TMS320C28x Assembly Language Tools
v5.0.0

User's Guide

Literature Number: SPRU513C
October 2007

Q‘ TEXAS
INSTRUMENTS

SPRU513C—-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

Contents

e (] = Tod = 13
1 Introduction to the Software Development TOOIS [iiiiiieieieeiieieeaeieiiereeaeeeiereraeaeieieees 13
11 Software Development TOOIS OVErVieW . e ueeereeereeeeiaieeraeieseeieeeeieseereeieseeireeereseereseeeaeess 19

1.2 TOOIS DESCIIDtIONS] 4t e teseereeeraseteneeteseeseseeieseeesseseseeeeneereseeesseieseeeeseeieseeeoseeesseeeseeianes 14

2 Introduction to Object MOAUIES [ittt eeeeeietetaeaeieieteeaeeeieiniaeaeieierecaceeieiorecaceeieces 19
21 Sl o i T 2q

2.2 How the Assembler Handles SeCtioNS] e e e ueeeeeeeieeeeeeesieeeeeesseeseeeeseaseeereeseeessesseeesiesseeeess 2]

22 S O 1111 P21 1P4=Te ST =Tod 1o o - I 21

2.2.2 Initialized SeCHONS i oreseeaereereeenceeeeeoseeeeeeoseeeeeeeseeeeeeeeseeeeeessseeeeeeseeeeeeesnreeeesonces 22

A< T \F= 10 =T IRSTTer 1o o S 22

224 SUDSECHONS i itteeeeeeroeeeeeeoeroeeroeeoeeeseeoeeeeeeoeeeeeeeeroreeseeoeroeeeeeoeioseroeroeeeeioeeeeess 23

2.2.5 Section Program COUNErS e eeeeeeeeereoeerereeeaeeeeoeereoeeroseeeoeeeeoeeroseeraseeeosereseeeeneeses 24

2.2.6 UsSiNg SeCtioNS Dir€CtVES e s s s iseeeeereeeeeereeaeeesteaseeeetsesseeessessseessessseeesesseeesessnees 24

2.3 How the Link Step Handles SeCtioNS[eesioeeeereeeroereeeeoereeeeeeeoereeeeeeroeeeeeoeroeeroeeeeeeeioeeaeeees 29

2.3.1 Default Memory AllOCAtiON sz eeeeeereaeeraeeteaeeeeoeereseeroeeeoeeeeoeeeoseeroseeeosereseeeeeeres 21

2.3.2 Placing Sections in the Memory Map| o ..eeeueeeeeeeeeeaeeesieeseeeessesseeeieseseeeiseeseeeesessnees 21

24 L] [o]oro1 (To] o 29

25 RUN-TiMe RelOCAtiON i s e e eeeeeoeeeeeeeaeeeeeeeaeeeeeeeoseeeeeeseeeeeeesseeeeessseeeeeesnceeeeeseeeeeeseeeeees 29

2.6 Loading @ PrOgraml e e e s see et e eseeseeeeeeeaeeeesieaseeesseeeeesseesseeesessseeeesesseeesiesseeesiessseeess 29

2.7 Symbols in an Object File oo et e e eeeeereeeeaeereaeeeeseeseseeeoeeieoeeieseesonteroeeeeoeereseeeoneeres 34

2.7.1 EXternal SYmDOIS] s ieeeereeteaeeeeeeraeeraseieseeeeseeroseeroeeeseereseeioseeroeeeosereseeeaseeres 30

272 The Symbol Table] .ottt e et eieeeeeeesieeseeesseeeeessessseeessssseeesessaeeeeesssees 30

3 Assembler DeSCriPtiON [ttt tesee et i rereeaeeerraraeaeiererazaeeeierezaeaeiererazaeeeierezazaeeereses 37
3.1 ASSEMDIEr OVErVIEW[e sueieereeeroereeeeaeroeeeeeioeeeeeeoeioeeeoeeoeeeseeoetoeeeseroeteseroeeeeeenrroseeesaeeaes 32

3.2 The Assembler's Role in the Software Development FIOW[euvoeeieeeereeeeraeeeraeieneereieereseeraeienes 33

3.3 Invoking the Assembler] e ieeereeeieeeeieeeieneeieseeiaeeraseieneeieseeieseereseieeseiesseieseereseeseseeres 34

3.4 Naming Alternate Directories for Assembler Inputl .. oo oo oo eeeereneeraeeeeaeeeeeeeieseereeeeeaneees 33

3.4.1 Using the --include_path Assembler OptioN]. e eoeeeeeeereeeerereeeaeieseeieseereseeeeeieseeeeneesns 39

3.4.2 Using the C2000_A_DIR Environment Variable[..o oeeeeiieee e ieeeeeeeeeeeeeeereeeneeeeeeenees 34

3.5 Source Statement FOrmMatl ..o euseeeieieeieeriiesreieseieseeieseeiisreieseieseeieseeiesriieseieseeieseeiesieies 39

O R I Lo = N Y o | 39

SRSV /[o [T o g Tol ol Tol = =1 o | 39

3.53 Operand Fieldl oo eeeeieeeeeaeereeeteaeeroeeeaeeeroeeeeoeereseeeeseeeoeeeeseeroseeroseeeseeeeeeeses 39

RS oo 0101 T | A S o T 39

3.6 [ofe] s 5 =1y | & I 49

3.6.1 Binary INtEQerSeseeeeteeeereeeteaeeeeoeereseeroreeeseeeeoeereseeroseeeseeteoeeeoseeroeeeoeeeeseeeeseeres 40

KN A O ol -1 [[(=T [T & I 410

NSRS B1=To] oo Fo1 M [l (=T [] & I 41

3.6.4 Hexadecimal INtegerSeeeeteeeeeeeeeeoeereseeroeeeaeeeeoeeeeseeroseeeoeeeeoeeeeseeroseeroseeeseeeeeeses 47

3.6.5 Character CONStANtS oo oueeeeeeeaeeeeeeaaeeeeeeaaeeeeeeeaeeeeeeeeeeeseesseeeeessseeeseesneeeeeeenees 17

3.6.6 Assembly-Time CoNStantS . eeueeeteeeereeeerereieseereseereseereseieseeieseeieseereseeesseieseeieseeres 41

3.6.7 Floating-Point CONStaNtS e eeeieeeeeeeeereneeraeeieaeeeeoeeresrereseeeeeereseeroseeroeeeoeereseeeaseeres 42

3.7 [gF= 1= ol (=T Sy i g (o & 42
SPRU513C-October 2007 Contents 3

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

3.8 SYMO S st e e eeeeeeeeeneeeeeeesneeeeeeeseeeeeesseeeeessneeeseesseeeeeessseeeiessseeeeesssseeioessseeeeessnees LY.
RSN -1 S 12

RS A oo | N I o 1<) S N 13

3.8.3 Symbolic CONSIANTS e e et e s e reeeeaeeeeeeeeeeetoneeroeeeeoeeeeseeioseeioseeeseeeeoeeioseeroeeeaeees 13

3.8.4 Defining Symbolic Constants (--asm_define OptioN)ieeeeeeeeeeeeeeeeeeeeeeeeereoeerereeraeeeeeeesns 13

3.8.5 Predefined Symbolic ConstantS].....uieeeeeeeseeeeeeerreaseeeeieeeseeeiseeseeeieeeseeeesessseeesessnees 19

3.8.6 Substitution Symbols] oo i i iiiiiiiriiiieiiitiietiiatetiitiiiititattiiaeeieeeiiieees Y|

3.9 EXrESSIONS et teeeeeaeeeeeereneeroneeeoneeroeeeeoeeeeseeeoneeroseeeoeeeeoseeeneetoseeeoseeroseesoseieneeeeseeses 13
Rl ool - 1 (o] ¢ T 44

3.9.2 Expression Overflow and Underflow] e ieeeeeeeeeeroeeeeeeeroeeeeeeoeroeeeeeeoeeeeeoeroeeeeeeaeeeees 19

3.9.3 Well-Defined EXPreSSiONSeeeeeeeeeeeeeeeaeerereeeoeeeeoeeeeoeereseeeoeeeeseeeeseereseeroeeeseeeeneeses 19

3.9.4 Conditional EXPreSSIONS] ... e e uueeeeeeereeeaeeereeeseeeeteaseeeeieeeseeeiseesseeiseesseeesesseeesessnees 19

3.95 Legal EXPreSSIONS et teeeeeeeorroeeeeeeoeeeeeeoeioeeeoeeoereeeeoeeeeeeoeioreeeeroreeeeeeeroreeeeaeiees 19

3.9.6 EXPression EXamples]oee oo ieeeeeeeeereaeerareieaeeeeoeereseeroseeeaeeieeeeioseeroseeeoseieneeeeeeses 54

<% 0 I = 1011 1 ol T W SV Tt i o o & 5]
3.11 Specifying Assembler Fill Values (--asm_code_fill and --asm_data_fil) oo eeeereeeeeoeeeeeeeceaeeens 54
3.12 TMS320C28x AsSembIler MOOES| i e eteeeereeeereneeraeeeeoeeeeoeereseeeeeesoseeroeereseereseesoseeraseeeeess 54
3.12.1 C27X ODbjeCt MOAE et eeerreeeeeereeeeeeseeseeesseaseeeeieasseeessesseeessseseeessessseeesesnees 53

3.12.2 C28X ObJeCt MOOE L ettt eeeeeaeraeeeeeeoeeeeeeoeroeeeoeeoeeeeeroeeeeeeoeroeeeeeeoreeeeeeeroeeeeeeaeiaees 53

3.12.3 (C28x Object - Accept C27x Syntax Mode[. oo ieeeieeeereeeeeaeeieeeeeeaeereseeroseeeseeeeeeeses 54

3.12.4 C28x Object - Accept C2xIp SyntaX MOA€] s ueeeerreeeeeireeeeerieeeeeeeieeseeeseesaeeesesanees 54

3.12.5 C28X FPU32 ODbjeCt MOUE st toeereeraereeeroeroeeeoeeoereeeroeeeeeeoeroreeeeeoreeeeeeeroeeeeeeeeieee 59

3.13 SOUICE LiStNQS ietueeteueeeaneeraneeeoeereseeeeeeroneeroseeeeseeeoseroneeeeseesoseeroeereseeeeseesoeeraseeeneees 53
T S D=1 o [0 Ts [o [1a o AXSEYET 00 o] \YAS Yo 1V [ol 51
3.15 C-Type Symbolic Debugging for Assembly Variables (--cdebug_asm_data Option)[ceioeeeeeee...e... 5g
3.16 Cross-Reference LiStiNgS i eeeeieeeereeeeeaeeeroeereaeereseeeoeeroreeeoeeeeoeeeoseeroseeeoseeeoeeeeeeereseeeanees 59
T I ARNST 10 - T @ = o [l o [T o | 59
3.18 Pipeline Conflict DeteCtON e szt teeereereeeeeroeeeeeeoeeeeeeeroeeeeeeoeroeeeeeeoeeeeeeeroeeeoeeeeeeeeroeeeeeees 6]
3.18.1 Protected and Unprotected Pipeline INStruCtioNS i eeeeeeeeereeeeeeeereeeereneeraeeeoeereseeeaneeses 6]

3.18.2 Pipeline Conflict Prevention and Detection]. ... eeeseeeeeeeereeeeeeiseeeeeesiseseeeseeseeesesanees 6]

3.18.3 Enabling/Disabling Pipeline Conflict DeteCtion e e seeeeeeeeeeeeerenreroeeeeoeeeeoeeroseeroeeeeees 6]

3.18.4 Pipeline Conflicts DeteCteO] e seeereeereaeereeeeaeeroeeeoeereseeroeeeoeeeeoeereseeroreeeseeeeeeeses 6]

4 ASSEMDBDIEr Dir€CHIVES [t see ettt eaeee it eaeaeeetereeaeaeeeretaeaeaereresacaeeererocacaeiesesacaceeeenes 63
4.1 Directives SUMMANY [s isee et e e eeeeeeeeeeeaeeeeteeeseeeteeeeeeteeeseeeeeeesseeeeeesseeeeeesseeeeieeeeeess 16|
4.2 Compatibility With the TMS320C1x/C2x/C2xx/C5x Assembler DireCtiveS]ooeeeeeeereeeeeeeeeeeeeeess 612
4.3 Directives That Define SectionS]. ... uooeeeeeeee e eeeeeeeeeeaeeeeeseeaaeeereeaaeeeeeeaeeeeeesseeeeieseeeess 7Q
4.4 Directives That Initialize CONStaNtS] ... eeeseeeeeeeereaeeeeeteaeeerieeeeeeeieeeseeeieeeseeeeeeeseeeeeeeseeeeess 74
45 Directives That Perform Alignment and ReServe Spacelii.oeeeeeereeeeeeeeieeeeieseeraseeroeeieseeeeeeses 73
4.6 Directives That Format the Output LiStiNgS[eeieeeereeeereeeeraeeieneereeeereseeraseieieeieeeeieseereseeeineeres 73
4.7 Directives That Reference Other Files] e ueeee e eieeee e tieeeeeeieeeeeeeeeeaeeeeeeeeeeeeeeseeeeieeeeeess 74
4.8 Directives That Enable Conditional Assemblyl oo oooreeeeeeeeeeeeeeeeeeeeesseeeeeesneeeeeesseeeeeeesseeees 79
4.9 Directives That Define UnioNS OF StruCtUreS| . oo e e eeeeeeeeeeaeeeeeeeeaeeeeeeaaeeeeeeaeeeeeeseeeeeeseeeess 71
4.10 Directives That Define Symbols at Assembly Timel...oiooeeiereiieeeeieeieeeereieeiieeeieeieseereieeeenees /g
4.11 Directives That Override the Assembler MOA€|. .. e ioereeeroereeeeoeroeeeeeroereseeoeroeeeeeeoereseroesaeeens 79
4.12 Miscellaneous DireCtVeS] ... eeeeeeeeeeereeeeeeeeeeaeeeeeeeaneeeeeaaeeeeeeaeeeeeesseeeeseseseeeeessseeeeeenees 79
413 Directives ReferenCel . et ieeeeeeieeeseeeteeeaeeeeeeaaeeeeteeaeeeeeieaseeeiieseeeeieeeseeeeseeseees 84
5 |V E=To] do M DIt ol o] o) 4 o] s I T 133
51 USING MACIOS et s eeereeeraeeeeeeeeeaeeieneeraseeeaeeeeoseeeneetoeeeoseeroseeeneeroseeeoseeroseeeneereneeeanees 134
Contents SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

5.2 DIy iTalTaTo Y - Vol (o1 M 134
53 Macro Parameters/Substitution Symbolsloe oo oo oo eeeeeeeereeeeeaeeieeeeeeneeiaseeraeieseeeeneesns 139
5.3.1 Directives That Define Substitution Symbolsf. ..o oeeee it ieee i ieeseeeieeeaeeeeeeaeeeeeieaeees 137
5.3.2 Built-In Substitution Symbol FUNCHONS] o s oo e eeeeeeaeereeeeaeeeroeeeeseereeeeeaeees 137
5.3.3 Recursive Substitution SymbOIS ieieeeieeeereeeeeaeeieneeeoeeroeeeaeereieeeoseeroreeeseereseeeanees 133
5.3.4 Forced SUDSHIUtION e st iee st ieeeeesseeeeeeeseeeeeeeseaseeeesieaseeesseeseeesssesseeessssseeesseseees 139
5.3.5 Accessing Individual Characters of Subscripted Substitution Symbols[.o oreeeeeeeeer..e.. 139
5.3.6 Substitution Symbols as Local Variables in Macros[. ..ceeeeeooeeeeeeeeeeeeeeeesceeeeesoeeeeeeeeees 147
5.4 VT (o R R o] -l [. 147]
5.5 Using Conditional Assembly in MacCroS[oe e eeeseeeereeeeeaeeeeoeeeoseereseeeoeeieseeieseetoseeroeeieeeeeeeees 142
5.6 UsSiNg Labels iN MaCrOS e et seeeeeeeeieneeraeeieaeeeeoeereseeroeeeoseeeoeeioneeroseeeoseeroeeeeneereseeeaeees Y|
5.7 Producing Messages in MaCrOS o ee oo ueeeeeeeeeeeeeeeieaseeesteaeeeesseeseeesseesseeesssseeessssseeesiessees 149
5.8 Using Directives to Format the Output LiStiNglieeeeeeeeeereeeeeeeeeroeeeeeroereeeeoeroreeeeroeioceroeeeeeeees 179
5.9 Using Recursive and NeSted MacCrOS e oeereeeeeaeeeroeeeeoeeieneeeoeeroeeeoeereneeioseeroeeeoeereseeeanees Y|
5.10 Macro DireCtiVesS SUMMAIY[oe s s eeeseeaeeeeseeseeeetsesseeetieeseeetseesseesssesseeessesseeeseesseeeeieasees 143
6 Archiver DeSCriPtiON [oooe ittt i it st et st taraeeeietaraeeeeerzaraeeererazaeeeeerezareeeesezezareess 149
6.1 ArCNIVEr OVEIVIEW et teeeeerarrereioeroeeeoeeaeteseroeeeeeeoeroeeeseeorteseeseioreeeeortoseroeroeeeseroeeeeees 1570
6.2 The Archiver's Role in the Software Development FIOW[. ..eeveeeireerereeeieieeieseereseeraeieieeeeaeesns 157
6.3 INvOKiNg the ArChiVer s s ieseeieeeeiettieeeteneeieeeeaseiiaseeeaseieseeeeseeesseeeneeieseeioseeeseeeeneeies 157
6.4 Archiver EXamples] e ieeeeeeeeeeeeeeeneereeeeoeeeeeeieseeieseeeoeeeoseeeoeeioseeeeseetoseeroeeieeeeeeeeses 153
7 Link Step DeSCriPtiON [oueieeeererererereierererearaeararerrererereaeaearararerererereeeaeaeaeererererereeeacacaees 153
7.1 LiNK Step OVerVieW] e s s eeesieeeeeeereeeeeeseeeseeesseasseeeesesseeeesessseesisesseeeissesseeissssseeesesseees 159
7.2 The Link Step's Role in the Software Development FIOW i oeioeeeoreeeeeeeroeeeeeorioeeeeeraeeeeioeeeeees 151
7.3 INvoKing the Link Steple e ieeereeeeeeeeeeeeereneereeeeaeeeeoeeeeseeroseeeoseeeseeeeneeioseeroseeeseeeeeeses 153
7.4 [W1a ' @S (=T sl @] o] 1Te] o S N 159
7.4.1 Relocation Capabilities (--absolute_exe and --relocatable OptionS)[ieceeeeeeieeeeeeeeeeeeeeee.. 169
7.4.2 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)[r..r........ 16]]
7.4.3 Disable Conditional Linking (--disable_clink option)| e eeeueeeeeeereeeseeerseeseeeeresseeeeieaeees 161]]
7.4.4 Define an Entry Point (--entry_point=global_symbol Option) o creeeeeeeeeeeeereoeeeeeeareoeens. 167
7.4.5 Set Default Fill Value (--fill_value=value Option)[oieeeeeeeereeeeeaeereeeeroreeroeeeeeereseeeaeees 161
7.4.6 Define Heap Size (--heap_Size= Siz€ OPtiON)oeeeesieeeeeeereeeeeeieeeseeerseeseeeeeesseeeeiseenes 167
7.4.7 Alter the Library Search Algorithm (--library Option, --search_path Option, and

C2000_C_DIR Environment Variable) oooieeieeeereneeeeeeerereeeoeereoeeeeseeroseeroeeieseeeenees 164
7.4.8 Make a Symbol Global (--make_global=symbol Option)[. .ooeeeiieeeeeeiieeeeeeereeeeeeeeeenees 163
7.4.9 Make All Global Symbols Static (--make_static Option)ieeeeeeereoeeeeceereeereoreoreeaceoeeee. 164
7.4.10 Create a Map File (--map_file=filename Option) [occieoeeeeeeereaeerereeeoeereeeieseerereeeeees 164
7.4.11 Disable Merge of Symbolic Debugging Information (--no_sym_merge Option)[............... 163
7.4.12 Strip Symbolic Information (--no_sym_table Option) e e ee et eeeeeeeeereeeeeaeereeeeeeee.. 169
7.4.13 Name an Output Module (--output_file=filename Option) [eeeeeeeereeeereeeroeeroeereeeeeene.s 169
7.4.14 C Language Options (--ram_model and --rom_model OptioNS)[isoeeeeereeeseeereeeeeerieaeees 169
7.4.15 Exhaustively Read and Search Libraries (--reread_libs and --priority Options)[.cce..:....... 169
7.4.16 Create an Absolute Listing File (--run_abs Option)[ieieeeereeeeeeeereeeereeereeeeaeereieeeanees 169
7.4.17 Define Stack Size (--stack_Size OptioN) e eseeereerreeeeeeeieaseeeiieeseeeiieeeseeessesseeeseeseees 161
7.4.18 Mapping of Symbols (--symbol_map Option) e ieeeeeeeereeeeaeeieoeeieseeroeeroeeeeeeeeeeees 161
7.4.19 Introduce an Unresolved Symbol (--undef_sym=symbol Option)[ecceeeeeereeeeeaeereaeeeene.. 161

7.4.20 Display a Message When an Undefined Output Section Is Created (--warn_sections
(@]]ile]0)| I T 161
7.4.21 Generate XML Link Information File (--xmlI_link_info Option)eeieeeeieeereeeeeaeeieaeeeene.. 169
7.5 Link Step Command FileS e eeeieeeeeeeeeeseeeeseaseeeeeseaseeesseasseesiseeseeeissssseeessssseeeseesaees 169
SPRU513C-October 2007 Contents 5

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

7.5.1 Reserved Names in Link Step Command Files] . oeeeeeeereeereereeeeeeroeeeeeeoeioeeeeraeeeeeeess 169

7.5.2 Constants in Link Step Command FileS i oeieeeereeeeraeereeeeeaeereneeioseeroeeeseeieseeeanees 170

7.6 (o]l A N oJ oS 170
7.7 The MEMORY Dir€CtVe it ieeeeeroeeeeeeoeeeeeeeroeeeseeorroeeeoeeoreeeioeioseeoeeeeeeeeroeeereeerioeeeeees 177
7.7.1 Default Memory Model o oo e e et ieeeieneeraneeeaeeeeoeeeeneereneeeoseeroseeeneereseeeanees 177

7.7.2 MEMORY DireCtive SYNtaX| .. ueeeeeereeeeeeesseaeeesiesseeeeieesseeeieeeseeeiseeseeesessseeeeiessees 1717

7.8 The SECTIONS Dir€CHVE i teeeeeroeeeeerareeeeeeroeeeseeaeeoeeeeeeoeeeseeoeroeeeoeeoeeeeroeeoseeseroeeeeeens 174
7.8.1 SECTIONS DireCtive SYNtaX][ieeeeeeeeeeeeeereeeeoeeiemeeeeseeroseeeoeereseeeoseeroseeroeeeeaeeeenees 174

R I A\ | [o o=\ i o] o A 179

7.8.3 SpecCifying INPUL SECHONS it teeeeurreeeeeeroreeeeroeioeeeeeeeeroeeroeeeeeereroeeereeoetoeeeeeroreeeeeees 180

7.8.4 Using Multi-Level SUDSECHONS it eteeeeeeerereeeieneerereeeoeeeroeeieseereseeeoseeroeeieseereseeeaeees 1387

7.8.5 Allocation Using Multiple Memory RaNQesSueeeeeeeeereeieeseeesieeeseeeieeeseeessesseeesseseees 183

7.8.6 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges[............ 183

7.8.7 Allocating an Archive Member to an Output SeCtON[eeseeeereeeeeaeereaeereneeroreeraeereeeeeanees 184

7.9 Specifying a Section's RuN-Time AddreSS ..o oo eerereeeeeeereeeseeeeieeseeeeieeeseeeisesseeeseesseeeeesss 189
7.9.1 Specifying Load and RuN AddreSSeS i oreieereeeeereeeeeoeereseeeoeeieoeeeeseeioteeoeeieseeeenees 189

7.9.2 Uninitialized SeCHONS . etteeeeteoeeraeieaeeeeeeereseeroreeeoeeeeoeeioseeroseeeoseeroeereseereseeeaeess 189

7.9.3 Referring to the Load Address by Using the .label DireCtive] ..o oieeeeeeeieeeeeeereeeeeeeeieaeees 189

7.10 Using UNION and GROUP StatementS] e eeeeeeeroeeeeoeeeeoeeeoeeroeeeoeeeeeeeeoseeroeeeaeeieseeeeeees 189
7.10.1 Overlaying Sections With the UNION Statement ..o ooereeeeeeeereeeereseeroeeeaeereieeeanees 189

7.10.2 Grouping Output Sections Together ..o euieeeee e ieeeeeerieeeeeeieeeseeerseeseeeesesseeeeieeenes 189

7.10.3 Nesting UNIONS and GROUPS| oottt s et e e ieeeeteneeeaeeereeeeeaeeieoeeeoseeioseeeseeieseeeenees 190

7.10.4 Checking the Consistency of AllOCAtOrS[iieeeereeeerereeeeeeeeoeeieneereseeeoseeroeeieseereseeeaeess 190

711 Overlaying Pages].. e e e ueee e eiseeeeeeeseeseeeessasseeetiesseeetsesseeesseesseeeisssseeessesseeeeeesseeeeieasees 1917]
7.11.1 Using the MEMORY Directive to Define Overlay Pages] i iooeeeeeeereeeeeeeneeeeeesseeeeeeseees 197

7.11.2 Example of Overlay Pages ieieeeereeeeeaeeereeereaeeroneeeoeeroeeiemeereseeeoseeroeeeseereseeeanees 197

7.11.3 Using Overlay Pages With the SECTIONS DireCtiVe] e e uueeeeeeereeeeeereeeseeersesseeeeieanees 197

7.11.4 Memory Allocation for Overlaid Pages] oo oo ieeeeeeeeereeeeeaeeieaeeieeeroeeeoeeieeeeeenees 193

7.12 Special Section Types (DSECT, COPY, and NOLOAD) e ieteeeereraeeieaeereeeeoeeeroeeioseeroseeeaeess 193
7.13 Default Allocation AlQOrtNM e et i e et eereeseeeeeseeeeeeeieaseeetseeseeessseeseeeseesseeesessseeeeiessees 194
7.13.1 How the Allocation Algorithm Creates Output SeCHONS [ieeieoeeeoeereeeereeeererereeeeeeeeeee.. 194

