600 Community Drive, Manhasset, New York 11030

NBWS

NEWS

NUN

VLSI Systems Design

Bulk Rate U.S

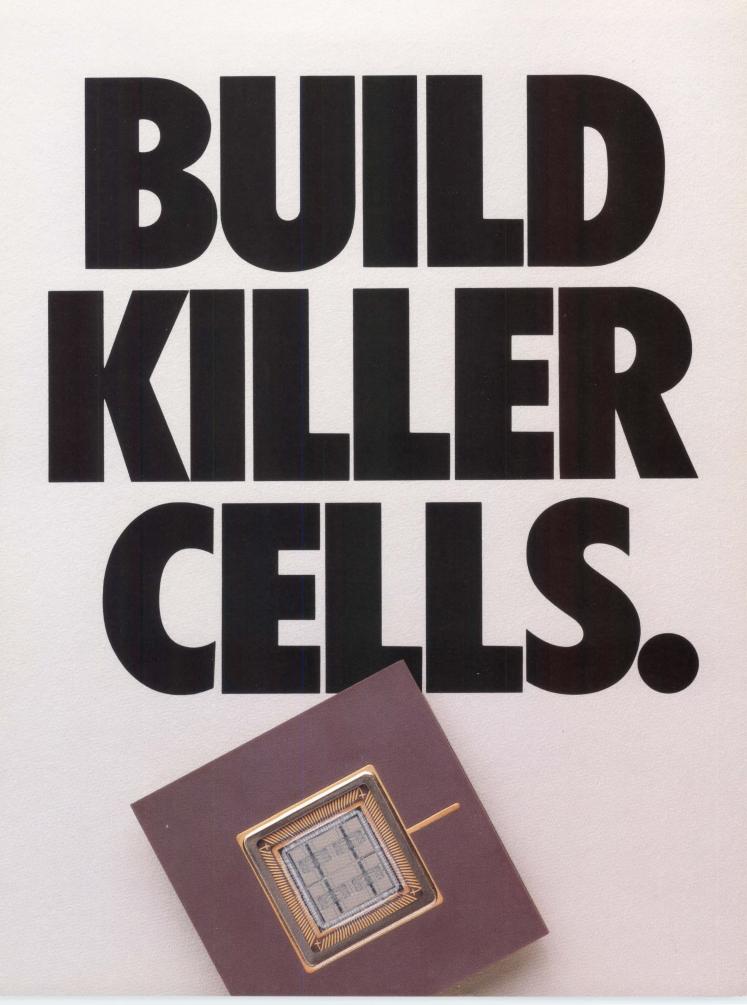
Postage

Publications Inc.

\$50.00

NEWAR

NEWIG


NEWDO

GMAN

1988 SENTERSOR DESIGNERS DESIGNERS

PUBLICATION

CMP

This is the stuff reputations are built on.

A cell design with 100,000 gates. More than 1000 library elements. 2MB of memory. And sub-micron

HCMOS technology.

You can search high and low, but there's only one place in the world you can find a chip of such staggering complexity.

LSI Logic.

Designs like this are precisely why we're the #1 domestic ASIC supplier with more than 4,000 working cell and array-based designs in the field.

And why our Modular Design Environment (MDE)[™] software is the best foundation for building killer cells.

MDE is the industry's most advanced design software for ASICs. It arms you with the capability to build today's most sophisticated cellbased designs. Easily. And with the smallest possible die size.

Besides MDE, LSI Logic delivers more than 400 LSI and VLSI building

High complexity Cell-Based ASICs require advanced tools like the MDE chip floorplanner to optimize delays and verify performance prior to layout.

blocks, including 16 and 32-bit microprocessor cells and industry-standard processor and peripheral functions; the longest list of SSI and MSI functions; and memory compilers to

> develop exactly the RAM or ROM your chip requires.

> And if your application calls for lower densities, that's covered, too. Because LSI Logic has more cost-effective cell-based solutions than you can imagine.

> No matter what kind of Cell-Based ASIC you

build, LSI Logic will deliver a fullytested prototype in as little as 4 weeks.

All in the production quantities you want, thanks to our advanced worldwide wafer fabrication, assembly, and test facilities.

So find out more about LSI Logic's Cell-Based ASICs by calling the sales office nearest you.

After all, we can help you make a killing.

LSI Logic Sales Offices and Design Resource Centers: Scottsdale, AZ 602-951-4560, Milpitas, CA 408-433-8000, San Jose, CA 408-248-5100, Irvine, CA 714-553-5600, Sherman Oaks, CA 818-906-0333, Denver, CO 303-756-8800, Altamonte Springs, FL 305-339-2242, Boca Raton, FL 305-395-6200, Norcross, GA 404-448-4898, Chicago, IL 312-773-0111, Bethesda, MD 301-897-5800, Waltham, MA 617-890-0161, Ann Arbor, MI 313-769-0175, Minneapolis, MN 612-921-8300, Bridgewater, NJ 201-722-7522, Poughkeepsie, NY 914-454-6593, Raleigh, NC 919-783-8833, Worthington, OH 614-438-2644, Beaverton, OR 503-644-6697, Trevose, PA 215-638-3010, Austin, TX 512-338-2140, Dallas, TX 214-788-2966, Bellevue, WA 206-822-4384, Calgary, Alta 403-262-9292, Paris, France 33-1-46212525, Israel 972-3-403741/6, Milan, Italy 39-39-651575, Tokyo, Japan 81-3-589-2711, Seoul, Korea 82-2-785-1693, Nidau/Biel, Switzerland 032-515441, Bracknell, United Kingdom 44-344-426544, Munich, West Germany 49-89-926903-0. © 1988 LSI Logic Corporation. Modular Design Environment and MDE are trademarks of LSI Logic Corporation.

VLSI Systems Design

A CMP Publication EDITORIAL DIRECTOR Robert W. Henkel EDITOR-IN-CHIEF Roland C. Wittenberg MANAGING EDITOR Mike Robinso SENIOR EDITOR Bob Cushman SOLID STATE EDITOR Roderic Beresford WESTERN REGIONAL EDITOR David Smith DIRECTORIES EDITOR Michelle A. Losquadro EDITORIAL ART Marie D'Ippolito, Design Director Catherine McHale, Composition Laurie Kaufman, Cover & Layout Dawn Cammarata, Layout Tom Holmes, Robyn Stabulas, Vilma Baston, Graphics Sharon Anderson, Art Director EDITORIAL PRODUCTION Patricia L. Gaynor, Sr. Production Editor Deborah Porretto, Ass't Production Editor

MANUFACTURING Stephen Grande, Director of Manufacturing Marie Myers, Production Manager James Pizzo, Production Supervisor Jane Mahoney, Asst. Production Supervisor

> PUBLISHER Norm Rosen

VLSI SYSTEMS DESIGN (ISSN 0279-2834) is published monthly with an extra issue in May by CMP Publications, Inc., 600 Community Drive, Manhasser, NY 11030, (516) 562-5000. VLSI SYSTEMS DESIGN is free to qualified subscribers. Subscriptions to others in the US: one year \$60.00, two years \$95.00; Canada and Mexico: one year \$90.00, two years \$95.00; Europe, Central and South America: one year \$120.00, two years \$225.00. Asia, Australia, Israel and Africa: one year \$100.00, two years \$285.00. Second-class portage paid at Manhasser, NY and additional mailing offices. POSTMASTER: Send address changes to VLSI SYSTEMS DESIGN, Box No. 2060, Manhasser, NY 11030. Copyright 1988, CMP Publications, Inc. All rights reserved.

CMP ELECTRONICS GROUP Kenneth D. Cron Vice President/Group Publisher Electronic Buyers' News Electronic Engineering Times VLSI Systems Design

CMP PUBLICATIONS, INC. 600 Community Drive Manhasset, New York 11030 (516) 562-5000

UND/102-3000 Electronic Bores, Decomputer Systems News, VISI Systems Design, Computer Systems News, UNIX Computer Reseller News, VARDISINESS, UNIX Communication, Businers Travel News, Communication, Businers Travel News, Tour & Travel News, Long Island Monthly, HealthWeek

Michael S. Leeds, President Pearl Turner, Vice President/Treasurer Daniel H. Leeds, Vice President

Lilo J. Leeds, Gerard G. Leeds Co-Chairpersons of the Board

INTRODUCTION TO THE GUIDE

ith the third annual *Semicustom Design Guide*, we continue to provide in-depth technical articles on the range of semicustom IC technologies and the CAE tools and methodologies required to exploit fully those technologies. Backing up the articles are extensive and detailed listings of semicustom vendors, products, and design centers.

Leading off the *Guide* are two articles on state-of-theart aspects of gate arrays. Next comes an article that approaches the question of semicustom from the point of view of a particular application area—digital signal processing; it argues that, for now, designers are best served by a hybrid approach that includes DSP cores, standard cells, logic synthesis, and silicon compilation (module generation). Then an update covers the recent

SEMICUSTOM TECHNOLOGIES 7

GARNERING THE GATES IN HIGH DENSITY ARRAYS 8 Ernest L. Meyer

HIGH-SPEED GATE ARRAYS: CONSIDERING THE OPTIONS 24 Ron Cates

A HYBRID APPROACH TO APPLICATION-SPECIFIC DSP DESIGN 32 Howard Moscovitz

PROGRAMMABLE LOGIC UPDATE 42 Ernest L. Meyer

DESIGN TOOLS & METHODOLOGIES 53

THE ROLE OF LOGIC SYNTHESIS IN SILICON COMPILATION 56 Misha R. Burich

 VHDL FOR ASIC DESIGN AND VERIFICATION
 64

 Rick Sullivan and Lisa R. Asher
 64

ADVANCED MODELING TECHNOLOGIES FOR LOGIC SIMULATION 74 William B. Fazakerly and Robert P. Smith

LINKING DESIGN AND TEST FOR ASIC PROTOTYPE TEST DEVELOPMENT 86 Eric Archambeau, Teresa Butzerin, and Dave Roth flurry of developments in programmable logic, including "user-programmable gate arrays."

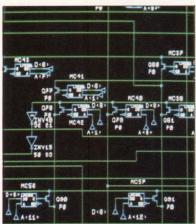
On the tools side, probably nothing has been hotter this year than logic synthesis and VHDL. Section II starts with a consideration of logic synthesis technology embedded in a silicon compilation design system (something that is also touched on in the DSP design article) and a description of the use of VHDL for behavioral description and verification. The following article addresses the need for more accurate timing models for logic simulation, and the last one tackles the problem of developing tests for verifying ASIC prototypes.

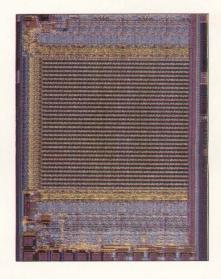
We conclude with our set of directories and the 1987 subject index to *VLSI Systems Design*.

Mike Robinson

III DIRECTORIES 99

Guide to the Directories 100 Gate Array and Cell Library Vendor Profiles 100 Directory of Gate Arrays 106 Directory of Cell Libraries 117 Directory of Programmable Logic Devices 125 Gate Array and Cell Library Vendor Contacts 128 Directory of ASIC Design Centers 130


IV REFERENCES 138


VLSI Systems Design Subject Index 1987 139 Advertiser's Index 143

Guide to Data Sheets 144 Data Sheets 145

COVER ART COURTESY OF NATIONAL SEMICONDUCTOR CORP.

DO YOU HAVE WHAT IT TAKES TO MAKE IT BIG IN ASICS?

Not long ago, designing with more than 170 design accelerator is seamlessly inte-ASICs wasn't even grated with the schekits supplied by 70 different ACCELERATED vendors. So you can build propart of your job. matic, so you can locate ASIC DESIGN ductivity instead of libraries. Now it's the and correct design Which may explain why problems interactively. part everyone's counting on. more MegaLOGICIANs are That means faster That's where debugging and more in use today than all other Daisy comes in. time to improve accelerators combined. other Cadnetix Daisy CAE tools the quality of your Speaking of combining, you are used by more design. Plus ASIC designers than no other accelerator any other CAE workstations. is as well supported, Because from schematic creation through post-layout Daisv 53% 5,000 Zvcad 11% Simulation accelerator market share. Source: Prime Data, 1985 and 1986 unit shipments. simulation. Daisy has what it takes to keep ASICs on time and on budget. For example, our MegaLOGICIAN[™] simulation

© 1988, Daisy Systems Corporation. MegaLOGICIAN is a trademark of Daisy Systems Corporation. *Based on minimum 10x performance improvement compared to 32-bit workstations. Source for design kit estimates: VLSI Systems Design's Semicustom Design Guide, 1987. can share a MegaLOGICIAN with a network of our 386based desktop workstations, for a high-powered low cost ASIC design environment.

And that's just the beginning. With our library of more

than 4,500 systemlevel components, you can include your ASIC in complete "real world" system simulations to ensure that your designs will be ready for production, instead of revision.

All of which makes Daisy today's choice for no-sweat ASIC success.

But what about tomorrow? Gate counts are on the rise. If your tools run out of steam at 5,000 gates, so could your future.

No problem. Our ASIC design tools glide through 20,000DEAD

breathing hard. In fact, new design kits already support arrays of over 100,000 gates.

gate designs

without even

So you'll never have to worry about hitting a dead-end.

But don't take our word for it, listen to what Rockwell and other industry leaders have to say. For a free copy of "Making It Big In ASICs" call Daisy at 1 (800) 556-1234, Ext. 32. In California, 1 (800) 441-2345, Ext. 32.

European Headquarters: Paris, France (1) 45 37 00 12. Regional Offices: England (256) 464061; West Germany (89) 92-69060; Italy (39) 637251.

Harris Guarantees ASICs To Specs After Irradiation!

There... We Put It In Writing!

We're hard-liners about reliability in rad-hard ASICs. Including MIL-STD 883C and to Class S.

Hey...it happens to the best of 'em... your rad-hard ASIC design's first pass requires first aid!

For better results, avoid rigid design systems that lock you into the wrong solution and keep you there. Come to Harris; nobody offers you more frontend flexibility.

- Advanced rad-hard library...Basic gates, 54XX equivalents, 80C86 peripherals (cells and macros you can intermix to enhance design), proprietary data communications functions.
- Broad workstation support...Simulations include both pre- and post-radiation performance models. Libraries are fully supported on the UNIX-based

Trademarks, Daisy: Daisy Systems Corp. Mentor: Mentor Graphics $\textcircled{\sc 0}$ 1988, Harris Corporation

Harris toolset. Daisy[™] and Mentor[™] platforms also supported; Silicon Compilers due soon.

• Guaranteed parametrics...Harris can guarantee your ASICs to specs after irradiation exceeding 1 megarad.

SICS

• Packaging options...Select from ceramic DIPs, chip carriers and pin grid arrays; screenings to Class S standards.

So what does it all mean? More ASIC design options. Less design risk. For a faster time to market, it's time to call Harris Semiconductor.

> In U.S. phone 1-800-4-HARRIS, Ext. 1910 or (407) 729-4151. In Canada: 1-800-344-2444, Ext. 1910.

CIRCLE NUMBER 2

SEMICUSTOM TECHNOLOGIES

GARNERING THE GATES IN HIGH-DENSITY ARRAYS

Ernest L. Meyer

8

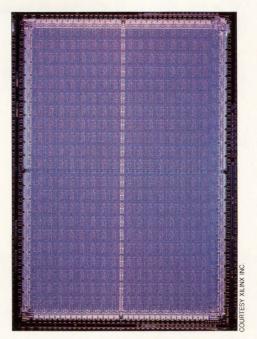
Changes in gate array technology have opened up new vistas for systems designers who seek high performance and high levels of integration without incurring exorbitant engineering expenses.

24 HIGH-SPEED GATE ARRAYS: CONSIDERING THE OPTIONS

Ron Cates, Vitesse Semiconductor Corp.

To meet the needs of high-performance systems, semicustom designers now have a choice of silicon-based ECL and gallium arsenide, and GaAs has stepped up to enhancement/depletion-mode technology.

32 A HYBRID APPROACH TO APPLICATION-SPECIFIC DSP DESIGN


Howard Moscovitz, AT&T Bell Laboratories

Designers of application-specific DSP integrated circuits have a variety of design alternatives available to them, from traditional schematic capture and standard-cell design to logic synthesis, module generators, data path compilers, and DSP CPU cores. No single tool satisfactorily handles all the applications.

42 PROGRAMMABLE LOGIC UPDATE

Ernest L. Meyer

Recently, a wave of new, improved, and faster programmable logic chips, includer userprogrammable gate arrays, were introduced, promising to expand the usefulness of programmable logic technology.

1988 SEMICUSTOM DESIGN GUIDE 7

GARNERING THE GATES IN HIGH-DENSITY ARRAYS

Ernest L. Meyer, Campbell, Calif.

The past decade has seen a virtual implosion of IC functionality. Even a gate array can now hold 100,000 twoinput NAND gate equivalents—10 times as much integration as was possible even three years ago—and the manufacturing and design innovations for high-density arrays are increasingly counterbalancing the area, performance, and cost barriers traditionally associated with gate array implementation. In addition, those innovations are applicable to all array sizes and are expected to "trickle down."

Two particular techniques are especially significant: the use of triple-level metal (TLM) and the omission of empty wiring channels from the die (channelless, channel-free, or sea-of-gates arrays). With TLM, wires account for proportionally less area and transistor density increases. Parasitic delays are not only smaller on average, but also more predictable. When applied to sea-of-gates array architectures, TLM is yielding utilizations of 90% and higher. However, computer-aided design is not coping easily with these newer technologies. In particular, the increased density and large gate counts intensify the problems of power distribution and critical path constraints. New techniques for placement and routing are being tried out on these very large gate arrays.

TRACKING DOWN THE PROBLEM

Having chosen a semicustom approach, most of the arguments cited against gate arrays arise from their size. Wasted silicon area results from the use of one common base for a number of different functions. Not only might the die size influence final package cost, but also a larger chip will slow down the logic. The less dense the chip, the longer the average wire length. Longer wires add capacitive delays that introduce severe design problems; these problems center not so much on the longest delay, but rather on the range of delays. The impact of die size on performance is particularly strong in gate arrays, where a computer decides the transistor and wire arrangement with algorithms that solve the topological wiring problem, not necessarily the electrical performance problem.

Net lengths display a "right-biased" distribution, with the average net length exceeding the median. Also, the average net length deviates further from the median on the high side as fan-out increases. This distribution poses grim problems for the designer. Simulating with a worstcase delay is highly unrealistic, as only a small number of nets have that delay figure. Especially for high fan-outs, simulating with an average delay may not be much better, because the distribution is skewed to the right. Using a median delay will not allow for the worst-case paths—on one out of ten occasions, approximately, the actual delay will be more than three times the median delay.

High-density arrays are therefore attractive mostly for their advantageous wire delay distribution. The transistors may have much the same speed and the average wire delay may not be much smaller. Even halving the average wire delay does not typically increase speed by more than 10%. However, if the chips are smaller, there are fewer critical paths (whether anticipated or not). Because the longest possible path is now also shorter, there also are fewer restrictions on gate placement and routing. Layout software therefore struggles less to complete the design within the same constraints. In fact, according to manufacturers, the computer time required to complete a highdensity array layout is reduced and that reduction more than offsets the costs incurred by the lower yield of a larger die. At the same time, the wiring delays are more predictable, making the technology more attractive to users.

SHRINKING

Shrinking the fabrication process design rules is the most obvious way to reduce a chip's size. However, as transistors shrink below $1.25 \ \mu$ m, the impact of minimum feature size on gate array density becomes much less important. More significant are the minimum wire width and the isolation distance between adjacent wires. Adding these two numbers gives the metal pitch, the minimum possible distance between the centers of two adjacent wires. The pitch can never be as small as the minimum feature size: the transistors and polysilicon wires under the metal track make the surface too bumpy for an even deposition of metal on top (Gulett, 1985)

More recent IC processes use planarization to smooth the surface between each deposited layer. In planarized processes, the wafers are heated up between metal depositions so that the deposited intermetal dielectric flows and tends to "soften" abrupt steps in the underlying layers, providing a smoother surface for subsequent layers.

Planarized processes make it possible to forge much narrower wires, but if the wires are too small, electromigration can fuse out the metal. In metal migration, excessively high current density causes a gradually accelerating movement of the metal atoms in the direction of the current, until the wire wears out.

Metal migration places a lower limit on metal track width. The dangerous current density for aluminum is about 2 mA/ μ m² of the wire's cross-section. Wires cannot be more than 0.5 μ m thick without making the surface too irregular. A typical high-speed process, with a 200-MHz toggle frequency and a 2.5- μ A/MHz gate transient current, creates a 0.5-mA drive. A pure aluminum signal wire thus cannot be less than 1 μ m wide without self-destructing.

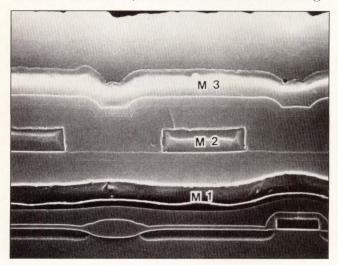


FIGURE 1. The quality of the planarization is shown in a cross section of a Motorola triple-level-metal (TLM) die.

Since it is not possible to compact wires any further in the horizontal direction, vendors are applying the skyscraper principle and going up. Three-level metal (TLM) has been used for power distribution in a number of bipolar processes, in which the pitch of the third metal level has to be much wider than those of the first two levels, because the third metal level is deposited on a surface with even more irregularities.

Fujitsu was the first company to apply the same principle to a CMOS gate array family, using a 4.5- μ m pitch on first metal and a 9- μ m pitch on the third metal layer with a 1.5- μ m process. Fujitsu has been shipping TLM CMOS since 1985.

Shortly after, Hughes Aircraft extended its planarized process to permit the use of 4- μ m-wide wires on all three metal layers. In such planarized processes, the reduced metal pitch that is possible on the second and third levels allows even the third level to be used for signal distribution. At about the same time, Toshiba started shipping TLMarrays. Recently, NEC started shipping TLMarrays, with maximums of about 40,000 and 75,000 available gates.

At the time of writing, Motorola has TLM arrays at least in

prototype, and Hitachi and LSI Logic are reported to have TLM prototypes. All three companies may have productionquantity TLM arrays by the fourth quarter of this year; Motorola's highly planarized TLM process is shown in Figure 1. Some other companies, including SGS-Thomson, Texas Instruments, and VLSI Technology, are likely to follow suit.

CHANNELED ARCHITECTURES

Traditionally, gate array bases have been built with separate transistor and wiring areas. In these "channeled" arrays, an empty channel of silicon separates one or two unwired p-n transistor row pairs. The gate array macrocell library then wires up the transistor rows into gates, flipflops, and larger functions: first-level metal joins up the uncommitted transistors in custom metal patterns over the p-n transistor row diffusion regions. These gates and multigate functions, called hard macros, are the smallest building blocks used by the system designer.

On the same metal level used to wire the uncommitted transistors in the base into hard macros, the hard macros are wired into functions. With a channeled architecture, horizontal wires between the gates are run in first-level metal in the wiring channels between the transistor rows. Vertical wire tracks then run over the horizontal wire channels and p-n transistor rows, on second-level metal. By adding a third metallayer, it is possible to move some of the horizontal wiring tracks from the first metallevel to the third, permitting the rows of macros to be moved closer together and thus achieving higher density.

With two layers of metal, it is not feasible to obtain high utilization on a channeled array having more than 20,000 gates. The channels must be increased in width so much that the wire loads become too big. NEC uses three layers of metal to obtain 90% utilization with a channeled array of 40,000 equivalent gates.

SEA-OF-GATES ARRAYS

WhereasTLM attacks the problem of increasing gate density, channelless or sea-of-gates arrays are employed to increase absolute gate counts past the 20,000-gate mark. In these array types, all the wiring channels are removed from the array base. By covering the array base totally with a "sea" of cells or transistors, it is possible to obtain utilizations in excess of 90% for designs with a lot of regular structures (RAM, ROM, and PLA). Array bases that strive for these high gate counts and high utilizations, sometimes called "brick wall" or "puzzle fit" arrays, may be the wave of the future. To obtain the highest utilizations with irregular logic, however, triple-level metal is mandatory.

For example, Tangent Systems laid out an experimental TLM array from Texas Instruments and is reported to have obtained a 99% utilization—without any manual intervention—of over 100,000 gates. Vendors now offering TLM sea-of-gates arrays do not generally quote utilizations as high as sported by TI'S CAD benchmark. Hughes does offer 100% utilization for up to 20,000 gates (Hsu et al., 1986), but utilization falls steeply for arrays beyond this level, and in fact Hughes does not sell larger arrays on the commer-

cial market. Motorola is claiming 75% utilization for a prototype 100,000-gate array. Other TLM vendors fall below the half-way mark on utilization; Toshiba, for example, quotes less than 50% (Sawada et al., 1988).

Of course, it is not necessary to have TLM in order to use a sea-of-gates architecture. Sea-of-gates arrays were first introduced in 1982 by California Devices (Lipp, 1983), using double-level metal (DLM). (California Devices has recently been liquidated.)

DLM sea-of-gates CMOS arrays are now available from many vendors, including LSI Logic, SGS-Thomson, S-MOS, and VLSI Technology, as well as from most of the vendors supplying TLM arrays. Note that DLM sea-of-gates arrays that were introduced this year are already obtaining utilizations as high as those of current TLM channelless arrays. For example, SGS-Thomson claims a 60% utilization; VLSI Technology, about a 45% utilization; and LSI Logic, a 40% utilization (T. Wong et al., 1986).

THE UTILIZATION ISSUE

Utilization is one of the hottest issues in array design and is especially so with sea-of-gates architectures. Manufacturers typically indicate the size of an array by the number of two-input NAND gates the array will hold. The size of all other functions is then measured by the number of such gates that could fit in the same area.

This metric introduces the first level of confusion. Macrocells from different vendors can have different numbers of equivalent gates for the same function. The confusion is compounded by whether the equivalence is based on the number of used transistors or on the number of used *cells* (grouped transistors that are electrically isolated from their neighbors). Not all the transistors in a cell may be usable with some functions, and therefore if the quoted figure is for cell utilization, it will be higher than it would be for transistor utilization.

Whatever the case, it is rarely possible to use all the available transistors or cells, even in a channeled array. Leaving some cells unused will reduce wiring congestion. The effect of so-called "depopulated regions" on routability varies from one array (and the CAD system employed for it) to the next. With sea-of-gates arrays and double-level metal, some transistor sites *must* be "depopulated" for the horizontal wiring. Leaving every other row depopulated will reduce the maximum possible utilization to 50%. Vendors quoting a 40%–50% utilization are probably using this technique. Vendors with 30%–40% utilization are probably depopulating *two* rows of gate cells for each macro row used.

One may wonder, why use a sea-of-gates architecture at all if macro rows are regularly depopulated anyway? The answer lies in the use of solid multirow blocks (with no depopulated rows) for regular functions such as RAM, ROM, multipliers, and PLAS. Because these functions are very regular, it is possible to hand-craft building-block modules so that the signal, power, and control port locations directly abut neighboring building blocks. If the constituent building blocks use all the available active devices in the sea of transistors over which they lie, then utilization can be 100% in these areas. Typical designs usually contain a varying mixture of regular and random logic functions. With a 40% utilization of random logic and a 100% utilization in the regular structures, the final utilization depends heavily on the balance between regular and irregular functions in the specific design.

This discrepancy decreases as more and more rows are populated with logic functionality. The developers of more recent DLM sea-of-gates technologies have concentrated their efforts on designing base gate cells and developing CAD tools that can permit higher utilization, rather than on improving the process and manufacturing technology. SGS-Thomson, for example, is moving toward the depopulation of every third cell row only, allowing a peak 67% utilization for irregular functions. However, this higher utilization is obtained by slightly loosening the cell layout.

A low utilization now does not mean that the array is doomed for all time. The utilization may be low because the array and its library have been designed to be shifted to new processes as they become available. For example, the recent DLM arrays from SGS-Thomson, S-MOS, and VLSI Technology cited above all were designed to yield higher utilization when ported to TLM processes.

Moreover, utilization does not necessarily reflect an array's actual transistor density (number of usable transistors per square mil). Some arrays use base cells that are more spread out, so that the utilization will be higher but the number of transistors per square mil is lower.


BASE CELL DESIGN

The number of rows that must be depopulated to permit routing with the available metal resources depends partly on the base cell design. Transistors can be arranged in various ways inside the transistor rows and can vary in size, isolation technique, shape, and proportion.

Fujitsu, for example, uses two big p-type, two big n-type, and four small n-type transistors in its base cell (Takahashi et al., 1985), as shown in Figure 2a. With logic functions, the four small n-type transistors are not used at all; instead, the space over them is used for wiring channels, yielding a "pseudochanneled" structure with about 13 first-level metal wiring channels between each gate. When the cell is used for RAM, all eight transistors are employed for a single memory bit. This approach yields a high density for RAM but a lower density for logic functions. Fujitsu does not quote utilization figures for its arrays, which is just as well, because any percentage would need to be qualified by the proportions of RAM and logic considered.

Figure 2b shows a more typical base cell design, with all transistors exactly the same size. This particular diagram shows the proportions used in the Hughes arrays. Figure 2c shows a very similar base array cell structure, this one from Motorola, with the transistors wired into a NAND gate. Both these arrays use a basic isolated cell of eight transistors: four p and four n types.

Higher transistor counts can be obtained by removing the dielectric isolation between neighboring cells. Transistors are then tied to the power rails at both ends ("dead" transistors) to provide electrical isolation between neighboring functions. This scheme uses up more area than

"CASE Technology: CAE Solutions Planned Right from the Start"

CASE Technology's new Vanguard CAE Design System supports a full range of industry standard hardware platforms — DEC VAX (VMS), Sun (UNIX) and PC (DOS) — and a comprehensive set of electronic design applications for PCB and ASIC design. Applications include schematic capture, digital logic simulation, circuit simulation and PCB design capabilities.

Since initial product introductions four years ago, CASE Technology has been setting trends in the computer-aided engineering industry. CASE was the first to introduce:

- a PC-based CAE solution in June 1983
- an integrated PC to VAX solution in November 1985
- a PC as an intelligent graphics terminal for CAE in February 1986
- a complete Sun Workstation-based CAE solution in October 1986

In 1986, CASE also announced major marketing agreements with Digital Equipment Corporation and Sun Microsystems for the joint promotion of the Vanguard CAE Design System on the VAX station and Sun-3 series of high performance engineering workstations.

Over the last three years, CASE Technology has experienced explosive growth to the rate of 80 percent per year and has remained profitable every quarter since the first product shipped. Today, CASE has over 3000 installations of the Vanguard CAE Design System worldwide, in companies such as Hughes Aircraft, Honeywell, and Rockwell International.

Why has CASE Technology been so successful? It's simple. We listen to our customers very carefully. Corporate and engineering managers want *solutions* that work. CASE provides electronic design solutions through a well-conceived, long term plan for product migration, an open database philosophy, and data and operating system independence.

Before you make a decision on CAE, take the time to see what CASE has to offer.

CASE Technology, Inc., 2141 Landings Drive, Mountain View, California 94043 Phone (415) 962-1440; Telex 506513; FAX (415) 962-1466.

CIRCLE NUMBER 3

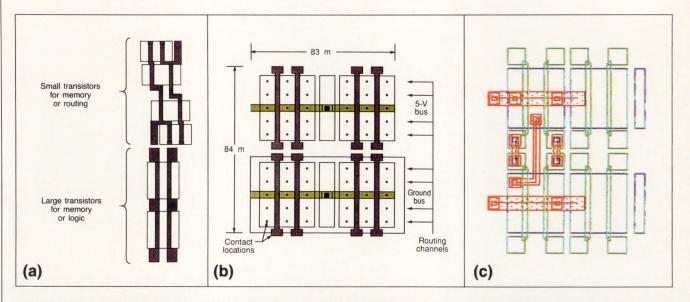


FIGURE 2. Fujitsu's heterogeneous cell (a): the small transistors are either used for ROM or are not used in logic macros, freeing more first-level metal for horizontal wiring. Also shown are standard straight-transistor dielectrically isolated cells, one from Hughes (b) and one configured as a NAND gate, from Motorola's library (c).

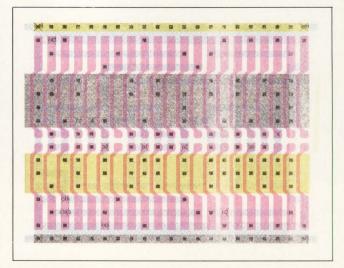
conventional dielectric isolation for a single gate, but since it provides flexibility as to where isolation may occur, it can save space when used with large functions. Technically speaking, arrays based on these cell types are true "sea-of-transistor" arrays—sometimes called "continuous" arrays, because each row has a continuous well diffusion; arrays with dielectric isolation are properly "sea-ofgates" arrays. However, these terms are used somewhat loosely. Figure 3 shows a D flip-flop implemented on a continuous array by VLSI Technology.

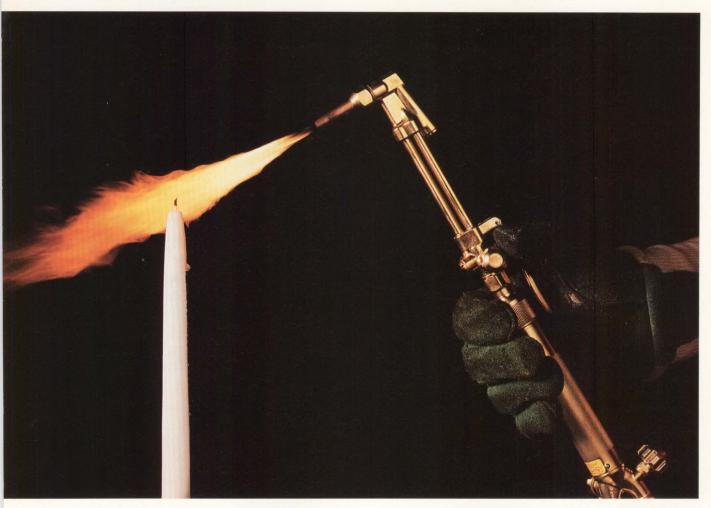
Note that some vendors include the transistors used for isolation as "utilized" transistors, and some do not. With continuous arrays, therefore, it is worth checking what any particular utilization number really means.

The continuous array example exhibits two further aspects of array cell design: p-n size ratio adjustment and bent (versus straight) gates. The balance between low-tohigh and high-to-low transitions is controlled by the ratio of p- to n-transistor sizes. "Transition balancing" is preferable because it makes logic design much simpler.

Bending the gate means that the source, gate, and drain contacts for any one transistor all lie in one column. This innovation by Lipp (1983) facilitates wiring. If the gates are not bent, as in the arrays in Figures 2b and 2c, the gate contact is in a different column from the one containing the source and drain. Therefore, half as many gates can fit in the same number of columns. On the other hand, straight-gate columns are narrower than bent-gate ones, because there is no area wasted in making the wire bend. Straight gates end up slightly wider and slightly shorter.

Since horizontal wiring is the crucial resource, it makes sense to use bent gates for sea-of-gates arrays. Bent gates could be why the DLM arrays from VLSI Technology and SGS-Thomson obtain high utilizations compared with the TLM arrays, which currently all use straight gates.




FIGURE 3. A D-type latch in stacked logic from VLSI Technology. Stacked logic and wider base cells permit more horizontal wiring on first-level metal over populated cell sites.

POWER DISTRIBUTION

Power distribution becomes critical as density increases. More transistors are packed into the same area, which means that the power lines may pick up more noise. Most arrays use a fixed power distribution grid (SGS-Thomson's grid is described by Blumberg and Waggoner, 1988). The grid must provide adequate clearance for routing to the underlying macrocells.

Adequate clearance to a fixed grid can be achieved with

Stop Wasting Power

New CMOS array features the lowest power dissipation: 8µW/Gate/MHz

Raytheon's newest CMOS array family, the RL1000, helps you achieve optimum power performance. It offers the lowest power dissipation available at high densities—without sacrificing speed.

□ Lowest Power: Raytheon's 8μ W/gate/MHz CMOS arrays, with 1.0 micron effective channel lengths, have available densities ranging from 5670 to 20,440 gates. With 20 tracks per channel instead of the standard 16, gate utilization is typically 90 percent or better.

□ **High Speed:** At 0.3 ns unloaded inverter delay, this low-power, highspeed array family is perfect for portable equipment or where power sources are limited.

□ **Other features:** The RL1000 series, with symmetrical switching delays, operates at 250 MHz flipflop frequency and is TTL/CMOS compatible.

□ **Packaging:** All packaging options are available. And Raytheon's design support includes an extensive macrocell library on major workstations. Also available in CMOS:
 Approved VHSIC PHASE I gate array: RVG 1.25 family
 Second source for LSI Logic Inc.'s LL7000 Series: RL7000

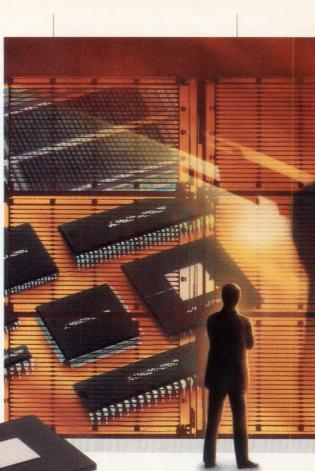
Call Raytheon for access to the right CMOS technology. Your success is our first priority.

Raytheon Company Semiconductor Division 350 Ellis Street Mountain View, CA 94039-7016 (415) 966-7716

Build your gate array on a solid foundation.

You want to implement your ASIC design quickly. With technology that meets your requirements. You need quality products and dependable delivery to maintain a competitive edge. In short, you expect a partnership built on a solid foundation. One you can count on for future designs as well.

And, that's precisely what you get with Mitsubishi. A solid partnership with a technology base that includes in-house wafer processing, advanced packaging, demonstrated production capabilities and long-term commitment to R&D.


Mitsubishi offers a broad range of gate array product capabilities, from 200 to 20,000 useable gates. And, continuing development work at Mitsubishi's research laboratories is leading to sub-micron CMOS and even more advanced ASIC materials and processes. Unique variable track masterslice (VTM), 1.3μ m gate arrays provide an ideal architecture for mixed random logic and memory designs.

There's a broad range of packaging options: DIP and shrink DIP, SOP, PGA, as well as high pin count quad flat packages (QFP) and plastic leaded chip carriers (PLCC).

Mitsubishi is committed to supporting your ASIC needs with CAD/CAE design tools to help you develop designs fast. For maximum flexibility, you can design on Mitsubishi's workstations or your own. Remote access to Mitsubishi's proprietary mainframe CAD system allows design verification on any terminal with telephone access.

Mitsubishi's design centers, located in Sunnyvale, CA and Durham, NC, are networked with Regional Technical Centers and a gate array engineering support staff ready to assist in all phases of design.

Mitsubishi Electronics America, Inc. The solid foundation for all your ASIC needs.

THE REPORT

PACKAGING:

Mitsubishi offers a broad range of industry-standard and proprietary packaging options. A leadership foundation in high pin count surface-mount packages includes quad flat packages (QFP), now available with up to 160 leads. For throughhole technology, Mitsubishi provides a cost-effective alternative to ceramic PGAs by mounting QFPs on a PC board adaptor (MPGA).

PROCESS:

Low power, $1.3\mu m$, double metal CMOS technology is available today, with submicron levels on the way. Mitsubishi's patented* gate isolation structure provides 10% to 20% faster performance, with a 15% to 25% higher gate density than conventional oxide isolation. *U.S. Patent No. 4,562,453

MANUFACTURING **COMMITMENT:**

Mitsubishi is committed to continued advancements in ASIC technology, quality and production capacity. Typical time from design to prototype is three to five weeks. Prototype approval to production is eight to ten weeks.

DESIGN SUPPORT:

At your workstation or Mitsubishi Design Centers, use industry-standard, advanced CAE tools with Mitsubishi's mainframe CAD system. Or, let Mitsubishi integrate your design.

SERVICE:

MITSUBISHI

Mitsubishi offers design and applications support at centers in Sunnyvale, CA; Durham, NC and Regional Technical Centers.

Quality through commitment.

For further information, call or write Mitsubishi Electronics America, Inc., Semiconductor Division, 1050 E. Arques Avenue, Sunnyvale, CA 94086, (408) 730-5900.

Semiconductor Division, 1050 E. Arques Avenue, Sunnyvale, CA 94086, 4(98) 730-5900.
 US,/CANADIAN REGIONAL SALES OFFICES AND TECHNICAL CENTERS: NW: Sumnyvale, CA (498) 730-5900, SW: Torrance, CA (213) 55-3993, N: Minnetonka, MN (612) 938-7779, NC: Mt. Prospect, IL (312) 298-9223, SC: Carrollton, TX (214) 484-1919, NE: Woburn, MA (617) 938-1220, MA: Hackensack, NJ (201) 488-1001, SA: Norcross, CA (404) 662-0813, SE: Boca Raton, FL (305) 487.7747, Canada: St. Laurent, Quebec (514) 337-6046.
 US,/CANADIAN AUTHORIZED SALES REPS: AL: Beacon Elect. (205) 881-631, AR: OM Assoc. (214) 60-6746, AZ: SMS & Assoc. (202) 908-831, CA: Pathfinder Elect. (619) 578-2555, QCI (408) 432-1070, SC Cubed (805) 496-7307, SC Cubed (714) 731-9206, CO: Simpson Assoc. (305) 997-5740, (813) 796-2378, (305) 332-1940, GA: Beacon Elect. (404) 256-9640, Beacon Adv. Comp. (404) 662-8190, IA: Mid-Tec Assoc. (314) 275-8666, Di Es: (A29, 2840, IL: Phase II Mktg, (312) 303-5092, IN: Carter, McCormick & Pierce (317) 244-1685, KS: Mid-Tec Assoc. (913) 544-0505, KY: Makin Assoc. (514) 691-6746, MA: Comp Rep Assoc. (617) 329-3454, MD: Trinkle Sales

(609) 795.4200, ME: Comp Rep Assoc. (617) 329.3454, MI: Carter, McCormick & Pierce (313) 477.700, MN: Gibb Elect. (612) 935.4600, MO: Mid-Tec Assoc. (314) 275.8666, MT: Simpson Assoc. (801) 566-3691, NC/SC: Baccon Elect. (919) 787.4330, ND/SD: Gibb Elect. (612) 935.4600, NE: Mid-Tec Assoc. (913) 541.0505, NH: Comp Rep Assoc. (617) 329.3454, NJ: Trinkle Sales (600) 795.4200, Nin-Cor Elect. (516) 627.9474, NM: SMS & Assoc. (602) 998-0831, NV (Northern & Central): QCI (408) 432-1070, NV (Southern): SMS & Assoc. (602) 998-0831, NV (Northern & Central): QCI (408) 432-1070, NV (Southern): SMS & Assoc. (602) 998-0831, NV (Northern & Central): QCI (408) 432-1070, NV (Southern): SMS & Assoc. (602) 998-0831, NV (Northern & Central): QCI (408) 432-1070, NV (Southern): SMS & Assoc. (613) 871-2424, (614) 848-5424, (216) 248-57370, OK: OM Assoc. (214) 690-6746, OR: ES/Chase (503) 292-8840, PA: Trinkle Sales (609) 795-4200, PUERTO RICO: Beacon Elect. (800) 726-5040, R1: Comp Rep Assoc. (617) 329-3454, TN: Beacon Elect. (404) 256-9640, (205) 881-5031, TX: OM Assoc. (512) 388-1151, (713) 789-4426, (214) 690-6746, SMS & Assoc. (617) 329-3454, VA: Trinkle Sales (609) 795-4200, WA: ES/Chase (206) 823-9335, WI: Gibb Elect. (612) 935-4600, Phase II Mkrg (312) 303-5902, WV: Trinkle Sales (607) 795-4200, WY: Simpson Assoc. (801) 566-3691, VT: Comp Rep Assoc. (617) 329-3454, VA: Trinkle Sales (609) 795-4200, WA: ES/Chase (206) 823-9335, WI: Gibb Elect. (612) 935-4600, Phase II Mkrg (312) 303-5902, WV: Trinkle Sales (607) 755-4200, WY: Simpson Assoc. (801) 566-3691, CANADA: Tech Rep Elect. (416) 890-2903, (613) 225-9186, (514) 337-6046, (604) 254-2004, (604) 432-1788

two methods. Some arrays restrict macro placement so that the macro wiring ports do not fall under the power lines, but this approach lowers utilization. Alternatively, cells can be designed with more than one contact location, called "antennas," for each signal port in the macro, but they introduce additional wiring congestion.

The alternative to both methods is to use a flexible power distribution scheme, as advocated by VLSI Technology. This approach is desirable, but it presents a far greater burden on the CAD software, and most current routing systems are not up to the task.

GLOBAL SIGNALS

Heavily loaded paths (clocks and global signals such as resets) are handled in various manners. Hughes, for example, recommends the use of the output driver in an 1/0 buffer to drive such critical signals into the chip core. This approach yields a high fan-out capability, but the signal source is on the edge of the array, resulting in more clock skew between one side of the array and the other. Balanced clock trees are therefore preferable if more than 20,000 gates are used. On the other hand, tree balancing can use up an appreciable number of gates and is not simple.

LAYOUT

As array size grows beyond about 20,000 gates, further problems are thus imposed on the layout software by the increasingly complex power distribution and critical path constraints. Indeed, as Dan Skilken, product marketing manager, ASIC strategic marketing, at VLSI Technology, says, "The array architecture is built around the router, and not the other way around."

The routing software used for high-density arrays is under continual development by all parties involved and cannot be fairly evaluated by benchmarks. Only three third-party CAD suppliers (Descartes Automation, Silvar-Lisco, and Tangent Systems) are supplying solutions for TLM and channelless arrays.

Descartes Automation is not selling a product but rather advocating a design philosophy and customizing tools in terms of it. "Treating layout software as a standard product does not make sense, because each array has its own characteristics," says Antek Szepieniec, the company's executive vice president. Descartes's experience is that flattened designs lay out better than hierarchical designs. "It is not always the case that hierarchy coming either from the netlist or from min cuts actually groups critical paths together. On the other hand, logical clustering or min cut is difficult to outsmart!" Szepieniec says.

To overcome this problem, placement and routing should take place concurrently. "While performing a placement using an arbitrary partitioning scheme with seeded critical elements, we manipulate the global routing data for wires that cross the partition. This information helps the evaluation of final performance, and if critical lengths are likely to be exceeded, we can reroute these nets at the global level," he explains.

Each block, as it and the routing within it are defined at the global level, is then fully placed and routed. The resulting postlayout wiring delay data for each completed block are then used to create more accurate delay estimates for the remaining design. According to Descartes' experience, this incremental process is very efficient.

Silvar-Lisco is selling a product that uses hierarchy for initial placement. Routing, however, is a back-end process, rather than integrated into the early stages of detailed placement; a conventional min-cut algorithm is used to define the blocks. Critical paths are not confined within block boundaries and so additional placement processing must be performed.

In Silvar-Lisco's scheme, overlapping partitions are used to optimize the placement of critical gates after initial min-cut partitioning. With overlapping partitions, gates placed within the overlap can move anywhere into a neighboring block. Critical gates can therefore move to their optimal position and are not constrained to the block in which they are first placed. Silvar-Lisco's approach can handle up to about 75,000 utilized gates. SGS-Thomson and Digital Equipment use the Silvar-Lisco tools.

Tangent Systems aims to provide a totally automatic solution and 100% routing completion. Placement can be flat, or hierarchy can be used, with "fuzzy" blocks resulting(block size and shape can be changed after initial placement, and functional density within the block can be specified by the system to permit more or less throughblock routing as needed). Unlike the case with all other systems, the routing algorithm is not a channel router; instead, it sees "obstructions" in the Manhattan path (a connection with only one corner) and finds the best route around them. Obstructions may comprise existing or predicted routing congestion, as well as elements that are already placed.

The router is also loaded with additional features, such as smart power routing and automatic clock-tree balancing. If power grids are used, they can be automatically altered in type, depending on whether the grid runs over irregular logic or over a modular function such as RAM or ROM. Individual power wires can also be widened automatically when there is no signal wire obstruction.

The automatic clock-tree balancing ensures that the loads are even on each side of the the clock tree by dynamically adding gates during routing.

Tangent's software is being used by, among others, Motorola, S-MOS, and Toshiba. Its present maximum capacity is a quarter of a million gates.

STRUCTURED GATE ARRAYS

Before sea-of-gates arrays acquired their viselike grip on the semicustom market, a number of manufacturers introduced arrays that put a fixed block of memory, a certain-sized multiplier, or a small microcontoller core on the edge of a channelled gate array. This approach, pioneered by IBM and marketed first by LSI Logic as structured gate arrays, can yield greater density improvements for the highly regular functions than sea-of-gates arrays, and the embedded hard macros can be customized for speed.

However, the user is committed to the actual function sizes that are supplied. If anything other than the supplied function size is required, such arrays actually waste space for a small performance improvement. As a result, they

We're eliminating the competition with something everyone else seems to have forgotten you need...

...the maximum performa

Plessey - Unsurpassed Process Technology

As system design becomes more and more challenging, and product life cycles become increasingly shorter, design flexibility and getting it right the first time have become critical factors in gaining and maintaining that maximum performance edge you've been looking for.

Plessey's investment in advanced process technology is unequaled in the industry. Successive reductions in feature size and continued improvement in process techniques are at the heart of leading-edge Plessey products.

PLESSEY and the Plessey symbol are trademarks of the Plessey Company, PLC.

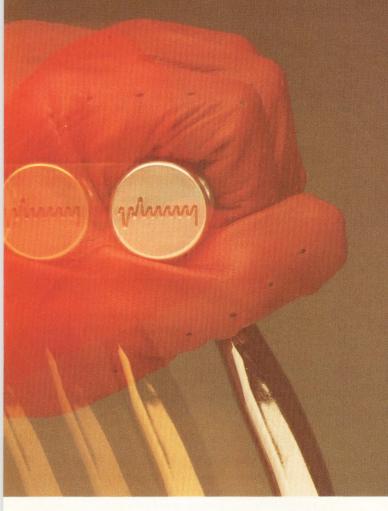
Plessey - The Ultimate in ASIC Technology

Our broad range of ASIC products has grown to the point where we are now able to meet all the needs of ASIC users. We offer a full ASIC product range with a variety of options for digital, analog and mixed analog/digital applications, in gate arrays, standard cells, and full-custom. Advanced, stateof-the-art processes in fine geometry, high-density CMOS, bipolar and ECL technologies give you the highest levels of performance and system integration available today.

Plessey - Unparalleled CAD Support

The Plessey Design System (PDS) is a comprehensive suite of software em-

bracing the design, simulation and implementation of gate arrays, standard cell and compiled ASICs in CMOS and bipolar technologies.


Customers who want to use their own CAD workstations or simulators are accommodated by flexible design interfaces at various stages into PDS.

Plessey - Standard Products And Discrete Components

Plessey's standard product family offers the highest performance product range available in the world today. Capabilities range from CMOS DSP devices operating in excess of 20MHz to the world's most advanced 1.3GHz monolithic log amplifier.

High performance solutions are also offered in radio communications, digital

ce that gives you the edge.

PLESSEY KEY PROCESS TECHNOLOGY

	BI	POLAR					
DESCRIPTION		Ft	EMIT		METAL LAYERS		
Industry standar	d	400MHz	14µ	m	1		
High voltage		400MHz	20µm		1		
High speed linea	igh speed linear		4µm		2		
High speed digit	ligh speed digital		3µm		2		
Ultra-high speed		14GHz	0.6µm		3		
		MOS					
PROCESS FAMILY		fCLOCK	MINIMUM FEATURE		VSUPPLY		
KC Industry standard CMOS		20MHz	4µm		3-10V		
JG Double SiGate NMOS		10MHz	6µm		9-18V		
VB High speed CMOS		40MHz	2µm		3-5V		
VJ Very fast CMOS		50MHz	1.5µm		3-5V		
VQ Ultra fast CMOS		75MHz	1.2µm		3-5V		
MH/MA SiGate CMOS		30MHz	4µm		3-15V		
BIPOLAR (CDI)							
PROCESS	EMITTER WIDTH/ FEATURE SIZE	GRID PITCH	MAX. SPEED	MAX. POWER	MIN. POWER		
ORIGINAL CDI	5µm						
CDI FAB I	3.75µm	11.5µm	10ns	2.4pJ	1.5pJ		
CDI FAB IIa	2.5µm	8µm	4ns	1.2pJ	0.8pJ		
Geometry change (utilizing multi-level differential logic-DML)							
CDI FAB IIb	2.5µm	8µm	800ps	0.8pJ	0.54pJ		
CDI FAB III	1.5µm	6µm	400ps	0.4pJ	0.27pJ		
CDI FAB IV	1.2µm	4.5µm	200ps	0.2pJ	0.14pJ		
			STATISTICS SALE				

frequency synthesis, data conversion, telecommunications, data communications and consumer products.

Complementing the standard IC family, Plessey manufactures a complete line of discrete components including FETs, transistors and diodes available in SOT-23 and TO-92 packages.

Plessey - Over Two Decades Of Quality Commitment

For more than 20 years, Plessey Semiconductors has been commited to supplying the latest technology, highest quality, and highest performance semiconductor products in the industry. With our unique combination of CAD support, major advances in process technology, and the most advanced research facility in the world, Plessey Semiconductors is, today, a totally commited leader in the industry.

To learn more on how Plessey can help you achieve the maximum performance that gives you the edge, send for our new comprehensive, full color, 72-page short form brochure, or call Plessey Semiconductors today.

In North America call 1-800-441-5665. Outside North America call 44-793-726666. For further information you can write to us at one of the following addresses:

Plessey Semiconductors 1500 Green Hills Road Scotts Valley, CA 95066 U.S.A.

Plessey Semiconductors Ltd. Cheney Manor, Swindon Wiltshire SN2 2QW United Kingdom

have largely fallen out of favor.

However, with the continuing progression in memory density, structured arrays could be on the way back. An unusual chip from Toshiba integrates a sea-of-gates array with high-density DRAM (Sawada et al., 1988). The chip clocks in with about 30,000 gates available for logic and a whole megabit of 60-ns DRAM. This capacity is two orders of magnitude more memory than offered by any previous structured array and a lot of gates!

To use this phenomenal fusion of function, not more than about 5,000 gates and 32 output drivers can switch at once. As long as these limits are not exceeded, the chip is reported to be fully hardened against noise disturbance.

The combination of sea-of-gates arrays with various high-density memory functions may in fact lead to specialized chips appearing for graphics control, BITBLT processing, cache and memory management, and digital signal processing.

THE FUTURE?

We can expect further improvements in density and the adoption of sea-of-gates techniques in other technologies besides CMOS. LSI Logic has now presented technical data on the first bicMOS sea-of-gates array, which may be available for prototyping over the next six months (A. Wong et al., 1988). The array will support up to 123,000 gates and departs from the fully integrated bicMOS array used by Applied Micro Circuits Corp. (Lin and Spehn, 1987). Instead, bipolar drivers are lined up on one edge of the array and used to drive high-fan-out signals into the pure CMOS core. This setup permits adoption of the buffer clock driver technique advocated by Hughes, with less clock skew. At the same time, cells developed for the company's established sea-of-gates arrays can be directly used in the identical CMOS core.

Bicmos is an important step in part because it permits the integration of analog circuitry with sea-of-gates architectures. Analog circuitry could be used for on-chip power regulation to reduce the switching noise problem. As a result, the arrays could use a lower power supply (perhaps 2.5 or 3 v), which would lower the current density in the metal interconnections, reduce migration effects, and permit the use of submicron-wide wires in planarized DLM processes.

AMCC, which introduced bicmos channeled arrays last year, is now developing the first sea-of-gates bipolar array (Coy, Mai, and Yuen, 1988). The chip is being produced using Plessey's HE1 process. Bipolar transistors are more difficult to embed in a sea-of-gates architecture, particularly because of the larger amount of wiring space that must be used to distribute power. Furthermore, the reduction in chip size made possible with sea-of-gates architectures has less impact on performance and predictability for bipolar than for CMOS technology, because wire lengths are less critical. Thus AMCC's movement to a sea of gates for bipolar arrays may be an indication that layout techniques for these chips are generally superior to those offered for traditional channeled approaches, even if only for the savings in chip real estate.

CONCLUSIONS

The advent of high-density arrays heralds the increased feasibility of gate arrays in many applications where before only hand-crafted or standard-cell designs were viable. Of course, triple-level metal and sea-of-gates layout will before long be applied to cell-based design; the implications of those developments are left to future articles.

Acknowledgments

I would like to thank all the individuals who helped me in writing this article, and in particular Richard Blumberg, director of semicustom CAD at SGS-Thomson; John Carey, merchandising manager for Motorola's ASIC Division; Kerry Pierce, portable library design manager at VLSI Technology; and Terry Smith, president of Tangent Systems.

References

- Blumberg, R., and C. Waggoner. February 1988. "Aluminum Screen Gives Superior Power Distribution in a Sea-of-Gates Array," VLSI Systems Design.
- Coy, B.; A. Mai; and R. Yuen. 1988. "A 13,000 Gate 3 Layer Metal Bipolar Gate Array," *Proceedings of the 1988 IEEE Custom Integrated Circuits Conference.*
- Gulett, Michael R. January 1985. "Dual-Metal CMOS for Semicustom or Custom Designs," VLSI Design.
- Hsu, C. P., et al. 1986. "Automatic Layout of Channelless Gate Array," *Proceedings of the 1986 Custom Integrated Circuits Conference.*
- Lin, L.T., and Richard Spehn. 1987. "A BicMos Gate Array Family," VLSI Systems Design's Semicustom Design Guide.
- Lipp, R. 1983. "Advanced Architecture (Channelless) Dual Layer Metal CMOS Gate Array," *Proceedings of the 1983 IEEE Custom Integrated Circuits Conference.*
- Sawada, K., et al. 1988. "A 72k cmos Channelless Gate Array with Embedded 1-mbit Dynamic RAM," *Proceedings of the 1988 IEEE Custom Integrated Circuits Conference.*
- Takahashi, H., et al. 1985. "A 240k Transistor CMOS Array with Flexible Allocation of Memory and Channels," *Proceedings of the 1985 IEEE Solid-State Circuits Conference.*
- Wong, A., et al. 1988. "A High-Density Bicmos Direct Drive Array," Proceedings of the 1988 Custom Integrated Circuits Conference.
- Wong, T., et al. 1986. "A High Performance 129k Gate CMOS Array," Proceedings of the 1986 IEEE Custom Integrated Circuits Conference.

About the Author

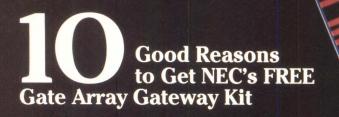
Ernest Meyer is a free-lance writer and editorial consultant, as well as a contributing writer and columnist for *SupercomputingReview* and *Embedded SystemsProgramming*. Previously, he was an editor at *VLSI Systems Design*. He has worked on the design of various electronic systems, including an Apple-compatible microcomputer and a music synthesizer.

Cadnetix. The Difference **Ketween** Vorking ASICs and Reworking

Nothing costs more than a missed opportunity.

That's why you can't afford to spend time reworking ASICs that work only until you put them into your system.

Cadnetix's comprehensive set of tools for design, simulation and test minimizes ASIC rework by letting you thoroughly analyze how your ASIC will perform in your system. Before it becomes part of your system.


You can include your ASIC design in a system level simulation or actually use a physical prototype. And with ASIC complexity on the increase,

Cadnetix offers guaranteed testability. Our advanced automatic test generation tool, INTELLIGEN, delivers extremely high fault coverage on all of your designs. While only using a fraction of the overhead circuitry required by full scan methods.

So if you need to design working ASICs, look to Cadnetix's open EDA environment. Before you know it, you'll be working on your next ASIC. Instead of reworking the

last one.

Boulder, CO (303)444-8075 INTELLIGEN is a trademark of HHB Systems, Inc., a subsidiary of Cadnetix Corporation.

NEC

NEC's FREE Design Kit is Your Gate Array Gateway to

- 1. CMOS, BiCMOS, and ECL technologies.
- 2. Valid, Sun, Mentor, Daisy, HP 9000, FutureNet, Calma TEGAS V, and HILO compatibility.
- **3.** A powerful block library with more than 170 macros, including analog, peripheral, and megamacro functions.
- 4. Cell utilization rates of 95% over a range of 800 to 45,000 gates.
- 5. Better than 95% first-time success with engineering prototypes.
- 6. The most experienced manufacturing capability.
- 7. The widest choice of through-hole and surface-mount packages.
- 8. The most effective way to lower your system costs.
- **9.** Local design support with local FAEs and design centers backed by a satellite network of computers for worldwide communications services.
- **10.** The easiest translation of your ideas into silicon.

NEC Electronics Inc. 401 Ellis Street, P.O. Box 7241 Mountain View, CA 94039

Our gate arrays are your gateway to higher system performance. Call **1-800-632-3531** to browse through our block library. FREE!

©Copyright 1988 by NEC Electronics Inc.

Valid is a trademark of Valid Logic Systems Inc. Daisy is a trademark of Daisy Systems Corp. HILO is a trademark of GenRad Inc. FutureNet is a registered trademark of FutureNet, a Data I/O Company Tegas V is a registered trademark of GE Calma.

.....

NEC

HIGH-SPEED GATE ARRAYS: CONSIDERING THE OPTIONS

Ron Cates, Vitesse Semiconductor Corp., Camarillo, Calif.

igh power dissipation has traditionally been part and parcel of every fast-clocking system, and in many cases it sets the upper bound on the practical density of an integrated circuit. For ICS clocked at less than 50MHz, CMOS is the obvious choice. It offers an unparalleled combination of circuit complexity and low power dissipation. Digital circuits that operate beyond 50 MHz, however, are needed for many applications—high-performance workstations and computers, telecommunications, and automated test equipment, to name a few. CMOS just does not have the performance for such settings.

Typically, designers turn to bipolar ECL circuits when higher performance is essential. Recently, though, system designers have been given aviable alternative technology for high-speed digital circuits—enhancement/depletion-mode gallium aresenide, or E/D GaAs.

Gate arrays have become a dominant approach to implementing high-performance systems. They offer an opportunity to create a custom component that can meet performance criteria and that involves a minimum of design time and risk. Advanced software tools, usually running on engineering workstations, make it possible to enter the schematic and accurately simulate logic and timing before committing to silicon.

DIFFERENT TOPOLOGIES

To understand the differences between ECL silicon and E/DGaAs, it is useful to review the basic circuit topologies of each. Central to the operation of a typical ECL NOR gate (Figure 1) is the main differential pair (Q_1 and Q_2). V_{REFA} is set at a voltage halfway between a valid logic high and logic low. When digital signals arrive at the base of Q_2 or Q_3 , the active device in the differential pair switches state, resulting in a change of voltage across the load resistor (R). Emitter-follower Q_4 shifts the level of that voltage change and buffers it. Q_5 and Q_6 , along with their corresponding resistors, act as active current sinks.

The majority of the current consumed by an ECL gate passes through the emitter-follower to drive the interconnect capacitance. To reduce power consumption, advanced ECL gate arrays use a special power supply to supply power to the emitter-followers. Since $V_{\rm EF}$ is typically set at -3.3 v, this approach saves power when compared with

gate arrays that tie the emitter-followers to $V_{\rm EE},$ which is set at $-5.2\,v.$

The simple ECL NOR gate requires six transistors and three resistors, as well as several voltage references that set currents or provide the reference voltage to the differential pair. Typically, these reference generators are shared among several gates. Unfortunately, the metal buses that distribute the reference voltages can increase the size of

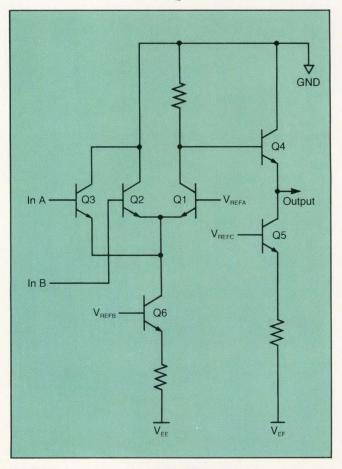


FIGURE 1. A typical two-input ECL NOR gate requires six transistors, three resistors, and several voltage references.

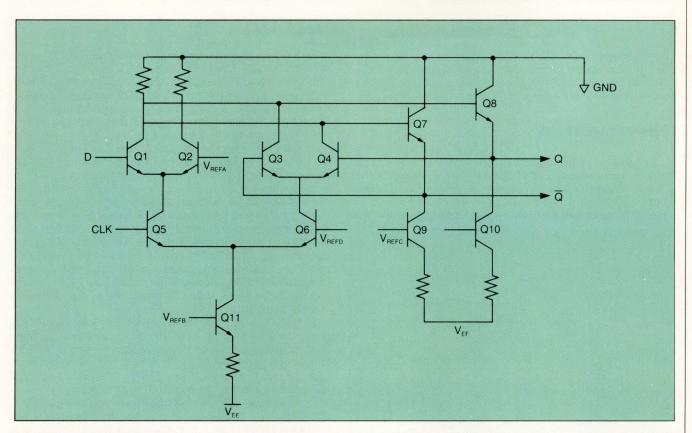
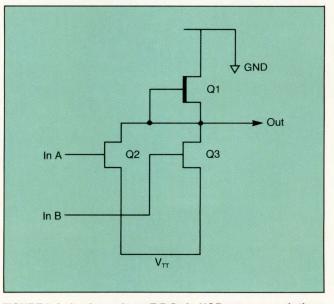
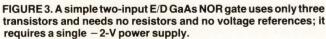


FIGURE 2. Adding "clocking pair" (Q_5 and Q_6) and a "latching pair" (Q_3 and Q_4) to the circuit shown in Figure 1 creates a data latch. Cascading two of these structures results in a D-type edge-triggered flip-flop.


the gate and consume routing resources.


Although the ECL gate looks complex, slight modifications to the basic structure make it configurable to a variety of logic primitives. A data latch is created (Figure 2) by adding a clocking differential pair (Q_5 and Q_6) and a regenerative pair (Q_3 and Q_4). When the clock is high, the input transistor pair amplifies the data input; when the clock is low, the regenerative pair is active, latching the data through feedback from the outputs. Other structures that are similar to this latch use the regenerative transistor pair for logic inputs and capitalize on the vertical gating structure to implement such functions as a 2:1 multiplexer or an exclusive-OR gate. Cascading two latches and cross-wiring the clock inputs creates an edge-triggered D flip-flop.

When compared with the ECL structure, the E/D GaAs gate is very simple. A two-input NOR gate (Figure 3) uses only three transistors and needs no resistors. It uses a depletion-type MESFET (Q_1) as an active-load pull-up device and two enhancement-type MESFETs (Q_2 and Q_3) as pull-down switches. The GaAs gate operates identically to equivalent silicon NMOS structures. Q_2 and Q_3 are large enough so that if one or the other is on, or if both are on, it or they can sink all of the current from Q_1 and provide a small V_{vDS} for a logic-low output. When both enhancement transistors are off, the pull-up current is forced into the forward-biased gate-source junction of the driven gate, providing a logic high.

In the E/D GaAs configuration presented here, the power

dissipation of the gate is independent of the logic state that it is in. Because the current on the power supply buses is constant, self-generated noise on the signal and internal

power buses is virtually eliminated, reducing the need for artificially large noise margins. Reduced voltage swings—such as the 500 mV for E/D GaAs—also simplify high-speed switching and reduce current-drive requirements.

DRIVING CAPACITANCE

Regardless of the material from which they are made, bipolar transistors have a higher transconductance than FETS. As a result, ECL circuits drive long capacitive lines fairly well, exhibiting 50 to 60 ps of delay for every millimeter of interconnect. Driving long capacitive lines with

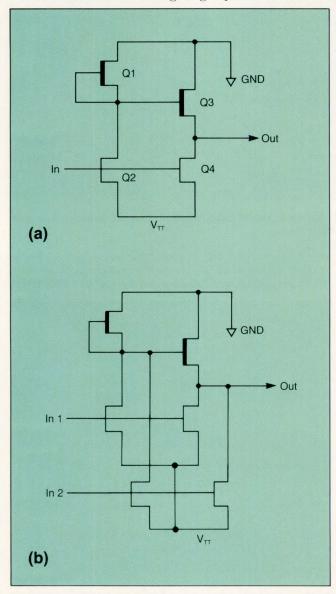


FIGURE 4. An E/D buffer with a push-pull stage (a) can drive a millimeter of wire in 50 ps. Adding a set of pull-down devices converts the buffer into a NOR gate (b).

some E/D GaAs circuits, however, is inefficient because the pull-down transistors grow in proportion to the size of the pull-up driver and, therefore, may not provide an adequate capacitive buffering ratio (the ratio of the capacitance of the driven load to the input capacitance of the buffer). If the ratio is too low, the buffer itself introduces excessive capacitance on the input signal.

A buffer skirts this limitation (Figure 4a). The push-pull operation of its output stage enhances its ability to drive capacitive loads by placing a positive bias on the gate of the output pull-up transistor. The pull-down transistor doesn't have to be made larger in order to sink the extra current of the pull-up transistor, because the pull-up transistor's current is enhanced only when the input voltage is low. When the input is high, the gate and source of Q_3 are at the same potential, so that the transistor has a lower current drive. The buffer is capable of driving a millimeter of metal in 50 ps. Logic operations can be incorporated into the buffer by providing additional sets of pull-down devices (Figure 4b).

E/D GaAs is similar to NMOS in that flip-flop circuits are created with NOR gates. Consider two posssible D flip-flops (Figure 5): one would be a typical edge-triggered version; the second uses differential clocks to reduce both set-up and propagation-delay times. Both rely on cross-coupled NOR gates to achieve the basic latching function.

In general, simple digital functions such as logic gates, registers, and multiplexers can be implemented in E/D GaAs with fewer transistors than they would need in ECL. As shown, a flip-flop requires 19 transistors in E/D GaAs but 22 transistors and 10 resistors in an ECL implementation. As a result, much less real estate is required to implement a given function in E/D GaAs. Since they don't require area-consuming resistors, E/D GaAs circuits can achieve densities equivalent to NMOS circuits. A two-input NOR gate, for example, occupies only 100 μ m².

This density has strong implications for gate arrays. E/D GaAs arrays occupy about one half the area of ECL arrays of equivalent compexity. Metal routes, therefore, are shorter for E/D gate arrays: statistical analysis on automatically routed arrays shows an average route length of 0.3 mm per fan-out load in an E/D GaAs array (from Vitesse's design manual), much shorter than the 0.8 mm per fan-out load in an ECL device (according to Raytheon's ECL Family Design Manual).

POWER CONCERNS

No discussion of high-performance circuits would be complete without a careful consideration of power dissipation. High power dissipation has traditionally been associated with every fast-clocking system and, in many cases, it limits the density of an integrated circuit.

ECL circuits have dramatically improved their power dissipation for a given function over the levels of early SSI devices. Today, typicalECL gate power falls between 1 and 4 mW, depending on the speed option that the designer selects. Even at such low values, new 10,000- and 12,000gate ECL arrays can dissipate as much as 30 w when their

ARRAY FOR BicNOS

180 MHz with low power.

It's cause for celebration. AMCC extends its lead as the high performance/low power semicustom leader with three exciting, new BiCMOS logic

arrays that optimize performance where today's designs need it most. In throughput (up to three times faster than 1.5µ CMOS).

Today, system designers look at speed, power and density. For

Q14000 SERIES						
	Q2100B	Q9100B	Q14000B			
Equivalent Gates	2160	9072	13440			
Gate Delay* (ns)	.7	.7	.7			
Maximum I/O Frequency (MHz)	180	180	180			
Utilization	95%	95%	95%			
Power Dissipation (W)	1.8	4.0	4.4			
I/O	80	160	226			
Temperature Range	COM, MIL	COM, MIL	COM, MIL			
*(2 loads, 2 mm of	†Available soon					

good reasons. As CMOS gate arrays become larger and faster, designers can't meet their critical paths due to fanout and interconnect delay. As Bipolar arrays become larger and faster, power consumption becomes unmanageable. So AMCC designed a BiCMOS logic array family that merges the advantages of CMOS's low power and higher densities with the high speed and drive capability of advanced Bipolar technology. Without the disadvantages of either.

Our new Q14000 BiCMOS arrays fill the speed/power/ density gap between Bipolar and CMOS arrays. With high speed. Low power dissipation. And, mixed ECL/TTL I/O compatibility, (something CMOS arrays can't offer).

For more information on our new BiCMOS logic arrays, in the U.S., call toll free (800) 262-8830. In Europe, call AMCC (U.K.) 44-256-468186. Or,

contact us about obtaining one of our useful evaluation kits. Applied MicroCircuits Corporation, 6195 Lusk Blvd., San Diego, CA 92121. (619) 450-9333.

resources are fully used. Some ECL arrays have low-power options that drop the total power of a 10,000-gate device to less than 10 w by reducing performance. The designer must be careful to ensure that these devices still meet speed requirements.

The primary improvement that E/D GaAs technology brings to the high-performance market is reduced power dissipation. By operating from a single -2-v power supply, E/D GaAs can offer performance comparable to that of ECL circuits while consuming one fourth the power. For example, the VSC4500 gate array from Vitesse Semiconductor (Figure 6) can integrate as many as 4,000 NOR gates and has a typical power dissipation of only 1.5 w.

E/D GaAs and ECL silicon circuits have very similar speed parameters. Typical gate delays for both technologies are

on the order of 200 ps, and flip-flop delays, from clock input to data output, are approximately 700 ps for lightly loaded outputs. Exercising high-power options on an ECL array can result in higher performance than that possible with an E/D GaAs array, but these options can increase power consumption to the point where the device becomes unsuitable for air- or conduction-cooled systems. GaAs has an analogous technology—D-mode MESFET—that trades low power consumption for operating frequencies in excess of 3 GHz.

 $\rm E/D~GaAs~has~a~slight~edge~over~ECL~silicon~in~terms~of~the~bandwidth~of~l/O~buffers. Typical ECL devices have 1/O bandwidths of approximately 600 MHz, whereas E/D GaAs devices can reach 1 GHz. This bandwidth is achievable despite the fact that the E/D GaAs devices use non-ECL logic$

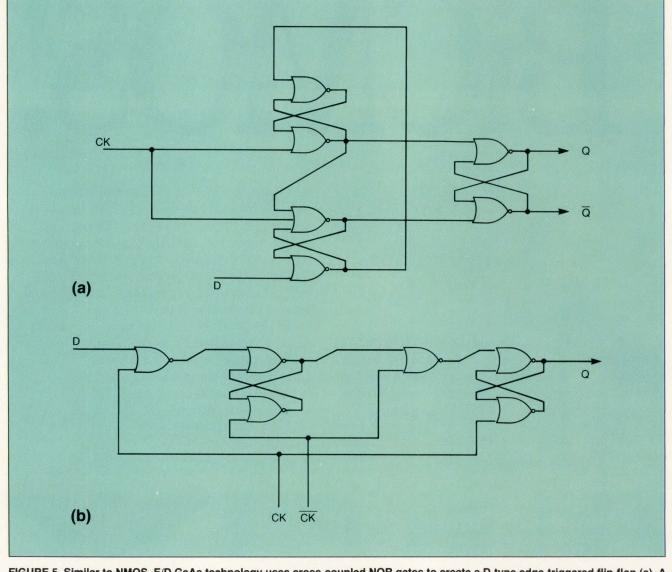


FIGURE 5. Similar to NMOS, E/D GaAs technology uses cross-coupled NOR gates to create a D-type edge-triggered flip-flop (a). A version that uses a differential clock signal (b) has better setup and delay propagation characteristics.

levels internally that must be translated into ECL levels (and vice versa) at the 1/0 circuits. Higher bandwidths are possible for GaAs if those internal logic levels could be extended between GaAs devices. No standards have been set for GaAs logic levels, however, so that E/D GaAs arrays are built to be compatible with ECL signal levels. The availability of E/D GaAs devices that communicate with GaAs logic levels is likely to occur within a year.

PACKAGING

Packaging technology has evolved to keep up with the requirements of high-performance gate arrays. The typical package, whether it houses a GaAs or an ECL device, is usually a multilayer ceramic package with transmission line interconnects and ground and power planes. The transmission lines serve to maintain an environment free of discontinuities from the chip pads to the package pins. The ground and power planes in the package minimize the inductance of the power distribution system and reduce transients that are caused by switching outputs. The packages are usually available in either a pin-grid array (PGA) or leaded chip carrier (LDCC).

Heat removal is critical to the proper operation of ECL devices. Package thermal resistance ranges between 1° C and 5° C per watt dissipated by the device. For chips dissipating in excess of 20 w, liquid cooling may be needed to maintain junction temperatures in operational ranges. For devices dissipating less power, a heat sink with hundreds of linear feet per minute of air cooling is adequate.

E/D GaAs devices require less severe cooling measures

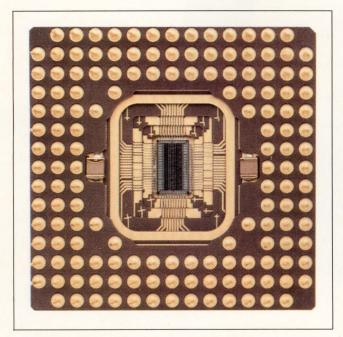


FIGURE 6. The low power and small cell size of E/D GaAs makes possible this 4,000-gate array, Vitesse's VSC4500.

because they dissipate much less power. A typical 4,000gate chip can usually operate without a heat sink if it resides in a ceramic package with a built-in copper heat spreader.

In terms of cost, E/D GaAs arrays compete head to head with ECL devices. Although GaAs wafers are more expensive than silicon ones, MESFET technology requires substantially fewer fabrication steps than bipolar ECL technology, primarily because MESFETS are planar devices whereas ECL uses more complex vertical device structures. The E/D GaAs process contains only nine masks, even though both enhancement and depletion transistors are produced; one industry-standard ECL process uses 24 mask steps. Because most major processing steps and materials are identical to those used in silicon MOS processing, fabrication errors should not be a substantial source of yield limitations. GaAs wafer defect density still lags behind that of silicon, but excellent progress has been made in the past year. As demonstrated by existing products chips with between 4,000 and 6,000 gates can be fabricated with acceptable yields. We project that in two years chips with between 10,000 and 20,000 gates will be commercially viable.

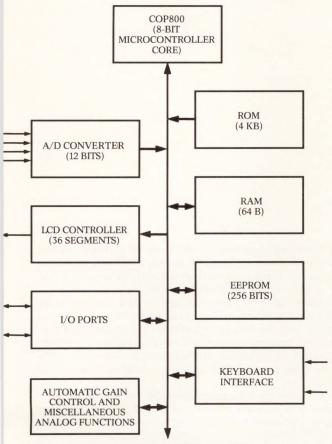
DESIGN GUIDELINES

In the design of a gate array for high-speed synchronous systems, clock distribution is particularly critical. The designer must ensure that all clock signals arrive within specified limits; designs with intentional race conditions are discouraged. The designer should also examine backannotated layout parasitics to determine the actual differences in clock route lengths and corresponding signal delays.

Maintaining clock duty cycles is particulary important in E/D GaAs arrays because their logic structures produce signal rise times that are slower than the fall times. "Pulse swallowing" can become a concern for high-speed clock signals that have short high-level or low-level durations. Alternating inverting buffers can help to cancel the magnitude of pulse distortion effects. Pulse distortion is also a concern within ECL arrays, although rise and fall time differences are less pronounced in those devices.

Manual placement of logic macros is recommended for all critical paths in a high-speed device. Hand placement seems to have a more pronounced effect on performance than hand routing. Several ECL and GaAs vendors provide their customers with software that allows them to place a portion of an array manually and thereby minimize interconnect parasitics in critical paths.

ABOUT THE AUTHOR


Ron Cates is the technical marketing manager for Vitesse Semiconductor, where he is responsible for strategic product planning and runs the company's applications engineering department. He also has served as a section manager at TRW's Electronic Systems Group and as a designer at Hughes Aircraft. He holds Bs and Ms degrees in electrical engineering from the University of California at Los Angeles.

E²/DIGITAL/ANALOG. COMBINATION Y

THE TECHNOLOGY OU CAN BANK ON.

To be perfectly honest, we didn't invent the concept that says high integration equals high profit. But as you can see from the application diagram on this page, we definitely perfected it. With our Triple Technology,[™] a process that allows you to combine E², digital, and analog functions on the same chip. And, create higher levels

Single chip measurement and control system, integrating several EEPROM, analog, and digital functions. of integration than ever before.

In this case, our customer's last product was a medical instrument the size of a paperback, with 70 different components. By combining a sophisticated 8-bit controller, RAM, ROM, A/D converter, and 256 bytes of EEPROM on the same chip, we helped them shrink the same instrument to the size of a matchbox. And cut the costs just as dramatically.

As a result, they have a product that sets new standards for the industry. And for their shareholders. And by working closely with their designers, we were able to create this one-chip solution with standard cells from our library. In fact, our customer only had to design about 200 gates of logic using our standard digital cells.

Turnaround time from code to first silicon was only 18 weeks. And because of our development tools and mixed-mode simulation (MIXsim[™]), the first prototypes worked.

Of course, this is only one example. With 250 digital, 50 analog, and over 20 EEPROM cells in our library, we can create literally thousands of combinations. Including Analog/ E_{2}^{2} , E^{2} /Digital, Analog/Digital, and E^{2} /Analog/Digital. For every application you can imagine. And we can execute them all in high performance CMOS.

So, no matter what you're designing, call or write for our complete library card. And we'll show you a combination you can always bank on. Your ideas and our technology.

2075 North Capitol Avenue, San Jose, California 95132. Telephone (408) 263-9300

A HYBRID APPROACH TO APPLICATION-SPECIFIC DSP DESIGN

Howard Moscovitz, AT&T Bell Laboratories, Allentown, Pa.

Designers of application-specific integrated circuits for digital signal processing have a variety of design alternatives available to them, from traditional schematic capture and standard-cell design to logic synthesis, module generators, data path compilers, and DSP CPU cores. At present, however, no individual methodology provides an optimal solution for a wide range of DSP applications. Consequently, rather than relying on a single tool to handle all of their applications, what designers need is a hybrid methodology that enables them to take advantage of multiple design approaches.

With such a system (Figure 1), designers can partition their DSP ASIC designs and apply the most appropriate methodology for each subsystem or module. The systemlevel interaction of each subsystem can later be verified through mixed-mode simulation and a multifaceted test strategy. By automating these processes as much as possible, a hybrid system enables the designer to both maximize performance and minimize design time.

PROGRAMMABLE DSPs

One design methodology that is rapidly gaining popularity is the use of programmable DSP cores in conjunction with customized peripheral and 1/0 functions. Using this approach, the designer combines the core CPU with such functions as additional arithmetic units, memories, 1/0 ports, registers, data conversion circuits, and other combinatorial logic.

Traditionally, because DSP applications have been performance-bound, designers of special-purpose DSP circuits have relied primarily on hard-wired implementations. In most cases, designers simply could not shoehorn complex applications into conventional single-multiplier, general-purpose programmable DSPs.

Recently, however, innovations in CMOS process technology have enabled semiconductor vendors to achieve dramatic improvements in performance and integration. As a result, programmable DSPS can now provide real-time execution for a variety of computationally intensive applications that previously required expensive hard-wired designs.

Basing a design on a programmable DSP core provides a number of advantages when compared with hard-wired designs. One advantage that DSP cores provide is higher flexibility. Designers can change the function by simply changing the program that's stored in ROM (as they can with standard DSP chips); they can also select the exact amount of on-chip memory that is needed for the application.

Another advantage is that the applications are easier to simulate, test, and debug, since high-level simulation models and development systems are available for DSP cores. Furthermore, because semiconductor vendors typically build testability into their cores, the task of developing complex test programs is simplified. Designers can even build hardware breadboard prototypes, using a stand-alone version of the off-the-shelf DSP in conjunction with the appropriate memory and logic elements.

Probably the chief advantage of using a programmable DSP is the ease of software development. In addition to providing a standard assembler, many vendors are offering advanced software tools, such as application libraries,

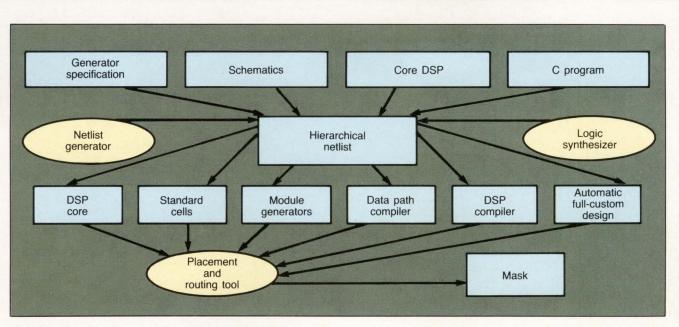


FIGURE 1. Hybrid system for DSP design.

debuggers, and compilers. With AT&T'S DSP32C, Texas Instruments' 320, and Motorola's 56000, for example, designers can use combinations of c and assembler, coding the bulk of their programs in c and the speed-critical portions in assembler. Third-party vendors also are contributing, providing menu-driven development packages that enable non-DSP experts to experiment with DSP functions and construct programs without requiring an understanding of DSP architectures or conventional programming languages.

HIGH PERFORMANCE DEMANDS DESIGN DIVERSITY

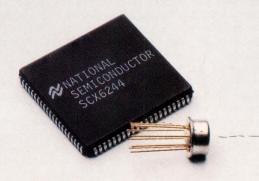
With the speed of at least one DSP core (the DSP16A) now exceeding 30 MHz, designing peripheral logic that can keep up with the CPU core is becoming more difficult. Although a standard-cell methodology provides sufficient speed for many applications, in some cases standard library components may not prove sufficiently fast.

Here, a hybrid design system provides an excellent alternative. With it, designers implement each section of their circuit using the most productive design methodology that meets the system's minimum performance requirements. Once designers have partitioned their circuits, they select the appropriate method for each module and obtain an optimized netlist for the entire chip. Preferably, as needed, they would be able to further optimize the speed or power consumption of individual modules by taking advantage of an automated full-custom layout capability with automatic transistor sizing.

DATA PATH COMPILERS

Certain portions of a special-purpose DSP lend themselves better to different approaches. For the critical data path elements of such circuits as sequencers, address generators and arithmetic units, a bit-slice approach is often employed, with schematic capture generally used for design entry. With a data path compiler, the designer can obtain an automatic custom layout for the data path by specifying the components in the data path and their relative locations.

For regular structures, such as RAMS, ROMS, PLAS, multipliers, and register files, designers can invoke a library of module generators (also known as layout compilers). These generators produce a custom design for such components based on user-supplied parameters like the multiplier precision or RAM word length. Often, a number of generators are available for a particular function to optimize it for a specific applications (such as Wallace tree, parallel array, and shift-add for multipliers).


LOGIC SYNTHESIS FROM C

For less common DSP functions or for random logic functions that don't map well to the DSP generators, designers can take advantage of general-purpose logic synthesis tools, which produce a netlist based on a Boolean or other functional description. With AT&T's logic synthesis tool, known as Cones, designers describe their logic using a C language functional description that specifies the circuit's state transitions at the bit or register level.

Cones uses a three-step process to generate a netlist. First, it takes a c description and generates a Boolean equation (sum of products) for each bit in the circuit (output or flip-flop) description. Next, it generates a netlist. If the target design is an IC, Cones develops the netlist using an optimal combination of the logic elements contained in the standard-cell library. If the target is one or more PLDs (which might be used for prototype development), Cones partitions the design and generates a netlist using an optimal combination of PLDs.

In the final stage, whether the target device is an IC or one

Digital and analog functions in standard packages (ang

Similar functions in a standard cell available for packaging

We've mixed analog with digital to help you make it small in ASIC.

NATIONAL INTRODUCES OP AMP, COMPARATOR, ANALOG SWITCH, AND BAND GAP REFERENCE CELLS DESIGNED TO CUT YOUR ANALOG REAL ESTATE DOWN TO SIZE

Now you can bring the finest in analog performance right into the heart of your digital cell-based design.

Because now, the people who wrote the book on linear offer you industry-standard functions in analog cells.

With all the quality and reliability you've come to expect from National. Plus all the design and high-yield manufacturing expertise it takes to ensure you get the cells you need when you need them.

EIGHT CELLS YOU CAN BUILD ON

Our cell library now includes three general-purpose op amp cells, based on our popular LM324, with gain bandwidths ranging from .75 MHz to 3 MHz.

We've also developed the A021 and A022 Comparators, which feature two different input common mode ranges. Both cells are similar in performance to our industrystandard LM339.

Our A241 Analog Switch is designed to handle signal voltages equal to, or less than, VDD while exhibiting a lower on-resistance than

© 1988 National Semiconductor Corporation

NATIONAL'S CELL LIBRARY INCLUDES:

Op Amps

- Wide input common mode (0.3V to VDD 1.5V)
- Up to 3 MHz gain bandwidth product Analog Comparators
- High input common mode range (1.5V toVDD 0.5V)
- Low input common mode range (0.3V toVDD 1.5V)
- Less than 70nS response time
- Voltage Reference
- 2.5V Band Gap Reference
- Tempco under 100 ppm/°C Analog Switch
- Analog signal range 0V to VDD
- Low on-resistance 100 ohms

All are available in military, commercial, and industrial temperature ranges and in a variety of high-density surfacemount packages.

most switches in our AH50XX, LM, or LF families.

As you'd expect, we've also added a 2.5V Voltage Reference, plus resistors. And all our analog cells operate at the standard 5V.

PROVEN CELLS YOU CAN WORK WITH

We're already working with digital ASIC designers who need basic analog functions without making basic analog trade-offs in size, weight and performance.

One major automotive subsystem manufacturer, for example, is currently testing our op amp and comparator cells in a revolutionary anti-skid braking system under severe environmental conditions. Wherever there's a need for mixed digital and analog solutions that improve efficiency and reliability by eliminating bulky, power-hungry multi-chip configurations, there's a need for analog cells from National.

FUTURE CELLS YOU CAN COUNT ON

All our analog cells are fabricated in our proprietary M²CMOS process. Which guarantees you three important competitive advantages: outstanding low-power performance, noncopyable functional implementation, *and* a steady stream of other proven National analog products into our cell library.

The result? Your decision to go with National's analog solutions will continue to pay off long after the decision is made.

CELL EXPERTS YOU CAN TALK TO

We can show you how a little analog functionality can make a big difference in your digital ASIC design. For details, call our Applications Hotline at (408) 721-6247, or write:

National Semiconductor ASIC Solutions M/S 23-200 P.O. Box 58090 Santa Clara, CA 95052-8090

or more PLDs, Cones looks for common circuitry, forms a single occurrence of this circuitry, and updates the netlist. (For example, each bit in a register may have decoding and chip select circuitry in common).

Limitations of the logic synthesis approach

In most cases, Cones can generate a netlist whose efficiency is comparable to that which can be obtained in a hand design. Still, logic synthesizers, Cones included, have many limitations, particularly for implementing critical arithmetic and data path elements. Multipliers are a case in point. When a logic synthesis tool encounters the expression $A = B \times C$, it may not recognize that specialized generators are available to implement that function. As a result, it may try to implement it using standard combinatorial and sequential logic.

Although this approach is generally efficient for handling random logic, it can't match the custom design that a multiplier generator provides. Furthermore, logic synthesis tools can't yet select appropriate DSP architectures, such as bit-serial, bit-parallel, or serial-parallel.

Another limitation is a lack of support for design modifications. Because the compiler handles the entire design, the designer will be unfamiliar with the circuit topology. Consequently, if the resulting circuit doesn't meet all the design specifications, it is difficult for the designer to identify the problem and effect a change.

In addition, logic synthesis tools sometimes don't adequately address the design-for-test issue. Some vendors approach the problem by applying a single test method, like scan path design. However, a practical system must applya test methodology or combination of methodologies that match the particular function. Scan methodologies, for example, prove ineffective for circuits with large numbers of registers or large amounts of memory. In both cases, because the register and memory elements must be configured as a serial shift chain, the time required to shift data in and out of the chain proves prohibitive. Built-in self-testing provides an effective alternative in many cases. However, this capability is more difficult to provide, as it must be incorporated into the generator or compiler and must be customized for every circuit that is developed.

DSP-SPECIFIC SILICON COMPILERS

A high-performance alternative to general-purpose logic synthesis tools is DSP-specific compilers, which are actually an extension of the generator technology used to implement components such as multipliers. These new tools—for example, Cathedral from Imec in Belgium and Lager, developed at the university of California at Berkeley—design entire DSP modules by converting a programming language or other high-level specification of a DSP algorithm into a series of calls to special, architecturespecific layout generators. The circuits produced by these generators are wired together to form the desired function (Figure 1).

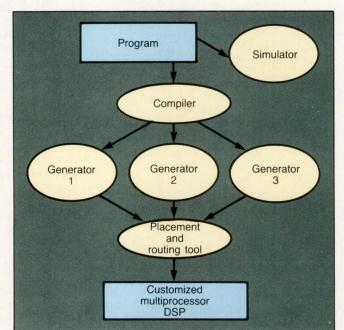


FIGURE 2. Generator-based DSP compiler.

AT&T has designed such a generator system, for internal use, for implementing *n*th order, *m*-bitFIR(finite-impulseresponse) filters. The system uses a library of parameterized, hierarchical layout generators. It selects and configures these generators based on user-specified parameters like filter length, window type (rectangular, Kaiser, etc.), filter type (low-pass, bandpass, etc.), and filter cut-off frequency.

An FIR filter calculates the sum of products for pairs of data—one corresponding to a signal, x(n), and the other to a coefficient, h(i)—according to the following equation:

$$y(n) = \sum_{i=0}^{n} h(i) \times (n-1)$$

This equation is implemented by multiplexing a single shift/add multiplier-accumulator.

The FIR generator system calculates the filter coefficients based on the user's inputs. It then passes the following parameters down for layout synthesis: the order, n, of the filter; the number of bits, m, of precision; the filter coefficients; the number of vertical buses (used as feed-throughs at higher levels of the hierarchy); the transfer protocol for serial data output; and the output drive requirements. The FIR filter consists of the following subblocks: an input serial-to-parallel buffer, an output parallel-to-serial buffer, signal and coefficient registers, a multiplier, and an accumulator (Figure 3).

The subblocks are created hierarchically (Figure 4). A separate generator implements each of the subblocks

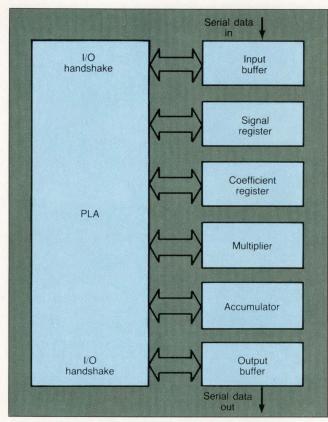


FIGURE 3. Functional blocks of an FIR filter.

based on the compiled parameters and technology information that it obtains from a technology base. Each subblock generator makes calls to a number of subgenerators. At the lowest level in the hierarchy, leaf cell generators handleelectrical, physical, and behavioral properties. The hierarchical symbolic layout is then assembled into a fixed-grid layout by a module assembler tool called Panda (which is for internal use).

LIMITED FLEXIBILITY

DSP-specific compilers offer considerable promise for implementing a wide range of DSP functions. At present, however, their chief limitation is inflexibility. The generator methodology works satisfactorily only when a given application maps well to the supported architecture; these compilers may be completely ineffective or unusable for nontargeted applications.

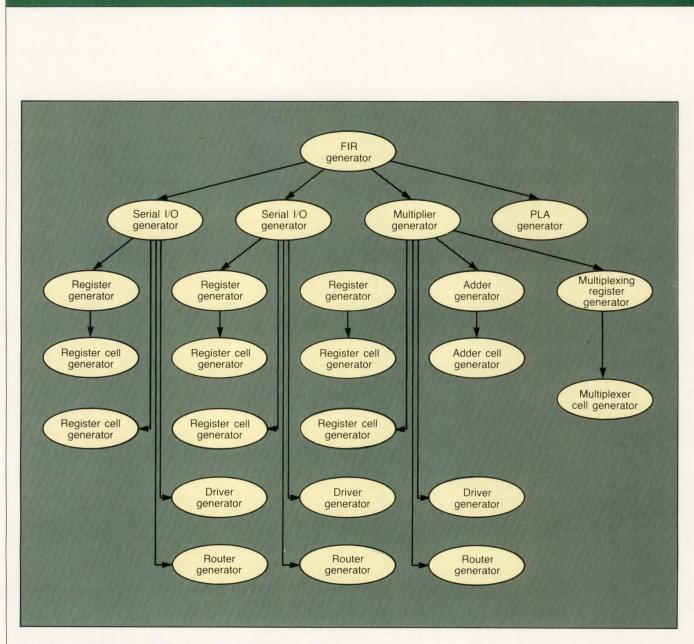
Another problem is the large amount of support software (such as simulation models, fault models, and test vectors) that must be developed to support these generators. Unless there is a significant opportunity to reuse these generators, they may not be cost-effective.

A HYBRID APPROACH

Although advanced tools such as compilers and logic synthesizers greatly simplify the development of high-performanceDSPASICS, designers must recognize their limitations. By adopting a hybrid design methodology, designers can take advantages of the relative strengths of a variety of tools.

AT&T Bell Laboratories uses such a hybrid system to design many of its application-specific DSP circuits (Figure 5). The entry point to the system, which consists of tools designed for internal use, is a hierarchical netlist that can be derived from a variety sources. These include DSP cores, netlist generators (programmable macrocells), transistor- and logic-level schematics, and the Cones logic synthesizer.

One of the advantages of using an open hybrid methodology is the ability to take advantage of new developments in automatic full-custom layout capabilities, which are invaluable in the performance-driven DSP arena. Whereas conventional standard-cell methodologies use macrocells with fixed cell layouts, a custom-layout approach enables designers to maximize speed/power by optimizing transistor sizing.


AUTOMATED OPTIMIZATION OF TRANSISTOR SIZES

AT&T simplifies the design of full-custom circuits through automation. Once designers have obtained a transistor netlist (through logic synthesis, a standard-cell approach, or custom design), they can invoke another internal tool, Tilos, which uses iterative static timing analysis to optimize all critical circuit paths based on usersupplied timing requirements and estimated circuit parasitics.

Tilos doesn't simply choose cells from a library; it optimizes each transistor in each cell. By sizing transistors with Tilos, designers can often develop circuits that operate at twice the frequency of an equivalent standard-cell design using the same technology. Moreover, Tilos enables designers to optimize either performance or power dissipation by providing a set of control parameters. In contrast, a standard-cell approach typically provides a limited set of performance options. Thus designers don't have as much freedom to optimize their circuits by making performance/power trade-offs.

AUTOMATIC FULL-CUSTOM LAYOUT

Once an optimized hierarchical netlist is generated by Tilos, it is passed to a layout supervisor tool called Impala, which creates a customized, hierarchical, row-oriented symbolic layout. To do so, Impala calls a CMOS symbolic layout cell compiler (known as SC2) for each cell in the module. SC2 can create symbolic layouts for any CMOS circuit form: conventional complementary static, dynam-

FIGURE 4. Layout generator hierarchy for FIR filters.

ic, domino, zipper, and soon. Since most cell compilers are effective for cells containing only about 200 transistors, Impala creates hierarchical modules that contain many compiled cells.

The resulting symbolic layout is converted into a technology-specific manufacturable mask by a hierarchical module assembler program called Panda. The entire transistor sizing and layout loop can be repeated by extracting more accurate parasitics and supplying them to Tilos. However, since the automatic layout process is very consistent and predictable, a prelayout parasitic estimator (appropriately called Paranoid) has been developed to minimize the need for additional iterations. Once all the chip's modules have been designed, they are connected to the chip's 1/0 pads using a standard-cell placement and routing tool known as LTX2.

SYMBOLIC LAYOUT PROVIDES DESIGN UPDATABILITY

Because all the programs in the tool set employ symbolic layout, designs are, to a great extent, independent of design rules. With symbolic layout, transistors, wires, contacts, and cells are placed on a virtual grid in terms of their relative location. Once the the layout is complete, a usersupplied technology file is referred to adapt, or bind, the design to a specific fabrication process.

By employing symbolic layout, AT&T is able to more easily

Feel trapped by one ASIC supplier? Reach for the Super Foundry.

Now you can design complex ASICs to meet your needs, not to fit one supplier's limited capabilities. The Super Foundry[™] offers the combined resources of the world's premier CMOS manufacturers. Our process independent design tools and production services give you

maximum freedom and control—from concept through delivery. FREE. ASIC Estimating Kit.

What will it take to do your ASIC? With our free ASIC Estimating Kit, you can analyze design-process trade-offs and explore the performance, cost and scheduling implications of your design in a variety of processes. Take control of your ASIC design and avoid the single-supplier prison. Call the Super Foundry for your free ASIC Estimating Kit: 1-800-FOR-VLSI ext. 200.

THE SUPER FOUNDRY SEATTLE SILICON

3075-112th Ave NE., Bellevue, WA 98004, (206) 828-4422. Copyright 1988, Seattle Silicon Corp. Super Foundry is a trademark of Seattle Silicon Corp.

CIRCLE NUMBER 10

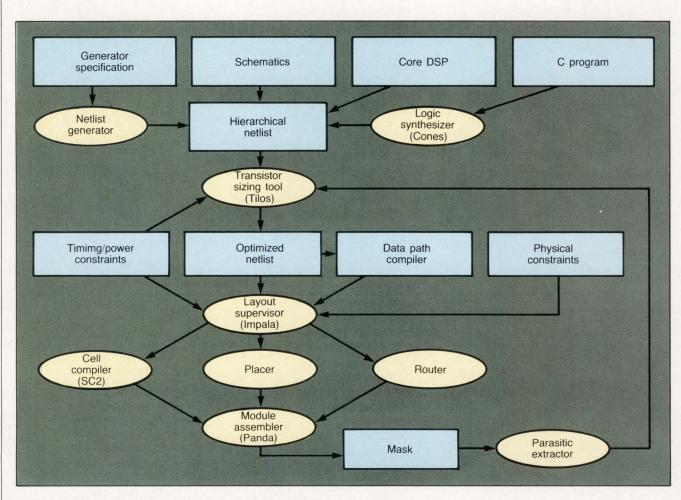
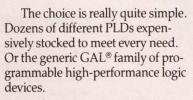


FIGURE 5. The hybrid automatic full-custom DSP design system at AT&T.

migrate to new technologies. At the same time, because designers don't have to be concerned with the design rules of a particular process, the design of new generators is greatly simplified, thus improving productivity. Designers can concentrate on the design of new generators, rather than on updating existing ones for new technologies.

FULLY AUTOMATIC DESIGN—STILL IN THE FUTURE

The ultimate goal in CAE/CAD development is to produce a decision-making system that can automatically partition a circuit and apply the best methodology for each module. Such a tool will also have to provide mixed-mode simulation and apply the most effective test methodology.


At this point, however, the individual capabilities of each methodology are evolving so fast that updating the decision-making software is a formidable task. For the foreseeable future, therefore, designers will have to assume this task themselves. With a versatile enough tool kit, however, they can significantly reduce the design cycle for application-specific DSPS without compromising circuit performance.

ABOUT THE AUTHOR

Howard Moscovitz is the supervisor of AT&T Bell Laboratories' DSP design methodology group, which also does research on DSP architectures, and the technical chairman of the IEEE VLSI for Signal Processing Workshop, to be held in Monterey, Calif., in November. He received an MFA degree in electronic music and recording media from Mills College in Oakland, Calif., in 1972 and was the director of Electronic Music Associates in the same city from 1972 to 1981. That year he earned an MS degree in electrical engineering at the University of California at Berkeley and joined AT&T Bell Labs.

or...

I.M.M.M.M.M.

Reprogrammable CMOS.

Behind this family is our Generic Array Logic (GAL) architecture. First developed and produced by Lattice, this architecture lets one GAL device replace all common 20 or 24 pin PAL[®] devices.

Fabricated with Lattice's proprietary E²CMOS[™] technology, GAL devices give you bipolar speed and lower power. Half-power parts are available with maximum gate delays of 15ns. Quarter-power delays are 25ns. Both reduce heat without loss of performance.

Gone are discarded fuse-link parts caused by misprogramming. Gone is the need for expensive window packaging. Gone are long UVerase cycles. Instead, you simply plug your GAL device back into the programmer and erase and reprogram in less than a second. Design changes are simple and easy, too.

Inventory reductions.

From a manufacturing and management perspective, the GAL family offers even more. Now PAL and other PLD inventories can be dramatically reduced. At the same time, design alternatives multiply.

Because GAL devices are reprogrammable, they are also reuseable. And last-minute design changes mean simple reprogramming rather than costly replacement.

100% tested.

Unlike other PLDs, GAL devices are 100% tested for optimum system quality. There is simply no need to overstock in anticipation of a high failure rate.

So forget about that pile of "Eithers." And learn more about the Lattice "Or." To find out how GAL devices fit all of your PLD needs, ask for a free copy of the Lattice GAL Data Book today.

E2CMOS is a trademark of Lattice Semiconductor. GAL is a registered trademark of Lattice Semiconductor. PAL is a registered trademark of Monolithic Memories, Inc.

5555 N.E. Moore Ct. • Hillsboro, OR. 97124

The GAL Revolution Starts Here[™] CIRCLE NUMBER 11

PROGRAMMABLE LOGIC UPDATE

Ernest L. Meyer, Campbell, Calif.

ast year, programmable logic device architectures were evolving in three essentially different directions: some chips were replacing the AND/OR plane with unorthodox programmable structures; some were combining programmable structures with standard-part functions; and some were enhancing conventional structures with more advanced macrocell capabilities. Recently, a fourth trend has rapidly emerged: some PLDs are just getting faster.

DEVELOPMENT SYSTEMS

At first blush, programmable chip architectures might seem irrelevant to the current-day system designer. With the actual advent of "universal" programming systems, designers could define a circuit at an abstract functional level and then hit the "compile" button for different PLDs until the circuit fit into one. Unfortunately, device support by universal programming systems typically follows a chip's introduction by about six to nine months. In the interim, designers must use device-specific development systems from the component manufacturers.

Since a competitive edge can be gained by implementing a PLD before its support by universal programming systems arrives, it may seem attractive to jump for a new part and get the development system for it. However, it is more time-consuming to evaluate alternative implementations with device-specific development systems: the design must be entered on each system separately. Performance comparisons are not simple, and so designers may instead opt to choose a part before schematic capture and simulation. It is therefore advantageous to understand the available architectures, to know what the best chip is for a particular requirement.

Universal programming systems continue to be useful in this process, since established PLDs are often the best choice anyway. At this stage, many of the devices that were reported on last October (Meyer, 1987) are now supported by the leading universal programming system, from Data 1/0. For example, the company now supports the Xilinx family (for schematic capture and simulation, anyway), as well as the PLX448, the 29M16, the 5C032, the GAL39V18 (now renamed the GAL6001), and the EP1800.

Data I/O is also now distributing the ABEL and PLDtest

design software on additional platforms besides the IBM PC: on Intergraph's Clipper and the Sun-3 hardware, as well as on hardware running under the VMS and Unix operating systems.

ARCHITECTURAL VARIATIONS

Choosing the right part for a particular application is becoming an increasingly complex problem. There are now hundreds of PLD parts in thousands of versions. As was stated earlier, the more innovative PLD architectures are evolving in three essentially different directions. Orthodox PLD structures have been entirely abandoned in some chip families, to be supplanted by radically different interconnection strategies. Other chips have melded conventional PLD architectures with standard-part functions into programmable "integrated subsystems." Then, too, some chips have supplemented the traditional architectures with grander macrocell capabilities.

ESOTERIC ARCHITECTURES

In the first of these categories, we noted previously two chip families that represent a distinct departure from traditional PLD architectures: the Erasic family from Exel and the LCA devices, or "programmable gate arrays," from Xilinx. Both have been very successful.

Exel's Erasic family forsakes the traditional AND-OR plane architecture in favor of a single folded programmable NOR array. The XL78C800 offers two combinatorial inputs, two sets of four latched inputs, and 10 registered outputs.

Folded NOR architectures lend themselves to multilevel logic: the XL78C800 can contain a phenomenal 42 logic levels, with 32 buried NOR product terms that can be cascaded combinatorially or combined to form additional registers. A commercial 25-ns version is now available for \$14 per hundred, with a 45-ns version for \$7.25. Mil-spec parts are \$92 and \$75 for the respective speed grades.

Exel is currently porting the Erasic family to a 1.2- μ m process and will shortly be offering 15-ns parts in commercial grades. The company is also readying its next-generation part, the XL78C1800, which boasts 1,800 gate equivalents in a 40-pin DIP and a 44-pin PLCC.

The Erasic's NOR architecture permits somewhat higher performance for many functions but cannot be designed with a standard programming system alone. Exel offers a transparent preprocessor for Data 1/0's ABEL system so that designers can work with a familiar design system. The fuse map preprocessor, simulator preprocessor, and TTL library are under \$400.

Xilinx is even more radical. In the XC3020, it embeds 64 macrocells in a grid of dynamically reprogrammable (SRAM) interconnections. Each macrocell contains two flip-flops; in addition, each macrocell may be used for either two four-input or one five-input combinatorial function. The XC3020 also contains 64 1/0 macrocells on the periphery, each of which contains two more flip-flops that may be used for a registered input and output or within a counter chain. Thus the chip contains 128 macrocells in total, with 256 flip-flops.

Since this time last year, Xilinx has also introduced the XC3090. This programmable Hercules contains 320 internal macrocells and 1441/0, yielding an estimated 9,000 equivalent gates and 928 flip-flops. At present, this device is the only programmable logic chip that is conceivably large enough for a full 16-bit microprocessor.

Military-grade versions in 175-pin ceramic PGAs are available in 50-MHz speeds for \$346.50 in 100-piece quantities. The XC3020 has dropped to \$51.65 for 70 MHz; the old 2064 (with 256 flip-flops) is now a bargain at \$32.50. The company will be releasing intermediate parts between the 3020 and 3090 in 84-pin PLCCs and ceramic quad flat packs over the coming year.

Xilinx has expanded its front-end design system line to include design and simulation tool support for almost two dozen vendors, including Data 1/0, Mentor, Daisy, Valid, Case Technology, Viewlogic, and Omation. Actual wire delays can be back-annotated from the Xilinx layout software into these systems for postlayout simulation.

An additional vendor has entered into the "esoteric" category: Actel Corp. has introduced a user-programmable gate array that employs antifuse technology for densities up to 6,000 estimated gate equivalents with a 1.2-µm process (Mohsen, 1988). The architecture closely resembles an actual gate array rather than any current form of PLD. Actel's Act1 family may prelude a new generation of design capabilities, with 70-MHz toggle frequencies for any combination of sequential and combinatorial functionality. The first chip contains almost 200,000 antifuses, providing sufficient interconnections to simulate fully a gate array architecture, but increasing the programming time (and, presumably, the fallout) compared with a conventional fuse-link PLD.

As an alternative to gate arrays, the Act 1 part is certainly attractive, especially since NREs are practically nonexistent, there is no wait for wafer turnaround, and revisions are pretty much instantaneous.

Programming is one distinction between the two families. The Act1 chip requires about 10 minutes to program. On the other hand, the Xilinx parts can be programmed in milliseconds, although they must be reprogrammed from PROM each time the system is turned on. Xilinx supplies an 8-pin skinnyDIP PROM with enough internal space—64 kilobits—to program its largest array, if no other PROM space is available on board. Some have cited the extra chip and boot time as a disadvantage, but Xilinx points out that the boot time is only milliseconds long and that their skinny-DIP, if it is necessary, is smaller than a fingernail.

'HYBRID' ARCHITECTURES

"Hybridization" of standard-part functions with programmableAND/OR planes can yield higher equivalent-gate counts in smaller chips.

Recently, Atmel has announced the first line of programmable analog/digital devices (PADDS). These devices combine standard analog functions with programmable function control and memory. They will include programmable delay lines, programmable filters, and video DACS, employing nonvolatile memory to store delay-line control codes, filter settings, and color look-up tables.

On the strictly digital front, hybrid architectures currently fall into two categories: programmable sequencers and programmable bus interfaces.

Programmable Sequencers

PROSE and SAM were the first two families of programmable sequencers, both of which combine branch control logic (in a PAL form) with an EPROM- or PROM-based microsequencer and an output register. To these we can now add the TIBPSG507 from Texas Instruments and two parts from Cypress Semiconductor.

SAM, from Altera, contains 768 product terms in a programmable AND plane with eight true and complemented inputs from input pins and eight inputs carrying the micro-address; a 448×36 -bit EPROM, of which 8 lines feed back to the AND plane; a 15-byte stack; an 8-bit loop counter; and a 32-bit register that pipes into 16 outputs horizontally or vertically. A design system is available from Altera for about \$2,000, which includes a microcode assembler, a functional simulator with graphical output, and a programmer. Commercial-grade 20-MHz SAMS are \$25 to \$30, and a 30-MHz version is being readied.

