
00 SN74AS888
SN74AS890

~ Bit-Slice
l:.IJ
~
"1

i P~ocessor
~

User's Guide

• .,,
TEXAS

INSTRUMENTS

SDBU001A

SN74AS888/SN74AS890
Bit-Slice Processor

User's Guide

TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (Tl) reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. Tl advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.

Tl warrants performance of its semiconductor products to current
specifications in accordance with Tl's standard warranty. Testing and
other quality control techniques are utilized to the extent Tl deems
such testing necessary to support this warranty. Unless mandated
by government requirements, specific testing of all parameters of each
device is not necessarily performed.

In the absence of written agreement to the contrary, Tl assumes no
liability for Tl applications assistance, customer's product design, or
infringement of patents or copyrights of third parties by or arising from
use of semiconductor devices described herein. Nor does Tl warrant
or represent that any license, either express or implied, is granted
under any patent right, copyright, or other intellectual property right
of Tl covering or relating to any combination, machine, or process in
which such semiconductor devices might be or are used.

First printed April 1985

Revised August 1985

Copyright © 1985, Texas Instruments Incorporated

TABLE OF CONTENTS

SECTION PAGE

1 INTRODUCTION
1.1 Understanding Bit-Slice Architecture . 1-1
1.2 The 'AS888 8-Bit Processor Slice'.................................. 1-1
1.3 The ~S890 Microsequencer . 1-3
1.4 Support Tools . 1-3
1.5 Design Support . 1-3
1.6 Design Expertise . 1-4

2 'AS888 8-BIT PROCESSOR SLICE 2-1
2.1 Architecture . 2-1

2.1.1 Data Flow... 2-1
2.1.2 Architectural Elements . 2-1

2.1.2.1 Three-Port Register File . 2-2
2.1.2.2 R and S Multiplexers . 2-2
2.1.2.3 DA and DB Buses . 2-5
2.1.2.4 ALU . 2-5
2.1.2.5 ALU and MO Shifters . 2-5
2.1.2.6 MO Register 2-5
2.1.2.7 Y Bus . 2-6
2.1.2.8 Status . 2-6
2.1.2.9 Package Position Pin . 2-6
2.1.2.10 Special Shift Function Pin 2-6
2.1.2.11 Divide/BCD Flip-Flops . 2-7

2.2 Instruction Set Overview . 2-7
2.2.1 Arithmetic/Logic Instructions with Shifts . 2-8
2.2.2 Other Arithmetic Instructions . 2-11
2.2.3 Data Conversion Instructions . 2-11
2.2.4 Bit and Byte Instructions . 2-13
2.2.5 Other Instructions . 2-13

2.3 Multiplication and Division . 2-14
2.3.1 Division . 2-14

2.3.1.1 Signed Division 2-15
2.3.1.2 Unsigned Division 2-16

2.3.2 Multiplication 2-17
2.3.2.1 Signed Multiplication 2-18
2.3.2.2 Unsigned Multiplication 2-18
2.3.2.3 Mixed Multiplication 2-18

2.4 Decimal Arithmetic and Data Converson . 2-19
2.4.1 Excess-6 to Excess-3 . 2-19
2.4.2 Binary to Excess-3 . 2-20
2.4.3 BCD to Binary . 2-20
2.4.4 Excess-3 to USASCll 2-20

2.5 Instruction Set . 2-21
ABS . 2-22
ADD.. 2-24
ADDI.. 2-26
AND.. 2-28
ANDNR... 2-30
BADO... 2-32
BAND... 2-34

iii

BCDBIN... 2-36
BINCNS. 2-38
BINCS . 2-40
BINEX3 . 2-42
BOR.. 2-44
BSUBR.. 2-46
BSUBS. 2-48
BXOR . 2-50
CLR . 2-52
DIVRF. 2-53
ON ORM. 2-54
EX3BC-. 2-56
EX3C . 2-58
INCNR . 2-60
INCNS . 2-62
INCR ; . 2-64
INCS. 2-66
LOADMO. 2-68
MOSLC . 2-70
MOSLL . 2-72
MOSRA... 2-74
MOSRL... 2-76
NANO . 2-78
NOP . 2-80
NOR . 2-82
OR. 2-84
PASS . 2-86
SDIVI . 2-88
SDIVIN. 2-89
SDIVIS . 2-90
SDIVIT . 2-91
SDIVO . 2-92
SDIVOF . 2-93
SEL. 2-94
SETO. 2-96
SET1 . 2-98
SLA... 2-100
SLAD... 2-102
SLC... 2-104
SLCD . 2-106
SMTC... 2-108
SMULi . 2-110
SMULT.. .. 2-111
SNORM... 2-112
SRA.. 2-114
SRAD... 2-116
SRC . 2-118
SRCD... 2-120
SRL... 2-122
SRLD . 2-124
SUBI ... ·................. 2-126
SUBR... 2-128
SUBS... 2-130

iv

TBO... 2-132
TB1 . 2-134
UDIVI... 2-136
UDIVIS.. 2-137
UDIVIT.. 2-138
UMULI.. 2-139
XOR.. 2-140

3 'AS890 MICROSEQUENCER . 3-1
3.1 Overview . 3-1
3.2 Architecture . 3-3

3.2.1 Y Output Multiplexer 3-5
3.2.2 Microprogram Counter . 3-5
3.2.3 Register/Counters . 3-5
3.2.4 Stack . 3-6

3.2.4.1 Stack Pointer . 3-6
3.2.4.2 Read Pointer . 3-6
3.2.4.3 Stack Warning/Read Error Pin . 3-6

3.2.5 Interrupt Return Register . 3-6
3.3 Microprogramming the 'AS890 . 3-7

3.3.1 Address Selection . 3-7
3.3.2 Stack Controls . 3-8
3.3.3 Register Controls . 3-9
3.3.4 Continue/Repeat Instructions . 3-10
3.3.5 Branch Instructions . 3-11
3.3.6 Conditional Branch Instructions . 3-11
3.3.7 Loop Instructions . 3-13
3.3.8 Subroutine Calls . 3-16
3.3.9 Subroutine Returns . 3-16
3.3.10 Reset . 3-16
3.3.11 Clear Pointers . 3-17
3.3.12 Read Stack . 3-18
3.3.13 Interrupts... 3-18

3.4 Examples . 3-18
3.4.1 Required Set-Up . 3-18

Clear Pointers . 3-19
Continue . 3-20
Branch . 3-22
Conditional Branch . 3-24
Loop . 3-26
Jump to Subroutine . 3-32
Return from Subroutine . 3-34
Reset . 3-36

4 32-BIT CPU DESIGN METHODOLOGY 4-1
4.1 Designing a 32-Bit System . 4-2

4.1.1 Construction of the ALU . 4-2
4.1.2 Construction of the CCU . 4-3

4.2 Tracing through a 32-Bit Computer . 4-6
4.3 Defining the Macrocode Instruction Format . 4-11
4.4 Tracing a Macrocode Instruction . 4-11
4.5 System Enhancements . 4-12
4.6 Timing and System Throughput . 4-14

4.6.1 Fetch Analysis . 4-14
4.6.2 Multiplication Analysis . 4-14

v

5 FLOATING-POINT SYSTEM DESIGN . 5-1
5.1 Choose a Floating-Point Number System . 5-2
5.2 Choose an Algorithm for Sin(x) 5-2
5.3 Make ~S888 Register Assignments 5-3
5.4 Substitute Registers for Variables in the Algorithm . 5-4
5.5 Decompose Steps in the Algorithm into Simple Operations 5-4
5.6 Translate into ~S888/890 Instructions; Identify Subroutines 5-5
5.7 Expand Subroutines into ~S888/890 Operations . 5-6

5.7.1 Floating-Point Multiplication ; 5-7
5.7.2 Floating-Point Addition . 5-9

5.8 Evaluate Tradeoffs and Block Diagram the Hardware . 5-11
5.9 Define Microinstruction Fields During Detailed Hardware Design 5-13
5.10 Assemble the Microprogram . 5-13

LIST OF APPENDICES

APPENDIX PAGE

A 'AS888 and 'AS890 Pin Descriptions and Assignments . A-1

LIST OF ILLUSTRATIONS

FIGURE PAGE

1-1 Bit-Slice System Block Diagram 1-2
2-1 Internal Data Flow for 'AS888 . 2-2
2-2 Functional Block Diagram of 'AS888 . 2-3
2-3 Essential 'AS888 Interconnections . 2-4
2-4 'AS888 Package Connections for Bit and Byte Instructions . 2-12
3-1 Typical Microprogrammed Processor . 3-2
3-2 Functional Block Diagram for 'AS890 . 3-4
4-1 System Design Approach . 4-1
4-2 CCU Block Diagram ~ . 4-4
4-3 ALU Block Diagram . 4-5
4-4 Cascaded 'AS888 Packages . 4-7
5-1 Block Diagram of Floating Point Processor . 5-12
A1 ~S888 Pin Assignments.. A-2
A2 ~S890 Pin Assignments . A-4

vi

LIST OF TABLES

TABLE

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
5-1
A1
A2

ALU Source Operand Selects .. .
Destination Operand Select/Enables .. .
Required 'AS888 Shift Pin Connections (External)
Combined '.AS888 Arithmetic-Logical Shift Operations
Other '.AS888 Instructions•.............................
'.AS888 Instruction Set
Shift Definitions .. .
Signed Division Algorithm .. .
Unsigned Division Algorithm .. .
Excess-3 Representation .. .
Response to Control Inputs .. .
Y Output Control
Stack Control
Register Control .. .
Continue/Repeat Encodings
Branch Encodings .. .
Conditional Branch Encodings
Decrement and Branch on Non-Zero Encodings
Call Encodings without Register Decrements
Call Encodings with Register Decrements
Reset Encoding
Return Encodings without Register Decrements
Return Encodings with Register Decrements
Microcode Definition .. .
Functional Listing of Fetch .. .
Assembler Listing of Fetch .. .
Microcode Listing of Fetch .. .
Possible Instruction Formats
Functional Listing of Multiply .. .
Assembler Code of Multiply
Microcode Listing of Multiply .. .
Fetch Timing Comparison
Multiply Timing Comparison .. .
Floating Point Sin(x) Microprogram .. .
'.AS888 Pin Descriptions
'AS890 Pin Descriptions

PAGE

2-3
2-5
2-6
2-7
2-8
2-9

2-11
2-16
2-17
2-19
3-3
3-8
3-9
3-9

3-10
3-12
3-14
3-15
3-16
3-17
3-17
3-17
3-17
4-8
4-9
4-9

4-10
4-11
4-12
4-13
4-15
4-16
4-16
5-14

A3
AS

vii

1 Introduction
With the introduction of the 'AS888, Texas Instruments Incorporated offers an LSI
building block that can be cascaded to form an ALU of any word width with a
significant increase in efficiency and speed over older 4-bit-slice systems. The 8-bit
slice and its companion microsequencer, the 'AS890, increase processing throughput
per unit area to an extent never before realized in bit-slice systems.

These innovations are the result of a new Texas Instruments technology called
IMPACT. The new processing technique reduced feature size to two microns, enabling
the development of about six to eight times the number of gates possible with Schottky
and low-power Schottky TTL. The increased gate density permitted expansion of the
slice to an 8-bit width and the development of special on-board circuitry for decoding
high-level operations into microoperations. The result is a flexible, multi-function chip
that provides rapid multiplication and division; supports sign-magnitude, BCD,
excess-3, single- or double-precision arithmetic; and offers additional specialized
features such as operations on selected bits or bytes.

This section of the User's Guide introduces the 'AS888 and 'AS890 and outlines the
support tools available for system development. Section 2 looks at the architecture and
instruction set of the 'AS888. The microsequencer is the subject of section 3, beginning
with a functional description of the chip and looking at its flexible instruction set.
Possible applications for the 'AS888/'AS890 are explored in sections 4 and 5. The first
approaches high-speed CPU design using the 8-bit slice; the second develops a design
for a floating point processor.

1. 1 Understanding Bit-Slice Architecture

Figure 1.1 illustrates a simple bit-slice system. The three basic components are an
arithmetic/logic unit, a sequencer and a memory. The program that resides in this
memory is commonly called the microprogram, while the memory is referred to as
a micromemory or control store. The ALU performs all the required operations on data
brought in from the external environment (main memory or peripherals, for example),
while the sequencer is dedicated to generating the next address to the micromemory.
The ALU and sequencer operate in parallel so that data processing and next-address
generation are carried out concurrently.

The microprogram instruction, or microinstruction, consists of control information to
the ALU and sequencer. Unlike a microprocessor opcode, the microinstruction consists
of a number of fields of code that directly access and control the ALU, registers, bus
transceivers, multiplexers and other system components. This high degree of
parallelism offers greater speed and flexibility than a typical microprocessor, although
the microinstruction serves the same purpose as a microprocessor instruction: it
specifies control information by which the user is able to implement desired data
processing operations in a desired sequence. The microinstruction cycle is
synchronized to a system clock by latching the instruction in the microinstruction,
or pipeline, register once for each clock cycle. Status results are collected in a status
register which the sequencer samples to produce conditional branches within the
microprogram.

1 . 2 The 'AS888 8-bit processor slice

The 'AS888 is engineered to support high-speed, high-level operations. The slice,
described in detail in section 2, contains an 8-bit ALU, a 16-word by 8-bit register
file, two shifters to support double-precision arithmetic and three independent,
bidirectional data ports.

1-1

.....
I

l'J

AS890
MICROSEQUENCER MICROADDRESS BUS

TESTED STATUS

MICROPROGRAM
MEMORY

MICROINSTRUCTION
REGISTER

MICROINSTRUCTION BUS

STATUS
MUX

SYSTEM INTERFACE

AS888
BIT-SLICE ALU

STATUS

Cl)

::>
le(
I
C/)

::>
...I
<C

Figure 1-1. Bit-Slice System Block Diagram

Cl)

::>
le(
I
C/)

~
w
l-
g!
Cl)

The slice's thirteen basic arithmetic and logic instructions can be combined with a
single-or double-precision shift operation in one instruction cycle. Other instructions
support data conversions, bit and byte operations and other specialized functions.

The chip's configuration enhances processing throughout in arithmetic and radix
conversion. Internal generation and testing of status results in fast processing of
division and multiplication algorithms. This decision logic is transparent to the user; the
reduced overhead assures shorter microprograms, reduced hardware complexity and
shorter software development time.

1.3 'AS890 Microsequencer

To complement these innovations in bit-slice processor technology, Texas Instruments
also developed the 'AS890. Implemented with Advanced Schottky and Schottky
transistor logic, the microsequencer performs double-nested loops, multiway
branching, do-while loops, compound if ... then ... else expressions, interrupt processing
and other complex instructions. Fast memory devices and the high-speed
microsequencer make possible to construct from a handful of components a bit-slice
system executing high-level operations.

Like the 'AS888, the 'AS890 is expandable. The 9-word stack can be increased
externally using a stack status pin. Two register/counters can be read or loaded
externally to permit operations such as array indexing while looping in a microprogram.

Diagnostics are also supported. Conditions that cause stack overflow can be traced
by reading the stack, reducing software development time and monitoring runtime
errors.

1.4 Support Tools

Texas Instruments provides a low-cost, real-time development and evaluation module
(EVM) to aid initial hardware and software design. The 16-bit, self-contained system
provides a quick and easy way to test and debug simple microcode, allowing software
and hardware evaluation at or near rated execution speeds.

The EVM incorporates a single-chip 8-bit microcomputer to handle user interface and
communications. An EPROM-based monitor program gives the user complete control
over all important functions, registers and buses of the target system, as well as the
high-speed writable control store. Further information is given in the document, 74AS
EVM-1 Bit-Slice Evaluation System Users Guide.

1 . 5 Design Support

Texas Instruments Regional Technology Centers, staffed with systems-oriented
engineers, offer a training course to assist users of Tl's LSI products and their
application to digital processor systems. Specific attention is given to the
understanding and generation of design techniques which implement efficient
algorithms designed to match high-performance hardware capabilities with desired
performance levels.

Information on courses for bit-slice design using the 'AS888 and 'AS890 can be
obtained from the following Regional Technology Centers:

1-3

Atlanta
Texas Instruments Incorporated
3300 N.E. Expressway, Building 8
Atlanta, GA 30341
404/452-4682

Boston
Texas Instruments Incorporated
400-2 Totten Pond Rd.
Waltham, MA 02154
617/890-6671

Northern California
Texas Instruments Incorporated
5353 Betsy Ross Drive
Santa Clara, CA 95054
408/748-2220

Chicago
Texas Instruments Incorporated
51 5 Algonquin
Arlington Heights, IL 60005
312/640-2909

Dallas
Texas Instruments Incorporated
10001 E. Campbell Road
Richardson, TX 75081
214/680-5066

Southern California
Texas Instruments Incorporated
17891 Cartwright Drive
Irvine, CA 92714
714/660-8140

The VLSI Systems Engineering Group maintains a computer bulletin board to assist
bit-slice users. The board can be accessed by dialing 214/995-4569.

1.6 Design Expertise

1-4

Texas Instruments can provide in-depth technical design assistance through
consultations with contract design services. Contact your local Field Sales Engineer
for current information or contact VLSI Systems Engineering at 214/995-4720.

2 'AS888 8-Bit Processor Slice

The 'AS888 is an 8-bit ALU/register slice designed for use in high-performance digital
computers or controllers. Slices can be cascaded to any word width 16 bits or greater.

Key elements include a 16-word by 8-bit register file and a high-speed ALU. Three
independent 4-bit port addresses allow a two-operand fetch and an operand write
to be performed at the register file simultaneously. The 8-bit ALU can perform seven
arithmetic and six logical instructions, followed by conditional arithmetic, logical or
circular shifts. The result can be returned to the register file or output through the
Y port.

The ALU also supports a wide range of arithmetic and logical functions, such as
multiplication, division, normalization, add and subtract immediate, cyclic redundancy
character accumulation, and data conversions such as BCD, excess-3, USASCll and
sign magnitude. Double precision operations can be implemented using a multiplier
quotient register and shifter designed to operate alone or in parallel with the register
file and ALU shifter.

An internal ALU bypass path increases the speeds of multiply, divide and normalize
instructions by eliminating many common types of test and branch instructions. The
path is also used by 'AS888 instructions that permit bits and bytes to be manipulated.

2.1 Architecture

2. 1. 1 Data Flow

Data flow through the 'AS888 is shown in Figure 2-1. Data enters the chip from three
primary sources: the bidirectional Y port, which is used in an input mode to pass data
to the register file; and the bidirectional DA and DB ports, used to input data to the
Rand S buses serving the ALU. Data enters the ALU through two multiplexers: R MUX,
which selects the R bus operand from the DA port or the register file addressed by
A3-AO; and S MUX, which selects data from the DB port, the register file addressed
by B3-BO, or the multiplier-quotient (MQ) register.

The result of the ALU operation is passed on the F bus to the ALU shifter, where it
can be shifted or passed without shift to the Y bus for output from the 'AS888 and/or
storage in the internal register file. The MQ shifter, which operates in parallel with
the ALU shifter, can be loaded from the ALU via the F bus, or the MQ register. The
MQ shift result is passed to the MQ register, where it can be routed through the S MUX
to the ALU.

Data can be output from three bidirectional ports: the Y port and the DA and DB ports.
DA and DB can be used to read ALU input data on the R and S buses for debug or
other special purposes.

2.1.2 Architectural Elements

Figure 2-2 is a functional diagram of the 'AS888. Key elements of the slice are
discussed below.

2-1

DA INPUT

16x8
REGISTER FILE

y

Figure 2-1. Internal Data Flow for 'AS888

2. 1.2. 1 Three-Port Register File

Sixteen 8-bit registers are accessed by three address ports. C3-CO address the
destination register during write operations; A3-AO and B3-BO address any two
registers during read operations. Data is written into the register file when WE is low
and a low-tochigh clock transition occurs. Under certain conditions, the address buses
are used to furnish immediate data to the ALU: A3-AO to provide constant data for
the add and subtract immediate instructions; A3-AO and C3-CO to provide masks for
set, reset and test bit operations.

2. 1. 2. 2 R and S Multiplexers

2-2

ALU inputs are selected by the R and S multiplexers. Controls which affect operand
selection for instructions other than those using constants or masks are shown in
Table 2-1.

A3-AO

DA7-DAO

OEA

EA

GIN o--
P/OVRO--
Cn+s o-

ZEROE:i-

4

8

16X8
REGISTER FILE

Sl07 n----11--------1

a101e1-~-+~~~~~-====t===~..J

PPPO--

SSFCl--
8

4

4

8

17-101:>-7i
OEVt::>--+-----+----c~/ DIVIDE/ o----

BCD FF'S

SELV o-------' V7-VO

Figure 2-2. Functional Block Diagram of 'AS888

Table 2-1. ALU Source Operand Selects

R-BUS S-BUS

OPERAND OPERAND RESULT

C3-CO

WE
CK
83-BO

OEB

087-DBO

EBO
EB1

Cn

SIOO

QIOO

SELECT SELECT DESTINATION+-- SOURCE OPERAND

EA EB1-EBO

0 R bus+-- Register File addressed by A3-AO

1 R bus+-- DA port

0 0 S bus+-- Register File addressed by 83-BO

0 1 S bus+-- MQ Register

1 0 S bus+-- DB Port

1 1 S bus+-- MQ Register

2-3

"13
~

... ...-Cout

Vee

ppplY
ZERO 55F

5107 5100

r-----1 0107 0100

Cn+8

--IP Cn

--1 G

......-

u -I
-I

7 \
CONDITIONAL

SHIFT

PPP
loPEN

PPP ~EN

ZERO 55F --ZERO 55F
5107 5100 5107 5100

0107 0100 0107 0100

Cn+8 Cn+8 u l-1 p Cn --! p Cn

G --! G

Figure 2-3. Essential 'AS888 Interconnections

PPP f"l
~ ZERO 55F

5107 5100

0107 OIOO ...,_._
Cn+8

--IP Cn ' Cin

--I G

2. 1.2.3 DA and DB Buses

2.1.2.4 ALU

The DA and DB buses can be used to read S bus or R bus inputs from the register
file or to load the S bus and/or R bus directly from an external source. See Tables 2-1
and 2-2 for the selects and enables which affect DA and DB.

Table 2-2. Destination Operand Select/Enables

REGISTER DA DB

FILE Y BUS PORT PORT

WRITE OUTPUT Y BUS OUTPUT OUTPUT
RESULT

ENABLE ENABLE SELECT ENABLE ENABLE
DESTINATION ~SOURCE OPERAND

WE OEY SELY OEA OEB

0 0 x Y port and Register File~ ALU Shifter

1 0 x Y port~ ALU Shifter

0 1 0 Register File~ ALU Shifter

0 1 1 Register File~ Y port

1 DA port~ R bus

0 DA port~ Hi-Z

1 DB port~ S bus

0 DB port~ Hi-Z

The ALU can perform seven arithmetic and six logical instructions on two 8-bit
operands. It also supports multiplication, division, normalization, bit and byte
operations and data conversion, including excess-3 BCD arithmetic. The 'AS888
instruction set is discussed in section 2.2 and presented in detail in section 2.5.

2.1.2.5 ALU and MO Shifters

The ALU and MO shifters are used in all of the shift, multiply, divide, and normalize
functions. They can be used exclusively for single precision or concurrently for double
precision shifts. Shifts can be made conditional, using the Special Shift Function (SSF)
pin.

The shifters of adjacent slices are connected by four bidirectional pins: SIOO and SI07,
0100 and 0107. These pins allow serial data to be shifted between packages and
also serve to transfer data between the MO and ALU shifters for double precision
and other operations. Figure 2~3 shows four interconnected packages. The shift pins
on all cascaded 'AS888s must be wired as shown in the figure and in Table 2-3.

Status connections will vary according to system design. The system shown uses
ripple carry. For large word widths (four or more slices), a look-ahead carry generator
may be desired. This can be implemented using the generate (G) and propagate (P)
signals. A schematic using carry look-ahead can be found in Section 4.

2. 1.2.6 MO Register

The MO register and the MO shifter function as a shift register and can be loaded
from the ALU, register file or external data buses. The register has specific functions
in multiplication, division, and data conversion and can also be used as a temporary
storage register.

2-5

2. 1.2. 7 Y Bus

2.1.2.8 Status

Table 2-3. Required 'AS888 Shift Pin Connections (External)

INTERMEDIATE PACKAGES END PACKAGES

5107 to 5100 of next most significant package Sl07 on most significant package to SIOO of
least significant package

0107 to QIOO of next most significant package 0107 on most significant package to 0100 of
least significant package

5100 to 5107 of next least significant package

0100 to 0107 of next least significant package

The Y bus contains the output of the ALU shifter if OEY is low and can be used as
an input if OEY is high. SEL Y controls the flow of data to the register file. If SEL Y
is low, ALU shifter output will be passed to the register file; if SEL Y is high, the Y
port becomes an input to the register file.

Four status signals are generated by the most significant slice: overflow (OVR), sign
(N), carry-out (Cn+8) and ZERO. Cn+8 indicates carry-out of the ALU, regardless
of shift. OVR, N and ZERO indicate status from the ALU shifter. ZERO must be wire
ANDed as shown in Figure 2-3.

2.1.2.9 Package Position Pin

The package position pin (PPP) defines the position of the slice in the system.
Intermediate positions are selected by leaving the pin open. Tying the pin to Vee
makes the slice the most significant package; tying the pin to GND makes it the least
significant.

2. 1.2. 10 Special Shift Function Pin

2-6

Conditional shifting algorithms may be implemented using the SSF pin under hardware
or firmware control. SSF is a bidirectional pin and is used in certain 'AS888 instructions
to transmit information between slices, eliminating many types of test and branch
instructions. During multiplication, for example, the least significant bit of the multiplier
determines whether an add/shift or shift operation is to be performed. In this case,
the SSF pin of the least significant package is used as an output pin, while all other
packages become input pins. Similarly, during normalization, the required operation
depends on whether the two most significant bits of the operand are the same or
different. Here, the SSF pin of the most significant package becomes an output pin
while those on all other packages become input pins.

During instructions that force the SSF pin during execution, SSF must be left in the
high-Z state, as shown in Figure 2-3. Use of SSF is discussed for individual instructions
in section 2.5.

2. 1. 2. 11 Divide/BCD Flip-Flops

Internal multiply/divide flip-flops are used by certain multiply and divide instructions
to maintain status between instructions. Internal excess-3 BCD flip-flops preserve
the carry from each nibble in excess-3 BCD operations. The BCD flip-flops are affected
by all instructions except NOP and are cleared when a CLR instruction is executed.
These flip-flops are not directly accessible by the user.

2.2 Instruction Set Overview

Bits 17-10 are used as instruction inputs to the slice. Instructions are summarized in
Tables 2-4 and 2-5. Table 2-6 lists all instructions, divided into five groups, with their
opcodes and mnemonics. Group 1, a set of ALU arithmetic and logic operations, can
be combined with the user-selected shift operations in Group 2 in one instruction cycle.
The other groups contain instructions for bit and byte operations, division and
multiplication, data conversion, and other functions such as sorting, normalization
and polynomial code accumulation.

A brief overview of the instruction set follows. Details about individual instructions,
including operand, status and control information, can be found in section 2.5.

Table 2-4. Combined 'AS888 Arithmetic-Logical/Shift Operations

GROUP 1 GROUP 2

Arithmetic Shift ALU Shift MO Register

Add R + S + Cn Arithmetic Right Arithmetic Right

Subtract R + S + Cn Arithmetic Left Logical Right

R+S+Cn Logical Right Logical Left

Increment R + Cn Circular Left Circular Left

S + Cn Circular Right

R + Cn Load MO Register

S + Cn Shift ALU and MO Register Load MQ with ALU

Logical RANDS Arithmetic Right

RANDS Arithmetic Left Pass ALU Result Unshifted

R ORS Logical Right Pass ALU to specified output

R XOR S Circular Left destination without shift

R NANO S Circular Right

R NOR S

2-7

Table 2-5. Other 'AS888 Instructions

GROUPS 3-5

Arithmetic Operations Bit Operations Data Conversion

Add Immediate Set Bit Absolute Value

Subtract Immediate Reset Bit Sign Magnitude/Two's Complement

Signed Divide Test Bit (One) Single Length Normalize

Signed Divide Initialize Test Bit (Zero) Double Length Normalize
Signed Divide Overflow Check BCD to Binary

Signed Divide Start Byte Operations Binary to Excess-3

Signed Divide Iterate Add R to S Excess-3 Byte Correction

Signed Divide Terminate Subtract S from R Excess-3 Word Correction

Signed Divide Quotient Fix Subtract R from S
Divide Remainder Fix Increment S Other

Unsigned Divide Increment Negative S Select Sor R
Unsigned Divide Start XOR Rand S

Unsigned Divide Iterate AND Rand S
Unsigned Divide Terminate ORR and S

Divide Remainder Fix
Multiply

Signed Multiply Iterate

Signed M!lltiply Terminate
Unsigned Multiply Iterate

2.2.1 Arithmetic/Logic Instructions with Shifts

2-8

The seven Group 1 arithmetic instructions operate on data from the R and/or S
multiplexers and the carry-in. Carry-out is evaluated after ALU operation; other status
pins are evaluated after the accompanying shift operation. Group 1 logic instructions
do not use carry-in; carry-out is forced to zero.

Fourteen single- and double-precision shifts can be specified, or the ALU result can
be passed unshifted to the MO shifter or to the specified output destination by using
the LOADMO or PASS instructions. Table 2-7 summarizes possible shift instructions.
When using the shift registers for double-precision operations, the least significant
half should be placed in the MO register and the most significant half in the register
file for passage to the ALU shifter.

All shift operations require that cascaded packages be wired as shown in Figure 2-3.

Table 2-6. 'AS888 Instruction Set

GROUP 1 INSTRUCTIONS

INSTRUCTION BITS (13-10)
MNEMONIC FUNCTION

HEX CODE

0 Used to access Group 4 instructions
1 ADD R + S + Cn
2 SUBR R + s + Cn
3 SUBS R+S+Cn
4 INCS S + Cn
5 INCNS S + Cn
6 INCR R + Cn
7 INCNR R + Cn
8 Used to access Group 3 instructions

9 XOR R XOR S

A AND RANDS

B OR R ORS

c NANO R NANO S

D NOR R NOR S

E ANDNR RANDS

F Used to access Group 5 instructions

GROUP 2 INSTRUCTIONS
INSTRUCTION BITS (17-14)

MNEMONIC FUNCTION
HEX CODE

0 SRA Arithmetic Right Single
1 SAAD Arithmetic Right Double
2 SRL Logical Right Single
3 SRLD Logical Right Double
4 SLA Arithmetic Left Single
5 SLAD Arithmetic Left Double
6 SLC Circular Left Single
7 SLCD Circular Left Double

8 SRC Circular Right Single

9 SRCD Circular Right Double
A MOSRA Pass (Y +--Fl and Arithmetic Right MO
B MOSRL Pass (Y +--Fl and Logical Right MO
c MOSLL Pass (Y +--Fl and Logical Left MO
D MOS LC Pass (Y +-- F) and Circular Left MO
E LOADMO Pass (Y +--Fl and Load MO (MO+- Fl
F PASS Pass(V+-F)

2-9

Table 2-6. 'AS888 Instruction Set (Continued)

GROUP 3 INSTRUCTIONS

INSTRUCTION BITS (17-10)
MNEMONIC FUNCTION

HEX CODE

OB SET1 Set Bit

1B SETO Reset Bit

2B TB1 Test Bit (ONE)

3B TBO Test Bit (ZERO)

4B ABS Absolute Value

5B SMTC Sign Magnitude/Two's Complement

6B ADDI Add Immediate
7B SUBI Subtract Immediate
BB BADO Byte Add R to S

9B BSUBS Byte Subtract S from R

AB BSUBR Byte Subtract R from S

BB BINCS Byte Increment S

CB BINCNS Byte Increment Negative S
DB BXOR Byte XOR R and S

EB BAND Byte AND R and S

FB BOR Byte OR R and S

GROUP 4 INSTRUCTIONS

00 Reserved

10 SEL Select SIR

20 SNORM Single Length Normalize

30 DNORM Double Length Normalize

40 DIVRF Divide Remainder Fix
50 SDIVQF Signed Divide Quotient Fix

60 SMULi Signed Multiply Iterate

70 SM ULT Signed Multiply Terminate

BO SDIVIN Signed Divide Initialize

90 SDIVIS Signed Divide Start
AO SDIVI Signed Divide Iterate

BO UDIVIS Unsigned Divide Start

co UDIVI Unsigned Divide Iterate

DO UMULI Unsigned Multiply Iterate

EO SDIVIT Signed Divide Terminate
FO UDIVIT Unsigned Divide Terminate

GROUP 5 INSTRUCTIONS

OF CLR Clear

1F CLR Clear

2F CLR Clear

3F CLR Clear

4F CLR Clear

5F CLR Clear
6F CLR Clear
7F BC DB IN BCD to Binary

BF EX3BC Excess-3 Byte Correction

9F EX3C Excess-3 Word Correction

AF SDIVO Signed Divide Overflow Test

BF CLR Clear
CF CLR Clear

OF BINEX3 Binary to Excess-3

EF CLR Clear

FF NOP No Operation

2-10

Table 2-7. Shift Definitions

SHIFT TYPE NOTES

Left Moves a bit one position towards the most significant bit

Right Moves a bit one position towards the least significant bit

Arithmetic right Retains the sign

Arithmetic left May lose the sign bit if an overflow occurs. A zero is filled into the

least significant bit unless the bit is set externally

Circular right Fills the least significant bit in the most significant bit position

Circular left Fills the most significant bit in the least significant bit position

Logical right Fills a zero in the most significant bit position unless the bit is set

externally

Logical left Fills a zero in the least significant bit position unless the bit is set

externally

2.2.2 Other Arithmetic Instructions

The' ASSSS supports two immediate arithmetic operations. ADDI and SUBI (Group 3)
add or subtract a constant between the values of 0 and 1 5 from an operand on the
S bus. The constant value is specified in bits A3-AO.

Twelve Group 4 instructions support serial division and multiplication. Signed, unsigned
and mixed multiplication are implemented using three instructions: SMULi, which
performs a signed times unsigned iteration; SMULT, which provides negative weighting
of the sign bit of a negative multiplier in signed multiplication; and UMULI, which
performs an unsigned multiplication iteration. Algorithms using these instructions are
given in section 2.3.2 and include: signed multiplication, which performs an SN+ 2
clock two's complement multiplication; unsigned multiplication, which produces an
unsigned times unsigned product in SN+ 2 clocks; and mixed multiplication which
multiplies a signed multiplicand by an unsigned multiplier to produce a signed result
in SN+ 2 clocks, where N is the number of cascaded packages.

Instructions that support division include start, iterate and terminate instructions for
unsigned division routines (UDIVIS, UDIVI and UDIVIT); initialize, start, iterate and
terminate instructions for signed division (SDIVIN, SDIVIS, SDIVI and SDIVIT); and
correction instructions for these routines (DIVRF and SDIVQF). A Group 5 instruction,
SDIVO, is available for optional overflow testing. Algorithms for signed and unsigned
division are given in section 2.3.1. These use a nonrestoring technique to divide a
16N-bit integer dividend by an S-bit integer divisor to produce an SN-bit integer quotient
and remainder.

2.2.3 Data Conversion Instructions

Conversion of binary data to one's and two's complement can be implemented using
the INCNR instruction (Group 1). SMTC (Group 3) permits conversion from two's
complement representation to sign magnitude representation, or vice versa. Two's
complement numbers can be converted to their positive value, using ABS (Group 3).

SNORM and DNORM (Group 4) provide for normalization of signed, single- and double
precision data. The operand is placed in the MO register and shifted toward the most
significant bit until the two most significant bits are of opposite value. Zeros are shifted
into the least significant bit. SNORM allows the number of shifts to be counted and
stored in one of the register files to provide the exponent.

2-11

~
~,

Cout •I

BYTE3 BvTE2 BVTE1

BYTE IN5TRUCTION~-..---r---------1~--+------+---+--------

PPP'of;EN PPP OPEN PPP

I~
ZERO SSF ZERO S5F ZERO 55F ZERO

Si07 5100 5107 5100 5107 5100 5107 5100
Qi07aioo 0107 QIOO 0100 0107 0100

I I ICn+a Cn+a Cn+a Cn+a
p Cn p Cn p Cn p Cnl
G G G G

CONDITIONAL ___ _
ENABLE

Figure 2-4. • AS888 Package Connections for Bit and Byte Instructions

BYTEO

I I I (Cjn

Data stored in binary-coded decimal form can be converted to binary using BCDBIN
(Group 5). A routine for this conversion, which accompanies the discussion of BCDBIN
in section 2.5, allows the user to convert an N-digit BCD number to a 4N~bit binary
number in 4N + 8 clock cycles.

BINEX3, EX3BC and EX3C assist binary to excess-3 conversion. Using BINEX3, an
N-bit binary number can be converted to an N/4-digit excess-3 number in 2N + 3 clocks;
N is the number of cascaded packages. For an algorithm, see the BINEX3 entry in
section 2.5.

2.2.4 Bit and Byte Instructions

Four Group 3 instructions allow the user to test or set selected bits within a byte.
SET1 and SETO force selected bits of a selected byte (or bytes) to one and zero,
respectively. TB1 and TBO test selected bits of a selected byte (or bytes) for ones
and zeros. The bits to be set or tested are specified by an 8-bit mask formed by the
concatenation of register file address ports C3-CO and A3-AO. The register file
addressed by B3-BO is used as the source and destination for the test bit instructions
and as the destination operand for the set bit instructions. Bytes to be operated on
are selected by forcing SIOO low.

Individual bytes of data can also be manipulated using eight Group 3 byte
arithmetic/logic instructions. Bytes can be added, subtracted, incremented, ORed,
ANDed and exclusive ORed. Like the bit instructions, bytes are selected by forcing
SIOO low, but multiple bytes can be operated on only if they are adjacent to one
another; at least one byte must be non-selected.

To implement bit and byte instructions, tri-state drivers must be connected to the
slices, as shown in Figure 2.4.

2.2.5 Other Instructions

SEL (Group 4) selects one of the ALU's two operands, depending on the state of the
SSF pin. This instruction could be used in sort routines to select the larger or smaller
of two operands by performing a subtraction and sending the status result to SSF.

CLR (Group 5) forces the ALU output to zero and clears the internal BCD flip-flops
used in excess-3 BCD operations. NOP forces the ALU output to zero, but does not
affect the flip-flops.

2-13

2.3 Divison and Multiplication

2.3.1 Division

2-14

Ten 'AS888 instructions support binary division of signed or unsigned integers:

Instruction Code
(17-10)
(hex)

BO
co
FO
80
AF
90
AO
EO
40
50

Instruction

Unsigned Divide Start (UDIVIS),
Unsigned Divide Iterate (UDIVI)
Unsigned Divide Terminate (UDIVIT)
Signed Divide Initialize (SDIVIN)
Signed Divide Overflow Test (SDIVO)
Signed Divide Start (SDIVIS)
Signed Divide Iterate (SDIVI)
Signed Divide Terminate (SDIVIT)
Divide Remainder Fix (DIVRF)
Signed Divide Quotient Fix (SDIVQF)

These are designed for use with an efficient division algorithm known as nonrestoring
division:

1. Subtract the divisor from the dividend.
2. If the result is positive, then

a. Set the quotient bit
b. Shift the result
c. Go to Step 1.

3. If the result is negative, then
a. Clear the quotient bit
b. Shift the result
c. Add the divisor to the dividend
d. Go to Step 2.

The iteration proceeds until the desired number of quotient bits is obtained. Whenever
a result is negative, the dividend must be restored by the amount subtracted. Since
another shift and subtract must be performed anyway, the restore, shift and subtract
can be combined efficiently into a single shift and add operation. These are equivalent,
since restore, shift and subtract are identical to add, multiply by two and subtract,
which is identical to a single addition.

The division instructions preclude the need to test and branch in the microprogram;
whether addition or subtraction is to be carried out is decided by an internal flag which
indicates whether or not the previous operation gave a negative result.

Overflow will occur during division whenever the divisor is zero or greater than the
dividend. Overflow detection is also built into the division instructions and does not
require special test and branch or normalizing instructions in the microprogram.

The following algorithms for signed and unsigned division produce an 8N-bit integer
quotient and remainder, given a 16N-bit integer dividend and an 8N-bit integer divisor,
where N is the number of cascaded packages.

All algorithms begin with a LOADMQ instruction. This must be implemented even if the
proper value is already in the MO register. The LOADMQ instruction initializes internal
flip-flops used by the multiplication and division routines.

2. 3. 1. 1 Signed Division

LOADMQ LSHDIV

SDIVIN DIVSOR, DIVMSH, REM

SDIVO DIVSOR, REM

SDIVIS DIVSOR, REM, REM

REPEAT 8N - 2 TIMES:
SDIVI DIVSOR, REM, REM

(END REPEAT)

SDIVIT DIVSOR, REM, REM

DIVRF DIVSOR, REM, REM

SDIVQF DIVSOR, MQ

Load MO register with the least significant
half of the dividend.

Shift dividend and store sign.
R bus = Divisor
S bus = Most significant half of dividend

Optional test for overflow (may be omitted if
OVR pin is ignored; WE must be high to
avoid writing back to the register file if used).

R bus = Divisor
S bus = Result of SDIVIN

Calculate difference between divisor and
most significant half of the dividend to
compute first quotient bit.

R bus Divisor
S bus = Result of SDIVIN

Calculate difference between divisor and
most significant half of the dividend to
compute subsequent quotient bits.

R bus Divisor
S bus = Result of SDIVIS (or SDIVI)

Generate last quotient bit. Test for remainder
equal to zero.

R bus = Divisor
S bus = Result of SDIVI

Correct remainder if needed.
R bus = Divisor
S bus = Result of SDIVIT

Correct quotient if needed. Test for overflow.
R bus = Divisor
S bus = MQ register

The remainder is correct at the end of the DIVRF instruction. The quotient is correct
after the SDIVQF instruction.

The quotient is stored in the MQ register; the remainder is stored in REM. Inputs,
outputs and number of cycles required for this algorithm are shown in Table 2.8.

2-15

Table 2-8. Signed Division Algorithm

OP
MNEMONIC

CLOCK INPUT INPUT OUTPUT

CODE CYCLES SPORT R PORT YPORT

E4 LOADMQ 1 Dividend (LS Half) - Dividend (LS Half)

80 SDIVIN 1 Dividend (MS Half) Divisor Remainder (N)

AF SDIVO 1 Remainder (N) Divisor Test Result

90 SDIVIS 1 Remainder (N) Divisor Remainder (N)

AO SDIVI SN- 2* Remainder (N) Divisor Remainder (N)

EO SDIVIT 1 Remainder (N) Divisor Remainder (Unfixed)

40 DIVRF 1 Remainder (Unfixed) Divisor Remainder

50 SDIVQF 1 MQ Register Divisor Quotient

* N = Number of cascaded packages.

2. 3. 1. 2 Unsigned Division

LOADMO LSHDIV Load MO with least significant half of
dividend.

2-16

UDIVIS DIVSOR, MSHDIV, REM

REPEAT 8N-1 TIMES:
UDIVI DIVSOR, REM, REM

(END REPEAT)

UDIVIT DIVSOR, REM, REM

DIVRF DIVSOR, REM, REM

Begin iterate procedure; test for quotient
overflow and division by zero.

R bus Divisor
S bus = Most significant half of dividend.

Generates one quotient bit through iterative
subtract/shift or add/shift operations of the
divisor and dividend.

R bus Divisor
S bus = Result of UDIVIS (or UDIVI)

Generate last quotient bit.
R bus = Divisor
S bus = Result of UDIVI

Correct the remainder.
R bus Divisor
S bus = Result of UDIVIT

The remainder is correct following the DIVRF instruction. The quotient is stored in
the MO register at the completion of the routine and does not require correction.

Inputs, outputs and number of cycles required for this algorithm are shown in
Table 2.9.