7.13.2 Reducing Memory Fragmentation[iee.eeeeeeeeeeeaeereoeeeoeeroeeeoeereneeroseeroseeeoeereneeeanees 199

7.14 Assigning Symbols at LiNK TiMe e ue et eeieeeeeeeeeeeeeeeieaseeesieeeseesssesseeessesseeesessseeeeiessees 199
7.14.1 Syntax of Assignment StatemMeNtS .. e ieeeeeeereoeeeoeeresreeoeeieoeeioseeioseeeeeeieeeeeeeees 199

7.14.2 Assigning the SPCto a Symbol oo oot e e e ieeeeeaeeeraeeieneereneeeoeeroeeeseereseeeanees 199

7.14.3 ASSIQNMENt EXPreSSIONS] e ieeeeereeeeeeseeseeesiesseeesieeseeesieesseeeisesseeeseeseeessessees 1949

7.14.4 Symbols Defined by the Link Stepli oo eeeeieeeeeeeeeaeeereeeieorereoeeeoseeieeeeeseereeeeeaeees 197

7.14.5 Assigning Exact Start, End, and Size Values of a Sectionto a Symboll.o oo eeeeveeete. .. 193

7.14.6 Why the Dot Operator Does Not Always Work[. ... ooeeeeiieeeeeeieeeeeerieeeseeeseeseeeseeseees 199

7.14.7 Address and Dimension OpPeratOrSeeeeeeeeeeeereeeeeeeoeroeeeeeroereeroeroeeeoeiorioreroreeeeeees 199

7.15 Creating and Filling HOles oot e ot i oo e eeeeeraneeraeeieoeeeeeeeoneeroeeeeseereseesoseeroeeeeneeroseeeaeess 207
7.15.1 Initialized and Uninitialized SectionS[..oeiieeeieeeeieieeiaeeireseiiaeeieieeieseereseeiseeieieeianees 200

7.15.2 Creating HOleS oo s s oot e e ieeeeeeeeeeeereeeeeieneeioneeeoseesoeeeoseeieseeeoseeioceeeneereeeeeaeees 201

7.15.3 Filling HOlOS oo ieeoeeeeseeeeeeeeeeneeeeeeenceeeeesnceeeeeseeeeeesseeeeeessseeeeeesnceeeesssceeeeeseees 204

7.15.4 Explicit Initialization of Uninitialized SectionS[.. euueeeeeeeiieeeeeiieeeeeeiieeeseeereeseeeeseeseees 207

7.16 Link-Step-Generated Copy TablesS[iioeeieeeeereeeroeeeeeeorroeeeeeeoreeeeeeroreeeeoeroeeeeeeoereseeeeraeeees 203
7.16.1 A Current Boot-Loaded Application Development ProceSS[eeeieeeereeeereeeereeeeoeeieieeeane.s 203

7.16.2 An Alternative APProaCh]eeeesseeeeeeeseeeeeeesseaeeeeieseeeeeteesseeeieesseeeiseeseeessesseeesiessees 203
Contents SPRU513C-October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

7.16.3 Overlay Management EXample]o oo ieeeieeeeeeeeeeneeeoneereseeeoeereoeeeoseeiosteeeeeieeeeeenees 204

7.16.4 Generating Copy Tables Automatically With the Link Stepleceeeeeieeeereeeereeeeeaeeieneeene.. 203

7.16.5 Thetable() Operator . ue.eeesieeeeesseeeeeesseeeeesiaseeeesieaseeesseesseesssesseeesssseeessessees 203

7.16.6 BOOt-Time COPY TableS]eeseeeeaereeeeeroreeeeroeioeeeoeeoeeoeeioeeeeeeoeroeeeeeeorroeeeeerareeeeees 204

7.16.7 Using the table() Operator to Manage Object Componentsfe.eeeieeeeeeeeereeeeaeeieieeene.. 204

7.16.8 Copy Table CONteNtS] ... eeeieeeee e seeeeeeeieaeeesiseeseeeiseeseeeisseseeeesesseeeeeesseeeeisasnes 209

7.16.9 General Purpose CopY ROUNNEL . seeeeeroeeeeeroeroeeeoeeoeeeeeroeeeeeeoeroeeeeeeoeioeeeeeroreeeeens 209

7.16.10 Link Step Generated Copy Table Sections and SymboIS[.eieeeereeeeeeeeereeeieneereeeeeane.. 209

7.16.11 Splitting Object Components and Overlay Management]iooeeeeiieeeeeeseeeeeeseeeees 209

7.17 Partial (Incremental) LinKing o s oot e e teeeeieeeeeeeeeeeeeoneeroseeeoeeeeseeeoseeroseesoeeieneeeeeees 217

7.18 LiNKING C/CH+ COOE iirreeeeeeeareaeeeeeeareoneeoeeareeoeeaeeoeeeoreaeeeseeoeeeeeeoreaceeeeeoreeeeeeeareeeeees 217

7.18.1 Run-Time Initialization e seeeeieeeereeeieneeeeeeeieseereseieseeeeseeieseereseiesseireeeiaseereseeeaeess 2172

7.18.2 Object Libraries and Run-Time SUPPOM] .. et reeeeeeeeereeeeeeroereeereeroreeeeioeioeeroeeeeeeees 2172

7.18.3 Setting the Size of the Stack and Heap SecCtioNS[ieeeeeeeereeeeeaeereneereseeroreeroeereieeeenees 2172

7.18.4 Autoinitialization of Variables at RuN Time[suieoeeieeeieeeereeeeieneereseieieireeieseereseeeaness 213

7.18.5 Initialization of Variables at Load Time [ieseoereeeeeeeeereeeroeeeeeeeeroeeeeeeorroceeeroreeeeeess 213

7.18.6 The --rom_model and --ram_model Link Step OptioNS[iceiseeereeeereeeeaeeeroeeieeeerereeeee.s 219

4% R I o S = ol =10 o] [Y 213

8 Absolute Lister DeSCriPtiON [t iereraeeeierezaraeeereraraeieeerezaraeeereraraeeererezareeeerezazaeeess 219
8.1 Producing an Absolute LiStinglieseeeeeeeeereeeeeoeereoeeeeeereseeroeeieseeeoseesoseeeaeeioneeroseesaseeroeeses 220

8.2 Invoking the ADSOIUtE LiSter . .eereeeereeeeraneeeaeereneeeaseeraseeeaseieseeeeseessseeraseieneereseesnseeiaeeses 227

8.3 Yool [V (SR ESI (=T ol = =V o] [2272

9 Cross-Reference Lister DeSCriPtioN [roiieieieieeieieireeaeeeiierareeieiereraeeeieieiacaeieierecaceeieceensn 223
9.1 Producing a Cross-Reference LiSting[eeeieeeeeeeeeeeeeeeeeereeeeoeeiemeeeeseesoseeeaeeioseeroseesaseeraeeses 229

9.2 Invoking the Cross-Reference LiSter] ..o uueeeeesieeeeeeeeeeaseeesieeaeeesiseeseeeisseseeeissesseeeseeseees 229

9.3 Cross-Reference Listing EXample[ioieeeeeeeeeeeeeroeeeeeeeeroeeeeeearieeeeeeroeeeeeoeioeeeeeeoeieeioceeeeens 221

10 Object File Utilities DeSCIiPtiONS [iutueeeietereteeeeieietaeaeeeieteraeaeieteeeaeeeiereraeaerereresaceeiereensn 229
10.1 Invoking the Object File Display Utility]. ... ooeereeeereeeeraeeereeieseeieseeraneeraseseseessseeieseeraseeeaeess 234

10.2 Invoking the Name Utility] e s see e e e see e e eseeeeeeeeeeeeseeeseeeeseeeseeeeesaseeeesesseeeeeeseeeeieesseeess 23]

10.3 Invoking the Strip Utility[oo eeeeeeeeeeeeaeeeeeeeoneeeeeesseeeeeeeeeeeeeesseeeeessneeeeeesseeeeeesseeeeeeeseeeees 233

11 Hex Conversion Utility DeSCrpPtioN [oveeeeierereieieierereaearaearerererereaeaeaeazarererererereeeacaeaees 233
11.1 The Hex Conversion Utility's Role in the Software Development FIOW[.... v e evieeeeeeieeeeeeeieeeee... 234

11.2 Invoking the Hex Conversion Utility o e e e e ee oo e eeeeeeeeeereeeeeaeeeeoeeeoeeroseesoeeeeeeeeeseereseeeeeees 239

11.2.1 Invoking the Hex Conversion Utility From the Command Line[io ooeieeeieeeereeeeeaeeereee... 233

11.2.2 Invoking the Hex Conversion Utility Witha Command File[.... . ooeeeeieeeee e eeeeeeeeeeeees 231

11.3 Understanding Memory Widths] o oo oo et e eeeeeeeeeeeeeeeseeeoneeroseeeoeeeeeeeeoneeroneeeaeees 239

11.3.1 Target Width] oo oottt oot ieeeeeeereneeeaeeeeoeeeeoeeroneeeoseeeoeeeeneetoneeroseeeneeeeeeses 233

11.3.2 Specifying the Memory Width[. ..o oo e e e ieeeeeeiseeneeeieeeseeeesseseeeeseessees 239

11.3.3 Partitioning Data INto OUtPUt FileS e ieeereereeeeaereeeeeeroeeeeeeoeroeeroeroeeeeroeioceeaeeeeeeees 244

11.3.4 Specifying Word Order for Output WoOrdS eeeseeeeeeeeeeoeereeeeeaeeeoeeeeseeroseeroeeeeeeeeeeeses 247

114 The ROMS Dir€CtiVe . ueeteueereueereueieaeeieeeeieseeieseesaseeieseiesseieseerastereseiesseisseeieseeroseeeases 243

11.4.1 When to Use the ROMS Dir€CtVE[i oeieeeroereeeeoeroeeeeeroeeeeeoeioeeroeeoeeeseroeeeeeeoreeeeeees 244

11.4.2 An Example of the ROMS DireCtVE e eieeeereeeraeeeroeereaeeeeseeroeeraeeieseereseesaeeraeeses 244

11.5 The SECTIONS Dir€CtVE] et teueereuetraeetreeeieaeereseeraseeroseiesseieseeioseereseeieseirsseieseeieseeeases 249

I S T = (ol 0o [T To Jr=TS] o =Tod i[=Te ST =Tod o o A 247

11.7 AsSigning Output FileNam e o eseeeeeeeeeeeeereaeeeeeeroeeroeieoeeieseeroseeroreeeoeeeeoeeeeneeroseeeaeees 243

I [Yo [\Y/ (oo [=3r:TaTo B (g TSI i1 @] o) i o] o| I 249
SPRU513C-October 2007 Contents 7

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

11.8.1 Generating a Memory IMagel o e eeoeeeeeeeeeeeereeeeeaeeieseeroseeeoseeroeeioseeioseeeoseeieceees 249

11.8.2 Specifying a Fill Value oo oot ee et eeeeraeeeeaeeeeaeeeaneeroseeeoseeeoeeeeseeroseeeoeeieseeeeeeses 249

11.8.3 Steps to Follow in Using Image Mode[. ..o oeeeeiiieeeeeiseeeeeesseeeseeeseeeeeersesseeeeieseees 249

11.9 Building a Table for an ON-Chip BOOt LOAUEN .t soereeeeeeroeeeeeeoeroeereeroeeeoeroeeeeeeoeeeeeeoeioeeeeeees 250
11.9.1 Description of the Boot Table[ir oo iooeieeeeeeeeraeeeeaeeieeeeeoseeroeeeeseeieseeroreeeaeeeeoeeses 257

11.9.2 The Boot Table Format .. .o s i st eeieeeeeeseaeeeeesseeseeesseesseeessssseeessesseeesiessees 250

11.9.3 How to Build the BOOt Table[i eeeioeeeeeeeeroeeeeeeaeraeeeoeroeeeoeeoeeoeeroeeeeeeoeroeeeeeroreeeeeees 250

11.9.4 Booting From a Device Peripherall oo oo ieeeeeeeereeeereeeeaeeeeeeeeeneeroseeeoeieseeeeneesns 257

11.9.5 Setting the Entry Point for the Boot Table] . .oeueiieeeeeeiieeeeeeieeeeeeereeeaeeerseseeeeeieaeees 257

11.9.6 Using the C28x BoOt Loader e seeeeeeeeeeeeeeraeeeeaeeseaeeioseesoseeroeeioseeroseesoseeieeeees 257

11.10 Controlling the ROM DeViCe AdOreSS]eeeeeeereeeeeeereoeeeeoeereseeroseeroeeeoeereseereseeroseeroeeeneees 254
11.11 Description of the Object Formats].....ouuoeeeiiieeee et ieeeeeeeieeeeeiseeseeeiseeeseeessesseeeeeesseeeeses 257
11.11.1 ASCII-Hex Object Format (-a Option)ieeeeseeeeeeeeeeoeereeeeeoeeeeoeeeeoeeieseeroeeeeeeeeeeeses 251
11.11.2 Intel MCS-86 Object Format (-] OptioN) [eeeseeeeeeeeeeoeereaeeeereeroneeroeereseereseeeaseeroeeses 253
11.11.3 Motorola Exorciser Object Format (-m OptioN) i ceeeeeeeeeeererreeseeeereeeneeereesseeerieseees 259
11.11.4 Texas Instruments SDSMAC Object Format (-t Option)[fiereeeeeeceeeeeereoeeeceoreeareoeeeees 259
11.11.5 Extended Tektronix Object Format (-X OptioN)[eeeseeeereeeeeeeeeeeeereneeroseeeaeereseeeaeesns 267

11.12 Hex Conversion Utility Error MeSSagesS . ue..eeeeeeeeeeeerieeeeeerisesseeeieeeseeeieseseeeisssseeeeesssseeeess 267
12 Sharing C/C++ Header Files With Assembly Source [eeeeeieieeezaraeieress.. 263
12.1 Overview Of the .CAeCIS Dir€CtVE it sereeereereereoeroereeerorrereeoeroeeeseeoereseeoeioeesoeroeeeseroeeaeeens 264
12.2 NoOteS 0N C/C++ CONVEIrSIONS]eerereeaeeereeeaeeerreaaeeeeeeeaeeeeseeeeeseeesseeeeeesseeeeeeseeeeeesseeeess 264
D2 R Ofe] ¢ o[[10 1 & 204

12.2.2 Conditional Compilation (#if/#else/#ifdef/etC.) rreeereeeerereeeeeerreereneeroseereeeeseereeeesns 269

i R o =T [0 o 263

12.2.4 The #error and #warning DireCtiVes.o.eieeeereeeereeeieeeieieeieseeiiseereseieieeieseeiiseeiaeees 269

12.2.5 Predefined symbol _ _ASM_HEADER_ oo i iiiieeieeeieeeeeeeoeieeeioeeoeeeeroeeeserarroeeenes 263

12.2.6 Usage Within C/C++ asm() Statementsf..e.eeeeeeeeereeeeresereaerieeeieseeraseesieieseeianeesns 263

12.2.7 The #include DireCtiVe e s s useeee e reeeeeeeeeeeaeeeeeeeaeeeeieeaeeeiieesseeeieseseeeeeeeseeeeseeseees 269

12.2.8 Conversion of #define MacCrOS[iseseeereeereereerereroereeeroereeeeoeroeeeeeorreseroeroeeroeeaeienes 269

1229 The #undef Dir€@CtVE e ee e e e seeeeeeeeeeeeeeeeeeaaeeeeseaaeeeeeeeeaeeeeeeeseeeeeesseeeeeesseeeeeeeeees 264
12.2.10 ENUMerations [oaeeiieeeeeeeeeeeeeeeeeeeseeeeeeeseeeeeeeaseeeeeeeseeesesesseeeieseseeeeeseseeeeeeeeees 264
i N R O S 1 ¢ [0 - N 264
12.2.12 C/C++ BuUilt-In FUNCHONS oo e e e e e e eeeeaaeeeeseaeeeeeeeaseeeeeeeaneeeeeesneeeeeesseeeeeesnees 261
12.2.13 StructureS and UNiONS|e e e s seeeeeeeeeeeeeeeereaeeeeeteeeeeeseeeseeeieeesseeeeeeseeeeeesseeeeieaeees 264
12.2.14 Function/Variable PrototypeS [eeeeeeeeeereeeeeeeeeeoeeeeseerereeeoeeeoeeeeseeroseeroeeeeseeeeeeeses 261
12.2.15 C Constant SUFfIXES [ooeeeeeeeeeeeeeeeaeeeeeeaseeeeseaseeeeeeeseeeeeeesseeeeeeseeeeeesseeeeeesnees 263
12.2.16 BaSiC C/CH+ TYPOS [auerrereeeeeereeeeeeeeieaeeeeeteeaeeeiseeseeeiseesseeeeseseeeeeesseeeeieesees 264

12.3 Notes on C++ SpeCific CONVErSIONS i uereeeeereoreeeeeroeeroeeieseeieseeroseeroreeeoeereoeereseereseeeaeees 263
I I R N F=Ta o TR Y o T | 1 o | I 263

12.3.2 Derived ClaSSeS] e ueeeeeeeeeeeeeeeteeeeeeeieaseeeeteeseeeieeeseeeeeeesseeeesesseeeeeesseeeeieeees 264

12.3.3 Templates]ieeeioeeieeeereeeeeaeeeeoeeeeoeereoeeeoeeeeoeeeeseetoseeeoseesoeeeeneeioneeeoeeeaeeeeeeses 269

12.3.4 Virtual FUNCHONS [oiieeeeeeeeeeaneeeeeeaeeeeeeaaeeeeeseaeeeeeeeaseeeseeeneeeeesesneeeeeesseeeeeesnees 269

124 New Assembler SUPPOM ..t u it eeeeeieseeteeeeianeeteseiiaseeieeeieseeieseeiesteieseieseeieseetestereseeeieess 269
12.4.1 Enumerations (.enum/.emember/.endenum)e e e eeeereeeereeeeeeeeneeieseerereeeaeeeeaeesns 269

12.4.2 The .define DireCtiVel .o e e e s eeeeeeeeeeeaaeeeeseaaeeeeeeaaaeeeeeeeaneeeeseseeeeeesseeeeeeeeees 269

12.4.3 The .undefine/.unasg Dir€CtiVeS] .. eieeereeeeeeeireeeeeseereseereseiisseeeseeieseeieseeeseeeieeeies 274

12.4.4 The $defined() DireCtive i seeieeereeeereeeeaeeeeoeereseeroseeeoeeeeoeeeeseeroseeeoeeeeseeeaeeses 270

12.4.5 The $sizeof Built-In FUNCHON e eeeteeeeeereeeaeeaeeaeeeeeaeeaeeaeeaeeeoeeaeeeneroeeeeerareaeeenss 270
Contents SPRU513C-0October 2007

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

12.4.6 Structure/Union Alignment & $alignof() coereeeeeeeoreroeeeeoeeeeeeeeeseeroseeroeeeeoeeeeeeses 270

12.4.7 The .CStriNg Dir€CtVE s eeeereeereeeeaeereneeeeeeraseeroeereseeroseesoseeraeeioseeroseesaseeraeeses 277

A Symbolic Debugging DireCtiVes [oieeieieieiei i iereeearararaeereiererereaearazarezerererereeeaearazazezeress 277
Al DWARF Debugging FOrMat ... eeueeeeeeeeeieeeieseereseeeeseeeseeeeseeieseeeeseiesseeeseeieseereseeeseeeieeeies 274

A.2 COFF Debugging FOrmMat s ueeeeeeeeeeaeeeeaeeieoeeeeeeroeeroeeeeoeeeeseesosteroseeeoeeeeseesoseeraeeeaes 273

A3 Debug DireCtive SYNtaX[e eieeereeeeeeeeereeeieseereseeeaeeseaeeiesrereseeeaseisseeeeseeioseeroreisseeeeneeies 273

B XML Link Information File DeSCription [ettt ieeeeeeteraraeeeeerazaraeeererarareeeerezaraeaese. 273
B.1 XML Information File Element TypPesS i ieeeteeeeeeeorroeeeeeeoreeeeoeroeeeeeeoeeeeroeeoseeoreoeeeeroeeeeeens 279

B.2 Document ElemMeNtS e eeeeeereeeeeeeeeraneeeoeereoeeeeseeroseeeoeeioseeeoseesoseeeoeeioneeroseesoseeroeeses 279

B.2.1 Header ElementS e uueeeieeeeaeeiieseieaeeieseeeaseirsseesoseieseeieseessseeesseieseeroseesisreraeeses 279

B.2.2 INPUt File LiSt e i s eeeeeeeeeeroeeeeeaeeeeeeoeeeeeeneeoeeeseeoeeeseeoeeoeeeeeeoeeeseroeeoeeeneeoeeeees 271

B.2.3 Object Component LiSt s eeeeeeeeereeeeeoeereoeeeaeeeeaeeeeoeeioneeeoseesoseeeneeioneeroseesoeeeeoeeses 279

B.2.4 Logical Group List e essiseeeeeesseeseeeessasseeesseaseeeeseeaseeesseeseeeissesseeessssseeeseessees 279

B.25 Placement Map iieeeeoeeeeeeeeroeeeeeaeiereroeeoeeeoeroeioeeroeeeeeeoeioeeeeeoereeioeioreeoeeeeeeees 281

B.2.6 Symbol Tablel o s et e et e ieeeeaeeeiaeeiaateiaieeiaetiiietiineetaitetaeiiieiiiaeeias 2872

C (C1lo X3 oV P 283
Lo [y 233
SPRU513C-October 2007 Contents 9

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

List of Figures

1-1 TMS320C28x Software DevelopmeNnt FIOW [ooeeieeeeeeeeeeaeeeeoeeraseeroeereoeeeeseeroseerorereoeereseeroseeraeeenes 19
2-1 Partitioning Memory Into Logical BIOCKS oo eeeeeeeeeeeeeraseeeesieaseeesseeeseeeseseseeeseseseeesesssseeeiseseeeeess 2q
2-2 Using Sections Directives EXamplel oo eeeeeeereeeeeeraeeeeeeoeieeeroeeeeeeoeroeeeeeeorroeeeeeoreeeeeeroeeeeeeaeieees 23
2-3 Object Code Generated by the File in Figure 2-2f oo oo eeeieeeeeeeeeeeeeeoeeioseeioeeeoeeeeoeeioneeroeeeeess 29
2-4 Combining Input Sections to Form an Executable Object Module]. ... veevieeeee e ieee e iieeeeeeieeeeeeereannees 21
3-1 The Assembler in the TMS320C28x Software Development FIOW o eeeeeorreeeeeeraeeeeeeoeioeerecreeeeseroeeeeees 33
3-2 Example Assembler LiStinQleeeeeeeeeeeeeeeeeereaeereeeeoeeeeoeeroseeroeeeoseeroeeeeseereseeeeseeioseeeoeereseeseseeses 54
4-1 The field DireCtVE ettt eeeteeeeteeeeiaseeraseteneeteaeeianeeraseeesseeeseeieseereseeesseieeseieseereseessseiesseieseeranes 74
4-2 INitialiZation Dir€CtVES e s eeeraeeereeoeraeeeeeeoereeeeoeeoeeeeeoeeeeeeoreeeeeseroeeeeeeoeioeeeeeeoeioeeoeroeeereroeeoeees 73
4-3 The .align Dir€CtVe e et eeeeeeeeeraneeraeeeeaeeeeeeeroneeroseeeoseeeoeeeoseeroseeeoseeeoeeeesreroeeeoseeeoeeeeseesanes 74
4-4 The .space and .besS DireCtVES] e eereetieaeeeeeieeseeesieeeeeesssesseeeseesseeessssseeeeiesseeesieesseesseesseeeieees 74
4-5 Allocating .bss BIOCKS Within @ Pagel seseeeeeereeeeoeeeeeeeeroeeeeeeoeroeeeeeroreeeeeeeroeeeeeeorioeeioeeoeeeseroceeeees 84
4-6 The field DireCtVE et e reeereaeeeeneereeeroneeeaeeteoeeeoseeroseeeoseeeoseeeseetoseeeoseesseeeeoeetoseeroseesoseesoeeses 107
4-7 Single-Precision Floating-Point Format]. ... u et oot eeee e ieeeeeeeieeeeeeeseeseeeeieesseeeiiesseeeiseeeeeeeinens 104
4-8 The .USECt Dir€CHVE [ieeeeeeeoeeeoeeoereeeioeeeeeeoeeoeeeeeeoeeeeeeeeroreeeeeoeioeeeoeeoeieeeioeeoeeeseroeeeeeioreeeeens 137
6-1 The Archiver in the TMS320C28x Software Development FIOW[oooeieoeieeeeeeeereeeereeeeroeeeaeereseeeeneesns 157]
7-1 The Link Step in the TMS320C28x Software Development FIOW[. ..o e ueeeeeeeereeeeeeerieeeeerieeseeerieeeeeeess 151
7-2 Memory Map Defined in EXample 7-3 e eeeeeeeeeeeraeeeeeeoeioeeeoeeeeeeoeroeeeeeeoreeseeeeroreeeeeorroeioeeeeeees 172
7-3 Section Allocation Defined by Example 7-4[oo e e et eeeeeaeereneeeaseeraseeeaeereneeeeseesoseeraeeeanes 179
7-4 Run-Time Execution of EXample 7-Of et i ieeeeeeeeaeeeeeteeeseeeiseeseeeissesseeessssseeeesssseeeeiesseeeess 187
7-5 Memory Allocation Shown in Example 7-11 and Example 7-12] . i ieeieeeeeeeeeeeeeeeeroeeeeeeoereeeeeeeaeeees 189
7-6 Overlay Pages Defined in Example 7-15 and Example 7-16[oo ieoeereeeeeeeeereeeeaeereieereseeroeeeaeeienes 193
7-7 Autoinitialization at RUN TiMe e s e euteettieeeieneeiasetiaeeieseieaeereseereseeieseieseeieseeieseeioseeesseieseeeeeeres 213
7-8 Initialization at Load Time i e seeteeeeeeroeeeeeeeroeeeeeeoeroeeeeeoeeeeeeoeroeeeoeioeioreroeeoeeeseroeeeseesrroeeeeess 214
8-1 Absolute Lister Development FIOW i eoeiioeeieaeereeeeeaeereeereaeeeeoeereeeroeeeoeeieseeeeseeroseeeseereseeeaeeses 227
9-1 The Cross-Reference Lister in the TMS320C28x Software Development FIOW[.. vovieeeeeeeeeeeeeeerreeeeees.. 229
11-1 The Hex Conversion Utility in the TMS320C28x Software Development FIOW[oo ooeeeeeeeieeeeeeeereeerene.. 234
11-2 Hex Conversion Utility ProCceSS FIOWL . eeteeeereeeeaeereoeereseeroseeroeeieaeeeeseeroseeroeeeseeeeoeereseeraseeeaeess 233
11-3 Object File Data and Memory Widths]. .. oo o ieee e e ieeeee e e iseeeeeesseeeeeesseeeseeeseeseeeeissseeesiessseeeieseseeess 239
11-4 Data, Memory, and ROM Widths oo oo e e e e eeoeeeeeeeneeeeeeenneeeeeesseeeeeeesseeeeeesnreeeeessseesiossseeesessseeees 247
11-5 Varying the Word Order e ee e ieeeieeeeeeeeeranreraseeeoeeeeoeeroseeroseeeoseeroeeeeseereseeeeseeroseeeseereseeeanees 243
11-6 The infile.out File Partitioned Into Four Output FileS]. .o u e e i ieeee e e ieeeeeeeiseeeeeeeseaseeeesseseeeeiesseeeess 243
11-7 Sample Hex Converter Out File for Booting From 8-Bit SPI BOOt ..o e et ieereeeeeeeeeereeeereeeeeaeeeeseeeenees 254
11-8 Sample Hex Converter Out File for C28x 16-Bit Parallel Boot GP I/O[iciieeeieeeereeeeeaeereeeeeaeereseeeanees 253
11-9 Sample Hex Converter Out File for Booting From 8-Bit SCI BOOt ... iveeeeeeeieeeeeeieeeeeerieeieeeeieeeeeess 254
11-10 ASCII-Hex Object FOrM@t . s e reeeeeeraereeeroeeaeeeoeeoeeeeeeoeeeeeeoeeoeeeeeeoereseroetoreeieeosseeeroeeeeeeoeroeeeeess 251
11-11 Intel Hexadecimal Object FOrmMat] e eeeueeeereeeeraeeeeaeeeeoeeeeseereseeeaseeroeeeeoeereseeeeseeroseeeseereneeeanees 253
I I 2 Y o) (o] do Fo B I o 1 g - Ut 259
11-13 TI-Tagged Object Format oo oo et oo eseeeereeesaeeeeoeeeeneeeeeeeoseesoseeeseeeeoeeeeseerosteeoeeieneeeenees 260
11-14 Extended Tektronix Object FOrMat i e eeeeereeeeaeereoeeeeseeroeeroreeeoeeeeseeroseeroseeeaeeeeeeeroseeraseeeaeess 267
10 List of Figures SPRU513C-0October 2007