PROSE, from Advanced Micro Devices, contains up to 16 product terms in a programmable AND array with 14 complementary inputs and 2 outputs; 128 product terms in a 128×21 -bit PROM and with 8 bit lines connected to registered outputs, 5 bit lines folded back into the PROM array, 2 bit lines XOREd with the inputs from the PAL array, and 6 bit lines for condition selection (feeding into the PAL array). Design support is supplied by PALASM 2, and Data I/O supports PROSE programming. PROSE devices are available from stock for \$15.

Designers may wonder why these particular dimensions have been chosen for these single-chip sequencers and when a programmable sequencer is preferable to a standard-part implementation. According to Altera, SAM reduces unit cost by about \$15, between the component cost, board area savings, and system-level savings over an equivalent 20-MHz system implemented with discrete devices. As for PROSE, Monolithic Memories says that the architecture was established by customer demand.

Texas Instruments' TIBPSG507 is less complicated than PROSE and SAM (despite its longer name). It is in fact similar to the familiar 82S105 from Signetics. However, whereas Signetics's FPLS (field-programmable logic sequencer) contains 16 straight inputs, 8 nonbidirectional latched outputs, and 6 buried latches, the TIBPSG507 contains 12 straight inputs, 8 bypassable nonbidirectional latched outputs, and 8 buried registers.

Moreover, the TIBPSG507 includes a 6-bit counter as well. The counter can be programmed to stop and start again with product terms, and the clear function can be programmed also. Counter hold and clear functions may be registered or combinational, permitting both external and internal complex count function control. By appearance, then, the TIBPSG507 is simpler to use but less versatile than PROSE and SAM.

Data 1/0 supports programming for the chip. In 1,000piece quantities, it costs \$15.89 in a 24-pin plastic DIP and \$16.24 in a 28-pin PLCC.

Cypress Semiconductor also based its state machine parts on standard PLD architectures. Although these parts do not actually contain counters or sequencers, they *are* specially designed for state machine applications.

There are two parts, one for synchronous and one for asynchronous machines. The CY7C330 is the synchronous state machine PLD. It contains both input and output registers, and runs at 50 MHz. There are 11 registered inputs, which can be programmed to clock on either of two input clocks, allowing two-phase or customized pulse response. There are also 12 output registers and 4 dedicated buried registers, controlled by a separate output "state clock." The user can bury up to 6 output registers without sacrificing input pins, yielding up to 10 buried registers. The device comes in 50-MHz and 33-MHz versions, in windowed ceramic 28-pin slimDIPs for \$30.60 and \$23.55, respectively, in 100-piece quantities. Plastic windowless packages will soon be available for \$24.70 and \$19.40.

The CY7C331 is a registered PLD specially tailored for asynchronous state functions. It contains 12 registered bidirectional macrocells and 13 nonregistered inputs. The macrocells can provide registered, transparent, or combinationial input or output; and the set, reset, and clock all are controlled by product terms. The part comes in a 28-pin windowed ceramic package and costs \$21.40 and \$16.45 for 25-ns and 35-ns versions, respectively.

Cypress is working on a new state machine architecture with 125-MHz speed, destined for availability in the second quarter of 1989. This part will use both rising and falling clock edges to double synchronous throughput and will probably use the same 0.8-µm drawn-feature design rules ($0.65 \mu m l$ effective) as currently used for the '331 and '332. Incidentally, Cypress currently has the smallest feature sizes of all PLD vendors. Cypress is also a technology partner in the forthcoming MAX chip from Altera (described below) and will be shipping the part 90 days after Altera's introduction of the part.

Programmable Bus Interfaces

Harris, which invented the fuse in the first place, was the first company to combine standard-part functions and fuses. The 82C339, which has been available for about four years, contains an octal multiplexed input for interfacing with 8088-type buses and a programmable comparator to generate up to four control signals at user-programmed addresses, making the device ideal for direct memory-mapped applications.

Last year, three further bus-oriented devices emerged:

the BIC, the Buster, and the PLX448.

The BIC, from Intel, combines three octal latched transceivers with a standard PAL architecture. The transceivers can be clocked in any one of eight modes, with a special macrocell dedicated to each 1/0 pin. A further four buried macrocells are included. BICs are shipping for \$17.50.

The Buster, from Altera, contains one transceiver, with a 24-mA drive capability, which makes it compatible with IBM's Micro Channel bus. Also, there are two registered inputs, 7 buried macrocells, and 20 V/O macrocells. Buster is now being sampled in commercial 25-MHz grades for just under \$25. A development system with programmer goes for some \$2,500.

PLX Technology is now shipping the PLX448. This part contains a standard internal PAL architecture with 10 inputs and 8 doubly folded bidirectional outputs. However, the 1⁄0 macrocells meet the IEEE-448 standard, with 4 outputs driving 48-mA loads and 4 outputs driving 24-mA loads on a separate clock.

PLX Technology is now also offering preprogrammed versions of the PLX448 for standard bus interface functions. These preprogrammed devices perform common VMEbus, VSB (VME subsystem bus), and Micro Channel protocol functions. VSB masters and slaves are \$24 to \$26; VMEbus masters and slaves costs \$28 to \$52; and VMEbus interrupt generators, \$26. A Micro Channel master is currently being sampled for \$26.

IMPROVING ON THE STANDARD ARCHITECTURE

Most parts that provide embellishments on standard PLD architectures do so by supplying enhanced macrocell capabilities. Macrocells can restrict the actual usefulness of a device if they are not flexible enough. On the other hand, an overcomplex macrocell can be wasteful when just a simple macrocell will do.

Features to check for in "fully featured" macrocells include varying sum-of-product-term distributions; programmable register bypass, feedback, and preloading; individually programmable clock and output three-stating; programmable polarity; sequential diagnostic capability; bidirectional I/O; configurability as a D or JK flip-flop or latch; and an additional feedback path so that the macrocell pin can be used as an input at the same time as the register is buried ("dual foldback").

Four part families sport major variations on the standard architecture. Announced some time ago are the 29M16 and the 29MA16, a planned family from Advanced Micro Devices. In this family, a whole 16 fully featured 1/0 macrocells are crammed into a 24-pin chip. How? Simply enough, by replacing dedicated inputs by 1/0 macrocells. These parts lead one to wonder why PLD vendors hadn't dreamed up replacing all the dedicated inputs by programmable 1/0 macrocells before this.

The 29M16 and 29MA16 differ essentially in their product-term distribution. Between 4 and 12 product terms are assigned to each macrocell, with the distribution different for different groups of pins in the two parts (a trick pioneered by Cypress Semiconductor). Advanced Micro Devices may sample the 29M16 toward the end of the year.

The 5AC312 EPLD, from Intel, contains 8 registered inputs and 12 fully featured 1/0 macrocells. Of particular

amd and **ARROW/KIERULFF** DEFY CONVENTIONAL LOGIC WITH THE FASTEST PAL DEVICES EVER MADE.

Arrow/Kierulff helps you break the logic speed barrier with fast, ACUTATE shipments of high-speed AMD PAL[®] devices. We stock the complete line of these devices, including AMD's exclusive 24-pin 10 ns and 20-pin 7.5 ns versions, the fastest in the world. Also available is AMD's high-volume 20-pin 10 ns version.

AMD offers a broad range of high-performance, dependable PAL devices. In fact, AMD's newest 7.5 ns version outraces standard logic in performing equivalent TTL logic functions. Engineers no longer need to sacrifice performance for density. Now they can consolidate logic while still getting faster circuitsand greater power efficiency as well. What's more, to better

interface with the newest highspeed microprocessors, AMD has cut the propagation delay of one of the most popular PAL devices, the 22V10, from 25 ns to 15 ns.

AMD's new PAL devices help the fast move faster. And so does Arrow/Kierulff. Our on-line, realtime distribution network provides instant access and immediate availability of AMD's full product line. Whatever your logic need, the technical specialists at our AMD certified TestPro™ Centers make sure that you receive the right part, properly programmed and tested, when you need it. And our automated warehouses are designed to provide full electrostatic discharge protection to maintain the quality AMD builds into its parts.

AMD PAL devices from Arrow/Kierulff. The logical way to stay ahead in today's fastpaced environment.

For more information, call your local Arrow/Kierulff office. Or just complete and return the attached coupon and we'll send you-free an AMD literature packet and details on how to qualify to receive a free AMD PAL device sample.*

Powered by strong relationships with quality companies like AMD, Arrow is bolting to \$1 billion of sales in 1988

There is a difference in distribution. Arrow.³⁴

ARROW ELECTRONICS, INC.

MUM.

*Offer expires October 31, 1988. Quantities are limited.

ARROW ELECTRONICS, INC. ARROW/KIERULFF ELECTRONICS GROUP 25 Hub Drive, Melville, NY 11747	V930
Attn: Chris Johnson, Dept. 89	et and call to tell me
how I can qualify for a free AMD PAL device san	nple.*
Phone Please have a salesperson contact me.	
Name	1.
Title	
C	

ALABAMA Huntsville (205) 837-6955 ARIZONA Phoenix (602) 437-0750

CALIFORNIA Los Angeles (818) 701-7500 Orange County (714) 838-5422 San Diego (619) 565-4800 San Francisco (408) 745-6600

COLORADO

CONNECTICUT

FLORIDA Ft. Lauderdale (305) 429-8200 Orlando (407) 323-0252 GEORGIA

MASSACHUSETTS

INDIANA Indianapolis (317) 243-9353 IOWA Cedar Ra

pids (319) 395-7230 NEW JERSEY Marlton (609) 596-8000 Parsippany (201) 538-0900 MARYLAND Baltimore (301) 995-6002

NEW MEXICO Albuquerque (505) 243-4566 MICHIGAN Detroit (313) 971-8220 Grand Rapids (616) 243-0912 NEW YORK

Metro New York (516) 231-1000 Rochester (716) 427-0300

PAL is a registered trademark and TestPro is a trademark of Advanced Micro Devices, Inc

919) 876-3132 Salem (919) 725-8711

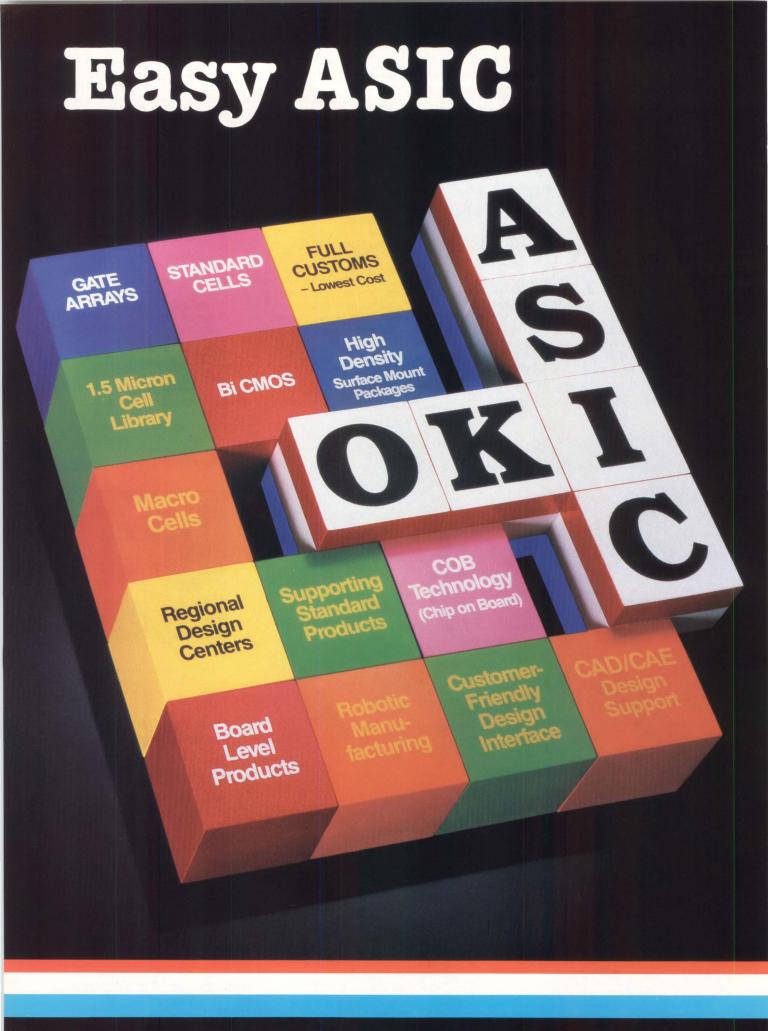
OHIO OHIO Cleveland (216) 248-3990 Columbus (614) 436-0928 Dayton (513) 435-5563 OKLAHOMA Tulca (918) 252-7537

OREGON Portland (503) 645-6456 PENNSYLVANIA

Philadelphia (215) 928-180 Pittsburgh (412) 856-7000 TEXAS Austin (512) 835-4180 Dallas (214) 380-6464 Houston (713) 530-4700

UTAH Salt Lake City (801) 973-6913 WASHINGTON Seattle (206) 575-4420

WISCONSIN Milwaukee (414) 792-0150


PUERTO RICO CANADA Montreal (514) 735-5511 Ottawa (613) 226-6903 Quebec (418) 687-4231 Toronto (416) 672-7769 Vancouver (604) 291-2986

International Export Group

Name	
Title	
Company	
Address	

MINNESOTA Minneapolis (612) 830-1800 NORTH CAROLINA

MISSOURI 51 Louis (314) 567-6888 NEW HAMPSHIRE

Only from OKI:

- Most complete ASIC building blocks.
 Most versatile design/package options.
- Most **experienced** ASIC technology.

Nobody but nobody puts ASIC technology together like OKI Semiconductor can.

Ease into ASIC with OKI as your close working partner—and you instantly support your VLSI application with the most comprehensive ASIC capabilities on the world market today. Bar none.

From gate array, standard cell and full custom chips to standard components to integration to advanced board level products, OKI alone puts you on the leading edge of ASIC technology and its complete implementation.

OKI: the totally logical choice.

Opt for OKI ASIC, and you open up your options across the board. Only OKI now offers the system designer the unique security and entry ease that only a proven track record in CMOS ASIC problem-solving can provide. This history of performance built up since 1977 has produced the widest range of solid building blocks yet: advanced ASIC products and packaging including surfacemount, backed up with the most flexible cell libraries, CAD/CAE design tools and development aids.

As your working partner, OKI ASIC expertise is available to you at any stage of the development process. We'll help you define system requirements, determine the most cost-effective product solutions and supply complete design software accessible at your own workstation or through our regional design centers. And then we take it from there: with high

CIRCLE NUMBER 13

volume fabrication, assembly and testing completed in one of the world's most highly robotized manufacturing facilities.

	1	1	
Compare Total ASIC Capabilities	OKI ASIC	Source "B"	Source 'C''
Gate Arrays to 10K Gates	•	•	
Standard Cells to 30K Gates			
Full Customs – Lowest Cost			
1.5 Micron Cell Library			
Macro Cells			
BiCMOS			
High Density Surface Mount Packages	•		
Board Level Products	•		
Supporting Standard Products	•		
COB Technology (Chip on Board)	•		
CAD/CAE Design Support	•	•	•
Customer-Friendly Design Interface	•	•	•
Regional Design Centers	•	•	•
Robotic Manufacturing	•		

ASIC Solutions from **OKI:** You can't beat the logic!

Check out OKI ASIC data:

VLSI DG988

Please rush complete technical data/specs on OKI capabilities in:

- () Gate Arrays
-) Standard Cells
-) Full Customs

) Please call: we have immediate requirements:

Name/Title

Company

Attach coupon to business card or letterhead and return to: ASIC Customer Service, **OKI Semiconductor,** 650 North Mary Avenue, Sunnyvale, CA 94086. Tel: (408) 720-1900.

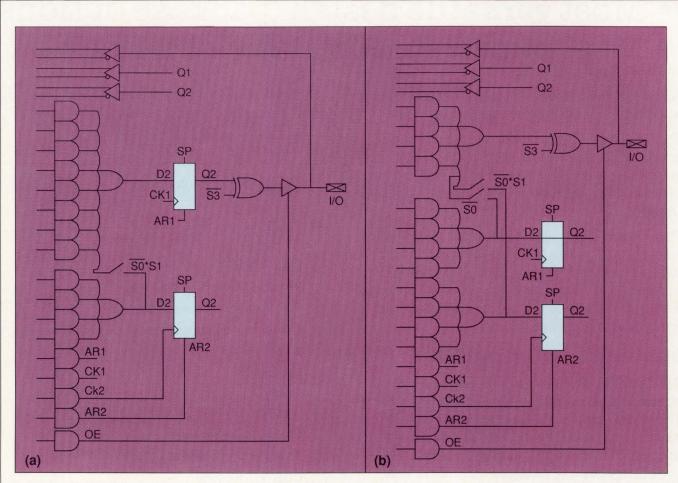


FIGURE 1. In Atmel's "Jumbo Logic Array, each I/O macrocell, registered (a) and combinatorial (b), contains two flip-flops, both of which may be buried.

note: product-term allocation between adjacent macrocells is user-programmable. Each macrocell is normally fed by 8 oRed product terms; however, 4 additional product terms may be reassigned to each macrocell from each of the two adjacent macrocells by programming the appropriate interconnections. Thus a macrocell can be fed by 12 product terms, and one of its neighbors by 4; or a macrocell may be fed by 16 product terms, and each of both of its neighbors by 4. This flexibility makes the part particularly suitable for medium-scale irregular decoding functions.

Now reduced in price to \$17.50, the '312 has met with good favor, and Intel will be introducing an additional member for the family by the end of the year. The new part will have twice the density of the '312 and the same features. Intel will also introduce software and programming hardware at the same time, as well as simulation support for the whole family. The new software and hardware will allow engineers to use state machine, schematic design, or netlist entry, as well as detailed timing simulation. The design system for all Intel products will be \$3,450. Data $\frac{1}{0}$ already supports the existing parts.

The 30-ns GAL6001 (as noted, previously designated the GAL39V18), from Lattice Semiconductor, has 10 registered inputs and 10 fully featured 1/0 macrocells. The inputs for the 1/0 macrocells have separate registers, permitting the VO macrocells to be buried and the inputs registered simultaneously. The chip also contains 8 buried registers. Supported by a proprietary development system costing less than \$800, it is second-sourced by National Semiconductor and sGS Semiconductor.

Also on the density front, consider the "Jumbo" from Atmel and Altera's MAX. Atmel's so-called "Jumbo Logic Array," the ATV2500, contains 14 standard inputs and 24 VO macrocells in a 40-pin PLCC. Unlike any other part, it contains two doubly folded registers in each VO macrocell (Figure 1), making it possible to bury 48 registers. Note that the register clocks are driven by product terms, making the part suitable for asynchronous state machines. The macrocells also contain three sum terms that may be allocated to the flip-flops or to a combinational output in a flexible manner (the part can thus emulate Intel's flexible product term allocation).

The MAX is the next offering from Altera and will start shipping next quarter. It uses hierarchical AND planes to reduce the number of fuses and increase the equivalent gate count. True system clock rates of 40 MHz are promised for the family, which will offer 16 to 128 macrocells. The macrocells are arranged in a hierarchical manner, with global programmable interconnections between two columns of logic array blocks, or LABS (Figure 2). Each LAB

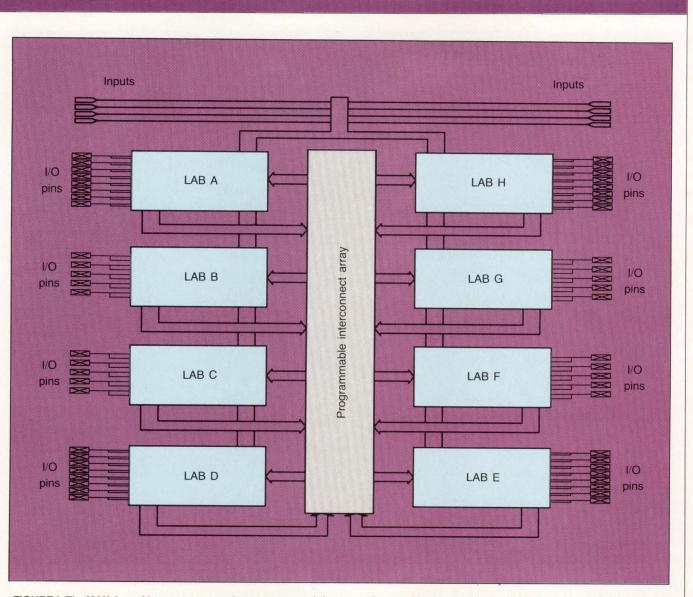


FIGURE 2. The MAX, from Altera, uses a novel structure containing two columns of logic array blocks (LABs), each containing its own product-term matrix, to expand the globally available signals into a larger submatrix.

contains its own product-term matrix to expand the globally available signals into a larger submatrix, as well as 16 to 321/0 macrocells. The MAX will be supported by its own PC AT—based development system; pricing is not yet announced. As previously mentioned, Cypress is a technology partner and will second-source the part next year; Texas Instruments, Intel, and WaferScale Integration also second-source Altera EPLDs and so will probably be second sources later on.

GETTING FASTER AND FASTER

On the speed front, a number of vendors are closing in on the sub-10-ns region. At the time of writing, Texas Instruments is leading the TTL fray with a specially designed programmable address decoder (PAD). The device moves in the opposite direction from all the architectures described above, focusing on simplicity (Figure 3). The architecture is optimized for decoding: there is only one product sum for each output, but instead of one common output enable line, there is a separate high-impedance control for each pin. The PAD rushes along with a 7-ns maximum delay and a conservative current drain of 180 mA. PADs are available immediately for \$9.39 per 1,000 pieces. Data 1/0 and Digital Media both support PAD programming.

TI is also offering a 6-ns ECL PAL in a ceramic DIP for less than \$20. The TIEPAL10H16P8 conforms to the 10KH logic levels and is said to demonstrate 99% yields.

AMD is hot on TI's heels with "standard" TTL PALS rather than new architectures. AMD's 16R8, 16R6, 16L8, and 16R4 are now available in 7.5-ns versions, a mere 0.5 ns slower than the PAD. The parts draw 180 mA maximum (140 to 150 mA typical) and are being distributed at \$10.45 per 100. It is worth noting that these parts are the commonest programmable devices in use and so are likely to be

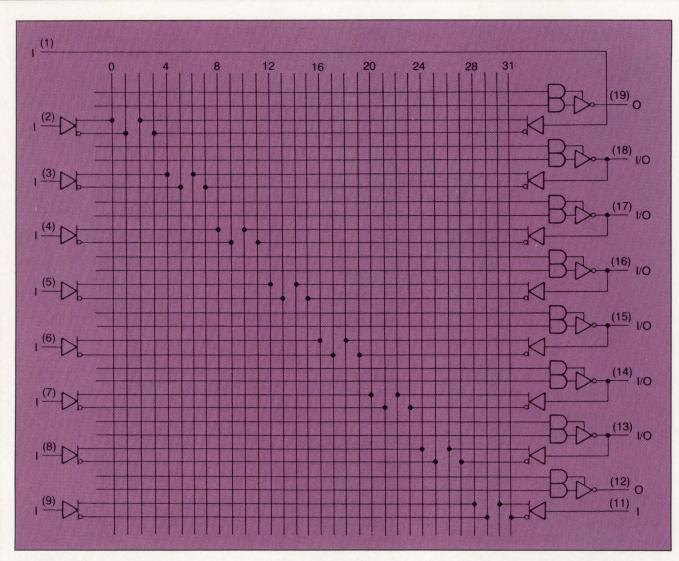


FIGURE 3. Opting for simplicity, Texas Instruments' programmable address decoder (PAD) achieves a maximum delay of 7 ns.

preferred by many. AMD is also offering the 22V10 in a 15ns grade at \$16.45 per 100.

Lattice Semiconductor is selling the fastest EEPLDs at present, clocking in with a 12-ns maximum delay. The GAL16V8A-12 and GAL20V8A-12 are priced at \$8.32 and \$9.51 each, respectively, for 100 units in plastic DIPs. Lattice is not currently offering a high-speed-grade version of the 22V10.

Gazelle Microcircuits has shaved 5 ns off AMD's highspeed 22V10 version by casting the chip in gallium arsenide. However, its 10-ns GA22V10 is about \$50 and must be laser-programmed by the manufacturer. The chip has nevertheless already achieved popularity in the high-end PC market, where it is being used in 25-MHz 80386 machines for cache control.

Gazelle's speed advantage will be difficult to maintain. For smaller functions, chips in TTL are already available that are faster than that offered by Gazelle in GaAs. However, GaAs performance is more stable with temperature variations, and power dissipation is lower. In fact, the war over power dissipation is just starting. Over the next year, we may well see a narrowing in the speed margins between the different product offerings and, at the same time, a greater focus on power dissipation per gate equivalent.

REFERENCES

Meyer, E. October 1987. "Programmable Logic Overview," VLSI Systems Design.

Mohsen, A. August 1988. "Desktop-Configurable Channeled Gate Arrays," VLSI Systems Design.

ABOUT THE AUTHOR

Ernest Meyer is a free-lance writer and editorial consultant, as well as a contributing writer and columnist for *Supercomputing Review* and *Embedded Systems Programming*. Previously, he was an editor at *VLSI Systems Design*. He has worked on the design of various electronic systems, including an Apple-compatible microcomputer and a music synthesizer.

IF YOU WANT YOUR ASIC DESIGN TO WIN TOP HONORS,

YOU'RE GOING TO HAVE TO HIT THE BOOKS IN OUR LIBRARY.

ORATION

And when you do hit our books you'll discover why SMC[®]'s application specific integrated circuits have been a hit, winning integration into the designs of leading systems manufacturers for over 17 years. Our Components Catalog comprehensively covers the breakthrough microperipheral MOS/LSI and MOS/VLSI circuits that made us the source for solutions in CRT displays, data communications, mass storage devices and local area networks. And they've evolved into the SuperCell[™] based ASIC design offerings covered by our II and III Micron Customation[™] Catalogs . . . solutions that optimally address your specific application needs. So graduate to the ASIC supplier that's become a component in the designs of many of the most honored manufacturers-Standard Microsystems Corporation.

SMC* is a registered trademark, CUSTOMATION $^{\rm TM}$ and Super Cell $^{\rm TM}$ are trademarks of Standard Microsystems Corporation.

Dear SMC:

Please honor me with the following free books from your library:

- 1988 Components Catalog
- 1987 Customation II Micron Standard Cell Catalog
 1988 Customation III Micron Standard Cell Catalog
- NAME

*	11	-		-	
1	ľ	TI	Γ.	E	

COMPANY

ADDRESS. CITY____

PHONE (

_____ STATE

ZIP

35 Marcus Blvd., Hauppauge, NY 11788

Most simulation systems tell you as much about your ASIC design as this tells you about the Statue of Liberty.

Get the full picture of your ASIC design's performance. Get the IKOS Simulation System. IKOS gives you more simulation information in less time than any other system. Simulate 15,000 gates with 34,000 vectors in 34 seconds. Or 8,500 gates with 5,100 vectors in 4 seconds. Complete with detailed timing information!

IKOS is a comprehensive ASIC simulation system incorporating a combination of sophisticated software and hardware components that run on the Sun, Apollo,

or IBM PC/AT platforms. It provides you with a streamlined, high-speed approach to stimulus entry, logic and fault simulation, analysis, and ASIC library support. And, it integrates easily into your existing design environment.

IKOS gives you a tremendous performance advantage.

You enter stimulus the way you visualize it — by drawing waveforms. Powerful signal modeling features allow you to easily and realistically simulate asynchronous signals and interfaces.

With IKOS' real time logic analyzer you can run simulations interactively, pinpointing signals and conditions of interest. Gone are the tedious hours spent pouring over long output listings.

There's no limit to the number of test cases you can generate and analyze with IKOS. You'll be able to simulate seconds, *even minutes* of real time system operation. And, gain the confidence that your ASIC design works as you intended it to. IKOS comes complete with all the simulation tools you need – at a low price. Use IKOS to get your ASIC design right *before* committing to manufacturing. It's almost as easy as snapping a picture. Give us a call.

Sun is a trademark of Sun Microsystems. Apollo is a trademark of Apollo Computer, Inc. IBM PC/AT is a trademark of International Business Machines Corporation.

Without the IKOS Simulation System, most ASIC design mistakes show up after production.

CIRCLE NUMBER 15

II DESIGN TOOLS & METHODOLOGIES

56 THE ROLE OF LOGIC SYNTHESIS IN SILICON COMPILATION

Misha R. Burich, Silicon Compiler Systems Corp.

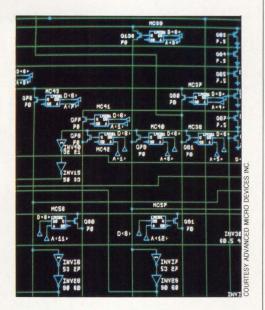
Logic synthesis's key role will be as a consistent piece of a design environment that includes design capture, simulation, logical design analysis, and manufacturing support, the author maintains.

64 VHDL FOR ASIC DESIGN AND VERIFICATION

Rick Sullivan and Lisa R. Asher, Viewlogic Systems Inc.

Starting in October 1988, all ASIC designs submitted to the Department of Defense must be accompanied by behavioral and structural descriptions written in VHDL. The authors present a top-down design verification methodology for large ASICs, using the appropriate subset of VHDL.

74 ADVANCED MODELING TECHNOLOGIES FOR LOGIC SIMULATION


William B. Fazakerly and Robert P. Smith, Ikos Systems Inc.

Smaller device geometries increase the need for more accurate timing models for logic simulation. Table look-ups and linear interpolation techniques deliver a high degree of accuracy.

86 LINKING DESIGN AND TEST FOR ASIC PROTOTYPE TEST DEVELOPMENT

Eric Archambeau, Teresa Butzerin, and Dave Roth, VLSI Technology Inc.

Developing test programs for ASIC prototypes is still a major bottleneck in the semicustom development cycle. The test vector generation methodology described guarantees that test vectors will always convert to the cycle-based world of testers, while guarding against race conditions and other hazards.

Odds are 50-50 your perfect ASIC is a perfect dud the first time you plug it in.

That's why Mentor Graphics lets you combine ASIC and board circuitry in a single simulation.

Trouble in ASIC paradise.

The big day has arrived.

Your first gate array is back from the foundry. With high expectations, you plug it into your board and power up.

It doesn't work.

Don't feel alone. Over 50% of ASICs aren't operational when first installed in their target system. Even though 95% pass their foundry tests with flying colors.

An immediate solution.

Mentor Graphics shifts these even odds heavily in your favor with our QuickSim[™] logic simulator, which lets you simulate both your ASIC and board circuitry in a single run.

With QuickSim, you not only track the internal operations of your ASIC circuitry, but also its transactions with the system at large. If there's a problem, you see precisely where it's located, either inside or outside your ASIC. All in a single, interactive simulation environment, where you can view and graphically "probe" the circuitry created by our NETED[™] schematic editor.

Check out our libraries.

Library support is an ideal benchmark to gauge the true worth of an electronic design automation system. The more diverse and plentiful the component modeling libraries, the greater the design capability. It's as simple as that.

By this simple, yet decisive measure, Mentor Graphics brings you unequaled design capability. While other EDA vendors scurry to produce their own ASIC libraries (with little guarantee of accuracy), more ASIC vendors put their libraries on Mentor Graphics workstations than any other. And in most cases, we're the first workstation supported, which means you have the first shot at exploiting new chip technologies.

With Mentor Graphics, you get a breadth of LSI and VLSI component models, both hardware and software based. All of which can be mixed with ASICs in a single simulation that cuts your run time to an absolute minimum.

To be continued.

So much for the present. We're already developing new EDA tools for systems design that will extend to every dimension of electronic product development. From high-level systems descriptions to CASE. It's what our customers expect. It's what we'll deliver.

It's all part of a vision unique to Mentor Graphics, the leader in electronic design automation. Let us show you where this vision can take you.

Call us toll-free for an overview brochure and the number of your nearest sales office.

Phone 1-800-547-7390 (in Oregon call 284-7357).

> Asia Pacific Headquarters Tokyo, Japan Phone: 81-3-505-4800 Telex: 2427612

Middle East, Far East, Asia, South America Mentor Graphics Corporation International Department Beaverton, Oregon, U.S.A.: Phone: 503-626-7000 Telex: 160577

Mentor Graphics Corporation European Headquarters Velizy, France: Phone: 33-1-39-46-9604 Telex: 696805

Mentor Graphics Corporation North American Headquarters Beaverton, Oregon: Phone: 503-626-7000 Telex: 160577.

Yourideas. Our experience.

THE ROLE OF LOGIC SYNTHESIS IN SILICON COMPILATION

Misha R. Burich, Silicon Compiler Systems Corp., San Jose, Calif.

ogic synthesis converts register- and logic-level design descriptions into detailed logic implementations. In so doing, it frees designers of both application-specific ICs and standard ICs from dependence on a specific technology. At the same time, it delivers a highlevel design paradigm and makes possible global optimizations of designs that are too complex to be done by hand. Because silicon compilation delivers some of the same benefits, logic synthesis has become part of silicon compilation products, and it will play an even more important role in future products.

Logic synthesis software attempts to create an implementation that is efficient whether the design is realized as a gate array, a standard-cell IC, or a custom, compiled chip. To meet that goal, it must be integrated with design

capture, analysis, verification, and test generation tools. Thus at some companies, including Silicon Compiler Systems (SCS), logic synthesis is seen as part of a design environment that includes simulation, logical analysis, and manufacturing support (for example, test vectors and netlist database).

SILICON COMPILATION IN IC DESIGN

ASIC and IC design automation is helping engineers construct increasingly complex ICS. Today, chip designs with tens of thousands of gates are becoming very common, and size and complexity will continue to grow. Furthermore, IC process technology can handle hundreds of thousands of gates. Consequently, the design automation tools—for both the front and back ends—must keep pace with the capabilities of process technology.

The front end of the design process comprises design capture and verification of the architecture, detailed logic implementation of the architectural components, and simulation and timing verification of the logic implementation. Logic synthesis plays a role in automating the logic implementation of some or all of the architectural components.

The back end of the design process completes the physical layout, verifies functionality and performance, and checks for design rule violations. Further, the libraries of models used in the design are as critical as the verification tools because they tie the front and back ends together, allowing the entire process to be optimized. Silicon compilation can supply all the requisite elements of both ends of design (Figure 1).

Silicon compilation has become a leading IC design automation discipline because its rapid iterations make it the most productive methodology for both cell-based ASICS and standard parts. To get an idea of its range, note that

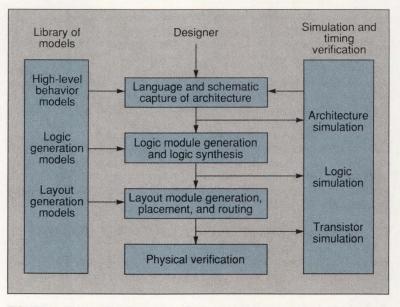


FIGURE 1. The design flow of a silicon compilation system includes logic synthesis to generate unstructured blocks of logic that are not efficiently designed with logic modules. silicon compilation was used to design the CPU chip set for Tandem's CLX workstation as custom ASICs and the Motorola 88000 RISC chip set as standard parts. Indeed, silicon compilation is especially suited for complex ASICs and multichip designs ranging in density from 10,000 to over 200,000 gates.

Silicon compilation yields rapid iterations at any level of the design process, a capability essential for building complex systems. It improves productivity by integrating into a unified environment some key technologies: design capture, logic synthesis, mixed-mode simulation, timing analysis, test vector generation, cell and module compilation, and placement and routing. Related technologies like computer graphics, high-level languages, and design database management complete the environment.

LOGIC SYNTHESIS JOINS COMPILATION

Logic synthesis is one of the latest additions to the set of silicon compilation tools. In our view, logic synthesis is a subset of high-level behavioral synthesis. Behavioral synthesis itself begins with a functional description of a system—simply put, what the system does. It results in a structural description of the design, consisting of highlevel logic elements, like registers and memories. These specifications can take several forms: logic equations, state machine descriptions, truth tables, or descrip-

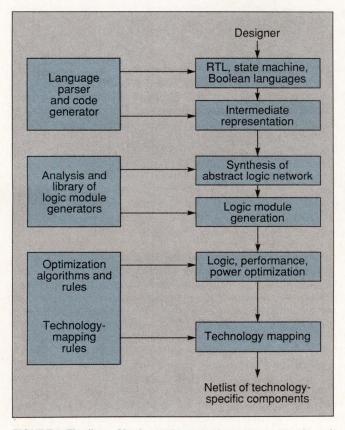


FIGURE 2. The flow of logic synthesis includes several tools and representations of the design.

tions in a structural language.

Logic synthesis converts such high-level logic specifications into detailed logic descriptions. These final descriptions contain the primitives in a particular cellbased technology. In the case of gate arrays and standard cells, the library of primitives consists of specific gates, such as AND gates and flip-flops. More advanced libraries, as found in silicon compilation systems, include higherlevel components like adders, ALUS, multipliers, RAM, ROM, and PLAS.

Logic synthesis systems run through a series of steps that include language parsing of the design input, logic module generation, logic optimization, power consumption optimization, and technology mapping (Figure 2). The element first entered into a system is the logic specification (which, as noted above, may take several forms). The input is processed by a parser, which constructs an intermediate representation that can be analyzed by the software tools, which convert it into an abstract logic network.

A logic network can also be arrived at through schematic capture and then entered into a logic synthesis system. One of the benefits of silicon compilation is that it allows a user to capture designs that contain highlevel, parameterizable cells (Figure 3). The resultant network consists of generalized logic functions, arithmetic functions, and memory elements.

Synthesis then proceeds to generate the logic modules for all of the higher-level functions. (Logic module generation is a very important aspect of synthesis and is discussed later in more detail.)

At this point, the logic synthesis tool optimizes the logic, performance, and power consumption. This important step creates a schematic of the synthesized logic that minimizes the composite-cost function while attempting to satisfy the performance constraints specified by the user. (Figure 4 shows a portion of an automatically generated schematic of the logic that was synthesized from the input in Figure 3.)

The final step is the technology mapping. This procedure begins with the derived logic network and updates it with components from the chosen implementation technology—bipolar or CMOS gate arrays, standard cells, or compiled-cell libraries. Some logic synthesizers combine optimization and technology mapping in a single step.

PARSERS AND GENERATORS

The input for logic synthesis systems contains register-transfer-level (RTL) languages and finite state machine descriptions. Boolean equations are a subset of these descriptions. VHDL is one of the many languages that fall into this category; in fact, it is emerging as a standard language for synthesis, in addition to its role as a behavioral modeling language. The input languages describe how a circuit functions. A parameterized ALU description in the scs logic description language, for instance, would show several aspects of a specification. For example, the functional description could take the form of a list of parameters, say, the width of the ALU (Figure 5). Therefore, this functional description can be used for ALUS with any num-

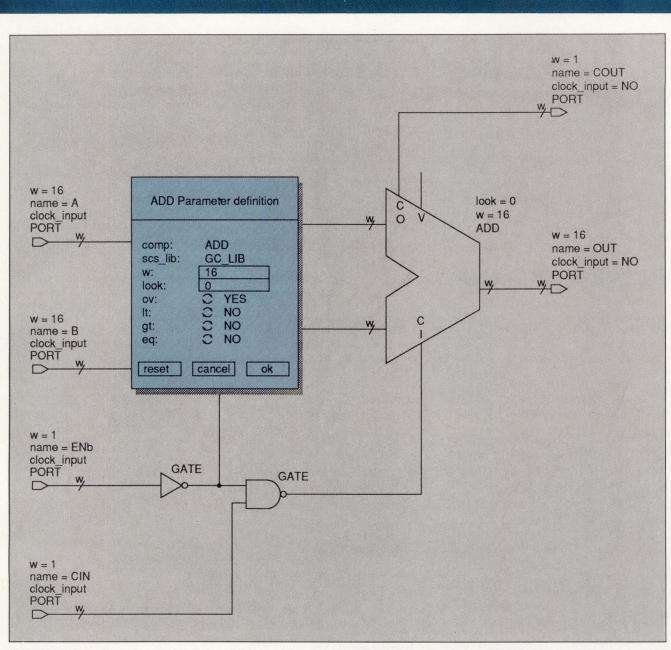


FIGURE 3. Schematic capture within the compilation system combines logic gates with parameterized cells.

ber of bits.

In addition to the data types ("int, ""struct, "and "list") traditionally found in programming languages, a logic description language supports the data types for externally visible signals ("ports") and internal signals ("sig"). In this example, the op-code signal "OP" controls the function of the ALU. The add op code is 0; the subtract op codes are 1 and 2. The result is latched into an output D latch on CLK.

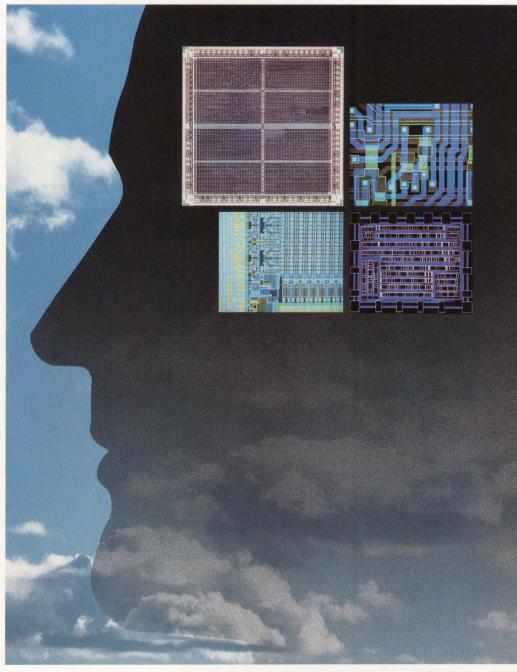
Such logic descriptions are processed by a parser, which constructs the intermediate parse-tree description that unlike the language description, can be read by the logic synthesis tools. These tools analyze the parse tree and create a network of abstract gates, latches, adders, shifters, and other arithmetic functions. Logic synthesis then continues, generating the logic modules.

A logic module generator (also known as a module or block compiler) is a program that takes a high-level description and from it generates all necessary views of the module for the designer: layout view, simulation view, timing analysis view, and a schematic symbol view for design capture. Module generators can be constructed to produce logic netlists as well.

Logic module generators are very important for logic synthesis. They can represent very-high-level functions and contain user-specified parameters. These generators are developed by expert IC and logic designers whose prowess they capture. ASIC designers then leverage this expertise when capturing the design.

The following example of a multiplier logic-module gen-

The state-of-the-art in gate array design is a Silvar-Lisco product. Again!


Introducing AVANT GARDS.™ For VLSI sea-of-gates arrays. With 150,000 gates on a chip. And more to come.

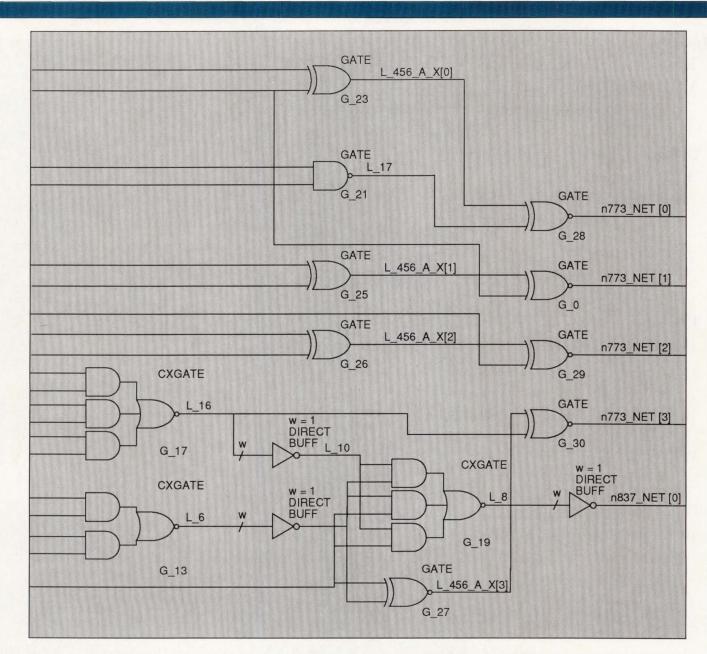
Until now, the state-of-the-art in gate array design systems was Silvar-Lisco's GARDS.™ But not anymore.

AVANT GARDS,[™] Advanced Gate Array Design System can place and route over 150,000 gates on a single chip using sea-of-gates and threelayer designs. With gate utilization as high as 90%. Adhering to your timing specifications. In less than a week. And supported by the most popular foundries.

That's the *new* state-of-the-art in gate array design. And it's also a Silvar-Lisco product.

But AVANT GARDS[™] isn't alone. Silvar-Lisco's cellbased and full custom chip layout software are state-ofthe-art as well. And they get better all the time because we improve them all the time. All of them fully integrated with Silvar-Lisco's full line of CAE software that takes you from design capture through mask data preparation. All production proven in thousands of designs.

Silvar-Lisco Offices Corporate Headquarters 1080 Marsh Road Menlo Park, CA 94025 Telephone: (415) 324-0700


European Headquarters Brussels, Belgium Telephone: 32-16-200016

Far East Headquarters Nihon Silvar-Lisco Tokyo, Japan Telephone: 81-3-449-5831

SILVAR-LISCO

CAE Software products for electronic design

Call or write to get detailed literature about the IC layout products that have made Silvar-Lisco the world's leading CAE software company.

FIGURE 4. The logic synthesizer created this logic from the schematic input in Figure 3. Only a portion is shown.

erator incorporates several user-specified parameters:

Func Multiplier (n_bits, m_bits, accumulator) int n_bits; /* number of bits for multiplier */ int m_bits; /* number of bits for multiplicand */ int accumulator; /* optional accumulator*/

This generator creates $n \times m$ -bit multipliers with optional accumulators for summing up. It produces a gatelevel description of a multiplier with any specific set of parameters, which may range from 2 bits to 64 bits.

Module generator libraries contain parameterized system components like logic gates, adders, counters, data paths, RAM, ROM, PLAS, multipliers, and core microprocessors. The tools for developing module generators consist of interactive graphics editors, specialized languages, simulation and characterization programs, and behavioraland functional-modeling tools. In particular, logic module generators are best developed by ASIC CAD departments, in a structural modeling language. Such a language has to support all traditional language constructs but must also support logic parameterization and netlist connectivity.

OPTIMIZATION AND MAPPING

Logic and performance optimization takes place once the logic network is constructed from the language parsing and logic module generated. Most optimization techniques are based on algebraic or rule-based methods. Some of them combine the two. The traditional optimi-

func alu (width)	
int width;/*inputpar	rameter is the ALU width*/
{	
port CC; port CLK CLK; port R R[width]; port S S [width]; port Y Y [width]; port OP OP [3]; sig Yunl [width];	/*carry in*/ /*clock*/ /*input R of variable width*/ /*input S of variable width*/ /*output Y of variable width*/ /*input op-code for the ALU function*/ /*internal unlatched result*/
Yun) = (select OF case): (R + 1 case 1: ((S - case 2: ((R - case 3: (R S case 4: (R & S case 5: (R << case 5: (R < case 7: (R >> })	S + C; /* add with carry */ R) - C; /* subtract R from S 8/ S) - C; /* subtract S from R */); /* logic or */ S); /* logic or */ < 1); /* shift R left */); /* exclusive or */ < 1); /* shift R right */
Y = diff(Yunl, CL }	K); /* latch result */

FIGURE 5. The language specification for an ALU shows the use of parameters (width) and data types for I/O signals ("ports") and internal signals ("sig").

zation algorithms, used primarily for PLA and PLD optimization, operate only on two-level logic networks. Multilevel optimization methods are more useful because they can improve sequential circuits as well as combinatorial ones.

Performance optimization is essential for a logic synthesis system. The user wants to specify critical paths to be optimized, timing constraints among signals, and clock cycle duration. To do so, the logic synthesis system must contain a built-in critical-path analyzer that evaluates possible approaches.

Technology mapping produces the final implementation of the desired function in the form of a network of specific library components. For example, the design can be mapped into a bipolar or CMOS gate array, standard cells, or a compiled-cell library. Each of these libraries may contain different logic and memory primitives. Between the libraries, the primitives may have different timing delays, loading constraints, and interconnect constraints. For this reason, a logic synthesis system should combine logic and performance optimization with the technology-mapping information and rules.

SYNTHESIZING LAYOUT

Logic synthesis is a technology for transforming and optimizing a high-level description of a complex function into a netlist of primitive logic gates. Logic synthesis has become important to silicon compilation because it provides an additional mechanism for synthesizing layout for parts of a chip or for an entire chip. This mechanism applies standard-cell placement and routing software to the optimized gate-level netlist. By combining logic synthesis and layout tools in one environment, silicon compilation tools provide a tighter link to layout and allow the designer to leverage the logic optimization in the layout and vice versa.

One example of a combined logic synthesis and standard-cell layout system is SCS's LogicCompiler, a rule-driven system combined with parameterized, standard-cell layout.

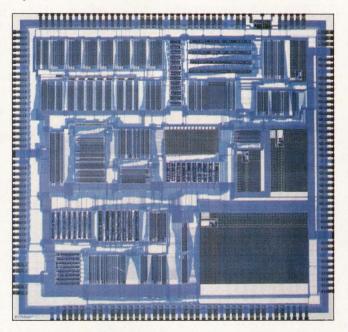


FIGURE 6. This 100,000-transistor RISC processor contains 16 major blocks, 6 built from logic synthesis tools and 10 created by module generators.

The compiler accepts input descriptions in many forms: logic equations, state equations, schematic diagrams, netlists, structural descriptions, and module-generator parameters. Its primary application is those parts of a design that are not inherently highly structured. Random logic, control logic, and smaller arrays can often be significantly reduced in size by efficient optimization.

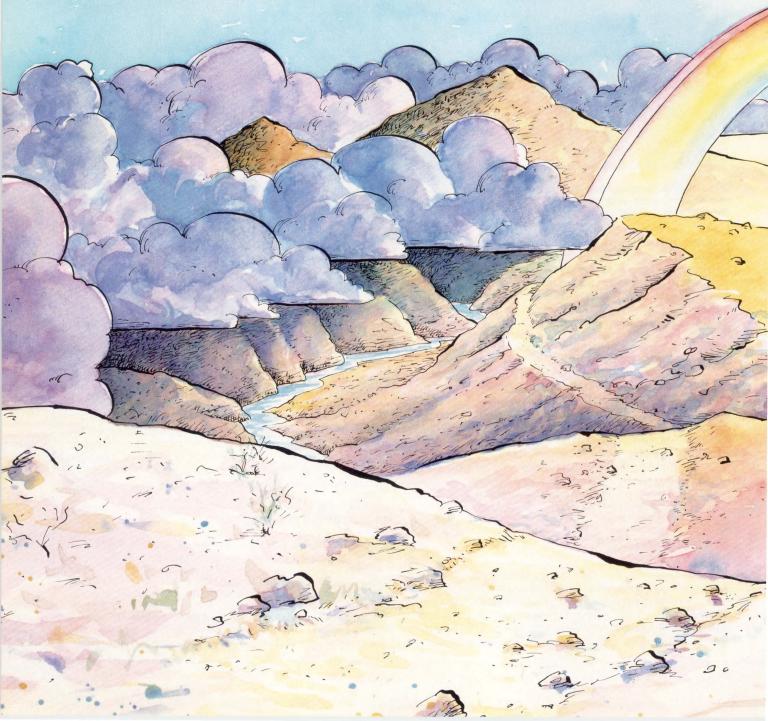
An illustration of the power of logic synthesis within silicon compilation can be seen in a design that was run through LogicCompiler (Figure 6). Six of the 16 major blocks were prepared with the compiler. The others were designed using specific module generators. This custom RISC processor has about 100,000 transistors.

ABOUT THE AUTHOR

Misha R. Burich has been vice president of engineering at Silicon Compiler Systems (scs) since April 1987. He was a cofounder of Silicon Design Labs in Warren, N.J., and its vice president of engineering from January 1984 until it merged with Silicon Compilers Inc. to form scs. He has been responsible for managing product development. Earlier, Burich taught and worked at Bell Laboratories. He obtained his Ms and PhD degrees from the University of Minnesota and his Dipl. Ing. from the University of Belgrade, Yugoslavia, all in electrical engineering.

CĀDENCE. For a full spectr

ECAD and SDA have joined forces to offer you an integrated family of IC design solutions from a single source-CADENCE.


Out of the merger of ECAD and SDA, a clear leader has emerged from the storm of IC CAD vendors. CADENCE. A company with the products, support and R&D resources to provide the integrated, high-performance design solutions you need today.

What you can expect from CADENCE.

... A merging of the best IC design technologies—SDA's Design

Framework[™] combined with highperformance tools, like ECAD's Dracula[™] and Symbad.[™] The combination increases your productivity and gets your designs to market faster than ever before.

... A uniting of two world-class software development groups to

um of IC design solutions.

create the largest and best R&D team of its kind – all dedicated to solving your IC design challenges.

... A future as bright as the rainbow itself. Two great design technologies, two world-class R&D teams and the worldwide sales and support resources to back them up. A total commitment to the success of your next IC design.

Look to the end of the rainbow... and discover CADENCE.

Send now for our new capabilities brochure and find out how to make your design dreams come true. CADENCE, 555 River Oaks Parkway, San Jose, CA 95134. 408/943-1234.

CIRCLE NUMBER 18

11

VHDL FOR ASIC DESIGN AND VERIFICATION

Rick Sullivan and Lisa R. Asher, Viewlogic Systems Inc., Marlboro, Mass.

wing in part to its recent ratification as IEEE Standard 1076–1987, VHDL (VHSIC Hardware Description Language) is rapidly gaining momentum as an industry-standard hardware description language. Its usage will be further accelerated by the recent Department of Defense mandate that all ASIC designs submitted under contract must be accompanied by VHDL models. This mandate is encompassed within Military Standard 454, which states that "ASICs designed after September 30, 1988, shall be documented by means of structural and behavioral VHDL descriptions."

This article describes a rigorous top-down design methodology for ASICS, employing a behavioral subset of VHDL. The goal of this methodology is to enable the production of higher-quality chips with fewer postfabrication design changes. As a by-product, it will produce the behavioral and structural VHDL modules required by Mil-Std-454.

The main benefits of the method are:

- Simplified project planning, achieved by splitting the problem into smaller, independent problems
- The creation of rigorous design specs (VHDL behavioral models), prior to implementation, which can clarify design requirements and lead to cleaner designs
- Identification of design flaws early in the design cycle, when the cost to fix problems is minimal
- The creation of VHDL behavioral models that can be used in system simulations before the ASIC has been designed.

Certain CAE tools are required for this design method. These tools are collectively referred to as the "host CAE system." A good schematic editor is assumed. Other features specific to this design method are highlighted and discussed below; particularly important is the ability to simulate behavioral VHDL models within the ASIC design cycle, as opposed to once at the end of the design.

As an illustration, we will use a circuit that implements a parallel hardware sorting algorithm. This circuit would occupy about 11,000 gates in a typical gate array. Its basic function is to shift in a stream of up to 256 sixteen-bit unsigned integers and shift them out in ascending order.

VHDL SUBSET FOR BEHAVIORAL MODELING

VHDL includes constructs that support diverse design styles (Lipsett, Marschner, and Shahdad, 1986; Barton, 1988 and June 1988), allowing designers to specify structural, data-flow, and behavioral models. This broad coverage of methodologies is necessary because VHDL models must serve as self-contained specifications for design transfer. However, when using VHDL as a design tool, users find that a particular design style employs only a subset of VHDL's features. In fact, when required by contract or design methodology to produce models at a specific level, users must restrict themselves to a defined subset of the language. The VHDL subset described here applies to behavioral modeling. Tools that implement this subset adequately support modeling at the behavioral level, and users who adhere to this subset can be confident that their models lie within the behavioral domain of VHDL.

In general, a VHDL model has two parts: an entity declaration and one or more alternative architecture bodies. The entity declaration defines a device's external interface, and each architecture body describes one implementation of the entity. An architecture body can include instances of other components and define their logical interconnections, specifying the internal structure of the entity; or it can contain behavioral process statements, defining an algorithm that produces new values for the entity's outputs. Architecture bodies can also contain concurrent signal assignments, which are data-flow constructs that specify new values of output signals as a function of input signal values. These statements, as well as two other kinds of concurrent statements, concurrent assertion statements and concurrent procedure calls, can be represented as semantically equivalent process statements (IEEE, 1988).

An architecture body may contain these three construct types in any combination. However, a purely behavioral architecture body specifies none of the internal structure of a device; instead, it captures the device's externally visible function, or behavior, at its top level (IEEE, 1988; Barton, June 1988). Since IEEE–1076 stipulates that a behavioral architecture body does not instantiate lower-level

TEXAS INSTRUMENTS REPORTS ON SYSTEMS LOGIC

IN THE ERA OF INTHE ERA OF INTHE ERA OF

Systems logic in the Era of MegaChip Technologies:

No system should ever be limited by its to help your design perform at its best.

Up to 65% of the components in today's systems are logic. Such a large proportion demands that your logic devices perform on a par with other advanced building blocks and be chosen with equal care. Systems logic alternatives from Texas Instruments can help you better realize the performance potential of your system design.

ithin months after demonstrating the first working integrated circuit 30 years ago, Texas Instruments introduced a commercially available logic function, an RS flip-flop. With that beginning, TI established a tradition of development and innovation in logic that encompasses the industry-standard SN54/74 Series TTL and the new families of advanced logic described here that can add significantly to the value and performance of your overall system.

For example, for systems that require off-the-shelf flexibility with a degree of customization, TI's Programmable Logic Devices (PLDs) include popular 10-ns PAL®ICs available in high volume. And, to keep pace with today's high-speed microprocessors, TI plans to continue to drive PLD performance to sub-10-ns speeds.

TI's Advanced CMOS Logic (ACL) supports the design goal of high perfor-

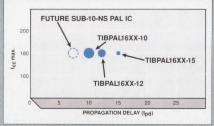
ON THE COVER: Suspended above the board, provided by Rockwell International, Missile Systems Division, are military versions of TI advanced logic devices.

mance combined with low-power operation, while TI's new BiCMOS bus-interface family delivers very high drive current at very low power compared to bipolar circuits.

TI's MegaChip Technologies

Our emphasis on high-density memories is the catalyst for ongoing advances in how we design, process, and manufacture semiconductors and in how we serve our customers. These are our MegaChip[™] Technologies, and they are the means by which we can help you and your company get to market faster with better products. For systems requiring moderate densities and fast prototype cycle times, TI offers a new series of one-micron CMOS gate arrays. When you need higher levels of integration plus increased design flexibility, TI's one-micron CMOS standard cells provide the means for system consolidation.

And for military applications, TI offers a wide choice of high-reliability logic functions.


On the following pages are details of what you can expect from TI's range of logic options: Contributing significantly to fast address decoding in speed-critical paths of the COMPAQ DESKPRO 386/20TM personal computer processor board are two TIBPAL16L8-10 PAL circuits from TI (pictured above a segment of the board).

Deed your system to market with TI's superfast PLDs.

PLDs are a functional alternative to standard logic ICs and gate arrays or standard cells.

Because TI's PLDs are off-the-shelf items you program yourself, you avoid the longer design cycle times of custom ICs and move on to market faster. These PLDs offer very attractive performance advantages. Consider these:

- TIBPAL 16XX-10 PAL ICs from TI deliver a 10-ns propagation delay and are available in quantity. Clock-to-Q time is 8 ns, and output-registered toggle frequency is 62.5 MHz. IMPACT-X[™] technology gives these PAL ICs their superior speed; they are well suited for use with high-speed processors such as the Motorola 68030, the Intel 80386, and RISC-based architectures. The 10-ns performance brings a higher level of integration to speed-critical paths.
- TI's TIEPAL10H16P8-6 IMPACT[™] ECL PAL circuit delivers even faster operation: 6-ns propagation delay max. You can now streamline-conventional ECL designs by consolidating several discrete components into a single custom function.
- TI's new 7-ns Programmable Address Decoder is intended to help you squeeze more performance out of memory interface systems. By performing address decoding much faster than conventional PAL architectures—in 7 ns—the TIBPAD16N8-7 allows you to take advantage of the new processors

TI's PAL IC road map shows consistent power and consistently higher speeds, with even faster versions on the way.

to increase overall system performance.

- TI's 50-MHz Programmable State Machines (PSMs), TIB825S105B (16 x 48 x 8) and '167B (14 x 48 x 6), are ideal for use in high-performance computing, memory interface, telecommunications, and graphics. These PSMs may be used to implement custom sequential logic designs such as peripheral I/O controllers and videoblanking controllers.
- The TIBPAL22VP10-20, with a 20-ns delay, is 20% faster than the competition's "A" version and much more flexible. A programmable output macrocell allows two extra, exclusive output configurations, for a total of six.
- TI's TICPAL16XX Series 20-pin CMOS PAL ICs are the cure for power problems. They operate at virtually zero standby power and are reliable, high-performance replacements for conventional TTL and HCMOS logic. The devices can be erased and reprogrammed repeatedly.

et high speed, low power, and low noise with TI's broad ACL family.

It's an extensive family that includes gates, flip-flops, latches, registers, drivers, and transceivers. It's a readily available family in DIP and SOIC packages. It's TI's high-performance EPIC[™] ACL family, bringing with it an important bonus—major reductions in noise.

Family speed is comparable to advanced bipolar 54/74F; 24 mA of

When every nanosecond counts, TI's new high-performance ACL family can help you significantly improve system speed.

sink/source current will drive 50-ohm transmission lines; and low power is characteristic of TI's EPIC technology. All this with "ground bounce" substantially reduced compared with end-pin ACL. The reasons are innovative packaging and a circuit-design technique called OEC[™] (Output Edge Control) which softens the transition states that cause simultaneous switching noise. In fact, EPIC ACL noise levels are typically 10% less than those of bipolar devices.

The rapidly increasing customer acceptance of TI's ACL family confirms its noise-reduction advantages and its ease of use.

System design advantages

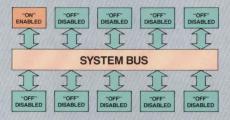
A unique "flow-through architecture" simplifies board design, layout, and troubleshooting. Inputs surround power pins on one side, outputs on the other, and control pins are strategically located at the package ends.

From a systems perspective, TI's arrangement offers the lowest-cost design when compared to end-pin ACL.

Because in circumventing noise problems, end-pin designs can require additional components that take up to 32% more board area and slow system performance.

There are 146 functions, in both AC and ACT versions, currently announced in TI's ACL family, including such innovative, highly complex functions as advanced transceivers, line drivers, latches, feedback registers, multiplexers, and counters.

This ACL family, developed in cooperation with and supported by Philips/Signetics, fully meets JEDEC industry-standard No. 20 specifications for Advanced CMOS Logic.


High-performance, low-power EPIC Advanced CMOS Logic and BiCMOS businterface devices (suspended above the board) helped new Multibus single-board computer achieve substantial power reductions.

ut power, not speed or drive, with TI's BiCMOS bus-interface ICs.

This new family is a simple, effective means to reduce system power consumption without compromising advanced performance.

As the BiCMOS name implies, TI combines bipolar IMPACT and CMOS processing to achieve switching speeds comparable to advanced bipolar products and provide the 48/64-mA drive current needed for high-capacitive loads and backplanes. In particular, family memindustry-standard buses such as Multibus[®] and VMEbus[™] In addition, TI's BiCMOS devices can reduce disabled currents by 95% and active currents by 50%-80% compared to bipolar equivalents. Result: System IC power savings can be more than 25%.

There are more than 60 functions comprising TI's BiCMOS bus-interface family. Included are 8-, 9-, and 10-bit latches, buffers, drivers, and transceivers—a wide choice that means you can easily find what you need to implement highperformance bus-interface designs.

An innovative circuit design in TI's BiCMOS bus-interface logic helps lower disabled currents. This is key to overall power savings because in a typical bus network only one device is enabled at a time.

Chieve higher integration more confidently with TI's new one-micron ASIC family.

Now, you can integrate more of your systems logic using TI's new one-micron CMOS ASIC (application-specific integrated circuit) family—the TGC100 Series gate arrays and the TSC500 Series standard cells. Each offers different degrees of design flexibility and system integration. The result is significantly reduced component count which cuts board size and system cost while improving reliability and performance.

And TI is supporting the family with comprehensive kits that help minimize design cost, risk, and time by providing a comfortable, easy-to-use design environment.

Efficient logic consolidation Using TI's new TGC100 Series gate arrays, you can sweep major chunks of "glue logic" into a single device while realizing fast design and prototype cycle times. Array densities currently range to more than 8K usable gates and 142 bond pads; the Series will be extended to more than 16K usable gates and 216 bond pads in a major production release planned for late 1988. Prototype delivery is typically two to three weeks from approval of postlayout simulation results.

The TGC100 Series Design Kit gives you complete autonomy and control over the design process. It is a comprehensive set of the tools required for successful gate-array design and validation (see last page for details).

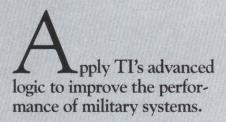
Standard packages for the TGC100 Series range from 28-pin DIPs to 84-pin PLCCs, with optional packages up to 144 pins.

System consolidation on a chip

For applications requiring maximum design flexibility and higher levels of integration, TI has disclosed its thirdgeneration standard-cell family, the TSC500 Series.

Complex system designs can be implemented using a growing core of basic SSI/MSI functions, as well as scan cells for testability and MegaModule™ building blocks such as register files. FIFOs, bit-slice family functions, RAM, and ROM are other aids to implementation. Output cells with drive capability up to 64 mA are available.

Package options include conventional through-hole DIPs, surface-mount PLCCs, and plastic quad flatpacks (QFPs) in both JEDEC and EIAJ standards, as well as high-pin-count plastic pin-grid arrays.


Both the TGC100 and TSC500 Series have a typical propagation gate delay of

logic. TI offers advanced logic families

Major logic consolidation, the equivalent of 252 MSI and LSI devices, was possible using the seven TI ASIC functions shown above the microExplorer™ board which brings symbolic ocessing to a MacIntosh II[®] desktop computer.

480 ps for a two-input NAND gate with a fanout of three; flip-flop toggle rates range up to 208 MHz. Both series offer output and bidirectional buffers with variable slew-rate control. And both series are fabricated in TI's high-performance EPIC process.

Among TI's broad selection of logic devices produced to military requirements is a large PAL family. Propagation delays as fast as 15 ns are available over the military temperature range. The introduction of a 12-ns, 20-pin PAL circuit is planned, as well as military versions of the TIB825S105B and '167B Programmable State Machines.

TI is offering military counterparts selected from its ACL family, as well as 54F functions. Soon to come will be the BiCMOS family of bus-interface functions.

Included among TPs lineup of military ASICs are versions of the one-micron TGC100 Series gate arrays discussed at left, as well as two-micron standard cells.

TI's logic devices are among the more than 800 military functions offered compliant to MIL-STD-883C, Class B. Of this total, TI provides more than 200 to DESC-standard military drawings and is qualified to supply 285 JM38510 Class B devices (QPL 75).

Milestones in Innovation

TI's tradition for milestone innovations extends from the infancy of semiconductor technology into the MegaChip Era. Among the major highlights:

- First commercial silicon transistor (1954)
 First commercially produced transistor
- radio (1954)
- First integrated circuit (1958)
- First integrated-circuit computer (1961)
- First hand-held calculator (1967)
- First single-chip microprocessor (1970)
 First single-chip microprocessor (1970)
- First single-chip microcomputer (1970)
 First single-chip speech synthesizer (1978)
- First advanced single-chip digital signal
- processor (1982)
- First video RAM (1984)
- First fully integrated trench memory cell (1985)
- First gallium arsenide (GaAs) LSI on silicon substrate (1986)
- First single-chip Artificial Intelligence microprocessor (1987)

Comprehensive support from TI helps you improve your design performance as you improve system performance.

To enable you to excel in designing the logic portion of your system for maximum performance, TI has compiled or is making available a wide range of design tools and aids:

PLDs: The TI PLD data book (472 pages) contains design and specification data for 78 device types. Four application notes are incorporated as a reference tool. A qualification book is available, and a state-machine design kit is forthcoming.

ACL and BiCMOS Bus Interface: TI's ACL data book (348 pages) contains detailed specifications and applications information on the members of the one-micron ACL family. The ACL designer's handbook (299 pages) spells out the technical issues confronting advanced-logic design engineers and describes methods for handling the issues. A qualification book (358 pages) features extensive reliability and characterization data, die photos, and application derating factors. Customer evaluation capability is enhanced by TI's system evaluation board (available for demonstration through TI field sales offices) and third-party characterization boards.

Data sheets are available on each member of TI's BiCMOS bus-interface family.

ASICs: The TGC100 Series Design Kit gives you the tools needed to successfully complete a gate-array design: A

Texas Instruments Incorporated P.O. Box 809066

Dallas, Texas 75380-9066

Yes, pleas	se send me the following:	
RYØ1	ASIC Information Packet	
DZØ1	Programmable Logic Device Data Book	
CAØ1	ACL/BiCMOS Information Packet	
CBØ1	BiCMOS Data Sheet Packet	

NAME			
TITLE			
COMPANY			
ADDRESS	1		
CITY	STATE	ZIP	
AREA CODE TELEPHON	IE EXT.		

Extensive design support available for TI's systems logic families includes that for the new TGC100 Series gate arrays (at top), Programmable Logic Devices (at left), and Advanced CMOS Logic.

macro library for Daisy or Mentor engineering workstations containing the graphic symbol and functional and simulation models for each macro; a software library of TI-specific software tools that streamline and simplify the design process; a design manual that answers "how to" questions about design-

SDVØ83VD8ØØC

ing with the TGC100 Series; a twovolume data manual providing detailed specifications for each macro in the TGC100 Series software library; and a software user's manual.

An equally comprehensive design kit for the TSC500 Series is currently in development.

For more information on TI's advanced systems logic ICs and their support tools, complete and return the coupon today. Or write: Texas Instruments Incorporated P.O. Box 809066

- Dallas, Texas 75380-9066
- TM MegaChip, IMPACT (Implanted Advanced Composed Technology), IMPACT-X, EPIC (Enhanced Performance Implanted CMOS), OEC, MegaModule, and microExplorer are trademarks of Texas Instruments Incorporated. COMPAQ DESKPRO 386/20 is a trademark of Compaq Computer Corporation. VMEbus is a trademark of Meturole Inc. Motorola, Inc.
- ® PAL is a registered trademark of Monolithic Memories Inc. Multibus is a registered trademark of Intel Corporation. Macintosh II is a registered trademark of Apple Computer, Inc. 1988 TI SDVRØ75 08-805⁶
- © 1988 TI

components but is composed of process statements and concurrent statements with equivalent process statements, a VHDL subset that applies to behavioral modeling includes process statements to capture component behavior, architecture bodies to enclose process statements, and entity declarations to define interfaces between behavioral models and the surrounding structure.

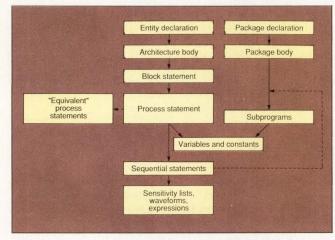


FIGURE 1. Grammar tree for the behavioral subset of VHDL.

The subset presented here is derived from the VHDL grammar(IEEE, 1988) by extracting the process statement and its components, plus all enclosing constructs necessary to build a complete design entity description (Figure 1.) Traversing the grammar tree down from the process statement to its leaves, we include sequential statements and constant and variable declarations. Traversing the tree up from the process statement to the root, we extract architecture bodies and entity declarations. Signal declarations are included to allow communication between processes and between behavioral models and enclosing structure. For convenient packaging of commonly used algorithms, subprograms and packages also are added.

Within this subset, a behavioral model consists of an entity declaration and one behavioral architecture body.

For the sorting chip, the entity declaration declares the model's name, "sorter," and its input and output pins, or ports (Figure 2). This model has two 16-bit data buses, "din" and "dout"; two clock lines, "phi1" and "phi2"; and four control lines.

The architecture body of such a behavioral model consists of a set of one or more process statements. These

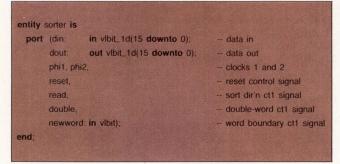


FIGURE 2. Entity declaration for the sorter ASIC.

processes execute concurrently, suspending and resuming execution in response to events on signals and conditions within the simulation.

Each process statement defines a sequential algorithm that calculates new values of its output signals as a function of the values of its input signals over time. This algorithm is represented by a series of executable statements, including *wait* statements; *if*, *case*, and *loop* statements; procedure calls; assertion statements; and variable and signal assignments.

The architecture body for the sorter ASIC contains two concurrent statements (Figure 3). The first, labeled "check," is a concurrent assertion statement that monitors the control signal "newword" and flags any attempt to use a feature that has not yet been implemented. This

constant width:	integer := 16; width of words to sort
constant length:	integer := 265; number of words to sort
begin	
concurrent assertion s	statement:
-flag attempt to use ur	nimplemented feature after initialization:
check: assert not (d	ouble='1' and now> 0ns)
'	eport "Double-word sorting is not implemented.";
•	
main sorting process:	
insert each new word	in order in data bank and emit sorted words:
main: process	
variable data:	vlbit_2d(0 to length -1 , 0 to width -1);
	data words in process of sort
variable inwix,	
outwix:integer :=	0, word indices for input, output
begin	
wait until newword = '	Ti wait for new word boundary
for clockperiod in	I to width -1 loop
wait until phi1 =	'1'; wait until phi2 = '1';
end loop;	wait for last clock period
wait until phit = "	1'; wait for start of clock period
dout <= data (out	wix); - emit next data word
wait until phi2 = '	1'; wait for second phase
if reset = '1' then	
	to length - 1 loop
	("FFFF"; initialize data bank
end loop;	
inwix := 0;	initialize data indices
outwix := 0;	
else	
if read = '1' the	
	+ 1) rem length;
	vix, din); insert next data word in order
else	increment output index
	vix + 1) rem length;
end if;	
end If;	
end process;	return to top of process

FIGURE 3. Behavioral architecture body for the sorter ASIC.

concurrent statement is equivalent to a process statement consisting of one sequential assertion statement; it becomes active whenever the signal "double" changes and then suspends until another change occurs. The second concurrent statement, labeled "main," is a process statement that implements the ASIC's sorting function. In response to events on the model's input control signals, this process loads data words from the input data bus and returns the numbers in sorted order on request.

The sorter chip requires a rising edge on its "newword" signal, followed by one clock cycle for each bit of its data lines, to load or emit one data word; this scheme allows the data to be converted internally into a serial bit stream. Since a behavioral model of this chip need not mimic its internal operation, it can handle data bits in parallel.

The main process watches the clock and "newword" signals, waiting for the final clock period following the rising edge of "newword." At this point, it emits the least number in its "data" array. Then, if a reset has been requested, it initializes its data array and input and output indices. Otherwise, if the "read" line is high, it inserts the number on its data input line, in sorted order, into the "data" array; if the "read" line is low, the process increments its current output index to address the next-greatest data word.

As the design evolves, more accurate timing information may be added to the model, as well as checks for input timing and data errors.

Process statements may invoke subprograms, which maybe declared within packages and shared by behavioral models. Subprograms contain the same sequential statements as are allowed within processes. The behavioral model "sorter" calls a procedure named "insert" (Figure 4), to insert a number into its data array.

This model of the sorter ASIC accurately captures its behavior without specifying its structural implementation. The use of high-level programming constructs to describe its operation allows a brief and straightforward specification of its function.

Although debugging a behavioral model of a complex ASIC is not a trivial task, it is easier than verifing an equiv-

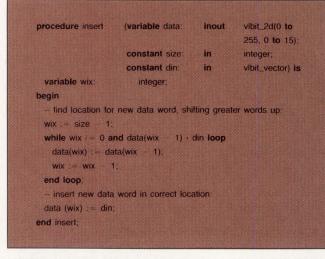


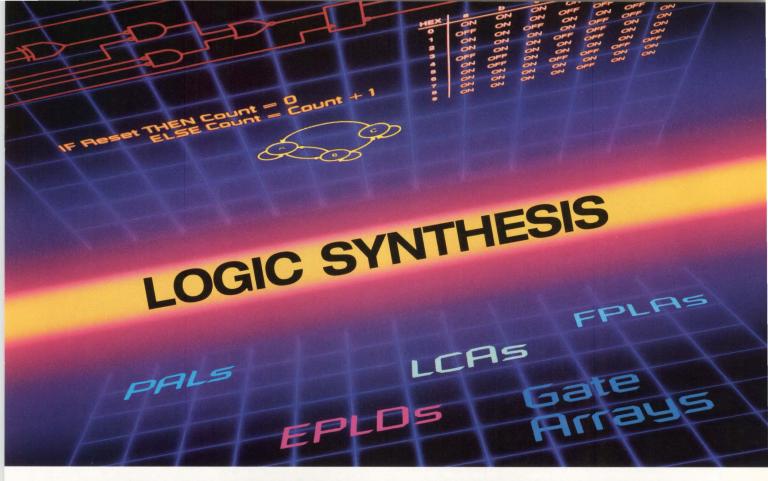
FIGURE 4. Insert procedure for the behavioral model of the sorter ASIC.

alent structural model. Designers can detect and correct functional design flaws at this stage, before expending the considerable effort required to specify a full structural implementation. To facilitate verification of behavioral models, a VHDL simulator should provide an accessible debugging environment, in which users can interactively control simulation, set breakpoints, display and modify variables and signals within models, and so on.

After verification, a behavioral VHDL model can be used as a standard to verify subsequent structural implementations created during the process of top-down design. It can also be used as a high-performance library component for board- and system-level designs that include an ASIC even before the chip is completely designed. Finally, since it is written in VHDL, it serves as a portable simulation model and functional specification of the ASIC.

VHDL TEST BED

After the top-level behavioral model is written and debugged, the next step is to create a test bed—essentially a set of input patterns and expected output responses. Test beds are usually written in the stimulus language of the simulator; the DOD, however, will probably require that they be written in VHDL (U.S. Government, 1998).


Besides inherent portability, there is another benefit of coding test patterns in VHDL: it is a powerful language for generating and interpreting timed data. For example, few simulators allow the conditional application of input stimuli based on current or previous output values. This capability to perform "handshaking" with the circuit under test is easily implemented in VHDL and is important for tests that drive asynchronous devices—for instance, bus or peripheral controllers.

Another illustration of the flexibility of VHDL as a test language is its ability to represent timing relationships parametrically. An example of this is illustrated by the sorter chip timing diagram (Figure 5). The two nonoverlapping clocks, "phi1" and "phi2," are characterized by the period, "P," and the positive-going pulse width, "PHL_PW." The phase relationship between the pulses, "PHASE," is specified as a fraction of the period. A third nonoverlapping pulse, "NEWWORD," appears at the beginning of every sixteenth period and marks the start of a shift-in or shift-out operation. This pulse is characterized by its delay from the start of the period "NEWWORD_DLY" and by its pulse width, "NEWWORD_PW." The period of the "NEW-WORD" pulse is a function of the clock period, "P."

These timing relationships are defined in the VHDL test bed for the sorter circuit (Figure 6). The independent timing variables "P,""PHI_PW," and "NEWWORD_PW" are defined as constants of type "time." The concurrent statements in the "timing" block generate the signals shown in Figure 5.

The exact timing of the waveforms can be changed by modifying the constants without changing the expressed relationships. For example, the frequency can be changed easily without affecting the phase relationship between "phil," "phi2," and "newword."

The remainder of the sorter test bed is coded in the "test" process of Figure 6. The three steps are initializing the circuit, shifting in the words to be sorted, and shifting out and checking the sorted data.

LOGIC SYNTHESIS GIVES YOU MORE DESIGN CHOICES.

FutureDesigner[™] gives you more choices than any other design entry software—choices in how you enter your design, in target technologies, and in design output. And only FutureDesigner uses logic synthesis to automatically turn your input choices into your output choices, optimizing and streamlining your design for the technology you select.

CHOOSE THE DESIGN ENTRY METHOD.

Only FutureDesigner lets you describe your design in the easiest, fastest, most natural way. You can enter some functions structurally, using DASH schematics. Others can be described behaviorally with any combination of truth tables, state diagrams, or high-level logic equations. Interactive verification and design rule checking help you catch errors up front, as you design.

CHOOSE THE TARGET TECHNOLOGY.

FutureDesigner is technology independent. After you've described your

Choose the platform: FutureDesigner runs on 80386 and 80286 machines, IBM® personal computers, and the Sun-3 Series.

design, you can choose any mix of TTLs, PLDs, LCAs, gate arrays, or other ASIC devices for implementation. It's also easy to migrate designs from one technology to another—for example, from TTL to PLD, PLD to LCA, or PLD to gate array.

CHOOSE THE OUTPUT FORMAT. With more than 100 DASH-Partners pro-viding a broad range of comple-

Data I/O Corporation 10525 Willows Road N.E., P. O. Box 97046, Redmond, WA 98073-9746, U.S.A. (206) 881-6444/Telex 15-2167 Data I/O Canada 6725 Airport Road, Suite 302, Mississauga, Ontario L4V 1V2 (416) 678-0761 Data I/O Europe World Trade Center, Strawinskylaan 633, 1077 XA Amsterdam, The Netherlands + 31 (0) 20 6622866/Telex 16616 DATIO NL Data I/O Japan Sumitomoseimei Higashishinbashi Bidg., 8F, 2-1-7, Higashi-Shinbashi, Minato-ku, Tokyo 105, Japan mentary products and services, Future-Designer's industry-standard format is accepted virtually everywhere. When you design with FutureDesigner, you'll have more choices in technologies, CAE systems, foundries, and service bureaus.

CHOOSE FUTUREDESIGNER WITH LOGIC

SYNTHESIS. With its unique logic synthesis capabilities, FutureDesigner reduces and factors your design, eliminating redundancy and improving efficiency. It optimizes for the particular technology you've selected, making the necessary speed/size trade-offs. Then it generates the schematics, net lists, or JEDEC files for programming PLDs. Automatically.

Call us today for more information. Find out why FutureDesigner is the design entry software of choice.

> 1-800-247-5700 Ext. 141

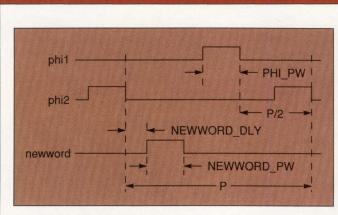


FIGURE 5. Timing diagram for the sorter's clocking sceme.

Initialization consists of asserting the "reset" and "read" lines and waiting for 16 cycles ("NBITS" * "P"). This procedure sets all internal register values to hexadecimal FFFF (see Figure 2 again).

During the shift-in operation, words are presented to the sorter at the start of every sixteenth cycle. This cycle is marked by the "newword" pulse, which indicates that a new word is available for shifting in. The *for* loop iterates through the 256 words ("NWORDS") to be sorted. Each word is retrieved by the "getval" procedure and applied to the "din" data inputs. The *wait* within the loop ensures that each word is presented on a 16-cycle boundary.

The "getval" procedure can be implemented in a variety of different ways. One obvious approach is to read data values from a file.

To enter the shift-out mode, the "read" line is reset and another *for* loop is entered. Each iteration of the *for* loop waits 16 cycles for a full word to be shifted out. It then calls the "checkval" routine to compare the sorter output, "dout," with the expected output. If a discrepancy is found, an error message is printed.

The existence of a good test bed greatly simplifies subsequent design iterations, because each major refinement can be tested against the original test bed. If errors are introduced, the test bed will automatically flag them.

There are several steps remaining in the top-down design methodology (Figure 7). The first design refinement consists of drawing a block-level schematic. This block diagram identifies major components or subsections of the design and interconnections. Design teams can now be formed to work independently on various subsections.

To avoid unintended departures from the original design spec (that is, the top-level behavioral VHDL model), each design team must regularly simulate design refinements against the test bed. Furthermore, design teams must be able to do so without interfering with each other. For example, if design team 1 introduces a major bug into its portion of the design, design team 2 should not be prevented from simulating its own design refinements against the test bed.

To achieve this degree of independence, each design team must write a behavioral VHDL model for its own portion of the ASIC. These models are tied together with the block-level schematic and simulated against the test bed. If the test bed detects discrepancies, the bugs must be isolated and fixed. To do that quickly, the host CAE system should support a good interactive debugging environ-

```
architecture action of driver is
  constant PHI_PW
                                time
                                        100ns
  constant P.
                                time
                                        400ns
  constant PHASE.
                                        P 2
                                lime
  constant NEWWORD_DLY
                                        (P SKEW
                                time
                                PHI PWI 3
  constant NEWWORD_PW:
                                time
                                        30ns
  constant NBITS:
                                integer
                                          16
  constant NWORDS:
                                 integer
                                          256
begin
  timing: block
    begin
    phi1
                         after PHI_PW when phi1
                                                   1 else
                         after P PHI_PW when phil
                                                      0 else
                    1
                         after P SKEW PHI_PW.
    phi2
                         after SKEW when phil
                                                  0 else
                         after SKEW when phil
                                                  1 else
                         after NEWWORD_PW when newword
    newword
                                                               1 else
                         after NBITS ' P NEWWORD_PW
                         when newword 0° else
                         after NEWWORD DLY
  end block timing
  setup test
  test: process
   begin
   reset
   read
   double
   din _____b`00000000000000000
   wait for NBITS ' P
  load initial data
   reset - '0'
   for nword in 1 to NWORDS loop
     nextval(nword, din);
     wait for NBITS * P
     end loop
  shift out data
   read - '0'
   for nword in 1 to NWORDS loop
     wait for NBITS * P:
     checkval(nword, dout):
     end loop
   wait.
 end process init:
end action:
```

FIGURE 6. Test bed for the sorter ASIC.

Great things happen when System HILO[™] is your simulation choice... *design and test efficiency soar!*

22222222222

GenRad has solved the common dilemmas of design and test groups...which simulation system to buy for IC design?...which for PCB design?...can the test group use it?...does it all work together?

Now, for the first time, your design and test people can work with a common, integrated simulation tool set, regardless of whether they're working on design verification or test development for integrated circuits or printed circuit boards.

With GenRad's System HILO, design verification and test development for both chips and boards can take place at the same time. And this means optimum working efficiency between your design and test people. The result is tremendous savings in time and money, as well as better designs and more comprehensive test programs.

The key to System HILO is a new, modular architecture. It lets your design and test people solve a broad range of chip and board problems that cannot be addressed with any single tool. It enables design to proceed in parallel with test development. Utilizing System HILO's Test Waveform Language, the test engineer can use the same simulation data as the designer. The test program can then be downloaded

and run without translation on GenRad's 275X board test systems. The result is faster, more comprehensive program development with maximum diagnostic effectiveness.

There are many more great aspects about this new simulation system from GenRad. Find out more by calling 1-800-4-GENRAD.

The difference in software is the difference in testTM

LESTER

Discover the power

of an ASIC partner.

In today's highly competitive marketplace, it takes more than technology and tools to meet your ASIC needs. It takes a long-term partner you can count on. One who's ready to help you turn your hot idea into an even hotter new product.

At Fujitsu Microelectronics, we believe that the only way we can achieve our goals is to help you achieve yours. So we've committed our technical, financial and human resources to providing you with the ASIC technology, tools and trust you need to meet your objectives. From design support through volume production of your advanced VLSI ICs. The heart of your new products.

When you shake hands with Fujitsu, you get more than just a business deal. You get the industry's most experienced volume producer of ASIC devices as a working partner.

We become an extension of your ASIC design team, providing you with a nationwide network of field application and technical resource engineers, ready to offer local technical support on both products and tools.

You also get ASIC sales and marketing support to help you smooth out all the administrative wrinkles.

Plus coast-to-coast technical resource centers, fully equipped with easy-to-use design tools. And local training and twenty-four hour design facilities, so you can work whenever inspiration strikes.

All supporting the most advanced process and manufacturing technologies in the industry, including CMOS, ECL, BiCMOS and LSTTL.

All of which is structured for the fast design input-to-prototype turnaround, design security and timely delivery of volume production you need to get to market faster.

It all adds up to a partnership that works. Which, after all, is everything an ASIC partner should be.

FUJITSU MICROELECTRONICS, INC. Everything an ASIC partner should be.

3545 North First Street, San Jose, CA 95134-1804 (408) 922-9000

CIRCLE NUMBER 20

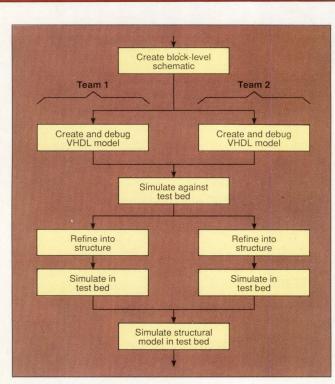


FIGURE 7. Top-down design verification flow.

ment with graphical presentation of the output data.

Once each design team has working behavioral models in place, it can begin to refine its portion of the design into a more detailed structure without affecting other design teams. Each team simulates its own design refinements within the context of the test bed and the verified VHDL models produced by the other teams. Thus each team simulates its own design at a detailed level, while the remainder of the design is simulated behaviorally.

Each team produces a schematic depicting a full structural implementation of the design in terms of the target foundry's ASIC cell library. If the design team has followed the methodology, the schematic is guaranteed to simulate correctly within the context of the test bed and the validated VHDL models from other teams.

STRUCTURAL SIMULATION

The next step is to integrate the structural models and simulate the entire chip at the foundry-cell level. To support this step, the host CAE system must be capable of substituting structural models for the VHDL models in the top-level schematic (see Figure 5 again). Substitution should be a simple matter of changing an attribute or property on the schematic.

At this point, a full structural simulation of the ASIC should not reveal any gross design errors, since they would have been detected earlier (assuming a thorough test bed). Timing errors will be the most common type of problem. Many timing problems will not be detected during behavioral simulations unless the behavioral VHDL models contain accurate checks for timing constraint violations. Such checks are difficult to code in advance, since timing constraints depend heavily on the topology of the final implementation and layout, and neither of those is known when the model is first written. Estimated timing can be used, but final implementation may deviate significantly from the estimate, resulting in errors.

To effectively flush out these timing problems, the host CAE system must be capable of back-annotating accurate prelayout and postlayout delays. These delays should then be reflected back into the top-level behavioral model for later use in board-level simulations. One way to facilitate back annotation of delays to the top-level model is to code the behavioral VHDL model in such a way that all delays are retrieved through function calls. These functions can then be defined in a VHDL *package*, which can be modified for different delay values.

When structural simulations have been completed, netlist, schematic, and test pattern data can be sent to the foundry to manufacture the part.

The test bed and the top-level behavioral model are coded directly by ASIC designers. The structural VHDL model of the ASIC must be generated from the hierarchical schematics. To handle this step automatically, the host CAE system must be capable of converting schematics into a structural VHDL model.

REFERENCES

- Aylor, J. H.; R. Waxman; and C. Scarratt. April 1986. "VHDL Motivation," IEEE Design & Test of Computers.
- Barton, D. L. 1988. "A First Course in VHDL," VLSI Systems Design's User's Guide to Design Automation.
- Barton, D. L. June 1988. "Behavioral Descriptions in VHDL," VLSI Systems Design.
- CAD Language Systems Inc. March 1987. "VHDL Language Refinement Rationale," draft, Rockville, Md.
- Institute of Electrical and Electronics Engineers Inc. 1988."IEEE Standard VHDL Language Reference Manual," IEEE Standard 1076–1987.
- Lipsett, R.; E. Marschner; and M. Shahdad. April 1986. "VHDL— The Language," *IEEE Design & Test of Computers*.
- U.S. Govenment. 1988. "Electronic Hardware Description in the VHSIC Hardware Description Language (VHDL),"Proposed Draft Data Item Description," U.S. Government Printing Office, Washington, D.C.

ABOUT THE AUTHORS

Rick Sullivan is manager of the simulation group at Viewlogic Systems. He joined the company in 1985 from Prime Computer where he was a principal software engineer. Previously, he was an engineer at Amdahl Computer. A graduate of Tufts University in Somerville, Mass., Sullivan holds a Bs degree in electrical engineering. He has a Ms degree in electrical engineering from the University of Illinois at Champaign–Urbana.

Lisa R. Asher is a senior software engineer within the simulation group at Viewlogic and principal engineer on the company's VHDL project. She began her career as a software engineer at Data General, where she helped develop a simulator for the internal CAD department. A 1983 graduate of Purdue University in West Lafayette, Ind., she holds a BS degree in computer science. These are not your regular civilian parts. They're built to a whole different standard . . . by a team that marches to its own special beat. They're the product of NCR's Mil-ASIC Group, a corps of highrel, mil-spec electronics

specialists. That's why these standard cells and gate arrays can take more heat, handle more cold, shrug-off higher "G's" and work-through erratic power supply.

NCR's technologies arsenal. Settle into the cockpit of an NCR supported workstation and you're in control of enough state-of-the-art semicustom firepower to earn yourself a "top gun" rating in ASICs. That includes 1.5-, 2- and 3-micron standard cells. 2-micron gate arrays. And a whole bag full of "trick" analog functions and supercells. Like NCR's 2901, 2910, 1553B and fast adders

You can even get inventive with our and multipliers. integral ViGen" silicon compiled function generator, creating configurable RAM, ROM, EEPROM and PLA on the fly. You also maintain constant mobility-migrating between gate arrays and standard cells and from 3-micron....to 2-micron....to

ViGen are trademarks of NCR Corporation

And because you're on an industry 1.5-micron.

CIRCLE NUMBER 2

standard workstation, working within the fully documented NCR ViSys environment, you execute every maneuver with the lowest possible risk. In fact, our tools are so good that our customer's first-pass success

rate is more than 95%. The end result is exactly the highdensity, low-power CMOS circuit you need in the fastest possible turn time. We build 'em by the book.

We know only one way to make a MIL-Spec part ... by the book. All NCR high-rel parts are built under procedures in compliance with the specifications of MIL-Q-9858A and screened and inspected to MIL-STD 883C, Method 5004/5005. The Allies.

And NCR's Mil ASIC group is just the point team. Right behind them is NCR's commercial ASIC group, the Customer Owned Tooling Team and two separate fabs. And that's not to mention our proven external second sources. So if needed, we have the

reinforcements. NCR's special forces are ready and waiting for your orders. Why don't you enlist NCR into your

group today. For more information, call the Mil-ASICS Group at 1-800-334-5454. Or write NCR Mil-ASICS, 1635 Aero plaza Drive, Colorado Springs, CO 80916

NCR Microelectronics Division

ADVANCED MODELING TECHNIQUES FOR LOGIC SIMULATION

William B. Fazakerly and Robert P. Smith, Ikos Systems Inc., Sunnyvale, Calif.

ver the last five years, the number of new applicationspecific IC designs started each year has increased by wellover fourfold. This huge jump in ASIC usage is the result of the shift from full-custom designs, implemented by skilled IC designers, to gate array and standard-cell designs implemented by system design engineers.

Full-custom ASIC design allows the designer to achieve the optimum cost/performance for a given integrated circuit process technology. However, it requires transistorcircuit simulation (for example, SPICE) to predict the circuit behavior, before masks are made and prototypes fabricated. Unfortunately, such simulation is extremely costly and time-consuming. In fact, it is virtually impossible to simulate a complete ASIC with SPICE-type simulators.

Gate array and standard-cell design approaches address this problem through the creation of a library of precharacterized logic building blocks (macrocells). By carefully precharacterizing the logical and timing behavior of each macrocell, it is possible to eliminate the need for SPICE simulation of the complete ASIC design. The system design engineer can use the precharacterized macrocell models together with a logic simulator to predict the exact functional and timing behavior of the circuit. In addition, based on the results of the logic simulation, the ASIC vendor can guarantee the performance of the proposed design before mask making and prototype fabrication.

Precharacterization is the process of developing a computationally simple timing model that approximates the actual voltage-versus-time behavior of the macrocell. The simple timing model must accurately map the detailed transistor-level behavior to 0-to-1 and 1-to-0 propagation delay times. The input-to-output propagation delays are based on extensive SPICE simulations of each macrocell, performed over a wide range of possible operating conditions (voltage, temperature, input waveform, and load capacitance). Obviously, the success of the design approach depends on the accuracy of the simple timing model used to predict the behavior of each macrocell: Overoptimistic modeling can result in prototype circuits that do not work in the target system. Excessive conservatism, on the other hand, prevents the system design engineer from exploiting the full potential of the IC process technology and may render his system design uncompetitive.

LINEAR DELAY PREDICTION

To explore how simple macrocell timing models are developed, consider the transistor-level schematic of a simple two-input NAND gate implemented in CMOS technology (Figure 1). The effects of multiple macrocell loads are represented by a lumped capacitance, C_L . For our first approximation, we will model the behavior of the MOS transistors as switched resistors. If the A input is high and we apply a step-function input to the B input, the output of the NAND gate will transition from 1 to 0.

The output transition can be broken into two phases. rst phase is the time required to turn off the p-channel transistor and turn on the n-channel transistor connected to B. During this time, the output voltage of the NAND gate will not change. This time is not dependent on the output load capacitance, C_L . Once the n-channel pull-down device has turned on, the C_L will be discharged to ground through two n-channel transistors in series. The time required for the output voltage of the NAND gate to reach 50% of the supply voltage will be proportional to the value of C_L .

From this simple analysis, we can derive a straightforward slope-intercept timing model for the behavior of the NAND gate (Pilling, Ordnung, and Heald, 1972). The rising and falling delay times for the NAND gate can be approximated with the following formulas:

$$T_d(rise) = T_{plh} + (K_{lh} \times C_L) T_d(fall) = T_{phl} + (K_{hl} \times C_L)$$

Besides C_L in picofarads, the parameters required for the model are:

- T_{plh} : the fixed 0-to-1 delay (ns)
- T_{phl} : the fixed 1-to-0 delay (ns)
- K_{lh} : the 0-to-1 load-dependent output slew rate (ns/pF)
- K_{hl} : the 1-to-0 load-dependent output slew rate (ns/pF)

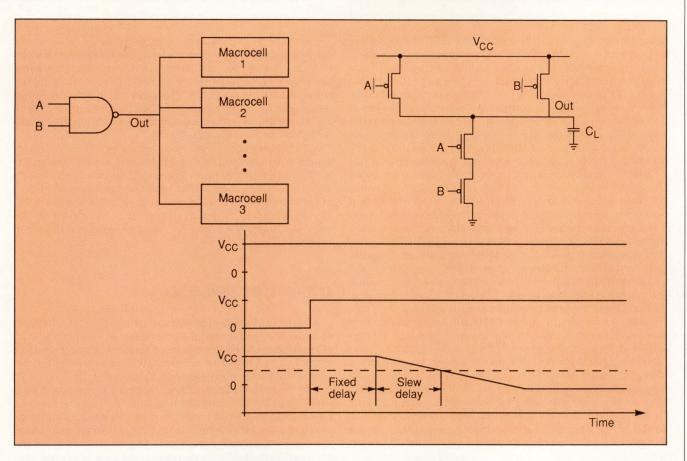


FIGURE 1. Derivation of a simple timing model for a two-input CMOS NAND gate macrocell.

The exact values of T_{plh} , T_{phl} , K_{lh} , and K_{hl} are determined from multiple SPICE simulations of the NAND gate under various output loading conditions. The value of C_L is calculated by summing the input capacitances of all the macrocells driven by the NAND gate together with the parasitic interconnection capacitance.

Unfortunately, the simple slope-intercept timing model has several basic flaws which can lead to substantial inaccuracies in the predicted macrocell delay times (Chang, Chen, and Subramaniam, 1988). These flaws are exacerbated by the rapid improvements in IC processing that allow smaller and smaller device geometries.

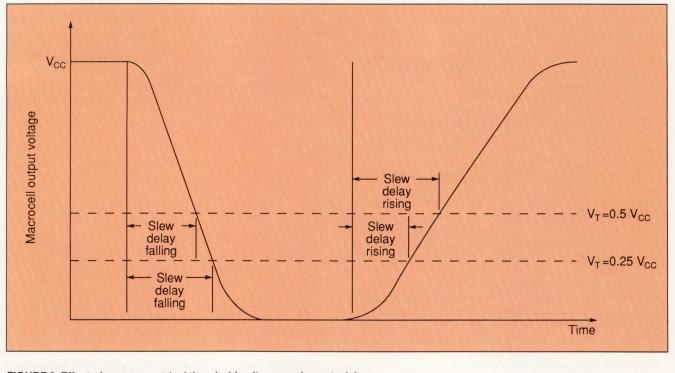
One major inaccuracy in the simple slope-intercept timing model is caused by the assumption of a step-function input to the macrocell. Of course, in the actual circuit, the input waveform is far from a step function. A slowly changing input signal causes additional delay, since the transistors in the macrocell will not turn on or off as quickly as if the input were a step function. The effect of noninfinite input signal slew rates is to add delay to each input of the macrocell. This additional delay is a complex function of the input slew rate and the output drive characteristics of the macrocell. The importance of input slew rate increases as the device geometries get smaller.

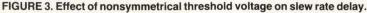
Figure 2 shows the ratio of load-dependent (slew rate) delay to total gate delay for increasing fan-out loading (two-input NAND gate equivalent loads). The data is based on published data book information for both 2-µm and 1.5-

 μ m gate array technology from a major semicustom vendor and is normalized for a 6,000-gate array. The ratio of slew rate delay to total delay is much greater for the newer 1.5- μ m process, so that the simple slope-intercept timing model will be less so accurate.

A second inaccuracy in the simple slope-intercept model is caused by using $V_{\rm CC}/2$ to measure the load-dependent

FIGURE 2. Effect of geometry on the input slew rate (for a twoinput NAND gate).


delay time. Of course, if the input signal transitions are step functions, it doesn't matter what voltage threshold we use to measure the load-dependent delay. But if the inputs are not step functions, the correct way to determine the load-dependent delay is to measure from the end of the fixed delay to the time the output voltage crosses the input threshold voltage of the receiving macrocell, defined as the voltage for which the static voltage at the input of the macrocell equals the static voltage at the output of the macrocell (unity-gain voltage). Unfortunately, in practice it is very difficult to design all macrocells so that their input threshold is equal to $V_{\rm CC}/2.$ Figure 3 shows how input thresholds other than $V_{\rm CC}/2$ can result in vastly different measurements of the load-dependent delay times. Therefore, to account for different input thresholds, an additional delay factor must be added to the simple slope-intercept model which is a function of the input signal slew rate.


A third factor which can cause inaccuracies in the predictions of the simple slope-intercept model is parasitic interconnection capacitance. It is relatively easy to calculate and sum the input capacitances of all the driven macrocells. It is more difficult to calculate the parasitic interconnection capacitance; particularly prior to circuit layout and, as process geometries shrink, parasitic interconnect capacitance becomes a greater proportion of the total capacitance load. For example, published data from a major semicustom vendor shows that for a $2-\mu m$ 6,000gate array, the estimated interconnect capacitance is equal to approximately 50% of the total capacitive load. In contrast, the estimated interconnect capacitance for the same vendor's 1.5- μ m 6,000-gate array is about 60% of the total capacitive load. Furthermore, parasitic interconnection capacitance grows as semicustom circuits incorporate more gates (the chip size increases and therefore interconnecting wires are longer). Also, as the interconnecting wires on semicustom circuits get narrower, the parasitic interconnection delays can no longer be modeled by a single lumped capacitor. Narrower wires mean higher resistance and distributed RC delays become significant.

Nearly every vendor of semicustom macrocell libraries starts with the simple slope-intercept model, and many have made modifications to account for one or more of its inherent inaccuracies. Once the vendor has settled on a specific macrocell timing model that he believes is sufficiently accurate, he must implement that model on the logic simulator the customer will use to design the semicustom circuit.

EXISTING LOGIC SIMULATORS

All existing logic simulation programs operate with a set of "primitive" logic modeling elements. Every circuit to be simulated must be described in terms of these primitive elements. A typical set of primitive logic modeling elements includes multiple-input AND, OR, NOR, and NAND gates, inverters and buffers, three-state inverters and buffers, bidirectional switches, and the like. To create a macrocell simulation model, one or more primitives supported by the target simulator must be interconnected to implement the logic function of the macrocell. Thus the simulation model for a two-input NAND gate macrocell usu-

ally requires only one two-input NAND primitive modeling element, whereas a counter macrocell requires the interconnection of many primitive elements.

Most existing logic simulation programs sold by thirdparty CAE software vendors allow the user to assign a unique rise and fall delay for every primitive modeling element used in the simulation. The developer of a macrocell simulation library must therefore use the appropriate macrocell timing model to calculate the input-to-output macrocell delays and distribute these delays properly among the primitive elements that make up the simulation model. Traditionally, this work has been done by the semicustom vendor.

Unfortunately, this is a relatively inefficient way to develop macrocell simulation libraries, since the interconnectivity of the macrocells must usually be determined twice—once in building the database of primitives and again in distributing delay values among the primitives. First, the logic simulation software must use the macrocell netlist to determine the interconnectivity of macrocells, substitute the appropriate primitive element simulation model, and create a simulation database consisting only of primitive elements. Then, the semicustom vendor must write a program that redetermines the macrocell interconnectivity and calculates the input-to-output delays based on the fan-out loading for each macrocell. The program must also correctly assign these delays to each primitive modeling element in the simulation database. Thus carefully predicting macrocell time delays generally involves significant additional circuit compilation overhead. Since each new simulation library requires writing a new timing prediction and primitive delay assignment program, semicustom vendors are reluctant to support multiple logic simulation programs.

Another disadvantage of the rise/fall-delay-per-primitive approach is the difficulty of implementing macrocell timing modeling that goes beyond the simple slope-intercept prediction. In recognition of this difficulty, several semicustom vendors have written their own logic simulation programs (Schaefer, 1985; Chawla, Gummel, and Kozak, 1975). These programs implement more complex, and therefore more accurate, macrocell timing models and free the semicustom vendor from supporting multiple simulators. However, vendor-specific logic simulation programs require the user to either commit himself to buying circuits from a single vendor or pay for and learn to use logic simulation programs supplied by multiple vendors.

An alternative approach is to develop a logic simulation system that can accurately model macrocell libraries from many different semicustom vendors. Such a system needs to be flexible enough to be able to support differing modeling requirements from different vendors and it needs to be powerful enough to provide a high degree of modeling accuracy.

NONLINEAR DEPENDENCE OF OUTPUT DELAY ON CAPACITIVE LOAD

As discussed earlier, the simple slope-intercept model does not provide the accuracy needed to model input slew rate effects on device delays. As the total output loading on a gate increases, the slope (1/slew rate) of any transitions on the output decreases. Depending on the slope, there is a measurable time between the time that the gate output voltage reaches the threshold voltage, V_T , and the time it reaches V_{CC} (see Figure 3 again). The gate inputs that see this transition incuradditional delay because of the time it takes the input voltage to rise from V_T to V_{CC} .

One approach to modeling the effect of input slew rate on macrocell inputs is to assume that all macrocells will be affected equally by a given input slew rate. With this assumption it is possible to lump together the effect of input slew rate on each driven macrocell add an incremental delay to the output of the driving macrocell. The incremental delay is a function of the output slew rate of the driving macrocell. Since the output slew rate is a function of the capacitive load on the output of the macrocell, C_L , the input-to-output delays for a macrocell can be modeled with the following equations:

$$T_d(rise) = T_{plh} + (K_{lh} \times C_L) + f_r(C_L)$$

$$T_d(fall) = T_{phl} + (K_{hl} \times C_L) + f_f(C_L)$$

where f_f and f_r are functions (generally nonlinear and different for rising and falling transitions) that model the effect of input slew rate on macrocell delay. This approach therefore yields a nonlinear dependence of macrocell delay on the output capacitive load.

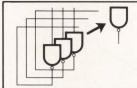
A flexible yet powerful way to implement these equations in a logic simulator is to use a table-driven look-up scheme. In this type of approach, any function can be approximated by a piecewise linear model; the breakpoints and slope multipliers for each portion of the model are stored in a table and used to calculate the delay for different total output load capacitances. The advantage of this tabledriven approach is that it is fast and flexible; any arbitrary curve can be easily modeled.

Figure 4 shows a typical curve of delay versus total output capacitance and how the Ikos simulator models it using piecewise linear approximation. (The simulator allows the definition of up to five piecewise linear segments.) The curve is determined by specifying RBK, the nonlinear load breakpoint, the load multipliers (constants X0–X4), and a slope multiplier for each segment. Tables for generating both rising and falling nonlinear load-dependent delay times are provided.

For some macrocells, it is necessary to specify different output load-dependent delays for different input paths to the same output. Consider, for example, a three-input AND-OR-INVERT macrocell, consisting of a two-input AND gate whose output drives one input of a two-input NOR gate and a third input tied directly to the remaining input of the two-input NOR gate (Figure 5). If both inputs to the AND gate are high, the output is pulled low by two n-channel transistors in series. However, if the direct input to the NOR gate is high, the output is pulled low by a single n-channel transistor. Obviously, for a given capacitive load, the falling slew delay from either AND input to the output will be longer than from the direct NOR input to the output. In this case, the simulator allows different tables to be specified, depending on which input is being evaluated. This approach

The time and space saving Signetics PLHS501.

Our instant gate array blows away your development bottleneck.


No ifs, AND/ORs or buts!

Call (800) 227-1817, ext. 9781

Breakthrough

Programmable Macro Logic. An architectural innovation that breaks through the barrier of AND/OR design constraints. This unique single NAND array architecture simplifies design and eliminates constraints by delivering total utilization of on-chip resources. Each NAND gate connects with any other NAND gate—there are no interconnect restrictions.

A programmable "instant gate array" with no "gate-arisk." The high-

speed ($t_{PD} = 22ns$) PLHS501 Programmable Random Logic unit is the first of our powerful new family of Programmable Macro Logic (PML) devices.

It blows away your gate array development time. And with it your NRE, inventory problems and quality concerns. It's programmable or reprogrammable within hours—not weeks. And delivered on schedule, fully tested. **Single-chip space saver.** The PLHS501 provides 1300 effective gates—a complete solution in a single 52-pin PLCC package.

Software that simplifies. All Signetics PML devices are supported by our powerful AMAZE software that makes complex designs easy by simplifying logic entry, simulation and device programming.

Third generation single NAND array architecture with NAND foldback paths. The direct internal foldback supports multiple levels of logic without wasting I/O resources or suffering routing channel congestion. We've got the guts! That's right, we have those essential PLD devices you need to

improve total system performance. PAL*-types, PLAs, Logic Sequencers and our new PML products such as the PLHS501, that simplify complex design problems via innovative architecture supported by powerful software.

Break your bottleneck! Call Signetics at (800) 227-1817, ext. 978I, for a PLHS501 Development Kit, including a free sample.

a division of North American Philips Corporation

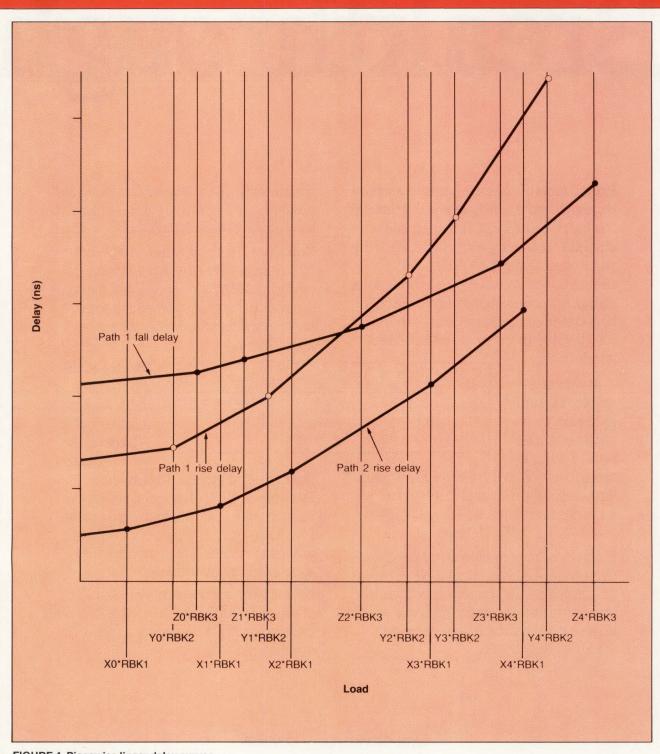


FIGURE 4. Piecewise linear delay curves.

allows for more accurate timing modeling than simply assuming that the output delay equations are the same for all paths to the same output.

One advantage of this simple approach to modeling slew rate effects is that timing problems can be more easily debugged. Excessive signal delay can easily be traced back to the "slow" gate. If the signal delay is due to output loading, the output drive of the gate can be increased (or an output buffer added). If the simulator adds the delay to the input of the driven gate, it might lead the designer to conclude that the problem was caused by excessive load on the driven gate rather than from the driving gate. He would then erroneously beef up the drive capability of the driven gate, which would not mitigate the problem.

Previously, the best CAE tools were available on only one platform.

From the leader in desktop CAE solutions comes a new concept in electronic design: you pick the platform.