Table 2-9. Unsigned Division Algorithm

OP
MNEMONIC

CLOCK INPUT INPUT OUTPUT

CODE CYCLES SPORT R PORT Y PORT

E4 LOADMQ 1 Dividend (LS Half) - Dividend (LS Half)

BO UDIVIS 1 Dividend (MS Half) Divisor Remainder (N)

co UDIVI SN - 1* Remainder (N) Divisor Remainder (N)

FO UDIVIT 1 Remainder (N) Divisor Remainder (Unfixed)

40 DIVRF 1 Remainder (Unfixed) Divisor Remainder

* N = Number of cascaded packages.

2.3.2 Multiplication

The ALU performs three types of N by N multiplication by repeated addition: signed
times signed, unsigned times unsigned, and mixed (signed times unsigned). Each
produces a 2N-bit result, where N is the number of cascaded 'AS888 packages.

All three types of multiplication proceed by the following recursion:

P(J + 1) = 2[P(J) + Multiplicand x M(8N-J)J

where

P(J + 1) = partial product at iteration number J + 1;
J = 0 to SN - 1, depending on iteration number.

(N = 2 for a 16 by 16 multiplication);
2 = some type of shift (unique to multiplication instructions);

P(J) = partial product at iteration number J;
M(8N - J) = mode bit, depending on multiplication type;

N = number of 'AS888 packages that are cascaded.

Multiplication instructions are listed below, followed by algorithms for signed, unsigned
and mixed multiplication.

Instruction Code
(17-10)
(hex)
60
70
DO

Instruction

Signed Multiply Iterate (SMULi)
Signed Multiply Terminate (SMUL T)
Unsigned Multiply Iterate (UMULI)

2-17

2.3.2. 1 Signed Multiplication

Signed multiplication performs an 8N + 2 clock, two's complement multiplication.

XOR ACC, ACC, ACC

LOADMO MUL

REPEAT 8N -1 TIMES:

Zero register to be used for accumulator

Load MO with multiplier

SMULi, MUL T, ACC, ACC Perform a signed times signed iteration.

(END REPEAT)

SMULT MULT, ACC, ACC

R bus Multiplicand
S bus = Accumulator

Perform a signed times signed iteration.
R bus = Multiplicand
S bus = Accumulator

The accumulator now contains the 8N most significant bits of the product, and the
MO the 8N least significant bits.

2. 3. 2. 2 Unsigned Multiplication

Unsigned multiplication produces an unsigned times unsigned product in 8N + 2 clocks.

XOR ACC, ACC, ACC

LOADMO MUL

REPEAT 8N TIMES:
UMULI MULT, ACC, ACC

(END REPEAT)

Zero the register to be used for accumulator.

Load MO register with multiplier.

Perform an unsigned multiplication iteration.
R bus Multiplicand
S bus = Accumulator

The accumulator now contains the 8N most significant bits of the product. The MO
register contains the 8N least significant bits.

2. 3. 2. 3 Mixed Multiplication

2-18

Mixed multiplication computes a signed multiplicand times an unsigned multiplier,
producing a signed result in 8N + 2 clocks.

XOR ACC, ACC, ACC

LOADMO MUL

REPEAT 8N TIMES:

SMULi MULT, ACC, ACC

(END REPEAT)

Zero the register to be used for accumulator.

Load MO with unsigned multiplier.

Perform a signed times signed iteration.
R bus Multiplicand
S bus = Accumulator

The accumulator now contains the 8N most significant bits of the product. The MO
register contains the 8N least significant bits.

2.4 Decimal Arithmetic and Data Conversion

Excess-3 is a binary decimal code in which each digit (0-9) is represented by adding
three to its NBCD (natural binary coded decimal) representation, as shown in
Table 2.10. Excess-3 code has the useful property that it allows decimal arithmetic
to be carried out in binary hardware. Carries from one digit to another during addition
in BCD occur when the sum of the two digits plus the carry-in is greater than or equal
to ten. If both numbers are excess-3, the sum will be excess-6, which will produce
the proper carries. Therefore, every addition or subtraction operation may use the
binary adder.

Table 2-10. Excess-3 Representation

DECIMAL NBCD EXCESS-3

0 0000 0011

0001 0100

2 0010 0101

3 0011 0110

4 0100 0111

5 0101 1000

6 0110 1001

7 0111 1010

8 1000 1011

9 1001 1100

2.4.1 Excess-6 to Excess-3

To convert the result from excess-6 to excess-3, one must consider two cases
resulting from a BCD digit add: one where a carry-out is produced, and one where
a carry-out is not produced. If a carry-out is not produced, three must be subtracted
from the resulting digit. If a carry is produced, the digit is correct as a BCD number.
For example, if BCD 5 is added to BCD 6, the excess-3 result would be 8 + 9 = 1
(with a carry). A carry rolls the number through the illegal BCD representations into
a correct BCD representation. A binary 3 must be added to digit positions that produce
a carry-out to correct the result to an excess-3 representation.

Every addition and subtraction instruction stores the carry generated from each 4-bit
digit location for use by the excess-3 correction functions. These correction
instructions (EX3BC for byte corrections and EX3C for word corrections) must be
executed in the clock cycle immediately after the addition or subtraction operation.

Signed numbers may be represented in ten's complement form by complementing
the excess-3 number. An example is given with the BINEX3 instruction in section 2.5.
Complements of excess-3 numbers may be generated by subtracting the excess-3
number from an excess-3 zero followed by an excess-3 correct (EX3C).

2.4.2 Binary to Excess-3

Binary numbers can be converted to excess-3 representation using the BINEX3
instruction. An algorithm for this conversion accompanies the discussion of BINEX3
in section 2.5.

2-19

2.4.3 BCD to Binary

Binary decimal code can be coverted to binary using BCDBIN. For an algorithm, see
BCDBIN in section 2.5.

2.4.4 Excess-3 to USASCll

2-20

Input/output devices or files represent numbers differently than high-speed central
processing units. 1/0 devices handle all alphanumeric data similarly. CPUs handle more
numeric data than alphabetic data and store numeric data in packed form to minimize
calculation throughput and reduce memory requirements.

To represent the amount 1096, the 1/0 device would handle the four USASCll
characters ("1 ", "O", "9" and "6") separately, requiring four bytes of storage. In
packed BCD, the number could be stored in two bytes of data as 1096 (0001 0000,
1001 0110). The 'AS888 can be programmed to perform data format conversions
such as excess-3 BCD to USASCll.

An algorithm to convert a packed word of excess-3 BCD to two unpacked words of
USASCll code is given below.

ALGORITHM:
Main 1 READ NUM

Main 2 XOR OFFSET, OFFSET,
OFFSET

Main 3 SET1 OFFSET, Mask(2D),
OFFSET MSH, LSH

Main 4 MOVE NUM, TEMP1,
JSR UNPACK

Main 5 MOVE TEMP1, TEMP2
Main 6 ADD NUM, NUM, NUM,

SLC
Main 7 ADD NUM, NUM, NUM,

SLC
Main 8 ADD NUM, NUM, NUM,

SLC
Main 9 ADD NUM, NUM,

NUM(O), SLC, JSR
(UNPACK)

Main 10 STORE TEMP2
Main 11 STORE TEMP1
Unpack 1 SETO, TEMP1, Mask(FF),

MSH
Unpack 2 ADD TEMP1, TEMP1,

TEMP3, SLC
Unpack 3 ADD TEMP3, TEMP3,

TEMP3, SLC
Unpack 4 OR TEMP1, TEMP3,

TEMP1
Unpack 5 SETO TEMP1, Mask(FO),

LSH, MSH
Unpack 6 ADD TEMP1, OFFSET,

TEMP1, RTS

Read packed excess-3 number (1 096) into
NUM.
Clear register to hold offset constant
2D2D (Hex) to convert excess-3 numbers
to USASCll.
Store 2D (Hex) in both bytes of offset.

Copy NUM into TEMP1 to set up
subroutine parameters; call Unpack
procedure.
Store TEMP1 in TEMP2.
Rotate NUM two places.

Rotate NUM two places.

Rotate NUM two places.

Rotate NUM two places; call Unpack
procedure.

Store two USASCll characters in TEMP2.
Store two USASCll characters in TEMP1.
Clear upper byte of TEMP1, leaving
OC09 (Hex).
Rotate TEMP1 two places; Store result in
TEMP3.
Rotate TEMP3 two places.

OR TEMP1 and TEMP2; Store result
(0CD9 Hex) in TEMP1.
Clear most significant four bits in each
byte leaving OC09 (Hex).
Add 2D2D (Hex) to TEMP1 to produce
3936 (Hex), the USASCll representation of
96. Return to Main 5.

2.5 Instruction Set

The' AS888's instruction set is presented in alphabetical order on the following pages.
The discussion of each instruction includes a functional description, list of possible
operands, data flow schematic and notes on status and control bits affected by the
instruction. Microcoded examples or algorithms are also shown.

Mnemonics and op codes are given at the top of each page. An asterisk (*) in the
left side of an op code box means that an op code can be selected from the Group 2
instructions on page 2-9; an asterisk in the right side indicates a Group 1 instruction.

2-21

ABS Absolute Value 14181

FUNCTION

Computes the absolute value of two's complement data
on the S bus.

DATA FLOW

Cn

DESCRIPTION

REGISTER
FILE

y

C3-CO

B3-BO

Two's complement data on the S bus is converted to its
absolute value. The carry must be set by the user for
proper conversion. ABS causes S + Cn to be computed;
the state of the sign bit determines whether S or S + Cn
will be selected as the result. SSF is used to transmit the
sign of S to each slice.

2-22

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

Available S Bus Source Operands

RF (83-80) DB Port MO Register

• • •
Available Destination Operands

RF (C3-CO) RF (83-80) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

A3-AO

C3-CO Mask

Shift Operations

ALU MO

None None

SSF No Carries result of sign bit test from
MSP.

SIOO No Inactive
SI07 No Inactive
0100 No Inactive
0107 No Inactive

Cn Yes Should be programmed high for
proper conversion.

Status Signals

ZERO
N
OVR

1 if result = 0
1 if MSB (input) = 1
1 if input of most-significant package is 8016
and inputs in all other packages are 0016.
1 ifs= 0

14181 Absolute Value ABS

EXAMPLES (assume a 24-bit cascaded system)

Convert the two's complement number in register 1 to its positive value and store the result in register 4.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-BO EA EB1-EBO C3-CO WE SELY OEY Cn

0100 1000 xx xx 0001 x 00 0100 0 0 1 1

Example 1: Assume register file 1 holds F6084016·

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 1111 0110
I I 1101 1000

I I
0100 0000 s~RF(1)

Most Next Most Least
Significant Significant Significant

Package Package Package

Destination 0000 1001
I I

00100111
I I

1100 0000 RF(4)~S + C0

Example 2: Assume register file 1 holds 0927C015.

Source 0000 1001
I I

0010 0111 I I
1100 0000 s~RF(1)

Destination 0000 1001
I I

0010 0111 I I
1100 0000 RF(4)~S

2-23

ADD Add with Carry (R + S + Cn)

FUNCTION

Adds data on the Rand~ buses to the carry-in.

DATA FLOW

A3-AO

Cn

DESCRIPTION

REGISTER
FILE

R + S + Cn

y

C3-CO

83-BO

Data on the R and S buses is added with carry. The sum
appears at the ALU and MO shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-24

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

• •
Available S Bus Source Operands

RF (83-80) DB Port MQ Register

• • •

A3-AO

C3-CO Mask

Shift Operations Available Destination Operands

RF (C3-CO) RF (83-80) Y Port ALU MQ

• • • •
Control/Data Signals

User
Signal Programmable Use

SSF No Affect shift instructions programmed
in bits 17-14 of instruction field.

5100 No
5107 No
QIOO No
0107 No

Cn Yes Increments sum if set to one.

Status Signalst

ZERO 1 if result = 0
N 1 if MSB = 1
OVR 1 if signed arithmetic overflow
Cn+B 1 if carry-out = 1

t Cn+B is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

Add with Carry (R + S + Cn) ADD

EXAMPLE (assumes a 24-bit cascaded system)

Add data in register 1 to data on the DB bus with carry-in and pass the result to the MO register.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-BO EA EB1-EBO C3-CO WE SELY OEY Cn

1110 0001 0001 xxxx 0 10 xxxx 1 x 1 0

Assume register file 1 holds 08C6181s and DB bus holds 00753015.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 0000 1000
I I

1100 0110
I I

0001 1000 R- RF(1)

Source 0000 0000
I I

0111 0101
I I

0011 0000 s-DBbus

Destination 0000 1001
I I

0011 1011
I I

0100 1000 MQ register-R+S+Cr,

2-25

ADDI Add Immediate 16181

FUNCTION

Adds four-bit immediate data on A3-AO with carry to S
bus data.

DATA FLOW

A3-AO

Cn

DESCRIPTION

REGISTER
FILE

R + S + Cn

y

C3-CO

83-BO

Immediate data in the range 0 to 15, supplied by the user
on A3-AO, is added with carry to S.

2-26

Available R Bus Source Operands

A3-AO
RF {A3-AO) Immediate DA Port

•
Available S Bus Source Operands

RF (83-BO) DB Port MO Register

• • •
Available Destination Operands

RF {C3-CO) RF (83-BO) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

SSF No Inactive
SIOO No Inactive
5107 No Inactive
0100 No Inactive
0107 No Inactive

A3-AO

C3-CO Mask

Shift Operations

ALU MO

None None

Cn Yes Increments sum if set to one.

Status Signals

ZERO if result = 0
N 1 if MSB = 1
OVR 1 if signed arithmetic overflow
Cn+a 1 if carry-out = 1

16181 Add Immediate ADDI

EXAMPLE (assumes a 24-bit cascaded system)

Add the value 12 to data on the DB bus with carry-in and store the result to register file 1.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-80 EA E81-E80 C3-CO WE SELY OEY Cn

0110 1000 1100 xxxx x 10 0001 0 0 1 0

Assume bits A3-AO hold C15 and DB bus holds 00010015.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 0000 0000
I I

0000 0000
I I

0000 1100 R+-A3-AO

Source 0000 0000
I I

0000 0001
I I

0000 0000 S+-D8 bus

Destination 0000 0000
I I

0000 0001
I I

0000 1100 RF(1)+-R+S+C.,

2-27

AND Logical AND (R AND S)

FUNCTION

Evaluates the logical expression RANDS.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE

y

C3-CO

83-80

DB

Data on the R bus is ANDed with data on the S bus. The
result appears at the ALU and MO shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-28

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

• •
Available S Bus Source Operands

RF (83-BO) DB Port MQ Register

• • •
Available Destination Operands

RF (C3-CO) RF (83-BO) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

A3-AO

C3-CO Mask

Shift Operations

ALU MQ

• •

SSF No Affect shift instructions programmed
in bits 17-14 of instruction field.

SIOO No
5107 No
0100 No
0107 No

Cn No Inactive

Status Signalst

ZERO 1 if result = 0
N 1 if MSB = 1
OVR 0
Cn+a 0

t Cn +a is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

Logical AND (R AND S) AND

EXAMPLE (assumes a 24-bit cascaded system)

Logically AND the contents of register 3 and register 5 and store the result in register 5.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-BO EA EB1-EBO C3-CO WE SELY OEY Cn

1111 1010 0011 0101 0 00 0101 0 0 1 x

Assume register file 3 holds F6D84015 and register file 5 holds F6D84215.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 1111 0110 I I
1101 1000

I I
0100 0000 R-RF(3)

Source 1111 0110
I I

1101 1000
I I

0100 0010 s-RF(5)

Destination 1111 0110 I I
1101 1000

I I
0100 0000 RF(5) - RANDS

2-29

ANDNR Logical AND Negative R (R AND S)

FUNCTION

Computes the logical expression SAND NOT R.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE

RANDS

y

C3-CO

83-80

The logical expression S AND NOT R is computed. The
result appears at the ALU and MQ shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-30

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

• •
Available S Bus Source Operands

RF (83-BO) DB Port MO Register

• • •
Available Destination Operands

RF (C3-CO) RF (83-BO) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

A3-AO

C3-CO Mask

Shift Operations

ALU MO

• •

SSF No Affect shift instructions programmed
in bits 17-14 of instruction field.

SIOO No
5107 No
0100 No
0107 No

Cn No Inactive

Status Signalst

ZERO 1 if result = 0
N 1 if MSB = 1
OVR 0
Cn+a 0

t Cn +8 is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

Logical AND Negative R (R AND S) ANDNR

EXAMPLE (assumes a 24-bit cascaded system)

Invert the contents of register 3, logically AND the result with data in register 5 and store the result in register 10.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-80 EA E81-E80 C3-CO WE SELY OEY Cn

1111 1110 0011 0101 0 00 0101 0 0 1 x

Assume register file 3 holds F6D84015 and register file 5 holds F6D84215.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 1111 0110
I I

1101 1000
I I

0100 0000 R~RF(3)

Source 1111 0110
I I

1101 1000
I I

0100 0010 s~RF(5)

Destination 0000 0000
I I

0000 0000
I I

0000 0010 RF(5) ~R AND S

2-31

BADO Byte Add R to S with Carry IBIBI

FUNCTION

Adds S with carry-in to a selected slice or selected
adjacent slices of R.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE

y

C3-CO

83-80

Slices with SIOO programmed low compute R + S + Cn.
Slices with SIOO programmed high or floating pass S
unaltered. Multiple slices can be selected only if they are
adjacent to one another. At least one slice must be non
selected.

2-32

Available R Bus Source Operands

A3-AO
A3-AO

RF (A3-AO) Immediate DA Port C3-CO Mask

• •
Available S Bus Source Operands

RF (B3-BO) DB Port MO Register

• • •
Available Destination Operands

RF (C3-CO) RF (B3-BO) Y Port

Shift Operations

ALU MO

• • None None

Control/Data Signals

User
Signal Programmable Use

SSF No Passes overflow from most-
significant selected byte

SIOO Yes Byte select
Sl07 No Senses most-significant selected

byte
OIOO No Inactive
0107 No Inactive

Cn Yes Propagates through non-selected
packages; increments selected
byte(s) if programmed high.

Status Signals

ZERO
N
OVR
Cn+s

1 if result (selected bytes) = 0
1 if MSB of most-significant selected byte = 1
1 if signed arithmetic overflow (selected bytes)
1 if carry-out (most-significant selected byte) = 1

IBIBI Byte Add R to S with Carry BADO

EXAMPLE (assumes a 24-bit cascaded system)

Add bytes 1 and 2 of register 3 with carry to bytes 0, 1 and 2 of register 1; store the result in register 11.

Instruction Operand Operand Operand Byte Destination Destination
Code Address Address Select Select Address Select Carry-in
17-10 A3-AO B3-BO EA EB1-EBO 5100 C3-CO WE SELY OEY Cn

0100 1000 0011 0001 0 00 001 1011 0 0 1 1

Assume register file 3 holds 01818115 and register file 1 holds 8FBE3E1s·

Most Next Most Least
Significant Significant Significant

Package Package Package
Byte 2 Byte 1 Byte 0

(selected) (selected) (not selected)

Source 0000 0001 1000 0001 I I 1000 0001 Rn+-- RF(1 ln

Source 1000 1111 1011 1110
I I

0011 1110 Sn+-- RF(1 ln

ALU 1001 0001 0100 0000
I I 1011 1111 Fn+--F\,+Sn+Cn

Destination 1001 0001 0011 1111
I I 0011 1110 RF(11 ln +-- Fn or Sn t

t F = ALU result
n = nth package
Register file 11 gets F if byte selected, S if byte not selected.

2-33

BAND Byte AND R and S (Byte Logical AND R and S) I EIBI

FUNCTION

Evaluates the logical AND of selected slices of R-bus and
S-bus data.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE

y

C3-CO

B3-BO

Slices with SIOO programmed low compute R AND S.
Slices with SIOO programmed high or floating pass S
unaltered. Multiple slices can be selected only if they are
adjacent to one another. At least one slice must be non
selected.

2-34

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

• •
Available S Bus Source Operands

RF (B3-BO) DB Port MO Register

• • •
Available Destination Operands

RF (C3-CO) RF (B3-BO) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

SSF No Forced low
SIOO Yes Byte select

A3-AO

C3-CO Mask

Shift Operations

ALU MO

None None

SI07 No Senses most-significant selected
byte

0100 No Inactive
QI07 No Inactive
Cn No Inactive

Status Signals

ZERO 1 if result (selected bytes) = 0
N 0
OVR 0
Cn+B 0

IEIBI Byte AND R and S (Byte Logical AND R and S) BAND

EXAMPLE (assumes a 24-bit cascaded system)

Logically AND bytes 1 and 2 of register 3 with bytes 0, 1 and 2 on the DB bus; store the result in register 3.

Instruction Operand Operand Operand Byte Destination Destination
Code Address Address Select Select Address Select Carry-in
17-10 A3-AO 83-80 EA EB1-EBO SIOO C3-CO WE SELY OEY Cn

1110 1000 0011 xx xx 0 10 001 0011 0 0 1 x

Assume register file 3 holds 8FBEBE15 and the DB bus holds 90BFBF,5.

Most Next Most Least
Significant Significant Significant

Package Package Package
Byte 2 Byte 1 Byte 0

(selected) (selected) (not selected)

Source 1000 1111
I I

1011 1110
I I

1011 1110 Rn~RF(3ln

Source 1001 0000
I I

1011 1111
I I

1011 1111 Sn~DBn

Destination 1000 0000
I I

1011 1110
I I

1011 1111 RF(3ln ~ Fn or Sn t

t F = ALU result
n = nth package
Register file 3 gets F if byte selected, S if byte not selected.

2-35

BCD BIN BCD to Binary l71FI

FUNCTION

Converts a BCD number to binary.

DESCRIPTION

This instruction allows the user to convert an N-digit BCD
number to a 4N-bit binary number in 4(N -1) + 8 clocks.
The instruction sums the R and S buses with carry.

An arithmetic left shift is performed on the ALU result. The
contents of the ALU are shifted one bit to the left. A zero is
filled into bitO of the least significant package unless SIOO
is set to zero; this will force bit Oto one. Bit 7 is passed
through SI07-SIOO to bit 0 of the next-most-significant
package. Bit 7 of the most-significant package is dropped.

Simultaneously, the contents of the MO register are
rotated one bit to the left. Bit 7 of the least-significant
package is passed through 0107-0100 to bit 0 of the next
most-significant package. Bit 7 of the most-significant
package is passed through SI07-SIOO to bit 0 of the least
significant package.

DATA FLOW

MSP

2-36

IP

Recommended R Bus Source Operands

A3-AO
A3-AO

RF (A3-AO) Immediate DA Port C3-CO Mask

•
Recommended S Bus Source Operands

RF (B3-BO) DB Port MQ Register

• •
Recommended Destination
Operands Shift Operations

RF (C3-CO) RF (B3-BO) Y Port

•
Control/Data Signals

User
Signal Programmable Use
SSF No Inactive

ALU

Left
MQ

Left

SIOO Yes Link cascaded ALU shifters. SIOO fills
SI07 No a zero in LSB of ALU shifter if high or

floating; sets MSB to one if low.

QIOO No Link cascaded MQ shifters. Output of
QI07 No MSP's QI07 is MSB of MQ shifter

(inverted).

Cn Yes Should be programmed low for
proper conversion.

Status Signals

ZERO 1 if result = O
N 1 if MSB = 1
OVR 1 if signed arithmetic overflow
Cn +8 1 if carry-out = 1

SERIAL DATA IN

LSP

l71FI BCD to Binary BCD BIN

The following code converts an N-digit BCD number to a 4N-bit binary number in 4(N -1) + 8 clocks. It employs the
standard conversion formula for a BCD number (shown here for 32 bits):

ABCD = [(A x 10 + B) x 10 + Cl x 10 + D.

The conversion begins with the most-significant BCD digit. Addition is performed in radix 2.

LOADMO NUM

SUBR ACC, ACC, ACC, MOSLC

SUB MSK, MSK, MSK, MOSLC

MOS LC

MOS LC

ADDI ACC, MSK, 1510

Repeat N -1 times:
(N = number of BCD digits)

AND MO, MSK, R1, MOS LC

ADD, ACC, R1, R1, MOSLC

BCDBIN R1, R1, ACC

BCDBIN ACC, R1, ACC

(END REPEAT)

AND MO, MSK, R1

ADD ACC, R1, ACC

Load MO with BCD number.

Clear accumulator;
Circular left shift MO.

Clear mask register;
Circular left shift MO.

Circular left shift MO.

Circular left shift MO.

Store 151 o in mask register.

Extract one digit;
Circular left shift MO.

Add extracted digit to accumulator, and store result in R1;
Circular left shift MO.

Perform BCDBIN instruction, and store result in accumulator [4 x (ACC + digit)];
Circular left shift MO.

Perform BCDBIN instruction, and store result in accumulator [10 x (ACC + digit));
Circular left shift MO.

Fetch last digit.

Add in last digit and store result in accumulator.

2-37

BIN CNS Byte Increment Negative S with Carry ICIBI

FUNCTION

Computes S + Cn for selected slices of S.

DATA FLOW

DESCRIPTION

REGISTER
FILE

y

C3-CO

83-80

Slices with SIOO programmed low compute S + Cn. Slices
with SIOO programmed high or floating pass S unaltered.
Multiple slices can be selected only if they are adjacent to
one another. At least one slice must be non-selected.

2-38

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

Available S Bus Source Operands

RF (B3-BO) DB Port MQ Register

• • •

A3-AO

C3-CO Mask

Available Destination Operands

RF (C3-CO) RF (B3-BO) Y Port

Shift Operations

ALU MQ

• • None None

Control/Data Signals

User
Signal Programmable Use

SSF No Passes overflow from most-
significant selected byte

5100 Yes Byte select
5107 No Inactive
QIOO No Inactive
0107 No Inactive

Cn Yes Propagates through non-selected
packages; increments selected
byte(s) if programmed high.

Status Signals

ZERO
N
OVR
Cn+8

1 if result (selected bytes) = 0
1 if MSB of most-significant selected byte = 1
1 if signed arithmetic overflow (selected bytes)
1 if carry-out (most-significant selected byte) = 1

ICIBI Byte Increment Negative S with Carry BIN CNS

EXAMPLE (assumes a 24-bit cascaded system)

Invert bytes 0 and 1 of register 3 and add them to the carry. Store the result in register 3 (byte 2 is not changed).

Instruction Operand Operand Operand Byte
Code Address Address Select Select
17-10 A3-AO B3-BO EA EB1-EBO SIOO

1100 1000 xx xx 0011 x 00 100

Example 1: Assume register file 3 holds 01818115.

t F = ALU result
n = nth package

Source

ALU

Destination

Most
Significant

Package
Byte 2

(not selected)

0000 0001

1111 1111

0000 0001

Next Most
Significant

Package
Byte 1

(selected)

I I
1000 0001

I I
0111 1110

I I
0111 1110

Register file 3 gets F if byte selected, S if byte not selected.

Destination Destination
Address Select Carry-in

-
C3-CO WE SELY OEY Cn

0011 0 0 1 1

Least
Significant

Package
Byte 0

(selected)

I I
1000 0001 Sn~ RF(3)n

I I
0111 1111 Fn ~sn+Cn

I I
0111 1111 RF(3)n ~ Fn or Sn t

2-39

BINCS Byte Increment S with Carry IBIBI

FUNCTION

Increments selected slices of S if the carry is set.

DATA FLOW

DESCRIPTION

REGISTER
FILE

y

C3-CO

83-BO

Slices with SIOO programmed low compute S + Cn. Slices
with SIOO programmed high or floating pass S unaltered.
Multiple slices can be selected only if they are adjacent to
one another. At least one slice must be non-selected.

2-40

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

Available S Bus Source Operands

RF (B3-BO) DB Port MO Register

• • •

A3-AO

C3-CO Mask

Available Destination Operands

RF (C3-CO) RF (B3-BO) Y Port

Shift Operations

ALU MO

• • None None

Control/Data Signals

User
Signal Programmable Use

SSF No Passes overflow from most-
significant selected byte

SIOO Yes Byte select
SI07 No Senses most-significant selected

byte
0100 No Inactive
0107 No Inactive

Cn Yes Propagates through non-selected
packages; increments selected
byte(s) if programmed high.

Status Signals

ZERO 1 if result (selected bytes) = 0
N 1 if MSB of most-significant selected byte = 1
OVR 1 if signed arithmetic overflow (selected bytes)
Cn+B 1 if carry-out (most-significant selected byte) = 1

IBIBI Byte Increment S with Carry

EXAMPLE (assumes a 24-bit cascaded system)

Add bytes 1 and 2 of register 7 to the carry; store the result in register 2 (byte 0 is not changed).

Instruction Operand Operand
Code Address Address
17-10 A3-AO B3-BO

1011 1000 xxxx 0111

Assume register file 3 holds 8FBEBE15.

t F = ALU result
n = nth package

Source

ALU

Destination

Most
Significant

Package
Byte 2

(selected)

1000 1111

1000 1111

1000 1111

Operand Byte
Select Select

EA EB1-EBO SIOO

x 00 001

Next Most
Significant

Package
Byte 1

(selected)

I I
1011 1110

I I
1011 1111

I I
1011 1111

Register file (3) gets F if byte selected, S if byte not selected.

I

I

I

Destination
Address

I

I

I

C3-CO WE

0010 0

Least
Significant

Package
Byte 0

(not selected)

1011 1110

1011 1111

10111110

Destination
Select
SELY OEY

0 1

Sn~RF(7ln

RF(2ln ~ Fn or Sn t

BINCS

Carry-in

Cn

1

2-41

BINEX3 Binary to Excess-3 IDIFI

FUNCTION

Converts a binary number to excess-3 representation.

DESCRIPTION

This instruction allows the user to convert an N-bit binary
number to N/4 bit excess-3 number representation in
2N + 3 clocks. The data on the Rand S buses are added to
the carry-in, which contains bit 7 of the most-significant
package's MO register.

The contents of the MO register are rotated one bit to the
left. Bit 7 of the least-significant package is passed
through QI07-0IOO to bit 0 of the next-most-significant
package. Bit 7 of the most-significant package is passed
through 5107-SIOO to bit 0 of the least-significant
package.

If this instruction is used with carry look-ahead, data on
the R and S buses should be the same, as in the
accompanying algorithm. Otherwise, incorrect carry look
ahead will be generated.

DATA FLOW

MSP

2-42

IP

Recommended R Bus Source Operands

A3-AO
A3-AO

RF (A3-AO) Immediate DA Port C3-CO Mask

•
Recommended S Bus Source Operands

RF (83-80) DB Port MQ Register

• •
Recommended Destination
Operands Shift Operations

RF (C3-CO) RF (83-80) Y Port ALU MQ

• None Left

Control/Data Signals

User
Signal Programmable Use

SSF No Inactive

SIOO No Link cascaded ALU shifters. Ouput
5107 No value of MSP's 5107 is MSB of MQ

shifter (inverted).

QIOO No Link cascaded MQ shifters. Output
0107 No value of MSP's 0107 is MSB of MQ

shifter (inverted).

Cn No Holds MSB of MO register.

Status Signals

ZERO 1 if result = 0
N 1 if MSB = 1
OVR 1 if signed arithmetic overflow
Cn +a 1 if carry-out = 1

LSP

IOI Fl Binary to Excess-3 BINEX3

The following code converts an N-bit binary number to an N/4 digit excess-3 number in 2N + 3 clocks. It employs the
standard conversion formula for a binary number:

an2n + an-12n-1 + an-22n-2 + ... + a0 = {[(2an + an-1l x 2 + an-21 x 2 + ... + a0 } x 2 + a0 .

The conversion begins with the most-significant binary bit. Addition during the BINEX3 instruction is performed in radix 10
(excess-3).

LOADMQ NUM

SUB ACC, ACC, ACC

SET1 ACC, 3315

Repeat N times:

Load MQ with binary number.

Clear accumulator;

Store 3315 in all bytes of accumulator.

(N = number of bits in binary number)

BINEX3 ACC, ACC, ACC

EX3C ACC, ACC

(END REPEAT)

Double accumulator and add in most-significant bit of MQ register. Circular left
shift MO.

Perform excess-3 correction.

2-43

BOR Byte OR R and S (Byte Inclusive OR R and S) IFIBI

FUNCTION

Evaluates R ORS of selected slices of a cascaded system.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE

y

C3-CO

B3-BO

Slices with SIOO programmed low evaluate R ORS. Slices
with SIOO programmed high or floating pass S unaltered.
Multiple slices can be selected only if they are adjacent to
one another. At least one slice must be non-selected.

2-44

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

• •
Available S Bus Source Operands

RF (B3-BO) DB Port MO Register

• • •
Available Destination Operands

RF (C3-CO) RF (B3-BO) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

SSF No Forced low
SIOO Yes Byte select

A3-AO

C3-CO Mask

Shift Operations

ALU MO

None None

Sl07 No Senses most-significant selected
byte

0100 No Inactive
0107 No Inactive
Cn No Inactive

Status Signals

ZERO
N
OVR
Cn+a

1 if result (selected bytes) = O
1 if MSB of most-significant selected byte = 1
1 if signed arithmetic overflow (selected bytes)
1 if carry-out (most-significant selected byte) = 1

IFIBI Byte OR R and S (Byte Inclusive OR R and S) BOR

EXAMPLE (assumes a 24-bit cascaded system)

Logically OR bytes 1 and 2 of register 12 with bytes 1 and 2 on the DB bus. Concatenate the result with DB byte O and store
in register 12.

Instruction Operand Operand Operand Byte Destination
Code Address Address Select Select Address
17-10 A3-AO B3-BO EA EB1-EBO SIOO C3-CO WE

11111000 1100 xxxx 0 10 001 1100 0

Assume register file 3 holds 8FBEBE15 and the DB bus holds 90BEBE15.

Most Next Most
Significant Significant

Package Package
Byte 2 Byte 1

(selected) (selected)

Source 1000 1111
I I

1011 1110

Source 1001 0000
I I

1011 1110

Destination 1001 1111
I I

1011 1110

t F = ALU result
n = nth package
Register file 3 gets F if byte selected, S if byte not selected.

I I

I I

I I

Least
Significant

Package
Byte 0

(not selected)

1011 1110

1011 1110

1011 1110

Destination
Select Carry-in
SELY OEY Cn

0 1 x

Rn~RF(12)n

RF(12)n ~ Fn or Sn t

2-45

BSUBR Byte Subtract R from S with Carry IAIBI

FUNCTION

Subtracts R from S in selected slices of a cascaded
system.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE

v

C3-CO

83-BO

Slices with SIOO programmed low compute R + S + Cn.
Slices with SIOO programmed high or floating pass S
unaltered. Multiple slices can be selected only if they are
adjacent to one another. At least one slice must be non
selected.

2-46

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

• •
Available S Bus, Source Operands

RF (B3-BO) DB Port MQ Register

• • •

A3-AO

C3-CO Mask

Available Destination Operands

RF (C3-CO) RF (B3-BO) Y Port

Shift Operations

ALU MQ

• • None None

Control/Data Signals

User
Signal Programmable Use

SSF No Passes overflow from most-
significant selected byte

SIOO Yes Byte select
SI07 No Senses most-significant selected

byte
QIOO No Inactive
QI07 No Inactive

Cn Yes Propagates through non-selected
packages; increments selected
bytes(s) if programmed high.

Status Signals

ZERO 1 if result (selected bytes) = 0
N 1 if MSB of most-significant selected byte = 1
OVR 1 if signed arithmetic overflow (selected bytes)
Cn+B 1 if carry-out (most-significant selected byte) = 1

IAIBI Byte Subtract R from S with Carry BSUBR

EXAMPLE (assumes a 24-bit cascaded system)

Subtract bytes 1 and 2 of register 1 with carry from bytes 1 and 2 of register 3. Concatenate the result with byte 0 of register
3, and store the result in register 11.

Instruction Operand Operand Operand Byte Destination Destination
Code Address Address Select Select Address Select Carry-in
17-10 A3-AO B3-BO EA EB1-EBO SIOO C3-CO WE SELY OEY Cn

1010 1000 0001 DD11 0 DD DD1 1D11 D 0 1 1

Assume register file 1 holds 18585815 and register file 3 holds 3A989815.

Most Next Most Least
Significant Significant Significant

Package Package Package
Byte 2 Byte 1 Byte D

(selected) (selected) (not selected)

Source DDD1 1D11
I I

D101 1DOD
I I

D1D1 1DDD Rn +-RF(1 ln

Source DD11 1D1D
I I

1DD1 1DDD
I I

1DD1 1DDD Sn +-RF(3ln

ALU DDD1 1111
I I

D0111111
I I

DD11 1111 Fn+-Rn+Sn+Cn

Destination DOD1 1111
I I

DD11 1111
I I

1DD1 1DDD RF(11ln+-FnorSnt

t F = ALU result
n = nth package
Register file 11 gets F if byte selected, S if byte not selected.

2-47

BS UBS Byte Subtract S from R with Carry 19 IBI

FUNCTION

Subtracts S from R in selected slices of a cascaded
system.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE

y

C3-CO

83-80

Slices with SIOO programmed low compute R + S + Cn.
Slices with SIOO programmed high or floating pass S
unaltered. Multiple slices can be selected only if they are
adjacent to one another. At least one slice must be non
selected.

2-48

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

• •
Available S Bus Source Operands

RF (83-80) DB Port MQ Register

• • •

A3-AO

C3-CO Mask

Available Destination Operands

RF (C3-CO) RF (83-BO) Y Port

Shift Operations

ALU MQ

• • None None

Control/Data Signals

User
Signal Programmable Use

SSF No Passes overflow from most-
significant selected byte

SIOO Yes Byte select
SI07 No Senses most-significant selected

byte
QIOO No Inactive
QI07 No Inactive

Cn Yes Propagates through non-selected
packages; increments selected
byte(s) if programmed high.

Status Signals

ZERO
N
OVR
Cn+s

1 if result (selected bytes) = 0
1 if MSB of most-significant selected byte = 1
1 if signed arithmetic overflow (selected bytes)
1 if carry-out (most-significant selected byte) = 1

19181 Byte Subtract S from R with Carry BS UBS

EXAMPLE (assumes a 24-bit cascaded system)

Subtract bytes 1and2 of register3with carry from bytes 1and2of register 1. Concatenate the result with byte O of register3
in register 11.

Instruction Operand Operand Operand Byte Destination
Code Address Address Select Select Address
17-10 A3-AO B3-BO EA EB1-EBO SIOO C3-CO WE

1010 1000 0001 0011 0 00 001 1011 0

Assume register file 1 holds 88888815 and register file 3 holds 3A989815.

t F = ALU result
n = nth package

Source

Source

ALU

Destination

Most
Significant

Package
Byte 2

(selected)

1000 1000

0011 1010

0100 1110

0100 1110

Next Most
Significant

Package
Byte 1

(selected)

1011 1000

1001 1000

0001 1111

0001 1111

Register file 11 gets F if byte selected, S if byte not selected.

Least
Significant

Package
Byte 0

(not selected)

1011 1000

1001 1000

0001 1111

1001 1000

Destination
Select Carry-in
SELY OEY Cn

0 1 1

Rn~RF(1)n

Sn~RF(3)n

Fn ~Rn+Sn+Cn

RF(11 ln ~ Fn or Sn t

2-49

BXOR Byte XOR R and S (Byte Exclusive OR R and S) IDIBI

FUNCTION

Evaluates R exclusive ORS in selected slices of a cascaded
system.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE

y

C3-CO

83-BO

Slices with SIOO programmed low evaluate R exclusive
ORS. Slices with SIOO programmed high or floating pass
S unaltered. Multiple slices can be selected only if they are
adjacent to one another. At least one slice must be non
selected.

2-50

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

• •
Available S Bus Source Operands

RF (B3-BO) DB Port MO Register

• • •
Available Destination Operands

RF (C3-CO) RF (B3-BO) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

SSF No Forced low
5100 Yes Byte select

A3-AO

C3-CO Mask

Shift Operations

ALU MO

None None

5107 No Senses most-significant selected
byte

0100 No Inactive
0107 No Inactive
Cn No Inactive

Status Signals

ZERO 1 if result (selected bytes) = 0
N 1 if MSB of most-significant selected byte = 1
OVR 0
Cn+B 0

IDIBI Byte XOR R and S (Byte Exclusive OR R and S) BXOR

EXAMPLE (assumes a 24-bit cascaded system)

Exclusive OR bytes 1and2 of register6with bytes 1and2 on the DB bus;concatenatethe result with DB byte O and store the
result in register 10.

Instruction Operand Operand Operand Byte Destination
Code Address Address Select Select Address
17-10 A3-AO B3-BO EA EB1-EBO SIOO C3-CO WE

1101 1000 0110 xxxx 0 10 001 1010 0

Assume register file 3 holds 8FBEBE1s and the DB bus holds 90BEBE16·

Most Next Most
Significant Significant

Package Package
Byte 2 Byte 1

(selected) (selected)

Source 1000 1111
I I

1011 1110

Source 1001 0000
I I

1011 1110

Destination 0001 1111
I I

0000 0000

t F = ALU result
n = nth package
Register file 3 gets F if byte selected, S if byte not selected.

I I

I I

I I

Least
Significant

Package
Byte 0

(not selected)

1011 1110

1011 1110

1011 1110

Destination
Select Carry-in
SELY OEY Cn

0 1 x

2-51

CLR Clear

FUNCTION

Forces ALU output to zero and clears the BCD flip-flops.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE

0

v

C3-CO

83-BO

ALU output is forced to zero and the BCD flip-flops are
cleared.

t This instruction may also be coded with the following
opcodes:

ITill.[ill].@illJillJ.~.@EUfilIUillUillJ

2-52

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

Available S Bus Source Operands

RF (B3-BO) DB Port MO Register

Available Destination Operands

RF (C3-CO) RF (83-BO) Y Port

• •
Status Signals

I
~ERO 6
OVR 0
Cn+S 0

IOI Flt

A3-AO

C3-CO Mask

Shift Operations

ALU MO

None None

14101 Divide Remainder Fix DIVRF

FUNCTION

Corrects the remainder of non restoring division routine if
correction is needed. A description of nonrestoring
division a·nd an algorithm using this instruction are given
in section 2.3.1.

DATA FLOW

A3-AO
REGISTER

FILE

y

** S + R + 1 if SSF = 1
S + R + 0 if SSF = 0

DESCRIPTION

C3-CO

83-BO

DB

DIVRF tests the result of the final step in nonrestoring
division iteration: SDIVIT (for signed division) or UDIVIT
(for unsigned division). An error in the remainder results
when it is non-zero and the signs of the remainder and
dividend are different. SSF is used to indicate that a fix is
required.

The R bus must be loaded with the divisor and the S bus
with the most-significant half of the previous result. The
least- significant half is in the MO register. The Y bus result
must be stored in the register file for use during the
subsequent SDIVQF instruction.

Recommended R Bus Source Operands

A3-AO
A3-AO

RF (A3-AO) Immediate DA Port C3-CO Mask

•
Recommended S Bus Source Operands

RF (B3-BO) DB Port MQ Register

• •
Recommended Destination
Operands Shift Operations

RF (C3-CO) RF (B3-BO) Y Port ALU MQ

• None None

Control/Data Signals

User
Signal Programmable Use

SSF No Indicates whether quotient fix is
required in next instruction.

SIOO No Inactive
SI07 No Inactive
QIOO No Inactive
0107 No Inactive
Cn Yes Should be programmed high

Status Signals

ZERO 1 if remainder = 0
N 0
OVR 0
Cn +a 1 if carry-out = 1

DIVRF tests SSF (used to signal whether a fix is required)
and evaluates:

Y ~ S + R + Cn if SSF = 1
Y ~ S + R if SSF = 0.

Overflow is reported to OVF at the end of the division
routine (after SDIVQF).

2-53

DNORM Double-Length Normalize 13101

FUNCTION

Tests the two most-significant bits of a double precision
number. If they are the same, shifts the number to the left.

DESCRIPTION

This instruction is used to normalize a two's complement,
double precision number by shifting the number one bit
to the left and filling a zero into the LSB via the 0100 input.
The S bus holds the most-significant half; the MO register
holds the least-significant half.

Normalization is complete when overflow occurs. The
SSF pin inhibits the shift whenever normalization is
attempted on a number already normalized.