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

List of Tables

3-1 TMS320C28x Assembler OptioONS] e eeeeeeeeeeeeeeeieneerereeeoeeeeoeeeeseereseeeoseeeeeeeesrereseeeoseeeeeeeeeeeranes 39
3-2 Operators Used in EXpressions (PrecedenCe) [Loeieeeeeeeeereoeereeeeeoeeeeoeeeeoeeroseeroeeieseeeeseeroseeraeeseeees 13
3-3 Built-In Mathematical FUNCHONS e st e e seeeereeeeaeeeeeeeeeoeereoeeeoseeroseeeoeeieseeeeseeioseesoeeseseeeeeeses 57
3-4 Non-TMS320C27x Instructions Supported in the C27x Object Mode.e e oo eeeeeeee e eeieeeeeeieeeeeesss S |
3-5)Y glelel Wa\aigl o[(1S . 59
3-6 Smart Encoding for EffiCienCy e e eeeeeieeeeeaeereneeraneeraeeeaeeieseeieseeiaeereeeieseeieseeesseeieeeieseereseeeaness 59
3-7 Smart Encoding INtUitively s et e et eeeeeaeereaeeeeneeraneeroeeeeoeeeeseeeoseeroseeeoeeieseeeoseeroseeeneereseeeanees 60
3-8 Instructions That Avoid Smart ENCOOING it eteeeroereerereroeeeeerorreeieseroreeeeeorroreeeeeorieeroeroeeeserariaeees 60
4-1 Directives That Define SeCtONS e eereeeereaeereeeeaeeeeeeeeeoeereoeeeoseeioseesoeeieseeeesreioseeioeeieseeeeaeeses 64
4-2 Directives That Initialize Constants (Data and Memory)[eieeeeeeeerieeeeeeiereeeeieeieeeieeiesieseieeieseeseieseeess 16|
4-3 Directives That Perform Alignment and Reserve Spacel .. .oeeeiieeeereeieeeeeeiieeeeeeeieeeseeeseseseeeeiesseeeeess 61
4-4 Directives That Format the Output LiStiNQ[oesseeeeieeeeeaeeeeeeeieneereneeeaeereeeeseeieseeeeseereseesseeieseereeesas 61
4-5 Directives That Reference Other FileS oo eeoooeeeeeooeeeeeeoeeeeeeeeeseeeeeeeseeeeeeesneeeeeoseeeeeesseeeeeeeseeeees 61
4-6 Directives That Override the Assembly MOO€[ee et ieeeeteeeeraeeeraeeieaeeeeeeeioseereseeeaseeroeeieseereseereeeeres 61
4-7 Directives That Enable Conditional ASSemMbIY oo e ooeeeeeeeeeeeeeeneeeeeeesseeeeesereeeeeeseeeeeessreeeeeoseeeees 69
4-8 Directives That Define UNioNS OF StrUCIUNreS| . e e e eieeeeeeeeeeeeeeieeeeeeieeeseeeeeeeseeeeeeeseeeeeeesseeeeieeseeeees 69
4-9 Directives That Define Symbols at Assembly TimMe . .eueuieeeeeiieeeeeeieeeseeereeeseeeereeseeeeiiesseeeiieeseeeess 63
4-10 Directives That Perform Miscellaneous Functions.o eeieeeeeeeeeeee e eeeeeeeeeseeeeeeeeeneeeeeeeeeeeeseasnees 69
5-1 Substitution Symbol Functions and Return Values] oo ooooeeeeeeoeeeeeeeeeeeeeeseeeeeesseeeeeioseeeeeeseeeeeeeens 133
5-2 Creating MaCrOS i eeieeeeeaeereeieaeereoeeeeeeioeeeaeeieseeeeseesoseeeoeeteseeeeseetoseeroeeeeneeteseeroseeraeeennes 143
5-3 Manipulating Substitution SymbolS) . e o it i et iiaeteiaeeiiateiiitiiaatiiaeiiiatiiaeiiiatetaieiiaeees 1713
5-4 [Ofe] e [11Te] g = IANIT=T001 o)) I 149
5-5 Producing Assembly-Time MeSSageS] . e e e ueeeererieaeeerieeeeesieesseeseseseeessssseeeeissseeesiessseeeiseeseeess 143
5-6 Formatting the LiSting e eueeueeeeeeeeraeereueteeeeeeaeeieneereseeeaseeroseieseeieseeiaseeroseeeseeieseereneeraseeeaeess 143
7-1 Link Step OptioNS SUMMIAIY[. eeeeeeeeoeereeeeeeereeeeoeeeeoeereseeroseeeeeeieseeeeseeteseeioreeroseeeseeieseeeeeees 159
7-2 Groups of Operators Used in EXpressions (PreCedenCe)[ieeeeeeeeeeeeeeereeeeeeeeroeeeaeereieereseeroseeraeeienes 199
9-1 Symbol Attributes in Cross-Reference LiSting oo eieerereeeieoeeeoeeeoreioeeeeseeeeeeeeoeeioeeeaeereseeeeeees 229
11-1 Basic Hex Conversion Utility OptioNS]i.eeseeeeseeereseeeeeeiieeeeeseeieseeieeiisseeeeeereseereseereseereseieseeeenees 234
I NEE 2Tele) ol Mo Lo [T @@ o ([0 S 250
11-3 Boot Table SoUrce FOrmMatS .. .ueeeeeeeeeeeeeaaeeeeeeaaneeeeeeeneeeeeeeeeeeeseesneeeeeesneeeeeesseeeseeesseeeeeeeneeess 253
11-4 BootTable FOrmat o o e eeeeeeeeeeeeceeeeeanceeeeeeseeeeeeeoneeeeeesseeeeeessseeeeessnreeeeesseeeeeessseeeeeeseeeees 253
11-5 Options for Specifying Hex Conversion FOrMatS] i eeueeeeeeeeereoeereeeeaeeeeoeereseereeeeeoeeeroeeeeseereseeeanees 251
A-1 Symbolic Debugging Dir€CtiVes e e ieeeeeeeeeeeeereaeeraeeeeeeeeoeeeeseereseeeeeeeeoeeeeseesoseeroseeeseeeeneeees 273
SPRU513C-0October 2007 List of Tables 11

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

12 List of Tables SPRU513C-0October 2007
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

%‘ TEXAS Preface
INSTRUMENTS SPRUS513C—October 2007

Read This First

About This Manual

The TMS320C28x Assembly Language Tools User's Guide explains how to use these assembly language
tools:

Assembler

Archiver

Link step

Absolute lister
Cross-reference lister
Disassembler

Object file display utility
Name utility

Strip utility

Hex conversion utility

Notational Conventions

This document uses the following conventions:

Program listings, program examples, and interactive displays are shown in a speci al typef ace.
Interactive displays use a bold version of the special typeface to distinguish commands that you enter
from items that the system displays (such as prompts, command output, error messages, etc.).
Here is a sample of C code:

#i ncl ude <stdio. h>

mai n()

{ printf("hello, cruel world\n";

In syntax descriptions, the instruction, command, or directive is in a bold typeface and parameters are
in an italic typeface. Portions of a syntax that are in bold should be entered as shown; portions of a
syntax that are in italics describe the type of information that should be entered.

Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify
the information within the brackets. Unless the square brackets are in the bold typeface, do not enter
the brackets themselves. The following is an example of a command that has an optional parameter:

’cIZOOO -v28 [options] [filenames] [--run_linker [link_options] [object files]] ‘

Braces ({ and }) indicate that you must choose one of the parameters within the braces; you do not
enter the braces themselves. This is an example of a command with braces that are not included in the
actual syntax but indicate that you must specify either the --rom_model or --ram_model option:

cl2000 -v28 --run_linker {--rom_model | --ram_model} filenames [--output_file=name.out]

--library= libraryname

In assembler syntax statements, column 1 is reserved for the first character of a label or symbol. If the
label or symbol is optional, it is usually not shown. If it is a required parameter, it is shown starting
against the left margin of the box, as in the example below. No instruction, command, directive, or
parameter, other than a symbol or label, can begin in column 1.

SPRU513C-0October 2007 Read This First 13
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Related Documentation From Texas Instruments

symbol .usect "section hame", size in bytes|, alignment]

» Some directives can have a varying number of parameters. For example, the .byte directive can have
up to 100 parameters. This syntax is shown as [, ..., parameter].

Related Documentation From Texas Instruments
You can use the following books to supplement this user's guide:

EPRAADOY —Common Object File Format Application Report. Provides supplementary information on
the internal format of COFF object files. Much of this information pertains to the symbolic
debugging information that is produced by the C compiler.

EPRUIZ7 — TMS320C2xx User's Guide. Discusses the hardware aspects of the TMS320C2xx 16-bit
fixed-point digital signal processors. It describes the architecture, the instruction set, and the
on-chip peripherals.

EPRU430 — TMS320C28x DSP CPU and Instruction Set Reference Guide. Describes tthe central
processing unit (CPU) and the assembly language instructions of the TMS320C28x™ fixed-point
digital signal processors (DSPs). It also describes emulation features available on these DSPs.

EPRUST4 — TMS320C28x Optimizing C/C++ Compiler User's Guide. Describes the TMS320C28x C
compiler. This C/C++ compiler accepts ANSI standard C/C++ source code and produces assembly
language source code for the TMS320C28x devices.

— TMS320C28x Floating Point Unit and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts of the C28x floating-point DSP.

14 Read This First SPRU513C-0October 2007
ubmIit Documentation Feedbac

http://www-s.ti.com/sc/techlit/spraaO8
http://www-s.ti.com/sc/techlit/spru127
http://www-s.ti.com/sc/techlit/spru430
http://www-s.ti.com/sc/techlit/spru514
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

%‘ TEXAS Chapter 1
INSTRUMENTS SPRUS513C—October 2007

Introduction to the Software Development Tools

The TMS320C28x™ is supported by a set of software development tools, which includes an optimizing
C/C++ compiler, an assembler, a linker, and assorted utilities. This chapter provides an overview of these
tools.

The TMS320C28x is supported by the following assembly language development tools:

* Assembler

e Archiver

» Link step

» Library information archiver

* Absolute lister

» Cross-reference lister

» Obiject file display utility

* Name utility

o Strip utility

» Hex conversion utility

This chapter shows how these tools fit into the general software tools development flow and gives a brief
description of each tool. For convenience, it also summarizes the C/C++ compiler and debugging tools.
For detailed information on the compiler and debugger, and for complete descriptions of the
TMS320C28x, refer to books listed in Related Documentation From Texas Instruments.

Topic Page
1.1 Software Development Tools Overview[.....cooooeeeeeeeiieeeeee e 14
IV Koo ESRIB T of ¢ o) (o] ¢] 17
SPRU513C-0October 2007 Introduction to the Software Development Tools 15

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

” TEXAS
INSTRUMENTS

www.ti.com

Software Development Tools Overview

1.1 Software Development Tools Overview
shows the TMS320C28x software development flow. The shaded portion highlights the most
common development path; the other portions are optional. The other portions are peripheral functions
that enhance the development process.
Figure 1-1. TMS320C28x Software Development Flow
. c .
. source .
o files
" Macro . 3 . .
° source e C/C++ i ass?ezr;okgler .
: files : compller : source :
Archi : Assembler : Translation
rehiver . Source | assistant
. Macro . . A bl "
. . A | . Assembler
* library ssembler T source .
. Object . Library-build
Archiver . files : process
. ° l Debugging
¢ O tools
S o . Run-time- .
. Library of | 3 - support -
. ObjeCt . D> . libra . v
¢ files Linker . y .
Post-link
optimizer
. Executable *
. oObjectfile
Hex-conversion
utility
‘ ,
EPROM Absolute lister Cross-.reference Obj.e.c.t file C28x
programmer lister utilities
y
16 Introduction to the Software Development Tools SPRU513C-0October 2007

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Tools Descriptions

1.2 Tools Descriptions
The following list describes the tools that are shown in Eigure 1-1I:

The C/C++ compiler accepts C/C++ source code and produces TMS320C28x assembly language
source code. A shell program, an optimizer, and an interlist utility are included in the compiler
package:

— The shell program enables you to compile, assemble, and link source modules in one step.
— The optimizer modifies code to improve the efficiency of C/C++ programs.

— The interlist utility interlists C/C++ source statements with assembly language output to correlate
code produced by the compiler with your source code.

See the TMS320C28x C/C++ Compiler User's Guide for more information.

The assembler translates assembly language source files into machine language object modules.
Source files can contain instructions, assembler directives, and macro directives. You can use
assembler directives to control various aspects of the assembly process, such as the source listing
format, data alignment, and section content. See through [Chapier 3. See the TMS320C28x
DSP CPU and Instruction Set Reference Guide for detailed information on the assembly language
instruction set.

The link step combines object files into a single executable object module. As it creates the
executable module, it performs relocation and resolves external references. The linker accepts
relocatable object modules (created by the assembler) as input. It also accepts archiver library
members and output modules created by a previous linker run. Link directives allow you to combine
object file sections, bind sections or symbols to addresses or within memory ranges, and define or
redefine global symbols. See Chapter 7.

The archiver allows you to collect a group of files into a single archive file, called a library. For
example, you can collect several macros into a macro library. The assembler searches the library and
uses the members that are called as macros by the source file. You can also use the archiver to collect
a group of object files into an object library. The linker includes in the library the members that resolve
external references during the link. The archiver allows you to modify a library by deleting, replacing,
extracting, or adding members. See Chapter §.

You can use the library-build process to build your own customized run-time-support library. See the
TMS320C28x C/C++ Compiler User's Guide for more information.

The hex conversion utility converts an object file into TI-Tagged, ASCII-Hex, Intel, Motorola-S, or
Tektronix object format. The converted file can be downloaded to an EPROM programmer. See
Chapter 11].

The absolute lister uses linked object files to create .abs files. These files can be assembled to
produce a listing of the absolute addresses of object code. See Chapter g.

The cross-reference lister uses object files to produce a cross-reference listing showing symbols,
their definition, and their references in the linked source files. See [Chapter 9.

The main product of this development process is a module that can be executed in a TMS320C28x
device. You can use one of several debugging tools to refine and correct your code. Available products
include:

— An instruction-accurate and clock-accurate software simulator

— An XDS emulator

In addition, the following utilities are provided:

The object file display utility prints the contents of object files, executable files, and/or archive
libraries in both human readable and XML formats. See Bection 10.1].

The name utility prints a list of names defined and referenced in a object or an executable file. See
Bection 102

The strip utility removes symbol table and debugging information from object and executable files.
See Bection 10.3

SPRU513C-0October 2007 Introduction to the Software Development Tools 17
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

18 Introduction to the Software Development Tools SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

%‘ TEXAS Chapter 2
INSTRUMENTS SPRUS513C—October 2007

Introduction to Object Modules

The assembler and link step create object modules that can be executed by a TMS320C28x™ device.

Object modules make modular programming easier because they encourage you to think in terms of
blocks of code and data when you write an assembly language program. These blocks are known as
sections. Both the assembler and the link step provide directives that allow you to create and manipulate
sections.

This chapter focuses on the concept and use of sections in assembly language programs.

Topic Page
2% R S T=Tox (o] o) T 20
2.2 How the Assembler Handles SectionNS[.ieeiieeieeieieeieeieiieiaeieeaeieenes 2]
2.3 How the Link Step Handles SectionS[.ceeieieeeeieieiaeeieieiaeaeeeiesn.s 24
A7 S = 1 (o Ior-1 i 1o o | T 23
25 RUN-TIiMe RelOCAtiON] i i it ieeeeeeieeaeeaeeneaeeaeeneaseaeencaesasensaeeas 29
26 LoadingaProgramf......ooeeoeieei it 29
2.7 Symbolsinan Object File[oot eeiiazaeeeees 30
SPRU513C-0October 2007 Introduction to Object Modules 19

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

JQ’TEXAS
INSTRUMENTS

www.ti.com

Sections

2.1

Sections

The smallest unit of an object file is called a section. A section is a block of code or data that occupies
contiguous space in the memory map with other sections. Each section of an object file is separate and
distinct. Object files usually contain three default sections:

.text section usually contains executable code
.data section usually contains initialized data
.bss section usually reserves space for uninitialized variables

In addition, the assembler and link step allow you to create, name, and link named sections that are used
like the .data, .text, and .bss sections.

There are two basic types of sections:

Initialized sections contain data or code. The .text and .data sections are initialized; named
sections created with the .sect assembler directive are also initialized.

Uninitialized sections reserve space in the memory map for uninitialized data. The .bss section is
uninitialized; named sections created with the .usect assembler directive are
also uninitialized.

Several assembler directives allow you to associate various portions of code and data with the appropriate
sections. The assembler builds these sections during the assembly process, creating an object file
organized as shown in Figure 2-11.

One of the link step's functions is to relocate sections into the target system's memory map; this function
is called allocation. Because most systems contain several types of memory, using sections can help you
use target memory more efficiently. All sections are independently relocatable; you can place any section
into any allocated block of target memory. For example, you can define a section that contains an
initialization routine and then allocate the routine into a portion of the memory map that contains ROM.

shows the relationship between sections in an object file and a hypothetical target memory.

Figure 2-1. Partitioning Memory Into Logical Blocks

Object file Target memory
.bss RAM
.data EEPROM
text T T
ROM
20 Introduction to Object Modules SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

How the Assembler Handles Sections

2.2

How the Assembler Handles Sections

The assembler identifies the portions of an assembly language program that belong in a given section.
The assembler has five directives that support this function:

» .bss

e .usect
o .text

e .data
» .sect

The .bss and .usect directives create uninitialized sections; the .text, .data, and .sect directives create
initialized sections.

You can create subsections of any section to give you tighter control of the memory map. Subsections are
created using the .sect and .usect directives. Subsections are identified with the base section name and a
subsection name separated by a colon; see Bection 2.2.4.

Default Sections Directive

Note: If you do not use any of the sections directives, the assembler assembles everything into the
.text section.

2.2.1 Uninitialized Sections

Uninitialized sections reserve space in TMS320C28x memory; they are usually allocated into RAM. These

sections have no actual contents in the object file; they simply reserve memory. A program can use this

space at run time for creating and storing variables.

Uninitialized data areas are built by using the .bss and .usect assembler directives.

» The .bss directive reserves space in the .bss section.

* The .usect directive reserves space in a specific uninitialized named section.

Each time you invoke the .bss or .usect directive, the assembler reserves additional space in the .bss or

the named section. The syntaxes for these directives are:
.bss symbol, size in words [, blocking flag[, alignment flag][, type]]]

symbol .usect "section name", size in words [, blocking flag[, alignment flag]]

symbol points to the first byte reserved by this invocation of the .bss or .usect directive. The
symbol corresponds to the name of the variable that you are reserving space for. It can
be referenced by any other section and can also be declared as a global symbol (with
the .global directive).

size in words is an absolute expression. The .bss directive reserves size in words words in the .bss
section. The .usect directive reserves size in words words in section name. For either
directive you must specify a size; there is no default value.

blocking flag is an optional parameter. If you specify a value greater than 0 for this parameter, the
assembler allocates size in words contiguously. This means the allocated space does
not cross a page boundary unless its size is greater than a page, in which case the
objects starts a page boundary.

alignment flag is an optional parameter. It causes the assembler to allocate size in words on long
word boundaries.

type is an optional parameter. It causes the assembler to produce the appropriate debug
information for the symbol. See for more information.

SPRU513C-0October 2007 Introduction to Object Modules 21

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

How the Assembler Handles Sections

222

2.2.3

section name tells the assembler which named section to reserve space in. The section name must
be enclosed in quotation marks. See [Bection 2.2.3.

The initialized section directives (.text, .data, and .sect) tell the assembler to stop assembling into the
current section and begin assembling into the indicated section. The .bss and .usect directives, however,
do not end the current section and begin a new one; they simply escape from the current section
temporarily. The .bss and .usect directives can appear anywhere in an initialized section without affecting
its contents. For an example, see Becfion 2.2.6.

The assembler treats uninitialized subsections (created with the .usect directive) in the same manner as
uninitialized sections. See Bection 2.2.4, for more information on creating subsections.

Initialized Sections

Initialized sections contain executable code or initialized data. The contents of these sections are stored in
the object file and placed in TMS320C28x memory when the program is loaded. Each initialized section is
independently relocatable and may reference symbols that are defined in other sections. The link step
automatically resolves these section-relative references.

Three directives tell the assembler to place code or data into a section. The syntaxes for these directives
are:

text
.data
.sect " section name "

When the assembler encounters one of these directives, it stops assembling into the current section
(acting as an implied end of current section command). It then assembles subsequent code into the
designated section until it encounters another .text, .data, or .sect directive.

Sections are built through an iterative process. For example, when the assembler first encounters a .data
directive, the .data section is empty. The statements following this first .data directive are assembled into
the .data section (until the assembler encounters a .text or .sect directive). If the assembler encounters
subsequent .data directives, it adds the statements following these .data directives to the statements
already in the .data section. This creates a single .data section that can be allocated continuously into
memory.

Initialized subsections are created with the .sect directive. The assembler treats initialized subsections in
the same manner as initialized sections. See Becfion 2.2.4, for more information on creating subsections.

Named Sections

Named sections are sections that you create. You can use them like the default .text, .data, and .bss
sections, but they are assembled separately.

For example, repeated use of the .text directive builds up a single .text section in the object file. When
linked, this .text section is allocated into memory as a single unit. Suppose there is a portion of executable
code (perhaps an initialization routine) that you do not want allocated with .text. If you assemble this
segment of code into a named section, it is assembled separately from .text, and you can allocate it into
memory separately. You can also assemble initialized data that is separate from the .data section, and
you can reserve space for uninitialized variables that is separate from the .bss section.

Two directives let you create named sections:

* The .usect directive creates uninitialized sections that are used like the .bss section. These sections
reserve space in RAM for variables.

» The .sect directive creates initialized sections, like the default .text and .data sections, that can contain
code or data. The .sect directive creates named sections with relocatable addresses.

The syntaxes for these directives are:

22

Introduction to Object Modules SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

How the Assembler Handles Sections

symbol .usect "section name", size in words [, blocking flag[, alignment flag], type]]]

.sect "section name"

The section name parameter is the name of the section. Section names are significant to 200 characters.
You can create up to 32 767 separate named sections. For the .usect and .sect directives, a section name
can refer to a subsection; see for details.

Each time you invoke one of these directives with a new name, you create a new named section. Each
time you invoke one of these directives with a name that was already used, the assembler assembles
code or data (or reserves space) into the section with that name. You cannot use the same names with
different directives. That is, you cannot create a section with the .usect directive and then try to use the
same section with .sect.

2.2.4 Subsections

Subsections are smaller sections within larger sections. Like sections, subsections can be manipulated by
the link step. Subsections give you tighter control of the memory map. You can create subsections by
using the .sect or .usect directive. The syntaxes for a subsection name are:

symbol .usect "section name:subsection name", size in words [, blocking flag[, alignment flag],
type] |]
.sect "section name:subsection name"

A subsection is identified by the base section name followed by a colon and the name of the subsection. A
subsection can be allocated separately or grouped with other sections using the same base name. For
example, you create a subsection called _func within the .text section:

.sect ".text:_func"

Using the link step’'s SECTIONS directive, you can allocate .text:_func separately, or with all the .text
sections. See for an example using subsections.

