relates tQ the plan
ning process. 

3. The manager's intuition is typically the 
operational reference 'Of the pertinent en
vironment; therefore, one r'Ole of the mQdel 
is tQ improve the cQnsistency 'Of the man
ager's intuitiQn and to make him aware of 
new information requirements. 

4. A prime function of the model is to amplify 
the intuition of the manager generating a 
spectrum of analyses for a range of codifia
ble conditions. 

5. The entire project should be cQnsidered in 
part a learning experience both fQr mQdelers 
tQ communicate and define adaptable con
cept'S and for the manager to consider how 
explicit statements and concise definition 
can improve his understanding of the world. 

The sQle criterion of the s~cess of a simulation 
model for planning is the utilization of the mQdel 
to allocate resources. An unused mQdel, no mat-

tel'" chow elegant, is a failure. HQwever, it may be 
that the most significant use a manager makes 
of a simulatiQn model is during its development, 
to refine his own concept of his business. The 
discussion below deals with hQW these guidelines 
serve to encourage the manager to cQntribute to 
the development of a.mQdel and what the modeler 
shQuld have 'in mind to facilitate this contribution. 

Using the guidelines to develop a planning model 

How these guidelines might aid the develop
ment of a simulation model is presented in the 
fQllQwing synopsis of a simulation project in an 
industrial firm. The firm, a CQnsumer gQQds pro
ducer, with sales in excess 'Of $200 milliQn was 
planning to enter the European market. This was 
its first venture overseas and the executives felt 
a need fQr improved decisiQn-making procedures 
tQ cope with the unknQwn seemingly more com
plex situation. The staff aids to the executive 
committee had suggested that a simulation model 
might assist them in allocating capital overseas 
tQ assure an 'Orderly and prQfitable entry into the 
new market. 

A series of seminars conducted by the staff 
with 'Outside consultants was initiated to explore 
methods of planning in general and the potential 
of simulation models in particular. A topic 'Of 
'One of the seminars was the evoluti'Onary na
ture of simulation models with the expectant 
change in understanding 'Of their environment by 
the individuals using the mQdel. This session prQ
duced a lively interest in developing a model 
tailored tQ the needs 'Of the executive committee. 
The eventual result was a tentative five-year prQ
gram for the imprQvement of the firms strategic 
planning. A three-year capital budget of approxi
mately $70,000 per year was allocated to a prQject 
fQr the develQpment of a simulation mode1. Prog
ress review peri'Ods were to be held every six 
mQnths by the executive vice president 'Of sales 
whQ w~s resPQnsible fQr long-range planning. All 
vice presidents 'Of the firm and members 'Of the 
executive cQmmittee were tQ be the active man
agers 'Of the prQject and they agreed tQ spend 
up tQ fQur hQurs per week tQ develQP imprQved 
planning prQcedures. 

The initial proposal developed in the seminar 
called fQr a tentative mQdel to be QperatiQnal in 
'One calendar year at which time a redefinitiQn 'Of 
prQject gQals and mQdel specificatiQns WQuld take 
place. The initial planning prQblem the mQdel 



was to aid was the allocation of capital resources 
in order that the company could most effectively 
enter and become established in the European 
market. 

The initial model, as specified by the executive 
committee, called for a representation of the 
necessary resources measured in required dollars 
for specific future calendar months. The model 
would simulate the production of goods in Euro
pean countries to meet simulated demand for the 
company's products identified by price and type 
of product. It was the responsibility of the man
agers to identify the sequence in which products 
would be introduced, probable competitive actions, 
estimates of total market growth and available 
capital. The model was expected to derive a profit 
figure for the defined conditions and allow con
ditions to be easily changed to observe the impact 
of alternatives. 

The modelers began the project by attempting 
to define what factors the managers considered 
in their planning decisions and which of these 
seemed best to include on the model. To accom
plish this definition a series of meetings with each 
manager was held to identify the critical elements 
which influence his operation. Further, how these 
influences might be formulated in the simulation 
model. For example, the marketing vice president 
thought total market, market share, price level of 
products, and pattern of growth were the basic 
factors in describing a market. Research was 
then started on how one could create a statement 
that would describe the impact of these factors 
in the European market. A series of definition 
papers were developed for each country on how 
these factors would be combined to describe the 
total European market for the next ten years. 
In addition, the papers identified what data would 
be required and what reports would be generated 
from the model. A series of memoranda on the 
production, distribution and financial systems 
were generated to serve as a basis for seminars 
with all modelers and managers to discuss what 
should be included in the simulation model to 
generate more appropriate plans. After each 
seminar small groups would often discuss a spe
cific aspect such as how a new product should 
be represented in· the production process or how 
the time lags in the distribution system could be 
measured and made dynamic. The seminars were 
followed by additional two- to three-hour indi
vIdual manager conferences with two or three 
members of the modeling group to insure the 
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manager's ideas were accurately represented in 
the model and to explain how the model was func
tioning with other managers' definitions. 

A continual effort was made by the modelers 
to define all terms as clearly as possible for inclu
sion in a glossary that all participants received. 
The glossary established a common understanding 
on words all too often not well-defined such as: 
assumptions, sensitivity, programming, and plan
ning horizon. The glossary also identified all time 
lags assumed in the model such as two weeks 
delay between order receipt and delivery. The 
glossary aided in educating the manager in a bit 
of modeling j argon and preventing the modelers 
from using terms without defining them. It was 
invaluable in documentation of the model. 

Concurrent with the manager conferences, data 
were collected to define the specific form of the 
relations. Thus, total market data were obtained 
for each country in Europe and various schemes 
tested to resolve how to represent growth utilizing 
historical data. This required the modelers to 
work with the staff assistants of the managers in 
an analysis of present measures of what the man
gers felt to be important. The available account
ing data often did not prove sufficient and, there
fore, new information had to be created and 
Rtated in accessible format.' For example, data 
were collected' and distilled to develop a produc
tive capacity model which related the total cost 
and elapsed time of producing a given quantity 
of product to the mix of products and the level 
of production. The elapsed time required to ac
quire additional productive capacity or change 
product mix was defined in accordance with how 
the manufacturing vice president thought capac
ity responded. 

It was not until after six months of discussion 
during which time data were being collected to 
formulate the managers' concept into a model 
that the programming of the model for computer 
manipulation was started. Simultaneous with the 
programming effort, a second series of meetings 
were held with the managers on how they might 
utilize the simulation in their on-going planning 
procedures. It was felt important to maintain the 
managers' interest in model development as it 
was conjectured that during the programming 
process several revisions in the managers' model 
would be necessary. The individual meetings soon 
became formalized into bi-monthly planning meet
ings to discuss the state of the model and how 
it might be used to evaluate alternative resource 
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allocations in the European market. One question 
of burning interest was the capital requirements 
for establishing a plant in Belgium or Germany 
including cash flow characteristics. This initiated 
a project on rules for funds flow and how to 
represent legal delays. These discussions aided 
the modelers in defining appropriate time units, 
ranges of accuracy, specific output requirements 
and potential changes in the input variables. They 
served to keep the managers informed on the 
state of the model and its limitations. 

As the model entered the final debuiging stage 
the meetings focused more onto methods of test
ing the model for validity and formulating plans 
for evaluation by the model. It was decided to 
run the model one country at a time as each one 
seemed unique. In these later meetings the man
agers began to develop expertise in explicitly de
fining a feasible range of circumstances which 
could be tested on the model. A test set of data 
was developed representing the past two years 
and a set of parameters for generating the next 
eight years for Italy. ThiR, in turn, caused the 
modelers to improve the model's ability to accu
rately represent a set of conditions. The results 
of this iterative process was an awareness of the 
importance of experimental design and new in
sight to the evolutionary aspect of the simulation 
project. Most individuals were convinced it was 
a rewarding experience. 

The strong commitment was fortunate as early 
simulation runs proved to generate quantities of 
useless output. The first simulations were in
tended to represent the ten years of sales experi
ence in the Italian market. The simulations on 
the average produced bizarre sales and produc
tion demands after the first or second simulated 
year. The one bright side was that the cash flows 
resulting from the sales were consistent with past 
experience. 

The managers were not dismayed and suggested 
procedures which the modeler could incorporate 
which would aid in the understanding of simula
tion results. Typical error prevention procedures 
called for the managers to estimate for the next 
two, five, and eight years feasible product price 
ranges, and estimates of production capacity, 
given the present base of the company. These esti
mates served as minimum and maximum limits 
on capacity and sales. The model operated within 
these bounds to evaluate the proposed price struc-

ture, time of product introduction and other 
aspects of their plan. They then considered the 
output of the simulation in terms of these limits. 
If the output indicated the simulation results hit 
an upper limit and remained there, the planners 
discounted the answer, because of model deficien
cies but would judge that the plan might be a 
better one than a plan which drove the model to 
the lower limits. These procedures have afforded 
a basis for jointly testing plans and their assump
tions while evaluating the sensitivity of the simu
lation model to a variety of inputs in 'Order to 
investigate the model's validity. 

The simulation project today 

There has been an obvious growth in the atti
tude of the modelers and managers as to what 
should be in the model and what should be ex
cluded. A few of the uriginal factors included 
as determinants of demand have been tested and 
found unimportant. But of more' interest is the 
number of new factors that seem to be of a more 
basic and casual nature than the original factors. 
Originally, population had been considered as a 
basic determinant of demand; now age distribu
tion, wealth distribution, geographical distribution, 
and other factors of the economy in a given coun
try are being considered as determinants of 
market potential. Continual evaluation of factors 
in the model including the definition of assump
tions and defense or explanation of these assump
tions is now accepted by modelers and managers 
alike. Finally, measures specified at the start 
have been superseded by new ones. Specific dollar 
requirements and time specifications originally 
desired as outputs have been replaced by require
ments of rate of market penetration or equity 
growth and likely range of profits. In general, 
most measures of performance are more sophisti
cated than when the project began. 

The managers seem to be evaluating alterna
tive plans with the model to support their intui
tion. They suggest that the model has improved 
their judgment by testing some variables which 
heretofore were thought very important and found 
wanting as indicators of future influential en-

. vironmental forces. The model development in 
part has forced the managers to define their time 
assumptions explicitly and to codify cost assump
tions to accommodate manipulation. This has re
sulted in an expansion of the accounting system 



to allow an evaluation of future plans rather than 
only a repQrting 'Of the accumulated costs 'Of past 
activities. For example, CQsts are recQrded by 
product in accQrdance with length 'Of time since 
intrQductiQn. This change has imprQved the firm's 
planning prQcedures and given a better data base 
fQr devel'Oping an imprQved mQdel. 

At present the model can almost be c'Onsidered 
a professiQnal gQal fQr the management 'Of the 
CQmpany as they are CQmmitted tQ its future de
velQpment. They dQ nQt rely UPQn it f'Or specific 
decisi'Ons, but seem tQ feel it a useful tQol for 
imprQving their planning prQcedures, Perhaps at 
SQme future date they will rely UPQn it as a partner 
in decisiQn making as well as prQcess imprQve
ment. 

Discussion of simulation model projects 

A cQnclusiQn 'Of this experience and 'Other re
ported simulatiQn develQpments WQuld suggest 
that cQnstituting the prQject as a research and 
develQpment venture 'On the managing process 
prQvides a useful QrientatiQn.3 This 'Orientation 
is impQrtant as it nQt 'Only devel'OPs a useful mQdel 
but it can engender an open attitude. This learn
ing attitude is helpful when expl'Oring how 'One 
can fQrmulate heretQfQre nonexplicit relatiQns. In 
additi'On, a develQpment prQject by nature shQuld 
commit a management tQ a sizeable budget 'Over 
an extended periQd 'Of time. The results 'Of this 
expenditure are uncertain and, therefQre, the 
prQject should regularly be appraised as tQ its 
effectiveness. This appraisal prQcess is especially 
important in regard tQ simulatiQns intended to 
aid the planning prQcess. 

The definition 'Of criteria tQ evaluate improve 
ment 'Of the planning prQcess is a difficult art and 
requires experimentatiQn and attentiQn. HQwever, 
fQcusing 'On this aspect of the model's impact prQ
vides an apprQpriate perspective fQr cQnsidering 
the effectiveness 'Of the mQdel. The appraisal 
should allQw adequate elapsed time fQr the de
velQpment ofa series of plans CQncurrent with 
the implementatiQn 'Of the mQdel. During this 
time the defense fQr c'Ontinuing financial supPQrt 
fQr the mQdel prQbably rests 'On the degree tQ 
which it stimulates the management tQ c'Onsider 
their planning prQcess. After the m'Odel is being 
utilized as an active aid, SUPPQrt shQuld be judged 
'On dQcumentalevidence prQduced by the managers 
invQlved. The mQdel sh'Ould nQt be judged sQlely 
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'On appropriateness 'Of results, number of plans 
evaluated, 'Or mechanics of QperatiQn. These can 
be mQdified by utilizing different reSQurces t'O de
velop the mQdel. It should be judged 'On h'OW 
effective it is in imprQving the planning process. 

The prime reaSQn fQr a preordained extended 
life 'Of a planning mQdel prQject is that the only 
c'Onstant characteristic of a simulatiQn model is 
change. The pr'Oduct 'Of this eVQlutiDnary prQcess 
is assisted if· the changing nature 'Of the mQdel 
is understQod by all associated with the mQdel 
frQm the very start 'Of the project. MQdels with a 
traditi'On 'Of change will enCQurage the managers 
to attempt tQ define hazy ideas and t'O experiment 
with fQrmulating relatiQnships, as cQnjectures can 
be changed if desired. It will also induce the 
mQdelers tQ design their procedures tQ aCCQmmo
date changing definitiQns and specificatiQns. 

A tactic fQr developing useful simulation 
m'Odels which are adaptable is tQ start by WQrk
ing with the responsible managers to mQdel the 
aspects 'Of the business they feel impDrtant. A 
manager with significant budgetary responsibility 
is assumed to have had an adequate invQlvement 
with his envirQnment tQ have develQped an under
standing of what elements are critical t'O the suc
cess of his 'Operation. His measures of these ele
ments 'Often range from precise dQllar figures tQ 
vague intuitive impressions, but all are impQrtant 
and real tQ him. It seems reasQnable to accept 
the planner's nQtiQn 'Of his business as fact and 
to attempt tQ substantiate his cQncept by program
ming a mQdel to imitate the concept. 

N Qrmally, it is impQssible tQ explicitly define 
all the' factQrs a planner cDnsiders. In additiQn, 
individual managers will nQt be consistent with 
each 'Other 'Or emphasize the same aspects 'Of the 
envirQnment. TQ cope with these concQmitant 
ambiguities, the mQdel should be programmed tQ 
CQdify as many factors as PQssible with freedm fQr 
the manager tQ modify the impact and range 'Of 

each variable. Where variables cannQt be defined, 
provisiQn sh'Ould be made for direct planner influ
ence as he sees fit. In the case abQve, the manufac
turing vice president defined his estimates 'Of 
prQductiQn rate during start up at three-mQnth 
intervals 'On his appraisal 'Of product mix and 
vQlume in the simulated factQry. This worked 
much better than any mQdeled relatiQn attempted. 

The gQal of the m'Odeler is tQ generate an 
abstraction that adapts comfortably tQ h'OW the 
planner cQnsiders his reSQurces allocatiQn prob-
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lem. The process of programming the well-defined 
variables should involve the planners and modeler 
in order that both: 

• Evaluate the sensitivity of the environment 
to change in the selected variables. 

• Discover new methods of combining variables. 
• Resolve inconsistencies or ambiguities be-

tween planners and the environment. 

This latter process often serves as a basis for 
data collection to define missing relations or to 
test in the environment the validity of assumed 
relationships. A clear definition of how the simu
lation function is essential for the mutual con
sideration of relationships that govern the opera
tion of the simulation. 

CONCLUSIONS 

An overt goal of most simulation projects for 
planning is that operationally the simulation 
model is to serve as an analytical tool for the 
manager. To serve effectively it must be formu
lated to produce results which are compatible 
with the planning procedures. The modeler and 
manager should continuously appraise what is 
more economical and effective for the model to 
accomplish versus the planner. At this point in 
time it does not seem economically feasible to 
model completely an environment as effectively 
as a good human decision maker. However, a 
simulation model can perform quickly and accu
rately a long involved sequence of well specified 
events to produce an answer in predefined terms. 
How these answers will be used is important in 
the development of the model and should be con
sidered at each step of the program. The goal of 
the model developer is to develop a model which 
can amplify the manager's insight to a resource 

allocation problem. At present the method of 
amplification seems to be a prompt evaluation of 
a variety of plans under a range of assumed 
conditions which the planner defines. 

The most important reason for designing an 
adaptable simulation model development is the 
very survival of the'simulation. An adaptable and 
changing model is essential if the model is to 
be used over an extended period of time. Assum
ing the model' is to operate as an agent for im
proving the planning process, its main function 
may well be as a stimulus to search for a defini
tion of what the manager has not included in 
the model. This improvement process seems to 
be one of continuous redefinition of the manager's 
concept of the pertinent forces in the environ
ment and growth in the modeler's ability to ade
quately represent these forces. The model must 
continuously reflect the manager's improved con
cepts or fall· into disuse by the decision makers. 
A successful stimulation project for planning will 
stimulate the continuous growth of the par
ticipants as evidenced by an improving model. 
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Operations research in a conversational 
environment 

by MICHAEL M. CONNORS 

IBM Scientific Cen~r 
Los Angeles, California 

INTRODUCTION 

The purpose of this paper is to discuss the types of 
o~erations research techniques and the kinds of opera
tIOns research/management science problems that are 
p~ssible in the conversational or interactive program
ming. environment. It is widely agreed that very 
meanIngful technological advances can be made by 

'merging the things that a computer does best with the 
things that a human being does best. This is often dis
cus~ed in terms of a man-machine symbiosis, cyber
netICs or "interfaces." The shortcomings in all dis
cussions of this sort are twofold: first, a characterization 
of pro~lem attributes which necessitates the power of an 
interactive environment is missing; and, second, very 
few practical or even implementable applications are 
ever discussed. 

The present paper hopefully represents a divergence 
from past remarks in the area in the sense that both the 
first and second points will be treated. The second sec
tion discusses the relations between past and present 
activity in OR/MS and the available computer technol
ogy; this discussion is extrapolated to characterize the 
types of OR/MS activity and research which are indi
cated by an interactive or conversational environment. 
Building on the ideas in the second section, the follow
ing section discusses a potentially key application area 
which will be penetrable with interactive systems: 
scheduling of social processes. The last section discusses 
and illustrates the possibility of an interactive 'or con
versational programming environment providing a 
f:amew?rk for the enlargement of the technique of 
SImUlatIOn to a generalized, optimizing tool. The ideas 
are presented by describing their potential application 
to multi-location, multi-echelon distribution systems. 

Implications for research 

To a large extent, the development of operations re
search techniques has been dictated by available com-

puter technology. In the beginning, the disciplines of 
operations research and management science treated 
situations which could be dealt with by analytical 
techniques. On the one hand, as the types of problems 
which could be solved analytically were solved, and, on 
the other hand, as computing capability matured into 
the batch mode technology, larger scale management 
science problems were tackled. The availability of 
batch mode technology caused theoretical research and 
applications development to emphasize general and 
widely utilizable algorithms and techniques. The pro
lems or class of problems treated were common to 
enough different people that a single technique, algori
thm or applications package was capable of treating a 
wide spectrum of situations. The question remains: 
what is the nature of this commonality? 

The solution process for any problem' can be thought 
of as a directed network: the nodes in the network repre
sent decision points; the arcs are taken to represent the 
computational processes necessary to proceed from one 
decision point to the next. In this abstract conception of 
a solution process, the nodes (decision points) may be of 
two general types: open-loop or closed-loop. By an 
open-loop decision point, we mean a point which, when 
encountered in the solution process, dictates a prespec
ified set of actions. An example of this type of solution 
process is the linear programming algorithm where nodes 
are branches to error routines for inieasibIlities, infinite 
solutions, and so on. In contrast, a dosed-loop decision 
point is one which, when encountered in the solution 
process, dictates a set of actions conditioned on certain 
information. This information may be the state of the 
system or it may be a pattern of events emerging in the' 
calculation. It may even be information derived from a 
source external to the system and the solution process. 
An example of a problem which requires a solution net
work with closed-loop nodes is the eleciive admissions 
scheduling problem which will be discussed in more 
detail in the next section. 

417 
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The ideas in the preceding paragraph can be used to 
oharacterize the types of ORjMS problems which have 
been suitable for solution with batch mode teohnology. 
These are problems in which the solution can proceed 
without intervention from outside the solution al~ 
gorithm. This is equivalent to requiring that the nodes 
be open-loop nodes or, at worst, closed-loop nodes in 
which the information required for the new decision is 
oontained in the state description of the prooess under 
analysis. The commonality of problems, or classes of 
problems mentioned above can be thought of in terms 
oommon attributes of the struoture of their solution pro
cesses: problems amenable to solution with batch mode 
teohnology are not merely those physical situations 
whioh are oommon to a number of people but rather 
those which have a oommon solution process in terms 
of the required solution network. 

The third stage of development of management 
science and computer technology is in progress. The 
relevant computer technology is that of interactive or 
conversational programming. The availability of con
versational technology (as well as graphic technology) 
allows the present research frontier to be directed away 
from open-loop solution processes and towards closed
loop solution processes. Through the blending of conver
sional and graphic technology with mathematics, the 
closed-loop solution processes enable the user to solve 
problems which were unsolvable in the previo,us tech
nology. In fact, with batch mode technology, these 
problems were not of interest since researchers had 
problems amenable to solution by open-loop processes 
available for research purposes and so were not in
terested in considering the more complicated and 
less mathematically elegant closed-loop processes. 

Certain elements of the research community have 
come to recognize the almost logical impossibility of 
developing an open -loop conditional branching network 
for "third generation" MSjOR problems. It is clearly 
possihile to treat any particular branch of such a con
ditional network by open-loop mathematical or al
gorithmic techniques. Similarly, it may be possible to 
treat more than a few of the branches in the network 
with any single open-loop algorithmic technique. When 
it becomes necessary to treat more than just a few of the 
branches in such a network, more general ideas must be 
sought. A branching decision may require a broader in
formation background, depend on pattern recognition 
capability or require interaction from outside the 
algorithm. The solution is not to attempt to embody the 
decision analysis in an algorithmic package but to rele
gate the decision making or branching decIsions to 
another source. The availability of conversational pro
gramming technology makes it possible to imbed the 
researcher in the algorithm at each major branch 

or decision point. In this way, interactive program· 
ming technology can be brought to bear on problems 
requii'ing closed-loop solution techniques. The result 
is that computations are relegated to algorithmic 
processes and (perhaps non-quantificable) decisions are 

. consigned to the researcher. It then becomes possible to 
develop closed-loop solution processes by concatenating 
ing several open-loop solution techniques with the 
human decision maker directing the flow of the process 
at the dicision or conditional branch points in the solu
tion network. In order to understand how this can be 
done, and also in order to understand the advantages 
that might accrue from utilizing this approach, it will be 
appropriate to consider two particular applications 
which represent penetration applications into this 
general area of operations research in a conversational 
environment. 

Interactive scheduling: Social processes 

The previous sections have characterized the environ
ment of interactive scheduling models as being one in 
which the branching conditions of the computational 
process cannot be tested in an open-loop mode. This 
situation occurs in scheduling social processes because 
the scheduling procedure cannot be completed until the 
scheduler interacts with the people or persons being 
scheduled in order to ascertain the feasibility of the pro
posed schedule. If the proposed schedule is infeasible or 
undesirable, new constraints must be added to the 
problem statement and the computations must be per
formed again. An example of this type of scheduling 
problem exists in the area of scheduling elective ad
missions to a hospital. 

The remainder of this section describes an elective ad
missions scheduling algorithm designed to operate in the 
real time, conversational environment inherent to a hos
pital admitting office. The algorithm has been initially 
implemented in a batch processing mode, is to be 
operated in parallel with an elective admissions sched
uling system at the UCLA Hospital and will be in
stalled in a teleprocessingj conversational situation if 
the algorithmic technique proves to be suitable for this 
·purpose. 

The problem of scheduling elective patients for ad
mission into a hospital can be viewed as a problem in 
scheduling· or allocating scarce resources. The elective 
admissions scheduling deoision must achieve a balance 
between the patient's preference for type of facility and 
time of admission and the hospital's desire to achieve an 
allocation which will allow it to operate at maximum 
efficiency. The admissions scheduling problem is more 
general then those treated in the literature on schedul
ing theory for two reasons. The first complication re-
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suIts fr'Om the rand'Omness ass'Ociated with the arrival 'Of 
requests f'Or services and the rand'Omness 'Of the length 'Of 
time the facilities are 'Occupied 'Onece the admissiQns 
decisiQn is made. The secQnd cQmplicatiQn arises frQm 
the fact that the scheduling prQcess cannQt prQceed in 
an Qpen-IQQP manner because the schedule must be 
verified fQr its suitability with the admittee. 

The design 'Of the algQrithm has assumed certain 
envirQnmental characteristics fQr the hQspital, its ad
mitting department and the admissiQn scheduling prQ
cess. The infQrmatiQn flQWS assumed by the algQrithm 
can be characterized as in Figure 1. TWQ 'Of the assump
tiQns implied by Figure 1 hQld great implicatiQns fQr the 
design philQSQphy 'Of the algQrithm. The first assump
tiQn is that requests fQr admissiQn intQ the hQspital en
vir'Onment are received cQmpletely at randQm by the ad
missiQns 'Office. TherefQre, nQ attempt is made tQ fQre
cast 'Or predict the demand fQr services placed 'On the 
hQspitai. It is clear that a mQre efficient cQmputational 
technique CQuid be develQped if it were PQssible tQ pre
dict requests, arrival times and space requirements. 
HQwever, this type 'Of infQrmatiQn is nQt available in 
the 'Operating envirQnment 'Of an admissiQns 'Office and 
so the algQrithm dQes nQt require this type 'Of input in 
'Order tQ effect a scheduling decisiQn. The secQnd as
sumptiQn made by the cQmputatiQnal prQcedure is that 
sufficient histQrical infQrmatiQn exists tQ enable the 
algQrithm tQ view each individual patient as a separate 
rand 'Om variable with his 'Own prQbabilistic charac
teristics. This assumptiQn fQrces the decisiQn maker tQ 
make a separate cQmputation fQr each request that the 
admissiQns 'Office recieves. Since all 'Of the infQrmatiQn 
required tQ make this cQmputatiQn is available at the 

Requests for space 
received at random 

Information on present occupancy: 
Fixed number of beds with known 
number occupied for a random length 
of time. 

FIGURE I-Simple model of elective admissions scheduling 
problem 

time the request is made, it seems reasQnable tQ perfQrm 
the cQmputatiQn in a manner which will return the 
decisiQn tQ the admittee essentially immediately. This, 
in turn, requires a cQnversatiQnal, teleprQcessing ap
prQach. 

Figure 1 indicates the infQrmatiQn flQWS used in the 
cQmputatiQnal prQcess. Figure 1 dQes nQt hQwever indi
cate the criteriQn by which the data are prQcessed in 
'Order tQ reach a scheduling decisiQn. TherefQre, a third 
key assumptiQn in the develQpment 'Of the algQrithm is 
that the trade-Qff between patient satisfactiQn and 
hQspital 'Operating efficiency can be quantified. It is 
clear that patient satisfactiQn is related tQ the degree 
tQ which his needs for health services can be served 
whHe minimizing his persQnal incQnvenience. It is alsQ 
clear that the degree 'Of hQspital 'Operating efficiency is 
related tQ the level 'Of reSQurces which the hQspital must 
cQmmit in 'Order tQ satisfy these patient needs. On the 
patient's side it dQes not appear tQ bepQssibletQquantify 
the level tQ which the hQspital satisfies his health needs. 
On the 'Other hand, it dQes appear tQ be PQssible tQ 
quantify the amQunt 'Of persQnal incQnvenience the 
patient suffers as a result 'Of being scheduled intQ the 
hQspital at certain PQints jn time. Thus the measure 
of patient satisfactiQn is assumed tQ be related to the 
difference between his scheduled admissiQn day, d, and 
the set 'Of admissiQn days he prefers, C. It is a sQmewhat 
easier questiQn tQ quantify the 'Operating efficiency of 
the hQspitai. FQr this purpQse the hQspital administrator 
is allQwed tQ specify a nQminal 'Occupancy ned) fQr each 
day d which results in maximum utilizatiQn 'Of the re
SQurces available tQ him. Then the 'Operating efficiency of 
the hQspital can be characterized by the difference be
tween actual 'Occupancy Qed) and nQminaloccupancy 
ned) resulting frQm any particular schedule 'Of ad
missiQns he has specified. The functiQnal fQrm 'Of these 
criteria is taken tQ be quadratic. The QptimizatiQn 
prQblem can then be stated as: subject tQ cQnstraints tQ 
be discussed belQw, find the 'Optimal admission day d * 
such that 

d*= min -1 { Cs Cd-c) + E[Cd (o(d)-n(d))]} 

where P is the set 'Of days in the planning hQrizQn, C is 
the set 'Of patient-specified days, Cs is the scheduling 
cost 'Of deviating from the patient's set 'Of CQn
venient days and Cd is the CQst of actual hQspital 'Oc
cupancy deviating from nQminal hQspital 'Occupancy. 
E is the expectatiQn QperatQr taken with respect to the 
prQbability density functiQn 'Of the hQspital census for 
each day in the planning hQrizQn. 
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The algorithm requires that certain types of informa
tion accompany a request for admission. In addition to 
information for identification purposes, additional infor
mation is required. This includes an admitting diztgnosis 
of the patient according to the International Classifi
cation of Diseases Adapted for Indexing Hospital Rec
ords,! the patient's age, his sex and whether or not 
s~Irger~ is to be performed. The admittee must also spe
Clfy a hst of days on which he desires to be admitted into 
the hospital, his preference, if any, for type of accom
modation, and specification of the medical service to 
which he seeks admission. This information is used to 
interrogate 1 published by the Commission on Pro
fessional and Hospital Activities. This volume contains 
the mean and standard deviation of the length of stay of 
patients categorized by these variables. The mean and 
standard deviation are used to generate a probability 
density function according to the gamma density func':' 
tion .. The gamma density function was selected for the 
length of stay distribution because of its previously ob
served success in fitting empirical length of stay data. 
It is often the case that the admittee's physician may be 
able to provide more detailed information on the length 
of stay and in this case the physician's estimate of 
the length of stay js taken to be the mean of the length 
of stay distribution and supercedes the information 
contained in the Professional Activities Study. In the 
event that an admitting diagnosis by the international 
disease classifications is not available, the operator of 
the algorithm specifies these values either arbitrarily 
or by administrative precedent. It may also occur that a 
given hospital may experience length of stay distri
butions which differ from national experience. In this 
case, the individual hospital can develop its own pro
cedures for generating the required mean and standard 
deviation, as well as for generating different functional 
forms for the length of stay distribution. In any event, 
the algorithm is, at this point, in possession of a suit
able set of patient attributes and can proceed to 
generate an appropriate schedule for the admittee. 

The algorithm operates subject to both deterministia 
and probabilistia aonstraints. The deterministia aon
straints are that the admittee's attributes must matah 
the attributes of those patients occupying any room into 
which he is scheduled. The adrnittee's attributes are 
binary or can be represented by combinations of binary 
variables. The attributes of a particular patient are 
clearly deterministic. But. the question of matahing 
these attributes with those of patients already ocaupy
ing the facilities is probabilistic since the algorithm is 
only in possession of probabilistic information about the 
future utilization of these facilities. The algorithm 
reaognizes this fact and for purposes of an admitting 
decision requires a matching of attributes only with the 

patient most likely to be in the room on the proposed 
admission day. The fact that the person thought to be 
most likely to be in the assigned room when the admis
sions decision was made may not actually be there when 
the admission day arrives is recognized by the algorithm 
and is taken into aonsideration in all subsequent admis
sions decisions. The algorithm also insures that actual 
admissions are made only into facilities whiah are oaau
pied by patients with attributes aompatible with those 
of the admittee. 

The operation of certain probabilistic constraints is 
also recognized. The hospital aannot sahedule more 
patients for occupancy that there are beds available. 
However, the hospital census is not known with aer
tainty. Therefore, the only constraint to overloading at 
the hospital level must be a probabilistia one: the prob
ability of a hospital overload if the present request is 
admitted must be below a speaified threshold level. It is 
alear that in order to evaluate this constraint, the al
gorithm must be in possession. of a probability dis
tribution for the hospital census on eaah day of the 
operating horizon. Since the probability distribution of 
the admittee is derivable from the admitting informa
tion, the required probability distribution can be cal
aulated by known teahniques. A desaription of the cal
culations involved in this proaess as well as a discussion 
of the assumptions necessary to justify this calcula iion 
is aontained in reference2• Analogous remarks apply to 
constraints on service overload for those hospitals or-
ganized on a service basis. . 

It is also regarded as undesirable to move patients 
once they are located in a room. Again, the occupancy of 
a given room is know~ only probabilistiaally, the con
straint on moving patients must be a probabilistic one: 
the probability of having to move a patient out of a 
given room at some later time if the present request is 
admitted into that room on the day being considered 
must be below a specified threshold level. If these con
straints are satisfied for a particular day, the algorithm 
evaluates the day as a prospective admission day. This 
results in the figure of merit depending on C8 and Cd for 
each day. The figure of merit associated with each 
feasible day is retained and is used in determining the 
order in which days are offered to the admittee during 
the negotiation process. 

The algorithm then processes this information in or
der to produce a list of days which are feasible for 
admitting the patient. The list is ordered in decreasing 
order of desirability in terms of the figure of merit speai
fied by the hospital. The days are produced on the out
put device and are then available to be negotiated with 
the patient until a suitable and mutually agreeable day 
is found. When a mutually suitable day is found. the 
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patient is entered in the algorithm's admission log, the 
algorithm updates all relevant files and prepares itself to 
accept another request for admission. The algorithm 
has also kept track of the particular room and bed which 
will be best for the admittee for each feasible day and 
will tentatively reserve these facilities for him on the 
date selected for admission. In the event an acceptable 
day is found, options are available for changing various 
constraints, for example, a patient's demand for a pri
vate room, and re-entering the algorithm to find addi
tional feasible admission days. In this latter event, the 
necessity for a conversational, real-time processing en
vironment is apparent. 

The elective admissions scheduling problem clearly 
necessitates a closed-loop solution process since the solu
tion cannot be completed without a (non-quantifiable) 
external decision. In this application, the full potential 
of on-line computing technology has not been used. 
Only a very simple external intervention is necessary to 
make a farily simple decision: admit the patient or re
enter the computational process (perhaps after chang
ing some of the constraints on the computations). The 
more sophisticated applications of the conversational 
environment allow for closed-loop nodes at which the 
entire mathematical problem can be restructured or new 
algorithmic strategies can be employed. A vehicle for 
experimenting with these more advanced applications of 
on-line technology is discussed iD the following section. 
While the material in the next section is a more 
sophisticated topic, it is of less interest as an applica
tions topic since the majority of the research is still in an 
experimental stage whereas the work described in this 
section is demonstrable. 

Generalized simulation 

Experimentation with mathematical models of sys
tems on the computer has been of interest to the opera
tions research/management science profession since the 
advent of the high speed computer in the 1950's. The 
technique of simulation cannot be regarded as a 
generalized solution technique since the experimen
tation does not necessarily lead to an optimal solution of 
the problem. The quality of the result has depended 
upon the ability of the experimenter to. observe the re
sults of a simulation run, redirect the activity. of the 
simulation and iterate this sequence until a maximal 
behavior was obtained from the simulated model. 

The technique of simulation has two shortcomings 
which must be corrected before simulation can be re
garded as an analytical tool rather than an experjmental 
technique. The first deficiency is that simulation is not a 
general technique. The non-generality of the technique 
arises from the fact that the simulation approach in
volves setting up a model of a particular empirical 

situation; the difficulty is that since the simulation or 
mathematical model has been tailor-made for the 
particular physical situation being examined, the model 
is obsolete once the particular problem at hand has been 
analyzed. In analysis, the designer or analyst can use 
general techniques to model or analyze a large number 
of different systems. The characteristic of analytical 
techniques is that they are capable of being brought to 
bear on functionally different classes of problems or 
functionally different problems within the same class 
of problems. Simulation techniques, on the other hand, 
are capable of being brought to bear only on problems 
which are parametrically different. It is clear therefore 
that in order to make simulation a general solution tool, 
it will be necessary to enable simulation to be used on 
functionally different systems. In this regard, it's fair to 
say that the simulation approach effects a trade-off 
between the level of detail that can be brought to bear 
on one particular problem and the number of particular 
problems that can be analyzed. 

The second shortcoming of simulation is that the 
simulation approach does not prescribe what to do 
with variables once they have been introduced into the 
simulation; that is, the simulator is only capable of 
evaluating the particular configuration of policy func
tions and status variables that are presented within the 
context of the simulation. Simulation could be made a 
general or optimizing solution technique if it were pos
sible to insure that the progression toward optimal pa
rameters and/or policies converges. Conditions for con
vergence of parameters and policies in simulation often 
cannot be described in terms of the status variables or 
problem parameters. These conditions often depend 
upon relatively unquantifiable factors or on a set of fac
tors not built into the model (e.g., the 'experience' fac
tor). The conversational environment can contribute to 
a solution to this problem by providing a mechanism for 
directing the convergence procedure, namely, the 
experimenter. In other words, we seek a simulatiop. 
environment in which the analyst can dynamically re
direct the course of the simulation in order to approach 
and hopefully attain optimal behavior. 

The remainder of this section discusses an approach 
by which the technology that is available in the conver
sational programming environment might be used to 
overcome the deficiencies of simulation. The greatest 
impediment to universal usefulness of simulation as an 
analytical technique lies in its lack of generalizability. 
In order to treat this deficiency, we suggest an idea pro
posed by Ginsberg, Markowitz and Oldfather4 called 
programming by questionnaire. In addition, we will dis
cuss the implications held by the conversational pro
gramming environment for optimization in simulation. 
We will discuss these techniques by considering their 
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applicability to the idea of simulating a multi-location, 
multi-echelon distribution system. 

Consider a multi-location multi-echelon distribution 
system as might be represented by Figure 2. The 
mathematical problem is to analyze the combinatorial 
interdependencies which can arise from the several ways 
in which the stocking points might be supplied with 
the several products through the several periods of time 
over which the process is being analyzed. The mathe
matical problem is substantially complicated by the fact 
that, as in all inventory/distribution systems, the de-:
mand at the customer level is a stochastic variable. 
Thus the problem is a very large scale combinatorial 
problem with the added difficulty that the combina
torics depend on stochastic variables. The complexity and 
the level of detail required for a thorough analysis are 
clearly implications for using simulation as an analyzing 
technique. If, however, we are discussing a class of 
multilocation, multi-echelon systems, simulations has 
the severe shortcoming that it is not capable of analyzing 
functionally different systems and it is also clear that 
every individual who has this type of distribution prob
lem has a problem which is particular to him. It would 
therefore appear that if one were trying to develop a 
theory of distribution systems of this type, that simula
tion would not be an appropriate analytical device. 
However, the author and H. M. Markowitz have used 
recently developed techniques in simulation4 together 
with some of the capabilities of a conversational pro
gramming environment make it possible to develop a 
tool for analyzing functionally different distribution 
systems. 

FIGURE 2-A multi-location2 multi-echelon distribution system 

Viewing Figure 2, there are obvious structural dif
ferences particular to each distribution system of this 
type. The number of stocking points, the direction of 
flow of goods and services, the relative orientation of 
stocking points, the number of products and the classes 
of customers faced by the system, all are particular to 
each individual user. In addition to the structural dif
ferences between various systems of this general charac
ter, there are functional differences from system to sys
tem. For each possible multi-location, multi-echelon sys
tem, each stocking point has its own order filling poli
cies, its own replenishment policies, its own redistribu
tion policies, and its own emergency replenishment 
policies. In addition, the system may operate under 
several different types of transportation policies, may be 
exposed to different types of random demand at various 
points in the system and may be subject to various cost 
structures throughout the components of the system. 
There may also be parametric differences between sys
tems; that is, two systems may be functionally similar 
in terms of the operating policies mentioned above but 
the systems may differ in the parameters used by these 
policies. In order to be a useful analytical tool, a simula
tor must be cognizant of not only the structural dif
ferences between these systems but also of the possible 
functional and parametric differences that are as
sociated with each such system. 

An appropriate way to approach this problem is to 
construct the separate structural differences, to con
struct the separate policy functio.ns, to construct the 
various random processes and then allow the user to 
configure his own simulator from among all of these pos
sibilities at execution time. Clearly all of these capabili
ties could be built into a simulator which could choose 
the appropriate alternatives at execution time by means 
of logical tests. This obviously results in a simulation 
which is inefficient in the sense that large segments of 
code remain unexecuted due to their inapplicability jn 
anyone particular situation and in the sense that large 
amounts of storage are needlessly allocated in order to 
cope with the maximum storage demands placed 
on the simulator by any particular simulation. 

As we have indicated, an appropriate way of solving 
this problem of compile time configuration of a simula
tion is to use the idea of programming by questionnaire 
introduced in Reference 4. The idea is to provide the in
dividual analyst with a collection of tools or building 
blocks which he can configure into an appropriate model 
for anyone of a very large number of distribution'sys
tems he mat choose to analyze. The analyst is simply 
provided with a questionnaire by which he can indicate 
the characteristics of his particular distribution system. 
The questionnaire is processed by an editor program 
which draws upon a program source library containing 
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all of the various prograill.jmodules necessary to success
fully model the completed system. The editor program 
processes the questionnaire and uses the information 
drawn from the questionnaire to draw upon the pro
gram source library to configure a simulation deck. The 
analyst can then run this deck on a computer and be 
assured of an efficient simulation package yet one which 
has been tailor-made or particularized to his system 
from a large number of possible other systems. Figure 
3 graphically portrays the interaction of the question
naire, editor program and program source library. 

The idea of this procedure appears to be intricate. 
In practice the most difficult part of this entire pro
cedure is to define a questionnaire which adequately and 
accurately characterizes a general distribution system. 
Figure 4 presents a portion of an answer sheet for such 
a questionnaire. 

The ability of the programming by questionnaire 
technique to solve the problem of non-generalizability 
in simulation is clear. What is not clear at this point is 
the relation of this technique to OR in a conversational 
environment. A partial answer can be given with refer-
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FIGURE 3-Interaction of components of nss 
generator program 
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FIGURE 4-Portion of answer sheet for nSS/I 

ence to Figure 4. A major portion of using DSS lies in 
filling out the answer sheet. Figure 4 shows that some 
questions are conditioned upon the answers to pre
ceding questions. A conversational enviroment could 
aid in the configuration of the required simulator by 
enabling the questionnaire to be answered via a graphic 
terminal and light pen. The cpu could analyze answers 
to past questions and present the correct follow-up 
questions. In addition, the terminal could provide addi
tional information to the user during the process of 
filling out the questionnaire. 

Up to this point in the discussion, we have only been 
concerned with the combination of the programming by 
questionnaire technique and an interactive system to 
produce a generalized Distribution System Simulator. 
The contribution of conversational technology to the 
generalizability of DSS is mostly through easing the 
clerical burden on the user. The contribution could 
become more substantial when we turn the discussion 
toward the question of a simulator with optimizing 
capability. 

A Distribution System Simulator is an appropriate 
vehicle for studying optimization in simulation since 
the optimization procedure must choose among fun'c
tionally as well as parametrically different systems. The 
question of choosing among parametrically different 
systems is one which has been dealt with before, e.g., 
which of several possible reorder points should be used 
at a given stocking point? Parametric optimization is a 
natural problem to treat in a conv~rsatjonal environ
ment with graphic technology. The progress of the 
simulation can be observed on a graphic terminal and 
the program interrupted in order to change parameters. 

The question of functional optimization is much more 
difficult because this implies introducing new functional 
policy and/or decision functions into the simulation, 
e.g., a new rule for allocating the results of a production 
run among stocking points. This in turn implies a dy
namic recompilation of the simulator or portions of it. 
DSS has been designed to allow certain pieces of the 
simulator to be rearranged. In fact, all policy routines 
are of this form and so the simulator is appropriately 
designed for on-line experimentation. A remaining and, 
as yet unresolved, issue is whether the required dynamic 
recompiling of source code is feasible. 

CONCLUSIONS 

Two applications of OR/MS techniques have been dis
cussed as illustrations of the types of solution processes 
made possible by a conversational environment. The 
applications differ in their depth of sophistication in a 
way which is inversely proportional to their state of 
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completion even though both applications exemplify the 
characteristic of problems requiring an interactive 
environment for solution, namely, a closed-loop solution 
network. The point of these applications is not that they 
are on-line adaptations of something that could just as 
well be done off-line but rather that the conversational 
programming environment makes the applicatjons im
plementable in the first place. In addition,_ it is only 
through demonstrable applications of this type im
bedded in a "theory of problems" for a conversational 
environment that research interest in interacrive OR/ 
MS can be developed. 
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INTRODUCTION 

The problem of media planning in advertising is 
a natural one for the application of mathematical 
models and computers. A great deal of data are 
available on who reads (or sees or hears) what. 
There are considerable data on what kinds of peo
ple are prospects for which types of product. 
There are many different media options available. 
lVlany judgments must be made. It would seem 
that there should be some organized way of com
bining judgments and data into a model, setting 
an objective, and then optimizing it to produce a 
good media plan. 

Indeed, a number 'Of people and 'Organizations 
have tried to do this. (A review of published work 
may be found in Little and Lodish.l ) We here re~ 
port on a model that we have ·constructedand 
brought up as an on-line media planning system. 
Since May 1967 the system has been available on 
a commercial basis under the name MEDIAe. The 
implementation of MEDIAC has brought about 
evolutionary changes both in the system and its 
users. Interaction with media planners has led 
to an increase in both the complexity of the model 
and the operating efficiency of the system. At the 
same time the media planners have changed their 
methods of planning due t'O exposure to MEDIAC. 

In this' paper we shall briefly describe the 
model, its optimizatior,t, and the computer system. 
Then we shall give an example of an application 
and discuss some of our experiences with the sys
tem. 

Mo·del 

The media planning problem may be stated as. 
follows: Given a set 'Of media options, a budget, 
and various data about the media and the audi
ence to be reached, which options should be used 
and when should they be used in order to max
imize profit or some related measure of perf'Orm
ance? By a media option we ordinarily mean a 
detailed specification of the place, position, size, 
and other outward characteristics of an advertise
ment, but not the message and copy treatment. 
Thus, the role of media in the advertising process 
is to expose a chosen audience to the advertiser's 
messages in an efficient manner. 

Relevant to this objective are at least the fol
lowing phenomena: 
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- Market segmentation 
- Sales potential of individual segments, 

i.e., their relative importance to the ad
vertiser 

- Media c'Overage in each segment 
- Overlaps in media audiences. both acr'Oss 

media and acr'Oss time 
- Forgetting by those exposed to the ads 
- Diminishing returns at high eXP'Osure 

rates 
- Media costs 
- Intermedia differences in the values of an 

exposure 
- Seasonality of sales potential and audi

ences 



426 Fall J 'Oint C'Omputer C'Onference, 1968 

The purp'Ose 'Of 'Our model is t'O c'Ombine the 
ab'Ove phen'Omena int'O a flexible, c'Onsistent struc
ture which the media planner can use to evaluate 
alternative media plans and c'Oncepts. The m'Odel 
will be verbally described bel'Ow. For a detailed 
technical descripti'On, see.1 

First, it is supP'Osed that market segments have 
been defined. Perhaps men and women have dif
ferent sales P'Otential and the ref 'Ore represented 
as different segments. In add iti'On , perhaps these 
are each broken down further int'O geographic 
regions and income classes. Segments may be de
fined in any manner as long as suitable media 
coverage data can be supplied f'Or them. 

Sec'Ond, an advertising inserti'On in a given 
media creates a pr'Obability 'Of exp'Osure f'Or a per
s'On in a specified market segment. The pr'Obabili
ty 'Of exp'Osure depends 'On the audience 'Of the 
medium within the segment, and 'On the size, 
length, c'OI'Or, 'Or 'Other characteristics 'Of the in
serti'On. The exp'Osure 'Of a pers'On t'O a medium is 
n'Ot independent 'Of exp'Osure t'O 'Other media 'Or 
t'O the same medium at an'Other time, but depends 
'On media 'Overlap pr'Obabilities. 

Third, the advertising exp'Osure creates value 
in the pe'Opleexp'Osed, i.e., disp'Oses them m'Ore t'O
ward buying the pr'Oduct. The am'Ount 'Of value 
created by 'One exp'Osure depends 'On the medium 
and is called the exp'Osure value 'Of the medium. 

F'Ourth, pe'Ople f'Orget. It is usually assumed 
that pe'OPle f'Orget a c'Onstant percentage 'Of ex
p'Osure value in each time peri'Od alth'Ough m'Ore 
c'Omplicated relati'Ons are p'Ossible. Figure 1 sh'Ows 
how the retained eXP'Osure value 'Of an individual 
might change with time. 

Finally, pe'Ople act. As the level 'Of exp'Osure 
f'Or a pers'On rises, S'O d'Oes the anticipated re-

retained 
exposure 
value of 
the in
dividual 

exposures to media 

. 
amount of jump depends 
on exposure value of 
the media to which 
person was exposed 

time 

FIGURE 1-Retained exposure value as it might vary over time 
for a specific individual 
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potential 
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100 ---------------------------------------------------

'-----------------------> 
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FIGURE 2-Customer response 

sp'Onse, but it d'Oes S'O with -diminishing returns 
The relati'Onship might be as sh'Own in Figure 2. 

The anticipated t'Otal response in a time peri'Od 
is the sales p'Otential 'Of each market segment times 
the average percent 'Of p'Otential achieved by pe'Ople 
in that segment summed 'Over all segments. The 
average percent 'Of p'Otential achieved in a segment 
is calculated by an analytic appr'Oximati'On that 
inv'Olves the characteristics 'Of the probability dis 
tributi'On 'Of exp'Osures t'O pe'Ople within the seg
ment. Thus the m'Odel, a simulati'On by s'Ome defi
niti'Ons, is n'Ot a simulati'On in the sense that in
dividuals in a p'Opulati'On are treated 'One at a time 
by the c'Omputer. 

T'O summarize: advertising inserti'Ons in media 
generate exp'Osures in the market segments. Ex
p'Osures have ,value and raise the exp'Osure level 'Of 
s'Ome pe'Ople in the segments, alth'Ough this will 
decrease with time because 'Of forgetting unless 
further exp'Osures 'Occur. The exp'Osure level gen
erates an anticipated resp'Onse. Diminishing re
turns 'Occur at high exp'Osure levels. 

Optimization 

Heuristic meth'Ods are used t'O select and sched
ule media fur large t'Otal resp'Onse. The exact op
timizati'On pr'Oblem is 'One 'Of integer pr'Ogramming 
with a n'Onlinear 'Objective functi'On. Efficient ex
act meth'Ods are n'Ot available f'Or this, but fairly 
simple heuristics appear t'O give very g'O'Od results. 
The present r'Outine starts fr'Om the set 'Of re
quired media (if any) and adds new media 'One at 
a time acc'Ording to a criteri'On of largest incre
mental resp'Onse per d'Ollar, taking int'O account 
all media inserted up t'O that p'Oint. The r'Outine 
stops when the budget is exhausted. 



Computer system 

The current version of ME.DIAC contains four 
conversational programs which the user may call 
at his option: 

(1) INPUT accepts data from a teletype and 
store& it on a- disk file. The required data 
and its format are requested by the com
puter in English. The user may elect op
tions which help to eliminate repetitions of 
certain input. 

(2) CHANGE enables the user to change any 
stored data on the disk. 

(3 ) PRINT prints out the input data stored on 
disk in a management report format. 

(4) MEDIAC is the actual calculation program. 
Its input is a disk file prepared by INPUT 
or CHANGE. The user may use three 
different options in this program. He may 
request: 

1. Evaluation of a particular schedule in 
terms of its expected response in total and 
its effects in each market segment and 
time period. 

2. Initial Ranking of all available media op
tions. This is based on the incremental 
value per dollar for each option in the ab
sence of others in the schedule. The rank
ings can serve as an effective initial media 
screening device. 

3. Selection and Scheduling of the media op
tions. A detailed output of the effects of 
the generated schedule in each market 
segment during each time period is also 
generated at the user's option as well as 
a chart of the schedule by time periods. 

The system is up on a time sharing computer 
utility with which users communicate via tele
phone lines. MEDIAC represents a step beyond' 
the computer utility toward a mathematical model 
utility. 

Example 

The following example is a slightly-coded and 
cut-down version of an actual application. The 
run was made as part of the planning process in 
the development of a television schedule. 

The product at hand is used almost exclusively 
by women. We have dubbed it "Princess Widgets." 
Heaviest use is among women aged 25-34 in A 
(i.e., metropolitan) counties, although signifi-
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cant usage is found in other groups. The relevant 
market segments have been broken out by age 
and county type as follows: 

Age : 25 and under / 25-34 / 35-49 / 50-64 

County type: A / B / C + D (abbreviated C) 

Budaet $600,000 12Sepenta 

Nedia Option ASOAPD BSOAPD DAGAMB NKOVIE HWESTN NADVEN HSITUA FaINGA FRINGB 

Coat/lnaertion 7300 55000 46400 37900 46000 

ExpoaureValue 1,0 1.0 1,0 1.0 1.0 1.0 1.0 1.0 1.0 

Probability 
ofbpo8ure .35 .35 .35 .40 .40 .40 .40 

Upper BoUDcla 

Audlenc.eSeuonal:1ty: Hod 

Sepent Data 

Market A A A A B B B Bee C C 
Sepe1Jt 25 Und 25-34 35-49 50-64 25 Und Z5-14 35-49 50-64 25 Unci 25-34 35-49 50-64 

Population 4000 4470 6930 5860281031404880 4120 3490 3910 6060 5120 

;:~::t1a1 1.56 1.43 1.33 .98 1.49 1.36 1.25 .90 1.20 1.10 1.01 .72 

Initial 
Exposure: 

::!::~ .100.098.082.064.101.095.082.061.085.083.070.056 

MeIIOry ConataDt: .250 

1 Average Bxpoaure: 50. 2 Expoaurea: 70. 3 Expoaurea: 80 

All twelve combinations are considered. Existing 
TV shows representative of types expected to be 
a vailable in the planning period are used in the 
analysis. The shows selected for consideration 
have been chosen with the objective o~ permitting 
a mix that will cover high potential groups effi
ciently. The media abbreviations are: 

ASOAPD = Daytime 
Serial A 

BSOAPD = Daytime 
Serial B 

DAGAME Daytime 
Game 

NMOVIE=Night 
Movie 

NADVEN = Night 
Adven
ture 

NSITUA = Night 
Situa
tion 

FRINGB = Fringe 
Spots in 
County 
Size A 

FRINGB = Fringe 
Spots in 
County 
Size B 

The following illustrations give a summary of 
input data for the problem and an abbreviated 
transcript of the console session at which this 
problem was run. Included are: 

(1) Input of the data. 
(2) Preliminary ranking of the media choices. 
(3) Detailed build up on the schedule for the 

given budget and other input. 
(4) Summary of final schedule. 
(5) Detailed results 'Of retained exposure value 

by market segment and time period. 
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MARKET COVERAGES 

A A A B B B B c C C C 
2Sund 2S-34 3S-47 50-64 2Sund 25-34 35-47 50-64 25und 25-34 35-49 50-67 

ASOAP .096 .068 .056 .OS2 .104 .073 .060 .056 . 115 .081 .067 .063 

'BSOAP .111 .096 .075 .079 .104 .090 .071 .074 .139 .120 .094 .099 

DAGAME .093 .085 .081 .089 .103 .094 .090 • 098 .096 .088 .084 .09 

NMOVIE .321 .313 .249 .206 .302 .294 .23S .194 .274 .266 .212 .175 

NWESTN .129 .0Sl .104 .114 .144 .102 .116 .127 . 208' .147 .167 .183 

NADVEN .209 .211 .192 .101 .241 .242 .220 .116 .166 .167 .153 .080 

NSITUA .272 .245 .20S .208 .241 .217 .182 .184 . 205 .185 .155 .156 

FRINGA .12Q .120 .100 .080 .000 .000 .000 .000 • 000 .000 .000 .000 

FRINGB .000 .000 .000 .000 .120 .120 .100 .080 .000 .000 .000 .000 

MEDIA DUPLICATIONS 

ASOAPD BSOAPD DAGAME NMOVIE NWESTN 

ASOAPD .036 .037 .035 .040 .034 

BSOAPD .048 .042 .0Sl .047 
r---

DAGAME .043 .047 .042 
I---

NMOVIE 
'--

NWESTN 

.133 .OS4 

I---
NADVEN 
-

NSlTUA 
I---

FRINGA 
t--

FRINGB 

L. ~ l I I • ( T 

. .: l r .'( ~ / 1 7 ~ : :." 

iYI·F ,";.J • .IF hJLL(' ,c, IoJ ;-.\ f'l,rl~r9. 
- f,(:rl(.j'., 

TYi·F lr.E l~;j. lJl- 1I.'d' of ',12 
- ::1 

1 YI'F ,-JO. dF "' . .-<1 "F (',/,F.-Jl~,!:: 
- J? .. 

lYI-F '\)'). lJr ,",Ff'If\,ILj 

.067 

- ;;YJ F lHF j'E; CF.,..JT ·JF hJTF.'>!lIrL r F,c'LI~Fr' 
tF1F.r lui-ii'LFif .\P·llitlIu'li ~I·J·-. F';ju~·lfF:,r.i· 

1 e. p ., 

lY1~F ;~PI~jF OF i'o'jKl ~ Fl· 

- ~'~~~:-Jr'\lO. dF I-'FlH~LF" t'·)l J;','n If·L FO;' 

_.lIl'(tI·."l.Sf., 

1 Yt- F MEI'-'ilJ!, Y ClJ:~~l Ai\I·C., Foil. 

- .~'~, 
1yn' NM1E llF "ifJllP I f,b 

NADVEN NSITUA FRINGA FRINGB 

.035 .037 • 025 .025 

.048 .OSO .041' .041 

.044 .04~ .038 .038 

.059 .090 .050 .050 

.050 .070 .046 .046 

.078 .071 • 048 .048 

.097 .OSO .050 

.050 .000 

.050 

Enter the Time Sharing S1stem 

_Indicates data typed by the 
user. All other typing is 
done by the computer except 
for cOlllllents at right. 

Begin Data Bank generating 
Program 

The computer asks for all data 
needed in English. The F, I, 
and A letters refer to input 
format. 

Indicates cut ting to save 
space. Actual trace 1s 
about 8 pages. 

- ~~~,~P~XI'OcL';'E \!PU:E,j ,'Uf-, elF EXHJ~U'b?f3.,uF P~UPPD 
- 1.,.35" 

TYPE CUST PEh INSUT F6. FOr 
-6RCr:., , 

PSOAPD 

TYP'E NO OF SEGS UTH SEASONAL POTENTIAL 

....,.. ~~PE NO. ~F CASES(PElduDS*MEDIAl ~.ITH 
LlPPEF. BOUNDS NOT EC'UAL TO ONE 

- ~~~E NO. OF MEDIA ~:ITH UPPER BND. NOT = I 
~,HOSE BNDS. ARE CONSTANT FOR ALL PERIODS 

-~~PE MEDIA NO.,CONSTANT UPPER BOUND,212 

- ~;~~~D NO~: HAS A CONSTANT BND. OF 12FOR IILL PEI<S. 

TV"'" r'" 'T(r"Tn"!" OF ASOAPD ~JITH 

ASOARSOADAGf\\"'lI'" -, ,'r"\!N~TTFF'INFl<IN 
• xxx.xxx. xxx. xxx. ~yv. vvv. ~" .... '. ·.:vy. 'l(XX 

- • 036. ~37. 035. 040. 034.1'135. " c 7. ,'r <. r'," 5 

- -GO <G2A011>/@MEDIAC/ 

The data bank for this 
problem is now created • 

The user then aslts for an 
taitial ranlt1ng of all the 
.-Ita option • 

TYPE I IF INITIAL EXPOSURES ARE ZERO • OTHERWISE 2 

- ~~PE I IF RANKING loJANTED.2 FOR FULL ALLOCATION 
-I • 

DAGAME T. P. 
DAGAME T. P • 
DIIGAf~E T. P. 

MiOI'FD T. P. 

IMPACT IDOL= 
IMPACT IDOL= 
IMPACT/DOL= 

I IMPACT/DOL= 

F'f,ING" T. F. I IMPACT/DOL= 

r;~OIIpD T. 1' • I Ii'1FIICT/DOL= 

,W',OVI FT. f'. I IMPIICT/DOL= 

1 !i"iPA,CT/DOL= 

ilioITL'{I T. P • I H1PACl/DOL= 

Fi'INPC'T. i'. 1 Iit,PACT IDOL= 

,'l\o,'ESTN T. i'. 1 HIFIICT/DOL= 

.151 
<151 
<lSI 

.133 

<123 

.107 

.067 

.065 

.065 

.£·)54 

.039 

r;O,'d'l'TEi, TIMP. .09 illNUTES 

- -GO (G2A01 t>/@MEDIAC/ 
This tt.a the user desires 

TYPE I IF INITIAL EXPOSURES IIi'iE ~n'o, 
-2, 

• full E'UIl of the MEDIAe 
selection and 

OTHEr. U SE" scheduling system. 

TYPE INITIIIL EXPOSUl<ES/CII.F-IN SEGit,E."TA~5li.\lD FJ;. 
-·1 .. 

TYPE 1 IF RANKING hA.~TED.2 FOr FULL ALLOCAlIO.~ -p, 

TYFE 1 IF SO.o',E ,"EDIfI H(,I/E AL! .. DY EEE;" SELECTED,QTHEj,U,"" 2 

If sOlIe medis must be in the 
schedule, they are added here. 

INSERT IN DAGAME TIME PEr; 
INSERT IN DAGIIME TIME PE" 
INSERT IN DAGAME TIME PEr
INSEl<T IN DIIGAME T Ii"E PE" 
INSERT IN DAGAME TIi-IE PEr, 
INSERT IN DIIGAME TIIV,E PEr, 
INSERT It\I DAGI'ME TIi'IE PEl, 
INSERT IN DAGIIIV,F: TIME PEr, 
INSE'FT IN DIIGIIME TIME PEh 
INSERT IN DI'GIIME TIME PEE 
INSERT IN DIIGII.l1E TIME PER 

1 INSERT IN DIIGPME' TI~IE PEF 
INSERT IN DPGIIME TIME PEF 
INSEF,T II" DAGAi'iE TIMF ,,<:), 
INSERT IN DPGAME Tli>~E PEr.. 
INSERT IN DAGAME TIr'iE PEl, 
I NSERT IN lJAGAME TIME PE)
INSERT IN DAGAME TIME PEr.. 
INSERT IN DAGAME TIME PER 
INSERT IN DAGAME TIME PET, 
INSERT IN DAGAME TIME PEF. 
INSERT IN DAGAME TIME PEf.. 
INSERT IN DAGA.1E TIME FH, 
INSERT IN DAGA11E THIE PEl, 
INSEF.T 1,\1 DAGA11E TH'iE FEF. 
INSERT IN DAGAME TI1t,E PEh 
INSERT IN NMOVIE TIME PEr. 
INSEET IN N110VIE TIME PEr, 
INSERT IN DAGAf1E TIME PEl'; 
INSERT IN NMOVIE TINE PEr, 
INSERT IN NMOV.IE TIME PER 
INSERT IN Nf'iOVIE TIME PEr, 
INSERT IN NMOVIE TIME PEl'; 
INSERT IN NMOVIE TIME PEF: 

I INSEl<T IN i\lMOVIE TIME PE;" 

5 CllST 
COST 
COST 
CO~T 

COST 
COST 

2 COST 
4 COST 
I COST 
3 COST 
1 COST 
3 COST 
5 COSl 
2 CO~T 

COST 
COST 
COST 
COST 
CO!:'1 
C()~,T 

COST 
COST 
COST 
COST 
COST 

5 COST 
3 CO~T 
5 COST 
1 CO~T 
2 COST 
4 COST 
I COST 
3 COST 
I COST 
4 CO~'T 

73['<. i'.E/',Ll ZED POT. 
146~i.).)-EI'Lj(;E[' POT. 
219(,,(,;.; EIILI ZED 1'01. 
?92.''''.'.El'LIZEP POT. 
365('('.~F."LIZED POl. 
436"'~'.hEALIZED POT. 
511f;().f..EPLlZED POT. 
5R4v,~'.FEALIZED FOT. 
65 7f:,(I,. hEII.L I 1- ED POT. 
73H:(.;.J;EALIZED POT. 
803r.(".FEALI ZED FaT. 
8 76b0. i<EI'.L I 1-ED FUT. 
9 4980.; EPLIZE[\ )~OT. 

1(J2p.r·'~".!·.f?LIl.r[J j"JI. 
](19500.1 EALliED POT. 
11680(,. hEAL lLED j~()T. 
12410rj.r.r-:i'-LEED POT. 
1314C,\;.hEALIZED POT. 
138 7GC).I,EAL I ZED FOT. 
14 6(,{"r:.!<EALI1-ED f'OT. 
1533U,.rEII,LI1-ED FOT. 
1606')(,. !,EI'LI !.ED )~Ol. 
1679(,,,,,.j,EALIlED POT. 
I 75U,(,.j EALI ZED POT. 
1(;25(:0. i',F.tlLl ZED PuT. 
1<396,"(,. r,EALI ZED POT. 
24430r..",I-:ALIZED POT. 
2998E;(i.i-.EALILED PuT. 
3(;7 HJO.; .. EALI ZED POl. 
3621E;O.hEALIZED POT. 
417H;(J. r,EALIZED POT. 
472IfJO.!',EALIZED "OT. 
527ICi0.;'E:ALIZED PO"i. 
58? Jf.ir>.j E:ALIZED POT. 
";:171 CW.)- EALI ZED POT. 

4797. 
5913. 
6996. 
r,{J55. 
9f'94. 
IH~58. 

II rv'4. 
11926. 
12836. 
13725. 
14537. 
153~2. 

1615G. 
11'F,94. 
17638. 
1,;329. 
15966. 
19673. 
20276. 
2U355. 
21457. 
21955. 
22449. 
22947. 
23395. 
23967. 
26950. 
3C0v'2. 
30393. 
3327((;. 
36129. 
35898. 
41519. 
44V,8r.. 
46679. 



MEDIAC GENE~ATED SCHEDULE 

MEDIA PEi'.. ;? 

DAGAME 6 
NMOVI E XX X 

"i 5 
6 6 

XX XX X 

TYPEI FOR DETAILED OUTPUT.ELSE2 
-I. 

~·EGV.E,H TIt"E P EX VI'L/CP SEG E.V. 
. 5UND I .0":" I' ~':l:;('. 

A25UNr· 2 .43682 1747. 
A25UiIID 3 .52831 2113. 

COMPUTER TIME 

+ 
- -LOG 

The system prints a trace of 
tile build up of the schedule 
Uk! then a graphical display 
of the final schedule. 

iEALIZED POTENTIAL 
l?'<4f> .. 
960. 

1108. 
The ua.r d.sires to see 
d.t.ilri output describing 
..... r... ret.ined exposure 
level/person and realized 
potential in each segment 
during each period of the 
andysis. 

Total time used, including 
input, waa 42 minutes of 
terminal time and .97 
minutes of CPU time. 

A few comments are worth making on the final 
schedule. Under the conditions of the problem, 
daytime shows covered the desired audience most 
efficiently. (See initial rankings.) As a result, 
the computer took the highest ranking daytime 
show, DAGAME, and used a considerable amount. 
If higher diminishing returns had been used, less 
DAGAME would have been scheduled because of 
its duplication with itself. After using consider
able DAGAME, the computer skipped over the 
other daytime shows to the much lower ranked 
NMOVIE. This is because NMOVIE picks up new 
people not covered well by daytime TV. If the 
budget had been substantially larger, more media 
would probably have come in. The media director 
whose problem this is thought that fringe spots 
would be useful. However, even when their e:
posure value was increased slightly and their cost 
decreased slightly in a sensitivity test, they did 
not come into the schedule. Apparently, after the 
other shows have been carefully picked, the spots 
have little to offer in this situation. 

Discussion 

What have we learned from the exposure of our 
model and system to media planners? 

Real world problems are viewed as large and 
analytically complex by those responsible for solv
ing them, even th~ugh their past approaches have 
been analytically quite simple. Weare constantly 
being pressed to increase our capability particu
larly with respect to number of media alternatives, 
market segments and time periods. We have in
creased our capacity from 15 media, 20 segments, 
and 12 time periods to 40 media, 20 segments and 
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13 time periods and are currently working on a 
much larger version. 

Although our system is conlputationally very 
efficient compared, say, to a simUlation approach 
to media planning, we feel economic pressure to 
make the system and heuristics run faster so that 
bigger problems become feasible in relation to 
the research budgets of the users. We have made 
the system at least three times faster in the past 
year for medium sized problems and even faster 
relatively for problems as they become larger. 

An unwelcome consequence of larger problems 
is that they become less practical to operate on a 
time shared basis. In some busy periods the user 
may wait for three or four hours for a run taking 
twenty minutes of central processor time. To over
come this we have set up a system of on-line or
dered batch processing for these large problems. 
The user still runs the conversational input, 
change and print programs at the console to enter 
his data or make any data changes. He then calls 
another conversational program which constructs 
a disk file containing instructions for the options 
desired in the calculation program. The calcula
tion program is run overnight in a batch mode 
and creates a disk file with the system output. The 
user then enters the time-sharing system in the 
morning and prints out the results at his terminal. 

We have also felt pressure to include more phe
nomena in our model of the advertising process. 
We presently are working on including competi. 
tive advertising, the rub-off effect of other adver
tising by the same firm, and the synergistic effects 
of multiple media types. The research is constant
ly prodded by our users asking for the inclusion 
of new phenomena. When these phenomena are 
included, they will undoubtedly ask for others. 

At the same time, we have the distinct impres
sion that we should not introduce complications 
too fast. Although the concepts in our model are 
all familiar to media planners, the process of de
veloping data on each and putting them all into 
a single 8tructure is not easy and requires time 
to absorb. This must be done for the most basic 
phenomena before going on to new complexities. 

The interactive aspect of our system has been 
valuable in building confidence in the system 
among non-technical users The user directly 
monitors what goes into the computer without 
being subjected to the rather imposing tribal rit
uals demanded by punched cards, system program
mers, and computer operators. The user feels that 
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the system is in his control at all times and he 
knows exactly what data the computer is using 
to work on his problem. If any input mistakes are 
involved, he holds himself resp'Onsible. Most peo
ple seem to have more confidence in themselves 
than in other interfaces with the computer. 

How has the use of MEDIAe affected the way 
our users think about their media planning de
cisions? MEDIAe tends to move the intuitive ap
proach of the media planner to a more productive 
level. More effort goes into formulating the prob
lem constructively than into trying to perceive the 
answer in one jump. Not that users automatically 
accept the model's answers, they test the answers 
against their intuition, dig into the model to find 
out what caused any substantial discrepancies and, 
in the process, appear to be updating and en
riching their intuition. 

The use of a rather comprehensive model struc
ture has caused some planners to face proplems 
whose importance had previously been unacknowl
edged. For example, 'One user tried three different 
response functions for a problem~ one reflecting 
very high diminishing returns with repeated ex
posure, the second a moderate amount of dimin
ishing returns, and the third almost no diminish
ing returns. The MEDIAe generated schedule 
was quite different for each curve. The importance 
of defining his client's 'Objectives in terms of the 
value of repeated" exposure was thus dramatized 
by sensitivity analysis on the model. 

The model tries to give the users a sensible, 
consistent, comprehensive structure for media 

"planning. The model leads people to look at many 
issues and ferret out information on all of" them. 

It also helps sort out relevant material from the 
deluge of data which planners invariably en
counter. 

Preparing problems for MEDIAC is often time 
consuming. Collecting the input data can be a 
time-consuming undertaking. A substantial 
amount of data manipulation is 'Often needed be
cause the data sources are frequently incompara
ble, the numbers are in different units, or the 
data must be extrapolated. We have made some 
headway into computerization of the data manipu
lation problem and consider it a fruitful area for 
devel'Opment. Once the planner has done a few 
problems he usually finds short-cuts in input gen
eration which save considerable amounts of time. 
Obtaining input for an average problem by an 
experienced MEDIAC user has taken from one 
to three man-days. 

Users have been quite pleased with the results 
they have achieved with MEDIAC. Improvements 
in the objective functions, as defined by the users, 
have ranged from about 5 % to 25 % relative to 
previous schedules. Some MEDIAC generated 
schedules have looked much like previous ones; 
others have been quite different. In cases that 
have looked different, it has been possible to find 
out what data or phenomena have caused the 
change. In almost all cases the media planner 
has preferred the new schedule. 
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INTRODUCTION 

Long range planning staff studies at Southern Pacific 
Company during the last three years have had as their 
primary objective the identification and analysis of 
major future decisions. These future decisions deal both 
with strategic, corporate problem~ and with opera
tional investment problems; both types of problems are 
related and usually must be considered together. Some 
of these investment decisions will be made in the near 
future: the timing for others is as much as several years 
away. 

Foreknowledge of decisions which are likely to be 
made even in the relatively distant future is important. 
in view of the long planning lead times and long eco
nomic lives found in most railroad capital investment 
proposals. If today's decisions act to eliminate the 
most desirable future options, then the cost of not 
having identified and not having studied the likely fu-
ture decisions can be great. . 

This sort of long range planning includes what has 
been termed "strategic planning." Some companies 
limit l?ng range planning to a process that is mainly an 
extensIOn of annual budget-making. In those com
panies, the esoteric task of strategic planning may be per-
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formed entirely by the chief executive, with little or no 
staff participation. However, Southern Pacific's ex
perience with complex strategic decision problems has 
tended to prove the value of increased participation by 
staff, department heads, and sometimes by outside 
consulting personnel. 

The resulting studies of important factors in planning 
decisions have utilized a series of computer models. It 
is the purpose of this paper to discuss our approach to 
the analysis of planning problems, giving particular 
emphasis to a description of the computer models and 
their use. The paper begins with a description of plan
ning problems that typically have been encountered. 
The second part of the paper describes the two most 
important computer models used: the operating cost 
model and the investment analysis model. The finat 
part of the paper discusses the implementation and 
use of the models. 

Description of the planning problem 

Decision structure 

From a conceptual viewpoint a typical planning 
problem may be divided into two parts. The first part 
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includes those problem elements which are largely 
subject to control: the "decision alternatives." The 
second part includes those elements over which little or 
no control can be exercised and which have an uncertain 
effect on the final outcome. For a given decision alter
native and a given effect by an element of uncertainty, 
there is a unique conditional outcome or end state. The 
aggregate of values of all possible conditional end states 
in a planning problem is determined by all possible 
combinations of decision alternatives and effects of 
uncertainties. 

The value for each conditional end state is determi
nistic, since it represents the answer to a series of '~what 
if" questions. What if a particular decision alternative 
is adopted? What if each uncertainty element assumes 
a particular value? Calculation of values for condition
al end states can be quite laborious in a planning prob
lem of average complexity and, for this reason, a com
!Juter program is indicated. As this paper will later 
describe, the operating cost model and the investment 
analysis model provide the means for calculating the 
values of conditional end states and combining those 
values to form a distribution of outcomes. 

The nature of the planning problem 

We are concerned mainly with questions of when and 
where, as traffic increases, to modify railroad fixed 
plant. For example, railroads can add to fixed plant 
capacity by construction. of second and additional main 
tracks parallel to existing single track lines. Centrally
directed traffic contr~l systems which permit closer 
control over the movement of trains across the railroad 
system may be installed. Sidings, which are auxiliary 
tracks next to the main track that permit trains to meet 
and pass on single-track lines, may be required as traffic 
increases or train operating schedules are speeded up. 
Also, as the volume of traffic increases and functions 
of terminals change, there will be proposals to add to 
or modify fixed plant in rail yards and terminals. 

The customary benefits used to justify fixed plant 
improvements and the acquisition of alternative routes 
have probably understated the value such in
vestments have in allowing improved service to be 
offered more efficiently, due to the difficulty of trans
lating such benefits into dollar terms. Indeed, labor 
savings and a few other easHy-identified sources of 
savings have generally been the only benefits specifi
cally attributed to most proposals. Our thesis is that by 
undertaking projects to mak~ the fixed plant more 
efficient the railroad· operation can be run at a lower 
overall operating cost. The reduction in operating cost 
results from economies in assigning motive power to 
trains. The more efficient motive power assignment is 

made possible by reduced train delays in the more 
efficient system. 

Of the many factors of uncertainty to be considered 
in the planning problem, the uncertainty of futUre 
transportation demand is often most significant. Not 
only is the volume of traffic to be transported uncertain, 
there is also uncertainty about the service requirements 
for this future traffic. Another important element of 
uncertainty is the outcome of efforts to merge with or 
acquire other railroad properties, which can have a 
marked effect on the desirability of an investment 
program. The uncertainty in futUre transportation 
demand is expressed in the form of probability estimates 
of the future rate of traffic growth, after studies and 
discussions with knowledgeable individuals. The un
certain outcomes of merger efforts are likewise in
corporated as probability estimates. after interviewing 
lawyers and others involved. 

A specific investment example 

An important plant improvement problem studied 
is the proposal to extend double track over the BeaU
mont hill. Southern Pacific enters the Los Angeles 
Basin from the east through San Gorgonio Pass, west 
of Palm Springs, California. Transcontinental trains 
moving over this route originate and terminate as 
far east as St. Louis and New Orleans on Southern 
Pacific system lines and Chicago on the Rock Island. 
Nearly 40 trains climb the steep grades on both sides of 
the pass each day. Differences in uphill train speeds 
add to the problem of efficiently moving this large 
volume of traffic. 

Between Colton, at the foot of the western slope, and 
Beaumont, at the top of the hill, there are two parallel 
main tracks for 20 of the 24 miles. On the eastern slope, 
from Beaumont down to Indio, the line is single-tracked 
for the entire distance of 46 miles with nine locations 
for meeting and passing trains. 

Traffic over the Beaumont hill has grown rapidly in 
recent years, with the result that there has been an 
apparent need for increased main track capacity to 
maintain scheduled movement of trains into and out 
of the Los Angeles Basin. To provide this capacity, 
plans for extending existing double track lines to Indio 
on the east and Colton on the west have been proposed. 
Investment costs for these additions to fixed plant 
have been estimated. 

The easily-identifiable direct cash benefits to be 
derived from double-tracking the Beaumont hill are 
small. In the corporate-wide competition for scarce 
capital funds, this project has therefore ranked rela
tively low. Management recognized that the proposal 
could produce important reductions in train delays 



incurred in the meeting and passing of trains. However, 
there was no agreement as to the dollar value of elim
inating these delays. The mathematical models to 
which we now turn were constructed to determine this 
value, and to provide a means for comparison with 
other investment alternatives. 

Operattng cost and investment analysis models 

To evaluate the benefit accruing from an invest
ment proposal like double tracking the Be~umont hill, 
an operating cost model was cop,structed/to calculate 
the operating cost reduction that could result, at each 
of a number of assumed traffi~ levels, if trains were 
required to meet the same' overall point-to-point 
schedules without incurring delays on the Beaumont 
hill. In the absence of these delays, less 'locomotive 
horsepower is needed to meet the same schedules; 
consequently an operating cost reduction could be real
ized by trading fixed plant investment dollars for 
savings in locomotive operating and ownership costs. 
Moreover, the cost model provides general guidelines 
for actually realizing these locomotive savings by 
identifying the reduction in locomotive horsepower 
requirements for each train operating over the Beau
mont hill. The cost savings and probabilistic informa
tion concerning future traffic levels are input to an 
investment analysis program which calculates the 
probability distribution of net present value and of the 
return on investment for the Beaumont hill proposal. 

The purpose of this section is to describe the formu
lation of the two mathematical models and the com

, putational approaches to their solution. 

The operating cost model 

The operating cost model is an optimizing model 
whose primary purpose is to allocate locomotive horse
power in the lowest-cost manner yet still meet the train 
schedules demanded by railroad customers. The op
timization is required since a proper comparison of the 
operating costs of two alternatives requires that each 
alternative be evaluated assuming its most efficient 
operation. Oth~rwise, it is possible to attribute relative 
benefits to a proposal which are in fact the result of 
operational improvements rather than the invest
ment itself . 

. The railroad system under analysis is represented by 
a network. The nodes of the network correspond to 
terminals where changes in power assignment can be 
~ade. Links of the network represent sections of track 
called districts. Each district has associated costs and 
running times as fUnctions of direction of travel and 
horsepower per ton of train weight. Also, there is an 
associated average delay time experienced by a train 
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forced into a siding as a consequence of interference wjth 
another train. This delay is a function of the type of 
train movement control, the length and location of 
sidings, and whether or not some or all of the district is 
doubled -tracked. 

Trains are introduced into the system by defining a 
route through the network as a sequence of district 
couples (i, j) denoting movement from node i to node 
j. The route for the kth train is denoted by the 
sequence of couples J(k); e.g., if train 5 travels from 
node 3 to node 7 and then to node 5, J(5) = [(3,7), (7, 
5)]. Associated with each train 1S a total allowable 
schedule time for completing its route denoted by Sk 

for the kth train, a departure time from the first node 
on the route denoted by d k , arid a total payload weight 
Wk. The schedule time is the total allowable elapsed 
time from the first node to the last. Departure time is 
measured on a 24-hour clock, as it is assumed that 
each train runs every day. ' 

Since the objective is to find the opt~mal horsepower 
allocation for each train in each district, define the 
variables 

h ijk as the horsepower per ton allocated to train k 
in its run over district (i, j) and 

v ijk as the number of meets train k experiences in 
district (i, j) due to conflict with superior 
trains. 

Let the functions 

C t /.) relate the cost incurred in district (i, j) to 
the horsepower per ton assigned to a given 
train in that district and 

R ij (.) relate running time in district (i, j) to the 
horsepower per ton assigned to a given train 
in that district, 

and define the constants 

mij the average delay time per meet in district 
(i, j) and 

f ijk the fixed terminal delay train k experiences 
in node i before departing to traverse district 
(i, j). 

The independent or decision variables are the horse
power assignments { h ijk }, while the variables { v iJk } 

representing the number of meets experienced by each 
traiIJ. are dependent variables which are complex func
tions of horsepower assignments, functions and con
stants. In order to calculate optimal horsepower as
signments, mathematical relationships must be de
rived to describe feasible values for the independent 
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variables and the resultant operating costs. A feasible 
assignment is one in which all trains traverse their 
routes in the scheduled times { Sk }, and the net power 
flow at any node is zero. The time it takes a train to 
complete a route is the sum of running time, fixed delay 
at terminals, and. delays due to conflicts with other 
trains in districts on the route. We first describe the 
derivation of the running time and cost relation
ships, then turn to meet-delay calculations, and finally 
integrate the factors into a· descriptive mathematical, 
model and computational procedure. 

Cost and run time functions 

The operating cost model is an extension of Southern 
Pacific's formula for calculating direct and allocated 
costs of freight service. The formula includes estimates 
of direct costs (such as wages and fuel) which can be 
identified directly with particular trains. To these 
direct costs are added indirect costs, allocated on the 
basis of work done in moving a ton or carload of freight, 
or a train. vVhile locomotive costs are the only category 
subject to optimization in the operating cost model, 
other costs (such as wages) are also considered in the 
model since certain operating alternatives may affect 
these costs. A detailed breakdown of locomotive costs 
is given by Figure 1. 

The costs based on speed and load hauled are difficult 
to arrive at but crucial to the analysis and are calculated 
by applying unit costs to simulated fuel consumption 
data obtained from a computer simulation program. 

COSTS RELATED 
TO USE 

I LOCOMOTIVE COSTS I 

COSTS RELATIVELY 
INDEPENDENT OF USE , 

BASED ON BASED ON 
,MILES TRAVELED I 

BASED ON 
SPEED a LOAD HAULED , . , PASSAGE OF TIME, 

RUNNING GEAR 
MAINTENANCE 

RIGHT-OF-WAY 
MAINTENAIICE 

EICIIIE, GENERATOR 
AND IIOTOII 

MAINTENANCE 
fUEl OIL COSTS 

FIGURE 1 

CARBODY AND FIXED 
UIIIl MAINTENANCE 

developed by Canadian National Railway. * This pro
gram simulates the movement of a train with a given 
locomotive consist over a stretch of railroad, subject to 
specified speed limits. Elapsed time and fuel consump
tion of trains between successive points on the rail
road are calculated by successive integration of the 
acceleration -velocity -displacement equations. Repeated 
runs of the simulation program were made at different 
levels of locomotive horsepower per ton of train weight 
to obtain function values of fuel consumption per ton of 
train weight vs. horsepower per ton, and of run time 
required to traverse the district without meet and other 
delays vs. horsepower per ton of train weight. The 
. district running time vs. horsepower per ton is the 
function Rij(.) and the fuel consumption per ton vs. 
horsepower per ton relationship is crucial to the cal
culation of C i;(.), the cost per ton vs. horsepower per 
ton function. 

The run times for intervals between sidings in a dis
trict were input to' a short computer program which 
calculated the range of possible meet delays and the 
average delay for trains meeting each other within each 
district represented by the constants mij. The Cana
dian National simulation computer program thus was 
the important first step since it essentially provided the 
description of the railroad in terms of functions and 
constants to the operating cost model. 

Delays due to meets 

In order to calculate delays due to meets, we num
bered the trains in order of decreasing priority and 
assumed that in a meet situation only thel~wer pri
ority train suffers delay. For a specific train k and as
sociated power allocation {h ij :} , the time a'$ that 
train k ~nters link (t D in it.s route is calculated as 

where the summation on the right is over all districts 
preceding (~ 1') in the sequence J(k) and addition is 
performed modulus 24 hours. Train k will experience a 
meet delay in district (r, t> if there is some superior 
train k (i.e., k' < 10 that travels district (j, 1) and that 
enters the district while train ~ is in the districlor vice 
versa. Formally, train~ is delayed in district (j, j) when
ever 

or 

*Canadian National Railway, Train Performance Calculator 
for the IBM-7070. 



- "'-for some k < k , where appropriate care must be exer-
cised when interpreting the inequalities for those trains 
spending portions of two consecutive days in a partic
ular district. If the horsepower assignments {h ijk } 

are known for all trains, the above computations can 
be performed to determine the number of individual 
meets {v ijk} by starting with the first district traversed 
by train 2 (train 1 experiences no meet delay) and com
puting aij2 and v ij2 for all (i, j) e J (2) in sequential order. 
The difficulty is that these horsepower assignments are 
the independent variables to be determined; consequent
ly their optimal values are not known initially. This 
necessitates the recursive procedure described below 
under 1\1 ethod of Computation. 

Horsepower assignment calculation 

Assume that the number of meets {v ijk} encountered 
by each train in each district is known for the optimal 
horsepower assignments {hijd . If K trains are to be 
run, the solution to the following mathematical pro
gramming problem determines the desired optimal 
horsepower values: 

K 

Minimize L: 
k=l 

subject to: 

1) L: 
(i,j)EJ U') 

L: wkCij(hijk) 
(i,l)EJ (k) 

for k = 1, ... , K 

for each node i in the network 

3) h ijk ~ 0 for k = 1, ... , K and all (i, j)eJ(k) 

where the first summation in equation group (2) is over 
all trains which depart node i and the second summation 
is over all trains which enter node i at some point on 
their route. 

The objective function expresses the desire to find a 
minimum cost solution. Equation group (1) represents 
the constraint that all trains complete their routes 
within the scheduled times; equation group (2) requires 
that the net flow of horsepower into each node be zero; 
and group (3) restricts horsepower assignments to non
negative levels. Since the functions RiiC.) are convex 
the feasible region represented by (1), (2), and (3) is 
convex. The problem of minimizing the convex func
tion C ij (.) subject to a convex constraint set is formally 
a problem in non -linear programming with separable 
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functions under the assumption that the values of the 
meet-delay variables { v ijk} are known. The com
putational approach and the scheme devised to cir
cumvent the dependence of the meet delay times upon 
the actual horsepower assignment are discussed next. 

Method of computation 

Since the cost ,and running time functions are initially 
calculated from the train performance program as 
piecewise linear functions, the bounded variable method 
of linear programming is immediately suggested. Using 
horsepower increments of one half horsepower per ton 
with 10 increments describing each district, a problem 
with 75 trains and 40 districts results in an LP matrix 
with 93 equations and 1,674 unknowns. The LP code 
selected was MPS-360 supplied by IBM. 

Since the size of the problems considered is large, an 
input pre-processor was required to prepare the data 
for MPS. Input to the pre-processor is the running time 
and fuel consumption data from the Canadian National 
train performance program, a network description, 
unit costs, train schedules, routes, and delay times. The 
operating cost function C ij (.) is calculated and the 
following three output files are created: the first speci
fies the minimization problem in a form suitable for 
direct input to 1\t{PS, the second file contains running 
time'information required in the meet delay calculation, 
and the third file contains data required by a post
processor for report generation. Final output of the 
system is a series of reports giving the optimal train 
horsepower assignments and cost per day to operate 
the specified system. 

As we have seen, if the values of the optimal meet de
lay variables v ijk are known, the horsepower optimiza
tion is a straightforward problem in mathematical 
programming. However, the optimal values of the meet 
delay variables are not known a priori which leads us 
to a recursive procedure in which a set of values is 
assumed for these variables; a horsepower optimization 
run using these values; and then a meet-delay calcula
tion performed using the current optjmal horsepower 
values to calculate new values for the meet delay vari
ables. The process is then repeated unless the values of 
the meet delay variables are unaltered at which point 
an output report js produced. 

The computations are initiated with the meet delay 
variables v ijk set equal to zero. Optimization of this 
system by MPS proceeds rather quickly since the run
ning time constraints are easily satisfied. The optimal 
horsepower values {h ijk } are then transmitted to a sub
routine that performs the meet delay calculations, 
thereby determining new meet variables {v ijk} . If 
the new values of the .{ v ijk} are the same as the old 
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ones, a consistent schedule has been found and the 
post-processor is called to· write the output reports. 
Otherwise, the new values are transmitted back to 
MPS and a new optimization takes place with the cal
culations starting from the old optimal basis. This cal
culation is rapid since the old basis is still nearly 
optimal. 

From a theoretical standpoint, there can be no 
guarantee that this procedure will terminate (cycling 
can occur) or that, upon termination, an optimal 
hO.rsepower assignment will be found. In fact, very 
simple examples can be created that exhibit either of 
the above difficulties. The essential difficulty is two
fold; a moderate change in the {h ijlc } may cause one or 
more meets to shift from one district to another, or, 
by powering the trains in an entirely different manner 
some meets could be shifted to locations where t.he de
lay time per meet m ij is lower. Both of these problems 
arise only if the optimal solution is very sensitive to the 
times that the trains are departed from their original 
terminals. Since the model is being used for long range 
planning purposes, and since random problems influence 
daily operations, t.his type of sensitivity would be 
particularly objectionable. Fortunately, experiments 
with realistic data indicate that this sensitivity does not 
occur. In practice an upper limit is placed on the num
ber of cycles allowed, and every solution is carefully 
examined to check on the reasonableness of the running 
times and the resulting congestion in each district. 

The investment analysis program 

The operating cost savings from alternative invest
ment strategies become the input to the investment 
analysis model. In Section III we discuss our approach 
for comparing and ranking alternatives; here we 
briefiy outline the structure of the investment analysis 
model. 

To illustrate, again consider the Beaumont hill 
dOUble track proposal. The operating cost model pro
vides the operating cost incurred per day for various 
traffic levels with and without dOUble track assumed on 
the Beaumont hill. These costs, together with the 
initial investment cost of the project and probability 
estimates on possible patterns of future traffic growth, 
are inputs to the investment analysis model which cal
culates cost savings per year for the input traffic points 
and then 'interpolates between these points to determine 
yearly cost savings for each of the assumed future 
traffic patterns. 

The annual cost savings for each specified traffic 
pattern and the original investment cost are then used 
to calculate the investment's net present value for 
several discount rates. In this problem, a rate of return 

on the investment is also calculated. Finally, a prob
ability distribution based on the estimates of the 
likelihood of traffic patterns is calculated for net present 
value and rate of return. 

Implementation 

Even in the best environment, it is difficult to im
plement and gain management acceptance for a com
plex long range planning model such as described here. 
In essence, management is asked to make or approve 
detailed estimates of model inputs such as traffic 
growth forecasts, merger probabilities, and track im
provement costs. The model then determines the "pre
ferred" alternative through involved computer pro
grams that management, for the most part, under
stands only in a general way. Because of this inherent 
problem, it is important to implement the models in a 
manner favorable to gaining management acceptance 
and use in decision making. 

To this end, we found the following steps to be 
effective: 

A. Use an iterative approach to model development. 
B. Present the output in terms that management is 

accustomed to and/ or easily understands. 
C. Sharply limit the alternatives evaluated by the 

model. 

The following paragraphs discuss each of these points 
in greater detail. 

Iterative approach to model formulation 

The development of an interim model at an early 
date proved to be worthwhile-even though this model 
did not contain all the refinements required to make it 
fully useful in determining investment policies. The 
initial model's results and shortcomings were reviewed. 
in detail with management, who in tUrn participated 
in refining its decision rules, parameters and constraints. 
This management involvement not only produced a 
more realistic model but also increased their under
standing of how the model specifically handled the 
evaluation of various alternatives. 

A second advantage of the iterative approach was the 
ability to gain insight into the relative importance of 
various constraints and parameters at an earlier date. 
For example, it was discovered that the initial oper
ating cost model understated the indicated benefits 
from making various fixed plant improvements by not 
imposing the obvious practical constraint (equation 
group (2) ) of forcing locomotive horsepower into and 
out of terminals to balance over a specified period. 
Benefits were understated because the initial model 



permitted locomotive horsepower imbalances which 
were found to be much higher for the existing plant 
then for the improved plant, yet failed to attribute the 
reduced imbalance to the improvement. Later versions 
of the operating cost model include the locomotive 
horsepower balancing constraint, and we no longer had 
to explain the considerable manufacturing or scrapping 
of locomotives at terminals indicated by the earlier 
model. 

Presentation of output in management 
understandable terms 

The objective in formulating output was to display 
results in terms familiar to top management and still 
fully present both relative returns and relative risk of 
various investment alternatives. Two important ques
tions had to be resolved. First, should the results be 
expressed in terms of discounted cash flow rate of return 
or as net present value at some specified interest or 
discount rate. Second, should utility (or preference) 
functions of management's attitude toward risk be 
incorporated in the model. These questions have been 
raised and discussed in recent literature although some 
doubt remains regarding their resolution.:1< Our discus
sion here is presented for the purpose of rela~ing the 
general concepts of investment criteria and risk analysis 
to the particular environment in which this work wa~ 
performed. 

Net present value vs. return on investment 

There were advantages to ranking the investment 
alternatives by their return on investment as calculated 
by the discounted cash flow method, including: 

Southern Pacific management had been accus
tomed to examining investments in terms of re
turn on investment. 

It would not he necessary for management to de
cide upon an opportunIty cost of capital. 

On the other hand, there were disadvantages: 

The magnitUde of our investment alternatives 
varied widely and, as is well known, a small in
vestment with a high rate of return may not be as 
attractive to management as a larger investment 
with a smaller, but still acceptable, rate of return. 

Some of the investment alternatives require an 
initial outlay in the first year and additional 
net investments several years later. With this tYPe 

*The approach suggested by Hertz3 is most similar to the one 
recommended here. See also Grayson, l Schlaifer4 and Solo
mon6 for further discussion of these questions. 
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of investment pattern it is often impossible to cal
culate a single rate of return. 

These disadvantages can be overcome by ranking 
the alternatives according to their net present value. 
However, in order to calculate the net present value of 
an alternative it is necessary to assume an interest 
rate at which to discount future cash flows. In our 
evaluations, we view the future benefits of proposed 
investments as being subject to reinvestment in other 
proposals that could not be undertaken without the 
cash flow from the investment currently under con
sideration. The rate at which benefits are realized from 
reinvestment of benefits from the initial investment 
becomes the discount rate, commonly called the op
portunity cost of capital, used to evaluate the present 
value of an investment. The difficulty with this ap
proach is our imprecise knowledge of the future op
portunities and their associated returns. 

The above dilemma is, as usual, resolved by com
promise. We present the results both in terms of return 
on investment (when possible) and net present value 
for a range of plausible interest rates, which allows 
management to view both criteria. 

Incorporation of relative risk 

As reported in the literature previously cited, we 
found there was danger'in ranking alternatives simply 
on the basis of expected rates of return or expected net 
present values. Since expected values are the weighted 
averages of all the conditional end state values, pos
sibility of a large conditional loss or gain may be ob
scured. Yet, this is precisely the information manage
ment requires to evaluate the relative risk of the alterna
tive. For example, assume that the expected rate of 
return for Investment A is 30 percent and for Invest
ment B is 25 percent. However, depending upon the 
rate of growth of traffic volume there is a 30 percent 
chance in Investment A and only a one percent chance 
in Investment B of obtaining a negative rate of return. 
'nepending upon management's attitude towards risk, 
the investment with the higher expected value mayor 
may not be the best decision. 

One standard method for weighing these relative risks 
is to develop a management utility function. A util
ity ( or preference) function presents the differing values 
of money for varying profit or loss positions and could 
be mathematically incorporated in the investment 
analysis model. ** vVhile this approach is theoretically 
sound, we found it impractical to conduct the required 
interviews with Southern Pacific top management in 

**See John S. Hammond/! 
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order to express their attitudes toward risk in precise 
mathematical terms. Instead, we display the results of 
our analysis by plotting cumulative probabilities of 
obtaining at least a given return or net present value. 
Figure 2 demonstrates how the rates of return for the 
hypothetical Investment A and B discussed above 
would be displayed. Managements' sUbjective judg
ment is again called into play to choose the set of in
vestments with Probability-Return Profiles consistent 
with their preferences. The interviewing required to 
arrive at a decision in this manner is far less demanding 

. than that required to construct an abstract utility 
function. 

Limiting alternatives 

The straightforward approach to determining which 
investment or set of investments is superior is to cal
culate incremental Probability-Return Profiles for each 
proposed inprovenlent compared to the existing fixed 
plant, and to all other investments, based upon un
certainties in traffic growth and merger outcomes. If 
this approach had been followed the number of profiles 
to be calculated is 2N -1 where N is the number of alter
nate fi~ed plant improvements. For example, over 
32,000 profiles are required to fully evaluate all com
binations of a set of fifteen alternative improvements. 
This would not only take a substantial block of com
puter time, but the proliferation of output would make 
a poor impression on management concerning the use-

fulness of computer modeling in long range planning 
and decision making. 

In order to substantially reduce the number of in
vestment comparisons, initial rUns of the operating 
cost model were undertaken for the existing facility and 
for each of the alternative modifications to that facility 
for various traffic levels. The probability distributions 
of the incremental benefit (in terms of both rate of 
return and net present value) due to each proposal 
taken by itself were then obtained from a run of the 
investment analysis model. From this data an initial 
ranking was made under the assumption that only one 
project could be selected. At this point a large number 
of the proposed projects could be eliminated from fur
ther consideration since they were not judged desirable 
when compared with the existing plant and would be 
even less desirable when evaluated in conjunction with 
projects of higher initial rank. 

After this initial pruning, evaluation of the invest
ment alternatives proceeds iteratively comparing com
binations of the initially attractive investments that are 
believed compatible from knowledge of the railroad's 
operation. Utilizing this approach in evaluating 1.5 
alternative investments, the total number of compar
isons was reduced to a manageable size of approxi
mately 30 alternatives. 

SUMMARY 

We feel that a detailed analysis of long range invest
ment alternatives is often indicated because of the 
large sums at stake and the risk inherent in building 
for an uncertain future ~nvironment. In many cases the 
future benefits derived from current investments are 
complex functions of a system's operation. One method 
for ascertaining benefits from this type of investment is 
to represent the system by a mathematical model which 
is then optimized for the possible spectrum of future 
environments. The model should be constructed and 
refined in a series of stages interspersed with meetings 
with management. These meetings are essential to 
achieve the desired rapport between decision maker 
and model builder. Results of the investigation should 
be presented in a concise form with emphasis on the 
relative risk of the various proposals. The computer is 
an essential partner in an investigation of this type as 
it is required to optimize the system model and to per
form the myriad of computations required to account 
for future uncertainty and the combinatorial nature of 
the investment problem. 
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A computational model of verbal understanding* 
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8Jtnta Monica, California 

INTRODUCTION AND BACKGROUND 

The long-term goal for oomputational linguistios is to 
inorease our understanding of linguistio and oonoeptual 
struotures and to formal1y desoribe them so that oom
puters oan deal effectively with natural languages in 
suoh applioations as question answering, stylistio and 
oontent analysis, essay writing, automated translation, 
eto. The eventual realization of this goal requires not 
only a satisfactory model of linguistio struotures, but 
also models for verbal understanding and verbal mean
ing. In this paper we outline a theory and a model of 
verbal understanding and describe Protosynthex III, an 
experimental implementation of the model in the form 
of a general-purpose language processing system. The 
effeotiveness of the model in representing the process of 
verbal understanding is demonstrated in terms of Pro
tosynthex Ill's oapability to disambiguate English 
sentenoes, to answer a range of English questions and to 
derive and generate meaning-preserving paraphrases. 

Background 

Computational linguistios is fortunately a field in 
whioh there is no dearth of state-of-the-art surveys. Over 
the last three years, Bobrow, Fraser and Quillian, 1 Kun02 

and Simmons3 have independently reviewed reoent rele
vant literature in structural linguistics, semantios, 
pysoholinguistics and oomputer language prooessing. A 
oritioal survey is even now is press by Salton4 to oover 
most recent trends. A survey of question-answering sys
tems by Simmons6 desoribes the earlier developments in 
that area. 

*Much of the work reported in this paper was supported in part 
by United States Air Force, Air Force Systems Command, Sys
tem Engineering Group under Contract Number F33615-67-C-
1986, toward the development of a Natural Language.. Computer 
Aided Instructional System. 
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Several very reoent lines of researoh by Quillian,6.7 
Colby,S Bohnert,9 Abelson 10, Green and Raphaelll ~nd 
Simmons,. et al.12 have introduced ideas of deep logIcal 
and/or conceptual structures to represent understand
ing of phrases and sentenoes from natura] language. 
Theoretioal papers by Katz,I3 W oods;14 and Sohwaroz16 

and experimental work by Kel1ogg16 •17 have advanced our 
understanding of how to accomplish various forms of 
semantio analysis. Recent papers by Kay18.19 have been 
·of great value in explicating and generalizing computa
tional methods for syntactio analysis with particular 
referenoe to various forms of transformations. 

These surveys and reoent lines of research lead to the 
oonolusions that the field of oomputational linguistios is 
a very aotive one, developing oomputational technjques 
at a rate that keeps paoe with the advanoes in structural 
linguistio theory . Unfortunately, exoepting for the Abel
son and Colby models and oognitivelyoriented works 
by Miller et al., 20 Deese 21 and Reitman,22 there appears 
still to be a signifioant laok of psychologioal theory of 
verbal understanding to guide computational experi. 
mentation. 

A representation of deep conceptual structure 

Suoh operations as semantio analysis, question 
answering, paraphrase and meohanioal translation eaoh 
require the explioation or transformation of oonoep~s 
that are signaled or oommunioated by sentenoes ill 

natural language. The ooncepts being oommunioated 
via langUage are not the words nor the phrases nor an! 
other explioit struoture of a disoourse. Instead, what IS 
being oommunioated is some set of relations among oog
nitive structures (i.e., ideas) that are held in oommon 
between a speaker and a hearer of the language. The lin· 
guistic notion of deep syntaotio struoture is a partial 
reoognition of this faot, but for oomputers to demonstrate 
"verbal understanding" and manipulate "verbal mean· 
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ings," an even deeper level of conceptual structure must 
be represented. This-deep conceptual structure serves as 
a partial model of verbal cognit.ion, i.e., of how a human 
understands and generates meanings communicated by 
language. The effectiveness of a model of verbal under
standing can be evaluated in terms of how well it sup
ports such criterial operations as disambiguation, ques
tion answering, paraphrase, verbal analogies, etc. 
Whether the model truly represents the operations that 
humans actually use is another question and one to be 
studied by psychological experiment. 

We thus define verbal understanding as the capability 
of a system to disambiguate, paraphrase, translate and 
answer questions in and from natura] languageexpres
sions. Verbal meaning is defined as the set of inter
relations in the model among linguistic, semantic and 
conceptual elements that provides this competence. 

Our general model of understanding derives from a 
theory of structure proposed by Allport23 in the context 
of psychological theories of perception. Our models also 
owe a conceptual debt to such widely varying sources as 
Chomsky's24 theory of deep syntactic structure, Quil
lian's7 semantic nets and most recently, to Fillmore25 ,26 
who proposes a significant variation to the Chomsky 
deep structure. 

The primitive elements of our general model are con
cepts and relations. A concept is defined either .as a 
primitive object in the system or as a concept-relation
concept (C-R-C) triple. In the model of verbal under
standing, a concept that is a primitive object corre
spondsto a meaning or word sense for a word. But even 
these "primitives" can be defined as a structure of C-R
C triples that can be transformed to a verbal definition. 
A relation can also be either a primitive object ·or a 
C-R-,-C triple. Ideally, all relations should be primitive 
and well-defined by a set of properties such as transi
tivity, reflexivity, etc. Since each property corresponds 
to a rule of deductive inference, well-defined relations 
are most useful in making the inferences required for 
answering questions or solving verbal problems. Any 
relation, primitive or complex, can be defined in exten
sionby the setof pairs of events that it connects. How
ever, unless the relation is definable intensionally by a 
set of deductive properties, its use in inference proce
dures is generally limited to the substitution of equiva
lent alternate forms of expression. 

Meaning in this system (as in Quillian's) is defined as 
the complete set of relations that link a concept to other 
concepts. Two concepts are exactly equivalent in mean
ing only if they have exactly the same set of relational 
connections to exactly the same set of concepts. From 
this definition it is obvious that no two nodes of the con
cept structure are likely to have precisely the same 
meaning. A concept is equivalent in meaning to another 

if there exists a transformation rule with one concept as 
its left half and the other as its right. The degree of 
similarity of two concepts can be measured in terms of 
the number of relations to other concepts that they 
share in common. Two English statements are equiva
lent in meaning either if their cognitive representation 
in concept structure is identical, or if one can be trans
formed to the other by a set of meaning preserving 
transformations (i.e., inference rules) in the system. 

English sentences can be mapped onto the deep con
ceptual structure of this model of verbal understanding 
by considering prepositions, conjunctions and verbs as 
relational terms, and nouns, adjectives and adverbs as 
conceptual objects. Thus, a sentence such as "The 
angry pitcher struck the careless batter" can be ex
pressed in the following set of relational triples: 

A. «(pitcher MOD angry)TMOD the) struck 
«batter lVIOD careless) TMOD the» 

As it stands, this is simply a form of syntactic diagram
ing of the sentence (where MOD and TlVIOD are modi
ficational relations). However, by using the semantic 
analysis procedure to be described in a later section, the 
selection of word sense meanings is made explicit as fol
lows (SUP means "has as a semantic superclass"): 

B. «(pitcher SUP player) MOD (angry SUP emo
tion) TMOD the) 

(struck SUP hit) 

«batter SUP player) MOD (careless SUP atti
tude) TMOD the». 

The particular sense of "pitcher" is the one that is "a 
kind of player" ; the sense of "strike" is "to hit" and the 
sense for "batter" is "player". The complex element 
(struck SUP hit) is the relational term for the larger 
triple 

«pitcher, etc.) (struck SUP hit) (batter, etc.». 

When the triple structure B is embedded in the con
ceptual model, it can be roughly represented by the 
graph of Figure 1. -

The result of embedding the sentence in the concep
tual structure is to make explicit many aspects of verbal 
meaning that were implicit in the selection and ordering 
of words in the English sentence. Without any analysis 
or context the example sentence would answer only the 
question "Is it true that the angry pitcher struck the 
careless batter?" With such a relational analysis and em
bedding in the conceptual structure a whole range 0 f 
new questions can be answered-for example: 
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Is the pitcher a person? 
Is a batter a baseball player? 
Did a baseball player hit a person? 
Do persons have attitudes? 
etc. 

However, Figure 1 is only an approximate represen
tation of the actual conceptual structure. The SUbscripts 
on each word in Figure 1 represent the word sense and 
concept selection appropriate to the sentence. In the 
actual structure a concept number occurs for each word 
on the graph. Each unique sense of meaning for a word 
corresponds to exactly one concept number; but 
each concept number may map onto more than one 
word sense and onto a defining structure of concepts. 
For example, the words "young" and "youthful" share 
a sense meaning in common, viz., "having the charac
teristics of youth." In each case this sense meaning cor
responds to a concept number, say C72. C72 might be 
defined by the structure (C72 EQUIV (CO C42 C55)), 
which translates into "C72 is equivalent to something 
having youth." 

What the conceptual structure does is to allow word 
meanings to be represented by a single conceptual ob
ject but, at the same time, to allow a conceptual object 
to be expressible in many different verbal forms. 
The conceptual level is necessary for paraphrase and 
translation operations. For example, the English expres
sions "old man" and "ancient" and the French word 
"vieux" can all be expressions of a single concept which 
we will label C37. The structure (mane MOD olde)
where the subscripted "c" means the concept number 
-is a defining term for C37 which is one of the word 
senses for "ancient" and for the French word "vieux." 
When the semantic analysis system produces (mane 
MOD olde) it tests to discover whether the triple can be 
expressed, as in this case it can, as a single concept. In 
the generation system that concept, C37, can be ex
pressed by any of its mappings onto word senses and 
thus onto words. 

Assuming for the moment our assertion that the 
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Figure I-A graph of conceputal structure 

model we have described does support the criterial 
operations of verbal understanding, the important 
question is: By what means can we transform English 
sentences into such a conceptual structure? The section 
immediately following, describes a method of syntactic 
and semantic analysis that accomplishes the transfor
mation. A later section describes experiments to test the 
system's capabilities for disambiguation, paraphrase 
and question answering. 

A nalytic method 

The method of analysis requires a lexicon, a grammar 
that includes transformations, a set of semantic event 
forms (SEFs), and a modified Cocke alogrithm to actu
ally carry out the analysis. In brief, the method finds 
immediate constituents of the surface structure of the 
sentence, transforms these into the form of deep concep
tual triples and tests each suc~ triple for semantic well
formedness. The resulting analysis is a bracketed struc
ture of triples with each element marked for its selection 
of word sense meaning or concept. All analyses that are 
allowed by the grammar and SEFs are produced. A 
person operating the system is given the opportunity to 
select anyone or several interpretations to be stored in 
the conceptual model. 

The lexicon 

The lexicon is composed of word and concept entries. 
With each English word entry, a set.of word sense 
meanings is associated; each word sense, in turn, is 
associated with a syntactic class, a set of syntactic fea
tures, a chain of semantic word classes and a concept. 
For each concept entry, there may be a pointer to one or 
more word senses that may be used to express that con
cept verbally and an equivalence relation to one or more 
concept structures that represent its meaning. Some 
concepts, however, are not expressible as single word 
senses and are only verbally expressible by deriving the 
word senses for a concept structure to which they are 
equivalent. In addition to these elements, each concept 
entry has pointers to its tokens in the data structures 
where it has been used. 

The semantic word classes that characterize each 
word are a chain of concepts that are in a linguistic 
superset relation. To explain by example, the word 
"pitcher" is characterized by two word senses and thus 
two different chains of semantic classes as follows: 

pitcher ... N, player, person, mammal 

... N, container, physical object, object 

The first superset chain (or SUP-chain) means that 
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"pitcher is a kind of player is a kind of person is a kind 
of mammal." This is usually expressed as "pitcher SUP 
person ... " Actually in place of the words for semantic 
classes, the lexicon contains concept numbers that usu
ally refer to particular word senses. A more complete 
example of dictionary structure is presented in Figure 2. 

A concept is created for the system for each new word 
sense and for each occasion when an equivalence rela
tion occurs. Since every word sense can be defined by a 
dictionary definition that can be substituted in con
texts where the word in that sense is used, it follows 
that every word sense concept is in an equivalence rela
tion to some other conGept structure that expresses its 
meaning. In the actual system, not every concept need 
be so defined, although the power of the system for ver
bal understanding obviously increases with the number 
of concepts that are defined. 

The concept entry for the second sense of "strike" in 
Figure 2, i.e., concept number 55, would appear as fol
lows: 

Concept Word Senses Meaning Used/in 

C55 208 (CO C89 C251) G42, G45 ... etc. 

This example shows' that C55 may be expressed ver
bally by sense 208 that corresponds to the singular, pres 
ent tense, verb "strike." By looking up CO, C89 and 
C251, it can be discovered that the meaning of C55 can 
also be expressed by the words "to stop work." The list 
of G-prefixed numbers in the Used/in column are simply 
pointers to data structures in which the concept C55 has 
been used to make factual statements. 

The aim of this form of lexical structure is to destin
guish clearly between linguistic and conceptual infor
mation. Syntactic classes and features* are defined as 
those elements which are required by the grammar and 
are clearly linguistic in nature. Semantic classes are ex
pressed as concepts and are in a borderline area between 
the linguistic structure and the deep conceptual struc
ture. Semantic classes are elements of the semantic 
event forms, but are also concepts that can occur any
where in the deep conceptual structure. 

The grammar 

For discovering immediate syntactic constituents for 
a sentence and transforming them directly into the con
ceptual structure, we use a form of rule that combines 
phrase structure rewrite rules with a transformation. 

* Although the lexical and conceputal structures .provide for 
treatment of tense and agreement based on features, the analysis; 
generation and question-answering algorithms do not yet use 
this information. 
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The form of this grammar can be understood by a sim
ple example. 

(a) adj + noun ~(B MOD A) NP = (NP (noun 
MODadj) 

The phrase structure component states that an adjec
tive followed by a noun can be rewritten as a Noun 
Phrase. The transformation requires that the Bth or 
second element of the left side be written first followed 
by the term MOD followed by the Ath or first element. 

A more complex example to account for a certain type 
of discontinuity is illustrated below. 

(b) adv + S ~ (BA (BB MOD A) BC) S 
= (S (Subject (verb phrase MOD adverb) ob
ject» 

The transformation of (b) states that the BAth element 
of the left side is to be written first. The Bth element is 
S; S always breaks down into a triple whose Ath element 
is a noun phrase, whose Bth element is a verb phrase, 
and whose Cth element is an object noun phrase or an 
explicit null symbol. Thus the BAth element is the Ath 
element of the Bth element, or the subject of the S term. 
Similarly the BBth element is the verb phrase and the 
BCth element is whatever is in the object position. 

A simple grammar to account for the sentence "the 
angry pitcher hit the careless batter" is presented in (c) 
below: 

(c) adj + noun ~ (B MOD A) NP 
art + NP~ (BTMODA) NP 
verb + NP~ (DAB) VP 
NP + VP ~ (A BB BC ) S 

The string of syntactic word classes corresponding to 
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these words is as follows: 

art + adj + noun + verb + art + adj + noun 

The analysis that results from this grammar is as fol
lows: 

(S (((noun MOD adj) TMOD art) verb ((noun MOD 
adj) TMOD art))) 

In a previous paper [Simmons and Burger27] we showed 
that this type of structure can be obtained by applying 
transformations to the elements of a phrase structure 
analysis of a sentence. That is precisely what the com
bined phrase structure and transformation rules of this 
type of grammar accomplish as each constituent of the 
sentence is discovered. 

There is no theoretical limit to the depths to which the 
transformational notation can refer; stri:ngs such as 
ABBBCAB can be written to refer to the first, second, 
or third element of the nth level of the depth of struc
ture. Certain elements of the transformations such as 
MOD, D (an explicit dummy marker) and the brackets 
are taken literally; only combinations of the terms A, 
B, and C refer to the structure of the left-hand side. The 
elements in a rule can be semantic classes on which the 
transformation can operate, and the resulting constit
uent can be a composition function of the semantic 
classes. For example, rules might be written to analyze 
the phrases "park bench" and "wooden bench" as 
follows: 

place + furniture -? (B LOC A) furniture-LOC 
material + furniture -?(B TYPE A) 

furniture-TYPE 

Compositions such as furniture-LOC imply a controlled 
combination of the SUP-chains for the two elements in 
a manner such as that described by KatzI3 or used by 
Kellogg. Ie 

Rules of this kind would eliminate the set of SEFs 
and the separate check for semantic acceptability. The 
disadvantage would be an enormous increase in the 
number of rules. Consequently, we have so far preferred 
to keep separate the syntactic and semantic components 
of the system. 

Semantic event forms 

As each constituent is' discovered and transformed 
according to the grammar, the result of the transforma
tion is tested for semantic well-formedness. The SUP
chain of semantic classes and a set of semantic event 
form (SEF) triples W-hose elements are semantic class 
tenns are required for making this test. By considering 

our example sentence again, the elements and method of 
this test can be explained. 

A. The angry pitcher hit the careless batter. 
When "pitcher" was looked up in the lexicon, two word. 
senses were discovered and both of these were nouns; 
for "angry" there was only one. Thus, two constituents 
of the form "adj + noun" were discov~red to represent 
"angry pitcher." The SUP-chain of semantic classes 
that represented each sense of the words was then 
called into use to form the following pair of complex 
trIples: 

and 

pitcher 
player 
person 
animal 
mammal 

MOD 

pitcher MOD 
container 
physical obj 
object 

angry 
emotion 
feeling 
sense 

angry 
emotion 
feeling 
sense 

Thus a complex triple is one whose elements are SUP
chains of the elements in a simple triple. From the total 
set of SEFs, the possibly relevant ones are those which 
contain one or more elements that are included in any 
of the complex triples of the sentence. This subset of 
SEFs include among others the following: 

(ANIMAL MOD EMOTION) 
(PERSON MOD ATTITUDE) 
(PHYSOBJ MOD QUALITY) 
(PERSON HIT PERSON) 
(OBJECT HIT PERSON) 
(PERSON BOYCOTT ORGANIZATION) 
ETC. 

The test for semantic well-formedness is to discover 
whether any triple of elements, selected one from each 
SUP-in a complex triple, corresponds to an SEF. In the 
present example, the combination (animal MOD emo
tion) froTIl the first complex triple does correspond to an 
SEF in the list. No combination of elements' from the 
second complex triple corresponds to an SEF, so the 
sense of "pitcher" as a "container" does not apply to 
constituent (N MOD Adj) for that sense and it is re
jected. For the acceptable sense, "pitcher" as "person," 
the constituent is kept and elsewhere it is stored as 
((pitcher SUP player) MOD (angry SUP emotion)). In 
subsequent constituents using this complex constituent, 
the SUP-chain of semantic classes for the head element 
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"pitcher SUP person" is used to stand for the entire con
stituent. 

The result of these semantic tests is to reject many 
syntactic constituents that would otherwise lead to mul
tiple interpretations of the sentence. For example, if we 
consider the number of common meanings for "pitch
er," "struck," and "batter" to be respectively 2, 3, 
and 2 there would be 12 possible interpretations of the 
sentence. By the use of the three SEFs (ANIMAL IVIOD 
EMOTION) (PERSON IVIOD ATTITUDE) and 
(PERSON HIT PERSON) only the one interpretation 
presented below survives the analysis process. 

(((pitcher. person) MOD (angry. emotion)) 
(struck. hit) 

((batter person) l\10D (careless. attitude))) 

The dot pairs are used for conciseness in representing 
(concept SUP concept). 

It appears to us that an SEF is an abstraction of some 
element of lexical information that should (in a more 
sophisticated system) be directly a part of the lexicon. 
It appears to be an abstraction expressed in terms of se
mantic classes of the set of features that characterize a 
word's combinatorial possibilities in ordinary usage in 
the language. For example, the SEF (ANIMAL l\10D 
SENSE) indicates the relationship expressed by lin
guists in terms of a restriction on sensory verbs and ad
jectives to co-occurrence with subjects marked by the 
feature " + animate." We believe, for the present state 
of computational linguistics, we can better represent 
such linguistic data in the form of acceptable combina
tions of semantic classes for words-i.e., SEFs-and 
later, from the useful SEFs, work out underlying fea
tures. 

We have no answer to the question of how many 
SEFs would be required to cover a large subset of 
English. A related device, the semantic message forms 
[Wilks28] are based on approximately fifty semantic 
classes and believed by CLRU* researchers to allow. 
sufficient combinations to account for all English forms. 
We are currently tending toward the belief that al
though the separate SEF set provides adequate ma
chinery for relatively small subsets of English, this infor
mation must eventually become an integral part of the 
lexicon to avoid very large space and time requirements 
in semantic analysis of large sets of English. 

Selecting the level at which to write an SEF is hardly 
more easily dealt with. Considering each SEF as a rule 
of semantic combination, the task is very much like that 
of preparing a grammar. One attempts to obtain the 

*Cambridge Language Research Unit, Cambridge, England. 

number of SEF rules that will distinguish acceptable 
and nonacceptable combinations of word senses. The' 
elements of each rule are selected at the highest level of 
semantic abstraction that ",ill successfully distinguish 
all word senses that are in a superset relation to--i.e., 
subclasses of-those elements. Thus, in coining the 
SEF (ANIMAL MOD EMOTION) we are stating our 
understanding that the nature of these concepts is such 
that anything that is an emotion is restricted to modi
fying only those things that are animals. Similarly in 
(PERSON BOYCOTT ORGANIZATION) we restrict 
the concepts that are kinds of "boycott" to co-occur
rence with things that are persons as subjects and things 
that are organizations to receive the action. 

In favor of the SEF approach, we have found them 
simple to build and use and of the same functional 
utility as the semantic markers and selection restric
tions of Katz's13 current semantic theory. Something 
approaching the function of his projection rules can be 
seen in our use of the semantic class of the head of a con
struction to stand for the semantic classes of the whole. 
However, we claim only that the SEF approach is a 
first approximation to expressing some parts of the se
mantic information that should be an integral part of a 
lexical entry for a word sense. 

The analysis algorithm 

After several experiments in producing various forms 
of recognition algorithms, we finally concluded that the 
Cocke algorithm was superior in respect to conciseness, 
completeness and efficiency of computation. This algo
rithm has been presented in ALGOL and described.in 
detail by Kay.19 Our modifications have been only to 
add more tests on each constituent for agreement and 
semantic well-formedness and to introduce transforma
tionsinto the operation of the grammar. 

The essential operation of the algorithm is to test
exhaustively, -but efficiently-each adjacent pair of 
elements in a sentence structure to discover if they form 
constituents acceptable to the grammar. If they do, tl).e 
pair of constituents are rewritten according to the gram
mar rule. The process continues until all elements of the 
sentence are encompassed by at least one single constit
uent usually named S. All interpretations acceptable 
to the grammar are so formed. 

Results 

The complete language processing system that has 
been described has been programmed as Protosynthex 
III in LISP 1.5 for the SDC Q-32 time-shared comput
er. The semantic analysis system has also been pro
grammed in JOVIAL and used to prepare Example 4 
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and Figure 4. It includes the capability to syntactically 
and semantically analyze single sentences into the for
mal language of the conceptual structure. From the re
sulting conceptual·structure, the system is able to an
swer a range of English questions using logical inference 
procedures based on properties associated with the well
defined relations. It is also able to paraphrase by finding 
equivalence relations among concepts and to generate 
English sentences in accordance with a generation gram
mar. In this paper a limited set of examples of these 
operations will be presented; additional computer 
printouts of examples have been collected as a special 
supplement that is available on request from the 
authors. 

Syntactic and semantic analysis 

The grammar reproduced in Figure 3 has proved suf-

~NALYSIS MODE II 

ficient to account for the analysis of the sentence in the 
following paragraph about physiological psychology 
of the eye: 

The eye is the organ of sight. The retina is the light 
sensitive surface of the eye. Cones and rods are special 
sensors in the retina. Cones and rods react to light. 
When we see anything, we see light reflected from the 
objects we look at. Reflected light passes through the lens 
and falls on the retina of the eye. Seeing an object actually 
means seeing the reaction of our retina. 

The sentences comprising this paragraph were se
lected to represent a range of fairly difficult structures 
including various kinds of embeddings. 

Example 1, below, shows the manner of inputting the 
sentence and dictionary data into the system. 

READ'f--
THE E'fE IS THE ORGAN OF SIGHT. • RODYPRT FUNCTIJN VISIJN • 

P 

ORGAN EQUIV BJD'fPkT • 
(SUPS- THE EYE IS THE JRGAN JF SIGHT) 
DDET JRGAN EQulV DOEr BJDtPRT FuNCTION VISIJN 
(SUPS- VISIJN FUNCTIJN RJDYPRT DOEI QRGAN D~ET) 
COGACT ASSJC JRJECr *TJP AJOYPRT *TOP 
(SUPS- RJDtPRT OBJECT ASSOC COGACT) 
JRJECT *TJP *TJP ACT 
(SJPS- ACT JAJECT) 
DO *rop 
<SJ PS- DO) 
*TJP 
<WCS- (SIGHT • VISION) 

(JF • FUNCTIJN) 
(JRGAN • R~DYPRT) 
(THE. DDEr) (IS. EQJ1V) <EYE. JtolGAN) (THE • UOEf» 

NP PREP NP DAHT VAE NP DANT 
1 

((EYE. ONGAN) TMOD (1H~ • DoE1» 
( E QJ I V • P RIM I r ) 
«(JRGAN • BJO'fPRT> (JF • F.JNCfION) (SIGHT • VI!:>IJN» 

TMOD (THE. DOET»] 

Example 1. 

A sentence is typed in followed by a period. Option
ally a set of supersets for each word of the sentence can 
then be input followed by a period. Following this sec
ond period, SEF triples can be given to the system as 

was done in Example 1. The third period-i.e., the one 
following the SEFs-is taken by the system to mean 
completion of input. At that point the system looks up 
each word in the dictionary to obtain superset classes 
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«(QPP QBEAJ) [BA BR (Be AS AC)] S) 
«DVBE ADJ) (AC MOD B) ~BlAJ) 
«VBEQ NP) [SA BB Bel NP) 
«NNP OVBE) [[AA EQulV BCl AB LAC EQulV ~C}l ~) 
«VDO S) (SA BS BCl S) 
«VUO 51) [SA BB BCl ~) 
«QNUO S) [SA BB AAl S) 
«QNDO SI) [BA BB AAl S) 
«QN DVBE) [BC EQulV Al 5) 
«QN VDO) (A B D) QNUO) 
«QAVDO S) [SA (BB.MOD AA) BC] S) 
«QAV VDO) (A B D) QAVDO) 
«ADJ PP) (A B8 Be) ADJ) 
«ADJ NP) (8 MOD A) NP) 
«VCOMP PR1VCOMP) (A RS Ae) eONJVCOMP) 
«CONJ NP) (D A B) NCOMP) 
«CONJ VCOMP) (0 A B) PR1VCOMP) 
«PRlP QN) (n A R) QPP) 
«PREP DNP) (D A B) PI") 
( (PR EY Nt» (0 A B) PP) 
«~ELAVS CONJS) [SA A BCl S) 
«S CONJSPRT) [A·BA BC] CONJS) 
( (COM S I) (li A B) CONJ SPRl ) 
«COM !:» (0 A B)· CONJSPkl) 
«VIW NP) (8 SMO[) (*flBJI!.L1 /4 (1) Nf') 
«VEn PP) (A BB BC) VCOM~~[) 

« AtH NP) (B 1 MOD A) NP) 
«NP ~COMP) (A BB Be) NNF) 
«NP V) LA B ****l ~) 
«NP VCOMP) [A S ****l ~) 
«NP pREn) [A BB BC] S) 
«Np VpHEP) [A H ****] SPHEP) 
«Nt> SPRF.P) (A SMor; [SA (bBA BBB A) BC» Nt') 
«NP CONJVCOMP) [[A SA ****] BS LA BC ****]] CCN~S) 
«NP PP) (A BB BC) NP) 
«NP VCOMPED) (A SMOD [*OHJECl B Al) ~P) 
«NP CONJ5Pkl) [A BB 8C] CCNJS) 
«V FP) (A SR Be) VCOMP) 
( (V ONP) (f1 A H) PR n:) 
( (V NP) (D A 8) PR ED) 
( (V PR EP) (A S Ll) VPk I:.P) 
«DNP DVBE) [A lQUIV AC] S) 
( (flNP PR ED) [A HH HC] ~) 

«VEE. IH.LPtO ([I A t:l) VBEG) 
«VBE. [lNP) <l' A t:l) [;\iBU 
«VAl: NP) (n A 8) PRED) 
«I,Ak1 NP) (8 ·1:VIOLl A) [INP) 

«5E~ulV **) (~ A P) rt*~fW) 

«** H.S~W) [A BB Be] ~» 

NiL 

Figure 3-Recognition grammar rules 

and syntactic word classes. If it does find these, it re
quests SUPS for each word that is not in the dictionary. 

It reiterates this request for semantic word classes until 
each word has developed a SUP-chain that terminates 
with the symbol, *TOP. It then asks for the syntactic 
word-classes with the request "WCS-" identifying the 
word sense by using the dot pair (word. superclass). 
When all these data are present-either already in the 
dictionary or having been input with the sentence-the 
system computes its semantic analysis using the gram
mar and SEFs available to it. In Example 1, the brack
eted structure shows the syntactic analysis and the se
lection of word senses for each word in the sentence. 
This example shows that the system correctly trans
formed "is" in the context "The NP is the NP" into the 
well-defined relation "EQUIV." The relation "TMOD" 
is used by the system to alert it to the presence of an 
article. If the article is definite it refers to a particular 
or already existing token of data; if the article is indef
inite or absent it is understood to represent any token or 
instance of its concept. 

The most complex sentence of the paragraph is pre
sented as Example 2, below. The analysis of this sen
tence shows four embedded sentences each of which is 
surrounded by square brackets. The first of these, "We 
see light" is in an IMPLY relation to the remainder. 
The expression" ... light reflected from ... " gives rise to 
a noun phrase that is modified by the sentence "*object 
reflected ... light," where "*object" stands for "some
thing." The phrase" ... from objects we look at" gives 
rise to the structure (object SMOD [we (look at objects) 
****]), a noun modified by an intransitive sentence that 
uses that noun as the object of a preposition. By follow
ing syntactic word class pairs through the grammar of 
Figure 3, the interested reader can observe the applica
tion of relatively simple transformations to compute 
these structures. 
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READY--

WHEN WE SEE AN1THING • WE SEE LIGHT REFLECIEU FRJM tHE JBJECTS 
WE LJJK AT •• C~GACT TJWARD ~BJECT • PERSJN C~GACT ••••• 
THRJWBACt( SIJURCE \JBJECT. *IJBJECT THRuWBACK RAOI AT I IN. 
PERSON CJGACT OBJECT • PERSON COGACT RADIATION" 

PERSJN CJGACT OBJECt • PE~SJN CJGACT ENERGY. SEN CJM SEN. 
SEN IMPLY SEN • 
(SJPS- WHEN WE SEE ANYTHING. WE SEE l.I GHT REFLECTED FRJM JRJECTS WE. 

L.JOt< At) 
I~PL1 PERSON CJGACT OBJECT COM PERSON C\JGACr ~ADIATIJN rH~JWHACK 
SOuRCE uBJECT PERSuN CJGACT TJWARO 
(SJPS- TOW~RO PERSJN SJuRCE THROWBACK RAOIATIJN PE~S0N CJM PEHSJN 

IMPLY) 
DIRECTION ANIMAL LJC ACT ENERGY ANIMAL .IJP ANIMAL .TJP 
(SUPS- ANIMAL ANIMAL ENEHG1 LOC ANIMAL DIRECTIJN) 
JAJECl ~BJECT ~TOP *TOP ~BJECT LOC 
(SJPS- LOC) 
*TllP 
<WCS- CAT. T0WAR~) 

(LOOK • COGACT) 
<WE. PERSJN) 
(JBJECTS • OBJECT) 
(FRJM • SO..JRCE) . 
(~EFLECTED • THRJWRACK# 
(LIGHT. RADIATIJN) 
(SEE. COGACT) 
(WE. PERSON) 
(. • COM) 
(ANYTHING. OBJECT) (SEE. CJGACT) (wE. PERSON) (WHEN. IMPL1» 

P~EP V NP NP PREP VEO ~P V NP COM NP V NP REl.AVR 
I 

PRINT 
(((WE. PERSON) (SEE • C~GACT) CANYTHING • JBJECT)] 

( WH EN • I MPl. Y) 
[(WE. PERSON) 

(SEE • CJGACT) 
«LIGHT. RADIATION) 
SM~O [(.ORJECT • PRIMIT) 

«REFL.ECTED • THROWRACt<) 
(FRJM • SUlJHCE) 
«(J8JECTS • OBJECT) 

SMJO (eWE. PERSJN) 
(CLOO~ • COGACT) (AT • T~WARO) (~BJECTS • JBJECT» 
C •••• • PRlMIT)]) 

TMOD eTHE • DOEr») 
( L. I GH T • RA D I AIl IN) l) II 

Example 2 
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Examples of the analysis of question structures are 
shown in Example 3, below. In some cases the question 

RE~I)Y--

1)0 Wg SEE ~NYTH ING ? 

1 
P 

word is deleted while in others the question in trans
formed to declarative structure. 

( ('HE • PER SON) ( SEE • C 0 G~ C T) ( A N YT H I N G • 08 J ) ] 
1 

KiAOY--
W HAT DO WE S€t£ ? 

p 

(WE. PERSON) (SEE. COGACT) (WHAT. OijJ)] 
1 

£XJT 

WH€N WE S~t!: ANYTHING, WHAT 1)0 WE S€€ ? 

( SUP S - 'W H € N "N YT H I N G ,) 
R€LA VB OBJ 
COMMA 
(SiJPS- COrv,MA ~I!:LA'v8) 

1)0 ,1)0 

(i.-JCS- (, • COfVl{V'IA) (~I\iYTHING • OtjJ) (Wt1to.:N • ~t£LA'vd» 

COM' W ~I!:LA'v8 

1 

[(INE • Pt<:~SO~~) (S€t!: • GOGAtT) (Ai\JYTH1NG .OdJ») 
(WHEN • ~ELAV8) 
[('.,-IE • PE~SO~) (Si~ • COG4lT) (WHAT. OdJ»)) 

1 
~EAO Y--

HOW DOCS THE 08.Jt£CT ~€fl.~CT LIGHT? 
(SUPS- HOW OO€S ~€FLECT) 
MA NNER 00 THPO" 
M~ NNE~ UO THROW8ACK 

, (S I J P S - MA N Nt!: R ) 
, VI.;) i JA L 
(INCS- (REFLECT. THKOW8ACK) (O"LJ~(;T • OtiJ) (DOES. DO) (hOW 

V NP \JO 0 Q A 'v 
1 

p 

((08 .. JECT • OBJ) TMOt) (TH£ • !J1Jti:T» 
«REFLECT. THROW8ACK) MOO (HOW • MANN~~» 
( L J G HT • ~ AD J AT JON) ) 

1 

Disambiguation 
Example 3. 

An example deriving from Katz13 was chosen to illu
strate the system's ability to select correct word senses 
from a potentially ambiguous situation. The example 
.frame, "The man hit the colorful ball" is varied by sub
stituting "gave," "attended" and "hit" in the verb 
slot. The relevant dictionary, grammar and SEF entries 

are presented in Figure 4. Since the dictionary provides 
two senses each for "colorful/' "ball" and "gave," in 
the worst case the frame using "gave" might provide 
eight interpretations (as it in fact did without SEF 
checking). With the use of the relevant SEFs, the sys-. 
tern provided the interpretations shown in Example 4. 
The two interpretations for" ... gave a colorful ball" are 
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expected in that SEFs are allowed for "person present 
object" and "person present event." In the remaining 

ANALY SIS 

**A NA L YS J S MODE: ** 
THE: MAN GAVE A COLORF'tJL SALL. 

2 INTERPRETATIONS 

I 

cases ,of "hit" and "attend" only one interpretation was 
obtained. 

[(MAN TMOD THE) <GAVE'- PRESENT> 
( «BALL - SPHERE> MOD <COLOKt"UL - MULT ICOLORt:O » TMOD A)] 

NEXT/F'INISHEO/RULES/SE:F"S? N~XT 

2 
[(MAN TMOO THE) <GAVE: - PRESENT> 

«<8ALL - DANCE:> MOD <COLOKt'UL - GAY» TMOa A)l 

N£XT/rINJSHEO/RULES/SE~'S? rINJSHEO 

THE: MAN ATTENDED A COLORt'tJL BALL. 

I NTE~P~E:TAT ION 

I 
[(MAN TMOD THE) ATTENOED 

«<SALL - DANCE> MOO<COLOK,.~tJL - GAY-» TMOD 4») 

NEXT /r INISHEO/RULES/SEf' S? ;.~ INISHt!:D 

THE MAN HIT A COLORFUL BALL. 

INTERPRETATION 

1 , 
[(MAN TMOD THE) HIT 

«<BALL - SPHERE> MOO c(OLO~FUL - MULTICOLORt!:O» TMOO A)l 

Example 4. 

Disambiguation Example 

Answering'questions 

Our approach to answering questions in this system is 
described briefly in Simmons and Silberman.21I A more 
detailed description of the question-answering system 
and experiments with' it is in preparation [Schwarcz et 
al., 1968]. Briefly, the system attempts a direct match 
with the 'concept structure of each triple resulting from 
the ,semantic analysis of a question. Failing to find a 
direct match, it generalizes each element of a question 

triple to include all of its equivalences and subclass ele
ments. Thus a question triple with the element"bird" 
would generalize to include "condors, robins, blue
birds, etc." This approach.failing, the system uses mOI:e 
complicated inferences based on combinations of rela
tions into compound and complex relational products. 

We believe the approach is very general and approxi
mately equivalent to that taken in the General Problem 
Solver [Newell et al. 30]. A top-down generator is used 
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LOOK'JP THE MAN GAVE ATTENlJ~f) H IT A COLOR"~;JL BALL. 
THIi:: JOtJNCTION WO~O,l SENS~,: 

1 A~T DIi:T 
MAN: JO'JNtTJON WO~O, 1 SIi:NS~: , 

1 NP PERSON, ANIMAL, OSJ 
GAVtt: JO'JNCT ION WORD, 2 SEI\SIi:S: 

1 V PRESENT, OF"~~, ACT 
2 V TRANSFE~i MOVE, AlT 

ATTIi: NOED I FIJNCT I ON WO~D, 1 SE NSIi:: 
t V GOTO, MOVE, A IT 

HiT': FUNCTION WO~D, t SEII>Sii:: 
t V CONTA IT, ACT 

A:' FUNCTION WORD, 1 SENSE: 
1 ART OET 

COLORFIJL: FUNCTION WORD, ~ St:NSES: 
1. AD J MiJ L TI COLORiW, SI'I I GHT, QiJA L 
:2 AOJ GAY, LIVELY .. QUAL 

"'BALL: FUNCTION WORD, 2 SIi:NSt:S: 
1 NP SPHE~E:, Ot3J 
:2 NP DANCE, EVENT 

P~'JNT ~IJLES. 

AD J NP (!3 MOO A) NP 
AFtT NP (8 TMOIJ A) NP 
V NP <0 A ~) . PREO 
NP 'PRIW r A 8~ !3 () S 

OK 

SEFS. 

(PaRSON P~ESENT €VENT) 
(PERSON ~.o:st<;Nf Ot3J) 
(PE~SON GOTO EVENT) 
(PER SONC ONfA CTOB J) 
(I!; VI!; NT MOO GA Y ) 
(08J MOO M'JLTICOLORED) 

Figure 4-Dictionary, grammar, and SEF entries for disam
biguation example 

to transform question triples according to possible in
ference rules and various heuristics are followed to mini
mize tree search among the resulting vast set of possi
bilities. 

For example we asked questions of the following 
sentences: 

The eye is the organ of sight. The retina is the light
sensitive surface of the eye. Cones and rods are the spe
cial sensors in the retina. Cones and rods react to light. 
These sentences were analyzed with the grammar of 
Figure 3 and appropriate SEFs to limit the interpre
tations to one per sentence. Questions were asked and 
the system answered as in the following examples: 

Example 5. What is the eye? 
Eye is organ of sight. 
Organ of sight. 

Example 6. What is the function of the eye? 
Sight. 

Example 7. What is the surface of the eye? 
Surface of eye be light-sensitive surface. 
Surface of eye be retina. 
Light-sensitive surface of eye be retina. 

Example 8. To what is the retina sensitive? 
Light-sensitive to light surface. 

Example 9. What are the sensors in the eye? 
Sensors in eye be sensors. 
Sensors in eye be cones. 
Sensors in eye be rods. 

Example 10. Are there rods in the eye? 
Sensors in eye. 

Example 11. Does the eye contain cones? 
Retina inverse-of-in sensors. 
Sensors in eye be sensors. 
Sensors in eye be cones. 
Sensors in eye be rods. 

Example 12. How does the eye react to light? 
Cones and rods in retina in eye react to 
light. 
Rods react to light. 
Cones and rods react to light. 

Example 5 is a result of direct lookup. The corre
spondence of "function" to "sight" in Example 6 results 
from the SUP-chain "sight-cogact-function" showing 
that sight or any other cognitive act is a kind of a func
tion. In this example also, the structure (eye EQUIV 
(organ ASSOC sight)) implies (eye ASSOC sight) by 
right-collapsibility* of the "EQUIV" relation. The 
relation "ASSOC" is defined as symmetric and thus the 
question transforms to (eye ASSOC function) which is 
answered by (eye ASSOC sight). 

Example 7 is essentially a direct lookup that is suc
cessful because of the symmetic property of EQUIV 
that allows the reversal of the clauses. The answer to 
Example 8 depends on an additional fact given to the 
system, "light-sensitive means sensitive to light." With 
this added information the question which was analyzed 
to the following structure: 

(retina MOD (sensitive TO what)) 

is directly answered by the structure: 

retina EQUIV (surface MOD (sensitive TO light))). 

Example 9 and Example 10 require a chain of in
ference depending on the property transitive attached to 
(in contained-in). Thus, "sensors contained-in retina," 
and "retina contained-in eye" imply "sensors con
tained-in eye." In Example 11 a similar logic applies 
with the addition of the information that "contained-in 
inverse contained." 

>leThe property right-collapsible is defined for RI as follows: 
(Xl RI (X2 R2 X3)) IMPLIES (Xl R2 X3). 
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Example 12 shows one method for treating simple 
"how" questions. By analyzing the question into the 
statement "eye re:,l.cts to light" the system naturally 
returns relevant material, which is one main require
ment of such questions. It should be noticed, incident
ally, that the transitivity of the contained-in relation is 
used in this example. 

The question-answering system has two important 
weaknesses. First, we do not yet formally distinguish be
tween the requested operation (i.e., count, list, name, 
etc.) and the data-identifying portions of the question. 
This lack partially accounts for the second weakness-a 
certain degree of vagueness in the generated answers, as 
can be seen in Examples 8 and 10, where appropriate 
answers would have been "light" and "yes" respec
tively. Syntactic and semantic inadequacies in the 
generation of answerS' will be discussed in the following 
section. 

Syntactic generation and lexical paraphrase 

Our primary emphases in developing a theory of ver
bal understanding have been to account for the recognr 
tion of verbal meanings as communicated by sentences 
and to demonstrate understanding by the model's 
ability to answer English questions. Other measures of 
understanding include the capabilities for syntactic and 
lexical paraphrase and for the generation of new sen
tences that are in controllable relations to the data that 
have been stored as a consequence of understanding 
meanings from sentences that have been analyzed. It 
was our hypothesis that the structure for recognition 
and question answering would prove largely sufficient 
for generation and paraphrase. In the main this hypoth
esis was supported and we added the generation 
grammar and the special machinery for paraphrase to 
the model in short order. However, it is apparent tha~ 
generation and paraphrase from deep conceptual struc': 

. tures require more theoretical explanation than we are 
prepared to deal with in this paper. Particularly re
quired is an outline of correspondences with and contra
dictions of current generative linguistic theories. At 
this point, having only scratched the surface in experi
menting with the generation area, we will present a 
brief discussion of our method and save detailed treat
ment for a later paper. 

Generating English phrases or sentences from the 
conceptual structure is accomplished by the use of 
transformational phrase structure rules similar to those 
used in the analysis phase. Since the structure is com
posed of nested triples, these rules have the form of a 
three-element left half which is transformed to a struc
ture or a string as a right half. Example rules for genera-

ting "the angry pitcher struck the careless batter" 
are shown below: 

(NPMODADJ) (BA)NP 
(NP TMOD ART) (BA) NP 
(NPVNP) !(AB C) S 

The notation ~onventions are identical to those used 
in recognition rules. The generation algorithm, given 
a complex triple of concepts, first discovers for 
each concept its mapping onto word-sense and associ
ated syntactic class and associates with each triple of 
concepts a triple of word-classes. Then, beginning with 
the most deeply nested triple and working outward, it 
looks up each triple of syntactic word -classes in the se t 
of generation rules, and if found rewrites that 
triple by the phrase structure name and applies the 
transformation to the associated concept triple. This 
process is iterated until all elements in the nested struc
ture have been accounted for (whether or not they re
sult in the terminal symbol S). If a given triple can be 
rewritten in more than one way, the algorithm applies 
all rules, generating several syntactic paraphrasses of 
the same structure. Thus, for the triple (NP MOD 
ADJ) the two strings "NP that is ADJ" and "ADJ NP" 
might result. At the end of the process the concepts are 
transformed into print images. 

Lexical paraphrase is accomplished by aliowing the 
free substitution of concepts that are in an equiva
lence relation. These concepts may map onto words or 
phrases. Thus in the examples presented "below, "eye" 
is conceptually equivalent to "eyeball," and "organ of 
sight" is equivalent to "sensor for vision." An equiva
lence class is established by the statement "X SEQUIV 
Y" which is semantically analyzed like any other sen
tence except that SEQUIV is an operator used to con
struct an equivalance between concepts in the system. 

The following examples illustrate both syntactic and 
lexical paraphrases accomplished by the system: 

Example 13. The eye is the organ of sight. 
The eye is the sensor for vision. 
The eyeball is the sensor for vision. 
The eyball is the organ of sight. 

Example 14. The retina is the light-sensitive surface 
in the eye. 

The retina is the surface that is light
sensitive in the eyeball. 

The retina is the sensitive to light sur
face in the eye. 

The retina is the light-sensitive surface 
in the eyeball. 
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Example 15. Light falls on sensitive retina. 
Radiance falls on retina that is sensitive. 
Radiance falls on sensitive retina. 
Light falls on surface of eye that is 

retinal. 
Light falls on retinal surface of eye. 
Radiance falls on retinal surface of 

cranial oro. 

No stylistic controls have so far been established to 
select either the generation transformation or the 
lexical item where several choices have been offered, 

" arid in expressing answers to questions no method has 
yet been developed for selecting a "best" answer. Such 
controls offer an entire field of study such as that cur
rently in progress by Klein. * Our general procedure is 
also undeveloped with respect to choice of articles 
and the various forms of agreement" in tense, number, 
etc. In respect to such syntactic features, the system 
makes provision for recording them, but we have" not 
yet used them in any of our recognition, question an
swering or generation experiments. 

Discussion and conclusions 

In the preceding sections we have described a theory 
and a model of verbal understanding that is based on a 
formalization of conceptual structures sufficient to rep
resent a wide range of the verbal meanings that are 
expressed in English sentences. The model "includes a 
linguistic component that is composed of a lexicon and 
syntactic and semantic systems. The formal conceptual 
structure includes inference rules, a limited quantifica
tional capability and a logical structure of relations that 
are definable by properties for use in inference proce
dures. These features of the model support ~ range of 
question answering and verbal problem solving capabil
ities. 

The model has so far been limited to representing sin
gle sentence meanings, although the conceptual struc
ture naturally embeds fragmentary meanings in their 
most relevant contexts. We do not believe, however, 
that a "theory of sentence meanings is broad enough to 
encompass the communications mediated by natural 
languages. Related" work in our laboratory by Olney31 

has investigated anaphoric and discourse analysis to a 
degree that is sufficient to show us that complete under
standing of a sentence can only be modeled in the con
text of its discourse structure. This line of research has 
also provided several workable approaches to finding 
antecedents for pronouns and other kinds of all:aphoric 
structures. An important next step in the development 

*Personal communication, S. Klein, University of Wisconsin, 
Computer Sciences Department. 

of the model will be to incorporate"this line of thought 
and experimentation and so expand from a model of sen
tence understanding to one that represents under
standing of larger discourse structures. 

In the last section of this paper, we have briefly 
shown and discussed examples of the system's cap
ability to produce syntactic and semantic analyses of 
sentences and questions; to select appropriate word 
senses according to context; to answer questions; to 
generate English sentences and to produce meaning
preserving paraphrases. We believe (but have not 
shown) that only minor modifications are required for 

" the system to deal with a wide range of verbal analogy 
problems and to accomplish sentence-for-sentence 
translation. We claim that these results support the 
theory of verbal understanding outlined in an earlier 
section and demonstrate that this theory is adequate as 
a first approximation to account for how natural lan
guage sentences can communicate verbal meanings from 
one person (or system) to another. 

The model's implementation as a LISP 1.5 program 
leaves much to be desired. It is slow and cumbersome in 
its operation and sharply limited in storage capability, 
having in its final version 11,000 words of free space. 
Yet only in LISP could we have tried so many varia
tions of our original ideas until were able to formulate 
them in terms of consistent workable programs. So on 
the one hand the system owes its existence to the facility 
with which complex ideas can be expressed in LISP 
while on the other, since sequential computers so poorly 
fit the requirements of large associative networks that 
LISP is well-suited to handle, the system is core-bound 
and painfully slow. 

"Slow" means concretely that a typical sentence re
quires 90 seconds of compute time to analyze while an 
equivalent question requiringnQ great amount of infer
encemay compute for three to four minutes. When 
these compute times are translated to wait-times on the 
time-shared system, analyzing and answering a ques
tion may take from fifteen to thirty minutes. Experi
menting with such a system is obviously only tolerable 
to the most devoted believers in the eventual value of 
computer language processing. 

In consequence a JOVIAL version of Protosynthex 
III, also for the Q-32 time-shared system, has been de
signed and already partly programmed. * So far the se
~antic analysis and generation systems are operating. 
This version has access to eight million words of disc 
storage. Its computing time for sentence analysis is gra
tifyingly reduced to tenths of seconds and its wait times 
on the time-shared system are typically within the 
turnaround time of 5-15 seconds. It is our current esti
mation that question answering with relatively short 

*Detailed design and programming by William J. Schoene. 
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chains of inference will be vastly shortened with respect 
to the LISP version. 

CONCLUSION 

We believe that the present system, Protosynthex III, 
demonstrates beyond question that sophisticated natu-' 
rallanguage processing by computers is a realistic goal 
and one that has been partly achieve here-although so 
far only on a sentence-by-sentence basis. We believe we 
have shown that with an appropriate lexicon, syntactic 
and semantic systems, that a wide range of English sen
tences can be translated with relative ease into formal 
structures that support logical operations of deduction 
and inference. It is further apparent to us that when a 
question and an answering text have been translated in
to the formal concept structure, question answering fits 
into the theorem proving and general problem solving 
models. 

A reasonable goal, today, is to construct limited sys
tems that deal in a limited manner with limited bodies of 
text. Such systems, programmed, require syntactic and 
semantic information in the form of dictionary entries, 
recognition and generation grammars, semantic event 
forms, and properties and rules of inference to define re
lations. All of these materials must be generated by 
skilled human users of the language and the system. For 
a single article such as this one, thousands of lexical en
tries and hundreds of syntactic and semantic rules 
would have to be produced. 

We believe that this and other papers have demon
strated that natural language processing by computers 
is rapidly approaching a developmental phase in which 
the application of significant amounts of time and 
money can lead to eminently practical results. Signifi
cantjmprovements in automated translation, data base 
query systems, information and text retrieval, stylistic 
and content analysis can all be expected in the near 
future providing support is forthcoming for these efforts 
This support will not only be required for the computer 
programming costs but also in equal or greater measure 
for the ancillary linguistic effort to formalize appro
priate subsets of natural language. 
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Procedural semantics for a question-answering 
machine t 

byW.A. WOODS 

Harvard University 
Cambridge, Massachusetts 

INTRODUCTION 

Structure of a question-answerin~ system 

Simmons1 has presented a survey of some fifteen ex
perimental question-answering and related systems 
which have been constructed since 1959. These systems 
take input questions in. natural English (subject to' 
varying constraints) and attempt to answer the ques
tions on the basis of a body of information, called the 
data base, which is stored inside the computer. This pro
cess can be conceptually divided into three phases
syntatic analysis, semantic analysis, and retrieval, as 
illustrated schematically in Figure 1. The first phase 
con~ists of parsing the input sentence into a structure 
which explicitly represents the gram.m.atical relation
ships among the words of the sentence. Using this in
fonnation the second component constructs a repre
sentation of the semantic content or "meaning" of the 
sentence. * The rem.aining phase consists of procedures 
for either retrieving the answer directly from the data 
base, or else deducing the answer from information con
tained in the data base. The dotted lines in the figure rep
resent the possible use of feedback from the later 
stages to aid in parsing and semantic interpretation; ** 

tThis research has been supported in part by the National Sci
ence Foundation under grants GN-554 and G8-2301 and by 
the Air Force Cambridge Research Laboratories under grant 
F-19628-68-C-0029. 

"'The second component of the diagram of Figure 1 is not al
ways distinguished from the other two. As Simmons says, "The 
phase of a question-answering program devoted to semantic 
analysis is often not clear-cut· and usually merges into the syn
tactic analysis and matching phases." 

"""The only question-answering system to actually make use of 
such feedback is the DEACON system,' which performs all three 
phases in parallel, so that when the parsing is complete, the 
question has already been interpreted and. answered. It seems 
likely that in the human question-answerer, some such feedback 

The objective of the research described here has been 
to develop a uniform framework for performing the se
mantic interpretation of English sentences. It was 
motivated by the fact that, although there exists a 
variety of formal parsing algorithms for' computing the 
syntactic structure of sentences, the problem of using 
this information to compute their semantic content re
mains obscure. A question--answering system provides 
an excellent vehicle for such a study, because it force~ 
consideration of semantics from the point of view of set
ting up a correspondence between the structures of a 
sentence and objects in some model of the world (i.e., 
the contents of the data base). 

The initial phases of this research consisted of an 
evaluation of the semantics of existing question-answer
ing systems and the design of the sern.antic interpreter 
described here. A more detailed discussion of these 
topics may be found in the author's Ph.D. thesis.s Sub
sequently, the semantic interpreter has been imple
mented in LISP on the Harvard Time-Sharing System 
and tested on a variety of sentences. 

Limited deductive systems 

The systems reviewed by Simmons comprise a wide 
variety of approaches to the question-answering prob
lem. The structures used for the data base· range from 
natural language text (bolstered by indices, concord
ances, and synonym dictionaries) to various sorts of 
hierarchies and networks of lists and se~s of attribute
value pairs. Moreover, the methods which are used in the 

does take place and that it results in a significant reduction in the 
number of ambiguous parsings and semantic interpretatiqns 
which are generated. On the other hand, it is possible to consider 
the operation of an experimental question-answering system with
out this feedback by systematically generating all ambiguous 
parsings of the sentence, and applying the semantic interpreter 
to each of them. This latter approach has been taken in this study. 

457 
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FIGURE I-Basic organization of a question-answering system 

• three phases of processing are strongly influenced by 
the data structu~e chosen. In the extreme cases the syn
tactic analysis of English is done with a grammar whose 

. constituents correspond not to grammatical categories 
of English but to structures in the data base. § Conse
quently, the techniques developed in these systems 
would not be expected to carryover to new types of 
data bases, and this indeed. seems to be the case. 

One common feature of existing question-answering 
systems is that they all deal with limited areas of dis
course and limited subsets of English. An argument in 
favor of this approach is that by studying restricted 
models one discovers principles and techniques with 
wider applicability. In the area of fact retrieval and 
automatic deduction useful techniques do seem to be 
emerging-notably the use of list-structured data bases 
for rapidly locating data and performing simple types of 
deduction. However, the efficiency of these techniques 
seems to be directly related to the restricted nature of 
the problem area. Those systems which enjoy reason
able efficiency gain it by applying special purpose solu
tions that capitalize on special features of the restricted 
problem area. Examples of such systems are Bobrow's 
STUDENT,4 Raphael's SIR,1i and Lindsay's kinship re
lations program.6 Most of these systems gain their effi
ciency from special types of data structures and data 
base organization a s well as special retrieval tech-

. * 0 mques. n the other hand, attempts at completely 
general deductive systems, such as Black's Specific 
Question-Answerer7 have encountered excessively long 
search times as the size of the data base increases. It 
seems that for efficient processing, different sorts of 
data require different sorts of data structures. 

Expanding the universe of discourse 

A promising method for achieving reasonable effi
ciency in larger, less restricted universef of discourse is 
to provide the system with a variety of different types 
of data structures and special purpose deduction rou
·tines for different subdomains of the universe of dis
course. Integrating a variety of special purpose routines 

§This is true of the DEACON system for example. 

*Bobrow explicitly points out the advangates of using 
"~ted deductive models" that provide special facility for per
formmg deductions in a restricted universe of discourse. 

into a single system, however, requires a uniform syn
tactic and semani ic framework. In general it is only 
after parsing and semantic interpretation have been 
carried out that such a system would be able to tell 
whether a sentence pertained to a given subdomain or 
not. Therefore, if the syntactic and semantic analyses 
were different for each subdomain, then the system 
would have to parse and interpret each sentence several 
times by different procedures in order to determine the 
appropriate subdomain. Moreover, there can be sen
tences that simultaneously deal with two or more sub
domains, requiring a semantic framework in which 
phrases dealing with different subdomains can be com
bined. 

Subsequent sections of this paper will describe a se
mantic interpretation prodecure that can be used in an 
encyclopedic question-answering system hosting a 
multiplicity of special purpose deductive routines. This 
procedure will be illustrated by a semantic interpreter 
for a hypothetical question-answering system that 
answers questions about airline flight schedules using 
the Official Airline GuideS as its data base. In this proto
type system, a standard interface is imposed between 
the semantic interpreter and the retrieval corn.ponent in 
order to achieve independence between the semantic 
interpretation procedure and the particular data struc
tures and retrieval techniques employed in the data 
base. This interface takes the form of a form.al query lan
guage that reflects the logical structure of English sen
tences rather than the structure of the data base. Unlike 
previous question-answering systems,· the semantic in
terpretations of sentences in this system are procedures 
to be carried out rather than structures to be matched 
in the data base. 

Semantics of question-answering systems** 

Among the question-answering systems reviewed by 
Simmons, Bobrow's STUDENT provides the most in
sight into the semantic structure of a question-answer
ing system. His "speaker's model of the world" contains 
the following components: 

(1) a set of objects {o i} 
(2) a set of functions {Fi} 
(3) a set of relations {Ri} 
(4) a set of propositions {P d 
(5) a set of semantic deductive rules. 

The semantic interpretation of an English statement is 
expressed in terms of these components as a sei of rela-

**The notion of semantics presented here is quite different from 
the notion of semantics presented in Katz and Fodor's "Structure 
of a Semantic Theory." See the thesis for a comparison of the 
Katz and Fodor theory and that described here. 
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tions which are asserted to hold among specified objects. 
Functions carry ordered n-tuples of objects into objects 
(they need not be single valued). They are represented 
by linguistic forms such as "the number of --- " 
"h f ' t e ather of ---," "the sum of ---and ---." 
The objects of the system are denoted by noun phrases 
-simple objects by simple nouns (e.g., "flights"," John", 
"Ch' . ""3") d f t' 11 d . . lCago, , an unc lOna y eternuned obJects by 
co~posite nouns (e.g., "the number of flights," "the 
father of the boy," the sum of 3 and 4"). The relations 
are represented by verbs and their associated preposi
tional modifiers (e.g., "---flies from --- to -
"--- hit ---" "---equals ---"). The rela
tions in the system correspond to the "concepts" which 
the system can "understand." The set of proposi
tions {P d are instances of the relations with particu
lar objects filled in for the argum.ents. They correspond 
to the beliefs of the system, i.e., the relations which it 
knows to hold among particular objects (e.g., "AA-57 
flies from Boston to Chicago," "the sum of 3 and 4 
:3quals 7"). The semantic deductive rules are procedures 
for deducing new propositions or beliefs from the ones 
nhich are already held by the system. These compo
(li:mts are essentially those of a formal system for the 
first-order functional calculus without the quantifiers 
and logical connectives. 

Although Bobrow's system does not recognize quanti
fiers and recognizes the logical connectives only as 
separators that mark the boundaries of kernel sen
tences, question-answering system.s in general win re
quire aJl of these components as part of their semantic 
structure. Both quantifiers and logical connectives, 
h~,,:ever, can be viewed as predicates which take prop
oSltIOns as arguments and can be included in the above 
framework by silnply relaxing the restriction that argu
ments of relations must be objects in the data base. 
Thus, we will permit arguments of predicates and func
tions to be filled by propositions as well as data base ob
jects. t For example, "AND" can be represented as a 
predicate which takes two propositions as arguments 
and is true if both of its arguments are true. Likewise, 
the. quantifier, "ALL" can be thought of as a predicate 
whIch takes one designator (a variable name) and one 
proposition (containing a free occurrence of the vari
able) as arguments. This quantifier ALL is true if the 
quantified proposition is true for every assignment to 
the variable. 

There is one remaining component of the semantic 
structure which has been implicit in previous question-

t Although su?~ constructions are not handled by the present 
~ystem, the deCISIOn to allow propositions as arguments of pred
Icates paves the way for handling embedded sentences as in 
"Columbus thought t.hat the world was round." . 

answering systems but has not been explicitly recog
nized. This component is the set of commands that the 
system will carry out. In most systems there has been 
only one or at most two commands-"record X as data" 
and/or "answer X", and they have been left implicit 
rather than exo1icitly represented in the semantic i~tcr
pretations of these systems. In our discussion however , , 
the semantic interpretations of sentences will explicitly 
represent commands to the system. 

Semantic primitives 

We ~ill call the predicates, functions, and commands 
which a question-answering system "understands" the 
semantic primitives of the system, and we . will say 
that a colleGtiop. of semantic primitives is adequate for a 
given data base if, using them to ask questions, it is pos
sible to reconstruct the data in the data base (i.e., every
thing in the data base is retrievable). This is the mini
mum requirement which a set of primitives must 
satisfy. Beyond this minimum requirement additional 
primitives may be added to improve efficiency or use
fulness. 

For unrestricted English, an adequate set of primi
tives would be large, but for a restricted area of ·discourse 
an adequate set of primitives may be quite small. An 
adequate set of primitives for the prototype system to 
interrogate the Airline Guide i~ listed in Table I. 

It is assumed that the retrieval component contains 
a programmed subroutine or other operational proce
dure for each semantic primitive which defines the 
meaning of that primitive. Thus the predicate CON
NEcT' for example, win be defined by a prograrnmed 
subroutine named CONNECT, which given three 
arguments Xl, X2, and X3, determines the truth or fal
sity of the proposition CONNECT (Xl, X2, X3). For 
the Airline Guide Flight Schedules Table, the operation 
of this subroutine would be to scan the table for the 
section which deals with flights to X3. It would then 
scan this section for the subsection which contains 
flights from. X2 to X3, and finally it would s~n.n this sub
subsection to see if flight Xl is listed there. For 3 dif
ferent organization of. the data base, the program for 
CONNECT might be defined differently. For example, 
in another table of the Airline Guide, the Flight Itiner
aries Table, the computation would proceed by looking 
in the table under flight Xl to find the flight itinerary 
for flight Xl and then looking down that list for the 
place X2 and, if X2 is found, looking further to see if X3 
occurs later in the list. Thus the definition of primitive 
concepts by programmed subroutines allows .complete 
freedom from the particular organization of the data 
base. It even allows one to extend the system to con
cepts which are not explicitly contained in the data base 
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Primitive Commands. 
TEST (DO 
LIST (Xl) 

Primitive Predicates. 
CONNECT (Xl, X2, X3) 
DEPART (Xl, X2) 
ARRIVE (Xl, X2) 
DAY (Xl, X2, X3) 
IN (Xl, X2) 
SERVCLAS8 (Xl, X2) 
MEAL8ERV (Xl, X2) 
JET (Xl) 
DAY (Xl) 
TIME (Xl) 
FLIGHT (Xl) 
AIRLINE (Xl) 
AIRPORT (Xl) 
CrTY (Xl) 
PLACE (Xl) 
PLANE (Xl) 
MEAL (Xl) 
CLA88 (Xl) 
EQUAL (Xl, X2) 
GREATER (Xl, X2) 
AND (81,82) 
OR (Sl, S2) 
NOT (81) 
IFTHEN (81, S2) 

Primitive Functions. 
TZ (Xl) 
DTIME (Xl, X2) 
ATIME (Xl, X2) 
NUM8TOPS (Xl, X2, X3) 
OWNER (Xl) 
EQUIP (Xl) 
FARE (Xl, X2, X3, X4) 

Test whether DI is a true proposition or not. 
Print the name of the object Xl. 

Flight Xl goes from place X2 to place X3 
Flight Xl leaves place X2 
Flight Xl goes to place X2 
Flight Xl leaves place X2 on day X3 
Airport Xl is in city X2 
Flight Xl has service of class X2 
Flight Xl has type X2 meal service 
Flight Xl is a jet 
Xl is a day of the week (e.g. Monday) 
Xl is a time (e.g. 4:00 p.m.) 
Xl is a flight (e.g. AA-57) 
Xl is an airline (e.g. American) 
Xl is an airport (e.g. JFK) 
Xl is a city (e.g. Boston) 
Xl is an airport or a city 
Xl itl a type of plane (e.g. DC-3) 
Xl is a type of meal service (e.g. breakfast) 
Xl is a class of service (e.g. first-class) 
Xl is the same as X2 
Xl > X2 (Where Xl and X2 are times or numbers) 

81 and 82 1 
s. 1 or S2 (where Sl and 82 are propositions) 
81 is false 
if 81 then 82 

the time zone of place Xl 
the departure time of flight Xl from place X2 
the arrival time of flight Xl in place X2 
the numb~r of stops of flight Xl between place X2 and place X3 
the airline which operates flight Xl 
the type of plane of flight Xl 
the cost of an X3 type ticket from place Xl to place X2 with service of class 
X4 (e.g. the cost of a one-way ticket from Boston to Chicago with first-class 
service) 

TABLE I-A set of semantic primitives for the flight schedules table 

but can be deduced from it. For example, the Flight 
Sohedules Table may not contain explicit infor
mation about connecting flights, but it is possi
ble to define a subprogram which, given two flight 
names Xl and X2 and a city name X3, will determine 
whether flight Xl arrives in X3 and flight X2 leaves 
X3 and the arrival and departure times are such that 
X2 leaves within a certain specified tolerance (say at 
least ~ hour and not more than 3 hours) after Xl 
arrives. This subprogram could define a primitive predi
cate MAKESCONEX(XI, X2, X3) meaning "Flight 
Xl makes connections with flight X2 at place X3." 

The query language 

Once 9 set of semantic primitives has been selected 
and an adequate query language has been defined, one 
can proceed to the design of the semantic interpreter 

without concern for the data structures that will be 
used in the data base or the retrieval techniques that 
will be used. It suffices to a ssume that the retrieval com
ponent will contain procedures for determining the 
truth of any given predicate (given its arguments), for 
determining the value of a function (for given argu
ments), and for ca~rying out any of the primitive com
mands. Communication between the two components 
will take place in terms of the names of the primitive 
predicates, functions, and commands which the system 
understands. 

The query language contains three basic types of con
struction-commands, propositions, and designators. 
At the top level, every expression in the query language 
will be a command that will in general contain prop
ositions and/or designators as arguments. The proto
type system contains two basic commands-TEST and 
LIST, where TEST(PI) is a command to determine 
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the truth-value of a proposition PI and LIST(XI) is a 
command to print out the name of the object designated 
by a designator Xl. A proposition consists of a predi
cate name followed by a list of its arguments enclosed 
in parentheses (e.g., DEPART (AA-57, BOSTON», 
and a designator consists of a proper name (e.g., Boston), 
a variable name (e.g., Xl), ora function name followed 
by a list of arguments (e.g., OWNER(.f\.A-57». 
Moreover, both propositions and commands may be 
quantified by quantifiers of the form : 

(FOR QUANT X/CLASS :R(X) ;P(X» 

where QUANT is a quantifier (EVERY, SOME, THE, 
etc.), X is the variable being quantified, CLASS is the 
name of a set over which quantification is to range, 
R(X) is a (possibly vacuous) further restriction on the 
range of quantification, and P (X) is the proposition or 
command being quantified. For examp]e, (FOR 
EVERY Xl/FLIGHT: DEPART (Xl, BOSTON) : 
LIST(XI) is a quantified command which directs the 
retrieval component to print the name of every flight 
which leaves Boston. It is assumed that there are a rel9-
tively small number of sets that can take the place of 
CLASS in these quantifiers and that for each such ~et, 
the retrieval component contains a successor function 
which enumerates the members of that set. * More re
stricted ranges of quantification are obtained by im
posing additional restrictions R (X). The reader is re
ferred to the thesis for a discus&ion of the advantages of 
this formulation of the quantifiers. 

In addition to the ordinary quantifiers SOME and 
EVERY and the quantifier THE, the prototype system 
contains two types of numerical quantifiers. The first 
type, 

(FOR n MANY X/CLASS :R(X) jP(X», 

is true if there are at least n members X in CLASS such 
that R(X) and P(X) are true. The second type allows 
the insertion of an arbitrary proposition to specify a 
condition on the number of objects-e.g., 

(FOR GREATER (N,30) MANY X/CLASS: R(X), 
P(X». 

Also there is a counting function, NUMBER (X/ 
CLASS: R(X», which returns as value the number Of 

*The successor function gives a pointer to the first member of 
the set when it is applied to a standard argument (e.g., 0). Sub
sequently, the successor function applied to a member of the set 
yields a pointer to the next member of the set. When applied to the 
last member, the function returns a recognizable end symbol 
(~.g., END). 

objects X in CLASS for which R(X) is true. For a de
tailed description of the syntax of these expressions and 
their effects when carried out in a retrieval component, 
the reader is again referred to the thesis. Examples of 
query language expressions and their meanings are 
listed in Table II. The language is roughly equivalent to 
the first-order functional calculus, with somewhat 
more elaborate quantifiers and with the addition of 
commands, a concept which is not interpretable in sys
tems of formal logic. 

Semantic interpretation 

Semantic rules 

The task of theSemantic Interpreter is to "look at" 
an input phrase marker and to translate the phrase 
marker into a formal representation of its meaning in 
terms of the semantic primitives of the system. Both in 
human beings and in the machine this process must be 
finitely specifiable, even though the class of phrase 
markers to be interpreted and the class of interpreta
tions to be produced are both infinite. Thus, the Inter
preter must decompose the phrase marker into sub
structures which it can interpret directly, and it must 
compute the interpretation of larger structures as some 

(3:) (FOR EVERY Xl/FLIGHT: CONNECT(XI, 
BOSTON, CHICAGO); LIST (DTIME (Xl, BOSTON»)) 

e.g. "At what times do flights leave Boston for Chicago?" or 
"List the departure time from Boston of every flight that 
goes from Boston to Chicago." 

(b) TEST (CONNECT (AA-57, BOSTON, CHICAGO») 
e.g. "Does AA-57 go from Boston to Chicago?" 

(c) LIST (NUMSTOPS (AA-57, BOSTON, CHICAGO) 
e.g. "How many stops does AA-57 make between 
Boston and Chicago?" 

(d) LIST(NUMBER (Xl/FLIGHT: CONNECT (Xl , 
BOSTON, CHICAGO») 

e.g. "How many flights go from Boston to Chicago?" 
(e) TEST«FOR SOME Xl/FLIGHT: CONNECT(Xl, 

BOSTON, CHICAGO); EQUAL(OWNER(XI), 
AMERICAN») 

e.g. "Does American have a flight which goes from Boston 
to Chicago?" 

(f) TEST«FOR 30 MANY Xl/FLIGHT: JET(XI); 
DEPART (Xl, BOSTON))) 

e.g. "Do 30 jet flights leave Boston?" 
(g) (FOR 5 MANY Xl/FLIGHT: CONNECT (Xl, 

BOSTON, CHICAGO); LIST (Xl» 
e.g. "N arne 5 flights that go from Boston to Chicago." 

(h) TEST «FOR GREATER (N, 30) MANY Xl/FLIGHT: 
JET (Xl); DEPART (Xl, BOSTON))) 

e.g. "Do more tha,n 30 jets leave Boston?" 

TABLE II-Sample query language expressions. 
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sort of composite of the interpretations of its substruc
tures. 

In the prototype described here, the manner in which 
the semantic interpretation of a construction is built 
up from the semantic interpretations of its constituents 
is specified by a finite set of seniantic rules. These rules 
are represented in a "pattern =? action" format, where, 

. the "pattern" is a description of a fragment of a phrase 
marker together with some conditions on the constit
uents of that fragment, and the· "action;;- specifies the 
sematic interpretation of such a fragment in terms of 
the interpretations of its constituents. These rules have 
a kinship to the "pattern =? substitution" rules of Post 
production systems and the rewrite rules of phrase
structure grammars, but the effect is somewhat differ
ent. The action in this case is not a substitution but an 
operation that attaches a semantic interpretation to 
the given fragment. 

In the syntax tree of a sentence, there are basically 
two types of nodes that receive semantic interpreta
tions- S nodes, correspond ing to sentences and clauses, 
and NP nodes, corresponding to noun phrases. The se
mantic interpretations of the former are either propo-

. sitions or commands, while the semantic interpreta
tions of noun phrases are designators. Corresponding to 
these two types of hodes, there are two processors-the 
S-processor, for interpreting S nodes, and the NP-pro 
cessor for interpreting NP nodes. Each of these pro
cessors attaches a semantic interpretation to the node 
of the syntax tree that it is interpreting. In addition, 
the NP-processor may also generate quantifiers that 
are to govern the sentence of which the NP is a con
stituent. 

The S-processor 

We may illustrate the operation of the S-processor 
independent of the NP-processor by considering sen
tences whose noun phrases are all proper nouns (which 
we assume to be directly interpretable). For example, 
consider the sentence: 

AA-57 flies from Boston to Chicago. 

A phrase marker for this sentence might look something 
like that of Figure 2. 

Since verbs in English correspond roughly to predi
cates, and noun phrases are used to denote the argu
ments of the predicate,. the verb in the structure dia
gram will be the primary factor in determining the prim
itive predicate (or composite of primitive predicates 
and functions) which represents the meaning of a sen
tence. For the example in Figure 2, the predic·ate will 
CONNECT as defined in Table 1. In addition to deter- . 

_____ s~ 

NP VP I -, _____ 
NPR V PP ~ 
I , / "" PP 

AA-57 fly PREP NP / "'" 
, PREP NP 

from N~ tl N' 
I PR 

Boston Ch· 1 
Icogo 

FIGURE 2-A sample phrase marker 

mining the predicate, however, the S-processor must 
verify that all of the required arguments for the predi
cate are present. in the structure diagram, that they 
meet appropriate conditions for the predicate to take 
them as arguments, and that they have the correct 
grammatical r.elationships with the verb. For example, 
for the predicate CONNECT it is necessary that the 
subject be a flight, and it is necessary that there be prep
ositional phrases whose objects are places representing 
origin (from) and destination(to). These tests are per
formed in order to rule out semantically bad interpreta
tions and to choose the correct senses from among -the 
various senses which a given verb may have. For ex
ample, the sentence: 

Boston flies from AA-57 to Chicago 

is semantically bad, while the verb "fly" in: 

Can I fly from Boston to Chica.go? 

has a different sense from that of the sentence in Figure 
2. Thus the S-processor must be able to ask questions 
about the constituents of a sentence (e.g., whether they 
are flights or places, etc.) and about the grammatical 
relationships among them (e.g!, what is the subject, is 
there a prepositional phrase,what is the object of the 
prepositional phrase, etc.). 

The grammatical relations among elements of a 
phrase marker are defined by partial tree structures 
which match subtrees of the phrase marker. A set of 
such partial structures is given in Figure 3. The num
bers in parentheses in these partial trees are labels used 
to refer to the nodes to which they are connected. Thus, 
two nodes A and B in a phrase marker are in the sub
ject-verb relation iff the partial tree G 1 matches a sub
tree of the phrase marker in such a way that the noun 
phrase (1) matches node A and the verb (2) matches. 
node B. Notice that this grammatical relation is defined 
with respect to the particular S node that matches the 
topmost node (or root) of the partial tree structure G 1. 
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/""" s 
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PREP NP 

I I 
(I ) (2) 

preposition- ob ject 
modifying a VP 

FIGURE 3-Partial tree structures corresponding to 
grammatical relations 

Structure of the semantic rules 

The "pattern" part of the semantic rules is specified 
in terms of a template consisting of the name of a partial 
tree structure (such as G 1, G2, G3) together with a col
lection of conditions on the numbeIed nodes of that 
tree structure. The conditions are expressed in 
terms of the semantic predicates of the system and the 
additional relation "=" which is used in the format 
"(n) = w" to mean that the terminal string of the sub
tree rooted at node n is identical to the string w. An ex
ample of a template is: 

(G1: Flight ((1» and (2) = fly). 

This template matches.a subtree of a phrase marker if 
the tree structure G 1 matches that subtree and the node 
numbered (1) (i.e., the subject of the sentence) denotes a 
flight and the node numbered (2) dominates the word 
"fly" (i.e., the verb is "fly"). The "pattern" part of a se
mantic rule consists of a set of such templates, with each 
template identified by a preceding integer so that the 
nodes which are numbered within it may be referred to 
in the right-hand side (or "action" part) of the rule. The 
node which matches the node (m) in the template 
num bered n is referred to OD the right-hand side of the . 
semantic rule as "n-m." 

The pattern of a semantic rule matches a given node 
A in a phrase marker if each template of the pattern 
matches a subtree of the phrase marker rooted at node 
A. The semantic interpretation of a node is obtained 
by successively applying semantic rules to the node, 
with each ma tching rule specifying a part of the seman
tic interpretation. The total semantic interpretation is 
the conjunction of these parts. For example, the top
most 8 node of the phrase marker of Figure 2 is matched 
by the semantic rule: 

l-(Ol:FLIOHT ((1» and (2) = fly) and 

2-(03: (1) = from and PLACE ((2») and 

3-(03: (1) = to and PLACE ((2») 
=> CONNECT (1-1,2-2,3-2) 

which is to be interpreted as follows: 

If the node under consideration is the root of a 
subtree matching Gl and the node matching (1) 
denotes a flight and the node matching (2) directly 
dominates the word "fly" ,and if the given node is 
also the root of a subtree matching 03 with the 
node matching (1) directly dominating the word 
"from" and the node matching (2) denoting a place, 
and finally if the node is the root of another subtree 
matching G3 with the node matching (1) directly 
dominating the word "to" and the node matching 
(2) denoting a place, then part of the semantic 
interpretation of the node is CONNECT (1-1,2-2, 
3-2), where 1-1 denotes the interpretation of the 
node which matches node (1) of template 1 (i.e., 
the template (Gl: FLIGHT((1» and (2) = fly», 
2-2 denotes the interpretation of the node which 
matches node (2) of template 2, and 3-2 denotes the 
interpretation of the node which matches node (2) 
of template 3. 

Thus, part of the interpretation of the sentence in 
Figure 2 is: 

CONNECT (AA-57 Boston, Chicago). 

Notice that this rule treats the prepositional phrases 
"from Boston" and "to Chicago" as commutative, since 
they are matehed by different templates and no rela
tive order is specified. That is, this same rule interprets 
both sentences, "AA:.-57 flies from Boston to Chicago" 
and "AA-57 flies to Chicago from Boston." In a situation 
in which the order of the prepositional phrases was se
mantically relevant, one would use 3 single template to 
specify botl.t prepositional phrases and therefore also 
their relative order. 

S-rules 

ThE' semantic rules for the 8-processor are cal1ed "8-
rules" to distinguish them from the rules for the NP
processor which will be described in a later section. A 
representative set of 8-rules for the prototype 8-pro
cessor is given in Table III. Notice that in addition to 
the rule 81 that we have already discussed, the rules S4 
and 86 will also match the phrase marker of Figure 2, 
resulting in the redundant information DEPART 
(AA-57 , Boston) and ARRIVE (AA-57, Chicago), so 
that the total semantic interpretation of the phrase 
marker would be: 
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SI 1-(Gl: FLIGHT «1) and «2) = fly or (2) = depart or 
(2) = go)) and 
2-(G3: (1) = from and PLACE «2))) and 
3-(G3: (1) =:= to s.nd PLACE «2))) 
=} CONNECT (1-1,2-2,3-2) 

e.g. "AA-57 flies from Boston to Chicago" 

S2 1-(Gl: FLIGHT «1)) and «2) = leave or (2) = depart)) 
and 
2-(G3: (1) = from and PLACE «2))) and 
3-(G3: (1) = for and PLACE «2))) 
=} CONNECT (1-1,2-2,3-2) 

e.g. "AA-57 departs from Boston for Chicago" 

S3 1-(GI: FLIGHT «1)) and (2) = leave) and 
2-(G2: (1) = leave and PLACE «2))) and 
3-(G3: (1) = for and PLACE «2))) 
=} CONNECT (1-1,2-2,3-2) 

e.g. "AA-57 leaves Boston for Chicago" 

S4 I-(GI: FLIGHT «1)) and «2) = fly or (2) ::;::leave or 
(2) = depart)) and 
2-(G3: (1) = from and PLACE «2))) 
=} DEPART (1-1,2-2) 

e.g. "AA-57 departs from Boston" 

S5 I-(Gl: FLIGHT (1)) and (2) = leave) and 
2-(G2: (1) = leave and PLACE «2))) 
=} DEPART (1-1,2-2) 

e.g. "AA-57 leaves Boston" 

S6 I-(GI: FLIGHT «1)) and «2) = fly or (2) = go)) and 
2-(G3: (1) =to and PLACE «2))) 
=} ARRIVE (1-1,2-2) 

e.g. "AA-57 flies to Chicago" 

87 l-(GI: FLIGHT «1» and (2) =arrive) and 
2-(G3: «1) =in or (1) =at) and PLACE «2))) 
=} ARRIVE (1-1, 2-2) 

e.g. "AA-57 arrives in Chicago" 

S8 I-(GI: FLIGHT «1)) and «2) = leave or (2) = depart)) 
and 
2-(G3: (1) = from and PLACE (2))) and 
3-(G3: (1) =at and TIME «2))) 
=} EQUAL (DTIME (1-1,2-2),3-2) 

e.g. "AA-57 departs from Boston at 8:00 a.m." 

S9 I-(GI: FLIGHT «1)) and (2) =leave) and 
2-(G2: (1) = leave and PLACE «2))) and 
3-(G3: (1) =at and TIME «2))) 
=} EQUAL (DTIME (1-1,2-2),3-2) 

e.g. "AA-57 leaves Boston at 8:00 a.m." 

S10 I-(GI: FLIGHT «1)) and (2) =arrive) and 
2-(G3: «1) =inor (1) =at) and PLACE «2))) and 
3-(G3: (1) =at and TIME «2))) 
=} EQUAL (ATIME (1-1,2-2),3-2) 

e.g. "AA-57 arrives in Chicago at 9:20 a.m." 

Sl1 I-(GI: FLIGHT «1)) and (2) = get) and 
2-(G3: (1) = into and PLACE «2))) and 
3-(G3: (1) =at and TIME «2))) 
=} EQUAL (ATIME (1-1,2-2),3-2) 

e.g. "AA-57 gets into Chicago at 9:23 a.m." 

SI2 I-(GI: FLIGHT «1)) and «2) = leave or (2) = depart)) 
and 
2-(G3: (1) = from and PLACE «2))) and 
3-(G3: (1) =on and DAY «2))) 
=} DDAY (1-1,2-2,3-2) 

e.g. "AA-57 departs from Boston on Monday" 

S13 I-(GI: FLIGHT «1)) and (2) = leave) and 
2-(G2: (1) = leave and PLACE «2))) and 
3-(G3: (1) =on and DAY «2))) 
=} DDAY (1-1,2-2,3-2) 

e.g. "AA-57 leaves Boston on Monday" 

SI4 I-(GI: AIRPORT «1)) and (2) =be) and 
2-(G3: (1) =inand CITY «2))) 
=} IN (1-1,2-2) 

e.g. "JFK airport is in New York" 

S15 1-(GI: «1) =they or (1) =people or (1) = one or 
(1) =1 or (1) = you) and «2) = have or (2) = get)) and 
2-(G2: «1) = have or (1) = get) and MEAL «2))) and 
3-(G3: (1) =on and FLIGHT «2))) 
=} MEALSERV (3-2, 2-2) 

e.g. "You get breakfast on flight AA-57" 

S16 I-(GI: «1) = they or (1) = you) and (2) = serve) and 
2-(G2: (1) = serve and MEAL «2))) and 
3-(G3: (1) =on and FLIGHT «2))) 
=} MEALSERV (3-2,2-2) 

e.g. "They serve breakfast on flight AA-57" 

S17 I-(Gl: FLIGHT «1)) and (2) = be) and 
2-(G2: (1) = be and CLASS «2))) 
=} SERVCLASS (1-1,2-2) 

e.g. "AA-57 is first-class" 

SI8 I-(GI: AIRLINE «1)) and «2) = have or (2) = own or 
(2) = operate or (2) = run)) and 
2-(G2: «1) = have or (1) = own or (1) = operate or 
(1) = run) and FLIGHT (2)) 
=} EQUAL (OWNER (2-2), 1-1) 

e.g. "American Airlines operates flight AA-57" 

SI9 1-(GI: FLIGHT «1)) and (2) =belong) and 
2-(G3: (1) =to and AIRLINE «2)-)) 
=} EQUAL (OWNER (1-1),2-2) 

e.g. "AA-57 belongs to American Airlines" 

TABLE III -A representative set of S-rules 

CONNECT(AA-57, Boston, Chicago) AND DEPART 
(AA-57, Boston) AND ARRIVE (AA-57 , Chicago). 

This redundant information may simply be left alone 
since it does no harm other than to cut down on effi
ciency. In the implementation of the prototype, how
ever, this redundancy is eliminated by an appropriate 
ordering of the seman1 ic rules, and 3 procedure for 
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determining what rule to try next depending on the suc
cess or failure of the previous rule. 

Notice that these rules are able to describe the close 
connections between verbs and the prepositions which. 
they can take, as em bodied in construct.ions SUGh as 
"fly from X to Y", "leave from X for Y," "arrive in X ." 
They are also capable of distinguishing the meanings of 
the preposi1ion "at" in "arrive at Chicago" and "arrive 
at 4:00 p.m." Notice furthermore that although th e num
ber of semantic rules in a system may be quite large, 
only a sm all number of rules can apply for any given 
verb, so that for interpreting a given phrase marker we 
need actu811y consider only a small number of 
semantic rules. In the implementation of the prototype 
the dictionary contains entries for each verb and noun 
specifying the set of possible semantic rules that 
could apply to a construction with that word as its head. 
This entry also specifies the order in which the rules are 
to be tried, and this order may in general be conditional 
on the success or failure of previous rules, allowing con
siderable flexibility for optimizing the interpretation 
procedllre. 

Semantic features 

Notice that in the semantic rules of Table III, the se
mantic conditions, FLIGHT((1», Place ((2», etc., are 
all single place predicates corresponding to membership 
in some class of objects-i.e., flights, airports, etc. 
Furthermore, the truth of such conditions can be de
duced from the noun of the noun phrase, and the 
necessary information can be recorded in the dictionary 
entries for the nouns. That is, in the dictionary entry for 
a proper noun, we Can record semantic features corre
sponding to the sets of which the named object is a mem
ber, e.g.: 

AA-.57/FLIGHT 

Boston/CITY, PLACE 

JFK/AIRPORT 

In the dictionary entry for a common noun, we can re
cord features corresponding to the sets of which the 
class denoted. by the noun is a subset, e.g.: 

flight/FLIGHT 

plane/FLIGHT 

city/CITY,PLACE 

town/CITY, PLACE 

place/PLACE 

airport/AIRPORT, PLACE. 