DATA FLOW

MSP

2-54

IP

Available R Bus Source Operands

A3-AO
A3-AO

RF (A3-AO) Immediate DA Port C3-CO Mask

Recommended S Bus Source Operands

RF (83-BO) DB Port MO Register

•
Recommended Destination
Operands Shift Operations

RF (C3-CO) RF (83-BO) Y Port ALU

• Left

Control/Data Signals

User
Signal Programmable Use

MO

Left

SSF No Inhibits shift if normalization is
complete.

SIOO No Link cascaded ALU shifters. Output
5107 No of MSP's 5107 is MSB of MO shifter

(inverted).

0100 No Link cascaded MQ shifters. 0100 of
0107 No LSP fills a zero into LSB of MO

shifter.

Cn No Inactive

Status Signals

ZERO 1 if result = 0
N 1 if MSB = 1
OVR 1 if MSB XOR 2nd MSB = 1
Cn +8 1 if carry-out = 1

LSP

13101 Double-Length Normalize

EXAMPLE (assumes a 24-bit cascaded system)

Normalize a double-precision number.

DNORM

(This example assumes that the MSH of the number to be normalized is in register 3 and the LSH is in the MO register. The
zero on the OVR pin at the end of the instruction cycle indicates that normalization is not complete and the instruction
should be repeated).

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in

-
17-10 A3-AO 83-BO EA EB1-EBO C3-CO WE SELY OEY Cn

0011 0000 0011 xx xx 0 xx 0011 0 0 1 x

Assume register file 3 holds F6D84E15 and MO register holds F6D84315.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 1111 0110 1101 1000 0100 1110 ALU shifter<'- RF(3)

Source 1111 0110 1101 1000 0100 0011 MO shifter<'- MO register

Destination 1110 1101 1011 0000 1001 1101 RF(3) <'-Result (MSH)

Destination 11101101 1011 0000 1000 0110 MO register<'- Result (LSH)

~ OVF<'-Ot

t Normalization not complete at the end of this instruction cycle.

2-55

EX3BC Excess-3 Byte Correction IBIFI

FUNCTION

Corrects the result of excess-3 addition or subtraction.

DATA FLOW

SSF

DESCRIPTION

REGISTER
FILE

y

C3-CO

83-80

This instruction corrects excess-3 additions or
subtractions in the byte mode. For correct excess-3
arithmetic, this instruction must follow each add or
subtract. The operand must be on the S bus.

Data on the S bus is added to a constant on the R bus
determined by the state of the BCD flip flops and previous
overflow condition reported on the SSF pin. Slices with
SIOO programmed low evaluate the correct excess-3
representation. Slices with SIOO programmed high or
floating pass S unaltered.

2-56

Available R Bus Source Operands

A3-AO
A3-AO

RF (A3-AO) Immediate DA Port C3-CO Mask

Recommended S Bus Source Operands

RF (B3-BO) DB Port MO Register

•
Shift Operations Available Destination Operands

RF (C3-CO) RF (B3-BO) Y Port ALU MO

• • Left Left

Control/Data Signals

User
Signal Programmable Use

SSF No Passes overflow from most-
significant selected byte.

5100 Yes Byte select
5107 No Inactive
0100 No Inactive
0107 No Inactive
Cn No Inactive

Status Signals

ZERO 0
N 1 if MSB = 1
OVR 1 if arithmetic signed overflow
Cn+S 1 if carry-out = 1

181 Fl Excess-3 Byte Correction EX3BC

EXAMPLE (assumes a 24-bit cascaded system)

Add selected BCD digits and store the sum in register 3. Assume data comes in on DB bus.

1) Clear accumulator (SUB ACC, ACC, ACC)
2) Store 33,5 in all bytes of register (SET1 R2, H/33/)
3) Add 3315 to first BCD number (ADDI DB, R2, R1)
4) Add 3315 to second BCD number (ADDI DB, R2, R3)
5) Add selected bytes of registers 1 and 3 (BADO, R1, R3, R3)
6) Correct the result (EX3BC, R3, R3)

Instruction Operand Operand Operand Byte Destination Destination
Code Address Address Select Select Address Select Carry-in
17-10 A3-AO BJ-BO EA EB1-EBO SIOO CJ-CO WE SELY OEY Cn

1111 0010 0010 0010 0 00 xxx 0010 0 0 1 1
0000 1000 0010 xxxx 0 xx xxx 0010 0 0 1 x
1111 0001 0010 xxxx 0 10 xxx 0001 0 0 1 0
1111 0001 0010 xxxx 0 10 xxx 0011 0 0 1 0
1000 1000 0001 0011 0 00 100 0011 0 0 1 0
1000 1111 xxxx 0011 x 00 100 0011 1 0 1 0

Assume DB bus holds 33691210 at second instruction and 43716210 at fourth instruction.

Result of Most Next Most Least
Instruction Significant Significant Significant
Cycle: Package Package Package

(not selected) (selected) (selected)

0000 0000 0000 0000 0000 0000 RF(2) +-0

2 0011 0011 0011 0011 0011 0011 RF(2) +-- 33333315

3 0110 0110 1001 1100 0100 0101 RF(1) +-- RF(2) +DB

4 0111 0110 1010 0100 1001 0101 RF(3) +-- RF(2) +DB

5 0111 0110 0100 0000 1101 1010 RF(3ln +-- RF(1 ln + RF(3ln

6 0111 0110 0100 0000 0111 0100 RF(3)n +--Corrected RF(3)n result

2-57

EX3C Excess-3 Word Correction l9IFI

FUNCTION

Corrects the result of excess-3 addition or subtraction.

DATA FLOW

SSF

DESCRIPTION

REGISTER
FILE

y

C3-CO

83-80

This instruction corrects excess-3 additions or
subtractions in the word mode. For correct excess-3
arithmetic, this instruction must follow each add or
subtract. The operand must be on the S bus.

Data on the S bus is added to a constant on the R bus
determined by the state of the BCD flip flop and previous
overflow condition reported on the SSF pin.

2-58

Available R Bus Source Operands

A3-AO
A3-AO

RF (A3-AO) Immediate DA Port C3-CO Mask

Recommended S Bus Source Operands

RF (83-80) DB Port MQ Register

•
Shift Operations Available Destination Operands

RF (C3-CO) RF (83-80) Y Port ALU MQ

• • Left Left

Control/Data Signals

User
Signal Programmable Use

SSF No Passes overflow.
5100 No Inactive
5107 No Inactive
QIOO No Inactive
QI07 No Inactive
Cn No Inactive

Status Signals

ZERO 0
N 1 if MSB = 1
OVR 1 if arithmetic signed overflow
Cn +8 1 if carry-out = 1

l9IFI Excess-3 Word Correction EX3C

EXAMPLE (assumes a 24-bit cascaded system)

Add selected BCD digits and store the sum in register 3. Assume data comes in on DB bus.

1) Clear accumulator (SUB ACC, ACC, ACC)
2) Store 3315 in all bytes of register (SET1 R2, H/33/)
3) Add 3315 to first BCD number (ADDI DB, R2, R1)
4) Add 3315 to second BCD number (ADDI DB, R2, R3)
5) Add the excess-3 data (ADD R1, R3, R3)
6) Correct the result (EX3C, R3, R3)

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO B3-BO EA EB1-EBO C3-CO WE SELY OEY Cn

1111 0010 0010 0010 0 00 0010 0 0 1 1
0000 1000 0011 0010 0 xx 0011 0 0 1 x
1111 0001 0010 xxxx 0 10 0001 0 0 1 0
1111 0001 0010 xxxx 0 10 0011 0 0 1 0
1111 0001 0001 0011 0 00 0011 0 0 1 0
1001 1111 xxxx 0011 x 00 0011 1 0 1 0

Assume DB bus holds 33691210 at second instruction and 43716210 at fourth instruction.

Result of Most Next Most Least
Instruction Significant Significant Significant
Cycle: Package Package Package

1 0000 0000 0000 0000 0000 0000 RF(2)~0

2 0011 0011 0011 0011 0011 0011 RF(2) ~ 33333315

3 0110 0110 1001 1100 0100 0101 RF(1) ~ RF(2) +DB

4 0111 0110 1010 0100 1001 0101 RF(3) ~ RF(2) +DB

5 1101 1101 0100 0000 1101 1010 RF(3) ~ RF(1) + RF(3)

6 1010 1010 0111 0011 1010 0111 RF(3) ~Corrected RF(3) result

7 0111 0111 0100 0000 0111 0100 RF(4) ~ RF(3) - RF(2)

2-59

INCNR Increment Negative R using Carry (R + Cn)

FUNCTION

Evaluates R + C,,.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE

y

CJ-CO

s

Data on the R bus is inverted and added with carry. The
result appears at the ALU and MO shift.ers.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-60

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

• •
Available S Bus Source Operands

RF (83-80) DB Port MQ Register

Available Destination Operands

RF (C3-CO) RF (83-80) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

A3-AO

C3-CO Mask

Shift Operations

ALU MQ

• •

SSF No Affect shift instructions programmed
5100 No in bits 17-14
5107 No
0100 No
0107 No

Cn Yes Increments if programmed high.

Status Signalst

ZERO 1 if result = 0
N 1 if MSB = 1
OVR 1 if signed arithmetic overflow
Cn+B 1 if carry-out = 1

t Cn +8 is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

Increment Negative R Using Carry (R + Cn) INCNR

EXAMPLE (assumes a 24-bit cascaded system)

Convert the data on the DA bus to two's complement and store the result in register 4.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-BO EA EB1-EBO C3-CO WE SELY OEY Cn

1111 0111 xx xx xx xx 1 xx 0100 0 0 1 1

Assume register file 1 holds 91FEF615.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 1001 0001
I I

1111 1110
I I

1111 0110 R~DA

Destination 0110 1110
I I

0000 0001
I I

0000 1010 RF(4)~ R+Cn

2-61

INCNS Increment Negative S using Carry (S + Cn)

FUNCTION

Evaluates S + Cn.

DATA FLOW

Cn

DESCRIPTION

REGISTER
FILE

S + Cn

y

C3-CO

B3-BO

Data on the S bus is inverted and added to the carry. The
result appears at the ALU and MQ shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-62

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

Available S Bus Source Operands

RF (83-BO) DB Port MO Register

• • •

A3-AO

C3-CO Mask

Shift Operations Available Destination Operands

RF (C3-CO) RF (83-BO) Y Port ALU MO

• • • •
Control/Data Signals

User
Signal Programmable Use

SSF No Affect shift instructions programmed
SIOO No in bits 17-14 of instruction field.
5107 No
0100 No
0107 No

Cn Yes Increments if programmed high.

Status Signalst

ZERO 1 if result = 0
N 1 if MSB = 1
OVR 1 if signed arithmetic overflow
Cn +a 1 if carry-out = 1

t Cn +a is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

Increment Negative S Using Carry (! + Cn) INCNS

EXAMPLE (assumes a 24-bit cascaded system)

Convert the data in the MO register to one's complement and store the result in register 4.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO B3-BO EA EB1-EBO C3-CO WE SELY OEY Cn

1111 0101 xx xx xxxx x 11 0100 0 0 1 0

Assume MO register holds 91FEFS,5.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 1001 0001
I I

1111 1110
I I

1111 0110 S ~ MQ register

Destination 0110 1110
I I

0000 0001
I I

0000 1001 RF(4)~S+Cn

2-63

INCH Increment R using Carry (R + Cn)

FUNCTION

Increments R if the carry is set.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE

y

C3-CO

s

Data on the R bus is added to the carry. The sum appears
at the ALU and MO shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9 .

. 2-64

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

• •
Available S Bus Source Operands

RF (B3-BO) DB Port MO Register

A3-AO

C3-CO Mask

Shift Operations Available Destination Operands

RF (C3-CO) RF (B3-BO) Y Port ALU MO

• • • •
Control/Data Signals

User
Signal Programmable Use

SSF No Affect shift instructions programmed
SIOO No in bits 17-14 of instruction field.
5107 No
0100 No
0107 No

Cn Yes Increments R if programmed high.

Status Signalst

ZERO 1 if result = 0
N 1 if MSB = 1
OVR 1 if signed arithmetic overflow
Cn+B 1 if carry-out = 1

t Cn+a is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

Increment R Using Carry (R + C0) INCR

EXAMPLE (assumes a 24-bit cascaded system)

Increment the data on the DA bus and store the result in register 4.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-80 EA E81-E80 C3-CO WE SELY OEY Cn

1111 0110 xxxx xxxx 1 xx 0100 0 0 1 1

Assume register file 1 holds 91FEF615.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 1001 0001
I I

1111 1110
I I

1111 0110 R+-RF(1)

Destination 1001 0001
I I

1111 1110
I I

1111 0111 RF(4) +- R +Ci,

2-65

INCS Increment S using Carry (S + Cn)

FUNCTION

Increments S if the carry is set.

DATA FLOW

Cn

DESCRIPTION

REGISTER
FILE

y

C3-CO

B3-BO

Data on the S bus is added to the carry. The sum appears
at the ALU and MO shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-66

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

Available S Bus Source Operands

RF (B3-BO) DB Port MO Register

• • •

A3-AO

C3-CO Mask

Shift Operations Available Destination Operands

RF (C3-CO) RF (B3-BO) Y Port ALU MO

• • • •
Control/Data Signals

User
Signal Programmable Use

SSF No Affect shift instructions programmed
SIOO No in bits 17-14 of instruction field.
SI07 No
0100 No
0107 No

Cn Yes Increments S if programmed high.

Status Signalst

ZERO 1 if result = 0
N 1 if MSB = 1
OVR 1 if signed arithmetic overflow
Cn + s 1 if carry-out = 1

t Cn+B is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

Increment S Using Carry (S + Cn) INCS

EXAMPLE (assumes a 24-bit cascaded system)

Increment the data in the MQ register and store the result in register 4.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-BO EA EB1-EBO C3-CO WE SELY OEY Cn

1111 0010 xx xx xxxx x 11 0100 0 0 1 1

Assume MQ register holds FFOOFF15.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 1111 1111
I I

0000 0000
I I

1111 1111 S ~ MQ register

Destination 1111 1111
I I

0000 0001
I I

0000 0000 RF(4) ~ S +Ci,

2-67

LOADMQ Pass (Y ~ F) and Load MO with F

FUNCTION

Passes the result of the ALU instruction specified in the
lower nibble of the instruction field to Y and the MO
register.

DATA FLOW

REGISTER
FILE

y

C3-CO

83-BO

* *Arithmetic/logic function specified in 13-10

DESCRIPTION

The result of the arithmetic or logical operation specified
in the lower nibble of the instruction field (13-10) is passed
unshifted to Y and the MO register.

*A list of ALU operations that can be used with this instruction is
given on page 2-9.

2-68

Shift Operations

ALU Shifter MO Shifter

None

Available Destination Operands

RF (C3-CO) RF (83-BO) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

None

SSF No Outputs MOO of LSP.
SIOO No Inactive
SI07 No Inactive
0100 No Inactive
0107 No Inactive
Cn No Inactive

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO
N

OVR
Cn+8

1 if result = 0
1 if MSB of result = 1
O if MSB of result = 0
1 if signed arithmetic overflow
1 if carry-out = 1

If logic instruction specified in 13-10:

ZERO 1 if result = 0
N 1 if MSB of result = 1

O if MSB of result = O
OVR 0
Cn+8 0

t Cn +a is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

Pass (Y ~ F) and Load MO with F LOADMQ

EXAMPLE (assumes a 24-bit cascaded system)

Load the MO register with data from register 1, and pass the data to the Y port.

(In this example, data is passed to the ALU by an INCR instruction without carry-in).

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-BO EA EB1-EBO C3-CO WE SELY OEY Cn

1110 0110 0001 xx xx 0 xx xx xx 1 0 1 0

Assume register file 1 holds 08C61815.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 0000 1000
I I

11000110
I I

0001 1000 R <-- RF(1)

Destination 0000 1000
I I

1100 0110
I I

0001 1000 MO register<-- R + Cn

2-69

MQSLC Pass (Y ~ F) with Circular Left MO Shift

FUNCTION

Passes the result of the ALU instruction specified in the
lower nibble of the instruction field to Y. Performs a
circular left shift on MO.

DESCRIPTION

The result of the arithmetic or logical operation specified
in the lower nibble of the instruction field (13-10) is passed
unshifted to Y.

The contents of the MO register are rotated one bit to the
left. Bit 7 of the least-significant package is passed
through 0107-0100 to bit 0 of the next-most-significant
package. Bit 7 of the most-significant package is passed
through SI07-SIOO to bit 0 of the least-significant
package.

The shift may be made conditional on SSF. If SSF is high
or floating, the shift result will be sent to the MO register.
If SSF is low, the MO register will not be altered.

* A list of ALU operations that can be used with this instruction is
given on page 2-9.

Shift Operations

ALU Shifter

None

Available Destination Operands
ALU Shifter:

RF (C3-CO) RF (83-80) V-Port

• •

DATA FLOW

SERIAL DATA OUT

MSP

2-70

MO Shifter

Circular Left

IP

Control/Data Signals

User
Signal Programmable Use

SSF Yes Passes shift result if high or floating;
retains MO without shift if low.

SIOO No Link cascaded ALU shifters. Output
SI07 No value of MSP's SI07 is MS8 of MO

shifter (inverted).

0100 No Link cascaded MO shifters. Output
0107 No value of MSP's 0107 is MS8 of MO

shifter (inverted).

Cn No Affects arithmetic operation
programmed in bits 13-10 of
instruction field.

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO
N

OVR
Cn+8

1 if result = 0
1 if MS8 of result = 1
O if MS8 of result = O
1 if signed arithmetic overflow
1 if carry-out = 1

If logic instruction specified in 13-10:

ZERO
N

OVR
Cn+8

1 if result = 0
1 if MSB of result = 1
0 if MSB of result = 0
0
0

t Cn +a is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation .

LSP

Pass (Y ~ F) with Circular Left MQ Shift MQSLC

EXAMPLE (assumes a 24-bit cascaded system)

Add data in register 1 to data on the DB bus with carry-in and store the unshifted result in register 1. Circular shift the
contents of the MO register one bit to the left.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-80 EA E81-E80 C3-CO WE SELY OEY Cn

1101 0001 0001 xx xx 0 10 0001 0 0 1 1

Assume register file 1 holds 08C61815, DB bus holds 00753015. and MQ register holds A99AOE15.

Most Next Most Least
Significant Significant Significant
Package Package Package

Source 0000 1000 1100 0110 0001 1000 R+-RF(1)

Source 0000 0000 0111 0101 0011 0000 S+-DBbus

Destination 0000 1001 0011 1011 0100 1001 RF(1) +- R+S+Cn

Source 1010 1001 1001 1010 0000 1110 MO shifter+- MO register

Destination 0101 0011 0011 0100 0001 1101 MO register+- MO shifter

2-71

MOS LL Pass (Y ~ F) with Logical Left MO Shift

FUNCTION

Passes the result of the ALU instruction specified in the
lower nibble of the instruction field to Y. Performs a left
shift on MO.

DESCRIPTION

The result of the arithmetic or logical operation specified
in the lower nibble of the instruction field (13-10) is passed
unshifted to Y.

The contents of the MO register are shifted one bit to the
left. A zero is filled into bit 0 of the least-significant
package unless SIOO is programmed low; this will force
the least-significant bit to one. Bit 7 is passed through
QI07-QIOO to bit 0 of the next-most-significant package.
Bit 7 of the most-significant package is dropped.

The shift may be made conditional on SSF. If SSF is high
or floating, the shift result will be sent to the MO register.
If SSF is low, the MQ register will not be altered.

*A list of ALU operations that can be used with this instruction is
given on page 2-9.

Shift Operations

ALU Shifter

None

Available Destination Operands
ALU Shifter:

RF (C3-CO) RF (83-80) Y-Port

• •

DATA FLOW

MSP

SERIAL DATA OUT

2-72

MQ Shifter

Logical Left

IP

Control/Data Signals

User
Signal Programmable Use

SSF Yes Passes shift result if high or floating;
retains MQ without shift if low.

SIOO Yes SIOO fills a zero in LS8 of MQ shifter
if high or floating; sets LS8 to one if
low.

SI07 No Inactive

QIOO No Link cascaded MQ shifters. Output of
0107 No MSP's QI07 is MS8 of MQ shifter

(inverted).

Cn No Affects arithmetic operation
programmed in bits 13-10 of
instruction field.

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO 1 if result = O
N 1 if MS8 of result = 1

0 if MS8 of result = 0
OVR 1 if signed arithmetic overflow
Cn +a 1 if carry-out = 1

If logic instruction specified in 13-10:

ZERO
N

OVR
Cn+a

1 if result = O
1 if MS8 of result = 1
0 if MS8 of result = 0
0
0

t Cn+8 is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

SERIAL DATA IN

LSP

Pass (Y ~ F) with Logical Left MQ Shift MQSLL

EXAMPLE (assumes a 24-bit cascaded system)

Add data in register7to data on the DB bus with carry-in and store the unshifted result in register7. Shift the contents of the
MO register one bit to the left, filling a zero into the least-significant bit.

Instruction Operand Operand Operand End Destination Destination
Code Address Address Select Fill Address Select Carry-in
17-10 A3-AO 83-BO C3-CO EA EB1-EBO SIOO WE SELY OEY Cn

1100 0001 0111 xxxx 0 10 1 0111 0 0 1 1

Assume register file 1 holds 08C618J5, DB bus holds 007530,s and MO register holds A99AOE15.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 0000 1000 1100 0110 0001 1000 R~RF(7)

Source 0000 0000 0111 0101 0011 0000 s~DBbus

Destination 0000 1001 0011 1011 0100 1001 RF(7) ~ R+S+Cn

Source 1010 1001 1001 1010 0000 1110 MO shifter~ MO register

Destination 0101 0011 0011 0100 0001 1100 MO register~ MO shifter

2-73

MQSRA Pass (V ~ F) with Arithmetic Right MQ Shift

FUNCTION

Passes the result of the ALU instruction specified in the
lower nibble of the instruction field to Y. Performs a
arithmetic right shift on MO.

DESCRIPTION

The result of the arithmetic or logical operation specified
in the lower nibble of the instruction field (13-10) is passed
unshifted to Y.

The contents of the MO register are shifted one bit to the
right. The sign bit of the most-significant package is
retained. Bit 0 is passed through 0100-0107 to bit 7 of the
next-most-significant package. Bit 0 of the least
significant package is dropped.

The shift may be made conditional on SSF. If SSF is high
or floating, the shift result will be sent to the MO register.
If SSF is low, the MO register will not be altered.

* A list of ALU operations that can be used with this instruction is
given on page 2-9.

Shift Operations

ALU Shifter

None

Available Destination Operands
ALU Shifter:

RF (C3-CO) RF (83-80) Y-Port

• •

DATA FLOW

MSP

2-74

MO Shifter

Arithmetic Right

IP

Control/Data Signals

User
Signal Programmable Use

SSF Yes Passes shift result if high or floating;
retains MO without shift if low.

SIOO No Output value of LSP's SIOO is LSB of
MQ shifter (inverted).

SI07 No Inactive

QIOO No Link cascaded MO shifters. Output
0107 No value of LSP's QIOO is LSB of MQ

shifter (inverted).

Cn No Affects arithmetic operation
specified in bits 13-10 of instruction
field.

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO 1 if result = 0
N 1 if MSB of result = 1

0 if MSB of result = 0
OVR 1 if signed arithmetic overflow
Cn+a 1 if carry-out = 1

If logic instruction specified in 13-10:

ZERO
N

OVR
Cn+a

1 if result = 0
1 if MSB of result = 1
0 if MS8 of result = 0
0
0

t Cn +8 is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

SERIAL DATA OUT

LSP

Pass (Y ~ F) with Arithmetic Right MO Shift MQSRA

EXAMPLE (assumes a 24-bit cascaded system)

Add data in register 1 to data in register 10 with carry-in and store the unshifted result in register 1. Shift the contents ofthe
MO register one bit to the right, retaining the sign bit.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-BO EA EB1-EBO C3-CO WE SELY OEY Cn

1010 0001 0001 1010 0 00 0001 0 0 1 1

Assume register file 1 holds 08C61815, DB bus holds 00753015, and MO register holds A99AOE15.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 0000 1000
I I

1100 0110
I I

0001 1000 R+-RF(1)

Source 0000 0000
I I

0111 0101
I I

0011 0000 S +-- RF(10)

Destination 0000 1001
I I

0011 1011
I I

0100 1001 RF(1)+-R+S+Cn

Source 1010 1001
I I 1001 1010

I I
0000 1110 MO shifter+-- MO register

Destination 1101 0100
I I

1100 1101
I I

0000 0111 MO register+-- MO shifter

2-75

MQSRL Pass (Y +-- F) with Logical Right MO Shift

FUNCTION

Passes the result of the ALU instruction specified in the
lower nibble of the instruction field to Y. Performs a right
shift on MO.

DESCRIPTION

The result of the arithmetic or logical operation specified
in the lower nibble of the instruction field (13-10) is passed
unshifted to Y.

The contents of the MO register are shifted one bit to the
right. A zero is placed in the sign bit of the most-significant
package unless 0107 is set to zero; this will force the sign
bit to 1. Bit 0 is passed through 0100-0107 to bit 7 of the
next-most-significant package. Bit 0 of the least
significant package is dropped.

The shift may be made conditional on SSF. If SSF is high
or floating, the shift result will be sent to the MO register.
If SSF is low, the MO register will not be altered.

* A list of ALU operations that can be used with this instruction is
given on page 2-9.

Shift Operations

ALU Shifter

None

Available Destination Operands
ALU Shifter:

RF (C3-CO) RF (83-80) Y-Port

• •

DATA FLOW

MSP

SERIAL DATA IN

2-76

MO Shifter

Logical Right

IP

Control/Data Signals

User
Signal Programmable Use

SSF Yes Passes shift result if high or floating;
retains MO without shift if low.

SIOO No Output value of LSP's SIOO is LS8 of
MO shifter (inverted).

5107 No Inactive

0100 No Link cascaded MO shifters. 0107 fills
0107 Yes a zero into MS8 of MO register if

high or floating; sets MS8 to one if
low.

Cn No Affects arithmetic operation
specified in bits 13-10 of instruction
field.

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO 1 if result = 0
N 1 if MS8 of result = 1

0 if MS8 of result = O
OVR 1 if signed arithmetic overflow
Cn +8 1 if carry-out = 1

If logic instruction specified in 13-10:

ZERO
N

OVR
Cn+a

1 if result = 0
1 if MS8 of result = 1
0 if MS8 of result = O
0
0

t Cn + 8 is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

SERIAL DATA OUT

LSP

Pass (Y ~ F) with Logical Right MQ Shift MQSRL

EXAMPLE (assumes a 24-bit cascaded system)

Add data in register 1 to data on the DB bus with carry-in and store the unshifted result in register 1. Shift the contents of the
MO register one bit to the left.

Instruction Operand Operand Operand End Destination Destination
Code Address Address Select Fill Address Select Carry-in
17-10 A3-AO B3-BO C3-CO EA EB1-EBO SIOO WE SELY OEY Cn

1011 0001 0001 xxxx 0 10 1 0001 0 0 1 1

Assume register file 1 holds 08C61815, DB bus holds 00753015, and MO register holds A99AOE15.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 0000 1000 11000110 0001 1000 R+-RF(1)

Source 0000 0000 0111 0101 0011 0000 S+-DB bus

Destination 0000 1001 0011 1011 0100 1001 RF(1)+-R+S+Cn

Source 1010 1001 1001 1010 0000 1110 MQ shifter+- MQ register

Destination 0101 0100 1100 1101 0000 0111 MQ register+- MQ shifter

2-77

NANO Logical NANO (R NANO S)

FUNCTION

Evaluates the logical expression R NANO S.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE

v

C3-CO

83-BO

Data on the R bus is NANDed with data on the S bus. The
result appears at the ALU and MO shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-78

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

• •
Available S Bus Source Operands

RF (83-BO) DB Port MO Register

• • •
Available Destination Operands

RF (C3-CO) RF (83-BO) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

A3-AO

C3-CO Mask

Shift Operations

ALU MO

• •

SSF No Affect shift instructions programmed
SIOO No in bits 17-14 of instruction field.
5107 No
0100 No
0107 No

Cn Inactive

Status Signalst

ZERO 1 if result = 0
N 1 if MSB = 1
OVR 0
Cn+a 0

t Cn+a is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

Logical NANO (R NANO S) NANO

EXAMPLE (assumes a 24-bit cascaded system)

Logically NAND the contents of register 3 and register 5 and store the result in register 5.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in

-
17-10 A3-AO 83-80 EA E81-E80 C3-CO WE SELY OEY Cn

11111100 0011 0101 0 00 0101 0 0 1 x

Assume register file 3 holds F6D840,5 and register file 5 holds F6D84215.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 1111 0110
I I

1101 1000
I I

0100 0000 R~RF(3)

Source 1111 0110
I I

1101 1000
I I

0100 0010 s~RF(5)

Destination 0000 1001
I I

0010 0111
I I 1011 1111 RF(5) ~ R NANO S

2-79

NOP No Operation

FUNCTION

Forces ALU output to zero.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE

y

C3-CO

83-BO

This instruction forces the ALU output to zero. The BCD
flip-flops retain their old value. Note that the clear
instruction (CLR) forces the ALU output to zero and clears
the BCD flip-flops.

2-80

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

Available S Bus Source Operands

RF (83-80) DB Port MO Register

Available Destination Operands

RF (C3-CO) RF (83-BO) Y Port

• •
Status Signals

I
~ERO 6
OVR 0
Cn+8 0

IFIFI

A3-AO

C3-CO Mask

Shift Operations

ALU MO

None None

IFIFI

EXAMPLE (assumes a 24-bit cascaded system)

Clear register 12.

Instruction Operand Operand
Code Address Address
17-10 A3-AO 83-80

,,,, ,,,, xxxx xxxx

Most
Significant

Package

Destination 0000 0000

No Operation

Operand
Select

EA E81-E80

x xx

Next Most
Significant

Package

I I
0000 0000

NOP

Destination Destination
Address Select Carry-in

C3-CO WE SELY OEY Cn

, 100 0 0 , x

Least
Significant

Package

I I
0000 0000 RF(12)~0

2-81

NOR Logical NOR (R NOR S)

FUNCTION

Evaluates the logical expression R NOR S.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE

y

C3-CO

83-80

Data on the R bus is NORed with data on the S bus. The
result appears at the ALU and MO shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-82

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

• •
Available S Bus Source Operands

RF (83-BO) DB Port MQ Register

• • •
Available Destination Operands

RF (C3-CO) RF (83-80) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

A3-AO

C3-CO Mask

Shift Operations

ALU MQ

• •

SSF No Affect shift instructions programmed
SIOO No in bits 17-14 of instruction field.
Sl07 No
QIOO No
QI07 No

Cn No Inactive

Status Signalst

ZERO 1 if result = 0
N 1 if MSB = 1
OVR 0
Cn+B 0

t Cn +Bis ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

Logical NOR (R NOR S) NOR

EXAMPLE (assumes a 24-bit cascaded system)

Logically NOR the contents of register 3 and register 5 and store the result in register 5.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-80 EA E81-E80 C3-CO WE SELY OEY Cn

1111 1011 0011 0101 0 00 0101 0 0 1 x

Assume register file 3 holds F60840,s and register file 5 holds F6084215.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 1111 0110
I I

1101 1000
I I

0100 0000 R +--- RF(3)

Source 1111 0110
I I

1101 1000
I I

0100 0010 S +--- RF(5)

Destination 0000 1001
I I

0010 0111
I I

1011 1101 RF(5) +--- R NOR S

2-83

OR Logical OR (R OR S)

FUNCTION

Evaluates the logical expression R OR S.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE

y

C3-CO

83-BO

DB

Data on the R bus is ORed with data on the S bus. The
result appears at the ALU and MO shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-84

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

• •
Available S Bus Source Operands

RF (83-80) DB Port MO Register

• • •
Available Destination Operands

RF (C3-CO) RF (83-BO) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

A3-AO

C3-CO Mask

Shift Operations

ALU MO

• •

SSF No Affect shift instructions programmed
5100 No in bits 17-14 of instruction field.
5107 No
0100 No
0107 No

Cn No Inactive

Status Signalst

ZERO 1 if result = 0
N 1 if MSB = 1
OVR 0
Cn+a 0

t Cn+a is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

Logical OR (R OR S) OR

EXAMPLE (assumes a 24-bit cascaded system)

Logically OR the contents of register 5 and register 3 and store the result in register 3.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-BO EA EB1-EBO C3-CO WE SELY OEY Cn

1111 1011 0101 0011 0 00 0011 0 0 1 x

Assume register file 3 holds F6084015 and register file 5 holds F6D84215.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 1111 0110
I I

1101 1000
I I 0100 0010 R~RF(5)

Source 1111 0110
I I

1101 1000 I I 0100 0000 s~RF(3)

Destination 1111 0110
I I

1101 1000
I I

0100 0010 RF(3)~R ORS

2-85

PASS PASS (Y +-F)

FUNCTION

Passes the result of the ALU instruction specified in the
lower nibble of the instruction field to Y.

DATA FLOW

A3-AO
REGISTER

FILE

y

C3-CO

83-80

" "Arithmetic/logic function specified in 13-10

DESCRIPTION

The result of the arithmetic or logical operation specified
in the lower nibble of the instruction field (13-10) is passed
unshifted to Y.

* A list of ALU operations that can be used with this instruction is
given on page 2-9.

2-86

Available Destination Operands

RF (C3-CO) RF (83-80) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

SSF No Inactive
5100 No Inactive
5107 No Inactive
QIOO No Inactive
QI07 No Inactive

Shift Operations

ALU MQ

None None

Cn No Affects arithmetic operation
specified in bits 13-10 of instruction
field.

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO 1 if result = 0
N 1 if MS8 of result = 1

0 if MS8 of result = 0
OVR 1 if signed arithmetic overflow
Cn +a 1 if carry-out condition

If logic instruction specified in 13-10:

ZERO 1 if result = 0
N 1 if MS8 of result = 1

0 if MS8 of result = 0
OVR 0
Cn+S 0

t Cn+S is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

Pass(Y~F) PASS

EXAMPLE (assumes a 24-bit cascaded system)

Add data in register 1 to data on the DB bus with carry-in and store the unshifted result in register 10.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-BO EA EB1-EBO C3-CO WE SELY OEY Cn

1111 0001 0001 xxxx 0 10 1010 0 0 1 1

Assume register file 3 holds 08C6181s and DB bus holds 00753015.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 0000 1000
I I

1100 0110
I I

0001 1000 R~ RF(1)

Source 0000 0000
I I

0111 0101
I I

0011 0000 s~DBbus

Destination 0000 1001
I I

0011 1011
I I

0100 1001 RF(10)~R+S+Cn

2-87

SDIVI Signed Divide Iterate IAIOI

FUNCTION

Performs one of N-2 iterations of nonrestoring signed
division by a test subtraction of the N-bit divisor from the
2N-bit dividend. A description of nonrestoring signed
division and an algorithm using this instruction are given
in section 2.3.1.

DESCRIPTION

5DIVI performs a test subtraction of the divisor from the
dividend to generate a quotient bit. The test subtraction
passes if the remainder is positive and fails if negative. If it
fails, the remainder will be corrected during the next
instruction.

5DIVI tests 55F, which holds the pass/fail result of the test
subtraction from the previous instruction, and evaluates

F ~ R + 5 if 55F = 0
F~R + 5 + Cn if 55F = 1.

A double precision left shift is performed; bit 7 of the
most-significant package of the MO shifter is transferred
through 5107-5100 to bit 1 of the least-significant package
of the ALU shifter. Bit 7 of the most-significant package of
the ALU shifter is lost. The unfixed quotient bit is
circulated into the least-significant bit of MO through
0107-0100.

The R bus must be loaded with the divisor, the 5 bus with
the most-significant half of the result of the previous
instruction (5DIVI during iteration or 5DIVl5 at the
beginning of iteration). The least-significant half of the
previous result is in the MO register. Carry-in should be
programmed high. Overflow occurring during 5DIVI is
reported to OVF at the end of the signed divide routine
(after 5DIVOF).

DATA FLOW

MSP

2-88

IP

Available R Bus Source Operands

A3-AO
A3-AO

RF (A3-AO) Immediate DA Port C3-CO Mask

• •
Recommended S Bus Source Operands

RF (83-80) DB Port MO Register

• •
Recommended Destination
Operands Shift Operations

RF (C3-CO) RF (83-BO) Y Port ALU MO

• Left Left

Control/Data Signals

User
Signal Programmable Use

SSF No Preserves result of test subtraction
for next instruction.

SIOO No Link cascaded ALU shifters. Output
Sl07 No value of MS P's SI07 is MSB of MO

shifter (inverted).

0100 No Link cascaded MO shifters. Output
0107 No value of MSP's 0107 is unfixed

quotient sign result.

Cn Yes Should be programmed high.

Status Signals

ZERO 1 if intermediate result = 0
N 0
OVR 0
Cn +a 1 if carry-out

LSP

IBIOI Signed Divide Initialize SDIVIN

FUNCTION

Initializes 'AS888 for nonrestoring signed division by
shifting the dividend left and internally preserving the
sign bit. A description of non restoring signed division and
an algorithm using this instruction are given in section
2.3.1.

DESCRIPTION

This instruction prepares for signed divide iteration
operations by shifting the dividend and storing the sign
for future use.

The preceding instruction should load the MO register
with the least-significant half of the dividend. During
SDIVIN, the S bus should be loaded with the most
significant half of the dividend, and the R bus with the
divisor. Y-output should be written back to the register file
for use in the next instruction.

A double precision logical left shift is performed; bit 7 of
the most-significant package of the MO shifter is
transferred through SI07-SIOO to bit 0 of the least
significant package of the ALU shifter. Bit 7 of the most
significant package of the ALU shifter is lost. The unfixed
quotient sign bit (OBT) is shifted into the least-significant
bit of MO through 0107-0100. SSF preserves the
dividend's sign bit.

DATA FLOW

MSP IP

Available R Bus Source Operands

A3-AO
A3-AO

RF (A3-AO) Immediate DA Port C3-CO Mask

• •
Recommended S Bus Source Operands

RF (83-BO) DB Port MO Register

• •
Recommended Destination
Operands Shift Operations

RF (C3-CO) RF (83-BO) Y Port ALU MQ

• Left Left

Control/Data Signals

User
Signal Programmable Use

SSF No Preserves dividend's sign bit.

SIOO No Link cascaded ALU shifters. Output
5107 No value of MSP's 5107 is MSB of MQ

shifter (inverted).

QIOO No Link cascaded MQ shifters. Output
0107 No value of MSP's 0107 is unfixed

quotient sign (QBT).

Cn No Inactive

Status Signals

ZERO 1 if divisor = 0
N 0
OVR 0
Cn+B 0

LSP

2-89

SDIVIS Signed Divide Start 19 IOI

FUNCTION

Computes the first quotient bit of nonrestoring signed
division. A description of nonrestoring signed division
and an algorithm using this instruction are given in
section 2.3.1.

DESCRIPTION

SDIVIS computes the first quotient bit during
nonrestoring signed division by subtracting the divisor
from the dividend, which was left-shifted during the prior
SDIVIN instruction. The resulting remainder due to
subtraction may be negative; SSF is used to signal the
subsequent SDIVI instruction to restore the remainder
during the next subtraction.

The R bus must be loaded with the divisor and the S bus
with the most-significant halfofthe remainder. The result
on the Y bus should be loaded back into the register file for
use in the next instruction. The least-significant half of the
remainder is in the MO register. Carry-in should be
programmed high.

SDIVIS computes

F ~ R + S if SSF = 0
F ~R + S + Cn if SSF = 1

A double precision left shift is performed; bit 7 of the
most-significant package of the MO shifter is transferred
through 5107-SIOO to bit 0 ofthe least-significant package
of the ALU shifter. Bit 7 of the most-significant package of
the ALU shifter is lost. The unfixed quotient bit is
circulated into the least-significant bit of MO through
0107-0100.

Overflow occurring during SDIVIS is reported to OVF at
the end of the signed division routine (after SDIVOF).

DATA FLOW

MSP

2-90

IP

Available R Bus Source Operands

A3-AO
A3-AO

RF (A3-AO) Immediate DA Port C3-CO Mask

• •
Recommended S Bus Source Operands

RF (83-80) DB Port MO Register

• •
Recommended Destination
Operands Shift Operations

RF (C3-CO) RF (83-80) Y Port ALU MO

• Left Left

Control/Data Signals

User
Signal Programmable Use

SSF No Preserves result of test subtraction
for next instruction.

SIOO No Link cascaded ALU shifters. Output
SI07 No value of MSP's Sl07 is MSB of MO

shifter (inverted).

0100 No Link cascaded MO shifters. Output
0107 No value of MSP's 0107 is unfixed

quotient sign (OBT).

Cn Yes Should be programmed high.

Status Signals

ZERO 1 if intermediate result = 0
N 0
OVR 0
Cn+S 1 if carry out

LSP

I EIOI Signed Divide Terminate SDIVIT

FUNCTION

Solves the final quotient bit during nonrestoring signed
division. A description of nonrestoring signed division
and an algorithm using this instruction are given in
section 2.3.1.

DESCRIPTION

SDIVIT performs the final subtraction of the divisor from
the remainder during nonrestoring signed division.
SDIVIT is preceded by N-2 iterations of SDIVI, where N is
the number of bits in the dividend.

The R bus must be loaded with the divisor, the S bus must
be loaded with the most-significant half of the result of the
last SDIVI instruction. The least-significant half lies in the
MO register. The Y bus result must be loaded back into the
register file for use in the subsequent DIVRF instruction.
Carry-in should be programmed high.

SDIVIT tests SSF, which holds the pass/fail result of the
previous instruction's test subtraction, and evaluates

Y ~ R + S if SSF = 0
Y ~ R + S + Cn if SSF = 1.

The contents of the MO register are shifted one bit to the
left; the unfixed quotient bit is circulated into the least
significant bit through 0107-QIOO.

SSF is used to indicate to all slices whether the remainder
must be corrected in the subsequent instruction.
Overflow during this instruction is reported to OVF at the
end of the signed division routine (after SDIVQF).

DATA FLOW

MSP IP

Available R Bus Source Operands

A3-AO
A3-AO

RF (A3-AO) Immediate DA Port C3-CO Mask

• ""'.'." .
Recommended S Bus Source Operands

RF (83-BO) DB Port MQ Register

• •
Recommended Destination
Operands Shift Operations

RF (C3-CO) RF (83-BO) Y Port

•
ALU MQ

Left Left

Control/Data Signals

User
Signal Programmable Use

SSF No Indicates whether remainder fix is
required in next instruction.

SIOO No Inactive
SI07 No Inactive

QIOO No Link cascaded MQ shifters. Output
0107 No value of MSP's QI07 is unfixed

quotient sign (QBT).

Cn Yes Should be programmed high

Status Signals

ZERO 1 if intermediate result = 0
N 0
OVR 0
Cn +a 1 if carry-out

LSP

2-91

SDIVO Signed Divide Overflow Test IAIFI

FUNCTION

Tests for overflow during non restoring signed division. A
description of nonrestoring signed division and an
algorithm using this instruction are given in section 2.3.1.

DATA FLOW

A3-AO
REGISTER

FILE

v

** R + S + 0 if SSF = 0
R + S + 1 if SSF = 1

DESCRIPTION

C3-CO

83-BO

DB

SSF

This instruction performs an initial test subtraction of the
divisor from the dividend. If overflow is detected, it is
preserved internally and reported at the end of the divide
routine (after SDIVOF). If overflow status is ignored, the
SDIVO instruction may be omitted.

The divisor must be loaded onto the R bus; the most
significant half of the previous SDIVIN result must be
loaded onto the S bus. The least-significant half is in the
MO register. The instruction tests SSF (sign of dividend)
and then evaluates

Y ~ R + S if SSF = 0
Y ~ R + S + Cn if SSF = 1.

The result on the Y bus should not be stored back into the
register file; WE should be programmed high.

Carry-in should also be programmed high. SSF is used to
preserve the sign bit.