Viewlogic[®] was the first to deliver a premium CAE solution on 286/386 PCs through "native mode" technology. Now we've ported the entire Workview[®] suite of CAE solutions—including VHDL simulation, a mixed analog/digital simulator, and ASIC vendor kits—to Sun and VAX[™] workstations. For example, you can run a VHDL circuit simulation of 50,000 gates in minutes on a 386/PC, Sun Workstation[®] or VAX station. Standardize on one, or pick a combination and design complex ICs, ASICs, and systems in a multiple platform environment—and retain a common user interface and shared database. With Workview, you have access to superior CAE solutions on

With Workview, you have access to superior CAE solutions on today's three most popular workstations in electronic design. For more information, call: 1-800-CAE-VIEW; in Massachusetts, 1-508-480-0881.

VIEWlogic[®]

desktop CAE and beyond

Sun 3/60 VHDL Simulation 50,000 gates/4,000 vectors 15 min 22 sec 80386 PC VHDL Simulation 50,000 gates/4,000 vectors 15 min 14 sec

VAXstation 3000 VHDL Simulation 50,000 gates/4,000 vectors 15 min 31 sec

Now, take your pick.

Viewlogic Systems Inc., 313 Boston Post Road West, Marlboro, MA 01752 Viewlogic and Workview are registered trademarks of Viewlogic Systems Inc., VAX and VMS are trademarks of Digital Equipment Corp., Sun Workstation is a registered trademark of Sun Microsystems Inc.

CIRCLE NUMBER 23

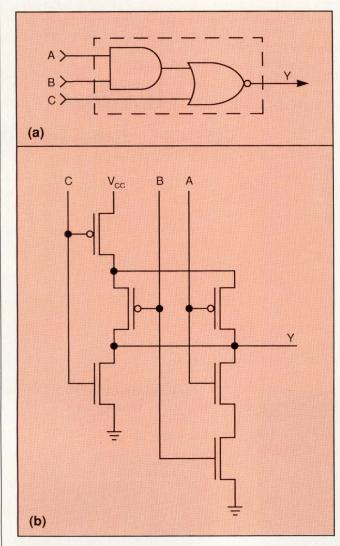


FIGURE 5. AND-OR-INVERT macrocell: logic diagram (a) and schematic (b).

SLEW RATE MODELING

The nonlinear load-dependent delay model assumes that all gates are affected in the same way by a given input slew rate. In practice, this assumption leads to reduced accuracy, particularly for small-geometry devices, where slew rate effects can be substantial.

It is possible to model slew rate effects more accurately by adding a separate slew-rate-dependent delay to the input of every macrocell model. Studies have shown that the additional input delay must be a function of both the slew rate of the transitioning input and the slew rate of the transitioning output (or, equivalently, the capacitive loading on the output) (Matson, 1985). With this approach, the input-to-output delay equations for a macrocell become:

$$\begin{aligned} T_d(rise) &= f_r(ST_x, C_L) + T_{plh} + K_{lh} \times C_L \\ T_d(fall) &= f_f(ST_x, C_L) + T_{phl} + K_{hl} \times C_L \end{aligned}$$

where ST_x is the input slew time of the appropriate polarity (for instance, rising transition on input leads to rising transition on output). Note that ST_x is given by the $K_x \times C_L$ product of the driving macrocell.

Since these delay terms are a function of two variables (input slew rate and output load) a table look-up scheme is again the most flexible and practical way to model these curves. In the Ikos simulation system, a 5×5 matrix is used, allowing the specification of an input delay for up to 25 combinations of input slew rate and output capacitance. The discrete slew rate and output load points define a piecewise linear surface in three-dimensional space (Figure 6). Two-dimensional interpolation is used to locate points on the surface that are not defined by the discrete points in the 5×5 matrix. The interpolated delay is then added as an input delay to the driven gate.

The lkos simulation system allows the entry of up to 16 different three-dimensional tables for each macrocell. With this capability, it is possible to model input slew rate effects differently for each macrocell input pin. The use of multiple input slew rate tables also allows the input slew rate model to be different for rising and falling input transitions. It is therefore possible to employ the input slew rate tables to model the asymmetrical effect of macrocell threshold voltages that are not equal to $V_{cc}/2$.

INPUT DELAY MODELING

The Ikos simulation system supports separate rise and fall delays from each simulation primitive input pin to the output of the simulation primitive. Input delays generated from three-dimensional slew rate tables can therefore be added into the path delay of appropriate simulation primitive. There is an inherent problem with this scheme, however, that is common to all event-driven simulation algorithms. In the simple case shown in Figure 7, a 10-ns input delay has been added to input A and a 2-ns delay to input B, and the gate has a falling delay (input to falling output) of 2 ns. Now, assume that input A transitions high and that 1 ns later input B transitions high. What happens?

When input A transitions, a gate evaluation is performed. Since input B is still low, no event is scheduled. One nanosecond later, input B transitions high and another gate evaluation is performed. This time an event is scheduled, since both A and B are now high. The output will be scheduled to transition low 4 ns after input B goes high (2 ns input delay + 2 ns gate delay).

This is obviously not correct. The output should not transition low until 12 ns after input A goes high (10 ns input delay + 2 ns gate delay). Because the transition on input A preceded the transition on input B, an output event was not scheduled, and the input delay on input A is effectively ignored.

Fortunately, there is a way to overcome this problem. Figure 7 shows the addition of buffers to the gate inputs. The input delays are added to the buffers; since any transition on the input to the buffer will cause an output event to be scheduled, the correct delays are presented to the NAND gate inputs. The only drawback to this approach is that it

Before you buy ASICs, you should be aware of some of our hang ups.

Sure, we've got a lot of hang ups at UTMC. And we're proud of every one of them. Because each one shows you our commitment to the military and aerospace marketplace.

Like our JAN QPL listing. It tells you we're the first supplier in the industry to have gate arrays that meet this tough standard. And our rad-hard process will take you beyond mega-rad for your most demanding strategic applications. We've even got a hang up that tells you all of our circuits are manufactured in a DESC-certified facility.

What our credentials also tell you is that we've invested a great deal of time and resources to guarantee you the highest quality ASICs. And we've designed entire product lines to meet your specific needs.

Our four-member UTD 1.5μ gatearray family is built using UTMC's patented continuous-column architecture. The UTD handles design complexities up to 11,000 equivalent gates with auto placement and routing. The rad-hard version of this family, the UTD-R, easily meets total-dose tolerance of 1 x 10⁶ rads (Si).

UTMC's five-member UTB 3μ gate arrays are DESC-certified and listed on the MIL-M-38510 JAN QPL. Like the 1.5 μ family, it's designed to be more efficient than other gate array architectures by reducing the number of wasted transistors common on conventional structures.

Our VAX[®]-based HIGHLAND[®] Design System is certified as part of our JAN qualification and is available to assist you with design tasks ranging from design concept through layout and test generation. Additionally, our HIGHLAND system supports ASIC design on popular workstations such as Daisy[®], Mentor[®], and Valid[®]. The HIGHLAND workstation tool kits give you the ability to capture and simulate your design in a familiar environment. Or, if you prefer, a UTMC applications engineer can take your concept and create a complete design for you.

So when you're looking for semi custom products to enhance your systems, look to UTMC. We manufacture products specifically for military and aerospace systems. And we've got the hang ups to prove it.

1-800-MIL-UTMC

1575 Garden of the Gods Road Colorado Springs, CO 80907 HIGHLAND is a registered trademark of United Technologies Microelectronics Center, Inc.

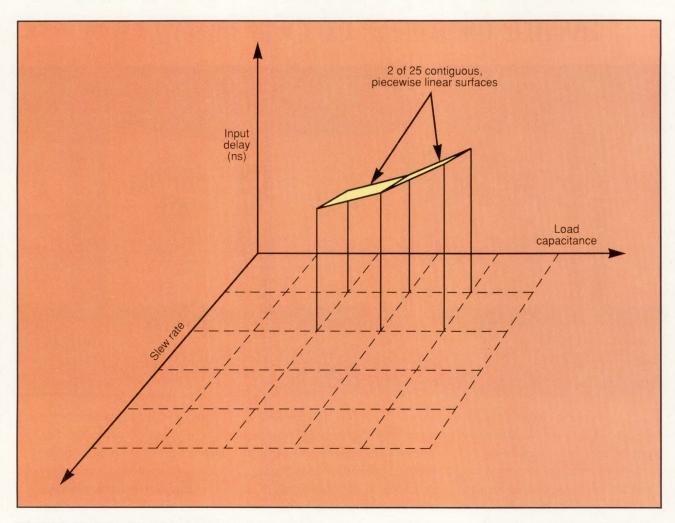


FIGURE 6. Piecewise linear surface model of slew rate delay.

requires the consumption of more primitives and increases the complexity and time required by the netlist processing step prior to simulation.

We have taken a novel approach to overcome these drawbacks. In the Ikos simulator, a differential threshold is set. If the difference between the input delays is less than the threshold, the input delays are added directly to the cell inputs. If the difference exceeds the threshold, input buffers are added to the gate inputs and the delays are assigned to the buffer inputs. This technique is applied to the slew rate table-driven delays. It is also used to back-annotate RC wiring delays derived from the actual layout. This approach produces an optimal balance between accuracy, efficient primitive utilization, and processing speed.

ESTIMATING HIERARCHICAL WIRE CAPACITANCE

As noted earlier, parasitic interconnection capacitance becomes of relatively greater importance as device geometries shrink. Estimating the parasitic interconnection capacitance before device layout is therefore becoming more and more critical to accurate macrocell timing modeling. One way to improve interconnect capacitance estimation is to take advantage of hierarchy in the macrocell netlist description. This technique assumes that hierarchical nodes in the netlist will ultimately be placed and routed as "blocks." Interconnections between these blocks will then be made globally across the chip.

Figure 8 shows four levels of hierarchy that make up a design. The wire interconnects within blocks likely to be much shorter than the wires that connect the blocks together at the next higher level. In this case, the simulator should assign a smaller estimated wire capacitance value to interconnects within a certain level and a higher estimated value to the interconnects running between levels. Since the physical placement and routing of the chip is also derived from the hierarchy, this technique yields a close approximation to the actual wiring capacitances.

In practice, a table-driven approach is again the most efficient way to develop the wiring interconnect models. The Ikos system supports up to 256 tables of estimated wire capacitance perASIC library. Each table has 32 entries of wire capacitance that are ordered by fan-out number. In

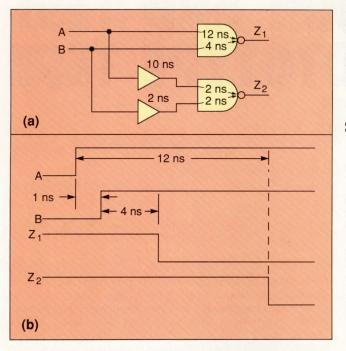


FIGURE 7. The use of input buffers to ensure correct delay assignment: logic diagram (a) and timing diagram (b).

use, the fan-out number is derived by totaling the number of cell and block inputs and outputs on the net at a particular level in the design hierarchy (with the exclusion of the output of the driving element).

The 256 tables are assigned to different ASICs within a family and to different levels of the design hierarchy. Within a given ASIC family, there are usually a number of different parts differentiated by gate count. Each unique part number is assigned its own set of wiring tables. These tables are subdivided into unique tables for each level of the design hierarchy. In the Ikos system, tables are designated for main levels and subsidiary levels.

Main tables are used for estimating wiring capacitance between cells and subblocks at the highest level of a particular net's routing path. The subsidiary tables are used

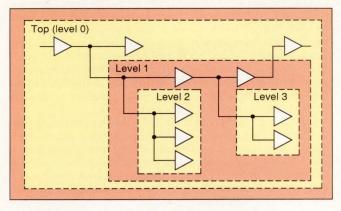


FIGURE 8. Interconnectivity in a hierarchical design.

for estimating capacitance for cells and subblocks at levels lower than the particular net's top level. In the case of either table, linear interpolation is used to select the correct wiring capacitance value based on the fan-out number. This approach makes possible to estimate very accurately the prelayout interconnect capacitance.

SUMMARY

Accurate simulation of today's small-geometry ASICS puts added requirements on simulators. Since each ASIC vendor develops its own unique specifications, simulation vendors are faced with the task of having to accommodate complex modeling schemes yet retain flexibility so that many different ASIC libraries may be supported. The table-driven approach to approximating complex functions provides this flexibility. With table look-ups and linear interpolation techniques, complex functions and curves can easily be represented with a high degree of accuracy. Not only is table look-up fast, but also changes and updates can be made quickly and easily, easing the development of accurate ASIC simulation libraries.

REFERENCES

- Chang, F. C.; C. F. Chen; and P. Subramaniam. 1988. "An Accurate and Efficient Gate Level Delay Calculator for Mos Circuits, *Proceedings of the 25th IEEE Design Automation Conference*.
- Chawla, B. R.; H. K. Gummel; and P. Kozak. December 1975. "MOTIS—An Mos Timing Simulator," *IEEE Transactions of Circuits and Systems*, vol. CAS-22.
- Pilling, D. J.; P. F. Ordnung; and D. Heald. 1972. "Time Delays in LSI Circuits," *Proceedings of the IEEE International Symposium on Circuit Theory.*
- Matson, M. D. 1985. "Macromodeling of Digital MOSVLSI Circuits," Proceedings of the 22nd IEEE Design Automation Conference.
- Schaefer, T. J. 1985. "ATransistor-Level Logic-with-Timing Simulator for MOS Circuits," *Proceedings of the 22nd IEEE Design Automation Conference.*

ABOUT THE AUTHORS

William B. Fazakerly is the vice president of engineering and a director of Ikos Systems. Before cofounding Ikos, he was a consultant to semiconductor and systems companies, including National Semiconductor, Adaptec, Monolithic Memories, Fairchild Semoconductor, and Scientific Micro Systems. Prior to his consulting venture, he founded Scientific Micro Systems and served as its vice president of engineering. He also worked as an engineer for Memorex. Fazakerly received the MSEE and BSEE degrees from the University of California at Berkeley.

Robert P. Smith is director of marketing at Ikos Systems. Previously, he was the president of SandCastles Inc., a technical publishing and marketing company that he cofounded. Before that, he was a product marketing manager at American Microsystems and a circuit design engineer at Hewlett-Packard. Smith received the MSEE degree from Stanford Univerity and the BSEE degree from the University of California at Davis.

LINKING DESIGN AND TEST FOR ASIC PROTOTYPE TEST DEVELOPMENT

Eric Archambeau, Teresa Butzerin, and Dave Roth, VLSI Technology Inc., San Jose, Calif.

esting is often the major obstacle to achieving a fast turnaround for application-specific ICS. Computeraided tools and advanced processing equipment are now available to perform quick, error-free design and fast manufacturing of ASIC prototypes. However, developing test programs for delivering tested ASIC prototypes is still a major bottleneck. A prototype device may fail the test program even if the device passes the customer's "incoming inspection," which often consists of plugging the device into his system. This paper describes an integrated test vector development environment for the fast and reliable generation of ASIC prototype test programs.

PROTOTYPE TEST ISSUES

The alternative to ASIC prototype testing is called "cutand-go": no functional test is performed. This technique is clearly inferior in terms of costs and quality for both the manufacturer and the customer. However, since the time required to debug functional test vectors can be as long as several weeks, ASIC customers are usually willing to accept cut-and-go as a trade-off for fast-turnaround prototypes.

The principal cause for prototype test difficulties comes from the way design data is transferred to the test floor. Typically, ASIC prototype tests are derived from the simulation runs done during the design verification phase; these simulation vectors are then converted into a given tester language. If the test fails to perform correctly, the burden of correcting the problems is passed on to a test engineer. But since the test engineer has very little knowledge about the design, he must resort either to reviewing the original schematics and simulations himself or to consulting with the designer. In either case, correction is a very time-consuming and tedious process that also results in a loss of valuable tester time to debugging procedures.

There are many reasons why a test program might not work (that is, not match the silicon behavior), even if the silicon works in the customer's application. For example there might be race conditions, either internal or patterninduced; uninitializable circuitry; noise due to simultaneously switching outputs (SSOS); bus contention on bidirectional pins; or defective silicon. Most of these problems, however, are not detected by programs that convert simulation vectors into test programs. For that reason, many software products that purport to bridge design verification and testing in reality only guarantee to generate a compilable test program, not necessarily a working test program.

THE 'TEST HOSPITAL' EXPERIMENT

The problem of automatically developing prototype test programs is particularly critical for VLSI Technology Inc., since ASIC foundry service, including prototyping, is a very important part of our business. Moreover, whereas the design and fabrication turnaround time for gate arrays and cell-based designs has been decreasing over the last few years, test development time has not followed the same path. Additionally, the number of prototypes to be processed has been going up, thus increasing the burden on test engineering.

The search for a solution to this problem was given to a special task force, whose charter was to debug test programs for ASICS, systematically research test program problems, and make recommendations in all areas related to test. Staffed with a mix of designers, software engineers, and test engineers, the organization was called the "test hospital," since "sick" test programs were admitted to be "diagnosed" and treated. The test hospital was supplied with an STS 120 tester (Sentry 20–compatible) in an environment isolated from the test floor but linked directly to the workstation-based design network.

Whenever a test program failed to work immediately on the tester, the precise cause of the problem was analyzed. As of this writing, over 90 designs have been submitted to the test hospital—only a fraction of the company's ASIC designs. Of these, 41 required some analysis and debugging other than simple test program recompilation. Silicon fabrication failures represented only a negligible percentage of the cases (see the table).

Conversion software errors	Internal race conditions
Dubious simulation practices	Initialization problems
External race conditions	Dubious design practices
Test hardware problems	Simultaneously switching outputs and other noise sources

Test program failure mechanisms.

The information collected enabled us to design a test vector generation environment that guarantees that test vectors will always convert to the cycle-based world of testers while guarding against race conditions and other hazards. By developing simulation guidelines, improving model and vector conversion software, establishing standard test procedures, and providing a reliable automatic test program generation procedure, we have been able to dramatically reduce the average time required to develop a prototype test. Although this experiment was originally run on gate array designs, it has been extended to cellbased devices.

As this prototype test program development environment was installed, the percentage of test programs that worked successfully on first try increased by a factor of 12. Meanwhile, the average number of man-hours per test program debugging decreased by a factor of 7. Since the latter number is directly related to the time spent by the average ASIC designer to develop his or her own prototype test in the same test generation environment, it affects all ASIC designers.

A NEW APPROACH TO PROTOTYPE TESTING

Lessons learned from the test hospital experiment have helped us formulate a new approach to prototype testing. Users of ASICS need to realize that the link between simulation, testers, and silicon is not automatic and that they should require that their ASIC vendors provide them with tools and guidelines to bridge the gaps between these three worlds of IC testing (Figure 1).

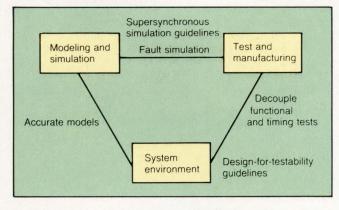


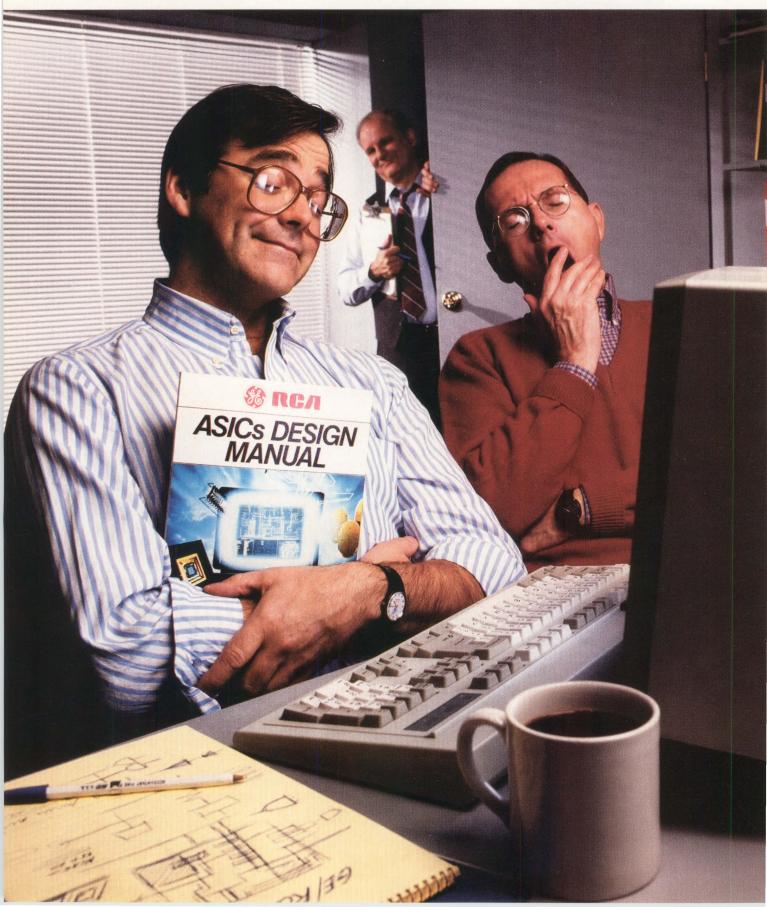
FIGURE 1. Linking the three worlds of testing.

Although these three environments have large overlaps, there are of missing bridges between them. For example:

- Simulation can display the behavior of internal nodes, but testers can only probe 1/0 pins.
- Millions of vectors can be used to simulate a circuit in the intended system, but such large numbers of vectors are not practical for testers.
- Two-micron gates can switch at 40 MHz in a system, but many testers can only test at speeds of up to 20 MHz.
- Noninitialized counters may work in a system but cause unknown states in the simulation and become untestable because of unpredictable output values.
- A single simulation cannot verify the timing for both the best and worst cases that may exist in an actual system.

The problem of creating "working" test programs automatically needs to be solved in several realms. To address all aspects of the test generation problem, the methodology we adopted is based on five important principles:

- 1. Provide design-for-testability guidelines during the logic definition phase
- 2. Decouple the functional and timing elements of test programs
- 3. Require "test-orientated" simulation
- 4. Provide extremely accurate modeling and simulation
- 5. Provide fault simulation


DESIGN FOR TESTABILITY

Because prototype tests must be able to weed out any defective silicon, prototype test programs must guarantee adequate fault coverage. Since typical testers impose limits on test length, high fault coverage must be accomplished with relatively few patterns. That can be achieved only if a high level of controllability and observability is provided for imbedded functional blocks. Design-for-testability (DFT) techniques (Williams, 1983) must be applied from the beginning of the design cycle to achieve these results. Even if high fault coverage is perceived as an issue only for production testing, DFT features should already by incorporated at the prototype level so that DFT will impose a minimum overhead on the overall design cycle time.

The testability of a circuit can be measured early in the design cycle (Archambeau, 1985) to detect areas of poor controllability and observability before committing the design to silicon. The use of testability features might imply an area penalty, design constraints, and even performance deterioration. On the other hand, increased testability usually reduces simulation, test vector generation, and actual test time, as well as overall testing costs. The testability trade-offs must therefore be fully evaluated before committing a design to silicon.

Our experience with the test hospital confirmed the well-known fact that some of the worst problems with failing test programs are a result of design problems. In some cases in which a test program fails because of illegal initialization or "internal" race conditions, the problem is virtually impossible to solve without redesigning the circuit. Remember, though, that a device can function perfectly in its intended system and still be virtually untesta-

Our ASICs

are boring.

They're easy to design. They're ready on time. And first-time success is virtually 100%.

You've heard all about the excitement of ASICs.

They improve performance, lower costs and make many new designs possible.

But, unfortunately, you've probably also heard about one big potential problem: while many ASICs pass the tests specified by the designer, they don't always work in the real world. And that causes excitement you can do without.

How to get first-time success.

It starts with our Design Simulation Software. It's been rated the best in the industry by the people who should know—designers who have used it. Within three days, you can be up to speed, working at any of the major workstations in the industry, creating and revising your ASIC with ease.

The standard cell advantage.

You'll really appreciate the power of our standard cells, which allow you to integrate a whole system, including macros, memories, logic and peripherals, onto a single chip.

We have cells with effective gate length as small as 1.5μ (.9 μ coming soon). And double-level metal for higher-density chips that can handle higher clock speeds.

You can choose from a wide range of Supercells, including the leading-edge RS20C51 core micro, RAMs, analog functions, bit-slice processors, HC/HCT logic, Advanced CMOS Logic, and high-voltage cells.

If they aren't enough, we can even generate

Supercells to your specs.

And we're also in the forefront of silicon compiler technology. So we can offer you the ability to create designs that are heavily BUSstructured, with your ROMs, RAMs, PLAs and ALUs compiled right into the design.

We also bring you the resources of some very powerful partners, thanks to our alternatesource agreements with VLSI on standard cells; WSI on macrocells and EPROMs; and a joint-development agreement with Siemens and Toshiba on the Advancell[®] library of small-geometry cells.

Gate arrays, too.

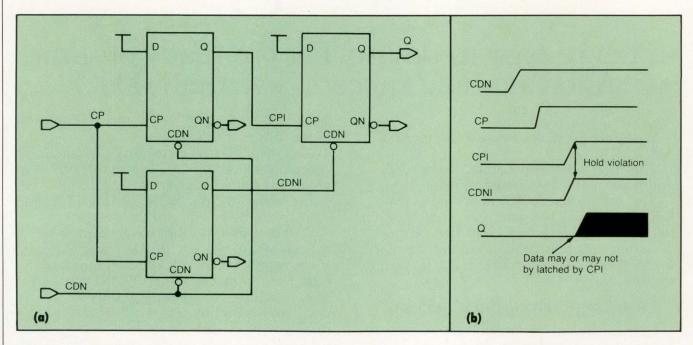
If gate arrays are better for your design, you'll be able to choose from our full line up to 50,000 gates, with effective gate length as small as 1.2μ and sub 1 ns gate delays.

These gate arrays use "continuous gate" technology for up to 75% utilization. They are an alternate source to VLSI Technology arrays.

We also alternate source the LSI Logic 5000 series.

And we have a unique capability in high-rel ASICs, including SOS. Our outstanding production facilities here in the U.S. produce high-quality ASICs in high volume at very low costs.

It almost sounds exciting for something so boring, doesn't it?


For more information, call toll-free today 800-443-7364, ext. 25. Or contact your local GE Solid State sales office or distributor.

In Europe, call: Brussels, (02) 246-21-11; Paris, (1) 39-46-57-99; London, (276) 68-59-11; Milano, (2) 82-291; Munich, (089) 63813-0; Stockholm (08) 793-9500.

GE Solid State

GE/RCA/Intersil Semiconductors Three great brands. One leading-edge company.

FIGURE 2. Internal race condition: circuit (a) and waveforms (b).

ble, because it was not designed with testability considerations in mind.

Illegal initialization. It is critical that all latches and storage elements in a circuit be designed such that they can be initialized to a known state during system initialization. If a circuit cannot be initialized easily, generating a reliable test program can be extremely difficult. Most testers have a "match" mode that can be used to clock a circuit until it proceeds to a recognized state, but it is often very difficult (and sometimes impossible) to ascertain an identifiable sequence.

Internal race conditions. An internal race condition can occur when inputs to a latch transition as a direct result of a common internal transition. Figure 2 shows an example of a race condition between a flip-flop's Clock and Clear pins, resulting from a common signal transition. Even when such a race condition does not affect the final system operation, it might result in test problems. For example, if a latch's data is sampled asynchronously, even if it does not matter which clock edge catches the data for system operation, the tester, which expects completely predictable behavior, might fail good devices.

Internal race conditions are much more serious than external (pattern-induced) race conditions because they cannot be corrected by modifying the vector timing.

DECOUPLING TEST ISSUES

As a first step toward simplifying the test problem for prototype test programs, we propose here to decouple the different aspects of tests, which previously have been bundled together:

1. Parametrics test. A parametrics test checks for over-

all process variations and validates the modeling hypothesis used during design verification simulation runs.

- 2. Functional test. The test frequency can be different from the system operation frequency, since functional test vectors should be used not as additional simulation vectors, but rather to validate further the design verification hypothesis and to check for silicon faults.
- 3. *Speed test.* Speed specifications are checked for by measuring critical paths, a sufficient test for race-free designs.

At-speed testing of all parts is no longer necessary when:

- Simulation takes into account frequency-related phenomena (for example, heat dissipation due to highfrequency operation and setup and hold time temperature variations)
- High-fault-coverage, low-speed test vectors check for process defects (localized manufacturing flaws) while validating functional simulation results
- Parametric tests check for global manufacturing deviations and thus validate the accuracy of the system timing verification
- Actual chip maximum utilization frequency is measured by user-specified critical path checks

Decoupling of speed and functional checking permits the use of the normal operation zone of any target tester for prototype testing without trying to push the test equipment to its limits. That reduces the need for an experienced test engineer's time.

The first implication of this decoupling is that the designer must develop a test-oriented simulation distinct from his system simulation—a reasonable expectation,

At The Mitel **CMOS** Foundry You're Invited In

Customer input is an essential element at our foundry. You know why your circuit was designed, what performance is expected from it, what its cost-constraints must be and what deadlines must be met by our shipments of your wafers.

Mitel Semiconductor has an excellent customer interface along with first-rate foundry capabilities. Nothing is more frustrating than explaining your needs without receiving any response. Our tracking system produces weekly reports or you can get updates by phone or by electronic mail at any time.

Most Mitel customers have tried other foundries, then come to us because of our emphasis on customer liaison and support. This emphasis gets the results you expect within the time frame that we agree on - normally five weeks from PG tape to completed wafers. After all, it's speed with high-yield production that counts!

The Mitel foundry can be your one-stop North American resource for all CMOS fabrication services from mask-making to final shipment. It's financially stable, completely approachable and consistently accountable to its clients for timely, quality production.

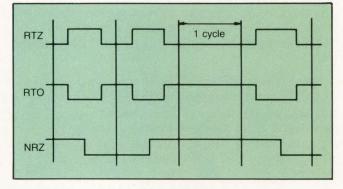
Mitel Foundry Delivers On Time – Every Time

San Diego, California. Telephone: (619) 276-3421. San Jose, California. Telephone: (408) 249-2111. Oakbrook, Illinois. Telephone: (312) 655-3930. Boca Raton, Florida. Telephone: (305) 994-8500. CANADA Kanata, Ontario. Telephone: (613) 592-5630. UNITED KINGDOM Portskewett, Gwent, South Wales Telephone: +44 291-423355. ASIA Tsuen Wan, Hong Kong. Telephone: +852 0-463641. EUROPE

Denmark. Telephone: +45 1-612566. Milan, Italy. Telephone: +39 2-8245222/8245177. West Germany. Telephone: +49 711-7701522.

CIRCLE NUMBER 25

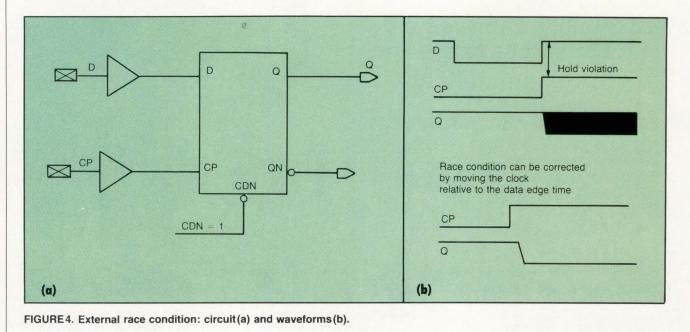
UNITED STATES

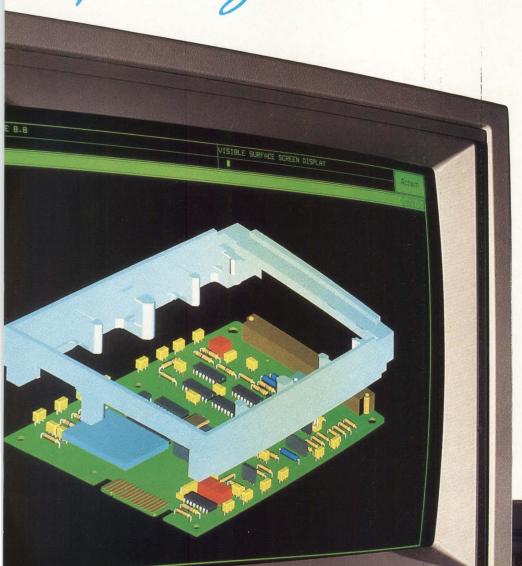

PN 9161-962-003-NA TM, . - Trademark of Mitel Corporation © Copyright 1986 Mitel Corporation since it is not always possible to exactly replicate the actual operating conditions of a circuit on a tester. vLsi Technology's "supersynchronous" simulation guidelines are tester-independent and test-oriented and facilitate this "new" design step. test (Figure 3). Multiple edge time definitions are permitted because restricting all inputs to change at a single edge time can introduce "artificial" pattern-induced race conditions—that is, race conditions occurring only at test time, not during normal systems operation.

SUPERSYNCHRONOUS SIMULATION GUIDELINES

Supersynchronous guidelines were established to maximize the probability that the test generation simulation can be converted into a working test program. They are not intended to provide the designer with maximum design verification flexibility or to address the problem of developing high-speed, customized test programs. They *are* intended to decrease the test development time and shorten the prototyping cycle. In VLST Technology's design environment, adherence to the guidelines is checked by a vector screener. Customers normally submit a set of "supersynchronous" simulation vectors along with their netlist to one of VLST's design centers. Customers requiring more flexibility can use the company's Special Test Services at additional cost and with longer development time.

Some of the major aspects of these simulation guidelines follow:


• Simulation timing must be tester-compatible. All input timing in a test-oriented simulation must adhere to the synchronous, cycle-oriented timing constraints of a tester. The simulation must be "cycle-based," with all inputs changing at regular edge times relative to the beginning of a cycle. Inputs must be assigned one of the standard tester input formats: NRZ (non-return to zero—one edge time), RTZ (return to zero—two edge times), or RTO (return to one—two edge times). All input transitions must occur at the prescribed input edge time, and the edge time assignments must remain constant throughout the



• Test generation simulation need not be at system speed. The purpose of the test generation simulation is to generate functional test patterns, not to verify the system timing constraints. Outputs may be strobed only once per cycle, and they should be strobed only when the circuit is entirely stable, so that the speed at which the test-oriented simulation may be done is limited by the maximum delay of the longest internal path.

• Assign input edge times to avoid race conditions. Input timing generators should be assigned to avoid pattern-induced, or external, race conditions. An external race condition can occur when inputs to a latch transition as a direct result of 1/0 input transitions. An example would be a flip-lop with both data and clock driven from 1/0s and assigned to the same edge time (Figure 4).

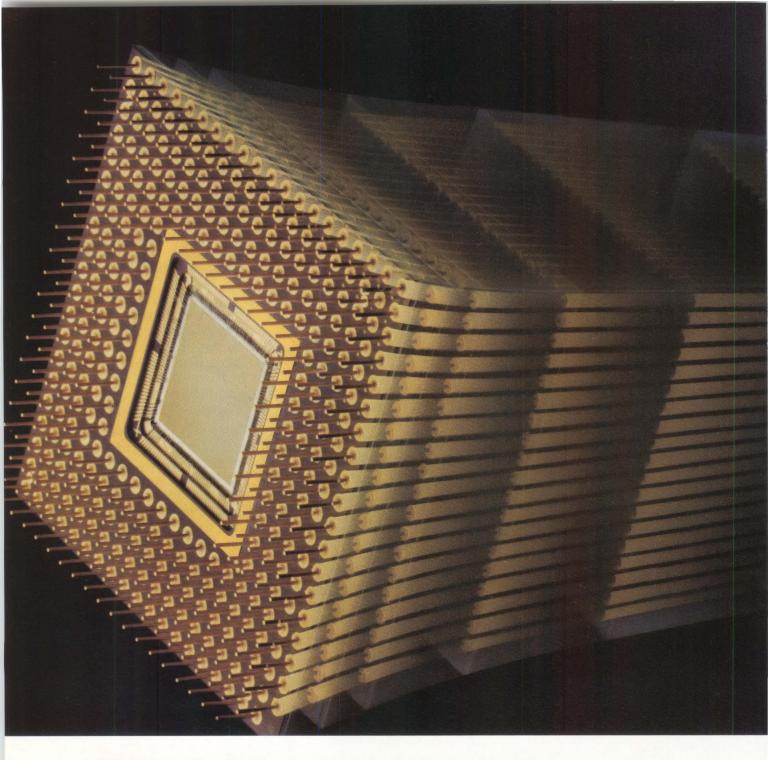
Simple as...

Design	PCB
Engineer	Engineer
Hybrid	CAM
Engineer	Engineer
Mechanical	Analysis
Publication	Database

Intergraph makes integrated design automation easy. We offer interactive graphics solutions that do it all – conceptual design, simulation, layout, production, and test – solutions that find errors before your design is finished, compressing the critical path to final product.

At one workstation, push a button and you're doing electronic design. Push again and you're designing the enclosure...creating the documentation...generating output for manufacturing...or sharing information with the corporate database. Using our 5-MIPS CLIPPER workstations and servers, you can pass data via Ethernet and other industrystandard networks.

Intergraph supplies the common database and all the application tools you need to control the entire development and revision process – and get your products *to market* faster.


Integrated design automation....

It really is as simple as pushing a button. Call Intergraph at 800-826-3515 or 205-772-2700.

CIRCLE NUMBER 26

Intergraph and CLIPPER are registered trademarks of Intergraph Corporation. Ethernet is a trademark of Xerox Corporation

129,000 gates and 400 picosecond to none.

AREA SALES OFFICES: CENTRAL AREA, Toshiba America, Inc., (312) 945-1500; EASTERN AREA, Toshiba America, Inc., (617) 272-4352; NORTHWESTERN AREA, Toshiba America, Inc., (408) 737-9844; SOUTHWESTERN REGION, Toshiba America, Inc., (714) 455-2000; SOUTH CENTRAL REGION, Toshiba America, Inc., (214) 480-0470; SOUTHEASTERN REGION, Toshiba America, Inc., (404) 368-0203; MAJOR ACCOUNT OFFICE, Fishkill, New York, Toshiba America, Inc., (914) 986-6500; BOCA RATON, FLORIDA, Toshiba America, Inc., (214) 480-0470; SOUTHEASTERN REGION, Toshiba America, Inc., (914) 986-6500; BOCA RATON, FLORIDA, Toshiba America, Inc., (305) 394-3004, REPRESENTATIVE OFFICES: ALABAMA, Montgomery Marketing, Inc., (205) 830-0498; AIIZONA, Summit Sales, (602) 998-4850; ARKANSAS, MIL-REP Associates, (512) 346-6331; CALIFORNIA (Northern) Elrepco, Inc., (415) 962-0660; CALIFORNIA (N. & Orange County) Bage Technical Sales, (519) 743-6550; COLORADO, Straube Associates Mountain States, Inc., (303) 426-0800; CONNECTICUT, Datcom, Inc., (203) 288-7005; FLORIDA, Sales Engineering Concepts, (813) 823-6221, (305) 426-4601, (305) 682-4800; GEORGIA, Montgomery Marketing, Inc., (404) 447-6124; IDAHO, Components West, (509) 922-2412; ILLINOIS, Carlson Electronic Sales, (319) 374-38240; R.W. Kurz, (314) 966-4977; INDIANA, Leslie M. DeVoe Company, (317) 842-3245; IOWA, Carlson Electronics, (316) 744-1229; KEMTUCKY, Leslie M. DeVoe Company, (317) 842-3245; IOWA, Carlson Electronics, (316) 744-1229; KHTUCKY, Leslie M. DeVoe Company, (317) 842-3245; IOWA, Carlson Electronics, (316) 744-1229; KHTUCKY, Leslie M. DeVoe Company, (317) 842-3245; IOWA, Carlson Electronics, (316) 744-1229; KHTUCKY, Leslie M. DeVoe Company, (317) 842-3245; IOWA, Carlson Electronics, (316) 744-1229; KHTUCKY, Leslie M. DeVoe Company, (317) 842-3245; IOWA, Carlson Electronics, (316) 744-1229; KHTUCKY, Leslie M. DeVoe Company, (317) 842-3245; IOWA, Carlson Electronics, (316) 744-1229; KHTUCKY, Leslie M. DeVoe Company, (317) 842-3245; IOWA, Carlson Electronics, (316) 744-1229; KHTUCKY, Leslie M. De

ow Toshiba introduces a new level of performance in gate arrays. It's the TC120G Series, and it features typical gate delays of only 400 picoseconds. That's 35% less than our own industryleading TC110G Series. The secret is our 1.0 micron CMOS process, and, of course, our proven Sea of Gates non-channelled architecture.

The new TC120G Series is upwardly compatible from the 110G, and supported by compatible CAD tools. In fact, our VLCAD-II System has been designed to permit the easy upgrade conversion of 110G systems to 120G technology.

The TC120G Series can provide the size and speed for

consolidating high speed circuits into a single package. It is especially good for high performance applications like mainframe CPU's, minicomputers and telecommunications switching systems.

If you don't need 129,000 gates, don't worry.

TOSHIBA. THE POWER IN GATE ARRAYS				
SERIES	TC110G	TC120G		
GATES	3,498 to 129,042	37,932 to 129,042		
GATE LENGTH	1.5µm	lµm		
GATE SPEED	0.6 ns	0.4 ns		
PART NUMBERS	14	5		
AVAILABILITY	NOW	NOW		

The TC120G Series is available in 5 master array sizes ranging from 37,932 to 129,042 raw gates. So you can design in just the right size for your ASIC application. And now to help you even more, we've opened two new ASIC design centers. That brings the total to five

> in the United States. For complete information, contact your nearest Toshiba Regional Sales Office: Northwestern: (408) 737-9844, Southwestern: (714) 259-0368, Central: (312) 945-1500, South Central: (214) 480-0470, Eastern: (617) 272-4352, Southeastern: (404) 368-0203.

TOSHIB TOSHIBA AMERICA, INC.

1220 Midas Way, Sunnyvale, CA 94086 (408) 733-3223

NEVADA, Eirepco, Inc., (415) 962-0660; NEBRASKA, D.L.E. Electronics, (316) 744-1229; NEW ENGLAND, Datcom, Inc., (617) 891-4600; NEW HAMPSHIRE, Datcom, Inc., (617) 891-4600; NEW JERSEY, Nexus-Technology, (201) 947-0151; Pi-tronics, (316) 455-7346; NORTH CAROLINA/SOUTH CAROLINA, Montgomery Marketing, Inc., (919) 467-6319; NORTH DAKOTA, Electric Component Sales, (612) 938-4850; NEW YORK, Nexus Technology, (201) 947-0151; Pi-tronics, (316) 455-7346; NORTH CAROLINA/SOUTH CAROLINA, Montgomery Marketing, Inc., (919) 467-6319; NORTH DAKOTA, Electric Component Sales, (612) 938-4850; NEW YORK, Nexus Technology, (201) 947-0151; Pi-tronics, (316) 455-7346; NORTH CAROLINA/SOUTH CAROLINA, Montgomery Marketing, Inc., (919) 467-6319; NORTH DAKOTA, Electric Component Sales, (612) 933-2594; UHIO, Steffen & Associates, (214) 644-6731; OREGON, Steffen & Associates, (216) 461-6331; (718) 948-2313, (513) 293-3145; OKLAHOMA, MIL-REP Associates, (214) 644-6731; OREGON, (205) 830-0498; TEXAS, MIL-REP Associates, (512) 345-6331, (713) 444-2557, (214) 644-6731; UTAH, Straube Associates Mountain States, Inc., (801) 263-2640; VERMONT, Datcom, Inc., (617) 891-4600; WEST VIRGINIA, Steffen & Associates, (419) 884-2313; WASHINGTON, Components West, (206) 885-5880, (509) 922-2412; WISCONSIN, Carlson Electronics, (414) 476-2790, Electric Component Sales, (612) 933-2594; WYOMING, Straube Associates, Mountain States, Inc., (303) 426-0890; CANADA, BRITISH COLUMBIA, Components West, (206) 885-5880; ONTARIO, Electro Source, Inc., (416) 675-4490, (613) 592-3214; OUEBEC, Electro Source, Inc., (514) 630-7486.

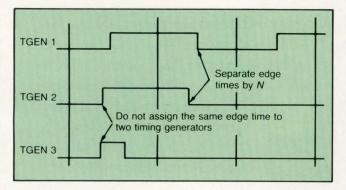
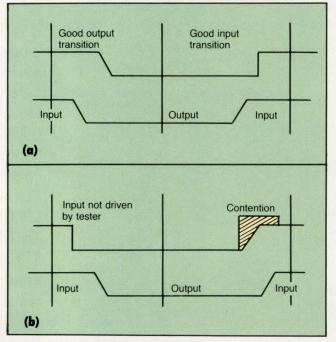
© 1988 Toshiba America In

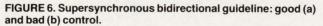
CIRCLE NUMBER 27

For this reason, supersynchronous guidelines require that edge times be separated by N nanoseconds, where N is greater than the longest possible delay in the circuit. Defining large delays between edge times helps prevent pattern-induced race conditions: Providing for discrete time intervals in which signals can settle precludes the tester's timing generators from triggering simultaneous transitions from different edge times.

• Two timing generators cannot be assigned the same edge time. The tester might skew two different timing generators by a few nanoseconds relative to each other, and the skew could possibly lead to race conditions or yield problems, depending on the particular circuit and simulation conditions (Figure 5). Consequently, this very important rule prevents unreproduceable race conditions caused by timing generator skews from happening.

Note that the supersynchronous rules prevent testerinduced and pattern-induced race conditions from occurring: the remaining internal race conditions between transitions triggered by the same timing generator are detected by the models during simulation or timing verification, or both.


FIGURE 5. Supersynchronous rules for edge time definition.

• Bidirectional contention must be avoided. Supersynchronous bidirectional rules require that the control signal of every bidirectional circuit be "watched" in the trace file. The bidirectional control signal determines whether a bidirectional pin is driven or sensed during a particular cycle. The following supersychronous guidelines refer to bidirectional circuits:

- There should be only one transition per period on any bidirectional node.
- There should be only one transition per period on any control signal (bidirectional or three-state).
- If a transition occurs on both the bidirectional node and its control in a cycle, the control transition must occur before the node transitions.

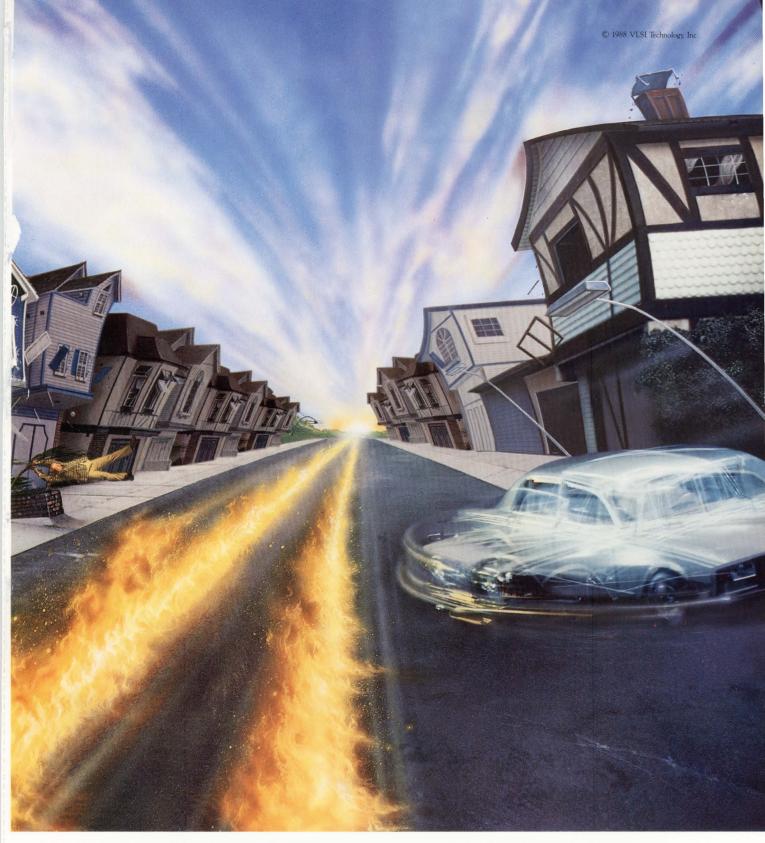
If a bidirectional pin is driven as an input by the tester while the circuit is driving the node as an output, current spikes can appear on the power or ground lines. The supersynchronous guidelines (see Figure 6) prevent this hazardous situation, which could cause permanent circuit damage.

• Test modes must be specified. Test mode initialization sequences must be provided for cell-based designs; for circuits incorporating megacells or compiled cells, the designer must provide and specify test modes during which supersynchronous predefined vectors can be applied to each functional block.

MODELING AND SIMULATION ISSUES

Prototype test programs must be generated directly from simulation trace files, and they therefore rely on very accurate logic and timing simulation. Despite continuous progress in simulation accuracy, many effects, like those of current switching, and input level problems cannot be handled by most logic simulators. Capacitive loading effects for complicated models like unbuffered flip-flops (where the capacitive load on Qmay effect the timing on Q)

WITH VLSI'S ASIC TOOLS, YOU CAN


VLSI Technology's software is the fastest, surest way to create successful ASIC chips.

Our tools accelerate each and every step of the design process.

And our years of experience insure the

success of your finished ASIC chip. EVERYTHING'S FASTER WHEN YOU HAVE AN ASSISTANT.

Our Design Assistant[™] tool partitions your chip and estimates chip size, power consump-

BLOW RIGHT BY THE COMPETITION.

tion, and packaging possibilities. In short, it tells you the best silicon solution to your problem.

Simply enter your design in block diagrams and global interconnect forms. Design Assistant shows you ways to implement it. Gate array, standard cell or cell-based.

You can run dozens of "what if" configurations in a few hours. In no time, you'll have the crucial information you used to wait forever for vendors to supply.

STREAMLINED DESIGN, COMPLIMENTS OF OUR COMPILERS.

Our logic and memory compilers create multipliers, PLAs, or super fast SRAM memory blocks as fast as 8ns.

And we've got a couple of "expert" compilers for cell-based or gate array designs that think exactly the way you do.

When you design a datapath, you think of it as a linear schematic, right?

Well, our Datapath Compiler just happens to use schematics as input. Complex multi-bit datapaths practically pop right out of it.

When you design state machine and other logic blocks, you think in terms of equations. Our State Machine Compiler does, too.

And it even optimizes your equations.

GET IT TOGETHER. FAST.

Ready to place and route your cell-based design? Just call up our Chip Compiler.

It provides floor-planning and auto-routing. It works with our compilers and standard cell libraries to produce an optimized layout.

It even pours standard cells into the gaps

between blocks to make sure you use the minimum chip area required.

How fast does it work? Glad you asked. A company came to us with a layout that

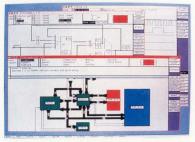
took them three months. We did it in two days.

TO BE FAST, YOU HAVE TO BE FLEXIBLE.

Only our Portable Library lets you choose gate array or cell-based, 1.5μ or 2μ , *after* you've completed your logic design.

It can allow you to do that because your library always remains stable. No matter what process you use.

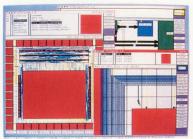
Process obsolescence is now obsolete.


IF YOU NEED TO GET THERE FAST, TAKE THE EXPRESS.

You can buy VLSI's tools in six configurations. From our quick, easy-to-use Logic Express[™] to the powerful Design Express.[™]

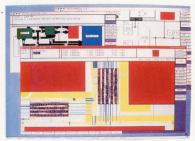
If you'd like to find out how quickly you can design successful ASIC chips, give us a call at (800) 872-6753.

Because when you're driving to market this fast, it's good to have insurance.


CONCEPT EXPRESS™:

The Concept Express Design System's highly productive logic tools and silicon compilers were used to develop this very-large-scale ASIC. It incorporates a 2901 datapath, RAM, ROM, and over 3,400 gates of

random logic.



This highly-integrated design combines control logic, a register file, a refresh counter, and five peripheral chips onto a die size of 275x 315 mils. The logic design, layout, and verification were

SILICON EXPRESS™:

This design integrates all the peripheral chips for an AT computer with six megacells and control logic. Using the Silicon Express Design System, logic and physical designs like these can be implemented in under two man months.

are likewise nearly impossible to model completely accurately. Finally, "error conditions," such as setup and hold violations, clock violations, and minimum pulse width violations, are often difficult to characterize.

Our experience with the test hospital was instrumental in identifying certain modeling problems and understanding model limitations. Here are a few things users need to understand about IC models, especially in regard to test program generation:

• Models must initialize "conservatively." Models must be as conservative as necessary in handling unknown nodes, to ensure that model outputs become asserted only when a circuit is correctly initialized. This requirement may call for the designer to add some extra circuitry or extra vectors to rigorously initialize the circuit.

• Models must report all timing violations. All timing relationships in logic blocks must be characterized, and error messages must be heeded by the user. Setup and hold violations on Clear and Set inputs, clock skew errors, or minimum pulse violations all can cause serious logic ambiguities. In all cases, the user must be notified by the model. Model violations cannot be tolerated during testoriented simulation because even if the designer is aware of a model timing error and is sure it does not affect the system performance, it could very likely affect the test program.

• A single simulation cannot represent best- and worst-case timing. A single simulation run can verify timing at only one point in the performance spectrum (bestcase, typical, worst-case). Since process performance scales linearly, this limitation is usually not too serious. Very difficult critical paths or possible race conditions, however, should be analyzed at both ends of the performance spectrum.

• Noise and current effects cannot be simulated. Since the simulator cannot consider noise, the designer must subscribe to design and simulation guidelines to avoid noise problems (for example, the maximum number of simultaneously switching outputs per power pair, the maximum number of outputs between grounds pads, no ground at corner of DIPS). VLSI Technology provides a comprehensive list of these requirements in its design and test guidelines.

FAULT SIMULATION ISSUES

Given the considerations above, prototype test vectors should be fault-graded. Several fault simulation techniques are available to perform the task (Goel and Moorby, 1984). For prototype test programs, probabilistic fault simulation can be used to obtain good estimates of their efficiency (Agrawal and Jain, 1985) at minimal cost, as test-oriented fault-free simulations are required anyway. A benefit of high-quality prototype tests is that production tests having very high fault coverage can be derived quickly from the existing prototype tests. Reciprocally, one does not need to wait until high production volumes to ensure high-quality shipments.

ACKNOWLEDGMENTS

None of this work would have been possible without the initial leadership and continuing guidance of Bob Shur of VLSI Technology's design technology group. The authors also wish to thank Jim Althoff and Atiq Raza of VLSI Technology for their continuing support throughout the test hospital experiment.

REFERENCES

- Agrawal, V.D., and S.K. Jain. February 1985. "Statistical Fault Analysis," *IEEE Design & Test of Computers.*.
- Archambeau, E.C. December 1985. "Testability Analysis Techniques: A Critical Survey," VLSI Design.
- Goel, P., and P.R. Moorby. July 1984. "Fault Simulation Techniques for VLSI Circuits," VLSI Design.
- Williams, T.W. January 1983. "Design for Testability—Survey." IEEE Proceedings, vol. 71, no. 1.

ABOUT THE AUTHORS

Eric Archambeau is the now the manager of software development manager at VLSI Technology. Previously, he was the manager of the company's logic entry, workstation simulation, and test software group. He has been involved in ASIC libraries, logic simulation, fault simulation, and testability analysis development projects since 1982, first with Matra Design Systems and then with Intercept Microelectronics. He received his Master, Engineer, and PhD degrees in electrical engineering from the University of California at Berkeley, Stanford University, and the Institut National Polytechnique de Grenoble in France, respectively.

Teresa Butzerin is a project leader for test automation software at VLSI Technology and has been with the company since 1983. Previously she was a senior design engineer at VLSI Technology's San Jose design center, where she worked on numerous system-level VLSI designs. She has a BSEE degree from Stanford University.

David Roth was the manager of gate array prototype testing at VLSI Technology. He is now with Tangent Systems in Santa Clara, Calif. Earlier he was a design engineer at VLSI and an MOS design engineer at Advanced Micro Devices. He received his BSEET from Ohio Institute of Technology in 1980. Dave is often mistaken for a famous rock star.

At 100 MHz, the IMS Logic Master XL creates a new world standard for ASIC verification.

But speed isn't everything.

You might think it sufficient that we're introducing the highest performance ASIC verification system available anywhere.

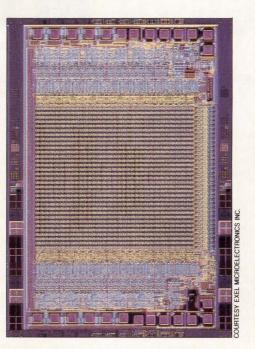
And that our new Logic Master XL is the first system with data rates of 100 MHz.

But we didn't think that was enough.

Instead, we concentrated on the kind of features that turn superior performance into superb productivity.

Like advanced driver electronics which produce symmetrical waveform edges for measurement accuracy.

And complete per-pin control. So you can handle complex timing configurations with ease. And mixed technology devices.


Plus automatic wiring for rapid, error-free setup, and superb system skew for greater measurement confidence.

Best of all, the Logic Master XL comes from Integrated Measurement Systems, the international leader in ASIC verification.

Contact us for more information.

U.S. Regional Offices: Boston, MA 617-366-3676; Irvine, CA 714-768-5808; Portland, OR 503-626-7117. International Offices: Belgium 02-219-2453; Canada 416-890-2010; France 01-4534-7535; Hong Kong 5-701181; Japan 0423-33-8111; Sweden 753-38465; Switzerland 830-5040; Taiwan 02-501-0055; The Netherlands 01-40-582911; United Kingdom 06-284-76741; West Germany 5722-2030.

III DIRECTORIES

- 100 GUIDE TO THE DIRECTORIES
- 100 GATE ARRAY AND CELL LIBRARY VENDOR PROFILES
- 106 DIRECTORY OF GATE ARRAYS
- 117 DIRECTORY OF CELL LIBRARIES
- 125 DIRECTORY OF PROGRAMMABLE LOGIC DEVICES
- 128 GATE ARRAY AND CELL LIBRARY VENDOR CONTACTS
- 130 DIRECTORY OF ASIC DESIGN CENTERS

GUIDE TO THE DIRECTORIES

his section of the *Guide* is a listing of gate array, cell library and PLD vendors and product lines and regional design centers. "Gate Array and Cell Library Vendor Profiles" gives customer interface (design data media), CAD system access, and price and deliveries. For the five media format choices, a bullet (•) shows company preference, an open bullet (•) means the company allows it, and a dash means the format is unacceptable.

A *functional* specification defines an architecture in terms of major function blocks, primary I/Os, and expected behavior. If the design is expressed with standard logic primitives, a *generic* logic schematic can be submitted. Working from a vendor's known library of macros can result in a *converted* logic schematic. If the vendor allows access to its CAD system or supports its libraries, a verified *netlist* can be submitted. Further, with access to the layout outlines of the library elements, graphical editing tools, and layout analysis programs, the design may be done by the customer, who hands over a verified *layout*.

The columns on CAD systems show the host computers on which the system runs. Whether customers can use the tools at the company *(on-site)*, from remote terminals *(remote)*, or on their own machines *(off-site)* is indicated with a bullet. A dash means access is not available. The final column lists the workstations, simulators, and layout systems the vendor supports.

In the NRE category, approximate development costs for a 3,000-gate digital IC are given. Vendors of GaAs, linear, and certain special ICs list cost estimates of typical devices. Turnaround time is measured from submission of a verified netlist to delivery of packaged tested prototypes. (Note: "n/s" means "not specified.")

In the "Directory of Gate Arrays," the number of array types (sizes) for each family is shown in parentheses next to the series name. Below the family name is the technology and the line width of this process. The column *programmable layers* lists the poly ("P") and metal ("M") layers available for customization, followed by the pitch of the wiring, where available. The "Directory of Cell Libraries" follow a similar format.

For arrays, we list the numbers of components available (spanning the smallest to the largest product in the family). The number of gates is for digital arrays or combined analog-digital arrays, and the number of active components is for linear arrays or array portions. We also list both digital VOS and dedicated analog VOS.

The listings in the "Directory of Programmable Logic Devices" are self-explanatory.

A separate listing, "ASIC Vendor Contacts," contains, for gate array and cell library vendors, the names, addresses, and phone numbers of all the companies and, in almost every case, a contact person for obtaining more information. In "Directory of ASIC Design Centers," vendor-owned and third-party design centers are listed by location under the manufacturer's contact information. Distributor contacts, on the other hand, are grouped at the end of the section.

Missing this year from the directories are Harris Semiconductor, Hitachi America, Interconics, McDonnell Douglas, SGS-Thompson, Supertex, Telmos, and Universal Semiconductor. Unfortunatley, these companies were unable to supply the necessary information in time for inclusion. Also not included is K-MOS Systems.

Gate Array and Cell Library Vendor Profiles

Company	Products		Custo	mer int	erface			CAD sy	ystem a	access		Nonreg		Turna (we		Minimum production
		Functional	Generic	Converted	Netlist	Layout	CAD system hardware	On-site	Remote	Off-site	Work- stations, sim- ulators, and layout supported	GA	SC	GA	SC	contract
ABB HAFO	CMOS cell library	0	0	0	•	0	MicroVAX VAX	•	•	•	Daisy Mentor P-CAD Tektronix	n/s	40 +	n/s	12-16	None
Actel	CMOS gate arrays	-	-	-	-	-	IBM PC 386	-	-	•	PC-386 Viewsim	n/s	n/a	2 hours	n/a	None
Adams Russell Semiconductor	GaAs D- MESFET cell library	•	-	-	-	•	VAX/Micro- VAX/IBM	•	-	•	None	n/a	35-40	n/a	8-10	4-wafer lot
Advanced Micro Devices	Bipolar gate arrays	•	•	•	•	0	IBM, VAX, Apollo	•	•	•	Mentor	Varies	n/s	8-9	n/s	None
Applied Micro Circuits	Bipolar and BiCMOS gate arrays and cell libraries	0	0	•	•	•	Apollo MicroVAX VAX Sun	•	•	•	Daisy Mentor Valid Lasar 6	25-95	n/s	7-12	n/s	None

Gate Array and Cell Library Vendor Profiles (continued)

Company	Products		Custo	mer int	erface			CAD sy	/stem a	access		Nonree			round eks)	Minimum production
		Functional	Generic	Converted	Netlist	Layout	CAD system hardware	On-site	Remote	Off-site	Work- stations, sim- ulators, and layout supported	GA	SC	GA	SC	- contract
Arrow Electronics	CMOS gate arrays and cell libraries	0	•	•	0	0	VAX Apollo	•	•	•	Daisy Mentor	n/s	n/s	4-8	6-12	None
AT&T Technologies	CMOS cell libraries; digital bipolar gate arrays	0	0	0	•	-	Apollo AT&T IBM MicroVAX VAX Sun	•	•	•	Daisy Mentor Valid	45	≥50	8	8-12	None
Barvon BiCMOS Technology	BiCMOS gate array; CMOS and BICMOS cell libraries	0	•	•	•	0	Apollo VAX MicroVAX	•	_	•	Mentor Silvar- Lisco	n/s	n/s	n/s	n/s	None
California Micro Devices	CMOS gate arrays and cell libraries	0	•	•	•	0	MicroVAX VAX	•	-	•	Daisy Mentor Viewlogic Tektronix	10-25	40-50	4-6	6-8	None
Cherry Semiconductor	Bipolar gate arrays	0	0	•	0	0	IBM PC	•	-	-	Applicon	27	-	12	-	None
Control Data	CMOS gate array; and cell libraries	-	-	•	•	-	Cyber 800 Apollo	•	•	•	Daisy Mentor	38	80	12	12	\$100k/year (SC)
Custom Arrays	Linear bipolar gate arrays and cell library	•	•	•	•	•	IBM PC	•	•	•	Analog Design Tools PC AT PC-386	5-50	20-70	3	12-28	None
Custom Silicon	CMOS and bipolar gate arrays; CMOS cell libraries	•	0	0	0	-	MicroVAX IBM PC Apollo Sun	•	•	•	Mentor Daisy FutureNet Viewlogic	12	25	3	5-7	None
Data Linear	Bipolar analog arrays, and cell library	0	-	•	•	•	IBM PC MicroVAX VAX	•	•	•	Daisy Mentor Valid ADT Via	25-30 15-20 analog array	25-50	6-8	10-12	500 units/year
Design Devices	CMOS gate array and cell library	•	0	0	0	-	MicroVAX IBM PC Apollo	•	•	-	Mentor Valid	26	39	9-11	14-17	None
Electronic Technology	CMOS gate arrays; bipolar linear arrays; CMOS cell libraries	•	•	0	0	0	VAX SCS-40	-	-	-	Daisy Via	15	25	12	16	None
Exar	Bipolar linear arrays and cell library; CMOS gate arrays and cell library	0	•	•	•	0	VAX IBM PC (Linear) Apollo (digital)	•	•	•	Mentor	n/s	30	n/s	13	None
Ford Micro- electronics	GaAs E/D MESFET gate array	0	0	0	_	•	VAX 11/78X or 8600	•	-	•	Daisy	Ap- prox- imate- ly 75	Not yet avail- able	13	n/s	5 wafer units/year (GA)
Fujitsu Micro- electronics	CMOS, BiCMOS, and bipolar gate arrays; CMOS cell libraries	-	0	•	•	0	VAX MicroVAX IBM PC Apollo Sun Fujitsu Amdahl	•	•	•	Daisy HP Mentor Valid Tektronix	20	40	4	8	None

Gate Array and Cell Library Vendor Profiles (continued)

Company	Products		Custo	mer int	erface			CAD s	ystem a	ccess		Nonrec		Turna (we		Minimum production
		Functional	Generic	Converted	Netlist	Layout	CAD system hardware	On-site	Remote	Off-site	Work- stations, sim- ulators, and layout supported	GA	SC	GA	SC	contract
Gain Electronics	GaAs E/D MESFET gate array	0	0	•	•	-	IBM PC Apollo	•	-	•	Mentor Viewlogic	55	n/s	14	n/s	n/s
GE Micro- electronics Center	Si-gate CMOS gate array and cell library (CMOS/SOS gate array and cell library also available)	-	0	0	•	0	VAX 11/78X or 8600 MicroVAX Apollo Sun	•	•	•	Valid Mentor FutureNet	35	50	5	9	None
Genesis Microchip	CMOS gate array and cell library	0	•	0	0	-	IBM 30XX or 43XX IBM PC Apollo Sun	•	•	•	Mentor FutureNet Daisy	n/s	De- pends on con- tent	6	10	n/s
Gennum	Bipolar and digital linear arra y s	•	0	0	0	•	IBM PC	-	-	•	Computer- Vision	6.9-40	n/a	8-12	n/a	None
GE Solid State	CMOS and SOS gate arrays and cell libraries	0	0	•	•	0	MicroVAX VAX Sun	•	•	•	Daisy FutureNet Mentor PCAD Valid	15-75	25- 125	5	8	None
GigaBit Logic	GaAs cell library	0	0	0	•	0	VAX MicroVAX IBM PC	•	-	•	Daisy Mentor	-	75	-	16	None
Gould Semiconductor	CMOS gate arrays and cell library	0	•	•	•	•	Apollo IBM PC Prime Symbolics VAX	•	•	•	Daisy FutureNet Mentor P-CAD	14-19	21-26	6	8	Negotiable
Hamilton/Avnet	CMOS, bipolar, BiMOS, ECL, and SOS gate arrays; CMOS cell libraries.	-	0	•	•	•	MicroVAX IBM PC Sun	•	•	•	FutureNet Faircad LDS III Ikos MDE	30	40-60	8-12	10-16	None
Holt Integrated Circuits	CMOS analog and combo array; CMOS cell library	•	•	•	0	•	VAX	•	•	•	Calma	4	35-45	-	12-16	Negotiable
Honeywell Solid State Electronics Division	CMOS, bipolar, and rad-hard gate arrays	0	0	•	•	0	Apollo Elxsi Daisy	•	•	•	Daisy Mentor	30-100	-	4-6	-	None
Hughes Aircraft	CMOS gate arrays and cell libraries	0	0	•	•	•	VAX Apollo	•		-	Daisy Mentor	30-50	40-75	4-6	8-10	100 units/year (GA); 1,000 units/year (SC)
ICI Array Technology	CMOS gate array and cell library; bipolar ECL	0	•	•	0	-	Apollo	•	-	-	Mentor	15	30	6-10	12-16	None
Integrated Circuit Systems	CMOS gate arrays and cell libraries; GaAs cell libraries	0	•	0	0	0	Apollo IBM PC VAX	•	•	•	Daisy Mentor Calma	23	39	6	10	500k units and \$12k/year (GA); 1k units and \$25k/year

Company	Products		Custo	mer int	erface			CAD sy	ystem :	access		Nonrec			round eks)	Minimum production contract
		Functional	Generic	Converted	Netlist	Layout	CAD system hardware	On-site	Remote	Off-site	Work- stations, simulators, and layout supported	GA	SC	GA	SC	Contract
Integrated Logic Systems	CMOS gate arrays and cell libraries	0	•	•	•	_	VAX	•	_	•	Daisy Or CAD Mentor	10-50	-	8-12	-	None
Intel	CMOS cell library	0	0	0	•	-	MicroVAX VAX	•	-	•	Daisy Mentor	-	Nego- tiable	-	8-12	Negotiable
International Microcircuits	CMOS gate arrays and cell libraries	-	•	•	•	0	Apollo VAX	•	-	•	Daisy Mentor	16.8	44.8	6	16	None
International Microelectronic Products	CMOS standard cells	0	•	•	•	•	IBM PC MicroVAX Sun	•	•	•	SST SCS Viewlogic Mentor	n/a	30-50	n/a	12	None
LSI Logic	CMOS/BiCMOS gate arrays and cell libraries	-	0	0	•		Apollo IBM MicroVAX Sun-3 Sun-4 VAX	•	•	•	Daisy Mentor Valid	n/s	n/s	2	6	None
Marconi Electronic Devices	CMOS and SOS gate arrays; CMOS and SOS cell libraries	0	0	0	•	0	Apollo VAX MicroVAX	•	•	•	Daisy Mentor		-	-	-	None
Matra Design Semiconductor	CMOS gate arrays	0	•	•	•	-	IBM PC MicroVAX VAX	•	•	•	Daisy Mentor Valid HP	5-40	-	3-6	-	None
MCE Semiconductor	CMOS and bipolar gate arrays and cell libraries	0	0	•	•	•	IBM PC	•	-	•	Calma	5	10	5-7	6-10	None
Micro Linear	Bipolar linear arrays	•	•	•	•	•	IBM PC Sun	•	•	•	ADT Calma Daisy Viewlogic	15-30	-	10-16	-	Negotiable
Micro LSI	CMOS gate array and cell library	•	•	0	0	0	Prime	•	-	-	Daisy	15-25	35-45	10	14	n/s
Micro-Rel	CMOS and bipolar cell library	•	0	0	•	•	Data General/MV Apollo	-	-	-	Calma Daisy Mentor	-	n/s	-	13	\$100k/year (SC)
Mietec	CMOS and bipolar gate arrays and cell libraries	0	0	0	•	•	VAX MicroVAX	•	•	•	Daisy Valid	-	40	-	6	30k units per year and \$100k/year (SC)
Mitsubishi Electronics America	CMOS gate arrays and cell library	-	0	•	•	0	IBM IBM PC Apollo Sun	•	•	•	Valid Mentor Daisy Intergraph HP Ikos Orchard FutureNet	10-30	30-60	4	10	\$100K/year (SC)
Motorola	CMOS, BiMOS and bipolar gate arrays	-	0	•	•	0	IBM VAX Apollo Sun MicroVAX	•	•	•	Daisy FutureNet Mentor Valid	20	25-30	5	-	Negotiable

Gate Array and Cell Library Vendor Profiles (continued)

Company	Products		Custo	mer int	terface	1			ystem :	access			curring se (\$K)		round eks)	Minimum production contract
		Functional	Generic	Converted	Netlist	Layout	CAD system hardware	On-site	Remote	Off-site	Work- stations, simulators, and layout supported	GA	SC	GA	SC	
National Semiconductor	CMOS and ECL gate arrays; CMOS and ECL cell libraries	-	0	•	•	0	IBM VAX MicroVAX	•	•	•	Daisy FutureNet Mentor Valid Sun	Negoti- able	Negoti- able	3-4	7-9	None
NCM	CMOS gate arrays and cell libraries	0	0	0	0	0	Silicon Graphics	-	-	-	GEM	8-16	25-30	4	10	None
NCR Microelectronics	CMOS gate arrays and cell libraries	0	0	0	•	0	VAX	•	•	•	Cadnetix Daisy Mentor Valid FutureNet	12-20	30-50	3-5	8-10	None
NEC Electronics	CMOS, IBiCMOS, and bipolar gate arrays; CMOS cell library	0	0	•	•	0	NEC-Acos VAX Sun	•	•	•	Cadnetix Daisy FutureNet HP Mentor Valid	Negoti- able	Negoti- able	4-7	7-10	Negotiable
Oki Semiconductor	CMOS gate arrays, and cell libraries	-	•	•	•	•	IBM Amdahl VAX	•	•	•	Daisy Mentor Valid Sun FutureNet	20-22	35	4	8	10 units- 100 units
Panasonic	CMOS gate arrays and cell libraries	-	0	•	•	-	VAX MicroVAX Fujitsu	•	-	•	Daisy Mentor	18	35	3-4	6-10	None
Plessey Semiconductor	Bipolar and CMOS linear arrays, gate arrays, and cell libraries	0	•	•	•	•	Apollo IBM PC Sun VAX MicroVAX	•	•	•	ADT Daisy Mentor Valid FutureNet	5-50	25-80	6-10	8-16	\$50K per year (GA); \$80K per year (SC)
Polycore Electronics	Bipolar linear arrays	•	•	•	•	•	IBM PC	-	-	-	IBM PC- ICED	5	-	6	-	None
Raytheon Semiconductor	Bipolar and CMOS gate arrays	•	0	•	•	•	VAX Amdahl	•	•	•	Daisy Mentor Valid	15-75	-	8-12	-	Program- dependent
Seattle Silicon Corp.	CMOS cell libraries	0	0	•	•	0	Apollo	•	-	•	Mentor	n/a	35	n/a	8	None
Sierra Semiconductor	CMOS cell library	0	0	•	•	•	Apollo Elxsi VAX Sun	•	-	•	Daisy Mentor	-	30	-	12	None
Signetics/Philips	CMOS cell libraries	•	0	0	•	0	Apollo VAX IBM PC	•	•	•	Mentor OrCAD Daisy Valid	-	30-50	_	10-14	\$100k per year
Siliconix	CMOS gate arrays	0	0	0	0	-	IBM IBM PC VAX	•	-	•	Case Daisy FutureNet Mentor	10	-	6	-	None
Silicon Systems	Bipolar gate arrays; bipolar and CMOS linear arrays; CMOS cell libraries	•	•	0	0	0	Apollo VAX MicroVAX	-	-	•	_	20-40	35-75	6-10	8-12	1k units/year or \$50k/year (GA); 10k units/year or \$100k/year (SC)

Company	Products		Custo	mer in	terface			CAD s	ystem	access			curring se (\$K)		round eks)	Minimum production
		Functional	Generic	Converted	Netlist	Layout	CAD system hardware	On-site	Remote	Off-site	Work- stations, sim- ulators, and layout supported	GA	SC	GA	SC	- contract
Silicon West	CMOS gate arrays and cell library	•	•	0	0	-	Apollo VAX	-	-	-	Mentor	30	40	6-8	8-10	None
S-MOS Systems	CMOS gate arrays and cell library	-	0	•	•	•	MicroVAX IBM IBM PC Apollo Sun	•	-	•	Daisy Mentor FutureNet OrCAD Viewlogic	18	36	5-7	11-14	5k units/year (GA); 10k units/year (SC)
Standard Microsystems	CMOS cell libraries	0	•	•	•	•	Apollo IBM PC MicroVAX VAX	•	-	•	Daisy Mentor Metheus- CV Valid Viewlogic	-	15-35	-	6-10	\$50k/year (SC)
Tachonics	GaAs D- MESFET cell library	-	0	0	•	•	Apollo	•	-	•	VLSI Technology Mentor	-	75	-	10	None
Tektronix	Bipolar linear and digital arrays	0	0	•	0	0	MicroVAX VAX	•	-	•	Tektronix	60	-	6	_	None
Texas Instruments	CMOS gate arrays and cell libraries	•	•	•	•	0	Apollo IBM	•	•	•	Daisy Mentor Valid	15-25	30-40	2-3	3-6	None
TLSI	CMOS gate arrays; CMOS and nMOS cell libraries	•	•	•	0	•	IBM PC MicroVAX	•	-	-	Calma Daisy	20	35	8	12	None
Toshiba America	CMOS gate arrays and cell libraries	•	•	0	0	•	IBM/VAX	•	•	•	Daisy FutureNet Mentor Valid Viewlogic HP Aida P-CAD	9-90	15-50	2.5-4	7-12	None
TriQuint Semiconductor	GaAs D- MESFET standard cell, E/D-MESFET gate arrays and cell libraries	0	0	0	•	•	Daisy Logician Apollo VAX MicroVAX	•	-	-	Daisy Mentor	45-60	60- 120	10	14	None
Unicorn Micro- electronics	CMOS gate arrays and cell library	•	•	•	•	•	MicroVAX VAX	•	•	•	Daisy	5-20	25-45	4-8	12-16	None
United Silicon Structures (US2)	CMOS cell library	0	0	0	0	•	VAX 11/78X or 8600 MicroVAX IBM PC Apollo Sun	•	-	•	Sun-3 Apollo DN3000, DN4000 DEC VAX station	n/a	15	n/a	6	One unit/year (SC)
United Technologies Micro- electronics Center	CMOS and rad-hard CMOS gate arrays and cell libraries	0	0	•	•	•	MicroVAX VAX	•	•	•	Daisy Mentor Valid	30	50	6-8	8-12	None
Vitesse Semiconductor	GaAs E/D- MESFET gate arrays and cell library; mixed D and E/D-MESFET gate arrays	0	0	0	•	0	VAX 11/78X or 8600 MicroVAX Apollo, Sun Daisy	•	•	•	Daisy Mentor Merlyn-G VLSI Tools	Con- tact factory	Con- tact factory	8-10	n/s	Contact factory

Gate Array and Cell Library Vendor Profiles

Company	Products		Custo	mer int	erface			CAD sy	stem a	iccess		Nonrec		Turna (wee		Minimum production
		Functional	Generic	Converted	Netlist	Layout	CAD system hardware	On-site	Remote	Off-site	Work- stations, simulators, and layout supported	GA	SC	GA	SC	contract
VLSI Technology	CMOS gate arrays and cell libraries	0	0	•	•	•	Apollo Elxsi HP MicroVAX Sun VAX	•	•	•	HP Daisy Mentor FutureNet	16-150	n/s	3	5-6	Contact sales
νтс	CMOS and bipolar gate arrays and cell libraries	0	0	•	•	0	Apollo IBM PC	•	•	•	Mentor Daisy	25	50	6	12	None
WaferScale Integration	CMOS cell library	•	•	•	•	0	VAX	•	•	•	Daisy Intergraph	-	60	-	16	Contact sales
Xerox Microelectronics Center	CMOS and ECL gate arrays; CMOS and ECL cell libraries	•	•	0	0	-	VAX-11/78x or 8600 (some software), Xerox 6085 workstations	•	•	-	Xerox 6085	20-35	40-55	4-10	6-12	None
Xilinx	CMOS gate arrays	0	•	•	n/a	n/a	IBM PC Apollo Sun Daisy	n/a	n/a	n/a	Daisy Mentor IDEA Valid PC	-	n/a	-	n/s	None
Zymos	CMOS cell libraries	0	•	•	•	_	IBM PC Prime	•	•	•	Case	n/a	Contact sales	n/a	Varies	Contact sales

Directory of Gate Arrays

Company	Product	Program-	Тур	oical Param	eters	Compon	ents	Interface	Temp. ranges ⁵	Second
	Technology Line width	mable Layers	MHz ¹	mW ²	ns ³	Gates	I/Os	levels ⁴ C T ECL	C I M	Sources
Actel Corp.	Act1 (2) Si-gate CMOS 2 μm	M1 6 μm M2 7 μm	70	n/s	2.7	1200-2000	57-69	• •	•	None
Advanced Micro Devices	Am3500 Bipolar OI (ECL) 1.5 µm	M1 6 μm M2 9 μm	650	1-4	0.4-0.6	4988	134	10K, 100K	•	None
	Am3525 Bipolar OI (ECL) 1.5 μm	M1 6 μm M2 9 μm	650	14	0.4-0.6	3718 + 1152 bits RAM	135	10K, 100K	•	None
	Am3550 (5) Bipolar OI (TTL, STTL, ECL) 1.5µm	M1 6 µm M2 9 µm	560	2	0.4	1568–5228	48–124	 10KH, 100K 	•	None
	Am3530 Bipolar OI (TTL, STTL, ECL) 1.5 μm	M1 6 μm M2 9 μm	560	2	0.4	410	20	• 10KH, 100K	•	None

1. Flip-flop toggle rate. 2. Gate power at frequency. 3. 2-in NAND delay, FO = 2, 1 mm wire. 4. C = CMOS, T = TTL. 5. C = commercial, I = industrial, M = military. 106 SEMICUSTOM DESIGN GUIDE 1988

Directory of Gate Arrays (continued)

Company	Product Technology	Program- mable	Тур	ical Parame	eters	Compon	ents		Interfa levels	ace 4	T	emp		Second Sources
	Line width	Layers	MHz ¹	mW ²	ns ³	Gates	I/Os	с	T	ECL	C C	l I	M	Sources
Applied Micro Circuits	Q5000 (5) Bipolar OI (TTL, STTL, ECL) 2 μm	M1 5.6 μm M2 8.0 μm M3 (only on Q5000T)	800	0.9	0.35	1300–5000	76–160		•	10K, 100K	•	•	•	Sig- netics/- Philips
	Q14000 (4) Si-gate CMOS and bipolar OI (TTL, ECL) 1.5 μm	M1 4.5 μm M2 4.5 μm M3 6 μm	240	0.02	0.67	2100– 14,000	80–226	•	•	10K, 100K	•	•	•	S-MOS
	Q20000 (3) Bipolar trench isolation 1 μm	M1 4 μm M2 5 μm M3 7 μm	1.5 GHz	0.5	0.09	2000-16,000	244		•	•	•	•	•	Plessey
AT&T Micro- electronics	ALA-200 Bipolar JI (IIV) 1.5 μm	M1 5 μm M2 10 μm	4.5 GHz	n/a	n/a	111-222 active 501-998 passive	36-48		•	•	•	•	•	None
	ALA-300 Bipolar JI (90V) 8 μm	M1 10 μm M2 10 μm	250	n/a	n/a	29-116 active 111-444 passive	30-32		•	•	•	•	•	None
	ALA-400 Bipolar JI (30 V) 4 μm	M1 8 μm M2 8 μm	250	n/a	n/a	122-208 active 417-670 passive	38-42	•	•	•	•	•	•	None
	DBIC gate array (TTL, ECL)	M1 5 μm M2 5 μm	600	1.25	0.2	2000-6000	72-120			10K				n/s
Barvon BiCMOS Technology	BC9000 (1) BiCMOS (bipolar and Si-gate CMOS) 2 μm	M1 M2	100	n/s	1.5	2000 gates 18 analog 900 passive	68 total	•	•		•	•	•	None
California Micro Devices	C3000 (4) Si-gate CMOS 3.5 µm	Ρ1 7 μm M1 7 μm	15	0.44	2.1	500-2000	4080	•	•		•	•	•	None
	C2000 (8) Si-gate CMOS 2 μm	M1 4.5 μm M2 5.5 μm	30	0.8	1.2	1500– 10,000	72–250	•	•		•	•	•	None
Cherry Semi- conductor	1200, 1300, 1400 Bipolar JI (l²L) 4 μm	M1 16 µm	3	0.7	50	192–288 gates 50–106 active	24–28 2–6 analog	•	•	•	•	•		Exar
	Genesis (4) Bipolar JI (l²L) 4 μm	M1 16 μm	3	0.4	50	64–256 gates 143–69 active 345–200 passive	10—18 16—22 analog	•	•		•	•	•	Exar
Commodore Semi- conductor	4100 Series Si-gate CMOS 2 μm	M1 5 μm M2 7 μm	80	1	1.2	500-6000	40–152	•	•		•			None
Control Data	VLSI-6200 Si-gate CMOS 2 μm	M1 5.5 μm M2 7 μm	40	0.24	0.85	8500	154	•	•		•	•	•	National, VTC
	VLSI-6100 Si-gate CMOS 1.25 μm	M1 3.5 μm M2 4.5 μm	40	0.2	0.8	8500	154	•	•		•	•	•	National, VTC
	VLSI-7000 Si-gate CMOS 1.25 µm	M1 2.5 μm M2 2.5 μm	75	0.2	0.5	20,000	238	•	•		•	•	•	Honey- well Digital Products
Custom Arrays	MM 20 V bipolar (9) Bipolar JI 6 μm	M1	n/s	n/s	n/s	45–280 active 100–1150 passive	14–46		•	•	•	•	•	Ferranti Inter- design
	MV 40 V bipolar (5) Bipolar JI 6 μm	M1	n/s	n/s	n/s	68–340 active 360–1400 passive	20-44		•	•	•	•	•	Ferranti Inter- design

Directory of Gate Arrays (continued)

Company	Product Technology	Program- mable	Тур	ical Parame	eters	Compon	ents		Interfa levels	ice 4	Te	emp	5	Second Sources
	Line width	Layers	MHz ¹	mW ²	ns ³	Gates	I/Os	c	T	ECL		Inge I	M	Sources
Custom Silicon	SLA-8000 (10) Si-gate CMOS 1.2 μm	M1 3.5 μm M2 5 μm	120	1.45	.52	5000-130,000	86-308	•	•		•	•	•	Seiko
	HCA 62A00 (8) Si-gate CMOS 2 μm	M1 5.25 μm M2 6 μm	50	1	1.5	648-8568	44–168	•	•		•	•	•	Motorola, NCR
	MH–15 Volt (8) Si-gate CMOS 4 μm	M1 8 µm	40	n/s	Depends on voltage	70-1600 gates 8-84 active	18-84	•	•		•	•	•	Plessey
	SLA–1.5 Volt (6) Si-gate CMOS 2 μm	M1 M2	10 @ 3 V 1 @ 1.5 V	2.2	8.5 @ 1.5 V	1632-8000	78–178	•	•		•	•	•	Seiko
	HDC 100 (10) Si-gate CMOS 1 µm	M1 3.6 μm M2 4 μm M3 4 μm	175	1	0.45	5670-104,832	99-512	•	•		•			Motorola
	MM–15 Volt (9) Bipolar JI 5 μm	M1 18 μm	350 ⁶	n/s	n/s	41-276 active 50-369 passive	14-46 analog I/O	•	•	all	•	•	•	Plessey
	MV-40 Volt (5) Bipolar JI 5 μm	M1	n/s	n/s	n/s	58-203 active 216-924 passive	16-36 analog I/O	•	•	all	•	•	•	Plessey
Data Linear	DL104–650 analog arrays (5) Bipolar DI 5 μm	M1 15 μm	0.5–1 GHz ⁶	n/s	2	56–347 active 28–173 passive	14-34 analog	•	•	10K, 100K	•	•	•.	None
	SP1104 Bipolar DI 4 µm	M1 7 μm M2 15 μm	npn, 1 GHz; pnp, 0.6 GHz	20 V; 35 V	n/s	$\begin{array}{l} \text{444 active} \\ \text{NiCr 800 K}\Omega \\ \text{Pinch 1.2 M}\Omega \\ \text{14 MOS caps} \\ \text{6 zeners} \end{array}$	24	•	•		•	•	•	None
	SP1204 Bipolar DI with JFETS 4 μm	M1 7 μm M2 15 μm	npn, 1 GHz; pnp, 0.6 GHz	20 V 35 V	n/s	440 active 16 JFETS 2 zeners pinch 400 K Ω NiCr 800 k Ω or SiCr 6 M Ω	40	•	•	•	•	•	•	None
Design Devices	CMOS gate arrays Si-gate CMOS 2 µm	M1 6 μm M2 9 μm	50	1.05	1.75	300–13,500	44–200	•	•		•	•	•	None
	Si-gate CMOS 1.5 μm	M1 5.6 μm M2 6 μm	150	0.14	0.7	5300-129,000	70-370	•	•		•	•		None
Electronic Fechnology	A5S (13) Bipolar OI (TTL) 5 μm	M1 10 μm	1	4	n/s	37-298 active	14-40	•	•		•	•	•	Exar
	D2D, D3D, D5S (6) Si-gate CMOS	M1 M2	65	0.56	0.9/1.4	600–5000	44–124	•	•		•	•	•	Motorola, NCR, Gould
	Bipolar linear (15) Bipolar JI 7 μm	n/s	n/s	n/s	n/s	n/s	14-40		n/s		•	•	•	Exar
Exar	Flexar Bipolar (analog) 3 µm	M1 M2	1 GHz ⁶	n/s	n/s	800	48	•	•	•	•	•	•	Rohm
Ford Micro- electronics	Gate array (1) GaAs E/D MESFET (proprietary Ford logic) 1.5 μm	M1 5 μm M2 4 μm	1 GHz	0.6	170 ps	3000	68			100K	•			n/s

1. Flip-flop toggle rate. 2. Gate power at frequency. 3. 2-in NAND delay, FO=2, 1 mm wire. 4. C=CMOS, T=TTL. 5. C=commercial, I=industrial, M=military. 6. $f_{T_{-}}$

108 SEMICUSTOM DESIGN GUIDE 1988

Company	Product	Program-	Тур	oical Parame	eters	Compor	nents		Interf	ace	Ten	np. ges ⁵	Second
	Technology Line width	mable Layers	MHz ¹	mW ²	ns ³	Gates	I/Os	с	T	ECL		ges ^y I M	Sources
Fujitsu Micro- electronics	ET-H ECL (1) Bipolar ECL 0.5 μm	M1 4.5 μm M2 4.5 μm M3 4.5 μm	1000	1.62	.100	9856	200			10K, 100K	•		None
	ET ECL (5) Bipolar OI (ECL) 1 μm	M1 <5 μm M2 5 μm	800	1.83	0.22	1056–6160	64–136		•	10K, 100K	•		None
	ETM ECL (2) Bipolar OI (ECL) 1 μm	M1 <5 μm M2 5 μm	800	1.83	0.25	2640–3960 4.6–9.2K RAM	136		•	10K, 100K	•		None
	BC-H (1) BiCMOS 1 μm	M1 4 μm M2 4 μm M3 4 μm	250	4.5	.57	11968	200		•	•	•		None
	BiCMOS (4) Si-gate CMOS and bipolar JI 1.5 μm	M1 <6 μm M2 6 μm	180	4.5	0.65	645–3240	52112		•		•	•	None
	HB-LSTTL (2) Bipolar JI (STTL) 2 μm	M1 6 μm M2 9 μm	70	0.8	2.4	528-1080	6088		•		•	•	None
	H-LSTTL (5) Bipolar JI (STTL) 2 µm	M1 6 μm M2 9 μm	150	0.8	1.25	360–3162	40-112		•		•	• •	Texas Instruments
	AV CMOS (5) Si-gate CMOS 1.8 μm	M1 6 μm M2 9 μm	85	2.2	1.4	2600-8000	106160	•	•		•	• •	None
	AVB CMÒS (6) Si-gate CMOS 1.8 μm	M1 6 μm M2 8 μm	85	2.2	1.4	350-2000	42-92	•	•		•	•••	None
	AVM CMOS (3) Si-gate CMOS 1.8 μm	M1 6 μm M2 8 μm	85	2.2	1.4	1500–4000 2K RAM	114-127	•	•		•	••	None
	UH CMOS (1) Si-gate CMOS 1.5 μm	M1 4.5 μm M2 6 μm M3 9 μm	105	2.1	1.0	20,000	220	•	•		•	•	None
	UHB CMOS (11) Si-gate CMOS 1.5 μm	M1 4.5 μm M2 6 μm M3 9 μm	115	2.3	0.9	330–12,000	60–220	•	•		•	•	None
	UM CMOS (2) Si-gate CMOS 1.5 µm	M1 4.5 μm M2 6 μm M3 9 μm	105	2.1	1.0	10,000– 15,000 6–12K RAM	219	•	•		•	•	None
	AU CMOS (5) Si-gate CMOS 1.2 μm	M1 3.5 μm M2 5 μm M3 7 μm	120	2.4	0.7	30,000– 100,000	200–350	•	•		•	•	None
	AVL CMOS (6) Si-gate CMOS 2.3 μm	M1 6 μm M2 8 μm	10	n/s	10.8	350-2000	42-92	•			•	•	None
Gain Electronics	GFL2000, GFL4000, GFL7000 (3) GaAs E/D MESFET (GFL patent pending) 1 μm	M1 M2	1000	1.2	247	2000-7000	80-176		•	10K	•		n/s
GE Micro- electronics Center	GEGATEAGC- 40000/ TAGC40000 CMOS and megarad version "T"	M1 3 μm M2 4 μm	40	0.5	0.7	1700-13,500	60-172	•	•			•	None
	(CMOS/SOSrad- hard process also available) 1.25 μm												
Genesis Microchip	SCX6B (9) Si-gate CMOS 1.5 μm	M1 M2	100	n/s	0.6	400-15,000	28-200	•	•		•	•••	National

Directory of Gate Arrays (continued)

Company	Product	Program- mable	Тур	ical Parame	eters	Compon	ents		terface vels ⁴	Ter	mp. Iges ⁵	5	Second Sources
	Technology Line width	Layers	MHz ¹	mW ²	ns ³	Gates	I/Os	C	T ECL	ran C		M	Jources
									I EUL				
Gennum	LA250 (3) Bipolar JI (analog) 8 μm	M1 8 µm	20	n/a	20	96207 active 38132 passive	24–40	•	• •	•	•	•	Polycore
	LA200 (3) Bipolar JI (analog) 8 μm	M1 8 µm	20	n/a	20	37–122 active 26–58 passive	14–24	•	• •	•	•	•	Polycore
	GA900 Bipolar (analog) 4 μm	M1 4 μm	200	n/a	2	140-280 active 110 passive	28-48	•	• •	•	•	•	None
GE Solid State	PA60,000 (2) Si-gate SOS 4 μm	M1 10 μm	10	0.15	2	650–1200	78–106	•		•	•	•	None
	PA40,000 (6) Si-gate CMOS 3 μm	M1 10 µm	10	0.2	2.5	250-1200	76–106	•	•	•	•	•	None
	PA50,000 (6) Si-gate CMOS 3 µm	M1 10 μm M2 13 μm	15	0.3	2.5	680–6000	74–180	•	•	•	•	•	LSI Logic
	CGA10 (6) Si-gate CMOS 2 μm	M1 5.8 μm M2 7.5 μm	50	20	1.1	960-8000	56-140	•	•	•	•	•	VLSI Tech- nology
	CGA200 (13) Si-gate CMOS 1.5 μm	M1 4.8 μm M2 6.2 μm	250	1.5	0.8	960-54,000	48-348	•	•	•	•	•	VLSI Tech- nology
Gould Semi- conductor	B (7) Si-gate CMOS 2 μm	M1 5 μm M2 7 μm	50	2	1.3	1000 10,000	68–208	•	•	•	•		Contact company
	Si-gate CMOS 1.25 μm	M1 M3	100	n/s	0.6	2000 14,000	52-152	•	•	•	•		Contact company
Holt Integrated Circuits	HI 5100 (1) Si-gate CMOS 3 µm	M1 8 µm	20	0.2	6	73 gates 254 active 255 passive	12 40 analog	•	•	•	•	•	None
	HI 5300 Si-gate CMOS 3 μm	M1 8 μm	20	0.2	6	178 gates op amps, comparators, current source, 86 passive, 1 bipolar transmitter	64	•	•	•	•	•	None
Honeywell Solid State Electronics Division	HCT5000 Si-gate CMOS 1.2 μm	M1 M2	40	0.24	0.3	5000	96	•	•	•	•	•	None
	HCT15000 Si-gate CMOS 1.2 μm	M1 M2	40	0.24	0.3	15,000	144	•	•	•	•	•	None
	HC20000 Si-gate CMOS 1.2 μm	M1 M2	50	0.30	0.3	20,000	238	•	•	•	•	•	None
	HC40000 Si-gate CMOS 1.2 μm	M1 M2	50	0.30	0.3	40,000	300	•	•	•	•	•	None
	HCS15000 Si-gate CMOS 1.2 μm	M1 M2	25	0.30	0.4	12,000	144	•	•			•	None
	HM3500 Bipolar Ol 2.5 μm	M1 M2	500	2.0	0.3	3500	120		• •	•	•	•	None
	HVM10000 Bipolar OI 1.2 μm	M1 M2	300	0.4	0.2	10,000	256		• •	•	•	•	None
	HE12000 Bipolar Ol 1.2 µm	M1 M2	600	0	0.1	12,000	256		• •	•			None

1. Flip-flop toggle rate. 2. Gate power at frequency. 3. 2-in NAND delay, FO = 2, 1 mm wire. 4. C = CMOS, T = TTL. 5. C = commercial, I = industrial, M = military.

110 SEMICUSTOM DESIGN GUIDE 1988

Company	Product Technology	Program- mable	Тур	oical Param	eters	Compor	nents		nterface	Т	emp	- 5	Second
	Line width	Layers	MHz ¹	mW ²	ns ³	Gates	I/Os	С	evels ⁴ T ECL	C	ange I	M	Sources
Hughes Aircraft	U series (11) Si-gate CMOS 2 μm	M1 5 μm M2 7 μm	200	1.2	1.2	1000– 41,000	40-248	•	•	•	•	•	None
	HL5000 (8) Si-gate CMOS 3 µm	M1 M2	n/s	0.02/ MHz	2.4	5046000	52180	•	•	•	•	•	LSI Logic
	HL7000 (8) Si-gate CMOS 2 μm	M1 M2	n/s	0.02/ MHz	1.4	880-10,013	68-232	•	•	•	•	•	LSI Logic
	HL9000 (8) Si-gate CMOS 1.5 µm	M1 M2	n/s	0.02/ MHz	1.0	88010,013	68-232	•	•	•	•	•	LSI Logic
	HL10,000 (4) Si-gate CMOS 1.5 µm	M1 M2	n/s	0.01/ MHz	0.7	50,000 129,000	120 256	•	•	•	•	•	LSI Logic
CI Array Technology	DHS (10), HCD (3) Si-gate CMOS 1.5, 2, and 3 μm	Ρ1 M1 1.5, 2, 3 μm	40	0.07	2	150-2650	38-86	•	•	•			None
ntegrated Circuit Systems	VGT10 Si-gate CMOS 2 μm	M1 6µm M2 6µm	70	0.2	1.0	800-10,000	40140	•	•	•	•	•	VLSI Tech- nology
	VGT100 Si-gate CMOS 1.5 μm	M1 6µm M2 6µm	85	0.13	0.7	3700-66,000	84–384	•	•	•	•	•	VLSI Tech- nology
	SCX Si-gate CMOS 2 μm	M1 6µm M2 6µm	66	0.2	1.0	6008,700	40–155	•	•	•	•	•	National Semi- conuctor
ntegrated .ogic Systems	CA15 (6) Si-gate CMOS 1.5 μm	M1 7 μm M2 7 μm	150	1	0.7	1960-41,568	48–194	•	•	•	•	•	None
	15GH (5) Si-gate CMOS 1.5 μm	M1 6 μm M2 6 μm	150	1	0.7	30,400– 100,512	146-260	•	•	•	•	•	None
nternational AicroCircuits	G4000 (8) Me-gate CMOS 8 µm	M1	2.0	0.015	70	75-600	23–53	•	•	•	•	•	S-MOS Systems
	G70000 Si-gate CMOS 3.5 μm	P1 M1	42	0.42	3.3	135-2535	28-88	•	•	•	•	•	S-MOS Systems
	IMI6000 (7) Si-gate CMOS 2 μm	P1 M1 M2	60	0.6	1.4	820-6204	60–158	•	•	•	•	•	S-MOS Systems
	IMI7000 Si-gate CMOS 1.5 μm	P1 M1 M2	100	n/s	0.75	1632-8000	70-170	•	•	•	•	•	S-MOS Systems
nternational licro- licetronic Products	Si-gate CMOS (5) 1.2 μm	M1 4 μm M2 4.5 μm	40	1.4	1	800–15,000	40–110	•	•	•	•		National Semi- con- ductor, VLSI Tech- nology
SI Logic	LCA100K (3) Si-gate CMOS 0.7 μm	M1 M2 M3	n/s	0.01/ MHz	0.46	50,000 100,000	316-418	•	•	•	•	•	Contact com- pany

Directory of Gate Arrays (continued)

Company	Product Technology	Program- mable	Ту	oical Parame	eters	Compon	ents		Interfa levels ⁴	çe	Te	emp nge	5	Second Sources
	Line width	Layers	MHz ¹	mW ²	ns ³	Gates	I/Os	c	Т	ECL	C	I	M	Sources
									1	EUL			IVI	
LSI Logic	LMA9000 (10) Si-gate CMOS 1.5 µm	M1 M2	n/s	0.012/ MHz	0.57	700–15,000	41–174	•	•		•	•	•	Contact com- pany
	LCA10000 (6) Si-gate CMOS 1.5 μm	M1 M2 M3	n/s	0.012/ MHz	0.57	10,000 50,000	76–256	•	•		•	•	•	Contact com- pany
	LSA1500 (4) Si-gate CMOS 1.5 µm	M1 M2	n/s	0.012/ MHz	0.57	22,000 38,000 18K-32K RAM	234	•	•		•	•	•	Contact com- pany
	LL9000 (8) Si-gate CMOS 1.5 μm	M1 M2	n/s	0.018/ MHz	1.0	880-10,013	68-232	•	•		•	•	•	Contact com- pany
	LL7000 (8) Si-gate CMOS 2 µm	M1 M2	n/s	0.018/ MHz	1.4	880-10,013	68-232	•	•		•	•	•	Contact com- pany
	LSA2000 (11) Si-gate CMOS 2 µm	M1 M2	n/s	0.018/ MHz	1.4	4000-6900 2K-9K RAM	190	•	•		•	•	•	Contact com- pany
	LDD10000 (6) Si-gate BiCMOS 1.5 µm	M1 M2	n/s	0.012/ MHz	0.57	8000-43,500 CMOS 375-1330 biCMOS	144-256	•	•		•	•	•	Contact com- pany
Marconi Electronic Devices	MA2000A (5) Si-gate CMOS 3 μm	M1 8 μm M2 8 μm	60	0.18	1.6	1120-6864	48–128	•	•		•	•	•	None
	MA9000 (3) Si-gate CMOS/SOS 2.5 μm	M1 8 μm M2 8 μm	60	0.1	1.2	748–4048	48–106	•	•		•	•	•	None
	MA8304 (1) Si-gate CMOS 3 μm	P1 6 μm M1 6.5 μm	35	0.11	3	392	26	•	•		•	•	•	United Micro- elect- ronics
	MA4000 (4) Si-gate CMOS 2 μm	M1 6 μm M2 6 μm	100	0.2	0.9	3904– 10,044	96–160	•	•		•	•	•	None
Matra Design Semi- conductor	MA (4) Si-gate CMOS 2.5 μm	P1 6.5 μm M1 10 μm	25	0.018/ MHz	2	228–1139	32–62	•	•		•	•	•	None
	MB (9) Si-gate CMOS 2 μm	P1 4 μm M1 6 μm M2 9 μm	45	0.015/ MHz	1	8107500	73–191	•	•		•	•	•	Plessey
MCE Semi- conductor	MCE Uniray Bipolar JI (analog) 5 µm	M1 11 μm	50	20	15	38–220 71–592 active	n/s	•	•	•	•	•	•	Ferranti Inter- design
	MCE MGC (7) Me-gate CMOS 5 µm	M1 10 µm	5	2	16	75–984	22–68	•	•		•	•	•	Master Logic
Micro Linear	FB900 (6) Bipolar JI (analog) 5 μm	M1 20 μm	30	n/s	10	50–205 active 120–607 passive	18–28	•	•	10K	•	•	•	Cherry, Exar, Ferranti Inter- design, MCE
	FB300 (5) Bipolar Jl (analog/digital) 4 μm	M1 16 μm M2 22 μm	100	n/a	4	120 gates 252–319 active 741–907 passive	22 digital 24–44 analog	•	•	10K	•	•	•	None
	FB3600 (3) Bipolar JI (analog/digital)	M1 14 μm M2 22 μm	100	n/a	4	256–720 active 678–1816 passive	24–44 digital or analog	•	•	10K	•	•	•	None
	FB3400 (2) Bipolar JI (analog)	M1 20 μm M2 22 μm	30	n/a	10	200–540 active 508–1362 passive	28–44 analog or digital	•	•	10K	•	•	•	None

1. Flip-flop toggle rate. 2. Gate power at frequency. 3. 2-in NAND delay, FO=2, 1 mm wire. 4. C=CMOS, T=TTL. 5. C=commercial, I=industrial, M=military.