These set-membership conditions can then be tested by 
referring to the dictionary entry for the noun to see if 
the indicated set is listed there as a semantic feature. 
More complex semantic conditions could always be 
defined by programmed subroutines that the semantic 
interpreter may call (and this facility is available in the 
prototype), but there has not yet been any need for 
semantic conditions more complex than simnle set
mem bership eonditionf... 

The generation of quantifiers 

When considering the semantic interpretation of sen
tences containing quantified nouns, one discovers that a 
recursive top-down method of analysis is preferable to a 
bottom to top analysis. This is due to the fact that the 
quantifier which results from the interpretation of a 
noun phrase must be attached to the S node which it 
governs. When processing from the bottom up, we 
encounter the quantifieq. noun phrase before we know 
where the appropriate S node is. In the recursive pro
cess from the top down, however, we encounter the S 
node first, and while we are still "looking" at it, the S
processor cans the NP-processor for each NP that must 
be interpreted. The NP-processor, then, returns the ap
propriate quantifiers to the S-processor, which is stiU 
"looking" at the S node to which they are to be at· 
tached. 

Specifically the S-processor begins a working string 
(which may actually be a tree instead of a string) that 
will ultimately contain the representation of the seman
tic meaning of the S node being processed. Initially this 
string consists only of a single sym bol ~. Each time the 
NP-processor is called to process a quantified noun, it 
tags the NP that it is processing with a variable name, 
and returns one of the quantifiers described earlier. 
This quantifier Gontains the symbol ~ indicating the 
position in the quantifier where the remaining semantic 
interpretation of the S node is to be inserted (e.g., (FOR 
SOMEXI/FLIGHT:-; ~». The S-processor then re
places the symbol ~ in its working string by the quanti
fier which the NP-processor has returned (thus main
taining exactly one symbol ~ in the working string). 
When all of the NP's have been processed, the S· proces
sor uses the S-rules to interpret the sentence in terms 
of the variable names which the NP -processor has 
tagged onto the NP's. It then replaces the sym bol ~ in 
the working string with the interpretation specified by 
by the S-rules, thus eliminating the symbol ~ from the 
working string, which now contains the complete analy
sis of the S node. Finally, the S~processor tags the S 
node with the interpretation which it has built up in its 
working string and exits. 

As an example to illustrate the process just described, 
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____ 5 _______ 

~N~ VP 
DET N NU "PP ----PP .---7 ~ 
I I I /" /""- I NP pp 

every flight SG PREP NP PREP NP leave ~ ~ ~ 
I I I I I I I 

from NPR to NPR Boston at NPR 

I I I 
Boston Chicago 8:00o.m. 

FIGURE 4-Phrase marker for a sentence containing a 
quantified: noun phrase 

before explaining the mechanism in detail, consider the 
sentence "Every flight from Boston to Chicago leaves 
Boston at 8:00 a.m.," which is diagrammed in Figure 
4. * Looking at the topmost S, the S-processor starts a 
working string consisting only of the symbol A and then 
calls the NP-processor to process the NP "every flight 
from Boston to Chicago." The NP-processor creates a 
new variable Xl which has not been used before (e.g. by 
concatenating an integer to the right of the symbol X) 
and tags the NP with it. The NP-processor then (by 
mechanism to be discussed in the next section) returns 
·the quantifier (FOR EVERY Xl/FLIGHT: CON
NECT(Xl, Boston, Chicago); A) to the S-processor. 
The S-processor now substitutes this quantifier for the 
symbol A in its working string (giving a' new working 
string which consists of just the quantifier (FOR 
EVERY Xl/FLIGHT: CONNECT(Xl, Boston, Chi
cago); A». It then uses the S-rules (in particular rule 
S9 from Table III) to obtain the semantic interpreta
tion, EQUAL (DTIME (Xl, Boston), 8:00 a.m.), 
which it finally substitutes for the symbol A in the· 
working string to give the final semantic interpreta
tion of the sentence as: (FOR EVERY Xl/FLIGHT: 
CONNECT(Xl, Boston, Chicago); EQUAL (DTIME 
(Xl, Boston), 8:00 a.m.». This mechanism allows for 
the nesting of an arbitrary number of quantifiers (de
pending on the number of quantified NP's) before the 
S-processor finally interprets the sentence via the S
rules. 

The NP-processor 

Like the S-processor, the operation of the NP-pro
cessor is determined by a set of semantic rules in a 
"pattern =} action" format. The "pattern" part of 
these rules is a set of templates just as for S:-rules, ex
cept that the partial tree structures used in the tem
plates are dominated by the node NP instead of S. 
Some partial tree structures for the NP-processor are 

*In this diagram, NU is a syntactic category for the number of a 
noun phrase (SO for singular and PL for plural). NPR is the 
category for proper nouns. ThE' other node names should be. 
self-explanatory. 

G7: NP 

/""-
DET NU 

I I 
(J) (2) . 

Gl0: NP 

I 
PP 

/"'-. 

G8: NP 

I 
N 

I 
(I) 

G 11: 'NP 

I 
ADJ 

I 

G9: NP 

I 
ADJ 

I 
(1) 

G12: NP 

I 
PP 

PREP NP 

I I 
NPR 
I 

(I) 

~~ 
PREP NP and NP 

(I) (2) 
I I i 

(1) (2) (3) 

FIGURE 5-Part,ial tree structures for the NP-processor 

given in Figure 5. The difference between G9 and G 11 
will become apparent later. 

The process of interpreting a noun phrase consists of 
three parts: (1) determining the quantifier to be used, 
(2) determining the range of quantification, and (3) de
termining additional restrictive clauses on the range of 
quantification. The first part is governed primarily by 
the determiner of the noun phrase and is specified by a 
set of D-rules, a sample of which are shown in Table IV. 
The symbol A in these rules, as we mentioned before, 
marks the position where the semantic interpretation of 
the sentence will ultimately be inserted. Notice that this 
position is different in the quantifier that results from 
the interrogative determiners (rule D6) than it is for 
the others. The symbol V marks the position where the 

Dl 1-(G7: «1) =some or (1) =a or (1) =any) and (2) =80) 
=} (FOR SOME X/V; d) 

e.g. "American has a flight from Boston to Chicago." 

D2 1-(07: «1) = each or (1) =every) and (2) =SG) 
=} (FOR EVERY X/V; d) 

e.g. "Every flight from Boston to N ew York goes tu J.F .K." 

D3 1-(G7: (1) =no and (2) =SG) 
=} NOT (FOR SOME X/V; d) 

e.g. "No flight goes from Boston to Chicago." 

D4 1-(07: (1) = not every and (2) =SG) 
=} NOT (FOR EVERY X/V; d) 

e.g. "Not every flight from Boston goes to Chicago." 

D5 1-(07: «1) =the or (1) =this or (1) = that) and (2) = SO) 
=} (FOR THE X/V; d) 

e.g. "American Airlines operates the flight which leaves 
Boston for Chicago at 9 :00." 

D6 1-(G7: «1) = which or (1) = what) and (2) =SO) 
=} (FOR THE X/V AND d; LIST (X) 

e.g. "Which . flight from Boston to Chicago lea.ves Boston 
at 8:001" 

TABLE IV-D-rules for the NP-processor 
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range of quantification and other restrictive clauses are 
to be inserted by the NP-processor. The symbol X 
stands for the variable name which the NP-processor 
will create. The NP-processor will tag the NP with this 
variable name and use it in place of X in the quantifier 
which it produces. 

The second phase of the NP-processor is to deter-' 
mine the range of quantification. This is primarily de
termined by the noun of the noun phrase, and is speci
fied by a set of N -rules. The right hand side of these 
rules specifies a successor function for the set over which 
quantification is' to range and possibly some restrictions 
on the range. It indicates by the symbol V the position 
where any additional restrjctions are to be inserted. The 
NP-processor will replace the symbol V in the quanti
fier (produced by the D-rules) with the right hand side 
of a matching N -rule (which will maintain exactly one 
symbol V in the working string). A small sample of rela
tively straight forward N -rules is given in Table V. 
Notice the case of rule N2 where the noun specifies both 
a successor function and an additional restriction; it is 
this mechanism that allows us to have a small number of 
successor functions in the system and still use a con
siderably larger variety of nouns. Some more compli
cated N -rules will be described in the next section. 

The third phase of the NP -processor- attaches addi
tional restrictive clauses onto the range of quantifica
tion. For relative clauses modifying the NP the NP
processor does this automatically by first taking the 
variable X which it has created and using it to tag the 
NP in the relative clause which d(''llinates the relative 
pronoun, "which," "who," or "that". It then cans the S
processor to interpret the relative clause. The inter-

NI I-(GS: (1) = flight or (1) =plane) 
=:} FLIGHT: V 

e.g. "a flight" 

N2 I-(GS: (1) =jet) 
=:} FLIGHT: JET (X) AND V 

e.g. "a jet" 

N3 I-(G8: (1) =airline or (1) = c&.rrier) 
=:} AIRLINE: V 

e.g. "an airline" 

N4 I-(G8: (1) = city or (1) =town) 
::::::? CITY: V 

e.g. "a city" 

N5 I-(G8: (1) = airport or (1) =place) 
=:} AIRPORT: V 

e.g. "an airport" 

pretations of adjectives and prepositional modifiers, 
however, are specified by a set of R-rules. The right
hand side of these rules consists of a proposition which 
is to be added as a restriction to the range of quantifica
tion. When the third phase of the NP-processor has 
determined all of the restrictions implied by R-rules 
and by relative clauses, it conjoins them and replaces 
the symbol V in the working string with this conjunc
tion. If there are no restrictions, it replaces the V with 
a vacuous restriction (represented by a dash). A sample 
set of R-rules is given in Table VI. Notice the use of a 
noun phrase denoting an airline as an adj ective in rule 
R8. This is the reason for the partial tree structure G 11 
for noun phrases used as adjectives as distinct from G9 
for lexical adjectives. 

RI I-(G9: (1) = non-stop) and 
2-(GlO: (1) =from and PLACE «2») and 
3-(GlO: (1) =to and PLACE «2») 
=:} EQUAL (NUMSTOPS (X, 2-2, 3-2),0) 

e.g. "a non-stop flight from Boston to Chicago" 

R2 I-(G9: (1) = first-class) 
=:} SERVCLASS (X, first-class) 

e;g. "a first-class flight" 

R3 I-(G9: (1) =jet) 
=:} JET (X) 

e.g. "a jet flight" 

R4 I-(G9: (1) =propeller) 
=:} NOT (JET (X» 

e.g. "a propeller flight" 

R5 1-(GIO: (1) = from and PLACE «2»)) and 
2-(GIO: (I)=to and PLACE «2») 
=:} CONNECT (X, 1-2, 2-2) 

e.g. "a flight from Boston to Chicago" 

R6 I-(GI0: (1) = from and PLACE «2») 
::::::? DEPART (X, 1-2) 

e~g. "a flight from Boston" 

R7 I-(GIO: (1) =to and PLACE «2») 
=:} ARRIVE (X, 1-2) 

e.g. "a flight to Chicago" 

RS I-(GII: AIRLINE «1 ))) and 
2-(G8: (1) = flight or (1) = plane or (1) =jet) 
=:} EQUAL (OWNER (X), 1-1) 

e.g. "an American Airlines flight" 

R9 1-(G9: (1) = morning or (1) =a.m.) and 
2-(G8: (1) = flight or (1) = plane or (1) =jet) and 
3-(GlO: (1) = from and PLACE «2») 
=:} GREATER (1200, DTIME (X, 3-2» 

e.g. "a morning flight from Boston" 

TABLE V-Some sample N-rules for the NP-processor TABLE VI-Some R-rules for the NP-processor 
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Functionally determined objects 

As we mentioned previously, linguistic forms such as 
"the departure time of --- from ---" correspond 
to functions which assign values (in this case a time) to 
each combination of arguments (in this case a flight and 
a place). That is, a noun phrase such as "the departure 
time of AA-57 from Boston" is a complex designator for 
an object that is functionally determined from the argu
ments "AA-57 "and "Boston." Other such construc
tions are "owner of Xl," "the father of the boy," "the 
captain of the ship," "the I?umofxandy." In such con
structions, the noun of the noun phrase is the name of 
the function, and the arguments are specified by prep
ositional phrases (usually with the preposition "of"). 
A few question-answering systems have recognized 
the functional nature of such constructions. Bobrow 
gives a general discussion of the correspondence be
tween such linguistic forms and functions, and he uses 
such constructions for addition, subtraction j multiplica
tion, etc., in his system. The DEACON system also, can 
handle a limited class of such functional noun phrases, 
namely those which denote the value of some attribute 
of an object. For example "the owner of the Enterprise" 
denotes "the Unites States, " which is the value of the 
attribute "owner" associated with the object "Enter
prise" in the data base. In both of the above systems, 
however, only single-valued functions are considered. 
In such cases the determiner of a functional noun phrase 
is always 'the,' and in both systems this determiner is 
either dropped or has no semantic effect. 

Not all such functions are single-valued, however. 
Takefor example, "a member of the crew," "a cousin of 
the duke," "an eigenvalue of the matrix," "an officer 
of the ship," "a root of the equation." In such cases the 
functional noun phrase may contain any of the deter
miners used to denote quantification over a set, e.g., 
"every officer of the ship," "no officer of the ship," 
"some officerof the ship," "which officer of the ship." 
We have already described a mechanism which handles 
these quantifiers given a successor function which enu
merates the members of a set. We can handle them for 
functionally determined objects by defining a successor 
function which takes as additional arguments the argu
ments of the functional noun phrase. For example, a 
successor function OFFICER (x, y) could be defined to 
enumerate the officers of a ship x. Then, if the values of 
the pointers to the officers of x were aI, a2, ... , an, we 
would have: 

OF~ICER (x; 0) = al 

OFFICER (x, al) = a2 

OFFICER (x, a,,) = END. 

With this mechanism, we can represent the range 
of . quantification in the quantifiers by naming. 
a successor function together with the fixed argu
ments of the functional noun phrase (the argument for 
the index of enumeration is always assumed and need 
not be represented). Thus the sentence: 

Every officer of the Enterprise is ashore 

can be represented as : 

(FOR EVERY XI/OFFICER(ENTERPRISE):-; 
ASHORE(XI» 

where ASHORE (X) is a predicate meaning X is ashore. 
Once the above mechanism has been constructed for 

multiple-valued functions, single-valued functions are 
seen to fall naturally into the same scheme. In this case, 
the successor function will enumerate exactly one ob
ject before returning the value "END" and the retrieval 
mechanism for the quantifier "THE" will automatically 
verify whether the use of the determiner "the" is correct 
(i.e., it will verify that exactly one object is generated). 
This mechanism will handle the usage of the deter
miner "the" in all cases where the object involved is 
uniquely determined, even in the case of a "very small" 
ship which has only one officer (or in the case where ad
ditional modifiers appear in the functional noun phrase 
and restrict the range of quantification, as in "the 
redheaded officer of the ship"). This approach to 
quantified noun phrases allows full generality in han
dling both functional and non-functional noun phrases 
with the full range of possible determiners and modi
fiers. 

Since, in the formulation of functional noun phrases 
described above, the function of the determiner and 
additional modifiers in the noun phrase is the same as 
for non-functional noun phrases, the same D-rules and 
R-rules will work for both functional and non-function
al noun phrases. Futhermore, the N-rulesfor function~ 
al noun phrases will operate exactly as do the N -rules 
for non-functional noun phrases. A sample set of N
rules for functional noun phrases is given in Table VII. 
Notice that in rule N12, some of the arguments of the 
function are specified by adjectives as well as by prep
ositional phrases. Notice also that many of the func
tion names are compound forms. Note especially that 
while the construction "number of stops" has a mean
ing to the user which is based on counting stops, the sys
tem has no data base objects corresponding to stops and 
does no counting. Instead, it looks up the number of 
stops in a table. Thus the phrase "number of stops" is 
effectively an idiom to the system and serves merely to 
name a function. 
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N6 I-(G8: (1) ='departuretimf') and 
2-(GlO: (1) =of and FLIGHT «2))) and 
3-(GIO: (1) = from and PLACE «2))) 
=} DTIME (2-2, 3-2) : V 

e.g. "the departure time of AA-57 from Boston" 

N7 I-(G8: .(1) = arrival time) and 
2-(GlO: (1) =uf and FLIGHT «2») and 
3-(GI0: «1) =in or (1) =at) and PLACE «2)) 
=} ATIME (2-2, 3-2) : V 

e.g. "The arrival time of AA-57 in Chicago" 

N8 1-(G8: (1) = owner or (1) =operator) and 
2-(GIO: (1) =of and FLIGHT «2») 
=} OWNER (2-2): V 

e.g. "the operator of AA-57" 

N9 1-(G8: (1) = timE' zone' and 
2-(GlO: (1) =of and PLACE «2») 
=} TZ (2-2): V 

e.g. "the time zone of Boston" 

Nl0 I-(G8: (1) = number of stops) and 
2-(GlO: (1) =of and FLIGHT «2»)) and 
3-(GI2: (1) =between and PLACE «2» and 
PLACE «3») 
=} NUMSTOPS (2-2, 3-2, 3-3) : V 

e.g. "the number of stops, of AA-57 between Boston and 
Chicago" 

Nll I-(G8: (1) =type of plane or (1) = kind of plane) and 
2-(GIO: (1) =of and FLIGHT «2)) 
=} EQUIP (2-2): V 

e.g. ~'the type of plane of AA-57" 

N12 1-(G8: (1) = fare) and 
2-(G9: (1) = one-way or (1) = round-trip) and 
3-(G9: (1) = first-class or (1) =coach or (1) = stand by) 
and 
4-(GlO: (1) = from and PLACE «2»)) and 
5-(GIO: (1) =to and PLACE «2») 
=}FARE (4-2,5-2;2-I,3-1):V 

e.g. "one-way first-class fare from Boston to Chicago" 

TABLE Vn-8ome N-rules for functional noun phrases. 

"What;' questions 

One frequently asks for the value of a function for 
specified arguments by means of a "what" question as: 

What is the departure time of AA-57 from Boston? 

If it can be avoided, we do not want such questions to 
be answered by ranging over the universe of possible 
answers and choosing the correct one, but instead we 
want to determine the correct answer directly from the 
arguments of the function by means of the operational 
procedure which defines the function. Thus the inter
pretation of this sentence should be: 

(FOR THE Xl/DTIME(AA-57, Boston) :-; 
LIST(Xl)) 

rather than: 

(FOR THE Xl/TIME: EQUAL (Xl, DTIME(AA-57, 
Boston)); LIST(Xl)). 

The procedure that we have just described will generate 
the quantifier: 

(FOR THE XI/DTIME(AA-57, Boston) :-; A) 

which we require. All that remains is to interpret the 
sentence itself as the command LIST. This is speci
fied by following semantic rule: 

S23 l-(G 1: (2) = be) and 

2-(G2:(1) = be and (2) = what) 

=} LIST (1-1) '. 

Thus, assuming that the deep structure of the sentence 
is something like that of Figure 6, then rule S23 will 
apply to the topmost S, but will first call for the seman
tic interpretation of the subject noun phrase. Rules D5 
and N6 will then generate the quantifier, and finally, 
rule S23 will insert the command LIST(Xl) to give the 
final interpretation 

(FOR THE Xl/DTIME(AA-57, Boston) :-; LIST 
(Xl)). 

CONCLUSION 

Summary 

In the preceding sections, we have presented a pro
posal for a unifonn method of performing the semantic 
interpretation of English questions for a question
answering system. We have presented an operational 
definition of semantic meaning in tenns of programmed 
subroutines and have outlined a fonnal query language 
for representing the semantic interpretation of ques
tions and conunands. We have concentrated on the prob-
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FIGURE 6-Phrase marker for a "what" question 
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lern of translating from a syntax tree that represents 
the syntactic structure of the input question into an ex
pression in· the query language which represents the 
"meaning" of the question, and we have developed a 
procedure for performing this translation by means of a 
set of semantic rules. While the techniques described 
are not completely general for unrestricted English 
usage, they are applicable in a wide variety of situations 
in which the computer is called upon to "understand" 
English input and take some appropriate actio~. 

In addition to recognizing the predicate which cor
responds to a given sentence, the proposed system 
handles universal and existential quantifiers, numeri
cal quantifiers, interrogative determiners, and the de
terminer "the." It handles relative clauses, adjectival 
and prepositional modifiers in noun phrases, and func
tionally determined _noun phrases. It also takes 'into 
proper consideration whether a noun phrase is singular 
or plural. This combination of feature.s has not been at
tained in any existing question-answering system al
though some have appeared in isolation in various sys
tems. To my knowledge, the handling of the deter
miner "the," the treatment of relative clauses, and the 
distinction between singular and plural nouns are new, 
as is the uniform framework in which these techniques 
are integrated. Moreover, the techniques presented here 
are general and easily extended to other situations in 
which there is a well-defined data base. 

Implementation 

A sample implementation of the prototype system for 
the flight schedules problem has been designed to inter
pret the deep structures assigned by a small transforma
tional grammar containing 40 transformations. Al
though these phrase markers could in principle be 
mechanically assigned, * they are currently produced by 
hand, since the central concern of this research: is the de
sign of the semantic interpreter. The semantic inter
preter itself has been programmed in LISP and tested 
on a variety of sentences including those listed in Table 
VIII. The interpreter is driven by a set of 36 S-rules, 

*The grammar conforms sufficiently to the conditions imposed 
by Petrick10 that it could be recognized by a slight modification 
of Petrick's transformational recognition procedure. 

1. a. AA-57 flies from Boston to Chicago. 
b. CONNECT (AA-57, BOSTON, CHICAGO) 

'2. R. Doesn't American operate flight AA-57? 
b. TEST (EQUAL (OWNER (AA-57), AMERICAN)) 

3. a. Isn't AA-57 an American Airlines flight? 
b. TEST «FOR SOME Xl/FLIGHT: 

EQUAL (OWNER (Xl), AMERICAN AIRLINES); 

EQUAL (AA-57, Xl)) 
4. a. Does American have a flight which goes from Boston to 

Chicago? . 
b. TEST «FOR SOME Xl/FLIGHT: 

CONNECT (Xl, BOSTON, CHICAGO); 
EQUAL (OWNER (Xl), AMERICAN)) 

5. a. Does American have a flight which doesn't go from Boston 
to Chicago? 

b. TEST «FOR SOME Xl/FLIGHT: 
NOT (CONNECT (Xl, BOSTON, CHICAGO)); 
EQUAL (OWNER (Xl), AMERICAN») 

6. a. What American Airlines flight goes from Boston to 
Chicago? 

b. (FOR THE Xl/FLIGHT: 
EQUAL (OWNER (Xl), AMERICAN AIRLINES) 
AND CONNECT (Xl, BOSTON, CHICAGO); 
LIST (Xl» 

7. a. What America"'" AHines flights go from Boston to Chicago? 
b. (FOR EVERY Xl/FLIGHT: 

EQUAL (OWNER (Xl), AMERICAN AIRLINES) 
AND CONNECT (Xl, BOSTON, CHICAGO); 
LIST (Xl)) 

8. a. What is the dp.parture time of AA-57 from Boston? 
b. (FOR THE Xl/DTIME (AA-57, BOSTON): - ; 

LIST (Xl)) 
9. a. What is the departure time from Boston of every American 

Airlines flight that goes from Boston to Chicago? 
h. (FOR EVERY X2/FLIGHT: 

EQUAL (OWNER (X2), AMERICAN AIRLINES) 
AND CONNECT (X2, BOSTON, CHICAGO); 
(FOR THE XI/DTIME (X2, BOSTON): -; 
LIST (Xl)) 

10. 9 .• What -American Airlines· flights arrive in Chicago from 
Boston before 1:00 p.m.? 

h. (FOR EVERY Xl/FLIGHT: 
EQUAL (OWNER (Xl), AMERICAN AIRLINES) 
AND ARRIVE (Xl, CHICAGO) AND 
GREATER (1:00 p.m., ATIME (Xl, CHICAGO»); 
LIST (Xl)) 

11. a. Are all flights from Boston to Chicago American Airlines 
flights? 

b. rEST «FOR EVERY Xl/FLIGHT: 
CONNECT (Xl, BOSTON, CHICAGO); 
(FOR SOME X2/FLIGHT: 
EQUAL (OWNER (X2), AMERICAN AIRLINES); 
EQUAL (Xl, X2»») 

12. a. How many flights that go from Boston to Chicago does 
Am"'rican Airlines operate? 

h. LIST (NUMBER (Xl/FLIGHT: 
CONNECT (Xl, BOSTON, CHICAGO) AND 
EQUAL (OWNER (Xl), AMERICAN AIRLINES))) 

13. a. How many airlines have more than 3 flights that go from 
Boston to Chicago? 

b. LIST (NUMBER (Xl/AIRLINE: 
(FOR GREATER (N,3) MANYX2/FLIGHT: 
CONNECT (X2, BOSTON, CHICAGO); 
EQUAL (OWNER (X2), Xl)))) 

14. a. What is the number of flights from Boston to Chicago? 
b. (FOR THE Xl/NUMBER (X2/FLIGHT: 

CONNECT (X2, BOSTON, CHICAGO):-; 
LIST (Xl)) 

TABLE VIn -Sample test sentences and their semantic 
interpretations. 
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16 D-rules, 17 N-rules, and 11 R-rules. Again, since 
the primary concern was the design of the semantic in
terpreter, no retrieval component for the flight sched
ules problem has been implemented. To do so, how
ever, would be a straightforward problem of writing 
LISP functions for each of the semantic primitives and 
for the quantifiers. The semantic interpretations pro
duced by the interpreter are already in the form of 
LISP S-expressions** and would simply be evaluated in 
the retrieval component by the LISP function evalua
tor. 

Extendability 

The query language in the proposed scheme con
stitutes a standard interface between the seman
tic interpreter and the retrieval component, thus 
freeing the sema~tic interpretation algorithm from de
pendence on the particular structure of the data base. 
It also frees the interpreter from a distinction between 
answers that are actually stored in the data base and 
answers which must be computed from the data base. 
The query language is thus easily extended by allowing 
new predicates, functions, and commands to be added 
as actual coded subroutines which the retrieval com
ponent may call. In addition, the semantic interpreter is 
a general routine, driven by a set of semantic rules, thus 
completing the facility for extendability. Any concept 
that can be made explicit for the machine by means of a 
programmed subroutine can be added to the retrieval 
component, and new semantic rules can be added to 
the semantic interpreter to specify the ways in which 
the concept is expressed in English. If new kinds of 
syntactic structures in English are involved, then new 
rules may also have to be added to the parser in order 
to recognize the new constructions. 

**The LISP S-expression notation is a trivial modification 
of the notation used in this paper, differing mainly in that the 
function name is included in the list of arguments. rather than 
outside-e.g. (TEST Xl) instead of TEST(Xl). 
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A natural language compiler for on-line data 
management 

by CHARLES H. KELLOGG 

System Development Corporation 
Santa Monica, California 

INTRODUCTION 

During the past few years there has been a rapid 
~dvance in the technology of time-sharing sys
tems and software to permit quick access to large 
files of structured data. This has led to a. growing 
interest in communicating with computer files di
rectly in a natural language such as English. The 
natural language systems described in the litera
ture are largely small-scale research vehicles deal
ing with small data bases of restricted subject 
scope. Giuliano (1965), among 'Others, has ques
tioned the generalization of these systems to wider 
universes of discourse. Developments in this area 
have been reviewed by Simmons (1966), and by 
Bobrow, Fraser and Quillan (1967). In contrast, 
the work in on-line data management has been 
m'Ore concerned with the efficient organization of 
structured data to allow for quick access and 
maintenance of large volumes of formatted in
formation [see the reviews by Kellogg (1967), 
Climenson (1966) , and Minker and Sable 
(1967) ]. 

At S.DC, we have been concerned for some time 
with the design and implementation of a proto
type system that combines the advantages of the 
two approaches: the natural language system's 
facility for accepting ordinary English, .and the 
on-line data management system's ability to ma
nipulate large quantities of data of varying subject 
matter. We have been particularly concerned with 
striking a reasonable compr'Omise between the dif
ficulties 'Of allowing completely free use of or
dinary English and the restrictions inherent in ex
isting artificial languages· for data base descrip
tion and querying. 

This paper will discuss a number of the proper
ties that seem necessary and desirable for an on-

line English subset. We will describe the implemen
tation of an English subset and the construction of 
a compiler that translates facts and requests for 
.facts, expressed in ordinary English grammatical 
patterns, into pr'Ocedures in an intermediate lan
guage (IL)-procedures that are sufficiently ex
plicit to be directly accepted and processed by a 
data management machine. The use of computer
to-user feedback to ameliorate some of the con
fining restrictions of the English subset will be 
illustrated, as will the means whereby the user 
can extend the vocabulary and scope of the Eng
lish subset to permit the description and interro
gation of data bases of varying structure and con
tent. 

W,e will show how semantic structures can be 
precisely represented as procedures and how, 
from this point of view, a natural language com
piler constitutes a device for transforming ,natural 
language syntactic structures into underlying se
mantic structures. ·Along the way we will draw 
upon a number of examples illustrating the on-line 
use of the most recent version of the prototype 
system. 

Research methodology 

The components of an· experimental system 
(called CONVERSE) for investigating the feasi
bility of natural language compilers and for con
structing and testing such compilers are shown 
in Figure 1. The programs and associated files 
are implemented on the IBM Q-32 Time-Sharing 
System at SDC. 

The META-LISPX meta (or syntax-directed) 
compiler developed by- Book and Schorre (1965) 
has been used to implement, test and modify the 
natural language compiler and data management 

473 
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FIGURE 1-The CONVERSE system 

machine. META-LISPX is implemented within a 
version of the LISP 1.5 List Processing System. It 
accepts a description of an object compiler ex
pressed as a series of phrase structure rewrite 
rules. These META rules are associated with 
procedures, written in LISPX, that represent the 
actions to be taken once a substring or constituent 
of an input sentence has been recognized. Since 
these actions can take the form of any procedure 
expressible in the LISP ·list processing language, 
they can be of any desired degree of generality or 
complexity. In particular these procedures imple
ment a process of semantic interpretation-a pro
cess that is controlled or directed by the recogni-

tion of syntactically well formed constituents. The 
object natural language compiler produced by the 
META compilation process contains a top-to-bot
tom left-to-right syntactic recognition algorithm 
which is driven by the encoded form of the phrase 
structure rules input in the META-LISPX lan
guage. As illustrated in Figure 1, a data manage
ment machine has also been produced using 
META-LISPX. These object programs are easily 
modified or extended by incremental recompila
tion. 

In use, the natural language compiler first con
structs and then uses a file of general facts to con:.. 
trol the compilation process. It also updates and 
utilizes information in the dictionary that it 
shares with the data management machine. Pro
cedures produced by the compiler drive the ma
chine to store, modify, or search a file of specific 
facts. 

The difficulty in using a meta- or syntax-di
rected compiler to implement a subset of natural 
language has been recognized by Cheatham and 
Warsall (1962). They point out that, in the case 
of translating a programming language input 
string into machine language, the formation rules 
of the programming language have semantic sig
nificance. Consequently, given a parse of the in
put string the semantic interpretation of this 
string is relatively straightforward. They go on to 
discuss the possibility of phrasing formation ruleR 
for a subpart of Engli"h in a form acceptable to 
a syntax-directed compiler: "however in contrast 
to. the case of algebraic compilers an application 
of one of these rules does not in general corre
spond to a semantically meaningful act." Their 
point is well taken. As we shall see the recogni
tion algorithm built into a syntax-directed com
piler must be supplemented by a .rather consider
able amount of semantic interpretation apparatus 
in order to deal with the complexities (such as 
ambiguity resolution) of even a small subset 
natural language. 

There are six basic actions which we require 
from a natural language compiler: 

1. An anomalous input sentence, one lying out
side of the English subset, must cause the 
compiler to construct appropriate feedback 
messages and send this information to the 
user. This information serves two impor
tant purposes. First, it will make the user 
aware of the current limitations of the Eng-



lish subset, and secondly, it should enable 
him to take constructive steps to enrich the 
English subset. The feedback should give 
the user information as to how and why 
the English subset was exceeded. 

2. Sentences which are syntactically or se
mantically ambiguous must be recognized 
as such and, where possible, the compiler 
should resolve this ambiguity. For example, 
semantic information can often be used to 
resolve cases of syntactic ambiguity and 
vice versa. When this is impossible the 
ambiguous interpretations must be dis
played to the user in the intermediate lan
guage format. 

3. A declarative sentence specifying general 
information must cause the natural lan
guage compiler to update its own store of 
such data and create appropriate dictionary 
entries for newly recognized words. 

4. A declarative sentence specifying specific 
information must be translated into explicit 
intermeriate language file storage proce
dures. 

5. A declarative sentence specifying a defini
tional extension of the English subset vo
cabulary must lead to appropriate actions 
to extend the range of interpretations of ex
isting words in the dictionary, or to add 
newly defined words to the dictionary. 

6. The sixth basic action is to recognize in
terrogative sentences and to translate the 
requests implicit in these sentences into ex
plicit file searching procedures. 

Early experimental work on the CONVERSE 
system is reported in Kellogg (1967a, 1967b). At 
first (1967a) we developed an English subset 
only for questions and we used the QUUP arti
ficial query language for the LUCID data manage
ment system as the intermediate language. Fur
ther, we translated questions into QUUP queries 
for only a single data base. Thus this initial ex
perimental system was· open to the same critical 
question asked of many experimental natural lan
guage systems, namely, "is it generalizable to 
other data bases of significantly different structure 
and/or content?" 

Our next step was to allow some degree of gen
eralization to data bases of different structure or 
content. This approach was based on a "computer 
interrogation of the user technique" (1967b). The 
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user was led through a series of steps designed 
to obtain a description of his data base from the 
answers he provided to the computer displayed 
questions. 

The body of this paper is concerned with the 
more general framework already alluded to, viz., 
one in which a user can input interrogative and 
declarative sentences in any order to query a data 
base, to modify the content of a data base, or to 
extend the range of semantic structures admissi
ble with respect to that data base. 

Properties of the source language and 
the target language 

The function of the (English) source language 
is to provide an on-line user with the ability to 
communicate his data and requests in the ordinary 
grammatical patterns or syntactic structures of 
English. The function of the target (intermedi
ate) language is to make explicit the semantic 
structure of the English sentence as a series of 
file storage and search procedures. Syntactic and 
sernantic structures are characterized by syntac
tic and semantic categories and by the allowed 
associations or relations 'among these categories. 
These characterizations may be represented for
mally by the use of rewrite or formation rules. 

Figure 2 illustrates some of the categories used 
in structuring the English subset and intermedi
ate languages. Such traditional categories as noun 
phrase, verb phrase, adjecti'val phrase, preposi
tional phrase and the lower level categories: noun, 
adjective, preposition, verb and determiner are 
used to formally specify the grammar of our Eng
lish subset. The underlying, or deep semantic 
structures that we recognize comprise such se
mantic categories as procedure, proposition, term" 
predicate, operator, function, relation, set, and 
property. Lower level semantic categories corre
spond to concepts such as: DEPART, SMOGGY, 
and STATE. The members of the lowest level syn
tactic categories are the words in the dictionary, 
while the members oJ the lowest level semantic 
categories are seen to be groupings. of ordered 
N -tuples of semantic values in the data base. 

The heart of the difficulty in dealing with' na
tural language for the computer is not only the 
great complexity of the syntactic structures which 
may arise in a natural language, but even more so, 
the complexity of the associations and relations 
which may obtain between members of syntactic 
categories and members of semantic categories, 
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In particular the associations between English 
subset words and the semantic values in a data 
base may be many-to-many and complex. The 
task 'Of a natural language compiler is to recursive
ly decompose sentences into their structural com
ponents and then to somehow use this information 
to cause the recursive composition of semantic 
categories into higher level semantic structures. 
The difficulty is one of establishing the correct re
lationships between syntactic and semantic cate
gories, and sorting these out in an appropriate 
way to produce semantic structures that represent 
the facts or requests implicit in an English 
sentence. 

Our semantic categories largely correspond to 
just those basic elements used in modern mathe
matics and symbolic logic to state facts about the 
actual or some possible world. Namely, the no
tions of object, classes or sets of distinct kinds of 
objects, properties and relations that may range 
over objects, and functions, which when applied 
to objects evaluate te other objects. Experience 
in mathematics and logic has shown'that such a 
basic set of elements are sufficient, along with a 
few other devices, for the formulation of scientific 

theories. Bohnert (1966) has gone farther and 
expressed the view that such elementary elements 
(as they are allowed for in the predicate calculus) 
constitute a reasonable framework for represent
ing the "deep" structure of natural languages. 

We are now in a position to draw a precise dis
tinction between data base structure and data, 
base' content. Database semantic content corre
lates with Carnap's (1956) notion of extensional 
meaning. Similarly, data base semantic structure 
correspontls to his notion of intensional meaning. 
For example, "smoggy" (the semantic category) 
designates a property of certain things. This is 
the intension of the concept "smoggy." On the 
other hand, the extension of "smoggy" comprises 
the list of objects in the data base that possess this 
property. The intensional or structural aspect of 
meaning will be represented in terms of gen~ra.l 
facts constituting a data base description. The 
data base content is the extensional aspect of 
meaning and it is represented as a series of spe
dfic facts. Thus a change in the data base struc
ture is taken -to mean a change in data base de
scription or equivalently a change in the intension
al meaning of the universe of discourse, while a 

(SENTENCE ) 

f w\ PRiAS. 

NOUN z:s: 
7 .<::: 

Ql1ANTI'lY NEW YORK, DEPARTS IS 

~mp7 
ADJE~ DETERMINER 

IS IS 
7 " ) \ SMJGGY LEAST THE~ THIRD 

DATA BAsE 

FIGURE 2-Syntactic and semanti(' categories 



change in data base content constitutes a change 
in the extensional meaning of the universe of dis
course. 

A rough correspondence between some of the 
syntactic categories and semantic categories can 
be given as follows: In general, common nouns 
may have many-to-many associations with sets. 
For example, there may be a number of common 
nouJ)s, each of which designates the same kind of 
objects in the data base. On the other hand, one 
common noun may designate several kinds of 
objects included in the data 6ase. Again several 
proper nouns may specify the same object in the 
data base or one proper noun (such as "New 
York") may refer to objects in several different 
sets. Similarly, there may be a many-to-many as
sociation between the transitive verbs and some 
of the prepositions in the English subset, and the 
various relations specified for the data base. 
Many-to-many relations may also obtain between 
noun phrases and functions and between adjec
tives and properties. 

The present grammar for the English subset 
consists of approximately 100 rules of the phrase 
structure type and a few syntactic transformation 
rules. The grammar admits a reasonably wide 
class of declarative and interrogative sentences 
but it has been kept relatively small by implemen
tation of just those rules that allow us to recognize 
the. syntactic clues essential for driving the se
mantic interpretation phase of the natural lan
guage compiler. The word classes include the 
determiners, adjectives, proper, common, and ab
stract nouns, adverbs, verbs, prepositions, ques
tion words, relative pronouns, and conjunctions. 
Several forms of relative and dependent clauses, 
and preposition, noun, verb, adjectival and ad
verbial phrases are recognized. The exampleJPven 
later in the paper will provide a reasonably good 
idea of the range of acceptable sentences. . 

A formal specification of the rules for the inter
mediate language is shown in Figure 3. ,In de
signing this language, we have been guided by 
our earlier experience in translating questions 
into queries admissible to the LUCiD, data man
agement system and by three principal design 
objectives: 

1. The language must be procedural. It should 
be comparable to procedure-oriented pro
gramming languages with regard to imple
mentation and independence from particu-

A Natural Language Compiler 477 

rl 'v
o fml LTR-> 'B' -> 

'c' tVQ 

vN 
-> rI 

) 
DGT -> r ~~NAMBf 

'1' 
'2' Tn -> 'DATE' 

TT -> 'TIME' 

m -> 

{- TN -> {~~:I} ~ 
(m) 

, , 

V-NAME -> 'v' DGT* To -> f ----'- ) 
'CITY' ~ 

N-NAME -> 'M' DGT* t -----
P-NAME -> 'p' DGT* Sm' -> f ;~i;D:S'1 
VI -> DGT* t -----
VFP -> DGT* '.' DGT* TERM -> 

{~;} {'~'l VQ -> 'SOME' 
'THE' 
VI 

~ -'\ 'FIND' 

1:=:ll 

'PRINT' 
'COUNT' 
'SUM' 

( '(' VI* ')' ) 

R -> r 'IS' I t 'IS*G~' 
'IS*LS*THAN' 

Pp -> P-NAME 

PR -> {:~~s'l 
EO -;> ("NOT' ) '(I TO R Vo I)' ('AND NOT'E

O
)* 

El -> ('NOT' ) '(I SET ')' {'AND' EO> 

E2 -> ('NOT' ) '(' I . I 
TM RP~M 

') , 

E' 
3 -> ('NOT' ) '({' PR ')' PROCEDURE* ')' 

E4 , -:::;. ('NOT' ) t, T R V ' )' (' (-' T R V ' ) , )1 D I T I 

'(' TT R VI 'J' 

PROP -> 1 Ell ( 'AND' {E2 t) * ( 'AND' E ) 
~ .~ ( 4 

PROCEDURE, 

, (' PROCEDURE '({' f R I ' )' PROCEDURE '»' 
tPR 

PROCEDURE --> '(' «OF (TERM)·i· 'WHERE') ( {p~l ) 
PROCEDURES -> PROCEDuRE (PROCEDURE)* 

Note: Terminal symbols appear in quotes. 
Brackets indicate a choice of elements. 
Parentheses indicate optional elements. 
An asterisk indicates an eleme?t ~ be repeated. 

:FIGURE 3-Formation rules for the intermediate language 

') , 
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lar machine configurations or detailed in
formation structure considerations. 

2. It should be a powerful and expressive lan
guage for stating both storage and search 
procedures. In this regard, we have been 
influenced by the structure of the predicate 
calculus. The intermediate language per
mits the composition of functions, the nest
ing of relations, the embedding of proce
dures within procedures, and quantification 
over sets. 

3. The language should be relatively easy to 
read and understand. 

The basic components are: 

• letters, 
• digits, 
• identifiers (the words of the intermediate 

language), 
• value-names, 
• measure-names ('or function-names), 
• property-names, 
• forms of values to represent date, time, in

teger, and floating point numbers, 
• terms that specify the proper names of ob-

jects and values of measure functions, 
• operators that range over terms, 
• several kinds of predicates, and 
• a series of elements (Eo - E 4 ) used to assert 

conditions on sets, objects, and relations. 

The first form of element (Eo), for example, 
allows for such expressions as "City is Los An
geles," and "not City is Los Angeles and not City 
is San Francisco." We can quantify over sets by 
expressions such as "City is all,". "City is some," 
"City is the," which must be interpreted, respec
tively, as: each member of the set of objects must 
meet the conditions specified; and exactly one ob
ject must meet the conditions specified.* Member
ship in a set may also be qualified with respect to 
a cardinal number. Rule El associates the member
ship restriction element Eo wi~h the name of a 
particular set. Rule E2 introduces the names of 
properties and expressions such as, "Population is 
larger than 500,000," that restrict a meaStrl'e func
tion to particular values for an object. Eg serves to 
introduce the name of a relation and a specifica
tion of the codomain of the relation in terms of 
one or more procedures. An E4 element specifies 
time, date, or both. 

The next class of components are the proposi-

tions (PROP). They are the principal elements 
of procedures, as they specify the conditions which 
must be met for the storage or retrieval of in
formation. Each proposition specifies a set, a 
property, or a function with restricted range. The 
subset of objects so specified may be further re
stricted by the conjunction of additional elements 
or procedures. The procedure imposes operations 
upon specific facts that have been conditionally 
specified by a proposition. 

Relations among procedures are permitted in 
a proposition. For example, the question "Is the 
population of Los Angeles greater than the popa
lation of New York?" is represented in IL as 

( (FIND Ml WHERE ( (CITIES) AN.D 
(CITY IS LOS ANGELES») IS*GR*
THAN 

(FIND Ml WHERE «CITIES) AND 
(CITY IS NEW YORK) ) ) ) 

where Ml is an M-name standing for the measure 
function "population." 

When a proposition is evaluated, it returns a 
"true" or "false" value and an F-name for each 
fact satisfying the proposition. Similarly, a pro
cedure returns a list of F-names and operation
derived values. 

The procedures statement is, the highest level 
semantic structure in the intermediate language. 
Each procedure is understood to be in an inclusive 
"or" relationship with the others. This statement 
type allows us to represent the meaning of a 
sentence in a form similar to the disjunctive 
normal form of symbolic logic. Within a procedure 
or proposition the only connectives allowed are 
conj unction and denial. D"isj unction occurs only 
between procedures. This restriction simplifies 
the problem of representing the semantic inter
pretation of a sentence and also simplifies the 
logic of the data management machine. There Is 
no substantial loss of expressive power, since it 
has been shown that any proposition expressible 
in ,symbolic logic can be represented as a proposi
tion in disjunctive normal form. 

The data description proceS8 

Data description is a process of communicating 

*The facilities to allow for quantification have not yet been 
added to the natural language compiler. 



information about the semantic structure 'Of a 
data base to the computer. This process requires 
the identification of general factual informati'On, 
the addition of new words to the dictionary, and 
the addition of semantic information to dictionary 
entries. These processes (adding to the store 'Of 
general facts and adding to the vocabulary) cor
respond, respectively, to the processes ofaxio
matic extension and definiti'Onal extension in for
mal systems. It is the former process which is most 
critical, as it is the only means of broadening the 
universe of discourse to include new semantic 
categories. The process of data description in 
natural language must involve a method for· de
riving se~antic categories from the input 'Of 
declarative sentences. This can be accomplished 
by allowing a user to introduce new w'Ords and 
phrases into declarative English sentences in 
proper defining contexts. Some of the basic de
clarative ,sentence forms which are suitable f'Or 
this process are illustrated in Figure 4. 

Sentence 1 illustrates one of the simplest but 
most important statements that one can make in 
describing a data base: the identification of the 
kinds of objects of interest. A broad universe 'Of 
discourse will admit many types 'Or sets 'Of ob
jects. Otherwise a universe of discourse is nar
row. The natural language compiler will accept 
statements such as Sentence 1, will assign the 
syntactic category "common noun" to the term 
"city," and will construct a record to contain gen
eral information about city-type objects. 

Sentences 2 through 8 illustrate elementary 
sentence patterns that may be used to give depth 
as well as breadth to a characterization of· a uni
verse 'Of discourse. Sentences 2 and 4, for example, 

(1) A ~ is an object. 

(2) A city has a nUlllber of local govel'Dlllent employees. 

(3) Cities have tam1l1es. 

(4) A city IIIIIiY be !!!!2m' 

(5) A city is a place. 

(6) A city is ~ in a state. 

(7) An English grade is A, Bo C. Do or F. 

(8) Distribution factors include wholesale trade and retail trade. 

(9) Define popUlation as the, quantity of people. 

(10) Los Angeles is a city. 

Note: Doubly underlined words must be NEW, singly underlined words may be 

NEW. 

FIGURE 4-Elementary data description sentence patterns 
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illustrate the introduction 'Of noun and adjectival 
phrases to designate descriptive (measure) func
tions and pr'Operties, respectively, Sentences 3 
and 5, on the other hand, establish relationships 
between objects and between sets of. 'Objects. 
Sentence 3 is interpreted to mean that any mem
ber of the city set may stand in a possessi'On rela
tionship to one or more members of the family 
set. Similarly, Sentence 5 leads t'O a set inclusion 
relationship between cities and places. 

Sentence 6 illustrates a most important ele
mentary sentence pattern, ,one that allows us t'O 
introduce transitive verbs in such away that the 
range of subjects and objects may be identified. 
In this simple example, the designated relati'On 
(located) can easily be associated with its d'O:Q1ain 
(cities) and codomain (states). In Kellogg 
(1967b) we show how steps can be taken during 
data description to identify the converse of a re
lation and the logical properties (e.g., transitivity, 
symmetry, etc.) of relations intr'Oduced in this 
manner. Non-numerical values can be assigned to 
measure functions designated by noun phrases as 
shown in Sentence 7. Patterns such as Sentence 
8 allows us to specify generic-specific relations 
among measure functions. 

The meaning of new words 'Or phrases may be 
defined in terms 'Of well-formed English subset 
words, phrases, 'Or sentences, as illustrated by 
Sentence 9. Similarly, existing words and phrases 
may have their meanings changed. In either case, 
ihe semantic information associated with the de
finiens is assigned to the definiendum. The last 
sentence, comparable in form t'O Sentence 1, illus
trates the introduction of proper names for ob
jects. 

The property that a natural language c'Ompiler 
must have in order to accept and pr'Ocess sentences 
such as those shown in Figure 4 is the property 
of semantic reflexiveness. By this property we 
mean the ability of the c'Ompiler to accept English 
sentences that lead to actions increasing the range 
of specific facts that may be expressed in the 
English subset. We see that in order for a com
piler to be semantically reflexive, it must be able 
to identify, store, and access information about 
semantic categories. 

In a recent book, Lenneberg (1967, p. 574) c'On
cludes that: "The perception and production 'Of 
language may be reduced on all levels t'O categori
zation processes ... " and "w'Ords label categ'Oriza
tion processes." Of interest here is the fact that 
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many of the elementary categorization processes 
that he goes on to discuss correspond rather close
ly to the semantic categories that we have found 
it necessary to introduce and employ in order to 
describe data bases in natural language. 

The use of CONVERSE to describe the struc
ture and specify the content of a portion of a data 
base of census information is illustrated in Figure 
5. The data base derives from a standard census 
publication, "County and City Data Book: 1960." 
This data base is typical of many large formatted 
data bases, and it is of a size (about 600,000 facts) 
to require several ~undred data-descriptive ele
ments (primarily measure functions) to properly 
characterize its content. It contains information 
concerning a large number of social and economic 
indicators for the several political subdivisions' of 
the United States. Sentence 1 in Figure 5A speci
fies political subdivisions as a principal object of 
interest. In this case, since we specified a singular 
noun form, the computer asks for the input of the 
plural form. (The program does not as yet con
tain procedures for dealing with inflectional or 
derivational suffixes. ) We see next how a number 
of the important characteristics of political sub
divisions may be chara.cterized and expressed in 
a natural way through the use of noun phrases to 

0.) A POLITICAL SUBDIVISION IS AN OBJECT. 
PLURAL? 

POLITICAL SUBDIVI SIONS. 
(F3)IN 

(2) A POLITICAL SUBDIVISION HAS STATISTICAL INDICATORS THAT INCLUDE 
PRO.DUCTION FACTORS.DISTRIBUTION FACTORS. 
POPULATION FACTORS.AND LOCAL GOVERNMENT FACTOfcS. 

(M3 M'" M5 M6 >IN . 
(M2>lN 

(3) POPULATION FACTORS INCLUDE DISTRIBUTION OF PEOPLE BY AGE.DISTRIBUTION 
OF PEOPLE BY INCOME.DISTRIBUTION OF PEOPLE BY EDUCATION.POPULATION. 

(M7 1'08 M9 MIO) IN . 
(lo) 01 STRIBUTION OF PEOPLE BY AGE INCLUDES MEDIAN AGE OF 

Pf:OPLE. PERC ENTAGE 
OF PEopLE UNDER 5 YEAfcS OF AGE.PERCENTAGE OF PEOPLE OVER 21 YEARS OF' 
AGE. AND PERCENTAGE OF PEOPLE OVER 65 'rEARS OF AGE. 

(MIl MI2 MI3 MI"'>IN 
DEFINE POP AS POPULATION. 

(:;) IN 
D.EFlNE PP AS PERCENTAGE OF' PEOPLE. 

IN 
(6) M8 INCLUDES MEDIAN FAMILY INCOME • 

. PERCENTAGE OF F'AMILY INcor"E UNDER $3.000,PERCENTAGE OF' 
~~~t.!i~S!NCO~IE OVER SIO.OOO. AGGREGATE F'AMILY INCOME IN MILLIONS or 

<1115 1'016 MI7 MI8>IN 
(7) M9 INCLUOES PP OVER 25 WITH LESS THAN 5 YEARS or SCHOOLING. 

~~Hg~~R Y~!R~I~~M~~~iE~~AN 12 YEARS or SCHOOLING. MEDIAN NUMBER OF 

(M19 M20 M21 >IN 
(d) "'" INCLUDES kETAl!. TRADE AND I<iHOLESALE TRADE. 

(M22 M23)JN . 
DEFINE RT AS RETAIL TRADE. 

(9) IN 
DEr·INE WT AS WHOLESALE TRIIDE. 

IN 
(10) RT INCLUDES NUMBER OF RT ESTABLISHMENTS. NUMBER or RT 

(~~~L~~;E~~~~I~EARLY PAYROLL IN THOUSANDS or DOLLARS. 

(ll) lor INCLUDES NUMBER or I<IT ESTABLISHMENTS.NUMBER Or 101 

(~~~L~~~E~~~~I~EIIRLY PAYROLL IN THOUSANDS OF DOLLARS. 

(12) M3 INCLUDES' NUMBER OF MANUFACTURING ESTABLISHMENTS. 

~~M~~~U~~N~;N~~A~~~~!~~. EMPLOYEES. ~IANUFAC1URING PA'rROLL 

(M30 M3 I M32 >I N 
(13) 116 II\CI.;UDES NUMBER or LOCAL GOVERNMENT EMpLO'rEES. 

~~~~L M;~~~~NMENT PAYROLL IN THOUSANDS OF DOLLARS. 

FIGURE 5A-Census data description-I 

describe, at varying levels of generality, some of 
the significant features of political subdivisions. 
The compiler associates each noun phrase with a 
corresponding measure function, and each meas
ure function in turn is assigned a symbolic proper 
name beginning with the letter M (an M-name). 
Sentences 2 through 13 lead to the construction of 
a hierarchy of measure functions. This hierarchy 
is stored in an explicit form that may be accessed 
by th€ compiler or by the user in furthering the. 
data description process or in asking questions. 
The user knows that his input sentence has been 
accepted when the compiler responds as in Figure 
5A with "IN," a list of, fact names, or a list of 
M-names. 

D'ata descrIption may proceed in as verbose or' 
concise a style as the user desires. The use of 
definitional sentences (such as Sentences 5 and 9, 
for example) and M-names permits concise state
ment of a data base description. The 13 sentences 
in Figure 5A produce a hierarchy of 33 descrip
tive measure functions (see Appendix). Each of 
these functions expresses a general fact about po
litical subdivisions. It should be understood that 
once a measure function (or any semantic cate
gory) is specified, further definiti'Onal processes 
may result in a number of linkages between Eng
lish w'Ords and phrases and the semantic category. 

The designation of an English subset phrase 'Or 
sentence is always determined from a complex 
pr'Ocess 'Of syntactic analysis and semantic inter
pretati'On, based on the syntactic and semantic 
information assigned to the individual words used 
in the phrase or sentence. This information may 
have been assigned either as part of the given 
primitive voca,bulary of English subset funct'ion 
words and verbs or as the result of th~ input data 
description sentences. 

(1) POLITICAL SUBDI VISIONS MAY Bf: SMOGGy.WARM OR COLDdASTf:RN OR "ESTERN. 
LARGE OR SMALL. 

(PI 1'2 P3 P<I 1'5 P6 p7>1N 
(2) CITY,COUNTY.STATE,PLACE ARE OBJECTS. 

PLURAL? 
CIT 1 ES.COUNT 1 ES.S TATES .PLACES. 

(1"<1 >IN 
(r5>IN 
(F6>IN 
(F7>lN . 

(3) CITIES.COUNTIES,AND STATES ARE POLITICAL SUBDIVISIONS AND PLACES. 
IN 

(4) CITIES HAVE CLIMATE FACTORS THAT INCLUDE TEMPERATURE FACTORS. 
MEAN ANNUAL pRECIplTATIOr· .. AND Ii,EAN ANNUAL HOURLY IoIND VELOCIl'r. 

(M36 M37 1'138) IN 
(M3S)IN 

(5) DEF'1NE TEMP AS TEMPERATURE. 
IN 

(6) TEMP F'ACTORS INCLUDE MEAN JAN TEMP.MEAN JULY TEMP. HIGHEST TEIv.F. AND 
LOwEST TEMP. 

(1'139 M"O 1'141 M<l2 >IN 
(7) COUNTIES AND STATES HAVE AGRICULTURAL FACTORS THAT INCLUDE 

FARM LAND IN THOUSANDS OF ACRES. NUMBER or rARMS. 
(1'144 M45>1N 
(M43>IN 

FIGURE 5B-Census data description-II 



Several additional forms of descriptive sen
tences are shown in Figure 5B. Sentence 1 illus
trates the introduction of adjectives. These ex
pressions map into properties that are true 
or false for particular objects in the universe 
of discourse. The semantic structure of the data 
base is then extended to include additional forms 
of objects-cities, counties, states, and places. A 
compound sentence is used to express an equival
ence relationship between .political subdivisions 
and places and a set inclusion relationship between 
these classes and the classes of cities, counties, 
and states. Each general fact that applies to po
litical subdivisions and places now applies also 
to cities, counties, and states. In addition, cities 
and counties are further distinguished in Sen
tences 3 through 7. 

Figure 5C illustrates several of the sentence 
forms available for the specification of the proper 
names of objects. Just as the first step in de
scribing a data base is to name one or more kinds 
of objects of interest, the first step in specifying 
specific factual information . is to assign proper 
names to one or more objects. We note that proper 
names do not have to designate uniquely. The 
ambiguity of reference for the proper names, Los 
Angeles, Santa Barbara, and New York, is easily 
resolved later on, wherever they are used in ap
propriate contexts in English subset sentences. 

The English subset has now been extended to 
the point where a wide variety of facts about 
cities, counties, states, and places may be intro
duced and specified through the use of additional 
declarative sentences. Several of the admissible 
syntactic patterns and variations in style are il
lustrated in Figure 5D. This figure clearly indi
cates how specific facts may be e~pressed in either 

(1) ORLANOO IS A CITY. 
<F8>IN 

(2) (~~~I~NGELES AND SANTA BARBARA ARE CITIES AND COUNTIES. 

(FlO>IN 
(Ft I >IN 
(FI2>IN 

(3). NE~ YORK IS A CITY.COUNTY. AND STATE. 
(1'13 >IN 
(Fl "">I N 
(FI5>IN 

(4) CALIFORNIA AND nORIDA ARE STATES • 
(FI6>IN 
(Fl7>IN 

(5) DEFINE SB AS SANTA BARBARA. 
IN ' 

(6) DEFINE NY AS NEW YORK. 
IN 

(7) DEFINE LA AS LOS ANGELES. 
IN 

FIGURE 5C-Proper ~ames 

(1) 

(2) 

(3) 

(~) 

(5) 

(6) 

(0) 

0) 

A Natural Language Compiler 481 

THE POPULATION 'OF LOS ANGELES IS 2.'179.0 I S. 
AMBIGIOUS INPUT:«((COUNTlES) 
. AND (COUNTY IS LOSMNGELES) AND (MIO IS 2'119015» 

((CITIES) AND (CITY IS LOS.ANGELES) AND (1'110 IS 2479015») 
THE POPULATION OF THE CITY OF LOS ANGELES IS 2.'119.015. 

IN 
THE MEDIAN FAMILY INCOME IN LA CUY IS $6.(196. 

Jrj , 

MI2 FOR LA CITY IS 10.hAND IT IS SMOGGy.WARM.WESTFRN. AND LARGE. 
IN 

LA CITY HAS AN MI3 OF 66.2. MI'I OF 10 ... MilOI' 33.2. 1116 OF 14.4. 
MI7 OF 25.1. MI8 OF 6.505. 1'119 OF 5.9. M20 OF 53.'1. 1121 OF 12. I. 
1'130 OF 8.1"'9. M31 OF 288.5'16. 1132 OF 1.535.900. 11204 OF 25.913. 
1125 OF 150.220. 1'126 OF 496.168. M21 OF 6.993. M28 OF 80.405. M29 OF 
0422.310. 1'133 OF 304.0461. AND AN 1'13'1 OF 18.6040. 

IN , 
S8 CITY liAS 58.768 1110. 8.6 1112. 61.8 1'113. 16.0 11104. 36.8 MI .. 
$6.417·1'115. 15.4 M16. 2101 M17. 146,1'118. 12.21'121. 5.9 '1'11'9. 54.51'120. 
102 M30. 2.257 1131. 11.024 1'132. 794 M24. 15.983 1'126. 4.766 M25. 
108 M27. 3.367 M29. 771 1'128. 5'42 1'133. 252 1'134. P2.1'5.AND P7. 

IN 
NY CITY HAS 7.181.9841'110. 8.81112. 68.7 1113. 10.1! 1114. 3:;.1 Mil. 
$6.091 MIS. 15.2 M16. 18.5 MI7. 1'7.946 1118. 10.1 112 .. 10.5 MI9. 37.4 
1120. 
35.544 M30. 895.838 M31. 4.030.3504 M32. 89.663 M24. 1.273.6651'126. 
417.343 M25. 28.956 M27. 1.655.907 1129. 296.3051'128. 246.629 M33. 
115.363 1'134. PI.P3.P4.AND P6. 

IN 
ORLANDO liAS 88.135 MIO. 10.1 M12. 6'1.7 1113. 11.9MI4. 32.1 MIl. 

$.5.037 MIS. 25.5 M16. 1'1.8 M17. 173 M18. 12.1 M21. 7.1 MI9. 51.51'120. 
157 M30. 3.639 M31. 1'1.6081'132. 1.373 M24. 26.5004 M26. 9.6451'125. 
3'19 '1'127. 14.679 M29. 3.719 ~128. 1.561 1'133. 506 M34. P2. P"I.AND P7. 
IN 
NEW YORK STATE HAS 16.782.304 MIO. 6.371 MIS. P3.P4.AND P6. 
IN 
FLORIDA HAS 4.951.560 1'110. 4.722 MIS. P2. P4. AIliD P6. 
IN 
CALIFORNIA HAS 15.111.204 1'110. 6.7261115. P5. AND P6. 
IN 

F:IGURE 5D-Specific information 

a verbose sty Ie or in a highly concise manner 
reminiscent of the artificial languages used in 
current data managenlent systems. We believe a 
natural language subset should admit the concise 
patterns of expression shown in Sentences 5 
through 10, as well as sentences such as 1 through 
4. 

The compiler response to Sentence 1 illustrates 
a typical feedback message to the user. In .this 
case an ambiguous input sentence is detected. Re
phrasing the sentence as in (2) results in accept
able input. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

A FLIGHT IS AN OBJECT. 
PLURAL? 

FLIGHTS. 
(Fl8HN 

1'1\-25 IS A FLIGHT. 
CF,,>lN 

FLIGHTS .MAY BE JET OR PROP. ECONOMY CLASS OR FIRST CLASS, 
NATIONAL OR PAN AM. 

(P8 P9 PIO PII PI2 PI3)JN 
OHARE IS A PLACE. 

CF20)IN 
A FLIGHT DEPARTS FROM A PLACE FOR ANOTHER PLACE. 

(F2I>1N ' 
A FLIGHT ARRIVES FROM A PLACE AT ANOTHER PLACE. 
(F22)IN 

DEFINE DEPART AS DEPARTS. 
IN 

DEFINE ARRIVE AS ARRIVES. 
IN 

.. tiICH PAN All FLIGHTS THAT ARE ECONOMY CLASS DEf'ART FOR OHARE 
FRDM THE CITY OF LOS ANGELES? 

,..,( (PRINT FLIGHT WHERE FLIGHTS AND (PAN AM) 
AND (ECONOMY CLASS) 
DEPARTS (CITY IS LOS*ANGELES) (PLACE IS OHARE»»> 

DOES PA-25 DEPART FROM NEW YORK CITY FOR OHARE? 
««FLIGHTS AND FLIGHT IS PA*25 DEPARTS (CITY IS NEW*YORK) 

(PLACE IS OHAHE>'»"" 
WiICH FIRST CLASS JET NATIONAL FLIGHTS ARRIVE FROM LA CITY 
AT OHARE? ., 

ee( (PRINT FLIGHT WHERE FLIGHTS ARRIVES (CITY IS LOS'*ANGELES) 
(PLACE IS 'OHARE) AND (FlFcST CLASS) AND (JET> AND (NATIONAL»)>> 

H:lW MANY NATIONAL f.LIGHTS DEPART FROM ORLANDO FOR OHAfi£? 
""'((COUNT FLIGHT WHERE,FLIGHTS DEPARTS (CITY IS ORLANDO) 

(PLACE IS OHARE) AND (NATIONAL»)>> 

.FIGUHE 6-Extension of the data description to include new 
types of objects and relations 
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Extendin,g the data description to encompass 
new relationships 

Figure 6 illustrates a user-computer dialogue in 
which the range of ol;>jects and relations is ex
tended beyond that given earlier in Figure 5. In 
this case, we are extending the universe of dis
course to encompass information similar to that 
found in airline flight tables. 

A new class of objects, "flights," is introduced, 
and a member of that class, "P A-25," is specified. 
Several adjectival modifiers are specified and 
"O'Hare" is then defined as a place. Sentences 5 
and 6 illustrate the introduction of new transitive 
verbs into the English subset-in this case, verbs 
designating departure and arrival relations. The 
input of these sentences results in the generation 
of two new general facts, F21 and F22, that speci
fy the relation names, the domains of the rela
tions, and their codomains. N ext, two simple 
definitional statements are used to establish the 
equivalence of the singular and plural forms of 
the two verbs. With the input of this information, 
the compiler is now able to process and translate 
questions of the form shown into IL search pro
cedures. 

Notice that the expressions "N ational" and 
"Pan Am" de~ignate properties which may be 
true or false for specific flights. This is the sim
plest means 'Of distinguishing the different kinds 
of flights. We could have used sentences that 
would have led to a further increase in the seman
tic structure. For example, we could have typed 
in sentences indicating that "Pan Am" and "N a
tional" are "airlines" and then the fact that "air
lines have flights." This is a simple illustration 
of an important principle: The level of detail of 
the data base description is variable and under the 
control of the pers'On describing the data base. 

In the census data base, for example, it is pos
sible to define persons as objects and to add the 
fact that "cities have people." Then, instead of 
asking a question such as "What is the population 
of Los Angeles?" we could ask the question, "What 
is the number of people in the city of Los An
geles ?" The computer would then be directed to 
count the number of "people" objects in the city. 

Getting· back to our departure and arrival rela
tions, we can extend the scope of the codomain of 
an already defined relation such as "depart" to in
clude the notion of departure time. By typing in 
"a flight d~parts at a time," a third codomain 

argument would be added to the two existing argu
ments (from place, for place) and the general fact 
for "depart" would be changed, accordingly. We 
c'Ould then ask questions such as "What flights de
part from Los Angeles for O'Hare before 7 :30 
a.m.?" If we wish to ask a question such as "What 
is the departure time for PA-25?" we can defini
tionally extend the English subset by typing in 

J 

"Define departure time as departs at a time." 
This would establish a nominal to designate the 
third argument of the codomain of the departure 
relation and thus the set of departure times. 

Deriving semantic structures from syntactic 
structures 

The process of compiling sentences into proce
dures consists of dictionary lookup, syntax recog
nition, and three interrelated stages of semantic 
interpretation: semantic resolution~ element con
struction, and procedure construction. The syntac
tic recognition process controls the application of 
semantic interpretation rules in accordance with 
the grammatical relations that are recognized dur-' 
ing syntactic analysis. Just as syntax recognition 
is a process of recursive decomposition of a sen
tence into its syntactic categories and words, se
mantic interpretation can be conceived of as the 
recursive comp'Osition of elementary semantic val
ues and categories into semantic structures. The 
satisfactory implementation of semantic inter
pretation processes requires not only a set of se
mantic interpretation rules but a dictionary struc
ture that is rich enough to represent the complex 
ass'Ociations obtaining between English words and 
the semantic categories and values they desig~ate. 
Specifically, provision must be made for an Eng
lish term to take on a number of meanings with 
respect to ·the contents of a data base. 

The principal information structure for ac
complishing sentence-to-procedure translation is 
the component. Lexical components reside i~ the 
dictionary, while derived components are the re
sult of the application of rules to lexical compo
nents or to other derived components. 

• A lexical component consists of: a word or 
idiom, syntactic and semantic categories, and 
a lexical interpretation list. 

• A derived component consists of: a syntactic 
structure, and a derived .interpretation list. 

• An interpretation list consists 'Of one or more 
interpretations. 



• Each interpretation represents one specific 
meaning of a word or syntactic structure and 
consists of: 

• a feature list (F), 
• a selection restriction list (SELR), 

and sometimes: 

• an element list (E), and 
• a procedure list (P). 

An entry in our dictionary consists of a lexical 
component and additional associated information 
such as pointers to general or specific facts. This 
information is stored in LISP as a property list 
associated with the entry word or idiorn. 

During dictionary lookup, the hash codiIig sys-
tem built into LISP for recognizing prinlitive sym
bols (atoms) is used to locate the entries for 
words. At this time digit sequences are recog
nized and assigned interpretations as integer or 
floating point values, as appropriate. The original 
input string is rewritten to include recognized 
syntactic categories. 

Syntax analysis. proceeds in a top-to-bottom, 
left-to-right manner. List structures are used to 
represent recognized syntactic elements in derived 
c'Omponents. In general, as a pair of syntactic 
elements is recognized, one or more semantic rules 
are applied to derive an interpretation list for that 
pair. 

We have discussed the rationale behind the use 
of interpretation list structures elsewhere (see 
Kellogg, 1967a). Briefly, each interpretation is 
an individual meaning-bearing element that may 
be pointed to by any number of words 'Or syntactic 
structures. It always consists of at least a list of 
semantic (and sometimes syntactic) features and 
a selection restriction. These constructs generally 
perform the same functions as the corresponding 
concepts in the the'Ories of Katz (1966) and' Chom
sky (1965). By themselves, features and selection 
restrictions may represent the sense of an English 
word and the contexts or environments in which 
that sense can correctly occur. For example, the 
meanings of certain prepositions, adverbs, and de
terminers in the English subset are adequately 
represented in this manner. However, if an inter
pretation must also designate semantic categories 
and values, an element list is required. Finally, as 
elements are combined to form parts of a pro
cedure, they must be moved to a procedure list. 

Since only a part of the burden of semantic in-
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terpretation is placed on the use of semantic fea
tures (their use is restricted to indications of 
simple class membership, class inclusion, agree
ment, etc.), we have not found it difficult in prac
tice to assign features during the data description 
process. Our experience in using interpretation 
lists confirms their value as a good solution to the 
problem of distributing semantic inf'Ormation be
tween the dictionary and rules. Imposing a heav
ier semantic load on features can lead to a num
ber of difficulties (see Bolinger, 1965), while dic
tionary entries of significantly simpler structure 
can result in the need for a very much larger set 
of semantic interpretation rules. 

Semantic resolution rules apply to components 
that stand in a specific grammatical relationship 
to one another. Their function can be understood 
by considering the application of the following 
rule: 

SAT [F2 , SELR1 ] ~ (UNION [FH F 2], SELR 2, 

UNION [El E 2J ) 
to the following components: 

~ 
(X.l, X2, X3) (Xl~) (Xl, X5, X3) 

I I I 
[.1'.2] [A 5] [A 3] 

<and (Xl, X3» 

I 
[A 1] 

<or (x4, X?» 
I 

[A 4] 

The rule applies if the word "alpha" grammati
cally modifies the word "beta" and the left half 
or- pattern part of the rule evaluates to "true." 
These rules have a "pattern ~ operation" for
mat. The pattern part of a rule consists of predi
cates that return either true or false values. The 
right half consists of symbols and operations over 
symbols that construct a derived interpretation. 
In the above example, the first component has two 
interpretations, each having a list 'Of features (en
closed in parentheses), a selection restriction (a 
Boolean function of features enclosed in angle 
brackets) and an element list (enclosed in square 
brackets). The "beta" c'Omponent has three inter
pretations (selector restrictions are not shown 
in this case in order to simplify the example). 

The rule applies to every possible combination 
of "alpha" and "beta" interpretations, and if the 
left half of the rule returned "true" in each case, 
then six derived interpretations would result. In 
this example, only three interpretations are al
lowed by the resolution rule. 
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The derived component is: 

The semantic rule has resolved a possible sixfold 
ambiguity into a threefold a-mbiguity. The 'Other 
three possible interpretations were rejected by 
the failure of the "SAT" predicate to match the 
selection restriction of an "alpha" interpretation 
(SELR1 ) to the features list of a "beta" inter
pretation (F2 ). 

In general, resolution rules allow us to check 
f'Or compatibility or agreement between interpre
tations and to map pairs of compatible interpreta
tions into derived interpretations. Element lists, 
when they occur, are usually combined by a simple 
union operation as shown. 

Two additional sets of rules must be applied t'O 
derived interpretations, in sequence, in order to 
construct well-formed semantic structures. Ele
ment construction rules combine the symbols in an 
element list into well-formed elements as specified 
by the formation rules Eo - E4 in Figure 3. Sim
ilrurly, procedure construction rules move ele
ments to the procedure list (P-list) in accordance 
with intermediate language formation rules, in
suring the production of only well-formed proce
dures. 

The feature, selection restriction, element, and 
procedure lists, in conjunction with the three 
kinds of semantic interpretation rules, constitute 
a combinatorial apparatus of considerable power 
and flexibility. Our experience so far indicates 
that such a system of information structures and 
rules is adequate for the processing of a fairly 
wide class of English sentences, and furtherm'Ore, 
that a translation pr'Ocedure based on such struc
ture and rules is reasonably efficient. (The version 
of the CONVERSE system in current use on the 
Q-32 Time-Sharing System at SDC typically re
quires fronl less than one second to as much as 
three seconds of computer processing time to ef
fect sentence-to-procedure translation.) 

An exam:ple of question-to-procedure translation 

Figure 7 illustrates the syntactic structure that 
is assigned by the c'Ompiler f'Or the questi'On 
"Which Pan Am flights that are econ'Omy class de-

WHICH-QWD . IIP\ 
=_-~MJP~.. ) 
FLIGHTS - BC-

.... - l!Pl!OlI= lSI .. 

ABE - VBE- - 7 
ECOBOMI _ A> 7VP 

AdJp/ 
CLASS - AdJ 

DEPART - VT 

FROM - Prep 

THE - Det >lfP 
CITY - Bc _________ 

OF - Prep ~'PP/lfP 
LOS ANGELES.- Bp~PP 
?----~~~~----------------------~ 

FIGURE 7-Compiler-assigned syntactic structure for 
a sample question 

part for O'Hare fr'Om the City of Los Angeles ?" 
Figures 8 and 9 illustrate the syntax rules for this 
question, the applicable res'Olution (CR), element 
(ER), and procedure (PR) rules, and the acti'Ons 
of semantic rules that result in the constructi'On 
of a well-formed pr'Ocedure. 

Rules CR1 and ERl are appled to each adjective 
phrase t'O test for the features "SETP" and 
"PTER." Where these conditions are met ("Pan 

S)"ntllX lIules S ...... tie lIules Resultant P-LIST 

SR
1

: AdJ AdJ_AdJp CR1 , ERl 

SR2 : AdJp IC_lIP CR2 ' PR2 (and P
l

) 

SR
3

: QvdllP_lIP CR2 

SR
4

: Rpron VP_ lSI CR2 ' PR2 (aDd P2 and P
l

) 

SR
5

: lIP lSI_lIP CR3 ' PRl «tlishts) aDd P
2 

IIIId P
l

) 

SR6 : Prep lIP_pp CR2 

S'1: Det 'C-lIP CR2 

SRa: VBAdJ~VP CR2 

SR
9

: pp pp"_PPx c:R4 

SR1O : VT PPX-VPT CR5 ' ER2 , PR3 «tlishta) aDd P2 aDd Pl 
(departs (City of Los ADselea) 
(pl..,e is Ohare») 

SRU: lIPVPT_S CR6 ' PRII , PR5 ' PR6 Print tlisht vbere « flights) 
aDd P2 aDd P

l 
(departs (City 

Q 

is Los ADseles) (pl..,e 10 Ohare») 

SR
12

: S ", _Q 

FI G URE 8-Syntactic end semantic rules applied to the 
sample question 



C~: setp EF11I setp EFt pter E SELR2 => SUBST (setpt, setp, UNION (F1' F2», 
SELR2 

CR2 : SAT (F2 , SEL~) => UNION (F1' F 2), SEL~ 

C~: SAT (F1' SELR2) .. UNION (F1' F2), SEL~ 

CR
4

: ADJOIN (11' 1 2 , •••• ~) 

CRS: CDSAT [12 , SELRll=> F1' SEL~ 

ER
1

: SINGLE [El , E2] => El 

ER2: E1IIE2 => CON [El , CD [E2]] 

P~: XESET" SUBST [E1' x, E], ADD [x, p] 

PR
2

: XEP
p 

=> SUBST [E
2

, x, E], ADD [and X, p], 

PR
3

: XEE3 => SUBST [E
3

, X, E], ADDR [X, p] 

PR
4

: XEOP
V 

XE TERM => SUBST [PROP, X, E], ADD [where] 

PRS: XE TERM => SUBST [TERM, X, E] ADD [X, p] 

PR
6

: XEOP => SUBST [PROCEDURE, X, E] ADD [X, p] 

FIGURE 9-8emantic resolution, element, and procedure nIles 

Am," ·'Economy Class") we substitute the fea
ture "SETPT" for "SETP" in the derived feature 
list. This indicates that a phrase has been identi
fied as designating a property and rule ERl is ap
plied to test for the designation 'Of a single unique 
property (specified by its P-name). A P-rule is 
first applied in conjunction with syntax rule SR2. 
Each p-rule has as its pattern part a set member
ship test. For rule PR2, a Pp element or P-name 
found in an element list is replaced by the name 
of the IL formation rule (E2) that dominates it 
and the P-name is added'to the P-list. This pro
cedure allows us to keep track of the level of the 
semantfu categories as well as to" combine them, 
as necessary, in the P-list. 

,Rules CR4.5 and 6' ER 2, and PRa are used to 
test the object and subject of the transitive verb 
and to construct a list of proper arguments for the 
designated relation. CR4 combines the several in
terpretations 'Of prepositional phrases into a single 
list. The CDSAT predicate in Rule CRr; applies 
the selection restrictions of the verb "depart" to 
the interpretation list formed by Rule CR4• The 
selection restriction for this verb consists of a 
pointer to the general fact representing the rela
tional meaning of the verb. In this case, the gen~ 
eral fact has the form: (flight.X) (departs) 
(place.Y) (place.Z) and the result of the first ap
plication of CR5 and ER2 is the element list « de-
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parts), ( ), (place is O'Hare», where the 
empty list stands for the missing argument: 
(place. Y) . The second application of these rules 
(to the interpretation of "from the city of Los 
Angeles") .results in the filling in of th nissing 
argument. Finally, Rule PRs appends the relation 
name and its cod'Omain arguments to the end of 
the P-list. The last steps in compilation include a 
test for subject-verb agreenlent and the addition 
of a "print" operation to the P-list. 

Several properties of the semantic rules are of 
significance. We notice that with few exceptions 
(i.e., SETP, PTER) the rules are formulated in
dependently of specific features. Were this n'Ot 
the case, we would run the risk of requiring new 
rules every time we described or modified the se
mantic structure of a universe of discourse. Sec
ondly, only a small number of predicates and op
erationsare required to formulate the rules (only 
a few more than shown here are required in the 
complete system). Thirdly, only a relativ~ly mod
est number of semantic rules are required (the 
present system requires less than three times as 
many semantic rules as are shown in Figure 9). 

Finally, though not illustrated here, the seman
tic rules always correctly distribute ambiguous or 
multiple requests to separate procedures. 

The data management rruJ,chine 

The data management machine is at pre"sent 
implemented as a series of LISP procedures. 
Though only a modest number of facts can be 
handled within LISP, the information structures 
used are 'both simple and general enough to form 
the basis for a large-scale storage system. 

Three kinds of facts are allowed: A simple fact 
expresses a relation among specific objects. For 
example, the list: 

( (departs) , (flig hts.P A -25) , ( city.Los An
geles), (place.O'Hare), (time.1730» 

represents the fact that flight P A-25 departs from 
Los Angeles for O'Hare at 5 :30 p.m. Many re
quests can be answered by consulting compound 
facts, in which individual objects are character
ized by a vector of elements such as: 

«cities), (city.Los Angeles), Pl' (M1.40,-
000), ( date. 680427) ) . 

This is an example of a compound fact that states 
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(1) kHAT IS? 
cc«PR INT »,.,. 

(2) .. HAT IS POP? 
ee( (PR INT (POPULATlOIO»» 

'0) "'HAT ABOUT LA? 
cc«PRINT loHERE COUNT IES AND COllNlY IS L05*ANGELES) 

.(PRINl IoHERE CIlIES ANIJ CIlY 15 LOS*ANGELES»» 
ANSI<ERI. 
(COUNl'lES ARE OBJECTSHCOllNlY IS LOS*ANGE.LES) 

ANSI-IER2. 
(CITIES ARE OBJECTS) 
(CITY IS LOS*ANGELE.S) 
(POPULATION IS 2479015) 
(MEDIAN FAMILY INCOME IS 6896) 
(PERCENTAGE OF PEOPLE UNDEk 5 YE.AkS OF AGE IS 10.0999999.".,,) 
(SMOGGY IS TRUE:> 
("'ARM IS TRU E) 
(I<ESt ERN I S TRUE) 
(LARGE IS TRUE) 
(PE.RCENTAGE OF PEOPLE OVER 21 YEARS OF AGE IS 66019.,,999999) 
(PERCENTAGE OF PEOPLE OilER 65 YEAkS OF AGE. IS 10.09999'>'''''19) 
(MUllAN AGE OF PEOPLE IS 33.,200000(00) 
(PERCENTAGE OF' FAMILY INCOME UI'<IJEk 3000 IS 14.399999999) 
(PERCENTAGE OF ~'AMILY INCOME. OIlE.R HJ000 IS 25.100(00000) 
(AGGREGATE FAMILy'lNCOME IN MILl.IONS Or IJOLLARS IS 6505) 
(PERCENlAGE OF PE.OPLE OVE.R 2S IollH LE.SS*lHAN :) YEARS OF SCHOOLiNG IS 
5.9000000000) 

(PERCENTAGE OF PEOPLE OVE.R 25 IIoIlH MOkE*THAN 12 YE.ARS OF SCHOOLiNG IS 
53.399999999 ) 

(MEO"IAN NUMBER OF SCHOOL YEARS COMPLElED IS 12.099999999) 
(NUMBER OF MANUFACTURING ESTABLISHMENll:> ,IS 8149) 
(NUMBER OF MANUF ACT loR ING EMPLOYEE.l:> IS 288546) 
(MANUFACTURING PAYROLL IN, THOUSANDS OF DOLLARS IS 1535900) 
(NUMBER OF RETAIL TRADE E.5TABLiSHME.Nl5 IS 25913) 
(NUMBER OF RETAIL TRADE EMPLOYEE.S IS ·150220) 
(REtAIL TRADE YE.ARLY PAYROLL IN THO .... SANIJl:> OF DOLLARS IS oIl96168) 
(NUMElE.R OF I<HOLESALE lRADE ESlABLISHMENl S IS 6?'J3) 
(NUMBER OF IoHOLESALE. TRADE EMPLOYEES IS 80405) 
(IoHOLESALE TRADE YEARLY PAYROLL IN THOUl:>ANDS OF DOLLARS IS oIl22310) 
(NUMBER OF LOCAL GOVERNME.Nl' EMPLOYEES IS 3401l61> 
(LOCAL GOVERNMENT PAYROLL IN THO .... SAND5 OF DOLLARS IS 18640) 

(I;) .. HAT ARE THE CIl: I ES? 
CC«PRINT CIlY "'HERE CIlIES»» 

ANSioER. 
(CIlY IS ORLANJ'lO) 
(ClTY IS Lo'S*ANGELES) 
(Cll Y IS SANT A.BARBARA) 
(CllY IS NE"'.YORK) 

FIGURE to-Elementary question patterns 

that on the 27th of April 1968 property Pi was 
true and function Ml had a value of 40,000 for the 
city of Los Angeles. Only one date and/or time 

(1) 

(3) 

(I,) 

.HA1 IS THE POP FOR LA liND NY CIlI~S? 

««PRINT CllY (PClPULA1IOIII) \\r1EF<~ CillES AND CllY IS LOS.ANCE.U,.:» 
(PRINT ClTY (POPULATIClt\l) ~HU~E Cl1 n.5 Ai,D CI1Y IS NE"'*YOkK»» 

~HAT IS THE POP fOR •• ES1E.F<N CIllE.S AI\1l SlAH5? 
««PRINT ClTY (POPULA1l0N) "'HERE.·CIlIES AND (wES1E.F<N» 

(PRI{l.T STATE (POPULATION) ~HE.RE SlATES AND (~ESIE.kl\»)>> 

.HAl ARE. lH-E. PRODLCTION I'ACTOf<S AND IJISlkl8l1TION FAClOk:; 
Fe'1< SMALL ~E.STERN CITIE.S? 

««I'IHNl CllY (NU:-OBF.R Of ~AIi.UFACTURIN(, I:.S1ABLlSH;.',E.N1S) 
(NUMBER OF MANUI'ACTUk INC ~MPI..OH.I:.S) 

(MANUFACT lIRING Pi>YROLL 1" lHOU:'''''''!;:' O~ UOI..U,RS) 
(NUMBER OF RE1AIL 1RAtE ~:'lABLlSrl;-r,E.III1:') 

(NUMBER OF R E.T A IL TRAnE ~MPLOY I:.~S) 

(Rl1AIL 1RADE YE.ARLY. PAYkOl..1.. 'IN lHOUSANllS OF DOLLAkS) 
(I\UM8f,R OF ~HOLESALE lkllDE ES1ABLlSH,VoI:.N1S) 
(NUMBER Of •• HOUSAU, lkA['f, E.:-OPI..OYE.ES) 
("HOLESALE T R~'DE. Y E.AkLY PAYhOLL 11\ THOUSANDS OF DOLLAkS) 
~'HE.RE CIT 1 ES AND (SMALL) AND O.F.SH,kN» »> 

ANSwER· 
(CITY IS SANTA*BM\I3ARA) 
(NU:-OBE.R Of MANUfACTURING ES1ABLISHMEN1S IS 102) 
(NUMBER OF MANUH.CTURING EMPLOH:E.S IS 22~7) 
(MANUfACTURING PAYROLL IN THOUSI'Nl,S N DOLLARS IS 1102") 
(NUMRfR Cll' RnAIL TRI'DE ES1AI3LISHME.N1S IS 7'14) 
(NUMBFR OF RE.1AIL TRA['E f.MPLOYEES IS .. 766) 
(kl-.TAIL lRADE. YEARLY PAYROLL IN THOUSAN['S OF DOLLAkS IS 15'.183) 
(NUMBER Of' \\HOL ESIILE 1 RAUE E.ST ABL I SHl'lE.NT:' IS 108) 
(NUMBER OF \\HOLESALE 1RADI:. El'lPLOY~E.S IS 7'11) 
(wHOLE.Si>LE TRJlDE YEARLY PJlYIWLL IN lHOUSAN[IS OF DOLLARS IS 3367) 

"HAT IS EAS1ERN 'CllY ANL' COUNTY M22 AND M23? 
««PRINT CITY (NUtt,BER OF RElI'IL TRAL'E E.S1ABLISHME.NTS) 

(NU~lBER OF R E.T AlL TRAl'E EMPLm' EE.S) 
(R Ell' IL TRi>DE Y E.ARLY PAYKOLL IN THOlJSANDS OF 1i0LLARl:» 
(NUMBE.R OF wHOUSALE TkAUE. lSTABLISHMENIS) 
(NU~jBlR 0 f' ~HOL ~SAL E. 1 RAl'E EMPLOY ~E.S) 
(~HOL E.SAL E 1 kADE. YE.ARL Y PAYROLL 1111 lHOUSANDS 01' DOLLARS) 
~HERE CITIES AND (EASTERN» 

(PRINT COUNTY (NUMBE.R M RElIllL TRAN E.STABLISHMENTS) 
(NUMBER OF R E1 AIL 1 RALIE EMPLOYEES) 
(RETAIL TRADE YEARLY PAYROLL IN THOUSAN[jS OF DOLLARS) 
(!\u:-1flER OF Io;HOLESALE TRADE. EST,\8L.lSHMENTS) 
(~'JM8E.R OF ~HOL.SAL. TRA['E. EMI'1..0YU,S) 
(~HOLESALE TRADE. YE.AkLY PAYROLL IN THOUSANDS OF DOLLAkS) 
.. HERE COUNTIE.S AND (EASIE.iI'I»)>> 

FIGURE U-Compound requests-I 

(1) 

(2) 

(4) 

(5) 

(6) 

(7) 

(<3) 

HOW MANY,C.ITIES HAVE,A POPULAllCN lHAT IS lAkGU~ lHAN !>iH),~00 ANIi 
A MEDIAN I'A:-illY INCO:-iE lHAl IS SMALLE.R lHAN 16500 ? 
««COUNT CITY kHERE CIlIES AND (POPuLA1ION) 
AN5!~~~R*1!'iAN S0~0i!0 ANL (MEDIAN fAMILY INCOME.> IS*LS*THAN 6!>~0»» 

I 

~HAl IS THE POPULA1l0N "'ND 1HE NuMB~R OF LOCAL GOvEkNMENl 
EMPLOYEES fOR EACH CilY ? 

««PRIN1 CIlY (POPULATION) 

BR: ~~~8ER Of LOCAL GOvEkNMI:.N1 EMI'LOYE.E5) ~HERE CIlI ES»» 

«(ClTY • ORLAN[)O) (M10 • 88135) (M33 • 1!>61» 
«CllY • LOS*ANGELE:» (M10 • 247901!» (M33 • 3 .... 67» 
«CI1Y • SANTA*8ARf>ARA) (M10 • ::'8768) (M33 • 5 .. 2» 
«CllY • NE~*YORK) (M10 • 778198") (M33 • 2 .. 662\1») 

"HAT PLACES HAVE THF. MOST AND LEA51 POPuI..ATlON? 
««PRINT PLACE MAX (POPULATION) "'HERE PLACES) 

(PRINT PLACE MIN (POPULIt>TION) .. HERE PLACES) 
(PRINT CllY MAX (POPULATlON) ~HERE CITIES) 
(PRINl CITY MIN (POPULA1l0N) ~HEP.E CllIES) 
(PRINT COUNTY MAX (POFULAllON) ~HERE COUNllE.S) 
(PRINT COUNTY MIN (POPuLA1ION) "HE.RE COUNIIf,S) 
(PRINT STATE MAX (POPULA1l0N) ~HEkE SlA1ES) 
(PRINT STATE MIN (POPULA1l0N) "r1E.RE. 5TA1I:.S»» 

~HA1 IS l'HE HI(;HE.ST ANIJ LO"'E.Sl M~DIAN FAMII..Y INOO>1E ~'OR 
THE EASTERN CITIES AND FOk lHE. "E.S1E.RN SlA1ES ? 

««PRINT CITY MAX (MEDIAN FAMILY INCOME) 
.. HERE. CllilS ANIJ (E.AST~f<N» 

(PRINT CIlY MIN (MWIAN FAMILY INCOMU "HERE ClllES AND (EAS1ERN» 
(PR INT STAl E MAX (MEDIAN F A:-1IL Y IlliCOME.) 

IoHE.RE STATES AND (wES1ERN» 
(PI<1NT SlAT .. MIN (MEDIAN FAMILY INCOMU 

kHERE STAlES AND (~E.Sl"RN»)>> 
~HICH wES1E.RN CITY HAS 1H •. LAkGES1 POPULA1l0N? 
««PRINT ClTY MAX (POPULA1ION) "'HERE. CIll~S AND (WE.l:>lEkN»)>> 
~HAI ARE THE TI-.O CITIES wiTH 1HE S'1 AL I.. I:. 51 POP:)I..A110N? 
««PRINT CllY I 2 MIN (POPULATION) ~HERE. CllIES»» 
kHAT IS THE 1 H IIW LARGES1 "ESl EkN SMOGr,y CI1'I' IN POPULAllON? 
««PRINT CITY 3 MAX (POPULA110N) 

kHERE CITIE.S AND (wESTERN) AND (SMOGGY»)>> 

~~~~I~~; A~~~N;ECON!J' AND TH IRD I..ARGE5T. wE.S1 E"N CIlI ES IN MEAN ANi,UAI.. 

««PRINT CITY 2 MAX (MEAN ANNUAl.. PRE.CIPllAllON) 
.. HERE ClllES AND (~E.STERN» 

(PRIN1 CITY 3 MAX (MEAN ANNUAL PRECIPI1ATION) 
hHERE ClllE.S AND (wE.SH.kN»»> 

FIGURE 12-Compound requests-II 

value is allowed for each compound fact and a new 
compound fact is constructed for each description 
of an object at a different point in time. A com
pound fact becomes complex when the object it de
scribes enters into a relationship with other ob
j ects. An example is: 

«flights), (flight.PA-25), (departs, 5' FlO))· 
This fact links all of the information about flight 
P A-25 to those members of the "departs" relation 
that reference P A-25 as domain elements. In this 
case 'the members are the simple facts given the 
fact names: F 5 and FlO. 

These three information structures permit us 
to describe and interrelate objects to virtually any 
desired degree of complexity. * 

The data management. rnachine offers a sig
nificant increase in the range of possible universes 
of discourse as contrasted with, for example, the 
BASEBALL system (Green, 1963) which was 
limited to the description of specific baseball 
games and the SIR system (Raphael, 1964), which 
was limited to the recognition of a small number 
of relationships. 

*It is readily seen that simple and compound facts express 
atomic and molecular propositions respectivcly (see Travis, 1963) • 
A complex fact represents a molecular proposition that associates 
thc object descriptions that participate in the R-image for a speci
fied object and relation. 



FOR THE SMOGGY HIGH-INCOME CITIES WHAT IS THE AGE-INCOME VALUE-RANGE? 

1. «( (PRINT CITY WHERE CITIES AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS-GR-THAN 6000 AND (PERCENTAGE OF PEOPLE UNDER 5 YEARS OF AGE) 
IS-LS-THAN 10) 

2. (PRINT CITY WHERE CITIES AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS-GR-THAN 6000 AND (PERCENTAGE OF PEOPLE UNDER 5 YEARS OF AGE) 
IS-GR-THAN 10 AND (PERCENTAGE OF PEOPLE UNDER 5 YEARS OF AGE) 
IS-LS-THAN 15) 

3. (PRINT CITY WHERE CITIES AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS-GR-THAN 6000 AND (PERCENTAGE OF PEOPLE UNDER 5 YEARS OF AGE) 
IS*GR-THAN 15 AND (PERCENTAGE OF PEOPLE UNDER 5 YEARS OF AGE) 
IS-LS-THAN 20) 

4 • (PRINT CITY WHERE CITIES AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS-GR-THAN 6000 AND (PERCENTAGE OF PEOPLE UNDER 5 YEARS OF AGE) 
IS-GR-THAN 20) 

5. (PRINT CITY WHERE CITIES AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS-GR-THAN 6000 AND (PERCENTAGE OF PEOPLE OVER 21 YEARS OF AGE) 
IS-LS*THAN 10) 

6. (PRINT CITY WHERE CITIES AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS*GR-THAN 6000 AND (PERCENTAGE OF PEOPLE OVER 21 YEARS OF AGE) 
IS-GR-THAN 10 AND (PERCENTAGE OF PEOPLE OVER 21 YEARS OF AGE) 
IS-LS-THAN 15) 

7. (PRINT CITY WHERE CITIES· AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS*GR*THAN6000 AND (PERCENTAGE OF PEOPLE OVER 21 YEARS OF AGE) 
IS-GR-THAN 15 AND (PERCENTAGE OF PEOPLE OVER 21 YEARS OF AGE) 
IS-LS-THAN 20) 

8. (PRINT CITY WHERE CITIES AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS-GR-THAN 6000 AND (PERCENTAGE OF PEOPLE OVER 21 YEARS OF AGE) 
IS-GR-THAN 20) 

9. (PRINT CITY WHERE CITIES AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS-GR*THAN 6000 AND (PERCENTAGE OF PEOPLE OVER 65 YEARS OF AGE) 
IS-LS-THAN 10) 

10. (PRINT CITY WHERE CITIES AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS*GR-THAN 6000 AND (PERCENTAGE OF PEOPLE OVER 65 YEARS OF AGE) 
IS-GR*THAN 10 AND (PERCENTAGE OF PEOPLE OVER 65 YEAR'S OF AGE) 
IS-LS-THAN 15) 

11. (PRINT CITY WHERE CITIES AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS-GR*THAN 6000 AND (PERCENTAGE OF PEOPLE OVER 65 YEARS OF AGE) 
IS-GR-THAN 15 AND (PERCENTAGE OF PEOPLE OVER 65 YEARS OF AGE) 
IS-LS-THAN 20) 

12. (PRINT CITY WHERE CITIES AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS-GR-THAN 6000 AND (PERCENTAGE OF PEOPLE OVER 65 YEARS OF AGE) 
IS-GR-THAN 20) 

13. (PRINT CITY WHERE CITIES AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS*GR*THAN 6000 AND (PERCENTAGE OF FAMILY INCOME UNDER 3000) 
IS-LS-THAN 10) 

14. (PRINT CITY WHERE CITIES AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS-GR-THAN 6000 AND (PERCENTAGE OF FAMILY INCOME UNDER 3000) 
IS*GR-THAN 10 AND (PERCENTAGE OF FAMILY INCOME UNDER 3000) 
IS*LS-THAN 15) 

15. (PRINT CITY WHERE CITIES AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS*GR-THAN 6000 AND (PERCENTAGE OF FAMILY INCOME.UNDER 3000) 
IS-GR*THAN 15 AND (PERCENTAGE OF FAMILY INCOME UNDER 3000) 
IS-LS-THAN 20) 

16. (PRINT CITY WHERE CITEIS AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS*GR-THAN 6000 AND (PERCENTAGE OF FAMILY INCOME UNDER 3000) 
IS*GR*THAN 20) 

17. (PRINT CITY WHERE CITIES AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS*GR*THAN 6000 AND (PERCENTAGE OF FAMILY INCOME OVER 10000) 
IS*LS-THAN 10) 

18. (PRINT CITY WHERE CITIES AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS*GR-THAN 6000 AND (PERCENTAGE OF FAMILY INCOME OVER 10000) 
IS*GR*THAN 10 AND (PERCENTAGE OF FAMILY INCOME OVER 10000) 
IS*LS*THAN 15) 

19. (PRINT CITY WHERE CITIES AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS-GR*THAN 6000 AND (PERCENTAGE OF FAMILY INCOME OVER 10000) 
IS-GR-THAN 15 AND (PERCENTAGE OF FAMILY INCOME OVER 10000) 
IS*LS-THAN 20) 

20. (PRINT CITY WHERE CITIES AND (SMOGGY) 
AND (MEDIAN FAMILY INCOME) 
IS*GR*THAN 6000 AND (PERCENTAGE OF FAMILY INCOME OVER 10000) 
IS-GR-THAN 20»» 
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BRIEF. 
1. « (CITY NEW-YORK) ) ) 
2. «(CITY LOS-ANGELES» ) 
3. NIL 
4. NIL 
5. NIL 
6. NIL 
7. NIL 
8. « (CITY LOS-ANGELES) ) «CITY • NEW-YORK») 

9. NIL 
10. «(CITY • LOS-ANGELES» «CITY NEW-YORK) ) ) 

11. NIL 
12. NIL 
13. NIL 
14. « (CITY • LOS-ANGELES») 
15. «(CITY NEW-YORK) ) ) 
16. NIL 
17. NIL 
18. NIL 
19. ( ( (CITY • NEW-YORK») 
20. « (CITY • LOS-ANGELES») 

DEFINE HIGH-INCOME AS A MEDIAN FAMILY INCOME EXCEEDING $6,000. 
IN 
DEFINE AGE-INCOME AS PERCENTAGE OF PEOPLE UNDER 5 YEARS OF AGE OR 
PERCENTAGE OF PEOPLE OVER 21 YEARS OF AGE OR PERCENTAGE OF PEOPLE 
OVER 65 YEARS OF AGE OR PERCENTAGE OF FAMILY INCOME UNDER $3,000 OR 
PERCENTAGE OF FAMILY INCOME OVER $10,000. 
IN 
DEFINE VALUE-RANGE AS UNDER 10 OR BETWEEN 10 AND 15 OR BETWEEN 15 
AND 20 OR OVER 20. 
IN 

FIGURE 13-The use of definitions in phrasing complex requests 

Examples of data base interrogation 

Figures 10 through 16 illustrate some of the 
interrogation patterns acceptable to the CON
VERSE system at present. Figure 10 illustrates 
some elementary question patterns. Question 1 
represents perhaps the simplest, most general 
(and least interesting) question we can ask, as it 
translates into a request consisting only of a 

(1) 

(3) 

(4) 

(6) 

(8) 

"'HAT DOES 1433 STAND F"OR? 
UNDEF"INED ",OKD/S: (STAND) 
tOu MAt DEF" INE TEKMS OK KEI'lirlASE ¥OUR SENTJ:;NCE. 
wHAT DOES M33 MEAN? 
UNDEF"INED STKLlCTUrlE' 
NI'LwHATJ 
VEKBLDOE;J 
NI'lM33J 
NI'lMEANJ 
.. HAT IS "'33? 

<:~~~f<!~~ut~=~Ef< OF" LOCAL GO\,ERNMENT EMPLOYEES»)>> 

«( (PIUNT wHE:f<f COUNTI ES AND COUNTY IS LOS*ANGELES) 

",~~IZ~O~~E~iD~!~I~!M~~~ ~~~~/>l~\ LOS.ANGELES»» 

««PRINT (MEDIAN F"Ar-.ILY INCOME»»> 
WHAT ABOUT POP F"ACTORS? 

««PRINT (r-.EDIAN AGE OF" PEOPLE> 
(PERCENTAGE OF PEOPLE UNCIER 5 YEARS OF' AGE) 
(PERCENTAGE OF" PEOPLE OVER 21 YEARS OF' AGE) 

~:'~~~!~T:~~I~~ ~~g~~~)OHR 65 YEARS OF' AG£) 

(PERCF:N1AGE OF" F"AMILY INCOM£ UNDER 3000) 
(PE!i~ENTAGE OF" F"AMILY INCO~iE O\,ER 10000) 

:;~~~~~~!~/~;I ;io;~~O~~E~N 2 MI LLIONS OF' DOLLARS) 
(PF.RCE:NTAGE OF" PFOPLE O\,ER 5 IoIITH LESS.THAN 5 YEARS OF" SCHOOLING) 
(MEDIAN NUMB£R OF SCHOOL YE!~S W~~~p~~~~~;HAN 12 YEARS OF" SCHOOLING) 

~~~:F"~~~~T M~!~~~~;AGE OF' PEOPLE? . (POPliLPTION»)>> 

kHAT 
(ABOUT (PERCENTAGE (OF" PEOPL£») 
«NIL:» 

.. HAT ABOUT PFRCENTAGE OF" PEOPLE MEASURES? 

«(~~~~~~I~~;RCENTAGE OF PEOPLE OVER 25 WITH MORHTHAN 12 YEI'RS OF" 

(PEf<CENTAGE OF' PEOPLE OVER 2 . 
(PERCENTAGE OF' PEOPLE O\,ER 6; ~~!~S L~;S:~~~N 5 YEARS OF" SCHOOLJ N,G) 
(PERCENTAGE OF" PEOPLE OVER 21 YEARS OF AGE> I 

(PERCENTAGE Of" PEOPLE UNDER 5 YEARS OF" AGE»):.> 

FIGURE 14-Accessing general information 
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(1) flO ~.'Ii't L!\~(:i": S,V,(li3 t 3Y ~A~T"·."<" ~Jrllo~q lo-:rlST? 
««({';lTI"~~ ~\l') (L£\·~S"':) 4'>1') <$,"'IOGI,'r) f\\J') (iO.:t\~T.o:i~.'oJ»»> 

A:"C:;.·:":~. 
, y,=!" 

(2) L'~T Ll\~,'· Ivr.L'j)- !\ ;>()P'IL.L'IT IO~ 'TfllIT Ie; O'''',~ <;'~'~,"I"I'" ~,') l\ ~',!'vTlfY 
v"- I";'~ \ltJ~"'4.C rll'~ l',;r, '\S T!\==\L Is,..,,",I<: '>l rs p-~ T I <; O\l":~ P, 'I\~QI. 

Iv 
(3) ,1-'1T l\,~': THO;: L'I'<(iiC <;MH;I;1 ,:1\C;r,,;~, r.1T1':C;? 

««P"I"T CITY "'f<':"'-~ r:IfI':S <\,,,,) (L'I",j':) A'll) (C;,v,O',GY> I\~;) (-:1\<;[':'(,,» 
(I'~ HT r: I fY ,:f-';:,,: r: IT [-:.5 '" I/O) (S;',O"G n 

<\ .. '1 (,:l\C;T':~,\J) 

1\ \II) (POP'JL'I T IO ~) 
IS:.4-G~*TH·~.>.J 5'~"'''''~'~ ~,\lI) (.'~~J'''''I-3ii 010- M~·'Ju,,-AcrrJ·~I\JG ;'~STA~LI~}-I"·t"':~T~) 

l\ "5 '.'~:-~ 1 • 
(CIT'\' IS '~':-"'\'O~K> 

4.'.JS 'JL.-:.{~. 
(r. IT Y I c; .. -: "J> yO", K ) 

(5) L~:T L!.l('.;~ ':1': pOP O·.1~O C,~'1,,'iI·"·" L\ '>I') lJjJtVJ=\~-:~ 0;;- ,'\oj" ~IJ~~CPJ~ I \JG 
;:C:;Tn.~LI~~,"'F\JTC:; O·I"-:~ F,,·'l~"'. 

H 
(6) 'J~~T ~~-: Th- L<\,:~'C ~.r,c",(;) -:l\ST';;~" r: IT!"';? 

««P'UH r:1T) '/f''''~''' r;1T1·~e; 1\ .. ,) (<;,'IOi;13Y> 
!\.'JI) (";:'!\<:;TIo~~ 'J) 

1\ ,I) (PO'''JLc.r IO~) 
lS*G~"TH':\.\J 5";\'~"I:::'t;\ .n~I) (.~·JI"'J-=$"'-:~ 0,.- IVjt\\J;JF!\CTU~I.'.JG ~~T~'il.]~H",.;"'ljr.;) 
1<; • .,q'TH'I," <"'1'1»» 

l\'ve; 4~~. 
(C IT,\, IS ,\I":'/*,\,O~x) 

FIGURE 15-Modifying the "meaning" of terms 

"print" operation. E'xecution of a file-searching 
procedure of this kind would result in a listing of 
all the values in the complete data base. Similarly, 
f'Or Question 2, a listing of all of the population 
values associated with objects in the data base 
would result. Question 3 compiles into two sepa
rate requests. The answer to the first request 
(ANSWER1) simply confirms the fact that Los 
Angeles is the name of a specific county since we 
have stored no additional specific data for the' 
c'Ounty of Los Angeles. ANSWER2, however, 
yields the complete record of specific information 
for the city of Los Angeles. The last question il
lustrates a simple phrasing of a set membership 
request. 

Figure 11 illustrates some of the patterns for 
combining and coordinating terms into phrases 
and sentences. Sentence 1, for example, illustrates 
how two coordinated proper nouns may be post
modified by a common noun. The proper n'Ouns 
are distributed into two separate requests, since 
a single request calling for the population of a 
"Los Angeles and New York" object would be 
absurd. Similarly, Sentence 2 results in two re
quests where the common nouns are both pre
modified by the same adjective. Sentence 3 repre
sents a somewhat more involved coordination pat
tern as two noun phrases designating generic 
measures are post-modified by the same preposi
tional phrase. A single, rather lengthy, request 
results for this question type. In Sentence 4 two 
c'Oordinated common nouns are first postmodified 

(1) A ;;TUDENT IS AN OBJECT. 
PI.URAI.? 
STUDENTS. 
( FIlIN 

(2) STUDENTS HAVE PARENTS. 
(MI>IN 

(3) PARENTS MAY BE SEPARATED OR DIVORCED. 
(VI V2>IN 

(4l ~ ~U~~~~S s~=bo~= A7 OR B7. MADI SClN JR HIGH SCHOOl. OR Ct'LUMBUS 

(PI P2 P3 P~>IN 
(5) STUDENTS HAVE SCHOI.ASTlC CAPACITY THAT INCLUOES CTMM AND 

CATI SCHOLASlIC ACHIEVEMENT THAT INCI.UDES READING iIOCABlA.ARY 

~:~I.~~~~I~~G~~~=R~~;~;!~:~H S~~~~~~T IC PERFORMANCE THAT 
(M3 M">IN 
(M6 M7) IN 
(M2 M5 M8) IN 

(6) ~e~Ot:S~~c II:E~~~~:ANCI: MAY BE A.B.C.D. OR F. 

(7) ~~~)~:OWN AND MAf<Y SMITH ARI: STlJDI:NIS. 

( F3 >IN 
(8) DEFINI: COHI AS COLUMBUS JIC HIGH SCHOOL. 

IN ' 

(9) DEFINE "'AI1HI AS MADISON JR HIGH SCHOOL. 
IN 

(10) JOE BRO"," ON • ., • .,68 _S A COHI STUDENT AND HE HAD A CTIIIM OF 8. 
A CAT OF 9. AND A READING VOCABlA.ARY Of 72. 
IN 

(n) JOI: BROlIN IS A B7. 
IN 

(12) :A~!T S~;T~.ON 3.1'12/68 IilAS A "'A[)HI STUDENT AND SHE HAD A CTIIII'I OF 5 AND 

IN 
~!FlNE SCORES AS CTIIII'I.CAT.READING IIOCABlA.ARY. 

(13) IoIHAT WAS THE NUMBER OF STUDENTS BETWEEN 3"'/68 AND VV687 

~ ;!~~~~!N s~::r ~~!RI: STUDENTS AND DATE IS. GR. THAN 68.311 AND DATE 

ANSWER. 
2 

(14) WHAT 15 THE SCHOLASTIC ACHIEVEMENT fOR JOE BROtoN' 
c c((PRINT (READING IIOCABlA.AIoCY) 

ANS~~!~DING COlliPR,EHENSION) ""ERE STUDENTS AND STUDENT IS JOE.BROWN»),.,. 

(RI:ADING VOCABULARY 15 72) 

(15) IoIHAT ARE THE SCORES FOR MARY SMITH7 
cc((PRINT ('CTMM) 

(CAll 

,ANSW~~=ADING IIOCABlA.ARY) WHERE STUDENTS AND STUDENT IS MARY.SMITH)u 

(CTMM IS 5),(CAT .5 7l 

FIGURE 1o-Descrihing and interrogating an educational 
data base 

by a compound consisting of two M-names and 
then premodified by an adjective. This results in 
the distribution of the terms into two separate re
quests co~cerning cities and counties respectively. 

Further variety in coordination patterns and 
additional operations 'On data are illustrated by 
the questions in Figure 12. Sentence.1 illustrates 
the use of the coordination of noun phrases con
taining embedded relative clauses. For the second 
question a "brief" form of answer is called for. 
This causes the printout of the found facts in the 
same format in which they are stored in computer 
memory: as lists of LISP dotted pairs. The other 
examples in this figure illustrate the use of super
lative adjectives to modify nouns, and the use of 
determiners denoting cardinal and ordinal num
bers. The resulting requests specify compound 
operations to be carried out in sequence on the se
lected data. For example, the "max" operation 
is defined only for functions that evaluate to num
bers. If this operation is preceded by a list of one 
or more numbers, then the operation is carried out 
for each numeral on the list. In this way, the "two 



largest cities in P'OPulati'On" are identified by find
ing in turn the city with the largest P'OPulation 
value and then the city with the next largest P'OPU
lati'On value. 

The many devices f'Or c'Omp'Ounding and c'O'Ordi
nati'On in natural language all'Ow us, in a data 
management c'Ontext, t'O quite easily phrase ques
ti'Ons that c'Ompile either int'O c'Omplex requests or 
int'O a large l1umber 'Of individual requests. As an 
illustrati'On 'Of the latter case, c'Onsider the questi'On 
in Figure 13: "F'Or the sm'Oggy high-inc'Ome cities 
what is the age-income value-range ?" In order to 
derive the necessary data from the data base, 
twenty requests in the intermediate language re
sult from the c'Ompilation 'Of this question. Some 
of the P'Otential of, and justificati'On for, research 
,york in natural language data processing is evi
dent from this example. The user's alternative to 
the phrasing of his question in English is to type, 
in some artificial query language, twenty' requests 
. c'Omparable to those shown, or some highly com-
plex nested Boolean statement that is the equiva
lent of these requests. The computer reSP'Onse (in 
brief form) allows us t'O see quickly that requests 
1, 15, and 19 are satisfied by the city 'Of New Y'Ork; 
2, 14, and 20 are satisfied by L'OS Angeles, and that 
requests 8 and 10 are satisfied by both the city 'Of 
New York and the city of L'OS Angeles (future ver
sions of the system will generate answer state
ments from requests and their non-nil responses). 
Definitional sentences to specify appr'Opriate c'On
cepts of high income, distributi'On 'Of pe'Ople ac
c'Ording to age and income, and a range of per
centage values 'Of interest t'O the user are shown 
at the b'Ott'Om of Figure 13. 

Figure 14 illustrates several kinds 'Of feedback 
messages that may result fr'Om user interrogati'On 
of the semantic structure 'Of the universe 'Of dis
c'Ourse. Suppose, for example, that a user wants 
to know the normative descriptive phrase asso
ciated with a specific M-name. He might first try 
a questi'On such as Questi'On 1 which leads, as we 
see, t'O an "undefined w'Ord" feedback response. 
Similarly, if he rephrases the question as in Sen
tence 2, then all words are defined but are n'Ot put 
together in an acceptable syntactic structure. Fi
nally, if he phrases his request as in Sentence 3, he 
gets a simple direct response as a pr'Ocedure speci
fying the n'Ormative descripti'On phrase f'Or the 
M-name. 
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If he is c'Oncerned ab'Out the referent f'Or a par
ticular n'Oun phrase, a "what ab'Out" questi'On, as 
expressed in Sentence 4, will generate a separate 
pr'Ocedure f'Or each referred object. The reSP'Onse 
to Questi'On 5 indicates that the noun phrase "me
dium family inc'Ome" is well f'Ormed and desig
nates, in this case, a specific measure functi'On. 
Similarly in Sentence 5, we see that the phrase 
"pop (populati'On) factors" designates a list 'Of 
specific measure functions. In Sentence 7, we see 
that the constituent "percentage 'Of people," while 
syntactically well formed, does not evaluate to an 
object, function, 'Or property, in the intermediate 
language. Hence, its meaning is undefined and an 
appropriate feedback message results. However, 
we may rephrase this question as in Sentence 8, 
in. order to find all measures that are directly or 
indirectly linked to the phrase. 

Figure 15' illustrates one means of changing 
and extending the meaning 'Of English subset 
terms. Sentence 1 illustrates the use of "large" 
as this term was specified during data descripti'On. 
The second sentence in Figure 15 illustrates a 
definitional extension that adds t'O the set 'Of inter
pretations assigned to an English subset c'Onstit
uent. The notion of "large" is extended t'O include 
objects that have a "P'OPulation" 'Over a certain 
value and a "quantity of manufacturing establish
ments" larger than a certain value. Question 3, 
"What are the large, smoggy Eastern cities ?" 
then c'Ompiles int'O two requests as sh'Own. In this 
case the answers for the first and sec'Ond requests 
are the names 'Of the same city. The remainder of 
the sentences in this figure illustrate h'OW the 
original interpretati'On 'Of the w'Ord "large" can 
be replaced by the sec'Ond interpretati'On. The abil
ity t'O change the number and kinds 'Of interpreta
tions associated with a c'Onstituent is an essential 
function in providing a user with a flexible and 
user-extendable English subset. 

Figure 16 illustrates a brief sketch of the de
scripti'On and interrogation 'Of a fragment 'Of a 
data base c'Oncerning inf'Ormati'On ab'Out sec'Ond
ary sch'O'Ol students. 

CONCLUSION 

We have realized a pr'Ot'Otype 'On-line system f'Or 
describing, updating, and interrogating data bases 
of diverse c'Ontent and structure thr'Ough the use 
of 'Ordinary English sentences. 
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We cann'Ot hope to formalize and implement a 
complete English grammar in the near future; in
stead, we fac~ a tradeoff between range of expres
sion and reasonable computer processing times. 
Therefore, in constructing a grammar for an on
line English subset it is as important to avoid 
some areas of syntax as it is to recognize others. 

By composing derived interpretations from lexi
c~l interpretations, under the control of syntax 
recognition, a process of semantic interpretation 
has been realized to c'Onstruct the designations of 
noun phrases, sentences, and embedded clauses. 
The intermediate language constitutes a data
base-oriented "deep" structure. It comprises a 
framework into which new kinds of obj ects, pre
dicates and terms may be introduced to represent 
the semantic structures of a very wide range of 
possible universes of discourse. In a similar way 
the data management machine's specific fact struc
tures present a framework for the storage of the 
extension of a universe of discourse. 

Several properties of the CONVERSE natural 
language compiler are of special importance. 

• Ambiguity resolution. The semantic inter
pretation process eliminates interpretations 
that are not admissible according to selec
tional feature restrictions and general facts. 
Syntactic ambiguity is resolved by termi
nating syntactic structures that· do not lead 
to acceptable semantic structures. 

• User feedback. Undefined word, structure, 
meaning, and procedure statements are par
ticularly useful in guiding a.user to an aware
ness of the limits of the English subset and 
in enabling him to extend the English subset 
to meet his needs. 

• Semantic reflexivity. This property allows 
a user not only to introduce new universes of 
discourse but, through definitional sentences, 
to increase the vocabulary and paraphrase fa
cilities of the English subset. It allows him to 
describe a data base at either a superficial or 
detailed semantic structure level. 

• On-line responsiveness. In the present ver
sion of CONVERSE a user must typically 
wait from less than five seconds to as much as 
one minute for sentence-to-procedure trans
lation. The system. is presently being con
verted for use on the IBM 360 Time-Sharing 
Systems at SDC. This new program prom
ises to be at least one order of magnitude 
faster than the present one. 

In conclusion, we believe that a natural lan
guage compiler should be judged on its merits, not 
with respect to the linguistic-possibilities inherent 
in man-to-man communication, but with respect 
to existing means 'Of man-to-machine communica
tion. From this viewpoint, we are convinced that 
natural language compilers will eventually come 
into widespread use, for the same reasons th~t 
conventional compilers are already being widely 
used. The gain in convenience and expressive 
power will more than 'Offset the expense of the re
quired computer processing time. 
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APPENDIX 

PRINT MEASURES • PROPERTIES • 
M1 
M3 

M4 
M5 

M6 

M2 

M7 

MS 

M9 

M10 
M11 
M12 

M13 

M14 

M15 
M16 

M17 

NIL 
(PRODUCTION FACTORS) (M30 M31 
M32) 

(DISTRIBUTION FACTORS) (M22 M23) 
(POPULATION FACTORS) (M7 MS M9 
M10) 

(LOCAL GOVERNMENT F ACT 0 R S) 
(M33 M34) 

(STATISTICAL INDICATORS) (M3 
M4 M5 M6) 

(DISTRIBUTION OF PEOPLE BY AGE) 
(M11 M12 M13 M14) 

(DISTRIBUTION OF PEOPLE BY IN-
COME) (M15 M16 M17 M1S) 

(DISTRIBUTION OF PEOPLE BY EDU-
CATION) (M19 M20 M21) 

(POPULATION) 
(MEDIAN AGE OF PEOPLE) 
(PERCENTAGE OF PEOPLE UNDER 5 
YEARS OF AGE) 

(PERCENTAGE OF PEOPLE OVER 21 
YEARS OF AGE) 

(PERCENTAGE OF PEOPLE OVER 65 
YEARS OF AGE) 

(MEDIAN FAMILY INCOME) 
(PERCENTAGE OF, FAMILY INCOME 
UNDER 3000) 

(PERCENTAGE OF FAMILY INCOME 
OVER 10000) 



Ml8 

Ml9 

M20 

M21 

M22 
M23 

M24 

M25 

M26 

M27 

M28 

M29 

M30 

M31 

M32 

M33 

M34 

M36 

M37 
M38 

M35 
M39 
M40 
M41 
M42 
M44 

M45 
M43 

PI 
P2 

(AGGREGATE FAMILY INCOME IN 
MILLIONS OF DOLLARS) 

(PERCENTAGE OF PEOPLE OVER 25 
WITH LESS*THAN 5 ykARS OF 
SCHOOLING) 

(PERCENTAGE OF PEOPLE OVER 25 
WITH MORE*THAN 12 YEARS OF 
SCHOOLING) 

(MEDIAN NUMBER OF S C H 0 0 L 
YEARS COMPLETED) 

(RETAIL TRAD,E) (M24 M25 M26) 
(WHOLESALE TRADE) (M27 M28 
M29) 

(NUMBER OF RETAIL TRADE ESTAB
LISHMENTS) 

(NUMBER OF RETAIL TRADE EM
PLOYEES) 

(RETAIL TRADE YEARLY PAYROLL 
IN THOUSANDS OF DOLLARS) 

(NUMBER OF WHOLESALE TRADE 
ESTABLISHMENTS) 

(NUMBER OF WHOLESALE TRADE 
EMPLOYEES) 

(WHOLESALE TRADE YEARLY PAY
ROLL IN THOUSANDS OF DOLLARS) 

(NUMBER OF MANUFACTURING ES
TABLISHMENTS) 

(NUMBER OF MANUFACTURING EM
PLOYEES) 

(MANUFACTURING PA YROLL IN 
THOUSANDS OF DOLLARS) 

(NUMBER OF LOCAL GOVERNMENT 
EMPLOYEES) 

(LOCAL GOVERNMENT PAYROLL IN 
THOUSANDS OF DOLLARS) 

(TEMPERATURE FACTORS) (M39 
M40 M41 M42) 

(MEAN ANNUAL PRECIPITATION) 
(MEAN ANNUAL HOURLY WIND 
VELOCITY) 

(CLIMATE FACTORS) (M36 M37 M38) 
(MEAN JAN TEMPERATURE) 
(MEAN JULY TEMPERATURE) 
(HIGHEST TEMPERATURE) 
(LOWEST TEMPERATURE) 
(FARM LAND IN THOUSANDS OF 
ACRES) 

(NUMBER OF FARMS) 
(AGRICULTURAL FACTORS) (M44 
M45) 

(SMOGGY) 
(WARM) 

A Natural Language Compiler 491 

P3 (COLD) 
P4 (EASTERN) 
P5 (WESTERN) 
P6 (LARGE) 
P7 (SMALL) 
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INTRODUCTION 

The use of prices as a mechanism for allocating 
resources is generally well understood. Nearly 
two hundred years have elapsed since Adam 
Smith, in The Wealth of Nations, discussed the 
functioning of the "invisible hand" in a market 
economy, but the principles which he enunciated 
have not been altered or invalidated by ensuing 
generations of economists. In the United States 
today, markets are the dominant economic form, 
and the price system is used to allocate nearly all 
the product of our private sector, over 75 % of 
gross national product. . (Governments also par
ticipate in markets, at least to the extent of ob
taining resources.) To be sure, the price mechan
ism does not always work as well in real markets 
as in theory-a defect shared by other allocative 
mechanisms-and certain categories of goods and 
services continue to be allocated by means other 
than prices. Among these goods are most of those 
produced by the several levels of governments and 
nonprofit organizations such as universities. In 
addition, non-price allocation techniques are fre
quently used in instances when market allocation 
violates social canons of equity, for example dur
ing periods of rationing in wartime. 

Prices are not the dominant allocative mechan
ism for computer time, and our purpose in this 
paper is to examine whether they should generally 
be used. We will need first to establish the general 
conditions under which pricing will be efficacious, 
and then to determine whether the allocation of 
computer time satisfies those conditions. Finally, 
we will examine some of the allocative techniques 

used instead of prices, to see whether non-price 
methods can be expected to work as well as prices 
on this particular problem. 

Why use prices at all? 

Any economic system must solve the problem 
of how to use scarce resources. Most resources 
can be used to produce many goods; most products 
are useful to many consumers. Due to the scarcity 
of resources, however, the system is closed: re
sources used by one producer are not available to 
any other and goods consumed by one person re
duce the total consumption possibilities of all 
others. Some determination must therefore be 
made of the preferences of different economic 
units for the same economic resources or prod
ucts. 

The price system is the vehicle by which eco
nomic units express their preferences in a market 
context. It is axiomatic that the preferences which 
underlie ",prices cannot be measured other than 
through the behavior of buyers. In 'Other words, 
if a consumer buys a shirt for $10, it is possible 
to infer only that he derives at least $10 worth of 
satisfaction from that shirt. It is not generally 
possible to measure that satisfaction in any way 
other than as $10 worth. 

If preferences are expressed predominantly by 
prices, then some other desiderata can be obtained 
within market resource allocation. One such 
desideratum is that those consumers who place 
the greatest value on a good are the ones who ob
tain it (assuming an equitable distribution of in
come). In a properly functioning market, prices 
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will be bid up (or down) to the point at which the 
available supply is allocated to the consumers will
ing to pay the highest prices. 

Implicit in this approach is that the value to 
society of the goods is the maximum price paid for 
the goods by any consumer. Prices normally cover 
costs of production (including profits), but in 
some instances particular allocations of resources 

. impose costs ( or benefits) 'On third parties other 
than the producer and consumer. For example, 
the location of a junkyard may lower surrounding 
property values, thus imposing costs on persons 
other than the owner of the j urikyard and his cus
tomers. The social value of the junkyard will be 
less than its private value (to the owner) unless 
the owner is required to charge prices high enough 
to pay compensation to surrounding property own
ers. Prices high enough' to compensate for exter
nal costs are efficient (in the technical sense that 
no other allocation of resources will produce out
put with a greater net value). In general, external 
costs can be included in a price-system allocati'On 
when the third parties can enter into the market~ 
determinati'On of price. Typically, the goods whose 
production imposes unrecognized or uncompen
sated external costs, will be underpriced and over ... 
supplied compared to the amount of production 
which is socially optimal. 

Not only does a price system establish a priority 
of users, it also establishes a pri'Ority of wants. 
The producer willing to pay the highest price for 
a resource will be the one whose product is valued 
most highly by the members of society (adjusting 
for differences in the productivity of res'Ources). 
Those wants to which the members of society give 
priority will be able to obtain the resources nec
essary for their satisfaction-and they will be 
satisfied only to the extent that ri'O other want 
receives greater priority. 

Finally, a price system can solve the problem 
of allocating resources'dynamically. It does so by 
transmitting information about consumers' de
mands to producers, and offering consumers in
formation about the cost of satisfying different 
wants. If consumers express great demand for 
some goods relative to its current supply, the price 

'will be bid. up above the cost of production. The 
ensuing profitability of production will offer pro
ducers an incentive to increase production, bidding 
resources away from less profitable all'Ocations. 
Over a period of time, labor and capital will be 
drawn to produce a particular goods only if de-

mand for the goods is high enough to cover the 
cost of the additional resources. 

In summary, a price system can solve the prob
lems of distributing goods and services among 
consumers, allocating resources among producers, 
and conveying information to determine the flow 
of resources among different allocations over time. 
If prices are to s'Olve these problems, they must 
be able to respond in certain ways. When demand 
rises or 'falls, prices must rise or fall sufficiently 
to ration the available supply. Over time, changes 
in supply must affect the price of any goods; that 
is, constancy of price over time is neither neces
sary nor desirable for efficient resource allocation! 
And since the role of price is to allocate resources, 
the price at any point in time need not bear any 
relation to the cost of production at that time. 
This point should be stressed: prices are a ration
ing device, not a mechanism for recovering cost. 
If demand for a good is low, its price may well 
fall below cost, transmitting information to the 
producer that demand is inadequate. Unless price 
is permitted to fall below cost, the proper informa
tion about demand may never be obtained, and the 
,allocation of resources can never adjust properly 
to the unprofitability of that good. 

Can ,computer time be priced? 

Two aspects of the question of pricing computer 
time must be discussed. The first is whether prices 
can allocate computer time of a fixed quantity and 
productivity (as determined by machine configura
tions at any time). The second is the extent to 
which pricing can allocate computer time over 
periods in which demand patterns and machine 
productivity both change. 

As noted above, the conditions for pricing to 
work are fairly simple: users must be unable to 
obtain any scarce resource at a zero price; social 
and private direct benefits must be identical, so 
that neither benefits nor costs are incurred except 
by the buyer and seller; and prices must be free 
to vary without regard to cost of production. 
(These are rigorous requirements; in fact, pricing 
will usually work if these requirements are satis
fied loosely.) Applied to computers, the first con
dition requires that computer time be made avail
able to any . user willing (and able) to pay the 
price. The price may be stated in dollars, as at 
computer service bureaus, or it may be stated in 
terms of some fiat money. It is essential, however, 
that the user feels that he is truly paying a price. 



If the price is stated in dollars, then the user's 
budget must be limited. If the price is simply an 
accounting of computer time, then the user's over
all a~cess to the computer must be limited. Only 
if there is a budget constraint will the user have 
an incentive to evaluate the benefits of computer 
time relative to its cost to him and other users, 
for otherwise the cost will be zero. 

The second condition requires that all costs and 
benefits be incurred within the market. We have 
noted elsewhere1 that a user of computer time im
poses costs on all other users by increasing their 
turnaround times. The same point has been ex
pressed by other authors, including Marchand2 and 
Greenberger3 (implicitly). The external costs im
posed by one user on all others are no less impor
tant a category of cost than the direct use of the 
computer, and efficient allocation will result only 
if each user pays a price high enough (in princi
pIe) to compensate all other users for the reduc
tion in quality of their service. This situation is 
by no means unique to the allocation of computer 
time. Every rush-hour commuter imposes exter
nal costs on all others in the form of longer com
muting times, and every attendee at a Broadway 
opening night imposes costs on those unable to 
obtain tickets in the form of reductions in their 
satisfactions. One difference between these two 
examples is that social policy has dictated a zero 
price for highway commuters, thus prohibiting, 
the use of prices to eliminate congestion; whereas 
show ticket prices can fluctuate widely, and in fact 
a premium is charged for many opening nights. 
The problem of planning to eliminate or reduce 
congestion can be attacked through queuing theory 
(as by Kleinrock2 and Greenberger3 among many 
others), but it appears perfectly feasible to elimi
nate congestion to the extent desired by users by 
letting them bid up, prices. Equilibrium will be 
reached where each user is paying a price which 
is greater than the total value of the decrements 
in service to all other affected users. Note that . . 
these external costs will arise only for a heavily-
used compute'r on which each job seriously affects 
all other turnaround times. For a batch processor, 
such "capacity" use could occur for any turn
around time, or set of turnaround times. For a 
time-sharing system, the related notion of access 
time (to a console or to the central processing 
unit) could be used. 

The third requirement for pricing to be effec
tive is that prices be free to fluctuate without re-
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gard to the cost of production. In general, a good 
should be supplied to any consumer willing to pay 
the cost of the additional resources needed to pro
duce it. In the case of computer time, the addition
al resources necessary for production are virtually 
free (at least within eight-hour blocks) and in any 
case are inexpensive relative to the amortization 
cost of the computer. Nonetheless, price is not a 
cost-recovery mechanism, and it is proper at any 
point in time to disregard completely the capital 
cost of a computer in setting price. If a computer 
is utilized at less than capacity, the external costs 
imposed by an additional user will normally be 
low, and the price of computer time should corre
spondingly be low so as not to discourage use of 
an essentially free facility. The extent to which 
amortized cost exceeds revenue is an operating 
loss, and should be treated in the same way as, for 
example, a loss experienced by a realtor on an 
apartment house with some unrented units. 

We have been using the term "capacity" to 
mean the ability to process some maximum num
ber of jobs (per time period) of given quality of 
service, or turnaround time. (There is, of course, 
no reason why the turnaround time used to esti
mate machine capacity should be that desired by 
users, or why all users should prefer the same 
turnaround times. ) We conclude from our dis
cussion that pricing is a feasible allocative device 
for a computer with fixed capacity in the short 
run, when demand is stable. The proper price will 
cover the marginal cost of operating the computer 
to satisfy the demand of the additional user. If 
the computer is so heavily utilized that each user 
imposes external costs on others by lengthening 
their turnaround times, the price must be high 
enough to cover these external costs, as well as 
other costs of using the computer. 

In the long, run, when demand and supply con
ditions are free to vary, the pricing problem be
comes more complex. We have described else
where1 what we envision as the typical time pat
tern of efficient prices for computer use-a pat
tern in which prices initially are low, to encourage 
use of a large, fast, new computer, and eventually 
rise reflecting use at or near the capacity of the 
computer. Throughout this pricing cycle, minor 
investments may be made, adding to the capacity 
of the computer, and eventually a new main frame 
is procured. At each point in time, prices are set 
in acco~dance with the principles stated above. If 
the computer is an efficient investment, over-re-
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covery of cost during periods of capacity use will 
just offset early losses. Of course, there is no re
quirement that cost recovery be exactly equal to 
operating loss, any more than any investment is 
required to yield benefits exactly equal to costs. 
Typically, some computers will prove to be efficient 
investments °and others will not. 

In this context, it is worth noting that we have 
previously expressed our view that idle time is 
not an indication of inefficient use of a computer, 
since capacity cannot be defined with opt reference 
to the quality of service. If users ,place a high 
value on short turnaround ~imes, idle time will be 
valuable to users as a guarantee of high-quality 
(i.e., fast) service. In this case,users should be 
willing to pay a price for idle time at least equal 
to the value of that time to the excluded users. 
Our conclusion followed from explicit considera-

° tion of the quality of service as a variable to be 
set by the computer center. The same conclusion 
is reached from queuing-theoretic considerations 
by Ara:oz and Malmgren:5 

"Some idle capacity can now be seen as a 
device of efficient production in many cases, 
and the 'excess capacity' which is often ob
served ... may sometimes, if not often, arise 
out of a seeking of efficiency rather than re
striction. This will be true insofar as there 
are any rigidities ( or what an economist 
might call indivisibilities with respect to 
time) ... which might give rise to a queuing 
process." (p. 209) 

Do alternative techniques work? 

We will discuss three types of non-price alloca
tion mechanisms: average-costing, overhead 
charges, and various priority plans. A v~rage
costing is used widely as an internal cost-recovery 
device, and is imposed externally in many cases 
by federal government accounting regulations. Its 
basis is that a facility should recover its costs in 
any time period, but while that basis is not un
reasonable over the lifetime of a computer (or any 
other capital goods), serious misallocations result 
when the time period is chosen as a year or even 
less. We have discussed elsewhere1 the various 
abuses that may arise under average-costing, so 
they will only be listed here: (1) computer centers 
are unable to provide service to additional users 
at marginal (social) cost; (2) the resulting pat
tern of charges encourages use during peak 

periods and discourages use when the computer 
is idle; (3) over-investment is likely to result if 
contractors are guaranteed recovery of average 
cost; and (4) under federal government auditing 
regulations, funding of computers by foundations 
and other non-users is discouraged. Average-cost 
charging is a popular internal accounting device 
due to its ease of administration, but the incen
°tives it offers are unlikely to promote efficient re
source allocation. 

When a facility is used widely and the cost of 
its services is difficult to impute to individual 
users, the facility is frequently called an "over
head expense" and its cost is then allocated to 
users on an arbitrary basis. When computers are 
treated as overhead, the full costs (including 
amortization) of the computer center are included 
in the firm's general overhead pool which is im
puted to individual projects on a basis such as 
total labor costs, total ° man-hours, or total operat
ing costs of each project. Some universities have 
used this method for recovering the costs of their 
computer centers. 

It should be obvious, however, that overhead 
charges can offer the proper incentives to neither 
the user of the computer nor the administration 
concerned with supplying computer time. Each 
user will prefer to substitute computer time for 
other resources, thus reducing his basis for over
head charges, and the overall effect must be to in
crease the demand for computer time. (In addi
tion, overhead charges will discriminate against 
projects which are not computer-intensive, thus 
creating an inequitable set of charges.) If each 
user substitutes the same ratio 'Of computer time 
for direct charges, the result will be to leave the 
pattern of charges unchanged, but to bias upward 
total use of the computer. The supplier of com
puter time will then be misled into overestimating 
the demand for the computer, resulting in overin
vestment in subsequent computer facilities. Final
ly, the overhead rates that the firm must charge 
(to sponsors, if it is a contractor, or to purchasers, 
if it is a producer) will be inflated by the mis
allocation of resources and overinvestment, lead
ing eventually to declining revenues and to re
duced profits in the case of a firm. 

Priority mechanisms have received wide atten
tion in the literature on managerial and opera
tions-research problems. In contrast, they have 
been virtually ignored by economists. The reason 
for the disinterest of economists appears to be that 



pri'Orities are simply a surrogate set of prices that 
may in some instances work as well as a true price 
mechanism but will almost never be superior. For 
iheir part, operations analysts seem unaware that 
priorities are a form of prices; thus, Kleinrock4 

discusses "bribes" which are merely prices, and 
GreenbergerB tries to minimize the cost of delay, 
a cost which can never be kn'Own except in terms 
of the price users would pay to avoid the delay. 

There are two distinct types of priority rules,: 
one which determines the access pattern of a given 
set of users, and another which offers incentives 
to potential users in determining their demands 
f'Or computer time. Some of the variants of the 
first type of rule are listed by Greenberger: first
come-first-served, the cIt rule (the next job served 
is that with highest. waiting cost per service ti:me) , 
shortest - job - next, and round - robin scheduling. 
The difficulty with rules of this sort is that an im
plicit assumption must be made about the value 
placed on computer time by each user. For ex
ample, application of the cit rule involves "judi
cious approximation" -in other words, arbitrary 
judgments about users' costs-unless all costs are 
equal and either constant or exponentially-dis
counted functions of time. In general, users will 
not value time equally, n'Or consider waiting equal
ly costly, so such a rule will not allocate time prop
erly. Moreover, the only way for the computer 
center to discover if all users value waiting and 
access equally is to ask them-that is, to establish 
a market in which preferences may be expressed. 
Pri'Ority rules of this type, therefore, are equiva
lent to prices under the special assumption that 
all users place the same values on computer time 
and experience the same costs for waiting. These 
conditions are, of course, most unlikely to be satis
fied in practice, but under any other conditions 
pri'Ority rules will result in a misallocation relative 
to the one obtainable by pricing. 

The second type of priority is the one which 
rations access to the computer according to the 
relative importance attached to the user's project. 
Such pri'Orities are a form of artificial money, for 
a high priority in the absence of dollar prices has 
the same effect as a large project budget if prices 
are set in dollars. There are, however, two prob
lems. First is the question of flexibility-are 
priorities reset regularly, as prices must be, re
flecting changing conditions of user importance? 
If not, projects are likely to have either "too easy" 
or "too hard" a time obtaining acc'ess to the com-
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puter. Are priorities set on a: sliding scale, reflect
ing the varying importance of successive quanta of 
computer time? The answer is usually that they 
are not variable, but that all users in a project 
receive the priority attached to that project. 

Second, a priority system for computer access 
discourages efficient substitution of other re
sources for computer use. A project leader whose 
access to the c'Omputer depends on his project's 
priority will use computer time extensively if the 
priority is high, even if the computer is not the 
proper research tool. The computer administrator 
may react to pressures from projects by assigning 
more high priorities than the computer can ac
commodate. This situati'On is akin to a govern
ment's attempt to obtain resources by printing 
money: the result is to inflate all prices, or in this 
instance to downgrade the value of all pri'Orities. 
There will be no incentive for any project to esti
mate the value of computer time, since the costs 
are not expressed in any systematic way and since 
trades of computer time for other res'Ources gen
erally cannot be· made. 

The one remaining advantage of priorities over 
prices is that they are inexpensive to administer. 
An efficient price system must provide periodic
if not continuous-variati'Ons in price in response 
to fluctuations in supply and demand. It might be 
expensive to "make a market," that is, to provide 
price information to suppliers and demanders. 
This is largely an empirical question, and well be
yond the scope of this paper. One bit 'Of evidence, 
however, indicates that the incremental cost of es
tablishing queues of variable length with prices 
that fluctuate fairly often, given the existence of 
equipment for accounting for users' time, is of the 
order of n'O more than one per cent of the total 
cost of a batch processor. Even if the cost of pric
ing a time-sharing system were twice as great, it 
seems likely that the net gain in efficiency would 
be substantial. In any case, a price system which 
adjusted no more frequently than a priority sys-

, tem would be no more expensive. 

SUMMARY 

We have made several c'Ontentions which may ap
pear radical in view of current costing procedures 
for computer systems. At the heart of our recom
mendations is the assertion that prices are not a 
mechanism for recovering cost, but are instead a 
device for allocating scarce resources and obtain-
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ing the efficient level of investment over time. We 
believe that it is feasible to use prices to allocate 
computer time, whether the users are a firm's in
ternal projects or its external customers. Prices 
are only now beginning to be used for batch pro
cessing, and it is too early to evaluate the difficul
ties in pricing time-sharing computers. But the 
conditions for pricing will be present in time-shar
ing systems-identification of output, costs to ex
cluded users (either at the central processor 'Or at 
the console), and scarcity of total resources-and 
so we expect prices to be a feasible allocative 
mechanism. 

The role of prices is enhanced by the unsatisfac
tory nature of the alternatives. Average-cost pric
ing creates a perverse set of incentives for user 
and supplier. Overhead charges are even worse, 
for by themselves they establish n'O mechanism 
for allocating computer time, and they are likely 
to be inequitable. Priority rules are the least un-

satisfactory alternative, but their desirable prop
erties are the ones they share with prices. Prior
ity systems are unlikely to obtain an allocation of 
computer time preferable to that of prices, or to 
cost less to administer. 
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Th~ u~e of hard and soft money budgets, and prices 
to lImIt demand for centralized eomputer facility 
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Ithaca, N ew York 

INTRODUCTION 

A fundamental problem in any large organization is how 
to decentralize decision-making, and still insure that the 
decision-makers will act in a manner that is consistent 
with the goal of the larger organization. The advantages 
of decentralization are well-known, and will not be dis
cussed. Two possible disadvantages of decentralization 
are relevant here. 

First, the decentralized decision-makers may have 
g.oals that conflict with the goals of the larger organiza
tIOn. Second the actions of a decentralized decision
maker ~~y /jffect other parts of the organization; and 
the deCISIOn-maker may either be unaware of these 
effects, or be unable to estimate their significance. This 
paper deals with situations in which the goals of the 
individual decision-makers are consistent with the 
goals of the larger organization, so that goal conflicts are 
not a problem. The paper concentrate on ways of over
coming the second type of disadvantage of decentraliza
tion. 

A centralized computer facility is a good example of a 
situation in which the second disadvantage mentioned 
above may be a problem. Computers are subject to 
e~onomies of scale, so it is often logical for an organiza
tIO~ to encourage its decentralized decision-making 
unIts to share the use of a common computer facility. 
In the rest of the paper the word user will mean a de
centralized decision-making unit that is, at least po
tentially, a user of this shared computer facility. 

Since the use of the computer by one user imposes 
C?sts on the other users and/or on the central organiza
tIOn, some means of limiting or controlling demand for 
computers is essential. 

_9ne. means of limiting demand is to charge users for 
tne useor-t"hecomnute ""-"rrtn----.-.-.. -.~········--··:t+-·-·· ..... 

... _. __ ._._~_~-.~-..... -".".:.r;;:,.-,~.J~. e user IS a prolllrcenter, 
and the computer charge is part of his costs the user 
h~s ~n incentive to use the computer only in ~ays that 
WIll Increase the profits of his unit. In this case the 

charge is a self-policing device and there is no reason to 
limit such user's. computer demand by an arbitrary 
budget constraint. 

However, many users have go~ls whose achievement 
cannot easily be measured in mon~tary terms. This is 
the usual situation in universities and governmental 
organizations, and it also obtains in many research or 
staff activities in business organizations. In this case 
a charge for using computers will be effective only if the 
user is subject to some effective budget constraint. 

This paper deals with the problem of effectively 
limiting demand for computers in a decentralized or
ganizations in which the computer users are attempting 
to maximize some goal that cannot be expressed in mon
etary terms. The users' goals are assumed to be consis
tent with the goals of the organization. The users seek 
to maximize their goals subject to some budget con
straints, in circumstances in which they are charged for 
their use of the computer. The user's budget is provided 
by the central organization (which is itself subject to a 
budget constraint) or by an outside organization. In any 
case, the user treats the amount of his budget as an ex
ternally determined factor that is outsfde of his con
trol. The size of a user's budget reflects a judgment by 
the central organization or an outside agency, about 
the relative importance of the goals the user is at
tempting to achieve. 

This paper is concerned with two related issues that 

*The single price for computer services respresents the average 
, price paid by users and credited to the central computer facility 
during the relevant planning horizon. This average price may be 
t he result of a rather complex pricing system in which the amount 
charged for a particular job depends on the characteristics of the 
job, the priority assigned to the job, the load on the system at the 
time the job is processed, and other relevant considerations. A 
number of authors have considered the characteristics that should 
be incorporated in a pricing system for computer services. See 
bibliography. 
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arise in this context. The first issue is what basis should 
be used in establishing prices (or charges) for computer 
usage. The second is whether or not users should be 

-given a separate budget that is applicable only to their 
computer usage. 

The conclusions reached in this paper are based On a 
series of mathematical models, that are described in an 
appendix. Readers interested in the details of the logic 
should consult this appendix. Only the main assump
tions made, and the conclusions that result are sum
marized in the paper.· 

Decision variables available to the organization 

The central organization has several sets of decision 
variables it can manipulate to achieve its objectives. 
However, these decision variables are interrelated. This 
section will attempt to describe these interrelations. One 
set of decision variables relates to the amount and kind 
of computing facilties that will be provided, including 
both hardware and software. These decision variables 
can be thought of as determining a supply schedule of 
computer services. A second set of variables relates to 
user budgets. The organization can determine how large 
a budget it will allocate to each user. It can also specify, 
if it wishes, that a certain amount of the user's budget 
can be spent on computers, but not on other goods and 
services. Given the characteristics of users, these de
cisions can be thought of as determining the demand 
schedule for computer services. A third set of variables 
that the organization may specify relates to the terms 
on which computer services are made available to users. 
In this paper a single price variable will be assumed to 
represent these terms. * 

Because the three sets of variables are interrelated, 
the organization cannot arbitrarily pick levels for all 
three variables independently. Rather, if levels are set 
for any two of the three, a level for the third variable is 
implied. For example, suppose that the demand vari
ables and the supply variables have been determined. 
Then the price variable must be left free to adjust de
mand and supply. If the central organization attempts 
to fix the price variable as well, then some other aspect 
of the terms on which computer services are available 
will perform the adjustment. For example, if the price 
for computer services is not free to rise when demand 
exceeds supply, then turnaround times will increase, 
which in turn will impose costs and inconveniences on 
users. The effects are similar, if not quite identical, to 
thos!=l that would result from an increase in the price a 
user m~st pay to achieve a given rate of turnaround. 
Alternatively if the organization has determined the 
demand schedule by fixing user budgets, and wishes to 
maintain a certain price level without compensating 
changes in other non-price terms, it must be prepared 

to supply the amount and kind of computing facilities 
that will be demanded. Finally, the organization may 
decide on the amount and kind of computer facility it 
is willing to provide, and the terms on which computer 
services will be made available, and then try to adjust 
the demand variables in a manner that is consistent 
with the IEwels of the other two variables. 

In practice, an organization cannot accurately pre
dict what price level for computer services will result 
from a given set of decisions about the supply and de
mand variables. If the price level that results is not 
what was desired, some adjustments will be necessary. 
Either the demand or supply variables, or both, should 
be adjusted to move toward the desired equilibrium. 
Whether the initial response to a disequilibrium price 
takes place by adjusting the demand variables or the 
supply variables depends on how long it takes to adjust 
one or the other of these variables. If user budgets take 
a long time to change, but changes in hardware and soft
ware can be made relatively quickly, then the appropri
ate initial response to a disequilibrium is to adjust the 
supply variables, "or" taking into account the fact that 
the demand variables will not be changed for some time. 
In other circumstances it may be that hardware and 
software changes take a long time but budget changes 
can be made relatively quickly. 

The conclusion from these comments is that for 
long-range planning one should consider all three sets of 
variables as subject to control by the decision-maker, 
while for short-run adjustments it may be necessary 
to treat either the demand variables or the supply vari
ables as being outside of the control of the decision
maker. The first three models considered in this paper 
take a long-range viewpoint. The fourth model assumes 
that the supply conditions have been fixed, but that 
user budgets are subject to control. 

General assumptions 

The class of models considered in this paper have the 
following characteristics. Each user receives a budget 
allocation from the centralorga;nization. * The user 
tries to purchase amounts of computer services and of 
non-computer inputs that maximize his utility subject 
to his budget constraint. The users treat the prices of 
all inputs as given. 

The central organization must pay for the costs of the 
computing facility, and for any non-computer inputs 
purchased by users. It has available, to meet these pay
ments, a predetermined quantity of its own resources 
plus any amounts that users have added to their budget 

*One model allows for the possibility that a user may receive 
budget allocations from other sources as well as from the univer
sity. 



allocations from outside sources. The only resourcs 
allocation decisions made directly by the administra
tion are those concerning the type and capacity of the 
computing facility. The organization allocates budgets 
to users who make the detailed decisions about the use 
of the computing facility, and the amounts of non
computer inputs purchased. The organization indirectly 
controls the behavior of users by setting the pricing 
schedule for computer services, by determining the 
budget allocation assigned to each user, and possibly 
by requiring that a certain amount of the user's budg
et allocation can be spent only on computers. It is as
sumed that the pricing system used does not dis
criminate among users. 

The paper assumes that there is no conflict between 
the goals of users and the goals of the central organiza
tion. Specifically, this means that if a user can increase 
his utility without reducing the utility level, of any 
other user, then the level of utility achieved by the or
ganization will also increase. 

In describing the various models, the terms hard and 
soft will be applied to monetary amOl.~nts that constrain 
a decision-maker. Specifically, hard money is money 
that can be spent for any purpose, while soft money is 
money that can be used only in some limited way. The 
adjectives hard and soft are also applied to budgetary 
R.llocations. 

These adjectives are often used in informal dis
cussions of computer budgeting problems. Their formal 
use is justified by analogy to their usage in international 
trade theory. A hard currency is acceptable as a medium 
of exchange in one country, and is easily convertible 
into the currencies of other countries. Thus hard cur
rency is effectively usable anywhere. A soft currency 
is acceptable as a medium of exchange !n one country, 
but is not (easily) convertible into the currencies of 
other countries. Thus soft currency can be spent only 
on a limited range of goods. 

Efficient pricing 'with and without external 
financing of U8er8 

The first model to be considered assumes that all 
users receive their budget allocations entirely from the 
central organization, and that the organization does 
not impose any restrictions on how the user can allocate 
the budget assigned to him. Furthermore this model as
sumes that the organization sets a price level for com
puter services, and then purchases (or rents) whatever 
amount and kind of computing facility is necessary to 
satisfy the user's demands at the given price. 

Under these condition the central administration has 
two independent decisio.ns to make. It can decide how 
large a buget to al10cate to each user, an!i it can decide 
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the price it will charge for computer services. To max
imize its utility the administration should assign budg
ets to each user so that at the margin the increase in 
satisfaction the organization derives from each addi
tional dollar allocated to a partiCUlar user~s budget is 
the same for all users. In practice, it is ass:Umed that the 
ordinary budget-setting procedures approximate this 
formal requirement. Second, the administration should 
price computer services at their marginal. cost to' the 
organization. * This second condition is correct pro
vided that the organization would not be better off 
with no computer facility. ** The results from this set of 
assumptions are hardly surprising; but they provide a 
benchmark for comparing the results from other sets of 
assumptions. 

The next model to be considered continues the as
sumptions that only hard money budgets are used, and 
that computer capacity is adjusted to demand. How
ever, this model allows for the possibility that some 
users receive at least part of their buget allocations 
from sources outside the central organization. t 

Budget allocations that a user receives from outSIde 
soUrces are assumed to be hard money from the point of 
view of the user, but soft money from the point of view 
of the organization. Specifically the organization is as
sumed free to reduce the budget it allocates to a user if 
the user receives funds from outside. However, the or
ganization cannot take funds a user receives from out
side, and re-allocate them to other users. Thus the total 
budget allocation of a user (from all sources) must be at 
least as large as the allocation he receives from outside. 

The fact that a particular user receives some budget 
allocations from outside sources (and that the organi
zation receives a corresponding amount of funds) may 
or may not change any of the conclusions of the pre
vious model. If, when a particular user receives some 
funds from outside, the organization reduces the 
amount it allocates to that user by a corresponding 
amount, and reallocates those funds among all users, 
then the effect is exactly the same if the funds had been 
given directly to the orga,nization for its unrestricted 

*If some flexible pricing system is used", this means that the 
average charges earned per day by the computer facility should 
equal the incremental costs of expanding capacity (including 
operating costs). 

**This need not mean that users have no computer services 
available to them. It might mean that higher priced computer 
services are purchased from outside sources. 

t Examples would be a university in which some professors 
receive research support from non-university sources, or a local 
government in which some programs are supported in part by 
grants from the federal government. 
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use. Under these conditions the formal results of the 
previous model are equally applicable here. 

However, if some users who are financed from out
side sources receive larger budget allocations than they 
would have received from the organization, then it no 
longer follows that computer services should be priced 
at marginal cost. In general, under these circum
stances, the optimal price for computer services will be 
somewhere between marginal cost and the price at 
which marginal cost equals marginal revenue. The ex
treme case in which the optimal price is set so that mar
ginal cost equals marginal revenue would occur only if 
every user who actually used computer services was 
financed from outside, and if this outside financing was 
so generous that the organization would gain no addi
tional utility from an additional dollar allocated to the 
budget of such a user. 

Significance of marginal cost pricing 

The importance of the possibi1ity that the optimum 
price may exceed marginal cost will be clearer if the 
cost structure of the computing center is considered. 
It is commonly believed that computers are subject to 
economies of scale. That is, a one per cent increase in the 
amount spent on owning and operating a computer 
leads to more than a one per cent increase in the quan
tity of computing that is possible. Under these cost 
conditions, if prices are set equal to marginal cost, the 
total revenue of the computing center will be less than 
its total cost. That is, the computing center will oper
ate at a deficit. 

By contrast, setting prices so. that marginal costs 
equal marginal revenue is the rule to follow if one wants 
to maximize the profits (or minimize the deficits) of the 
computing center. 

To· the extent that some users receive larger budget 
allocations from outside than they would have received 
from internal sources, raising prices above marginal 
cost becomes advisable. (The higher prices would apply 
to all users.) By paying more than marginal cost, out
side financed users tend to reduce the deficit of the com
puting center and thus increase the amount the organ
ization has available for internally financed users. In 
effect, by setting prices above marginal cost the organ
ization uses the computing center as an indirect means 
of re-allocating funds from externally financed users to 
internally financed users. 

The use of hard and soft money budgets 

In the next model, the assumption that all users are 
financed from internal sources is reinstated, and the 
assumption that ~apacity is adjusted to effective de
mand is retained. However, in this model, the organ-

ization is permitted to make two types of budget al
locations to users .. 

The hard money budget allocation can be used for 
either computer services or for other inputs. The soft 
money budget can be used only for computer service 
charges. Under these condition, if the optimal amounts 
of hard and soft money are allocated to each user, the 
total budget allocation each user receives will be the 
same as he would have received if only hard money had 
been allocated. Furthermore, the amount of computer 
services each user purchases will be the same as in the 
hard budget model. Also the optimal price for computer 
services is still at marginal cost. 

In summary, if all users are financed from inte:tnal 
sources, and computer capacity is adjusted to demand, 
there is no advantage to be gained from distinguishing 
between hard money and soft money in making budget 
allocations to users. In practice, distinguishing between 
hard money allocations and soft money allocations un
der these conditions is likely to lead to a less efficient 
use of resources, since users have less possibility of ad
justing their expenditure patterns as circumstances 
change. within the budget period. 

The fourth and final model considered is one in which 
users receive no outside financing, both hard and soft 
money budgets are allowed, and the capacity of the 
computing facility is assumed to be fixed. Since comput
ing capacity is fixed, it is assumed that the price charged 
for computer services is free to adjust so as to equate 
the quantity demanded to the fixed supply. * The only 
decisions that remain to be made by the organization 
are how much hard money and how much soft money 
to allocate to each user. Under these conditions, it may: 
be desirable to use both. hard and soft money budget 
allocations. 

The necessary condition for an optimum under these 
assumptions is that the marginal utility the organiza
tion derives from an additional dollar of hard or soft 
money allocated to a particular user's budget be pro
portional to the extra cash outlays that will result for 
the organization. If computer capacity were variable" 
and were priced at marginal cost, each dollar of hard or 
soft money allocated to a user would lead to an ex
penditure of one dollar by the organization. But when 
computer capacity is fixed an additional dollar spent by 
a user on computer services will cause less than one dol
lar of additional expenditure by the organization. The 
immediate effect of the user's expenditure is simply to 

• Although strictly speaking the mathematical model assumes 
that pric~s are flexible, in practice if prices were also fixed, demand 
and supply would be equated by variations iIi the non-:-price costs 
of using the computing facility. For example, if the demand func
tion increased, and prices could Dot rise, turnaround times would 
increase, queues would form at remote terminals, etc. 



drive up the price of computer services. Additional cash 
outlays by the organization occur only to the extent 
that the higher price causes some other users who have 
been spending hard money budget allocation on com
puter services to spend less on computer services, and 
more on other inputs. ** 

Suppose a fixed computer capacity is described as 
excess (deficit), to the extent that it exceeds (is less 
than) the organization would have chosen if capacity 
were -variable. In practice, soft-money budgets are 
likely to be useful to an organization only during periods 
when there is excess computer capacity. Under these 
conditions allocating soft money to users encourages 
them to make use of the excess capacity, at a lower 
dollar cost to the organization than if they had been 
allocated hard money. By contrast if there is a deficit 
of computer capacity reducing a user's soft-money 
budget past a certain point has the same effect on his 
computer usage as reducing his hard money budget. 
There soft money is not effective in limiting demand 
when there is a shortage of computer capacity. t 

When soft money budgets are appropriate, their 
amounts should be determined by comparing the bene
fits the user receives from his additional use of the com
puter, to the real dollar cost that his usage causes the 
organization. As explained above, when computer capa
city is fixed, the real dollar cost to the organization will 
be greater than zero, but less than the soft-dollar ex
penditure by the user. 

APPENDIX 

Long range planning with only 
internal financing: Modell 

Resource allocation decision of users-In the planning 
horizon under consideration, the organization has 
available to it a fixed dollar amount, K, available for 
expenditure. Detailed decisions about resource alloca
tion are decentralized by assigning budgets to users.· 
A user is any decision-making unit in the organiza
tion that is free to make its own resource allocation 
decisions subject to the budget constraints determined 
by the central organization. Assume all users receive 
funds only from the central organization, and that one 

**This statement assumes an elastic demand for computer 
services by users who are, at the margin spending hard money 
allocations on computers. If the demand, schedule of these users 
is inelastic, allocating soft money to other users will reduce the 
cash outlays of the organization in the short-run. 

tIf soft money budgets have been used to encourage demand 
because of excess capacity, and the amount of excess capacity is 
reduced, then reducing the amounts of soft money allocated may 
be useful. 
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user cannot transfer funds to another. Two commodities 
(really categories of commodities) are available to users. 
Commodity one is purchased from outside the organ
ization at a market price that cannot be changed by the 
behavior of the organization, or by users individually or 
collectively. Commodity two, representing computer 
services, is produced by the organization, and decisions 
about the quantity available, and the price at which 
it will be sold are made by the organization. However, 
given the allocation of users budgets, there is a one-to
one relation between the supply of computer services 
and the price at which it is sold to users. This is be
cause the organization's policy is to allow prices for 
computer services to fluctuate to equate supply and 
demand. For users, that price is taken as given. For the 
organization it is convenient to think of price as a policy 
variable and computer capacity as determined by the 
amount demanded at that price. Users try to maximize 
their utility. The following variables are needed to ex
press the behavior of a user in mathematical terms. 

PI = price of commodity one 

P 2 = price of commodity two 

q il = amount of commodity one used by user i 

q i2 = amount of commodity two used by user i 

Ii = budget assigned to user i by the organization 

Ui = an index of the satisfaction derived by user i 
where 

(1) 

Equation (1) implies that user satisfaction is deter
mined by the amounts of each commodity he consumes. 
With respect to the utility function U i , the following 
assumptions are made 

8U i 
>0 all i, j 1,2. 

8qii 
(2) 

82Ui 
<0 all i, j = 1, 2. 

8qil 
(3) 

The ith user faces the following problem: 

Maximize 

subject to (4) 

and j = 1, 2. (5) 

Using a Lagrange multiplier technique the necessary 
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con.ditions for a maximum for the user can be 'deter
mined by differentiating (6) partially with respect 

to qil, qi2, and Xi. 

cPi(qil, qi2, Xi) = U i(qil, qi2) 

+ Xi(I i - P1qil - P 2qi2) (6) 

The partial derivatives are: 

(7) 

acPi aU i 
-- = - - ~i P2 = 0 
aqi2 aqi2 

(8) 

(9) 

Let q * ii be the values that satisfy this maximization 
problem. In general, the optimum values will depend on 
the values of PI, P 2 and Ii. Thus 

all i, j = 1, 2 (10) 

Equation (10) is the demand schedule of the ith user 
for commodity j. From equation (4), q* i1 can be ex
pressed as 

(11) 

Let QI and Q2 be the total demand by all users for these 
two commodities. Then, if there are n users, 

n n 

Qi = 2: q*ij = 2: dij(P1, P 2, Ii) 
i-l i=1 

The optimum allocation at the central organization 
level depends on how each user's utility changes as a 
function of his budget-allocation and the prices of the 
inputs he uses. Consider the budget allocations first. 
Using equation (11), the utility of the ith user, if he is at 
an optimum position, can be expressed as: 

(13) 

The simultaneous solution of equations (7) and (8), 
which are necessary for an optimum, require that 
aUi / aU i PI 
~ -;-;- = P ,and therefore that 
uq il uq i2 2 

(15) 

Substituting this in (14) and rearranging, gives 

1 aUi (16) 

Noting that P 2 is always positive (since it is a price), it 
follows from condition (2) and (3) that the utility of the 
ith user will increase at a decreasing rate as his income 
increases .. 

Now consider how the ith user's utility changes as a 
function of a change in P2. Differentiating equation 
(13) partially with respect to P2 gives 

(17) 

From equation (11), 

Substituting equations (15) and (18) into (17), and 
rearranging, gives 

(19) 



It follows from conditions (2) and (3) that the utility of 
the ith user will decrease as P2 increases. 

Central organization decisions-The central organiza
tion's decisions are how much money to allocate to each 
user, and what price to set for computer services. As
sume the organization's objective is to maximize a 
linear combination of user utilities. (More complicated 
functions of user's utility might also be consistent with 
the assumption of no goal conflict between users and 
the organization; but these complications will not be 
considered in this paper.) The organization's objective 
function can be written as 

fa 

Do = 2: 1J.i u,* 
i=1 

(20) 

i = 1,2, ... n 

The organization's budget constraint is that the amount 
it can allocate to users is the sum of its fixed resources, 
K,plus the profits of the computing center. The 
revenues of the computing center are P 2Q2. Its costs are 

(21) 

Thus the budget constraint of the organization is 

fa 

K + P2Q2 - O2 = 2: Ii (22) 
i=1 

The necessary conditions for a maximum at the 
organization level, can be obtained from the Lagrangian 
expression 

fa 

8 = 2: IL' u,* 
i=1 

Differentiating 8 partially with respect to Ii, and 
setting equal to zero gives 

a8 
aI .. 

i = 1,2, ... n 

a8 
Using equation (16), a sufficient condition for aI, = 0 

is that 

(!..) au, P.i ._-
. P 2 aq*i2 
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= AO [1 - aq* i2 (P2 - ~)], 
ali aQ2 

1 = 1, 2, •.. n. (25) 

af . . I h . t' f Note that -Q IS the marglna cost to t e organlza Ion 0 a 2 

an additional unit of computer output. The expression 

(Po - :~o) is the marginal contribution earned by the 

organization from the computer center as a result fo a 
unit increase in the quantity demanded at a constant 

aq· * ( af ) . . price. The term a~: P2 - aQ2 IS the computmg 

center's "marginal profit" (revenue minus costs) for 
each marginal dollar allocated to user i's budget. The 

[ aqi2*( af)] . h' ht expression 1 - ali P 2 - aQ2 occumngont eng 

hand side of equation (25) is thenet amount by which 
the organization's remaining resources are reduced for 
each marginal dollar allocated to user i. This can be 
called the net budget drain of a dollar to user i. The left 
hand side of equation (25) is the increase in utility to 
the organization from each marginal dollar allocated to 
user i. Since the term AO is common to all n such equa
tions, equation (25) says that an optimal allocation of 
budgets to users is one in which the ratio of the marginal 
utility derived by the organization from a dollar al
located to user i, to the corresponding net budget drain, 
is the same for all users. 

If computer services are priced at marginal cost, 

af d d" 't S P2 = -Q ,then the net bu get raIn IS uru y. uppose a 2 

aq * that ~, the marginal propensity to use computer 
ali 

services, is positive for all users. If the price of computer 
services is greater than their marginal cost, that is, if 

P 2 > afQ ' then the net budget drain is less than unity. a 2 

In this case the computing center, at the margin, is 
"profitable" for the organization. * In these circum
stances, the organization, ip. maximizing its utility 
would make larger budget allocations to users with a 
high propensity to spend money on computers than 
would be the case if marginal cost equals price. Simi-

• A computing center could be profitable at the margin, but still 
a2f . 

show a deficit if -:- < O. Computer center costs very likely have 
aQ2 

this characteristic. 
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larly, if the computing center is unprofitable at the mar-
af h .. 

gin, so the P2 < aQ2' t e orgaruzatIOn would allocate 

relatively smaller budget amounts to users with a high 
marginal propensity to use computer services. 

Next, consider the problem of optimum price setting. 
Differentiating (23) partially with respect to P 2 gives 

(26) 

From equation (19) aU i = q*i2 (~) aU i 
• 

aP2 P2 aq*~ 

Therefore 

= - q*i2 [JLi (~) a~i ] 
P 2 aq i2 

(27) 

SUbstituting the right hand side of equation (25) for the 
expression in square brackets in equation (27), equation 
(26) can be written as 

00 
n { [aq* i2 ( af )]} ~ -q*i2 Ao 1 - ---ar.- P 2 - ~ 

'/.=1 'I. q $2 

From the above, it follows that a necessary condition 
for a universIty "lend" maximum is that 

~) i aq*i2 
aq* i2 i=l ali (28) 

af ( af) 
= Q 2 + aQ 2 P2 - aQ 2 

af 
Condition (28) will be satisfied if P 2 = aQ2 ' that is if 

computer services are priced at their marginal cost of 
production. 

Effect of outside financing for some users: Model II 

Suppose now that there are m users who either re-

ceive no outside financing, or so little, that the optimal 
budget allocation of the organization requires that they 
receive additional funds. This category of users can be 
called internally financed users. There are additional 
(n-m) users who receive from outside more funds than 
they would receive from the organization. These are 
externally financed users. 

Rewriting equation (26) to distinguish between these 
two categories gives 

First consider an extreme situation. From equation 

(19), if for any user q \2 = 0, then :~: = O. Suppose 

all internally financed users are in this situation. Sup
pose also that for i > m, JLi = 0; that is the organiza
tion receives no direct satisfaction from computer usage 
of externally financed users. Under these conditions) a 

ffi . d" f aO i O' th t su Clent con ItIOn or -P = IS a a 2 

(30) 

The sum of the first two terms on the left is the mar
ginal revenue of the computing center. Thus equation 
(30) implies that the organization should set prices so 
that marginal cost equals marginal revenue. This is the 
profit maximizing price. 

Thus at one extreme, with all users internally fi
nanced, the rule for an optimum is that the price should 
equal marginal costs. At the other extreme, with all 
users externally financed, the rule for an optimum is 
that the price should be set so that marginal cost equals 
marginal revenue, which of course implies a higher 
price. If some users are in each category, the optimum 
price would be somewhere between these two levels. 

Hard money verus soft money ; No external 
financing : Model I I I 

Hard money can be used for any purpose. Soft money 
is usable only for computer expenditures. Let hli be the 
amount of hard money allocated to the ith user, and let 
ali be the amount of soft money allocated to him. 

The effective constraint facing an individual user will 
depend on the relative sizes of P 2 • q\2 and Bli. If 
P 2q\2 > ali, then the deficit in the user's soft money 



budget must be made up with hard money, and there is 
effectively only one budget constraint, equation (4), 
with Ii = Ji + IIi. This case has already been con
sidered. If P 2q\2 = ,Ii, then there are effectively two 
budget constraints, as follows: 

(31) 

and 

(32) 

This case will be considered below. Finally if P 2q * i 2 < 
,Ii, then computer services are essentially a free good to 
the ith user and the only effective constraint is equation 
(31}. 

In cases where equations (31) and (32) are the effec
tive constraints, the user's final decision can be thought 
of as the result of maximizing the following Lagrangian 
expression 

cf>(qil, qi2, Ah, A,) = U i (qil, qi2) 

+ Ah(hl i - Plqil) + A,(81 i - P 2qi2) 

The necessary conditions for a maximum are 

acf> aU i 
- = - - AhPl = 0 
aqil aqil - , 

and 

(34) 

and equations (3J) and (32). 
Next consider the effect on a user's level of utility as 

a result of a change in the values of ,Ii, hL, and P 2. 

(35) 

From equation (31), the second term on the right will 
aq*· 1 

be zero. From equation (32), __ ",2 = - . Thus 
a,Ii P 2 

. (36) 

Similarly, consider a change in the hard money budget. 

(37) 
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Noting from equation (32) that aq * i2 = q * i2 d aP2 - P
2 

,an 

from equation (31) that aq * il = 0 
aP2 ' 

(38) 

Next consider the organization's problem of optimally 
allocating hard and soft money to the n users. By 
analogy to equation - (22) the organization's overall 
budget constraint can be written 

n n 

K + P 2Q2 - C2 = L: hL + L: ,I, 
i=1 i=1 

But if equations (31) and (32) hold for every user, then 
n n 

L: hhI i = P1Ql and L: 81, = P 2Q2. Substituting and 
i=1 i:=1 

simplifying gives the following budget constraint 

(39) 

In this case the central organization will seek to 
maximize 

n 

8 = L: ~iU i + AO (K - f(Q·2) - P 1Ql) (40) 
i=1 

Differentiating partially with respect to hI" gives 

It follows from equation (31) and the definition of Q2 
h aQ2 aQI 1 .. 

t at ahI
i 

= 0 and that ahI, = PI . SubstItutIng these 

relations, and equation (37), equation (41) can be 
. aU i 1 

wrItten as ~i -a * (-p ) - AO = O. Thus 
q il 1 

11.. aU i ,..s--
aq*il 

PI' 
AO = 

(42) 

Similarly, differentiating (40) with respect to ,Ii, 
gives 
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Rearranging equation (43) gives 

aU i 
JLi--

aq*i2 
AO = af 

aQ2 

(43) 

(44) 

Equations (42) and (44) are both necessary con
ditions for an optimum when hard and soft money 
budgets are used, provided that soft money is not so 
plentiful that equation (32) is violated. Taken together, 
these two equations are identical to equation (15). The 
latter is a necessary condition for an optimum when 
only hard money budgets are considered. Thus the op
timum allocation of hard and soft money is one that 
yields the same expenditure pattern for every user as if 
only hard money had been used. 

Hard money verus soft money: Computer capacity 
fixed : Model IV 

Up to this point the assumption has been that the 
amount of computer capacity available could be varied 
to meet the demand. It has also been assumed that the 
organization has been free to choose an optimal price 
for computer services. These assumptions are appro
priate if the time horizon is long enough so that 
capacity can be varied. In this section, these as
sumptions are reversed. Assume that capacity is fixed, 
and that the price of computer services varies to allo
cate the available supply among users. These l:J.,ssump
tions are appropriate to a short time horizon in which 
capacity changes are not feasible. However since user 
budgets are assumed to be variable, the time horizon 
must be somewhat longer than the budget period. 

The discussion of user level maximization in the pre
vious section is applicable here as well, since the in
dividual user can still control the amount of computer 
service he uses. The only difference is that an increase 
in demand by one user now leads to a higher price (and 
therefore decreased demands from other users) whereas 
before it would have led to increased capacity. It is 
assumed that each user accounts for a small enough 
part of the total usage so that he ignores the effects of 
his own behavior on the level of prices. 

For the central organization, the Lagrangian ex
pression to be maximized 

(45) 

Since capacity is fixed, and the price must be free to 
adjust demand to the available supply, the only decision 
variables under the control of the university are the 
hard and soft money budgets of each user. Thp, neces
sary conditions for a maximum are 

1 = 1,2, "', n (46) 

and 

ao aU i 8P2 

a I · = JLi -a I. + Ao (Q2 -a I. - 1) = 0, 
8i 9~ 8i 

1 = 1,2, "',n (47) 

aP2 
To find a more meaningful expression for 8hI i and 

aP2 
, consider the aggregate demand for computer 

asIi 
services when there are both hard and soft money budget 
allocations. By analogy to equation (10), let 

. f h ·th be the demand schedule for computer servlCes 0 tel 
user. The aggregate demand schedule is then 

n 

Q2 = L: d* i2 (Pl , P 2, hL, 8L) 
i=l 

(49) 

Using the formula for implicit differentiation, the 
relevant partial derivatives are 

8Q2 8q*i2 
aP2 ahIi 8hL (50) - -- - -
ahI i aQ2 8Q2 

aP2 8P2 



and 

OQ2 Oq*i2 
OP2 OBli OBl i 

08Ii 
- --= 

OQ2 OQ2 
(51) 

OP2 OP2 

For soft money users, OqI* i2 = O,and OqI* i2 
Ok i 08 i 

1 

since, by definition, these users spend all increments of 
hard money on noncomputer uses, and all increments of 
soft money on computers. For these soft-money users, 
the necessary condition (46) can be expressed as 

OUi 
/J.i OkI.

i 
= 1. (53) 

Ao 

In equation (47), the expression 

1 
The expression on the right in equation (54) is 

m' 

where m is the aggregate price elasticity of demand for 
computer services. Thus equations (47) can be written 
as 

OUi 1 
P.i- = -+ 1. 

08Ii m 

Ao 

(55) 

Oq*'2 oq* i2 . For hard money users, --~ = -- . Denotmg by 
081, okI, 

~i, the fraction of each additional dollar of income 
devoted to computer services by the ith hard money 

oq* ,2 ~i 
user, then 081, = P

2 
for hard money users. For these 

users equations (46) and (47) are satisfied if 

(56) 

In practice it seems likely that the demand for 
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computer services is price elastic. That is, a one percent 
decline in the price of computer services will lead to a 
more than one percent increase in the quantity de
manded. This means that 11 < -1. Furthermore, since 

o ~ ai ~ 1, the following inequality will hold true 
for all users. 

1 ~. -+ 1 ~ ~, + 1 ~ 1, 
11 11 

1 = 1,2, ... , n (57) 

When computer capacity was assumed to be variable, 
a necessary condition for an optimum budget alloca
tion was that the ratios on the left of equations (53) 
and (55) be identical and equal to unity for all users, 
which in turn implied that the optimum budget al
location was one that made all users hard money users. 

Under the present assumptions this conclusion does 
not necessarily hold. With capacity fixed, prices elastic, 
and all users having strictly concave utility functions, 
it may be desirable to give some users more soft money, 
and less hard money than they would have received if 
capacity were variable. 

The logic for using soft money under these circum
stances can be explained in more intuitive terms as 
follows. If capacity is fixed, an additional dollar of soft 
money allocated to a soft-money user will be spent en
tirely on computer services. This will represent less of a 
drain on the organization's resources, than a dollar of 
hard money allocated to such a user (all of which 
would be spent on non-computer goods) or a dollar (of 
hard or soft money) allocated to a hard money user 
(part of which will be spent on non-computer goods). 

The dollar of soft money allocated to a soft-money 
user will however cause some hard money to be spent 
outside the organization. By trying to spend his money 
on computer services, the soft-money user will drive up 
the price of these services, making them less attractive 
to hard money users, who will reduce their demand for 
computer services, and increase their demand for other" 
services. 
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Priority pricing with application to 
time-shared computers 

by MAURICE MARCHAND* 

University of Chicago 
Chicago, Illinois 

INTRODUCTION 

Where a commodity cannot be stored, the producer is 
generally unable to adjust the supply instantaneously to 
randomly fluctuating demands. When the demand is 
greater than the supply, some consumers can be put in
to queues. Since consumers can differ significantly in the 
urgency of their requests, important social costs may be 
involved if adequate procedures are not designed to 
favor the individuals whose requests are the most ur
gent. 

Surprisingly enough, the contributions of economists 
to the solution of this problem have so far been rather 
limited. The first object of this study is, accordingly, to 
propose a framework within which various solutions 
can be discussed. Our general approach will be to show 
how priorities can improve allocation of resources and 
decentralize decisions. Not less important, this study 
is also intended to open a dialogue with the researcher 
whose main task is to build probabilistic models in 
queueing theory. . 

Though primarily directed to the pricing of time
shared computing systems, our approach is suitable for 
a great variety of situations where the lack of flexibil
ity in production capacity causes queues to occur. 
Examples are the maintenance of randomly failing 
machines or the allotting of priorities in telephone net
works. Accordingly, the first part of this study will be 
conducted in terms as general as possible. The first sec
tion outlines how a pricing procedure with several levels 
of priority can remedy the defects of the simple first
come-first-served rule. In section two a model of 

* An early draft of this paper was published as Working Paper 
No. 247 at the Center for Research in Management Science, 
University of California, Berkeley while the author was a C.R.B. 
Graduate Fellow 1967-1968 (Belgian American Educational 
Foundation). The author wishes to thank Professor C. B. 
McGuire for his personal encouragement, and J. P. Brown and 
E. Sharon for helpful discussions. 

general equilibrium allows us to answer the following 
questions: Which characteristics of the individual de
mands must be charged? and, What conditions must 
the prices satisfy in order to be Pareto optimal? The 
economic interpretation and the practical implications 
of the optimal conditions are derived in section three. 

The second part of the study investigates the ex
tent to which our results may help in the design of effi
cient pricing procedures for computer centers which use 
time-shared systems. Directions for further research are 
suggested. 

Priority pricing 

Outline of the problem 

511 

In most of the situations where users of a facility form 
queues to receive service, the variable production costs 
associated with the servicing itself are rather negli
gible. In such situations, any pricing mechanism, if 
advisable, must be primarily intended to reduce the 
level of disutilities that the users are causing each other 
through their presence in the queue. In fact, we deal 
here with a typical example of external diseconomies, 
the users' utilities being not independent of each other. 

The services rendered by the facility in question are 
henceforth considered as the completion of jobs sub
mitted by the users. For the same user, the urgel,lcy of 
completion is allowed to vary from one job to another. 

If we first focus our attention upon the first-come
first-served discipline, an optimal price can, in principle, 
be figured out. The general principle here is that, at the 
optimum, the social utility of an additional job should 
compensate the social disutility that its presence is 
causing to the users of the facility. Let us assume that 
the incomes are optimally distributed among the in
dividuals. Since the additional job is marginal, its 
social utility is -then correctly evaluated by its private 
cost, i.e., the money amount it is charged under the cur-
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rent price. On the other hand, the social disutility of its 
presence may be estimated by adding up the money 
amounts that the users are willing to pay not to see this 
additional job compete with their jobs for the facility. 

One may criticize this approach in two ways. On the 
one hand, the social disutility caused by an additional 
job can only be estjmated very approximatively. On the 
other hand, the first-come-first-served discipline rules 
out any possibility of discriminating among the jobs 
according to their urgency. Since all submitted jobs are 
treated on the same basis, more urgent jobs can be de
layed by less urgent jobs for a long time. 

N ow let us show how an allocation rule based on 
several levels of priority can remedy the shortcomings 
of the first-come-first-served rule. From the user's 
standpoint, several levels of priority are to be dis
tinguished by the expected queueing time that the user 
must expect to face on entering a job into a specific 
priority class-shorter queueing time being associated 
with a higher priority. It is up to the manager of the 
facility to specify in a contract these expected queueing 
times and to adjust the prices for the various levels of 
priority in such a way that his commitments will 
actually be fulfilled. 

Pricing priorities allows the ranking of the submitted 
jobs in the queue according to the urgency of their com
pletion. Knowing the set of prices, the user is, in fact, 
able to decide into which priority class to enter a par
ticular job by considering both its urgency and the re
lationship that links priority and price. 

Furthermore, the pricing mechanism allows to 
optimally allocate the resources of the whole economy 
between the facility in question and the rest of the pro
duction sector. By relating his receipts and the invest
ment costs, the manager of the facility can decide what 
capacity is optimal. 

The model 

The method followed in this section is to maximize a 
linear combination of individual utility functions sub
ject to technological constraints and market clearing 
equations. The dual variables associated with the mar
ket clearing equations will turn out to be the prices. 
Some conditions will be found that the prices must 
satisfy in order to lead to a Pareto optimal allocation of 
resources. Before doing so, the notation and the assump
tions of the model will be presented, and some results of 
queueing theory will be recalled. In particular, these 
results will allow us to determine which characteristics 
of the demands for jobs must be charged. 

In order to focus our attention upon the problem of 
pricing priorities, we consider an economy whose n con
sumers Ci = 1, ... , n) derive satisfaction from two forms 
of consumption: first, the services rendered by the 

facility in question, referred to as jobs, and second, a 80-

called composite commodity which summarizes all other 
goods available in the economy. 

The limited capacity of the facility and the short-run 
stochastic fluctuations of the demand for jobs lead to the 
occurrences of queues at random times. The manager of 
the facility establishes levels of priority (p = 1, 2, ... ). In 
accord with normal usage, priority level 1 refers to high
est priority, 2 to next highest priority, and so on. As is 
pointed out in the previous section, the manager speci
fies the average queueing time Qp that a p-priority job 
must expect to face. Of course 

Ql < Q2 < Qa .... (1) 

Let us recall that, as usual, queueing time is here de
fined as the duration of the period which elapses be
tween the instant at which the job arrives at the facility 
and the instant at which it starts being served. 

By assumption, the jobs are served one at a time in 
order of priority and within priorities in order of arrival. 
In the case where a job of higher priority arrives when a 
job of lower priority is being served, we assume that the 
facility interrupts the current service and immediately 
starts serving the job of higher priority. The service of 
the job of lower priority is resumed from the point of 
interruption when no more jobs of higher priority are 
present. * 

Let us divide the jobs into streams according to their 
levels of priority. The priority streams of jobs are as
sumed to arrive at the facility in accordance with inde
pendent Poisson processes. ** Each consumer is allowed 
to enter jobs into each priority stream. Let" ip (i = 1, 
... ,n; p = 1, 2, ... ) be the arrival rate of the p-priority 
jobs of consumer i. 

Each job is characterized by its service time, i.e., the 
duration of the period between the instant at which the 
facility starts serving the job and the instant at which 
the job is finished provided that no interruption occurs. 
The service times of the jobs are supposed to be mutu
ally independent random varjables and independent of 
the arrival times. Denote by Hip (z) the probability 
that the service time Zip of a p-priority job of con
sumeriis ~ z 

Hip(Z) = Pr(Zip ::; z), 

i = 1, .. " n; p = 1, 2, ... . (2) 

*In queueing theory, this service policy is referred to as the 
pre-mptive-resume case. As a matter of fact, our model implicitly 
assumes that the facility does not waste any time on turning its 
attention from one job to another. 

**To focus attention on the stochastic fluctuations of the de
mand for jobs, the model ignores its short-run periodicity. This is 
implicitly involved in the assumption of Poissonian arrivals. 



Let a p i and {3p i be the two first moments of the random 
variable Zp i 

; p = 1,2, (3) 

(3ip = 100 

z2dHip (x), 
o i = 1, ... ,n; p = 1, 2, .... (4) 

The service time of the jobs depends directly upon the 
capacity, or the speed of the facility. Since the speed of 
the facility will be a key decision variable, it must be 
stressed here that the above distribution functions of 
service times and their two first moments are defined 
with reference to a facility of unit speed. 

N ext, let us define 

1 = 1, ... , n; p = 1, 2, (5) 

1 = 1, ... , n; p = 1, 2, ... . (6) 

Henceforth the quantities a i
p and b i

p will be referred to 
as the first and second moments of consumer i's 
p-priority stream. 

In the same way, the first and second moments of the 
aggregate p-priority stream, ap and b p , can be defined as 

n 

ap = L: api, p 1,2, (7) 
i=1 

n 

bp = L: bpi, p 1,2, (8) 
i==1 

Finally, let 

p 

ap = L: ar , p 1,2, (9) 
r=1 

p 
1)p = L: br , p == 1,2, (10) 

_1 

Fron Takacs 1 it can be shown that, in order that the 
actual expected queueing times do not go beyond the 
specified times Qp; the first and second moments of the 
aggregate streams, ap and bp (p = 1, 2, ... ), and the 
speed of the facility, s, should satisfy the following tech-
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nological constraints * 

ro=l 

p = 1, 2, .... (11) 

Up to now, we have argued as if the satisfaction that 
a consumer derived from a stream of completed jobs 
depended only upon the expected queueing time. As a 
matter of fact, his satisfaction depends on the average 
waiting time, which is equal to the sum of the average 
queueing time and of the average completion time. The' 
completion time is defined as the duration of the period 
that elapses between the instant at which the job 
starts being served and the instant at which it is com
completed (taking into account the interruptions due to 
the occurences of higher priority jobs). It can be shown 
that the average completion time of a p-priority job is 
(s-ap_l)-l times its expected service time (on a facility 
of unit speed). 

_a_~r_~_~_e_s _______________ j~~~~, ~~ 
service 
ends , .. ,' 

FGH 

queueing time completion time 

waiting time 

IIm'U'n : interruption of the service 

AB + CD + EF + GH = service time of the job 

The preferences of the consumers are assumed to be 
representable by convex, twice continously differenti
able utility functions 

i = 1, ... , n, (12) 

*For the priorities labeled with numbers greater than some 
value, the expected queueing times are so long that even without 
any charge, few users are willing to submit jobs at these priority' 
levels. As a consequence, the number of jobs is not large enough 
to make the actual expected queueing time reach the specified 
time. This is taken into account by the inequality sign in (11). 
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where Xi denotes the quantity of composite commodity 
consumed by i. As a matter of fact, the satisfaction a 
consumer derives from the facility depends on the ar
rival rates ~pi (p = 1, 2, ... ) and the distribution func
tions of service times Hpi(z) (p = 1,2, ... ). However, be
cause of the way these characteristics of the individual 
dtreams· of jobs appear in the technological constraints 
(11), only the first and second moments of the in
dividual streams, api and bpi (p = 1,2, ... ), are relevant 

. here. As for the speed of the facility s and the param
eters ap (p = 1, 2, ... ), they are included in the utility 
functions to take account of their influence on the com
pletion times. 

Finally, the production possibilities per period of the 
economy are contrained by the convex, twice con-· 
tinuously differentiable function 

f(x, s) = ° (13) 

in which x represents the quantity of the composite 
commodity supplied per period. ** The transformation 
function (13) involves the maintenance and the replace
ment of a facility of speeds. 

The conditions for a Pareto optimum will be found by 
maximization of a linear combination (with arbitrary 
weights) of the individual utility functions, subject to 
the appropriate constraints, namely 

n 

max L w'UJ(x i ; aI', b1
i ; 302', b?t; 

Xi, api, bpi, 301' $-1 ••• ; at, a2, "', 8) 

,bp , ap, hI" s, x 

subject to 

n 

301' = Lap', Ap p = 1, 2, ... (14) 
4-1 

n 

bp = L bpi, Bp p = 1, 2, ... (15) 
i=1 

p 

ap = La", Ap p = 1, 2, ... (16) 
"~1 

p 

bp = L b", Bp p = 1, 2, ... (17) 
,..., 1 

**The transformation function (13) implies that the facility is 
operated without variable costs of production and that the main
tenance costs are independent of its use. These assumptions are 
chosen to avoid complicating the discussion. 

n 

X = Lxi, x (18) 

bp 
Qp ;::: ( , "(p p = 1, 2, ... (19) 

2(s - ap) s - ap-I) 

f(x, s) = 0, (20) 

where the symbols on the right stand for the dual 
variables associated with the constraints. 