You can create two types of subsections:

 Initialized subsections are created using the .sect directive. See Bection 2.2.2.

« Uninitialized subsections are created using the .usect directive. See Bection 2.2.1].

Subsections are allocated in the same manner as sections. See for information on the
SECTIONS directive.

SPRU513C-0October 2007 Introduction to Object Modules 23
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

How the Assembler Handles Sections

2.25

2.2.6

Section Program Counters

The assembler maintains a separate program counter for each section. These program counters are
known as section program counters, or SPCs.

An SPC represents the current address within a section of code or data. Initially, the assembler sets each
SPC to 0. As the assembler fills a section with code or data, it increments the appropriate SPC. If you
resume assembling into a section, the assembler remembers the appropriate SPC's previous value and
continues incrementing the SPC from that value.

The assembler treats each section as if it began at address O; the link step relocates each section
according to its final location in the memory map. See for information on relocation.

Using Sections Directives

shows how you can build sections incrementally, using the sections directives to swap back
and forth between the different sections. You can use sections directives to begin assembling into a
section for the first time, or to continue assembling into a section that already contains code. In the latter
case, the assembler simply appends the new code to the code that is already in the section.

The format in is a listing file. shows how the SPCs are modified during assembly. A
line in a listing file has four fields:

Field 1 contains the source code line counter.
Field 2 contains the section program counter.
Field 3 contains the object code.

Field 4 contains the original source statement.

See for more information on interpreting the fields in a source listing.

24

Introduction to Object Modules SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
How the Assembler Handles Sections
Figure 2-2. Using Sections Directives Example
]_ R R SRS E RS R SRR SR SRS SRR LSRR EEEEEEEEEEEEEEEEEE
2 ** Assemble an initialized table into .data. * %
3 EE SRS E S S S EEE SRS S EEEEE SRS EREREREEEEEEEEEEEEEEEESES
4 00000000 .data
5 00000000 0011 coeff .word 011h, 022h, 033h
00000001 0022
00000002 0033
6
7 EREE R R R SR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR RS
8 * %k Reserve space in .bss for a variable. * %
9 IR R R R R RS EEEEEEE SRR R SRR EEEEEEEEEEEEEEEEEEEEEEEEEEES
10 00000000 .bss buffer, 10
11
12 IR R R R RS R RS S SR SRR R SRR R EEEEEEEEEEEEEEEEEEEEEEEEEEES
13 * % Still in .data * %
14 LR RS EEE S E RS RS EEEEE R LR LSRR EEEEEEEEEEEEEEEEEE
15 00000003 0123 ptr .word 0123h
16
17 EEE R R R LR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE XSRS
18 ** Assemble code into the .text section. *k
19 EE SRS E S ESEEE SRS S S SR RS ES SR EREREEEEEEEEEEEEEEEESES
20 00000000 .text
21 00000000 28Al1 add: mov arl, #0Fh
00000001 0O0OF
22 00000002 0BAl aloop: dec arl
23 00000003 0009 banz aloop, arl——
00000004 FFFF
24
25 LR R R LRSS E SRR SRS R LR LSRR EEEEEEEEEEEEEEEEEE
26 * % Another initialized table into .data * %
27 EE SRS RS S S EEES RS SRS S SR ESESEEEEEREEEEEEEEEEEEEEEESES
28 00000004 .data
29 00000004 00AA ivals .word OAAh, 0BBh, 0CCh
00000005 00BB
00000006 00CC
30
31 EEE R R R LR EEEEEEEEEEEEEEEEEE SRR EEEEEEEEEEEEEEEEEE SRR S
32 ** Define another section for more variables. **
33 IR R R R R R SRR RS EEEEEEE R R EEEEEEEEEEEEEEEEEEEEEEEEEEES
34 00000000 var2 .usect "newvars”, 1
35 00000001 inbuf .usect "newvars”, 7
36
37 EE SRS RS S SRS S SRS RS S EE R R RS RS R R SRR R R SRR R R EEEEEEEEEEES
38 *% Assemble more code into .text. *%
39 EEE R R R LR SR SRS RS RS SRR R R R R R R R EEEEEEEEEEREEEEEEEEEE SRS
40 00000005 .text
41 00000005 28A1 end _mpy: mov arl, #0Ah
00000006 000A
42 00000007 33A1 mloop: mpy p,t,arl
43 00000008 28AC mov t, #0Ah
00000009 000A
44 0000000a 3FAl mov arl, p
45 0000000b 6BFA sb end mpy, OV
!
Field 1 Field 2 Field 3 Field 4
As shows, the file in creates four sections:
.text contains ten 32-bit words of object code.
.data contains five words of initialized data.
.bss reserves ten words in memory.
newvars is a named section created with the .usect directive; it contains eight words in memory.

SPRU513C-October 2007

Eubmit Documentafion FeedbacH

Introduction to Object Modules

25

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*L‘ TEXAS
INSTRUMENTS

www.ti.com

How the Link Step Handles Sections

The second column shows the object code that is assembled into these sections; the first column shows
the source statements that generated the object code.

Figure 2-3. Object Code Generated by the File in
Line number Object code Section
5 0011 .data
5 0022
5 0033
15 0123
29 00AA
29 00BB
29 oocc
21 28A1 text
21 000F
22 0BA1
23 0009
23 FFFF
41 28A1
41 000A
42 33A1
43 28AC
43 000A
44 3FA1
45 6BFB
10 No data bss
10 words
preserved
34 No data newvars
35 8 words
preserved

2.3 How the Link Step Handles Sections
The link step has two main functions related to sections. First, the link step uses the sections in object files
as building blocks; it combines input sections (when more than one file is being linked) to create output
sections in an executable output module. Second, the link step chooses memory addresses for the output
sections.
Two link step directives support these functions:
« The MEMORY directive allows you to define the memory map of a target system. You can name

portions of memory and specify their starting addresses and their lengths.
» The SECTIONS directive tells the link step how to combine input sections into output sections and
where to place these output sections in memory.

Subsections allow you to manipulate sections with greater precision. You can specify subsections with the
link step's SECTIONS directive. If you do not specify a subsection explicitly, then the subsection is
combined with the other sections with the same base section name.
It is not always necessary to use link step directives. If you do not use them, the link step uses the target
processor's default allocation algorithm described in Bection 7.13. When you do use link step directives,
you must specify them in a link step command file.
Refer to the following sections for more information about link step command files and link step directives:
« [Bection 7.3, Link Step Command Files
» [Bection 7.7, The MEMORY Directive

26 Introduction to Object Modules SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

How the Link Step Handles Sections

« [Beciion 7.8, The SECTIONS Directive
+ [Bection 7.13, Default Allocation Algorithm

2.3.1 Default Memory Allocation
illustrates the process of linking two files together.
Figure 2-4. Combining Input Sections to Form an Executable Object Module
file1.0bj
Executable
text object module Memory map
bss file1 £ by
’ (.text) xecutable
] code
data file2 (.text)
: (.text)
Init - file1 e
(named section) = M 5 , (.data) Inlt(;altlzed
[(S S —— ata
1] d file2 (.data)
(.data)
file1
file2.0bj || N (.bss) Space for
AT variables
file2 (-bss)
text (.bss)
.bss v Init Init
.data — Tables Tables
Tables
(named section)
In Eigure 2-4, filel.obj and file2.0bj have been assembled to be used as link step input. Each contains the
.text, .data, and .bss default sections; in addition, each contains a hamed section. The executable object
module shows the combined sections. The link step combines the .text section from filel.obj and the .text
section from file2.0bj to form one .text section, then combines the two .data sections and the two .bss
sections, and finally places the named sections at the end. The memory map shows how the sections are
put into memory.
By default, the link step begins at Oh and places the sections one after the other in the following order:
text, .const, .data, .bss, .cinit, and then any named sections in the order they are encountered in the input
files.
The C/C++ compiler uses the .const section to store string constants, and variables or arrays that are
declared as const. The C/C++ compiler produces tables of data for autoinitializing global variables; these
variables are stored in a named section called .cinit (see Example 7-7). For more information on the .const
and .cinit sections, see the TMS320C28x C/C++ Compiler User's Guide.
2.3.2 Placing Sections in the Memory Map
illustrates the link step's default method for combining sections. Sometimes you may not want
to use the default setup. For example, you may not want all of the .text sections to be combined into a
single .text section. Or you may want a named section placed where the .data section would normally be
allocated. Most memory maps contain various types of memory (RAM, ROM, EPROM, etc.) in varying
amounts; you may want to place a section in a specific type of memory.
SPRU513C-0October 2007 Introduction to Object Modules 27

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Relocation

For further explanation of section placement within the memory map, see the discussions in

and Becfion 7.8.

2.4 Relocation
The assembler treats each section as if it began at address 0. All relocatable symbols (labels) are relative
to address 0 in their sections. Of course, all sections cannot actually begin at address 0 in memory, so the
link step relocates sections by:
» Allocating them into the memory map so that they begin at the appropriate address as defined with the
link step’s MEMORY directive
» Adjusting symbol values to correspond to the new section addresses
» Adjusting references to relocated symbols to reflect the adjusted symbol values
The link step uses relocation entries to adjust references to symbol values. The assembler creates a
relocation entry each time a relocatable symbol is referenced. The link step then uses these entries to
patch the references after the symbols are relocated. contains a code segment for a
TMS320C28x device that generates relocation entries.
Example 2-1. Code That Generates Relocation Entries
1 .global X
2 00000000 . text
3 00000000 0080’ LC Y ; CGenerates a relocation entry
00000001 0004
4 00000002 28A1! MoV ARL, #X ; CGenerates a relocation entry
00000003 0000
5 00000004 7621 Y: | DLE
In Example 2-1], both symbols X and Y are relocatable. Y is defined in the .text section of this module; X is
defined in another module. When the code is assembled, X has a value of 0 (the assembler assumes all
undefined external symbols have values of 0), and Y has a value of 4 (relative to address 0 in the .text
section). The assembler generates two relocation entries: one for X and one for Y. The reference to X is
an external reference (indicated by the ! character in the listing). The reference to Y is to an internally
defined relocatable symbol (indicated by the ' character in the listing).
After the code is linked, suppose that X is relocated to address 0x7100. Suppose also that the .text
section is relocated to begin at address 0x7200; Y now has a relocated value of 0x7204. The link step
uses the two relocation entries to patch the two references in the object code:
0080' LC Y becomes 0080’
0004 7204
28A11 MWV ARL, #X becomes 28A1!
0000 7100
Sometimes an expression contains more than one relocatable symbol, or cannot be evaluated at
assembly time. In this case, the assembler encodes the entire expression in the object file. After
determining the addresses of the symbols, the link step computes the value of the expression as shown in
Example 2-4.
Example 2-2. Simple Assembler Listing
1 .global synil, synf
2
3 00000000 FF20% MOV ACC, #(syne-synl)
00000001 0000
28 Introduction to Object Modules SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

b TEXAS

INSTRUMENTS

www.ti.com

Run-Time Relocation

The symbols sym1 and sym2 are both externally defined. Therefore, the assembler cannot evaluate the
expression sym2 - syml, so it encodes the expression in the object file. The '%' listing character indicates
a relocation expression. Suppose the link step relocates sym2 to 300h and sym1 to 200h. Then the link
step computes the value of the expression to be 300h - 200h = 100h. Thus the MOV instruction is patched
to:

00000000 FF20 MOV ACC, #(syn2-syni)
00000001 0100

Expression Cannot Be Larger Than Space Reserved

Note: If the value of an expression is larger, in bits, than the space reserved for it, you will receive
an error message from the link step.

Each section in an object module has a table of relocation entries. The table contains one relocation entry
for each relocatable reference in the section. The link step usually removes relocation entries after it uses
them. This prevents the output file from being relocated again (if it is relinked or when it is loaded). A file
that contains no relocation entries is an absolute file (all its addresses are absolute addresses). If you
want the link step to retain relocation entries, invoke the link step with the --relocatable option (see

S 4 A’

2.5 Run-Time Relocation

At times you may want to load code into one area of memory and run it in another. For example, you may
have performance-critical code in an external-memory-based system. The code must be loaded into
external memory, but it would run faster in internal memory.

The link step provides a simple way to handle this. Using the SECTIONS directive, you can optionally
direct the link step to allocate a section twice: first to set its load address and again to set its run address.
Use the load keyword for the load address and the run keyword for the run address.

The load address determines where a loader places the raw data for the section. Any references to the
section (such as references to labels in it) refer to its run address. The application must copy the section
from its load address to its run address before the first reference of the symbol is encountered at run time;
this does not happen automatically simply because you specify a separate run address. For an example
that illustrates how to move a block of code at run time, see Example 7-9.

If you provide only one allocation (either load or run) for a section, the section is allocated only once and
loads and runs at the same address. If you provide both allocations, the section is actually allocated as if it
were two separate sections of the same size.

Uninitialized sections (such as .bss) are not loaded, so the only significant address is the run address. The
link step allocates uninitialized sections only once; if you specify both run and load addresses, the link
step warns you and ignores the load address.

For a complete description of run-time relocation, see Bection 7.9.

2.6 Loading a Program

The link step produces executable object modules. An executable object module has the same format as
object files that are used as link step input; the sections in an executable object module, however, are
combined and relocated into target memory.

To run a program, the data in the executable object module must be transferred, or loaded, into target
system memory. Several methods can be used for loading a program, depending on the execution
environment. Common situations are described below:

» The TMS320C28x debugging tools, including the simulator, have built-in loaders. Each of these tools
contains a LOAD command that invokes the loader. The loader reads the executable file and copies
the program into target memory.

* You can use the hex conversion utility (hex2000, which is shipped as part of the assembly language
package) to convert the executable object module into one of several object file formats. You can then
use the converted file with an EPROM programmer to burn the program into an EPROM.

SPRU513C-0October 2007 Introduction to Object Modules 29
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Symbols in an Object File

2.7 Symbols in an Object File
An object file contains a symbol table that stores information about symbols in the program. The link step
uses this table when it performs relocation.
2.7.1 External Symbols
External symbols are symbols that are defined in one file and referenced in another file. You can use the
.def, .ref, or .global directive to identify symbols as external:
.def The symbol is defined in the current file and used in another file.
ref The symbol is referenced in the current file, but defined in another file.
.global The symbol can be either of the above.
The following code segment illustrates these definitions.
. def X
.ref y
.global z
.global g
X: ADD ARL, #56h
B y, UNC
a: ADD ARL, #56h
B z, UNC
In this example, the .def definition of x says that it is an external symbol defined in this file and that other
files can reference x. The .ref definition of y says that it is an undefined symbol that is defined in another
file. The .global definition of z says that it is defined in some file and available in this file. The .global
definition of q says that it is defined in this file and that other files can reference q.
The assembler places x, y, z, and q in the object file's symbol table. When the file is linked with other
object files, the entries for x and g resolve references to x and q in other files. The entries for y and z
cause the link step to look through the symbol tables of other files for y's and z's definitions.
The link step must match all references with corresponding definitions. If the link step cannot find a
symbol's definition, it prints an error message about the unresolved reference. This type of error prevents
the link step from creating an executable object module.
2.7.2 The Symbol Table
The assembler always generates an entry in the symbol table when it encounters an external symbol
(both definitions and references defined by one of the directives in Bection 2.7.1)). The assembler also
creates special symbols that point to the beginning of each section; the link step uses these symbols to
relocate references to other symbols.
The assembler does not usually create symbol table entries for any symbols other than those described
above, because the link step does not use them. For example, labels are not included in the symbol table
unless they are declared with the .global directive. For informational purposes, it is sometimes useful to
have entries in the symbol table for each symbol in a program. To accomplish this, invoke the assembler
with the --output_all_syms option (see [Bection 3.3).
30 Introduction to Object Modules SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

J@ TEXAS

INSTRUMENTS

The TMS320C28x™ assembler translates assembly language source files into machine language object
files. These files are in object modules, which are discussed in Chapter 2. Source files can contain the

Chapter 3

SPRU513C-0October 2007

Assembler Description

following assembly language elements:

Assembler directives described in
Macro directives described in

Assembly language instructions

Topic

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.12
3.13
3.14
3.15

3.16
3.17
3.18

Instruction Set Reference Guide

Page

Assembler OVervieWl ... oot i i et i iiazaeieieieeaes 32
The Assembler's Role in the Software Development Flow[............. 33
Invoking the Assembler oot eie e ieieiaeeeieieiaraeeeieiniaens 34
Naming Alternate Directories for Assembler Inputl..coovveeeeene.... 35
Source Statement FOrmat].....o.ooeeeueeieeieeieeeiaeiaeeiaeiaeaeiaeieaeiaens 33
(ol Lol & 40
Character StringSo oo e e i i ieeeeieieieaeaeieizazeee, 42
S)0l oJo] & I 42
S =S (oo 1S 13
Built-In FUNCHIONS . eeeee e eeeeeeeee e i ieeeaeazeenes 5]
Specifying Assembler Fill Values (--asm_code_fill and

—-asm_data fill) ot 52
TMS320C28x Assembler ModesS.ooee e eeeeeeee e 52
Source LiStiNngS ettt ettt iiaeeee 53
Debugging Assembly SOUICe e iiiieieee i ieeaeaeieieiaraeieiieraeaeeeinss 51
C-Type Symbolic Debugging for Assembly Variables
(--cdebug_asm_data Option)[.eeeeererri e ieeeeeeeeeaeeenee 53
Cross-Reference ListingS[..oeeeeee oo ieeee e 59
5110 =1 S =g Te] oo [o Yo | T 59
Pipeline Conflict DeteCtion]. oot eeee e e ieeeeeeeeieizee.s 6]

SPRU513C-October 2007

Assembler Description

Bubmit Documentafion FeedbacK

described in the TMS320C28x DSP CPU and

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Assembler Overview

3.1 Assembler Overview
The 2-pass assembler does the following:
» Processes the source statements in a text file to produce a relocatable object file
» Produces a source listing (if requested) and provides you with control over this listing
» Allows you to segment your code into sections and maintain a section program counter (SPC) for each
section of object code
» Defines and references global symbols and appends a cross-reference listing to the source listing (if
requested)
» Allows conditional assembly
» Supports macros, allowing you to define macros inline or in a library
32 Assembler Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

The Assembler's Role in the Software Development Flow

3.2 The Assembler's Role in the Software Development Flow

illustrates the assembler's role in the software development flow. The shaded portion highlights
the most common assembler development path. The assembler accepts assembly language source files
as input, both those you create and those created by the TMS320C28x C/C++ compiler.

Figure 3-1. The Assembler in the TMS320C28x Software Development Flow

. C .
e source
: files .
. Macro . ¢ 2 :
. 0 . XX N
e source C/C++ < assembler
. files . compiler . .
. . . source |
Archi + Assembler - Translation
rchiver . source | assistant
e« Macro - A .
ssembler
* library Assembler T source .
. . . Library-build
. . Object | ro?:less
Archiver . files . P
. . l Debugging
i = tools
— : . Run-time- .
: leg_arytof . * support -
. object .) ¢ library
. files . R Linker ‘ :
Post-link
optimizer
. Executable *
. oObjectfile .
Hex-conversion
utility
Il y
EPROM Absolute lister Cross-.reference Obqut file C28x
programmer lister utilities
SPRU513C-0October 2007 Assembler Description 33

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Invoking the Assembler

3.3 Invoking the Assembler

To invoke the

assembler, enter the following:

¢12000 version input file [options]

cl2000

version

input file
options

is the command that invokes the assembler through the compiler. The compiler considers
any file with an .asm extension to be an assembly file and calls the assembler.

refers to the target processor for which the source file is assembled. The valid versions are
-v28 for the TMS320C28x processor and -v27 for the TMS320C27x processor. The version
is required; the assembler issues an error if version is not specified.

If both -v27 and -v28 are specified, the assembler ignores the second version and issues a
warning. For more information, see Gection 3.12

names the assembly language source file.

identify the assembler options that you want to use. Options are not case sensitive and can
appear anywhere on the command line following the command. Precede each option with a
hyphen.

The valid assembler options are listed in [Table 3-1):

Table 3-1. TMS320C28x Assembler Options

Option Alias Description
--absolute_listing -aa creates an absolute listing. When you use -aa, the assembler does not produce an
object file. The -aa option is used in conjunction with the absolute lister.
--asm_code_fill specifies fill value for code sections. Default is zero. See [Eection 3-11.
--asm_data_fill specifies fill value for data sections. Default is NOP instructions. See [Eection 3.11.
--asm_define=name[=def] -ad sets the name symbol. This is equivalent to inserting name .set [value] at the
beginning of the assembly file. If value is omitted, the symbol is set to 1. See
Bection 3.8.4.
--asm_dependency -apd performs preprocessing for assembly files, but instead of writing preprocessed output,

--asm_includes

--asm_listing
--asm_remarks

writes a list of dependency lines suitable for input to a standard make utility. The list is
written to a file with the same name as the source file but with a .ppa extension.

-api performs preprocessing for assembly files, but instead of writing preprocessed output,
writes a list of files included with the .include directive. The list is written to a file with
the same name as the source file but with a .ppa extension.

-al produces a listing file with the same name as the input file with a .Ist extension.

-mw enables additional assembly-time checking. A warning is generated if a .bss allocation
size is greater than 64 words, or a 16-bit operand value resides outside of the -32768
to 65535 range.

--asm_undefine= name -au undefines the predefined constant name, which overrides any -ad options for the
specified constant.

--c2xlp_src_compatible -m20 accepts C2xLP assembly instructions and encodes them as equivalent C28x
instructions. The --c2xIp_src_compatible option implies the -v28 option. See
bection 5.14.

--cdebug_asm_data -mg produces C-type symbolic debugging for assembly variables defined in assembly
source code using data directives. This support is for basic C types, structures, and
arrays.

--cmd_file= filename -@ appends the contents of a file to the command line. You can use this option to avoid

limitations on command line length imposed by the host operating system. Use an
asterisk or a semicolon (* or ;) at the beginning of a line in the command file to
include comments. Comments that begin in any other column must begin with a
semicolon. Within the command file, filenames or option parameters containing
embedded spaces or hyphens must be surrounded with quotation marks. For
example: "this-file.asm"

34 Assembler Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
Naming Alternate Directories for Assembler Input
Table 3-1. TMS320C28x Assembler Options (continued)

Option Alias Description

--copy_file= filename -ahc copies the specified file for the assembly module. The file is inserted before source
file statements. The copied file appears in the assembly listing files.

--cross_reference -ax produces a cross-reference table and appends it to the end of the listing file; it also
adds cross-reference information to the object file for use by the cross-reference
utility. If you do not request a listing file but use the -ax option, the assembler creates
a listing file automatically, naming it with the same name as the input file with a .Ist
extension.

--disable_pcd disables pipeline conflict detection in the assembler. For floating point unit (FPU)
target only.

--float_support={ fpu32|fpu64} assembles code for C28x with 32-bit or 64-bit hardware FPU support. This option
requires the —v28 option and assumes the large memory model
(--large_memory_model option) is specified.

--include_file= filename -ahi includes the specified file for the assembly module. The file is included before source
file statements. The included file does not appear in the assembly listing files.

--include_path= pathname -1 specifies a directory where the assembler can find files named by the .copy, .include,
or .mlib directives. There is no limit to the number of directories you can specify in this
manner; each pathname must be preceded by the --include_path option. See
Bection 3.4

--large_memory_model -mf allows conditional compilation of 16-bit code with large memory model code. Defines
the LARGE_MODEL symbol and sets it to true.

--out_as_uout -mu encodes C2xlIp OUT instructions as C28x UOUT instructions. The C28x processor
has protected (OUT) and unprotected (UOUT) instructions. By default, the assembler
encodes C2xlIp OUT instructions as C28x protected OUT instructions. This option is
ignored if --c2xIp_src_compatible is not specified.

--output_all_syms -as puts all defined symbols in the object file's symbol table. The assembler usually puts
only global symbols into the symbol table. When you use -as, symbols defined as
labels or as assembly-time constants are also placed in the table.

--quiet -q suppresses the banner and progress information (assembler runs in quiet mode).

--symdebug:dwarf -g enables assembler source debugging in the C source debugger. Line information is
output to the object module for every line of source in the assembly language source
file. You cannot use the --symdebug:dwarf option on assembly code that contains
Jline directives. See Becfion 3.14.

--syms_ignore_case -ac makes case insignificant in the assembly language files. For example,

--syms_ignore_case makes the symbols ABC and abc equivalent. If you do not use
this option, case is significant (default). Case significance is enforced primarily with
symbol names, not with mnemonics and register names.

3.4 Naming Alternate Directories for Assembler Input

The .copy, .include, and .mlib directives tell the assembler to use code from external files. The .copy and
.include directives tell the assembler to read source statements from another file, and the .mlib directive
names a library that contains macro functions. contains examples of the .copy, .include, and
.mlib directives. The syntax for these directives is:

.copy ["Ifilename["]
.include ["]filename["]
.mlib ["]filename["]

The filename names a copyl/include file that the assembler reads statements from or a macro library that
contains macro definitions. If filename begins with a number the double quotes are required. The filename
may be a complete pathname, a partial pathname, or a filename with no path information. The assembler
searches for the file in the following locations in the order given:

1. The directory that contains the current source file . The current source file is the file being assembled
when the .copy, .include, or .mlib directive is encountered.

2. Any directories named with the --include_path option

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Assembler Description 35

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Naming Alternate Directories for Assembler Input

3.4.1

3.4.2

3. Any directories named with the C2000_A_DIR environment variable

Because of this search hierarchy, you can augment the assembler's directory search algorithm by using
the --include_path option (described in or the C2000_A_DIR environment variable

(described in Bection 3.4.7).

Using the --include_path Assembler Option

The --include_path assembler option names an alternate directory that contains copy/ include files or
macro libraries. The format of the --include_path option is as follows:

¢l2000 -v28 --include_path=pathname source filename [other options] ‘

There is no limit to the number of --include_path options per invocation; each --include_path option names
one pathname. In assembly source, you can use the .copy, .include, or .mlib directive without specifying
path information. If the assembler does not find the file in the directory that contains the current source
file, it searches the paths designated by the --include_path options.