112 SEMICUSTOM DESIGN GUIDE 1988

Company	Product Technology	Program- mable	Ту	pical param	eters	Compor	nents		Interface levels ⁴	Te	emp	5	Second
	Line width	layers	MHz ¹	mW ²	ns ³	Gates	I/Os	с	T ECL	C	I I	M	sources
Micro LSI	μGA Si-Gate CMOS	P1 5 μm M1 7 μm	90	3.5	1.1	200–3500	120	•	•	•	•		None
	3 μm ULSI 20 Si-gate CMOS 2 μm	M1 6 μm M2 8 μm	90	3.5	1.1	200	26 10% analog	•	•		•		None
Mietec	MTC CMOS Si-gate CMOS 2.4 µm	P1 4.8 μm P2 4.8 μm M1 5.6 μm M2 4.2 μm	60	0.2	2.0	n/s	n/s	•	•	•	•	•	Inter- metall (Frei- bourg)
	MTC biMOS Bipolar JI + CMOS 3 µm	P1 7 μm M1 8 μm M2 9 μm	40	0.2	4.5	n/s	n/s	•	•	•	•	•	None
Mitsubishi Electronics America	M6001x (9) Si-gate CMOS 2 μm	M1 4 μm M2 7.5 μm	100	0.015	1.4	500-8100	54–190	•	•	•	•		None
	M6002x (6) Si-gate CMOS 1.3 μm	M1 4 μm M2 6 μm	175	0.01	0.9	200–2400	22–72	•	•	•	•		None
	M6003x (6) Si-gate CMOS 1.3 μm	M1 4 μm M2 6 μm	175	0.01	0.9	3200– 20,000	88–256	•	•	•	•		None
	M6004x (2) Si-gate CMOS 1.3 μm	M1 4 μm M2 6 μm	175	0.01	0.9	4100-6300	182-222 (for high I/O pin count)	•	•	•	•		None
Motorola	MCA I ECL (2) Bipolar OI (ECL) 3 μm	M1 8 μm M2 16 μm	>250	3.3	0.8	625–1192	46-60		10K, 10KH	•			None
	MCA II ECL (3) Bipolar OI (ECL) 2 µm	M1 6 μm M2 10 μm (M3 fixed)	>770	3.2	0.25	902–2760 1K RAM	54–120		10K, 10KH, 100K	•			None
	MCA I ALS (2) Bipolar OI (STTL) 3 µm	M1 8 μm M2 16 μm	>80	1.0	1.4	533–1280	57–75		·	•			None
	MCA II ALS (2) Bipolar OI (STTL) 2 µm	M1 6 μm M2 10 μm (M3 fixed)	>150	1.2	0.7	1800–2860 16×8 RAM	120		·	•			None
	HCA 62A00 (8) Si-gate CMOS 2 μm	M1 5.4 μm M2 6 μm	>85	1.0	1.5	648-8568	44–168	•	•	•	•	•	NCR
	MCA III ECL (2) Bipolar OI (ECL) 1.5 μm	M1 4 μm M2 6 μm (M3 fixed)	>1000	1.0-3.0, pro- gram- mable	0.1	1500 10,332	108 256		10K, 10KH, 100K	•			None
	BiMOS (3) Si-gate CMOS and bipolar OI (STTL) 1.5 μm	M1 4 μm M2 5 μm	>150	0.022/ MHz	0.6	704-6144	44–228	•	 10K, 10KH, 100K 	•			None
	HDC series (5) Si-gate CMOS 1 μm	M1 3.6 μm M2 4 μm M3 4 μm	>150	0.006/ MHz	0.4	8208-104,832	100-267	•	•	•	•	•	None
National Semi- conductor	SCX 6200 (2) Si-gate CMOS 2 μm	M1 4.75 μm M2 6.25 μm	>100	2.75	0.9	600-8736	49-155	•	•	•	•	•	IMP
	10K VHSIC Si-gate CMOS 1.25 μm	M1 3 μm M2 4 μm	200	0.12	0.4	10,000	152	•	•			•	Westing- house
•	SCX6Bxx (1) Si-gate CMOS 1.5 μm	M1 3.5 μm M2 4.75 μm	>150	3	0.65	400-15,000	28-200	•	•	•	•	•	None
	FGE (5) Bipolar OI (ECL) 1.5 μm	M1 5 μm M2 9 μm M3 13 μm	1000	4.5	0.23	100-6300	21-220		 10K, 100K 	•	•	•	Honeywell
	FGA (3) Bipolar OI (ECL) 1.5 μm	M1 5 μm M2 5 μm M3 9 μm	1800	3.7	0.12	1300-15,000	72-300		• •	•	•	•	None

Directory of Gate Arrays (continued)

Company	Product Technology	Program- mable	Тур	pical param	eters	Compon	ents		Inter level		Te	mp. nges	5	Second sources
	Line width	layers	MHz ¹	mW ²	ns ³	Gates	l/Os	c	T	ECL	CONTRACTOR IN	l I	M	Jources
ICM	3000 (3) Me-gate CMOS 7 μm	M1 12.5 μm	5	n/s	18	235–500	38–48	•	•	•	•	•	•	None
	7300, 7500 Si-gate CMOS 3, 5 μm	P1 10 μm M1 10 μm	18, 12	n/s	5, 8	780 gates 8 active	62	•	•	•	•	•	•	None
	5000 Bipolar JI 5 μm	M1 12.5 µm	40	n/s	3	78–132 active 227–296 passive	18–24		•	•	•	•	•	Exar, Ferranti Inter- design
ICR Micro- Electronics	62A00 (8) Si-gate CMOS 2 μm	M1 M2	85	1.6	1.5	600-8500	44–168	•		'	•	•	•	Motorola
IEC Electronics	CMOS-5/5A (13) Si-gate CMOS 1.2 µm	M1 3.6 μm M2 4.6 μm M3 7.2 μm	250	3.0	0.52	2000 45,000	88–334	•	•	•	•	•		None
	CMOS-4/4A/4R (16) Si-gate CMOS 1.5 µm	M1 5.4 μm M2 7 μm	140	2.1	0.9	320–19,551	54–266	•			•	•		None
	CMOS-4L (6) Si-gate CMOS 1.5 μm	M1 5.4 μm M2 7 μm	25	0.08	7	860-5600	62-138	•			•			None
	BiCMOS-5 (5) Si-gate CMOS 1.3 µm Bipolar 1.2 µm	M1 M2	300	5.4	0.45	5000 20,000	148-280	•	•	10KH, 100K	•	•		None
	BiCMOS-4/4A (6) Si-gate CMOS 1.5 μm Bipolar 2 μm	M1 5.4 μm M2 7 μm	200	3.6	0.67	600–10,000	64–228	•	•	•	•	•		None
	ECL-4A (5) Bipolar (ECL) 1.2 μm	M1 M2 M3 (power)	1200	4.85	0.15	2400-35,000	108-236		•	10KH, 100K	•			None
	ECL-4 (2) Bipolar (ECL) 1.2 μm	M1 M2 M3 (power)	1700	6.75	0.14	600-4400	56–108			10KH, 100K	•			None
	ECL-3A/3B (5) Bipolar (ECL) 1.4 μm	M1 M2 M3 (power)	450	4.35	0.5	2400-9600	120-172		•	10KH, 100K	•			None
	ECL-3 (3) Bipolar (ECL) 3 μm	M1 8 μm M2 M3 (power)	300	1.1	0.7	1200-3000	48-180			10K	•			None
	ECL-2 (3) Bipolar (ECL) 3 μm	M1 8 μm M2 M3 (power)	450-750	4.5	0.05	300-2000	28-108			100K	•			None
Dki Semi- conductor	MSM7H000 CMOS 2 µm drawn	M1 8 μm M2 11 μm	40	6	1.8	301-10,008	32-188 4-18 mA 48 mA max	•	•		•	•		None
	MSM7nV000 CMOS 1.5 µm drawn	M1 5 μm M2 7.5 μm	50	5	1	700-10,008	74-188 4-8 mA 24 mA max	•			•	•		None
	MSM10V000 CMOS 1.5 µm drawn	M1 5 μm M2 7.5 μm	65	4.5	0.8	5500-100,500	74-188 4-12 mA 24 mA max	•	•	•	•	•		None
	MSM7U000 CMOS 1.2 μm drawn	M1 4.5 μm M2 6 μm	80	4	0.5	1632-30,384 cells (6 transistors)	60-252 +8 power 4-12 mA 24 mA max	•			•	•		None
Panasonic	MN 51000 (8) Si-gate CMOS 2.5 μm	M1 3.6 µm M2 5 µm	120	0.025	1.9	312-4000	46–164	•	•	•	•	•		None
	MN 52000 (5) Si-gate CMOS 2 μm	M1 2.7 μm M2 3.8 μm	160	0.02	1.4	2014– 10,000	94–234	•	•		•	•		None
	MN 53000 (13) Si-gate CMOS 1.5 μm	M1 2.4 μm M2 2.8 μm	200	0.015	1	315-20,064	42-256	•	•	•	•	•		None

Company	Product	Program-	Тур	pical param	eters	Compon	ents		Interfa levels	ace	Ter	np. Iges	5	Second
	Technology Line width	mable layers	MHz ¹	mW ²	ns ³	Gates	I/Os	c	T	ECL	C	liges I	м	sources
Plessey Semi- conductor	CLA 5000 (8) Si-gate CMOS	M1 6 μm M2 6 μm	100	0.35	1.2	640–10,044	44–176	•	•		•	•	•	Matra- Harris
	2 μm ELA60000 (4) Bipolar (ECL) 1.5 μm	M1 5 μm M2 5 μm M3 7 μm (power only)	2000	7	0.3	6004500	48–120	•	•	10K, 100K	•	•	•	None
	MVX (5) Bipolar JI (analog) 10 μm	M1 18 μm	n/s	n/s	n/s	62-213 active	20–44	•	•	•	•	•	•	Custom Arrays
	MFX (5) Bipolar JI 4 μm	M1 18 µm	n/s	n/s	n/s	100–170 gates 160–650 active	16-48	•	•	•	•	•	•	None
	MMX (9) Bipolar JI 10 μm	M1 18 μm	n/s	n/s	n/s	36-434 active	14-48	•	•	•	•	•	•	Custom Arrays
	ULA Digilin G (7) Bipolar CDI 4 μm	M1 8 µm	0.66	0.002	230	30–578 gates 124–436 active	10–36	•	•		•	•	•	None
	ULA Digilin P Bipolar CDI (10) 3 μm	M1 8 µm	4.8	0.001	40	128–1152 gates 444–1088 active	16-44	•	•		•	•	•	None
	ULA R (28) Bipolar CDI 2.5 µm	M1 8 µm	65	350	2.2	130–2000	20–72	•	•		•	•	•	None
	ULA DS (30) Bipolar CDI 1.5 µm	M1 6 µm	250	0.33	1.0	630–10,000	32–138	•	•		•	•	•	None
	MLX (2) Me-gate CMOS 7 μm	n/s	n/s	n/s	n/s	64 gates 312–842 active	30-42	•	•		•	•	•	None
	MC (7) Me-gate CMOS 6 μm	M1 10 µm	18	0.125	15	140-800	29–58	•	•		•	•	•	MCE, Master Logic, Hytek
	MH (8) Si-gate CMOS 4 μm	M1 8 µm	40	0.1	n/s	70–1600	18–84	•	•		•	•	•	None
Polycore Electronics	Maxi chip (8) Bipolar JI (analog) 5 μm	M1 15 μm	n/s	n/s	n/s	17–165 active 24–280 passive	10-40		•	all	•			Gennum
Raytheon Semi- conductor	CGA 300 Bipolar JI (STTL) 5 µm	M1 15 μm M2 15 μm	25	5	6	300	48		•		•	•	•	None
	CGA 800-2500 Bipolar JI (ISL) 3 μm	M1 10 μm M2 15 μm	100	0.4	2.2	800-2400	4884		•		•	•	•	None
	CGA 3,500, 5,000 Bipolar OI (ISL) 2 μm	M1 6 μm M2 9 μm	150	0.16	1.2	3500, 5000	120, 150		•		•	•	•	None
	CGA70E18 Bipolar (ECL) 2 µm	M1 4 μm M2 4 μm	1000	300	0.3	12,800	176	•	•	10KH, 100K	•	•	•	None
	RL 7000 series Si-gate CMOS 2 μm	M1 7 μm M2 9 μm	40	0.72	1.4	880–10,013	68–232	•	•		•	•	•	LSI Logic
	CGA40E12 Bipolar (ECL) 2 μm	M1 4 μm M2 4 μm	1000	300	.3	7752	120			10KH, 00053	•	•	•	None
	CGA1ME12 Bipolar (ECL) 2 µm	M1 4 μm M2 4 μm	1000	300	.3	4584 1280 bits of RAM	120		•	10KH, 100K	•	•	•	None
	RL1050–H1200 NCMOS 1.25 μm	M1 4 μm M2 6 μm	250	8 mW/ MHz/ gate	0.95	5670–20, 440–160	90	•	•		•	•	•	None
Siliconix	ISO5 (9) Si-gate CMOS 4.8 μm	M1 10 μm	10	0.09	2.8	180-2400	30–90	•	•		•	•	•	Universal

Directory of Gate Arrays (continued)

Company	Product	Program-	Ту	pical Parame	eters	Compon	ents	!	nterfa evels ⁴	pe	Te	emp. nge	-5	Second
	Technology Line width	mable Layers	MHz ¹	mW ²	ns ³	Gates	l/Os							Sources
	X							С	т	ECL	С	1	м	
Silicon Systems	SSI 6600 (6) Si-gate CMOS and bipolar JI (CML) 3 μm	Ρ1 6 μm M1 8 μm	25	n/s	5	0–545 179–294 active 224–712 passive	28–62 analog	•	•		•	•	•	None
	BK MSA6900 Bipolar JI (STTL) 3 μm	M1 8.8 μm M2 12 μm	>100	n/s	1.5	n/s	n/s	•	•	•	•	•	•	None
	MSA6700 (4) Si-gate CMOS 3.8 μm	P1 M1	20	0.01/ MHz	<5	80–600 gates 190–601 active 600–1200 passive	32–52 8–12 analog	•	•		•	•		None
	SSI 6900 (4) Bipolar JI (STTL, ECL, CMI) 2.5 μm	M1 8 μm M2 14 μm	>100	n/s	n/s	20–80 gates 144–168 active 24–56 passive	16–32 8 analog	•	•	•	•	•		Ferranti Inter- design
Silicon West	SWI 1000 (4) Si-gate CMOS 2 μm	M1 M2	100	0.6	1.2	360-10,000	40–161	•	•		•	•		None
S-MOS Systems	SLA 6000 (10) Si-gate CMOS 2 μm	M1 7 μm M2 9.8 μm	70	0.8	1.7	513-6206	60–154	•	•		•			IMI
	SLA 7000 (5) Si-gate CMOS 1.5 μm	M1 5.2 μm M2 7.4 μm	100	1.2	0.9	2232 16,250	90–188	•	•		•			IMI
	SLA 8000 (6) Si-gate CMOS 1.2 μm	M1 3.5 μm M2 5 μm	120	1.45	0.7	5904– 38,550	82–218	•	•		•			None
Tektronix	QuickChip 4 Bipolar JI (ECL, CML) 4 μm	M1 7 μm M2 7 μm	500	1	0.4	300	n/s			all	•	•		None
Texas Instruments	TGC100 series Si-gate CMOS 1 μm	M1 4.8 μm M2 5.4 μm	150	0.018/ MHz	0.5	3200 18620	84–216	•	•		•	•	•	None
TLSI	TA CMOS (6) Si-gate CMOS 5 μm	M1 10 µm	10	n/s	6	300-1260	37–75	•	•		•	•	•	
	TA CMOSII (5) Si-gate CMOS 3 μm	M1 7 µm	36	n/s	3	540-2500	37–81	•	•		•	•	•	Gould
	TA CMOSIID (4) Si-gate CMOS 3 μm	M1 7 μm M2 8 μm	40	n/s	2.5	1000-4012	61–117	•	•		•	•	•	Gould
Toshiba America	TC110G Si-gate CMOS 1.5 μm	M1 5.6 μm M2 6 μm	150	0.14	0.6	3498– 129,000	68–368	•	•		•	•		LSI Logic
	TC120G Si-gate CMOS 1 μm	M1 5.6 μm M2 6 μm	200	Contact company	0.4	37,932- 129,042	19–368	•	•			n/s		None
TriQuint Semi- conductor	TQ3000 GaAs E/D- MESFET 1 μm	M1 2 μm M2 3 μm	1000	2.5	0.18	2000-4200	84	•	•	all	•	•	•	None
Unicorn Micro- electronics	UM1200 (4) Si-gate CMOS 3 µm	M1 P1	20	0.4	3.0	200–910 gates 36–68 passive	28–58	•	•		•	•		United Micro- elec- tronics
	UM1300 (4) Si-gate CMOS 2 μm	P1 M1 M2	30	0.9	2	1320–3060 gates 58–102 passive	54–92	•	•		•	•		United Micro- elec- tronics
United Technologies Micro- electronics Center	UTB (5) Si-gate CMOS 3 μm	M1 7.5 μm M2 7.5 μm	115	2.25	2.2	1000-7600	40–144	•	•				•	None
	UTD (4) Si-gate CMOS 1.5 μm	M1 6 μm M2 6 μm	250	7.5	0.63	3400 11,000	116-212	•	•				•	None

Company	Product Technology	Program- mable	Ту	pical Param	eters	Compo	nents		Interf	ace	Te	mp. nge	5	Second
	Line width	Layers	MHz ¹	mW ²	ns ³	Gates	I/Os	c	T	ECL	ra C	nge I	s ^y M	Sources
Vitesse Semi- conductor	VSC4500 (1) GaAs E/D- MESFET (DCFL) 1.2 μm	M1 4 μm M2 8 μm	600 single- ended, 850 diff- erential	6.2	0.240	4000	120		•	10K, 100K	•	•	•	None
	VSC1500 (1) Mixed D-and E/D- MESFET (DCFL; source- coupled FET logic) 1.2 µm	M1 4 μm M2 8 μm	2000	DCFL 0.42, SCFL 0.23 ⁶	DCFL 0.545, SCFL 0.235 ⁶	1500	35			10K, 100K	•	•	•	None
VLSI Technology	VGT200 (13) Si-gate CMOS 1.5 μm	M1 4 μm M2 5.6 μm	250	15	0.560	960–54,000	48–348	•	•		•	•	•	Philips, GE
	VGT-100 (13) Si-gate CMOS 1.5 μm	M1 4 μm M2 5.6 μm	175	3.5	0.8	1600– 66,500	56–348	•	•		•	•	•	GE
	VGT10 (6) Si-gate CMOS 2 μm	M1 6 μm M2 6 μm	120	2.4	1.2	1600– 10,648	56–140	•	•		•	•	•	GE
νтс	VJ800 (4) Bipolar JI 3 μm	M1 8 μm M2 12 μm	50	2.25	2	50 28–40	28–68 active		•	10K, CML	•	•	•	None
	Si-gate CMOS 1 µm	M1 4 μm M2 6 μm	200	n/s	0.7	6000	n/s	•	•		•	•	•	Motorola
	VG6000 Si-gate CMOS 1.6 μm	M1 M2	200	n/s	1	6000	172	•	•		•	•	•	National
	VJ900 (3) Bipolar Ol 2 µm	M1 8 μm M2 12 μm	250	2.25	0.42	30–572	1668		•	10K	•	•	•	None
Xerox Micro- electronics Center	SCX 6200 (2) Si-gate CMOS 2 μm	M1 4.75 μm M2 6.25 μm	>100	2.75	0.9	600-8736	49-155	•	•		•	•	•	IMP
	10K VHSIC Si-gate CMOS 1.25 μm	M1 3 μm M2 4 μm	200	0.12	0.4	10,000	152	•	•				•	Westing- house
	SCX6Bxx (1) Si-gate CMOS 1.5 μm	M1 3.5 μm M2 4.75 μm	>150	3	0.65	400-15,000	28-200	•	•		•	•	•	None
	FGE (5) Bipolar OI (ECL) 1.5 μm	M1 5 μm M2 9 μm M3 13 μm	1000	4.5	0.23	100-6300	21-220		•	10K, 100K	•	•	•	Honeywell
	FGA (3) Bipolar OI (ECL) 1.5 µm	M1 5 μm M2 5 μm M3 9 μm	1800	3.7	0.12	1300-15,000	72-300		•	•	•	•	•	None
Xilinx	XC2000/XC3000 (7) Si-gate CMOS 1.2 μm	n/a	70	1.0	2	1200-9000	58-144	•	•		•	•	•	AMD

1. Flip-flop toggle rate. 2. Gate power at frequency. 3. 2-in NAND delay, FO=2, 1 mm wire. 4. C=CMOS, T=TTL. 5. C=commercial, I=industrial, M=military. 6. For a 2-in NOR gate.

Directory of Cell Libraries

Company	Product Technology Line width	Wiring layers	Typi MHz ¹	cal param mW ²	neters ns ³	Simple	Cells Complex	С	Interfa levels T	1 r c	ang	p. es ⁵ M	Second sources
ABB HAFO	MEG 6 Me-gate CMOS 5 μm	M1 10 µm	10	0.5	10	55 gates 10 MSI 15 analog 20 I/O	RAM, ROM, PLA	•	•	•	•	•	GE
	SOS3 Si-gate SOS 4 µm	P1 8 μm M1 8 μm	35	0.1	2.5	55 gates 10 MSI 10 I/O	RAM, ROM, PLA	•	•	•	•	•	GE

Directory of Cell Libraries (continued)

Company	Product	Wiring	Туріс	al param	neters		Cells		Interfa	çe	Те	mp. 1ges	5	Second sources
	Technology Line width	layers	MHz ¹	mW ²	ns ³	Simple	Complex	с	levels ⁴ T	ECL		nges M		sources
ABB HAFO	SOS4 Si-gate SOS 2 μm	P1 4.5 μm M1 6 μm M2 9 μm	150	n/s	1.2	55 gates 10 MSI 10 I/O	RAM, ROM, PLA	•	•	LOL	•	•	•	None
	SIGI Si-gate CMOS 3 μm	P1 6 μm M1 6 μm	35	n/s	3	55 gates 10 MSI 10 analog 10 I/O	RAM, ROM, PLA, multiplier	•	•		•	•	•	GE
	SIG2 Si-gate CMOS 2 μm	P1 4.5 μm M1 6 μm M2 7 μm	110	n/s	2	55 gates 10 MSI 10 analog 10 I/O	RAM, RÒM, PLA	•	•		•	•	•	GE
Adams Russell	GaAs D-MESFET 1 and 0.5 μm	n/s	n/s	n/s	n/s	>50 analog	Interpolation of cells in the library		n/s		•	•	•	None
AT&T Technologies	1.25 μm library Si-gate CMOS 1 μm	P1 2.5 μm M1 3.5 μm M2 4.5 μm	170	1.9	0.8	165 gates >70 MSI 14 analog 55 I/O	RAM, ROM, PLA, cell compiler, function compiler	•	•		•	•	•	None
	GaAs high-voltage E/D-FET 1 μm	M1 2 μm M2 2 μm	n/s	0.5	0.1	30	10		n/s		•	•	•	None
Barvon BiCMOS Technology	Si-gate CMOS and biCMOS 2.5 µm	M1 M2	75	n/s	3	>350 MSI 80 analog 14 I/O	RAM, ROM; 10-bit DAC and ADC; AGC, ALU, filters	•	•		•	•	•	None
	Si-gate CMOS 2 µm	M1 M2	150	n/s	1.2	as above	as above	•	•		•	•	•	None
	Si-gate CMOS 1.5 µm	M1 M2	200	n/s	0.9	as above	as above	•	•		•	•	•	None
	BC1000 BiCMOS 2 μm	M1 M2	100	n/s	1.5	150 MSI 30 analog 15 I/O	RAM, ROM; ADC, DAC, bandgap reference, differentiator, peak detector, filters	•	·		•	•	•	None
	BC4000 Si-gate CMOS 2 μm	M1 M2	150	n/s	1.3	150 MSI 30 analog 15 I/O	as above	•	•		•	•	•	None
California Micro Devices	Si-gate CMOS 1.5 µm	M1 4.5 μm M2 5 μm	150	3	0.7	70 gates 40 MSI 30 I/O	RAM, ROM, PLA	•	•		•	•	•	None
Commodore Semiconductor	4500 series Si-gate CMOS 2 μm	P1 4 μm M1 4.5 μm M2 5.5 μm	80	0.5	1	50 gates 15 MSI 15 I/O	RAM, ROM, PLA; 65C02	•	•		•			None
Control Data	VL 5000 Si-gate CMOS 1.2 μm	M1 3.3 μm M2 3.6 μm	166	0.9	0.58	86 MSI	Register file, 2901, stackable register and multiplexer cells	•	•		•	•	•	VTC
Custom Arrays	MM macrocells Bipolar JI 6 µm	M1	n/s	n/s	n/s	30 analog	Op amps, voltage regulators, oscillators, band-gap references, comparators	•	•	•	•	•	•	Ferranti Inter- design
	MV macrocells Bipolar JI 6 µm	M1	n/s	n/s	n/s	30 analog	Op amps, voltage regulators, oscillators, bandgap references, comparators			•	•	•	•	Ferranti Inter- design
Custom Silicon	VS 3000 Si-gate CMOS 3 μm	P1 2.7 μm M1 2.2 μm M2 4.95	50	0.25	1.8	50 gates 20 MSI 20 analog 30 I/O	RAM, ROM, ALU, multiplexers, 275 MicroBlocks, 29xx bit- slice processors, 65CX02, multiport RAMS	•	•		•	•	•	NCR, Motorola
	VS 2000 Si-gate CMOS 2 μm	M1 3.75 μm M2 4.25 μm	85	0.28	1.1	58 gates 103 MSI 6 analog 34 I/O	RAM, ROM, PLA, EEPROM; SRAM, D- RAM, 275 MicroBlocks, 29xx bit- slice processors, 65CX02, SCSI, and CRT controller, 68C05, multiports RAMS	•			•	•	•	NCR, Motorola
	VS-1500 Si-gate CMOS 1.5 μm	M1 3 μm M2	110	0.14	0.5	57 gates 105 MSI 20 analog 34 I/O	RAM, ROM, ALU, MUX, 275 MicroBlocks, 29xx bit- slice processors, 65CX02, SCSI, and CRT controllers, 68C05, multiport RAMS	•			•	•	•	NCR
Data Linear	DL-104/187/357/ 650 Bipolar DI (analog) 5 μm	M1 15 μm	0.5 -1 GHz6	n/s	2	13 analog	Any arrangement of simple cells		•	10K, 100K	•	•	•	None
	SP1204 Bipolar DI (20, 35 V) (analog and interface cells	M1 7 μm M2 15 μm	1 GHz ⁶	n/a	n/a	Many simple analog and logic interfacing cells	10 basic macrocells	•	•	•	•	•	•	None

Company	Product	Wiring	Турі	cal param	eters		Cells		Interfa	ce	Te	emp. Inges	E	Second
	Technology Line width	layers	MHz ¹	mW ²	ns ³	Simple	Complex		levels4					sources
Design Devices	Si-gate CMOS	M1 6 µm	50	1.5	1.75	54 MSI	RAM, ROM, 2901	C	т	ECL	C	1 M	•	None
	2 μm Si-gate CMOS	M2 9 μm M1 5.6 μm	150	1.8	1.75	40 I/O 115 gates	family RAM, ROM, PLA,							None
	1.5 μm	M2 6 µm				45 MSI 20 I/O	74xx logic, mulipliers							None
Electronic Technology	ETC Si-gate CMOS 2 and 3 μm	P1 or M1 7.5 μm	50	0.65	2.15	52 gates 7 MSI 14 analog 15 I/O	RAM, ROM; 65CX02	•	•		•	•	•	Gould, Motor,ola, NCR
	STDC Si-gate CMOS 3 μm	M1 M2	40	0.35	1.7	25 gates 2 MSI 6 analog 16 I/O	RAM, ROM, CPU/timer; 65Cx02, 6512×8 RAM, 62H×8 ROM	•	•		•			Motor _l ola, NCR, Gould
	STDC Si-gate CMOS 2 µm	M1 M2	75	0.35	1.1	46 gates 14 MSI 26 I/O	RAM, ROM, 65HC05	•	•		•	•	•	NCR, Motor,ola, Gould
Exar	P3000 Si-gate CMOS 3 μm	M1 6 μm M2 7 μm	35	0.19	2–3	50 gates 15 analog 10 I/O	Analog cells can be parameterized based on operating conditions	•	•		•	•	•	Rohm
	N2000 Si-gate CMOS 2 μm	M1 7 μm M2 8 μm	100	0.19	1	50 gates 75 MSI 25 analog 32 I/O	RAM, ROM, EEPROM; analog and switched- capacitor filters	•	•		•	•	•	Rohm
Fujitsu Micro- electronics	AV-OEBB Si-gate CMOS 1.8 µm	P16μm M17μm M29μm	100	n/s	1.2	140 digital	RAM, ROM, PLA, multipliers, ALU	•	•		•	•	•	None
	AU-AEBB Si-gate CMOS 1.2 μm	P13μm M14.5μm M26μm M39μm	120	n/s	0.85	100 gates 28 MSI 40 I/O	RAM, ROM, PLA; multipliers, ALU; 8200-type logic	•	•		•	•	•	None
GE Micro- electronics Center	GECELL Si-gate CMOS (CMOS/SOS available) 1.2 µm	M1 3 μm M2 4 μm	40	0.32	0.7	100 gates 50 MSI 70 I/O	None	•	•				•	None
Genesis Microchip	M ² CMOS Si-gate CMOS 2 μm	M1 M2	85	n/s	0.9	100 gates 104 MSI 12 analog 78 I/O	RAM, ROM, EEPROM, COP888, HPC 16- bit controller, SM8250, 2901	•	•		•	•	•	National
GE Solid State	SC2500 Si-gate CMOS 3 μm	M1 9 μm M2 11 μm	15	0.3	2.5	63 MSI 8 I/O	RAM, ROM, PLA, compilable cells as hard macros	•	•		•	•	•	None
	SC2000 Si-gate CMOS 3 μm	P1 11 μm M1 9 μm	10	0.2	2.5	63 MSI 8 I/O	Compilable cells as hard macros	•	•		•	•	•	Silicon Systems
	SC2800 Si-gate SOS 3 μm	Ρ1 6 μm M1 10 μm	15	0.2	1.5	45 MSI 11 I/O	Compilable cells as hard macros	•	•		•	•	•	None
	SC3000 Si-gate CMOS 2 µm	M1 6 μm M2 8 μm	20	0.3	1.8	63 MSI 8 I/O	RAM, ROM, PLA, compilable cells as hard macros	•	•		•	•	•	VLSI Tech- nology
	SC4000 (Advancell) Si-gate CMOS 1.5 μm	M1 3.5 μm M2 4.8 μm	100	0.5	0.8	167 gates 10 MSI 5 analog 84 I/O	RAM, ROM, PLA, 2900 family bit slice	•	•		•	•	•	Toshiba, Siemens
	SC3500 Si-gate CMOS 1.6 µm	M1 4.8 μm M2 6.4 μm	26	0.3	1.5	63 MSI 13 I/O	RAM, ROM, PLA, compilable cells as hard macros	•	•		•	•	•	VLSI
	SC2500E Si-gate CMOS (12 V) 3 μm	M1 9 μm M2 11 μm	15	0.3	2.5	63 MSI 13 I/O	RAM, ROM, PLA, compilable cells as hard macros	•	•		•	•	•	None
GigaBit Logic	SC5000 GaAs D-MESFET (CDFL) 0.8 μm	M1 4 μm M2 4 μm	2300	2.4	0.18	15 gates 13 MSI 7 I/O	None	•	•	10K, 100K	•	•	•	Tachonics
	SC10000 GaAs E/D-MESFET (CDFL/SCFL) 0.8 μm	· M1 4 μm M2 4 μm M3 4 μm	3000	1.5	0.15	12 gates 13 MSI 6 I/O	RAM, ROM	•	•	10K, 100K	•	•	•	None
Gould Semi- conductor	Si-gate CMOS 2 µm	M1 5 μm M2 7 μm	100	2.4	0.6	516 gates 200 MSI 24 I/O	RAM, ROM, PLA; multipliers, 2901 family; barrel, pipeline shifters			n/s	•	•	•	Contact company
	Si-gate CMOS 3 μm	M1 M2	50	n/s	2.5	212 gates 200 MSI 24 I/O	ADC, DAC, filters, op amps, analog, megacells			n/s	•	•	•	Contact company

Directory of Cell Libraries (continued)

Company	Product	Wiring	Турі	cal paran			Cells		nterfa		Te	emp. nge:	5	Second
	Technology Line width	layers	MHz ¹	mW ²	ns ³	Simple	Complex	c I	evels' T	ECL				sources
Holt Integrated Circuits	Si-gate CMOS 3 µm	Ρ1 7 μm M1 8 μm	15	0.2	6	40 gates 10 MSI 20 analog 25 I/O	RAM, ROM; ADC, DAC, display drivers, controllers	•	•	LUL	•	•	•	None
	Si-gate CMOS 3 μm	Ρ1 7 μm Ρ2 8 μm Μ1 8 μm	15	0.2	6	40 gates 10 MSI 25 analog 25 I/O	RAM, ROM, A/D, D/A display drivers, controllers	•	•		•	•	•	None
Hughes Aircraft	Si-gate CMOS 3 μm	Ρ1 10 μm M1 9 μm	30	0.45	2	100 gates 15 MSI 25 analog 10 I/O	n/s	•	•		•	•	•	None
	U series Si-gate CMOS 2 μm	P1 2 μm P2 2 μm M1 5 μm M2 5 μm	30– 50	0.8	1.5	50 gates 20 MSI 100 I/O	RAM, ROM, PLA, EEPROM, 2903, 2910	•	•		•	•	•	None
Integrated Circuit Systems	Si-gate CMOS 3 µm	Ρ1 6 μm M1 9 μm	80	0.02	1.2	65 gates 35 MSI 20 analog 18 I/O	RAM, ROM, PLA, PLL, VCO	•	•		•	•	•	NCR, VTI, Motorola
	Si-gate CMOS 2 μm	M1 M2	80	.014	1.2	36 gates 18 MSI 18 analog 12 I/O	RAM, ROM, PLA, 65C02	•	•		•	•	•	NCR, VLSI Tech- nology, Motorola, NSC
	VTI Si-gate CMOS 2 μm	M1 M2	80	.015	1.2	44 gates 16 MSI 12 I/O	RAM, ROM, PLA, Intel peripheral chips	•	•		•	•	•	None
Intel	Si-gate CMOS 1.5 μm	M1 3.84 μm M2 5.12 μm	65	0.02	0.7	41 gates 47 MSI 24 I/O	RAM, ROM, PLA, 80C51, 8086 peripherals, counters, adders, analog	•	•		•			None
International Microcircuits	G4000 Me-gate CMOS 8 μm	M1	2	0.01	70	n/s	n/s	•	•		•	•	•	S-MOS
	G70000 Si-gate CMOS 3.5 μm	P1 M1	42	0.42	3.3	24 gates 9 MSI 8 I/O	n/s	•	•		•	•	•	S-MOS
	IMI6000 Si-gate CMOS 2 μm	P1 M1 M2	60	0.6	1.4	101 gates 50 MSI 18 I/O	n/s	•	•		•	•	•	S-MOS
	IMI 7000 Si-gate CMOS 1.5 μm	P1 M1 M2	100	n/s	0.75	1632- 8000	70-170	•	•		•	•	•	S-MOS
International Microelectronic Products	ACL3/DCL3 Si-gate CMOS 3 μm	P1 8 μm M1 8 μm	50	0.15	3	45 gates 35 analog 21 I/O	RAM, ROM	•	•		•			Contact company
	ACL2/DCL2 Si-gate CMOS 2 μm	M1 6 μm M2 8 μm	80	0.3	1	45 gates 10 analog 21 I/O	RAM, ROM	•	•		•			Contact company
LOLL and	DCL1.2 Si-gate CMOS 1.2 µm	n/s	n/s	n/s	n/s	45 gates 21 I/O	n/s			n/s			n/s	
LSI Logic	LST20/LSC20 Si-gate CMOS 2 µm	P1 M1 M2	n/s	0.02/ MHz	1.4	>400 gates >300 MSI >100 I/O	Mutipliers, barrel shifters, 6845, 8251, 2901 family, RAM, ROM, PLA (LSC20)	•	•		•	•	•	Contact company
	LCB 15 Si-gate CMOS 1.5 μm	P1 M1 M2	n/s	0.01/ MHz	0.5	>400 gates >300 MSI >200 I/O	RAM, ROM, PLA, EPROM, multiport RAM, FIFO, LIFO, CAM; 29xx, 82xx, 6845	•	•	10K, 100K	•	•	•	Contact company
Marconi Electronic Devices	CELLMOS Si-gate CMOS 5 μm	Ρ1 10 μm M1 10 μm	20	0.1	8	55 gates 6 MSI 9 analog 6 I/O	RAM, ROM, "stretchable" buffer	•	•		•	•	•	None
	CELLMOS Si-gate CMOS 3 μm	Ρ1 6 μm M1 6 μm	40	0.12	3	55 gates 6 MSI 9 analog 6 I/O	RAM, ROM, "stretchable" buffer	•	•		•	•	•	None
	CELLSOS Si-gate SOS 5 μm	P1 10 μm M1 10 μm	25	0.08	5	56 gates 11 I/O	RAM, ROM, "stretchable" buffer	•	•		•	•	•	None
	MacroSOS1 Si-gate CMOS/SOS 2.5 µm	M1 6 μm M2 6 μm	70	0.003	1.2	38 gates 22 MSI 21 I/O	RAM, ROM, counters, adders, shift registers	•	•		•	•	•	n/s
	MacroMOS1 Si-gate CMOS 3 μm	P1 8 μm P2 8 μm M1 8 μm M2 8 μm	60	0.6	1.6	42 gates 38 MSI 27 analog 26 I/O	RAM, ROM, counters, adders, shift registers, ADC, DAC	•	•		•	•	•	n/s

Company	Product	Wiring	Турі	cal paran	neters		Cells		Interfa	ce	T	emp. inge		Second
	Technology Line width	layers	MHz ¹	mW ²	ns ³	Simple	Complex		levels	4				sources
Matra Design Semiconductor	GATELIB/MA Si-gate CMOS 2.5 μm	P1 6.5 μm M1 10 μm	25	0.02/ MHz	2	86 gates 25 MSI 1 analog 40 I/O	None	•	т •	ECL	•		•	None
	GATELIB/MB Si-gate CMOS 1.5 µm	Ρ1 4 μm M1 6 μm M2 9 μm	45	0.02/ MHz	1	70 gates 20 MSI 3 analog 33 I/O	RAM, multipliers, ALU, UART, 2901 family	•	•		•	•	•	Plessey
MCE Semi- conductors	MCE Unicell Bipolar JI 5 µm	M1	50	20	7	10 I/O	Op amps, comparators, references	•	•	•	•	•	•	None
	MCE MGA Me-gate CMOS 5 µm	M1 10 µm	5	3	10	21 gates 38 MSI 11 analog 43 I/O	Bias generator, comparator, op amp	•	•		•	•	•	None
	MCE SGA Si-gate CMOS 4 µm	Ρ1 8 μm M1 8 μm	10	1	5	15 gates 13 MSI 11 analog 21 I/O	Comparator, op amp bias generator	•						None
Micro LSI	μCell library Si-gate CMOS 2 and 3 μm	P1 M1	90	1.1	3.5	70 gates 10 MSI 10 I/O	RAM, ROM	•	•		•	•		None
	ULSI 20 Si-gate CMOS 2 µm	M1 6 μm M2 8 μm	90	3.5	1.1	70 gates 25 MSI 16 I/O	RAM, ROM	•	•		•	•		None
Micro-Rel	D5 library Si-gate CMOS 5 μm	P1 10 μm M1 10 μm	1	0.12	1.0	108 gates 28 analog 17 I/O	RAM, ROM	•	•		•	•	•	None
	D3 library Si-gate CMOS 3 μm	P1 6 μm M1 7 μm M2 10 μm	25	1	5	n/s	RAM, ROM	•	•		•	•	•	None
	Si-gate CMOS 3.5 μm	P1 3.5 μm M1 3.5 μm	n/s	n/s	n/s	85 gates 25 analog	Op amp, comparators, reference, bias generator, oscillator	•	•		•	•	•	None
	Bipolar JI, OI, DI (TTL) 8 μm	P1 8 μm M1 8 μm	n/s	n/s	n/s	10 gates 20 analog	-		•		•	•	•	None
	BiMOS 3 μm	P1 3 μm	25	1	5	85 gates 25 analog	Op amps, comparators, reference bias generator, OSC	•	•		•	•	•	None
Mietec	CMOS 2.4 µm Si-gate CMOS 2.4 µm	P1 4.8 μm P2 4.8 μm M1 5.6 μm M2 7.2 μm	60	0.2	2	34 gates 32 MSI 42 analog 48 I/O	RAM, ROM, PLA; switched- capacitor filter compiler	•	•		•	•	•	None
	Bipolar JI and Si- gate CMOS 3 µm	Ρ1 7 μm M1 8 μm M2 9 μm	40	0.2	4.5	20 gates 10 MSI 20 analog 2 I/O	RAM, ROM, PLA; switched- capacitor filter compiler	•	•		•	•	•	None
Mitsubishi Electronics America	Si-gate CMOS 2 µm	n/s	100	0.015	0.9	85 cells 175 functions 9 I/O	Configurable RAM, ROM	•	•		•	•		None
National Semi- conductor	Micro CMOS Si-gate CMOS 2 μm	M1 4.75 μm M2 6.25 μm	110	2.75	1	90 gates 98 MSI 10 analog 170 I/O	RAM, ROM, PLA, EEPROM, UARTs, 2901, 2911; 16-bit controller; comparators, opamps, voltage reference, analog switch, ADC configurable I/O drivers	•	•		•	•	•	IMP
NCM	20 series Me-gate CMOS 7 μm	M1 13 μm	5	n/s	16	20 gates 18 MSI 8 analog 6 I/O	PLA, ROM	•	•		•	•	•	None
	9000 series Si-gate CMOS 3 μm	P1 10 μm M1 12 μm	18	n/s	3	40 gates 7 MSI 3 analog 9 I/O	ROM, PLA	•	•		•	•	•	None
NCR Micro- electronics	VS2000 Si-gate CMOS 2 μm	M1 M2	85	0.28	1.1	58 gates 38 MSI >20 analog 34 I/O	RAM, ROM, dual-port RAM, PLASCSI controller CRT 45; 68C05, ALU, 8200 series; shift register, multiplexers, 65Cx02, SRAM, EEPROM	•	•		•	•	•	Motorola
	VS1500 Si-gate CMOS 1.5 μm	M1 M2	120	0.28	0.8	76 gates 38 MSI >20 analog 39 I/O 14 special functions	RAM, ROM, multipliers (8×8 , 16×16), dual-port RAM, ALU, counter, shift register, and multiplexer generators 7400 series, 8200 series, SRAM	•	•		•	•	•	None

Directory of Cell Libraries (continued)

Company	Product	Wiring	Турі	cal param	eters	Cells			Linterface levels ⁴		Temp. ranges ⁵			Second	
	Technology Line width	layers	MHz ¹ mW ² ns ³		Simple	Complex	c				ange I M		sources		
NEC Electronics	SC5; μpD92xxx Si-gate CMOS 1.2 μm	M1 3.6 μm M2 4.6 μm M3 7.2 μm	250	3	0.52	74 gates 70 MSI 150 I/O 91 74LS	RAM, ROM, 8200 peripherials, analog cells, ALU, etc.	•			•	•		None	
	SC4 μpD91xxx Si-gate CMOS 1.5 μm	M1 5.4 μm M2 7 μm	140	2.1	0.9	50 gates 70 MSI 40 I/O 84 74LS	RAM, ROM, 8200 peripherals, analog cells, ALU, etc.	•			•	•		None	
Oki Semi- conductor	MSM91H000 CMOS 2 μm drawn	2	40	8	1.8	150	300, plus 80C51, RAM, ROM, PLA	•	•		•	•		None	
	MSM91V000 CMOS 1.5 μm drawn	2	50	5	1.0	150	300, plus 80C51, RAM, ROM, PLA	•	•		•	•		None	
	MSM91U000 CMOS 1.2 μm drawn	2	80	4	0.6	150	300, plus 32K RAM, ROM, PLA	•		•	•	•		None	
Panasonic	MN71000 series Si-gate CMOS 2.5 μm	P1 M1 M2	n/s	n/s	1.9	200 gates 32 I/O	RAM, ROM, PLA	•			•	•		None	
	MN72000 Si-gate CMOS 2 μm	M1 3 μm M2 3 μm	160	0.02	1.4	182 gates 18 I/O	RAM, ROM, PLA	•			•	•		None	
	MN73000 Si-gate CMOS 1.5 μm	M1 2.3 μm M2 2.3 μm	200	0.02	1	182 gates 18 I/O	RAM, ROM, PLA	•			•	•		None	
Plessey Semi- conductor	MVA 5000 Si-gate CMOS 2 μm	M16μm M26μm	100	0.35	1.2	86 gates 65 MSI 10 analog 22 I/O	RAM, ROM, PLA, barrel shifters, (user- defined paracells)	•		•	•	•	•	Matra- Harris	
	Macrochip (MM, MV, MF) Bipolar JI	n/s	n/s	n/s	n/s	45 analog	Cells can be redefined by the user	•	•	All	•	•	•	Custom Arrays	
	MH Si-gate CMOS 4 μm	P1 M1	20	0.3	8	50 MSI 5–10 analog 20 I/O	RAM, ROM	•	•	All	•	•	•	None	
	Compiled ASIC FABIII Bipolar JI (CML) 1.5 µm	M1 6 μm M2 6 μm	250	0.42	1	48 gates 51 MSI 18 analog 21 I/O	RAM, ROM, 16- bit multipliers, SCSI controller; ADC, VCO, user-definable analog	•	•	10K, 100K	•	•		None	
Seattle Silicon	ChipCrafter Si-gate CMOS 1.2 μm	M1 3.1 μm M2 3.9 μm	400	2	0.6	24 gates (6 drive options) 12 MSI (plus user- definable) 6 analog 12 I/O (variable drive)	RAM, ROM, PLA, FIFO, multiplier-all cells are parameterized	•			•	•		None	
	ChipCrafter Si-gate CMOS 1.5 μm	M1 4 μm M2 4.5 μm	350	1.7	0.75	24 gates (6 drive options) 12 MSI (many user- definable options) 6 analog 12 I/O (variable drive)	RAM, ROM, PLA, FIFO, multiplier-all cells are parameterized	•			•	•		None	
	ChipCrafter Si-gate CMOS 2 μm	M1 4.95 μm M2 5.5 μm	210	1	1.2	24 gates (6 drive options) 12 MSI (many options) 6 analog 12 I/O (variable drive)	RAM, ROM, PLA, FIFO, multiplier-all cells are parameterized	•			•	•		None	
Sierra Semi- conductor	Si-gate CMOS 2 μm	P14μm M15μm M27μm	70	0.2	1.5	70 gates 150 MSI 50 analog 40 I/O	RAM, ROM, PLA, EEPROM, μP, ADC, DAC, compiled cells, megacells	•			•	•	•	VLSI Tech- nology	
	Si-gate CMOS 1.5 µm	Ρ13 μm M14 μm M25.5 μm	120	0.5	1	70 gates 150 MSI 50 analog 40 I/O	RAM, ROM, PLA, EEPROM, μP, ADC, DAC, compiled cells, megacells	•	•		•	•	•	VLSI Tech- nology	
Signetics/ Philips	SystemCell Si-gate CMOS 3 μm	Ρ19μm M19μm	25	n/s	4	250 gates 53 MSI 62 I/O	n/s	•	•	•	•	•	•	Texas Instrument	
	SystemCell Si-gate CMOS 2 μm	Ρ13μm Μ18μm M28μm	60	n/s	1.4	250 gates 53 MSI 62 I/O	RAM, ROM, PLA, 2900 family, SCSI bus initiator	•	•		•	•	•	Texas Instrument	
	SystemCell II Si-gate CMOS 1.5 µm	Ρ1 M1 6.4 μm M2 6.4 μm	60 max	n/s	1.3	131 gates 46 MSI 38 I/O 5 oscillators	Data-path elements, RAM, ROM, PLA, parametric blocks, megacells	•	-		•	•	•	Philips	

Company	Product	Wiring	Турі	cal param	neters		Cells		Temp. ranges ⁵	Second
	Technology Line width	layers	MHz ¹	mW ²	ns ³	Simple	Complex	C T ECL	C I M	sources
Silicon Systems	CC Si-gate CMOS 3 µm	P1 M1	25	n/s	3	40 gates 10 MSI 20 analog 23 I/O	RAM, ROM, PLA	• •	• •	RCA
	SSi 6600 Si-gate CMOS 3 μm	M1 12 μm	25+	n/s	<5	40 gates 10 MSI 20 analog 23 I/O	RAM, ROM, PLA	• •	•••	None
Silicon West	SWI 1000 Si-gate CMOS 2 μm	M1 M2	100	0.6	1.2	50 gates 25 MSI 8 I/O	RAM, ROM, PLA	• •	• •	LSI Logic VLSI Tech- nology
	SWI 2000 Si-gate CMOS 2 μm	Ρ1 4 μm M1 6 μm M2 8 μm	100	0.6	1.2	50 gates 25 MSI 2 analog 8 I/O	RAM, ROM, PLA	• •	• •	None
S-MOS Systems	SSC 1000 Si-gate CMOS 1.8 μm	M1 7 μm M2 10 μm	70	1.2	0.9	131 MSI 192 I/O	RAM, ROM, PLA	• •	•	None
Standard Micro- systems	Customation II Si-gate CMOS 3 μm	P1 6.3 μm M1 8.1 μm	24	0.25	1.8	71 gates 87 MSI 26 analog 21 I/O	RAM, ROM, PLA; UARTs, ADC, DAC, DTMF, 555, 8250, Manchester encoder- decoder, data separator, SCSI, 65CX02, timer, VCO	• •	•••	NCR
	Customation III Si-gate CMOS 1.6 µm	M1 5.5 μm M2 7.5 μm	60	0.28	1.1	71 gates 87 MSI 26 analog 23 I/O	RAM, ROM, PLA; UARTs, Manchester encoder-decoder, data separator, SCSI, 8259, ADC, timer, CRT controller	• •	•••	NCR
Fachonics	TCPM GaAs D-MESFET (SCFL) 1 μm	M1 6 μm M2 8 μm	1500	5	0.09	20 gates 6 MSI 1 analog 4 I/O	Designed to be integrated with MMIC functions	• • 10KH	• • •	None
	SC5000 GaAs D- MESFET (CDFL) 0.8 μm	M1 4 μm M2 4 μm	2300	2.4	0.18	12 gates 13 MSI 6 I/O	10 analog and MMIC cells	• • 10K, 100K	• • •	GigaBit Logic
lexas nstruments	SystemCell Si-gate CMOS 2 µm	M1 7.2 μm M2 5.4 μm	66	0.03/ MHz	1.2	114 gates 95 MSI 55 analog	13 special functions, SRAM, ROM, PLA, pipeline test register	• •	• •	Signetics/ Philips
	TSC500 series Si-gate CMOS 1 μm	M1 4.8 μm M2 4.8 μm	150	0.014 MHz	0.5	160 gates 77 MSI 166 I/O	22 special functions, SRAM, ROM, PLA, register files, FIFOs, 2901/02/04/10	• •	• •	None
ïlsi	Si-gate CMOS 5 μm	P1 10 μm P2 12 μm M1 10 μm	10	0.35	6	5 gates 60 MSI 36 analog 15 I/O	RAM, ROM; bi-quads, PLL, V ref	• •	• • •	Gould, GTE, Mitel, IMP
	Si-gate CMOS 3 μm	P1 7 μm M1 7 μm M2 8 μm	35	n/s	2.5	5 gates 60 MSI 25 analog 15 I/O	RAM, ROM; amplifiers, PLL bi-quads, V ref	• •	•••	Gould, IMP, Micrel
	Si-gate nMOS 4 μm	Ρ1 9 μm M1 9 μm	8	n/s	8	5 gates 24 MSI 5 analog 12 I/O	RAM, ROM	• •	•••	Gould, Micro- Rel, Citel
Foshiba America	TC22SC Si-gate CMOS 2 μm	M1 5 μm M2 6 μm	100	n/s	1.5	100 gates 78 MSI	RAM, ROM, PLA; MSI functions are soft macros only	• •	• •	None
	TC23SC Si-gate CMOS 1.5 μm	M1 5.6 μm M2 6 μm	150	1.8	1	115 gates 45 MSI 412 I/O	RAM, ROM, PLA, 74XX logic, multipliers	• •	• •	GE, and Siemens

Directory of Cell Libraries (continued)

Company	Product	Wiring	Турі	cal paran	neters		Cells		Interfa levels	ice 4	T	emp.	5	Second sources
	Technology Line width	layers	MHz ¹	mW ²	ns ³	Simple	Complex	с	T	ECL	C			Jources
TriQuint Semi- conductor	Q-LOGIC GaAs D-MESFET 1 μm	M1 3 μm M2 4 μm	2500	4, 11, 45	1 0.3 0.08	70 gates 130 MSI 15 I/O	n/s	•	•	All	•	•	•	None
	QLSI GaAs E/D- MESFET 1 μm	M1 2 μm M2 3 μm	3000	2.5, 8	0.18, 0.12	19 gates 30 MSI 13 I/O	Custom digital/analog	•	•	All	•	•	•	None
Unicorn Micro- electronics	Compile Si-gate CMOS 1.5 μm	M1 4.0 μm M2 4.4 μm	60	0.1	0.75	100 gates 50 MSI 20 I/O	RAM, ROM, PLA; datapath blocks, FIFO	•	•		•	•		Seiko, United Micro- electronics
United Silicon Structures	US2 Solo library Si-gate CMOS 15 μm	Ρ1 4.5 μm M1 6 μm M2 6.5 μm	130	.56	.85	51 gates 51 MSI 27 analog 58 I/O	RAM, XOM, PLA, 2901, multiplier; any user-defined cell is available through hardware description language	•			•	•	•	European Silicon Struc- tures
United Technologies Microelectronics Center	UTBS Si-gate CMOS 3 μm	M1 7.5 μm M2 7.5 μm	190	2.25	1.54	49 gates 29 MSI 12 I/O	RAM, ROM; 1553 bus controllers, 1750 processors	•	•				•	None
	UTDS Si-gate CMOS 1.5 μm	M1 6 μm M2 6 μm	345	8	0.65	49 gates 29 MSI 12 I/O	RAM, ROM; 1553 bus controllers; 1750 processors	•	•				•	None
Vitesse Semi- conductor	PGUSC-100 GaAs E/D-MESFET (DCFL, SCFL) 1.2 μm	M1 6 μm M2 6 μm M3 15 μm (power only)	2500	0.4	0.2	30 gates 25 MSI 10 I/O	RAM, PLA, 2900 bit- slice family in GaAs		•	•	•		•	Ford Micro- electronics
VLSI Technology	VSC10 Si-gate CMOS 2 μm	M1 5 μm M2 7 μm	130	1.2	0.93	65 gates 110 MSI 85 I/O	RAM, ROM, PLA, multiplier; 82CXX peripherals; 68C45 CRT controller, Z80 CPU plus peripherals; 85C30; datapath compiler, logic synthesizer, high speed RAM	•	•		•	•	•	Rockwell
	VSC100 Si-gate CMOS 1.5 μm	M1 3.2 μm M2 4.5 μm	180	1.2	0.74	As above	As above	•	•		•	•	•	Rockwell
νтс	VL1000 Bipolar JI 3 μm	M1 8 μm M2 12 μm	50	2.25	2	9 SSI gates 15 MSI 64 analog 9 I/O	RAM, ROM, data converters, amplifiers		•	10K	•	•	•	None
	VL2000/3000 Bipolar Ol 2 μm	M1 8 μm M2 12 μm	250	2.25	0.42	22 SSI gates 38 MSI 16 I/O	RAM, ALU, PLL, DAC		•	10K, 10KH	•	•	•	None
	VL5000 Si-gate CMOS 1 μm	M1 M2	200	n/s	0.5	50 gates 20 MSI 10 I/O	RAM, ROM, PLA; 2901, 2910, multiplier	•	•		•	•	•	None
WaferScale Integration	Modular Cell Si-gate CMOS 0.8 μm	P1 3.4 μm P2 2.6 μm M1 4.2 μm M2 4.8 μm	180	1.25	0.55	15 gates 45 MSI 20 I/O	RAM, ROM, PLA, EPROM, bit slice, multipliers, FIFOs, barrel shifters	•	•		•	•	•	GE
Xerox Micro- electronics Center	Micro CMOS Si-gate CMOS 2 μm	M1 4.75 μm M2 6.25 μm	110	2.75	1	90 gates 98 MSI 10 analog 170 I/O	RAM, ROM, PLA, EEPROM; UARTs, 2901, 2911; 16-bit controller; comparators, opamps, voltage reference, analog switch, ADC configurable I/O drivers	•	•		•	•	•	IMP
Zymos	Zy60000 Si-gate CMOS 1.8 μm	M1 6 μm M2 6 μm	100	n/s	0.9	170 gates 205 MSI 40 I/O	RAM, ROM, PLA; Z2901 bit slice; Intel family peripherals (Z80C49, Z8237, Z8259, Z8254, Z8284, Z82284, Z82288); Z6818, Z74612	•	•		•	•		None

Directory of Programmable Logic Products

Company and contact	Product or product family	Technology	Maximum/standby current consumption (mA)	Registered/- nonregistered propagation delay (ns)	Second sources	Design tools and programmers	Package types
Advanced Micro Devices Inc./ Monolithic Memories 901 Thompson PI. PO Box 3453 Sunnyvale, CA 94088-3453 (800) 538-8450 Andy Robin Director of Marketing, Programmable Logic	Am2064 Am2018 Am3020 Am3030 Am3042 Am3064 Am3060 AmHCLA	CMOS (R) CMOS (R) CMOS (R) CMOS (R) CMOS (R) CMOS (R) CMOS (R) CMOS (R)	$ \begin{array}{c} t^{1}/5, \ 10 \\ t^{1}/5, \ 10 \\ t^{1}/1, \ 10 \\ t^{1}/1 \end{array} $	$\begin{array}{c} 6-12^2/10-20^3\\ 6-12^2/10-20^3\\ 5-8^2/9-14^3\\ 5-8^2/9-14^3\\ 5-8^2/9-14^3\\ 5-8^2/9-14^3\\ 5-8^2/9-14^3\\ 5-8^2/9-14^3\\ 5-8^2/9-14^3\\ \end{array}$	Xilinx Xilinx Xilinx Xilinx Xilinx Xilinx Xilinx Xilinx Xilinx	XACT, OrCAD, Daisy, FutureNet, Mentor	DIP, PLCC, PGA
	PALC20RA10Z PALC29M16H PALC29M16H PALC29M16H PALC30M16H PALC30L8Z 20R4,6,82 PALC18U8Q PALC18U8Q PALC18U8Q PALC18U8Q PALC22V10H PAL10H20E08 PAL16L8-7 16R4,6,8-7 PAL16L8-7 16R4,6,8-7 PAL16L8-7 16R4,6,8-7 PAL16L8-7 16R4,6,8-7 PAL16L8-7 16R4,6,8-7 PAL16L8-7 16R4,6,8-7 PAL16L8-7 16R4,6,8-7 PAL16L8-7 16R4,6,8-7 PAL20L8 20R4,6,8-10 20R4,6,8-10 20R4,6,8-10 PAL20L8 20R4,6,8 PAL22V10 PAL22P16 PAL20RA10 PAL22P16 PAL20RA10 PAL22P16 PAL22P10 PA	CMOS (EE) CMOS (EE) CMOS (E) CMOS (E) TIL TIL TIL TIL TIL TIL TIL TIL	9000.15 120 120 900.1 700.1 900.1 700.1 55 45 45 90 220,280 220,280 220,280 220,280 180 90 55–180 55–180 55–180 210 210 210 210 210 210 105–210 105–210 105–210 105–210 105,210 90 105–210 105,210 90 105–210 115–210	40,45/40,45 15/25 15/25 15/25 15/35 15/35 15/35 20,25/40,45 15,25/25,35 -/25 15,25/25,35 3.5/6 -/7.5 -/7.5 -/7.5 6.5/7.5 -/7.5 12/15 12/15 12/15 12/15 12/15 10/15 15/25/35 10/15 15,25/25,35 35/35 20,30/20,30 30/30 30/30 -/15-35 -/15,25 -/	Seeq Cypress Cypress Cypress NSC, TI NSC, TI	PALASM 2 (AMD), PLPL (AMD), ABEL (Data I/O), CUPL (Logical Devices), PLDesigner (Minc)	Windowed ceramic DIP, ceramic and plastic DIP, PLCC, LCC
	Am29CPL141 Am29PL141 Am29LPL141 Am29PL142	CMOS (E) TTL TTL TTL	105 450 315 500	13, 15/— 15/— 25/— 20/—		ASM14X, SIM14X (AMD)	Windowed ceramic DIP, ceramic and plastic DIP, PLCC, LCC
	Am2971	ΠL	310, 425	22, 23/—		PEGPDS (AMD)	Ceramic DIP, flatpack, LCC
Altera Corp. 3525 Monroe St. Santa Clara, CA 95051 (408) 984-2800 David Laws Vice President, Marketing	EP 310 EP 320 EP 600 EP 900 EP 1210 EPB 1400 EPS 448 EPB 2001 EPB 2001 EPM 5014 EPM 5024 EPM 5032 EPM 5032 EPM 504 EPM 5127 EPM 5128	CMOS (E) CMOS (E)	40/15 20/0.01 15/0.01 30/0.01 25/3 60/0.01 100/60 100/60	15-35/25-75 15-35/25-75 15-35/25-75 15-35/25-75 15-35/25-75 15-35/25-75 40 50/33	intei, Cypress, Ti, WSI	PLDS2, PLCAD4 (Altera), PCCAD- Supreme, PLDS- SAM; many third- party programmers, including Data I/O and Stag, PLDs— McMAP, PLDs— MAX	Ceramic DIP, ceramic LCC, windowed PGA, plastic LCC, plastic DIP (one-time programmable)
Atmel Corp. 2095 Ringwood Dr. San Jose, CA 95131 (408) 434-9201 Jack Peckham Vice President of Sales	AT-22V10 AT-22V10L AT-V750 AT-V2500	CMOS (E) CMOS (E) CMOS (E) CMOS (E)	100/100 15/12 120/120 15/5	15-25/25-40 15-25/25-40 25-35/30-40 35-45/35-45	Many for 22V10	ABEL (Data I/O); CUPL (P-CAD); Log/ic (ISDATA)	DIP, JLCC—plastic and ceramic
Cypress Semiconductor 3901 North First St. San Jose, CA 95134 (408) 943-2600 Al Graff Programmable Logic Product Manager	PALC20 series	CMOS (E)	70 mA, commercial; 70 mA, military	15–25/20– <mark>4</mark> 0	AMD, TI, NSC, Lattice	Data I/O ABEL, ISDATA Logic, Minc PLDesigner, CUPL, Cypress PLD Tool Kit; Data I/O, Stag, Kontron, Logical Devices, Digelec, Cypress QuickPro	20 pins: windowed DIP, ceramic DIP, plastic DIP, plastic SOJ, ceramic LCC
	PLDC18G8	CMOS (E)	80	10–15/12–20	Lattice, AMD, TI, NSC, Signetics	Data I/O ABEL, ISDATA Logic, Minc PLD Designer, CUPL, Cypress PLD Tool Kit; Cypress QuickPro	20 pins: windowed DIP, ceramic DIP, plastic DIP, plastic SOJ, PLCC, ceramic LCC

1. The maximum is a function of density and frequency. 2. Internal register setup time. 3. Internal logic delay block.

Directory of Programmable Logic Products (continued)

Company and contact	Product or product family	Technology	Maximum/standby current consumption (mA)	Registered/- nonregistered propagation delay (ns)	Second sources	Design tools and programmers	Package types
Cypress Semiconductor Corp. 3901 North First St. San Jose, CA 95134 (408) 943-2600 Al Graff Programmable Logic Product	PLDC20G10	CMOS (E)	70, commercial 100, military	10–25/15–40	AMD, TI, NSC, Lattice	Data I/O ABEL, ISDATA Logic, Minc PLD Designer, CUPL, Cypress PLD Tool Kit; Data I/O, Cypress QuickPro	24pins: windowed DIP, ceramic DIP, plastic DIP, ceramic LCC; 28-pin PLCC
Manager	PALC22V10	CMOS (E)	90 mA, commercial 120 mA, military	10-25/15-40	AMD, TI	Data I/O ABEL, ISDATA Logic, Minc PLD Designer, CUPL, Cypress PLD Tool Kit; Data I/O, Stag, Kontron, Logical Devices, Digelec, Cypress Quick/Pro	24 pins: windowed DIP, ceramic DIP, plastic DIP, ceramic LCC; 28 pins: windowed LCC, PLCC
	PLDC20RA10	CMOS (E)	80 mA, commercial 100 mA, military	20–35/20–35	AMD	Data I/O ABEL, ISDATA Logic, Minc PLD Designer, CUPL, Cypress PLD Tool Kit; Cypress QuickPro	24 pins: windowed DIP, ceramic DIP, plastic DIP, ceramic LCC; 28 pins: windowed LCC, PLCC
	СҮ7С330	CMOS (E)	120 mA, commercial 150 mA, military	15–25/n/a 50 MHz max,commercial; 40 MHz, military	-	Data I/O ABEL, Cypress PLD Tool Kit; Data I/O, Cypress QuickPro	28 pins: PLCC, windowed DIP, ceramic DIP, plastic DIP, ceramic LCC
	CY7C331	CMOS (E)	120 mA, commercial 150 mA, military	25-40/25-40	-	Data I/O ABEL, Cypress PLD Tool Kit; Data I/O, Cypress QuickPro	28 pins: windowed DIP, ceramic DIP, plastic DIP, PLCC, ceramic LCC
	CY7C332	CMOS (E)	120 mA, commercial 150 mA, military	20–35/20–35		Data I/O ABEL, Cypress PLD Tool Kit; Data I/O, Cypress QuickPro	28 pins: windowed DIP, ceramic DIP, plastic DIP, PLCC, ceramic LCC
Exel Microelectronics Inc. 2150 Commerce Dr. San Jose, CA 95131 (408) 432-0500 Patrick Frain	XL78C800-25 XL78C800-35	CMOS (EE) CMOS (EE)	35/17 30/15	25/25 35/35	-	ABEL (Data I/O); Multimap and Multisim (in-house enhancements to ABEL); Data I/O; Stag Microsystems;	Skinny plastic DIP or ceramic DIP, LCC, PLCC
Product Marketing Manager						Inlab; SMS; Logical Devices	
Gazelle Microcircuits Inc. 2300 Owen St. Santa Clara, CA 95054 (408) 982-0900	GA22V10-10 GA22V10-7 GA22VP10-7	GaAs	210/210 220/220	7.5/10 6/7.5	n/s	All of Gazelle's devices are laser- programmed at the factory	Ceramic side-brazed DIP
Robert Gunn Product Marketing Manager							
Gould Inc. Semiconductor Division 2300 Buckskin Rd. Pocatello, ID 83201 (208) 233-4690 Jerry Homstad Vice President, Engineering	PEEL 18CV8 PEEL 153 PEEL 173 PEEL 253 PEEL 273	CMOS (EE) CMOS (EE) CMOS (EE) CMOS (EE) CMOS (EE)	25, 35/15, 25 45 45 45 45 45	18/25 30 30 30 30 30	International CMOS Technology	Data I/O, Structured Design, Stag, Valley Data Sciences, Varix, P-CAD Systems	Plastic DIP, ceramic DIP, CerDIP
Intel Corp. 1900 Prairie City Rd. FM 1-76 Folsom, CA 95630 (916) 351-6290 Karl H. Weigl Product Line Manager	5C031,32 5C060 5C090 5C121 5C180 5CBIC	CMOS (E) CMOS (E) CMOS (E) CMOS (E) CMOS (E) CMOS (E)	40,25/30,0.1 30/0.1 35/0.1 100/30 50/0.15 110/0.1	30,15/40,30 20/45 20/50 35/65 30/70 30/70	Altera	iPLDs II, Schema II, iState state machines (Intel); interfaces to FutureNet, P-CAD	Plastic DIP (5C032, 060, 090); CerDIP window (031, 032, 060, 090, 121), PLCC (060, 090, 180, CBIC)
International CMOS Technology Inc. 2125 Lundy Ave. San Jose, CA 95131 (408) 434-0678 Greg Lara Product Marketing Engineer	PEEL153, 173 PEEL253, 273 PEEL18CV8 PEEL20CG10 PEEL22CV10 PEEL22CV10Z	CMOS (EE) CMOS (EE) CMOS (EE) CMOS (EE) CMOS (EE) CMOS (EE)	35 + 1/MHz 35 + 1/MHz 20 + 0.7/MHz 45 + 0.5/MHz/45 45 + 0.5/MHz/45 45 + 0.5/MHz/1	/40,35,30 /40,35,30 20-12/35-15 20,15/35,25 20,15/35,25 20,15/35,25 20,15/35,25	Gould Semiconductor	APEEL Logic Assembler (ICT), PDS-1 PEEL Development System (ICT), ABEL (Data I/O), CUPL (P-CAD), Data I/O, Digelec, Kontron, Logical Devices, Stag Microsystems, Advin Systems, BP Microsystems, Adams-MacDonald, and others	Plastic DIP, ceramic DIP, PLCC
Lattice Semiconductor Corp. PO Box 2500 Portland, OR 97208 (503) 681-0118 Bill Wiley Smith Director of Marketing	GAL16V8A GAL16V8 GAL20V8A GAL20V8 GAL6001 ispGAL16Z8	CMOS (EE) CMOS (EE) CMOS (EE) CMOS (EE) CMOS (EE) CMOS (EE)	115/75 45/35,90/70 115/75 45/35,90/70 150/90 90/70	10/12 12/15 10/12 12/15 15/30 15/25	NSC, SGS-Thomson	Software: ABEL (Data I/O); CUPL (Logical Devices); PrDesigner (MINC); Programmable Logic Technology; Owerty Inc.; Hardware: Data I/O; Stag; Logical Devices; Programmable Logic Technology; Owerty Inc.; One-D; Advin Systes; and other programmers	Ceramic DIP, plastic DIP, PLCC, LCC, ceramic side-brazed DIP

Company and contact	Product or product family	Technology	Maximum/standby current consumption (mA)	Registered/- nonregistered propagation delay (ns)	Second sources	Design tools and programmers	Package types
National Semiconductor Corp. 2900 Semiconductor Dr. Santa Clara, CA 95051 (408) 721-6053 Bien Irace Product Marketing	PAL1016P8 10016P8 1016RD8 1016RD8 1016P4A 10016P4A 1012C4A 10112C4A 10016RM4A 10016RM4A	ECL ECL ECL ECL ECL ECL ECL ECL ECL ECL	240 280 280 220 220 220 220 220 240 240	/8 /8 3/6 3/6 /4 /4 /4 2/3 2/3	n/s	PLAN (NSC), ABEL (Data I/O) CUPL (P-CAD), Unisite (Data I/O), IO-180/280 (Digital Media), ECL-1 and ECL-2 (IMS), Palprox (Logical Devices)	Ceramic DIP, quad cerpack
	GAL16V8 20V8	CMOS (EE) CMOS (EE)	45–90/35–70 45–90/35–70	25–12/35–15 25–12/35–15	Lattice Lattice	PLAN (NSC), ABEL (Data I/O), GOA, Unisite (Data I/O), Logic Lab, Owerty	Plastic DIP, ceramic DIP, PLCC
	PAL10H8 12H6 14H4 16H2 10L8 12L6 14L4 16L2 16C1		45-90 45-90 45-90 45-90 45-90 45-90 45-90 45-90 45-90	/35-25 /35-25 /35-25 /35-25 /35-25 /35-25 /35-25 /35-25	AMD AMD AMD AMD AMD AMD AMD AMD AMD	PLAN (NSC), ABEL (Data I/O), CUPL (P- CAD), PALASM (AMD), 303A-011 and 60A, Unisite (Data I/O), Allpno (Logical Devices), Stag ZL30A	Plastic DIP, ceramic DIP, PLCC
	PAL16L8 16R4 16R6 16R8 PAL12L10 14L8 16L6 18L4 20L2 20C1 PAL20L8 20R4 20R6 20R8 PAL20L10 20X4 20X6 20X8 PAL20P8 20RP4 20RP6 20RP6 PAL16RA8 PAL20RA10	HEEEEEEEEEEEEEEEEEEEEEEEEE	90-180 90-180 90-180 90-180 100 100 100 100 210 210 210 210 210 21	$\begin{array}{c} -/35-10 \\ 15-8/25-10 \\ 15-8/25-10 \\ -/40 \\ -/40 \\ -/40 \\ -/40 \\ -/40 \\ -/40 \\ -/25-15 \\ 15-12/25-15 \\ 15-12/25-15 \\ 15-12/25-15 \\ 15-12/25-15 \\ -/50-30 \\ 30-15/50-30 \\ 30-15/50-30 \\ 30-15/50-30 \\ -/15 \\ 12/15 \\ 12/15 \\ 12/15 \\ 12/15 \\ 30/35 \\ 30/35 \\ 30/35 \\ \end{array}$	AMD, TI — AMD, TI AMD, TI AMD AMD AMD AMD AMD AMD AMD AMD	FAIM, Unisite (Data I/O), Digelec 803, Stag 30A800	N/S
PLX Technology Inc. 625 Clyde Ave. Mountain View, CA 94043 (415) 960-0448 Don Etzbach Sales Manager	PLX448	CMOS (E)	80/80	25/35	n/s	ABEL version 3.0 (Data I/O), CUPL (P- CAD), PET100 (PistoHI Tools), Data I/O, Digelec, Logical Devices, OAE: PistoHI Tools, Stag Microsystems, Sunrise	Plastic DIP, windowed ceramic DIP, LCC
Samsung Semiconductor Inc. 3725 North First St. San Jose, CA 95134 (408) 434-5561	CPL (CMOS Programmable Logic) 16R8 16R8 16R4 16L8 20R8 20R8 20R6 20R4 20L8 20L8 20L9 20L10 22Y10 16V8	CMOS (E)	80/45, 105/70	15, 25/25, 35	Cypress, AMD	Data I/O, Digelec, Digital Media, Kontron, Oliver Advanced Engineering, Stag, Varix	Plastic DIP, ceramic windowed DIP
Signetics Corp. 811 E. Arques Ave. Sunnyvale, CA 94086 (408) 991-5390 Joel Rosenberg PLD Marketing Manager	PLS100 PLC153 PLS153 PLS153A PLHS153 PLUS153B PLUS153D PLS173 PLUS173B PLUS173B PLUS173B PLUS173D PLC473-60	TTL CMOS (E) and TTL TTL TTL TTL TTL TTL TTL TTL TTL CMOS (E) and TTL	170 60 155 155 200 200 170 200 45, 60	/50 /45 /40 /20 /15 /12 /15 /12 /12 /60	NSC, International CMOS Technology 	Amaze (Signetics), ABEL (Data I/O), CUPL (P-CAD); Data I/O model 298, 60, Unisite 40; Stag model ZJ30/30A, PPZ2200	Commercial: plastic and ceramic DIP, windowed ceramic DIP, plastic PLCC, Military: ceramic DIP, windowed ceramic DIP, flat pack, LCC

-

Directory of Programmable Logic Products (continued)

Company and contact	Product or product family	Technology	Maximum/standby current consumption (mA)	Registered/- nonregistered propagation delay (ns)	Second sources	Design tools and programmers	Package types
Signetics Corp.	PLHS473	TTL	155	-/22	-	See previous page	See previous page
B11 E. Arques Ave.	PLHS18P8A	TTL	155	—/20	AMD		
Sunnyvale, CA 94086	PLHS18P8B	TTL	155	—/15	AMD		
408) 991-5390	PLHS16L8A	TTL	155	—/20	AMD, TI, NSC		
	PLHS16L8B	TTL	155	—/15	AMD, TI, NSC		
loel Rosenberg	PLUS16L8D	TTL	180	—/10	AMD, TI		
PLD Marketing Manager	PLUS16R8D	TTL	180	18/10	AMD, TI		
	PLUS16R6D	TTL	180	18/10	AMD, TI		
	PLUS16R4D	TTL	180	18/10	AMD, TI		Charles and the second
	PLUS20L8D	TTL	210	-/10	AMD		
	PLUS20R8D	TTL	210	18/10	AMD		
	PLUS20R6D	TTL	210	18/10	AMD		
	PLUS20R4D	TTL	210	18/10	AMD		1.
	PLC16V8	CMOS (E) and	50, 90	55/35	Lattice, NSC		
	PLC20V8	TTL CMOS (E) and	50, 90	55/35	Lattice, NSC		
		TTL					6.1 (3.5)
	PLS105	TTL	180	72/	AMD, TI		
	PLS105A	TTL	180	50/	AMD, TI		
	PLUS405	TTL	225	30/	-	1. Ch (
	PLS155	TTL	190	70/50	-		
	PLS157	TTL	190	70/50			
	PLS159A	TTL	190	55/35	-		
	PLS167	TTL	180	72/	AMD, TI		
	PLS167A	TTL	180	50/	AMD, TI	The second s	
	PLS168	TTL	180	72/	AMD, TI		
	PLS168A	TTL	180	50/	AMD, TI		
	PLS179	TTL	210	55/35	_	Contraction States and the	
	PLHS501	TTL	295	-/22	_		
	PLHS502	TTL	370	/20	-		
exas Instruments Inc.	TIBPAL16L8	TTL	100,180,200	25,15,10,7.5,12	MMI, AMD, NSC	ABEL (Data I/O);	Commercial: plas
P.O. Box 655012	16R4,6,8	TTL	100,180,200	25,15,10,7.5,12		Digital Media; CUPL	DIP, SMD. Militar
Dallas, TX 75265	PAL16L8A/A-2	TTL	90,180	35,25	MMI, AMD, NSC	(Personal CAD	ceramic DIP, LCC
800) 232-3200	16R4,6,8A/A-2	TTL	90,180	35,25	MMI, AMD, NSC	Systems)	
	TIBPAD16N8	TTL	180	7	-		
im Schnettler	TIBPAL20L8	TTL	105,180	25,15	MMI		
Strategic Marketing Manager,	20R4,6,8	TTL	105,180	25,15	MMI		
Programmable Logic Products	PAL20L8A	TTL	210	25	MMI, AMD, NSC		
	20R4,6,8A	TTL	210	25	MMI, AMD, NSC		
	TIBPALT19L8	TTL	210	25	_		
	T19R4,6,8	TTL	210	25		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	R19L8	TTL	210	25			
	R19R4,6,8	TTL	210	25		1	
	20L10	TTL	165	20,30	MMI, NSC		
	20X4,8,10	TTL	165	20,30	MMI, NSC	and the second sec	
	TIB82S105B	TTL	180	15	Signetics		
	82S167B TIBPAL22V10A		160 180	15 25	Signetics		
					AMD		
	22VP10	TL	210	20			CONTRACTOR OF STREET
	TIFPLA839	TTL	180	20			
	840	TTL	180	25	-		
	TICHAL16L8	CMOS	0.1	35	-		States and states
	16R4,6,8	CMOS	0.1	35	-		
	TICPAL16L8	CMOS	0.1	55	-		
	16R4,R6, R8	CMOS	0.1	55	-		13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	TICPAL18V8Z	CMOS	0.1	25	IDT		State of the second second
	TICPAL22V10Z	CMOS	0.1	35	AMD, MMI, Cypress		
					NSC		
	TIEPAL10H16P8 TIEPAL10016P8	ECL ECL	240 240	6	NSC		
(ilinx Inc.	XC2064	CMOS		17/10 ¹	AMD	PC based Cabarry	Plastic DIP, PLC
069 Hamilton Ave.	XC2064 XC2018	CMOS	25-50 max	17/10 ¹	AMD	PC-based: Schema,	Plastic DIP, PLCO PGA, CQFP
San Jose, CA 95125			50-75 max	17/10 ¹ 16/9 ¹		FutureNet, OrCAD,	PGA, COFP
	XC3020	CMOS	50-75 max			P-CAD, Case,	
408) 559-7778	XC3030	CMOS	75-100 max	16/9 ¹		Viewlogic.	
	XC3042	CMOS	100-150 max	16/91		Workstation: Daisy,	
	XC3064 XC3090	CMOS CMOS	175-250 max	16/9 ¹ 16/9 ¹		Mentor, Valid, Xilinx	
		LIMOS	250-350 max	1 16/01		Xact	

ASIC Vendor Contacts

ABB HAFO Inc. 11501 Rancho Bernardo Rd. Suite 200 Suite 200 San Diego, CA 92127 (619) 485-8200 Kay Baird Marketing Administrator

Actel Corp. 955 E. Arques Ave. Sunnyvale, CA 94086 (408) 739-1010 Jim Horton Senior Marketing Engineer

Adams Russell Semiconductor Center 80 Cambridge St. Burlington, MA 01803 (617) 273-5830 David Strand Marketing Administrator

Advanced Micro Devices Inc. 5900 E. Ben White Blvd. M/S 538 Austin, TX 78741 (512) 462-5667 Bruce Smith Product Marketing Manager

> Applied Micro Circuits Corp. 6195 Lusk Blvd. San Diego, CA 92121 (619) 450-9333 Allyn Pon Product Marketing Manager

Arrow Electronics Inc. 25 Hub Dr.

Melville, NY 11747 (516) 391-1300 Tony Winger Vice President, Industrial Computer Products

ASIC Northwest Inc. 405 114th Ave. S.E., #205 Bellevue, WA 98004 (206) 451-9335 John L. Barney President

AT&T Technologies Inc. 555 Union Blvd. Allentown, PA 18103 (800) 372-2447

Barvon BiCMOS Technology Inc. 1992 Tarob Ct. Milpitas, CA 95035 (408) 262-8368 Ron Morosco Vice President, Marketing and Sales

California Micro

Devices Corp. ASIC Division 2000 W. 14th St. Tempe, AZ 85281 (602) 921-4541 Matt Townsend Marketing Manager

Cherry Semiconductor

Cherry Semiconductor Corp. 2000 S. County Trail East Greenwich, RI 02818 (401) 885-3600 Bob Maigret Semicustom Manager

Coherent Design 275 Saratoga, Ste. 200 Santa Clara, CA 95050 (408) 296-3710 Roger Biros Descrident

President

Commodore Semiconductor 950 Rittenhouse Rd. Norristown, PA 19403 (215) 666-2585 Ben Rappaport Manager of New Product Technology

Control Data Corp. 8100 34th Ave. South Minneapolis, MN 55440 (612) 853-3117 Robert L. Biggs Marketing Manager

Custom Arrays Corp. 525 Del Rey Ave. Sunnyvale, CA 94086 (408) 749-1166 George N. Krautner Corpt Vice Deside Executive Vice President

Custom Silicon Inc. 600 Suffolk St. Lowell, MA 01854 (508) 454-4600 David W. Guinther Vice President

Data Linear Corp. 491 Fairview Way Milpitas, CA 95035 (408) 945-9080 Valentino Liva ASIC Marketing and

ASIC Vendor Contacts (continued)

Applications

Design Devices 20301 Century Blvd. M/S A-23 nantown, MD 20874 Ge (301) 428-6660 Steve Becraft Department Manager

Design Engineering Inc. (DEI) 1900 13th St. Suite 304 Boulder, CO 80302 (303) 440-7997 Stephen L. Davis President

Electronic Technology Corp. ISU Research Park

525 East Second St Ames, IA 50010 (515) 233-6360 Doug Birlingmair Applications Engineer, ASICs Lowell Simplot Product Manager, Replacement ICs

Exar Corp. 2222 Qume Dr. San Jose, CA 95131 (408) 434-6400 Shyam Dujari Advanced CMOS Custom Products Manage

Ford Microelectronics Inc. 10340 State Highway 83 North Colorado Springs, CO 80918 (719) 528-7660 (800) 777-FORD Charlotte Diener Marketing Manager

Fujitsu Microelectronics Inc 3545 North First St San Jose, CA 95134-1804 (408) 922-9000

Gain Electronics Corp. 22 Chubb Way Somerville, NJ 08876 (201) 526-7111 Charles Lee Vice President of Engineering

GE Microelectronics Center One Micron Dr. P.O. Box 13049 RTP, NC 27709 (919) 549-3100 D.J. Blackley Manager, Program Acquisition

Genesis Microchip Inc. 2900 John St. Markham, Ontario Canada L3R 5G3 (416) 470-2742 **Bill White** Vice President, Sales

Gennum Corp. P.O. Box 489, Station A Burlington, Ontario Canada L7R 3Y3 (416) 632-2996 (800) 263-9353 Paula Reiland Sales Coordinator

GE Solid State 724 Route 202 P.O. Box 591 Somerville, NJ 08876 (201) 685-6585 Phyllis Orlando Marketing Communications

GigaBit Logic Inc. 1908 Oak Terrace Lane Newbury Park, CA 91320 (805) 499-0610 (800) GAAS ICS (outside CA) Anthony Conoscenti Product Marketing Engineer

Gould Inc. Semiconductor Division 2300 Buckskin Rd. Pocatello, ID 83201 (208) 233-4690 Jerry Homstad Vice President, Engineering

Hall-Mark Electronics Corp. 11333 Pagemill Rd.

Dallas, TX 75243 (214) 343-5923 Wayne Howse ASIC/USIC Program Manage

Hamilton/Avnet 1175 Bordeaux Dr Sunnyvale, CA 94089 (408) 743-3001 (800) 426-2742 Robert M. Gardner Vice President/General Manager

Holt Integrated Circuits Inc. 9351 Jeronimo Rd. Irvine, CA 92718 (714) 859-8800 Roger Smith Sales Manager

Honeywell Inc. **Digital Technologies** 1150 E. Cheyenne Mountain Blvd. Colorado Springs, CO 80906 (719) 540-3820 Lucien DeBacker Director of Military Products

Hughes Aircraft Co. Hughes Microelectronics Center 500 Superior Ave. Newport Beach, CA 92658 (714) 759-2727 Mike Friedman Applications Manager

ICI Array Technology Inc. 1297 Parkmoor Ave San Jose, CA 95126 (408) 297-3333 Frank Stempski Marketing Manager

Integrated Circuit Systems Inc. Systems Inc. 2626 Van Buren Ave. P.O. Box 968 Valley Forge, PA 19482 (215) 666-1900 Faye Jeffries-Cirino Sales/Marketing Coordinator

Integrated Circuit Technology Inc. 22691 Lambert St. Suite 514

El Toro, CA 92630 (714) 581-7195 Akhtar Ali Vice President, Engineering

Integrated Logic Systems Inc. 4445 Northpark Dr Colorado Springs, CO 80907 (719) 590-1588 Mark Jander Applications Engineer

Intel Corp. 6501 West Chandler Blvd. Chandler, AZ 85226 (602) 961-2801 Susan Petrizzo Director of Marketing

International International Microcircuits Inc. 3350 Scott Blvd., Bldg. #36 Santa Clara, CA 95054 (408) 727-2280 Nasser Abdollahi Product Marketing

International Microelectronic Products Inc. 2830 N. First St. San Jose, CA 95134 (408) 434-1362 Thomas Flageollet Marketing Manager

LSI Logic Corp. 1551 McCarthy Blvd. M/S D102 Milpitas, CA 95035 (408) 433-8000 usan Josephson

Marketing Communications Marconi Electronic Devices

Inc. 45 Davids Dr. Hauppauge, NY 11788 (516) 231-7710 Dale R Wilson President of Sales and Marketing

Matra Design Semiconductor 2840-100 San Tomas Expwy. Santa Clara, CA 95051 (408) 986-9000 Pradip Madan Vice President of Marketing and

MCE Semiconductor Inc. 1111 Fairfield Dr. Beach West Palm Beach, FL

33407 (407) 845-2837 **Richard McCargar** Vice President Micro Linear Corp. 2092 Concourse Dr. San Jose, CA 95131 (408) 433-5200 Stephen Soto Product Marketing

Manager

Micro LSI Corp. 2065 Martin Ave Suite 101 Santa Clara, CA 95050 (408) 727-7987 **Dusty Duistermars** Chief Engineer

Micro-Rel 2343 W. 10th PI Tempe, AZ 852 (602) 968-6411 281 Dave Rigg National Sales Manager

Mietec Westerring 15 9700 Oudenaarde Belgium Phone: 055-33-22-11 J.Y. Peigne Communications Director

Mitsubishi Electronics America Inc. 1050 E. Arques Ave. Sunnyvale, CA 94086 (408) 730-5900 Thomas Liao Product Manager

Motorola Inc. ASIC Division 1300 N. Alma School Rd. M/S CH-180 Chandler, AZ 85224 (602) 821-4219 Michael Ponzo Manager, Marketing

National Semiconductor Corp. 2900 Semiconductor Dr (408) 721-5884 Thomas Wong Strategic Marketing Manager

NCM Corp. 1500 Wyatt Dr. Santa Clara, CA 95054 (408) 496-0290

NCR Microelectronics Corp. 2001 Danfield Ct.

Fort Collins, CO 80525 (303) 226-9500 (800) 334-5454 Lyle Wallis Commercial ASICs Earl Reinkensmeyer Software Products (719) 596-5795 (800) 525-2252 Ted Lunacek Military ASICs Michael Moursi

Nebula Corp. 33 Lyman St. Westboro, MA 01581 (508) 366-6558 Jim Gobes Vice President of Sales

Automotive ASICs

NEC Electronics Inc. 401 Ellis St. P.O. 7241 Mountain View, CA 94039 (415) 965-6333 Grant Hulse Strategic Marketing Manager

Oki Semiconductor Inc. 785 North Mary Ave. Sunnyvale, CA 94086 (408) 720-1900 Clifford Vaughan ASIC Marketing Manager

Ontario Research Foundation Microelectronics Development Centre Systems Engineering 2395 Speakman Dr. Mississauga, Ontario Canada L5K 1B3 (416) 822-4111 John Paterson Marketing Manager

Panasonic Industrial Co. 1610 McCandless Dr Milpitas, CA 95035 (408) 946-4311 Terry Toyooka Resident Engine

Pioneer Technologies Group 9100 Gaither Rd. Gaithersburg, MD 20877 (301) 921-0660 Hammett Vice President, Systems Marketing

Plessey Semiconductor 1500 Green Hills Rd. Scotts Valley, CA 95066 (408) 438-2900 Phillip Pollok Director of Marketing

Polycore Electronics 1107 Tourmaline Dr. Newbury Park, CA 91320 (805) 499-6777 S.K. Leong Vice President

Raytheon Semiconductor 350 Ellis St. Mountain View CA 94039 (415) 968-9211 (415) 966-7734 Jack Van Den Heuvel Marketing Manager for ECL Products (415) 966-7628 Pete Goshgarian Marketing Manager for CMOS Products

Schweber Electronics CB 1032 Jericho Tpke. Westbury, NY 11590 (516) 334-7555 Mimi Shokraie Technical Marketing Business Manage

Seattle Silicon Corp. 3075 112th Ave. N.E Bellevue, WA 98004 (206) 828-4422 Dick Ahlquist ASIC Marketing Manager

Semiconductor Specialists 195 W. Spangler Ave. Elmhurst Industrial Park Elmhurst, IL 60126 (312) 279-1000 P Jeff P. Jeffrey Carroll Director of Marketing

Sierra Semiconductor 2075 N. Capitol Ave. San Jose, CA 95132 (408) 263-9300 Don MacLennan Director, Custom Marketing

Signetics Corp. / Philips 811 E. Arques Ave. M/S 25 Sunnyvale, CA 94086 (408) 991-5401 Don Schare Marketing Manager, CMOS Semicusto

Siliconix Inc. 2201 Laurelwood Rd. M/S 44 Santa Clara, CA 95054 (800) 554-5565 x1900 Joe Baranowski IC Marketing Manager

Silicon Systems Inc. 14351 Myford Rd. Tustin, CA 92680 (714) 731-7110 Peter Putnam Product Sales Manager

Silicon West Inc 5470 Anaheim Rd. Long Beach, CA 90815 (213) 494-4588 Edward Evans President

SIS Microelectronics Inc 1500 Kansas Ave., Bldg. 1D P.O. Box 1432 Longmont, CO 80502 (303) 776-1667 William D. Burkard President

S-MOS Systems Inc. 2460 N. First St. San Jose, CA 95131 (408) 922-0200 Joel Silverman Director of Marketing

Standard Microsystems Corp. 35 Marcus Blvd. Hauppauge, NY 11788 (516) 273-3100 Brian Cayton Director of Marketing

Tachonics Corp. 107 Morgan Lane Plainsboro, NJ 08536 (609) 275-2504 Michael Zyla Marketing Manager

Tektronix Integrated Circuits Operation P.O. Box 14928 Portland, OR 97214 (800) 835-9433 x100 Customer Inquiries

Texas Instruments Inc. 8390 LBJ Expwy. P.O. Box 655303 M/S 3670 Dallas, TX 75265 (214) 997-2031 Jerry Koontz ASIC Marketing Communications Manager

TLSI Inc. 790 Park Ave. Huntington, NY 11743 (516) 549-6300 Frank Nartowicz Director of Marketing

Toshiba America Inc. 1220 Midas Way

Sunnyvale, CA 94086 (408) 733-3223 Allan Cox Director of Marketing Semicustom Products MOS IC Division

TriQuint Semiconductor P.O. Box 4935, Group 700 Beaverton, OR 97075 (503) 644-3535 Louis Pengue Product Marketing Manager

Unicorn Microelectronics Corp. 99 Tasman Dr. San Jose, CA 95134 (408) 433-3388 H.Y. Liu Sales Manager

United Silicon Structures (US2) 1971 Concourse Dr San Jose, CA 95131 (408) 435-1366 Steven Eliscu Product Marketing

United Technologies Microelectronics Center 1575 Garden of the Gods Rd. Colorado Springs, CO 80907 (719) 594-8124 Ronald Hehr Manager, Semicustom Products

Vitesse Semiconductor 741 Calle Plano Camarillo, CA 93010 (805) 388-3700 Joe Welsh ASIC Product Marketing lanage

VLSI Technology Inc. 1109 McKay Dr. San Jose, CA 95131 (408) 434-3100 Bill Murray Tactical Marketing Manager

VTC Inc. 2401 E. 86th St. Bloomington, MN 55425 (612) 851-5200 John S. Monsor ASIC Product Marketing Engineer

WaferScale Integration Inc. 47280 Kato Bd. Fremont, CA 94538 (415) 656-5400 Rich Talburt

Manager, CSD Design Wyle Laboratories Electronics Marketing Group 18910 Teller Ave. Irvine, CA 92715

(714) 851-9953 (408) 727-2500 **Rick Timmins** Vice President of Semicustom ICs

Xerox Microelectronics

Center 701 S. Aviation Blvd. El Segundo, CA 90245 (213) 333-7701 Gary Petrov Manager, Regional Design Support Centers

Xilinx Inc 2069 Hamilton Ave San Jose, CA 95125 (408) 559-7778 Lee Farrell Product Marketing Director

ZyMOS Corp. 477 N. Mathilda Ave. Sunnyvale, CA 94088 (408) 730-5400 Vic Pasin Tactical Marketing Director

Directory of ASIC Design Centers

ABB HAFO Inc.

11501 Rancho Bernardo Rd., Suite 200 San Diego, CA 92127

San Diego, CA: 5 engineers; 1 VAX-11/780; Tektronix graphic terminals; Racal-Redac system

Stockholm, Sweden: 30 engineers; 2 VAX 8530s ; 4 VAX-11/780s; Tektronix graphics terminals; Racal-Redac systems; ZyCAD logic evaluator; Daisy, Mentor, Tektronix, and P-CAD workstations.

Communications are available via 1,200-baud dial-up modems and dedicated-line X.25 networks. Customized training classes are offered at the company's or the customer's facilities.

Advanced Micro Devices Inc.	Bruce Smith
5900 E. Ben White Blvd., M/S 538	Product Marketing Manager
Austin, TX 78741	(512) 462-5667
Boston, MA: 1 engineer; 1 workstation	
Sunnyvale, CA: 1 engineer; 1 workstation	

Communications at 9,600 bps; one-on-one training.

Applied Micro Circuits Corp.	Allyn Pon
6195 Lusk Blvd.	Product Marketing Manager
San Diego, CA 92121	(619) 450-9333

San Diego, CA: 10 engineers; 7 computers/workstations Milan, Italy (ACSIS): 6 engineers; 1 computer/workstation Tokyo, Japan (Teksel Co. Ltd.): 2 engineers; 1 computer/workstation Stockholm, Sweden (Sattco): 4 engineers; 1 computer/workstation Cambridge, UK (Hi-Tek Distribution): 3 engineers; 3 computers/workstations

Breisach, West Germany (Bacher GmbH): 2 engineers; 1 computer/workstation

Training offered includes a two-part class: 3 days on design methodology followed by 1.5 lab days on engineering workstations; full documentation including note set and design manual; 1 instructor per 14 (maximum class size); 1-2 students per EWS.

Arrow Electronics	Mel Kutzin
25 Hub Dr.	Semicustom Design Services
Melville, NY 11747	(516) 391-1300

Sunnyvale, CA: 4 engineers; Daisy MegaLogician, 1 Mentor (Apollo DN3000)

Baltimore, MD: 5 engineers; 1 Mentor (DN3000), Daisy Personal Logician; 2 terminals

Design centers for National Semiconductor, Texas Instruments, and VLSI Technology products. Dial-up modems at 1,200/2,400 baud; dedicated lines, East Coast, at 9,600 baud; Ethernet; direct access to Arrow mainframes, hardware accelerators, and workstations; tie-in to TI regional design centers. Hands-on one-day courses in schematic capture and simulation at the workstations. IC and workstation vendor training manuals and data books available. One instructor for 3-5 students; 1-2 students per workstation. Buy or lease CAD tools from Arrow. (Mil-Std-883 screening available for ASIC products.)

ASIC Northwest Inc. John L. Barney 405 114th Ave. SE #205 President Bellevue, WA 98004 (206) 451-9335

Bellevue, WA: 1 engineer; 1 Mentor (DN3000)

Dial-up communication available at 2,400 baud. Customer and turnkey designs for NCR standard cells and gate arrays, US2 standard cells, and KMOS Semicustom Designs mixed analog/digital arrays.

AT&T Technologies Inc. 1 Oak Way

(800) 372-2447

Berkeley Heights, NJ 07922

Sunnyvale, CA: 14 engineers; 1 VAX-11/785; 2 Daisy, 2 Mentor, 4

130 SEMICUSTOM DESIGN GUIDE 1988

AT&T workstations; 10 terminals

London, England: 5 engineers; 2 MicroVAXes, 1 Mentor; 5 terminals Madrid, Spain: 5 engineers; 1 VAX-11/785, 1 MicroVAX, 1 AT&T 3B2/400, 7 AT&T workstations; 12 terminals.

Munich, West Germany: 15 engineers; 1 VAX-11/785; 2 Daisy, 2

Mentor, 2 Valid, 4 AT&T workstations; 15 terminals

Singapore: 7 engineers; 1 VAX-11/785; 12 terminals.

Dedicated 56-kilobaud data links hook up to an IBM 3081, located in AT&T's research center in Allentown, PA. In Allentown, courses on design techniques and AT&T CAD tools are given every two months; at the design centers, they occur on an as-needed basis. There is one student per terminal; the ratio of students to instructors is 5:1.

Barvon BiCMOS Technology Inc.

1992 Tarob Ct. Milpitas, CA 95035

Kay Baird

(619) 485-8200

Marketing Administrator

Milpitas, CA: 7 engineers; 1 Mentor, 1 Apollo, 1 P-CAD; 5 terminals

Barvon offers several classes in design methodology, electrical design, placement/routing and simulation for digital, mixed analog and digital, and analog designs using gate arrays and standard cells. Training is available from established outlines or tailored to satisfy individual needs.

Marketing Manager
(602) 921-4641

Cherry Semiconductor Corp. 2000 S. County Trail East Greenwich, RI 02818

Bob Maigret Manager of Semicustom Products (401) 885-3600

Coherent Design	Roger Biros
275 Saratoga, Suite 200	President
Santa Clara, CA 95050	(408) 296-3710

Santa Clara, CA: 7 engineers, 2 support

Coherent Design serves as a turnkey, systems level design team, working from customer specifications to produce schematics, netlist and test vectors for CMOS gate arrays and cell libraries. Coherent design provides quick-turn prototypes (Xilinx) and fix-mode ASICs from a common database. All designs are vendor independent. ASIC vendors supported include National Semiconductor, LSI Logic, VLSI Technology, Sanyo Semiconductor, S-MOS Systems, Xilinx, and Plessey Semiconductors. Complete simulation and test facilities available.

Control Data Corp.	Robert L. Biggs
8100 34th Ave. South	Marketing Manager
Minneapolis, MN 55440	(612) 853-3117

Plymouth, MN: 12 engineers; 5 Mentor, 1 Daisy

Communications are via HASP 4,800 baud; X.25, 4,800 baud; Kermit 9,600 baud; and dial-up modems with support for workstations. A one-week design class includes a complete set of manuals and covers workstation usage, design verification, and testability analysis. There are 5-10 students per class; 1-2 students per Mentor workstation. Additional services include multichip, multiboard system simulation, IC characterization, and PCB manufacturing/assembly facilities.

Custom Arrays Corp. 525 Del Rey Ave. Sunnyvale, CA 94086

George N. Krautner Vice President, Marketing (408) 749-1166

Complete CAE/CAD design methodology using PC AT or PC386 platform. Liberty proprietary software addresses schematic capture; SPICE simulation; symbolic layout; and layout verification, consisting of design

Sales Department (408) 262-8368

rule checking, electrical rule checking, layout vs. schematic, postlayout SPICE netlist extraction, and schematic back annotation. Half-day training on PC AT-based workstation is usually sufficient, and all manuals are included. Students each have their own workstation. Additional services include full-custom design of linear circuits, and mixed analog and digital design using bipolar and CMOS technology.

Custom Silicon Inc.	David W. Guinther
600 Suffolk St.	Vice President
Lowell, MA 01854	(508) 454-4600

Lowell, MA: 8 engineers; 4 Apollo, 4 Viewlogic, 2 FutureNet, 1 Daisy; 11 terminals

Communications exist via 1,200- and 4,800-baud modem connections. Design manuals and data books are included with all classes. Classes are structured with one instructor and workstation to no more than two students. CSI offers full turnkey, joint development, and customer-designed IC programs for NCR standard cells, Motorola gate arrays, and Plessey bipolar linear arrays. CSI software products include generic libraries and design kits for Viewlogic and Mentor workstations.

Design Devices	Steve Becraft
20301 Century Blvd., MS A-23	Department Manager
Germantown, MD 20874	(301) 428-6660
	(301) 120 0000

Germantown, MD: 3 engineers; Mentor, Valid, MicroVAX II, PC AT; 2 terminals, 1 hardware accelerator

Dial-up communications are available at 2,400 baud. Introduction to ASIC Design is the training class offered, and it includes class notes and vendorspecific literature. One instructor is provided for every four students and one workstation for every two students.

Stephen L. Davis
President
(303) 440-7997

(303) 440-7997 Saratoga, CA: 1 engineer; 1 Cadnetix

Boulder, CO: 4 engineers; 3 Daisy, 1 Mentor Roswell, GA: 2 engineers; 2 Mentor Plano, TX: 2 engineers; 2 Mentor

Dial-up 2,400-baud communications at each site. Sale of ASIC designer productivity enhancement tools: Sim-P/L, simulation pattern generation language compiler; ORCMNT, OrCAD-to-Mentor schematic translator.

Exar Corp. 2222 Qume Dr. San Jose, CA 95131

Shyam Dujari Digital Products Marketing Manager (408) 434-6400

San Jose, CA: 12 engineers; Mentor systems, VAX 8600

Dial-up communications at 1,200 baud. Training on the N2000 standardcell library and design manuals on Exar's technologies are offered. Workstations available for customer design use. Full-custom analog cell development available.

Fujitsu Microelectronics Inc.

3545 North First St.

San Jose, CA 95134

(408) 922-9000

San Jose, CA: 15 engineers; Fujitsu, Amdahl, Sun, Apollo, Valid, Daisy; Ikos hardware accelerator Atlanta, GA: 5 engineers; Sun, Daisy Chicago, IL: 4 engineers; Sun, Valid Boston, MA: 8 engineers; Sun, Daisy, Valid

Dallas, TX: 6 engineers; Sun, Daisy, Valid

Design systems at these centers include LCAD, ViewCAD, Daisy, Mentor, Valid. Fujitsu has dial-up and dedicated lines available; dedicated lines run at 19 kbps to San Jose host.

GE Microelectronics Center 1 Micron Dr. PO Box 13049

RTP, NC 27709

D.J. Blackley Manager, Program Acquisition (919) 549-3100

Research Triangle Park, NC

Dial-up communications at 9,600 baud. Equipment and services include Mentor, Valid, FutureNet systems; VAX/VMS-based Lasar; engineering design assistance; application engineering assistance (at RTP only).

Genesis Microchip Inc. 2900 John St. Markham, Ontario L3R 5G3

Bill White Vice President of Sales (416) 470-2742

Logic simulation accelerator

Gennum Corp.	
P.O. Box 489, Station A	Adr
Burlington, Ontario	Senior Application
Canada L7R 3Y3	(416

rian Gheron ons Engineer 6) 632-2996 (800) 263-9353

Yardley, PA (Carpenter Electronic Associates Inc.) Burlington, Ontario: 14 engineers; Computervision, PC AT, Com-

pag/386, VAX Tokyo, Japan (Gennum Corp) Chateaubourg, France (Sorep) Delft, the Netherlands (Catena Microelectronics BV) Tucson, AZ (Production Services Inc.)

Customers who have commitments to Gennum are invited to join the staff of the design centers for a seminar on linear design. The company also offers a one-day seminar on an as-needed basis at the customer's location. It uses a semicustom design manual and sells a \$99 kit that has a CAD tape of the six Gennum chips for routing. Gennum offers a range of services from prototyping based on the customer's design to design from customer application information.

GE Solid State

724 Route 202 Phyllis Orlando P.O. Box 591 Marketing Communications Somerville, NJ 08876 (201) 685-6585

Brussels, Belgium (SDM)

Brussels, Belgium: 6 engineers; VAX 6220, MicroVAX, 3 Daisy San Jose, CA: 5 engineers; VAX 8600, 4 Daisy, 1 Mentor, 1 silicon compiler

Boulder, CO (Integrated Silicon Systems): 1 engineer; 1 Mentor Paris, France: 2 engineers; 2 Daisy

Hamburg, West Germany: 1 engineer; 1 Daisy

Munich, West Germany: 1 engineer; 1 Daisy

Hong Kong: 1 engineer; VAX-11/750, 1 Daisy, 1 P-CAD

Tel Aviv, Israel (Aviv)

Ancona, Italy (Iselqui)

Boston, MA: 1 engineer; 1 Daisy, 1 P-CAD

Somerville, NJ: 5 engineers; VAX 8800, VAX 8830, 1 MicroVAX, 8 Daisy, 1 Mentor, 1 Valid, 1 P-CAD, 1 FutureNet, 1 silicon compiler Durham, NC: 5 engineers; 1 MicroVAX, 3 Daisy, 1 Sun

Research Triangle Park, NC (Integrated Silicon Systems): 12 engineers; 1 Daisy, 2 Mentor, 2 P-CAD, 2 FutureNet, 4 LTL100 layout

systems **Oslo**, Norway (Nordic)

Singapore (NTI)

Madrid, Spain (Lober): 1 MicroVAX

Dallas, TX: 2 engineers; 2 Daisy, 1 P-CAD

Camberley, UK: 1 engineer; 1 Daisy

GE Solid State has customer dial-up service at 2,400 baud, and ISS has 1,200-baud modems. GE offers a three-day training course in Somerville, San Jose, and Brussels, with one engineer at a workstation. The course is designed to teach an engineer to design semicustom circuits with standard cell and gate arrays using GE's Fastrack ASIC Design Management System. All data books and training manuals are included.

Directory of ASIC Design Centers (continued)

GigaBit Logic Inc.
1908 Oak Terrace La.
Newbury Park, CA 91320

Anthony Conoscenti Product Marketing Engineer (805) 499-0610

Los Angeles, CA: 10 engineers; 3 Daisy, 3 VAX, 2 Calma, 1 Mentor, 1 Sun; 2 Tektronix layout terminals

Woodland Hills, CA (Navasys): 4 engineers; 2 Daisy

S. Portland, ME (QSI Corp.): 10 engineers; 5 Computervision, 1 Sun; 1 terminal

A custom IC training seminar that runs 1-6 days is offered at GigaBit, 4and 1-day standard-cell training seminars are offered at customers' locations. Each seminar is taught to a single customer at a time and includes design manuals. Additionally, SPICE simulation, DRC, ERC, and LVS are available. In Japan, the distributor Tel (Tokyo) supports GigaBit products with design centers in Yokohama, Yamanashi, Kyushu, Tohoku, and Osaka.

Gould Inc.

Semiconductor Division 2300 Buckskin Rd. Pocatello, Idaho 83201

Jerry Homstad Vice President, Engineering (208) 233-4690

Cupertino, CA: 2 engineers; Mentor, IBM PCs Altamonte Springs, FL: 1 engineer; Mentor, Daisy, IBM PC Jericho, NY: 1 engineer; Mentor, Daisy, IBM PC Edina, MN: 1 engineer; IBM PC

Two-day gate array and standard-cell design training, provided by field application engineers, includes a user's guide to workstations. The studentto-instructor ratio is 1:4, and the student-to-workstation ratio is 1:1 or 2:1. Gate array and standard-cell design manuals are given out; subscribers automatically receive updated library sheets from Gould.

Hall-Mark Electronics Corp.	
11333 Pagemill Rd.	AS
Dallas, TX 75243	

Wayne Howse IC/USIC Program Manager (214) 343-5923

Tampa/St. Petersburg, FL: 1 engineer; Sun-3/160C, PC AT Atlanta, GA (Norcross): 1 engineer; Sun-3/160C, PC AT Boston, MA: 1 engineer; Sun 3/160C, PC AT Baltimore, MD: 2 engineers; Daisy MegaLogician, Personal Logicians

(4 workstations, 1 PC AT, 6 terminals; Sun-3/160C); Sun-3/260 Austin, TX: 1 c-gineer; Daisy Personal Logician

The design center; offer LSI Logic and Motorola products. Baltimore has dedicated and dial-up lines for remote communications; Austin, Atlanta, and Tampa/St. Pete have dial-up only. A 5-day class offers 3 days of lecture and lab plus 2 days of design. Macrocell library and design manuals are provided. One instructor trains 10 students; pairs of students share a terminal.

Hamilton/Avnet Electronics

1175 Bordeaux Dr. Sunnyvale, CA 94089

Robert M. Gardner Vice President/General Manager (408) 743-3001

Chandler, AZ: 4 engineers Chatsworth, CA: 3 engineers Costa Mesa, CA: 3 engineer Gardena, CA: 1 engineers Sunnyvale, CA: 5 engineers Boston, MA: 4 engineers Baltimore, MD: 1 engineer

Hamilton/Avnet has dial-up communications and offers training courses for its customers. Additional equipment includes Ikos hardware accelerator.

Honeywell Inc.

1150 E. Cheyenne Mountain Blvd. Colorado Springs, CO 80906

David Wick ASIC Product Line Manager (719) 540-3580

Colorado Springs, CO: 10 engineers; Elxsi 6400, 5 Mentor, 4 Daisy; 5

Minneapolis, MN: 9 engineers; VAX-11/78x, 2 Mentor, 1 Daisy; 3 terminals

Communications available include dial-up at 1,200 baud and dedicated at 9,600 baud. There is a five-day training course for designing CMOS, bipolar, and rad-hard arrays. The course examines Honeywell's array technology and macro library, as well as the full gate array development sequence from system feasibility and partitioning through physical layout and test program generation. A design manual and course materials are included. There is one instructor per four students and one workstation per two students. Honeywell also has Teradyne's Lasar 6 simulation provided on a VAX, Merlyn-G layout tools on Elxsi, MSPICE on VAX and Apollo, and applications engineering support.

Hughes Aircraft Co.

Microelectronics Center 500 Superior Ave. Newport Beach, CA 92658-8903

Mike Friedman **Applications Manager** (714) 759-2727

Communications are linked via telephone to Hughes's VAX. Training available includes a 2-day course on using library and timing analysis tools on a workstation.

Integrated Circuit Systems Inc.

2626 Van Buren Ave.	Faye Jeffries-Cirino
PO Box 968	Sales/Marketing Coordinator
Valley Forge, PA 19482-0968	(215) 666-1900

King of Prussia, PA: 18 engineers; 2 Daisy, 2 Mentor, 1 VAX-11/780, 2 Calma GDS II; 24 terminals

Dial-up communications at 1,200 and 9,600 baud are available. Training is tailored to the customer, usually with a ratio of one instructor to two or three students. Instruction may use Mentor, Daisy, PC, or VAX systems, depending on the customer's needs. Full-custom layout for minimum production cost, maximum performance, or unique function also is available.

Integrated Circuit Technology Inc.

22691 Lambert St.	Akhtar Ali
Suite 514	Vice President, Engineering
El Toro, CA 92630	(714) 581-7195
El Toro, CA: 2 engineer assistants, 3 DN3000); HP plotter	8 engineers; 2 Apollo (DN4000,

ICT has developed an efficient automatic custom layout methodology that reduces the time spent on custom IC designs by about 50%. The company provides low-cost design services and, besides its own software, has a complete set of design tools, including schematic capture, logic and circuit simulators, and back-end verification, resident on a network of Apollo workstations (DN4000/3000).

Intel Corp. 3065 Bowers Ave. Santa Clara, CA 95051

Mike Fister Design Center Operations Manager (602) 961-8172

Santa Clara, CA Swindon, England Paris, France Tsukuba, Japan Boston, MA

Communications are via a 9,600-baud dedicated line. Customer education consists of a set of modular courses (including manuals) for teaching gate array, standard-cell, and microprocessor/peripheral core classes. One instructor teaches a maximum of 8 students; 2 students share a workstation. Workstations are Daisy, Mentor, and MicroVAX II. Design assistance, turnkey services, and hot-line support also are available through the the design centers.

International Microcircuits Inc.

3350 Scott Blvd. Santa Clara, CA 95054

Nasser Abdollahi Product Marketing (408) 727-2280

Santa Clara, CA: 19 engineers Basingstoke, England (IMI UK Ltd.): 4 engineers; 2 Daisy, 2 Mentor Paris, France (Sagem): 12 engineers; 6 Mentor

Herzelia, Israel (AST): 2 engineers; 1 Daisy, 1 Mentor

Dial-up communications are available. IMI offers an Easygate user's training course in which students bring in their circuit and test requirements. Easygate is customer interface software that uses production test vectors to generate the stimuli for design simulation to guarantee design testability. Instruction is one on one, with one workstation per student.

International Microelectronic Products Inc. 2830 N. First St.

San Jose, CA 95134

Thomas Flageollet Marketing Manager (408) 434-1362

Dale Wilson

(516) 231-7710

President of Sales and Marketing

San Jose, CA: 50 engineers; 2 Prime 9950s, 2 VAX 750s, 4 Sun-3/280s, 6 Sun 3/160s; 60 terminals

Communications exist via dial-up 2,400-baud modems and X.25 Telenet service. Training is tailored to individual customers' needs with reference to schematic capture, logic simulation, and design verification. IMP provides automatic translation of foreign netlists with its universal netlist translator software.

LSI Logic Corp. 1551 McCarthy Blvd., Milpitas, CA 95035	MS D102 N	Susan Josephson Marketing Communications (408) 433-8000
Milpitas, CA Boca Raton, FL Waltham, MA Dallas, TX Calgary, Canada Kanata, Canada Paris, France Tokyo, Japan Seoul, Korea Biel, Switzerland Dusseldorf, West Germany	Irvine, CA Itasca, IL Minneapolis, MN Bellevue, WA Edmonton, Canada Toronto, Canada Ramat Hasharon, Israe Tsukuba, Japan Oss, the Netherlands Bracknell, England Stuttgart, West Ger- many	Sherman Oaks, CA Bethesda, MD Edison, NJ Vienna, Austria Burnaby, Canada Pointe Claire, Canada el Milan, Italy Osaka, Japan Livingstone, Scotland Berlin, West Germany Munich, West Germany
Isernhagen, West Germany	Luebeck, West German	ny

(See also distributors Wyle Electronics Laboratories, Hamilton/Avnet, and Hall-Mark Electronics)

Two to 30 applications engineers per LSI Logic design resource center are available to assist with designs. Main computer centers are located at Milpitas, Waltham, Bracknell, Munich, Paris, and Tokyo. All others are tied in through direct 9,600-baud lines. All design centers offer training classes on the company's Modular Design Environment (MDE) ASIC software tools (including advanced simulation, schematic capture, and floorplanning), workstations, and array and cell-based design.

Marconi	Electronic	Devices	Inc.

45 Davids Dr.		Vice
Hauppauge, NY	11788	

Hauppauge, NY: Daisy and Mentor workstations available for customer usage

Wembley, England: 18 engineers; 2 VAX 7850, 4 Mentor, 2 Applicon Lincoln, England: 18 engineers; 2 Daisy, 7 Mentor, 2 VAX 7850

Communications via dial-up or leased line up to 9,600 baud. Training courses in Hilo. Marconi trains engineers in digital design, simulation, test generation, layout, and other design skills. Manuals are provided. Typically, there is a 6:1 ratio of students to instructors and a 2:1 ratio of students to workstations. One-on-one as well as group (three students) training can be arranged. Training classes at Wembley, England.

Matra Design Semiconductor 2840-100 San Tomas Expwy.

Santa Clara, CA 95051

Pradip Madan Vice President, Marketing and Sales (408) 986-9000

Santa Clara, CA: 10 engineers; IBM PCs, VAX; IBM PC terminals Paris, France: 12 engineers; MicroVAX, VAX, Daisy, Mentor, IBM PCs; Tektronix and IBM PC terminals

Munich, West Germany: 5 engineers; Tektronix and IBM PC terminals

Milan, Italy: 1 engineer; Tektronix and IBM PC terminals Stockholm, Sweden: 1 engineer; Tektronix and IBM PC terminals Bracknell, UK: 2 engineers; Tektronix and IBM PC terminals

Communications are via a 4,800- and 9,600-baud dedicated line. Training courses are offered on the average of one per week or as needed, with one instructor for every 3-6 students and one workstation for every 1-2 students. The training at the design center focuses on gate array design guidelines, using MDS design tools, integrating PALs efficiently into gate arrays, implementing RAM on the MB series, packaging options, and testability issues. Design manuals, users' software manuals, and cell library information are provided. Design software is available on a PC that provides complete support for the customer for remote designs, from schematic capture through simulated netlist transfer for layout.

MCE Semiconductor Inc.	Richard McCargar
1111 Fairfield Dr.	Vice President
West Palm Beach, FL 33407	(407) 845-2837

Prototype and evaluation capability using the MCE UniDES System. MCE's design aids and tools include layout worksheets, instructions on how to interconnect the components by specifing the final interconnecting pattern metal mask, kit parts, and data sheets.

Micro LSI	Dusty Duistermars
2065 Martin Ave., Suite 101	Chief Engineer
Santa Clara, CA 95050	(408) 727-7987

Santa Clara, CA: 2 engineers; 2 Daisy

Dial-up modem lines at 1,200 baud are available for file transfer. One-onone instruction of 2 students per instructor and per workstation is provided.

Mietec	
Westerring 15	J.Y. Peigne
9700 Oudenaarde	Communications Director
Belgium	055-33-22-11

Paris, France: 1 engineer; MicroVAX; 2 terminals Bracknell, UK: 1 engineer; MicroVAX; 2 terminals Munich, West Germany: 1 engineer; MicroVAX; 2 terminals

Communications via dedicated line 19.2 kbaud. Training classes are offered for each point of the company's CAD system, MADE (Mietec Analog and Digital Engineering system). Private customer offices are available 24 hours a day, 7 days a week. Full plotting services, telefax, telex, and telephone facilities are provided for customer services.

Thomas Liao
Product Manager
(408) 730-5900

Sunnyvale, CA: 8 engineers; 2 Mentor, 2 FutureNet, 1 Daisy, 2 Valid, 1 Intergraph; 1 Ikos

Durham, NC: 12 engineers; 2 Daisy, 3 FutureNet, 2 Valid, 4 Mentor, IBM 4381/3270

Communications are available via dial-up lines at 1,200/2,400 baud and a dedicated line at 9,600 baud; remote access is also available via IBM-net. Classes can be scheduled at customers' locations for five or more students.