The first-order conditions· for a maximum are (in 
addition to (14) through (20» 

i = 1, .. " n, (21) 

i = 1, ... , nj P = 1,2, 

Wi aUi 
ab

p
i - Bp = 0, 

i = 1, "', n; p = 1, 2, 

GO 

L-A" - Ap = 0, 
"=oJ) 

GO 

L-B" - Bp = 0, r-p 

n 

p = 1,2, 

p = 1,2, 

+ 2: wi au' = 0, p = 1, 2, 
_1 aap 

13p - "(I' ( )~ ) = 0, 2 s - ap s - ap-1 

p = 1,2, 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 



[
_1__ + _1 =---] 
s - ap s - ap-l 

+ t Wi aUi = 0, (28) 
i=l as 

af x+cp-=o ax ' (29) 

p = 1, 2, .... (30) 

Our first task will be to see how the prices emerge 
from our analysis. Under the restriction that the 
incomes ri are such that 

i, j = 1, ... , n, (31) 

the first-order conditions (21), (22), and (23) are simply 
the conditions for a maximum of the individual utility 
functions. From that, one can infer that, up to a change 
of dimension, Ap and Bp stand for the prices of the first 
and second moments of the p-priority stream and X for 
the price of the composite commodity. 

Before going further, let us define 

P = max {P: Qp = bp 
}. (32) 

2(s - ap)(s - ap-l) 

For the priority levels labeled with numbers greater 
than P, the expected queueing times are such that the 
st~eam of jobs is not large enough to make active the 
corresponding constraints (19). 

From (30), one can conclude that 

"(p = 0 for all p > P . (33) 

From (25) and (27), it then follows that 
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for allp > P . (34) 

Substituting the "(p's from (27), the first-order condi
tions (26) can be rewritten as follows 

p = 1, 2, ... , P - 1 (35) 

(36) 

Together with (24) and (25), (35) and (36) provide the 
first-order conditions that the prices of the facility must 
satisfy in order to be Pareto optimal. 

Finally, substituting cp from (29) and the "(p's from 
(27), (28) can be rewritten as follows 

dx 
-x ds = 

~ __ [ 1 1] 
L..J bpBp ---- + 
p=l S - ap s - ap-l 

(37) 

in which dx/ds stands for the transformation rate 
between x and s 

(38) 

To be Pareto optimal, the speed of the facility must 
satisfy the first-order condition (37). 

Interpretation and implication of the results 

A. Let us imagine that the manager of the facility 
would be only concerned about his commitments on the 
expected queueing. times, and would ignore the con
ditions that his prices must satisfy in order to be Pareto 
optimal. Since the values of the ap's and bp's satisfying 
the active technological constraints (11) are not 
uniquely determined, the manager would have some 
degree of freedom in the choice of his prices. However, 
if the manager of the facility is also concerned about the 
efficiency in resource allocation, the conditions (35) and 
(36) restrict his possible choices. 

B. From (24) and (25), one can' rewrite the first
order conditions (35) as follows 
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p = 1, 2, .... (39) 

Rearranging the terms of (39) and taking account of 
(34), we obtain 

PH n OUi 
L L ~i--=-
r=p i=l oar 

p = 1, 2, "', P. (40) 

Our task will be now to provide an economic in terpre
tation of the last conditions. For this purpose, let us in
crease ap by an infinitesimal increment while keeping 
constant the first moments of the aggregate priority 
streams. In order that the active constraints (11) re
main satisfied, it is then necessary to modify the b/s. 
Since the occurrence of a higher priority job interrupts 
the servicing of lower priority jobs, the p-priority jobs 
do not affect the jobs with smaller priority numbers. It 
follows that a shift in ap must be offset only by shifts in 
bp, b p + 1. .. and bp • Differentiating with respect to 
ap, b p, b p + 1. .. and bp those of the constraints (11) 
which correspond to the priority levels p to P, we obtain 

dbp + .. ·dbr _ 1 
- - + br [ ( ) ( ) (s - ar)(s - ar-l) s - ar 2 s - ar-l 

1 
+ ( ( ) 1 dap = 0, s - ar) s - ar-l 2 

r = p + 1, "', P. (42) 

Dividing everywhere by (dap ) , we have a system of 
equations whose unknowns are the rates of technical 
substitution: the Qp's being held constant 

( 
_ dbp ) , (_ dbp+1

) ... and (_ dbp 
) • 

dap dap dap 

Solving the system, we obtain 

- ( :: ) = s ~. a. ' (43) 

(44) 

+ r = p, .. " P'-2 (45) 

Finally, introducing these results into (40), we have 

Ap = - k.J - L L: Cl i -=- , ~ ( db r ) B _ P+l ,. au i 
r=p dap r r=p i= 1 aar 

p = 1, 2, .. " P. (46) 

Under this form, the economic interpretation of the 
first-order conditions on the prices is straightforward. 
Let us increase ap by an infinitesimal quantity,~ap. 
Since marginal, the social utility of this increment is cor
rectly evaluated by (Ap ~ap). However, the increase)n 
ap imposes to change the bp's in order that the ex
pected queueing times do not go beyond the specified 
values Qp. The social disutility due to these shifts in the 
bp's is estimated by ~ap times the first term on the 
right-hando side of (46). On the other hand, an increase 
in a p causes the completion times of the jobs with 
priority numbers equal to and greater than p to be ex
tended, the social disutility of which is reflected in the 
second term on the right-hand side of (46). One can then 
conclude that condition (46) expresses that at the 
optimun, the social utility of an increase in a p should 
offset its social disutility. * 

C. The first-order condition (37) on the optimal 
speed of the facility can be interpreted in exactly the 
same way. Let us simply remark that the left-hand 
side of (37) stands for the marginal cost of the speed. 

D. As can be seen from (37) and (46), our approach 
fails to completely avoid resting on an evaluation of the 
disutility that the users of the facility are causing each 

*Even if the capacity of the facility is not optimal, the conditions 
(46) on prices remain optimal. 



other. ,However, one can point out that the last terms 
on the right-hand side of (37 and (46) refer only to the 
effects of s and the ap's on the completion times of the 
jobs. Without expressing any opinion on the importance 
of these terms, the extent to which our pricing pro
posal relies upon the evaluation of external disutility is 
clearly much less significant than in the case where the 
simple first-come-first served rule is adopted. ** 

E. Pricing both the first and second moments of the 
individual priority streams affects the behavior of the 
consumer in two ways. First, the consumer will be en
ticed to reduce the service time variance of the jobs he 
enters into each priority str.eam. Second, the consumer 
will be encouraged to make his job as short as possible 
To show this, let us first imagine that the consumer i 
generates a p-priority stream of arrival rate Xi p, and that 
the service time is not random, say a'ip. He would then 
be charged Xip a'ipAp + Xip (a'i p)2Bp]. Let us now 
imagine that he could manage to make twice as short 
the time of his jobs while doubling his arrival rate. His 
charge would then be reduced by ~Xip (a'i p)2Bp. 

F. The adjustment process through the prices has so 
far been assumed to take place prior to the beginning of 
the period considered. Given any prices announced by 
the manager, each consu:r:n,er lets him know the first and 
second moments of the individual streams he would 
enter at each level of priority. By trial and error, the 
manager could then adjust the prices so as to fulfill his 
commitments about the expected queueing times. 

As a matter of fact, the process toward equilibrium is . ' In the real world, carried out through "tatonnement" 
over time. This fact, at least in principle, does not in
volve any further difficulties. Each job performed by 
the facility will be charged individually, one component 
of the price being proportional to its service time and 
the other to its squared service time. *** 

** As far as conditions (37) are concerned, this failure is due to 
the assumption that the service of a job is interrupted when a 
higher priority job is submitted. Exluding interruptions makes the 
expected completion time of a job equal to (S)-1 times its expected 
service time.l In this case, the expected completion time is no 
longer a function of the ~'s. 

***Important remarks must be made at this point. Both the 
service time and its square being charged, rational behavior would 
lead the user to divide each of his jobs into as many separate jobs 
as possible. As a consequence, instead of submitting one job at a 
time, he would simultaneously submit a number of jobs. Applying 
without qualifications the results of the model would then bring 
about violation of the assumption of Poissonian arrivals on which 
our model is based. The only way to avoid this conclusion is to 
charge such jobs as one unique job. whose service time is obtained 
by adding up the service times of the separate jobs. 

On the other hand, the assumption of Possonian arrivals 
implies that no information is provided to the consumer about 
the queueing size at the time he takes his decision. Otherwise, 
he could vary his arrival rate with the instantaneous queueing 
size. 
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Application to a particular case: the time-shared 
computer 

The time-sharing systems we are concerned with are 
ones in which users have access to the same computer 
through remote consoles. Many users may be simul
taneously connected to the computer, i.e., on-line. 
Typically jobs performed on a time-shared computer, 
such as those involving trial-and-error procedures, are 
of a conversational nature. Thus the amount of com
putation required per request from on-line terminals is 
usually much less than that required by typical batch 
jobs. While on line the users spend a considerable 
amount of time evaluating the results of their previous 
requests and preparing their future requests; neither of 
these require computing time. Rapid turn-around is 
essential to a time-sharing system because users are 
waiting at their consoles for replies to their requests 
without engaging in other productive activity'. **** 

At first sight, the technical characteristics of time
sharing systems seem to accommodate the assump
tions upon which our results in the first part rest. In 
particular, the time-shared computers have high flex
ibility in rescheduling their operations so that interrupt
ing the servicing of a job does not raise any technical 
difficulties. Therefore, one could apparently use our 
results to design an efficient procedure for charging the 
services rendered by a time-shared computer, especially 
the computation time of the requests according to their 
priority level. Putting things in this way, we are implic
itly assuming that the central processing unit is the 
only element which limits the capability of a time
shared computer. Other elements, however, should be 
considered as scarce resources, namely the core memory 
and the entry channels whose number limits the possible 
number of users on line. It follows that efficiency inr I e
source allocation requires that prices paid by users re
flect their use of all scarce resources: computation time, 
memory utilization, and access time. 

Another salient feature of time-shared computers, 
which the assumptions of our model do not accom
modate is switch time, i.e., the nonproductive period 
during which the central processing unit is turning at
tention from one request to another.t Within the pro
posed scheduling procedure, the number of switchings 
may become large since the servicing of an incumbent 
request is allowed to be interrupted if a, higher priority 
request is submitted. Let us define the technical per
formance of the scheduling technique as the per-

****An introduction to economic aspects of time-sharing can be 
found in W. F. Bauer and R. H. Hill. 2 See also M. Greenberger.3 

tSwitching from one request to another may involve, for 
example, swapping programs and data from the core memory to 
the auxiliary memory and vice versa. 
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centage of time the central processing unit spends in 
productive computation. This technical performance 
may be achieved only at the expense of the economic 
efficiency of the scheduling procedure. Excluding inter
ruptions entirely would lead to maximum technical per
formance, but then a request of lower priority may de
lay a request of higher priority for a long time, contrary 
to efficient operation of the facility from an economic 
point of view. This means that the technical perfor
mance should be somewhat sacrificed in order to achieve 
economic efficiency. On the other hand, to interrupt the 
servicing of a request that is nearly completed at the oc
currence of a higher priority request may cause ineffi
ciency in the allocation of computer time. For instance, 
one can think of th~ following rule. In the case where a 
request of higher priority occurs, the decision to inter
rupt the servicing of an incumbent request would de
pend on three factors: the expected switch time, the 
expected time to complete the incumbent request, and 
the relative levels of priority of the two jobs in question. 

More general remarks can be made about the realism 
of our analysis. First, no attention has been giv.en to the 
dispersion of the waiting time around its expected value. 
As is well known, the more rapidly the slope of the cost 
(or disutility) function of waiting time increases for a 
certain request, the more important it is to take into 
consideration the variance of the waiting time. * Going 
even further, to disregard moments of order higher than 
two is correct only if either the waiting time is normally 
distributed or the cost function of waiting time is 
quadratic. ** Though apparently less crucial here than 
for the jobs executed on a batch basis, *** this problem 
deserves further research. 

Second, the major purpose of the proposed pricing 
and scheduling procedure is to distinguish the requests 
according to their urgency. In principle, this attempt 
requires that the expected queueing times for two 
adjacent priority levels be as close as possible, and con
sequently that the number of priority levels be large. 
However, the cost of implementing the proposed sched
uling technique increases with the number of priority 
levels. Our general equilibrium model completely 
ignores· these costs which must be taken into account 
while implementing the proposed scheduling technique. 

*Discontinuities in the cost function of waiting time, due to 
deadlines for instance, seem less likely to occur than for the jobs 
executed on a batch basis. 

**This assertion can be inferred-from the theory of portfolio 
selection. See Tobin. 4 

***During each of his on-line stays, the user usually generates 
several requests. The larger their number is, the better the average 
of queueing time per request is approximated by the expected 
queueing time (la,wof large nuinbers). 

Two interrelated questions arise here. First, for any 
particular number of priority levels being imposed, 
what expected queueing time should be assigned to each 
of these priority levels? Second, what is the optimal 
number of priority levels? An optimal compromise 
should clearly be found between the cost of imple
menting the pricing procedure and its efficiency to dis
tinguish the requests according to their urgency. * 

Third, the proposed pricing remains essentially 
static, in the sense that the prices are fixed for1l.-certain 
period of time (say one month), and are not allowed to 
change according to the stochastic short-run fluctu
ations of the demand. At the time an idle period occurs, 
a "dynamic" pricing scheme would reduce the rates to 
fill the gap. Such dynamic pricing requires that the 
potential users be aware of the rates at any time. A 
time-sharing system· can apparently fulfill this require
ment without significant costs since information chan
nels exist from the computer center to the user's con
sole. ** Before implementing a dynamic pricing scheme, 
many difficulties must be overcome, and the develop
ment of additional results in queueing theory is not the 
least. 

Further, in the case when a user is not aware of the 
exact amount of computation time that a particular re
quest will require, he may encounter very complex prob
lems to decide at which priority level to enter his re
quest. In fact, the price he will be charged for choosing 
any priority level is uncertain. To alleviate this diffi
culty, the user might, in advance, order the computer 
center to stop the computation and to place the incom
pleted request at a lower priority level in the case where 
the .request would require a computation time larger 
than some specified quantity. 

Fifth, the periodic short-run fluctuations of demand 
have been ignored in order to focus attention upon its 
stochastic fluctuations. In our opinion, taking account 
of the demand periodicity does not raise any theoretical 
difficulties. The prices should vary according to the 
periodicity in the demand, and be fixed so that the 
technological constraints (11) on the expected queueing 
times are satisfied at any time. The optimal condition 
on the capacity, or the speed, of the ~entral processing 
unit could easily be redefined to take account of this 
periodicity. 

*Fundamentally, the problem we deal with here is to optimally 
choose the commodity space, namely its dimension (number of 
priority levels) and the qualitative characteristics of included 
commodities (expected queueing times). 

**The argument collapses if the communication network 
between the computer system and the users' consoles mainly 
use telephone lines which are not private. 



All these critical comments, the list of which is un
doubtedly not closed, show the limits of our results. 
Hopefully, this study provides a framework within 
which improvements of the current pricing procedures of 
computer centers can be discussed. 
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INTRODUCTION 

The past twenty years have seen the rapid de
velopment of an extremely powerful new tool
namely the electronic digital computer. The tech
nology associated with these machines has ad
vanced rapidly, permitting the development of 
capabilities which only a few short years ago 
would have staggered the imagination. Man has 
been equally progressive with respect to the ap
plication of this tool in his endeavors. In par
ticular, the area of business management has 
built rapidly upon the advantages offered by 
computer processing. Although the computer only 
served as a glorified bookkeeping machine in the 
earliest applications, its usage quickly developed. 

Today there are complex production scheduling 
and planning programs, sales forecasting and 
analysis routines, elaborate simulations, and 
much work is going into the development of 
large-scale information systems. Yet, despite the 
rapidity with which management has seized upon 
the computer for assistance in making better 
busines~ decisions, there has been little movement 
by computer center managements to bring man
agement techniques to bear upon the administra
tion of computer services. This is particularly 
surprising in the light of today's multimillion 
dollar investments in computing equipment. 

Although there are many management prob
lems involved in operating any computer in
stallation, this paper is focused primarily upon 
thOose problems associated with the ~aking of 
resource allocation decisions. These problems be
come particularly acute for managers of large, 
centrally located systems which serve ma.ny di
verse general purpose users. 

Background 

Partly for historical reasons and partly because 
of the pervasiveness of gOovernment funding of 
computer users, there has been a great emphasis 
upon the costing of computer services. Although 
the various costing procedures adequately re
cOover the costs of an operation, they all fail to 
allocate the scarce computing resources in an 
appropriate manner. For example, under indirect 
costing the expenses connected with the acquisi
tion and operation of a computer are charged
against various overhead accounts, so that the 
user does not "pay" in proportion to his usage. 
Thus the computer is looked upon as something 
of a "free good," and the demand for service 
readily exceeds the supply. Since the computer 
can provide only a certain maximum quantity 
of service in a unit of time, a' form of de facto 
allocation must take place. For example, long 
turnaround times may serve to discourage a 
sufficient amount of usage to bring supply and 
demand into balance. Certain administrative rules 
may also be used to enable the center to provide a 
more suitable service for the majority of its 
users (e.g., only jobs of 10 minutes or less can 
be run during the prime shift). 

Further, in any environment there are always 
certain users who request special treatment, such 
as exemption from the standard scheduling pro
cedures. Often a center's management is forced 
to pass judgment upon the importa,nce or worth 
of these projects in deciding whether or not to 
grant such requests. * In summary indirect cost .. 

* Alternatively, personal friendships with computer operators 
or other such considerations may decide these questions. 

521 
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ing results in perpetual saturation, so that man
agement has no guide as to when additional c'a
pacity should be installed. Furthermore, alloca
tion O'f the available computing resources must 
be made on somewhat arbitrary grounds rather 
than for maximum user benefit. 

On the other hand, under direct costing- the 
user pays the CO'st 6f his usage; the more he runs, 
the greater his charge. Thus management has 
some gauge as to what the real demands on the 
center are. However, the allocation problem still 
remains. Since the cost to provide a given amount 
of computing is nearly independent of the turn
around or service given to any particular job, 
resort must still be made to administrative or 
other somewhat aribtrary procedures for deter
mining the service which a j'Ob is to receive. 

A further effect of direct costing stems from 
the fact that the provision of computer services 
can be characterized in the short run as a high 
fixed cost, low marginal cost operation. Thus, the 
cost per unit of computing is greatly influenced 
by the total usage of the facility. When demand 
is heavy, the cost is low, thereby encouraglng 
even further usage and worsening the turnaround 
situation. When demand is light, the cost is high, 
dis-couraging use of an already lightly loaded fa
cility. In situations where users are required to 
use the cheapest facilities available, work is driven 
off lightly loaded systems to more heavily loaded 
ones; just the opposite of what would be desired 
for the most efficient utilization of the available 
resources. 

There is, however, a growing awareness of 
these problems. For example, the Committee on 
Governmental Relations of the National' Associa
tion of College and University Business Officers 
discussed these issues in Washington, D.C. (July 
11-12, 1967), and a conference on computer pric
ing was held at the RAND Corporation (August 
2-3, 1967). A number of individuals have also 
made proposals.1 ,2,3,4 One of the most widely men
tioned alternatives is some form of pricing. That 
is, rates which are set so as to govern usage 
rather than to reflect strictly the cost of providing 
the service. Suggestions run all the way from a 
level price fO'r the life of a computing system 
to a flexible price that ean be -adjusted in' response 
to demand as it varies from year to year, or from 
month to month, or even from hour to hour. N eed
less to' say there is much discussion about the 
mechanisms to be used to' adjust prices. Proposals 
range all the way from periodic reappraisals by 

management to dynamic adj ustments based upon 
the actual workload. Despite their diversity all of 
these prO'Posals have one thing in cO'mmon; they 
are concerned with the use 'Of prices to allocate 
computer resources in a rational and effective 
manner. 

Unfortunately, despite the desirability O'f pric
ing, most of the discussions which have been 
carried out in this area have treated the computer 
as a single resource. Thus, a price is used to' allo
cate "computer time." Under many older batch 
processing systems, the user tied up all O'f the 
resources of the system when he ran (by prevent
ing others from using them) even though he him
self was not actually using all of them. Under 
these cO'nditions the 'Use of a single price is quite 
satisfactory. 

However, we are now faced with a quite 
different situation. In today's multipro
grammed and lor time-shared computing en
vironments there is no single resource that can 
be priced in order to allocate the usage' of the 
entire system, for there are a multitude of re
sources'which must be allocated. Further, a single 
user need not utilize all the resources of the sys
tem at anyone time, and it is possible that other 
users may be able to utilize some of the remain
ing resources. Accordingly, there has been a 
movement to-ward charging each user for only 
those resources which he actually uses' or other
wise renders unavailable to others. Already many 
computer centers are employing multirate struc
tures. For example, the University of Michigan 
Computation Center has a set of nine rates cover
ing the use of its system. 

However, in O'rder to allocate the resources of 
the entire system so as to maximize the utiliza
tion O'f those resources, it is necessary to have not 
just an array of prices but an array of flexible 
or adjustable prices that are responsive to de
mand. In other words service as well as com
puter resources must be taken into consideration. 
Just as prices are used to allocate the limited re
sources of the national economy, so can responsive 
pricing be used to allocate the limited resources 
of a computing system. 

Furthermore, today's computer systems are 
modular in design. It is possible to adjust the 
number and speeds of disk sto;rage units, to adjust 
the number of I/O channels, etc. Often even the 
size and speed of the mem'Ory can be altered. Thus, 
the management of a computer center is faced 
with a much more difficult situation than the de-



terminati'On 'Of whether 'Or n'Ot additi'Onal capacity 
in the f'Orm 'Of a larger 'Or an additi'Onal c'Omputer 
is required. It is n'Ow necessary t'O make such de
cisi'Ons 'On each 'Of the individual components 'O,f 
the system. Thus, it is m'Ore impo;rtant than ever 
to be able to have pricing data fDr comparis'On 
with acquisiti'On and installati'On costs in 'Order to 
assist in making appr'Opriate decisions. 

Thus, by having a set of flexible prices which 
are responsive to the demands and requirements 
'Of the users, it is possible fDr the system's re
sources to be all'Ocated as effectively as poss.ible. 
Further, such a structure W'Ould enable manage
ment to make better decisi'Ons with respect to the 
quantities 'Of the vari'Ous resources to be pr'Ovided. 
This paper discusses the considerati'Ons which are 
involved in developing a flexible pricing procedure 
and describes an experiment, currently being con
ducted, in which such a pricing procedure is being 
empl'Oyed in the 'Operati'On 'Of a computer center. 

Utilization measurements 

Before proceeding to the devel'Opment 'Of a 
flexible pricing structure, it is well to consider 

. the various measurements which might be made 
cencerning a job's utilizati'On 'Of a cemputing sys
tem. A list of potential measures is shown in 
Table I; an example 'Of a possible measurement 
unit fer each item is shown in brackebJ. It should 
be neted that these measures are fDr a general
ized time-sharing 'Or multipregramming system 
with a hierarchical secendary 'Or file storage er
ganizatien. In any particular system, seftware 
design or hardware availability may preclude cer
tain 'Of these measures. 

The first f'Our measures are concerned with a 
j'Ob's utilizati'On 'Of the "main system." Elapsed 
tim,e measures the peri'Od during which a j'Ob i-s 
in some sense "en" the system, while compute 
time indicates the peri'Od f'Or whic,h the CPU was 
empl'Oyed. The memory measures are concerned 
with both the extent and the duration 'Of mem'Ory 
occupancy. Alth'Ough the page is used to illus
trate the units of space, any other unit could be 
empl'Oyed equally well. 

The next eight measures are cencerned with 
the I/O operatiens associated with the process
ing 'Of a particular j'Ob. S.wap space measures the 
am'Ount 'Of space required over time fDr the stor
age 'Of program im.ages. This W'Ould be applicable 
pnly in a system in which a j'Ob need n'Ot be t'Otally 
c'Ore resident for the durati'On 'Of its elapsed time 
(i.e., a system empl'Oying r'OIl-in reIl-'Out, swap-
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TABLE I-Possible utilization measures 

ET: Elapsed Time, the time from the start to the finish of a 
job [seconds] 

CT: Compute Time, the actual CPU time used by a job 
[seconds] 

MT: Memory Time, the integral over time of memory space 
occupied by a job [page seconds] 

PMT: Productive Memory Time, the integral over time of 
memory space occupied by a job while CPU cycles were 
being used [page seconds] 

SS: Swap Space, the integral over time of secondary storage 
space used by a job for swap image storage (or overlay 
storage, or virtual memory storage) Cpage seconds] 

S1': Swap Time, the amount of time spent swapping (over
laying or paging) a job in and out of main memory 
[seconds] 

10Td : Input Output Time, the sum of a job's I/O times for 
file references employing device d (tape drive, disk unit, 
device controller, I/O channel, PPU, etc.) [seconds] 

IONd : Input Output Number, the number of I/O operations 
initiated by a job for file references employing device d 

[operations] 
CR: Cards Read, the number of input cards for a job [cards] 
CP: .Cards Punched, the number of output. cards for a job 

[cards] 
LP: Lines Printed, the number of output lines for So job [lines] 
PT: Plotting Time, the time from the start to the finish of a 

job's plot [seconds] 
SUe: Set Ups (of tape reels, disk packs, special forms, etc.) 

required by a job on devices of class c [set ups] 
FS,: File Storage, the integral over time of storage space for 

a user's files on unit, [page days] 
TR: Tape Reels, the integral over time of the number of 

reels reserved for a user [reel days] , 
DP: Disk Packs, the integral over time of the number of 

packs reserved for a user [pack days] 

ping, paging, dynamic 'Overlaying, 'Or 'Other such 
technique). This is also true for the swap time 
measure, which is merely an indication of the 
amount 'Of informati'On s,wapped 'Or 'Otherwise 
transferred in and 'Out of the main mem'Ory. 

The other six I/O measures are c'Oncerned with 
the a,m'Ount 'Of I/O caused directly by\ a j'Ob (i.e., 
file references). Input 'Output time and number 
pr'Ovide measures 'Of a j'Ob's usage 'Of the vari'Ous 
peripheral devices, c'Ontr'OI units, channels, periph
eral pr'Ocessing units, etc. The measures in terms 
'Of cards and lines provide an indicati'On 'Of pro
ductive w'Ork, independent 'Of the speed of the 
particular device and independent 'Of 'Operator 
interventi'Ons for card jams, paper breaks, etc. 

The set ups measures provide an indicati'On' of 
the special work which was required on the part 
'Of the operati'Ons staff in 'Order t'O enable a j'Ob 
t'O be processed. This W'Ould enc'Ompass the mount
ing 'Of reserved tapes, the mounting of private 
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disk packs, and the loading of special forms on 
a printer, etc. 

The last three measures in the table are cO'n
cerned not so much with the servicing of a job 
as they are with the servicing of a user over 
a period of time. Thus, file storage, tape reels, 
and disk packs measure services which are prO'
vided to' a user independent of the particular jobs 
he may have processed. In principle all of these 
measures are integrals over time. However, it is 
more likely to be practical to inventory a user's 
holdings on a daily or other periodic basis. 

It should be noted that the list of measures 
shown in Table I is by nO' means complete. Rather 
it is an attempt to indicate the type and range 
of measures which one could employ to record a 
job or user's utilization of the various system 
resources. Not only are there other measures 
which might be used, but there are also variatiO'ns 
of those listed. At the same time it should be 
realized that it is exceedingly unlikely that any 

. single installation would wish to make use of 
all of these measures. Finally, it should be noted 
that the concern at this stage is with individual 
user's utilizatiO'n of the system, not with the 
overall performance of the system. In the latter 
case there are a number of other measures (such 
as length of I/O queues, percentage of available 
CPU cycles productively employed, etc.) which 
would be O'f great interest. 

Relating resources to utilization measures 

In order to develO'P prices to associate with the 
aforementioned measures of usage, it is necessary 
to relate the various resources of the system to' 
these measures. Although this might appear to 
be a rather straightforward procedure, it turns 
O'ut to be more complicated in actual practice. 
First, it is necessary to select only those measures 
to which users can easily relate their resource 
usage. For example, in a multi programmed en
vironment the elapsed time and the me,mory time 
of a job are not directly related to that job's ac
tivities. Since the user pe'rceives very little direct 
control over his usage as indicated by these meas
ures, there is little to be gained frO'm the attach
ment of prices to these measures (other than the 
recovery of dollars). The prime mO'tivatiQn fO'r 
a price structure is to influence usage, so the user 
must perceive himself as able to exert control 
over his usage. 

Secondly, it is important to select only those 
measure's which can be obtained easily from the 

particular computer system in question. No mat
ter how effective a particular pricing procedure 
might be in allocating a system's resQurces, if it 
requires excessive amounts of system resources to 
operate, it will be inferior to an O'therwise less 
effective procedure that employs fewer resources. 
For example, on some systems it is a very time
consuming process to. measure the length of I/O 
O'perations. AccO'rdingly, it might be more effec
tive to employ the number of I/O operations per
formed as a surrogate for the volume of informa
tion transmitted. Although such a substitution 
would not be without side effects (e.g., encourag
ing fewer but longer I/O transmissions), it still 
might prove' to be advantageous. 

Third, the same reasoning can be applied to' the 
user himself. If the pricing procedure requires 
too much of his own personal resources (e.g., 
time), he will tend either to ( a ) go elsewhere to 
do his computing or (b) ignore the pricing system 
altogether. In either case this type of behavior 
defeats the purpose of having a pricing proce
d ure in the first place. 

In summary, it is desirable to select as few 
measures as possible, but these must be measures 
of activities Qver which the user has substantial 
control and which taken together account for a 
major portion O'f the system"s resources. Table II 
illustrates how resources in a time-shared or 
multiprogrammed system might be related to 
the various measures developed in the previous 
section. 

It should be noted though that for any par
ticul,ar system these assignments would be modi
fied In response to the unique characteristics O'f 
that system. Consider, for example, some of the 
alternatives with respect to memory usage. If it 
is PO'ssible fO'r a job doing a great deal of I/O 
and very little computing to tie up memory space 
during all of the I/O transmissions, it would be 
preferable to use memory time as the usage meas
ure. On the other hand, if it is possible for a job 
to be stranded in memory for long periods of 
time because other jobs do not relinquish the 
CPU, it would be preferable to use productive 
memory time as a measure. If the multiprogram
ming algorithm 'is such that one job is always 
given first priority for the CPU, it might he de
sirable to use memory time as a measure for that 
job and productive memory time as a measure for 
the other jobs in the system. 

The use of swap space and swap time also de
pend upon the particular system used. If every 



TABLE II-Possible relations between measures and resources 

Elapsed Time: terminals, transmission control units, 
telephone switching gear, terminal buffers 
in memory, any other portions of the sys
tem which are tied up for the duration of 
the life of a job 

Compute Time: central processing unit 
Memory Time or Pro-
ductive Memory 
Time: 
Swap Space: 
Swap Time: 

Input Output Time or 
Input Output 
Number: 

Cards Read: 

Cards Punched: 

Lines Printed: 
Plotting Time: 
Set Ups: 

File Storage: 

Tape Reels: 
Disk Packs: 

high speed memory 
drums or highest speed disks 
drum (or disk) control units, swap chan
nels, CPU cycles stolen 

tape units, disk drives, device control 
[units], I/O channels, PPU's, etc. 
card reader, reader control unit, I/O 
channel 
card punch, punch control unit, I/O 
channel 
printer, printer control unit, I/O channel 
plotter, plotter control unit, I/O channel 
operations staff, any system facilities 
disabled during the set up period. 
disks or other units on which on-line files 
are maintained 
tapes, st::>rage facilities for tapes 
packs, storage facilities for packs 

job is given a fixed amount of drum space, inde
pendent of the actual amount of space required, 
drum space could' just as well be related to the 
elapsed time measure. If the user does not have 
substantial control over the volume of data which 
is swapped the drum, control unit, and channel 
resources could be related to swap space or 
elapsed time. 

Input output time and number are viewed as 
measures of file activity. In principle they could 
also be used for the peripheral input output units. 
However, a measure such as the number of cards 
read is more likely to be meaningful to a user 
than the number of seconds of card reader time 
on a certain card reader. This is particularly true 
when there are similar devices having different 
speeds and when the user has little or no control 
over the actual device employed. The. use of meas
ures such as cards read or lines printed also eIimi~ 
nates the concern about card jams, paper breaks, 
and other incidents over which the user has little 
control. 

PriC'tng 

The next step in the procedure is to assign a 
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set of prices to the various measures which have 
been selec,ted. This too can be a difficult task. Not 
only is it necessary to set prices to aIIocate the 
available system resources in an appropriate fash
ion, but it is also necessary that the usage of 
the resources in each category which will result 
at the selected prices be such as to pro,vide a suf
ficient aggregate revenue for the center.* Meet
ing this latter requirement can be a problem when 
there are a number of special considerations 
which dictate that certain prices be relatively low 
(high) in order to encourage (discourage) par
ticular types of system us'age (see below). 

Since inmost cases it is not possible for a user 
to shift readily the mix of resources which his 
programs require, it is desirable that the rela
tionships between the various prices or base rates 
do not fluctuate rapidly. Even weekly adjust
ments could cause undue grief for many users. On 
the other hand computing loads do change during 
the year, if only because of seasonal or secular 
trends. Accordingly, some price adjustments must 
be made from time to time. Thus, management 
might plan to review system performance 
monthly, bimonthly, or quarterly depending upon 
the characteristics of their installation. 

If usage in a particular category dwindles, it 
is an indication that the price should be reduced. 
If the price falls too much below "full cost" it 
is an indication that there is over capacity for 
that service and that some of those resources 
should be removed from the system (unless there 
are un usual circumstances or 'requirements which 
haven't been considered). The opposite situation 
holds in the' case of excessive demand. Clearly a 
price increase will ration demand, but if the price 
rises above "full cost," it is a signal that addi
tional capacity is required. It would, however, be 
a very unusual situation in which it would be nec
essary to adjust every base rate as frequently as 
quarterly. 

As was mentioned previously it is often desir
able to use the price structure to influence users' 
behavior. Table III illustrates how charges might 
be levied for usage of the various categories of 
service. Again, the specific implementation would 
be dependent. upon the particular system as well 
as the goals and usage patterns of the installa
tion. Most of the charges are based upon flat 

*Note that in situations where the ·interests of the users are 
economically consistent with those of the center, it is total value 
(revenue plus consumers' surplus) rather than revenue that is the 
relevant measure. 
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rates, so nothing more need be said. However, 
some comment is appropriate for the other 
charges. 

If most of an installation's users work during 
the day, management might judge it desirable to 
provide as short a turnaround service as possible 
during the prime shift.** In which case the com~ 
pute time rate should be an increasing function of 
the compute time. This would, discourage long 
running jobs during the daytime, but it would not 
exclude them entirely. It would/thus be l.lP to each 
user to determine whether his /Job was sufficiently 
important to be ~un during th,eday, and a center's 
management would not haw to pass judgment 
upon the 'relative worth of .~pecific projects. By 
the same token, during the night when turn
around is less important, long running jobs could 
be encouraged by m·eans of a reduced or decreas
ing rate. The same type of argument can also be 
applied to printing, plotting, etc. Generally, 
though, long jobs in these areas are not as signifi
cant a problem since the lower per unit oostsof 
the peripheral devices usually enables a larger 
number of thes·e units to be provided to handle 
peak loads. 

In many installations the handling of a few 
cards of punched output can be particularly 
troublesome. The holes in the card have to be 
scanned to separate and identify the cards belong
ing to different jobs, and then the cards must 
be associated with the printed output for those 
jobs. As a result it may well be desirable, from 
the point of view of operations, to discourage the 
casual punching of cards. At the same time it is 
desirable to avoid impacting those users who do 
indeed have n~ for large numbers of punched 
cards. Accordingly, a fixed charge could be levied 
in addition to a flat rate per card. This would 
make the punching of a few cards relatively ex
pensive, but would have little effec.t upon the total 
charge for large punching jobs. 

A comment is also in order about the rates for 
file storage. If there is a hierarchy of on-line file 
storage devices, then there should be a hierarchy 
of storage rates with each rate being related to 
the speed of a class of device (in terms of access 
time and transfer rate). Each user could then 
determine for his own particular situation the 
trade-offs between greater speed and higher rates. 

**This would presume that the greater productivity of the 
majority resulting from the more rapid turnaround would more 
than offset the reduced productivity of the minority having longer 
jobs, 

TABLE III-Possible base charge structure 

Elapsed Time: 

Compute Time: 

Memory Time: 

Productive Memory 
Time: 

Swap Space: 

Swap Time: 

Input. Output Time: 

Input Output 
Number: 

Cards Read: 
Cards Punched: 

Lines Printed: 

Plotting Time: 

Set Ups: 

File Storage: 

Tape Reels: 

Disk Packs: 

A, (ET) where A is the rate in cents/ 
second 
Bi' (CT) for prime shift jobs where i is 8, 

monotonically increasing function of CT 
and Bl < B2 < , .. < Bn , Ci ' (CT) for 
non-prime shift jobs when ; is a mono
tonically increasing function of CT' and 
C1 > C2 > ... > Cm and where Bi and 
Ci are rates in cents/second 
D, (MT) where D is the rate in cents/page 
second 

D' ,(PMT) where D' is the rate in cents/ 
page second 
E, (SS) where E is the rate in cf>nts/page 
second 
F, (ST) where F is the rate in cents/ 
second 
~Gd' (lOT d) where G d is the r~te for 
device d in cents/second 

~G' d' (ION d) where G'd is the rate for' 
device II in cents/operation 
H· (CR) where H is the rate in cents/card 
K + L" (CP) where K is a fixed charge in 
cents and L is the rate in cents/ca.rd 
Pi' (LP) for prime shift j.:>bs where i is 8 

monotonically increasing function of LP 
and PI < P2 < , , , < Pn, Qi" (LP) for 
non-prime shift jobs where j is a mono
tonically increasing function of LPand 
Ql > Q2 > ... > Qm and where Pi and 
Qi are rates in cents/line 
R, (PT) where R is the rate in cents/ 
second 
~Sc' (SU) where Se is the rate in cents/ 

set up for devices of class c 
~Uj' (FS,) where U, is the rate for unit, 

in cents/page day 
V, (TR) where V is the rate in cents/reel 
day 
W, (DP) where W is the rate in cents/ 
pack day 

There could alsO' be a separate rate for users wish
ing to rely upon the system to select the most 
appropriate lO'catiO'ns for their files. * 

Within this framework it is also possible to 
work out a low contractual rate for each device. 
This rate would be applied to users whO' contract 
in advance for specified large quantities of stor
age space for quarterly, yearly, or other time 
period,s. This offers an inducement to large users 

*This presumes the existence of a "percolate-trickle" procedure 
whereby files are brought up to fast storage when they begirt to be 
used and are trickled down to slower and slower devices 8S,they 
become and remain inactive, 



to "inform" management of the long term nature 
of their requirements, even if they will .not re
quire all of that space every day. The reduced rate 

, can be interpreted as a rebate for assuming some 
risk-bearing from management or as a vo.lume 
disco.unt (or both). 

The only other charges shown which do. not re
sult from flat rates are those from input output 
operations and for setups. In each case there is 
ali array of rates based upon the devices or device· 
classes actually used, and the charge is the sum 
of the products of those rates with the respective 
amounts of usage. The number of rates employed 
can be made as large or small as desired. 

The charge structure described above and out
lined in Table III is by no means a recommend~d 
one fo.r every situation. Rather it is an attempt 
to. indicate the kinds of considerations that can 

. be incorporated into such a structure. Since the 
needs of installations will vary, items ill the 
charge structure must be modified or adjusted in 
order to reflect the particular goals or operating 
co.nsiderations of an installation. 

Flexible pricing 

The prices constructed in the previo.us section 
are concerned with the allo.cation of the com
puter's reso.urces over relatively long periods of 
time (e.g., quarterly). That is, they are designed 
to influence the long run behavo.rial patterns of a 
facility's user population. In many cases this will 
suffice for an effective allocation of many of the 
resources. For example, in most centers a single 
card punch can provide ample capacity, so that 
there is rarely any bottleneck in providing 
punched card output. Likewis,e the number of 
magnetic tape reels stored fo.r users does no.t fluc
tuate s,harply during the day. 

On the other hand there are· some resources for 
which demand may vary significantly over the 
course of a day or week. For example, consider 
compute time. During certain periods o.f the day 
it would not be surprising if the quantity of 
compute time demanded would exceed the quantity 
supplied by a factor of three or four. Yet over the 
CQurse of a full day the CPU wo.uldat times be 
jdle. In other words there is ample capacity on 
average, but there is insufficient capacity (by a 
significant amount) during the peak periods. The 
pricing procedures outlined thus far are con
cerned only with the allocation of the system's 
resources to users (i.e., how much compute time 
will a particular user be permitted to receive) ; 
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they are not concerned, with the timing with 
which those resources will be provided. 

Compute time is not the only resource for which 
there may arise sharp fluctuations in demand. 
During the day there may be many mOore users 
seeking time-sharing service than the s,ystem can 
accommodate. AccOordingly, someOone must be de
nied access. The same may be true for access to 
a printer or for access to a certain amount of high 
speed memory or for access to some other re
source of a particular s,ystem. However, service 
or turnaround is merely another aspect of the 
computer center's offerings. It is a valuable (and 
limited) resource which must be allocated just 
like the other resOources. Given that there are 
several users wanting to run batch jobs at a 
particular point in time, it is clear that some· of 
those jobs are going to have to wait. The ques
tion is which will have to wait and for how long . 
It is the aim of flexible pricing to resolve this 
type of problem, so that administrative edicts or 
other arbitrary procedures need not beco,me in
volved in the allocation of service. 

One often-heard proposal is for the system 
to compute the rates dynamically as a function of 
the load or waiting demand. However, this results 
in the user knowing neither the price he will be 
charged nor the service he will receive. Further, 
even if estimates are satisTacto,ry, this approach 
assumes that users finding the system heavily 
loaded will go away and return later. In many 
cases the user does not have this degree of flexi
bility (or patience) . 

Another proposal would utilize a bidding pro
cedure whereby the highest bidder would be the 
next to receive the desired computer resources. 
Although this would maximize revenue, it has 
several disadvantages. Either the user mus,t stay 
,on-line so. that he can participate in the bidding 
from time to time, or he must leave a program 
that does his bidding for. him. In either case a 
substantial amount of system resources as well 
as user resources would be required. Further, if 
the user does not develop a sOophisticated bidding 
procedure, he will not have any clear idea of when 
his job might be completed. 

The most attractive proposal is a modification 
of the bidding proc,edure. A user would request 
a quote on a particul,ar amount of a resource 
within a particular time period. For example, he 
might request three minutes of compute time 
within the next two hours. Based upon the exist
ing load and estimates of future demands, the 
system would quote a rate. If this is satisfactory 
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to the user, a c.ontract is made covering both price 
and service. If the quote is too high the user can 
request a nelW quote for the res.ource but O'ver a 
longer time peri.od, etc. Unfortunately, h.owever, 
no one has developed a pr.ogram t.o perf.orm this 
kind of calculati.on in an appr.opriate manne:r 
while employing an acceptable level .of system 
res.ources. 

A comprQmis.e approach is based upon the use 
.of pri.orities. N.ot only is this technique effective 
in this situation, but other investigators of time
sharing systems have f.ound it useful as well. 5,6 

For the case in questi.on a number of queues CQuld 
be set up. Associated with each would be a prior
ity and a price (.or rate). J .obs W.ould be selected' 
fDr service fr.om the front of the highest pri.ority 
non-empty queue. If a user is concerned about 

'turnaround, he can scan the workload waiting in 
the variQus queues and select a queue appropriate 
for his needs. If he is concerned about price, he 
can select the queue having a rate apprQpriate for 
his requirement. There is, however, a greater 
uncertainty \ ab.out turnaround time associated 
with the lower priorities. This can be minimized 
to some degree by providing the user with an 
ability to query the system t.o determine the prog
ress .of his j.ob (and to' change the priority if he 
is unsatisfied with the service). 

One O'f the most frequent criticisms of the multi
queue procedure concerns the problems faced by 
users trying t.o develop long term computing 
budgets, since they must determine in advance 
what priorities they will need in .order to proces·s 
their j.obs. H.owever, no matter what type .of an 
allocation procedure is instituted, it is not possible 
to specify both the rate and the level of service 
(unless the user is in some sense privileged). The 
problem stems fr.om the fact that users are cur
rently accustomed to fixed rates for computing 
(with variable service'). N.oW they would like to 
take advantage of the .opportunity to fix service 
(but without having to give up fixed rates). 

Table IV shows hQW flexible pricing might be 
employed in allocating some of a system's re
sources. Although the table illustrates a multi
plicative structure (a constant times the base 
charge), an additive structure could also be used 
(a flat charge added to .or subtracted from the 
base charge). I t should be noted that for most 
computer systems it would not be necessary to 
use flexible prices for both compute time and 
memory space, since nDrmally only one of these 
factors is controlling. 

TABLE IV-Possible flexible price structure 

Elapsed Time: Wi ° (base charge) where i is the number of 
terminals on the system and the Wi are 
real numbers ~ 1 and WI ~ W2 < ... < 
~. - -

Compute Time: Xi' (base charge) where i represents the 
prierity :>f service and the Xi are real 
numbers. 

Productive Memory 
Time: Y k' (base charge) where k represents the 

priority of service and the Y k are real 
numbers. 

Lines Printed: Zzo (base charge) where, represents the 
priority of service and the Z, are real 
numbers. 

The situation f.or time-sharing accesls* is some
what different. Alth.ough users' jobs can tolerate 
delays before they are processed, the users them
selves are unwilling to spend periods of time at a 
remO'te terminal waiting to gain access to the sys
tem~ A user either gains access .or he gives up 
and tries again at sOome other time; he rarely 
waits. Acc.ordingly, a set of differential waiting 
times is of little use since all waiting times are 
very nearly equally unacceptable. Thus, a some
what different queue structure is necessary. 

Rather than denying access to' an additiO'nal 
user 'when the system is "full." it W.ould be P.oS
sible to let the new entrant bid against the other' 
users already on the system to see whether he 
O'r one of them will be denied access. However, this 
is likely to be very unsatisfactory t.o thDse already 
O'n the system. Having gained access they wish 
to concentrate upon the problem which they are 
attempting to solve. Being interrupted every few 
min utes to' bid against a potential new entrant 
would not only be very annoying to a us·er but 
also quite detrimental to his prDductivity. 

An alternative is to raise the elapsed time rate 
for new entrants as the number of users begins 
to appr.oach the system's capacity. By making the 
price increases sufficiently sharp, the center can 
manage to have at least .one line into the system 
available most of the time. Thus, use~s would 
seldom encounter the "busy signal" problem which 
denies them access without any alternative. Under 
the increasing rate procedure a user can hang up 
without penalty if he does not feel that imme
diate access is as imp.ortant as the quoted rate. . 

*N ote that access refers to the connection of a terminal to the 
system and is unrelated to the response of the system to requests 
from that terminal. 



But if access is important, he will be able to gain 
it even though the system .is heavily loaded. The 
sire of the step function in the rate and the 
number of lines or ports' which are affected will 
depend to some degree upon the user population 
of an installation. However, the extensive use of 
the higher priced access lines is a clear indication 
to management concerning the need for additional 
terminal handling capability. 

Bec'ause of a user's vulnerability once he is in 
the midst of a terminal session, it is not desirable 
to vary the rates for users already on the system. 
On the other hand, in order to prevent abuse, it 
may be necesgary to limit the time period for 
which a user's rate would apply. After such a 
period (e.g., one hour) the user would be treated 
like a new entrant; he would be quoted the cur
rent entering rate and would be given the option 
of accepting (i.e., continuing) or of signing 'Off. 
Otherwise, users entering at a slack time would 
not feel any economic pressure to shorten their 
sessions if demand subsequently increased. 

The Stanford experiment 

Despite the apparent advantages afforded by 
flexible pricing, it is important to demonstrate 
how satisfactorily it might serve in an actual op
erating environment. Further, the implementation 
and utilization of such a procedure in a large 
computer center would aliSO provide an indica
tion of the operational problems that might be 
encountered. Fortunately, the management of the 
Stanford Computation Center was very receptive 
to participating in such a test. 

Management's interest in pricing had arisen 
some time previously when an acute shortage of 
magnetic tapes had developed at the Campus Fa
cility of the Stanford Computation, Genter. Users 
were reserving ta,pes at an ever increasing rate; 
yet they were releasing very few tapes. Pleas 
were made for users to release all tapes that 
were not absolutely essential to their work, but 
this met with almost no response. Finally, in an 
attempt to cover the mounting tape costs, manage
ment decided to levy a nominal charge of $1/tape/ 
month. On the first day that the charge was insti
tuted more than Va of the "absolutely essential" 
reserved tapes were released. Management has 
been a firm believer in pricing ever since. 

Thus, it was decided to attempt to allocate the 
computing resources of the Center's Campus Fa
cility through flexible pricing. These resources 
consist of a large-scale third generation comput-
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ing system with a corresponding amount of 
peripheral equipment. On a typical day this sys
tem is called upon to process some 1500 instruc
tional and research jobs. The system provides a 
batch processing capability from on-line card 
readers located at the Facility as well as a text 
editing, file handling; and remote job entry capa
bility from some 100 remote terminals. 

There was, hOowever, one more hurdle to sur
mount before a flexible pricing scheme could be 
implem,ented. In addition to serving the student 
computing load, the Campus Facility also pro
vides computing services to faculty and staff re
search projects. Since many of these projects are 
funded by the federal government, the computing 
charges must be allowable costs for the projects. 
In order for these charges to qualify, it is nec
essary that the Campus Facility operate with a 
direct costing procedure in compliance with the 
applicable government regulations on costing 
specialized facilities. * 

Accordingly, negotiations were entered into 
with the government in an attempt to obtain a 
waiver from these requirements. Although the 
government representatives were sympathetic to 
the operational problems encountered under di
rect costing, they were reluctant to permit ·any 
deviation from existing regulations. However, 
costing problems were becoming more serious 
with the growing use of large...;scaIe multipro
grammed and/or time-shared systems. Thus it 
was finally agreed to conduct a pilot experiment 
in order to obtain data ahout the use and effective
ness of computer pricing procedures. 

The experiment was authorized for the Campus 
Facility of the Stanford Computation Center dur
ing the period September 1967 - June 1968. Es
sentially the government agreed to permit Stan
ford to employ a pricing scheme during the period 
of the experiment S'O long as the prices were not 
discriminatory with respect to a user's source of 
funds. Stanford also agreed to operate the Cam
pus Facility under a lOong-term no-profit rule and 
to provide the government with full disclosure on
the res,ults of the experiment. 

The base charge structure was introduced in 
September at the beginning of the experiment. 
Because of the particular characteristics of the 
Stanford ~ystem, a number of modifications were 
made to the charge's previously described. The 
resulting structure is similar to but a subset of 

*Bureau of the Budget Circular A21, Paragraph J-37, pertain
ing to specialized service facilities operated by an institution. 
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the one illustrated in Table III. 
At the present time there is a shortage ef high 

speed memory on the Campus Facility system, 
,so that only a single batch job is being processed 
at anyone time. Accordingly, the CPU rate ab
sorbs the functions of the memory time and pro
ductive memory time rates. Each terminal useI' 
on the system is automatically assigned the maxi
mum permissible amount of swap space. Accord
ingly, the swap space rate is reflected in the 
elapsed time rate. In the terminal syste,m the user 
has only a limited I/O capability; in the batch sys
tem (since there is but a single job at anyone 
time) the user pays for compute time during 
many of his I/O waits. Accordingly the swap 
time and input/output rates were dropped. 

The rate structure for compute time has also 
been modified slightly. Rather than charging one 
of a set of rates for the entire amount of compute 
time, a step function is used. There is a base 
rate fer daytime computing and a somewhat lower 
base rate for overnight computing. During the 
day the base rate is increased by 50 % for all time 
in excess of five minutes and by 100% for all time 
in excess of ten minutes. During the night the 
rate is reduced by approximately 7% of the base 
rate after eve'ry thirty minutes of continuous 
processing by a job. Thus long jobs, which are 
discouraged during the day, are encouraged at 
night. 

With respect to card punching, the structure 
shown in Table III has been augmented with a 
higher rate for the first 1000 cards punched by 
a Job. Because of the number of line printers 
available and because of the characteristics of the 
Stanford user propulation, there has been little 
problem with excessive printing by jobs. Accord
ingly there is but a single rate fer printing, inde
pendent ef the time of day and the amount of 
printing. 

Due to the characteristics of the operating sys
tem, there are setup charges only for the mount
ing of private disk packs and for the substitution 
of special forms on a printer. Also due to hard
ware problems there is enly one level of secondary 
storage for files; hence, there is but a single file 
storage rate. All the other rates are of the form 
indicated in Table III. 

Flexible prices were introduced in February 
after the users had gained seme experience with 
the system. In the Stanford implementation a com
bination of the multiplicative and additive forms 
is used. Since a job requiring very little compute 

time is rather insensitive to rate changes-, it waS 
necesslary to employ increasing fixed charges for 
higher compute time priorities. Otherwise the rate 
changes necessary to influence the s-mall compute 
time users would overly impact larger users. On 
the other hand a standby or "when idle" priority 
is available at a reduction in rate. 

Default print priorities are assigned on the 
basis of the amount of printing required. These 
priorities can be over-ridden for a fixed charge. 
The very highest print priority consists of a fixed 
charge plus a doubling of therate. 

At the present time there is no flexible price 
for elapsed time or terminal access duration since 
the system is able to handle the present level of 
demand. However, with the introduction of a 
time-sharing system in the near future, such a 
capability will be implemented. 

Although the experiment is still under way, 
there is every indication that it will be successful. 
Most of the users have become well versed with 
the pricing procedure and make appropriate use 
of it. As a result the overall performance of the 
computing system has been very good. The premi
um rates for compute time have restricted the 
submis-sion of long jobs fer daytime running, such 
that the average turnaround time for all batch 
jobs averages about one heur. On the other hand 
long executing jobs are net excluded. Approxi
mately 2112 % of the daytime jobs execute for more 
than five minutes and approximately 112 % exceed 
ten minutes. 

Because of the low average turnaround time, 
there is not an excessive use of the higher priori
ties ef service. However, when backlegs have ac
cumulated (near the end ef the daytime service 
block, in times of hardware trouble, or following 
the processing of long jobs), there is a substantial 
incre-ase in priority usage. In general users have 
been quite happy with this ability to gain superior 
service when their circumstances require it. 

A further indication of the value which users 
place upon good service stems from their use of 
the idle priority. Jobs in this category are 
granted a discount on the cempute time charge 
but are processed only when there is no other 
werk for the system to perform. Initially this 
discount was set at 25 %, but less than 1 % of the 
jobs representing less than 1;2 of 1 % of the work .. 
load were submitted with this priority. An in
crease in the discount to 50 % succeeded only in 
doubling usage, so that jobs in this category re
main a relatively small portion of the total work-



load. In other words, to a vast majority of users·, 
good service is more attractive than even a 50 % 
discount. . 

From management's point of view the system 
is very successful. No longer must decisions be 
made on whether or not a particular user's plight 
is sufficiently urgent to warrant processing his 
job ahead of the previously submitted work of 
other users. Also, the use of idle and overnight 
rates has encouraged users to identify those of 
their jobs for which rapid turnaround is not re
quired. This enables service to the other users to 
be improved. Finally the operation of the pricing 
procedure has proven to be quite practical, requir
ing less than 1 % of the system's CPU cycles. Al
though the pres,ent pricing structure will be fur
ther adj usted or changed as additional experience 
is gained, the initial stages of the experiment 
have shown this type of procedure to be very satis
factory. 

SUMMARY 

This paper has presented a procedure whereby 
flexible prices can be used for the allocation of 
a compute:r system's resources in such a way as 
to improve the utilization of the available re
sources and to increase the users' utility or satis
faction. Further, these prices can be used to en
courage or discourage particular types of sys
tem usage or us,er behavior which have an impact 
upon the performance of a partiCUlar computer 
system. 

The pricing structure which has been outlined 
should serve to illustrate the concept. Although it 
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is unlikely that any installation would employ the 
structure exactly as set forth, the concepts are 
sufficiently general that they can be applied with 
little difficulty in many different environments. 
Not only are the prices flexible, but the goals 
which they can serve are flexible as well. 

Such a pricing procedure is currently under
going test in an actual operating environment 
and has proven quite successful thus far. It is 
demonstrably practical from an operating stand
point, and it has met with acceptance by the 
users. In addition, it has assisted in improving 
the performance of the computer facility while 
freeing management from having to make nu
merous allocation decisions. 
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INTRODUCTION 

It has been adequately demonstrated1 ,2,3 that comput
er graphics systems need not req uire the dedication of 
a large scale computer for their operation. Computer 
graphics has followed the trends of computing in 
general, where remote access, time sharing, and multi
programming have become the key phrases. The prob
lems involved in providing a remotely accessed, inter
active computer graphic~ system are more formidable 
than for a dedicated system, or even than for a local 
time shared system. The requirement is basically to ob
tain a real time response for the display console opera
to!") while at the same time minimizing the overhead im
posed on the central computer facilities. Also present, 
of course, are the classic graphical problems such as that 
of providirig refresh data for cathode ray tube displays, 

and of relating the appearances of a picture on the tube 
face to its description in the data structure. 

Figures 1 and 2 illustrate a typical configuration as it 

FIGURE I-Graphics system organization in the 
central computer 

FIGURE 2-Graphics system organization in the satellite computer 
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would appear to a single user. Actually,the central com
puter is time-shared by a number of users, both graphic 
and non-graphic, and there may be a number of other 
special features. For example, if the graphic system 
library is reentrant, the same copy may be used by all 
application programs. There may also be a large num
ber of remote stations, and it may be possible for one 
satellite processor to drive more than one display. A 
number of configurations have been described1 •2 •4 and 
it is not the intent of this paper to describe a particular 
hardware implementation. Such an implementation is 
currently in progress and will be described at a later 
date, but the system has been designed to be essentially 
hardware independent in the sense that the implemen
tation either in the central or satellite computers may be 
recoded for different or improved hardware, while still 
maintaining the same interface with each othre and 
with the application program. The structure of the sys
tem is also sufficiently modular so that enhancements 
such as the ability to support additional input devices 
may be added without great difficulty. This paper will 
describe this system, show how the data structure is an 
integral and dynamic part of it, and focus on how inter
actions with the data structure occur both at the cen
tral and satellite computers. 

System software requirements 

Interactive graphics systems should provide the 
means for the basic functions of computing, data 
management, image generation, and attention handling. 
Certain software is required to provide these facilities in 
a remotely accessed environment (central site software 
for time-sharing is assumed): 

1) There must be an application program which pro
vides ultimate control of the work being done by 
the user at the display console. 

2) There should be a data base with sufficient struc
imre to provide the applications program, the dis
play presentation software, and any post process
ing routines with the means of defining and in
tegrating the. actions of the user in formulating 
valid images. 

3) There should be a group of service routines with 
the ability to manipulate the central site data 
structure under the direction of the application 
program. 

4) There must be· telecommunication routines for the 
control of messages between the remote graphics 
processor and the central site computer. 

5) There must be a monitor program in the remote 
computer to build and maintain the display file 
from the description of the picture in the data base 
and to direct attention handling at the satellite so 

as to provide acceptable real-time response to 
operator actions at the display console. 

Application program 

The application progr~m is provided by the user. 
Several points are significant. First, the user is com
pletely free to perform whatever computations are re
quired as an adjunct to his display requirements. Sec
ond, the user may have an independent data base apart 
from the graphics system, or it may be integrated into 
the graphics system. Normally. the interface between 
application programs and the system is desired via 
FORTRAN -type subroutine calls. Application pro
grams will not be considered further in this paper. 

Data base 

. The system data base, referred to as the Entity Table, 
is a hierarchically organized data file, dynamically ex
pandable and modularized to permit paging. Structures 
in this list are indexed by a hash-coded directory, also 
modularized, for the purpose of rapid retrieval. The 
creation, manipulation and retrieval of structures in the 
Enitity Table are performed by system supplied sub
routines. The list processing technique of ring chaining4 

is extensively employed to improve the efficiency of 
scanning the data base. Since the length of each entry 
varies, depending on its type, garbage collect jon . rou
tines are embedded in the system unbeknownst to the 
user, to prevent excessive fragmentation and minimize 
storage requirements. 

At this point, it might be asked why a data structure 
is required at all for computer graphics applications. 
The main reasons for using a hierarchically organized 
data structure such as will be described may be sum
marized as follows: 

1) It appears to arise normally from the organization 
of the class of pictures normally considered in 
computer graphics;6 

2) It allows the system to take advantage of the 
graphical subroutining capability being built into 
current display hardware;6 

3) Such a data structure is important not only to the 
display, but also for the use of the applications 
program presumably directing the course of the 
graphical processing (for example, the same data 
structure used to store the description of an elec
tronic circuit for display could also contain the 
data used inthe analysis of the circuit). 

A viable data structure is crucial to the success of any 
computer graphics system, especially if it is resolved 
that the system is to serve as a useful tool, rather than 
just an expensive toy. 
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The basic philosophy of the data structure is to em
bed the facility for hierarchical picture definition within 
a list processing scheme with sufficient power to allow 
easy manipulation and retrieval of the pictorial e1e
ments, and sufficient flexibility to be essentially hard
ware independent both in its own design and in the de
scription of pictorial elements. 

This goal of hardware independence has a number of 
virtues. First of all, hardware independence means that 
the applications programmer need not be burdened with 
worrying about hardware idiosyncrasies of the display 
device. Secondly, it means that the system can be em
ployed to drive a number of output devices, including 
digital plotters for hard copy, and is amenable to post
processing of various sorts (the area of numerically con
trolled tools comes immediately to mind). Final1y, hard
ware independence at the central computer means that 
a consistent application program interface could be 
maintained if that computer were replaced; this also 
applies to the satellite processor if hardware indepen
dence can be achieved there also. Eventual replacement 
of at least a portion of the hardware is almost a cer
tainty, given the rapid rate of new developments in 
computer technology. A sufficiently flexible, hardware 
in~ependent system guarantees that technological ad
vances will not make the system prematurely obsolete. 

Service routines 

The service routines constitute the library of list-pro
cessing subroutines which allow the user to build and 
manipulate his data structure in the central computer. 
The data structure is accessible only through these rou
tines. Since the system is implemented in a time-shared 
environment, it is desirable that these routines be re-en-. 
trant, so that a number of application programs may 
"simultaneously" make use of them. 

A number of list-processing schemes have been pro
posed for computer graphics. 7 The subroutines pro
vided in the system are naturally determined by the re
quirements of the particular data structure selected. 
A representative set of routines for the data structure 
to be described are listed in the appendix, with a sum
mary of their function. 

Communications 

Telecommunications routines are of two types: phys
ical and logical. "Physical" routines are required to 
mediate the transmission of all requireg. messages 
between the central and satellite computers. They are 
assumed to be provided by the executive system which 
permits the satellite processor to remotely access the 
central processor. "Logjcal" routines provide the user 
with a means of sending and receiving information to 

and from each of the processors, possib1y in an encoded 
or parametjzed or metalinguistic form. Clearly, such 
routines must be provided in both computers. 

An interactive remote graphics system faces three 
major problems with respect to communications: 1) the 
time required to transmit data could be excessively 
long, 2) the overhead lead on the central computer 
would be high if it is required to service all interrupts, 
and 3) as a result of the above, the reaction time to 
operator actions at the display would be very slow. 
Experience with graphic systems indicates that some 
feedback to operator actions should be provided almost 
immediately (such as intensifying a light-pen detected 
image), with the effects of his actions apparent within 
seconds, at most. 

It is assumed that because of line-rental costs, trans
mission is restricted to a single linkage such as a 210-B 
modem, which would make available, at most, a trans
mission rate of 2400 bits per second. 

Obviously, the transmission time for lines and points 
cannot be improved. However, the transmission times 
for conics (circles, ellipses, parabolas, hyperbolas) can be 
decreased by including in the remote processor sufficient 
power to generate the straight line approximations to 
these conics from a parametric representation. To mini
mize the number of expansion routines in the remote 
processor, the parametric homogeneous mathematics 
for conics8, has been selected. 

An additional reduction can be achieved in the quan
tity of data which must be sent when pictures are to be 
displayed with a high degree of shape repetition. The 
description of a shape can be transmitted only once, 
with subsequent instances of that shape requiring only a 
reference to that shape as previously sent. This is one 
further argument for a hierarchically organized data 
structure. 

Remote monitor 

Software in the remote processor includes a routine to 
store the logical organization of a picture sent to it 
from the central site. Another routine builds from this 
data a display file, containing the actual vector and 
character hardware commands for that picture's dis
play. This routine contains the logic required to expand 
the parametric representation of conics to a short vector 
approximation. Sufficient structure is present in the 
organization of the data and sufficient power is pro
vided in the monitor to permit the identification and 
manipUlation of elements within the picture being dis
played. The ability to respond locally to operator ac
tions is a very powerful feature which can be built into 
remote systems containing a satellite processor. This 
raises the interesting question of the djvision of labor: 
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how much work is the central site processor to do and 
how much is the remote processor to do? 

Interactive graphic systems are cha~acterized by 
large numbers of short-burst program executions as
sociated with scope operator actions such as pushing a 
button, tracking a light target, etc. Seconds can elapse 
between these bursts, each of which might only consist 
of retaining the identity of a button pushed or of mov
ing a tracking cross. In a time':'shared environment , 
these short bursts can overload the system if the appli-
cation program has to be retrieved f~om auxiliary 
storage; als,o, since the system operates remote displays 
at the end of relatively slow transmission lines (as a 
201-B modem), response times could be too slow. 

An interpretive language has therefore been designed 
to allow the user to program his own strategy for atten
tion handling and other functions to be performed in the 
remote computer. Because these programs in some sense 
reflect the logic of the particular .application, they are 
referred to as Logic Tables. Logic Tables are executed 
(interpreted) in the remote processor independently of 
application program execution at the central site. The 
intent is to allow the application program complete 
freedom over the method of system controls and to mini
mize the interactive communication between the resi
dent programs in the satellite computer and the Worker 
in the central processor. Individual Logic Table com;
mands may be thought of as subroutine calls that re
spond to attentions (e.g., keystrokes), conditionally 
transfer control as a function of input from the operator, 
request light-pen tracking and pointing, perform inser
tions and deletions to the satellite data structure, and 
initiate the transmission of internal messages to the 
Worker Program. 

This approach has three important features not yet 
available in other graphic systems: 1) it allows the 
application to design its own control program (not 
forced to accept a rigid scheme), 2) it provides for re
mote-console real-time responses, but 3) it frees the 
application program at the central site of the require
ment to provide such responses, thus lowering the 
time-shared overhead. In a sense, the user has the 
ability to "fine-tune" the system for his own particular 
requirements. 

Data structures 

The data structures in the system are of two main 
types: a data structure for the definition and organiza
tion of graphic structures in the central and satellite 
computers, and a data structure for image presentation 
and logical attentional handling. These data structures 
have an intimate relationship, the second being con
structed directly from the first. Each data structure, 
however, may be independently modified. 

Entity table elements 

To facilitate the organization and manipulation of the 
graphic representation being defined or manipulated by 
the application program, a central data structure called 
the Entity Table has been defined, which serves as the 
repository for all the data within the system. Associated 
with the Entity Tableis a modularized, hash-coded ref
erence table called the Directory, which provides rapid 
access to prime structural entries in the Entity Table. 
A third table serves as an External Directory, correlat
ing user defined alphanumeric names with their internal 
numeric identification codes in the Directory and Entity 
Table. 

The prime structural element in the Entity Table is 
the group. Composed of graphical entities called items 
and uses (instances) of other groups, it provides the 
basic "subroutining" capability in the data structure. 
All sub-structures within groups are defined in terms 
of the group's coordinate system and are collectively ref
erenced by the identification associated with the group. 

A group by itself is essentially an unpositioned or
ganizational structure which may not itself be dis
played. A group may be used, however, so that the 
graphical sub-entities in its organization be displayed. 

The concept of group use is basically one of taking a 
group structure, complete except for its orientation rel
ative to the user's drawing coordinates, and applying 
an affine transformation relative to the coordinate sys
tem of the group receiving the use entry (called the 
parent group). If a link is formed by an iterative chain 
with the universal or master group, the group use is then 
defined relative to the drawing coordinates and its posi
tion can be determined for display purposes. 

This system allows a structure (of groups and uses) to 
be defined of considerable complexity with no duplica
tive effort, since the same group definition can be used 
repeatedly in different contexts. With this ability to de
fine groups in terms of other groups, it is entirely pos
sible to cause a recursive definition. Since no recursive 
constraints have been provided, such recursion would be 
infinite, and hence cannot be allowed. A violation would 
be discovered when the data structure was searched in 
preparation for transmission to the satellite, and an 
error code would be returned to the application pro
gram. 

Thus far we have described a picture-defining struc
ture with nothing that is displayable (actually we have 
defined a directed graph with no terminals). Imen 
entities are logical combinations of points, lines, 
and teste called components) which form a picture and 
which are primitive elements within groups. Items pro
vide the actual graphical information which may be dis
played. They respond to freely positionable graphic sub-
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routines which are repeatedly "called" when the group 
of which they are a member is used. Items themselves 
may not be multiply used, but are defined once within a 
particular group. A group may be defined, however, 
with only a single item entry, and be repeatedly used. 

Groups are represented in the Entity Table as a 
header with a pointer to the chain of entities (uses and 
items) in the group. The group is identified by its llnique 
internal identification code. Pointers are provided to as
sociated data (managerial data) and to a chain of all the 
uses of this group. The Directory serves as an index to all 
groups in the Entity Table. A group's internal identifi
cation code serves as a virtual pointer to the group 
header which is resolved through the Directory. 

A use entry has a pointer to the next entry within the 
parent group structure, a pointer to the next use of the 
same dependent group, a pointer to the component ring 
for the use (examples of components for uses are 
external name, positioning vector and transformation 
matrix), and a pointer to associated managerial data. 
The Logic Table associated with· this use is also identi
fied if one has been defined. The group referenced by the 
use is linked by its unique internal identification code 
via the Directory). 

Item entries require a pointer to their component ring 
(components for items include the actual text, vectors 
and points displayed on the tube face), but naturally do 
not include any group references. 

Components themselves contain a count of the num
ber of parameter words following and a pointer to the 
next entry in the item component chain. The order of 
components in the ring is significant (the only case 
where this is so), since they may contain polystrings of 
relatively positioned points and vectors. 

Figure 3 presents a simple schematic meta-language 
for describing a structure of groups, uses, and items, and 
Figure 4 illustrates how a portion of such a structure 
would be represented internally at the central site. 

Attributes 

Associated with each entry in the Entity Table are a 
number of logical and functional attributes which serve 
as modifiers or descriptors for that entry. Not all attri
butes are applicable to all entities. The concept of attri
bute is a general one, and the system could easily be 
modified to accommodate additional attributes in re
ponse to additional user requirements or new hardware 
capability (such as color, for example). The attributes 
following are representative, and are taken from the 
implementation currently in progress. 

First of all, an entity may have an external name as
sociated with it for the user's convenience in referencing 
it. However, the system works with internal identifica
tion codes which are unknown to the user, and does not 

a. Meta-linguistic symbols 

D> Sehem"iefor,Group 

'9 Sehem"ie for, Use 

o Sehem"iefor,ni'em 

Terminal Symbol 

c. Organization of the picture 

Resislor~ 

c,p,eilor~ 

Filter 

Super Filter 

b. Picture elements 

Resistor (Item 1) 

Capacitor (Item 2) 

Filter 

Super Filter 

(Item 3 is the connecting lines in the filter) 

FIGURE 3-Schematic representation of the organization of a 
picture 

require all entities to have external names in order to be 
referenced; if the graphics terminal has a light-pen, en
titiesmay be identified by pointing to them (an example 
of "the pesitive power of grunting"9). If a light-pen is 
not available, one may be simulated using the keyboard. 
An attribute is provided which specifies if the entity is 
eligible for light-pen detection. 

Other attributes similarly refer to the graphic charac
teristics of the entity. One attribute defines whether or 
not the entity is displayable, and another defines if it is 
to be displayed; thus an entity can be temporarily de
activated without being removed from the data struc
ture. Attributes define line type (for example, solid, 
dashed or end point, intensity (most displays allow at 
least two settings in addition to off), and thickness (if 
hardware permits). Color is an obvious extension which 
can easily be accommodated when such hardware be
comes generally available. Attributes can also be 
defined to specify interest, threshold, and security level. 
Interest and security levels are self-explanatory; thresh
old level is simply a function of magnification and the 
resolution capability of the display device: as magnifi
cation increases, more detail can be shown. 

With respect to the graphic attributes of displayable 
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External Directory Table Directory Tabl. 

FILTER 

-------------
Entity Table 

.!!.S!.!!!!F __ _ 

C4 

FIGURE 4-Example of a portion of the data structure in the 
central computer for the representation of Group 3 in Figure 3 

items, the hierarchical structure of the picture definition 
is employed to resolve conflicts which may arise in the 
data structure. The attributes of a group use override 
the attributes of the referenced group, which in tum 
override the group uses within the definition of that 
group. The rule is that higher level definitions take prec
edence. 

Three functional attributes have special significance 
to the efficient operation of the remote graphi~s system.. 
When a picture description is to be sent to the satellite 
computer, its entire structure must be retrieved, 
scanned, ~nd transmitted (at one time or another). An 
attribute is provided to aid in the efficiency of this scan. 
Whenever the scan of a group is completed, it is marked 
as having been searched. If this entity is encountered 
again in the scan of the whole structure (such as a group 
used repeatedly), it need not be scanned again, but may 
ben referenced by its internal ID. Similarly, when an en
tity is transmitted to the remote computer, it is marked 
as having been processed. If the need later arises to 
transmit such an entity to the remote, only its identifi
cation code need be sent, since a copy of it is known to 
exist in the data base of the satellite. 

The third attribut~ of special significance arises from 

the ability within the system to specify the· display of 
only a segment of the picture which has been defined, 
and to later dynamically alter the extent of that seg
ment. 

The extent of the coordinate system within which pic
tures may be defined is limited only by the magnitUde of 
the largest floating point number which the central com
puter can represent. Pictures defined in this universe 
will be said to be in "user coordinates." A segment of 
this universe is selected for display by the definition of a 
drawing mask, which identifies a rectangular section of 
the universe. The picture is scissored to lie within this 
section, and appropriately scaled for display so as to 
map onto a selected display window on the face of the 
CRT. The size of this coordinate system is limited by 
the CRT raster itself. Figure 5 illustrates this concept. 
There may be a number of masks simultaneously 
mapped onto associated display windows and simul
taneously displayed. Each window's content and dis
play is independent, however. Both masks and windows 
may overlap. 

Specifying a segment or region of the user defined pic
ture to be displayed on the scope involves scissoring pic-
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Universe (limits of floating point representation in the central computer) 

FIGURE 5-Defining and dieplaying an image. The Universe 
constitutes thli" domain of definition for pictur€s. The mask selects 
a segment to be mapped onto· a particular window for display 
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ture elements which lie partially or entirely outside of 
the mask. For reasons of transmission efficiency and 
storage economy at the satellite, scissored data are 
eliminated from the picture's description wherever pos
sible, thus altering its description. The description 
which is sent is marked as having been scissored, so that 
programs in the satellite may be aware that the p.ic
ture's description is incomplete. If a complete deSCrIp
tion is later required for one reason or another, it may be 
necessary to refer back to the central computer to ob
tain it. 

The problem of scissoring assumes somewhat greater 
proportions when there are a number of windows dis
played on the tube face of less than full screen size, ~d 
when interactive work by the user is likely to result III 

the movement of pictures on the tube face. Hardware 
assistance can usually be obtained for ihe problem of full 
screen scissoring,3 but this is not generally the case when 
arbitrary boundaries are to be established beyond 
which images will not be permitted to extend. It be
comes the responsibi.lity of the software to provide this 
service, within the framework of the graphics system 
and the data structure provided. This service must be 
provided whenever a call is given to display an image. 

Initiating a display 

A call to initiate or alter a display sets off a complex 
chain of events. Starting with the master group for each 
~indow, the Entity Table must be searched and all the 
appropriate graphic elements extracted. This requires 
essentially a canonical scan of all the branches of the 
structure. The value of the "Processed" attribute is 
evident here. When an entity marked as processed and 
"not scissored" is encountered later in the scan, only its 
ident.ification need be recorded. 

The next step, actually performed when the entity 
is being extracted, is to convert all the floating poi.nt 
values in its definition to fixed point, with scissoring 
performed according to the drawing mask and with ap
propriate scaling according to the relationship of the 
drawing mask to the display window. Entities which are 
scissored are marked. Entities lying entirely outside of 
the mask are discarded, and their parent entity marked 
as scissored. 

The resulting structure, in fixed point form, is then 
transmitted to the remote processor, where a display file 
is constructed and the image displayed. The organiza
tional structure is retained in the remote processor for 
the purposes of relating this structure to attention 
handling. If a drum or disc is avaHable to the remote 
processor, this structure file may be stored there, and re
trieved as required. 

Satellite data structure 

The data structures in the satellite processor are of 
three types. First, there is a description of the picture to 
be displayed in each window in terms of groups, group 
uses and items. This is just the structure file, or picture 
organization which is sent from the central site, and 
does not contain anything which is interpreted by the 
display presentation" hardware. 

The second type of structure contains the actual vec
tor and character commands to be displayed. Since the 
data to be displayed must be associated with an item 
use (actually a use of the group in which the item re
sides), the entjtes which contain the display commands 
are called item blocks. These blocks are essentially 
freely positionable graphic subroutines, and are part of 
the display file. 

The ordering, positioning for display, and deter
mination of eligibility for light pen -detection of the 
item blocks is controlled by the third type of structure. 
Called the ordered display list, it is constructed by 
extracting the group and item uses implied by the 
hierarchical organization of the picture. 

Group occurrences within the ordered display list are 
accomplished through control blocks which contain a 
jump instruction (interpreted by the display hardware) 

. to lower structures (other groups or item control blocks), 
and then a jump to the next structure in the parent 
group. These jumps are not return jumps (subroutine 
calls), since the display list is explicit for all groups and 
uses. However, lower level structures contain jumps 
back to their parent structures, so that the display de
coding hardware executes a complete pass through the 
picture organization on each refresh cycle. Control' 
blocks also contain a command word for the control of. 
the light-pen and trap interrupts, and a chain pointer to' 
the ring of all repetitive occurrences of the entry. This 
pointer is located in the block so that it is not seen by 
the display decoding hardware. 

Item control blocks contain positioning vectors and 
return jumps to item blocks. In addition they contain a 
control word for light pen and trap interrupts, and a 
chain pointer to the ring of all instances of this item. The 
jump command exiting from this block may be to 
another item or group control block or back to a parent 
group control block. 

Item blocks themselves are the graphic subroutines 
containing the actual vector and character instructions 
which are displayed. 

The descriptive structure is related to the display 
structure through the rings of groups and uses. Figure 6 
gives an example of the organization of this data struc
ture for the same graphic structures used previously in 
Figure 4. " 
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Logic table8 

Logic Tables provide a novel approach to the prob
lem of defining and accomplishing the processing to be 
performed in the satellite computer. Most remote sys
tems are limited in their flexibility since it is difficult, if 
not impossible, for the ordinary user to specify the pro
gram in the satellite computer. Besides the function of 
basic attention handling, it is often desirable for the sat
ellite to be able to analyze and change both its data 
base and display file, and to be able to send and request 
information to and from the central computer as re:. 
quire.d. 

Typical graphic applications vary widely in the type 
of response required of the satellite processor. For exam
ple, one application might be to display intermediate re
sults of a large data reduction process, and interactively 
direct the course of the analysis10 while another common 
application is to provide the console user with ~ sketch
ing facility.ll In the first case, the satellite would be re
quired to transmit key depression information back to 
the central computer to direct the calling of different 
subroutines, while the second case requires that the sat
ellite be programmed to analyze the actions of the con
sole operator, define new structures, alter existing struc
tures, and perhaps notify the central computer of such 
additions and deletions. 

The Logic Tables are a hardware independent, inter
pretively executed, interactively oriented language in 
which processing to be performed by the satellite 
can be easily programmed by the user. The appli· 

STRUCTURE FILE 

cations program initially specifies the Logic Tables 
as strings of mnemonic commands, and associates them 
with use or item structures in the data base. Not all 
structures must have Logic Tables associated with 
them, except that the master or universal group must 
have a Logic Table associated, since it is always the 
first Logic Table interpreted. During execution, Logic 
Tables are translated and transferred to the satellite 
with their associated structure. The Logic Table in
terpreter portion of the satellite resident monitor will 
execute one pass through the master Logic Table when
ever one of the following occurs: the light-pen picks a 
display target, the tracking symbol is moved, a software 
timer expires, or a key is depressed on the alphanumeric 
or function keyboard. Based on its analysis of the action 
to which it responds, the master Logic Table may initi
ate execution of sub-Logic Tables; such nesting may 
continue arbitrarily deep. Logic Table commands in
clUde the following: 

1) Arithmetic and logical capability using software 
registers for the retention of results. 

2) Ability to transfer control conditionally within a 
Logic Table and to other Logic Tables. 

3) Ability to decode keystrokes and to react to timer 
expirations. 

4) Control of light pen tracking and picking identifi
cation and feedback. 

5) Definitional capability for points, lines, text and 
conics. 

6) Facilities for obtaining the complete genealogy 

DISPLAY FILE 

ORDERED LISTS a ITEM BLOCKS 
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FIGURE 6-Example of the data structure in the satellite computer for the same pictur{' used in Figures 3 and 4 
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(hierarchical identification) of any entity in the 
data structure, as well as the identification of its 
type. 

7) Ability to search the data structure either horizon
tally (within a group) or vertically (from parent to 
dependent entity or vice versa). 

8) Ability to define new entities and alter existing en
tities, including the" ability to reposition entities 
and to turn them on and off. 

9) Ability to record data into report blocks for trans
mission to the central computer, and to initiate 
this transmission. 

Some examples of the interaction of the Logic Tables 
with the system's data structures, both in the satellite 
and in the central computer, follow. 

Light...,pen identification 

In the past, light-pen picking was limited to a one-to
one relationship of the item block hit to a single level of 
identification. While simple in approach, this did not al
ways satisfy the needs of the graphic system. The data 
structure design allows the Logic Tables to identify for 
the scope user either an item, pariicular use of a group, 
or all uses of a group. 

When the light produced by an item block which is 
enabled for pen detection is sensed by the light-pen, an 
interrupt is triggered by the hardware, causing the resi
dent monitor to activate the identification sequence. 
This sequence may vary depending on the processor in 
which the system is implemented. For the processor in 
the present implementation,. only the address in core of 
the display command which generated the light which 
was sensed is available. Starting with this address, the 
item block is scanned to find its end, where may be found 
a pointer back to its head. Just as subroutines may be 
traced back to back to a calling program by return 
addresses, so may item blocks and group uses be traced 
back through this parent structure to the master group. 

A Logic Table command is provided to make this 
genealogy available by entering it on a push-down list 
which may be manipulated by other Logic Table com
mands. The push-down is constructed so that depen
dent structures are on the top of the stack, and parent 
structures deeper in the push-down. Push and Pop com
mands are provided for searching the data structure in 
the vertical sense. A Ring command is also provided for 
traversing the data structure in" the horizontal sense. 
Feedback (blinking) is also under the control of the 
Logic Table, which may select a particular instance or 
all instances of entities at any level in the structure for 
feedback, depending on the contents of the top entry in 
the push-down list at the time of the request for feed
back. 

Light-pen tracking 

Light-pen tracking presents a somewhat different 
problem. While the display is ordinarily refreshed at a 
rate -somewhere between 30 and 60 times per second, 
this is too slow to detect all but the slowest movements 
of the light-pen across the tube face. Provision must 
therefore be made to display the tracking symbol more 
often-about 200 times per second has proved to be 
satisfactory . 

This is accomplished by the cooperative utilization of 
trap commands in the display file and logical interrupts 
occuring every five milliseconds from a real-time clock 
in the satellite processor. Clock pulses stimulate 
immediate display of the tracking symbol if display file 
presentation is not currently in progress." If display 
file presentation is in progress, display of the tru.cking 
symbol is delayed until the next trap command, in 
order that the display file be resumed at the proper 
location. Traditional tracking methods12 can thus be 
applied with no detriment to the picture being dis
played. 

Logic Table commands are not required to insert the 
trap commands, to monitor the real-time clock, to per
form the actual tracking calculations, nor to reposition 
the tracking symbol. The logical effects of pen tracking, 
however, are all under the control of the Logic Table. 
Au approach is taken which seeks to provide sufficient 
tracking information without overloading the system. 
The approach is to req uire the Logic Table to establish a 
range around the tracking symbol prior to enabling 
tracking. The Logic Table will be executed as a result of 
tracking only when the tracking symbol is moved out
side this range. Thus, the user may obtain either very 
fine or very coarse tracking, depending on his particular 
requirements. 
• When a Logic Table is invoked as a result of track
ing, the new X and Y position of the tracking symbol is 
made available. The Logic Table may do with these as 
it wishes. The rubberbanding of lines and the inclusion 
of vertical or horizontal constraints are particularly 
easy with other Logic Table commands which allow 
lines to be defined on the basis of data in software regis
ters. Thus, Logic Tables represent a very powerful tool 
for the construction of sketching facilities. 

Local modification of structures 

Since the Logic Tables provide the ability to modify 
the data structure in the satellite computer both by al
tering existing structures and by defining new entities, 
the satellite's data file may be used as a scratch-pad for 
changes to be made to the central site data file. All 
changes made by the Logic Tables are strictly local to 



542 Fall ,Joint Computer Conference, 1968 

the satellite, and have no effect on any structures in the 
central site. In fact, the communications link could be 
disconnected between central site and satellite during 
the period in which the console operator wished to try 
out his modifications, without degrading the console 
response. Of course, the link would have to be re-estab
lished before these changes could be incorporated into 
the central site data base. The facilities of the report 
block would be used to inform the application program 
of console operator actions or of modification performed 
by the Logic Tables in response to console operator ac
tions. The application program would then instruct th~t 
changes be made to the Entity Table paralleling the 
changes made in the satellite. 

Report block 

Report blocks provide for the transmission of infor
mation about the console user's actions from the satel
lite to the central computer. Report blocks are built in 
response to Logic Table commands, and only trans
mitted to the application program at the direction of 
the Logic Table. Report blocks allow accumulation of 
data to form a logical, comprehensive set of parameters 
for application program execution. By deferring applica .. 
tion program activation until a complete message is 
ready, this approach should keep conversational over-

. head to a minimum. 
Actually, report block information is not simply al

lowed to accumulate in the satellite until the report 
block is ter:Qlinated and sent. Since core is at a premium 
in the satellite, and in order to decrease the amount of 
transmission which must actually be performed when 
the completed report block is requested to be sent, a re
port block buffer is provided in the satellite which is 
flushed and transmitted to the central site whenever it 
fills. A complete report block, however, implies a report 
block header and terminator, indicating a complete 
logical message. While the report block may be trans
mitted in fragmented physical segments as it accumu
lates, it is not made available to the application pro
grain until a complete logical repprt block is built and 
sent by the Logic Table. 

The following types of information may be recorded 
into a report block by the Logic Tables: constant 
values, software register contents, push-down list con
tents (genealogy of an entity), coordinates of a partic
ular point, and new use and item entries. Thjs informa
tion becomes available to the application program in a 
general parametized form which the worker can employ 
to reconstruct the actions of the console user which the 
Logic Tables were programmed to record. Based on this 
information, the application program may alter th~ 

'data structure in, the central computer to reflect the 
current status of the image on the tube iace. 

Scissoring 

As has been described, all picture elements are de
fined within a user universe defined in floating point 
user coordinates. Scissoring first became necessary when 
a segment of this universe was selected to be displayed 
on the tube face. When the call to display an image was 
given, the data structure was searched to determine 
what lays within the defined limits. Items which lay 
completely outside the limits were discarded, but their 
parent structures marked as scissored. Items which lay 
partially out were converted to a scissored representa
tion. This may have involved discarding certain com
ponents and altering others (for example, shortening a 
line). In this case the parent structure was also marked 
as scissored. The scissored picture was converted to 
fixed point representation so as to map anto the display 
window, and transmitted to the satellite for display. 

Scissoring (or unscissoring) may be required at the 
satellite processor when entities are moved under the 
direction of the Logic Tables. These are two possible 
cases: entities may be moved outside the defined 
limits so as to require scissoring, or scissored entities 
may be moved so as to lie more with the limits. The 
first case the satellite processor can handle by it
self it has an unscissored version with which to work. 
Sufficient power is built into the resident monitor to 
perform the required scissoring of the entity as it is 
moved outside the limits. The second case, will require 
the assistance of the central computer. Recall that 
entities which lay entirely outside the limits were not 
transmitted to the satellite. The satellite is not aware of 
even which these entities are; all it knows is that the 
parent structure was scissored. When the :parent struc
ture is moved so that more of it may be displayed, a re
quest must be made back to the central computer to 
provide the additional data required to display struc
tures coming into view. 

Since the central computer is aware of which entities 
are stored in the satellite's data base, it may be able to 
save on transmission by only sending identification 
codes for entities which it knows are available at the 
satellite, and permitting the satellite to perform the 
appropriate scissoring. In the case of partially scissored 
entities, it may be that the satellite has an unscissored 
version in its data base. If it can be determined that 
only this entity is required to be moved (Logic Table 
commands provide the ability to reposition particular 
entities), then the satellite can use the unscissored ver
sion without the necessity of a request back to the cen
tral computer. 

Logi~ table extensions 

Once the basic interpretation cycle for Logic Tables 
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has been implemented new Logic Table commands 
may be added (by a systems programmer) with
out great difficulty. Since the full power of the satel
lite computer is available, rather elaborate Logic 
Table commands may be designed to satisfy particular 
user requirements. For example, a problem in the effec
tive use of the light-pen has been the inability to deter
mine the exact position of the pen when a detect is re
corded on a line generated by a single vector instruction. 
A Logic Table command has been designed which can 
provide this information by automatically displaying 
the locus of addressable points on the line in a search 
for the pen. 

Another example of the imaginative use of Logic 
Table capabilities are in the display of labeled construc
tion points. These are points displayed under Logic 
Table control which are not part of the data structure. 
Other Logic Table connamds may associate such points 
with the parameters of particular graphic structures, 
such as conics, for their automatic definition and inclu
sion into the data structure. 

Finally, Logic Table commands may be designed 
which make advantageous use of the computing power 
and information available at the central site. For ex
ample, in mapping user coordinates onto raster coordi
nates, a certain degree of resolution is usually lost. Re
converting raster coordinates back to user coordinates 
then results in values differing from the original. Facili
ties can be included in the graphics system to insure 
that reconversion results in values within the original 
locus. Such facilities may also be employed to insure 
that a newly defined point which lies visually on a struc
ture lies actually on it. 

CONCLUSION 

In summary, the system described is a synthesis of the 
already popular methods for hierarchical picture def
inition and the technique of interpretive specification 
of programs to be performed in a small satellite proces
sor. This approach results in a system with a higher de
gree of flexibility than that found in most graphics sys
tems. The system is designed to satisfy the require
ments of dynamically defining and altering graphical 
images, within a remotely accessed environment. It is 
an interactively oriented system, such as would be re
quired for design automation. It is only fair to point 
out that providing this capability occasionally results 
in additional overhead beyond that which might be re.., 
quired for systems oriented towards output only. Cer
tainly there must be an output-oriented system em
bedded in the interactive system, but this system may 
at times be less efficient that it might need to be, were 
display its only function. In a sense, the display of an 

image is an afterthought; the system is primarily con
cerned with the description organization of the pic
ture. As has been pointed out, this approach lends itself 
well to a hardware independent interface. 

APPENDIX 

A representative set of service routines for the central 
site are outlined. Only routines required by the system 
are included. Other routines could be included in a 
working system for application program convenience or 
economy. 
WINDOW-define a CRT window and associated 

mask delimiting the display of a given 
data structure. 

GROUP -create a group-header entry in the data 
structure. 

USE 

ITEM 

-place a use-header for a specified group in
to a specified parent group. 

-place an item -header entry into a specified 
group. 

COMPE -add components to the specified item or 
use header. 

DELETE -delete th~ specified entity from the data 
structure. 

DISPLAY -display any specified graphic structure 
contained in the Entity Table, subject to 

-attribute logic plus mask and window 
limitations. 

ASSOC -enters arrays of managerial information 
into the Entity Table. 

GET -retrieves any specified data from the 
Entity Table. 

LOGIC -performs Logic Table conversion and en
ters the Logic Table into the Entity Table 
associated with a specified entity. 

WAIT -suspends worker program activity until a 
report block is sent from the remote. 

R~PORT -retrieves report blocks entries. 
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Graphical systems-communication: An associative 
memory approach * 
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Ann Arbor, Michigan 

INTRODUCTION 

This paper describes the design and preliminary 
implementation of a graphics system using a 
large and small computer configuration connected 
through conventional voice lines. The small com
puter is driven by both graphical and conventional 
input/output devices. In this type of system it is 
extremely important that the communication line 
carry only messages with high information con
tent, since low speed is one of the major system 
constraints. Thus, the design of the software sys
tem depends heavily on the communication sup
port devices, as well as on the relative power of 
the computers. 

Before continuing, it is obviously necessary to 
define the meaning of some relative terms. Thus 

. . ' 
large computer implies, in this article,. anyone 
of many high-speed, large-memory, timeshared 
computers, but more 'specifically, an IBM 360/67 
working under a general timesharing system de
veloped at the University of Michigan. The 
graphic system is just another user (i.e., it has 
no privileged status). The communication link 
consists of conventional telephone lines using 
standard tz:ansmission equipment; this means 
that the transfer rate is in the audible range, 
which is abysmally slow for intercomputer com
munication. For those unfamiliar with these 
transmission rates, a picture of average TV qual
ity would normally require about five to ten 

*The work reported in this paper was supported in part by the 
Concomp Project, a University of Michigan Research Program, 
sponsored by the Advanced Research Projects Agency, Depart
ment of Defense, under Contract Number DA-49-Q83 OSA-3050. 

**Mr. Taylor received support from the National Aeronautics 
and Space Administration under their Traineeship Program. 

minutes of transmission time. Specifically, we 
are using 201 modems (modulator-demodulators) 
which have a transmission rate of two-thousand 
baud (or audible bits per second) ; normal tele
graph rate is, of course, substantially lower than 
this, and uses different modems. By small comput
er we imply one with a relatively small memory, 
but coupled to a CRT input/output device, with 
low-speed extension to the memory by use of sec
ondary storage. Specifically, we are using a Digital 
Equipment Corporation PDP-3S8 system. Al
though this represents the present configuration, 
further work is under way on the use of other 
small computers, either with greater or lesser 
capability, in an attempt to calibrate the potential 
problems of more or less sophisticated graphic 
terminals. 

545 

Because the major power resides in the large 
computer, the small. computer may be looked on 
as either the slave of the main computer, or as 
a device which supports the graphical input/ 
output equipment. In either case, we must assume 
that the large computer stores most of the infor...; 
mation, and presumably makes most of the com
putations, whereas the small computer acts as 
a combined message· switcher and data compres
sion device~ Thus, the major use of this experi
ment will be the development of software pro
grams in the small computer which simulate fu
ture potentially hardware macros, . while at the 
same time allowing research on data structures 
in the large computer, the development of graphi
cal languages, and the ascribing of meaning to 
these graphics. 

The rest of this article may therefore be logi
cally divided into seven parts: 
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A brief description of the hardware features of 
the system and its components, to bring out 
the advantages and disadvantages of the par
ticular configuration, rather than to provide 
an extract of manufacturers' literature. 

Examples of the communication language, and 
the software macros required for its imple
mentation in the small computer. 

A brief explanation of the software-imple
mented data structure of the large computer 
and the language used to access it. 

A description of the communication generator 
language. 

An example of the abstraction of meaning from 
graphical data, using the associative and rela
tional structure. 

Simple examples of the system in operation. 
A summary of present and future work. 

System hardware considerations 

This section is a brief description of system 
hardware from the programmer's standpoint. 
Thus, we shall not discuss any particular hard
ware features unless it affects the design. of sys
tem software. 

Although :much could be said about the IBM 
360/67 computer, its reference literature speaks 
for itself. It is obviously a highly sophisticated, 
large-memory computer with many special hard
ware features, specifically designed to encourage 
timeshared operation. Its present software sup
port does not include IBM's timesharing system 
(TSS) because of many delays, but consists of the 
Michigan Terminal System (MTS) 1 developed as 
an interim measure for both education of system 
programmers as well as systems support for early 
timesharing users. The major problems of the 
present timesharing system are ones of optimiza
tion, where the multitude of users and prolifera
tion of disc files have tended to cause slow opera
tion, due to build-up of input/output queues at 
the disc support routines. Thus to a day-time 
user the system is somewhat slow, but, as proven 
at other installations, it really flies at night. The 
constraint of the large computer is mainly one of 
access, the graphics terminal being anon-privi
leged user of a multi-user, large timesharing sys
tem. 

The communication link may be either through 
201 or 103 dataphones over telephone lines. The 
message switcher between the IBM 360 and the 
modems is either a standard IBM. 2702 interface, 
or the higher speed "Data Concentrator," which is 

a modified PDP-8 developed at the University of 
Michigan.2 The Data Concentrator treats all users 
(including the IBM 360) in similar fashion, rout
ing messages to the designated devices and users; 
most of the routines written for it may be used 
by the PDP-8 part of the 338 configuration for 
device support. Thus, the small computer operates 
as a messag.e switcher between 201 lines, the tele
type, card-reader, tape-reader, disc, Grafacon, 
light pen, and display. Any input to the PDP-8 
causes job scheduling, followed by calls to special 
device support routines. Thus the software task 
in the PDP-8 becomes one of writing support rou
tines, graphics language interpreting routines, 
and macros to communicate between the various 
parts. 

The DEC 338 operates in cycle-stealing mode, 
with the display counter running through a dis
play file in its PDP-8 core. The PDP-8 program 
sets up or modifies the display file, which the 
display controller then executes. The special hard
ware feature of the 338 is therefore a display reg
ister which steps sequentially through the display 
file, picking up point or vector commands; the 
poLnt command gives an absolute position of X Y 
coordinates for locating the beam, whereas vector 
is always incremental from the previous position. 
Although it is available, our configuration does 
not include a character generator. 

In order to allow self-refreshing of the display 
file, the display register can be loaded with a new 
location by using a jump command; the simplest 
display file could therefore be a series of position 
and vector commands followed by a single jump 
to the beginning of the display file. A further 
jump, called a push jump, may be used in con
junction with a "pop" instruction to allow sub
routining. 

A push jump stores the present location of the 
display file in a pushdown stack, and jumps to 
the given location. A series of instructions at this 
location may contain a particular graphic group
ing, which may be used several times in the same 
picture without redrawing, provided that all its 
instructions are relative rather than absolute. As 
an example, the character strings are normally 
implemented by a push jump to the incremental 
vector characters each of which ends with a 
pop, therefore requiring only two instructions 
per character rather than several. 

Unfortunately from the software programmer's 
standpoint, the 338 controller has only primitive 
logical capabilities. The ability to make a logical 



comparison of locations in the display file from 
the display file and to add or subtract a number 
(even 1) from within the display file would be 
a great advantage over the present configuration. 

The light-pen capabilities involve enabling the 
light pen so that it will send back an interrupt 
whenever it sees light. This allows the PDP-8 to 
examine the status of the display file, and read 
the display register or X Y coordinates to deter
mine the message to be sent to the 360. 

The actual configuration and major system 
specifications are given in Figure 1. 

The graphic macros 

The DEC 338 used as a terminal in this experi
ment interprets the graphic macros sent from 
the 360 and sends messages concerning user ac
tions to the large computer. It has 12K of core 
(three core banks of 4K). A Type DF32 Random 
Access Dis·c File provides another 32K of back-up 
storage, approximately half of which' is available 
for scratch use by the system. We currently use 
one core bank for our program; display files oc
cupy the second core bank; the third is currently 
about half full of tables; and the rest is dy
namically allocated for buffer and display file use. 

The display files make extensive use of the sub
routine jump (called a push jump) and the pop 
features of the 338 display to give a ring struc-
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ture to the display program. Specifically, the high
est logical level in the display program is a list 
of push jumps terminated by a normal jump back 
to the beginning of the list. Each push jump 
causes execution of a section of code which is a 
graphic description of the entity' involved. This 
section may, of course, contain other push jumps. 
Each of these dra'wing sections is terminated by 
a pop; the ring is thereby closed. 

E.ach entity in a display file is given an in
ternal name. This is accomplished by associating 
the display file location of the highest-level push 
jump with the item drawn. It is thus possible 
to identify a specific item for further proces8ing 
by examining the bottom of the pushdown stack 
when a light-pen interrupt occurs, i.e., the first 
return address placed in the pushdown stack will 
yield for each graphic entity a unique number. It 
might also be noted that later entries in the pus~
down stack correspond to sub-parts of the graphic 
entity identified by the first entry in the stack. 
These later entries can be helpful in resolving 
ambiguities in some situations. 

The set of graphic macros used in the construc
tion and manipulation of display files can be di
vided into several parts. These are the basic draw
ing commands, the display file editing commands, 
and the figure commands. 

The five basic commands used in the construc
tion of graphic entities are: POSITION (PN) , 
POINT (PT) , LINE (LE), NON-INTENSIFIED 
LINE (NL), and CHARACTER STRING (CH). 
While it is clear that this set of primitive draw
ing commands is by no means exhaustive--circu
lar arc is an obvious addition-it was felt that 
they formed a useful subset and would suffice in 
our early investigations. 

POSITION, POINT, LINE, and NON-INTEN
SIFIED LINE all take two decimal numbers, in 
the range 0 to 1023, as arguments. (There are 
1024 points in the basic 338 display, but this is 
an easily adjustable parameter at the command 
language level.) CHARACTER STRING takes a 
variable number of characters from the ASCII 
set, with the exception of ' (apostrophe), which 
is used as a delimiter. POSITION and POINT are 
similar commands; both position the beam to the 
coordinates X,Y given in the arguments. POINT 
intensifies the beam once positioning is accom
plished. Clearly the only difference between LINE 
and NON-INTENSIFIED LINE is the beam sta
tus; both draw a line from the current beam posi
tion to the X,Y coordinates given as an argument 
in the command. CHARACTER STRING takes 
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the string which follows and displays it at the 
current beam position. 

One of the design decisions that even this lim
ited subset of commands raises is: Should the 
commands refer to absolute locations on the screen 
at all times, or should, there be some facility for 
relative or incremental coordinates? An example 
of ,a relative positioning command would be 
"RP 10, - 3" which would position the beam to a 
point 10 raster units to the right and three raster 
units below the current beam position. Relative 
commands for lines could be similarly designed. 
Although, with a little computation, we have 
some facility for relative behavior, * it is clear 
that we took the more absolute approach. A com
plete set of primitives would probably have facili
ties for both types of commands. 

Editing of drawings can be carried out by using 
the commands: DELETE (DL), BLANG (BL), 
and UNBANK (UB). Each of these commands 
takes a display file location as an argument, and 
either permantently deletes the item from the 338 
display file, temporarily blanks the item without 
removing it, or unbanks a previously blanked item. 

, A sketch may also be repositioned using the com
mand MOVE (MV) , which will translate the 
named item to a new position on the screen. There 
is currently no provision for rotation, though this 
would be an obvious extension of the command 
set. In addition, the command MODIFY (MY) al
lows a displayed entity (except for a figure, see 
below) to be changed. 

Two other commands are provided which allow 
one to manipulate drawings. These are REPLOT 
(RP) and COpy (CP). The first of these plots 
a previously displayed entity at the current beam 
position. Internally, this means that another sub
routine jump (push jump) to a previously exist
ing section of code is generated and another so
called instance will appear. Instances thus have 
the property that if one changes, all change. 
COPY, on the other hand, generates a copy of 
the previously existing code in addition to creat
ing a subroutine jump to this copy of the code. 
Thus a copy can be changed without modifying 
the entity from which it originally came. Both 
facilities were included in our command set so 
that we might gain some insight about the situa-

*Relative position is simply a non-intensified line from the 
current position to the desired position; the distance must be 
computed before the command is given. 

tions when each method of creating new entities 
is useful. 

The next step is to allow a user to build up a 
library of drawings, each with a name, which he 
can call up for use in' other drawings. To this end, 
we have defined the commands DEFINE FIGURE 
(DF), END FIGURE (EF), PLOT FIGURE (PF) , 
MODIFY FIGURE (MF), and KILL FIGURE 
(KF). 

DEFINE FIGURE places the system in a spe
cial mode whereby all succeeding actions with 
the light-pen are Inade relative to a starting point, 
and are placed in a special block until the END 
FIGURE command is given. At this time, the 
block is transferred to the disc storage at the 338 
under the BCD name given by the user. When a 
user wishes to include a previously defined fig
ure in a new drawing, he issues a PLOT FIGURE 
command, which plots the named figure at the 
current beam position. Because of the subroutine 
feature in the 338, only one plot of a figure need 
be kept in core, no matter how many times the 
figure is used. 

Figures, like any displayed entity, are subject 
to the editing commands DELETE, BLANK, and 
UNBLANK, as well as to MOVE. To remove or 
change the definition of a figure, however, the 
commands KILL FIGURE and MODIFY FIGURE 
are provided. MODIFY FIGURE brings a' previ
ously defined figure into core, displays it, and 
places the system in DEFINE FIGURE mode so 
that D·ELETE, MOVE, etc., will permanently 
change the definition. An END FIGURE command 
will, of course, initiate the storage process once 
again. KILL FIGURE removes the definition of a 
figure from the appropriate tables and disc files. 

The principal means by which a user commu
nicates the above commands to the system is 
through use of the light-pen. Thus the two final 
commands of this admittedly incomplete set are 
POINTING MODE (PM), which places the light
pen in a mode whereby the name of an item 
pointed at will be sent to the 360, and LIGHT 
PEN TRACK MODE (LT) , which causes a track
ing symbol to appear and transmits the X,Y co
ordinates at which the user finally loses tracking 
to the 360. 

The instruction set also contains several other 
commands which will not be described here be
cause of their detailed nature. Complete documen
tation of the graphic macros may be found else
where.s 

A brief description of the communication proc-



ess from the viewpoint of the 3~8 can now be 
given (see Section V for a more complete treat
ment). When a user initiates program operation, 
a list of commands which he can issue will appear 
on the edge of the screen (Figure 2). These com
mands, the menu, are set up by the system at 
initialization, and each one has associated with 
it a name which is the display file location of the 
highest-level push jump. Thus, when a user points 
at an item in the menu, the display file location is 
transmitted to the 360 and the 338 awaits further 
instructions. Two options are open to the 360 at 
this point: it may either enable the 338 in POINT
ING MODE, in which case the name of the next 
entity pointed at will be returned, or it may en
able the 338 in LIGHT PEN TRACKING MODE, 
in which case the X, Y coordinates of the point at 
'which tracking is lost will be returned. The 360 
can then uS,e these two pieces of information to 
generate one of the display commands described 
above, or it can wait for more information to be 
provided, either from the light-pen or, perhaps, 
from the teletype in the case of characters. When 
the 360 has completed its command generation it 
re-enables the 338 in POINTING MODE and 
waits for the user to point at another item in the 
m,enu. The process thus repeats. 

The present process reflects little sophistica
tion on the part of the 338. Adding further capa
bilities at the terminal will clearly improve sys
tem performance, which even now is not intol
erable. We plan to build this sophistication into 
several different terminals thereby providing one 
practical indication of the computing power nec
essary (at the terminal end) to achieve a given 

FIGURE 2-The original llll'nu 
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level of system performance. For example, the 
use of auxiliary tables in the terminal would en
able the 338 to act immediately on certain stand
ard commands like LINE rather than having to 
wait for a message similar to the one just sent 
to return via the 201 line. This will be our first 
upgrading of the terminal's capabilities and should 
cut down the traffic on the 201 significantly. How
ever, we feel that ultimate control of terminal 
characteristics-the state of the light-pen, for 
example-will still have to reside in the 360, be
cause new items, whose meaning in terms of ac
tions is unknown to the 338, may be added to the 
menu at any time. 

Data structure and its access language 

The data structure is fully described elsewhere,4 

but a short description at this point may be neces
sary for full understanding of this paper. The 
acronym TRAMP stands for Timeshared Rela
tional Associative Memory Program, and it re
fers to two distinct types of subroutines usen to 
store and retrieve data. The first of these is used 
to enter, retrieve, and manipulate data in an as
sociative (content-addressable) fashion by using 
a hash-coded scheme first suggested by Feldman. 5 

The second part is a logical compiler, which places 
an artificial structure on the associative memory: 
the relational package allows the user to make 
logical statements about the relations between ob
jects, which may already be stored in the associa
tive data structure. As an example, the associa
tive structure may have stored the fact that "ob
ject A" is "to the left of" "object B"; this is an 
associative triple which may be stored or re
trieved in the first data structure. If we now de
fine the fact that the relation "to the left of" is 
the converse of "to the right of," then questions 
about right position of objects may be asked with
out requiring explicit storage of extra informa
tion. The second package will search the data 
structure for converses (as well as many logically 
defined relationships) . 

Although the machine-coded functional pack
ages described above were developed for embed
ding in the UMIST* interpreter, the first package 
relies on it only for input/output, and therefore 
could simply be modified for use elsewhere. The 
particular use of the interpreter will be obvious 
in later discussion, but at this point it is worth 

*UMIST is closely patterned after the TRAC- T-64 language, 
and was implemented at the University of Miehigan with the 
cooperation of Mr. C. N. Mooers, creator of the TRAG language' 
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noting that the interpreter is fully recursive and 
'has excellent debugging features which make 
it possible to write and modify programs rapidly, 
yet with an efficient set of algorithms. 

The initial work of Feldman was a strong moti
vation for the initial design of the associative 
memory. His notation will be adopted in this ex
planation. The generic entity is: 

A (0) = V 

< Attribute> of < Object> equals < Value> 

Each of the three components is a non-empty set. 
By appropriately designating the three compo
nents as being constant or variable, there' are 
eight "questions" that may be asked of the data 
structure: 

FO A (0) = V 
F1 A (0) = x 
F2 A (x) = V 
F3 A ( x) =y 
F4 x (0) =V 
F5 x (0) = y 
F6 x (y) = V 
F7 x (y) = z 

where r A,O,Vl represent constants, and [x,y,z,] 
are variables. Question F7 is not a question at all 
but a request for a dump of the associative mem
ory. Question FO simply asks: Does A (0) = V? 
And the answer is a kind of truth value. In the 
case where A, 0, and V are all singletons, the 
truth value is a straightforward 1 or 0 denoting 
whether or not the specified association can be 
verified by the data. The interpretation is slightly 
ambiguous, however, when one or more of the 
three sets has cardinality greater than one. To 
illustrate, assuming that the association ENDS 
(L1) =:: P1 ;P2 has been stored, the following 
questions have the defined truth values: 

1) 

2) 

3) 

ENDS (L1) = P3 
ENDS (L1) = P1 
ENDS (L1) = P1 ;P3 

o 
1 
? 

The interpretation which seemed most natural, 
and the one adopted, gives: 

if ALL associations implied by the question 
are resident in memory, or derivable there
of, the value is 1 ; 

if none, the value is 0 ; 
if some, but not all, the value returned is ? 

Questions F1 to F6 simply ask the system to fill 
in the blank(s), i.e., to replace the variable with 
the set that is the answer to the question. 

For example, Question F1, A (0) = x, asks for 
the set (x) of all values (v) which satisfy the 
conditions A (0). Thus the question: ENDS (L1) 
= x produces the result x = P1 ;P2. Question F3, 
A (y) := x, asks for the set (y) of all Os and the 
set (x) of all Vs that have the attribute A. Thus 
in our example: 

y = Ll 

x = P1 ;P2. 

Of course, for a normal picture there is more than 
one line, and the normal result of this operation 
might well be: 

y = L1 ;L2 ;L3 ... 

X =--2 P1 ;P2 ;P3 ;P4 ;P1 ;P3 ;etc. 

Because of the recursive nature of. TRAC, Ques
tions F1 to F6 may be nested in any way, to any 
desired depth. 

For those totally unfamiliar with the TRAC 
language, for this paper it is necessary only to 
know the syntax of a function call. The sharp 
sign (#) signals the start of a function call, with 
the call itself enclosed in an immediately follow
ing pair of parentheses. The arguments are sep
arated by commas, and the first argument is the 
name of the function. # (sub,ARG) is therefore 
analogous to the FORTRAN: CALL SUB (ARG). 
One of the minor additions of UMIST is to allow 
implicit calls of functions, i.e., when the normal 
call might be#(cl, FUNC) in TRAC, the UMIST 
call may be either the same, or else # (FUNC) . 

The name of the storage function is dr and the 
syntax of the call is # (dr,A,O,V,). None of the 
three arguments to dr may be an empty set. Each 
point in the cartesian product of the three sets 
is stored using has,h-coding' techniques, i.e., each 
element of each set' is grouped with each pair of 
elements of the other two sets, and the resulting 
triple is stored. Thus a single call on dr stores 
as many associations as the product of the cardi
nalities of the three sets. 

The primary retrieval function has the name rl. 
The syntax of the function call is identical to 



that of dr except for variable specification. A 
variable in T'RAMP is denoted by enclosing a 
name, possibly null, within asterisks (*) . Thus, 
# (rl,A,O,V) has no variables and asks whether 
A (0) = V; # (rl,A,O,*X*) asks: What does 
A (0) equal? Place the answer in X. When the 
variable is not given, the answer is returned into 
the calling string. 

rl generates the union of the answer sets. That 
is, the question: # (rl,ENDS,Ll ;L2, **) has two 
answer sets: the ENDS of Ll and the ENDS of 
L2. rl simply forms the union of however many 
sets there might be, however int is a function 
which generates the intersection of the several 
answer sets. Thus, # (int,ENDS,Ll ;L2,**) gen
erates the s,et of all end-points common to Ll and 
L2. # (rl,ENDS,Ll ;L2, * *), on the other hand, 
would generate the set of all points at the ends 
of either Ll or L2. 

Throughout this article the UMIST delimiter 
of arguments is the comma; the element delimiter 
for TRAMP cannot be the same, we therefore use 
the semicolon. 

The communication generator language 

The large timeshared computer is us'ed for stor
age, retrieval, and manipulation of the descrip
tion of the graphical structure as well as commu~ 
nication of display commands to the smaller dis
play computer. Essentially, the information is 
stored in a hierarchical structure built up in 
TRAMP, whereas the communication between the 
large and small computers is under the command 
of UMIST, which also resides within the large 
computer. This intercomputer communication is 
kept as small as po's'sible because of the low 
channel capacity of the data lines. 

At each of its transmissions, the small com
puter sends either the coordinates of a tracking
cross position or the reference name of an entry 
in the s,mall computer's display file. The large 
computer interprets this message in terms of what 
it was expecting to receive and sends back the 
necessary position, line, character string, or com
mand (as described in a previous section). 

In addition to s,ending commands to the small 
computer, the large computer stores picture in
formation so that it may either alter pictures 
(upon command), or perfQrm computations on 
picture structure, or redisplay pictures at a later 
time. 

The quiescent state of the large computer is 
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"procedure check," which corresponds to point
ing mode in the small computer. In this state, the 
critical items on the display are the list of opera
tions which can be performed, the menu. Because 
each item in the menu is a character string at 
the display tube, it has a unique name, a four
digit number, corresponding to its location in the 
data file. If the light-pen is pointed at an item, for 
example, the word POINT, the display file loca
tion corresponding to this entity is transmitted 
over the data line to the large computer, which 
can determine the procedure corresponding to 
this name and execute this procedure. This is 
possible because, at the time that the name item 
was created, its display file location was associ
ated with the corresponding procedure, i.e., the 
association was defined by executing: # (DR, 
PROC,# (XIN) '# (TEST) ), where # (XIN) is 
an implicit call on an input string buffer. The call 
is replaced by the las,t input string, and # (TEST) 
is replaced by the value of TEST, in this case the 
string POINT, which was previously written as 
the procedure which defines a point. The input 
string, stored in XIN, is the display file location 
corresponding to the character string POINT. 
Let us assume this location is 0027; then we have 
# (DR,PROC,0027,POINT). 

N ow, whenever the light-pen is in pointing 
mode, and POINT is picked, the name 0027 will 
be transmitted over the data line (see Figure 3). 
The larger computer is in the procedure check 
state, which means it is waiting to read an input 
string, viz: # (# (RL,PROC,# (RS) ,**». If 
POINT is picked, this becQmes first # (# (RL, 
PROC,0027, **) ), then # (POINT), which then 
initiates a string of commands to. define points. 

Figures 3 and 4 show the communication se
quence between the machines for several opera
tions. Those lines prefixed with " < <" are mes
sages from the smaller to the larger computer 
while those with "> >" are from the larger to 
the smaller. The uIJ-marked lines are eithe:r mes
sages from the computers to the user, or typed 
messages from the user. Ordinarily very little is 
printed out at the teletype once the menu has 
been built up. 

In addition to PROG (EDURES), there are 
several other attribute names of paramount im
portance in the large computer;" among these 
are CLAS (S) , COOR (DIN ATES) , characters 
(CRRS), and RIST'(ORY). ' 

For example, to store the description CYf a 
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»PM 
«0029 
»LT 
«0422 0842 
»PN 0422 0842 

*«0037 
»LP 
«0584 0710 
»LE 0584 0710 

*«0039 
»LP 
«2000 
»PM 
«0027 
»LT 
«0370 0426 

*::~~!~370 0426 

»LP 
«0530 0432 
»PT 0530 0432 

*«0043 
»LP 
«2000 
»PM 
«0035 
»LT 
«0360 0244 
»PN 0360 0244 

*«0045 

Light pen 
Stop 
Pointing mode 
Data file location of POINT 
Light pen tracking 
Coordinates 
Point Command 
Data file location 
Light pen (continue) 
Coordinates 
Point command 
Data file location 
Light pen (continue) 
Stop 
Pointinl! mode 
Data file location of CHARACTERS 

CHARACTERS? Computer message on teletype 
NOW WE HAVE ONE LINE, TWO POINTS AND A CHARACTER STRING. 
»CH NOW WE HAVE ONE LINE, TWO POINTS AND A CHARACTER STRING. 

*«0047 
»LP 
«0350 0201 
»PN 0350 0201 

*«0049 
CHARACTERS? 
THIS OUGHT TO GIVE AN IDEA OF COMMUNICATION 
»CH THIS OUGHT TO GIVE AN IDEA OF COMMUNICATION. 

*«0051 
»LP 
«2000 
»PM 

* At this point the 360/67 is defining associations CLAS(S), 
COOR(DINATES), and HIST(ORY). 

FIGURE 3-Drawing a picture 

»SN 
PICTURE NAME? 
VI 
»PM 
MENU 
»PN' 850 900 
«0017 

*»CH MENU VI 
«0019 
»PN 850 870 
«0021 
»CH ADD TO MENU 

*«0023 
DONE. 
»PM 
«0023 
ENTRY IN .. MENU;PROGRAM? 
POINT;PINT 
»PN 850 840 
«0025 
»CH POINT' 

*«0027 
ENTRY IN .. MENU;PROGRAM? 
LINE; LIN 
»PN 850 810 
«0029 
»CH LINE' 

*«0031 
ENTRY IN .. MENU ,PROGRAM? 
CHARACTERS;CHR 
»PN 850 780 
«0033 
»CH CHARACTERS 

*«0035 
ENTRY IN .. MENU;PROGRAM? 

DONE. 
»PM 

Start again. 
Computer message on teletype 
User's answer on teletype 
Pointing mode . 
User types on teletype 
Automatic s~art ~osition of menu 
Data file 'location 
Character string 
Data file location 
Position 
Data file location 
Character string 
Data file location 
End of automatic part of menu 
Pointing Mode 
Light pen picks procedure 
Computer message on teletype 
User's answer on teletype 
Next line of men~ 
Name 
Character string 
Data file location. (of POINT) 

User types ' to stop 

"«" - smaller to larger computer 

* At this point the 360/67 is defining associations CLAS(S), 

COOR(DINATES), PROC(EDURE), and HIST(ORY). 

FIGURE 4-Defining the menu 

point, PI, which is in Picture VI, the following 
set of TRAMP statements is executed: 

# (DR,CLAS,PI,VI,) 
# (.DR,CLAS,POINT,PI) 
# DR,COOR,PI,0370 :0426) 
# (DR,HIST,0041,Pl :VI). 

This invo.lves defining PI in the class of VI; 
POINT in the class af PI; the caordinates of PI 
as 370/426; and PI's display file entry (41) is 
then given the history of the dendrite* of PI. 

The information can be retrieved by asking 
questions. For example, in Figure 3, where many 
pictures, etc. are defined within ather pictures: 
# (RL,CLAS, *T* ,VI) will define T to be 
Ll ;L2 ;PI ;P2 ;L3 ;C3 ;L4 ;C4. 

Please no.te that these entities are o.rdered, be
ing retrieved in the same order as they were de
fined. This is important since drawing lines from 
caordinate pairs L7 to. L8 to. L9 will not, in gen
eral, pro.duce the same picture as drawing from 
coordinates L8 to L7 to L9. 

We naw have the hierarchical structure shown 
in Figure 5. 

The heart of the display file generator in the 
large computer is a recursive routine which 
climbs down this structure from the tap going 
down the left-most dendrite until it finds a ter
minal element, or the end af the string. It com
municates any displayable element to the small 
computer, deletes it from the string (hut not from 
the memory), and climbs back up the structure 
until it finds the next non-terminal element. It 
then rep·eats the previous steps. When the whole 
structure has been examined, and all the terminal 
elements communicated to the display, the larger 
computer sends a pointing mode command and 
enters the quiescent state. 

As the routine goes down the structure it sa.ves 
the path (dendrite) in order to know the HIS
TORY of each entity transmitted to the display. 
This history is used by many routines, for ex
ample, to change or delete items in the associative 
memory as the graphical entities that they repre
sent are moved or deleted from the display. The 
histories shown in Figures 3 and 4 are very short; 
however, since pictures can be defined within pic
tures to any depth short of infinite, histories can 
be quite long. An obvious example of infinite re-

* A dendrite is a unique path down from the topmost element 
of the hierarchy. 



VI 

LI L2 PI P2 L3 C3 L4 C4 

I 
POSITION POINT POSiTION POSITION 

LINE POINT 

CHARACTERS 

CHARACTERS 

POSITION, LINE, POINT, and CHARACTERS are all at the same 
heirarchical ply (level) in this figure. In general this 
may not be the case. 

FIGURE 5-Hierarchical structure of Figure :3. 

cursion occurs if we define a picture within itself 
(the barbershop-mirror problem). 

HISTORY is essentially a cross-reference table 
between the display file in the small computer 
and the associative memory in the large computer, 
yet HISTORY is itself part of the associative 
memory. This is in sharp contradistinction to sev
eral other graphic systems which either use a 
sequential cross-reference table, or some mech
anism other than the main storage itself. 

Ascribing meaning to graphical data 

Early graphics systems, such as the GM DAC6 
system and Sketchpad,7 were little better than 
automated drafting boards. This statement is not 
intended in any way to belittle their efforts, but 
merely to underline the fact that there was very 
little that could be done with a picture once it had 
been generated. Certain of Sutherland's illustra
tions are quite startling in their apparent sophisti
cation, but generally return to the use of con
straints (which were satisfied using least squares 
fit, which is an energy constraint in engineering). 
In endeavoring to ascribe meaning to pictures, 
later investigators' were forced to use data struc
tures in a more sophisticated manner, and it be
came obvious that associations should be much 
more complex than the original ring structures, 
etc. The CORALs language, APL,s and AL, the 
language described by Feldman, are all 'Outgrowths 
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of the need to ascribe extra associations and mean
ings to a picture. Many are now working on this 
problem but information in technical literature 
is relatively sparse. To illustrate the techniques 
being developed at the University of Michigan, 
and to show the power of the associative language, 
a detailed example will now be given. 

The problem chosen is that of finding a list of 
all points, joined by lines to a given point. This 
may seem relatively trivial, since it requires only 
a knowledge of the end-points of the lines, a selec
tion of those lines which end on the given point, 
and continuation by asking for' all points now 
joined to the new set of end-points. There are two 
problems with this solution. The first is that we 
are potentially in an infinite recursion, where we 
must exclude all points previously found from our 
next search. The second is that the picture does 
not necessarily use the same name for points oc
cupying the same space. As an example, in con
structing the letter Y we draw two lines in a con
tinuous fashion through the center point, and 
then draw the third line to intersect these two at 
the center point. Unless special software has been 
produced to check for this, there is no reason why 
the data structure should describe the third line 
as terminating at the same point name as that 
of the first two-line intersection. 

·This is really another example of the synonym 
in keyword searches, or common node points of 
graph theory. The problem occurs, because al
though the coordinates of the end-points may be 
the same, they have been defined at different times 
with different external or internal names. Figure 
6 is in three parts, it fully describes the process 
of finding all points. Part A is a description in a 
normal language; Part B is a solution in meta
language, using the ass'Ociative language 'Of an 

1. Name Program POlCON 
Read Input on teletype 

2. 
Find all synonyms of 
new points, 
remove all previous ly 
found points (relative 
complement) find union of 
new points with answer set, 
and with latest new points 
to give newest set of points: 

Find all lines emanating from 
the new points, and then all 
ends of these lines. Remove all 
previously found points froll!; 
this set (relative complement). 
Union the new points with the 
answer set. I f there are no 
new points found, exit, print
ing the answer on the teletype. 

a. NORMAL LANGUAGE DEFINITION 

FUNCTION POI CON 
READ INTO PI 
ANSWER: PANS 
TEMPORARY: NEWP ,HOLDS 
CURRENT POINTS GENERATED 

COOR(NEWP) • X,FIND X 
COOR(Y) • X, FIND Y 
RELCOM(Y, PANS)+Z 
UNION(Z, PANS)+PANS 
UN ION (Z ,NEWP)+NEWP 

END(X) • NEWP,FINDX 
END(X) • NEWP,FIND NEWP 
RELCOM(NEWP ;PANS) NEWP 
UNION(NEWP,PANS) PANS 
IF NEWP IS NULL,EXIT AND 
PRINT PANS, OTHERWISE 
REPEAT FROM STEP 2. 

b. META- LANGUAGE 
PROGRAM 

'(DS,POICON, 
('(DS,PI,'(RS)) 
'(DS,PANS,) 
'(DS,NEWP,'(PI)1 
'(TWO))) 

'(DS,TWO,( 
'(RL,COOR.'(NEWP) ,flXfr) 
• (RL, COOR, ·Y· ,'(X)) 
'(ROOM,'(Y) ,'(PANS) ,Z) 
'(UN,'(Z) ;'(PANS) ,PANS) 
'(UN,'(Z) ;'(NEWP) ,NEWP) 
'(THREE))) 

'(DS,THREE, ( 
, (RL, END, ·X· , t (NEWP» 
'(RL,END,'(X) ,·NEWp.) 
'(RCOM,' (NEWP) " (PANS) ,NEWP) 
'(UN,' (NEWP);' (PANS), PANS) 
• (EQ,' (NEWP) , , 
(. (PANS)), 
('(TWO))))) 

c. TRAMP PROGRAM 

FIGURE 6-Point connectivity: Definition in an 
associative structure 
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earlier section; Part C is a set of TRAMP lan
guage statements describing the ~ame process. It 
is important to note that the transformation from 
one language to the next is relatively simple, be
eause of the similarity between the original lan
guage statement, the meta-language, and the 
TRAMP statements. 

Some simple examples 

The photographs in this section provide some 
simple examples of the system. Figure 2 shows 
some basic options available to the user. The vari
ous items were defined through communication 
similar to that shown in Figure 4. Items may be 
added to the menu at any time. An example of 
this is given in Figure 7 where the user has ex
plicitly associated the word appearing on the 
screen with a UMIST procedure in the 360. Fig
ure 8 shows several lines and character strings, 
and Figure 9 shows that pictures may be called 
back from 360 storage for further processing. 

SUMMARY OF THE PRESENT SYSTEM 
AND FUTURE PLANS 

The illustrations of the last two sections are not 
intended to be particularly erudite or sophisti
cated, but to show that the present use of an as
sociative data structure gives the programmer ex
treme generality. Although the original PDP-8 
macro language was developed to facilitate draw
ing, the associative data structure allowed us to 
ignore such problems as connectivity or geomet
rical interpretation until later in the implemen-

FIGURE 7-User-augmented menu 

Fl GUR E 8--Two diodes 

FIGURE 9-Combination of pictures 

tation: the information was not lost, but merely 
not being used. 

Obviously the relational aspects described in a 
previous section allow for even more sophisticated 
programming. For we do not have to say that if 
A is connected to B, and B is connected to C, that 
A is connected to C,. and make recursive searches, 
but merely state that the "connected to" relation 
is transitive, and allow the relational programs 
to generate the necessary calls to give the com
plete solution set. 

A further illustration of the use of associative 
and relational data structures includes the ability 
to recognize primitive obj ects from their descrip
tion. Thus we may define a triangle by drawing 
three lines, and then ask for this picture to be 



"analyzed." The analysis program may require 
man-machine interaction, in which case the user 
gives the word "triangle" and the program checks 
that the picture does, in fact, satisfy the definition 
of a triangle, or alternatively checks that the three 
lines to which the user points are indeed connected 
together at their end-points to form a triangle. 
In another type of analysis, the data structure 
could be heuristically searched to find the primi
tive structure of the various parts, and come up 
with the attributes of the various parts, such as 
triangle, square, rectangle, etc. This last mode of 
operation is obviously time-consuming, and will 
not probably prove to be an economical way of 
operation in the near future. 

A further extension will allow the user to ask 
for computation of the various angles of the tri
angle given the sides, or allow generation of alge
braic formulae from the data structure of the pic
ture. This requires the association of the shape 
of the triangle with its formulae, i.e., trigono
metric or geometric properties of triangles.10 This 
latter concept allows us to look toward the future 
where an interactive graphic system may involve 
the drawing of pictures which are later analyzed 
geometrically, for use in engineering formulae to 
calculate stresses, voltages, volumes, or tempera
ture of the physical objects represented in a draw
ing. 

In this article we have endeavored to show that 
an associative approach to graphics design gives 
advantages both to the communication of infor
mation over slow-speed transmission lines, as well 
as to the ascribing of meaning to pictures. Other 
work is presently under way on better input/out
put devices, or higher band-width transmission 
devices. We hope to determine the design para:m
eters of the man-machine interface, such as the 
effect on a user working within a timesharing 
system not committed totally to him. We also 
hope to determine design aspects for better hard
ware (e.g., would floating point hardware on the 
small computer significantly affect the system?). 
Finally, we intend to build up the complexity of 
the small terminal until the economies of size are 
balanced by diseconomies of commited use; for 
although the larger computer generally provides 
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lower computer cost per instruction, (economies 
of size), a committed system, although small, al
lows maximum human interaction. Graphics sys
tems require so much interaction that it could be 
an unwarranted burden on a large computer, 
which immediately forces us to a diseconomy of 
size; but an unsophisticated terminal could be a 
frustration to the user, impairing his productivity 
or creativity. The question of the relative power 
of the terminal is therefore one of major signifi
cance in the next few years. 
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Description of a set-theoretic data structure 

by DAVID L. CHILDS 

University oj Michigan 
Ann Arbor, Michigan 

INTRODUCTION 

The overall goal, of which this paper is a part, is the 
development of a machine-independent data structure 
all~wing rapid processing of data related by arbitrary 
~ssignment such as: the contents of a telephone book, 
h?rary fi~es, census reports, family lineage, graphic 
dIsplays, .Information retrieval systems, networks, etc. 
Data whIch are non-intrinsically related have to be 
expressed (stored) in such a way as to define the way in 
which they are related before any data structure is 
applicable. Since any relation can be expressed in set 
theo~y as a set of ordered pairs and since set theory 
~rovides a wealth of operations for dealing with rela
~Ions, . a ~et-theoretic data structure appears worth 
InvestIgatIOn. 

A Set-Th~oretic Data Structure (STDS) is a storage 
r~presentatIOn of sets and set operations such that: 
gIven any family of sets 1J and any collection S of set 
operations an STDS is any storage representation which 
is isomorphic to 1J with S. The language used with an 
STDS may contain any set-theoretic expression capable 
o! construction from 1J and S. Every stored representa
tIOn of a set must preserve all the properties of that set 
and every representation of a particular set must be
have identically under set operations. 

General 8torage repre8entation 

An STDS is comprised of five structurally indepen-
dent parts: 

1) a collection of set operations S. 
2) a set of datum names (3. 
3) the data: a collection of datum definitions, one for 

each datum name. 
4) a collection of set names 1J. 

5) a collection of set repre~entations, each with a 
name in 1J. 

The storage representation is shown schematically in 

Figure 1. In order for an STDS to be practical the set 
operations must be executed rapidly. If any two sets 
can be well ordered (a linear order with a first element) 
such that their union preserve~ this well-ordering, then 
the subroutines needed for set operations just involve 
a form of merge or, at worst, a binary search of just one 
of the sets: It was shown in another paper! that any set 
defined over {j could be so ordered. Sets are represented 
by blocks of contiguous storage locations with 1J con
taining names of all the sets. The set (3 is the set of all 
datum names, and is represented by a contiguous block 
of storage locations; the address of a location in the 
(3-block is a datum name and an element of (3. The 
content of a location in the (3-block is the address of a 
stored description of that datum (see Figure 1). The 
contents of the (3-block and the 1J-block are the only 
pointers needed for the operation of an STDS. The 
storage representations of the individual sets do not 
contain pointers to other sets, but contain information 
about datum names. Since each set representation has 
only one pointer associated with it, the set representa
tion can be moved throughout storage without affect
ing its contents or the contents of any other set repre
sentation-only the one pointer in 1J is affected. Up
dating set representations is virtually trivial. Elements 
to be deleted are replaced by the last element in the set. 
Elements to be added are added to the end of the set 
representation as space allows. When contiguous 
locations are no longer available a new set is formed 
and the element in 1J that referenced the set before it 
was extended now references a location that indicates 
that the set is now the union of two set representations. 
(In a paging structure such sets could be kept on 
the same page.) This demonstrates two different kinds 
of sets in 1J: generator sets and composit~ sets. Only the 
generator set~ have storage representations, the com
posite sets are unions of generator sets, and the genera
tor sets are mutually disjoint. Since no duplication of 
storage of sets is necessary and since the set representa-
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tions are kept to a minimum by containing just the 
elements of the sets and no pointers, an STnS is in
trinsically a minlimal Rtorage representation for arbi
trarily related data. 

Operation of an STDS 

An STnS relies on set operations to do the work 
usually allocated to pointers or hash-coding as in list 
structures, ring structures, associative structures, and 
relational files. A set operation of S is represented by a 
subroutine which accesses sets through pointers in "'. 
Again it should be stressed that no pointers exist be
tween sets, hence the set operations S act as the only 
structural ties between sets. Since S will allow any set
theoretic operation, S will be rich enough that all 
information between sets may be expressed by a set
theoretic expression generated from the operations of 
S. Any expression establishes which sets are to be ac
cessed and which operations are to be performed within 
and between these sets; therefore all pages needed for 
completion of an expression are known before the 
expression is executed. Complementing the set opera
tion subroutines are some strictly storage manipulation 
subroutines. These, however, are not reflected in any 

set-theoretic expression. These routines change storage 
t. 

modes and perform sorts and orderings. A fast sort 
routine has been programmed with execution times as a 
linear function of the number of words to be sorted. 
(On an IBM 7090 this sort ordered 1000 words in 0.35 
seconds and 10,000 words in 3.3 seconds. The nature of 
this sort is such that on an IBM 360/67 it may sort up 
to 60,000 bytes per second. This routine is presently 
being programmed.) Another subroutine which is 
crucial to the operation of an STnS is the tau-ordering 
routine.1 This routine gives a well-ordering which is 
preserved under union. 

Details of f3-block 

The f3-block is a section of contiguous storage loca
tions with f30 as the address of the head location. The 
first location containing a datum-pointer has the ad
dress f3o+ 1, and the location of the i-th datum-pointer is 
f3o+i. Let # f3 represent the total number of datum
pointers, then the last address of the f3-block would be 
f3o+ # f3. f3 is the set of datum-names or locations of 
datum-pointers in the f3-block. Since all datum-pointers 
are located between f3o+ 1 and f3o+ # f3, let f3 be the set 
of integers {1,2 ... ', # f3}. Therefore any integer i such 

SET OPERATIONS:S SET NAMES:n SET REPRESENTATIONS DA't'TJM NAMES: 8 DATA STORAGE 

/~"\ 
/ 
( 

S 

\ 

GENERATOR 
SETS 

COMPOSITE 
SETS 

8 0 
r 

n(1) 
8 

B 

Ro+i 
n (1) rei) 

8 DATUM 
DESCRIPTI 

8 

~o+#8 "- r . 

Q(1) through n(n*-1) are sets of pointers to COMPOSITE SETS in n-BLO~K 

SH'l",*) through SHin) are sets of pointers to GENERATOR SETS in n-BT ... OCT{ 

rei) are sets of pointers to GENERATOR SETS inn-BLOCK 

FIGURE 1 



that I~i~ #/3 is the datum-name for the i-th datum
pointer. The i-th datum-pointer locates a block of 
storage containing a description of the i-th datum and 
all the generator set names (elements of 1]) for which 
the i-th datum name is a constituent. 

Details of 1]-block 

The 1]-block is similar to the /3-block with 1]0 and 
# '1] as the address of the head location and cardinality 
respectively. The contents of the 1]-block are pointers. 
These pointers are of two types and are distinguished by 
an integer '1]* such that 1<1]*~ #1]. For alll~i<1]*, 
i is the name of a generator set, and for all1]*~i~ # 1], 
i is a composite set. A generator set has a set represen
tation while a composite set does not since it is the un
iOn of some generator sets. For i~ '1]* the pointer.in '1]o+i 
locates a section of storage containing names of genera
tor sets. For i < 1]:1< the pointer in 1]o+i locates a section 
of storage containing all composite set names that use 
i, and a pointer to the set representation of i. Since all 
generator sets are mutually disjoint and since only 
generator sets have a storage representation, there is 
no duplication of storage in an STDS. 

Set representation 

In order to insure fast execution times for the set 
operations in S, the sets involved must be isomorphic to 
a unique linear representation of their elements. Unique 
is used here to mean unique relative to some predefined 
well-ordering relation, such that independently of how 
the set is presented to a machine the ordering of its 
elements will always be the same. This well-ordering 
must be preserved under union. Any ordering satisfying 
the above conditions is adequate for the efficient op
eration of an STDS.! 

Since the set representatives must be isomorphic to 
the sets they represent, every set representation must 
reflect the rank and preserve the order (if any) of the 
sets and their elements. Let A = <a,b,c>, B = {a, 
b,c}, and C = {c,b,a} then Band C must have the same 
set representation while A must have a completely 
different representation. F9r simple sets like these, 
adequate represen~ations ar~ trivial, such is not always 
the case, however. 

Complexes and n-tuples 

If an STDS is to be general then it will have to 
accommodate more imaginative sets than the ones 
above. Let W = {a,b,{{c} },<a,{b,d},c>,< <a,b>, 
c>} and V = {<a,b,c:>,< {<a,b>,<c,d> },<d,a, 
> > ,1 {c} } ,b}. In order for set operations on these sets 
to fall within the allotted time bounds, the storage 
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representations of Wand V must satisfy the well
ordering condition. Such a representation is not imme
diatelyobvious. Two problems arise. (I) The first prob
lem is machine oriented in that an ordered set in set 
theory is defined through nesting and repetition of the 
elements of the set. For example the Kuratowski defi
nition of ordered pair gives <a,b> = {{a},{a,b}}. 
Since anY machine representation will induce an order 
on the elements of a set by their location in storage, 
this may be utilized instead of relying on r~dundancy 
of storage. This in tUrn may present problems in pre
serving the isomorphism between sets and their set , . . 
representatIOns, SInce an unordered set must have a 
unique representation and no ordering on its elements. 
(2) The second problem is much allied with the first 
except that it is more biased towards the foundations 
of set theory. There seems to be a general lack of pre
cision in set theory when ordering beyond a pair is 
involved. No set representation of ordered triples, 
ordered quadruples, quintuples, sextuples, etc., is given 
save for an arbitrary assignment in terms of ordered 
pairs. (This problem is discussed by Skolem3). For 
example <a,b,c,d> has no set equivalent independent 
of ordered pairs, it is given one of the following as its 
canonical fo~: < <a,b>, <c,d> >; <a,<b,<c,d 
»>; <a,«b,c>,d>; «<a,b>,c>,d>;« 
a,<b,c> >,d>; or {<l,a>, <2,b>, <3,c>, <4, 
d> } . Clearly each of these sets has independent stature 
and assigning one as a canonical form of the other 
preclu.des the use of the others. The problem with 
order~d tuples is compounded in that though they are 
defined as sets they are excluded from meaningful set 

( 

operations. The intersection between quadruples < a, 
b,c,d> and <x,b,c,d> is always empty unless a=x, 
and even then it depends on which assignment is used. 
In another paper! the definition of a "complex" is 
presented which preserves the distinction between 
different nestings of ordered pairs, does not require 
order to be defined by repetition, and does not arbitrar- . 
ily exclude certain sets from being operated on by set 
operations. The formal definition of a complex is given 
by the following, where N is the set of natural numbers. 

DEFINITION OFA COMPLEX: Any two sets A 
and B form a complex (A;B) if and only if (~X) 

(~Y)(XE{A,B} )(Y E{A,B} )[(VXE X)(~iEN) 

({ {x},i} EY) & (VYEY) (~j EN) (~xEX) ({ {x},j} = y)] 

This definition is stated in such a way as not to presup
pose any ordering in (A;B) of A before B, insuring that 
a complex be an unordered coupling of two sets, each 
bearing a mutual dependence on the other. The defi-
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nition states that for every element x of one of the sets, 
X, the other set, Y, contains an element containing a 
natural number and a set whose only element is x; and 
that Y is such that every element of Y contains only a 
natural number and a singleton set containing an ele
ment of X (either X=A and Y =B, or X=B and 
Y =A, but not both). Let A = {a,b,c}, B = { { {a},l}, 
{{b},3}, {{ c}, 963}, {{ b},6} } and let C = ta,b, { {b},3}, 
{{a},l},{ {d},6}} then (A;B), (B;A) and (An C;Bn C) 
are complexes, while (A;A), (A;C), (A;B n C) and 
(A n C ;B) are not complexes. From the definition it 
shouid be noticed that if (A;B) is a complex then (B;A) 
is the same complex and A~B. Without giving a formal 
definition here let X€iA be understood to mean that x 
is in the i-th position of the complex A, then a notational 
schema for a complex is given by: 

DEFINITION SCHEMA: {xi:'lF(x,i)} =A iff [(Vx) 

(ViEN) (XEiA +-+ 'IF(x,i)) & A is a complex] 

These results allow a set theoretic foundation for the 
following equivalent notations: 

set {a,b,c} {al,bl,cl} 

ordered pair <a,b> {al,b2 } 

ordered triple <a,b,c> {al,b2,c3} 

ordered quad~uple <a,b,c,d> {al b2cS d'} , , , 
ordered pairs of ordered pairs 

< <a,b>,<c,d> > { {aI,b2}1,{cI,d2}2} 

<a,<b,<c,d> > > {aI, {b\ {cI,d2}2}2} 

<a,< <b,c>,d> > {al, { {bI,c2}I,d2}2} 

< < <a,b>,c>,d> { { {al,b2}I,c2}1,d2} 

< <a,<b,c> >,d> { {a\{bI,c2}2}1,d2} 

{<1,a>,<2,b>,<3,c>,<4,d>} = {{P,a2,},{21,b2}, 
{3\c2

} ; {4\d2
} } 

and from the beginning of this section, 

W = {al,bl,{ {Cl} }, {aI, {bl,dl}2,c3}, { {al,b2},cl}} 

V = {{a1,b2,c3},{ {{aI,b2},{cI,d2} },{dl,a2}2},{ {Cl} },bl} 

Since for all a, {al} = {a}, the exponent '1' is optional. 
It should be stressed that the symbol 'Xi' has no mean
ing apart from being enclosed by set brackets. mean
{a6,b8 }, then a€oA and bEsA are true, but a6 eA isH A= 
ingless. For examples of set operations bet",een com
plexes see Figure 2. 

1) <a,b,c>n<x,b,y> = {b 2
} 

3) {a,b,c}n<a,x,y> = <a> = {al} = {a} 

5) <a,b,z>A<a,y,c>~<x,b,c> = <x,y,z> 

6) <a,b,c,d> ~ <X,y,cid> = <a,b> 

FIGURE 2-8et operations between complexes 

Set operation 8Ubrout~ne8 

The viability of an STDS rests not only on the speed 
of the set operations, but also on their scope. Table 1 
presents some available set operations for constructing 
questions in any way compatible within a parent lan
guage. (For those who are not familiar with the set
theoretic definitions or are not accustomed to the 
notation preferred in this monograph, the definitions 
are given in Appendix 1.) These subroutines are pre
sented in a format compatible with FORTRAN, and 
with MAD if periods are added as in the examples to 
follow. The argument represented by C in the sub
routines can be deleted. This default case assigns a 
temporary storage block whose location is returned in 
D, as if it were a pennanent storage location, i.e., 
D = UN(A,B). Since all subroutines operate on the 
name of a storage block representing a set, then for all 
subroutines that return a name, any degree of nesting of 
these subroutines within subroutines is allowable (see 
examples). Since the only restriction on a set represen
tation is that it b~ isomorphic to the set and have a 
predefined well-ordering on its elements, there are many 
storage configurations available. MODE allows a 
choice of different storage configurations for non-set
theoretic needs. Though all the subroutines appear to be 
defined just for sets, they are defined for any complex 
as welL However, to make use of complexes that are not 
sets since they allow the extension of binary relation 
properties (e.g., domain, image, relative product, re
striction, etc.) to sets of arbitrary length n-tuples, 
further delimiters must be included. For example using 
'Q' and an extra argument the I-th relative produce of 
A with B could be QRP (I, A, B, C), and the I-th do
main of A could be QDM(I, A, C), and QELM(I, A, B) 
could represent the question "is A an I -th element of 
B?" . 



Some applications 

This section will be devoted to examples demonstrat
ing the applicability of set-theoretic questions. For a 
germane reference on computer graphics see Johnson.2 

The first two examples are to give some indication of 
execution times. The two examples were run on an IBM 
7090, the times mayor may not be characteristic of the 
potential speeds in an STDS. With just two examples 
no claims can be made other than that two examples 
were run with the following r~sults : 

EXAMPLE 1: Given a population of 24,000 people 
and a file F containing a ten-tuple for each person 
such that each ten·tuple is of the form <age, sex, 
marital status, race, political affiliation, mother 
tongue, employment status, family size, highest 
school grade completed, type of dwelling>, the 
following four questions were asked: 

a. Find the number of married females: 
Answer: 6,015 Time: 0.50 seconds 

b. Find the number of people of Spanish race 
whose mother tongue is not Spanish. 

Answer: 1,352 Time: 0.48 seconds 
c. Find the number of people aged 93 or 94. 

Answer: 46 Time: 0.73 seconds 
d .. Find the number of males and unmarried 

females. 
Answer: 17,985 Time: 0.55 seconds 

e. Find the number of males between the ages of 
20 and 40. 

Answer: 588 Time: 0.62 seconds. 

EXAMPLE 2: Given a population of 3,000 people 
and given two collections, A and B, of subsets from 
this population such that: A contains 20 sets of 500 
people, and B contains 500 sets of 20 people. Find the 
set of people belonging to some set in A, to all sets in 
A, and to an odd number of sets in A; and similarly 
for·B. 

Results A-Times B-Times 

a. people in some set 0.73 sec 0.76 sec 
b. people in all sets 0.48 sec 0.05 sec 
c. people in odd no. of sets 0.76 sec 0.78 sec 

A point to notice is that where every element has to be 
accessed, as in (a) and (c), the times are dependent on 
the total number of elements included (~(A) = i(B) 
= 10,000) and not the number of sets involved (20 
for A and 500 fDr B). 

Examples three and four are presented with MAD as 
the parent language, therefore all the subroutine names 
must end with a period. 

Description of Set-Theoretic D'ata structure 561 

EXAMPLE 3: Let six sets A,B,C,D,E, and F be the 
membership lists of six country clubs. For each male 
resident of Ann Arbor, let ther~ be a datum in {3 for a 
data-block containing: person's name, address, phone 
number, credit rating, age, golf handicap, wife's name 
(if any), political affiliation, religious preference, and 
salary. The set 'fJ will contain the names of the sets, 
namely: A(O), B(O), C(O), D(O), E(O), F(O). This along 
with the collection S of set operations allows an
swering the following questions. 

1) How many members belong to club A or B but 
not C? 

2) Find the phone numbers of members in an odd 
number of clubs. 

3) Get addresses of members belonging to one and 
only one club. 

4) Get addresses and phone numbers of people not 
in any club. 

5) Find members of A that are not also in B but who 
may be in C only if they ar~ not in D, or in E if 
they are not in F. 

6) Get the average credit rating of members belong
ing to exactly three clubs. 

The possible questions may become ridiculo11s1y in
volved and may interact with any spontaneously con
structed sets. For example of the latter, let X be the 
set of Ann Arbor males born in Ann Arbor. 

7) Find the average age of members born in Ann 
Arbor and compare with average age of members 
not born in Ann Arbor. 

The answers to (1) through (7) formula~ed in an STDS 
are expressed below, with Nand M representing real 
numbers, and with BB for (3 and NN for". 

1) N = C. (RL. (UN. (A,B),C)) 
ans: N 

2) ACC. (l,SD. (I,NN),Q) 
ans: Q. Format 1 gives phone numbers (see 

Table 1, #25) 

3) ACC. (2,EX. (l,NN),Q) 
ans: Q Format 2 gives addresses 

4) ACC. (3,RL. (BB,UN.(l,NN»,Q) 
ans: Q Format 3 gives phone numbers and 

addresses 

5) RL. (RL.(A,B) ,UN. (RL. (D ,C) ,RL. (F ,E»),Q) 
ans:Q 

6) ACC.(4,EX.(3,NN),Q) 
N = 0 
THROUGH LOOP, 
FOR I= 1,1,I.G.C.(Q) 
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LOOP N = N + Q(I) 
N = N/C.(Q) 

ans: N Format 4 gives credit rating 

7) N = 0 
M = 0 
ACC.(5,X,T) 
THROUGH LOOPl; 
FOR 1= 1,1,I.G.C.(T) 

LOOPI N = N + T(I) 
ACC. (5,RL.(BB,X),P) 
THROUGH LOOP2, 
FOR 1=1,1,I.G.C.(P) 

LOOP2 M = M + P(I) 
N = N/C.(T) 
M = M/C.(P) 

ans: Nand M are the respective average ages 
Format 5 gives ages 

EXAMPLE 4: Family lineage is easily expressed in 
STDS. With just five initial relations defined over a 
population U, all questions concerning family ties may 
be expressed. 

Let U be a population of people and let 
M = {,<x,y>: y is the mother of x} 
F = «x,y>: y is the father of x} 
S { <x,y> : y is a sister of x} 
B = «x,y>: y is a brother of x} 
H = {<x,y>: y is a husband of x} 
Let X be any subset of the population U, find 

1) the set G of grandfathers of X. 
G = F[(FUM)LX]] 
1M. (F ,1M. (UN. (F ,M) ,X) ,G) 

set notation 
in an STDS 

2) the set GF of grandfathers of X on the father's 
side. 

GF = F[F[X]] 
1M. (F ,1M. (F ,X) ,GF) 

set notation 
STDS 

3) the set GM of grandfathers of X on the mother's 
side 

GM = G",GF 
RL.(G,GF,GM) 

set notation 
STDS 

4). the set GR: the grandfather relation over U. 
G R = (F U M) IF set notations 
RP.(UN.(F,M),F,GR) STDS 

5) the general relation: P = {<x,y>: y is a parent 
of x} 

P=FUM 
UN.(F,M,P) 

6) the general relation: Sibling, L. 
L=SUB 
UN.(S,B,L) 

set notation 
STDS 

set notation 
STDS 

7) the general relation: Children, C. 

C=MUF=P 
CV.(P,C) 

8) the general relation: Aunt, A. 

set notation 
STDS 

A = (PIS) U (p IB/iI) set notation 
UN.(RP.(P,S),RP.(P,RP.(B,CV.(H»),A) 

STDS 

9) the general relation: Wife, W. 
W=H 
CV.(H,W) 

10) the general relation: Cousin, K. 
K = P/L/C 
RP. (P ,RP. (L,C),K) 

set notation 
STDS 

set notation 
STDS 

11) the general relation: Half-sibling, HS. 
HS = PIC", (M/M U F IF) set notation 
RL. (RP. CCV. (C) ,C) ,IN. (RP. (M,CV. (M», 

RP.(F,CV.(F»),HS) STDS 

12) people in X with no brothers or sisters. 
Q = X rv ~(L) set notation 
RL.(X,DM.(L),Q) STDS 

13) find all relations of X to a set Y such that Y is 
equal to the image of X. 

Q = {A: (A E1]) (Y = A[XD} set notation 
DC.(X,NN,T) STDS 
THROUGH LOOP, FOR 1=1,1,I.G.C.(T) 
B = IM.(T(I),X) 

LOOP WHENEVER EQL.(y,B).E.l, 
UN. (Q,S. (T (I» ,Q) 

Many more possibilities are available and might be 
tried by the reader. 

CONCLUSION 

The purpose of an STDS is to provide a storage repre
sentation for arbitrarily related data allowing quick 
access, minimal storage, generality, and extreme flexi
bility. With the definition of a complex, a predefined 
well-ordering, and the operations of set theory, such a 
storage representation can be realized. 

Set-theoretic definitions 

Conventions 

The logical connectives 'and,' 'or,' 'exclusive-or' are 
represented by '/\ " 'v;' '~.' 'For all x,' 'for some x,' 
'for exactly n x' will be represented by 'Vx,' 'Ex', 
'E(n) !x.' Parentheses are used for sepa.ration, and as 
usual the concatenation of parentheses will represent 
conjunction. 



'A' will be a set if and only if (a) it can be represented 
formally by abstraction (i.e., A= {x:O(x)} where O(x) is 
a predicate condition specifying the allowable elements 
'x'); (b) 'A' can be represented by {,} enclosing the 
specific elements of 'A.' 

Definitions 

The symbol' E' means 'is an element of'; XEA reads: 
"x is an element of A." 

1) UNION 
a) binary union of two sets A and B 

A U B = {x:(xeA)v(xeB)} 
b) unary union of a family G of sets 

UG = {X:(~AEG) (xeA)} 
c) indexed union of a set f (A) over the family G 

U AEG f(A) = fx:(~AeG) (xe f(A»}. 

2) INTERSECTION 
a) binary intersection of A and B 

An B = {x:(xeA) (xeB)} 
b) unary intersection of a famiJy G 

n G = {x:(VA'eG) (xeA)} 
c) indexed intersection of f(A) over the 

family G 
n AEGf(A) = {X:(VAEG) (xef(A»}. 

3) SYMMETRIC DIFFERENCE 
a) binary symmetric difference of A and B 

AAB = {x:(xeA)A(xeB)} * 
* even though the symbol 'A' has 

two different meanings, no con
fusion is likely 

b) unary symmetric difference of G 
AG = {x:(for an odd number of AEG) 

(xEA) } 
c) indexed symmetric difference of f(A) over G 

AAEGf(A) = {x:(for odd no. of AeG) 
(xef(A»} . 

4) RELATIVE COMPLEMENT 
A ~ B = {x:(xeA)(xEEB)}. 

5) EXACTLY N! 
the set of elements common to exactly In' 
elements of a given set G is represented by: 
EnG = {x:(E(n)!AeG)(xeA)}. 

6) DOMAIN of a set A 
~(A) = {x:(JIy)«x,y>eA)}*. 

* < x,y > represents an ordered pair 

7) RANGE of a set A 
(R(A) = {y:(~x)«x,y>eA)}. 

8) IMAGE of B under A 
A[B] = {y:(~xEB)( <x,y> eA)}. 
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9) CONVERSE IMAGE of B under A 
[B]A = {x:(~yeB)«x,y>eA)}. 

10) CONVERSE of A 
A = {<y,x>: <x,y> eA}. 

11) RESTRICTION 
AlB = {<x,y>:( <x,y > eA)(xeB)}. 

12) RELATIVE PRODUCT of A and B 
A/B = {<x,y > :(~z)( <x,z > eA) 

«z,y> eB)}. 

13) CARTESIAN PRODUCT of A and B 
AXB = {<x,y> :(xeA) (yeB) }. 

14) DOMAIN CONCURRENCE of X relative to A 
~(X:A) = {B:(BeA)(Xc ~(B»}. 

15) RANGE CONCURRENCE of X relative to A 
a(X:A) = {B:(BeA)(XC(R(B»}. 

16) SET CONCURRENCE of X relative to A 
g(X:A) = {B:(BeA)(XcB)}. 

17) CARDINALITY of A 
# A = n iff there are exactly n elements 

inA. 

18) A is a SUBSET of B iff every element of A is an 
element of B:CBB~(Vx)(xeA--+xeB). 

19) A is EQUAL to B iff A is a subset of B, and B is a 
subset of A:A=-B~-+(ACB&BCA). 

20) A and B are DISJOINT iff the intersection of A 
and B is empty:A nB = 0. 

21) A is EQUIVALENT to B iff A and B contain the 
same number of elements: # A = # B. 

GLOSSARY OF SYMBOLS 

Symbol 

iff 

--+ 
~ 

Vx 
~x 

E!x 
ex 
(En)!x 
E 

Symbol Definition 

if and only if 
Identity 
Conjunction 
Disjunction 
Exclusive or 
Implication (if ... then) 
Equivalence 
Universal quantifier (for all) 
Existential quantifies (for some) 
Uniqueness quantifier (for exactly one) 
Odd quantifier (for an odd number of) 
Exact number quantifier 
Set membership 
Empty set 
Non-membership 
Set inclusion 
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AnB Intersection AXB Cartesian product 
AUB Union ~(A) Domain of A 
AaB Symmetric difference (R(A) Range of A 
A""B Relative complement A Converse of A 
<x,y> Ordered pair AlB Relative product of A and B 
{x:O(x) } Definition by abstraction A/X A restricted to X 
xAy Ordered pair < x,y > contained in A A [X] Image of X under A 
UG Union or sum of G [X] A Converse-image of X under A 
nG Intersection of G ~(X) Domain-concurrence of X 
aG Symmetric difference of G (R(X) Range-concurrence of X 
E,.G Elements contained in exactly n elements g(X) Set-concurrence of X 

ofG HA) Total cardinality of A 

The last column contains an executable expression of the set-theoretic expression preceding it. D is an indirect 
name for the permanent storage with name C, or for temporary storage if the argument C is deleted, (see text). 

1) UNION 

2) INTERSECTION 

3) SYMMETRIC DIFFERENCE 

4) RELATIVE COMPLEMENT 
5) EXACTLY N ELEMENTS OF A 
6) DOMAIN of A 
7) RANGE of A 
8) IMAGE of B under A 
9) CONVERSE IMAGE under A 

10) CONVERSE of A 
11) RESTRICTION of A to B 
12) RELATIVE PRODUCT of A and B 
13) CARTESIAN PRODUCT of A and B 
14) DOMAIN CONCURRENCE of A to B 
15) RANGE CONCURRENCE of Ato B 
16) SET CONCURRENCE of A to B 
17) CARDINALITY of A N = $ A,(N is an integer) 

C = AUB 
C = UA 
C = AnB 
C = nA 
C = A.:lB 
C =.:lA 
C = A",B 
C = EnA 
C = ~(A) 
C = (R(A) 
C = AlB] 
C = lB]A 
C=A 
C = AlB 
C = AlB 
C = AXB 
C = ~ (A:B) 
C = a (A:B) 
C = ~ (A:B) 

D = UN (A, B, C) 
D = UN (1, A, C) 

D = IN (A, B, C) 
D = IN (1, A, C) 
D = SD (A, B, C) 
D = SD (1, A, C) 
D = RL (A, B, C) 
D = EX (N, A, C) 
D = DM (A, C) 
D = RG (A, C) 
D = 1M (A, B,C) 
D = CM (A, B, C) 
D = CV (A, C) 
D = RS (A, B, C) 
D = RP (A, B, C) 
D = XP (A, B, C) 
D = DC (A, B, C) 
D = RC (A, B, C) 
D = SC (A, B, C) 
N = C (A) 

BOOLEAN OPERATIONS I = 1 if the statement is true: 
I = 0 if the statement is false. 

18) A is a subset of B 
19) A is equal to B 
20) A and B are disjoint 
21) A is equipollent to B 
22) A is an element of B 

SPECIAL CONTROL OPERATIONS 
23) SET CONSTRUCTION 
24) MODE of A (see text) N is an integer 
25) ACCESS DATA in A by format N 

C = {A, B, X, ... } 

I = SBS (A, B) 
I = EQL (A, B) 
I = DSJ (A, B) 
I = EQP (A, B) 
I = ELM (A, B) 

D = S(C, A, B, X, ... ) 
N = M(A) 
D = ACC (N, A, C) 

(each format is written in the parent 
language and given an integer name) 

TABLE I-Some set operations expressed as subroutines 

REFERENCES 

1 DLCHILDS 
Feasibility of a set-theoretic data sttucture-a general structure 
based on a reconstituted definition of relation 
IFIP Congress 68 

2 TEJOHNSON 
A mass storage relational data structure for computer graphics and 

other arbitrary data stores 
MIT Department of Architecture Report October 1967 

3 TSKOLEM 
Two remarks on set theory 
MATH SCAND 5 43-46 1957 

4 PSUPPES 
Axiomatic set theory 
Van Nostrand Princeton 1960 



Application of functional optimization techniques 
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of partial differential equations* 
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INTRODUCTION 

Since its introduction in 1961, the serial or- CSDT 
(continuous-space-discrete-time) method for solving 
nonlinear parabolic partial differential equations in one 
space-dimension has received a 'considerable amount of 
attention.1- 8 This effort has been justified by the en
gineering importance and the abundance of problems 
characterized by one-dimensional diffusion equations. 
Although initially introduced as a pure analog tech
nique, interest in the CSDT method was stimulated 
particularly by the increasing availability and capa
bilities of hybrid computing systems. Utilizing the 
hybrid co~puter, a closed loop of analog elements is 
employed to integrate a second-order ordinarly dif
ferential equation at successive time levels. The digital 
computer serves as a function memory and to control 
the iterative determination of an initial condition at 
each time level. 

The major advantages of the CSDT approach over 
the more conventional- DSCT (discrete-space-con
tinuous-time) approach include the following: 

1) The analog hardware requirements of the CSDT 
method are very small compared _ to those of the 
DSCT method. This consideration is particularly 
important in the treatment of equations with non-

*ReSf'arch in hybrid computat.ion in the Department of Engineer
ing, University of California, Los Angeles is supported by the 
National Science Foundation under grant GK-1758. 

linear and time-varying parameters, for in this 
case a DSCT simulation requires separate non
linear function generators at each finite-difference 
grid point in the space domain. 

2) The high-spe~d computational capabilities of 
modern iterative analog computers can be utilized 
to full advantage. 

3) Problems involving moving boundaries can be 
solved readily by controlling the analog com
puter's integration interval, since the problem 
space variable is represented by the computer 
time variable. 

In practical applications, however, considerable dif
ficulty is encountered in obtaining dependable results 
using the CSDT method. The reason for this lies in the 
fact that in addition to the errors normally encountered 
in hybrid simulations (errors due to truncation and 
analog inaccuracies), the mechanization of the CSDT 
technique requires the instrumentation on the analog 
computer of an inherently-unstable ordinary differen
tial equation. This in turn causes errors, which normally 
can be tolerated in hybrid work, to accumulate and 
grow excessively as the solution progresses, leading to 
highly unreliable results. 

565 

It is the purpose of the present paper to introduce a 
method which retains the advantageous features of the 
serial CSDT method but which involves the solution on 
the analog computer of a stable rather than an unstable 
differential equation. In the following section the 
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classical CSDT method is briefly reviewed in order to 
provide a point of departure for the description of the 
new method. The third section is devoted to ~ general 
description of the new technique, while the compu
tational algorithms handled on the digital computer are 
presented in the fourth section. The last section in
cludes general comments on the new method as well as a 
description of the extension of the method to parabolic 
differential equations in two space-dimensions. 

The classical CSDT method 

We consider a linear one-dimensional diffusion equation 

a2u(x, t) = ! au(x, t) 
ax2 a at 

where 

XE(O, x') and tE(O, t') 

with the boundary conditions 

u(x = 0, t) = uo(t) 

u(x = x', t) = u,(t) 

and the initial condition 

u(x, t = 0) = Uo(x) . 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

Applying the classical CSDT approximation to equation 
(2.1), 

where 

d2u' u t - U,-l 
-~~---
dx2 - a.1t 

1 = 1, .... , N 

u· = u(x, t') 

t, = iAt 

t' 
.1t = N 

(2.5) 

Equations (2.2) and (2.3) are, respectively, transformed 
iIito 

and 

(2.7) 

while equation (2.4) is transformed into 

U i=D. = Uo(x) . (2.8) 

Since equation (2.5) is now an ordinary differential 
equation, an analog computer can be utilized for its so
lution. That is, the- independent variable x can be 
represented by the analog computer-time variable and 
therefore integrations can be carried out in a con
tinuous manner. In solving for u i , the solution US-I of 
the previous step in time acts as a driving function. The 
generated function u i then must be "remembered" so as 
to be used as the driving function for the next time step. 

Furthermore, we now need to solve a two-point 
boundary value problem because the boundary con
dition (2.3) in the original problem has been converted 
to the final value of u t. That is, while the boundary con
dition (2.2) is used as one of the initial conditions 

(i.e., u t (x = 0», the other initial condition, ~~' (x= 0), 

which is unknown must be found such that (2.3) is· 
satisfied at the end of the computer run. This is usually 
accomplished by an iterative technique. 

A typical hybrid computer mechanization for the 
implementation of classical CSDT method is shown in 
Figure 1. Briefly, the computational steps are: 

1) Initialize the analog integrators with one known 
initial condition Uo i and a trial initial condition 
du i 

dx (x= 0). 

2) Place the analog subsection in the COMPUTE 
mode during which the solution u i-I obtained dur
ing the preceding solution cycle is played back 
via a DAL (digital-to- analog linkage), and the new 
solution u i is recorded via an ADL (analog-to-

FIGURE I-Hybrid computer mechanization of the classical 
CSDTmethod 
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~ 

digital linkage). The ADL usually includes a 
sample-hold amplifier which is connected to an 
analog-to-digital converter through a multiplexor 
switch. The DAL can include a hybrid interpola
tor which transforms discrete staircase functions 
appearing at digital-to-analog converters into 
smooth functions. 

3) At the end of the run corresponding to x = x', 
compare the final value of u i to the known boun
dar.)' valut Uti. If the difference is within a speci
fied error bound, increment i and go back to step 1. 
If not, improve the trial initial condition ~d re
peat the above process. 

As can be seen from Figure 1, the analog computer 
circuit contains a closed loop comprised of four opera
tional amplifiers. Such a circuit is inherently unstable 
and can be expected to exhibit marked sensitivities to 
errors in initial conditions and component inaccuracies. 
The loop gain is seen to be inversely proportional to 
~ t; hence the smaller ~ t the more pronounced the in
stability of the analog loop. It is therefore not feasible 
with a mechanization of this type to reduce the trunca
tion error inherent in the finite difference approximation 

of :: by reducing At. The loop-gain is also affected 

by the time scale factor employed in the analog loop, 
so that the faster the solution speed the larger the in
stability. It should be noted that the reversal of the 
computing direction (Le., backward computation) still 
keeps the unstable loop intact. These considerations 
have severely limited the applicability of the serial 
CSDT method. 

A new CSDT method 

It is the objective of the present method to 'retain the 
advantageous features of the serial CSDT method while 
obviating the need for an even number of operational 
amplifiers in the analog loop .. The method is applicable 
to nonlinear as well as to linear partial differential 
equations. For simplicity in exposition the discussion 
below makes reference to a linear parabolic partial dif
ferential equation in one space-dimension. It should be 
recognized; however, that most practical applications 
will involve equations with nonlinear and time-varying 
parameters. The key step in the derivation of this 
method involves the definition of a control function, 
which is generated digitally and imposed as a forcing 
function upon the analog circuit. Denoting this con
trol function as 11 i and introducing this term in 
equation (2.5) results in 

d2u i 1 __ = _ (211 i - u i - Ui-l) • 
dx2 a~t. 

(3.1) 

If 11 i{X) can be found such that 

11 i(X) = U i(X) for all xe(O, x') , (3.2) 

equation (3.1) reduces to equation (2.5). Note that u i 

is the only function for which to solve-with u i and u i-I 
appearing as external driving functions. Of course, we 
must find or "optimize" one of the external functions, 
namely the control 11 i (x) such that the equality (3.2) is 
satisfied. 

We can now re-formulate our problem as that of the 
optimal control: find a control policy 11 i in order to 
minimize (in our case, we would like to make it zero) 
t.he criterion function 0 which is defined by 

(3.3) 

where 

(3.4) 

subject to the constraints 

d2 i 1 
~ = _ (211' - u' - U i- 1) 

dx2 a~t 

with initial conditions 

(3.5) 

du i 

- (x = 0) = u..' 
dx 

(3.6) 

and also satisfying the terminal constraint equation 

w(ui ) = ui(x = x') - Uti = 0 . (3.7) 

Note that the initial condition in (3.6) is still unknown, 
but it turns out that U:r:o i is automatically determined 
once a control policy u i is selected. 

In order to simplify subsequent derivations, we intro
duce new notation: 

(3.8) 

dUa
i 

--

dx 
(e,)2 (i.e., Ua(x = x') = 0) . 
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Equations (3.1) through (3.9) now become 

dU2' 1 (2./\.· . . 1) - = - u' - Ul' - u'-
dx allt 

dUal 

dx 

with initial conditions 

U8 i (X = 0) = 0 

and 

o = U8 i (X = x') 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

In matrix form, (3.9) and (3.10) become, respectively 

dUi = Fi(X Ui U'-l 11i) 
dx '" 

(3.14) 

Ui(X = 0) = Uo' (3.15) 

where 

and 

The gradient method or the steepest-descent method' is 
now applied. 

We consider the system equation (3.14) and the 
corresponding perturbation equation 

(3.17) 

where the partial derivatives are evaluated along the 
nominal trajectory 
and 

afl afl afl 
aUI aU2 aU8 

aF af2 af2 af2 (3.18) --
au aUI aU2 aU8 

afs af8 af8 

aUI aU2 aU8 

The adjoint equation to (3.17) is defined to be 

(3.19) 

where the superscript T denoting the transpose of the 
matrix and Xi = [Xli X2i XSi]T. If equation (3.17) is 
pre-multiplied by X T and the transpose of equation 
(3.19) post-multiplied by 5U, and the sum is integrated 
over the interval 0 ~ x ~ x', we obtain 

a:=a:I ##1 

XiT OUi] = f XiT(X) Gi(X) ~1\i(X) dx (3.20) 
_0 ~O 

where 

G(x) = aF = [afl af2 afa]T 
a p. a11 aft a11 

(3.21) 

Since we are still free to choose X, we let 

XT(X = x') = ~ (x = x') = aU8 (x = x'). (3.22) au au 

Then, XT oU(x = x') = 00(x = x') and equation (3.20) 
becomes 

", 

+ / X iT (x) G i(X) oft i(X) dx . 
-0 

(3.23) 

The X i'S are the influence functions or Green's functions 
which give the effect of small changes in the control 
function 11 i and the· initial state vari.ables, on the 
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criterion function 0 '. The influence functions are 
obtained by equation (3.19) with the boundary 
(terminal) condition (3.22). In view of our objective to 
minimize 0 (i.e., to make 80 as negative as possible), 
~ft i should be chosen such as to make the integral in 
(3.23) alway~ negative regardless of ~ Ui(X = 0). This 
can be realized if we choose 

(3.24) 

where Kcp is a positive constant to be determined later. 
This is the "steepest descent" direction to tha minimum 
0i • 

In order to satisfy the constraint equation (3.13) we 
further need to obtain another set of influence functions, 
say ~i, which will indicate the effects of ~ u i (x) as well 
as 0 Ui (x = 0) upon the constraint function'lr. Follow
ing an identical derivation as above, we obtain 

11:1 

+ f ~iT(x) G~(x) o11 i (x) dx 
z-o 

where ~i is the solution of 

d~i 

dx 

with the boundary (terminal) condition 

~T (x = x') = a'lr (x = x') . 
au 

(3.25) 

(3.26) 

(3.27) 

Now, if the nominal trajectory approximately satisfies 
the constraint (3.13), then by setting ~i equal to the 
negative of 'lri(X = x'), the next trajectory should 
satisfy 'lr = O. The steepest descent direction to 
minimize 0 and satisfy a given o'lr is 

where Kv is another constant to be determined. 
In equation (3.10), while two of the initial conditions 

are fixed, we still are faced with the problem of deter
mining the correct initial condition on U2i. Fortunately, 
both equations (3.23) and (3.25) also relate the effect of 
the change in the initial values of the state variable 
upon the criterion function and the constraint function, 
respectively. Furthermore, the choice of ~ Ui (x = 0) is 

/ directly dictated by the choice 0 11 i as shown below. 
From equation (3.15), 

8Ui(X = 0) = [0 ~U2i O]T (3.29) 
%=0 

where 

(3.30) 

Since we are seeking ft i such that U' = Ul', equation 
(3.30) can be written as 

(3.31) 

Due to the fact that 11 i is to be updated by 0 ft', we can 
rewrite (3.31) as 

(3.32) 

Therefore, once ~ U i is chosen according to (3.28), 
o Ut(x = 0) in equations (3.23) and (3.25) is auto
matically determined. Combining of equat.ions (3.23), 
(3.25), (3.28), (3.29), and (3.32) yields 

and 

fIJI 

+ K'J' GiT ~i)]z_O - f ).tT Gt(Kq, GiT )., 
z-o 

d 
o'lr(x = x') = - [~2idx (Kq,GiT>.i 

+ K'l' GiT ~')]z-o 

", 

- f >. iT G'(Kq, GiT >. i + K'l' G,T ~i) dx. 
z-() 

(3.33) 

(3.34) 

For desired changes of ~0 (x = x') = .10 and ~'lr (x = x') 
= .1'lr, we can solve linear equations (3.33) and (3.34) 
for Kq, and K'l' and obtain 

Kq, = Q~22_.1_0 __ Q~12_.1'lr_ 
Q12Q21 QllQ22 

(3.35) 
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where 

_, 
+ f A iT GiG iT Ai dx 
~ 

I 

+ JZ AiT Gi GiT ~i dx 
~ 

I 

+ Ie ~iT Gi GiT Ai dx 
~ 

I 

+jZ eT Gi GiT Ei dx . 
~ 

(3.36) 

(3.37) 

Computa;tional algorithm of the new CSDT method 

In the previous section, basic equations necessary to 
perform automatic upd'ating of the control policy were 
derived, but some of the equations were left in a general 
form. In this section, the key equations will be first 
written in more specific terms,. and then the hybrid 
computational algorithm will be summarized. 

The state equations to be solved are 

dU2' 1 (2J1.· . . I) - = - . u' - Ul l 
- u·-

dx a.6.t 
(4.1) 

with the initial conditions 

(4.2) 

Uai(x = 0) = 0 

where 

(4.3) 

and 11 i is the nominal control. 

The two sets of adjoint equations to be solved are 

dAI i_I 'i + 2 i 
---"2 E 
dx a~t 

(4.4) 

with the terminal conditions 

Ali(X = x') = A2 i(X'= x') = 0 (4.5) 

as obtained from equations (3.19) and (3.22), and 

d~li = _1_ ~2i 
dx a~t 

dl:2
i 

_5_ = - ~I 
dx 

with the terminal conditions 

~li{X = x') = 1, ~2i(X = x') = 0 

as obtained from equa~ions (3.26) and (3.27). 

(4.6) 

(4.7) 

It can be shown from (3.28) that the updating equation 
for the control policy is 

6 11' = - [Kq, ( '!t )..2' + 2e') 
+ Kv ( '!t ~2') ] (4.8) 

where Kt/> and Kw are given by equations (3.35) and 
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(3.36). Furthermore the equations in (3.37) simplify to 

(4.9) 

, 
+ f~ (~~2,)2 dx. 

-0 OI.llt 

Actual updating of the control policy is accomplished by 

(4.10) 

The initial estimate of the control poI: cy can be obtained 
as follows. If we app~y the forward CSDT approx;ma
tion to equation (2.1) _ we obtain 

d2u i 1 __ = - (U i+1 - u i ) 
dx2 cxllt 

(4.11) 

Equating this equation with (2.5) and simplify;ng, 

u i+- = 2u i - U i - 1 • (4.12) 

This equation provides a rough estimate on the state 
function for the next time increment. Therefore, it is 
reasonable to use this equation to compute the first 
nominal control policy as 

11 i+1 = 2u i - Ui - 1 = 2u i - U,-l (4.13) 

The overall hybrid computational algorithm then 
becomes: 

1) With a nominal control policy 11', solve equation 

(4.1) on the analog subsection of the hybrid com
puter with the initial conditions (4.2). Both u i and 
U i - l are played back via DAL's from the digital 
subsection into the analog subsection. Mean
while, read E i into the digital subsection via an 
ADL. 
At the end of the run corresponding to x = x', 

2) record the values of USi (i.e., 0) and Uli. These 
values are used digitally to compute 110 and 1l'lF to 
be used in step 5. (1l0 = - ,Bus i(X'), 1l'lF = _,B'lFi 
where 0 < ,B ~ 1; the more non-linear the pr@blem 
the smaller the value of ,B ). If a convergence has 
been attained (e.g., Max I Ei I < specified bound), 
go to step 6. 

3) Next, solve the adjoint equations (4.4) and (4.6) 
backward in analog computer time, t c, (where 
tc = xl.-x) since we are given the terminal con
ditions instead of the usual initial conditions. Note 
that this process changes the signs of the lefthand 
sides of these equations. E i which was recorded in 
step 1 is played back vi a a D AL in the reverse 
direction. The terms required by equation (4.8) 
are recorded via ADL's. At the same time com
pute in the analog subsection the values of the 
integrals which appear in equations (4.9). 

4) At the end of the adjoint run, record the final 
values of A2', ~l" and ~2' which actually are 
A2i (x = 0), ~li (x = 0), and ~2i (x = 0), respec
tively. 

5) Digitally compute Qu, Q12, Q21, and Qu. The 
derivatives which need to be evaluated in (4.9) 
at x = 0 can be digitally approximated. Using 
these values and 110 and 1l'lF which were computed 
in step 2, obtain Kp and Kw according to (3.35) 
and (3.36). Update the control policy according to 
(4.8) and (4.10), and go to step 1. 

6) Compute a new nominal control policy by 
equation (4.13). (For the very initial prediction of 
Ui+l where i = 0, ul roo..J UO(x) can be used.) Incre
ment i by one and go to step 1. 

7) Repeat steps 1 through 6 until i = N. A typical 
hybrid mechanization diagram for the new 
method is shown in Figure 2. 

Discussion oj the new method and its extension 

With the application of the functional optimization 
technique, the unstable analog loop in the classical 
CSDT method has been replaced by a stable loop. 
Although the parameter (initial condition) optimization 
problem involved in the classical method has been re
placed by a more complicated functional optimazation 
problem in the new method, the high-speed computa
tional capabilities of the hybrid computer make this 
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I 
~ ____________________ ... _________________________ ... ________ J 

FIGURE 2-Hybrid computer mechanization of the new CSDT 
method 

method practical. Furthermore, with removal of the 
unstable loop, it is now possible to reduce the size of ~t 
in order to minimize the truncation error of the CSDT 
approximation. 

A similar technique can be applied to the CSDT ver
sion of the well-known Crank-Nicholson numerical 
approximation 

1 [ d2u i d2
U

i
-

1J _ u i 
- U'-l 

2 -dx-2- + -d-x2- - --a-~-t- (5.1) 

d2u i - 1 

In order to avoid the explicit computation of dx2 as 

well as the unstable computational loop, introduce a 
new variable Wi defined by 

(5.2) 

from which 

U,-l = 2w' - u' . (5.3) 

Combining of (5.1), (5.2), and (5.3) yields 

d2w' 2 __ = - (u l - Wi) • 
dx2 a~t 

(5.4) 

Equation (5.4) is now a stable equation in state vari
able Wi, and u i becomes the external control policy to be 
optimized. The criterion function 0 to be minimjzed be
comes (from 5.3)) 

, 
o = f- [(2w i - u i ) - U i - 1]2 dx . (5.5) 

z-o 

The new CSDT and Peaceman-Rachford ("alternating 
direction implicit")lO methods can be combined to 
solve two dimensional diffusion equations. As an illus
tration, the procedure is explanined for the simple con
stant diffusivity case: 

a2 u(x, y, t) + at u(x, y, t) = ~ a u(x, y, t) (5.6) 
ax2 ay2 a at 

where XE(O, x'), YE(O, y'), tE(O, t'), with boundary and 
initial conditions 

u(O, y, t) = uiy, t) 
u(x', y, t) = u,,(y, t) 
u(x, 0, t) = ucCx, t) 
u(x, y', t) = lld(X, t) 
u(x, y, 0) = UO(x, y) . 

The basic process in passing from t i to t i+l has two 
parts; each part involving the solution of a set of 
ordinary differential equations by the CSDT technique. 

We will need to find u and a2~ along the lines y = y m, 
ax 

m = 1, ... , M-1, for the first part (note that y = 0, 
y = Y M are boundaries). The second part will consist 

of finding u and a
2
u
2 

along the lines x = X,e, i = 1, ... , 
ay . 

L-l. At the end of the first part we will have passed to 
t'+1/2. Thus, u will be defined on a (M + 1) X (L + 1) 
grid. at t t+l (the analog solutions are digitized only at 
these discrete points). During the process, there will be 

a!u a2u 
similar tables of ax2 and ay2 . 

With the foregoing in mind, we proceed to explain the 
a!u 

procedure. At t', u and -2 are defined on the (M + 1) 
ay 

X (L + 1) grid in the interior of the region XE(O, x'), 
YE(O, y'). First, we find the set of functions 

u m '+I (x) = U(x, YiP" t i+I) 
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on the lines y . = y m from the equations 

um i+l(x) - U m i(X) 

cx L\t 
2 

m = 1, ... , M-l (5.7) 

with analog integration. Because y is fixed, the spacial 
derivatives of (5.6) reduce to total derivatives. The 

term d
2
um i(X) is formed by interpolation from the 
dy2 

d2u 
previously stored dy2 data on',the (M + 1) X (L + 1) 

grid at ti. 

The functional optimization method (as previously 
described) is used to solve equations (5.7) from 

2tim i+I(X) - U m HI (X) - U m i(X) 

L\t 
cx"2 

(5.8) 

where the tim i+i(X) are the external control policies to 
be optimized (i.e., tim i+1 converges to U m i+I). When 
equations (5.8) have been solved, U m HI (X) and 
d2um

i+l (x) 
(which is also available from the analog 

dx2 

program) are digitized and stored over the grid at ti+i, 
and the first part is complete. The second part of the 
procedure consists of finding the set of functions 

on the lines x = xl from the equations 

U,ei+1(y) - U,ei+i(yt 

L\t 
cx-

2 

t=I, .. ·,lr-I. 

(5.9) 

As before, the term d
2 u~x': (y) is obtained by il1ter

d2 u i+1 (x) 
polation of the dX2 values stored on the grid at 

tHI. These equations are solved with the same func
tional optimization procedure. The solutions u \+1 (y) 

and d
2 
u d:~ (y) are digiti~d and stored over the grid at 

t HI. This completes the second part and also one step of 
the CSDT procedure. 

The values of u over the grid for successive t', 
i = I, 2, ... are the solution to the problem defined by 
(5.6). 

A few words regarding the details of generating cer
tain of the second derivative!;) at grid boundaries may be 
helpful. The values of UmHI(x) for m= 0, M are auto
matically available as boundary values. But, the values 

d2 u HI (x) 
of the sec<¥1d derivatives dX

2 
for m = 0, M must 

be approximated digitally for each Xl. This is necessary 
because during the subsequent half-step (Le., proceed
ing from tHt to tHl) they are both required for external 
driving functions. The same requirement is imposed on 

d' u HI ( ) 
the second derivatives· ~y2 y for t = 0, L. Of 

course, the second derivatives required to start the pro
cess at t = 0 can be calculated from UO (x,y). 
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Hydrid assumed mode solution of non-linear 
partial differential equations 

by DONALD J. NEWMAN and JON C. STRAUSS 

Ca1"Mgie-Mellon University 
Pittsburgh, Pennsylvania 

INTRODUCTION 

Economical solution of partial differential equations 
(PDEs) is necessary for the solution of many pressing 
optimization, identification, design and simulation 
problems involving spatially 'continuous systems. The 
hybrid computer with its parallel organization prom~ 
ises to provide this necessary economy through a com
bination of increased solution speed and reduced equip
ment cost with respect to stand alone digital computer 
methods. This paper presents a hybrid computer 
oriented assumed mode solution method for non-linear 
PDEs which are initial value problems in a time-like 
independent variable. (To facilitate discussion, PDEs 
with these characteristics are referred to as Dynamic 
PDEs.) Several examples illustrating the efficiency of 
the method are included. 

Hybrid PDE solution techniques 

]Vlost hybrid methods for Dynamic PDE solution in:
volve the reduction of the PDE to. a system of ordinary 
differential equations (ODEs). The ODEs are then 
solved on the parallel, analog subsection and the results 
are monitored and combined· on the serial digital sub
section to obtain the hybrid computer solution. The 
techniques commonly used for the reduction of a PDE 
to a system of ODEs consider all but one of the indepen
dent variables at a set of discrete points, and an ODE in 
the remaining independent variable is determined at 
each point. Extensive bibliographies of such techniques 
can be found in references 1,2,3, and 4. However, in a 
few situations a solution may be found that is separable 
in the independent variables. 8.6.e The resulting solu
tions in the separate independent variables· are termed 
modes. In the many cases that do not have separable 
solutions, modes can be assumed for all but one of the 
independent variables, and ODEs for the remaining 
variable can be obtained by. approximation techniques.7 

The techniques involving discretization of all but one 
of the independent variables divide ip,to two groups. The 
Discrete Space-Continuous Time (DSCT) techniqpes 
give one ODE in the time independent variable for 
each discrete point in the space independent variables.l 

To provide for accurate derivative approximations in 
the discretized independent variables, a large number 
of ODEs must be solved simultaneously especially in 
two or three space dimension problems. Methods that 
circumvent this large hardware requirement generally
involve time sharing of the parallel analog hardware by 
thedigita1.2 These methods therefore tend to exhibit the 
serial speed characteristics of all digital methods; more
over, they can lead to convergence problems. 

The Continuous Space-Discrete Time (CSDT) tech
niques are applicable in one space dimension problems 
and involve discretization in the time variable; they 
generally require the solution of an unstable two-point 
bounda"ry value problem in the space dimension at each 
discrete value of time. l •e Techniques that eliminate or 
reduce this difficulty have been suggested but no experi
mental results have been reported.8•9 In addition, the 
iterative procedures necessary to solve the boundary 
value problems generally require that the solution of· 
-the ODEs be effected serially in time. The resulting 
serial method does not take full advantage of the paral
lel computational capability of the· hybrid computer. 

"Assumed mode" techniques avoid many of these 
problems, but their use to date h~ been restricted to 
the digital computerlO and to linear PDEs on the 
analog.l1 The number of ODEs to be solved in the as
sumed mode method is generally much smaller than that 
required by the DSCT method for equivalent accuracy. 
(Only one equation is needed for each mode.) These 
ODEs are stable initial value problems which are well 
suited forhybrid computer solution. 