2-92

Available R Bus Source Operands

A3-AO
A3-AO

RF (A3-AO) Immediate DA Port C3-CO Mask

• •
Recommended S Bus Source Operands

RF (83-BO) DB Port MO Register

• •
Recommended Destination
Operands Shift Operations

RF (C3-CO) RF (83-BO) Y Port ALU MO

• None None

Control/Data Signals

User
Signal Programmable Use

SSF No Preserves dividend's sign bit from
previous instruction.

SIOO No Inactive
Sl07 No Inactive
OIOO No Inactive
0107 No Inactive
Cn Yes Should be programmed high.

Status Signals

ZERO 1 if divisor = 0
N 0
OVR 0
Cn +a 1 if carry out

15101 Signed Divide Quotient Fix SDIVOF

FUNCTION

Tests the quotient result after nonrestoring signed
division and corrects it if necessary. A description of
nonrestoring signed division and an algorithm using this
instruction are given in section 2.3.1.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE

v

C3-CO

83-80

SDIVQF is the final instruction required to compute the
quotient of a 2N-bit dividend by an N-bit divisor. It corrects
the quotient if the signs of the divisor and dividend are
different and the remainder is nonzero.

SSF is used to signal to all slices that correction is needed.
The fix is implemented by adding SSF to S:

Y ~ S + 1 if SSF = 1
Y ~ S + 0 if SSF = 0.

The R bus must be loaded with the divisor, and the S bus
with the most-significant half of the result of the
preceding DIVRF instruction. The least-significant half is
in the MO register.

Available R Bus Source Operands

A3-AO
A3-AO

RF (A3-AO) Immediate DA Port C3-CO Mask

• •
Recommended S Bus Source Operands

RF (83-BO) DB Port MO Register

• •
Recommended Destination
Operands Shift Operations

RF (C3-CO) RF (83-80) Y Port ALU MO

• • None None

Control/Data Signals

User
Signal Programmable Use

SSF No Indicates whether quotient fix is
required in this instruction; inactive
at end of instruction cycle.

SIOO No Inactive
5107 No Inactive
0100 No Inactive
0107 No Inactive
Cn No Inactive

Status Signals

ZERO 1 if quotient = 0
N 1 if sign of quotient = 1

0 if sign of quotient = O
OVR 1 if divide overflow
Cn +a 1 if carry-out

2-93

SEL Select S/R 111 o I

FUNCTION

Selects S if SSF is high; otherwise selects R.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE

y

C3-CO

83-BO

Data on the S bus is passed to Y if SSF is programmed
high or floating; data on the R bus is passed with carry to Y
if SSF is programmed low.

2-94

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

• •
Available S Bus Source Operands

RF (83-BO) DB Port MO Register

• • •
Available Destination Operands

RF (C3-CO) RF (83-BO) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

A3-AO

C3-CO Mask

Shift Operations

ALU MQ

None None

SSF Yes Selects S if high, R if low.
SIOO No Inactive
SI07 No Inactive
0100 No Inactive
0107 No Inactive
Cn Yes Increments R if programmed high.

Status Signals

ZERO 1 if result = 0
N 1 if MSB = 1
OVR 0
Cn+a 0

111 o I Select S/R SEL

EXAMPLE (assumes a 24-bit cascaded system)

Compare the two's complement numbers in registers 1 and 3 and store the larger in register 5.
1) Subtract (SUBS) data in register 3 from data in register 1 and pass the result to the Y bus.
2) Perform Select S/R instruction and pass result to register 5.

(This example assumes that SSF is set by the negative status (N) from the previous instruction).

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO B3-BO EA EB1-EBO C3-CO WE SELY OEY Cn

1111 0011 0001 0011 0 00 xx xx 1 x x 1
0001 0000 0001 0011 0 00 0101 0 0 1 0

Assume register file 1 holds 0084D01s and register file 3 holds 01C35016·

Most Next Most Least
Significant Significant Significant

Package Package Package
Byte 2 Byte 1 Byte 0

(selected) (selected) (not selected)
Instruction
Cycle 1:

Source 0000 0000
I I

1000 0100
I I

1101 0000
I

R+-RF(1)

Source 0000 0001
I I

1100 0011
I I

0101 0000
I

S +-- RF(3)

Destination 1111 1110
I I

1100 0001
I I

1000 0000
I

Y Bus+-- R + S + Cn

[] N +-1

Instruction
Cycle 2:

Source 0000 0000
I I

1000 0100
I I

1101 0000
I

R +-RF(1)

[] SSF+-1

Source 0000 0001
I I

1100 0011
I I

0101 0000
I

S+-RF(3)

Destination 0000 0001
I I

1100 0011
I I

0101 0000
I

RF(5)+-S

2-95

SETO Reset Bit 11181

FUNCTION

Resets bits in selected bytes of S-bus data using mask in
C3-CO: :A3-AO.

DATA FLOW

A3-AO

y

DESCRIPTION

REGISTER
FILE ...-----+-----,

~------, :
I I

SOURCE/
DESTINATION

< ~
I
I
I

The register addressed by 83-80 is both the source and
destination for this instruction. The source word is passed
on the S bus to the ALU, where it is compared to an 8-bit
mask, consisting of a concatenation of the C3-CO and A3-
AO address ports (C3-CO: :A3-AO). The mask is input via
the R bus. All bits in the source word that are in the same
bit position as ones in the mask are reset. Slices with SIOO
programmed low perform the Reset Bit instruction. Slices
with SIOO programmed high or floating pass S unaltered.

2-96

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

Available S Bus Source Operands

RF (B3-BO) DB Port MQ Register

•
Available Destination Operands

RF (C3-CO) RF {B3-BO) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

SSF No Inactive
SIOO No Byte-select
5107 No Inactive
QIOO No Inactive
0107 No Inactive
Cn No Inactive

Status Signals

A3-AO

C3-CO Mask

•

Shift Operations

ALU MQ

None None

ZERO
N
OVR
Cn+s

1 if result {selected bytes) = 0
0
0
0

111 Bl Reset Bit SETO

EXAMPLE (assumes a 24-bit cascaded system)

Set bits 3-0 of bytes 1 and 2 of register file 8 to zero and store the result back in register 8.

Operand and
Instruction Mask Destination Mask Operand Byte Destination

Code (LSH) Address (MSH) Select Select Select Carry-in
17-10 A3-AO B3-BO C3-CO EA EB1-EBO SIOO WE SELY OEY Cn

1001 1000 1111 1000 0000 x 00 001 0 0 1 x

Assume register file 8 holds 83BEBE15.

Most Next Most Least
Significant Significant Significant

Package Package Package
Byte 2 Byte 1 Byte 0

(selected) (selected) (not selected)

Mask 0000 1111 0000 1111
I I

0000 1111 Rn~ C3-CO: :A3-AO

Source 1000 0011 1011 1110
I I

1011 1110 Sn~ RF(3lr,

ALU 1000 0000 1011 0000
I I

1011 0000 Fn~Sn AND Rn

Destination 1000 0000 1011 0000
I I

1011 1110 RF(Bln ~ Fn or Sn t

t F = ALU result
n = nth package
Register file 8 gets F if byte selected, S if byte not selected.

2-97

SETI Set Bit IDIBI

FUNCTION

Sets bits in selected bytes of S-bus data using mask in
C3-CO: :A3-AO.

DATA FLOW

A3-AO
o'v------------~ w
0
0

y

DESCRIPTION

REGISTER
FILE .------to-----,

I
r-----t-- - - - , I

I I

SOURCE/
DESTINATION

., ,
I
I
I

83-80

The register addressed by 83-80 is both the source and
destination for this instruction. The source word is passed
on the S bus to the ALU, where it is compared to an 8-bit
mask, consisting of a concatenation of the C3-CO and A3-
AO address ports (C3-CO: :A3-AO). The mask is input via
the R bus. All bits in the source word that are in the same
bit position as ones in the mask are forced to a logical one.
Slices with SIOO programmed low perform the Set Bit
instruction. Slices with SIOO programmed high or floating
pass S unaltered.

2-98

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

Available S Bus Source Operands

RF (B3-BO) DB Port MO Register

•
Available Destination Operands

RF (C3-CO) RF (B3-BO) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

SSF No Inactive
5100 Yes Byte-select
5107 No Inactive
0100 No Inactive
0107 No Inactive
Cn No Inactive

Status Signals

A3-AO

C3-CO Mask

•

Shift Operations

ALU MO

None None

ZERO 1 if result (selected bytes) = 0
N 0
OVR 0
Cn+a 0

IDIBI Set Bit

EXAMPLE (assumes a 24-bit cascaded system)

Set bits 3-0 of byte 1 of register file 1 to one and store the result back in register 1.

Operand and
Instruction Mask Destination Mask

Code (LSH) Address (MSH)

17-10 A3-AO B3-BO C3-CO

0000 1000 1111 0001 0000

Assume register file 1 holds 83BEBE15.

t F = ALU result
n = nth package

Mask

Source

ALU

Destination

Most
Significant

Package
Byte 2

(not selected)

0000 1111

1000 0011

1001 1111

1000 0011

Operand
Select

EA EB1-EBO

x 00

Next Most
Significant

Package
Byte 1

(selected)

0000 1111

1011 1110

1011 1111

1011 1111

Register file 1 gets F if byte selected, S if byte not selected.

Byte
Select
SIOO WE

101 0

Least
Significant

Package
Byte 0

(not selected)

0000 1111

1011 1110

1011 1111

1011 1110

SETI

Destination
Select Carry-in
SELY OEY Cn

0 1 x

Rn~ (C3-CO: :A3-AO)

Sn~RF(1ln

2-99

SLA Arithmetic Left Single Precision Shift

SHIFT FUNCTION

Performs arithmetic left shift on result of ALU operation
specified in lower nibble of instruction field.

DESCRIPTION

The result of the ALU operation specified in instruction
bits 13-10 is shifted one bit to the left. A zero is filled into bit
0 of the least significant package unless SIOO is
programmed low; this will force bit 0 to one. Bit 7 is
passed through 5107-SIOO to bit 0 of the next-most
significant package. Bit 7 of the most-significant package
is dropped.

The shift may be made conditional on SSF. If SSF is high
or floating, the shift result will be sent to Y. If SSF is low, F
will be passed unaltered.

* A list of ALU operations that can be used with this instruction is
given on page 2-9.

Shift Operations

ALU Shifter

Arithmetic Left

Available Destination Operands
ALU Shifter:

RF (C3-CO) RF (83-80) Y-Port

• •

DATA FLOW

MSP

2-100

MO Shifter

None

IP

Control/Data Signals

User
Signal Programmable Use

SSF Yes Passes shift result if high or
floating; passes ALU result if low.

SIOO Yes Link cascaded ALU shifters. SIOO
Sl07 No fills a zero in LS8 of ALU shifter if

high or floating; sets MS8 to one if
low.

0100 No Link cascaded MO shifters. Output
0107 No value of MSP's 0107 is MS8 of ALU

shifter (inverted).

Cn No Affects arithmetic operation
specified in bits 13-10 of instruction
field.

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO
N

1 if result = 0
1 if MS8 of result = 1
0 if MS8 of result = O

OVR 1 if signed arithmetic overflow or if ALU result
MS8 XOR MS8-1 = 1

Cn+B 1 if carry-out condition

If logic instruction specified in 13-10:

ZERO 1 if result = 0
N 1 if MS8 of result = 1

O if MS8 of result = 0
OVR 0
Cn+B 0

t Cn +Bis ALU carry out and is evaluated before shift operation .
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

SERIAL DATA INPUT

LSP

Arithmetic Left Single Precision Shift SLA

EXAMPLE (assumes a 24-bit cascaded system)

Perform the computation A = 2(A + B), where A and Bare single precision, two's complement numbers. Let A be stored in
register 1 and B be input via the DB bus.

Instruction Operand Operand Operand End
Code Address Address Select Fill
17-10 0001 B3-BO EA EB1-EBO SIOO

0100 0001 0001 xx xx 0 10 0

Assume register file 1 holds 08C61815 and DB bus holds 00753016·

Most Next Most
Significant Significant

Package Package

Source 0000 1000 11000110

Source 0000 0000 0111 0101

Intermediate 0000 1001 0011 1011
Result

Destination 0001 0010 0111 0110

Destination
Address

C3-CO WE

0001 0

Least
Significant

Package

0001 1000

0011 0000

0100 1000

1001 0000

I
I

Destination
Select Carry-in
SELY OEY Cn

0 1 0

R-RF(1)

s-DB bus

ALU Shifter - R + S + Cn

RF(1) -ALU shift result

2-101

SLAD Arithmetic Left Double Precision Shift

FUNCTION

Performs arithmetic left shift on MO register (LSH) and
result of ALU operation specified in lower nibble of
instruction field (MSH).

DESCRIPTION

The result of the ALU operation specified in instruction
bits 13-10 is used as the upper half of a double precision
word; the contents of the MO register as the lower half.

The contents of the MO register are shifted one bit to the
left. A zero is filled into bit 0 of the least-significant
package unless SIOO is set to zero; this will force bit 0 to
one. Bit 7 is passed through 0107-0100 to bit 0 of the next
most significant package. Bit 7 of the most-significant
package is passed through 0107-0100 to to bit 0 of the
least-significant package of the ALU. Bit 7 of the least
significant package's ALU is passed through 5107-SIOO to
bit 0 of the next-most-significant package. Bit 7 of the
most-significant-package is dropped.

The shift may be made conditional on SSF. If SSF is high
or floating, the shift result will be sent to Y and the MO
register. If SSF is low, F will be passed unaltered, and the
MO register will not be changed.

* A list of ALU operations that can be used with this instruction is
given on page 2-9.

Shift Operations

ALU Shifter MO Shifter

Arithmetic Left Arithmetic Left

DATA FLOW

MSP

2-102

IP

Available Destination Operands
ALU Shifter:

RF (C3-CO) RF (83-BO) Y-Port

• •
Control/Data Signals

User
Signal Programmable Use

SSF Yes Passes shift result if high or
floating; passes ALU result and
retains MO register if low.

SIOO Yes Link cascaded ALU shifters. SIOO
5107 No fills a zero in LSB of MO shifter if

high or floating; sets LSB to one if
low.

OIOO No Link cascaded MO shifters. Output
0!07 No value of MSP's 0107 is MSB of MO

shifter (inverted).

Cn No Affects arithmetic operation
specified in bits 13-10 of instruction
field.

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO 1 if result = 0
N 1 if MSB of result = 1

0 if MSB of result = 0
OVR 1 if signed arithmetic overflow or if ALU result

MSB XOR MSB-1 = 1
Cn +a 1 if carry-out condition

If logic instruction specified in 13-10:

ZERO
N

OVR
Cn+a

1 if result = 0
1 if MSB of result = 1
0 if MSB of result = 0
0
0

t Cn+B is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

SERIAL DATA INPUT

LSP

Arithmetic Left Double Precision Shift SLAD

EXAMPLE (assumes a 24-bit cascaded system)

Perform the computation A = 2(A+ B), where A and Bare two's complement numbers. Let A be a double precision
number residing in register 1 (MSH) and the MO register (LSH). Let B be a single precision number which is input through
the DB bus.

Instruction Operand Operand Operand End Destination Destination
Code Address Address Select Fill Address Select Carry-in
17-10 A3-AO 83-80 EA E81-E80 SIOO C3-CO WE SELY OEY Cn

0101 0001 0001 xx xx 0 10 0 0001 0 0 1 0

Assume register file 1 holds 08C618ts. DB bus holds 007530is and MO register holds A99AOE15.

Most Next Most Least
Significant Significant Significant

Package Package Package
MSH:

Source 0000 1000 11000110 0001 1000 R~RF(1)

Source 0000 0000 0111 0101 0011 0000 s~D8 bus

Intermediate 0000 1001 0011 1011 0100 1000 ALU Shifter~ R + S + C.,
Result

Destination 0001 0010 0111 0110 1001 0001 RF(1) ~ALU shift result

LSH:

Source 1010 1001
I I

1001 1010
I I

0000 1110 MO shifter~ MO register

Destination 0101 0011
I I

0111 0100
I I

0001 1100 MO register~ MO shift result

2-103

SLC Circular Left Single Precision Shift

FUNCTION

Performs circular left shift on result of ALU operation
specified in lower nibble of instruction field.

DESCRIPTION

The result of the ALU operation specified in instruction
bits 13-10 is rotated one bit to the left. Bit 7 of the least
significant package is passed through 5107-SIOO to bit 0
of the next-most significant package. Bit 7 of the most
significant package is passed to bit 0 of the least
significant package.

The shift may be made conditional on SSF. If SSF is high
or floating, the shift result will be sent to Y. If SSF is low, F
will be passed unaltered.

* A list of ALU operations that can be used with this instruction is
given on page 2-9.

Shift Operations

ALU Shifter

Circular Left

Available Destination Operands
ALU Shifter:

RF (C3-CO) RF (B3-BO) Y-Port

• •

DATA FLOW

MSP

2-104

MO Shifter

None

IP

Control/Data Signals

User
Signal Programmable Use

SSF Yes Passes shift result if high or floating;
passes ALU result if low.

SIOO No Link cascaded ALU shifters. Output
5107 No value of MSP's SI07 is MSB of ALU

(inverted).

0100 No Inactive
0107 No Inactive

Cn No Affects arithmetic operation
specified in bits 13-10 of instruction
field.

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO
N

OVR
Cn+S

1 if result = 0
1 if MSB of result = 1
0 if MSB of result = 0
1 if signed arithmetic overflow
1 if carry-out condition

If logic instruction specified in 13-10:

ZERO
N

OVR
Cn+S

1 if result = 0
1 if MSB of result = 1
0 if MSB of result = 0
0
0

t Cn +8 is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

LSP

Circular Left Single Precision Shift SLC

EXAMPLE (assumes a 24-bit cascaded system)

Perform a circular left shift of register 6 and store the result in register 1.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-80 EA E81-E80 C3-CO WE SELY OEY Cn

01100110 0110 xxxx 0 x 0001 0 0 1 0

Assume register file 6 holds 88C61816·

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 1000 1000
I I

11000110
I I 0001 1000 R +-RF(6)

Intermediate 1000 1000
I I

11000110
I I

0001 1000 ALU Shifter+- R+Cn
Result

Destination 0001 0001
I I

1000 1100
I I

0011 0001 RF(1) +-ALU shift result

2-105

SLCD Circular Left Double Precision Shift

FUNCTION

Performs circular left shift on MQ register (L5H) and result
of ALU operation specified in lower nibble of instruction
field (M5H).

DESCRIPTION

The result of the ALU operation specified in instruction
bits 13-10 is used as the upper half of a double precision
word; the contents of the MQ register as the lower half.

The contents of the MQ and ALU registers are rotated one
bit to the left. Bit 7 of the least-significant package of the
MQ register is passed through 0107-0100 to bit 0 of the
next-most-significant package. Bit 7 of the most
significant package is passed through 0107-0100 to bit O
of the least-significant package of the ALU. Bit 7 of the
least-significant package's ALU is passed through 5107-
5100 to bit 0 of the next-most-significant package. Bit 7 of
the most-significant package is passed through 5107-
5100 to bit 0 of the least-significant package's MQ register.

The shift may be made conditional on 55F. If 55F is high
or floating, the shift result will be sent to Y and to the MQ
register. If 55F is low, F is passed unaltered, and the MO
register will not be changed.

* A list of ALU operations that can be used with this instruction is
given on page 2-9.

Shift Operations

ALU Shifter MO Shifter

Circular Left Circular Left

DATA FLOW

MSP

2-106

IP

Available Destination Operands
ALU Shifter:

RF (C3-CO) RF (83-80) Y-Port

• •
Control/Data Signals

User
Signal Programmable Use

SSF Yes Passes shift result if high or floating;
passes ALU result and retains MO
register if low.

SIOO No Link cascaded ALU shifters. Output
SI07 No value of MSP's SI07 is MS8 of ALU

shifter (inverted).

0100 No Link cascaded MO shifters. Output
0107 No value of MSP's 0107 is MS8 of MO

shifter (inverted).

Cn No Affects arithmetic operation
specified in bits 13-10 of instruction
field.

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO 1 if result = 0
N 1 if MS8 of result = 1

O if MS8 of result = 0
OVR 1 if signed arithmetic overflow
Cn +8 1 if carry-out condition

If logic instruction specified in 13-10:

ZERO
N

OVR
Cn+8

1 if result = 0
1 if MS8 of result = 1
O if MS8 of result = 0
0
0

t Cn +8 is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

LSP

Circular Left Double Precision Shift SLCD

EXAMPLE (assumes a 24-bit cascaded system)

Perform a circular left double precision shift of data in register 6 (MSH) and MO (LSH), and store the result back in register 6
and the MO register.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in

-
17-10 A3-AO 83-80 EA E81-E80 C3-CO WE SELY OEY Cn

0111 0110 0110 xx xx 0 xx 0110 0 0 1 0

Assume register file 6 holds 08C6181s and MO register holds A99AOE15.

Most Next Most Least
Significant Significant Significant

Package Package Package
MSH:

Source 0000 1000
I I

1100 0110
I I

0001 1000 R~RF(6)

Intermediate 0000 1000
I I

1100 0110
I I

0001 1000 ALU Shifter~ R + Cn
Result

Destination 0001 0001
I I

1000 1100
I I

0011 0001 RF(6) ~ALU shift result

LSH:

Source 1010 1001
I I

1001 1010
I I

0000 1110 MO shifter~ MO register

Destination 0101 0011
I I

0011 0100
I I

0001 1100 MO register~ MO shift result

2-107

SMTC Sign Magnitude/Two~ Complement 15181

FUNCTION

Converts data on the S bus from sign magnitude to two's
complement or vice versa.

DATA FLOW

Cn

DESCRIPTION

REGISTER
FILE

v

C3-CO

83-80

The S bus is the source word for this instruction. The
number is converted by inverting Sand adding the result
to the carry-in, which should be programmed high for
proper conversion; the sign bit of the result is then
inverted. An error condition will occur if the source word
is a negative zero (negative sign and zero magnitude). In
this case, SMTC generates a positive zero, and the OVR pin
is set high to reflect an illegal conversion.

The sign bit of the selected operand in the most
significant package is tested; if it is high, the SSF pin is
pulled low, and the converted number is passed to the
destination operands. If the SSF pin is high, the operand is
passed unaltered. The SSF signal from the most
significant package is used as an input to all other
packages to determine whether the operand is passed
altered or unaltered.

2-108

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

Available S Bus Source Operands

RF (83-80) DB Port MO Register

• • •
Available Destination Operands

RF (C3-CO) RF (83-BO) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

A3-AO

C3-CO Mask

Shift Operations

ALU MO

None None

SSF No Carries result of sign bit test from
MSP

SIOO No Inactive
Sl07 No Inactive
0100 No Inactive
0107 No Inactive

Cn Yes Should be programmed high for
proper conversion

Status Signals

ZERO 1 if result = 0
N 1 if MSB = 1
OVR 1 if input of most-significant package is 8016

and results in all other packages are 0016.
Cn+B 1 if S = 0

15181 Sign Magnitude/Two~ Complement SMTC

EXAMPLES (assume a 24-bit cascaded system)

Convert the two's complement number in register 1 to signed magnitude representation and store the result in register 4.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-BO EA EB1-EBO C3-CO WE SELY OEY Cn

0101 1000 xxxx 0001 x 00 0100 0 0 1 1

Example 1: Assume register file 1 holds F6084015.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 1111 0110 I I 1101 1000 I I
0100 0000 s~RF(1)

Destination 1000 1001
I I

0010 0111
I I

1100 0000 RF(4) ~s + Cn (sign bit retained)

Example 2: Assume register file 1 holds 0927C015.

Source 0000 1001
I I

0010 0111 I I
1100 0000 s~RF(1)

Destination 0000 1001
I I

0010 0111
I I

1100 0000 RF(4)~S

2-109

SMULi Signed Multiply Iterate 16101

FUNCTION

Computes one of N-1 signed or N mixed multiplication
iterations for computing an N-bit by N-bit product.
Algorithms for signed and mixed multiplication using this
instruction are given in section 2.3.2.

DESCRIPTION

SMULi tests SSF to determine whether the multiplicand
should be added with the present partial product. The
instruction evaluates

F <e- R + S + Cn if SSF = 1
F <e- S if SSF = 0

A double precision right shift is performed. Bit 0 of the
least-significant package of the ALU shifter is passed
through QI00-0107 to bit 7 of the most-significant
package of the MQ shifter; carry-out is passed to the most
significant bit of the ALU shifter.

The S bus should be loaded with the contents of an
accumulator and the R bus with the multiplicand. The Y
bus result should be written back to the accumulator after
each iteration of UMULI. The accumulator should be
cleared and the MQ register loaded with the multiplier
before the first iteration.

DATA FLOW

MSP

2-110

IP

Available R Bus Source Operands

A3-AO
A3-AO

RF (A3-AO) Immediate DA Port C3-CO Mask

• •
Recommended S Bus Source Operands

RF (83-BO) DB Port MO Register

• •
Recommended Destination
Operands Shift Operations

RF (C3-CO) RF (83-BO) Y Port ALU MO

• Right Right

Control/Data Signals

User
Signal Programmable Use

SSF No Indicates whether multiplicand
should be added with partial
product.

SIOO No Link cascaded ALU shifters.
5107 No

0100 No Link cascaded MO shifters. Output
0107 No value of MSP's 0107 is LSB of ALU

shifter (inverted).

Cn Yes Should be programmed low.

Status Signals

ZERO 1 if result = 0
N 1 if MSB = 1
OVR 0
Cn + 8 1 if carry-out

LSP

17 IOI Signed Multiply Terminate SM ULT

FUNCTION

Performs the final iteration for computing an N-bit by N
bit signed product. An algorithm for signed multiplication
using this instruction is given in section 2.3.2.

DESCRIPTION

SMULT tests SSF, which holds the present multiplier bit
(the least-significant bit of the MO register) to determine
whether the multiplicand should be added with the
present partial product. The instruction evaluates

F ~ R + S + Cn if SSF = 1
F ~ S + 0 if SSF = 0

with the correct sign in the product.

A double precision right shift is performed. Bit 0 of the
least-significant package of the ALU shifter is passed
through 0100-0107 to bit 7 of the most-significant
package of the MO shifter.

The S bus must be loaded with the contents of the register
file holding the previous iteration result; the R bus must
be loaded with the multiplicand. After executing SMULT,
the Y bus contains the most-significant half of the product,
and MO contains the least-significant half.

DATA FLOW

MSP IP

Available R Bus Source Operands

A3-AO
A3-AO

RF (A3-AO) Immediate DA Port C3-CO Mask

• •
Recommended S Bus Source Operands

RF (83-80) DB Port MO Register

• •
Shift Operations Available Destination Operands

RF (C3-CO) RF (83-80) Y Port ALU MO

• • Right Right

Control/Data Signals

User
Signal Programmable Use

SSF No Inactive

SIOO No Link cascaded ALU shifters. Input
Sl07 No value of MSP's SI07 is sign

remainder fix (SRF).

0100 No Link cascaded MO shifters. Output
0107 No value of MSP's 0100 is LS8 of ALU

shifter.

Cn Yes Should be programmed high.

Status Signals

ZERO 1 if result = O
N 1 if MS8 = 1
OVR 0
Cn+8 1 if carry-out

LSP

2-111

SN ORM Single-Length Normalize 12101

FUNCTION

Tests the two most-significant bits of the MO register. If
they are the same, shifts the number to the left.

DESCRIPTION

This instruction is used to normalize a two's complement
number in the MO register by shifting the number one bit
to the left and filling a zero into the LSB via the 0100 input.
Data on the S bus is added to the carry, permitting the
number of shifts performed to be counted and stored in
one of the register files.

The SSF pin inhibits the shift and the S bus increment
whenever normalization is attempted on a number
already normalized. Normalization is complete when
overflow occurs.

DATA FLOW

MSP

2-112

IP

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

Available S Bus Source Operands

RF (83-BO) DB Port MQ Register

•
Available Destination Operands

RF (C3-CO) RF (83-BO) Y Port

•
Control/Data Signals

User
Signal Programmable Use

A3cAQ

C3-CO Mask

Shift Operations

ALU MQ

None Left

SSF No Inhibits shift if normalization is
complete.

SIOO No Inactive
SI07 No Inactive

QIOO No Link cascaded MQ shifters. QIOO fills
0107 No a zero into LS8 of MQ shifter.

Cn Yes Increments S bus (shift count) if set
to one.

Status Signals

ZERO 1 if MQ result = 0
N 1 if MS8 of MQ register = 1
OVR 1 if MS8 of MQ register XOR 2nd MS8 = 1
Cn +a 1 if carry-out = 1

LSP

12101 Single-Length Normalize SN ORM

EXAMPLE (assumes a 24-bit cascaded system)

Normalize the number in the MO register, storing the number of shifts in register 3.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-BO EA EB1-EBO C3-CO WE SELY OEY Cn

0010 0000 0011 xx xx 0 xx 0011 1 0 1 1

Assume register file 3 holds 00000315 and MO register holds 36D84E15.

Most Next Most Least
Significant Significant Significant

Package Package Package
Operand:

Source 0011 0110
I I

1101 1000
I I

0100 1110 MQ shifter+-- MQ register

Destination 0110 1101
I I

1011 0000
I I

1001 1100 MQ register+-- MQ shift result

Count:

Source 0000 0000
I I

0000 0000
I I

0000 0011 S+- RF(3)

Destination 0000 0000
I I

0000 0000
I I

0000 0100 RF(3) +-- S + C.,

2-113

SRA Arithmetic Right Single Precision Shift

FUNCTION

Performs arithmetic right shift on result of ALU operation
specified in lower nibble of instruction field.

DESCRIPTION

The result of the ALU operation specified in instruction
bits 13-10 is shifted one bit to the right. The sign bit of the
most-significant package is retained ifthe ALU calculation
does not produce an overflow. If an overflow condition
occurs, the sign bit is inverted. Bit 0 is passed through
SI00-5107 to bit 7 of the next-most-significant package.
Bit 0 of the least-significant package is dropped.

The shift may be made conditional on SSF. If SSF is high
or floating, the shift result will be sent to Y. If SSF is low, F
will be passed unaltered.

* A list of ALU operations that can be used with this instruction is
given on page 2-9.

Shift Operations

ALU Shifter

Arithmetic Right

Available Destination Operands
ALU Shifter:

RF (C3-CO) RF (83-80) Y-Port

• •

DATA FLOW

MSP

2-114

MO Shifter

None

IP

Control/Data Signals

User
Signal Programmable Use

SSF Yes Passes shifted output if high or
floating; passes ALU result if low.

SIOO No Link cascaded ALU shifters. Output
5107 No value of LSP's SIOO is LS8 of ALU

(inverted).

0100 No Inactive
0107 No Inactive

Cn No Affects arithmetic operation
specified in bits 13-10 of instruction
field.

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO 1 if result = 0
N 1 if MS8 of result = 1

0 if MS8 of result = 0
OVR 1 if signed arithmetic overflow
Cn+a 1 if carry-out condition

If logic instruction specified in 13-10:

ZERO
N

OVR
Cn+a

1 if result = 0
1 if MS8 of result = 1
O if MS8 of result = 0
0
0

t Cn +8 is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

(CRU) SERIAL DATA OUT

LSP

Arithmetic Right Single Precision Shift SRA

EXAMPLE (assumes a 24-bit cascaded system)

Perform the computation A= (A+ B)/2, where A and Bare single-precision two's complement numbers. Let A be residing
in register 1 and B be input via the DB bus.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-BO EA EB1-EBO C3-CO WE SELY OEY Cn

0000 0001 0001 xxxx 0 10 0001 0 0 1 0

Assume register file 1 holds 08C61815 and DB bus holds 00753015.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 0000 1000 11000110 0001 1000 R~RF(1)

Source 0000 0000 0111 0101 0011 0000 s~DB bus

Intermediate 0000 1001 0011 1011 0100 1000 ALU Shifter~ R+S+Cn
Result

Destination 0000 0100 1001 1101 1010 0100 RF(1) ~ALU shift result

2-115

SHAD Arithmetic Right Double Precision Shift

FUNCTION
Performs arithmetic right shift on MO register (LSH) and
result of ALU operation specified in lower nibble of
instruction field (MSH).

DESCRIPTION

The result of the ALU operation specified in instruction
bits 13-10 is used as the upper half of a double precision
word; the contents of the MO register as the lower half.

The contents of the ALU are shifted one bit to the right.
The sign bit of the most-significant package is retained if
the ALU operation does not produce an overflow. If an
overflow condition occurs, the sign bit is inverted. Bit 0 is
passed through SI00-5107 to bit 7 of the next-most
significant package. Bit 0 of the least-significant package
is passed through 0100-0107 to bit 7 of the most
significant package of the MO register. Bit 0 of the MO
register's most-significant package is passed through
0100-0107 to bit 7 of the next-most-significant package.
Bit 0 of the MO register's least significant package is
dropped.

The shift may be made conditional on SSF. If SSF is high
or floating, the shift result will be sent to Y and the MO
register. If SSF is low, F will be passed unaltered, and the
MO register will not be changed.

* A list of ALU operations that can be used with this instruction is
given on page 2-9.

Shift Operations

ALU Shifter MO Shifter

Arithmetic Right Arithmetic Right

DATA FLOW

MSP

2-116

IP

Available Destination Operands
ALU Shifter:

RF (C3-CO) RF (83-80) Y-Port

• •
Control/Data Signals

User
Signal Programmable Use

SSF Yes Passes shift result if high or
floating; passes ALU result and
retains MO register if low.

SIOO No Link cascaded ALU shifters. Output
Sl07 No value of LSP's SIOO is LSB of MO

shifter (inverted).

0100 No Link cascaded MO shifters. Output
0107 No value of LSP's 0100 is LSB of ALU

shifter (inverted).

Cn No Affects arithmetic operation
specified in bits 13-10 of instruction
field.

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO
N

OVR
Cn+a

1 if result = 0
1 if MSB of result = 1
0 if MSB of result = 0
1 if signed arithmetic overflow
1 if carry-out condition

If logic instruction specified in 13-10:

ZERO
N

OVR
Cn+a

1 if result = 0
1 if MSB of result = 1
0 if MSB of result = 0
0
0

t Cn +8 is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

(CRU) SERIAL DATA OUT

LSP

Arithmetic Right Double Precision Shift SRAD

EXAMPLE (assumes a 24-bit cascaded system)

Perform the computation A = (A+ B)/2, where A and B are two's complement numbers. Let A be a double precision
number residing in register 1 (MSH) and MO (LSH). Let B be a single precision number which is input through the DB bus.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-BO EA EB1-EBO C3-CO WE SELY OEY Cn

0001 0001 0001 xx xx 0 10 0001 0 0 1 0

Assume register file 1 holds 08C61815, DB bus holds 00753015, and MO register holds 299AOF15.

Most Next Most Least
Significant Significant Significant

Package Package Package
MSH:

Source 0000 1000
I I

1100 0110 0001 1000 R~RF(1)

Source 0000 0000
I I

0111 0101 0011 0000 s~DB bus

Intermediate 0000 1001
I I

0011 1011 0100 1000 ALU Shifter~ R + S + Cn
Result

Destination 0000 0100
I I

1001 1101 1010 0100 RF(1) ~ALU shift result

LSH:

Source 0010 1001
I I

1001 1010
I I

0000 1111 MO shifter~ MO register

Destination 0001 0100
I I

1100 1101 I I 0000 0111 MO register~ MO shift result

2-117

SRC Circular Right Single Precision Shift

FUNCTION

Performs circular right shift on result of ALU operation
specified in lower nibble of instruction field.

DESCRIPTION

The result of the ALU operation specified in instruction
bits 13-10 is shifted one bit to the right. Bit 0 of the most
significant package is passed through 5100-5107 to bit 7
of the next-most-significant package. Bit 0 of the least
significant package is passed through 5100-5107 to bit 7
of the most-significant package.

The shift may be made conditional on 55F. If 55F is high
or floating, the shift result will be sent to Y. If 55F is low, F
will be passed unaltered.

* A list of ALU operations that can be used with this instruction is
given on page 2-9.

Shift Operations

ALU Shifter

Circular Right

Available Destination Operands
ALU Shifter:

RF (C3-CO) RF (B3-BO) Y-Port

• •

DATA FLOW

MSP

2-118

MO Shifter

None

IP

Control/Data Signals

User
Signal Programmable Use

SSF Yes Passes shift result if high or floating;
passes ALU result if low.

SIOO No Link cascaded ALU shifters. Output
SI07 No value of LSP's SIOO is LSB of ALU

(inverted).

0100 No Inactive
0107 No Inactive

Cn No Affects arithmetic operation
specified in bits 13-10 of instruction
field.

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO
N

OVR
Cn+s

1 if result = 0
1 if MSB of result = 1
O if MSB of result = O
1 if signed arithmetic overflow
1 if carry-out condition

If logic instruction specified in 13-10:

ZERO
N

OVR
Cn+s

1 if result = 0
1 if MSB of result = 1
0 if MSB of result = 0
0
0

t Cn +sis ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

LSP

Circular Right Single Precision Shift SRC

EXAMPLE (assumes a 24-bit cascaded system)

Perform a circular right shift of register 6 and store the result in register 1.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-BO EA EB1-EBO C3-CO WE SELY OEY Cn

1000 0110 0110 xx xx 0 xx 0001 0 0 1 0

Assume register file 6 holds 88C61815.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 1000 1000
I I

1100 0110
I I

0001 1000 R+-RF(6)

Intermediate 1000 1000 I I
1100 0110

I I
0001 1000 ALU Shifter+-- R + Cn

Result

Destination 0100 0100
I I

0110 0011
I I 0000 1100 RF(1) +-ALU shift result

2-119

SRCD Circular Right Double Precision Shift

FUNCTION

Performs circular right shift on MO register (LSH) and
result of ALU operation specified in lower nibble of
instruction field (MSH).

DESCRIPTION

The result of the ALU operation specified in instruction
bits 13-10 is used as the upper half of a double precision
word; the contents of the MO register as the lower half.

The contents of the ALU and MO shifters are rotated one
bitto the right. Bit 0 of the most-significant package's ALU
shifter is passed through SIOO-SI07 to bit 7 of the next
most-significant package. Bit 0 of the least-significant
package is passed through OI00-0107 to bit7 of the most
significant package of the MO register. Bit 0 of the least
significant package is passed through SIOO-SI07 to bit 7
of the most-significant package's ALU.

The shift may be made conditional on SSF. If SSF is high
or floating, the shift result will be sent to Y and the MO
register. If SSF is low, F will be passed unaltered, and the
MO register will not be changed.

* A list of ALU operations that can be used with this instruction is
given on page 2-9.

Shift Operations

ALU Shifter

Circular Right

Available Destination Operands
ALU Shifter:

RF (C3-CO) RF (83-BO) Y-Port

• •

DATA FLOW

MSP

2-120

MO Shifter

Circular Right

IP

Control/Data Signals

User
Signal Programmable Use

SSF Yes Passes shift result if high or floating;
passes ALU result and retains MO
register if low.

SIOO No Link cascaded ALU shifters. Output
SI07 No value of LSP's SIOO is LSB of MO

shifter (inverted).

0100 No Link cascaded MO shifters. Output
0107 No value of LSP's 0100 is LSB of ALU

shifter (inverted).

Cn No Affects arithmetic operation
specified in bits 13-10 of instruction
field.

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO 1 if result = 0
N 1 if MSB of result = 1

0 if MSB of result = 0
OVR 1 if signed arithmetic overflow
Cn+B 1 if carry-out condition

If logic instruction specified in 13-10:

ZERO 1 if result = O
N 1 if MSB of result = 1

0 if MSB of result = 0
OVR 0
Cn+B 0

t Cn +a is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

LSP

Circular Right Double Precision Shift SRCD

EXAMPLE (assumes a 24-bit cascaded system)

Perform a circular right double precision shift of the data in register 6 (MSH) and MQ (LSH), and store the result back in
register 5 and the MQ register.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-80 EA E81-E80 C3-CO WE SELY OEY Cn

1001 0110 0110 xx xx 0 xx 0110 0 0 1 0

Assume register file holds 88C61S,s and MO register holds A99AOF16·

Most Next Most Least
Significant Significant Significant

Package Package Package
MSH:

Source 0000 1000
I I

1100 0110
I I

0001 1000 RF~RF(6)

Intermediate 0000 1000
I I

1100 0110
I I

0001 1000 ALU Shifter~ R + Cn
Result

Destination 1000 0100
I I

01100011
I I

0000 1100 RF(6) ~ALU shift result

LSH:

Source 1010 1001
I I

1001 1010
I I 0000 1111 MO shifter~

MO shifter

Destination 0101 0100
I I 1100 1101

I I 0000 0111 MO shifter~
MO shift result

2-121

SRL Logical Right Single Precision Shift

FUNCTION

Performs logical right shift on result of ALU operation
specified in lower nibble of instruction field.

DESCRIPTION

The result of the ALU operation specified in instruction
bits 13-10 is shifted one bit to the right. A zero is placed in
bit 7 of the most-significant package unless SI07 is
programmed low; this will force the sign bit to one. Bit 0
of the most-significant package is passed through SIOO
SI07 to bit 7 of the next-most-significant package. Bit 0 of
the least-significant package is dropped.

The shift may be made conditional on SSF. If SSF is high
or floating, the shift result will be sent to Y. If SSF is low, F
will be passed unaltered.

* A list of ALU operations that can be used with this instruction is
given on page 2-9.

DATA FLOW

SERIAL DATA INPUT (CRU)

(FILLS ZERO IF NOT FORCED)

MSP

2-122

IP

Shift Operations

ALU Shifter MO Shifter

Logical Right None

Available Destination Operands
ALU Shifter:

RF (C3-CO) RF (83-80) Y-Port

• •
Control/Data Signals

User
Signal Programmable Use

SSF Yes Passes shift result if high or floating;
passes ALU result if low.

SIOO No Link cascaded ALU shifters. Sl07 fills
Sl07 Yes a zero in MS8 of ALU shifter if high

or floating; sets MS8 to one if low.

0100 No Link cascaded MO shifters. Output of
0107 No LSP's 0100 is LS8 of ALU shifter

(inverted).

Cn No Inactive

* Cn +a is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

LSP

Logical Right Single Precision Shift SRL

EXAMPLE (assumes a 24-bit cascaded system)

Perform a logical right single precision shift on data on the DA bus, and store the result in register 1.

Instruction Operand Operand Operand END Destination Destination
Code Address Address Select Fill Address Select Carry-in

-
17-10 A3-AO 83-80 EA E81-E80 SI07 C3-CO WE SELY OEY Cn

00100110 xx xx xx xx 1 xx 1 0001 0 0 1 0

Assume DA bus holds A8C61515.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 1010 1000
I I

1100 0110
I I

0001 0101 R~DA

Intermediate 1010 1000
I I

1100 0110
I I

0001 0101 ALU Shifter~ R + Cn
Result

Destination 0101 0100
I I

0110 0011
I I

0000 1010 RF(1) ~ALU shift result

2-123

SRLD Logical Right Double Precision Shift

FUNCTION

Performs logical right shift on MO register (L5H) and
result of ALU operation specified in lower nibble of
instruction field (M5H).

DESCRIPTION

The result of the ALU operation specified in instruction
bits 13-10 is used as the upper half of a double precision
word; the contents of the MO register as the lower half.

The contents of the ALU are shifted one bit to the right. A
zero is placed in the sign bit of the most-significant
package unless 5107 is programmed low; this will force
the sign bit to one. Bit O of the most-significant package's
ALU is passed through 5100-5107 to bit 7 of the next
most-significant package. Bit O of the least-significant
package is passed through 0100-0107 to bit7 of the most
significant package of the MO register. Bit 0 of the MO
register's most-significant package is passed through
OIOO-OI07 of the next-most-significant package. Bit 0 of
the least-significant package is dropped.

The shift may be made conditional on 55F. If 55F is high
or floating, the shift result will be sent to Y and the MO
register. If 55F is low, F will be passed unaltered, and the
MO register will not be changed.

* A list of ALU operations that can be used with this instruction is
given on page 2-9.

Shift Operations

ALU Shifter MO Shifter

Logical Right Logical Right

DATA FLOW

SERIAL DATA INPUT ICRUI

MSP

2-124

IP

Available Destination Operands
ALU Shifter:

RF (C3-CO) RF (83-BO) Y-Port

• •
Control/Data Signals

User
Signal Programmable Use

SSF Yes Passes shift result if high or floating;
passes ALU result and retains MO
register if low.