For example, assume that a file called source.asm is in the current directory; source.asm contains the
following directive statement:

. copy "copy.asnt
Assume the following paths for the copy.asm file:

UNIX: ltools/files/copy.asm
Windows: c:\tools\files\copy.asm

You could set up the search path with the commands shown below:

Operating System Enter
UNIX (Bourne shell) cl 2000 -v28--include_path=/tools/filessource.asm

Windows cl 2000 -v28
--include_path=c:\tool s\fil essource.asm

The assembler first searches for copy.asm in the current directory because source.asm is in the current
directory. Then the assembler searches in the directory named with the --include_path option.

Using the C2000_A_DIR Environment Variable

An environment variable is a system symbol that you define and assign a string to. The assembler uses
the C2000_A_DIR environment variable to name alternate directories that contain copy/include files or
macro libraries.

The assembler looks for the C2000_A_DIR environment variable and then reads and processes it. If the
assembler does not find the C2000_A DIR variable, it then searches for C2000_C_DIR. The
processor-specific variables are useful when you are using Texas Instruments tools for different
processors at the same time.

See the TMS320C28x C/C++ Compiler User's Guide for details on C2000_C_DIR.

The command syntax for assigning the environment variable is as follows:

Operating System Enter

UNIX (Bourne Shell) C2000_A_DIR="pathname;pathname,; . . . "; export
C2000_A_DIR

Windows set C2000_A_DIR=pathnameq;pathnamey; . . .

36

Assembler Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Naming Alternate Directories for Assembler Input

The pathnames are directories that contain copy/include files or macro libraries. The pathnames must
follow these constraints:
» Pathnames must be separated with a semicolon.

» Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after
the semicolon in the following is ignored:

set C2000_A DIR= c:\path\one\to\tools ; c:\path\two\to\tools

» Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:

set C2000_A DI R=c:\first path\to\tools;d:\second path\to\tools

In assembly source, you can use the .copy, .include, or .mlib directive without specifying path information.
If the assembler does not find the file in the directory that contains the current source file or in directories
named by the --include_path option, it searches the paths named by the environment variable.

For example, assume that a file called source.asm contains these statements:

.copy "copyl. asnt
.copy "copy2.asnt

Assume the following paths for the files:

UNIX: ltools/files/copyl.asm and /dsys/copy2.asm
Windows: c:\tools\files\copyl.asm and c:\dsys\copy2.asm

You could set up the search path with the commands shown below:

Operating System Enter
UNIX (Bourne shell) C2000_A DI R="/dsys"; export C2000_A DIR

cl 2000 -v28 --include_path=/tools/files source.asm
Windows set C2000_A DI R=c:\dsys

cl 2000 -v28 --include_path=c:\tools\files
source. asm

The assembler first searches for copyl.asm and copy2.asm in the current directory because source.asm
is in the current directory. Then the assembler searches in the directory named with the --include_path
option and finds copyl.asm. Finally, the assembler searches the directory named with C2000_A DIR and
finds copy2.asm.

The environment variable remains set until you reboot the system or reset the variable by entering one of
these commands:

Operating System Enter
UNIX (Bourne shell) set C2000_A DIR=
Windows unset C2000_A DR
SPRU513C-0October 2007 Assembler Description 37

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Source Statement Format

3.5 Source Statement Format
TMS320C28x assembly language source programs consist of source statements that can contain
assembler directives, assembly language instructions, macro directives, and comments. A source
statement can contain five ordered fields (label, mnemonic, unit specifier, operand list, and comment). The
general syntax for source statements is as follows:
‘[Iabel[:] 1[Il mnemonic [operand list] [;comment] ‘
Following are examples of source statements:
two .set 2 ; Synbol two = 2
Begin: MOV ARL, #two ; Load ARL with 2
.word 016h ; Initialize a word with 016h
The C28x assembler reads up to 200 characters per line. Any characters beyond 200 are truncated. Keep
the operational part of your source statements (that is, everything other than comments) less than 200
characters in length for correct assembly. Your comments can extend beyond the 200-character limit, but
the truncated portion is not included in the listing file.
Follow these guidelines:
» All statements must begin with a label, a blank, an asterisk, or a semicolon.
» Labels are optional; if used, they must begin in column 1.
* One or more blanks must separate each field. Tab and space characters are blanks. You must
separate the operand list from the preceding field with a blank.
« Comments are optional. Comments that begin in column 1 can begin with an asterisk or a semicolon (*
or;), but comments that begin in any other column must begin with a semicolon.
* A mnemonic cannot begin in column 1 or it will be interpreted as a label.
The following sections describe each of the fields.
3.5.1 Label Field
Labels are optional for all assembly language instructions and for most (but not all) assembler directives.
When used, a label must begin in column 1 of a source statement. A label can contain up to 128
alphanumeric characters (A-Z, a-z, 0-9, _, and $). Labels are case sensitive (except when the -ac option is
used), and the first character cannot be a number. A label can be followed by a colon (;). The colon is not
treated as part of the label name. If you do not use a label, the first character position must contain a
blank, a semicolon, or an asterisk. You cannot use a label with an instruction that is in parallel with a
previous instruction.
When you use a label, its value is the current value of the SPC. The label points to the statement it is
associated with. For example, if you use the .word directive to initialize several words, a label points to the
first word. In the following example, the label Start has the value 40h.
9 . . * Assume sonme code was assenbl ed
10 00000040 0000000A Start: .word OAh, 3,7
00000044 00000003
00000048 00000007
A label on a line by itself is a valid statement. The label assigns the current value of the section program
counter to the label; this is equivalent to the following directive statement:
label .equ $; $ provides the current value of the SPC
When a label appears on a line by itself, it points to the instruction on the next line (the SPC is not
incremented):
1 00000000 Her e:
2 00000000 00000003 .word 3
If you do not use a label, the character in column 1 must be a blank, an asterisk, or a semicolon.
38 Assembler Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Source Statement Format

3.5.2 Mnemonic Field

The mnemonic field follows the label field. The mnemonic field cannot start in column 1; if it does, it is
interpreted as a label. The mnemonic field can begin with pipe symbols (]|) when the previous instruction
is a RPT. Pipe symbols that follow a RPT instruction indicate instructions that are repeated. For example:

RPT
| Inst2 «—— This instruction is repeated.

In the case of C28x with FPU support, the mnemonic field can begin with pipe symbols to indicate
instructions that are to be executed in parallel. For example, in the instance given below, Instl and Inst2
are FPU instructions that execute in parallel:

Instr1
Il Instr2

The mnemonic field can begin with one of the following items:
* Machine-instruction mnemonic (such as ADD, MOV, or B)
» Assembler directive (such as .data, .list, .equ)

e Macro directive (such as .macro, .var, .mexit)

* Macro call

3.5.3 Operand Field

The operand field follows the mnemonic field and contains one or more operands. The operand field is not
required for all instructions or directives. An operand consists of the following items:

* Symbols (see Bection 3.8)
« Constants (see Becfion 3.9)
« Expressions (combination of constants and symbols; see

You must separate operands with commas.

3.5.4 Comment Field

A comment can begin in any column and extends to the end of the source line. A comment can contain
any ASCII character, including blanks. Comments are printed in the assembly source listing, but they do
not affect the assembly.

A source statement that contains only a comment is valid. If it begins in column 1, it can start with a
semicolon (;) or an asterisk (*). Comments that begin anywhere else on the line must begin with a
semicolon. The asterisk identifies a comment only if it appears in column 1.

SPRU513C-0October 2007 Assembler Description 39
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Constants

3.6

3.6.1

Constants

The assembler supports seven types of constants:

Binary integer

Octal integer
Decimal integer
Hexadecimal integer
Character
Assembly-time
Floating-point

The assembler maintains each constant internally as a 32-bit quantity. Constants are not sign extended.
For example, the constant O0FFh is equal to O0FF (base 16) or 255 (base 10); it does not equal -1.
However, when used with the .byte directive, -1 is equivalent to O0FFh.

Binary Integers

A binary integer constant is a string of up to 32 binary digits (0Os and 1s) followed by the suffix B (or b). If
fewer than 32 digits are specified, the assembler right justifies the value and fills the unspecified bits with
zeros. These are examples of valid binary constants:

00000000B Constant equal to 0,5 or O4¢
0100000b Constant equal to 32, or 2044
01b Constant equal to 1, or 144
11111000B Constant equal to 248, or OF8;4

3.6.2 Octal Integers

An octal integer constant is a string of up to 11 octal digits (0 through 7) followed by the suffix Q (or q).
These are examples of valid octal constants:

10Q Constant equal to 8, or 844

010 Constant equal to 8, or 8,5 format)
100000Q Constant equal to 32 768, or 800044
226¢ Constant equal to 150, or 964¢

Octal Numbers Are Not Accepted With C2xlp Syntax Mode

Note: When the -v28 --c2xIp_src_compatible options are specified, cl2000 accepts C2xIp source
code. The C2xlp assembler interpreted numbers with leading zeros as decimal integers, that
is 010 was interpreted as 10. Because of this, when cl2000 is invoked with -v28
--c2xlp_src_compatible --asm_remarks, the assembler issues a warning when it encounters
an octal number.

40

Assembler Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Constants

3.6.3

Decimal Integers

A decimal integer constant is a string of decimal digits ranging from -2147 483 648 to 4 294 967 295.
These are examples of valid decimal constants:

1000 Constant equal to 1000, or 3E84¢
-32768 Constant equal to -32 768, or 800044
25 Constant equal to 2545 or 194¢

3.6.4 Hexadecimal Integers

A hexadecimal integer constant is a string of up to eight hexadecimal digits followed by the suffix H (or h).
Hexadecimal digits include the decimal values 0-9 and the letters A-F or a-f. A hexadecimal constant must
begin with a decimal value (0-9). If fewer than eight hexadecimal digits are specified, the assembler right
justifies the bits. These are examples of valid hexadecimal constants:

78h Constant equal to 1204, or 00784¢

0x78 Constant equal to 1204 or 0078, format)

OFh Constant equal to 15, or 000F ¢

37ACh Constant equal to 14 252, or 37AC44

3.6.5 Character Constants

A character constant is a single character enclosed in single quotes. The characters are represented
internally as 8-bit ASCII characters. Two consecutive single quotes are required to represent each single
guote that is part of a character constant. A character constant consisting only of two single quotes is valid
and is assigned the value 0. These are examples of valid character constants:

‘a’ Defines the character constant a and is represented internally as 614¢

c Defines the character constant C and is represented internally as 43,5

Defines the character constant ' and is represented internally as 274¢

" Defines a null character and is represented internally as 00,4

Notice the difference between character constants and character strings discusses
character strings). A character constant represents a single integer value; a string is a sequence of

characters.

3.6.6 Assembly-Time Constants

If you use the .set directive to assign a value to a symbol (see Define Assembly-Time Constani), the
symbol becomes a constant. To use this constant in expressions, the value that is assigned to it must be
absolute. For example:

sym .set 3

MWK sym Bl

You can also use the .set directive to assign symbolic constants for register names. In this case, the
symbol becomes a synonym for the register:

sym .set Bl

MK 10, sym
SPRU513C-0October 2007 Assembler Description 41

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Character Strings

3.6.7 Floating-Point Constants

A floating-point constant is a string of decimal digits followed by an optional decimal point, fractional
portion, and exponent portion. The syntax for a floating-point number is:

[+-1[nnn].[nnn[Ele[+-]nnn]] |

Replace nnn with a string of decimal digits. You can precede nnn with a + or a -. You must specify a
decimal point. For example, 3.e5 is valid, but 3e5 is not valid. The exponent indicates a power of 10.
These are examples of valid character constants:

3.0

3.14

.3

- 0. 314e13
+314. 59e-2

3.7 Character Strings

A character string is a string of characters enclosed in double quotes. Double quotes that are part of
character strings are represented by two consecutive double quotes. The maximum length of a string
varies and is defined for each directive that requires a character string. Characters are represented
internally as 8-bit ASCII characters.

These are examples of valid character strings:

"sample program" defines the 14-character string sample program.
"PLAN""C""" defines the 8-character string PLAN "C".

Character strings are used for the following:

* Filenames, as in .copy "filename"

» Section names, as in .sect "section name"

» Data initialization directives, as in .byte "charstring"
* Operands of .string directives

3.8 Symbols

Symbols are used as labels, constants, and substitution symbols. A symbol name is a string of up to 200
alphanumeric characters (A-Z, a-z, 0-9, $, and _). The first character in a symbol cannot be a number, and
symbols cannot contain embedded blanks. The symbols you define are case sensitive; for example, the
assembler recognizes ABC, Abc, and abc as three unique symbols. You can override case sensitivity with
the --syms_ignore_case assembler option (see Bection 3.3). A symbol is valid only during the assembly in
which it is defined, unless you use the .global directive or the .def directive to declare it as an external
symbol (see [deniify Global Symbaolg).

3.8.1 Labels

Symbols used as labels become symbolic addresses that are associated with locations in the program.
Labels used locally within a file must be unique. Mnemonic opcodes and assembler directive names
without the . prefix are valid label names.

Labels can also be used as the operands of .global, .ref, .def, or .bss directives; for example:
. gl obal [Iabell

| abel 2: NOP
ADD AR1, |abell
SB | abel 2, UNC
42 Assembler Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Symbols

3.8.2 Local Labels

Local labels are special labels whose scope and effect are temporary. A local label can be defined in two

ways:
* $n, where n is a decimal digit in the range 0-9. For example, $4 and $1 are valid local labels. See
Example 3-1].

* name?, where name is any legal symbol name as described above. The assembler replaces the
question mark with a period followed by a unique number. When the source code is expanded, you will
not see the unique number in the listing file. Your label appears with the question mark as it did in the
source definition. You cannot declare this label as global. See Example 3-2.

Normal labels must be unique (they can be declared only once), and they can be used as constants in the
operand field. Local labels, however, can be undefined and defined again. Local labels cannot be defined
by directives.

A local label can be undefined or reset in one of these ways:

» By using the .newblock directive

* By changing sections (using a .sect, .text, or .data directive)

e By entering an include file (specified by the .include or .copy directive)
» By leaving an include file (specified by the .include or .copy directive)

Example 3-1. Local Labels of the Form $n

This is an example of code that declares and uses a local label legally:
$1:

ADDB AL, #-7

B $1, GEQ

. newbl ock ; undefine $1 to use it again.
$1 MoV T, AL

MPYB ACC, T, #7

CwWP AL, #1000

B $1, LT

The following code uses a local label illegally:

$1:
ADDB AL, #-7
B $1, GEQ
$1 MOV T, AL ; WRONG - $1 is nultiply defined.

MPYB ACC, T, #7
Cw AL, #1000
B $1, LT

The $1 label is not undefined before being reused by the second branch instruction. Therefore, $1 is
redefined, which is illegal.

Local labels are especially useful in macros. If a macro contains a normal label and is called more than
once, the assembler issues a multiple-definition error. If you use a local label and .newblock within a
macro, however, the local label is used and reset each time the macro is expanded.

Up to ten local labels can be in effect at one time. After you undefine a local label, you can define it and
use it again. Local labels do not appear in the object code symbol table.

Because local labels are intended to be used only locally, branches to local labels are not expanded in
case the branch's offset is out of range.

SPRU513C-0October 2007 Assembler Description 43
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

Symbols

” TEXAS
INSTRUMENTS

www.ti.com

Example 3-2. Local Labels of the Form name?

khkkkhkkhkkhkkhkkhkhkhkhkhkhhhhhkhkhhhkhkkhkkhkhhhkhhkhkhkkhkkhkhkhkhkkhkkhkkhkkhkhkhkkkkkhkkkkkkkkkkkkkkk*k**x*%x

** First definition of |ocal |abel nylab >

khkkkhkkhkkhkkhkkhkhkhkhkhkhhhhhkhkhhhkhkkhkkhkhhhkhhkhkhkkhkkhkhkhkhkkhkkhkkhkkhkhkhkkkkkhkkkkkkkkkkkkkkk*k**x*%x
nop

nyl ab? nop

B nyl ab?, UNC

R R R R R R R R

** |Include file has second definition of nylab *x

R R R R R E R

.copy "a.inc"

khkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhhhhhkhhkhkkhkhkhkkhkkhhhkhhkkhkhkhkhkkhkhkhkkhkhkkhkkhkkhkhkkkkkkkkhkkkkkkkkkkkk*k*k*x*%x

** Third definition of nmylab, reset upon exit from.include * %
IR EEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEREEESEESEERESEESEEEEEERESEEEEEEESES]
nyl ab? nop

B nyl ab?, UNC

khkkkhkkhkkhkkhkkhkkhkhkhkhkhkhhhhkhhkkhkhhkkhkkhhkhhkhkhkkhkkhkkhkhkkhkhkkhkkhkhkhkhkhkhkhkkkkkkkkkkkkkkkkkk*k**x*%x

** Fourth definition of nmylab in macro, macros use different **
** namespace to avoid conflicts o
LR R R R R R R R SR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS SR
nymac . nacro
nyl ab? nop

B nyl ab?, UNC

.endm

R R R R R R

** Macro invocation * ok
LR R R R R S SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS E SRS
nmymac

khkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhhkhkhkhkhkhkkhkhhhkhkhkhhkkhkhkkhkhkkhkkhkhkhkhkkhkhkkhkhkkhkhkhkkkkkkkkkkkkkkkkkk*k*k*x*%x

** Reference to third definition of nmylab. Definition is not **
** reset by mmcro invocation. *x

R R R R R

B nyl ab?, UNC

khkkhkkhkkhkkhkkhkkhkkhkkhkhkhhhhhkhhhhkhhkkhkkhhkhkhkkhhkkhkhkhkhkhkkhkhkkhkkhkkhkhkkhkkhkhkkkkkhkkhkkkkkkkkkkkkk*k*k*x*%x

** Changi ng section, allowing fifth definition of nylab >
khkkkhkkhkkhkkhkkhkkhkhhkhhhhhhhkhkhkhhkkhkkhkhhhkhhkhkhkkhkkhkkhkhhkkhkkhkkhkhkkhkhkkkkkkkkkkkkkkkkkkk*k*k*x*%x
.sect "Sect_One"
nop
nyl ab? .word 0O
nop
nop
B nyl ab?, UNC

khkkhkkhkkhkkhkkhkkhkkhkkhkhkhhhhhkhhkhkhkhhkkhkkhkkhhkhhhkkhkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkhkhkkkkkkkkkkkkkkkkkk*k*k*x*%x

** The .newbl ock directive allows sixth definition of nylab * %
IR EEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEREEESEESEERESEESEEEEREEREEEEEEESEES]
. newbl ock
nmyl ab? .word O
nop
nop
B nyl ab?, UNC

44

Assembler Description

SPRU513C-October 2007
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Symbols

3.8.3

3.84

Symbolic Constants

Symbols can be set to constant values. By using constants, you can equate meaningful names with
constant values. The .set and .struct/.tag/.endstruct directives enable you to set constants to symbolic
names. Symbolic constants cannot be redefined. The following example shows how these directives can
be used:

K .set 1024 ; constant definitions
maxbuf .set 2*K

item .struct ; itemstructure definition
value .int ; value offset = 0
delta .int ; delta offset = 4
i _len .endstruct ; itemsize =8

array .tag item
.bss array, i_len*K ; declare an array of K "itens"
. text
MOV array.delta, ARl ; access array .delta

The assembler also has several predefined symbolic constants; these are discussed in Gection 3.8.5.

Defining Symbolic Constants (--asm_define Option)

The --asm_define option equates a constant value or a string with a symbol. The symbol can then be used
in place of a value in assembly source. The format of the --asm_define option is as follows:

¢l12000 -v28 --asm_define= name[=value]

The name is the name of the symbol you want to define. The value is the constant or string value you
want to assign to the symbol. If the value is omitted, the symbol is set to 1. If you want to define a quoted
string and keep the quotation marks, do one of the following:

* For Windows, use --asm_define=name="\"value\"". For example, --asm_define=car="\"sedan\""
* For UNIX, use --asm_define=name=""value"'. For example, --asm_define=car="'sedan"
» For Code Composer Studio, enter the definition in a file and include that file with the -@ option.

Once you have defined the name with the --asm_define option, the symbol can be used in place of a
constant value, a well-defined expression, or an otherwise undefined symbol used with assembly
directives and instructions. For example, on the command line you enter:

cl 2000 -v28 --asm defi ne=SYML=1 --asm defi ne=SYM2=2 --asm defi ne=SYM3=3 --asm defi ne=SYMi=4
val ue. asm

Since you have assigned values to SYM1, SYM2, SYM3, and SYM4, you can use them in source code.
shows how the value.asm file uses these symbols without defining them explicitly.

Within assembler source, you can test the symbol defined with the --asm_define option with the following
directives:

Type of Test Directive Usage

Existence .if $isdefed(" name ")
Nonexistence .if $isdefed(" name ") =0
Equal to value .if name = value

Not equal to value .if name != value

The argument to the $isdefed built-in function must be enclosed in quotes. The quotes cause the
argument to be interpreted literally rather than as a substitution symbol.

SPRU513C-0October 2007 Assembler Description 45
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

Symbols

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Example 3-3. Using Symbolic Constants Defined on Command Line

If_ 4. if
. byte
.el se
. byte
.endif

IF 5 .if
. byte
.else
. byte
.endif

IF 6: .if
. byte
.else
. byte
.endi f

IF 7. if
. byte
.elseif
. byte
.endi f

SYm
SYm

SYm
SYML
10

SYML
SYMB
SYMB
SYm
SYML
SYML

SYm
SYm

= SYM * SYM

* SYm

<= 10

Equal val ues

Unequal val ues

Less than / equal

Greater than

* SYM = SYM4 + SYm

* SYm

+ SYmt

= SYM

+ SYMB =
+ SYM3

5

Unequal val ue

Equal val ues

3.8.5 Predefined Symbolic Constants
The assembler has several predefined symbols, including the following types:

» $, the dollar-sign character, represents the current value of the section program counter (SPC). $ is a
relocatable symbol.

* Processor symbols, including the following:

Symbol name

Description

.TMS320C2700
.TMS320C2800

.TMS320C2800_FPU32

_ LARGE_MODEL

Always set to 1

Set to 1 for C27x (-v27 option), otherwise 0

Set to 1 for C28x (-v28 option), otherwise 0

Set to 1 for C28x (-v28 option) with 32-bit FPU support, otherwise 0
Set to 1 for large model mode (-mf option); otherwise 0

e CPU control registers, including the following:

Register Description

ACC/AH, AL Accumulator/accumulator high, accumulator low
DBGIER Debug interrupt enable register

DP Data page pointer

IER Interrupt enable register

IFR Interrupt flag pointer

P/PH, PL Product register/product high, product low

PC Program counter

RPC Return program counter

STO Status register 0

ST1 Status register 1

SP Stack pointer register

TH Multiplicant high register - an alias of T register

XARO/AROH, ARO

XAR1/AR1H, AR1

Auxiliary register O/auxiliary 0 high, auxiliary O low
Auxiliary register 1/auxiliary 1 high, auxiliary 1 low

46 Assembler Description

u

SPRU513C—-0October 2007
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
Symbols

Register Description

XAR2/AR2H, AR2 Auxiliary register 2/auxiliary 2 high, auxiliary 2 low
XAR3/AR3H, AR3 Auxiliary register 3/auxiliary 3 high, auxiliary 3 low
XAR4/AR4H, AR4 Auxiliary register 4/auxiliary 4 high, auxiliary 4 low
XARS5/AR5H, AR5 Auxiliary register 5/auxiliary 5 high, auxiliary 5 low
XAR6/AR6H, AR6 Auxiliary register 6/auxiliary 6 high, auxiliary 6 low
XAR7/AR7H, AR7 Auxiliary register 7/auxiliary 7 high, auxiliary 7 low
XT/T, TL Multiplicand register/muliplicant high, multiplicant low

Control registers can be entered as all upper-case or all lower-case characters; for example, IER can
also be entered as ier.

» FPU control registers, including the following:

Register Description

ROH Floating point register 0
R1H Floating point register 1
R2H Floating point register 2
R3H Floating point register 3
R4H Floating point register 4
R5H Floating point register 5
R6H Floating point register 6
R7H Floating point register 7
STF Floating point status register

3.8.6 Substitution Symbols

Symbols can be assigned a string value (variable). This enables you to alias character strings by equating
them to symbolic names. Symbols that represent character strings are called substitution symbols. When
the assembler encounters a substitution symbol, its string value is substituted for the symbol name. Unlike
symbolic constants, substitution symbols can be redefined.

A string can be assigned to a substitution symbol anywhere within a program; for example:

. asg "ARL", nyReg ;register ARL
- asg "*+XAR2 [2]", ARGL ;first arg
. asg "FHXAR2 [1]", ARR ; second arg

When you are using macros, substitution symbols are important because macro parameters are actually
substitution symbols that are assigned a macro argument. The following code shows how substitution
symbols are used in macros:

add2 .macro A, B ; add2 macro definition

MoV AL, A
ADD AL, B
.endm

*add2 invocation
add2 LOC1l, LOC2 ;add "LOC1" argunment to a
;second argunent "LOC2".
MoV AL, LOCL
ADD AL, LOC2

See for more information about macros.

SPRU513C-0October 2007 Assembler Description a7
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com
Expressions
3.9 Expressions

An expression is a constant, a symbol, or a series of constants and symbols separated by arithmetic
operators. The 32-hit ranges of valid expression values are -2147 483 648 to 2147 483 647 for signed
values, and 0 to 4 294 967 295 for unsigned values. Three main factors influence the order of expression
evaluation:

Parentheses Expressions enclosed in parentheses are always evaluated first.
8/(4/12)=4,but8/4/2=1
You cannot substitute braces ({}) or brackets ([]) for parentheses.

Precedence groups Operators, listed in [Table 3-7, are divided into nine precedence groups.
When parentheses do not determine the order of expression evaluation,
the highest precedence operation is evaluated first.
8+4/2=10(4/2is evaluated first)

Left-to-right evaluation When parentheses and precedence groups do not determine the order of
expression evaluation, the expressions are evaluated from left to right,
except for Group 1, which is evaluated from right to left.
8/4*2=4,but8/(4*2)=1

3.9.1 Operators
lists the operators that can be used in expressions, according to precedence group.

Differences in Precedence From Other TMS320 Assemblers
Notes:

¢ Some TMS320 assemblers use a different order of precedence than the TMS320C28x
assembler uses. For this reason, different results may be produced from the same
source code. The TMS320C28x uses the same order of precedence that the C language
uses.