The assumed mode technique requires a great deal of 
preliminary work before the problem is ready.for the 

575 
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hybrid computer. The selection of the modes is not easy 
and is usually subjective. After the modes are deter
mined, a large amount of algebraic computation is re
quired. Much of this computation must be done in 
closed form and is so extensive that symbolic manipula
tion is required. 

Scope 

Of primary concern is the determination of appropri
ate modes for various boundary conditions. A review of 
the theory of the assumed mode techniques is presented 
with a view to applying the technique to non-linear 
equations. Problems with differential equation bound
ary conditions are studied for homogeneous and non
homogeneous cases. A sample problem is developed for 
demonstration, and numerical results are shown to com
pare the suggested techniques. These results are 
obtained by numerical integration on the digital com
puter because the Cl\1U Hybrid Computer is not 
currently available. 

The intent of the work is to demonstrate method, not 
to build a theoretical structure. No theorems are given 
that "prove" the merit of the suggestions. The formula
tion is restricted to simple, specific problems although 
an attempt is made to use notation that is readily ex
tended to a broader class of problems. 

The Dynamic PDEs discussed in this work have two 
independent variables (x and t) and the operator forms 
of the PDEs are polynomials in the partial derivatives. 
The formulation is often applicable only to the second 
order case in x, but the extension to higher order is gen
erally straj ghtforward. 

The large quantity of symbolic computation required 
would appear to be a serious disadvantage of the tech
nique. However, a digital computer program has been 
written to do the computation required for any of the 
class of PDEs discussed in this work and for PDEs with 
two and three space dimensions as well. The result of 
this programming effort is that the determination of 
the ODE system from the PDE and the assumed modes 
is reduced to a trivial task of preparing approximately 
ten input statements. This work discusses this aspect 
only briefly in order to point out where the symboli c 
computation is employed. 

A88umed mode 8olution 

The approach is described and applied to a set of 
modes to determine the ODEs for hybrid solution. 

Non-linear dynamic partial differential equation 

The form of the Dynamic PDE of interest is given in 
(2-1) where u is the dependent function of independent 

variables x and t, P is a non-linear partial differentjal 
operator with respect to x and f is a forcing function. 

a 
. at u(x, t) = P[u(x, t)] + f(x, t) (2-1) 

The solution to this problem must satisfy an initial 
condition in t and homogeneous boundary conditions 
in x on the interval [0, 1]. (The restriction to homo
geneous boundary conditions is removed in Section 3. 
The [0, 1] interval is chosen for notational convenience 
only; the solution so obtained may be scaled to any 
other interval. Brackets are used to denote "operates 
on," and parentheses are used to denote that the value 
"depends on.") Thus it is an initial value problem in t, 
and retention of this character in the system of ODEs 
to be obtained is desirable. 

Assumed modes 

An approximate solution v to (2-1) is proposed in the 
separable form of (2-2). 

n 

vex, t) = L Hi(X) cp,(t) (2-2 
i-l 

The assumed spatial modes Hi(x) are pre-selected to. 
satisfy the orthogonality conditions of (2-3) and the 
spatial homogeneous boundary conditions on the solu
tion to (2-1). 

1 ° i ¢ j J Hi(X) Hi(x) dx = { (2-3) 
o h, i = j 

Since the boundary conditions are homogeneous, v also 
satisfies the spatial boundary conditions. Only mo.des 
that satisfy the boundary conditions are considered' al
though other approaches are possible.7 •n The 0,(t) 
functions are weighting functions for the assumed 
modes. 

Subject to the conditions stated above, the selection 
of the modes depends on the problem, knowledge of the 
solution and computational convenience. Usually con
tinuity of derivatives of even higher order than the 
order of the PDE is desirable. If specific regions of the 
space differ in such a way that the ~olution has different 
characteristics there, the assumed modes can accommo
date this effect. However, simple algebraic forms for the 
modes greatly reduce the required algebraic computa
tion. 

Ritz-GaUerkin approach 

The 0lt) functions must be determined to give (in 
some sense) the best solution to the PDE in (2-1) for the 



given modes of (2-2). Ritz suggested minimizing the 
criterion (2-4) where R is the residual in the PDE when 
the proposed solution, vex, t) in (2-2), is substituted 
into (2-1). 

1 1 R2(x, t) dx (2-4) 
o 

Equation (2-4) gives a measure of the satisfaction of 
the PDE. To determine a "best" solution, it is necessary 
to specify in addition that the solution correspond to the 
initial condition. Galerkin suggested an approximation 
method based on orthogonalizing the residual with re
spect to the assumed modes; this is equivalent to the 
Ritz suggestion for the PDE of (2-1) if the optimization 
is performed with respect to the time derivatives of 
0,(t). 

The 0,(t) are determined by ! 0, and a 0,(0). Sub

stitutjon of (2-2) into (2-1) yields (2-5). 

~, H, :t.p, = p( ~, H'~') + f + R (2--5) 

The :~ are chosen at each value of t to minimize the 

criterion on the residual; this implies that the first vari

ations of (2-4) with respect to d~ are necessarily zero 

as shown in (2-6). 

101 

R(x, t) H,(x) dx = 0 i = 1, 2, ... n (2-6) 

(The result in (2-6) is the orthogonality condition on R 
and Hi as suggested by Galerkin.) Substituting (2-5) 
into (2-6) and employing the orthogonality conditions 
in (2-3) yields the ODEs in 0,(t) given by (2-7). 

din ] } 
h, dt 0, = J {p [ ~, H;CP, + f H,dx (2--7) 

o 

In this work the 0,(0) are chosen to give a least squares 
fit of vex, 0) in (2-2) to the initial condition on u(x, t) 
in (2-1). Thus the 0,(t) functions are determined from 
ODE initial value problems. 

Differential boundary conditions 

A technique to solve a non-linear Dynamic PDE with 
non-linear differential boundary conditions is de
veloped. 

Linear homogeneous case 

The problem with homogeneous linear boundary 
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conditions (one constant, one differential) is posed as 
follows: Find the solution u(x, t) for 0 ~ x ~ 1 and 
t> 0 of (3-1). 

a at u(x, t) = P[u(x, t)] + f(x, t) 

L[u(x, t)] I = 0 
x=O (3-1) 

u(l, t) = 0 

u(x, 0) = uo(x) 

In (3-1) L is a linear partial differential operator with 
respect to x, P is a non-linear partial diffe.rential oper
ator with respect to x, f is a forcing function and x, tare 
independent variables. 

As an example, the thermal conduction problem 
with Newton's law of cooling as one boundary condition 
can be posed in the form of (3-1). If T is the tempera-

ture, P[T] is k (J2T2 and L[T] is aT - aT, where k and a ax ax 
are physical constants. 

A set of assumed modes, G,(x), must be developed 
for (3-1) that satisfy the boundary conditions. These 
modes are developed from the solution to an auxiliary 
problem to (3-1) with only one spatial boundary con
dition. For this auxiliary problem, H,(x) denotes a set 
of auxiliary modes that are selected to solve the PDE 
of (3-1) for u(O, t) = 0 instead of L[u(x, t)]1 =0. The 

X=O 
proposed solution of the auxiliary problem vex, t) is 
given by (2-2), where the H,:(x) modes are selected on 
the basis of knowledge of the system and so that they 
satisfy the boundary condition in (3-2). 

(3-2) 

The new modes G,: are determined from (3-3) which is 
an initial value problem. 

L[G,(x)] = H,(x) 

G i (l) = 0 
(3-3) 

G, can be found in closed form for many H,(x) func
tions. This closed form property is required so that 
G,(x) may be substituted jnto (3-1) as an assumed 
mode. If w(x, t) is defined by (3-4), L[w] = v since L is 
a linear operator. 

n • 

w(x, t) = L: <p,(t) G,(x) (3-4) 
i==1 
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Also L[W(X,t)]1 = 0 because v(O,t) = Hi(O) = 0 and 
X=O 

w(l,t) = 0 because G i (l) = O. Therefore w(x,t) satis
fies the boundary conditions and has the separable 
form necessary for a proposed solution to (3 = 1). 

The functions Gi(x) are not orthogonal. In order to 
apply the Ritz-Gallerkin method conveniently, Gi(x) 
should be orthogonalized, possibly with a Gram
Schmidt Orthogonalization Process. The orthogonal 
functions Gi(X) are defined by (3-5). 

n 

Gi(X) = L: Cij Gi(x) (Cii constant) 
i-l 

(3-5) 

i ¢ j 

i = j 

Again the linearity of L insures that each Gi(X) sat
isfies the boundary condition. 

Linear non-homogeneous case 

A more general problem with non-homogeneous 
linear boundary conditions can be reduced to the homo
geneous problem considered above. The problem is as 
stated before except (3-1) is replaced by (3-6). 

a 
at u(x, t) = P[u(x, t)] + f(x, t) 

L[u(x, t)] I = bet) 
x=o (3-6) 

u(l, t) = aCt) 

u(x,O) = uo(x) 

A new variable u' = u = B(x, t) is defined where B(x, t) 
is a function satisfying L[B(x, t)]I=b(t) and B(l, t) = 

X=O 
aCt). Since L is a linear differential operator, a B exists 
and can be determined from L[B(x, t)] = bet) which is 
an initial value problem in x, parametric in t. The result 
of substitution of u' into (3-6) is given in (3-7). 

a . a 
- u'(x t) = P[u' + B] -+ f - - B at ' at 

L[u'(x, t)] = 0 

x=O 

u'(I, t) = 0 

u' (x, 0) = uo(x) - B(x, 0) 

(3-7) 

This problem is equivalent to the homogeneous case 
discussed previously. The effect of the non-homogene
ous boundary condition is to require the solution of a 
modified PDE with homogeneous boundary conditions. 

Non-linear case 

The problem with non-linear differential boundary 
conditions can be solved as an extension of the tech
nique for the non-homogeneous linear case if the prob
lem is properly stated. The problem statement is as 
follows: Find the solution u(x, t) for 0 :::; X :::; 1 and 
t> 0 of (3-8). 

a at u(x, t) = P[u(x, t)] + f(x, t) 

(3-8) 

L[u(x, t)] = N[u(x, t)] 

x=O x=O 

u(l, t) = aCt) u(x, 0) = tio(x) 

In (3-8) N is a non-linear partial differential operator 
with respect to x, L is a linear partial differential op
erator with respect to x containing a derivative of at 
least as high an order as the highest derivative in N, P 
is a non-linear partial differential operator with respect 
to x, f is a forcing function and x, t are independent 
variables. The form of the differential boundary con
dition is completely general and L may be selected for 
convenience subject to the restrictions above. 

As an example, the thermal conduction problem with 
a radiation boundary condition can be posed in the 

a2T 
form of (3-8). If T is the temperature, P[T] is k ax2' 

. aT 
L[T] IS ax and N(T) = aT4 + {3, where-k, a and (3 are 

physical constants. 
The development now proceeds in parallel with the 

non-homogeneous linear case. In order that the nota
tion reflect the parallelism, ?J(t) is defined by (3-9). 

?J(t) = N[u(x, t)] I 
x=O 

(3-9) 

Replacing bet) with ?J(t) in (3-6) and performing the 
indicated operations, the equations of (3-7) are derived 
where B(x,t) is defined by (3-10). 

L[B(x, t)] = ?J(t) 

(3-10) 

B(l, t) = a(t) 



This completes the reduction of the non-linear dif
ferential boundary conditions to linear homogeneous 
boundary conditions. 

Since B(x, t) depends on l1(t) and l1(t) depends on the 
solution of the differential equation which depends on 
B(x, t), the situation is more complex than the linear 
cases. The 11 (t) function is explicitly defined initially 
but only implicitly defined for later times as show in 
(3-11). 

11(0) = N[u(x, 0)] I = N[uo(X)]1 
x=O x=O 

. (3-11) 

l1(t) = N[u' (x, t) + B(x, t)] I 
x=O 

Since the functional dependence of u' and B on x is 
known explicitly, (3-11) is always an algebraic system 
defining 11 with t as a parameter. In many cases of prac
tical interest, l1(t) can be found explicitly, but an ex
plicit solution is not necessary. Furthermore, since 

~B(x, t) is contained in the differential equation, the 
at 
differential equation contains the time derivatives of its 
solution evaluated at the boundary. This complexity is 
reflected as an implicit set of ordinary differential equa
tions. 

Sample problem 

A sample problem is solved to demonstrate the ap
plication of methods developed in the previous section, . 
and numerical results are presented to compare the 
effect of some of the suggested alternatives. 

The "free" aquifer surface 

The aquifer is a layer of porous rock that is saturated 
with water and bounded below by an impervious layer. 
It is "free" when not confined by an impervious upper 
layer so that the upper surface of the saturated zone is 
floating. The object of this problem is to determine 
this surface as a function of time and space. In so doing 
it is necessary to solve a Dynamic PDE. 

Since the flow of water is very slow in a natural aqui
fer, a form of Darcy's Law is applicable. That is v = 
- k V h where v is average velocity, k is a constant of 
proportionality, V is the spatial differential operator and 
h is the depth of the saturated zone (the height of the 
surface above a flat impervious lower layer of rock). 
This relation is determined by averaging the horizontal 
component of the velocity over the depth of the satu
rated zone. The flow density at a point is hv and the 
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increase in flow density is V· (hv). The additions· to the 

flow (source density) in the aquifer are 'Y -}' :~ where 

'Y is a function describing input to the aquifer from ex

ternal sources, and if }' is the porosity of the rock, }' :~ac
counts for dynamic changes in the water height. The 
differential equation is given by (4-1). 

ah 
k V . (hVh) = }'- -'Y 

at 
(4-1) 

The sample problem deals with a valley of fixed 
width bounded by impervious rock walls that is par
tially filled by porous rock. The fixed width justifies a 
one dimensional analysis, and precipitation in the small 
region of study is neglected. The lower part of the valley 
is dammed to form a reservoir as shown in Plan of 
Lower Valley. The object is to investigate the dynamic 
behavior of the water table near the shore line when 
the water level of the reservoir is changed linearly from 
level 1 to level 2 during the first ten days. 

The static water table is determined by the reservoir 
level at the shore line and the quantity of water flowing 
down the aquifer. Since this quantity of water is ulti
mately determined by the precipitation in the upper 
valley, an adequate boundary condition for this prob
lem would be constant flow at the uJ?per end of the 
region under study. (Any simpler form of boundary con
dition would have to be imposed at a point higher in the 
valley. This would necessitate increasing the length 
of the region under study and accounting for the shape 
of the bottom of the aquifer and the distribution of pre
cipitation.) The flow over the dam (q) is 1.5 X 1()6 ftal 
day, the width of the dam (w) is 5000 ft~, the porosity 
(}') is .15 and the permeability constant (k) is 300 ftl 
day. The differential equation and boundary conditions 
are shown in (4-2) where ret) is reservoir level. 

h(O, t) = ret) (4-2) 

khah ~ q/w 
ax 

x = x. 

The initial condition for the problem is the steady 
state distribution resulting from level 1. The steady
state equation can be solved analytically by integration. 
The steps of the solution are given in (4-3). 
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+----IMPERVIOUS ROCK----+ 

FIGURE I-Plan of lower valley 

I 

( 
a2h (ah )2) a . ( ah) kh-+ - =k- h~ =0 ax2 ax ax ax 

ah q 
kh- =-ax w 

h = V 2qx/wk + h2 (0,0) 

(4-3) 

The initial condition for the problem is the solution 
for the reservoir level 1 as shown in (4-4). 

- ,y2Q 
hex, 0) - wk x + reO) (4-4) 

Revising the boundary conditions 

The problem contains a non-linear differential bound
ary condition which could be replaced by a linear dif
ferential boundary condition or rewritten in the form 
of (3-8) 

By introducing the transformation u = h2 the bound
ary condition becomes linear in u. If this is done, the 
differential equation (4-5) becomes deceivingly simple 
in appearance. Unfortunately, the Vu term is a source 
of difficulty when integrating to determine the weight
ing functions for the modes. 

(4-5) 

This difficulty is so great as to make the transfor
mation u = h2 unsatisfactory for the assumed mode so
lution of this problem. 

However, a linear approximation to the differential 
boundary condition in (4-2) does not produce this diffi
culty. The boundary condition in (4-2) is rearranged, 
and the expansion of the first two terms of the Taylor 
series for l/h(xs, t) about hex"~ 0) yields (4.6). 

ah(x, t) 
ax 

q/wk q/wk 
- --- "" ---
- hex"~ t) - h(x., 0) 
x = x, 

( 
1 _ hex"~ t)-h(x., 0) .) (4-6) 

h(x., 0) 

Since h(x., t) is nearly equal to hex"~ 0) throughout 
the solution, the three expressions in (4-7) are suggested 
as alternative boundary conditions. 

1. h = hex"~ 0) 

ah 
2. - = q/(wkh(x" 0» (4-7) ax 

3. ah = q(2h(x.,0) - hex"~ t»/(wkh2(x., 0» ax 

The technique for non-homogeneous boundary con
ditions is applied to the problem (4-2) employing each 
of the boundary conditions above. The results are given 
in (4-8) where x is scaled by x. to obtain a normalized 
form. 

{ 
a2u 

1. 2·1Q-6 (u + (150 - r) x + r) ax2 

au } ar au + (- + 150 - r)2 - (1 - x) - = -ax at at 

u(O, t) = u(l, t) = 0 

u(x, 0) = -l00x - 50 + V2.10' x + 5()1 

{ 
108 a2u 

2. 2.10-5 (u + l!5 x + r) ax2 

+ (:~ + ~~)' } - : = : 



au 
u(O, t) = - (1, t) = 0 

ax 

(4-8) 

loa 
u(x,O) = - 15 x-50 + Y2.104x + 5()2 

3. 2 ·10-' {(u + r exp{x/2.25)) ( ::~ + 

r 
5.0625 exp(x/2.25)) + 

au r } 
(ax + 2.25 exp(x/2.25)2 

r au 
- exp(x/2.25) at = at 

au 100 
u(O, t) = ax (1, t) - 15 u(l, t) = 0 

u(x, 0) = -50 exp(x/2.25) + V2·1Q4x + 5()2 

The non-linear boundary condition may be used by 
rewriting the boundary condition as shown in (4-9). 

ah q 1 
4. ~ = 1J(t) where 1J(t) = - --

ax wk hex"~ t) 
(4-9) 

Again the technique for a non-homogeneous bound
dary condition is applied to give the result in (4-10) 
where x is scaled by Xs. 

{ 
a2u 

4. 2 ·1()-6 (u + 1J(t) x + r) ax2 

au } + (ax + 1J(t»2 

a1J ar au -x--- =-
at at at 

( au 
u 0, t) = - (1, t) = 0 

ax 

(4-10) 

loa 
u(x, 0) = - - x-50 + V2·1O'x + 5()2 

15 

The expression that determines 1J(t) is found by sub
stituting for h in (4-9). This expression and the solution 
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that matches the initial condition are given in (4-11). 

10' 
1J(t) = u(l, t) + 1J(t) + r 

(4-11) 

( ) 
- (u(l, t) + r) + V (u(l, t) + r)2 + 4·10' 1J t = --~~~--~--~~~~~~~---

2 

In the form presented in (4-7) and (4-8) case 3. re
quires the handling of very difficult algebra. If this case 
were formulated in the same way as a non-linear prob
lem, the exponentials could be removed from the PDE 
and the modes simplifying the algebra considerably. 
Either way case 3 does not demonstrate any aspect that 
is not shown in the other three cases and will not be de
veloped any further in this work. 

Modes and the ODE system 

To· demonstrate the algebraic computation necessary 
to obtain the modes and the ODE system, the two most 
elementary prthogonal auxiliary modes are chosen. 
These modes are shown in (4-12) for each of the bound
ary conditions in (4-7) and (4-9). 

2. Hl = x-I (4-12) 

4. Hl = X - 1 H 2 5 +11 
2=X -4;x 4;X 

In case 1 two boundary conditions must be met since 
these are the assumed modes, and in cases 2 and 4 only 
one condition must be met since these are the auxiliary 
modes. 

Determination of the ODE system for case 2 is 
carried out in detail here. (Case 1 would not demon
strate the techniques, and case 4 is similar to case 2 but 
more complicated.) The first mode for example is found 

by integrating 1x (h =Hl with G l (0) = 0, and G2 is 

determined similarly to give (4-13). 

1 
Gl = - x2 -- x 2 

G- 12 2 4x - 8-St 61 2 + 13 1 = x - 2 G2 = ,3.- - 4; x 2 x 

(4-13) 
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The orthogonal forms, G, also shown in (4-13), are 
used in place of H, in (2-7) to obtain the ODE system" 
of (4-14) consistent with the method discussed in Sec
tion 3. The expression for h in (4-14) is obtained by in
corporating the transformations made above into the 
solution (2-2) with H, replaced by Os. 

(1125 r + 9375) q,1/2 + 4875 cp,,2/448 

+ (375 r + 49375) 4>2/32 

+ 1171875 ar .:... 312500/3) 
at 

dcp" = .00002 (907200 "" 2 + (46,0080 "" 
dt 2925 'f'1 'f'2 

+ 37800 r - 7119000) 4>1 -431554>22/4 

- (137655 r + 3073875) 4>2/2 (4-14) 

-78750000 :~ + 7000000) 

4>1(0) = - 2.94 4>lO) = 4.69 

The algebra necessary for the determination of (4-14) 
is performed by the digital computer. The System for 
Algebraic Computation (SAC), 12 originally developed 
by G. E. Collins,13 is employed to do the orthogonaliza
tion, analytical evaluation of integrals and substitution 
of the proposed solution into the PDE. SAC is capable 
of manipulating polynomials with complex rational co
efficients. The unlimited precision feature of SAC is in
valuable in this application as the evaluation of the 
integrals often involves subtraction of large nearly equal 
numbers. The restriction to polynomials imposed by 
SAC is somewhat of a limitation, but not overly re
strictive since relatively few other algebraic forms have 
the necessary closed form integrals. 

Numerical results 

The results of solving the PDE in (4-2) with the 
boundary conditions as specified by cases 1, 2 and 4 
are presented graphically as water table profiles at dif
ferenttimes from the initial condition. 

For case 1 solutions at the initial condition, 50 days 
and 200 days are shown. The maximum deviation of the 
200 day solution from the known steady state solution 

FIGURE 2-Water table profile-Case 1 

in (4-3) with the constants ehosen to match the bound- . 
ary conditions for the case is 1.4%. 

For cases 2 and 4 a solution at 1000 days is included 
because the time to reach steady state is much greater 
than case 1. The maximum deviation of the 1000 day 
solution from the appropriate steady state solution is 
2.6% for case 2 and 2.2% for case 4. 

In all cases the initial condition is within 1% of the 
desired condition in (4-4). Case 2 gives a reasonable 
approximation to the desired boundary condition when 
compared with the exact result in case 4. Case 1 differs 

[!J 0 DAYS 
<!! 50 DAYS 
.. 200 DAYS 
+ 1000 DAYS 

9,' +--.0-0 -1'-0.0-0 ----'TOu-.ou-cc30 .-:::-ou -----:'':"-:0. o:-u --::J:so--;::. OiJ:--;Tso .-;;;:o~ ---:;7~0 .0;;;-0 ----.Jao;:-;;;. 00,.---00.;;;:;---"t1 00 .00 
DISTANCE -- FEET _10 

FIGURE 3-Water table profile-Case 2 
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(!) 50 DAYS 
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<b.oo 30.00 40.00 SO.Ou 100.00 
o 13TANCE - - FEET 

FIGURE 4-Water table profile-Case 4 

not only at the end point but the dynamic behavior of 
the solution is also affected indicating that the floating 
boundary condition is essential to the overall character 
of .the result. The comparison of the results is restricted 
to the analytic steady state solution because an analytic 
dynamic solution is not known. 

Considering' that the solution to the PDE is deter
mined by only a second order ODE system, the results 
are very good. If more accurate description of the higher 
speed dynamics in the first 50 days is needed, more 
modes would be required in order to better represent 
the solution. 

CONCLUSIONS 

The feasibility of the assumed mode technique for 
hybrid solution of non-linear Dynamic PDEs is dem
onstrated. Even though the' hybrid computer is not 
employed, the entire procedure is handled in such a way 
that the analog subsection of the hybrid can be directly 
substituted for the numerical integration routine 
employed to solve the ODE system. The power of the 
assumed mode technique has been increased by provid
ing methods to obtain modes suitable for differential 
boundary conditions. 

In addition to the computational ease of assumed 
modes, the method has some other valuable properties 
that may be advantageously exploited on a high speed 
hybrid computer. Since the SAC system handles al1 the 
algebra, an unknown parameter in the PD E or the 
boundary conditions could be handled without in
creased difficulty; the parameter would appear in the 
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ODE system for identification or optimization by the 
standard techniques for ODE s. Another feature is that 
the residual function can be calculated exactly, and 
iterative optimization techniques may be applied to 
minimize this function for any desired cirterion. In this 
way improvement in the error of the solution may be 
obtained either by selecting weighting functions for 
the orthogonality conditions (2-6) or by selecting 
better modes. 
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INTRODUCTION 

The majority of numerical solution methods for partial 
differential equations by either analog or digital 
methods involve some form of finite differences tech
nique,1.2 integral transforms,s or Monto-CarIo methods.4 

On the other hand, the most common classical analyti
cal approach is based on some form of separation of 
variables and series expansions.5 The motivation for the 
research presented in this paper was to investigate the 
possibility of using the classical separation of variables 
approach as a basis for an efficienct computational al:
gorithm. The method studied was de'veloped with a 
hybrid computer implemention in mind due to the ease 
in on-line operation in engineering design applications 
although it could be used for digital computation also. 

The technique used in this paper differs from former 
all anolog solutions in that a digital computer is used for 
function generation and storage. The present applica
tion also differs from the usual separation of variables 
approach in that the boundary conditions need not be 
given on a constant coordinate surface, e.g., r = p. The 
numerical approximation used can be viewed either as an 
application of the method of axial potential expansions6 

or a generalization of the classical method of an assumed 
sum separation of varjables. The procedure is illustrated 
in detail by obtaining solutions to Laplace's equation; 
however, it holds promise for other types of equations. 
Laplace's equation was chosen as an example because it 
has been one of the most difficult for analog techniques 
based on finite difference approximations. 

585 

Development of the computing approximai£on 

A familiar analytic approach for the solution or 
ordinary and partial differential equations is based on 
series expansions about some convenient nominal 
point, curve, or surface. The numerical technique to he 
developed in this section is also based on the idea of 
series expansion solutions to partial differential equa
tions. The development will be for a specific problem, 
with the possible extension to other types of problems 
covered in the following section. 

As an example, it is desired to determine the poten
tia'! in a charge free region with cylindrically symmetric 
boundary conditions. The potential V(r,z) will solve 
Laplace's equation in cylindrical coordinates: 

1 a (a ) a2 

- - r-V(r, z) + - VCr, z) = 0 (1) 
r ar ar az2 / 

A typical boundary condition encountered in practice 
is a specification of the potential Vb(z) on a boundary 
surface b(z). Such a specification is shown in Figure 1. 
Mathematically, the condition is 

V(b(z), z) = Vb(z) for 0 S z S a (2) 

In order to complete the boundary specifications, the 
potential along the end planes z = 0 and z = a is also 
given. 
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FIGURE l-Boundary geometry b(z) and boundary 
potential Vb(ZI 

VCr, 0) specified for ° < r < b(O) 

VCr, a) specified for ° < r < b(a) 
(3) 

An approximate solution which is accurate for small r 
may be obtained by expansion of the potential around 
the axis (r,O) in a power series in]': 

1 
VCr, z) = ao(z) + aJ(z) r + "2 a2(z) r2 + (4) 

By substitution of the series into Laplace's equation 
and carrying out the differentiation, one obtains 

00 rk- 2 00 k-2 L ak(z) + L ak(z) _ r . 
k=l (k - I)! k=2 (k - 2)! 

00 k 

+ L ak"(z) f' = ° (5) 
k=O • 

where the primes denote differentiation with respect 
to z. Since this equation must hold for all r if the series is 
to represent a solution, the coefficient ofcrk must vanish. 
This leads to the set of equations 

al(Z) = ° 
(I< k~ I)! + 1) ak+'(z) + a."(z) = 0 

k = 0,1,2, ... (6) 

Since al(z) = 0, then all of the odd sUbscript 
coefficients must be zero from the equation above. The 
remaining equations represent an infinite set of differen
tial equations which may be solved as follows 

By definition 

V(O, z) = ao(z) (7) 

With k = 0, one obtains 

(8) 

And for k ~ 2, 

3 a' a4(z) = + - - V(O z) 
8 az4 ' 

We may continue in this manner to obtain the series 
solution for Laplace's equation 

r2 a2 

VCr, z) = V(O, z) - .4 az2 V(O, z) 

r' a4 

+ 64 az4 V(O, z) + (10) 

to as many terms as desired. 

In order to fit the boundary condition at the bound
ary b(z), the potential must equal Vb(z) or 

b2(z) a2 

Vb(z) = V(O, z) - -4- -2 V(O, z) 
az 

+ b
4
(z) .~ V(O ) + 

64 az4 .' z 
(11) 

Assuming that the series converges rapidly enough so 
that only terms up to the qth derivative need to be re
tained, then the equation above becomes a qth order 
differential equation in the unknown axial potential 
V(O,z). In order to solve the equation, q boundary con
dition~ are needed. These boundary conditions are ob
tained by requiring that the solution (10) match the end 
boundary conditions (3) at a set of arbirtarily specified 
points (rl' 0), (r2, 0), .. (rq/2, OY Crl, a), (r2,a), ... (rq/2, a) In 
the case of q = 6 the conditions may be found by solving 
theq (= 6) equations 

r·2 a2 

Veri. 0) = V(O, 0) - -4
l 

2 V(O, 0) 
az 
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1"= 1,2,3 

r·2 a2 

Veri, a) = V(O, a) - ~ az2 V(O, a) 

ri' a' + 64 az4 V(O, a) 

1 = 1,2,3 

a2 a' for the 6 unknowns V(O, 0), -2 V(O, 0), -4 V(O, 0), az az 
V(O, a), a

2
2V(0, a), a'4V (0, a). Actually if rl = 0, V(O, 0) 

az az 
and V(O, a) are given so that only 4 equations need to 
be solved. 

The boundary conditions obtained from the solution 
of (12) above and the differential equation for V(O, z) as 
a function of z, equation (11), is a form of two-point 
boundary value problem which may be solved by 

iteration on the unknown derivatives at Z= ,0 a
i 

V(O, 0) 
az' 

i = 1, 3, ... q-l tomatchtheknownderiavativesata=z, 

:i VeO, a), i = 0, 2, 4, ... q - 2. The usual Dirichlet 
uZ' 

boundary conditions will specify V(O, 0) and V(O,a) 
but not av / azl FO. Thus, we must iterate the solution 
of Equation (10) or, since the problem is linear, obtain 
a solution directly.lo In either case, several solutions to 
the differential equations are involved which is a strong 
reason for using the analog portion of a hybrid com
puter for this task. 

An alternate derivation of these results can be based 
on an assumed sum separation of variables solution in 
Laplace's equation (1). Assuming a solution V(r,z) = 
R(r) + Z(z) and the usual separation of variables 
manipulations leads to two ordinary differential equa
tions 

d2Z 
-=T 
dz2 

1 ~(rdR) = -T 
r dr dr 

(13) 

(14) 

The solution of (14) with the boundary conditions 
av jar = ° alongr = ° gives 

r 2 

R=-T-+c 
4 

(15) 

Equation (13) could be integrated in a similar fashion to 

yield terms in z and Z2. Rudenberg7 has done this and 
applied the results to electron optics. 

The usual separation of variables argument takes T 
as a constant independent of r or z. However, if we put 
T = Vz", a function of z ,the assumed form for V(r,z) 
becomes 

(16) 

where here and in the following we write the axial po
tential V(O,z) as Vz(z) for convenience. 

The above relationship may be recognized as a special 
case of Eqn. (10) to second order terms in r and may be 
solved in the same manner. 

If Eqn. 16 is differentiated twice with respect tdboth 
of the variables and combined as req uired by Laplace's 
equation, the result is 

d' 
dz4 V/z)r2 (17) 

which differs from Laplace's equation by the term on 
the right hand side. Within computing error, the solu
tion of Eqn. 17 does match the boundary conditions. If 
the solution for Vz can be closely matched by a poly
nomial in z with powers no higher than 3, then the solu
tion obtained is a good approximation to the solution of 
Laplace's equation.8 We have checked three different 
solutions for Laplace's equation as used in practical 
electron lenses and found V z to be sufficiently smooth 
that this is an exellent computing approximation. 

Extension to other types of equations 

The series method given in the previous section may 
be extended, at least formally, to many other types of 
partial differential equations in two variables. For ex
ample consider the equation 

V2V(r, z) + keVer, z) = fer, z) (18) 

If the function fer, z) has a power series expansion in 
the neighborhood of (0, 0), 

00 ri 
fer, z) = Lbi(z):y 

i=O 1. 

(19) 

then it is reasonable to look for a series solution for 
VCr, z) of the form 

(20) 
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Substituting (19) and (20) into (18) and equating the 
coefficients of ri to zero leads to the relationships 

i = 2,3, ... (21) 

As before 

YeO, z) = ao(z) (22) 

The equations (16) and (17) may be iterated to solve 
for the remaining a.(z)'s to obtain the formal series for 
V(r, z) 

V(r, z) = V(O, z) + 1/4 [£I(Z) 

- (1 + k.) :;,V(O,z) ] r' + :2 £.(z) r' 

+ 4~ [f,(Z) - (1 + k,) f"(z) 

(23) 

The procedure for meeting the boundary conditions 
goes through as before. 

This technique may also be used for some nonlinear 
equations, although the series expansion corresponding 
to (23) may be much more difficult to carry out and the 
convergence may be poor. Further study in this area is 
presently being carried out. 

A n example solution of Laplace's equation 

As an example of the kind of boundary value problem 
which can be solved by this method, we have selected a 
problem which has also been solved with a digital com
puter by our colleague, Dr. A. D. Sutherland.9 His work 
on the computer analysis of electron guns requires the 
solution of Laplace's equation in the structure being 
analyzed. Dr. Sutherland has developed a program 
which uses finite differences in axially symmetric coordi
nates and accepts Dirichlet, Neumann, and mixed 
boundary conditions within a "reasonable" geometry 
that can be specified in terms of a chain of simple geo
metric curves. 

A typical electron gun structure is illustrated by Fig
ure 2. The potential is known at each of the mesh points 
shown from Sutherland's finite difference solution. This 
solution was obtained with the convergence criterion 
that the potential at each mesh point cannot change 
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FIGURE 2-Sectional view of an electron gun. The dots are the 
mesh points of a finite difference solution. The dashed line is the 
boundary curve to be used in the hybrid computer solution. 

by more than 1()-4 of its previous value. A portion of 
this structure and solution was abstracted to form a 
problem with non-coordinate plane boundary geometry. 
The boundary chosen is shown by the dashed line of 
Figure 2. This choice of the boundary so that Vb(z) and 
b(z) are both single valued functions was necessary in 
order to match the form given in Eqn. (3.) This b(z) 
curve was set in a lO-segment diode function generator 
of an AD-80 iterative analog computer. 

The potential along the chosen boundary was deter
mined from the finite difference solution and set in a 
second diode function generator. The straight line seg
ment curves actually used in the AD-80 computer are 
shown in Figure 3. The circled points are the actual 
points read from the finite difference solution. Notice 
the high gradient and the discontinuity in the gradient 
at the anode tip. 

The dimensions on the curves are given in terms of 
the finite difference solution normalization of one unit 
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FIGURE 3-Function generator approximation of boundry 
conditions. The circled points are values from the finite difference 

solution. 
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spacing between mesh points. All of the analog scaling 
is based on a factor of 5 volts per unit. Also, the z vari
able has an offset that makes' the z = 0 mesh point fall 
at -90 volts in the analog computer. Both computations 
use a normalized anode potential of unity. 

The first step of the hybrid computer solution is to 
solve Eqn. 11 truncated to two terms in the analog sec
tion. The patching for an AD-80 iterative analog com
puter is given by Figure 4. Rather than use a track-hold 
pair to iterate for the starting value of Vz, its value was 
set manually by adjusting potentiometer 2A6. The 
solution which matches end point potential is shown in 
Figure 5. The axial potential agrees with the digital 
finite difference solution within 1% and most of the 
error can be attributed to the use of 10 segment ap
proximations for Vb(z) and b(z). The sharp corner for' 
V z" near z = 43 is caused by the discontinuity in the 
first derivative of V b(Z) at this point. We will see that 
the solution away from the axis of symmetry will be 
inaccurate in this region. 

COMPUTER CONTROL 
SIGNAL TO HOLD 2A2, 
2A3, AND 2AI AT END 
OF CONPUTATION 

vi.' 

FIGURE 4-Analog solution of Eq. 11 for the electron gun axial 
potential 
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FIGURE 5-The axial potential and its derivatives for the 
boundary conditions of Fig. 3 

The sensitivity of the computation to the gradient 
was studied by observing the final value for Vz as a 
function of the starting gradient. (A five-place digital 
voltmeter is needed to resolve these small increments 
in starting gradient.) The result is shown in Figure 6. 
This high sensitivity must be considered if a track-hold 
pair is used to automatically determine the starting 
gradient. The problem of high sensitivities to errors is 
well-known in numerical P.D.E. solutions10 and leads to 
ill-conditioned matrices to be inverted in finite dif
ference algorithms. Phy~ically ill-posed problems are 
generated when the region is so large that the far 
boundary conditions should be ignored. A smaller 
range for z would have simplified the numerical diffi
culties with this problem, however, it would not cor
respond to the actual physical problem given. 

The basis for e\tending this solution to the region be
tween the axis and the boundary is Eqn. 10. The 
solution of Eqn. 11 makes both Vz and V/' available; 
therefore, these two variables are supplied to AID con
verters and sent to the digital computer for storage in 
core memory. (If the gradient of the solution is re
quired for electren trajectory computation, V/ is also 
stored.) Equation 10 can be implemented in either the 
ditigal or analog portion of a hybrid computer. We will 
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illustrate the use of the analog portion because the 
analog output is continuous in r and easy to display on 
either a storage oscilloscope or an X - Y plotter. Since 
V,(z) and V/'(z) were stored in the digital computer 
memory, the digital computer could have been used to 
complete the! solution by evaluating the truncated ver
sion pf (10) for selected values of rand z. 

The hybrid generated generated plots of Eqn. (10) 
were generated as solutions to the equation 

a2 1 -VCr z) = - - V/'(z) ar2 ,. 2 
(24) 

with the digital computer supplying (for sampled 
values of z) z,Vz"(z), and V(z). The solution to (24) 

with the initial values V(O,z) = Vz(z) and !!.... V(O,z) 
ar 

= 0 (axial symmetry) can be obtained on the an
alog computer by treating (24) as an ordinary dif
ferential equation in V(r,z) with z fixed and r the inde
pendent variable. The solution to (24) as r varies from 
o to b(z) sweeps out the solution to the original P.D.E. 
anong a line of z = constant. The digital computer is 
ideally suited to the task or reproducing the stored 
values of Vz(z), and V/'(z) through digital to analog 
converters and controlling the stopping and starting of 
the analog integration. 

Figure 7 is the result of this process. The entire region 
was carefully examined and no errors greater than those 
seen in Figure 9 were found. "Notice that the finite dif
ference solution shows a change in curvature at z = 40, 
r = 8 which the computing approximation used here 
cannot match. This is in the region of the sharp change 
in slope of the Vb(z) curve used here. 

vVe have also considered an all analog method which 
consists of storing Vz and V/' in diode function genera
tors rather than the core memory of a digital computer. 
An inspection of Figure 5 will show the problem with 
this idea. The diode function generator which would be 
used to store V:" would need at least 20 segments and 
probably more. However, Vz is always a relatively 
smooth function that can be fitted accurately with a 
10-:segment function generator. A method which uses 
only Vz would then make possible the use of the itera
tive analog without the digital computer. 

A method which avoids the problem of the inaccurate 
approximation of V/' with a diode function generator 
and does not require a digital computer can be done by 
an iteration process in the radial direction by finding 
V/' to meet the boundary conditions. To do this, the 
solution of Eqn. 11 for Vz is stored in a diode function 
generator. The -functions Vb(z) and b(z) are also re
quired. At a given value of z, we can HOLD the z inte
grator and iterate the solution of Eqn. 24. 
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FIGURE 7-Potential in the electron gun. Circled points are 
fr')m the finite difference digital solution 

The starting values for this solution are ~: = 0 

(axial symmetry) and V = Vz at r = O. A track and 
hold pair of integrators are used to iterate the value of 
Vz" in Eqn. 24, to make the potential agree at the 
boundary. We have found that four iterations are 
usually sufficient. The analog patching to accomplish 
this is shown in Figure 8 and the positive logic (as used 
in an AD-80 computer) is shown in Figure 9. Except 
that the four iterations in the r direction for each in
crement in the .. z direction increase the computing 
time by a factor of 4, this method will plot the same 
answer shown in Figure 7. 

CONCLUSLIONS 

The methods given here for solving boundary value 
problems based on Laplace's equation are comparable 
in accuracy to finite difference digital solutions if the 
region studied is several times longer than its maximum 
radius. The insertion of boundary values with diode 
function generators is very convenient and enables one 
to study the effect of boundary condition changes. The 
solution obtained is continuous in the radial direction 
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-IOOV 

FIGURE g.-Analog patching for extension of the axial potential 
solution to the boundary of the region 

:FIGURE 9-Positive logic patching for control of the analog 
computer circuit given by Fig. 8 

and can be as finely incremented as desired in the axial 
direction with only an increase in computing time. The 
gradient of potential is also readily available. The 
method shows sufficient promise for other types of 
equations to encourage further work in this area. 
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A hybrid computational method for partial 
differential equations 

by G. A. COULMAN, J. F. SVETLIK and W. H. 
CLIFFORD 

Michigan State University 
East Lansing, Michigan 

INTRODUCTION 

A hybrid computational method for partial differential 
equations which significantly reduces the time of solu
tions and error propagation is presented. It is a truly 
hybrid method, relying on the accurate algebraic capa
bility of the digital machine and the integration capa
bility and speed of the analog. 

The method reduces the partial differential equatio 
to a semi-discrete form by means of a method whicn 
rigorously incorporates the boundary conditions into 
the set of coupled ordinary differential equations. These 
equations are then transformed, yielding a set of in
dependent ordinary differential equations. 

The independent set of equations may be solved 
individually or in arbitrary numbers on the analog com
puter. The independence eliminates error generated in 
data transfer associated with coupled solution methods. 
Also, the independence allows data to be read on any 
time interval, greatly reducing storage requirements 
and digital functions. Thus, a faster solution is possible. 

Problem statement 

A general second order linear parabolic partial differ
ential equation of significant applied interest is as fol
lows: 

au(x, t) {" a [ au] _ au} = L..t - P(x) - + Q(x) -at i aXi aXi aXi 

+ R(x)u + sex, t) 3 sx E F, t > 0 . (1) 

The associated boundary condition is: 

au 
C(x) u (x, t) + B(x) aN = G(x) 

X E H t > 0, (2) 

593 

where H is the external boundary of F and a~ is the 

outward pointing normal on 'H. An initial condition is 
usually of the form: 

u(x, 0) = g(x) 

(3) 

We choose those problems where P, Q, R, S, and g are 
piece-wise continuous in F. This allows the judicious 
segmenting of the region later . We also require: 

P(x) > 0 

R(x) > 0 

C(x), B(x) > 0 

C(x) + B(x) > 0 

in F, 

onH. 

This general formulation encompasses a great number 
of problems of significant physical interest. 

Semi-discrete formulation 

The objective of the semi-discrete formulation is the 
reduction of the partial differential equation to a set of 
coupled ordinary differential equations. The method 
used is presented by Vargal for two-dimensional space. 
The value of this method is the rigorous incorporation 
of the boundary conditions into the resultant system 
of equations. Further extensions of this formulation are 
presented by Quon.2 •

3 Many alternative methods exist, 
but this method has many advantages. The presenta
tion of Varga can be extended to three dimensional 
space if Green's theorem is replaced by Gauss' theorem. 
The parameterization of the space variables requires a 
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considerably more complex form. An illustration of the 
details of the procedure is given for a two dimensional 
case in Appendix A. 

The important result is that the mesh points which 
are located on H allow use of the boundary condition in 
the surface integral assocated with P(x) at that point. 
The resultant set of ordinary differential equations can 
be stated in matrix form as follows: 

dU _ 
dt = AU + Set) . (4) 

The vector U can be ordered in any desired manner to 
produce the most useful structure of A. The spatial grid 
has not been restricted to uniform increments. 

Computational method 

In general, the problem reduces to one of determining 
the eigenvalues of the A matrix and the right modal 
matrix. For the single space dimensional problem,' A 
is tridiagonal and is easily transformed to a symmetric 
tridiagonal matrix. More details of this will be illus
trated in the example. It is shown in Appendix A that 
for a two dimensional case, A can be made real and sym· 
metric. In a number of cases A can be transformed to 
this form for three dimensional cases. Frame4 presents 
a method for tridiagonalization of any symmetric ma
trix. Any tridagonal real symmetric matrix can be 
diagonalized by a recursive method which computes 
the eigenvalues to any specified accuracy within the 
accuracy of the computer. The method presented by 
Frame4 is excellent. The eigenvectors are easily com
puted by any of a variety of methods. The right modal 
matrix can be directly computed from the eigenvalues 
by a simple algorithm for the eigenvectors. 

(5) 

The initial step is to transform equation (4). 

dY _ 
dt = AY + M-IS(t) , (6) 

where 

U = MY 

A = M-IAM(diagonal) 
M is a right modal matrIX. 

The result is n independent first-order ordinary dif
ferential equations. It is now possible to solve as many 

or as few as desired (or possible based on available 
equipment) simultaneously on the analog computer. 
Any arbitrary sampling rate may be used for storage of 
the results without affecting the accuracy. The output 
sample rate for the forcing function depends on its 
frequency spectrum, the digital computer capability 
and the analog time scale. 

The physical variables are computed in the digital 
computer using the right modal matrix. 

(7) 

The individual problem will dictate the requirements 
for magnitUde scaling. Time scaling can be performed 
by digital computer by examination of A and multi
plication of equation (6) by an appropriate scalar. The 
schematic implementation of this If ethod is illustrated 
in Figure 1. 

Illustrative example 

The example has been chosen to illustrate the pro
cedure rather than the details. The equation is a simpli
fication of (1) and is common in chemical engineering 
work. 

au(x, t) 
at 

a au a 
ax 7J(x) ax - ax [v(x)u] 

+~ (x)u + sex, t) 

(la) 

F is the closed interval Xl < X2. The boundary condition 
from equation (2) becomes two point equations. 

x = Xl 

(2a) 

H is the points Xl and X2. 

o ~ X ~ 1.0 Xl = 0 X2 = 1.0 

The system may be subdivided into arbitrary non
intersecting intervals spanning the set. The partial 
differential equation is integrated over the interval 
i-.%' to i + .%' except the two terminal points. The 



two terminal points are integrated from 1 to 1 + 1/2 
and n-?1' to n. 

- ~ [v(x)ul + ~(x)u + S(x, t) ] dx (8) 

When (2a) is applied to the terminal elements, the sys
tem of equations is the following. 

Ul bl Cl 
U2 a2 b2 C2 

as bs C8 
d Ul 
dt ai b i Ci 

U n-l 

Un 
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D utJU t 
u 

.,-
MS 

Analog 
FIGURE 1-Hybrid processor schematic 

1 = 1, n - 1 

an b n 
Un Each problem, although fitting within a general prob-

lem, has characteristics which make it easier to solve 
if they are recognized. This example is no exception. 
The matrix A can be converted to a symmetric tri
diangonal form which allows ease of computation of the 
eigenvalues 

81 + 
7]IG1 
Blhl 

82 

+ Si 

8n- 1 

7] nG2 

Sn + BJln 
(9) 

7] i + 7] i-I JI i 
a, = +-2h,2 2h, 

i = 2, n 

-b. = 7]'+1 +' 27], + 7]i-l _ t. 
• 2h~ s, i = 2, n: - 1 

where U = DTY 

and T is the right modal matrix of AI, 
whereAl = D-IAD. 
As a result of this transformation, the following is neces
sary to retain a real matrix. 

Physically it is useful as it requires small intervals when 
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the dispersion is low which is well known. 
The eigenvalues of At are easily determined by a re

cursion method due to Frame.4 A matrix (rum) of this 
form has real distinct eigenvalues. A method is provided 
for estimating the bounds on the A/s. A Sturm sequence 
is then computed where P n(A) is the characteristic 
polynomial, which provides a convergence criterion. A 
variation count on the sequence Pk(Ai) is equal to the 
number of roots of P n(A) = 0 which exceeds Ai in value. 
This is then a convergent self-checking method to deter
mine the eigenvalues of any symmetric tridiagonal ma
trix. The right modal matrix (T) of At is easily com
puted from the eigenvalues. 

The example can then be stated in the form of equa
tion (7). 

dY 
- = A Y + T-lD-IS(t) 
dt 

where A = T-ID-IADT, a diagonal matrix. 

(10) 

For computational illustration, the following numer
ical data were used. 

11 (x) = 0.05 + .5xl! 

vex) = 1.0, ~(x) = - .2 
sex, t) = e-b(l - e-e) 

Bl = 111 

B2 = lIn 

G1 = G 2 = 1.0 

A grid was arbitrarily established with the spacing re
lationship to 11 firmly in mind. This is illustrated in 
Figure 2. 

In order to follow the detailed steps in the computer 
operation as discussed from here on, refer often to the 
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flow chart of Figure 3. The program details are omitted 
but the functional operations are presented. It is as
sumed that the analog computer is properly wired and 
prepared for hybrid operation. The digital computer 
reads the discretized data for the partial differential 
equation coefficients and coordinates. The A m~t,rix is 
then computed and transformed to symmetric form . 
The eignvalues and right modal matrix are then com
puted. When very large problems are being done, this 
portion is performed on the CDC 3600. The card output 
is then read into the IBM 1800 in the hybrid system 
Hopefully a data link will eliminate this problem. 

The necessary analog equipment and trunk addresses 
are entered into the digital computer. The digital ma
chine initializes the analog computer and sets the po
tentiometers for the first group of elements. The time 
of computation is controlled from the analog, therefore 
the binary coded decimal counter is preset by logic 
signals. This is the scaled· time period to the first set of 
data points. The analog and parallel logic are started 
simultaneously. The digital computer may be used as a 
function generator for Si(t) although in the example 
this is done on the analog. Synchronization with the 
analog clock and time scale is an important considera-



tion in the digital function generation. As this was 
not true in this example, a logic signal from the digital 
time-scaled the analog by a factor of 1000. It is impor
tant to note that conventional data transfer for coupled 
elements and short time interval computation is elim
inated in this method. 

When the analog switches itself to the hold mode, a 
logic signal advises the digital either on an interrupt 
or a monit.ored logic trunk. The digital computer reads 
the appropriate data trunks. If more time points are 
desired, the BCD counter is set again and the com
putation continues; otherwise, the analog is initialized, 
the potentiometers set and a new set of elements are 
solved at the same time points. 

When all the elements have been solved, the vector 
of data at each time point is multiplied by th~ appropri
ate transform matrix. The data are then read out on the 
selected device in physical state variable form. 

In the example chosen, the problem was solved twice 
with different time increment resolution to demonstrate 
the independence of accuracy on this choice. The graph 
in Figure 4 shows that the l~rge time inqrement data 
fall on the curve for the high resolution data. 

The problem of convergence to the exact solution has 
not been examined here. It is important to note that 
the numerical stability problem does not exist in this 
method. All solutions are stable as can be demonstrated 
by the definite form of the A matrix. The important 
problem relates to the magnitude of the coefficients and 
the selected size of the discrete intervals. It is generally 
known that as 7Ji becomes smaller, the problem form 
approaches the hyperbolic and extremely small inter
val~ are required. In this illustration, this convention 

2.0 

1.0 

8 12 16 20 
TIME 

FIGURE 4-Solution response 
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was observed. Previous experience was the guide al
though something more rigorous is under study. 

CONCLUSIONS 

A hybrid method of solution of the parabolic partial 
differential equation has been developed and demon
strated. This approach makes time sharing of analog 
equipment a more precise operation. The result is the 
ability to handle very large meshes without error ac
cumulation caused by the data transfer in time shared 
coupled computations by conventional methods. This 
is accomplished by a decoupling transformation. The 
decoupling significantly reduces the data storage re
quired. The speed is much greater than numerical 
methods on a purely digital machine as a result of three 
things: (1) parallel integration of large numbers of 
elements, (2) speed of analog integration, and (3) the 
ability to use arbitrary intervals on the continuous 
independent variable. 

FUTURE WORK 

Several variations on this basic method are being ex
amined. Preliminary work has been completed on the 
discrete time problem. It is feasible but not quite as 
straightforward. Examination of admissible non
linearities is under way, as well as methods for handling 
simultaneous partial differential equations. 
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APPENDIX A 

A reduced form of equation (1) and its associated 
boundary values can be shown to form a system with a 
symmetric matrix. 

:~ = t, :x, [P(x) :~, ] + R(x)u + Sex, t) (lA) 

with consistent sets and boundary conditions. The 
summation is the most significant illustration of the 
finite difference algorithm. The equation is multiplied 
by dXl and dX2 and integrated over the region about 
the internal discrete point ij. 

The application of Green's theorem reduces this to a 
contour integral. (In the case of three dimensions, 
Gauss' theorem is applied.) 

I (3A) 

The integration is performed along the contour illus
trated in Figure 1A starting at point a. The resultant 
finite difference form is given in equation (4A) . 

_ p.. 1 Uij - Uij-1 ~ i + ~i-l 
11- 2 5;-1 2 

x 
i j+l 

a y-- - .... .., 
x ~ x I x 

i-I j L_ .. 
J i+' j !.L ... 

x 
i j-' 

FIGURE lA-Internal element 

(4A) 

From this it can be seen that the coefficient matrix is 
always symmetric when the discrete state variables 
are ordered sequentially. For the more general case of 
equation (1), a transformation must be found. 

For the elements on the boundary a similar pro
cedure is followed with one significant variation. The 
general element is depicted in Figure 2A. The equation 
form (3A) is used but parameterization is used along: 
the exterior boundary. A mesh giVIng essentially linear 
boundary sections is used. 

Define 

au au au 
therefore, ~N = -;- cos (J + ~ sin (J • 

o. OXl OX2 

t:sing dX1 = - sin (J dy 

dX2 = cos (J dy 

it is possible to write (3A) in the following form for the 
exterior line segment of the boundary element. 

f au ,au 
P -;- cos (J dy + P -;- s~n (J dy 

Ox! OX2 

= I P :; dy = f P[B-l(G - eu)] jy (5A) 

FIGURE 2A-BouBdary element 



The final form is the result of substitution of the 
boundary conditions. The contour integration is per
formed as before but using this final form for the ap
propriate segment. A complete set of equations results 
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incorporating all the boundary conditions for an 
arbitrary region. The result, also. has a real symmetric 
coefficient matrix. 





Preliminary investigation of a hybrid method for 
solving partial differential equations 

by STEPHEN K. T. HSU and ROBERT M. HOWE 
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Ann Arbor, Michigan 

INTRODUCTION 

In the digital computer solution of a partial differential 
equation involving both time and spatial variables the 
partial differential equation is approximated by differ
ence equations arising from the discretization of both 
the time and spatial variables. The number of differ
ence equations equals the number of spatial mesh 
points or stations times the number of time increments. 
In the analog computer solution of a partial differential 
equation the equation may be approximated by a set of 
coupled ordinary differential equations, one equation 
for each station. The set of differential equations is then 
solved simultaneously. Unless the problem is simple and 
the number of stations is small, digital computation 
may take a long time and analog computation may in
volve much equipment. The present investigation is an 
attempt to indicate a profitable way to solve partial 
differential equations with hybrid computation, using 
only a limited number of high speed analog compo
nents for integration and employing the digital comput
er for function storage and playback. 

We are primarily interested in initial value problems 
where a transient solution is involved. This leads to the 
consideration of parabolic and hyperbolic equat.ions. 
Elliptic equations usually are boundary value problems. 

First let us review Some of the more common general 
approaches to computer solution of partial differential 
equations. The discrete-time-discrete-space (DTDS) 
methods where both time and space variable are dis
cretized are clearly not suited to hybrid computation 
where one intends to take advantage of the analog 
computer's high-speed integration capability. The dis
crete-tim€-continuous-space (DTCS) methods, where 
the time variable is discretized and one of the spatial 
variables is treated continuously have been studied by a 
number of authors.1- 8 At each time increment these 
methods lead to a boundary value problem in the con
tinuous spatial variable. Solution of this boundary value 

problem is usually made impractical by stability diffi
culties. Lacking a good way to meet the end conditions, 
some investigators have turned to the use of integral 
equations instead of differential equations.I •7 Another 
approach to the solution of partial differential equations 
is the Monte Carlo method,13-17 This process is quite 
different and is based on the relation between the par
tial differential equation defining a probability dis
tribution function and the related random process. The 
standard approach in analog computation is to use 
continuous-time-discrete-space (CTDS).9 Powever, in
stead of solving the set of coupled ordinary differential 
equations in parallel using. many analog components 
(one set for each station), one can use a hybrid system 
and employ a relaxation technique. This is the method 
described in the present paper. Solutions are iterated in 
a serial fashion using a relatively small number of ana
log components which are time-shared· among sets of 
mesh points. This CTDS approach appears to be a 
logical choice for hybrid computation. It has been pro
posed and tried before,IQ-12 but no results beyond the 
preliminary stage have been found. 

The CTDSjormutation and hybrid ~omputation 

The CTDS formulation is easily adapted to hybrid 
computation to allow combined parallel-serial opera
tion. The set of ordinary differential equations is inte
grated one equation at a time (or one group of equations 
at a time) in a serial fashion. Since the equations are 
coupled, the solutions at all stations not being solved 
by direct integration must be guessed in the beginning 
and stored digitally. When the equation of a particular 
station (or group of stations) is being solved by the ana
log, the guessed or previously computed solutions of 
neighboring stations are fed in as part of the forcing 
inputs through D / A converters while the computed 
analog solution(s) is sampled and stored in the digital 
storage, replacing the corresponding previous values. 
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The relaxation procedure then moves on to the next 
station(or group of stations). The process goes on to 
cover all the stations and to form a complete iteration. 
Iterations are repeated until the solutions converge to 
a satisfacrory degree of accuracy. 

This technique is quite similar to that used in digital 
computer solution of elliptic boundary value prob
lems. In the latter case the solution at a station is ap
proached in value, while in the CTDS relaxation meth
od the solution function at a station is approached. 

The iterative CTDS procedure has been used to 
solve one-dimensional and two-dimensional linear dif
fusion equations, a nonlinear one-dimensional diffusion 
equation and a one-dimensional wave equation. The 
following sections explore at some length these comput
er experiments. The feasibility of the approach is con
firmed and the general characteristics of the iterative 
process are observed. Moreover, several methods for 
reducing the computational time are proposed and 
verified. 

It should be pointed out that it is possible to prove 
convergence of the iterative procedure under quite 
general circumstances although the convergence proof 
is not induded In this paper. 

Simulation of the hybrid system 

Because of the lack of availability of a suitable hybrid 
computer system, and also to insure experimental re
sults of high precision, the hybrid process was simulated 
digitally using an IBM 7090. A fourth-order Runge 
¥utta integration formula was used to simulate the con
tinuous analog integration. Simulation of the interface 
system (AID sampling and D I A interpolation) was 
included. The effects of quantizing errors in the con
version processes were not included. 

One-dimensional diffusion equation 

Consider a simple one-dimensional heat flow problem 
(diffusion equation) described by the equation: 

Cl) 

with the boundary conditions 

u(O, t) = 0, au _ 0 
ax =1 - , 

(2) 

and the initial condition 

u(x,O) = 1 . (3) 

If we divide the spatial coordinate x into (n -+- %) equal 

increments and let UiCt) be the temperature at x = i~x, 
then the ordinary differential equations obtained are: 

i = 1, 2, "', n - 1 

(4) 

where uo(t) = u(O, t) = O. We will call the solution of 
these n coupled equations the CTDS solution. In the 
standard analog method of computation, th~se equa
tions are solved simultaneously. But in the~ iterative 
CTDS process the equations are solved iteratively, one 
at a time. First we take an arbitrary guess for Ui(t) and 
call it Uio(t) for all i from 1 to n. For instance, we can let 
Uio(t) = 1 for all i and for all t. Now with the analog 
computer we solve for the temperature Ul(t) at the first 
station using the digitally-stored Uo and U20(t) through 
D I A converters as forcing functions. The analog solu
tion for Ul(t) is sampled and stored during the solu
tion using the AID converter system, and becomes 
Ul1(t), replacing UIO(t). Next U21(t), the temperature 
at the second station, is computed with the analog sys
tem, using Ul1(t) and USO(t) as forcing functions. Con
tinuing in this way we obtain Ul1(t), U21(t), ... ,un

1(t) with 
the analog system,· in each case storing the solution in 
the digital computer memory The procedure is repeated 
to obtain Ui2(t), UiS(t), ... , Uik(t). The process continues 
until UiS(t) and Uik+1(t) agree within. a certain prescribed 
small number, .0005 in our example, over the whole 
computed, time interval for each i. 

The problem was simulated for n = 6 with a zero
order extrapolation for data playback. The converter 
sample period used was .01 units of t. Figure 1 shows 
U2k(t) for various values of k. The functions are seen to 
converge very nicely, but not to the correct CTDS 
solution. This is because of the inaccuracy caused by 
the zero-order extrapolation used in function playback 
for each successive iteration. 

Since implementation of higher order interp<?latioB 
can use considerable analog equipment, a zero-order 
extrapolation with the playback function advanced in 
time by one-half the sample period was used to com
pensate for the average time delay. ,The result ob
tained (Figure 2) stays within .01 of the true CTDS 
solution. Even better agreement would have resulted if 
the playback sample period had been smaller. 

The first guess UiO(t) has a definite effect on the 
rate of convergence, at least initially, as is demonstrated 
by Figures 3 and 4. Note that Ui(t) = 0, i = 1, 2, ... ,6, 
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FIGURE I-Iterative solution 

is a steady state solution of the problem and is used 
as the initial guess, UiO(t), in Figure 4. It is clear that 
choosing the steady state solution as a first trial guess 
may not be as good as choosing the initial condition for 
the first guess, as in Figure 3. 

If a problem is symmetric about its midpoint in x, 
only one half of the stations need be computed. The 6~ 
station problem described above can be interpreted as 
one half of a 13 station problem with zero boundary 
conditions at both ends. The number of iterations re
quired for convergence is the same, although in the 13 
station problem twice as many runs per iteration are 
needed. 

Observation of the resUlts in Figures 1 to 4 suggests 

1.0 

One Dimensional Heat Equation 

Station 2 

t Sample Period Lead 

.8 
uk 
2 

.6 

.4 

.2 

o~----+-----~-----------+----~ 
.6". t .8 o .2 .4 1.0 

FIGURE 2-Iterative solution with lead in playback 

that it is almost useless to compute Uik(t) beyond the t 
where it departs considerably from the CTDS solution. 
It is possible to take advantage of this by dividing the 
desired solution time interval into small sub-intervals. 
In this way total computing time can be reduced con
siderably. For example, the time interval [0,1} might be 
divided into ten equal sub-intervals. During· the first 
sub-in terval the iterative computing procedure is ap
plied until the specified convergence criterion is sat
isfied. The resulting end points of the first SUb-interval 
are used as the starting points for the second interval. 
This procedure is then repeated for each subsequent 
interval. Furthermore, the use of a linear extrapolation 
rather than UiO(t) = constant as the first guess at each 
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interval helps to reduce the number of iterations re
quired for convergence. More specifically, let 

T ~ t ~ T + AT (5) 

where Ui (t) is the approximation to the CTDS solution 
obtained on the interval T - aT ~ t ~ T when the 
convergence criterion on that interval has been met. 
!f t~e time interval aT is small, this linear approx
unatlOn will not be far from the true CTDS solution. 

The same heat flow problem described above was run 
using twenty SUb-intervals to cover the interval 0 < 
t :::; 1. The total nurriber of iterations (72) was som;-· 
,,-,hat larger than that required earlier in Figure 2, but 
smce each solution is only one-twentieth as long, the 
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FIGURE 5-Solution using sub-interval iterations 

overall saving in computational time is very substamilM.l. 
Figure 5 shows the approximate solution, which is very 
close to the true CTDS solution. The latter is not plot-
ted for the sake of clarity. 

Since the .0005 value of the convergence criterion is 
not zero, the end point error may accumulate and ap
pears to have an upper bound of .0005 X 20 = .01 at the 
20th interval. Actually, for linear stable systems, the end 
point errors tend to attenuate with time. In the above 
example, the error accumulation is less than .001 
at the end of the 20th interval. If a value smaller than 
.0005 is used, the accumulated error will be correspond
ingly smaller. Ultimately the error obtained depends on 
the accuracy of the analog and interface components. 

These results not only confirm the early investiga
tion of Max10 showing convergence, but also show the 
practicality of zero-order extrapolation and the ad
visability of computing successively through small 

intervals. 
A nonlinear one-dimensional heat equation has also 

been solved by the method. The problem considered is 

(6) 
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with u(O, x) = 1, u(t, 0) = 0 and [aujat]:I>=l = O. As 
in the linear case 6~ stations are taken along x, yielding 
the following set of ordinary differential equations: 

i=1,2,···,5 

(7) 

with Uo = 0, ul(O) = 1 and UiO(t) = 1 fori = 1,2, .. ,,6 
on interval 0 S t S .05. 

The problem is solved successively through small 
time intervals of .05 units in t with linear approximation 
(eq.5) for UiO(t) and half-sample period lead in play
back. The approximations converge nicely to within 
.005 of the CTDS solution: and ul(t) is shown in Figure 
6. 
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.I .2 

One Dimensional 

Station I. .05 intervals 

Largest number at end of each 

intervol • number of iterations to 

converge within .0005 

.3 .4 .5 t .6 .7 

FIGURE 6-801ution of the nonlinear diffusion equation 

One dime,,!sional wave equation 

As another example, consider the wave equation 

(8) 

with u(O, t) = .4, u(x, 0) = 0, [auj aX]X=l = 0 and 
[auj aX]t==o = O. The space coordinate is divided into 
3;4 stations and we have the following set of equations: 

(9) 

with Uo = .4 and Ui(O) = rduijdt]t=o = O. The cpm
putational procedure is applied over successive small 
time intervals of width .5. In the first interval a con
stant UiO(t) = 0 is used as the first guess, while in sub
sequent intervals the linear approximation (eq. 5) ex
trapolating from the starting points is used to begin 
the computation. As before, a one-half sample period 
lead is used in playback. The behavior at Rtation 1 is 
shown in Figure 7. 

The CTDS solution of the set of coupl~d equations 
was also computed to check the accuracy. The iterative 
solution is very close to it and cannot be distinguished 
from it in Figure 7. Figure 8 shows the difference when 
plotted on a magnified scale. 

The iterations converge very nicely as can be seen. 
The .0005 convergence criterion applies to ul(t) as 
well as their derivatives. In other words, iteration does 
not stop until both u/'(t) and their derivatives con-
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FIGURE 7-:-So1ution of the wave equat.ion 
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2.5 

verge within .0005 in successive iterations. With this 
criterion, the maximum error at the end of the fifth 
interval is only about .001. Due to the nature of the 
equation the error oscillates with increasing amplitude, 
as shown in Figure 8. 

Two dimensional diffusion equation 

Consider next the diffusion equation in two spatial 
dimensions 

au 
at 

(10) 

over a unit square with the temperature u = 0 on all 
four boundaries and a unit initial temperature 
u(x, y, 0) = 1. 

Dividing the square into (n + 1) X (n + 1) equal 
increments leads to n X n internal points. The CTDS 
equation is 

dUi,j 1 [ + CIt = (~X)2 Ui-I,; Ui,j-:-I 

+ Ui+I,j + Ui,i+l - 4Ui,J] (11) 

where i corresponds to x and j corresponds to y. I tera
tion can be done across the square point by point. This, 
however, will be a long, tedious process. To save time, 
a group of points can be connected together and solved . 
in parallel at each run. Assume there is enough analog 
equipment to cover all n points along x at a certain j so 
that ul,iCt) for i = 1. .. , n are computed simultane
ously. Starting from j = 1, the computation proceeds 
from line to line in the y direction and iterates until all 
the ui,iCt) converge to within a small prescrib~d value 
between successive iterations. In this arrangement, the 
iterative equation becomes 

dul,j 
--at 

1 
-( )2 [Ul-l j + Ui

k
+l.j_1 dX ' , 

+ ul +1,1 + ul,r1 +1 - 4ul,;J (12) 
i = 1, "', n 

Again a fourth-order Runge-Kutta integration is 
used in the digital simulation. The sample period is 
1/400 units in t. In playback, a half sample period lead 
s used as discussed before. 

For the problem stated the unit square is divided 
into 7 X 7 divisions. Due to symmetry only ~ of it, a 
3~ X 3~ square with proper boundary conditions, 
need be computed. The behavior of U22k(t) is shown in 
Figure 9. It converges so closely to the CTDS solution 
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FIGURE 9-Two dimensional diffusion equation, 7 X 7 



Preliminary Investigation of a Hybrid System IVlethod 607 

that the latter cannot be distinguished in the graph. 
I t is also possible to implement the parallel solution 

in square blocks instead of lines. To study this a 10 X 10 
station problem was solved, first iterating line by line, 
then block by block. In the latter case the 9 X 9 internal 
points are divided into nine 3 X 3 blocks. Either way 
one iteration takes 9 rUns to cover all the points. Iter· 
ating by blocks has a faster rate of convergence as can 
be seen in comparing Figure 10 with 11. 

To save time, the computation is done in intervals of 
width .05. The procedure starts with a constant 
UiO,j(t) = Ui,j(O) = 1 in the first interval and uses a. 
linear extrapolation for the subsequent intervals. Con
vergence is clearly evident. 

Iteration by blocks has another advantage in the 
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FIGURE lo-Two dimensional diffusion equation, 10 X 10, 
iterated by lines 
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FIGURE ll-Two dimensional diffusion equation, 10 X 10, 
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actual hybrid system. Consider the 10 X 10 case. Iter
ation using lInes requires 9 AID converters for sampling 

, and 18 D I A converters in playback.; iteration using 
3 X 3 blocks requires 9 AID converters, but only 12 
D / A converters. If digital print-out is not required for 
the internal point(s) in the blocks, the number of AID 
converters is reduced to 8 for each interior block. In
dexing for the block sequence, however, will be more 
complicated. 

CONCLUSION AND DISCUSSION 

It has been demonstrated by means of several examples 
that iterative solution of CTDS equations is a promising 
approach to the hybrid computer solution of certain 
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classes of partial differential equations. l\fany questions 
need to be investigated further. 

The solution of CTDS equations having many sta
tions involves many AID and D I A transfers and large 
storage capacity. However, arithmetic operations on the 
digital data are .generally not required. This suggests 
that the standard hybrid computer configuration which 
is based on a general purpose digital computer may not 
be optimum. Instead, it would be better to use a small 
digital computer for control and provide a special 
parallel in-parallel out memory coupled to a large AID 
and D / A conversion system. It should be noted that the 
technique of iterating on sub-intervals should reduce 
appreciably the memory requirements. 

With respect to the details of implementing the 
iterative procedure many variations are available. The 
possibility of iterating by blocks or by lines in the two 
dimensional problem has been indicated above. But 
many other patterns of iteration are possible, e.g., 
alternating between the "black" and "white" squares 
of a checker board or the interleaving of successive lines. 
These additional schemes may have advantages in 
speed of convergence, reduction in the number of data 
transfers, effective utilizatioIi of the analog elements, 
etc. As has been indicated in an earlier section the iter
ative method has a strong similarity to methods used 
in the solution of elliptic equations. This suggests the 
possibility of using over-relaxation techniques. This has 
been tried on the 6~ station diffusion problem. The 
best over-relaxation factor obtained was 1.1 and the 
improvement on the number of iterations was not very 
impressive. For larger problems (more stations and 
longer period of time) over-relaxation may have a more 
beneficial effect. 

It is possible to prove convergence of certain of the 
iterative methods under reasonably mathematical con
ditions. Also there is reason to believe that analysis can 
yield effective comparisons of convergence rates for 
different iterative methods. These results will be re
ported in a subsequent paper. 

In the case of both the diffusion and wave equation 
it can be seen from the solutions shown in the figures 
that each additional iteration adds approximately a 
constant time increment over the previous solution be
fore the solution diverges from the true CTDS solution. 
Thus in Figure 2 each 10 iterations extend the time for 
accurate solution by about 0.23 units in t, whereas in 
Figure 8 each 4 iterations extend the time for accurate 
solution by about 0.5 units in t. In fact it has been found 
in the cases studied thus far that, after a few beginning 
iterations, the added time increment for accurate solu
tion following each iteration is roughly equal to (.1X)2, 
assuming dimensionless distance and time variables. 
This allows at least a crude estimate of total hybrid 

computational time for problems falling in the category 
of those studied here. 

The potential payoff of the methods described ap
pears to be greatest in complex nonlinear problems 
where the analog system performs the nonlinear com
putations as well as the integrations. Additional com
puter experiments need to be performed in order to 
verify this potential. 
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QUIP-A system for automatic program generation 

by F. C. BEQUAERT 

International Business Machines Corporation 
Cambridge, Mas8achusetts 

INTRODUCTION 

Extensive programming effort is expended in 
the rewriting of minor variations of already exist
ing programs. One method of reducing this 
redundant effort is to devise a method for auto
matically generating programs for the solution 
of any of a class of problems. One such technique 
is illustrated in Figure 1. A generator program 
produces, in response to user inputs, an output 
program for the solution of· a particular prob
lem. User inputs to the generator can be either 
in the form of commands in a special purpose 
language (e.g., macro statement) or responses 
to computer-generated queries. The output code 
produced by such a system is free of coding errors 
usual in haiidwritten programs. The output pro
gram is a free-standing entity which can be used 
for production data processing without user in
tervention. The literature contains a number of 
references1 ,2 to this type of approach. 

There are two basic design goals that will make 
this approach economically attractive. First, tech
niques should be developed for minimizin.g the 
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FIGURE I-Program generator approach 
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effort required to produce a working generator 
program. Second, the generator program pro
duced should be as simple to use as possible. The 
user should also be able to use the generator pro
gram in an interactive mode from a remote ter
minal. 

This paper describes QUIP (for Query Interac
tive Processor), a system proposed for achiev
ing these goals. 

The query interactive prOCe88O'r 

Figure 2 is a diagram of the QUIP system. 
The program operates in conjunction with a num
ber of files and a terminal user. The program file 
contains a number of generator programs writ
ten in the special purpose QUIP language. * Any 

FIGURE 2-General diagram of QUIP 

"'In this document "QUIP language" always refers to the 
special purpose language for writing generator programs. 
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one of these programs may be called for opera
tion by a terminal user request. Associated with 
each generator program is a text file which is 
loaded into the text buffer. This file represents 
tfie basic text of the program segment that is to 
be generated by the generator program. The gen
erator program asks the terminal user a series of 
questions. Based on the responses to these ques
tions, the program modifies the text in the text 
buffer and transfers portions of this text to the 
output file. As various generator programs are 
called up and executed, a program is built up in 
the output file. When completed, this program 
may be compiled, loaded and executed. The Re
sponse Stream, a sequential record of all user 
responses to QUIP generated queries, is of par
ticular interest. It represents a complete record 
of operations and may be used with the generator 
programs and associated text files to regenerate 
the output file. 

In addition to the query mode described above, 
the QUIP system may operate in a macro-mode 
in which the user specifies by macro statements 
the actions to be taken within the text buffer. The 
complexity of the language used for these state
ments is limited only by the complexity of the 
generator program which the programmer is will
ing to write. Special commands to assist the pro
grammer in decomposing macro state'ments are 
provided in the QUIP language. 

A regeneration mode is also possible in QUIP, 
in which the user's responses to QUIP queries 
are used to generate an equivalent ma.cro state
ment for tutorial purposes. 

The QUIP system is not limited to the genera
tion of programs. The system has a general text 
manipulation capability with many potential uses. 
One interesting use of the system would be as an 
"inserted processor" to enhance the capability of 
a convers.ational system. User statements are 
read by QUIP one line at a time for such an op
eration. If a line is a valid statement in the con
versational system in use, it is fed directly to 
the conversational processor. If the line repre
sents a statement in the extended language, valid 
statements are generated and fed to the con
versational system. The terminal user has a con
versational system with an extended capability 
beyond that of the base system, while the base 
system deals with its input from the QUIP pro
gram exactly as it would deal with direct ter
minal inputs. 

The QUIP language 

The QUIP language is a PL/I-based language 
designed to facilitate the writing of QUIP gen
erator programs. A generator program written 
in the QUIP language might be handled in one 
of two ways. (1) It could be fed to a PLII pre
processor which would generate valid PLII code 
as output. This output could then be compiled and 
used as a generator program. (2) It could be 
interpreted at execution time by a resident QUIP 
interpreter. For the purposes of this paper, either 
of these approaches could be selected. 

Basic program structure 

A generator program written in the QUIP lan
guage is built around a flow diagram that repre
sents the actions to be taken in the interchange 
between the user and the generator program. 
The conditional execution statements described 
below provide a means by which a program func
tion may be placed in a program segment. The 
function will be executed only if the specified 
condition state is set. 

The basic program functions of a generator 
program are: 

a. Basic decision logic based on the contents 
of the response stream 

b. Generation of queries to a user and han..;, 
dling of his replies 

c. Text file manipul~tion. 
d. Transfer of data to the output file 
e. Macro statement decomposition 
f. Macro statement regeneration 
g. Handling of user requests for special in

formation 

Language commands 

The commands available in the QUIP language 
can be summarized as follows: 

1. Standard PL/I commands or, for an inter
pretive system, some subset of PL/T. 

2. The. conditional execution command. Pre
fixing any command with the symbol $n 
(where n is an integer) specifies that com
mand as conditional. It will be executed 
only when the state numbered n has been 
previously set f-or execution by a SETEXE
CUTION n command. Conditional execu~' 
tion commands represent a po·werful pro
gramming tool for situations where a num-



ber o.f functio.ns embedded within the body 
of a program must be selectively executed. 

3. The ASK command which provides a sim
ple method fo.r generating user queries and 
automatically handling user responses. A 
user's response to an AS.K is, for example, 
auto.matically embedded in the co.rrect Io.ca
tio.n within the response stream. 

4. Character search commands that s.implify 
the se'arch for specified character strings 
within buffe~s. Pointers are provided to 
permit easy identificatio.n of the pos.ition 
of characters within a buffer. 

5. String move commands to simplify the 
movement of character strings between 
buffers. 

Use of QUIP langwge 

The following example of a portion of a gen
erator program written in the QUIP language 
illustrates the capabilities of the language. In 
this example, the generator program determines, 
from user responses, an expression to be em
bedded in a line of output text. 

The program segment is as follows: 

$2 A3: 'WHAT IS THE EXPRESSION?', C; 
/* REQUEST USER RESPONSE* / 

$3 LPl = LPI + l; I*ADV ANGE A. LINE 
POINTER*I 

$5 IS(lP) = CB4(CP2 + 1 : CP1 - 1); 
/* EXTRACT AN EXPRESSION FROM 
MAGRO *1 

$7 SETEXECUTION 3,5; 1* SgTEXECUTION 
STATES *1 

$5 IF IS(IP) = '?' THEN SETEXEGUTION 
2, 7 ;1* CHECK FOR ?* I 

$7 GO TOA3; 
$3 TB(LPl) = GB2; 1* LOAD NEXT LINE 

OF T'EXT BUFFER *1 
$3 REPLACE 'DUM2' WITH IS (IP), LPl; 1* 

MODIFY TEXT *1 

Conditional execu,tion prefixes are used on all 
statements. The interpretation of these symbols 
is: 

$2 Specifies statements which make user 
queries 

$3 Specifies statements which modify the text 
buffer 

$5 Specifies statements which extract infor
mation from a macro statement 

$7 Specifies statements whic:h handle the case 
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where aU?" is encountered in a macro 
statement 

In order to query a user directly, this pro
gram segment would be executed with conditio.n 
states 2 and 3 set. (These states would be set 
with a previous QUIP language statement SET
EXECUTION 2,3.) Only the statements with 
either a $2 or $3 prefix would be executed. 

Program operation would then be as follows. 
The first statement presents the user with the 
query WHAT IS THE EXPRESSION? The user's 
response is checked for validity and then placed 
in the current position in the response stream. 

The secondsrtatement advances a line pointer 
(LP1) to. the next line in the text buffer. The text 
buffer is being used for building the output text. 

As o.nly condition codes 2 and 3 are set, aU 
statements down to the next to the last are 
skipped. The next to the last statement transfers 
a character string from a temporary buffer 
(CB2) into text buffer line number LPl 
(TB (LPl». T'he last statement replaced the 
dummy variable DUM2 in line LPl of the text 
buffer with the current item in the response 
stream (IS. (IP) ) . 

Thus this program segment asks a user a ques
tion and pro.duce,s in the text buffer a character 
string. in which a dummy variable is replaced by 
the user's response. 

Now consider the case where it is desired to 
extract the expression from a user-generated 
macro statement. Assume that the macro. state
ment is stored in tempo.rary buffer CB4. In this 
case conditional states 3 and 5 are set. The first 
statement with a code o.f $2 is now skipped. The 
second statement is. executed as before. The third 
statement extracts the appropriate expression 
from the macro. text (in buffer CB4) and places 
this expression ~n the input stream (IS (IP) ) . 
The variables GP2· and CPl in this expression 
are buffer pointers that have been previo.usly set 
to point to the characters immediately in front 
of and fo.llo.wing the expres1sio.nto be extracted. 

The next three statements handle the case 
where a "?" is encountered in the macro being 
decomposed. In this case the 3 and 5 execution 
states are reset and the 2 and 7 states are set. 
On encountering the $7 statement, a branch to 
A3 o.ccurs and the user is asked fo.r the expres
sion in question. His response replaces the "?" in 
the input stream. The $5 statement is then 
ignored, and the $7 statement following rese~ 
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the execution states for continuation of macro 
decomposition. 

The final two statements operate as previously 
described, replacing a dummy variable (DUM2)
with the expression in the response stream. 

Typical program operation 

The following describes a hypothetical interac
tive session using a QUIP generator program de
signed to produce a program for radar data re
duction. 

The system user is, assumed to be an engineer 
who understands how to block diagram a simple 
program, how to write arithmetic statements in 
standard PL/I (or FORTRAN) notation, and 
how to describe arrays (tables) and elementS of 
arrays of data in PL/I (or FORTRAN) notation. 
He is seated at a typewriter, terminal which op
erates in an interactive mode with a QUIP 
generator program. 

Operation with generator program 

The user at the terminal logs in to the QUIP 
system. The computer types: (In all subsequent 
discussion computer outputs are in italics.) 

What generator do you want? 

The user types REDUCE to call up the data re
duction generator program. The computer types: 

1. Do you have a file dictionary? 
In this system, a data file (e.g., a data tape) is 
described by a dictionary that relates data names 
to bit positions in the file. Once generated for a 
tape of a particular format, the dictionary may 
be reused to assist in generating any data re
duction programs that use this tape without re
quiring the user to have any detailed knowledge 
of tape format. In this case the user types: 

YE8 

The computer responds: 

2. Name? 

The user responds with the name of the correct 
dictionary file. The computer then asks: 

3. Do you want a dictionary listing? 

The user respond's: 

YES 

The computer types variable name's for referenc-

ing data in the file and their definitions as fol
lows: 

TIME 
TELEV 
CELEV 
VELEV 

Time of day in seconds 
True elevation angle in degrees 
Commanded elevation angle in degrees 
True elevation angular velocity in de
grees / second 

The user now has the required information, so 
he hits the A TTE,NTION key on the keyboard to 
stop this output. 
The computer responds: 

4. What is the next operation? 

Each "operation" will generate a segment of out
put code that performs one function. The user 
types: 

READ 

The following conversation then takes place: 

Entry name = READ1 

5. What is· the maximum number of items in 
a table and how many tables are there' 

200,2 

7. What are table names? 

VELO,DANG 

The conversation continues: 

9. Enter expression for VELO asa function 
ofNROW 

VELEV (NROW) 

10. Enter expression for DANG as a function of 
NROW 

TELEV (NROW)-CELEV (NROW) 

11. What is next operation? 

A section of output code has now been generated 
that will read from the data file into two tables 
200 consecutive values of angular velocity in 
elevation and the corresponding differences be
tween true and command elevation angles. 

The user now wishes to specify the next opera
tion, namely the plotting of the data. The con
versation is as follows: 

PLOT 

12. Do you wanta single page plot' 

YES 



13. What variables do you want plotted on the 
x and y axes? 

VELO, DANG 

15. Do you want to set plot size? 

YES 

16. Minimum and maximum values of ~ = , 

-2,2 

18. Minimum and maximum values of y = , 

-.5, .5 

20. How many points do you wish plotted? 

200· 
End of PLOT generation 

'21 What operation do you want? 

The necessary inputs for the plot program seg
ment have now been specified. The user thinks 
that a shorter macro form may be available for 
answering the questions concerning the plot 
routine. For future reference he wants an ex
ample of the use of this macro .. He now types : 

RECONSTRUCT 

The computer responds: 

MACRO FOR PLOT OPERATION 
PLOT (ONEPAGE=YES, VELO, 
DANG, SE TED GE= YES, -2,2 . 
-.5,.5,200) 

The above statement represents a shorthand 
(or macro) method of encoding the same infor
mation that a user would normally provide in 
response to queries from the computer. As a 
tutorial aid, the computer gives Jhe user a model 
macro statement with his previous responses 
encoded in the correct format within the macro. 

In using the macro form of input, it is possible 
to provide only partial information and the sys
tem will automatically request the mISSIng in
formation. Thus if in response to question 11 
abOove, the user typed 

PLOT (ONEPAGE-YES, ?, ?,SETEDGE 
- YE.s,-2,2,~5,.5,200) 

the computer would respond: 

What variable do you want plotted on the x 
and yaxes? 

and the user could s.pecify this information. 
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Continuing with the previous example, the 
user has now completed the necessary program 
except for termination. He now types : 

GOTO, READl 

This inserts the correct branch to loop the pro
gram back to begin. file reading again. 

Typing END terminates the program genera.. 
tion. 

Up to this point it· has been unnecessary to 
consider the language in which the output pro
gram was written. From the point of view of 
the user, this is irrelevant. The QUIP system is 
designed to handle any text. In the example 
above, it might output an assembly language 
program or PL/I source statements. Although the 
generator program would be different in these 
two cases, the user queries and his required re
sponses would be es.sentiaIIy identical. 

Assume that the output program is PL/I 
source statements. The generated program could 
immediately be compiled, loaded, and executed 
in a batch mode and sample output made avail
able to the user. 

Suppose that the user now wishes to make a 
program change. He re-enters the system, and 
specifies the name of his program. He is now able 
to specify c'hanges by requesting previous 
queries py number~Specifying, for example~: 

CHANGE 18 

would cause the system tOo ask that number ques
tion again and permit modification of the mini
mum and maximum values of the y axis on the 
output plot. The program would then automati
cally regenerate the output program with the nec
essary modifications~ 

How effective is this type of programming? 
With a system3 considerably cruder than the one 
described here, the author was able to generate 
and debug, in a single three-hour session at a 
console, a 300 state·ment FORTRAN datareduc
tion program. 

Pilot model of QUIP 

A rudimentary veTSion of a QUIP system has 
been written in PL/I to demonstrate the capabili
ties Oof the QUIP approach. The program was 
initially written for batch operation, but then 
converted to operate in an interactive mode un~ 
der the Conversational Programming System 
(CPS) on the IBM System 360 Model 50. 

A fixed format query language is used in this 
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system 'for writing generator programs. The 
pilot program interprets query language state
ments at execution time and, under direction of 
these commands, makes queries of a user and per
forms the requisite text manipulation to produce 
an output text file. 

The capability of this system to generate error
free PLjI source programs as a result of a ter
minal user's responses to computer generated 
queries has been demonstrated. 

CONCLUSIONS 

In the introduction, two goals for the design of 
a generator program were given. How well does 
the QUIP system achieve these goalls? 

(1) The QUIP language offers a number of 
tools to assist in the writing of generator' 
programs. Of particular power is the con
ditional ex~ution statement. 

(2) QUIP attacks the problem of a user's 
learning to use a generator program by 
building a number of tutorial aids into 

the mainstream of program operation. 
Ideally, such a system would provide the 
user with any required information con
cerning program operation. Such an ideal 
is limited by the effort that the writer 
of the generator program is able to ex
pend in providing information files. Hope
fully, with a properly designed system 
there will be no limitations due to a lack 
of interconnections into the system which 
permit the user simple access to informa
tion. 
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Objectives and result8 

The development of the system described here was 
orginally motivated by the need to· develop a good stu
dent language compiler for a large IBM System/360. 
An examination of the tools and methods available 
caused us to establish the subgoal of developing a trans
lator writing system in which we could prepare the stu
dent compiler. In our opinion, then and now, the total 
effort was smaller, and the end product better for the 
combined project than for the original project u~ing pre
viously available tools. 

In the belief that this system will be useful to others 
who are interested in language development, we have 
extended it beyond our immediate application and are 
making it generally available. We hope that this will 
help dispel the myth that the generation of new com
pilers is necessarily a long and arduous task, consuming 
many man-years of effort. Students in the systems pro
gramming course at Stanford have been using this 
method to write operating translators in three to six 
weeks. 

We made two major decisions in designing our TWS: 
the choice of a compilation method and the choice of a 
language in which to express the translators. We se
lected a bottom-up parsing algorithm rather than recur
sive descent since the IBM System/360 is ill-suited to 
recursion. In any case, code generation is easier with 
bottom-up methods. The particular method used is an 
extension of several which have been previously re
ported [Floyd 63] [Wirth and Weber 66] [McKeeman 
66]. 

Compilers have been written in assembly languages, 
"general purpose" high-level languages, and speCial pur-
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pose "compiler compiler" languages. We rejected the 
first as being completely beyond our available man
power to program, debug, or maintain. Our choice was a 
compromise between the second and third options. The 
language XPL contains many features which are suffi
ciently "close to the machine" for efficient translators, 
and omits features not required for translation, yet re
tains much of the flexibility and style of PL/I. 

Our TWS consists of four major programs: XCOM, 
XPLSM, ANALYZER, and SKELETON. XCOM is a 
one-pass compiler from XPL into System/360 machine 
language. Since it is written in XPL (it consists of about 
3500 source cards) it is self-compiling on a System/360. 

XPLSM, the interface between XPL programs and 
OS/360, is a small assembly language program which 
handles program loading and input/output using OS / 
360 data management methods. 

ANALYZER accepts a BNF* grammar, checks it for 
compatibility with the parsing algorithm, and prepares 
parsing decision tables in the form of XPL declaration 
statements with the initial attribute. The program is 
writteninXPL (1400 cards). 
decision tables in the form of XPL declaration state
ments with the initial attribute. The program is written 
inXPL (1400 cards). 

SKELETON is a proto-compiler, which when sup
plied with tables from ANALYZER becomes· a table
driven syntax checker, to which code emitter3 may be 
added to create a compiler. 

*This work was supported by the Stanford University Com
putation Center, Campus Facility. 

*Backus-N aur Form or Backus Normal Form 
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'The method. 

The translation method depends upon the well
known fact that the phrase-structure of a BNF -de
scribed sour~e language can be used to direct the pro
duction of object code [Wirth and Weber 66]. All of the 
following phrases apply to this method: 

table-driven, 
syntax-controlled, 
bottom-up, 
one-pass, 
left-to-right, 
no-backup, and 
canonical parse. 

The general parsing algorithm, depicted in Figure 1, 
consists of two cycles corresponding roughly to the 
actions of: 

(1) Recognizing and stacking the basic symbols 
(identifiers, numbers, operators, etc.) of the 
source language. 

(2) Substituting a phrase class name for a phrase and 
emitting the associated object code. 

Within the inner loop there is a call on the text scan
ning procedure. The responsibility of the scanner is to 
recognize the symbols on the lowest level of detail in the 
language (identifiers, ·reserved words, etc). The scanner 
is a source language dependent routine that is pro
grammed with the text manipulation features of XPL . 
As a result the most frequent decisions (those on indi
vidual characters) are not made by the general parsing 
algorithm for reasons of efficiency. 

The success of the general parsing algorithm depends 
upon how generally, and how efficiently the decisions 
indicated in Figure 1 can be made. The stacking deci
sion is made on the symbol pair consisting of the top 
of the stack (where any symbol is possible) and the in
put symbol (where only terminal symbols can occur). 
There are four possibilities : 

(1) The input symbol is stacked and the question is 
asked again for the next symbol. 

(2) The input symbol is not stacked, instead a re
duction is made and (perhaps) some code emit
ted. 

(3) The symbol pair does not contain enough infor
mation upon which to make the decision. 

( 4) A syntactic error in the source text is dis-
covered and error recovery initiated. 

When the pair fails to contain enough information (3), 
an auxiliary table of triples, which correspond to the two 
top elements of the stack and the input symbol, is con
sulted. Since the number of decisions which must be 
made using triples is small for many useful grammars, 
the necessity for searching a table need not slow down 
the compiler appreciably. The current XPL grammar 
has 89 symbols, 42 of which are terminal so that the 
symbol pairtablehas37382-bit entries. Of these 3175 re
present illegal combinations (syntax error), 239 indicate 
that the input symbol should be stacked, 306 indicate 
that it should not be stacked, and 18 represent con
flicts for which the decision must be made using triples, 
of which there are 165. 

Another series of tables, -equivalent to (1,1) context 
[Floyd 64], is used to decide which reduction to make 
once the reducible string is located on the top of the 
stack. These tables are automatically produced from 
the BNF description of the source language, as 
described in section 4. 

I t can be shown, based upon these tables, that if the 
general parsing algorithm proceeds to normal comple
tion (i.e., to the point where all the source text has been 



processed and only the goal symbol of the language re
mains on the parse stack), then the parse obtained is 
correct. Conversely, any correct program will parse to 
the goal symbol. [McKeeman, et al. (to be published)] 

The production of code is done by a series of state
ments written in XPL and invoked in the case state
ment (Figure 1) as each reduction is made. Information 
required, such as addrea,ses, operand types, etc., is kept 
in stacks parallel to the parse stack or in a symbol table. 
Except as XCOM serves as a model, the system has no 
special aids for the production of object code. 

The language XP L 

Translation methods are not "all alike," and we do 
not suggest that all translators should be written in the 
same language. XPL was designed for a particular class 
of translators that require very elementary kinds of 
data structure and control. Aside from the problem of 
text manipulation almost any existing procedural lan
guage is sufficient and in fact, considering our bias to
wards simplicity, overly elaborate. 

There are no startling innovations in the following 
description. One reason is that the efficiency of transla
tors is an important concern, so constructs reflect the 
structure of the IBM System/360. A second reason is 
that the technique used in the recognition phase of the 
translator was first presented [Floyd 63] with the explic
it purpose of being efficiently implement able on existing 
conventional machines. 

Before getting into the details, we can describe the 
basic concepts" which must underlie any computer lan~ 
guagedesign. We must have: . 

(1) selection by name (the idea of a set); 
(2) selection by position (the idea of an ordered set); 
(3) sub-definition (definition of something in terms of 

its components); 
(4) iteration; 
(5) meaningful primitive operations; and 
(6) control over the allocation of computer resources. 

We expect translators particularly to be maintained, 
debugged, modified, studied and copied by many people 
besides the orgininal authors. So we insist that the lan
guage be conducive to readable statements of transla
tors. 

We want the user to be able to easily follow the logic 
of a program at two levels. First, he should be able to 
quickly determine the major structural units, their in
tent, and the flow of control between them. Second, it 
should be convenient for him to determine precisely 
what operations are being performed on the data at any 
given point. It should be possible to break the program 
into units both logically (procedures) and visually 
(paragraphing) . 
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The programmer should be able to access the memory 
efficiently by operating on the directly addressable 
quanta. of memory (characters, words, etc.) We also re
quire the ability to describe and operate on the basic 
units of information (bits) both for the generation of 
arbitrary object code and for efficient packing and un
packing of various tables. 

Four kinds of data are particularly useful for transla
tors: bits for recording yes-no decisions; strings of bits 
for packing information; integers for arithmetic; and 
strings of characters to represent text, such as the source 
input, the output program listing, diagnostic messages, 
and identifiers. 

l\1any of the operations within a translator require 
the evaluation of integer arithmetic expressions. * Our 
language must include the arithmetic operations of ad
dition, subtraction, multiplication, division and re
mainder. We also need the logical operations (&, I, -', 
and shifting) on either single bits (logical expressions) or 
on groups of bits (masking operations). Within each da
ta type we must have comparison operations «, :::;, 
±, etc.) and we need to convert data from one type to 
another (for instance, from integers to character strings 
for output). 

Text (strings) presents additional problems. Input 
text must be tested and separated into constituent 
strings of varying length (e.g., identifiers). The output 
listing must generally be built up by joining shorter 
strings. The basic string operations are those of. sub
string selection and concatenation, as well as the extrac
tion of internal codes for the characters. 

We would, of course, expect the writer of a translator 
to be able to provide for emitting the code for any 
machine instruction. What is frequently true, is that he 
. may want to cause the execution of any instruction dur
ing compilation. The constraints placed upon the traIlB
lator by the machine itself are already severe; it is un
wise to compound them by further restricting the trans
lator to some subset of the machine's capabilities. No 
single translator is likely to use the full instruction 
repertoire of a large scale computer but there is no in
struction that we can classify a priori as unusable. The 
simplest .example of this kind of requirement is the 
floating point operations. The compilation mechanism 
itself has no need for them, but if the language being 
compiled has floating point values, it is convenient to 
use the floating point hardware to convert input num
bers. Rather than add a type to the compiler language, 
we make a general provision for instruction-by-instruc
tion, in-line execution of arbitrary machine code. 

A basic concept is selection from an ordered set. For 

*Even in translation of languages involving floating point 
numbers, floating point expressions are not frequently used. 
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ease of expression and efficiency of operation both data 
and instructions are usually arranged so that the appro
priate element can conveniently be selected from a set 
of alternatives. Arrays with one subscript position are 
the simplest form representing this construct. Out of 
arrays we can build stacks (for the syntactic recognition 
algorithm) and tables (for symbols, types, forward 
references and the like) and pointer spaces (for lists, 
sorting, etc). "~e do not find sufficient use for more com
plex constructs (multiple subscripts, queues, explicit 
lists, PL/I ~tructures) in our translators to justify their 
implementation. Similarly, it is possible to select among 
alternative instruction sequences 'dependent on the 
value of an expression. In the most common case the ex
pression will be logical (two-valued) in nature and the 
set, of instruction sequences will contain two elements. 
The usual representation for this action is the IF
THEN-ELSE conditicnal statement and the CASE 
statement. [Wirth and Hoare 66] 

Repetition of selected sequences of operations is 
another basic requirement. Two forms of repetition 
seem particularly important. We may wish to repeat the 
operations a specific number of times (often with speci
fic values for a controlled variable) or we may wish to 
repeat them as long as a particular condition is satisfied. 

Transfer of control also takes two forms. We may tem
porarily transfer to a subprogram (possibly ,supplying 
it with some parameters) which will return to the orig
inal instruction sequence (procedures and functions). 
Occasionally, however, it is desirable simply to enter the 
instruction sequence at some other point, with no pro
vision for return (GO TO together with labels). 

We chose PL/I as a base language for several reasons. 
It contains most of the features we require. It is widely 
known and will probably be the next dominant pro
gramming language. The growth of the PL family of 
languages will require the development and refine
mentofPL. 

There are several distinct reasons for not choosing 
PL/I itself for the description of translators. First, it 
does not contain quite all the features we require. More 
important, however, is that it is a very.large language 
and the machine we are using (IBM System/360) is 
ill-suited to its full implementation. Consequently all 
existing compilers for the full PL/I are very large com
plex programs which produce code unacceptably ineffi
cient for this application. For the same reasons, we do 
not recommend attempting a compiler for full PL/I 
written in XPL. 

We present here several program fragments written 
in XPL to give the reader a better feel for the language. 

1) A simple indirect sort: 

/* SORT IN ASCENDING ORDER * / 
K, L = ND; 

DO WHILE K < = L; 

L = -1; 

DO I = 1 TO K; 
L = I - 1; 

IF (DESCRIPrOR(DX(L» & MASK) > (DESCRIPl'OR (DX(I» & MASK) THEN 

DO; 

J = DX(L); DX(L) = DX(I); DX(I) = J; 

K = L; 

END; 

END; 

END; 

2)· Code emission procedure from a translator: 

EMIT-NAME: 

PROCEDURE (L,N); 

1* L IS THE LEXIC LEVEL, N IS THE ORDER NUMBER * / 
DECLARE L FIXED, N FIXED; 

IF (L < 3 I L = LL) & N < 16 THEN 

DO; 1* A SHORr NAME *1 
IF L = LL THEN L = 3; 
CALL EMIT(SHL(L,4) IN); 

END; 

ELSE 

CALL EMIT_3(NAAE_OP,L,N); 1* A WHG NAM<~ *1 
END EMIT_NAME ; 

3) Instruction i::J.te~"Pretation routine from an inte:r:;reter': 

1* CASE 1 SHORr ~;-I\:";: OPERATOR * 1 
DO; 

SP = SP+ 1 j 1* PUSH THE STACK *1 
1* DECODE LL AND ON VALUES *1 
1* ENCODING PICKED FOR CODE DENSITY *1 
DO CASE SHR (op,4) ; 

RUN_VALUE(SP) = DISPT...AYO + (OP & "OF") ; 

RUN_VALUE(SP) = DISPLAn + (OP & "OF") ; 

RUN_VALUE(SP) = DISPLAY2 + (OP & "OF") ; 

RUN_VALUE(SP) = DISPLAYLL+ (OP & "OF") ; 

END ; 

END ; 
4) Printing the date: 

DECLARE EJECT ]AGE LITERALLY 'OUTPUT( 1) = 1', 

DOUBLE_SPACE LITERALLY 'OUrPUT(l) = 0'; 

PRINTyATE: 

PROCEDURE (J.IESSAGE, D); 

DECLARE MESSAGE CHARACTER, D FIXED; 

DECLARE MONTH(l1) CHARAC'I$R INITIAL ('J~ARY', 'FmlRUARY', 
'MARCH', 'APRIL', 'MAY', 'JUNE', 'JULY', 'AOOUST', 

'SEPl'EMBER', 'OCTOBER', 'NOVEMBER', 'DECEMBER'), 

DAYS(l1) FIXED INITIAL (0, 31, 60, 91, 121" 152, 182, 

213, 244, 274, 305, 335); 

DECLARE YEAR FIXED, DAY FIXED, M FIXED; 

YEAR = D 11000 + 1900; 

DAY = D MOD 1000; 

IF (lEAR & 3) , = 0 THEN IF DAY> 59 'l'nE)" VAL = DAt + 1; 

M = 11; 

DO WHILE DAY <;= DAYS(M); M = M - 1; =m; 

Ol1rPUl' = MESSAGE II MONTH(M) II' , II DAY-DAYS(M) II ',' II 

lEAR tI'.'; 



END PRnlT_DATE; 

E.m::T ]AGE; 

CALL PRnlT_DATE ('GRAMMAR ANALYSIS -- STANFORD UNIVERSITY -- ANALYZER 

VERSION OF " DATE_OF _GENERATION); 

DOUBLE_SPACE; 

CALL PRINT_DATE ('TODAY IS " DATE); 

DOUBLE_SPACE; 

XPL is formally defined by the BNF grammar given in the Appendix. 

Upon superficial examination, XPL does not appear 
to differ significantly from PL/I. A program consists of 
a sequence of statements; the effect of a program is 
determined by executing those statements in order. 
(An XPL program is equivalent to the body of a PL/I 
external procedure with option MAIN). Two types of 
statements-declarations and procedure definitions
cause no action when executed but rather affect the 
meaning of other statements in the program. The re
mainder of the statements are imperative in nature 
causing the computation and moving of values (assign~ 
'ments), repetitive and selective execution of statements 
(groups, if statements), invoking subprocesses (call 
statement and function designators), terminating sub
processes (return), and absolute transfer of control (go 
to). 

A brief list of the differences between XPL and the 
PL/I constructs with the same form follows: 

1) All variables must appear in a declaration before 
they appear in any other statement (thus decla
ration is mandatory). 

2) The lower bound of all arrays is implicitly zero. 
3) Abbreviations are not pre-defined (use CHAR

ACTER not CHAR)., 
4) Only data types' FIXED, CHARACTER, and 

BIT are provided. 
5) Attributes cannot be factored. 
6) Bit strings are substantially different. 
7) Character strings all have the attribute V ARY

lNG, a maximum length of 256, and start with 
character zero (not one). Concatenation is rela
tivelyexpensive (slow), BYTE, SUBSTR, and 
LENGTH are fast. SUBSTR may not appear on 
the left of an assignment statement. 

8) DO loops have only positive steps. 
9) Procedures are nonrecursive and have only value 

(evaluated) parameters. 
10) Structural words such as DO and Iii' are re

served, and may not ~ used as identifiers. 

Extensiof,lS to PL/I that appear in XPL 

A simple kind 'of parameterless macro is provided by 
the LITERALLY attribute. When an identifier is so de
clared, then any later occurrence of that identifier will 
be literally replaced during cOII}pilation by the charac-
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ter string following the reserved word LIT.h:ltALLY. 
Among its uses are the naming of constants (both for 
mnemonic reasons and ease of maintenance where many 
copies of a constant might have to be changed), the in
troduction of abbreviations for reserved words, and re
definition of identifiers where multiple names are de
sired to have a single meaning. The following programs 
are equivalent. 

DECLARE A·LITERALLY '20'; 
DECLARE B(A) FIXED, 

C(A) FIXED; 

B(A) = C(A) + Ai 

DECLARE B(20) FIXED, 
C(20) FIXED; 

B(20) = C(20) + 20; 

An alternative notation for 32 bit constants is pro
vided by bit strings with binary, quartal, octal or 
hexadecimal significance as in: "AB9 (3)57 (2)32 
(1)111." Bit strings are delimited by the double quote 
("). The parenthesized digit at the head of each bit 
group is interpreted as afield-width-per-digit of that 
group. Thus for any bit group, the total number of bits 
represented is (number of digits) * (field width). If,there 
is more than one bit group, the rightmost group is ~ht 
justified in the 32 bit representation, the next group is 
right justified in the remaining space; and so on. N-ote
that the first entry in a bit list may be a hexadecimal in
teger. This construct represents a default field width of 
hexadecimal significance. All of the following have the 
same internal machine form: "FF," "(4)FF," "(1)1111 
1111," "(3)7 (2)33 (1)1," and 255: that is the 32 bit 
value 00000000000000000000000011111111. The opera
tors &, I, and ...,. can be used to perform masking opera
tions on 32 bit quantities for'data packing and un
packing. Two built-in functions SHL and SHR provide 
access to the hardware, logical shift instructions. 

The built in function BYTE(S,I) where S is a string 
and I an integer returns the internal representation of 
the Ith character in the string, thus providing an explic
it conversion from EBCDIC characters to small in
tegers. 

Several pseudo variables are available to make input 
and output as simple and painless as possible. The 
psuedo variable INPUT has as its value a string repre
senting the next input record. Assigning a value to the 
psuedo variable OUTPUT as in the CASE statement 
example below causes a string (conversion from type 
FIXED or BIT to type CHARACTER will be done if 

,/ necessary) to be output as the next record on an associ
ated output device. The psuedo array FILE is used to 
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access scratch storage on direct access devices. FILE 
(I,J) specifies the Jth record on the Ith file. FILE may 
appear on the left or right side of an assignment state
ment causing a device-dependent number of bytes to be 
written or read from the selected record and file. 

For example: 

DECLARE X (900) FIXED; 

,/* ASSUME:2311 DISKS*/ 
X = FILE (l,K); 
FILE (3,K + 1) = X; 

transfers a record, from one file to another. 
Generalizing the selective ~apabi1ity of the IF state

ment, the CASE statement ,'allows the selection of any 
one as sequence of statements. The expression following 
CASE is evaluated and used as an index to select one of 
the statements in the group body counting from zero, 
starting from the top. For example: 

I = 2; 
DO CASE I; 

OUTPUT = 0; 
OUTPUT = "1"; 
OUTPUT = 2; 
OUTPUT = '3'; 

END; 
OUTPUT = 4; 

will cause 2 and .4 to be printed. 
The ability to execute arbitrary machine instructions 

is provided by the pseudo function INLINE. The argu
ments of this function are placed directly into the code 
stream at the point of the function call. An option is 
provided whereby XCOM will calculate the proper base 
and displacement fields from the names of the variables. 
An example of the use of INLINE to do floating point 
arithmetic in an interpreter written in XPL is given be
low. 

DO; /* FLOAT ARITHMETIC * / 

END; 

/* FIRST LOAD TEE FLOATING REGISTER v.TI'H BV * / 
CALL INLI.NE ("78", 0, 0, BV); /* LE O,BV * / 
DO CASE OP - ADD _ OP; /* NOW EXECUTE A FLOAT DIG INSTRUCTION * / 

CALLINLINE("7A",0,0,AV); /* AE O,AV */ 
CALL INLINE("7B",O,O,AV); /* SE O,AV */ 
CALL INLINE("7C" ,O,O,AV); /* ME O,AV */ 
CALL INLINE( "7D",O,O,AV); /* DE O,AV */ 

END; 

/* NOW STOP.E THE RESULT IN BV *! 
CALL INLnlE("'(o",O,O,BV); /* STE O,BV */ 

One should note which capabilities of the machines 
are missing from XPL. By their absence we are marking 

them as irrelevant to our translation process and there
by simplifying both our language and its translator. It 
is worthwhile to note that the addition of features to a 
language is not a linear process as far as the translator 
is concerned. Constructs interact with each other, and 
the addition of a single feature may, in a bad case, double 
the size of the translator. The potentially exponential 
growth of translator size with increasing language com
plexity has two important implications. First, a trans
lation method which works well for deliberately simple 
test languages or machines may fail for practical lan
guages or existing machines. Second, an elaborate lan
guage (we have in mind the full PL/I) may need a much 
larger translator than needed by several smaller lan
guages which have in aggregate the same features. 

Programming in BNF. 

Just as we need a language for the description of 
translators, we need a metalanguage for the description 
of languages to be translated. BNF has become the most 
widely used 'formal metalanguage for programming l~n
guages; it is a concise, re~dable, and unambiguous way 
to express any context-free grammar. We have adopted 
it for use in our system. 

Each language which has a context-free grammar has 
arbitrarily many context-free grammars. The art of pro
gramming in BNF is to impose additional criteria to se
lect an optimal grammar for use in a translator. Some 
general requirements are: 

(1) The grammar must be compatible with the 
parsing algorithm used by the translator, which 
implies (2). 

(2) The grammar must be unambiguous, so that each 
, sentence will have a unique phrase structure. 

(3) The structure assigned to each sentence should 
correspond to the "intended" interpretation of 
the language. 

(4) The grammar should permit easy association of 
code generation with the canonical parse. 

Requirements (1) and (2) concern properties which a 
given grammar either does or does not possess, while (3) 
and (4) are (at the present state of the art) still matters 
of judgment and degree. 

One program of our system (ANALYZER) builds de
cision tables for the parsing algorithm from a BNF 
grammar. In the process, it determines whether the 
grammar meets condition (1), and if not, gives error 
diagnostics to pinpoint the problem. Basic to the 
ANALYZER algorithm is the concept of "running the 
parser backwards." Instead of successively reducing a 
string of text to a goal symbol, it successively produces 
text from the goal symbol, tabulating all the decisions 
which would be required to parse the produced texts. 
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Expansions continue until all possible decisions (for the 
chosen complexity of tables) have been recorded. 

have been removed, other changes may be necessary to 
make the grammar compatible with the specific parsing 
algorithm. Ideally ANALYZER would prepare correct tables for 

every grammar which users fed it. However, people 
don't write good grammars. For one thing, they usually 
start out ambiguously (even the Algol 60 Committee 
created an ambiguous gramtnar). After the ambiguities 

One criterion in designing our parsing algorithm was 
that it be compatible with a wide class of grammars.· 
However, speed and space 'considerations required that 
the context considered in decisiOIls be limited. This, in 

FIGURE 2 

GRAMMAR ANALYSIS -- STANFORD UNIVERSITY -- ANALYZER VERSION OF JULY 30, 1968. 

TODAY IS JULY 30, 1968. 

PRODUCTIONS 

1 <PROGRAM> ::= _!_ <BOOLEAN EXPRESSION> _1_ 
2 

3 

4 

5 
6 

7 

8 

9 

<BOOLEAN EXPRESSION> ... -.. - BOOLEAN IDENTIFIER : = <BQOLEAN EXPRESSION> 

<ARITHMETIC EXPRESSION> = <ARITHMETIC EXPRESSION> 

<ARITHMETIC EXPRESSION> :: = ARITHMETIC yENTIFIER : = <ARITHMETIC EXPRESSION> 

<ARITHMETIC TERM> 

<ARITHMETIC EXPRESSION> - <ARITHMETIC TERM> 

<ARITHMETIC TERM> 

ARITHMETIC IDENTIFIER 

( <ARITHMETIC EXPRESSION> ) 

# ( <BOOLEAN EXPRESSION> ) 

T E R MIN A L S Y M B" 0 L S NONTERMINALS 

1 = 10 <PROGRAM> 
2 11 <ARITHMETIC TERM> 

3 ( 12 <BOOLEAN EXPRESSION> 
4 ) 13 <ARITHMETIC EXPRESSION> 

5 # 
6 :::: 

7 -1-
8 BOOLEAN IDENTIFIER 

9 ARITHMETIC IDENTIFIER 

<PROGRAM> IS THE GOAL SYMBOL. 

*** ERROR, GRAMMAR IS AMBIGUOUS. 

IT IS LEFT AND RIGHT RECURSIVE IN THE SYMBOL <ARITHMETIC EXPRESSION> 
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turn, limits the class of acceptable grammars, but the 
limitations cannot be expressed in terms of simple re
strictions on the form of the grammar. 

Since debugging a grammar can often be a chore, 
much of ANALYZER is devoted tothe generation of 
rather complete diagnostic messages for the various 
error conditions. The computer output in Figure 2 was 

produced by ANALYZER for a typical small grammar. 
After printing the grammar, ANALYZER lists its 

terminal symbols, nonterminal symbols (phrase class 
names) and goal symbols. The grammar is checked for· 
being left and right recursive in any symbol (one of the 
obvious, yet fre .luent causes of ambiguity) [this check 
was suggested by Don Knuth]. In this example there are 

FIGURE 3 

GRAMMAR ANALYSIS -- STANFORD UNIVERSITY -- ANALYZER VERSION OF JULY 30, 1968 •. 

TODAY IS JULY 30, 1968. 

PRODUCTIONS 

1 <PROGRAM> ::= _1_ <BOOLEAN EXPRESSION> _I~ 

2 <BOOLEAN EXPRESSION> - BOOLEAN IDENTIFIER := <BOOLEAN EXPRESSION> 
3 1 <ARITHMETIC EXPRESSION> = <ARITHMETIC EXPRESSION> 

4 <ARITHMETIC EXPRESSION> - ARITHMETIC IDENTIFIER .- <ARITHMETIC EXPRESSION> 
5 <ARITHMETIC TERM> 

6 <ARITHMETIC TERM> .. - <ARITHMETIC TERM> - <ARITHMETIC PRIMARY> 
7 <ARITHMETIC PRIMARY> 

8 
9 

10 

<ARITHMETIC PRIMARY> ARITHMETIC IDENTIFIER 
( <ARITHMETIC EXPRESSION> ) 
# ( <BOOLEAN EXPRESSION> ) 

TERMINAL SYMBOLS NONTERMINALS 

1 
2 

= 

3 ( 
4 ) 
5 # 
6 .-
7 
8 
9 

_1-
BOOLEAN IDENTIFIER 
ARITHMETIC IDENTIFIER 

<PROGRAM> IS THE GOAL SYMBOL. 

10 <PROGRAM> 
11 <ARITHMETIC TERM> 
12 <BOOLEAN EXPRESSION> 
13 <ARITHMETIC PRIMARY> 
14 <ARITHMETIC EXPRESSION> 
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FIGURE 3 

Cl MATRIX FOR STACKING DECISIONS: 

1 = 
2 -
3 ( 
4 ) 
5 # 
6 

8
7 -1-

BOOLEAN IDENTIFIER 
9 ARITHMETIC IDENTIFIER 

10 <PROGRAM> 
11 <ARITHMETIC TERM> 
12 <BOOLEAN EXPRESSION> 
13 <ARITHMETIC PRIMARY> 
14 <ARITHMETIC EXPRESSION> 

TABLE ENTRIES SUMMARY: 
83 
22 Y 
16 N 

5 # 

123456789 
+---------+ 
I Y y y 
I Y Y Y 
I Y Y yy 
tNN N N 
I Y 
I Y Y yy 
I Y Y #YY 
I Y 
INN N YN 
I 
INY N N 
I # # 
INN N N 
1# # N 

+---------+ 

Cl TRIPLES FOR STACKING DECISION: 

1 NFOR = <ARITHMETIC EXPRESSION> ) 
2 Y FOR (<BOOLEAN EXPRESSION> ) 
3 Y FOR (<ARITHMETIC EXPRESSION> = 
4 Y FOR (<ARITHMETIC EXPRESSION> ) 
5 N FOR := <BOOLEAN EXPRESSION> ) 
6 N FOR := <BOOLEAN EXPRESSION> I 

*** ERROR, STACKING DECISION CANNOT BE MADE WITH (2,1) CONTEXT. 
7 # FOR : = <ARITHMETIC EXPRESSION> = 
8 N FOR : = <ARITHMETIC EXPRESSION> ) 
9 Y FOR _1_ <BOOLEAN EXPRESSION> _f_ 

lO Y FOR _1_ <ARITHMETIC EXPRESSION> : 
11 N FOR <BOOLEAN EXPRESSION> -1 __ 1_ 

50 ENTRIES FOR 11 TRIPLES. 

TABLE ENTRIES SUMMARY: 
5 Y 
5 N 
1 # 
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FIGURE 3 

PRODUCED HEAD SYMBOLS: 

1 
2 -
3 ( 
4 ) 
5 # 
6 . 
7 ~,_ 

8 BOOLEAN IDENTIFIER 
9 ARITHMETIC IDENTIFIER 

10 <PROGRAM> 
11 <ARITHMETIC TERM> 
12 <BOOLEAN EXPRESSION> 
13 <ARITHMETIC PRIMARY> 
14 <ARITHMETIC EXPRESSION> 

11111 
12345678901234 +--------------+ 

IY I 
I Y I 
I Y I 
I Y I 
I Y I 
I Y I 
I Y I 
I Y I 
I Y I 
, Y Y I 
I YY YYY\ 
, Y Y YY YYYYI 
, Y Y Y Y I 
I Y Y Y Y YYI 
+--------------+ 

CONTEXT CHECK FOR EQUAL AND EMBEDDED RIGHT PARTS: 

THERE ARE 12 AND 12 VALID CONTEXTS, RESPECTIVELY, FOR 
6 <ARITHMETIC TERM> :: = <ARITHMETIC TERM> - <ARITHMETIC PRIMARY> 
7 <ARITHMETIC TERM> ::= <ARITHMETIC PRIMARY> 

THEY CAN BE RESOLVED BY LENGTH. 

ANALYSIS OF (2,1) CONFLICTS: 

THE TRIPLE := <'illITHMETIC EXPRESSION> = MUST HAVE TEE VALUE N FOR 

4 <ARITHMETIC EXPRESSION> •• - ARITHMETIC IDENTIFIER := <ARITHMETIC EXPRESSION> 

IN THE CONTEXT ( ••• = 
Dr THE CONTEXT 

IN THE CONTEXT 

e_ _ .- ... -

I · .. = 

THE TRIPLE := <ARITHMETIC EXPRESSION> = MUST HAVE THE VALUE Y FOR 

3 <BOOLEAN EXPRESSION> ::= <ARITHMETIC EXPRESSION> = <ARITHMETIC EXPRESSION> 

IN THE CONTEXT. : = ) 

IN THE CONTEXT := ••• _1_ 

ANALYSIS COMPLETE FOR ITERATION 1 
* ONE ERROR WAS DETECTED 
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FIGURE 4 

GRAMMAR MODIFICATION TO ATTEMPT TO RESOLVE CONFLICTS: 

11 <:=1> ::= .-
2 <BOOLEAN EXPRESSION> ::= BOOLEAN IDENTIFIER <:=1> <BOOLEAN EXPRESSION> 

. 12 <: =2> :: = : = -
4 <ARITHMETIC EXPRESSION> :: = ARITHMETIC _IDENTIFIER <: =2> <ARIT~TIC EXPRESSION> 

PRODUCED HEAD SYMBOLS: PAGE 1 OF 1 

1 
2 -
3 ( 
4 ) 
5 # 
6 .-
7 _1_ 
8 BOOLEAN IDENTIFIER 
9 ARITHMETIC IDENTIFIER 

10 <PROGRAM>-
11 <ARITHMETIC TERM> 
12 <BOOLEAN EXPRESSION> 
13 <ARITHMETIC PRIMARY> 
14 <ARITHMETIC EXPRESSION> 
15 <:=1> 
16 <:=2> 

1111111 

+~~~~2§7~~2!~~~2§+ 
Iy 
ly 
I Y 
t Y 

Y 
Y 

Y 
Y 

Y 
Y Y 

YY YYY 
Y Y yy yyyy 
YY Y Y 
YY yyyy 

Y y 
Y Y 

+----------------+ 

CONTEXT CHECK FOR EQUAL AND EMBEDDED RIGHT PARTS: 

THERE ARE 3 AND 4 VALID CONTEXTS, RESPECTIVELY, FOR 
12 <:=2> ::= .-
11 <: =1> : : = : = 

THEY CAN BE RESOLVED BY (1,0) CONTEXT. 

THERE ARE 14 AND 14 VALID CONTEXTS, RESPECTIVELY, FOR 
6· <ARITHMETIC TERM> : : = <ARITHMETIC TERM> - <ARITHMETIC PRIMARY> 
7 <ARITHMETIC TERM> ::= <ARITHMETIC PRIMARY> 

THEY CAN BE RESOLVED BY LENGTH. 
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FIGURE 4 

'Cl MATRIX FOR STACKING DECISIONS: 123456789 
+---------+ 

1 I YY YI 
2 - I YY Yt 
3 ( I YY yyr 
4 ) INN N N I 
5 # I Y J 
6 .~ I NN NNI .-
7 _I- I Y Y #YYJ 
8 BOOLEAN IDENTIFIER I Y , 
9 ARITHMETIC IDENTIFIER INN N YN I 

10 <PROGRAM> I I 
11 <ARITHMETIC TERM> INY N N I 
12 <BOOLEAN EXPRESSION> I # # I 
13 <ARITHMETIC PRIMARY> INN N N I 
14 <ARITHMETIC EXPRESSION> 1# # N I 
15 <:=1> t YY YYI 
16 <:=2> I YY YI 

+---------+ 

TABLE ENTRIES SUMMARY: 
94 
25 Y 
20 N 
5 # 

Cl TRIPLES FOR STACKING DECISION: 

1 N FOR = <ARITHMETIC EXPRESSION> ) 
2 Y FOR (<BOOLEAN EXPRESSION> ) 
3 Y FOR (<ARITHMETIC EXPRESSION> = 
4 Y FOR (<ARITHMETIC EXPRESSION> ) 
5 Y FOR _1_ <BOOLEAN EXPRESSION> _1_ 
6 Y FOR _1_ <ARITHMETIC EXPRESSION> = 
7 N FOR <BOOLEAN EXPRESSION> I I 
8 N FOR <:=1> <BOOLEAN EXPRESSION> ) 
9 N FOR <:=1> <BOOLEAN EXPRESSION> I 

10 Y FOR <:=1> <ARITHMETIC EXPRESSION>-: 
11 N FOR <:=2> <ARITHMETIC EXPRESSION> = 
12 N FOR <: =2> <ARITHMETIC EXPRESSION> ) 

55 ENTRIES FOR 12 TRIPLES. 

TABLE ENTRIES SUMMARY: 
6 Y 
6 N 
o # 



two distinct phrase structures for the form: 

ARITHMETIC IDENTIFIER := 

<ARITHMETIC EXPRESSION> 
- <ARITHMETIC TERM> 
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We can remove this ambiguity by inserting another 
phrase class, and separating the recursions involv
ing : = and -. The output of a successful run on the 
revised grammar is given in Figure 3. 

After listing the grammar, the terminal, non-

FIGURE 5 

DECLARE NSY LITERALLY '16', NT LITERALLY '9'; 
DECLARE V(NSY) CHARACTER INITIAL ( '<ERROR: TOKEN = 0>', '=', 

'-', '(', ')', '#', ':=', '_f_', 'BOOLEAN_IDENTIF'IER', 
'ARITHMETIC IDENTIFIER', ' <PROGRAM>', '<ARITHMETIC TERM>', 
'<BOOLEAN EXPRESSION>', '<ARITHMETIC PRIMARY>', 
'<ARITHMETIC EXPRESSION>', ': = " ': = ' ) ; 

DECLARE V INDEX(21) FIXED INITIAL ( 1, 6, 7, 8,,8, 8, 8, 8, 8, 
8, 8,. B', 8, 8, 8, 8, 8, 8, 9, 9, 9, ~O); 

DECLARE Cl(NSY) BIT(34) INITIAL ( 
"(2) 00000 00000 00000 00", 

,"(2) 00010 10001 00000 00", 
"(2) 00010 10001 00000 00", 

n (2) 00010 10011 00000 00", 
"(2) 02202 00200 00000 00", 
"(2) 00010 00000 00000 00", 
"(2) 00020 20022 00000 00", 
'I ( 2) 00010 10311 00000 00", 
"(2) 00000 01000 00000 00", 
" (,,2) 02202 01200 00000 00", 
"(2) 00000 00000 00000 00", 
"( 2) ,02102 00200 00000 00", 
"(2) 00003 00300 00000 00", 
"(2) 02202 00200 00000 00", 
"(2) 03003 90200 00000 00", 
"(2) 00010 10011 00000 00", 
"(2)' 00010 10001 00000 00"); 

DECLARE NCITRIPLES LITERALLY '5'; 
DECLARE Cl~RIPLES(NClTRIPLES) FIXED INITIAL ( 199684, 200193, 

200196, 461831, 462337, 986625); 
DECLARE PRTB(12) FIXED INITIAL (0, 328460, 782, 0, 0, 1804, 

0, 0, 2063, 2818, 0, 3585, 2320); 
DECLARE PRDTB(12) BIT(S) INITIAL (0, 10, 9, 0, 0, 1, 8, 5, 2, 

6, 7, 3, 4); 
DECLARE HDTB(12) BIT(8) INITIAL (0, 13, 13, 16, 15, 10, 13, 

14, 12, 11, 11, 12, 14); 
DECLARE PRLENGTH(12) BIT(S) INITIAL (0, 4, 3, 1, 1, 3, 1, 1, 

3, 3, 1, 3, 3); 
DECLARE CONTEXT CASE(12) BIT(S) INITIAL (0, 0, 0, 2, 0, 0, 0, 

0, 0, 0, 0, 0, 0); 
DECLARE LEFT CONTEXT( 0) BIT( S) INITIAL ( 9); 
DECLARE LEFT-INDEX(7) BIT(8) INITIAL ( 0, 0, 0, 0, 0, 0, 0, 1); 
DECLARE CONTEXT TRIPLE( 0) FIXED INITIAL ( 0); 
DECLARE TRIPLE INDEX(7) BIT(8) INITIAL ( 0, 0, 0, 0, 0, 0, 0, 1); 
DECLARE'PR INDEX(16) BIT(S) INITIAL ( 1,1,1, 1,3, 3, 5,6,6, 

, 7, 7, S; 9, 11, 13, 13, 13); 
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terminal, and goal symbols, ANALYZER has printed 
the matrix of produced I-heads (X is a produced 1-
head of A if a string starting with X can be produced 
from A). After computing all valid contexts of all pro
ductions, it has checked equal and embedded right parts 
to determine the context necessary to distinguish them. 
(If two productions could not be distinguished using one 
symbol of context to the left and the right, it would 
have listed all of the problem contexts.) It then com
puted and printed the stacking decision matrix and the 
triples for the resolution of pair conflicts. Where the 
stacking decision could not be made based on the top 
two symbols of the stack plus the incoming symbol, it 
flagged the triple and listed the problem production and 
contexts. 

One of the principal problems for bounded context 
parsing algorithms is the "insulating comma"-that is, 

II 

a symbol which occurs in many contexts as punctuation, 
and does not itself serve as adequate context for various 
decisions rLynch 68]. In our example, as a result of the 
use of := in both arithmetic expressions and boolean 
expressions, one stacking decision cannot be made with 
the triples table. Frequently this problem is solved by 
requiring the scanner to make the decision and return 
< commal >, < comma2 > ... (or <:= I>, <:= 2> ) 
as determined by some more global and ad hoc context. 
An alternative solution for an algorithm which can 
handle equal right parts is to leave the comma as a 
terminal symbol and add to the grammar production of 
the form 

< comma I > 
<comma2> 

as required. This places the burden of decision on the 

/ 
ts€mantic 

FIGURE 6 

general parsing algorithm. The process can be partially 
automated and AN AL YZER contains a procedure 
which will optionally modify the grammar in ,this 
fashion to remove conflicts. In the example above, two 
new nonterminal symbols, and two new productions 
have been added to the grammar. Subsequent output in 
Figure 4 shows that this process has removed the local 
ambiguity from the grammar. 

Finally, if desired, the tables in the form required for 
the SKELETON program may be listed or punched. 
The tables for the example are shown in Figure 5. 

Building a translator. 

Once the BNF grammar for the source language has 
been debugged, the construction of the translator can 
begin. When the tables punched by ANAL YZER are 
inserted into SKELETON, (and its scanner modified to 
reflect the identifier, comment, etc. conventions of the 
new language), SKELETON becomes the XPL 
description of a table-driven syntax checker for the 
source language. The new program can then be compiled 
by XCOM and run under XPLSlVL To turn this proto
translator into a translator, emitters for the object lan
guage must be inserted into the case statement for the 
various ,productions (refer to Figures 1 and 6). An ex
ample of some simple semantic routines to compile the 
]anguage of section 4 for a single-address, single ac
cumulator machine is given in Figure 7. The compila
tion method does not restrict the form of the object 
code. XCOM produces absolute machine language as 
output; another compiler we have written (for the stu
dent language) produces an intermediate code similiar 
to Polish postfix, which is then interpreted. Other 
choices are possible. 

What we have described is a fully operational system 
which has been in use at Stanford since 1967. Although 
we are continuing to experiment and improve, we plan 
to release a stabilized version soon through the SHARE 
organization. Preliminary documentation, which will 
ultimately appear in the form of a book, is available 
from the authors. 
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FIGURE 7 
DO WHILE COMPILING; 

/* ONCE AROUND FOli EACH PRODUCTION (REDUCTION) * / 

/* LOCATE LEFTMOST, REDUCIBLE SUBSTRING 
LEFT_END AND RIGHT_END DELIMIT IT * / 

DO CASE PRDTB(PRD); 
/* ONE STATEMENT FOR EACH PRODUCTION OF THE GRAMMAR */ 

/* <ARITHMETIC TERM> :: = <ARITHMETIC TERM> - <ARITHMETIC PRIMARY> * / 
DO; 

IF TYPE (LEFT END) = VARIABLE THEN 
CALL EMIT'(" LOAD, LOC (LEFT END)); 

CALL EMIT(SUB, LOC(RIGHT END)); 
TYPE(LEFT END) = EXPRESSION; 

END; -

/* <ARITHMETIC TERM> :: = <ARITHMETIC PRIMARY> * / 

/* <ARITHMETIC PRIMARY> ::= ARITHMETIC_IDENTIFIER */ 
DO; 

LOC (LEFT END) = ID LOOKUP( NAME ( LEFT END)); 
/* FIND THE LOCATION OF ITHE IDENTIFIER FROM THE SYMBOL TABLE * / 
TYPE (LEFT END) = VARIABLE; 

END; -

/* <ARITHMETIC PRThTARY> : : = (<ARITHMETIC EXPRESSION» * / 
DO; . /* SAVE THE INFORMATION IN THE PARALLEL STACKS * / 

TYPE (LEFT END) = TYPE (LEFT END + 1); 
LOC (LEFT END) = LOC (LEFT END + 1); 

END; - -

/* <ARITHMETIC PRIMARY> :: = # ( <BOOLEAN EXPRESSION» * / 
DO; 

/* THE <BOOLEAN EXPRESSION> MUST ALREADY BE IN THE ACCUMULATOR * / 
CALL EMIT( SHARP OP, 0); /* UNARY OPERATOR * / 
TYPE (LEFT END) ;- EXPRESSION; . 

END; -

/* <:=1> .- */ 

/* <:=2> ::= := */ 

END; /* OF CASE ON PRODUCTION NUMBER * / 

RIGHT END = LEFT END; 
HEADS'("RIGHT _END )-= IIDTB(PRD); /* THE REDUCTION * / 

END; /* OF DO W1ULE COMPILING * / 
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APPENDIX FORMAL DEFINITION OF XPL 

XPL is defined by the BNF grammar given below: 

<program> 

<statement list> 

<statement> 

<basic statement> 

<if statement> 

<if clause> 

<true part> 

<group> 

<group head> 

<step definition> 

<iteration control> 

<while clause> 

<Case selector> 

• 0_ .. -
o 0_ 
o 0-

00-
o 0-

00_ 
o 0-

00-

o 0_ 
o 0-

o 0_ 
o 0-

I 
'I 
I 
I 

o 0_ 
o 0-

<statement list> 

<statement> 
<statement list> <Statement> 

<basic statement> 
<if statement> 

<assignment> ; 
<group> ; 
<procedure definition> ; 
<return statement> ; 
<Call statement> ; 
<go to statement> ; 
<declaration' statement> ; 
, 
<label definition> <basic statement> 

<if clause> <statement> 
'<if clause> <true part> ,<statement> 
<label definition> <if statement> 

IF <expression> THEN 

<basic statement> ELSE 

<group head> <ending> 

DO ; 
DO <step definition> ; 
DO <while clause> , . 
DO ~ase selector> ; 
<group head> <statement> 

<variable> <replace> <expression> <iteration control> 

::= TO <e~pression> 

.0_ 
00-

00_ .. -

TO <expression> BY <expression> 

WHILE <expression> 

CASE <expression> 
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<procedure definition> 

<procedure head> 

<procedure name> 

<parameter list> 

<parameter head> 

<ending> 

<label definition> 

<return statement> 

<call statement> 

<go to statement> 

<go to> 

<declaration statement> 

<declaration element> 

<type declaration> 

<type> 

<bi t head> 

<bound head> 

<initial list> 

<initial head> 

· .-· .- <procedure head> <statement list> <ending> 

· .-· .- <procedure name> ; 
<procedure name> <parameter list> ; 

· .-· .- <label definition> PROCEDURE 

· .-· .- <parameter head> <identifier>, ) 

· .- ( 
<parameter head> <identifier> , 

· .-· .'- END 
END <identifier> 
<label definition> <ending> 

· .-· .- <identifier> 

::= RETURN 
RETURN <expression> 

: := CALL <variable> 

· .-· .-

· .-

· .-· .-

• • == 

· .-· .-

<go to> <variable> 

GO TO 
Goro 

DECLARE <declaration element> 
<declaration statement> , <declaration 'element> 

<type declaration> 
<identifier> LITERALLY <string> 

<identifier type> 
<bound head> <humber> ) <type> 
<type declaration> <initial list> 

FIXED 
CHARACTER 
LABEL 
<bit head> <humber> ) 

· .- BIT ( 

<identifier> ( 

<initial head> <Constant> ) 

· .-· .- INITIAL ( 
<initial head> <constant> " 



<assignment> 

<replace> 

<left part> 

<expression> 

<logical factor> 

<logical seconda~y> 

<logical primary> 

<relation> 

<string expression> 

<arithmetic expression> 

<term> 

<primary> 

<variable> 

<subscript head> 

<constant> 

· .-· .-

· .-· .-
· .-· .-
· .-

· .-· .-

· .-· .-

· .-

· .-
I 
I 
I 
I 
I 
I 
I 

· .-· .-

· .-· .-

· .-· .-

:.: = 

.. -· .-

• :: = 

· .-. · .-
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<variable> <replace> <expression> 
<left part> <assignment> 

= 

<variable> , 
<logical factor> 
<expression> I <Logical factor> 

<logical secondary> 
<logical factor> & <logical secondary> 

<logical primary> 
..; <logical primary> 

<String expression> 
<string expression> <relation> <string expression> 

= 
< 
> , = ., < ., > 
< = 
> = 

<arithmetic expression> 
<String expression> II <arithmetic expression> 

<term> 
<arithmetic expression> + 
<arithmetic expression> 
+ <term> 

<term> 

<primary> 
<term> * <primary> 
<term> / <primary> 
<term> MOD <primary> 

<constant> 
<variable> 
( <expression> ) 

<identifier> 

<term> 
<term> 

<subscript head> <expression> ) 

<identifier> ( 
<Subscript head> <expression> 

<string> 
<number> 

, 





A syntax directed processor writing system 

by EORS N. FERENTZY and 
JAMES R. GABURA 

University oj Toronto 
Toronto, Ontario, Canada 

INrRODUCTION 

This paper introduces MPL/l, a processor writing sys
tem. It has two components: the MPL/l language in 
which the processor specifications are written, and the 
.translator which effects the translation of MPL/l pro
cessor. specifications into executable code. We empha
size processor writing system since the target programs 
produced by the system may do a variety of things, of 
which compilation is only a special case. There are nU
meroUs problems in linguistic analysis, artificial intelli
gence, data base conversion, and so o~, where syn
tactic analysis and complex programs executed as se
mantic actions are deeply intertwined. The tasks to be 
performed usually require the availability of character 
and bit manipulation, file handing and list processing 
facilities. Two examples from the authors' field of in
terest follow. 

In computer analysis of music, while analysing a 
composition, recognizing phrases and other syntactical 
structures, one would like to gather complex statistics 
on the occurrence of the syntactic formations observed. 
Since many musically significant constituents and de
limiters exist which can only be discovered through the 
use of complex programs, such as chord root, key, mod
Ulation, and so on, a need arose for a flexible system 
which would allow free interplay between such pro
grams and a controlling syntax specification. 

In the analysis of postal addresses, first a facility 
allowing the use of variable syntax description is def
initely needed, since it seem~ that a useful syntactic 
address description can evolve from experimentation 
only. On the other hand, as we proceed in the syntactic 
analysis of an actual address, we have to switch con
stantly to large file search routines to verify address 
components. These routines correspond functionally to 
the semantic action rules found in compilers, the dif
ference being in the complexity of the action. In ad
dress analysis, for example, the semantic action "street 
name verification" may actually consist of a major 

program for searching through a file hierarchy and 
using the result of previous analysis steps (the identi
fied city name and province name) to cut down the 
search space. 
Ou~ choice for the semantic language of IVIPL/l 

narrowed to PL/l as this was an available ALGOL
like high-level language with many advanced facil
ities, including character and bit data types. Character 
and bit manipulation capabilities 0 ~ PL/l allowed us 
to u-,e this language at different levels of the l\rIPL/l 
system. The translator for our meta-language is coded 
in PL/l. This translato- is cap1.bl~ of accepting an 
MPL/lspecification of a processor containing PL/1 test 
in the semantic component and construct from it the 
corresponding processor referred to also as the Auto
mation. The generated Automation itself consists of 
PL/l text composed of a general driving mechanism . ' WIth the semantic and syntactic routines inserted, plus 
data for syntax and semantics linkage. Thus the gen
erated Automation is executable on any computer 
equipped with a PL/1 compiler. Future enrichments 
of PL/1 become automatically available in MPL/l. 
The development of our system has been greatly in
fluenced by Domolki's method of syntax analysis! 
the PL/l Language Specifications2, and the Re
vised ALGOL 60 ReportS. Various extensions were 
made to the techniques and formalisms used by the 
languages in these sources in order to allow for the 
analysis of languages whose grammars are not con
text-free, and also to obtain more efficient syntax repre
sentations. 

2. Example arid notation 

In this section we illustrate MPL/l with an example, 
and develop a notation as we go along. The notation 
will be summarised in Section 2.2. 

2.1 A sample MPL/l program 

Figure 1 shows the MPL/l specification of a sim-

637 
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,e CONTROL e, 
DECLARE KWORD( 4) CHARACTER(l5) J TYPE( 4) FIXED BINARY; 

KWORD(l) - 'TOM'; 

KWORD(2) - 'Y'; 

KWORD(3) - 'SMITH'; 

KWORD( 4) - 'LI'; 

READ: GET LIST(CH); 

,e INITIAL PRODUCTIONS e, 

TYPE(l) - 1; 

TYPE(2) .. 1;' 

TYPE( 3) - 2; 

TYPE(4) - 2; 

<L> ::_ AIBICIDIEIFIGIHllljIKILIMINIOIPIQIRISITIUIVIWIXIYIZ; 

t t ::_"; 

,e PRODUCTIONS & SEMANTIC ACTIONS e/ 

1 <WD>::- <L>"; !tel) - V(l); 

2 <PW> ::_ <L><L>; R(l) - V(l) r IV(2); 

3 <PW»::- <PW><L*; 

It <WD> ::- <PW>"; 

5 KW( <FN> I <LN» ::- <WD>; 

6 <2>::- ' '<$>; 

7 <S> ::- <FN><LN>; 

,e PROCEDURES e, 
KW: PROCEDURE; 

R(!) - V(l)IIV(2); 

R(l) - V(l); 

R(l) - V(l); 

R(l) .. V(2); 

PUT EDIT (V(1),V(2»(A(l5),A(l5»; 

DO I .. 1 TO N; IF KWORD(I) - Vel) THEN RETURN(TYPE(I»; 

END; 

GO TO READ; 

END KW; 

FIGURE I-Personnel file processor 

plified personnel file processor that reads from an ex
ternal file a sequence of 'firstname + lastname' items 
in free format, analyses the items for syntactical cor
rectness, checks the words of the items against standard 
personnel lists and prints a list of fixed format 'first
name + lastname' pairs. In Figure 1, abbreviations are 
used which have the following meanings: 

L-Ietter 
"-blank character 
WD-word 
PW -partial word 
FN-first name 
LN-Iastname 

The variables V and R are defined in the MPL/l 
system. The small numbers in the left margin are used 
in the text which follows to identify the productions, 
and are not part of the example. The text following 
Figure 1 describes the function of each item used in the 
sample MPL/1 program. 

Let us hypothesize an MPL/1 machine that directly 
interprets MPL/l, and let us execute the Personnel 
File Processor on this machine with actual data. Let 
this data consist of a list of 'firstname, lastname' pairs' 
in the following form: 

'Y""LI"', ""'TOM"SMITH""', ... (" stands for blank). 
First the 1* CONTROL */section of the processor, 

consisting of PL/l code, is executed. This initializes 
the user-defined tables KWORD (a merged list of the 
first and last names of the personnel) and TYPE (in 
which 1 stands for firstname, 2 for lastname). In gen
eral, at this point the processor would initialize and 
read all the tables needed during actual processing. 
The 'GET LIST' statement reads in the first 'firstname, 
lastname' pair into the variable CH. 

The 1* INITIAL PRODUCTIONS *1 are inter
preted next. An Initial Production consists of the string 
, :: = " to the right of which there can be a single char
acter, or characters separated by the or-symbol repre
sented by. '\ " or a sequence of two quote marks which 
is understood by the system to represent the blank char
acter . We find on the left hand side of ':: = ' a letter 
sequence which will be referred to as 'terminal name' 
or 'terminal.' This letter sequence may be optionally 
surrounded by metalinguistic brackets ( < > ) to denote 
the fact that it is not actually a character string occur
ring in the primary input; however, it is still considered 
a terminal symbol with respect to the productions 
proper that follow in the 1* PRODUCTIONS & SE
MANTIC ROUTINES *1 section of the processor; 
We will denote the set of all the left hand sides of the 
initial productions by V t and call it the 'terminal vo
cabulary.' 

The initial productions transform the primary input, 
CH = 'Y""LI'" , into the following array: 

This array, to which we will refer as the input stack 
(IS, lSi = (INi, IVi) i = 1, ... , r), is a pushdown stack. 
The IV-s contain the characters of the input 'Y""LI"', 
and the IN -s contain the corresponding terminal names, 
assigned to them by the Initial Productions. 

N ext the mechanism appearing on lines numbered 
1-7 in Figure 1 is invoked. We will refer to this mecha~ 
nism as the rule set R. A rule set consists of rules, R = 
(Rl, ... ,Rv). In the present case Rulej occupies line j. 
We refer to the text up to the 18 t ';' on line j as the 
production component PRj of Rj, and to the PL/I 
statements up to PRj+l as the semantic action com
ponent SEAj of Rj. We refer to the text to the left ~nd 
to the right of ':: = ' in PRj as t4e left hand SIde 
(LHSj), and the right hand side (RHSj) of PRj, re
spectively. We recognise in the PRjs occurrences of 
the terminals. We also find constructions of the 
form A = <letter sequence>, A EE V t. Let us call these 
strings non-terminals, and denote the set of all terminals 
and non-terminals by V. We define a right hand con
stituent RHC or left hand constituent LHC as either 
an element of V or a construction of the type < $ > ,or 
<integer>. Then it is true that 

RHSj = (RHCl, ... , RHCjmj) 



Syntax Directed Processor Writing System 639 

IN = <L> IN = ' , 
r=6 

IV = Y IV = 
, , 

6 5 

I IN = , , IN =- <L> 

IV = , , IV = L 

'+ 3 

IN = <L> IN(l) = 
, , 

IV = I IV = , , 

2 1 

FIGURE 2-Initial input stack 

LHSj = (LHCj, ... , LHClj) 

or 

LHSj = (FC, (LHA/, ... , LHAtj)) 

where Fe is a PL/I identifier 
and LHAji is a list of constituents 

The invoked rule set R operates on two pushdown 
stacks: on the input stack IS and on the anaysis stack 
AS, defined now as AS = (AS;, ... ,AS1) 

ASk = (ANk,AVk). 

We. will refer to ANk , which may store terminals or 
non-terminals, as the name component of ASk. AVk 
will be called the value component of ASk: it stores 
character strings. 

'We show in Figure 3 the 14 states into which (IS,AS) 
is successively transformed as the result of invoking the 
rule set in Figure 1 and using the input stack of Figure 
2. By the time the last state is reached, the original in
put "Y" "LI", verified and reformated, is printed out. 
Figure 3 shows for each state the state number, the index 
of the top element of IS (since we'll only take out ele
ments from IS, the top index characterises the state of 
IS), the state of AS explicitly, and the Operation of 
Changing State; into StatejH'. In the text below, 'we' 
refers to the MPL/I machine. 

.§..tate or AS 
State State or AN3 I AN2 AN1 Operation 
No. IS (r). AV3 

I AV2 AV1 I 

1 6 : Move ! 

2 5 
I \ <L> Move I / Y 
i 

i 
3 " : <L> II R1 

I Y , I I 

" " I <WD> R5 
l y 

5 4 , !<Flh Move 
I ! y 

6 3 
<FN> I I 

Y I 
I I Move 

9.'N> 
, I I 

, 
<L> 

7 2 
! R6 Y , I I L 

8 2 \ <PN> 4> Move y ! L 

9 1 <PN> <L> <L> 
R2 Y L L 

10 1 <PN> <PW> Move y LI 

11 0 <FN> <PW> ! II 

Y LI II R4 
j 

12 0 <FN> eWD> 
R5 y , LI 

13 0 eFN> :eLN> 
R7 y LI 

111 0 : ... ~"" 
! READ 

)i'IGURE 3-8tates of the input and analysis stacks 

State 1 We start with AS empty, IS as produced by 
the Initial Productions. Execute 'Move', that is move 
the top element of IS onto the top of AS. The result is 
State 2. 

State 2 The RHSjs of the productions are compared 
to ANI = <L>. Since no match is found, execute 
·'Move'. 

State 3 The RHSjs of the productions are compared 
first to ANI = ", then to (AN 2, AN 1) = « L > "). This 
time there is match with RHS1, and the actions associ
ated with R1 are executed. (We will say that 'R1 is 
applicable' or 'PR1 is applicable'.) (AN 2, AN 1) is re
placed by LHS1. We call this operation a syntactic 
action, actually the syntactic action of rule 1, denoted 
by SYA1. We also execute the semantic action com
ponent SEAl of R 1. This means that we execute 
all the PL/I statements, whatever they should be, Up 
to the statement that precedes PR2• The va;lues of A V2, 

A V 1 are made available to these statements to operate 
on, by letting V(I) = AV2, V(2) = AV1 take place 
automatically. (AV2, AV1) is overwritten by whatever 
is left in R(I) after having executed the PL/I state
ments. See the result in State 4. 
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State 4- We find that RI) is applicable, therefore we 
execute 'SY AI) and SEAl)' Syntactic action 5 consists of 
the following steps: the PL/1 procedure, of which the 
name appears in LHS/i, that is the procedure KW, is 
called. Since V(l) = 'Y', KW returns the value 1. We 
therefore select the 18t element of the list that follows 
KW in PRI) and replace AN 1 by that element. See the 
result in state 5. We refer to this mechanism as the 
'computed rewrite feature' of MPL/l. 

State 'I When comparing the RHS6, since AN 2 = ", 
AN 1 = < L > , a match is found with RHS6, since AN 2 = 
RH061 and ANl = RHC62. The latter equality holds, 
since < $ > by definition equals anything which may 
pop up in an AN U' Syntactic action 6 consists of the 
following steps: since LHS6 is of the form <integer>, 
namely < 2 >, (AN 2, AN I) will not be overwritten by 
<2>, but by the AN u corresponding to RHC62, that 
is by <L>. See the result in State 8. This demon
strates the 'reference feature' of l\1:PL/l. 

State 9 Rule 2 is applicable. In SEA2, 'II' is the con
catenation operator of PL/1. 

State 12 We find that, just as in State 4, Rule 5 be
comes applicable. We see that this time AN 1 = 
<WD> is rewritten into ANI = <LN>. Note that 
the choice was made depending on the value ('Y' or 
'LI' resp.) associated with <WD>. In other words, 
through the 'computed rewrite feature)- we allow the 
value components to monitor the rewriting process; 
the way in which this happens is specified by user de
fined procedures. 

State 13 Rule 7 is applicable. In SEA7, "PUT EDIT 
(V(l), V(2» (A(15), A'(15»;" is the PL/1 print state
ment that prints both V(l) and V(2) in fixed 15 char
acter fields. 

State 14 As < S > appears in ANI, we transfer back 
to the READ label in the /* CONTROL */ section, 
and the processing of the next item on the input file 
begins. A 'transfer to READ' might also occur as an 
error exit of an SEAj or an SYAj. 

l.Votes: 

Although the illustration hopefully served its dual 
purpose of introducing the mechanisms of MPL/1 and 
of introducing the descriptive notation which is used 
later, it is misleading in many ways: 

1. The reason for introducing an existing high-level 
language to specify semantic actions is to be able to 
easily write and execute complex programs as SEAjs, 
rather than such trivial routines as are the SEAjs of the 
illustration. 

2. It would be rather inefficient to use the rule-ap
plication mechanism to recognise words, numbers, 
and eliminate blanks. It is possible in MPL/1 (as part 

of the INITIAL PRODUCTIONS mechanism) to re
quest direct word, number, and blanks recognition, so 
that R is applied to an IS, where <WORD>, <NUM
BER> are the terminals. 

3. A LHSj of a production may consist of a list of 
names, rather than just a single one. 

4. If more·than one Rj is applicable at a given time, 
only the first is applied, 

2.2 Notation 

2.2.1 Structure of the Automation 

The purpose of this section is to summarise the 
notation developed along with the analysis of an MPL/l 
processor in the previous section. We do not claim to 
present a formal characterization of the broad class of 
Automata to which the processors specifiable in MPL/1 
belong, and Automaton is used here as a synonym 9f 
'MPL/1 program' or 'processor' only. However, it 
seemed worthwhile to present a very compact sketch of 
the static and dynamic structure of an MPL/l pro
gram and comment on the variables of the notation. 
Better understanding of the variable's meanings can 
be obtained from the context in which they were in
troduced in Section 2.1 and from Sections 3 and 4. 

Automaton = (V, V t, S, R, IS, AS) 

R = (R1, ' • 0' R'I1) 

where 

Ri = (PR" SYA i , SEA,) 

PR i = (LHS i , RHS i ) 

LHS i = (LHO/, .. " LHC/i) 

or 

LHS i = (FC, (LHAi, ' , "LHAiai)) 

RHS i = (RHO i , • , " RHCibi) 

IS = (ISr , • • ., lSI) 

ISq = (INq, IVq) 

AS = (AS;, .. " AS1) 

ASq = (ANq,AVq) 

v = vocabulary of terminal. and non-terminal 
names 
V t = vocabulary of terminal names 
S = a distinguished non-terminal name 
R = rule set 
PRi = production component of rule i 
LHS i = left hand side of production i 
RHS i = right hand side of production i 



RHCf = right hand constituent of the produc
tion i 
LHCt = left hand constituent of the produc
tioni 
LHA,p = a list of constituents 
SY Ai = syntactic action component of rule i 
SEA i = semantic action component of rule i 
IS, AS = input stack, analysis stack, re
spectively. Both are pushdown stacks. 
ISq, ASq = q th element of IS, AS respectively 
INq, ANq = name eomponent of ISq , ASq 

respectively 
IVq , AVq = value component of ISq , ASq re
spectively 
FC = a PL/1 procedure name 

Let us introduce the following auxiliary notation: 

P stands for the production list, where PR i is the 
production component of R i . 

AN = (AN;, ... , ANI) 

AV = (AV;, ... ,AVI) 
AN, AV stand for the name, value component 
lists of the elements of AS. 

ASl_ le = (AS le , ••• , ASl) 
AS1_ le denotes the list of the top k elements of the 
analysis stack. We will refer to this list informally 
also as 'top of AS.' 

A'Nl_k, AVl_k denote the list of the name com
ponents, value components of the elements of ASl_ k 
respectively, and are referred to also as 'top of AN,' 
'toJyof AV.' 

Note that the Automaton described differs essentially 
from a grammar G = {V, V t , S, p} by substituting R 
for P, that is by including the syntactic and semantic 
action rules in the Automaton. This corresponds to the 
fact that we allow an interplay between productions 
and action rules (see Sections 3,4) and thus the SYAi 

and SFA/s form an'integral part of the rewrite mechan
ism of the grammar. The input stack and analysis stack 
are included, since they also interact with the grammar 
specification. 

The Automaton is viewed basically as a recognizer, 
although one could Use it in a generative mode also, 
since we allow more than one constituent on the LHS. 

2.2.2. Operation of the automaton 

I Generate IS from the input AS is empty 

II Loop1: Move top element of the pushdown 
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Note8 

stack IS on the top of pushdown stack 
AS 

Loop2: Search for k, i such that top of AN 
matches RHS i • 

Formally: match (ANI_ le , RHS i ) = 

,match (ANle, RHCil) A ... A match 
(ANI, RHCiri) = true 

a) if k,i found, execute SYAi , SEAi , 

go to Loop2 
b) if k,i not found, go to Loop1 
c) on error, go to error exit. 

L We will use the term 'PR i is applicable' to state 
that we are in the state labelled a) above. An Ri is said 
to be applicable if its production is applicable. In order 
to be able to, discuss certain features of the rule, we will 
normally assume that we are in this state. 

2. The 'match' function is inlplicltlydefined in 
Section 3. 

The syntactic and semantic actions include those to 
stop the Automaton. Normally this will be the popping 
up ofSinAN. 

3. The error condition and backtracking are discussed 
in Section 4. 

4. The Automaton is drivenby a bottom up parsing 
algorithm, discussed in Section 4. 

3. The MPLlllanguage 

Automatons introduced in Section 2 might be speci
fied. in IVIPL/1. Thus MPL/1 has facilities to specify 
the vocabulary of terminal names V t, the vocabulary 
V and the final non-terminal S, to control the genera
tion of the input stack IS, and to specify the rule set 
R. For complete example of an MPL/l specification 
see the Appendix and Section 2.1. 

3.1 Specification of V t 

Elements of V t are introduced in a special set of BNF 
productions called Initial, Productions. These produc
tions link the characters of the primary input (which 
has to be a character string) to elements of V t. The 
relationships defined throuflh Initial Productions are 
used by the Automaton to generate IS from the pri
mary input. The terminals introduced might be referred 
to in the production set P. Any character string (not 
containing '<' and '> ') might be used to denote a 
terminal. 

Example:' <DIGIT>:: = 0111213141516171819; 
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3.2 Specification of V and S· 

N on-terminals are implicitly . defined by their first use 
in the productions. Denotation of non-terminals has to 
conform to '< character string>', where 'character 
string' may not contain' <' or '> '. S has to be used to 
represent S. 

3.3 Specificat\on of the rule set R 

Since R consists of the rule list (R1, R2, ... , R lI), we 
give ~rst the form of Ri = [PRi, SYA i , SEA i ]. We 
assume that Ri is applicable, in order to be able to speak 
more easily about dynamic features of R i . (See Section 
2.2 for definition of 'applicable'). 

3.3.1 Form of the productions P 

The form and action of the productions is an exten
sion of the BNF mechanism. 

Examples: <APP> :: = <APT> <N>; 

<2> :: = <A> <$>; 

Productions are 'free form' in the sense that card 
bmmdaries are ignored and arbitrary spacing between 
constituents of the production is allowed. A ';' termi
nates the production. 

The following constructions are allowed as RHC: 

i. RHCq = <$> will cause a match with ANmi- q-1l 

iff AN mi-q+1 E V. 

ii. RHCq = <$-C1- ... -Cu> will cause a match 
with AN mi-q+1 iff AN mi-q+1E {V - C1 ... - Cu } • 

iii. RHCq = <C1+ ... +Cu > will cause a match 
with ANmi- q+1 iff ANmi-q+1 E {C1, ••• ,Cu} and 
CiEV. 

iv. RCHq = <C>,CeVorRHCq = d,dEV t • 

If none of i, ii, iii holds, then RHCq has to be an ele
ment of V and 'match' requires literal identity between 
RHCq and AN mi-q+1' i, ii, iii, and iv also define the 
function match used in the Appendix. 

3.3.2 Syntactic actions SYAi 

Syntactic actions to be taken are deduced from the 
format of the LHSi by the MPL/1 translator. 

3.3.2.1 Standard syntactic action 

If LHSi is in proper BNF (a denotation of a list of 
elements of V) then the ~tandard syntactic action is 

taken: LHSi updates AS, that is AN l-+lc is replaced by 
LHSi • 

3.3.2.2 Reference variable feature 

If an LHCq = <s>, where s is an integer, then 
LHCq is replaced by AN mi-s+1. This action is repeated 
for all LHCq of the form LHCq = integer and the re
sulting LHSi updates AS. Note that the main role of the 
reference variables is to access names in AN matched 
by such constituents as <$> in the RHS. 
Example: <2> :: = <A> <$>; 

3.3.2.3 Computed rewrite feature 

If LHS i is of the form: FC(LHAi1ILHAi2
1 •.• ILHAi6) 

where FC is the name of a user defined PL/1 procedure, 
then AN l-+k is replaced by LHSiT where r is an integer 
value returned by the procedure FC. Note that AV1-+k . 
is available at the time FC is invoked, so that FC may 
use these values ~s parameters. 

An important special application of this facility occurs 
when RHS i is a single constituent, and FC is a search 
procedure KEYWORD, which compares AV1 with a 
value list VL, and returns l' if a match is found with 
VLT, which in turn causes AN 1 to be replaced by LHS iT. 

See an example of an application of this facility in the 
Appendix. 

Example: KW«APT> I<SD>I <RR> I<PN>I 
<WG» ::=<W>; 

3.3.2.4 Semantic actions SEA" 

Semantic actions are specified through any legal 
sequence of PL/1 statements. On applicability of Ri 
this sequence is executed. Some care must be taken to 
ensure compatibility among SEAls belonging to differ
ent R/s, as it will become clear from Section 4. An 
SEAi statement may call a procedure declared in 
another SEAj • Input to the SEAi comes from AV1-+k; 
its output updates AV1-+k. User defined input/output 
variables may also be used in the semantic routines. 

3.3.3 Organization of PRi , SEA/s into a rule list R 

As it is clear from the foregoing, we have explicit rep
resentations for the PR/s and the SEAls (SYA/s are 
hidden in the format of the PR/s). The format of R has 
to conform to: 
<PR1 denotation> <PL/l text> <PR2 denotation> 
<PL/1 text> ... <PRv denotation> <PL/l text>. 
The PL/1 statements following the PRJ denotation are 
automatically inferpreted by the MPL/1 translator as 
SEAj • 

Various control cards are needed to make the speci-



fication acceptable. A simplified example of a speci 
fication can be found in the Appendix and Section 2.1. 

4. The automaton 

An Automaton is the output of the ::.\1PL/l trans
lator, derived from the MPL/l specifications of the 
Automaton. Section 5 gives some details concerning 
how the translation is actually performed. Weare 
concerned here with the description of the Automaton 
only. The Automaton consists of a data part and a 
program part (predominantly PL/l text). The data 
part might be further classified into data representing 
the syntax and data linking the syntax to the action 
rules. The program part is composed of the Auti
maton's core driving mechanism and of the syntactic 
and semantic action rules. As shown in Section 2, the 
operation of the Automaton consists of two major steps: 

1. Find an applicable production PRi. 
2. Execute the syntactic and semant.ic actions as

sociated with PR i . 

4.1 Retrieval of the first applicable production 

Step 1 above is known as the parsing problem for 
recognition grammars. It consists of the identification 
of the index of the first applicable production in the 
production list. This step might be achieved in a num
ber of ways. In our Automaton we have chosen to use a 
method developed by B. Domolki ~o achieve this goal.l 

The Domolki method is based on a compact representa
tion of the RHS's of the productions, stored in a matrix 
with zero-one elements called the Syntax Matrix. We 
actually store a matrix element as a single bit in the 
computer (and refer to it as 'I'BIT or 'O'BIT) and 
operate on these entries as Boolean irue or false values. 
Explicit search for a production with applicable RHS 
to the top of AS is replaced by bit string manipulation 
operating on a status bit vector Q, and row vectors of 
the matrix. As a result of the computation carried out 
on these bit strings, the index of the first applicable 
production is returned. Since PL/l is a high-level lan
gUage containing bit strings as one of the data types, we 
could program a direct representation of the bit manip
u1ation required in the Domolki algorithm in PL/1. 
This proved very useful while experimenting with sev
eral forms of the algorithm. To obtain additional speed, 
we have replaced the bit manipulation program section 
with assembly language routines. 

4.1.1 The Domolki parsing method 

v 
Let s = Lmi = the sum of the lengths of all RHSi. 

i-I 
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Let M = [~'] = Syntax Matrix. M i is a bit string 
M t of length s, and corresponds to the 

jth syntactic name. 

Let Q, UJ V be bit strings of length s .. 

Let PT1, ••• , PT; be a vector of integers such that 
j 

PTr = j, where r = Lm.i. 
i=l 

. Let us define decompositions for M, Q, U, and V: 

M = M 1M 2 ••• Mil 
Q = QIQ2 .. . Qu 
U = U1U2 ••• Uv 

V=V1V2 ••• Vv 

such that the length of Mil, Qi, U i, and Vi, 
j = 1, ... , t, ismi. 

We define (M, Q, U, V) implicitly, by giving .the 
definitions for the components (M i , Qi, U i, V i), 
i = 1, ... , v. 

Let us restrict temporarily the RHC's to elements of 
V. (The consequences of removing this restriction are 
discussed in 4.3.2). Then Mi is a representation of 
RHSi, where Mi1,k = 'I'BIT iff the jth vocabulary 
element = the kth constituent in the RHSi. It follows 
that Mi has as many rows as there are syntactic names 
and as many columns as there are constituents on the 
RHSi. Information concerning the match of RHS i 

(partial or total) with the top of AN is stored in the bit 
string Qi. 
By definition, Qi,k = (RHCkl = ANk) A ... A (RHCkl.: 
= ANI), k ~ mi, where Qi,k is the kth component of 
Qi. 

It is clear from the definition that the last bit of Qi 
is 'l'BIT or 'O'BIT depending on whether or not R is 
applicable. The power of the algorithm stems from its 
ability to efficiently update Qi when executing the basic 
operation of the automaton, namely to put a new ele
ment on top of AS. Let AN' denote the stack derived 
from AN by a pushdown operation, putting IN r on 
top, and let Ql denote the updated Qi. Let INr be the 
name n. It follows that 

Then 

Q/,l = (RHCil = n) = Mni,l 

Q/,k = [(RHCil = ANk') A ... A (RHCik-1 = 
AN2')] A (RHCik = ANI') 
= [(RHCil= ANk- 1) A ... A(RHC,k-1 = 
ANI)] A (RHCik = n) 
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k = 2, ... , mi. 

Note that we represent syntactic names in the algo
rithm with their respectiye row indices in M. Thus the 
M-row containing all the information on a syntactic 
name can be immediately retrieved. 
Let U i, Vi denote bit strings of length mi. 

U i = '10 ... 00' 

Vi = '00 ... 01'. 

Let Min denote the nth row of Mi -Let Q perform a right shift on Q by one position 
Let A -and, V -or operations be applied to the bits of their 
argument bit strings in parallel. 
Then 

- (1) 

Q/ = '00 ... 00' if Ri can never be applicable to '(2) 
the top of the stack (from the def
inition of Qi) 

and 

Q/ A Vi = '00 ... 00' if Rds not applicable to AS' (3a) 

'00 ... 01' if Ri is applicable to AS' (3b) 

, From previous definitions of (M, Q, U, V) it follows 
that (1) holds for Q' also: 

-Q' = (UVQ)AM n 

Q' = '00 ... 00' implies that no production may be
come applicable to the top of AN. This should cause 
either an error exit or invoke a backtracking step. See 
Section 4.3.2 for a brief discussion of backtracking. 

Now in Q'AV, there is a '1'BIT in each position f 
such that if Ri is an applicable rule in the rule set, j = 
PTj • It follows that if there is at least one applicable 
production, then the position g of the first '1 'BIT re
turns in i = PT g the index of the first applicable pro
duction. On the other hand if every bit in Q' A V is a 
'O'BIT, no rules are applicable to AS'. 

4.2 Execution of sematic and syntactic actions 

Depending on the outcome of the search operation 
for a~ .applicable production (the Q' AV calculation), 
we eIther move the next element on top of the an
alysis stack, or we execute the syntactic and semantic 
actions corresponding to Ri of which the idexn is known 
at this point (it was returned in i = PTg). We assume 
that the code corresponding to SY Ai and SEA, is placed 

~n the same program·block in which the parsing mechan
Ism operates, and that they are· preceded by a label 
with index i. In this ~anner a switch statement of the 
form go to L SYAi , and go to L SEA" is sufficient to 
activate SY Ai and SEAi respectively. 

4.2.1 Semantic actions 

The code for semantic actions is whatever the user 
specified on the MPL/I level. He has access to all the 
facilities of the PL/11anguage. 

4.2.2 Syntactic actions 

As already stated in discussing the format of the 
LHS of the production, the standard syntactic action 
is the traditional rewrite rule of parsing programs.' The 
execution of this rule is the fastest of all the syntactic 
actions which are user specified, such as the reference 
feature and the computed rewrite mechanism. It is 
important to note that if the user doesn't want to 
specify these non-standard features, they are not even 
generated into the Automaton by the translator. If the 
non-standard actions are present, the program switches 
to them only if the respective rules are applicable, 
otherwise it uses the fastest standard action. 

Since the code representing syntactic and semantic 
action rules forms part of a single program, this fact 
implicitly imposes a set of restrictions on the use of 
variables and labels in the action rules. Since PL/1 has 
block structure, the individual semantic action rules 
may be made into blocks or procedures, and in this way 
clashes of identifiers can be reduced. However, this 
solution would not be advisable for an action that will 
be invoked frequently, due· to the inefficiency involved 
in calling procedures and blocks. 

All PL/1 identifiers except those specified by the user 
in his syntactic and semantic routines, namely those 
used in the PL/I text standing for the core of the 
Domolki mechanism, are suffixed with the character 
string~@@' to identify them as system identifiers, 
thus virtually eliminating potential inadvertent clashes 
with user defined labels and variables. Thus the user 
need be only minimally concerned' with the mechanics 
of the MPL/1 system. 

4.3 Remarks on implementation 

To enhance the clarity of exposition, we have de
scribed an overly simplified version of the currently 
implement~d type of Automaton. The main differences 
are listed below 

4.3.1 Productions of length 1 

Productions with RHS i of length 1 (except those 



having a computed rewrite type of LHSi ) are not ex
plicitly represented in the syntax matrix M, resulting 
in less required storage and faster execution. Accord
ingly, the true definition of M./,1c is as follows: 

M/,1c = 'l'BIT iff the jth syntactic name matches. 
the k th constituent of the RHS i or the j th syntactic 
name can be generated by a sequence of production of 
length 1 from the kth constituent of the RHS i • We 
leave to the reader to verify that the relevant relation
ships, in particular the derivation of Q' holds under the 
new definition of M. 

4.3.2 On the representation of extended BNF con

structions allowed in the RHS in MPL/l 

1. <$> is represented by a cloumn of 'I'BIT in the 
syntax matrix. Since the column to represent 
. that RHS constituent would have been reserved 
in any case, the <$> representation does not 
require more storage than the representation of a 
specific RHS constituent. A glance at the parsing 
mechanism convinces us that we have not lost in 
processing time either, and that the formulae are 
still valid. 

2. <$-syntactic· name list> is represented by a 
column having 'O'BITS in the rows corresponding 
to elements of the list, and 'I'BITS otherwise. 

3. <syntactic name list> is represented by a column 
having 'I'BITs in the rows of the list elements, 
and 'O'BITs in the rest of the rows. The remark 
made at 1. holds for 2. and 3. also. Thus we have 
introduced new, general syntactic elements into 
the MPL/llanguage at no extra cost to the user. 

4.3.3 Backtracking 

The driving mechanism of the Automaton is de
scribed as a non-backtracking algorithm. To make 
backtracking possible, it is sufficient to store j and r 
(pointing to the top of AS and IS respectively), Q, con
taining all information concerning the applicability of 
the productions, and the LHS i of the applicable pro
duction. Using these values, the backtracking mechan
ism is similar to the ones used in other bottom up 
parsing algorithms and is not described here. Back
tracking is. invoked by the Q' = '00 ... 00' condition. 
Both backtracking and non-backtracking versions of 
the algorithm were implemented. 

We note that the MPL/l language has facilities (as 
illustrated below) to eliminate certain false branches in 
the parsing tree, and thus enlarge the scope of applica
bility of the more efficient non-backtracking version of 
the ~gorithm. Thus if 
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<C> :: = <A>; <D> :: = <A> <B>; 

occurs in the productions, we may rewrite it as 

<C> <2> :: = <A> <$- <B> > ; 

This facility could be termed a user controlled look
ahead, and is more efficient than the general ones 
built into some parsing algorithms, since look ahead is 
performed for those productions only where the danger 
of a 'false rewrite' exists. 

4.3.4 The input stack generator 

A standard procedure of the automaton relieves the 
user of casting his input into the IS = (IN r, IV r, ... , 
IN 1, IV 1) form. At present, the input denoted by CH 
can have the form of character string (e.g., a coded mu
sical score or postal address), and the input stack is 
derived automatically by the Generator. Thus the 
functions of the Generator include splitting up CR in
to single characters and storing them into IV s, assigning 
syntactic names to the IV s and storing these in the INs. 
The Generator is monitored by a special group of BNF 
productions that is part of the MPL/l specification of 
the Automaton. These Initial Productions link the 
character set of the input stream with the set of ter
minal names V t. See Section 2.1 for examples. 

The MPL/l translator 

The, MPL/l translator is a program of some 850 
PL/l statements, which accepts the MPL/l language 
as input, and produces as output another PL/l program 
and a set of syntax data associated with the program. 
If this new PL/l program has been compiled, and when 
it has read in its syntax data, it becomes an Automaton, 
which is then ready to carry out its specified operations. 
The main functions of the MPL/l translator are: 

1. to extract from the MPL/l input the productions 
defining the grammar 

2. to generate from that information the Domolki 
syntax matrix of the form described previously 

3. to merge PL/l text standing for the core of the 
Domolki mechanism with the semantic action 
rules into.a single PL/l program 

4. to supply information to the Input Stack Genera
tor derived from the Initial Productions. 

The semantic action rules are prefixed with labels and 
are given returns by the translator which allow them to 
be executed much like subroutines when the correspond
ing productions become applicable during the execution 
of the generated program. The translator must also 
genera~e tables containing the number of constituents 
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on the left and right hand sides of each of the pro
ductions in the grammar as part of the syntax linkage 
data. In addition, the translator must generate the 
vector PT, which defines the relationship between the 
columns of the syntax matrix and the productions in 
the grammar. Arrays are produced by the transla
tor linking both the semantic and syntactic action 
rule associated with each production. An array is 
produced which specifies the row number in the 
Domolki matrix for each constituent of the LHS of each 
production. The U and V bit vectors are generated, 
needed for the updating of the status bit vector, and for 
the testing for applicable productions. For each of the 
conditional rewrite rules arrays are generated con
taining the Domolki row numbers for each of the con
stituents in each of the alternatives involved. Various 
other dimensioning variables are produced, needed for 
the dynamic allocation of the various arrays required at 
run-time. Finally, the MPL/l translator has provision 
for inserting code into the various levels in the block 
structure of the final PL/l program defining the Auto
maton, so that special dynamically allocated arrays 
may be used in the semantic routines if they happen to 
be required. 

The MPL/l System may be operated in several 
modes. Output from the translator may be directeP 
through the punch unit, or optionally, control may be 
automatically passed over to the PL/l compiler, and 
hence to the Automaton. Using the second option, 
there is uninterrupted machine action leading through 
the generation, compilation and execution of an Autom
aton. Therefore the user may test a partiCUlar pro
cessor specification (written in MPL/l) in a single pass. 

An IBM System 360/50 was used for system im
plementation and testing. The system can be run on 
any computer equipped with a PL/l compiler. 

CONCLUSIONS 

The type of system described could be easily duplicated 
in any high-level, ALGOL-like language, since we 
stayed in all phases of the system in the same high
level programming langUage. The distinctive features 
of the system are: 

1. semantic ru1es are specified in a high-level lan
guage 

2. as the bit manipUlation steps form the core of the 
parsing operation, parsing is done efficiently. 

Weare aware of the theoretical problems concerned 
with the termination of parsing algorithms, interpreta
tion of acceptance or non -acceptance of ~trings, and so 
on, ,raised by introducing in lVIPL/l the generalised 
features in the syntax specification (context sensitivity, 
computed rewrite, and reference features). For the time 

being, we merely point out that the new extensions to 
BNF were introduced in such a way that the user is not 
paying for this generality, assuming he does not want 
it. Thus the user may refrain from employing the added 
features, and may specify standard, context-free syn
taxes only. 

The major limitation of the current system lies in the 
fact that for extremely large languages, storage re
quirements for the syntax matrix may become ex
cessive, and execution speeds may suffer correspond
ingly. Weare therefore developing a hyper-language 
that allows several automata to be present and which 
has a variable type into which structured sets of autom
ata can be stored. In this language, the names of 
automata as described in this paper will be the terminal 
symbols of the hyper-language. Parsing in this system 
will be done using a top down method; however, when 
a terminal name (automaton name) is encountered, the 
corresponding automaton is activated and performs the 
processing using the bottom up technique described in 
this paper. The idea in building such a system is that 
we expect to analyse structured information of which 
easily recognizable sub-structures can be characterized 
through independent grammars. For example, if 

then the method proposed would analyse 'a' using the 
productions of G1 and analyse 'b' using the productions 
of G2, rather than analyse (a, b) using the union of the 
production sets of G1 and G2• We hope in this fashion 
to break down large languages of interest in artificial 
intelligence into manageably sized sub-languages of 
which the grammars can be easily stored in the com
pact Domolki notation. 
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APPENDIX 

Simplified postal address analyser 

In the example above, the following abbreviations 
are used: 

L-Ietter 
D-digit 
N-number 

IN-intermediate number 
W-word 

IW-intermediate word 
WG-general word 
WL-word list 
SD-street designator 

APP-apartment part 
APT-apartment 

PN-province name 
RR-rural route 

<L> ::= AIBI'cIDIEIFIGIH/I/JIKILIMINIOIPIQIRISITIUIVIWIXIYlz: 
<D> ::= 0 I 2 3 4 567 8 9; -
" .. - " . . . - , 

10 ::: 1° ~ .. - , 
I*PRODUCTION/SEMANTIC ROUTINE SECTION *1 
<S> ::= eN> <WL> <SD> <APP> <WL> <PN>; 

<S> ::= eN> <WL> <SD> <WL> <PN>; 

cS> ::= cN> <WL> <APP> <WL> <PN>; 

cS> ::= <RR> <N> <WL> <PN>; 

eN> ::= eN> cN>; 
eN> ::= eIN> "; 
<N> ::= <IN> / <D> t'; 
<IN> ::= <IN> <D>; 
<IN> ::= cD>; 
<W> :: = <IW> • "; 
<W> ::= <IW> "; 
eIW> ::= <L>; 
<IW> ::= <IW> <L>; 
KW«APT> I <SD> I cRR> I <PN> I<WG» ::= <W>; 
<WL> ::= <WG>; 

<WL> .. - <WL> <WG>; 

<APP> ::= cAPT> <N>; 

<2> ::= " <$>; 
1* PROCEDURES *1 

PUT FILE (SYSPRINT) EDIT 
(V(6),V(5),V(3),V(2),V(I),V(4» 
(R(OUTF»; OUTF:FORMAT(A(15), 
A(60),A(IO),A(45),A(7),A(12»; 
PUT FILE (SYSPRINT) EDIT 
(V(5),V(4),V(3),V(2),V(I),") 
(R(OUTF» ; 
PUT FILE (SYSPRINT) EDIT 
(V(5),V(4)," ,V(2),V(I),V(3» 
(R(OUTF»; 
PUT FILE (SYSPRINT) EDIT 
(V(5) ,V(4)," ,V(2) ,Vel) ,VO» 
(R(OUTF»; 
GO TO VIV2; 
GO TO VI; 
R(I) = Vel) II V(2) II VO); 
GO TO VIV2; 
GO TO VI; 
GO TO VIV2; 
GO TO VI; 
VI: ~(l) = Vel); 
VIV2: R(I) = V(I)1 IV(2); 
GO TO VI; 
BEGIN; 

DCL DW CHAR(l5); 
DW = V( 1); 
R(l) = DW; 

END; 
BEGIN; 

DCL (DWl,DW2) CHAR(15); 
DWI = VO); 
DW2 = V(2); 
R(I) = DWI I I DW2; 

END; 
BEGIN; 

DCL DAPT CHAR(5), DNUM 
CHAR(7); 
DAPT = VO); 
DNUM = V(2); 
R(l) = DAPT I I DNUM; 

END· 
R(l) = V(2); 

In this section the llser may d~fine syntactic ahd semantic 
procedures accessible from the 1* PRODUCTION/SEMANTIC ROUTINE 
SECTIOI\ II. 





The minicomputer, a programming challenge 
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INTRODUCTION 

Public attention, as well as the attention of groups 
such as this, has been focused on the design and 
application of large, expensive "super computers." 
Our national preoccupation with size and power 
makes this fact understandable. However, the 
minicomputer, which I define as a stored program 
computer selling for under twenty-five thousand 
dollars, is deserving of much more serious atten
tion than it has heretofore been given. 

While a 30 % increase in units sold each year 
is possible over' the next few years merely from 
increased use in the industrial areas, a much 
greater growth rate could come about if the mini
computer ever became an entry in the consumer 
goods market. At prices of two to four thousand 
dollars per main frame, a' minicomputer with a 
dial-up service to specialized data bases could be
come attractive to the growing percentage of the 
population in the upper income bracket. 

But. such speculation is not the purpose of this 
paper. Rather, it is to examine the current status 
of programming support for the minicomputer 
. and to suggest both software enhancements and 
hardware features to support them. 

Ten years ago, an "inexpensive" computer typi
cally sold for forty, to fifty thousand dollars, was 
hased on drum memory and discrete component 
technology, and' could' execute from a few hun
dred to a few thousand instructions per second 
The numbers of all such computers delivered in 

. anyone year did not exceed a few hundred. Ex
amples of such computers would include the Con
trol .Data LGP-30 (Librascope) and G-15 (Ben
dix). 

Today, in 1968, the minicomputer is a prolifer
ating breed, selling for anywhere from five to 
twenty-five thousand dollars, utilizing core mem-

ory and integrated circuits, and executing up to 
a million instructions per second. Over three 
thousand such systems will be delivered next ye::l r 
It is my belief that during the next few years tbl" 
percentage growth of this segment of the tot~ 1 
computer market will increase three to four time~ 
faster than that of the overall computer market, 
which seems to be currently at 12% per year. 

Speculations about the future in areas of tech
nology usually suffer from extreme under- or over
shoot. However, a continued sharp decrease in 
price (due to both manufacturing technology and 
to competition) and a modest increase in perform
ance and reliability does not strain one's credulity. 
Changes in the software area are more uncertain. 
Price will no doubt continue to be the major de
termining factor in original equipment manufac
turer orders, which are bread and butter in this 
price range. 

Current minicomputer 

Current minicomputers include the Digital 
Equipment Corp. PDP-8 series, the Hewlett
Packard HP2115A and 2114A, the Honeywell/ 
Computer Control Division DDP-416, the Inter
data models 2, 3 and 4, the Raytheon 703, the 
Scientific Control 650 and 655, the Systems Engi
neering Laboratories 810A and the Varian Data 
620i and 520i. In addition,· there are many other 
companies manufacturing or contemplating man
ufacture of minicomputers with a delivered price 
under $15,000. There has been a recent "outburst" 
of offerings from lesser known companies offering 
computers in the $5,000-$10,000 range: SPC 12, 
DT 1600, Elbit 100 and PDC 808, to name only 
a few. Table I lists some current minicomputers 
.available for under $13,000. The more successful 
models have been delivered in quantities ranging 

649 
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Memory Cyc]e 
Manufacturer Model Price Memory (bits) (usecs) 

Digital Equipment Corp. PDP-8/1 $12,800* 4096 X 12 1.5 
Digital Equipment Corp. PDP-8/l. 8,500* 4096X12 1.6 

Elbit Computers 100 4,900 1024X12 2.0 

General Automation SPC-12 6,400 4096X8 2.2 

Hewlett-Packard 2114A 9,950 4096X 16 2.0 
Hewlett-Packard 2115A 14,500 4096 X 16 2.0 

Interdata 2 4,700 1024X8 2.0 
Interdata 3 7,000 4096 X 8 2.0 
Interrlata 4 10,000 4096 X 8 2.0 

Varian DA'TA/520i 7,500 4096X8 1.5 
Varian DATA/620i 12,500 4096 X 16 1.8 

*Price includes .ASR-33 

TABLE I-Current minicomputers (under $13,000) 

from hundreds to over a thousand. In· general, 
these computers have word lengths of twelve or 
sixteen bits, and standard memories of 4,096 
words, expandable to' 32,768 words as an option 
An ASR-33 teletype is the usual I/O device, but 
optional equipment includes high speed paper 
tape reader and punches, card readers, line print
ers, magnetic tapes and disks. 

To obtain s'ome historical perspective concern
ing performance and cost of small control com
puters over the past eight to ten years, let us re
member that prices have decreased by a factor of 
four to eight, while memory speeds have decreased 
by ab'Out the sarrie factor. A trend has 'also de
veloped away from the extremes of twelve and 
twenty-four bits toward sixteen bits as a standard 
word length for this type of computer, although 
the PDP-8 series, at twelve bits, has been and 
still is, the most popular system. 

It is interesting to note that in this same time 
period there has been little change in the c'Oncept 
of what manufacturer-supplied software should 
be like. But more of this later. 

Applications characteristics 

As the price per unit dropped and reliability 
a,nd performance improved, a predictable result 
occurred. More and more applications became 
feasible for c'Omputer-based systems. . The hard
wired "black box" was increasingly replaced by 
a stored program computer. Applications of mini
computers are frequently of a "real-time, on-line" 

nature and include closed loop control 'Of processes, 
data acquisition and recording, analytical instru
mentation, automatic test, and communication sys
tems. Users of the minicomputers are unlikely to 
be professi'Onal programmers but rather. to be 
scientists, engineers and technicians without ex
tensive programming experience. For this reason, 
the minicomputer should be supported by soft
ware suitable both to the application and to the 
user. Unfortunately, most present day minicom
puter software does not appear to meet this re
quirement. 

Standard software 

The typical software configuration for a mini
computer can be described as follows: FORTRAN 
is available for systems with 8K words of mem
ory. A basic one-for-one assembler is available for 
4K systems and a macro assembler is available for 
8K systems. Loaders which link, desectorize and 
relocate are usual. A tape editor is quite common 
and every computer seems to have math packages 
of single pt:ecision and possibly double precision 
fixed point routines. Hardware fault detection 
and on-line debug routines are also standard. 
Basic I/O drivers are normally included, as are 
mathematical routines for elementary functions. 

Some of the software problems are caused by 
the minimum hardware configurations sold: 

• small memory (4,096 words) 
• slow I/O (ASR 33) 
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• lack of mass storage 
• limited ability to address memory within an 

instruction. 

Other problems, previously mentioned, result 
from an attempt to make available the standard 
tools of the professional programmer to the novice 
or occasional user. This seems inappropriate. 

An economic point is worthy of some discussion. 
The desire to keep the unit price low is certainly 
an overriding requirement. If ever there were a 
case for separate pricing of software, this would 
seem to be it. This would be especially appreciated 

,by the quantity buyer. My suggestion would be 
that a minimum set of software (to be defined) be 
included with each computer sold at a small addi
tional cost and that one copy of associated docu
mentation be furnished. Additional documenta
tion sets and/or additional programs would be 
available for added payment. The customer must 
realize that printing costs and tape reproduction 
and verification costs are not negligible. They 
might run as high as half of the amortized non
recurring development costs. For one manufac
turerer, these costs ran from a few hundred to 
several hundred dollars for documentation pro
duction costs associated with the delivery of a 
single minicomputer. 

A basic software set might be: 

ASSEMBLER (BASIC) 
LOADER (RELOCATING AND DESEC-

TORIZING) 
TAPE EDITOR 
DEBUG PACKAGE (BASIC) 
I/O CONTROL SYSTEM 
HARDWARE FAULT DETECTION ROU

TINES 

This basic software set might be developed for 
under $50,000. Amortized over 250 computers, 
the non-recurring cost would add only $200 per 
system, with perhaps another $100 added for re
production costs, resulting in a $300 additional 
charge for the customer who needs only this min
imum software package. 

An augumented set available at additional cost 
might be: 

ASSEMBLER (MACRO) 
COMPILER-SPECIALIZED FOR APPLI

CATION 
LOADER (LINKING, RELOCATING AND 

DESECTORIZING) 

OPERATING SYSTEM 
MATH ROUTINES-SINGLE AND MUL-

TIPLE PRECISION ARITHEMETIC 
HARDWARE FAULT LOCATION 
SYMBOLIC DEBUG PACKAGE 
SUPER CALCULATOR PACKAGE 
ASSEMBLER 

{
PACKAGE TO RUN ON 

COMPILER LARGE COMPUTER 

This package might run over a quarter million 
dollars to develop. Amortized over only 50 com
puters, a price of under $6,000 would cover both 
development and reproduction costs. Since the 
person who wants this package probably bought 
an expanded hardware system, this cost incre
ment may be insignificant (approximately the cost 
of a 4K memory). 

However, the point of the discussion at this 
point is not to insist on specific software items but 
rather to suggest that there are alternative meth
ods of configuring software which may be more 
attractive both to

l 

manufacturers and to users. 