SIOO No Link cascaded ALU shifters. SI07 fills
SI07 Yes a zero in MSB or ALU shifter if high

or floating; sets MSB to one if low.

0100 No Link cascaded MO shifters. Output
0107 No value of LSP's 0100 is LSB of ALU

shifter (inverted).

Cn No Affects arithmetic operation
specified in bits 13-10 of instruction
field.

Status Signalst

If arithmetic instruction specified in 13-10:

ZERO 1 if result = 0
N 1 if MSB of result = 1

0 if MSB of result = 0
OVR 1 if signed arithmetic overflow
Cn +a 1 if carry-out condition

If logic instruction specified in 13-10:

ZERO
N

OVR
Cn+B

1 if result = 0
1 if MSB of result = 1
0 if MSB of result = 0
0
0

t Cn+B is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

LSP

Logical Right Double Precision Shift SRLD

EXAMPLE (assumes a 24-bit cascaded system)

Perform a logical right double precision shift of the data in register 1 (MSH) and MQ (LSH), filling a one into the most
significant bit, and store the result back in register 1 and the MO register.

Instruction Operand Operand Operand END Destination Destination
Code Address Address Select Fill Address Select Carry-in
17-10 A3-AO 83-80 EA E81-E80 SI07 C3-CO WE SELY OEY Cn

0011 0110 xx xx 0001 x 00 0 0001 0 0 1 0

Assume register file 1 holds A8C61515 and MQ register holds A99AOE16·

Most Next Most Least
Significant Significant Significant

Package Package Package
MSH:

Source 1010 1000
I I

11000110
I I

0001 0101 S+-RF(1)

Intermediate 1010 1000
I I

1100 0110
I I

0001 0101 ALU Shifter+--- S + Cn
Result

Destination 1101 0100
I I

0110 0011
I I

0000 1010 RF(1) +-ALU shift result

LSH:

Source 1010 1001
I I

1001 1010
I I

0000 1110 MO shifter+--- MO register

Destination 1101 0100
I I

1100 1101
I I

0000 0111 MO register+--- MO shift result

2-125

SUBI Subtract Immediate 17181

FUNCTION

Subtracts four-bit immediate data on A3-AO with carry
from S-bus data.

DATA FLOW

A3-AO

Cn

DESCRIPTION

REGISTER
FILE

R + s

y

C3-CO

83-BO

Immediate data in the range 0 to 15, supplied by the user
on A3-AO, is inverted and added with carry to S.

2-126

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

•
Available S Bus Source Operands

RF (B3-BO) DB Port MO Register

• • •

A3-AO

C3-CO Mask

Available Destination Operands

RF (C3-CO) RF (B3-BO) Y Port

Shift Operations

•
Control/Data Signals

User
Signal Programmable

SSF No
SIOO No
5107 No
0100 No
0107 No

Cn Yes

Status Signals

1 if result = 0
1 if MSB = 1

ALU MO

• None None

Use

Inactive
Inactive
Inactive
Inactive
Inactive

Two's complement subtraction if
programmed high.

ZERO
N
OVR
Cn+s

1 if arithmetic signed overflow
1 if carry-out = 1

17181 Subtract Immediate SUBI

EXAMPLE (assumes a 24-bit cascaded system)

Subtract the value 12 from data on the DB bus, and store the result in register file 1.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-80 EA E81-E80 C3-CO WE SELY OEY Cn

0111 1000 1100 xxxx x 10 0001 0 0 1 1

Assume bits A3-AO hold C15 and DB bus holds 00010015.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 0000 0000
I I

0000 0000
I I

0000 1100 R+---12

Source 0000 0000
I I

0000 0001
I I

0000 0000 S+-D8 bus

Destination 0000 0000
I I

0000 0000
I I

1111 0100 RF(1) +-R+S+Cn

2-127

SUBR Subtract R with Carry (R + S + C0)

FUNCTION

Subtracts data on the R bus from S with carry.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE.

y

C3-CO

83-80

Data on the R bus is subtracted with carry from data on the
S bus. The result appears at the ALU and MO shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-128

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

• •
Available S Bus Source Operands

RF (83-BO) DB Port MO Register

• • •
Available Destination Operands

RF (C3-CO) RF (83-BO) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

A3-AO

C3-CO Mask

Shift Operations

ALU MO

• •

SSF No Affect shift instructions programmed
5100 No in bits 17-14 of instruction field.
5107 No
0100 No
0107 No

Cn Yes Two's complement subtraction if
programmed high.

Status Signalst

ZERO 1 if result = 0
N 1 if MSB = 1
OVR 1 if signed arithmetic overflow
Cn+S 1 if carry-out

t Cn +8 is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

Subtract R with Carry (R + S + Cn) SUBR

EXAMPLE (assumes a 24-bit cascaded system)

Subtract data in register 1 from data on the DB bus, and store the result in the MQ register.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO 83-80 EA E81-E80 C3-CO WE SELY OEY Cn

11100010 0001 xx xx 0 10 xxxx 0 x x 1

Assume register file 1 holds 0084D015 and DB bus holds OOC350,s.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 0000 0000
I I

1000 0100
I I

1101 0000 R ~ RF(1)

Source 0000 0000
I I

1100 0011
I I 0101 0000 s~D8bus

Destination 0000 0000
I I 0011 1110

I I 1000 0000 MQ~R+S+Cn

2-129

SUBS Subtract S with Carry (R + S + C0)

FUNCTION

Subtracts data on the S bus from R with carry.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE

y

C3-CO

83-80

Data on the S bus is subtracted with carry from data on the
R bus. The result appears at the ALU and MO shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-130

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

• •
Available S Bus Source Operands

RF (83-80) DB Port MQ Register

• • •
Available Destination Operands

RF (C3-CO) RF (83-80) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

A3-AO

C3-CO Mask

Shift Operations

ALU MQ

• •

SSF No Affect shift instructions programmed
SIOO No in bits 17-14 of instruction field.
SI07 No
QIOO No
QI07 No

Cn Yes Two's complement subtraction if
programmed high.

Status Signalst

ZERO 1 if result = 0
N 1 if MSB = 1
OVR 1 if signed arithmetic overflow
Cn +8 1 if carry-out

t Cn +8 is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

Subtract S with Carry (R + ~ + Cn) SUBS

EXAMPLE (assumes a 24-bit cascaded system)

Subtract data on the DB bus from data in register 1, and store the result in the MO register.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in

-
17-10 A3-AO 83-80 EA E81-EBO C3-CO WE SELY OEY Cn

1110 0011 0001 xx xx 0 10 xxxx 1 x x 1

Assume register file 1 holds 0084D015 and DB bus holds OOC35015.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 0000 0000
I I

1000 0100
I I

1101 0000 R~RF(1)

Source 0000 0000
I I

1100 0011
I I

0101 0000 s~ DB bus

Destination 1111 1111
I I

1100 0001
I I

1000 0000 MQ~R+S+Cn

2-131

TBO Test Bit (Zero)

FUNCTION

Tests bits in selected bytes of S-bus data for zeros using
mask in C3-CO::A3-AO.

DATA FLOW

A3-AO

DESCRIPTION

C3-CO

REGISTER
FILE

y

83-BO

The S bus is the source word for this instruction. The
source word is passed to the ALU, where it is compared to
an 8-bit mask, consisting of a concatenation of the C3-CO
and A3-AO address ports (C3-CO: :A3-AO). The mask is
input via the R bus. The test will pass if the selected byte
has zeros at all bit locations specified by the ones of the
mask. Bytes are selected by programming SIOO low. Test
results are indicated on the ZERO output, which goes to
one if the test passes and SIOO is low. If SIOO is high, a
zero will be output on the ZERO pin. The write enable pin
(WE) is internally disabled during this instruction.

2-132

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

Available S Bus Source Operands

RF (B3-BO) DB Port MO Register

• • •
Control/Data Signals

User
Signal Programmable Use

SSF No Inactive
SIOO Yes Byte-Select
Sl07 No Inactive
0100 No Inactive
0107 No Inactive
Cn No Inactive

Status Signals

A3-AO

C3-CO Mask

•

ZERO
N
OVR
Cn+B

1 if result (selected bytes) = Pass
0
0
0

13181

13181 Test Bit (Zero)

EXAMPLE (assumes a 24-bit cascaded system)

Test bits 7, 6 and 5 of bytes 0 and 2 of data in register 3 for zeros.

Operand and
Instruction Mask Destination Mask Operand

Code (LSH) Address (MSH) Select
17-10 A3-AO B3-BO C3-CO EA EB1-EBO

0011 1000 0000 0011 1110 x 00

Assume register file 3 holds 1CD00315.

Most Next Most
Significant Significant

Package Package
Byte 2 Byte 1

(selected) (not selected)

Mask 1110 0000
I I

1110 0000
I

Source 0001 1100
I I

1101 0000
I

t n = nth package

I

I

Byte
Select
SIOO WE

010 x

Least
Significant

Package
Byte 0

(selected)

TBO

Destination
Select Carry-in
SELY OEY Cn

x x x

1110 0000 I Rn~Mask(C3-CO::A3-AO)

0000 0011 I Sn~ RF(3)n t

Output D ZERO~ 1

2-133

TB1 Test Bit (One)

FUNCTION

Tests bits in selected bytes of S-bus data for ones using
mask in C3-CO: :A3-AO.

DATA FLOW

A3-AO

SIOO

DESCRIPTION

C3-CO

REGISTER
FILE

y

83-80

The S bus is the source word for this instruction. The
source word is passed to the ALU, where it is compared to
an 8-bit mask, consisting of a concatenation of the C3-CO
and A3-AO address ports (C3-CO::A3-AO). The mask is
input via the R bus. The test will pass if the selected byte
has ones at all bit locations specified by the ones of the
mask. Bytes are selected by programming SIOO low. Test
results are indicated on the ZERO output, which goes to
one if the test passes and SIOO is low. If SIOO is high, a zero
will be output on the ZERO pin. The write enable pin (WE)
is internally disabled during this instruction.

2-134

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

Available S Bus Source Operands

RF (B3-BO) DB Port MO Register

• • •
Control/Data Signals

User
Signal Programmable Use

SSF No Inactive
SIOO Yes Byte-Select
SI07 No Inactive
0100 No Inactive
0107 No Inactive
Cn No Inactive

Status Signals

A3-AO

C3-CO Mask

•

ZERO
N
OVR
Cn+S

1 if result (selected bytes) = Pass
0
0
0

12181

12181 Test Bit (One)

EXAMPLE (assumes a 24-bit cascaded system)

Test bits 7, 6 and 5 of bytes 1 and 2 of register 3 for ones.

Operand and
Instruction Mask Destination Mask Operand

Code (LSH) Address (MSH) Select
17-10 A3-AO B3-BO C3-CO EA EB1-EBO

0010 1000 0000 0011 1110 x 00

Assume register file 3 holds 1CF00315.

Most Next Most
Significant Significant

Package Package
Byte 2 Byte 1

(selected) (selected)

Mask 1110 0000
I I

1110 0000

Source 0001 1100
I I

1101 0000

t n = nth package

I I

I I

Byte
Select
SIOO WE

0001 x

Least
Significant

Package
Byte 0

(not selected)

TB1

Destination
Select Carry-in
SELY OEY Cn

x x x

1110 0000 I Rn~ Mask (C3-CO: :A3-AO)

0000 0011 I Sn ~ RF(3)n t

Output ~ ZERO~ 0

2-135

UDIVI Unsigned Divide Iterate ICIOI

FUNCTION

Performs one of N-2 iterations of nonrestoring unsigned
division by a test subtraction of the N-bit divisor from the
2N-bit dividend. A description of nonrestoring unsigned.
division and an algorithm using this instruction are given
in section 2.3.1.

DESCRIPTION

UDIVI performs a test subtraction of the divisor from the
dividend to generate a quotient bit. The test subtraction
may pass or fail and is corrected in the subsequent
instruction if it fails. Similarly a failed test from the
previous instruction is corrected during evaluation of the
current UDIVI instruction.

The R bus must be loaded with the divisor, the S bus with
the most-significant half of the result of the previous
instruction (UDIVI during iteration or UDIVIS at the
beginning of iteration). The least-significant half of the
previous result is in the MQ register.

UDIVI tests SSF (used to signal pass/fail of previous test)
and then evaluates

F ~ R + S if SSF = 0
F ~ R + S + Cn if SSF = 1.

A double precision left shift is performed; bit 7 of the
most-significant package of the MQ shifter is transferred
through 5107-SIOO to bit 1 of the least-significant package
of the ALU shifter. Bit 7 of the most-significant package of
the ALU shifter is lost. The unfixed quotient bit is
circulated into the least-significant bit of MQ through
0107-0100.

DATA FLOW

MSP

2-136

IP

Available R Bus Source Operands

A3-AO
A3-AO

RF (A3-AO) Immediate DA Port C3-CO Mask

• •
Recommended S Bus Source Operands

RF (83-80) DB Port MQ Register

• •
Recommended Destination
Operands Shift Operations

RF (C3-CO) RF (83-BO) Y Port ALU MQ

• Left Left

Control/Data Signals

User
Signal Programmable Use

SSF No Preserves result of test subtraction
for next instruction.

SIOO No Link cascaded ALU shifters. Output
SI07 No value of MSP's Sl07 is MSB of MQ

shifter (inverted).

QIOO No Link cascaded MQ shifters. Output
0107 No value of MSP's QI07 is unfixed

quotient bit (MQF).

Cn Yes Should be programmed high.

Status Signals

ZERO 1 if intermediate result = 0
N 0
OVR 0
Cn +8 1 if carry-out

LSP

IBIDI Unsigned Divide Start UDIVIS

FUNCTION

Computes the first quotient bit of nonrestoring unsigned
division. A description of nonrestoring unsigned division
and an algorithm using this instruction are given in
section 2.3.1.

DESCRIPTION

UDIVIS computes the first quotient bit during
nonrestoring unsigned division by subtracting the divisor
from the dividend. The resulting remainder due to
subtraction may be negative; SSF is used to signal the
subsequent UDIVI instruction to restore the remainder
during the next subtraction.

The R bus must be loaded with the divisor and the S bus
with the most-significant half of the dividend. The result
on the Y bus should be loaded back into the register file for
use in the next instruction. The least-significant half of the
dividend is in the MO register.

UDIVIS computes

F~R + S + Cn.

A double precision left shift is performed; bit 7 of the
most-significant package of the MO shifter is transferred
through 5107-SIOO to bit 0 of the least-significant package
of the ALU shifter. Bit 7 of the most-significant package of
the ALU shifter is lost. The unfixed quotient bit is
circulated into the least-significant bit of MO through
0107-0100.

DATA FLOW

MSP IP

Available R Bus Source Operands

A3-AO
A3-AO

RF (A3-AO) Immediate DA Port C3-CO Mask

• •
Recommended S Bus Source Operands

RF (83-BO) DB Port MQ Register

• •
Recommended Destination
Operands Shift Operations

RF (C3-CO) RF (83-BO) Y Port ALU MQ

• Left Left

Control/Data Signals

User
Signal Programmable Use

SSF No Preserves resu It of test subtraction
for next instruction.

SIOO No Link cascaded ALU shifters. Output
Sl07 No value of MSP's SI07 is MSB of MQ

shifter (inverted).

QIOO No Link cascaded MQ shifters. Output
0107 No value of MSP's QI07 is unfixed

quotient bit (MQF).

Cn Yes Should be programmed high.

Status Signals

ZERO 1 if intermediate result = 0
N 0
OVR 1 if divide overflow
Cn+8 1 if carry-out

LSP

2-137

UDIVIT Unsigned Divide Terminate I FIOI

FUNCTION

Solves the final quotient bit during nonrestoring
unsigned division. A description of nonrestoring
unsigned division and an algorithm using this instruction
are given in section 2.3.1.

DESCRIPTION

UDIVIT performs the final subtraction of the divisor from
the remainder during nonrestoring signed division.
UDIVIT is preceded by N-1 iterations of UDIVI, where N is
the number of bits in the dividend.

The R bus must be loaded with the divisor; the S bus must
be loaded with the most-significant halfofthe result of the
last UDIVI instruction. The least-significant half lies in the
MO register. The Y bus result must be loaded back into the
register file for use in the subsequent DIVRF instruction.

UDIVITtests SSF {used to signal pass/fail of previous test)
and evaluates

Y ~ R + S if SSF = 0
Y ~ R + S + Cn if SSF = 1.

The contents of the MO register are shifted one bit to the
left; the unfixed quotient bit is circulated into the least
significant bit through 0107-QIOO.

SSF is used to indicate to all slices whether the remainder
must be corrected in the subsequent instruction.

DATA FLOW

MSP

2-138

IP

Available R Bus Source Operands

A3-AO
A3-AO

RF (A3-AO) Immediate DA Port C3-CO Mask

• •
Recommended S Bus Source Operands

RF (83-BO) DB Port MO Register

• •
Recommended Destination
Operands Shift Operations

RF (C3-CO) RF (83-BO) Y Port ALU MO

• None Left

Control/Data Signals

User
Signal Programmable Use

SSF No Carries result of remainder
correction test.

SIOO No Inactive
SI07 No Inactive

0100 No Link cascaded MO shifters. Output
0107 No value of MSP's 0107 is unfixed

quotient bit (MOF).

Cn Yes Should be programmed high.

Status Signals

ZERO 1 if intermediate result = 0
N 0
OVR 0
Cn +8 1 if carry-out

LSP

10101 Unsigned Multiply Iterate UMULI

FUNCTION

Performs one of N unsigned multiplication iterations for
computing an N-bit by N-bit product. An algorithm for
unsigned multiplication using this instruction is given in
section 2.3.1.

DESCRIPTION

UMULI tests SSF to determine whether the multiplicand
should be added with the present partial product. The
instruction evaluates

F ~ R + S + Cn if SSF = 1
F ~ S + Cn if SSF = 0.

A double precision right shift is performed. Bit 0 of the
least-significant package of the ALU shifter is passed
through 0100-0107 to bit 7 of the most-significant
package of the MO shifter; carry-out is passed to the most
significant bit of the ALU shifter.

The S bus should be loaded with the contents of an
accumulator and the R bus with the multiplicand. The Y
bus result should be written back to the accumulator after
each iteration of UMULI. The accumulator should be
cleared and the MO register loaded with the multiplier
before the first iteration.

DATA FLOW

MSP IP

Available R Bus Source Operands

A3-AO
A3-AO

RF (A3-AO) Immediate DA Port C3-CO Mask

• •
Recommended S Bus Source Operands

RF (83-BO) DB Port MO Register

• •
Recommended Destination
Operands Shift Operations

RF (C3-CO) RF (83-BO) Y Port ALU MO

• Right Right

Control/Data Signals

User
Signal Programmable Use

SSF No Holds LSB of MO.

SIOO No Link cascaded ALU shifters. Input
SI07 No value of MSP's SI07 is carry-out.

0100 No Link cascaded MO shifters. Output
0107 No value of MSP's 0107 is LSB of ALU

shifter (inverted).

Cn Yes Should be programmed low.

Status Signalst

ZERO 1 if result = 0
N 1 if MSB = 1
OVR 0
Cn + s 1 if carry-out

t Valid only on final execution of multiply iteration

LSP

2-139

XOR Exclusive OR (R XOR S)

FUNCTION

Evaluates the logical expression R XOR S.

DATA FLOW

A3-AO

DESCRIPTION

REGISTER
FILE

y

C3-CO

83-80

Data on the R bus is exclusive ORed with data on the S bus.
The result appears at the ALU and MO shifters.

* The result of this instruction can be shifted in the same
microcycle by specifying a shift instruction in the upper nibble
(17-14) of the instruction field. The result may also be passed
without shift. Possible instructions are listed on page 2-9.

2-140

Available R Bus Source Operands

A3-AO
RF (A3-AO) Immediate DA Port

• •
Available S Bus Source Operands

RF (83-BO) DB Port MO Register

• • •
Available Destination Operands

RF (C3-CO) RF (83-BO) Y Port

• •
Control/Data Signals

User
Signal Programmable Use

A3-AO

C3-CO Mask

Shift Operations

ALU MO

• •

SSF No Affect shift instructions programmed
5100 No in bits 17-14 of instruction field.
5107 No
QIOO No
0107 No

Cn No Inactive

Status Signalst

ZERO 1 if result = 0
N 1 if MSB = 1
OVR 0
Cn+B 0

t Cn +a is ALU carry out and is evaluated before shift operation.
ZERO and N (negative) are evaluated after shift operation. OVR
(overflow) is evaluated after ALU operation and after shift
operation.

Exclusive OR (R XOR S) XOR

EXAMPLE (assumes a 24-bit cascaded system)

Exclusive OR the contents of register 3 and register 5 and store the result in register 5.

Instruction Operand Operand Operand Destination Destination
Code Address Address Select Address Select Carry-in
17-10 A3-AO B3-BO EA EB1-EBO C3-CO WE SELY OEY Cn

1111 1001 0011 0101 0 00 0101 0 0 1 x

Assume register file 3 holds F6D840,s and register file 5 holds F6D84215.

Most Next Most Least
Significant Significant Significant

Package Package Package

Source 1111 0110
I I

1101 1000
I I

0100 0000 R-RF(3)

Source 1111 0110
I I

1101 1000
I I

0100 0010 s-RF(S)

Destination 0000 0000
I I 0000 0000

I I
0000 0010 RF(S) - R XOR S

2-141

3 'AS890 Microsequencer
3.1 Overview

The 'AS890 is a high performance microsequencer which is used in fast, low power
microprogrammed processors. The bipolar device is fabricated in low voltage Schottky
Transistor Logic (STL) with TTL compatible inputs and outputs.

The 14-bit device addresses 16,384 micromemory locations. Short routines which
perform complex operations can be realized, especially when the 'AS888 is used as
the ALU. The net result for the user is reduced hardware complexity and fewer and
shorter execution cycles. Parallel independent control of onboard circuitry allows the
user to merge basic operations, such as doubly nested loops, n-way branches,
conditional branches and subroutine calls and returns to create complex single
instructions such as Decrement and Branch on Non-Zero, Decrement and Return on
Non-Zero, Decrement and Branch to A on Non-Zero Else Branch to B, or Exit Loop
on Condition Code or at End of Loop.

Figure 3-1 illustrates the architecture of a typical microprogrammmed processor: the
micromemory, or control store, in which the user's microprogram resides; the
instruction register, which synchronizes the instructions with the system clock; the
microsequencer, which computes the next address based on the instruction and the
state of the system; the ALU, which processes data based on the microinstruction;
and the status register, which samples the status at each instruction cycle. At the
beginning of an instruction cycle, the state of the system is as follows:

1. The microinstruction register contains the instruction currently being executed.
2. The ALU has just executed an instruction and has the current status ready at

its output pins.
3. The status register contains the status results of the previous instruction.
4. The next microaddress is being generated while the current instruction is being

executed.

The system shown allows many arithmetic, logical, conversion and mask/test
instructions to be implemented. The 'AS890 reduces overhead in processing loops,
iterations, flag tests, subroutines and interrupts. The three-port device lends itself
to a number of hardware configurations to support a wide range of applications. The
Y-port drives the microaddress bus and can be disabled for operations such as loading
interrupt vectors. The DRA and DRB ports can be used to load or save branch addresses
or loop counts from the microprogram and load, save or read branch addresses or
loop counts to and from other user hardware.

Best hardware configuration is arrived at by test coding the most critical operations
of the application in order to determine which of the Figure 3-1 paths are required.
For example, a floating-point CPU may need to compute loop counts in the ALU (see
section 5) while a real-time digital filter may be concerned with fixed loops and
interrupt processing. The former will require a path between hardware and DRA or
DRB, while the latter may only require a path between the instruction register and
DRA or DRB.

3-1

w
I

N

COUNTER/ADDRESS 1/0

14 14

ORA ORB

'ASS90

0 ORA
~ OR CONTROL
co CC INC ORB BITS

*

FROM
INTERRUPT HARDWARE

Ii::
~-r1
a:
w
I-
~

~:5114 a:,_
a:u
Ww
I->
~

NEXT
MICROADDRESS

14 CLK

MICROPROGRAM MEMORY

*
INSTRUCTION REGISTER

(CURRENT INSTRUCTION)

I

I
*

- - _,

SYSTEM DATA

SN SN SN

DA DB y

'ASSSS (N SLICES)

CONTROL
BITS STATUS

* 4

CONTROL CONDITIONAL REPEAT REGISTERED
STATUS
MUXES

0 * SIGNALS

CONDITIONAL BRANCH

16-WAY BRANCH
4

*USER DEFINED

(PREVIOUS
STATUS)

CLK

*

ALU STATUS

SYSTEM STATUS

Figure 3-1. Typical Microprogrammed Processor

TO SYSTEM

3.2 Architecture

The 'AS890 block diagram is given in Figure 3-2. The chip is made up of the following
components:

1) A 14-bit microprogram counter (MPC) consisting of a register and incrementer
which generates the next sequential address

2) Two register/counters (RCA and RCB) for counting loops and iterations, storing
branch addresses or driving external devices

3) A 9 x 14 LIFO stack which allows subroutine calls and interrupts at the
microprogram level and is expandable and readable by external hardware

4) An interrupt return register and Y output enable for interrupt processing at the
microinstruction level

5) A Y output multiplexer by which the next address can be selected from MPC,
RCA, RCB, external buses ORA and ORB, or the stack.

'AS890 control pins are summarized in Table 3-1. Those signals which typically
originate from the instruction register are Y output multiplexer controls, MUX2-MUXO,
which select the source of the next address; stack operation controls, 52-SO;
register/counter operation controls, RC2-RCO; OSEL, which allows the stack to be
read for diagnostics; ORA and ORB output enables, RAOE and RBOE; and INT, used
during the first cycle of interrupt service routines to push the address in the interrupt
return register address onto the stack.

Table 3-1. Response to Control Inputs

PIN NAME
LOGIC LEVEL

HIGH LOW

RAOE ORA output in high-Z state ORA output active

RBOE ORB output in high-Z state ORB output active

YOE Y output in high-Z state Y output active

INT MPC to stack INT RT register to stack

OSEL Stack to ORA buffer input RCA to ORA buffer input

INC Y output plus one to MPC Y output to MPC

MUX2-MUXO See Table 3.2 See Table 3.2

S2-SO See Table 3.3 See Table 3.3

RC2-RCO See Table 3.4 See Table 3.4

Control and data signals which commonly orginate from the microinstruction and from
other hardware sources include INC, which determines whether to increment the MPC;
ORA and ORB, used to load or read loop counters and/or next addresses; and CC,
the condition code input. The microsequencer not increment the address if INC is off,
allowing wait states and repeat until flag instructions to be implemented. If INC
originates from status, repeat until flag instructions are possible.

3-3

3-4

STKWRN/RER

DRA13-DRAO

REGISTER/
COUNTER A

STACK
POINTER

READ
POINTER

STACK
14X9

MICRO
PROGRAM
REGISTER

14

INTERRUPT
RETURN

REGISTER

INC 0-----iH INCREMENTER

14 1 14

Y OUTPUT
MUX

INT

YOEC>----+----------fllJ

Y13-YO

DRB13-DRBO

REGISTER/
COUNTER B

.... --C> ZERO

""""1~::1 RC2-RCO

t--+<::I S2-SO

t---<::::JCC

t--+<::::J MUX2-MUXO

r----+---<J 83-BO
4

--0Vcc1

--0Vcc2

---<:I GND

---<JCK

Figure 3-2. Functional Block Diagram for 'AS890

CC typically originates from ALU status to permit test and branch instructions.
However, it must also be asserted under microprogram control to implement other
instructions such as continue or loop. Therefore, CC will normally be generated by
the output of a status multiplexer. In this case, whether CC is to be forced high, forced
low or taken from ALU status will be determined by a status MUX select field in the
microinstruction.

Control signals which generally originate from hardware are 83-80, which can be used
as a 4-bit variable to support 16- and 32-way branches; and YOE, which allows
interrupt hardware to place an address on the microaddress bus.

Status from the' AS890 is provided by ZERO, which is set at the beginning of a cycle
in which either of the register/counters will decrement to zero; and STKWRN/RER,
set at the beginning of the cycle in which the bottom of stack is read or in which
the eighth of nine locations is written. In the latter case, STKWRN/RER remains high
until the stack pointer is decremented to seven.

3.2.1 Y Output Multiplexer

Address selection is controlled by the Y output multiplexer and the RAOE and RBOE
enables. Addresses can be selected from eight sources:

1) the microprogram counter register, used for repeat (INC off) and continue (INC
on) instructions

2) the stack, which supports subroutine calls and returns as well as iterative loops
and returns from interrupts

3) the ORA and ORB ports, which provide two additional paths from external
hardware by which microprogram addresses can be generated

4) register counters RCA and RCB, which can be used for additional address storage
5) B3-BO, whose contents can replace the four least-significant bits of the ORA

and ORB buses to support 16-way and 32-way branches
6) an external input onto the bidirectional Y port to support external interrupts.

Use of MUX controls to program the 'AS890 is discussed in section 3.3.

3.2.2 Microprogram Counter

The Y bus generates the next address in the microprogram. Usually the incrementer
adds one to the address on the Y bus to compute next address plus one. Next address
plus one is stored in the microprogram register at the beginning of the subsequent
instruction cycle. During the next instruction this "continue" address will be ready
at the Y output MUX for possible selection as the source of the subsequent instruction.
The incrementer thus looks two addresses ahead of the address in the instruction
register to set up a continue (increment by one) or repeat (no increment) address.

Selecting INC from status is a convenient means of implementing instructions that
must repeat until some condition is satisfied; for example, Shift ALU Until MSB = 1
or Decrement ALU Until Zero. The MPC is also the standard path to the stack. The
next address is pushed onto the stack during a subroutine call, so that the subroutine
will return to the instruction following that from which it was called.

3.2.3 Register/Counters

Addresses or loop counts may be loaded directly into register/counters RCA and RCB
through the direct data ports ORA 13-DRAO and DRB13-DRBO. The values stored in
these registers may either be held, decremented or read. Independent control of both
the registers during a single cycle is supported with the exception of a simultaneous
decrement of both registers.

3-5

3.2.4 Stack

The positive-edge-triggered 14-bit address stack allows up to nine levels of nested
calls or interrupts and can be used to support branching and looping. Six stack
operations are possible:

1) reset, which pulls all Y outputs low and clears the stack pointer and read pointer
2) clear, which sets the stack pointer and read pointer to zero
3) pop, which causes the stack pointer to be decremented
4) push, which puts the contents of the MPC onto the stack and increments the

stack pointer
5) read, which makes the address pointed to by the read pointer available at the

DRA port
6) hold, which causes the address of the stack and read pointers to remain

unchanged.

3.2.4. 1 Stack Pointer

The stack pointer (SP) operates as an up/down counter; it increments whenever a
push occurs and decrements whenever a pop occurs. Although push and pop are two
event operations (store then increment SP, or decrement SP then read), the' AS890
accomplishes both events within a single cycle.

3. 2. 4. 2 Read pointer

The read pointer (RP) is provided as a tool for debugging microcoded systems. It
permits a nondestructive, sequential read of the stack contents from the DRA port.
This capability provides the user with a method of backtracking through the address
sequence to determine the cause of overflow without affecting program flow, the
status of the stack-pointer or the internal data of the stack.

3. 2. 4. 3 Stack Warning/Read Error Pin

The STKWRN/RER pin alerts the system to a potential stack overflow or underflow
condition. STKWRN/RER becomes active under two conditions. If seven of the nine
stack locations (0-8) are full (the stack pointer is at 7) and a push occurs, the
STKWRN/RER pin will produce a high-level signal to warn that the stack is approaching
its capacity and will be full after one more push. Knowledge that overflow potential
exists allows bit-slice-based systems to continuously process real-time interrupt
vectors. This signal will remain high if hold, push or pop instructions occur, until the
stack pointer is decremented to seven. Should a push instruction occur when the stack
is full, the new address will be written over the address in stack location 8.

The user may be protected from attempting to pop an empty stack by monitoring
STKWRN/RER before pop operations. A high level at this pin signifies that the last
address has been removed from the stack (SP= 0). This condition remains until an
address is pushed onto the stack and the stack pointer is incremented to one.

3.2.5. Interrupt Return Register

3-6

Unlike the MPC register, which normally gets next address plus one, the interrupt
return register simply gets next address. This permits interrupts to be serviced with
zero latency, since the interrupt vector simply replaces the pending address.

The interrupting hardware disables the Y-output and jams the vector onto the
microaddress bus. This event must be synchronized with the system clock. The first
address of the service routine must program INT low and perform a push to put the
contents of the interrupt return register on the stack.

3.3 Microprogramming the 'AS890

Microprogramming is unlike programming monolithic processors for several reasons.
First, the width of the microinstuction word is only partially constrained by the basic
signals required to control the sequencer. Since the main advantage of a
microprogrammed processor is speed, many operations are often supported by or
carried out in special purpose hardware. Lookup tables, extra registers, address
generators, elastic memories and data acquisition circuits may also be controlled by
the microinstruction. The number of slices in the ALU is user defined, which makes
the microinstruction width even more application dependent. Types of instructions
resulting from manipulation of the sequencer's basic controls are discussed below,
followed by examples of some commonly used instructions in section 3.4.

The following abbreviations are used in the tables in this section:

BR A
BR A'
BR B
BR B'
BR S
CALL A
CALL B
CALL A'
CALL B'
CALLS
CLR SP/RP
CONT/RPT
ORA
ORA'
ORB
ORB'
MPC
POP
PUSH
RCA
RCB
READ
RESET
RP
SP
STK

3.3.1 Address Selection

Y +-ORA
Y +-ORA'
Y +-ORB
Y +-ORB'
Y +- STK
Y +- ORA; STK +- MPC; SP +- SP + 1
Y +- ORB; STK +- MPC; SP +- SP + 1
Y +- ORA'; STK +- MPC; SP+- SP + 1
Y ...__ DRB'; STK ...__ MPC; SP...__ SP + 1
Y +- STK; STK +- MPC; SP +- SP + 1
SP+- 0; RP+- 0
Y +- MPC + 1 if INC = H; Y +- MPC if INC = L
Bidirectional data port (can be loaded externally or from RCA)
DRA 13-DRA 4::B3-BO
Bidirectional data port (can be loaded externally or from RCB)
DRB13-DRB4::B3-BO
Microprogram counter
SP+- SP - 1
STK ...__ MPC; SP +- SP + 1
Register/counter A
Register/counter B
Y +- STK; RP +- RP - 1
Y ...__ O; SP ...__ O; RP ...__ 0
Read pointer
Stack pointer
Stack

Y-output multiplexer controls, MUX2-MUXO, select one of eight three-source branches
as shown in Table 3-2. The state of CC and ZERO determine which of the three sources
is selected as the next address. ZERO is set at the beginning of any cycle in which
one of the register/counters will decrement to zero.

By programming CC high or low without decrementing registers, only one outcome
is possible; thus "unconditional" branches or continues can be implemented by forcing
the condition code. Alternatively, CC can be selected from status, in which case
Branch A on Condition Code Else Branch B instructions are possible, where A and
B are the address sources determined by MUX2-MUXO.

3-7

Decrement and Branch on Non-Zero instructions, creating loops that repeat until a
terminal count is reached, can be implemented by programming CC low and
decrementing a register/counter. If CC is selected from status and registers are
decremented, more complex instructions such as Exit on Condition Code or End of
Loop, are possible.

When MUX2-MUXO = HLH, the B3-BO inputs can replace the four least-significant
bits of ORA or ORB to create 16-way branches, or when CC is based on status, 32-way
branches.

Table 3-2. Y Output Control

MUX
CONTROL RESET
MUX2-0

xxx Yes

LLL No
LLH No
LHL No
LHH No
HLL No
HLH No
HHL No
HHH No

toRA13 - DRA4::83-80

*DR813 - DR84: :83-80

Y-OUTPUT SOURCE
CC = L

ZERO= L ZERO = H

All Low All Low
STK MPC
STK MPC
STK DRA

STK DRB

DRA MPC
DRA't MPC
DRA STK
DRB STK

CC= H

All Low
DRA

DRB

MPC
MPC
DRB

DRB'*

MPC
MPC

3.3.2 Stack Controls

3-8

As in the case of the MUX controls, each stack control coding is a three-way choice
based on CC and ZERO (See Table 3-3). This allows push, pop or hold stack operations
to occur in parallel with the aforementioned branches. A subroutine call is
accomplished by combining a branch and push, while returns result from coding a
branch to stack with a pop.

Combining stack and MUX controls with status and register decrements permits even
greater complexity, for example, Return on Condition Code or End of Loop; Call A
on Condition Code Else Branch to B; Decrement and Return on Non-Zero; Call 16-Way.

Diagnostic stack dumps are possible using Read ($2-SO = HHH), while asserting OSEL.

Table 3-3. Stack Control

STACK STACK OPERATION

CONTROL OSEL CC= L
CC= H

S2-SO ZERO= L ZERO = H

LLL x Reset/Clear Reset/Clear Reset/Clear

LLH x Clear SP/RP Hold Hold

LHL x Hold Pop Pop

LHH x Pop Hold Hold

HLL x Hold Push Push

HLH x Push Hold Hold

HHL x Push Hold Push

HHH H Read Read Read

HHH L Hold Hold Hold

3.3.3 Register Controls

Unlike stack and MUX control, register control is not dependent upon CC and ZERO.
Registers can be independently loaded, decremented or held using register control
inputs R2-RO (see Table 3-4). All combinations are supported with the exception of
simultaneous register decrements. The register control inputs can be used to store
branch address and loop counts and to decrement loop counts to facilitate the complex
branching instructions described above.

The contents of RCA are accessible to the ORA port when OSEL is low and the output
bus is enabled by RAOE being low. Data from RCB is available when ORB is enabled
by RBOE being low.

Table 3-4. Register Control

REGISTER

CONTROL REG A REG B

RC2-RCO

LLL Hold Hold

LLH Decrement Hold

LHL Load Hold
LHH Decrement Load

HLL Load Load

HLH Hold Decrement

HHL Hold Load
HHH Load Decrement

3-9

3.3.4. Continue/Repeat Instructions

3-10

The most commonly used instruction is a continue or microprogram counter advance,
implemented by selecting MPC at the Y output MUX and forcing INC high. If MPC
is selected and INC is off, the instruction will simply be repeated.

A repeat instruction can be implemented in two ways. A programmed repeat (INC
forced low) may be useful in generating wait states, for example, wait for interrupt.
A conditional repeat (INC originates from status) may be useful in implementing Do
While operations. Several bit patterns in the MUX control field of the microinstruction
will place MPC on the microaddress bus; these are summarized in Table 3-5.

Table 3-5. Continue/Repeat Encodings

MUX2-MUXO 52-SO OSEL
INSTRUCTION

CC= H

HHL HHH L CONT/RPT

HHL LHL x CONT/RPT: POP

HHL HLL x CONT/RPT: PUSH

HHL LHH x CONT/RPT

HHL LLH x CONT/RPT

HHL HHH H CONT/RPT: READ

HHH HHH L CONT/RPT

HHH LHL x CONT/RPT: POP

HHH HLL x CONT/RPT: PUSH

HHH LHH x CONT/RPT

HHH LLH x CONT/RPT

HHH HHH H CONT/RPT: READ

LHL HHH L CONT/RPT

LHH HHH L CONT/RPT

LHL LHL x CONT/RPT: POP

LHH LHL x CONT/RPT: POP

LHL HLL x CONT/RPT: PUSH

LHH HLL x CONT/RPT: PUSH

LHL LLH x CONT/RPT

LHH LLH x CONT/RPT

LHL HHH H CONT/RPT: READ

LHH HHH H CONT/RPT: READ

3.3.5 Branch Instructions

A branch or jump to a given microaddress can also be coded several ways. RCA, DRA,
RCB, DRB and STK are possible sources for branch addresses (see Table 3-2). Branches
to register or stack are useful whenever the branch address could be stored to reduce
overhead.

The simplest branches are to DRA and DRB, since they require only one cycle and
the branch address is supplied in the microinstruction. Use of registers or stack require
an initial load cycle (which may be combined with a preceding instruction). but may
be more practical when an entry point is referenced over and over throughout the
microprogram, for example in error handling routines. Branches to stack or register
also enhance sequencing techniques in which a branch address is dynamically
computed or multiple branches to a common entry point are used, but the entry point
varies according to the system state. In this case the state change would precipitate
reloading the stack or register.

In order to force a branch to DRA or DRB, CC must be programmed high or low. A
branch to stack is only possible when CC is forced low (See Table 3-2). When CC
is low, the ZERO flag is tested, and if a register decrements to zero, the branch will
be transformed into a Decrement and Branch on Non-Zero instruction. Therefore
registers should not be decremented during branch instructions using CC = 0, unless
it is certain the register will not reach terminal count.

Branch instructions are summarized in Table 3-6.

3.3.6 Conditional Branch Instructions

Perhaps the most useful of all branches is the conditional branch. The 'AS890 permits
three modes of conditional branching: Branch on Condition Code; Branch 16-Way from
DRA or DRB; and Branch on Condition Code 16-Way from DRA Else Branch 16-Way
from DRB. This increases the versatility of the system and the speed of processing
status tests because both single-bit (CC) and four-bit status (using B3-BO) are allowed.
Testing single bit status is preferred when the status can be set up and selected
through a status MUX prior the conditional branch. Four-bit status allows the 'AS890
to process instructions based on Boolean status expressions, such as Branch if
Overflow and Not Carry or if Zero or if Negative. It also permits true n-way branches,
such as If Negative Then Branch to X Else if Overflow and Not Carry then Branch
to Y. The tradeoff is speed versus program size. Since multiway branching occurs
relatively infrequently in most programs, users will enjoy increased speed at a negligible
cost. Table 3-7 lists conditional branching codes.

3-11

Table 3-6. Branch Encodings

MUX2·MUXO 52-SO OSEL
INSTRUCTION

CC= H

HLL HHH L BR B

HLL LHL x BR B: POP

HLL LHH x BR B

HLL LLH x BR B

HLL HHH H BR B: READ

HLH HHH L BR B' (16-way)

HLH LHL x BR B' (16-way) : POP

HLH LHH x BR B' (16-way)

HLH LLH x BR B' (16-way)

HLH HHH H BR B' (16-way): READ

LLL HHH L BR A

LLL LHL x BR A: POP

LLH HHH L BR B

LLH LHL x BR B: POP

LLL LLH x BR A

LLH LLH x BR B

LLL HHH H BR A: READ

LLH HHH H BR B: READ

MUX2-MUXO 52-SO OSEL CC= L

HHL HHH L BR A

HHL LHL x BR A

HHL HLL x BR A

HLL HHH L BR A

HLL LHL x BR A

HLL HLL x BR A

HHL LHH x BR A: POP

HLL LHH x BR A: POP

HHL LLH x BR A: CLR SP/RP

HLL LLH x BR A: CLR SP/RP

HHL HHH H BR A: READ

HLL HHH H BR A: READ

HHH HHH L BR B

HHH LHL x BR B

HHH HLL x BR B

HHH LHH x BR B: POP

HHH LLH x BR B: CLR SP/RP

HHH HHH H BR B: READ

HLH HHH L BR A' (16-way)

HLH LHL x BR A' (16-way)

HLH HLL x BR A' (16-way)

HLH LHH x BR A' (16-way): POP

HLH LLH x BR A' (16-way): CLR SP/RP

HLH HHH H BR A' (16-way}: READ

LHL HHH L BR S

LHH HHH L BR S

LHL LHL x BR S

LHH LHL x BR S

3-12

Table 3-6. Branch Encodings (continued)

MUX2-MUXO 52-50 OSEL
INSTRUCTION

CC = L

LHL HLL x BR S

LHH HLL x BR S

LLL HHH L BR S

LLL LHL x BR S

LLL HLL x BR S

LLH HHH L BR S

LLH LHL x BR S

LLH HLL x BR S

LHL LLH x BR S: CLR SP/RP

LHH LLH x BR S: CLR SP/RP

LLL LLH x BR S: CLR SP/RP

LLH LLH x BR S: CLR SP/RP

LHL HHH H BR S: READ

LHH HHH H BR S: READ

LLL HHH H BR S: READ

LLH HHH H BR S: READ

3.3. 7 Loop Instructions

Up to two levels of nested loops are possible when both counters are used
simultaneously. Loop count and levels of nesting can be increased by adding external
counters if desired. The simplest and most widely used of the loop instructions is
Decrement and Branch on Non-Zero, in which CC is forced low while a register is
decremented. As before, many forms are possible, since the top-of-loop address can
originate from RCA, DRA, RCB, DRB or the stack (See Table 3-2). Upon terminal coun~,
instruction flow can either drop out of the bottom of the loop or branch elsewhere.