* When cl2000 is invoked with --silicon_version=v28 --c2xlIp_src_compatible, the
assembler accepts C2xlp source code. A programmer writing code for the C2xIp
assembler would assume different precedence than that used by the C28x assembler.
Therefore when invoked with the --silicon_version=v28 --c2xlp_src_compatible
--asm_remarks options, the C28x assembler issues a warning when it encounters an
expression such as a + b << c.

Table 3-2. Operators Used in Expressions (Precedence)

Group® Operator Description®
1 + Unary plus
- Unary minus
~ 1s complement
! Logical NOT
2 * Multiplication
/ Division
% Modulo
3 + Addition
- Subtraction
4 << Shift left
>> Shift right
5 < Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to

(1) Group 1 operators are evaluated right to left. All other operators are evaluated left to right.
@ Unary + and - have higher precedence than the binary forms.

48 Assembler Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
Expressions
Table 3-2. Operators Used in Expressions (Precedence) (continued)
Group® Operator Description®
6 =[=] Equal to
= Not equal to
& Bitwise AND
A Bitwise exclusive OR (XOR)
9 | Bitwise OR
3.9.2 Expression Overflow and Underflow

The assembler checks for overflow and underflow conditions when arithmetic operations are performed at

assembly time. It issues a warning (the message Value Truncated) whenever an overflow or underflow
occurs. The assembler does not check for overflow or underflow in multiplication.

3.9.3 Well-Defined Expressions
Some assembler directives require well-defined expressions as operands. Well-defined expressions
contain only symbols or assembly-time constants that are defined before they are encountered in the
expression. The evaluation of a well-defined expression must be absolute.
This is an example of a well-defined expression:
1000h+X
where X was previously defined as an absolute symbol.

3.9.4 Conditional Expressions
The assembler supports relational operators that can be used in any expression; they are especially
useful for conditional assembly. Relational operators include the following:
= Equal to I= Not equal to
< Less than <= Less than or equal to
> Greater than > = Greater than or equal to
Conditional expressions evaluate to 1 if true and O if false and can be used only on operands of
equivalent types; for example, absolute value compared to absolute value, but not absolute value
compared to relocatable value.

3.9.5 Legal Expressions
With the exception of the following expression contexts, there is no restriction on combinations of
operations, constants, internally defined symbols, and externally defined symbols.
When an expression contains more than one relocatable symbol or cannot be evaluated at assembly time,
the assembler encodes a relocation expression in the object file that is later evaluated by the linker. If the
final value of the expression is larger in bits than the space reserved for it, you receive an error message
from the linker. See for more information on relocation expressions.
When using the register relative addressing mode, the expression in brackets or parenthesis must be a
well-defined expression, as described in Becfion 3.9.3. For example:

*+XA4[7]
SPRU513C-0October 2007 Assembler Description 49

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Expressions

3.9.6 Expression Examples

Following are examples of expressions that use relocatable and absolute symbols. These examples use
four symbols that are defined in the same section:

.global extern_1 ; Defined in an external nodul e

intern_1: .word '"10' ; Relocatable, defined in
; current nodul e

LAB1: .set 2 ; LABL = 2

intern_2 ; Relocatable, defined in
; current nodul e

intern_3 ; Relocatable, defined in

; current nodul e
« Example 1

The statements in this example use an absolute symbol, LAB1, which is defined above to have a value
of 2. The first statement loads the value 51 into register ACC. The second statement puts the value 27
into register ACC.

MOV AL, #LABL + ((4+3) * 7), ; ACC = 51
MOV AL, #LABL + 4 + (3*7), ; ACC = 27
e Example 2
All of the following statements are valid.
MOV @extern_1 - 10), AL ; Legal
MOV @ 10-extern_1), AL ; Legal
MV @-(intern_1)), AL ; Legal
MOV @extern_1/10), AL ;| not an additive operator

MOV @intern_1 + extern_1),ACC ; Miltiple relocatables

 Example 3
The first statement below is legal; although intern_1 and intern_2 are relocatable, their difference is
absolute because they are in the same section. Subtracting one relocatable symbol from another
reduces the expression to relocatable symbol + absolute value. The second statement is illegal
because the sum of two relocatable symbols is not an absolute value.

MOV (intern_1 - intern_2 + extern_1), ACC ; Legal
MOV (intern_1 + intern_2 + extern_1), ACC ;11T egal

 Example 4

A relocatable symbol's placement in the expression is important to expression evaluation. Although the
statement below is similar to the first statement in the previous example, it is illegal because of
left-to-right operator precedence; the assembler attempts to add intern_1 to extern_3.

MOV (intern_1 + extern_1 - intern_2), ACC ;111 egal

50

Assembler Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Built-In Functions

3.10 Built-In Functions

The assembler supports many built-in mathematical functions. The built-in functions always return a value
and they can be used in conditional assembly or any place where a constant can be used.

In X, y and z are type float, n is an int. The functions $cvi, $int and $sgn return an integer and all
other functions return a float. Angles for trigopnometric functions are expressed in radians.

Table 3-3. Built-In Mathematical Functions

Function Description

$acos(x) Returns cos™(x) in range [0, 1], x [-1, 1]
$asin(x) Returns sin"}(x) in range [-11/2, T1/2], x [-1, 1]
$atanx) Returns tan'}(x) in range [-11/2, T1/2]

$atan2(x, y)
$ceil(x)
$cos(x)
$cosh(x)
$cvf(n)
$evi(x)
$exp(x)
$fabs(x)
$floor(x)
$fmod(x, y)
$int(x)
$ldexp(x, n)
$log(x)
$log10(x)
$max(x, y, ...z)
$min(x, y, ...z)
$pow(x, y)
$round(x)
$sgn(x)
$sin(x)
$sinh(x)
$sqrt(x)
$tan(x)
$tanh(x)
$trunc(x)

Returns tan'\(y/x) in range [-T, 1]

Returns the smallest integer not less than x, as a float

Returns the cosine of x

Returns the hyperbolic cosine of x

Converts an integer to a float

Converts a float to an integer. Returns an integer.

Returns the exponential function e*

Returns the absolute value |x|

Returns the largest integer not greater than x, as a float

Returns the floating-point remainder of x/y, with the same sign as x
Returns 1 if x has an integer value; else returns 0. Returns an integer.
Multiplies x by an integer power of 2. That is, x x 2"

Returns the natural logarithm In(x), where x>0

Returns the base-10 logarithm log;o(x), where x>0

Returns the greatest value from the argument list

Returns the smallest value from the argument list

Returns x¥

Returns x rounded to the nearest integer

Returns the sign of x. Returns 1 if x is positive, 0 if x is zero, and -1 if x is negative. Returns an integer.
Returns the sine of x

Returns the hyperbolic sine of x

Returns the square root of x, x=0

Returns the tangent of x

Returns the hyperbolic tangent of x

Returns x truncated toward O

The built-in substition symbol functions are discussed in Becfion 5.3.2.

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Assembler Description 51

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Specifying Assembler Fill Values (--asm_code_fill and --asm_data_fill)

3.11

3.12

Specifying Assembler Fill Values (--asm_code_fill and --asm_data_fill)
The C28x assembler allows you to specify fill values to fill the holes created by the assembler.

The .align directive aligns the section program counter (SPC) on the next boundary, depending on the size
in words parameter. The assembler might create holes to align the SPC. The assembler uses the default
values of zero for data sections and NOP instructions for code sections.

A code section is defined as either a .text section or any section that has an instruction to encode. The
following are considered to be code sections:

Example 1

. text
.field 0x100, 16

Example 2

.data
.field 0x100, 16
MOV al, #1

Example 3

.sect "MyProg"
MOV al, #0

Any section other than a .text section is considered a data section if it does not have any instruction to
encode. For example:

.sect "MyData"
.field 0x100, 16

The assembler supports the --asm_code_fill and --asm_data_fill options to enable you to specify the fill
values for the code sections and data sections, respectively. You can specify a 16-bit value with these
options in decimal (4660), octal (011064) or hexadecimal (0x1234) format. For example consider the
following assembly code:

. sect " MyDat a"

.align 1

.field 0x01, 16

.align 2
.field 0x00010002, 32

. sect "MyProg"
.align 1

MoV ah, #0

.align 2

MoV acc, #1234 << 5

TMS320C28x Assembler Modes

The TMS320C28x processor is object code compatible with the TMS320C27x processor and source code
compatible with the TMS320C2xx (C2xIp) processor. The C28x assembler operates in four different
modes to support backward compatibility with C27x and C2xIp processors. These four modes are
controlled by the options as follows:

-v27 C27x object mode
-v28 C28x object mode
-v28 --c2xlp_src_compatible C28x object mode--Accept C2xIp Syntax Mode

The --c2xlIp_src_compatible option implies the -v28 (or --silicon_version=28) option. Therefore you do not
need to specify -v28 explicitly.

When multiple versions are specified, the assembler uses the first version specified and ignores the rest.
For example the command cl2000 -v28 -v27 invokes the assembler in the C28x object mode and the
assembler ignores the -v27 switch. Also the assembler issues the following warning:

>> Version already specified. -v27 is ignored

52

Assembler Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

TMS320C28x Assembler Modes

Since --c2xlp_src_compatible implies the version -v28 the command cl2000 --c2xlp_src_compatible -v27
is equivalent to ¢cl2000 -v28 --c2xlp_src_compatible -v27. Therefore the assembler generates the above
warning and ignores the -v27 switch.

Refer to the TMS320C28x DSP CPU and Instruction Set Reference Guide for more details on different
object modes and addressing modes supported by the C28x processor.

To support some special floating point instructions when a 32-bit floating point unit (FPU) is available, the
assembler operates in FPU32 mode. describes the FPU32 mode. This mode is controlled
by options as follows.

-v28 --float_support=fpu32 C28x object mode--Accept FPU32 instructions

3.12.1 C27x Object Mode

This mode is used to port C27x code to the C28x and run the C28x processor in C27x object mode. The
C28x assembler in this mode is essentially the C27x assembler that supports the following non-C27x
instructions. These instructions are used for changing the processor object mode and addressing modes.
Refer to the TMS320C28x DSP CPU and Instruction Set Reference Guide for more details on these
instructions.

Table 3-4. Non-TMS320C27x Instructions Supported in the C27x Object Mode

Instructions

Description

SETC OBJMODE
CLRC OBJMODE
C280BJ

C270BJ

SETC AMODE
CLRC AMODE
LPADDR
C28ADDR

SETC MOM1MAP
CLRC MOM1MAP
SETC CNF

CLRC CNF

SETC XF

CLRC XF

Set the OBJMODE bit in the status register. The processor runs in the C28x object mode.
Clear the OBJMODE bit in the status register. The processor runs in the C27x object mode.
Same as SETC OBJMODE

Same as CLRC OBJMODE

Set the AMODE bit in the status register. The processor supports C2xIp addressing.

Clear the AMODE bit in the status register. The C28x processor supports C28x addressing.
Same as SETC AMODE

Same as CLRC AMODE

Set the MOM1MAP bit in the status register.

Clear the MOM1MAP bit in the status register.

Set the CNF bit (C2xIlp mapping mode bit) in the status register.

Clear the CNF bit (C2xIp mapping mode bit) in the status register.

Set the XF bit in the status register.

Clear the XF bit in the status register.

When operated in this mode, the C28x assembler generates an error if non-C27x compatible syntax or
instructions are used. For example the following instructions are illegal in this mode:

FLIP AL

MoV AL, *XARO++

; C28x instruction not supported in C27x.
*XARO++ is illegal addressing for C27x.

3.12.2 C28x Object Mode

This mode supports all the C28x instructions and generates C28x object code. New users of the C28x
processor should use the assembler in this mode. This mode generates an error if old C27x syntax is
used. For example, the following instructions are illegal in this mode:

MoV AL, *ARO++

; *ARO++ is illegal addressing for C28x.

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Assembler Description 53

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

TMS320C28x Assembler Modes
3.12.3 C28x Object - Accept C27x Syntax Mode

This mode supports all the C28x instructions and also supports the C27x instruction and addressing
syntax. This mode generates C28x object code. For example, this mode accepts the instruction syntax
MOV AL, *ARO++ and encodes it as MOV AL, *XARO++. Though this mode accepts C27x syntax, the
assembler generates warning if C27x syntax is used to encourage the you as a programmer to change the
C27x syntax to C28x syntax. The instruction MOV AL, *ARO+ generates the following warning:

WARNING at line 1: [WO000] Full XAR register is nodified

3.12.4 (C28x Object - Accept C2xlp Syntax Mode

This mode supports all the C28x instructions and generates C28x object code but also supports C2xIp
instruction syntax.

The C28x processor includes features and instructions that make the processor as backward compatible
to the C2xlp processor as possible. In order to make the C28x processor source code compatible with
C2xlp, the assembler accepts C2xIp instructions and encodes them as equivalent C28x instructions.

Refer to the TMS320C28x DSP CPU and Instruction Set Reference Guide for information on C2xIp
instructions.

The C27x syntax is not supported in this mode and generates an error. Also any incompatible C2xIp
instructions cause the assembler to generate an error. For example, the following instructions are illegal in

this mode:
MoV AL, *ARO++ ; *ARO++ is illegal addressing for C28x.
TRAP ; I nconpati bl e C2XLP instruction.

This mode assumes LP addressing mode compatibility (AMODE = 1) and a data page of 128-words. Refer
to the TMS320C28x DSP CPU and Instruction Set Reference Guide for more details.

In this mode, C28x and C2xlp source code can be freely intermixed within a file as shown below.
C2xl p Source Code

LDP #Var A

LACL Var A

LAR ARO, *+, AR2
SACL *+

i_C FuncA

C28x Sburce Code using LP Addressing (AMODE = 1)

FuncA:
MoV DP, #VarB
MoV AL, @d/arB
MOVL XARO, *XARO++
MoV * XAR2++, AL
LRET

When the C28x assembiler is invoked with --asm_remarks switch, it performs additional checking for the
following cases:

» The C1x/C2x/C2xx/C5x assembler accepts humbers with leading zero as decimal integers, that is 010
is treated as 10 and not as 8. The C28x assembler treats constants with leading zeros as octal
numbers. There may be C2xlp assembly code that contains decimal numbers with leading zeros.
When these files are assembled with the C28x assembler the results will not be what you expect as
the C28x assembler treats such constants as octal numbers. So the assembler when invoked with
--c2xlp_src_compatible --asm_remarks, checks for such numbers and issues a warning that the
constant is parsed as an octal number.

For example, consider the following listing produced using the --c2xlp_src_compatible --asm_remarks
options:
1 00000000 FF20 l acc #023
"octal.asnf, WARNING at line 1: [WO000] Constant parsed as an octal numnber
00000001 0013

» The C1x/C2x/C2xx/C5 assembler uses a different order of operator precedence expression. In the

C1x/C2x/C2xx/C5 assembler, the shift operators (<< and >>) have higher precedence than the binary

54 Assembler Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Source Listings

+ and - operators. The C28x assembler follows the order of precedence of C language where the
above mentioned sequence is reversed. The C28x assembler issues a warning about the precedence
used if the following are true:

— The --c2xlIp_src_compatible --asm_remarks options are specified.

— The source code contains any expression involving binary additive operators (+ and -) and the shift
operators (<< and >>).

— The precedence is not forced by parentheses. For example, consider the following listing produced
using the --c2xlp_src_compatible --asm_remarks options:

1 00000000 FF20 lacc #(3 + 4 << 2) ; Warni ng generated
"pre.asnf, WARNING at line 1: [W999] The binary + and - operators have higher
precedence than the shift operators

00000001 001C
2 00000002 FF20 lacc #((3 + 4) << 2) ; NO war ni ng
00000003 001C

3.12.5 C28x FPU32 Object Mode

The FPU32 mode is used when the hardware 32-bit floating-point co-processor support is available on the
C28x. The FPU32 mode is invoked by specifying the -v28 and --float_support=fpu32 options. This mode
supports all C28x instructions. The differences are as follows:

» Some special floating point instructions are supported. These are documented in the TMS320C28x
Floating Point Unit and Instruction Set Reference Guide.

» The FPU32 mode assumes large memory model, and is incompatible with small memory model.

* The assembler in this mode checks for pipeline conflicts. This is because the FPU32 instructions are
not pipeline protected. The C28x instructions are pipeline protected, which means that a new
instruction cannot read/write its operands until all preceding C28x instructions have finished writing
those operands. This is not the case with the FPU32 instructions: an FPU instruction can access its
operands while another instruction is writing them, causing race conditions. Thus the assembler has to
check for pipeline conflicts and issue warnings/errors as appropriate. The pipeline conflict detection
feature is described in Bection 3.13.

3.13 Source Listings
A source listing shows source statements and the object code they produce. To obtain a listing file, invoke
the assembler with the --asm_listing option (see Bection 3.3).
Two banner lines, a blank line, and a title line are at the top of each source listing page. Any title supplied
by the .title directive is printed on the title line. A page number is printed to the right of the title. If you do
not use the .title directive, the name of the source file is printed. The assembler inserts a blank line below
the title line.
Each line in the source file produces at least one line in the listing file. This line shows a source statement
number, an SPC value, the object code assembled, and the source statement. shows these in
an actual listing file.
Field 1: Source Statement Number
Line number
The source statement number is a decimal number. The assembler numbers source lines as it
encounters them in the source file; some statements increment the line counter but are not listed. (For
example, .title statements and statements following a .nolist are not listed.) The difference between two
consecutive source line numbers indicates the number of intervening statements in the source file that
are not listed.
Include file letter
A letter preceding the line number indicates the line is assembled from the include file designated by
the letter.
Nesting level number
A number preceding the line number indicates the nesting level of macro expansions or loop blocks.
Field 2: Section Program Counter
SPRU513C-0October 2007 Assembler Description 55

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*L‘ TEXAS
INSTRUMENTS

www.ti.com

Source Listings

This field contains the SPC value, which is hexadecimal. All sections (.text, .data, .bss, and named
sections) maintain separate SPCs. Some directives do not affect the SPC and leave this field blank.

Field 3: Object Code

This field contains the hexadecimal representation of the object code. All machine instructions and
directives use this field to list object code. This field also indicates the relocation type associated with
an operand for this line of source code. If more than one operand is relocatable, this column indicates
the relocation type for the first operand. The characters that can appear in this column and their
associated relocation types are listed below:

! undefined external reference
' .text relocatable

+ .sect relocatable

" .data relocatable

- .bss, .usect relocatable

% relocation expression

Field 4: Source Statement Field

This field contains the characters of the source statement as they were scanned by the assembler. The
assembler accepts a maximum line length of 200 characters. Spacing in this field is determined by the
spacing in the source statement.

shows an assembler listing with each of the four fields identified.

Figure 3-2. Example Assembler Listing

1 addl .macro s1l, s2, sS3, sS4
2
3 MOV AL, S1
4 ADD AL, S2
5 ADD AL, S3
6 ADD AL, S4
7 .endm
8
9 .global cl, c2, c3, c4
10 .global _main
11
12 0001 «c1 .set 1
13 0002 c2 .set 2
14 0003 3 .set 3
15 0004 c4 .set 4
16
17 000000 _main:
18 000000 addl #cl, #c2, #c3, #c4
1
1 000000 9A01 MOV AL, #cl
1 000001 9cC02 ADD AL, #c2
1 000002 9C03 ADD AL, #c3
1 000003 9cC04 ADD AL, #c4
19
20 .end
NN Y
Field 1Field 2 Field 3 Field 4
56 Assembler Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Debugging Assembly Source

3.14 Debugging Assembly Source

When you invoke cl2000 -v28 with --symdebug:dwarf (or -g) when compiling an assembly file, the
assembler provides symbolic debugging information that allows you to step through your assembly code in
a debugger rather than using the Disassembly window in Code Composer Studio. This enables you to
view source comments and other source-code annotations while debugging.

The .asmfunc and .endasmfunc (see Mark Function Boundarieg) directives enable you to use C
characteristics in assembly code that makes the process of debugging an assembly file more closely
resemble debugging a C/C++ source file.

The .asmfunc and .endasmfunc directives allow you to name certain areas of your code, and make these
areas appear in the debugger as C functions. Contiguous sections of assembly code that are not enclosed
by the .asmfunc and .endasmfunc directives are automatically placed in assembler-defined functions
named with this syntax:

$ filename : starting source line : ending source line $

If you want to view your variables as a user-defined type in C code, the types must be declared and the
variables must be defined in a C file. This C file can then be referenced in assembly code using the .ref
directive (see [dentify Global Symbaolg).

Example 3-4. Viewing Assembly Variables as C Types C Program

typedef struct
int ni;

int ng;

PX

X svar = { 1, 2 };

Example 3-5. Assembly Program for

Tell the assenbler we're referencing variable "_svar", which is defined in
another file (cvars.c).

addfive() - Add five to the second data nenmber of _svar

. text
. gl obal addfive
addfive: .asnfunc
MOVZ DP, # svar +1 ; load the DP with svar's nenory page
ADD @svar +1, #5 ; add 5 to svar.n?
LRETR ; return from function

. endasnf unc

shows the cvar.c C program that defines a variable, svar, as the structure type X. The svar
variable is then referenced in the addfive.asm assembly program in and 5 is added to svar's
second data member.

Compile both source files with the --symdebug:dwarf option (-g) and link them as follows:
cl 2000 -v28 -syndebug: dwarf cvars.c addfive.asm--run_linker --1library=lnk.cnd
--library=rts2800.1ib --output_fil e=addfive. out

When you load this program into a symbolic debugger, addfive appears as a C function. You can monitor
the values in svar while stepping through main just as you would any regular C variable.

SPRU513C-0October 2007 Assembler Description 57
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

C-Type Symbolic Debugging for Assembly Variables (--cdebug_asm_data Option)

3.15 C-Type Symbolic Debugging for Assembly Variables (--cdebug_asm_data Option)

When you assemble with the --cdebug_asm_data option, the assembler produces the debug information
for assembly source debug. The assembler outputs C-type symbolic debugging information for symbols
defined in assembly source code using the data directives. This support is for basic C types, structures
and arrays. You have the ability to inform the assembler how to interpret an assembly label as a C
variable with basic type information.

The assembly data directives have been modified to produce debug information when using
--cdebug_asm_data in these ways:

Data directives for initialized data. The assembler outputs debugging information for data
initialialized with the .byte, .field, .float, .int, or .long directive. For the following, the assembler emits
debug information to interpret init_sym as a C integer:

int_sym .int 10h

More than one initial value is interpreted as an array of the type designated by the directive. This
example is interpreted as an integer array of four and the appropriate debug information is produced:
int_sym .int 10h, 11h, 12h, 13h

For symbolic information to be produced, you must have a label designated with the data directive.
Compare the first and second lines of code shown below:

int_sym .int 10h
.int 11h --> WII not have debug info.

Data directives for uninitialized data. The .bss and .usect directives accept a type designation as an
optional fifth operand. This type operand is used to produce the appropriate debug information for the
symbol defined using the .bss directive. For example, the following generates similar debug information
as the initialized data directive shown above:

. bss int_sym1,1,0,int
The type operand can be one of the following. If a type is not specified no debug information is
produced.

CHAR FLOAT LDOUBLE SCHAR UCHAR ULONG
DOUBLE INT LONG SHORT UINT USHORT

In the following example, the parameter int_sym is treated as an array of four integers:

. bss int_sym4,1,0,int
The size specified must be a multiple of the type specified. If no type operand is specified ho warning
is issued. The following code will generate a warning since 3 is not a multiple of the size of a long.

. bss doubl e_sym 3,1,0,1o0ng
Debug information for assembly structures. The assembler also outputs symbolic information on
structures defined in assembly. Here is an example of a structure:

structlab .struct
meni .int
meng .int

struct_len .endstruct

structl .tag structlab
.bss structl, 2, 1, 0, structlab

For the structure example, debug information is produced to treat structl as the C structure:

struct struct1{

int ment,;

int meng;

H

The assembler outputs arrays of structures if the size specified by the .bss directive is a multiple of the
size of struct type. As with uninitialized data directives, if the size specified is not a multiple of the
structure size, a warning is generated. This example properly accounts for alignment constraints
imposed by the member types:

.bss structl,struct_len * 3, 1, 0, structlab

58 Assembler Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Cross-Reference Listings

3.16 Cross-Reference Listings

A cross-reference listing shows symbols and their definitions. To obtain a cross-reference listing, invoke
the assembler with the --cross_reference option (see or use the .option directive with the X

operand (see [Gelect Listing Optiond). The assembler appends the cross-reference to the end of the
source listing. shows the four fields contained in the cross-reference listing.

Example 3-6. An Assembler Cross-Reference Listing

LABEL

. TM5320C2800
_func

varl

var 2

Label
Value

Definition

Reference

VALUE DEFN REF
00000001 0
00000000* 18
00000000~ 4 17
00000004- 5 18

column contains each symbol that was defined or referenced during the assembly.

column contains an 8-digit hexadecimal number (which is the value assigned to the
symbol) or a name that describes the symbol's attributes. A value may also be
preceded by a character that describes the symbol's attributes. lists these
characters and names.

(DEFN) column contains the statement number that defines the symbol. This
column is blank for undefined symbols.

(REF) column lists the line numbers of statements that reference the symbol. A
blank in this column indicates that the symbol was never used.

Table 3-5. Symbol Attributes

Character or Name

Meaning

REF
UNDF

External reference (global symbol)
Undefined

Symbol defined in a .text section

Symbol defined in a .data section

Symbol defined in a .sect section

Symbol defined in a .bss or .usect section

3.17 Smart Encoding

To improve efficiency, the assembler reduces instruction size whenever possible. For example, a branch
instruction of two words can be changed to a short branch one-word instruction if the offset is 8 bits.
lists the instruction to be changed and the change that occurs.

Table 3-6. Smart Encoding for Efficiency

This instruction...

Is encoded as...