Typical applications 

It may be desirable at this point to step back 
and examine a few "typical" applications of mini
computers. Some of the characteristics of these 
applications may lead us to certain conclusions 
about desirable characteristics of the supporting 
software. 

In the case of data acquisition and recording, 
the computer sits between a multiplexed A ~ D 
converter and a magnetic tape. The computer will 
typically send channel selection information to 
the multiplexer and supply a start convert signal. 
After the conversion complete signal goes on, the 
computer will read in the sampled data and store 
it in memory. At this point, the data may be limit 
checked, converted to engineering units, etc., but 
the processing per sample will likely be low. 
Fixed point, single precision operations are very 
adequate. After a memory buffer has been filled, 
this buffer' will be written on magnetic tape while 
an alternative buffer is being filled with sampled 
data. The throughput rate will be from a few 
hundred to a few tens of thousands of samples 
per second. Channels must be sampled at a very 
precise rate, to avoid skewing of data. This re
quires either an interrupt timer or precisely 
written loops. 

The amount of computation is relatively small 
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but the I/O rate is relatively high. (1,000-10,000 
word/second composite rate). Standard I/O con
trolroutines probably are too "fat" and would 
not be used. The program itself would be written 
in assembly language. The user of such a system 
would need only an assembler, loader and debug 
package from the manufacturer. 

Other applications involve communications, 
which is largely a case of character processing 
and control. ,Often the minicomputer controls 
peripheral devices on one side arid looks across a 
phone line to a large computer on the other side. 
Some logical ability is required but almost no 
computational capability is needed. Again, an 
assembler, loader and debug package will suffice. 

Instrumentation and process control applica
tions will typically make use of larger memories 
and the computational capabilities furnished by a 
language like FORTRAN. Interrupt processing 
may become quite important. Some bit shuffling 
must be done. Monitor programs may be of con
siderable value. This type of user will generally 
wish much, much more than the preceding two 
users, although all may be using-the same basic 
computer. Since the user purchasing minimum 
hardware is not forced to buy the additional mem
ory required for the more complex application, 
why should he pay for software he doesn't need 

, either? 

Proposed standard software 

A question which commonly arises is whether 
program development should be carried' out in' as
sembly language or compiler language. The com
piler language commonly furnished for minicom
puters is some version of FORTRAN, a computa
tionally oriented language. Problems in imple
mentation of these languages have led to com
plaints about object program consumption of 
memory space and of execution time. Further
more, the nature of some applications, which deal 
with bits and bytes as operands, does not always 
make FORTRAN an attractive language, regard
less of the quality of the implementation. Algol, 
Jovial and PL/I all have their supporters, and if 
these compilers were' to run on a different, larger 
system, and produce code for the minicomputer, 
some of the implementation problems might be 
relaxed. As of now, only one minicomputer manu
facturer is known to have provided any language 
other than a FORTRAN dialect for a minicom
puter. Hewlett-Packard has made both ALGOL 

and BASIC available. It is not the purpose of this 
paper to make language suitability comparisons 
but rather to suggest that a language more suit
able than FORTRAN for typical "bit-shuffling" 
applications can be found, and that the associated 
language translator does not have to run on a 
minicomputer with 8K memory and no mass stor
age. No manufacturer has taken this approach, 
'although several DEC users are reported to be 
generating object code on larger systems. 

Nonprocedural approaches such as report gen
erators and decision tables might be expected to 
stir considerable enthusiasm among inexperienced 
users. Again, implementation in a common lan
guage on a larger system seems an attractive ap
proach. 

Another frequently used, but esthetically less 
attractive solution, is to drop from the universal 
to the particular to provide a series of compilers 
each accepting an application dependent language 
which presumably would appeal to a specialized 
class of users. A common syntax but a varied 
semantics might make this approach feasible. 

Nevertheless, assemblers for 4K memories and 
FORTRAN compilers for 8K memories are well 
nigh universal. A desirable approach, mentioned 
above, is a translator running on a large- or me
dium-sized computer system and producing code 
for a minicomputer. This translator program it
self could be written in a machine independent 
language and thus would be capable (theoretical
ly) of running on several different systems. The 
point here is not which language, but rather, the 
concept of operating this translator on a larger 
computer system with facilities more appropriate 
to the task of program translation. This method 
of program translation has been validated by the 
manufacturers of airborne computers, who com· 
monly provide translators which do not operate 
on the target computer. 

The second point to be made is that debugging 
8hould be conducted at the symbolic level: octal 
or hexadecimal dumps of memory are not an ade
quate tool for the typical user. Source language 
debugging seems to be the appropriate approach 
even though it is space consuming. Furthermore, 
the real-time/on-line nature of many applications 
needs to be recognized and appropriate tools de
veloped, perhaps in connection with interrupt 
service routines. 

Desirable debugging techniques can often be 
achieved ;more easily when program operation is 
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interpretive: that is, the computer hardwired 
order code is used to simulate instructions which 
are desirable from a programming point of view. 
At the present time, fixed point multiply and di
vide, double precision add, subtract, multiply and 
divide and floating point operations are commonly 
furnished as subroutines. The programmed op
erators of the SDS 900 series went a long way to
ward relieving the user from writing calling se
quences to subroutines which provide functions 
not available in the hardware. This is a typical 
example of how software can be supported by ap
propriate hardware features. The high internal 
speeds of computers today relieve the problem of 
speed reduction (20:1 to 50 :1) connected with the 
use of interpreters. Five to ten thousand instruc
tions per second is an adequate rate in many cases. 
It is my prediction that over the next few years, 
ll. microprogrammed approach to this problem 
will remain too costly for minicomputers. 

Inasmuch as programmer time spent in pro
gram debugging is generally accepted as equal to 
time spent in coding, the present obvious emphasis 
on translators at the expense, of debugging pack
ages seems somewhat out of keeping with things' 
as they are. This will be more true with inexperi
enced users. 

The mnemonic and symbolic debugging package 
furnished by DEC for the PDP-8 series seems a 
step in the proper direction. The fact that many 
of us have survived with octal dumps for the past 
ten years does not mean that this is the appropri
ate approach to take. The concept of the small 
computer as a black box in a system should in
elude not only the words "inexpensive," "relia
ble," "fast," but also "easy to use." In this sense, 
"easy to use" should encompass the effort to check 
out the program which enables the minicomputer 
to be a part of the larger system. 

Other areas can be mentioned but the most im
portant needs of manufacturers seems to be a 
psychological one: the awareness that the mini
computer will, within a very few years, be con
tributing a much greater part of the total main 
frame market than it is today. And a major mar
ket deserves major support. The importance of 
adequately supporting this type of system can be 
assessed by thinking of the background of the in
dividual attempting to use it. Scientifically trained, 
perhaps, but certainly not likely to be a pro
grammer, especially in view of the present ann 
projected shortage in this field. The outcries of 

early System 360 users will no doubt seem infre
quent compared to the outraged voices of those 
novices who don't realize that early vintage soft· 
ware isn't supposed to work! 

Hardware enhancements 

Some suggestions concerning hardware develop': 
mentshould be advanced at this point, if only to 
satisfy the hardware-oriented person who has 
stayed with it this far. 

I would like first to advance the heretical idea
that 18 bits are far more desirable than 16 bits of 
a minicomputer word size. Those two additional 
bits are exceedingly valuable in. the instruction 
word, as anyone would know who has participated 
in minicomputer design. Since instruction words 
are generally more frequent than data words it 
would seem reasonable to pr()duce a computer 
with an appropriate word size for instructions, 
rather than USASCII data. Perhaps the first step 
toward an 18 bit instruction word would be to dis
card the generally superfluous parity bit. In any 
event, I would divide the 18 bits in the instruction 
,vord somewhat as shown below: 

5 bits for op code 
1 bit for indirect addressing (paging is still 

necessary) 
1 'bit for "interpretive mode" (op code used as 

an address in a transfer table) 
1 bit for use of current page/base page 

10 bits for address, yielding an adequate 1024 
word page size 

My concept of indirect addressing would permit 
the direct addressing of 65K words via the 16 low 
order bits of the indirect word referenced. How
ever, the leading 2 bits of the indirect word also 
would play a part in generating the true address. 
These two bits would be used as follows: 

00 this word contains the effective address 
01 use contents of hardware index register 1 

added to the low order 16 bits of this word 
lOuse contents of hardware index register 2 

added to the low order 16 bits of this word 
11 applying one more level of indirect address

ing 

This somewhat restricted use of hardware index 
registers is compatible with current concepts of 
paging in minicomputers, where the program is 
stored in one group of pages and the tabular data 
which is to be indexed is in a second group of 
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pages, which must be indirectly addressed. N on
memory instructions could be used for index step
ping and testing. 

The base page, of course, should be c'ontrolled 
. by a programmable base page register. This is in 
keeping with a multilevel program structure, with 
each level of priority associated with a different 
base page. 

Another point to be made is that most applica
tions would be better off with 8K words of mem
ory with a 4-8 ~sec cycle rate than 4K words 
with 1 ~sec cycle rate. Only rare applications 
demand the sub microsecond memory cycle found 
with some of the newer minicomputers. However, 
many applications require more than the standard 
4K memory. Of course, present cost factors d~ not 
seem to permit this kind of tradeoff to be made. 
In this connection, I would like to insert a plea 
for a bulk read/write memory of modest dimen .. 
sions (50,000 to 500,000 words) with access time~ 
ranging from 10 to 100 milliseconds. This device 
should be sufficiently low in price (ten to fifteen 
thousand dollars) to encourage wide usage. NCR 
appears to have made a major step forward on 
software development for their Century series by 
stating that the twin disk drives are an insepara
ble part of even the least expensive system. 

Many minicomputers operate on numeric data 
which requires two or more words to express. 
Double precision fixed or floating operations are 
fairly common in some applications (process con
trol, instrumentation). These can more easily be 
programmed, if when the "interpretive mode" bit 
in the instruction word is set, the program coun
ter and other status information is 'stored in lo
cation A and the next instruction is taken from 
A+l. A is determined by adding some constant 
to the 5 bit operation code. This approach also 
permits "upward compatibility," if the minicom
puter is the smallest number of a computer family 

and can provide instruction compatibility through 
interpretation. 

A final word concerning hardware should not 
overlook what I consider the most important 
single area in minicomputer design: I/O. The 
minicomputer must be able to communicate with 
a great variety of I/O devices. A reasonable ap
proach to I/O includes the availability of a priority 
interrupt structure with sufficient capability such 
that each device can, if necessary, cause an inter
rupt to a different starting location. This will re
duce the response time of the computer to the 
interrupt by removing the need for programmed 
"sorting out" of the interrupt signal from array 
several alternatives. 

Such hardware must be supported by a compre
hensive I/O control routine which encourages the 
potential user by its simplicity. Hewlett-Packard 
ap-p!~rs_,..iQ~J~-~y~ ~()r~jll_.t~e._~i~ht dire~tion -;1th'-
their BCS package. 0< -."'--'''''''''--,-------

"'I70a-iita"ltseIfs'hould be capable of ibeing trans
ferred either to memory or to the arithmetic reg
isters when operating under a programmed I/O 
scheme. 

CONCLUSION 

The advent of medium and large scale integration 
and of batch memory systems, as well as improved 
intra-computer communication facilities will all 
have great impact on the future size of the small 
computer market. However, the greatest deter
miner will be the ease of use, as determined; by 
the interaction of hardware and software. Low 
price and reliability alone will not satisfy the user 
who expects a job to be done, a task to be ac
complished. Frustration after delivery may de
termine whether there is a five thousand unit 
market or a twenty - fifty thousand unit market 
for minicomputers in the early seventies. 



The mini-computer-A new approach to 
computer design 
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international Business Machines Corporation 
Research Triangle Park, North Carolina 

INTRODUCTION 

When memories become many times faster than 
they are today at less cost, how will computers be 
organized? For those installations which require 
nlany times their current performance, present 
Inethods may suffice. However, there will be in
stallations which don't need or can't use this much 
additional performance. How can they benefit 
from such improved memory design? 

In an attempt to answer these questions, IBM 
built an experimental "Mini-computer" which in
corporates new techniques and a unique organiza
tion. These methods could be used to' take ad
vantage of increased memory speed to reduce data 
flow and control hardware, lowering system cost. 
Although the memory actually used was neither 
unusually fast (2 psec) nor inexpensive, it was 
adequate to demonstrate principles. 

The experimental computer (dubbed Mini) is a 
general-purpose, stored-program digital computer 
(Figure 1). However, it differs from such com
puters in two major respects: it has no arithmetic 
or logic unit and only a very elementary instruc
tion set; and, it has only 512 bytes of storage for 
data and control. Mini's other specifications also 
reflect its name: 

• Size-18 X 15 X 3 inches; 
• Weight-24 pounds, excluding power supply 

and I/O; 
• Cards-one SLT board (79 cards). If com

munication line control is desired, three ad
ditional cards on an external board are 
needed. 

Although the Mini-computer is contained in one 
small tabletop "box," its capabilities are surpris-

ing to many people. U sing a bare mInImum of 
hardware and instructions, Mini can perform 
the arithmetic and logic of a central processor, 
plus those functions normally executed by I/O 
control units. Its attachments include bulk stor
age, a graphic display (including animation!), a 
keyboard/printer, and communication lines. Little 
additional circuitry was needed to attach these 
I/O units. In addition to the computer, the only 
hardware needed to control these devices is the 
analog circuitry required to electrically and me
chanically interface with them (magnet drivers, 
sense amplifiers, voltage converters, etc.). 

Finally, the Mini-computer uses only two types 
of instructions. Functions such as add, subtract, 
shift, index, and translate are all programmed 
with these basic instructions. 

Organization 0/ the Mini-Computer 

The Mini concept starts with a small core stor
age device (512 8-bit bytes) around which the 
rest of the computer is built., (See Figure 2.) To 
this have been added a Storage Address Register 
and a Storage Data Register. The 8-bit Storage 
Data Register is funneled down to a 4-bit path 
going into the Data Register. This was done be
cause of the extensive use of tables and the need 
to keep addresses compact to conserve storage. 

The Data Register is the single "work'" register, 
all data being shuttled back and forth between it 
and memory. It is used as an input/output regis
ter for I/O operations, as a test register for branch 
instructions, and as a temporary holding place for 
storage-to-storage transfers. 

The Instruction Counter holds the address of 
the next instruction to be executed. The I/O Reg-
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FIGURE la-The Mini-Computer-Without I/O 

FIGURE Ib-The Mini-Computer system 

IBM 1053 

KEYBOARD CENTRAL 
- '-PRINTER- - ....... --1 PROCESSOR 

OSCILLOSCOPE 
(AS BULK DISPLAY) 

IBM EXECUTARY 
(AS BULK S'TORAGE) 

Figure Ie-Mini system block diagranl 

INPUT/OUTPUT 

STORAGE ADDRESS REGISTER 

STORAGE 
(512 BYTES) 

FIGURE 2-Mini data flow 

ister holds the 5-bit, I/O instruction address and 
decodes it to select a particular device. I/O op
erations are thus controlled independently of the 
eomputer's other operations.' Because of the 
limited instruction set, Mini relys heavily 'On sub
routines to get work done. In order to get to and 
from subroutines easily, a way was needed to keep 
track of where the main program was left for 
re-entering. This is provided by the Link Reg
ister. 

Mini has no processing unit, no index register, 
no register stack, etc. The hardware, in short, is 
accurately depicted by the name-Mini. There 
8.re, of course, the I/O units-which as I/O units 
generally-can be selected and tailored to fit the 
application. 

Instruction set 

The instructions, which have a single address, 
can be classified into two main categories: move 
and branch. The hardware-addressed or "implied" 
Data Register is associated with all instructions. 
Move operations transfer data into or out of the 
register, branch operations test data in it. The 
c'Omplete instruction set is shown below. 

Move Instructions: 

• FETCH-Data at the addressed storage 
location is moved to the .Data Register; 

• STORE-Same operation as above, except 
in the reverse direction; 

• INPUT-Data from the addressed input 
device is moved to the Data Register; 

• OUTPUT-Data is moved from the Data 
Register to the output device. 

Branch Instructions: 

• BRANCH ON ZERO 



• BRANCH ON NOT ZERO 
• UNCONDITIONAL BRANCH 
• BRANCH AND SAVE-The address of 

the next sequential instruction is saved, 
and a branch occurs to the specified storage 
location; 

• RETURN-A branch occurs to the storage 
location saved by the last BRANCH AND 
SA VE operation. 

One of the two conditional branches is obviously 
redundant. However, having both is a convenience 
which aids programming and frequently conserves 
core space. The BRANCH AN.D SAVE instruc
tion and associated RETURN permit subroutining 
to be performed with a minimum of programming 
overhead. As will be seen, subroutines playa very 
important role in the Mini-computer. 

The basic unit of data operated on by the in
struction set is the 4-bit half byte. Instructions 
themselves are either 1 'Or 2 bytes in length, with 
the I-byte format accounting for roughly 70% of 
t he instructions in a typical program. 

Instruction formats 

Two instruction formats are employed in an 
effort to reduce stu rage requirements. The long 
format uses a 6-bit operation code and a 10-bit 
2,ddress capable 'Of addressing any of the 1,024 
half bytes of core storage. Short-format instruc
tions use a 3-bit op code and a 5-bit address, with 
the remaining five bits implicit in the operation 
code. 

Thus, because a large percentage of STORE in
structions is used to modify other instructions in 
the immediate vicinity of the store instruction, 
short-format store addressing can be relative to 
the Instruction Counter. That is, the remaining 
five bits of address are supplied from the high
order positi'Ons of the Instruction Counter. The 
same is true of short-format branches. 

For short-f'Ormat FETCH and BRANCH AND 
SA VE instructions, the required address bits are 
hard-wired into the computer, causing fixedstor
age areas to be accessed. These areas contain 
tables in the case of the FETCH instruction, or 
subroutine linkages or short, self-contained rou
tines in the case of BRANCH AND SAVE. The 
short-format instructions make possible signifi
cant savings in core because, as stated earlier, they 
account for about 70 % of all 'Of the instructi~ns 
used in a typical Mini program. 
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Circuits 

The Mini model was constructed from readily 
available System/360 Model 50 circuit cards em
ploying the Solid Logic Technology (SLT) 30-
nanosecond circuit family. The memory unit 
chosen was a 2-microsecond, read-write core buffer 
used in the System/360 Model 20. No functional 
packaging or large-scale integration was at
tempted. The machine is packaged on a single 
SLT board and contains approximately the fol
lowing 650 circuits: 

No. of No. of Percentage of 
Function Circuits Cards Total Cards 

Data Flow 250 36 42 
Storage 160 20 31 
I/O 240 23 27 

Calculation and data manipulation 

Because 'Mini has no arithemetic or logical in
structions, these functions are performed by sub
routines. Core requirements for these are mod
erate, as shown in the following table of some 'Of 
the subroutines which have been written. Of 
course, many more could be added. 

Bytes in Bytes in 
Function Subroutines Tables 

Control Counter (initialize, 
increment / decrement) 5 

Control binary trigger (set, 
reset, flip) 4 

Control status switch (initialize, 
set, reset) 6 

Test Bit 4 8 
Translate Code 4 R 
Delay 11 
Increment Address 12 
Add/Subtract (decimal digit) 17 11 
Compare (binary digit) 14 
Shift (binary digit) 9 16 

Two programs have been written to show the 
arithemetic capability inherent in the Mini data 
flow and instruction set: the desk calculator and 
triangle calculator program. The desk calculator 
program accepts data from the 16-key keyboard 
and produces two lines of 14-digit output on the 
display (described below.) The first line displays 
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entered data, the second displays the results of 
arithemetic operations on the data. The functions 
provided are add, subtract, multiply, load, and 
no-op. 

The triangle calculation program accepts data 
from the keyboard and produces up to six lines of 
3-digit output on the display. The program starts 
by displaying a labeled triangle (Figure 3). 

A 

c 

c B 

A = xxx 
B =xxx 
C = xxx 
a =xxx 
b = xxx 
c = xxx 

FIGURE 3-The triangle calculation program 

The user keys in the specifications for the known 
angles and sides and these values are displayed on 
the appropriate lines. The program then computes 
the remaining values and displays them to com
plete the picture. 

Since the triangle program is larger than the 
storage capacity of Mini, it requires successive 
loads from a bulk-storag-e device. Each load does 
it particular type of processing, such as calcu-
12,ting a sine, cosine, arcsine, or arc-cosine by a 
power series expansion or by a solution of the law 
of sines or cosines. 

I/O unit control 

Bulk storage 

A standard IBM Executary dictating unit is 
controlled to perform functionally as a disk file. 
Labeled records are recorded on the belt in a fixed 
format, serial by bit. Synchronization, bit detec
tion, deserialization, parity checking, label com
parison, and data movement are all programmed, 
using 120 bytes of core. The special hardware re
quired to attach the Executary was five cards. 

When the Executary is used as a dictating ma
chine, the user controls the machine through 
switches on the microphone. For use with Mini , 
the microphone was relnoved from its cable, and 
the wires that had gone to the microphone 
switches were connected to reed relays in the 
computer. This enables Mini to perform the same 
three functions by issuing I/O commands: 

• Start moving the belt. 

• Backspace one track. 
• Turn on the write circuits. 

Because the random-access, bulk storage used 
(Executary) is designed to record in the normal 
audio range, bits are recorded . as audible beeps. 
Each "one" bit consists of three cycles of a 2K 
Hz tone; each "zero" bit three cycle times of 
silence. 

Mini generates these audible tones with a pro
gram to eliminate the need for a separate 2K Hz 
oscillator. The oscillator program activates the out
put line and enters a subroutine which provides a 
delay of 250 usec, then it discolltinues the out
put for 250 usec, activates it for another 250 
usec, etc., for three oscillations. The recording 
format on tape is similar to standard start-stop 
communications format. Records have labels and 
markers to enable Mini to locate the beginning 
of the desired record, and a check character for 
validating data. The recording rate used with 
Mini is 40 bytes per second. Speed is limited by 
the Executary belt and amplifier characteristics, 
not by the computer. Data rates of 500 bytes per 
second have been achieved using a different tape 
transport and amplifier. 

Display 

The objective of the display investigation on 
Mini was to demonstrate the maximum versatility 
for drawing pictures on a simple CRT display 
with the least amount of additional circuitry. 
(See Figure 4.) The circuitry, packaged on only 
three cards, provides for two 8-bit digital-to
analog converters, two 8-bit deflection registers, 
and standard output commands for loading these 
registers from the data flow. In addition, there 
is control for blanking the beam. 

The 8-bit horizontal deflection register specifies 
on which of 256 horizontal positions the beam is to 
come to rest. An identical vertical-deflection reg
ister similarly selects one of 256 vertical positions. 
For example, if both registers contained the value 
of zero, there would be a spot at the lower left 
eorner of the tube. If both registers were then 
set to 256 simultaneously, the beam would travel 
to the upper-right-hand corner tracing a line 
along the way. Thus, both horizontal and vertical 
registers must be changed simultaneously if other 
than horizontal and vertical lines are to be drawn. 
The hardware-function tradeoff selected allows 
the upper four hits of both horizontal and vertical 



FIGURE 4-Demonstration of display versatility 

registers to be set together, and the lower four 
bits to be set together. This provides the capabili
ty of connecting p'Oints on either a large or small 
16-by-16 point grid. 

A program was written to generate an alpha
numeric display. The most challenging problem 
associated with the program was developing a sub
routine for tracing each of the individual charac
ters-a function which is generally provided by 
special-purp'Ose hardware dedicated to generating 
a specific set of characters. For each character 
to be drawn by the program, a string of elements· 
is provided. Each element defines a new point on 
the display. As the points of the string ,are suc
cessively connected, the desired character is 
drawn. To provide the most general character 
generator, each element 'Of the string requires 8· 
bits, four bits for one of 16 vertical positions and 
four bits for one of 16 horizontal positions. 

An alternate arrangement is to provide a more 
restricted array of end points so that each element 
can be specified with fewer bits. Figure 5 illus
trates one such restricted set of points. Figure 6 
shows the character set obtained. This set of 15 
points can be specified in four bits, which reduces 
the core requirements 'Of the cha~cter generator 
by a factor 'Of two. 

A program was written to accept characters 
from a keyboard and display them onto the face 

• 1 
.2 

.3 

.4 

.5 

The Mini-Computer 

.6 

.7 

.8 

.9 

.A 

.B 

.c 

.D 

.E 

.F 

.9 
A 
B 

.c 
D 
E 

.F 

FIGURE 5a-Alphanumeric display generator matrix 
FIGURE 5b-Example of how a letter (or number) 

is drawn from matrix 

FIGURE 6-Alpha character set 
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of the tube. The character set consisted of the 26 
capital letters and 10 digits. A cursor was pro
vided to indicate where the next key to be de
pressed will be displayed .. The space key moves 
the curs'Or incrementally along the line and the 
carri~ge-return key returns the. cursor to the left 
and down one line. A reset returns the cursor to 
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8C9CD0 
8808 
80CD6) 
@ooe 

FIGURE 7-Mini keyboard interpreted for drawing program 

the upper-left-hand position of the tube. Only 
352 bytes were required for the programs and 
tables for this program. 

A program was also written to permit an oper
ator to draw pictures on the tube. This program 
interpreted the general purpose, 16-key keyboard 
as shown in Figure 7. By'depressing one of the 
B.rroweq buttons~ the operator can move the last 
end-point of his picture one increment in the di
rection indicated by the arrow. When the operator 
i~ satisfied with the position of the last point, he 
can freeze that point by depressing the load key. 
This stores the coordinates of the last point and 
creates another moveable point at the same loca
tion. 

The forward and reverse buttons allow the op- . 
erator to modify previously fixed points. Up to 
16 different pictures containing a total of 128 end
points can be stored in the available buffer space. 
Animation can also be "obtained by rapidly flashing 
the 16 pictures. This program requires only 256 
bytes of program and 128 bytes of buffer. 

Printer/Keyboard (IBM 1052/1053) 

The Mini-keyboard interface consists of six 
Binary Coded Decimal data lines, a Hkey de
pressed" signal line, and a "keyboard reset" line 
to reset the keyboard between key depressions. 

To accept data from the keyboard, the Mini pro
gram tests the "key depressed" line. When the 
"key depressed" line is up, the program enters a 
delay subroutine to allow the data lines to settle 
to a steady state. Then, the program transfers the 
information on the data lines to storage and issues 

a reset signal to prepare for the next key depres
sion. This sequence requires only nine bytes of 
storage in addition to the delay subroutine. 

The Mini-printer interface has six data lines 
which position the print element; seven control 
lines corresponding to the functions of print, shift 
~p, shift down, tab, carriage return, space, and 
backspace; and a "carriage in motion" line. The 
positioning information specified by the program 
is held in a special output register for the dura
tion of a delay subroutine. 

To use the printer, Mini raises a control line 
and holds it active for the duration of the delay 
subroutine. For the print function, the program 
first transfers the proper combination of bits for 
the character to be printed from storage to the 
output register. For tab or carriage return, the 
program tests the "carriage in motion" line and 
waits until it is no longer active before proceed~ng. 

The Keyboard/Printer requires five cards. 

A program to couple the 1052/1053 keyboard 
and printer together for normal typewriter use 
has been written. This program accepts data 
from the keyboard and immediately outputs it to 
the printer so that the data keys print and the 
function keys perform as in a normal typewriter. 
As an intermediate function, the program trans
lates the' BC.D, input code to the required output 
code before setting the output register. The pro
gram requires 54 bytes in addition to 45 bytes for 
subroutines and tables. 

Sixteen-Key Keyboard 

The keyboal'd used on Mini contains 16 general
purpose keys. Four bit-line outputs are available 
to the program, as well as an output directly from 
the zero key. The separate zero-key output, 
coupled with some additional programming, elim
inates both extra keyboard hardware (no second 
contact needed on each key to indicate a key is 
depressed) and extra circuitry (no keyboard 
strobe) . 

To control this keyboard, Mini first tests the 
four data-line outputs. If no information is avail
able, the program tests the zero-key output. If all 
lines are inactive, the program then repeats the 
above tests .. If any data line or the zero-key line 
is active a delay is taken to insure steady-state 
values on the lines. The information is then trans-



ferred to ~torage, or if the zero key is active, a 
zero is inserted into storage. 

The program requires 15 bytes in addition to 
the delay subroutine. 

Communications 

A standard common-carrier data set was at
tached with three cards. A program was written 
to enable communication between Mini and an 
IBM 1050 terminal. 

Programming 

Address modification is used extensively in pro
gramming Mini. The following example illustrates 
its usefulness: 

Location 

x 

Operation 

FETCH 
STORE 

Address 

Increment Table 
x+l 

The first instruction is a short-format FETCH 
with op code at half-byte location x and address 
at half-byte locati'On x + 1. This instruction ad
dresses an 8-byte increment table at a fixed loca
tion in storage. The position in the table is de
termined by the address at location x + 1. The 
table is as follows: 

0123456789ABCDEF Address 
1 2 3 4 5 6 7 8 9 ABC D E F 0 Data 

The second instruction is a short-format STORE. 
It inserts the half-byte fetched by the previous 
instructi'On into the instruction stream at location 
x + 1, thereby modifying the address portion 
of the FETCH operation. 

Assuming the half-byte at x + 1 is initially 
"0", the above sequence fetches a "I" to the Data 
Register, then modifies itself to fetch a "2" next 
time. Now, using the BRANCH ON NOT ZERO 
instruction, a loop can be programmed: 

Location 

x 

Operation 

FETCH 
STORE 
BRANCH 
NOT ZERO 

Address 

Increment Table 
x+l 
x 
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The BRANCH ON NOT ZERO instruction tests 
the Data Register and branches back to the start 
of the sequence as long as the Data Register con
tains a non-zero quantity. This will be the case as 
long as the half-byte at location x + 1 is not an 
"F." Once this bec'Omes "F" the FETCH instruc
tion will load "0" into the Data Register and the 
branch will fail. Assuming a "0" in this location 
initially, the loop will be executed 16 times with 
successively higher numbers being loaded into the 
Data Register. 

The table used in this example is one of two 
which can be accessed with the short-format 
FETCH instruction. The other table is organized 
for decrementing and is as f'Ollows: 

0123456789ABCDEF Address 
F0123456789ABCDE Data 

The counting . example could just as easily have 
been programmed using this decrement table. It 
would then count through the loop 16 times but 
would load successively smaller numbers into the 
Data Register. 

The programming techniques used with Mini 
will not be described in detail. However, an ex
ample of the use 'Of stored tables and the basic 
instruction set will clarify the manner in which 
processing is accomplished. The following routine 
performs binary addition on two half-bytes: 

Location Operation Address 

x FETCH Increment Table 
STORE x+l 

y FETCH Decrement Table 
STORE y + 1 
BRANCH x 
NOT ZERO 

Let us assume that the two numbers to be added 
have been loaded into locati'Ons x + 1 and 
y + 1 in the instruction stream. The first num
ber is incremented, the second decremented and 
tested for zero. This sequence continues, the first 
number being counted up and the second counted 
down, until the. ]oop is ended by the second reach
ing zero. At this p'Oint the sum is at location 
x + 1. 

The increment/decrement tables used in the 
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previous examples are the most commonly used 
in Mini and are therefore stored at fixed locations 
addressable by the short format FETCH instruc
tion. Other tables, however, are constructed for 
special purposes and are accessed by the long
format FETCH. Examples of such tables are 
those used for code translation, shifting, decimal 
incrementing and decrementing (or of any other 
base, for that matter), bit testing, overflow de
tection, masking, etc. Other examples will no 
doubt suggest themselves to the reader. 

From this discussion, it is obvious that Mini is 
a table-driven system. Because of this reliance on 
stored tables for basic data manipulation and be
cause of the very limited storage area available, 
it was imperative that tables be kept as compact 
as possible. This explains why half-byte address
ing is used with storage. Four-bit table addresses 
allow the use of 8-byte tables such as the increment 
and decrement tables described previously. Had 
storage addressing been at the byte level, these 
tables would each have required 128 bytes! 

CONCLUSIONS 

Mini, a small, experimental computer with a sur
prising amount of capability, has been built 

around only two classes of instruction-move and 
branch. Arithmetic and logic functions are per
formed by table-look-up subroutines. Digit ad
dressing makes it possible to use much smaller 
tables than ordinarily used, conserving memory. 

N o additional instructions or hardware are nec
essary to operate'the computer. Mini has thus 
demonstrated that it is possible to build a com
puter with no arithmetic or logic hardware! Fur
ther hardware savings-in memory-have been 
made by using one-byte instructions (part of ad
dress being hard-wired or implied by operation 
code) . 

In the I/O area, Mini has shown that special
purpose hardware can be replaced by general
purpose data flow and that-once you have the 
data flow-little additional circuitry is needed to 
control I/O devices. The Mini-computer, because 

, of its inherent simplicity, makes it possible to ap
proach an I/O task-often quite complex~as di
rectly as though it were a CPU operation. 

Mini is smaller than most of the terminals and 
I/O units used with present-day computers, even 
though it wasn't built from miniature components. 
Mini may have indicated the shape of computers 
to come. 



The Lockheed hybrid system-A giant step 

by CONRAD K. BEDIENT and LARRY L. DIKE 

Lockheed Missiles and Space Company 
Sunnyvale, California 

INTRODUCTION 

View of the future 

Gazing into our crystal ball we see you seated 
at the anal'Og computer preparing for a scheduled 
hybrid run. You alert the digital computer through 
your remote display. The digital computer re
covers from its permanent files the data and 
source files associated with your run. These files 
include a description of your problem in equation 
format, a description of your problem in block 
diagram format as mechanized on the analo~ 
computer, the source hybrid problem, and data 
decks. After. logging on the system, a complete 
set of hybrid software is available to you. You 
may run your program all digital using the equa
tion input and the analog mechanizati'On input 
to verify pro~r analog implementation of your 
equations. Using the outputs of the digital simu
lation ranges of variables may be determined for 
automatic scaling. The digitally simulated analog 
mechanization can be used for a patchboard and 
equipment verification of the actual analog con
nectives. Static checks may also be generated. 
U sing the outputs of your digi.tal simulation, you 
can test the various transfer blocks synthesized 'On 
the analog computer in a dynamic m'Ode. 

Using a set of diagnostic software, you inter
act with the digital computer until your anal'Og 
computer is set up and y'Our pr'Oblem is debugged. 
You now request the system t'O load y'Our pr'O
duction program. You select the opti'Ons 'Of the 
program y'OU desire, and make y'Our producti'On 
run. All files and data required f'Or the run are 
maintained on the mass storage device. When your 
program is not in execution, it is rolled-'Out onto 
the mass storage where it may be interrogated 
and modified as though it were in central memory. 
All source files may be modified both from re-

mote or by update card decks. The system main
tains all these files and makes them available to 
y'OU on request. The digital computer is rerooted 
from the customer and it furnishes c'Omputing 
capability as though it were a power source al
ways responding to y'Our demands. The flexi
bility gained from the display gives you the feel
ing 'Of having control of the computer .. 

This description indicates the developmental di
rection of the Hybrid Laboratory at Lockheed 
Missiles and Space Company (LMSC) located at 
Sunnyvale, Calif'Ornia. The large digital computer 
system approach to hybrid computing may permit 
new flexibility and efficiency that will allow a 
large digital system to be used economically in 
hybrid facilities. The only thing that seems to 
stand in the way of such an operation is the 
development of the software systems to support 
such a laboratory. 

Problems in hybrid computation 

When LMSC's system became operational in 
June 1967, the primary problems of concern were 
the problems of modifying a batch processing sys
tem to allow for real time computation, the sharing 
of the central processing unit between tW'O hybrid 
pr'Oblems, and the writing drivers for the linkage 
equipment-these pr'Oblems although severe were 
s'Olved and all'Owed the development 'Of hybrid sim
ulations. The principal step into the future was 
the development 'Of a remote keyb'Oard entry de
vice. This devel'Opment paved the way for· a 
glimpse of what a future large hybrid system 
should be. 

In debugging a large hybrid problem, batch 
processing techniques of debugging may be dis
carded as virtually useless. A hybrid program is 
a complicated program which cannot normally be 

663 
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halted at a point for examination but must con
tinue its dynamic solution. This complicated flow 
of information between the continuous running 
analog computer and the serial digital computer 
requires mOore refined methods of debugging. The 
size of the codes being written for simulation 
is large, since these programs are generally an 
attack at a large complex system which merged 
the complications of the predecessor multi-rack 
analog simulations 'with the large digital simula
tions. The total problem has become fantastically 
complicated. Large amounts of data must be 
handled both flowing from the simulation and 
into the simulation. Large programs and data 
decks must be handled. The programmer not only 
faces the task of solving the problem for a single 
run but also of controlling the job to allow for 
the proper sequencing of runs. The program must 
prepare the results from the runs directly for 
reports so that the number of runs may be in
creased without the burden of a large amount of 
data reduction. The development of hybrid codes 
is a large effort. The hybrid lab which can ~up
port two production hybrid jobs has many hybrid 
jobs under development. The jobs under develop
ment must be able to be sandwiched between pro
duction runs utilizing both real or simulated equip
ment. All the debugging techniques for the hybrid 
jobs must be available for jobs under development. 

Use of the digital ,computer 

The digital computer should be used efficiently. 
However, with hybrid simulations the problem 
is in the operate condition less than 50 % of the 
time. Although the time must be scheduled, the 
very nature of the analog computers in simulation 
techniques make it impossible to . determine when 
the digital computer will be required. 

Yet, when the digital computer is required, 
it must be furnished immediately, since the basic 
cost of the system is the analog equipment. Many 
systems solve this problem by batch background 
processing. This procedure may have several ap
pealing merits, but it is probably dangerous. The 
customer's diversified and dissimilar organization 
goals and interests, . and the increased costs of 
equipment to support both batch processing and 
hybrid simulations plus the complications to the 
system software may compromise the hybrid re
quirements. Basically in a hybrid lab containing 
many analog computers even a large digital com
puter is not the high cost item in the operation; 
therefore, the main effort should be to use the 

digital computer to increase the efficiency of the 
analog portion of the overall operation. 

These are the problenls that face a large hybrid 
lab. These problems require programming sys
tems completely beyond the capabilities of those 
currently furnished by hybrid computer equip
ITlent vendors. 

Reading guide 

The material presented in this paper has been 
organized to accommodate both the reader in
terested in a general description of the Lockheed 
Missiles and Space Company (LMSC) Hybrid 
Computer system and the reader interested in 
studying the system in detail. For a general de
scription of the main features of the system it is 
suggested that the sections I through III and VII 
be read. For those who wish to study the system 
in detail, Sections IV through VI are provided. 

We have gazed into the crystal ball of the fu
ture. Now let us take a look at the organization 
and implementation of the LMSC hybrid com
puter system. 

Hardware description of the LMSC hybrid 
computer system 

The hybrid computing system at Lockheed Mis
siles and Space Company, * Sunnyvale, California 
consists of the following: 

Control Data 6400 digital computer system 
Two Comcor Intracoms (linkage equipment) 
Four Comcor Ci-5000 analog computers. 

A block diagram of the syste·m is presented in 
Figure 1. 

Digital computer 

Figure 2 shows the organization of the Main 
Frame. At the center is a large floating point 

. processor, the central processing unit (CPU). The 
multi-register organization of the CPU allows fast 
execution of Fortran programs. The CPU com
municates into 32K of 60 bit memory. Surround
ing this central memory are 10 peripheral proc
essors (PPs ). These PPs are identical and op
erate simultaneously and independently as stored
program· computers. They act as system control 

*Hybrid computation at LMCS began in 1966 with a system 
comprised of a CDC 3200 digital computer system and two EAI 
231R analog computers interfaced by means of a Comcor In
tracom. 
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FIGURE l-LMSC hybrid computer system 

G 

FIGURE 2-0rganization of main frame 

computers and as I/O processors with a 1 micro
second memory cycle time. The PPs have an in
struction set which includes integer addition and 
subtraction but not multiplication and division. 
These PPs each have 4K of 12 bit memory and 

may communicate directly with the large cen
tral memory or external equipment over 12 bi
directional data channels. 

Table I specifies the peripheral equipment asso
ciated with the CDC 6400. 

Peripheral 

Disk file 
Card Reader 
Card Punch 
Line Printer 

2 Magnetic Tape 
Transports 

5 Remote Visual 
Display Units 

Main Display 
Console 

Description 

74 million characters 
1200 cards per minute 
250 cards per min ute 
136 characters per line, 

1000 lines per min ute 
800,556, or 200 BPI, 75 inches 

per s'ec. 
Cathode Ray Tube (CRT) dis

play with 20 lines, 50 char
acters per line and with 
typewriter keyboard input 

2 display screens for the op
erator of the digital com
puter 

TABLE J-CDC 6400 peripheral equipment 

Linkage equipment 

The communication link between the CDC 6400 
digital computer and the Ci-5000 analog com
puters is the Intracom which is shown in block 
diagram form in Figure 3. The LMSC hybrid com
puting system has two identical Intracoms with 
each Intracom normally controlling twO' analog 
computers. Each Intracom is divided into three 
main systems: I/O, Interrupt, and Analog. gach 
of these three systems is connected to its own 
CDC 6400 data channel for communication with 
the digital computer. 

The I/O system iR subdivided into Rix subsys
tems as follows: 

1. I/O interrupt subsyste'm-which contains 
24 priority interrupt lines and logic for 
handling these priority interrupt lines for 
processing by the Hybrid Input-Output PP 
prO'gram. 

2. Discrete subsystem-which contains 68 dis
crete read and 68 discrete write lines. 

3. D/ A subsystem-which contains 40 digitaI
to-analog converters and 8 independent 
transfer controls. 

4. A/D subsystem-which contains an analog
to-digital converter with 32 input channels 
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(can be expanded to 64) and 8 s·ample/hold 
controls. 

5. P.I.G. subsystem-which contains a preci
sion interval generator (real time counter). 

6. Intracom mode subsystem-which contains 
logic for controlling and sla,ving the modes 
of the Intracom and the analog computers. 

The Interrupt. system contains logic for han
dling to 24 priority interrupt lines (previously 
mentioned) for processing by the Hybrid Monitor 
PP which controls the priority subroutines to be 
executed. 

The Analog system contains the logic necess,ary 
to Ii~k (interface) the ~nalog computer to the 
digital computer and allows for the following 
functions to be accomplished: 

• Setting or reading a mode 
• Setting or reading an address register 
• Reading a DVM 
• Setting a Reference Dac 
• Setting a Potentiometer 
• Reading status conditions of the analog 

console. 

Each Intracom also contains a patchable logic 
group which is comprised of the components 
listed in Table II. 

Component Quantity 

General purpo.se counter _____________ 36 
(4 hit binary or BCD Up/down preset 
counter) 
General purpose flip-flop _____________ 72 
Variable delay flops _________________ 12 
Logic function switches _ _ _ _ _ _ _ _ _ _ _ _ _ 24 
Lamp drivers ______________________ 48 
System clock (100KC) ______________ 1 
Nand gates ________________________ 228 
Inverters __________________________ 72 

TABLE II-Intracom patchable logic 

Analog computer 

The analog computing elements aresoUd state 
and operate over the range of ±100 V. Solid-state 

FIGURE 3-Ci-5000 intracom system 
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switching and digital IO'gic circuitry is used to 
obtain high-speed cO'mputing operation. Each O'f 
the Ci-5000 analog computers is comprised of the 
components listed. in Table III. 

Component Quantity 

Summing amplifiers _________________ 60 
Integrating and/or summing amplifiers_ 60 
Inverting amplifiers _________________ 16 
ServO' set potentiometers _____________ 144 
Digital attenuators (HODADS) ______ 48 
Three terminal manual potentiO'meters _ 32 
MuLtipliers _________________________ 66 

Resolvers 
sin-cos __________________________ 3 
multipliers ____________________ -:-__ 24 

Card set function generators _________ 22 
Card set surface generator ___ ~_______ 1 
D/ A switches ______________________ 30 
Comparators _______________________ 30 
Relays ____________________________ 24 
Function switches __________________ 16· 
Feedback limiters ___________________ 30 

Patchable logic 
Up-down counters (4 bit) _________ 8 
or general purpose flip-flO'Ps ________ 32 
Counters (4 bit) _________________ 4 
'Shift registers (4 bit) ____________ 4 
Delay flops _______________________ 9 
Inverters ________________________ 24 
Nand Gates ______________________ 48 
Cycle counter _____________________ 1 
Iterative clocks ___________________ 3 

DAC output trunk patchboard 
terminations _____________________ 20 

ADC input trunk patchboard 
terminatiO'ns _____________________ 16 

Recorders __________________________ 3 
OscilloSCO'pe ___________________ "":-___ 1 

TABLE III-Gi-5000 analog computer 
components 

Hybrid computer system and software capability 

The operating system fO'r the' LM:SC hybrid 
cO'mputer system is CLASH, * a modified and aug-

*The acronym "CLASH" originated by combining the initials 
of the companies who supplied programming personnel to the 
LMSC software development: Control Data C:>rporation, 
Lockheed Missiles and Space Company, Astrodata/COMCOR, 
Spectrodata. (The "H" originates from Hybrid). 

mented version of SCOPE 2.0 which is a standard 
operating system for' CDC 6400/6600 digital 
computers. 

A measure O'f the effectiveness of the O'pe'rating 
system is its ability to handle more than one 
prO'blem and its ability to immediately process 
background digital wO'rk when there is a break 
in the hybrid action. An effective display system 
greatly simplifies prO'gram debugging plus al
lowing on-line debugging without sacrificing sys
tem efficiency. Extensive debugging can be dO'ne 
O'n a hybrid program utilizing the display system 
without the digital program being resident in 
core storage. Programs can be developed rapidly 
since their development is, in Fortran language 
with a complete set of library routines allowing 
flexible communicatiO'n to the linkage and analog 
equipment. The use O'f the PPs to augment the 
standard system in recO'rding of data and driving 
O'f special interface or simulatiO'n equipment en
hances the processing capability O'f the system. 
Continued expansion of the debugging capabilities 
can take place since these capabilities are largely 
hnplemented 'On PPs which dO' not reduce the basic 
computing powe'r of the CPU. 

Selection of the digital computer 

The main criteriO'n fO'r selection of the digital 
computer and the design .of the software' system 
was the digital computer's capability of rapidly 
executing a scientific "Fortran" prO' gram at high 
interrupt frequencies, with low digital computer 
overhead for priority interrupt processing. 

The central processO'r within the CDC 6400 
digital cO'mputer has the capability of transfer
ring between two. programs by use of an exchange 
jump cO'mmand. This command can either be is
sued by the CPU itself, or by a PP. By executing 
this command, the CPU can be switched between 
two programs at a very rapid rate. By utilizing 
this capability in a priority interrupt scheme, 
LMSC has effected high speed frequency compu
tation O'f the digital portion of a hybrid program 
at low system overhead. 

Parallel computation and 1/0 

A powerful feature of the computer is its multi
pr'Ocessor O'rganizatiO'n. The CPU, with its high 
speed 60 bit floating point arithmetic, is used 
for computation. The PPs are used fO'r control 
and transfer of data in and .out O'f the digital 
computer. This multi-prO'cessing structure has 
been implemented in the hybrid system to aIlo'w 



008 Fall JO'int CO'mputer CO'nference, 1968 

computation within the CPU to' proceed simul
taneously with input/output O'f data via the PP 
(parallel computatiO'n and I/O). This capability 
alO'ng with the capability of rapidly switching 
the CPU between priority computatiO'nal levels, 
allows extremely effective use Oof the CPU. 

A computatiO'nal frame normally includes input 
O'f data from the analO'g cO'mputer, cQmputatiO'n 
O'n that data, and output O'f the data back to' the 
analog computer. Two of these functions, the 
input and output of data, can be dO'ne effectively 
with PPs. The computatiO'nal portion of the cycle 
must of course be done by the floating point CPU. 
If the inputting of data frOom the analog computer 
is initiated completely without interventiO'n O'f 
the CPU, then time normally used fO'r cO'ntrol of 
the I/O channels in a standard system is saved. 
By assigning a PP to each jO'b, prO'cessing capa
bility can also. be increased. E-ach O'f these PPs 
can be performing input/O'utput in parallel with 
one another and with the cO'mputatiO'n being per
formed within the CPU. 

Figure 4 shows the tJ.tilization O'f the GPU and 
the PPs when we have two hybrid jobs in execu
tion. PrO'gram A and PrO'gram B each have an 
individual PP, dedicated to the input and O'utput 
of data, associated with them. If we look at the 
operatiO'n O'f the processors O'n these programs, we 
see parallel CPU computatiO'n and I/O transmis
sion. For example between 1 and 2 millisecO'nds 
both PPs are transferring data while the CPU is 
processing the highest priO'rity prO'gram. This 
assignment O'f PPs to' each hybrid jO'b alsO' in
sures that the computatiO'n will occur sQmeplace 
within the required frame time. TherefO're if 
outputs can always be updated at the next frame 
time, we can guarantee uniform performa.nce 
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FIGURE 4-Parallel comput.ation and I/O 

with the job O'perating by itself O'r operating in 
cO'ncert with the other hybrid jO'b. 

The multi-prO'cessing apprO'ach also leaves more 
time available for the CPU. FO'r example, if we 
loO'k at the highest priO'rity interrupt, PrO'gram 
A-if the CPU was required to contrQI the in
puts and outputs to the linkage equipment, it 
WO'uid be required 60 % O'f the time rather than 
the 20 % shown. This would mean that there 
would nOot be enO'ugh CPU time to' allQw both 
hybrid jOobs to run simultaneously. 

Automatic roll-out 

Continued emphasis in the LMSC hybrid sys
tem has been placed O'n the utilizatiO'n O'f the digi
tal cOomputer's small memO'ry. This has resulted 
in majO'r modifications to' the standard CDC 6400 
operating system and major use to be made of 
the mass storage device. One new feature added 
to the LMSC system is the automatic rO'll-in and 
rO'll-Oout capability. This automatic rO'll-out fe'a
ture is further augmented by the capability O'f 
using all the debugging features of the display 
system while a program is in the rolled-Out con
dition. Whenever a prO'gram cO'mes to' a point 
where it can no IO'nger cO'ntinue withO'ut prO'
grammer assistance, it is automatically rO'lled-Out 
O'ntO' the mass storage device. As soO'n as the prO'
grammer has input to the display device, the 
system auto-matically rO'lls the job in and it cO'n
tinues execution. Rolling hybrid jobs in will auto
matically roll-out background digital jO'bs thereby 
immediately making central memory available. 
However, if two hybrid jobs conflict fO'r 'central 
memory, the requesting hybrid job is delayed 
until the amount O'f central memO'ry requested is 
available. Since hybrid jO'bs are not in executiO'n 
a large percentage of the time, automatic rO'll-in 
and roll-out has greatly increased the hybrid 
system's efficiency. 

The display system 

The heart of the usability of the LMSC hybrid 
system is the display system. The hardware of 
the display syste1m inel udes a controller with 
five remote visual display units which allow 
input via a typewriter type keyboard. Each of 
the remote display units has the capability of 
displaying 1,000 characters O'n a 50 character by 
20 line screen. Regeneration of data on the dis
plays is carried Oout in the display system's con
troller by using line memories.; thus, the digital 
computer is only required when an update of the 
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display is to be made. A peripheral processor, PP 
no. 6, drives all five displays in a time shared 
~anner. A small amount of central memory is 
also used at control point 6. The display system 
software consists of a display monitor program, 
which controls the overall operation of the dis
play syste·m, and a number of tasks which have 
been implemented to operate under the system. 
The number of tasks will be increased as new 
techniques are developed. The display monitor 
allows for five tasks to be in operation at each 
of th.e display consoles. The partial results of 
the five tasks are maintained on the disk for 
each console; therefore, requests made in one 
task are not lost when the operator temporarily 
switches to another task. The tasks available 
on a display include display directory, job control, 
variable display and modification, program I/O, 
source mo.dification, hybrid utility, day file dis
play, preventive maintenance, and engineering 
aid. 

Job contro.l 

The jo.b co.ntrol task allows general control 
over the operating system. All of the features 
which are available at the main console display 
are available from this task. Co.ntrol of a pro
gram is easily and effectively implemented since 
the operating system itself was designed to be 
controlled from a display. This task includes: 

• Display of me·mory in octal o.r mnemonic 
format 

• Entering of control cards 
• Advancing of co.ntrol cards that have been 

read in with the job 
• Breakpointing through a program 
• Requesting the output files to. be listed 

Variable display and modification 

The variable display and mo.dification task al
lows the programmer to display and modify vari
ables by their Fortran name. The symbol table 
is output by the compiler and is included in the 
binary deck of the program. When the loader is 
loading the pro'gram, the symbol table is processed 
and relo.cated while the prngram and a symbol 
file is written to. the disk. This symbol file is used 
by the variable display task to allow any named 
Fortran variable to. be called up fro.m the remote 
display. Variables may be displayed in octal, inte
ger, or floating point formats. Simple mathemati
cal functions a:re ava.ilable including add, sub-

tract, multiply, divide, sine, cnsine, and log. Vari
ables may be displayed and modified when the 
program is in central memory and also when the 
program is rolled-out on the mass storage device. 
This latter feature allows the programmer to do 
extensive debugging without utilizing central 
memory. 

Program Input/Output 

The program input/output task allows the pro
grammer to communicate with the remote display 
as though it were a standard piece of peripheral 
equipment. In a Fortran program he may make 
read or write statements which when executed 
will write out results or re'ad in control informa
tion to nr frnm the display. This is the normal 
way in which program control is maintained in 
LMSC's hybrid system. The programmer nor
mally selects most of his options by reading in 
information using the program input/o.utput dis
play task. Whenever a request to. read is made to 
the display, the display system automatically ro.lls 
the pro.gram nut onto the mass storage device. 
When the requested input has been typed in by 
the progralnmer / operator the display system will 
roll the program back into core and the CPU will 
continue execution of the program following the 
read statem,ent. 

Source modification 

This task allnws the programmer to make sm'all 
modifications to his source programs, both data 
decks and prngram decks. Modificatio.ns to these 
decks are made by using insert, replace, and de
lete statements. This feature allows minor pro
gram changes without requiring the resubmittal 
of the program decks. 

Hybrid utility 

The hybrid utility task displays inform·ation 
required by the Hybrid Monitor and also results 
coming from the Hybrid Monitor. The task allo.ws 
the programmer to display the frequency of each 
priority interrupt line, the expected length of 
execution of each priority interrupt line, the ac
tual length of execution for each priority inter
rupt line, and the number of priority interrupts 
that have been processed on each interrupt line. 
Other information which can be displayed in
cludes the exchange package sets for each priority 
level in the hybrid problem. 
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Day file 

When system errors occur which are critical 
to the programmer/operator, they are output to 
him on a display in the form of day file messages. 
Day file mess·ages include such information as po
tentiometer did not set, equipment is not in a 
ready cO'ndition, etc. The messages for all jobs 
alsO' appear on the main operator display console 
to inform the digital operator of the current 
status of the digital computer. The messages 
which appear on the remote display apply only to 
the job to which the particular remote display is 
assigned. . 

Preventive maintenance 

Preventive maintenance (PM) for the analog 
computer and Intracom is also controlled using 
the display system. The preventive maintenance 
task was implemented to' allow the operation of 
a set of mainten.ance routines, by technicians who 
are not familiar with the operation of digital 
compute~r equipment. When the preventive main
tenance task is selected, the directory of the vari
ous PM tests available is displayed. The technician 
may select one of the tests by typing in a two 
digit number associated with that test by the 
directory. When the particular test is loaded, the 
reminder of what setup must be made on the 
equipment before the test can be run are dis
played, for example, what patchboards must be 
mounted on the equipment, a reminder to place 
the equipment in digital computer control, or 
whatever is required for the test. 

Engineering aid 

The engineering aid task is basically a mainte
nance support program. This task is also useful 
when connecting new or additional equipment 
to the hybrid system. Since the LMSC hybrid 
system exists in an analysis., design, and evalua
tion environment, it is periodically required to 
connect to various pieces of hardware not nor
mally considered as part of the hybrid system. 
The engineering aid task allows scope type de
bugging of a piece of equipment, where the 
instructions to be executed may be keyed in di
rectly on the remote display by the engineer de
bugging the experimental equipment. The display 
system uses an additional PP to execute these 
tests. This capability has allowed new pieces of 
equipment to be checked without interfering with 
hybrid system's operation. 

Software organization 

The software for the digital computer is or
ganized as shown in Figure 5. First we will 
discuss the organization of central memory as 
used by the central processing unit (CPU). Then 
we will discuss the as,signments of the peripheral 
processing units (PPs) in the system. Finally we 
will describe how a job is processed by the system. 

Organization of central memory 

The central memory is divided into two main 
areas: resident and program. Within the resi
dent are seven control areas for 7 digital pro
grams. These control areas are Called control 
points. Storage in the program area may be as
signed to the control points. An area immediately 
following the central memory resident is assigned 
to control point 1; control point 2 immediately 
follows control point 1 and so forth up through 
control point 6. The top portion of memory is as..; 
signed to control point 7. As storage is required 
at a control point, higher numbered control points 
are moved upward in memory. 

Hybrid control points 

Two contrO'I points, numbe,red 1 and 7, are used 
fO'r hybrid jobs. This assignment is made in order 
that their storage areas need not be moved as 
new jobs are entered or deleted from the system. 

System control points 

Two control points, numbered 2 and 3, are nor
mally used by the system. Control point 2 
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(READ) contains the software which processes 
inputs from the card reader. Control point 3 
(OUTPUT) contains the software which proc
esses all line printer and card punch files. 

N on-hybrid control points 

Two control' points, numbered 4 and 5, are used 
for non-hybrid and non-real time jobs, including 
those of the straight digital or analog setup type 
which do not require real time response. 

Display control points 

A control point, numbered 6, is used to drive 
the remote display syste'm. This control point is 
utilized to satisfy the CPU requirements of the 
display systelTI. 

Peripheral processor assignments in the system 

Four of the PPs have permanent assignments 
while the others (6) are termed pool processors. 
Processors with permanent system assignment 

, are loaded when the digital system is initialized 
and continually perform their assigned functions. 
Pool processors are assigned to perform certain 
tasks which may be either system tasks or input/ 
output tasks. On completion of the task, they are 
returned to the pool. 

\ 

Processors with permanent system assignment 

The Montior Program (MTR) resides in PPo. 
This monitor program coordinates the operation 
of the entire hybrid system. It controls the as
signment of central memory, coordinates the util
ization of the digital computer's data channels 
by the other PPs, assigns tasks to the pool PPs, 
and controls the switching of the CPU between 
the control points of the system by passing ex
change jump requests to the hybrid monitor in 
PP8. 

The Dynamic System Display Program (DSD) 
in PP9 maintains a dynamic system display of all 
jobs on the main console that are in progress in 
the system. The CDC 6400 digital computer is 
unique in the fact that it has no hardware con
sole, either for maintehance or for controlling its 
programming system. Therefore all of the con
trol of the system must be exercised through a 
programmable Cathode Ray Tube (CRT') type
writer dis,play. 

The DIS 211 progTam in PP6 in conjunction 

with the central processor at control point 6 
drives the 5 remote displays. 

The Hybrid Monitor Program (HYP) resides 
in PP8. Its function is to control the CPU. It 
directly switches the CPU real time computa
tions and accepts requests from the MTR pro
gram in PPo for switching it between control 
points when real time requirements are satisfied. 

Pool processors 

Pool' processors perform most system-tasks and 
process input/output requests for the CPU. Two 
pool processor programs HIO and AIO are 
shown in Figure 5 and discussed below to em-
,phasize the fact that they perform communica
tion with the linkage equipment. 

The Hybrid Input-Output program (HIO) is 
loaded when a hybrid program goes into real 
time and remains resident throughout the real 
time portion of the program. It processes com
munication requests as initiated by the CPU or 
the priority interrupt system in the linkage 
equipment. These requests are generated by a 
library of Fortran callable subroutines. At com
pletion of the re,al time portion of the hybrid 
program the PP is returned to the pool. 

The Analog Input-Output (AIO) routine proc
esses all requests for non-real time setup of the 
analog ,computers. This program proces,ses a 
buffer of requests generated for it by Fortran 
callable CPU subroutines. On completion, the PP 
is returned to the pool. 

Job processing 

Figure 6 shows the normal flow of jobs in the 
system. Jobs are entered into the syste'm through 
the READ control point (2). A PP is periodically 
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assigned to the READ control point to see if any 
jobs have been placed in the card reader. If a 
job has been placed in the card reader the entire 
deck is read in and placed on the mass storage 
device. This file of data is then entered into the 
system directory as an input file with the priority 
that appeared on the job card. Control points 
which process jobs are; control points 1 and 7 
for hybrid jobs, and control points 4 and 5 for 
non-hybrid jobs. Determination of whether a job 
is a hybrid job or not is made from its priority. 
Jobs with a priority equal to or greater than 60 
are assigned to the hybrid control points (1 and 
7) and jobs with priorities less than 60 are as
signed to non-hybrid control points (4 and 5). 
Control points which are idle periodically have a 
PP assigned to the'm to determine whether they 
can accept a job at the control point. This PP 
scans the mass storage directory looking for input 
jobs. The hybrid control points (1 and 7) look 
for input jobs with priorities equal to or greater 
than 60 while control points 4 and 5 look for 
priorities of 60 or less. If an input file is found 
and the core storage required is less than the 
core storage currently available, the job is as
signed to the control joint and PPs are called up 
to begin operations as indicated by the job's con
trol cards. 

While the job is in execution it may generate 
punched cards or listable output. This data are 
written on the mass storage device. When the 
job is completed, or under control of the remote 
display syste'm, these files are tagged in the sys
tem directories as output files, and are released 
from the control point at which they were gen
erated. The Output control point, control point 
3, processes all of these listable and punched files. 
Periodically a PP is assigned to the Output con
trol point" in order to search the system file di
rectories for files which are designated as output 
files. When output files are found, they are printed 
or punched. 

Program organization 

The desire to run two hybrid simulations and 
to be able to do other digital background process
ing places emphasis on efficient utilization of the 
digital computer's small 32K core memory. Since 
the hybrid programs under development have an 
extended life of operation, they must be de
veloped in such a way as to efficiently utilize 
core storage. The use of the remote display as 
the control device in a hybrid program also affects 

the program organization. Jobs are loaded into 
the system and remain in operation on the sys
tem throughout the entire work shift. When a 
hybrid program is to be activated instructions 
are given to the digital computer through the re
mote display. A hybrid program therefore must 
be divided into a number of phases with these 
phases organized into overlays for more effective 
core utilization (See Figure 7). Since the real 
time overlay of a hybrid program is the largest 
overlay, emphasis must be placed on keeping this 
overlay as small as possible. This is done by 
insuring that there are no Fortran input/output 
statements, analog setup statements, or any other 
coding which is not absolutely nece'Ssary during 
the hybrid program's real time phase. Data which 
are required for the real time overlay preproc
essed in the program initialization overlay so. that 
they can be handled in a binary format during the 
teal time operation. Data then are generated by 
the re'al time overlay and written to the mass 
storage device where they are-later read and proc
essed by the report generation overlay. By not 
using read and write statements, the large 
amount of core storage that is used by Fortran 
run time I/O is conserved and made available 
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FIGURE 7-Storage allocation for main program overlays 



to the real time portion of the hybrid program. 
The main pro'gram cO'ntains co.mmO'n declara

tions fO'r data that must be cO'mmO'n to all over
lays, allowing cO'mmunication between them. The 
main program alsO' cO'ntains calls to the overlay 
loader fO'r IO'ading the cO'ntrol O'verlay and O'ther 
overlays which the cO'ntrO'I O'verlay may request 
(See Figure 8) . 

PrO'grams are organized so that they use the 
cO'ntrO'I O'verlay fO'r interrogating the remO'te dis
playas to' the next O'peration which is expected. 
The display task used fO'r this interrO'gation is 
the I/O task. This task allows the prO'grammer 
to communicate directly with the display as 
though it were a peripheral device. Thus, with 
FO'rtran read and write statements, he can read 
and write cO'ntrol informatiO'n which determine,s 
what part O'f the program is to be entered next. 

The contrO'I overlay performs a read instruc
tiO'n to' the remote display. The remO'te display 
system has been programmed SO' that, when a 
read command is given to' it, it will automatically 
roll the program out ontO' the mass storage device 
which makes the core storage used by the hybrid 
program available to the system. When the hy
brid programmer has typed in the contrO'I in
formation defining what he wishes to dO' next, 
the remote display system rolls the pro,gram back 
intO' central memO'ry and cO'ntinues execution of 
the contrO'I O'verlay which then determines from 
the parameters typed in what the O'perator has 
requested. 

The control overlay nO'w trans·fers control to' 
the main program along with the prO'per param
eters set fO'r IO'ading the overlay requested. When 
executiO'n of the requested overlay is finished, con
trol returns to the main program. The main pro
gram then relO'ads the control o.verlay and the 
display is read again. At this point the O'perator 
usually needs some time to analyze the results O',f 
his previO'us request. Since the hybrid pro.gram 
is rolled-O'ut at this point, the system can im
mediately begin executing waiting jO'bs and cO'n
tinues to' do. so until the hybrid programmer is 
prepared to continue. 

At this point it must be emphasized that the 
structure we are talking abO'ut is nO't explicitly 
defined in the O'perating system. Rather it is 
merely a structure for program O'rganization 
which has been found to be effective in allowing 
maximum use of the display as a control device 
and which emphasizes the efficient use of core 
storage. 
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Several of the typical overlays that may be .re
quested by the control overlay will now be briefly 
described. The initialization overlay is requested 
to initialize the program and to proces1s all of the 
input data cards. 

The analog set-up and test overlay is requested 
to set the potentiometers according to data that 
have been previously processed in the program 
initialization overlay. This overlay may initiate a 
number of tests to calibrate and/or dynamic test 
the analog mechanization. 

The control overlay may request a hybrid pro
gram run or possibly a sequence of runs. If a 
single run is requested, the real time overlay 
would be loaded into central memory from the 
mass storage device, the simulation would be ex
ecuted, and then the control overlay would be 
reloaded. If a sequence of runs is to be made, nor
mally the hybrid program would contain a run 
control overlay which would vary parameters in 
the digital portion of the simulation, change 
para,meter values on the analog computer por
tion of the simUlation, and perform other non
real time functions between the real time phases. 

The report generation overlay is requested to 
recover the data recorded on the mass storage de
vice during the e,xecutiO'n of the real time over
lay. It generates listings and plots of data which 
has been gathered from one or more runs. 

Communication with the linkage and analog 
equipment 

In describing the LMSC hybrid computer sys
tem, we briefly discussed the communication link
age equipment (Intracom) connecting the digital 
computer and the analO'g cO'mputers (see Figure 
3). AlsO' in describing the software organization 
for the digital computer (see Figure 5), we briefly 
discussed the two pool PP program, HIO and AIO, 
which are used in communicating with the In
tracom. In this and subsequent sectiO'ns O'f this 
paper, we will describe in detail the important 
features of this communication both from the 
standpoint of the Intracom's hardware and the 
system sO'ftware programs. 

To facilitate hardware design and system SO'ft
ware development, communication between the 
digital cO'mputer and the Intracom was grO'uped 
into the three categories: priority interrupt proc
essing, Hybrid Input-Output (HIO), and AnalO'g 
Input-Output (AIO). 

The first category, priO'rity interrupt prO'cess
ing, was desired in order that digital programs, 

called priority subroutines, with varying priori
ties might be initiated by logic signals from 
sO'urces external to the digital computer. 

The second category, Hybrid Input-Output, was 
desired in order that values of analog or digital 
prO'gram variables might be input/O'utput (I/O) 
at a fast rate to O'r from the analog cO'mputer, 
allO'wing for the possibility that the I/O defined 
in a predetermined pattern, might be initiated 
by a. logic signal from sO'urces external to' the 
digital computer. AlsO' the second category was 
desired to allow the digital computer to' read or 
write IO'gic signals (Le., discrete lines) to O'r from 
the IntracO'm, to' control a precision interval gen
erator, and to control the mode of the Intracom. 

The third categO'ry, AnalO'g Input-Output, was 
desired in order that the digital computer might 
perform initialization, checking, and monitoring 
of variO'us components within the· analO'g com
puter. This _ category gives the same capability 
to' the digital cO'mputer as the analog prO'grammer 
has with the manual keyboard O'n the analog 
computer. 

The first twO' categO'ries are closely related in 
that sensing of logic signals O'ccurring externally 
to' the digital cO'mputer is necessary and alsO' due 
to' the desirability and/O'r necessity of having 
bO'th I/O patterns and priO'rity subrO'utines ini
tiated by the same logic signal. Our attention in 
this section will be primarily fO'cused on real time 
priority interrupt processing. 

Priority interrupt processing 

Interrupt capability 

The CDC 6400 digital computer does not have 
a hard-wired priority interrupt capability; hO'w
ever, each O'f its PPs has the capability of com
manding the CPU to exchange its registers with 
16 central memory words. This exchange includes 
the transfer O'f all O'f the control, index, address, 
and arithmetic registers. Thus, by formatting in 
central memory exchange packages for each 
priority subroutine that is to be initiated by a 
priority -interrupt signal, it is possible to' rapidly 
-switch the CPU between priority subroutines frO'm 
a PP by executing an exchange jump command. 
This exchanging of registers requires less than 
three microseconds of CPU time. 

By installing hardware in the Intracom which 
senses the O'ccurrence of priority interrupts, de
termines the highest priority interrupt line ac
tive, and transmits this infO'rmation upon request 
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by a PP to a data channel which is co.nnected to 
the digital computer the ability to detect and re
spond to external interrupt signals can be realized 
by the CDC 6400. 

By designing the Intracom priority interrupt 
hardware such that two separate but identical 
circuits (priority trees) may determine the high
est priority interrupt active, installing a switch 
to. transfer the interrupt signal from one circuit 
to the other, and connecting the o.utput o.f each 
circuit to a separate data channel and PP, com
putation and input/output can be performed in 
parallel. 

Peripheral proceSso.rs associated with interrupt 
processing 

The digital portion of the detectio.n and re
sponse to external interrupt signals is handled by 
the Hybrid Monitor (HYP) and the Hybrid In
put-Output (HIO) peripheral pro.cessor pro.
grams. 

Hybrid monitor 

It contro.ls the o.peratio.n of the CPU and also 
determines which priority subroutines should be 
initiated in response to priority interrupts de
tected by it. It is comprised of a PP program, 
HYP, which is loaded at dead start time and a 
CPU program which is part of the central 
memory' resident. 

When no prio.rity subroutines are active o.r 
waiting to be processed, the PP program honors 
exchange requests from the system monitor to 
execute background jobs and maintains the jo.b 
stack. Perio.dically the Hybrid Monitor checks to 
see if a request to. initialize a hybrid program 
has been received. When such a request is re
ceived, it will read from central memory resi
dent information necessary to set up and to exe
cute the corresPo.nding hybrid program. 

The PP program (HYP) detects the occurrence 
of priority interrupts and activates the CPU 
when priority subroutines are to be executed. The 
HYP program periodically requests from the 
Intracom the highest priority interrupt line ac
tive and monito.rs the priority subro.utine cur
rently being pro.cessed by the CPU. Then based 
upon setup information which supplies the rela
tive priority of the interrupt initiated priority 
subroutines determines whether an exchange 
jump to a higher prio:vity subroutine than the 
one currently being executed i,s required. If an 

exchange jump is made to a higher prio.rity sub
routine, the Hybrid Monitor will mo.nitor the exe
cution time of this priority subroutine to insure 
that it does not exceed the programs' allotted time 
as specified by setup data. If the execution time 
becomes larger than that specified, the monitor 
will abort that ~particular hybrid program. 

Hybrid input-output 

The HIO peripheral processor program proc..: 
esses analog to digital, digital to analog, and dis
crete information to and from the Intraco.m. It 
Io.oks both to the central memo.ry fo.r requests 
coming from the CPU and to the Intracom's in
terrupt structure for commands to initiate trans
fer of data to and from the Intracom and/o.r 
analog computer. 

The HIO program requests' fro,m the Intracom 
the highest priority interrupt activated and de
termines, based upon setup info.rmation, whether 
or not an I/O pattern is associated with that 
particular priority interrupt. If an I/O pattern 
is associated with that interrupt, then the com
munication codes of the I/O pattern are executed 
and the transfer of data is accomplished. 

If both an I/O pattern and a prio.rity sub
routine are associated with a priority interrupt 
(leading edge I/O), the pattern definition is com
pletely executed by HIO and then a function code 
is sent by HIO to the Intracom which transfers 
the interrupt to the hybrid priority tree and thus 
to the Hybrid Monitor. 

Hybrid program organizatio.n 

To obtain an understanding of how priority in
terrupt processing is implemented, the organiza
tion and various phases of a hybrid program will 
now be discussed. A hybrid program is o.rganized 
with a main program, no.n-priority subro.utines 
to. the. main program, prio.rity subro.utines, and 
subroutines to the priority subroutines. The typi
cal organization fo.r a hybrid pro'gram is shown 
in Figure 9. 

In the following paragraphs we will present 
a step by step explanation o.f the main program 
structure of a hybrid program as it relates to 
priority interrupt proces,sing (see Figure 10). 
Information deemed necess'ary to clarify the de
scription will be inserted where needed. 

The main program of a hybrid program initiates 
and controls the various program phases and 
calls into executio.n non-priority subroutines. 



676 Fall Joint Computer Conference, 1968 

JOB Card 

HooK-- control card 

Hook data cards 

Ha1n program 

Hon-priority subrout1Des to IIa1n Program 

Priority subrout:lDes 

Subroutines to the Priority Subroutines 
END 
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FIGURE lO-Main program structure 

The main program and its nOon-priority sub
routines execute the analog set-up, pre-real time, 
and post-real time phas,es of a hybrid program. 

SETUPFL 

In general one of the first executable state
ments called in the main prO' gram is SET'UPFL. 
This system subroutine performs the initialization 
needed to enable a hybrid program to cO'mmuni
cate thrO'ugh the HIO peripheral processor pro
gram via a data channel to the IntracO'm. The 
HIO circular buffer is initialized to' enable CPU
PP cO'mmunicatiO'n. Also the Intracom priority 
interrupt subsystem is initialized such that all 

interrupts are cleared and disabled and such that 
all interrupt masks are cleared. 

I/O patterns 

The main program or the initialization code of 
a priority subroutine generates the I/O patterns 
during the pre-re,al time phase and they are ex
ecuted when an associated priority interrupt sig
nal occurs during the real time phase O'r when 
called from the main prO' gram, a priO'rity sub
rO'utine, a nOon-priO'rity subroutine, or by another 
I/O pattern. An I/O pattern is structured as 
shown in Figure 10. The pattern defines a sequence 
of computer instructiO'ns which perform input and 
output to' the Intracom and/ or the analO'g com
puter. A CALL STRTPAT statement must be the 
first statement of the pattern definitiO'n. This 
statement specifies a number (from 1to 63) by 
which the pattern can be referenced in the hybrid 
program, and it infOorms the system that what is 
to follow is to' be assO'ciated with this specified 
identification number. The CALL E,NDPAT state
ment indicates to' the system that the pattern 
definition is to' be terminated. The body of the 
pattern definition consists of calls to system com
munication subrOoutines such as GALL RADGS, 
analog-to-digital cO'nversiO'n, and CALL WDAGS, 
digital-to-analOog conversiOon. The s:ystem sub
routines called in the body of the definition cause 
instructions to be generated for the HIO periph
eral processor program. These 1/ patterns are 
resident in and executed from the PP which con
tains the ,HIO program. 

Priority subroutines 

A priority subroutine is a subroutine located 
in central memory which is to' be executed only 
during the real time phas.e Oof a hybrid prO' gram 
and is nO'rmally initiated by the occurrence O'f a 
priority interrupt signal. The priority subroutine 
is structured according to the special format 
shown in Figure 11. The initialization cO'de is 
executed in the pre-real time phas,e. The real time 
cO'de however, is executed in the real time pha,se 
due to' the occurrence Oof a priOority interrupt to' 
which the priority subroutine is associated. 

Priority levels 

Each I/O pattern, priority subroutine, or com-
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FIGURE ll-Priority subroutine structure 

bination I/O pattern and priority subroutine 
(leading edge I/O) is assigned a priority level 
on the basis of its frequency of occurrence or 
relative importance. A priority .interrupt line is 
then aSisigned to' each of these priority levels 
with the interrupt line with the smallest number 
being assigned to the highest priority level. 

Hook and hook data 

For each priority interrupt line that has been 
associated with a priority subroutine, a Hook 
data card which contains the interrupt line num
ber, maximum frequency O'f occurrence, and the 
maximum CPU execution time needed to process 
the corresponding priority subrO'utine is inserted 
in the program deck. The Hook system program 
is called by a HOOK control card at the beginning 
of a hybrid program deck. Using the data cards 
the Hook program informs the Hybrid Monitor as 
to which interrupts are to be used to initiate 
associated priority subroutines., the maximum fre
quencies of occurrence, and the maximum 
CPU execution times. Also the percentage of 
total CPU time needed per second to process 
each priority subroutine is calculated from the 
information on the Hook data cards and placed 
in the output file. 

CONNECT 

In the pre-real time phase of a hybrid pro
gram, calls are made to the CONNECT system 

program which communicates to the HYP and 
to the HIO peripheral processor programs what 
should take place in response to the occurrence of 
the various priority interrupt signals. A separate 
CALL CONNECT statement must be made for 
each priority interrupt which is to be used by the 
hybrid program. The calling sequence of the 
CONNECT statement specifies the Intracom to 
be used, the interrupt line number, the I/O pat
tern number, the priority subroutine na~e, and 
priority subroutine parameters. 

This call statement may connect an Intracom 
interrupt to an I/O pattern, resident in the RIO 
PP, which will communicate information to the 
Intracom during the real time phase of the hy
brid program whenever its associated priority 
interrupt is triggered. 

It may connect a priority interrupt to a priority 
subroutine which will be called into execution 
by the Hybrid Monitor's PP program (HYP) 
during the real time phase whenever the con
nected priority interrupt occurs. The CONNECT 
program executes or places in an RIO buffer for 
execution when RLTIME is called, the various 
initialization codes of the priority subroutine and 
t e r min ate s upon encountering the CALL 
F ASTPRG statement; then during the real time 
phase whenever the associated priority interrupt 
is detected, the priority subroutine will be en
tered after the CALL F ASTPRG statement and 
the real time code will be executed. The initializa
tion code of a priority subroutine usually con
tains a SMSK call statement, whose purpose is to 
set the mask of (i.e., enable) the associated prior
ity interrupt. The SMSK statement is placed in 
the RIO buffer to be processed at the time the 
RLTIME call statement is executed. 

The CONNECT statement may connect both 
an I/O pattern and a priority subroutine to a 
priority interrupt. In which case, the I/O pattern 
will be executed completely and then the priority 
subroutine will be executed. 

RLT/ME 

This system subroutine is called, following the 
initialization portion (pre-real time phase) of a 
hybrid program at the point in the main pro
gram where it is desired for real time processing 
of priority interrupts to be initiated. This sub
routine determines whether the total CPU execu
tion time required by both hybrid programs ex
ceeds 80 percent of the available CPU time. A 
pause is initiated in the new hybrid program if 
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the total execution time needed does exceed the 
available CPU time. The routine enables the In
tracQm's priQrity interrupt. subsystem. The prime 
functicns of the RLT'IME call statement are acti
vating the Hybrid Menitor so that it may start 
real time precessing Qf prierity interrupts and 
ca using the HIO program to' be loaded into. a poel 
PP. HIO remains resident in the pp. during real 
time and makes it possible to' cemmunicate with 
the Intracom and the analeg ccmputer. 

WAIT 

Fellowing the RLTIME call statement the 
WAIT subreutine is called by the main prQgram 
to' place the main pregram in recall status until 
requested to. become active again by an ACTIVE 
or ABORT call statement in a priority interrupt 
initiated prierity subrQutine. The CPU at this 
point discontinues processing the slew or non
real time portion of the hybrid program. 

I/O patterns, priority subroutines, and com
bination I/O patterns and prierity subroutines 
continue to operate during this time, that the 
main pregram is in recall status, whenever, ini
tiated by their associated priority interrupts. 

I/O pattern body 

The body Qf an I/O pattern is primarily made 
up of the RADeS and the WDAGS statements. 
These two. call statements centrel the flew ef 
analog-to-digital and digital-to-analog data and 
perfQrm the actual transfer ef that data to and 
frem the digital cemputer. , 

The functiQn of the RADGS system routine is 
to read sequentially addressed analog-to-digital 
(A/D) channels, A/D channels eriginate frem 
analeg trunks lecated en the analeg cemputer's 
patchboard, by means of the analog-to-digital 
converter (ADC) in the Intracom, transfer the 
data read frem the Intracom's ADC to the HIO 
PP, and then pass the data into a specified buffer 
in central memory. In the RADGS call statement 
the address of first A/D channel to. be read, 
the total number of channels to be read, and the 
buffer intO' which the data is to be stered are 
specified. AlsO', one of eight sample al\d held con
trels en the Intracem patchbeard may be spec
Hied; thereby, allewing the A/D· channels equipped 
with sample and held amplifiers to' be placed in 
held prier to' their being read by the ADC, pre
viding apprepriate patching has been dene en the 
Intracem. 

The WDAGS subreutine outputs to. sequentially 
addressed digital-to-analeg channels (DAGs) in 
the Intracom . data which has been previously 
prepared by the digital program (GALL SeAL
OUT) er data scaled, co' nverted , and packed by 
the WDACS subreutine itself. The HAGs' outputs 
are terminated en analog trunks en the analog 
computer patchbeard. The WHAOS call statement 
specifies the buffer frem which data is to output, 
the address ef the first DAC to' which data are to' 
be transferred, and the total number of sequen
tially addressed DACs to. which data are to' be eut
put. If ene of the eight transfer centrels, lecated 
en the Intracom patchboard, is specified then, aU 
data to' be output are transferred to' the DACs 
sequentially but are cenverted simultaneeusly to' 
ana leg veltages. If the data to' be transferred have 
net been previeusly prepared, a table of scales 
(cenversion factors to cenvert frem physical 
units to. analeg voltages) must be specified in the 
WDAGS call sta;tement. 

The body cf the I/O pattern may also centain 
calls to system subreutines which read Qr write 
logic signals to' er frem individual or groups Qf 
discrete lines which Qriginate er terminate on 
the Intracem patchboard, change the mode ef the 
Intracom, control the precisien interval generator, 
set er reset interrupt masks, and ·etc. 

Real time code of a priority subroutine 

N ermally in the real time code a can to the 
SCALIN system subreutine is made to unpack, 
cenvert, and scale the data that have been placed 
in central memory by the HIO PP as a result 
of a RADGS call in an I/O pattern. Computa
tiens based upen this data are then made in the 
priority subroutine using any legitimate Fortran 
statements and/er the data are stered en the disk 
fer later analysis during the post-real time phase 
of the hybrid pregram. Data which have been 
generated by the priority subroutine are prepared 
for output to' the analog computer by a call to 
the SCALOUT subroutine _ which scales, converts, 
and packs the generated data. Nerm.ally this data 
will then be output to' the analeg compute:r by a 
WDACS call statement in an I/O pattern. 

Leading edge I/O 

At this point the significance of having both 
an I/O pattern and a priority subroutine asse
ciated with a prierity interrupt should be re
emphasized. Since the I/O pattern executien is 
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accomplished by the HIO PP, it is apparent that 
parallel cemputatiQn in the CPU may be taking 
place while the input or eutput of data is being 
handled in the PP. 

If, fQr example, two. interrupts which have 
associated leading edge I/O Qccur simultaneQusly, 
HIO perfQrms the prQcessing Qf data assQciated 
with the highest priQrity interrupt and then, by 
switching the prierity interrupt to a hybrid 
priQrity tree, causes the Hybrid MQnitor to swit~h 
the CPU to. the priority subrQutine assQciated 
with this priQrity interrupt. HIO now prQcesses 
I/O data assQciated with the other priQrity in
terrupt while the CPU is executing the prierity 
subreutine asseciated with the highest prierity 
interrupt. Then UPQn cempletiQn Qf this priQrity 
subroutine, the ether priQrity subreutine will be'
gin executiQn. Thus, parallel input/Qutput and 
CPU ccmputatiQn is accQmplished. This becomes 
very impQrtant when it is realized that if two. 
hybrid jcbs are running in parallel, then CPU 
cemputatiQn and two I/O patterns may be pre
ceeding in pa.rallel. 

Hybrid utility display 

InfQrmatiQn about the priority interrupts be
ing used in a hybrid pr.ogram may be displayed 
Qn a display SCQpe by using the Hybrid Utility 
Task Qf the display Qperating system. Each in
terrupt's priority, HOOK duty cycle count, 
elapsed duty cycle cQunt, and the number Qf times 
that the asseciated priority subrQutine has been 
in executiQn when a higher priority interrupt 
Qccurred is displayed. This display allows the 
prQgress .of the real time phase .of a hybrid pro
gram to be mon ito. red. 

If a duty cycle Qf zero. is placed Qn a HOOK 
data card, a maximum duty cycle will be assumed 
and cnly cne hybrid prQgram Qf this na.ture is 
allQwed Qn the cQmputer at a time. This feature 
assures that the hybrid jQb will nQt be thrQwn 
cff due to duty cycle failures and it allQwsa 
methQd whereby the duty cycle Qf a prierity sub
rQutine can be evaluated by m.onitering the actual 
duty cycle time en the display. Once the duty 
cycle has been determined, it may be entered via 
the display keyboard under Task H to medify the 
appropriate HOOK data card for subsequent runs. 

RELEASE 

When it is desired to' terminate the real time 
prQcessing of prierity interrupts, the RELEASE 
statement is called. This' subrQutine inferms the 

Hybrid MQniter to' gO' inactive and causes the 
HIO pp to be drcpped, thus ending cemmunica
tiQn with the Intracom and/er analQg cemputer. 

Priority interrupt hardware 

The priority interrupt subsystem of the linkage 
equipment (Intracem) is cemprised Qf an in
terrupt register, mask register, switching regis
ter, enable/ dis,able flip-flep, two' steering gates, 
and twO' interrupt priority trees. Each registe,r 
cQnsists of 24 flip-flQPs; thus, 24 individual and 
unique priQrity interrupts are provided fer hy
brid prQgram usage. A simplified blQck diagram 
of the priority interrupt subsystem is shown in 
Figure 12. 

A basic priQrity interrupt line cQnsists . of a 
mask, a switch, and an interrupt flip-flop. The in
terrupt flip-flQP is set by a lQgic signal applied 
to. the pr.oper IntracQm patchboard hele Qr by an 
INTRPT call statement frem the HIO PP. Nete 
that the interrupt flip-flQP cannet beset unless 
the Enable/Disable flip-flQP has been enabled by 
the RLTIME call statement frQm the HIO PP. 

If bQth an I/O pattern and a priQrity sub
routine are to. be initiated by the interrupt, 
neither the I/O Interrupt Inhibit Qr the Hybrid 
Interrupt Inhibit are inhibited by lQgic signals on 
the IntracQm p1atchboard. In this case, the switch 
flip-flQP WQuld be reset, having been reset if set 
by the changing ef states of the Enable/disable 
flip-fl.oP which eccurred in response to the call 
RLTIME statement. Then assuming that the 
Mask flip-flcp has been set by a SMSK call state
ment frem the HIO PP, the I/O steering gate is 
enabled and passes the interrupt signal to' the 
I/O prierity tree where it is ceded. 

The priQrity tree generates a coded' numbe:r, 
which is read by the HIO PP, centaining the 
highest priority interrupt currently active in the 
IntracQm. The RIO PP executes the I/O pattern 
associated with that priQrity interrupt and sends 
a functiQn cede to. the Intracem which sets the 
switch flip-flep. T'he setting Qf the switch flip
flQp disables the I/O steering gate and enables 
the Hybrid steering gate which allQws the prierity 
interrupt signal to be p'assed to. the Hybrid priQr
ity tree where it is ceded. The HYP PP reads 
this cQded number and if no. higher priQrity in
terrupt assQciated priority subreutine is being 
executed, the HYP PP initiate3 an exchange 
jump to. the priQrity subreutine assQciated with 
the active priQrity interrupt. Upon completiQn cf 
the exchange jump to' the prierity subroutine, 
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the HYP PPsends a function code to the Intra
com which resets the switch and interrupt flip
flops. 

If only an I/O pattern is to be executed, the 
Hybrid Interrupt Inhibit is inhibited by a logic 
ground applied at the patchboard. The priority in
terrupt is processed as previously dis.cussed except 
that upon completion of the pattern execution the 
interrupt flip-flop is reset by a function code from 
the HIO PP and nothing is done to the switch 
flip-flop. 

To execute only a priority subroutine, the I/O 
Interrupt Inhibit is inhibited which sets the 
switch flip-flop and maintains it in a set state. 
The priority interrupt is processed as previously 
described. 

Non-real time hybrid input-output 

A number of system subroutines are provided 
for communicating with the various sub-systems 
of the linkage equipment. These subroutines use 

the HIO PP to perform the actual communication 
with the linkage equipment. They may be used 
either in the real time phase or in the non-real 
time phases of a hybrid program. Several ex
amples of their use in the real time phase have 
been discussed previously. 

To be used in one of the non-real time phases 
of a hybrid program a call is made to the 
LOADHIO subroutine which loads the RIO pro
gram into an available pool PP (see Figure 13). 
Once RIO has been loaded, then any of the sub
routines listed in Figure 13 may be called. The 
DROPRIO call statement is used to inform the 
system that no further communication to the 
Intracom is to occur and HIO is then dropped 
from the pool PP. 

Analog input-output 

The digital computer can perform initializa
tion, checking, and monitoring of various analog 
computer components by using AIO. The system 

FIGURE 12-Intra.com interrupt SubsYfitem 

DIGITAL CALL STATEME .... N_TS __ .... 

RMSK 

CMIIK 
(ALSO 8ETUPFL) 

MASTER CLEAR 

JNTRPT 

RLTDlE 

BETUPFL 

MASTER CLEAR 

CDITS 

FUNCTION 
DECODER 
I/O CHANNEL 
CONTROLLER 

1------1 MASK 1 

I--~t---+-------t------i SWITCH 

FUNCTION 

DECODER 
HYBRID 
CONTROLLER 0 

I/O INTERRUPT INHIBIT 

(I/O PATTERN INHIBITED) 

HYBRID INTERRUPT INHIBrr 
(PRIORITY SUBROUTINE lNHIBr;t'ED) 

NOTES: @ HIO SENDS RESET CODE WHEN I/O 
T.:\ PATTERN EXECUTION 18 COMPLETED. o HYBRID MONITOR SENDS RESET CODa 

WHEN EXCHANGE JUMP HAS B'fEN 
MADE TO THE PRIORITY SUBROUTINE. 
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SETUPFL 

. WADHIO 

(IntracCID I/O Subroutines) 

CINTS (clears interrupts) RPIG (read PIG) 
(].ISK (clears I18.sks) SCAIOOT (scale data for output) 
INTRPr (set interrupt) 3MSK (set mask) 
PATIO (execute I/O pattern) STORE (place sample/holti in hold) 
PIG (change mode of PIG) TRACK (place SiB in sample) 
RAnCS (read A/D channels) TRNSFER (DAG control) 
RDI'3CR (read discrete line) WDAGS (output to DAG3) 
RD\.J' (read parallel word) ~IDISGR (write to discrete) .\ 
RMODE (read Intracan mode) ~ID\<1 (write to parallel "Ioro) 
RMSK (read masks) lOODE (set Intracan mode) 

WPIG (initialize PIG) 

DROPHIO 

FIGURE l3-Non-real time HIO call order 

subroutine, CONSOLE, is called to specify the 
analo.g computer with which communication is 
desired. The MODE, READ, and SETPOT sub
routines are used during the analo.g setup phase 
o.f the hybrid pro.gram to. change the mo.de of 
the analo.g co.mputer, to read analo.g components, 
and to. set the Po.tentio.meters. These analog co.m
puter setup commands are processed much like 
those of HIO. A pool PP pro.gram, AIO is called 
up to. process the 'requests that are placed in the 
central memo.ry circular buffer, and when the 
requests have been processed, the PP is returned 
back to. the o.perating system. 

Since the data channel, connected to. the analog 
contro.ller o.f an Intracom is only reserved during 
the time that an actual communication is being 
made, two. AlO PPs 'may be operating via the In
tracom's single analog co.ntro.ller to different 
analo.g compute~s. Communicatio.n can be per
formed simultaneously to. theanalo.g computer 
and to the Intracom because separate PPs are 
used to. transmit informatio.n to the analo.g con
troller· and to. the I/O contro.ller o.f the linkage 
equipment. This feature permits a hybrid prob· 
lem and an analog pro.blem to. be run using the 
same Intraco.m and at the same time witho.ut in
terfering with each other. 

Automatic problem verification 

Static checking o.f the analog co.mputer por~ 
tio.ns o.f a hybrid problem can be perfo.rmed using 
the Automatic Problem Verification (APV) 
digital program which resides in the central li
brary sto.red o.n the mass sto.rage device. APV 
m:ay also be used as a request package to. o.perate 
the analo.g computer if desired. 

APV uses source program statements, similar 
in syntax to. Fortran, to process commands to 
select an analog computer or an Intracom, to set 
an analog computer or Intraco.m mode, to set a 
Po.tentiometer, to. set the precision interval gen
erator, to set a digital to analo.g co.nverter, to. read 
analo.g components" an.d to. test readings fro.m an 
analog computer against the evaluatio.n of an 
arithmetic expressio.n. Each source statement 
is processed immediately after it is read from 
either the remo.te display or the input file. If an 
error is detected, the nature of the error detected 
is output to either the remo.te display, or to the 
output file. 

Testing is perfo.rmed by statements of the 
fo.rm: system variable (a string o.f characters 
representing the value o.f a particular analo.g 
oomponent) = expressio.n (string o.f co.nstants, 
system variables, etc., separated by arithmetic 
operato.rs) . When such a statement is en
countered, the analog co.mpo.nent specified by the 
system variable is read, the expressio.n is evalu
ated with o.ther system variables being read if 
necessary, and if the two values o.btained lie with
in a specified tolerance, the test passes. To.ler
ances can be specified by the programmer o.r 
standard built-in to.lerances may be used. If the 
test fails, the value read for the system variable 
being checked, the value of the evaluated expre~ 
sio.n, and the difference between these two. values 
are output to the display and to the o.utput file .. 

Step-by-step static checking of the analo.g com
puter under the pro.grammer's control is ac
co.mplished by allowing the APV program to be 
controlled from the remote display. 

SUMMARY 

This paper has speculated o.n the blue sky hy
brid systems o.f the future, and discussed the 
general features and some o.f the details o.f im
plementatio.n o.f the Lockheed Missiles and Space 
Company (LMSG) hybrid computer system. Mo.st 
o.f the features described were implemented by 
modifying and augmenting a digital batch proc
essing system. 
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At the time of the writing of this paper there. 
have been at least six implementatio.ns o.f hybrid 
o.r real time systems using CDC 6000 series digital 
computers. All o.f these systems are different. 
Each system has been implemented independently 
and the emphasis guiding the develo.pment of 
each system has been focused o.n completely dif
ferent areas. The desire to. use the system as a 
batch processor has tended in some systems to. 
o.verride the hybrid requirements. 

The backgro.und of p'eople responsible for the 
software develo.pment has also varied. Tho.s,e with 
predo.minately analog background have been s,atis
fled with simple system design which requires the 
hybrid programmer/o.perator to. use complicated 
methods o.f program organizatio.n and contro.l. 
Those with batch processing experience have 
compro.mised the hybrid requirements and have 
been mo.re concerned with protecting the system 
fro.m the hybrid pro.grammer/o.perato.r rather than 
giving him mo.re capability and assistance. 

Interface hardware varies in each o.f these sys
terns fro.m a single level interrupt so.urce to a 
Hardware Hybrid Mo.nitor. 

Mo.st o.f the systems which have been delivered 
are no.w maintained by the customer. The inde
pendent development o.f these systems continually 
widens the gap between the compatability o.f the 
various systems. This trend has been aggravated 
by the tendencies of people to. defend their o.wn 
implementatio.ns to the point o.f igno.ring o.the·r 
system approaches that would sati.sfy their par
ticular hybrid requirements. 

The reason fo.r all of this disunity is the lack 
o.f experience and the resulting definitio.n o.f the 
requirements o.f an efficient hybrid co.mputing 
system. Hybrid computation is at the point that 
batch pro.cessing was when each installation de .. 
veloped their own operating systems. What hy
brid system software needs is a definition of what 
a hybrid system is and guidelines to implement it. 

The definition of a hybrid system would set 
requirements o.n hybrid equipment vendo.rs to. 
furnish software to. meet a certain standard. They 
would then be required to develop and maintain a 

system o.f software that would meet the require
ments o.f most customers. This definition of ,a 
hybrid package would also. allo.w the pro.spective 
customer to. make meaningful evaluatio.n of a 
hybrid system regardless o.f his experience. 

Guidelines should emphasize characteristics of 
a hybrid system that will handle most o.f the 
problems that a general hybrid facility will face. 
In general the implementatio.n of a hybrid system 
has been built aro.und the system's initial require
ments. After this has been do.ne the capability 
of the system is set and future requirements must 
fall within that cap.ability. Systems, however, 
should be designed to explo.it the capability of the 
hardware as the o.nly limiting facto.r. 

If we review o.ur crystal ball gazing and our 
current implementatio.n, we can say we have co.me 
a long way towards our ultimate go.al. We have 
established co.mmunicatio.n to. the hybrid pro.
grammer / o.perato.r at a Io.catio.n remo.te to the 
digital computer and close to. the operatio.ns cen
ter of the hybrid program. We have allowed him 
co.mplete system flexibility giving him extensive 
co.ntro.I and monito.ring capabilities. We have 
harnessed a large CPU and taken advantage o.f 
a multi-pro.cesso.r organizatio.n. The system is ef
fective as a hybrid computer allo.wing two. hybrid 
jobs to. run simultaneously and is still capable of 
processing backgro.und digital wo.rk when pos
sible. Our interactive Automatic Pro.blem Veri
ficatio.n Pro.gram (APV) is an effective step to
wards the software package described. 

The "blue sky" set o.f software described at the 
beginning of the paper is beyo.nd the reso.urces 
and capability o.f a single existing installation, 
and can o.nly come about by utilizing all the re.. 
sources o.f vendo.rs, universities, and users in de
signing and implementing co.mprehensive and 
efficient hybrid software systems. 

We at LMSC feel that we have made a giant 
step fo.rward. The rest of the way is clearly pos
sible with the hardware available. The last step 
will come about when so.ftware resources are bet
ter marshalled to. pursue the commo.n objective, 
"the ultimate hybrid system." 
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Hybrid simulation requirements 

Prior to discussing the design and implemen
tation of an executive system for hybrid simula,.. 
tion, it is desirable to discuss the pa.rticular re
quirements which hybrid simulation places upon 
the digital computer and its operating software. 
Of course, the designers' opinions of how the 
solution of a hybrid problem can best be achieved 
have a great effect on the design goals and sub
sequently the implementation of the system. 

Priority interrupt structure 

There has been substantial discussion in the 
past about the necessity of a true priority in .. 
terrupt structure for hybrid simulation. It is not 
the objective of this paper to establish that a 
true priority interrupt structure is essential. 
Suffice it to say that the design of this hybrid 
executive, henceforth referred to as RAD-5075, 
is based upon the premise that for the class of 
fiigital computer considered a hardware priority 
interrupt structure, and routines in the execu
tive system to support the hardware, are desir
able for the solution of hybrid problems. Based 
on this premis·e, a major design goal for RAD-
5075 was to provide a convenient means for the 
user to link high priority tasks in his problem 
to external priority interrupts in the digital sub
system of the hybrid system. The ability to have 
dynamically programmed changes in the relative 
priority of tasks is also of importance. However, 
providing the user with a fle~ible and convenient 
means of dealing with the priority interrupts is 
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not sufficient. The response of the digital sub
system to asynchronous interrupts from other 
SUbsystems of the hybrid system must occur with
in a time period which is not significant relative 
to the frequencies of problem variables or events. 
The priority interrupt structure must assume the 
responsibility of preserving and restoring the en
vironment of the interrupted program. 'This 
3tchieves the desirable feature of multiple users 
not having to concern themselves with the op
erations of each other. 

Re-entrancy 

The concept of a priority interrupt structure 
in a hybrid system is very closely related to that 
of re-entrancy. In an environment where i1}ter
rupts can occur asynchronously, it will often 
happen that the routine which has been inter
rupted will be used by the interrupting program. 
This can occur with math or library functions or 
with input/output operations. For cases such as 
this, it is not sufficient that the interrupt struc
ture (hardware and software combined) preserve 
only the registers and central processor status of 
the interrupted program. It is also necessary 
that the intermediate data created by the pro
gram and stored in a memory location be saved 
by a technique such as "stacking" where a last
in, first-out algorithm applies to operations to 
and from the reserved storage are'a for a par
ticular data value. The ease of achieving re
entrancy of programs is a function of the in
struction repertoire and the hardware of the re
spective digital computer. 
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Input/Output 

Input/ output requirements for hybrid simula
tion are specialized. It is .necessary to' prO'vide the 
capability for the digital computer to communi
cate with devices which are quite different from 
the standard digital computer peripherals. Differ
ences exist in the formatting of the data, in the 
rate of transfer, and in the type and extent of 
error checking which is done. The goal here was 
to make the use of the' specialized input/output 
operatiO'ns as convenient as communication with 
the standard peripherals, but to incorporate the 
differences in philosophy which are dictated by 
real-time hybrid simulation requirements. An ex
ample will be used to illustrate the latter point. 
If in a standard digital computer magnetic tap~ 
operation, an error condition is encountered, the 
operation will be retried a set number of times 
before reporting the error condition and taking 
an action such as aborting the job. For hybrid 
input/output it is desirable to have predictable 
time delays associated with the overhead, and the 
time critical nature of the communication nor
mally precludes the use of time consuming error 
recovery routines. Thus, for hybrid transmissions 
for the majority of cases, all that the sO'ftware 
can do is report error conditions which have 
been detected. 

The goals of speed and convenience, for hybrid 
input/output present conflicting criteria. Whereas 
the writing of stand-alone routines will in almost 
every case result in the most efficient code for 
input/output operatiO'ns, the supervising of in
put/O'utput by an executive system removes a 
substantial programming burden from the gen
eral user. Thus, a hybrid executive intended for 
general purpose problem sO'lving capability re
quires a rather unique compromise between the 
two conflicting criteria. 

Multiprogramming 

The nature of the hybrid envirO'nment and the 
cost and capabilities of third generation digital 
computers dictated the. next property which was 
one of the designers' goals, that of multipro
gramming. It is characteristic of hybrid opera
tion that a relatively large percentage of time 
is spent in the "hold" or "idle" state which gen
erally results in very inefficient utilization of the 
digital computer's central processor. An executive 
system that will support more than one core resi
dent job will certainly make more economical use 
of the digital subsystem in a hybrid environment. 

There are many considerations and complexities 
which enter intO' the design of a multiprogram
ming system. The multiple users must be pro
tected from one another and be able to execute 
completely independent of one another. The allo
cation of input/output devices between or among 
jobs must be taken care of by the executive. Also, 
job scheduling and job accounting tasks are taken 
care of by the multiprogramming executive. 

Interactive capability 

Another goal in the design of this hybrid 
programming system was to provide the "hands
on" quality which has always been available to 
the user of analog computers. This facility is pro
vided by an interactive capability allowing the 
user to stop his prO'blem at run-time and monitor 
or modify analog or digital problem variables. 
Together with the capability of restarting his 
problem, this gives the hybrid programmer the 
same level and flexibility of communication which 
the analog computer user has traditionally had. 
Also included within the scope of this feature are 
such digital computer debug capabilities as snap
shot dumps and inserted "patches." A closely re
lated capability is the establishing of a source 
file on a device, such as a disc, which can be up
dated at the source level from a device such as 
a remote CRT display. Having updated the source 
file, the user can recompile without resubmitting 
his job. 

As has already been pointed out in the discus
sions of interrupts, re-entrancy, and input/output 
operations, hardware has repercussions on the 
amount and appearance of software necessary for 
a hybrid executive system. This point will be dis
cussed further in the implementation section at 
which time some discus.sion of the hardware in 
the interface subsystem will also be given. 

The digital computer 

The considerations in this section concern hard
ware, however, as has already been pointed out, 
the characteristics of the digital computer hard
ware havemajO'r repercussions on the nature or 
amount of software required for hybrid opera
tion. 

In a hybrid environment, the digital computer 
not only must have the capability of responding 
to demands of other components of the sys,tem.in 
a very short period of time, but it also. must be 
capable of keeping up with the other components 
in terms of computational speed. The size of the 



Priority Interrupt Oriented Hybrid Executive 685 

Sigma 5/7 instruction repertoire, the capability 
of directly addressing any memory location with 
a me'mory referencing instruction, fast floating 
point arithmetic hardware, immediate c operand 
acces.sing instructions, and a floating index ca
pability which allows convenient manipulation of 
other than word size quantities are some of the 
features which make it possible for the Sigma 5/7 
to meet the above two requirements. 

Priority interrupt structure 

The priority interrupt structure of the Sigma 
5/7's is very powerful and flexible. There may be 
up to a maximum of 224 external interrupts each 
identified by its own dedicated memory location. 
There are two levels of control of the interrupt 
system. The accepting of interrupts by anyone 
of the three groups (counter, input/output, or ex
ternal) can be inhibited by setting one of three 
bits in the program status doubleword (PSD) in 
the CPU. The external interrupts can be individu
ally armed, disarmed, enabled, or disabled making 
it possible to have programmed dynamic reas.sign
ments of priorities. 

Re-entrancy 

Operation in an asynchronous interrupt en
vironment requires re-entrancy as one of the prop
erties of the executive system and all library and 
input/ output routines. In order to achieve re
entrancy, it is neces,g~ary to preserve the machine 
environment upon entering a routine and restore 
it upon exiting. The Sigma 5/7's have two fea
tures which greatly facilitate the implementing of 
re-entrancy. 

The first feature is the possibility of having 
mUltiple blocks of the 16 general-purpose regis
ters. When an' interrupt occurs, the exchange of 
program status doublewords (PSD) can also effect 
a change to a different general register block 
for the interrupt program. This automatically 
saves the 16 registers for the "old" program and 
they will be restored when the interrupt program 
has been completed and the "old" PHD is restored. 

The second feature is the presence within the in
struction repertoire, of push-down stack instruc
tions. These provide the capability, by the execu
tion of one instruction, of saving all 16 registers 

, in a reserved stack area that is maintained by the 
system or established and maintained by the user. 
These instructions also allow the .saving of the 
contents of memory locations, other than general 

registers which have been set to some intermedi
ate value by a routine. 

Input/Output 

The Sigma 5/7's have an input/output channel 
that provides a full word parallel capability. It is 
possible to read a 32 bit value from an external 
device into a general register by the execution of 
only one instruction (a Read Direct) or write a 
32 bit value from a general register to an external 
device by the execution of a Write Direct. This 
capability has the effect of making other elements 
of a hybrid computing system appear to be simply 
extensions of the digital subsystem. 

The Sigma 5/7's also have an automatic, buf
fered sequential character transfer channel (In
put/Output Processor), and it has its uses in a 
hybrid system. 

The basic digital computer operating system 

Description 

The SDS developed Real-Time Batch Monitor 
(RBM) was chosen as the basis for the hybrid 

executive. Principal reasons for this choice were: 

1. Disc orientation of the system. 
2. Small residency requirement of the system 

«4,000 words). 
3. Job stream proces,sing capability. 
4. Fast servicing of user requests. 

RBM will be very briefly described to provide 
the reader with so·me knowledge of the foundation 
of RAD-5075. 

The system processors, copies of the resident 
Monitor and the Control Card Inte'rpreter, and 
the library, reside in two files (M:PROC and 
M :LI) on the RAD (Rapid Access Data File). 
These two files can be accessed only by the oper
ating system and it is possible to execute a dead
start boot of the system from the RAD at any 
time. From the end of M: LI to the physical end 
of the RAD, the user can establish his own files 
for uSle at execution time. However, at compile 
or assembly time the RAD, starting at the end of 
M :LI, is used as the binary output (BO) device 
if no other explicit device assignment' has been 
made. If binary input (BI) is assigned to the 
RAD at the time that a load command is en
countered, RBM assumes a compile-and-go situa
tion in which compilation was the last operation 
which referenced BO. Figure 1, RBM Disc File 
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M·PROC , 
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M:BO OR 
M:BIOR 

M:LI USER FILES (F:XXX) 
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TIME o SYMBOL FORTRAN LOADER DUMPING RBM CARD AND ~ o ~SSEMBLER COMPILER LOADER MONITOR INTER- MATH 

T PRETER LIBRARY 

FIGURE l-RBM disc file organization 

PHY SICAL 
END OF 
RAD 

Organization, indicates the RBM organization of 
RAD files. 

The individual processors are in absolute on 
the RAD, and when the Control Card Interpreter 
(CCI) encounters a control card requesting one 
of them, the processor is loaded at some predeter
mined system bias. 

Figure 2, Memory Map of RBM, illustrates a 
memory map of RBM during the time that the 
system is in idle awaiting a job. 

The CO'ntrol Card Interpreter is transient in 
that it is brO'ught in from the RAD by the Monitor 
between execution phases of a job. Some of the 
job control cards which GCI recognizes under 
RBM and brief descriptions of the resulting op
erations are shown in Appendix A. 

If the FIN control card is included at the end 
O'f a job, the operator must use the control panel 
interrupt to initiate an unsolicited key-in which 

TOP Of CORE '-
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X'l000 
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OPTIONAL ROUTINES 
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RBM 
MONITOR 

X'60 
TRAP LOCATIONS 

0' 

FIGURE 2-Memory map of RBM 
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TRANSIENT 

,RESIDENT 
'PORTION 
OF 
SYSTEM 

will remove the s~stem from the idle state and 
cause CCI to go' to the card reader (control com
mand input device) for the next control command. 
However, if no FIN cards are used in a job stack 
in the card reader, every time a JOB card is en
coulltered the previous job will be terminated and 
signed off and the subsequent job will be read 
into memory. Thus, RBM does provide a job 
stream processing capability. 

The disc file management capability provided 
by RBM is minimal. Under the standard system 
the user can utilize RAD space outside of 
M:PROC and M:LI for scratch storage only. 
There is nO' provision for protecting his file from 
subsequent jobs. 

The Symbol Assembler which operates under 
RBM is a one-pass assembler; the compiler is 
SDS's FORTRAN IV-H which is also a one-pass 
processor, and the loader does not provide the 
capability of linking or overlaying. Since the as
sembler is only one-pass, the loader must define 
all forward references and literals and must s.at
isfy all external references. 

The FORTRAN Run-Time Library, the Math 
Library, and all of the input/output under RBM 
are re-entrant. 

The fact that the core residency requirement of 
RBM is small and that it provides relatively 
straightforward and fast services to the user 
make it attractive as a basis for a hybrid execu
tive. 

Deficiencies 

The following paragraphs point out some de
ficiencies of RBM related to' its operation in a 
hybrid environment and the next section will 
describe what was designed and implemented to 
eliminate the deficiencies. 

1. In a 'real time and hybrid environment the 
transmitting, receiving and processing of 
data is O'ften dependent on the occurrence of 
an external event. Quite often the receive, 
process·, and transmit loop is time critical. 
Therefore, a convenient method must be pro
vided to' allow the user to service external 
interrupts and connect them to portions of 
his program. The overhead incurred at the 
time of' occurrence of the external event 
must be minimized. Under RBM no software 
exists for handling external interrupts. 

2. The general software pro'vided under RBM, 
altho11gh easily adaptable to a hybrid sys
tem, does not provide for specialized com-
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munication with' analog computers, ADCI 
DAC subsystems, display scopes, or various 
other hybrid display devices. It is essential 
that the software that handles these exter
nal devices be totally integrated into the 
operating system for user convenience and 
that it be re-entrant. 

3. The normal mode of operation of RBM is 
for the user program to operate in the back
ground area and in the slave mode. For clar
ification, the slave and master mode refer 
.to the 'Operating program's capability to ex
ecute certain privileged instructions (all 
1/0 instructions can only be performed by a 
master mode program). The background 
area refers to the portion of memory that 
is outside the are'a required by the resident 
Monitor. The Monitor area can only be writ
ten int'O by programs that have the correct 
write key in their program status double
word. Under RBM, the Monit'Or operates in 
the foreground area (master mode) and 
there is no provision for having multiple 
slave mode user j'Obs resident concurrently. 
That is, there is not a user 'Oriented multi
programming capability. 

4. In considering a hybrid 'Operating system, 
a close man-machine interface is needed not 
only with the anal'Og cons'Ole but with the 
total system. An interactive capability must 
exist that allows easy c'Ommunication be
tween all major subsystems of the complex 
and the user program. The implementation 
of this capability required modification of 
several of the standard RBM process'Ors. 

Implementation of a hybrid operating system 

The additions and modifications made to RBM 
to produce the hybrid 'Operating system RAD-5075 
will be described in the following 'Order: 

1.) Priority interrupt pr'Ocessor 
2.) Hybrid inputloutput 
3.) Multiprogramming capability 
4.) Interactive capability 
5.) Hybrid error processor 

Priority interrupt processor 

As has already been described, the Sigma ,5 
and 7 have excellent hardware priority interrupt 
structures. H'Owever, the routines in the executive 
which are necessary to support the hardware do 
not exist in RBM and, therefore, were a neces-

sary addition in the implementation of RAD-5075. 
An overhead time for entering a user's interrupt 
r'Outine of less than ten microseconds was 
achieved. 

The functions which the executive routines must 
perform to support the interrupt hardware are: 
preserve and restore the machine environment 
for the inte:rrupted program, allow the user to 
establish a link between a given external priority 
interrupt and one of his programs or subpro
grams, and allow the user to arm, disarm, enable, 
disable, or trigger the interrupts individually. 

Preserving and restoring of the machine en
vironment is acc'Omplished by utilizing additional 
bl'Ocks of general registers and the stack manipu
lati'On instructions which exist within the instruc
tion repertoire. 

Each priority interrupt has a dedicated mem .. 
Ory location which contains the first instruction 
to be executed after the occurrence 'Of the respec
tive interrupt. The instruction stored into the 
memory locations is an exchange program status 
doubleword (XPSD). The program status double
word (PSD) consists 'Of 64 bits of information in 
the CPU which contain the critical control c'Ondi
tions of the CPU. The information contained in 
the PSD is illustrated in Figure 3, Sigma 5/7 ps.n,. 

The XPSD instruction points to a four word 
area in memory and results in the current PSD 
being stored in the first two words and a new 
PSD being loaded from the last, two words into 
the CPU. The instruction address portion of the 
new PSD, of course, points to the first instruction 

CC - CONDITION CODES 

FS s- FLOATING SIGNIFICANCE CONTROL 

FZ - FLOATING ZERO CONTROL 

FN - FLOATING NORMALIZE CONTROL 

MS - MASTER/SLAVE CONTROL 

MM - MEMORY MAP CONTROL 

OM - DEC.IMAL MASK 

AM - ARITHMETIC MASK 

IA - INSTRUCTION ADDRESS 

WK - WRITE KEY 

CI - COUNTER INTERRUPT GROUP INHIBIT 

11 - INPUT/OUTPUT INTERRUPT GROUP INHIBIT 

EI - EXTERNAL INTERRUPT GROUP INHIBIT 

RP - REGISTER POINTER 

FIGURE 3-Sigma 5/7 PSD 



688 Fall J"oint Computer Conference, 1968 

USER 
CALL CONINT (3, INTSUBR) 

j 

-------------------
DOES 

INTERRUPT LEVEL 
HAVE ITS OWN 

REGISTER 
BLOCK? 

YES 

GENERA TE CODE 
WHICH WILL BRANCH 
TO THE USER'S ROUTINE 
UPON INTERRUPT 
OCCURRENCE 

GENERATE CODE TO 
CALL THE MONITOR 
FOR RETURNING TO 
THE INTERRUPTED 
PROGRAM WHEN 
USERS' INTERRUPT 
ROUTINE HAS 
COMPLETED 
EXECUTION 

SET UP THE PARTICULAR 
INTERRUPT'S "NEW" 
PROGRAM STATUS 

NO 

LIBRARY ROUTINES 

GENERATE CODE 
WHICH WILL CALL THE 
MONITOR TO SAVE 
THE REGISTERS UPON 
INTERRUPT OCCURRENCE 

GENERATE CODE 
WHICH WILL BRANCH 
TO THE USERS' 
INTERRUPT ROUTINE 

GENERATE CODE TO 
CALL THE MONITOR 
FOR RESTORING THE 
REGISTERS BEFORE 
RETURNING TO THE 
INTERRUPTED PROGRAM. 

I 

MONITOR 

RETURN LINKAGE 
TO USER 

~g~~~E~g~~ J~r:~~~Dt-------------.... 
IN THE LIBRARY FOR 
LINKING TO THE USERS' 
ROUTINE 

FIGURE 4-Connecting interrupts 

to be executed by the CPU under the control of 
the new PSD. Also, if the register pointer field 
in the new PSD is pointing to a different block of 
general registers than" were being used under the 
old PSD, the contents of the old register block will 
not be disturbed by the new program. Thus, with 
additional register blocks, the execution of the 
XPSD instruction at the interrupt location results 
in saving the old PSD and assuring that the reg
isters used by the interrupted program are pre
served. 

If an external interrupt does not have a dedi
cated additional re'gister block, the IA of the new 
PSD must point to a routine which saves the gen
eral registers before going to. the user's interrupt 
routine. This saving can be done with a Push Mul
tiple (PSM) instruction. All that is required to 
save the registers is to load a number from 1 to 
16 into the condition codes and execute the PSM 
instruction. After the user's interrupt program 
has been executed, the old register values must 
be restored with a Pull Multiple (PLM) instruc
tion before returning to the interrupted program. 
The linking of interrupts to user programs and 
servicing of interrupts are accomplished by the 
user through his calling of special library routines 

which, in turn, call the routines in the executive 
which service the user's requests. Figure 4, Con
necting Interrupts, illustrates the mechanics of 
connecting a given priority interrupt to a user's 
program. 

The following describes a typical sequence Df 

events for the setting up and use of an external 
interrupt: 

1.) At the time that the system is booted in 
from the RAD, the locations beginning with 
hexa-decimal address 60 and continuing 
through the number of external interrupts 
for the respective system are loaded with 
XPSD instructions pointing to the interrupt 
PSD table. 

2.) The interrupt PSD table consists of four 
word areas for each external interrupt and 
is initialized such that if an interrupt occurs 
without having been connected to a user 
routine it is dis;abled, disarmed and a return 
to the interrupted program results. 

3.) A user program will request that a specific 
routine of his be connected to a specific ex
ternal priority interrupt. This results in the 
calling of a library routine which checks 
arguments and, in turn, calls the routine in 
the Monitor area which sets up the PSD 
area for the appropriate interrupt number 
to point to an area in the library routine. 
This library routine has also determined 
whether the interrupt, which is the subject 
of this user call, has its own dedicated reg
ister block. 

4.)N ext, the user will request that the inter
rupt be armed and enabled. This results in 
going to a library routine which checks the 
arguments and, in turn, calls the executive 
routine which appropriately services the 
specific interrupt. Note that steps 3 and 4 
are most commonly executed during the 
non-time critical or set-up portion of a hy
brid program. 

5.) The user may then go into execution of the 
time critical portion of his program, a part 
of which is his interrupt routine,' or he may 
allow the executive to fall back to the proc
essing of a non-real time job in the back
ground. In either case, the following se
quence of operations results upon the 
occurrence of the external interrupt. Fig
ure 5, Flow of Interrupt Processing During 
Time-Critical Execution, illustrates the se
quence of events after the occurrence of the 
interrupt and presents timing data. 
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a.) First the XPSD instruction in the inter
rupt locatio.n is executed saving the PSD 
of the interrupted pro.gram and loading 
the interrupt PSD into. the CPU. The IA 
portion of the new PSD points to a set 
O'f instructions in the library routine 
which co.nnect. the interrupt to' the user's 
program. 

b.) The code in the library routine is de
pendent upon whether the interrupt has 
its O'wn general register block or not. 
If it does, the XPSD has accomplished all 
of the saving of the environment of the 
interrupted program and a branch to the 
user's interrupt ro.utine is executed. If 
the interrupt does not have its o.wn reg
ister block, the code in the library ro.u
tine calls the Monitor to. save the regis
ters in a stack with a PSM instruction. 
The Monitor then returns to the user's 
interrupt routine. 

c.) When the user's interrupt routine has 
been executed it returns to the library 

routine which in turn calls the appropri
ate ro.utine in the monitor area for re
turning to the interrupted program. If 
the interrupt has its own register block, 
the return . is accomplished . by a Lo.ad 
Program Status Double-wQrd instruction 
from the interrupt PSD table. This re
sults in restoring the PSD and changing 
the register block pointer. For an inter
rupt not having a dedicated register 
block, the registers for the interrupted 
program must be pulled frQm the stack 
befQre executing the LPSD and return
ing to. the interrupted program. 

6.') The user can at any time request the co.n
necting of an interrupt to one of his pro
grams Qr subprQgrams, the releasing of an 
interrupt from one of his programs, or the 
s,ervicing Qf an individual interrupt. 

7.) The exit from a job always initializes the 
contents o.f the interrupt PHD table such 
that no interrupts are connected to user sub
routines. 

TRAP TO THE TRANSFER TO CODE 
INTERRUPT LOCATION 
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THE XPSD POINTING TO 
THE EXCHANGE AREA 

L... 
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r---
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LIBRARY ROUTINE 
~ USERS' INTERRUPT ~ TO INTERRUPTED OF THE XPSD WHICH BRANCHES 
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ROUTINE 

FLOW AND TIMING FOR AN· INTERRUPT WITH A DEDICATED REGISTER BLOCK 

FLOW AND TIMING FOR ·AN INTERRUPT WITHOUT A DEDICATED REGISTER BLOCK 

TRANSFER TO CODE 
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USERS' INTERRUPT 
ROUTINE 

RETURN TO 
INTERRUPTED 
PROGRAM 

FIGURE 5-Flow of interrupt processilolg during time-critieal execution 
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As shown in Figure 5, Flow of Interrupt Proc
essing During Time-Critical Execution, for an 
interrupt with a dedicated register block, the time 
between the Qccurrence of the interrupt and en
tering the user's interrupt program is 9.4 micro
seconds. FQr an interrupt withQut a register blQck 
the elapsed time is 33.5 microsecQnds. 

The total Qverhead Qf entering and returnIng 
for the first case is 20.9 microsecO'nds and for the 
second case is 71.9 microsecQnds. 

Hybrid Input/Output 

The Sigma digital computers have twO' input/ 
O'utput channels bQth of which are utilized fQr 
hybrid communicatiO'n. The Multiplexer Input/ 
Output PrQcessQr (MIOP) is the standard buf
fered channel. It transfers data sequentially Qne 
byte (8 bits) at a time and can service up to' 32 
devices simultaneously. The MIOP requires that 
a command list be established in memO'ry, that 
general register 0 point to' the command list, and 
that the CPU execute a Start Input/Output (SIO) 
instruction in order to' initiate an input O'r Qutput 
transfer. After the CPU has issued the SIO in
struction, the addressed device cQntrQls the input 
Qr O'utput operatiO'n by making service calls to' the 
MIOP until the transfer has been cO'mpleted. 
Thus, having been initiated, input/Qutput through 
the MIOP is independent of the CPU until an 
I/O interrupt occurs requiring servicing by the 
CPU. 

RBM cQntains a routine called the CALl Proc
es,sor which is a part of the resident Monitor and 
which supervises all of the input/output opera
tiQns to' the standard digital peripherals through 
the MIOP. This channel and a slightly mQdified 
CALl Processor are used for hybrid, communica
tiO'n where sequential character types O'f transfer 
are appropriate such as controlling the analog 
computer. The MIOP is alsO' used for block trans
fers Qf information from the analog-tO'-digital 
CQnverter and to the digital-to-analog converters. 

The O'ther channel Qn the Sigma 5/7's is called 
the Direct Input/Output (DIO) channel. Through 
the DIO, with the executiO'n of Qnly one instruc
tion, it is possible to' read 32 bits Qf information 
intO' a gene:ral register or write 32 bits of infQr
matiQn frO'm a general register. The instructiQns 
are the Read Direct (RD) and Write Direct 
(WD) , respectively. 

The system as supplied by the digital manufac
turer makes only internal use of the RD and WD 
instructions. Through the DIO channel, under 

RAD-50'75, it IS possible to' cO'ntrO'I the analog CQm
puter, read the analog-tQ-digital cO'nverter, write 
the digital-to ... analog converters, read sense lines, 
write control lines, and initialize, read, or control 
the modes of the precision interval generatQr in 
the interface system. This full word, parallel 
channel has the effect of making the other cO'm
ponents of a hybrid system appear as extensiQns 
to the digital subsystem. 

The SIO, RD and WD, instructions are what is 
termed "privileged instructiQns" in that they can 
Qnly be executed by a program which is in the 
"master" mO'de. General users' programs, of 
course, operate in the "slave" mode whereas the 
Monitor operates in the "master" mode. One of 
the design goals,as stated earlier was that of mak
ing the specialized hybrid input/output fast and 
convenient fQr the user. This was achieved during 
implementation by adding routines to' the MQnitor 
which will perform hybrid input/ output Qpera
tiO'ns in the master mO'de through the DIO chan
nel. Thus, the user, a "slave" program, can request 
an input/Qutput operatiQn resulting in a library 
routine being loaded which checks and prQcesses 
the arguments. The library routine in turn gen
erates a call to' the Monitor to execute the actual 
input/output instructiQn before' returning to the 
user. 

The input/O'utput services are available to' the 
user through FORTRAN calls O'r the generatiQn 
of the standard FORTRAN calling sequence in a 

USER CORE AREA MONITOR CORE AREA 

USER PROGRAM LIBRARY ROUTINES 

CHECK AND PROCESS 
ARGUMENTS PASSED CAll PROCESSOR 

f--. 
\CALLFOR t BY THE USER AND FOR TRANSFERS +--

INPUT/OUTPUT SET-UP INFORMATION THROUGH THE 

SERVICE TO BE PASSED TO THE MIOP. 
I- MONITOR. CALL THE (MODIFIED FOR f--

MONITOR FOR I/O HYBRID) 
'':ERVICE. 

4 
CAL3 PROCESSOR 
FOR TRANSFERS 
THROUGH THE --- 010. (ADDED 
FOR HYBRID) 

ANALOG COMPUTER, 14-ADC, AND DAC 
HANDLERS FOR 
MIOP TRANSFERS. 

f--(ADDED FOR I:IYBRID) 

FIGURE 6-Hybrid input/output organization 
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Symbol program. Figure 6, Hybrid Input/Output 
Organization, illustrates the general flow and or
ganization for hybrid input/output through both 
the MIOP and DIO channels. 

Utilizing the standard calls for hybrid input/ 
output service through the MIOP requires fro·m 
200 to 30.0 microseconds of overhead time after 
which data transfers can take place at the rate 
of 200,0.00 fifteen bit words per second. Through 
the DIO channel, after 80 to 100 microseconds of 
overhead time, data transfers from the analog
to-digital converter or to the digital-to-analog 
converters can take place at an average of 25 
micros,econds per transfer. 

Table I, Channel Assignments of Hybrid Input/ 
Output Operations·, shows which hybrid input/ 
output operations can be accomplished through 
the two channels. Note that the reading and writ
ing of ADG's and HAC's through the DIO are 
indicated as being floating point operations. A 
unique feature in the interface hardware converts 
the 15 bit, fixed point output of the ADC to the 
normalized floating point short format before 
presenting the data to the DIO channel. There is 
also hardware which allows a floating point num
ber to be written out of a general register to a 

MIOP 

Control of the analog 
computer 

Read the analog 
computer 

Read the analog-to
digital converter 
(fixed point, word 
or halfword) 

Write the digital-to
analog converters 
(fixed point) 

DIO 

Control of the analog 
computer 

Read analog com
puter status 

Servicing of interrupts 
Read the analog-to

digital converter 
(floating point) 

Write the digital-to-
analog converters 
(floating point) 

Read sense lines 
Write control lines 
Initialize the precision 

interval generator 
Read the precision 

interval generator 
Control the modes of 

the precision interval 
generator 

TABLE I-Channel assignments of hybrid Input/ 
Output operations 

DAC; the hardware accomplishes the floating to 
fixed conversion. Accomplishing the conversion in 
hardware rather than software results in a two 
to one speed advantage in going analog-to-digital 
and a six to one adyantage going digital-to-analog. 

Referring back to the timing information given 
for the HIO channel, the presence of the hard
ware conversion equipment means that after 80 
to 100 microseconds of overhead a normalized, 
floating point data value can be -read into the 
user's memory or written from his memory at an 
average rate of one every 25 microseconds. 

In contrast the data read or written through the 
MIOP channel are in fixed point format and can 
be stored in memory as full words or packed half
words. Also, the MIOP, once the operation is ini
tiated, operates independently of the CPU, 
whereas the DIO channel requires the CPU for 
execution. 

Patterned input/output is a unique feature of 
the hybrid input/output system. There are many 
instances when one or both of the following two 
cases exist in a hybrid simulation: 

1.) The overhead associated with doing the 
actual I/O operations as shown in Figure 6, 
Hybrid Input/Output Organization, and 
listed above, can't be tolerated at execution 
time. 

2.) The same series of input/output operations 
is repeated several times during execution 
of a hybrid program 

Patterned input/output may be used in these 
cases. The user has special FORTRAN calls 
(CALL STRTPT and CALL ENHPAT) available 
to bracket a series of input/output operations for 
the purposes of defining a pattern. The calls which 
the user makes for the specific input/output oper
ations that he wants in the pattern are very 
similar to those that he makes for a normal I/O 
service request. However, rather than calling the 
Monitor to provide the I/O se·rvice, the library 
routine generates the minimum amount of code 
necessary for the input/output operation and 
stores the instructions in a buffer in the user's 
area of core. When the ENDP AT call is encoun
tered, all of the instructions which have been 
stored into the buffer in the user's area are moved 
into a reserved buffer in the Monitor area. The 
definition of the pattern and moving it into the 
Monito,r area are done during the non-time criti
cal portion of a job. Once the input/output pattern 
is in the Monitor area, it can be executed during 
the time critical portion of the hybrid program 
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by calling it or connecting it to an interrupt. 
Figure 7, Patterned I/O, illustrates patterned 

input/output. For this example, during the set-up 
portion of his hybrid job, the user defined a pat
tern which consisted of reading the analog-to
digital converter, writing a contrO'l line and writ
ing a digital-to-analog converter. Library routines 
were loaded which processed arguments passed by 
the user, set-up addresses, and generated the 
minimum number of instructions necessary to 
perform the input/output ope'rations. These in
structions were tempO'rarily stored in a buffer 
in the user's area O'f memory. Note that to' read 
the ADC, a read direct (RD) and store wO'rd 
(STW) instruction were generated. Thus the data 
are stored intO' the user's address. To write the 
cO'ntrol line or the DAC load word (LW) and 
write direct (WD) instructions were generated. 
Still during set-up O'f the hybrid problem, the 
ENDP AT call will result in the generated instruc
tions being transferred to a reserved buffer in 
the Monitor area where it will be executed. 

During real-time operatiO'n, the input/output 
pattern can be called to execute through the 
P ATTRN routine which may be in a routine con
nected to' a priO'rity interrupt. The overhead time 
in P A T'TRN is about 40 microsecO'nds after which 

USER CORE AREA MONITOR CORE AREA 

USER PROGRAM LIBRARY ROUTINES 

'CALL STRTPT(N) -... PATTERN NUMBER 
DEFINED. PARAM-
ETERS INITIALIZED. 

• _ USER BUFFER AREA 
USERS' CLEARED. 
AREA 
BUFFER 

r---- ~ESERVED 

CALL RADCSP( ) - ~ ~:ci~~s~~~GU-
PATTERN 

r- 'RD AREA 
MENTS. GENERATE 'STW • !- APPROPRIATE CODE. 

--. ~ 

CALL WCLP( ) -~ CHECK AND -, PROCESS ARGU- r-ILW 
MENTS. GENERATE WD 

• r- APPROPRIATE CODE. 

-...:.. I-

CALL WDACRP( ) - ~ CHECK AND-
PROCESS ARGU- r-~ MENTS. GENERATE 

• r- APPROPRIATE CODE. 

"---

r- VERIFY PATTERN TRANSFER PATTERN 
CALL ENDPA T(N) - NUMBER. CALL CODE TO THE 

MONITOR ROUTINE MONITOR AREA. 

• TO TRANSFER CODE SET-UP LINKAGE r- TO THE MONITOR AND RETURN. 

+ AREA. 

SET-UP PORTION 
OF HYBRID JOB 
TiMEc'RITiC~ 
PORTION OF 
HYBRID JOB 

t ... VERIFY PATTERN 
~ CALL PATTRN (N) . NUMBER. CALL BRANCH TO 

OR MONITOR TO PATTERN CODE 
MAY BE LINKED BRANCH TO AND RETURN 
TO AN EXTERNAL. ~ PA TTERN CODE. !--
INTERRUPT 

FIGURE 7-Patterned I/O 

the ADC can be read every 18 microseconds and 
DAC's can be written every 10 microsecO'nds. 

Multiprogrammin.g ca,pability 

The multiprogramming or fore,ground/back
ground capability provided by RAD-5075 allows 
two jobs to be in memory concurrently. Only one 
O'f the jobs can be real-time, that is, use priority 
interrupts. The real-time job is IO'aded into a seg
ment of memory the size of which must be speci
fied by the user. Background jobs are processed 
in a batch mode after the real time jO'b has exe
cuted all of its pre-real time O'perations and has 
released the CPU to service possible background 
tasks. The occurrence of external inte'rrupts 
brings the CPU back to the real time job when 
its services are required. The fO'llowing control 
card is the only special consideration necessary 
for loading and executing a job in the foreground 
area. 

!FJOB Proj. nO'., Job name, No. pages 

Indicates that this job is a real time jO'b and 
is to' execute in the foreground area. The fO're
ground area is in high core and consists O'f 
the number O'f pages (512 cO're locations per 
page) indicated. Project number and jO'b 
name are O'ptiO'nal specifications. 

One library rO'utine was added to' allow the fore
grO'und job to' release the CPU. This release allows 
the monitor to bring in the background jO'b (s) if 
any are present. If release is called by a' back
ground jO'b it returns to' the MO'nitor for normal 
jO'b termination. 

The information below will be cO'ntained in the 
foreground's Job InfO'rmation Table. It is during 
status 3 that cOoncurrent foreground/background 
processing is possible. 

Real Time Job Status 
O-NO' status 
1-BackgrO'und mode (Compiler, Assembler, 

Lo'ader and etc.) 
2--FO'reground mode exclusive 
3-FO'reground mO'de with backgrO'und jO'bs 

operating 
4-Job complete-requires sign-off. 

The sequencing of the real time jO'b status is 
controlled as follows: 
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STATUS 0 to l-Done by the Control Card In
terpreter upon encountering the !F JOB card. 
STATUS 1 to 2-Done by the Monitor upon a 
successful load operation. 
STATUS 2 to 3-Done by the foreground job 
by execution of GALL RELEASE. This transi
tion is not made if the core requirements of the 
foreground job exceed the space available be
tween the top of the Control Card Interpreter 
and the top of the core. 
STATUS 3 to 4--Done by the Monito·r upon an 
exit (CALl,9 n) from the foreground job. 
STATUS n to 4--Done by the Monitor upon an 
error or abort exit (CALl,9 2 or CAL1,9 3) 
from the foreground job. . 
STATUS 4- to O-Done by the Control Card In
terpreter upon completiO'n of job sign off. 

The possibility of conflict between the two jobs 
in accessing digital peripheral equipment such as 
the card reader, card punch, and line printer is 
eliminated by the fact that RAD-5075 operates 
with a full symbiont capability. All input and out
put information passes through a reserved sym
biont buffer on the disc. 

To illustrate the sequence of events that occur 
during the foreground/background operation of 
RAD-5075, refer to Figure 8, CPU Time Alloca-

tion to Jobs. !JOB #1 is a FORTRAN/Symbol 
job. This job is compiled, assembled, loaded into 
core and run to completion. !F JOB #2, the next 
job in sequence, is a hybrid simulation problem 
which utilizes priority interrupts. Upon comple
tion of !JOB #1, !F JOB #2 starts its processing 
at time T1 • Since this has been labeled as a fore
ground job by the job card, the compilation is 
performed in the background and the program is 
loaded into the foreground area. After being 
loaded, this job starts execution of its pre-real 
time tasks. This would include linking interrupts 
to user sub-routines, performing initializing func
tions in other subsystems of the hybrid system, 
and defining input/output patterns if they are 
required. Upon completion of execution of the pre
real time portion of the problem, the CPU may 
not be required immediately to support the time 
critical calculations of the program and can be 
released to the background to' process the next job. 
At this point, the processing of !JOB #3 is initi
ated. While !JOB #3 is assembling, the occur
rence at T3 of an external interrupt returns the 
CPU to service an interrupt routine in !F JOB #2. 
Background processing is halted until the fore
ground task releases control of the CPU to the 
background at T 4 at which time !JOB #3 is re
sumed. 

FIGURE 8-CPU time allocatIOn to jobs 
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At T 5 another priority interrupt occurs in 
!FJOB #2 which brings the CPU back to it, and 
during this time, the hybrid job terminates nor
mally. After signing !F JOB #2 off, the CPU falls 
back to. complete !JOB #3. Another background 
job, !JOB #4, is processed next, and upon its 
completion, the CPU goes to the idle state since 
there are no jobs requiring its service. 

Complete accounting information is maintained 
for each jQb by the Monitor. The times required 
to compile Qr assemble, load, and execute plus the 
total time for the job are supplied to the user in 
his sign-off information and stored in a system 
file for accounting use. 

Interactive capability 

The man-machine communication required in 
hybrid simulation is provided by the Interactive 
Package. The Interactive Package allows the user 
to monitor or change problem variables at run
time in all subsystems of the hybrid system. Thus, 
from a control point such as a typewriter or CRT 
scope display, the user can read or change memory 
locations and component outputs in the interface 
equipment or on the analog computer. Memory 
locations can be referenced either absolutely or 
by symbolic name. The latter capability required 
modificatiQns to several portions of RBM. The 
FORTRAN compiler was modified to save the pro .. 
gram allocation information, the Loader was 
mQdified to. save the load map informatiQn, and 
the Monitor was modified to maintain files on the 
disc which contain the above information. 

In order to have access to the Interactive Pack
age, the user must reference it which results in 
it being loaded with his program. At run-time, 
cQntrol can be transferred to. the Interactive 
Package through either a user call or the occur
rence of a priority interrupt which is dedicated 
to it. 

The following lists and describes some of the 
cQmmands of the Interactive Package: 

1.) Read Command 
a.) READ ANALOG, COUNT-Reads a se:

quential number of analog or interface 
components starting with the designated 
address, (i.e., READ A/105,5). 

h.) READ MEMORY, FORMAT, COUNT
Reads the memory location or locations 
specified. This location can be an abso
I ute address, a main program symbol or 
a symbol in a subroutine. When reading 
a symbolic name in a subroutine, the 

subroutine and symbolic name are given. 
Arithmetic (+ or -) operations can 
also be used in specifying the address. 
The location is read and displayed as 
an integer, hexa-decimal, EBCDIC or 
floating point number dependent upon 
the specified format. An example of this 
command is: READ BETA+10,X,7. 

This would display seven locations start
ing at BETA+10 in a hexa-decimal 
format. 

2.) Set Command 
a.) SET ANALOG, VALUE-Sets the 

specified analog or interface component 
to the desired value. These components 
can be potentiometers, digital attenua
tors, digital-to-analog cQnverters, con
trol lines or the precision interval. gen
erator. 

b.) BET MODE, X-Set the specified com
putational mode X. 

c.) SET, MEMORY, VALUE, COUNT
This allows several memQry 10catiQns to. 
be set to. a specified value starting at 
the absolute or symbolic name desig
nated. 

3.) Run Command 
RUN MEMORY-A memory location is 
specified in absolute or hexadecimal form 
and the program execution starts at that 
point. 

4.) IFIX Command 
This command enables the user to insert a 
series of values (instructions) bertween two 
memory locations. An AREA command sets 
up the locations where values (instructions) 
are to be stored and the linkage to. this area 
is automatically m.ade. An example of this 
command: IFIX ALPHA, VALUE, VAL
uE' . . . The location ALPHA would be 
set to a branch to a predefined area.' The 
original instruction in ALPHA would be 
inserted in this area followed by values 
from the IFIX command. A branch back 
to the next location in the original program 
would be the last instruction in the new 
area. 

5.) Snap Command 
SNAP LOCATION, MEMORY, FORMAT, 
COUNT-This allows the user to obtain a 
snapshot dump during- program execution. 
After issuing this command, a number of 
memory locations (COUNT) starting at 
the specified address (MEMORY) will be 
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dumped according to the specified format 
when the execution of the user's program 
reaches the specified memory location 
(LOCATION) . 

6.) Update Command 
Through the use of special cQntrol cards, 
the user can have his program source in
formation saved in a special file on the disc. 
The use of the UPDATE command in the 
Interactive Package allows the user to 
modify his source if he desires. The fol
lowing operations can be performed under 
the Update CQmmand. 
a.) Change Command 

CHANGE FROM, TO-This allows the 
user to change an area in his source 
program, as specified by the (FROM, 
TO) argument, to the instructions that 
follow this command. The original in
structiO'ns are deleted and the new ones 
are inserted. 

b.) Insert CQmmand 
INSER T LINE-This inse,rts a se'ries 
of lines between two existing lines in 
the user file. The insert cO'mmand would 
be followed by the instructions to be 
inserted. 

c.) Delete Command 
DELETE FROM, TO-This deletes the 
specified area in the user SQurce file. 

d.) Go Command 

SENSE SWITCH STIATES 

This returns to the MonitQr with the 
symbO'lic input indicator pointing to the 
updated file. Thus a recompilation, load, 
and exe:cute can be achieved from the 
updated file. 

Hybrid input/output error processor 

As mentiO'ned in the Hybrid Simulation Re
quirements section, error checking for hybrid 
input/output operations differs from normal I/O 
error checking, The approach taken by the de
signers was to provide an errO'r checking service 
which would be flexible for the user. 

The Error Processor is a part of the resident 
MonitQr. It is called only by the routines which 
were added to the library for hybrid operation. 
As indicated in previous discussions, the library 
routines dO' the great majority of the error check
ing. If one of the library routines detects an 
erro'r, it calls the Error ProcessQr passing it an 
error type code, the contents of the IO'cation 
where the error was detected, the name of the 
routine in which the errQr was detected, and 
the analog cQmpQnent address, if applicable. Hav
ing had an error condition reported to it, the 
Error Processor examines the states of twO' 
sense switches. Table 2 shows the possible sense 
switch settings and the corresponding action 
which will be taken by the Error Processor after 
being called by one of the library routines. 

ERROR PROCESSOR ACTION 

SS # 1 Off and SS #2 Off 
SS #1 On 

Type error message and return to' the user 

SS #2 On 

Return to the user without typing an error 
message with the error code stored in ERTAG 

Type error mess,age and abort the job 

TABLE 2-Hybrid error processor actions 

The Error Processor will set a labeled com
mon IQcation with the error type code which al
lows the user to establish his own debugging en
vironment if he sO' desires. For sense switch num
ber one on, the user must do his own testing for 
the occurrence of errors after returning from a 
hybrid call and establish his Qwn message format 
and conditions fO'r printing. 

Operating system summary 

The organization of the total operating system 

is shown in Figure 9, Operating System Organiza
tion. T'he MQnitor is shown together with the 
features which it has for hybrid operation. 

On the level below the Monitor, the hybrid 
utility programs are shown. These are individual 
processors that operate under the hybrid Monitor 
and are used in implementing, debugging, and 
checking hybrid simulation problems. Very brief
ly they have the following functions: 

OSSL/COMCOR-
A digital simulatiQn language which has 
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PROCESSORS AND 
ROUTINES 

SAVE LOAD MAP 

APPLICATIONS PROGRAMS 

FIGURE 9-Operating system organization 

been implemented according to' the Siniul~ 
tion Council, Inc., specificatio.n O'f the Con
tinuous System SimulatiO'n Language .. At the 
present, CSSL/COMCOR is used to' obtain 
all digital check so.lutio.ns for analo.g Qr hy
brid prQblems; ultimately it will be the hy
brid programmer's real-time . language. 

AnalO'g Assembly Program (AAP)-
This program achieves the system co.mpQ
nent assignments fO'r a hybrid proble-m and 
generates patching instructio.ns fQr the 
analog portion. 

EquatiQn VerificatiO'n (EV)-
This prQgram checks a hybrid prO'blem both 
statically and dynamically back to' the orig
inal unsealed differential equatiQns. 

Functio.n Generator Aids (FGA)-
This pro·gram o.ptimally selects breakpoints 
to. fit a straight line segment appro.ximatiQn 
to user data. If the functiQn generators are 
computer s·et, FGA sets them up; if they 
are of the card-set type, FGA punches the 
card. 

On the next level are the augmented versio.ns 
of the standard digital computer pro.cessO'rs. The 
co.mments outside the blocks indicate what modi
ficatiQns or additiO'ns were made in the imple
mentatio.n of RAD-5075. 

An example is included in APPENDIX B 
which illustrates what a user must do. to write 
a hybrid program utilizing vario.-us Qf the features 
of RAD-5075. 

CONCLUSIONS 

The requirements Qf hybrid simulatiQn Qn the 
executive o.r mQnito.r of the digital subsystem of 
a hybrid system are such that the standard soft
ware supplied by the digital cQmputer manufac
turer is not, in general sufficient. The RBM 
mo.nitor, as supplied by SDS for the Sigma 5 and 
7, has many features which are desirable fo.r the 
hybrid envirQnment such as being small, fast, 
and disc o.riented. However, it was necessary to 
make n umerQUS mO'difications and additiO'ns in 
Qrder to. make it a satisfactQry executive fQr hy
brid simulatiO'n. 

In implementing RAD-5075 the follQwing de
sign gQals were achieved: 

1. Small memory residency requirement -
< 6,000 words. 

2. Fast and flexible priority interrupt struc
ture - < 10 microseconds to enter a user 
routine cQnnected to. an interrupt. 

3. Flexible hybrid input/Qutput services fQr 
the user - the Mo.nitor supervises and 
executes all input/output ope!ratio.ns for the 
user. 

4. Full word parallel input and output of data 
in no.rmalized flQating point format-this 
makes Qther portiO'ns of the system appear 
as extensio.ns of the digital subsystem. 

5. The capability Oof generating highly efficient 
input/Qutput patterns-after 40 micro.
seconds of overhead time nO'rmalized flo.at
ing point data can be read into. memQry 
at the rate of 18 microseconds per reading 
and nOormalized flQating point data can be 
written frOom memO'ry at the rate of 10 
microseconds per Qutput Qperation. 

6. A user Qriented multipro.gramming capa
bility-twO' jobs, only one of which can be 
real-time, can be in memo.ry being serviced 
by the CPU cQncurrently. 

7. A run-time interactive capability. 
8. A flexible hybrid erro.r checking facility. 
9. Full symbiQnt input/o.utput operatio.n. 

The fQllowing paragraphs list sO'me imprO've
ments to RAD-5075 that are planned fO'r the 
future. 

The fact that RBM, and therefO're, RAD-5075, 
is disc o.riented is very desirable for hybrid op
eratiQn. However, the disc file management ca
pability of RBM is minimal and will be en
hanced in the future for RAD-5075. 
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The FORTRAN IV-H compiler which runs 
under RAD-5075 does not generate re-entrant 
code. As mentioned previously, the run-time li
brary, math library, all input/output, and the 
Monitor are completely re-entrant. The fact that 
the compiler does not generate re-entrant code 
requires the programmer to use redundant copies 
of routines that may be interrupted and used in 
the interrupting program. A real-time FOR
TRAN is planned for RAD-5075 in the future. 

The RAD-5075 Loader does not have a linking 
or overlay capability. This capability will be 
added. 

The expansion of RAD-5075 to be the execu
tive for a hybrid system including multiple 
Sigma CPU's is being planned. The major mo
tivation for this consideration is the achieve
ment of a multiple real-time job capability to
gether with background batch processing within 
one unified system. 

CONTROL CARD 

!JOB Specification 

!ASSI G N· Specification 

!SYMBOL Specification 

!FORTRAN Specification 

!LOAD SpecificatiO'n 

!DLOAD Specification 

APPENDIX A 

RESULTING OPERATION 

The JOB command specifies the completion of 
the previous job and the beginning of a new 
one. The J O'b Information Table (JIT) in the 
Monitor is initalized and eCI returns nominally 
to the card reader for its next control card. 

If the user wishes to use any of the various 
peripheral devices differently than the Monitor's 
nominal assignments of functions, he may so 
specify with an ASSIGN command. The appro
priate information will be put intO' the specified 
Data eontrol Block (DeB). 

When eel encounters a SYMBOL control card, 
it dO'es an absolute load of the SYMBOL processor 
area. SYMBOL then goes to' the nominal or as
signed symbolic input device for its source and 
puts its binary O'utput onto the nominal or as
signed BO device. 

When eel encounters a FORTRAN control card 
the operation is precisely as described for 
SYMBOL. When a processO'r such as SYMBOL 
or FORT'RAN completes its operation it returns 
to the Monitor which calls in eel to read the 
next control command. 

When eel encounters a LOAD control card the 
loader which is resident on the RAD is loaded 
into core. The relocatable program that has been 
assembled or compiled onto the BO device is 
linked, made absolute, and lO'aded into core for 
execution. 

The DLOAD control card (dumping loader) per
forms the same function as loader except the 
absolute binary output is dumped on the speci
fied BO dwice rather then executed. 
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RESULTING OPERATION CONTROL CARD 

!RUN Specification 

!PMD Specification 

!DATA 

!EOD 

!FIN 

This control command causes the most recent 
program to be loaded to go into execution. A 
starting execution address may be s.pecified on 
this card. 

The PMD (post mortem dump) control c'ard 
causes a dump of specified memory area if an 
error occurs during program execution. 

The DATA control card informs the Monitor 
that the following information is to be used in 
the execution of the presently running program. 

The EOD control card informs the user that the 
end of data has been re'ached. The user can use 
this information in his program. If a EOD is en
countered with no user provision for its use, a 
message is listed on DO (diagnostic output) de
vice. 

The FIN control card informs the Monitor and 
the user that all current jobs have been processed 
and the computer is entering the idle state. 
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A USER EXAMPLE 
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interrupts. The problem as programmed would 
be in the compute mode for 100 seconds. 

Figure 10, Second Order Loop Implementation 
Diagram, illustrates a simple implementation of 
the second order differential equation that d~ 
scribes a harmonic oscillator. 

Figure 11, User Program Example, shows a 
sample program listing for setting up the prob
lem, defining an input/output pattern, connect. 
ing and servICIng interrupts, controlling the 
analog computer modes, and responding to the FIGURE lO-Second order lovp implementation diagram 

C PROGRAM LISTING FOR USER EXAMPLE 

COMMON I FLAG, FDBCK 

EXTERNAL CLooP 

IFLAG=O 

KOUNT=100C 

C THE FOLLOWING DEFINES THE I/O PATTERN FOR THE INTERRUPT ROUTINE 

CALL STRTPT(l) 

CALL RADCRP (001, FDBCK, 0) 

CALL WDACRP ( 001 , FDBCK , 0 ) 

CALL ENDPAT(l,O) 1 
GENERATES CODE TO READ THE 

OUTPUT OF MULTIPLEXER 1 AND 

WRITE DAC 1 WITH THAT VALUE 

C THE FOLLOWING INITIALIZES THE PROBLEM AND CONNECTS AND SERVICES INTERRUPTS 

CALL SETPOT(OOS, .1,007,.1) 

CALL MODE ( • R') 

CALL WPIG(KOUNT,MICRO) 

CALL WDACR(OOO,l. ,0) 

CALL WDACR(OOl,-l.,O) 

CALL CONINT (2,CLooP) 

CALL INTSER ( 2, 2) 

CALL MODE('C') 

CALL RELEASE 

END 

SUBROUTINE CLooP 

COMMON IFLAG,FDBCK 

CALL PATTRN(l) 

SETS ATTENUATORS ON THE ANALOG COMPUTER 

SELECTS THE RESET MODE ON THE ANALOG COMPUTER 

SETS THE INTERRUPT INTERVAL AT 1 MILLISECOND 

SETS THE INITIAL CONDITION ON THE INTEGRATOR 

THIS CLOSES THE LOOP IN INITIAL CONDITION 

CONNECTS INTERRUPT 2 TO THE USER ROUTINE,CLOOP 

ARMS AND ENABLES INTERRUPT 2 

SELECTS THE COMPUTE MODE ON THE ANALOG COMPUTER 

{

RELEASES THE CPU TO POSSIBLE BACKGROUND 

TASKS SINCE PRE-REAL TIME TASKS ARE COMPLETED 

CALLS THE I/O PATTERN TO EXECUTION 

IFLAG=IFLAG+l { COUNTER FOR DETERMINING THE 

IF(IFLAG.EQ.l00000) GO TO 100 DURATION OF COMPUTE 

RETURN 

100 CALL MODE('R') 

CALL MODE ( 'P') 

CALL INTSER(1,2) 

CALL RLSINT(2) 

CALL RLSPAT 

RETURN 

END 

RETURNS ANALOG TO THE RESET MODE 

RETURNS ANALOG TO THE POTSET MODE 

DISARMS INTERRUPT 2 

RELEASES INTERRUPT 2 

RELEASES THE I/O PATTERN 

JOB TERMINATED 

FIGURE l1-User program examplt.~ 
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INTRODUCTION 

The development of a hybrid executive creates prob
lems that go beyond those normally encountered in a 
digital executive. One of the biggest Problems results 
from bringing two divergent human elements together 
in the same system. The analog user is "real-world" 
oriented with an extensive knowledge of the hardware 
involved in his problem. The digital user is often con
cerned with batch data processing and scientific compu
tation that has been written in a high level compiler 
language. 

While the digital user has some critical high priority 
programs to be scheduled, the main emphasis is directed 
toward completing the execution of as many programs 
as possible. Because of this, most ditital executives 
stress orderly allocation of new programs, a minimum 
amount of re-allocation and effective utilization of all 
parts of the system. 

The analog user generally wants control of the system 
on a demand basis and will retain a high priority level 
throughout the run. He occasionally requires direct con
tact with the operating system and will delay the run 
while deciding what action should be taken. 

Part of the problem facing the hybrid community is 
to persuade the analog user ~o understand and appreci
ate the tools that are offered in a digital system. This 
will become a lesser evil as additional hybrid experience 
is obtained by the analog user. 

The other problem is educating the digital systems 
programmer in the needs of the hybrid user. This is of 
immediate concern since the systems programmer will 
have the responsibility of modifying the digital execu
tive in a w~y that will satisfy these needs and still retain 
an efficient operating system. In some situations, both 
worlds can be satisfied, but often there is a need for com
promise. 

The object of this paper is to show what happened 
when a digitially-oriented software group attempted to 
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bend an existing capability to provide a sophisticated 
hybrid executive. 

A hybrid education 

When first given the task of providing the necessary 
software to control a Hybrid configuration, we began a 
study effort to determine what would be needed to pro
vide a good software package. Obviously the first move 
was to peruse any information obtainable that was re
lated to existing software in an attempt to start as close 
to the "state of the art" as possible. The next step was 
a survey of a number of hybrid users and designers in an 
attempt to determine their future needs and desires as 
well as what objections they had to the systems that 
they had developed. 

A return to the drawing board ensued in an attempt 
to determine how best to adapt standard digital hard
ware and software systems in a way that would main
tain the capabilities that existed for digital processing 
and still provide the real world needs of a hybrid com
puter. Since the system to be developed would be used 
by yet-to-be-named users to solve problems that could be 
quite diversified, it was mandatory that the chosen exec
utive would be very generalized and offer modularity 
such that the basic philosophies could be transferred 
from one user to another, or from one digital system to 
another without maj or overhaul. 

Some of the more critical needs for a hybrid system 
were itemized. Primarily, there was the need for high 
speed initiation of hybrid communication as a result of 
Some stimulation that had occurred on the analog side of 
the system. Examples of this would be a time-out from 
an interval timer or a fault condition. In addition to 
fast reaction time, it is imperative that any variations 
in this time should be minimized and, if possible, com
pletely removed. 

In many of the critical real-time problems solved on a 
hybrid computer, the digital portion can easily become 
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compute-limited. Therefore it is very important that 
the available compute time in a given cycle be as pre
dictable and liberal as possible. The chaining of I/O 
commands and independent data transfer to memory 
seem to be essential for maximizing and stabilizing com
pute time. Also, special consideration must be given to 
any possible reduction in executive overhead during a 
real-time operation. 

Since most simulation laboratories are very cyclic in 
their needs for a large scale hybrid capability, justifica
tion for a large scale digital computer can rarely be 
made if the machine is completely dedicated. It is there
fore necessary to retain a powerful batch processing 
facility under executive control within the digital por
tion of a hybrid system to supplement the high priority 
hybrid operations. 

The hybrid portion of the executive should be modu
lar to allow a user to specify only those segments that 
will be required, thereby conserving memory and alloca
tion of peripherals. It should be general enough to allow 
the user to adapt it to various standard digital execu
tives without major modifications. It should also be 
easy to adapt the software to variations in the hybrid 
system configuration such \as changes in the number of 
channels used, or additions and deletions of hybrid 
devices or components related to these channels. 

In some installations there will be multiple analogs 
operating independently, and each must react as though 
it were linked to a dedicated digital computer. To main
tain this type of environment, it is necessary for all hy
brid routines to be re-entrant, which would also reduce 
the reaction time for processing high priority interrupts. 
~nother useful tool for a multiple analog environment 
would be a remote console located with each analog and 
providing the user full communication with the execu
tive. This could be used for initialization of hybrid runs, 
normal debugging procedures or communication with 
the analog computer, as well as other operations nor
mally offered on an I/O console. 

In order to retain the full flexibility of use by various 
systems, all hybrid software routines must be as equally 
accessible from a high level language such as Fortran as 
they are by the assembly language. This would include 
any executive support routines such as those provided 
on a system program library. The program library 
would have to contain an assortment of standard 
hybrid routines such as an arbitrary function generator, 
a continual simulation language, and fast-response math 
routines, and be expandable to allow the user to add any 
routines that would be used frequently in his system. 

At another level beyond the normal priority structure 
in a digital system, there is a need for a secondary 
priority network that is flexible and related strictly to 
the hybrid environment. This network should incor-

porate the speed of hardware and at the same time 
allow modification and interpretation under program 
control. To satisfy this requirement, as well as others 
previously mentioned, leads to the investigation of more 
effective design of the potential capabilities of the hy
brid interface box. 

In surveying our resources, it was learned that a very 
solid ®UNIVAC 1108 hybrid system was in operation 
at the Naval Undersea Warfare Center (NUWC) in 
Pasadena, California. (See Figure 1). Although their sys
tem was quite specialized for solving their particular 
problems, it was evident that a considerable amount of 
planning and insight to the needs of the hybrid user 
existed. They had grown from a smaller-scale digital and 
minimum analog configuration to a sophisticated large 
scale system, and had expanded their executive develop
ment during the transition. NUWC and Univac per
sonnel had modified the standard 1107/8 executive, 
which was basically a batch processing executive, to 
provide the real-time features necessary for their hybrid 
operation. 

The most difficult problem encountered was to retain 
an effective batch processing capability on a machine 
that was to be dedicated to hybrid simulation on de
mand. The NUWC approach to the problem was to de
velop a "batch shelving" routine to provide high speed 
swapping between the batch and real-time mode of 
operation. 

The first function of the shelving routine is to load the 
hybrid simulation program into the resident area of the 
drum, set appropriate retrieval information in the 
executive and issue a notification of a successful load 
completion to the console typewriter. The loading rou
tine will then terminate, allowing the system to 
continue routine batch processing. 

The second function of the shelving process is to re
spond to a type-in or an external interrupt on a hybrid 
channel that indicates a desire to execute the hybrid 
simulation program. A number of error checks are made 
at this point. The status of the operational program is 

FIGURE 1 
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checked so that an attempt is not made to shelve a run
ning simulation program and the status of the drum 
area is checked to verify that a simulation program is 
available for execution. If any errors are detected, the 
appropriate message is typed, the shelving request 
is ignored and batch processing continues. 

If the verification is successful, the next step is to 
store all volatile flags and tables and control registers 
such as accumulators and index registers. After the 
environment is stored, the contents of user core are 
written on the drum and the simulation program is 
placed in user core. The console is notified that the real
time program is started and control is transferred to 
the starting address of the simulation program. The re
quired time for the initiation process was determined to 
be less than two seconds. 

The final function of the shelving process is the re
sponse to a type-in or an external interrupt requesting 
the termination of the simulation program. When this 
occurs, the simulation program is overlayed with the 
batch program and the batch environment is reset. The 
computer time used by the simulation program is cal
culated in a way that no simulation time is charged 
against the batch program. Less than one second is re
quired from when the termination routine is entered 
until the batch program obtains control. 

All device to device activity such as printing or 
punching cards from drum files is allowed to continue 
during the real-time operation. It is not necessary to 
suspend these operations since the CPU time used does 
not have a significant effect on the timing requirements 
of the real-time program. 

In order to amplify the interface and provide a 
straightforward, timesaving software approach, the hy
brid world was dispersed over five 1108 I/O channels. 
The dispersion was made as follows: the interval timer 
was placed on channel 0, unsolicited hybrid external 
interrupts were received on channell, the analog to 
digital (A/D) conversion system was on channel 2, the 
digital to analog (D/ A) conversion system was on chan
nel3 and the discretes were on channel 4 . 

The result of this breakdown was a reduction in the 
interface requirements as well as a reduction in the com
munication control and command formatting require
ments placed on the executive system. Examples of this 
would include D / A or A/D conversions. The command 
would indicate which channel should be used, and no 
directional commands would have to be formatted for 
transfer to the interface, since the channel used 
would be self-explanatory. 

For the type of operation existing at NUWC their 
system was very satisfactory, and it was felt that this 
system would provide a solid foundation for building a 
generalized hybrid executive. 

65K 65K 
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Subsequently, the NASA Manned Spacecraft Center 
in Houston, Texas indicated a desire to develop a hybrid 
facility using the 1108 multi-processing computer. See 
Figure 2. Having designed several dedicated systems, 
this type of operation offered many new challenges, but 
also provided the tools needed to create a much more 
powerful hybrid system. 

The first and most obvious challenge was to blend the 
known hybrid software needs into the more sophisti
cated multi-processing executive. Although the pitfalls 
became more numerous in making modifications to an 
executive of this magnitude, it provided many solutions 
to system problems that had existed inconverting a 
batch processing executive. It was a real-time executive 
with existing procedures for handling remote consoles 
while a real-time program was being executed. 

The projected hybrid system at NASA will have up 
to six analogs operating simultaneously and indepen
dently. With this type of system, scheduling and alloca
tion of facilities can become very critical. So it was 
necessary to extend the existing features for the assign
ment and release as well as the continual verification of 
the hybrid facilities. 
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The hybrid facilities were identified by labeling, as 
devices, such things as analog computers, groups of 
A/D and D / A channels, the interval timers and dis
crete devices. By identifying "hybrid real-time" as one 
of the . facilities, the hybrid worker program could be as
sured that it would be the only hybrid program with 
critical real-time demands using the hybrid channel. By 
carefullv assigning the proper priority to his real-time 
operation, and dynamically assigning the facilitv "hy
brid real-time" only when the timing becomes critical, 
the user has the tools needed for a very efficient system. 

The assigning and releasing of facilities can be done at 
run time through the control stream or dynamically by 
the operating program. The "Communication Routines" 
that verify and format the I/O packet establish the 
facilities to be used to execute the packet. The Hybrid 
Handler, the routine that executes the I/O packet, will 
validate the availability of facilities before execution. 
If the facilities are not available, the worker program 
will be notified and corrective action can take place. If a 
job is terminated for any reason, the standard executive 
procedures would release all facilities that had been allo
cated. 

As would be expected with a multi-processing execu
tive, most standard operations must be executed in 
generalized routines so that the executive will always 
have complete control of the system. Operations to be 
replaced in a batch type executive are the verification of 
an I/O packet, establishing memory restrictions and 
converting access control words from relative to abso
lute addresses, the saving of required environment in 
response to an interrupt, the queuing of interrupts when 
their priority is not sufficiently high enough to warrant 
immediate execution, and the queuing of I/O requests 
when the facilities required are not available. 

By designing the executive modifications in such a 
manner, the hybrid runs will have no adverse effect on 
the operating system, and the central control structure 
of the executive will contain all necessary information 
on the status of aU system components. This is espe
ciallydesirable when there is external interrogation from 
conversational use of a remote device or when a pro
gramming bug or computer fault force an untimely 
abortion of the run. 

It was during the NASA design effort that the tech
nique was developed that made the greatest impact on 
the effectiveness ofthisover-~ll hybrid operating system. 
The 1108 has an interrupt lock-out feature that is set by 
hardware immediately after an interrupt is received. 
Any succeeding interrupts are suppressed until the 
executive does a minimal amount of housekeeping and 
releases the lock-out. This would nonnally take 40-60 
microseconds. In addition to this time, an interrupt will 
not be recognized until the current instruction is com-
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plete. In most cases the instruction time is 750 nano
seconds, but in an extreme case of double precision float
ing point divide, the instruction time is 17.25 micro
seconds. 

The composite of these times created a variation in 
the interrupt response time and, in situations such as 
setting analog components in response to an interval 
timer, this variation represented an uncomfortable mar
gin of error. In designing a dedicated system, this situa
tion was tolerable since the hybrid program could 
usually keep enough control over the entire operation to 
be waiting for any cyclic interrupts to occur. In response 
to unsolicited interrupts, the variation was usually 
tolerated. 

By placing a small amount of capability in the hybrid 
interface, a method 'evolved that provided immediate 
initiation of I/O under the control of the interface. This 
method included a variation on externally specified 
indexing (ESI). Details on the technique are included in 
the description of the basic executive. 

General hybrid executive 

The out-growth of these previously-mentioned ex
periences was a modular set of routines that could be 
merged with an existing digital executive. The primary 
goals were twofold: to create a system that would allow 
the hybrid user the means for tailoring and expansion, 
and to retain the capabilities offered by the digital 
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executive. In order to accomplish these goals, the soft
ware was designed in two sections, Program Library and 
Executive Control. See Figure 3. 

The first contained an executive-callable group of 
subroutines that may be required to support the hybrid 
operations. These subroutines would be retrieved from 
mass storage by the executive when required for execu
tion of a hybrid program. Modification of these routines 
or the addition of new routines could be accomplished 
with ease. 

Since the Fortran program library already contained 
most of the mathematical routines required for hybrid 
computation, it was decided that the first routines for 
the library should include the use of these mathematical 
capabilities for hybrid application tools. The first sub
routine was a completely digital arbitrary function 
generator for the evaluation of functions with a maxi
mum of four independent variables. The next effort was 
a continuous system simulation package that would 
utilize, in addition to the conventional math routines 
and the function generator, routines which simulated 
the various analog components. The language syntax 
was chosen so as to improve its flexibility and usability 
for a wide range of problems and yet retain the simplic
ity of a problem-oriented language such as Fortran. 

To supplement the application routines, a number of 
operator-controlled routines were needed to assist the 
operator in debugging or initializing the hybrid pro
grams. Included among these was a "hybrid interface 
'simulator" that would over-lay the Hybrid Handler and 
feed the I/O packets to a table or peripheral device such 
as a printer, rather than the analog computer. This rou
tine provides the user independent debugging of a 
hybrid program on a digital computer. 

To allow the operator to modify and interrogate com
ponent values in the analog computer, a routine was 
designed to interpret commands from the operator and, 
using the Communication Routines and the Hybrid 
Handler, execute the proper I/O packet and continue 
communications with the operator. 

Another routine to improve the flexibility of the sys
tem provides the operator with a means to enter tables 
that indicate the initial conditions that the analog 
should have before the hybrid program can be executed. 
All values are set, a time:..out is used when· necessary to 
establish success, and the components are read to verify 
a normal completion. This routine can be executed 
during a batch processing mode of operation. 

To make the basic debugging routines more compre
hensive, a routine was provided that would, on break
point command from the worker program, read all of 
the components into a table of the same format as the 
one used to set up initial conditions. When the dump is 
complete, it is labeled and written on a mass storage 

device. This table may then be used as a restart feature 
at a later time or may be printed for perusal during post
run analysis. 

The Hybrid Executive Control Routines include an 
initialize package, communication routines, and the 
Hybrid Handler. 

The initialization portion of the executive control has 
the responsibility of answering the command from an 
external source that calls for allocation and execution of 
a hybrid program. In addition to retrieving the hybrid 
program from mass storage, parameters must be read 
and verified that will establish the hybrid environment 
required for the program to run. This includes the 
setting of general purpose access control words, error 
recovery routines with associated entry points, clearing 
all priorities and activating the hybrid channel(s) if 
necessary. 

The Hybrid Communication Routines (HCR) have 
the responsibility of verification and formatting of the 
I/O packet that will later be executed by the Hybrid 
Handler. It was determined beneficial to the system de
velopment to adapt these routines to those of the analog 
manufacturer, since most manufacturers have existing 
Fortran programs written to perform diagnostic and 
maintenance tests on the conversion and analog equip
ment. In addition to these routines, if the digital com
puter is to be interfaced with existing hybrid equip
ment, the terminology used is generally well-entrenched 
in any operational programs the user has developed. 

Analog manufacturers are placing greater emphasis 
on providing a compatible interface to the digital com
puter. An example of a large scale analog computer with 
a digital interface that is easily adapted to the ESI 
philosophy for hybrid communication is the Applied 
Dynamics AD4. The digital I/O commands necessary 
for control and operation of the analog are designed to 
make the analog appear as a standard peripheral device. 
ADI had previously formatted a set of 43 routines that 
could be called by Fortran or assembly language pro
grams. These routines provided the means for initializa
tion, data transfer, sensing and setting of discretes and 
mode control. 

Provisions were made to use the Hybrid Communica
tion Routines in'either a test mode or a run mode. When 
operating in the run mode, no 'error detection takes 
place since the emphasis is placed on speed. If the test 
mode contains an error return argument, the error de
tected is noted and control is returned for user process
ing. If the test mode does not contain a return argu
ment, the error is printed on the I/O console and con
tinuation of the runis left to the operator. 

The executive will make all normal checks on the 
parameters for an I/O packet. It will also validate the 
hybrid addresses referen,ced, and will make special 



706 Fall Joint Computer Conference, 1968 

checks to determine if the argument type is correct for 
the request, and determine if enough data is available 
to satisfy the request, or if the range of the data is ex
ceeded. Another condition that may be considered an 
error is the busy mode from the analog console refer
enced. 

The I/O packet created by the Communication 
Routines will contain the location of the output buffer 
any input buffers, an executive scratch area and th~ 
return entrance for normal and error conditions. Also 
in?lu?ed are indicator fields for the buffer length, 
prIOrlty numbers, error options, status of operation and 
a bit-encoded word indicating the facilities required for 
this operation. 

The output buffer must contain not only output data 
but also the I/O commands required to control all com
munication over the hybrid channel. The interpretation 
of the request parameters for creating the output buffer 
must be listed as the primary function of the Communi
cation Routines. Since the packet will not always be 
executed immediately, all of the verification can~ot be 
done in the one set of routines. Because of this, fields 
suc~ as the buffer length, facilities used, and the error 
optJOns must be forwarded to provide the execution rou
tines the information required for assembling the abso
lute access control words, facility allocation and error 
recovery procedures. When an I/O packet is to be 
executed as soon as it is formatted, the Communication 
Routines will select the proper entrance and tranSfer the 
I/O packet directly to the Hybrid Handler. 

The Hybrid Handler is the keystone of Hybrid Execu
tive. This is an assembly language routine that provides 
the interface between the normal digital executive pro
cedures and the hybrid world. It is the only new routine 
that is keyed to the hardware restrictions of the digital 
system and hardware capabilities provided in the inter
face. Because of this, portions of the Hybrid Handler 
become very specialized and would have to be rewritten 
~or any major change in the interface or if a different dig
Ital computer were used. Even though the coding 
would change, the philosophies should remain stable. 

The Hybrid Handler is a composite of re-entrant 
software routines that are necessary for the execution of 
the I/O packets developed by the Communication Rou
tines for utilization by the worker programs. These rou
tines control any resulting communication between the 
?ybrid world and the worker programs. The following 
Includes the general task that will be accomplished by 
the Hybrid Handler: 

1. Initialization 
2. ESI environment control 
3. Verification of the I/O packet 
4. Activation of internally-stimulated I/O 
5. Programmable priority network 

6. I/O completion 
7. Error analysis and recovery 
8. Interval timer 

The initialization portion of the Hybrid Handler has 
the responsibility of establishing the entire ESI environ
ment for the hybrid channel. This routine is used by the 
Executive Control initializing package to set up the ac
cess control words and error recovery routines for sys
t~m-dependent error conditions and clearing aU priority 
flIp-flops related to the initializing program. The hybrid 
channel will be activated if necessary. 

A special phase of the initialization will allow the pro
gram to set up any error or system priority routines 
needed for the program. 

A definition of the hardware activity is necessary to 
show how the Externally Specified Index (ESI) channel 
is controlled by the Hybrid Handler. (See Figure 4). 
When the hybrid interface detects a priority (priority < 
128) from the analog world, it will add this unique 
priority value to the hardwired ESI bias for output 
(20008), place this information in the lower 15 bits of 
the 36 input data lines, and raise the output data request 
line (ODR). This will cause the 1108 I/O control to form 
the appropriate pointer to the main memory access con
trol word (ACW) related to this priority in the lower 
half of the input control register for the hybrid channel. 
The 1108 I/O will then transfer the appropriate pre-set 
block of memory to the hybrid interface. This block 
of memory may contain commands and output data. 

If the commands in the output stream indicate input, 
the hybrid interface will set the lower 15 bits of the 36 
input data lines to the hardwired ESI bias for input 
(22008) plus the priority number, and the requested input 
data will be entered in the upper 18 bits with sign exten-
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sion. Raising the input data request 1ine (IDR) will 
cause the 1108 I/O control to form the appropriate 
pointer in the upper half of the related input control reg
ister, and the data will be transferred to the related 
block of memory. The completion of any data t.ransfer 
operation will always be controlled by a command in the 
output stream. Execution of this command will cause an 
output monitored interrupt. 

It can be seen that the ESI mode of operation offers 
immediate initialization of preset I/O commands as a 
result of an external stimulus. For initial condition set
up and check-out or setting the priority in coder flip
flops, or pre-setting the interval timer, the I/O must be 
initiated by the digital program. 

Any internally-stimulated I/O follows the sameproce
dure as the externally-stimulated I/O previously 
described. The stimuli to the hybrid interface are pro
vided by a forced external function (EF). The EF may 
be sent in the output data lines with no conflict, even if 
a normal output data transfer is taking place. This will 
cause the hybrid interface to activate priority 0, which 
is reserved for internally-stimulated I/O. As soon as the 
currently active buffers are finalized, the highest level 
priorjty active (in this case, 0) will be passed to the 
1108, and the internal operation will be executed. 

The only hybrid operation that will behave in a man
ner other than that described above is an error condi
tion. After detection of an error condition, the hybrid 
interface will freeze the priority network and bring the 
current input operation to a normal completion. An 18 
bit status word will be set in the upper half of the input 
data lines, and 1778 (reserved for error conditions) is 
placed in the lower half. The IDR is raised, causing the 
status word to be stored in the 1108, independent of 
other operations. The hybrid interface will then request 
an output for priority 1778, thereby causing a monitored 
interrupt. The I/O will continue requesting output on 
priority 1778, but the freeze on the priority network will 
have to be released by command from the 1108. 
This will reinstate I/O to a normal status. 

The hybrid interface will be idle, most of the time, 
waiting for a priority to become active. To allow the 
interface to handle the situation in an orderly fashion, 
priority line 1768 is reserved for the idle condition and is 
always active. When the interface detects line 1768 as 
the highest priority, no more output data will be re
quested until a valid priority is activated. 

Software control of the Hybrid ESI environment 
places major emphasis on the speed with which certain 
operations can be executed. Included among these oper
ation times are: 1) the amount of time that the hybrid 
channel is deactivated after the occurrence of an out
put monitored interrupt, 2) the response time from the 
moment a monitored interrupt occurs until control is 

given to the real-time worker program, 3) the initializa
tion time forinternally-stimulated I/O, and 4) analysis 
time for error conditions. 

The main advantage of placing the hybrid channel in 
the ESI mode is that of providing immediate, non
varying initialization of externally-requested I/O while 
maintaining effective I/O command chaining. The Hy
brid Handler provides an effective means of keeping the 
access control words, the monitored interrupt return 
addresses, and the data buffers updated within a critical 
time cycle. 

The Hybrid Handler is utilized to set up the execu
tion of I/O in response to two executive requests: 1) 
Hybrid I/O and Proceed, and 2) Hybrid I/O and Wait. 
The Handler then verifies all critical fields such as the 
internal file name, the facilities used word, the error 
handling options, the I/O priority number; and any 
critical commands, such as resetting priority numbers, 
in the output buffer. An option is provided that allows 
the worker program a means of by-passing the verifica
tion phase in order to decrease the executive overhead 
during the Handler operations. 

There are a number of situations where it is necessary 
for the worker programs to stimulate I/O. When such is 
the case, the worker program will call upon the Hybrid 
Handler in almost the same manner as if it was setting 
up a buffer to be initialized by an external condition. 
The exception is that it will always set the priority to 
zero. This will cause the Handler to force an external 
function on the output data lines to the Hybrid inter
face. After any currently active I/O is completed, the 
internal packet will be executed. 

If any internally-stimulated I/O is being executed at 
the time that a new request is received, the new request 
is queued. The monitored interrupt caused by the com
pletion of an internally-stimulated I/O operation will 
cause the Handler to initialize the next request before 
control is returned to the working program. . 

The majority of the priority network is executed by 
the hardware in the Priority Encoder. Associated with 
each priority level are two flip-flops, the ACTIVE and 
the MASK flip-flops. The ACTIVE flip-flop is set 
as the result of some condition that exists on an analog 
facility. It will enter the priority matrix for eventual 
transmission with the hardwired ESI bias. 

I/O commands exist to allow the software to clear the 
ACTIVE flip-flop related to either the highest active 
priority or a particular priority. There is also a software 
capability to arm or disarm any of the priorities 
through the MASK flip-flop. The mask gates the input 
to the ACTIVE flip-flop. 

Since the progr~mmable portions of the Priority En
coder can be set through normal output commands, it is 
impossible to maintain an accurate map in thp. Hybrid 
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Handler. A routine provides for initializa.t.ion of the 
priority system as well as entries for arming or disarm
ing any particular priority or a range of priorities. 

To supplement the priority hardware, the Hybrid 
Handler contains a programmable breakpoint priority 
where any monitored interrupts occurring with a lower 
priority will be queued until a command is received to 
lower the breakpoint to the level of the previous inter
rupt. 

As previously noted, the normal completion of an I/O 
operation is activated by an output monitored inter
rupt. This causes the executive to store the priority and 
reactivate the hybrid channel. The Hybrid Handler will 
store status information in the I/O packet and for cer
tain priorities the access control words are reset for 
succeeding interrupts. Interrupts are enabled and con
trol is returned tLrough the executive to the location 
indicated in the I/O completion field of the I/O packet. 

Another method for completion,of an I/O dperation is 
by the executive request, Hybrid I/O Cancel. This com
mand will cause the Hybrid Handler to force the word 
count of the access control word associated with the 
given priority to zero. An "ignore state" is placed on the 
monitored interrupt for this priority and, after setting 
the appropriate status, control is returned to the cancel
ling routine. 

Two types of errors are noted by the Hybrid Handler, 
the parameter error in the I/O packet and an error con
dition that is detected by the hybrid interface. If an 
error is found in the I/O packet, control will be re
turned to the worker progranl. If the error is detected 
by the hybrid interface the Handler will check the error 
options offered in the I/O packet to determine if the op
eration causing the error should be re-executed a set 
number of times (with a time delay) or if the operation 
should be aborted. An error condition option field will 
exist for every priority where an error detected by the 
hybrid interface could exist. This will also include any 
priorities that are completely under the control of the 
Hybrid Handler. A bit corresponding to each type of 
error will indicate whether re-execution should be 
attempted. After detection by the Handler, the priority 
reserved for errors (1778) is cleared. 

An example of an error condition that could be de
tected by the hybrid interface is an illegal I/O com
mand. Another is to have the termination command 

missing, which would happen if the word count in the 
access control word did not agree with the output buffer 
length. 

Some situations, such as not having the power on the 
hybrid facilities referenced, will be referred to the 
operator. 

The interval timer contains an active counter register 
and a holding register. The active register can be started, 
stopped and read. The holding register can be loaded 
under program control. When the active register is dec
remented to zero, the appropriate priority line to the 
interface is activated and, if a value has been entered in 
the holding register, the active register is reset and dec
rementation is initialized. A multitude of interval timers 
can be associated with the hybrid system. 

The interval timer can be used to synchronize the up
dating ofdigital to analog conversions, placing the analog 
in the hold mode, timing programs or for timing the 
initialization of any other hybrid communication de
sired. It can be directed to decrement at seven different 
rates from one microsecond to one second. 

SUMMARY 

In conclusion, it is our feeling that we have designed a 
solid, basic hybrid executive that could easily be 
tailored to solve the problems of various hybrid users. 
The divergent philosophies of the analog and digital 
users had been successfully linked through the executive. 
The standard digital system, though occasionally com
promised, remains a powerful tool. Additional efforts 
are always required to reduce the executive overhead 
and find ways to increase the effectiveness of the exist
ing hybrid software. Hopefully, the program library 
will become more comprehensive as users expand their 
capabilities. As long as the hybrid executive remains 
dynamic, it can offer the hybrid user the capabilities 
that will be needed as hybrid systems are utilized in cur
rently untapped fields. 
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The Boeing IVertol hybrid executive system 

by DONALD A. WILLARD 

The Boeing Company 
Morton, Pennsylvania 

INTRODUCTION 

The BO'eing /V ertol Hybrid Facility was con
ceived frQm the start as a state-of-the-art, in
tegrated laboratory to' solve engineering prob
lems in design and research of V/STOL aircraft. 
Considerable experience was gained frO'm The 
BO'eing Huntsville Simulation Center (BHSC) 
where several generatiQns. of hybrid systems 
were evolved. Since these systems were highly 
successful both frQm an ecO'nQmic as wen as sci
entific point of view, it seemed reasonable to' pat
tern the Vertol Facility as much as possible after 
the Huntsville Facility. This had several imme
diate benefits. First, the specialized software 
packages would be cO'mpatible. Second, experi
enced persO'nnel could be tran.splanted withO'ut 

. dropping back on the learning curve. Third, 
future develO'pments in systems and applications 
could be jO'intly undertaken, thereby avO'iding 
duplication of tasks and saving The BO'eing Com
pany mO'ney. 

Within the abO've ground rules, many features 
were adopted to' provide a balanced, general pur
pose, scientific hybrid facility. NO' Qne feature is 
cO'nsidered to' be necess,arily Qutstanding, but 
when all the features are taken in perspective, 
a truly state-of-the-art, workable hybrid facility 
has been realized. SO'me of the major features 
that have been incorporated are: 

1. Thirty-twO' levels of PriO'rity Interrupts 
fully supported. 

2. A peripheral I/O ,SupervisO'r System, cap'a
ble of sUPPQrting Apparent Real Time Task
ing of Tape, Printer, and Card Read/Punch 
devices. 

3. A user Qriented SCQpe. I/O display system 
to allow '''hands-on'' cO'ntrO'I of simulatiO'ns. 

4. A dual interface concept allowing time 

shared multiple hybrid application pro
grams. 

5. SO'ftware contrQI of all analog_devices, i.e., 
potentiO'meters, lO'gic and mode cQntrol, 
enabling rapid analQg system set-up and 
check-out. 

6. A complement O'f hardware and system in
tercQnnection which is identical in each 
analog cO'n sole , allowing dynamic logical 
assignment Qf any set Qf analog consoles in 
a given simulatiO'n. 

7. The sO'phisticatiO'n of Fortran, Level "G" 
compiler and a MacrO' assembler. 

These features are defined and described in 
depth in the body Qf this paper. An example of 
a classical hybrid applicatiQn program is alsO' 
discussed to' show how these features are utilized 
in an operational envirQnment. 

Configuration 

The configuration of the system (Figure 1) 
is an IBM 360/44 and Applied Dyn'amics, Inc. 
AD-4. Although this paper deals primarily with 
the Executive System, a better understanding of 
this system is afforded if some statement of the 
configuratiQn is made. 

709 

Digital 

1-IBM 360/44 Digital Computer; 2,56K Byte 
StQrage with high speed registers, priority 
interrupts, and the following peripherals: 

2-2260 alphanumeric remote inquiry scopes 
1-1053 Printer (2260 HardCO'pier) 
2-2315 Single Disk Storage Devices 
1-2540 Card Read/Punch (reader 1100 

cards/min) 
1-1403 1100 line/min printer 
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FIGURE I-Boeing/Vertol hybrid configuration 

4-2401 M'Od 3 800 BPI 112 in/sec tape drives 
1-2701 data channel with 3-32 bit parallel 

data adapters 

Analog and interface 

4-AD-4, 34 expanded analog consoles 

Each console has a self-contained ADC and 
DAC System. The ADC ,in each cons'Ole has a 
100KC data rate. Each ADC is multiplexed to 32 
lines, 16 'Of which are sample held. The data are 
converted sequentially from the 32 lines, but 
since the non-sample held lines are converted 
first, the maximum skew time for the 32 words 
is 160 microseconds. There are 32 double buffered 
DAC channels per console. The data are held in 
the first buffer until an appropriate 'Operation 
c'Ode moves the data from the first buffer to the 
second. At this time the DAC attains the new 
'Output voltage. 

The Rem'Ote Interface Unit (RIU) is shared 
by the four c'Onsoles. This device serves several 
functions: 

1. The junction point for the 32 Priority In
terrupt Lines. Each console has all 32 
lines terminated upon the patchboard. Also, 
signal c'Onditioning and buffering is neces
sary f'Or compatibility between the 36.0/44 
and AD-4. 

2. Four sets 'Of ADC buffers, each 32 words. 
These buffers may be filled simultaneously 
fr'Om the analog consoles, then dumped 
serially into the 360 core. 

3. Two I'Ogically independent 24 bit interval 
timers. The minor bit represents 1 micro
s,econd. They have several running modes 
described later in this paper. 

4. Termination and signal conditioning 'Of 32 
discrete lines. 

The system is designed to support two logically 
independent interfaces. Each interface can com
municate with any number 'Or combination of the 
four analog consoles. It is only necessary to select 
the consoles required for a program and then plug 
them into the cons'Ole plugs 'Of either interface. 
The plugs are numbered logically fr'Om "0" to 
"3" on Interface "0" or "1." The interfaces re
quire that plug "0" always be used with suhse
quent consoles using the next higher number. 
Logical console "0" is then the master console and 
supplies the mega-cycle clock drive to the RIU 
timer on the interface selected. 

The IBM 2701 Parallel Data Adapter is a 
standard device used by IBM to connect n'On
standard hardware to an IBM 360 system. Funda
mentally, it is a multiplexer channel device 
capable of sUPP'Orting up to 4, 32 bit subchannel 
data lines. Each line is capable of both "read" 
and "write" operati'Ons. The Ve,rtol configuration 
requires only 3 of the subchannels. One subchan
nel is dedicated to 32 discrete lines which nor
mally w'Ould be c'Onnected to devices external to 
the AD-4 analog c'Onsoles, e.g., a simulator. Each 
of the 'Other two subchannels is dedicated to one 
of the interfaces described above. Further in
formation on the I'Ogical functioning of the inter
faces is detailed in the Analog Input/Output Sec
tion. 

Configuration features 

One major feature of this configuration is that 
it all'Ows rapid "turn-around" of hybrid prob
lems. Turn-ar'Ound time normally is 15 minutes. 
This feature is 'Only possible by forcing an identi
cal complement and placement 'Of hardware in 
each AD-4 console, and using the digital com-



puter to set up and static check under software 
cDntrol. The consoles are then IDgically addressed 
much the same as other digital peripheral hard
ware. Another feature Df the configuratiDn is 
that it allows the simultaneous setup of twO' hy
brid programs Dn the analog consoles by assign
ing an interface to each prDgram. 