When loops are used in conjunction with CC as status, B3-BO as status and/or stack
manipulation, many useful instructions are possible, including Decrement and Branch
on Non-Zero else Return, Decrement and Call on Non-Zero; and Decrement and Branch
16-Way on Non-Zero. Possible variations are summarized in Table 3-8.

Another level of complexity is possible if CC is selected from status while looping.
This type of loop will exit either because CC is true or because a terminal count has
been reached. This makes it possible, for example, to search the ALU for a bit string.
If the string is found, the match forces CC high. However, if no match is found, it
is necessary to terminate the process when the entire word has been scanned. This
complex process can then be implemented in a simple compact loop using Conditional
Decrement and Branch on Non-Zero.

3-13

Table 3-7. Conditional Branch Encodings

MUX2-MUXO S2-SO OSEL
INSTRUCTION

CC= L CC= H

HHL HHH L BR A CONT/RPT

HHL LHL x BR A CONT/RPT: POP

HHL HLL x BR A CONT/RPT: PUSH

HLL HHH L BR A BR B

HLL LHL x BR A BR B: POP

HLL HLL x BR A CALL B

HHL LHH x BR A: POP CONT/RPT

HLL LHH x BR A: POP BR B

HHL LLH x BR A: CLR SP/RP CONT/RPT

HLL LLH x BR A: CLR SP/RP BR B

HHL HHH H BR A: READ CONT/RPT: READ

HLL HHH H BR A: READ BR B: READ

HHH HHH L BR B CONT/RTP

HHH LHL x BR B CONT/RPT: POP

HHH HLL x BR B CONT/RPT: PUSH

HHH LHH x BR B: POP CONT/RPT

HHH LLH x BR B: CLR SP/RP CONT/RPT

HHH HHH H BR B: READ CONT/RPT: READ

HLH HHH L BR A' (16-way) BR B' (16-way)

HLH LHL x BR A' (16-way) BR B' (16-way): POP

HLH HLL x BR A' (16-way) CALL B' (16-way)

HLH LHH x BR A' (16-way): POP BR B' (16-way)

HLH LLH x BR A' (16-way): CLR SP/RP BR B' (16-way)

HLH HHH H BR A' (16-way): READ BR B' (16-way): READ

LHL HHH L BR S CONT/RPT

LHH HHH L BR S CONT/RPT

LHL LHL x BR S CONT/RPT: POP

LHH LHL x BR S CONT/RPT: POP

LHL HLL x BR S CONT/RPT: PUSH

LHH HLL x BR S CONT/RPT: PUSH

LLL HHH L BR S BR A

LLL LHL x BR S BR A: POP

LLL HLL x BR S CALL A

LLH HHH L BR S BR B

LLH LHL x BR S BR B: POP

LLH HLL x BR S CALL B

LHL LLH x BR S: CLR SP/RP CONT/RPT

LHH LLH x BR S: CLR SP/RP CONT/RPT

LLL LLH x BR S: CLR SP/RP BR A

LLH LLH x BR S: CLR SP/RP BR B

LHL HHH H BR S: READ CONT/RPT: READ

LHH HHH H BR S: READ CONT/RPT: READ

LLL HHH H BR S: READ BR A: READ

LLH HHH H BR S: READ BR B: READ

3-14

Table 3-8. Decrement and Branch on Non-Zero Encodings

INSTRUCTION

MUX2-
S2-SO OSEL

CC= L
CC= H

MUXO ZERO= L ZERO= H

HLL HHH L BR A CONT/RPT BR B

HLL LHL x BR A CONT/RPT: POP BR B: POP

HLL HLL x BR A CONT/RPT: PUSH CALL B

HHL HHH L BR A BR S CONT/RPT

HHL LHL x BR A RET CONT/RPT: POP

HHL HLL x BR A CALLS CONT/RPT: PUSH

HLL LLH x BR A: CLR SP/RP CONT/RPT BR B

HHL LLH x BR A: CLR SP/RP BR S CONT/RPT

HLL HHH H BR A: READ CONT/RPT: READ BR B: READ

HHL HHH H BR A: READ BR S: READ CONT/RPT: READ

HLL LHH x BR A: POP CONT/RPT BR B

HHL LHH x BR A: POP BR S CONT/RPT

HHH HHH L BR B BR S CONT/RPT

HHH LHL x BR B RET CONT/RPT: POP

HHH HLL x BR B CALLS CONT/RPT: PUSH

HHH LHH x BR B: POP BRS CONT/RPT

HHH LLH x . BR B: CLR SP/RP BR S CONT/RPT

HHH HHH H BR B: READ BR S: READ CONT/RPT: READ

HLH HHH L BR A' (16-way) CONT/RPT BR B' (16-way)

HLH LHL x BR A' (16-way) CONT/RPT: POP BR B' (16-way): POP

HLH HLL x BR A' (16-way) CONT/RPT: PUSH CALL B' (16-way)

HLH LHH x BR A' (16-way): POP CONT/RPT BR B' (16-way)

HLH LLH x BR A' (16-way): CONT/RPT BR B' (16-way)

CLR SP/RP

HLH HHH H BR A' (16-way): READ CONT/RPT: READ BR B' (16-way): READ

LLL HHH L BR S CONT/RPT BR A

LLL LHL x BR S CONT/RPT: POP BR A: POP

LLL HLL x BR S CONT/RPT: PUSH CALL A

LLH HHH L BR S CONT/RPT BR B

LLH LHL x BR S CONT/RPT: POP BR B: POP

LLH HLL x BR S CONT/RPT: PUSH CALL B

LHL HHH L BR S BR A CONT/RPT

LHL LHL x BR S BR A: POP CONT/RPT: POP

LHL HLL x BR S CALL A CONT/RPT: PUSH

LHH HHH L BR S BR B CONT/RPT

LHH LHL x BR S BR B: POP CONT/RPT: POP

LHH HLL x BR S CALL B CONT/RPT: PUSH

LLL LLH x BR S: CLR SP/RP CONT/RPT BR A

LLH LLH x BR S: CLR SP/RP CONT/RPT BR B

LHL LLH x BR S: CLR SP/RP BR A CONT/RPT

LHH LLH x BR S: CLR SP/RP BR B CONT/RPT

LLL HHH H BR S: READ CONT/RPT: READ BR A

LLH HHH H BR S: READ CONT/RPT: READ BR B

LHL HHH H BR S: READ BR A: READ CONT/RPT: READ

LHH HHH H BR S: READ BR B: READ CONT/RPT: READ

3-15

3.3.8 Subroutine Calls

The various branch instructions described above can be merged with a push instruction
to implement subroutine calls in a single cycle. Calls, conditional calls and Decrement
and Call on Non-Zero are the most obvious.

Since a push is conditional on CC and ZERO, many hybrid instructions are also possible,
such as Call X on Condition Code Else Branch; Decrement and Return on Non-Zero
Else Branch. Codes that cause subroutine calls are summarized in Table 3-9 (with
decrement) and Table 3-10 (without decrement).

Table 3-9. Call Encodings without Register Decrements

MUX2-MUXO 52-SO OSEL
INSTRUCTION

CC = L CC= H

HHL HLH x CALL A CONT/RPT

HHL HHL x CALL A CONT/RPT: PUSH

HLL HLH x CALL A BR B

HLL HHL x CALL A CALL B

HHH HLH x CALL B CONT/RPT

HHH HHL x CALL B CONT/RPT: PUSH

HLH HLH x CALL A' (16-way) BR B' (16-way)

HLH HHL x CALL A' (16-way) CALL B' (16-way)

LHL HLH x CALLS CONT/RPT

LHH HLH x CALLS CONT/RPT

LHL HHL x CALLS CONT/RPT: PUSH

LHH HHL x CALLS CONT/RPT: PUSH

LLL HLH x CALLS BR A

LLL HHL x CALLS CALL A

LLH HLH x CALLS BR B

LLH HHL x CALLS CALL B

3.3.9 Subroutine Returns

3.3.10 Reset

3-16

A return from subroutine can be implemented by coding a branch to stack with a pop.
Since pop is also conditional on CC and ZERO, the complex forms discussed in section
3.3.7 also apply to return instructions: Decrement and Return on Non-Zero; Return on
Condition Code; Branch on Condition Code Else Return. Return encodings are
summarized in Table 3-12 (without decrements) and Table 3-13 (with decrements).

Pulling the S2-SO pins low clears the stack and read pointers, and zeros the Y output
multiplexer (See Table 3-3).

Table 3-10. Call Encodings with Register Decrements

) INSTRUCTION

MUX2-MUXO S2-SO OSEL CC= L

LLL

LLH

LLL

LLH

LHL

LHL

LHH

LHH

HLL

HLL

HHL

HHL

HHH

HHH

HLH

HLH

ZERO= L ZERO= H
CC= H

HLH x CALLS CONT/RPT BR A

HLH x CALLS CONT/RPT BR B

HHL x CALLS CONT/RPT CALL A

HHL x CALLS CONT/RPT CALL B

HLH x CALLS BR A CONT/RPT

HHL x CALLS BR A CONT/RPT: PUSH

HLH x CALLS BR B CONT/RPT

HHL x CALLS BR B CONT/RPT: PUSH

HLH x CALL A CONT/RPT BR B

HHL x CALL A CONT/RPT CALL B

HLH x CALL A BR S CONT/RPT

HHL x CALL A BR S CONT/RPT: PUSH

HLH x CALL B BR S CONT/RPT

HHL x CALL B BR S CONT/RPT: PUSH

HLH x CALL A' (16-way) CONT/RPT BR B' (16-way)

HHL x CALL A' (16-way) CONT/RPT CALL B' (16-way)

Table 3-11. Reset Encoding

INSTRUCTION

MUX2-MUXO S2-SO OSEL CC= L

ZERO= L ZERO = H CC= H

xxx LLL x RESET RESET RESET

Table 3-12. Return Encodings without Register
Decrements

INSTRUCTION

MUX2-MUXO S2-SO OSEL CC= L CC= H

LHL LHH x RET CONT/RPT

LHH LHH x RET CONT/RPT

LLL LHH x RET BR A

LLH LHH x RET BR B

Table 3-13. Return Encodings with Register Decrements

INSTRUCTION

MUX2-MUXO S2-SO OSEL CC= L

ZERO= L ZERO = H CC= H

LLL LHH x RET CONT/RPT BR A

LLH LHH x RET CONT/RPT BR B

LHL LHH x RET BR A CONT/RPT

LHH LHH x RET BR B CONT/RPT

3-17

3.3.11 Clear Pointers

The stack and read pointers may be cleared without affecting the Y output multiplexer
by setting S2-SO to LLH and forcing CC low (See Table 3-3).

3.3.12 Read Stack

Placing a high value on all of the stack inputs (S2-SO) and OSEL places the 'AS890
into the read mode. At each low-to-high clock transition, the address pointed to by
the read pointer is available at the ORA port and the read pointer is decremented.
The bottom of the stack is detected by monitoring the stack warning/read error pin
(STKWRN/RER). A high will appear when the stack contains one word and a read
instruction is applied to the S2-SO pins. This signifies that the last address has been
read.

The stack pointer and stack contents are unaffected by the read operation. Under
normal push and pop operations the read pointer is updated with the stack pointer
and contains identical information.

3.3.13 Interrupts

3.4 Examples

Real-time vectored interrupt routines are supported for those applications where polling
would impede system throughput. Any instruction, including pushes and pops, may
be interrupted. To process an interrupt, the following procedure should be followed:

1 . Place the bidirectional Y bus into a high-impedance state by forcing YOE high.
2. Force the interrupt entry point vector onto the Y bus. INC should be high.

The first instruction of the interrupt routine must push the address stored in the
interrupt return register onto the stack so that proper return linkage is maintained.
This is accomplished by forcing INT low and coding a push.

Representative examples of instructions using the 'AS890 are given on the following
pages. The examples assume the system shown in Figure 3-1, in which the address
and contents of the next instruction are being fetched while the current instruction
is being executed, and the ALU status register contains the status results of the
previous instruction.

3.4.1 Required Set-Up

3-18

Since the incrementer looks two addresses ahead of the address in the instruction
register to set up some instructions such as continue or repeat (see section 3.2.2),
a set-up instruction has been included with each example. This shows the required
state of both INC and CC. CC must be set up early because the status register on
which Y-output selection is typically based contains the results of the previous
instruction (see Figure 3-1).

Clear Pointers

CLEAR POINTERS

To Continue (instruction 1 O), this example uses the first instruction in Table 3-5 with CONT/RPT in the instruction column.
INC must be high; CC must be programmed high in the previous instruction (See Section 3.4.1).

To Clear the Stack and Read Pointers and Branch to address 20 (instruction 11), this example uses the first BR A: Clear SP,
RP instruction in Table 3-7. CC is programmed low in instruction 10 to set up the Branch. To avoid a ZERO = H condition,
registers are not decremented during instruction 11.

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL cc INC ORA ORB

(Set-up) xxx xxx xxx x 1 1 xx xx xxxx
10 Continue 110 111 000 0 0 x 0020 xxxx
11 BR A and Clear SP, RP 110 001 000 x x x xxxx xxxx

Clear Pointers

INC-1

.,..L __ IMPOSSIBLE

H

H >--- IMPOSSIBLE

H
.>--- IMPOSSIBLE*

*no register decrement

3-19

Continue

Flow diagrams and suggested code for representative Continue instructions are given below. Numbers inside the circles
are microword address locations. For a discussion of sequencing instructions, see Section 3.3.4.

CONTINUE

To Continue (instruction 10), this example uses the first instruction in Table 3-5 with CONT/APT in the instruction column.
INC and CC must be programmed high one cycle ahead of instruction 10 (See Section 3.4.1).

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC DRA DRB

(Set-up) xxx xxx xxx x 1 1 xx xx xxxx
10 Continue 110 111 xxx 0 x x xx xx xxxx

CONTINUE AND POP

To Continue and decrement the stack pointer (Pop). this example uses the first instruction in Table 3-5with CONT/APT: POP
in the instruction column. INC and CC are forced high in the previous instruction (See Section 3.4.1).

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC DRA DRB

(Set-up) xxx xxx xxx x 1 1 xx xx xx xx
10 Continue/Pop 110 010 xxx x x x xx xx xx xx

CONTINUE AND PUSH

To Continue and push the microprogram counter onto the stack (Push), this example uses the first instruction in Table 3-5
with CONT/APT: PUSH in the instruction column. INC and CC are forced high one cycle ahead of instruction 10 (See
Section 3.4.1).

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC DRA DRB

(Set-up) xxx xxx xxx x 1 1 xxxx xxxx
10 Continue/Push 110 100 xxx 0 x x xxxx xxxx

3-20

Continue

Continue Continue and Pop

INC~1 INC~1

IMPOSSIBLE ">L=--- IMPOSSIBLE

POP

Continue and Push

>-L __ IMPOSSIBLE

PUSH

3-21

Branch

Flow diagrams and suggested code for representative Branch instructions are shown below. Numbers inside the circles
are microaddresses. Coding of branch instructions is discussed in Section 3.3.5.

BRANCH EXAMPLE 1

To Branch from address 10 to address 20, this example uses the first BR A instruction from the CC = H column of Table 3-6.
CC must be programmed high one cycle ahead of instruction 10 (See Section 3.4.1).

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC ORA ORB

(Set-up) xxx xxx xxx x 1 x xx xx xx xx
10 BR A 000 111 xxx 0 x x 0020 xxxx

BRANCH EXAMPLE 2

To Branch from address 10 to address 20, this example uses the first BR A instruction from the CC = L column of Table 3-6.
CC is programmed low in the previous instruction; as a result, a ZERO test follows the condition code test in instruction 10.
To ensure that a ZERO = H condition will not occur, registers should not be decremented during this instruction.

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC ORA ORB

(Set-up) xxx xxx xxx x 0 x xxxx xx xx
10 BR A 110 111 000 0 x x 0020 xx xx

16-WAV BRANCH

To Branch 16-Way, this example uses the first BR B' instruction in Table 3-6. CC is programmed high in the previous
instruction. The branch address is derived from the concatenation DRB 13-DRB4:: 83-80.

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC ORA ORB

(Set-up) xxx xxx xxx x 1 x xx xx xxxx
10 BR B' 101 111 xxx 0 x x xxxx 0040

3-22

Branch

Branch Example 1 Branch Example 2

DRA~20

IMPOSSIBLE

IMPOSSIBLE

IMPOSSIBLE*

*no register decrement
16-Way Branch

cc~1

DRB~O

L IMPOSSIBLE

3-23

Conditional Branch

Flow diagrams and suggested code for representative Conditional Branch instructions are shown below. Numbers inside
the circles are microaddresses. Further information concerning conditional branches can be found in Section 3.3.6.

CONDITIONAL BRANCH

To Branch to address 20 Else Continue to address 11, this example uses the first instruction from Table 3-7 with BR A in the
CC = L column and CONT/RPT in the CC = H column. INC is set high in the preceding instruction to set up the Continue.

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC ORA DRB

(Set-up) xxx xxx xxx x 1 1 xx xx xxxx
10 BR A else Continue 110 111 000 0 x x 0020 xx xx

THREE-WAY BRANCH

To Continue (instruction 1 O), this example uses the first instruction in Table 3-5 with CONT/RPT in the instruction column.
INC and CC must be programmed high in the previous instruction. Register A is loaded using Table 3-4.

To Branch 3-Way, this example uses the first instruction from Table 3-8 with BR A in the ZERO = L column, CONT/RPT in the
ZERO = H column and BR Bin the CC = H column. To enable the ZERO = H path, register A must decrement to zero during
this instruction (see Table 3-4 for possible register operations).

INC is programmed high in instruction 10 to set up the Continue.

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC ORA DRB

(Set-up) xxx xxx xxx x 1 1 xxxx xx xx
10 Continue and Load

Reg A 110 111 010 0 * 1 xx xx xxxx
11 Decrement Reg A;

Branch 3-Way 100 111 001 0 x x 0020 0030

* Selected from external status

THIRTY-TWO-WAY BRANCH

To Branch 32-Way, this example uses the first instruction from Table 3-7 with BR A' in the CC = Lcolumn and BR B' in the CC
= H column. The four least-significant bits of the ORA' and ORB' addresses must be input at the B3-BO port; these are
concatenated with the ten most-significant bits of ORA and ORB to provide new addresses ORA' (ORA13-0RA4: :B3-BO)
and ORB' (ORB13-0RB4::B3-BO).

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC DRA DRB

10 32-way Branch 101 111 000 0 x x 0040 0030

3-24

Conditional Branch

Conditional Branch Three-Way Branch

IN~1

IMPOSSIBLE*

*no register decrement

Thirty-Two-Way Branch H

Y~PC+1

*no register decrement

3-25

Loop

Flow diagrams and suggested code for representative Loop instructions are shown below. Numbers inside the circles are
microaddresses. Further information concerning loop routines can be found in Section 3.3.7.

REPEAT

To Repeat (instruction 10), this example uses the first instruction in Table 3-5 with CONT/RPT in the instruction column. INC
must be programmed low and CC high one cycle ahead of instruction 10 (See Section 3.4.1).

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC ORA DAB

(Set-up) xxx xxx xxx x 1 0 xxxx xxxx
10 Continue 110 111 xxx 0 x 1 xxxx xxxx

REPEAT ON STACK

To Continue and push the microprogram counter onto the stack (Push), this example uses the first instruction in Table 3-5
with CONT/RPT: PUSH in the instruction column. INC and CC must be forced high one cycle ahead (See Section 3.4.1).

To Repeat (instruction 12), the first BR S instruction from the ZERO = L column of Table 3-6 is used. To avoid a ZERO = H
condition, registers are not decremented during this instruction (see Table 3-4 for possible register operations). CC and INC
are programmed high in instruction 12 to set up the Continue in instruction 11.

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC ORA DAB

(Set-up) xxx xxx xxx x 1 1 xxxx xxxx
10 Continue/Push 110 100 xxx x 1 1 xxxx xxxx
11 Continue 110 111 xxx 0 0 x xxxx xxxx
12 BR Stack 010 111 000 0 1 x xxxx xxxx

3-26

Loop

Repeat Repeat on Stack

INC+-0

INC+-1

PUSH

IMPOSSIBLE*

*no register decrement

3-27

Loop

REPEAT UNTIL CC = H

To Continue and push the microprogram counter onto the stack (Push), this example uses the first instruction in Table 3-5
with CONT/RPT: PUSH in the instruction column. INC and CC must be forced high one cycle ahead (See Section 3.4.1).

To Repeat Until CC = H (instruction 12), the first instruction from Table 3-7 with BR Sin the CC = L column and CONT/RPT:
POP in the CC = H column is used. To avoid a ZERO = H condition, registers are not decremented (See Table 3-4 for
possible register operations). CC and INC are programmed high in instruction 12 to set up the Continue in instruction 11. A
repercussion of this is that the instruction following 13 cannot be conditional.

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC DRA DRB

(Set-up) xxx xxx xxx x 1 1 xx xx xx xx
10 Continue/Push 110 100 xxx x 1 1 xxxx xxxx
11 Continue 110 111 xxx 0 * 1 xx xx xx xx
12 BR Stack else

Continue 010 111 000 0 1 1 xxxx xxxx

LOOP UNTIL ZERO

To Continue and push the microprogram counter onto the stack (Push), this example uses the first instruction in Table 3-5
with CONT/RPT: PUSH in the instruction column. INC and CC are forced high one cycle ahead (See Section 3.4.1). Register
A is loaded with the loop counter using a Load A instruction from Table 3-4.

To decrement the loop count, a decrement register A and hold register B instruction from Table 3-4 is used. To Repeat Else
Continue and Pop (decrement the stack pointer), the first instruction from Table 3-8 with BR Sin the ZERO = L column and
CONT/RPT: POP in the ZERO = H column is used. CC is programmed low in instruction 11 to force the ZERO test in
instruction 12; it is programmed high in instruction 12 to set up the Continue in instruction 11.

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC DRA DRB

(Set-up) xxx xxx xxx x 1 1 xxxx xxxx
10 Continue/Push 110 100 xxx 0 1 1 xxxx xx xx
11 Continue/Load

Reg A 110 111 010 0 0 1 xxxx xxxx
12 Decrement Reg A;

BR S else
Continue: Pop 000 010 001 1 1 1 xx xx xx xx

3-28

Loop

Repeat Until CC = H Loop Until Zero

INC<-1 CC<-1

>_L __ IMPOSSIBLE
IMPOSSIBLE

H
INC<-1

INC<-1 CC<-1

PUSH
PUSH

Y<-MPC+1

IMPOSSIBLE

INC<-1

L

IMPOSSIBLE*

CC<-1 POP

L H

*no register decrement

CC<-1 CC<-1 POP

Y<-Stack

3-29

Loop

CONDITIONAL LOOP UNTIL ZERO

Two examples of a Conditional Loop on Stack with Exit are shown below. Both use the microcode shown below to branch
to the stack on non-zero, continue and pop on zero, and branch to ORA with a pop if CC = H. In the first example, the value
on the ORA bus is the same as the value in the microprogram counter, making the exit destinations on the CC and ZERO
tests the same. In the second, the values are different, generating a two-way exit, as shown in the figure opposite.

To Continue and push the microprogram counter onto the stack (Push), these examples use the first instruction in Table 3-5
with CONT/RPT: PUSH in the instruction column. INC must be high. CC is forced high in the preceding instruction (See
Section 3.4.1).

To Continue (instruction 11), these examples use the first instruction in Table 3-5 with CONT/RPT in the instruction column.
INC must be high. CC must be programmed high in the previous instruction. INC is programmed high to set up the
Continue in instruction 12.

To Decrement and Branch else Exit (instruction 12), the first instruction from Table 3-8 with BR Sin the ZERO = L column,
CONT/RPT: PbP in the ZERO = H column and BR A: POP in the CC = H column is used.

Example 1:

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC ORA ORB

(Set-up) xxx xxx xxx x 1 1 xx xx xxxx
10 Continue/Push; 110 111 010 0 1 1 xxxx xxxx

Load Reg A
11 Continue 110 111 xxx 0 * 1 xxxx xx xx
12 Decrement Reg A;

BR S else Continue:
Pop else BR A: Pop 000 010 001 x x 1 0013 xxxx

* Selected from external status

Example 2:

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC ORA ORB

(Set-up) xxx xxx xxx x 1 1 xx xx xxxx
10 Continue/Push 110 111 010 0 1 1 xx xx xxxx

Load Reg A
11 Continue 110 111 xxx 0 * 1 xx xx xxxx
12 Decrement Reg A;

BR S else Continue:
Pop else BR A: Pop 000 010 001 x x 1 0025 xxxx

* Selected from external status

3-30

Loop

Conditional Loop Until Zero (Example 2)

INC<-1

RCA.
Count

INC<-1

DRA<-25

L

>-L-- IMPOSSIBLE

H

INC<-1 POP
SP+-SP-1

3-31

Jump to Subroutine

Flow diagrams and suggested code for representative jump to subroutine (Call) instructions are given below. Numbers
inside the circles are microaddresses. Further information about Call instructions is given in Section 3.3.8.

JUMP TO SUBROUTINE

To Call a Subroutine at address 30, this example uses the first instruction from Table 3-9 with CALLA in the CC = H column.
CC is programmed high in the previous instruction. INC is programmed high to set up the push.

-
Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC ORA ORB

(Set-up) xxx xxx xxx x 1 1 xxxx xxxx
10 Call A 000 110 xxx x x x 0030 xxxx

CONDITIONAL JUMP TO SUBROUTINE

To conditionally Call a Subroutine at address 20, this example uses the first instruction from Table 3-9with CALLA in the CC
= L column and CONT/RPT in the CC = H column. CC is generated by external status during the preceding instruction. INC
is programmed high in the preceding instruction to set up the Continue. To avoid a ZERO = H condition, registers should
not be decremented during instruction 10.

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC ORA ORB

(Set-up) xxx xxx xxx x * 1 xx xx xxxx
10 Call A else

Continue 110 101 000 x x 1 0020 xx xx
* Selected from external status

TWO-WAY JUMP TO SUBROUTINE

To perform a Two-Way Call to Subroutine at address 20 or address 30, this example uses the first instruction from Table 3-9
with CALL A in the CC = L column and CALL Bin the CC = H column. In this example, CC is generated by external status
during the preceding (set-up) instruction. INC is programmed high in the preceding instruction to set up the Push. To avoid
a ZERO = H condition, registers should not be decremented during instruction 10.

-
Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC ORA ORB

(Set-up) xxx xxx xxx x * 1 xx xx xx xx
23 Call A else

Call B 100 110 000 x x x 0020 0030

* Selected from external status

3-32

Jump to Subroutine

Jump to Subroutine Conditional Jump to Subroutine

INC~1

H

>H..___ IMPOSSIBLE*

PUSH

*no register decrement

Two-Way Jump to Subroutine

INC~1

DRA~20 DRB~30

IMPOSSIBLE*

PUSH

*no register decrement

3-33

Return from Subroutine

Flow diagrams and suggested code for representative Return from Subroutine instructions are shown below. Numbers
inside the circles are microaddresses. For more information about Return instructions, see Section 3.3.9.

RETURN FROM SUBROUTINE

To Return from a subroutine, this example uses the first instruction from Table 3-12 with RET in the CC = L column. CC is
programmed low in the previous instruction. To avoid a ZERO = H condition, registers are not decremented during
instruction 23.

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC DRA DRB

(Set-up) xxx xxx xxx x 0 x xxxx xxxx
23 Return 010 011 000 x 0 x xxxx xxxx

CONDITIONAL RETURN FROM SUBROUTINE

To conditionally Return from a Subroutine, this example uses the first instruction from Table 3-12 with RET in the CC = L
column and CONT/RPT in the CC = H column. CC is selected from external status in the previous instruction. To avoid a
ZERO = H condition, registers are not decremented during instruction 23.

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL cc INC DRA DRB

(Set-up) xxx xxx xxx x * 1 xxxx xx xx
23 Return else

Continue 010 011 000 x 1 x xx xx xx xx

* Selected from external status

3-34

Return from Subroutine

Return from Subroutine Conditional Return from Subroutine

H >---- IMPOSSIBLE

H

H >--- IMPOSSIBLE*

H
~-- IMPOSSIBLE*

Y+-MPC+1
POP

POP

* no register decrement

*no register decrement

3-35

Reset

RESET

To Reset the ~S890, pull the S2-SO pins low. This clears the stack and read pointers and places the Y bus into a low state.

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL cc INC ORA ORB

(Set-up) xxx xxx xxx x 1 x xxxx xxxx
10 Reset xxx 000 xxx x x x xxxx xxxx

Reset

cc-1

3-36

4. 32-Bit CPU Design Methodology
Microprogramming and bit-slice technology have made possible the development of
powerful systems using flexible instructions sets and wide address/data buses to
access more than one Gigaword of physical main memory. This section discusses
one design approach to such a system, using 'AS888 bit-slice and 'AS890
microsequencer components.

A structured approach to system design, such as that illustrated in Figure 4-1, is
recommended in developing custom bit-slice designs. The product specification gives
a starting point or basis for the project. In this example, four 'AS888 bit slices are
used to implement the 32-bit arithmetic portion of the CPU, and an 'AS890
microsequencer is used for ALU and system control. A group of PROMs stores the
microinstructions; a writable control store could also be implemented using additional
control logic and components to load and modify the microprogram memory. The
system is designed to access more than one Gigaword of memory.

~PRODUCT SPECIFICATION

L.J BLOCK DIAGRAM/MAC~STRUCTION FORMATS

0
MICROMAP FOR DATA PATH CONTROL

0
MICROCODE DEFINITIONS

0
MICROCODE FLOW CHARTS

0
MICROCODE PROGRAMMING

,__~~---' 0
DOWNLOAD TO:

-EFVM
- DEVELOPMENT SYSTEM
- SYSTEM PROTOTYPE

0
DEBUG....-------~

Figure 4-1. System Design Approach

Since speed is a concern, carry look-ahead rather than ripple-through logic is
recommended. If ripple-through logic were used, the system clock would need to be
slowed down to allow the propagation of the carry bits through the various 'AS888
stages. By using carry look-ahead, the amount of time needed for the data to stabilize
is greatly reduced by anticipating the carry across the 'AS888 packages.

So that the scratchpad area can be used for address calculations and mathematical
computations, the 'AS888's internal register file is dedicated for system functions.
To provide the system user with a macrolevel equivalent of register locations, a
16-word external register file is also included. Access to the external register file will
be under microprogram control, allowing address selection to come from the microcode
itself or from one of the three operand fields of the instruction register.

PROMs eliminate the use of main memory as a source for constants used in
initialization or table look-up functions. Accessing main memory for table values would
require time and slow system throughput; by placing fixed values in fast PROMs,
access time is kept to a minimum and system throughput is not altered.

4-1

Control, data and address buses shared by the system are accessed by three-state
registers. The control register, as explained in section 4.1.2, supplies the non-CPU
part of a computer system with control signals.The data bus allows the ALU to supply
data for the rest of the system and can also be a source of data for the ALU; this
is accomplished by using three-state registers to drive the bi-directional data bus, along
with registers to sample the bus. The address bus uses one of the external register
file locations to maintain a program counter, thus allowing a 32-bit address bus capable
of addressing about four Gigawords of main memory. Using three-state drivers for
this bus enables other subsystems to take control of the system buses.

A pipeline register supplies the microsequencer and the ALU with both data and
instructions. To get macrocode into the system, an instruction register and a mapping
PROM are used to convert the opcode to a microprogram routine address. The
condition code signal, used for testing various conditions, is supplied by a register
input based PAL. PAL inputs can be fixed values or combinations of the status signals
coming from the ALU. The read address select pins for the 'AS888's internal B register
can be sourced from the microword itself or from three nibbles of the macroword,
to provide offsets for the N-way branches to various microcode routines.

4. 1 Designing a 32-Bit System

A typical 32-bit system block diagram using the 'AS888 bit-slice and 'AS890
microsequencer is shown in Figures 4-2 and 4-3. It can be broken down into two
sections, the ALU (arithmetic logic unit) and the CCU (computer control unit). The
ALU section performs all manipulation of data both to and from main memory, such
as arithmetic and logical operations. The CCU section controls instruction (macrocode)
flow and any miscellaneous control operations, such as fetching instructions or
supplying addresses for main memory access.

4. 1 . 1 Construction of the ALU

4-2

To cascade the four' AS888s to obtain the 32-bit arithmetic unit shown in Figure 4-4,
the shift multiplex SIOO and 0100 terminals are connected to the Sl07 and 0107
terminals of adjacent packages, and the least significant package's signals are
connected to the most-significant package's. Optionally, SN74ALS240 inverting gates
can be connected to the SIOO-SI07 terminals and the byte inputs to implement byte
and bit control. Another chip, the SN74AS182 look-ahead carry generator, provides
a ripple-carry function, to help system throughput.

The design includes a 16-word register file, the SN74AS870 (see Figur~ 4-3).This
allows the user to access 16 working areas for temporary data storage or address
calculations such as indexing. In this design example, the 'AS888's internal register
file is not accessible directly by the user; it is reserved for microcode operations, such
as address computation and temporary storage for arithmetic operations. Addressing
the register files is permitted through the microprogram or from the macrocode
instruction register under microcode control.

The transfer register connected to the' AS888's Y and DB buses allows for feedback
into the 'ASBBB under microprogram control. Since the constant PRO Ms and the
external register file share the A bus, they cannot be accessed at the same time. The
transfer register enables data from the external register file to be transmitted to the
B bus, making possible the addition of operands from the constant PROMs and the
external register file, for example.

Constant PRO Ms are also included to simplify the programming and operation of the
ALU by supplying fixed data for various operations, such as:

1) Clearing the system register files for initialization. This will bring the system up
to a known state.

2) Supplying a correction value to the offset in a branch instruction, i.e., converting
a 16-bit offset to a true 32-bit address.

3) Table look-up for fixed mathematical operations, such as computing sines and
cosines.

4.1.2 Construction of the CCU

Sequencing and branching operations at speeds compatible with the 'AS888 are
supplied by the 'AS890, a microprogrammed controller working as a powerful
microsequencer (see Figure 3-1). Features of the 'AS890 include:

1) Stack capability. The 9-word stack can be accessed by using a stack pointer
or a read pointer; the latter is designed for non-destructive dumping of the stack
contents.

2) Register/counter facility. Two registers, DRA and DRB, can be used for latching
data from the external data buses or as counters for loops. A ZERO signal is
generated when the decremented counter reaches a zero value.

3) Interrupt control. A register for temporarily holding the return address is supplied;
upon entering the interrupt routine, the contents of the return register must be
pushed onto the stack for later use.

4) Next address generation. The Y output multiplexer offers a selection of same
or incremented address, address from DRA or DRB buses, address from stack,
or a concatenation of DRA 13-DRA4 and B3-BO.

A microprogram memory/pipeline register supplies the microsequencer and the rest
of the system with instructions (see Figure 4-2). The memory might consist of ROMs,
or it could be a writable-control store with support logic to allow loading or updating
of the control store. For a general purpose machine with a fixed instruction set, RO Ms
would be more economic.

Some 'AS890 instructions are influenced by the CC input. Many are variations of
branch and jump instructions. To form and supply CC, a register can be used to latch
the state of the 'AS888 and supply inputs to a PAL for decoding, based upon the
microcode's needs. Combinatorial logic in the PAL allows multiple or single events
to be selected or provides a fixed value of "1" or "O" for forced conditions.

To supply the microsequencer with the proper address of the microcode-equivalent
version of the macrocode instruction, an instruction register and mapping PROM are
needed. Under microprogram control, the instruction register samples the data bus
to get the macrocode instruction. The opcode portion is passed to the mapping PROM
to form an address to the microcode routine. When the microcode is ready to jump
to the routine, it turns off the Y bus output of the 'AS890 and enables the output
of the mapping PROM. An optional means of altering the address uses B3-BO inputs
of the 'AS890 to implement a N-way branch routine. In this method, the ten most
significant address bits of DRA or DRA are concatenated with the B3-BO bits to supply
an address.

Control information is supplied to the rest of the system via the control register and
bus. By setting various bits within the control register, information can be passed
to other subsystems, such as memory and 1/0 peripherals. Bit 0 could represent the
read/write control line while bit 1 could select memory or 110 for the read/write. Bit 2
might function to enable interrupts and bit 3 to indicate when the system should enter
a "wait" state for slow memory. The remaining control bits can be programmed by
the system designer to indicate additional condition states of the "macrosystem".

4-3

t
.i::.

14

MICROPROGRAM
MEMORY

PIPELINE
REGISTER

4

MICRO CONTROL BUS

4

CONDITION CODE
LATCH

cci. I I 1

14 "1"4

14

MAPPING
PROM

11

32 DATA BUS

32 ADDRESS BUS

CONTROL BUS

INSTRUCTION
REGISTER
AS373(4)

1-0F-4
SELECTOR
74AS153(2)

9

9

I

2

114 -

CONTROL
REGISTOR
AS373(1)

Figure 4-2. CCU Block Diagram

TO FIGURE 4-3

'AS888 STATUS

CARRY-IN
-1 SELECTOR I TO Cn

74AS153(1) (ON LSP)

TO
REGISTER

FILES
1-0F-2 ·12 SELECTOR

74AS157(3)

TO FIGURE 4-3

TO FIGURE 4-3

TO FIGURE 4-3

FROM FIGURE 4-2 I' MICRO CONTROL BUS
.L

32 B BUS • ...32 ~
1

I 32 A BUS
i32 1 t • •• ..(32

'AS888 STATUS --.L • ---r4 ALU CONSTAN1
TRANSFER J 'AS888(4) PROM

Cn / (SEE FIGURE 4-41 REGISTER
74AS373(4)

• ... 32

..Y12 • l_ • 1-0F-2 1 _L_.. 16-WORD l
TO REGISTER .L .L SELECTOR J 74~ REGISTER FILE

FILES I' 12 8 74AS157(1) 74AS870(8)

14 ~ ~ 32

.(32 l-'32

• • YBUS

~2 * "'· -; 32 j ~321
DATA-IN DATA-OUT MEMORY

REGISTER REGISTER ADDRESS REGISTER
74AS373(4) 74AS373(4) 74AS373(4)

•
32 "32 ..Y32

~
/ 32 DATA BUS

FROM FIGURE 4-2

'- l_
32 ADDRESS BUS

FROMFIGURE4-2 -~~==~~~:::;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-
FROM FIGURE 4-2 CONTROL BUS

t
01 Figure 4-3. ALU Block Diagram

Addressing of the register files, both the 'AS888 internal and the 'AS870 external,
is done through the use of two 1-of-2 selector banks. The first bank selects address
source; this design offers a choice for operand processing of fixed values from the
microcode or values from the macroinstruction latched in the instruction register. The
second bank selects the first or second operand as an address source for port 0 of
the external register file; port 1 uses the third operand as an address source.

It should be noted that the design presented in Figure 4-2 for the computer control
unit is a one-level pipeline that is instruction-data based.The address and contents
of the next instruction are being fetched while the current instruction is being executed.
Tracing through the data flow, the following can be observed:

1) The pipeline register contains the current instruction being executed;
2) The ALU has just executed its instruction, and has the current status ready at

its output pins;
3) The status register that is attached to the ALU contains the previous instruction's

resulting status;
4) The contents of the next microprogram word are being fetched at the same time

that the current instruction is being executed.

4.2 Tracing through a 32-Bit Computer

4-6

With the 'AS888 and 'AS890 as foundation chips, the typical 32-bit supermini of
Figures 4-2 and 4-3 can now be functionally traced. First, note that the data of the
main program is handled separately from that of the microcode - each on its own
bus. The system is initialized by setting the "clear" signal high - this causes a forced
jump to the beginning of the microcode memory. Instructions carried out by the
microcode at this point might run system diagnostics, clear all registers throughout
the 'AS888-based system, and set up the initial macrocode program address. In this
design, the first program address to fetch an instruction from main memory comes
from a fixed value in the microcode memory; it is possible to allow the address to
be retrieved from a permanent location in main memory or from either a front panel
or console, by modifying the microcode program slightly.

Table 4-1 illustrates the microcode format for this design. Note that it contains control
signals for all chips involved in the design. Some of these, such as TRANSLATCH
and MARLATCH, are used with the system clock to provide controlled loading of the
various holding registers~ Others supply necessary addressing information, directing
input from either the main data bus or from the microcode word itself.

The FETCH routine is shown in functional, assembler and microcoded forms in Tables
4-2, 4-3 and 4-4. First, the program counter is read from the external register file
and stored into the memory address register. After the program counter is placed on
the address bus, the program counter is updated and stored while the data from
memory is allowed to settle down to a stable condition. The data is then latched in
both the instruction register and data-in register.

The opcode field of the instruction register is passed through the mapping PROM to
convert the opcode to an equivalent microcode routine address. When YOE is forced
high by the microcode, the 'AS890 is tri-stated from the Y bus, and the mapping
PROM's output is taken out of the tri-state mode to supply an address to the control
store (microprogram memory); a forced jump is made to the microcode routine to
perform the instruction.

After the routine is complete, a jump is made back to the FETCH routine using the
next-address supplied by the microprogram. It is up to the system
designer/programmer to make sure that all system housekeeping is performed so that
nothing causes a fatal endless loop.