MOV AX, #8Bit

ADD AX, #8BitSigned
CMP AX, #8Bit

ADD ACC, #8Bit
SUB ACC, #8Bit
AND AX, #8BitMask
OR AX, #8BitMask
XOR AX, #8BitMask

MOVB AX, #8Bit
ADDB AX, #8BitSigned
CMPB AX, #8Bit
ADDB ACC, #8Bit
SUBB ACC, #8Bit
ANDB AX, #8BitMask
ORB AX, #8BitMask
XORB AX, #8BitMask

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Assembler Description 59

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

Smart Encoding

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Table 3-6. Smart Encoding for Efficiency (continued)

This instruction...

Is encoded as...

B 8BitOffset, cond
LB 8BitOffset, cond
MOVH loc, ACC << 0
MOV loc, ACC << 0
MOVL XARn, #8Bit

SB 8BitOffset, cond
SB 8BitOffset, cond
MOV loc, AH
MOV loc, AL
MOVB XARn, #8Bit

The assembler also intuitively changes instruction formats during smart encoding. For example, to push
the accumulator value to the stack, you use MOV *SP++, ACC. Since it would be intuitive to use PUSH
ACC for this operation, the assembler accepts PUSH ACC and through smart encoding, changes it to

MOV *SP++, ACC. shows a list of instructions recognized during intuitive smart encoding and

what the instruction is changed to.

Table 3-7. Smart Encoding Intuitively

This instruction...

Is encoded as...

MOV P, #0

SUB loc, #16BitSigned
ADDB SP, #-7Bit
ADDB aux, #-7Bit
SUBB AX, #8BitSigned
PUSH IER

POP IER

PUSH ACC

POP ACC

PUSH XARN

POP XARN

PUSH #16Bit

MPY ACC, T, #8Bit

MPY P, T, #0

ADD loc, #-16BitSigned
SUBB SP, #7Bit

SUBB aux, #7Bit
ADDB AX, #-8BitSigned
MOV *SP++, IER

MOV IER, *--SP

MOV *SP++, ACC
MOV ACC, *--SP

MOV *SP++, XARnN
MOV XARn, *--SP
MOV *SP++, #16Bit
MPYB ACC, T, #8Bit

In some cases, you might want a 2-word instruction even when there is an equivalent 1-word instruction
available. In such cases, smart encoding for efficiency could be a problem. Therefore, the equivalent
instructions in are provided; these instructions will not be optimized.

Table 3-8. Instructions That Avoid Smart Encoding

This instruction...

Is encoded as...

MOVW AX, #8Bit
ADDW AX, #8Bit
CMPW AX, #8Bit
ADDW ACC, #8Bit
SUBW ACC, #8Bit
JMP 8BitOffset, cond

MOV AX, #8Bit
ADD AX, #8Bit
CMP AX, #8Bit
ADD ACC, #8Bit
SUB ACC, #8Bit
B 8BitOffset, cond

60 Assembler Description

SPRU513C—-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Pipeline Conflict Detection

3.18 Pipeline Conflict Detection

Pipeline Conflict Detection (PCD) is a feature implemented on the TMS320C28x 5.0 Compiler, for targets
with hardware floating point unit (FPU) support only. This is because the FPU instructions are not pipeline
protected whereas the C28x instructions are.

3.18.1 Protected and Unprotected Pipeline Instructions

The C28x target with FPU support has a mix of protected and unprotected pipeline instructions. This
necessitates some checks in the compiler and assembler that are not necessary for a C28x target without
FPU support.

By design, a (non-FPU) C28x instruction does not read/write an operand until all previous instructions
have finished writing that operand. The hardware stalls until this condition is true. As hardware stalls are
employed to preserve operand integrity, the compiler and assembler need not keep track of register reads
and writes by instructions in the pipeline. Thus, the C28x instructions are pipeline protected, meaning that
an instruction will not attempt to read/write a register while that register is still being written by another
instruction.

The situation is different when FPU support is enabled. While the non-FPU instructions are pipeline
protected, the FPU instructions aren't. This implies that an FPU instruction could attempt to read/write a
register while it is still being written by a previous instruction. This can cause undefined behavior, and the
compiler and assembler need to protect against such conflicting register accesses.

3.18.2 Pipeline Conflict Prevention and Detection

The compiler, when generating assembly code from C/C++ programs, ensures that the generated code
does not have any pipeline conflicts. It does this by either scheduling non-conflicting instructions between
two potentially conflicting instructions, or inserting NOP instructions wherever necessary. For details on
the compiler, please see the TMS320C28x C/C++ Compiler User's Guide.

While conflict prevention by the compiler is sufficient for C/C++ test cases, this does not cover
manually-written assembly language code. Assembly code can contain instructions that have pipeline
conflicts. The assembler needs to detect such conflicts and issue warnings or errors, depending on the
severity of the situation. This is what the Pipeline Conflict Detection (PCD) feature in the assembler, is
designed to do.

3.18.3 Enabling/Disabling Pipeline Conflict Detection

The PCD feature is enabled by default. To disable this feature, the compiler needs to be invoked with the
--disable_pcd option. This is useful if the user wants some warnings disabled, for instance. However, care
must be taken not to ignore pipeline conflict errors, as doing so might cause incorrect code execution.

3.18.4 Pipeline Conflicts Detected

The assembler detects certain pipeline conflicts, and based on their severity, issues either an error
message or a warning. The types of pipeline conflicts detected are listed below, along with the assembler
actions in the event of each conflict.
» Pipeline Conflict:

An instruction reads a register when it is being written by another instruction.

Assembler Response:

The assembler generates an error message and aborts.

e Pipeline Conflict:
Two instructions write the same register in the same cycle.
Assembler Response:
The assembler generates an error message and aborts.

* Pipeline Conflict:

SPRU513C-0October 2007 Assembler Description 61
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Pipeline Conflict Detection

Instructions FRACF32, 116 TOF32, UI16TOF32, F32TOI32, and/or F32TOUI32 are present in the delay
slot of a specific type of MOV32 instruction that moves a value from a CPU register or memory location
to an FPU register.

Assembler Response:

The assembler gives an error message and aborts, as the hardware is not able to correctly execute
this sequence.

e Pipeline Conflict:
Parallel operations have the same destination register.
Assembler Response:
The assembler gives a warning.

62 Assembler Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Pipeline Conflict Detection

* Pipeline Conflict:
A read/write happens in the delay slot of a write of the same register.
Assembler Response:
The assembler gives a warning.

* Pipeline Conflict:
A SAVE operation happens in the delay slot of a pipeline operation.
Assembler Response:
The assembler gives a warning.

* Pipeline Conflict:
A RESTORE operation happens in the delay slot of a pipeline operation.
Assembler Response:
The assembler gives a warning.

* Pipeline Conflict:

A SETFLG instruction tries to modify the LUF or LVF flag while certain instructions that modify
LUF/LVF (such as ADDF32, SUBF32, EINVF32, EISQRTF32 etc) have pending writes.

Assembler Response:

The assembler does not check for which instructions have pending writes; on encountering a SETFLG
when any write is pending, the assembler issues a detailed warning, asking you to ensure that the
SETFLG is not in the delay slot of the specified instructions.

For the actual timing of each FPU instruction, and pipeline modeling, please refer to the TMS320C28x
Floating Point Unit and Instruction Set Reference Guide.

SPRU513C-0October 2007 Assembler Description 63
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

64 Assembler Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

J@ TEXAS

INSTRUMENTS

Chapter 4

SPRU513C-0October 2007

Assembler Directives

Assembler directives supply data to the program and control the assembly process. Assembler directives
enable you to do the following:

e Assemble code and data into specified sections

» Reserve space in memory for uninitialized variables

» Control the appearance of listings

* Initialize memory

» Assemble conditional blocks

» Define global variables

e Specify libraries from which the assembler can obtain macros
» Examine symbolic debugging information

This chapter is divided into two parts: the first part through Bection 4.17) describes the

directives according to function, and the second part is an alphabetical reference.

Topic

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
4.13

Page

Directives SUMMary [ooeooee et eeeee i ieaeaeeeieieazaeeees 64
Compatibility With the TMS320C1x/C2x/C2xx/C5x Assembler

D)1 =T A=t 69
Directives That Define SectionS[..ouieieieeieieeeeieiieiieieieieiesaeaeaeinss 70
Directives That Initialize Constants[.....cocooveieieeeieieeeieieiaeaeieaes.s 72
Directives That Perform Alignment and Reserve Spacel................. /3
Directives That Format the Output Listings[oooeeeeeeeeeeeeeee e 79
Directives That Reference Other Files[.o ioieieeiiiieieeieiieieieiaeen.. 79
Directives That Enable Conditional Assembly[....ooooeoeioeeeeene.... 749
Directives That Define Unions or StructureSf...cocveveeeeeeeiereraeaeaess.. 71
Directives That Define Symbols at Assembly Time[....................... 79
Directives That Override the Assembler Mode[.....oooeeeeeeiieeenen..... 79
Miscellaneous Dir€CtiVeS e ieeieeetaeieieeaeiaeieraeiaeeeiaeiaeeeiaciaeeess 79
Directives ReferenCel i oot iae it i eaeiaeineaeiaeesiaeineeeiacieeess aad

SPRU513C-October 2007

Assembler Directives

Bubmit Documentafion FeedbacK

65

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*L‘ TEXAS
INSTRUMENTS

www.ti.com

Directives Summary

4.1 Directives Summary

through summarize the assembler directives.

Besides the assembler directives documented here, the TMS320C28x™ software tools support the

following directives:

» The assembler uses several directives for macros. Macro directives are discussed in [Chapter 3; they
are not discussed in this chapter.

» The C compiler uses directives for symbolic debugging. Unlike other directives, symbolic debugging
directives are not used in most assembly language programs. discusses these directives;
they are not discussed in this chapter.

Labels and Comments Are Not Shown in Syntaxes
Note: Any source statement that contains a directive can also contain a label and a comment.
Labels begin in the first column (only labels and comments can appear in the first column),
and comments must be preceded by a semicolon, or an asterisk if the comment is the only
element in the line. To improve readability, labels and comments are not shown as part of
the directive syntax.
Table 4-1. Directives That Define Sections

Mnemonic and Syntax Description See

.bss symbol, size in words|, blocking flag Reserves size words in the .bss (uninitialized data) section b pId
[, alignment flag[, type]]]

.data Assembles into the .data (initialized data) section

.sect " section name" Assembles into a named (initialized) section

text Assembles into the .text (executable code) section text topid

symbol .usect "section name", size in words Reserves size words in a named (uninitialized) section jusect topid
[, blocking flag[, alignment falg]
Table 4-2. Directives That Initialize Constants (Data and Memory)

Mnemonic and Syntax Description See

.byte value,[, ..., value,] Initializes one or more successive bytes in the current section D pId

.char value4], ..., valuep] Initializes one or more successive bytes in the current section [char topid

field value][, size] Initializes a field of size bits (1-32) with value field topig

float value,], ..., valuey] Initializes one or more 32-bit, IEEE single-precision,
floating-point constants

.int valueq|, ..., valuey] Initializes one or more 16-bit integers int fopid

.long valueq|, ..., valuey] Initializes one or more 32-bit integers [long topid

.pstring {exprq|"string,"},... , {expry|"string,"}] Places 8-bit characters from a character string into the current

section.

.string {exprq|"string,"}[,... , {expry|"string,"}] Initializes one or more text strings | string topid

.word value,], ..., valuey] Initializes one or more 16-bit integers jword topid

xfloat value,], ..., value,] Places the floating-point representation of one or more

floating-point constants into the current section

xlong valueq|, ..., valuey] Places one or more 32-bit values into consecutive words in the g topid

current section
66 Assembler Directives SPRU513C-October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Directives Summary

Table 4-3. Directives That Perform Alignment and Reserve Space

Mnemonic and Syntax Description See

.align [size in words] Aligns the SPC on a boundary specified by size in bytes, which g pid
must be a power of 2; defaults to boundary

.bes size Reserves size bits in the current section; a label points to the b pid
end of the reserved space

.space size Reserves size bits in the current section; a label points to the D pid
beginning of the reserved space

Table 4-4. Directives That Format the Output Listing

Mnemonic and Syntax Description See

.drlist Enables listing of all directive lines (default)

.drnolist Suppresses listing of certain directive lines d pId

fclist Allows false conditional code block listing (default) iclist topid

fcnolist Suppresses false conditional code block listing

length [page length]
list

.mlist

.mnolist

.nolist

.option option,[, option,, . . .

.page

.sslist

.ssnolist

.tab size

title " string "
.width [page width]

Sets the page length of the source listing
Restarts the source listing

Allows macro listings and loop blocks (default)
Suppresses macro listings and loop blocks
Stops the source listing

Selects output listing options; available options are B, L, M, R,
T, W, and X

Ejects a page in the source listing

Allows expanded substitution symbol listing

Suppresses expanded substitution symbol listing (default)
Sets tab to size characters

Prints a title in the listing page heading

Sets the page width of the source listing

TR

Table 4-5. Directives That Reference Other Files

Mnemonic and Syntax

Description

n

ee

.copy ["Ifilename["]

.def symboly[, ... , symbol,]

.global symboly], ... , symboly]

.include ["]Jfilename["]
.mlib ["Ifilename["]

.ref symboly[, ..., symbol,]

Includes source statements from another file

Identifies one or more symbols that are defined in the current
module and that can be used in other modules

Identifies one or more global (external) symbols
Includes source statements from another file
Defines macro library

Identifies one or more symbols used in the current module that
are defined in another module

o

Table 4-6. Directives That Override the Assembly Mode

Mnemonic and Syntax Description See

.c28_amode Begins assembling in C28x object mode 8 de
[OpId

Ip_amode Begins assembling in C28x object mode -- accepts C2xLP

instructions

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Assembler Directives

67

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

@‘ TEXAS

INSTRUMENTS
www.ti.com
Directives Summary
Table 4-7. Directives That Enable Conditional Assembly
Mnemonic and Syntax Description See
.break [well-defined expression] Ends .loop assembly if well-defined expression is true. When b pid
using the .loop construct, the .break construct is optional.
.else Assembles code block if the .if well-defined expression is false.
When using the .if construct, the .else construct is optional.
.elseif well-defined expression Assembles code block if the .if well-defined expression is false
and the .elseif condition is true. When using the .if construct,
the .elseif construct is optional.
.endif Ends .if code block [endit Topid
.endloop Ends .loop code block
.if well-defined expression Assembles code block if the well-defined expression is true
.loop [well-defined expression] Begins repeatable assembly of a code block; the loop count is D topid
determined by the well-defined expression.
Table 4-8. Directives That Define Unions or Structures
Mnemonic and Syntax Description See
.cstruct Acts like .struct, but adds padding and alignment like that
which is done to C structures
.endstruct Ends a structure definition ,
.endunion Ends a union definition ,
.struct Begins structure definition
.tag Assigns structure attributes to a label cstruct/.cunior ,
struct,
.union Begins a union definition [union fopid
Table 4-9. Directives That Define Symbols at Assembly Time
Mnemonic and Syntax Description See
.asg ["]character string["], substitution symbol Assigns a character string to substitution symbol
symbol .equ value Equates value with symbol q DId
.eval well-defined expression, Performs arithmetic on a numeric substitution symbol jeval topid
substitution symbol
label symbol Defines a load-time relocatable label in a section
symbol .set value Equates value with symbol [sef fopid
.var Adds a local substitution symbol to a macro's parameter list [var topid
68 Assembler Directives SPRU513C-October 2007

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
Compatibility With the TMS320C1x/C2x/C2xx/C5x Assembler Directives
Table 4-10. Directives That Perform Miscellaneous Functions
Mnemonic and Syntax Description See
.asmfunc Identifies the beginning of a block of code that contains a
function
.cdecls [options,] "filename"[, "filename2"[, ...] Share C headers between C and assembly code d pId
.clink ["section name"] Enables conditional linking for the current or specified section
.emsg string Sends user-defined error messages to the output device;
produces no .obj file
.end Ends program d topid
.endasmfunc Identifies the end of a block of code that contains a function
.mmsg string Sends user-defined messages to the output device
.newblock Undefines local labels jnewblock topid
.sblock Designates section for blockins b DIg
.wmsg string Sends user-defined warning messages to the output device g topiq
4.2 Compatibility With the TMS320C1x/C2x/C2xx/C5x Assembler Directives

This section explains how the TMS320C28x assembler directives differ from the
TMS320C1x/C2x/C2xx/C5x assembler directives.

The C28x .long and .float directives automatically align the SPC on an even word boundary, while the
C1x/C2x/C2xx/C5x assembler directives do not.

Without arguments, the .align directive for the C28x and the C1x/C2x/C2xx/C5x assemblers both align
the SPC at the next page boundary. However, the C28x .align directive also accepts a constant
argument, which must be a power of 2, and this argument causes alignment of the SPC on that word
boundary. The .align directive for the C1x/C2x/C2xx/C5x assembler does not accept this argument.

The .field directive for the C28x handles values of 1 to 32 bits, while the C1x/C2x/C2xx/C5x assembler
handles values of 1 to 16 bits. With the C28x assembler, objects that are 16 bits or larger start on a
word boundary and are placed with the least significant bits at the lower address.

The C28x .bss and .usect directives have an additional flag called the alignment flag, which specifies
alignment on an even word boundary. The C1x/C2x/C2xx/C5x .bss and .usect directives do not use
this flag.

The .string directive for the C28x initializes one character per word; the C1x/C2x/C2xx/C5x assembler
directive .string, packs two characters per word. The C28x .pstring directive packs two characters per
word.

The following directives are valid with the C28x assembler but are not supported by the
C1x/C2x/C2xx/C5x assembler:

Directive Usage

.pstring Same as .string but packs two
characters/word

Xxfloat Same as .float without automatic alignment

xlong Same as .long without automatic alignment

The .mmregs and .port directives are supported by the C1x/C2x/C2xx/C5x assembler. The C28x
assembler when invoked with the --c2xIp_src_compatible option, ignores these directives and issues a
warning that the directives are ignored. The C28x assembler does not accept these directives.

SPRU513C-0October 2007 Assembler Directives 69
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Directives That Define Sections

4.3 Directives That Define Sections

These directives associate portions of an assembly language program with the appropriate sections:

e The .bss directive reserves space in the .bss section for uninitialized variables.

» The .data directive identifies portions of code in the .data section. The .data section usually contains
initialized data.

» The .sect directive defines an initialized named section and associates subsequent code or data with
that section. A section defined with .sect can contain code or data.

» The .text directive identifies portions of code in the .text section. The .text section usually contains
executable code.

» The .usect directive reserves space in an uninitialized named section. The .usect directive is similar to
the .bss directive, but it allows you to reserve space separately from the .bss section.

discusses sections in detail.

shows how you can use sections directives to associate code and data with the proper

sections. This is an output listing; column 1 shows line numbers, and column 2 shows the SPC values.

(Each section has its own program counter, or SPC.) When code is first placed in a section, its SPC

equals 0. When you resume assembling into a section after other code is assembled, the section's SPC

resumes counting as if there had been no intervening code.

The directives in perform the following tasks:

text initializes words with the values 1, 2, 3, 4, 5, 6, 7, and 8.

.data initializes words with the values 9, 10, 11, 12, 13, 14, 15, and 16.

var_defs initializes words with the values 17 and 18.

.bss reserves 19 words.

Xy reserves 20 words.

The .bss and .usect directives do not end the current section or begin new sections; they reserve the

specified amount of space, and then the assembler resumes assembling code or data into the current

section.

70 Assembler Directives SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Directives That Define Sections

Example 4-1. Sections Directives

000000

000000 0001
000001 0002
000002 0003
000003 0004

abrwWwN P

o

11 000000

12 000000 0009
000001 000A

13 000002 000B
000003 000C

19 000000
20 000000 0011
000001 0012

25 000004

26 000004 000D
000005 000E

27 000000

28 000006 O00OF
000007 0010

33 000004

34 000004 0005
000005 0006

35 000000

36 000006 0007
000007 0008

khkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkkhkkhkhkhkkkkkkkkkkkkkkkkk*k*k*x*%x

* Start assenbling into the .text section *
khkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkkhkkhkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkhkhkkkkkkkkkkkkkkkkk*k*k*x*%x
. text
.word 1, 2
.word 3, 4

Khkhkhhhhkhhkhhhhhhhhhhhhhhhhkhhhhhkhhkhhkhhhkhkhhkhkhkkhkhk k%

* Start assenbling into the .data section *
R SRR R SRR R R EEEEEEEEEEEEEEEEEEEEEE SRR EE SRR SRR EE S
.data
.wor d 9, 10
.wor d 11, 12

khkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkhkhkkhkhkhkkhkhkkhkkhkkhkhkhkhkkkkkkkkkkkkkkkkk*k**x*%x

* Start assenbling into a naned, *
* initialized section, var_defs *
khkkkkhkhkkhkhkhkkhhkkhhkkhhkhhhkhhhhhhhkhhkdhdrhhhkdhdhdrhdhrdhxdxhxxx*k
. sect "var _def s"
.word 17, 18

khkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkkhkkhkkhkhkhkkhkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkkkkkkkkkkkkkkk*k*k*x*%x

* Resune assenbling into the .data section *
khkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkkhkkhkkhkhkhkkhkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkkkkkkkkkkkkkkk*k*k*x*%x
.data
.word 13, 14

. bss sym 19
.wor d 15, 16 ;

Reserve space in .bss
Still in .data

khkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkkhkkkkkkkkkkkkkkk*k**x*%x

* Resune assenbling into the .text section *
khkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkkhkkkkkkkkkkkkkkk*k**x*%x

. text
.word 5 6

. usect
.wor d

usym "xy", 20

7, 8 ;

Reserve space in xy
Still in .text

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Assembler Directives

71

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Directives That Initialize Constants

4.4 Directives That Initialize Constants

Several directives assemble values for the current section:

» The .byte and .char directives place one or more 8-bit values into consecutive words of the current
section. These directives are similar to .long and .word, except that the width of each value is restricted
to eight bits.

* The .field directive places a single value into a specified number of bits in the current word. With .field,
you can pack multiple fields into a single word; the assembler does not increment the SPC until a word
is filled.

shows how fields are packed into a word. Using the following assembled code, notice that
the SPC does not change (the fields are packed into the same word):

1 000000 0003 .field 3, 3
2 000000 0008 .field 8, 6
3 000000 0010 .field 16, 5

Figure 4-1. The .field Directive

15 2 10
| 0 1 1| field3,3

3 bits
15 8 7 6 5 4 3

| 00100 0[0 1 1] fieldss

6 bits
15 1312 11 10 9

| 1000 0[(0 010000 1 1| field16,5

5 bits

» The .float and .xfloat directives calculate the single-precision (32-bit) IEEE floating-point
representation of a single floating-point value and store it in a word in the current section that is aligned
to a word boundary.

* The .int and .word directives place one or more 16-bit values into consecutive 16-bit fields (words) in
the current section. The .int and .word directives automatically align to a word boundary.

» The .long and .xlong directives place one or more 32-bit values into consecutive 32-bit fields (words)
in the current section. The .int and .word directives automatically align to a word boundary.

* The .string and .pstring directives places 8-bit characters from one or more character strings into the
current section. This directive is similar to .byte, placing an 8-bit character in each consecutive byte of
the current section.

Directives That Initialize Constants When Used in a .struct/.endstruct Sequence

Note: The .byte, .char, .int, .long, .word, .string, .pstring, .float, and .field directives do not initialize
memory when they are part of a .struct/ .endstruct sequence; rather, they define a member’s
size. For more information, see the [struct/.endstruct direcfivey .

compares the .byte, .word, and .string directives. Using the following assembled code:

1 000000 O0AB .byte 0ABh

2 000001 CDEF .word OCDEFh

3 000002 CDEF .long 089ABCDEFh
000003 89AB

4 000004 0068 .string "hel p"

000005 0065
000006 006C
000007 0070

72 Assembler Directives SPRU513C-0October 2007
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Directives That Perform Alignment and Reserve Space

Word

Figure 4-2. Initialization Directives

Contents
[o o[A B
[c pD | E F |
[c pD|[E F |
[8 o9 [A B |
[0 o[e |
;\/_/

h
[0 o] 6 |
%/_/

e
[0 o] e |
;\/_/

i
[0 o] 70 |
%/_/

p

Code
.byte 0ABh

.word OCDEFh

long
089ABCDEFh

.string “help”

4.5 Directives That Perform Alignment and Reserve Space

These directives align the section program counter (SPC) or reserve space in a section:

* The .align directive aligns the SPC at the next word boundary. This directive is useful with the .field
directive when you do not want to pack two adjacent fields in the same word.

demonstrates the .align directive. Using the following assembled code:

000000
000000

A WN PP

000002
000003
000004
000005
000006
000007
000008
000009

6 000040

0002
005A

0065
0072
0072
006F
0072
0063
006E
0074

0004

.field 2,3

.field 11,8

.align

2

.string "errorcnt”

.align
.byte

4

SPRU513C-October 2007

Bubmit Documentafion FeedbacK

Assembler Directives

73

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

” TEXAS
INSTRUMENTS

www.ti.com

Directives That Perform Alignment and Reserve Space

Figure 4-3. The .align Directive
(a) Result of .align 2

=== New SPC =06h
after assembling
05h .align 2 directive

Current - Word t /
SPC = 05h Y

(b) Result of .align without an argument

P i T T~

80h C
Current A1 | e
SPC = 88h 64 word New SPC = C0Oh
after assembling
.align directive
COh r

SN——— S———

» The .bes and .space directives reserve a specified number of bits in the current section. The
assembler fills these reserved bits with Os.
— When you use a label with .space, it points to the first word that contains reserved bits.
— When you use a label with .bes, it points to the last word that contains reserved bits.
shows how the .space and .bes directives work for the following assembled code:

1

2

3 000000 0100 . word 100h, 200h
000001 0200

4 000002 Res_1 . Space 17

5 000004 00OF .word 15

6 000006 Res_2 . bes 20

7 000007 00BA . byte 0BAh

Res_1 points to the first word in the space reserved by .space. Res_2 points to the last word in the
space reserved by .bes.