Application program structuring 

In the BDeing/VertDI operatiDnal hybrid en
vironment, an application program is usually 
broken intO' several majo~: blDcks which will be 
referred to' throughout the balance of this paper. 
The purpDse Df this sectiDn is to' aid the reader 
in a better understanding Df these major ele
ments and terms. 

Three major elements exist. These are "Back
ground," "Foreground" and "Real Time Tasks" 
(RT'T). 

The analDg computer is in cDntinuous parallel 
Dperation with the digital cDmputer. TherefDre, 
the digital must be capable of repetitious execu
tion Df tasks to' support the analog simulatiDn. 
This executiO'n is called the Real Time Task. Since 
the RT'T must occur synchronously with the 
analDg, the instructiDns associated with the RT'T 
will be entered via a Priority Interrupt Line. 
This implies that any task not driven by a 
priority interrupt, e.g., the foreground described 
belDw, may be interrupted by a priO'rity interrupt. 
The usage of these interrupts depends upon the 
structuring Df the applicatiDn program. N Dr

mally, synchronism is established by using Dne 
of the interface timers to define a time frame. 
The timer generates an inte;rrupt at the end Df 

each time frame of computatiO'n. This time frame 
is required to' be of sufficiently s,mall duratiO'n to' 
update the analO'g cO'mputer many times per cycle 
O'f the highest problem frequency. 

The fDreground portiDn of an applications prO' ... 
gram cO'ntains the necessary cDmmunications to' 
the periphe'ral digital cDmputer devices. During 
the execution O'f the program, needs arise for 
printer, tape, scope display and card read/punch 
services. These devices require relatively long 
periods of time to' complete their input/O'utput. 
8ince having the Central Processing Unit (CPU) 
wait fO'r I/O cDmpletiO'n WO'uld be unacceptable 
in a hybrid envirDnment, a Peripheral Input/ 
Output (PIO) Supervisor has been incO'rporated 
in the Basic Programming System. PIO is de
scribed in depth later in the paper. This super
visor allows I/O to' the peripheral devices to' O'P-
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erate in "Apparent Real Time." Normally, 
buffers are filled or us,ed by the RTT. These 'cO're 
buffers are checked fO'r status when the program 
is in the fDreground mode. Then, I/O is initiated 
as required such that the necessary I/O is cO'm
pleted before the buffers are again needed by the 
RT'T. Under this supervisor, cO'ntrnl is always re
turned to the applicatiDn programmer immediate
ly after start of I/O. Hence, the peripheral de
vices are active during problem solutiO'n, and al
thO'ugh the 1/0 actiO'n O'ccurs asynchronO'usly with 
the analog computer, the I/O looks like it is ap
parently in real time. 

Background is defined as a low priority task 
such as "CompilatiDn," "Assembly" and "Utili
ties." Presently, Background dDes nDt CD-exist 
with Foreground and RTT under any O'perational 
system. It is necesrsary to' reload the system to 
include BackgrDund with ForegrO'und and RTT. 

Hybrid compilation and assembly 

TwO' IBM supplied systems are utilized. These 
are named by IBM as BPS (Basic PrDgramming 
System) and PS (PrO'gramming System). BPS 
was released abDut O'ne year befDre PS, and there
fDre .became the base system fDr mO'dificatiDn to' 
sUPPO'rt a hybrid envirDnment. Many man years 
were expended to perform this task. The mO'di
fied BPS is acceptable fDr a hybrid operating sys
tem but has several disadvantages: 

1. Tape Resident 
2. "E" Level FO'rtran CO'mpiler 
3~ .NO' MacrO' Facility 
4. Unsupported by IBM as of 2/15/68 

These disadvantages have largely been over
come by PS. In O'rder to' use the cO'mpiler, as
sembler and utilities of PS, but still execute un
der control O'f the BPS system as modified for 
the hybrid envirDnment, it was only necessary to' 
prDvide fO'r the incDmpatibilities between PS and 
BPS in the Dbject deck's External Symbol Dic
tionary (ESD). A rO'utine called A8SET has 
been added to the PS Library and is executed 
via apprO'priate Job CO'ntrO'I Language. This pro
gram inspects and mO'difies O'bject module:s pro
duced by the 44 PS Assembler and 44 PS FO'rtran 
Compiler. The O'utPUt consists O'f edited (new) 
object decks that are compatible with the 44 BPS 
FO'rtran Loader and Library. 

The advantages of this dual system 'are: 
1. "G" level compile'r, providing better diag

nostics 
2. Faster cO'mpilations 
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3. A load and gQ system for digital simulation 
4. Macro assembler 
5. M'Ore extensive utilities 
6. IBM supPQrted with grQwth capability 

intQ .Data AcquisitiQn Multi-PrQgramming 
(DAMPS) 

Hybrid executive system 

Afte'r the BPS 'Object prQgram is prQduced, 
executiQn is cQntrQlled by the FQrtran System 
Director (FSD) and its subsets. This system 
(Figure 2) is a m'Odificati'On 'Of the IBM supplied 
BPS. The modifications were jQintly designed and 
imple,mented by IBM and The Boeing Company. 

The principal paths 'Of cQmmunicatiQn fQr hy
brid are shown. Only the parts 'Of the system' that 
are specifically tailored for hybrid will be dis
cussed as a c'Omplete treatise 'Of the entire Hybrid 
BPS WQuld invQlve many IBM published manuals. 
E,ach major module is treated in s'Ome depth with 
particular emphasis upon the AIO Supervis'Or 
and Library Subroutines. AlthQugh this module 
is very similar in function to the Peripheral I/O 

om. IIDADe 
IITIMI WIIDAC 
ITI'TlM lYNCH 
IIEVENT UNIVNC 
WEVENT LOIIEO 
ANALOO UPDATE 
ITATUI AMDOE 

LMOOE 
VEIlIFY 
LEXEC 
TlCALE 
ClCALE 

FOIITIIAN I\'IJIM DlIlECTOII IPIIII 

IIICOM 
Ia-INICATION 
WITH ALL UNITS 
INCLUDING SPECIALS, 
",17,".'1.1 

APPLICATION PIIOOIIAM 
lUlING AIO • PIG LIBRARYI 

FIGURE 2-Hybrid operating system 

PlNI1 

Supervisor and Library, it is very configurati'On 
and c'Onceptually 'Oriented tQ the AD-4 interface. 

The Hybrid Executive System's primary pur
pose is to effect real time and apparent real time 
I/O f'Or the variQus devices in the system. This 
was accQmplished thrQugh modificatiQns t'O the 
F'Ortran System Director and IBCOM, plus the 
additiQn 'Of two supervisors with appropriate c'all
ing r'Outines. One 'Of the majQr advantages to us
ing the IBM supplied BPS is the ability to READ 
and WRITE under FQrtran format contr'Ol. This 
was accQmplished by assigning to 'Other routines 
some 'Of the responsibilities 'Of the FSD and 
IBCOM, such as posting and analyzing I/O com
pletiQn status. In this manner, the nucleus 'Of the 
'Operating system was "fQQled" intQ believing 
that its envir'Onment had nQt been altered. The 
rest 'Of this section is a descriptiQn 'Of the mQdi
ficatiQns and additiQns tQ this basic system and 
their effects upOn the 360/ AD-4 environment. 

Fortra.n SYfstem Director (FSD) 

The FSD is the nucleus 'Of the BPS F'Ortran 
System. It is in residence at all times and pr'O
vides a methQd whereby the c'Ompiler, loader, 
edit'Or and 'Object m'Odules may be called in and 
executed. One 'Of the principal tasks 'Of FSD is 
t'O process channel interrupts. For the hybrid fa
cility an I/O Active Table and an I/O Interrupt 
Filter were added to FSD. By checking the I/O 
Active Table, inte'rrupts are analyzed tQ deter
mine if they are analog (AIO) 'Or peripheral 
(PIO) . Linkage t'O the respective analog 'Or 
pe'ripheral supervisor is set up if a. real time in
terrupt is felt. If it is a n'On-real time interrupt, 
linkage is established to prQvide a return to the 
standard FSD interrupt proce'Ss'Or. 

A second additi'On t'O FSD was the Real Time 
CQmmunicati'Ons Regi'On. This was necessary t'O 
prQvide linkage to the Supervisor Routines and a 
save area fQr the PriQrity Interrupt Supervis'Or. 
The follQwing inf'OrmatiQn is contained in this 
regiQn: 

1. Hybrid Status and Indicators 
2. Save area f'Or 32 Priority Interrupt Super

vis'Ors 
3. PQinters tQ Analog and Peripheral I/O 

Supervisors 
4. PQinter tQ the I/O Active Table 
5. The Priority Interrupts enable and disable 

masks 
6. The 64 Program Status W'Ords for the 

Priority Interrupts 
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PRINTER 
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Communication between FSD and the PIO and 
AIO rO'utines is necessary. Since FSD is an ab
solute module, blank wO'rds are internally re
served to serve as pointers to' these routines. 
PINIT, a subroutine called from the applications 
program, is executed immediately after loading 
all the modules of the object program. This 
initialization routine picks up the entry addresses 
of the PIO and AIO routines and appropriately 
places them into the FSD communications region. 

IBCOM and FIOCS 

The communications system for Fortran I/O 
is in IBCOM. Hybrid I/O has made special de
mands upon I/O functions. Several special units 
(1053 ball printer, two 2260 alphanumeric scopes 
and an internal unit) are supported. These are 
logical units 16, 17, 18 and 19. Fortran Input
Output Control System (FIOCS) has been modi
fied such that all device I/O is routed thru the 
PIO system described later. 

A requirement exists to read and write the 
digital peripheral devices in apparent real time. 
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Since core to core operations are relatively rapid, 
an internal scratch, unit (19), of 132 characters 
has been added. U sing this unit, the formating 
features of Fortran may be used. As an example 
(Figure 3) ; if it were desired to do an apparent 
real time write on the line printer in alpha
numeric format of floating point numbers in 
core, the data would have to be reformated be
fore being written using PIO calls, as these calls 
do not have format capability. Using Unit 19 as 
an intermediary, the data are written under 
Fortran format control on Unit 19; then read 
under Fortran to the application program buffer, 
and finally the printer is written by a PWRITE 
call of PIO. The status of the final write is 
checked by the application program to make sure 
that the buffer was dumped correctly before the 
process is repeated. 

A second usage of Unit 19 is to transfer alpha
numeric constants under Fortran from Format 
Statements to Data Areas. These constants might 
be used for comparison with key control words. 
Key words are necessary to allow the applica
tion programmer to choose options via 2260 key
board inputs. This process is described in the 
Hybrid Applications Example later in the paper. 
A set of these control words would be generated 
prior to real time execution. Later, these words 
would be compared with keyboard inputs thru 
logical IF statements. No other reasonable 
method of generation is available as the BPS 
Fortran System does not support literals or 
hexidemical constants. 

Analog Input/Output Supervisor 

This system manages the flow of data to and 
from the analog de'vices. It consists of two major 
routines: 

Analog I/O initiation controller 

All I/O initiation to analog is generated in this 
routine. To perform this task in an orderly 
fashion, it does the following: 

1. Bookkeeping 
2. Determines the availability of the device 
3. Queues the request if the device is not avail

able 
4. Starts I/O if the device is available 
5. Handles device inoperative responses (I/O 

was attempted but could not be successfully 
initiated) 
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Analog interrupt servicer 

When I/O 'On a device is cQmpleted, this rQutine 
processes the device interrupt return. This in
terrupt will have been sent by way 'Of the FSD 
interrupt filter, described earlier. To accomplish 
this task the following actiQns are taken: 

1. Field and post the status 'Of the 1/0 CQm
pletiQn. 

2. Check the Queue Table for pending AIO 
calls. If other tasks are queued, the I/O 
Initiation ContrQller RQutine is again called. 

3. LQad the Program Status Word (PSW) 
fQr return to the interrupted program. 

A device active and queue table are main
tained to' facilitate the analQg supervisor in its 
duties. 

Analog Input/Output (AIO) 

All requests for I/O under the cQntrQI 'Of the 
AIO supervisor arise frQm subrQutines which 
are called from the applicatiQns prQgram. These 
are: 

SYNC 

UNSYNC 

RDADC 
WRDAC 
UPDATE 

REVENT 

SynchrQnizes the DAC's and/Qr 
ADC's CQnversiQn with the timer. 
RemQves contrQI 'Of the DAC's and/Qr 
ADC's from the timer. 
Read ADC buffer into main stQrage. 
Writes the DAC's buffer. 
Updates a set 'Of .DAC 'Output buffers 
frQm the assQciated DAC input buf-
fers. 
Reads discrete lines via an interface 
channel 'Or via the discretes terminal 
statiQn channel. 

WEVENT Write cQrQllary of REVENT. 
SETIME Starts the timer. 
GETIME Reads the current value 'Of the timer. 
STPTIM StQP the timer. 

Other rQutines are available to cQntrQI the modes 
and registers 'Of the analQg cQnsoles. They imple
ment all requirements for I/O via Channel 1. 
Of the three channels in use (0, 1 & 2), 'Only 
Channel 2 with its tape drives has a higher prior
ity in the servicing of I/O interrupts. Channel 
1 utilizes a high speed multiplexer with three 
subchannels. One subchannel is for cQmmunica
tion with a 32 terminal station which prpvide'S 

for the autQnomous input and output of discrete 
signals. Each of the twO' remaining subchannels 
communicate with its own remQte hybrid CQm
puting interface hQused in a RemQte Interface 
Unit (RIU). The RIU was designed and built by 
Applied Dynamics, Inc. to Boeing specificatiQns. 

FrQm the sQftware point of view the discrete 
signal terminal station and the remote interfaces 
are three peripheral devices. All cQmmunicatiQn 
with them. is by standard I/O commands. The 
AIO rQutines, the ref 'Ore, effect all AIO 'Operations 
by using a sequence of I/O recQrds, many of 
which are constructed internally by the sub
routines. I/O with respect to' the discrete signal 
terminal station is simple and invQlves the writ
ing or reading of a four byte, single recQrd. 

Apart frQm the subchannel addresses, the twO' 
interface subchannels are indistinguishable. An 
interface subchannel CQnnects with a remote in
terface which prQvides fQur 'Outlet plugs 'On the 
RIU cQrresponding to' fQur logical analQg CQn
sole addresses 0, 1, 2., & 3. (Figure 1). An in
terval timer, which is an integral part of the 
remote interface, is driven by a clock pulse sup
plied from the physical console that is plugged 
as logical O. Four plugs cQrresponding to four 
physical analog consoles A, B, C and D are alsO' 
located on the RIU so that the physical units may 
be assigned to the logical unit addresses and in
terfaces as desired. FunctiQnally, the plugs are 
indistinguishable. 

Each plug connects both to an AD-4 consQle 
and to a 32 word ADC buffer using 16 bit words. 
The buffer is filled from the AD-4 Console when 
a conversiQn sequence fQr the cQnsQle is initiated. 
A single ADC operatiQn may initiate the conver
sion sequence fQr either a single console, 'Or for 
all consQles simultaneous;ly. Thus, the maximum 
time skew from start to' finish of the conversiQn 
sequence is a function of a single cQnsole's ADC 
system. A cQnversiQn sequence may be initiated 
either by a prQgram call 'Or directly by the timer 
co-incidence (overflow) pulse. When all con
versions are completed (for 'One or all consoles) 
a pulse is delivered to the logic patchboards on 
the interface. In the hybrid technique using 
repetitive sampling, it is at this point that the 
real time task (RTT) may begin. Hence, this 
pulse is normally patched to' a priQrity interrupt 
line (PIL) to' initiate the RTT application pro
gram. In the RTT anQther AIO subroutine is 
then called to read intO' core as a single record 
either a sjngle ADC buffer or all 'Of them 
sequentially. 



The RIU interval timer is the main controller 
for the interface when repetitive time control is 
desired. The timer can be programmed to define 
a single time interval and then stop or to recycle 
after each interval. It can also be programmed to 
redefine the interval time and initiate a new cycle 
either immediately or at the end of the current 
cycle. The count is from zero until coincidence 
occurs with a final value register. Upon this 
event a pulse is generated which is available at 
all the AD-4 console patchboards plugged to that 
interface. In the sampling te'chnique used, in ad
dition to initiating the ADC conversion sequence, 
this pulse may be patched to update the DAC 
final registers from the initial DAC registers 
which were loaded by a previous RTT applica
tion subroutine call. 

All words (Figure 4) sent to the RIU carry 
an address referring to either the interval timer, 
the ADC buffer system or to one of the consoles. 
Those sent to the timer can control its mode of 
operation, its actual operation, or request the 
current value of the megacycle counter. Four 
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Fortran subroutines cover these operations. 
Words to the ADC buffer system carry a buffer 
address referring either to all buffers or just 
one of the four. Fortran subroutines control the 
buffer's mode of operation providing program or 
timer synched initiation of the conversion se
quences and facilitate the transfer of the buffer 
00ntents to main storage. 

For those words addressed to a console, the 
data part of the subchannel words is simply 
passed on to the console by the RIU. These half 
words of 16 bits pass either an operation code 
(OP code) of the AD-4 digital control system or 
data which will be processed according to the 
current OP code in the AD-4 OP code register. 
One bit of the first half word is used by the RIU 
to distinguish between OP code words (bit=l) 
and data words (bit=O), and to signal the AD-
4 console accordingly. The repertoire of OP codes 
covers all the operations necessary for the control 
of the analog console and the selecting and pass
ing of discrete data and digitized analog data to 
and from the RIU. Some OP codes cause in-

FIGURE 4-Formats of analog I/O words 
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crementing of addresses in the AD-4 addressing 
system. Records written to an analog console 
may have OP code words and data words mixed. 
Records are read from an analog console to take 
from it single 16-bit data words or sequences of 
such words under the control of the appropriate 
OP codes. The AD-4 control system is essentially 
digital in concept, and consequently it interfaces 
with the digital computing world in a straight
forward and expeditious manner. 

Peripheral I/O Supervisor 

This module functions similarly to Analog I/O 
Supervisor previously described. It contains all 
PIO request queueing, request staging, interrupt 
handling and initialization logic. All interrupts 
are disabled when any part of the module is in 
control. 

The main interrupt filter in the Fortran Sys
tem Director turns control over to this module 
when an I/O interrupt occurs for a device sup
ported by PIO, provided this module has been 
initialized by a Peripheral Initialization (PINIT) 
call from the problem program and the inter
rupting device is entered in the' device active 
table. 

PIO library subroutines 

The routines of this library request appro
priate interface queueing thru the Peripheral I/O 
Supervisor. They are totally re-enterable and can 
be called either from the foreground task or the 
real time task (s ). They are: 

1. PWRIT'E (output) 
2. PREAD (input) 
3. PREADB (read backward tape) 
4. PCNTRL (control operations) 
5. PSENSE (sensing) 

The purpose of the PIO caUs is to allow ap
parent real time programming of tbe peripheral 
devices. The FSD is forced to communicate with 
the devices thru PIO. When a standard Fortran 
call to a· device is made, IBCOM establishes the 
status word for the device and waits upon the 
completion of the I/O. Since this would be un
acceptable in a real tim,e environment, direct PIO 
calls require that the application program estab
lish the status word. Upon initiation of the I/O 
request, control is returned directly to the ap
plication caning program. It then becomes the 
responsibility of the applications program to 

check the status word to determine I/O com
pletion and whether or not an error was en
countered. 

Priority interrupt supervisor 

The Priority Interrupt Supervisor consists of 
two special routines call ATTACH and DETACH. 
They are called from the application program. 
These routines allow the application programmer 
to specify the attachment and enabling of Prior
ity Interrupt Lines (PIL's) or the disabling of 
same. This is the mechanism that allows the ap
plication programmer to specify the routines 
which will service his real time interrupts. AT
TACH normally would be called at program ini
tialization and DETACH whenever desired or at 
program exit. 

Hybrid program control example 

A block diagram for the digital control and 
execution of a typical hybrid program is shown 
in Figure 5. 

After the program is first loaded, the analog 
consoles, interface, tapes and other equipment 
used can be logically assigned' using key control 
words on the 2260 display keyboard (Block 1). 
With this fundamental task completed, the dis
play keybo,ard acts as a distributor, giving the 
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FIGURE 5-Example hybrid program block diagram 



applicatiQn engineer a chQice Qf QptiQns (BIQck 
2). This example allQws the chQice of initializing 
the program, running, preprQcessing Qr PQst 
prQcessing. One might alsO' wish to' include se
lectiQns to' display areas of storage, allow fQr 
changes in storage, etc. BIQcks 3 and 4 Qf the 
flow chart allow the QperatQr to' set up tapes fQr 
use during running, i.e., input data fQr functiQn 
generation, and to' pO'st prQcess output data tapes 
that were created during a real time task. 

The run optiQn requires cQntrolling a RTT in 
parallel with analQg using the interface timer. 
Each time a R T'T' calculatiQn is required, its as
sociated priQrity interrupt will cause entry to 
the designated sectiQn Qf executable instructiQns. 
The highest priQrity interrupt will be serviced 
immediately and when the associated instructiQns 
are complete, return will be to' the interrupted 
program. Tbexplain the fabricatiQn of the RTT 
cQntrQls, refer to' BIQcks 5 thru 10 Qf Figure 5. 

BIQck 5 is used to' initialize the DAC's by per
fQrming the frame calculatiO'ns using the initial 
ADC values and any tape data as input. After 
this is perfQrmed, a status word is set to one to' 
indicate acceptable completion of the DAC ini
tialization and the program is again given a 
chQice .of running, preprQcessing Qr post prQce'Ss
ing. 

If the QperatQr next chQQses to' run, a check 
of the initialization word is made to assure 
proper initial DAC values befQre prQceeding to' 
run. After this ocheck, the analog is put in the 
operate mQde. The timer is started and the priQr
ity interrupt lines are attached to' the RTT's. 
Next, the CPU begins executiQn of an indefinite 
length IQop in the fQreground, which is inter
rupted by either a R TT or a program halt. This 
IQQP is shQwn in BIQck 6. The status Qf the I/O 
buffers' are checked. If an I/O buffer becomes 
ready fQr data transferral, a request fQr periph
eral I/O is made via the apprQpriate PIO sub
rO'utine call. If the requested device is nQt active', 
the start I/O cQmmand is issued and cQntrQI is 
returned to the applicatiQn program immediately. 
If the device is active, the request is queued, and 
will wait until the device signals completion Qf 
current I/O by a channel interrupt befQre being 
hQnQred. (See the previQus PIO sectiQn.) The 
I/O buffers are generally dO' ubI e, to' permit the 
R'TT to wQrk intO' O'r Qut of Qne while the O'ther 
is being filled or dumped by the peripheral de
vices. 

Because of this PIO capability of starting 
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I/O and then returning to the applicatiQn pro
gram immediately until the device I/O is CQm
.plete, Qther devices can be started and overlapped 
in this fore'grQund loop whenever a buffer re
quires service. Printer, 1053 typewriter and 
2,260 SCQpe devices, fQr instance, can be used to' 
give operator messages in apparent parallel QP
eratiQn with the analQg. 

Since the timer has been set and started be
fQre the IO'QP was entered, it will O'verflow when 
its preset coincidence value is reached. 

A timer pulse (available at the analQg) which 
O'ccurs at timer O'verflow can be wired sO' that it 
will start DAC ADC cQnversions at the end O'f a 
frame and cause a priQrity interrupt for BIO'ck 
7. BIO'ck 7 will then check to' see if the real time 
tasks ha ve all been cQmpleted O'n time. If nO't, 
an errQr rO'utine is entered and the run is halted. 
This check is accQmplished by setting status 
words after the apprO'priate checks have been 
made. 

After completiQn of BIO'ck 7, return is made 
to' the Block 6 IQop. The ADC's are now CQn
verting and when the ADC multiplexer is finished 
a pulse appears O'n the analO'g IQgic board. This 
pulse is patched to' the priO'rity interrupt line at
tached to' the RT'T of BIQck 9. 

The first actiQn O'f RTT #0 is to' check the 
conversion and trans,missiQn of the ADC's. to' the 
interface buffer. Then the ADC interface buffer 
is read and the data converted to' flO'ating point 
fO'rmat in core. The frame arithmetic calculatiQns 
of the prO'cess cycle will be executed using the 
cO'nverted ADC data and the resultant data will 
finally be written to' the DAC's. A return is then 
made to' the foregrO'und IO'op at the PQint at which 
it was interrupted. If while the RTT was being 
perfO'rmed, a peripheral device had cO'mpleted 
its read/write .operatiO'n, it can interrupt the 
RTT and see if any more PIO operatiQns are 
pending. If there are requests pending, the PIO 
supervisO'r starts them befQre returning to' the 
RTT. 

If anQthelr real time task is needed O'nly once 
every several frames, it will be given a IoOwer 
priO'rity and will be executed whenever higher 
priO'rities are nO't coOntrolling the CPU. In this 
fashiQn, portiO'ns of a lower priQrity task can 
be doOne piecemeal until the whole task is com
pleted. The timer routine would check to' s,ee if 
this task has been cO'mpleted oOnly O'nce every 10 
frames, fQr example. Until this IQwer priQrity 
RTT executes its RETURN statement, it will aI-
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ways be serviced when nO' 'Other higher priQrities 
are requested. 

Future hybrid executive system 

As listed previously, the Hybrid BPS has 
sevaral limitations. A joint Boeing Huntsville 
Simulation Center, Boeing/Vertol and IBM de
velopment is under way to produce the next gen
eratiQn Hybrid Executive System. This system 
when complete will be a modification of the 
Data Acquisition Multi-Program~ing System 
(DAMPS) to support the special requirements of 
Hybrid~ Fundamentally, DAMPS is an extension 
'Of PS which will support a .Priority Interrupt 
System and provide an apparent real time I/O 
scheduler. Features 'Of this system beyond 'Our 
present system include: 

1. Disk residence. 
2. "G" level Fortran Compiler load and go. 
S. Background compiler, assemble and utili

ties. 

4. 'IBM sUPP'Orted. 
5. GSMP Dr similar block mQdeling language. 

The final version of this system will be 'OP-
eratiDnal in 196,9. 

ACKNOWLEDGMENT 

This paper was written with the assistance of 
J Qhn Rayner, The Boeing C'Ompany and edited 
with the aid 'Of Carol Becknell, International 
Business Machines, and Larry Snyder, The Boe
ing Company. Their efforts were most construc
tive and are greatly appreciated. 

The Boeing/Verl'Ol Hybrid Executive System is 
the result 'Of many man years of effort 'On the 
part 'Of numerous individuals, both in The Boe
ing Company and IBM. Therefore, the Huntsville, 
Alabama Hybrid Team of F'rank Abbot and 
Roger McAllister of The Boeing Company and 
William Pierce and William Maasberg of IBM' as 
well as Bill P'Ost and Carol Becknell of IBM, 
Philadelphia, sh'Ould be recognized for their maj'Or 
contributions towards this fi~al system. 



FAMILY I: Software for NASA-Ames 
simulation systems 

by EDWARD A. JACOBY 

Basic Computing Arts, Inc., 
Mountain View, California 

and 

JAMES S. RABY 

N ASA-A mes Research Center, 
Moffett Field, California 

and 

DONALD E. ROBINSON* 

Applied Simulation Research 
Redondo Beach, California 

INTRODUCTION 

The Ames Research Center (ARC) of the Na
tional Aeronautics and Space Administration has 
two major hybrid computer systems which are 
used to control piloted simulators of advanced 
aircraft, such as supersonic transports, and space 
vehicles such as the Saturn V Apollo booster. 
Ther~ are two fundamental problems in hybrid 

computation. The hybrid user/experimenter in
variably lacks the background, experience, and in
clination to consider the needs of the computing 
system. He focuses on his scientific problem, and 
justifiably objects if the computing system is so 
sophisticated that it becomes a separate problem. 
An equally important problem is the excessive 
programming and checkout time inherent in h~
brid computation. Programs are large and dI
vided, part in the digital computer, and part in 
the analog computer. Programs are complex, re
quiring extensive synchronizing and control logic. 
Experimentation requires continual changes to 
the program and its . data on a trial-and-error 
basis. 

The FAMILY I software system includes the 

*Mr. Robinson was employed by Electronic Associates, Inc. 
at the time this system was completed. 
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normal functions of a digital monitor, the execu
tive control functions for the simulation program, 
and an interactive hybrid debugging system. The 
digital monitor handles language processing, pro
gram loading, and provides the running program 
with digital input/output and interrupt services. 
The ,executive controls the simulation. It is a 
priviteged mode program that performs many of 
the functions normally re!served for monitor mode 
programs. It sets and tests discrete lines, res~o~ds 
to reserved interrupts, controls analog-to-dIgItal 
(AD) and digital-to-analog (DA) data transfers, 
and performs other simulation executive func
tions. The debugging system provides powerful 
assistance in problem setup, static test, and pro
gram debugging. 

Hybrid simulation has special scheduling re
quirements; large amounts of computing equip
ment in different worlds must be controlled and 
synchronized. With a pilot in the simulation loop, 
the response time of the computing system be
comes critical.. The executive controls scheduling 
and adds only a minimum overhead time to the 
computational loop. 

The paper examines briefly the key participants 
in a simulation-computers, men, programs-and 
reviews in some detail the evolution of Ames hy-



720 Fall Joint Computer Conference, 1968 

brid software, its use, its subsystems and their 
implementation. 

The simulation 

The Flight Simulation Laboratory at ARC sup
ports a variety of projects. Typical at this time 
are: (1) studies of the handling characteristics 
of advanced aircraft (including SST and VTOL) 
especially during the landing and takeoff phases 
of a flight; (2) investigation of the ability of as
tronauts to control the Saturn launch trajectory; 
and (3) optimization of control systems. 

The laboratory has six Electronic Associates 
_ Incorporated (EAT) 231R analog computers, two 
EAI 8800 analog computers and two EAI 8400 
digital computers. ' FAMILY I was designed for 
use with the 8800 and 8400 computers. The con
figurations of the two digital computers are shown 
in Figure 1. 

In addition the laboratory has a number of 
cockpit simulators ranging from fixed-based cabs 
to a full six-degree-of-freedom cab. A visual simu
lator is used to provide pilots with an out-of-the
cockpit view of a landing approach. The runways, 
hangars, and landscape are projected on a screen 
in front of the pilot so he can make visual ap
proaches as well as instrument approaches. These 
simulators are all computer driven. 

The skills of the individuals using the labora
tory are diverse; however, the typical user is an 
aeronautical engineer with several years experi
ence in programming analog computer simula-
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FIGURE I-NASA-Ames flight simulation laboratory 
hybrid computers 

tions. He is accustomed to an open-shop facility 
where the user does most of the computer pro
gramming, debugging and operation. The major
ity of debugging is done on-line. When the user 
is satisfied that the program is working correctly, 
he runs basically that same program for several 
months using different pilots, changing some as
pect of the simulation in an attempt to obtain a 
"better" configuration of the aircraft. He makes 
this type of program modification on-line, by 
changing the value of some variable based on pilot 
comment and his own engineering judgment. 

Software must provide this type of user with 
the same man-machine interaction that he is ac
customed to having when using the analog com
puter. 

The hybrid computer program 

A hybrid simulation involves a large diverse 
complement of computing equipment. In digital 
memory, there are parts of the program written 
by the experimenter or his staff, and there are 
executive functions provided by the hybrid soft
ware system. On analog computer patchboards 
are other parts of the program. In instrument 
racks and the simulator cockpit, there are bat
teries of logic panels, timers and control lines 
which serve as logical extensions to the program; 
some capable of functioning asynchronously with 
other parts of the program. 

The purpose of the complete computer program 
is to give the experimenter control over the entire 
complex of equipment, and to solve the calcula
tions and differential equations in such a way that 
the total effect represents the' characteristics of a 
physical system, such as an aircraft, in its dy
namic states of change with respect to continu
ous real time. To accomplish this, the program 
in its total aspect must control the flow of data 
across lines between the computers and the simu
lator station where the pilot sits. When all is 
synchronized, the pilot receives cues in his cockpit 
that closely simulate the motions and visual re
sponses he receives from a real airplane. 

A significant melange of parts and pieces must 
be fitted together to build the digital section of a 
hybrid program. Figure 2 shows these elements 
in a helter-skelter arrangement which suggests 
the size and complexity of the programmer's task, 
and the reason that he can often become confused, 
and make mistakes, or omit key parts of his pro
gram by oversight. 

As far as he is concerned, he would like to pro-
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gram only those parts of his program shown in 
black boxes; these are the differential equations 
that represent the mathematical model of the 
physical system to be simulated, the interrupt rou
tines that respond to special events occurring in 
the simulation, and the on-line utility functions 
he would like the computer program to perform in 
response to pushbuttons and switches. These util
ity functions include data displays, use of special 
initial conditions, printouts on a line printer, and 
similar functions. 

The other parts in Figure 2 are equally neces
sary, which can be seen by briefly reviewing the 
typical structure of a hybrid simulation program. 

Setup and test section 

Before running a simulation, considerable ini
tialization and testing of the whole pr~gram is 
needed. Analog potentiometers must be set and 
checked. The complete analog program must be 
checked against known static conditions to verify 
that the patchboard wiring and component set
tings are:correct. Instruments may need to be cali
brated. Certain digital memory locations control
ling system operation need to be setup after the 
digital program is loaded into memory. Most of 
these tasks are relatively rOoutine, and the pro
grammer would rather not have to program them, 
but he must provide for their presence. 

Computation section 

There are three simulation modes of computa
tion: IC (Initial Conditions), Hold, and Operate. 

In Ie mode, all variables in the simulation are 
set to their initial values by assigning initial con-

ditions directly to certain variables, and comput
ing the equations of the system but without inte
grating the differential equations. 

In Operate mode, real-time clocks are started 
and controlled to keep the entire system in syn
chronization. AD IDA transfers take place at pre
cisely timed points. The differential equations of 
the system are computed and integrated. In the 
digital domain, special numerical integration rou
tines are needed to perform this task. Data his
tory must be recorded at timed points to provide 
a "movie" of the run. Often, several computational 
processes must execute at different frequencies, 
introducing a scheduling problem akin to multi
programming. 

In Hold mode, real-time clocks and the analog 
computer are stopped, freezing computations at 
the values that existed at the instant of entering 
Hold mode. The experimenter then can spotcheck 
results, and make changes. To do this he requires 
a means to readout or set (change) any variable 
in the simulation, whether analog or digital. 

Control section 

The most basic control needed in a simulation 
program is the ability to change from mode to 
mode at will. With each change to IC, Hold, or 
Operate, all computing equipment, simulator con
trols, and instruments must change to the new 
mode simultaneously. 

Other controls, decided upon by the experiment
er, are invariably included in a comprehensive 
simulation. He wants interrupt buttons to impose 
special conditions, e.g., an engine failure. He wants 
easy ways to start again at Setup, or to end the 
run for the day. 

In summary, the hybrid computer program is 
a sophisticated system, with heavy demands on 
it fOor easy changes, and flexible control to m~et 
the needs of experimentation. Without software 
assistance, the hybrid programmer faces an enor
mously complex planning and programming task. 

Software system specifications 

The hybrid simulation has now been described; 
the simulators, the computers, the users, and the 
program. We have reached the conclusion that a 
software system is required to assist the user 
to create a valid physical simulation. The next step 
is to determine the specifications for such a soft
ware system. In order to make this determination 
we will review the several steps required to pro-
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gram, operate and debug a typical hybrid simula
tion. 

Programming steps 

The first step is the planning phase. The experi
menter must decide (1) which equations he will 
use to simulate his particular vehicle, (2) which 
portions of the equations will be solved on the 
digital computer, (3) how to divide the digital 
computer program into independent computational 
loops, and (4) what types of external control (in
terrupt, pushbutton, etc.) will be needed in the 

. digital program. 
The second step is for the simulation program

mer to write his digital program. Thi.s step in
cludes two separate problems. Problem one is to 
create a physically valid simulation. To accomplish 
this he must create a program which will com
pute and integrate the differential equations which 
describe the physical system. It must also com
pute the values of arbitrary functions and record 
data acquired from various sections of the simula
tion. Problem two is one of organization and con
trol. He must consider mode control, linkage input
output, computations to perform in each mode, 
and utility functions needed. 

The third step is to have the program key
punched, compiled and loaded. 

The fourth step is to debug the digital program. 
The debugging includes making program patches, 
changing data (usually in decimal), setting break
points, and printing memory dumps. 

The fifth step is the debugging of the hybrid 
program. Here the hybrid user wants to set po
tentiometers, run a static test, and readout and 
set both analog components and digital variables. 

The sixth and final step is the execution of the 
debugged program. The experimenter is now 
ready to take data. However, he is continually 
modifying his program in order to obtain a "bet
ter" result, even after he determines that the com
puter is correctly solving the equations which 
describe the system which he is simulating. 

Specifications 

It is clear that the standard digital software 
system does not give the hybrid user assistance 
in many of the tasks described above. The soft
ware system must not only provide the hybrid 
user with a standard digital monitor, but also with 
a means of easily and ·conveniently communicat
ing with and controlling his simulation computer 
program. The software system should assist the 

user to organize his program, and lead him step
by-step through the thought processes he must 
make to achieve a completed program. In order 
to meet these requirements, the system should 
include the following items: 

1) Problem-oriented languages which allow 
him to express the basic equations and con
trol functions of his problem in terms fa
miliar to him. FORTRAN, HSL, and other 
simulation languages are good examples. A 
language designed to meet a special need, 
e.g., a function generation processor, is an
other example. 

2) Hybrid executive functions which are called 
by the simulation programmer through the 
problem-oriented language. These calls 
should be made during program setup, when 
time is not critical. The executive must 
optimize the simulation program Operate 
mode in such a way that overhead is con
strained to a minimum. The hybrid soft
ware should handle all multi-rate scheduling, 
all AD/DA transfers, mode control, inter
rupt scheduling, and schedule user utility 
functions. 

3) Provisions to allow the simulation to be set
up and static tested under the control Of a 
punched card setup deck, or similar medium: 
Furthermore, the system should allow read
ing out the state of variables at the end of 
a run, on punched cards or other medium, 
so that these can be re-entered the next day 
as new initial conditions. Convenient means 
of symbolically addressing and changing 
both analog and digital variables are essen
tial. 

4) Subsystems such as real-time numerical in
tegration, arbitrary function generation, 
data history recording, and postrun data 
processing and analysis. 

We have reviewed the steps which a hybrid user 
takes in creating a hybrid simul~tion and from 
this determined a set of functional specifications 
which a hybrid software system must meet. Now 
we will describe FAMILY I and see how it meets 
these specifications. 

FAMILY I 

The operating system software at NASA-Ames 
evolved to its present state under the influence 
of the needs of the experimenter. The implementa
tion takes advantage of specific hardware fea-
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tures of the EAI 8400 computer, but the design 
is computer independent. FAMILY I consists of 
several modules designed to give the experimenter 
the assistance he requires to create his simulation. 
These are: 

f 

1. DAD-Developmental Ames Digital Monitor. 
2. MOTHER-Monitor Time Handling Execu

tive Routine. 
3. HYBRID CASPRE-Comprehensive Aid to 

Simulation Programmers and Engineers. 
4. RNTNTN-Real Time Integration System. 
5. R,UNDUM-Simulation Run~Time Dump. 

MOTHER and HYBRID CASPRE are the two 
major modules of FAMILY I which provide a sig
nificant advance toward the goal of easing the ex
perimenter's burden in preparing and operating a 
hybrid simulation program. For this reason they 
will be described in considerable detail. 

MOTHER 

The original purpose in developing MOTHER 
was to provide a real-time scheduling solution to 
an increasingly common problem in simulation 

. programming: multi-rate computation. The com
plexity of certain physical systems does not per
mit sufficient time for the average digital com
puter to perform all the necessary calculations 
required to simulate that system. However, since 
all calculations need not occur at the same fre
quency, the simulation can be divided into several 
sections (processes) which execute at different 
frequencies. This multi-rate computation, like 
multi-programming, introduces difficult scheduling 
problems. 

MOTHER evolved to provide much more than 
just scheduling processes in multi-rate simula
tions (Figure 3). MOTHER provides all of the 
following: 

1. Synchronization between the various hard
ware sections of a hybrid simulation, even 
for multi-rate computations. 

2. Hybrid computer mode control (IC, Hold 
and Operate). 

3. General program control. 
4. Re-entrancy. 

The remainder of this section will describe the 
methods by which MOTHER provides the above 
functions. 

Design criteria 

In designing a real-time scheduler, several im-
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FIGURE 3-MOTHER provides execution scheduling, 
program control and real time I/O 

port ant design criteria must be considered . 
First is the need to schedule two types of real

time processes. In one type, computations must be 
completed within repetitive time spans; for ex
ample, once every 20 milliseconds. These processes 
are said to. be constrained with respect to time, 
and can be interrupted provided that they are 
completed before the end of their allotted time. 
In the second type of real-time process, the proc
esses must be scheduled to occur at precise in
stants of time for synchronization. Analog-to
digital and digital-to-analog transfers are exam
ples. These processes are said to be synchronized 
with respect to time, and cannot be interrupted. 
The constrained processes perform computations, 
the results of which are used for output to the 
analog world by the synchronized processes. 

A second criteria of a real-time scheduler is 
that it uses an absolute minimum of time to per
form its tasks. This is not a new concept and 
need not be belabored. 

A third criteria is the need to find a solution 
to the re-entrancy problem. A multi-rate simula
tion is a special case of multi-programming in 
that the scheduler may suspend (interrupt) one 
set of calculations and begin execution of an
other set in order to maintain the schedule. Be
cause it is quite possible that bOoth sets of calcu
lations share library subroutines, we are faced 
with the re-entrancy problem. 
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The fourth criteria is to m:ake the hybrid execu
tive as easy to use as pos,sible. As will be seen, 
this criteria' was responsible for the evolution of 
the real-time scheduler 0 to a complete simulation 
executive system. 

Scheduling 

When discussing the timing as.pects of sched
uling, the terms frame time and period must be 
defined. A process that must execute every n milli
seconds has ,a frame time of n millis:8Conds,. A sim
ulation progra,m running in real time has 'a period 
which is defined as the least number which all 
frame times will integrally divide. For example, 
a simulation with p'roces,ses having frame times 
of 20 and 30 milliseconds has a period of 60 milli
seconds. 

Priority 

The MOTHER scheduler causes a process to be 
executed when it is ready and has top priority. A 
process is ready if it meets all of its "wake up cri
teria": for example, the process must be in mem
ory, it must be time to execute it, and any external 
conditions pertaining to the process must be sat
isfied. 

Because there are two types of processes, con
strained and synchronized, there are two levels of 
priority. Processes at the synchronized level have 
priority over processes at the constrained level. 
The priority of synchronized processes, if more 
than one is ready, is determined by the order in 
which they were defined to the scheduler. The 
priority of constrained processes, if more than 
one is ready, is determined by completion time con
straints; the top-priority ,constrained process is 
defined as the one which must finish first. 

Synchronized process priority 

The rigid synchronizing requirements of AD
DA input-output, and a desire to overlap this 

o input-output with the housekeeping functions of 
the executive, led to the conclusion that MOTHER 
should generate linkage input-output routines. 
Having linkage I/O custom-made to the user's re-

o quirements and internal to MOTHER permits time 
efficiencies in executing and scheduling these rou
tines. The programmer describes his linkage re
quirements during MOTHER setup, giving start
ing channels, number of channels, data buffers, 
and frame times. (See QMSAD, QMSDA and 
QMSCO M calls of Figure 4.) 

C •••••••.••••••••••••••••••••••••••••• 
C TYPICAL FORTRAN IV SETUP PROGRAM FOR MOTHER 
C .•••••.••••••••••••••••••••••••••••• 

EXTERNAL ROT, TRANS, INTSl, INTS2, ICROU, HLDROU, OPROU 
EXTERNAL ENGOUT, SETUP 

Coo •.•..•.•.•.•••••••••••••••• 
COMMON/S IM/ROTBum61, TRABUFU61, ROTDABIl61, TRDBUF(l61, EFRTBL 

C ' .•. , . , ......••••••••••••••••••••••• 
C FRAME TIMES, START CHANNELS, NUMBER OF CHANNELS 
Co. 0 • 0 ••••••••••••••••••••••• 

C 

C 

C 

ROTTIM = 20 
TRTIM = 30 

RADCH =4 
RADNUM =6 
TRADCH = 10 
TADNUM =4 

ROACH =8 
RDANUM= 4 
TRDACH = 4 
TDANUM = 3 

C AD AND DA PROCESS LISTS 
C 

C 

. ... C 

CALL QMSADI2. ROTAD, ROTTlM, RADCH, RADNUM. ROTBUF, TRNAD, 
lTRTlM. TRADCH, TADNUM, TRABUFI 

CALL QMSDAI2, ROTDA, ROTTlM, ROACH, RDANUM, ROTDAB, TRNDA, 
1 TRTlM, TRADCH, TDANUM, TRDBUFI 

C DEFINE COMPUTATIONAL PROCESSES 
C, , 0 0 , • , •• 0 

CALL QMSCOMI2, ROT, ROTTlM, TRANS, TRTlMI 
C 
C DEFINE OPERATE, HOLD, AND IC PROCESSES 
C 

C 

C 

C 
C 
C 

C 

CALL QMSOPI6, ROTAD, ROTDA, TRNAD, TRNDA. ROT, TRANS) 

CALLQ~HDIOI 

CALL QMS ICI4, ROTAD, ROT, TRANS, ROTDAI 

DEFINE INTERRUPT PROCESSES, FRAME TIMES AND INTERRUPT NUMBERS 

CALL QMS INTI2, INTSl, ROTTlM, 14, INTS2, TRTIM, 111 

C DEFINE MODE CONTROL AND ASSOCIATE CONTROL ROUTINES WITH SWITCHES 
C 

CALL QMSXMOIICROU, 7, HLDROU, 4, OPROU, 5, EFRTBU 
CALL QMSEFRIB Ill, 0, ENGOUT, 0, 01 
CALLQMSEFRIBIT5, I, SETUP, I, II 

C ••••.•.•••••.••• 0" •••••••••••••• 

C END SETUP PROGRAM, AND ENTER MOTHER TO START SIMULATION 
C •••••• '......... . ..•••••.••••••••• 

CALLQMSEND 
END 

FIGURE 4-Typical FORTRAN IV setup program 
for MOTHER 

The priority of synchronized processes is best 
described through an examination of Figure 5. 
The linkage I/O processes, ROT I/O and TRANS 
I/O, are synchronized processes and must execute 
at, or as near as possible to, precise instants of 
time. Note that in every scheduling case these syn
chronized processes have priority over the con
strained processes, ROT and TRANS. In fact, at 
times 20, 30, and 40, constrained processes are 
interrupted to perform a synchronized process. It 
so happens that in Figure 5 both types of proc
esses have the same frame times. However, this 
is not a scheduling requirement. For example, if 
the synchronized processes had 15 millisecond 
frame times, the schedUle would be: only' con
strained processes ROT and TRANS at time 20 
and 40; only synchronized processes ROT I/O and 
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Processes 

ROT I/O 

TRANS 110 

ROT 

TRANS 

EXEC 

MODE 

WAIT 

TIME. miliiSIKOnds 

Process Type Frame TIme 

ROT 110 Synchronized 10 

TRANS 110 Synchronized JO 

ROT Constrained 10 

TRANS COnstrained JO 

EXEC 

MODE System Processe" 

WAIT 

FIGURE 5-MOTHER multi-rate scheduling 
of typical processes 

TRANS I/O at time 15 and 45; and both at times 
o and 30. 

Constrained process priority 

The top-priority constrained process is the one 
that must finish first. To understand the defini
tion, consider the situation of Figure 5 at tiTIle 20. 
Suppose that the highest priority process was 
the one with the shortest frame time; then the 
process ROT would begin execution at time 20. 
Using this definition, the schedule cannot be main
tained since ROT will execute until about time 32 
and TRANS will not be able to complete by time 
30. However, if TRANS is allowed to continue at 
time 20, as in Figure 5, it completes before time 
30 and the schedule is kept. Therefore, defining 
the top-priority constrained process to be the one 
that must finish first permits more effective use 
of time, and allows more flexibility in choosing 
frame times in the simulation. 

A clock frame, the time interval between timer 
interrupts, is varied during the period to cause 
interrupts for two purposes. The first is to execute 
synchronized processes (linkage input-output) . 
The second is to act as scheduling milestones for 
constrained processes. In Figure 5, milestone in
terrupts associated with the ROT process occur 
at time 0, 20, and 40. From a timing standpoint, 
these mean that ROT is now ready to execute. Of 
equal importance, each means the previous execu
tion of ROT must by then be completed, or else 
the schedule has failed. 

Fixed time lists 

The occurrence of the timer interrupt may mean 
that the priority of processes has changed, since 
processes may become ready which have to com
plete execution prior to the process which is pres
ently executing. 

The priorities of processes for a given clock 
frame can be represented by a fixed list. For ex
ample, the list derived from Figure 5 for time 0 
to 20 contains, in order of priority, the processes 
ROT I/O; TRANS I/O, ROT, TRANS, WAIT.* 
For time 20 to 30, the list contains ROT I/O, 
TRANS, ROT, WAIT. 

These lists give the order of execution of proc
esses for the clock frame. If some process on the 
list is not ready when its turn comes, it is passed 
over. For example in Figure 5, had TRANS al
ready completed execution by time 20, then ROT 
would execute first because TRANS is not ready 
again until time 30. Another example would be an 
interrupt process that becomes ready only when 
an external signal is received. In this manner 
asynchronous events are scheduled in a routine 
manner; they are placed on lists, but are passed 
over until short int~rrupt-service routines, acti
vated by interrupts, mark. the processes ready. 
These interrupt processes are defined to MOTHER 
during setup. (See QMSINT call of Figure 4.) 

These considerations yield the conclusion that 
real-time scheduling can be accomplished from a 
set of fixed lists formed during setup when time is 
not critical. (See QMSOP call of Figure 4.) Each 
list contains, in order of priority, all processes that 
are candidates for execution during a given clock 
frame. The number of lists depends on the number 
of clock frames needed during a period, which is 
related to the choice of frame times. There would 
be foursuch lists (see Figure 6) associated with 
the example represented by Figure 5. The same 
lists are repeated for each successive period. 

Whenever the timer interrupts, the scheduler 
moves to the list corresponding to the next clock 
frame. The s·cheduler begins to execute, in order, 
all processes on the list that are ready. If all proc
esses on the list are finished before the clock frame 
ends, the system routine, WAIT, is scheduled. 

Some processes on a list may not get a chance 
to execute prior to the next timer interrupt. Thus, 

*EXEC and MODE are system processes scheduled at the end 
of a period. WAIT is a delay process representing unused time 
that could be given to a. background program in a multi-program
ming environment, 
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Clock Frame Fixed Time List 

o - 20 ROT 1/0 

TRANS 1/0 

ROT 

TRANS 

WAIT 

20 - 30 ROT 1/0 

TRANS 

ROT 

WAIT 

30 - 40 TRANS 1/0 

ROT 

TRANS 

WAIT 

40 - 60 ROT 1/0 

ROT 

TRANS 

EXEC 

MODE 

WAIT 

FIGURE 6-Fixed time lists for scheduling example 

associated with each timer interrupt is a check to 
see if the schedule is being maintained. If there 
is not enough time to execute all of the processes 
that must finish before the next interrupt, the 
schedule cannot be met; this means that frame 
times must be changed. The system's responsibil
ity is to maintain the s·chedule given and if this is 
not possible, inform the user. For example, in 
Figure 6, ROT must complete during the clock 
frame 30-40, but TRANS does not have the same 
restriction. 

One criteria of a real-time scheduler is that the 
scheduler itself should consume a minimum of 
time. Altern~tives to a fixe~ tirne list scheme 
imply computing dynamically the next process to 
be scheduled. This technique would involve addi
tional overhead, which might or might not be ac
ceptable, depending both on the particular simu
lation programmed on the computer and the par
ticular computer. 

The advantage of the fixed time list technique 
is that they are built as part of the program setup. 
Since time is not critical at this point, the routine 
that builds lists can take as long as necessary. 
When the program eventually runs in .feal time, 
all scheduling decisions, except whether a process 
is ready, have been made outside of real time 
and are embodied in lists. The disadvantage of 
the list technique lies in the amount of memory 
space needed to store the lists, which 'can be con
siderable if the choice of frame times forces a 
long period, or if a large number of processes ap
pears on each list. 

A functional flow chart of the MOTHER sched
uler is shown in Figure 7. 

Re-entrancy 

The next problem attacked was that of shared 
subroutines. As we saw it, there were three possi
bilities. 

The first was simply not to permit shared sub
routines. If more than one computational process 
requires the same subroutine, then each process 
is given its private copy. This solution causes as 
many problems as it solves. In addition to wasting 

FIGURE 7-MOTHER scheduling 
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memory, there is the problem of forcing the loader 
to load the same subroutine more than once. 

The seco.nd Po.ssibility was to. supply re-entrant 
subroutines. The classic difficulty is the high over
head normally asso.ciated with a re-entrant system. 
Also, we would have had to rewrite all subroutines 
to make them reentrant. 

The third Po.ssibility was to declare shared sub
routines non-interruptable so that a subroutine 
cannot be entered by one process before the pre
vious pro.cess co.mpletes the subroutine. The pro.b
lem here is that the executio.n time of the shared 
subroutine must be kept short compared with 
the clock frame, o.r else the schedule may fail. 

We decided that the third possibility was the 
most desirable, in terms of keeping the o.verhead 
o.f the system at a minimum, and implemented the 
following scheme: 

Timer interrupts are permitted to occur as 
scheduled. Prio.r to. executing the first scheduled 
constrained pro.cess (i.e., after executing synchro.
nized processes), a test is made to. see if the 
timer interrupt occurred while running a shared 
subroutine. If so, it is permitted to co.mplete, at 
which time a forced interrupt is triggered, * and 
MOTHER resumes the Fixed Time List schedule. 

It pro.ved necessary in practice to provide re
entrant routines fo.r functio.ns which require a 
fairly large amo.unt of co.mputatio.nal time, such 
as numfl'ical integration o.f system equations. Fo.r 
these cases, the programmer must provide the 
address of a stack, for tempo.rary sto.rage, thro.ugh 
his calling sequence. 

MOTHER was eventually extended to include a 
system to. pro.vide re-entrancy fo.r library subro.u
tines. A different stack pointer is included as a 
part of each Fixed Time List. The size of each 
stack is equal to the largest number o.f temporary 
locations which any o.f the standard library re
entrant subroutines might use; presently 16 loca
tions are adequate. Since each timer interrupt 
moves the scheduler to. a new Fixed Time List, 
there are no. stack co.nflicts. Whenever are-entrant 
ro.utine is resumed after it has been interrupted, 
the stack Po.inter is automatically resto.red when 
the computer status is resto.red. This system has 
very low overhead, thus o.vercoming one major 
o.bjection to. reentrancy in simulation programs. 

*One bit in each word of the EAI 8400 computer can be set, 
checked and made to force an interrupt, upon instruction execu
tion, which made the implementation of this technique easy and 
the execution time minimal. 

Mode control 

In O'rder to' schedule and control mode changes 
properly, set mode flags, send synchronizing sig
nals througho.ut the hybrid system, and make 
MOTHER-generated A-D /D-A routines available 
in IC mode, it was decided that mode control must 
be part of MOTHER. 

The processes scheduled to run in IC or Hold 
mo.des are put on IC or Hold lists similar to the 
Fixed Time Lists. (See QMSHD and QMSIC calls 
of Figure 4.) Pro.cesses o.n these lists are executed 
repeatedly, on a round-ro.bin basis. Mode changes 
are effected by scheduling a system process, 
MODE, during the last list o.f a perio.d. ** 

The user indicates a mode change by generating 
a discrete signal via a pushbutton, an inter~upt, 
or a pro.gram flag setting. When MODE executes 
it detects the request and takes the actions nec
essary to make the mode change effective at the 
start o.f the next period. 

The use of MODE required conventions by 
which the pro.grammer would tell MOTHER (1) 
which interrupt lines, if any, he wishes to employ 
to effect mode changes, (2) which memory flags 
Wo.uld be set to. indicate a mode change, and (3) 
which process must be executed when mode is 
changed. (See QMSXMO call of Figure 4.) User 
processes accomplish any special actio.n associ
ated with changing modes, such as simultaneously 
putting the entire hybrid system in the new mode. 

Utility functions written by experimenters 

All of the user's simulation control problems 
are still not so.lved. There is a class of utility func
tions that the pro.grammer may want to execute 
as needed, such as special printouts. 

A considerable amo.unt of control logic is asso
ciated with executing utility ro.utines. So.me rou
tines should no.t be executed if the simulation is 
in Operate mo.de. Other ro.utines require putting 
the simulatio.n into one mo.de prior to execution, 
and into. some other mo.de after execution. There 
is also. the problem o.f ho.W to schedule these util
ity functions. 

Hence a system executive contro.l process, called 
EXEC, was incorporated into MOTHER. EXEC is 
scheduled just prio.r to the system MODE process. 
Its function is to detect requests for utility func
tio.ns from bits in an Executive Flag Register 

**In 10 and Hold modes, there is no period, and MODE is 
scheduled at the end of the round-robin. 
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(EFR). The EFR is the register of communication 
between the user and EXEC. Each bit in this reg
ister is associated with a particular utility func
tion through FORTRAN calls during MOTHER 
setup. (See QMSFR calls of Figure 4.) When a 
bit goes high, the associated function is executed 
by EXEC. Bits are set in the EFR either under 
program control or by a pushbutton r~gister on 
the user's console. 

Working in conjunction with MODE, EXEC is 
able to change mode, execute the utility function, 
and reestablish a desired mode, in the following 
manner: 

The scheduler executes EXEC, which requests 
the specified mode change by setting a flag, and 
returns to the scheduler. MODE, scheduled next, 
performs the desired mode change and returns to 
the scheduler. Sometime later, after working its 
way through its lists, the scheduler executes 
EXEC again. EXEC, noting that it is processing 
a previous request, executes the required utility 
function and, following that, may request another 
mode change, according to the programmer's 
wishes. MODE, scheduled next, makes the mode 
change, thus completing the utility function by 
entering the mode required by the user. 

MOTHER-Summary 

MOTHER is a complete hybrid executive sys
tem. It solves the scheduling and control prob
lems associated with a complex hybrid simulation 
program and, of equal importance, helps the user 
write his program by requiring him to provide, 
step-by-step, the information needed by MOTHER. 
(See Figure 4 for a complete MOTHER setup ex
ample.) This invariably leads to a complete simu
lation program, with no considerations omitted. 
In summary, the planning and drudgery of hybrid 
programming are placed where they belong, on 
the software system. 

HYBRID CASPRE 

In hybrid simulation there can be a wide time 
span between program preparation and a running 
program. Excessive programming and checkout 
time are normal; a simulation in its developmental 
stages requires extensive debugging and due to its 
experimental nature, is never really finished. 
Equations are changed and data modified. New 
control features are added. Daily setup is required. 
HYBRID CASPRE provides convenient interac
tive control for these functions. 

Analog setup 

Analog computer setup is considerably aided 
and the setup time decreased through the use of 
the analog module of HYBRID CASPRE. It per
mits the programmer to set, static test, and read
out any component on the analog computer 
through control directives from the digital com
puter's input devices. For example, to set potenti
ometer 001 to 0.3452, we would keypunch on a 
card, (or type) 

-COOl = .3452 

or to set DAC 16 to -90.45 volts, we would key
punch a card 

-0016 = -90.45 

A typical analog setup program consists of a 
deck of punched cards giving potentiometer set
tings and amplifier readings. HYBRID CASPRE 
allows the programmer to use the same punched 
card deck to perform set, static test, and readout 
operations. For example, when requested to set 
analog components to given values, HYBRID 
CASPRE ignores all references in the punched 
card deck to components that cannot be set, such 
as amplifiers. On the other hand, when requested 
to do a static test operation, HYBRID CASPRE 
uses values on the cards that apply to compari
sons rather than to settings. And, when requested 
to read-out analog components, HYBRID CAS PRE 
ignores all values on cards and concerns itself 
only with the component names punched in the 
deck, reading-out the current value of each, and 
recording it for the next day's use. 

As setup proceeds, all discrepancies, such as 
pots that set incorrectly and static tests that fail, 
are identified, by component, on the line printer. 
When setting pots and static testing analog com
ponents, HYBRID CASPRE accepts readings that 
fall within tolerance standards which the user 
may change if he desires. 

Digital setup 

The basic HYBRID CASPRE digital features 
are to readout or modify the contents of a digital 
memory word. A memory word can contain, among 
other things, an instruction, a number, or a string 
of alphanumeric characters. On the EAI 8400, bi
nary numbers can represent octal, 16 or 32-bit 
fixed-point decimal, or single or double-precision 
floating-point decimal, numbers. 
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Thus, within HYBRID CASPRE, there are vari
ous format modes which allow the user to read or 
modify a memory cell as an instruction, a number, 
or a string of characters. There is mnemonic mode, 
which is an on-line assembler / disassembler of 
machine language instructions; there is octal 
mode; there is fixed-point mode; there is single
precision floating-point mode; and there is BCI 
input-output mode for character strings. For ex
ample, if the user selects floating-point mode, he 
then reads and modifies memory cells as if they 
were decimal numbers. These various modes free 
the user from having to learn the internal binary 
formats of numbers and instructions. 

HYBRID CASPRE digital features are used: 
to setup the digital computer by making known 
corrections and reading initial data, to debug the 
program on-line, and to modify the value of pro
gram variables as a part of the trial-and-error 
process Qf working with the simulation. 

Symbolic addressing 

E-very memQry cell in a program has a symbolic 
address. This symbolic address is either a state
ment number, a variable name, or a relative ad
dress cons,isting of the program name pI us an 
increment. In the FAMILY I system these sym
bols are generated by the FORT'RAN compiler 
and loaded into. memory with the program, where 
they are available to HYBRID CASPRE. 

Symbolic addressing is an extremely useful fea
ture to experimenters. Without it, the user must 
determine the octal address of each memQry word 
he wishes to read or modify. This requires finding 
the relocatable program address on the load map, 
looking up the relative memory word address in 
his listings, and adding the two numbers together, 
in octal. The process is time consuming, subject 
to errQr, and not the type of task an experimenter 
should need to do. In contrast, HYBRID CASPRE 
takes over all the work, anowing the user simply 
to. type a variable name, or at most, a program 
name plus a relative address. For example, sup
pose we want to change the value of GAMMA 
from 0.5254 to' 0.052,54. We would type: (CAS
PRE response is underlined) 

+GAMMA = .5254 E DO .05254$ 0.5254 E 01 

Also of particular importance is the HYBRID 
OASPRE ability to. readout or modify from 
punched cards. Thus in the leisure of an off-line 
situation, the experimenter can prepare new sets 

of experimental data" new equations" and program 
corrections, all in symbolic form. When he re
turns to run his program, he simply reads his 
symbolic cQrrection deck with HYBRID CASPRE, 
and his prQgram is updated. 

In addition to reading-out memory cells one at 
a time on the typewriter, HYBRID CASPRE per
mits dumping blocks of memory on the line 
printer. All of the format modes and addressing 
options mentioned above are available -with the 
dump. Accompanying each dump are the values 
of all hardware registers as they existed when 
HYBRID CAS PRE took control. 

A debug function of HYBRID CASPRE is the 
breakpoint. It provides the ability to interrupt the 
flow of a program at a predetermined point, ex
amine data, make corrections, and then resume 
at the point of interruption. The user can set more 
than one breakpoint at a time, and he can set a 
breakpoint in such a way that it will not stop the 
program until a specified number of 'repetitions 
are completed. 

Other CAS PRE functions allow the us'er to 
search a block of memory for a given bit pattern, 
or to set a block of memory to any desired value. 

Summary of F AMIL Y I 

FAMILY I is a complete operating system for 
hybrid computers, designed specifically for inter
active use by research experimenters. MOT'HER 
is an extension to. the monitor for real-time simu
lation. It performs certain monitor functions, 
such as scheduling real-time processes and per
forming linkage input-output, and provides execu
tive functions, such as computer mode changes. 
HYBRID CASPRE is an interactive operating 
and debugging system. It permits symbolic set
ting and readout of any analog or digital com
ponent of the hybrid computer as well as sym.bolic 
patching of the digital program. 

The other me,mbers of FAMILY are also nece:S
s,ary for successful hybrid simulation. DAD, the 
digital monitor, controls batch language process
ing, loading and digital 10. It was developed to 
open hybrid simulation to experimenters who have 
little digital computeir experience. It does this 
by allowing an experimenter to compile and load 
his program easily, save and later input his per
sonal programs on his own magnetic tape, for his 
own use at any time, and keep his Fortran pro
grams on magne.tic tape and change them during 
compilation. RNT~TN, a reentrant real-time in
tegration routine, was developed to provide sev-
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eral numerical integration algorithms for simu
lation, on-line selection of integration algorithms, 
and integration of all state variables using only 
one Fortran call. RUNDUM, a data acquisition 
routine, was developed to record "movies" of a 
hybrid run on magnetic tape suitable either for 
display after the run, on a CRT or a strip chart 
recorder, or for obtaining a listing on the printer. 

Each member of F AMIL Y makes its own con
tribution to solving the problems of hybrid simu
lation as can be seen in the Family Portrait, Fig
ure8. 

CONCLUSIONS 

FAMILY I is a convenient system for the research 
experimenter to use in operating his simulation. 
It provides on-line interaction with, and control 
of, hybrid simulations. However, this serves to 
aggravate the old problem of efficient utilization 
of computer time. The only way to improve utili
zation is to provide multi-programming of the 
digital computer, which introduces other prob
lems. For example, the analog system of User A 
must be protected against an inadvertent trans
mission from User B. Also, User A must not be 
permitted to use excessive time during any clock 
frame or User B will not have sufficient time to 
complete his computations within that clock 
frame. It is imperative that the software system 

PROBLEM SOLUTION 

• EXCESSIVE PROGRAMMING 
AND CHECKOUT TIME 

• EXECUTION TIME 
SCHEDULING 

• EXPER I MENTER ON-LI NE 
CONTROL 

• NUMER I CAL INTEGRATION 
FOR SIMULATION 

DATA TIME HISTORY 

FIGURE 8-A family portrait-The solution to the problem of 
hybrid programming 

protect one user against the consequences of the 
actions of other users. 

The next step in the evolution of hybrid soft
ware at Ames will be the development of FAMILY 
II, a dual-programming version of FAMILY "I. 
The Fixed Time List technique employed by 
MOTHER will be applicable for dual-program
ming scheduling of real-time processes, since 
there is no correlation of a process on a fixed 
time list with any particular user. However, dual 
simulations probably must be adjusted in frame 
times to run togethe,r, and dual mode control 
may present some challenge. 

The first version of F AMIL Y II will permit 
only one user to be in operate mode at a time. 
Later we hope to be able to lift this restriction. 
F AMIL Y II will emphasize interactive operation 
by research experimenters, so that each experi
menter can develop his simUlation, run and con
trol it, make changes and experiment with it, all 
at a problem-oriented language level, regardless 
of the sophistication of the environment being 
controlled by the computer system. 
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The big revolution in computer usage is, by 
now, an old story. No longer do users, pro
grammers and computer operators always work 
independently and separately, communicating 
only through voluminous printouts. Engineers 
and designers can now participate continuously 
in the execution of their problems through dis
plays. By accelerating design iterations-, they can 
solve their problems more quickly and, at the 
same time, improve the quality of their solutions. 

The evolution in computer usage-the expan
sion of graphic and other djsplay capabilities 
through an ever-broadening spectrum of devices 
-is less well known, however, and is -continuing. 
These devices are becoming both more and less 
sophisticated. The large user with a large system 
at his disposal can now do more things. But 
probably even more important, the small. user 
has not been forgotten. 

This paper describes a system* developed to 
meet the needs of two particular classes of users 
-the "stand alone user and the remote user. 
(Figure 1) 

In the remote display configuration, the effect 
of the substantially lower data transmission rates 
available with telecommunication facilities, as 
compared with those provided by a CPU channel, 
had to be compens.ated for in order to minimize 
any degradation in system response to operator 
actions. For this reason, it was necessary that 
specific functions, preferably those characterized 
as high-usage or conversational, be capable of 
being performed within the display subsystem. 
This defined a need for local data storage, I/O 
capabilities, decision making, and data processing 
capabilities within the subsystem. These capa
bilities were also required of a low-cost, stand-

*IBM 1130/2250 Graphic Data Processing System 

HOST 
SYSTEM /360 

ATTACHED 
CONFIGURATION 

FIGURE 1-Stand-alone and remote IBM 1130/2250-4 
configurations 

alone system. Further study indicated that the 
key system design criteria of the two configura
tions were also similar-particularly the ·follow
ing: 
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• Regeneration of the display from the CPU 
core, for ease of programming and rapid 
display unit control. 

• Direct attachment of the display to the CPU 
without the use of an intermediary channel 
for efficient interrupt-handling. 

• Facilities within the display-CPU interface 
to make efficient use of core and to mini
mize the number of interrupts generated by 
the display. 
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• Fast, convenient, auxiliary-data storage. 
Programming support for graphic functions 
-i.e., all high-activity conversational opera
tions. 

• FORTRAN language support. 
• Non-programmer interface for display user. 

The result was a low-cost, dual-purpose con-
figuration for both types of users. 

General description 

The display is regenerated from computer core 
storage by cycle-stealing; i.e., once the display 
has been started by an I/O command, it operates 
asynchronously with the CPU program and other 
I/O devices,. The display is designed not to in
terfere with the operations of other I/O device's 
attached to the computer system. In general, 
these devices, will have very little effect on the 
performance of the display. The computer sys
tem is not changed in any way to accommodate 
the display. Thus, when the system is not being 
used for a graphic application, the computer can 
be used for other data processing functions. The 
remote configuration can be operated at two 
speeds: from 1200 baud to 2400 baud, and from 
19.2K baud to 230.4K baud (2.5 to 30K char
acters per second) . 

The 1130/2250 is a self-sufficient graphic sys
tem. Its basic programming support,. the support 
for the stand-alone configuration, is also the 
basic support for the remote configuration. In re
mote configurations, the system will handle the 
high-usage conversational and image-generation 
functions in an application, using the central 
System/360 for computing functions and access 
to. large, central data bases. 

The central processing unit o.f the slatellite 
computer is a compact, desk-size binary com
puter. The system features a core storage ca
pacity of up to 32K 16-bit words, core speeds of 
3.6 or 2.2 JLsec per word, a built-in disk file of 
512,000 words, up to four additional disk files, 
card and paper tape I/O, a plotter, and line 
printers. 

The display is composed of the display CRT and 
an interface for attachment to the controlling 
CPU. The display incorporates a 21-inch CRT 
(having a 12-inch by 12-inch usable area) and 
a program-controllable, fibre-optic light-pen with 
a pressure-operated tip switch. Optional features 
include an alphanumeric keyboard and a 32-key, 
programmable function keyboard. (Figure -2) 

FIGURE 2-1130/2250-4 system 

Some of the important perfo.rmance char
acteristics of the display are: 

• A total of 3,848 character positions: 52 
lines with 74 characters per line. 

• 1024 X 1024 addressable positions 
• Up to 2000 characters or 2800 incremental 

vectors generated at a 40-cps regeneration 
rate; up to 2600 characters or 3700 incre
mental vectors generated at 30 cps. 

• Absolute addressing-the capability to gen
erate straight lines between any pair of the 
1024 X 1024 positions on the display screen. 

• Incremental addressing-the capability to 
position draw increments ranging between 
-64 and +64 raster units in X and Y from 
the current position. 

Character generation isa programmable func
tion allowing the user flexibility in the generation 
and use of character sets. Upper- and lower-case 
alphabetics can be generated on the display screen 
through the use of the alphanumeric keyboard, 
or di.rectly as part of a display program. Other 
character generation facilities provide extensive 
editing capabilities-the operator can overwrite, 
subscript or superscript a character, or over
write a whole line of characters. 

The display (Figure 3) attaches to. the CPU 
via a storage access channel. Core storage is both 
space- and time-shared. D·i splay ,- commands ~nd 
orders are stored in core storage, and are decoded 
and executed in the display interface. The dis-
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FIGURE 3-1130/2250-4 system organization 

play program (the set of display orders) there
fore shares core storage with the CPU program, 
resulting in direct control over the buffer pro
gram, fast up-dating of the display image, and 
efficient graphic-system programming. Once the 
display has been started by an I/O command, dis
play orders are accessed from core by stealing 
core memory cycles; i.e., the display operates in
dependently of the CPU program, and both can 
be running simUltaneously. 

The display interface consists of a Memory 
Address Register, a Data Register for temporary 
data buffering, a Revert Register used in display 
image subrouting, and decoding logic. The dis
play CRT has two deflection systems: the main 
deflection system for generating vectors, and a 
character deflection system for generating char
acters. CPU interrupts are caused by light-pen 
detects, depression of keys on either the alpha
numeric or program-function keyboards, or by 
the display program orders. When an interrupt 
occurs, all interrupt data are read into CPU core 
by the execution of a single display command. 

Cycle Stealing and Interference 

Attachment of the 2250 Model 4 to 1130 system 
via the storage access channel permi ts the opo. 
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eration of the display asynchronously with the 
CPU. That is, once the 2250 has been started, it 
continues to execute display orders, similar to the 
operation of a channel, by stealing core storage 
cycles without CPU program intervention. The 
portion of the core having the display orders be
comes a buffer for the display. These orders are 
accessed through the storage access channel and 
sent to the display up to 40 times per second. 
Since the display, I/O devices, and CPU are re
questing core-storage cycles from a single source, 
some delay must occur. However, the design of 
the storage-access channel and the display inter
face prevents any significant interference with 
other I/O devices. 

The following are some characteristics of cycle
stealing: 

• The lowest-priority for cycle-stealing is the 
CPU. Some of the I/O devices require in
terrupt service within a specified length of 
time. To ensure that they obtain this service, 
the display is inhibited from cycle-stealing 
when interrupt service is required for these 
devices. 

• When the display is drawing vectors, it 
steals one or two cycles to access the data 
related to the position of the vectors. The 
display will not cycle-steal during the time 
that a vector is being drawn. 

• The maximum interference from cycle steal
ing occurs when the display is generating 
characters. 

• The maximum interference with display op
eration occurs when the CPU has to con
tinuously process interrupts for time-de
pendent devices. This interference will not 
normally be observed on the display. 

The display interface 

Because it was essential that the CPU be an 
effective processor of data in both system con
figurations, a display interface was included 
which reduces core requirements for fhe display, 
and handles interrupts quickly and efficiently. 

A display program ex~cuted by this interface 
consists of orders and data. Orders either define 
the display operation or establish its "Mode." 
Order-defined operations include vector and point
plotting, branching, and CPU-interrupt genera
tion. Three orders establish modes: Set Graphic; 
Set Character, and Set Light-Pen. The display is 
always in either Graphic or Character Mode, and 
in one of four pen modes. 
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Display Orders 

Regeneration of the display program (Figure 
4) 

A combination of a Start Timer order at the 
beginning of the display program and a BRANCH 
order at the end of the program provides the 
regeneration cycle and ensures that the regenera
tion rate is no greater than 40 cycles per second. 

There is no lower limit placed on the regenera~ 
tion rate. However, dis,play images regenerated 
at rates below 30. cycles per second will tend to 
"flicker. " 

Graphic mode 

Either vector or point operations can be per
formed in Graphic Mode. In this mode, the dis
play can receive,. from. the display program, 
either beam positioning or drawing orders, or an 
order to change mode. There are three basic 
beam-positioning orders which can be executed in 
Graphic Mode: 

• AbsO'lute positioning to any point (X, Y) 
on the 1024 X 1024 grid, with beam either 
on (to draw a vector or point). or off (to' 
position the beam) . 

• Absolute positioning to any point, X or Y, 
with be'am on or off. This order moves the 
beam vertically or horizontally, and mini
mizes the use of CPU core in display images 
with a predominance of vertical and hori
zontal lines (Figure 5). 
In generating the 10 X 7 grid, only 31 words 
of core are required, whereas 62 words 
would have been required using the normal 

START TIMER 1------___ ,_ 
VECTORS 

POINTS 

CHARACTERS 

CONTROLS 

----------- -
BRANCH TO A 

FIGURE 4-Di8play regeneration 
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/ 
/ 
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~ ~ 

FIGURE 5-Grid drawn with axial vectors 

two-word, absolute-vector format. This two
to-one savings in core storage will also apply 
in the generation of bar charts, wiring 
diagrams, and integrated circuit layouts. 

• Relative positioning with increments ~x, 
~y, up to +63 raster units 'Or -64 raster 
units. The use of this order reduces core 
utilization for images with a large number 
of lines of 3;4 inch or less in length, and is 
necessary for image subroutines. 

When the relative positioning of the beam 
causes it to exceed the bounds of the screen 
area and a total displacement of 1024 raster 
units beyond the perimeter is not exceeded, 
the vectors, points, or character strokes dis
placed will be blanked. Unless the overflow 
limit of 1024 raster units is exceeded, the 
displaced beam can be returned to the normal 
display area. The virtual image size is four 
times the actual screen size, and can be 
positioned anywhere within a region equiva
lent to nine screen areas. (Figure 7) 

Figure 6 illustrates the importance of rela
tive vectors. In the illustration, the resistor 
would be represented by a series O'f incre
mental vectors and stored in 1130 core stor
age as a graphic subroutine. Thus, even 
though the resistor appears in several places 
on the screen, the order appears only O'nce 
in the display list. 

Graphic subroutines 

A graphic subroutine is a sequence of display 
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FIGURE 7-Automatic scissoring outside 2250 visible area 

orders which displays a logical· element or entity 
(such as a logic block, a resistor, a bolt, etc.). 
Graphic subroutine capability significantly re
duces storage requirements for display images. 
Instead of requiring a copy of an image entity 
wherever it appears in the display image, the 
entity can be represented once by a graphic sub
routine and can be generated as often as required 
by the execution of a "Branch" order. The display 
uses three orders to provide basic and multiple
level subroutine capability. (Figure 8) 

Character generation 

Character generation is a programmable fune-
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N+ I STORED IN REVERT REGISTER 

FIGURE 8-Multi-level subroutines 

tion. TwO' character sizes can be displayed: .16 of 
an inch high and .24 of an inch high. Characters 
represented by their component strokes are or
ganized into' graphic subroutines and stored in 
1130 core storage. Character generation is ini
tiated by a "Set Character Mode" order. This 
order is followed by a series .of "Branches" to 
character stroke subroutines . 

The first branch order transfers pro'gra,m exe
cution to the character-stroke subroutines. Up to 
two character strokes are contained with the 16-
bit computer word. The last character stroke 
word of the character cO'ntains a revert hit, R, 
which performs the s'ame function as the "Re
vert" order; i.e., it causes an automatic return 
to the display program. In addition, automatic 
character spacing results frO'm the detection of 
the Revert bit. 

Spacing to a new line is also automatic if the 
characters have been initially positioned by an 
absolute movement of the CRT beam. New line 
spacing is suppressed in the case of relative/Posi
tioning. Special control codes within the char
acter-stroke word are used to suppress spacing, 
position to a new line, insert a superscript or 
subscript, and reserve a location in GPU storage 
for later character placement. 

Logical control orders 

The logical control orders are used in the dis
play program to reduce CPU program. interven
tion, especially with respect to light-pen-detect 
interrupts and light-pen tracking. The control 
orders fall into three major categories: light pen 
control orders, conditional branch orders which 
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provide capability for logical decisio.n making, 
and conditiQnal interrupt ordevs which also. sup
ply logical decisiQn-making capability and allow 
the CPU to be used effectively in support of dis
play o.peratio.n. 

Stand-alone programming 8UppOrt 

The Stand-Alone support, in addition to direct
ly suppolrting the stand-alone configuration., is 
also the basis for the remote configuration. It has 
three components: 

• Modificatio.ns to the 1130 Disk monitor sys
tem to allow the loading and execution of 
graphic programs. 

• Extensions to the assembler to permit the 
symbo.lic coding of graphic programs. 

• The Graphic Subroutine Package, a set of 
assembler language subroutines callable 
from both FORTRAN and Assembler Lan
guage, which perfo.rm image generation, 
image management, attention handling, sup
port of the alphanumeric keyboard, and 
light-pen support. 

The Graphic Subroutine Package is a set of 
assembler language subroutines which allow the 
FORTRAN or Assembler or Language pro
grammer to create graphic images on the dis
play. The displays can be constructed of lines, 
points, and characters. This package also fur
nishes the communication between the user and 
the program through routines related to the use 
o.f the light pen, functiQn, keys, and the alpha
numeric keyboard. The graphic subroutine pack
age design is closely aligned to the design of 
the display interface, and its facilities make 
optimum use 'Of the interface's functional capa
bilities. The structure Qf the graphic subroutine 
package can behest understo.od by looking first 
at the set o.f functio.ns which are common to most 
graphic applications. These functio.ns are shown 
in Figure 9. 

The user at the display generates an attention· 
through the alphanumeric keybQard, program 
function keyboard, or light pen. The attention is 
pro.cessed by an attention-control function which 
consists of: 

• System attention handling which recognizes 
attention and indicates to. the program that 
an attention of a certain type has occurred. 

• User attention control, which controls the 
program flow and determines if any further 
processing is needed. 

The attention controller may require access to 
the problem model o.r data base in the system. 
Control from the attentio.n co.ntroller may be 
passed to. the application program which per
forms the arithmetic and logic processing o.n the 
data base. When this is completed, control is 
passed to a gro.up O'f rO'utines which generate and 
organize new display data. This new display data 
is placed in the buffer, thus modifying the display 
content and co.mpleting the cycle back to the 
user. 

The Graphic Subroutine Package prO'vides the 
FORTRAN programmer with all the necessary 
routines required for the image generation, image 
co.ntro.I, and attentio.n handling functions o.f his 
application. 

Image management and contrO'I routines allow 
the logical grouping and structuring of the basic 
display elements (lines, points, and characters). 
Any group of these elements becomes an entity. 
Thus the four lines forming a box become one 
bo.X entity that the user can create, delete, modify, 
O'r group with another entity. 

Each created entity o.r elements within an en
tity can be given a unique identification value 
which is returned to the program (by the at-
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FIGURE 9-FunctioDs and data fbw within a graphic 
application 



tention handling routines) when the entity is de
tected by the light pen. 

The attributes of an entity can be dynamically 
controlled. A grid, for example, can be turned on 
or O'ff. When the grid is displayed, it could be 
made detectable by the light pen (for generating 
a drawing) or undetectable when it is used as a 
background reference. 

The collection of all entities is called an image 
entity, whose structure is defined by the series 
of calls to the image management subroutines. 
The elements within an entity are defined by a 
series of calls to the image generation sub
routines. Some functions performed by image 
management routines are: 

• Initialize the image construction area. 
• Begin an entity, which defines the name, 

beginning, and attribute of the entity. This 
routine will usually be fO'llowed by calls to 
the image generation routines. 

• End an entity. 
• Delete an entity. 
• Update an entity: this routine is used to 

add, change, or remove elements from an 
entity. 

• Display an image entity. 
• s.top the display. 

The image generation subroutines are used to 
define the contents O'f an entity b~ converting 
the program input data into display format. 
Thus, an array of user X, Y, floating point data 
representing a graph is scaled, translated, 
scissored (eliminating any portions of the graph 
which are outside the display area of the display), 
and converted into vectors for display. By chang
ing the scale factor, the same graph can be en
larged or made smalle'r. The graph can also be 
moved by changing the translation factor. 

Some of the functions performed by the image 
generation routines are: 

• Set the image generation control parameters 
of scaling, translation, scissoring, type and 
format 'Of user data, and type and format of 
output data. 

• Plot Line(s) 
• Plot Points 
• Plot Text 
• Plot Grid 
• Copy and Entity 

Attention handling routines allow the program 
to specify the types of acceptable attentions (user 
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actions), process the attentiO'ns when they occur, 
and provide the attentiO'n information to the user 
program. 

The graphic subroutine package also includes 
the following auxiliary routines: 

• Tracking subroutines which allow the user 
to draw lines, through the use of the light 
pen and a tracking symbol. 

• Alphanumeric key support routine which 
allows the user to input and edit messages 
from the alphanumeric keyboard. 

Remote configuration support 

The programming support package for the re
mO'te configuratiO'n is structured such that the 
1130 can handle all the graphic functions in an 
application-image management, image genera
tion, attention-handling, and communication with 
the application prO'gram-and call on the central 
system for computational assistance and/or ac
cess to a large central data base. It is important 
to note how this structure relates to' that illus
trated in Figure 9. It can be seen that the func
tions of the graphic subroutine package are com
mon to both configurations, and that the functions 
labeled "Model or Data Base Access" and "Ap
plication Processing" reside in the 1130 or in a 
central System/360, depending on whether we 
are dealing with a Stand-Alone or a Remote 
1130/2250 Syste·m configuration. Thus, the Stand
Alone support is fundamental to supporting the 
Remote configuration. 

The Remote Configuration suppo'rt consists of 
two elements: 

1. Data transmission and conversion sub
routines which facilitate communication 
and interchange of data between an IBM 
System/360 and 'One or more 1130 Com
puting Systems. 

2. The Satellite Graphic J'Ob Processor (SGJP), 
which allows a remote display user to de
fine, initiate and control a job which is either 
exclusively processed in System/360 or con
currently in System/360 and the 1130/2250 
System. 

Data transmission and eonversion subroutines 

The data transmission and convers.ion sub
routines make up what is called the processor
to-processor (PTOP) program. They are in-
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voked via calls in the FOR,TRAN IV 01" the 
AS8EMBLE,R languages. 

Separate sets of transmission subroutines are 
available. in System/3.60 and in the 1130. They 
perform transmission control functions and in
sert the proper transmission-line control char
acters, enabling the programmer to perform data 
transmission without having detailed knowledge 
of telecommunications programming. 

The transmission subroutines perform the fol
lowing in either system: 

• Initialize the communication line (8) . 
• Transmit and receive data via the com

munication lines. 
• Test the status of a previously requested 

transmit or receive operation. 
• Activate a user-written asynchronous rou

tine in the other s,ystem. 
• Terminate the communicatiO'n linkage be

tween the 8ystem/360 and the 1130 PTOP 
programs. 

The capability of terminating thecommuniea
tion link in one system at a time makes it pos
sible, for example, for a new core load (in the 
1130) to reinitialize communication with the 
transmission program existing in System/360. 
This would allow a user to' monitor the progress 
of lengthy computation by receiving intermediate 
results, terminating com·munication, analyzing 
these results, and then reinitializing communica
tion with perhaps a new set of input parameters. 

In addition, the System/360 transmis.sion sub
routines enable the programmer to' terminate the 
1130 mainline program that is currently being 
executed. 

Conversion subroutines are pro,vided to 'resolve 
differences in the FORTRAN data formats of 
System/360 and the 1130. These subroutines can 
be invoked only from the System/360 program. 

Figure 10 illustrates the sequence of operations 
and data flow for transmission from the 1130 
to 8ytBitem/360. Figure 11 illustrates the same 
for transmission from System/360 to' the 1130. 

The Satellite Graphic/ob Pro'cess01' 

The Satellite Graphic Job Processor (SGJP) 
is a program th3it elicits job control information 
from a user at the display unit, enabling him to 
process a job exclusively in the System/360 or 
concurrently in the System/360 and the subsys
tem. SGJP interprets the job control information 
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entered through the display unit and converts it 
into a language (Job Control Language) mean
ingful to the System/360 Operating System. The 
Job Control Language is then passed to the op
erating system to actually initiate the desired 
program. These services allow the non-pr().. 
grammer user to conveniently, rapidly define and 
start his job. 

A job is defined as the fundamental unit of 
work for a computing system as seen by the user. 
A job may consist of one or more job steps, each 

OPERATION 
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of which requests the processing of a program 
or procedure. 

Job control 'Operations prOovide the job control 
information necessary to define jobs step-by-step, 
to describe data characteristics and device re
quirements related to j'Ob steps, and to start the 
processing 'Of jobs. Job control information is 
presented to the operating system from the sub
system by means of SGJP. 

The job c'Ontrol 'Operations available with 
SGJP and their functions are listed below: 

FUNCTION 

LOG ON Identifies the user to the operating system. 
SPECIFY JOB STEP 

BEGIN PROCEDUR.E 

DESCRIBE DATA 

BEGIN JOB 

SPECIFY 11S0 PROGRAM 

WRITE MESSAGE 

ENTER DATA 

CANCEL JOB 
RECALL 

LOG OFF 

Names a pr'Ogram or procedure to be executed 
in the System/360. 
Gauses a named procedure to be proces,sed as a 
foreground job in the System/SSO. 
Identifies data to be used in the specified System/ 
360 job step. 
Starts the processing of the defined System/SSO 
job. 
Names an 1130 program that is to run in con
junction with a program in the System/S60. 
Sends a message to the System/S60 operator and 
handles a reply to the 2.250 user. 
Allows 80-character records to be entered f'rom 
the display unit or a card reade,r for use by the 
Sys,tem/360 program. 
Deletes the job that is currently being defined. 
Allows the user to re-examine and modify pre
viously completed job control 'Operations. 
Completes user interaction with the display unit 
and frees it for the next user. 

The above 'Operati'Ons can be used to describe 
and start the proce~sing of all types Oof appIic'a
tion jobs (for example: a graphic program, an 
assembly, a service program, etc.) directly from 
the display unit. ,A job initiated at the SUbsystem 
can be designated to proces:s as either a fore
ground or background job. 

of job contr'Ol information from. the user. Each 
information request is indicated by a word or 
phrase. The entry area related to the individual 
request is indicated by a short underscore or a 
rectangular box where an entry is to be made. 

The frames are displayed in a logical sequence 
(that is, only as they are applicable to the user's 
job). Through interaction with SGJP, the user's 
responses to the frames convey the information 
necessary to process his jobs. 

System-user communication 

To enable the s'electi'On and performance of job 
control operations, SGJP establishes communica
tion between the user at the subsystem and the 
operating system by means of displayed frames. 

The frames are dis,plays that request the' entry 

The particular information to be supplied in 
response to the frames (such as accounting code, 
proced ure name, etc.) depends upon installation 
and user requirements. 

The're are two types of frames used for com-
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munic,atiQn between -the user and SGJP. These 
are the select frame -and the parameter frame. 

The select frame 

The select frame presents the job control 'Op
erations available to' a user at each P'Oint dur
ing definition 'Of his jQb. It is frQm this frame 
that the user selects the next operatiQn he wants 
to perfQrm. The select frame is divided into three 
areas: the selection area, the histQry area, and 
the message area (see Figure 12). 

The selection area contains the list 'Of the jQb 
cQntrQI ope'rations currently available to the user 
and then entry areas fQr their selectiQn. This 
list varies as QperatiQns are selected and proc
essed, and guides the user by presenting 'Only the 
'OperatiQns that are applicable to' his j'Ob. An 
entry area for selecting an 'OperatiQn is indi
cated by a shQrt underscore preceding the name 
'Of the 'Operati'On. For an 'Operation for which the 
user must pro,vide infQrmation, the area in which 
the user is to' enter infQrmati'On is denQted by a 
short underscore fQll'Owing the name 'Of the 'Op
eration. 

The history area contains a sequential list 'Of 
the 14 m'Ost recent jQb c'Ontrol QperatiQns selected 
by the user. As the user c'Ompletes each Qpera
tiQn, an entry fQr that QperatiQn is added to' the 
list. If there already are 14 'Operations in the 
list, the 'Oldest operatiQn is removed from the 
hist'Ory area as each new 'Operation is added to the 
list. Each 'Operation is preceded by a 3-digit his
tQry number to indicate the' sequence in which 
the Qpe'rati'On was performed during the current 
session. 

The message area is used to display status in
f'Ormation and diagnQstic messages. 

SELECT: 

BEGIN PROCEDURE 

SPECI FY JOB STEP 

ENTER DATA 

WRITE MESSAGE 

LOG OFF 

RECALL 

DESCRIBE,DATA 

BEGIN JOB 

CANCEL JOB 

*** HISTORY OF OPERATIONS *** 

SELECTION 
AREA 

HISTORY 
AREA 

MESSAGE 

AREA 

FIGURE 12-Sample select frame 

The parameter frame 

The parameter frame asks the user to' supply 
val ues, called parameters, that are necessary to 
c'Omplete a selected QperatiQn. It is divided into 
three areas: the descriptiQn area, the message 
area, and the key area (see Figure 13). 

The descriptiQn area c'Ontains the name of the 
selected 'Operation, all parameter requests, and 
the entry areas assQciated with the reques1ts. 

If the parameter request is one fQr which in
f'OrmatiQn can be entered frQm the keyb'Oard, the 
request is fQllowed by a shQrt underscQre. In ad
diti'On, if the user must provide the infQrmatiQn, 
the entry area fQllQwing the request is enclQsed 
in a box. 

If the parameter request may be selected with 
the keyboard 'Or with the light pen, the request 
is preceded by a short underscQre. In some cases, 
the user is given the chQice of twO' 'Or more 'Op
tions that will satisfy a parameter request. Nor
mally, 'One of the 'Options is completely under
scored. The underscQred option is called the de
fault option, and this option will take effect if 
no 'Other 'Option is selected for the request. The 
message area is used to display status informa
tiQn, diagnostic messages, 'Or replies frQm the 
system 'Operator. 

The key area displays the words END and 
CANCEL which may be used to perform the 
END and CANCEL functiQns with the light pen. 
Because they perf'Orm the same functiQns as the 
END and CANCEL keys 'On the alphanumeric key
board, they are referred to. as the END key and 
CANCE-Lkey. 

PROCEDURE NAME 

OR 

PROGRAM NAME 

SUBSYSTEM REFERENCE 

*** OPTIONAL SPECIFICATIONS *** 

LIBRARY NAME • 

PARAMETERS 

PROCESS IN BACKGROUND 

OTHER 

END CANCEL KEY AREA 

FIGURE 13-Sample parameter frame-Specify job step 



Application example 

To ill ustrate the application 0 environment and 
to. demons,trate the sequence of operations re
quired to execute a graphics application from a 
remQte site, the fQllQwing application example of 
a s,ample job" that is initiated and processed by 
a user at the subsystem is presented. Illustra
tions of the frames that accompany the job con
trol operations at the display unit are included. 

John Doe, a user, is sitting at a display unit 
that is not in use. He wishes to process a jo.b 
to design a lens at the display unit. This jo.b 
consists of Qne System/360 j o.b step that is ex
ecuted in conj unctio.n with a related 1130 pro
gram. 

The System/360 JQb step calls fQr execution 
of a prQgram named LE.NSDESN which will per
form the calculatio.ns for a lens display. LENS
DESN uses a previously created data set named 
LE.NSISA VE. The subsystem is referenced as 
DEVICE by the program. The data set is refer
enced as OUTPUT and is to. be retained at the 
end of the jo.b step. 

The 1130 program, named LPGM, operates in 
the SUbsystem in conjunction with the System/ 
360 pro.gram. LPG M cQntains the specifications 
fO'r a "thin lens" design, except for two user-sup
'plied .parameters that specify the aperture and 
focal lengths of the lens. During processing, 
LPG M accepts data! enie,red fro.m the 2250 Dis
play Unit and tr~nsmits it to the System/360 
program where computations for the lens dis
play are perfo.rmed. When the System/360 pro
gram has completed the calculations, it transfers 
the results to. LPGM. LPGM then dis.plays the 
results on the 2:2:50 screen. 

Note that, during definitio.n of the jQb, the 
user recognizes an error in a job control opera
tion he has already completed and uses the RE
GALL o.peratio.n to correct the error. He then 
co.mpletes the definition o.f the job and starts 
processing. 

The first thing the user must do is identify 
hims·elf to. the o.perating system and provide his 
account number o.f KG505301. By perfo.rming the 
CANCEL function from the keyboard he obtains 
the LOG ON frame. First, he enters hi,s name 
in the frame frQm the alphanumeric keyboard. 
Then, he positiQns the cursor o.n the screen to 
ACCOUNT and enters his account identificatio.n 
from the keyboard. Tb obtain a list of the job 
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control operations that he perfo.rms" he also se
lects the PRINTED RECORD o.ption. 

LOG ON: 

USER'S NAME JOHN DOE 

ACCOUNT KGSOS301 

OTHER 

~ PRINTED RECORD 

DISCONNECT THE SUBSYSTEM 

OPERATIONAL HINTS: 

1. USE THE KEYBOARD TO ENTER ALPHAMERIC INFORMATION 

2. ENTRY AREAS ARE INDICATED BY A SHORT UNDERSCORE 

OR A BOX. BOXED ENTRY AREAS DENOTE REQUIRED 

INFORMATION. 

3. BEFORE ENTERING ALPHAMERIC INFORMATION, POSITION 

THE CURSOR TO THE ENTRY AREA WITH THE JUMP KEY 

OR THE LIGHT PEN. 

4. DESIGNATE A SELECTION WITH THE LIGHT PEN OR THE 

KEYBOARD. DEFAULT SELECTIONS ARE UNDERLINED. 

5. THE END AND CANCEL KEYS ON THE SCREEN ARE 

EQUIVALENT TO THE KEYBOARD END AND CANCEL KEYS ~ 

6. USE THE END KEY TO INDICATE FRAME COMPLETION. 

USE TilE CANCEL KEY TO NEGATE A FRAME. 

END CANCEL 

At this point, the user has completed the LOG 
ON operation. He performs the ENDfunctio.n 
to indicate that he has finished entering in.forma
tiQn Qn the LOG ON frame. 

A s:elect frame now appears on the screen. Dis
played in this frame are the various job contro.l 
operations the user can perform at this time. The 
first entry in the history area of the frame re
flects the LOG ON ope'ration he has just com
pleted. The user now selects SPECIFY JOB 
STEP in Qrder to define the System/360 program. 

SELECT: 

BEGIN PROCEDURE 

~ SPECIFY JOB STEP 

ENTER DATA 

WRITE MESSAGE 

LOG OFF 

***HISTORY OF OPERATIONS*** 

000 LOGON JOHN DOE 
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The SPECIFY JOB STEP frame now appears 
on the screen. This frame requests ceirtain in
formation about a job step, such as the name of 
the procedure or program, subsystem reference, 
and other optional specifications. 

The user begins SPECIFY JOB STEP by en
tering the name of the program (LENSDESN) 
from the alphanumeric keyboard. To indicate that 
his job s,tep is a program, he enters the name 
after the PROGRAM NAME option. Then, since 
this System/360 program will be processed in 
conjunction with an 1130 program (LPGM), he 
enters the subsystem referenc-e, FT'49·F001, from 
the alphanumeric keyboard. The sUbsystem refer
ence is a symbolic name by which the user's 
System/360 program refers to the subsystem. The 
user then enters from the keyboard the param
eters (aperture of 5.0 and focal length of 
+4.2) necessary for his program. The frame now 
appears as follows: 

SPECIFY JOB STEP: 

PROCEDURE NAME 

OR 

PROGRAM NAME LENSDESN 

SUBSYSTEM REFERENCE FT49F001 

***OPTIONAL SPECIFICATIONS*** 

LIBRARY NAME 

PARAMETERS APERT~05.00, FOCLEN=+4.20· 

PROCESS IN BACKGROUND 

OTHER 

END CANCEL 

Since all inform'ation necessary for his job has 
been entered in the frame, the user penonns 
the E·ND function to indicate that the SPECIFY 
JOB STEP ope'ration is complete. 

A second select frame appears on the screen 
displaying the job control operations now avail
able to the user. The second entry in the history 
area reflects the SPECIFY JOB STEP operation. 
To. describe his data set, the user selects DE
SCRIBE DATA. 

SELECT: 

BEGIN PROCEDURE 

SPECIFY JOB STEP X DESCRIBE DATA 

ENTER DATA 

WRITE MESSAGE BEGIN JOB 

LOG OFF 

RECALL CANCEL JOB 

***HISTORY OF OPERATIONS*** 

000 LOGON JOHN DOE 

001 JOB STEP LENSDESN 

The DESCRIBE DATA frame now appears on 
the screen. This frame requests the information 
necessary for the user to identify his data set, 
such as the data set name, the data reference by 
which the System/360 program refers to the 
data set, and other specifications. 

The user begins the DESCRIBE DATA opera
tion by entering the name of his data set, 
LENSSA VE, from the alphanumeric keyboard. 
Then, he positions the cursor to DATA REFER
ENCE and enters the name OUTPUT f'rom the 
alphanumeric keyboard. Options for status and 
disposition can now be specified. The user knows 
that the data set is CAT'ALOGED; i.e., it already 
exists and can be found automatically by the op.
erating system. The user does not have to specify 
CATALOGED, however, because it is a default 
option (note underscore on frame). Furthermore, 
the user does not have to specify a dis.position 
since he wishes to retain the data set and the 
operating system (if he specifies no option) will 
as:sume the disposition already assigned to the 
data set (KEEP) 

DESCRIBE DATA: 

DATA NAME LENS SAVE 

DATA REFERENCE OUTPUT 

INDICATE STATUS: CATALOGED OLD 

MOD SHARE NEW 

***ADDITIONAL INFORMATION WILL BE REQUESTED*** 

FOR OTHER THAN CATALOGED STATUS 

OTHER 

CHOOSE DISPOSITION: KEEP PASS DELETE 

CATLG PRINT PUNCH 

END CANCEL 



The user now performs the END function to 
indicate that the DESCRIBE DATA frame haa 
been completed. 

A third select frame is now displayed on the 
screen. At this point, however, the user suddenly 
realizes that he meant to. specify a focal length 
of 4.02 (instead of 4.20) as the parameter for 
his lens specification in the SPECIFY JOB STEP 
operation. The user decides to correct the opera
tion in which he provided the focal length param
eter. To re-examine the operations in his job, 
he selects RECALL on the select frame. 

SELECT: 

BEGIN PROCEDURE 

SPECIFY JOB STEP 

ENTER DATA 

WRITE MESSAGE 

LOG OFF 

~RECALL 

***HISTORY OF OPERATIONS*** 

000 LOG ON JOHN DOE 

001 JOB STEP LENSDESN 

002 DESCRIBE LENS SAVE 

DESCRIBE DATA 

BEGIN JOB 

CANCEL JOB 

The RECALL fram.e appears on the screen 
with the first operation in the job (after LOG 
ON) indicated after "CURRENT ITE,M." Be
cause it was during this operation (SPE,CIFY 
JOB STEP) that the usercg-pecified the parameter 
that he now wishes to change, he selects the 
MODIFY option. The RECALL frame appears as 
follows: 

RECALL: 

CURRENT ITEM - 001 JOB STEP LENSDESN 

ACCEPT THIS OPERATION UNCHANGED 

!- REVIEW, MODIFY IF DESIRED 

INSERT NEW OPERATION BEFORE THIS ONE 

OMIT THIS OPERATION 

***HISTORY OF OPERATIONS*** 

000 LOG ON JOHN DOE 

001 JOB STEP LENSDESN 

002 DESCRIBE LENS SAVE 

003 RECALL 
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He performs the END function and the 
SPECIFY JOB STEP frame is now displayed 
as it appeared when the user had completed this 
operation earlier in his job. 

The user positions the cursor to the entry area 
following P ARA,METERS on the frame. He uses 
the ADV ANCE "key to position the cursor to the 
desired point of change and enters 02 in place 
of the previous 20. The frame now appears as 
follows: 

SPECIFY JOB STEP: 

PROCEDURE NAME 

OR 

PROGRAM NAME LENSDESN 

SUBSYSTEM REFERENCE FT49FOOl 

***OPTIONAL SPECIFICATIONS*** 

LIBRARY NAME 

PARAMETERS APERT=OS.OO, FOCLEN=+4.02 

PROCESS IN BACKGROUND 

OTHER 

END CANCEL 

Since this was the only change he wished to 
make, he performs the END function and the 
RECALL frame is displayed again. 

The next operation (DESCRIBE DATA) is 
shown after "CURRENT ITEM" and the 
SPECIFY JOB STEP has been added to th~ his
tory area of the frame. The frame appears as 
follows: 

RECALL: 

CURRENT ITEM - 002.DESCRIBE LENSSAVE 

__ ACCEPT THIS OPERATION UNCHANGED 

REVIEW, MODIFY IF DESIRED 

INSERT NEW OPERATION BEFORE THIS ONE 

OMIT THIS OPERATION 

***HISTORY OF OPERATIONS*** 

000 LOG ON JOHN DOE 

001 JOB STEP LENSDESN 

002 DESCRIBE LENSSAV,E 

003 RECALL 

004 JOB STEP LENSDESN 
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Since the user has no changes to make in the 
DESCRIBE DATA operation he perform:s the 
END function. The system assumes he wishes to 
retain the operatiQn since ACCEPT is the de
fault optiO'n. Because this was the last QperatiQn 
in the histQry area that could be recalled, a select 
frame appears on the screen so. that the user 
ca.n continue his jO'b. 

At this point, the user has completed all spe
cifications needed fO'r his job. Therefore, he se
lects BEGIN JOB to' indicate that his job is 
ready to start processing. 

SELECT: 

BEGIN PROCEDURE 

SPECIFY JOB STEP DESCRIBE DATA 

ENTER DATA 

WRITE MESSAGE ! BEGIN JOB 

LOG OFF 

RECALL CANCEL JOB 

***HISTORY OF OPERATIONS*** 

000 LOGON JOHN DOE 003 RECALL 

001 JOB STEP LENSDESN 004 JOB STEP LENSDESN 

002 DESCRIBE LENS SAVE 005 DESCRIBE LENS SAVE 

A message cQntaining an identification number 
given to the job by the system is displayed in 
the message area of the above select frame. In 
this sample the message returned is: 

"JOB SCHEDULED AS J0240001" 
The user performs an END functiQn to. acknowl
edge the message. 

The SPECIFY 1130 PROGRAM parameter 
frame now appears O'n the screen and the use·r 
enters the name of his 1130 program (LPGM) 
from the alphanumeric keyboard. 

SPECIFY 1130 PROGRAM: 

NAME LPGM 

END CANCEL 

The user nQW performs the END functiO'n to 
indicate the frame is complete and his job begins 
processing. 

U sing the aperture and focal length parameters 
provided as part of the SPECIFY JOB STEP op
eration, the System/360 program perfQrms cal
culations and transmits data to. the 1130 neces
sary to display an image, such as the one that 
follows: 

~> I 

The 1130 prO'gram is designed to accept addi
tiO'nal infO'rmation entered from the alphanumeric 
keybO'ard or with the light pen. The data are 
transmitted to' the System/360 where ne·w cal
culatiO'ns are performed and information needed 
to modify the lens display is returned to the 1130. 
By prO'viding new data and manipulating his dis
play, the user designs a lens that meets his re
quirements. When the user has completed de
signing the lens, he terminates his pro'gram in a 
manner specified by the installation. 

When the job has completed pro.cessing, a se
lect frame automatically appears O'n the screen 
with a message indicating that the job has been 
completed. Since the user had only this one job 
to. pro.cess, he selects LOG OFF. (If the user had 
wanted to define additiO'nal jobs, he could have 
cO'ntinued by selecting another job control op
eration.) 



SELECT: 

BEGIN PROCEDURE 

SPECIFY JOB STEP 

ENTER DATA 

WRITE MESSAGE 

~ LOG OFF 

RECALL 

***HISTORY OF OPERATIONS*** 

000 LOGON JOHN DOE 

001 JOB STEP 

002 DESCRIBE 

003 RECALL 

004 JOB STEP 

LENSDESN 

LENS SAVE 

LENSDESN 

005 DESCRIBE LENS SAVE 

006 BEGIN J0240001 

007 SPECIFY 1130 LPGM 

Job J0240001 completed 

The LOG OFF frame now appears on the 
sc-reen. The frame contains a message from the 
accounting routine asking the user to supply the 
n umber of jobs he has executed since he logged 
on. Since the user has executed only one job, he 
positions the cursor to the entry area after TEXT 
and types the number "1." The user wants to 
leave the 22,50 Unit available for SGJP operation 
by a different person, so he does not designate 
the DISCONNECT THE SUBSYSTEM option. 
The frame appears as follows: 

LOG OFF 

***up TO 72 CHARACTERS MAY BE ENTERED FOR ACCOUNTING*** 

TEXT 1 

DISCONNECT THE SUBSYSTEM 

HOW MANY JOBS HAVE YOU RUN SINCE LOG ON? 

ENTER NUMBER AFTER TEXT AND PERFORM END FUNCTION. 

END CANCEL 

Having entered the required information, the 
user performs the END function. The screen 
now goes blank. The LOG ON frame is made 
available to anothe'r user when the GANGE,L key 
is depressed at the keyboard. 

Communication requirements 

The important question in the design of a re
mote graphic system is whether the 300-cps or 
higher-speed (5.000 to 30,000 cps) transmission 
between the 1130 and System/360 is sufficient for 

Stand-Alone Remote Graphic System 745 

graphic applications. TO' ans,wer this question, it 
is important, first, to recognize that the satellite 
system is nO't always communicating with the 
System/360. During the input phase of the ap
plication, the system is in a stand-alone mode 
for some duration of time within an application. 
During this mode, there is no transmission to 
System/360 and the response time due to operator 
actions will be very fast. 

The effect of the data rate on res,ponse time 
should, therefore, he considered only when the 
system is communicating to System/36.o, and the 
relationship of this time to the total application 
cycle time is important. Figure 14 illustrates this 
principle. Specifically, the turn,around time for 
transmis,sion to the System/360 computation or 
access of data in System/360, and then trans
mission from System/360 to the satellite com
puter must be considered. Depending on the type 
of application, the justification of the 300 cps or 
higher speed is based on any or all of the fol
lowing: 

• The a.rn:ount of trans,mitted data 
• The ratio of System/360 computation or 

data access time to transmission time 
• The ease with which the data display can 

be overlapped with transmission. For ex
ample, a quick response time can be achieved 
by starting to display portions of the data 
as soon as the data is received in the sub
system. 

Last and most important, it must be recog
nized that the 1130 computing capability reduces 
the frequency of communication between the dis-

GRAPHIC 
SUBROUTINE 
PACKAGE 
IMAGE GENERA TOR 

TRANSMIT TO 
SYSTEM /360 

COMPUTATION OR 
ACCESS DATA 

TRANSMIT TO 
1130 COMPUTER 

FIGURE 14-Response-time cycle in a remote configuration 
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play and System/360. If some operator action 
causes slower response than is normally accept
ble to the operator, it will be tolerated as long as 
it does not occur frequently. 

In general, 300 cps should be s'atisfactory for 
analysis-type applications in which small amounts 
of data (messages, control parameters, single 
graphs, etc.) are transmitted between the sub
system and the central processor; higher trans
mission rates may be needed for applications re-

Quiring frequent transmission of large amounts 
of data. 
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The adage graphics terlninal 
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Boston, Massachusetts 

INTRODUCTION 

Interactive computer graphics applications require 
that the system present visual displays to the user for 
his interpretation and that these displays change in 
response to actions taken by the user as he goes about 
solving the problem for which he is using the system. 
Effectiveness of a graphics system is very dependent 
upon the complexity of the displays which it is able to 
present and the speed with which it can produce changes 
in the displayed image. A CRT displaying dynamic 
images of sufficient complexity for meaningful visual 
assimilation imposes a data transfer and arithmetic 
burden very much greater than that imposed by such 
conventional output meqia as typewriters, line printers 
and point plotters. 

Terminals intended to provide interactive graphics 
capability have, therefore, quickly evolved to the point 
where they typically include a small computer, as shown 
in Figure 1, for purposes of refreshing the CRT and for 
some local management of the image manipulation 
workload imposed by the terminal,1 For images com
posed of more than a few dozen vectors, however, the 
coordinate transformation task necessary for a truly 
dynamic display is too much for the limited arithmetic 
capability of a small digital computer~ Thus, lacking 
special coordinate transformation capability, such 
systems are restricted to handling only the. quasi
static display of .re'asonably complex images- those 
comprising 1,000 or more vectors. It has been suggested 
that the rotation and scaling tasks be thrown back up
on the central computer to which the graphics terminal 
is connected.2 Generalized scaling and six-degree-of
freedom geometrical coordinate transformations re
quire about 25 arithmetic operations per vector. If 
the display is to be truly dynamic, these operations 
must be performed once per frame for each vector. 
At 40 frames per second, such operations upon an image 
composed of 1,000 vectors constitute a computational 

HYBRID VECTOR GRAPHICS 

DIGITAL ARRAY GENERATOR CONSOLE 

PROCESSOR 14---

FIGURE I-Overall organization of a graphics terminal incor
porating a local digital processor 

load of one million arithmetic operations per second, 
most of them multiplications. Central computers do 
exist which are capable of such performance, inter
leaved with the necessary high-data-rate output com
munication to a display device, but operational costs 
are prohibitive for routine computer graphics ap
plications, and therefore this method of achieving a 
dynamic output display is suitable only for feasibility 
studies and programming research. In practice, users 
of systems which depend upon the central computer 
for coordinate transformation, or upon the digital 
arithmetic capabilities of a small local computer, are 
restricted to working in applications areas for which 
quasi-static displays are satisfactory, and the powerful 
pattern recognition abilities of the eye and brain which 
depend upon motion of a perceived image can be exer
cis~d only for very simple images composed of a few 
dozen vectors at most. 

Organization oithe AGT 

An alternative approach was taken in the design of the 
AGT. Coordinate tr::tnsformation hardware is included 
in the graphics terminal itself so that the transforma
tions necessary for dynamic displays can be included 

. among the image manipulations accomplished locally, 
with minimum recourse to the central computer. As a 
result, images composed of as many as 5,000 line seg
ments can be displayed dynamically with arbitrary 
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changes in scale factor, position and rotation between 
successive frames. 

Overall system organization conforms to the block 
diagram of Figure 1. The digital processor is a 30-bit 
word len gtb., 2-microsecond cycle time machine with 
core memory sizes ranging from 4k to 32k words. Dig
ital peripherals include card reader, line printer, high 
and low speed magnetjc tape units .. and a disk sub
system with storage capacity ranging from 3.1 million 
characters (1 disk drive unit attached) to 12.5 million 
characters (4 disk drive units attached) . 

Remote communications interfaces are available for 
telephone line communication to a central computer at 
speeds ranging from 1,200 baud (150 ASCII characters 
per second) to 40.8 Kilobaud (5.1K ASCII characters 
per second). Operation with the lower speed communi
cations to the central computer is feasible because of the 
comparatively high degree of autonomy of the terminal. 

The hybrid array shown as part of the system in 
Figure 1 is used for scaling and coordinate transfor
mation of values as they are passed from core memory 
in the digital processor to the vector generator. The 
vector generator output drives horizontal,. vertical 
and intensity inputs of the CRT contained in the 
graphics console. The console also contains function 
s,:itches, light pen, control dials, data tablet and joy
stIck, whose outputs are monitored by the digital pro
cessor. A photograph of a complete AGT is shown in 
Figure 2. 

Line drawing CRT display 

l\,fost graphics terminals which incorporate a local 

FIGURE 2-'-The Adage Graphics Terminal, with auxiliary high
mount viewing scope 
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X : .1 1 I Xl 
11 DAC I; P' VECTOR 

DIGITAL I 
Y 1 .1 1 I y l GENERATOR 

PROCESSOR 11 DAC I -.,.. 
I . 1 I 
I HYBRID I 
I ARRAY I 
L... _____ 

J 

FIGURE 3-A graphics terminal in which coordinate values are 
passed from the digital processor to the vector generator through 

a pair of DAC's 

computer use a pair of DAC's between the digital pro
cessor and the vector generator, as shown in Figure 3. 
Digital values extracted sequently from a display list 
contained in memory in the digital processor are fed 
through the DAC's to present analog x' and y' values 
to an analog v~ctor generator. The vector generator, in 
turn, develops striaght-line segments on the face of the 
CRT. 

Systems of this type develop pictures on the CRT by 
drawing a series of connected vectors, in contrast with 
systems which modulate intensity during a TV -like 
raster scan. Each vector in the series drawn on the CRT 
can be specified as either visible or invisible. A visible 
vector corresponds to a "draw" operation; an invisible 
vector to a "move" operation. Use of such a scheme 
for generating a figure such as the block letter "A" is 
shown in Figure 4. In this case, a total of 13 vectors is 
used, 11 visible '·'draw" vectors and 2 invisible "move 
vectors. 

I mage manipulation 

Graphics terminals using the end-to-end vector draw
ing technique for generating pictures have usually re
quired that the complete picture displayed on the CRT 

y 

2 

--------~~--~----4-----~--~------x 

FIGURE 4-Creating a picture (here the block letter "A") with lo 

series of connectE:'d visible and invisible vectors 



be represented by a display list in memory specifying a 
coordinate pair for each and every vector end point 
contained in the picture. Any change. in the picture is 
accomplished by computing new values for coordinates 
stored in the display list. Manipulation of images in 
such systems, therefore, consists of performing arith
metic procedures to achieve desired results. For ex;
ample, to permit translation of an image element in x 
and y, it. is necessary to implement a procedure whereby 
each coordinate describing the image element has added 
to it values that represent the increments of motion 
desired in x and y. 

Scaling of an image element, i.e., changing its size, 
can be accomplished by implementing a procedure 
whereby two multiplications are accomplished for each 
coordinate describing the image element. 

Structured images 

A simple image is one whose description consist~ of a 
string of values specifying the end points of vectors or 
straight lines composing the image. A structured image 
is built up of sub-images by performing operations upon 
one or more. simple images. The operations can consist 
of translation and scaling transformations of the type 
we have already described. A complete description of~ 
a complex image, therefore, includes one or more co
ordinate lists and also the specification of one or more 
transformation operations. 

The picture shown in Figure 5 can be composed in 
several different ways. If composed as a simple, un
structured image, 25 coordinate pairs would have to be 
specified. Twenty of these would be necessary for the 
20 "draw" vectors, and five would be necessary for the 
invisible '·move" operations necessary to get from 
square to square, including an inital move to get 
positioned to begin the first square. A total of fifty 
values-25 for x and 25 for y- stored in memory 
would therefore be necessary to describe this image. 

On the other hand, if scaling and translation opera
tions are available, the image can be built up of sub
images, using a smaller number of values to describe the 
same resultant image. For example, it is possible to com
pose the image by storing five coordinate pairs for one 
square and then specifying five different scale factors 
and five x-y positions in order to compose the total 
image comprising five squares. If described this way, a 
total of 25 values is sufficient to describe the image: 
10 x-y values for a' square, 5 scale factor values, and 
10 x-y position values to specify the five positions at 
which the squares are to be located. With no scale 
factor operator available, 30 values could suffice to 
define the image: five coordinate pairs would specify the 
large square, five coordinate pairs would specify the 
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FIGURE 5-A picture resulting from an image which can be 
defined in terms of five squares 

small square, and then five pairs would specify the po
sitions for each of the five squares. This is a total of 15 
coordinate pairs, or 30 values. The point of all this is 
that the availability of translation and scaling opera
tions allows a complex image to be described with fewer 
words of memory than are necessary to describe a to
tally unstructured image. 

Even more important is the ease of introducing 
changes in a structured image. A change need only be 
made once in a sub-image to have it properly reflected 
in all repeated instances of the sub-image. In the pres
ent case, by changing the square to a hexagon. for 
example. 

The translation and scaling operations necessary to 
permit the kind of structured image composition de
scribed above can be accomplished by irr.plen enting 
the following equations: 

x' = Xd + SC·x (1) 

y' = Yd + SC·y (2) 

Hardware for image manipulation 

The hybrid array shown in Figure 6 is incorporated in 
the AGT10 for implementing translation and scaling. 
It accepts digital inputs as coefficients for specifying 
translation and scale parameters and then, subse
quently, it accepts successive x and y input values to 
produce appropriately translated and scaled x' and y' 
output values. The key to performing the necessary 
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DX J----l------..-.j 

CRT 

DY I---------~ 

FIGURE 6-The hybrid array included in the AGTIO f.or scaling 
and p.ositi.oning 

multiplications is the multiplying DAC element in 
cluded in the array. The operation of multiplying 
DAC's for image manipulation purposes has been de
scribed in a previous paper. 3 

A limited degree of structured image manipulation 
capability has been provided in other display systems 
bydriviRg the x and y output DAC's from accumulator 
registers. This permits operation in an incremental 
vector mode, where each line segment in the string is 

. specified in terms of incremental displacement in x and 
y from the end of the preceding vector. Display lists 
organized as strings of incremental coordinate pairs can 
be treated as sub-images and can be located at arbitrary 
positions on the screen by first loading the x and y ac
cumulator registers with initial values corresponding to 
the desired displacements in x and y. Such systems are, 
therefore, capable of positioning sub-images whose dis
play lists are organized in terms of incremental coordi
nates, but they cannot subject sub-images to operations 
such as scaling or rotation, and they cannot treat as a 
sub-image any display list composed of absolute coordi
nates. In the AGT, use of hybrid coordinate transfor
mation hardware described above makes it possible to 
eliminate these restrictions for translation and scaling 
in the AGTI0, intended primarily for 2-D work, and 
also for rotation in the AGT30 and AGT50, which are 
capable of handling 3-D images. 

Rotation of 3-D images 

Figure 7 illustrates the projection onto a two-dimen
sional plane of a three-dimensional figure, in this case 
a cube, whose axes are rotated with respect to the axis 
system of the viewing plane. These equations describe 
rotation of a three-dimensional object: 

x' = Rllx + R 12y + R 18Z (3) 

(4) 

yl 

------------~--------------------Xl 

FIGURE 7-An .orth.og.onal pr.ojecti.on .of a cube .ont.o a two
dimensi.onal viewing plane 

FIGURE 8-A hybrid array for rotatit)fi 

A hybrid operator array appropriate for implementing 
these equations is shown in Figure 8. x, y and z are in
put coordinates describing the objects to be rotated. 
R 11 through R23, are fixed coefficients specifying the 
rotation to which the input coordinates are to be sub
jected. x' and y' are the outputs representing the projec
tion onto the x'y' plane of the xyz coordinates. 

The hybrid array actually included in the AGT30 
implements the following equation set: 

x' = PS[Xd + SC(RllX + R 12y + R 1sz)1 (5) 

(6) 

Zl = PS[Yd + SC(R81x + R32y + R3SZ)] (7) 



FIGURE 9-The hybrid array incorporated in the AGT30 and 
AGT50 for generalized scaling, translation and rotation 

The block diagram of Figure 9 shows the organization 
of elements used to implement these equations. They 
are capable of providing nine mUltiplications for rota
tion, seven for scaling, and twelve summation opera
tions, all within less than four microseconds. This is 
equivalent to sixteen multiples plus twelve adds in less 
than four microseconds, making it possible to display 
over 5,000 vectors subjected to arbitrary scaling and 
coordinate transformation at flicker-free rates. 

Figure 10 shows some alphanumeric text which was 
generated programmatically (without the use of a char
acter generator). Scaling and translation operations 
are performed by the array to place characters of ap
propriate size at appropriate locations on the screen. 

The hybrid array is normally used to provide or-

FIGURE Io-Programmatically generated text 
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FIGURE ll-Programmatically generated text subjected to a 
skewed transformation 

thogonal rotational transformations; however, it can al
so be used to perform various skewed transformations. 
The alphanumeric text shown in Figure 11 is derived 
from the same programmatic font as that of Figure 10, 
but in this case i,t has been passed through the array 
while the array contained the set of coefficients that im 
plemented a skewed- transformation to produce the 
italicized, sloping text. 

Figure 12 shows 1,000 vectors of approximately ran-

FIGURE I2-0ne thousand approximately random straight lines 
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FIGURE 13-A CRT picture derived from an image described by 
approximately 2,500 short line segments 

dom length and position. The system is capable of dis
playing pictures of this complexity with completely 
arbitrary scaling, translation and rotation. 

The auto body part illustrated in Figure 13 consists 
of approximately 2,500 short vectors. This is about 50 
percent of the limit of complexity that can be handled 
flicker-free by the system for images that are comprised 
of vectors of less than one-half inch in length. 

Depth cues 

The dynamic cues provided by rotating three dimen
sional objects and viewing their projection onto a two
dimensional plane do not completely resolve the ques
tion of what the shape looks like. Front-to-rear ambi
guity occurs: as in the cube of Figure 7. 

Variable intensity depth cueing has been incor
porated in the AGT30 and AGT5G to help indicate 
picture depth by having the intensity of a line fall off 
as its z' coordinate goes into the viewing screen. This is 
a rather natural cue as it is a common experience that 
objects get dimmer and less clear and textures get finer 
as they get farther away; depth cueing is the application 
of this experience to a much smaller scale. The transfer 
function from z'm to the intensity signal to the scope is 
shown in Figure 14. (Assume for now that operation 
takes place to the left of the + 10v cutoff.) I falls ex
ponentially as z'm decreases and is down 10:1 at z'm = 

o. The exponential falloff has been found to lead to 
equal perceived brightness ratios for equal distance 
ratios. This agrees with the well-known results that the 
eye's response to brightness stimuli is logarithmic over 
a wide range. 

Some illustrations of the results obtained on a CRT 
are shown in Figures 15 and 16. When one stares at the 

z', INTENSITY TRANSFER FUNCTION 

_ ____ -_-_-_IQ_/1-'-°I--_____ ~:__----~;tn:;_-Z'M 
+2 

full 
Ical. 

FIGURE 14-Beam intensity versus image depth for variable 
intensity depth cueing 

FIGURE 15-A pIcture without depth cueing 

cube of Figure 7, it appears to flip from one orientation 
to another because the third dimension cue is missing. 
Without depth cueing, the object in Figure 15 appears 
to many people to be the top view of a pyramid. With 
depth cueing, as in Figure 16, the picture is much more 
clearly the perspective view of a rectangular "tunnel." 
Similar visual tricks occur in viewing orthogonal pro
jections of rotating objects, and depth cueing is again 
found to reduce or eliminate the ambiguities which 
occur. 

It has been suggested that equally important as a 
visual cue is the fact that the dimming of the line is 
accompanied by a narrowing of the line as well, thus 
giving a sort of linear perspective cue. While this per
spective may provide some information about depth, 
the brightness depth cueing has been found to be valid 
when the observer is too far from the screen to dis
tinguish differences in line width. 



FIGURE 16-The picture of Figure 15, but with variable 
intensity depth cueing 

Intensity windowing 

The sharp cu toff at z'm = + 10v in Figure 14 leads to 
another useful display phenomenon which we call z
windowing. An image can be moved back and forth 
across the Zo boundary. Those portions of lines whose 
z-values are greater than Zo are blanked while those 
portions behind Zo are displayed. Thus one can examine 
thin sections of an image. This has been found useful as 
an alternative to the removal of hidden lines as a means 
for "de-cluttering" images composed of many line seg
ments. 

The ability to look at sections gives some interesting 
flexibility in viewing complicated objects. The Zo cutoff 
plane can easily be moved by a manual, interactive 
device such as a joystick. Moving through an object 
section by section can give rapid insight into the shape 
and nature of the object. Sectioning accompanied by 
rotation of the object also gives some interesting and 
useful effects; it enhances depth perception by cutting 
the front portion as one quickly learns to associate the 
cut plane with the front part of the object. 

The transformation from z' to z'm allows further 
freedom in expanding or shrinking the picture to match 
not only the Zo cutoff but the depth-cue slope as well. 
Thus the picture can be easily moved in front or in back 
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of Zo without changing the data base; and the degree of 
depth-cue falloff can be varied at will from no percept
ible change to extreme variations. 

Removal of image portions in the "foreground" can 
also be used, with and without perspective transforma
tions, to give the illusion of moving into the screen, 
i.e., objects move "behind" the observer and out of 
sight. 

3-D windowing operator 

A three dimensional windowing subsystem is avail
able for the AGT in which upper and lower bounds can 
be placed (in digital registers) on x, y, and z. The vector 
generator then blanks whenever the beam goes beyond 
one of the bounds, and it also tells the program which 
bound was exceeded. This device finds use in a number 
of applications including uncluttering pictures, testing 
the dimensions and intersections of solids, and splitting 
the CRT screen up into rectangles allocated to different 
pictures, which can then move beyond the "edge" with
out encroaching upon its neighbor's display space. 

Software environment 

A standard software package called A \1 03 has been 
developed to support the AGT. It includes a resident 
monitor available in two versions, their use depending 
on where the program library is stored. One version is 
suitable for use with magnetic tape storage, the other 
for use with disk. The monitor provides for on -line user 
control of all hardware and software. Control is exer
cised by control statements in which program entries 
and names of variables use the same symbols as those 
in the programmer's source language. By typing the 
approprIate control statement, any subroutme in the 
program library can be loaded, linked and executed. 

After initiating operation of a program, continued 
operator intervention is possible by use of a foreground/ 
background mode, in which the monitor operates in the 
foreground on an interrupt basis while the user pro
gram operates in the background. The user can interact 
with the operating program in on-line fashion, inter
rogating memory contents and inspecting and changing 
parameter values. The user has access to all program 
entries and to all external variables and references by 
means of their symbolic names, as defined in the original 
source language programs . 

. A macro-assembler and a Fortran compiler permit 
preparation of source language programs either in 
symbolic machine language or ASA Basic Fortran. The 
macro-assembler can accept changes or additions to its 
own structure, so that the user who wishes to can alter 
it, departing from straight symbolic machine language 
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to devise his own problem-oriented language for partic
ular graphics applications. Source language programs 
can be prepared for entry into the program library 
using an on-line text editor with which the user can scan 
selected files, display them on the CRT, and make ad
ditions' changes or deletions. 

Graphics operators 

Design of each of the software items mentioned 
briefly above is affected only slightly by the nature of 
the image manipulation hardware built into the AGT. 
A set of graphics software operators has been developed; 
however, whose design is much more intimately inter
woven with the image manipulation capabilities of the 
system hardware. These graphics operators include a 
display operator, save/retrieve operators, a build oper
ator, and a freeze operator. Some words about each of 
these is in order. 

The display operator 

The display operator is used to interpret data struc
tures in core memory which represent simple or struc
tured two- or three-dimensional images, and to display 
the resultant two-dimensional picture on the CRT. The 
data structure representing an image is not routinely 
translated to an unstructured display list for refreshing 
the CRT. Instead, it is left resident in core, and the 
display operator uses the coordinate transformation 
hardware to process it afresh with each successive frame 
to present the appropriate series of analog output values 
to the vector generator driving the CRT. 

Each image is represented by sequences of variable 
length machine-word-lists called items. These may be 
logically linked, referenced, or looped into structures 
permitting hierarchical levels of processing with para
metric and conditional control capabilities. The images 
are re-entrant and nestable for up to 16 levels of re
cursion. 

Each item in an image describing data structure con
tains a command followed by an argument list. Each 
command has a field specifying the type of arguments 
contained in the argument list, and also an operation 
field which specifies the nature of the operation to be 
performed. Operations available for image description 
commands are of the following four types: 

Element generation 
Transform specification 
View definition 
Control operations 

An Element Generating Operation specifies a partic
ular kind of visual element in an image definition, such 
as a straight 3-D line or a string of packed 2-D strokes, 

or a string of packed characters. The associated argu
ment list references any parameters needed for gener-' 
ating the elements. . 

Transform Specifying Operations provide for scaling, 
translation and rotation operations which are applied 
to subsequent items of the image definition. Associated 
arguments are used to specify values of scale factor, 
displacement, and angular rotation. In general, Trans
form Specifying Operations affect all subsequent items 
in the iinage, and their effects. are cumulative. There 
are Some Transform Specifying Operations, however, 
whose function is to clear the effect of all previously 
established transforms. 

View Defining Operations use their associated argu
ments to specify boundaries in the x-y plane and in 
depth outside of which the picture is blanked. This per
mits viewing only an arbitrarily specified portion of the 
image with provision for the detection of images that 
extend beyond the specified bounds. 

Control Operations available for inclusion in image
defining data structures permit operations such as the 
following: 

Loop-Repetition of image items 
Sub-image-Reference to another image as a single 

item in the present definition (the image equivalent 
of subroutine jumps). 

End-image-Returns from current definition 
Save--Saves current transform and repeat count. 
Restore-Restores last-saved transform and repeat 

count. 
Jump-Branching in an image. 
Execute-Perform a computer subroutine (may be 

a necessary part of describing image portions which 
depend on values or states of real time inputs). 

Jump/Execute Conditional-image branching or 
program execution conditional on pen, widow, param
eter values, etc. 

.l\10st image commands require values for parameters 
which specify their action-number of degrees of rota
tion, scale factor values, etc. The referencing informa
tion necessary to access these values is contained in the 
arguments associated with each image item. Values can 
be accessed via several addressing modes, including im
mediate, direct, multi-level indirect and structured 
(where the address is an index to be added to the fol
lowing address reference) . 

The build operator 

Whereas the display operator outputs data to the 
CRT from image descriptions in core, it is the function 
of the build operator to facilitate the on-line creation 
and manipulation of such image descriptions. Its per-



mits composition of appropriately structured image de
scriptions from sub-images previously stored in an im
age library, or in response to user-generated inputs 
from light pen, joystick or data tablet. Changes in the 
image produced by the build operator are immediately 
(by the next frame) reflected in the CRT output dis
play by the display operator, providing thereby a high 
degree of responsiveness to user inputs. 

Images are built in a parametric form, where the user 
is free to set his own parameters. For example, in con
structing a spoked wheel from straight line segments, 
the coordinate values of each line segment may be of no 
interest. Useful parameters might be wheel size and 
axle position. The wheel radius. and center would be 
defined as formal parameters. The formal parameters 
used by the image being built may be set to a value or 
set to track a value, such as the setting of a variable con
trol dial or the joystick. Thus, the wheel might be posi
tioned with the joystick and its radius set with a vari
able control dial. 

For the most part, the operator uses the build opera
tor by sitting at the console and using t.he light pen and 
function switches. A menu of build operations is always 
displayed on the CRT. Three separate menus are used 
with the build operator: a menu of control operators, a 
menu of the current list of formal parameters, and a 
menU which is a portion of the current external symbol 
table, including all display image items. 

Save / retrie1Je operators 

These are standard programs used for filing and re
trieving image structures using local mass storage. 

The freeze OJ; erator 

The structure of an image created by means of the 
build operator can easily ve varied, and such an image 
will generally be economical for core memory, but it will 
usually take more time for processing by the display 
operator than the equivalent simple, unstructured image. 
The freeze operator permits the user, once he no longer 
requires the ease of varying a structured image, to trans
form it into a simple, unstructured image, perhaps for in
clusion as a sub-image in a subsequent image. By saving 
a copy of the structured image prior to freezing, he can, 
of course, keep open the option to retrace his steps and 
retrieve the structured version of the image for further 
manipulation. 
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Interrupt hierarchy 

Much of the operation of the AGT occurs in response 
to interrupts. The hierarchy of interrupt priorities is 
shown in Figure 17. The Display Clock, priority level 
8, generates interrupts which are used to establish a 
frame rate of 60, 40, 30, 24 or 2(\ frames per second, as 
called for by the Display Operator. 

The Vector Generator, priority level 11, generates 
interrupts in some of its operating modes, as a means of 
informing the digital processor that it is ready to accept 
the next vector. 

CHANNEL DEVICE 

o ARITHMETIC OVERFLOW 

1 MAGNETIC TAPE 

2 ALPHANUMERIC KEYBOARre (UP TO 4) 

3 MANUAL INTERRUPT FROM CONTROL PANELS 

4 TELETYPE 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15-24 

COMMUNICATIONS DEVICES 

DISK 

CARD READER 

DISPLAY CLOCK 

WINDOWING OPERATOR 

LIGHT PENS (UP TO 4) 

VECTOR GENERATOR 

CHARACTER GENERATOR 

SPARE 

PROGRAMMATICALLY INITIATED INTERRUPT 

SPA-RE (LrnE PRrnTER, EVENT COUNTERS, ETC.) 

FIGURE 17-Priority interrupt channel assignments 
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A head-mounted three dimensional display* 

by IVAN E. SUTHERLAND** 

The University of Utah 
Salt Lake City, Utah 

INTRODUOTION 

The fundamental idea behind the three-dimensional 
display is to present the user with a perspective image 
which changes as he moves. The retinal image of the real 
objects which we see is, after all, only two-dimensional. 
Thus if we can place suitable two-dimensional images on 
the observer's retinas, we can create the illusion that 
he is seeing a three-dimensional object. Although stereo 
presentation is important to the three-dimensional illu
sion it is less important than the change that takes 
plac~ in the image when the observer moves his head. 
The image presented by the three-dimensional display 
must change in exactly the way that the image of a real 
object would change for similar motions of the user's 
head. Psychologists have long known that moving per
spective images appear strikingly three-dimensional 
even without stereo presentation; the three-dimensional 
display described in this paper depends heavily on thiE; 
"kinetic depth effect."l 

In this project we are not making any effort to mea
sure rotation of the eyeball. Because it is very difficult 
to measure eye rotation, we are fortunate that the per
spective picture presented need not be changed as the 
user moves his eyes to concentrate on whatever part of 
the picture he chooses. The perspective picture presented 
need only be changed when he lnoves his head. In fact, 
we measure only the position and orientation of the op
tical system fastened to the user's head. Because the op
tical system determines the virtual screen position and 

*The work reported in this paper was perlormed at Harvard 
University, supported in part by the Advanced Research Proj
ects Agency (ARPA) of the Department of Defense under con
tract SD 265, in part by the Office of Naval Research under con
tract ONR 1866(16), and in part by a long standing agreement 
between Bell Telephone Laboratories and the Harvard Computa
tion Laboratory. The early work at the MIT Lincoln Laboratory 
was also supported by ARPA. 

**Formerly of Harvard University 
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the user's point of view, the position and orientation of 
the optical system define which perspective view is 
appropriate. 

Our objective in this project has been to surround the 
user with displayed three-dimensional information. Be
cause we use a homogeneous coordinate representa
tion,2.3 we can display objects which appear to be close 
to the user or which appear to be infinitely far away . We 
can display objects beside the user or behind him which 
will become visible to him if he turns around. The user 
is able to move his head three feet off axis in any direc
tion to get a better view of nearby objects. He can turn 
completely around and can tilt his head up or down 
thirty or forty degrees. The objects displayed appear 
to hang in the space all around the user. 

The desire to surround a user with information has 
forced us to solve the "windowing" problem. The" clip
ping divider" hardware we have built eliminates those 
portions of lines behind the observer or outside of his 
field of view. It also performs the division necessary to 
obtain a true perspective view. The clipping divider can 
perform the clipping computations for any line in about 
10 microseconds, or about as fast as a modern high-per
formance display can paint lines on a CRT. The clip
ping divider is described in detail in a separa.te pap~r4 
in this issue. Because the clipping divider permIts 
dynamic perspective display of three-dimensional 
drawings and arbitrary magnification of two-dimen
sional drawings, we feel that it is the most significant 
result of this research to date. 

In order to make truly realistic pictures of solid 
three-dimensional objects, it is necessary to solve the 
"hidden line problem." Although it is easy to compute 
the' perspective positions of all parts of a complex ob
ject, it is difficult to compute which portions of one 
object are hidden by another object. Of the soft
ware solutions now available,2.5-l0 only the MAGI9 
and the Warnocklo approaches seem to have poten
tial as eventual real-time solutions for reasonably com-
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plex situations; the time.required by the other methods 
appears to grow with the square of situation complexity. 
The only existing real-time solution to the hidden line 
problem is a very expensive special-purpose computer 
at NASA Houstonll which can display only relatively 
simple objects. We have concluded that showing 
"opaque" objects with hidden lines removed is beyond 
our present capability. The three-dimensional objects 
shown by our equipment are transparent "wire frame" 
line drawings. 

Operation of the display system 

In order to present changing perspective images to 
the user as he moves his head, we have assembled a wide 
variety of equipment shown in the diagram of Figure 1. 
Special spectacles containing two miniature cathode ray 
tubes are attached to the user's head. A fast, two-dimen
sional, analog line generator provides deflection signals 
to the miniature cathode ray tubes through transis
torized deflection amplifiers. Either of two head position 
sensors, one mechanic31 and the other ultrasonic, is used 
to measure the position of the user's head. 

As the observer moves his head, his point of view 
moves and rotates with respect to the room coordinate 
system. In order to convert from room coordinates to a 
coordinate system based on his point of view, a transla
tion and a rotation are required. A computer uses the 
measured head position information to compute the ele
ments of a rotation and translation matrix appropriate 
to each particular viewing position. Rather than chang
ing the information in the computer memory as the user 
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FIGURE I-The parts of the three-dimensional display system 

moves his head, we transform information from room 
coordinates to eye coordinates dynamically as it is dis
played. A new rotation and translation matrix is loaded 
into th~ digital matrix multiplier once at the start of 
each picture repetition. As a part of the display process 
the endpoints of lines in the room coordinate system are 
fetched from memory and are individually transformed 
to the eye coordinate system by the matrix multiplier. 
These translated and rotated endpoints are passed via 
an intermediate buffer to the digital clipping divider. 
The clipping divider eliminates any information out
side the user's field of view and computes the appropriate 
perspective image for the remaining data. The final out
puts of the clipping divider are endpoints of two-di
mensionallines specified in scope coordinates. The two
dimensional line specifications are passed to a buffered 
display interface which drives the analog line-drawing 
display. 

We built the special-purpose digital matrix multiplier 
and clipping divider to compute the appropriate per
spective image dynamically because no available 
general-purpose computer is fast enough to provide a 
flicker-free dynamic picture. Our equipment can pro
vide for display of 3000 lines at 30 frames per second, 
which amounts to a little over 10 microseconds per line. 
Sequences of vectors which form "chains" in which the 
start of one vector is the same as the end of the previous 
one can be processed somewhat more efficiently than 
isolated lines. Assuming, however, two endpoints for 
every line, the matrix multiplier must provide coordi
nate transformation in about 5 microseconds per end
point. Each matrix multiplication requires 16 accumu
lating multiplications; and therefore a throughput of 
about 3,000,000 multiplications per second. The clip
ping divider, which is separate and asynchronous, 
operates at about the same speed, processing two end
points in slightly over 10 microseconds. Unlike the fixed 
time required for a matrix multiplication, however, the 
processing time required by the clipping divider de
pends on the data being processed. The time required 
by the analog line generator depends on the length of 
the line being drawn, the shortest requiring about 3 
microseconds, the longest requiring about 36 micro
seconds and an average of about 10 microseconds. 

The matrix multiplier, dipping divider, and line
generator are connected in a "pipe-line" arrangeInent. 
Data "stream" through the system in a carefully inter
locked way. Each unit is an independently timed digital 
device which provides for its own input and output 
synchronization. Each unit examines an input flag 
which signals the arrival of data for it. This data are 
held until the unit is ready to accept them. As the unit 
accepts a datum, it also reads a "directive" which tells it 
what to do with the datum. When the unit has accepted 
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a datum, it clears its input flag. When it haE, completed 
its operation, it presents the answer on output lines and 
sets an output flag to signal that data is ready. In some 
cases the unit will commence the next task before its 
output datum has been taken. If so, it will pause in the 
new computation if it would have to destroy its output 
datum in order to proceed. Orderly flow of information 
through the system is ensured because the output t.Iag of 
each unit" serves as the input flag of the next. The aver
age rate of the full system is approximately the average 
rate of the slowest unit. Which unit is slowest depends 
on the data being processed. The design average rate is 
about 10 microseconds per line. 

The computer in this system is used only to process 
the head-position sensor information once per frame, 
and to contain and manipulate the· three-dimensional 
drawing. No available general-purpose computer would 
be fas1 enough to become intimately involved in the per
spective computations required for dynamic perspec
tive display. A display channel processor serves to 
fetch from memory the drawing data required to recom· 
pute and refresh the CRT picture. The channel proces
sor can be "configured" in many way~ so th~t it is also 
possible to use the matrix multiplier and clipping 
divider independently. For example, the matrix multi
plier can be used in a direct memory -to-memory mode 
which adds appreciably to the arithmetic capability of 
the computer to which it is attached. For two-dimen
sional presentations it is also possible to bypass the ma
trix multiplier and provide direct input to the clipping 
divider and display. These facilities were essential for 
debugging the various units independently. 

Presenting images to the user 

The special headset which the user of the three-di
mensional display wears is shown in Figure 2. The opti
cal system in this headset magnifies the pictures on each 
of two tiny cathode ray tubes to present a virtual image 
about eighteen inches in front of each of the user's eyes. 
Each virtual image is roughly the size of a conventional 
CRT display. The user has a 40 degree field of view of 
the synthetic information displayed on the miniature 
cathode ray tubes. Half-silvered mirrors in the prisms 
through which the user looks allow him to see both the 
images from the cathode ray tubes and objects in the 
room simultaneously. Thus displayed material can be 
made either to hang disembodied in space or to coincide 
with maps, desk tops, wails, or the keys of a typewriter. 

The miniature cathode ray tubes mounted on the 
opti(}al system form a picture about one ha1f of an inch 
f'quare. Because they have a nominal six tenths mil 
spot size, the resolution of the virtual image seen by the 
user is about equivalent to that available in standard 

FIGURE 2-The head-mounted display optics 
with miniature CRT's 

large-tube displays. Each cathode ray tube is mounted 
in a metal can which is carefully grounded to protect the 
user from shorts in the high voltage system. Additional 
protection is provided by enclosing the high voltage 
wiring in a grounded shield. 

The miniature cathode ray tubes have proven easy to 
drive. They use electrostatic deflection and focussing. 
Because their deflection plates require signals on the 
order of only 300 volts, the transistorized deflection am
plifiers are of a relatively straightforward design. Com
plementary-symmetry emitter followers are used to 
drive four small coaxial cables from the amplifier to 
each cathode ray tube. Deflection and intensification 
signals for the miniature cathode ray tubes are derived 
from a commercial analog line-drawing display which 
can draw long lines in 36 microseconds (nominal) and 
short lines as fast as three microseconds (nominal). 

The analog line generator accepts picture information 
in the coordinate system of the miniature cathode ray 
tubes. It is given two-dimensional scope coordinates for 
the endpoints of each line segment to be shown. It con
nects these endpoints with smooth, straight lines on the 
two-dimensional scope face. Thus the analog line-draw
ing display, transistorized deflection amplifiers, minia
ture cathode ray tubes, and head-mounted optical sys
tem together provide the. ability to present the user with 
any two-dimensional line drawing. 

Head position sensor 

The job of the head position sensor is to measure 
and report to the computer the position and orientation 
of the user's head. The head position sensor should pro-
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vide the user reasonable freedom of motion. Eventually 
we would like to allow the user to walk freely about the 
room, but our initial equipment allows a working 
volume of head motion about six feet in diameter and 
three feet high. The user may move freely within this 
volume, may turn himself completely about, and may 
tilt his head up or down approximately forty degrees. 
Beyond these limits, head position cannot be measured 
by the sensor. We suspect that it will be possible to ex:
tend the user's field of motion simply by transporting 
the upper part of the head position sensor on a ceiling 
trolley driven by servo or stepping motors. Since the 
position of the head with respect to the sensor is known, 
it would be fairly easy to keep the sensor approximately 
centered over the head. 

The head position measurement should be made with 
good resolution. Our target is a resolution of 1/100 of 
an inch and one part in 10,000 of rotation. Resolution 
finer than that is not useful because the digital-to-ana
log conversion in the display system itself results in a 
digital "grain" of about that size. 

The accuracy requirement of the head position sensor 
is harder to determine. Because the miniature cathode 
ray tubes and the head-mounted optical system to
gether have a pin-cushion distortion of a bouL three per-

FIGURE 3-The mechanical head position sensor in use 

FIGURE 4-The ultrasonic head position sensor in use 

cent, information displayed to the user may appear to 
be as much as three tenths of an inch out of place. Our 
head position sensor, then, should have an acouracy on 
the order of one tenth of an inch, although useful per
formance may be obtained even with less aocurate head
position information. 

We have tried two methods of sensing head position. 
The first of these involves a mechanical arm hanging 
from the ceiling as shown in Figure 3. This arm is free to 
rotate about a vertical pivot in its ceiling mount. It has 
two universal joints, one at the top and one at the bot
tom, and a sliding center section to provide the six 
motions required to measure both translation and ro
tation. The position of each joint is measured and pre
sented to the computer by a digital shaft position en
coder. 

The mechanical head position sensor is rather heavy 
and uncomfortable to use. The information derived 
from it, however, is easily converted into the form 
needed to generate the perspective transformation. We 
built it to have a sure method of measuring head posi
tion. 

We have also constructed a continuo~s wave ultra
sonic head position sensor shown in Figure 4. Three 
transmitters which troosmit ultrasound at 37, 38.6, and 
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FIGURE 5-The ultrasonic head position sensor logic 

40.2 kHz are attached to the head-mounted optical sys
tem. Four receivers are mounted in a square array in the 
ceiling. Each receiver is connected to an amplifier and 
three filters as shown in Figure 5, so that phase changes 
in sound transmitted over twelve paths can be measured. 
The measured phase shift for each ultrasonic path can 
be read by the computer as a separate five-bit number. 
The computer counts major changes in phase to keep 
track of motions of more than one wavelength. 

Unlike the Lincoln Wand12 which is a pulsed ultra
sonic system, our ultransonic head position sensor is a 
continuous wave system. We choso to use continuous 
wave ultrasound rather than pulses because inexpensive 
narrow-band transducers are available and to avoid con
fusion from pulsed noise (such aE typewriters produce) 
which h2d caused difficulty for the Lincoln Wand. The 
choice of continuous wave ultrasound, however, intro
duces ambiguity into the measurements. Although the 
ultrasonic head position sensormakes twelve measure
ments from which head-position information can be de
rived, there is a wave length ambiguity in each of the 
measurements. The measurements are made quite pre
cisely within a wave, but do not tell which wave is being 
measured. Because the wavelength of sound at 40 kHz 
in air is about 1/3 of an inch, each of the twelve mea
surements is ambiguous at 1/3 inch intervals. Because 
the computer keeps track of complete changes in phase, 
the ambiguity in the measurements shows up as a con
stant error in the measured distance. This error can be 
thought of as the "initialization error" of the system. 
It is the difference between the computer's original 
guess of the initial path length and the true initial path 
length. 

We believe that the initialization errors can be re
solved by using the geometric redundancy inherent in 

making twelve measurements. We have gone to consid
erable effort to write programs for the ultransonic head 
position sensor. These programs embody several tech
niques to resolve the measurement ambiguities. Al
though we· have had some encouraging results, a full 
report on the ultrasonic head position sensor is not yet 
possible. 

The perspective transformation 

G~nerating a perspective image of three dimensional 
information is relatively easy. Let us suppose that the 
information is represented in a coordinate system based 
on the observer's eye as shown in Figure 6. If the two
dimensional scope coordinates, X. and Y., are thought 
of as extending from -1 to + 1, simple geometric reason
ing will show that the position at which a particular 
point should be displayed on the screen is related to its 
position in three-dimensional space by the simple rela
tions: 

X' a 
X. = - cotan-

z' 2 

y' a 
Y B = - cotan-

z' 2 

If an orthogonal projection is desired, it can be obtained 
by making the value of z' constant. Because the per
spective (or orthogonal) projection of a straight line in 
three-dimensional space is a straight line~ division by 
the z' coordinate need be performed ollly for the end
points of the line. The twCKiimensional analog liD.e-

FIGURE 6-The x' y', z' coordinates system based on the 
observer's eye position 
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generating equipment can fill in the center portion of a 
three-dimensional line by. drawing a two-dimensional 
line. The digital perspective generator computes values 
only for the endpoint coordinates of a line. 

The three-dimensional information to be presented 
by the three-dimensional display is stored in the com
puter in a fixed three-dimensional coordinate system. 
Because this coordinate system is based on the room 
around the user, we have chosen to call it the "room" 
coordinate system. The drawing data in the room coor
dinate system is represented in homogeneous coordi
nates. This means that each three-dimensional point 
or end of a three-dimensional line is stored as four'se
parate numbers. The first three correspond to the 
ordinary X Y and Z coordinates of three-dimensional 
space. The fourth coordinate, usually called W, is a scale 
factor which tells how big a value of X Y or Z represents 
a unit distance. Far distant materi9l may thus easily 
be represented by making the. scale factor, W, small. 
Infinitely distant points are repr~sented by .setting the 
scale factor, W, to zero, in which case the first three co
ordinates represent only the direction to the point. 
Nearby points are usually represented by setting the 
sc:;lle factor, W, to its largest possible value, in which 
case the other three coordinates are just the familiar 
fixed-point representations of X Y and Z. 

The matrix multiplier 

We have designed and built a digital matrix multi
plier to convert information dynamically from the fixed 
"room" coordinate system to the moving "eye" coordi
nate system. The matrix multiplier stores a four-by-four 
matrix of 18 bit fixed-point numbers. Becau8e the draw 
iug data are represented in homogeneous coordinates, 
the single four-by-four matrix multiplication provides 
for both translation and rotation.2 The matrix multi
plier accepts the four 18 bit numbers which represent an 
endpoint, treating them as a four-component vector 
which it multiplies by the four-by-four matrix. The 
result is a four-component vector, each component of 
which is truncated to 20 bits. The matrix multiplier de
livers this 80 bit answer to the clipping divider in ap
proximately 5 microseconds. It therefore performs 
about three million scalar multiplications per second. 

The matrix multiplier uses a separate multiplier 
module for each column. Each module contains an ac
cumulator, a partial product register, storage for the 
four matrix elements in that column, and the multipli
cation logic. The entries of a row of the matrix serve 
simultaneously as four separate multiplicands. An in
dividual component of the incoming vector serves as 
the common multiplier. The four multiplications for a 

single row are thus performed simultaneously. For 
additional speed, the bits of the multiplier are examined 
four at a time rather than individually to control multi
ple-input adding arrays. 

The clipping or windowing task 

The job of the clipping divider is to accept three
di:mensional information in the eye coordinate system 
and convert it to appropriate two-dimensional end
points for display. If both ends of the line are visible, 
the clipping divider needs m.erely to perform four divi
sions one for each two-dimensional coordinate of each , 
end of the line. Enough equipment has been provided in 
the clipping divider to perform these four divisions 
simultaneously. 

If the endpoints of a line are not within the observer's 
field of view, the clipping divider must decide whether 
any portion of the line if? within the field of view. If so, 
it must compute appropriate endpoints for that portion 
as illustrated in Figure 7. Lines outside the field of view 
or behind the user must be eliminated. Operation of the 
clipping divider is described in a separate paper' in this 
issue. 

Like the matrix :multiplier, the clipping divider is an 
independently-timed digital device which provides for 
its own input and output synchronization. It has an in
put and an output flag which provide for orderly flow of 
information through the clipping divider. If 3 line lies 
entirely outside the field of view, the clipping divider 
will accept a new input without ever raising its output 
flag. Thus only the visible portions of lines that are all 
or partly visible get through the clipping divider. 

CUPPING IN 3 DIMENSIONS 
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FIGURE 7-Clipping and perspective projection 
in three dimensions 
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Results 

I did some preliminary three-dimensional display ex
periments during late 1966 and early 1967 at the MIT 
Lincoln Laboratory. We had a relatively crude optical 
system which presented information to only one of the 
observer's eyes. The ultransonic head position sensor 
operated well enough to measure head position for & few 
minutes before cumulative errors were objectionable. 
The coordinate transformations and perspective com
putations were performed by software in the TX-2. The 
clipping operation was not provided: if any portion of a 
line was off the screen, the entire line disappeared. 

Even with this relatively crude system, the three 
dimensional illusion was real. Users naturally moved to 
positions appropriate for the particular views they 
desired. For instance, the "size" of a displayed cube 
could be measured by noting how far the observer must 
move to line himself up with the left face or the right 
face of the cube. 

Two peculiar and as yet unexplained phenomena oc
curred in the preliminary experiment. First, because the 
displayed information consisted of transparent "wire
frame" images, ambiguous interpretations were still 
possible. In one picture a small cube was placed above a 
larger one giving the appearance of a chimney on a 
house. From viewpoints below the roof where the 
"chimney" was seen from inside, some concentration 
was required to rem em ber that the chimney was in fact 
further away than the building. Experience with physi
cal objects insisted that if it was to be seen, the chimney 
must be in front. 

A second peculiar phenomenon occurred during the 
display of the bond structure of cyclo-hexane as shown 
in Figure 8. Observers not familiar with the rippling 
hexagonal shape of this molecule misinterpreted its 
shape. Because their view of the object was limited to 
certain directions, they could not get the top view of the 
molecule, the view in which the hexagonal shape is most 
clearly presented. Observers familiar with molecular 
shapes, however, recognizedthe object as cyclo-hexane. 

In more recent experiments with the improved optical 
system and vastly improved computation capability, 
two kinds of objects have been displayed. In one test, a 
"room" surrounding the user is displayed. The room is 
shown in Figure 9 as it would look from outside. The 
room has four walls marked N, S, E, and W, a ceiling 
marked C and a floor marked F. An observer fairly 
quickly accommodates to the idea of being inside the 
displayed room and can view whatever portion of the 
room h6 wishes by turning his head. In another test a 
small cube was displayed in the center of the user's 
operating area. The user can examine it from whstever 
side he desires. 

FIGURE 8-A computer-displayed perspective VIew of the 
cyclo-hexane molecule 

FIGURE 9-A computer-displayed perspective view of the 
"room" as seen from outside 

The biggest surprise we have had to date is the favor
able response of users to good stereo. The two-tube opti
cal system presents independent images· to each eye. A 
mechanical adjustment is available to accommodate to 
the different pupil separations of different users. Soft
ware adjustments in our test programs also permit us to 
adjust the virtual eye separation used for the stereo 
computations. With these two adjustments it is quite 
easy to get very good stereo presentations. Observers 
capable of stereo vision uniformly remark on the realism 
of the resulting images. 
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INTRODUCTION 

When compared with a drawing on paper, the pictures 
presented by today's computer display equipment are 
sadly lacking in resolution. Most modern display equip
ment uses 10 bit digital to analog converters, providing 
for display in a 1024 by 1024 square raster. The actual 
resolution available is usually somewhat less since ad
jacent spots or lines will overlap. Even large-screen dis
plays have limited resolution, for although they give a 
bigger picture, they also draw wider lines 'so that the 
amount of material which can appear at one time is still 
limited. Users of larger paper drawings have become 
accustomed to having a great deal of material presented 
at once. The computer display scope alone cannot serve 
the many tasks which require relatively large drawings 
with fine details. 

On the other hand, a drawing can be represented in 
computer memory with very high resolution and preci
sion. For example, if each coordinate is represented wiht 
16 bits, a picture 65 inches square can be represented 
with resolution of about a thousandth of an inch. If such 
a picture could be displayed with its full resolution, it 
would be far better than can be provided on paper. 
Moreover, it is often convenient to represent co
o~dinates in memory! for example in an 18 bit computer, 
wIth more than 10 bIts used by the display scope, even 
though the additional resolution may not be seen in 
every view. With such great resolution available , 

*The work reported in this paper was performed at Harvard 
University, supported in pan by the Advanced Research Projects 
Agency (ARPA) of the Depanment of Defense under contract 
SD 265, and in part by the Office of Naval Research under con
tract ONR 1866(16). 

**Formerlyat Harvard University, Cambridge, Massachusetts. 

large and complex pictures can be represented which 
contain exceedingly fine details. 

Unfortunately, the limitations of display equipment 
prevent a user from seeing the entire drawing and the 
fine detail simultaneously. But a sophisticated com
puter graphics system should provide for expansion of 
the picture so that any part of it can be examined in de
tail. The ability to expand the picture so that fine de
tails are made visible partly compensates for the lack of 
resolution available in the display itself. 

If the picture on the display is enlarged, parts of it 
may move off the screen. Programs to enlarge the 
drawing must compute not only the location of each 
part of the drawing after enlargement, but also which 
parts of the drawing are to appear at all. If all of a 
particular line or figure remains in view, it may simply 
be enlarged. If a figure or line moves entirely out of 
view, it must be eliminated from the picture. If a figure 
or line intersects the edge of .the visible area, the part of 
it which is visible must be shown and the part of it out
side the visible area must be eliminated. 

The process of eliminating parts of a drawing which 
lie outside the observer's field of view has come to be 
known as "windowing."l One can think of the task as 
if one were looking at a large drawing through a small 
window, as shown in Figure 1. Everything that lies 
within the window should be shown, everything outside 
the--win~ow should be eliminated. If the window is made 
bigger, more material will be shown but will be cor
respondingly smaller on the display scope. If the win
dow is made smaller, the material still inside it will ap
pear on the screen correspondingly enlarged. Window
ing is most difficult for parts of the drawing which are 
only partly visible. 

There are two main methods used to accomplish 

765 
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FIGURE I-Magnification by looking at pan of a.large drawing 
through a small window 

windowing: blanking and clipping. If blanking is to be 
used, the display scope itself must be blanked electron
ically whenever it is asked to display information out
side the visible region. Systems which provide for 
blanking must provide not only for accurate display 
within the visible region, but also for deflection far out
side the screen area. If the picture is to be very much 
larger than the actual scope area, the accuracy required 
of the electronic components involved may make them 
inordinately expensive. In any case, because the dis
play must trace out both the visible and the blanked 
parts of the picture, the flicker rate will depend on the 
complexity of the total drawing regardless of how little 
may actually be seen. 

Windowing may also .be performed by clipping, the 
process of discovering which portions of a drawing are 
within the window and computing appropriate scope 
coordinates for them. If clipping is used, the display 
is given only valid visible information with the portions 
of the drawing outside the window already eliminated. 
For drawings composed of straight lines, clipping re
quires only enough arithmetic to compute the inter
section of a line with the edge of the window. Because 
the clipping process requires many tests to decide 
whether a line intersects an edge of the window and if so 
which one, clipping programs are relatively slow. A 
typical clipping program takes between one and ten 
milliseconds per line clipped. 

Because it is essential to perform windowing if draw
ings are to be enlarged, nearly all sophisticated com
puter graphics systems do windowing. They do a lot of 
windowing because the entire drawing must be pro
cessed each time the picture. shown on the scope is 
moved or changed in sclae. Display equipment manu
facturers are beginning to provide some hardware 
assistance to the windowing task, usually in the form of 
blanking capability. Yet windowing is still a problem 
bec~use the methods previously available have been too 
slow. If blanking is used, the flicker rate of the display 
suffers; if clipping software is used; ~ach ~otion or 
enlargement of the picture may cost several seconds of 

delay. This paper describes a device which solves the 
windowing problem for the first time at a speed com
mensurate with high-performance line-drawing display 
equipment. 

Clipping in two and three dimensions 

Our clipping divider came about through a need to 
generate dynamic perspective images of three-dimen
sional objects. The head-mounted three-dimensional 
display project described elsewhere in this issue 2 calls 
for three-dimensional information to surround the ob
server. The clipping divider is necessary to perform the 
division required for a true perspective projection and 
to eliminate those parts of the three-dimensional draw
ing behind the observer or beside him but outside of the 
limited field of view provided by the display. The clip
ping divider has to operate fast enough to process infor
mation as it is displayed so that the picture can be up
dated as the user moves his head. 

The material to be processed by the clipping divider 
is always a line or vector drawing. Each part of the 
drawing is made up of straight line segments specified 
either in terms of their absolute end point coordinates or 
in terms of the position of one end relative to the other. 
In the original three-dimensional perspective task, each 
absolute or relative specification is given in a three
dimensional coordinate system whose origin is at the 
user's eye. The three-dimensional drawing is specified 
with up to 20 bits for X, 20 bits· for Y, and 20 bits for 
Z so that the resolution available at the clipping divider 
input is far higher than required by the scope. The high 
input resolution is needed whenever the observation 
point is placed very close to an object. 

In a two-dimensional applicatjon the clipping divider 
accepts information about the lines or vectors of a large 
flat drawing. We think of the drawing as being written 
in memory on a large "page" of paper and call its co
ordinate system "page coordinates" to contrast them 
with "scope coordinates." The clipping divjder will pre
sent on the scope only the part of the drawing within 
the "window." The window is a rectangle on the draw
ing aligned with the coordinate axes. The window is 
specified by giving the page coordinates of its left, 
right, bottom, and top edges, up to 20 bits each. These 
four numbers are stored internally in the "window" 
registers. Each XY location in the drawing may be spec
ified in page coordinates with up to 40 bits, 20 for each 
axis. The coordinates stored in memory can be in a form 
suitable for computation rather than packed in a way 
peculiar to the display. In an 18 bit machine, for ex
ample, the two least significant bits of the 20 bit clipper 
input are made to be a copy of the sign bit so that each 
coordinate occupies a single word of. storage. Coordi
nates can be treated with the ordinary arithmetic in
structions of the computer. There is no need to pack X 



Plane Y= +Z 

PlaneX = -Z 

Plane Y=-Z 

Plane X = +Z 

FIGURE 2-0nly material inside the pyramid is visible 

and Y information into a single word for use by the dis
play. The 20 bit input resolution is useful because the 
clipping divider can magnify a portion of the drawing to 
show on the display scope. 

Whereas clipping in two dimensions is by now a 
fairly familiar process, how to do clipping for per
spective projections is less widely known. In order to 
present a perspective picture of material which sur
rounds the observer, clipping must be done in three 
dimensions before doing the perspective division. 
Clipping must precede division because the unclipped 
ends of three-dimensional lines may have negative or 
zero values of Z. Division by a negative Z value will 
give an erroneous position on the wrong side of the pic
ture; division by zero or too small a value of Z will 
cause overflow. 

In three-dimensional applications the region within 
which lines are visible is a pyramid whose vertex is at 
the eye. The left, right, bottom, and top edges of this 
"pyramid of vision" are the planes X = -Z, X = + Z,. 
Y = -Z, and Y = +Z respectively, as shown in Figure 
2. The clipping process in three dimensions involves 
computing the intersection of each line with these four 
planes. The pyramid of vision encompasses a 90 degree 
field of view. Scaling before the clipping process can pro
vide for other veiwing angles 

The clipping divider maps whatever drawing infor
mation falls within the pyramid of vision or the window 
onto a portion of the scope face. The portion of the 
scope within which information is presented is a rectan
gle aligned with the axes of the scope. The size and posi
tion of this rectangle, or "viewport," is specified by 
giving the scope coordinates of its left, right, bottom, 
and top edges, as shown in Figure 3. These four numbers 
are stored internally in the "viewport" registers. If 
three-dimensional information is being presented, the 
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FIGURE 3-Multiple viewports in two and three dimensions 

vie~port will contain a perspective picture of the part 
of the three-dimensional drawing which falls within the 
field of view. If two-dimensional information is being 
presented, the viewport will contain an enlarged version 
of the information which falls within the window. The 
ability to map information onto a part of the scope face 
rather than all of it is important if several views of a sin
gle drawing are to be presented simultaneously .3,4 

The midpoint algorithm 

The clipping divider utilizes a new algorithm for 
solving the windowing problem. We call this algorithm 
the "midpoint" algorithm because it involves com
puting the midpoint of the line. The midpoint is easily 
found by adding together the endpoint coordinates and 
shifting the sum right one bit. If implemented in soft
ware, the midpoint algorithm would be slower than a 
direct geometric computation of the intersection of the 
line and the edge of the window. Hardware which im
plements the algorithm, however, is able to capitalize on 
the fact that additions are much easier to perform than 
either multiplication or division. 

The clipping divider distinguishes three kinds of 
lines: 

1) lines with neither end in view, 
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THE WINDOW 

FIGURE 4-Three ,end point cases 

FIGURE ~If midpoint is not within the window, one half 
can always be rejected 

2) lines with only one end in view, and 
3) lines with both ends in view, 

as shown in Figure 4. In each case, the operations per
fonned reduce the line to a shorter line of a simpler case. 

For lines of the first case with neither end in view, we 
check to see if some portion of it could possibly be in 
view. Obviously if both ends of the line are: 

a) to the right of the window, 
b) aboveit, 
c) to the left of it, or 
d) belowit 

then no portion of the line could possibly be seen and 
the line ca,n be reje.cted. In the three-dimensional case, 
some time can be saved by also rejecting lines if both 
start and end have negative Z values. If the line passes 
this "trivial test," we compute its midpoint. 

The midpoint of the line is either inside the window 
or outside. If the midpoint is inside the window, 
we can treat the line as two segments of case two, each 
of which has one end, the common midpoint, in view. If 
the midpoint is not within the window, it divides the 

WL WR 
I 

Window I ~ Viewing i 
WT ~I _____ -

80th Ends 
to the 
Right t 

REJECT 

We ----- ...-.------.......,. 

80th Ends 

FIGURE 6-Simple rejection criteria for positive slope lines 

line into two pieces, only one of which can possibly 
pass through the window. As shown in Figure 5, the 
trivial test on each of the pieces tells which to reject, 
leaving a shorter line neither of whose ends is in view. 
If the trivial test indicates that both halves should be 
rejected, no part of the line passes through the window. 
Thus lines with positive slope will be rejected if any 
point is detected within the regions shown shaded in 
Figure 6. Lines with negative slope will be rejected if 

y 

SCOPE COORDINATES 

vex: VR;VL 

vCy= v,.;", 

vSx= VR;VL 

vSy= VT~V8 

y 

PAGE COORDINATES 

we - WR+WL 
x- 2 

we - Wr+W8 
y - 2 

WSx = WR;WL 

WSy = Wr~WB 

FIGURE 7-Clipping in 2 Dimensions 
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FIGURE 8-Clipping in 3 Dimensions 

any point is found within similar regions at the other 
corners. 

For lines of the second case with only one end of the 
line in view, we again compute the midpoint of the line. 
If the midpoint is outside the window, half of the line 
can be eliminated. If the midpoint is inside the window, 
it is closer to the edge of the window than the original 
point and still, of course, on the line. We continue to 
compute midpoints within the segment which intersects 
the window edge to make a logarithmic search for the 
place where the line penetrates the edge of the window. 

Finally, having reduced the line to the third case 
where both ends are within the window, albeit on the 
edge, we convert these endpoint coordinates to coordi
nates suitable for display on the scope. This' conversion 
involves division by the window size in two dimensions 
or by the Z depth in three dimensions, and multipli
cation by an appropriate factor to account for the size 
and position of the viewport. These conversions are 
shown in Figures 7 and 8. Because the points used in the 
division are guaranteed to be within the window or 
pyramid of vision, overflow will never occur. 

Window-edge coordinates 

During the clipping process, information about a line 
is represented in a special coordinate system based on 
the edges of the window. Each point is represented as 
four numbers, each of which tells how far the point is 
from one edge of the window. These four numbers can 
be thought of as a four-component vector whose com
ponents are given by: 

in two dimensions, or 
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FIGURE 9-VaJues of the "out code" in and around the window 
for positive Z (left) and negative Z (right) 

[X - (-Z), X - (+Z), y - (-Z), y - (+Z)] 

in three dimensions. This "window-edge" coordinate 
system makes it very easy to tell if a point is inside or 
outside of the window. The ordinary coordinates of the 
point are easily retrieved from its window-edge repre
sentation by adding or subtracting components. 

The sign bits of the four components of the window
edge representation contain all the information re
quired to test the position of a point relative to the win
dow or pyramid of vision. If the signs of the four com
ponents of the window edge representation are + - + -
respectively, the point is visible. For any other com
bination of signs, the point is outside the viewing region. 
We have found it convenient to think of the position 
of a point relative to the window in terms of a simple 
four bit code derived from the signs of the window
edge representation. This four bit "out code," 

The sign bits of the right and top co:u{ponents have been 
complemented so that "one" indicates a position out
side the window. Figure 9 shows the out codes for dif
ferent positions around the window or pyramid of vision. 

Whether or not a line should be rejected can be deter
mined by the logical intersection of the four-bit "out 
codes" for its start (subscript s) and end (subscript e). 
If both start and end are to the left of the window; for 
example, both out codes will have a "one" in their first 
component, their intersection will be non-zero, and the 
line can be rejected. The trivial rejection criterion is 
thus: 

If (OC. and OCe) ~ 0 then reject. 

Similarly, if the mid-point of a line is not on the screen, 
the intersection of the out codes for the start, end, and 
midpoint tells which part of the line to reject. 

If (OC. and OCm ) ~ 0 then reject first half. 

If (OCe and OCm) ~ 0 then reject second half. 
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FIGURE lo-Hardware configuration for clipping 

If both halves of the line are rejected, of course, the line 
is completely eliminated, as was shown in Figure 6. 
The same "out code" tests serve for both the two- and 
three-dimensional clipping. In the three-dimensional 
case,.lines which pass behind the observer are automati
cally rejected by the same tests. 

Hardware 

The clipping divider contains eight individual adders 
arrange~ in two groups of four. Each adder has associ
ated with it a working register and a shifting register, as 
shown in Figure 10. One group of four adders is ~sed to 
determine where the line enters the field of view, the 
other group of four adders is used to determine where 
the line leaves the field of view. After the clipping pro
cess is complete, the adders are rearranged into four 
groups of two. Each pair of adders does a division and 
multiplication to provide for scaling in two dimensions 
or perspective division in three dimensions. The clip
ping divider also contains registers which hold the 
position of the window edges and the viewport edges, 
and the coordinates of a starting position to use for the 
line. 

The clipping operation is begun by loading the work
ing registers with the window edge coordinate represen
tation of the two ends of the line. If the line is specified 
as a relative vector, the specified displacements are 
added to the starting coordinates to find the end of the 
line. Enough adders are available to do the addition of 
all coordinates simultaneously. The shifting or "delta" 
registers are loaded with the displacement required to 
go from one end of the line to the other. If absolute 
specifications for the enda of the line were given, this 
displacement is computed as their difference. When the 
setup process is finished, each group of adders has been 
provided information about the absolute coordinates of 
its end of the line and the displacement required to get 
to the other end. 

The possibility of trivial rejection is checked next. If 

both ends are outside the window, their "out codes" 
may show that the line can be trivially rejected. If both 
ends are in the window, the clipping process can be 
omitted. If the line is a non-trivial case, computation 
proceeds. 

Each step in the clipping process involves shifting the 
delta registers one place to the right. After the first 
shift, the delta registers contain the displacement re
quired to reach the midpoint of the line. The adder out
put will then be the midpoint coordinates. If the "out 
code" tests described in the previous section are satis
fied, the midpoint value replaces the endpoint value in 
the working registers. If the out code tests fail, the mid
point is discarded. Accepting the midpoint as a replace
ment for the endpoint is equivalent to eliminating the 
half of the line next to the endpoint. Because each step 
starts by shifting the delta registers one place to the 
right, each step considers a line that is half as long as 
the previous one. The clipping process is complete when 
the delta registers contain zero. 

The clipping process as implemented here is essen
tially a vector version of ordinary division. A "quotient" 
could be generated by recording successive "zeros" or 
"ones" according to the acceptance or rejection of each 
successive midpoint. The quotient would be a binary 
fraction representing the ratio of the length of the 
clipped-off part of the line to the total length of the line. 
Because we do not want the quotient, we do not bother 
to record it. Weare only interested in the coordinates of 
the window edge intersection. Notice that when the 
clipping process is complete, the component of the win
dow edge specification which corresponds to the edge 
intersected will be zero. Scalar division hardware also 
reduces the numerator to zero. Unlike a scalar division, 
however, the vector division described here has other 
components which are non-zero. These other com
ponents carry the answer information we want. 

After the clipping process is complete, the working 
registers contain the ends of the visible segment of the 
line in window edge coordinates. These coordinates 
must be converted to the appropriate scope coordi
nates to position the displayed line properly on the scope 
picture. The sum of pairs of window edge coordinates 
can be used to find the position of the point relative to 
the center of the window, WC. For example: 

(X - Wd + (X - WR) = 2X - (WL + WR) 

= 2(X - WCx)· 

In two dimensions, . the difference of pairs of window 
edge coordinates can be used to find the size of the win
dow, WS, for scaling. 

2(WSx). 



In three dimensions the difference can be used to find 
the depth information, Z, for perspective division. 

(X - (-Z))- (X - (+Z)) = 2(Z) . 

Thus in both two and three dimensions the clipping 
divider divides the sums of pairs of window edge co
ordinates by their differences. 

The transformation used in going from the clipped 
endpoints to the scope also involves the size and posi
tion of the viewport, as was shown in Figures 7 and 8. 
The transformations involve both division by the win
dow size or Z coordinate and multiplication by the view
port size. The division and multiplication are performed 
simultaneously by pairs of coupled adders. One adder 
with its associated shifting and working registers is used 
as an ordinary scalar divider. The other adder with its 
working and shifting registers provides for the multi
plication. Instead of recording the bits of the quotient as 
they are generated by the divider, the bits are used im
mediately to control addition of the multiplicand to the 
accumulating product in the multiplier, as shown in 
Figure 11. If the sign test in the scalar division is 
successful, the output of both adders replaces their 
respective working registers. This simultaneously pro
vides a new dividend for the next trial, and a new partial 
product closer to the answer. 

Interfacing for the clipper 

The clipping divider was designed to be part of a com
plete display system. The clipping divider is provided 
input data by a memory interface channel which 
fetches the data from memory. The channel is capable 
of interpreting codes in the information it gets from 
memory as special instructions, some of which it uses to 
direct the actions of the clipper. The clipping divider 
delivers its output to an ordinary two-dimensional line
drawing display. The clipping divider is intended only 
to provide the very considerable arithmetic capability 
required between memory and the display scope. 

The clipping divider is an independent separately
timed, digital computing device. It watches an input 
flag which is raised whenever input data are available. 
As soon as its previous task is complete, it will accept 
the input data and clear the input flag. Along with the 
input data it accepts a 16 bit "directive" which indi
cates what the clipping divider is to do with the data. If 
no output is generated as a result of the task assigned, 
the clipping divider returns to a waiting state until the 
input flag is again raised. If some output is generated, 
the clipping divider raises an output flag and waits for 
the output to be accepted before it will again accept in
put data. 
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FIGURE ll-Hardware configuration for scaling 

The clipping divider was designed to run with a 250 
nanosecond clock. It takes 42 clock cycles to complete 
a worst case clipping task which at design speed would 
be ten and one half microseconds. Many tasks, however, 
take far less time. Trivial reject jon of a line, for ex
ample, takes only 3 clock cycles. Non-trivial rejection of 
a line takes between 5 and 21 clock cycles, depending on 
how many steps are required to determine that the line 
can be rejected. If both ends of the line are inside the 
window, clipping can be omitted, and only the scaling or 
perspective division need be done. If both ends of the 
line are visible, the clipping divider will scale it cor
rectly in 25 clock cycles. As this is written, the clipper is 
operating at about half of the design speed. 

Windows within windows 

It is often useful to structure information for display 
on a CRT. Subpictures or symbols, such as a resistor in 
an electrical drawing, an integral sign in a mathemat
ical expression, or a standard part on a mechanical 
drawing need only be stored in computer memory once. 
A symbol may be displayed in many different positions 
on the CRT by multiple calls on its single difinition just 
as a program subroutine may be called from many 
places. The memory interface channel which delivers 
data to the clipping divider keeps track of subroutine 
returns, nesting of subpictures, and previous window or 
viewport sizes. 

The process of displaying a sUbpicture on the scope 
can be thought of as the combination of two transforma
tions. The first transformation will place a replica of the 
symbol, possibly reduced in size, on the working drawing 
in memory. The second .transformation will paint a pic
ture on the scope, possibly with magnification, of the 
symbol on the drawing. The first transformation maps 
all the information inside a "master" rectangular area of 
the definition space onto a rectangular region or "in
stance" rectangle within which the symbol is to appear 
on the page. The second transformation maps whatever 



772 Fall Joint Computer Conference, 1968 

NEW WINDOW) 
W; - --_ _ __ .:--

--::..:::--
NEW VIEWPORT --=::::::====:::.:::.:::::: 

:::-=-~~...J--- -v' 
: : T 

; i -vs 
I I 

VL VR 

FIGURE I2-The two transformations for a subpicture (top) 
can be replaced by a single transformation (bottom) 

portion of the instance is visible within the current 
window area onto the appropriate viewport on the 
scope face. These two transformations are shown at 
the top of Figure 12. 

The clipping divider can perform both transforma
tions required for displaying subpictures in a single 
step. If the structure of the drawing calls for nested 
subpictures, the entire set of transformations required 
by any nesting can be handled at once. The scaling 
transformation used in the clipping divider, 

x - WOx . 
X' = WS

x 
VSx + VOx , 

is rich enough so that any combination of two or more 
such transformations is a single transformation of the 
same form. All that is required to combine transforma
tions when entering a display subroutine is to compute 
and load the new composite clipping limits. 

The job of computing new clipping limits involves 
many tests to distinguish between cases. For example, 
suppose a portion of the symbol is inside the window and 
a portion is outside. During the display of such a sym
bol the clipping divider should use a new window, W', 
and a new viewport V', each smaller than before. On th~ 
other hand, if the symbol is entirely inside the window, 
only the viewport will be reduced in size. If none of the 
symbol is . visible, then there will be no new clipping 
limits and, in fact, there is no reason to do the subrou
tine at all. Some examples of these cases are shown in 
Figure 13. 

Because the computation of clipping limits is similar 
in kind to the clipping computations for lines, it is 
easily implemented with the same hardware. A special 
control mode has been provided for performing this 
computation. The memory interface channel stores the 
previous window and viewport values in a pushdown 
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FIGURE I3-Finding the new window (W') and viewport (V') 
from instance (I) and master (M) 

stack prior to display of a symbol. The channel then 
gives the clipping divider data from memory describing 
the size and position of the symbol. The clipping divider 
can establish the new composite clipping limits 
automatically. 

The matrix multiplier 

We have also designed and built a digital four-by
four matrix multiplier. Because we represent data in 
homogeneous coordinates, a single four-by-four matrix 
multiplication can account for both translation and ro
tation. Together, the matrix multiplier and clipping 
divider can present persepective views of three dimen
sional objects tumbling in real time. The combination 
can also be used to display curves as will be described in 
the next section. 

The matrix multiplier uses a separate multiplier 
module for each column of the matrix. Each module 
contains an accumulator, a partial product register, 
storage for the four matrix elements in that column, and 
the multiplication logic. The entries of a row of the 
matrix serve simultaneously as four separate multipli
cands. An individual component of the incoming vector 
serves as the common multiplier. The four multiplica
tions for a single row are thus performed simul
taneously. For additional speed, the bits of the multi
plier are examined four at a time rather than indi
vidually to control multiple-input adding arrays. 

Display of curves 

The matrix multiplier and clipping divider can be 
used for generating a wide variety of curves quite 
rapidly. Suppose, for example, that we have stored in 
computer memory a collection of vectors of the form 
[t3, t2, t, 1] for which t varies uniformly from ° to 1. The 
first of these vectors will, of course, be [0, 0, 0, 1] and 
the final one will be [1, 1, 1, 1]. If these vectors are 



multiplied b,\' a particular four by four matrix, as shown 
below, the resulting vectors will be cubic polynomials in 
t where the coefficients of the polynomials are the 
entries of the matrix. 

[ ::: ::: ::: ::: 1 [~:: 1 
a31 a32 a33 a34 
an a42 a43 a44 

Although the process of generating the four cubics 
can easily be thought of as a matrix multiplication of 
data stored in memory, the four cubics are actually 
generated by difference equation methods. Each new 
point on the curve requires only three additions per 
cubic equation, or twelve additions in all. The equip
ment does not make any references to memory during 
genera tion of a curve 

Because the clipping divider divides the X and Y 
values it is given by two separate Z values (which are 
usually made to be the same), the resulting positions 
of the points on the display will follow equations of the 
form: 

X. 
(an t 3 + au t2 + a13 t + a14) 

(a21 t3 + a22 t2 + a23 t + a24) 

a~l t3 + a32 t2 + a33 t + a34 

a41 t3 + a42 t2 + a43 t + a44 

These expressions differ from those used by Robert's 
curve drawing display5.6 in that cubics rather than 
quadratics are used and there are separate denomina
tors for X and Y. If connected by short straight line 
segments, the points generated in this way can ade
quately represent a curve. The family of curves that 
can be generated includes all of the conic sections. It 
als'o includes a wide variety of curves with inflection 
points, such as are shown in Figure 14. The matrix 
multiplier and clipping divider described in this paper 
can be used to generate such curves in a few hundred 
microseconds. 

Although it is easy to see how the curve drawjng sys
tem operates, it is not so easy to find the matrix which 
corresponds to a given desired curve. The mathematics 
for finding this matrix is more complicated than would 
be appropriate to discuss here. Suffice it to say that the 
matrix required to draw a particular desired curve can 
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FIGURE 14-Some examples of curve~ ohtainahle with the 
equipment 
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be found from many alternative geometric specifica
tions. A curve may be specified by the position and tan
gent direction at its beginning and end, and by the re
quirement that it pass through two additional points. 
Alternatively, the curve may be made tangent to speci
fied lines at its ends and be forced to pass with a given 
slope through a single additional point. 

Methods are available for manipulating the matrices 
which specify the curves. 7.8 For example, suppose a 
particular matrix draws a particular curve from point P 
through point Q to point R. We might wish to partition 
the curve at point Q so as to draw it in two sections, 
each identical in shape to part of the original curve. 
l\1ultiplying the full-curve matrix by a selected paJ:ti
tioning matrix as shown in Figure 15 will produce the 
matrix required for the corresponding part. 

The Warnock hidden line.{Llgonthm 

John Warnock at the University of Utah has re
cently invented a new algorithm for solving the hidden 
line problem. 9 The computation time required by the 
Warnock Algorithm grows more slowly with pic
ture complexity than has ever been the case before. The 
Warnock Algorithm breaks the picture down into 
successively smaller "windows" within which the solid 
objects are examined. If there is nothing of interest with
in a particular window it need not be further sub
divided. If, however, the picture within a certain win
dow happens to be very complex, that window will be 
subdivided for more detailed examination. Ten levels 
of binary subdivision will, of course, suffice to produce 
pictures with a resolution of 1024 lines. 

The basic operation of the Warnock Algorithm is to 
detect whether any edge of a polygon passes through a 
window. If no edge of the polygon passes through the 
window, Warnock's program must detect whether the 
polygon surrounds the window or lies entirely outside 
the window. The clipping divider described in this paper 
does this basic operation of detecting whether an edge 
passes through a window very quickly. In many cases, 
the line can be trivially rejected as outside the window 
after only three clock cycles. If the window is fairly large, 
a midpoint of the line may fall within the window after 
only three or four more clock cycles, or less than two 
microseconds. The full clipping process is necessary only 
if the line just nicks the corner of the window. 

A special mode has been provided in the clipping 
divider for use with the Warnock Algorithm. In this 
mode, the clipping divider merely announces whether 
or not a particular line passes through the window; it 
does not bother to compute the intersections of the line 
with the edges of the window, nor to transform the 
resulting information into scope coordinates. Additional 
equipment is provided in the clipping divider to det-ect 

whether or not a sequence of lines surrounds the win
dow. We believe that with the clipping divider hard
ware, Warnock Algorithm programs may be possible 
which wi1l do the hidden line computation in rear tiIr\e. 

CONCLUSIONS 

Use of a clipping divider makes a fundamental im
provement in the logical characteristics of a display. 
With a clipping divider, a display system can be 
thought of by its programmer as capable of presenting a 
magnified image of any portion of a very large picture. 
The programmer can be entirely free of the bit-packing 
and resolution difficulties all too common in conventional 
displays. The picture itself can be represented in the co"
ordinate system most convenient to the computer. For 
instance, in a computer with a 24 bit word, the coordi
nates of the endpoints of lines can be represented with 
the full resolution available in 24 bits. There is no need 
for the programmer to pack or unpack information into 
a "display file." He merely specifies the left edge, the right 
edge, the bottom edge, and the top edge of his window in 
the same coordinate system used for representing the 
picture; the display will present on the screen what
ever part of the picture is contained within that win
dow. The programmer needs to know about the peculiar 
coordinate system of the scope only to set the viewport. 
Because the clipping divider scales its output to be with
in the range specified as the viewport, display equip-

. ment with any origin convention or data width can easily 
be accommodated. We believe that the freedom from size 
and resolution limitations, bit-packing, coordinate con
version, and separate display files provided by the clip
ping divider is well worth the investment required. 
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A low cost computer graphic terminal* 

by MALCOLM MACAULAY 

Information Electronics Limited 
Canberra, A.C. T Australia 

INTRODUCTION - UNSW GRAPHICAL DATA 
SYSTEM 

Faculty and students of the School of Electrical 
Engineering, Department of Electronic Computation of 
the University of New South Wales have been conduct
ing research and development in the field of computer 
graphics for some time. At this writing several investi
gators are concurrently working on both hardware and 
software aspects of a continuing program. The comput
er graphic television terminal described in this paper 
is a component developed for the experimental system 
that holds promise for use in applications requiring 
low cost and flexibility in use. 