,, B-BUS
F32

' ' ' \
.L A-BUS
'32

J::l ..C"1 1:" r:i--
+5V-= - - -

pppl} I~ PPP 1-- I~ PPP 1-- I~ PPP ~ I~ -
'AS888

?>--Jr-
'AS888

l>-r-
'AS888

l>-r-
'AS888 'P-J _ ZERO

ZERO ZERO ZERO ZERO -- SSF ,____..., SSF ,____..., SSF t----. SSF
-. Cn+s Cn+s Cn t-- - Cn+s Cn, - Cn+s Cn I-- - Cn+s Cn - ,.....---8107 SIOO 8107 SIOO 8107 SIOO 8107 SIOO

[QI07 QIOO 0107 QIOO QI07 QIOO 0107 _QIQO~
GP GP GP G p

i.....-.,__,

l
74AS182 c~

LOOK-AHEAD

n CARRY GENERATOR

z
0 z
j:: 0
i5 E~ P/OVR z c iC(
0 zc G/N -(.) 0 --(.) -

1_ L L Y-BUS L L
32

t Figure 4-4. Cascaded 'AS888 Packages
-...J

Table 4-1. Microcode Definition

MICROCODE
PIN NAME INPUT TO FUNCTION

FIELD

0-13 DRA13-DRAO ~S890 Used for next-address branches

14-27 DRB13-DRBO 'AS890 Used for loading counter

28-30 RC2-RCO ~S890 Register/counter controls

31-33 S2-SO 'AS890 Stack control

34-36 MUX2-MUXO 'AS890 MUX control of Y output bus

37 INT 'AS890 Interrupt control

38 RAOE ~S890 Enables ORA output

39 RBOE 'AS890 Enables ORB output

40 OSEL 'AS890 Mux control for ORA source

41 INC 'AS890 lncrementer control

42 YOE 'AS890 Enables Y output bus

43-50 17-10 'AS888 Instruction inputs

51 OEA 'AS888 DA bus enable

52 EA 'AS888 ALU input operand select

53 OEB 'AS888 DB bus enable

54 OEY 'AS888 Y bus output enable

55 SELY ~S888 Y bus select

56-57 EB1-EBO ~S888 ALU input operand selects

58 WE 'AS888 Register file write enable

59 MAP PROM Enables mapping PROM to 'AS890 Y bus

60 iR Latch Latches data bus to instruction register

61 CR Latch Latches control data to bus

62-69 CTRL7-CTRLO Latch Data for control latch

70-71 BSEL 1-BSELO Multiplexer Selects data for 'AS890

72-75 B3-BO Multiplexer Microcode data to switch

76 CONOCO Latch Controls latch of 'AS888 status

77-80 SELC3-SELCO PAL Selects combination of 'AS888 status

81 DTALATCHI Latch Controls latching of data-in

82 DTAIN Latch Enables data-in output to bus

83 DTALATCHO Latch Controls latching of data-out

84 DTAOUT Latch Enables data-out output to DB bus

85 MAR LATCH Latch Controls latching of address

86 MAR Latch Enables MAR output to address bus

87 CONSTPROM PROM Enables PROM to DA bus

88-99 A11-AO PROM Address of constant in PROM

100 SWITCH2 Multiplexer Selects microcode or Instruction Register data

101 SWITCH1 Multiplexer Selects microcode or Instruction Register data

102-105 A3-AO Multiplexer Register file address ('AS888)

106-109 B3-BO Multiplexer Register file address ('AS888)

110-113 C3-CO Multiplexer Register file address ('AS888)

114 REGUWR Register File Port 0 write enable

115 REGLWR Register File Port 1 write enable

116 REGU Register File Chip enable on port 0

117 REGL Register File Chip enable on port 1

118 TRANSLATCH Latch Controls latch between Y and DB bus

119 TRANS Latch Enables output to DB bus

120 SELCN2 Multiplexer Supplies carry input to 'AS888

121 SELCN1 Multiplexer Supplies carry input to 'AS888

122 REGUB Multiplexer Selects address for external register file

123-126 BYTE3 - BYTEO Three-state Enables data for byte/bit operations

4-8

Table 4-2. Functional Listing of Fetch

FETCH: MAR = PC, Enable MAR output

PC=PC+1

IR = DIR = data bus, Disable 'AS890 Y bus,

Enable mapping PROM to Y bus

Table 4-3. Assembler Listing of Fetch

FETCH: OP890 ..,111,lO;INC;

OP888 NOP.GROUPS, 10,., 1111;

OEY;SELY;

CR;CTRL 00000011;

SELC 01;

MARLATCH;MAR;

SWITCH OO;REGL;

TRANS LATCH

OP890 ..,111,lO;INC;

OP888 PASS.I NCS,00,., 1111;

OEB;OEY;

SELC 01;

MAR;

REGLWR;REGL;

TRANS;

SELCN 01

OP890 ... 111, 10;

OP888 NOP.GROUPS, 1 O;

MAP;

IR;

SELC 01

DTALATCHI;

MAR

Key to Table 4-3

OP888 a,b,c,d,e,f

where:

a upper bits of instruction, 17-14

b lower bits of instruction, 13-10

c value of EB1-EBO

d A address of register files

e B address of register files

C address of register files

Set 'AS890 for continue

Perform NOP and read external register 1 S

Enable Y bus output

Generate external control bus signals

Select fixed CC value to 'AS890

Latch value on Y bus and enable output

Select address source and enable port

Latch Y bus for transfer to B bus

Set 'AS890 for continue

Increment program counter

Enable Y bus output

Select fixed CC value to 'AS890

Output address to address bus

Update program counter in register file

Enable transfer latch output to B bus

Select carry input to LSP to be "1"

Set 'AS890 for continue

Perform NOP

Enable mapping PROM to 'AS890 Y bus

Latch data bus to get macrolevel code

Select fixed CC value to 'AS890

Put data bus also in data register

Output address to address bus

OP890 v,w,x,y,z

where:

v ORA value, 14-bits

w ORB value, 14-bits

x RC2-RCO

y S2-SO

z MUX2-MUXO

4-9

t
0

DRA13-

DRAO

00000000000000
00000000000000

00000000000000

CTRL7-

CTRLO

9 w

~ -...I w
~

g
ra

8
Q
z
8

Table 4-4. Microcode Listing of Fetch

0
><

DRB13- ::::>
0 :IE 17-10

DRBO ~ 0 ~
1~i;~~~ ~ ~ ::::>

a: !I) :IE

00000000000000 0 0 0 1 1 1 0 1 0 111010 11111111
00000000000000 0 0 0 1 1 1 0 1 0 111010 11110100
00000000000000 0 0 0 1 1 1 0 1 0 111001 11111111

Table 4-4. Microcode Listing of Fetch (continued)

§
w
!I) g
w
!I) ~~l~iJ A11-AO

-:J:

!
I ~

0
Ill

ra
8
0

1~~111>~-9w ~ wwwm 3: OOU>w 1~~5
11101101 1 1 0
11000001 1 1 1
01111101 0 0 1

J
:J:

~
a:a: ~ 3: U)U)N.-111

zzZZ::::>
~~gg" Ii~ im

15
Iii! ~

00000011 00 000010001 1111001 000000000000 00 0000 0000 1111111001000 1111

00000000 00 0000100011111101 000000000000 000000 00001111101010010 1111
00000000 00 0000100010111101 000000000000 00 0000 0000 0000 111111000 1111

4.3 Defining the Macrocode Instruction Format

Since this is a 32-bit design, a variety of instruction formats are available. The size
of the opcode, along with the types of addressing used, will affect both system size
and performance. The formats shown in Table 4-5 will be used for discussion.

All Table 4-5 formats have an opcode field of 11 bits and source/destination fields
of 7 bits; the first three bits of the latter designate the address type, and the remaining
four bits are used for register access. The opcode length allows 2,048 macrocoded
instructions to be mapped to equivalent microcoded routines. The address fields can
specify any of the following modes: register, relative, autoincrement/autodecrement,
indexed, absolute, and deferred. The offset used in the Type 0 instruction can be used
for branch-based instructions, for an offset range of ± 32727.

Table 4-5. Possible Instruction Formats

TYPE 0- OPCODE+ 16-BIT OFFSET

0-10

Opcode

11 - 15

Not Used

TYPE 1 - OPCODE + DESTINATION

0-10

Opcode

11 - 24
Not used

TYPE 2 - OPCODE + SOURCE + DESTINATION

0- 10

Opcode

11 - 17

Not used

16-31

Offset

18-24

Source

TYPE 3 - OPCODE + SOURCE1 + SOURCE2 + DESTINATION

0-10

Opcode

4.4 Tracing a Macrocode Instruction

11 - 17

Source

18-24

Source

25-31

Destination

25-31

Destination

25-31

Destination

Microcode for a Type 3 multiplication instruction is shown in Table 4-6, using the
following assumptions:

1) Code for retrieving the operands will not be shown. Jumps will be made to
routines that will place the temporary operands into internal register locations
2 and 3 of the 'AS888, after being fetched from main memory.

2) A jump to a routine to store the product in the destination will be handled similarly.
3) Multiplication will be unsigned; the result will be placed in two temporary

locations of the 'AS888.
4) An update to the program status word, which the user can access at the macro-

code level must also be performed, but is not shown.

Assembler code is shown in Table 4-7; a microcode listing is given in Table 4-8. The
first two lines of microcode are subroutine jumps to opcode fetching routines, which
store the operands in register files 2 and 3 in the 'AS888. The next two instructions
load up the 'AS890 with a counter constant for performing the multiply loop, load
the MO register of the 'AS888 with the multiplier and clear the register that is
temporarily used for the accumulator.

4-11

Table 4-6. Functional Listing of Multiply

UMULl3:
JUMPSUB SOURCE1

JUMPSUB SOURCE2,

BCOUNT=32

REG 9=0

MQ=REG 2

LOOP:
UMULI WITH REG 3

DECREMENT BCOUNT,

BRANCH TO LOOP IF NOT ZERO,

LATCH 'AS888 STATUS,

REG 9=ALU

REG 8=MQ

JUMPSUB STORPSW

JUMPSUB MDEST

JUMP FETCH

Get first operand

Get second operand

Load DB counter register

Clear temporary accumulator

Load multiplier

Issue the multiply

Decrement the DB counter

Loop back until done

Store 'AS888 flags

Store intermediate result

Store intermediate result

Update macro program status

Store result at destination

Get next instruction

A loop is then entered to perform the multiply instruction 32 times to form the product,
with the multiplicand coming from the internal register file of the 'AS888. Upon exiting
the loop, the MQ register is stored in a temporary register location in the 'AS888.
The MQ register now contains the least-significant bits of the result and the temporary
accumulator the most significant bits. A subroutine jump is made to the program status
word update routine; this will take the status flags of the last multiplication iteration
and change the macrolevel status word. The next subroutine jump is to a destination
routine, which is followed by a branch to the FETCH routine to get the next macro
instruction to be executed.

4. 5 System Enhancements

4-12

The above example provides a broad overview of 32-bit system design using the
'AS888 and 'AS890. Certain additional options may enhance system performance.
These include:

1) Status latching. The design does not take into account changes that need to
be examined at the microlevel while retaining macrolevel status information. One
solution would be to include another register in parallel to the status latch and
provide control to choose between the two to form the condition code value.

2) Interrupts. To efficiently use a computer system, interrupts are used to alter
program flow in the case of 1/0 programming and real-time applications (involving
hardware timers). To include this capability, external hardware must be included
and the microcode modified accordingly. Information on interrupt implementation
is given in section 3.

3) Control store. One way of implementing microprogram memory is to use a ROM
based design. It is becoming more common to design a writable control store,
a completely RAM-based or part RAM, part ROM storage system, that can be
altered by system operation, such as initialization from a floppy disk subsystem,
or by the user to optimize or implement new macrolevel instructions. The cost
of implementation must be weighed with the risks involved in changing
instructions which may not be supported by other sites.

4) Instruction word definitions. Changing the instruction word definitions will have
an effect on both system design and performance. Removing Type 3 instructions
from the design, for example, will have an effect on both hardware and software:
the external register file addressing must be changed and the 1-of-2 selector

Table 4-7. Assembler Code of Multiply

UMULl3:
OP890 SOURCE1.,,110,110;

INC;YOE;

OP888 NOP;GROUPS;

SELC 0001;

MAR

Perform a subroutine branch

Increment address and enable Y bus

Tell 'AS888 to do nothing during jump

Set CC to "1" to set up 'AS890 continue

Maintain address on main address buss

OP890 SOURCE2,00000000100000, 110, 110, 110; Perform subroutine branch and load B

INC; YOE;

OP888 NOP.GROUPS;

SELC 0001;

MAR

OP890 ,.,111,110;

INC; YOE;

OP888 CLEAR,GROUPS.,., 1001;

WE;

SELC 0001;

MAR

OP890 LOOP,.,111,110;

INC;YOE;

OP888 LOADMQ,INCS..,0010;

MAR

LOOP:
OP890 LOOP,,101,111,100;

INC;YOE;

OP888 UMULl,GROUP4,01,0011., 1001;

WE;

MAR

OP890 .,,111,110;

INC;YOE;

OP888 PASS,INCS.,.,1000;

WE;

MAR

OP890 STORPSW ... 110, 110;

INC; YOE;

OP888 NOP.GROUPS;

SELC 0001;

MAR

OP890 FETCH.,, 111;

INC;YOE;

OP888 NOP.GROUPS;

SELC 0001

Key to Table 4-7.

OP888 a,b,c,d,e,f

where:
a = upper bits of instruction, 17-14

b lower bits of instruction, 13-10

c value of EB1-EBO

d A address of register files

e B address of register files

C address of register files

counter

Increment microaddress and enable Y bus

Tell 'AS888 to do nothing during jump

Set CC to "1" to set up 'AS890 continue

Maintain address on main address bus

Perform a continue instruction

Increment microaddress and enable Y bus

Zero out register file accumulator

Enable writing to register file

Set CC to "1" to set up 'AS890 continue

Maintain address on main address buss

Perform a continue instruction

Increment microaddress and enable Y bus

Load MO register with S + Cn, from external

register file

Maintain address on main address bus

Decrement B and loop til ZERO = 1

Increment microaddress and enable Y bus

Perform unsigned multiply on accumulator

Update register file accumulator

Maintain address on main address bus

Perform a continue instruction

Increment microaddress and enable Y bus

Put S + Cn in temporary register file

Allow updating of register file

Maintain address on main address bus

Perform a subroutine branch

Increment microaddress and enable Y bus

Tell 'AS888 to do nothing during jump

Set CC to "1" for set up 'AS890 continue

Maintain address on main address bus

Perform a branch to FETCH routine

Increment microaddress and enable Y bus

Tell 'AS888 to do nothing during jump

Set CC to "1" for 'AS890 continue

OP890 v,w,x,y,z

where:

v ORA value, 14-bits

w ORB value, 14-bits

x RC2-RCO

y S2-SO

z = MUX2-MUXO

4-13

removed. Likewise, changing the opcode length may restrict the instruction
address capability and also cause either an increase or decrease in the microcode
size.

5) Dynamic memory access (OMA). The above system does not support dynamic
memory access. To include this function requires a change in the address output
control, along with support circuitry for the type of OMA selected. Some error
detection and correction logic for main memory might also be included.

6) Computer control unit. The design presented here shows a one-level pipeline
architecture that is instruction-data based. System throughput may be increased
by converting to a pipeline of greater depth, or using another variety of one
level pipeline, such as instruction-address based or address-data based. Care
must be taken when increasing the size of the pipeline, especially when handling
branch/jump situations. The reader is advised to carefully research this area
before implementing any design.

4.6 Timing and System Throughput

A critical path analysis was undertaken to determine the maximum clock rate for the
proposed system. The longest delay path is the multiplication data path, which involves
the internal register file and the shift function of the 'AS888. Table4-9 contains the critical
delay calculations for both the ALU and CCU. Since both portions of the system must be
satisfied, a clock rate of 90 ns was selected for the following comparisons.

4.6.1 Fetch Analysis

Most microprocessors perform an instruction fetch in a pipeline mode; the next
instruction is fetched while the current instruction is executing. The fetch code shown
earlier requires a minimum of four cycles: three to issue the code and one to break
the pipeline for processing the branch. This results in a total time of 360 ns, based
on a 90 ns cycle time. Fetch times for the representative microprocessors have been
estimated from data books and are shown in Table 4-10; wait states for slow memory
are not included. As can be seen from the table, the 'AS888 design example is
estimated to run from 1. 1 to 2.1 times faster than the 16-bit microprocessors.

4.6.2 Multiplication Analysis

4-14

This analysis assumes that multiplication is unsigned integer and register to register
based. No account is taken of time needed for instruction fetch or operand fetch or
store.

The basic loop for the multiply takes 35 cycles: 2 for accumulator and multiplier set
up, 32 for actual multiply loop and 1 to store the least-significant bits in an internal
register file. Given a cycle time of 90 ns, a 32 by 32 bit multiplication can be
implemented in 2.275 microseconds. A 16-bit multiply requires 16 iterations of the
inner loop; both timings are included in Table 4-11 for comparison. Values for the
16-bit multiplies of the representative microprocessors have been estimated from data
books.

As shown in Table 4-11, the 16 by 16 multiply can be performed with the 'AS888
at a faster rate than the 16-bit microprocessors. Even comparing the 32 by 32 multiply
of the application design, one can see that the 'AS888 based system has a better
macroinstruction execution speed. Using the' AS888 and 'AS890 in a system design
will allow high throughput and permit a flexible architecture.

Table 4-8. Microcode Listing of Multiply

0
)(

DRA13- DRB13- ::::>
0 ::!!! 17-10

DRAO DRBO (.)

~ a: 0

l~~i~~~ N en le(~m>:'.i.-j9w l~eafS (.) ~
::::> ~ wwwm 31: a: ::!!! ooenw

0 0 0 0 0 0 0 0 0 0 1 1 0 0 00000000000000 0 0 0 1 1 0 1 1 0 111010 11111111 11110001 1 1 1

00000000010000 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 1 1 0 111010 11111111 11110001 1 1 1

00000000000000 00000000000000 000 1 1 1 1 1 0 111010 11110000 11100000 1 1 1

00001000001000 00000000000000 000 1 1 1 1 1 0 111010 11100100 11100001 1 1 1

00001000001000 00000000000000 1 0 1 1 1 1 1 0 0 111010 11010000 11100010 1 1 1

00000000000000 00000000000000 000 1 1 1 1 0 1 111010 11111111 11100010 1 1 1

00000000010100 00000000000000 0 0 0 1 1 0 1 1 0 111010 11111111 11110001 1 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 0 00000000000000 0 0 0 1 1 0 1 1 0 111010 11111111 11110001 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 00000000000000 0 0 0 1 1 1 0 0 0 111010 11111111 11110001 1 1 1

Table 4-8. Microcode Listing of Multiply (continued)

...
:c

9
::!!! i

J 1~ CTRL7-
0

-~I~ a: ~ w g 19 en 0 w :C:C~a: A11-AO N ~ CTRLO ~ en ~z ~ ~ :c Ii~ ~:ti!!!Z~ (.) Pi ~~i~~~8 f:?
15

... 0 Q 0 0 0 g ci: Ill ~ ~c(ggC!I w Ill z
~ 13 en Pi 0 w I') a:www

Ill Ill (.) en c((.) 1-1-en ena:

00000000 0 0 0 0 0 0 1 0 0 0 1 1111101 000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1

00000000 00 0 0 0 0 1 0 0 0 1 1111101 000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1

00000000 00 0 0 0 0 1 0 0 0 1 1111101 000000000000 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1

00000000 00 0 0 0 0 0 0 0 0 1 1111101 000000000000 0 0 0 0 0 0 0 0 1 0 0 0 0 0 110111000 1 1 1 1

00000000 00 0 0 0 0 0 0 0 0 1 1111101 000000000000 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1

00000000 00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 000000000000 00 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0 0 0 1 1 1 1

00000000 0 0 0 0 0 0 0 0 0 0 1 1111101 000000000000 00 0 0 0 0 0 0 0 0 0000 1 1 1 1 1 1 0 0 0 1 1 1 1

00000000 00 0000 1 0 0 0 1 1 1 1 1 1 0 1 000000000000 00 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1

t 00000000 00 0000 1 0 0 0 1 1111111 000000000000 00 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1
U1

Table 4-9. Critical Delay Path Analysis

CONTROL PATH DATA PATH

Pipeline Reg. Clock to Output 9 'AS888-1 Clock to Cn 46
MUX Select to Output 13 'AS182 Cn to Cn+z 5
'AS890-1 CC to Output 25 'AS888-1 Cn to SIO 25
PROM Access Time 20 'AS888-1 SIO to Y 14
Pipeline Reg. Setup Time 2 90 ns

69 ns

Table 4-10. Fetch Timing Comparison

'AS888

FETCH 32-BIT Z8001 8086-1 80286 68000L

Data width 32 16 16 16 16

No. of cycles 4 3 4 4 4

Clock rate 11.11 MHz 4 MHz 10 MHz 10 MHz 8 MHz

Total time 360 ns 750 ns 400 ns 400 ns 600 ns

Table 4-11. Multiply Timing Comparison

'AS888 'AS888

MULTIPLY 32-BIT 16-BIT Z8001 8086-1 80286 68000L

Size 32 x 32 16 x 16 16 x 16 16 x 16 16 x 16 16 x 16

No. of cycles 35 19 70 128 21 ,,,;;74

Clock rate 11.11 MHz 10.98 MHz 4 MHz 10 MHz 10 MHz 8 MHz

Total time 3.150 µ.s 1.729 µ.s 17.5 µ.s 12.8 µ.s 2.1 µ.s :s;;9.25 µ.s

4-16

5. Floating-Point System Design
Bit-slice processor architecture addresses the problem of optimizing system
performance while allowing the user to balance hardware complexity against software
flexibility. Bit-slice systems usually operate at or near the speed of the most primitive
of programmable processors, the PROM state sequencer. Of course, bit-slice
architecture incorporates circuitry dedicated not only to sequencing, but also data
processing (ALU) operations. In keeping with the trend of these programmable devices
to track the speed of fast discrete hardware, the 'AS888 8-bit slice ALU and 'AS890
microsequencer have been produced in Advanced Schottky bipolar technology. In
addition to sheer speed, the components feature greater density (2 micron geometry)
for greater functionality (more special purpose circuitry on board). The impact will
be faster, more powerful systems in applications which previously pushed the limits
of bit-slice processors.

Consider an application in which bit-slice architecture has dominated for years: CPU
design. The microprogrammed CPU itself spans a spectrum of uses ranging from
general purpose minicomputers to compact airborne computers. A specific example
which illustrates various facets of design using the 'AS888 and 'AS890 is a CPU with
a floating-point utility to compute sin(x).

The design process can be subject to many influences, including personal preference,
available development tools, peculiarities of the application, and constraints from the
user, customer or manufacturing environment. No hard and fast design rules could
be applied universally, but most designers will start with a specific plan in mind.

The goal of this example is to produce the hardware and microprogram which will
implement the sin(x) function in floating-point arithmetic. Before the microprogram
can be assembled, the hardware must be defined since the fields of the
microinstruction are dedicated to specific hardware once the microinstruction register
is hardwired to the devices it controls. Since the final architecture chosen depends
on tradeoffs between implementing certain operations in hardware or software, critical
applications will require that a cursory analysis of the software be made before
the hardware is cast in concrete. Attempting to develop microcode for a tentative
architecture will force the issue on which operations are better suited for hardware.
Before the architecture or the micropro~ram requirements can be known, the
algorithms which describe the application processes must be defined. Once an
algorithm is formulated it can be broken down into operations involving variable and
constant quantities. The variables can be assigned to registers and then the algorithm
can be translated into a microprogram. The following steps illustrate the plan for this
CPU design example incorporating a floating-point sin(x) utility:

Step 1 : Choose a floating-point number system
Step 2: Choose an algorithm for approximating sin(x)
Step 3: Make 'AS888 register assignments
Step 4: Substitute registers for variables in the algorithm
Step 5: Decompose steps of the algorithm into simple operations
Step 6: Translate into 'AS888/890 operations; identify subroutines
Step 7: Translate subroutines into 'AS888/890 operations
Step 8: Evaluate tradeoffs and block diagram the hardware
Step 9: Define microinstruction fields during detailed hardware design
Step 10: Assemble the microprogram

5-1

5.1 Choose a Floating-Point Number System

An IEEE floating-point format will be chosen for this example for portability of data
and software. It is important to note that the IEEE defines many standards in arithmetic
processing, but for simplicity this example will encompass only number format.
Furthermore, while several formats are IEEE compatible, only the basic single-precision
format will be considered.

The IEEE basic single-precision format is defined as a 32-bit representation in which
the component fields are a 1-bit signs, an 8-bit biased exponent e and a 23-bit fraction
f which are assembled in the following order:

Is I e f

31 0

The quantity is evaluated as (-1)S 2e-127 (1.f). Not-a-number, zero and infinity
have special representations. The one preceding the binary point is implied and is called
the implicit one or implicit bit. It coincides with the fact that the digits are normalized
(left justified).

5.2 Choose an Algorithm for Sin(x)

5-2

Many algorithms are discussed in the literature for approximating useful quantities
like sin(x). Literature research is a good place to start to familiarize oneself with various
algorithms and tradeoffs for a particlar application. Computer simulation is also useful
to compare algorithms for speed and accuracy. R.F. Ruckdeschel in BASIC Scientific
Subroutines, Vol. 1 (BYTE, McGraw-Hill Publications Co. New York, N.Y., 1981, pp.
159-191 discusses tradeoffs and provides a simulation in BASIC for a sin(x)
algorithm. An adaptation of this material has been chosen for this example:

Al Reduce angle range to first quadrant. (0 ::s x ::s 7r/2)

6
B) Compute sin(x) == I: Anx2n - 1. The coefficients are:

n=O

Coefficient Decimal IEEE hex

Ao 1.000000 3F80 0000
A1 -0.1666667 BE2A AAAO
A2 0.008333333 3C08 8888
A3 - 0.0001984127 B950 0001
A4 0.000002755760 3638 EF99
As - 0.00000002507060 B207 5A05
A6 0.0000000001641060 2F34 6FBC

The algorithm can be implemented in the following steps:

A) Reduce angle range to first quadrant. (0 :5 x :5 7f/2)

1) SIGN = SGN(x)
2) ABSX = llxll
3) XNEW = ABSX - 27f x INT(ABSX/27r)
4) If XNEW > 7r then SIGN = - SIGN and XNEW
5) If XNEW > 7r/2 then XNEW = 7r - XNEW

where
SGN(x) = {+ 1 .if x ~ 0

-1 If X < 0

INT(x) = integer function

6
8) Compute sin(x) :::::: I;· An x2n - 1.

n=O

1) Let XSQR = XNEW2; INITIALIZE SINX =0
.2) Do i = 6 to 1 step - 1

SINX = XSQR x SINX + A(i)
End do

3) SINX = SIGN x XNEW x SINX

XNEW -7f

Step B-2 computes the summation in a geometric series for economy. The major
difference between steps A and B is that A requires more diverse ALU operations
while B uses only multiplication and addition recursively.

5.3 Make 'AS888 Register Assignments

Just as in assembly language programming, registers must be allocated for variables.
Using Rn to denote the 'AS888 register whose address is n, where 0 :5 n :5 F (hex),
the following register assignments can be made:

RO x
R1 SIGN
R2 ABSX
R3 XNEW
R4 XSQR
R5 SINX

The following constants can also be defined:

Constant
Pl = 7r
PIOVR2 = 7r/2
2PI = 27r
1 OVR2PI = 1 /27r

Decimal
3.141593
1.570797
6.283185
0.159155

IEEE hex
4059 OFDB
3FC9 OFDB
40C9 OFDB
3E22 F981

5-3

5.4 Substitute Registers for Variables in the Algorithm

Now the algorithm can be rewritten with registers replacing variables:

A) Reduce angle range to first quadrant 10 ~ x ~ 11"/2).
1) R1 = SGN(RO)
2) R2 = llROll
3) R3 = R2 - 211" x INT(R2/21r)
4) lf_R3> 1r then R1 = -R1; R3 R3 - 1r
5) If R3 > 11"/2 then R3 = 1r - R3

6
8) Compute sin(x) :::::: I; An x2n - 1.

n=O

1) Let R4 = R02; INITIALIZE R5 = 0
2) Do i = 6 to 1 step -1

R5 = R4 x R5 + A(i)
End do

3) R5 = R1 x RO x R5

Since various references to constants are made, it is probably best to load constants
as needed rather than attempt to allocate registers for them. Constants can be loaded
from a constant field in the microinstruction or from ROM. The tradeoff is 32 bits
by 16K of micromemory versus 32 bits by the number of constants (typically less
than 16K). For this example, it will be assumed that a constant field in the
microinstruction is aeceptable.

5.5 Decompose Steps in the Algorithm into Simple Operations

5-4

The sin(x) function can be microprogrammed as a subroutine; let FSIN be its entry
address. RO would be loaded with x before FSIN were called. Upon return, R5 would
contain sin(x). Now decompose the steps in the algorithm into simple arithmetic and
logical operations. Other operatio·ns can be left as functions to be defined later.

FSIN: SUBROUTINE

A) Reduce angle range to first quadrant. (0 ~ x ~ 11"/2)

R1 = SGN(RO)

R2 = ABS(RO)

R3 R2 * 1 OVR2PI
R3 INT(R3)
R3 R3 * 2PI
R3 = R2 - R3

Y = R3 - Pl
Jump if Negative to Step A-5
R1 = -R1
R3 = R3 - Pl

Y = PIOVR2, R3
Jump if Negative to Step B-1
R3 = Pl - R3

1) Let R 1 = Sign of RO

~) R2 llROll

3) R3 R2 - 211" * INT{R2/21r)

4) If R3 > 11",

. then R1 = - R 1 ;
R3 = R3 - 11"

5) If R3 > 11"/2
then R3 = 11" - R3

6
B) Compute sin(x) =:: I:

n=O

R4 RO* RO
R5 0

R5 R4 * R5
R5 R5 + A6
R5 R4 * R5
R5 R5 + A5
R5 R4 * R5
R5 R5 + A4
R5 R4 * R5
R5 R5 + A3
R5 R4 * R5
R5 R5 + A2
R5 R4 * R5
R5 R5 + A1
R5 R4 * R5
R5 R5 +AO

R5 RO* R5
R5 R5 * R1 : RETURN

END SUBROUTINE

An x2n-1

1) Let R4 R02. Let R5

2) Do i = 6 to 1 step - 1
R5 = R4 x R5 + A(i)

End do

(To implement a loop,
use an 'AS890 counter

0

to index a memory containing
the constants.)

3) R5 R1 x RO x R5

5.6 Translate into 'AS888/890 Instructions; Identify Subroutines

The simplified steps of the algorithm can be represented fairly easily as 'AS888/890
instructions. Necessary functions (and suggested names) can be identified by
inspection as:

1) FMUL - Floating-point multiplication
2) FADD - Floating-point addition
3) FINT Floating-point integer conversion
4) FINV - Floating-point additive inverse (to subtract using FADD)
5) FABS - Floating-point absolute value
6) FSGN - Floating-point sign test
7) FCHS - Floating-point change of sign (to multiply by SIGN)

"Function" in this context refers to a special operation regardless of how it is coded.
In fact, FMUL and FADD are fairly complex and require detailed explanation. FINV,
FABS, FSGN and FCHS are single instruction operations that mask or mask and test.
FINT requires several inline instructions or a subroutine and will be left to the interested
reader as an exercise. Now the steps of the algorithm can be translated into
'AS888/890 operations which include references to these functions.

5-5

FSIN: SUBROUTINE

Al Reduce angle range to first quadrant. (0 :S x :S 7r/2)

R1 FSGN(RO) ; Get sign bit {MSB)
R2 FABS(RO) ; Take absolute value {clear MSB)
R3 FMUL{R2, 1 OVR2PI) ; Multiply register and constant
R3 FINT{R3) ; Floating-point integer conversion
R3 FMUL{R3,2PI) ; Multiply register and constant
R3 FADD(R2,INV{R3)) ; Subtract registers by adding inverse
Y = FADD(R3,NEGPI) : TEST NEG; Subtract by adding negative constant
JT SIN 1 ; Jump if true (jump if negative)
R1 = FINV{R1) ; Complement sign of R1
R3 = FADD(R3,NEGPI) ; Subtract by adding negative constant

SIN 1: Y = PIOVR2 - R3 : TEST NEG ; Subtract to compare (don't store)
JT SIN2 ; Jump if true (jump if negative)
R3 = FADD{Pl,FINV{R3)) ; Subtract by adding negative register

6
; Bl Compute sin{x) = I: An x2n - 1

n=O

SIN2: R4 = FMUL(RO,RO)
R5 = A6
R5 = FMUL(R4,R5)
R5 = FADD(R5,A5)
R5 = FMUL(R4,R5)
R5 FADD(R5,A4)
R5 FMUL(R4,R5)
R5 FADD(R5,A3)
R5 FMUL(R4,R5)
R5 FADD(R5,A2)
R5 FMUL(R4,R5)
R5 FADD(R5,A 1)
R5 FMUL(R4,R5)
R5 FADD(R5,AO)
R5 FMUL(RO,R5)
R5 FCHS(R5,R1) : RETURN

END SUBROUTINE

; Square by multiplying
; Initialize series
; Multiply registers
; Add coefficient
; Multiply registers
; Add coefficient
; Multiply registers
; Add coefficient
; Multiply registers
; Add coefficient
; Multiply registers
; Add coefficient
; Multiply registers
; Add coefficient
; Multiply registers
; Change MSB of R5 to MSB of R1

This contrived language has a syntax which may be suitable for a source program.
For the sake of illustration, it can be assumed that the microassembler recognizes
this particular syntax. The series was computed inline instead of using a loop since
it is relatively short. If a loop were used, a means of indexing the constants would
be required.

5. 7 Expand Subroutines into 'AS888/890 Operations

5-6

FMUL and FADD algorithms can now be expanded. Since they are called extensively
from FSIN, they are more critical to the efficiency of the final design. Wherever
possible, it is desirable to reduce the execution time of both in order to maintain
efficiency.

5. 7 .1 Floating-Point Multiplication

Let M 1 be the multiplier and M2 be the multiplicand whose product is P. Let the sign,
exponent and fraction fields of their IEEE representation be:

M1 : 1s1 IE1 IF1 I
M2: IS2IE2IF21

p: IS3IE3IF31

Pis found by multiplying mantissas (fraction plus implicit one) and adding exponents.
Since M 1 and M2 are normalized, the range of 1 .F1 x 1 .F2 is

1 . 00 ... 0 ::;; 1 . F 1 x 1 . F 2 ::;; 1 1 . 1 ... 1 0

The implicit bit may "overflow" into bit position 24. This type of overflow must be
detected so that the result can be normalized. Normalization requires right shifting
the result of 1.F1 x 1.F2 and incrementing E3. The implicit bit is then cleared when
S3, E3 and M3 are packed to form P. The floating-point multiplication algorithm may
then be defined as follows:

1) Unpack M 1 into signed fraction (SF 1) and exponent (E 1)
2) Set the implicit bit in SF1
3) Unpack M2 into signed fraction (SF2) and exponent (E2)
4) Set the implicit bit in SF2
5) Perform SF3 = SF1 x SF2 using signed integer multiplication
6) Perform E3 = E 1 + E2
7) Test SF3 for overflow into bit 24
8) If true, then increment E3 and right shift SF3
9) Clear the implicit bit in SF3

10) Pack E3 and SF3 to get P

As before, the steps of this algorithm can be broken down into simpler operations:

1) Unpack M 1 into signed fraction (SF1) and exponent (E1)
E1 = FEXP(M1)
SF1 = FRAC(M 1)

2) Set the implicit bit in SF1
SF1 = SF1 OR BIT23

3) Unpack M2 into signed fraction (SF2) and exponent (E2)
E2 = FEXP (M2)
SF2 = FRAC (M2)

4) Set the implicit bit in SF2
SF2 = SF2 OR BIT23

5) Perform SF3 = SF1 x SF2 using signed integer multiplication
SF3 = IMUL (SF1, SF2)

6) Perform E3 = E1 + E2
E3 = E1 + E2

7) Test SF3 for overflow into bit 24
TEST (SF3 AND BIT24)
JUMP IF FALSE to step 9

8) If true, then increment E3 and right shift SF3
INC E3
SF3 = RSHFT (SF3)

5-7

5-8

9) Clear the implicit bit in SF3.
SF3 = SF3 AND NOT - BIT23

10) Pack E3 and SF3 to get P
P = SF3 OR E3

FEXP, FRAC, testing bit 24 and setting/clearing bit 23 are all mask operations that
translate into single 'AS888 instructions. The integer multiplication (IMUL) is simply
the multiplication algorithm supported by the 'AS888 instruction set. No significant
hardware features are required to do floating-point multiplication, nor are any
subroutines required to support it.

Register assignments can now be made as before. Since FSIN uses registers in the
lower half of the register file, it might be preferable to restrict FMUL to the upper
registers. For example:

RF = P
RE = Ml, Fl, SFl
RD = M2, F2, SF2
RC = El
RB = E2

RE and RD can share variables that need not be preserved. Using this assignment,
FMUL computes RF = FMUL(RE,RD). RE and RD must be loaded prior to calling FMUL
and RF must be stored upon return. By substituting registers for variables and
reorganizing operations in the FMUL algorithm to better fit 'AS888/890 operations
the following source program may be created:

FMUL: SUBROUTINE

RC = FEXP(RE)
RE = FRAC(RE)
RE = RE OR BIT23
MO = SMTC(RE)

RB = FEXP(RD)
RD FMAG(RD)
RD = RD OR BIT23
RD = SMTC(RD)

; Unpack M 1 into exponent
; and fraction
; Set implicit bit
; Prepare to multiply

; Unpack M2 into exponent
; and fraction
; Set implicit bit
; Prepare to multiply

RE = 0 : RCA = # 22d ; Initialize to multiply
RE = SMULi RD : LOOP RCA ; Integer multiplication iteration
RE = SMULT RD ; Final step in signed multiply
Y = TBO(RE,BITl):BYTE=# 01 OOb:TEST Z ; Test "overflow"
JF FMUL 1 ; Jump if false (exponent ok)

INEX(RC)
RE = SRA(RE)

FMUL 1 :RC = RC + RB: TEST CARRY
JT ERROR

RE = SMTC(RE)
RE RE AND #807F_FFFFh
RF = RE OR RC : RETURN

; Increment exponent: add 00800000
; Shift fraction to normalize

; Add exponents and test carry
; Jump if carry true to handler

; Get sign magnitude fraction
; Clear implicit bit
; Pack fraction and exponent

5. 7 .2 Floating-Point Addition

The floating-point addition algorithm (FADD) is slightly more complex than FMUL, since
the two addends will usually not have the same exponent. Therefore the smaller
(absolute value) addend must first be chosen by comparing exponents. Then it must
be denormalized to align its digits with the digits of the larger addend. In other words,
the two addends must have the same exponent before their fractions can be added.
This process can be described by the following algorithm:

1) Unpack A 1 to get SF1 and E 1
2) Set implicit bit in SF1
3) Unpack A2 to get SF2 and E2
4) Set implicit bit in SF2
5) If E2 > E1 then go to step 9

! 11A1 11 ::; 11 A2 II l
6) Let DIFF = E1 - E2
7) Do i = 1 to DI FF

SF2 = RSHFT(SF2) (Arithmetic right shift)
Enddo

8) Let E3 = E1 , go to step 12
! II A2 II > II A 1 II l

9) Let DIFF = E2 - E1
10) Do i = 1 to DIFF

SF1 = RSHFT(SF1) (Arithmetic right shift)
Enddo

11) Let E3 = E2
12) SF3 = SF1 + SF2
13) Test "overflow" into bit 24
14) Jump if false to step 17
15) Increment exponent E3
16) Normalize signed fraction with right arithmetic shift
1 7) Clear implicit bit
18) Pack: SUM = SF3 or E3
19) Return

Register assignments for variables must now be made. Since FSIN uses registers in
the lower half of the 'AS888 register file, it is necessary to use the upper registers:

RF = SUM
RE=A1,F1,SF1
RD = A2, F2, SF2
RC = E1
RB= E2

By slightly reorganizing the sequence to better fit 'AS888/890 operations, the
following microprogram to perform FADD can be created:

FADD: SUBROUTINE

; 1) Unpack A 1 to get SF1 and E1
RC = FEXP(RE)
RE = FRAC(RE)

2) Set implicit bit in SF1
MQ = RE OR BIT23
RE = SMTC(RE)

; Get exponent (E1)
; Get signed fraction (SF1)

; Set implicit bit
; Convert to two's complement

5-9

5-10

3) Unpack A2 to get SF2 and A2
RB = FEXP(RD)
RD = FRAC(RD)

4) Set implicit bit in SF2
RD = RD OR BIT23
RD = SMTC(RD)

5) If E2 > E1 then go to step 9

; Get exponent (E2)
; Get signed fraction (SF2)

; Set implicit bit
; Convert to two's complement

RF = RC - RB : TEST NEGATIVE ; Compare A2 from A 1
JT FADD1 : RCA = # 8 ; Jump if E2 > E1; set up loop count

6) Let DIFF = E1 - E2.
Y/RF = SLC(RF) : LOOP RCA
RCA = Y/RF

7) Do i = 1 to DIFF
SF2 = RSHFT(SF2)

End do
RD = SRA(RD) : LOOP RCA

8) Let E3 = E1, go to step 12
RB = RC : JUMP FADD2

9) Let DIFF = E2 - E1

FADD1: RF = NOT(RF)
Y/RF = SLC(RF) : LOOP RCA
RCA = Y/RF

;10) Doi = 1 TO DIFF
SF1 = RSHFT(SF1)

End do
RE = SRA(RE) : LOOP RCA

; Rotate 8 times to get difference
; Load difference in loop counter

; Orient digits of smaller addend

; Swap registers and branch

; Complement result of E 1 - E2
; Shift 8 times to get DIFF
; Load DIFF in loop counter

; Align SF1 with SF2

; 11) Let E3 = E2 (no instruction required - RB already has E2 in it)

;12) SF3 = SF1 + SF2

FADD2: RF = RD + RE
RF = SMTC(RF)

; 13) Test "overflow" into bit 24
RF = TBO (RF, BIT24)

; 14) Jump if false to step 17
JF FADD3

; 1 5) Else increment exponent
INC RB : TEST NEG

; 16) Normalize signed fraction
RF = SRA(RF) : JT ERROR

; 17) Clear implicit bit

FADD3: RF = SETO (RF, BIT23)

; 18) Pack: SUM = SF3 OR E3
RF = RF OR RB : RETURN

; Add
; Convert to sign-magnitude

; Check for normalization

; If so, finish and exit

; Test for exponent overflow

; Jump to error handler if overflow

; Reset bit 23 of RF

; Or signed fraction and exponent

There is an important consequence of FADD which impacts the hardware. Since the
number of shifts required to denormalize the small addend is data dependent
(computed in the ALU) it is necessary to provide a path between the ALU Y bus and
the 'AS890 DRA bus. All the other operations are simple 'AS888/890 instructions,
including the FRAC and FEXP mask operations discussed during the development of
FMUL. ERROR is a floating-point overflow error handler.

5.8 Evaluate Tradeoffs and Block Diagram the Hardware

A rough estimate of the FSIN worst case execution time can be arrived at by making
the following observations about FSIN, FMUL and FADD:

FMUL
integer recursion == 22 cycles
other instructions == 18 cycles
total == 40 cycles

FADD
denormalization == 23 cycles
other instructions == 25 cycles
total == 50 cycles

FSIN
number of calls to FMUL = 12
number of calls to FADD = 11
number of other cycles == 10

Approximate worst case total = 10 + (12 x 40) + (11 x 50) = 1040 cycles. At
50 nanoseconds per cycle, this requires approximately 52 microseconds. There are
few improvements that could be made in hardware to speed this time, except perhaps
the addition of a flash multiplier which would reduce the integer computation by about
20 cycles (an overall reduction of about two percent). A barrel shifter could have the
same benefit during floating-point addition for a total reduction of about 4 percent.
For the sake of simplicity, it will be assumed that 52 microseconds is acceptable for
the sin(x) computation.

Another issue which must be considered is the problem of loading the 'AS888 and
'AS890 with constants. A slight materials cost reduction might be realized by storing
constants in table PROMs rather than in control store memory. An interesting use
of the DRA and DRB ports on the 'AS890 would be to use the output of RCA or RCB
to index data in the constant PROM. This would allow long series to be implemented
in loop form rather than the inline method used in FSIN. Once again, the constant
PROM will not be implemented for the sake of simplicity.

Now the architecture can be designed to meet the requirements identified throughout
this analysis:

1) A path between the 'AS888 Y bus and the 'AS890 DRA bus.
2) A path between the microinstruction register and the 'AS890 DRA bus for loading

loop counts and branch addresses.
3) A path between the microinstruction register and the 'AS888 Y bus for loading

constants.
4) Independent control of SIOO in each' AS888 slice to allow bit/byte instructions.
5) A status register to store 'AS888 status for testing.
6) A status mux to test the 'AS888 status, bit 23 of the 'AS888 Y bus, bit 24

of the 'AS888 Y bus and hardwired 0 and 1.

A system having these features is illustrated in Figure 5. 1.

5-11

(J1
I

N

SYSTEM INTERFACE

.OEY Y7-YO
8

DRA7-DRAO

r-1-,"

32 I

L---l

Y23

Y24

+5V
ALS151

"'.I AS890

Ds 1/8

Ds
:t\LS 374

D4

32 YHD allcc
DA DB

'AS888 (4)

y

OVR

Cn+8

D3

D2

D,

Do
SEL I SIOO I I .::. I I

CLKl.-111--~~:..._~~~~t---~~

Sl024 ...
al
w

w 6 I<(ICC I> ~ Q Is: c:i: cc u ~ m ~ ~ ~ ~ 8 ~

20MHz>-----------------------------,._--;

*USE 'ALS374 OUTPUT CONTROL FOR BUFFERING

3

108

MICROINSTRUCTION
REGISTER

'ALS 374 (14)

108

MICROPROGRAM
MEMORY
(16Kx 108)

Figure 5-1. Block Diagram of Floating-Point Processor

I

CLK Q x
::>

Q ::!!:

~ ~ o lw lw a:iN::>cno Ou
a:u Nc:i:a:i
Ca:::i!:cna: a:~>

14

5.9 Define Microinstruction Fields During Detailed Hardware Design

The detailed hardware design will produce a wiring diagram that fixes the position
within the microinstruction of each of the various control signals that are connected
from the microinstruction register to the 'AS888, 'AS890, status mux and any other
special hardware. Once this design is complete it is possible for the assembler to sort
the control bits of each instruction so that they will be properly oriented when the
microprogram is installed in the target system.