Swindon, England: 3 engineers; Mentor, Sun

Directory of ASIC Design Centers (continued)

Motorola Inc. 1300 N. Alma School Rd., CH-180 Chandler, AZ 85224

Michael Ponzo **Tactical Marketing** (602) 821-4219

All centers listed below have similar staff and equipment: 1-3 engineers; Daisy or Mentor workstations for CAE tools.

Los Angeles, CA	San Jose, CA	Washington, DC
Orlando, FL	Chicago, IL	Boston, MA
Dallas, TX	Sydney, Australia	Toronto, Canada
Aylesburry, England	Taipei, Taiwan	Hong Kong
Tel Aviv, Israel	Tokyo, Japan	Seoul, South Korea
Singapore	Solna, Sweden	Munich, West
01		Germany

Independent Design Centers:

Lowell, MA (Custom Silicon Inc.) **Research Triangle Park, NC (Integrated Silicon Systems)** (See also the distributors Hamilton/Avnet, Schweber Electronics, Hall-Mark Electronics, and Wyle Laboratories)

All centers have dial-up communications at up to 10 kbps or datacomm network at up to 2,400 bps. Design centers offer Daisy or Mentor workstations plus a high-speed link to Motorola's mainframe computer for verification and release.

National Semiconductor Corp.	Tom Wong
2900 Semiconductor Dr. Santa Clara, CA 95052	Strategic Marketing Manager (408) 721-5884
Hong Kong, BCC: 2 engineers; Dais	
Santa Clara, CA: 14 engineers; 3 VAX-11/780s, Daisy, Mentor, Fu-	

tureNet; IBM terminal; 1 Tektronix graphics terminal Tustin, CA: 3 engineers; MicroVAX, Daisy, FutureNet; 5 IBM terminals

London, England: 2 engineers; Daisy, FutureNet; IBM terminal

Reading, England: 5 enginers; VAX-11/780, 8600; 6 terminals

Paris, France: 2 engineers; Daisy, FutureNet; IBM terminal Munich, West Germany: 6 engineers; Daisy, Valid, FutureNet; IBM

terminal

Milan, Italy: 1 engineer; Daisy; IBM terminal Tokyo, Japan: 4 engineers; VAX-11/785; 6 terminals Boston, MA: 4 engineers; Daisy, FutureNet; IBM terminal Bloomington, MN: 3 engineers; MicroVAX II; 5 terminals Stockholm, Sweden: 1 engineer; Daisy; IBM terminal Richardson, TX: 3 engineers; MicroVAX II; 4 terminals Taiwan and South Korea (third party)

(See also the distributor Hamilton/Avnet)

Communications exist via a dedicated SNA network at 14.4 kbaud. Threeto five-day workstation-based training is tailored to the user's experience, with several instructors for up to six students per session. Training manuals and free use of an individual workstation and mainframe are included. National offers extensive consulting for customers doing joint design and accepts turnkey designs (circuit schematic as input). It holds a one-week course on the DA4 (VMS/Unix) design automation system, a one-day class on Aspect gate arrays, and a two-day ECL hardware design course, with complete documentation.

NCM Corp. 1500 Wyatt Dr.	(408) 496-0290

Santa Clara, CA: 3 engineers; Silicon Graphics 3030; Silicon Graphics and Televideo terminals

Lyle Wallis

Commercial ASICs

Earl Reinkensmeyer Software Products

(303) 226-9500

(800) 334-5454

Ted Lunacek

Military ASICs

Michael Moursi

NCR Microelectronics 2001 Danfield Ct. Fort Collins, CO 80525

NCR Microelectronics 1635 Aeroplaza Dr. Colorado Springs, CO 80916 Automotive ASICs (719) 596-5795 (800) 525-2252

Arcadia, CA (NAVAsys ASIC Design Services): 3 engineers; 3 Daisy

Calabas, CA (Guidon, McLean and Easton): 3 engineers; 2 Daisy Laguna Hills, CA (Micronix): 5 engineers; 4 Mentor Graphics

Santa Clara, CA (NCR) 2 engineers; 2 Mentor, 2 Daisy

Boulder, CO (Design Engineering Inc.): 4 engineers; 3 Daisy, 1 Mentor

Breckinridge, CO (VLSI Microsystems Inc.): 4 engineers; 2 Daisy

Colorado Springs, CO (NCR): 7 engineers; 10 Mentor, 4 Daisy, 1 VAX 8700, 1 VAX 785

Orlando, FL (Micro Devices): 4 engineers; 3 Mentor

Roswell, GA (Design Engineering Inc.): 2 engineers; 2 Mentor

Munich, West Germany (NCR): 2 engineers; 2 Mentor

Kawasaki City, Japan (Japan Macnics Corp.): 2 engineers; 1 Mentor

Lowell, MA (Custom Silicon Inc.): 11 engineers; 5 Viewlogic, 4 Mentor, 2 FutureNet, 1 Daisy

Woburn, MA (NCR): 3 engineers; 2 Mentor

Farmington Hills, MI (Automotive Systems Laboratory Inc.): 4 engineers; 1 Mentor

Research Triangle Park, NC (Integrated Silicon Systems Inc.): 12 engineers; 3 Mentor, 2 FutureNet, 1 Daisy

Rochester, NY (RIT Research Corp.): 1 engineer; 1 Daisy West Chester, PA (ASIC Designs Inc.): 1 engineer; 2 Daisy El Paso, TX (Sherwood Design Center): 2 engineers; 1 Daisy Plano, TX (Design Engineering Inc.): 2 engineers; 2 Mentor Berkshire, UK (Manhattan Skyline): 2 engineers; 1 Daisy, 1 Mentor

Salt Lake City, UT (Systronix Inc.): 2 engineers; 1 Daisy Bellevue, WA (ASIC Northwest): 1 engineer; Mentor

All NCR-affiliated design centers will perform turnkey design or support customers' designers in the design center. Some design centers will go into the customer's facility to assist with design; some will do system-level as well as device design. All regional NCR offices have FAEs available to assist customers with design planning and design support. Every month, NCR holds a three-day semicustom design training session at one of its facilities for customers who are new users. In addition, training on NCR software tools is available. Training will be scheduled off site if requested. For more information, call (303) 226-9500.

Nebula Corp.	Jim Gobes
33 Lyman St.	Vice President, Sales
Westboro, MA 01581	(508) 366-6558

Westboro, MA: 7 engineers; 1 MicroVAX, 1 Daisy, 4 PC ATs; fault simulation engine

Nebula is an independent design center that provides system-level semicustom design services using commercially available CAE tools. Its engineers can work at the customer's site or can provide full turnkey solutions, working with and producing designs for the ASIC vendor of the customer's choice. Nebula offers a free "solution evaluation" of customer systems that includes system partitioning; CAE tool strategy; and selection of vendors that meet the technology, packaging, and cost criteria. Customization of customer-owned CAE tools and fault grading services for any design also are provided.

NEC Electronics 401 Ellis St. P.O. Box 7241 Mountain View, CA	94039	Grant Hulse Strategic Marketing Manager (415) 965-6333
Santa Ana, CA Natick, MA Portland, OR Chicago, IL	Mountain View, CA Raleigh, NC Dallas, TX	

All of the locations above have major engineering workstations and VAX machines networked with the Mountain View, CA, NEC computer center via 9.6- to 48-kbps communications . Design training is available as requested by the customer, with one instructor per student and one student per workstation. Workstation manuals, data sheets, design manuals, block library, and EWS design kits are included with the hands-on training. Additionally, NEC provides seminars and technical presentations.

Oki Semiconductor Inc. 785 North Mary Ave., Sunnyvale, CA 94086 Clifford Vaughan ASIC Marketing Manager (408) 720-1900

 Sunnyvale, CA: 30 engineers; 5 Daisy, 2 Mentor, Valid, FutureNet, Sun, VAX, IBM, Amdahl; 20 terminals networked to mainframe
 Stoneham, MA: 3 engineers; Daisy, Mentor, Sun, VAX; 2 terminals networked to mainframe in Sunnyvale

Dial-up link at 9,600 baud. Direct satelite link between design centers and manufacturing sites. Design training and hands-on workstation instruction available at all design centers.

Ontario Research Foundation	
Microelectronics Development Centre	
Systems Engineering	
2395 Speakman Dr.	John Paterson
Mississauga, Ontario	Marketing Manager
Canada L5K 1B3	(416) 822-4111

Toronto, Ontario: 5 engineers; 5 Mentor, 1 PC AT; 2 terminals

Dial-up lines are available at 300, 1,200, and 2,400 baud. Training is provided on a one-to-one basis to client engineers, with one workstation for the client. Group sessions also are provided to a group of six or eight engineers, with two instructors for the group and two engineers to a workstation. The center offers turnkey design services or facility rental. It supports more than a dozen foundries and maintains a generic cell library that is convertible to foundry specifications. Digital, analog, and analog/digital ICs are supported.

Panasonic Industrial Co.	Terry Toyooka
1610 McCandless Dr.	Resident Engineer
Milpitas, CA 95035	(408) 946-4311
San Jose CA: 3 angineers: 2 Daisy Logicians	2 Montor Idea 1000s 1

San Jose, CA: 3 engineers; 2 Daisy Logicians, 2 Mentor Idea 1000s, 1 VAX

Pioneer Technologies Group	R. F. Hammett
9100 Gaither Rd.	Vice President, Systems Marketing
Gaithersburg, MD 20877	(301) 921-0660

Gaithersburg, MD: 2 engineers; 1 VAX, 1 Mentor

Design center for Plessey and National Semiconductor product lines.

Plessey Semiconductor	Phillip Pollok
1500 Green Hills Rd.	Director of Marketing
Scotts Valley, CA 95066	(408) 438-2900

Santa Clara, CA: 2 engineers; 1 MicroVAX II; 6 terminals
Scotts Valley, CA: 25 engineers; 1 VAX-11/780, 1 VAX-11/730, 30 terminals; 2 MicroVAX IIs, 10 terminals; 2 Emerald VLSI Design Stations, 3 Mentor, 1 Calma GDS II system, 2 Analog Design Tool Stations (Sun), 4 IBM PC ATs

Encinitas, CA (Analog Solutions): 1 engineer; 1 IBM PC XT

Ottawa, Ontario (Ontario Centre for Microelectronics): 10 engineers; 3 Mentor, 8 Valid, 10 IBM PC ATs

Toronto, Ontario (Microelectronics Development Centre): 4 engineers; 4 Mentors, 1 PC AT;

Boulder, CO (Analog Solutions): 1 engineer; 1 PC AT

North Palm Beach, FL (Silicon Beach Enterprises): 2 engineers; 3 PC ATs

Boston, MA: 2 engineers; 1 MicroVAX II; 6 terminals Timonium, MD (Microcom): 7 engineers; 7 PC ATs Marlton, NJ: 2 engineers; 1 MicroVAX II; 6 terminals Dallas, TX: 2 engineers; 1 MicroVAX II; 6 terminals

(See also the distributor Pioneer)

Communications are provided via a 1,200-baud Tymnet connection for all technology centers. All Plessey technology centers offer 2- to 5-day hands-on training courses tailored to the experience level of the students. The courses cover gate array and cell-based design methodologies using PDS2 and

Megacell layout editor software. CLA5000 and Megacell design manuals are included. Ratios are six students for one instructor and one student per terminal. Additional services include feasibility studies, product definition, design engineering support, packaging, and test and evaluation support. Workstation support is offered for MicroVAX, Daisy, Mentor, Valid, FutureNet and Tektronix CAE. Full training is offered at Scotts Valley. There are also full CAD and design manuals available for training.

Mimi Shokraie

(516) 334-7555

Technical Marketing Business Manager

Schweber	Electronics	Corp.
CB 1032 J	ericho Tpk.	
Westbury,	NY 11590	

Irvine, CA Norcross, GA

engineers

San Jose, CA

Bedford, MA

Schweber has over 50 man-years of semicustom design experience. It offers leading logic consolidation products and services supporting VLSI Technology, Motorola, Altera, AMD/MMI, TI, and Signetics. Centers are equipped with Mentor Graphics (DN3000/DN4000) and Sun-3/260 workstations. The company specializes in design consulting, equipment leasing, and 24-hour design center accessibility.

Semiconductor Specialists Inc.	P. Jeffrey Carroll
195 Spangler Ave.	Director of Marketing
Elmhurst, IL 60126	(312) 279-1000
West Drayton, UK (Semiconductor Sp	ecialists [UK] Ltd.): 2

The London-area design center handles the ASIC product lines of Plessey Semiconductor, Siliconix, Raytheon Semiconductor, and Ferranti.

Don MacLennan
Director, Custom Marketing
(408) 263-9300

San Jose, CA: 21 engineers; 2 Valid, 10 Apollos, 1 Daisy, 3 Mentor; 22 AED terminals connected to Elxsi, 2 Sun terminals

Burlington, MA: 1 engineer; 1 Apollo

Oakbrook, IL: 1 engineer; 1 Apollo

's-Hertogenbosch, the Netherlands: 7 engineers; 1 Mentor, 1 Daisy; 4 AED terminals connected to a VAX 8650

Communications are via 1,200-baud dial-up lines. Individual training is available at all design centers. Each student has a workstation for his exclusive use during design training. Sierra offers custom cell design, custom consulting, and system consulting, particularly in analog and EEPROM design.

Siliconix Inc.	Joe Baranowski
2201 Laurelwood Rd.	IC Marketing Manager
Santa Clara, CA 95054	(800) 554-5565 x1900
Santa Clara, CA: 10 engineers; 1 VA2 FutureNet; 15 terminals Boston, MA: 2 engineers; 1 FutureNet, Swansea, Wales: 8 engineers; 1 VAX- Daisy; 7 terminals	1 Daisy Personal Logician
Hong Kong: 2 engineers; 4 Daisy; 4 ter	rminals
Munich, West Germany: 2 engineers;	FutureNet, Daisy; 3 terminals
(See also the distributor Pioneer)	
Communications are available via 1,20	0-baud modem links. Training is

Communications are available via 1,200-baud modem links. Training is given one on one for customers, who also are allowed free use of the facilities. Manuals on cell libraries, design, and workstations are provided. Software, now available on a time-shared basis, uses the GE network.

Silicon West Inc.	Edward Evans
5470 Anaheim Rd.	President
Long Beach, CA 90815	(213) 494-4588

Signal Hill, CA: 6 engineers; 1 VAX, 2 Apollos, 2 PC/XTs

Communications are via a 1,200-baud modem. Special training classes are available only by customer request. Special custom cells will be designed at the customer's request.

Directory of ASIC Design Centers (continued)

Sipex Corp.	
Data Linear Division	Valentino Liva
491 Fariview Way	ASIC Marketing and Applications
Milpitas, CA 95035	(408) 945-9080
	VAX, MicroVAX, IBM PCs, complete (Chipmasters and Personal Logicians for Daisy, ADT
Dial-up communications are a	available at 2,400 baud. One-on-one instruc-

tion is used for semicustom analog training in dielectric isolation technology. Design manuals are available. The company provides one workstation per student.

SIS Microelectronics Inc.	
1500 Kansas Ave., Bldg. 1D	William D. Burkard
PO Box 1432	President
Longmont, CO 80502	(303) 776-1667

Longmont, CO: 2 DN570 Turbos (one with Mentor software), 1 DN4000, 1 DN3500, 3 DN3000, 1 DN660 (with Mentor software); Ikos simulation system; complete VLSI Technology Inc. design system, FutureNet design system, Mentor; 7 IBM PC data entry stations

SIS is a VLSI Technology authorized design center (ADC), with training provided by VLSI Technology. SIS specializes in system-level design support that includes multichip and mixed-technology implementations. In addition to the VLSI Technology design system, SIS has developed proprietary software interfaces to FutureNet and Mentor TTL libraries, as well as PALASM and ABEL translators for PAL equations.

S-MOS Systems Inc.	Joel Silverman
2460 N. First St.	Director of Marketing
San Jose, CA 95131	(408) 922-0200
San Jose, CA: 15 engineers; IBM PC, Mentor mainframes; 6 terminals	, Daisy, IBM and VAX

Boston, MA: 1 engineer; PC AT

Baltimore, MD (Dibec)

Types of communications available are dial-up and dedicated lines with SNA, RJE, and asynchronous protocols at 1,200 to 9,600 baud. Classes are three days for inexperienced users; otherwise, training is done by students on their own workstations under the guidance of one instructor per student. Training also includes user's guides. Each design center has provision for secure areas.

Standard Microsystems Corp.	Brian Cayton
35 Marcus Blvd.	Director of Marketing
Hauppauge, NY 11788	(516) 273-3100
Comphell CA (VI SI Design Associate	e): 11 anginaers: 2 Mantor 3

Campbell, CA (VLSI Design Associates): 11 engineers; 2 Mentor, 3 Calma, 1 VAX; 6 terminals

Irvine, CA (Turk Enterprises): 2 engineers; 2 Viewlogic (IBM PC) Nashua, NH: 2 engineers; 2 Viewlogic (IBM PC)

- Hauppauge, NY: 27 engineers; 3 Mentor, 3 Daisy, 2 Valid, 11 Metheus-CV, 4 VAX-11/785s, 18 Viewlogic (IBM PC); 25 terminals
- Lewisville, TX (Mike McConnell & Assoc.): 2 engineers; 2 Viewlogic (IBM PC)
- Paris, France (Maxcell): 7 engineers; 2 Daisy Megalogician, 3 Personal Logicians

Munich, West Germany: 2 engineers; 2 Viewlogic (IBM PC) Solna, Sweden (Naxab): 3 engineers; Daisy

SMC offers both 3- and 5-day training courses that cover the use of the library, software tools, and supercells. The courses are available on an asneeded basis, and manuals following the course work and giving details on all tools, hardware, and cell performance are provided. Typically, there is one instructor and one workstation for each two students.

Tachonics Corp. 107 Morgan Lane Plainsboro, NJ 08536

Michael Zyla Marketing Manager (609) 275-2504

Plainsboro, NJ: 6 engineers; 3 Mentor, 3 VLSI Technology

The company offers a one- and a two-day seminar on the use of standardcell libraries at customers' locations and at Tachonics' headquarters. The course includes design manuals. Extensive consultation with MMIC, analog, and digital designers is available, which is especially important for designs based on the company's mixed-mode analog and digital cell libraries. Circuit design and logic design capability is offered, in addition to basic standardcell placement, routing, and fabrication.

Texas Instruments Inc.

8390 LBJ Expwy. Jerry Koontz P.O. Box 655303, M/S 3670 ASIC Marketing Communications Manager (214) 997-2031 Dallas, TX 75265

All design centers have	Daisy and Mentor work	stations and IBM 3279s.
Santa Clara, CA	Irvine, CA	Atlanta, GA
Chicago, IL	Boston, MA	Dallas, TX
Ottawa, Ontario	Bedford, England	Paris, France
Hanover, West Ger-		
many	Milan, Italy	Rieti, Italy
Stockholm, Sweden	Tokyo, Japan	Hong Kong
(See also the distribut	ors Arrow and Wyle)	0 0

TI provides both evaluation and design assistance to its customers. A oneday workshop for designers familiar with basic workstation operation is offered and focuses on such aspects of design as partitioning, designing for testability, optimizing performance, analyzing power/ground pin requirements, and guidelines for simulation and test pattern generation. The course can be modified for special customer needs on site. The design staff is available for project-oriented consultation on topics like library installation, design partitioning, and project planning. TI provides a hot line and onlocation help for work on in-house CAE equipment. The staff also performs turnkey and special design projects, such as design translations, schematic capture, test pattern generation, and fault grading. Selected centers provide clients who lack workstations secure use of either Daisy Megalogician or Apollo DN660 workstations. These centers offer advanced capabilities that include local design layout and preparation of postlayout delay and back annotation data files.

Toshiba America Inc.	Allan Cox
1220 Midas Way	Director Marketing
Sunnyvale, CA 94086	Semicustom Products, MOS IC Division
	(408) 733-3223

Redhill, CA: 2-5 engineers; FutureNet, Viewlogic; 4 terminals

- Sunnyvale, CA: 16 engineers; Daisy, Mentor, FutureNet, Aida, HP, Valid, Viewlogic; 18 terminals
- Atlanta, GA: 2-5 engineers; FutureNet, Viewlogic; 6 terminals
- Boston, MA: 9 engineers; Daisy, Mentor, Valid, FutureNet, Viewlogic; 12 terminals and a mainframe
- Dallas, TX: 4 engineers; Daisy, FutureNet, Mentor, Viewlogic; Ikos; 6 terminals

Communications are via high-speed dedicated lines. Training is included with the design contract on a one-to-one basis. Design manuals and cell library are provided. Services range from specification, netlist extraction, and simulation to design libraries.

TriQuint Semiconductor Inc. PO 4935, Group 700 Beaverton, OR 97075

Louis Pengue Product Marketing Manager (503) 644-3535

Beaverton, OR: 15 engineers; Daisy, Mentor; MicroVAX engineering design network

The company offers one-on-one instruction for designing GaAs gate arrays and standard-cell devices. Custom and semicustom design classes with actual fabrication of customers' designs are available. Also avaialble are evaluation kits for prototype development, using TriQuint standard components and semicustom or full-custom devices.

Unicorn Microelectronics Corp. 99 Tasman Dr. San Jose, CA 95134

H. Y. Liu Sales Manager (408) 433-3388 United Silicon Structures (US2) 1971 Concourse Dr.

San Jose, CA 95131

Steven Eliscu Product Marketing (408) 435-1366

San Jose, CA: 5 engineers; Sun, Apollo, DEC, PC; 10 terminals San Jose, CA (ATS) San Jose, CA (CIT) Los Angeles, CA (SDC) Seattle, WA (ANW)

Courses are offered in Solo design, design methodology, and design for testability. A set of manuals is provided with each course. The ratio of instructors to students is 1:4, and the ratio of workstations to students is 1:1. US2 can create fully customized cells to meet specific requirements and can provide turnkey design services.

United Technologies Microelectronics Center

1575 Garden of the Gods Rd.

Colorado Springs, CO 80907

Ronald Hehr Manager, Semicustom Products (719) 594-8124 (800) MIL-UTMC x8124

Laguna Hills, CA: 2 engineers; 1 MicroVAX, 3 IBM PCs running Valid; 5 terminals

Waltham, MA: 2 engineers; 1 MicroVAX, 3 IBM PCs running Valid; 5 terminals

UTMC has dial-up lines and a 9600-baud dedicated line to its factory. Training is given on an individual basis at the design centers. Access to a Zycad simulation accelerator is provided through a dedicated line to the factory.

Vitesse Semiconductor Corp.	Joe Welsh
741 Calle Plano	ASIC Product Marketing Manager
Camarillo, CA 93010	(805) 388-3700

Greenbelt, MD (Atlantic)

For information, contact Atlantic, (301) 220-1501.

VLSI Technology Inc. 1109 McKay Dr. San Jose, CA 95131 Peter Bagnall Vice President, ASIC Marketing (408) 434-3000

Santa Ana, CA: 2 engineers; 5 computers/workstations
San Jose, CA: 26 engineers; 46 computers/workstations
Canada (Microtel Pacific Research)
Longmont, CO (SIS)
Ft. Lauderdale, FL: 2 engineers; 5 computers/workstations
Chicago, IL: 2 engineers; 5 computers/workstations
Boston, MA: 12 engineers; 18 computers/workstations
South Portland, ME (Qadic Systems Inc.)
Princeton, NJ: 4 engineers; 9 computers/workstations

King of Prussia, PA (Integrated Circuit Systems Inc.) London, England: 2 engineers; 4 computers/ workstations Paris, France: 3 engineers; 6 computers/workstations High Wycombe Bucks, Ireland (Axiom Electronics Ltd.) Tokyo, Japan: 6 engineers; 9 computers/workstations Soina, Sweden (Nordisk Arraytekuik AB)

Munich, West Germany: 10 engineers; 18 computers/workstations

Communications is via dedicated lines at 9,600 baud for small centers (fewer than 6 engineers) and satellilte links at 50 kbaud for large centers (6 engineers or more). For the training, there are 10 students per instructor and one workstation per student; courses on VLSI design methodology and the use of the company's tool set are offered. Additionally, computing resources, physical design, and system partitioning are available.

VTC Inc. 2401 E. 86 St. Bloomington, MN 55425 Gary Heyes ASIC Product Manager (800) VTC-ASIC Phoenix, AZ (Circuit Design Group)

Laguna Hills, CA (Micronix): 5 engineers; 3 Mentor, 3 PC/XTs; 5 terminals

South Portland, ME (Quadic Systems): 6 engineers; 3 Metheus-CV 3721E, 2 PC-based systems

Kanata, Ontario (Calmos Systems): 10 engineers; 3 Valid; 6 terminals

Calmos trains on an individual basis with the charge built into the cost of the design; otherwise, the fee is \$500 per day for consulting. Quadic has the manuals for the standard-cell package data sheets; it costs about \$200 for the digital standard-cell library.

Wyle Laboratories

Electronics Marketing Group

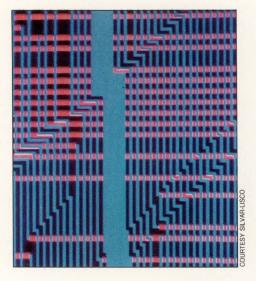
Rick Timmins18910 Teller Ave.Irvine, CA 92715CA 9271

- Calabassas, CA: 1 engineer; Daisy Personal Logician, MicroVAX, FutureNet, Altera
- Irvine, CA: 5 engineers; Daisy MegaLogician, 3 Personal Logicians, MicroVAX, FutureNet, Altera; Ikos
- San Diego, CA: 1 engineer; Daisy Personal Logician, MicroVAX, FutureNet, Altera
- Santa Clara, CA: 5 engineers; Daisy MegaLogician, 3 Personal Logicians, MicroVAX, FutureNet, Altera; Ikos
- Denver, CO: 3 engineers; Daisy MegaLogician, 3 Personal Logicians, MicroVAX, FutureNet, Altera
- Portland, OR: 1 engineer; Daisy Logician, MicroVAX, FutureNet, Altera
- Dallas, TX: 1 engineer; Daisy Personal Logicians, MicroVAX, Future-Net, Altera

All 13 Wyle locations have direct lines to LSI Logic's mainframe. Wyle also handles the ASIC products of Texas Instruments, LSI Logic, and Motorola as well as the programmable logic families of Altera, Intel, Signetics/Philips, Advanced Micro Devices, and TI. The Irvine, Santa Clara, and Denver facilities include PLD design, programming, and text centers. Wyle provides the LSI Logic, Motorola, and Texas Instruments libraries and design software and has franchises for Daisy, FutureNet, and Ikos design systems. All of the centers except for Santa Clara and San Fernando (Calabasas) have 24-hour customer access.

Xerox Microelectronics Center

701 S. Aviation Blvd. El Segundo, CA 90245 Gary Petrov Manager, Regional Design Support Centers (213) 333-7701


El Segundo, CA: 3 engineers; 5 Xerox 6085s, 1 Sun; Ikos Santa Clara, CA: 2 engineers; 5 Xerox 6085s, 1 Sun; Ikos Webster, NY: 3 engineers; 5 Xerox 6085s, 1 Sun; Ikos Dallas, TX: 2 engineers; 5 Xerox 6085s, 1 Sun Welwyn Garden City, UK: 1 engineer; 5 Xerox 6085s, 1 Sun; Ikos

Dial-up and Ethernet communications are available at 9,600 baud. Twoday semicustom design course are available, with design and CAD manuals. The ratio of instructors to students is 1:4, and the ratio of workstations to students is 1:2. Additional services include fault grading, design assessments, design services from block diagrams, access to the mainframe in California, and fabrication support.

ZyMOS Corp. 477 N. Mathilda Ave. Sunnyvale, CA 94088 Vic Pasini Tactical Marketing Director (408) 730-5400

ZyMOS is concentrating on higher levels of microprocessor peripheral integration targeting the 80X86 series of peripheral circuits.

IV REFERENCES

139 VLSI SYSTEMS DESIGN SUBJECT INDEX 1987

143 ADVERTISERS' INDEX

VLSI SYSTEMS DESIGN 1987 SUBJECT INDEX

Analog modeling

"GaAs MESFET Model for Precision Analog IC Design," Ravender Goyal and Norman Scheinberg, May 4, p. 52.

Analog MOS design

"Analog Macrocell Assembler," Greg Winner, Tuan A. Nguyen, and Carroll Slemaker, May 4, p. 68.

"Analog Module Generators for Silicon Compilation," Jay Kuhn, May 4, p. 74.

- "Survey of Analog Semicustom ICs," VLSI Systems Design staff, May 4, p. 89.
- "A Switched-Capacitor Filter Compiler," Y. Therasse, L. Reynders, R. Lannoo, and B. Dupont, September, p. 85.
- See also Automatic IC layout

Automatic IC layout

"An Automatic Layout System for Linear Arrays," M.A.K. Moussa, April, p. 60.

"Survey of Automatic Layout Software," April, p. 78. See also Floorplanning

-

Behavioral simulation

"Board-Level Simulation using Models with X-State Handling," William D. Billowitch, February, p. 56.

Bipolar technology

"Handling the Power Dissipation of ECL Gate Arrays," Biswa Banerjee, January, p. 40.

"Semicustom ECL Array Becomes Custom Analog Pin Driver," Jim Graydon and Nghiem Phan, May 20, p. 80.

See also Automatic IC layout, High-speed logic, Programmable logic

Built-in self-test

"A CMOS Cell Library Design for Testability," Dick L. Liu and

Edward J. McCluskey, May 4, p. 58. "Signature Analysis Testing in Large Standard-Cell ASICs,"

Eric L. Smitt, May 20, p. 46.

See also Computer and system design

Capacitor layout. See Analog MOS design **Cell** compilers

"On Module Generation," Ernest L. Meyer, March, p. 48.

"Structured Design with Module Generators," Dar-Sun Tsien,

March, p. 40.

See also Analog MOS design

Cell-based design

"Super Integration: Using Standard Products as Megacells," Jerry G. Goetsch, June, p. 106.

"Survey of Gate Arrays and Cell Libraries," VLSI Systems Design staff, November, p. 76. "Using Redefinable IC Technology to Develop a VGA Chip

Set," Dean Hays and Bill Knapp, November, p. 68.

"Why a Test Chip?" Susana Stoica, May 20, p. 36.

See also Built-in self-test, Cell compilers, Computer and system design, Core processors, High-speed logic

Circuit simulation

"Circuit Simulators at a Glance," Roderic Beresford and Joe Domitrowich, August, p. 76.

"Interactive Control of Analog System Simulation," David W. Smith, Scott A. Majdecki, and Doug Johnson, July, p. 46.

"Mixed-Domain Analysis for Circuit Simulation," Kevin Walsh and Bruce Wolfe, August, p. 44.

"On Parallel Circuit Simulation," P.J. Waterman, July, p. 56. "Selecting a Personal Computer for Circuit Simulation," J.

Richard Hines, March, p. 66. 'Survey of Circuit Simulators," Roderic Beresford and Joe Domitrowich, July, p. 70.

See also Analog modeling

(Continued from page 139)

Computer and system design

"Customize an IBM PC/AT–Compatible Chip Set," *Bill Hilton*, September, p. 36.

"ECL PALs in a Cray-Compatible Minisupercomputer," David L. Isaman, Jay P. Kamdar, and William B. Thompson, April, p. 92.

"An 80386-Based PC AT Chip Set and Microcomputer," *Robert Catlin and David R. Lunsford*, May 20, p. 72.

"A Programmable Logic Mailbox for 80C31 Microcontrollers," *Karlheinz Weigl and Jim Donnell*, January, p. 76.

See also Cell-based design, Gate arrays, Memory design, Microprocessors, Parallel processing, RISC technology, Supercomputers **Conferences**

"Conference Preview: ICCAD-87," VLSI Systems Design staff, October, p. 81.

"The Design Automation Conference," May 4, p. 26.

"The International Conference on Computer Design," VLSI Systems Design staff, September, p. 20.

"The 1987 Custom Integrated Circuits Conference," Roderic Beresford, April, p. 36.

Core processors

"FORTH Processor Core for Integrated 16-Bit Systems," Peter S. Danile and Chris W. Malinowski, June, p. 98.

"Getting to the Core," David Smith, June, p. 90.

CAD systems. See Automatic IC layout, IC layout systems, Printed circuit board design

CAE systems

"Survey of CAE Systems," VLSI Systems Design staff, June, p. 51.

See also Design system integration

CMOS technology. See Silicon on insulator, Supercomputers Current-mode logic. See Cell-based design

Custom ICs. See Gallium arsenide, Market forecasts

Database management. See Design system integration Design centers

"Directory of ASIC Design Centers," VLSI Systems Design staff, January, p. 60.

Design for testability. *See* Built-in self-test, Testability **Design system integration**

"An Engineering Design Management System," Mark Mayotte, January, p. 30.

"Integrating the Electronic Design Process," Jean Brouwers and Moshe Gray, June, p. 38.

Emitter-coupled logic. See Bipolar technology, High-speed logic

Emulation. See Prototyping

Encryption

"Using Programmable Logic Cell Arrays in a Satellite Earthstation," April, p. 26.

F

Fault simulation

"Finding Fault: An Update on Fault Simulation," *David Smith*, October, p. 28.

Fault tolerance. See Memory design

Floorplanning

"Graphical Floorplan Design of Cell-Based VLSI Circuits," *Edmond Macaluso*, April, p. 50.

"An Automatic Floorplanner for Up to 100,000 Gates," H. Modarres and A. Kelapure, December, p. 38.

Foundries

"Economics of Fast-Turn Wafer Production," James A. Schoeffel and Michael L. Rieger, February, p. 22.

"Survey of Semiconductor Foundries," VLSI Systems Design staff, August, p. 60.

Gallium arsenide

"A Custom 300-Gate GaAs Circuit for Frequency Encoding, Designed on a Personal Computer," *Charles G. Ekroot*, November, p. 19.

F

"Gallium Arsenide on Silicon," John C.C. Fan, December, p. 80.

"A High-Performance Low-Power GaAs Gate Array Family," Gary M. Lee, Charles M. Lee, Rick A. Eesley, Hector F. Lai, and Al G. Schmidt, July, p. 24.

"A Knowledge-Based GaAs Design System," George Janac, Carlos Garcia, and Richard Davis, April, p. 68.

"Survey of Gate Arrays and Cell Libraries," VLSI Systems Design staff, November, p.76.

See also Analog modeling, Circuit simulation

Gate arrays

"Embedded RAM in Gate Arrays: Configurability and Testability," P. Simon Bennett, Robert P. Dixon, and Kent C. Oertle, November, p. 60.

"An IBM-Compatible Mainframe in 20,000-Gate CMOS Arrays," Mark Golkar and Jacques Losq, May 20, p. 64.

"A PC/XT Integration Chip on a Single 10K Gate Array," Kevin Lee, Charles Chi, and Raymond Chan, June, p. 28.

"Survey of Gate Arrays and Cell Libraries," VLSI Systems Design staff, November, p. 76.

"The Tortuous Route to High-Volume Production of a Hard-Disk

G

Controller," David Baughman, January, p. 22.

"Why a Test Chip?" Susana Stoica, May 20, p. 36.

See also Computer design, Gallium arsenide, High-speed logic, Supercomputers

Graphics processing. See Cell-based design, Signal processing

H

Hardware acceleration

"Hardware Simulator Models for Logic Devices," William Fazakerly, November, p. 30.

"Mixed-Level Simulation Acceleration," Stephen Evanczuk, February, p. 62.

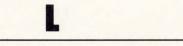
High-speed logic

"Champion ASIC Technologies," Ernest L. Meyer, July, p. 18. "A High-Performance Bipolar Cell Library," John S. Shier, Jeffrey M. Wisted, and Zdeneck E. Skokan, July, p. 32.

"Solving Problems in High-Speed ASIC Design," Donald C.

Kirkpatrick, March, p. 26.

See also Bipolar technology, Gallium arsenide



"Beyond GDS II: Combining Flexibility and Automation in Full-Custom IC Design," Dave Hightower, Deanna McCusker, Kazuya Shinozuka, and Helge Szwerinski, October, p. 38.

"Survey of IC Layout Systems," VLSI Systems Design staff, December, p. 63.

See also Automatic IC layout, Floorplanning, Gallium arsenide ISDN

"Integrating the ISDN Basic-Rate Functions," *Dale Gulick*, September, p. 24.

Layout. See Automatic IC layout, IC layout systems, Printed circuit board design

Libraries. See Cell-based design, Logic simulation

Logic simulation

"Automatic Translation of Logic Models for Workstation Libraries," *Mehdi Amani, Gary Griffin, and Scott Hamm*, December, p. 56. "1987 Survey of Logic Simulators," VLSI Systems Design staff, February, p. 70.

"The Quick Simulator Benchmark," *David L. Greer*, November, p. 40.

"Transferring Simulation Models in EDIF," Wayne Angevine, May 4, p. 32.

"Your Logic Simulation Is Only as Good as Your Board Layout," *Robert Cutler*, July, p. 40.

See also Hardware acceleration

Logic synthesis

"Automatic Partitioning of Programmable Logic Devices," Ronald R. Munoz and Charles E. Stroud, October, p. 74.

Market forecasts

"Employing Semicustom: A Study of Users and Potential Users," Victoria L. Hinder and Andrew S. Rappaport, May 20, p. 6.

"Vendors' Views: Semicustom Today and Tomorrow," May 20, p. 28.

Memory design

"A Memory Interface Chip Designed for Fault Tolerance," Karl E. Grosspietsch, Lothar Muhlack, Karl L. Paap, and Guenther Wagner, June, p. 112.

See also Gate arrays, Microprocessors, Supercomputers Microprocessors

"Memory Management in the 68030 Microprocessor," Kirk Holden, David Mothersole, and Raju Vegesna, February, p. 88.

"Microprocessor Cache Coherency," *David Schanin*, August, p. 40.

See also Parallel processing, RISC technology Military VLSI technology

"Qualifying the Military ASIC Vendor," Shelly Mattson, Don Howland, and Walt Buchanan, December, p. 32.

See also Gallium arsenide, Silicon on insulator Module generation. See Cell compilers

Multiprocessing. See Parallel processing

Parallel processing

"A Balanced Scalable Parallel Processor," *Shaiy Pilpel*, March, p. 80.

"Design Methodology for a VLSI Multiprocessor Workstation," Shing Kong, David Wood, Garth Gibson, Randy Katz, and David Patterson, February, p. 46.

"Floating-Point Acceleration in Programmable Logic," Don Faria and Bob Duncan, April, p. 102.

(Continued from page 141)

Parameter extraction

"Choosing Parameter Extraction Software," Joe Domitrowich, July, p. 64.

Peripheral hardware. See Cell-based design, Computer and system design, Gate arrays

Placement. See Automatic IC layout, Floorplanning, Printed circuit board design

Programmable logic

"Automatic Partitioning of Programmable Logic Devices," Ronald R. Munoz and Charles E. Stroud, October, p. 74.

"A Pilgrim's Progress through Programmable Logic Land," Rob W. Hartwig and Chuck Hastings, October, p. 46.

"Programmable Logic Overview," Ernest Meyer, October, p. 62.

See also Computer and system design, Encryption Printed circuit board design

"Routing Algorithms and Grids for Advanced Board Design," R. Anastasi, September, p. 54.

"Strategies for Complete PCB Autorouting," Pat Meyer and Robert Lewis, September, p. 60.

"Survey of PCB Layout CAD Systems," VLSI Systems Design staff, September, p. 64.

See also Logic simulation

Prototyping

"Emulation of VLSI Devices using LCAs," Nick Schmitz, May 20, p. 54.

"PLD Breadboarding of Gate Array Designs," Michael D. McClure, February, p. 36.

See also Foundries

RISC technology

"Putting RISC Efficiency to Work in CISC Architectures," Ronald D. Bernal and Joseph C. Circello, September, p. 46. Routing. See Automatic IC layout, Printed circuit board design

Semicustom ICs. See Cell-based design, Gate arrays, Market forecasts, Silicon compilers

Signal processing

"High-Performance Graphics via Silicon Compilation," Michael Jones and Michael Bailey, March, p. 30.

"The Use of Silicon Compilation in the Design of a Gaussian Filter and a Template Matching Processor," Mira Majewski and Srinavasan Pichumani, October, p. 20.

Silicon compilers

"Intelligent Compilation," David L. Johannsen, Ken McElvain, and Steve K. Tsubota, April, p. 40.

See also Analog MOS design, Cell compilers, Signal processing Silicon on insulator

"Silicon on Insulator: Substrates for Tomorrow's VLSI?" Wade Krull and Ken Ports, December, p. 22.

Simulation. See Behavioral simulation, Circuit simulation, Fault simulation, Hardware acceleration, Logic simulation

Standard cells. See Cell-based design

Supercomputers

"A Cryogenically Cooled CMOS VLSI Supercomputer," Tony Vacca, David Resnick, David Frankel, Randall Bach, James Kreilich, and Douglas Carlson, June, p. 80.

"A Multiport Register-File Chip for the CHoPP Supercomputer," Gary R. Burke, August, p. 19.

Testability. See Built-in self-test, Gate arrays Testing

"E-Beam Probing for VLSI Circuit Debug," Neil Richardson, August, p. 24.

'A Mixed-Signal Test Program Development Environment," Mogens Ravn, August, p. 32.

"Systematic and Structured Methods for Digital Board Testing," F.P.M. Beenker, January, p. 50.

Timing analysis

"A Mixed-Level Timing Verifier for Digital Systems," Zhong Mo, Yen-Jen Oyang, and Sang S. Wang, March, p. 74.

"Timing Analysis of MOS VLSI Circuits," You-Pang Wei, Cliff Lyons, and Shawn Hailey, August, p. 52.

"Timing Verification for System-Level Designs," Michael Chiang and Michael Bloom, December, p. 46.

See also Tracing

Tracing

'A Real-Time Performance Analyzer," Max Baron and Sorin lacobovici, May 4, p. 44.

Verification. See Behavioral simulation, Circuit simulation, Fault simulation, Hardware acceleration, IC layout systems, Logic simulation, Timing analysis

VHSIC. See Military VLSI technology

Workstations. See Automatic IC layout, IC layout systems, Printed circuit board design

ADVERTISERS' INDEX

Reader Service #	Page Number
7	Applied MicroCircuits Corp27
	Arrow Electronics45
18	Cadence
12	Cadnetix21
3	Case Technology/Teradyne EDA11
	Daisy Systems Corporation5
17	Data I/O Corporation67
20	Fujitsu71
19	GenRad69
	GE Solid State
2	Harris Semiconductor6
15	IKOS Systems Inc52
	Integrated Measurement Systems, Inc98
26	Intergraph Corporation
11	Lattice Semiconductor41
1	LSI Logic Corp 1

Reader Service #		Page Number
	Mentor Graphics	
25	Mitel Semiconductor	
5	Mitsubishi Electronic America	a, Inc. 15
9	National Semiconductor	
21, 28	NCR Corporation	.73, CV3
	NEC Electronics, Inc.	
13	OKI Semiconductor	
6	Plessey Semiconductor	17, 19
4	Raytheon	
10	Seattle Silicon	
8	Sierra Semiconductor	
22	Signetics	
16	Silvar-Lisco	
29	S-MOS Systems, Inc	CV4
14	Standard Microsystems Corp	
27	Toshiba America, Inc.	
24	United Technologies Microelectronics Center	83
23	Viewlogic Systems, Inc	

This index is provided as an additional service. The publisher does not assume any liability for errors or omissions.

GUIDE TO THE DATA SHEETS

APPLIED MICROCIRCUITS CORP.

AT&T MICROELECTRONICS

Overview	155
ASIC CMOS Standard Cells	156-158
ALA201/202 UHF Linear Arrays	160-161
ALA400/401 UHF Linear Arrays	162-163
ATE Series Bipolar Gate Arrays	

CASE TECHNOLOGY/TERADYNE EDA

Case Technology Vanguard Graphics	
Framework	165
Case Technology Vanguard Design Capture	
System	166
Aida Testability Tools	167
Aida Memory and Logic Simualtion	
Accelerators	168

FUJITSU MICROELECTRONICS

ASIC Product Guide	169-170
ASIC Packaging	171-172
ASIC Design Flow and Support	173-174

HARRIS SEMICONDUCTOR

Technology Overview	. 175
HSC1000 CMOS Standard Cells	. 176
HSC1000RH Radiation-Hardened CMOS	
Standard Cells	. 177
Digital Architect Design System	. 178
Bipolar Analog Architect Design System	. 179
CMOS Analog Architect Design System	. 180

LATTICE SEMICONDUCTOR

GAL Electrically Erasable Programmable Logic
Devices
ispGAL16Z8 Electrically Erasable Programmable
Logic Device

MITSUBISHI ELECTRONICS

CMOS Gate Arrays (M6002x, M6003x, M6004x 1.3-µm Series; M6001x 2-µm Series).......185–194

MOTOROLA

Macrocell Gate Array Overview 195-196

ECL Macrocell Arrays	197
HDC Series CMOS Macrocell Arrays	198
BCA Series BiMOS Macrocell Arrays	199
HCA Series Macrocell Arrays	200
ALS Series TTL Macrocell Arrays	200
Design Support201	-202

NCR MICROELECTRONICS

KE ² ASICs: Libraries and Tools 203–21	KE ²	² ASICs:	Libraries	and	Tools	203-21	8
---	-----------------	---------------------	-----------	-----	-------	--------	---

NEC ELECTRONICS

BiCMOS-4A BiCMOS Gate Arrays	219
CMOS-5 1.2-µm CMOS Gate Arrays	220

SIERRA SEMICONDUCTOR

Overview	221-225
Cost Calculation Procedure	226–228
SCDS 2-µm Cell Library	229–234
Mixed Analog-Digital Design Methodology	and
Simulator	235–241
Applications	242–244
Sales Offices	

SIGNETICS

PLUS Programmable Logic Devices	250
PLHS Programmable Logic Devices 251-252, 2	256
PLC Erasable Programmable Logic	
Devices	254
PLS Programmable Logic Device	255
Programmable Macro Logic (PLHS and PML)	
Programmable Logic Devices	257
EPROMs and PROM	261

S-MOS SYSTEMS

ASIC Product Overview	.262-265
SLA8000 Series Sea-of-Gates Arrays	. 266-272
ASIC Design Flow	

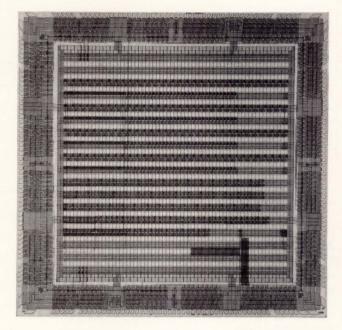
TEXAS INSTRUMENTS

TOSHIBA

TC120G Series 1-µm CMOS Gate Arrays ... 278-279

Q14000 SERIES BICMOS LOGIC ARRAYS

DESCRIPTION


The AMCC Q14000 Series of BiCMOS logic arrays is presently comprised of two products with densities of 2160 and 9072 equivalent gates, respectively. The series is optimized to provide CMOS densities with bipolar performance for today's sophisticated semicustom applications.

The Q14000 Series combines 1.5-micron CMOS features with an advanced 1.5-micron oxide-isolated bipolar process on a single silicon chip. The BiCMOS process uses an N-type epitaxial layer as the foundation for both the NPN bipolar and CMOS devices. The CMOS transistors are used for logic implementation only and therefore utilize devices sized smaller than those required for a pure CMOS array. Because there are no large metal interconnects to drive, the high intrinsic speed and low power advantages of CMOS are preserved even as the densities are increased.

Bipolar totem-pole device pairs are used to provide the needed drive capability between logic cells. In addition, bipolar I/O cells provide an interface to ECL 10K, ECL 100K, TTL or mixed ECL/TTL systems.

PERFORMANCE SUMMARY			
PARAMETER	VALUE		
Typical internal gate delay			
1 load, no metal	.61 ns		
2 loads, 2mm of metal	.70 ns		
Typical internal F/F toggle frequency	240 MHz		
Typical input delay			
ECL-	2.2 ns		
TTL-	4.0 ns		
Typical output delay			
ECL-	1.2 ns		
TTL-(15 pf)	4.0 ns		
ECL compatible output drive	25 Ω, 50 Ω		
TTL compatible output drive	20 mA		
Average cell utilization	95%		

TABLE 1

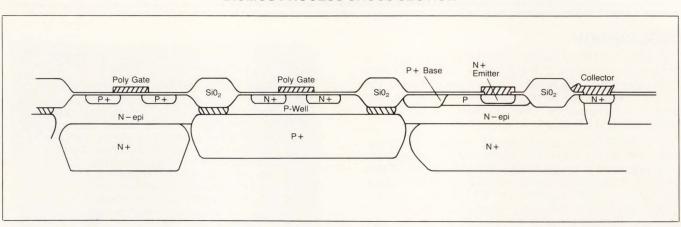
An extensive library of SSI and MSI logic macros is available in conjunction with AMCC's MacroMatrix® design kit. MacroMatrix is available for use in conjunction with most popular engineering workstations (EWS).

FEATURES

- 1.5-Micron Mixed Bipolar/CMOS Technology
- 2160 and 9072 Equivalent Gates
- Speed/Power Programmable I/O Macros
- ECL, TTL, or Mixed ECL/TTL
- Full Military Screening Available
- Operate over -55°C Ambient to +125°C Case

PRODUCT SUMMARY			
DESCRIPTION	Q2100B	Q9100B	
Equivalent gates	2160	9072	
Internal logic cells	540	2268	
I/O pads	80	160	
Fixed power/ground pads	28	56	
Total pads	108	216	
Typical power ¹	1.8 W	4.0 W	

TABLE 2


NOTES:

1 4.5 Volts supply @ 25°C, 50% inputs/50% outputs; 40 MHz with 20% of internal gates switching.

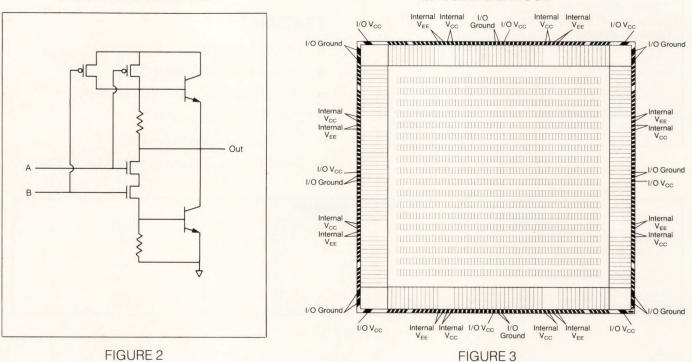
Applied MicroCircuits Corporation • 6195 Lusk Boulevard • San Diego, California 92121 • (619) 450-9333

Q14000 SERIES ARRAY ORGANIZATION

BICMOS PROCESS CROSS SECTION

FIGURE 1

ARRAY ARCHITECTURE


The Q14000 Series logic arrays are comprised of repeated structures, or logic cells, containing bipolar and CMOS transistors and resistors. Macros, which serve as the basic elements for logic design, are built by the interconnection of the components contained in one or more cells.

The Q14000 Series arrays employ two types of cells – logic and I/O, along with overhead circuitry such as voltage references and voltage regulators. While the over-

head circuitry is predefined by AMCC, I/O and logic functions which can be assigned to uncommitted cells are found in the Q14000 Series macro library.

I/O cells are located around the perimeter of each array. On three sides of the array, the I/O cells can be used to implement unidirectional input or output interfaces. I/O cells, found on the remaining side of the die, can perform bidirectional or unidirectional I/O functions. All I/O cells can implement ECL 10K, ECL 100K or TTL interfaces.

Q9100B DIE LAYOUT

BICMOS 2-INPUT NAND

COMPLEX CELL

BICMOS CELL STRUCTURE

The Q14000 Series basic cell utilizes both CMOS and bipolar devices. The CMOS devices are used for logic implementation while the bipolar devices provide the necessary drive capability. The performance of an internal macro is directly related to the drive, or K-factor, associated with the macro. Since the bipolar transistors used in the Q14000 Series basic cell yield Kfactors 5 to 10 times lower than those of comparable CMOS transistors, BiCMOS macros experience minimum performance degradation as fanout loads are increased.

FANOUT DEGRADATION COMPARISON

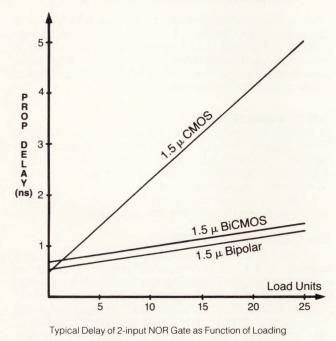
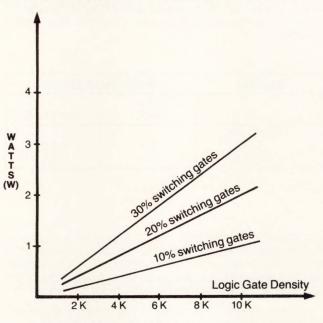


FIGURE 4

POWER CONSIDERATIONS


AMCC's Q14000 Series arrays have the optimum combination for high performance while maintaining low power dissipation. The power consumption of the internal core of a BiCMOS array is directly proportional to the number of gates switching simultaneously during a clock cycle and the operating frequency. Internal power consumption for Q14000 Series BiCMOS arrays is approximately 20 μ W/gate-MHz for active gates switching during the clock cycle. The core area consumes no DC power. Figure 5 plots internal power versus the percentage of simultaneously switching gates.

I/O cell power is determined by the interface mode selected and the particular macro selected. Power consumption for representative I/O macros is defined in the ECL and TTL Interface sections of this data sheet.

POWER/PACKAGING

The total power dissipation for a Q14000 Series array is given by: Total Power = core power + I/O power + overhead power where the overhead power is associated with the internal reference voltage generators and is specified in the Q14000 Series Design Manual.

TYPICAL CORE POWER DISSIPATION AT 50 MHZ

Internal Power as Functions of Logic Gate Density and Percentage of Simultaneously Switching Gates (Clock Freq. = 50 MHz)

FIGURE 5

PACKAGING

The Q14000 Series logic arrays are available in a range of standard packages including surface-mountable chip carriers and pin grid arrays. For complete details consult the AMCC Packaging Guide.

PACKAGE	Q2100B	Q9100B
68 pin PGA	•	
84 pin LDFP	•	Sector states and
84 pin PGA	•	
100 pin LDCC	•	
100 pin PGA	•	
132 pin LDCC		•
196 pin LDCC		•
224 pin PGA		•

TABLE 3

LDCC – Leaded Chip Carrier LDFP – Leaded Flat Pack

PGA – Pin Grid Array

MACRO FLEXIBILITY

DESIGN SUPPORT

HIGH SPEED/LOW POWER MACROS

The Q14000 Series macro library offers maximum flexibility in the optimization of circuit performance and power consumption. I/O macros are offered with standard and high-speed options. The high speed options require somewhat more power than standard, but provide a significant improvement in performance.

Table 4 illustrates the effects of speed/power selections on I/O pair delays. As the table indicates the overall macro performance versus power consumption can be varied significantly depending upon the option selected.

MACROS	SPEED/PO	WER OPTIONS
	HIGH SPEED	STANDARD
I/O Pair Delay		
TTL (ns)	8.0	10.0
ECL (ns)	3.4	3.9

TABLE 4

The circuit designer can make the selection of speed/ power options at the time of schematic capture on a supported engineering workstation. Through simulation, the designer can fine-tune the circuit to provide the required mix of performance and power savings.

The interface macro sections of this data sheet provide additional information on speed/power trade-offs.

FLEXIBLE I/O STRUCTURE

The Q14000 Series I/O cells are configurable to provide a wide range of interface options.

INPUT	BI-DIRECTIONAL	OUTPUT
TTL ECL 10K ECL 100K	TTL transceiver ECL 10K transceiver ECL 100K transceiver	TTL totem pole TTL 3-state TTL open collector ECL 10K ECL 100K

TABLE 5

The Q14000 Series arrays also offer the following special options to support unique interface requirements such as high speed and +5V, single-supply ECL and TTL I/O (see Table 4).

The mixed ECL/TTL capabilities allow the interface to both technologies on a single chip without the use of external translators.

The +5V single supply ECL allows a high-speed TTL system to be partitioned using multiple AMCC devices which provide ECL I/O speeds with TTL system compatibility.

DESIGN INTERFACE

AMCC has structured its circuit design interface to provide maximum flexibility without compromising design correctness. For implementations using an engineering workstation, AMCC provides MacroMatrix software. MacroMatrix works in conjunction with the popular, commercial workstations to provide the following capabilities:

- Schematic Capture
- Logic Simulation
- Pre-Layout Delay Estimation
- Array and Technology-Specific Rules Checks
- Estimated Power Computation
- Layout Netlist Generation
- Post-Layout Timing Verification


Upon submission of the design database to AMCC, a comprehensive review of the circuit is performed making use of the very same EWS and MacroMatrix tools used by the designer. No translation of the logic data is required so the chance of non design-related errors is virtually eliminated.

CUSTOM MACROS

To further enhance the functionality of the Q14000 Series macro library, AMCC has developed MacroEditor[™]. MacroEditor uses a correct-by-construction approach to develop macros that meet all the pertinent design rules. As individual circuit applications warrant, macros with unique characteristics can be developed rapidly and used to optimize the array design.

AMCC DESIGN SERVICES

In addition to supporting design work at the designer's location, AMCC also offers customers the option of working at the San Diego Design Center. At the Design Center, engineers have access to the same sophisticated CAD/CAE tools supported for customer-site designs plus direct contact with a dedicated applications engineer to assist with the array implementation.

AMCC also provides a number of additional support services including:

- Full Design Implementation Service
- Local and Factory Applications Engineering Support
- Comprehensive Training Courses
- Complete Design Documentation

Q14000 SERIES INTERFACE

ECL INTERFACE

The Q14000 Series BiCMOS arrays can interface to standard ECL 10K and ECL 100K levels. All ECL inputs are buffered and can enter the array from any I/O cell.

ECL outputs can leave the arrays from any I/O cell. Different configurations of the I/O cells provide for a 50 ohm or 25 ohm output drive. Some 50 ohm output macros incorporate simple logic functions within the I/O cell effectively providing added density. 25 ohm outputs require two I/O cells.

Bidirectional ECL operation is available using onequarter of the available I/O cells. 20 and 40 ECL transceiver macros are located along one side of the Q2100B and Q9100B arrays, respectively.

I/O POWER SUPPLY CONFIGURATION

I/O	V _{EE}	V _{TTL}
ECL 100K	-4.2 to -4.8V	_
ECL 10K	-4.7 to -5.7V	_
ECL 100K/TTL	-4.2 to -4.8V	5V
ECL 10K/TTL	-4.7 to -5.7V	5V
TTL	_	5V
ECL/TTL Single Supply	4.5 to 5.5V	5V

TABLE 7

DESCRIPTION	CELLS TYPICAL D	TYPICAL DELAY (ns) ¹		TYPICAL PO	OWER (mW) ²
		STANDARD OPTIONS	HIGH SPEED OPTIONS	STANDARD OPTIONS	HIGH SPEED OPTIONS
ECL 10K/100K INPUTS					
Noninvert 2 input OR/NOR*	1	2.7	2.2	9.7	12.6
ECL 10K/100K OUTPUTS		1			
2 input OR	1	1.2	_	28.4	_
25Ω Driver*	2	1.2		56.8	_
Bidirect	1	1.5	_	38.3	_

TTL INTERFACE

TTL signals can enter the Q14000 Series arrays from any I/O cell. Once on-chip, TTL signals are automatically converted to internal operating levels for logic operations.

Signals leaving the array are subjected to level translation in the I/O cell. Following this translation, TTL outputs are available in totem pole or 3-state configurations.

TTL and ECL I/O can be mixed on each array yielding four basic configurations: TTL-only, ECL-only, mixed

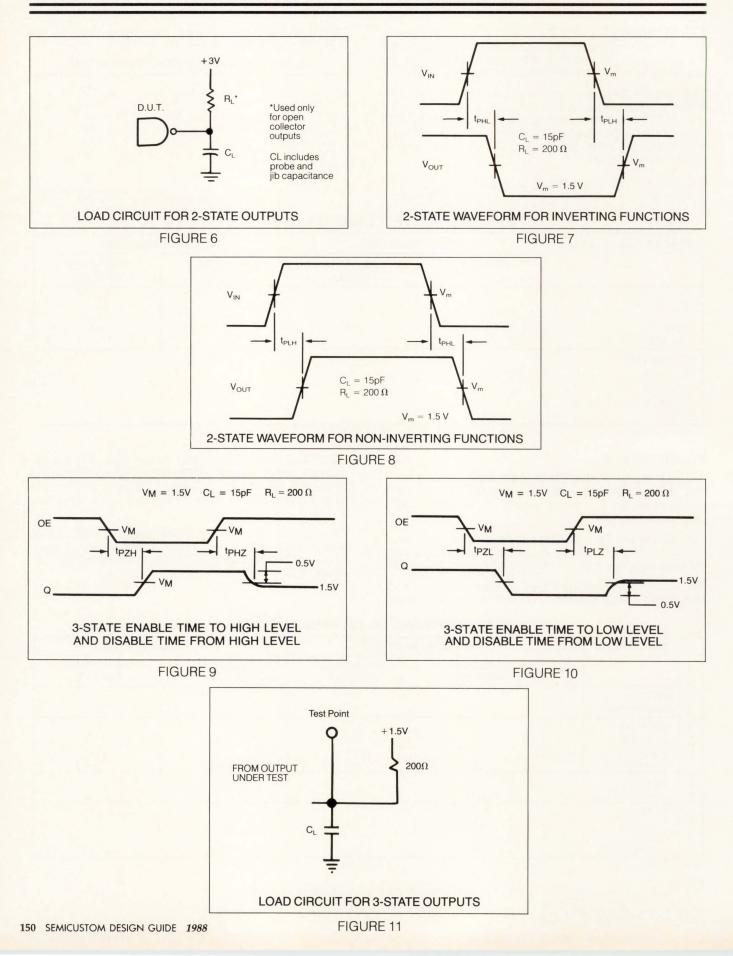
ECL/TTL (dual supply) and mixed ECL/TTL (single supply). Power supply requirements for each mode of operation are shown in Table 7. Representative TTL and TTLMIX I/O configurations are summarized in Table 8.

One guarter of the I/O cells on each Q14000 Series array can be configured to allow bidirectional TTL operation. All bidirecctional I/O cells are located along a single side of each array.

	DESCRIPTION	CELLS	TYPICAL	ELAY (ns) ³	TYPICAL PO	OWER (mW) ⁴
S - Z			STANDARD OPTIONS	HIGH SPEED OPTIONS	STANDARD OPTIONS	HIGH SPEED OPTIONS
GLE	INPUTS Non-Inverting	1	5.0	4.0	15.0	17.5
SUPPLY	OUTPUTS 2 input OR 3-state Bi-directional*	1 1 1	5.0 5.0 5.0	4.0 4.0 4.0	10.5 17.0 32.0	17.0 23.5 41.0
DUA	INPUTS 2 input OR/NOR	1	5.0	_	24.3	_
SUPPLY	OUTPUTS 2 input OR 3-state Bi-directional*	1 1 1	5.0 5.0 5.0	-	26.4 49.8 71.0	

TABLE 8

REPRESENTATIVE TTL INTERFACE MACROS


*Under development

NOTES:

1 Prop Delays are for fastest path. $V_{EE} = -4.5V$. Inputs specified driving 3 load units, outputs specified driving 15 pf 2 At $V_{EE} = -4.5V$. Does not include I_{EOF} 3 Prop Delays are for fastest path. $V_{CC} = .5V$, $T_{J} = 25^{\circ}C$. Inputs specified driving 3 load units, outputs specified driving 15 pf 4 At $V_{CC} = 5.0V$. Does not include I_{EOF}

Q14000 SERIES TTL TEST LOAD CIRCUITS

Q14000 SERIES INTERNAL LOGIC MACROS

INTERNAL LOGIC CELL CAPABILITIES

The Q14000 Series internal logic cells are all identical in structure and are positioned in uniform columns across the arrays. Each cell contains 16 CMOS and 4 bipolar uncommitted transistors along with 4 resistors. The cells are individually configurable to provide a variety of logic functions through the use of the Q14000 Series macro library. The macro library provides SSI,

MSI and some basic LSI functions. The higher level macros provide the advantages of higher speed, lower power and increased circuit density over a logically equivalent SSI macro implementation.

Table 9 lists parameters for a number of representative Q14000 Series internal macros.

REPRESENTATIVE INTERNAL MACROS NUMBER TYPICAL DELAY LOADED DELAY DESCRIPTION **OF CELLS** $(ns)^1$ $(ns)^2$ 2-input NAND (DUAL) 0.70 0.84 1 3-input NAND 1.12 1.26 1 4-input NAND 1 1.30 1.44 2-input NOR (DUAL) 1 0.95 1.09 3-input NOR 1.25 1.39 1 4-input NOR 1.87 2.01 1 **Exclusive OR** 2.10 2.24 1 Exclusive NOR 1 2.10 2.24 2-wide 2-2 input AND-OR-Inv. 1 1.92 2.10 Latch with Reset 2.97 3.11 C-Q 1 C-D 3.67 3.81 R-Q 1.00 1.14 R-Q 1.70 1.84 Set/Scan DFF with Reset C-Q 3 2.92 3.06 C-Q 3.62 3.76 2.13 2.97 R-Q 2.83 2.97 R-Q 4:1 Mux 2 2.43 2.57 Data-Y Select-Y 2.83 2.97

NOTES:

Driving 2 loads plus 2 mm of metal 1 Driving 2 loads plus 2 min of metal 2 Driving 5 loads plus 4 mm of metal

HARD MSI MACROS

In addition to basic macros, the Q14000 Series incorporates hard MSI macros for faster, more efficient designs. MSI macros can decrease design time by using large building-blocks rather than one-cell macros. Hard MSI macros are customized transistor level implementation of complex functions as opposed to "soft macros," which are gate-level implementation

TABLE 9

TYPICAL MSI MACROS

through logic equivalence. AMCC's hard macros, which employ a proprietary routing scheme, have a distinct advantage over "soft macros" by 1) improving density in utilizing more transistors per cell 2) up to 40% performance improvement due to optimized metal interconnect and 3) predictable delay characteristics from pre-determined layout constraints.

D	CD	1
A	YØ	b +
BC	Y1	b ++
С	Y2	b +
	Y3	b+
	Y3 ¥4	b ++
	Y5 Y6	b +
	Y6	b +
Е	Y7	0+

3:8 DECODER WITH ENABLE

TYPICAL DELAY	F.O. = 2 2mm of metal	F.O. = 5 4mm of metal
A,B,C → Y	3.44 ns	3.58 ns
Enable	2.84 ns	2.98 ns

Fi		D2:1	
i	M	UX	i
+	IOA	YA	+
+++	I1A IOB I1B	YB	+
+-	IOC	YC	
+	I1C		1
+	IOD I1D	YD	+
++	S1 EH		
1		MUX1	57

QUAD 2:1 MUX

TYPICAL DELAY	F.O. = 2 2mm of metal	F.O. = 5 4mm of metal
10,11 - Y	2.03	2.17
S1-Y	3.04	3.18

Q14000 SERIES OPERATING CONDITIONS

RECOMMENDED OPERATING CONDITIONS – COMMERCIAL

PARAMETER	MIN	NOM	MAX	UNITS
ECL Supply Voltage				
$(V_{EE})V_{CC} = 0$		5.0	5.45	
10K Mode	-4.94	-5.2	-5.45	V
100K Mode	-4.2	-4.5	-4.8*	V
ECL Input Signal				
Rise/Fall Time		1.5	5.0	ns
TTL Supply Voltage			-	
(V _{CC})	4.75	5.0	5.25	V
TTL Output Current Low				
			20	mA
Operating Temperature	0		70	°C
	(ambient)		(ambient)	
Junction Temperature			130	°C

ABSOLUTE MAXIMUM RATINGS

ECL Supply Voltage V_{EE} ($V_{CC} = 0$)	- 8.0 VDC
ECL Input Voltage ($V_{CC} = 0$)	GND to V_{EE}
ECL Output Source Current (continuous)	- 50 mA DC
TTL Supply Voltage V_{CC} ($V_{EE} = 0$)	7.0 V
TTL Input Voltage ($V_{EE} = 0$)	5.5 V
Operating Temperature	- 55°C (ambient) to + 125°C (case)
Operating Junction Temperature T _j	+ 150°C
Storage Temperature	- 65°C to + 150°C

RECOMMENDED OPERATING CONDITIONS – MILITARY

PARAMETER	MIN	NOM	MAX	UNITS
ECL Supply Voltage	1.1.1.1			1 Contractor
$(V_{EE})V_{CC} = 0$	47	5.0	F 7	V
10K Mode	-4.7	-5.2	-5.7	V
100K Mode	-4.2	-4.5	-4.8*	V
ECL Input Signal				
Rise/Fall Time	-	1.5	5.0	ns
TTL Supply Voltage				
(V _{CC})	4.5	5.0	5.5	V
TTL Output Current Low				
(I_{OL})			20	mA
Operating Temperature	-55		125	°C
leberen green berne e	(ambient)		(case)	
Junction Temperature			150	°C

 * –5.7V is possible. Consult AMCC for ECL 100K DC parametrics operating at this voltage.

AC ELECTRICAL CHARACTERISTICS

0141501	DADAMETED		TEST		COM 0°/+70°C		MIL - 55°/ + 125°C			UNIT
SYMBOL	PARAMETE	R	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
t _{IPD} -ECL	ECL Input Propagation	Standard	3 loads		2.7	3.7		2.7	4.0	ns
	Delay Including Buffer	High Speed	3 loads		2.2	3.0		2.2	3.2	ns
t _{IPD} - TTL	TTL Input Propagation	Standard	3 loads		5.0	6.8		5.0	7.3	ns
	Delay Including Buffer	High Speed	3 loads		4.0	5.4		4.0	5.8	ns
t _{OPD} -ECL	ECL Output Propaga- tion Delay				1.2	1.6		1.2	1.7	ns
topd - TTL	TTL Output	Standard	15 pf		5.0	6.8	1	5.0	7.3	ns
OID	Propagation Delay	High Speed	15 pf		4.0	5.4		4.0	5.8	ns
t _{FPD}	Internal Equivalent Gate Delay		2 loads + 2mm of metal		0.7	1.05		0.7	1.30	ns
F _{maxt}	Maximum Internal F/F Toggle Frequency				240	180		240	165	MHz
F _{in} -ECL	ECL Input Frequency	Standard	3 loads		150	110		150	105	MHz
	at Package Pin	High Speed	3 loads		240	180		240	165	MHz
F _{out} -ECL	ECL Output Frequency at Package Pin		50 Ω		240	180		240	165	MHz
F _{in} -TTL	TTL Input Frequency	Standard	3 loads		90	65		90	60	MHz
	at Package Pin	High Speed	3 loads		120	90		120	85	MHz
F _{out} - TTL	TTL Output Frequency at Package Pin		15 pf		90	65		90	60	MHz
t _{PZH}	Enable time to high level		Fig. 9		9	12.3		9	13.0	ns
t _{PZL}	Enable time to low level		Fig. 10		9	12.3		9	13.0	ns
t _{PHZ}	Disable time from high level		Fig. 9		9	12.3		9	13.0	ns
t _{PLZ}	Disable time from low leve	el	Fig. 10		9	12.3		9	13.0	ns

152 SEMICUSTOM DESIGN GUIDE 1988

Q14000 SERIES OPERATING CONDITION

		Tambient			T _{case}	
	- 55°C	0°C	25°C	75°C	125°C	UNIT
V _{OH max}	V _{CC} - 850	V _{CC} - 770	V _{CC} - 730	V _{CC} - 650	V _{CC} - 575	mV
V _{IH max}	V _{CC} - 800	V _{CC} - 720	V _{CC} - 680	V _{CC} - 600	V _{CC} - 525	mV
V _{OH min}	V _{CC} —1080	V _{CC} -1000	V _{CC} - 980	V _{CC} - 920	V _{CC} - 850	mV
V _{IH min}	V _{CC} —1255	V _{CC} -1145	V _{CC} -1105	V _{CC} -1045	V _{CC} -1000	mV
VILmax	V _{CC} -1510	V _{CC} -1490	V _{CC} —1475	V _{CC} -1450	V _{CC} -1400	mV
VOLmax	V _{CC} —1655	V _{CC} -1625	V _{CC} —1620	V _{CC} -1585	V _{CC} -1545	mV
V _{OLmin}	V _{CC} —1980	V _{CC} —1980	V _{CC} -1980	V _{CC} -1980	V _{CC} -1980	mV
V _{IL min}	V _{CC} -2000	mV				
I _{in} H max ²	30	30	30	30	30	μΑ
I _{in} L max ²	5	5	5	5	5	μΑ

ECL 10K INPUT/OUTPUT DC CHARACTERISTICS V_{EE} = -5.2V¹

ECL 100K INPUT/OUTPUT DC CHARACTERISTICS $V_{EE} = -4.5V^3$

				COMM 0°/ + 70°C		MIL			
SYMBOL	PARAMETER	TEST DC CONDITIONS	V _{EE} =	-4.2V to	-4.8V	$V_{EE} =$	- 4.2V to	-4.8V	UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
V _{OH}	Output Voltage HIGH	Loading is 50 Ohms to - 2V	V _{CC} -1035		V _{CC} - 850	V _{CC} -1080		V _{CC} - 835	mV
VOL	Output Voltage LOW	Loading is 50 Ohms to - 2V	V _{CC} -1830		V _{CC} -1605	V _{CC} -1880		V _{CC} -1595	mV
VIHmin	Input Voltage HIGH	Maximum input voltage HIGH	V _{CC} -1145		V _{CC} - 800	V _{CC} -1145		V _{CC} - 800	mV
V _{IL max}	Input Voltage LOW	Maximum input voltage LOW	V _{CC} -1950		V _{CC} -1475	V _{CC} -1950		V _{CC} -1475	mV
I _{INH} ²	Input Current HIGH	V _{IN} = V _{IH max}			30			30	μΑ
I _{INL} ²	Input Current LOW	$V_{IN} = V_{IL \min}$			5			5	μA


TTL INPUT/OUTPUT DC CHARACTERISTICS

				CO	COMM 0°/ + 70°C			MIL - 55°/ + 125°C			
SYMBOL	PARAMETER	TEST DC C	TEST DC CONDITIONS		TYP ⁴	MAX	MIN	TYP ⁴	MAX	UNIT	
V _{IL} ⁵	Input HIGH Voltage	Guaranteed in for all inputs	nput HIGH voltage	2.0			2.0			V	
V _{IH} ⁵	Input LOW Voltage	Guaranteed input LOW voltage for all inputs				0.8			0.8	V	
VIK	Input clamp diode voltage	V _{CC} -Min, I _{IN}	= -18mA		8	-1.2		8	-1.2	V	
V _{OH}	Output HIGH Voltage	V _{CC} – Min, I _{OI}	H = -1mA	2.7	3.4		2.4	3.4	-	V	
VOL	Output LOW voltage	V _{CC} =Min	$I_{OL} = 4mA$			0.4			0.4	V	
·OL			$I_{OL} = 20 \text{mA}$			0.5			0.5	V	
I _{OZH}	Output "off" current HIGH (3-state)	V _{CC} = Max, V	$V_{OUT} = 2.4 V$	- 50		50	- 50		50	μA	
l _{ozl}	Output "off" current LOW (3-state)	V _{CC} = Max, V	$V_{CC} = Max, V_{OUT} = 0.4V$		1	50	- 50		50	μA	
I _{IH}	Input HIGH current	V _{CC} = Max, V	$V_{IN} = 2.7 V$			50	-		50	μΑ	
I _I	Input HIGH current at Max.	V _{CC} = Max, V	$T_{\rm IN} = 5.5 V$			1			1	mA	
I	Input LOW current	V _{CC} = Max, V	$V_{IN} = 0.5V$			50			50	μΑ	
los	Output short circuit current	$V_{\rm CC} = Max, V$	$V_{OUT} = 0V$	-25		- 100	- 25		- 100	μΑ	

Data measured with $V_{EE} = -5.2 \pm .1V$ (or $V_{CC} = 5.0 \pm .1V$ for +5V ref. ECL 10K) assuming a +50°C rise between ambient (T_a) and junction temperature (T_J) for -55°C, 0°C, +25°C, and +70°C, and a +25°C rise for +125°C. Specifications will vary based upon T_J. See AMCC Packaging and Design Guides concerning V_{OH} and V_{OL} adjustments associated with T_J for packages and operating conditions. Per fan-in.

Data measured at thermal equilibrium, with maximum T_J not to exceed recommended limits. See AMCC Packaging Guide to compute T_J for specific package and operating conditions. For +5V ref. ECL 100K, V_{OH} and V_{OL} specifications will vary based upon power supply. See AMCC Design Guide for adjustment factors. Typical limits are at 25°C, V_{CC} = 5.0V. 3 4

Sa These input levels provide zero noise immunity and should only be tested in a static, noise-free environment.
 Use extreme care in defining input levels for AC tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach V_{IL} or V_{IH} until the noise has settled. AMCC recommends using V_{IL} ≤0.4V and V_{IH} ≥2.4V for functional and AC tests.

AMCC and MacroMatrix are registered trademarks of Applied MicroCircuits Corporation. MacroEditor is a trademark of Applied MicroCircuits Corporation.

Copyright 1987 Applied MicroCircuits Corporation PRINTED IN U.S.A./D1103-1287

Integrated Circuits from AT&T

For More Information on Any of These Devices, Call: 1-800-372-2447

Application Specific ICs

- 1.25 μm Single And Double Level Metal
- Extensive Library For Design Flexibility
- Multiple On-Chip MACRO Functions
- Largest Standard Cell Supplier
- Comprehensive, Powerful CAD

Digital Bipolar ICs

- ATE Series Gate Arrays
- Custom Integrated Circuits
- SFOXIL Technology

Linear And High Voltage ICs

- Semicustom Linear Arrays
 - Fastest Complementary Linear Array Available
 - High Performance, Low Cost
 - Fast Analog Solutions To Low Volume And/Or Short Life Cycle Applications

Custom IC Packaging

- On-Shore Models
- Off-Shore Production
- Largest JEDEC PLCC In Industry
 - 100 I/O (50 mil pitch)
- Broad Range Of IC Package Options
- State-Of-The-Art Advancing Development
 - Future Offerings Through-Hole Up To 224 I/O In Progress
 - Surface Mount Wide Range Of I/O's Which Are JEDEC Compatible

AT&T Microelectronics 555 Union Blvd., Dept. 51AL230230 Allentown, PA 18103

AT&T's ASIC CMOS Standard Cell product offering is quite flexible and includes the capability for chip design, prototype development and high-volume device production. AT&T can accommodate a customer's ASIC circuit design in a "netlist" format from one of several sources: 1) the "netlist" as developed by the customer at his facility using our library on a Valid, Mentor or Daisy workstation, 2) as developed at the customer's facility using the ported AT&T chip design CAD system, 3) as developed by the customer either independently or jointly with AT&T at one of our worldwide AT&T ASIC Design Centers. Each Design Center is equipped with AT&T's CAD on mainframe computers as well as Valid, Mentor and Daisy workstations.

Of course, AT&T can accept a customer's logic diagram and electrical specifications, and our designers will perform the complete design cycle, thus requiring minimal customer interaction at appropriate review intervals prior to prototype mask commitment.

The process outlined above is capable of producing highly complex standard cell designs with a first-time silicon success rate approaching 100%. Our ASIC offering is differentiated by the following features:

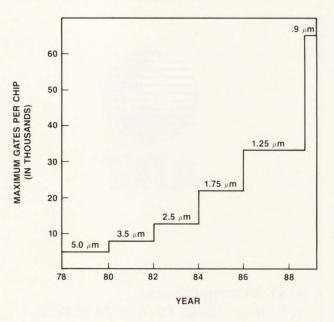
- Extensive and Specialized Standard Cell Libraries
- A Versatile Functional Design System
- Parameterized Macroblock Compilers
- Total Commitment to Technology Advancement
- Superior CMOS Performance
- Powerful CAD Tools Designed to Eliminate Risk
- Full Testing Capability and Quality Assurance
- Complete IC Design Support and CAD Tool Training

Cell Libraries

AT&T's standard cells are predesigned and precharacterized logic elements providing an extensive choice of logic functions as well as speed/size tradeoffs to accommodate a wide range of requirements. The library includes combinatorial cells, sequential elements, linear functions, input/output buffers and level shifters. In each technology, we supply two versions of our cell library. In one version, cells are area-optimized to minimize chip size. In the other version, cells are larger to maximize performance. The two libraries can be combined on the same chip if necessary.

Functional Design System

Complex VLSI circuits, however, are made up of more than just simple logic elements. The capability to easily create complex functions is essential to the fast development of any design. That is why AT&T's comprehensive Functional Design System (FDS) meets this need. Following simple interactive procedures, a customer can quickly synthesize or compile complex logic functions from simple functional specifications. The functionally synthesized elements available include:


- Adders
- Counters
- Comparators
- Decoders
- Multipliers
- Parity generators
- Universal registers
- Combinatorial cells
- Finite state machines

Macroblock Compilers

AT&T's Parameterized Macroblock Compilers can solve customer requirements for memory and other special blocks by automatically synthesizing these blocks from a library of primitives, including PLAs, Dynamic Shift Registers, FIFOs, Multipliers and Cross Points. This way the customer gets exactly the capability and configuration needed. And, the customer also gets full CAD support, including automatic multiple block simulation modeling and layout generation. This gives you the advantage of fast development with accuracy and performance on minimum silicon area.

Technology Advancements

At AT&T, we're constantly shrinking design rules to bring ever greater complexity and performance within the reach of our customers. Our current mainstream VLSI technology is 1.25 μ m CMOS. And you can bet we're not stopping there! But aggressive technology development means nothing if the finished part won't work. So, to ensure the manufacturability of all of our customers' designs, we process initial prototypes on the same fabrication line that will supply production requirements.

For additional information, contact your AT&T Account Manager, or call:

Custom ASIC CMOS Standard Cell

Performance

Our high-volume CMOS processes utilize twin-tub epitaxial structures. This enables us to optimize both NMOS and PMOS transistor characteristics for superior circuit performance.

CMOS Speed Performance

	Average Gate Delay (ns)
Gate	1.25 μm (1.0 μL΄)
Inverter	0.8
2-input NAND	1.0
f-f setup	0.7
f-f clk to out	1.6
Input buffer	1.0
Output buffer (50 pF load)	3.5

(Nominal process, 5 V power supply, 25°C, fanout = 3, 2.5 mm wire.)

And, when performance requirements are tight, we can make use of our new three-level interconnect system consisting of one level of polysilicide and two levels of aluminum.

The use of the epitaxial layer, together with refined layout techniques, eliminates latchup problems. We also incorporate advanced electrostatic discharge (ESD) protection circuitry that exceeds industry standards for Class II ESD protection.

Design Success

Our CAD tools, developed and supported by AT&T Bell Laboratories engineers, will give you high confidence of design success by eliminating manual intervention. Comprehensive audits, full-chip timing simulation, and 100% automatic placement and routing provide that assurance.

Auditing features provide early detection of circuit problems, thereby shortening the design cycle. The simulator provides the ability to quickly and accurately verify both the logic and timing requirements. The layout tool handles both standard cells and higher level blocks. Automatic placement and routing assure that even the most complex circuits are properly interconnected.

In addition, using parasitics extracted from the final layout, you can resimulate and verify your circuit over the full range of process, temperature and power supply variations.

Testing and Quality

Rigorous testing programs, plus ongoing reliability analysis, assure you of high quality devices that meet all of your specifications.

Our CAD Test Program Generation (TPG) automatically creates a test program for your design. So the same tests used to verify the design in simulation are used to guarantee the performance of every manufactured part.

State-of-the-art test systems at each of our six manufacturing facilities ensure the operation and performance each customer specifies.

Every device shipped receives not only full operational tests, but is subjected to rigid quality assurance and final inspection procedures. At your option, burn-in can also be provided. Our commitment to quality also includes on-going process evaluations to ensure the integrity of our design and manufacturing techniques.

Design Support and Training

To familiarize a customer with the use and capabilities of our Design Automation System, we offer design support training courses in our local design centers or at any customer facility. This support can be tailored to suit your particular needs and schedules. Individualized training can also be provided by our experienced design engineers.

We invite you to investigate our capabilities and realize how a partnership in this new generation of technology can work to make your products more competitive in today's world markets.

For more information on our ASIC offering, please call 1-800-372-2447. We want to be your ASIC supplier. Our design Centers are located:

1090 E. Duane Avenue PC-010 Sunnyvale, California 94086 (408) 522-5500

1255 S. Cedar Crest Blvd. Allentown, Pennsylvania 18103 (215) 439-6098

745 Lorong 5 Toa Payoh Singapore 1231 65-2537572

Freischützstrasse D-8000 Munich 81 Munich, West Germany 49-89-9597131

Powell Duffryn House London Road Bracknell GB-Berks RG12 2AQ England 44-344-487111

C/Albacete, 5 28027 Madrid, Spain (34-1-) 404-6263, 403-4114

For additional information, contact your AT&T Account Manager, or call:

AT&T has developed a fast, error-free method of generating standard-cell mask layouts and associated models that is unique in the standard-cell custom IC industry. The method allows standard-cell users to incorporate the latest technology into their designs. The process consists of standard-cell support library generation and is illustrated in Figure 1. The VTGEN computer program generates all standard-cell mask layouts and stores them in a library. The HCAP tool then extracts the simultation models from the mask layouts and stores these models in support libraries to be accessed by other CAD systems such as ADVICE, MOTIS3, and LTX2.

Mask Layout Generation

VTGEN combines two files to create the mask layouts for the library elements: a cell-description file and a technology file. The cell description file is obtained from a library of technology-independent standard cell descriptions, where each cell description defines a function in terms of its logic definition and transistor-level connectivity. The technology file contains information about the cell layout style and also provides technology-dependent design rules such as window size and spacing, metal pitch, and other tolerances. VTGEN uses the cell description file and the technology file to automatically generate a file containing the mask layout of every standard cell. Each mask layout will perform the function specified by its cell description, and will conform to the design rules for a specified technology. The mask layouts become part of the library.

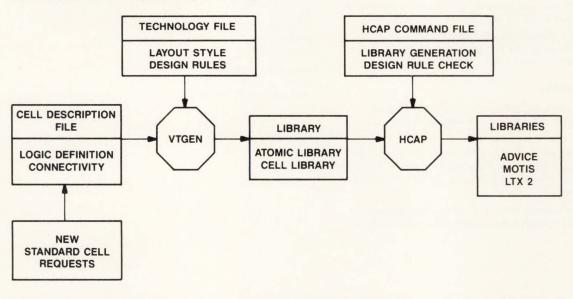
Simulation Model Generation

HCAP extracts the simulation models directly from the mask layouts in the library. Two input files are required by HCAP: the file of standard cell mask layouts from the library and a second technology-dependent file containing performance-determining parameters. HCAP uses these two files to automatically generate a symbolic layout description and a transistor-level model. Two

Figure 1. Standard-Cell Support Library Generation.

files (one for ADVICE and MOTIS3, and one for LTX2) are created and added to the library. Once the simulation models are available, a table of gate delays for different output loads is determined by simulation and published in the standard-cell catalog.

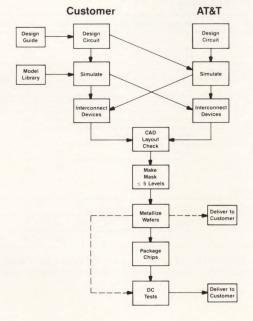
New Standard Cells


If a new cell type is needed for a specific application, AT&T's Standard Cell group will create the required cell description, and VTGEN will generate the mask layout using the appropriate technology file. HCAP then will extract the simulation models and the symbolic layout description, and append them to the library. In most cases, this entire process is easily completed in less than one day.

Design System

AT&T provides a system of integrated Computer Aided Design tools to assist designers in each phase of IC development. Designers are freed from the time-consuming and error-prone task of data conversion, since these tools are integrated by a common interface, which makes all the tools compatible—from schematic capture to layout verification.

The schematic capture tool is flexible, easy-to-use, and offers the powerful features needed for complex VLSI circuits. Several auditing features provide early detection of circuit problems, thereby shortening the design cycle. The simulator provides the ability to quickly and accurately verify both the logic and timing requirements. The design-for-testability tools alleviate the usual laborious task of generating high-fault coverage vectors. The layout tool handles both standard cells and higher-level blocks. Automatic placement and routing assure that even the most complex circuits are properly interconnected.


The AT&T system has demonstrated a very high first-time success rate on custom standard-cell designs. The tools facilitate the design of circuits that push the limits of technology, both in gate count and performance.

For additional information, contact your AT&T Account Manager, or call:

AT&T's Semicustom Alternative

Flexible Design Options

1-800-372-2447

AT&T semicustom linear arrays are the costeffective alternative to custom design. The semicustom approach is the most economical route to satisfy production requirements for less than 50,000 devices. Semicustom development costs are significantly lower than those for a fullcustom IC development, with prototypes available within six to eight weeks of design verification. A semicustom design can also be the first step in the two-step design process that leads to a fullcustom integrated circuit. The semicustom design allows initial low-volume production to begin, and can be replaced with a full-custom design for high-volume production.

Linear Array Capabilities

AT&T's family of CBIC linear arrays has been designed to fulfill a wide range of applications using a complementary vertical NPN and PNP transistor technology. Our linear arrays satisfy circuit design requirements ranging for dc to VHF, and 5 to 90 volt applications. In addition, some linear arrays combine analog and digital circuitry on the same chip. AT&T linear array applications are limited only by your imagination.

From design through manufacture, AT&T can assist you with all your design needs. In fact, our sales account managers and support engineers are just a phone call away. We invite you to join us in discovering the benefits of semicustom linear arrays.

Package Type	Pin Counts
Through-Hole Technology DIP — Plastic	8, 16, 18, 20, 24, 28, 32, 40
Surface Mount Technology	
Chip Carriers — Plastic	44
Plastic SOJ (J Leads) Plastic SOIC (Gull Wing)	16, 20, 28
Wide Body	16, 20, 28

AT&T Microelectronics 555 Union Blvd., Dept. 51AL230230 Allentown, PA 18103

Description

The ALA201/202 UHF Linear Arrays are semi-custom integrated circuits consisting of vertical NPN and PNP transistors, programmable and fixed capacitors, and implanted boron resistors. Designed on a regular grid system, the array provides easy interconnection for the designer. The ALA201/202 UHF Linear Arrays are fabricated in a complementary bipolar integrated circuit (CBIC) process that offers the advantages of similar NPN and PNP transistor characteristics at very high speeds. Typical fr of 4.5 GHz for the NPN and 3.75 GHz for the PNP transistors (Vce = 6 volts and Ic = 3 mA) with high current drive capability (8 mA for the NPN and PNP 1X transistors) is unique to these linear arrays.

Dual-layer and thick metal are typically used for most applications; however, single-layer metal may be used upon special request. The bottom and top metal layers have a low sheet resistance of about 0.03 ohm/sq. and a current capacity of 2 mA/ μ m of metal width. The standard 6 μ m bottom and 10 μ m top metal linewidths are capable of carrying a maximum of 12 and 20 mA dc current, respectively. For cases where high-current must be carried, a thicker gold layer called "thick metal" is available with a sheet resistance of about 0.004 ohms/sq. and a current capacity of 14 mA/µm of metal width. The ALA201 device is divided into 6 modules consisting of 5 standard and 1 power module. The ALA202 device is divided into 12 modules consisting of 9 standard, 2 power, and 1 input module. All modules are symmetrically located within the array for easy layout. The modules, being on a regular grid system, allow the user to interconnect components by drawing lines on a clearly defined grid marked on a layout sheet.

For more detailed information regarding ordering procedures, design kits, and packaging for the ALA201/202 UHF Linear Arrays, refer to the Semi-Custom Linear Array brochure.

Features

- Quick design turnaround
- Custom circuitry at low cost
- High performance
- Design proprietorship
- High probability of success
- High reliability

Electrical Characteristics

TA = 25°C unless otherwise specified

NPN dc Parameters

Symbol	Measurement/Condition	Min	Тур	Max	Unit
hfe*	Ic = 1 mA, Vce = 2 V	80	110	_	-
fт	Ic = 1 mA, Vce = 2 V	_	3.5	-	GHz
VA (early voltage)	Ic = 1 mA, VcE = 2, 4 V	20	40	-	V
VCE (sat)	$Ic = 1 \text{ mA}, IB = 100 \mu \text{A}$	-	.13	.35	V
VBE**	IE = 1 mA, VCE = 2 V	.720	.775	.820	V
BVCEX	$IC = 100 \ \mu A, IB = 0.1 \ \mu A$	12	18	-	V
Іево	$V_{EB} = 2 V, I_{C} = 0$	-	.02	1	μΑ
ВУсво	$Ic = 1 \mu A$	20	30	-	V
BVcso (collector substrate breakdown)	Ic = 1 μA	20	60	-	V
ICES	$V_{CE} = 5 V$	-	1	_	nA
Ісво	$V_{CB} = 10 \text{ V}, \text{ IE} = 0$	-	1	_	nA
ВVево	$IE = 10 \ \mu A$	4.7	5.3	5.9	V

PNP dc Parameters

Symbol	Measurement/Condition	Min	Тур	Max	Unit
hfe*	Ic = 1 mA, Vce = 2 V	25	40	_	_
fт	Ic = 1 mA, Vce = 2 V	-	2.5	_	GHz
Va (early voltage)	Ic = 1 mA, Vce = 2, 4 V	8	11	-	V
VCE (sat)	$Ic = 1 \text{ mA}, IB = 100 \mu \text{A}$	-	.13	.35	V
VBE**	IE = 1 mA, VCE = 2 V	.730	.780	.830	V
BVCEX	$IC = 100 \ \mu A, IB = 0.1 \ \mu A$	11	14	-	V
IEBO	$V_{EB} = 2 V, I_{C} = 0$	-	.01	1	μΑ
ВУсво	$Ic = 1 \mu A$	16	19	_	V
BVcso (collector substrate breakdown)	$Ic = 1 \mu A$	20	40	-	V
ICES	VCE = 5 V	-	1	-	nA
Ісво	$V_{CB} = 10 \text{ V}, \text{ Ie} = 0$	_	1	_	nA
ВУево	$IE = 10 \ \mu A$	5.0	5.4	6.7	V

* hre matching of adjacent transistors of the same type is within $\pm 5\%$.

 ** VBE matching of adjacent transistors of the same type is within ± 1.5 mV.

For additional information, contact your AT&T Account Manager, or call:

ALA201/202 UHF Linear Arrays

Resistor Data (ALA201) TA = 25°C

Value (Ω)	Tol (%)	Туре	TCR PPM/°C	Total
50	±20	BI*	+1300	40
100	±20	BI*	+1300	240
200	±20	BI*	+1300	40
1000	±20	BI**	+1100	20
2000	±20	BI**	+1100	120
4000	±20	BI**	+1100	20

Capacitor Data (ALA201)

Туре	Cap (pF)	Tol (%)	Total
Programmable	0.75 to 3.35	±20	5
Fixed	1.0	±20	10
Programmable	1.0 to 32	±20	6

Component Totals (ALA201)

Component	Туре	Total	Standard	Power
Transistors				
NPN	1X	47	9	2
NPN	2X	12	2	2
NPN	5X	7	1	2
NPN	15X	2	-	2
PNP	1X	27	5	2
PNP	2X	12	2	2
PNP	5X	2	-	2
PNP	15X	2	-	2
Resistors*	50 Ω	40	8	_
	100 Ω	240	40	40
	200 Ω	40	8	-
Resistors**	1000 Ω	20	4	_
	2000 Ω	120	20	20
	4000 Ω	20	4	-
Capacitors	0.75 to 3.35 pF	5	1	_
	1.0 pF	10	2	-
	1.0 to 32 pF†	6		-
Bonding Pads	_	36		_

* Denotes a 50 ohm/sq. implanted boron resistor.

** Denotes a 1080 ohm/sq. implanted boron resistor.

† These capacitors are located on the border of the overall die.

Note: Matching of adjacent resistors of similar type is within ±1%.

Resistor Data (ALA202) TA = 25°C

Tol (%)	Туре	TCR PPM/°C	Total
±20	BI*	+1300	80
±20	BI*	+1300	480
±20	BI*	+1300	80
±20	BI**	. +1100	40
±20	BI**	+1100	240
±20	BI**	+1100	40
	± 20 ± 20 ± 20 ± 20 ± 20 ± 20	±20 BI* ±20 BI* ±20 BI* ±20 BI* ±20 BI* ±20 BI** ±20 BI**	± 20 BI^* ± 1300 ± 20 BI^{**} ± 1100 ± 20 BI^{**} ± 1100 ± 20 BI^{**} ± 1100

Capacitor Data (ALA202)

Туре	Cap (pF)	Tol (%)	Total
Programmable	0.75 to 3.35	±20	10
Fixed	1.0	±20	20
Programmable	1.0 to 32	±20	8

Component Totals (ALA202)

Component	Туре	Total	Standard	Input	Power
Transistors					
NPN	1/3X	2		2	_
NPN	1X	92	9	7	2
NPN	2X	24	2	2	2
NPN	5X	14	1	1	2
NPN	15X	4	_	-	2
PNP	1/3X	2		2	-
PNP	1X	52	5	3	2
PNP	2X	24	2	2	2
PNP	5X	4	_	_	2
PNP	15X	4	-	-	2
Resistors*	50 Ω	80	8	8	-
	100 Ω	480	40	40	40
	200 Ω	80	8	8	-
Resistors**	1000 Ω	40	4	4	_
	2000 Ω	240	20	20	20
	4000 Ω	40	4	4	-
Capacitors	0.75 to 3.35 pF	10	1	1	-
	1.0 pF	20	2	2	_
	1.0 to 32 pF†	8	-	-	-
Bonding Pads	-	48	-	_	

* Denotes a 50 ohm/sq. implanted boron resistor.

** Denotes a 1080 ohm/sq. implanted boron resistor.

† These capacitors are located on the border of the overall die.

Note: Matching of adjacent resistors of similar type is within ±1%.

For additional information, contact your AT&T Account Manager, or call:

ALA400/401 Linear Array Family

Description

The ALA400/401 Linear Array Family is fabricated using the complementary bipolar integrated circuit (CBIC) process that offers the advantages of vertical NPN and vertical PNP transistors. CBIC technology offers the advantage of designing high-performance circuits with less design complexity. A minimum collector-toemitter, reverse breakdown voltage of 33 volts is guaranteed for both transistors.

Typical peak ft of 350 MHz for NPN and 300 MHz for PNP transistors and 2 mA current drive capability for the 1 X transistors are unique for these linear arrays. Current drive capability for the other on-chip transistors is linear, e.g., 2 X = 4 mA, 3 X = 6 mA, etc. Pinch-off voltage for JFETs is 1 to 2 volts. IDSS is about 1.0 mA.

The ALA400 Linear Array is divided into 16 modules, consisting of 12 standard, 2 power and 2 JFET modules. The ALA401 Linear Array is divided into 9 modules, consisting of 7 standard and 2 power modules. All modules are symmetrically located within the array for ease of design layout. Because the modules are on a regular grid system, the user interconnects components by drawing lines on a clearly defined grid, marked on a layout sheet.

Component Totals (ALA400)

Component	Туре	Total	Standard	JFET	Power
NPN	1 X	70	5	5	-
NPN	2 X	12	1	_	_
NPN	3 X	16	1	_	2
NPN	38 X	4	-	_	2
PNP	1 X	70	5	5	_
PNP	2 X	12	1	_	_
PNP	3 X	16	1	_	2
PNP	63 X	4	_	_	2
Resistors*	500 Ω 1 kΩ	104 168	8 12	4 12	_
Resistors**	5 kΩ 10 kΩ	216 168	16 12	8 12	4
Capacitors	_	14	1	1	·
JFETs	-	4	_	2	-
Bonding Pads	_	44	_	_	_

* Denotes a 200 ohm/sq. implanted boron resistor.

** Denotes a 2000 ohm/sq. implanted boron resistor.

Two-level metal is used for interconnections. Upon request, a thick-metal interconnect is also available to provide higher current capacity. The top metal layer has a low sheet resistance of <0.03 Ω /sq. and a current capacity of 2.0 mA/micron metal width. The bottom metal layer has a sheet resistance of <1.0 Ω /sq. and a current capacity of 200 μ A/micron of metal width. The thicker metal interconnect has a sheet resistance of <0.003 Ω /sq. and a current capacity of 20 mA/micron of metal width.

Features

- High-frequency performance, typical fτ of 350 MHz for NPN and 300 MHz for PNP transistors
- 33 volt capability
- Low development costs
- Quick design turnaround, typically six to eight weeks from design approval
- Complementary vertical NPN and PNP transistors
- Two-level metal interconnect
- All I/O ESD protected

Component Totals (ALA401)

Component	Туре	Total	Standard	Power
NPN	1 X	43	5	4
NPN	3 X	16	2	1
NPN	38 X	2	-	1
PNP	1 X	43	5	4
PNP	3 X	16	2	1
PNP	63 X	2		1
Resistors*	100 Ω	42	6	_
	500 Ω	72	8	8
	1 kΩ	64	8	4
Resistors**	5 kΩ	132	16	10
	10 kΩ	100	12	8
Capacitors	-	7	1	-
Bonding Pads	_	38	_	_

* Denotes a 200 ohm/sq. implanted boron resistor.

** Denotes a 2000 ohm/sq. implanted boron resistor.

For additional information, contact your AT&T Account Manager, or call:

Electrical Characteristics TA = 25°C

NPN1X Transistor

Symbol	Measurement Condition	Min	Тур	Мах	Unit
hfe*	IC = 1 mA, VCE = 2.5 V	40	85	250	-
Ic	80% of peak hre	-	2	-	mA
BVCEO	Ic = 1 mA	33	38	-	V
ВУсво	$IC = 10 \ \mu A$	33	50	_	V
ВУево	$IC = 10 \ \mu A$	7.7	8.2	8.7	V
VBE**	$IE = 100 \ \mu A$	-	743	_	mV
Rsat	hfe = 2	_	37	-	Ω
VCE (sat)	IC = 1 mA, hFE = 2	-	70	150	mV
VA (early voltage)	$IC = 500 \ \mu A$	65	225	—	V
fr	VCE = 10 V	-	350	-	MHz

* hFE match of same type adjacent transistors is within 5%.

** VBE match of same type adjacent transistors is within 1.5 mV.

PNP1X Transistor

Symbol	Measurement Condition	Min	Тур	Max	Unit
hfe*	IC = 1 mA, VCE = 2.5 V	40	110	250	-
Ic	80% of peak hre	-	800	_	μΑ
BVCEO	Ic = 1 mA	33	47		V
ВУсво	$IC = 10 \mu A$	33	48		V
ВУЕВО	$Ic = 10 \ \mu A$	7.7	8.2	8.7	V
VBE**	$IE = 100 \ \mu A$	-	748	_ *	mV
Rsat	hfe = 2	-	127	-	Ω
VCE (sat)	IC = 1 mA, hFE = 2	-	140	250	mV
VA (early voltage)	$Ic = 500 \ \mu A$	45	60	-	V
fī	VCE = 10 V	_	300	-	MHz

* hFE match of same type adjacent transistors is within 5%. ** VBE match of same type adjacent transistors is within 1.5 mV.

AT&T Microelectronics is introducing a new series to the family of existing custom gate arrays. The customized high-speed TTL-ECL gate arrays are designed using Scaled-Fast Oxide-Isolated Logic (SFOXIL) bipolar technology which offers higher operating speeds. The new gate arrays are the ATE6000, ATE3000, and ATE1000 and will be available at the end of 1Q88, 2Q88, and 3Q88 respectively.

Product Features

Several internal speed and power options available:

Speed	Power	
500 ps	1.25 mW/gate	
300 ps	2.5 mW/gate	
200 ps	5.0 mW/gate	

- Internal clock frequency of 500—800 MHz
- ECL and TTL buffers for optimum speed/power combinations: ECL buffer input: 300 ps ECL buffer output: 600 ps
 - TTL buffer input: 500 ps TTL buffer output: 2400 ps
- ECL outputs that drive 50 Ω loads
- Fast turnaround time of 6 weeks from t = 0
- ECL and TTL input/outputs available
- Highly integrated SSI/MSI macro library available

CAD Features

- Schematic capture
- Multiple-delay logic simulation
- Automatic placement and routing
- Design verification
- Test program generation

Product Matrix

Gate Array Code	Maximum No. of Equivalent Gates	Total No. of Inputs, Outputs, and Input/Outputs	Package Type
ATE1000	1,000	To be determined	To be determined
ATE3000	3,000	To be determined	To be determined
ATE6000	6,000	120	149-pin PGA

CASE Technology Vanguard Graphics Framework

- Simplifies user integration of third-party software
- Platform-independent file formats and user interface
- Powerful window system consistent with workstation standards (SunView, UIS)
- Configurable inter-process communication
- Common simulator data format (CSDF)
- User-definable hierarchical menus
- Simple powerful macro language
- Redefinable keystroke
 definition
- User-definable contextsensitive help facility

In today's modular engineering tool environment, design engineers require comprehensive tools linked to a framework. And the Vanguard Graphics Framework provides a complete symbolic toolset to link major application tools with a system independent language. With the Vanguard Graphics Framework designers can integrate third-party software or customer-specific functions quickly and easily.

Platform Independence

Software can be easily integrated on any of the supported platforms (Sun, VAX, PC). The integration mechanism is platform-independent, allowing the user to develop one set of menus and macros that will be on any supported platform.

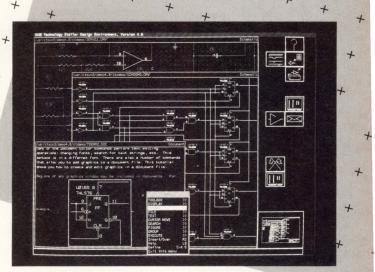
Window System

The native window system is supported on Sun and VAX, allowing

+ + + + third-party graphic programs to run simultaneously with the Vanguard Design System in their own windows. The windows live within

the Sun and VAX window systems, and a consistent multi-window capability is provided on the PC.

Multi-Processing


An inter-process communication mechanism allows multiple asynchronous processes to execute while the software is executing, and to communicate with the Vanguard software using standard workstation mechanisms.

Simulator Integration

The Common Simulator Data Format (CSDF) provides a standard data format for expression of analog or digital waveform data, supported by simulator vendors today. This simple format can be generated by thirdparty programs to allow configurable display of waveform data within the graphic framework environment.

Menus

The graphics environment provides hierarchical user-configurable menus. Up to five levels of nesting are supported, and the user can bind arbitrary commands, macros, or external functions to the menu items. Menus are also configurable

per window, and are context-sensitive depending on the selected object.

Macros

The Vanguard macro language allows the user to quickly define special functions which operate on system data types and communicate with the file system and external programs through simple commands. The macro language is based on simple user commands which can be recorded automatically by the macro processor, providing a "rehearsal mode" command creation capability.

Speed Keys

Keyboard bindings can be redefined or augmented to meet specific customer needs. Common commands or macros can be bound directly to specific keys for quick access.

Help

The user-definable help facility allows specific help information to be provided for any command.

Teradyne EDA 5155 Old Ironsides Drive Santa Clara, California 95054 408/980-5200

Printed in U.S.A.. Specifications subject to change without notice. All rights reserved. Vanguard is a trademark of CASE Technology, a division of Teradyne, Inc. ©1988 Teradyne, Inc.

1988 SEMICUSTOM DESIGN GUIDE 165

CASE Technology Vanguard **Design Capture** System

The Vanguard Design Capture System provides the most powerful tool in the industry for creating and editing schematics.

The schemetic design system incorporates pop-up menuing and windowing capabilities allowing designers to work or view multiple schematic pages simultaneously without leaving the CASE environment.

Product Highlights:

- **Display and edit multiple** schematic sheets
- Hierarchical desgn
- Intelligent rubberbanding . lines
- Closet-point line drawing
- **Automatic text placement**
- Ability to rotate all text fields in 90 degree increments.
- **Fast and powerful SCALD Hardware compiler** complies large designs in minutes.
- . **User definable keystroke** macros.
- Automatic pan and multiple zoom levels.

Configurable User Interface

The Schematic Design System also gives the designer many choices in configuring the user interface. One option is the split screen with a schematic drawing on the left and a hierarchial menu on the right. This option is beneficial for first time users allowing them to easily learn the system.

Context-Sensitive **Menu Capability**

Allows the user to invoke the help function from any position within the pop-up menus or windows, and receive detailed information about the operation of a particular command in the pop-up menu or window where the cursor is located.

Multi-Window Structure

To keep information and functions easily accessible, the system employs several different windows, all accessible with single keystrokes. The window environment allows the user to display multiple schematics with a layout window simultaneously, as well as digital and analog waveform and document windows. This permits direct interactions between the schematic, layout and simulation. In addition, the Schematic Design System also supports graphic icons for its windows for a shorter learning curve and optimum use of screen space.

Windows include the schematic reference window, the library window for access to parts libraries, the component description window, and a color layer window just to name a few.

Database Management:

In contrast to many CAE systems, the Vanguard CAE Design System keeps the database compact. This is an important consideration in memorylimited systems and avoids performance degradation associated with "thrashing" in virtual memory-based systems. The compact database is achieved through the use of a framebased method of storing component and graphics information.

ASCII File Interface:

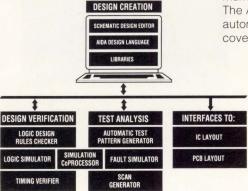
Even with the compact database structure used in the Schematic Design System, data remains in an easily accessible form. All files are documented ASCII formats allowing simple transfer between platforms and easing user creation of special purpose analysis or conversion programs. This also allows the designer to integrate the Vanguard Design System easily with internal or third-party design tools.

Teradyne EDA 5155 Old Ironsides Drive Santa Clara, California 95054 408/980-5200

Printed in U.S.A., Specifications subject to change without notice. All rights reserved. Vanguard is a trademark of CASE Technology, a division of Teradyne, Inc. ©1988 Teradyne, Inc.

SEMICUSTOM DESIGN GUIDE 1988 +

AIDA TESTABILITY TOOLS


Highlights

 Automatic Test Pattern Generator (ATPG)

.

- Automatic Scan Ring Generator (SCANGEN)
- Accelerated Fault Simulator (FLTSIM)
- 100% testability for scan designs using ASICs
- All tools operate as shared engineering resources
- All tools accept designs created on other systems
- Integrated tools work together to create optimized test pattern set

The AIDA testability tools provide users with fast, accurate test pattern generation, fault grading, and automatic test path synthesis for large ASIC and system level designs. Designers can achieve 100% fault coverage of single stuck-at faults. using ATPG patterns alone or in combination with their own test vectors. The AIDA Scan Ring Generator speeds production testing by automatically creating an advanced test methodology. And because the tools are integrated, the AIDA Fault Simulator checks the coverage of each ATPG pattern to ensure maximum coverage with minimum vectors. The AIDA Testability Tools provide automatic test analysis and fault coverage for large system designs.

The AIDA Testability Tools provide

integrated test evaluation and

pattern generation for designers

of large systems using ASICs.

Each test vector created by the

AIDA ATPG is evaluated by the

AIDA Fault Simulator to eliminate

additional faults. The AIDA Scan

implements scan rings for device

Ring Generator automatically

or system test.

The AIDA Design System

Importance of Testability

As designs become more complex and expensive to produce, they become increasingly difficult to test for manufacturing defects. Because the manufacturing yields of IC processes are low compared to established PCB manufacturing lines, using the same level of test pattern coverage allows more defective parts to ship to end users. And the cost in terms of money, time, and customer goodwill of discovering defects after manufacturing and assembly follows the same escalating trend.

Manually creating a set of patterns which exercises design functionality is no longer an acceptable solution. As chips push 100K gates, no designer can write vectors that will achieve the necessary fault coverage. Because the cost of allowing defective parts to pass into manufacturing increases with the complexity of the chip, extremely high coverage is required. Manufacturers who cannot efficiently test chips and systems will not be able to compete.

Designing for Testability

Most available fault grading tools perform toggle tests or probabilistic fault grading. Because toggle tests provide no comparison of correct vs. incorrect results, they are nearly useless as test tools. Similarly, probabilistic fault grading shows only statistical results, providing no guidance for improving test coverage. As chips get larger and gate counts increase, these problems increase. One effective solution for these problems is to design testability into the system from the start.

Teradyne EDA 5155 Old Ironsides Drive Santa Clara, CA 95054 408/980-5200

AIDA MEMORY & LOGIC COSIMULATOR ACCELERATORS

Very large, multi-chip, multi-board system designs can be evaluated cost-effectively at the gate level with the AIDA Memory & Logic CoSimulator accelerator. The CoSim/ML Processor simulates up to 8 million gates at 10 million evaluations per second. CoSim/ML is a standalone accelerator which functions as a network resource with both Apollo and Sun workstations.