Figure 1 is a block diagram of the UNSW Gr~phical 
Data System employing the University's IBM 360/50 
operating in a multi-programmed, time-sliced manner. A 
one million byte core storage unit is shared by the cen
tral computer and an interface computer, INTER
GRAPHIC.1 The latter machine is designed to provide a 

Figure I-Block diagram-UNSW graphical data system 
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more efficient and economical means to communicate 
data in on-line multiple graphic console systems than is 
available commercially. Using fast internal logic and 
storage in a general-purpose organisation, INTER
GRAPHIC can support twenty conventional graphic 
consoles or one hundred television terminals .. 

The IBM 360/50 System, well-known production 
commercial equipment, does not require further de
scription. The configuration at the U nive~sity Co~pu
tation Centre is not unusual for 360/50 InstallatIOns. 
Paper tape reader, line printer and card reader/punch 
equipments are connected to the multiplexer 10 chan
nel. The other two 10 channels serve four discs and 
four tape drives each. One million bytes of core storage 
having an eight microsecond cycle time and dual ac
cess feature is installed. Communication between the 
360/50 system and the graphical data terminal control 
equipment is accomplished by exploiting this d~al stor
age referencing attribute. Messages for the termInal sys
tem are stored in particular locations in the LCS by the 
360/50 CPU. In similar manner, INTERGRAPH~C 
stores messages for the central computer in other partlC
ular LCS locations. Both computers are able to oper
ate, to a large extent, as if they were independent of. one 
another. The nonnal batch processing of computer Jobs 
at the UNSW Computation Centre proceeds apace, de
layed only when terminal traffic is very heavy. . 

The INTERGRAPHIC Computer is both versatlle 
and fast. 3 - 5 nanosecond integrated circuit logic is 
sequenced from microprograms held in a 100 nanosec
ond read only memory. Operating in the diagrammed 
system, INTERGRAPHIC assumes the graphical com
munication tasks that are burdenso:me to a conven
tional general-purpose computer. It acts as a satellite 
time-shared :machine that generates display vectors and 

*The experimental equipment described in this ~ape: and other 
related equipment are the subject of a patent applIcatIOn filed by 
U nisearch Limited, the research and development company of 
the University of New South Wales. 
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symbols, performs the picture scaling, shifting and ro
tating tasks and processes lightpen and raster stylus 
inputs for all terminals, both conventional and TV type. 

In addition to the INTERGRAPHIC Computer, the 
central graphic terminal control system comprises the 
picture conversion, regeneration and distribution ele
ments. A small electrostatically deflected CRT is used 
to present the images generated by INTERGRAPHIC. 
One complete image as intended for display at one ter
minal is generated within one TV field time, the genera
tion being synchronised by pulses derived from the tim
ing track of the video disc recorder. The same timing 
pulses control the TV sweep generator thus keeping the 
INTERGRAPHIC Computer and TV systems in step. 
The video disc has a potential capacity of 64 channels. 
Console identification information from INTER
GRAPHIC controls the video distributor to record 
the newly made image on the appropriate track. Dur
ing the field time immediately following the TV camera 
is actuated to generate the video signals required. With 
all terminals operating at maximum speed in an experi
lnental13 channel system, each terminal receives fresh 
information every 0.52 seconds. Such energetic simul
taneous usage of aU 13 terminals is a rare, virtually im
possible event. 

Picture distribution may be performed by conven
tional TV RF broadcast techniques in applications 
where individual picture presentations are not neces
sary. In such a case, the terminal operators might inter
act individually by transmitting their raster stylus data 
to the graphical data centre via telephone circuits. For 
applications having individual picture requirements, 
signals from the video disc are used to modulate oscil
lators operating on the frequencies of the standard TV 
channels. The high frequency signals thus generated 
are distributed by coaxial cable in the same fashion em
ployed by CATV systems and multi-channel closed cir
cuit TV installations. 

Advantages of television display 

The standard commercial television receiver offers a 
number of advantages as a computer graphic terminal. 
Brown2 has suggested that a unified system born from 
the marriage of computer and television t'echnology 
may well be the principal information medium of the 
near future. Systems using computer television termi
nals have been described with a listing of significant be
nefits: (3,4,5,6) 

1. Economy 
2. Communication simplicity 
3. Maintainability 
4. Universality 
5. Human factors advantages 

Television receivers are an order of magnitude 
cheaper than conventional computer CRT terminals. 
This low cost, which is an outstanding attribute, is 
achieved largely from the very high volume of produc
tion of equipment for consumer use. The nature of the 
techniques used also work to TV's cost advantage. 
Since television scansion proceeds in. a regular fashion 
a tuned transformer in the horizontal deflexion circuit 
delivers real power for rectification and use for the CRT 
accelerating voltage. Random scan and electrostatically 
deflected display systems require 'more expensive high 
voltage power supplying means. 

The transmission of TV signals by both wire and 
wireless is readily accomplished. Offering both low cost 
and superior performance, video wire distribution sys
tems are seriously competing with wireless broadcasting 
in Great Britain.7 Television line distribution com
ponents for both CATV and HF networks are designed 
and manufactured in reasonable quantities. Of impor
tance in relation to computer systems is the fact that TV 
display scansion is co'ntrolled by sychronising pulses 
transmitted with the picture information thus provid
ing a means to maintain system time readily. The raster 
stylus circuits described later in this paper exploit these 
regular clocking pulses to derive coordinate data from 
the display surface. Although not used in the experi
mental system, TV colour burst signals could be em
ployed to provide a high synchronisation resolution. 

The maintenance advantages of using a common 
household item, a TV receiver, are obvious. Com
ponent parts are che~ and commonly stocked in mos t 
neighborhoods. Trained servicemen are available on 
call. In a system such as the UNSW Graphical Data 
Network, maintenance monitors may be installed to 
insure the quality of picture signals being transmitted. 

Unlike conventional computer displays, TV receive;rs 
may be used with inputs from TV cameras and flying 
spot scanners. A computer terminal employing conven
tional television is equally useful for viewing educa
tional video tapes and for family entertainment. The 
provision for colour display and the potential for mono
chrome picture tonal gradation make TV technology of 
interest for further exploitation in computer terminal 
use. 

TV offers advantages from the human factors point 
of view. In one reported experimentS subjects were 
found to prefer TV images to high resolution images, 
especially for line drawings. The same investigators 
pointed out the need to invert display image polarity 
for operator comfort as ambient illumination varied. 
Such image inversion, although impossible or impracti
cal in conventional computer display systems, is readily 
accomplished with TV. Further advantages of TV are 
found in the relatively high picture regeneration rate 



assuring freedom from flicker and the availability of 
ready operator control of both brightness and contrast 
to his personal taste. 

Di8advantage8 of televi8ion di8play 

One of the disadvantages is that TV, being primarily 
a low-cost entertainment medium designed to compro
mise picture quality and bandwidth considerations does 
not possess high resolution adequate for all computer 
terminal needs. This deficiency is somewhat offset in a 
computer environment by the ability to scale the image 
readily and to mark coordinates with high resolution dig
ital numeric data. Due to the nature of the consumer 
goods market, rather than inherent weakness in the sys
tem, common TV receivers provide less picture informa
tion and more geometric distortion than may be ob
tained. 

In any display technique using CR Ts, the transient 
nature of the light output from the moving spot requires 
that the picture be restored at a regular rate. The 
characteristics of the human eye are such that if the 
image is presented at a frequency above the so-caned 
"critical fusion frequency", the picture will appear to be 
present continuously. 'TV practice is to provide a field 
frequency related to the power supply mains frequency 
rather than the somewhat lower critical fusion fre
quency. In Australian television practice the field fre
quency is 50 Hz. Although a modern electroniccomput
er has been used to generate TV video at higher rates9 

there is little time left for other useful work when so 
employed. Although TV requires a higher image re
fresh rate than conventional computer display, this dis
advantage is more than offset by the ready availability 
of video disc storage devices to perform the image main
tenance function. 

Scanning the picture from top to bottom, leftto right 
in two interlaced fields per frame, has the effect of dis
secting the image in an awkward manner from the com
puter point of view. Symbols, vectors and other nor
mally associated groups of picture elements are dis
jointed and scattered in time. Although the dismem
berment is done in a consistent manner expressible in a 
reversible algorithm, the timing is such that storage 
capacity for a full picture field is needed for general use. 
In the UNSW Graphical Data Network this storage is 
found in the phosphor persistence of the small display 
CRT and electrical charges on the target of the camera 
tube. 

Experimental graphic terminal 

An experimental graphic terminal was constructed by 
modifying a standard commercial television receiver. 
Means were provided, to be described later, to extract 
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Figure 2-Experimental graphic terminal 

horizontal and vertical synchronising pulses and to mix 
video signals from the raster stylus with TV video. Fig
ure 2 shows the appearance of the completed unit. 

The terminal block diagram, Figure 3, gives an over
view of the operating fundamentals. The physicalloca
tion of the raster stylUS on the TV screen is determined 
by counting horizontal synchronising pulses to yi.eld the 
vertical dimension, then counting pulses from a hIgh fr~ 
quency oscillator to yield the horizontal ~imensio~. .In 
the interest of economy, only one counter IS used, ItS m
put being alternated each field interval from either the 
horizontal synchronising pulse line or the output of the 
high frequency oscillator. The count accum~lated ~ur
ing a given field interval is transferred to a s~~t regIster 
at the end of the field. The vertical synchronIsmg pulses 
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are the signal for transfer. The count is then converted 
into a serial pulse train of low frequency, about 500 Hz. 
This serial pulse train may be transferred by ordinary 
telephone lines. Twenty-five raster stylus coordinate 
pairs are generated each second. 

Standard mass-produced commercial integrated 
circuit modules were used to perform almost all of the 
circuit functions. The amplifiers for video signals and 
raster stylus and vertical pulses were constructed from 
discrete components. All the circuits were mounted on 
an experimental circuit board, 10 X 12 cm. Wiring was 
done by hand using tinned copper wire and inSUlating 
sleeving for each connection. Although labourious, this 
technique had the virtue of permitting easy alteration 
while allowing for a high component packing density. 
Figure 4 is a photograph of the completed item. 

The raster stylus was made from a discarded ball 
point pen. The ink tube and point were removed and 
the tip cone enlarged by drilling to accommodate the 
photodiode. The diode load resistor was connected at 
the diode terminals and a small segment of plastic tub
ing was added to give the assembly rigidity. Low imped
ance circuitry permitted the elimination of shielding 
from the raster stylus connection wires. Figure 5 is a 
photograph of the raster stylus prototype. 

The total power consumption of the circuits is 2.3 
watts, being 650 rna at 3.5 volts. The total component 
costs, less power supply, for the complete circuit is $A63-
02 ($70.58 US). 

Terminal logic 

Figure 6 gives the logic symbols used in the diagrams 
of this paper. Three Ie module types were used: Type 
900, a low impedance inverting amplifier; Type 914,a 

Figure 4-Terminal circuit board prototype 
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dual two input gate element and Type 923, a JK flip
flop. 

Horizontal and vertical synchronising pulses were ex
tracted from the TV receiver by the simple circuits 
shown in Figure 7. A wire connected at the output of 
the vertical integrator (the junction of R67, R68 and 
C66) conveyed the vertical pulses to an emitter-follower 
amplifier to provide a power gain adequate to drive an 
IC logic module. Horizontal synchronising pulses were 
extracted by adding a 330 ohm resistor in series with the 
8.2k ohm collector load resistor of the sync separator 
transistor of the TV receiver. This means provides a 
low impedance circuit point from which pulses may be 
taken. 

The HF Oscillator used to establish the horizo:::tal 
coordinate data is diagrammed in Figure 8. The dual 
gate integrated circuit is connected to operate as an 
astable multivibrator. The invel ter performs both 
waveform shaping and load isolation functions. The 
oscillator operates at a frequency of approximately 
4 J\1:Hz., providing 240 counts during the active TV 
scanning interval. 

Figure 9 is a diagram of the circuits associated with 
the control of preset and advance pulses to the counter. 
Flip-flop G4 acting with gate Cl permits HF Oscillator 
pulses to provide the advance signals during alternate 
television field intervals. During the y-coordinate de
termining interval horizontal sync pulses toggle flip-flop 
Al providing counter advance pulses at % horizontal 
sweep frequency. During the x-coordinate determining 
interval HF Oscillator pulses reach the advance line. At 
this time horizontal sync pulses are present on the pre
set line thus clearing the counter at the end of each dis
play sweep. Master preset pulses derived from the ver-

to vertical 
multivibrator 

1 

3.6v 

TV RCVR., LOGIC; CHASSIS 

hori7. ~ync. 

Figure 7 -Synchronising signal extl1'action circuits 
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Figure 8-HF oscillator 

tical sync pulse appear on the preset line at the onset of 
each coordinate determining interval. 

Figure 10 is a block diagram of the logic used in the 
counter, gates and encoder. The counter is a conven
tional8 stage modulo 256, count-up, binary ripple coun
ter. The transfer gates are operated by a pulse on the 
transfer line prior to the master preset pulse, thus as
suring the capture of the count accumulated in the regis
ters before preset action. The encoder register is a con
ventional shift-right register, the timing established by 
pulses on the shift line that are derived from the horizon
tal sync signals. The least significant bit, Bl, has its set 
input connected to the positive supply voltage and its 
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GS 

Figure 9-Advanc(; and preset control circuits 

Figure lO-Counter, gates and encoder 

clear input connected to ground so that each stage is set 
to true at the end of the encoding interval. The transfer 
ga tes provide a signal to the individual shift register 
stages only during the transfer interval if the corre
sponding counter bit is true. In other words, the comple
ment of the count is transferred to the shift register. 

The shift and transfer control circuit diagrammed in 
Figure 11 makes use of both horizontal and vertical 
synchronising pulse inputs. Horizontal pulses at the 
output of amplifier G8 are counted by a binary ripple 
counter comprising five stages, 10 H0, G0, H9 and 19. 
Counted modulo 32, the resulting signal is used to actu
ate the shift line and controls the timing of the coordi
nate data encoding. One-shot multivibrators G3 and H5 
establish the timing of transfer and master preset pulses. 

An audio frequency output pulse wavetrain that can 

Figure II-Shift and transfer control circuits 

be transmitted over voice grade circuits is simply. pro
vided by combining the output of the encoder from flip
flop D7 with the shift frequency signals from flip-flop 
19. The transfer pulse from G6 is mixed with these sig
nals to provide a reference signal. A typical output 
wavetrain is shown in Figure 12 and the wiring of the 
dual gate in Figure 13. 

Figure I2-Audio output wavetrain 
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Figure I3-0utput wavetrain gate 



The raster stylus 

In operation with a conventional computer driven 
display system, a lightpen must perform the following 
functions: 

1. Collect light from a small area of the CRT screen 
and transfer a "strike" signal to the computer. 
2. Notify the computer, by operator action, that the 
lightpen is positioned at the coordinates desired. 
3. Notify the computer by operator action that the 
lightpen position is to be tracked. 
4. Provide indication to the operator that the light
pen is properly aimed and focused. 

Commercially available lightpens employ fibre
optic cables and photomultipliers or phototransistors. 
Light from a source or sources at the end of separate 
terminally coaxial portion of the fibre-optic cable is 
focused on the CRT face by the lens through which the 
detected light must pass, thus signaling proper focus and 
aiming to the operator. The construction of a typical 
modern production lightpen is described by Locascio, 
Karanza and Dalton,lo 

For the designer, the lightpen light collection design 
problem is complicated by many uncertain factors. 
Lightpen sensitivity is the function of the instantaneous 
brightness of the display, the luminous intensity of the 
light at the photosensor and the photosensor response.l1 

10k 

LUOO 18k 

330 
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The properties of entertainment grade CRTs reflect 
a lack of precise control of phosphor material distri
bution, screen thickness and aluminizing coating. 
The resulting display, although quite acceptable for 
entertainment use, does not always exhibit the predict
able behaviour of CR Ts used in most computer display 
terminals. In the light of the obvious aI\alytical diffi
culties, an experimental approach was taken to the raster 
stylus design. It was found that a common commer
cial photodiode performed satisfactorily with the 
circuit shown in Figure 14. The light collection was per
formed by the integral lens of the photodiode. 

Since the television raster is scanned in a consistent 
manner from left to right and top to bottom, the photo
diode detects the light emitted by the passage (if the 
electron beam during several sweeps, i.e., from lines both 
above and below the desired point. The number of 
detections and consequent amplifier output pulses is 
determined by the size of the cone of light accepted by 
the photodiode lens and the intensity of the light 
emitted by the CRT phosphor. The amplifier output 
pulse amplitude is thus influenced by the uncertain fac
tors aforecited. In addition, vertical movement, either 
in the television raster from circuit instabilities or in 
stylus position by operator action will alter the response 
signal amplitudes markedly. IVrodulation of the beam' 
current density by high tension fluctuations related to 

56k 

220k 

56 
\-~-----'------+--'VV'tf'--O 3.6v 

Figure 14-Raster stylus amplifier and pulse shaper 
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Figure 15-Raster stylus response signal v = 0.5 v /crn h = 50 
rnicrosec / crn 

mains voltage or circuit instabilities and adjustments 
to the Set Black and Picture controls of the TV receiver 
are also significantly influential. 

Figure 15 shows typical raster stylus response signals 
at the output of the amplifier (Point A of Figure 14). 
At the level of light then prevailing, six pulses of suffi
cient amplitude to trigger the monostable multivibrator 
were evident. At lower levels fewer pulses would be of 
amplitude sufficient to reach the triggering threshold of 
the multivibrator. At higher light levels, more pulses 
would cause triggering. As aforementioned, the pulse 
amplitude is unpredictably time variant and the multi
vibrator triggering action consequently unreliable. 
Experiments showed, however, that one and more reli
able pulses could be assured by proper setting of the TV 
receiver Set Black and Picture controls. These settings 
were within the range that yielded the most acceptable 
displayed pictures. Further, the unreliable pulses were 

08 

li'igure 16-Raster stylus logic circuit 

Figure 17 -Selected raster stylus pulse v 
h = 1.0 v/crn 

5 rnicrosecs/crn 

derived from the passage of the CR.T beam on the lines 
either above or below the desired point. Thus it was 
possible to use digital pulse selection rather than opti
cal field narrowing. The simple algorithm is to count 
pulses, ignoring all but the third pulse from the multi
vibrator output. The raster stylus logic circuit of Figure 
16 accomplishes the pulse selection. Figure 17 shows 
the pulse selected, the waveform measured at point B. 

The operator- is aided in adjusting the controls of the 
TV receiver by observing the behaviour of a point ~f 
action display spot created by mixing the selected pulse 
with the TV receiver video signals. If the light level is 
too low, the spot will either disappear completely or 
"dance" irregularly on the screen. Too much light will 
not hamper the raster stylus performance but will tend 
to cause the display to defocus and to dazzle the opera
tor with its brightness. 

In operation, the raster stylus is held against the face 
of the CRT. The aforementioned point of action display 
spot is evident as a black line, about 1 mm. long dis
placed about 3 mm. to the right of the stylus tip. This 
displacement is an advantage since the operator's fin
gers are thereby made less likely to interfere with his 
view of the screen. lVIost conventional commercial sys
tems delibeJ;:at~ly offset the tracking cross by computer 
program to accomplish the same effect. As a conse
quence of the logic circuits, the operator ~annot write on 
either of the top two lines of the TV raster. Similarly, 
the leftmost edge of the screen has a vertical band, 
about 3 mm. wide, in which raster stylus action may not 
be obtained. This forbidden zone results from the time 
delays in the photodiode and amplifi~r. The limitation 
is not significant, less than 1 % of the total screen area is 
excluded. 



CONCLUSIONS 

The experimental work described in this paper has 
demonstrated the economy and utility of computer 
graphic terminals using standard television receivers. 
Although user opinion from operational experience must 
be the final arbiter, it is plausible to infer that TV tech
nical performance will prove adequate for most uses. 
Television receivers, because of the ability to display 
both computer generated and coventional TV pictures, 
offers unequaled versatility. No alternative techique 
appears to offer equal effectiveness at comparable cost. 

Television maps picture element position information 
into time variant electrical signals. The raster stylus 
exploits this position-time isomorphism to control the 
counting of a digital register from which picture element 
position information is reported to a computer. Raster 
stylus use does not require either computer tracking 
programs nor lightpen inking or tracking cross service. 
Tracking cannot be lost. The raster stylus writes di
rectly on the display surface. Remote operation is made 
possible since computer interrupt signals are. not 
employed with their critical timing which requires 
short, wide-band communication lines. 
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INTRODUCTION 

Derivation of vascular system equations 

The following equations are proposed in identifying a 
portion of the vascular system of a human. The 
derivation of the equations is similar to the approach 
used for a waterhammer analysis and is based on those 
of Dr. Victor Streeter,! who has written extensively on 
the problem of waterhammer. The approach that is 
followed here is similar to that used for elastic water
hammer, which considers· the flow of a fluid in an 
elastic pipe. In the human vascular system there is also 
the flow of a fluid in an elastic pipe. With the proper 
parameters and boundary conditions it is reasonable to 
assume that these derivations will lead to a set of 
equations which can be used to describe the dynamical 
properties of the vascular system. In order to apply 
these equations to the flow of blood it is necessary to 
make the following assumptions: 

1. The blood vessel and elastic tube have a constant 
modulus of elasticity and a constant wave 
velocity. 

2. The blood vessel is not permeable and is cylindri
cal with a constant internal diameter at rest. 

3. Blood flow is laminar after leaving the upper 
portion of the aorta. 

4. The loss of energy due to friction between the 
fluid and the walls of the blood vessel is propor
tional to the square of the velocity. 

*The authors were formerly at Southern Illinois University, 
Carbondale, Illinois. 

5. There are no discontinuities. This is to say that 
there is no branching along the section of blood 
vessel under 'consideration. 

The first assumption is reaso~able because the blood 
vessel stress-strain curve is linear over a significant 
range, and many investigators agr~e that this assump
tion does not introduce any significant error.2 It is 
possible to include the change of the modulus of 
elasticity in the equations, but it introduces a con
siderable amount of complexity and would mean having 
variable coefficients instead of constant coefficients in 
the equa~ons. 

The second assumption is necessary in order to have 
convenient boundary conditions. When the blood leaves 
the left ventricle of the heart and enters the aorta, at 
the semilunar valve leading into the aorta some 
turbulence occurs.3 After leaving this valve the flow 
becomes laminar until it comes to a discontinuity; 
therefore, assumptions three and five are neede~. 
Assumption four has been shown to be true for elastIc 
tubes by Streeter and others.2 

Let us begin by considering the flow of a fluid in an 
elastic tube. In the waterhammer problem analysis 
there is a sudden change in pressure at the entrance of a 
tube due to an opening or closing of a valve. The sudden 
opening or closing of this valve will cause a pressure at 
the distal end of the tube that is greater than up stream, 
while the velocity of the fluid decreases as it flows down 
stream. 1 In the case of blood flow in the aorta there is 
also a rapid change in pressure (approximately 130 mm 
Hg in 0.2 to 0.3 seconds). The vascular system responds 
with a higher pressure down stream along with a 
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decrease in the velocity of the blood. The pressure does 
decrease as the blood moves nearer to the capillary bed. 
This correspondence indicates the possibility that with 
proper boundary conditions and careful selection of 
parameters one can use the elastic waterhammer 
equations to describe and identify the vascular system 
parameters. 

In the derivation Newton's equation of motion and 
the equation of continuity will be appl~ed to an element 
of fluid within the confines of an elastic, cylindri6al 
vessel. The derivation follows: 

The dependent variables· are functions of d~stance 
and time. 

II = pressure head = H(x, t) 
V = velocity (averaged at across section) 

= vex, t) 
P = pressure = P(x, t) 

The independent variables are, 

x = distance along the tube 
t = time 

Equation of motion 

Sum the forces in the x-direction, consipering only 
one;'dimensional flow. (See Figure 1) 

a paA 
PA - [PA +::;- (PA)ax] - T1I'"DaX + - ax 

vX ax 

P oA Ax 
Ox 

dV 
= pAax dt 

ap aA 
- Aax- - P~x- - T1I'"D~x 

ax ax 

+ P~x aA = pAil.x dV 
ax dt 

I 
I 
1 
1 
I 
1 
I 
I 

(1) 

I 
I 
I 

PA ----.1 
1 
I 
I 

:<4-- PA+o(PA)Ax 

1 
1 
1 
1 
I TTlDAx 

I Ox 
I 
I 
I 

! 
1 

FIGURE I-Free body diagram for a segment of fluid 

Dividing through by the mass of the element of fluid, 
(pA~x), and simplifying 

1 ap 4T dV 
p ax - pD = dt 

(2) 

For steady turbulent flow, T = pfV2/8. This assumes 
that the friction factor in unsteady flow is the 'same as 
in steady flow. 1 

Substituting for T and P = pgh, expanding the 
acceleration term, and substituting into equation (2), 

g aH + V av + av + fV2 = 0 
ax ax at 2D 

(3) 

In the arterial system there is negative flow which must 
be considered; therefore, V2 is written as.VIVI to provide 
the proper sign. 
The equation of motion becomes, 

g aH + V av + av + ~ VI VI = 0 
ax ax at 2D 

(4) 

Equation of continuity 

The equation of continuity states that the mass flow 
into the boundary minus the mass flow out of the 
boundary is equal to the rate of change of mass within 
the bounda~. (See Figure 2) 

Applying the continuity equation to the control 
volume, 

a a 
pA V - [pA V +ax (pA V) il.x] = at (pAil.x) (5) 

Simplifying, expanding, and dividing through by the 

r- ______ / ____ ::~~_l_~;fac. 

i : 

I 

~: 
pAV 1 

I 
I 
I 
1 
I 
I 
1 

I I 
I I 
1 I L ___________________ .;;.....J 

~ Ax 

PAV+o( PAV) Ax 
ax 

FIGURE 2-Control volume for a segment of fluid 
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mass of the element, pAt1x., 

(6) 

Reorganizing the terms, 

Note that the first two terms in the parentheses 
constitute the total derivative of A,and the second two 
terms in the parentheses constitute the total derivative 
of p; therefore, the continuity equation becomes, 

(8) 

Next it is necessary to derive an equat,ion for the change 
in area in terms of pressure. This derivation makes use 
of the relationship between hoop stress in the tube wall 
and cir~umferential strain. (See Figure 3). The tension, 
T, is equal to PD 12, where P is pressure and D is the 
internal diameter.' The thickness of the tube wall is 
assumed to be small compared to the tube diameter. 

T = PD/2 

Differentiating both sides with respect to time, 

dT DdP PdD 
dt ="2 dt +"2 dt 

Assuming a very small change in diameter with respec 

T 

to the very large change in pressure, the equation 
becomes, 

Dividing both sides of the equation by the wall thick
ness, r'. one obtains the rate of change of unit stress. 
From this equation'the relation between change of area 
and change in pressure can be obtained. 

IdA DdP 
A dt = tiE dt 

To obtain a relationship between the density of the 
fluid and the pressure on the fluid use is made of the 
definition of bulk modulus of elasticity, K. 

dP dP 
K = - d V /V - dp/ p 

or, 

The equation of continuity becomes, 

dP [ 1 D ] iJV - 0 
dt K + tiE + iJx. -

(9) 

The "waterhammer" expression for the pressure wave 
velocity will reduce the equation to a more convenient 
form. 

Kip 
1 + (K/E)(D/t/) C) 

Where: 

0 1 = constant of the tube. For elastic tubes and 
blood vessels 0 1 is unity. 1 

PD Substituting a2 into equation (9), expanding, and 
substituting P = pgH 

'T' 
1 

FIGURE a-Hoop stress for a. thin wa.lled cylinder 

The two derived equations, (4) and (10), are nonlinear 
Dartial differential equations. No analytical solution is 
known for tlieseequations; therefore, it is necessary to 
use computer methods to obtain a solution. 
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l/G 

FIGURE 4-Pactolus flow diagram for simulation of the aorta 

Simulation technique 

Pactolus simulation 

The equations derived in the text have been simulated 
using a continuous systems simulation program, 
Pactolus, for the IBM 7040 digital computer. The 
purPose of the simulation was to substantiate the 
equations derived and to find a method of solution 
previously unattempted (See Figure 4). Pac to Ius was 
written by two members of the IBM Corporation.4 Each 
computing block in the program is a subprogram. The 
coding is similar to the flow charts used in programming 
an analog computer. The methodology for constructing 
the simulation diagram is identical for Pactolus and the 
analog computer. Pactolus for the IBM 7040 computer 
has a wide range of available computing blocks for all 
of the major operations available on an analog com
puter. The IBM 7040 Pactohis provides the system 
analyst with ninety-nine computing blocks to work 
with. This is equivalent to a medium sized analog 
computer with hybrid features. -

Parameters to be identified are those which determine 
t.he functioning or malfunctioning of the system. Those 
of interest in identifying the vascular system are: 

1. The flow rate of blood at any time and at any 
position on the blood vessel. 

2. The pressure at any position on the blood vessel 
as a function of time. 

3. To be able to predict the shape of the pressure 
wave at any. position on the blood vessel. 

The pressure and velocity functions of the left 
ventricle were generated using function generators. 
These generators provide the forcing functions at the 
entrance to the aorta or vessel under investigation (See 
Figures 5 and 6). The distal boundary conditions are 
found by selecting a distal pressure and identifying the 
~orresponding velocity. The boundary conditions at the 
distal end of the vessel under consideration were also 
cal.cu~ated by the use of special blocks in the Pac to Ius 
program. 

To test the validity of the proposed vascular system 
equations, data for the human aorta were used. The 
simulation described here is for a one hundred centi
meter length of aorta with the pressures and velocities 
at 25 centimeter increments from the entrance to the 
aorta predicted. 

To simulate the vascular system equations on the 
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digital computer using Pactolus, they must be written 
in finite difference-differential form. Using a central 
difference formulation the equations become, 

_ V (H,,+1 - H,,-I) a2 (V n+l - V"-I) 
n 2ilx - g 2il~ 

(11) 

_ V (V"+1 - V ,,-1) 
" 2ilx 

(H,,+1 - H n- 1) f V nlV .1 
- g 2ilx - 2D (12) 

By writing the equations in this manner they remain 
nonlinear, but they are now only functions of time and 
the in:dex, n. Note that the last term in (12) is written to 
incorporate reverse flow. Equations (11) and (12) must 
be solved for each increment. Each equation will then 
describe a point in a section of the aorta or vessel. The 
equations used for solving the distal boundary condi
tions are, 

g(2ilx) dH" 
V,.+1 = - -ar dt 

g 
- 2" V" (H n+1 - H n - 1) + V n - 1 a 

(13) 

Hn+1 = - 2:X ~: n - :" (V,,+1 - V ,,-1) (14) 

- f(ilx) V IV" + H gD n" n-l 

Before proceeding, the values for the wave velocity, 
a, and the friction factor, f, must be determined. The 
wave velority is given by, 

K/p 
(15) 

. The wave velocity is derived in the waterhammer 
problem in which the compressibility of the fluid is 
taken into consideration; however, in a blood flow 
analysis the compressibility of the blood is negligible 
when compared to the compressibility of the blood 
vessel wall. In this paper the bulk modulus of the tube 
is considered instead of the bulk modulus of the fluid. 
This is a reasonable approach because the structure of 
the aorta wall influences the traveling pressure wave 
and the instantaneous fluid velocity. 

The equation for calculatmg the bulk modulus, 
sometimes referred to as the modulus of - volume 
elasticity,1i is, 

Et' 
K=n 

(16) 

The other constant to be determined is the friction 
factor. It is assumed that flow is laminar after leaving 
the semilunar valve. Some investigators have indicated 
that the Reynolds number, R, for flow in the aorta is 
between 1000 and 2000. 3 This suggests that the flow is 
laminar. In this simulation the friction factor for 
laminar flow in smooth tubes was used. 

F = 64/R (17) 

The data for the segment of aorta under consideration 
are: 

L = 100 centimeters 
n = 3 
ilx = 25 centimeters 
T' = 0.159 centimeters 
D = 1.27 centimeters 
E = 3 X 107 dynes/em! 
K = 3.76 X 1()8 dynes/cm2 

p 1.06 gm/cm3 

a = 1330 em/sec 
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a2 = 1. 77 X 106 cm2 
/ sec2 

g = 980 cm/ sec2 

R = 1000 
f = 0.064 

The boundary condition at the entrance to the aorta 
is the pressure from the left ventrical, which is generated 
by a function generator. The other boundary condition 
at the entrance of the aorta is the velocity function. 
The velocity function at the entrance to the aorta is 
nonlinear "and indicates reverse flow. This reverse flow is 
identified in the pressure waveform of the human by a 
notch in the descent of the pressure waveform and is 
called the dicrotic notch. 

As'discussed previously the pressure at the distal end 
of the tube is selected, and the boundary condition for 
the velocity at the distal end is predicted. This can be 
done for an infinite number of pressures; hence, 
predicting a complete range of solutions. The technique 
is also reversible, a velocity can be selected and a 
pressure determined that will fit the required boundary 
conditions. This methodis difficult to implement using 
Pactolus and an alternative method using the special 
blocks was implemented to calculate the distal boundary 
conditions. The special blocks ar~ subprograms written 
especially to calculate these boundary conditions. 

The results are those expected for flow in an elastic 
arterial system. The pressure at the distal end is higher 
than that at the first station, and the velocity is l-ower 
than the first station (See Figures 7 and 8). The 
phenomena is discussed in a previous section of this 
paper. These results indicate that the equations derived 
can describe the pressure and velocity for a segment of 
an elastic blood vessel. It has been shown that knowing 
one boundary condition· at the distal end the other 
boundary condition at that end can be found by a 
random search for a stable solution or by special blocks 
for calculation of the distal boundary conditions. 

The Pactolus simulation technique and new con
tinuous system simulation programs can be of great 
value in the simulation of the vascular system. The 
convenience of having the equivalent of a medium sized 
analog-hybrid computer to use and a rapid technique 
for solving the identifying equations will help in the" 
complete identification of the vascular system. Future 
simulations will be performed to more accurately defined 
vascular system parameters. 

Elastic tube experiments 

Procedure 

Experiments using an extra flexible polyvinyl tube and 
pure gum rubber, latex, tube were carried out. The 
experiments were used to verify the results of the 

simulations and to confirm the validity of the vascular 
system equations. Pressures were measured as functions 
of time at the entrance and distal end of a one meter 
length of tube, and the velocity of the pressure wave was 
determined. A roller pump was used to generate the 
fluid forcing function .. The fluid was water. 

Pressures were measured using semiconductor strain 
gages. Two gages were used for each measurement. One 
gage was used as the active transducer, and the other, 
a dummy gage, was used for temperature compensation. 
Semiconductor strain gages are very sensitive to 
temperature variations so a constant temperature 
environment was constructed by completely enclosing 
the transducer and the measured portion of tubing with 
a shield of styrofoam. Semiconductor strain gages were 
chosen because of their high gage factor, 130, and 
resistance to fatigue. The two gages were connected as 
half of a resistance bridge circuit, and two precision 
helipots were connected as the other arms of the bridge. 
The two transducers were placed one hundred centi
meters apart. The first transducer (at the upstream end) 
was placed approximately seventy-five centimeters from 
the pump outlet, thus eliminating any unwanted effects 
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FIGURE 7-Predicted pressures for Pactolus simulated aorta 
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due to the pump. These particular strain gages were 
designed for constant current (10 milliamps) excitation, 
since a constant current source helps to eliminate the 
nonlinearity of the gages. The output of each resistance 
bridge was connected to an x-y recorder, and the 
pressure waves were then recorded as functions of time 
for the entrance and exit of the tube under investigation. 

The pressure wave velocity was determined using an 
electronic counter. Each of the outputs of the resistance 

bridges, one at the input and one at the output of the 
one hundred centimeter segment of tube, was connected 
to a vacuum tube voltmeter. The outputs of the 
voltmeters were patched to an analog computer and 
amplified. These amplified signals were transmitted to 
the electronic counter. The counter was used to obtain 
the time interval for the pressure wave to travel from 
th.e first transducer to the second transducer. Knowing 
the distance between the transducers and the time 
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FIGURE 8-Predicted velocities for Pactolus simulated aorta 
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interval, it was a simple calculation to obtain the 
average pressure wave velocity. 

Results 

The recordings of the pressures as functions of time for 
the flexible polyvinyl tube are shown in Figure 9. The 
pressure wave for the entrance, PI, is more rounded at 
the summit than the outlet pressure, P 2. The evidence 
of negative flow is also visible in both waveforms. The 
small notch in the waveform as the pressure descends. 
indicates negative flow. In the aorta of the human this 
notch is called the dicrotic notch. Note, the notch is 
more distinguishable in the pressure wave for the outlet 
of the tube. This phenomenon is also seen in the human 
aorta. The pressure wave peaks downstream, and the 
amplitude of the wave increases. This also occurs in the 
human aorta. The wave velocity calculated was ten 
meters per second, a value that is in the physiological 
range. 

The pressure wtlve forms for the latex rubber tubing 
are given in Figure 10. Latex tubing is more rigid than 
the polyvinyl used, and the test results confirm this. 
The pressures recorded are not as large'in amplitude. 
The notch on the descending portion of the waveforms 
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FIGURE 9-Measured pressures for polyvinyl tube 

is less noticeable on the input pressure and is almost 
damped out on the exit pressure. This indicates a larger 
modulus of elasticity for the latex tubing. Again the 
results are similar to those obtained from the human 
aorta. The pressure wave velocity was calculated and 
found to be approximately twenty meters per second. 
This velocity is close to the physiological maximum for 
the aorta. 

Pressures found by experimentation with the elastic 
tubes are similar in form to those measured in the human 
aorta and to those predicted by simulating the vascular 
system equations. The polyvinyl tubing appears to be a 
better model for the elastic aorta where as the latex 
tubing appears to be a better ~odel for the more 
muscular arteries. The results of these experiments are 
encouraging. They substantiate the validity of the 
proposed mathematical model for blood flow in a 
segment of artery and provide encouragement for 
future simulations. 

SUMMARY 

This paper is th~ presentation of a technique to be used 
~n i~entifying the vascular system. The results presented 
mdlCate that the mathematical model is valid as a 
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FIGURE lo--Measured pressures for latex tube 



Computer Simulation of Nonlinear Blood Flow Model 795 

representation of the flow of blood in an elastic blood 
vessel. Digital computer continuous system program
ming methods proved adequate for simulating the 
complex equations. The Pactolus program predicted 
the velocity and pressure functions for the aorta. The 
possibility of using digital simulation programs is 
enhanced by the future development of digital con
tinuous system simulation programs. 

The future of the model and technique is hopeful. If 
the vascular system is satisfactorily identified the 
physiologist and the engineer will learn much about the 
mechanisms of circulation. Prediction of the. velocity, 
pressure, and change in shape of the pressure wave will 
be valuable in determining the functioning or malfunc
tioning of parts of the vascular system. By expanding 
the techniques introduced in this paper it will be 
possible to accurately predict the condition of a vascular 
component. 
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APPENDIX 

Variables and ~onstants used in derivation of system 
equatwns 

a = pressure wave velocity 
D = inside diameter of the vessel 
E = Young's modulus of elasticity 
K= bulk modulus of elasticity 
tl = wall thickness of the vessel 
P = pressure 
H = pressure head 
V = average velocity of the fluid 
p = density of the fluid 
t = time 
x = distance along the tube 
ax = differential length of tube 
A = cross sectional area of the tube 
T = maximum shearing stress at the tube wall 
11" = constant (pi) 
F z = force in x-direction 
M = mass of element under consideration 
. f = friction factor 
V = volume 
T = tension 
C1 = unity (constant) related to tube material 





A computer system for real-time monitoring and 
management of the critically ill* 

by DAVin H. STEWART, DAVID H. ERBECH 
and HERBERT SHUBIN 

University of Southern California 
Los Angeles, California 

INTRODUCTION 

During the past decade a number 'Of specialized 
h'Ospital units have been devel'Oped f'Or m'Onit'Oring 
and care 'Of critically ill patients. These units, 
which include c'Or'Onary and intensive care facili
ties, trauma, renal dialysis and p'Ost surgery re
c'Overy wards, n'Ow pr'Ovide up t'O five percent 'Of 
beds in acute c'Ommunity h'Ospitals.1 

Patients with acute circulat'Ory 'Or respirat'Ory 
failure are 'Often referred t'O these specialized 
units. An example is the patient in circulat'Ory 
sh'Ock. This c'Onditi'On may result fr'Om the c'Om
plicati'Ons 'Of a "c'Or'Onary," fr'Om severe bleeding 
fr'Om a du'Odenal ulcer, 'Or fr'Om a number 'Of 'Other 
disease pr'Ocesses. The patient in sh'Ock character
istically has l'Ow bl'O'Od pressure and reduced bl'O'Od 
fl'Ow. With inadequate circulati'On t'O his brain he 
may bec'Ome stup'Or'Ous 'Or c'Omat'Ose. His respira
ti'On may fail and kidneys cease t'O put 'Out urine. 

Assessment 'Of the circulat'Ory and respirat'Ory 
status 'Of such a critically ill patient requires mea
suring a number 'Of variables: hemodynamic (Le., 
arterial and ven'Ous pressure, bl'O'Od fl'Ow and v'Ol
ume) , electrical (I.e., the electr'Ocardi'Ogram), 
bl'O'Od gases (Le., 'Oxygen, carb'On di'Oxide and pH) 
and bl'O'Od c'Onstituents (I.e., P'Otassium). Repeated 
assessment 'Of these variables is required since the 
critically ill patient is n'Ot in a steady state, but 
is very labile, ~nd underg'Oes rapid and 'Often un
predictable changes in status. 

*This investigation was supported,by grants from The John A 
Hartford Foundation, Inc., New York and the U.S. Public Health 
Service (HE-05570 a.nd HE-07811-National Heart Institute) 
and Division of Hospital and Medical Facilities (HM-GM 00533). 
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Current problems 

The 'Organizati'On and 'Operati'On 'Of critical care 
units require a maj'Or c'Ommitment 'Of highly 
trained physicians, nurses and technicians, as well 
as substantial physical res'Ources, in 'Order t'O care 
for a relatively small number 'Of patients wh'O re
quire numer'Ous diagn'Ostic and therapeutic serv
ices. Efficiency 'Of 'Operati'On is needed t'O reduce 
the w'Ork l'Oad 'On the pr'Ofessi'Onal pers'Onnel. Pres
ent manual meth'Ods 'Of data c'Ollecti'On and lugging 
imp'Ose great demands 'On the staff, particularly 
during night h'Ours and weekends when staffing is 
reduced. 

Clinicians are c'Oncerned n'Ot 'Only with the ac
q~isiti'On, ~ut with the timely 'Organizati'On, analy
SIS, and dIsplay 'Of data t'O assure their immediate 
usefulness at the bedside. The availability 'Of such 
inf'Ormati'On has been life saving, particularly in 
c'Or'Onary care units where m'Ortality has been re
duced fr'Om 30 t'O less than 15 percent. Precise 
d'Ocumentati'On 'Of reducti'On in m'Ortality rates in 
m'Ore generalized critical care units is as yet n'Ot 
as clearly established. 

Experience 

The Sh'Ock Research Unit, a specialized clinical 
research facility, has been devel'Oped f'Or the triple 
purp'Ose 'Of rendering intensive care t'O seri'Ously' 
ill patients, studying underlying mechanisms 'Of 
the disease pr'Ocess, and devel'Oping new tech
niques 'Of evaluating seri'Ously ill patients. In mid-
1963, a c'Omputer was 'Obtained and a system de
vel'Oped f'Or monit'Oring patients.2,3,4 Alg'Orithms 
were derived t'O c'Onvert electrical signals fr'Om 
transducers attached to patients into their cus-
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tomary physiological units. 5,6,7 With this system 11 
primary measurements and 25 d~rived variables 
are recorded and displayed with a frequency which 
ranges from once a minute to once every twenty
four hours. These variables are summarized in 
Figure 1. 

The present system operates on a 24-hour basis 
and is run exclusively by clinical personnel with 
minimal intervention by computer and engineer
ing staff. Over 400 patients have been monitored 
and studied on a routine basis with the system. 
The feasibility and reasonableness of using com
puters to collect and analyze physiological data in 
a clinical environment has been demonstrated. An 
indication of its value is provided by the procedure 
for determining cardiac output. The time required 
for measurement of the indicator dilution curve 
and calCUlation of the cardiac output, which was 
approximately 45 minutes by manual methods, has 
been reduced to only 5 minutes with the computer. 
Experience with this system has shown that cer
tain procedures with respect to treatment, which 
are currently performed manually, such as the ad
ministration of fluids and medications, are adapt
able to computer control. 

A shortcoming of the system has been the single 

Primary Signal Sensor Displayed Variables 

Electrocardiogram Surface electrodes heart rate 
(Sanborn) 

systolic pres sure 
b. diastolic pre s sure 

Strain ga~ge mean pressure 
Arterial pressure transducer d. variation between highest 

(Statham) and lowest systolic pres-
sures in read interval 
pulse rate 

f. pulse deficit 

Strain gauge 
mean pressure 

Venous pressure transducer 
b. respiration rate 

(Statham) 

cardiac output 
b. cardiac index 

Optical density of Densitometer work done by heart 
arterial blood (Gilford) d. stroke work 

vascular resistance 
f. central blood volume 
g. mean circulation time 
h. appearance time 

rectal 
Thermistor b. skin, finger 

Temperatures (Yellow Springs skin, toe 
Instrument Co.) d. skin, thigh 

skin, arm 
f. ambient air 

Shock Research 
urine output/hour 

Urine output 
Upit design 

b. urine output last 5 min. 
cumulative volume 

POZ 
b. PCOZ 
c. pH 
d. oxygen saturation 

Manual input Manual entry unit e. plasma volume 
f. red cell volume 
g. medications and fluid 

administered 
h. height. weight, age 

FIGURE I-Primary and displayed variables 

channeled unbuffered data path. Dynamic vari
ables, such as arterial and venous pressure and 
the electrocardiogram, do not require sampling 
at high rates, the maximum being below 1000 sp/s. 
However, the analysis process requires repeated 
readings of moderately complex wave forms. For 
example, arterial pressure, under some circum
stances, may be sampled almost continuously for 
30 seconds. When the volume of blood pumped 
by the heart (cardiac output) is calculated, it is 
necessary to sample the densitometer for as long 
as eighty seconds. In addition to these considera
tions, it has been necessary to monitor more than 
one patient concurrently. This period of processor 
dependence upon I/O may occur during the time 
when the process is critically real time and this 
may result in loss of medical information which 
is needed immediately by the physician at the bed
side. 

.. The record keeping responsibilities of the phy
sician' nurse and technician have posed a major 
problem. Numerous forms have been required for 
the history, findings on physical examination, 
progress reports, routine and special laboratory 
studies. This has created reams of poorly orga
nized, non-cross-referenced data. The initial sys
tem has been incapable of prolonged dialogue for 
such manually entered data. 

Based on our experience with the initial system 
over a 5-year period, we have developed a new 
system for use in the environment of the critically 
ill patient. A major goalof this system is to auto
mate the critical care environment, with specific 
attention to the following tasks: 

Monitoring and measurement 

1. Monitoring of cardiovascular, respiratory 
and metabolic variables. 

2. Measurement of blood samples. 
3. Measurement of red blood cell and plasma 

volume. 
4. Measurement of intake and output of fluids. 
5. Measurement of body weight. 

Control 

1. Infusion of fluids and medications under 
computer control. 

2. Regulation of ventilators with respect to the 
pressure and volume settings and the rela
tive concentration of gases they deliver. 

3. Control of body heating and cooling devices. 
4. Control of cardiac pacemakers. 
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5. C'Ontr'Ol 'Of the flushing procedures for intra
vascular and urinary catheters. 

Records, 

1. C'Omprehensive rec'Ord keeping, including 
entry, 'Organizati'On, st'Orage, return and dis
play 'Of n'On-sensed data which must be 
available f'Or a well 'Organized clinical fa
cility. 

Functional requirements of the system 

The requirement f'Or multi-usage systems design 
is apparent in the critical care envir'Onment. The 
c'Omputer needs t'O simultane'Ously acquire data, 
c'Ontr'Ol many pr'Ocesses in the ward and manage 
the retrieval and display 'Of inf'Ormati'On 'On b'Oth 
the current and previ'Ous status 'Of the patient. 

Real time acquisition and display 

T'O pr'Ovide input t'O the c'Omputer, anal'Og de
vices are attached t'O the patient t'O sense phys
i'OI'Ogical activity. These signals are c'Ontinu'Ously 
presented 'On a bedside 'Oscill'Osc'Ope by signal c'On
diti'Oning hardwar'e as sh'Own in Figure 2. The 
signal c'Onditi'Oners amplify the signals and per
f'Orm a preliminary analysis 'Of wave f'Orms. The 
output 'Of these c'Onditi'Oners is attached t'O the 
multiplexer, then t'O the AID c'Onvert'Or interfaced 
t'O a c'Omputer channel. The c'Omputer must als'O 
be capable 'Of real time analysis 'Of these signals. 
As an example, the c'Omputer must be capable 'Of 
rec'Ognizing individual c'Omp'Onents 'Of the EKG 
signal (i.e., the QRS wave), find the pulse wave 

BEDSIDE 
CRT DISPLAY 

ANALOG 
TRANSDUCERS 

T 

SIGMA 5 
PROCESSOR 

t::g:A~~~ m1I ___ ~ r) ---'" 
lJ1JJ ------~. L.r 

SIGNAL 
~ CONDITIONERS 

~·~--~~~---4--~· 
, KEYBOARD -CRT ·~E PRINTER 

FIGURE 2-Real time acquisition and display 

in the arterial pressure signal, calculate maximum, 
minimum, and mean arterial pressure, bef'Ore the 
next heart beat occurs. Alth'Ough the heart rate 
is n'Ormally ab'Out 80 per minute, rates in excess 
of 160 per minute are 'Often enc'Ountered in the 
critically ill patient. 

An 'On-line bl'O'Od chemistry unit is being de
vel'Oped for use at the bedside. This will enable 
the c'Omputer t'O m'Onit'Or P02, PC02,pH and elec
tr'Olytes as well as bl'O'Od v'Olume measurements. 
The timing requirements f'Or this type 'Of m'Onit'Or
ing are n'Ot based UP'On the real time c'OrresP'Ond
ence with the body but rather up 'On the techniques 
'Of measurement. Measurement can be as simple 
as the sampling 'Of the 'Output 'Of an electr'Ometer 
c'Onnected t'O an electr'Ode 'Or as c'Omplex as spectral 
analysis. 

The computer's ability t'O analyze signals at 
beat-t'O-beat rates is an asset during m'Oments 'Of 
crisis and during pr'Ocedures such as drug admin
istrati'On. H'Owever, if such detailed inf'Ormation 
were accumulated c'Ontinuously, the physician 
W'Ould be 'Overwhelm,ed by a fl'O'Od 'Of data. There is 
a need, theref'Ore, t'O pr'Ovide a schedule 'Of m'On
it'Oring and rep'Orting which will insure that pa
tients are under constant surveillance, but the 
physician and c'Omputer are relieved 'Of an 'Over
whelming data management pr'Oblem.· The m'Oni
t'Oring schedule under devel'Opment at the Sh'Ock 
Research Unit all'Ows f'Or tW'O m'Odes 'Of 'Operati'On. 
The physician is able t'O request beat-by-beat 
measurements. The r'Outine m'Ode 'Of m'Onit'Oring, 
h'Owever, is based UP'On the ability t'O define 'Or pre
dict the am'Ount and rate 'Of change t'O be expected 
in any given variable. Heart rate and rhythm are 
m'Onit'Ored alm'Ost c'Ontinu'Ously because abrupt 
changes in these variables may be f'Oll'Owed by 
rapid deteri'Orati'On in patient status. However, 
skin and rectal temperature are m'Onit'Ored at 15-
minute intervals because significant changes in 
these signals are generally 'Of I'Onger durati'On. 
After the da ta are c'Onverted int'O physi'OI'Ogical 
units, they are analyzed t'O determine its signifi
cance. Is the change measured in a particular vari
able t'O be expected statistically and d'Oes it c'Orre
sP'Ond t'O changes in 'Other variables? If the 
variati'Ons are statistically n'On-significant then the 
data are discarded. H'Owever, if there has been a 
significant change this is I'Ogged in the c'Omputer 
rec'Ords. The ward staff is immediately alerted 
and inf'Ormed as t'O which variable has changed. 
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Digital control 

Figure 3 shows diagrammatically a number of 
new concepts which in part have their rationale 
in the advances in process control engineering in 
critical processes. The time has come, technologi
cally, when computers can be programmed to a~sist 
and control medical procedures under the dIrec
tion of the physician and nurse. Computers can 
control the rate of fluid and medication adminis
tration through actuation of pumps and injectors. 
Such a pump is now in engineering phases at the 
Shock Research Unit. This pump is intended for 
long term administration of fluids or medications 
from a bottle. The nurse will be able to request 
the computer to administer the fluid or medication 
at specified rates. The computer will then check 
a rate table to see if the rate is unusual. 'If so, it 
will ask the nurse to confirm this rate. If not, it 
will adjust the pump speed much more accurately 
than is. done by the drops per minute method cur
rently in general use. It will make entries to the 
fluid intake log and then monitor the bottle for 
low level. An increase in central venous pressure 
may indicate over-administration of fluids. If ce~
tral venous pressure (which is computer monI
tored) should rise above a predetermined level, the 
pump can be either shut off or slowed down and 
the medical staff notified. It is a similar techn'O
logical problem to have the computer adjust and 
monitor specialized equipment for assisting the 
patient's respiration. The interaction of the nurse, 
computer and ventilating device would be similar 
to that of the pump and would include safety 

.. 
OlA 

_L'T I M~. I 
RESPIRATION MEDICATION 

FIGURE 3-Real time control 
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mechanisms and confirmation of orders before ad
justments are made. 

Some control devices, such as cardiac pace
makers are already in 'use in many coronary care 
units. Control and monitoring of these devices, if 
given to the computer, can insure a level of re
liability previously unobtainable. 

The chemical analysis subsystem now under de
sign at the Shock Research Unit is ~alled the "On
Line Analyzer" (OLA). With the OLA system 
the computer will be able to control withdrawal of 
blood samples, reinfusion of blood samples, and 
mixing of samples with chemicals where neces
sary. Results of these chemical tests will be input 
directly to the computer. This will permit moder
ately c'Omplicated procedures to be done at inter
vals related to their clinical usefulness rather than 
their complexity. 

Another advantage of digital control is the abili
ty to adapt signal conditioning units to the course 
of the patient. An example of this adaptability 
would be the control 'Of amplifiers and filters such 
that obscured regions of a 'signal may be high
lighted for computer analysis. Another feature 
is the ability of the computer to perform sensor 
calibration checks automatically, thus freeing 
nurses and paramedical pers'Onnel from time con
suming chores which remove them from the pa
tient. 

Data management 

The data management system must be versatile 
in structure and in its ability to meet the needs of 
the clinically and the statistically oriented staff 
(Figure 4.) Numerical and textual data are stored 
in a form easily retrievable for ward display and 
for later statistical analysis. It has been noted 
that the ability to retrieve textual as well as nu
merical information in a neat format will greatly 
help the physician in the care of the patient. 

Displays. Included in the system are displays 
located at each bedside and in the physician's 
stUdy. Display requirements for an intensive care 
ward present a multifaceted problem. The solu
tion is found in providing two types of displays. 

1. Large screen TV 
Currently available devices used for inter
action with the computer system (keyboard 
CRT displays) are not sufficient for all re
quirements, in that they fail to provide a 
sufficiently large display, having been de-
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FIGURE 4-Data management 

signed f'Or desk t'Op usage. Pers'Onnel in the 
ward are usually 'On the m'Ove and must. be 
able t'O read displays accurately fr'Om vary
ing distances. If emergency inf'Ormati'On 
must be pr'Ojected 'On a l{eyb'Oard display, 
c'Ompetiti'On between the user and the c'Om
puter system obvi'Ously must be av'Oided. 
The s'Oluti'On has been t'O acquire c'Omputer
c'Ontr'Olled character generat'Ors f'Or driving 
large screen cl'Osed circuit televisi'On m'Oni
t'Ors which are strategically l'Ocated t'O pr'O
vide a display visible thr'Ough'Out the r'O'Om. 
This device is 'Only available t'O the c'Omputer 
and displays only the m'Ost current signifi
cant inf'Ormati'On c'Oncerning the patient. 

2. Keyboard displays 
Physician's and nurse's rec'Ords are entered 
int'O the c'Omputer system thr'Ough the use 
'Of a keyb'Oard device providing 2,048 char
acters 'Of display f'Or selecti'On 'Of 'Opti'Ons 
and message f'Ormati'On. Fr'Om this bedside 
terminal, the physician reviews the entire 
patient file and enters c'Omments and im
pressi'Ons. Nurses enter inf'Ormation which 
include drugs administered, pr'Ocedures per
f'Ormed and n'On-sensed data regarding the 
patient's c'Onditi'On. The inf'Ormati'On is en
tered in a multiple ch'Oice f'Ormat. This is 
necessary because few ward pers'Onnel can 
type c'Ompetently. While free text w'Ould 
functi'On as narrative, experience in 'Our 'Own 
unit sh'Ows that inf'Ormati'On is gathered 

m'Ore dependably when a detailed f'Ormat is 
f'Ollowed than when users have a free choice 
as t'O which information is recorded. An
other approach which has been c'Onsidered 
is the use of a clerk to enter the n'Otes of the 
physician, nurse and technician int'O the 
c'Omputer. The use 'Of multiple forms, even in 
this manner, is inc'Onsistent with the prin
ciple 'Of having all information available at 
one source. Since the use of such a system 
is subject to the adequacy of staffing, delays 
in entry of inf'Ormati'On may als'O be inter
P'Osed. 

In additi'On t'O the alphanumerical display, 
a storage CRT f'Or· graphical display of all 
data available at the keyboard is provided. 
Fr'Om this CRT terminal the physician re
quests the computer to locate wave f'Orm 
data on an anal'Og tape recorder and display 
it on the oscill'Osc'Ope ass'Ociated with the 
terminal. Hard c'Opy 'Of all inf'Ormati'On in 
the system is also logged on 'Off ward tele.,. 
types f'Or the purp'Ose 'Of back up, a critical 
requirement in the event 'Of machine failure. 
A high speed line printer devel'Ops the entire 
hard C'OPy patient file at the time of dis
charge for inclusi'On in the general hospital 
rec'Ords. 

Plotter. There are several reas'Ons for hard 
copy graphical display. F'Oremostis the fail safe 
pr'Oblem. Physicians make extensive use 'Of . trend 
pl'Ots and these are available at the bedside on the 
CRT displays. However, in order t'O insure; that 
graphical display describing the patient's c'Ourse 
is available in the event 'Of machine failure it is 
necessary to generate hard copy on a c'Ontinuing 
basis. Second, hard copy display is required f'Or 
the h'Ospital record. Traditionally nurses have 
kept some f'Orm 'Of trend rec'Ordings 'On the pa
tient's vital signs. Trend pl'Otting 'Of maj'Or param
eters for fail safe, proceeds aut'Omatically with
out need of request. In this system the physician 
or nurse can devel'Op graphical presentati'On 'On 
the CRT n'Ot 'Only 'Of the vital signs but als'O 'Of a 
number 'Of other variables 'Of interest. They can 
then request that this be prepared 'On hard C'OPy 
f'Or the hospital rec'Ord, 'Or f'Or study at areas re
mote fr'Om these facilities. 

Analog Tape. During m'Onit'Oring, the physician 
can rem'Otely engage an analog tape recorder t'O 
record wave f'Orms as they are sensed from the 
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patient. However, the amount o~ information 
which the physician finds useful from such ex
tensive recording requires a substantial editing 
effort. The computer is also programmed to 
switch on the tape recorder when a maj'Or change 
occurs in a variable and switch it off when the 
values for the variable return to specified limits. 
Under. both options, the point on the analog tape 
where items of interest are stored, is automatically 
I'ecorded, thus facilitating tape editing under c'Om
puter control. 

Software 

In solving the functional requirements, the fol
lowing philosophies have arisen. Some special 
programs may have their own hardware inter
rupt priority level, but programs executed by the 
program scheduler d'O not have a priority until 
they are initiated. Th~se priorities are deter
mined by the need to minimize fluctuations in the 
actual initiation frequencies and insure the reg
ularity of acquisition of time sequenced data 
(Figure 5). Within classes of priorities, the ac
tual activation position in the queues is deter
mined by the requested execution frequency, with 
items of highest frequency coming first. 

The problem in many real time systems is that 
the total execution time of the programs to be 
scheduled is greater than the recycling time of 
the program executing with the highest frequency 
and, therefore, programs of a lesser priority are 
periodically interrupted and displaced from their 
cycling interval.s However, this is not a problem 
here since the total execution time easily fits into 
a scheduler frequency determined by the program 
of highest frequency. The problem is that the 
processing in each program must wait for a series 
of timed analog inputs and the need is thereby 
created for two types 'Of scheduling so that these 
waits may be interleaved with other processing. 

Monitor type functi'Ons are usually executed at 
the same priority level as the program requesting 
them. All non-analog I/O for anyone device is run 
at one level to relieve the re-entrancy problems. 
Each actively monitored bed has its own core buf
fer to insure patient file updating speed as well as 
safety. This buffer is written onto the disk after 
each data update group as well as 'Other control 
information has been calculated to insure that 
there is no loss of valuable data in case of system 
failure. This output is of course. overlapped with 

Analog scheduler clock 

Program. scheduler clock 

Monitor tim.e clock 

I/O interrupt 

Special external interrupts 

Analog scheduler 

Highest program. priority 

Keyboard display handler 

Interm.ediate program. priority 

Program. scheduler and loader 

Lowest program. priority 

FIGURE 5-Relative hardware priorities 

processing, but input is not overlapped except by 
higher level routines. 

The various tables and queues throughout the 
system are list structured and utilized so that no 
garbage collection is needed. As items are deleted 
their positions are set to "unused," and new as
signments are always made from the physical 
head of the list. 

Core memory has been divided into three sec
tions. The m{)nitor functions and I/O handlers 
reside in the first secti'On. The second section con
tains the schedulers, the resident foreground pro
grams, and the necessary modules from the For
tran systems library. The third section is for non
resident foreground, or background since the area 
is large enough for the Fortran compiler to run. 
Some of the applications programs are described 
in the reerences.~,6,7 
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Schedulers 

The multiprogramming philosophy adopted re
quires simultaneous processing of programs and 
the reading of many analog lines for several pa
tients at data rates up to 1000 times per second. 
Analog pre-processing is being used, but moderate 
rate digital sampling and analysis cannot be en
tirely replaced. To facilitate a versatile selection 
of both channels and frequencies and allow for 
the timed reinitiation of various monitoring pro
grams, a program scheduler and an analog sched
uler have been incorporated into the system. 

Cycling of the initiation phase of the program 
scheduler is determined by its private hardware 
clock. It picks information from the program 
queue to determine the proper sequence for pro
gram executions. Servicing programs for the key
board displays allow the clinical staff to insert or 
remove programs from this queue. When execut-

INTERRUPTS EXECUTION TABLES 

I 
Keyboord - Keyboard display handler 
display • 

Program request handler 

~ 
Program Initializatiol'l 

Active File Number (AFN) I Initiation 
Name of request program .... program 

Execution Frequency I ~~~~~) 

Program _ Program clock handler 

clock . ~ 
trigger program scheduler interrupt 

Program ---+ 
scheduler 

Program Scheduler ----... PTAB 
~ 

Relocating Loader 

+ 
Applications Program 

+ 
Anolog Initialization 

Sampling Interval 
Number of Samples 
Present Index 
Wait Indicator 

. Number of Channels 
Channels 
Restart Priority 
Data Buffer 
Wait Address 

Secondary Wait calls 

(INT) 
(NS) 
( I ) Execution 
('NT) pending 
(NCH) "queue 
(CHPTR) (ETAB) 
(PRTY) 

I WAIT Address 1-----•• 
1 

E TAB 

FIGURE 6a-Program initialization flow 

ing programs request analog I/O, they enter re
quisite information into a table kn'Own as the 
analog table, and return control to the program 
scheduler which searches the program queue for 
the next program awaiting execution (Figure 6A, 
6B). The analog scheduler, running on a separate 
hardware clock and at a higher hardware priority 
continually scans the analog table at a high rat~ 
for I/O requests at varied frequencies and chan-

. nels, interleaving these requests. No attempt is 
made to time slice among applications programs 
of an equal priority except at these analog I/O 
request points. The overhead and conlplexity of 
going any further with time sharing far 'Outweigh 
any value which might be realized. The execution 
speed of the processor used allows for the com
pletion of the computations involved in far less 
time than significant change can occur in v~ria
bles being monitored. H'Owever, as some of the 

INTERRUPTS , 
Analog ~ 
clock 

Anal09 -
scheduler 

EXECUTION 

Analog c lock handler 

• • tr Igger analog scheduler interrupt 
and check for ana log scheduler 
overload 

TABLES 

Analog ,che1uler ........ ---__ ETAB 

analog I/O dU{ for any programs I 
delete entries for any last. __ ... 
samples • t E TAB 

~"igger high priority program 
Interrupt (HPI) and check for 
HPI overload 

HPI - process any high priOrity programs + ___ •• ETAB 

MPI 

LPI 

call WAIT or QUIT t PTAB 
• and 

trigger medium priori'y program cor. 
interrupt (MPI) leoment 

table 
r-______________________ ~(CTAB) 

- process ony 1edium priority programs 

coli WAIT or QUIT • ETAB 
~ I PTAB, 

trigger low priority program CTAB 
interrupt (LPI) 

- process any 10,", priority programs 
~ 

call WAIT or QUIT • ETAB 
" PTAB, 
I CTAB 

FiGURE 6b-Program and analog scheduler flow 
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analog I/O requires sampling to run many seconds 
at low rates (e.g., 80 seconds for cardiac output 
at 20 samples per second), processing must con
tinue during these long waits. 

An initialization procedure is used to insert pro
grams into the program initiation queue (PTAB). 
This initialization routine uses four parameters
an active file number, a program name, a program 
reinitiation interval, and the keyboard display 
unit associated with this copy of the program. 
Programs are assigned to the first "unused" entry 
in PT AB. Using the reinitiation interval, the pro
gram is given an activation sequence number de
termined by placing it into the list structured 
queue with the re-establishment of pointers such 
that the program having the short reinitiation 
(or highest frequency) interval is at the head of 
the list. The scheduler reinitiation rate is an 
integral divisor of all the possible applications 
program rates.8 Also placed in the P.T AB is a 
pointer to a list of anal'Og channels to be read. 
Since there are inevitably times when one channel 
or piece of equipment is not functioning properly, 
these channel numbers are stored in a list which 
can be modified without recompilation 'Of the 
applications programs. There is a library table 
which contains the names of all available appli
cations programs and their location on the disk. 
This table is searched by program name and an 
index or program number is determined and 
placed int'O the program table. This is used by 
the relocating loader when the program is to be 
initiated. 

Programs are picked from PT AB, loaded, and 
execution is started. Execution continues until 
either the analog scheduler or higher level pro
grams interrupt, or until this program requests 
analog I/O, keyboard display I/O or change in 
execution priority. These requests are made 
through Fortran calls to assembly language sub
routines which use hardware trapping to access 
servicing routines. When analog I/O is requested 
the servicing routine places into the execution 
pending queue (ETAB) a reset interval frequency 
(INT), the number 'Of separate read requests 
(RN), and a pointer to the channel numbers f'Or 
each read (CHPTR), as shown in Figure 6A. A 
~tructure similar to that proposed by Fitzwater 
and Schweppe9 has been implemented to allow 
applications programs dynamic control of the 
amount of I/O overlap and executi'On priority. 
One parameter supplied to the analog scheduler 

is 'an index (I) which is updated by the scheduler 
after each read. If the applications program in
forms the scheduler that it desires to have con
trol returned to it before the completion of all I/O 
(wt = false), an IF statement is positioned after 
the analog call in the program to compare this 
I/O index with a processing index. If the process
ing index is equal to the read index, the program 
calls the WAIT function. Priority of execution 
(PRTY) may be higher or lower than the pro-
gram scheduler and may vary from 'One analog 
request to another within one program. 

Requests in the ETAB are entered by reinitia
tion interval (frequency) just as they are in the 
program queue. There is a multi-priority struc
ture as shown in Figue 6B for determining the 
return of control, after completion of pending 
anal'Og input. When each application program re
quested analog I/O, its restart priority level was 
inserted into ETAB. Three sections of the analog 
scheduler at three lower priority levels search 
this queue to determine if there are any programs 
requesting execution. The highest priority 'Of 
execution that can be requested is for programs 
that must execute a sectio;n of code between each 
read. The next priority of execution available is 
at a lower interrupt level for pr'Ograms which 
have a higher priority than the program scheduler, 
but do not need to execute between analog reads. 
The lowest execution priority level is below the 
pr'Ogram scheduler. When all analog I/O pending 
for a program has been completed, the program 
is assigned to the hardware priority level it re
quested, its entry in ET AB is deleted, and control 
is returned to this level if n'O higher level is wait
ing. Further analog requests by this program 
create a new entry in ETAB. When c'Ontr'OI is 
returned t'O each applications pr'Ogram, execution 
is continued until either the program requests 
more analog I/O via the analog initialization rou
tine, or until the program calls the program dele
tion r'Outine. 

Data file system 

One of the m'Ost important indices of medical 
data is time. As physicians review patients' rec
ords, they group information into "time lines" 
and then compare these against each other. (E.g., 
Given a patient's mean arterial pressure and 
blood volume at time 1, and the fact that the pa
tient was administered a drug, is it significant that 
at time 2 he now has a higher bl'O'Od pressure and 
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blood volume?) Groups of variables (e.g., hemo
dynamic variables) are usually considered to
gether and called "summaries." One group re
corded at the same time may be called an instance 
in a summary. 

In the data management system there are two 
types of summaries. Type I is numeric informa
tion derived either directly or indirectly from 
the analog monitoring, and Type II is textual 
information which is inserted through the key
board display devices. Type I information is 
stored as half word (16 bit) integers, and Type II 
as standard hexadecimal alphanumerics. Each 
instance of a summary contains a time, and a 
forward and a backward pointer to other in
stances of that summary. Instances are stored 
sequentially as they occur in time and are inter
leaved with instances of other summaries (Figure 
7). 

To facilitate the storage and retrieval of data, 
there is an outline for each patient file (Figure 8) . 
This outline is the first record in each file and 
indicates which summaries are included in the 
file, and explicitly which parameters are being 
monitored for Type I summaries. Type II sum
maries have only their names in the outline and 
all structure exists in the data records. Infor
mation in the Type II summaries consists of 

FIGURE 7-0ne physical record 
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[23J DRUG TOX ICITY; DIGITALIS 
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RESPIRTV 
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A relltual Summary Instance 

FIGURE 8-Data storage flow 

pointers, names and values (Figure 8). Names 
(or qualifying names) are like indentation levels 
in an outline, and hav:e a length of 8 hexadecimal 
characters. The values contain the actual textual 
information of interest and are of variable length. 
The first byte of the value is the character length 
of that value. There is a pointer with each name 
at each level, and this permits searching through 
the qualifying names at each level without search
ing through all of the text. . Qualifying names can 
be appended to the beginning of the value and 
at any level the set of all subordinate names and 
values is a value. This allows the user to know 
as little about the outline structure as the main 
heading, or as much as the entire structure. 

Each patient file. can consist of many physical 
records where each physical record, for the pur
poses of buffering, is of a fixed length of 360 
words of 32 bits. Each bed in the ward has its 
own buffer, but all other active files alternate the 
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use of a, common disk 1/0 buffer. tnstartces of. 
summaries of the patient file are stored into a 
buffer until it is approximately 95 percent full. 
Although the alphanumeric summaries were de
signed, because of their length, to allow for 
continuation in subsequent records, numeric sum
maries were not. Therefore, 100 percent buffer 
usage is uncertain. It is also desirable to anow 
space for record modification. There is a list of 
first and last instance pointers at the beginning 
of each data record where these pointers are in 
the same order as their respective summaries in 
the outline. 

All active patient files are kept on the disk. 
There is a table in core and on the disk identifying 
physical records on the disk as patients' or un
used records. Files of discharged patients are 
kept on magnetic tape, and there is a dictionary 
indicating where patient files are found on tape. 
Therefore, when a study is to be done on an old 
file, the file dictionary is scanned by patient num
ber, and the system requests the pertinent tape 
to be mounted if it is not already mounted. The 
system then determines which disk records are 
available, and buffers from tape to disk. Oldest or 
least used files are automatically deleted from disk 
to make room if necessary. An active patient file 
table is maintained and is updated to include the 
patient number, . active file number, present status 
of the file, and pointers into the patient's record. 
The first entries in the active patient file table are 
reserved for the active beds in the ward. The rest 
of the entries are shared by the terminals for 
any patient file of interest to the user of the 
terminal. 

The rationale behind this structure is that no 
external dictionary is needed to retrieve any in
formation. All structure is internal, and the user 
language is constructed such that the structure 
can be readily available to the inquirer. No two 
patients have identical files, and to force all files 
into one format would be time and spaceconsum
ing. Even if two patients have the same moni.;. 
tored parameters, they will certainly have dif
ferent lab tests, histories, physicals, etc., and they 
certainly win be stored at different time intervals. 

Hardware 

This description of computer and associated 
hardware (Figure 9) is included, but is not neces
sarily intended as a suggestion of the size of 
system required for intensive care monitoring. 

SDS 7020 
Keyboord Printer SDS 7120 50S 736117362 '50S 7440· 

with Cord Read.r Magnetic Tape Line Printer 
Paper Tape Punch 400 cpm System 600lpm 

Reader 

I 1 l T 
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----. SDS Analog-
.--to 

SDS Sigma5 
~ 

Rapid Access 
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Syuem Pracessar Starage SYltem 

I I T V Display Graphical Display 

CCI 301 I TEKTRONIX 611 

I 50S Keybaard I 
Displays r .I. 24K Core I 'I 850 Nanasecands 

~ Digital Inputs and Out puts I 
• Analog Outputs 

FIGURE 9 

In fact, the computer system described is· part of 
a larger systems study of the entire intensive 
care facility. System stUdies are being conducted 
to quantify the hardware and software needs as 
functions of both degrees of illness and number of 
patients. Attempts to simulate are fruitless at 
the present time,since the interface between clini
cal medicine and computer has not been sufficiently 
explored. 

The 8.DS process control computer system con
sists of: 

A. A Sigma 5 central1?rocessing unit: 
1. 24,000 words of core storage 
2. 850-nanosecond cycle time 
3. memory protection 
4. 4 interval timers 
5. 40 levels of hardware interrupt 
6. additional register block (total 32 general 

purpose registers) 

B. Peripheral I/O equipment: 
1. rapid access data (RAD) storage system 

(17 m. sec. average access) 
2. 2 magnetic tapes 
3. 1 card reader 400 cpm 
4. line printer 600 lpm 
5. 2 teletypes 

C. Data acquisition equipment: 
1. multiplexers and their controls for switch

ing input lines 
2. data channels for buffering input and output 
3. analog-to-digital converter (24kc with ran

dom addressing) 
4. digital .. to-analog converters 
5. direct digital I/O for sensing and closing 

switches 
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.D. Display equipment: 
1. keyboard display 
2. closed circuit display with character gen

erator 
(Computer Communication Inc. CC301) 

3. storage· CRT (Tektronix 611) 
4. digital· plotter (CaIComp) 
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Computer system for research and clinical 
application to medicine 

by T. ALLAN PRYOR, REED M. GARDNER and W. CLINTON DAY 

University oj Utah and Latter-day Baints Hospital, 
Salt Lake City, Utah. 

INTRODUCTION AND GENERAL PHILOSOPY 

Since June, 1964, a Control Data 3200 computer sys
tem has been installed in the Latter-day Saints Hos
pital in Salt Lake City, Utah, under support from NIH 
grant FR-00012. This system in its inception was used 
to develop research programs and time-sharing 
software for use by the medical community in the S~t 
Lake City area. As a result, a software and hardware 
system called MEDLAB has been developed. Using 
this system, research programs were' developed for 
cardiovascular studies. It soon became apparent that 

. the programs which were being developed could also be 
used in a clinical environment. 

The first clinical application of the system was used 
in the heart catheterization laboratory. These pro
grams involved pressure analysis, oxygen saturation 
analysis, dye dilution studies, etc. With the s~tem in 
the catheterization laboratory new needs arose to sat
isfy the routine day-to-day clinical application. of 
the computer. It was not now possible to make the 
program and hardware changes necessary in research 
without disrupting the 24 hour clinical service. 

Without a memory protect system available on the 
3200, programs being debugged could easily destroy 
the results and programs of another user, frustrating 
particularly the clinical user, who might be unaware 
of the problems involved in developing new programs. 

As development continued new clinical programs 
rapidly became available, such as intensive care mon
itoring and patient screening programs. A new system 
design had to be developed. For the clinical applications 
to become effective in pati~nt care situations, maxi
mum reliability is ~quired and can be provided only 
with back-up hardware. 

The computer system described' in this paper was 
developed to serve the two needs of this facility. A de
scription of both the hardware and software and two 

clinical applications presently in operation at the facility 
are presented. 

Hardware configuration 

The system used for both research and clinical appli
cations is made up of three computers located at the 
L. D. S. Hospital. A block diagram of the system is 
shown in Figure 1 which shows the two computers-a 
CDC 3200 and 3300, the 3200 being used for research 
and program debugging while the 3300 is used strictly 
for operational clinical applications; the small Digital 
Equipment Corporation PDP-8/S computer is used as 
a teletype buffer driver to provide hard copy at distant 
hospital sites. Although the 3300 has expansion capa
bilities which the 3200 does not have such as paging 
memory, memory protect, etc., the 3300 used has 
essentially the same capability as the 3200 computer. 
Therefore, both machines are hardware and software 
compatible and communciate through common disc 
tunits. . 

There are three pieces of equipment identical on 
each machine which are critical for hardware and soft
ware interchangeability. These are: 

809 

(1) The disc storage units. 
(2) The RED COR Corporation read and write inter

faces, which are the adapters for communicating 
with the remote terminals and the handling of the 
physiological signals coming either from a patient 
or an experimental set up. The read interfaces 
for both machines are identical and analog 
signals are presented in parallel to the analog 
multiplexers of both interfaces. Thus, a program 
can be debugged, checked out and made opera
tional on the 3200 research system then trans
ferred to the clinical system with no change of 
channels or program. If the analog-to-digital 
(A-to-D) converter or computer system for the 
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clinical system fails, the clinical operating system 
can be transferred to the 3200 machine with a 
minimum of rewiring (approximately ten minutes 
required for change over after the problem is 
diagnosed) and the assurance that the analog 
signals will be correct. 

(3) The write interfaces on both machines are identi
cal and are connected such that they can be trans
ferred from one machine to the other with a min
imum of difficulty (approximately ten minutes). 

The two machines are different in their hardware con
figurations since the 3200 is used for program compila
tion, printing and magnetic tape capability for program, 
and data storage. The extra peripheral equipment on 
the research machine includes a 1,000 card per minute 
card reader, a 1,000 line per minute printer, three 
high-speed magnetic tapes and one special-purpose 
high-speed A-to-D converter. The 3300, or clinical 
machine, on the other hand, has a special output inter
face for the small PDP-8/s computer used to drive tele
types at the remote sites for hard copy reporting of clin
ical and experimental information. Both machines are 
capable of operating remote terminals both from sites 
within the hospital and remote sites at other hospitals, 
experimental laboratories and clinics. 

Figure 2 shows a photograph of a typical remote ter
minal through which an operator communicates with 
the computer. This remote terminal consists of a 
Tektronix 601 memory display unit, control and timing 
circuits for operation of this display unit, a decimal key
board and two 12-bit octal thUmbwheel switches for 
coding information into the computer. Also shown on 
the front panel are indicator lights which tell the opera
tor the state of the computer, the state of his program 

and various other indications. 
In a typical operation, the user calls a program by 

dialing a' code into the octal switches, then presses the 
CALL button which interrupts the computer. The com
puter reads the octal switch and displays instructions 
back to the operator on the face of the memory dis
play unit. The display ~nit is capable of displaying 400 
characters in a 25 column by 16 row pattern or graph
ical information with a capability of 512 horizontal and 
512 vertical dots. In addition to its capacity as a remote 
computer display terminal, the terminal can also be 
used as a conventional three-channel memory oscillo
scope by pressing a pushbutton switch on the front 
panel. This feature allows the operator to quickly check 
signal level qualities to be presented to the computer 
and insure that they are within range of the A-to-D 
converter and of adequate quality for the desired 
computer analysis. The display will revert from a con
ventional oscilloscope to a computer display terminal 
upon receiving an erase pulse from the computer; thus 
assuring that no computer generated information is 
lost while the operator is viewing waveforms. 

The processing of analog signals is presently carried 
out independent of the display terminal. As a standard 
package, each laboratory or clinical area is assigned 
three analog channels. These three channels are used 
for multiple purposes. For example, the three channels 
could .be carrying pressure information, electrocardio
graphic information, densitometry information, etc., 
depending on the requirement of the user. This three 
channel requirement was primarily determined by elec
trocardiographic analysis program where three simulta
neous lead signals are necessary. A second reason for 
making three analog channels a standard configuration 
is that three channel data sets for telecommunication 

FIGURE I-System block diagram 
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FIGURE 2-Remote ter;ninal with instrumentation 

to distant sites are available for processing of data from 
remote hospitals. 

The remote terminals with instrumentation can be 
constructed for a cost of about $3,000; a character 
generator added for operation of remote sites costs 
an additional $1,200. With the capability of both alpha
numeric and graphical functions, this terminal becomes 
an extremely flexible convenient module for use in 
both clinical and experimental applications. 

Since most of the physiologic signals are analog, it 
was necessary to develop extensive front-end signal 
conditioning equipment for the computer operation. An 
objective in the development of the front end equipment 
was to provide extremely stable, highly reliable instru
mentaiion such that a person with a minimum of instruc
tion and training could use it. The lower part of Figure 
2 shows the front panel of a typical instrumentation 
package. Note that there are no control knobs fgr ad
justing gain or bias of the analog signals from the 
transducers and that there are a minimum number of 
control switches for operator use. 

The analog front-end system is made up primarily 

of integrated circuit operational amplifiers with all 
signals being amplified from their low level condition 
to a high level (± 10 volt) condition for transmission 
to the computer, either over hardwire connection or a. 
telecommunication link. In each case, signals are con
ditioned for optimum use by the computer and by the 
telecommunication link by amplifying and adjusting 
the offset for full scale capability of computer and 
communication link. 

Experience has shown that minimizing the number 
of controls and adjustments makes the system easier 
to use, both by experienced and nonexperienced oper
ators, and also increases the confidence of the operat
ing personnel. As a typical example of an instrumen
tation application where this type approach has been 
used, consider the pressure transducer amplifier which 
amplifies signals from a balanced Wheatstone bridge 
strain gage. The gage itself can be balanced, the am
plifier or amplifiers could each have a separate off-set 
control, the gage excitation could be varied, the am
plifier gain could be varied, and so on. To minimize the 
problems in set up of a pressure transducer, only 
one control is provided and is made an integral part of 
the transducer system. The excitation voltage on the 
gage is fixed, the sensitivity of all the strain gages 
have been calibrated to a standard level and all pres
sure amplifiers are set up with the standard gains. A 
fixed off-set has been programmed into the ampli
fying system and the only adjustment that need be 
made by the user is gage balance which compensates 
for varying fluid levels of the patient. Therefore, a pres
sure system which is usually complicated and difficult 
to handle becomes a simple set up procedure which a 
nurse or inexperienced technician can adequately 
handle and get results that are technically adequate 
and, in fact, as good as an experienced operator can 
obtain. 

As can be seen from the foregoing discussion, the com
puter system has been designed with both a research 
investigator and a clinical investigator in mind with 
standard packages designed and constructed which aid· 
both. The system is also easily adaptable to special 
purpose experimentation with signal levels that can be 
conditioned with a great amount of flexibility for the 
occasional user who has special requirements for signal 
levels, sampling rates and timing. 

Operation of terminals from remote hospitals is 
made over voice grade direct distance dial compatible 
telephone communication link. As far as the user is 
concerned, operation from a remote hospital is essen
tially the same as operating a local terminal. Figure 3 
shows a block diagram of the communication link 
where the data sets shown are Bell system designations. 
As can be seen from this di agram, there are three types 
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FIGURE 3-Block diagram of communication link used for 
remote hospitals 

of data the computer system must handle for the re
mote terminal: (1) digital input and control informa
tion; (2) digital output used to drive a character gen
erator and provide control outputs; and (3) analog in
put signals presently sent over a second telephone line. 

Typical operation of the scheme might be as follows. 
Initially 201 data sets which connect the central proces
sor and the remote hospital are both in the receive 
mode. Upon pressing a button at the remote terminal, 
the 201 data set at the terminal end goes into the trans
mit mode, after a settling time required by the data 
set it transmits a serial 14-bit code to the receiver at , 
the computer site. The data set at the computer site 
receives the serial data which is converted to a parallel 
12-bit code and read into the computer. For the usual 
operation a keyboard entry is followed by an alpha
numeric reply to the terminal. The data set at the com
puter end becomes a transmitter and transmits data 
back down the line to the remote console. Using a 
character generator scheme (developed jointly by the 
authors and Beehive Electrotech of Salt Lake City) 
alphanumeric and graphical data are presented on the 
remote storage display unit. The present transmission 
scheme uses a 14-bit word consisting of one sync bit, a 
parity bit and 12 data bits. The 12 data bits are broken 
down into nine bits of display data with three control 
bits which determine whether the character generator 
writes alphanumeric characters, using the ASCII code, 
plots graphical information, sets up control functions 
or outputs nine bits in parallel to remote control de
vices. 

With the rate of 2,000 bits per second available with 
the Bell system's 201 data set, the character generator 
scheme will output characters at approximately 130 
characters per second and plot graphs at approximately 
130 points per second, being limited by the data set 
bit rate. With faster data sets correspondingly faster 
write-out rates could be obtained. After a transmission 
is completed both data sets return to the receive mode 
and are free for the operator to again enter some type 
of digital information or a piece of control equipment 

outboard from the remote terminal to access the com
puter. 

The basic remote terminal, which is not much larger 
than the 201 data set (Figure 2), is completely trans,;, 
portable and can be taken anywhere telephone com
munication facilities are availiable and used to com
municate with the MEDLAB system. Applications 
for stand-alone communication terminals of this type 
are expected in tumor registry programs, radiation 
treatment planning and other areas where analog 
signals are not necessary. When analog signals are re
quired, Bell system data sets 604A and 604B, which 
are analog transmitter, receiver respectively, are used 
to send three channels of analog information simultane
ously. The analog data bandwidth of these FM multi
plexed channels is DC to 100 cycles for each channel. 
Cross-talk and signal-to-noise characteristics and 
bandwidth of these channels is adequate for trans
mission of most clinical physiologic, information. The 
requirements for three channels is dictated by the 
vectorcardiographic system which requires three si
multaneous channels of ECG. With a slight modification 
of this system it is possible to use touch-tone telephone 
keyboard and a 604A=B, 401J data set configur~
tion to transmit electrocardiograms and other phYSI
ological data from any patient room within a ~ospital 
by installing phone jacks in the rooms and usmg ~he 
internal television distribution system of the hospItal 
to transmit instructions and results to the operator on 
the television receiver located in the patient room. 

A "program-line" connection is operational between 
the neurophysiology research laboratory at a remote 
hospital. This type line is one which is commonly used 
by FM music stations and is conditioned to have "flat" 
frequency response from 50Hz to 8KHz making it 
ideally suited for transmission of action potentials. 

Presently there are systems in four hospitals using 
the communications terminals and one additional 
hospital using a hardwire connection. Plans call for 
region-wide screening clinics to be conducted by State, 
local and private health organizations. With these 
terminals health services can be provided to remote 
communities that heretofore were available only to 
patients at major hospitals. 

Software 

The software available on the 3200 (research) system 
and that on the 3300 (clinical) system are quite similar 
but some important differences exist. A major difference 
is the type of program which can run under eithe: ~ys
tern. On the 3300 system, which is used for the chmcal 
applications, there are 12 partitions within core me~
ory, each partition being approximately 2,000 ~ords In 
length. Only those programs which _ are desJgnated 
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clinical real-time programs and have been written in 
assembly language are allowed to run within any of 
the 12 partitions. Since the user can have only 2,000 
words of core at any time most programs are written 
as a series of overlays to be read in as needed into the 
same partition. These programs must have reached a 
high degree of reliability before being allowed to run on 
the clinical system. The clinical executive monitor 
contains a dictionary of the programs allowed and if a 
program is not in that dictionary, a message is written 
on the display unit at the terminal indicating that the 
program is not allowed. No debugging of programs is 
allowed on the clinical system. All debugging must be 
performed on the research system. 

Within the 3200 (research system) there are only 
four partitions for real-time programs and a 16,000 
word area of core set aside for background programs. 
These background programs consist mainly of com
pilations, statistical analysis programs, report genera
tion programs and other nonreal-time programs. There 
is also available on the research system a program des
ignated DEBUG which allows for on-line debugging 
of real-time programs from any remote terminals. 
Upon calling this program from a research terminal, 
the programmer may then use it to aid in debugging 
his program. This program allows the user, within his 
program, to execute instructions, change instructions, 
look at data in memory, etc., in an on-line situation. 

Software-wise there is no interaction between the 
research system and the clinical system. The research 
system is unaware of whether the data generated on 
any disc is generated by a program being run on the 
research or the clinical system. All data which are gen
erated by either machine and stored on disc are ac
cessible by the research system for report generation 
on the line printer .. 

The time-sharing of the programs on either machine 
is accomplished by a series of tables which are stored in 
the executive monitor. These tables correspond to 
either external station interrupts or internal clock 
interrupts. As an example, assume that a user desires 
to sample a pressure waveform at the rate of 100 sam
ples per second. Within his program he branches to a 
subroutine in the executive monitor with the rate he 
desires to sample and the location within his program 
where control is to be given. at the time of his clock 
interrupt. This subroutine then searches through the 
tables to determine the minimum time for the next 
interrupt and sets the appropriate hardware interrupt 
registers to generate an interrupt at that particular 
time. On the occurrence of the clock interrupt, the 
system determines which station caused the interrupt 
and branches to that program via the clock interrupt 

JUMP table which had been previously set by the 
program. 

Similar action takes place with operator interaction 
from a remote terminal. Within his program the user 
will use the routines and tables within the monitor to 
set the addresses he wishes to branch to when he presses 
one of the interrupt buttons at his remote terminal. 
When an external interrupt is generated in this way, 
the system decodes it to determine which station has 
interrupted and branches to the appropriate table. If 
the code read from the terminal is a program call code, 
the system will load the user's program from disc 
and branch to the beginning of his program. Inter
action continues with the program writing instructions 
on the storage display unit and waiting for a reply from 
the operator. 

With the present hardware configuration on the 
clincial system there are 12 terminals connected to the 
3300 and, thus, with the 12 partitions available within 
core there is no swapping of programs required. In the 
research system, however, this is not true since there 
are only four partitions available and 12 remote stations 
connected to the computer system. Algorithms have 
been developed to determine whether a station is in
active; that is, it is either not sampling any real-time 
data, it is not accessing the disc or performing some 
other I/O function. When these conditions exist, this 
program may then be transferred to a disc and another 
user's program brought into core at that location. When 
the user interrupts to initiate some action from the sys
tem, the monitor determines if his program is in core. If 
not, it checks to see if that partition of core is busy and 
then loads the program from disc or writes a message 
on the scope indicating that core is being used at that 
time. 

Within the 3200 system there is available the larger 
area (16,000 words) in lower core for background 
programs. This program may, however, be linked to a 
real-time program in upper core. This is usually done 
when the program has need to sample analog data 
from some station. Fortran programs, which have been 
linked to one of the assembly language programs, are 
given the priority one whereas compilations and Fortran 
programs run through the card reader in a batch
processing manner are given a lower priority, priority 
two, and will be swapped out when request from. a 
terminal is made for "that area by a priority one Fortran 
program. Many of the present assembly language 
programs are developed using this capability; that is, 
writing the program, or at least portions of it initially 
in Fortran to get the basic logic developed. Then once 
the program has been debugged, it is converted to 
assembly language for use on the clinical machine. 

Resident in core within both systems are a series of 
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re-entrant subroutines which may be accessed by any 
user's program~ These subroutines are used to write 
messages on the display terminals, to store or retrieve 
data on the disc, to convert from binary to floating 
point or BCD, etc. Resident also are special clincal 
routines which are used by most of the users. 

Since there is no memory protect on either machine, 
some software features have been developed, especially 
for the clinical system, to attempt to eliminate errors 
which might result in the running of any program. 
Since the basic cause of errors in running of the clin
ical programs at this facility results from generating 
external interrupts from the terminal at inappropriate 
times, measures have been placed within the executive 
monitor system to allow for external interrupts from' 
a remote terminal only during those times when they 
may be serviced by the program without causing inter
ference with other activities going on within that same 
program. Some of these times are specifically when the 
program is sampling data, using the disc or writing 
on a scope, etc. This does not, however, exclude other 
remote terminals from generating external interrupts 
and performing functions within their program but only 
excludes the user froin interrupting himself at these 
times. 

Applications 

Patient screening 

One of the newer projects using the system at this 
facility is a patient screening admission program. 
Every patient who is admitted to the L. D. S. Hospital, 
with the exception of maternity and emergency patients, 
are screened using this program. When, the patient 
arrives at the hospital and registers in the Admitting 
Office he is given a hospital record number. This number 
is used by the computer system to generate a file of 
data for the patient. Once the patient has received his 
registration forms he is brought to an admitting lab
oratory where two samples of blood and a urine sample 
are taken for analysis in the Chemistry Laboratory. 
Upon leaving the admitting laboratory the patient is 
brought to the computer screening laboratory. A 
file is initiated on the patient by entering the patient's 
hospital number on the decimal keyboard at the ter
minal. A nurse measures the patient's blood pressure, 
temperature, respiration rate and enters these param
eters along with age, height and weight in the pa
tient's file. 

Two on-line computer tests are _then performed, on 
the patient. The first is a maximun breathing test where 
the patient is required to take a deep breath and blow in
to a spirometer which measures both the total volume 
expired by the patient (Forced Vital Capacity), the 

volume expired after one second and two flow rates dur
ing the maximum expiration. The analog signal gener
ated by a potentiometer connected to the spirometer is 
sent directly to the computer. Corrections for tempera-. 
ture, barometric pressure and calibration factors are 
made by the computer and the results presented on the 
display unit within two seconds after the test. Once the 
patient has successfully performed this test, which usu
ally requires blowing- into the spirometer at least twice 
in order to obtain the best possible resuH.s, the patient is 
given a computerized electrocardiogram (ECG) with 
the computer sampling the output of the three vector 
signals from the ECG amplifier. This test requires a 
series of eight electrocardiographic leads to be con
nected to the patient. These leads are resolved by the 
amplifier into an orthogonal lead system used for the 
measuring of the electrical activity of the heart. The 
program performs a pattern recognition on the data 
collected and reports back to the screening technicians 
a classification of an ECG pattern. This information 
is also stored on the patient's file. Once the patient has 
completed his ele~trocardiogram he is taken to his room. 
Total time for these two tests is approximately five 
minutes with the computer being used for about one 
minute. 

Other information entered into the pateint's file in
cludes the results of the urine analysis and the hematol
ogy analysis, and the blood chemistry tests run on a 
12-channel autoanalyzer. The 12-channel autoanalyzer 
is operated as an on-line terminal which allows the com
puter to sample its output and store the results directly 
into the patient's file. The urinalysis, as well as the 
hematology results, are entered into the patient's file 
through the keyboard at a remote terminal. 

At the end of the day the technicians generate a re
port from the patient's data by punching a card with 
the patient's name and hospital number. The report 
generated for each patient contains all the data which 
had been entered, either automatically by the computer 
or keyed in from one of the remote terminals. The pro
gram prints out the test results as well as a problem 
list; that is, a listing of all values which are outside of 
normal limits. The reports are then distributed to the 
nurses' stations and placed on the patient's charts. 
Subsequent data gathered on the patient during his 
stay in the hospital are also recorded on the patient's 
file by the computer. At time of discharge the file is 
taken.from the active file, which is stored on one of the 
magnetic discs, and transferred to magnetic tape in 
the inactive file. At this time, or shortly after, a 4is
charge diagnosis is placed on the patient's record. When 
the patient is readmitted to the hospital his record is 
retrieved and pertinent information returned to the 
disc in the active file. This screening procedure has been 
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performed on several hundred patients and although 
results are preliminary, significant numbers of patient 
abnormalities have been observed. 

Intensive care ware 

A six-bed intensive care ward for monitoring of 
patients who have had open-heart surgery has been in 
operation at the L. D. S. Hospital since March, 1966. 
.The system is currently used routinely by the surgeons 
and nurses for monitoring cardiovascular function and 
entering nurses' notes for each patient on the intensive 
care ward. A picture of the central console used for 
control of all six beds is shown in Figure 4 and consists 
of a terminal similar to those discussed earlier as well as 
an input/output control box used to control switching 
of signals from each of the six beds in the ward. 

The column of four lights for each bed in the in
tensive care ward are colored red, yellow, green and 
white and are controlled by the computer. A green light 
is turned on when the computer is actively sampling 
data from the respective bed. The red light indicates 
a change in patient status while the yellow light is an 
indicator to the nurse that some procedure is required 
on the patient, such as scheduled drug injections. The 
bottom row of lights are' used to display the analog 
inputs from each bed on the memory display unit. 

Pressing BED 1 on this row 'for example would cause the 
display unit to go into the sweep mode and simultane
ously display arterial pressure waveform, electro
cardiogram and venous pressure waveform. The dis
play unit will erase at the end of each sweep and revert 
to a computer display anytime the computer begins to 
write out information. 

Two modes of data collection are available. A 
"measure-once" option allows the nurse to call the pro
gram, inidicate the bed number and initiate measure
ments on the patient. Sixteen heart beats are analyzed 
and the average value for each of ten variables (heart 
rate, stroke volume, cardiac output, peripheral vascular 

. resistance, duration of contraction, maximum pressure, 
minimum pressure, mean venous pressure, respiratory 
rate and amplitude) is immediately displayed on the 
memory display unit and stored on magnetic disc by 
the computer, along with the time and date of the 
measurement. The second mode involves setting up a 
schedule of measurements. When the nurse chooses this 
option, measurements· are made on 50 successive hear
beats and for each variable the mean and standard ert 
ror of the mean are determined. This statistical de
scription of the state of the patient forms a base from 
which subsequent measurements are evaluated thus 
eliminating the need for the nurse or doctor to decide 

FIGURE 4-Terminal and control unit for a six-bed post-heart surgery intensive care ward 
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arbitrarily on upper or lower limits for each variable to 
initiate an alarm condition. Four minutes after the 
base line measurements are made on a patient, a 
scheduled measurement is initiated automatically and 
consists of determining a mean value for each of the 
ten variables over 16 heart beats. A red light is turned 
on if anyone of the mean values exceeds its base value 
by more than three standard errors of the mean. To 
determine which variable has deviated from its base 
line, the nurse, at her earliest convenience, merely 
presses the red switch light which interrupts the com
puter and sends a code identifying the bed number and 
causes the computer to display a message indicating the 
variable furthest out of tolerance. The value of the last 
reading and the time of the reading are shown together 
with the mean, standard error of the mean and time of 
the base line measurement for comparison. At this 
point the nurse may choose one of several options; she 
may explain or verify the alarm indication, determine a 
new base line, or review the wave-forms.·If the change 
in status detected by the computer represents the 
establishment of a new steady-state, the nurse estab
lishes a new base line at this point. All subsequent 
measurements will then be referred to this new base. 

The interval between scheduled measurements is un
der computer control and is dependent on the state of 
the patient. If the first measurement made four min
utes after a base line is not statistically different from 
the base line, the next scheduled measurement will 
occur in eight minutes. If the red light is turned on, 
however, the next measurement is made in two minutes. 
Thus, the interval between measurements will vary 
between two minutes, when the patient is unstable, up 
to 16 minutes when successive readings coincide con
sistently with the base values. 

Since the computer system is not continually sam
pling all six beds but is merely scanning from one bed to 
another depending on patient status, there is a pos
sibility that a patient could get into trouble, say with
in the 16 minute interval. Two of the more common 
problems encountered are related to frequency of con
traction of the heart. T4ese are ventricular fibrillation 
(speeding up of the heart) and cardiac arrest (heart 
stopped). Since this could happen at any time and de
tection from the arterial pressure wave-form would re
quire continuous monitoring, the electrocardiogram or 
arterial pressure signal are used to drive a rate meter. 

Upper and lower heart rate limits are set for each pati
ent. If the patient s heart rate goes beyond a limit, the 
red warning lamp for that bed begins to flash on and off 
and an interrupt and bed code are sent to the computer 
causing it to record the event and start making mea
surements of cardiovascular function. Remote hospitals 
also have similar intensive care wards with complex con
trol features made possible by the communications 
system described above. 

There are a variety of physiologic variables which 
would undoubtedly contribute additional useful in
formation to patient care. Some of these, such as blood 
chemistry determinations, blood gas analysis, are 
measured periodically on these patients but at present 
the information is entered into the computer only semi
automatically from other laboratories in the hospital. 
The intensive care service is provided on a seven day a 
week, 24 hour a day basis and requires a maximum of 
computer reliability and up-time. To achieve the 
confidence of the doctors and nurses involved in 
patient's care, the system was designed with complete 
back-up of all the critical signal measuring and reduc
tion systems. There is a possibility that a card reader or 
printer could fail, eliminating hard copy, but the in
formation is still available to the user through his re
mote terminal. The hard copy could be printed later 
after repair time of the printer or card reader. 

Results of the use of the computer system in the 
intensive care ward have been very encouraging. At 
present patients are automatically put on the monitor
ing system unless the attending physician requests 
that they not be monitored. The surgeons schedule 
their surgery around the computer system (i.e., if the 
computer system is not operational, surgery is re
scheduled for a time when the computer service is avail
able). 

CONCLUSIONS 

The dual system just described has been in operation 
since September, 1967, and presently services 20 ter
minals. These terminals are located in six separte medi
cal areas at distances from a few miles to 50 miles from 
the central facility. The system is used in diverse areas 
as heart catheterization, nervous system studies, 
screening clinics and others. Experience to date has 
shown that the system performs both clinical and re..; 
search functions well. 
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INTRODUCTION 

Pictorial d~ta have long been an important source of 
information in medicine and biology, but until quite 
recently, little use has been made of computers to pro
cess this data. Perhaps the major obstacle to such de
velopment was the difficulty of getting pictures into 
and" out of the computer. The character recognition 
systems developed in the fifty's were in general not ap
plicable to biomedical image problems because of the 
restrictive nature of the input devices. High resolution 
image scanners with the ability to detect multiple 
shades of grey were required and while such devices 
became available in the early sixties, it was difficult to 
find biomedical applications that would justify their 
cost which was frequently in the half million dollar 
range. 

In the past two or three years, the cost of scanners has 
gone down and the need for image processing has gone 
up. As a result, the prospects are quite good that com
puters will b~ used extensively within the next ~wo to 
five years both for image enhancement and for pictorial 
data-extraction. Some of the current and potential areas 
of application are described below. 

When used to enhance existing pictures, the computer 
is potentially capable of producing an absolute im
provement in image quality because processing methods 
are available that can retrieve information partially 
lost in the image system that generated the pictures. 
These techniques are applicable to X -ray films, photo·· 
micrographs or to virtually any type of photographic 
data. 

The computer can also remove useless data or em
phasize selected classes of features. Processing of this 
type might be used for mass screening of medical X -ray 

*In this paper, the phrase "imaging system" means all parts 
of the system between the subject and the image digitizer. 
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film in the hope of reducing viewing time. Considering 
the fact that over 200 million X-ray films were made in 
the United States last year, it is clear that computer
aided analysis of radiographs is a useful obj ective. 

A major factor in the current interest in computer 
image processing is the recent emergence of biomedical 
techniques that require objects on film to be counted 
or measured. Computer methods have already been 
applied quite extensively to the problem of counting 
and sorting human chromosomes (karyotyping). As a~ 
example, one film scanning system karyotypes a cell in 
20 seconds-ajob that requires approximately 15 minutes 
when accomplished manually by cutting and sorting the 
chromosomes from a print.! 

Work is also in progress in automatic white blood cell 
classification,2 in autoradiographic grain counting and 
in numerous other areas. 

Over the past three years, computer image enhance
ment research at the Jet Propulsion Laboratory has 
been applied on an experimental basis to biomedical 
pictures in general and particularly to medical radio
graphs.3 The initial objective was simply to see if the 
computing techniques developed to process spacecraft 
television pictures,4 could be extended to biomedical 
imagery in a useful way. Rather than imm.ediately at
tempting to apply the computer to a specific clinical or 
research problem, we have taken the more general ap
proach of developing processing techniques applicable 
to classes of pictures such as pictures with high nQise 
levels, pictures of low contrast, pictures having poor 
resolution, etc. 

The main purpose of this paper is to describe some of 
the enchancement methods that have developed. As 
outlined in the next section, the frequency -domain ap
proach to image system analysis was chosen as t~e most 
suitable means to relate the computer methods to the 
physical imaging system * and to the subject. Par
ticular attention is paid to the interpretation of the sys-
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tem transfer function relative to the subject content. 
Following this, the most important computer enchance
ment technique, digital filtering is discussed and illus
trated with numerical examples. Details of filter eval
uation and synthesis are covered in the appendix. Fol
lowing the section on filters, examples of enhanced 
pictures which portray the effects of several types of 
filters" both linear and non-linear, are discussed. In 
addition, some other commonly used enhancement 
methods including. non-linear contrast enchancement 
and image subtraction are illustrated. Finally, an exam
pIe of quantitative pictorial data analysis which utiliz
es the preceding enhancement techniques is described. 

Frequency-response methods applied to imaging systems 

The general objective of picture enhancement is to 
make selected features easier to see. This might require 
suppression of useless data such as random noise and 
background shading or perhaps amplification of fine de
tail. Background shading becomes a problem when it is 
super-imposed onto low contrast features. Usually, the 
subject itself is the source of the problem. For example, 
the small bones in the ear cannot generally be seen in a 
standard X-ray film because they absorb too little ra
diation relative to the' larger surrounding bone mass. 
Random noise in an X-ray film results from the spatial 
fluctuations of the illuminating radiation. Similarly, 
film scanning systems inj ect noise into the image be
cause of fluctuations in the light source and because of 
electrical noise in the output of the light sensing device. 
Fine detail is lost by diffraction effects in optical sys
tems or by fluorescent intensifying screens in X-ray 
systems. Clearly the imaging system as well as the sub
ject must be taken into account when selecting a com
puter enhancement pr.ocedure and to accomplish this, 
a common method f.or describing each part of the sys
tem must be used. In many cases, frequency response 
techniques based on the Fourier Transform can provide 
a common basis for relating the computer methods to 
the subject and to the imaging system. 

Using this technique, the subject, or more accurately, 
the signal composed of the spatial distribution of pho
tons that results from illuminating the subject, is de
scribed by its Fourier or frequency-domain transform. 
That is, it is well known that any absolutely integrable 
signal can be decomposed into pure sinusoids of varying 
frequency, amplitude and phase and the two representa
tions, spatial and frequency, are precisely equivalent 
in the sense that each can theoretically be obtained 
from the other. For a picture system, frequency is meas
ured as cycles per millimeter across the image. 

Using frequency response methods, the imaging sys
tem is described by its optical transfer function (OTF) 
(also called more simply the transfer function) which is 

defined as the relative amplitude and phase response of 
the system to sinusoidal inputs of varying frequency. 
The amplitude response is commonly called the mod
ulation transfer function (MTF). In the absence of 
phase shift, which is the case with most parts of an 
imaging system, the OTF and the MTF are the same. 
If the imaging system is linear, which in this case means 
that the system output contains exactly the same fre
quencies as the input, then the signal spectrum of the 
output is equal to the product of the system transfer 
function and the input signal spectrum. t 

Under suitable conditions, * the image digitizing pro .. 
cess and many of the computer enhancement operations 
can be considered as linear extensions of the imaging 
system and transfer functions for these parts can be 
derived. This, in turn means that the entire system, 
from subject to computer enhancement can be related 
by frequency-response methods. 

Before discussing the actual computer enhancement 
operations, it is useful to consider the effects of the 
imaging system on typical subjects in terms of the sys
tem frequency response. 

For example, suppose two imaging systems, A and 
B with MTF as shown in Figure 1 are to be compared. 
Since B produces equal or less attenuation than A at 
all frequencies, B will clearly reproduce the input scene 
more accurately. In particular, B will reproduce fine 
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FIGURE I-Typical modulation transfer functions for two 
imaging systems. 

tCertain parts of the system, such as the film are not linear, but 
a linearizing correction can often be made when the image is 
processed with the computer. For film, the correction can be made 
if the optical density vs relative log exposure curve is known. 

*The image must be sampled at a rate at least twice the highest 
frequency present. When this is the case, the sampled signal 
spectrum is a periodic version of the continuous signal spectrum 
and under most circumstances the periodic components can safely 
be ignored. 
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detail better than A since small features with sharp 
edges will usually result in an input signal whose spec
trum has a greater proportional of its energy at high 
frequencies when compared to the signal from large 
smooth features. It does not follow, however, that B 
would be selected as the better system in every case. 
For example, if a low-contrast shadow in an X-ray film 
were being sought and background noise was high, a 
system like A that tends to reject high frequencies 
might produce a more suitable film. 

The behavior of the MTF at low frequencies is some
times as important as at high frequencies. To illustrate 
this, consider the problem of locating a suspected hair
line fracture in an X-ray film as shown in the drawing of 
a bone in Figure 2a. A plot of film density across the 
bone on the line shown might appear as in Figure 2b. 
The fracture appears as a low amplitude narrow (i.e., 
high-frequency) density change superimposed on the 
large slowly changing low-frequen~y signal representing 
the bone shadow. As shown, the fracture shadow prob
ably would not be visible on the film. This example 
demonstrates that sometimes it is desirable to reproduce 
high frequencies but not low frequencies. If a system 
were selected that has an MTF as shown in Figure 2c, 
the low frequencies would be rejected and the plot line 
through the film would look as shown by Figure 2d. At 
this point, an increase in contrast would bring out the 
fracture shadow. 

As another example, consider the pictures generated 
by isotope scanners which frequently contain n~rrow 
bars of unexposed film between each recorded scan 'd. 

line. If the unwanted bars were spaced every T1 milli
meters down the image, an imaging system that re
jected the bars would have a two-dimensional MTF 
like that shown in Figure 3. Designing an actual system 
with such a transfer function would be quite difficult in 
most cases, but a digital filter with zero gain near fre
quency f1 = liT 1 and near unity gain ai all other fre
quencies of interest could easily be obtained. Applica
tion of this filter to a picture from an isotope scanner 
with a normal MTF would produce an effective overall 
system MTF like that shown in Figure 3. Techniques 
for obtaining and applying filters of this sort are de
scribed in the next section. 

Digital filter 8 

Many, although not all, computer image enhance
ment techniques are linear operations that can be ana
lyzed by frequency response methods. Once a transfer 
function for a particular eomputer operation is deter
mined, a new system MTF which includes the physical 
parts of the imaging system, the film digitizer and the 
computer operation can be determined. 

~ SUSPECTED FRACTURE 

I PLOT UNE 
I 

a. 

b. 

c. 

----______ -____ -~A--

FIGURE 2-An illustration of the processing steps involved in 
removing background shading in order to enhance small Iow

contrast feature. 
(a) Representation of an X-ray image of a bone cont.aining a 

suspected hairline fracture shown as a dotted line; 
(b) Typical density plot that might be observed along a 

single line across the film: 
(c) The MTF of a filter that could be used to remove the 

background; 
(d) Density plot after filtering, showing background removal. 

One of the most important lin"ear image enhance
ment techiques, filtering, is covered in this section. The 
basic definition of a digital filter in the spatial domain 
is given and elementary examples are used to classify 
fi1ters into some general categories. Methods for cal
culating the modulation transfer function of a given 
fi1ter and for obtaining a filter with a specified MTF are 
described in the appendix. 

Definition of a digital filter 

An electronic filter produces an output voltage that 



820 Fall Joint Computer Conference, 1968 

ilLATIVE AMPLI1UDE III!SPON$( 

10 (f,kll 

FIGUR.E 3-Modulation transfer function designed to reject 
vertical bars which typically appear on films generated by 
isotope scanners. The bars are assumed to appear every Tl 

millimeters. 

depends on weighting of the past signal. A digital fil
ter operates in the same manner except both past and 
following signal is available and, of course~ the signal is 
discrete. 

Let (Xo, Xl, . . . Xn) be a sequence of numbers de
rived by sampling and digitizing a continuous ~ignal 
such as the optical density along a line on a film, and 
assume samples are taken every T millimeters along the 
line. Consider a simple three point filter that replaces 
the point Xn with the average of the points Xn-l, Xn , 

XnH. If y n is the filtered point at position n, then 

1/3 Xn-l + 1/3 Xn + 1/3 XnH 

Similarly, the next filtered point y n+1 is obtained as 

Y nH = 1/3 Xn + 1/3 XnH + 1/3 xn 1-2 

The values 1/3 are the filter weights, which in general 
are not necessarily equal. The main filtering relation 
using 2K + 1 weights 

(1) 

Thus filtering is obtained by a weighted moving aver
age. 

Equation (1), the filter equation, is readily extended 
to two dimensions. Let the unfiltered signal be rep
resented by an array of numbers (Xm,n, m = 0, 1, 

... M, n = 0, 1, ... N) and the filter weights by the 
array 

g = ~, t~ k = 0, ± 1, ± K; t = 0, ± 1, .. ± L). 

Then if y m,n is a filtered point, the two-dimensional 
filter equation becomes 

K 

Ym,n = L 
/r;=-K 

L 

L gk,t Xm-k, -t· 
t--L 

A two-dimensional averaging filter analagous to the 
3 point one-dimensional averaging filter just discussed 
is one that averages the nearest nine points including 
the nearest three points on each line above and below 
the center point Xm,n as well as Xm,n and the points on 
either side of the same line. Most of the ideas that follow 
are easily extended from one to two dimensions so in tp.e 
interest of keeping the notation simpler, only the one
dimensional filter will be presented in most cases. 

Filter classes 

To further illustrate the filtering operation, several 
classes of filters are defined and examples of each class 
are given. 

The three point equal weight filter previously dis
cussed is an example of a low-pass filter whose purpose, 
as the name implies, is to pass low frequency signal 
components and reject the high ones. A typical modula
tion transfer function of a low-pass filter· is shown in 
Figure4a. 

A high-pas8 filter has the opposite function to remove 
low frequency signals and pass the high frequency signals: 
One obvious way to achieve such a filter is to subtract, 
point-by-point, a low-passed picture from the orginai: 
Rather than actually perform such a two step operation 
it is possible to derive weights that directly high-pass 
the picture. Suppose Xn is the unfiltered input, y n the 
output from a low-pass filter and y n' the output from a 
high-pass filter. Let g = (g-K, . . . gK) be the low-pass 
weights and g' = (g-'K, •.. gK') be the high-pass 
weights. If the low-pass picture is subtracted from the 
unfiltered picture, point-by-point, 

Yn' = Xn - Yn, 

and then expressions for y n' and y n according to the 
filter equation (1) are substituted above 

K K 

L g k Xn-k = Xn - L gk Xn-k 

k=-K k-K 

Equating coefficients of Xn-k on either side of the 
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FIGURE 4-Typical filter transfer functions: 

(a) Low-pass; 
(b) High-pass; 
(c) High-frequency restoration; 
Filters (b) and (c) are derived from filter (a). 

equality, it follows that 

where 

a(k) = 1 for k = 0 

= 0 otherwise 

a 

• b 

c 

As shown in the appendix, if the low-pass filter has 
MTF G(f) as shown in Figure 430, then the high-pass 
filter derived above has MTF G' (f) = 1 - G(f) as 
shown in Figure 4b. 

Consider another type of filter that might be called a 
high-emphasis or high-frequency restoration filter. This 
filter passes low-frequency signal unchanged and am-

plifies high-frequency signal. Pre-emphasis networks in 
hi-fi systems are filters of this type. Applied to a pictures 
this type of filter sharpens edges and generally magnifies 
small detail. A high-pass filter and a high-emphasi, 
filter are similar except the high-pass filter removes the 
low frequencies while the high-emphasis does not. In 
fact, a high-emphasis filter can be derived from a high 
pass filter by multiplying all the high-pass weights g,/ 
by a constant and then adding one to the center weight. 
That is, if gk" is a high-emphasis filter weight, and A is 
a constant, 

Multiplication of every weight by a constant is equiv
alent to multiplying every value of the MTF by the 
same constant. It also can be interpreted as stretching 
the contrast of the picture by this constant. Also, ad
ding one to the central weight adds one to the MTF at 
every point. Thus, for A = 2, the high emphasis filter 
derived from the high-pass filter of Figure 4b would 
appear as shown in Figure 4c. 

Instead of smoothing by simple averaging, higher 
degrees of polynomial smoothing may be applied. For 
example, suppose a smoothed point is obtained by 
evaluating a third degree least square polynomial fit to 
the nearest five points. It can be shown that such an 
operation is equivalent to applying the filtering equa
tion, (1), using the following weights: 

g = (-3/35, 12/35, 17/35, 12/35, - 3/35). 

In order to determine how this filter differs in its effect 
on the signal from the equal weight filter or from any 
other filter, the modulation transfer function can be 
computed. 

As described in the appendix, the transfe;t:",function 
G(f) of a filter represented by weights g = (g-K, ... go, 
... gK) is obtained as the Fourier Transform of the 
weights. The three point equal weight filter, for ex
ample, defined by 

g = (1/3, 1/3, 1/3), 

has a transfer function obtained as 

G(f) = 1/3 + 1/3 cos 27rf, 

where a sampling period of one is assumed, so f repre
sents cycles per sample. 

A plot of IG(f) I is shown in Figure 530. Thed@ttedlines 
indicate negative values ofG(f) which represents 301800 

phase shift. That is, if the input to the filter is a sine 
wave whose frequency is in this range, the output would 
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FIGURE 5-Transfer functions for equal weight low pass filters: 

(a) Three point; 
(b) Five point. 

be the negative of the input. Figure 5b shows the MTF 
for the five point equal-weight filter. As would be antic
ipated, averaging five points results in greater attenua
tion of high frequencies than for three point averaging. 
In comparison, the MTF of the five point third degree 
filter shown in Figure 6 produces less attenuation 
than either equal weight filter. 

For all of the filters discussed above, the weights 
were selected first and then the effective filter MTF was 
calculated. To obtain a filter' with a given MTF, the 
weights are calculated by taking the inverse Fourier 
Transform of the specified MTF (see Appendix C). 

Specific applications of filtering and of other image 
enhancement techniques are presented next. 

Computer image enhancement applications 

Before-and-after examples of computer enhanced' 
pictures are described in this section which illustrate 
four classes of two-dimensional linear filters, non-linear 
filters including non-linear contrast enhancers and 
image subtraction. The types of images processed in-

1.0 

0.8 

0.6 

G(f)= ~5 (17+24 cos2'7Tf-6cos4'7Tf) 

g=(-3 ~.!I ~ -3 ) 
35, 35,35,35, 35 

, , 

OL--L~--~~--~---------------f 
o 0.1 0.2 0.3 0.4 0.5 

FIGURE 6-Transfer function for a five point third degree 
least-square filter. 

clude x-ray films, isotope scanner films and photo
micrographs. 

All of the pictures were scanned with a cathode-ray 
tube flying spot scanner and digitized to six bits (0-63 
counts). The system provides a maximum of 1200 scan 
lines per jnch but only accepts film about 2 inches 
square. Thus larger film such as X-ray films are first 
photographically reduced and then scanned. Consider
able degradation results from this reduction process 
and in addition some random noise is injected into 
the image by the film scanner. Photographic reduction 
can be eliminated by directly scanning the orginal full
size film with high-quality image dissector television 
systems that are available today. Scanning noise can 
easily be minimized either by leaving the scanning spot 
on each picture point for a long period and then inte
grating the resulting signal from the photosensing de
vice or by scanning a picture several times at a normal 
rate and then averaging the frames in the computer. 
Although this latter technique has recently been a
dopted at JPL with very good results, most of the pic
tures shown in this section were obtained with a single 
fast scan and thus have unnecessarily high noise levels. 
In order to demonstrate the effect of the computer 
processing jndependently from the scanning losses, the 
enhanced pictures below' are compared with the un
enhanced but digitized versions rather than with the 
original films. 

Low pass filter applications 

The removal of high-frequency components from a 
picture may be desirable in a variety of situations. The 
most common application is to pictures containing 
excessive random noise which makes large low-contrast 
features difficult to see clearly. Low-pass filtering of 
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noi~y pictures is frequently necessary when the com
puter is used for pattern recognition or measurement 
purposes. There are also occasions where it is useful to 
remove non-random high-frequency structure such as 
sharp edges that are not important and make the rest of 
the picture difficult to view. 

As an example of the application of a low-pass filter to 
a picture, consider the tomograph section of the ear 
shown in Figure 7. This picture is composed of 1000 
lines and 1000 elements per line. The sample and line 
spacing on the original film were 25 microns. The fea
ture to be enhanced is the cochlea, the light spiral in the 
upper half of the picture. In this case, the noise-like 
structure results. from the spatial fluctuations of the 
exposing radiation which is characteristic of tomo
graphic imaging systems. The filter selected was an 
averaging filter consisting of equal weights in a 31 X 31 
array. The size was chosen large enough to remove the 
noise but not so large as to remove the image of the 
cochlea which varied in size from about 30 to 50 samples 
across. 

A second example of the use of a low-pass filter is 
shown in Figure 8. This figure shows an unprocessed 
picture of the calcaneus on the left and a filtered ver-

FIGURE 7-X-ray tomograph of the cochlea (light spiral) 
(left) unprocessed 

(right) after 31 X 31 equal weight low-pass filter. 

FIGURE 8-Radiograph of the calcaneus: 
(left) unprocessed 

(right) after 7 X 7 equal weight low-pass filter. 

sion on the right that was obtained by applying a 7 X 7 
equaJ weight filter. In this particular picture, the 
'viewer does not have great difficultly following the 
trabecular shadows (the vertical light streaks) but the 
computer was subsequently required to detect and 
measure the width of each shadow, a job made ex
tremely difficult bj the high-frequency noise. An ex
ample of a picture in which disturbing non-random 
structure appears that can be removed by filtering is 
shown in Figure 9 (top). This chest film generated by an 
isotope scanner characteristically has square-like pic
ture elements and white bars between each line. Useful 
information in the film is obscured because the eye is 
attracted to the sharp edges and lines. The lines were 
first removed by the computer, as shown in Figure 9 
(middle), (this process will be described later), and then, 
as shown in Figure 9 (bottom), an 11 X 11 equal weight 
low-pass filter was applied to eliminate the square-like 
structure of ,the original individual picture elements. 

Radiograph noise resulting from quantum fiuctua
tions in the source is not concentrated at the high
frequency end of the spectrum as might be assumed 
from the salt-and-pepper effect produced. Rather, the 
noise is somewhat evenly distributed over all frequen
cies passed by the system. Consequently, a simple low
pass filter cannot remove noise in many cases and may 
even result in a poorer picture than the original by pro
ducing a c1umping or mottled effect such as that shown 
in the radiograph of the spine in Figure 10. This effect 
IS less noticeable in Figures 7 and 8 because considerably 
more of the high-frequency signal was removed from 
these pictures. 

High pass filter applications 

A common problem in X-ray photography is the 
visualization of small low-contrast features when they 
are superimposed onto a very dark or very light back
ground. Direct contrast enhancement will not improve 
the image because the film or the print will saturate. 
The solution is to apply a high-pass filter that removes 
the background by converting constant or very slowly 
changing dark or light areas to grey. The smaller low
contrast superimposed feature also moves to grey but 
now contrast enhancement may be applied without 
saturation occurring. 

The basic shape of a high-pass filter is shown in Fig
ure 4b. Removing the constant or dc component of an 
electrical signal generally means centering the signal 
about zero. Fo'r a picture system of the type discussed 
here where maximum white is represented by the nurri
bel' zero and the maximum black by the number 63, 
removing the dc component means centering the 
picture about mid grey, represented by the number 31. 
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FIGURE 9-Radioisotope scanner chest film; 
(top) unprocessed image; 

(middle) after removal of scan lines; 
(bottom) after 11 X 11 equal weight low-pass filter applied 

to picture with the scan lines removed. 

8 
I 

m 
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FIGURE IO-Radiograph of the spine showing the mottling 
caused by removing only' high-frequency signal components 

when random noise is present at all frequencies; 
(left) unprocessed; 

(right) after low-pass filter. 

Thus the filtering equation 1 becomes 

K 

Yn = 31 + L: 
IF-K 

An example of before and after high -pass filtering is 
shown in Figure 11. The left figure is a radiograph of a 
bone in which an opaque dye has been injected into the 
blood. By varying viewing illumination on the original 
film the blood vessels alongside the bone and those in 
line with the bone could be seen. Similarly, a darker 
print would bring out those alongside the bone, while 
probably rendering the bone itself solid black. The 
problem is simply that the range of film density is too 
large. The high-pass filter narrows that range by re
moving background which forces the data to more 
satisfactorily match the film characteristics. The in
formation that is thrown away (the background shad
ing) is irrelevant. Figure 11 shows the result of first 
applying a high-pass filter and then increasing con-

FIGURE ll-Angiogram showing background removal; 
(left) unprocessed; 

(right) after high-pass filter and contrast enhancement' bv a 
factor of four. . 

FIGURE 12-Tomograph of the ear; 
(left) after high-pass filter 

(right) after high-pass filter and contrast enhancement 

trast by a factor of four. Since increasing contrast by 
four is equivalent to applying a filter that uniformly 
amplifies all signal frequencies by four, a substantial 
amount of noise amplification takes place as is clearly 
evident in this example. 

A high-pass filter applied to the ear tomograph of 
Figure 7 is shown in Figure 12 on the left. The result of 
increasing the contrast is shown on the right. 

The filter weights for this example are defined as 

1 
g - 1 for k = 0 C = 0 

k,f - - (2K + 1)(2L + 1) , 

1 h' -------- ,ot erwlse 
(2K + 1)(2L + 1) 

Application of these weights using equation 1 is exactly 
equivalent to subtracting the average of the (2K + 1) . 
(2L + 1) points surrounding Xn from Xn itself. Then as 
previously indicated, this difference is added to 31 to 
produce the filtered point y n. With this interpretation 
jn mind, it becomes clear that the size of the filter 
weight matrix must be substantially larger than the 
Jargest feature that is to be left 'in the picture. Other
wise, the feature contributes too heavily on the local 
average and may as a result be subtracted from the 
picture. For the ear tomograph a filter size of 55 X 55 
was selected. Since the high-pass filter was applied to a 
picture that had previously been low-passed, the over
all effect is that of a band-pass filter that removes both 
high and low frequencies. This same result could as 
easily been obtained from a single band-pass filter ap
plied to the unprocessed picture. 

A last example of high-pass filtering is shown in Fig
ure 13 which shows pictures of the calcaneus before and 
after filtering. In this case, the filtering was not done for 
enhancement but to prepare the picture signal for a 
computer quantitation program. The shading shown in 
Figure 13 on the left was removed with a one-dimen
sional filter that removed the average calculated over 
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FIGURE I3-Radiograph of the calcaneus showing 
background removal; 

(left) unprocessed; 
(right) after 101 weight one-<iiniensional high-pass filter. 

101 samples. Since the shading did not change abruptly 
from line to line, a one-dimensional filter was assumed 
sufficient. Although the shading is removed some of the 
horizontal trabecular structure also is removed * an , 
effect that was avoided on subsequent film by using a 
two-dimensional filter. 

High-frequen.cy restoration filters 

Consider an imaging system with a modulation trans· 
fer function H(f), indicated by Figure 14a, showing the 
usual dropoff in response at high frequencies. Restora
tion of this loss could be accomplished by a filter with 
an MTF, G(f), equal to 1/R(f), as shown in Figure 14b. 
Thus the overall J\tITF of the system including the fil
ter becomes 

M(f) = G(f) . H(f) 

as shown in Figure 14c. The filter must level off at some 
point instead of continuing as the inverse of H (f) in 
order to avoid excessive amplification of system noise. 

Considerable work has been devoted to measuring 
the MTF of imaging systems. For example, the MTF of 
fluorescent intensifying screen and film combinations 
used in X-ray systems has been obtained by Rossman6 •6 

and Morgan7 as well as the MTF of the X-ray focal 
spot as a function of its size and geometry by Doi.8 It 
does not follow, however, that if the X-ray system MTF 
were known, the optimum high-frequency restoration 
filter would be the one whose transfer function was the 
inverse of the system MTF. The reason for this, aside 
from the problem of noise amplification, is that a dis
torted system response is as likely to enhance important 
information as a flat system response. The high-pass 

*This effect could not be seen visually, but was detected by 
subsequent computer measurement of the horizontal shadow 
widths. 
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FIGURE 14-Diagram showing effect of 
high-frequency restoration; 

(a) Typical system MTF; 
(b) Filter MTF designed as the inverse of the system MTF; 

(c) MTF of overall system including filter. 

filter examples demonstrated this. The important point 
is that optimization depends not only on the imaging 
system, but also on the subject, the (medical) purpose 
of the film and the perceptual response of the viewer. 
These areas are currently under investigation by Ross
man,9 Tuddenham10 and others. 

For systems with very high signal-to-noise ratio, 
high frequency restoration filters are quite effective. 
Figures 15 and 16 show examples of this type of fii
tering applied to pictures of the lunar surface televised 
by the Surveyor spacecraft. It might be noted that the 



U SCi of Computers to Improve Biomedical lInage Quality 827 

FIGURE 15-Surveyor I picture of the lunar surface; 
(left) unprocessed 

(right) after high-frequency restoration filter 

FIGURE 16-Surveyor 7 picture of the lunar surface; 
(left) unprocessed; 

(right) after high-frequency restoration filter. 

received video signals were directly sampled and dig
itized without intermediate fihn scanning. 

Applying high-frequency restoration to photomicro
graphs also provides some degree of detail sharpening, 
as seen in the chromosome pictures in Figure 17. 

Unfortunately, the noise level in x-ray films is so 
high that this type of filtering is relatively less effective. 
An example of a high-frequency restoration filter ap
plied to a noisy x-ray picture is shown in Figure 18. 
Some improvement in resolution of the intermediate
size blood vessels can be seen (see arrows) but the very 

FIGURE 17-Photomicorgraph of human chromosomes; 
(left) unprocessed; 

(right) after high frequency restoration filter. 

FIGURE 18-Pulmonary angiogram showing effect of high
frequency restoration; 

(left) unprocessed' 
(right) after high-frequency restoration. Arrow indicates 

small blood vessel sharpened by filtering. 

fine blood vessels are still lost in the noise. This does not 
mean that further improvement in resolution cannot be 
obtained, however. It does mean that the filters must be 
tailored more to image content than to the imaging 
system. Filters of this type are described next. 

Feature-selective filters 

Feature-selective filters operate by cross-correlating 
the picture with a matrix of weights that geometrically 
resembles the feature to be enhanced. If, for example, 
vertical lines are to be enhanced, the filter weights 
are made positive along a vertical line in the center of 
the matrix and negative otherwise so that the output 
of the filter is a maximum when the filter is centered on 
a vertical line in the picture. The weights shown in 
Figure 19 were selected to enhance the blood vessel 
shadows in the angiogram shown in Figure 20. The 
arrow points to some blood vessels faintly visible in the 
unprocessed film and better defined in the filtered ver
sion. The two lower pictures represent further enhance
ment using subtraction methods to be discussed later. 

Filters of this type can enhance data or as easily be 
used to remove selected features. A radiograph of a thin 
section of bone from an excised vertebra is shown in 
Figure 21 (upper left). A subsequent computing re
quirement to measure the width of the horizontal trabe
cular shadows made it desirable to first remove all non
horizontal trabeculae from the image. The results of 
applying filters designed respectively to remove vertical 
trabeculae and trabeculae lying at minus forty-five 
degrees and plus forty-five degrees from vertical are also 
shown in Figure 21. 

Non-linear filtering and contrast enhancement 

Non-linearity in digital filters occurs when the filter 
output, as defined by equation I, is truncated, either 
deliberately to produce a specialized effect or unavoid-
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FIGURE 19-Feature-selective filter used to enhance lines that 
are linear or nearly-linear over a short distance. 

ably· when the output exceeds the allowable grey-scale 
range (Le., saturation). The filtering procedure used to 
remove the white lines from the isotope scanner image 
of Figure 9 is an example of intentional non-linearity. 
Filtering was accomplished in two steps. First, equa
tion 1 was applied using the following weights: 

g = (1/6, 1/6,1/6,0,0,0, 1/6, 1/6, 1/6). 

Next, the filtered point Yn was compared with the cor
responding input x n • If the filtered point was larger than 
the input, as would likely be the case if the input point 
was part of a line to be removed (white is represented 
by a low number), the filtered point was accepted as is. 
Otherwise, the input point was substituted. The effect 
of this procedure was to leave the picture unchanged 
whenever the filter was not centered on a line. 

Simple contrast enhancement of the type shown in 
Figure 22a in which input points having values between 
A and Bare linearily stretched to full scale is an ex
ample of filter non-linearity resulting from saturation. 

. A more interesting procedure is to divide the input in
to several intervals and stretch each interval simultane
ously. As shown in Figure 22b, the input range is di-

FIGURE 2o-Pulmonary angiogram showing the result of 
applying a filter designed to enhance straight lines. 

(upper left) unprocessed picture; 
(upper right) after application of the filter shown in Figure 
19. The arrow indicates blood vessels faintly visible on the 
unprocessed picture but more clearly defined on the filtered 

picture; 
(lower left) The result of subtracting the unprocessed picture 
from the filtered picture in order to emphasize changes 
caused by the filter. Only positive differences were re

tained and contrast was greatly increased; 
(lower right) The result of adding four times the positive 

difference picture to the unprocessed picture. 

vided into four intervals and each interval is expanded 
to full scale. The effect of such a procedure on a picture 
is to display everything in the picture at a high contrast. 
An example of a four and eight cycle expansion applied 
to a photograph of the retina is shown in Figure 23 on 
the bottom. In particular, note the improved definition 
of blood vessel wall. The orginal picture is shown in the 
upper left and an enlarged version of the area of interest 
is shown in the upper right. There is, of course, a sub
stantial amount of artifact created by this procedure, 
so caution must be exercised in the interpretation of 
these pictures. 

Picture subtraction 

Subtraction of radiographic images is a useful method 
for amplifying differences between two pictures. In 
particular, for an angiographic series, subtraction of t~e 
pre-dye picture from pictures which include the dye IS 
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FIGURE 21-Radiograph of a thin section of a vertebra showing 
the effect of filters designed to remove Don-horizontal trabecular 

shadows. 
(upper left) unprocessed picture; 

(upper right) after filter to remove vertical shadows; 
(lower left) after filter to remove minus 45 degree shadows; 
(lower right) after filter to remove plus 45 degree shadows. 

an effective means for removing bone shadows from the 
picture in order to see the fine blood vessels structure 
more clearly. Optical subtraction methods are in clin:ical 
use today fOt cases involving rigid structures such as the 
skull.H For non-rigid structures such as the chest, 
optical subtraction can still be pelformed, but diffi
culties in matching large areas usually restrict the sub
traction to a small area. 

Image subtraction can also be performed by com
puter and in the case of mismatching pictures such as 
described above, the computer can be used to geo
metrically distort one picture to match the second. An 
example of such an operation on a pair of chest films is 
described in reference 3. An advantage of computer sub
traction' as opposed to optical subtraction is that the 
difference picture is immediately available for further 
enhancement such as high-frequency restoration. Also, 
using cross-correlation techniques, the best match be
tween pictures could be automatically accomplished by 
the computer. This "best" match would probably be 
superior to a match obtained manually by physically 
superimposing two films. 
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FIGURE 22-Transfer characteristic relating the picture input 
and output for contrast enhancement; 

(a) simple enhancement; 
(b) four cycle enhancement. 

Subtraction of an unprocessed picture from a filtered 
picture can also be a useful way to evaluate the filter it
self when changes produced by the filter are rather sub
tle. The result of subtracting two pictures in this man
ner is shown in Figure 20 (lower left). Figure 20 (lower 
right) was obtained multiplying the positive part of the 
difference picture by four and adding this difference to 
the unprocessed picture. 
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FIGURE 23-Retina photograph showing multiple-cycle 
contrast enhancement; 

(upper left) unprocessed picture; 
(upper right) enlargement of section to be enhanced; 

(lower left) result of four cycle overlapping contrast enhance
ment as indicated in Figure 22b; 

(lower right) result of eight cycle overlapping contrast 
enhancement. 

The use of computers to make quantitative 
measurements on x-ray film 

The use of a computer to make numerical measure
ments on x-ray film is a relatively new application that 
promises to be of great value. 

In one of the earliest applications, by Becker et. al.,I2 
a computer and flying-spot scanner were used tomeas
ure the maximum transverse diameter of the heart 
shadow and the maximum transverse diameter of the 
rib cage shadow. Their method involved summing each 
column of a digitized x-ray film· of the chest and then 
using the sums, plotted as a function of distance across 
the chest to detect the location of the required features. 

There is also a large amount of current research on 
the problem of measuring heart volume using X-ray 
cineagiography.18 Some of the techniques measure 
volume from bi-plane films by measuring total heart 
outline. as revealed by the dye. Others only measure 
maximum heart length and width. Single plane methods 
utilize dye concentration to indicate heart depth. In 
each case, a computer is used for part or all of the total 
measurement. 

In another application, a computer is used to locate 
and measure the width of trabecular bone shadows for 

the purpose on determining bone mineralization and 
strength which is reflected in the trabecular pattern.14 
In this application, the scanned film is first preprocessed 
by filtering to remove high-frequency noise and back
ground shading. A line-by-line measurement is then 
made by the computer to determine mean trabecular 
width, spacing and frequency. The detection algorithm 
is of the peak-connecting type with minimum and max
imum allowable width conditions imposed. Figure 24 
shows an example of three lumbar vertebra films show
ing progressive demineralization (top row). The bottom 
row gives a pictorial representation of the computer 
trabecular shadow detection program. That is, each 
point of the top picture that the computer decides is 
part of a trabecula shadow is displayed in the bottom 
picture as maximum white. The rest is shown black. 
The main function of this display is to verify the ac
curacy of the detection process. However, it also rep
resents a type of non-linear enhancement. 

The originator of this technique, Dr. S. David Rock
off of Washington University in St. Louis, initially made 
these measurements with a mechanical film scanner and 
an analog computer. Approximately ten minutes per 
line were required to scan the film and hand compute 
the required parameters from analog plots. Consequent
ly it was not practical to take more than a few scans 
per film. On the other hand, the computer prefiltered 

FIGURE 24-Lumbar vetebra radiographs and display of 
trabecular shadow detection. 

(top row) three examples showing progressive demineraliza
tion from left to right. The two left-hand examples are 
in vitro radiographs while the right-hand example is an 

. in situ radiograph; 
(bottom row) pictorial representation of computer program 
to detect trabecular shadows. Each bottom row point is 
printed white if the corresponding point in the top row 
falls within what the computer decides is a trabecular 

shadow. Otherwise the point is printed black. 
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and measured 400 scan lines for the films in Figure 24 in 
four minutes, or about 0.6 seconds per line. 

CONCLUSIONS 

The goal of computer enhancement research on X -ray 
films is to produce medically useful pictures. While the 
initial results have been interesting and even encour
aging, there is no question but that the goal has not 
yet been reached. It may be of interest to discuss some 
of the reasons for this. 

First of all, image losses from film scanning are still 
very severe, although as previously discussed they can 
be decreased substantially with better scanners, par
ticularly with the type that view the original film in
stead of a reduced version. Without these losses, an 
improvement in resolution can undoubtedly be obtained 
with the computer enhancement. In addition, since an 
enhanced picture in which selected features are more 
easily seen than on the original could help the radiolo
gist screen films more rapidly or more reliably, resolu
tion improvement need not be achieved for enhanced 
pictures to be useful. 

A major obstacle to the application of computer en
hancement at the clinical level, even aside from prob
lems of image quality, is processing speed. Actual com
puter time may be small, varying from 20 or 30 seconds 
to 30 minutes or more, depending on the type of pro
cessing and the computer. However, the time required 
to photographically reduce a film (if that is necessary), 
scan it, process it in the computer and then reconstruct 
the computer output into a photograph is likely to be 
one or two days under even optimum conditions. The 
use of computer-controlled film scanners and on-line 
picture displays from the computer could reduce pro
cessing time by a large factor. However, systems of this 
sort are very expensive. 

Perhaps the most medically promising application of 
computer image processing is in the area of quantita
tive measurement. The quantitation of trabecular 
pa.tterns in bone as described above, for example, would 
be virtually impossible without either a digital or analog 
computer. The measurement of heart volume~ which 
requires two or three weeks per patient when hand 
methods are used can be accomplished by computer in 
an hour or less. It seems likely that applications of this 
sort will increase very rapidly as film scanners become 
more available. 
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APPENDIX 

Digital filter representation in the frequency domain 

Let xn , n = 0, ± 1, ... be the discrete series obtained 
by sampling film every T millimeters and y n, n = 0, ± 
1, ... be the output of a digital filter appHed to X n • If the 
filter weights are given by g = (g-K, ... gK), the filter 
equation is given by 

(AI) 

n = 0, ± 1, ... 

Let the discrete Fourier Transform of y n be defined as 

co 

Y(f) = L (A2) 

SUbstituting Al into A2, 

00 K 

Y(f) = L [L gk Xn-k] e-i27rlnT 
n=-CO k::-K 

and after rearranging terms, 

K 00 

Y(f) = L gkL Xn-k e-i27rlnT 
k=--"K n~CO 

After making the change of variable m = n - k, 

K co 

Y(f) = L gkL Xm e- i27r/ (m+k)T 
k=--"K ~co 

K co 

= L gk e-i27rlkT L Xm e-i27rlmT 
Jc-K m=-CO 

= G(f) . X(f) 

where we define grc = ° for Ikl > K. 
Thus the input and output of a digital filter are re

lated in the frequency domain by G(f), the filter trans
fer function that is found to be the discrete Fourier 
Transform of the filter weights. 

Calculation oj digital filter modulation transfer junctions 

Now consider the MTF of some of the filters dis
cussed earlier in the paper. For example, the three point 
low-pass filter was defined by the weights. 

g = (1/3, 1/3, 1/3) 

Thus, 

1 

G(f) = L (1/3) e-i27rlkT 
k=-l 

= 1/3 + 2/3 cos (21rfT) 

It is convenient at this point to express the period of 
the sinusoids in units of samples rather than in milli·· 
meters. Thus the unit of frequency becomes cycles per 
sample and the sample interval T is equal to one as is 
the sample frequency f8 • Thus a frequency of 0.1 indi
cates a sinusoid whose period is 10 samples. Conversion 
of the period to millimeters is accomplished by multi
plying by the actual sample spacing. 

Thus, with f in cycles per sample, the MTF for the 
three point averaging filter becomes 

G(f) = 1/3 + 2/3 cos (21rf) 

A plot of IG(f)1 is shown in Figure Sa. 
A basic property of Fourier Transforms is that the 

transform of an even function is real-valued. Thus all 
filters symmetric about the center weight, have real 
valued tranfer functions. Figure "5b also shows the 
MTF for the five point averaging filter, g = (1/5, 
1/5, 1/5, 1/5, 1/5) which is calculated as 

G(f) = 1/5 [1 + 2 cos (21rf) + 2 cos (41rf)] 

As would be anticipated, the five point filter falls off 
faster" and thus removes more of the high-frequency 
signal. 

In comparison, the five point third degree least 
squares filter has MTF. 

G(f) = 1/35 [17 + 24 cos (211"f) - 6 cos (411"f)] 

and as shown in Figure 6 has a flatter low-frequency 
response than either of the equal weight filters. 

Earlier it was shown that if grc are weights for a low
pass filter with MTF G(f), then a high pass filter is 
defined as 

k = 0, ± 1 ." .. ±K (B1) 

Further, it was stated that the MTF G' (f) of this filter 
is given by: 

G'(f) = 1 - G(f). 

To show this is true, three properties of Fourier trans
forms are required. Let F[] inidicate the Fourier trans-
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form of the bracketed quantity. Then if gl(t) and g2(t) 
are two spatial functions, the following properties are 
true: 

(b) If A = constant, F[AgI (t)] = AF[gl(t)] 

(c) F[o(t)] = 1, where oCt) is an impulse at the origin 

The desired result follows by taking the transform of 
both sides of equation (B1). 

Digital filter synthesis 

Frequently it is desirable to generate a digital filter 
with a particular given MTF by obtaining the weights 
from the inverse Fourier transform of the given MTF. 
Suppose G*(f) is the given MTF and the sample inter
val is one. Then the inverse tra~sform is 

g*k = J G*(f)e i2'1r/k df. 
/=-00 

(e1) 

Suppose a truncation function Wk is defined as 

W k = 1 for - K ~ k ~ K 

o = otherwise 

and we define a truncated sequence of non-zero weights 
as 

(C2 

This truncated weight 'sequence gives an approxima
tion to G*(f). The MTF is calculated in the usual man
neras 

K 

G(f) = L gk e-i27r'/k 
k~ 

Let the mean square error difference between G*(f) and 
G (f) be defined as 

E= '6/ [G(f) - G*(f)]2 df 
-'6 

It is known that the filter defined by equation C1 has 
the smallest E among all possible 2K + 1 weight fil
ters.15 However, it is also a fact that a discontinuity in 
G*(f) causes overshoot in G(f) which does not decrease 
to zero as K goes to infinity.16 

This overshoot can be avoided by using a different 

truncation function WK' For example, the function 

Ikl W K = 1 - - for - K < k < K K --

= 0 otherwise 

when applied to gk * produces a filter whose MTF uni
formly converges to G*(f) but at a slower rate than the 
filter derived from the uniform truncation function. 17 

There are a considerable number of possible truncation 
functions whose use depends in general upon the shape 
of the desired filter and the type of errors that can be 
tolerated. 

Two-dimensional filter synthesis 

Given the two-dimensional modulation transfer 
function G*(u, v), where u and v are spatial frequencies 
in the horizontal and vertical direction, respectively, 
the two-dimensional Fourier transform is found as 

g*k,,e = f f G*(u,v) ei27r'(uHtlt)du dv 

k = 0, ± 1, ... ,e = 0, ± 1, ... (D1) 

Filter weights gk,! are obtained by truncating g*k,t. 
That is, 

where Wk , = 0 for Ikl > K, It I > L 
The MTF of this filter is obtained as 

G(u,v) = LL gk,t e- i27r'(.uHtlt) 

t k 

Typically, the three-dimensional surface G*(u, v) is 
known only along the horizontal and vertical 
axis. This necessitates generation of a surface to fit 
these known functions. A common assumption is that 
all equi-response contours of G*(u, v) are ellipses. This 
assumption plus the condition that the horizontal and 
vertical responses, G(u, 0) and G(o, v) are monotone 
functions of frequency allows generation of G(u, v) by 
iterative solution of the equations, 

uluo + vivo = 1 and G(uo,o) = G(o,vo) 

= G(u,v) 

In the above, as shown in Figure 25, u and v are 
given, Uo is chosen arbitr~rily, Vo determined from the 
first equation and then the quantity 

IG(uo,o) - G(o, vo)1 
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00 

g(r) = 271" J G*(q) J o(271"qr)qdq 
q=o 

is calculated. If this difference is too large, the procedure 
is repeated with a new Uo chosen in a direction to de
crease the difference and the procedure repeated until 
sufficient accuracy is obtained. 

If G*(u, v) has circular symmetry, then so does 
g*(u, v) and equation Dl reduces to the one-dimen
sional Hankel transform. That is if q2 = u2 + v2, r2 = 
k2 + t and G*(u, v) = g*(q), then the Hankel trans
form to generate filter weights for a symmetric MTF is 

where Jo(271"qr) is a zero order Bessel function of the 
first kind, 

J o(2qr) 

FIGURE 25-Diagram showing the method used to obtain the 
surface G(u,v) from .the projections G(u,o) and G(o,v). G(u,v) is 
taken equal to G(uo,o) when E is less than some predetermined 

value. 

G(u,v) 

G(u,o) 

I r-----~--~--~~ ___ u I / _ ...... 
/ ............ 
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A computer system designer's view of large 
scale integralion 

by M. E. CONWAY* and L M. SPANDORFER 
C0n8ultant 
Boxford, Massachussetts 

Sperry Rand Corporation 
Philadelphia, Pennsylvania 

INTRODUCTION' 

Russell has defined faith as the willingness to ad
here to a belief in the face of evidence to the con
trary. According to this definition it is quite 
appropriate to describe as faith the furecasts be-

,. ing made by many industry optimists about the 
imminent future of Large Scale Integration (LSI) 
of semiconductor logic in digital computers. This 
paper will attempt to cast a realistic light on the 
promises and possibilities 'Of mainframe LSI. Two 
maj or topics will be discussed: 

A. Semiconductor technology: What major im
provements are possible and under develop
ment and what difficulties must be overcome , 
before these pussibilities materialize. 

B. Computer design: In what ways can the 
special characteristics of LSI enhance the de
sign of general-purpose computers, and why 
are some proposals not as promising as they 
might first seem. 

The reader will be left to draw his own con
clusions abuut future possibilities; our purpose is 
not to predict the future but to provide a. basis for 
evaluating the many predictions already available. 
The subject is a complex one and covers several 
technical disciplines; a proper evaluation of the 
potential influence of semicunductor technology on 
computer design in the next decade will require a 
generous share of faith, accompanied by a probing 
skepticism. 

*Dr. Conway's contributions to this paper were made when he 
was with Univac Division of Sperry Rand Corporation. 
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A technology appraisal 

The original impetus for LSI arose out of (a) 
observatiuns of the potential yield of large area 
chips on silicon wafers cuupled with the possibility 
of improved tolerances by nearly an order of mag
nitude, and (b) the desire to reduce the prolifer~
tion of solder-type juints. The early economIC 
picture was not clear, although hope existed for 
an eventual cost reduction in escalating from 
small chips to the higher level of batch fabrication. 
N ow, after several years and considerable develo~
ment, there is little reason to doubt that semI
conductor technology will be able to process wa
fers with large complex chips containing hundreds 
of gates. Although much progress has been made 
at the wafer level, major unsolved problems still 
exist in (a) fabricating multilayer connections on 
the chip, (b) providing connections tu a multi
pad chip, and (c) heat dissipation from t~e chip. 
Economics has not become clarified, but Instead 
has grown to be a problem of the first magnitude. 

The status and long-range forecasts fur bipolar 
and MOS LSI have been covered by semiconduc
tor technologists in excellent review papers.1,2 

Briefly, current third generation computer in
tegrated circuits are characterized by 1500 .. 3600 
square mil chips; production wafers range up. to 
2 inches in diameter. The larger wafers provIde 
up to 1000 chips, each containin~ abuut 2-6 gates 
and nominally 14 connection pads. Yield figures, 
although highly proprietary, can exceed 5070 at 
the wafer level if circuits are carefully designed 
with moderate tolerances and specifications. Fault 
data on current wafers, in agreement with pro
posed defect models, show a low but useful 
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1'-1 ( 5 %) potential yield for chips in the 6000-
12000 square mil range. Tolerances down to 0.25 
mils, commensurate with those used in higher 
performance devices in existing systems, currently 
provide component densities sufficient to realize 
50 bipolar gates or several hundred MOS shift 
register stages in a chip less than 10,000 square 
mils. Long-range forecasts indicate the possibility 
of three-inch wafers, chip sizes up to 60,000 square 
mils, and 0.1 mil tolerances which will enable a 
factor of 3 increase in gate density, thus providing 
the basis for up to 1000 bipolar gates on the larger 
chips .. Device and circuit innovations can be used 
to achieve even higher densities; an exploratory 
design has been reported which provides a density 
of 105 gates per square inch.s 

For purposes of calibrating the present where
abouts of LSI from a usage standpoint, it should 
be noted that although many development pro
grams are currently under way, as of mid-1968 no 
major LSI hardware is believed to be doing pro
duction work for ultimate equipment users. 
Known exceptions are a number of systems con
taining scratchpad, memories employing 16-bit 
bipolar chips. The time required for new tech
nology to evolve at the system level is substantial; 
it may be further noted that despite the obvious 
theoretical advantages of LSI in high-speed sys
tems, none of the large scale high performance 
commercial computers (i.e., average monthly 
rental in excess of $50,000) delivered by early 
1968 is even based upon monolithic integrated 
circuits (excluding control memory and' special 
subsystems) . Several currently announced sys
tems are expected to cross the small chip inte
grated circuit hurdle. 

The large number of gates per chip cited above 
reflect only the geometrical limitations incurred in 
wafer processing and do not necessarily take into 
account important limiting factors such as heat 
dissipation (for bipolar circuits), wiring space, 
and chip input-output connections. Heat dissipa
tion does not appear to be a fundamental limita
tion at the higher gate count for circuits operating 
slower than about 30 nanoseconds. Circuits in the 
one nanosecond range present as yet unsolved 
chip thermal problems in the 50-100 gate range, 
and almost an order of magnitude improvement 
in circuit power-delay product and/or further de
velopment of advanced cooling techniques will be 
required before LSI can make a serious dent in 
line delay losses and provide an average in-use 

delay of less than 2 nanoseconds per gate. Current 
mainframe production is limited to an average in
use gate delay of about 4 or 5 nanoseconds, a value 
which appears to have only been attained with 
discrete components; about half the delay is at
tributable to line propagation and reflection ef
fects. The state of the early production art in 
high-speed monolithic chips is around 1.5 nano
seconds unloaded and has been realized with cur
rent mode circuits operating at 50 milliwatts. It 
appears that circuit power in the 1-2 nanosecond 
range may be reduced by at least a factor of two 
with only a slight loss of speed, providing the load 
is on the same chip as the driver. Nevertheless, 
total dissipation for a 50 gate chip still approaches 
2 watts, taking into account the need for off-chip 
drivers. Although several watts is comparable to 
or less than the power density of a commercial 
power transistor, it has not yet been demonstrated 
that the packaging problems at this level will re
sult in LSI reliability. 

The present design trend in LSI offers no 
panacea for reducing the number of wiring layers. 
Circuits on the chip are purposely close-spaced to 
minimize silicon area requirements, thus reducing 
the area available for wiring and creating the 
need in general for more than two layers. In the 
limit, the space available for signal wire routing 
to a first approximation is a function of the ratio 
of the length of the circuit edge to the wire width, 
although in any given case the space depends on 
various parameters such as via diameter, etc. For 
example, using the long-range forecasts of 50 
square mil circuits and interconnect widths of 
about 0.2-0.25 mils, the resultant ratio of 35 or 
less is not significantly different from that found 
in various examples of current close-spaced tech
nology. This suggests that an LSI chip will re
quire about as many signal wiring layers as found 
on IC cards of comparable logic power. IC tech
nology has the advantage that circuit density can 
be tailored to match the wiring space; the LSI 
chip is area-constrained due to yield. Multilayers 
have proved to be difficult in production at even 
the two-layer level; recourse to off-chip wiring 
would negate some of the attractiveness of LSI. 
Paradoxically, LSI incurs this potential limitation 
on internal interconnects at about the integration 
level where it becomes attractive from a circuit
to-I/O pad ratio standpoint. A reduction in circuit 
packing density by a factor of 2-3 below current 
practice at the 100 gate level may be required to 
offset the need for more than two metal levels. 
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LSI memories show considerable potential in the 
range of several hundred nanoseconds down to 
several tens of nanoseconds. In c'Ontrast with 
logic, LSI memory is ideally suited to exploit the 
advantages and liabilities of large chips: parti
tioning is straightforward and flexible, a high 
circuit density can be obtained with a manageable 
number of input-output pads, and the major eco
n'Omic barriers of part numbers and volume which 
confront LSI logic are considerably lower. Small
scale memory cell chips have already superseded 
film memories in the fast scratch pad arena; the 
depth of penetration into the mainframe is the 
maj or unresolved question. 

Assuming conservative yields, simple calcula
tions indicate the eventual c'Ost of memory chips 
in the 256 hit range can go well below one cent 
per bit at the wafer level. Peripheral circuits, 
packaging, test and the usual other factors will 
raise the SUbsystem costto a level which, although 
currently speculative, appears highly competitive 
with core and plated wire at the several cents per 
bit level. The number of connections in a main
frame LSI memory would be substantially greater 
than in a magnetic memory but on the other hand 
not vastly different from the count in existing 
small chip medium-scale processors. The array in 
an 8K word module, for example, with 256 bit 
chips and a performance level which would permit 
on-chip dec'Oding requires ·on the order of ·15K 
connections; a high performance module without 
on-chip decoding would require an additional fac
tor 'Of about three. Volatility should not be a seri
ous issue since recovery can be. managed by cus
tomary restart procedures. In the low-perfor
mance small I/O buffer area where circuit costs 
heavily outweigh stack costs, core still d'Ominates 
and LSI has yet made no inroads. The situation 
in this volume market is interesting in view of the 
apparent simplicity of small all-semiconductor 
buffers; the observation can serve as an additional 
calibration point for the status of LSI. 

Economic considerations 

The maj or economic hurdles for LSI arise in 
connection with a series of closely related issues 
inherent to the very essence of LSI, namely the 
increased level 'Of cir~uit integration. The issues 
are denoted as the part number, volume, design, 
test, and change pr~blems. 

The part number and volume problems can be 

illustrated with reference to processor require
ments. A typical small third generation processor, 
exclusive of I/O control, might utilize about two 
thousand logic gates or under 700 chips, assuming 
a three-gate median chip. The chips might be sub
divided into a half dozen part numbers, each with 
varying fan-in and gate count. A fully loaded 
card might carry about 50 gates; 50 printed cir
cui t cards would characteristically be psed and, in 
the worst case, each would be unique. Assuming 
f'Or simplicity that one LSI chip will be used to 
replace the circuits on a card, a total of 50 unique 
chips are required. In terms of the customary 
high-volume, low unit-cost practices of semicon
ductor manufacturing, two important parameters 
have moved in unfavorable directi'Ons: Part num
bers have increased and are in essence equal to 
the card part numbers, and parts per part number 
have decreased to a value approaching unity~ An 
even less desirable situation exists in large scale 
processors where, say, a 20,000 gate unit using 40 
gate chips might, without favorable partitioning, 
require on the order of 50-80 part numbers when 
all wiring differences are taken into acc'Ount. 

As for total volume, the existing market for the 
low performance machines of any given third 
generation family appears to be numbered in the 
thousands, or low tens of thousands; the potential 
for the high performance systems is numbered in 
the hundreds. Studies of growth potential suggest 
a factor of 2.5· overall increase in general purp'Ose 
digital computer shipments by 1975.4 The po-

. tentially large volume situation in memory and the 
volume requirements for low cost, short word 
length, instrumentati'On-type computers and other 
classes of equipment are more encouraging. Ter
minal equipment is undergoing a very rapid 
growth; comparatively few part numbers might be 
required with LSI. 5 Part numbers for I/O c'Ontrol
lers may be as high as for a small processor but 
the part volume is growing steadily. It is of in
terest to note that the venerable processor may 
soon surrender its long-time role as pacesetter for 
new technology. 

Using present yields and manufacturing costs 
as a basis, it is plausible that LSI arrays ·will be 
available in several years at a manufacturing cost 
of around 3 cents per gate. To this figure must be 
added costs related to engineering design and test 
procedure determinati'On, manufacturing final 
test, packaging, and other elements of mark-up, 
and profit. Whereas the latter are more specula-
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tive at this time than the cost of gate fabrication 
bt the wafer level, it is reasonable to believe that 
the total price per gate will evolve in 3-5 years to 
be 15 cents and less in arrays at the volume level 
of several tens 'Of thousands cited for the small 
processor. On the other hand, the order of magni
tude -lower volume situation in large scale proc
essors, coupled with the technology hurdles, re
quires the simultaneous realization of the more 
optimistic forecasts in market size, partitioning, 
gnd engineering costs before a favorable com
parison can be made between nanosecond LSI and 
projections in small chip technology. 

The increase in the level 'Of engineering design 
implied by the growth of semiconductor part num
bers does not confront the system manufacturer 
with an altogether new situation since he is al
ready accustomed to providing partitioning, as
signment, layout, and simulati'On routines in sup
port of current card manufacture. The truly new 
aspect is that major improvements in test capa
bility, design accuracy and turn-around are es
sential. The problem of specifying chip test is 
considerably more complex than in the test phi
losophy used in earlier equipment where all price 
parts are individually tested prior to assembly. 
Although important theoretical formulations of 
the problem have been reported, practical results 
in determining test procedures are only slowly 
appearing, and the early work suggests that the 
determination procedure may in many cases ex
ceed the gate cost in moderate production runs. A 
major increase in logic simulation with particular 
attenti'On to dynamic conditions will be required 
at the chip level to insure correctness 'Of design 
and minimize the need for chip redesign. 6 The 
change problem is particularly perplexing and is 
lacking in good proposals for its solution. One is 
reviewed in a later section. If a chip change is 
required sufficiently early in an LSI machine proj
ect, redesigned costs will be incurred although slip
page may not occur. During machine test, how
ever, where practice is to install a fix within min
utes if possible, slippage as well as redesign costs 
will accrue; a string of repeated change cycles 
would be intolerable. 

One technique which should contribute in some 
measure to the solution of the above problems 
lies in the use of master chips which are identical 
in all stages of fabrication except for the final 
metallizati'On step in which the required logic func
tion is defined. As with most general purpose 

schemes there is a loss; in this case, it is estimated 
that a master chip has about one-half the area 
efficiency of a highly tailored chip at the 50-100 
gate level, with efficiency decreasing at higher 
levels of integration. 7 Alternately, it is possible to 
conserve master chip area at the expense of addi
tional wiring layers. In view 'Of the current yield 
at two layers, it appears that inefficient area usage 
is the better course of action for the near future. 
The master chip concept tends to become less 
effective in high-performance systems (where it 
is needed most) because 'Of the difficulty in devis
ing an efficient standard allocation of silicon area 
between the large line drivers and small lower 
dissipation gates internal to the chip. 

Direct replacement 

The concept of direct replacement of circuits on 
cards of late third generation systems with LSI 
raises a number of interesting if n'Ot altogether 
defensible issues. (Modest improvements in par
titioning and mechanical packaging are assumed 
to be incorporated wherever possible.) The ra
tionale for such an approach might be as follows: 
(a) Introduction 'Of LSI into an existing and 
proved logic structure would achieve an increase 
in raw performance and eliminate many elements 
of cost discussed previously (as well as many un
anticipated ones); (b) Maximizing gates per pad 
has or will have already been considered in third 
generation printed circuit card packaging ~ al
though improvements can undoubtedly be made, 
it is not at all clear that one more attempt at 'par
titioning (approximately the same logic) will 
produce vastly better results for LSI; (c) A large 
number of existing or anticipated third generation 
cards have on the order 'Of 50-60 pads or less and 
approximately a 1:1 gate-to-pad ratio; although 
the former is beyond current practice, it is' not 
out of range of existing technology; (d) The pad 
spacing requirements on the periphery 'Of a chip 
with a technology such as beam-leads is not in
commensurate with the silicon area needed to con
tain about 50 gates. 

The rationale is obviously not flawless. The pres
sure of continuing ev'Olution in system enhance
ments may not permit a major hardware change 
without organizational improvements. Perhaps 
a far superior partitioning exists with a major 
logic reconfiguration. There is a go'Od chance that 
the restructuring would result in more gates 
rather than fewer pads. If so, would 200 gates 
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and 80 pins, say, really be an improvement? How 
many years longer would it take to achieve such 
a chip and fully engineer a system? Proposed 
schemes for revising logic structure for the sole 
purpose of accommodating the unique properties 
of LSI should be carefully examined to determine 
precisely what tradeoffs are involved. It is im
portant to assess not only the increase in silicon 
area, dissipation, and reliability in evaluating such 
proposals, but also the affect on throughput in 
high-performance systems which may be lowered 
due to a possible increase in the number of gates 
in the signal path and an increase in fan reOquire
ments. 

Even if so-called direct replacement were the 
best strategy, it still may not be economically justi
fiable. If this proves true, it is tempting to believe 
that the timing of the move to LSI logic will be 
considerably delayed. It. would then appear rea
sonable first to go through a generation of LSI 
memory in view of its comparative simplicity and 
distinction of being well-matched to the applica
tion and competitive economics. During this pe
riod, the technology could be shaken down, and 
the small chip alternatives to LSI exploited. 

System enhancement applications 

There are two categories into which the first 
lnajor wave of LSI applications to computer sys
tem design might fall: Quasi-replacement applica
tions, where LSI essentially replaces structures 
appearing in third-generation equipment (dis
cussed earlier) and enhancement applications, 
where the special properties of LSI are exploited 
to build structures which would permit general
purpose computers to have greater capability than 
what exists in the third generation. 

Let us now discuss the enhancement applica
tions to general-purpose computer systems, par
ticularly to their processor-memory subsystems. 
In order to evaluate the proposals which have been 
made, we shall enumerate some of those proposals 
which seem to be possible in the time frame under 
consideration, and then we shall evaluate those 
proposals according to specific user-oriented 
criteria which we shall make explicit. Here are 
the four broad classes of enhancement applica
tions which we shall consider. 

A. Design processors around large scratchpad 
memories. There are two functionally dis
tinct cases here, differing in the way the 
scratchpad is addressed. 

Al. The scratch pad is conventional~ addressed 
in the processor instruction. 

A2. The content-addressed scratchpad is not 
available to the user but enhances the ap
parent speed of the working ("main
frame" ) store by intercepting frequently 
occurring working-store references. 

B. .D-esign a processor-memory system around 
a backing store built of high-density semi
conductor shift registers.8 

C. Use microprogramming techniques based 
on LSI both in the logic-control ("read
only") store and in the memory-driven 
logic. Two different modes of use have 
been proposed. 

Cl. The content of the logic-control store is 
fixed, as far as the user is concerned. 

C2. The logic-control store can be written on 
command, thus permitting the dynamic 
definition of system operations by the user. 

D. Any assumed cost advantage of LSI can be 
used not in reducing system c'Ost but in pro
viding more logic for the same or somewhat 
more cost. 6,9 

Dl. Features now found in software can be 
built into hardware, hopefully improving 
total performance and reducing user pro
gramming cost. 

D2. Total performance and reliability can be 
enhanced by replication of subsystems and 
concurr,ency of operation. 

Evaluation criteria 

The consistent evaluation of these proposals re
quires some criteria related to the economic in
terests 'Of the user. There are three principal 
criteria enumerated below in their historical order 
of discovery. All three criteria are important in 
almost every system, but with different weights 
depending on its intended applications. 

A. Throughput-the rate of flow of useful in
formation through the system. 

B. Inquiry response time-the elapsed time 
from a well-defined request to an adequate 
reply to that request. 

C. User's manpower efficiency-the response 
time and rate of productivity of the user's 
programming and analysis personnel in put
ting new applications on the system and 
modifying existing applications. 

These criteria are not well defined, and of them-
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selves they cannot be used to evaluate directly a 
particular technological proposal. They do lead 
to the more specific criteria, enumerated below, 
which can be used to evaluate the LSI pr'Oposals 
given above. 

Al. Processor instruction or data-manipulation 
speed. 

A2. Input-output rates and the amount of con
currency among input-output channels and 
between input-output and processing. 

B. Multiprogram switch time, i.e., the elapsed 
time, after a decision is made to switch a 
processor from instruction stream (or pro
gram) X to instruction stream (or pro
gram) Y, between the making of this de
cision and the first executed instruction 
ofY. 

C. Efficiency 'Of translation, diagnosis, and 
execution of programs written in the com
mon high-level languages. 

These criteria are still not well defined in an 
absolute sense, but they are sufficient for qualita
tive comparison of prop'Osed schemes to each other 
and to present techniques. Again their weights 
are different in different applications, but since 
we are concerned with the design of equipment to 
serve in many environments, we shall rej ect those 
proposals which improve performance acc'Ording 
to one criterion only at the obvious expense of an
other. 

Now, how do the new capabilities allegedly made 
p'Ossible by LSI fare according to these criteria? 

LSI scratchpads 

Conventionally addressed scratchpad stores 
force a tradeoff between instruction execution 
time and multiprogram switch time, the two ma
j or components of total processor time. For a 
given application and processor type there is a 
minimum number S m of scratchpad words (in
dex and arithmetic items) such that if fewer are 
used, processor speed is severely degraded. Ex
perience suggests that this number is between one 
and sixteen and is often less than eight. Experi
ence also suggests that above S.." the increase in 
instructi'On speed due to increments in scratchpad 
usage rapidly falls to near zero. On the other 
hand, that part of a conventionally addressed 
scratchpad associated with the user program must 
be fully dumped to working store and then re
loaded every time the processor switches between 

In a give;; multiprogramming environment with a 
given 1/0 activity, there is a size Sm of employed 
scratch pad which wi II minimize execution time. 
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FIGURE I-Instruction time vs. switch time as a function of 
scratchpad sIze 

two user programs. (The need to dump all regis
ters whether or not they were altered arises be
cause the executive system has limited knowledge 
about scratchpad usage and is generally forced to 
make a worst-case assumption-namely that every 
scratchpad register is in use.) Figure 1 shows the 
instruction time vs. switch time tradeoff as a func
tion of scratchpad size. 

Now, it may be argued that LSI 'Offers the op
portunity to build a scratchpad large enough to 
hold simultaneously S m words for every pro
gram in working store, thus reducing the dump
reload time to zero. This argument, is valid only 
if it can be assured that the scratchpad is large 
enough to handle the worst-case maximum num
ber of user programs in working store. If this 
cannot be assured, then there is a cost of making 
a decision (whether to perf'Orm the swap) which 
must be added to the switch time whether or not 
the swap occurs. In the design of systems for gen
eral use such assurance is difficult to provide (a 
consequence of Murphy's Law: "If anything can 
go wrong it will.") and the whole rationale for a 
large conventionally addressed scratchpad falls of 
its own weight. (This argument does not hold if 
the machine is designed for a specific family of 
applications, a case we are not considering.) 

On the other hand, a "transparent" scratchpad 
(one whose addressing is not a.vailable to the pro
grammer) appears to offer a genuine advantage. 
If the scratchpad is content-addressable by virtual 
address so that it serves automatically to inter
cept references to working-store cells whose con-
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tents are duplicated in the scratchpad, and if 
there is built into the logic of this scratchpad a 
purge strategy which assures that its content is 
approximately related to the set of working store 
addresses currently in greatest use, then there is 
no necessity to make any worst-case assumptions 
about scratchpad usage, and the dump~rel'Oad cost 
of a program switch will adapt to actual need, in
dependent of scratchpad size. (This is a resurrec
tion of a concept which appeared in the Atlas 
computer.10 Furthermore, if this scratch pad is 
modularly expandable, decisions about the size to 
buy are principally related only to performance 
desired as a function of switching frequency, and 
do not run afoul of Murphy's Law. Thus, if LSI 
makes a transparent scratchpad possible, this ap
pears to 'Offer a substantial QPPQrtunity tQ systems 
designers. 

The abQve comments ab'Out Murphy' s Law are 
nQt to be taken lightly. The decisiQn-making prQC
ess in the design 'Of general-purpose systems fre
quently requires the making of many worst-case 
assumptions with full knQwledge that in almost 
all cases they are excessive. Every time a worst
case assumption can be avoided an QPPQrtunity 
exists to better match a general-purpose system 
to any given application. 

LSI backing store 

It was shown as IQng agQ as UNIVAC® * I that 
data transfer 'Of the full contents 'Of two syn
chronized delay lines of equal size can take place 
with zer'O latency. This principle is equally valid 
to data transfers between tapped shift registers 
and random-access memories, and suggests a sys
tem 'Organization based on the interesting prQper
ties 'Of a large array of semiconductor shift regis
ters emplQyed as a backing stQre. Such an organi
zatiQn may be quite prQmising in transactiQn
oriented systems, in which the interface between 
wQrking and backing stQre is a classical bottle
neck. 

1Jlicroprogramming 

Microprogramming has already proven its val
ue in the cQmputer marketplace as a way of sell
ing equipment to users with an investment in 
prQgrams not designed f'Or that equipment. It is 
fallacious, however, to base upon this observatiQn 

* Registered trademark of Sperry Rand Corporation 

the conclusion that the deliberate use of micro
prQgramming tQ expand the user's set of lan
guages is gOQd for the user. Quite to the contrary. 
The establishment of programming standards is a 
matter of extreme importance to users; language 
and data standardization is, the claims of zealous 
language designers notwithstanding, the single 
mQst important technique available fQr imprQving 
the efficiency 'Of user manpQwer. Even the present 
c'Ommercial use of micrQprogramming is in the 
service 'Of ultimate standardization, not diversity, 
cven thQugh the short-term consequences appear 
to be tQ the contrary. 

Those proposals for alterable microprogram
ming, wherein the processor instruction repertoire 
is dynamically redefinable, may sQund appealing, 
but the auditor 'Of such prQPQsals shQuld ask him
self: "What advantage is claimed?" It appears 
that no functional advantages have been proposed 
'Over what is available with today's better soft
ware, but some hQpe is held 'Out that CQmmon prQC
esses will run faster when microprogrammed. 

As SQon as the user is given the 'OPPQrtunity tQ 
alter his logic-contrQI store, Murphy' s Law re
quires the general-purpQse system designer tQ 
assume that each user will dQ S'O ... differently. 
In a multi program environment, then, the pro
gram switch time must account for the c'Ost 'Of 
dumping and loading (or, alternatively, disen
gaging and re-engaging) IQgic-control stores ap
propriate to the old and new programs. All the 
arguments cited abQve with respect to swapping 
conventiQnally addressed scratchpad apply in this 
case, alsQ, but the situati'On is aggravated since 
many mQre bits 'Of stQrage are invQlved in micro
prQgramming than in the cQnventiQnal use of 
scratch pad registers for indexing and arithmetic. 

The problems associated with designing and de
bugging a large, complex chip have already been 
discussed here. The design 'Of computers is also 
characterized by the need for frequent IQgic re
visions. Clearly, the introducti'On of LSI tech
nology into the computer design cycle can be ex
pected tQ aggravate seriously the normal problems 
'Of the procurement relationship between the semi
cQnductor supplier and the cQmputer designer. 
MicroprQgramming, when viewed as a technique 
aimed principally at simplifying this relationship, 
may be a genuine bQon, because it is'Olates the most 
probable logic changes int'O a very regular, (hQpe
fully) easily redesigned component : the logic
control store. Furthermore, the processor which 
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executes the microprogram is more suitable for 
LSI than a conventional processor because it is a 
more regular structure due to its unusually simple 
control logic. The computer user won't be con
cerned with this application of microprogram
ming, but nevertheless it bears an important re
lationship to LSI. Note, however, that LSI is not 
clearly destined to replace the magnetic or capaci
tive stack in the logic control store. A truly non
volatile read-only LSI storage array based on ex
isting technology presently has an inordinate turn
a.round time for alterations, and there has been 
no economic incentive as yet to provide on-site 
facilities for the computer manufacturer to imple
ment quick changes. Recently reported discoveries 
of new non-volatile storage mechansims in MOS
like devices may provide an eventual basis for the 
implementation of alterable read-only stores with 
semiconductors.ll . 

Replicated subsystems 

The use of replicated subsystems to improve 
performance falls into two classes. The "network 
processor" of the ILLIAC IV type12 acquires, for 
a given task, a topological configuration in which 
the position of a processing subsystem in the 
topological structure bears a definite relation to 
the subfunction to be performed. Network proc
essors are interesting, possibly even promising, 
but are beyond the scope of this paper because 
they are not expected to offer broad enough utility 
in the time period under consideration to be called 
general-purpose. 

'The other approach to replication may be called 
the "multiprocessor."13,14 In the multiprocessor 
replicated subsystems of the same type are inter
changeably available for assignment to subfunc
tions. Thus a multiprocessor with replication of 
every distinct type of subsystems has the potential 
for greater system reliability than is conventional
ly possible. 

LSI may contribute to multiprocessor design 
where structure is periodic at a low level. This 
may occur in two places: working store modules 
(which must be smaller than is considered eco
nomical today to permit many concurrent accesses 
to the total working store), and switching matrix 
modules. The multiprocessor approach to system 
organization cannot normally be justified on the 
basis of cost/performance, but it can on the basis 
of total system performance or reliability. To the 
extent that the multiprocessor organization is jus-

tified, the application of LSI to this organization is 
promising. 

The multiprocessor switching-matrix applica
tion of LSI has some additional interest because 
the matrix contains within it a distributed con
tent-addressable memory. The use of an asso
ciative store in this way is, in fact, a generaliza
tion of the proposed use of associative storage in 
memory paging.14 This appears to be the only 
defensible application of associative storage in a 
general-purpose computer which has so far been 
proposed, and it forms an excellent match to the 
unique capabilities of LSI. 

LSI has an inherent functional advantage over 
magnetics in associative applications, namely that 
fast bit-parallel searches can be achieved. The 
main drawback of magnetic associative memories, 
even. in those applications which require relatively 
simple match-logic per word, is that imperfect 
cancellation of analog sense signals and other 
noise effects give rise to a low signal-to-noise ratio 
and thereby limit the technology to essentially bit
serial operation. Thus, the more nearly binary 
signals available from semiconductor associative 
devices seem to provide a unique advantage over 
magnetics which is not strongly evident in com
parisons of the two technologies over other cate
gories of memory. 

H ardware-so!tware tradeoffs 

The incorporation of software capabilities into 
hardware is a subject difficult to discuss specifical
ly because of the shortage of concrete proposals, 
but a few general statements can be made. When 
someone proposes a hardware-software tradeoff, 
he usually has one of three things in mind. 

A. The direct execution of high-level languages 
by processors.1.5,16,'1'7 

B. The handling of many small frequently exe
cuted tasks which are now done by software 
but which are obvious candidates for hard
ware, for example, parallel limit checking of 
subscripts and stack and list pointers, lo
cating the source of an interrupt, priority 
task alloca tion, and processing of certain 
interrupts.1s 

C. The incorporation of a major portion of 
software (usually the system executive) into 
hardware. 

First, let us observe that none of these ideas is 
particularly well matched to the features of LSI. 
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It is likely that if any of these ideas has validity, 
it could have been justified in third generation 
equipment;, if this has not happened the reasons 
may be more related t'O organizational inertia than 
any merits of the idea.19 Let us briefly attempt, 
however, to examine these merits. 

Direct execution machines are interesting be
cause they apparently eliminate a translation stage 
which costs machine time. It is doubtful, however, 
that this property alone offers any important ad
vantage over state-of-the-art s'Oftware on conven
ti'Onal hardware. The important characteristics 
of a high-level language which offer cost/perform
ance advantages to a processor which is modeled 
after the language are related not to the super
ficial characteristics of the language (e.g., alpha
numeric representati'On) but to its deeper, struc
tural properties, such as the way it separates data 
description from procedure description, the way it 
permits segmentation of programs, and how long 
it permits delaying the assignment of values to 
certain variables, such as array size. In the United 
States, with the notable exception of 'One manu
facturer, most people who have attempted to 
achieve a cost performance gain by modeling a 
machine after a language have been scrutinizing 
the wrong end of the horse. 

There is still, however, a go'Od reason for mod
eling machines after the more superficial char
acteristics of languages, and because it affects the 
user's manpower costs it may turn out to be a very 
important reason. This is the simplifying effect 
which executing a program in its original form 
has on the human processes 'Of program modifica
tion and documentation. It can be expected that 
a commercial system which is explicitly designed 
to simplify the processes of program checkout, in
tegration, documentation, and modificati'On will be 
a very attractive commodity. 

As for the numerous small software tasks which 
might go into hardware, it is likely that some of 
them 'Offer performance advantages, possibly 
justifying their cost even with today's hardware. 
The point here is that these proposals, and 'Others, 
can be considered on their own merits and should 
not be confused with the question 'Of what to do 
with LSI. 

The inc'Orporation of a maj or portion 'Of system 
software into LSI hardware has very little to 
recommend it. The principal 'Objection to the idea 
is' that it aggravates one 'Of the greatest weak
nesses of LSI: the high cost 'Of design changes. A 

major piece of system software is a m'Ore compli
cated object than most computers, and it is usual
ly not debugged before its host computer becomes 
obsolete. It has been estimated by a software 
executive 'Of a major computer manufacturer that 
as much money is spent on "maintaining" a maj or 
piece of systems software after it is initially re
leased as is spent in its development before that 
point. The re-creation of a physical program 
realization is not entirely straightforward even 
when the change involves 'Only the rewriting of 
a magnetic tape; it would be intolerable if each 
new revision level impli~d layout and manufacture 
of one or more distinct semiconductor arrays. 

It has been suggested that this objection can 
be overcome by putting the s'Oftware in a f'Orm of 
read-only store. Such a store might not even be 
a semiconductor array, as was remarked above 
in connection with microprogramming. This ar 
rangement might speed up the execution 'Of s'Oft
ware, although the benefit is questionable on both 
complex processors (which already have enough 
concurrency that instruction fetching is not a 
speed limitation) and simple process'Ors (where 
the elimination of instruction fetching might save 
some fraction of execution time but the cost of 
this approach might be unacceptable). If the pro
gram in the read-only store were a micropro
gram20 instead of the ordinary "machine lan
guage" of today's software, a speed improvement 
is more likely, but the problems of increased cost 
of ownership (see below) are aggravated. 

Executing s'Oftware in conventional machine 
language from a rewritable working store has 
more t'O recommend it than can be accounted for 
purely by historical accident. There is a cost as
sociated with owning and storing the realization 
of a large program, particularly when it is con
tinually undergoing change, and the virtue of 
storing the parts of a quiescent program 'On a 
relatively low-cost magnetic surface and writing 
them into working store only for execution is that 
the relatively higher cost of the working store can 
be shared with 'Other programs. This sharing is 
not possible if the entire software must always 
reside in the high-speed store from which it is to 
be executed. 

Note that the no-write character of a read-only 
store does not necessarily substantially reduce its 
c'Ost with respect to read-write st'Ores, and there 
is also to be cpnsidered the cost of replacing the 
storage medium at each revision. The algorithms 
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of software can be more compactly expressed in 
conventional machine language than in a logic
control microlanguage, so the cost of ownership 
of software in such a micro language would be even 
higher. There is a tradeoff, then, between the in
creased ownership cost and the possibly decreased 
execution time of microprogrammed software in 
read-only store; we know of no serious attempt 
to investigate this tradeoff. It appears that there 
may exist a useful compromise in which only the 
frequently used functions of a compiler object 
program are microprogrammed.21 

SUMMaRY 

An appraisal of the techrtologi.cal, economic, and 
system application aspects of Large Scale Integra
tion has been offered. In logic, the chief competi
tion for the large complex chip is the small simple 
chip. In memory, large chips are better than small 
chips but not yet superior to magnetics in the vol
ume areas. The change problem has no solution 
short of attainment of a level of design automa
tion far above that now existent. Approximate 
replacement of existing stable and proved third 
generation circuit partitions with large chips 
would be the simplest way of introducing LSI; the 
procedure, however, lacks a clear economic basis 
at the moment. The attempt to achieve major 
processor restructuring to obtain more favorable 
partitions with higher gate/pad r~tios is a current 
activity of significance. If restructuring entails 
large chips, the entry of LSI into processors will 
be considerably delayed; if it provides nothing 
more than a mere accommodation for LSI, inertia 
and economics will rise in opposition. Initial sys
tem enhancement applications are limited in num
ber. Transparent scratchpads appear to be ad
vantageous. Fixed microprogramming, rather 
than as an aid in proliferating languages, can be 
used to alleviate the change problem and further 
serve as the basis for a restructuring favorable to 
LSI partitioning requirements. Multiprocessor 
working store switching matrices constitute an 
important application area, and the size and per
formance characteristics of the working store 
module itself are moving in a direction in which 
LSI appears inherently competitive. The use of 
LSI to build large scratchpads may prove to be 
economically justified on a replacement basis but 
not on an architectural. enhancement basis. The 
notion of putting more software into hardware 
is generally found to be ill-defined; this may be 

a major area of opportunity but it is only weakly 
related to any advantage LSI might offer. Clearly 
the hurdles for LSI are high. Perhaps, as one sage 
has said, it will be used "only because it's there." 
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High speed modular multiplier and digital filter for 
LSI development 

by DON F. CALHOUN 

Hughes Aircraft Company 
Culver City, California 

INTRODUCTION 

In order to realize the increased economy and re
liability of systems implemented in large chip or 
full wafer LSI, five requirements must be satis
fied: 

1. Systems must be organized and partitioned 
to obtain a high gate-to-Iogic pin rati'O in 
order to maximize the use of wafer com
ponents. 

2. Efficient use must be made of standard logic 
cells more complex than current IC chips. 

3. Logic cells must be defined to both facilitate 
automated routing and to allow automated 
testing with a· restricted number of test 
points. 

4. Discretionary interconnect of logic elements 
must be eliminated or minimized. 

5. Sufficient redundancy must be used to in
sure reliability, facilitate testing, and allow 
economical interconnect in view of non-100 
percent yields. 

An efficient and original scheme for m'Odulariz
ing a general purpose high speed digital filter is 
described in this paper. The prime components of 
this filter are the Modular Carry Advance Multi
plier and Adder which meet the first three require
ments above extremely well. In a future paper, a 
technique will be presented which offers a unique 
means of economically obtaining a specified stand
ard pattern of good circuits 'On either an LSI chip 
or an entire wafer. The use of this technique for 
L.SI non-discretionary signal routing helps to meet 
requirements (4) and (5) by standardizing all 
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signal interconnect and facilitating automated 
testing. 

High speed modular multiplication for LSI 
development 

The M'Odular Carry Advance Multiplier uses an 
original algorithm and implementation to provide 
very high speed multiplication for any word length 
operands. The technique is most important to any 
digital processing requirement such as Fast Four
ier transforms, pulse compression, digital filter
ing, or even general purpose computers which re
quire very high speed mUltiplication. The highly 
efficient modular logic characteristics and the use 
of a single circuit type (i.e., a gated full adder, 
NAND gate, or NOR gate) make it a system very 
applicable to efficient LSI implementation. Thus, 
the Modular Multiplier is both an excellent vehicle 
for the development 'Of LSI processing, testing, 
and packaging technologies, and is, in itself, an 
important instrument with which to meet the cur
rent and future high speed digital processing re
quirements. 

. Emphasis in the description of the multiplier 
is placed on the modular design techniques which 
provide the very important characteristics for LSI 
development of efficient standard modules that: 
(1) obtain a very high gate-to-pin ratio of 43 for 
an 8-bit multiplication, (2) require only one cir
cuit type, (3) are readily diagnosable, and ( 4) 
allow a one-time logic design that does not require 
temp'Orary storage, control, or shift logic for any 
wordlength. Finally, the organization of an entire 
digital filter is described which meets the LSI 
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criteria and uses the Modular Multiplier as the 
key component in its high speed design. 

Design of the modular carry advance multiplier 

There are two original concepts in the design 
of the Modular Carry Advance Multiplier. First, 
the most general multiplication technique of sum
ming the c'Olumns of a matrix formed by ANDing 
and shifting the multiplier-multiplicand bit pairs 
(as shown in Figure 1 for an 8-bit multiplication) 
has been analyzed to determine independent and 
modular blocks of logic which allow partial prod
ucts to be determined in parallel and then summed 
to form the final product. The most efficient divi
sion of the multiplication matrix into modular 
logic blocks is accomplished by forming geometri
cally similar blocks within the matrix as shown by 
the dashed lines where an 8-bit multiplication is 
partitioned into four identical 4-bit multiplier 
blocks (MBI-MB4). Since these four logic blocks 
are independent, each can function in parallel to 
determine 8-bit partial products by the column 
summation of the bits in its portion of the large 
products in a three-input adder is the final prod
uct. 