5.10 Assemble the Microprogram

Tl is currently developing an' AS888/890 microassembler. Several microassemblers
are commercially available, and many users prefer to write their own. The
microprogram shown in Table 5-1 was hand-assembled, but has a syntax that is
suitable for interpretation by a user-written assembler.

5-13

<.n
I
~

0000 SIN:

0001
0002

0003
0004
0005
0006

0007
0008
0009

OOOA
0008
oooc
OOOD

OOOE
OOOF
0010
0011

* R1 = FSGN(RO)
R1 = RO AND #8000 OOOOh

* R2 = FABS(RO)
R2 =RO
R2 = RO SETO #80h : BYTE= #1 OOOb

* R3 = FMUL(R2,10VR2PI)
RE = R2
RD = #3EA2 F984h
JSR FMUL
R3 =RF

* R3 = FINT(R3)
RF= R3
JSR FINT [EXERCISE FOR READER]
R3 =RF

* R3 = FMUL(R3,2PI)
RE = R3
RD = #40C9 OFDBh
JSR FMUL
R3 =RF

* R3 = FADD(R2,INV(R3))
RE = R2
RD = R5 XOR #8000 OOOOh
JSR FADD
R3 =RF

Table 5.1. Floating Point Sin(x) Microprogram

0 x
::::>

0 0::.?
al ~~o nw ~~8 ~<(al>~ 0 32-bit 1~1~1~1~ ~ ::::> ~ DRB13- ~ glu ..J l~MMMl<(alHwww c-; w <(alUWwOOOcnu !:::: Constant a: ::.? en DRBO a: a: ~ Cf.)

0 0 X 1 0 2 1 1 1 0 0 F A 8 0 0 0 0 0 0 0 1 1 1 1 0 2 7 x x x x 1 1 1 7

0 0 X 2 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 0 2 7 x xx x 1 1 1 7
0 0 2 8 0 0 1 1 1 0 0 1 8 xxxxxxxx 1 1 1 0 027XXXX1117

0 2 X E 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7
0 X X D X X 1 1 1 1 X F F 3EA2F984 1 1 1 1 0 2 7 x xx x 1 1 1 7
1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 4 0 0 6 0 1 1 1 7
0 F X 3 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7

0 3 X F 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7
1XXXXX111XXFF xxxxxxxx 1 1 1 1 014 111 7
0 F X 3 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7

0 3 X E 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7
0 X X D X X 1 1 1 0 X F F 4 0 C 9 0 F D B 1 1 1 1 027XXXX111 7
1 X X X X X 1 1 1 X X F F xxxxxxxx 1 1 1 1 0 1 4 0 0 6 0 1 1 1 7
0 F X 3 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7

0 2 X E 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7
0 5 X D 0 2 1 1 1 0 0 F 9 80000000 1 1 1 1 027XXXX111 7
1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 4 0 0 7 4 1 1 1 7
0 F X 3 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7

Table 5.1. Floating Point Sin(x) Microprogram (continued)

Cl
)(
:::>

0 Cl :::E
CICIO ffi U•

1~1~~1~ a;~o ri <Cmu ·1~~>~ o 32-bit a:::>~ DRB13- ~ml" -'
l~~&10l~ffio 111 ~~c3 ~ Ill

Constant a: :::E 0 DRBO a: ~ 0

* Y = FADD(R2,NEGPI)
0012 RE = R2 0 2 X E 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 0 2 7 xx xx 1 1 1 7
0013 RD = #C059 OFDBh OXXDXX1110XFF C 0 5 9 0 F D B 1 1 1 1 0 2 7 x xx x 1 1 1 7
0014 JSR FADD 1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 4 0 0 7 4 1 1 1 7
0015 Y = RF : TEST NEG 1 F X X 0 X 1 1 0 0 0 F 6 xxxxxxxx 1 1 1 1 0 2 7 x xx x 1 1 1 2
0016 JT SIN1 1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 7 0 0 0 0 1 1 1 7

* R1 = FINV(R1)
0017 R1 = R1 XOR #8000 OOOOh 0 1 X 1 0 2 1 1 1 0 0 F 9 8 0 0 0 0 0 0 0 1 1 1 1 0 2 7 x xx x 1 1 1 7

* R3 = FADD(R3,NEGPI)
0018 RE = R3 0 3 X E 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 0 2 7 x xx x 1 1 1 7
0019 RD = #C059 OFDBh 03XDXX1111XFF C0590FDB 1 1 1 1 027XXXX111 7
001A JSR FADD 1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 4 0 0 7 4 1 1 1 7
0018 R3 =RF 0 F X 3 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7

* SIN1: Y = FADD (PIOVR2,INV(R3)) : TEST NEG
001C SIN1: RE = #3FC9 OFDBh 0 X X E X X 1 1 1 1 0 F 6 35C90FDB 1 1 1 1 027XXXX111 7
0010 RD = R3 XOR #8000 OOOOh 0 3 X D 0 2 1 1 1 0 0 F 9 8 0 0 0 0 0 0 0 1 1 1 1 0 2 7 x xx x 1 1 1 7
001E JSR FADD 1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 4 0 0 7 4 1 1 1 7
001F Y = RF : TEST NEG 1 F X X 0 X 1 1 0 0 0 F 6 xxxxxxxx 1 1 1 1 0 2 7 xx xx 1 1 1 2
0020 JT SIN2 1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 7 0 0 0 0 1 1 1 7

* R3 = FADD(Pl,FINV(R3))
0021 RE = #4059 OFDBh OXXEXX11110F6 4 0 5 9 0 F D B 1 1 1 1 027XXXX111 7
0022 RD = R3 XOR #8000 OOOOh 0 3 X D 0 2 1 1 1 0 0 F 9 8 0 0 0 0 0 0 0 1 1 1 1 027XXXX111 7
0023 JSR FADD 1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 4 0 0 7 4 1 1 1 7
0024 R3 =RF 0 F X 3 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 0 2 7 x xxx 1 1 1 7

* SIN2: R4 = FMUL(RO,RO)
0025 SIN2: RE= RO 0 0 X E 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 0 2 7 xx xx 1 1 1 7
0026 RD= RO 0 0 X D 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7

U'I 0027 JSR FMUL I 1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 4 0 0 6 0 1 1 1 7 0028 R4 =RF U'I 0 F X 4 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7

er
<»

Table 5.1. Floating Point Sin(x) Microprogram (continued)

0
><
::::>

ooo !§
0 :E '

~~~~ ~No r1 cemu ·~~>~ o 32-bit ~ ~ Cl/ DRB13- ~ ~ .... ~~!3o~i9. w~~cJ ~ w 
Constant a: :E !;! DRBO en 

* R5 = A6 
0029 R5 = #2F34 6F8Ch OXX50X11110F6 2F346F8C 1 1 1 1 027XXXX111 7 

* R5 = FMUL(R4,R5) 
002A RE= R4 04XEOX111 OOF6 xxxxxxxx 1 1 1 1 027XXXX111 7 
0028 RD = R5 05XDOX111 OOF6 xxxxxxxx 1 1 1 1 027XXXX111 7 
002C JSR FMUL 1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 4 0 0 6 0 1 1 1 7 
002D R5 =RF OFX50X111 OOF6 xxxxxxxx 1 1 1 1 027XXXX111 7 

* R5 = FADD(R5.A5l 
002E RE = R5 05XEOX111 OOF6 xxxxxxxx 1 1 1 1 027XXXX111 7 
002F RD = #82D7 5AD5h OXXDXX1111XFF 82D75AD5 1 1 1 1 027XXXX111 7 
0030 JSR FADD 1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 4 0 0 7 4 1 1 1 7 
0031 R5 =RF OFX50X11100F6 xxxxxxxx 1 1 1 1 027XXXX111 7 

* R5 = FMUL(R4,R5) 
0032 RE= R4 04XEOX111 OOF6 xxxxxxxx 1 1 1 1 027XXXX111 7 
0033 RD = R5 05XDOX111 OOF6 xxxxxxxx 1 1 1 1 027XXXX111 7 
0034 JSR FMUL 1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 4 0 0 6 0 1 1 1 7 
0035 R5 =RF 0 F X 5 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7 

* R5 = FADD(R5,A4) 
0036 RE = R5 05XEOX111 OOF6 xxxxxxxx 1 1 1 1 027XXXX111 7 
0037 RD = #3638 EF99h OXXDXX1111XFF 3 6 3 8 E F 9 9 1 1 1 1 027XXXX111 7 
0038 JSR FADD 1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 4 0 0 7 4 1 1 1 7 
0039 R5 =RF 0 F X 5 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7 

* R5 = FMUL(R4,R5) 
003A RE= R4 04XEOX111 OOF6 xxxxxxxx 1 1 1 1 027XXXX111 7 
0038 RD= R5 05XDOX111 OOF6 xxxxxxxx 1 1 1 1 027XXXX111 7 
003C JSR FMUL 1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 4 0 0 6 0 1 1 1 7 
003D R5 =RF 0 F X 5 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7 



Table 5.1. Floating Point Sin(x) Microprogram (continued) 

0 
>< :::> 

0 o:E 
ooo ffi 

~~~i ~~o ~i ctmu .:.~jm>~ o 32-bit ~ :::> ~ DRB13- m It.> ...I 

~~!3oi~ffiw~~~c5 ~ Constant w a: :!E Cl> DRBO a: ~ Cl)

* R5 = FADD(R5,A3)
003E RE = R5 o 5 X E o X 1 1 1 o o F 6 xxxxxxxx 1 1 1 1 0 2 7 x x x x 1 1 1 7
003F RD = #8950 OD01 h 0 X X D X X 1 1 1 1 X F F 8 9 5 0 0 D 0 1 1 1 1 1 0 2 7 x x x x 1 1 1 7
0040 JSR FADD 1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 4 0 0 7 4 1 1 1 7
0041 R5 =RF 0 F X 5 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 0 2 7 x xx x 1 1 1 7

* R5 = FMUL(R4,R5)
0042 RE= R4 0 4 X E 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 0 2 7 x x x x 1 1 1 7
0043 RD= R5 0 5 X D 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 0 2 7 x x x x 1 1 1 7
0044 JSR FMUL 1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 4 0 0 6 0 1 1 1 7
0045 R5 =RF 0 F X 5 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 0 2 7 x x x x 1 1 1 7

* R5 = FADD(R5,A2)
0046 RE= R5 0 5 X E 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 0 2 7 xx xx 1 1 1 7
0047 RD = #3C08 8888h OXXDXX1111XFF 3 c 0 8 8 8 8 8 1 1 1 1 0 2 7 x x x x 1 1 1 7
0048 JSR FADD 1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 4 0 0 7 4 1 1 1 7
0049 R5 =RF 0 F X 5 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 0 2 7 xx xx 1 1 1 7

* R5 = FMUL(R4,R5)
004A RE= R4 0 4 X E 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 0 2 7 x x x x 1 1 1 7
0048 RD= R5 0 5 X D 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 0 2 7 xx xx 1 1 1 7
004C JSR FMUL 1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 4 0 0 6 0 1 1 1 7
004D R5 =RF 0 F X 5 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 0 2 7 x x x x 1 1 1 7

* R5 = FADD(R5,A 1)
004E RE = R5 0 5 X E 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 0 2 7 xx xx 1 1 1 7
004F RD = #8E2A AAADh 0 X X D X X 1 1 1 1 1 F F BE2AAAAD 1 1 1 1 0 2 7 x x x x 1 1 1 7
0050 JSR FADD 1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 4 0 0 7 4 1 1 1 7
0051 R5 =RF 0 F X 5 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 0 2 7 x x x x 1 1 1 7

* R5 = FMUL(R4,R5)
0052 RE = R4 0 4 X E 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7
0053 RD= R5

01 0054 JSR FMUL I

0 5 X D 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7
1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 4 0 0 6 0 1 1 1 7 0055 R5 =RF -...J 0 F X 5 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7

(J1
I

00

0056
0057
0058
0059

005A
005B
005C
005D

005E
005F

0060 FMUL:

0061

0062

0063
0064

0065

* R5 = FADD(R5,AO)
RE = R5
RD = #3F80 OOOOh
JSR FADD
R5 =RF

* R5 = FMUL(RO,R5)
RE = RO
RD= R5
JSR FMUL
R5 =RF

* R5 = FCHS(R5,R1) : RETURN
R1 = R1 OR #7FFF FFFFh
R5 = R5 XOR R1 : RETURN

* RC = FEXP(RE)
RC = RE AND #7F80 OOOOh

* RE = FRAC(RE)
RE = RE AND #807F FFFFh

* RE = RE OR bit23
RE = RE OR #0080 OOOOh

* MO = SMTC(RE)
RE = SMTC(RE)
LOADMO : PASS

* RB = FEXP(RD)
RB = RD AND #7F80 OOOOh

Table 5.1. Floating Point Sin(x) Microprogram (continued)

0 x
::J

0 o:E 11:1

~~o ~I ~al8 ~<1:11:1>~ 0 1~~1~1~ I~ ~ &! 0 I~ ffi I::: I::: ::: ~ t3 6
32-bit ~ ::J ~ DRB13- ct a:i 10

w
Constant a: ::!!: Cll DRBO a: a: ~ (/)

0 5 X E 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7
0 X X D X X 1 1 1 1 X F F 3F800000 1 1 1 1 027XXXX111 7
1 X X X X X 1 1 1 X X F F xxxxxxxx 1 1 1 1 0 1 4 0 0 7 4 1 1 1 7
0 F X 5 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7

0 0 X E 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7
0 5 X D 0 X 1 1 1 0 0 F 6 xxxxxxxx 1 1 1 1 027XXXX111 7
1XXXXX1 1 1 XX FF xxxxxxxx 1 1 1 1 0 1 4 0 0 6 0 1 1 1 7
0 F X 5 0 X 1 1 1 0 0 F 6 xx xx xx xx 1 1 1 1 027XXXX111 7

0 1 X 1 0 2 1 1 1 0 0 F B B 7 F F F F F F 1 1 1 1 027XXXX111 7
0 5 1 5 0 0 1 1 1 0 0 F 0 xxxxxxxx 1 1 1 1 022XXXX111 7

0 E X C 0 2 1 1 1 0 0 F A 7 F 8 0 0 0 0 0 1 1 1 1 027XXXX111 7

0 E X E 0 2 1 1 1 0 0 F A 8 0 7 F F F F F 1 1 1 1 027XXXX111 7

0 E X F 0 2 1 1 1 0 0 F B 0 0 8 0 0 0 0 0 1 1 1 1 027XXXX111 7

0 X E E X 0 1 1 1 1 0 5 8 xxxxxxxx 1 1 1 1 027XXXX111 7
1 E X X 0 X 1 1 1 1 0 E 6 xxxxxxxx 1 1 1 1 027XXXX111 7

0 D X B 0 2 1 1 1 0 0 F A 7 F 8 0 0 0 0 0 1 1 1 1 027XXXX111 7

Table 5.1. Floating Point Sin(x) Microprogram (continued)

0 x
:::>

0 o:E
ooo ffi

~~~i ~~o ~i <Cal(.) .,!.~ie>~ 0 32-bit ~ :::> ~ DRB13- <( a:i I(.) u:l l~~lin:H3mw ~~c3 6 Constant a: :E rn DRBO a: a: ~ rn 

* RD = FRAC(RD) 
0066 RD = RD AND #807F FFFFh 0 D X D 0 2 1 1 1 0 0 F A 8 0 7 F F F F F 1 1 1 1 0 2 7 x x x x 1 1 1 7 

0067 RD = RD OR bit23 0 D X D 0 2 1 1 1 0 0 F B 0 0 8 0 0 0 0 0 1 1 1 1 027XXXX111 7 
0068 RD = SMTC(RD) 0 X D D X 0 1 1 1 1 D 5 8 xxxxxxxx 1 1 1 1 027XXXX111 7 
0069 RE = 0 : RCB = #22D 0 E E E 0 0 1 1 1 1 0 F 9 0 0 0 0 0 0 1 6 1 1 1 1 6 1 7 x x x x 1 1 1 4 
006A RE = SMULi RD : LOOP RCB 0 D E E 0 0 1 1 1 1 0 6 0 xxxxxxxx 1 1 1 1 5 6 7 0 0 6 A 1 1 1 4 
006B RE = SMULT RD 0 D E E 0 0 1 1 1 0 0 7 0 xxxxxxxx 1 1 1 1 0 6 7 x x x x 1 1 1 7 
006C TBO(RE,bitl): BYTE=#0100b: TEST Z 0 0 F 0 0 0 1 1 1 1 0 3 8 xxxxxxxx 1 0 1 1 0 2 7 xx xx 1 1 1 4 
006D JT FMUL 1 1XXXXXX111XFF xxxxxxxx 1 1 1 1 0 1 7 x x x x 1 1 1 7 

* INEX RC 
006E RC = RC ADD #0080 OOOOh 0 C X C 0 2 1 1 1 0 0 F 1 0 0 8 0 0 0 0 0 1 1 1 1 0 2 7 x x x x 1 1 1 7 
006F RE = SRA(RE) 0 E X E 0 X 1 1 1 0 0 0 6 xxxxxxxx 1 1 1 1 0 2 7 x x x x 1 1 1 7 

0070 FMUL 1: RC = RC ADD. RB : TEST CARRY 0 C B C 0 0 1 1 1 0 0 F 1 xxxxxxxx 1 1 1 1 0 2 7 x x x x 1 1 1 0 
0071 JT ERROR 1XXXXX111XXFF xxxxxxxx 1 1 1 1 0 1 7 x x x x 1 1 1 7 

0072 RE = SMTC(RE) 0 X E E X 0 1 1 1 1 0 5 8 xxxxxxxx 1 1 1 1 0 2 7 x xx x 1 1 1 7 
0073 RE = RE AND #807F FFFFh 0 E X E 0 2 1 1 1 0 0 F A 807FFFFF 1 1 1 1 0 2 7 x x x x 1 1 1 7 

* FADD: RC = FEXP(RE) 
0074 FADD: RC = RC AND #7F80 0000 0 C X C 0 2 1 1 1 0 0 F A 7 F 8 0 0 0 0 0 1 1 1 1 0 2 7 x xx x 1 1 1 7 

* RE = FRAC(RE) 
0075 RE = RE AND #807F FFFFh 0 E X E 0 2 1 1 1 0 0 F A 807FFFFF 1 1 1 1 0 2 7 x xx x 1 1 1 7 

0076 MO = RE OR bit23 1 E X X 0 1 1 1 1 0 0 E B 0 0 8 0 0 0 0 0 1 1 1 1 0 2 7 x xxx 1 1 1 7 
0077 RE = SMTC(RE) 0 E X E 0 2 1 1 1 0 0 F A 807FFFFF 1 1 1 1 0 2 7 xx xx 1 1 1 7 

Cf1 * RB = FEXP(RD) ..... 
(0 RB = RD AND #7F80 0000 0078 0 D X B 0 2 1 1 1 0 0 F A 7F800000 1 1 1 1 0 2 7 x xxx 1 1 1 7 



(11 
I 

I\.) 
0 

0079 
007A 
007B 

007C 
007D 

007E 
007F 

0080 
0081 

0082 FADD1: 
0083 
0084 
0085 

0086 FADD2: 
0087 
0088 
0089 
008A 
008B 
oo8c FADD3: 
008D 

* RD = FRAC(RD) 
RE = RE AND #807F FFFFh 
RD = RD OR bit23 
RD = SMTC(RD) 

RF = RC - RB : CO=O: TEST NEG 
JT FADD1 : RCB = #8 

Y/RF = SLC(RF) : LOOP RCB 
Y =RF: RCA= Y 

RD = SRA(RD) : LOOP RCA 
RB = RC : JUMP FADD2 

RF= NOT RF 
Y/RF = SLC(RF) : LOOP RCB 
Y =RF: RCA= Y 
RE = SRA(RE) : LOOP RCA 

RF= RD+ RE 
RF = SMTC(RF) 
RF = TBO (RF, bit24) : TEST Z 
JF FADD3 
INC RB : TEST NEG 
RF = SRA(RF) : JT ERROR 
RF = SETO (RF, bit23) 
RF = RF OR RB : RETURN 

Table 5.1. Floating Point Sin(x) Microprogram (continued) 

Cl 
>< 
:) 

Cl Cl ::E 
CICICI ffi 

1~1~~1~ ~~Cl ILUi <Ca:ic.> .:.~~>-~ Cl 32-bit ~ :) ~ DRB13- ~ 111:1 IC.) ..... 
l~MM01:5111:1LULULULU C -; Constant LU <(ca LU ocnu !:::: IC ::IE U> DRBO IC 3!:; U) 

0 E X E 0 2 1 1 1 0 0 F A 8 0 7 F F F F F 1 1 1 1 027XXXX111 7 
0 D X D 0 2 1 1 1 0 0 F B 0 0 8 0 0 0 0 0 1 1 1 1 027XXXX111 7 
0 X D D X 0 1 1 1 1 0 5 8 xxxxxxxx 1 1 1 1 027XXXX111 7 

0 C B F 0 0 1 1 1 0 0 F 3 xxxxxxxx 1 1 1 1 027XXXX111 2 
1XXXXX111XXFF xxxxxxx8 1 1 1 1 617XXXX111 4 

OFXFOX110X066 xxxxxxxx 1 1 1 1 5 6 7 0 0 7 E 1 1 1 4 
1XXXXX1100XFF xxxxxxxx 1 1 1 1 2 7 7 0 0 8 0 1 1 1 7 

ODXDOX1110006 xxxxxxxx 1 1 1 1 1 6 7 0 0 7 E 1 1 1 4 
OCXBOX111 OXFF xxxxxxxx 1 1 1 1 027XXXX111 7 

0 F X F 0 X 1 1 1 0 0 F 7 xxxxxxxx 1 1 1 1 027XXXX111 7 
OFXFOX1100066 xxxxxxxx 1 1 1 1 617XXXX111 4 
1XXXXX1100XFF xxxxxxxx 1 1 1 1 5 6 7 0 0 8 4 1 1 1 4 
0 E X E 0 X 1 1 1 0 0 0 6 xxxxxxxx 1 1 1 1 2 7 7 0 0 8 6 1 1 1 7 

0 D E F 0 0 1 1 1 0 0 F 1 xxxxxxxx 1 1 1 1 027XXXX111 7 
0 X F F X 0 1 1 1 1 0 5 8 xxxxxxxx 1 1 1 1 027XXXX111 7 
0 0 F 0 0 0 1 1 1 1 0 3 8 xxxxxxxx 0 1 1 1 027XXXX111 4 
1XXXXX111XXFF xxxxxxxx 1 1 1 1 047XXXX111 7 
0 B X B 0 X 1 1 1 1 1 F 6 xxxxxxxx 1 1 1 1 027XXXX111 3 
0 F 7 F 0 X 1 1 1 0 0 0 6 xxxxxxxx 1 1 1 1 017XXXX111 7 
0 7 F 0 0 0 1 1 1 1 0 1 8 xxxxxxxx 1 0 1 1 027XXXX111 7 
0 F B F 0 0 1 1 1 0 0 F B xxxxxxxx 1 1 1 1 022XXXX111 7 



A 'AS888 and 'AS890 Pin Descriptions 
Pin descriptions and assignments for the 'AS888 bit-slice processor and 'AS890 
microsequencer are given on the following pages. 

A-1 



INDEX 
SYMBOL 

A-2 

SN54AS888, SN74AS888 ... GB PACKAGE 

(TOP VIEW) 

2 3 4 5 6 7 8 9 10 11 
......, 

"'• A • • • • • • • • • 
B • @ • • • • • • • @ • 
c • • • • 
D • • • • 
E • • • • 
F • • • • 
G • • • • 
H • • • • 
J • • • • 
K • @ • • • • • • • @ • 
L • • • • • ' • • • • • 

PIN PIN PIN PIN 
NO. NAME NO. NAME 

A-2 Cn B-9 OEY 
A-3 SIOO B-10 YO 
A-4 0100 B-11 Y1 
A-5 0107 C-1 15 
A-6 Cn+B C-2 Vcc2 
A-7 GIN C-10 Y4 
A-8 P/OVR C-11 Y6 
A-9 ZERO D-1 16 
A-10 PPP D-2 Vcc1 
B-1 12 D-10 Y5 
B-2 13 D-11 Y7 
B-3 11 E-1 17 
B-4 10 E-2 OEA 
B-5 14 E-10 Y2 
B-6 5107 E-11 DB1 
B-7 SSF F-1 EA 
B-8 F-2 GND 

PIN 
NO. 

F-10 
F-11 
G-1 
G-2 
G-10 
G-11 
H-1 
H-2 
H-10 
H-11 
J-1 
J-2 
J-10 
J-11 
K-1 
K-2 
K-3 

086 10 
085 11 
084 12 
083 13 
082 14 
081 15 
080 16 

SELY 17 
Y7 18 
Y6 19 
Y5 20 
Y4 21 
yj 22 
Y2 23 
Yl 24 
YO 25 

OEY 26 

PIN 
NAME 

Y3 
DB2 
DA2 
DAO 
DBO 
DB3 
DA3 
DA1 
DB6 
DB4 
DA4 
DA5 
SELY 
DB5 
DA6 
DA7 
co 

SN54AS888 ... FK PACKAGE 
SN74AS888 ... FN PACKAGE 

(TOp.VIEWI 

9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61 

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 

C a.. U.. 0 C:C: :Z 001'"'" I'"'" I"" 18 C:: 0 !:: N C"') :st :z ·8: ~ ffi > Its + Q o g - u - - -
(!) N\~ 0 cnaocn 

PIN PIN 
NO. NAME 

K-4 C2 
K-5 AO 
K-6 A3 
K-7 WE 
K-8 DB7 
K-9 OEB 
K-10 EBO 
K-11 EB1 
L-2 CK 
L-3 C1 
L-4 C3 
L-5 A1 
L-6 A2 
L-7 B3 
L-8 B2 
L-9 B1 
L-10 BO 

Figure A1. 'AS888 Pin Assignments for GB Package 



NAME 

WE 

83-BO 

OEB 

DB7-DBO 

Y7-YO 

OEY 

PPP 

SSF 

ZERO 

P/OVR 

G/N 

Cn+8 

5107 

0107 

0100 

5100 

17-10 

GND 

DA7-DAO 

CK 

C3-CO 

A3-AO 

OEA 

SELY 

EB1, EBO 

GND 

INPUT/OUTPUT 

Input 

Input 

Input 

Input/Output 

Input/Output 

Input 

Input 

Input/Output 

Input/Output 

Output 

Output 

Output 

Input/Output 

Input/Output 

Input/Output 

Input/Output 

Input 

Input 

Input 

Input/Output 

Input 

Input 

Input 

Input 

Input 

Input 

Table A 1. 'AS888 Pin Descriptions 

DESCRIPTION 

Register file (RF) write enable. Data is written into RF when WE is low and a low-to-high clock 

transition occurs. RF write is inhibited when WE is high. 

Register file B port read address select. (0 = LSB). 

DB bus enable, low active. 

B port data bus. Outputs register data (OEB = 0) or used to input external data (OEB = 1 ). 

(0 = LSB). 

Y port data bus. Outputs instruction results (OEY = 0) or used to input external data into 

register file. (OEY = 1 ). 

Y bus output enable, low active. 

Package position pin. Tri-level input used to define package significance during instruction 

execution. Leave open for intermediate positions, tie to Vee for most significant package, 

and tie to GND for least significant package. 

Special shift function. Used to transfer required information between packages during special 

instruction execution. 

Device zero detection, open collector. Input during certain special instructions. 

ALU active low propagate/instruction overflow for most significant package. 

ALU active low generate/negative result for most significant package. 

ALU ripple carry output. 

Bidirectional shift pin, low active. 

Bidirectional shift pin, low active. 

Bidirectional shift pin, low active. 

Bidirectional shift pin, low active. 

ALU carry input. 

Instruction inputs. 

Low voltage power supply (2 V). 

1/0 interface supply voltage (5 V). 

ALU input operand select. High state selects external DA bus and low state selects register file. 

Ground pin. 

A port data bus. Outputs register file data (EA =0) or inputs external data (EA= 1 ). 

Clocks all synchronous registers on positive edge. 

Register file write address select. 

Register file A port read address select. 

DA bus enable, low active. 

Y bus select, high active. 

ALU input operand selects. These inputs select the source of data that the S multiplexer 

provides for the S bus. Independent control of the DB bus and data path selection allow the 

user to isolate the DB bus while the R-ALU continues to process data. 

Ground pin. 

A-3 



INDEX 
SYMBOL 

A-4 

A 

B 

c 

D 

E 

F 

G 

H 

j 

K 

L 

SN54AS890, SN74AS89C' ... GB PACKAGE 

(TOP VIEW) 

2 3 4 5 6 7 8 9 10 11 

t--. • • • • • • • • • 
• @ • • • • • • • @ • 
• • • • 
• • • • 
• • • • 
• • • • 
• • • • 
• • • • 
• • • • 
• @ • • • ' • • • @ • 
• • • • • • • • • • • 

PIN PIN PIN PIN 

NO. NAME NO. NAME 

A-2 DR810 8-9 STKWRN/RER 

A-3 DR89 8-10 ZERO 

A-4 DR88 8-11 CK 

A-5 DR87 C-1 Y13 

A-6 DR86 C-2 Y10 

A-7 DRB5 C-10 cc 
A-8 DRB4 C-11 S1 

A-9 DRB3 D-1 Y12 

A-10 DR81 D-2 Y9 

B-1 DR813 D-10 S2 

B-2 INT D-11 so 
B-3 DRB12 E-1 Y11 

8-4 DRB11 E-2 VS 

B-5 83 E-10 Vcc2 
B-6 R80E E-11 RCO 

B-7 DRB2 F-1 Y7 

B-8 DRBO F-2 GND 

SN54AS890 ... FK PACKAGE 
SN74AS890 ... FN PACKAGE 

(TOP VIEW) 

9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61 
BO 10 

OSEl 11 
MUXO 12 
MUX1 13 

MUX2 14 
RCO 15 
RC1 16 
RC2 17 

so 18 
S1 19 
S2 20 
Cc 21 

VCC1 22 
VCC2 23 

CK 24 
ZERO 25 

STKWN/RER 26 
27 28 29 30 313233 34 35 36 37 38 39 404142 43 

PIN PIN PIN PIN 

NO. NAME NO. NAME 

F-10 Vcc1 K-4 DRA13 

F-11 MUX2 K-5 DRA11 

G-1 Y5 K-6 DRAS 

G-2 YOE K-7 DRA7 

G-10 RC1 K-8 DRAO 

G-11 MUX1 K-9 DRA1 

H-1 Y4 K-10 DRA3 

H-2 Y6 K-11 DRA2 

H-10 BO L-2 82 

H-11 MUXO L-3 INC 

J-1 Y3 L-4 DRA12 

J-2 Y2 L-5 DRA10 

J-10 RC2 L-6 DRA9 

J-11 OSEL L-7 RAOE 

K-1 Y1 L-8 DRA6 

K-2 YO L-9 DRA5 

K-3 81 L-10 DRA4 

Figure A2. • AS890 Pin Assignments for GB Package 

60 82 

59 YO 

58 . Y1 

57 Y2 

56 Y3 

55 Y4 

54 Y5 

53 Y6 

52 YOE 
51 GND 
50 Y7 
49 YB 
48 yg 

47 Y10 
46 Y11 
45 Y12 
44 Y13 



Table A2. 'AS890 Pin Descriptions 

PIN NAME 1/0 PIN FUNCTION 

RAOE In Enables DRA output, active low 

DRA6-DRAO In/Out Seven LSBs of the A direct data 1/0 port 

OSEL In MUX control forthe source to DRA. Low selects RA, high selects 

stack. 

MUXO-MUX2 In MUX control for Y output bus (see Table 1) 

RCO-RC2 In Register/counter controls (see Table 3) 

SO-S2 In Stack control (see Table 2) 

cc In Condition code 

Vcc1 5-volt supply for TTL compatible 1/0 

Vcc2 2-volt supply for internal STL 

CK In Clock 

ZERO Out Zero detect flag for register A and 8 

STKWRN/RER Out Stack overflow, underflow/read error flag 

DRBO-DRB6 In/Out Seven LSBs of the 8 direct data 1/0 port (0 = LSB) 

RBOE In Enables DRB output, active low 

DR87-DRB13 In/Out Seven MSBs of the 8 direct data 1/0 port 

INT In Active low selects INT RT register to stack 

Y13-Y8 In/Out Six MSBs of bidirectional Y port 

GND Ground 

Y7 In/Out Seventh bit of bidirectional Y port 

YOE In Enables Y output bus, active low 

Y6-YO In/Out Seven LSBs of bidirectional Y port (0 =LSD) 

INC In lncrementer control 

DRA13-DRA7 In/Out Seven MSBs of direct 8 data 1/0 

80-83 In 16-way branch inputs on 

A-5 



TI Sales Offices TI Distributors 
ALABAMA: Huntsville (205) 837-7530. 

ARIZONA: Phoenix (602) 995-1007. 

CALIFORNIA: lrvlne (714) 660-8187; 
Sacramento (916) 929-1521; 
San Diego (619) 278-9601; 
Santa Clara (408) 980-9000; 
Torrance (213) 217-7010; 
Woodland Hiiis (818) 704-7759. 

COLORADO: Aurora (303) 368-8000. 

CONNECTICUT: Wallingford (203) 269-0074. 

FLORIDA: Ft. Lauderdale (305) 973-8502; 
Maitland (305) 660-4600; Tampa (813) 870-6420. 

GEORGIA: Norcross (404) 662-7900. 

ILLINOIS: Arlington Heights (312) 640-2925. 

INDIANA: Ft. Wayne (219) 424-5174; 
Indianapolis (317) 248-8555. 

IOWA: Cedar Rapids (319) 395-9550. 

MARYLAND: Baltimore (301) 944-8600. 

MASSACHUSETTS: Waltham (617) 895-9100. 

MICHIGAN: Farmington Hiiis (313) 553-1500. 

MINNESOTA: Eden Prairie (612) 828-9300. 

MISSOURI: Kansas City (816) 523-2500; 
St. Louis (314) 569-7600. 

NEW JERSEY: lselin (201) 750-1050. 

NEW MEXICO: Albuquerque (505) 345-2555. 

NEW YORK: East Syracuse (315) 463-9291; 
El'!dlcott (607) 754-3900; Melvllle (516) 454-6600; 
Pittsford (716) 385-6770; 
Poughkeepsie (914) 473-2900. 

NORTH CAROLINA: Charlotte (704) 527-0930; 
Raleigh (919) 876-2725. 

OHIO: Beachwood (216) 464-6100; 
Dayton (513) 258-3877. 

OKLAHOMA: Tulsa (918) 250-0633. 

OREGON: Beaverton (503) 643-6758. 

PENNSYLVANIA: Ft. Washington (215) 643-6450; 
Coraopolis (412) 771-8550. 

PUERTO RICO: Halo Rey (809) 753-8700 

TEXAS: Austin (512) 250-7655; 
Houston (713) 778-6592; Richardson (214) 680-5082; 
San Antonio (512) 496-1.779. 

UTAH: Murray (801) 266-8972. 

VIRGINIA: Fairfax (703) 849-1400. 

WASHINGTON: Redmond (206) 881-3080. 

WISCONSIN: Brookfield (414) 785-7140. 

CANADA: Nepean, Ontario (613) 726-1970; 
Richmond Hiii, Ontario (416) 884-9181; 
St. Laurent, Quebec (514) 334-3635. 

TI Regional 
Technology Centers 
CALIFORNIA: Irvine (714) 660-8140, 
Santa Clara (408) 748-2220. 

GEORGIA: Norcross (404) 662-7945. 

ILLINOIS: Arlington Heights (312) 640-2909. 

MASSACHUSETTS: Waltham (617) 890-6671. 

TEXAS: Richardson (214) 680-5066. 

CANADA: Nepean, Ontario (613) 726-1970 

Technical 
Support Center 

TOLL FREE: (800) 232-3200 

Tl AUTHORIZED DISTRIBUTORS IN 
USA 

Arrow Electronics 
Diplomat Electronics 
General Radio Supply Company 
Graham Electronics 
Harrison Equipment Co. 
International Electronics 
JACO Electronics 
Kierulff Electronics 
LCOMP, Incorporated 
Marshall Industries 
Milgray Electronics 
Newark Electronics 
Rochester Radio Supply 
Time Electronics 
R.V. Weatherford Co. 
Wyle Laboratories 

Tl AUTHORIZED DISTRIBUTORS IN 
CANADA 

Arrow/CESCO Electronics, Inc. 
Future Electronics 
ITT Components 
L.A. Varah, Ltd. 

ALABAMA: Arrow (205) 882-2730; 
Kierulff (205) 883·6070; Marshall (205) 881-9235. 

ARIZONA: Arrow (602) 968-4800; 
Kierulff (602) 243-4101; Marshall (602) 968-6181; 
Wyle (602) 866·2888. 

CALIFORNIA: Los Angeles/Orange County: 
Arrow \818) 701-7500, (714) 838-5422; 
Klerulf (213) 725-0325, (714) 731-5711, (714) 220-6300; 
Marshall (818) 999-5001, (818) 442·7204, 
(714) 660-0951; R.V. Weatherford (714) 634·9600, 
(213) 849-3451, (714) 623-1261; Wy)e (213) 322-8100, 
(818) 880-9001, (714) 863-9953; Sacramento: Arrow 
(916) 925-7456; Wyle (916) 638-5282; San Diego: 
Arrow (619) 565-4800; Kierulff (619) 278-2112; 
Marshall (619) 578-9600; Wyle (619) 565-9171; 
San Francisco Bay Area: Arrow (408) 745-6600; 
(415) 487-4600; Klerulff (408) 971-2600; 
Marshall (408) 732·1100; Wyle (408) 727-2500; 
Santa Barbara: R.V. Weatherford (805) 965-8551. 

COLORADO: Arrow (303) 696·1111; 
Kierulff (303) 790-4444; Wyle (303) 457-9953. 

CONNECTICUT: Arrow (203) 265-7741; 
Diplomat (203) 797-9674; Klerulff (203) 265-1115; 
Marshall (203) 265-3822; Mllgray (203) 795-0714. 

FLORIDA: Ft. Lauderdale: Arrow (305) 429-8200; 
Diplomat (305) 974-8700; Kierulff (305) 486-4004; 
Orlando: Arrow (305) 725·1480; 
Milgray (305) 647-5747; Tampa: 
Arrow \813) 576-8995; Diplomat (813) 443-4514; 
Kierulf (813) 576-1966. 

GEORGIA: Arrow (404) 449·8252; 
Kierulff (404) 447-5252; Marshall (404) 923-5750. 

• TEXAS 
INSTRUMENTS 

Creating useful products 
and services for you. 

ILLINOIS: Arrow (312) 397-3440; 
Diplomat (312) 595-1000; Klerulff (312) 250-0500; 
Marshall (312) 490-0155; Newark (312) 784-5100. 

INDIANA: Indianapolis: Arrow (317) 243-9353; 
Graham (317) 634-8202; Marshall (317) 297-0483; 
Ft. Wayne: Graham (219) 423-3422. 

IOWA: Arrow (319) 395-7230. 

KANSAS: Kansas City: Marshall (913) 492·3121; 
Wichita: LCOMP (316) 265·9507. 

MARYLAND: Arrow (301) 995-0003; 
Diplomat (301) 995-1226; Kierulff (301) 636·5800; 
Milgray (301) 793-3993. 

MASSACHUSETTS: Arrow (617) 933-8130; 
Diplomat (617) 935-6611; Kierulff (617) 667-8331; 
Marshall (617) 272-8200; Time (617) 935-8080. 

MICHIGAN: Detroit: Arrow (313) 971-8220; 
Marshall (313) 525-5850; Newark (313) 967-0600; 
Grand Rapids: Arrow (616) 243-0912. 

MINNESOTA: Arrow (612) 830-1800; 
Kierulff (612) 941-7500; Marshall (612) 559-2211. 

MISSOURI: Kansas City: LCOMP (816) 221-2400; 
St. Louis: Arrow (314) 567-6888; 
Kierulff (314) 739-0855. 

NEW HAMPSHIRE: Arrow (603) 668-6968. 

NEW JERSEY: Arrow (201) 575·5300, (609) 596·8000; 
Diplomat (201) 785-1830; 
General Radio (609) 964·8560; Kierullf (201) 575-6750; 
(609) 235-1444; Marshall (201) 882-0320, 
(609) 234-9100; Milgray (609) 983-5010. 

NEW MEXICO: Arrow (505) 243-4566; 
International Electronics (505) 345-8127. 

NEW YORK: Long Island: Arrow (516) 231-1000; 
Diplomat (516) 454-6400; JACO (516) 273-5500; 
Marshall (516) 273-2053; Milgray (516) 420-9800; 
Rochester: Arrow (716) 427-0300; 
Marshall (716) 235-7620; 
Rochester Radio Supply (716) 454-7800; 
Syracuse: Arrow (315) 652·1000; 
Diplomat (315) 652·5000; Marshall (607) 798-1611. 

NORTH CAROLINA: Arrow (919) 876-3132, 
(919) 725-8711; Klerulff (919) 872·8410. 

·OHIO: Cincinnati: Graham (513) 772·1661; 
Cleveland: Arrow (216) 248-3990; 
Kierulff (216) 587·6558; Marshall (216) 248-1788. 
Columbus: Graham (614) 895·1590; 
Dayton: Arrow (513) 435-5563; Klerullf (513) 439-0045; 
Marshall (513) 236·8088. 

OKLAHOMA: Klerulff (918) 252-7537. 

OREGON: Arrow (503) 684·1690; Kierulff 
(503) 641-9153; Wyle (503) 640-6000; Marshall 
(503) 644-5050. 

PENNSYLVANIA: Arrow (412) 856-7000, 
(215) 928-1800; General Radio (215) 922-7037. 

RHODE ISLAND: Arrow (401) 431-0980 

TEXAS: Austin: Arrow (512) 835-4180; 
Kierulff (512) 835-2090; Marshall (512) 837-1991; 
Wyle (512) 834-9957; Dallas: Arrow (214) 380-6464; 
International Electronics (214) 233-9323; 
Kierulff (214) 343-2400; Marshall (214) 233-5200; 
Wyle (214) 235-9953; 
El Paso: International Electronics (915) 598-3406; 
Houston: Arrow (713) 530-4700; 
Marshall (713) 789-6600; 
Harrison Equipment (713) 8Y9-2600; 
Kierulff (713) 530-7030; Wyle (713) 879-9953. 

UTAH: Diplomat (801) 486-4134; 
Kierulff (801) 973-6913; Wyle (801) 974-9953. 

VIRGINIA: Arrow (804) 282-0413. 

WASHINGTON: Arrow (206) 643-4800; 
Kierulff (206) 575-4420; Wyle (206) 453-8300; Marshall 
(206) 747-9100. 

WISCONSIN: Arrow (414) 764-6600; Kierulff 
(414) 784-8160. 

CANADA: Calgary: Future (403) 235·5325; Varah 
(403) 255-9550; Edmonton: Future (403) 486-0974; 
Varah (403) 437-2755; Montreal: Arrow/CESCO 
(514) 735-5511; Future (514) 694-7710; ITT 
Components (514) 735-1177; Ottawa: Arrow/CESCO 
(613) 226-6903; Future (613) 820-8313; ITT 
Components (613) 226-7406; Varah (613) 726-8884; 
Quebec City: Arrow/CESCO (418) 687-4231; Toronto: 
CESCO (416) 661-0220; 
Future (416) 638-4771; ITT Components 
(416) 736-1144; Varah (416) 842-8484; 
Vancouver: Future (604) 438-5545; Varah 
(604) 873-3211; Winnipeg: Varah (204) 633-6190 BL 



Printed in U.S.A . 

• TEXAS 
INSTRUMENTS 

Creating useful products 
and services for you. SDBU001A 