Highlights

- Simulates up to 7 million bits of RAM and ROM using on-board emulation
- Up to 10 million gate evaluations per second
- Handles tristate drivers, bi-directional ports, bus transceivers
- Accelerates Levelized Compiled Code (LCC) operation of AIDA Logic and Fault Simulators
- Very large capacity for gate-level simulation of large systems using ASICs

The AIDA Memory & Logic CoSimulator Accelerator (CoSim/ML) provides designers of large complex systems with fast, accurate simulation of entire multi-chip, multi-board systems. Using the CoSim/ML from their own workstation over a network, designers can quickly and easily simulate large systems designs using ASICs. The AIDA CoSim/ML accelerator enables designers to verify the function and debug the operation of complete systems of up to 8 million gates on their own workstation.

Challenges of Multi-chip, Multiboard, Mixed-technology Simulation

Simulation turn-around is a key method for detecting design functionality errors, and has become the

ASE SCHEMATIC EDITOR RANSLATORS LIBRARIES t **DESIGN VERIFICATION** INTERFACES TO: **TEST ANALYSIS** AUTOMATIC TEST PATTERN GENERATOR LOGIC DESIGN RULES CHECKER IC LAYOUT SIMULATION LOGIC SIMULATOR PCB LAYOUT FAULT SIMULATOR SCAN GENERATOR TIMING VERIFIER

DESIGN CREATION

The AIDA Design System

gating item for many systems design projects. Large portions of chips and chip sets must be simulated several times a day with useful and understandable results in order for a design team to maintain tight development schedules. Systems incorporating chips with mixed technologies and ASICs from multiple foundries require accelerated system level simulation for accurate design.

Many logic simulators fail to take into consideration the realities of large systems design. Few simulators provide sufficient capacity. They often flood users with data, producing tens of thousands of lines of simulation data. While some of this data is simply irrelevant, much of the rest requires analysis which can take many days. Once different technologies and different modeling levels are added to the picture, designers are often left drowning in a sea of unmanageable data with no way to discover whether their design is performing correctly.

The AIDA Memory & Logic CoSimulator Processor (Dimensions 26"x13"x24")

Teradyne EDA 5155 Old Ironsides Drive Santa Clara, CA 95054 408/980-5200

FUJITSU ASIC PRODUCT GUIDE

Fujitsu is the world's largest producer of ASIC products. Since 1974, we have taken over 9,000 design-starts through volume production; the longest proven track record in the industry. Today, Fujitsu continues to make the world's largest commitment of human, technical, and financial resources to the ASIC business.

Select from our complete line of CMOS, ECL and BiCMOS gate arrays and standard cells. From our state-of-the-art 1.2 micron CMOS gate arrays and standard cells to our industryleading 10,000 gate ECL gate arrays - Fujitsu is the ASIC partner you've been looking for.

FUJITSU BIPOLAR TECHNOLOGY - GATE ARRAYS

ET Series ECL Gate Arrays	Part Number	Basic Logic Cells	Equivalent Gates*	I/O Count & Special Functions
	ET750	192 Cells	1,056 Gates	64 I/O, 48 ECL Outputs
1.0µ ECL	ET1500	384 Cells	2,112 Gates	88 I/O, 64 ECL Outputs
220 ps/800 MHz	ET3000	768 Cells	4,224 Gates	120 I/O, 72 ECL Outputs
ECL, TTL, or	ET4500	1,120 Cells	6,160 Gates	136 I/O, 84 ECL Outputs
Mixed Interface	ET2004M	480 Cells	2,640 Gates	120 I/O,** 4.6Kbit RAM @ 3.2ns tAA†
Mixed interface	ET2009M	480 Cells	2,640 Gates	120 I/O,** 9.2Kbit RAM @ 4ns tAA†
	ET3004M	720 Cells	3,960 Gates	120 I/O,** 4.6Kbit RAM @ 4ns tAA†
ET-H Series				
ECL Gate Arrays				
0.5µ ECL				
100 ps/1GHz	ET10000H	1,792 Cells	9,856 Gates	200 I/O, 120 ECL outputs ++
ECL or Mixed	E10000H	1,792 Cells	9,856 Gates	300 I/O, 150 ECL outputs
ECL/TTL Interface				
* Full Adder = 1	1 Gates ** 136	I/O Optional	† Typical +† N	lixed TTL/ECL interface available

ET Series BiCMOS Gate Arrays	Part Number	Basic Logic Cells*	Equivalent Gates**	I/O Count
	BC400	430 Cells	645 Gates	52 @ 24mA
15 00	BC800	812 Cells	1,218 Gates	72 @ 24mA
1.5μ, 0.8 ns/180 MHz	BC1200	1,248 Cells	1,872 Gates	96 @ 24mA
	BC2000	2,160 Cells	3,240 Gates	112 @ 24mA
	* Thre	e input gates	** Two input gates	3

ET Series LSTTL Gate Arrays	Part Number	Basic Logic Cells*	Equivalent Gates**	I/O Count
1.25 ns/150 MHz	B240	240 Cells	360 Gates	40 @ 24mA
1.25 ns/150 MHz	B350	360 Cells	540 Gates	40 @ 24mA
2.4 ns/70 MHz	B350B	352 Cells	528 Gates	44, 16 @ 48mA
1.25 ns/150 MHz	B600	616 Cells	924 Gates	64 @ 24mA
2.4 ns/70 MHz	B700B	720 Cells	1,080 Gates	64, 24 @ 48mA
1.25 ns/150 MHz	B1100	1,120 Cells	1,680 Gates	88 @ 24mA
	* Thre	e input gates	** Two input gates	6

Note: I/O gate count is not included in Basic Logic Cell or Equivalent Gate density numbers. LSTTL and BICMOS cells have three (3) logic inputs.

FUJITSU CMOS TECHNOLOGY - STANDARD CELLS

AU Series Standard Cell	Compiliable Cells	Super Macros	Basic Logic Cells (2 Input Gate)	Performance
1.2µ CMOS 2- & 3-Layer Metal	32K RAM, 128K ROM PLAs, Registers, Multipliers, ALU	Standard LSI equivalent functions (29xx, 68xx, 82xx)	>60K Gates 2-Input gate equivalent	<0.8 ns typ. <1.3 ns worst case
AV Series Standard Cell				
1.8µ CMOS 2-Layer Metal	16K RAM, 64K ROM, PLAs, Registers	Standard LSI equivalent functions	>13K Gates 2-input gate equivalent	<1.4 ns typ. <2.2 ns worst case

FUJITSU MICROELECTRONICS, INC. 1988 SEMICUSTOM DESIGN GUIDE 169

FUJITSU ASIC PRODUCT GUIDE

FUJITSU CMOS TECHNOLOGY - GATE ARRAYS

UHB Series Gate Arrays	Part Number	Basic Logic Cells	I/O Count	Special Functions
0.9 ns typ./1.4 ns max. 12 mA Balanced Output 1.5μ Dual-Well CMOS 2-Layer Metal	C12000UHB C8700UHB C6000UHB C4100UHB C3000UHB C2200UHB C1700UHB C1200UHB C830UHB C530UHB C330UHB	12,734 Gates 8,768 Gates 6,000 Gates 4,174 Gates 3,066 Gates 2,220 Gates 1,724 Gates 1,233 Gates 830 Gates 530 Gates 336 Gates	220 188 163 163 149 123 108 92 76 66 60	Output current options: 3.2 mA, 12 mA, and 24 mA Absolute number of outputs will be determined by the output current option.
UH Series Gate Arrays				
1.0 ns typ./1.5 ns max. 1.5μ Dual-Well CMOS 3-Layer Metal	C20000UH	20,160 Gates	220 w/Optional Output Drive: 3.2 mA/6.3 mA	Internal Clock Drivers, Scan Test, Auto-Test Program Generation
UM Series Gate Arrays				
1.0 ns typ./1.5 ns max.	C15006UM	15,120 Gates + RAM	219 w/Optional Output Drive: 3.2 mA/6.4 mA	6,144 bits RAM 4 x (24 x 64) Single Port 4 x (18 x 64) Dual Port
1.5μ Dual-Well CMOS 3-Layer Metal	C10012UM	10,080 Gates + RAM	219 w/Optional Output Drive: 3.2 mA/6.4 mA	12,288 bits RAM 2 ea. 4 x (24 x 64) Single Port 2 ea. 4 x (24 x 64) Dual Port
AV Series Gate Arrays	Part Number	Basic Cells	I/O Count	Special Functions
1.4 ns typ. 2.2 ns. max. 1.8μ CMOS 2-Layer Metal	C8000AV C660AV C5000AV C3900AV C2600AV	8,000 Gates 6,664 Gates 5,022 Gates 3,900 Gates 2,640 Gates	160 160 142 127 106	Standard I/O options include TTL compatible, Schmitt trigger, and tri-state functions.
AVB Series Gate Arrays				
1.4 ns typ./2.2 ns max. 10 mA Buffered Output 1.8μ CMOS	C2000AVB C1600AVB C1200AVB C850AVB	2,052 Gates 1,674 Gates 1,245 Gates 852 Gates	92 76 68 60	All AVB outputs have buffered high output current options.
2-Layer Metal Low Voltage Option	C540AVB C350AVB	549 Gates 357 Gates	50 42	*Special low voltage AVL versions are available

AVM Series Gate Arrays

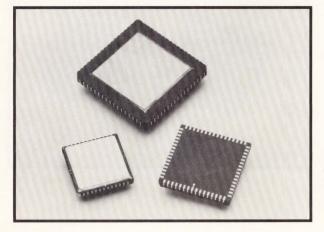
Cate Arrays1.4 ns typ./2.2 ns max.C4002AVM4,087 Gates + RAM1462,304 Bits RAM or 4,608 Bits ROM 1.8μ CMOSC2301AVM2,375 Gates + RAM1241,024 Bits RAM or 2,048 Bits ROM2-Layer MetalC1502AVM1,564 Gates + RAM1142,304 Bits RAM or 4,608 Bits ROM

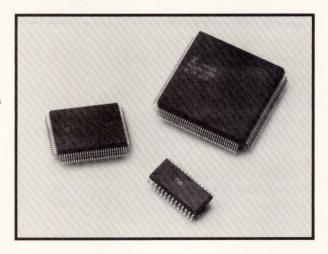
AU Series Gate Arrays	Part Number	Basic Cells	I/O Count	Special Functions
0.7 ns Typ./1.1 ns max.	C100kAU	102,144 Gates	332	
Enhanced Sea-of-Gates	C30kAU	31,500 Gates	178	Output current options:
12 mA Output Capability	C75kAU	75,140 Gates	300	3.2 mA and 12 mA
1.2µ Dual-Well CMOS	C50kAU	52,164 Gates	257	16K RAM (single and multi-port),
3-Layer Metal	C40kAU	41,184 Gates	220	64K ROM, registers available

_

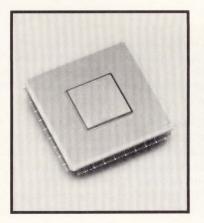
FUJITSU ASIC PACKAGING

CURRENT FUJITSU PACKAGES

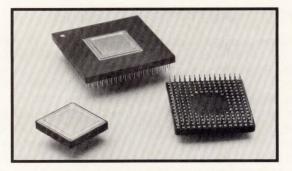

We provide you with the industry's widest range of stateof-the-art plastic and ceramic packages for ASICs. Our packages are all designed internally so Fujitsu can offer you the packaging technology that is unparalleled in the ASIC world. Choose from our selection of surface mount and thru-hole PGAs, LCCs, FPTs, and DIPs for your ASICs — it's ready for you today.


Our broad selection of packages was developed specifically to meet your ASIC needs. Fujitsu is the industry leader in packages for both surface mount and thru-hole technologies. These packages represent our committment in providing you with the best that is available today.

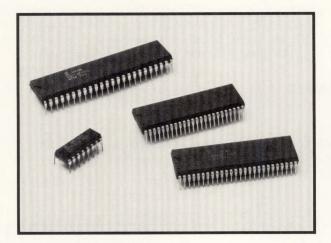
FUJITSU, THE LEADER IN SURFACE MOUNT PACKAGES



Plastic Flat Packages feature high pin densities for surface mounting with ease of lead inspection. Available in pin counts of 16, 20, 24, 28, 44, 48, 64, 70, 80, 100, 120, and 160.



Ceramic Leadless Chip Carriers offer capability for hermetically sealed surface mounting. Available in pin counts of 28, 48, 64, 68, and 84.

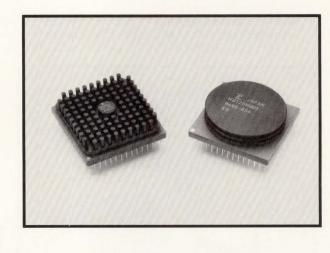


Ceramic Flat Packages offer high pin densities with complete hermetic seal. They have high power dissipation capability that makes this package useable for both CMOS and ECL applications. Available in pin counts of 48, 80, 100, 120, 160, 164, and 260.

Plastic and Ceramic Pin Grid Arrays with both thruhole and surface mount capability are available. They feature high pin counts and reliability with available pin counts of 64, 88, 107, 135, 149, 179, 208, and 256.

FUJITSU'S THRU-HOLE PACKAGES

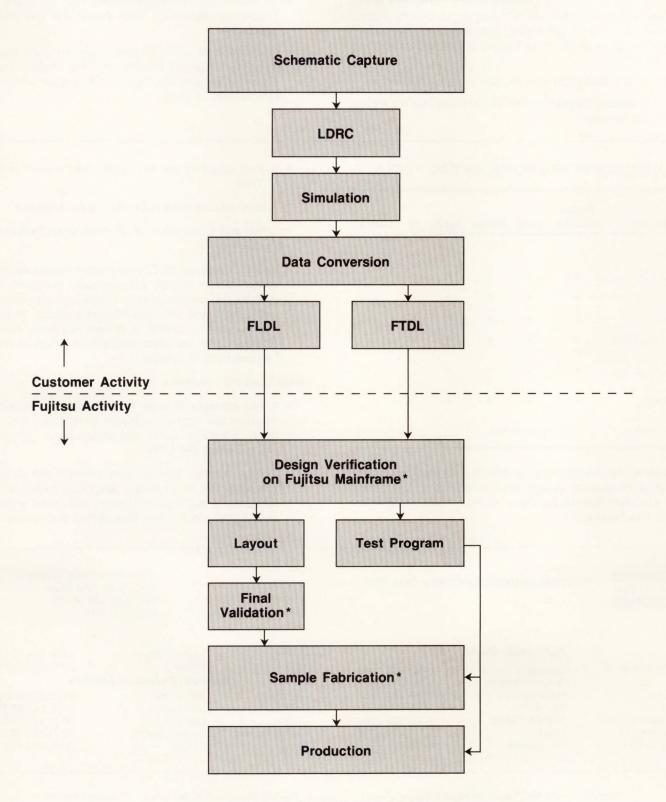
Plastic and Ceramic Dual In-line-Packages are the least expensive and most flexible for thru-hole designs. They are offered in standard form factor as well as shrink and skinny form factors with available pin counts of 14, 16, 18, 20, 22, 24, 28, 40, 42, 48, and 64.


Standard ECL Packages are used in thru-hole applications. These ceramic PGA packages offer two standard heat sink options: Pin Fin (left) and Cooling Tower (right). Available in pin counts of 88, 121, 149, and 208.

FUTURE ASIC PACKAGING TRENDS

Fujitsu is aggressively pursuing long-term development efforts on advanced semiconductor and ASIC packaging technology. Areas of concentration are in high lead count ceramic quad-flat packages; fine-pitch, surface mount ceramic pin-grid arrays; very high density plastic quadflat packages; high pin count plastic pin-grid arrays; and tape automated bonding (TAB). Fujitsu is currently developing 25-mil lead pitch plastic quad-flat packages in both 200-and 240-pin versions. Also in development are ceramic quad-flat packages with 12.5-mil lead pitch and lead counts of well over 300.

A major development program is under way to enhance our current line of surface mounted ceramic pin-grid array packages. A ceramic surface mount PGA package (with over 400 pins on 50-mil spacing) is in an accelerated development program. Fujitsu is also developing TAB assembly technology to accommodate over 500 leads for advanced CMOS and bipolar ASIC products.


This advanced packaging technology is required to take advantage of future generations of ASIC semiconductor devices whose performance would be severely limited by existing conventional packaging technology. Fujitsu's extensive and broad packaging research efforts assure timely availability of reliable and cost-effective packaging for all future high pin-count or high performance requirements.

FUJITSU ASIC DESIGN FLOW

for

ViewCAD[™] and Popular Workstations

*Requires customer approval of output.

FUJITSU ASIC DESIGN SUPPORT

Fujitsu provides design support for all its ASIC technologies and architectures with both **ViewCAD** software and Fujitsu ASIC Design Kits.

ViewCAD is Fujitsu's comprehensive computer-aideddesign software written in "C" and developed by Fujitsu for use on UNIX[™] platforms that support XWindow[™]. **ViewCAD** is available from Fujitsu Microelectronics, Inc. and it includes:

- A Schematic Capture Module utilizing XWindow
- A Timing Diagram or Waveform Entry Module for test vector entry.

FUJITSU SUPPORTS POPULAR CAD TOOLS

Technology	Fujitsu ViewCAD™	Daisy	Mentor	Valid	HP	LASAR
CMOS						
AU 1.2µ	•	•	•	•	•	-
UH 1.5µ	•	•	•	•	_	•
UHB 1.5µ	•	•	•	•	•	•
Standard Cell	•	•	•	•	•	-
ECL	•	•	•	•	-	-
BICMOS	•	•	•	•	-	-
Available	- Under d	develop	ment			

Fujitsu ASIC Design Kits are available for designers using some of the popular design tools on generic workstations. The kits offer support for Daisy, Mentor, Valid and HP (see Table) and include:

FUJITSU

FUJITSU MICROELECTRONICS, INC.

- A Logic Design Rule Check Module (LDRC) that screens for design violations such as fanout and drive, gate count, I/O requirements, etc.
- An Interactive Simulation Module that replicates the Fujitsu mainframe for both functional and timing simulation.
- Conversion Modules to define the net list and test vectors in Fujitsu's formats of FLDL (Fujitsu Logic Description Language) and FTDL (Fujitsu Test Data Description Language).
- Fujitsu Libraries for the tool's Schematic Capture Module
- Fujitsu Timing Models for the tool's simulator
- LDRC and Conversion Modules as described above for **ViewCAD**
- FAME[™] (Fujitsu's ASIC Management Environment), a menu driven design management program that enables the user to select technology, approximate gate count and I/O, pinout and package requirements, and to create a design database that is referenced by the other modules to assure correct-by-construction designs.

FAME software includes:

- A File Manager Module that checks the schematic database and timing models for consistency with the menu selections made and automatically compiles and performs the LDRC.
- A Test Vector Module that creates test vectors automatically for complex functions, assists in defining test groupings, cycle times and strobe settings, and checks created test files against restrictions.

Integrated Circuits Division 3545 North First Street San Jose, CA 95134 (408) 922-9000

	Field Sales Offices	5	Oregon	Lake Oswego	(503) 684-4547
California	Cupertino	(408) 996-1600	Texas	Dallas	(214) 233-9394
Galifornia	Newport Beach	(714) 720-9688	Te	chnical Resource Co	enters
Georgia	Norcross	(404) 449-8539	California	San Jose	(408) 922-9000
Illinois	Itasca	(312) 250-8580	Georgia	Norcross	(404) 242-5865
Massachusetts	Newton Center	(617) 964-7080	Illinois	Itasca	(312) 250-7160
Minnesota	Eagan	(612) 454-0323	Massachusetts	Newton Center	(617) 964-7088
New York	Hauppauge	(516) 361-6565	Texas	Dallas	(214) 960-7392

ViewCAD[™] and FAME[™] are trademarks of Fujitsu Limited XWindow[™] is a trademark of MIT

UNIX[™] is a trademark of Bell Telephone Laboratories, Inc. LASAR[™] is a trademark of Teradyne, Inc.

HARRIS Technology Overview

The Harris Semiconductor Custom Integrated Circuits Division (CICD) develops and manufactures custom and semicustom integrated circuits for use in the Strategic, Tactical and Space environments. Particular emphasis is placed on Radiation Hardened, High Performance, High Reliability and Classified applications. CICD capabilities include Bipolar, Digital and Analog, CMOS Digital and Analog and combinations of these technologies on the same integrated circuit, all of which are offered as standard products, custom and semicustom design and production capabilities, and foundry services.

The technologies offered by CICD are summarized below:

CICD Process Technologies

- MOS Process Technologies
 - ► Silicon Gate CMOS and PMOS
 - ► Metal Gate CMOS and PMOS
 - MNOS (Non-volatile Memory Element)
- Bipolar Digital Capabilities
 - Dielectric and Junction Isolation Technologies
 - Advanced Low Power Schottky Logic Family
 - ➤ Schottky Transistor Logic Family

- Analog Capabilities
 - > Complementary Bipolar Dielectric Isolation
 - CMOS and JFETs Added to Bipolar Processes
 - Laser Trimmed Precision Thin Film Resistors
 - ► Analog CMOS
- Gallium Arsenide
 - > Discrete Gain and Power GaAs FETs
 - Digital MSI and SSI Logic Functions
 - Monolithic Microwave Integrated Circuits (MMICs)
- Microwave Amplifiers
 - Semicustom Logic Arrays

Harris processes are summarized in the table below. Note that Harris CMOS processes are Self Aligned gate, Junction Isolated processes, hence the names SAJI I, IV, etc.

Process	Minimum Feature Size (Drawn Microns)	Rad Tol/Rad-Hard	Levels of Metal
MOS	and the second	and the second	
PMOS	7.5		1
MGCMOS (metal gate)	7.5		1
SAJII	5.0	RT/RH	1
SAJI IV	3.0	RT/RH	1
Scaled SAJI IV	2.5	RT/RH	1
SAJI IVA (A/D)	3.0		1
SAJI VH	2.0	RH	2
RH-7 (VHSIC-LIKE) (A/D)	1.2	RH	2
L7.5	1.5	RT	2
Gamma III	1.2	RH	2 2 2 2
S7	1.2	RT	2
BIPOLAR			
High Freq. Process (HFP)	5.0	RH	1
BIMOS*	2.0	and the second second	1
Advanced Low Power Schottky	4.0	RH	1
Linear ALPS	4.0	RH	1
High Current Linear (HCL)	5.0	RH	1
Very High Freq. Process (VHFP)	4.0	RH	2
GaAs			
DIGI-1,-11	1.0	and the second second second	
MMIC	.5		

HARRIS CICD PROCESS FEATURE SIZE SUMMARY

SEMICONDUCTOR PRODUCTS DIVISION

Harris Semiconductor offers a wide selection of standard analog and digital circuits through its Semiconductor Products Division. This includes a large selection of Standard Radiation-Hardened data sheet products.

HARRIS SEMICONDUCTOR • P.O. Box 883 • Melbourne, Florida 32902-0883 • (407) 724-7872

* Available end of CY '89

SEMICUSTOM

August 1988

Features

- Low Power CMOS Process
- 1.5 Micron Channel Lengths (1.0 Micron Effective)
- Dual Level Metal Interconnect
- 800ps Typical 2-Input Nand Gate Delay with a Fanout = 2
- 100MHz Flip-Flop Toggle Frequency
- Supports Gate Counts to 25K
- Over 200 Primitive and Macrocell Functions
- Complex Function Megacells
- RAM and ROM Module Compilers
- Supported on Harris Architect[™], Daisy[™] and Mentor Graphics[®] Design Systems
- CMOS/TTL Compatible I/O's
- Commercial-Industrial-Military Temperature Ranges
- Proven Reliable and Manufacturable Process
- Extensive Packaging Options
- Screening and Qualification to Mil-Std-883C Method 5004/5005, Class B
- Function Compatible with the HSC1000RH Radiation Hardened Library

Description

The Harris HSC1000 Standard Cell Library is a family of high performance 1.5 micron dual level metal, silicon gate standard cells. The library consists of a family of variable width primitive cells with which a large number of MSI and complex function megacells have been implemented. RAM and ROM compilers are available which allow the user to implement exact configuration of RAM and ROM for a particular application. The HSC cell library meets all military requirements and is forward compatible with other Harris cell libraries. Designs implemented with the HSC1000 library may be ported to the HSC1000RH library for radiation hardened requirements.

The library is supported on Harris Architect[™], Daisy[™] and Mentor Graphics[®]. A complete set of design tools allows the designer to capture, simulate, and verify that the design goals are met. The layout software organizes the chip as rows of cells separated by the exact number of routing channels required for interconnection of the cells. This approach minimizes chip area for cost efficient, high performance designs.

The HSC primitives are a group of 110 custom designed cells that represent the basic design functions most commonly used by a chip designer. These cells are the lowest level at which the designer may work. They include basic gates such as nands, nors, and inverters as well as flip flops and latches. These cells have been optimized for area and performance. Each cell is designed such that rise and fall propagation times have been matched to minimize skew.

The 74XX functions are offered for those designers who feel more comfortable designing with a standard logic family. All of the 74XX functions are soft coded cells implemented with the HSC primitives. The functionality of the 74XX family has been preserved and matches that of the HCMOS family.

The complex function megacells are a family of highly integrated functions which allow the designer to more efficiently implement commonly used LSI functions.

The I/O cells offer the designer fast on and off chip propagation times. High output drive is offered allowing the chip to drive 100pF loads in minimum time

Packaging

Harris Semiconductor offers a wide variety of plastic and ceramic dual-in-line packages, leadless and leaded chip carriers, flatpacks and pin grid arrays. The table illustrates the types of packages and pin count options available. For additonal information or packaging requirements not shown in this table, please contact a factory representative.

PACKAGING	PIN COUNT
Plastic DIP	14 - 48
Ceramic DIP	14 - 64
Plastic Leaded Chip Carrier	20 - 84
Ceramic Leaded Chip Carrier	14 - 164
Ceramic Leadless Chip Carrier	18 - 84
Ceramic PGA	68 - 180
	Contraction of the second second

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.

Harris Architect[™] is a Trademark of Harris Corporation, Daisy[™] is a Trademark of Daisy Systems Corporation Mentor Graphics[®] is a Registered Trademark of Mentor Graphics Copyright © Harris Corporation 1988

HSC1000

Dual Level Metal CMOS Standard Cell Library

SEMICUSTOM

HSC100RH Radiation Hardened Dual Level Metal CMOS

August 1988

Features

- Low Power CMOS Process
- 2.0 Micron Channel Lengths (1.25 Micron Effective)
- Dual Level Metal Interconnect
- Guaranteed Hardened Against Radiation
 - ► Total Dose >2 x 10⁵ Rad-Si
 - Data Upset>1 x 10⁹ Rad-Si/s
- 800ps Typical 2-Input Nand Gate Delay with a Fanout = 2
- 100MHz Flip-Flop Toggle Frequency
- Supports Gate Counts to 13K
- Over 200 Primitive and Macrocell Functions
- Complex Function Megacells
- Supported on Harris Architect[™], Daisy[™] and Mentor Graphics[®] Design Systems
- CMOS/TTL Compatible I/O's
- Military Temperature Ranges
- Proven Reliable and Manufacturable Process
- Extensive Packaging Options
- Screening and Qualification to Mil-Std-883C Method 5004/5005, Class B
- Function Compatible with the HSC1000 Non-Radiation Hardened Library

Description

The Harris HSC1000RH Standard Cell Library is a family of high performance 2.0 micron dual level metal, radiation hardened, silicon gate standard cells. The library consists of a family of variable width primitive cells with which a large number of MSI and complex function megacells have been implemented. The HSC cell library meets all military requirements and is forward compatible with other Harris cell libraries.

Standard Cell Library

The library is supported on Harris Architect[™], Daisy[™] and Mentor Graphics[®] platforms. A complete set of design tools allows the designer to capture, simulate, and verify that the design goals are met. The layout software organizes the chip as rows of cells separated by the exact number of routing channels required for interconnection of the cells. This approach minimizes chip area for cost efficient, high performance designs.

The HSC primitives are a group of 110 custom designed cells that represent the basic design functions most commonly used by a chip designer. These cells are the lowest level at which the designer may work. They include basic gates such as nands, nors, and inverters as well as flip flops and latches. These cells have been optimized for area and performance. Each cell is designed such that rise and fall propagation times have been matched to minimize skew.

The 74XX functions are offered for those designers who feel more comfortable designing with a standard logic family. All of the 74XX functions are soft coded cells implemented with the HSC primitives. The functionality of the 74XX family has been preserved and matches that of the HCMOS family.

The complex function megacells are a family of highly integrated functions which allow the designer to more efficiently implement commonly used LSI functions.

The I/O cells offer the designer fast on and off chip propagation times. High output drive is offered allowing the chip to drive 100pF loads in minimum time.

Packaging

Harris Semiconductor offers a wide variety of plastic and ceramic dual-in-line packages, leadless and leaded chip carriers, flatpacks and pin grid arrays. The table illustrates the types of packages and pin count options available. For additonal information or packaging requirements not shown in this table, please contact a factory representative.

PACKAGING	PIN COUNT
Plastic DIP	14 - 48
Ceramic DIP	14 - 64
Plastic Leaded Chip Carrier	20 - 84
Ceramic Leaded Chip Carrier	14 - 164
Ceramic Leadless Chip Carrier	18 - 84
Ceramic PGA	68 - 180

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.

Harris Architect[™] is a Trademark of Harris Corporation, Daisy[™] is a Trademark of Daisy Systems Corporation Mentor Graphics[®] is a Registered Trademark of Mentor Graphics, Inc. Copyright © Harris Corporation 1988

HARRIS Digital Architect

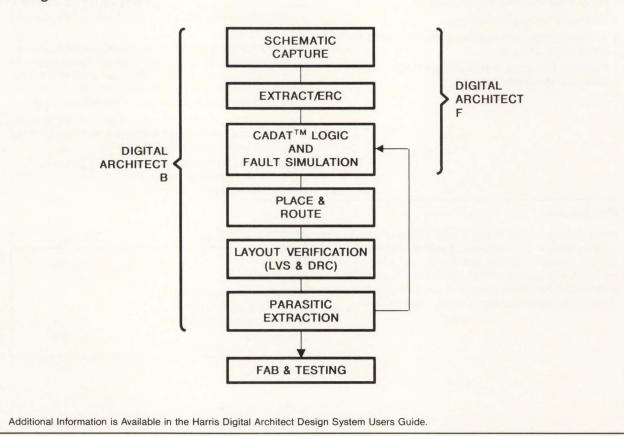
SEMICUSTOM

August 1988

Design System

Features

- Supports Harris Standard Cell, Gate Array* and Compiled Functions*
- Schematic Capture and Simulation for SSI, MSI, LSI Macrofunctions and RAM/ROM Compilers Available Now
- Complete System including Place and Route and Layout Verification Planned for 1989
- Based on the CADENCE Design Framework[™], Providing Consistent, Menu-driven Interfaces for All Tools
- 1.5 Micron Non-rad-hard (HSC1000) and Two Micron Rad Hard (HSC1000RH) Libraries Are Available Today
- CADAT[™] Logic and Fault Simulation Capabilities Include Min/Typ/Max Delays for All Functions. Post Radiation Simulation Supported for HSC1000RH
- Back Annotation of Fanout and Routed Delays
- Harris-Customized CADENCE Design Framework[™] Allows Use on Most UNIX Platforms
- Scheduled for QML (Generic Qualification) in Calendar Year 1990
- Supports EDIF Netlist Input


Design Flowchart

Description

The Harris Digital Architect Design System provides schematic capture, design verification and place and route capability for Harris HSC cell families. This toolkit is based on the CADENCE Design Framework[™] and has been used successfully for many HSC cell-based designs. The Harris Digital Architect Design System is the toolset that Harris uses internally to design standard products and to process customer designs captured on other workstations such as Daisy or Mentor.

After placement and routing, parasitics are backannotated to the CADAT simulator for a final simulation and critical paths are identified, evaluated and modified if necessary. The Harris Digital Architect Design System supports the entire design process from design capture through PG tape generation.

Two versions of the Harris Digital Architect Design System are available; a schematic capture and design verification system called Digital Architect F, and a complete front to back system, Digital Architect B.

Digital Architect[™] is a Trademark of Harris Corporation

*Gate Array Support Planned for Q2, 1989, Compiler Support Provided as a Harris Custom Service. CADENCE Design Framework[™] is a Trademark of CADENCE Systems, CADAT[™] is a Trademark of HHB Systems Copyright © Harris Corporation 1988

Bipolar Analog Architect[™]

Design System

August 1988

Features

- Full Custom Bipolar Transistor-Level Analog IC Design Capability
- Runs on Industry Standard Workstation Platforms
- Menu-Driven Interface
- Hierarchical Schematic Capture
- Coupled Electrical and Physical Design Features
- Electrical Design Rules Checking and Layout vs. Schematic Checking
- Continuously Variable Diffused and Thin Film Resistors
- Automatic Device Model Parameter Determination
- Self-Contained Statistical Process/Device Data Bases
- A Variety of High Performance Bipolar Analog Processes
- Continuously Variable Transistor Geometries
- Based on the CADENCE Design Framework[™]
- Powerful Electrical Statistical Simulation Capability
- Automatic Layout Generation
- Layout Modifications and Parasitics Automatically Back Annotated to Schematics

Shippable Product Forms

- Unprobed Wafers With Untested Packaged Prototypes
- Tested Dice
- Tested Packaged Parts
- All Wafers Delivered in Unprobed Circuit Form Are Probed For Conformance to Process/Device Parameter Limits

General Purpose Process

Features

- Dielectrically Isolated
- Complementary Vertical Bipolar Transistors
- P Channel JFET
- Various Diffused Resistors
- Laser Trimmable NiCr Resistors
- High Quality Capacitor

TYPICAL DEVICE CHARACTERISTICS

	NPN	PNP
BVCEO	40V	40V
HFE	250	125
FT	750MHz	400MHz

Description

The Bipolar Analog Architect Design System is a comprehensive, self-contained software system for the full custom design of analog circuits using bipolar technology. This package contains all tools necessary to perform both the electrical and physical design of an analog IC using Harris proprietary wafer fabrication processing. The package also contains a complete statistical description of the process being used, allowing a comprehensive statistical analysis of circuit performance using built-in Monte Carlo procedures.

In this system, no structural geometries are predetermined. The geometry of transistors and other circuit elements is determined by the user, according to the individual application, using built-in software.

The electrical design system includes software tools for design capture, device design, electrical simulation, and data analysis. The physical design system provides tools for layout graphics editing, layout to schematic checking, layout groundrule checking, and parasitic extraction.

A variety of wafer fabrication processes will eventually be incorporated into the system, allowing the designer to use various combinations of Bipolar, JFET, analog switching CMOS and digital CMOS technology in the solution of system design problems. These will be continuously augmented as new processes are developed at Harris, assuring the user continued access to state-of-the-art technology.

High Frequency Process

Features

- Dielectrically Isolated
- Complementary Vertical Bipolar Transistors
- Double Level Metal Interconnect
- P Channel JFET
- Various Diffused Resistors
- Laser Trimmable NiCr Resistors
- High Quality Capacitor

TYPICAL DEVICE CHARACTERISTICS

	NPN	PNP
BVCEO	20V	20V
HFE	150	125
FT	1.2GHz	1.0GHz

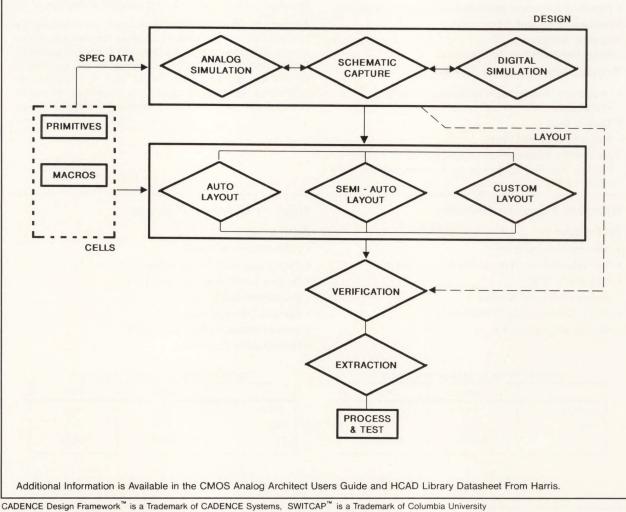
CADENCE Design Framework[™] is a Trademark of CADENCE Systems. Bipolar Analog Architect is a Trademark of Harris Corporation Copyright © Harris Corporation 1988

CMOS Analog Architect[™]

Design System

August 1988

Features


- Provides a Path to Quick-turn, High Confidence Analog ASICs
- Supports Switched Capacitor Design Techniques Allowing a Wide Range of Analog Functions
- Supported by the Harris HCAD 10-Volt Analog and Digital Cell Family
- SWITCAP^{**} and SLICE* Simulations Allow Accurate Prediction of Final Circuit Performance
- Typical Level of Integration is 50 Op-Amps
- Available as a Harris Custom Capability
- Harris-Customized CADENCE Design Framework[™] Allows Use on Most UNIX Platforms

Design Flow

Description

The Harris CMOS Analog Architect Design System provides schematic capture, design verification, netlisting and place and route capability for the Harris HCAD analog/digital cell family. These tools are supported on a Harris-modified CADENCE Design Framework[™] and have been used successfully for several HCAD cell-based designs. At the present time the CMOS Analog Architect Design System is used internally to perform designs to a customer specification.

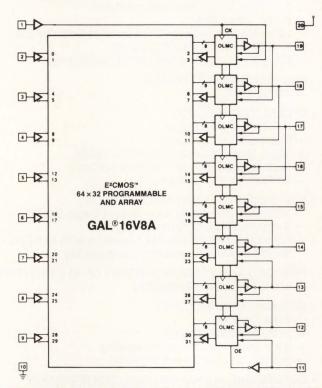
The primary library is composed of a full set of analog primitive cells optimized for sampled data design methods. Also available are higher level macros (filter structures and programmable amplifiers for example) which help reduce design cycle time through the use of interactive auto place and route techniques.

CADENCE Design Framework is a Trademark of CADENCE Systems, SWITCAP is a Trademark of Columbia University CMOS Analog Architect is a Trademark of Harris Corporation *SLICE is based on Berkeley SPICE Copyright © Harris Corporation 1988

GAL®16V8A

Ultra High-Speed E²CMOS[™] Generic Array Logic

FEATURES


- HIGH PERFORMANCE E²CMOS[™] TECHNOLOGY
- 12 ns Maximum Propagation Delay
- Fmax = 62.5 MHz
- 10 ns Maximum from Clock Input to Data Output
- TTL Compatible 24 mA Outputs
- UltraMOS[®] III Advanced CMOS Technology
- 50% REDUCTION IN POWER
 75mA Typ I_{cc}
- E² CELL TECHNOLOGY
- Reconfigurable Logic
- Reprogrammable Cells
- 100% Tested/Guaranteed 100% Yields
- High Speed Electrical Erasure (<50ms)
- 20 Year Data Retention
- EIGHT OUTPUT LOGIC MACROCELLS
- Maximum Flexibility for Complex Logic Designs
- Programmable Output Polarity
- Also Emulates 20-pin PAL® Devices with Full Function/Fuse Map/Parametric Compatibility
- PRELOAD AND POWER-ON RESET OF ALL REGISTERS
 100% Functional Testability
- APPLICATIONS INCLUDE:
- DMA Control
- State Machine Control
- High Speed Graphics Processing
- Standard Logic Speed Upgrade
- ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION

The GAL®16V8A, at 12 ns maximum propagation delay time, combines a high performance CMOS process with Electrically Erasable (E^2) floating gate technology to provide the highest speed performance available in the PLD market. CMOS circuitry allows the GAL®16V8A to consume just 75ma typical I_{cc} which represents a 50% savings in power when compared to its bipolar counterparts. The E² technology offers high speed (50ms) erase times providing the ability to reprogram or reconfigure the devices quickly and efficiently.

The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. An important subset of the many architecture configurations possible with the GAL®16V8A are the PAL® architectures listed in the table on the right. The GAL®16V8A is capable of emulating any of these PAL® architectures with full function/fuse map/ parametric compatibility.

Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacture. Therefore, LATTICE guarantees 100% field programmability and functionality of all GAL® products. LATTICE also guarantees 100 erase/rewrite cycles and that data retention exceeds 20 years.

FUNCTIONAL BLOCK DIAGRAM

GAL*/PAL COMPARISON-12/15ns DEVICES

PART TYPE	GAL®16V8A ARCHITECTURE EMULATION 115ma		®16xx ABILITY 180ma
16L8	~		~
16H8	~	A STATE	
16R8	~		~
16R6	~	1	~
16R4	~		V
16P8	~		
16RP8	~		
16RP6	~	and the second	
16RP4	~		
10L8	~		
12L6	~		
14L4	~		
16L2	~	1.	
10H8	~	5- 1	
12H6	~	i cha trail	
14H4	~		
16H2	~	1.	2122
10P8	~		
12P6	~		
14P4	~		
16P2	~		
16V8	~		

Copyright @1988 Lattice Semiconductor Corp. GAL is a registered trademark of Lattice Semiconductor Corp. E*CMOS is a trademark of Lattice Semiconductor Corp. PAL is a registered trademark of Monolithic Memories, Inc.

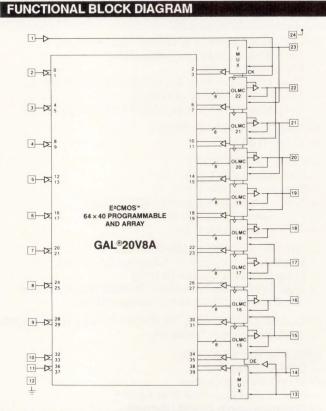
LATTICE SEMICONDUCTOR CORP., PO BOX 2500, PORTLAND, OREGON 97208-2500, U.S.A. Tel. (503) 681-0118; 1-800-FASTGAL 0888/WCP/5K/EC

GAL®20V8A

Ultra High-Speed E²CMOS[™]

Generic Array Logic

FEATURES


- HIGH PERFORMANCE E²CMOS[™] TECHNOLOGY
- 12 ns Maximum Propagation Delay
- Fmax = 62.5 MHz
- 10 ns Maximum from Clock Input to Data Output
- TTL Compatible 24 mA Outputs
- UltraMOS[®] III Advanced CMOS Technology
- 50% REDUCTION IN POWER — 75mA Typ I_{cc}
- E² CELL TECHNOLOGY
 - Reconfigurable Logic
 - Reprogrammable Cells
 - 100% Tested/Guaranteed 100% Yields
 - High Speed Electrical Erasure (<50ms)
 - 20 Year Data Retention
- EIGHT OUTPUT LOGIC MACROCELLS
 - Maximum Flexibility for Complex Logic Designs
 - Programmable Output Polarity
- Also Emulates 24-pin PAL® Devices with Full Function/Fuse Map/Parametric Compatibility
- PRELOAD AND POWER-ON RESET OF ALL REGISTERS
 100% Functional Testability
- APPLICATIONS INCLUDE:
 - DMA Control
 - State Machine Control
 - High Speed Graphics Processing
 - Standard Logic Speed Upgrade
- ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION

The GAL*20V8A, at 12 ns maximum propagation delay time, combines a high performance CMOS process with Electrically Erasable (E²) floating gate technology to provide the highest speed performance available in the PLD market. CMOS circuitry allows the GAL*20V8A to consume just 75ma typical I_{cc} which represents a 50% savings in power when compared to its bipolar counterparts. The E² technology offers high speed (50ms) erase times providing the ability to reprogram or reconfigure the devices quickly and efficiently.

The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. An important subset of the many architecture configurations possible with the GAL®20V8A are the PAL® architectures listed in the table on the right. The GAL®20V8A is capable of emulating any of these PAL® architectures with full function/fuse map/ parametric compatibility.

Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacture. Therefore, LATTICE guarantees 100% field programmability and functionality of all GAL® products. LATTICE also guarantees 100 erase/ rewrite cycles and that data retention exceeds 20 years.

PART TYPE	GAL®20V8A ARCHITECTURE EMULATION 115ma	PAL®20xx AVAILABILIT 115ma 180r	
20L8	V		V
20H8	~		
20R8	~	a freedom texas	V
20R6	~		V
20R4	~		V
20P8	~	in a start	
20RP8	~		
20RP6	~		
20RP4	~		
14L8	~		and the set
16L6	~		i na internet
18L4	~		
20L2	~		
14H8	~		
16H6	~		
18H4	~	M Dise in the	1.00
20H2	~		
14P8	~		
16P6	~		
18P4	~		
20P2	~	Lange Lange	-
20V8A	V		

Copyright ©1988 Lattice Semiconductor Corp. GAL is a registered trademark of Lattice Semiconductor Corp. E²CMOS is a trademark of Lattice Semiconductor Corp. PAL is a registered trademark of Monolithic Memories, Inc. 0888/WCP/15K/EC

LATTICE SEMICONDUCTOR CORP., PO BOX 2500, PORTLAND, OREGON 97208-2500 U.S.A. Tel. (503) 681-0118 or 1-800-FASTGAL; FAX (503) 681-3037

August 1988

GAL®6001

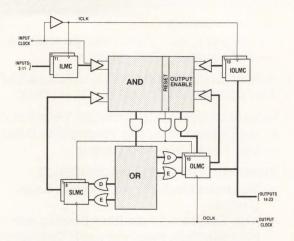
Generic Array Logic

PRELIMINARY

FEATURES

- ELECTRICALLY ERASABLE CELL TECHNOLOGY
 - Instantly Reconfigurable Logic
 - Instantly Reprogrammable Cells
 - Guaranteed 100% Yields
- HIGH PERFORMANCE E²CMOS[™] TECHNOLOGY — Low Power: 90mA Typical
 - High Speed: 15ns Max. Clock to Output Delay 25ns Max. Setup Time 30ns Max. Propagation Delay
- TTL COMPATIBLE INPUTS AND OUTPUTS
- UNPRECEDENTED FUNCTIONAL DENSITY
 - 10 Output Logic Macro Cells
 - 8 State Logic Macro Cells
 - 20 Input and I/O Logic Macro Cells
- HIGH-LEVEL DESIGN FLEXIBILITY
 - 78 × 64 × 36 FPLA Architecture
 - Separate State Register and Input Clock Pins
 - Functionally Supersets Existing 24-pin PAL[®] and IFL[™] Devices
 - Asynchronous Clocking
- SPACE SAVING 24-PIN, 300-MIL DIP
- HIGH SPEED PROGRAMMING ALGORITHM
- 20-YEAR DATA RETENTION

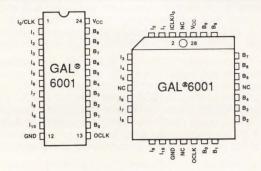
DESCRIPTION


Using a high performance E²CMOS[™] technology, Lattice Semiconductor has produced a next-generation programmable logic device, the GAL®6001. Having an FPLA architecture, known for its superior flexibility in statemachine design, the GAL®6001 offers the highest degree of functional integration, flexibility, and speed currently available in a 24-pin, 300-mil package.

The GAL®6001 has 10 programmable Output Logic Macrocells (OLMC) and 8 programmable "buried" State Logic Macrocells (SLMC). In addition, there are 10 input Logic Macrocells (ILMC) and 10 I/O Logic Macrocells (IOLMC). Two clock inputs are provided for independent control of the input and output macrocells.

Advanced features that simplify programming and reduce test time, coupled with E²CMOS[™] reprogrammable cells, enable 100% AC, DC, programmability, and functionality testing of each GAL®6001 during manufacture. This allows Lattice to guarantee 100% performance to specifications. In addition, data retention of 20 years and a minimum of 100 erase/write cycles are guaranteed.

Programming is accomplished using standard hardware and software tools. In addition, an Electronic Signature word is available for storage of user specified data, and a security cell is provided to protect proprietary designs.


MACRO CELL NAMES

ILMC	INPUT LOGIC MACRO CELL	
IOLMC	I/O LOGIC MACRO CELL	
SLMC	STATE LOGIC MACRO CELL	
OLMC	OUTPUT LOGIC MACRO CELL	

PIN NAMES

I ₀ -I ₁₀	INPUT	B ₀ -B ₉	BIDIRECTIONAL
ICLK	INPUT CLOCK	Vcc	POWER (+5)
OCLK	OUTPUT CLOCK	GND	GROUND

PIN CONFIGURATION

GAL, UltraMOS, Generic Array Logic are registered trademarks of Lattice Semiconductor Corp. E²CMOS is a trademark of Lattice Semiconductor Corp. PAL is a registered trademark of Monolithic Memories Inc. IFL is a trademark of Signetications and information herein are subject to change without notice. Copyright 1987 Lattice Semiconductor Corporation.

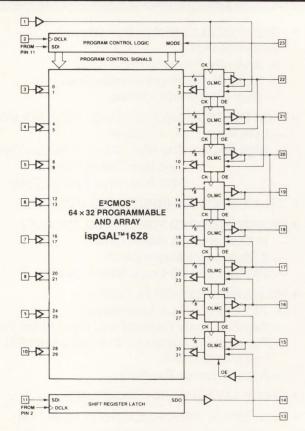
ispGAL[™] 16Z8

In-System re-Programmable GENERIC ARRAY LOGIC

ADVANCED INFORMATION

FEATURES

- **IN-SYSTEM RECONFIGURABLE—5-VOLT ONLY** PROGRAMMING
 - Change Logic "On the Fly" (in less than 1 s)
 - Nonvolatile E² Technology
- DIAGNOSTICS MODE FOR CONTROLLABILITY AND OBSERVABILITY OF SYSTEM LOGIC
- HIGH PERFORMANCE E²CMOS[™] TECHNOLOGY High Speed: 25ns Max Propagation Delay — Low Power: 90mA Max Active
- EIGHT OUTPUT LOGIC MACROCELLS
 - Maximum Flexibility for Complex Logic Designs
 - Also Emulates 20-pin PAL® Devices with Full Function/Fuse Map/Parametric Compatibility
- PRELOAD AND POWER-ON RESET OF **ALL REGISTERS**
 - 100% Functional Testability
- SPACE SAVING 24-PIN, 300-MIL DIP
- MINIMUM 10,000 ERASE/WRITE CYCLES
- DATA RETENTION EXCEEDS 10 YEARS
- ELECTRONIC SIGNATURE FOR IDENTIFICATION
- APPLICATIONS INCLUDE:
 - Reconfigurable Interfaces
 - Copy Protection and Security Schemes
 - erasable hardware
 - password systems
 - proprietary hardware/software interlocks


DESCRIPTION

The LATTICE ispGAL™16Z8 is a revolutionary programmable logic device featuring 5-volt only in-system reprogrammability and real time, in-system diagnostic capabilities. This is made possible by on-chip circuitry which generates and shapes the necessary high voltage internal programming control signals. Using LATTICE UltraMOS® technology, this device provides true bipolar performance at significantly reduced power levels.

The 24-pin ispGAL™16Z8 is architecturally and parametrically identical to the 20-pin GAL®16V8, but includes 4 extra pins to control in-system programming. These extra pins are: data clock (DCLK), serial data in (SDI), serial data out (SDO), and mode control (MODE). These pins are not associated with normal logic functions and are used only during programming. Additionally, this 4-pin interface allows an unlimited number of devices to be cascaded to form a serial programming and diagnostics loop.

Advanced features that simplify programming and reduce test time, coupled with E²CMOS[™] reprogrammable cells, enable complete AC, DC, programmability, and functionality testing of each ispGAL™16Z8 during manufacturing and allows LATTICE to guarantee 100% performance to all specifications.

FUNCTIONAL BLOCK DIAGRAM

PIN NAMES

I ₀ -I ₁₅	INPUT	MODE	MODE CONTROL
CLK	CLOCK INPUT	DCLK	DATA CLOCK
B ₀ -B ₅	BI-DIRECTIONAL	SDI	SERIAL DATA IN
F ₀ -F ₇	OUTPUT	SDO	SERIAL DATA OUT
$\overline{G}(\overline{OE})$	OUTPUT ENABLE	V _{cc}	POWER (+5V)
GND	GROUND		

PIN CONFIGURATION

	1 24	
	ispGAL* 16Z8	F7 F6 F5 F4 F3 F2 F1 F0
SDI GND	12 13	

The specifications and information herein are subject to change without notice. GAL and UltraMOS are registered trademarks of Lattice Semiconductor Corp. ispGAL and E²CMOS are trademarks of Lattice Semiconductor Corp. PAL is a registered trademark of Monolithic Memori FEBRUARY, 1988 Copyright ©1988 Lattice Semiconductor Corp.

LATTICE SEMICONDUCTOR CORP. P.O. BOX 2500, PORTLAND, OR 97208 184 SEMICUSTOM DESIGN GUIDE 1988

APPLICATIONS HOTLINE: 1-800-FASTGAL

Mitsubishi CMOS Gate Arrays

SOLID SEMICONDUCTOR FOUNDATION

Mitsubishi Electric Corporation markets and sells semiconductor products in the United States and Canada through Mitsubishi Electronics America, Inc.-Semiconductor Division with headquarters in Sunnyvale, California.

According to Dataquest, Mitsubishi Electric is among the top ten semiconductor suppliers in the world, offering a broad line of semiconductor products. Additionally, Mitsubishi companies are diversified into areas including heavy industry, chemicals and consumer products marketed worldwide.

A sister company to Mitsubishi Electronics America, Inc., Mitsubishi Semiconductor America, Inc. in Durham, North Carolina provides U.S. assembly of DRAMs. Major design centers for gate arrays and standard cells are also located at Mitsubishi companies in Sunnyvale and in Durham.

Mitsubishi is a major worldwide DRAM supplier. Current development of 4 and 16 megabit DRAM products will provide advanced technology for ASIC design.

In 1987, Mitsubishi Semiconductor America, Inc. broke ground for an ASIC fabrication facility. Development and production of 1.3 μ m and 1.0 μ m CMOS gate arrays and standard cells for U.S. customers is slated to start at this facility in early 1989.

FEATURES

- 1.3 μm (M6002X, M6003X, M6004X) and 2 μm (M6001X) CMOS processes.
- Broad density range: 200–20,000 useable gates
- Extensive variety of packages:
 - PLCC
- Ceramic PGA
 Tape-Automated Bonding
- QFP - DIP
- Pin-Grid-Array (TAB PGA)
- Mounted Pin-Grid-Array
- SOP Mounted - Shrink DIP (MPGA)*
- High quality and reliability
 - 100% burn-in
 - 100% electrical (AC and DC) and functional testing
- Mitsubishi's patented gate isolation structure** allows 15% faster performance and 20% higher gate density than conventional oxide isolation.

REGIONAL SALES OFFICES

NORTHWEST 1050 East Arques Avenue Sunnyvale, CA 94086 Phone: 408-730-5900 SOUTHWEST 991 Knox Street Torrance, CA 90502 Phone: 213-515-3993 SOUTH CENTRAL 2105 Luna Road, Suite 320 Carrollton, TX 75006 Phone: 214-484-1919

• Variable Track Master (VTM) architecture provides effective implementation of memory on chip.

- Flexible design support with a library of over 280 macros.
- All popular engineering workstations are supported: Mentor Graphics[®] Valid Logic[™], Daisy[™], Hewlett Packard[®], IKOS[™], Intergraph[™], FutureNet[®] and OrCAD[™]

DESCRIPTION

Mitsubishi offers four families of CMOS gate arrays with an extensive selection of packages and gate capacities.

1.3µm CMOS Gate Arrays

M6002X Series — A family of conventional channeled architecture arrays with sizes from 224 to 2,400 useable gates.

M6003X Series — A family of large gate arrays, in sizes of 3,200 to 20,000 useable gates. These arrays use Mitsubishi's Variable Track Masterslice (VTM) architecture which provides variable size routing channels and efficient use of gates for flexible RAM and ROM cells.

M6004X Series — Two array sizes from the M6003X family are offered in TAB (Tape-Automated-Bonding) packaging for a high I/O count. Sizes now available are 4,100 gates (182 I/Os) and 6,300 gates (220 I/Os).

2.0µm CMOS Gate Arrays

M6001X Series — A family of conventional architecture arrays using the 2 μm CMOS process in sizes ranging from 500 to 8,000 gates.

1.0 μ m CMOS Gate Arrays

Mitsubishi will offer $1.0\mu m$ gate arrays by the end of 1988. Sizes will include 15,000, 25,000, 35,000 and 50,000 useable gates. These arrays are designed with Variable Track Masterslice architecture and will use the same library cells and CAD tools available for other Mitsubishi gate array families.

*Available end of 1988. **U.S. Patent No. 4,562,453.

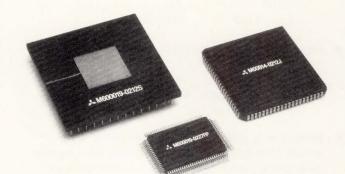
> NORTHERN 15612 Highway 7, #243 Minnetonka, MN 55345 Phone: 612-938-7779

NORTH CENTRAL 800 N. Bierman Circle Mt. Prospect, IL 60056 Phone: 312-298-9223

Mitsubishi 1.3µm CMOS GATE ARRAYS M6002X, M6003X, and M6004X Series

Part Number ⁽¹)(2)		M60020	M60021	M60022	M60023	M60024	M60025	M60030	M60031	M60032	M60034	M60035	M60037	M60041	M60042
Number of Gates		224	507	800	1104	1773	2400	4788	7308	10836	20412	25200	47376	7308	10836	
Number of Equ	ivalent Ga	tes	-	-	-	-	-	-	3200	4100	6300	8400	11000	20000	4100	6300
Maximum I/O F	Ports		22	32	42	48	62	72	88	110	132	180	196	256	182	220
Maximum Num	ber Pin Pa	airs ⁽³⁾	390	630	930	1200	1750	2190	2790	3650	5910	7045	9450	17180	3650	5910
Total Number E	Basic Cells	(4)	672	1521	2400	3312	5319	7200	9600	12300	18900	25200	33000	60000	12300	18900
Maximum Num Basic Cells ⁽⁵⁾	iber Useab	le	570	1292	2040	2815	4522	6120	8160	9840	15120	20160	26400	48000	9840	15120
Package Type	Lead Spacing	Pins														
Plastic DIP	100 mil	16 ⁽⁶⁾ 20 ⁽⁶⁾ 28 ⁽⁷⁾	:	:	:											
Plastic Shrink DIP	70 mil	42 52 64		•	:	•	:	•	•							
Small Outline Package (SOP)	50 mil	24 36	•	:	:											
Plastic Flat Package (FP)	1.0mm 1.0mm 0.8mm 0.65mm 0.8mm 0.65mm	44 64 80 100 128 160			•	•		•	•	•	•	•	•			
Plastic Leaded Chip Carrier (PLCC)	50 mil	44 52 68 84		•	•	:	:	•	•	:	:	:				
Tape- Automated- Bonding Pin-Grid-Array (TAB PGA)	100 mil	208 256													•	•
Ceramic Pin-Grid-Array (PGA)	100 mil	177 209 281											•			

(1) M60002X Series is conventional (channel) architecture.


 (2) M60003X Series is Variable Track Masterslice (VTM) architecture.
 (3) A pin pair is a cell-to-cell interconnect. The total number of pin pairs is limited for each gate array. Exceeding this limit means the automatic routing of the interconnect may be difficult. A basic cell is the pair of corresponding p and n transistors from which the array is constructed. Three basic cells are equivalent to a 2-input NAND gate

(4)

(5) Maximum utilization with random logic.

(6) 300 mil body only available. (7) 600 mil body only available

The dots shown in this chart indicate packages now in production. Please contact your local Mitsubishi sales office for information on additional package/array combinations.

NEW ENGLAND

200 Unicorn Park Drive Woburn, MA 01801 Phone: 617-938-1220 186 SEMICUSTOM DESIGN GUIDE 1988

MID-ATLANTIC 45 Knightsbridge Road Piscataway, NJ 08854 Phone: 201-981-1001

SOUTH ATLANTIC 6575 The Corners Parkway, Suite 100 Norcross, GA 30092 Phone: 404-662-0813

SOUTHEAST Town Executive Center 6100 Glades Road #210 Boca Raton, FL 33433 Phone: 407-487-7747

CANADA c/o Tech Rep Electronics, Ltd. 7115 RTE Trans Canadienne St. Laurent, Quebec, Canada H4T 1A2 Phone: 514-337-6046

Mitsubishi 2µm CMOS GATE ARRAYS M6001X Series

Part Number			M60011	M60012	M60013	M60014	M60015	M60016	M60017	M60018	M60019
Number of Gates			500	810	1100	1680	2666	3608	4814	6233	8096
Maximum I/O Ports			64	82	96	116	132	148	176	178	190
Maximum Number Pir	Pairs ⁽¹⁾		720	980	1220	1660	2380	3210	4120	5820	7000
Total Number Basic C	ells ⁽²⁾		1500	2431	3300	5040	8000	10824	14442	18700	24288
Maximum Number Us	eable Basic	Cells	1275	2066	2805	4284	6800	9200	12275	14960	19066
Package Type	Lead Spacing	Pins									
Plastic DIP	100 mil	$ \begin{array}{r} 16(3) \\ 18(3) \\ 20(3) \\ 24(5) \\ 28(4) \\ 40(4) \\ 42(4) \end{array} $	•	•	•	•	•	•	•		
Plastic Shrink DIP	70 mil	42 52 64	:	:	:	:	•	•	•		
Ceramic Pin-Grid-Array (PGA)	100 mil	124 209						•	:	•	•
Plastic Flat Package (FP)	1.0mm 1.0mm 0.8mm 0.65mm 0.8mm 0.65mm	44 64 80 100 128 160	•	•	•••••		•	•••••		•	•
Plastic Leaded Chip Carrier (PLCC)	50 mil	44 52 68 84	:	••••••	••••••	:	•	•	•		

A pin pair is a cell-to-cell interconnect. The total number of pin pairs is limited for each gate array. Exceeding this limit means the automatic routing of the interconnect may be (1) difficult. A basic cell is the pair of corresponding p and n transistors from which the array is constructed. Three basic cells are equivalent to a 2-input NAND gate

(2)

300 mil body only available. (3)

(4) 600 mil body only available.(5) 600 and 300 mil available.

The dots shown in this chart indicate packages now in production. Please contact your local Mitsubishi sales office for information on additional package/array combinations.

CAD Workstation for Gate Array Designs

REGIONAL SALES OFFICES NORTHWEST 1050 East Arques Avenue Sunnyvale, CA 94086 **Phone: 408-730-5900**

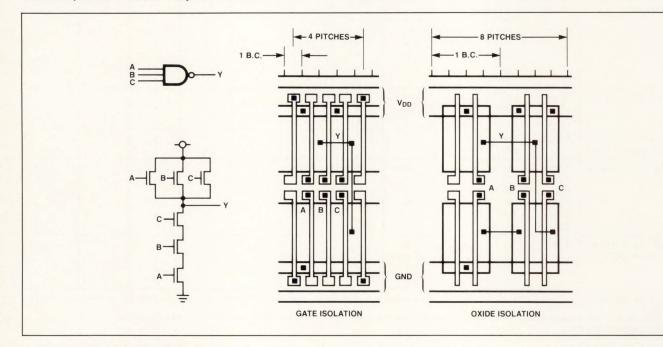
SOUTHWEST 991 Knox Street Torrance, CA 90502 Phone: 213-515-3993

SOUTH CENTRAL 2105 Luna Road, Suite 320 Carrollton, TX 75006 Phone: 214-484-1919

NORTHERN 15612 Highway 7, #243 Minnetonka, MN 55345 Phone: 612-938-7779

NORTH CENTRAL 800 N. Bierman Circle Mt. Prospect, IL 60056 Phone: 312-298-9223

MITSUBISHI CMOS GATE ARRAYS

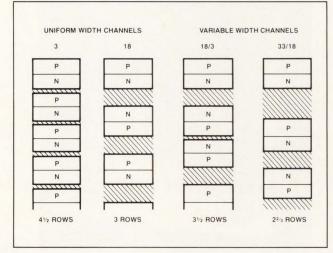

DESIGN INNOVATION

Gate Isolation

Mitsubishi gate arrays are designed using a patented^{*} gate isolation structure developed at Mitsubishi's LSI Labs.

The layout drawing of a three-input NAND, shown below, shows the benefits of this process. Gate isolation is achieved in four "pitches" as compared to the eight required for the conventional oxideisolation process. The ability to use individual "basic cells" (pairs of N- and P- transistors), rather than groups of two-input NAND gates results in higher gate utilization.

Overall, gate isolation results in a more compact design, and lower interconnect capacitance so that circuit performance is better than the conventional oxide isolation process. The example of the three input NAND gate shows a 50% improvement in density. Other cells average about 30% density increase. Performance improvements of 10 to 20% are also realized as a result of shorter interconnect lines.



Variable Track Masterslice (VTM)

The M6003X family uses the variable track masterslice (VTM) architecture developed by Mitsubishi. This architecture provides flexible width routing channels by allowing a tradeoff between rows of transistors and routing space.

The array leaves room for three lines between transistor rows which is sufficient for the row and column lines of a memory cell. As more routing is needed, rows of n- or p- transistors are sacrificed for interconnect. The place and route software can make variable sizes of routing channels, depending upon need.

The largest array in Mitsubishi's VTM family has about 300,000 transistors, which is equivalent to 50,000 gates. Utilization depends on the mix of random-logic and repetitive functions, such as memory/shift registers. Random logic can achieve at least 40% utilization of the array while ROM or RAM can achieve 100% utilization.

*U.S. Patent No. 4,562,453.

NEW ENGLAND
200 Unicorn Park Driv
Woburn, MA 01801
Phone: 617-938-1220

MID-ATLANTIC 45 Knightsbridge Road Piscataway, NJ 08854 Phone: 201-981-1001

188 SEMICUSTOM DESIGN GUIDE 1988

SOUTH ATLANTIC 6575 The Corners Parkway, Suite 100 Norcross, GA 30092 Phone: 404-662-0813 SOUTHEAST Town Executive Center 6100 Glades Road #210 Boca Raton, FL 33433 Phone: 407-487-7747

CANADA

c/o Tech Rep Electronics, Ltd. 7115 RTE Trans Canadienne St. Laurent, Quebec, Canada H4T 1A2 Phone: 514-337-6046 Mitsubishi CMOS Gate Arrays

QUALITY AND RELIABILITY

Data from the high volume process used for Mitsubishi's static RAMs assures tight process control and high quality/reliability for ASIC products.

All Mitsubishi gate array products (except prototypes) undergo a high temperature (125°C), high voltage (7 volts), static burn-in. The duration of burn-in is varied according to the maturity of the product and product line.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

All products, including prototypes, are 100% tested functionally and to AC and DC specifications.

Mitsubishi uses proprietary I/O protection techniques to enhance ESD and latch-up immunity. When tested with 1500 ohms of series resistance, Mitsubishi's gate arrays withstand discharges of over +2000 volts from a 100pF capacitor. Current surges of 200mA on the power pin can be tolerated without latch-up.

		Lin	Limits				
Symbol	Parameter	Min	Max	Unit			
VDD	Supply Voltage	V _{SS} - 0.3	7.0	V			
VI	Input Voltage	V _{SS} - 0.3	V _{DD} + 0.3	V			
Vo	Output Voltage	V _{SS} - 0.3	V _{DD} + 0.3	V			
lo	Output Current ⁽¹⁾		10	mA			
lo	Output Current ⁽²⁾		20	mA			
I _O (T)	Total Output Current		100	mA			
Topr	Operating Temperature	- 20	75	°C			
Tstg	Storage Temperature	- 55	150	°C			
	Electrostatic Discharge(3)	- 2000	2000	V			

Recommended Operating Conditions

		Lin	Limits			
Symbol	Parameter	Min	Max	Unit		
VDD	Supply Voltage	4.5	5.5	V		
Topr	Operating Temperature	- 20	75	°C		
VI	Input Voltage	0	VDD	V		
Vo	Output Voltage	0	VDD	V		
lo	Output Current per Output ⁽¹⁾		7	mA		
lo	Output Current per Output ⁽²⁾		14	mA		
CL	Output Load Capacitance		50	pF		
Io (T)	Total Output Sink Current		80	mA		
Io (T)	Total Output Source Current		40	mA		

DC Characteristics

1			Lin			
Symbol	Parameter	Test Conditions	Min	Max	Unit	
VIL		$V_{DD} = 4.5V$	0	0.8	V	
VIH	Input Voltage (TTL Interface)	$V_{DD} = 5.5V$	2.2	5.5		
VIL		V _{DD} = 4.5V	0	1.35	- v	
VIH	Input Voltage (CMOS Interface)	V _{DD} = 5.5V	3.85	5.5	V	
VT-			0.7	1.65		
VT+	Input Voltage Schmitt Trigger (TTL Interface)	V _{DD} = 5V	1.3	2.1	V	
VH			0.3	1.2		
VT -			0.85	2.5		
VT+	Input Voltage Schmitt Trigger (CMOS Interface)	V _{DD} = 5V	2.3	3.7	V	
VH			0.5	1.6		
VOL				0.1	- v	
Voh	Output Voltage	$V_{DD} = 5V, I_O = 0mA$	4.9		v	
IOL		V _{OL} = 0.4V, V _{DD} = 4.5V	6		mA	
ЮН	Output Current ⁽¹⁾	V _{OH} = 4.1V, V _{DD} = 4.5V	-2			
IOL	(2)	V _{OL} = 0.4V, V _{DD} = 4.5V	14		— mA	
Юн	Output Current ⁽²⁾	V _{OH} = 4.1V, V _{DD} = 4.5V				
II.	Input Leakage Current	$V_I = V_{DD}, V_{SS}$	- 1	+1	μΑ	
loz	Output Leakage Current	Vo = VDD, VSS	-1	+ 1	μΑ	
RU	Pull-up Resistor(1)	$V_{DD} = 5V, V_I = 0V$	50	500	kΩ	
RD	Pull-down Resistor(1)	$V_{DD} = 5V, V_I = 5V$	50	500	kΩ	
RU	Pull-up Resistor(2)	$V_{DD} = 5V, V_I = 0V$	23	230	kΩ	
RD	Pull-down Resistor(2)	$V_{DD} = 5V, V_I = 5V$	16	160	kΩ	

(1) M6001X Series

(2) M6002X, M6003X and M6004X Series

3) Electrostatic discharge is measured from a 100pF capacitor through 1500Ω.

REGIONAL SALES OFFICES

NORTHWEST 1050 East Arques Avenue Sunnyvale, CA 94086 Phone: 408-730-5900 SOUTHWEST 991 Knox Street Torrance, CA 90502 Phone: 213-515-3993 SOUTH CENTRAL 2105 Luna Road, Suite 320 Carrollton, TX 75006 Phone: 214-484-1919 NORTHERN 15612 Highway 7, #243 Minnetonka, MN 55345 Phone: 612-938-7779 NORTH CENTRAL 800 N. Bierman Circle Mt. Prospect, IL 60056 Phone: 312-298-9223

Parameter	Test Conditions	1.3μm (M6002X, M6003X)	2μm (M6001X)	Unit	
2-Input NAND Gate Delay		0.9	1.4	nsec	
Input Buffer Delay		1.2	1.4	nsec	
	Load: 20pF	3.5	5.5		
Output Buffer Delay	Load: 50pF	4.8	7.7	nsec	
	Load: 100pF	7	11.9		
Contraction of the second s	Load: 25pF	0.6	0.6		
Power Dissipation/Output Buffer	Load: 50pF	1.3	1.3	mW/MHz	
	Load: 100pF	2.5	2.5		
Toggle Rate		175	100	MHz	
Power Dissipation per Gate		10	15	μW/MHz	
Input Pin Capacitance		8	8		
Output Pin Capacitance	f = 1MHz	8	8	pF	
Bidirectional Pin Capacitance		8	8		

User Friendly CAD System for Error-Free Design

Mitsubishi offers a highly flexible system of design interface options. Starting with a schematic, we'll implement a design from schematic capture, simulation and timing verification through manufacturing and testing of prototypes. Designers can use Mentor Graphics[®] Daisy[™] Valid Logic[™] FutureNet[™] Hewlett Packard[®] Intergraph[™] IKOS[™] or OrCAD[™] workstations with the powerful and user-friendly Mitsubishi CAD system to direct their own design. In addition, modem hook-ups using a terminal or PC with IBM[®] 3270 emulation are available. Mainframe access for simulation is also available via IBM-IN[®]. This provides for flexible remote access to the Mitsubishi CAD system for circuit design.

No matter how customers choose to interface, Mitsubishi will provide guidance as needed. There are design centers in Sunnyvale, California and Durham, North Carolina offering mainframe computer capability for development. Additional design support is offered at Mitsubishi regional office technical centers.

MITSUBISHI FLEXIBLE DESIGN INTERFACE

Mitsubishi Engineering Workstation Support

	Schematic Entry	Functional Simulation	Delay Simulation	Circuit Conversion	Test Pattern Conversion
Mentor "IDEA 1000®"	•	•	•	•	•
Daisy ''LOGICIAN™''	•	•	•	•	•
Valid ''SCALD™''	•	•	•	•	•
FutureNet "DASH/CADAT®"	•	•		•	•
Hewlett Packard®	•	•	•	•	•
Intergraph™	•	•	•	•	•
IKOS™		•	•	•	•
OrCAD™	•			•	

Mentor Graphics and Idea 1000 are registered trademarks of Mentor Graphics Corporation.

Daisy and Logician are trademarks of Daisy Systems Corporation. Valid Logic and Scald are trademarks of Valid Logic Systems, Inc.

FutureNet and Dash-Cadat are registered trademarks of FutureNet, a Data I/O company.

Hewlett Packard is a registered trademark of Hewlett Packard Corporation.

Intergraph is a trademark of Intergraph Corporation.

IKOS is a trademark of IKOS Corporation.

IBM and IBM-IN are registered trademarks of International Business Machines Corporation.

OrCAD is a trademark of OrCAD Systems Corporation.

NEW ENGLAND
200 Unicorn Park Drive
Woburn, MA 01801
Phone: 617-938-1220

MID-ATLANTIC 45 Knightsbridge Road Piscataway, NJ 08854 Phone: 201-981-1001 SOUTH ATLANTIC 6575 The Corners Parkway, Suite 100 Norcross, GA 30092 Phone: 404-662-0813 SOUTHEAST Town Executive Center 6100 Glades Road #210 Boca Raton, FL 33433 Phone: 407-487-7747

CANADA

c/o Tech Rep Electronics, Ltd. 7115 RTE Trans Canadienne St. Laurent, Quebec, Canada H4T 1A2 Phone: 514-337-6046

190 SEMICUSTOM DESIGN GUIDE 1988

THE MITSUBISHI GATE ARRAY CELL LIBRARY

Mitsubishi continues to expand its extensive cell library for easy development of a wide range of logic applications. The large number of TTLcompatible cells in Mitsubishi's library are ideally suited for applications where development of designs using TTL logic components, or conversion of existing TTL systems are required. Unique cells, such as ROM and RAM, provide even more flexibility for integrating functions which previously had to be implemented off-chip. ROM cells are not shown, since gate array ROM is created by a ROM compiler for the size needed.

The current library offers over 105 TTL-equivalent macrofunctions (soft macros) and over 175 hard macro cells.

On-Chip Configurable RAM and ROM

With Mitsubishi gate arrays, designers can configure various sizes of memory on-chip. Only the number of cells necessary to achieve the required word-length is used, leaving unused cells free to implement other logic. There is less wasted space, plus designers save the I/Os and access delays involved in interfacing off-chip. Mitsubishi's memory cells have typical access times of 20ns to 25ns for the 2μ m family, and 15ns to 20ns for the 1.3 μ m family.

MACRO FUNCTIONS

Cell Name	LSTTL Equiv	Description	Basic Cells (1)	Pin Pairs (2)
T04200SA	LS42	BCD: Decimal Decoder	66	48
T04200SA	LS42 LS48	BCD: 7 Segment Decoder/Driver	146	95
T07500WA	LS40 LS75	4-Bit Through Latch	64	10
T08300WB	LS75	4-Bit Full Adder	137	74
T08300WB	LS83	4-Bit Full Adder	137	74
		4-Bit Magnitude Comparator	194	113
T08500WB	LS85 LS90	Decade Counter	157	33
T09000WA	LS90	8-Bit Shift Register	171	22
T09100SA			190	31
T09101SA	LS91	8-Bit Shift Register	132	21
T09200WA	LS92	Divide-by-12 Counter	103	13
T09300SA	LS93	4-Bit Binary Counter 4-Bit Parallel Register	135	40
T09500WA	LS95		157	33
T09600WA	LS96	5-Bit Shift Register 3:8 Decoder/Demux with Latch	95	57
T13700SA	LS137 LS138	3:8 Decoder/Demux with Latch	60	42
T13800SA		3:8 Decoder/Demux	130	58
T13800WA	LS138	2:4 Decoder/Demux	54	34
T13900SA	LS139 LS139	2:4 Decoder/Demux	26	17
T13901SA		10-Dec: 4-BCD Priority Encoder	115	64
T14700WB	LS147 LS148	8:3 Priority Encoder	163	86
T14800WB		8:1 Data Selector/Mux	77	54
T15100WA	LS151 LS153	4:1 Data Selector/Mux	82	50
T15300WA		4:1 Data Selector/Mux	35	25
T15301SB	LS153 LS155	2-Bit Binary: 4-Dec Demux with Strobe	56	35
T15500SA	LS155	2:1 Data Selector/Mux	40	27
T15700SA	LS157	2:1 Data Selector/Mux	49	23
T15700WA	LS157	2:1 Data Selector/Mux	53	27
T15800WA		Synchronous Presettable Decade Counter with	00	
T16000WA	LS160	Reset	225	86
T16100WB	LS161	Synchronous Presettable 4-Bit Counter with		
TIGIOUVB	LOIDI	Reset	212	80
T16200WA	LS162	Fully Synchronous Presettable Decade Counter	194	79
	LS162	Synchronous 4-Bit Binary Counter	199	62
T16300WA	LS163	8-Bit Serial-In/Parallel-Out Shift Register	211	35
T16400SA		8-Bit Parallel-In/Serial-Out Shift Register	268	77
T16500WA	LS165 LS166	8-Bit Shift Register	247	71
T16600WA		4-Bit D-Type Register with 3-State Output	172	47
T17300WA	LS173		151	22
T17400SA	LS174	Hex D Flip-Flop with Reset	100	14
T17500SA	LS175	Quad D Flip-Flop with Reset	341	165
T18100SB	LS181	ALU/Function Generator	95	66
T18200SB	LS182	Look-Ahead Carry Generator	95	00
T19000WA	LS190	Synchronous Presettable Up-Down Decade Counter	288	106

REGIONAL SALES OFFICES

NORTHWEST	SC
1050 East Argues Avenue	99
Sunnyvale, CA 94086	Tor
Phone: 408-730-5900	Ph

 OUTHWEST
 SOUTH CENTRAL

 21 Knox Street
 2105 Luna Road, Suite 320

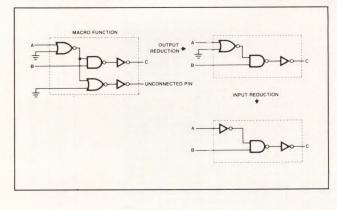
 orrance, CA 90502
 Carrollton, TX 75006

 hone: 213-515-3993
 Phone: 214-484-1919

MACRO FUNCTIONS

Cell	LSTTL		Basic Cells	Pin Pairs
Name	Equiv	Description	(1)	(2)
T19100WA	LS191	Synchronous Presettable Up-Down 4-Bit Counter	278	94
T19200WA	LS192	Synchronous Presettable Up-Down Decade		
		Counter	230	230
T19300WA	LS193	Synchronous Presettable Up-Down 4-Bit Counter	229	89
T19400WB	LS194	4-Bit Bidirectional Universal Shift Register	208	86
T19500WA	LS195	Parallel Access Shift Register with Reset	176	47
T19600WA	LS196	Presettable Decade Counter/Latch	222	73
T19700SA	LS197	Presettable 4-Bit Binary Counter/Latch	192	59
T24800WA	LS248	BCD: 7-Segment Decoder/Driver	157	99
T25100WA	LS251	8:1 Data Selector/Mux with 3-State Output	100	52
T25700WA	LS257	2:1 Data Selector/Mux with 3-State Output	84	27
T25800WA	LS258	Quad 2:1 Data Selector/Mux with 3-State Output	71	27
T27300WA	LS273	Octal Positive Edge-Triggered D Flip-Flop with		
		Reset	202	26
T28000WB	LS280	9-Bit Odd/Even Parity Generator/Checker	159	106
T28001WA	LS280	9-Bit Even Parity Generator/Checker	72	16
T28002WA	LS280	9-Bit Odd Parity Generator/Checker	72	16
T29500WA	LS295	4-Bit Shift Register with 3-State Output	162	40
T29800WA	LS298	Quad 2-Input Mux with Storage	122	31
T35200WA	LS352	Dual 4:1 Data Selector/Mux with Strobe	74	48
T35300WA	LS353	Dual 4:1 Data Selector/Mux with 3-State Output	94	52
T36700WA	LS367	Hex Bus Driver with 3-State Output	72	14
T36800WA	LS368	Hex Bus Driver with 3-State Output (Inverter)	84	20
T37300WA	LS373	Octal Positive Edge D Flip-Flop with 3-State		
		Output	193	35
T37400WA	LS374	Octal Positive Edge D Flip-Flop with 3-State		
		Output	287	42
T37700WA	LS377	Octal Positive Edge D Flip-Flop with Enable	244	61
T39000WA	LS390	Dual Decade Counter	135	23
T39300SA	LS393	Dual 4-Bit Binary Counter	214	44
T39500WA	LS395	4-Bit Cascadable Shift Register	179	48
T49000WA	LS490	Dual 4-Bit Decade Counter	165	35
T59500WA	LS595	8-Bit Shift Register/Latch with 3-State Output	451	66
T66800WA	LS668	Synchronous Presettable Up-Down Counter	285	110
T66900WB	LS669	Synchronous 4-Bit Up-Down Counter	261	111
T67001WB	LS670	4 × 4 Register Files with 3-State Output	505	113
T68401WA	LS684	8-Bit Magnitude Comparator	224	99
T68801WA	LS688	8-Bit Magnitude Comparator with Enable	130	46
M00100WB		16-Word × 32-Bit RAM	3123	650
M00200WB		32-Word × 32-Bit RAM	5461	1234
M00300WB		64-Word x 16-Bit BAM	5573	1338
M00400WB		128-Word × 8-Bit RAM	5643	1330

(1) A basic cell is the pair of corresponding p and n transistors from which the array


 (2) A pin pair is a cell-to-cell interconnect. The total number of pin pairs is limited for each gate array. Exceeding this limit means the automatic routing of the interconnect may be difficult.

Automatic Logic Reduction

Mitsubishi's CAD system automatically implements logic reduction by eliminating unused cells from partially used macrofunctions.

The example below illustrates typical reduction resulting from unused inputs and outputs, which can be accomplished by our CAD system.

Logic Reduction: Example Using Mitsubishi's CAD System

NORTHERN 15612 Highway 7, #243 Minnetonka, MN 55345 Phone: 612-938-7779

NORTH CENTRAL 800 N. Bierman Circle Mt. Prospect, IL 60056 Phone: 312-298-9223

MITSUBISHI CMOS GATE ARRAYS

MACRO CELLS

Cell Name	Drive	Description	Basic Cells (1)	Pin Pairs (2)	Cell Name	Drive	Description	Basic Cells (1)	
V01S V01W	X2	Inverter Inverter	23	1	FDBS FD1W	X2	D Flip-Flop D Flip-Flop	18 21	2
V01Q	X4	Inverter	5	1	FD2S	~2	D Flip-Flop, with Set	21	3
KH1S KH4S		Driver, 3-State, Active High	7 19	25	FDCS	VO	D Flip-Flop, with Set D Flip-Flop, with Set	20 23	3
KOZW	X2	Driver, 3-State, Active High, 4-Bit Driver, 3-State, Active High	11	2	FD2W FD3S	X2	D Flip-Flop, with Set	23	3
KL1S		Driver, 3-State, Active Low	7	2	FDDS		D Flip-Flop, with Reset	20	3
KL4S K1ZW	X2	Driver, 3-State, Active Low, 4-Bit Driver, 3-State, Active Low	19 11	52	FD3W FD4S	X2	D Flip-Flop, with Reset D Flip-Flop, with Set and Reset	23 23	3
K1NS		Driver, Clock Line	3	1	FDES		D Flip-Flop, with Set and Reset	22	4
K1NW	X2	Driver, Clock Line	4	1	FD4W	X2	D Flip-Flop, with Set and Reset	25	4
K1NQ K2GW	X4 X2	Driver, Clock Line Driver, Clock Line, Gated	6 5	1 2	FD7S FD7W	X2	D Flip-Flop, with Reset, Positive Edge Triggered D Flip-Flop, with Reset, Positive Edge Triggered	23	3
N02S		NAND, 2-Input	3	2	FD8W	X2	D Flip-Flop, with Set and Reset, Positive Edge		
N02W N03S	X2	NAND, 2-Input NAND, 3-Input	7 4	23	FDRS		Triggered D Flip-Flop, 4-Bit	26 63	4 5
NO3W	X2	NAND, 3-Input	8	3	FDSS		D Flip-Flop, 4-Bit, with Reset	75	6
N04S	VO	NAND, 4-Input	5	4	FDQS		D Flip-Flop, 4-Bit, with Reset	85	5
N04W N05S	X2	NAND, 4-Input NAND, 5-Input	9	4 5	FDFS FJBS		D Flip-Flop and Latch JK Flip-Flop	22 25	3
N06W	X2	NAND, 6-Input	12	6	FJ3W	X2	JK Flip-Flop, with Reset, Master-Slave	28	4
W80N N09W	X2 X2	NAND, 8-Input NAND, 9-Input	14 16	8	FJ4W FJAS	X2	JK Flip-Flop, with Set and Reset, Master-Slave JK Flip-Flop, with Set and Reset, Positive Edge	30	5
N12W	X2	NAND, 12-Input	19	12	FJAS		Triggered	32	4
N16W	X2	NAND, 16-Input	25	16	FJ7W	X2	JK Flip-Flop, with Reset, Positive Edge Triggered	29	4
AN2S AN3S		AND, 2-Input AND, 3-Input	4 5	23	FDAS HL0S		D Latch, NAND Type D Latch, With Reset Active High, Inverted Output	12	23
AN3W	X2	AND, 3-Input	6	3	HLAS		D Latch, With Reset Active Low	12	3
AN4S AN4W	X2	AND, 4-Input AND, 4-Input	6 7	4	HLBS LF1S		D Latch	11 12	22
R02S	~~	NOR, 2-Input	3	2	LF1S LF1W	X2	D Latch, Hazard Free D Latch, Hazard Free	14	2
R02W	X2	NOR, 2-Input	7	2	LF4S		D Latch, 4-Bit, Hazard Free	52	5
R03S R03W	X2	NOR, 3-Input NOR, 3-Input	4	3	LFAS LFBS		D Latch, 4-Bit D Latch, 4-Bit	39 40	5
R04S		NOR, 4-Input	5	4	FLAS		RS Latch, NAND Type	8	2
R04W	X2 X2	NOR, 4-Input	9	4	FLOS		RS Latch, NOR Type	8	2
R06W R08W	X2 X2	NOR, 6-Input NOR, 8-Input	12 14	6 8	FR1S FR2S		Shift Register, 4-Bit, Serial-In Parallel-Out Shift Register, 4-Bit, Serial-In Parallel-Out, with	61	2
R09W	X2	NOR, 9-Input	16	9			Synchronous Load	97	7
R12W R16W	X2 X2	NOR, 12 Input NOR, 16-Input	19 25	12 16	FR3S	1.1.1	Shift Register, 4-Bit Serial-In Parallel-Out, with Synchronous Load	82	7
OR2S		OR, 2-Input	4	2	SHAS	1 100	Adder, Half, 1-Bit	9	2
OR2W	X2	OR, 2-Input	5	2	SFAS		Adder, Full, 1-Bit	18	3
OR3S OR3W	X2	OR, 3-Input OR, 3-Input	56	3	SA2S SA3S	100	Adder, Full, 2-Bit Adder, Full, 2-Bit	49	5
OR4S		OR, 4-Input	6	4	FT7S		Counter, 1-Bit, with Set and Reset, Positive Edge		
OR4W XNOS	X2	OR, 4-Input Exclusive NOR, 2-Input	76	4 2	CA1S		Triggered	28	4
XNOW	X2	Exclusive NOR, 2-Input	9	2	CAIS		Counter, 1-Bit, with Set and Reset, Positive Edge Triggered	23	4
XORS	VO	Exclusive OR, 2-Input	6	2	CA2S		Counter, 1-Bit	20	2
XORW S12S	72	Exclusive OR, 2-Input Selector, 1 to 2	9	2 3	FC1S D2GS		Counter, 4-Bit, Binary, Asynchronous Decoder, 2 to 4	70 24	32
D12S	1.1.1	Selector, 1 to 2, Dual	10	4	D3GS	10.19	Decoder, 3 to 8	51	3
S21B S21S		Selector, 2 to 1	7	4	D4GS	2.4	Decoder, 4 to 16	97	4
D21S		Selector, 2 to 1 Selector, 2 to 1, Dual	59	4	PGN1 PGN2		Edge Sensitive Pulse Generator Edge Sensitive Pulse Generator	23 34	
S24S		Selector, 2 to 1, 4-Bit	37	10	PGN3	17.1	Edge Sensitive Pulse Generator	45	1
S34W S44W	X2 X2	Selector, 3 to 1, 4-Bit Selector, 4 to 1, 4-Bit	41 52	14 18	PGN4 PGN5	122.5	Edge Sensitive Pulse Generator Edge Sensitive Pulse Generator	56 67	1
S41S	AL	Selector, 4 to 1	17	10	PGN6		Edge Sensitive Pulse Generator	78	1
A23S A34S	10001	AND-NOR, 2-Input AND into 2-Input NOR	4	3	PGR1		Edge Sensitive Pulse Generator	23	1
A245	1.5	AND-NOR, 3-Input AND into 2-Input NOR AND-NOR, 2-Input AND into 3-Input NOR	55	4	PGR2 PGR3		Edge Sensitive Pulse Generator Edge Sensitive Pulse Generator	34 45	
A01S	11.23	OR-AND-NOR, 2-Input OR into 2-Input AND into 2-Input			PGR4	12.15	Edge Sensitive Pulse Generator	56	1
0235	Con la	NOR OR-NAND, 2-Input OR into 2-Input NAND	5	4	PGR5 PGR6	12.5	Edge Sensitive Pulse Generator Edge Sensitive Pulse Generator	67 78	1
D34S	1.1	OR-NAND, 3-Input OR into 2-Input NAND	5	4	BOSN		Buffer, Oscillator	4	1
024S		OR-NAND, 2-Input OR into 3-Input NAND AND-OR-NAND, 2-Input AND into 2-Input OR into	5	4	BI1N	12/50 31	Buffer, Input, TTL Buffer, INput, Cleak Line, TTL	0	0
		2-Input NAND	5	4	BK1N BC1N		Buffer, INput, Clock Line, TTL Buffer, Input, CMOS	5	0
24S		AND-NOR, 2 2-Input AND into 2-Input NOR	5	4	BS1N		Buffer, Input, TTL, Schmitt Trigger	14	1
T28W	X2	AND-NOR, 3 2-Input AND into 3-Input NOR AND-NOR, 4 2-Input AND into 4-Input NOR	8 14	6 8	BCSN BPUN		Buffer, Input, CMOS, Schmitt Trigger Buffer, Input, TTL, with Resistor Pull-Up	12	1
T2CW	X2	AND-NOR, 6 2-Input AND into 6-Input NOR	20	12	BPDN		Buffer, Input, TTL, with Resistor Pull-Down	0	0
T2GW	X2 X2	AND-NOR, 8 2-Input AND into 8-Input NOR AND-NOR, 2 3-Input AND into 2-Input NOR	25	16	BO1N		Buffer, Output	0	1
39W	X2	AND-NOR, 2 3-Input AND Into 2-Input NOR AND-NOR, 3 3-Input AND into 3-Input NOR	11 14	6 9	BZ1N BPON		Buffer, Output, 3-State Buffer, Output, Source-Only	12	2
3CW	X2	AND-NOR, 4 3-Input AND into 4-Input NOR	17	12	BNON	1000	Buffer, Output, Sink-Only	0	1
	X2 X2	AND-NOR, 2 4-Input AND into 2-Input NOR AND-NOR, 3 4-Input AND into 3-Input NOR	13 18	8 12	BR1N		Buffer, Input/Output, 3-State, TTL Input	12	2
	X2	AND-NOR, 4 4-Input AND into 4-Input NOR	22	16	BQ1N BSDT		Buffer, Input/Output, 3-State, CMOS Input Buffer, Input, TTL Schmitt In, Pull-Down	12	20
J24S		OR-NAND, 2 2-Input OR into 2-Input NAND	5	4	BSUT		Buffer, Input, TTL Schmitt In, Pull-Up	14	0
J26S J28W	X2	OR-NAND, 3 2-Input OR into 3-Input NAND OR-NAND, 4 2-Input OR into 4-Input NAND	8 14	6 8	BUCN BDCN		Buffer, Input, CMOS Input, Pull-Up Buffer, Input, CMOS Input, Pull-Down	0	0
J2CW	X2	OR-NAND, 6 2-Input OR into 6-Input NAND	21	12	BSUC		Buffer, Input, CMOS Schmitt In, Pull-Up	12	0
J2GW J36W	X2	OR-NAND, 8 2-Input OR into 8-Input NAND	25	16	BSDC		Buffer, Input, CMOS Schmitt In, Pull-Down	12	0
J39W	X2 X2	OR-NAND, 2 3-Input OR into 2-Input NAND OR-NAND, 3 3-Input OR into 3-Input NAND	11 14	6 9	BSRN BSQN		Buffer, Input/Output, 3-State, TTL Schmitt In Buffer, Input/Output, 3-State, CMOS Schmitt In	26 24	2
J3CW	X2	OR-NAND, 4 3-Input OR into 4-Input NAND	17	12	ZLLL		Ground	1	0
J48W	X2 X2	OR-NAND, 2 4-Input OR into 2-Input NAND OR-NAND, 3 4-Input OR into 3-Input NAND	13	8	ZHHH		VDD	1	0
J4GW	X2	OR-NAND, 3 4-Input OR into 3-Input NAND	17 22	12 16			is the pair of corresponding p and n transistors from y		array
_M1W	X2	AND-OR, 2 2-Input AND into 2-Input OR	8	4			ed. Three basic cells are equivalent to a 2-input NAND s a cell-to-cell interconnect. The total number of pin pa		ed for
M2W	X2	AND-OR, 3 and 2-Input AND into 2-Input OR D Flip-Flop	9	5 2			array. Exceeding this limit means the automatic routing		- 101

NEW ENGLAND 200 Unicorn Park Drive Woburn, MA 01801 Phone: 617-938-1220

MID-ATLANTIC 45 Knightsbridge Road Piscataway, NJ 08854 Phone: 201-981-1001

SOUTH ATLANTIC 6575 The Corners Parkway, Suite 100 Norcross, GA 30092 Phone: 404-662-0813

SOUTHEAST SOUTHEAST Town Executive Center 6100 Glades Road #210 Boca Raton, FL 33433 Phone: 407-487-7747

CANADA c/o Tech Rep Electronics, Ltd. 7115 RTE Trans Canadienne St. Laurent, Quebec, Canada H4T 1A2 Phone: 514-337-6046

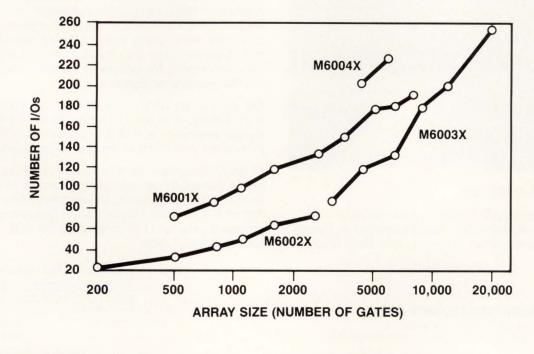
192 SEMICUSTOM DESIGN GUIDE 1988

MITSUBISHI ELECTRONICS

Mitsubishi CMOS Gate Arrays

MITSUBISHI PACKAGING AND PRODUCTION

Extensive Packaging Options


Mitsubishi offers a broad range of industrystandard and proprietary packaging options. A leadership foundation in high pin count surfacemount packages includes quad flat packages (QFP), now available with up to 160 leads. Mitsubishi's high pin-count, tape-automatedbonding pin-grid-array (TAB PGA) packaging offers significant advantages in applications requiring large numbers of I/Os. By the end of 1988, Mitsubishi will offer a costeffective, higher reliability alternative to plastic pingrid-array packages. This new mounted pin-gridarray package (MPGA) consists of a quad flat package (QFP) mounted on a PC board adaptor and can withstand the flexing that occurs during insertion, soldering and handling of printed circuit boards.

Mitsubishi continues to enhance its leadership position in surface mount technology with extensive R&D efforts for higher I/O devices.

			Number of Pins																					
		16	18	20	24	28	36	40	42	44	52	64	68	80	84	100	124	128	160	177	208	209	256	281
	Plastic Standard DIP	•	•	•	•	•		•	•															
	Plastic Shrink DIP								•		•	•												
Through- Hole Devices	Ceramic Pin-Grid- Array (PGA)							1									•			•		•		•
	Tape-Automated- Bonding Pin-Grid- Array (TAB PGA)																				•		•	
Curtana	Plastic Small Outline Package (SOP)				•		•																	
Surface Mount Devices	Plastic Quad Flat Package (QFP)									•		•		•		•		•	•					
	Plastic Leaded Chip-Carrier (PLCC)									•	•		•		•									

Large Number of I/Os

For designers who have high I/O requirements with low gate counts, the large number of I/Os in Mitsubishi's M60000 family is ideal. Integration options are wide open, from 200 gates and 26 I/Os, up to 20,000 useable gates and 256 I/Os. Our high utilization lets designers use a smaller array with a larger number of I/O ports. This I/O capacity is ideal for applications requiring parallel bus structures and reduction of ''glue'' logic or miscellaneous gates into a single component.

 REGIONAL SALES OFFICES

 NORTHWEST
 S

 1050 East Arques Avenue
 9

 Sunnyvale, CA 94086
 T

 Phone: 408-730-5900
 P

SOUTHWEST 991 Knox Street Torrance, CA 90502 Phone: 213-515-3993

SOUTH CENTRAL 2105 Luna Road, Suite 320 Carrollton, TX 75006 Phone: 214-484-1919 NORTHERN 15612 Highway 7, #243 Minnetonka, MN 55345 Phone: 612-938-7779 NORTH CENTRAL 800 N. Bierman Circle Mt. Prospect, IL 60056 Phone: 312-298-9223

MITSUBISHI **CMOS GATE ARRAYS**

Fast Turnaround

With Mitsubishi's production capabilities and short design cycle from schematic diagram to fully tested prototypes, designers can get products to market fast. Our fully characterized, high volume production process helps assure that the final product will closely match the performance verified at simulation, and that it will meet specifications the first time.

Development Milestones

	CAD System Input
	Functional Simulation
• E	Estimated Delay Simulation
	Routing
	 Timing Verification Test Program Mask Data
	 Mask Fabrication Wafer Processing Testing and Packaging Engineering Samples

U.S. Design Center Network

Mitsubishi's gate array service network offers design assistance from coast to coast. Design centers in Sunnyvale, California and Durham, North Carolina are linked by satellite to Mitsubishi's automated gate array production facilities in Kita Itami and Kumamoto, Japan.

Sunnyvale, California

The Semiconductor Division of Mitsubishi Electronics America, Inc. headquartered in Sunnyvale, California, offers a fully staffed Gate Array

MITSUBISHI ELECTRONICS AMERICA, INC.

1050 E. Arques Avenue, Sunnyvale, CA 94086 (408) 730-5900 Telex: 172296 Mela Suvl TWX: 910-339-9549

NEW ENGLAND 200 Unicorn Park Drive Woburn, MA 01801 Phone: 617-938-1220

MID-ATLANTIC 45 Knightsbridge Road Piscataway, NJ 08854 Phone: 201-981-1001

SOUTH ATLANTIC 6575 The Corners Parkway, Suite 100 Norcross, GA 30092 Phone: 404-662-0813

SOUTHEAST Town Executive Center 6100 Glades Road #210 Boca Raton, FL 33433 Phone: 407-487-7747

© 1988 Mitsubishi Electronics America, Inc.

Information supplied by Mitsubishi Electronics America, Inc. is believed to be accurate and reliable, but Mitsubishi Electronics America, Inc. assumes no responsibility for any errors that may appear in this data sheat. Mitsubishi Electronics America, Inc. reserves the right, without notice, to make changes in device design or specifications.

Products subject to availability.

PRINTED IN U.S.A. MDS-GA-1-6-88-5K

CANADA

c/o Tech Rep Electronics, Ltd. 7115 RTE Trans Canadienne St. Laurent, Quebec, Canada H4T 1A2 Phone: 514-337-6046

Design and Development Center. Extensive test and analysis equipment back Mitsubishi's reputation for excellence in quality, reliability and customer service.

Years of engineering and manufacturing experience in electronic equipment markets allow Mitsubishi to provide an unparalleled breadth of semiconductor products. From memories and microprocessors to optical devices, gate arrays and logic, Mitsubishi's leading-edge technologies include 1 Megabit DRAMs, EPROMs and SRAMs, as well as 2 MByte memory cards. The approaching generation of Mitsubishi capabilites includes 4 Megabit DRAMs, 1.3 µm laser diodes, and advanced BiCMOS and ECL ASIC solutions.

Durham, North Carolina

Mitsubishi Semiconductor America, Inc. (MSAI), opened in 1983, represents the largest investment venture by Mitsubishi Electric Corporation outside of Japan. Here, using state-of-the-art manufacturing equipment and ultra-clean, automated production techniques, Mitsubishi assembles advanced DRAM memory products.

Our east coast Gate Array Design and Development Center is located at MSAI. Here, a staff of design engineers and R & D personnel is available to support your current and future applications.

In 1987, Mitsubishi Semiconductor America, Inc. broke ground for an ASIC fabrication facility in Durham, North Carolina. Development and production of 1.3 μ m and 1.0 μ m CMOS gate arrays and standard cells for U.S. customers will start in this facility in early 1989.

In Brief ...

Macrocell Arrays Customize Your Products — Cost-Effectively

Even as the demand for Standard (discrete) Logic forms continues to increase, the era of custom and semi-custom VLSI circuit implementation has arrived. Brought into focus by the economies of computer-aided design and manufacturing (CAD/CAM), Application-Specific Integrated Circuits (ASICs) have become cost effective even in applications with moderate volume requirements. Gate (Macrocell) Array technology has reduced both the time penalty and the cost premium for customized VLSI circuit implementation to virtually zero.

Motorola is in the forefront of this rapidly expanding field. Based on advanced processing competence developed for a broad line of standard products, both bipolar and MOS, it offers an extensive library of logic cells, a proven in-place CAD/CAM capability, and a customer training and assistance program that will turn even a first-time effort into a first-time success.

THE ASIC PHILOSOPHY

"We're supplying a foundation that allows our customers to produce an end product which comes out competitive and *stays that way* through several generations. We get the design cycle working for them, so their products don't fizzle as soon as newer parts come out. It's the difference between a product that performs on paper and one that performs in the marketplace."

SEMICUSTOM

Application Specific Integrated Circuits (ASICs)

Macrocell Arrays High Speed ECL High Density CMOS BiMOS CMOS ALS TTL

Design Software Design Support Locations

MOTOROLA APPLICATION SPECIFIC INTEGRATED CIRCUITS

Macrocell Arrays

The Right Process for the System Needs... The Right Size for Efficient Utilization

Motorola Macrocell Arrays offer the designer the same choice of process technologies that is available for discrete logic designs.

Selected arrays are offered for both commercial and military applications.

- For very high speeds State-of-the-art ECL Arrays offer subnanosecond gate delays.
- For advanced TTL applications ALS-TTL Arrays provide higher speed and lower power consumption at conventional TTL prices.
- For low power consumption with high drive at high frequencies — BiMOS blends the best bipolar and CMOS technologies on the same chip.
- For applications demanding very low power consumption, and low cost — Advanced 2-micron silicon-gate CMOS Arrays; now available to MIL-STD-883C specifications.
- For system level integration High Density 1.0 micron CMOS Arrays can achieve over 75,000 usable gates on a channelless architecture of minimum dimensions.

To permit cost-effective implementation, Macrocell arrays are stocked in a variety of prediffused array sizes, that permit optimized utilization of die space for varying VLSI circuit complexities.

About Motorola Macrocell Arrays

Motorola's Macrocell technology is an extension of the gate-array concept. Each cell in the Macrocell array consists of a number of uncommitted components. Stored within a computer library are the specifications for creating interconnecting patterns that transform the unconnected components into SSI/MSI logic functions called macros. These macros yield standard logic elements such as flip-flops, adders, latches and numerous other high performance, space-efficient, predefined functions.

Generating a semicustom circuit design is simply a matter of selecting the required macrocells from the library and

Customized metal patterns overlay predefined component arrays to shorten circuit development time.

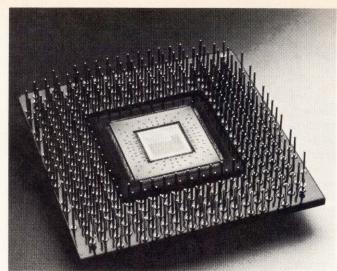
describing the interconnect network for implementing the desired results. Motorola's CAD interface provides automatic cell placement and interconnect routing as well as extensive design rule checks. It also performs ac delay simulation, generation of test tapes and customized metalization patterns required to perform the IC processing sequence.

Compared with the conventional approach to custom circuit design, the Macrocell approach offers a tremendous reduction in design and delivery time. Compared with equivalent systems constructed of discrete logic building blocks, the high packing density of array-based components can provide a reduction of system component count approaching several orders of magnitude.

High-Speed ECL Arrays

MCA10000ECL Array Sets New Standards

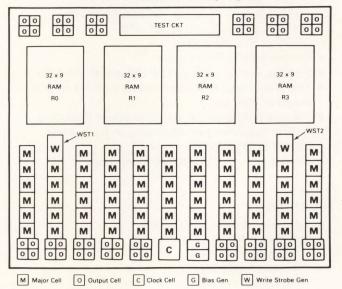
- Gate Delays As Low As 100 ps (TYP.)
- Power Dissipation As Low As 1 mW/gate
- 10,000 Equivalent-Gate Density
- 256 I/O Signal Ports


These are the vital statistics of Motorola's third generation ECL Macrocell Array. Compared with second generation products, it represents four times the maximum available gate count and one third the gate delay time.

But the performance improvements don't stop with the statistics alone. With the new array, the designer can program speed-power system performance to match critical system requirements. By means of Motorola's CAD system you can select either a high or low power base array. The designer can then individually program logic switch currents and internal output drive levels. These options yield a performance range from 0.3 ns maximum gate delays with 1.0 mW dissipation to 0.15 ns maximum delay with 3.0 mW per gate.

On-Chip 1K RAM Enhances ECL Array Functions

With approximately 1500 equivalent logic gates this new Motorola (MCA1500M) ECL Macrocell Array can satisfy a wide variety of design options while its four on-chip blocks of 32 x 9 user-configurable RAM simplify system implementation and reduce manufacturing costs.


Performancewise, this array is among the fastest and most versatile available. Internal gate delays of 0.3 ns and output gate delays of 0.75 ns offer state-of-the-art throughput, while its density packs the equivalent of up to 50 discrete SSI/MSI logic functions into a single package. With a power dissipation of 8 W (typical) per array, system power dissipation can be reduced by as much as 12 to 1 compared with an equivalent circuit board housing discrete circuits.

Typical Applications:

- State of the art CPU/FPU designs
- >750 MHz Telecommunications
- High Speed VLSI testers

MCA1500M Macrocell Array Layout

The Motorola ECL Array Series

The following table describes the range of capabilities for designs implemented with Motorola ECL arrays.

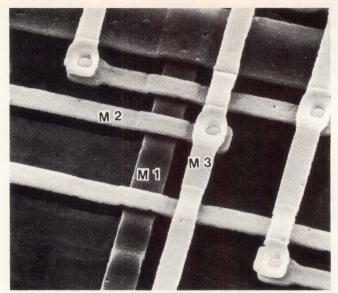
Features	MCA 600ECL	MCA 1200ECL	MCA 800ECL	MCA 1500M	MCA 2500ECL	MCA* 1500ECL	MCA 10000ECL
Technology	MOS	SAIC I		MOSAIC II		MOS	AIC III
Max Gate Equivalent	652	1192	902	1708 + RAM	2760	1500	10332
Internal (Major) Cells	24	48	36	64	110	68	414
I/O Ports	46	60	54	120	120	108	256
Input/Interface Cells	25	32	-	-	_	96	224
Output (O) Cells	18	26	22	60	68	96	200
Max Gate Delay (ns)	1.2	1.2	0.5	0.5	0.5	0.175	0.175
Max Toggle Frequency (MHz)	250	250	770	770	770	1200	1200
Typ Power Dissipation (W)	2.5	4.0	2.5	8.0	8.0	3–6	10-30

*Under Development

High Density CMOS Array Series

Built on a 1.0 micron, triple layer metal (TRIM) CMOS process the HDC series of arrays represents a significant advancement in microchip technology. By utilizing three layers of metal for routing in addition to power distribution, designers can achieve over 75,000 usable gates on a channelless architecture of minimum dimensions. The result is very high performance (subnanosecond loaded gates) combined with unprecedented I/O flexibility and density.

Features


- 5,000 to 100,000 available gates
- Over 75% utilization
- Channelless sea of cells architecture
- 1.0 micron drawn gate length CMOS process
- Triple layer metal routing and power distribution
- 8 transistor fully utilizable primary cell, oxide isolated
- 250 picosecond typical gate delay (F.O. = 1)
- Efficient memory implementation
 - RAM cells 16 x 9 to 16K bits, multiports
 ROM cells 16 x 9 to 32K bits
- CMOS or TTL compatible I/O
- Comprehensive CAD support
- I/O Cells can be paralleled on chip for 48 mA drive
- TAB (Tape Automated Bonding) for high I/O surface mount or PGA's
- Pins are programmable as I/O or power (excluding 8/16/32 fixed pwr. pins depending on base array)
- 2000 V ESD protection
- Operates over full MIL temperature range

Technology

- 1.0 micron drawn Gate Lengths
- Three-layer Metallization
 - 3.6 micron M1 Pitch
 - 4.0 micron M2 Pitch
 - 4.0 micron M3 Pitch

CAD Support

- Automatic placement and routing of three level metal signals and power at high utilization levels
- Support for Daisy and Mentor schematic capture and native simulators
- Back annotation of capacitance information on to workstation
- Integrated with the MDS (Modular Design System)

Triple layer metal routing improves utilization to over 75% on sea of cells architecture.

	The HDC Series High Density Arrays											
		Max #	of Pads									
Array	# of Gates	ТАВ	Wire Bond	# of I/O Cells	Die Size mils/side							
HDC006*	5,670	120	96	120	159							
HDC008	8,208	140	108	144	179							
HDC011*	11,208	160	120	168	199							
HDC016	16,416	188	136	204	226							
HDC026*	26,112	232	168	256	271							
HDC031	31,290	252	244	280	291							
HDC047*	47,214	304	212	344	344							
HDC064	63,900	348	240	400	391							
HDC080*	80,304	388	264	448	430							
HDC105	104,832	444	412	512	486							

*Under Development

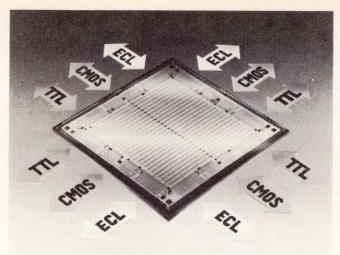
31K X X X X X X	64K	105K
X X X X X		
X X X X X		
X X X X X		
X X X		
X X		
X X		
X X	-	
V		
X		
X		
X		
X		
	X	
	X	
X		
	X	X X X

CD = Cavity Down

BCA Series BiMOS Arrays Narrowing the Performance Gap Between Semicustom and Custom Designs

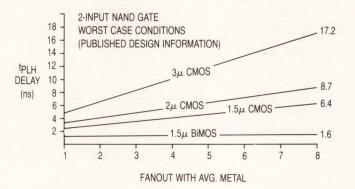
True custom circuit design involves using bipolar technology for those portions of a system requiring very high speed and CMOS technology where more relaxed specifications permit very low power dissipation and very high component densities. Now, BiMOS technology permits blending the two technologies on a single chip, resulting in an array capability that merges the best of both worlds.

Motorola's 1.5-micron BiMOS array family communicates efficiently with ECL, TTL and CMOS without separate interface chips and without a compromise in performance. Its I/O pins can be designated as either CMOS, ECL or TTL input or output and its Internal Cells offer bipolar drive with CMOSlike power consumption.


The accompanying table summarizes the technical story and the graph provides performance comparison with standard CMOS technology. Clearly, the unique capabilities of BiMOS offer a new potential for innovative designs.