Since the four segments of the multiplication 
matrix are reduced at once and since the mUltipli
cation matrix itself has pre-determined the shifts 
required, no contr'Ol, temporary storage, or shift 
logic is required. By this simplification ~f the 
column summations into shorter, parallel opera
tions without control logic, a significant speed ad
vantage is .obtained. In additi'On, a modular mul
tiplier block has been defined which can be used 
to build any longer wordlength multiplication by 
paralleling modules and summing their outputs. 

(MULTIPLICAND) 

(MULTIPLIER) 

DB 07 06 05 04 03 02 01 

MB M7 M6 M5 M4 M3 M2 M1 

/~OB M1007 M1006 M100~o04 M1003· M1002 Mio017 

/ / / 
/ M2-0B M2007 M2006 M2-05/ M2004 M2003 M2002 M200Y 

MB2y / / 

/ M3-0B M3-07 M3006 M3005 ,(3004 M3003 M30.02 M300) 

/ / /"-MB1 
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P16 P15 P14 P13 P12 P11 p10 P9 PB P7 . P6 P5 P4 P3 P2 P1 

FIGURE l-Four modular 4-bit multipliers for the 
multiplication of two 8-bit operands 

The bit length of the multiplier module can be de
termined by the yields of different complexity LSI 
chips and by the efficiency obtained for various 
multiplication wordlengths. In any case, the 
modular multiplier reduces the maximum multi
plication delay from N full wordlengt? additi~ns 
and shifts for the classical one-blt-at-a-tIme 
technique to that of only one double-wordlength 
addition. Since most 'Of this delay occurs in the 
adder which sums the partial products, look-ahead 
or other speed-up techniques in the adder will fur
ther improve the speed beyond that reported here
in. 

The second original technique in the modular 
multiplier is the asynchronous carry advance phi
losophy that is used to implement with a single 
circuit type the multi-operand addition required 
both in the multiplier modules and in the final add
er. The carry advance implementati'On performs 
the simultaneous addition of multiple operands 
with any carries being asynchronously advanced 
toward the output rather than being "saved" or 
propagated in a ripple-carry fashion. The logic 
signals with the shortest delay paths are reduced 
first, thus adding less delay to the most critical 
paths. 

In general, if K-bit modular building blocks .are 
used, (N/K) 2 of the blocks allow the multiplIca
tion of two N-bit (magnitude) operands, where N 
is unrestricted. These operate in parallel to form 
partial products which are then reduced to the 
final product by a (2N-K) bit adder. In general, 
an (N by N) bit multiplication with register stor
age of the product will require 6 SUM and (2N-3) 
CARRY delays ° A hybrid chip-and-wire MSI mul
tiplier module (Figure 2) and an integrated cir
cuit breadboard (Figure 3) which form 8-bit 
products have been built and tests (see Figure 4) 
show a 12-MHz multiplication rate using 12 of 
the relatively slow SN5480 gated full adders. The 
hybrid MSI multiplier was fabricated on a I-inch 
square ceramic substrate. The introducti'On of a 
6-bit latch register would allow the 12-MHz rate 
to be nearly doubled via pipelining. . 

As an example of paralleling identical multi
plier blocks to build longer wordlength multiplica
tions, consider the multiplication of two 8-bit 
operands as shown in Figure 5. As for the-general 
case in Figure 1, the four 4-bit multipliers (MBl
MB4) are defined by forming the smaller, geo
metrically similar matrices, each of which deter
mines the product of four of the multiplier bits 
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FIGURE 2-Wire-bonded 4-bit carry advance multiplier on 
I-inch ceramic substrate 

FIGURE 3-Breadboard of 4-bit carry advance multiplier 

and four of the multiplicand bits. Figure 6 shows 
the independent operation of MBl through MB4 
to determine in parallel the 8-bit partial products 
PPl through PP4, respectively. Because PP1-PP4 
have different magnitude effects on the final prod
uct, the outputs of MB1-MB4 are staggered when 
input to the adder" whose inputs are shown in 
Figure 7. Because the partial products are stag-

FIGURE 4-0scilloscope trace (100 ns per division) of 4-bit 
multiplier breadboard (Figure 2) showing 12-15 MHz multipli

cation rate 

MULTIPLICAND-- 0 1 1 1 0 0 1 1 

MULTIPLIER -- * 1 1 0 1 1 0 0 1 

/ '0 1 1 1)0 0 1 1 7 
/ "/ 

MB 2~ / 0 0 0 q", 0 0 0 0 / 

/ 0 0 0 % 0 0 0 ~ 
/ 0 1 1 1 /0 0 1 1 / . MB 1 
~- - --7- - --7' 

/ 0 1 1 1/0 0 1 1/ 

MB4'-.o. //000 <y1l 0 0 o~ 
~0111/0011/ MB3 

/ ~ / 
L/ 0 1 1 ~ ~ 0_ 1~ ~ 

PRODUCT -- 0 1 1 0 0 0 0 I, 0 1 1 1 1 0 1 1 

FIGURE 5-Eight-bit multiplication matrix example 

DEFINITION OF IDENTICAL MODULAR BLOCKS (AS SHOWN) 
REDUCES THE LONGEST DELAY FOR ANY MULTIPLICATION 
FROM N ADDITIONS TO ONE DOUBLE WORDlENGTH ADDITION
AND WITHOUT ANY CONTROL, SHIFT, OR REGISTER DELAYS. 

D5-D8---........ ---------, 

r----+---~~---Dl-D4 

r-------1I---4~--Ml-M4 

PRODUCT (16 BITS) 

FIGURE 6-Independent operation of MBI through MB4 to 
determine in parallel 8-bit partial products PPI through PP4 
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OOOIIOII"-PP1 
00111111'" • J"-PP2 
o 0 I 0 0 I I I I -+- PP3 

o I 0 I 1 0 I I ,-+- PP4 
c-==') 

o I I 0000 1,0 I I I I 0 I I .- PRODUCT 

Figure 7-Adder inputs for multiplication of Figure 6 

gered in this fashion, the adder need only be a 
three-input 12-bit adder in order to determine a 
16-bit product. This can be reduced to a 10-bit 
delay by doing a simple look-ahead in the last three 
bits which does not require additional circuits if 
gated full adders are used. And, since the multi
plier block delay is equivalent to a 6-bit addition, 
the longest delay to multiply two 8-bit numbers is 
equivalent to a double wordlength (Le., 16-bit) ad
dition. 

Figure 8 shows the logic required in each 'Of the 
identical 4-bit multiplier blocks with the inputs 
being ANDed multiplier-multiplicand bits if non
gated full adders are used. The longest delay is 
from the SUM (S) output of the first FA3 or from 
the CARRY (C) output of FA2 to the S output of 
FA7. If gated full adders are used as the logic 
bl'Ocks, only the four multiplier and four multipli
cand bits are necessary at the left as inputs. That 
is, the gated full adders can generate the required 
"AND," of the multiplier-multiplicand bit pairs as 
well as determine the SUM and CARRY outputs. 
Otherwise, the ANDing function of the multiplier
multiplicand bit pairs must be generated external 
to the full adder blocks. The design that has been 
breadboarded and tested requires only 12 SN5480 
gated full adders per 4-bit multiplier block. Thus, 
to multiply two 8-bit operands, 48 full adders are 
needed for the modular multiplier blocks, 19 for 
the adder, 1 as a sign determining circuit, and 34 
gated full adders to implement a 17 -bit product 
register. This totals only 102 gated full adder cir-

------------~----------------L-~-L~·,P8 

======~~~~~------~-------~=t __ I-__ P1 

~~~~~~~~EL~~~~~~ 
--~~L-~~L-~~~------------------+N 

--~~~~~--------------------------.P.5 
--~~~------------------------------+n --------------------------------------+.Pl 

FIGURE 8-Design of 4-bit carry advance multiplier 

cuits and is well within the goals of full-wafer LSI 
technology. Only 38 external conn.ections are re
quired which obtains a very high gate to pin ratio 
of 43 since each gated full adder is logically equiv
alent to 16 two-input NAND gates. If 16 addi
tional input pins and 12 full adder circuits are 
added, a 16-bit number can be added to the prod
uct which represents all the arithmetic processing 
necessary to accumulate the finite sum of products 
required in linear digital filtering. 

Use of an "Integrated Electronic Component" 
as the basic logic block 

All logic functions in the multiplier, adder, and 
register can be accomplished with NAND gates, 
NOR gates, or with gated full adders (e.g., the 
Texas Instruments SN5480 "Integrated Electronic 
Component").· This gated full adder chip (shown 
logically in Figur~ 9) is used efficiently in differ
ent modes to obtain the functions of a full adder, 
half adder, NAND gate, single-input inverter, and 
flip-flop (by cross-coupling the input gates). In 
addition, conversion to one's or two's c'Omplement 
notation can be accomplished in the adder by ap
propriate use of full adder input gates. The use 
of this single circuit type as a logic building block 
and the modular characteristics 'Of the multiplier 
are especially important since they provide a sys-

A 

GROUND 

11 

FIGURE 9-SN 5480 full adder with gating and interconnection 
pads shown 
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tem very applicable to LSI development which can 
greatly reduce the cost and volume per circuit of 
this high-speed design. A further advantage to 
choosing a gated full adder as the single circuit 
type is that its logic is equivalent to 16 precon
nected NAND gates that greatly reduce the num
ber of circuit chips and interconnecti'Ons required 
between circuits. The simplification of intercon
nect by using more complex logic chips as building 
blocks in an LSI implementation is especially im
portant. 

The design of the modular multiplier with the 
product register is about 85 percent as efficient (in 
number of IC chips) as an 'Optimum design using 
gates and full adders, but at that high an effi
ciency it is far more desirable for LSI processing 
techniques than a mixed circuit design since it 
offers extreme advantages in both the wafer pro
cessing and circuit interconnect. Furthermore, 
the area of an SN5480 circuit is 3600miF for 16 
gates while the area of an SN5400 quad two-input 
NAND gate is 3000 miF. Thus, the SN5480 has 
333 percent more circuits per area than the 
SN 5400 quad two-input NAND gates. For any 
application that makes much use of full adder 
functions, such as the design presented here, a 
gated full adder is seen to be a much more efficient 
circuit type. Because it is a complete logic build
ing block and offers the great logic flexibility de
scribed above, it may be found to be quite import
ant for other LSI systems. 

Summary of modular carry advance multiplication 
characteristics 

The M'Odular Carry Advance Multiplier has 
been described having the following character
istics: 

1. An efficient, high speed design (30 MHz 
with MECL II for 8-hit products) is used. 
For example, a f'Our-times speed increase is 
obtained over two-bit-at-a-time ternary 
multiplication using a look-ahead adder. 

"2. The modular multiplier is implemented with 
a single circuit type (a gated full adder) of 
high logic capability which minimizes the 
unit volume and interc'Onnection. 

3. The "m'Odular logic design allows any word
length multiplication to be built. by parallel
in.- more identical building blocks. 

4. N'O control, shift, or storage logic is re
quired, thus permitting a maximum gate-to-

pin ratio (43 for an 8-bit multiplier). 
5. The multiplier is easily tested from inputs 

and outputs alone by using counters for the 
inputs and monitoring the outputs of two 
or more units with a simple comparator. 
Total test time for entire 1600 gate wafers 
is about 200/Ls. 

6. By using Q additional full adders, a Q-bit 
operand can be added to the product while 
it is being formed with only one additional 
SUM delay. That is, (A."{B) +P) could be 
generated with only one additional SUM de
lay beyond the time required to generate 
(AxB). This has a most important applica
tion in radar data processing as described 
later since it entails all the arithmetic pro
cessing required in digital filtering, pulse 
compression, or correlation calculations. 

7. Pipelining of a Modular Carry Advance 
Multiplier can be used to" both gain speed 
and save circuits in l'Ong wordlength appli
cations. That is, successive groups of the 
multiplier and multiplicand hits can be se
quenced through a single modular multi
plier which forms a partial product that is 
summed with the sum of previous partial 
products until all multiplier-multiplicand 
groups have been multiplied. For example, 
Figure 10 shows the multiplication of two 
32-bit 'Operands by sequencing 8-bit groups 
of the multiplier and multiplicand through 
the multiplier 16 times. Thus, sixteen 12-
bit additions are required and at 20 ns per 
stage, (16x12x20) ns=3.84 /LS is the total 
delay to form the 64-bit product. 

8. The combination of efficient modularity, 
very high gate to pin ratio~ and the fault 

12 BITS 64 BITS 

PIPELINING CAN BE USED TO GAIN SPEED AND SAVE 
CIRCUITS IN LONG WORDLENGTH APPliCATIONS 

DELAY WITHOUT MULTIPliER MODULE: 
32 X 32 X 20 = 20.481'5 

DELAY WITH MULTIPliER MODULE: 
16 X 12 X 20 = 3.841'5 

FIGURE lo-Multiplication of two 32-bit operands by 
sequencing 8-bit groups of multiplier and 

multiplicand through multiplier 16 times 
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isolation characteristics allow the Modular' 
Carry Advance Multiplier to obtain the in
creased reliability and economy of LSI im
plementation. 

Automated diagnosis of an LSI modular 
multiplier and digital filter 

The 8-bit plus sign modular multiplier that has 
been discussed consists of four 4-bit multiplier 
modules, a 12-bit adder, and a 17 -bit product reg
ister. The adder and register can be combined 
into one 4-bit module type allowing four of these 
4-bit modules to perform the partial product addi
tion and storage. Thus, two modular unit types 
can be defined on an LSI wafer which together 
comprise the multiplier that develops a 17 -bit sign 
and magnitude product. If the partial products 
developed by the multiplier blocks are available 
at test points external to the wafer, access can 
then be gained ,to each of the eight modules to 
test and isolate \ any failure to a single module. 
Since only combinatorial logic is used, and there 
are only 28 combinations of inputs to each module, 
complete, exhaustive testing of the modules is both 
fast and straightforward. Figure 11 shows the 
simple test-bed of two 4-bit counters, two 8-bit 
registers, and an 8-bit comparator that can be 
used to automatically test the mod~les of two LSI 
wafers exhaustively. Each successful comparison 
clocks the multiplier to its next state and a multi
plier carry-out clocks the multiplicand into its 
next state, thus successively generating all 28 

combinations of inputs. If a comparison is not 
made, the FAIL signal is given and the counters 

TEST 
COMPLETE 

FAIL 

USING THIS 
SIMPLE TEST BED, 
MANY LSI WAFERS 
OF -2000 GATE 
COMPLEXITY COULD 
BE EXHAUSTIVELY 
TESTED 

TOTAL WAFER TEST 
TIME IS -200 fLS 

FIGURE ll-Simple test-bed of two 4-bit counters two 8-bit 
registers, and 8-bit comparator for automatic testing or'modules of 

two LSI wafers 

are left in their last state so that a logical diag
nosis can, if desired, isolate the fault to one of 
the 12 to 14 full adders in the bad module. This 
simple automated test procedure can proceed at 
speeds of 200 fJS per LSI wafer. Because the 
Modular Multiplier allows an LSI wafer to be 
efficiently partitioned into smaller cells that can 
be readily diagnosed, it is an excellent vehicle with 
which to develop the full wafer LSI technology 
with multi-layer interconnect. A fully automated 
test bed for 4-bit multiplier modules fabricated on 
a single LSI wafer chip is currently being built 
at Hughes. Figure 12 shows, in the bordered 
regions, three of these 4-bit multiplier chips on a 
11/2-inch wafer of SN5480 circuits. The twelve 
circled circuits within each bordered area specify 
the gated full adders that will be interconnected 
with two levels of metal to implement the multi
plication. These 4-bit multipliers of 200 gate com
plexity having a quarter of a square inch of wafer 
a:ea will.be separately tested and packaged to pro
VIde an Important step toward processing a full 
wafer of 1600 gate complexity that will develop 
and store in a register a 17 -bit product. 

FIGl!RE 12-Three half-inch square chips of SN 5480's that will 
be mterconnected and packaged as 4-bit modula,r multipliers 
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Slight mDdificatiDn 'Of the testing apprDach will 
allDw the exhaustive testing 'Of an entire digital 
filter. Figure 13 ShDWS hDW tWD registers (A and 
B) can simulate the input data and tWD cDmputers 
(labeled SINE and COSINE) can be used tD gen
erate successively the phasDr multiplier cDeffi-
cients fDr A and B. By clDcking the SINE and 
COSINE cDunters and the shift register memDry, 
the successive 'Outputs 'Of the shift register can be 
cDmpared with the expected results until a failure 
is detected Dr all the phasDr multipliers have been 
used. In the latter case, an 'Other set 'Of A and B 
inputs can then be used fDr anDther test sequence. 
Since these tests can be made as a free-running 
and self-stDpping comparisDn (as described fDr 
Figure 11), the tDtal exhaustive digital filter test 
time will be 'Only a few secDnds Dr less. 

A high-speed general-purpose digital filter of 
modular design 

As already described, the MDdular Carry Ad
vance Multiplier can readily be expanded in wDrd
length by paralleling mDre 'Of the mDdular multi
plier-adder blDCks. The tDtal multiplicatiDn delay 
remains equal tD the additiDn time 'Of tWD numbers 
the length 'Of the prDduct, and the multiplicatiDn 
rate can be set simply by the rate at which the 
prDduct is clDcked frDm the multiplier (up tD the 
maximum multiply rate as determined by the par
ticular circuit type used). The preceding Sum
mary mentiDned hDW, in additiDn tD fDrming the 
prDduct 'Of (AxB), an 'Other number cDuld very 
efficiently be added to this prDduct tD fDrm 

--------, 

CARRY 
ADVANCE 

ADDER 
SHIFT 

REGISTER 

CLOCK 

I 
I 
I 
I 

I 
I 
I 
I 

-- ______ --.l 
DIGITAL FILTER 

FIGURE 13-Diagnosis of entire digit9.l filter 

TEST 

CARRY 
ADVANCE 

ADDER 

CARRY 
ADVANCE 

ADDER 

REAL 
COMPONENT 

IMAGINARY 
COMPONENT 

FIGURE 14--Unbuffered digital filter implemented with stand
ard multiplier, adder, and shift register modules 

«AxB) +P). This unique capability tD accumu
late a sum of prDducts in a highly efficient mDdular 
and expandable fashiDn is mDst impDrtant tD the 
design 'Of digital filter b~l1ks which can readily be 
cDnfigured from these standard mDdules tD meet 
the prDcessing requirements 'Of a wide range of 
systems. 

As an example application, cDnsider a radar 
filter bank having 16 filters and 32 8-bit pulse re
turns per filter dump. Figure 14 uses an unbuff
ered filter bank as an example 'Of hDW the real and 
imaginary cDmpDnents 'Of each pulse return can 
be multiplied by the apprDpriate filter phase shifts 
using the modular multiplier blDcks. The partial 
prDducts fDrmed are summed with the previDus 
sum 'Of prDducts fDr that filter by adding an addi
tiDnal input to the carry advance adder and bring
ing the previous sum tD the adder frDm a shift 
register memory. Thus, the adder output is 

(1) 
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where 

k = the filter number 

i = the number of the pulse return 

A. = the ith pulse return (in-phase and quadra
ture components) 

Bk = the complex phasor coefficient associated 
with the kth filter which determines the 
digital filter's characteristics of shape and 
tuning. 

The filtering is accomplished by successively in
crementing k from 1 through 16 and then incre
menting i until i= 32 at which time the filtered 
outputs are dumped. 

The use of only a clock pulse to control the mul
tiplication and addition rate allows the filter pr'O
cessing rate to be easily synchronized with the 
input data. Thus, as long as the maximum pro
cessing rate is not exceeded, any further system 
processing requirements can be accommodated 
with minimum changes in the current processor. 
The only changes would possibly be in the clock 
rate, additional shift register modules, and/or 
filter modules. More important, however, is the 
fact that many very different system configura
tions can use the same standard parts that can 
greatly decrease the design, fabrication, and 
maintenance costs of these units. Table I presents 
a detailed list of the simple differences in con
figuration of these modules which allQws them to 
meet a wide range 'Of processing requirements. 

TABLE I-Modifications necessary to meet variations in 
processor requirements 

Modifications to Modular Filter 

Add Necessary Attach Additional Ll'ngthC'n or Widen 

Uti{' High('l' Multiplier Mod_ Inputs to th(' thl' Shift Register 

R~'quirl'mont Clock Rah' Logic Circuits ul('$ in Parall('l Adder Monult,s 

Additional Only if rnaxi- Lengthen 

Filters mUll, m.tltiply 

Additional Only if maxi- No 

Rang<' mum multiply 

ratC' is now 

HighC'r Pulse Only if ll1axi- No 

or Input Data mum multiply 

rate is now 

exceeded 

Increased Only if maxi- Yes Widen 

Wordl€'ngtn mum multiply 

rate is now 

The use of the Modular Carry Advance tech
nique tQ fQrm sums 'Of products as required in a 
wide range 'Of digital filtering applicatiQns uses, 
at most, three types of standard mQdules which 
can efficiently be c'Onfigured tQ satisfy the widely 
varying requirements 'Of different systems. The 
same mQdules are as efficient in systems whQse 
wQrdlength, input pulse or data rate, number of 
filters, and number of range bins vary significant
ly. The three modules that are used tQ meet these 
various system requirements are the Modular 4-
bit Multiplier, the Carry Adv:ance Adder, and the 
High-Speed Shift Register .. The Modular 4-bit 
Multiplier and the multi-Qperand Carry Advance 
AdditiQn technique have been described in detail 
above. The Carry Advance Adder modules, how
ever, may be modified with look-ahead lQgic for 
higher speed and with additional inputs to allow 
for expansion in wordlength with minimum sys
tem mQdificatiQn. The shift register modules will 
be 4, 8, 'Or i6-bit serial increments cQmpatible to 
the processor logic and allowing simple modifica
tion in wQrdlength and/or number of filters. 

A wide range of processing rates is determined 
by variQus circuit implementations 'Of the Multi
plier-Adder modules shown in Table II. If very 
high speed prQcessing is required, the High Speed 
MQdular Filter implemented with high speed cir
cuits (e.g., MECL II or III) and using IOQk-ahead 
addition with latch registers fQr pipelining can 
provide complex multiplication rates in excess of 
30 MHz for forming 17 -bit sign-and-magnitude 
products. This would be most imp'Ortant for appli
catiQns requiring high data pulse rates or a large 
number of range bins 'Or filters. If these require
ments did not exist, a 6 MHz cQmplex multiply 
rate (equivalent tQ a 24 MHz "simple" multiply 
rate) CQuld be obtained by d'Oing serially the four 
simple multiplies required in a complex multipli
cation. This use 'Of a single set 'Of .modular multi
plier blocks (rather than fQur sets) WQuld allQw 
the package CQunt to drop by at least two t'O one. 
The mQdular filter design allows this clear trade
off between number of modules and prQcessing 
speed while requiring no new mQdule types when 
mQdification is necessary in the wQrdlength 'Or 
processing speed (Le., data pulse rate, number 'Of 
range bins, or number 'Of filters). Only the MQd
ular Carry Advance Multiplier-Adder algorithm 
'Of fQrming sums of products coupled with a set 'Of 
shift register m'Odules is known to allQw such a 
wide range of digital filter requirements to be met 
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efficiently by varying the configuration. of only 
three standard modules. And yet, the definition 
of the standard modules actually allows a maxi
mum processing efficiency for the number of cir
cuits required since there is a high level of par
allelism both in the multiplier and the adder mod
ules .. 

TABLE II-Maximum delay to form the 16-bit product of 
two 8-bit numbers using the modular carry advance multiplier 

Multiplier Multiplier 

Circuit Sum Carry Delay, Rate, 

Type De.lay Delay ns MHz 

SN 5480 (II) 65 13 290 3.3 

SUHL 22 10 156 6.4 

(Sylvania) 

MECL II 8 8 95 10.5 

(Motorola) 

MECLIII 4 4 

(Motorola) 

SUHL '(U sing Look- (U sing Look- ~50 -20 

(with speed-up) ahead and ahead and 

pipelining) pipelining) 

MECL II (Using Look- (U sing Look- ~40 ~25 

(with speed:'up) ahead and ahead and 

pipelining) plpelining) 

MECL III (Using Look- (U sing Look- ~30 ~33 

(with s-peed-up) ahead and ahead and 

pipe lining) pipelining) 

Comparison of the modular filter with it current 
filter processor 

Table III presents a comparison of a current 
digital radar signal processing system with two 
LSI versions using the Modular Filter. Version I 
of the Modular Filter system uses 3JB-inch square 
flat-packs to package chips similar to those of Fig
ure 12 and having typically 200 gates of logic. 
Version 2 is a full-wafer 1600 gate complexity LSI 

implementation requiring only three 2-inch square 
modules. Even Version I 'Of the Modular Filter 
decreases the inter-package connections from 10,-
000 to 424 while reducing the number of packages 
from 1000 to 24 and the volume from 170 cubic 
inches to 'Only 9. With this, ninefold gain in 
processing capabilities is 'Obtained by the com
bined ability to process over twice as many range 
bins and to do 16 (rather than 4) unique filter 
phase shifts. Version 2 provides the potential 
lower cost and increased reliability of a full-wafer 
LSI system while obtaining further advantages. in 
speed, volume, and interconnect. The modular 
partitioning techniques which efficiently define the 
standard filter modules permit these extreme ad
vantages in physical characteristics, increased 
processing capability, and standardization, to be 
realized from the single-chip and full-wafer LSI 
technologies. 

TABLE III -Comparison of a current processor and two 
versions of the modular filter 

Connections' Is Mpy 

Volume External Delay 

Multiplication Fl~t (with Filter To Linear with 

Capability Mounting) Characteristic Packages Word length 

Currf'nt 384 Brass- 10.000 No 

digital 
filter phase 

filter 3200 eu in. shifts 

170 eu in. 

final size 

Version 1 of 25 MHz (MECL II) 9 ell in. 16 Varidhh' Yes 

33 MHz (MECL III) filt<..'r phase 

l-lflat 

(WaferClllp LSI) packs 

Version l of 1100-1300 35-40MHz (MSCLIII) 5 cu in. 16 Variable 

3 nat filter php.:'i(' 

packs 

(Full-wafer LSI} 
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INTRODUCTION 

The computer industry is on the verge of an up
heaval, due to drastically new hardware and mod
ern computational concepts. Read-only memories 
which operate near 0.1 microseconds are available, 
while large-scale integration (LSI) offers the 
promise of inexpensive, batch fabricated process
ing of logic and storage elements. The problem 
which confronts the computer designer is how to 
use these elements in an efficient manner to take 
full advantage of their speed and flexibility. Many 
approaches have been proposed, but none have 
shown a clear solution to the problem. The concept 
presented in this paper is the result 'Of extensive 
development activities. 

The partitioning problem 

A study of both general and special purpose 
digital hardware indicates that certain basic arith
metic and Boolean functions are repeated in 
various combinations throughout a given com
puter system. Presently available c'Omplex logic 
arrays such as adders, shift registers, and coun
ters perform many of these tasks, and reduce logic 
cost, compared to the use of simple gates. At the 
same time they create a serious logistics problem 
to the hardware product engineer, because stock 
and maintenance parts increase. In a rapidly 
growing technology, where labor is so costly, the 
design, procurement, fabrication, and test cycles 
are all lengthened by the needs for many different 
types of parts. By. combining several related op
erations into a single array, significant improve
ments in logistics, interconnect ratios, power
speed merit figures, and component l'Ogic efficiency 
are realized. 

An array can be fabricated with dIscretionary 
wiring methods (slice technology) or with the 
hcell approach" (chip technology), or with hybrid 
technology. From the component point of view, 
bipolar or MOS devices may be used. 

The size and the complexity of the array is de
termined by the logic partitioning. The proper 
selection of the components 'and interconnection 
method is dictated by packaging, power consump
tion, performance, and economic considerations. 

How can one tell whether the partitioning is 
right? Two numeric criteria provide a measure 
for any given partitioning design; 

857 

a) Maximum Gate/Pin Ratio-This ratio is 
generally between 0.1 to 0.6 in present in
tegrated circuit (IC) systems. A ratio 
near 1 is considered outstanding. With the 
LSI building blocks described below, a ra
tio of 3 to 10 can be achieved. The re
quirement for increased gate/pin ratio is 
a basic reason for the existence of LSI 
arrays, because interconnections on the 
microelectronics level are less expensive 
and more reliable than at the package 
level. 

b) Minimum Number 0/ Array Types (Part
numbers ) -This is the best criterion of 
the logic partitioning, and demonstrates 
the level of coordination between semi
cond.uctor, logic and, system designers. 
Most IC systems employ from 50 to 100 
types of printed-circuit modules. Mini
mum "part-numbers" is one of the pri
mary requirements in all military systems, 
and is an economics requirement for com
mercial and low-volume production sys-
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tems. Several digital IC systems (includ
ing general purpose computers) have been 
built that contain 3 to 15 types of printed
circuit plug-in boards at 40 or more gates 
per board. 

The penalty paid for maximum gate-pin ratio 
and minimum part numbers is an inefficiency in 
the use of silicon (gates) and hence of power. 
Thus, in "tight" applications such as space ve
hicles, the designer might prefer to forego the 
economic advantages of this type of partitioning 
in favor of minimum power. 

Directions in LSI computer architecture 

Current developments 

With LSI technology progressing toward ma
turity, more useful documents are being published 
in the field of LSI system architecture. Most as
sume the unlimited success of the semiconductor 
process, but only a few cite documented hardware 
development. LSI development projects, either 
completed or near completion, differ in their par
titioning concepts; all are designed to replace 
third generation computers in whole or in part. 
Some of these development projects are briefly de
scribed to supply a background to this paper. 

1) The sole producer of discretionary wiring 
(or slice technology), Texas Instruments, 
has designed and built an LSI airborne 
computer, the Model 2502. This general
purpose 16-bit word computer consists of 
a Central Processing Unit (CPU) and a 
3-channel Input/Output Unit. The single 
address CPU is controlled by a 2 MHz 
clock, and the 36-instruction set is 
executed through four general purpose 
registers. (Reference 1) 

From the partitioning point of view, the 
most significant feature is that the CPU is 
implemented with 16 identical arrays, 
which include all arithmetic and register 
functions except for the control logic. The 
elimination of "special-purpose" registers 
(index, accumulator, etc.) must also be 
emphasized. While the GPU is partitioned 
on a bit basis, the three I/O channels are 
implemented by six arrays of another 
type, partitioned on a functional basis. A 
gate-to-pin ratio of two was achieved on 
both arrays. 

Although automated design was used to 
assist in the implementation of the control 
logic, the use of ten different arrays with 
low gate-to-pin ratios was required. An
other disadvantage is that the industry
wide claims of LSI speed improvements 
do not appear; the computer is three to 
five times slower than is attainable using 
currently mass-produced TTL circuits. 

2) A larger and more powerful general.,.pur
pose aerospace computer has been de
signed (hardware near completion) at 
Raytheon Company. This parallel 32-bit 
word computer offers 94 instructions, in-

. definite chaining of Index and Indirect 
Addressing, and Multiprocessor capabili
ty. The seven full-length registers of the 
CPU are partitioned into eight identical 
arrays. Each array contains four stages 
of all seven registers, including the trans
fer gate structure. These eight LSI Ar
rays of one type contain 56 percent of the 
entire CPU logic. 

The control logic is temporarily imple
mented with 14-lead TTL circuits. Some 
further work is being done to replace the 
majority of control with a Read-Only 
Memory (ROM), leaving only less than 
five percent non-LSI hardware. 

3) In another Raytheon development pro
gram, a CPU is under construction which 
utilizes 25 "Raytheon AS-80" arrays. This 
multi-purpose 4-bit Counter/Register is 
used as a building block to form the eleven 
working registers which are 4, 8, or 16 
bits long. The block diagram of this ar-

3-BIT 
FUNCTION CODE 

SERIAL DATA INPUT 
(SHIFT RIGHT) 

COUNT IN 

CARRY OUT 

CLOCK ENABLE 
MASTER RESET 

PARALLEL DATA INPUTS 

X Y L 

COUNTER/REGISTER 
CONTENTS 

SERIAL DATA 
INPUT 

(SHIFT LEFT) 

FIGURE l-Multi-purpose counter/register 
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ray is sh'Own in Figure 1; it will be de
scribed in detail in a later part 'Of this 
paper. 

The pr'Ocess'Or is a 16-bit, parallel, single
address, high-speed unit. Operating with 
a· s'Olid-state, read/write mem'Ory, it can 
execute an add instructi'On in less than 
1f2 ~sec, and a 16-bit multiply in less 
than 2 fJsec average. 

Fr'Om a partiti'Oning P'Oint 'Of view, the 
CPU is 'Organized as f'Oll'OWS :~O percent 
'Of the I'Ogic is implemented by tW'O types 
'Of arrays (Raythe'On AS-80 and Signetics 
8260) and the remaining 20 percent is im
plemented by high-speed TTL circuits. 
The majority 'Of the c'Ontr'OI I'Ogic will be 
eventually replaced with ROM. 

4) A classical example 'Of functional parti
ti'Oning is the LIMAC (Large Integrated 
Mon'Olithic Array C'Omputer) c'Oncept be
ing implemented by RCA. The hardware 
'Of this 16-bit machine is gr'Ouped int'O 
functi'Onal executi'On units, each 'Of which 
c'Ontain the c'Ontr'OI and the 'Operand reg
isters. A simple centralized c'Ontr'OI di
rects the data fl'Ow, g'Overned by micro-in
structi'Ons. (Reference 2) 

This c'Oncept fav'Ors large arrays, but it is 
n'Ot restricted t'O any specific size. As 
semic'Onduct'Or techn'Ology impr'Oves, m'Ore 
circuits can be included in a package 
which leads t'O increased gate-t'O-pin rati'O 
and decreased unique parts in this par
ticular system 'Organizati'On; e.g., with 100 
gate bl'Ocks, a gate-t'O-pin rati'O 'Of 2.5 can 
be achieved; with 1000 gate bl'Ocks, a gate
t'O-pin rati'O of better than seven can be 
realized. 

Efficient partitioning with building blocks 

In the f'Oll'Owing paragraphs tW'O building bl'Ock 
appr'Oaches will be presented. The first utilizes an 
80 gate array with 3 t'O 1 gate-t'O-pin rati'O, the 
sec'Ond c'Oncept is based 'On a mQre c'Omplex array 
with gate-tQ-pin rati'O 'Of ten, and Read-Only 
Mem'Ories. 

1) AS-BO Processor-A basic register array 
with built-in micr'Opr'Ogrammable func
ti'Ons can be fabricated with 4, 8, 16 'Or 

even 32-bit elements. A 4-bit array was 
designed and fabricated t'O pr'Ove the feasi
bility of this appr'Oach. The bl'Ock dia
gram 'Of this Raythe'On AS-80 (Patent 
pending) is sh'Own in Figure 1. Simul
tane'Ously, a pr'Ocessing unit was designed 
ar'Ound 25 'Of the AS-80 arrays t'O dem'On
strate its usefulness. 

The Raythe'On AS-80 is an example 'Of a high
speed, pr'Ogrammable, 4-bit register cQntained in 
a single 28-lead flat-pack. As shQwn in Figure 2, 
eighty N AN.D gates are interc'Onnected tQ pr'Ovide 
a prQgrammable c'Ounter/register, capable 'Of 'Op
erating in any 'One of the f'OllQwing eight mutually 
exclusive m'Odes by entering a 3-bit functi'On c'Ode: 

• Clear-Als'O enter data int'O selected bit 
positi'Ons 

• Shift-left-
• Shift-right-
• L'Oad-Enter 4 bit parallel data 
• H'Old 
• C'Omplement 
• C'Ount-d'Own-straight-binary cQunter, dec

rementing 
• Count-up-straight-binary c'Ounter, incre

menting 

The RaytheQn Register cQmprises f'Our flip-fl'OPs, 
each c'Onsisting 'Of six NAND gates. Additi'Onal 
I'Ogic circuits are included t'O enable st'Orage ele
ments tQ be pr'Ogrammed and used as either a st'Or
age register, binary c'Ounter (up 'Or dQwn), shift 
register (left 'Or right) and t'O be c'Omplemented 
(change state). 

TABLE 1 

AS-80 Array 

Number of Packs 
PC Board Connections 28 
Wire Bonds 56 
Clock Interval and 

Power 60 ns 0.75W 
. Speed. Power Product 45 

Equivalent Logic 
Built, of Standard 

TTL IC's 

28 
292 
584 

125 ns lAW 
175 

Several B'O'Olean operati'Ons are perf'Ormed with
'Out the additi'On 'Of external I'Ogic, by c'Ombining 
c'Oded c'Ommands with the "L" data input. F'Or 
example, the executi'On 'Of b'Oth h'Old and IQad (L) 
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yields the logic "OR" function (A+L). 
Table 1 compares the AS-SO array with equiva

lent logic, constructed by means of present-day 
standard TTL integrated circuits. 

Interface with the AS-SO is at standard Tran
sistor-Transistor-Logic (TTL) levels. Input and 
output characteristics are identical to those pub
lished for high level TTL circuits. Gate outputs 
designed to be used internally on the chip can be 
c'Onnected t'Ogether t'O form wired OR functi'Ons. 
The AS-SO array is currently fabricated by Syl
vania 'On a single monolithic "chip" with three 
levels 'Of metallization f'Or the internal connecti'Ons. 
Figure 3 is the microphotograph of an area of a 
silicon slice where an AS-SO is formed. On the 
periphery the b'Onding pads are also visible. 

Arithmetic operations require the use of an
'Other logic element. A highly c'Omplex f'Our-bit ar
ray was designed which perf'Orms most arith
metic and logic combinations 'Of two operands, and 
can be implemented with 70 gates and 24 pins. 
H'Owever, it functi'Onally 'Overlaps the AS-SO reg
ister array, and its usage is limited; theref'Ore, its 
building block usefulness is questionable. 

Examination of the AS-SO array shows that 
many of the functions of a general arithmetic 
unit are included in the array (shift, complements, 
count, etc.). All that is necessary in the arith
metic unit are the pure add (and therefore sub
tract) 'Operations associated with a central proc
essor. Selection gating provided at one of the 
operand inputs 'Of the register array enables c'On
venient implementation of subtraction. In addi
tion to the r,egister and adder arrays, control 
logic is required to provide synchronization, gat
ing . signals, and a sequence. of I'Ogic instructions 
in order t'O be operated as a homogene'Ous system. 

2) Register Array Concept for the Fourth 
Generation (RAGON-h-) 
Every system previ'Ously described had 
t'O carry the burden 'Of third generation 
computer 'Operation, such as specialized 
hardware, high applicati'On programming 
cost, and excessive processing time for 
internal scheduling (Reference 3). 

Users 'Of third generation systems have 
found that in the case 'Of leased equipment, 
the cost of hardware is only about five 

...., 
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FIGURE 2-Logic schematic of AS-SO 
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percent of the total operating cost. The 
system electronic circuitry represents 
roughly one-third of that five percent. Of 
the remaining 95 percent of operating 
cost, approximately 35 percent is absorbed 
by software; 30 percent is required 
by special environmental facilities, power, 
and operating costs; and the balance 
(30 percent) is made up of manufac
turer's costs, sales fees, maintenance, and 
profit. This means that even if LSI tech
nology makes the entire electronics avail
able at no cost it does not represent any 
significant economies for the user. 

In less than one year, the industry will have 

mastered a new generation of hardware. How
ever, if this new generation of hardware is used 
only as a replacement for the hardware of a third 
generation system, it will have a doubtful future. 
Only systems that can exhibit reduction of the 
other 95 percent of cost can be considered ad
vanced systems and candidates for the fourthgen
eration family. 

Thinking further ahead, such advanced sys
tems will lead to a new market situation where 
the cost of the hardware becomes significant and 
a major factor in a Buy/No-Buy decision. 

If we assume that a small number of general
purpose building blocks can be developed to per
form all the computer functions, the problems of 

FIGURE 3-Microphotogra.ph of A8-80 
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specialized hardware, of general-purpose capabili
ties where only specialized functions are required, 
of excessive programming costs, and of prohibi~ 
tive processing times would be solved for both 
user and manufacturer. The producer of com
puting machines would build up an inventory of 
these basic blocks and assemble them to the size 
and configuration of the user's requirements with 
a minimum of system design effort. Computing 
systems will then be defined by the total number 
of bits of all working registers, rather than by the 
number and the size of registers. Fixed hardware 
implemented blocks will "personalize" the system. 
The user, on the other hand, will not be forced 
to buy capacity and features he does not need and 
the cost would become linearly proportional to the 
size and computing power required. 

With this concept in mind, the current and fu
ture computing systems can be characterized as: . 

• Third generation: Specialized hardware, 
General-purpose systems 

• Fourth generation: Specialized systems, 
General-purpose hardware 

RACON-4 is a feasibility model of a fourth 

INSTRUCTION LIBRARY MICRO I 
(R!O & R/W MEMORy) Jg~~~~y 

~ 

'i ~F-OR-MA-T T-APE-D-ATA-I 

~I------I 
~ 

EDIT DISPlAY 

FAST FOURIER TRANS 

READ-WRITE MEMORY 
RWM-16 
ARRAYS 

REGISTER ARRAYS 
DETAILS IN FIGURE 6 

FIGURE 4-System block diagram, RACON-4 

generation system utilizing fourth generation 
hardware. The system block diagram (Figure 
4) can be best explained by starting from the 
working register area. The workhorse of the sys
tem is a number of RA-4 register arrays. The 
actual number of RA-4 arrays is determined by 
the need and the budget of the user. Each RA-4 
or groups of RA-4's can be programmed by a 
read-only memory to perform any of sixteen func
tions. The output of this memory passes through 
the Register-Function Matrix (RFM) which 
couples a number of registers together to perform 
identical functions and thus determines the word 
length. The contents of the registers are routed 
through the Register Data Bus (RDB) which is 
a single, dual, or triple-bus system, depending on 
the performance regriirements. Both the bus sys
tem and the scratch-pad memory are controlled by 
the output of the micro-command memory. This 
memory consists of Read-only Command Memory 
(RCM-16) arrays, each containing 256 bits of in
formation in a 16 x 16 arrangement, and the 
Read-only Memory Logic (RML) which is basic
ally an addressing system. 

A sequence (or block) of micro-commands is 
selected by the Instruction Library memory. This 
memory is composed of the same hardware as the 
micro-command memory. An additionad read
write section is available as an option for the user, 
and utilizes the same RWM-16 hardware as the 
scratch-pad memory. The input/output .Data Reg
ister is an optional feature since the scratch-pad 
memory could serve the same purpose, with per
formance restrictions. 

For better understanding of the features of 
RACON-4, consider a processing unit consisting 
of sixteen four-bit variable arrays and a Read
Only Memory Module as shown in Figure 5. The 
memory contains the word address logic, a num
ber of parallel words, and an interconnection ma
trix with 64 plug':'in terminals. The four control 
inputs of each of the sixteen register arrays are 
permanently connected to the other half of the 64 
terminals. With this concept, each word of the 
memory can program. every 4-hit register to per
form any of the sixteen functions. By inserting 
a point-to-point interconnection pattern between 
terminals and bit lines of the memory, the proc
essor can be operated as a 4-bit machine with six
teen registers. It requires words 64 bits long from 
the memory for every step of operation. The in
sertion of the pattern shown in Figure 5 (a) will 
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FIGURE 5-Register arrays for. a 64-bit processor 

result in a 16-bit machine with four registers re
quiring only a 16-bit word from the memory for 
each cycle. Another interconnection matrix could 
result in a 32-bit machine with two registers pro
grammed by 6-bit words from the memory. Figure 
5 (b) shows a further possible configuration. 

The RA-4 is a 4-bit register array similar to 
AS-80, but instead of the increment/decrement 
logic, a 4-bit full adder is incorporated. Program
mable functions' are increased to sixteen. Because 

DATA OUT 

CARRY OUT 

FUNCTION IN 
RA-4 

CARRY 'IN 

DATA !N 

FIGURE 6-Block diagram of RA-4 

of the bus 'Oriented organization of RACON-4, 
the multiple entry of AS-80 was eliminated, as 
shown in Figure 6. 

The array is capable of performing anyone of 
the following functions in eighty nanoseconds: 

1) Load 10) Decrement and all zero 
2) Load comple- detect 

ment 11) Shift left by 1 place 
3) Add 12) Shift right by 1 place 
4) Subtract 13) Shift right by 2 places 
5) Reset 14) Add and shift right by 
6) Exclusive OR 1 place 
7) Logic AND 15) Add and shift right by· 
8) Hold 2 places 
9) Increment and 16) Subtract and shift 

all one detect right by 1 place 

Over 160 gates are needed for the implementa
tion of RA-4, resulting in a unit with a gate-to-pin 
ratio of ten. 

The flow of data is entirely under the control 
'Of the micro-command memory, with the aid of 
RDB and the scratch-pad Memory. The process 
portion of the instruction to be executed is used 
as a starting address in the Instruction Library. 
The contents of this memory are one or more 
words which f'Orm the starting addresses of the 
micro-command memory. The micro-command 
memory contains the group of 4-bit numbers that 
program the register arrays to perform the ap~ 
propriate micro-c'Ommands. 

Linking of 4-bit groups together can similarly 
be accomplished by "programming" to produce 
any multiple of 4-bit word sizes. Furtherm'Ore, 
different computer words sizes may be associated 
with different processes programmed in the sec
ond memory. This would facilitate, for example, 
the effective utilization of a computer with an ex
ternal device. 

Because there is no restricti'on on the special
purpose instructions or the internal formats and 
word size which could be created, the basic hard
ware building block approach leads to a system 
organization Which provides virtually unlimited 
flexibility to the user. In addition, the p'Otential 
software advantages are considerable; for ex
ample, ·existing software can be utilized without 
radically modifying existing pragrams. New in
structions can be easily added to the existing in
struction set and higher meta-level instructions 
can be created. Consequently, both programming 
and machine design bec'Omes easier and more 
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adaptable to any application. without any loss in 
generality . 

The entire control system, consisting of all con
trol algorithms and computer instructions, can be 
represented by programmed blocks 'Of funda
mental machine operations placed in the micro
command memory. This approach differs from the 
micro-programmed computers in which specific 
computer functions are prpgrammed, or from a 
standard computer in which specifi<} functions are 
hardwired. Instead of d~~ignating special regis
ters (accumulators, count~rs, index registers, etc.) 
and parameters (transfets, invert, etc.) in each of 
these blocks of machine 'operation, a variable rep
resentation is used. Consequently, the blocks are 
general, so that each block can, with different reg
ister and parameter ~ designations, perform the 
functions of a large number of specific instruc
tions. 

Creating the entire set of computer instructions 
with these general micro-command blocks may be 
contrasted with present-day digital computer con
trol memory techniques. In today's computers, the 
instruction complement consists of a. collection 'Of 
special-purpose instructions which differ slightly 
in terms of processes; there are many different 
instructions, but only a few unique operations. 
U sing the general micro-command blocks as a 
basis, any desired set of instructions can be de
fined. 

In fact, different sets of blocks can. be specified 
to effect different system characteristics, depend
ing upon the application. A representative ~et of 
blocks forming a complete (and powerful) in
struction complement is listed below, together 
with the· specific instructions accomplished within 
the block: 

1) Transfer: This block implements the op
erations of transfer, enter, execute, single
bit tests, etc. 

2) Count: This block implements the count 
(increment or decreme,nt). 

3) Shift: This block implements all forms 
'Of single . precision/double precision left/ 
right, open/closed, algebraic/logical shifts. 

4) Exchange: This block implements swaps 
between any two registers. 

5) Logical: This block implements the logi
cal operations such as "and", "or". 

6) Sign and Magnitude Add-Subtracts: This 
block implements all 'Of the variations of 

sign and magnitude addition and sub
tracti'On. 

7) Mask test : This block implements the on/ 
off tests of fields, tests of any collection of 
bits, and indicator resets. 

8) Three-way comparison: This block imple
ments all three-way comparisons 'as well 
as two-way logical comparison tests. 

9) Multiply Divide Iteration step: This block 
implements the basic process for fixed/ 
floating multiplication/division of fixed or 
variable length. 

Because any register can be used by the micro
command block, arbitrary names for different 
registers are unnecessary. Because a register, 
such as an accumulator, has a definiti'On in terms 
of its use, it may be convenient to give a name to 
a register in which a specific function or pr~cess 
is generally performed. 

As a direct consequence of the fact that the gen
eral forms define basic processes, they are inde
pendent of normal c'Omputer word characteristics, 
such as word size and internal field definitions. 
Registers, in application, may have different word 
sizes. Consider, for example~ the general form 
for a shift operation. A general shift operation 
is typically a set of the f'Ollowing operations: 

1) Shift A n places and store in A. 
2) Shift B n places and store in B. 
3) Repeat steps 1 and 2 m times. 

·4) Shift sign of A to sign of B. 

In this routine, A and B represent registers, the 
parameter n represents the hardwired shift algo
rithm, and the parameter m represents the num
ber of times the shift algorithm is used. Obviously 
Steps 1 and 2, used together, represent a double 
precision shift; Step 1 alone is a single precisi'On 
shift. 

It should be observed that A and B could be 
different length registers. 

As a result of being able to program the basic 
control sequences in terms of primitive forms, only 
a small percentage of control logic remains to be 
implemented. Part of this logic, primarily the 
creation of more complex instructions, and the 
control logic required toestabIish internal for
mats, can also be handled by programming tech
niques. 

Specialized processes consist of collections of 
the basic forms. The program to implement these 
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processes utilizes the "language" of the basic gen
eral forms. Consider the floating point operations; 
these are programmed by combining the basic 
forms. A "floating add" is a collection of "trans
fer," "logical," "exchange," "shift," and "sign 
and magnitude" subroutines. "Floating subtract" 
is the same as "floating add" after the first sub
routine, a sign change. This is analogous to the 
manner in which the control of complex computer 
instructions is presently achieved in computer de
sign (built-in subroutines with specialized sub
orders). For example, the standard multiply in
struction consists of 1) determining the sign of 
the answer, 2) the multipliS!ation process of add, 
shift, and iterate, and 3) the final adjustment of 
the answer. 

The programming of these specialized processes 
is performed in a second read-only memory called 
the instruction library. The ability to program 
this memory, using the general building block 
forms in the micro-command memory as a source 
language, allows functions normally ascribed to 
the software to be built into the hardware by be
ing programmed in the instruction library. Thus 
specialized instructions can be created and special-

. i~ed routines for which high processing speed is 
required, such as input/output mechanizations 
(reading and writing data, editing procedures, 
input/output buffer control) or a Fast Fourier 
Transform algorithm, can be implemented in add i-

tional to normal computer instructions. 
This approach permits the computer to be tai

lored for many specific applications within the 
mass-produced standard computer design without 
the need for specialized software. Much of the 
complexity of a higher order language is bypassed. 

CONCLUSION 

Recent developments in batch fabrication of logic 
and memories have made it necessary to reconsider 
the interrelations between design effort, hardware 
cost, and partitioning. It is possible to achieve a 
low "part-number" count by making use of multi
purpose register array packages that include con
trol logic inputs. These control inputs are sup
plied from read-only memories. The control inputs 
cause th~ data in the package to undergo micro
programmed operations to form the instructions 
of the computer. 
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Engineering for systems using large scale integration 

by C. F. O'DONNELL 

North American Rockwell Corporation 
Anaheim, California 

INTRODUCTION 

Our experience in designing and producing over 
100 different MOS large scale arrays (LSA's) for 
a variety of systems and customers has led to a 
number of changes in our pattern. of engineering 
operations. We have found that the major in
crease in device complexity called for in LSA's 
requires extensive use of design aids for acceptable 
development schedules and costs. In turn, the 
generation and use of these design aids tie device 
designers and the logic/system designer closely 
together. 

These design aids include the software required 
for checking logic, for device layout, for the gen
eration of device and system test programs and . ' In combination with suitable hardware, for device 
mask generation. 

This paper concentrates on the status of inter
action between device and logic/system designers 
and design aids but does include pr'Obable short 
term trends in the evolution of engineering in the 
LSI area. 

To illustrate the capabilities of todays' tech
nol'Ogy, we describe the Autonetics D200 computer 
which is built using MOS LSA's. Included in this 
discussion are the tradeoffs leading t'O its design, 
its characteristics and organization, and finally 
some details of the LSA's used in building it. 

Criteria for design 

To keep this talk c'Onfined to a reasonable time 
I will cover ·only the engineering of digital Sys~ 
tems using MOS devices in Large Scale Arrays 
(LSA's). As can be seen from Figure 1, in my 
view the change in engineering interaction as we 
progressed from discrete components through in
tegrated circuits (IC's) to LSA's have been evolu
tionary rather than revoluti'Onary. There has been 

more of a change of emphasis on interaction be
tween engineering functions rather than the for
rnation of completely new groups, an adaptive re
sponse of engineering t'O changes in the character
istics of the devices used. 

The change from discrete components to inte
grated circuits, for example, forced logic designers 
to become involved in the hardware task of board 
layout. . Board interconnection minimization be
came an essential ingredient of logic partiti'Oning. 
With board element counts shifting from hundreds 
to thousands, without new logic design criteria 
'Off-board lead requirements easily 'Outstripped 
physically· feasible numbers of connect'Or c'Ontacts. 

With low-cost IC's available the ability t'O elimi
nate every possible resistor, diode 'Or transistor 
was no I'Onger the most significant criteri'On in 
evaluating the efficiency of a logic designer. The 
ability to partition I'Ogic so relatively few expen
sive interc'Onnecti'Ons between boards would be 
required had become dominant. 

While LSA's provide low-c'Ost elements, they do 
intensify 'Other system development problems. One 
of LSA's weakest points lies in the difficulty of 
insuring that the first design works, and the ex
pense and schedule slips involved in c'Orrecting 
design deficiencies are minimized. With· discrete 
components, a few 'Overstressed parts could readily 
be replaced with little impact on system cost or 
schedules. Even with integrated circuits, jumper
ing of connections and replacement. 'Of one stand
ard packaged unit with another enabled the engi
neer to take care 'Of the majority 'Of his problems. 
When an LSA I'Ogic design error or I'Ocal 'Over
stress conditi'On 'Occurs, then design c'Orrecti'Ons 
must be made, mask sets changed and a new pro
duction run 'Of the device made bef'Ore the system 
can be checked out. 

The increased impact on system C'Osts 'Of I'Ogic 
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FIGURE 1-Engineering interaction, digital system design and 
development 

errors has involved the logic designer more di
rectly in device engineering. He has far greater 
impact on the device supplier than was the case 
in discrete component days. Each time the device 
supplier has moved more deeply into system fab
rication he has lost some of his ·flexibility. With 
IC's he was free to design the circuit details as 
he saw fit provided specified operating character
istics of the device were met. However, his sales 
depended heaVily on whether logic designers de
cided to use RTL, DTL or TTL circuits in their 
designs and the range of fan-in and fan-out ratios 
they required and other obvious choices. With 
LSA's an additional degree of flexibility has been 
lost. In many cases the device becomes such a 
specialized subsystem that it must be tailored to 
the needs of an individual system manufacturer. 

Criteria for user 

While there are problems, the incentive of pro
ducing'low cost, complex electronic. systems built 
with LSA's is sufficiently high to justify a major 
expenditure of engineering effort to overcome 
these problems. To make this objective of low 
cost systems feasible, the engineering system for 
design and development must be set up to cope 
with these characteristics of LSA design which 
differ from discrete component and IC design. 

LSA's are n'ot available from manufacturers as 
off-the-shelf items with the exception of a few 
standard functions such as shift registers. Seldom 
is it possible to wo:r:k around a missing subsystem, 
which is really what a LSA is. Therefore, these 
devices when used can become system schedule 
limiting factors and maj or contributors to system 
-expense. As an LSA is a subsystem, it represents 
a higher percentage of total system cost than 
previous electronic devices. Consequently, errors 
in original cost estimates can have greater impact 
on program profits than was the case for previous 
devices. Certainly high efficiency is called for in 
the system both for engineering design and de
velopment and in production. 

These factors all point to the need for engineer
ing excellence in design and accuracy in carrying 
engineering intent thru into hardware. Both 
points call for design aids and computer programs 
to do the detail drugery with high accuracy, and 
computer controlled precision equipment for tasks 
~uch as mask generation and device assembly. 

This leads to the engineering configuration 
shown in Figure 1-C, where the circuit design 
function has been _ largely absorbed by device en
gineering and logic design. The growth of logic 
design function has befn due to its direct involve
ment in LSA device design and its role in develop
ing many of the design aids used by the remaining 
engineering functional groups. 

This intensification of interaction between de
vice supplier and user is not without its own, set 
of problems. Their nature can be understood by 
examining what happened when multilayer boards 
were developed for IC interconnection. These 
boards were both more compact and uniform than. 
the combination of two-sided printed circuit 
boards and cabling they replaced. What cross 
talk, capacitive loading and lead resistance there 
was remained reasonably uniform from board to 
board and system checkout yield improved. How
ever, a defective board was a complex ·problem. 

Locating and fixing board errors particularly 
in internal layer interconnection routings was 
difficult, time consuming and costly. Because this 
was done in the system manufacturer's shop, sur
face jumper connections and other quick fix tech
niques could be used to avoid severe schedule 
penalties with their accompanying dollar costs. 

In the case of a LSA however such quick fix 
techniques -are not feasible. Furthermore, their 
turn around time includes the time lag in reaching 
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agreement with the device supplier on both the 
l1~ture of the problem and the fix. It may involve 
additional problems, such as competing priority 
projects in that supplier's shop. As a result, some 
system suppliers have felt it necessary to develop 
the engineering capability in-house for LSA pro
duction. Others have developed a design capabil
ity, but propose to use established semiconductor 
manufacturers for device production. It is still 
too early to say how the LSA supplier-user inter
face will stablize, but it is certain that over the 
next few years a number of problems in this area 
must be worked out. 

Device d,e8~gn cycle 

Leaving the supplier-user interface problem for 
the moment, consider where design aids could be 
most profitably employed in the device design 
cycle. The areas of Logic Design and Device Lay
out show up in Figure 2 as taking half 'Or more 
of the total cycle time, so must be considered prime 
areas for design aids. As these aids have a major 
impact on the skills required of device design en
gineers, it is worth reviewing them in some detail. 

The uses of logic simulation during the early 
logic design phase are well kn'Own, even from dis
crete component days. It was necessary to write 
new programs for MOS 4-phase logic. While this 
technique dramatically reduces . circuitry power 
requirements from dc or 2-phase designs, it does 
provide a fascinating problem for the logic de
signer. The lefthand side of Figure 3 shows the 
logic equations set down in format suitable for 
entry into the computer. The righthand side 
~hows the situation at the nodes designated at the 

FIGURE 3-MOS logic simulation program 
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lefthand cQlumn during three clQck-cycles 'Of QP
eratiQn. 

Other than this mQdificatiQn fQr multiphase 
cl'Ock QperatiQn, 'Our IQgic prQgrams are very simi
lar tQ 'Ones which have been in widespread use by 
cQmputer designers fQr the past decade. There
fQre, I prQPQse tQ leave this area fQr that 'Of de
vice layQut and mask preparatiQn. Here develQP
ment has been mQst rapid 'Over the past few years. 

Device layout 

As Ie techn'OIQgy is well develQped, why shQuld 
the change frQm IC's tQ LSA's PQse such a prQb
lem in device laYQut? The answer is shQwn strik
ingly in Figure 4. The increase in device CQm
plexity frQm IC to LSA is S'O great that prQblems 
becQme different in kind rather than simply differ
ent in magnitude. Generating and checking a mask 
set fQr the prQductiQn 'Of 30 element dual quad
NAND gate IC 'Of Figure 4-a is inadequate prepa
ratiQn fQr checking mask sets fQr 600 tQ 6000 ele
nlent LSA's. The cQmplete +- arithemetic unit 
in Figure 4-b is a challenge tQ a designer. Per
haps even mQre daunting is the example 'Of the 
latter shQwn in Figure 5, a 1000 bit shift register 
emplQying 'Over 6200 active elements. 

An engineer using his detailed knQwledge 'Of the 
dual nand gate bipolar circuit 'Of Figure 4-a could 
with care verify the cQmpleteness 'Of each mask 
and registratiQn frQm mask tQ nlask. When he 
must. check fQr the PQssible QmissiQn 'Of 'One 'Of 
several thQusand p regiQn windQws 'Or 'Of a similar 
number 'Of intercQnnectiQns, he faces an imp'Ossible 
task. With care, he can catch all but 1 % 'Or SQ of 
the errQrs, but when the p'Oints tQ be checked num
ber in the thQusands the resultant PQssible number 

FIG URE 5-Large scale MOS array 

'Of defects is cQmpletely unacceptable. This in
crease in cQmplexity then cannQt be cQped with 
by simply being mQre careful. The engineer is 
fQrced tQ becQme mQre heavily dependent 'On CQm
puter prQgrams and 'Other hardware aids fQr bQth 
checking and indeed fQr the 'Original device design. 

The prQcess steps required tQ dQ the laYQut and 
prQduce a mask set are shQwn in Figure 6. The 
tQP rQW shQWS the manual QperatiQns required tQ 
prQduce a device mask set, given the IQgic equa
tiQns tQ be mechanized. In 'Our experience a pprQxi
mately 1100 manhQurs were required tQ cQmplete 
the QperatiQns shQwn fQr small tQ medium sized 
arrays using custQm design. FQr 'One reas'On 'Or 
anQther attempts have been made frQm time tQ 
time tQ use this technique tQ prQduce masks fDr 
truly large arrays in the range 'Of 800 tQ 1000 
elements. These attempts CQuld nQt be called 
successful. 

EIGURE 6-MOS-FFT LSA computer-aided design system 
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To increase the probability 'Of successful device 
designs we wrote a series of programs for the 
engineer to use as aids in doing his original device 
layout. For 4-phase custom circuitry, we decided 
that a completely automatic layout program would 
not be a cost-effective first step. 

For the present, dropping to the second line of 
the fl'Ow diagram of Figure 6, we have two pro
grams which act as engineering design aids-the 
P-ORDER and the M-OR.D·ER programs. The 
logic equations to be incorporated on the chip are 
written out in equation form, encoded and used 
as inputs for these programs. The output of the 
P-ORDER program is a list of logic equations 
ordered so as to minimize the total length 'Of inter
connecting metal and the number of crossovers. 
The p regions, each of which represents an equa
tion to be mechanized; appear· in sequence so com
nlon terms are grouped together. As these terms 
are connected by metal lines, this grouping mini
mizes their length. 

The resultant ordered equation set is then fed 
to the M-ORDER program. This program inter
leaves the interconnecting metal to minimize total 
chip area. The P-ORDER program has generally 
provided a fairly long lo'osely packed array. The 
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M-ORDER program attempts to square up this 
array and fill the empty spaces reducing the total 
p length as well as chip area. 

A number of iterative runs are made with 
these programs. The engineer evaluates the re
sults after the initial 50 or so iterations and inter
venes manually to rearrange the sequence of logic 
terms or their positi'On on the chip whenever it is 
apparent to him that such a rearrangement will 
be an improvement. Presently, this requires that 
a computer printout be delivered to the engineer. 
The future incorporation of a graphics terminal 
will let us use the programs in a truly interactive 
. way and so reduce the design process flow time. 

The ordered equati'Ons are now used in produc
ing a hand drawn composite, like the section 
shown in Figure ~7. This composite is used for en
coding the input to the computer programs gen
erating the control tape for the Gerber plotter. 
The total direct labor hours required for these 
operations on the average amount to 500 hours. 
This is a reduction by a factor of 2 from the time 
required to carry out an all-manual operation. For 
LSA's of the ~ize we are currently producing these 
programs make all the difference between a pos
sible and impossible desian task. 
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The third flow line in Figure 6 shows a different 
set of design aid programs used for placement and 
interconnection of standard catalog cells for 2-
phase logic circuitry. Design direct labor hours 
are saved by using these standard catalog func
tions, as much of the detail chip layout has already 
been done and is available in the computer data 
bank. Only the placement of these cells and their 
interconnection remains to be carried out. There 
is considerable direct labor time saving using this 
Inethod. On the average we find it to be about 
half that required for a 4-phase custom layout or 
approximately 250 hours. In most cases, however, 
there is a 10-20% penalty paid in chip size for 
this use. For this reason, the standard cell ap
proach is often used during development in order 
to reduce schedule time. A custom design layout 
is then carried out if a sizeable production order 
follows. 

To reduce human errors in physical mask pro
duction, a tape controlled automatic plotter is 
used. To produce the tape, it was necessary to en
c'Ode, from a hand-drawn composite of the device, 
each incremental step of the plotter defining the 
p and'm regions. This took up to 300 hours of 
technician time. 

From this listing the input card deck for the 
MaS input program was prepared. The output 
of this program was used as input to the MOS
MASK prog-ram which prepared the plotter con
trol tape. This tape, a section of which is shown 
in Figure 7, specifies the reticle to be used at each 
XY coordinate of the masks. The mask sets 'are 
first plotted at 120 X or 60 X final size. Proof 
prints are then sent to the design engineer for 
visual check before making the working plates. 
If the check is satisfactory, then standard pro
cedures for mask set production are followed. 

Tl?-ree~undred hours' of technician time was 
felt to be excessive for encoding the input to the 
MaS-MASK program. We then took the next 
step of writing a simplified intermediate program 
known as DIMPLE. DIMPLE takes end point 
encoding and translates it into incremental en
coding in a form suitable for use as input to the 
MaS-MASK program. This relatively simple ad
dition reduced encoding time from 300 hours to 
100 hours. 

,One additional feature to be added is a digitizer 
to replace the manual listing 'Of end point encod
ing. This will further reduce errors and save 
schedule time. It is not so much the two to three 

FIGURE 8-MOS-LSA mask checks 

days of original encoding time we wish to save, 
but rather the 2 - 3 weeks involved in making 
corrections when an error has been discovered only 
after a device has been all through the production 
process. 

Design checks 

Even with this extensive use of design aids, it 
is still possible to have the occasional error creep 
into the design. As a result we have developed 
two additional checks, shown in Figure 8, to run 
thru before the masks enter the optomask sys
tem. One is a straightforward check on the logic 
mechanization. The output data from the MOB 
INPUT program is fed to the MaS CHECK pro
gram. There it is combined with a card deck giv
ing the identification of each gate in terms of the 
logic equations mechanized. With these inputs 
the MaS CHECK program regenerates the logic 
equations mechanized 'On the chip and types them 
out. Presently, this printout is checked manually 
against the original set 'Of logic equations to de
termine if errors have been made. The program 
is being modified to do this logic verification within 
the computer and print 'Out only the errors. 

In addition we use a computer printout, shown 
on the right-hand side of Figure 9, to determine 
that the plotter control tape is accurate. Com
puter printout is compared against the hand
drawn composite to be sure that no errors have 
been made in this translation. 

Even if the plotter control tapes are perfect, 
there is still a possibility that the plotter will mal
function in a way not caught by our monitoring. 
We have under development an optical encoding 
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equipment which determines the location of all 
corners on the mask set produced by the plotter. 
The coordinates of these corners will then be com
pared with the end point encoding used as entry 
to the MOS MASK programs as a final check to 
ensure that the 120 X or 60 ,X final size original 
is a faithful translation of the original input to 
the plotting system. With this implementation we 
will have the highest confidence of being able to 
produce working devices functionally correct the 
first time thru the system. 

We still have not exhausted the ways in which 
design aids can assist in turning out a satisfactory 
product. Before committing to physical produc
tion, the designer needs to know that his device 
is not only logically correct but that it will operate 
without errors due to excessive gate loading or 
noise cross coupling for example. We had previ
ously developed a series of programs for circuit 
analysis of thin film hybrid circuits and circuits 
using a combination of integrated circuits and 
discrete components. The programs exercised the 
circuits, simulating a variety of stress environ-
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COMPUTER CODING 

ments such as temperature extrenles, high radia
tion levels and varying supply voltages. 

Capitalizing on this ·experience we have written 
a series of programs for the analysis of MOS 
LSA's. MOS SNAP, for example, is used in do
ing an overall speed noise analysis. The capacity 
loading and noise coupling at any given group of 
nodes in the total nodes set can be determined 
using this program and supplied as outputs to the 
engineer for verification of performance. 

A separate program called TRAC is used for 
local speed noise analysis at a restricted group of 
nodes in the device. Internally, the program forms 
an indefinite admittance matrix for each node and 
calculates current and voltage for the equivalent 
circuit, using an accurate non-linear model for 
each active MOS element. A representative sec
tion of circuitry for analysis, the computer input 
format and the graphics output to show transient 
response at a given node, are shown in Figure 10. 

The calculations, while straightforward, are far 
too tedious, error prone and' time consuming for 
an engineer to do by hand with any expectation 
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FIGURE 9-MOS circuit coding 
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of useful results. With the TRAC computer pro
gram using 200,000 bytes of core memory, with a 
2000 FORTRAN statement program, however, 
significant results can be obtained with only 3 
minutes of computer running time for 20 circuit 
nodes. 
Design aids summary 

The programs described contribute SUbstantial
ly to device design cost reduction by reducing both 
the direct l?,bor hours required and the recycles 
needed due to human errors in the design process. 
Developing these programs has been expensive 
and time consuming as you can deduce from the 
program summary descriptions in Table I, DE
SIGN PROGRAMS FOR CUSTOM MOS-FET 4-
PHASE DEVICE. We feel that it has been worth
while and indeed essential for providing us with 
an LSA design and development capability. 

This paper has been a progress report on a con
tinuing program of design aids development 
rather than a final description. In addition to the 
new programs mentioned in this paper as being 
currently under development, others will be start
ing in the near future to reduce obvious ineffi
ciencies in our current operation. We continue to 
attack each area of the design and development 
process which has either high direct labor content 
or is schedule limiting. We pay particular atten
tion to those areas in which our experience shows 
errors are apt to occur which cause devices to 
fail on their first run thru the design cycle. Our 
schedule times to produce and modify LSA's are 
still too long; our initial device design costs are 
still too high. From our progress to date, I feel 
that within the next 1- 2 years we will have 
achieved an optimum system, balancing engineer
ing hours on the one hand with the cost of com-

CORE USED NO. RUNNING (36IHJ5) NO. STATEMENTS 
PROGRAM NAME (BYTES) OVERLAYS TIME (MINUTES) (PUll 

'P' ORDER 1201< 10 - 15 1250 

'M' ORDER 2251< 20 - 30 21XXJ 

MOS INPUT 2201< 112 - 1 1750 

DIMPL£ 1201< 1-2 2500 

MOS CHECK 3501< 10 - 12 2750 

MOS SNAP 1501< 2-4 600 

MOS MASK 2501< 2 - 5 2200 

MOS AUT~ASK 3001< 2-5 2750 

TABLE I-Computer aided design programs for custom MOS
FET 4-phase devices 

puter running time and precision design and de
velopment aid equipment on the other to minimize 
both costs and schedule time. 

'Trends 

I predict that our current trend in engineerin~ 
organization will continue. Within the next two 
years I would expect to see most engineering op
erations making use of LSA's set up as shown in 
Figure 11. Logic design and system engineering 
will have coalesced into a single group. Circuit 
engineering will have been fully absorbed by de
vice engineering. Design aids, both program and 
equipment, will have equal rank with these engi
neering functions. Such an organization will min
imize time required from system concept to pro
duction acceptance. 

As for the engineering tools used by the organi
zation, I expect a continuing proliferation of soft
ware but I also expect that these programs will 
remain as· design aids rather than becoming a 
completely automated design program. The intra 
duction of graphic terminals with time share 
computers will accelerate and reinforce this trend. 
As far as the hardware is concerned, in general it 
will become more rapid, with some electromechani
cal devices being replaced by electronic systems. 
In addition, the accuracy of this precision equip 
ment will increase to allow either greater compac· 
tion of devices, therefore reducing costs by havin[ 
more chips per wafer, or allowing design rules to 
be relaxed so greater yields can be obtained on 
chi ps of today's size. 

As I have already pointed out, I expect the de
vice design costs to be reduced sharply ov~r. the 
next two years as an optimum balance is reached 
by the engineering and by the software and hard
ware design and development aids. 

Spurred in part by the desire to' be able to pro
duce larger and larger chips with 8.11 elements 
working, the industry is increasing its knowledge 
and control of processes. This plus additional ex
perience and the introduction of automation where 
desirable will lead to a rapid decrease in produc
tion costs over this two-year interval as well. 
Combination of design and production cost re
ductions will make LSA's a very formidable com
petitor indeed in the electronic device field by 
1970. 

The supplier-user interface for LSA's is diffi
cult to predict at this time. My current feeling is 
that this interface will be quite flexible and econ-
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FIGURE 10-Device functional analysis 
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omy-determined provided processes are reason
ably standardized and both suppliers and users 
develop or acquire the necessary software and 
hardware design aids. This would allow. users to 
do their initial design, possibly up to mask pro
duction, in-house and then obtain competitive bids 
for device production from the normal suppliers. 
On the other hand, if the suppliers also have a 
well developed device design capability then they 
could simply supply the LSA specifications and 
logic equations to the supplier and have him do 
the complete development job as well as produc
tion. It is still too early to say if this desirable 
state of affairs will in fact come about. 

While our current system of designing and pro
ducing LSA's is not perfect, we have made con
sid-erable progress. Mr. Booher, a rare combina
tion of logic designer and system engineer (though 
if my predictions are correct, we will see more 
of this in the future) will describe a General 
Purpose Parallel Computer developed using his 
MOS-FET 4-phase logic. 
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MOS GP Computer 

by R. K. BOOHER 

North American RockweU Corporation 
Anaheim, California 

INTRODUCTION 

\Vhen the 2-phase, 20-bit shift registers using 
P-channel enhancement mode MOS-FET's were 
first introduced on the market many of us did not 
have the foggiest idea of what a MOS-FET was. 
Logical designers were intrigued by the functional 
complexity which the technology appeared to offer. 
System designers were pleased with the prospect 
'Of lower power and fewer package requirements. 
Semiconductor manufacturers predicted that MOS 
would be forgotten sooner than the tunnel diode. 

Autonetics studied the potential and the prob
lems associated with direct coupled and 2-phase 
MOS circuits and promptly devised the 4-phase 
system which solved many of the problems of the 
2-phase system. The first MOS-LSA using the 4-
phase system was the Autonetics DDA Integrator. 
The first completely operational unit was produced 
during February 1966. This device has approxi
mately 800 MOS-FET'S. 

After gaining considerable experience with the 
DDA and other 4-phase MOS-LSA circuits, we 
felt we were ready to design a general purpose 
computer suitable for n~vigation applicati'Ons. 

At this point I would like to state that this com
puter, using MOS-LSA's, is fully operational. The 
computer was designed to satisfy the general re
quirements of a navigation computer, consequently 
it is neither the world's fastest nor the most ver
satile computer, but it does represent a quantum 
jump in the technology which produced it. The 
components are the most advanced in the industry. 
Numerous trade-offs had to be made before the 
logical equations for the machine c'Ould be written. 
Trade-offs were made between functional require
ments, computer organization, MOS speed, IC size, 
IC complexity, number of leads per IC, number of 
IC types, and total number of Ie's. 

877 

To give you a feel for the class 'Of computer 
which has been built, I wiiI touch on some of its 
salient features (Chart 1). 

250 KC CLOCK RATE 

PARALLEL, SINGLE ADDRESS ORGANIZATION 

24 BIT WORD SIZE -INSTRUCTIONS & DATA 

3 I NDEX REG I STERS 

4 I NTERRU PT CHANNELS - WI TH LOCKOUT 

35 INSTRUCTIONS - MOST I NDEXABLE 

8 SEC ADD INSTRUCTION TI ME 

108 SEC MULTI PLY INSTRUCTION TI ME 

4K MEMORY - EXPANDABLE TO 32K 

4 SEC MEMORY CYCLE TIME 

24 I C' SIN CENTRAL PROCES SOR UN IT 
- -

8 I C TY PES INC PU 

CHART 1-M OS-GP characteristics 

We were quite conservative when we evaluated 
the speed capability of the MOS circuits. In par
ticular, our design was based on a 250 kHz clock 
rate using a patented 4-phase gating scheme. The 
gating scheme allows fairly complex logic equa
tions to be evaluated at each level of gating but 
only allows, at most, four levels of gating during 
each clock time. 

The machine operates in parallel with the con
ventional single address organization. A serial 
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tnachine was under consideration at one time, but 
it was abandoned for two reasons; it was slower 
and, surprisingly, it was more complex. The word 
size is 24 bits for both instructions and data. This 
came abo~t principally from its intended use as 
a navigation computer. Three hardware index 
registers are provided, although one is pre-empted 
for use by the interrupt system. Four interrupt 
channels with programmable lock-out are pro
vided. They operate on a rotational priority basis. 
Thirty-five instructions are provided, includitlg a 
108 J,Lsec multiply, a 108 .usec sum of products 
multiply, and a 112 .usec divide. Most of the other 
instructions require 8 J,Lsec. The main excep
tions are the shift type instructions which are of 
variable duration. 

The computer is designed- to address a 32K word 
memory, however, we currently are using a 4K 
word core memory. This core memory happens to 
have a 2 J,Lsec cycle time, although the computer 
really only requires a memory with a 4 J,Lsec cy
cle time to meet the stated instruction execution 
times. In the not too distant future we expect to 
operate the MOS-LSA's at 1 MHz clock rate, at 
which time we will require a memory with a 
1 J,Lsec cycle time. The central processor unit 
is mechanized with 24 MOS-LSA's of 8 types 
(Chart 2). 

The computer organization is fairly conven
tional, using an accumulator, a lower accumulator, 
an operand buffer register, a program counter, 

FUNCTIONAL 
DIAGRAM 

R 
115041 

S 
115051 

T 
115061 

DATA 

4 MOS IC'S, 1508 

PROGRAM COUNTER 

INDEX REGI SITR 

INDEX REGISITR 

INDEX REGISITR 

40/> CLOCK 

~ 
1 HYBRID LSP 

CHART 2-Arithmetic and control section, MOS-GP 

and three index registers. Four 1502 LSA's are 
used to mechanize the 24-bit accumulator. Four 
more 1502 LSA's mechanize the 24-bit lower ac
cumulator. Four 1500 LSA's mechanize the 24-bit 
buffer register. Four 1503 LSA's mechanize a 16-
bit program counter and three 16-bit index reg
isters. One each of the 1504, 1505, and 1506 LSA's 
mechanize the mode control. These 19 LSA's real
ly constitute the arithmetic and control portion 
of the computer. In addition to these LSA's, the 
Central Processor Unit (CPU) card also has four 
1508 LSA's to mechanize a core memory interface 
function and one hybrid LSA to mechanize the 4-
phase clock. 



The 1502 (Photo #1) mechanizes 6 bits of an ac
cumulator and is used in this machine to mechan
ize both the A and the L registers. It has four 
control inputs with signals which are exclusive; 
that is, the signals do not occur simultaneously. 
The AD.D control causes the 1502 to add the num
ber presented on a first set of operand input lines 
to the number held in the 1502's internal register. 
The sum is left shifted one binary place as it is 
inserted into the 1502's internal register. This 
somewhat peculiar operation was designed to op
timize the multiply and divide instructions. 

The add and subtract instructions require a 
compensating right shift which is the function of 
the SAR (shift A right) control line. In addition 
to the ADD and SAR control lines a CLR (clear) 
control line will clear the register to ~ero, and 
CPY ( copy) control line will cause the register 
to copy the number presented 'on a second set of 
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operand input lines. The latter function was in
cluded principally to provide certain transfers of 
data between registers during multiply and divide 
operations. 

The compensating right shift which is required 
when executing an add instruction is performed 
before the left-shifted add" rather than after the 
left-shifted add. This provides the time required 
to complement the operand during the execution 
of a subtract instruction. The actual complement
ing is done in the 1500 LSA's. The 1502 also 
mechanizes a "look-ahead" carry scheme. The 
actual add (left-shifted) is performed in one clock 
time-that is four levels of gating. In fact, durIng 
divide operations the computer develops quotient 
hits at the rate of one per clock time. The 1502 
LSA has 658 MOS-FET's. The die size is 110 
mils by 140 mils. 
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The 1500 LSA, (Photo #2), mechanizes 6 bits 
of the buffer register. The buffer register copies 
memory and supplies operands to both the A and 
the L registers. For instructions where masking 
is required, the masking is performed as the 
'Operand is copied into the buffer register. For in
structions where complementing of the operand is 
required, the complementing is performed between 
the buffer register and the drivers which supply 
the operand to the A register or the drivers which 

supply the operand to the L register. 
In addition to these functions, certain "dum

my" operands are supplied to the A and/or L 
registers at certain times. One example of this 
i~ when the L register is made to act like an up/ 
down counter during multiply operations by sup
plying a "dummy" operand of +1 'Or -1 unit. The 
1500 LSA has 393 MOS-FET's. The die size is 110 
mils by 140 mils. 



The 1503 LSA (Phete #3) mechanizes feur bits 
'Of the pregram counter and feur bits 'Of each 'Of 
the three index registers. The functiens per
fermed by the 1503 LSA are tied in very clesely 
te the 'Overall structure 'Of the machine. Its main 
function is te previde the addressing infermatien 
required te 'Operate the memery. The pregram 
ceunter takes care 'Of instructien addressing by 
ceunting as required and by cepying the appre
priate address when a transfer instructien is exe
cuted. Operand addressing is simply a matter 'Of 
copying the centents 'Of the address field 'Of the 
instructien werd if ne indexing is required. When 
indexing is required, the centents 'Of the appre-
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priate index register is subtracted frem the cen
tents 'Of the address field 'Of the instructien werd. 
Each 'Of the three index registers can be leaded, 
read 'Out, tested fer zere and decremented, and 
loaded with the cemplement 'Of the contents 'Of the 
pregram ceunter. The last functien is used te set 
up a subroutine linkage. 

In additien te the~e functiens, the 1503 LSA 
prevides memery addressing during a beetstrap 
fill mede and ceeperates with input/eutput LSA's 
to set up the interrupt address when an interrupt 
request is henered. The 1503 LSA has 1053 MOS
FET's. The die size is 160 mils by 170 mils. 
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The 1506 (Photo #4) mechanizes the basic con
trol signals required for timing. A five stage 
counter is used to provide the timing for long in
structions such as multiply, divide, and the shifts. 
All other instructions have only a first clock time 
of execute and a last clock time of execute. In
dexed instructions have an indexing clock time 
inserted before their first clock time of execute. 

The 1506 LSA also mechanizes four interrupt 
channels with programmable lock-out. Simul-

taneous interrupt requests are resolved by using 
a rotational priority scheme. When an interrupt 
request is honored, the appropriate channel is en
abled and an interrupt which is timed to the cur
rent instruction sequence is issued. 

The 1506 LSA also mechanizes a number of mis
cellaneous control signals. The memory write
select signals are included in this group. The 
1506 LSA has 1016 MOS-FET's. The die size is 
160 mils by 170 mils. 



The 1504 LSA (Photo #5) generates some' of 
the basic mode control signals related to indexing, 
writing into memory, and executing transfer in
structions. In addition, it generates some control 
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{ signals related to the ,execution of arithmetic in
structions .. The 1504 LSA has 614 MOS-FET's. 
The die size is 110 mils by 140 mils. 
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The 1505 LSA (Photo #6) generates most of 
the control signals related to the execution of 
arithemetic and shift type instructions. It also 
generates the low order carry data required for 
arithemetic operations in the A and L registers. 

In addition, it process,es the high and low order 
data bits of the A and L registers for arithmetic 
and shift type instructions. The 1505 LSA has 
838 MOS-FET's. The die size is 160 mils by 
170 mils. 



The 1508 LSA (Photo #7) mechanizes six bit 
positions of a core memory interface. The circuits 
employed are considerably different from the 4-
phase circuits used in the other LSA's. The 1508 
LSA performs a selection of one of four data 
sources. A sample and hold function is then per
formed to demodulate the· 4-phase type signal. A 
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level shift function is then performed to make the 
signal compatible with the current bi-polar levels. 
Finally, the 1508 LSA provides the drive required 
by the bi-polar system and at the same time pro
vides the capability for inverting the output. The 
1508 LSA has 142 MOS-FET's. The die size is 88 
mils by 104 mils. 
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Currently, not much has been done in the input/ 
output area, however, one LSA has been developed 
specifically for the input area. In particular, two 

1501 LSA's (Photo #8) mechanize a buffered in
put channeL This circuit was included with the 
development of the CPU, since it was required to 

load programs and data into the memory. The 
1501 LSA has 732 MOS-FET's. The die size is 110 
mils by 140 mils. ~o specific output circuits have 
been developed, howev,er, a few existing circuit 
types have been successfully applied to satisfy 
current output requirements. 



The breadboard computer (Photo #9) is small, 
~.nd, like most breadboards, it is a bit of a hodge
podge. Most of the bulk is made up of lab power 
supplies, commercial memories, and miscellaneous 
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boxes. The central proc·essor, together with one 
input channel, consists of one large board with 
interconnected LSA's. 
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The LSA's are clamped into holders (Photo 
#10). 

A mock-up (Photo #11) shows how the com-

puter will be packaged for cockpit mounting in its 
initial application. 
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Hardware / software interaction on the 
Honeywell model 8200 

by THEODORE F. HATCH, JR. and 
JAMES B. GEYER 

Honeywell, Incorporated 
Waltham, Massachusetts 

INTRODUCTION 

The purpose of this paper is to describe the 
multiprogramming and multiprocessing features 
provided by the Honeywell Model 8200 and its 
Mod 8 Operating System. Many hardware fea
tures are included on the Model 8200 to enhance 
its multiprogramming performance, and these are 
utilized by the Mod 8 Operating System to reduce 
system overhead, to provide efficient usage of the 
computer's throughput capacity for any program 
mix, and to simplify the user's job of scheduling 
programs. 

The Model 8200 is intended for large-scale com
puter installations having many business-oriented 
applica~ions involving a high volume of input! 
output data manipulation and processing. Both 
local and remote job entry are provided. The 
monthly rental of a Model 8200 ranges from 
$38,000 to $75,000. 

Model 8200 Hardware 

Multiprocessor 

The Honeywell Model 8200 consists of two 
central processors, an Input/Output Controller, 
and two or more memory modules which are 
shared among the processors (see Figure 1). The 
memory size ranges from 256K characters (two 
modules) to 1,024K characters (eight modules). 
Memory addresses are interleaved across all 
modules, and the separate modules cycle inde
pendently and can be accessed simultaneously. 
The memory cycle time is 750 nanoseconds for 4 
characters. 

The non programmable Input/Output Controller 
operates asynchronous to the central processors 

and can accommodate data transfer rates ranging 
from 1,333 KC to 3,833 Ke. The peripheral con
trol unit capacity is 48 trunks or 96 trunks, and 
the maximum number of simultaneous data trans
fers is 16 or 34. 

Unlike most multiprocessing computers, the 
Model 8200 contains two dissimilar central pro
cessors - one word-oriented (the Multiple Pro
cessor) and one character-oriented (the Support 
Processor). The Multiple Processor treats 8 
characters as one 48-bit word and executes 250,-
000 average 3-address instructions per second. 
This processor, which is upward-compatible with 
the Honeywell H-800 and H-1800 computers, per
forms hardware-controlled multiprogramming of 
up to eight job programs plus a monitor or exec
utive program. The Support Processor performs 
variable-length, 2-address instructions at an av
erage rate of 100,000 instructions per second. 
This processor is essentially the same as the 
Honeywell Model 4200 Central Processor. Both 
central processors can take advantage of memory 
overlap when more than the minimum memory 
modules are available. 

Peripheral devices 

The Honeywell Model 8200 has extensive 
peripheral device handling capacity, encompass
ing unit record, communications, and high-speed 
data-transfer equipment. 

These peripheral devices can be attached to the 
Input/Output Controller via three (optionally, 
six) I/O sectors ; each sector can accommodate 16 
peripheral control units. All of the I/O sectors 
except one can sustain a total transfer rate of 
500 KC, divided among up to 6 of the attached 
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FIGURE I-Honeywell 8200 system block diagram 

control units. The remaining sector can sustain 
a transfer rate of 333 KC divided among up to 
4 control units, or 1333 KC for a single control 
unit. Thus, as many as 8 (optionally, 17) high
speed tapes can be active, ,or 5 (optionally, 11) 
high-speed disk transfers can be in progress con
currently. 

Hardware features 

The Model 8200 has many features that sim
plify programming of the Monitor and enhance 
the multiprogramming capability of the system. 
Among these are (1) hardware multiprogram
ming, (2) Supervisor Mode (3) memory pro
tection and relocation, and (4) peripheral device 
protectiQn and reassignment. 

Hardware multiprogramming 

Multiprogramming sequencing in the Multiple 
Processor is illustrated in Figure 2. The Multiple 

_",:1: 

Processor has the facility to execute as many as 
nine programs concurrently under control of 
eight program groups and a master group. 
A three-address-instruction format is used where
by each instruction describes a complete opera
tion, such as "add A to B and store the result in 
C." The result is that each instruction is a self
contained entity, leaving no partial results in the 
accumulator or in common operational registers. 
Each of the eight program groups and the master 

NEXT ACTIVITY SCAN 

FIGURE 2-Multiprogram sequencing in the multiple processor 

group in the Multiple Processor has a set of 32 
addressable registers, including sequencing coun
ters, index registers, and work registers (see 
Figure 3). Since each program group has the 
facilities to direct and execute a program, there 
is no requirement for loading ,or unloading of reg
isters - even of the sequencing counter ~ when 
control is switched from one program to another. 
Hardware in the Multiple Processor executes an 
instruction from ,one active group and then scans 
for the next active group and executes an instruc
tion from it. This scan process is completely 
overlapped with execution of the preceding in
struction. When any program becomes unable to 
proceed (pending completion of SQme I/0 opera
tion) , it is automatically removed from the multi
programming sequence until the peripheral device 
is available; during this interval, the time-slices 
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FIGURE 3-Multiple processor control group 
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-normally used by that pr'Ogram are used instead 
by the other active pr'Ograms. Sip.ce the multi
programming sequencing is done by hardware, 
monitor intervention is only required t'O supervise 
the allocation 'Of system resources at job start 
time and to perform special service requests 

_ (dump, load segment ... ). 

Supervisor m'Ode 

A master group; which can execute privileged 
instructions, is provided in the Multiple Processor 
along with the eight program groups. Master 
group can run in either of two modes, called hunt 
mode and no-hunt mode. In hunt mode it is given 
the same access to -the central processor as the 
eight program groups and thus the multipr'Ogram
ming sequencing is among nine gr'Oups (see 
Figure 2). The Mod 8 Operating System uses this 
mode to execute resident Monitor functions (such 
as interpretation of Monitor calls and allocation 
of memory space :for monitor overlays). In no
hunt mode, master group m'Onop'Olizes the use of 
the Multiple Processor by inhibiting the multi
programming scan. Interrupts from the Support 
Processor, the I/O ContDoller or program groups 
force the Multiple Processor into master group 
no-hunt mode within one instruction time. These 
interrupts include peripheral interrupts, monitor 
calls, I/O service requests, and protection viola
tions. Master Group registers which are shared 
between hunt and no-hunt modes, such as the 
sequerice counter, are saved and restored by 
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FIGURE 4-Hardware memory protection 

hardware in order to minimize the time to switch 
between master, group m'Odes. 

Memory protection and relocati'On 

Memory protection in the Model 8200 is done 
by a system of "locks" and "keys" (see Figure 
4). A key is a c'Ode number that is assigned to 
each group by the monitor pr'Ogram. A l'OCk is a 
code that is assigned to every 512-w'Ord (4,096-
character) block 'Of memory. The key is st'Ored 
in a key register associated with each program 
group in the system. Each of the tW'O central pro
cessors and the Input/Output C'Ontroller has a 
hardware table (memory lock table) 'Of memory 
lock assignments. 

Whenever a request for mem'Ory access is made, 
the central processor or Input/Output Contr'Oller 
hardware checks the key of the program gr'Oup 
against the mem'Ory lock table. If the key matches 
the lock, the access is completed. If the key does 
not match the lock, the access is prohibited, the 
'Offending-program is turned 'Off or the data trans
fer is terminated and master gDOUp is signaled 
that a memory violation attempt has been made. 

Alth'Ough each pr'Ogram is expected t'O 'Operate 
in its 'Own allocated area of memory, the alloca
tion decision is made by the Monitor as the job 
starts its run and not by the job programmer or 
the compiler or assembler. This job allocation 
function is implemented by means of base re
location registers. A base register, whose c'On
tents can be altered only by master group, is pro
vided for each program group and f'Or the Sup
port Processor. As each pr'Ogram makes memory 
access requests for instructions or data, the 
c'Ontent 'Of its associated base register is added 
to the pDogram-produced address by the hard
ware at no time penalty to the system. 
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FIGURE 5-Peripheral protection/reassignment 
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Peripheral protection and reassignment 

The Input/Output Controller contains a periph
eral steering table which is set up by the Moni
tor when a job program is allocated peripheral 
devices (see Figu~e 5). The contents of the periph
eral steering table can be changed only by 
master group, and are used by the Input/Output 
Controller to determine which processor should 
receive each peripheral interrupt. The table is also 
used by the Input/Output Controller at the start 
of an I/0 request issued by the Support Proces
sor to verify that the processor has been granted 
permission to use the addressed peripheral contrO'I 
unit. If it does not have permission, the Input/ 
Output Controller causes the Support Processor 
to make a call to master group. Thus, without the 
overhead cost of peripheral instruction verifica
tion by software, programs running in the Sup
port Processor are prevented from using periph
erals not allocated to them. 

When a Multiple Processor program group 
wishes to .initiate a peripheral operation, it exe
cutes an I/O request (Peripheral Control Order)· 
The execution of ari I/O request causes the is
suing group to be "stalled" (taken out of" the 
multiprogramming sequencing) and an interrupt 
to master group to be made. Before the interrupt 
is made, however, the Multiple Processor, using 
the peripheral address and drive number in the 
I/0 request, looks at an entry in the peripheral 
protection/reassignment table set up by the Moni
tor at job allocation time. This entry contains a 
lock that must be matched by the requesting 
group's key; if they do not match, the I/0 request 
interrupt is turned into an illegal-peripheral
device interrupt. If the lock and key match, 
the I/O request is copied into a reserved area 
of main memory within the Monitor. During 
this copying, the peripheral address and drive 
number are taken fvom the table entry containing 
the lock value. The buffer address is added to' the 
base register before being stored. The I/0 re
quest interrupt is then made to master group 
which picks up the verified and reassigned I/O 
request and processes it. 
, The hardware verification and reassignment O'f 
an I/O request eliminates the need for this func
tion to be done by software, thus speeding up the 
process by at least a factor of 10. All software 
now need do is verify the seek address for mass 
storage devices. The me.mory address of the buf
fer is checked by the Input/Output Controller 

during data transfer as described above. 
Peripheral reassignment is useful when a pro

gram has been dumped in a checkpoint procedure 
and then later reloaded. When the program is re
run, the physical data files need not be mounted 
on the same physical control units. The Moni
tor simply makes the correct entries in the periph
eral protection/reassignment table. 

Program scheduling and, multitask control 

The scheduling function on a large-scale com
puter involves the dynamic management of many 
resources, including memory space, auxiliary 
storage space, peripheral devices, central proces
sor usage, and input/output channel usage. 
Scheduling can be divided into two broad cate
gories: the allocation of main memory, peripheral 
devices, and mass ito rage areas to each program 
(referred to herein as Program Scheduling) and 
the sharing of central processor and I/O channel 
time among those programs that are currently 
resident in memory (herein referred to as Multi
task Controli. 

Progmrn scheduling 

Program Scheduling in the Mod .8 Operating 
System consists of two phases. The first phase 
selects a set of programs to be executed concur
rently in such a way that as many available re
sources as possible are made busy. The second 
phase assigns unused tape and disk pack drives 
for the mounting of volumes needed later and in
forms the operator of these assignments. 

In order to maximize the utilization of system 
resources in a multiprogramming environment, 
it is beneficial to have a large number of diverse 
programs continually available for execution; 
also, the facility for allocation of resources among 
programs must be flexible. The Mod 8 Operating 
System allows submission of new job requests 
from a variety of sources at any time, thereby 
making it convenient for the user to constantly 
replenish the supply of programs waiting to be 
scheduled. Further, a variety of prO'gram types 
can be accommodated and scheduled for con
current execution, thus increasing the probability 
that the available program mix can be multi pro
grammed efficiently. For example, programs for 
the word-oriented Multiple Processor, programs 
for the character-oriented Support Processor, 
Honeywell 800/1800 programs using compati
bility mO'de, and communications message-pro-
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cessing programs can be run at the same time. 
Each program is restricted to its own set of as
signed resources by hardware protection features 
and is unable to interfere with other programs or 
the Resident Control System. 

Assignment of resources 

Flexibility in the assignment of Model 8200· re
sources is indicated by the following capabilities. 

1. Any portion of memory can be assigned by 
the Mod 8 Operating System :.tor use by 
either the Multi Processor or the Support 
Processor. 

2. Any tape unit can be assigned to any pro
gram regardless of the nature of the pro
gram and regardless of which tape control 
it is connected to. 

3. A single disk device can be shared by sever
al programs regardless of which processor 
they use. 

4. Each program occupies a contiguous block 
of memory, which can be dynamically re
assigned (by moving the program and 
changing its base register) in order to free 
up a large contiguous unassigned area. 

Scheduling algorithm 

Each job submitted to the operating system is 
given a scheduling priority by the user. The Mod 
8 scheduling routine, which is called into opera
tion every time new jobs are submitted or there 
is a change in resource availability, proceeds one 
priority level at a time: 

1. The highest priority level is considered first; 
2. Available resources are calculated for this 

priority level (the details of thh~ calculation 
are a function of the priority level, since 
some priorities can acquire memory cur
rently used by certain lower priorities, and 
since no priority level can use resources on 
which a higher level has a claim) ; 

3. Requirements of programs at this level are 
determined (currently running p~ograms 

have no outstanding requirements) ; 
4. The most profitable program * is selected 

* A program is considered "profitable" to run now if it requires 
the use of currently unused resources and does not also require 
the use of any currently busy Tesource that cannot be shared 
efficiently. Thus, a program that requires only memory plus disk 
files on a currently unused di.sk control would be considE'rf'd more 
profitable than a program that requires memory plus a tape file 
on a busy tape control. Also, a program that requires a sequen-

from among thos,e for which enough re
sources are available; if none remain in this 
level, the scheduling routine goes to step 6; 

5. Main memory, program groups, and tape 
and mass storage work areas for the most 
profitable program are allocated; the status 
of available resources is changed to reflect 
this allocation; and step 4 is repeated; 

6. Step 2 is performed for the next lower 
priority level if any progJ:'ams remain that 
haven't been processed. 

Program protection and isolation 

A necessary attribute of any multiprogram
ming system is the protection of each p~ogram 
and the Resident Control System from all other 
programs. 

In the Model 8200, program protection is com
plete and absolute. It is accomplished through 
a combination of hardware and software, and, 
significantly, this protection costs very little over
head time. The protection features also assist in 
detection of programming errors, since any ac
cidental attempt by a program to stray beyond its 
boundaries is immediately trapped by hardware 
and/or software. 

The hardware elements involved in program 
protection are listed below: 

1. Lock-and-key protection (see Figure 4). 
2. A peripheral protection/reassignment table 

(see Figure 5). 
3. All iHegal or potentially dangerous instruc

tions are trapped to the r'esident Monitor and 
generate an interrupt to master group.. 

4. An endless uninterruptible loop within a 
program, which prevents all other programs 
from operating, is automatically terminated 
by hardware after a set interval of time. 

The hardware elements above are complemented 
by the following software elements to provide 
program protection in an optimal manner. 

1. The Multiprogram Contvol (MPC) instruc
tion is useful, within a program which uses 
more than one program group, to initiate 
and terminate asynchronous tasks and to 
test for task completion. Because of, the 
danger that program A might affect a task 
within program B, all MPC instructions 
are trapped (by hardware) to master group. 

tially-accessed disk file on a busy disk pack device would be con
sidered unprofitable because of the probable wasted arm posi
tioning time between the two active files on the same disk. 
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The Monitor masks 'Out any reference to 
groups not belonging to this program, and 
perf'Orms the remaining actions specified in 
the instruction. 

2. Monitor functions are requested by the m'On
itor call instruction, which identifies the de
sired Monitor function and specifies param
eter information. The Monitor verifies that 
each monitor call is legitimate to the extent 
that it will n'Ot cause the Monitor t'O get into 
a loop, partially destr'Oy itself, or affect any 
other current program. In addition, during 
loading of program segments, the Monitor 
employs the hardware memory protection 
feature t'O prevent 'One pr'Ogram from load
ing into an'Other program's area. 

3. Since there may be several independent data 
files st'Ored 'On the same mass st'Orage device, 
the peripheral pr'Otecti'On/reassignment 
table is not sufficient t'O prevent a pr'Ogram 
from referring t'O an'Other program's file. 
H'Owever, the limits 'Of each mass st'Orage 
file used by every running program are 
st'Ored by Monit'Or in resident (pr'Otected) 
mem'Ory, and whenever a pr'Ogram issues a 
peripheral 'Order t'O mass st'Orage (which is 
trapped t'O master gr'Oup), the specified mass 
storage address is c'Ompared t'O the kn'Own 
limits f'Or this file. Thus, references to 
peripheral files n'Ot assigned t'O a program 
are prevented. 

As may be observed fr'Om the preceding hard
ware and s'Oftware features, the pr'Otection 'Of 
each pr'Ogram from all 'Others is a result 'Of the 
isolation 'Of each pr'Ogram (see Figure 6). A pro
gram cannot affect anything - e.g., main mem
ory, control memory, peripheral devices - outside 
'Of its own assigned resources. 

Multitask control 

Multitask C'Ontr'OI is concerned with the dynam
ic allocation of central process'Or time and in
put/'Output channel usage among several pro
grams 'Or tasks which are all resident in memory. 
In the Model 8200, each task is executed either by 
the Multiple Process'Or or by the Support Pr'Oces
s'Or. Support Pr'Ocess'Or tasks, which are generally 
either communicati'Ons message c'Ontr'OI tasks or 
media conversi'On tasks (such as card-t'O-disk), 
are executed by a c'Onventional interrupt-driven 
m'Onitor which turns on the active task with the 
highest priority after pr'Ocessing each interrupt 
(such a pri'Ority directed system is referred to 
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herein as "vertIcal multiprogramming"). Multiple 
Process'Or tasks, on the other hand, are each as
signed a program gr'Oup and are executed in an 
interleaved manner by hardware (this meth'Od, in 
which 'One instructi'On is executed fr'Om each task 
in cyclical fashion, is referred t'O as "h'Oriz'Ontal 
multiprogramming"). Although a single Multiple 
Processor pr'Ogram can include m'Ore than one 
task (each being assigned a separate program 
group) , the terms "multipr'Ogramming" and 
"multitasking" are used interchangeably in this 
discussion. 

As the following discussion will show, vertical 
multiprogramming is advantageous when iot is 
necessary to give priority t'O some programs that 
have external timing requirements. This is, the 
reas'On that remote c'Ommunicati'Ons lines, for 
example, are controlled fr'Om the Support Pro
cessor. H'Owever, it is 'Our c'Ontention that hori
z'Ontal multipr'Ogramming, as pr'Ovided by the 
M'Odel 8200 MUltiple Process 'Or, is well suited to 
maximizing the throughput of a gr'Oup of typical 
business-oriented data pr'Ocessing pr'Ograms that 
make heavy use 'Of relatively fast input/'Output 
devices. 

For any program p to which specific data files 
'On specific devices have been assigned, there is a 
number Rp which is the rati'O 'Of the central pro
cessor time used by the program t'O the time 
during which one or more of its files are active 
(assuming that the program is running alone). 
For a pr'Ogram which issues peripheral 'Orders 
with regularity, the program is peripheral-bound 
if R p < 1, and it is pr'Ocessor-bound if Rp> 1. 

F'Or an installation having mostly processor
bound programs (R p> 1), the only method to pro-



Hardware/SQftware InteractiQn 'On Honeywell MQdel 8200 897 
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vide increased thrQughput is to get mQre central 
proceSSQrs 'Or a faster 'One. However, if the in
stallatiQn has a number 'Of peripheral-b'Ound prQ
grams, its 'Overall thrQughput may be significantly 
imprQved by adding peripheral devices and mem
'Oryand using a multiprogramming 'Operating sys
tem. The degree 'Of impr'Ovement will depend 'On 
the nature 'Of the pr'Ograms and 'On the character
istics 'Of the 'Operating system. 

If s-everal peripheral-bQund prQgrams fQr which 
L:Rp:::; 1 are executed cQncurrently under an ideal 
mllltitasking system, each pr'Ogram shQuld prQ
ceed at its S'OIQ speed (i.e., its speed when run 
alQne) . FQr such a set 'Of prQgrams, hQrizQntal 
rrmltiprQgramming will perf'Orm as well 'Or better 
than a vertical system because the necessary ce'n
tral process'Or 'Operati'Ons are always executed in 
less than the available time (which is determined 
by peripheral devices); the 'Only difference be
tween the tW'O systems is the 'Order in which the 
central pr'Ocess'Or instructi'Ons are executed. 

- time _______ 

16 24 32 40 48 56 64 

110 (AI I I I ) II I II I I II I 1 I I 
CP (A) H H H I-------H \H H ~ H H I----H H H I----i 
CP (B) H f-- -H H H I-- ---+i 

110 (BI I--I------l I------i I I I I ) 

VERTICAL MUL TlPlIOGRAMMING 

I/O (AI I I I I I I I I I I 
CP (A) H H H t--"'-H H ~.~ 1--... -1 
CP (B) H t--... +( 1"'1 H I--... -ti ~ .. ~ 
I/O (BI +-+--i I I I I I J------+--

H 
I 

H 

I I 

DA • 0.94 
CA ·0.47 
CB ·0.35 
DB ·0.71 

HORIZONTAL MULTIPROGRAftIl .... ING DA • 0.89 
CA • 0.44 
CB • 0.44 
DB • 0.89 

I-- -H H 
f-----( t-------t----i 

~ ·1.65 
~ ·0.82 

~ -1.78 
~ - 0.88 
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FIGURE 8-Programs oscillate between peripheral-bound and 
processor-bound 
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PROGRAM A, AND PROGRAM B, ALTERNATELY REQUIRES 1 UNIT AND 3 UNITS 
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FIGURE 9-Program combination is processor-bound 

A m'Ore interesting situati'On 'Occurs when prQ
grams f'Or which .L:Rp ~ 1 are a~ecuted c'Oncurrent
ly 'Or when 'One 'Or m'Ore 'Of the pr'Ograms 'Oscillates 
!>etween being peripheral-b'Ound and being prQ
cess'Or-b'Ound. Figures 7-9 illustrate three simple 
cases in which h'Oriz'Ontal multiprQgramming 'Of 
the type perf'Ormed 'On the M'Odel 8200 Multiple 
Pr'Ocess'Or prQvides better 'Overall thr'Oughput than 
fixed-priQrity vertical multipr'Ogramming. In 
these three figures, D A and DB are the fracti'Ons 
'Of a single data channel used by pr'Ograms A and 
B, respectively, while C A and CB · represent the 
percentage 'Of central pr'Ocessor utilizati'On by each 
pr'Ogram. D T is the t'Otal number 'Of data channels 
used, and C T is the fracti'On 'Of central prQceSSQr 
time used by the- tW'O prQgrams t'Ogether. 

Figure 7 is a case in which the pri'Orities 'Of the 
tW'O pr'Ograms affect their 'Overall perfQrmance in 
vertical multipr'Ogramming; 'Only if prQgram B 
is given a higher pri'Ority than prQgram A are 
b'Oth pr'Ograms executed at their S'OIQ speed. In 
Figure 8, both pr'Ograms 'Operate at less than I/O 
transfer speed because they 'Oscillate hetween 
being peripheral-b'Ound and prQcess'Or-bQund; in 
this case, multiple buffering (i.e., mQre than tW'O 
buffers per file) WQuld all'Ow them t'O run at I/O 
transfer speed. Figure 9 is a case where prQgrams 
A and B could n'Ot b'Oth be expected t'O run at SQ1Q 
speed under any system because Rp 1. The pro
gram given highest pri'Ority under vertical multi
pr'Ogramming runs faster than it runs under 
h'Oriz'Ontal multipr'Ogramming;' h'Owever, the t'Otal 
thr'Oughput 'Of bQth programs is better with hQri-



898 Fall J 'Oint CQmputer Conference, 1968 

zQntal than with vertical multiprQgramming. 
The main advantages 'Of the hQrizontal multi

pr'Ogramming provided by the MQdel 8200 Multi
ple PrQcess'Or are (1) task switching is aCCQm
p.lished by hardware with zero time 'Overhead and 
(2) cQmbinatiQns 'Of prQgrams that make heavy 
use of peripheral devices tend tQ 'Obtain better 
overall thrQughput with hQrizQntal than with 
vertical multiprogramming. The above examples 
describe several cases where hQriz'Ontal multi
prQgramming perfQrms better than vertical multi
programming, even assuming zero task switching 
'Overhead fQr bQth methQds. PrQper chQice of 
priQrities when using vertical multiprQgramming 
may provide better thrQughput fQr 'One 'Of the pro
grams when compared tQ its performance under 
horizontal multiprogramming; however, the c'Om
bined throughput for all programs still WQuld not 
exeeed that for horizontal multiprogramming. 
Further, when complex data prQcessing programs 
are involved, it is very difficult to· knQW enough 
ab'Out the characteristics of these programs to in
telligently decide which priorities to assign in 
order to produce the highest overall I/O thrQugh
put, and usually the set of programs whiclf will 
run cQncurrently changes frQm day tQ day S'O that 
the choice of relative priorities would have tQ be 
done 'On a daily basis. In practice, when using 
vertical multiprQgramming, programs are as
signed priorities 'On the basis of their assumed 
impQrtance and time requirements, if any; as a 
c'Onsequence, 'Overall I/O thrQughput suffers. 

In the MQd 8 Operating System, user-specified 
priQrities are used tQ influence the 'Original 
scheduling 'Of prQgrams (Le., their starting 
times), but 'Once started, the use 'Of hQrizontal 
multipr'Ogramming tends to provide maximum 
overall I/O throughput. 

Organization of the resident control system 

The Mod 8 Resident Control System (Physical 
I/O, Monitor, and parts 'Of Logical I/O) is or
ganized t'O prQvide the following characteristics 
and capabilities: 

1. Adaptive tQ different am'Ounts of reserved 
mem'Ory (minimum 'Of 8,192 words) and to 
different work loads; 

2. Functi'Onally expandable (by adding overlay 
rQutines) with'Out increasing the reserved 
memory requirement; 

3. Usable c'Oncurrently by several programs; 
4. ResPQnsive to input/'Output requests 'On a 
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m'Ore urgent basis than requests fQr less 
time-dependent services. 

The first two caf)abilities abQve have been 
achieved by dividing the reserved memQry area 
int'O two parts: a permanent storage area and a 
dynamic storage area (see Figure 10). 

The permanent st'Orage area consists 'Of tables 
used by hardware and/or s'Oftware (peripheral 
pr'Otection/reassignment and res'Ource allocatiQn 
tables), the resident routines that execute in 
master group (Physical I/O and parts of the 
resident M'Onitor) , and resident routines that 
execute in one of the program groups (i.e., sever
al commonly used Monitor r'Outines and resident 
L'Ogical I/O). 

Only the most c'Omm'Only used Monit'Or routines, 
such as the LQader, the Job Input File Reader, and 
the J'Ob Output File Writer, are permanently in 
memory. All 'Others are 'Overlay routines which 
are loaded into any available part of the dynamic 
storage area frQm mass stQrage when needed. 
However, if an 'Overlay r'Outine is called frequent
ly it is likely to be in memory when needed, in 
which case it will not be rel'Oaded from mass 
storage (overlay routines d'O not destrQY them
selves during executi'On, and hence may be re
executed without being reloaded). Also all'Ocated 
from within the dynamic stQrage area are work 
areas required by the overlay routines during 
executi'On. Because these work areas are allQcated 
independently fr'Om the 'Overlay routines them
selves, it is possible f'Or overlays to call other 
overlays in a subroutine fashion with 'Out aU such 
overlays being in memory at the same time. For 
inactive overlays to which control must be re-
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turned later, only the work areas need be retained 
in memory. 

The dynamic storage area is also used to store 
job description information for current and 
waiting jobs. The fewer jobs there are, the more 
memory is available to contain overlay routines 
and work areas. Because no fixed division is made 
between memory available for overlays and mem
ory available for job descriptions,* the Monitor is 
able to optimize its performance in the context 
of the current workload. 

The third and fourth capabilities above have 
been obtained by dividing the functions of the 
resident control system into three priority levels 
and by executing the highest priority functions 
in master group no-hunt mode, the next highest 
priority functions in master group hunt mode, 
and the' lowest priority functions in program 
group mode (see Figure 11). 

Phy.sical I/O 

I/O requests and interrupts are handled in 
master group, running in no-hunt mode. When an 
I/O service request is executed by an active pro
gram group, that group is put in the 'stalled' state 
by hardware. The I/O request is then verified by 
hardware using the peripheral protection/reas
signment table. For mass storage devices, a 
check must be made by software to verify that 
the reference is within a file area available to the 
requesting program. Th'3 Input/Output Controller 
uses the memory protection system of locks and 
keys, so the buffer address and range of a data 
transfer request need not be checked by Physical 
I/O. 

For non-mass storage devices, the group is 
left stalled until the I/O request is accepted by 
the peripheral device. For mass storage, the group 
is stalled until the preceding order for the same 
file has been completed. In general, this means 
that a program can only make use of one or two 
data buffers per file. Double buffering is all most 
applications need, allowing processing of a block 
to overlap data transfer. If the amount of central 
processor time to process each block fluctuates 
greatly and many buffers should therefore be used 
to smooth the operation, a second task can be set 
up to read the blocks in advance. 

* Although there is no fixed division between these areas, the 
job description information is never permitted to expa,nd to 
the point where the largest overlay could not fit, but is saved on 
mass storage instead. 

----. -
...... -
...... -
-----

FIGURE ll-Operating modes of the Mod 8 resident control 
system 

Physical I/O is organized as follows. Each 
peripheral control unit in the system has a control 
area reserved for it in the permanent storage 
area. This serves as a work and status area for a 
device specific routine which can handle any num
ber of peripheral control units of the same type. 
This allows the number and address of each 
peripheral control unit to be specified at system 
initialization time, as long as the system has been 
generated to handle the required types of control 
units. 

Mass storage requests are queued by drive. For 
each drive, a se'ek order is issued, for the data 
transfer on the closest cylinder to the current one 
in a fixed direction (Le., first from circumference 
to center, then from center to circumference, 
etc. ) . * For those drives which are presently posi
tioned to the desired cylinder, orders are issued 
in a round robin fashion. 

An I/O request is verified upon receipt and 
held in a protected memory ar,ea until the periph
eral order is issued; thus, the peripheral order 
can be' issued immediately when the peripheral 
device is ready to receive it. 

Having the file protection operation handled by 
Physical I/O enables the Mod 8 Operating System 
to allow the user to code his own I/O routines 
for special devices or for special file handling and 
yet not worry about device protection. The user 
also does not have a high overhead imposed on his 
own I/O operations. 

Monitor 

Although all interrupts within the Multiple 
Processor are received by master group no-hunt 
mode, those which are not critical for maintaining 
I/O throughput are passed along to master group 

*This is the SCAN procedure described by Denning.1 
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hunt mQde and prQcessed by the MQnitQr. These 
"nQn-critical" interrupts cQnsist Qf: 

1. MQnitQr calls (prQgrammed requests for 
services such as IQad segment, print mem
Qry, rerun program, terminate prQgram, 
typeQut Qn the cQnsQle, schedule media 
cQnversiQn j Qb, etc.) 

2. OperatQr typeins (once the QperatQr has 
c.ompleted an unsQlicited typein, to' indicate 
SQme external cQnditiQn Qr request SQme sys
tem actiQn, master grQUp hunt mQde is 
called UPQn to' interpret the typein and ini
tiate the apprQpriate prQcessing) 

3. PrQgram errQrs detected by hardware (bar
ricade viQlatiQns, illegal Qr privileged in
structiQns, etc.) 

4. Peripheral device errQrs associated with a 
particular prQgram and detected by Physical 
I/O. 

AlthQugh interrupts to' master group no-hunt 
are queued by hardware, calls passed frQm master 
grQUp nQ-hunt to' master grQUp hunt mQde (to' 
p~Qcess "nQncritical" interrupts) are queued by 
sQftware. This is accomplished via a table Qf 
"group items," intO' which master grQUp nQ-hunt 
stQres call informatiQn and from which master 
grQUp hunt reads that infQrmatiQn. Any time that 
resident MQnitQr is activated in master grQUP 
hunt mQde, it scans all Qf the grQUp items to' de
termine which Qne (s) is awaiting actiQn. There is 
Qne group item fQr each of ten PQssible call 
sO'urces: Multiple PrQcessor prQgram grQUPS zerO' 
thrQugh seven, the Support PrQcessQr, and the 
QperatQr's cQnsQle. The Gr.oup Item Setup rQutine 
stQres status infQrmatiQn within the appropriate 
grQUp item and prevents further interrupts frQm 
the same SQurce (e.g., if a prQgram uses groups 
3 and 4 and grQUp '3 issues a mQnitQr call, bQth 
groups 3 and 4 are turned off to' prevent further 
calls until this Qne has been prQcessed). 

Thus, as many as ten calls to' the MQnitQr may 
be outstanding at the same, time, and the prQ
cessing of these calls dQes nO't prevent further 
high-priority (peripheral) interrupts frQm being 
handled. 

Even thQugh the response time to' a segment 
IQad request (fQr example) is nQt as critical as 
the response to a peripheral interrupt, it is still 
impQrtant in a multiprO'gramming system to. avoid 
tying up the MonitQr fO'r extended periods in be,: 
half Qf Qne program if this prevents .other prQ
grams frQm obtaining MQnitQr services. Thus, 
if the MQnitQr is perfQrming a diagnO'stic memQry 

dump fQr prQgram A (which may require 5 to. 10 
secQnds), it is desirable fQr the MQnitO'r to' be able 
to' IQad a segment Qf prQgram B (which may re
quire Qnly 0.5 secQnds) during this time. In .other 
wQrds, the MQnitO'r itself should be multiprQ
grammed. 

This is accQmplished in the Mod 8 Operating 
System by utilizing Multiple PrQcessQr prQgram 
grQUps (nQrmally the same group which issued 
the monitQr call) to' perfQrm mQnitQr functions, 
and by prQviding a dynamic stQrage area within 
the reserved memQry area which can cQntain mQre 
than Qne mQnitQr overlay rQutine. 

Master grQUp hunt mQde merely turns Qn a 
Multiple ProcessQr prQgram grQUp to' execute a 
mQnitQr functiQn and then cQntinues its scan Qf 
the group ite·ms in parallel with that mQnitor 
functiO'n. Since many Qf the monitQr rQutines 
cQnsist Qf reentrant cQde, this means that several 
different mQnitor functiQns, Qr even the same 
mQnitor functiQn, may be executed simultaneously 
fQr s·everal different requesting prQgrams, and 
that the MQnitQr dQesn't appear "busy" to' a 
calling program until it has run Qut Qf space in 
its dynamic stQrage area. 

Logical I/O 

The LQgical I/O system has the main objective 
of keeping to a minimum the number Qf instruc
tiQns necessary to' prQcess a data file. This is dQne 
as follO'ws. 

1. Privileged instructiQns are nQt used in 
Logical I/O, thus limiting the number Qf in
terrupt-causing instructiQns. This is aCCQm
plished by cQding mQst Qf LQgical I/O as 
re-entrant cQding residing in the permanent 
stQrage area. The hardware memQry prQ
tection allows this area to' be read by any 
grQUP but changed Qnly by master grQUp. 
Thus, any or all groups can be executing 
the resident LQgical I/O cQding at the same 
time. 

2. File-specific coding is included within the 
jQb prO'gram. This cQding is specialized 
when the file is first Qpened, to' the require
ments .of the file fQrmat and device type. 
Putting the basic QperatiQns Qf bIQcking/de
blQcking and generatiQn Qf I/O requests fQr 
sequential prQcessing in file-specific cO' ding, 
instead .of dQing these QperatiQns with a 
CQmmQn interpretive subrO'utine, imprQves 
executiQn time in this area manyfQld. Device 
independence is obtained by specializing a 
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file at open time when the device type must 
finally be known. Reruns are still handled 
easily since the peripheral address used by 
the job program does not change on restart
ing even when the actual device has a 
different address; the address is changed 
only in the peripheral protection/reassign
ment table. 

The usual once-per-file functions (open, close, 
force end of volume) are coded as overlays to 
save memory. These functions also d,o not use 
privileged instructions and are re-entrant. 

The coding to handle nonsequential file pro
cessing is handled by interpretive subroutines to 
save ,on memory space. This GET/INSERT func
tion coding resides in two basic overlays (one for 
direct access file format, the other for indexed se
quential file format) and are kept in mem,ory only 
while a file of the corresponding format is open. 

SUMMARY AND CONCLUSION 

The Honeywell Model 8200 and the Mod 8 Op
erating System have been introduced as a multi
processing/multiprogramming computer system. 
The interaction of hardware and software has 
been described, especially in the areas of protec
tion and multiprogramming, as have the Opera
ting System's scheduler and resident control sys
tem. It is argued that the horizontal multipro
gramming used on the Model 8200 provides 
greater I/O throughput with less attention from 
the user than does the more conventi,onal vertical 
multiprogramming. 

The potential throughput of a Honeywell Model 
8200 system is considerable, ensuing fr,om the 
speed of its two central processors (250,000 and 
100,000 average operation per second, respective
ly) and the transfer rate of its input/output sys
tem (up to 3,833,000 characters per second). 
However, the degree to which any data processing 
system achieves its potential (Le., the fraction of 
its .capabilities that are devoted to the customer's 
w,ork and not either idle or involved with house
keeping) is a function of the job mixture and of 
the operating system ov~rhead. Because as many 
as eight programs plus communications and 
media oonversion tasks can run simultaneously on 
a Model 8200 (and these may be either checkout 
or production programs), it is highly probably 
that a well-balanced (heterogeneous) j,ob mixture 
will be available for processing at all times. The 
hardware and software features that have· been 
described, which result in low central processor 
overhead and rapid response to requests for in
put/output and monitor action, make it practical 
to operate as many as five or six typical programs 
in parallel with very little degradation in the indi
vidual performance of each. Thus, the Model 8200 
with the Mod 8 Operating System should come 
closer to achieving its full hardware potential 
than do competing machines in its market class. 

1 PJDENNING 
Effects of scheduling on file memory operations 
1967 SJCC Proceedings p 9 

2 ACHIRTLE 
A look at the model 8200 
Honeywell Computer Joumal Vol 2 No 1 p 5 April 1968 





Measurement and analysis of large operating systems 
dur~ng system development 

by D. J. CAMPBELL and W. J. HEFFNER 

General Electric Company 
Phoenix, Arizona 

INTRODUCTION 

Some months ago, representatives of one of the better 
known software houses contacted us with this proposal: 
They wished to sell us a tool for advancing! our techni
ques in developing real-time systems. Their techniques 
allowed the exact reproduction of any observed se
quence of real-time events. Thus, when a particular se
quence caused a system error, the sequence could easily 
be reproduced so that the error could be analyzed and 
?orrected, and the correction verified. A powerful tool, 
mdeed. 

Yet we were not interested. We explained that the 
particular errors which would be most effectively ana
lyzed by this technique did not cause us very much 
difficulty in our systems. 

While the presentation was a failure in the eyes of the 
software firm, it verified our belief that very few stand
ard packages exist to assist in the measurement of 
operating systems. Our problem was not reproducing 
sequences of events, but rather simply finding out what, 
in fact, was going on inside the system. 

What is measurement and why measure? 

By measurement of any system, we mean the gather
ing of quantitative data on the behavior of that system. 
For instance, timing runs on programs are measuring 
program performance. Likewise, simulations of systems 
are measuring tools of that system, since they give 
performance or behavior data on the system studied. 
The accounting information for user jobs is a measuring 
tool of an operating system; it gives measures of system 
resources used in running user jobs. Even thelowlymem
ory dump is a measuring tool of a system because it 
shows how the system behaved. 

Due to their complexity, operating systems are partic
~larly difficult to measure. In many cases, an operat
mg system will correctly run each user job, but still be 
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grossly inefficient in using the computing power of the 
system. 

Cantrell3 describes a measuring technique that found 
system inefficiencies which had caused approximately 
30% degradation in system performance for almost two 
years. And nobody suspected that it was there! There 
really is a large potential pay-off in adequately meas
uring an operating system, despite the difficulties of 
applying the yardstick. 

We have been engaged in the development, mainte
nance, and extension of multiprogramming, mUltipro
cessing operating systems for five years. During that 
time we have produced three maj or rewrites oftheoperat-· 
ing system for the same large-scale computer system. 
The latest version, called G ECOS III - a totally inte
grated, on.;.line, remote batch, and time-sharing 
system-is described in recent literature.1 ,2 Our 
experience in the development of these systems also has 
led to the development of a series of techniques for the 
measurement and analysis of the behavior of our operat
ing systems. One of these techniques has been described 
by Cantrell and Ellison.3 This paper discussed addi
tional measurement techniques, limitations of each, 
values of each,' and specific lessons learned by applying 
these techniques to GECOS III. 

Types of measurements 

For purposes of discussion, it is convenient to group 
measurement techniques into two classes: hardware 
techniques and software techniques. The hardware 
techniques may be further subdivided into standard 
hardware features that may be used for measurement 
purposes and special hardware instrumentation, special
ly added for the sake of analysis. Software techniques 
generally can be divided into three classes; simulation 
models of the system, measurement processes interior 
to the system, and finally, exterior measurement pro-
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cesses imposed on the system. 

Hardware measurements 

Hardware techniques have a long history. Anyone 
who used the IBM 650 can remember the address stop 
switches. When these were set, the computer would 
come to a halt when the indicated address was reached. 
Another more sophisticated hardware technique was 
the Trapping Transfer mode of the IBM 704. In this 
mode, the computer interrupted itself each time a 
tarinfer instruction was to be taken. Instead of trans
ferring, it passed control to a fixed cell where a user pro
gram recorded the event, and passed control afterward 
to the correct transfer point. Today most systems have 
simular hardware features; however in many cases they 
are operative only from maintenance panels by product 
service personnel. 

These techniques have passed out of the repertoire of 
the software developers. The necessity of manual inter
vention made the address stop useless. The hardware 
trapping schemes suffer from three major disadvantages. 
First, the processor burden of analyzing each transfer 
can mUltiply running times by factors of three or more; 
Second, even if one were willing to pay the tremendous 
cost of processor (and elapsed) time, the huge volume of 
data produced can often prove to be quite indigestible; 
for example 700 pages of trpacing inlonnation and some
where the one mistaken ath. It could take days to 
wade through ,to find the interesting place. 

While sufficient money, time and patience may over
come these two disadvantages, the third disadvantage of 
transfer trapping is crushing for any real-time or inter
rupt driven system. The act of trapping, analyzing and 
recording each trapped event so changes timing within 
the system that system behavior without trapning can
not be duplicated when trapping is used. There is many 
a tale told by programmers debugging 110 supervisors 
about "hardware" errors that would mysteriously go 
away when trapping was used to find the error. Of 
course, what happened was that as soon as trapping was 
turned on, the interrupts that gave rise to the error 
occurred at different places within the system. It was 
the early experiences of this sort that gave rise to the 
myth of the sensitivity and consequent difficulties of 
real-time systems. 

Another set of hardware measurement devices, pres
ent on almost every computer, and often ignored by 
programmers, is normal error-faulting procedure. As an 
example, overflows occur with orders of magnitude less 
frequently than transfers, therefore, it is possible to tie a 
system measuring function onto the occurrence of the 
fault. For instance, at least one FORTRAN object
time debug package is made to operate by replacing the 

instructions to be trapped by special faulting instruc
tions. 

Of the many special hardware devices added to a sys
tem for measurement purposes, no single tool is 0 f 
greater potential power and versatility than the oscillo
scope. Unfortunately, few programmers have the re
quisite knowledge of the hardware logic to make in
telli~ent use of the device, even if the computer manu
facturer would let him poke around inside the cabinets. 

There i~ one special hardware device that we have 
found effective. This is a "black box" that can be at
tached to the processor that passively examines each in
struction to be executed. This device has a built-in 
counter to record' the occurrence of any given data 
pattern in the instructions; it may be used to record the 
number of times a particular instruction, say Multiply, 
is performed. Or it can count the number of times a 
particular cell is referenced. Since it is passive, the ,de
vice does not appreciably alter the timing of the system. 
The major disadvantage of this kind of a monitor is the 
set-up time. There is rewiring to do each time the func
tion is to be changed. Cantrell and Ellison3 describe a 
method for obtaining this information with a software 
monitor without inordinate overhead, and this method 
we believe is superior to the hardware monitor. 

In summa,ry, the various hardware devices for record
ing system monitoring information are of limited in
terest to 'the system developer. Generally, they suffer 
from lack of flexibility and, in some cases, slowness. 
However, as a course of last resort, such methods find 
their usefulness when all else fails. Apparently, com
binations of hardware:triggered software packages, like 
the FORTRAN debug package previously mentioned, 
offer a good solutioh to tracing problems. 

Software measurements-simulation 

In turning our attention to the software measurement 
tools, the first topic ~o be discussed is simulation models. 
Today, there is perhaps no single technique more in 
vogue than simulation. As part of the development of 
the GECOS III system, a simulation model was de
veloped. Although much effort and expense was put into 
the model, it proved to be of limited usefulness. Perhaps 
the specific difficulties we experienced were atypical, 
but it is worthwhile mentioning them as at least one case 
history. The major bottleneck was time. The simulation 
model was begun as soon as possible, but it was not de
bugged until some months after the skeleton system 
worked. Thus many of the design questions that might 
have been answered through the model were in fact 
answered by initial running of the system. Because im
plementation preceded simulation, the model became 
obsolete before it ever worked. When results began to 
arrive from the simulation, it was impossible to decide 
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if the results represented the current system or an 
earlier version. 

On the other hand, several developers had access to a 
time-sharing system, and a number of simple simula
tions were written to check specific points. Since the 
designer did these to help make a specific design deci
sion, they were done quickly and the results were used. 
For example, I/O requests are not necessarily done in 
order when latency reduction techniques are used on 
discs or drums. It is necessary therefore to ensure that 
any particular I/O demand is not forgotten forever. A 
simulation was done to find out the minimum time a re
quest could be ignored without a decrease in device 
thoughput. If outstanding requests are ignored too 
long, the process owning the I/O request is unduly de
layed. Conversely, when an old request is forced, a 
longer latency than usual may result. Thus, total device 
throughput suffers. With a simple program we found 
that a request could be bypassed no less than twice the 
average queue length. If specific requests are forced to 
be serviced sooner, then total transfer rate decreases 
rapidly. We feel that these simulation studies were 
eminently successful for us. 

Our conclusion on the use of modeling techniques is 
that ambitious large-scale models generated by profes
sional model makers are less helpful than simpler work 
done by the systenl developers themselves. An interest
ing sidelight on this subject is that results from any 
simulation are useful only if the user actually believes in 
the simulation. An act of faith is required. The large, 
complex simulation is less likely to be understood by a 
developer than a simple model he constructs himself. 
Thus there is considerabie hesitancy to change designs 
based on results from the large-scale simulation pro
grams. 

Internal system measurement 

System recording is the second main type of software 
measurement. In our opinion, it is this area that is most 
often ignored by system developers, and one in which we 
believe we can make a contribution. There are four 
teclmiques of importance here: 

a) System design that allows for adequate measure-
ment 

b) Built-in system auditing techniques 
c) Event tracing 
d) Performance analysis and recording 

Let us now discuss each of these in detail. 

System design amenable for measuring 

The importance of the initial system design for meas
urement purposes cannot be overstated. For example, 

unless it is possible to find out exactly where the proces
sor spends its time, it may be nearly impossible to ac
count for some significant amount of overhead. In the 
initial phases of GECOS III development, we did not 
distinguish between the time spent processing interrupts 
and the time spent w:aiting for interrupts to occur when 
all programs in the system were waiting for I/O comple
tion. Thus, when we came to measure actual interrupt 
processing time, the data were not there. Consequently, 
a change was made to ensure the necessary distinction. 

As another example of design requirements for meas
urement, consider the set of all programs in the system 
at anyone time that are waiting for the processor. In an 
early version of G ECOS, this set was defined by an elab
orate set of tests conducted by the system dispatcher 
each time dispatching was done. It is clear that the 
number of jobs waiting for the processor in a :multipro
gramming system are a measure of :multiprogramming 
interference. For in a uniprogranuning system, the sin
gle job cannot ever wait for the processor. The length 
and behavior of the dispatcher queue is a most critical 
measure of the system. Thus it is very important to 
design the system so that data about the length and the 
wait time in the dispatcher queue can be easily meas
ured. Our design is currently inadequate in this respect 
since we cannot obtain data on wait time in the dis
patcher queue, although we do know the length of the 
queue. The same arguments can be repeated for 
virtually every important function in the system. For 
example, the behavior of the I/O queues is as important 
as that of the system service functions, such as reading 
input, peripheral allocation, and so on must be separa
tely recorded. Thus, it is important to design each 
function of the system so that it may be separately 
analyzed and studied. 

A second design provision for measurement is the in
clusion of system event counters to show the number of 
occurrences of low-frequency events. For instance, each 
memory compaction or program swap is counted. Mem
ory compaction is the movement of all jobs in core to 
one end or the other so that all unused memory space 
becomes contiguous. Swapping is the removal of a job 
from core, in favor of a higher priority job. A study of 
the number of times memory compaction took place 
showed us that we had to introduce a damping factor to 
inhibit these compactions. 

When we allowed compactions to occur whenever 
necessary to get more jobs into core, we found that the 
system actually slowed approximately 20% in through
put. The system was so busy moving core about that it 
never got around to doing any user work. At another 
time in development, we found that a program priority 
was being set incorrectly by observing an unusually 
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large number of program swaps. This particular pro
gram was being swapped in and out continuously. If we 
did not have these built-in tools, it would have been next 
to impossible to see that things were going wrong inside 
the system, because there were no obvious exterior 
symptoms of these bugs, except decreased system per
formance. 

System auditing 

The next important interior measurement technique 
is the inclusion of adequate system auditing. To "audit'; 
means to examine and verify, and that is exactly what 
we mean here. At any number of pla.ces within a system, 
entries are moved from one table to another or into or 
out of a given queue. If all is correct, the transactions 
are legal and each table or queue is consistent both 
before and after. 

In many cases, it can be argued that it simply is not 
possible for erroneous entry to creep into a queue. 
It often is quite amazing to see how a rather simple error 
at the beginning of a process can balloon into scores of 
strictly illegal transactions later on. 

The sympton of one of the most difficult errors we had 
in debugging the system was that the entry in a table of 
base address values was illegally zero. After several days 
of study, we finally found that a particular job was be
ing doubly entered into the system and assigned two 
different index numbers. The job was actually allocated 
twice and put into execution twice. When the first copy 
terminated, the base address table was being cleared for 
the other copy. The double'data had passed through a.t 
least three different internal queues, each time incor
rectly and each time further complicating the troubles. 
No auditing was done on entries passing into these 
queues. Finally we were able to lay this bug to rest when 

. we installed a series of checks on new entries in each of 
the queues. After this had been done, the real culprit 
was found and corrected within a day. We also found it 
necessary to install a check on one threaded list queue 
each time it was referen~~d. The list was becoming 
unsewn, and we couldn't find out who was doing it until 
we audited the list. A great deal more of this kind of 
auditing is needed than one might suspect. 

A second variety of internal auditing that we made 
considerable use of was to checksum critical tables at 
every reference. For instance, there are tables showing 
available space on disc and drum units. An erroneous 
store into one of these tables can lead to assigning un
available space to a file. The first time anything goes 
wrong is when the true owner of the file again refer
ences it, and then it is too late. By continually checking 
the table, a ruined table is discovered immediately, 

while the footprints of the culprit are still fresh. By 
using this technique, our . troubles have been minimal 
with ruining files. However, we have found it neces
sary to install some additional audits on these tables. 
When space is given back to the available pool, we 
added checks to verify that the space definition is within 
reason. 

As a second part of the effort to ensure the veracity of 
files, we checksum all system files as they are loaded into 
core for execution. In earlier versions of the system, 
countless hours were wasted re-editing the system be
cause we suspected a system failure occurred when the 
files had been written over accidentally. After spending 
the time to edit, all too often we then found that the bug 
was still there. With checksums we know that if the file 
loads, it is correct, and we are not distracted from the 
real problems by worries of overwritten files. 

Event tracing 

So far, we have discussed a variety of techniques u,sed 
in our system to provide for a very limited form of meas
urement: finding bugs. Now we turn to the technique used 
to provide data for performance measurement. We call 
this technique the event trace. A brief history of the 
tracing methods we have employed makes the event 
trace more understandable. 

In the first versions of the operating system, it was al
most impossible to infer what had been happening prior 
to a system failure. Casting about for a solution to this 
problem, the developers noticed that all communication 
between modules of the system passed through a com
mon routine-the equivalent of a FORTRAN CALL 
and EXIT. In this routine, it was possible to record 
each intermodule transfer in a circular list. Thus, at any 
time, the last transfers could be seen, and from this, the 
operation of the system could be summarized . 

This trace table was a tremendous advance in easing 
the job of analyzing system failures, yet a number of dis
advantages were found. In the first place, it was dis
covered that the processor time used to make these flow 
trace entries was inordinate in many cases. Which I/O had 
terminated when control passed into the interrupt 
handler? Which I/O was started next? Was there any 
error on the terminating I/O? Anordinary flow trace just 
o;1an't say. 

I t was apparent from our studies that the need 
was for a trace to show the important events, or 
decisions, made within the system. At the same time, 
data appropriate to the event should be captured. We 
call this kind of trace an event trace because it records 
system events, not necessarily system flow. The follow
ing list shows the events that merit a trace entry, along 
with the data interest: 



EVENT 

10 Interrupt 

Interrupt Queue Value 
Process Interrupt 
Connect 10 

System Module CALL 

System Module GO TO 

System Module EXIT 
Dispatch to Program 
Master Mode Entry 
Fault 
Return from Interrupt 

Processor 
Enter Status Return 
Leave Status Return 
Slave Road Block Broken 
Slave Relinquish Broken 
Interrupted Program to Head 

of Processor Queue 
Interrupted Program to Tail 

of Processor Queue 
Call Device Module 
Start 10 Error Recovery 
Start Abort Processing 
Start Program Swap 
Start Courtesy Call 
Leave 10 Error Recovery, 

Abort, Swap or Courtesy 
Call 

Enable Program 
Start Activity 
Start Memory Compaction/ 

Swap 
End Memory Compaction/ 

Swap 
End of Activity 

Call't allocate 

Shared Device Space Refusal 

New Job to System 
Program Number Assigned 
Job to Peripheral Allocator 
Activity to Core Allocator 
System Output Ready 
System Output Printing 
System Output Punching 
System Output Printing 

Finished 
System Output Punching 

Finished 
10 Channel Idle 
10 Demand Queue Length 
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DATA 

Time of day, Location of 
interrupt 

Current values after interrupt 
Interrupt status, pub 
TO entry location, pub, device, 

command 
Location of call, Module name 

entry point 
Location of go to, Module name 

entry point 
From and To location 
Location in program, time of day 
Location, entry type 
Location, fault type 

Time of day 
Location of 10 entry, pub 
Location of 10 entry, pub 
Program number 
Program number 
Location in program, program 

number 
Location in program, program 

number 
Pub, 10 request location 
Program number, time of day 
Program number, time of day 
Program number, time of day 
Program number, time of day 

Program number, time of day 
Program numher 
Time of day 
Number of program to move/ 

swap time of day 

Program number, time of day 
Program number, termination 

code 
Device, number required 

program 
Device, amount requested, 

amount available 
Job ID, time of day 
Program number, job ID 
Program number, time of day 
Program number, time of day 
Job ID 
Job ID 
Job ID 

Job ID 

Job ID 
Pub, time of day 
Pub, length, time of day 

fifty different events that are traced by GECOS III. 
As an extra degree of flexibility, each type of event 

trace can be turned off or on at system start-up time. 
Thus the trace, when fully on, is an exceedingly detailed 
picture of the system behavior. For ordinary purposes, 
many of the individual traces are turned off, giving a 
rougher picture of a longer time interval. As in previous 
versions, the trace entries are recorded in a circular table. 
In a production environment, all traces are turned off, 
this provides the greatest system speed that can be 
achieved. We have found that the normal traces cause a 
system speed degradation of only a few percent. Timing 
of the system is not disturbed by this. 

The implementation of the trace allows easy addition 
of new entries and modification of the data in existing 
entries. Trace entries are coded in-line where desired. 
An execute instruction is used to test if tracing is on or 
off. If the trace is off, control passes to the following 
instruction. Otherwise, control passes to the tracing 
control routine where the state of the routine is saved, 
and then control passes back to the second instruction 
following the execute. An index register is set in the 
control routine to allow the user to transfer back into it. 

In the user's in-line code, the 72 bits of trace data are 
placed in the accumulator and quotient registers. Since 
the state of his program is saved, he may destroy the 
contents of any register if necessary. When the data has 
been put into the registers, he can transfer through 
the index register to one of three entry points in the trace 
control routine. One of these points adds time of day to 
the data; another inserts program number and processor 
number; the third stores the data in the table without 
. modification. After the data are stored in the trace table, 
the state of the program is restored, and control passes 
to the instruction following the execute code. 

If some traces are off and others on, a test is made in 
the routine that stores the data within the trace table 
against the trace type presented. If that trace is off, the 
dataaren'tstored. At the same time, the execute instruc
tion that. triggered the trace entry is found and is modi
fied into a no operation instruction. Thereafter, the 
trace control routine will be bypassed. Thus, no pro
cessor time will be spent generating unwanted trace 
·entries. Figure 1 is a flow chart of these routines. 

After this trace was implemented, we found it difficult 
reading the trace table in the octal memory dumps pro
ducedby system failures, so we wrote a routine to 
expand the trace into Engll~h language. The effort re
quired to do this was modest, and has paid for itself 
manyfold. 

This list is by no means exhaustive, there are some 

Figure 2 shows a portion of the expanded trace table 
as included in a system dump. This figure is the be
ginning of a system memory dump. On the first line is the 



908 Fall Joint Computer Conference, 1968 

.. _____ frIME OF DAY 

I L -00·35 

"(0 -TRACE 
[ TABLE 

Figure I-System trace 

YES 

system and fault identification. This is followed by the 
register control at the time of dump in the next two 

lines. Under the heading "Trace Table" is the expansion 
of the event trace into text. On the left hand column is 
the cell address of each entry. Note that there are two 
trace entries per line. Each entry is two words long and 
the addresses increase by four on each successive line. 

The data that can be obtained. from the event trace are 
useful for far more than simple system debugging. The 
trace provided the data for microscopic measurements 
of specific processes within the system. For instance, we 
were able to determine that interrupt processing time 
was within bounds. Also, we were able to verify that 
system Joad time was up to specifications. 

One of the more interesting measures obtained from 
this data was the frequency distribution of interrupts. 
The dispatching rule of GECOS makes this distribution 
very important. A new dispatch is made after processing 
each interrupt. By recording the time of day of a great 
many interrupts, we were able to assure ourselves t.hat 
we were not dispatching too often. 

Performance analysis with exterior tools 

While the internal counters and trace go a long way in 
providing the tools needed for system measurement, they 
do not provide a method for long terrn measurement. 
To do this, a third major type of measuring technique is 
called. This is the use of exterior tools to measure sys
tem performance. 

Once a system is working, the important question is 
how does it work for long periods of time? The analysis 
of performance requires summarizing data on system be
havior that is difficult to extract from the trace. To ob
tain this data three avenues of approach are available
all exterior techniques- and each has been successfully 
used for specific purposes. First, an analysis of the 
standard system accounting data has been made on oc
casion. While this data show precisely the resources 
used, and the elapsed time, it is next to impossible to in
fer what else is going on within the system. And, of 
eourse, those system functions that are invisible to the 
user, like memory compaction, are not reported on the 
accounting data. 

The second technique we used was to record the trace 
entries on a maglfetic tape for later analysis. A program 
was written to extract any desired subset of the trace 
entries from the tape al).d to print them, along with time· 
of daY', differences in time of day between successive en
tries, and the time of day differences between successive 
like entries. 

An analysis of this kind of data allows a measurement 
of swapping time and swapping frequency, for instance. 
In general, timing studies of any specific system func
tion can be made with this kind of data. U nfortuna tely, 
it is not possible to easily measure the degree of system 
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utilization using this technique. For instance, it is not 
possible using this trace data to determine the length of 
the dispatcher queue. Figure 3 shows an example of this 
data. 

This figure shows event trace entries from a GECOS 
III run that were saved on a magnetic tape and then 
summarized. The summarizing program adds the left
most and the last three columns on the right. The first of 
these three columns contains the change in time of day 
(TRACE DELTA) between each successive pair of 
trace entries which contain time of day as part of their 
data. For instance, the first column shows that 8.70 
milliseconds elapsed between the first and second lines 
on the trace. The second column shows the time dif
ference between successive like entries. 

Here one can see that the time between the three dis
patches was 25.36,28.59 and 33.83 milliseconds. Finally, 

on the extreme right is the time of day of the event. 
Down the left-hand side of the page is an index num

ber to identify each trace entry. The summary program 
may be given ranges of this value so that only certain 
portions of the trace data are displayed. Likewise, the 
summary program will select any combination of the 
trace types for summary . 

During system development, our first measurements 
were made using the circular trace table from memory 
dumps. N ext, we used the captured trace entries and 
the reduction program to measure successively larger 
functions within the system. Ourmeasurementproceeded 
from the microscopic to the successively more gross. At 
first glance, this may well seem to be quite backward. 
However, during system development, the system it
self is put together and made to work in precisely this 
order. At first, the system works for only a few mo-

GECOS 0 VERSICN 0 04/]']'/~ CPO FPO SYSTEI1 FAULT IC 0426],2 1M 53527256::1"" l.M L04 SYSTEf1 ID LOTE:!)T 

IC 0426],2 IR 002200 BA 042336 ER 000 AR 007],2],0034],0 QR 01.0].42007].6]' TR 00007745 
XO 004300 X], 042],60 X2 000000 X3 04],2],2 X4 777].54 X5 042000 X6 00000], X7 00000o 

TRACE TABLE- LAST ENTRY 037520 

037474 LV STIO-IC+I 0].4243 0000 wmD2 00000000]'000 

037500 RTN - INT-wffiDL 0000000000],7 HffiD2 003430665437 

037504 MME FAULT-IC+I 042706 0002 PRC 0 PRG 0], TYPE GESPEC 

0375LO • CALL- IC+C 042737 4002 PRC 0 PRG 0], .MIOS ENTRY 07 

0375].4 LV GEPR,ABT,SWAP,CC- PRC 0 PRG 0], Tt.r~E 00343066621.2 

037520 • CALL- It+1 0426].2 0022 PRC 0 PRG 0], .I'FALT ENTRY 0:1. 

037524 PROC TI- 10 ENTRY 04:1.2:1.2 Q CNT 06 PRG 0:1. QUE 400000000020 

037530 CHAN QUE.- NDEX 0020 SIZE 0000:1. TII1E OF DAY 003423767077 

037534 R TN - INT -W(JU):1. 0000000000:1.7 

037540 IOC CTRS S-T-I :1.20700 0000 

\;ORD2 003423767165 

0000000000000 

. 037544 LV STRET-IC+CX OL4207 0020 PRC 0 PRG 0:1. ENTRY 04:1.2:1.2 

037550 IDLE CHAN- NDEX 000020 TH1E OF DAY 00342402035:1. 

037554 DISPATCH= IC+I 005465 XXX2 PRC 0 PRG 0:1. TOD 003424020432 

037560 CCNNECT- 10 ENTRY 04:1.2:1.20000 

037564 LV STIO-IC+I 0].4752 0000 

037570 IOC CTRS S-T-I :1.2:1.000 0000 

037574 CONNECT- 10 ENTRY 04:1.2].20000 

037600 LV STIO-IC+I 0].4243 0000 

PI1X 340:1.20000000 

laD2. 04:1.2:1.2ooLOOO 

0000000000000 

PI-1X 250:1.20000000 

WORD2 04:1.2:1.200:1.000 

037604 DISPATCH= IC+I 005466 XXX2 PRC 0 PRG 0:1. TOD 00342402],],32 

0376:1.0 TERM INT= IC+I 004:1.74 0062 TmE OF DAY 003424037135 

03761.4 PROC TI- IO ENTRY. 0412:1.2 Q CNT ],], PRG 01. WE 400000000020 

037620 LV SnD-IC;'I 0,,4243 0000 laD2 00000000:1.000 

037624 RTN - .JNT-WORD:L 0000000000:1.7 I-«lRD2 003424037347 

037630 • CALL- IC+I 0402LO 0022 PRC 0 PRG 0:1. .MIOS ENTRY 04 

IDLE CHAN- NDEX 000000 TIME OF DAY 003430665374 

DISPATCH- IC+I 005465 XXX2 PRC 0 PRG 0:1. TOD 003430665473 

.CALL- IC+1 042725 0002 PRC 0 PRG 01. .MIOS ENTRY 04 

'",E FAULT-IC+I 043063 0002 PRC 0 PRG 01. TYPE GEENDC 

DISPATCH= IC+I 042635 XXX2 PRC 0 PRG 0:1. TOD 003430666252 

lac CTRS S=T-I 1.20600 0000 

CDNNECT- 10 ENTRY 04:1.2:1.20000 

LV STID-IC+I 01.4243 0000 

TERM INT= IC+I 004:1.74 0062 

0000000000000 

PMX 2501.20000000 

WORD2 04:1.2:1.200:1.000 

TIME DF DAY 003424020:1.64 

PROC TI - 10 ENTRY 04:1.2:1.2 Q CNT 07 PRG 01. QUE 440000000020 

LV STIO-IC+I 01.4243 0000 WORD2 00000000:1.000 

RTN = INT·-NORD:1. 0000000000:1.7 WORD2 003424020376 

.CALL- IC+I 034357 0002 PRC 0 PRG 0:1. .MIOS ENTRY 0:1. 

CHAN WE.- NDEX 0020 SIZE 0000:1. TmE OF DAY 003424020567 

TERM INT= IC+I 005466 2002 TIME OF DAY 003424020660 

PROC TI- 10 ENTRY 04:1.2:1.2 Q CNT LO PRG 0:1. QUE· 4000U0000020 

CHAN QUE.- NDEX 0020 SIZE 0000:1. TH1E OF DAY 00342402:1.007 

RTN = INT-HrnD:1. 0:1.27620002:1.7 WORD2 003424021.075 

IDLE PROCESSffi- PRC 0 T mE OF DAY 00342402],],71 

IOC CTRS S-T-I ].2],],00 0000 

LV STRET-IC+CX 01.4207 0020 PRC 0 PRG 0:1. 

0000000000000 

ENTRY 04:1.21.2 

IDLE CHAN- NDEX 000020 TIME OF DAY 003424037322 

DISPATCH= IC+I 005465 XXX2 PRC 0 PRG 0:1. TOD 003424037403 ' 

.CALL- IC+I 040274 2022 PRC 0 PRG 0:1. .MIOS ENTRY 0:1. 

Figure 2-Tracetable 
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ments; however, this is sufficient to allow measurements 
of dispatch, or interrupt processing time. As the system 
grows, measurement of swapping and so forth can be 
made. Finally, comes the day that the parts work indi
vidually and interesting questions revolve around 
the relationships between the component parts. 

At this time, the third exteIior measuring tool is need
ed. This is what we call a system monitor. The monitor 
is a user program that is allowed to break into the sys
tem itself. It collects and summarizes a great number of 
the parameters available in the system. These are dis
played at several-second intervals on a printer or 
cathode-ray tube. Both devices have their place. The 
CRT is used for continuous display during normal use 
of the system. The printer is needed when specific anal
ysis is to be made of particular jobs. 

An example of the printer output from this monitor is 
found in Figure 4. Figures 5 through 12 illustrate the 

3.8219 03. 07-3.8-67 GECOS 111 TRACE 

035465 IDLE PROCESSffi PRC 0 

data displayed on the cathode-ray tube by this monitor 
program. When the program is called by the CRT ter
minal, the display shown on Figure 5 is presented. With 
this display We can pick a sampling interval and also 
pick one of the given specific monitor displays. Once the 
time interval and display have been chosen, the monitor 
program passively samples the system at the rate chosen 
and displays the data. The user at the CRT terminal 
may break in with a request for a new display at any 
time. Figures 6 through 12 are samples of the displays 
numbered one through seven in Figure 5. 

The first display, system configuration, is shown in 
Figure 6. This shows the devices found on each of the 16 
independent pubs or input-output channels. It also 
shows ih the second column the number of devices actu
ally available. It will be noted from Figure 6 that one 
. tape unit on pub one is unavailable. Figure 7 is a display 
of a great deal of data of interest to the system designer. 

(TIME IN MS) PAGE 3.9 

TRACE DELTA EVENT DELTA TOD 

8.70 50.80 39695.33. 

035466 TERMINATE INTERRUPT IC&I 003276 0062 6.94 J.9.05 39702.25 

035472 RETUW FROM INT. PROCESSOR PRG 00 SCT 000000 CH&IOC 00 S T A Tl. OOOOOOOOXXOO 3..4:1. 3.1.50 39703.66 

035473 TERMINATE INTERRUPT IC&I 003276 0062 4.92 6.33 39708.58 

035477 INITIATION INTERRUPT IC&I oo7l.02 0042 3..73 25.38 3971.0.33. 

035502 RETURN FROM INT. PROCESSOR PRG 00 SCT 000000 CH&IOC 00 STAll. oooOooooXXOO :1..20 7.86 397],],.52 

035503 DISPATCH TO PROGRAM PRC 0 PRG 77 IC&I 004453. 0772 .45 25.36 397],],.97 

035506 IDLE PROCESSOR PRC 0 3..69 3.8.34 397].3.66 

035507 TERMINATE INTERRUPT I C& 1 00327<> 0062 23.50 28.58 39737.3.6 

O~553.3 INITIATION INTERRUPT IC&I oo7l.02 0042 :1..72 28.56 39138.88 

03553.6 RET~N FROf~ INT. PROCESSOR PRG 00 SCT 00000o CH&IOC 00 ST A Tl. ooooooooXXOO 3..23 28.59 39740.],], 

03553.1 DISPATCH TO PROGRAM PRC 0 PRG 20 IC&I 004453. 0202 .45 28.59 39740.56 

035524 IDLE PROCESSOR PRC 0 3.78 30.69 39744.34 

035525 TERMINATE INTERRUPT IC&I 003276 0062 3.6.97 24.3.6 39763..33. 

035533. RET~N FROM INT. PROCESSOR PRG 00 SCT 00000o CH&IOC 00 STAT3. OOOOOOOOXXOO 3..38 22.58 39762.69 

035532 TERMINATE INTERRUPT IC&I 003276 0062 8.3:1. 9.69 3977]..00 

035536 INITIATION INTERRUPT IC&I 001],02 0042 3..13 33.86 39712.73 

035543. RET~N FROM INT. PROCESSffi PRG 00 SCT 00000o CH&IOC 00 STAT3. OOOOOOOOXXOO 3..20 ],],.25 39113.94 

035542 DISPATCH TO· PROGRAM PRC 0 PRG 77 IC&I 004453. 0772 .45 33.83 39774.39 

035545 IDLE PROCESSOR PRC 0 3.22 33.27 39777.63. 

035546 TERMINATE INTERRUPT IC&I 003276 0062 48.3.6 54.77 39825.71 

035552 RET~N FROM INT. PROCESSOR PRG 00 SCT 00000o CH&IOC 00 STAll. ooooooooXXOO 3..36 53.:1.9 39827.3.3 

035553 TERMINATE INTERRUPT IC&I 003276 0062 :1.2.53 3.3.89 39839.66 

Figure 3-Trace summary 
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7SIXY 01 08-25-67 Figure 1-Printer monitor PAGE 3 

MEMCRY MAP (%=PROC, THlE/DELTA TH1E) ~pu-r1U-DR-DS PRG (it CORE SWAP H/CR H/PRF) QUEUE <DISP CC SYSO P-AL C-AU TOD 
000-031 0 1%I91%GGGGGGGGGGr~S<SOO~333S0 9 67 49 57 7 7 0 0 0 0 0 0 0 0 0.020 
032-063 0%2222S00%7 
064-095 SSOO~WWWUWWU 

096-:1.27 SS04%U~JWWUUWUUS01%uuU 

000-03:1. 0 :I.%I89%GGGGGGGGGGGGS<SOO%3333S0 11 67 49 57 7 7 0 0 0 0 0 0 0 0 0.021 
032-063 0%2222S00~ 
064-095 SSOO%UUUUUUUUUWUU 
096-127 SS05~WUUUWUUUUS01%uW 

000-031 0 1%I91%GGGGGGGGGGGGSOSOO%3333S0 9 67 4~ 57 7 7 0 0 0 1 0 0 0 0 0.022 
032-063 0%2222SOO%7 
064-095 SSOO~WUWUUUUWU 

096-127 SS05%UUUUUUWUUUUUSO:l.%UW 

000-031 0 2%I87%GGGGGGGGGGGGS<S<:I.%3333S< 13 53 47 57 6 6 0 0 0 0 0 0 0 0 0.022 
032-063 :I.%2222S00%7 
064-095 
096-:1.27 SS04%UUWUUUWWWSO:l.lruUU 

000-03:1. 0 :I.%I90%GGGGGGGGGGGGSOSOO%3333S0 10 53 47 57 6 6 0 0 0 0 0 0 0 0 0.023 
032-063 0%2222S00%7 
06'M>95 
096-:1.27 SS06%UUUUUUUUUUUWSO:l.~U 

000-03:1. 0 :I.%I90~GGGGGGGGGGGGS<S<l~333S0 10 53 47 57 6 6 0 0 0 1 0 0 0 0 0.024 
032-063 0%2222S00%7 
064-095 
096-:1.27 SS05%UUUUUUUUWWUSO:l.%UUU 

000-03:1. 0 :I.%I9:1.%GGGGGGGGGGGGS<SOO%3333S0 9 53 47 57 6 6 0 0 0 0 0 0 0 0 0.024 
032-063 0%2222S00%7 
064-095 
096-:1.27 SS04%UWWWUWUWSO:L%WU 

000-03:1. 0 2%I90%GGGGr~GGGGGGS<S<l%3333S0 10 53 47 57 6 6 0 0 0 0 ~ 0 0 0 0.025 
032-063 0%2222S00%7 
064-095 
096-:1.27 SS05%uWUWUU~WS01~U 

000-03:1. 0 :I.%I89%GGGGGGGGGGGGSOSOO%3333S0 11 53 47 57 6 6 0 0 0 0 0 0 0 0 0.026 

032-0630%2222SOO%7 
064-095 
096-:1.27 SS06%UUUWUUWUUIJJSO:l.%UW 

000-03:1. O:l.%I91~)Gr~r~GGGGGGGS<S<l%3333S0 9 53 47 57 6 6 0 0 0 0 0 0 0 0 0.026 
032-063 0%2222S00%7 
064-095 
096-:1.27 SS05%UUWUUUUUUUUUS01%UUU 

Figure 5-Monitor options 
Figure 6-Configuration 
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Figure-7-Program and memory statistics 

Figure 8-I/0 statistics 

The top section shows the status of all programs known 
to the batch system and to time-sharing. There are, for 
instance, eleven batch programs and four time-sharing 
users on the system. The second section shows the queue 
lengths of unprocessed demands made on each of the . 
major system components. In general, these queues 
have length zero where no part of the system is satu
rated. The dispatcher queue length is of particular in-

. terest because its length is a measure of multiprogram
ming interference. 

The third section of the display shows channel busy 
time by device type as well as memory and processor 
use. The percent of available disc and drum space cur
rently in use is also shown. Finally there is a summary 
of core usage in this section. 

Figure 9-Accured statistics 

Figure lo-Time sharing statistics 

The fourth section of the display is a diagram of core 
utilization. On the left are shown memory address 
ranges while each symbol on the right stands for 
1024 words of core. The following meanings are as
signed to the symbols: 

o 
I 
G 

s 
XX9~ 

U 
TS8~ 

VVV-V 
+ or * 
blank 

overhead percentage for the system 
idle percentage for the system 
occupied by the resident executive (a hard core 

monitor) 
user program slave service area 
percent of processor time used by that user in the 

sample interval 
user program 
time-sharing executive 
core available for time-sharing users 
core space in use by time-sharing user. 
available (unused) core 
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22--22 
33-33 

Figure 11-Time sharing eubsystem usage 

Figure 12-User status 

peripheral allocator program 
system output printer 

From this display we can see that only two blocks of 
core are unused within the batch world. In the time
sharing system, only one user is in core~ Since the plus 
sign is at the high end of the time-sharing core, this user 
is an old interaction. The monitor program itself hap
pens to be the second to last program (indicated by 
S < 1 % UUU) in the last line of the display . Note 
that since this program is small.and uses very little pro
cessor time, it does not noticeably bias the measures it 
is taking. 

The fourth display (Figure 9) shows summaries of 
total processor utilization by some system functions and 

also the number of occurrences of certain system events. 
In this display the following program numbers are le
lated to the following functions. 

Program 

2 
3 
4 
5 

63 

Function 

core allocation 
peripheral allocation 
system output disperser 
remote input collector 
time-sharing systems 
on-line input collector 

Whel). the accumulated processor time is less than one 
percent, the display shows zero. This explains why 
there is no time shown for program four while below, 
we can see three remote jobs have passed through the 
system. 

Figures 10·and 11 summarize various data from the 
time-sharing system. In GECOS III, the whole time
sharing system is treated as a single batch job. The 
time-sharing executive makes its own internal sched
uling decisions. The first display summarizes the data 
generated by the time-sha.ring executive. The time and 
space profiles of interaQtion will be of particul&.r interest 
to the system designer. The p.ext display (Figure 11) 
shows the usage of the various time-sharing subsystems. 
Notably absent here is FORTRAN which was not in the 
system when these photographs were made. It has since 
been added to the system. 

The last display is the one we most often use. It is 
illustrated in Figure 12. This display identifies all jobs 
and time-sharing users known to the system. It will be 
noted that there are seven batch useres including TSS, 
the time-sharing system, and 760 MN, the monitor. 
One has been in execution and is now swapped out of 
core. There are six time-sharing users. U nforlunately 
the display of time-sharing users in core does not exactly 
match the core swap. This is because the passive moni
tor does not get all its data at the same time, so between 
the top display and the memory map below, there has 
been movement of users within the time-sharing system. 
The dots on the screen below time of day indicate the 
difference between batch and time-sharing users. The 
middle display shows channel, processor and memory 
use summaries. The bottom display is a memory map 
like Figure 7. 

By studying this system monitor, we are able to contin
uously verify that the system is behaving properly. We 
have this display set up in the development manager's 
officewith a second screen in the computer room. When 
we observe anomalous behavior we are able to get a sys
tem dump immediately so that we can trace the prob
iem. We have found this monitor to be our most power-

. ful tool in tuning our system for maximum performance. 
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Another monitor has been produced to find the degree of 
multiprogramming interference in I/O. This interference 
is the delay between'the time a particular I/O request is 
issued by a program until it actually gets started. This 
program analyzes all I/O demands in terms of the parti
cular logical file, frequency of demand and amount of 
interference. This tool is helpful in deciding how best to 
assign particular files for best I/O overlap. 

CONCLUSION 

We have desClibed a large number of measurement 
techniques we have employed in developing our operat
ing systems. The number and variety of means demon
strates the lnany different problems faced by the system 

developer. If we have learned any single lesson from our 
efforts in this area, it is that continuous measurement of 
a system is an absolute necessity if the system is to be 
kept working at top efficiency. It is truly amazing how 
seemingly minor changes in a system can have profound 
effects on overall performance. 
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Thrashing: Its causes and prevention 

by PETER J. DENNING 

Princeton University* 
Princeton, New Jersey 

INTRODUCTION 

A particularly troublesome phenomenon, thrashing, 
may seriously interfere with the performance of paged 
memory systems, reducing computing giants (Multics, 
IBM System 360, and others not necessarily excepted) 
to computing dwarfs. The term thrashing denotes ex
cessive overhead and severe performance degradation or 
collapse caused by too much paging. Thrashing in
evitablyturns a shortage of memory space into a sur
plus of processor time. 

Performance of paged memory systems has not al
ways met expectations. Consequently there are some 
who would have us dispense entirely with paging,! be
lieving that programs do not generally display behavior 
favorable to operation in paged memories. We shall 
show that troubles with paged memory systems arise 
not from any misconception about program behavior, 
but rather from a lack of understanding of a three-way 
relationship among program behavior, paging algo
rithms, and the system hardware configuration (i.e., re
lative processor and memory capacities). We shall show 
that the prime cause of paging's poor performance is not 
unfavorable program behavior, but rather the large 
time required to access a page stored in auxiliary 
memory, together with a sometimes stubbon determin
ation on the part of system designers to simulate large 
virtual memories by paging small real memories. 

After defining the computer system which serves as 
our context, we shall review the working set model for 
program behavior, this model being a useful vehicle for 
understanding the causes of thrashing. Then we shall 
show that the large values of secondary memory access 
times make a program's steady state processing 
efficiency so sensitive to the paging requirements of 

*Department of Electrical Engineering. The work reported 
herein, completed while the author was at Project MAC, was 
supported in part by Project MAC, an M.LT. research program 
sponsored by the Advanced Research Projects Agency, Depart
ment of Defense, under Office of Naval Research Contract No. 
Nonr-4102 (01). 
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other programs that the slightest attempt to overuse 
main memory can cause service efficiency to collapse. 
The solution is two-fold: first, to use a memory alloca
tion strategy that insulates one program's memory
space acquisitions from those of others; and second, to 
employ memory system organizations using a non-ro
tating device (such as slow-speed 'bulk core storage) 
between the high-speed main memory and the slow
speed rotating auxiliary memory. 

Preliminaries 

Figure 1 shows the basic two-level memory system in 
which we are interested. A set of identical processors 
has access to M pages of directly-addressable, multi
programmed main memory; information not in main 
memory resides in auxiliary memory which has, for our 
purposes, infinite capacity. There is a time T, the 
traverse time, involved in moving a page between the 
levels of memory; T is measured from the moment a 
missing page is referenced until the moment the re
quired page transfer is completed, and is therefore the 
expectation of a random variable composed of waits in 
queues, mechanical positioning delays, page transmis
sion times, and so on. For simplicity, we assume T is 
the same irrespective of the direction a page is moved. 

Normally, the main memory is a core memory, 
though it could just as well be any other type of 
directly-addressable storage device. The auxiliary 
memory is usually a disk or drum but it could also be a 
combination of slow-speed core storage and disk or 
drum. 

We assume that information is moved into main 
memory only on demand (demand paging); that is, no 
attempt is made to move a page into main memory un
til some program references it. Information is returned 
from main to auxiliary memory at ~he discretion of the 
paging algorithm. The information movement across the 
channel bridging the two levels of memory is called 
page traffic. 

A process is a sequence of references (either fetches or 
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identical 
processors 

Traverse Time T 

MAIN 

(M pages)? 

page 

AUXILIARY 
(I) capacity) 

traffic 

FIGURE I-Basic two-level memory system 

stores) to a set of information called a program. We as
sume that each program has exactly one process as
sociated with it. In this paper we are interested only in 
active processes. An active ,process may be in one of two 
states: the running state, in which it is executing on a 
processor; or the page wait state, in which it is temporar
ily suspended awaiting the arrival of a page from 
auxiliary memory. We take the duration of the page 
wait state to be T, the traverse time. 

When talking about processes in execution, we need 
to distinguish between real time and virtual time. 
Virtual time is time seen by an active process, as if 
there were no page wait interruptions. By definition, a 
process generates one information reference per unit 
virtual time. Real time is a succession of virtual time. 
intervals (i.e, computing intervals) and page wait 
intervals. A virtual time unit (vtu) is the time between 
two successive information references in a process, and 
is usually the memory cycle time of the computer sys
tem in which the process operates. 

In this paper we take 1 vtu = 1 microsecond, since 1 
microsecond is typical of core memory cycle times. The 
table below lists estimates of the traverse time T for 
typical devices, using the approximate relation 

T = Ta + T t 

where T a is the mechanical access time of the device and 
Tt is the transmission time for a page of 1000 words. 

Storage Tc (page = 
Device Ta 1000 words) T = Ta + T t 

thin film 0 102 vtu 102 vtu 
core 0 103 vtu 103 vtu 
bulk core 0 1()4 vtu 10' vtu 
high speed drum 10' vtu 103 vtu 10' vtu 
moving-arm disk 106 vtu 103 vtu 106 vtu 

The working set model for program behavior 

In order to understand the causes and cures for 

_~r~t ----i'~====~~~~~~~~I----i .. ~virtual 
time 

L pages referenced in this 
interval constitute Wet ,7) 

FIGURE 2-Definition of working set 

thrashing, it is necessary to understand some basic prop
erties of program behavior. The working set model for 
program behavior, discussed 'in detail in reference2, is a 
useful way for understanding these properties, so we 
review it here. 

By a program we mean the set of pages to which a pro
cess directs its references. A basic program property, 
that of locality, is the non-uniform scattering of a pro
cess's reference across its program during any virtual 
time interval. That is, a process tends to favor some of 
its pages more than others. During disjoint virtual time 
intervals, the set of favored pages may be different. 
Locality has been observed to various degrees in exist
ing programs,3,4 and it can be considerably enhanced 
if programmers design their algorithms to operate lo
cally on information, one region at a time. 

The working set of information W (t,r) associated with 
a process at time t is the set of pages referenced by the 
process during the virtual time interval (i- r,t). The 
concept is illustrated in Figure 2. 

The working set size w(t,r) is the number of pages in 
W(t,r). Observe that w(t,r) ~ r, since no more that~,,: 
distinct pages can be referenced in an interval of length 
r; that w(t,O) = 0, since no references can occur in zero 
time; and that w(t,r) is a non-decreasing function of r, 
since more references can occur in longer intervals 
(t-r,t). 

The working set model owes its validity to locality. 
A working set measures the set of pages a process is 
favoring at time t; assuming that processes are not too 
fickle, that is, they do not abruptly change sets of 
favored pages, the working set W(t,r) constitutes a 
reliable estimate of a process's immediate memory need. 

Intuitively, a working set is the smallest set of pages 
that ought to reside in main memory so that a process 
can operate efficiently. Accordingly, r should be chosen 
as small as possible and yet allow W(t,r) to contain at 
least the favored pages. In principle, then, r may vary 
from program to program and from time to time. A 
working set memory alloc.ation policy is one that permits 
a process to be active if and only if there is enough un
committed space in main memory to contain its work
ingset. 



Define the random variable Xs to be the virtual time 
interval between successive references to the same page 
in a program comprising s pages; these interreference 
intervals Xs '''are useful for describing certain program 
properties. Let Fxs (u) = Pr[xs ::::; u1 denote its distribu
tion function (measured over all programs of size s), and 
let Xs denote its mean. 

The relation between the size of a program and the 
lengths of the interreference intervals to its component 
pages may be described as follows. Let process 1 be 
associated with program PI (of sizes SI) and process 2 be 
associated with program P2 (of size S2), and let Pi be 
larger than P 2. Then process 1 has to scatte:r; its refer
ences across a wider range of pages than process 2, and 
we expect the interreference intervals Xsl of process 1 to 
be no longer than the interreference intervals xS2 of pro
cess 2. That is, Sl > S2 implies xS1 > xs2 • 

M emory management strategies 

It is important to understand how programs can in
terfere with one another by competing for the same 
limited main memory resources, under a given paging 
policy. 

A good measure of performance for a paging policy is 
the missing-page probability, which is the probability 
that, when a process references its program, it directs 
its reference to a page not in main memory. The better 
the paging policy, the less often it removes a useful 
page, and the lower is the missing-page probability. We 
shall use this idea to examine three important paging 
policies (ordered here according to increasing cost of 
implementation) : 

1. First In, First Out (FIFO): whenever a fresh 
page of main memory is needed, the page least 
recently paged in is removed. 

2 Least Recently Used (LRU): whenever a fresh 
page of main memory is needed, the page unref
erenced for the longest time is removed. 

3. Working Set (WS): whenever a fresh page of 
main memory is needed, choose for removal some 
page of a non-active process or some non-working
set page of an active process. 

Two important properties set WS apart from the 
other algorithms. First is the explicit relation between 
memory management and process scheduling: a pro
cess shall be active if and only if its working set is fully 
contained in main memory. The second is that WS is 
applied individually to each program in a multipro
grammed memory, whereas the others are applied 
globally across the memory. We claim that applying a 
paging algorithm globally to a collection of programs 
may lead to undesirable interactions among them. 

How do programs interact with each other, if at all, 
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under each of these strategies? How may the memory 
demands of one program interfere with the memory al
located to another? To answer this, we examine the 
missing-page probability for each strategy. 

In a multiprogrammed memory, we expect the miss
ing-page probability for a given program to depend on 
its own size 8, on the number n of programs simul
taneously resident in main memory, and on the main 
memory size M: 

(1) (missing-page probability) = men, s, M) 

Suppose there are n programs in main memory; in
tuitively we expect that, if the totality of their working 
sets does not exceed the main memory size M, then no 
program loses its favored pages to the expansion of 
another (although it may lose its favored pages because 
of foolish decisions by the paging algorithm). That is, 
as long as 

n 

(2) L Wi(t, T,) ::::; M 
i=1 

there will be no significant interaction among programs 
and the missing-page probability is small. But when n 
exceeds some critical number no, the totality of working 
sets exceeds M, the expansion of one program displaces 
working set pages of another, and so the missing-page 
probability increases sharply with n. Thus, 

(3) m(n1, s, M) > m(n2' s, M) 

This is illustrated in Figure 3. 

If the paging algorithm operates in the range n > no, 
we will say it is saturated. 

N ow we want to show that the FIFO and LR U 
algorithms have the property that 

(4) men, S1, M) ~ men, S2, M) 

That is, a large program is at least as likely to lose pages 
than a small program, especially when the paging 
algorithm is saturated. 

To see that this is true under LRU, recall that if pro
gram PI is larger than P 2, then the interreference inter
vals satisfy Xl > X2: large programs tend to be the ones 
that reference the least recently used pages. To see that 
this is true under FIFO, 'note that a large program is 
likely to execute longer than a small program, and thus 
it is more likely to be still in execution when the 
FIFO algorithm gets around to removing its pages. The 
interaction among programs, expressed by Eq. 4, arises 
from the paging algorithm's being applied globally 
across a collection of programs. 
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m(n,s,M) 

----------------------

o '--======::::;:::=------. n 

FIGURE 3-Missing-page probability 

Finally, we note that under a WS algorithm, the 
missing-page probability is independent of nand M 
since eq. 2 is always satisfied. The missing-page prob
ability depends only on the choice of r ; indeed, 

m,(r) = Pr[missing page is referenced] 
in size s program 

(5) = Pr[page referenced satisfies x, > r] 

m.(r) = 1 - FX8 (r) 

where FXB (u) = Pr[xs ~ u] has already been defined to 
be the interreference distribution. Therefore, the WS 
algorithm makes programs independent of each other. 
We shall show shortly that this can prevent thrashing. 

From now on, we write m instead of m(n,s,M). 

Steady state efficiency and thrashing 

Suppose that a certain process has executed for a 
virtual time interval of length V and that the rriissing
page probability m is constant over this interval V. The 
expected number of page waits is then (Vm), each 
costing one traverse time T. We define the efficiency 
e(m) to be: 

(6) e(m) 

Then, 

(7) e(m) 

(elapsed virtual time) 

(elapsed virtual time) + 
(elapsed page wait time) 

v 1 

V+ VmT 1 + mT 

Clearly, e(m) measures the ability of an active process 
to use a processor. 

Figure 4 shows e(m) for five values ofT: 

e(m) 

--~--~----------------------t 

o 
o 

FIGURE 4-Efficiency 

T = 1,10,100,1000, 10000 vtu 

I 
I 
I 
I , 
I 
I 
I , 

where T = 10000 vtu may be regarded as being typical 
of the fastest existing rotating auxiliary storage devices. 

The slope of e(m) is 

(8) 
d -T 

e'(m) = dm e(m) = (1 + mT)2 

which means that, for small m and T> > 1, e(m) is ex
tremely sensitive to a change in m. It is this extreme 
sensitivity of e(m) to m-fluctuations for large T that is 
responsible for thrashing. 

To show how the slightest attempt to overuse 
memory can wreck processing efficiency, we perform the 
following conceptual experiment. We imagine a set of 
(n + 1) identical programs, n of which are initially 
operating together, without sharing, in memory at the 
verge of saturation (that is, n = no in Figure 3); then we 
examine the effect of introducing the (n + l)-st pro
gram. 

Let 1,2" ... , (n + 1) represent this set of (n + 1) 
identical programs, each of average size s. Initially, n of 
them fully occupy the memory, so that the main 
memory size is M = ns. Let mo denote the missing-page 
probability under these circumstances; since there is 
(on the average) sufficient space in main memory to con
tain each program's working set, we may assume 
mo< < 1 and that e(mo) is reasonable (i.e., it is not 
true that e(mo) < < 1). Then, the expected number of 
busy processors (ignoring the cost of switching a pro
cessor) is: 



(9) 
n 

p = L ei(mo) 
n 

i=1 

Now introduce the (n + 1)-st program. The missing
page probability increases to (mo + il) and the ex
pected number of busy processors becomes 

(10) 
n+l 

p' = L ei(mo + il) 
i=l 1 + (mo + il)T 

n+l 

Now if the pages of n programs fully occupy the 
memory and we squeeze another program of average 
size s into memory, the resulting increase in the missing
page probability is 

(11) 
s 1 

il= 
(n + 1)8 n + 1 

since we assume that the paging algorithm obtains the 
additional 8 pages by displacing s pages uniformly from 
the (n + 1) identical programs now resident in main 
memory. The fractional number of busy processors 
after introduction of the (n + 1)-st program is 

(12) 
p' _ n + 1 1 + moT 
p n 1 + (mo + il) T 

We assume that the traverse time T is very large; 
that is, T (in vtu) > > n > > . We argue that 

1 
il=--»m 

n + 1 0 

To show this, we must show that neither il ~mo nor 
il < < mo is the case. First, il ~mo cannot be the case, 
for if it were, we would have (recalling T> >n> > 1): 

(13) 
1 

e(m) "-' e(il) = ---
o "-'. 1 + ilT 

1 

T 
1+ n +1 

which contradicts the original assumption that, when n 
programs initially occupied the memory, it is not true 
that e(mo) < < 1. Second, il< <mo cannot be the case; 
for if it were, then we would have (from Eqs. 7 and 13) 
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1 > > e(il) = e (_1_) > > e(mo) 
n+l 

once again contradicting the original assumption that, 
when n programs initially occupied the memory, it is 
not true that e(mo) < < 1. Thus, we conclude that 
il» mo. 

1 . . 
When T» n» 1 and il = n + 1» mo, It IS easy to 

show that 

(14) 
p' n + 1 
-; ~ -T- + (n + l)mo« 1 

The presence of one additional program has caused a 
complete collapse of service. 

The sharp difference between the two cases at first 
defies intuition, which might lead us to expect a gradual 
degradation of service as new programs are introduced 
into crowded main memory. The excessive value of the 
traverse time T is the root cause; indeed, the preceding 
analysis breaks down when it is not true T> >n. 

The recognition that large traverse times may inter
fere with system performance is not new. Smith,S for 
example, warns of this behavior. 

Relations among processor, memory, traverse time 

We said earlier that a shortage of memory space leads 
to a surplus of processor time. In order to verify this 
statement, we shall answer the question: "Given p, 
what is the smallest amount of main memory needed to 
contain enough programs to busy an average of p pro
cessors?" We define Q(p) to be this quantity of memory, 
and then show that p may be increased if and only if 
Q(p) is increased, all other things being equal. 

Suppose there are n identical programs in main 
memory, each of average size s and efficiency 
ei(mi) = e(m). The expected number of busy pro
cessors is to be 

(I5) 

'so that 

(16) 

n 

p = L elm,) = n e(m) 
i=-l 

p 
n = - = p(1 + mT) 

e(m) 

Then the expected memory requirement is 

(17) Q(p) = ns = ps(l+mT) 

This relationship between memory requirement and 
traverse time is important. If for some reason the pag-
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Q(p) 0(1) 

+-------------------------~~T 

FIGURE 5-Relation between memory size and traverse time 

ing algorithm does not make m sufficiently small, 
then mT > > 1 because T> > 1. In this case we have 
Q(p) ~ psmT, almost directly proportional to the traverse 

. time T (see Figure 5). 
Reducing T by a factor of 10 could reduce the 

memory requirement by as much as 10, the number of 
busy processors being held constant. Or, reducing T by 
a factor of 10 could increase by 10 the number of busy 
processors, the amount of memory being held constant. 

This is the case. Fikes et al.6 report that, on the 
IBM 360/67 computer at Carnegie-Mellon University, 
they were able to obtain traverse times in the order 
of 1 millisecond by using bulk core storage, as compared 
to 10 milliseconds using drum storage. Indeed, the 
throughput of their system was increased by a factor 
of approximately 10. 

In other words, it is possible to get the same amount 
of work done with much less memory if we can employ 
auxiliary storage devices with much less traverse time. 

Figure 6, showing Q(p)/ps sketched for p = 1 
and T = 1, 10, 100, 1000, 10000 vtu, further dramatizes 
the dependence of memory requirement on the traverse 
time. Again, when m is small and T is large, small m
fluca tuations (as might result under saturated FIFO or 
LRU paging policies) can produce wild fluctuations in 
Q(p). 

Normally we would choose p so that Q(p) represents 
some fractionf of the available memory M: 

(18) (Q)p = fM O<f~l 

so that (l-f)M pages of memo~ are held in reserve to 

--5-

10000 T =\OOO~O __ 

1000 \OOO~_--

100 

10 \0 

+---------------------------~H_m o 

FIGURE 6-Single-processor memory requirment 

allow for unanticipated working set expansions (it 
should be evident from the preceding discussion and 
fromEq.4that, if Q(p) = M, an unanticipated working 
set expansion can trigger thrashing). Eq. 18 represents a 
condition of static balance arp.ong the paging algorithm, 
the processor memory configuration, and the traverse 
time. 

Eq. 16 and 17 show that the amount of memory 
Q(p) = fM can increase (or decrease) if and only if p in
creases (or decreases), providing mT is constant. Thus, 
if p' <p processors are available, then Q(p') <Q(p) = fM 
and fM-Q(p') memory pages stand idle (that is, they 
are in the working set of no active process). Similarly, if 
only .1' M <fM memory pages are available, then for 
some p' <p, Q(p') = f'M, and (p-p') processors stand 
idle. A shortage in one resource type inevitably results in 
a surplus of another. 

If must be emphasized that these arguments, being 
average-value arguments, are only an approximation 
to the actual behavior" They nevertheless reveal certain 
important properties of system behavior. 

The cures for thrashing 

It shoUld be clear that thrashing is caused by the ex
treme sensitivity of the efficiency e(m) to fluctuations 
in the missing-page probability m; this sensitivity is 
directly traceable to the large value of the traverse 
time T. When the paging algorithm operates at or near 
saturation, the memory holdings of one program may 
interfere with those of others: hence paging strategies 
must be employed which make m small and indepen-



den~ of other programs. The static balance relation 
Q(p) = fM shows further that: 

1. A shortage in memory resource, brought about the 
onset of thrasing or by the lack of equipment, re
sults in idle processors . 

. 2. A shortage in processor resources, brought about 
by excessive processor switchingorby lack of equip
ment, results in wasted memory. 

To prevent thrashing, we must do one or both of the 
following: first, we must prevent the missing-page prob
ability m from fluctuating; and second, we must reduce 
the traverse time T. 

In order to prevent m from flUctuating, we must be 
sure that the number n of programs residing in main 
memory satisfies n~no (FigUre 2); this is equivalent to 
the condition that 

11,0 

(19) ,.I' (1)i(t, T i) ~ M 
i· 1 

where Wi(t, T i) is the working set size of program i. In 
other words, there must be space in memory for every 
active process's working set. This strongly suggests that 
a working set strategy be used. In order to maximize no, 
we want to choose T as small as possible and yet be sure 
that W (t, T) contains a process's favored pages. If each 
programmer designs his algorithms to operate locally on 
data, each program's'set of favored pages can be made 
surprisingly small; this in turn makes no larger. Such 
programmers will be rewarded for their extra care, be
cause they not only attain better operating efficiency, 
but they also pay less for main store usage. 

On the other hand, under paging algorithms (such as 
FIFO or LRU) which are applied globally across a 
multiprogrammed memory, it is very difficult to ascer
tain no, and therefore difficult to control m-fluctuations. 

The problem of reducing the traverse time T is more 
difficult. Recall that T is the expectation of a random 
variable composed of queue waits, mechanical position
ing times, and page transmission times. Using optimum 
scheduling techniques7 on disk and drum, together 
with parallel data channels, we can effectively remove 
the queue wait component from T; accordingly, T can 
be made comparable to a disk arm seek time or to half 
a drum revolution time. To reduce T further would re
quire reduction of the rotation time of the device (for 
example, a 40,000 rpm drum). 

A mu<:;h more promising solution is to dispense al
together with a rotating device as the second level of 
memory. A three-level memory system (Figure 7) 
would be a solution, where between the main level 
(level 0) and the drum or disk (IeveI2) we'introduce a 
bulk core storage. The discussion following Eq. 17 sug-
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MAIN AUXILIARY 
FIGURE 7-Three-Ievel memory system 

gests that it is possible, in today's systems, to reduce the 
traverse time T by a factor of 10 or more. There are two 
important reasons for this. First, since there is no 
mechanical access time between levels 0 and 1, the 
traverse time depends almost wholly on page trans
mission time; it is therefore economical to use small 
page sizes. Second, some bulk core storage devices are , 
directly addressable,~ so that it is possible to execute 
directly from them without first moving information 
into level O. 

As a final note, the discussion surrounding Figures 4 
and 5 suggests that speed ratios in the order of 1 :100 
between adjacent levels would lead to much less sen
sitivity to traverse thnes, and permit tighter control 
over thrashing. For example: 

Level Type of Memory Device Access Time 

0 thin film 100 ns. 
1 slow-speed core 10#,s. 
2 very high-speed drum 1 IDS. 

CONCLUSIONS 

The performance degradation or collapse brought about 
by excessive paging in computer systems, known 'as 
thrashing, can be traced to the very large speed dif
ference between main and auxiliary storage. The large 
traverse time between these two levels of memory 
makes efficiency very sensitive to changes in the 
missing-page probability. Certain paging algorithms 
permit this probability to fluctuate in accordance with 
the total demand for memory, making it easy for at- . 
tempted overuse of memory to trigger a collapse of 
servIce. 

The notion of locality and, based on it, the working 
set model, can lead to a better understanding of the 
problem, and thence to solutions. If memory allocation 
strategies guarantee that the working set of every ac
tive process is present in main memory, it is possible to 
make programs independent one another in the sense 
that the demands of one program do not affect the 
memory acquisitions of another. Then the missing-page 
probability depends only on the choice of the working 
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set parameter T and not on the vagaries of the paging 
algorithm or the memory holdings of other programs. 

Other paging policies, such as FIFO or LRU, lead to 
unwanted interactions in the case of saturation: large 
programs tend to get less space than they require, and 
the space acquired by one program depends on its 
"aggressiveness" compared to that of the other pro
grams with which it shares the memory. Algorithms 
such as these, which are applied globally to a collection 
of programs, cannot lead to the strict control of memory 
usage possible under a working-set algorithm, and 
they therefore display great susceptibility to thrashing. 

The large value of traverse time can be reduced by 
using optimum scheduling techniques for rotating 
storage devices and by employing parallel data chan
nels, but the rotation time implies a physical lower 
bound on the traverse time. A promising solution, de
serving serious investigation, is to use a slow-speed core 
memory between the rotating device and the main 
store, in order to achieve better matching of the speeds 
of adj acent memory levels. 

We cannot overemphasize, however, the importance 
of a sufficient supply of main memory, enough to con
tain the desired number of working sets. Paging is no 

substitute for real memory. Without sufficient main 
memory, even the best-designed systems can be dragged 
by thrashing into dawdling languor. 
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