BiMOS Vital Statistics

Transistor Technology -Polysilicon-Gate CMOS/Walled Emitter NPN Bipolar Receiver Input Delays -0.8 ns Typ CMOS 1.2 ns Typ TTL 3.0 ns Typ ECL (1.4 ns option)* Driver Output Delays -2.4 ns Typ CMOS (50 pF) 3.5 ns Typ TTL (sinking 12 mA @ 50 pF load) 1.1 ns Typ ECL (50 Ω) Internal Gate Delay -0.6 ns Typ (2-input NAND) with F.O. = 1 I/O Compatibility -CMOS, MECL 10K/10KH, ECL 100K, Pseudo ECL, TTL Power Dissipation Typ per active gate -0.022 mW/MHz, loaded (F.O. = 3 plus 120 mils metal)


Packages PDIP, PPGA, PGA, PLCC AND PQFP

*Under Development

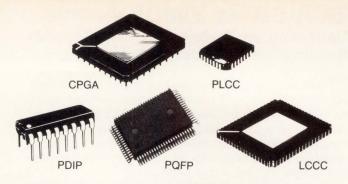
"Unique I/O flexibility in a high performance array"

Performance Comparison BiMOS versus CMOS

BCA 700ETL	BCA 1800ETL	BCA 6000ETL				
704	1792	6144				
352	896	3072				
44	92	202				
44	88	202				
1.1	1.1	1.1				
200	200	200				
12 to 72	12 to 72	12 to 72				
TTL-CMOS-ECL-PSEUDO ECL						
Low power — varies with array utilization and output loading.						
180 x 180	250 x 250	396 x 396				
	BCA 700ETL 704 352 44 44 1.1 200 12 to 72 T Low power — va	BCA 700ETL BCA 1800ETL 704 1792 352 896 44 92 44 88 1.1 1.1 200 200 12 to 72 12 to 72 TTL-CMOS-ECL-PSEUDO E Low power — varies with array utilization ar				

BCA Series 1.5-Micron BiMOS Arrays

*Specific Input/Output configurations vary greatly based on package selection


MOTOROLA APPLICATION SPECIFIC INTEGRATED CIRCUITS

MACROCELL ARRAYS (continued)

HCA62A Series — CMOS Arrays Meet Military Requirements

The Motorola HCA62A series of macrocell arrays is implemented in silicon gate technology, with 2-micron drawn gate length, dual-layer metal interconnection and high-speed (HCMOS) processing. Equivalent gate counts from 600 to 8500 offer cost-effective arrays for a wide range of applications. The Series is available in an extensive line of plastic packages for commercial applications. An equivalent line of hermetically sealed ceramic packages plus MIL-STD-883C, Class B compliant processing makes all arrays suitable for military requirements.

Functionally, the Series features full I/O flexibility and completely flexible power and ground inputs. The uncommitted I/O buffers contain N- and P-channel transistors which may

Sampling of available array packages. Range of packages includes everything from 16-pin DIP to 144-pin PGAs in plastic and ceramic.

be configured into any of 27 different input buffers, 16 different bidirectional buffers or three different output buffers which may be paralleled for up to 24 mA of driving current. Power and ground pads may be placed at any buffer location around the array.

Features	HCA62A85	HCA62A67	HCA62A50	HCA62A36	HCA62A25	HCA62A17	HCA62A10	HCA62A06
Primary Cells	2856	2236	1658	1200	816	546	319	216
Equivalent Gates	8568	6708	4860	3600	2448	1638	957	648
Bidirectional Pads	168	146	124	102	84	68	54	44
V _{DD} Pads		Pow	ver and ground	d pins are pro	grammable to	any package	pin.	
V _{SS} Pads		Nun	nber of pins v	aries with arra	y utilization a	nd output load	ding.	
Typical Gate Delay (ns)	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
Typical Frequency (MHz)	85	85	85	85	85	85	85	85
Package Range (Pins)	68-144	68-144	40-120	40-100	40-84	28-80	24-52	16-48

HCA62A Series 2-Micron CMOS Macrocell Arrays

The ALS TTL Array Series

Schottky clamped TTL has become the most pervasive form of digital logic in current use. The popularity of these TTL families (LS, ALS and FAST) stems from their ease of use, low cost, medium-to-high speed operation and good output drive capability. For its macrocell array line, Motorola has selected the MOSAIC (oxide-isolated) process.

The ALSTTL array family differs from FAST in that it provides a 50% reduction in power dissipation and improved speed (frequency) characteristics. Yet, it is I/O compatible with its more pervasive (in discrete logic form) LSTTL building blocks. Thus, ALS macrocell arrays offer the performance advantages of this Advanced family for the development of VLSI circuits while maximizing interface capability with the large assortment of discrete LS functions.

Motorola currently offers three array sizes ranging from 500 to 2800 equivalent gates per chip, plus an additional 2800-

gate array featuring on-board memory (RAM). The characteristics of the available arrays are described in the following table:

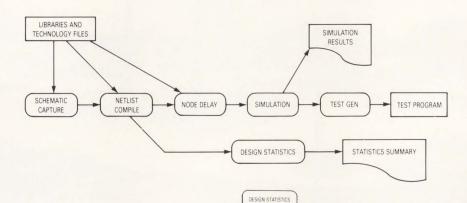
Features	MCA 500ALS	MCA 1300ALS	MCA 2800ALS	MCA 2800RAM
Max Gate Equivalent	533	1280	2860	1800 + RAM
Internal (M) Cells	24	60	130	74
I/O Ports	57	75	120	120
Input Cells	26	40	120	120
Output Cells	27	40	120	120
Max Gate Delay (ns)	4.0	4.0	1.1	1.1
Max Toggle Freq. (MHz)	80	80	150	150
Power Diss. (W)	1.0	1.4	3.5	3.0

Design Software for Application Specific Circuits

A Modular Design System consisting of ASIC design software for Engineering workstations is available from Motorola. The first two modules, the Design Verification Module and the Design Capture Module, are currently available. These CAD software modules support Daisy and Mentor Graphics engineering workstations. Support for Valid Logic Systems is under development.

The Modular Design System provides engineers with a technology independent tool box that will handle today's gate array and cell based designs and tomorrow's technologies as they become available. It allows design capture using Motorola's symbol libraries to simulate the design behavior over, commercial, industrial, automotive and military temperature ranges, resimulate the actual performance of the design after physical layout, and perform rigorous timing checks and testability analysis prior to releasing a design.

The Design Verification Module includes:


- 62A Series Gate Array
- Netlister with Electrical Rules Checking
- Design Statistics Package
- Selectable Simulation Delays

Modular CAE for Silicon Design

- Post Simulation Timing Analysis Tools with back annotation
- Installation and Verification Utilities

The Design Capture Module includes the above-listed Netlister, Cell Count and Communications only.

LIBRARIES AND TECHNOLOGY FILES

Includes CMOS Array Libraries

 Compatible with Daisy, Mentor, and Valid Workstations Typical/Best/Worst Case Technology Models

NETLIST

Netlist Compiler and Diagnostics

- Electrical Rules and Syntax Checks
- Produces TDL, Logcap, and EDIF 2.0 Netlist

NODE DELAY

Node Delay Calculation and Back Annotation

- Sophisticated Node Delay Calculation Equation
 - a. Selected Temperature, Voltage, and Process Variation
 - b. Estimated or Actual Wirelength Capacitance
 - c. RC Tree Analysis
 - d. Delay = Intrinsic + Rise/Fall Effects + Output Load
 - e. User Specified Output Loading
- Accurate Pin-to-Pin Multipath Delay Modeling (Mentor)

- **Design Statistics Package**
- Gate and I/O Pad Utilization
- **Design Rules Check**
- Interconnect Analysis .

TEST GEN

Test Generation and Timing Analysis

- Extracts and Verifies Tester Input Stimulus
- Checks for Bus Contention (Mentor) and Consistent Timing
- Generates Composite Best/Worst Case Simulation File
- Checks Output Timing Response for Testability
- Extensive Stimulus Diagnostics

Daisy is a trademark of Daisy Systems Corporation. Mentor Graphics is a trademark of Mentor Graphics Corporation.

MOTOROLA APPLICATION SPECIFIC INTEGRATED CIRCUITS

A Look Ahead

Motorola is dedicated to servicing the application specific market with CMOS, bipolar and merged technology products. The continuing evolution of processing improvements is clearly destined to yield rapidly expanding capabilities. Please consider the following list of products already in the process of introduction or slated for early implementation.

- Expanded line of 1.0 micron CMOS arrays with triple layer metal.
- High density BiMOS arrays with CMOS power/density at bipolar speeds and on-board RAM.
- 30,000 equivalent gate ECL arrays with less than 100 picoseconds speeds and with imbedded 1.5 ns RAM.
- Open Architecture CAD System based on high performance non-proprietary tools supporting the total design process from design entry to PG tape generation in the user's environment.
- 444 pad arrays in printed-circuit board type PGA packages, or on tape with T.A.B. for multichip applications.

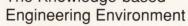
Regional ASIC Design Support Locations -

U.S.A.

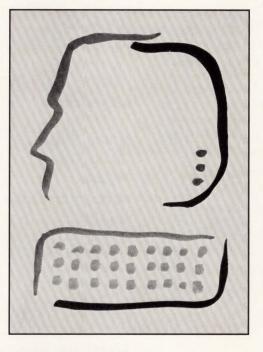
Alabama, Huntsville		(205) 830-1050
California, Los Angeles		(714) 634-2844
California, San Jose		(408) 749-0510
Colorado, Denver		(303) 337-3434
DC/Maryland, Washington		(301) 381-1570
Florida, Maitland		(305) 628-2636
Florida, Ft. Lauderdale		(305) 486-9775
Georgia, Norcross		(404) 449-0493
Illinois, Chicago		(312) 576-7800
Massachusetts, Woburn		(617) 932-9700

Michigan, Livonia	(313) 261-6200
Minnesota, Minneapolis	(612) 941-6800
N.J., Hackensack	(201) 488-1200
N.Y., Fairport	(716) 425-4000
North Carolina, Raleigh	(919) 876-6025
Pennsylvania, Philadephia .	(215) 443-9400
Texas, Dallas/Ft. Worth	(214) 550-0770

INTERNATIONAL


Australia, Melbourne (03) 887-0711 Canada, Ontario, North York . (416) 497-8181 England, Aylesbury/Bucks. . . . (0296) 395252

Germany, Munich	(089) 92720
France, Vanves	(01) 47360199
Hong Kong, Kwai Chung	g (0) 223111
Israel, Tel Aviv	
Italy, Milan	(02) 82201
Japan, Tokyo	(03) 440-3311
Korea, Seoul	(02) 554-5118-21
Singapore	
Sweden, Solna	(08) 830200
Switzerland, Geneva .	(022) 991-111
Taiwan, Taipei	(02) 717-7089



Libraries and Tools

- Standard Cells/Analog/Gate Arrays/Supercells
 Compiled Functions/Core Microprocessors
- Commercial/Automotive/Military
- 1.5 and 2.0-micron DLM CMOS
- KE² Workstation tools including Design Synthesis, Design Advisor, ViTat and ViSys Tool Set

Creating value

KE² Overview

Libraries and Design Tools

NCR's Knowledge-based Engineering Environment (KE²) provides design and engineering knowledge in both libraries and design tools. This gives customers the level of integration necessary to find the optimal solution to today's design requirements.

NCR's knowledge combined with the customer's collective applications knowledge make this high-level design integration possible. And the NCR KE² tools make it happen on-time and on budget.

KE² Libraries

- Commercial, Automotive and Military Temperature Ranges
- Standard Cell Libraries in 1.5- and 2.0-micron DLM CMOS
- Analog Cell Libraries in 1.5- and 2.0-micron DLM CMOS
- Gate Arrays in 2.0 micron DLM CMOS
- Compiled functions
- 68C05 and 65CX02
 Cores
- **2901/2910**
- 82XX Family of Peripheral Macros
- 7400 Family of Functions
- Configurable RAM, ROM, EEPROM, PLA, ALU, Shift Registers, Counter, Dual-port RAM and Multiplexers

KE² Tools on a Workstation

- Design Synthesis[™], High-level Language Design Input
- Design Advisor[™], Expert Design Advice and Evaluation
- ViTat[™], Static Timing Analysis
- ViGen[™], Function
 Compiler
- ViTest[™], Test Generation Family
- ViSys[™], Design System
- ViTa[™], Design Verification

NCR's Customer Design Support Network

- Independent design centers
- Three NCR design centers in the U.S.
- European Design Center
- Far East Design Center
- Field Applications Engineers within easy geographic reach

NCR's strengths and commitment to the customer are in:

- Support of cells for high-level integration and design tools that promote designer productivity and design quality
- Support of analog/ digital applications
- Customer-specific analog cells
- Digital design and customer-specific cell enhancements
- Training on libraries, software design tools and applications

NCR's Network of Customer Support

ASICs

NCR's multiple standard cell libraries allow designers to match their exact requirements with the technology that allows for the most effective level of integration and price-performance.

Our 2-micron DLM library is the mainstream choice for most designs. This technology offers excellent cost/performance tradeoffs with an extensive family of analog, EEPROM and compiler functions.

The 1.5-micron DLM library of digital and analog cells is NCR's newest and most advanced. It features double-levelmetalization, very high density, and high-speed cells for greater silicon utilization and improved system performance.

Extensive I/O options are provided by NCR's I/O cell family. Mix and match output drive from 2mA to 48mA. Or input switch points and hysterisis. Add pull-ups, pulldowns, open-drain or tri-state outputs. All on one chip.

Power-on reset, oscillators and a wide range of Schmitt Triggers are standard offerings in the NCR cell libraries.

High-Rel ASICs MIL ASICs

The Military products group is dedicated to supplying standard ICs, cell-based devices, and gate arrays screened to military requirements. This corps of Mil-Spec specialists implements a comprehensive quality system based on MIL-Q-9858A. Devices can also be screened and qualified to MIL-STD-883C, Method 5004/5005 on a stand-alone basis.

Silicon Compilers

NCR has an "ASIC alliance" with Silicon Compiler Systems Inc. (SCS) to provide design verification and foundry services for Genesil/GDT designs. Customers will receive design verification, prototype development, and production silicon all from NCR. This service also includes all of NCR's testing, packaging and applications assistance as normally provided. There is no need to establish separate business interfaces for verification/ prototypes and for production silicon.

Automotive ASICs

There is a separate, dedicated Automotive ASIC Group within the Microelectronics Division. This highly focused engineer-

Typical Cell Delays	1.5µm DLM	2μm DLM	3μm SLM
INV, Small Inverter	.4	.6	1.3
NAN2, 2-Input NAND	.5	.7	1.2
AND8, 8-Input AND	1.6	2.3	3.4
NOR2, 2-Input NOR	.6	.9	1.6
OR8, 8-Input OR	1.8	2.6	4.3
DFFRP, D Flip-Flop with Reset, Clock to Q	2.5	3.7	4.3
DFFRPF,* D Flip-Flop with Reset, Clock to Q	1.1	-	-

Delay values are in nanoseconds at 25°C, V_{DD}5.0 volts, and for a fanout of one typical load. *Denotes high-speed cell.

ing and marketing resource has no other task than to meet the special needs of automotive manufacturers.

Today, NCR is a certified supplier of automotive parts to the major U.S. automotive corporations, having successfully completed programs involving initial design to high volume production including "Just In Time" delivery and "dock to stock" quality insurance. In addition to the "big three", NCR also serves the small-to-medium automotive companies, working with engineers on a one-to-one basis.

Gate Arrays

NCR offers a complete line of 2-micron, Double-Level-Metal (DLM), CMOS gate arrays to suit a wide range of applications. Through the use of Double-Level-Metal interconnects and advanced auto-routers, utilizations of 85% to 95% are typical.

The NCR building block, or "macro" cell approach, results in substantially improved circuit performance, greater circuit density and shorter design cycles.

All of NCR's gate array products are fully supported by the NCR ViSys™ Design System, the CAD system common to both gate array and cell-based products. This allows NCR gate arrays to be economically migrated to standard cells.

Packaging

NCR offers a broad range of packages for ASIC applications including plastic packages to support cost-sensitive applications as well as ceramic packages to support military, automotive and other high reliability applications.

NCR offers an extensive line of leaded and leadless surface mount options to complement a variety of through-hole mounted packages. Choices include DIPs, SOICs, PLCCs, PPGAs and Plastic Flat Packs (PFPs). NCR also supports EIAJ and JEDEC standard pinouts.

NCR 2µm DLM Gate Arrays									
Available Gates	648	648 957 1638 2448 3600 4968 6750 85							
Major/Primary Cells	216 319 546 816 1200 1656 22					2250	2856		
Available I/O	44	52	68	84	100	124	146	168	
Max. Gate Delay		1.6 ns (Typical)							
Max. Clock Speed	50 MHz								
Flip-Flop Toggle Freq.		85 MHz (Typical)							

Standard Cells

The following is just a sample of NCR's extensive cell library listing. Contact your NCR sales representive for a complete listing.

SSI Functions

- Buffers and inverters output drive/tri-state options
- NAND and NOR available with 2, 3, and 4 inputs
- AND and OR up to 8 inputs
- EXOR, AOI and OAI "combinational" logic cells—for denser and faster devices
- Delay cells
- Clock drivers

Flip-Flop/Latches

- Cross-coupled latches—both NOR and NAND
- Level-sensitive transparent— both with or without reset and clock drivers
- Edge triggered D and JK Flip-Flops—with or without Reset, Set and Reset clock driver
- High-speed cells to meet critical path requirements.

MSI Functions

- Single-bit cascadable shift register with serial or parallel in and serial out—with or without clock driver
- Single-bit cascadable, loadable, up-down counter with Reset and Enable, carry in and carry out
- Full and Half Adders
- 74XX Library

Input/Output Pads and Buffers

- Options to give optimal size pad-limited designs
- Levels are directly TTL, LSTTL and CMOS compatible
- Input cells—choice of standard TTL or variety of Schmitt trigger levels
- Output cells variety of drive options, open drain, pull-up/ pull-down options, up to 48mA drive
- Tri-state—combination of I/O options
- Oscillators

Function Compilers

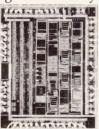
Today, NCR offers the power of some of the industry's most advanced silicon compilation technology within the framework of our existing CAD system. This capability is in the form of function compilers which allow designers to "customize" a compiled function to their specifications. NCR functions are compiled on engineering workstations eliminating costly and time consuming remote mainframe compilation. This feature gives the designer direct access to silicon compiler technology within the friendly ViSys Design

NCR CMOS Supercells

In terms of system integration, NCR's supercells open new horizons. Supercells are function blocks which were once only available as standard ICs. But NCR has taken these complex functions such as microprocessor cores, peripheral ICs, 82XX, SCSI, and CRT45 and added them to our Supercell libraries. With this advanced capability, the system-on-achip concept can be a reality today.

Supercells

- 65CX02 MPU Core
- 68C05 MPU Core
- D to A Converters
- A to D Converters
- SCSI Controller
- Sound Generators
- Counter/Timer
- 2901 Microprocessor
- 2910 Controller
- 15530 Encoder/ Decoder


- CRT45 Controller
- **82C37A**
- **82C50**
- 82C53
- **82C54**
- **82C55**
 - 82C59
 - 82C84
 - 82C88
 - 8X8 Multiplier
 - 16X16 Multiplier

Motor Minder.

NCR

When a Big 3 automaker needed a distributorless ignition device, NCR came through without any

wheelspinning. The ASIC chip had to control ignition, timing, dwell and regulate coil current over the full range of load and rpm. A lot of sophisticated analog was needed but NCR's library had the horsepower to deliver high performance analog and

high performance analog and digital technologies on the same ASIC chip.

Working with the automotive industry is something NCR can do without having to shift gears. We operate a separate, dedicated Automotive Group within the the Microelectronics Division and over the years we've earned the status of a certified supplier.

Do you need automotive ASIC products? Then, come in and kick our tires.

Creating value

System on a workstation.

Compiled Functions

- ROM
- Low-power RAM
- Fast SRAM
- EEPROM
- ALU
- Dual-port RAM
- Shift Registers
- Multiplexers
- Counters
- FIFO
- Multiplier/Accumulator

NCR Analog Libraries Extend Functionality.

Analog Features

- Choice of 1.5 or 2-micron
- Low-power
- Power-down mode
 Low supply voltage operation
- Internal or peripheral placement
- 10K ECL-compatible input interface
- Analog I/O pad cells
- Kit parts

NCR's analog cell library has been an industry leader for more than five years. Functions as simple as operational amplifiers and as complex as analog-to-digital converters are available in commercial, industrial, automotive and military temperature ranges to take your NCR cell-based device well beyond the realm of normal ASIC

technology.

Many complex system functions which used to require multiple analog and digital ICs can often be accomodated on a single chip. If you need a complex analog function to meet system requirements, NCR can design and build the function to your specifications using digital cells or analog cells in 1.5 or 2µm.

Analog Cells

- Op Amps
- Comparators
- Analog Switches
- Bandgap Voltage References
- Bias Generators
- Logic Level Shifter
- Power-On-Reset
- Oscillators
- VCOs
- DACs
- ADCs

NCR 1.5-micron Analog Cells currently available:

- Analog Switch
- Bandgap Voltage Reference
- General Purpose Comparator
- ECL Input Interface
- Analog Input Pad
- Analog Output Pad
- General Purpose
 Operational Amplifier
- Matched Resistors Using Standard Building Blocks
- Custom Resistors

VS1500 Analog Kit Parts are available for all cells

listed above.

NCR 2-micron Analog Cells currently available:

- Analog Switch
- Bandgap Voltage Reference
- Custom Capacitors
- General Purpose Comparator
- ECL Input Interface

- Analog Input Pad
- Analog Output Pad
- General Purpose Operational Amplifier
- Matched Resistors Using Standard Building Blocks
- Custom Resistors

VS2000 Analog Kit Parts are available for all cells listed above. Additional 2-micron cells under development and scheduled for release 4Q 1988.

- 8 bit, 5 MHz ADC
- 10 bit Dual Slope ADC
- 8 bit, 2 MHz DAC
- Low Current Op Amp
- High Speed Comparator
- 5 to 30 MHz Voltage Controlled Oscillator

NCR can also develop custom analog cells to meet your unique specifications. Please contact NCR for further information.

Tandy's Dandy.

NCR

When Tandy wanted to integrate four functions on a single chip, this 2-micron, 5700 gate CMOS ASIC masterpiece was the

result. It incorporates printer and joy stick interfaces, an NCR 8250C UART Supercell for serial communications and major use of NCR's analog cell library (including 2 DACs)

in the sound generator/sound recorder block for all necessary A/D and D/A conversions. Said Bill Wilson, Tandy VP-Personal Computer Design, "NCR was the only company we found that had all the technology needed to produce this part for us."

Integrating functions can be simple. It's simply a function of the supplier you select.

Creating value

VS1500 General Purpose Operational Amplifier

Features

- 1.5-micron CMOS
- Low input offset voltage
- Low leakage CMOS inputs
- Internally compensated
- Full power-down via logic level inputs
- Low power
- Internally biased
- High output voltage swing
- Bias current and compensation options available
- Operates at supply voltages as low as 3.0 V
- Uses the standard digital process (no additional masks required)

The OA5001 is a general purpose operational amplifier cell with an input common-mode voltage range which includes V_{ss}. It is internally compensated for unity gain stability and can drive loads up to $20k\Omega$, 20 pF. For higher values of load capacitance, the phase margin will be less than the specified value and could result in instability. Load resistance of less than $20k\Omega$ will result in reduced output voltage swing and open loop gain. All required bias currents are generated internal to the cell for ease of use and elimination of cross-talk between op amps which can occur with a common current reference. The OA5001 cell incorporates full power-down (PD) via

logic level inputs. For normal operation, PD should be V_{ss} potential and PDB at V_{ss} potential.

Test Circuits

The OA5001 operational amplifier cell has been fully characterized over the commercial, automotive and military temperature ranges. The dc tests were done using an Analog Devices LTS-2015 analog tester configured with an op amp family board. The tester uses a standard op amp test loop to measure openloop dc parameters. A simplified schematic of the test loop is shown in Figure 1.

The input offset voltage of the op amp appears at the output of the loop, multiplied by about 500. The DUT output voltage is set using V_{th} . The DUT common-mode voltage is set by using split supplies with the inputs always referenced to ground and programming V+ and Vto the appropriate values. DUT open-loop parameters are measured by changing the DUT voltage level of interest (e.g. output voltage, commonmode voltage or power supply voltage) and measuring the resulting change in offset voltage.

The output high and low voltage tests specified with $V_{ID} = 0.1V$ are done by breaking the feedback loop and applying a 0.1V source between the op amp plus and minus inputs and directly measuring the resulting DUT output voltages.

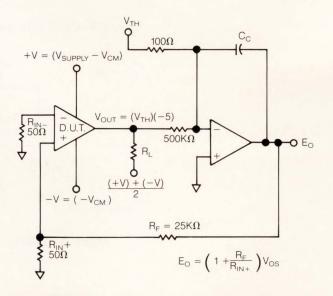
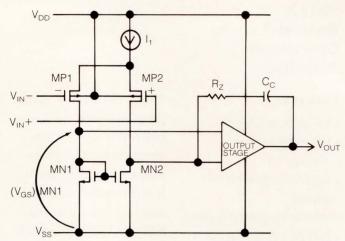


Figure 1-Simplified op amp test loop

Theory of Operation

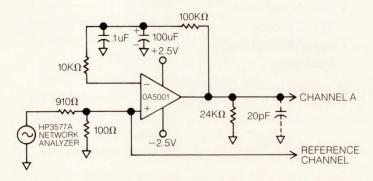

An equivalent circuit of the OA5001 operational amplifier is shown in Figure 2.

V_{IN+} and V_{IN-} are compared by the p-channel differential pair MP₁, MP₂ producing a differential output current which is converted to a singleended output voltage by current mirror pair MN₁, MN₂. Bias current for the first stage is supplied by current source I₁. The output of the first stage is coupled to the differential pair input quasi-pushpull output stage. This output stage provides double the output source current and higher transconductance than a conventional class A output stage with the same idle current. Dominant pole frequency compensation for unity gain stability is accomplished by the addition of compensating capacitor C_c and feedforward zero nulling resistor R_z.

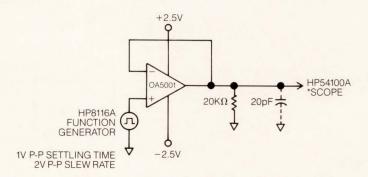
OA5001 ac parameters are measured using the test circuits in Figures 3 and 4. The Figure 3 test circuit is used for measuring gainbandwidth product and phase margin.

The Figure 4 test circuit is used to measure settling time, slew rate and unity gain follower frequency response.

Optional load capacitance consists of the sum of probe, package and test fixture capacitance.



$$\label{eq:VIN} \begin{split} (V_{\text{IN}})_{\text{MIN}} &= (V_{\text{TN}} - V_{\text{TP}}) + (\Delta V_{\text{GS}})_{\text{MN1}} \\ \\ \text{WHERE:} \end{split}$$


$$\begin{split} V_{TN} &= \text{THRESHOLD VOLTAGE OF MN1} - \text{MN2} \\ V_{TP} &= \text{THRESHOLD VOLTAGE OF MP1} - \text{MP2} \\ (\Delta V_{GS})_{MN1} &= (V_{GS})_{MN1} - V_{TP} \\ \text{AND} \end{split}$$

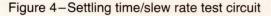
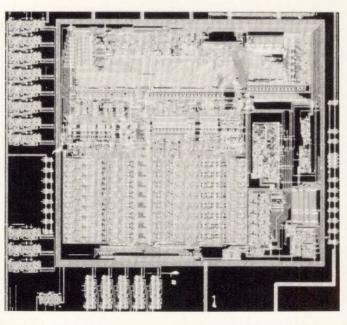

V_{TP} AND V_{TN} ARE TAKEN TO BE POSITIVE VALUES.

Figure 2–0A5001 equivalent circuit

Figure 3-Open-loop gain/phase response test circuit

OA 5001 DC Specifications ($V_{DD}-V_{SS}$) = 5.0 V± 10%

Parameters	Min	Typical @ 25° C	Max	Unit	Operating Temp. Range °C	Comments/ Conditions
Input Common-Mode Voltage Range	Vss Vss Vss Vss Vss	V _{ss} -0.2 to V _{DD} -1.5	V _{DD} -1.5 V _{DD} -1.5 V _{DD} -1.5 V _{DD} -1.5	V	25 0 to 70 -40 to 85 -40 to 125 -55 to 125	Test Circuit Figure 1
Open Loop Voltage Gain (Avol) 0 < Vсм < Vоо-1.5	64 63 60 60	70		dB	25 0 to 70 -40 to 85 -40 to 125 -55 to 125	$R_L = 20K \Omega$ Test Circuit Figure 1
Open Loop Voltage Gain (Avol) 1.0 < Vсм < Vрр — 1.5	67 66 63 63	74		dB	25 0 to 70 -40 to 85 -40 to 125 -55 to 125	$R_L = 20K \Omega$ Test Circuit Figure 1
Open Loop Voltage Gain (Avol)		68 82		dB	25 25	$ \begin{array}{l} R_{L} = 10 K \ \Omega \\ R_{L} = 50 K \ \Omega \end{array} $
Initial Input Offset Voltage (Vos)	-5 -5 -5 -5	±1.5	+5 +5 +5 +5	mV	25 0 to 70 -40 to 85 -40 to 125 -55 to 125	Test Circuit Figure 1
Input Offset Voltage Temperature Coefficient		±5		μV/°C		Test Circuit Figure 1
Output Low Voltage V _{оит} - V _{ss}		30	70 75 100 100	mV	25 0 to 70 -40 to 85 -40 to 125 -55 to 125	$ \begin{array}{l} R_{L} = 20 K \ \Omega \\ V_{ID} = -0.1 \ V \\ V_{CM} = V_{DD/2} \\ Test \ Circuit \ Figure \ 1 \end{array} $
Output High Voltage V _{DD} - V _{OUT}		150	275 300 550 550	mV	25 0 to 70 -40 to 85 -40 to 125 -55 to 125	
Supply Current		270	475 600 600 675	μΑ	25 0 to 70 -40 to 85 -40 to 125 -55 to 125	Test Circuit Figure 1
Supply Current Power Down Mode		.001	1.0 1.0 1.0 1.0	μΑ	25 0 to 70 -40 to 85 -40 to 125 -55 to 125	Test Circuit Figure 1
DC Common-Mode Rejection Ratio	60 60 60 60	85		dB	25 0 to 70 -40 to 85 -40 to 125 -55 to 125	Test Circuit Figure 1
DC Power-Supply Rejection Ratio	64 64 64 64	85		dB	25 0 to 70 -40 to 85 -40 to 125 -55 to 125	Test Circuit Figure 1


AC Specifications (V_{DD}-V_{SS}) = 5.0 V, V_{CM} = (V_{DD}-V_{SS})/2

Parameters	Unit	Typical @ 25° C	Comments/ Conditions
Gain-Bandwidth Product	MHz	2.9	$R_L = 20K \Omega$ $C_L = 20 pF$ Test Circuit Figure 3
Phase Margin Unity Gain Feedback	deg.	35	$R_L = 20K \Omega$ $C_L = 20 pF$ Test Circuit Figure 3
Positive Going Output Slew Rate	V/µS	5.7	$R_L = 20K \Omega$ $C_L = 20 pF$ Test Circuit Figure 4
Negative Going Output Slew Rate	V/µS	7.8	$ \begin{array}{l} R_{L} = 20 K \Omega \\ C_{L} = 20 pF \\ Test Circuit Figure 4 \end{array} $
1% Settling Time (1V Step)	μS	0.6	Unity Gain $R_L = 20K \Omega$ $C_L = 20 pF$ Test Circuit Figure 4

NCR 68C05 Core Microprocessor

Features

- 2-micron CMOS DLM technology
- 6805 8-bit MPU core functionality
- Executes identical instruction set as standard 68C05
- 8 MHz external clock;
 4 MHz internal bus speed
- Enhanced 16-bit address bus
- 8-bit by 8-bit unsigned multiply instruction
- 4 uncommitted interrupt lines
- Memory mapped
- Power-saver standby feature
- Behavioral Language model aids in design and test.
- Emulator Board available

Description

The NCR68C05 core supercell is functionally identical to the industry standard MPU68C05 part. It is configured to provide a core supercell and microprocessor for NCR cell-based 2-micron devices. The core contains enhancements to improve performance and testability in the cellbased VLSI circuit environment.

Designing with the 68C05 Core

The NCR ViSys Design System libraries and tools provide a powerful Mentor Graphics workstationbased design environment to aid you in designing your device around the NCR68C05 core.

The NCR VS2000 Standard Cell Libraries (both digital and analog) and ViGen compilers for configurable memory, peripheral and interface functions provide the 2micron cell functions to meet the requirements of a cell-based device in any commercial, automotive or military application. In general, the 68C05 core is appropriate for any application that currently utilizes the standard 6805 CPU or for any system application that requires a CPU.

Test Considerations

A behaviorial language model (BLM) of the

NCR68C05 core is available initially on the Mentor Graphics IDEA[™] Series workstations. The BLM permits full simulation of the design as well as an efficient means of capturing simulation vectors for conversion to test vectors.

Test coverage of the NCR68C05 core-based design is greatly enhanced through direct testing of the functional blocks in the design, including the core. The core's internal 8-bit bus provides easy testing access and can be isolated from the external bus when testing the core.

NCR will supply a set of 68C05 test vectors as a drop-in core test for production devices which utilize direct testing. It is also possible to build self diagnostics for the core into an on-chip ROM, permitting immediate determination of full chip functionality. NCR's ViTest family of test generation tools will aid the development of a complete test program for your device.

KE²: The Knowledge-based Engineering Environment

NCR is making sophisticated ASIC design available to all customers through the Knowledgebased Engineering Environment. The knowledge base is provided by years of good design experience captured in software and available to designers who use NCR's expert tools.

Productivity Improvements

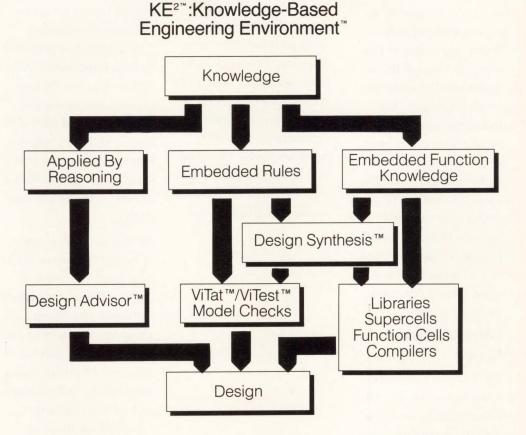
KE² shortens the design cycle for designers at all experience levels. Even the most adept designer's productivity is enhanced when designs are performed at a higher level using NCR Design Synthesis and the advanced NCR function libraries and compilers.

NCR's expert ASIC design tool, Design Advisor, applies extensive expertise to evaluate the design and provide advice, even tutoring designers less familiar with ASICs.

ViTat speeds timing analysis. ViTest and probabilistic fault grading accelerate and promote tester compatibility and efficient test program production.

Design Quality Engineering

Design Quality is improved by a number of KE² tools.


Improved design margins

and identification of problem-prone implementations are provided by ViTat and Design Advisor. Design Advisor also reviews for conformance to good design practices.

Testability is enhanced by Design Advisor and efficient fault grading analysis.

Design Synthesis gives correct-by-construction results, including testability. NCR's ASIC function libraries have already been through this scrutiny, assuring that you are designing with sound building blocks.

In the end, better design margins and more "bulletproof" designs result in better system manufacturing yields and reliability.

Design Management

Increasingly complex designs demand meticulous, consistent review and conformance to accepted design practices. This is particularily true when sections of the design are assigned to different engineers. KE² meets this need. It also promotes well-defined specification and documentation of the design. Design Synthesis not only enables documentation of intended functions with a high-level language but self documents its synthesized library schematic implementation.

Integrated System Design

The tools of KE² work hand in hand with many commercially available design products to support system-level design. These third-party tools include multi-chip simulation, simulation models for "standard" ICs, hardware modeling, fault grading and advice on chip interfaces. All logic simulators certified for use within KE² also have ties to PC board place and route tools.

Expanding the Knowledge Base

With NCR's migration capability between ASIC libraries and the ability to capture function descriptions in a high-level language for implementation in any library, the user's knowledge relating to a particular function block or complete ASIC design is retained for reuse in other designs or libraries. Feedback from users and other sources is continually being added to the knowledge already embodied within KE² software tools. New and enhanced tools and capabilities will be added on an on-going basis.

ViSys Design System Tools

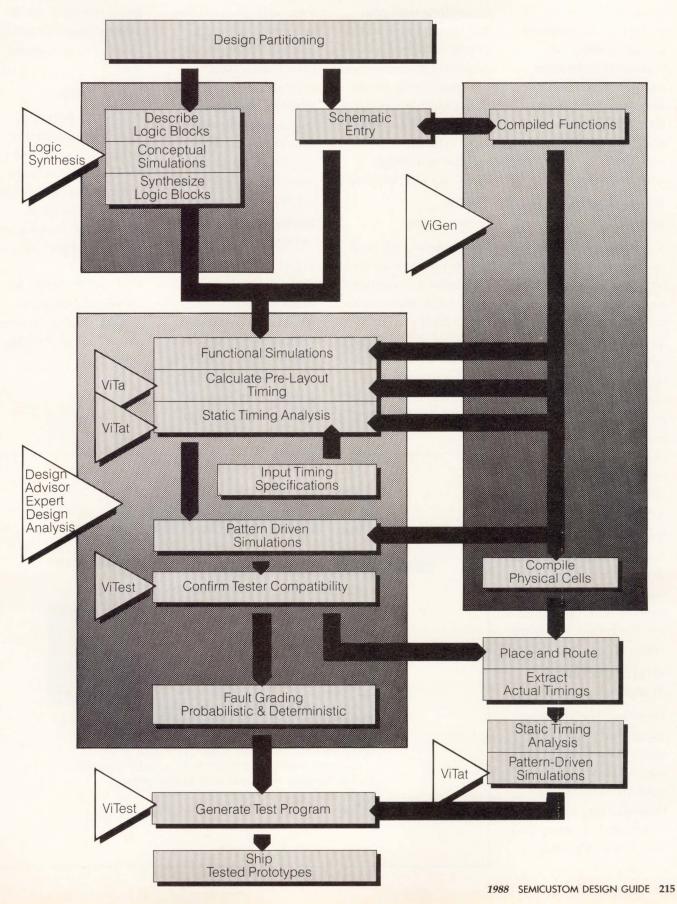
NCR's ViSys Design System supports all NCR libraries from gate arrays to function compilers. This single, powerful and flexible integrated CAD system lets you choose the best library for the application and provides the capability to migrate from one library or process technology to another as needs and technology change.

NCR also offers a range of Software License Packages from basic design capture through AI-based synthesis and design analysis. You choose and expand the level of design control which meets your needs. All packages run on your industrystandard engineering workstation.

Design Synthesis

Knowledge-based Design Synthesis automatically generates correct and efficient designs in the target ASIC library from highlevel language descriptions. Simulation can also be performed at the function language level before synthesis to quickly examine architectural tradeoffs. The system generates both sequential and combinational functions within complex asynchronous and synchronous logic blocks.

ViGen Function Compilation


Today, NCR offers the power of some of the industry's most advanced silicon compilation technology within the framework of our existing ViSys system. This capability is in the form of cell compilers which allow designers to "customize" a compiled cell to their specifications by selecting from a menu of options.

The ViGen compiler automatically generates symbols for design capture and models for simulation and timing analysis of the compiled functions. Functions such as ALU, RAM, ROM, Counter and Multiplexer, Dual-port **RAM and Shift Registers** can be parameterized for physical layout "on-the fly" while in the schematic entry mode. A complete simulation capability is available on the workstation. No resimulation is required.

Design Advisor

With Design Advisor, expertise in many areas relating to ASIC technology is available to automatically review the de-

KE² Design Flow

sign at any time. Its advice concerning opportunities for improvement brings to light potential problems and enhances design quality. Advanced AI technology enables Design Advisor to reason about the design, allows the user to dialogue with the system and tutors the less experienced designer.

Accurate Timing Analysis.

ViTa timing analysis and verification tool, available since 1983, is now in its fourth generation of excellence.

ViTa supports multipath delays using actual values from the layout. First it estimates best/worst case timings and pre-layout delays and then calculates post-layout timings using distributed resistance/capacitance tree analysis.

ViTa also takes into account the effects of signal degradation. ViSys software tools support back annotation to the simulator. No resimulations are required.

ViTat Static Timing Analysis

With the ViTat static timing analysis tool, the user's point-to-point timing and skew specifications are automatically checked along with parameters such as set-up and hold times. The static operation executes in minutes and pinpoints violations and marginal areas along with path and signal descriptions, greatly reducing the time required for conventional dynamic timing simulations (which use patterns to drive the logic simulator). ViTat often saves months on a design cycle—up to a 50% time savings.

Fault Grading

Two types of fault grading are offered each with a different set of options. First, NCR offers probabilistic fault grading as a service or with optional software which runs on popular engineering workstations. This gives the user fast-turn grading and diagnostic guidance during the design phase. Second, NCR offers deterministic fault grading as a service or with an optional library for the Zycad Mach 1000[™]. NCR also is adding to its libraries' compatibility with workstation-driven deterministic fault analysis tools. This gives the user final accurate grading and diagnostics.

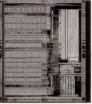
Device Test Programs "At Speed"

ViTest Test Generation Tools merge the best/ worst case simulations into a common file and report on potential design problems. Then patterns are screened for compatibility with realworld tester limitations so that "at speed" simulations become "at speed" test programs. Result? Better testing of the device and faster availability of a full production test.

ViTest Tools:

- ViPac[™] assures test pattern compatibility with real world testers.
- •ViComp[™] combines best/worst case simulations for test strobe placement analysis and creation of the final test program.
- ViStrobe™ checks for potential functional errors, valid stobe windows and strobe margins.

Colossus.


NCR

The die measures 350 by 440 Mils but this ASIC towers over other cell-based designs.

It's a 32-bit co-processor with 10K cells designed primarily on a workstation with NCR's KE² software tools and

our VS1500 cell library, and fabricated in 1.5-micron DLM CMOS. Numbers quantify the magnitude

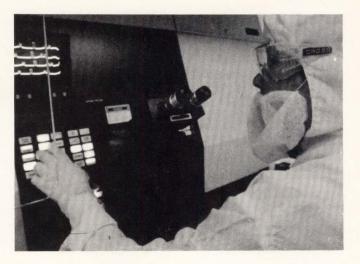
of the accomplishment: the datapath has four 16-bit register files with several dedicated address generation

units, a fast 32-bit ALU allowing concurrent internal operations, controlled by an 80K-bit ROM and a complex state machine. Chip cycle time is 100 ns.

The next time you're faced with a really big ASIC, pick a supplier who can cut it down to size.

Creating value

Quality Overview


Each of NCR Microelectronics' standard products, cell libraries and processes has been extensively characterized and qualified. Our quality assurance engineers work closely with standard product, standard cell and gate array IC designers, as well as computeraided design software engineers and process engineers to assure that long-term product quality is an integral part of every NCR standard or ASIC device.

At NCR we have learned that not only must each and every element of the design and manufacturing process be fully validated, but that they must also be validated as an entire system-from workstation simulations to processing. For example, in the design process, strict design rules with carefully controlled margining requirements are used to insure that products meet or exceed customer quality and reliability requirements. In the fabrication and assembly operation, Statistical Process Control (SPC) is the key to maintaining a high level of confidence.

Of course each ASIC device receives full screening, testing and qualification prior to shipment, but without built-in quality attributes, long term reliability could not be ensured. And at NCR quality is measured not only by the number of devices shipped to our customers, but also the reliability of the devices over the long haul.

Additionally, NCR supports a program of continuous quality improvement. This includes working closely with customers to help insure that applications are consistent with the intended use of the product. If problems are encountered, NCR maintains a closed loop corrective action system to insure that problems are resolved and corrected in a timely manner.

All of this attention to quality and reliability has paid off—for NCR and our customers. NCR has a zero-defects policy which means that every part provided to a customer is guaranteed to be defect free. This significantly reduces the customer's cost of ownership on receipt of parts, during product assembly and in the field.

Facilities

Today, NCR's Microelectronics Division operates two modern manufacturing facilities located in Fort Collins and Colorado Springs, Colorado.

The Fort Collins facility is headquarters for NCR's commercial/industrial Application Specific IC (ASIC), Customer Owned Tooling (COT), Software Products and Communications Products Business Units. The Fort Collins location also houses volume wafer fabrication and test facilities and a complete smallvolume/fast-turn assembly capability to package prototypes.

Colorado Springs is home for NCR's Military ASICs, Automotive ASICs and Logic Products Business Units.

The Colorado Springs facility is also the site of NCR's newest advanced wafer fab. Currently, this fab is running production 1.5µm and 2µm CMOS with 1.0µm and sub-micron CMOS in prototype development.

Design Centers

To serve the ASIC markets, NCR supports a network of Value Added Design Centers[™] (VADC) and operates three internal Design Centers.

VADC's provide local

customer service and were chosen for their special expertise and experience in ASIC design.

NCR Design Centers provide "factory-level" support to the VADCs.

NCR is the name and mark of NCR Corporation. Knowledge-based Engineering Environment, KE², Design Advisor, Design Synthesis, ViSys, ViTat, ViGen, ViTest, ViTa, ViPac, ViStrobe and ViComp are trademarks of NCR. ZyCad and Mach 1000 are trademarks of ZyCad. Mentor Graphics and IDEA Series are trademarks of Mentor Graphics.

Divisional Headquarters

World Headquarters 1700 South Patterson Blvd. Dayton, Ohio 45479 (513) 445-2482

For literature on any NCR Microelectronics Product or Service call toll-free:

NCR Hotline: 1-800-334-5454

Division Plants

NCR Microelectronics 2001 Danfield Court Fort Collins, CO 80525 (303) 226-9500

Commercial ASIC Product Group Customer Owned Tooling Communications Products Software Products

NCR Microelectronics 1635 Aeroplaza Drive Colorado Springs, CO 80916 (719) 596-5611 1-800-525-2252

Military ASIC Product Group Automotive ASIC Product Group Logic Products

SCSI Products

Regional Sales Offices Northwest Sales

3130 De La Cruz Blvd., Suite 209 Santa Clara, CA 95054 (408) 727-6575

Southwest Sales 1940 Century Park East Los Angeles, CA 90067 (213) 556-5231

North Central Sales 33 West Higgins Road, Suite 4080 South Barrington, Il 60010 (312) 426-4600

South Central Sales 400 Chisholm Place, Suite 100 Plano, TX 75075 (214) 578-9113 Northeast Sales 500 W. Cummings Pkwy. Suite 4000 Woburn, MA 01801 (617) 933-0778

Southeast Sales 700 Old Roswell Lakes Pkwy., Suite 250 Roswell, GA 30036 (404) 587-3136

Europe West Germany

Westendstrasse 193 8000 Munchen 21 (089) 57931 153

Far East 2501 Vicwood Plaza 199 Des Voex Road Central Hong Kong 5 859 6888

NEC NEC Electronics Inc.

BiCMOS-4A ADVANCED PROCESS BiCMOS GATE ARRAYS

September 1988

Description

The BiCMOS-4A gate arrays feature the high speed of bipolar arrays and the low power dissipation of CMOS devices. NEC has achieved this combination on the same chip, plus latchup-free operation, by utilizing a 1.5-micron silicon gate CMOS technology and an advanced bipolar process.

The gate array chip (figure 1) is divided into internal and external cell areas. The I/O (interface) cells are in the external cell area. Each internal cell consists of one resistor and 14 transistors: eight n-channel, four pchannel, and two bipolar npn. The internal cell is equivalent to two gates; the external cell is equivalent to one gate.

These application-specific integrated circuits (ASICs) have part numbers in the μ PD67000 series. They are available in two sizes (6372 and 10,348 gates) and a variety of packages, including low-cost plastic.

Gate arrays are intended for customers seeking costeffective alternatives for VLSI designs. With gate arrays, designers can decrease system form factors by reducing component count and board size while increasing the reliability of their final design.

NEC's gate array program allows a semicustom IC to be developed quickly and reliably at a small fraction of the cost of a full-custom device.

NEC.cupports its ASIC products with a comprehensive CAD system that significantly reduces the time and expense usually associated with the development of semicustom devices. Advanced CAD tools—such as delay simulation before and after layout, racing check programs, automatic placement and routing, and test program generation—ensure accurate error-free designs.

Master Slice Data

 $T_A = 0$ to $+85 \degree C$

	μ PD67060	μ PD67100
Gate count	6372	10,348
Internal cell count	3096	5060
I/O cell count	180	228
Internal gate delay (typ)	0.67 ns (2-ir	put NAND; F/O = 2, L = 1
Input buffer delay (typ)	1.1 ns (F/0 =	= 2, L = 1 mm)
Output buffer delay (typ)	3.0 ns (C _L =	15 pF)

Features

- □ High speed
 - Internal gate: 0.67 ns (2-input NAND, F/O = 2, L = 1 mm)
 - Output buffer: 3.0 ns ($C_L = 15 \text{ pF}$, $I_{OL} = 24 \text{ mA}$)
 - Input buffer: 1.1 ns (F/O = 2, L = 1 mm)
 - Toggle frequency: 120 MHz (worst case, F/O = 3, L = 3 mm)
- □ Low power
 - Internal cell: 18 μW/MHz
 - Output buffer: 0.541 mW/MHz ($C_L = 15 \text{ pF}$, $I_{OL} = 24 \text{ mA}$) 8.35 mW (standby)
 - Input buffer:
 26 μW/MHz
 0.77 mW (stands)
- 0.77 mW (standby)
 - Buffers and inverters
 - Logic functions (D-F/F, latch, AND, OR, etc)
 - 24 mA standard
 - 48 mA high-current version (two external cells)
 - Bidirectional
 - Open-collector
 - Three-state
 - Optional pullup or pulldown resistor
- Input buffers
 - CMOS level
 - TTL level
 - Schmitt trigger
 - Optional pull-up resistor
- □ Large variety of packages
 - PPGA, CPGA, plastic flatpack, PLCC
 - 68 to 280 pins
- □ Quick turnaround time for prototypes
- □ Simple interface to customer's logic diagram and test patterns
- Advanced CAD tools
 - Delay simulation
 - Racing check
 - Automatic placement and routing
 - Back annotation from layout (post-layout simulation)
 - Test program generation
- Direct access to NEC design centers. Each design center is fully equipped with the latest CAD tools and an experienced staff committed to service.

For literature, call toll-free 8 a.m. to 4 p.m. Pacific time: 1-800-632-3531

CMOS-5 1.2-MICRON CMOS GATE ARRAYS

September 1988

Description

The CMOS-5 gate arrays are low-power, high-speed integrated circuits featuring 1.2-micron silicon-gate CMOS technology. The basic cell on the gate array chip consists of six transistors, three p-channel and three n-channel. See figures 1 and 2.

These application-specific integrated circuits (ASICs) have part numbers in the μ PD65000 series. They are available in a variety of sizes (2,000 to 45,000 gates) and packages.

Other NEC publications associated with this data sheet are listed below.

General Design Manual (stock no. 700210) 1.2-Micron CMOS Design Manual (in process) 1.2-Micron CMOS Block Library (in process) ASIC Package Drawings (stock no. 700348)

Features

- Technology: 1.2-micron, silicon-gate CMOS; tv or three metal layers
- □ High speed
 - Input buffer: 1.2 ns (F/O = 1, L = 0 mm)
 - Internal gate: 1 ns (F/O = 3, L = 3 mm)
 - Power gate: 0.7 ns (F/O = 3, L = 3 mm)
 - Output buffer: 2.5 ns ($C_L = 15 \text{ pF}$)
- Low power
 - Internal cell: 12 μW/MHz
 - Output buffer: 1.5 mW/MHz ($C_L = 15 \text{ pF}$)
- □ Output current: 3, 6, 12 or 17.5 mA
- □ Single + 5-volt power supply
 - CMOS level: 4.5 to 5.5 V
 - TTL level: 4.75 to 5.25 V
- □ Ambient temperature:
 - CMOS level: -40 to +85°C
 - TTL level: 0 to +70°C
- □ Block library with more than 140 macros
- Input buffers
 - CMOS level
 - TTL level
 - Schmitt trigger
 - With pull-up or pull-down resistor
- □ Output buffers
 - Normal
 - Open-drain
 - Three-state
 - Bidirectional
- □ I/O interface: CMOS or TTL compatible

Packages

- Plastic DIP: 24- to 64-pin
- Plastic flatpack: 44- to 160-pin
- Plastic LCC: 24- to 84-pin
- Plastic PGA: 72- to 280-pin
- Ceramic PGA: 72- to 280-pin
- Supported by advanced CAD tools
 - Schematic capture
 - Design rule check
 - Logic and timing simulation before and after placement and routing
 - Racing check, setup and hold time check, before and after placement and routing
 - Automatic placement and routing
 - Test vector generation if NEC scan path design methodology is used
 - Test program generation
- Direct access to NEC design centers through communication network or telephone dial-up
- □ Quick turnaround time

Gate Array Sizes

μPD	Gates	Cells	Signal Pads	
65025	2016	1344	88	
65032	3366	2244	106	
65044	4440	2960	120	
65051	5292	3528	132	
65061	6348	4232	144	
65071	7500	5000	156	
65082	8748	5832	164	
65103	10,800	7200	180	
65140	14,256	9504	212	
65180	18,144	12,096	244	
65240	24,000	16,000	284	
65300	30,600	20,400	280	
65450	45,012	30,008	334	

Notes:

- (1) Each signal pad can be used as an input, output, bidirectional, or three-state port.
- (2) μ PD65300 and μ PD65450 have three metal layers.

For literature, call toll-free 8 a.m. to 4 p.m. Pacific time: 1-800-632-3531 220 SEMICUSTOM DESIGN GUIDE 1988

SIERRA SEMICONDUCTOR

Presents

The Industry's Most Comprehensive Standard Cell Solution for CMOS ASIC Designs

- □ A Triple Technology[™] Process—Integrating
- Analog, Digital, and EEPROM On a Single Chip
- The Largest Analog Standard Cell Library in the Industry
- The Most Extensive EEPROM Library in the Industry
- A Superior Mixed Analog/Digital Simulation Program–MIXsim
- Rapid Design Cycles
- Reduced Development Costs
- Continuous Software Support
- Total Responsiveness to Customer Requirements

Find out now if the Sierra solution can economically solve your ASIC design requirements

Simply follow the die size and pin-count calculation procedure in this presentation and you can quickly determine the cost of producing your chip design. All Standard Cells in the enclosed Sierra Library are 2 micron, all-layer CMOS. And of course, Sierra's breakthrough "Triple Technology Process" allows you to integrate Analog, Digital and EEPROM all on a single chip.

Contents

- $\hfill\square$ An overview of Sierra Semiconductor
- □ Cost Calculation Procedure
- □ Standard Cell Library

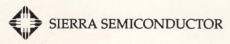
- □ The Mentor Connection
- □ Presenting MIXsim
- □ Applications
- Plants, Sales Offices, Representatives

SIERRA SEMICONDUCTOR

All About Sierra Semiconductor

Company Overview

Sierra Semiconductor is a supplier of CMOS all-layer semicustom applicationspecific integrated circuits (ASICs) with a complementary portfolio of standard products. The company's cell-based ASIC devices serve a wide base of applications, while the standard products take aim at data communications and telecommunications markets.


The ASIC and standard product lines both take advantage of Sierra's Triple Technology process, which permits the combined integration of analog, digital and EEPROM (electrically erasable and programmable read-only memory) technologies on the same chip. The semicustom devices are fully supported on multiple industry-standard platforms and universal design tools.

Sierra's products are sold primarily to original equipment manufacturers (OEMs) serving the computer, computer peripheral, instrumentation, telecommunications, data communications and business machine markets. The company's products are sold through manufacturers' representatives and distributors in North America, Japan and Southeast Asia. In Europe the company's sales are through Sierra Semiconductor, B.V. headquartered in the Netherlands. Sierra Semiconductor, B.V. also employs manufacturers' representatives.

Standard and Semicustom

Currently, Sierra's sales are split almost evenly between standard products and semicustom products. Although excellent growth is projected for standard products, the extremely rapid growth of the semicustom market is expected to result in an increasingly higher percentage of the company's total revenues being in semicustom product sales.

Products based on Sierra's standard-cell based ASICs can be designed by either Sierra or its customers exclusively, or jointly. They can be designed at Sierra's four design centers located in San Jose, Boston, Chicago and Europe (Holland). The company will continue to establish additional design centers. As a leading supplier of multiple-technology ASIC devices, Sierra's advantage stems from two disciplines: process innovations and design software.

Technology Advantage	The company's Triple Technology process is an advanced CMOS process that permits the integration of digital, analog, and EEPROM non-volatile memory on the same chip. Because most systems employ both analog and digital circuitry, a true "system on a chip" isn't possible unless the digital and analog technologies can be merged. The inclusion of EE memory permits the cus- tomer to further customize his products. Sierra's present semicustom stan- dard-cell ASIC library utilizes a 2.0-micron process.
	Design software has emerged as a crucial technology in the design of ASIC products. The Company's proprietary Sierra Custom Design System (SCDS) and its Mixed Analog/Digital Simulation software, MIXsim, permits efficient schematic capture, simulation and layout of standard cells, compiled cells, megacells and custom cells. The MIXsim simulator permits the simulation of both digital and analog circuitry—together on the same chip.
	Prior to the development of MIXsim, analog and digital circuitry was simu- lated separately. Predicting the performance of the integrated product was both painstaking and uncertain. The newly introduced MIXsim greatly sim- plifies the design and simulation effort. Further, it is expected to result in more designs being performed independently by Sierra's customers.
Products	Semicustom Products Sierra's 2.0 micron, all-CMOS product offering consists of a library of over 225 digital, over 50 analog and 25 EEPROM cells. The analog library is both the largest and most advanced library in the industry. The EEPROM library was the industry's first and is the most extensive offered.
	Standard Products The company's standard products are predominantly data communications and telecommunications circuits. The company's Triple Technology [™] process is particularly well suited for the manufacture of communication circuits.
	The Company's data communications line is anchored by its 1200 BPS mo- dem (the market share leader). The company's year old 2400 BPS modem offerings are expected to emerge strongly in this rapidly developing market. Aggressive development efforts will further broaden the data communica- tions market base served.

The Company's telecommunication product line includes DTMF receivers and transceivers, CODECs, progammable gain/loss circuits, a transcoder, cross point switch, loop back circuit and line equalizer. This rapidly growing line consists of 20+ products, placing it among the broadest in the industry.

SIERRA SEMICONDUCTOR

Manufacturing

Sierra Semiconductor's manufacturing needs are being served by its U.S. wafer fabrication facility, a Far East facility that is currently under construction and through independent foundries.

The company's Calif.-based wafer fabrication and test facility has a capacity of 1,500 5-inch wafers per month. All production-level wafers currently utilize a 2.0-micron CMOS design process. A 1.5-micron library is in prototype and a 1.2-micron process is in development. Ultimately this facility will be used exclusively for engineering development and fast turnaround, small quantity production.

Chartered Semiconductor in Singapore is a wafer facility jointly established by Sierra, National Semiconductor Corporation and Singapore Technology Corporation. This wafer fabrication and test facility, now under construction, will house a Class 1 clean room and will be capable of producing 5,000, 6inch, sub-micron geometry wafers per month. Sierra will install its Triple Technology process and equip, staff and manage the operation. Chartered Semiconductor will be dedicated to producing high-volume, low-cost, stateof-the-art products for Sierra and other firms (see joint ventures).

Facilities

Sierra Semiconductor corporate headquarters are located at 2075 North Capitol Ave., San Jose, Calif. The 115,000-sq. foot facility houses the firm's research, development, engineering, marketing, manufacturing, administration and financial operations, as well as one of its Design Centers. Additional U.S. design centers are located in Chicago, Illinois and Burlington, Massachusetts.

European headquarters are located at the Sierra Semiconductor, B.V. facility in Holland. This facility houses a design center, the product distribution center and a marketing and engineering staff.

Alliances

The complexity and capital intensive nature of the semiconductor business virtually dictates that companies either seek out strategic partners or perish. Thus, Sierra is constantly in pursuit of relationships that will strengthen its position. Strategic alliances and joint ventures have figured prominently in the company's successes to date. The company sees no diminution of such relationships in the future.

National Semiconductor Corporation

Since the company's inception, numerous alliances have been consummated with National Semiconductor Corporation. These agreements involved technology exchanges, shared R & D (joint development projects), and a host of other business transactions.

VLSI Technology, Inc

An alliance with VLSI Technology, Inc. has been highly beneficial to both companies—even though the two companies are direct competitors in certain areas. The two companies co-developed a set of design tools and act as second sources to one another.

Joint Ventures

Three joint ventures, all recent, will have great bearing on Sierra's future.

Sierra Semiconductor, B.V.

In the first quarter of 1987, Sierra Semiconductor, B.V. was formed as a venture capital funded European company located in Holland. It is an independent company in which Sierra owns an 81% equity interest. Financing (\$12 million) came from European sources. For Sierra's equity share, the company contributed its technology and granted European marketing rights for Sierra products to the new entity. The joint venture maintains a European design center, a European distribution center, and serves as the European headquarters for Sierra, providing complete technical support for European customers.

Chartered Semiconductor Pte, Ltd.

In November 1987, Chartered Semiconductor Pte, Ltd. was formed as a joint venture between Singapore Technology Corporation, Sierra Semiconductor and National Semiconductor. Chartered Semiconductor is a semiconductor manufacturing company with capacity for fabrication and test of 5,000, 6inch, sub-micron wafers per month. This entity is scheduled for first wafer production starts in early 1989. Sierra Semiconductor is responsible for installing its Triple Technology process and managing the operation. Over half the output of Chartered Semiconductor is committed to Sierra Semiconductor. The balance is committed to National Semiconductor and Chartered-Sierra.

The ownership of Chartered Semiconductor is:

National Semiconductor Corp.	9%
Sierra Semiconductor Corp.	17%
Singapore Technology Corp.	74%

Total: 100%

The bulk of the approximately \$50 million in financing is being provided by Singapore. Sierra contributes technology, training, and management for its share. National contributes technology and technical assistance for its share.

Chartered-Sierra Pte, Ltd.

Also in November, 1987, Chartered-Sierra Pte, Ltd. was formed as a joint venture between Sierra Semiconductor and Singapore Technology Corporation. Chartered-Sierra will consist of a design center and a marketing and design staff to serve and support the very fast growing Southeast Asian Market. Chartered-Sierra will be staffed by Singaporean design engineers who have been trained at Sierra's San Jose, Calif. facility. (Over 15 have been in training since late 1986).

SIERRA SEMICONDUCTOR

An hour of your time can save you thousands of dollars

■ Follow this easy calculation procedure. Call Sierra with the results — get a price!

The Standard-Cell Solution to ASIC Design

You can quickly find out how much it would cost to convert your existing analog/digital design into a Sierra Semicustom chip. You can then compare the cost of the Sierra solution to the cost of producing your circuit as you do now, and see for yourself whether our system-on-a-chip technology makes sense for your designs.

The cost of an ASIC depends primarily on the amount of chip area it takes. Therefore, the calculation described here determines the chip area, or die size, your design will require. When you have calculated this area, a call to Sierra gives you the approximate cost of the final chip. You are under no obligation; we simply give you a price for our service and you make up your own mind. If you've ever wondered how much it would cost to move your complete analog/digital design onto one chip, now is the time to find out.

To do this calculation, you need:

- □ The information provided in this insert.
- □ Information about your design.

The die size required for your design depends on two primary factors: the amount of circuitry you have and the number of pins needed for signals going to and from the chip. If your design has a lot of circuitry and only a few I/O pins, the amount of circuitry will determine the die size. However, if your design requires a relatively large number of I/O pins, this factor could be more important in determining the die size.

Many designs cannot be 100% implemented with the Standard Cell Library, which will require some custom work by Sierra. After you calculate die size, define to Sierra the circuitry that requires custom work. Die Sizes up to 250 mils are usually very economical. 250 to 500 mils are typically expensive. Over 500 mils are normally impractical.

The calculations that follow are thus in two steps. In the first step, you calculate the chip area your circuitry alone (without I/O pins) will occupy on the chip. This area is known as the core area. Then in the second step, you determine how much chip area you need for I/O pins. By adding the I/O pin area to the core area, you obtain the total die size.

■ STEP 1 Determine the Core Area To calculate the core area of your design, you begin by finding your design criteria in the Sierra Standard Call library (immediately following this calculation procedure). For the digital functions in your circuit, you replace the digital functions with the Sierra gate equivalents listed in the library.

There are many types of functions in the library, including digital, analog and EEPROM. When you replace these types of components in your circuit with the Sierra library counterparts, you will find specific information needed for the die size calculation.

SIERRA SEMICONDUCTOR

■ The Number of Gates: This applies to digital SSI/MSI functions and rugged EE Logic. Every digital function in the Sierra library is implemented using a specific number of gate equivalents. These gate equivalents are given in the library listing in this insert. Because each gate equivalent takes up a certain amount of die area, you must determine the total *Number of Gates* needed to implement the digital parts of your design.

■ **The ICF Area:** This is the "interconnect factor" for your circuit, which is the amount of interconnection between your circuit's components. The more components you have, the more area is required for interconnections. To approximate the amount of *ICF area* your circuit will need, consult the following table, noting that this ICF value applies only to digital functions:

Number of Gates	ICF	Number of Gates	ICF
0 - 1000	1.75	4000 - 6000	3.0
1000 - 2000	2.0	6000 - up	3.5
2000 - 4000	2.5		

■ **The Analog Area.** This applies to all the analog functions. The library listings give the die area required for each analog function you need to implement your circuit. You must determine the total **Analog Area** occupied by all your analog circuitry.

The EEPROM Area. This is the total area occupied by any EEPROM arrays and power supplies in the circuit. The library listings give specific areas for different EEPROM array sizes.

■ The Compiled Area. Any RAM, ROM, Multipliers, 2901 Data Paths or PLAs in your circuit area are implemented using a compiler, a software tool that creates any array configuration you want. The area required for RAM and ROM can be found from the tables provided. The area for multipliers, C2901 Data Paths and PLAs can be calculated using the formulas provided.

Once you get these area figures, you feed them into the following equation:

Core Area = [(Number of Gates * 2.1 * ICF) + (Analog Area + EEPROM Area + Compiled Area) * 1.35]

The 2.1 constant in this equation represents the die area required for each gate equivalent. Thus, the first parenthetical term calculates the area taken up by your digital circuitry, including the interconnect factor for the analog and memory blocks.

Once you have filled in all the variables and done the calculations, you get your core area in square mils. You must then convert the *Core Area* into a measure of the *Core Edge*: the length of one side of the *Core Area*. Because the *Core Area* is a square, you find the *Core Edge* by taking the square root of the *Core Area*:

Core Edge = $\sqrt{\text{Core Area}}$

■ STEP 2 Determine the Total Die Size The *Core Edge* value is needed to calculate the I/O pin area in Step 2.

To complete the die size calculation, you need two pieces of information:

■ The core edge value calculated in Step 1.

■ **The number of pads** required for your design; that is, the number of I/O pins needed. (Each I/O pin connects to a pad area on the edge of your chip, so the chip must provide enough edge space to accommodate all the pads.) Now, calculate the number of *pads per side*, which equals the total *Number of Pads* divided by 4, then rounded up to an even number.

Using this information, perform the following test:

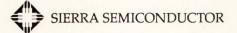
If **Core Edge** +10 > (**Pads Per Side**)(12.5)-13 then your design is core limited, and your final die size equals the greater of the following calculations:

Core Edge + 43 or

(Pads Per Side *12.5) + 33

If the test is not true for your circuit, then your design is probably pad limited, and your final Die Size equals the greater of the following calculations:

Core Edge + 43


(Pads Per Side - 2) * 7.5 + 47

The calculations in Step 2 include several factors dealing with the layout of semicustom chip. The test performed at the beginning of Step 2 is to determine whether the die size of your design is dependent on the size of your core (core limited) or the number of pads you must fit onto the chip (pad limited). The constant 10 in this test represents the power and ground routing area of the core; 12.5 is the width of the row of core-limited pads along the chip's edge; and 13 is a factor representing the grey area between a pad limited and a core limited design.

The two choices given for calculating die size for pin-limited and pad-limited cases help ensure the most accurate results. The second choice in each case (the calculation involving the **Pads Per Side**) represents a chip that is not clearly core or pad limited. By taking the greater of the two choices, you get a conservative estimate of die size. Note that you can also use the calculations for the different cases as a way of guiding tradeoffs between gates and pads, which helps you achieve the smallest die size.

Most of the constants in the calculations (43, 33, and 47) represent areas that are present in every chip. As for other constants, the 7.5 represents that pitch between pad-limited pads; 2 is subtracted from the **Pads Per Side** value because two pads can be placed in the chips corners.

Once you have calculated the die size for your design, call Sierra Custom Marketing at (408) 263-9300 to get a quote on how much your chip would cost. You might be amazed at how much our system-on-a-chip ASICs can save you.

Sierra SCDS[™] 2-Micron CMOS Cell Library

All analog specifications are typical, 5V, 25°C, and use a single 5V supply, unless otherwise indicated.

Analog Cell Library

	ANALOG-	to-DIGITAL	CONVERTE	RS		
NAME	DESCRIPTION	NVERSION TIME	NO! INTEGRAL	N-LINEARITY DIFFERENTIAL	SIZE SQ. MILS	
ADC4BT	4-bit flash	300 nsec	0.25 LSB	0.25 LSB	1589	
ADC8BT	8-bit successive approximation	3 µsec	0.5 LSB	0.5 LSB	2833	
ADC10B	10-bit successive approximation	10 µsec	0.5 LSB	0.5 LSB	2671	
ADC12B	12-bit dual slope	100msec	0.5 LSB	0.2 LSB	1743	
HADC8B	8-bit high speed	500 nsec	0.5 LSB	0.5 LSB	4800	

ANALOG CONVERTE

DIGITAL-to-ANALOG CONVERTERS								
	S	ETTLING	NOM	-LINEARITY	SIZE			
NAME	DESCRIPTION	TIME	INTEGRAL	DIFFERENTIAL	SQ. MILS			
DAC4BT	4-bit flash, current output	30nsec	0.1 LSB	0.1 LSB	603			
DAC8BT	8-bit resistor string, voltage output	1.5µsec	0.5 LSB	0.1 LSB	2036			
DAC10B	10-bit charge integration	5µsec	0.5 LSB	0.5 LSB	2450			
FDAC8B	8-bit flash, current output	20nsec	0.5 LSB	0.5 LSB	3780			

-

OPERATIONAL AMPLIFIERS

NAME	GAIN	BAND- WIDTH	PHASE	SLEW RATE	POWER	P-P VOLTS	LOAD	SIZE SQ. MILS
OP02IB	89DB	2.8MHz	67	4V/µsec	4.6mW	4.2V	2k/100pF	378
OP10IB	90dB	3.5MHz	70	4V/µsec	2.1mW	4.4V	10k/50pF	286
OP20IB	90dB	2.9MHz	65	4V/µsec	1.7mW	4.4V	20k/50pF	276
OP02EB	89dB	2.8MHz	67	4V/µsec	4.6mW	4.2V	2k/100pF	506
OP10EB	90dB	3.5MHz	70	4V/µsec	2.1mW	4.4V	10k/50pF	368
OP20EB	90dB	2.9MHz	65	4V/µsec	1.7mW	4.4V	20k/50pF	353
OP10ID	66dB	2.5MHz	75	7V/µsec	3.2mW	3.5V	10k/50pF	153
OP20ID	69dB	3.0MHz	65	9V/µsec	2.5mW	3.5V	20k/30pF	133
OP10ED	66dB	2.5MHz	75	7V/µsec	3.2mW	3.5V	10k/50pF	256
OP20ED	69dB	3.0MHz	65	9V/µsec	2.5mW	3.5V	20k/30pF	240

1. The suffix "I" or "E" in the cell name means internal and external, respectively. "E" type op amps drive off-chip loads.

2. Output current is specified driving minimum Resistive and maximum Capacitive Loads. The R value is indicated by the number in the Op Amp's cell name, and has units in k Ω . Typical input current is negligible. Input offset voltage < 10mV.

3. P-P Volts = peak-to-peak output Voltage swing.

ANALOG MULTIPLEXERS/SWITCHES

NAME	FUNCTION	RDS ON*	SIZE SQ. MILS	NAME	FUNCTION	RDS ON*	SIZE
M21200	2:1 ANALOG MUX	200Ω	229	M4110K	4:1 ANALOG MUX	10000Ω	133
M2101K	2:1 ANALOG MUX	1000Ω	143	ASW200	ANALOG SWITCH	200Ω	153
M2110K	2:1 ANALOG MUX	10000Ω	123	ASW01K	ANALOG SWITCH	1000Ω	97
M41200	4:1 ANALOG MUX	200Ω	358	ASW10K	ANALOG SWITCH	10000Ω	87
M4101K	4:1 ANALOG MUX	1000Ω	235				
*RDS ON =	= peaks on resistance (worst case	: 4.5-5.5V, 0-	70°C)			

POWER-ON-RESET/LOW VOLTAGE DETECT

NAME	DESCRIPTION	Vtrip-*	Vtrip+*	Vhyst		SIZE SQ. MILS
PORID1 LVDET1	Threshold reference POR Band Gap reference POR	1.5V 3.7V	3.8V 4.5V	0.7V 0.2V		163 736
	: 4.5-5.5V, 0-70°C	D/RC OSCI	LLATO	RS/PLL		
NAME	MAX. FREQUENCY	FREQUEN	CY	VCO LINEARITY	POWER	SIZE SQ. MILS
OSCHEB	500kHz	10%		0.5%	5.0mW	399

10%

5%

0.7%

2.0%

34MHz Phase lock subsystem

50kHz

OSCLEB

PLL34M

3.5mW

200mW

342

3224

INUED) OSC32 OSC04	FREQU	JENCY	NAME	EDEOUENON	,			
			11AINE	FREQUENCY				
OSC04		kHz	OSC16B	12-20MHz				
			OSC25B	20-30MHz	These ar	e Bonding	-Pad C	ell
OSC08	B 6-12M	Hz	OSC45B	30-50MHz				
			VOLTAGE	COMPARATO	RS			
. Since			RESPONSE	INPUT				SIZE
NAME	GAIN		TIME ⁺	RANGE ^{††}	POWER	Vos	SQ. N	
CPHSI			80ns	3.5V	3.0mW	5.0m	V	97
CPLSI			350ns	3.2V	1.0mW	5.0m	V	51
CPVH			15ns	2.5V	2.0mW	10m		61
CPVLC			500ns	5.0V	1.0mW	0.5m		220
CPVLI			5µs	3.7V	75µW	5.0m	V	7
	10mV input ov ut Range = com		pt CPVHSI with ±3	300mV).				
			RS422 TYPE	DRIVER/RECE	IVER			
								SIZE
		Stand F. F.	and the second	and the second second			SQ. N	
RSRCV			RENTIAL RECEIV RENTIAL DRIVER					185 114
			ANALOG-REF	ERENCE-AMPI	LIFIER			
							SQ. N	SIZE
REFAN	AP Unity	gain op-amp	used to buffer a mi	d-supply analog g	round reference.		04.1	
		=4mW		11, 00				174
		V	OLTAGE-TO-C	URRENT CON	VERTER			
NAME	INPUT		OUTPUT RANGE	POWER			SQ. N	SIZE
VTCCI			0 - 50µA	2.0mW				189
			BUCCI					
NAME	DESCR	IPTION	Rodal	ED EELOGIC+	WRITE CYCLE		GA	TES
EEDFF		EE D-FLIP FL	OP		10ms			32
EEDLI		EE DATA LA			10ms			27
EESRL		EE SET-RESE			10ms			20
EEDFF			ER WITH CLEAR		10ms			80
EEDFS			ER WITH CLEAR,	PRESET	10ms			10
EEDFS		EE D REGIST		TREOL T	10ms			10
EENLA		EE LATCH W	10ms			7		
EETFS	EETFST 4-BIT EE COUNTER WITH PARALLEL LOAD 10ms							98
+ Rugged EE is a failure tolerant, redundant dual-transistor cell design that facilitates simple application and testing. The term "EE" is for electrically eraseable; all EELOGIC devices are electrically eraseable and program mable.								
			RUGG	ED EEPROM+				
NAME	TOTAL	++ DESCRIPT	ION		WRITE	ACCESS	SQ. M	
EEARF								
ELAKK	XY 16 32		PROM ARRAY PROM ARRAY		10ms 10ms	125ns 125ns		80
	32 64		$4,8 \times 8 \text{ EEPROM}$	ARRAY	10ms	125ns 125ns		50
	128		x 4, 16 x 8, 8 x 16 I		10ms	125ns 125ns		30
	256		x 8, 16 x 16 EEPRO		10ms	125ns		100
+ Pure				isistor cell design v				
testi		ure toteratit, I	caundant utar tfar	isision cen design v	vincin facilitates si	inple appli	cation	an
	0	vailable on a o	custom basis; consu	ilt factory.				
			PROGRAM	MING SUPPLI	ES			
NAME	DESCR	IPTION			MAX		SQ. M	
EEHVI			OLLED EXTERNA	I VPP	4096			36
			R EXTERNAL VPP		4096			550
	L CONT				256			070
EEHVI	2 INITED	NAL VPDT					1	010
EEHVI EEHVS		NAL VPP GI		to 85°C, unless oth				

230 SEMICUSTOM DESIGN GUIDE 1988

BUFFERS

NAME	DESCRIPTION		EQUIVALENT
		SPEED	GATES
CK01D1	NON-INVERTING CLOCK BUFFER, 1X DRIVE		
CK01D2	NON-INVERTING CLOCK BUFFER, 2X DRIVE	2.2	2
CK01D3	NON-INVERTING CLOCK BUFFER, 3X DRIVE	2.0	
CK02D1	INVERTING CLOCK BUFFER, 1X DRIVE	2.3	1
CK02D2	INVERTING CLOCK BUFFER, 2X DRIVE		
CK02D3	INVERTING CLOCK BUFFER, 3X DRIVE	1.5	
IN01D1	INVERTING BUFFER, 1X DRIVE	1.4	1
IN01D2	INVERTING BUFFER, 2X DRIVE	1.4	
IN01D3	INVERTING BUFFER, 3X DRIVE	0.7	2
IT01D1	INVERTING 3-STATE BUFFER WITH OE, 1X DRIVE	2.0	
IT01D2	INVERTING 3-STATE BUFFER WITH OE, 2X DRIVE	2.0	2
IT01D3	INVERTING 3-STATE BUFFER WITH OE, 3X DRIVE		
IT02D1	INVERTING 3-STATE BUFFER WITH OEN, 1X DRIVE		2
IT02D2	INVERTING 3-STATE BUFFER WITH OEN, 2X DRIVE		
IT02D3	INVERTING 3-STATE BUFFER WITH OEN, 3X DRIVE		3
NI01D1	NON-INVERTING BUFFER, 1X DRIVE		
NI01D2	NON-INVERTING BUFFER, 2X DRIVE		2
NI01D3	NON-INVERTING BUFFER, 3X DRIVE		2
NT01D1	NON-INVERTING 3-STATE BUFFER WITH OE, 1X DRIVE		2
NT01D2	NON-INVERTING 3-STATE BUFFER WITH OE, 2X DRIVE		3
NT01D3	NON-INVERTING 3-STATE BUFFER WITH OE, 3X DRIVE		4
NT02D1	NON-INVERTING 3-STATE BUFFER WITH OEN, 1X DRIVE		2
	NON-INVERTING 3-STATE BUFFER WITH OEN, 2X DRIVE		
NT02D3	NON-INVERTING 3-STATE BUFFER WITH OEN, 3X DRIVE	2.3	4

GATES

			EQUIVALENT
NAME	DESCRIPTION	SPEED	GATES
AN02D1	2-INPUT AND		2
AN03D1	3-INPUT AND		2
AN04D1	4-INPUT AND		
AN05D1	5-INPUT AND		
AN06D1	6-INPUT AND		
AN07D1	7-INPUT AND		
AN08D1	8-INPUT AND		
AO01D1	2/2 AND-OR-INVERT		2
AO02D1	3/3 AND-OR-INVERT		
AO03D1	2/2/1 AND-OR-INVERT		
AO04D1	2/1 AND-OR-INVERT		2
AO05D1	2/1/1 AND-OR-INVERT		2
ND02D1	2-INPUT NAND		
ND03D1	3-INPUT NAND		2
ND04D1	4-INPUT NAND		
ND05D1	5-INPUT NAND		
ND06D1	6-INPUT NAND		
ND07D1	7-INPUT NAND		
ND08D1	8-INPUT NAND		
NR02D1	2-INPUT NOR		
NR03D1	3-INPUT NOR		
NR04D1	4-INPUT NOR		
NR05D1	5-INPUT NOR		
NR06D1	6-INPUT NOR		
NR07D1	7-INPUT NOR		
NR08D1	8-INPUT NOR		4
OA01D1	2/2 OR-AND-INVERT		
OA02D1	3/3 OR-AND-INVERT		
OA03D1	2/2/1 OR-AND-INVERT		
OA04D1	2/1 OR-AND-INVERT		2
OA05D1	2/1/1 OR-AND-INVERT		
OR02D1	2-INPUT OR		
OR03D1	3-INPUT OR		
OR04D1	4-INPUT OR		3
OR05D1	5-INPUT OR		
OR06D1	6-INPUT OR		
OR07D1	7-INPUT OR		
OR08D1	8-INPUT OR		
XN02D1	2-INPUT EXCLUSIVE NOR		
XO02D1	2-INPUT EXCLUSIVE OR		

DECODERS/MULTIPLEXERS

FOUNVALENT

COLUMNAL CHIT

Digital Cell Llbrary (

CONT	INUED)
------	--------

NAME	DESCRIPTION	SPEED	GATES
DC24D1	2-TO-4 LINE DECODER		5
DC38D1	3-TO-8 LINE DECODER		
DE24D1	2-TO-4 LINE DECODER WITH ENABLE		8
ME41D1	4-TO-1 MULTIPLEXER WITH ENABLE		9
MX21D1	2-TO-1 MULTIPLEXER		
MX41D1	4-TO-1 MULTIPLEXER		7
MX81D1	8-TO-1 MULTIPLEXER	10.3	

ARITHMETIC FUNCTIONS

NAME	DESCRIPTION	SPEED	EQUIVALENT GATES
AD01D1	1-BIT FULL ADDER		
AD02D1	2-BIT FULL ADDER		
AS01D1	1-BIT ADDER/SUBTRACTOR		
AS02D1	2-BIT ADDER/SUBTRACTOR		23

FLIP-FLOPS/LATCHES

			EQUIVALENT
NAME	DESCRIPTION	SPEED	GATES
DFBNNB	D FLIP-FLOP WITH CLEAR, PRESET, BUFFERED OUTPUTS		
DFBNNN	D FLIP-FLOP WITH CLEAR, PRESET		7
DFBNNT	D FLIP-FLOP WITH CLEAR, PRESET, 3-STATE OUTPUT		
DFBTNB	BUFFERED D FLIP-FLOP WITH CLEAR, PRESET		9
DFBTNN	D FLIP-FLOP WITH CLEAR, PRESET, BUFFERED CLOCK		
DFBTNT	BUFFERED D FLIP-FLOP WITH CLEAR, PRESET, 3-STATE OUTPUT		
DFCNNB	D FLIP-FLOP WITH CLEAR, BUFFERED OUTPUTS		7
DFCNNN	D FLIP-FLOP WITH CLEAR		
DFCNNT	D FLIP-FLOP WITH CLEAR, 3-STATE OUTPUT		9
DFCTNB	BUFFERED D FLIP-FLOP WITH CLEAR		
DFCTNN	D FLIP-FLOP WITH CLEAR, BUFFERED CLOCK		7
DFCTNT	BUFFERED D FLIP-FLOP WITH CLEAR, 3-STATE OUTPUT		
DFNNNB	D FLIP-FLOP WITH BUFFERED OUTPUTS		
DFNNNN	D FLIP-FLOP		
DFNNNT	D FLIP-FLOP WITH 3-STATE OUTPUT		
DFNTNB	BUFFERED D FLIP-FLOP		
DFNTNN	D FLIP-FLOP WITH BUFFERED CLOCK		
DFNTNT	BUFFERED D FLIP-FLOP WITH 3-STATE OUTPUT		
DFPNNB	D FLIP-FLOP WITH PRESET, BUFFERED OUTPUTS		
DFPNNN	D FLIP-FLOP WITH PRESET		
DFPNNT	D FLIP-FLOP WITH PRESET, 3-STATE OUTPUT		9
DFPTNB	BUFFERED D FLIP-FLOP WITH PRESET		
DFPTNN	D FLIP-FLOP WITH PRESET, BUFFERED CLOCK	_	7
DFPTNT	BUFFERED D FLIP-FLOP WITH PRESET, 3-STATE OUTPUT	51	10
IKBNNB	JK FLIP-FLOP WITH CLEAR, PRESET, BUFFERED OUTPUTS	57	11
IKBNNN	JK FLIP-FLOP WITH CLEAR, PRESET		
JKBNNT	JK FLIP-FLOP WITH CLEAR, PRESET, 3-STATE OUTPUT		
IKBTNB	BUFFERED JK FLIP-FLOP WITH CLEAR, PRESET		
IKBTNN	JK FLIP-FLOP WITH CLEAR, PRESET, BUFFERED CLOCK		
IKBTNT	BUFFERED JK FLIP-FLOP WITH CLEAR, PRESET, 3-STATE OUTPUT		
IKCNNB	JK FLIP-FLOP WITH CLEAR, BUFFERED OUTPUTS		
IKCNNN	IK FLIP-FLOP WITH CLEAR		
IKCTNB	BUFFERED IK FLIP-FLOP WITH CLEAR		
IKCTNN	JK FLIP-FLOP WITH CLEAR, BUFFERED CLOCK		
IKNNNB	JK FLIP-FLOP WITH BUFFERED OUTPUTS		
IKNNNN	JK FLIP-FLOP		
IKNTNB	BUFFERED IK FLIP-FLOP		
IKNTNN	JK FLIP-FLOP WITH BUFFERED CLOCK		
LABFNB	BUFFERED LATCH WITH CLEAR, PRESET		6
LABENN	LATCH WITH CLEAR, PRESET, BUFFERED CLOCK		6
LABENT	BUFFERED LATCH WITH CLEAR, PRESET, 3-STATE OUTPUT	63	8
LABNNB	LATCH WITH CLEAR, PRESET, BUFFERED OUTPUTS	71	5
LABNNN	LATCH WITH CLEAR, PRESET	88	4
LABNNT	LATCH WITH CLEAR, PRESET, 3-STATE OUTPUT		
LACFNB	BUFFERED LATCH WITH CLEAR	51	5
LACENN	LATCH WITH CLEAR, BUFFERED CLOCK		
LACENT	BUFFERED LATCH WITH CLEAR, 3-STATE OUTPUT		
LACNNB	LATCH WITH CLEAR, BUFFERED OUTPUTS		/ A
LACNNN	LATCH WITH CLEAR, BOFFERED OUTPUTS		
LACININ	LATCH WITH CLEAR, 3-STATE OUTPUT		
LACIVIVI	LATCH WITH CLEAR, 3-STATE OUTFUT		0

FLIP-FLOPS/LATCHES (CONTINUED)

Digital Cell Library (CONTINUED)

LACTNN	LATCH WITH CLEAR, ACTIVE HIGH BUFFERED CLOCK	
LANFNB	BUFFERED LATCH	
LANFNN	LATCH WITH BUFFERED CLOCK	
LANFNT	BUFFERED LATCH WITH 3-STATE OUTPUT	
LANNNB	LATCH WITH BUFFERED OUTPUTS	
LANNNN	LATCH	113
LANNNT	LATCH WITH 3-STATE OUTPUT	
LANTNB	BUFFERED LATCH, ACTIVE HIGH BUFFERED CLOCK	
LANTNN	LATCH WITH ACTIVE HIGH BUFFERED CLOCK	
LAPFNB	BUFFERED LATCH WITH PRESET	
LAPFNN	LATCH WITH CLEAR, PRESET, BUFFERED CLOCK	
LAPFNT	BUFFERED LATCH WITH PRESET, 3-STATE OUTPUT	77
LAPNNB	LATCH WITH PRESET, BUFFERED OUTPUTS	
LAPNNN	LATCH WITH PRESET	45
LAPNNT	LATCH WITH PRESET, 3-STATE OUTPUT	83
MFBTNB	BUFFERED MUX FLIP-FLOP WITH CLEAR, PRESET	
MFBTNT	BUFFERED MUX FLIP-FLOP WITH CLEAR, PRESET, 3-STATE OUTPUT	
MFCTNB	BUFFERED MUX FLIP-FLOP WITH CLEAR, BUFFERED CLOCK, BUFFERED O/P	
SCBNNB	SYNCHRONOUS COUNTER WITH CLEAR, PRESET, BUFFERED OUTPUTS	
SCBNNN	SYNCHRONOUS COUNTER WITH CLEAR, PRESET	
SCBNNT	SYNCHRONOUS COUNTER WITH CLEAR, PRESET, 3-STATE OUTPUTS	
SCBTNB	BUFFERED SYNCHRONOUS COUNTER WITH CLEAR, PRESET	40 12
SCBTNN	SYNCHRONOUS COUNTER WITH CLEAR, PRESET, BUFFERED CLOCK	
SCBTNT	BUFFERED SYNCHRONOUS COUNTER WITH CLEAR, PRESET, 3-STATE O/P	
SCCNNB	SYNCHRONOUS COUNTER WITH CLEAR, BUFFERED OUTPUTS	
SCCNNN	SYNCHRONOUS COUNTER WITH CLEAR	
SCCNNT	SYNCHRONOUS COUNTER WITH CLEAR, 3-STATE OUTPUT	
SCCTNB	BUFFERED SYNCHRONOUS COUNTER WITH CLEAR	
SCCTNN	SYNCHRONOUS COUNTER WITH CLEAR, BUFFERED CLOCK	
SCCTNT	BUFFERED SYNCHRONOUS COUNTER WITH CLEAR, 3-STATE OUTPUT	
TFBNNB	T FLIP-FLOP WITH CLEAR, PRESET, BUFFERED OUTPUTS	
TFBNNN	T FLIP-FLOP WITH CLEAR, PRESET	74
TFBNNT	T FLIP-FLOP WITH CLEAR, PRESET, 3-STATE OUTPUT	
TFBTNB	T FLIP-FLOP WITH CLEAR, PRESET	
TFCNNB	T FLIP-FLOP WITH CLEAR, BUFFERED OUTPUTS	
TFCNNN	T FLIP-FLOP WITH CLEAR	
TFCTNB	T FLIP-FLOP WITH CLEAR	
TFPNNB	T FLIP-FLOP WITH PRESET, BUFFERED OUTPUTS	
TFPNNN	T FLIP-FLOP WITH PRESET	
	POWER PADS	

Pads, Pad Drivers, **Level Shifters**

NAME DESCRIPTION PCVSS1 Vss PAD FOR CORE PCVSS2 Vss PAD FOR I/O CELLS PCVSS3 Vss PAD FOR BOTH (tied at pad)

OUTPUT PAD (2mA)

OUTPUT PAD (4mA)

OUTPUT PAD (8mA)

PC7001

PC7002

PC7003

PCVDD3

NAME

PCVDD1 VDD PAD FOR CORE PCVDD2 VDD PAD FOR I/O CELLS VDD PAD FOR BOTH (tied at pad)

DESCRIPTION

OUTPUT PADS

PD8OB3	OUTPUT PAD (24mA)
PD8OB5	OUTPUT PAD (40mA)
PD8OB6	OUTPUT PAD (48mA)

OUTPUT PADS WITH INPUT LEVEL-SHIFTER BUFFERS

PC7T01	OUTPUT PAD WITH TTL INPUT (2mA)	PC7C01
PC7T02	OUTPUT PAD WITH TTL INPUT (4mA)	PC7C02
PC7T03	OUTPUT PAD WITH TTL INPUT (8mA)	PC7C03

OUTPUT PAD WITH CMOS INPUT (2mA) OUTPUT PAD WITH CMOS INPUT (4mA) OUTPUT PAD WITH CMOS INPUT (8mA)

EQUIVALENT GATES

3

3

INPUT LEVEL-SHIFTERS

NAME	DESCRIPTION	EQUIVALENT GA	TES	NAME	DESCRIPTION	EQUIVALENT GA
PC7T00	TTL INPUT PAD	and BUFFER	2	SCH01T	SCHMITT TTL IN	NPUT BUFFER
PC7C00	CMOS INPUT PA	AD and BUFFER	2	SCH01C	SCHMITT CMOS	INPUT BUFFER

PAD DRIVERS							
NAME	DESCRIPTION	EQUIVALENT	GATES	NAME	DESCRIPTION	EQUIVALENT	ATES
PT01D1	NON-INVERTING	WITH OE	7	PT04D1	INVERTING WITH	OEN	7
PT02D1	NON-INVERTING	WITH OEN	8	PT05D1	INVERTING		5
PT03D1	INVERTING WITH	OE	7	PT06D1	NON-INVERTING		6

Digital Cell Library

(CONTINUED)

NAME

COP800 CORE MICROCONTROLLER FAMILY

DESCRIPTION

8-BIT BASE CORE MICROCONTROLLER

COP800 SIZE SIZE NAME DESCRIPTION SQ. MILS DESCRIPTION SQ. MILS MEMORY **1K-BYTE ROM** +1674 64-BYTE RAM +1768 ADDER **2K-BYTE ROM** +2594 128-BYTE RAM +3002 **4K-BYTE ROM** +4446 192-BYTE RAM +4236 **8K-BYTE ROM** +8136

SOFT MACRO PERIPHERALS

NAME	DESCRIPTION	EQUIVALENT GATES
COPLCD	36-SEGMENT TRIPLEX LCD CONTROLLER	950
COPIP8	8-BIT INPUT PORT	70
COPOP8	8-BIT OUTPUT PORT	120
COPBP8	8-BIT INPUT/OUTPUT PORT	200
COPRTC	REAL TIME CLOCK (EQUIVALENT TO NSC 58174)	1848

CUSTOM SOFT MACRO PERIPHERALS

KEYBOARD ENCODER WATCHDOG TIMER COPS is a trademark of National Semiconductor Corporation

Compiler Library

		COMP	ILERS					
NAME	TOTAL BITS	ORGANIZATION		MAXIMUM ACCESS TIME		SIZE SQ. MILS		
RAM	512	64 × 8, 128 × 4		30ns		2025		
	1024	$128 \times 8, 256 \times 4$		31ns		3015		
	2048	128 × 16, 256 × 8, 512 × 4		33ns		4891		
	4096 8192	$128 \times 32, 256 \times 16, 512 \times 8, 1024 \times 256 \times 12, 1024 \times 1024 \times 1024$		35ns		8176		
	16384	256 × 32, 512 × 16, 1024 × 8, 2048 × 4 512 × 32, 1024 × 16, 2048 × 8, 4096 × 4		39ns 43ns		14560 26130		
			SIZE (SQUA					
NAME	WORDS	NUMBER OF OUTPUTS:	4	8	16	32		
ROM	64		867	1173	1786	2093		
	128		967	1302	1972	3312		
	256		1183	1575	2358	3925		
	512		1156	2062	3073	5095		
	1024			3077	4543	7476		
	2048		-	5058	7435	12189		
NAME		SIZE	CALCULAT	ION				
2901 Data Path		$(Nram \times 2.83 + 54)(Nbit \times 4.00 + 16) = Size (Square Mils)$ Nram = No. of RAM words (2,3,4,16); Nbit = No. of bits per word (2,3,4,80)						
$N \times M$ Multiplier		For N < 20, Size is: [(N + 1) × 6.57 + 21.1] [(M/2 - 2) × 12.76 + 31.26] = Size (Square Mils)						
		For N > 20, Size is:						
		$[(N + 1) \times 6.57 + 29.23] [(M/2 - 2) \times N = Width of 1st word (8,10,1232)]$	12.76 + 31.2); M = Wid	26] = Size (Square M Ith of 2nd word (8,7	Mils) 10,1232)			
PLA		(0.65 Inputs + .33 Outputs + 13.25) × (.66Minterms + 10.57) = Size (Square Mils)						
		Inputs are 1,2,3,50						
		Outputs are 4,8,12,52						
		Minterms are 4,8,12,200						

SIERRA SEMICONDUCTOR

SIZE SQ. MILS

4330

UART (8250 SUBSET)

Sierra's Unique Mentor Mixed Analog-Digital Design Methodology

Sierra Semiconductor's Mentor Design Kit allows designers the methodology, cell library, and software to design complex Triple Technology circuits. The Sierra Mentor Design Kit includes the following features:

- □ Over 50 analog symbols
- Over 25 EEPROM symbols and simulation models
- Over 225 digital symbols and simulation models
- A mixed analog-digital netlist screener
- Analog interface models
- Easy transfer to MIXsim
- Analog ASIC design consultation

Netlist Screener

Sierra's netlist screener checks circuit designs for common digital and analog errors. This allows designers to catch common mistakes in both the analog and digital portions of the circuit. This includes such things as connectivity, fan outs, and checking for shorts.

Analog Interface Models

Analog interface models allow designers to do a functional verification of the digital portion of the circuit, to assure that the interface to the analog portion of the circuit is correct. So before circuits are submitted to Sierra for final MIXsim verification, the designer is assured that key timing and interface criteria are met. The interface models are not a substitute for MIXsim verification but allow designers to verify the interface between analog and digital blocks, assure correct signal polarity, and minimize the debugging required once MIXsim circuit simulation is done.

Easy Transfer to MIXsim

Once the design has been verified on Sierra's Mentor Design Kit the circuit is transferred to the Sierra Design Center for verification using Sierra's proprietary mixed analog-digital simulator MIXsim. The circuit is then reviewed by Sierra's analog design engineering staff before and after layout.

Engineering Support

To assist circuit designers in the idiosyncracies of analog cell based ASIC design, Sierra provides consulting services to it's customers. This assures that a smooth transition to the Sierra foundry will occur.

SIERRA SEMICONDUCTOR

Presenting MIXsim

■ Sierra Semiconductor's Mixed Analogand-Digital Simulator Digital semicustom IC design owes much of its current popularity to the rise of reliable, easyto-use, digital simulators, which assure designers that their silicon will work the first time. These simulators mimic circuit behavior, instead of modeling every last component, and their use transforms logic designers into de facto chip designers who have no need to master the transistor-level intricacies of IC design. As the software is relatively inexpensive and runs on low-cost workstations, the development has encouraged hundreds of companies to reap the benefits of VLSI.

Designers of mixed analog-and-digital semicustom ICs have not been so lucky. The Spicebased simulation tools they use are largely to blame. Spice simulates analog circuits at the transistor level, rather than the functional level. At LSI and VLSI densities, that approach entails endless complexity, piece-meal simulation of only part of a circuit at a time, and huge chunks of computer time. Nor was Spice designed to combine with behavioral, event-driven digital simulators, so its shortcomings in this respect are enormous.

New Methodology

Sierra Semiconductor's mixed analog-and-digital simulator pioneers a new methodology. It is the first commercially available behavioral simulator to allow complex ICs incorporating both analog and digital functions to be fully, quickly, and correctly simulated.

In MIXsim, as with digital-only simulators, each analog or digital function is represented by a model. This model could represent any analog function, such as an op amp of voltage-controlled oscillator, or any digital function—say, an inverter.

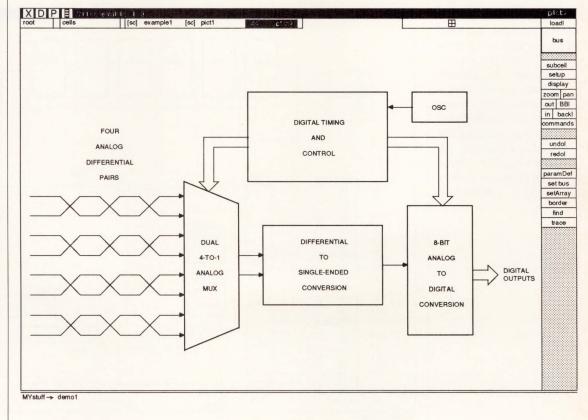
During a simulation, though, MIXsim does not deal with analog models separately from digital models. Instead, it simulates the entire mixed circuit at one and the same time. In the process, each analog model is independently informed of changes at its terminals. Thus, an analog or mixed analog-and-digital signal propagates through the simulated circuit by a sequence of model interactions. The interaction sequence is controlled in an event-driven manner, much as digital behavioral simulators operate.

This type of behavioral, event-driven approach differs markedly from Spice-like mixed analog and digital simulators. In order for Spice to simulate a circuit, a set of equations must be developed to describe the entire analog circuit, and those equations must then be solved simultaneously for each time increment. Simulation time therefore increases out of all proportion to the complexity of the circuit. Spice undoubtably excels at the cell level, where transistors number less than, say, 100, but it is inordinately time-consuming and soon becomes ineffective for systems of cells or for a whole chip.

Major Benefits

The MIXsim approach to circuit simulation has substantial benefits, especially for designs that are based on standard cells. In these cell-based designs, the transistor-level details have already been worked out, and the behavior of the overall system is all the designer need worry about. After all, an engineer looking for true system integration requires a simulator that can analyze the entire circuit and the performance of each function within the circuit—there is no need to know the performance of each transistor.

MIXsim's most notable benefit is that it verifies a complete chip. Accordingly, it is concerned with timing, connectivity, the proper application of cells, and assurance that cell specifications are not being violated. Circuit designers using it can quickly examine the performance of the circuit as a whole to flag any problem in these four areas.



MIXsim's success in simulating an entire analog and digital circuit stems from the accuracy with which it can monitor the interactions between the analog and digital sections. Current Spice-based mixed mode methodology, on the other hand, commonly employs separate analog and digital simulations and does not even attempt to simulate the entire circuit at once. Instead, it first simulates the analog portion, or parts of the analog portion, of the circuit, and then connects to a digital simulation for the digital portion. Finally, it tries to combine the two simulation results. This last step lets entire classes of design errors go undetected at the analog-to-digital interface.

A second benefit of MIXsim is that intelligence is built into the analog models. When an analog function exceeds the desired specifications, error messages are displayed that state explicitly what type of error has been made. Since the simulator uses cell-level behavioral models, the errors flagged generally concern the application of the function within the circuit; they never refer to the resistors, transistors, and other components that perform the function. This feature is impossible with Spice, which has no way of knowing what the circuit is supposed to do and so can neither report nor detect errors.

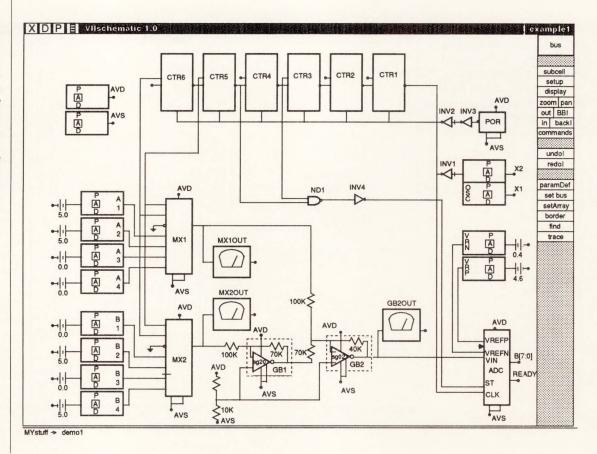
MIXsim accommodates both the standard digital functions and a wide variety of analog and mixed analog-and-digital functions. These include the likes of op amps, analog switches, multiplexers, comparators, oscillators, power-on reset circuits, current sources, and of course A/D and D/A converters. The simulator can also handle other analog circuit elements, like resistors and capacitors. Should a special function be required, the simulation algorithm permits the user to create it. It is also possible to encapsulate several analog functions in a higher-level model in order to simplify the simulations.

In sum, MIXsim's combination of highly characterized and predictable analog standard cells and behavioral simulation techniques gives the user the power to simulate mixed analogand-digital circuits with the same relative case with which all-digital circuits are simulated. Working silicon can and has been obtained the first time by designers using this simulation software.

SIERRA SEMICONDUCTOR

Figure 1. MIXsim's simulation abilities apply to an IC incorporating mixed analog-and-digital circuitry. The circuit shown here digitizes differential analog inputs entering from four twisted pairs. To fully appreciate the difference between a Spice-based analog simulator, consider the circuit shown in Fig. 1. The design employs cells from Sierra's 2-µm standard- cell library.

In this example, the analog signal path consists of four analog differential-input signals. These pass through an analog multiplexer and are first converted into single-ended signals and then digitized by an 8-bit A/D converter. The digital portion of the circuit involves timing and control logic that selects the differential analog signals and starts the A/D conversion.


The actual schematic and macrocells are shown in Fig. 2. These macrocells are the lowestlevel function that the software of the circuit designer has to work with when using MIXsim. As with any digital design, the analog functions are completely characterized and called up from the standard-cell library. (All MIXsim models are exhaustively characterized to take into account variations in process parameters, power supply voltage, and ambient temperature.)

Notice that meters are placed on the outputs of MX_{10UT} , MX_{20UT} , and GB_{20UT} to monitor analog activity. The control file is like the control file used in digital simulation (see Fig. 3).

With regard to the file called Set Up Clocks, X_1 and X_2 refer to the two inputs to the oscillator. These two inputs are out of phase, so initially 0 (2,000) refers to X_1 being held at logic 0 for 2,000 ns. After the 2,000 ns has elapsed, both inputs are toggled every 200 ns, and are 180° out of phase. Note that a complete clock cycle is 400 ns long and thus corresponds to a clock frequency of 2.5 MHz. The A/D conversion time is 16 clock periods, or 6,400 ns.

The simulation is first run for 32 clock cycles. The output indicates the voltages at both the analog and digital circuit nodes (see Fig. 4), and three errors have been flagged.

The first and second errors appear 0.3 ns into the logic simulation and were uncovered by

SIERRA SEMICONDUCTOR

Figure 2. From the MIXsim screen, this firstcut schematic of the IC in Fig. 1 shows the macrocells used. The meters shown are not "virtual voltometers," but merely indicate the circuit nodes whose voltages the simulator will report. All digital and analog macrocells are completely characterized. CONTINUED)

Figure 3. This MIXsim control file sets up and runs a simulation. It closely resembles the control file of a purely digital simulator.

***** SIMULATION CONTROL FILE ***** ****** LOAD THE SCHEMATIC load [sc]example1 load opts SET UP CLOCKS set clock (primary, report) x1 0(2000) ; 1(200) 0(200) set clock x2 1(2000) ; 0(200) 1(200) DECLARE EXTERNAL NODES set ext out ctrl.q ctr2.q ctr3.q ctr4.q ctr6.qn mxlout.v mx2out.v set ext out gb2out.v ready b[7] b[6] b[5] b[4] b[3] b[2] b[1] b[0] SET DISPLAY FORMAT set trace mode tabular 10 200 1 ff load timestuff LIST NODES TO BE "WATCHED" ***** watch ctr6.q ctr5.q watch mxlout.v mx2out.v watch (display) adc.st ready watch gb2out.v watch b[7] b[6] b[5] b[4] b[3] b[2] b[1] b[0] RUN 32 CLOCKS **********

initial connectivity and usage checks. The first error appears on gain block 2 (GB₂). It shows that the capacitive load of the gain block exceeds 30 pF, the maximum that the amplifier can drive. A check of the Sierra Semiconductor Triple Technology Standard Cell Data Book confirms that, while the input capacitance of the A/D converter is 60 pF, the Sg20id op amp cell can indeed drive only 30 pF. The problem can be quickly solved by substituting another op amp, one with greater drive capability, from the standard cell library.

The second error is the omitted connection to the

positive terminal of GB_1 . The fix here is simply to connect the terminal to the circuit node to which the other op amp's positive terminal is connected.

The third and last error uncovered by the simulation is the fact that GB_1 's common-mode range has been exceeded. But the positive input to GB_1 is not connected, so this error may be ignored for now.

Also, notice that the MIXsim simulator takes into account resistive drops along the analog path. Each pad has 70 Ω of resistance. In addition, the analog multiplexer has about 1 k Ω of series resistance. This comes to approximately a 25-mV voltage differential between the input pad and the multiplexer output. Examination of MUX_{10UT} and MUX_{20UT} shows these voltage drops have been accounted for.

Once these errors have been corrected, MIXsim is rerun, again for 32 clock cycles. This next simulation reveals two errors that were previously masked (see Fig. 5). (Note that the common-mode error that appeared in the first simulation has now vanished.) The simulator explicitly flags the output of GB₂ as being clipped and the input of the A/D converter, $V_{IN'}$ as varying by more than 1 *least significant bit* (LSB) during sampling.

Closer examination of the differential-input pairs shows that they are selected in the following order: A_1 and B_1 , A_2 and B_2 , A_3 and B_3 , and A_4 and B_4 . Thus, the inputs of the differential to single-ended signal converter are sequencing through the following voltages: 0 and 0 V, to 0 and 5V, to 5 and 0 V, to 5 and 5 V. When the differential input swings from 0 and 5V to 5 and 0 V, there are very large voltage swings in the op amps. It is at this point that the simulator shows that the input voltage to the A/D converter (V_{IN}) has not settled and is varying by 1 LSB or more during the conversion cycle.

Final Corrections

A simple change to the logic circuitry is enough to correct the settling problem at the input of the converter. The alteration adds about four clock cycles to the time between the change in the multiplexer control inputs and the start of the conversion. The longer interval gives GB_2 more time to settle.

Figure 4. The reults of the first simulation of the circuit in Fig. 2 indicate the presence of three errors. Note the inclusion of analog voltages.

Figure 5. Minor circuit redesigns to clear up the errors noted in Fig. 4 give these simulation results. An op amp clipping problem has now been uncovered. Also, the input voltage of the A/D converter is varying by more than 1 LSB during sampling.

	t i	СС		M X	,	R E					B [
	m	RR		2		A		7			4			1
	е	6 5		0		D]]]]]]]
	•			U T		Y		:	:	:	:	:	:	:
	n s	Q Q :::				:		-		:	:	:	-	:
	:			v		:		-	:	:	-	:		:
GB2:	[.3ns] RNING: Capaci	tivo	load at "wo	ut" oxcooda			num of 30 pf							
GB1:	[.3ns]				mar		uum or 50 pr	•						
	analog source													
1:1	2000.0ns	0 0		+0.0187.v			UNCERTAIN				u			
5:2 7:1	3600.0ns	0 0	+0.0264.v +0.0264.v	+0.0187.v			UNCERTAIN				u			
9:2		0 0	+0.0264.V	+0.0187.v +0.0187.v	0		+3.30v +3.30v				u u			
GB1:	[8315.6ns]				v	0		u	u	u	u	u	u	u
							num of 3 vol	ts.						
17:2	8400.0ns	0 1	+0.0241.v	+4.98v	0		UNCERTAIN				u			
18:1 20:1	8600.0ns	0 1 0 1	+0.0264.v +0.0264.v	+4.98v +4.98v	0		UNCERTAIN				u 1			
20:2	9600.0ns	0 1	+0.0264.v	+4.98v	0		UNCERTAIN UNCERTAIN				1			
21:2	10000.0ns	0 1	+0.0264.v	+4.98v	1		UNCERTAIN				1			
23:1	10600.0ns	0 1	+0.0264.v	+4.98v	1		+3.61v				1			
25:2	11600.0ns	0 1	+0.0264.v	+4.98v			+3.61v				1			
													_	
	t i	СС		M X		R E					В			
	m	RR		2		A			[4	13	[2	
	e	6 5		0		D		1]			1
			U	U		Y		:	:	:	:	:	:	:
	n	QQ	Т	Т	t	:	Т	:	:	:	:	:	:	:
	S	: :		•		:		:	:	:	:	:	:	:
	:	: :		v		:		:	:	:	:	:	:	:
1:1 2:2	2000.0ns	0 0	+0.0265.v	+0.0265.v	0		UNCERTAIN				u			
5:2		0 0	+0.0265.v +0.0265.v	+0.0265.v +0.0265.v	0		+2.50v +2.50v				u			
9:2	5200.0ns	0 0	+0.0265.v	+0.0265.v	0		+2.50v				u u			
17:2	8400.0ns	0 1	+0.0244.v	+4.99v	0		UNCERTAIN				u			
18:1	8600.0ns	0 1	+0.0255.v	+4.99v	0	0	UNCERTAIN				u			
18:2	8800.0ns	0 1	+0.0250.v	+4.98v	0	0	UNCERTAIN				u			
19:1	9000.0ns	0 1	+0.0255.v	+4.98v	0	0	UNCERTAIN	u	u	u	u	u	u	u
19:2	9200.0ns	0 1	+0.0256.v	+4.98v	0		UNCERTAIN				u			
20:1	9400.0ns	0 1	+0.0264.v	+4.98v	0		UNCERTAIN				0			
20:2 GB2:	9600.0ns [9645.1ns]	0 1	+0.0264.v	+4.98v	0	1	UNCERTAIN	1	0	0	0	0	0	0
	RNING: "vout"		pping at 4.6											
21:1	9800.0ns													
21:2	10000.0ns						+4.60v							
22:1 ADC:	10200.0ns [10407.4ns]	01	+0.0259.v	+4.97V	1	0	+4.61v	1	0	0	0	0	0	0
WAR		exce	eds "vrefp"	during samp	ling	3 0	of "vin".							
23:1	10600.0ns	0 1	+0.0258.v	+4.97v	1	0	+4.60v							
24:1 25:2	11000.0ns	0 1		+4.97v	1	0	+4.61v	1	0	0	0	0	0	0
25:2 GB2:	[14672.7ns]	0 1	+0.0259.v	+4.9/V	0	0	+4.61v	1	0	0	0	0	0	0
	out" no longer													
33:2			+4.98v	+0.00773v			UNCERTAIN				0			
34:1		1 0		+0.0117.v			UNCERTAIN				0			-
34:2 35:1	15200.0ns		+4.98v +4.98v	+0.0149.v			UNCERTAIN							
35:2			+4.98v	+0.0196.v +0.0228.v			UNCERTAIN				0			
36:1		1 0		+0.0228.V			UNCERTAIN UNCERTAIN				0			
36:2	16000.0ns		+4.98v	+0.0250.v			UNCERTAIN				1			
GB2:	[16072.6ns] RNING: "vout"	a1.	oping at 1											
37:1			pping at .4	volts. +0.0265.v	0	1	UNCEPTATE	1	1	1	1	1	7	1
37:2	16400.0ns						UNCERTAIN UNCERTAIN				1			
38:2			+4.97v	+0.0265.v			UNCERTAIN				1			
			es by one LS				sampling.	-	-	-	+	-	-	+
40:1	17400.0ns	1 0	+4.97v	+0.0265.v	1	0	+0.410v	1	1	1	1	1	1	1
41:2	18000.0ns	1 0	+4.97v	+0.0265.v	0	0	+0.410v	1	1	1	1	1	1	1
	[21067.8ns]		States and											
"VC	out" no longer	clip	pped at .4 v	olts.	~	0	INGRAS		-	-	-			-
GB2: "vc 49:2 50:2	out" no longer 21200.0ns 21600.0ns	1 1	+4.97v	+4.99v	0	0	UNCERTAIN UNCERTAIN							

SIERRA SEMICONDUCTOR

(CONTINUED)

To correct the clipping of GB_2 's output, the gain should be reduced —an easy job. The value of the gain block's feedback resistor is simply lowered from 45 to 40 k Ω .

All the changes that have been made to the original circuit are highlighted in Fig. 6.

At this point a third simulation is run, but this time for 80 clock cycles to give the op amp more time to settle, and so on. The results show that the circuit now runs entirely without errors, indicating that the previous connectivity, dynamic range, and timing problems have been solved. Also, as indicated on Fig. 6, control registers 5 and 6 (CTR_5 and CTR_6) have cycled the input multiplexers through all four channels.

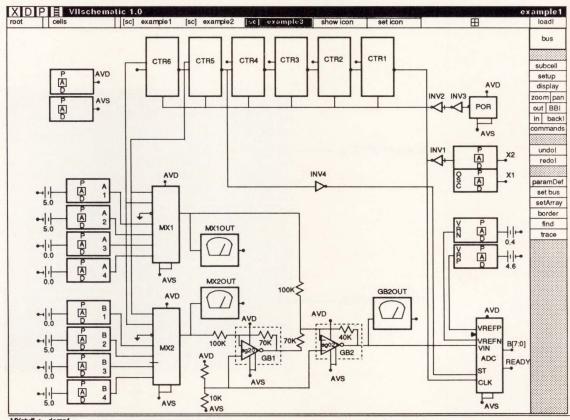


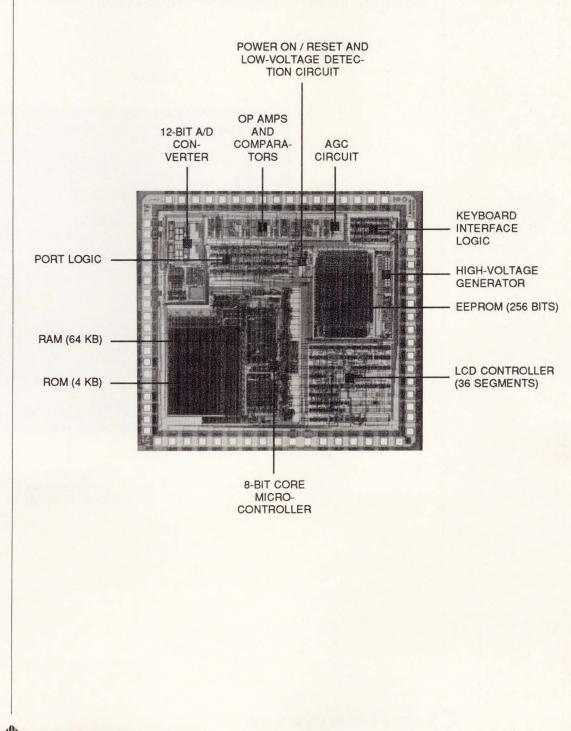
Figure 6. After implementing all the changes highlighted, the circuit was again simulated—this time flawlessly. MIXsim's behavioral approach cut this design down to three quick simulations.

MYstuff > demo1

Applications

Modem Advanced Coprocessor (MAC) Sierra Standard Product This ASIC, designed using Sierra's 2-micron Standard Cell Library, is a specialized controller used to build a 2400 bps full duplex intelligent modem. The MAC uses a 2901 bit slice core processor to perform the digital signal processing (DSP) and the control functions. Its instruction set is a subset of Intel 8096 instruction set but operates faster than 8096. MAC is designed to interface to a parallel system bus and an RS232 port as well.

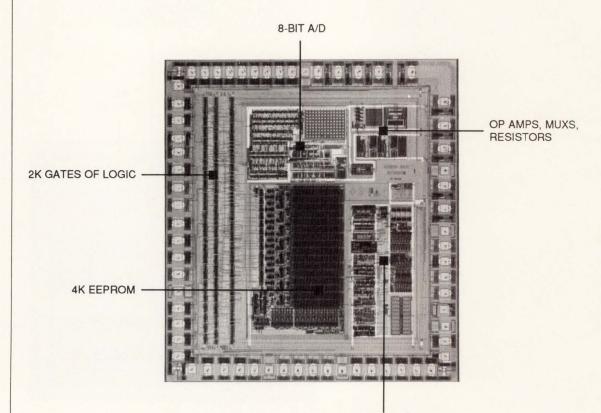
PROGRAMMABLE LOGIC ARRAY



Applications

Single Chip Medical Measurement and Control System

Courtesy, MIT Development Corporation This hand-held medical instrument design utilizes an 8-bit core microcontroller standard cell along with a variety of digital, analog and EEPROM functions from Sierra's 2-micron CMOS Standard Cell Library. The 12-bit A/D converter reads the characteristics of an inserted sample and the information is transferred to the core microcontroller to compute an analysis of the sample, and display the results on an LCD. The EEPROM stores calibration values and the results of the users' test.



Applications

Distributed Environmental Controller

Courtesy, ASI Controls Corporation This Triple Technology ASIC is used in a distributed environmental controller that can control the cooling and heating of areas in an office complex or school. The EEPROM can be programmed for each controller to provide the correct air volume flow for each combination of room size, number of vents, etc. In addition, the EEPROM is used to trim the analog circuits used to read temperature, servo motor position, etc.

The random logic was designed by Sierra's customer and integrated with the Analog and EEPROM megacells at Sierra's Design Center in San Jose.

EEPROM PROGRAMMING VOLTAGE GENERATOR

SIERRA SEMICONDUCTOR NORTH AMERICAN SALES OFFICES

Corporate Headquarters SIERRA SEMICONDUCTOR 2075 No. Capitol Ave. San Jose, CA 95132 PH:408-263-9300 FAX:408-263-3337

Northwest Regional Office (Same as Headquarters)

N. Central Regional Office SIERRA SEMICONDUCTOR 1420 Kensington Rd., Ste. 208 Oak Brook, IL 60521 PH: 312-573-1331 FAX: 312-573-1354

S. Central Regional Office

SIERRA SEMICONDUCTOR

Southwest Regional Office SIERRA SEMICONDUCTOR 17870 Sky Park Circle Ste. 107 Irvine, CA 92714-6242 714-261-5707 PH: FAX: 714-261-2738

DESIGN CENTER LOCATIONS

Corporate Headquarters N. Central Regional Office

- Northeast Regional Office

Northeast Regional Office SIERRA SEMICONDUCTOR 101 Cambridge St. Burlington, MA 01803 PH: 617-229-6868 FAX: 617-229-6849

ALABAMA

MONTGOMERY MKTG., INC 4922-B Cotton Row Huntsville, AL 35816 PH: 205-830-0498 FAX: 205-837-7049

ARIZONA TUSAR

6016 E. Larkspur Scottsdale, AZ 85254 602-998-3688 PH: FAX: 602-998-3689

ARKANSAS

LOGIC 1 SALES, INC. 6550 East 71st Street Suite B Tulsa, OK 74133 PH: 918-494-0765 FAX: 918-492-8781

CALIFORNIA **BROOKS TECHNICAL GROUP** 883 Stierlin Rd. Mountain View, CA 94043 415-960-3880 PH· FAX: 415-960-3615

PATHFINDER ELECTRONICS 9747 Business Park Ave. San Diego, CA 92131 PH: 619-578-2555 FAX: 619-578-7659

SPINNAKER SALES 17870 Sky Park Circle Suite 107 Irvine, CA 92714-6242 714-261-7233 PH: FAX 714-261-0963

COLORADO WESCOM 4891 Independence St., Ste. 159 Wheat Ridge, CO 80033 PH: 303-422-8957 FAX: 303-422-9892

CONNECTICUT LINDCO ASSOCIATES, INC. Corner Stone Professional Park Suite C101 Woodbury, CT 06798 203-266-0728 PH: FAX: 203-266-0784

DIST. OF COLUMBIA PRO-REP 8310 Guilford Road Columbia, MD 21046 PH: 301-992-7460 FAX: 301-992-5846

FLORIDA S.E.C. 926 Great Pond Dr. Ste. 2002 Altamonte Springs, FL 32714 407-682-4800 PH: FAX: 407-682-6491

S.E.C. 776 S. Military Trail Deerfield Beach, FL 33442-3025 PH: 305-426-4601 FAX: 305-427-7338

FLORIDA (CON'T) S.E.C. 15202 Race Track Road Tampa, FL 32714 305-854-2850 FAX: 305-854-3127

GEORGIA MONTGOMERY MKTG. , INC. 3000 Northwoods Parkway Suite 245 Norcross, GA 30071 PH: 404-447-6124 FAX: 404-447-0422

ILLINOIS **KMA SALES COMPANY** 1040 S. Arlington Hts. Rd. Arlington Heights, IL 60005 PH: 312-398-5300 FAX: 312-398-5708

ASSOCIATED ELECT. MKTG. 1810 Craig Rd., Ste. 102 St. Louis, MO 63146 314-576-4111 FAX: 314-576-4159

INDIANA **ELECTRONIC SALES & ENG.** 7739 E. 88th Street P.O. Box 50009 Indianapolis, IN 46250 PH: 317-849-4260 FAX: 317-841-0231

IOWA ASSOCIATED ELECT. MKTG. 4001 Shady Oak Marion, IA 52302 PH: 319-377-1129

KANSAS ASSOCIATED ELECT. MKTG. 10111 Santa Fe Drive, Ste. 13 Overland Park, KS 66212 PH: 913-541-8431 FAX: 913-888-0136

KENTUCKY **ELECTRONIC SALES & ENG.** 7739 E. 88th Street P.O. Box 50009 Indianapolis, IN 46250 PH: 317-849-4260 FAX: 317-841-0231

LOUISIANA LOGIC 1 SALES. INC. 200 East Spring Valley Suite A Richardson, TX 75081 214-234-0765 PH: FAX: 214-669-3042

MARYLAND PRO-REP INC. 8310 Guilford Rd. Columbia, MD 21046 PH: 301-381-7460 FAX: 301-381-5846

MASSACHUSETTS N.E.T.S 101 Cambridge Street Burlington, MA 01803 PH: 617-272-0434 FAX: 617-272-7068

801 E. Campbell Rd., Ste. 255 Richardson, TX 75081 PH: 214-783-8284 FAX: 214-680-2271

MICHIGAN

SAI MARKETING CORP. 101 N. Alloy Drive Fenton, MI 48430 PH: 313-750-1922 FAX: 313-750-1701

MINNESOTA MURNCO 1500 E. 79th St., Ste. 112 Bloomington, MN 55420 PH: 612-854-4161 FAX: 612-854-9634

MISSOURI ASSOCIATED ELECT. MKTG. 1810 Craig Rd., Ste. 102 St. Louis, MO 63146 314-576-4111 PH: FAX: 314-576-4159

NEBRASKA ASSOCIATED ELECT. MKTG. 4001 Shady Oak Marion, IA 52302 PH: 319-377-1129

NEW JERSEY EMTEC SALES, INC. 299 Ridgedale Ave. East Hanover, NJ 07936 PH: 201-428-0600 FAX: 201-428-9594

THE MCCOY GROUP 291 B-1 Chester Ave. Medford, NJ 08055 PH: 609-953-0770 FAX: 609-953-1238

NEW YORK Upstate

REP TECH, INC. 2002 Teall Ave. Syracuse, NY 13206 PH: 315-437-2845 FAX: 315-437-1056

Long Island EMTEC SALES, INC. 299 Ridgedale Ave. East Hanover, NJ 07936 201-428-0600 PH: FAX: 201-428-9594

NORTH CAROLINA MONTGOMERY MKTG., INC. 1391 N. Harrison Ave. Cary, NC 27513 PH: 919-467-6319 FAX: 919-467-1028 MONTGOMERY MKTG., INC.

1200 Trinity Road Raleigh, NC 27607 919-851-0010 PH: FAX: 919-851-6620

NORTH DAKOTA MURNCO 1500 E. 79th St., Ste. 112 Bloomington, MN 55420 PH: 612-854-4161 FAX: 612-854-9634

FAX: 407-259-2518 OHIO

Southeast Regional Office

478 Ballard Drive

Melbourne, FL 32935 PH: 407-254-5928

SIERRA SEMICONDUCTOR

Palms Office Center, Ste. 38

SAI MARKETING CORP. 1631 NW Professional Plaza Columbus, OH 43220 PH: 614-451-0778 FAX: 614-459-2087

SAI MARKETING CORP. 270 Regency Ridge Ste. 202 Dayton, OH 45459 PH: 513-435-3181 FAX: 513-435-3760

SAI MARKETING CORP. 3645 Warrensville Center Road Suite 122 Shaker Heights, OH 44122 216-751-3633 PH. FAX: 216-751-4510

OKLAHOMA LOGIC 1 SALES, INC. 6550 East 71st Street Suite B Tulsa, OK 74133 918-494-0765 PH: FAX: 918-492-8781

OREGON L-SOUARED LTD. 15234 N.W. Greenbrier Pkwy Beaverton, OR 97006 503-629-8555 PH: FAX: 503-645-6196

PENNSYLVANIA Western Penn. SAI MARKETING CORP.

3645 Warrensville Center Rd. Suite 122 Shaker Heights, OH 44122

PH: 412-261-0482 FAX: 216-751-4510 Eastern Penn.

THE MCCOY GROUP P.O. Box 326 Exton, PA 19341 PH: 215-363-0350 FAX: 609-953-1238

PUERTO RICO G.A. ASSOCIATES, INC. Calle Fresa No. 35, Milaville Rio Piedras, PR 00925 809-790-4090 PH: FAX: 809-764-2060

SOUTH DAKOTA

MURNCO 1500 E. 79th St., Ste. 112 Bloomington, MN 55420 PH: 612-854-4161 FAX: 612-854-9634

TEXAS LOGIC 1 SALES, INC. 200 East Spring Valley Suite A Richardson, TX 75081 PH: 214-234-0765 FAX: 214-669-3042

LOGIC 1 SALES, INC. 11149 Research Blvd. Ste. 110 Austin, TX 78759 PH: 512-345-2952 FAX: 512-346-5309

TEXAS (CON'T) LOGIC 1 SALES, INC. 11149 Research Blvd. Ste. 110 Austin, TX 78759 PH: 512-345-2952 FAX: 512-346-5309

UTAH WESCOM 3499 S. Main Street Salt Lake City, UT 84115 PH: 801-269-0419 FAX: 801-269-0665

VIRGINIA PRO-REP INC. 8310 Guilford Road Columbia, MD 21046 PH: 301-381-7460 FAX: 301-381-5846

WASHINGTON L-SQUARED, LTD. 105 Central Way, Ste. 203 Kirkland, WA 98033 PH: 206-827-8555 FAX: 206-828-6102

WISCONSIN **KMA SALES COMPANY** 2360 N. 124th Street Milwaukee, WI 53226 PH: 414-259-1771 FAX: 414-259-0246

MURNCO 1500 E. 79th St., Ste. 112 Bloomington, MN 55420 PH: 612-854-4161 FAX: 612-854-9634

CANADA L-SQUARED, LTD. 105 Central Way, Ste. 203 Kirkland, WA 98033 PH: 206-827-8555 FAX: 206-828-6102

ELECTRO SOURCE, INC. 230 Galaxy Blvd. Rexdale, Ontario M9W 5R8 Canada PH: 416-675-4490

FAX: 416-675-6871 ELECTRO SOURCE, INC.

39 Roberts Rd, Ste. 233 Bellmews Plaza Nepean, Ontario K2H 8R2 Canada

PH: 613-726-1452 FAX: 613-726-8834

ELECTRO SOURCE, INC. 6600 Trans Canada Hwy; Ste. 510 Pointe Claire, Quebec H9R 4S2 Canada PH: 514-694-0404 FAX: 514-694-8501

SIERRA SEMICONDUCTOR

Application Specific Products • Series 28

DESCRIPTION

The PLUS405 is a bipolar, programmable state machine of the Mealy type. Both the AND and the OR array are user-programmable. All 64 AND gates are connected to the 16 external dedicated inputs ($I_0 - I_{15}$) and to the feedback paths of the 8 on-chip State Registers ($Q_{P0} - Q_{P7}$). Complement transition terms can be generated via optional use of the two internal Complement Arrays (input variables C_0 , C_1).

All state transition terms can include True, False and Don't Care states of the controlling state variables. All AND gates are merged into the programmable OR array to issue the next-state and next-output commands to their respective registers. Because the OR array is programmable, any one or all of the 64 transition terms can be connected to any or all of the State and Output Registers.

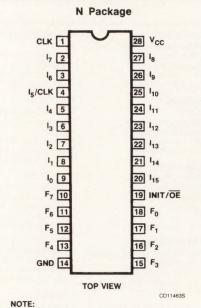
All state $(Q_{P0} - Q_{P7})$ and output (QF0 - QF7) registers are edge-triggered, clocked J-K flip-flops, with Asynchronous Preset and Reset options. The PLUS405 architecture provides the added flexibility of the J-K toggle function which is indeterminate on S-R flip-flops. Each register may be individually programmed such that a specific Preset-Reset pattern is initialized when the initialization pin is raised to a logic level "1". This feature allows the state machine to be asynchronously initialized to known internal state and output conditions prior to proceeding through a sequence of state transitions. Upon powerup, all registers are unconditionally preset to "1". If desired, the initialization input pin (INIT) can be converted to an Output Enable (OE) function as an additional user-programmable feature.

Availability of two user-programmable clocks allows the user to design two independently clocked state machine functions consisting of four state and four output bits each.

Order codes are listed in the Ordering Information Table.

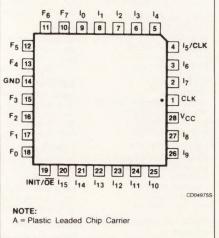
PLUS405 Field-Programmable Logic Sequencer $(16 \times 64 \times 8)$

Signetics Programmable Logic Product Specification


FEATURES

- Functional superset of PLS105/ 105A
- 50MHz clock rate
- f_{MAX} = 33MHz
- $(1/(t_{IS} + t_{CKO}) = f_{MAX})$
- Field-programmable (Ti-W fusible link)
- 16 input variables
- 8 output functions
- 64 transition terms
- 8-bit State Register
- 8-bit Output Register
- 2 transition Complement Array terms
- Multiple clocks
- Programmable Asynchronous Initialization or Output Enable
- Power-on preset of all registers to "1"
- 950mW power dissipation (typ.)
- TTL compatible
- J-K or S-R flip-flop functions
- 3-State outputs

APPLICATIONS


- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Elevator controllers
- Security locking systems
- Counters
- Shift registers

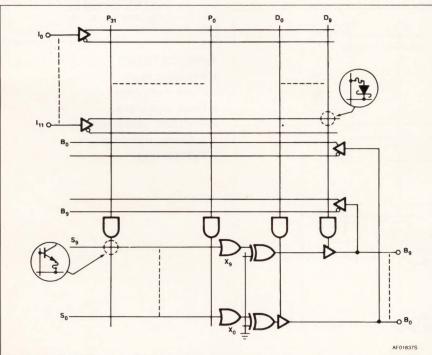
PIN CONFIGURATIONS

N = Plastic

Application Specific Products • Series 24

DESCRIPTION

The PLUS173D is a 12ns version of the PLS173 FPLA architecture. The Signetics state-of-the-art Oxide Isolated Bipolar fabrication process is employed to produce performance levels not yet achieved in devices of this complexity.


The PLUS173D is a two-level logic element consisting of 42 AND gates and 10 OR gates with fusible link connections for programming I/O polarity and direction.

All AND gates are linked to 12 inputs (I) and 10 bidirectional I/O lines (B). These yield variable I/O gate configurations via 10 direction control gates (D), ranging from 22 inputs to 10 outputs.

On chip T/C buffers couple either True (I, B) or Complement $(\overline{I}, \overline{B})$ input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Their output polarity, in turn, is individually programmable through a set of Ex-OR gates for implementing AND/OR or AND/NOR logic functions.

The PLUS173D is field-programmable, enabling the user to quickly generate

FUNCTIONAL DIAGRAM

$\begin{array}{l} \textbf{PLUS173D} \\ \textbf{Field-Programmable Logic} \\ \textbf{Array (22 \times 42 \times 10)} \end{array}$

Signetics Programmable Logic Product Specification


custom patterns using standard programming equipment.

Order codes are listed in the Ordering Information Table.

FEATURES

- Field-Programmable (Ti-W links)
- Functionally identical to, and pinfor-pin compatible with, the PLS173 and the PLUS173B
- 12 inputs
- 42 AND gates
- 10 OR gates
- 10 bidirectional I/O lines
- Programmable output polarity
 active-High or -Low outputs
- 42 product terms:
 - 32 logic terms
 - 10 control terms
- I/O propagation delay: 12ns (max.)
- Input loading: 100µA (max.)
- Power dissipation: 750mW (typ.)
- 3-State outputs
- TTL compatible
- Security fuse

PIN CONFIGURATIONS

APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

853-1298 93257

Application Specific Products • Series 20

DESCRIPTION

The PLUS153D is a 12ns version of the Signetics PLS153 FPLA architecture. The Signetics state-of-the-art Oxide Isolated Bipolar fabrication process is employed to produce performance levels not yet achieved in devices of this complexity.

The PLUS153D is a two-level logic element, consisting of 42 AND gates and 10 OR gates with fusible link connections for programming I/O polarity and direction.

All AND gates are linked to 8 inputs (I) and 10 bidirectional I/O lines (B). These yield variable I/O gate configurations via 10 direction control gates (D), ranging from 18 inputs to 10 outputs.

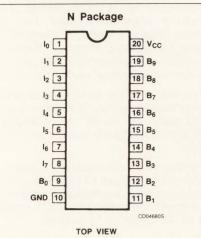
On-chip T/C buffers couple either True (I, B) or Complement (\overline{I} , \overline{B}) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Their output polarity, in turn, is individually programmable through a set of Ex-OR gates for implementing AND/OR or AND/NOR logic functions.

The PLUS153D is field programmable, enabling the user to quickly generate

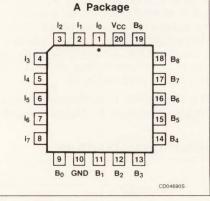
FUNCTIONAL DIAGRAM

PLUS153D Field-Programmable Logic Array ($18 \times 42 \times 10$)

Signetics Programmable Logic Product Specification

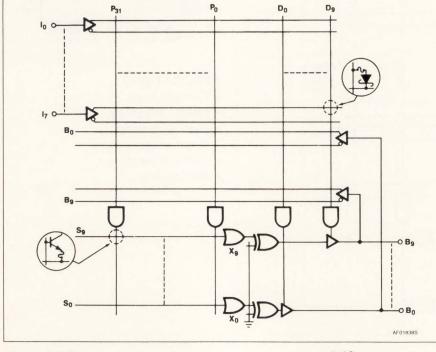

custom patterns using standard programming equipment.

Order codes are listed in the Ordering Information Table.


FEATURES

- Field-Programmable (Ti-W links)
- Functionally identical to, and pinfor-pin compatible with, the PLS153/153A, PLHS153 and PLUS153B
- 8 inputs
- 42 AND gates
- 10 OR gates
- 10 bidirectional I/O lines
- Programmable output polarity
- active-High or -Low outputs
- 42 product terms:
- 32 logic terms
- 10 control terms
- I/O propagation delay: 12ns (max.)
- Input loading: -100µA (max.)
- Power dissipation: 750mW (typ.)
- 3-State outputs
- TTL compatible
- Security fuse

PIN CONFIGURATIONS



APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

Application Specific Products Series 24

FEATURES

- Ultra high-speed:
 - t_{PD} = 10ns
 - f_{MAX} = 55.5MHz (with feedback)
 - t_{IS} = 10ns (worst case)
 - t_{CKO} = 8ns (worst case)
- 100% functionally and pin-for-pin compatible with industry standard 24-pin PAL ICs
- Power-up reset function to enhance state machine design and testability
- Design support provided via AMAZE and other CAD tools for Series 24 PAL devices
- Field-programmable on industry standard programmers
- Security fuse
- Individual 3-State control of all outputs

PLUS20R8D PAL®-Type Devices Series

Signetics Programmable Logic Preliminary Specification

DESCRIPTION

The Signetics PLUS20XXD family is an ultra high-speed 10ns version of existing Series 24 PAL devices.

The PLUS20XXD family is 100% functional and pin-compatible with the 20L8, 20R8, 20R6, and 20R4 Series devices.

The sum of products (AND-OR) architecture is comprised of 64 AND gates and 8 OR gates. Multiple bidirectional pins provide variable input/output pin ratios. Individual 3-State control of all outputs and registers with feedback (R8, R6, R4) is also provided.

The PLUS20R8D, R6D, and R4D have D-type flip-flops which are loaded on the Low-to-High transition of the clock input.

In order to facilitate state machine design and testing, a power-up reset function has been incorporated into these devices to reset all internal registers to active-Low after a specific period of time.

The Signetics State-of-the-Art oxide isolation Bipolar fabrication process is employed to achieve high-performance operation.

The PLUS20XXD family of devices are field programmable, enabling the user to quickly generate custom patterns using standard programming equipment.

DEVICE NUMBER	DEDICATED INPUTS	COMBINATORIAL OUTPUTS	REGISTERED OUTPUTS	t _{PD}	Icc	f _{MAX} WITHOUT FEEDBACK	f _{MAX} WITH FEEDBACK
PLUS20L8D	14	8(6 I/O)	0	10ns	210mA		
PLUS20R8D	12	0	8		210mA	62.5MHz	55.5MHz
PLUS20R6D	12	2 1/0	6	10ns	210mA	62.5MHz	55.5MHz
PLUS20R4D	12	4 1/0	4	10ns	210mA	62.5MHz	55.5MHz

Application Specific Products • Series 20

FEATURES

- Ultra high-speed:
 - t_{PD} = 10ns
 - f_{MAX} = 55.5MHz (with feedback)
 - t_{IS} = 10ns (worst case)
 - t_{CKO} = 8ns (worst case)
- 100% functionally and pin-for-pin compatible with industry standard 20-pin PAL ICs
- Power-up reset function to enhance state machine design and testability
- Design support provided via AMAZE and other CAD tools for Series 20 PAL devices
- Field-programmable on industry standard programmers
- Security fuse
- Individual 3-State control of all outputs

PLUS16R8D PAL[®]-Type Devices Series

Signetics Programmable Logic *Preliminary Specification*

DESCRIPTION

The Signetics PLUS16XXD family is an ultra high-speed 10ns version of existing Series 20 PAL devices.

The PLUS16XXD family is 100% functional and pin-compatible with the 16L8, 16R8, 16R6, and 16R4 Series devices.

The sum of products (AND/OR) architecture is comprised of 64 AND gates and 8 OR gates. Multiple bidirectional pins provide variable input/output pin ratios. Individual 3-State control of all outputs and registers with feedback (R8, R6, R4) is also provided.

The PLUS16R8D, R6D, and R4D have D-type flip-flops which are loaded on the Low-to-High transition of the clock input.

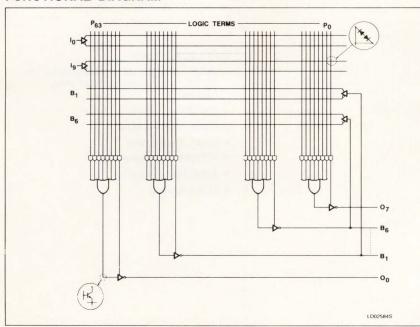
In order to facilitate state machine design and testing, a power-up reset function has been incorporated into these devices to reset all internal registers to active-Low after a specific period of time.

The Signetics State-of-the-Art oxide isolation Bipolar fabrication process is employed to achieve high-performance operation.

The PLUS16XXD family of devices are field programmable, enabling the user to quickly generate custom patterns using standard programming equipment.

DEVICE NUMBER	DEDICATED INPUTS	COMBINATORIAL OUTPUTS	REGISTERED OUTPUTS	t _{PD}	Icc	f _{MAX} WITHOUT FEEDBACK	f _{MAX} WITH FEEDBACK
PLUS16L8D	10	8(6 I/O)	0	10ns	180mA		
PLUS16R8D	8	0	8		180mA	62.5MHz	55.5MHz
PLUS16R6D	8	2 1/0	6	10ns	180mA	62.5MHz	55.5MHz
PLUS16R4D	8	4 1/0	4	10ns	180mA	62.5MHz	55.5MHz

Application Specific Products • Series 20


DESCRIPTION

The PLHS16L8B is a very high-speed ''B'' version PAL[®]-type device. The sum of products (AND-OR) architecture is comprised of 64 AND gates and 8 OR gates. The Signetics PLHS16L8B offers 100% functional compatibility with other PAL 16L8 devices. Specified at 155mA I_{CC} (maximum), the PLHS16L8B consumes 20% less power than other ''B'' version PAL 16L8 devices.

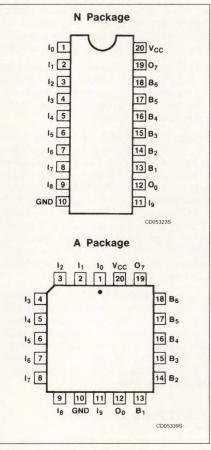
All AND gates are linked to 10 dedicated inputs, 6 bidirectional I/O and 2 dedicated outputs. On-chip buffers couple either true (I, B) or complement (I, B) input polarities to all AND gates. The 64 AND gates are separated into eight groups of eight product terms each. Within each group, seven of the AND terms are OR'ed together, while the eighth is used to control the 3-State function of the bidirectional I/O. All outputs (bidirectional and dedicated) are inverting.

In the virgin state, the AND array fuses are back-to-back CB-EB diode pairs which act as open connections. Current is avalanched across individual diode pairs during fusing, which essentially short circuits the EB diode and provides the connection for the associated product term.

FUNCTIONAL DIAGRAM

PLHS16L8B Programmable AND Array Logic $(16 \times 64 \times 8)$

Signetics Programmable Logic Product Specification


The PLHS16L8B is field-programmable, allowing the user to quickly generate custom patterns using standard programming equipment.

Order codes are listed in the Ordering Information Table.

FEATURES

- Consumes 20% less power than other ''B'' version PAL devices
- 155mA I_{CC} (worst-case)
- I/O propagation delay: 15ns (MAX)
- 100% functionally and pin-for-pin compatible with AmPAL16L8B, MMI PAL16L8B, TIBPAL16L8-15 and NSC PAL16L8B devices
- Field-programmable
- 10 dedicated inputs
- 8 outputs
 - 6 bidirectional I/O
 - 2 dedicated outputs
- Individual 3-State control of all outputs
- 64 AND gates/product terms
- Security Fuse

PIN CONFIGURATIONS

APPLICATIONS

- 100% functional replacement for 20-pin 16L8 combinatorial PAL devices
- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping/decoding
- Multiplexing

(a) PAL is a registered trademark of Monolithic Memories, Inc., a wholly owned subsidiary of Advanced Micro Devices Inc.

February 12, 1988

3-20

Application Specific Products • Series 20

DESCRIPTION

The PLHS18P8B is a two-level logic element consisting of 72 AND gates and 8 OR gates with fusible connections for programming I/O polarity and direction.

All AND gates are linked to 10 inputs (I) and 8 bidirectional I/O lines (B). These yield variable I/O gate configurations via 8 direction control gates, ranging from 18 inputs to 8 outputs.

On-chip T/C buffers couple either True (I, B) or Complement (\overline{I} , \overline{B}) input polarities to all AND gates. The 72 AND gates are separated into 8 groups of 9 each. Each group of 9 is associated with one bidirectional pin. In each group, eight of the AND terms are ORed together, while the ninth is used to establish I/O direction. All outputs are individually programmable via an Ex-OR gate to allow implementation of AND/OR or NAND/NOR logic functions.

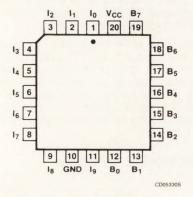
In the virgin state, the AND array fuses are back-to-back CB-EB diode pairs which will act as open connections. Current is avalanched across individual diode pairs during fusing, which essentially short circuits the EB diode and provides the connection for the associated product term.

FUNCTIONAL DIAGRAM

PLHS18P8B Programmable AND Array Logic $(18 \times 72 \times 8)$

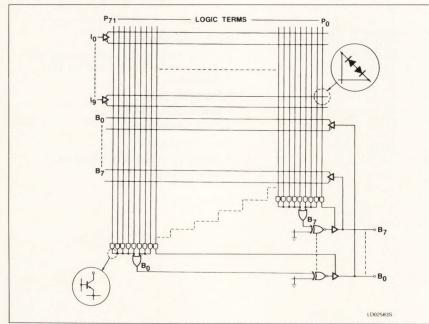
Signetics Programmable Logic Product Specification

The PLHS18P8B is field-programmable, allowing the user to quickly generate custom pattern using standard programming equipment.


Order codes are listed in the Ordering Information Table.

FEATURES

- 100% functionally compatible with AmPAL18P8B and all 16L8, 16P8, 16H8, 16L2, 16H2, 14L4, 14H4, 12L6, 12H6, 10L8, 10H8, 16LD8 and 16HD8 PAL type products
- Field-Programmable
- 10 inputs
- 8 bidirectional I/O lines
- 72 AND gates/product terms
- configured into eight groups of nine
- Programmable output polarity (3-State output)
- I/O propagation delay: 15ns (max)
- Power dissipation: 500mW (typ)
- TTL compatible
- Security Fuse



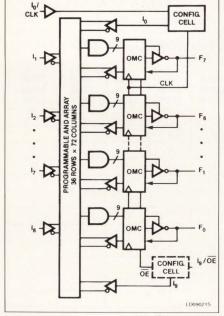
APPLICATIONS

- 100% functional replacement for all 20-pin combinatorial PAL devices
- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

(*) PAL is a registered trademark of Monolithic Memories, Inc., a wholly owned subsidiary of Advanced Micro Devices, Inc.

May 11, 1988

252 SEMICUSTOM DESIGN GUIDE 1988


Application Specific Products • Series 20

DESCRIPTION

The PLC16V8 Programmable Array Logic device is a 20-pin CMOS PLD designed to replace full-power as well as quarter-power and half-power Series 20 PAL[®] devices. Available in four speed/ power configurations, the generic PLC16V8 device can be configured to emulate 22 different PAL devices in multiple speed/power configurations. The more complex AND/OR logic functions can be easily implemented with the PLC16V8 because of the flexibility inherent to its generic Output Macro Cell architecture.

The PLC16V8 is a two-level logic element comprised of 10 inputs, 72 AND gates and 8 Output Macro Cells (OMC). Each Output Macro Cell can be individually configured as a dedicated input, a dedicated output, a bidirectional I/O or as a registered output with feedback. This generic architecture provides a means of reducing documentation, inventory and manufacturing related costs. Furthermore, the PLC16V8 series devices are designed to accept both TTL and CMOS input levels to facilitate logic integration in almost any system environment.

FUNCTIONAL DIAGRAM

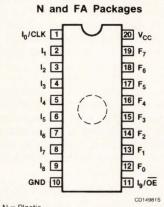
PLC16V8 Series Erasable and OTP Programmable Array Logic $(16 \times 72 \times 8)$

Signetics Programmable Logic Product Specification

FEATURES

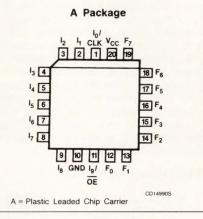
- 100% functional replacement for Series 20 PAL devices -I_{OL} = 24mA
- Low power performance:
 - 50 and 90mA max
 - All inputs and outputs switching at 15MHz
- Equivalent bipolar performance
- 35 and 45ns tpp
- 28.5 and 22.2MHz fMAX (async)
- EPROM cell technology
 - Erasable
 - 100% testable
 - Reconfigurable (quartz window package only)
- TTL and CMOS compatible
- Security fuse
- Available in 300mil-wide DIP with quartz window, plastic DIP (OTP), or PLCC (OTP)

PIN LABEL DESCRIPTIONS



 I
 Dedicated input

 B
 Bidirectional input/output


 O
 Dedicated output

 D
 Registered output (D-type flip-flop)

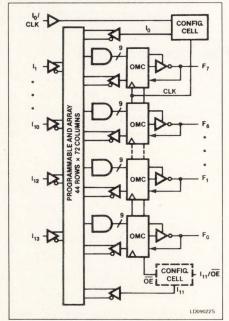
PIN CONFIGURATIONS

N = Plastic FA = Ceramic with Quartz Window

PAL DEVICE TO PLC16V8 OUTPUT PIN CONFIGURATION CROSS REFERENCE

PIN NO.	PLC 16V8	16L8 16H8 16P8 18P8	16R4 16RP4	16R6 16RP6	16R8 16RP8	16L2 16H2 16P2	14L4 14H4 14P4	12L6 12H6 12P6	10L8 10H8 10P8
1	I0/CLK	I	CLK	CLK	CLK	1	1	1	1
19	F7	В	В	В	D	1	1	1	0
18	F6	В	В	D	D	1	I	0	0
17	F5	В	D	D	D	1	0	0	0
16	F4	В	D	D	D	0	0	0	0
15	F3	В	D	D	D	0	0	0	0
14	F2	В	D	D	D	I	0	0	0
13	F1	В	В	D	D	1	I	0	0
12	F0	В	В	В	D	T	1	I	0
11	Ig/OE	T	ŌĒ	ŌĒ	ŌĒ	I	I	1	1

^(a) PAL is a registered trademark of Monolithic Memories, Inc., a wholly owned subsidiary of Advanced Micro Devices, Inc.

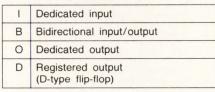

Application Specific Products Series 24

DESCRIPTION

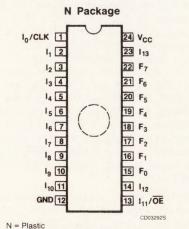
The PLC20V8 Programmable Array Logic device is a 24-pin CMOS PLD designed to replace full-power as well as guarter-power and half-power Series 24 PAL® devices. Available in four speed/ power configurations, the generic PLC20V8 device can be configured to emulate 21 different PAL devices in multiple speed/power configurations. The more complex AND-OR logic functions can be easily implemented with the PLC20V8 because of the flexibility inherent to its generic Output Macro Cell architecture.

The PLC20V8 is a two-level logic element comprised of 14 inputs, 72 AND gates and 8 Output Macro Cells (OMC). Each Output Macro Cell can be individually configured as a dedicated input, a dedicated output, a bidirectional I/O or as a registered output with feedback. This generic architecture provides a means of reducing documentation, inventory and manufacturing related costs. Furthermore, the PLC20V8 series devices are designed to accept both TTL and CMOS input levels to facilitate logic integration in almost any system environment.

FUNCTIONAL DIAGRAM

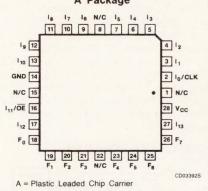

PLC20V8 Series Erasable and OTP Programmable Array Logic $(20 \times 72 \times 8)$

Signetics Programmable Logic **Product Specification**


FEATURES

- 100% functional replacement for Series 24 PAL devices -IOL = 24mA
- Low power performance: 50 and 90mA max
- All inputs and outputs switching at 15MHz
- Equivalent bipolar performance
- 35 and 45ns tpp
- 28.5 and 22.2MHz fMAX (async)
- EPROM cell technology
 - Erasable
 - 100% testable
 - Reconfigurable (quartz window package only)
- TTL and CMOS compatible
- Security fuse
- Available in 300mil-wide DIP with quartz window, plastic DIP (OTP), or PLCC (OTP)

PIN LABEL DESCRIPTIONS



PIN CONFIGURATIONS

FA = Ceramic with Quartz Window

A Package

PAL DEVICE TO PLC20V8 OUTPUT PIN CONFIGURATION CROSS REFERENCE (DIP Packages Only)

PIN NO.	PLC 20V8	20R8 20RP8	20R6 20RP6	20R4 20RP4	20L8 20H8 20P8	20L2 20H2 20P2	18L4 18H4 18P4	16L6 16H6 16P6	14L8 14H8 14P8
1	I0/CLK	CLK	CLK	CLK	1	1	1	1	1
13	I11/OE	ŌĒ	ŌĒ	ŌĒ	I	I	1	- 1	- 1
14	I ₁₂	1	1	I	I	- 1	- 1	1	1
15	FO	D	В	В	0	1	1	I	0
16	F1	D	D	В	В	1	1	0	0
17	F2	D	D	D	В	1	0	0	0
18	F3	D	D	D	В	0	0	0	0
19	F4	D	D	D	В	0	0	0	0
20	F5	D	D	D	В	1	0	0	0
21	F6	D	D	В	В	1	I	0	0
22	F7	D	В	В	0	1	1	1	0
23	113	1	1	I	I	1	I	1	1

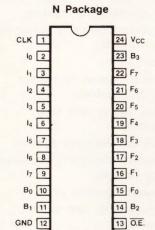
^(h) PAL is a registered trademark of Monolithic Memories, Inc., a wholly owned subsidiary of Advanced Micro Devices, Inc.

Application Specific Products • Series 24

DESCRIPTION

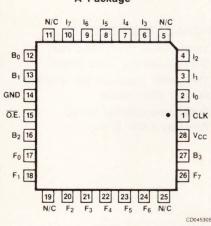
The PLS179 is a 3-State output, registered logic element combining AND/OR gate arrays with clocked J-K flip-flops. These J-K flip-flops are dynamically convertible to D-type via a "foldback" inverting buffer and control gate F_C . It features 8 registered I/O outputs (F) in conjunction with 4 bidirectional I/O lines (B). There are 8 dedicated inputs. These yield variable I/O gate and register configurations via control gates (D, L) ranging from 20 inputs to 12 outputs.

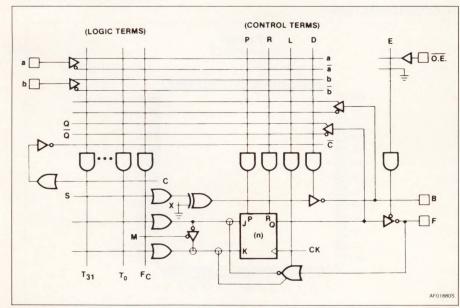
The AND/OR arrays consist of 32 logic AND gates, 13 control AND gates, and 21 OR gates with fusible link connections for programming I/O polarity and direction. All AND gates are linked to 8 inputs (I), bidirectional I/O lines (B), internal flip-flop outputs (Q), and Complement Array output (\overline{C}). The Complement Array consists of a NOR gate optionally linked to all AND gates for generating and propagating complementary AND terms.


PLS179 Field-Programmable Logic Sequencer $(20 \times 45 \times 12)$

Signetics Programmable Logic Product Specification

FEATURES


- f_{MAX} = 18.2MHz
- 25MHz clock rate
- Field-Programmable (Ni-Cr link)
- 8 dedicated inputs
- 13 control gates
- 32 AND gates
- 21 OR gates
- 45 product terms:
 - 32 logic terms
 - 13 control terms
- 4 bidirectional I/O lines
- 8 bidirectional registers
- J/K, T, or D-type flip-flops
- Asynchronous Preset/Reset
- Complement Array
- Active-High or -Low outputs
- Programmable OE control
- Positive edge-triggered clock
- Power-on reset on flip-flop (F_n = ''1'')
- Input loading: PLS179: 100μA (max.)
- Power dissipation: 750mW (typ.)
- TTL compatible
- 3-State option



FUNCTIONAL DIAGRAM

APPLICATIONS

- Random sequential logic
- Synchronous up/down counters
- Shift registers
- Bidirectional data buffers
- Timing function generators
- System controllers/synchronizers
- Priority encoder/registers

853-0862 93255

Applied Specific Application Products • PML Series

FEATURES

- Programmable instant gate array
- SNAP development system:
 - Supports third-party schematic entry formats
 - Macro library
 - Versatile netlist format for design portability
 - Logic, timing, and fault simulation
- AMAZE development system:
 - Supports third-party schematic entry formats
 - Boolean equation entry
 - Logic, timing, and fault simulation
- TTL compatible
- Power dissipation = 1.12W (typ.)

PROPAGATION DELAYS

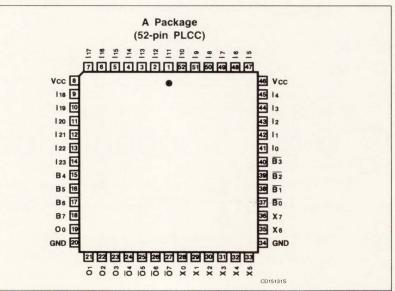
- Single level (excluding the internal core) = 22ns (max)
- Two level (through the internal core) = 30ns (max)
- Delay per internal NAND function = 8ns (max)

PLHS501 Programmable Macro Logic

Product Specification

STRUCTURE

- NAND gate based architecture:
 72 foldback NAND terms
- 24 dedicated inputs (I0 I23)
 8 bidirectional I/Os with
- individual 3-State enable:
- 4 active-High (B4 B7)
- 4 active-Low (/B0 /B3)
- 16 dedicated outputs:
 - 4 active-High outputs:
 00, 01 with common 3-State enable
 02, 03 with common 3-State


enable

- 4 active-Low outputs:
 04, 05 with common 3-State enable
 06, 07 with common 3-State
- enable
- 8 Exclusive-OR outputs: X0 – X3 with common 3-State enable X4 – X7 with common 3-State enable
- Security fuse allows protection of proprietary designs
- Testable in unprogrammed state

PIN CONFIGURATION

DESCRIPTION

The PLHS501 is a high-density Bipolar Programmable Macro Logic device. PML incorporates a programmable NAND structure. The NAND architecture is an efficient method for implementing any logic function. The SNAP software development system provides a user friendly environment for design entry. SNAP eliminates the need for a detailed understanding of the PLHS501 architecture and makes it transparent to the user. PLHS501 is also supported on the Signetics AMAZE software development system.

Application Specific Products

FEATURES

- Programmable instant gate array
- SNAP development system
- Supports third-party schematic entry formats
- Macro library
- Versatile netlist format for design portability
- Logic, timing, and fault simulation
- TTL compatible
- Power dissipation = 1.25W (typ.)

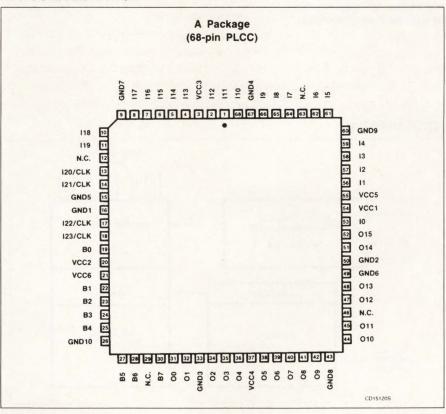
PROPAGATION DELAYS

- Single level (excluding the internal core) = 22ns (max)
- Two level (through the internal core) = 30ns (max)
- Delay per internal NAND function = 8ns (max)
- Maximum operating frequency = 50MHz (internal flipflop)

PML1500 Programmable Macro Logic

Preliminary Specification

STRUCTURE


- NAND gate based architecture
- 64 foldback NAND terms
 20 dedicated inputs
- 4 programmable input/clock inputs
- 8 independent clocks
 - 4 from input/clock pins
- 4 from NAND array
- 8 bidirectional I/Os
- 16 dedicated outputs
 - 8 active-High outputs
 - 4 outputs with programmable polarity
 - 4 3-State outputs with programmable polarity
- 16 buried flip-flops

PIN CONFIGURATION

- 8 D type
- 8 S-R type
- Security fuse allows protection of proprietary designs
- Testable in unprogrammed state

DESCRIPTION

The PML1500 is a high-density Bipolar Programmable Macro Logic device. PML incorporates a programmable NAND structure. The NAND architecture is an efficient method for implementing any logic function. The SNAP software development system provides a user friendly environment for design entry. SNAP eliminates the need for a detailed understanding of the PML1500 architecture and makes it transparent to the user.

Application Specific Products

DESCRIPTION

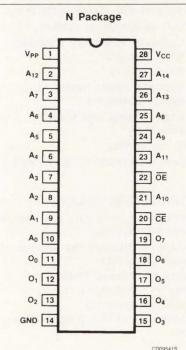
Signetics 27C256 CMOS O.T.P. EPROM is a 256K-bit 5V only memory organized as 32,768 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C256 has a non-multiplexed addressing interface and is plugcompatible with the industry standard 27256.

The 27C256 O.T.P. is offered in plastic DIP and plastic leaded chip carrier (PLCC) packages. Plastic EPROMs provide optimum cost effectiveness in production environments. Quick-pulse programming is employed on plastic devices which may speed up programming by as much as one hundred times.

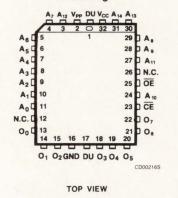
FEATURES

- Low power consumption
- 100µA maximum CMOS standby current
- Quick-pulse programming algorithm for high-speed production programming

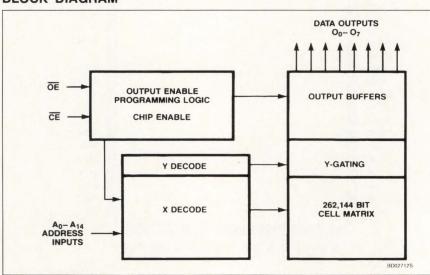
27C256 O.T.P. One Time Programmable 256K (32K \times 8) EPROMs


Product Specification

- High-performance speeds
 - 27C256-15: 150ns maximum access time
 - 27C256-17: 170ns maximum access time
- Noise immunity features
 - \pm 10% V_{CC} tolerance
 - Maximum latch-up immunity through epitaxial processing


PIN DESCRIPTION

$A_0 - A_{14}$	Addresses
O ₀ – O ₇	Outputs
OE .	Output enable
CE	Chip enable
N.C.	No connection
GND	Ground
V _{PP}	Program voltage
V _{CC}	Power supply
DU	Don't use


PIN CONFIGURATIONS

A Package

BLOCK DIAGRAM

Application Specific Products

DESCRIPTION

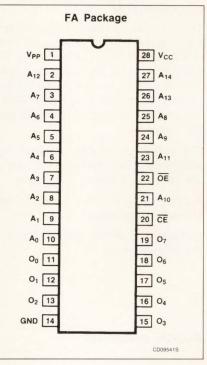
Signetics 27C256 CMOS EPROM is a 256K-bit 5V only memory organized as 32,768 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C256 has a non-multiplexed addressing interface and is plug-compatible with the industry standard 27256.

The 27C256 available in a ceramic DIP package, achieves both high performance and low power consumption, making it ideal for high-performance, portable equipment. This device can be programmed with standard EPROM programmers.

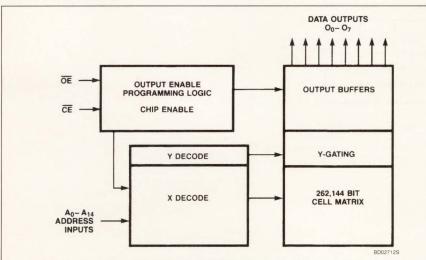
FEATURES

- Low power consumption
 - 100µA maximum CMOS standby current
- Quick pluse programming algorithm for high-speed production programming

27C256 U.V. Erasable 256K (32K \times 8) EPROMs


Product Specification

- High-performance speeds
 - 27C256-15: 150ns maximum access time
 - 27C256-17: 170ns maximum access time
- Noise immunity features
- ± 10% V_{CC} tolerance
- Maximum latch-up immunity through epitaxial processing


PIN DESCRIPTION

$A_0 - A_{14}$	Addresses
$O_0 - O_7$	Outputs
ŌĒ	Output enable
CE	Chip enable
GND	Ground
V _{PP}	Program voltage
V _{CC}	Power supply

PIN CONFIGURATION

BLOCK DIAGRAM

Bipolar Memory Products

DESCRIPTION

The 10149A is field programmable, meaning that custom patterns are immediately available by following the ECL fusing procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

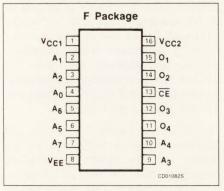
The 10149A is suitable for use in highperformance ECL systems. The outputs are capable of driving 50Ω loads.

A Chip Enable input is provided for ease of memory expansion.

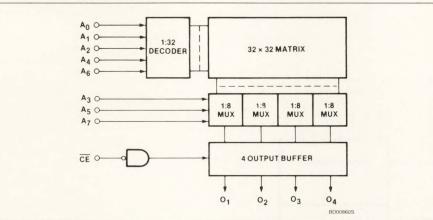
Ordering information can be found on the following page.

10149A 1K-Bit ECL Bipolar PROM

Product Specification


FEATURES

- Address access time: 10ns max
- Power dissipation: 0.66mW/bit typ
- High impedance inputs (50kΩ pulldown)
- One Chip Enable input
- Open Emitter outputs (50 Ω drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 10K series


APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

Application Specific Products

DESCRIPTION

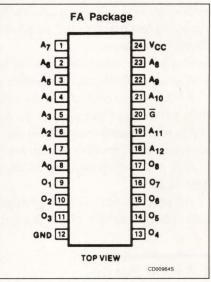
The 27HC641 is a CMOS, high-speed ultraviolet light erasable electrically programmable Read Only Memory. It is organized as 8192 words of 8 bits and operates from a single 5V \pm 10% power supply. All outputs offer 3-State operation and are fully TTL-compatible.

The 27HC641 uses advanced CMOS circuitry which allows operation at bipolar PROM speeds while consuming lower power. The highest degree of protection against latch-up is achieved through epitaxial processing, simplifying the design of electronic equipment which is subject to high noise environments.

The 27HC641 is available in an industry standard 24-pin dual in-line package with the same pinout as most 64K bipolar PROMs. This makes it easy to upgrade systems currently using bipolar PROMs and provide a lower power memory system solution.

27HC641 65,536-Bit UV Erasable CMOS PROM (8K \times 8)

Product Specification

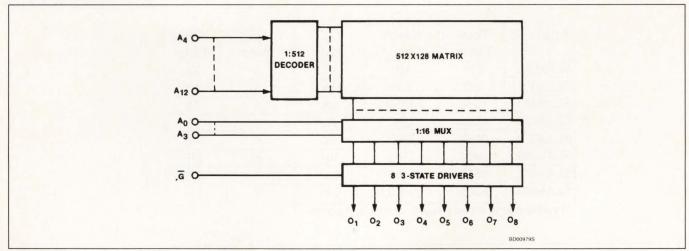

FEATURES

- Address access time:
 - 27HC641-55 55ns max
 - 27HC641-45 45ns max
- 27HC641-35 35ns max
- Operating I_{CC}: 110mA max
- 3-State outputs
- JEDEC standard 24-pin DIP package
- Direct replacement for standard 64K TTL PROMs
- Fully TTL-compatible

APPLICATIONS

- Prototyping and volume production
- High-performance mini- and microcomputers
- High-speed program store and look-up tables

PIN CONFIGURATION


PIN NAMES

$A_0 - A_{12}$	Address inputs
O ₁ - O ₈	Data outputs
G	Output Enable
Vcc	Supply voltage
GND	Ground (V _{SS})

ORDERING INFORMATION

PACKAGE	ORDER CODE						
DESCRIPTION	35ns	45ns	55ns				
24-pin ceramic DIP with quartz window 600mil-wide	27HC641-35 FA	27HC641-45 FA	27HC641-55 FA				

BLOCK DIAGRAM

ASIC Product Overview

S-MOS Systems, Inc. and our affiliate, Seiko Epson Corporation, form a team that is one of the world's technology leaders in Application Specific Integrated Circuits. Advanced design and manufacturing capabilities enable us to provide fast turn-around on prototypes and quickly ramp to volume production with high-performance, highreliability products.

Our highly automated class-10 fab lines have a remarkable capacity to produce over 40,000 four-inch, 20,000 five-inch and 20,000 six-inch wafers per month.

S-MOS offers multiple gate array families so you can choose the one that best suits your application. We currently have arrays from 2 microns down to 1.2 micron drawn feature sizes and complexities to 38,550 gates. Ask an S-MOS representative about our latest developments. The S-MOS ASIC program also includes standard cells as a cost-effective alternative to gate arrays for high-volume needs.

Our proprietary cell-based Compiled Cell Custom is yet another option for executing complex and high-volume ASIC designs.

All processes are upwardly migratable with automatic conversion. Most devices are available in plastic quad flat packs, pin grid arrays, plastic leaded chip carriers, small outline packages and plastic dual-in-line packages.

SLA6000 Series

- High Speed CMOS Gate Arrays
- 2 Micron Drawn (1.7 micron effective) Channel Length
- Typical Gate Delays of 1.43 ns Driving Two Internal Loads

Product Description

The SLA6000 Series consists of a group of 8 CMOS Gate Arrays with gate counts from 513 to 6206 total gates. The series is fabricated utilizing our 2 micron high speed CMOS silicon gate technology to achieve propagation delays of 1.43 ns for a 2-input NAND gate driving two internal loads. All I/O buffers are TTL and CMOS compatible which makes this series an ideal choice for replacing existing discrete logic as well as for new designs.

A wide variety of packages is available including Plastic DIP, SOP, PLCC, Low Cost PGA, Ceramic PGA and our advanced high density flat packages for surface mounting.

SLA6000 CMOS Gate Arrays

Array	Total	Usable	I/O	Input	Total
	Gates	Gates*	Pads	Pads	Pads
SLA6050	513	480	42	6	48
SLA6080	820	750	54	6	60
SLA6140	1394	1250	68	6	74
SLA6170	1746	1530	76	6	82
SLA6270	2667	2300	94	6	100
SLA6330	3312	2780	104	6	110
SLA6430	4342	3560	120	6	126
SLA6620	6206	5000	146	8	154

SLA7000 Series

- Very High Speed CMOS Gate Arrays
- 1.5 Micron Drawn (1.2 micron effective) Channel Length
- Typical Gate Delays 0f 830 Picoseconds Driving Two Internal Loads

Product Description

The SLA7000 Series consists of a group of 6 channeled arrays and 3 channelless arrays with up to 16,250 total gates. The series is fabricated utilizing our 1.5 micron very high speed CMOS silicon gate technology to achieve propagation delays of 830 ps for a 2-input NAND gate driving two internal loads.

All S-MOS/Seiko gate arrays are produced in one of the largest dedicated CMOS facilities in the world and tested at speeds up to 40MHz assuring quality, volume production.

A wide variety of package types is available including DIP, SOP, PLCC, Low Cost PGA, Ceramic PGA, and our advanced high density flat packages to 196 pins, for surface mounting.

Array	Total	Usable	I/O	Input	Total
	Gates	Gates*	Pads	Pads	Pads
SLA7160	1632	1500	70	8	78
SLA7220	2232	2000	82	8	90
SLA7340	3432	2950	104	8	112
SLA7490	4900	4100	128	8	136
SLA7620	6210	4900	150	8	158
SLA760S	11040	5500	150	8	158
SLA7800	8000	6000	170	8	178
SLA775S	13500	6800	168	8	176
SLA790S	16250	8000	170	8	178

SLA7000 CMOS Gate Arrays

*Typical usage; actual usage is design dependent.

SLA700B Series

- High Output Drive CMOS Gate Array
- Selectable IOL to 24mA
- 1.5 Micron Drawn (1.2 micron effective) Channel Length

Product Description

The SLA700B Series consists of 4 CMOS gate arrays with special high drive output cells. These arrays are perfectly suited for high current busses, SCSI interfacing, or any other application which requires up to 48 mA. The outputs are designed to deliver the rated current over temperature, voltage, and process extremes at VOL = 0.4 volts.

The internal gate delays are very fast (830 ps), and each device is tested at your system clock speed up to 40 MHz.

A wide variety of package types is available including DIP, SOP, PLCC, Low Cost PGA, Ceramic PGA, and advanced flat packages for surface mounting.

SLA700B CMOS Gate Arrays

Array	Total Gates	Usable Gates*	I/O Pads	Input Pads	Total Pads
SLA708B	825	780	84	8	92
SLA715B	1500	1350	100	8	108
SLA724B	2482	2200	122	8	130
SLA738B	3792	3300	148	8	156

SLA100L Series

- Operating Voltage of 0.9V to 6.0V
- Typical Gate Delays of 1.14 ns at 5 Volts
- Ideal for Battery Operated Devices

Product Description

The SLA100L Series consists of a group of 6 CMOS Gate Arrays with up to 8000 available gates. The arrays are fabricated utilizing our proprietary low voltage CMOS technology based on years of experience making watches and other items requiring low voltage operation. The SLA100L Series is perfectly suited for any battery operation such as 1.5V or 3V. An important feature is that its wide voltage operation (0.9Volts to 6.0 Volts) is achieved by using our special low voltage process, not by screening, thus assuring that the design will work through the required voltage range.

SLA100L Low Voltage CMOS Gate Arrays

Array	ay Total U Gates C		I/O Pads	Input Pads	Total Pads
SLA116L	1632	1500	70	8	78
SLA122L	2232	2000	82	8	90
SLA134L	LA134L 3432		104	8	112
SLA149L	LA149L 4900 4		128	8	136
SLA162L	6210	4900	150	8	158
SLA180L	8000	6000	170	8	178

*Typical usage; actual usage is design dependent.

SLA8000 Series

- Very High Speed/ High Density CMOS Gate Arrays
- 1.2 Micron Drawn (1.05 micron effective) Channel Length
- Complete Data sheet Follows Typical Gate Delays of 640 Picoseconds Driving Two Internal Loads

Product Description

The SLA8000 Series consists of a group of 7 CMOS gate arrays with gate counts from 5304 to 38,550 available gates. The series is fabricated utilizing our state-of-the-art, 1.2 micron, very high speed silicon gate technology.

Every macrocell included in our library has been fully characterized in silicon. The propagation delay values come from actual measurements of performance rather than SPICE simulations. Futhermore, all delay figures are specified at 3 sigma limits over process, temperature, and voltage, virtually guaranteeing that your production part will meet your simulation results.

The SLA8000 Series is manufactured on our highly automated six inch line and tested at speeds up to 40 MHz. It is available in a wide variety of packages including DIP, SOP, PLCC, Low Cost PGA, Ceramic PGA, and our advanced high density flat packages to 196 pins, for surface mounting.

SLA8000 CMOS Gate Arrays

Array	Total	Usable	I/O	Input	Total
Gates Gates*		Gates*	* Pads I		Pads
SLA827S	5304	2900	82	4	86
SLA847S	9416	5100	108	4	112
SLA872S	372S 14336 7		136	4	140
SLA890S	8905 18300 97		152	4	156
SLA8B3S	22680	11800	168	4	172
SLA8F0S 30000 1		15000	194	4	198
SLA8J0S	38550	19000	222	4	226

SSC1000 Series

- High Density Standard Cells
- 1.8 Micron Drawn (1.25 micron effective) Channel Length
- Typical Gate Delays of 910 Picoseconds Driving Two Internal Loads
- Output Drive to 24mA IOL

Product Description

The SSC1000 Series is a high density standard cell family with usable gate counts to 15,000 gates and I/O to 192 pads. It is ideally suited for high volume applications since it is denser than equivalent gate arrays allowing for a lower cost per gate. There are currently over 300 fully characterized cells in the library with propagation delays specified at 3 sigma limits for process, voltage, and temperature.

S-MOS/Seiko has one of the most stringent quality control programs in the industry. We have shipped millions of SSC1000 parts with an electrical defect rate of less than .0001% to date (less than 1ppm AOQL), making this series an ideal choice for very high quality/volume production requirements.

The SSC1000 Series is available in a wide variety of packages including DIP, SOP, PLCC, Low Cost PGA, Ceramic PGA, and our advanced flat packages to 196 pins, for surface mounting. Many packages are also available in Tape and Reel for high speed auto insertion equipment.

SSC3000 Series

- Very High Density Standard Cells
- 1.2 Micron Drawn (1.05 micron effective) Channel Length
- Typical Gate Delays of 610 Picoseconds Driving Two Internal Loads
- Output Drive to 24mA IOL

Product Description

The SSC3000 Series is a high density standard cell family with usable gate counts to 20,000 gates and I/O to 192 pads. It is ideally suited for high volume applications since it is denser than equivalent gate arrays allowing for a lower cost per gate. There are currently over 300 fully characterized cells in the library with propagation delays specified at 3 sigma limits for process, voltage, and temperature. The series is fabricated utilizing our state-of-the-art, 1.2 micron, very high speed silicon gate technology.

The SSC3000 Series is available in a wide variety of packages including DIP, SOP, PLCC, Low Cost PGA, Ceramic PGA, and our advanced flat packages to 196 pins, for surface mounting.

Compiled Cell Custom

Product Description

CC Custom is S-MOS' proprietary cell-based custom design process that is faster and more cost-effective than full custom. With this system, S-MOS engineers can develop large, functional custom blocks for customers, then implement them, along with logic, on a single chip.

The logic can be captured and simulated at your own site with S-MOS' LADS software. The logic is then combined with the custom blocks and routed using our timing-driven place-and-router. This software simulates the entire circuit, place-and-routes it, resimulates, and re-place-and-routes. This process continues until all paths meet the original pre-route timing.

The entire process through PG-tape is complete at our facility in San Jose, California. Process technology includes our 1.8, 1.5 and 1.2 micron drawn CMOS processes.

The S-MOS CC Custom cell library is continually expanding and currently includes microprocessor core cells, peripheral cells, and RAM and ROM blocks.

SLA8000 Series

VERY HIGH SPEED CHANNELLESS CMOS GATE ARRAYS

Description

The SLA8000 Series consists of a group of seven very high-speed, sea-of-gates CMOS gate arrays. The series is fabricated utilizing our state-of-the-art 1.2 micron silicon gate technology. Gate counts range from 5K to 38K available gates with pinouts to 226 pads.

Features

- 1.2 micron drawn (0.9 micron effective) channel length.
- Very high speed: t_{pd} (typ) = .6ns/ gate
- Seven configurations
- 24mA Iol using three pads
- RAM and ROM blocks available
- Megacell compatible
- Fully migratable to S-MOS standard cells.

Product Configuration

ARRAY	TOTAL GATES	USABLE GATES*	I/O PADS	POWER PADS	TOTAL PADS
SLA827S	5304	3000	82	4	86
SLA847S	9416	5000	108	4	112
SLA872S	14336	8000	136	4	140
SLA890S	18300	10000	152	4	156
SLA8B3S	22680	12000	168	4	172
SLA8F0S	30000	16000	194	4	198
SLA8J3S	38550	21000	222	4	226

Absolute Maximum Ratings

Parameter	Symbol	Limits	Units	
DC supply voltage	V _{dd}	V _{ss} -0.3 to 7.0	Volts	
Input voltage	V _{IN}	V_{ss} -0.3 to V_{DD} +0.3	Volts	
Output voltage	V _{out}	V_{ss} -0.3 to V_{DD} +0.3	Volts	
Storage temp.	T _{STG}	-65 to +150	°C	

Recommended Operating Conditions (commercial)

VSS = OV

Parameter	Symbol	MIN	ТҮР	MAX	UNITS
DC supply voltage	V _{DD}	4.75	5.0	5.25	Volts
Input voltage	V _{IN}	V _{ss}	1	V _{DD}	Volts
Operating temp.	T	0		70	°C

VDD range of +,-10% and extended temperature range available upon request.

DC Characteristics

Symbol	Parameter	Conditions	VDD	MIN	ТҮР	MAX	UNITS
VIL	Low level input voltage						1
	CMOS Level		4.75		S. Refer	1.0	v
	TTL Level		4.75			0.8	v
VIH	High level input voltage						1999
	CMOS level		5.25	3.5	1.179.45		v
	TTL Level		5.25	2.0	- -		v
V _{T+}	Positive going threshold voltage				a charte		
	CMOS Schmitt Trigger		5.25			4.0	v
	TTL Schmitt Trigger		5.25		-	3.0	v
VT-	Negative going threshold voltage				S		
	CMOS Schmitt Trigger		4.75	0.8			V
in the second	TTL Schmitt Trigger		4.75	0.6			v
VH	Hysteresis voltage						
	CMOS Schmitt Trigger		5.0	0.3			v
	TTL Schmitt Trigger		5.0	0.1			v
IIL	Low level input current	VIN=VSS					
		No pull-up	5.25			1.0	uA
		Pull-up	5.25			100	uA
Ін	High level input current	VIN=VDD					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
		No pull-up	5.25			1.0	uA
		Pull-up	5.25			100	uA
VOL	Low level output voltage				-		
	LOT + OSC	Iol=50uA	4.75		15 12 1	0.4	V
	Type 1	IoL=2mA	4.75			0.4	V
	Type 2	IoL=6mA	4.75			0.4	V
	Type 3	IoL=6mA	4.75		1	0.4	V
	Type W*	IoL=12mA	4.75			0.4	V
	Type Q*	IoL=24mA	4.75	Barthan		0.4	V
Vон	High level output voltage						
	LOT+OSC	Іон=-50иА	4.75	VDD4V			V
	Type 1	Іон=-1mА	4.75	VDD4V			V
	Type 2	Іон=-1mА	4.75	VDD4V	14		V
	Type 3	Іон=-3mA	4.75	VDD4V			V
	Type W*	Іон=-6mА	4.75	VDD4V			V
	Type Q*	Іон=-6тА	4.75	VDD4V			V
Rpu	Pull up resistor		5.0	50		500	ΚΩ
Rpd	Pull down resistor		5.0	50		500	ΚΩ
Ioz	Tri-state leakage current		5.25			10	uA
Cin	Input capacitance				4		pF
Соит	Output capacitance				6		pF
CBID	Bidirectionl pad capacitance				10		pF

S-MOS Systems, Inc., 2460 North First Street, San Jose, CA 95131 (408) 922-0200

Macro Library

Function	Cell Name	Gates	
SIMPLE GATES			
2-INPUT NAND GATE	NA2	1	
3-INPUT NAND GATE	NA3	2	
4-INPUT NAND GATE	NA4	2	
2-INPUT NOR GATE	NO2	1	
3-INPUT NOR GATE	NO3	2	
4-INPUT NOR GATE	NO4	2	
3-INPUT AND GATE	A3 A6	2 4	
6-INPUT AND GATE 8-INPUT AND GATE	A8	5	
3-INPUT OR GATE	03	2	
6-INPUT OR GATE	06	4	
8-INPUT OR GATE	08	5	
EXCLUSIVE OR GATE	EXO	3	
EXCLUSIVE NOR GATE	EXN	3	
COMPLEX GATES			
2-AND 2-WIDE 3-INPUT NOR GATE	AN23	2	
3-AND 2-WIDE 4-INPUT NOR GATE	AN14	2	
2-AND 2-WIDE 4-INPUT NOR GATE	AN24	2	
2-AND 2-WIDE 4-INPUT NOR GATE	AN44	2	
2-AND 3-WIDE 6-INPUT NOR GATE	AN36	5	
2-AND 2-WIDE 3-INPUT NOR GATE	AO23	2	
3-AND 2-WIDE 6-INPUT NOR GATE	AO26	4	
4-AND 2-WIDE 8-INPUT NOR GATE	AO28	5	
2-AND 4-WIDE 8-INPUT NOR GATE	AO48	5	
2-OR 2-WIDE 3-INPUT NAND GATE	ON23	2	
3-OR 2-WIDE 4-INPUT NAND GATE	ON14	2	
2-OR 2-WIDE 4-INPUT NAND GATE	ON24	2	
2-OR 3-WIDE 4-INPUT NAND GATE	ON34	2	
2-AND 2-OR 2-WIDE 4-INPUT NAND GATE	ON44	2	
2-OR 3-WIDE 6-INPUT NAND GATE	ON36	5	
2-OR 2-WIDE 3-INPUT ANND GATE	OA23	2	
3-OR 2-WIDE 6-INPUT NAND GATE	OA26	4	
4-OR 2-WIDE 8-INPUT NAND GATE	OA28	5	
2-OR 4-WIDE 8-INPUT NAND GATE	OA48	5	
INVERTERS/BUFFERS			
NORMAL INVERTER	IN1	1	
POWER INVERTER	IN2	1	
POWER INVERTER	IN4	2	
NORMAL BUFFER	BUF1	1	
FLIP-FLOPS			
LATCH	LF	4	
LATCH WITH RESET	LFR	5	
LATCH WITH SET	LFP	5	
D-FF	DF	6	
D-FF WITH RESET	DFR	7	
D-FF WITH SET	DFS	7	
D-FF WITH SET AND RESET	DFSR	8	
JK-FF WITH RESET	JKR	10	
JK-FF WITH SET AND RESET	JKSR	11	
ADDERS			
CARRY SAVE FULL ADDER	T183	9	
COMPARATORS			
4-BIT MAGNITUDE COMPARATOR	T085	39	
8-BIT MAGNITUDE COMPARATOR	T688	26	
COUNTERS			
SYNCHRONOUS 4-BIT BINARY UP COUNTER			
WITH RESET, LOAD AND ENABLE	A161	57	
SYNCHRONOUS 4-BIT BINARY UP COUNTER			
WITH RESET AND LOAD	T161E	51	
SYNCHRONOUS 2-BIT BINARY UP COUNTER			
WITH RESET, LOAD AND ENABLE	A161H	29	
SYNCHRONOUS 4-BIT BINARY UP COUNTER			
WITH RESET AND ENABLE	A161L	46	
SYNCHRONOUS 4-BIT BINARY UP COUNTER			
WITH RESET	A161LE	40	
SYNCHRONOUS 4-BIT BINARY UP COUNTER		-	
WITH LOAD AND ENABLE	A161R	52	
SYNCHRONOUS 4-BIT BINARY UP COUNTER			
WITH LOAD	T161RE	46	
FULLY SYNCHRONOUS 4-BIT BINARY UP			
COUNTER WITH RESET, LOAD AND ENABLE	A163	54	
FULLY SYNCHRONOUS 4-BIT BINARY UP	11105		
COUNTER WITH RESET AND LOAD	A163E	48	

Function	Cell Name	Gates
PRESETABLE 4-BIT BINARY UP		
COUNTER/LATCH WITH RESET AND LOAD	T177	39
PRESETABLE 2-BIT BINARY UP		01
COUNTER/LATCH WITH RESET AND LOAD	T177H	21
PRESETABLE 4-BIT BINARY UP COUNTER/LATCH WITH LOAD	T177R	38
PRESETABLE 4-BIT BINARY DOWN	11//K	30
COUNTER/LATCH WITH SET AND LOAD	T177V	39
PRESETABLE 2-BIT BINARY DOWN		
COUNTER/LATCH WITH SET AND LOAD	T177HV	20
PRESETABLE 4-BIT BINARY DOWN		
COUNTER/LATCH WITH LOAD	T177VR	38
SYNCHRONOUS 4-BIT UP/DOWN COUNTER		
WITH LOAD AND ENABLE	A191	70
SYNCHRONOUS 4-BIT UP/DOWN COUNTER	110105	
WITH RESET	A191CE	47
SYNCHRONOUS 4-BIT UP/DOWN COUNTER	A 101E	62
WITH LOAD SYNCHRONOUS 2-BIT UP/DOWN COUNTER	A191E	63
WITH LOAD AND ENABLE	A191H	35
SYNCHRONOUS 4-BIT UP/DOWN		
COUNTER WITH RESET	A191LE	51
SYNCHRONOUS 4-BIT DUAL CLOCK BINARY		
UP/DOWN COUNTER		
WITH RESET AND LOAD	A193	69
SYNCHRONOUS 4-BIT DUAL CLOCK BINARY		
UP/DOWN COUNTER WITH RESET	A193L	53
SYNCHRONOUS 2-BIT DUAL CLOCK BINARY		
UP/DOWN COUNTER		
WITH RESET AND LOAD	A193H	36
SYNCHRONOUS 2-BIT DUAL CLOCK BINARY	A 1001 II	07
UP/DOWN COUNTER WITH RESET DECADE COUNTER WITH RESET	A193HL A390	27 32
4-BIT BINARY UP COUNTER WITH RESET	T393	25
4-BIT BINARY DOWN COUNTER WITH SET	T393V	25
DECODERS/DEMULTIPLEXERS		
BCD-TO-DECIMAL DECODER	T042	29
3-LINE TO 8-LINE DECODER/	1012	
DEMULTIPLEXER WITH ENABLE G	A138G2	18
2-LINE TO 4-LINE DECODER/		
DEMULTIPLEXER WITH ENABLE G	A139	9
2-LINE TO 4-LINE DECODER/		
DEMULTIPLEXER	A139G	6
DFFS/LATCHES		
4-BIT LATCH WITH RESET	T116	17
QUADRUPLE DFF WITH RESET	T175	27
QUADRUPLE DFF WITH Q, XQ	T175R	22
QUADRUPLE DFF WITH Q	T175RX	22
OCTAL DFF WITH RESET	T175W	54
OCTAL DFF	T175WR	44
OCTAL D-TYPE TRANSPARENT LATCH WITH ENABLE	T373T	26
	15/31	20
SELECTORS/MULTIPLEXERS		
4-LINE TO 1-LINE DATA	T152	10
SELECTOR/MULTIPLEXER WITH STROBE G 4-LINE TO 1-LINE DATA	T153	12
SELECTOR/MULTIPLEXER	T153G	10
QUADRUPLE 2-LINE TO 1-LINE DATA	11000	10
SELECTOR/MULTIPLEXER WITH STROBE G	T157	13
QUADRUPLE 2-LINE TO 1-LINE DATA		10
SELECTOR/MULTIPLEXER	T175G	11
OCTAL 2-LINE TO 1-LINE DATA		
SELECTOR/MULTIPLEXER WITH STROBE G	T157W	25
OCTAL 2-LINE TO 1-LINE DATA		
SELECTOR/MULTIPLEXER	T157WG	21
SHIFT REGISTERS		
8-BIT PARALLEL-OUT SERIAL SHIFT REGISTER		
	T164	55
WITH RESET		
8-BIT SHIFT REGISTER WITH RESET, LOAD		
8-BIT SHIFT REGISTER WITH RESET, LOAD AND ENABLE	T166	65
8-BIT SHIFT REGISTER WITH RESET, LOAD	T166 T166H	65 34

268 SEMICUSTOM DESIGN GUIDE 1988

Internal Tristates

S-MOS supports the use of internal tristate buses with the following macro library:

Name	Function	Gates
BLT1	Bus Latch	1
BLT4	Quad Bus Latch	2
BLT8	Octal Bus Latch	3
TSB	Tristate Buffer	4
TSV	Tristate Inverting Buffer	5
T240	Octal Inverting Tristate Buffer	30
T240H	Quad Inverting Tristate Buffer	15

Name	Function	Gates
T244	Octal Tristate Buffer	26
T244H	Quad Tristate Buffer	13
T373	Octal Latch with Tristates	50
T373H	Quad Latch with Tristates	25
T374	Octal DFF with Tristates	72
T374H	Quad DFF with Tristates	36

Note: In order to insure design quality, S-MOS Systems requires the use of certain design patterns when using internal tristate cells. Please consult S-MOS Systems for more information(see back page for contact information).

Package Matrix

PACKAGE TYPE	NO.	SLA	SLA	SLA	SLA	SLA	SLA	SLA
	OF	827S	847S	872S	890S	8B3S	8F0S	8J3S
	PINS							
PLASTIC DIP	28	х	x	X				
	40	Х	X	X				
	42	Х	X	X				
PLASTIC SHRINK DIP	64	Х	X	X	Х	Х		
PLASTIC FLAT	44	Х	X					
FP-2	60	Х	X	X	х	X	in the second	-
FP-5	60	Х	X	X				
	80	Х	Х	X	Х	X	6	
	100	Х	X	X	Х	X	X	5.00
FP-8	120			X	Х	X	X	
	128		1. A. P.	X	Х	Х	X	
	144			X	Х	х	X	X
and the second	160		1.520		х	х	Х	x
FP-9	196		10,00			Х	Х	x
(under development)	230		The second				X	X
PLCC	44	Х	X					
	68	Х	X	X	Х	Х		1
	84	Х	X	X	Х	Х	Х	X
PLASTIC PGA	89	Х	X	X				
	132		X	X	Х	Х	X	
	176				Х	Х	Х	X
	208		1999				X	x
	240							X
CERAMIC PGA	132	Х	X	X	Х	Х	X	x
	176			1.1	Х	Х	Х	x
	208						x	x
	240			Contraction of				x

Process Technology

The SLA8000 Series is fabricated on our highly automated 6" fabrication line located in Fujimi, Japan. The process is similar to that used for our high-volume 256K SRAM which has been in production since 1986. N-channel length is 1.2 micron drawn (0.9 micron effective) and P-channel length is 1.4 micron drawn

(1.1 micron effective). M1 width is 1.7um and spacing is 1.8um. M2 width is 2.7um and spacing is 2.1um.

Propagation delay times

The propagation delay values printed in our cell libraries and used in simulation are derived from actual measurements of silicon, not spice simulations. The measured coefficient parameters for $V_{DD}=5V+,-5\%$ and Ta = 0° to 70°C (25°C typical) are:

	MIN	TYP	MAX
Voltage	0.96	1.0	1.07
Temperature	0.93	1.0	1.17
Process	0.88	1.0	1.12
Margin	0.96	1.0	1.05
Actual factor	0.75	1.0	1.50
Additional guardband	0.80	1.0	1.20
Approx. simulation/cell library fac	ctor 0.60	1.0	1.80

The additional guardband used by S-MOS virtually guarantees the silicon will meet your simulations.

Propagation delays of selected macros

BEST CASE	WORST CASE
Temperature = 0° C Ambient	Temperature = 70° C Ambient
Supply voltage = 5.25 V	Supply voltage = 4.75V
Process = best case	Process = worst case

Name	Function	From	То	Best o	case	Worst	case	Loads
				tplh	tphl	tplh	tphl	
NA2	2-INPUT NAND	IN	OUT	0.1	0.1	0.5	0.5	0
				.19	.22	.77	.84	1
				.28	.32	1.04	1.18	2
NO2	2-INPUT NOR	IN	OUT	0.2	0.1	0.9	0.4	0
				.64	.18	1.34	.63	1
				1.08	.26	1.78	.86	2
IN1	1 X INVERTER	IN	OUT	0.1	0.1	0.4	0.3	0
				1.00	.18	.67	.53	1
	and a state of			1.9	.26	.94	.76	2
IN4	4 X INVERTER	IN	OUT	0.1	0.1	0.3	0.2	0
				.13	.12	.39	.27	1
				.16	.14	.48	.34	2
DF	D FLIP FLOP	CLK	Q	1.3	1.4	3.7	4.0	0
				1.39	1.48	3.97	4.23	1
				1.48	1.56	4.24	4.46	2
IKB	INPUT CLOCK	IN	OUT	2.1	1.4	5.8	3.9	0
	BUFFER			2.3	1.5	6.5	4.5	10
				2.5	1.6	7.2	5.1	20
OB1	2mA OUTPUT	IN	PAD	1.68	2.09	4.78	5.80	10pF
	DRIVER			4.0	7.25	11.10	19.80	50pF
				6.9	13.70	19.00	37.30	100pF
OB3	6mA OUTPUT	IN	PAD	2.66	2.65	7.34	7.43	10pF
	DRIVER			3.30	4.45	9.10	12.35	50pF
				4.10	6.70	11.30	18.50	100pF

S-MOS Systems, Inc., 2460 North First Street, San Jose, CA 95131 (408) 922-0200 270 SEMICUSTOM DESIGN GUIDE 1988

Workstation Support

Schematic capture, electrical rule checking, design rule checking, simulation and timing verification are supported on Daisy, Mentor and Intergraph workstations. In addition, our proprietary LADS software, used with OrCAD or FutureNet, is available for IBM PCs and compatibles.

LADS includes ERC, DRC, logic simulation and timing verification up to 7000 gates in PCs with 640K of memory or up to 20,000 gates in PCs equipped with a ZAIAZ co-processor board.

Standard Cell Migration

The SLA8000 Series can be easily migrated to SSC3000 Series 1.2um standard cells. This is made possible by the identical processing and compatible design tools shared by the two design methodologies. As such, the gate array macro library is a subset of the standard cell macro library.

Megacells

Due to the channelless design of the SLA8000 Series, fully routed and characterized megacells can be implemented effectively along side of random logic. Megacells currently under development include microprocessors, peripheral interface devices and controllers.

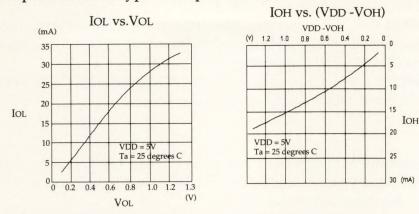
RAM And ROM Blocks

RAM and ROM may be implemented efficiently in small-to-medium sizes on chip. The following tables describe the available range and gate counts of popular configurations. When necessary, individual blocks may be combined to create larger sizes. Since RAM and ROM are routed as blocks, their gate count is subtracted from the total available gates in an array, not the usable gate count. The remaining number of usable gates is then recalculated from the remaining available gates.

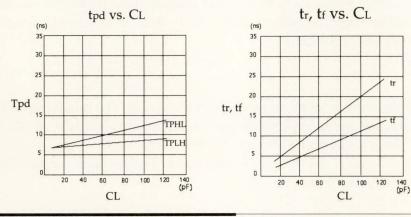
RAM	ROM
Words: 2 to 256	Words: 4 to 64
Bits/word: 1 to 32	Bits/word: 1 to 8
Max block size: 4096 bits	Max block size: 512 bits

Typical RAM configurations

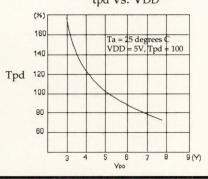
Words			Gates		
	1 Bit	4 Bits	8 Bits	9 Bits	16 Bits
16	177	361	593	651	1,057
32	276	652	1,706	1,182	1,924
64	475	1,159	2,043	2,239	3,659
128	862	2,122	3,802	4,222	7,090
256	1,637	4,049	7,265	8,069	13,697

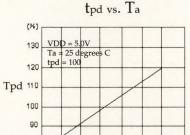

Typical ROM configurations

Words			Gates		
	1 Bit	2 Bits	4 Bits	6 Bits	8 Bits
16	38	48	68	88	108
32	74	92	128	164	200
64	134	168	236	304	372


S-MOS Systems, Inc., 2460 North First Street, San Jose, CA 95131 (408) 922-0200

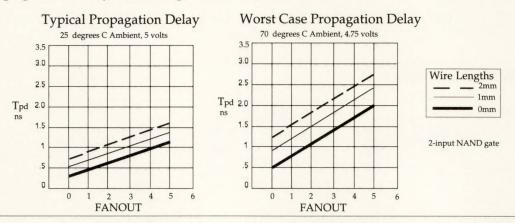
1988 SEMICUSTOM DESIGN GUIDE 271


Output Current (Type 2 Output Buffer)



Type 2 Output Buffer Delay Characteristics

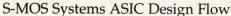
Propagation Delay Characteristics tpd vs. VDD

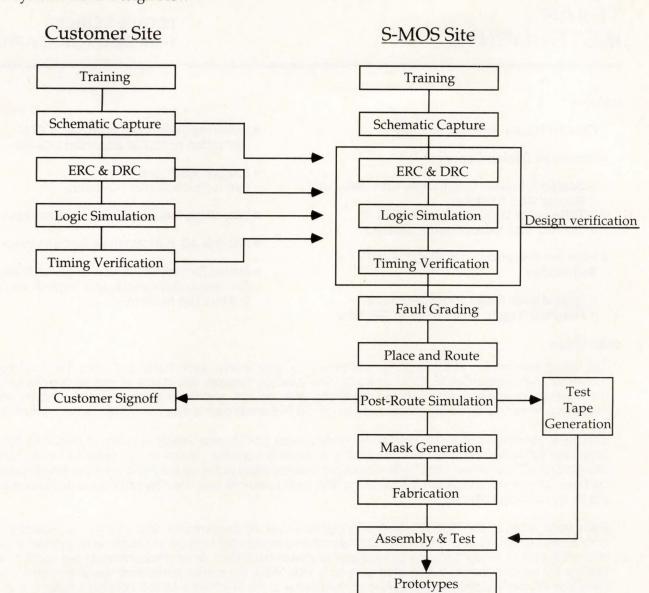

60 80

40

Ta

100(°C)


Propagation Delay Including Interconnect



80

-20 0 20

S-MOS Systems, Inc., 2460 North First Street, San Jose, CA 95131 (408) 922-0200 272 SEMICUSTOM DESIGN GUIDE 1988

S-MOS Customer Engineering

In order to help customers implement their designs in S-MOS ASICs, S-MOS offers training at its design centers and at customer sites when required.

When a design is started, an S-MOS engineer is assigned to the project and will remain with the project through its completion. Our engineers will work with the customer on design, software and other technical issues. When the design files are transferred to S-MOS, that same engineer will verify the design's integrity and prepare it for place and route.

S-MOS' Customer Engineering Group provides all technical customer-support services including:

- Pre-sale technical support
- Customer training
- Design assistance
- Workstation support
- Place-and-route

- Software documentation
- Simulation support
- Turnkey designs
- Design verification

S-MOS Systems, Incorporated 2460 North First Street San Jose, CA 95131-1002 408-922-0200 FAX 408-922-0238

S-MOS Systems, Inc. does not assume responsibility for use of any circuit described other than circuits entirely embodied in an S-MOS Systems, Inc. product.

S-MOS Systems, Inc. reserves the right to make changes in circuit design specifications and other information at any time without prior notice.

Copyright ©1988 S-MOS Systems, Inc. All Rights Reserved. Printed in U.S.A. August 1988

TEXAS INSTRUMENTS

TGC100 SERIES 1-μm CMOS GATE ARRAYS

features

- Fast Prototype Turnaround Time
- Extensive Design Support
 - Design Libraries Compatible with Daisy and Mentor CAE Systems
 - TI Regional ASIC Design Centers
 - TI ASIC Distributor Design Centers
- High Performance 1-µm EPIC[™] CMOS Technology
 - Typical Gate Delay 500ps (FO = 3)
 - Flip-Flop Toggle Rates of 95 to 208 MHz

description

- Six Arrays with Maximum Basic Cell Utilization to 16,758 Equivalent Gates
- Integral ESD- and Latch-Up-Protection Circuitry
- Low-Cost, Industry-Standard Packages
- Integral AC Performance Test Structure
- Macro Functions Include Register Files, Delay Elements, Oscillators, and High-Drive Output Buffers (up to 20 mA)

The Texas Instruments TGC100 Series comprises six gate arrays, each fabricated using TI's 1-micrometer advanced silicon-gate CMOS EPIC process. The process features two levels of copper-doped-aluminum metallization for interconnect. Silicided polysilicon gate, source, and drain elements further reduce internal resistance and enhance performance. N-channel and P-channel gate lengths are patterned at 1.0 micrometer.

The basic structure of the TGC100 Series 1-micrometer CMOS gate arrays consists of basic-cell columns separated by wiring channels with a perimeter of external interface macros configurable as inputs, outputs, bidirectional I/Os, or power pins. Each 4-transistor internal basic cell is equivalent to a 2-input NAND gate. The six base gate arrays are shown below, along with their basic-cell and bond-pad configurations and standard production package options.

Each base array in the TGC100 Series incorporates an AC-performance test structure embedded in an otherwise unused corner of the array. Although not user-accessible from the I/O bond pads, this test structure is activated by TI during the wafer-probe stage of device fabrication when measurements are made to verify that the AC performance of the finished gate array falls within the normal production range. For most applications, this AC performance verification, in conjunction with the standard 1-MHz functional testing, is sufficient to ensure correct device operation and performance.

library functions

The TGC100 Series gate array library includes basic gate and buffer macros and MSI-level macros. Of the 213 macros offered, 186 are hardwired and 27 are software macros. The hardwired macros provide a broad selection of predesigned, fully characterized functions. The software macros provide popular TTL/CMOS-type MSI functions that can be used as designed or modified at your workstation to suit your design requirements. Additional user-defined software macros can be created using the TGC100 library macros. Library release 2.0 contains the following classes of macros:

- 38 MSI Internal Software Macros
- 74 External Input, Output, and Bidirectional **Buffer Macros**
- 37 Internal Register, Flip-Flop, and Latch Macros
- 64 SSI Internal Gate and Bus Macros

A complete TGC100 Series Design Kit, available for the Daisy or Mentor CAE systems, includes the following: TGC100 Series Data Manual

CMOS Gate Array Design Manual

- Design Support Software User's Manual
 - TGC100 Series Design Library

The Design Kit is arranged to accommodate new material as it is issued.

recommended operating conditions

			MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	V
VIH	High-level input voltage†	TTL-compatible inputs	2			V
		CMOS-compatible inputs	0.7VCC			V
VIL	Low-level input voltage†	TTL-compatible inputs			0.8	V
		CMOS-compatible inputs	AND DINA	12.2015 - 502	0.2VCC	V
VI	Input voltage†		0		VCC	V
tt	Input transition (rise and fall ti	mes)†	0		100	ns
Vo	Output voltage‡		0		VCC	V
ЮН	High-level output current‡		As	s specified of	on	mA
IOL	Low-level output current‡			data sheets		110.
TA	Operating temperature range		0		70	°C

† Applies for external input and bidirectional input buffers.

‡ Applies for external bidirectional and output buffers.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETE	R	TEST CONDITIONS	MIN MAX	UNIT
	TGC103		350	
ICC Supply Current	TGC105	V _I = V _{CC} or 0 (See Note below)	550	μA
	TGC108		850	
	TGC112		See macro data sheets	
	TGC115		See macro data sheets	
	TGC118		See macro data sheets	

Note: For external inputs and bidirectional I/O buffers with pullup source $V_I = V_{CC}$ and for external inputs and bidirectional I/O buffers with pulldown source $V_I = 0$.

The remaining electrical and switching characteristics are specified on the individual macro data sheets.

mechanical data

Production quantities of the TGC100 family of fast prototype gate array designs are available in the industrystandard plastic packages shown below.

ARRAY ORGANIZATIONS AND PACKAGES

								PA	CKAG	E SEL	ECTIO	ON				
GATE	BASIC	CELLS	ELLS TOTAL		IP		PL	CC			QFP			PP	GA	
ARRAY	TOTAL	MAXIMUM USABLE	BOND PADS	28 PIN	40 PIN	28 PIN	44 PIN	68 PIN	84 PIN	120 PIN	132 PIN	160 PIN	120 PIN	144 PIN	180 PIN	208 PIN
TGC103	3,200	2,880	84	X	X	X	X	X	X							
TGC105	5,376	4,838	118	X	X		X	X	X							
TGC108	8,896	8,006	142	X	X		X	X	X	1						
TGC112	12,654	11,389	196						X	X	X	X	X	X	X	X
TGC115	15,580	14,022	216							X	X	X		X	X	X
TGC118	18,620	16,758	216							X	X	X		X	X	X

Prototypes are supplied in a socket/footprint-compatible ceramic package.

military applications

TI also offers gate array designs processed in compliance with MIL-STD-883, Method 5004/5005 or Method 5010. Production facilities are fully DESC and JAN certified.

FOR MORE INFORMATION ON THE TGC100 SERIES, PLEASE WRITE:

Texas Instruments Incorporated Department SRY113VG8 Dallas, Texas 75380-9066

Trademark of Texas Instruments Incorporated © 1988 Texas Instruments Incorporated

TEXAS INSTRUMENTS

TSC500 SERIES 1-µm CMOS STANDARD CELLS

features

- High-Performance 1-μm EPIC[™] CMOS Technology
 - Typical Gate Delay 490ps (FO = 3)
 - Flip-Flop Toggle Rates to 185 MHz
- Extensive Design Library (>350 Elements)
 SSI, MSI, and I/O Functions
 LSI/VLSI MegaModule[™] Building Blocks
- Through-Hole/Surface-Mount Packaging Offering (DIP/SOIC/PLCC/PGA/QFP)

- User-Configurable High-Density SRAM
- Extensive Design Support
 - Design Libraries Compatible with Daisy and Mentor CAE Systems
 - TI Regional ASIC Design Centers
 - Comprehensive Design Kit Support
- Specified Over Full Commercial and Military Temperature Range

description

The Texas Instruments TSC500 Series comprises an extensive offering of SSI, MSI, and I/O functions and a growing library of LSI/VLSI building blocks, each fabricated using TI's 1-micrometer advanced silicon-gate CMOS EPIC process. The process features two levels of copper-doped-aluminum metallization for interconnect. Silicided polysilicon gate, source, and drain elements further reduce internal resistance and enhance performance. N-channel and P-channel gate lengths are patterned at 1.0 micrometer.

library functions

The TSC500 Series cell library includes basic gate, buffer, and MSI-level macros. Of the 426 cells offered, 376 are hardwired and 50 are software macros. The hardwired macros provide a broad selection of predesigned, fully characterized functions. The software macros provide popular TTL/CMOS-type MSI functions that can be used as designed or modified at your workstation to suit your design requirements. Additional user-defined software macros can be created using the TSC500 Series library. Library release 1.0 contains the following classes of macros:

- 50 Internal MSI Software Macros
- 23 Internal MSI Scan Flip-Flops/Latches, Delay Elements, and Oscillator Macros
- 166 External Input, Output, and Bidirectional Buffer Cells
- 46 Internal Register, Flip-Flop, Counter, and Latch Macros
- 156 Internal SSI Gate, Bus Buffers, and Input/Output Terminators
- 22 Memory Functions (SRAM, FIFO, Register File)

A complete TSC500 Series Design Kit, available for the Daisy and Mentor CAE systems, includes the following:

- TSC500 Series Data Manual
- CMOS Standard Cell Design Manual
- Design Support Software User's Manual
- TSC500 Series Design Library

The Design Kit is arranged to accommodate new material as it is issued.

	STANDARD-CELL PACKAGE OPTIONS														
Туре						'	Numbe	r of Pin	S						
iype	16	20	24	28	40	44	48	68	84	100	120	132	144	180	208
DIP	С	С	С	C/M	C/M		C/M								
SOIC	С												1		
LCC				C/M		C/M		C/M	C/M						
QFP										C/M	С	М			
PGA								М	м	C/M	C/M	C/M	C/M	C/M	М

C = Commercial M = Military

military applications

TI also offers standard-cell designs processed in compliance with MIL-STD-883, Method 5004/5005 or Method 5010. Production facilities are fully DESC and JAN certified.

recommended operating conditions

			MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	V
VIH	High-level input voltage†	TTL-compatible inputs	2			V
		CMOS-compatible inputs	0.7VCC			V
VIL	Low-level input voltage†	TTL-compatible inputs		1	0.8	V
		CMOS-compatible inputs			0.2VCC	V
VI	Input voltage†		0		VCC	V
tt	Input transition (rise and fall time	es)†	0		100	ns
Vo	Output voltage‡		0		VCC	V
ЮН	High-level output current‡		A	s specified	on	mA
IOL	Low-level output current‡			data sheets	3	
TA	Operating temperature range	Military	- 55		125	°C
		Commercial	0		70	°C

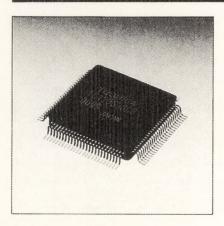
† Applies for external input and bidirectional input buffers.

‡ Applies for external bidirectional and output buffers.

FOR MORE INFORMATION ON THE TSC500 SERIES, PLEASE WRITE:

Texas Instruments Incorporated Department SRY103VG8 Dallas, Texas 75380-9066

[™] Trademark of Texas Instruments Incorporated © 1988 TI

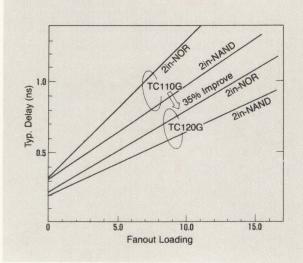

TOSHIBA

CMOS ASIC New Product Release TC120G SERIES GATE ARRAY

Toshiba Corporation has introduced a series of gate arrays that use a 1.0-micron CMOS process to reduce gate delays by 35%. Applications include consolidating high-speed circuits into a single package, especially in high-performance systems.

Toshiba will be accepting designs starting in April of this year.

1-Micron Process Cuts Delays of Toshiba Gate Arrays by 35%



The TC120G Series, which offers typical gate delays of 400 picoseconds, (note 1), is currently available in 5 master array sizes, with gate complexities ranging from 37,392 to 129,042 raw gates. By applying a variable channel width architecture, the devices use all of the area available on a silicon die, instead of grouping gates in areas separated by wire-routing tracks. As a result, silicon utilization is improved.

The TC120G is compatible with Toshiba's TC110G Series Arrays, which use a 1.5-micron CMOS process. The TC110G Series is available in 14 master arrays, from 3,498 to 129,042 raw gates.

Both TC120G and TC110G Series are supported by compatible computer aided design (CAD) tools. Toshiba's VL-CAD system has been designed for easy migration of TC110G designs to the TC120G technology.

Performance Advantage of TC120G over TC110G

Product Specifications

	TC120G series
Process technology	HC ² MOS Si-gate double layer metal
Frocess technology	1.0µm
Gate speed (inner gate, typ.)	0.4ns
Maximum toggle frequency	200MHz
Supply voltage	5V
Application	ECL

TC120G Series Gate Arrays

	Raw Gates	Usable ²⁾ Gates	Pads ³⁾	1/Os4)
TC120GC9	129,042	~ 50,000	368	256
TC120GA0	100,182	~ 40,000	326	256
TC120G75	74,970	~ 30,000	282	256
TC120G51	50,904	~ 20,000	234	226
TC120G38	37,932	~ 15,000	204	196

Notes: 1) 2 input NAND Gate with a fanout of 2 and 2mm of interconnect metal.

Assuming 40% gate utilization.
 Additional I/O pads may be configured as V_{DD}/V_{SS}.

4) Tester limitation (256 maximum I/O signals)

New Product Release TC12OG SERIES GATE ARRAY

Package Selections

Toshiba Original CAD System for ASIC's

VL-CAD contains layout software tools which were jointly developed by Toshiba and Tangent Systems Corporation, and are being applied to both TC110G and TC120G Series Gate Arrays.

VL-CAD Features

- Integrated Hierarchical Design System
- Logic Simulator (VL-CAD) + Layout (TLAY)*
- Toshiba ASIC Families (Gate Arrays,
- Standard Cells and Super Integrations)
- Maximum Circuit Size 60K Gates
- Compatible Languages (TDL, TSTL)
 Workstation Interface Capabilities
- Vorkstation Interface Capabilities Jointly developed by Toshiba and Tangent Systems Corporation.

TC110G and 120G Series Library

Macrocells

TC17G Series Compatible
 Performance Optimization (Standard/High Drive)

Macro Functions • Equivalent to 74xx Series

Metal Configurable Memory • Single/Triple Port RAM (Max. 4.5K) • ROM (Max. 16K)

Logic/Arithmetic Cells •ALU, CLA, MPY, Barrel Shifter, FIFO

2900 Bit Slice Compatible Cells

CPU Peripheral Cells

Part Number			TC120G	TC120G 51	TC120G	TC120G	20G TC120
Packag	<u>10</u>						
PGA		64	A	A			
		68	<u>A</u>	A	ļ		
		84	<u>A</u>	A	ļ		
		100	<u>A</u>	A		ļ	ļ
		120	<u>A</u>	A	ļ		
		135	A	A			ļ
		144	<u>A</u>	A			
		180	<u>A</u>	A		ļ	ļ
		224		A	ļ	<u>`</u>	ļ
Cavity Down PGA		95	P	P	P	ļ	ļ
		155	<u>P</u>	P	P	P	P
		223	D	D	D	D	D
		299			ļ	D	D
PLCC		44		ļ	L		
		68	D	P			L
		84	D	P			ļ
PFP	Square	µ44		L	L		L
		44			L		L
		60					
		100A1)				L	
		1001)	D	D			
		144	D	D			
		184		P			
	Rectangular	64					
		80					
		100					
CFP		1001)	Α	A			
		144	Α	Α	P	P	P
		184		P	P	P	P

.

Adaptable,

Check with Toshiba for

availability

Check with Toshiba for availability (Under

planning)

(Under development)

s: 1) Flat Package 100 pm is classified into 2 types determined by number of inner leads available: 100A-=84 inner leads. 100-100 inner leads.
2) Please refer to "Package Selector Guide" (Document I.D. SEMI-E-S 1001) for further information in detail

Design and specifications are subject to change without notice.

TOSHIBA AMERICA, INC.

1220 Midas Way, Sunnyvale, CA 94086 (408) 733-3223

AREA SALES OFFICES: CENTRAL AREA, Toshiba America, Inc., (312) 945-1500; EASTERN AREA, Toshiba America, Inc., (617) 272-4352; NORTHWESTERN AREA, Toshiba America, Inc., (408) 737-9844; SOUTHWESTERN REGION, Toshiba America, Inc., (714) 455-2000; SOUTH CENTRAL REGION, Toshiba America, Inc., (214) 480-0470; SOUTHEASTERN REGION, Toshiba America, Inc., (404) 368-0203; MAJOR ACCOUNT OFFICE, Fishkill, New York, Toshiba America, Inc., (914) 896-6500; BOCA RATON, FLORIDA, Toshiba America, Inc., (305) 394-3004. REPRESENTATIVE OFFICES: ALABAMA, Montgomery Marketing, Inc., (215) 340-0498; AIIZONA, Summit Sales, (62) 998-4850; ARKANSAS, MLI-REP Associates, (512) 346-6331; CALIFORNIA (IA: 400-0470; SOUTHEASTERN REGION, Toshiba America, Inc., (141) 4957-3367; (San Diego County) Eagle Technical Sales, (619) 743-6550; COLORADO, Straube Associates Mountain States, Inc., (303) 426-0890; CONNECTICUT, Datcom, Inc., (203) 288-7005; FLORIDA, Sales Engineering Concepts, (813) 823-6221; (JO5) 426-4601; (305) 682-4800; GEORGIA, Montgomery Marketing, Inc., (404) 447-6124; IDAHO, Components West, (509) 922-2412; ILLINOIS, Carlson Electronics Sales, (312) 956-4201, WX Kurus, (312) 957-3402, WX Kurus, (312) 956-4302, WX Kurus, (313) 943-3940, MINHRED AREI, (312) 947-41229, WX Kurus, (314) 946-477; MVTUKY, Lesile M. Devoe Company, (317) 842-3245; UMX Kurus, MX Kurus, MX Kurus, MX Kurus, (314) 946-477; MVTA, ACATA, MORTDENE, KX, KU

Enter the Knowledge-based

Cross the threshold into the Knowledge-based Engineering Environment (KE²), a world created by NCR specially for ASIC designers.

Here, the normal conventions of ASIC design are superseded.

Previously unthinkable deadlines are now routine.

Increased levels of quality are matched by decreased cost per gate.

Yesterday's integration impossibilities are mere keystrokes away.

And your control is absolute.

In ASICs, knowledge is power and with KE² tools and libraries, you command the knowledge amassed by hundreds of top ASIC designers over the past decade.

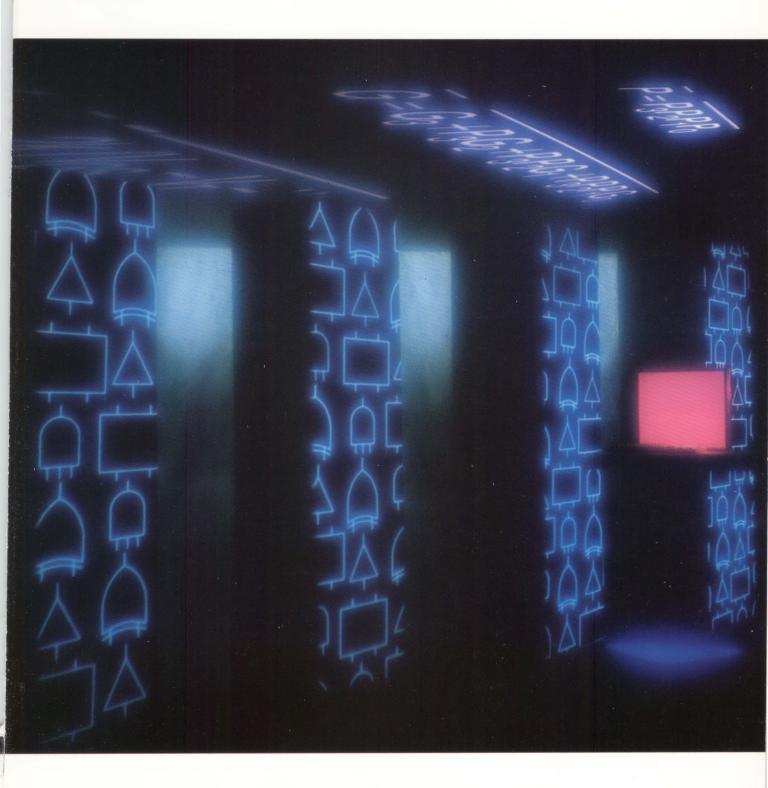
For example, our Design Synthesis[™] tool lets you design entire blocks without getting bogged down in implementation details. The system automatically generates correct and efficient logic specifications from your high-level language descriptions.

Design Advisor™ is an expert system that puts you in charge of a "team" of top ASIC design, test and production professionals that we "captured" in software. At your request, this "team" analyzes the design and reports back to you with comments and suggestions for your review.

ViTat[™], NCR's Static Timing Analysis Tool, compresses the time needed to analyze high performance designs by up to two months over pattern-driven simulations.

And there's much more, including function compilers, extensive libraries of digital/analog cells, MPU cores and supercells and the complete NCR ViSys[™] tool set.

Leave behind the ASIC design systems that restrain your capabilities and tether your imagination. Enter a world where there is more time, more power, more options. Where all your capabilities are multiplied.


A world all the more incredible because it's not an illusion, it's real.

For additional information on the Knowledgebased Engineering Environment, call the NCR Hotline **1-800-334-5454**. Or write, NCR Microelectronics, 2001 Danfield Court, Ft. Collins, CO 80525.

Engineering Environment.[™]

Creating value

CIRCLE NUMBER 28

Trust S-MOS. Our ASICs won't leave you out in the woods.

Instead, we'll help you along the path to higher productivity.

Through high-volume, high-yield technology, our manufacturing affiliate Seiko Epson Corp. produces millions of ASIC devices each month.

S-MOS backs up that production with a dependable design program that provides back annotation simulation and fault grades every chip to help your designs succeed.

To keep costs low, there are no CPU simulation charges.

Our full line of ASICs are migratable from gate arrays into standard cells and beyond to our Compiled Cell Custom cell-based designs.

Our ASIC solutions span from 513 to 38,550 gates with technologies down to 1.2 micron (drawn).

To save you time, we can use your existing arrays as future building blocks.

Most ASIC products are available in plastic quad flat packs, pin grid arrays, plastic leaded chip carriers, small outline packages and plastic dual-in-line packages.

CIRCLE NUMBER 29

So if you're looking for an ASIC program that will get you out of the woods, call us.

(408) 922-0200.

S-MOS Systems, Inc. 2460 North First Street San Jose, CA 95131-1002