Figure 4-4. The .space and .bes Directives

——
d =~ -
—_——

17 bits

4+— Res_1=02h
reserved {

20 bits
reserved

<4+—— Res_2 =06h

74 Assembler Directives SPRU513C-0October 2007
Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Directives That Format the Output Listings

4.6 Directives That Format the Output Listings

These directives format the listing file:

« The .drlist directive causes printing of the directive lines to the listing; the .drnolist directive turns it off
for certain directives. You can use the .drnolist directive to suppress the printing of the following
directives. You can use the .drlist directive to turn the listing on again.

.asg .eval length .mnolist .var
.break felist .mlist .sslist width
.emsg .fcnolist .mmsg .ssnolist .wmsg

» The source code listing includes false conditional blocks that do not generate code. The .fclist and
fcnolist directives turn this listing on and off. You can use the .fclist directive to list false conditional
blocks exactly as they appear in the source code. You can use the .fcnolist directive to list only the
conditional blocks that are actually assembled.

» The .length directive controls the page length of the listing file. You can use this directive to adjust
listings for various output devices.

e The .list and .nolist directives turn the output listing on and off. You can use the .nolist directive to
prevent the assembler from printing selected source statements in the listing file. Use the .list directive
to turn the listing on again.

* The source code listing includes macro expansions and loop blocks. The .mlist and .mnolist directives
turn this listing on and off. You can use the .mlist directive to print all macro expansions and loop
blocks to the listing, and the .mnolist directive to suppress this listing.

« The .option directive controls certain features in the listing file. This directive has the following

operands:

A turns on listing of all directives and data, and subsequent expansions, macros, and blocks.
B limits the listing of .byte and .char directives to one line.

D turns off the listing of certain directives (same effect as .drnolist).

L limits the listing of .long directives to one line.

M turns off macro expansions in the listing.

N turns off listing (performs .nolist).

@) turns on listing (performs .list).

R resets the B, L, M, T, and W directives (turns off the limits of B, L, M, T, and W).

T limits the listing of .string directives to one line.

W limits the listing of .word and .int directives to one line.

X produces a cross-reference listing of symbols. You can also obtain a cross-reference listing

by invoking the assembler with the --cross_reference option (see Bection 3.3).

» The .page directive causes a page eject in the output listing.

e The source code listing includes substitution symbol expansions. The .sslist and .ssnolist directives
turn this listing on and off. You can use the .sslist directive to print all substitution symbol expansions
to the listing, and the .ssnolist directive to suppress this listing. These directives are useful for
debugging the expansion of substitution symbols.

» The .tab directive defines tab size.

» The .title directive supplies a title that the assembler prints at the top of each page.

e The .width directive controls the page width of the listing file. You can use this directive to adjust
listings for various output devices.

SPRU513C-0October 2007 Assembler Directives 75
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Directives That Reference Other Files

4.7 Directives That Reference Other Files

These directives supply information for or about other files that can be used in the assembly of the current
file:

The .copy and .include directives tell the assembler to begin reading source statements from another
file. When the assembler finishes reading the source statements in the copy/include file, it resumes
reading source statements from the current file. The statements read from a copied file are printed in
the listing file; the statements read from an included file are not printed in the listing file.

The .def directive identifies a symbol that is defined in the current module and that can be used in
another module. The assembler includes the symbol in the symbol table.

The .global directive declares a symbol external so that it is available to other modules at link time.
(For more information about global symbols, see Bection 2.7.1)). The .global directive does double duty,
acting as a .def for defined symbols and as a .ref for undefined symbols. The link step resolves an
undefined global symbol reference only if the symbol is used in the program. The .global directive
declares a 16-bit symbol.

The .mlib directive supplies the assembler with the name of an archive library that contains macro
definitions. When the assembler encounters a macro that is not defined in the current module, it
searches for it in the macro library specified with .mlib.

The .ref directive identifies a symbol that is used in the current module but is defined in another
module. The assembler marks the symbol as an undefined external symbol and enters it in the object
symbol table so the link step can resolve its definition. The .ref directive forces the link step to resolve
a symbol reference.

4.8 Directives That Enable Conditional Assembly

Conditional assembly directives enable you to instruct the assembler to assemble certain sections of code
according to a true or false evaluation of an expression. Two sets of directives allow you to assemble
conditional blocks of code:

The .if/.elseif/.else/.endif directives tell the assembler to conditionally assemble a block of code
according to the evaluation of an expression.

.if well-defined expression marks the beginning of a conditional block and assembles code
if the .if well-defined expression is true.

[.elseif well-defined expression] marks a block of code to be assembled if the .if well-defined
expression is false and the .elseif condition is true.

.else marks a block of code to be assembled if the .if well-defined
expression is false and any .elseif conditions are false.

.endif marks the end of a conditional block and terminates the block.
The .loop/.break/.endloop directives tell the assembler to repeatedly assemble a block of code
according to the evaluation of an expression.

.loop [well-defined expression] marks the beginning of a repeatable block of code. The optional
expression evaluates to the loop count.

.break [well-defined expression] tells the assembler to assemble repeatedly when the .break
well-defined expression is false and to go to the code
immediately after .endloop when the expression is true or
omitted.

.endloop marks the end of a repeatable block.

The assembler supports several relational operators that are useful for conditional expressions. For more
information about relational operators, see [Gection 3.9.4.

76 Assembler Directives SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Directives That Define Unions or Structures

4.9 Directives That Define Unions or Structures

These directives set up C or C-like structures or unions in assembly code.

The .cstruct/.endstruct directives set up C structure definitions. The .cunion/.endunion directives set
up C-like union definitions. The .tag directive assigns the C structure or union characteristics to a label.

The .cstruct/.endstruct directives allow you to organize your information into structures so that similar
elements can be grouped together. Similarly, the .cunion/.endunion directives allow you to organize
your information into unions. Element offset calculation is left up to the assembler. These directives do
not allocate memory. They simply create a symbolic template that can be used repeatedly. The .cstruct
and .cunion directives force the same alignment and padding as used by the C compiler when such
types are nested within compound data structures..

The .tag directive assigns a label to a structure. This simplifies the symbolic representation and also
provides the ability to define structures that contain other structures. The .tag directive does not
allocate memory, and the structure tag (stag) must be defined before it is used.

The .struct/.endstruct directives set up C-like structure definitions. The .union/.endunion directives
set up C-like union definitions. The .tag directive assigns the C-like structure or union characteristics to
a label.

The .struct/.endstruct directives allow you to organize your information into structures so that similar
elements can be grouped together. Similarly, the .union/.endunion directives allow you to organize your
information into unions. Element offset calculation is left up to the assembler. These directives do not
allocate memory. They simply create a symbolic template that can be used repeatedly.

The .tag directive assigns a label to a structure or union. This simplifies the symbolic representation
and also provides the ability to define structures that contain other structures. The .tag directive does
not allocate memory, and the structure tag (stag) must be defined before it is used.

COORDT . struct ; structure tag definition

X .byte ;

Y .byte

T_LEN .endstruct

COORD .tag COORDT ; declare COORD (coordi nate)
. bss COORD, T_LEN ; actual nenory allocation

LDB *+B14(COORD.Y), A2 ; nove nenber Y of structure
; COORD into register A2

SPRU513C-0October 2007 Assembler Directives 77
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Directives That Define Symbols at Assembly Time

4.10 Directives That Define Symbols at Assembly Time

Assembly-time symbol directives equate meaningful symbol names to constant values or strings.

The .asg directive assigns a character string to a substitution symbol. The value is stored in the
substitution symbol table. When the assembler encounters a substitution symbol, it replaces the
symbol with its character string value. Substitution symbols can be redefined.
.asg "10, 20, 30, 40", coefficients
; Assign string to substitution synbol.
.byte coefficients
Pl ace the synbol values 10, 20, 30, and 40
into consecutive bytes in current section.
The .eval directive evaluates a well-defined expression, translates the results into a character string,
and assigns the character string to a substitution symbol. This directive is most useful for manipulating
counters:

. asg 1, X cox =1

.1 oop ; Begin conditional |oop.

.byte x*10h ; Store value into current section.
. break X =4 ; Break loop if x = 4.

. eval x+1, x ; Increnent x by 1.

. endl oop ; End conditional | oop.

The .label directive defines a special symbol that refers to the load-time address within the current
section. This is useful when a section loads at one address but runs at a different address. For
example, you may want to load a block of performance-critical code into slower off-chip memory to
save space and move the code to high-speed on-chip memory to run. See the for an
example using a load-time address label.
The .set directive sets a constant value to a symbol. The symbol is stored in the symbol table and
cannot be redefined; for example:
bval .set 0100h ; Set bval = 0100h

.long bval, bval *2, bval +12

Store the val ues 0100h, 0200h, and 010Ch
into consecutive words in current section.

The .set directive produces no object code.

4.11 Directives That Override the Assembler Mode

These directives override the global syntax checking modes discussed in Gection 3.17. These directives
are not valid with the C27x Object Mode (-v27 option).

The .c28_amode directive sets the assembler mode to C28x Object Mode (-v28). The instructions after
this directive are assembled in C28x Object Mode regardless of the option used in the command line.
The .Ip_amode directive sets the assembler mode to C28x Object Mode - Accept C2xIp instruction

syntax (--c2xlp_src_compatible). The instructions after this directives are assembled as if the
--c2xlp_src_compatible options is specified on the command line.

78

Assembler Directives SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Miscellaneous Directives

412 Miscellaneous Directives

These directives enable miscellaneous functions or features:

The .asmfunc and .endasmfunc directives mark function boundaries. These directives are used with
the compiler -g option to generate debug information for assembly functions.

The .cdecls directive enables programmers in mixed assembly and C/C++ environments to share C
headers containing declarations and prototypes between C and assembly code.

The .clink directive enables conditional linking by telling the link step to leave the named section out of
the final object module output of the link step if there are no references found to any symbol in the
section. The .clink directive can be applied to initialized or uninitialized sections.

The .end directive terminates assembly. If you use the .end directive, it should be the last source
statement of a program. This directive has the same effect as an end-of-file character.

The .newblock directive resets local labels. Local labels are symbols of the form $n, where nis a
decimal digit, or of the form NAME?, where you specify NAME. They are defined when they appear in
the label field. Local labels are temporary labels that can be used as operands for jump instructions.
The .newblock directive limits the scope of local labels by resetting them after they are used. See

for information on local labels.

The .sblock directive designates sections for blocking. Only initialized sections can be specified for
blocking.

These three directives enable you to define your own error and warning messages:

The .emsg directive sends error messages to the standard output device. The .emsg directive
generates errors in the same manner as the assembler, incrementing the error count and preventing
the assembler from producing an object file.

The .mmsg directive sends assembly-time messages to the standard output device. The .mmsg
directive functions in the same manner as the .emsg and .wmsg directives but does not set the error
count or the warning count. It does not affect the creation of the object file.

The .wmsg directive sends warning messages to the standard output device. The .wmsg directive
functions in the same manner as the .emsg directive but increments the warning count rather than the
error count. It does not affect the creation of the object file.

For more information about using the error and warning directives in macros, see Section 5.7.

SPRU513C-0October 2007 Assembler Directives 79
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

Directives Reference

*5‘ TEXAS
INSTRUMENTS

www.ti.com

413 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are organized alphabetically, one
directive per topic. Related directives (such as .if/.else/.endif), however, are presented together in one

topic.

.align Align SPC on the Next Boundary

Syntax .align [size in words]

Description The .align directive aligns the section program counter (SPC) on the next boundary,
depending on the size in words parameter. The size can be any power of 2, although
only certain values are useful for alignment. An operand of 64 aligns the SPC on the
next page boundary, and this is the default if no size in words is given. The assembler
assembles words containing null values (0) up to the next size in words boundary:

1 aligns SPC to byte boundary

2 aligns SPC to long word/even boundary

64 aligns SPC to page boundary

Using the .align directive has two effects:

e The assembler aligns the SPC on an x-word boundary within the current section.

» The assembler sets a flag that forces the link step to align the section so that
individual alignments remain intact when a section is loaded into memory.

Example This example shows several types of alignment, including .align 2, .align 4, and a default
.align.

1 000000 0004 .byte 4
2 .align 2
3 000002 0045 .string "Errorcnt"
000003 0072
000004 0072
000005 006F
000006 0072
000007 0063
000008 006E
000009 0074
4 .align
5 000040 0003 field 3,3
6 000040 002B field 5,4
7 .align 2
8 000042 0003 field 3,3
9 .align 8
10 000048 0005 field 5,4
11 .align
12 000080 0004 .byte 4
80 Assembler Directives SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

.asg/.eval — Assign a Substitution Symbol

.asg/.eval

Syntax

Description

Example

Assign a Substitution Symbol

.asg ["|character string["], substitution symbol
.eval well-defined expression, substitution symbol

The .asg directive assigns character strings to substitution symbols. Substitution
symbols are stored in the substitution symbol table. The .asg directive can be used in
many of the same ways as the .set directive, but while .set assigns a constant value
(which cannot be redefined) to a symbol, .asg assigns a character string (which can be
redefined) to a substitution symbol.

» The assembler assigns the character string to the substitution symbol. The quotation
marks are optional. If there are no quotation marks, the assembler reads characters
up to the first comma and removes leading and trailing blanks. In either case, a
character string is read and assigned to the substitution symbol.

» The substitution symbol must be a valid symbol hame. The substitution symbol is up
to 128 characters long and must begin with a letter. Remaining characters of the
symbol can be a combination of alphanumeric characters, the underscore (_), and
the dollar sign ($).

The .eval directive performs arithmetic on substitution symbols, which are stored in the
substitution symbol table. This directive evaluates the well-defined expression and
assigns the string value of the result to the substitution symbol. The .eval directive is
especially useful as a counter in .loop/.endloop blocks.

e The well-defined expression is an alphanumeric expression in which all symbols have
been previously defined in the current source module, so that the result is an
absolute.

» The substitution symbol must be a valid symbol hame. The substitution symbol is up
to 128 characters long and must begin with a letter. Remaining characters of the
symbol can be a combination of alphanumeric characters, the underscore (_), and
the dollar sign ($).

This example shows how .asg and .eval can be used.

1 .sslist
2 .asg XAR6, FP
3 00000000 0964 ADD ACC, #100
4 00000001 7786 NOP *FP++

NOP * XAR6++
5 00000002 7786 NOP * XARG ++
6
7 .asg 0, x
8 .1 oop 5
9 .eval x+1, X
10 .wor d X
11 . endl oop

1 . eval x+1, X

.eval 0+1, x

1 00000003 0001 .wor d X

.word 1

1 . eval x+1, X

.eval 1+1, X

1 00000004 0002 .wor d X

.word 2

1 . eval x+1, X

.eval 2+1, X

1 00000005 0003 .wor d X

.word 3

1 . eval x+1, X

. eval 3+1, X

1 00000006 0004 .wor d X

.word 4

1 . eval x+1, X

. eval 4+1, X

1 00000007 0005 .wor d X

.word 5

SPRU513C-October 2007

Assembler Directives 81

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

.asmfunc/.endasmfunc — Mark Function Boundaries

.asmfunc/.endasmfunc Mark Function Boundaries

Syntax symbol .asmfunc
.endasmfunc
Description The .asmfunc and .endasmfunc directives mark function boundaries. These directives
are used with the compiler -g option (--symdebug:dwarf) to allow assembly code
sections to be debugged in the same manner as C/C++ functions.
You should not use the same directives generated by the compiler (see to
accomplish assembly debugging; those directives should be used only by the compiler to
generate symbolic debugging information for C/C++ source files.
The .asmfunc and .endasmfunc directives cannot be used when invoking the compiler
with the backwards-compatibility --symdebug:coff option. This option instructs the
compiler to use the obsolete COFF symbolic debugging format, which does not support
these directives.
The symbol is a label that must appear in the label field.
Consecutive ranges of assembly code that are not enclosed within a pair of .asmfunc
and .endasmfunc directives are given a default name in the following format:
$ filename : beginning source line : ending source line $
Example In this example the assembly source generates debug information for the user_func
section.
1 00000000 . sect " text"
2 . gl obal user func
3 . gl obal _printf
4
5 user func: .asnfunc
6 00000000 FEO02 ADDB SP, #2
00000002 0000
8 00000003 7640! LCR # printf
00000004 0000
9 00000005 9A00 MOVB AL, #0
10 00000006 FE82 SUBB SP, #2
11 00000007 0006 LRETR
12 . endasnf unc
13
14 00000000 . sect ".const"
15 00000000 0048 SL1: .string "Hello World!", 10,0
00000001 0065
00000002 006C
00000003 006C
00000004 006F
00000005 0020
00000006 0057
00000007 006F
00000008 0072
00000009 006C
0000000a 0064
0000000b 0021
0000000c 000A
0000000d 0000
82 Assembler Directives SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
.bss — Reserve Space in the .bss Section
.bss Reserve Space in the .bss Section
Syntax .bss symbol, size in words|, blocking flag[, alignment flag[, type]]]
Description The .bss directive reserves space for variables in the .bss section. This directive is

usually used to allocate space in RAM.

The symbol is a required parameter. It defines a label that points to the first location
reserved by the directive. The symbol name must correspond to the variable that you
are reserving space for.

The size in words is a required parameter; it must be an absolute expression. The
assembler allocates size words in the .bss section. There is no default size.

The blocking flag is an optional parameter. If you specify a value greater than O for
this parameter, the assembler allocates size in words contiguously. This means that
the allocated space does not cross a page boundary unless its size is greater than a
page, in which case the object starts on a page boundary.

The alignment flag is an optional parameter. It causes the assembler to allocate size
in words on long word boundaries.
The type is an optional parameter. Designating a type causes the assembler to

produce the appropriate debug information for the symbol. See for more
information.

The assembler follows two rules when it allocates space in the .bss section:

Rule 1 Whenever a hole is left in memory (as shown in Figure 4-5), the .bss directive

attempts to fill it. When a .bss directive is assembled, the assembler searches
its list of holes left by previous .bss directives and tries to allocate the current
block into one of the holes. (This is the standard procedure regardless of
whether the blocking flag has been specified.)

Rule 2 If the assembler does not find a hole large enough to contain the block, it

checks to see whether the blocking option is requested.

« If you do not request blocking, the memory is allocated at the current SPC.

« If you request blocking, the assembler checks to see whether there is
enough space between the current SPC and the page boundary. If there is
not enough space, the assembler creates another hole and allocates the
space on the next page.

The blocking option allows you to reserve up to 64 words in the .bss section and to
ensure that they fit on one page of memory. (Of course, you can reserve more than 64
words at a time, but they cannot fit on a single page.) The following example code
reserves two blocks of space in the .bss section.

menptr: . bss A 32,1
menptr1: . bss B, 35,1

Each block must be contained within the boundaries of a single page; after the first block
is allocated, however, the second block cannot fit on the current page. As Figure 4-5
shows, the second block is allocated on the next page.

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Assembler Directives 83

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

.bss — Reserve Space in the .bss Section

*L‘ TEXAS
INSTRUMENTS

www.ti.com

Figure 4-5. Allocating .bss Blocks Within a Page

Memory

0a—»

Memory allocated by the first .bss
directive; 32 words are left in the
first page

Hole in memory left because the
second .bss directive required more
than 32 words

Page boundary 64 ———»
b —»

Memory allocated by the second
.bss directive; 29 words are left in
the second page

Unused memory

128 —»

For more information about sections, see [Chapter 2.

Example In this example, the .bss directive is used to allocate space for two variables, TEMP and
ARRAY. The symbol TEMP points to four words of uninitialized space (at .bss SPC = 0).
The symbol ARRAY points to 100 words of uninitialized space (at .bss SPC = 040h); this
space must be allocated contiguously within a page. Symbols declared with the .bss
directive can be referenced in the same manner as other symbols, and they can also be
declared external.

1 EREEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE S
2 ** Start assenbling into .text section **
3 EREEE RS S EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
4 000000 .text
5 000000 2BAC MOV T, #0
6
7 EREEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEE S
8 ** Allocate 4 words in .bss *x
9 EREEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEE S
10 000000 . bss var_1, 2, 0, 1
11
12 IR R SR EEEEEEEEEEEEEEEREEEEEEEEEERESEEEEESEESEES]
13 ** Still in . text **
14 IR R SR EEEEEEEEEEEEEEEREEEEEREEEEERESEEEEESEESEES]
15 000001 08AC ADD T, #56h
000002 0056

16 000003 3573 MPY ACC, T, #73h
17
18
19
20
21 000040 . bss ARRAY, 100, 1
22
23
24
25 000004 F800- MOV DP, #Var 1
26 000005 1E00- MOVL @ar_1, ACC
27 IR R SR EEEEEEEEEEEEEEEREEEEEEEEEEREEEEESEESEES]
28 ** Decl are external .bss synbol *x
29 IR R SR EEEEEEEEEEEEEEEREEEEEEEEEEREEEEESEESEES]
30 . gl obal ARRAY
31 .end

84 Assembler Directives SPRU513C-0October 2007

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

.byte/.char — Initialize Byte

.byte/.char

Syntax

Description

Example

Initialize Byte

.byte valueq], ... , value,]

.char value,|, ... , value,]
The .byte and .char directives place one or more values into consecutive words of the
current section. A value can be one of the following:

* An expression that the assembler evaluates and treats as an 8-bit signed number

» A character string enclosed in double quotes. Each character in a string represents a
separate value, and values are stored in consecutive bytes. The entire string must be
enclosed in quotes.

Values are not packed or sign-extended; each byte occupies the eight least significant
bits of a full 16-bit word. The assembler truncates values greater than eight bits. You can
use up to 100 value parameters, but the total line length cannot exceed 200 characters.

If you use a label, it points to the location of the first byte that is initialized.

When you use .byte or .char in a .struct/.endstruct sequence, .byte and .char define a
member's size; they do not initialize memory. For more information, see the
Istruct/.endstruct/.tag topiq .

In this example, 8-bit values (10, -1, abc, and a) are placed into consecutive words in
memory. The label STRX has the value 100h, which is the location of the first initialized
word.

1 000000 . space 100h * 16
2 000100 000A .byte 10, -1, "abc", 'a'
000101 OOFF
000102 0061
000103 0062
000104 0063
000105 0061
3 000106 OOOA . char 10, -1, "abc", 'a'
000107 OOFF
000108 0061
000109 0062
00010a 0063
00010b 0061

SPRU513C-October 2007

Assembler Directives 85

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

.c28 _amode/.lp_amode — Override Assembler Mode

.c28_amode/.lp_amode Override Assembler Mode

Syntax .c28_amode
Ip_amode
Description The .c28_amode and .Ip_amode directives tell the assembler to override the assembler
mode. See Becfion 3.17 for more information on assembler modes.
The .c28_amode directive tells the assembler to operate in the C28x object mode (-v28).
The .Ip_amode directive tells the assembler to operate in C28x object - accept C2xIp
syntax mode (--c2xlp_src_compatible). These directives can be repeated throughout a
source file.
For example, if a file is assembled with the --c2xlp_src_compatible option, the assembler
begins the assembly in the C28x object - accept C2xlp syntax mode. When it encounters
the .c28_amode directive, it changes the mode to C28x object mode and remains in that
mode until it encounters a .Ip_amode directive or the end of file.
These directives help you to migrate from C2xIp to C28x by replacing a portion of the
C2xlIp code with C28x code.
Example In this example, C28x code is inserted in the existing C2xlp code.
C2xl p Source Code
LDP #Var A
LACL Var A
LAR ARO, *+, AR2
SACL * 4
CALL FuncA
The CZ;<I p code in function FuncA is replaced with C28x Code
usi ng C28x Addressing (AMODE = 0)
.c28 _anpde ; Override the assenbler node to C28x syntax
FuncA:
C28ADDR ; Set AMODE to 0 C28x addressing
MOV DP, #VarB
MoV AL, @/arB
MOVL XARO, * XARO++
MOV * XAR2++, AL
.| p_anode ; Change back the assenbl er node to C2xl p.
LPADDR ; Set AMODE to 1 to resune C2xl p addressing.
LRET
86 Assembler Directives SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
.cdecls — Share C Headers Between C and Assembly Code
.cdecls Share C Headers Between C and Assembly Code
Syntax Single Line:
.cdecls [options,] "filename"[, "filename2"],...]]
Syntax Multiple Lines:
.cdecls [options]
%{
I* *
/* C/C++ code - Typically a list of #includes and a few defines */
I* */
%}
Description The .cdecls directive allows programmers in mixed assembly and C/C++ environments

to share C headers containing declarations and prototypes between the C and assembly
code. Any legal C/C++ can be used in a .cdecls block and the C/C++ declarations cause
suitable assembly to be generated automatically, allowing you to reference the C/C++
constructs in assembly code; such as calling functions, allocating space, and accessing
structure members; using the equivalent assembly mechanisms. While function and
variable definitions are ignored, most common C/C++ elements are converted to
assembly, for instance: enumerations, (hon-function-like) macros, function and variable
prototypes, structures, and unions.

The .cdecls options control whether the code is treated as C or C++ code; and how the
.cdecls block and converted code are presented. Options must be separated by
commas; they can appear in any order:

C Treat the code in the .cdecls block as C source code (default).

CPP Treat the code in the .cdecls block as C++ source code. This is the
opposite of the C option.

NOLIST Do not include the converted assembly code in any listing file generated
for the containing assembly file (default).

LIST Include the converted assembly code in any listing file generated for the
containing assembly file. This is the opposite of the NOLIST option.

NOWARN Do not emit warnings on STDERR about C/C++ constructs that cannot be
converted while parsing the .cdecls source block (default).

WARN Generate warnings on STDERR about C/C++ constructs that cannot be
converted while parsing the .cdecls source block. This is the opposite of
the NOWARN option.

In the single-line format, the options are followed by one or more filenames to include.
The filenames and options are separated by commas. Each file listed acts as if #include
"filename" was specified in the multiple-line format.

In the multiple-line format, the line following .cdecls must contain the opening .cdecls
block indicator %{. Everything after the %f{, up to the closing block indicator %}, is
treated as C/C++ source and processed. Ordinary assembler processing then resumes
on the line following the closing %}.

The text within %{ and %]} is passed to the C/C++ compiler to be converted into
assembly language. Much of C language syntax, including function and variable
definitions as well as function-like macros, is not supported and is ignored during the
conversion. However, all of what traditionally appears in C header files is supported,
including function and variable prototypes; structure and union declarations;
non-function-like macros; enumerations; and #define's.

SPRU513C-October 2007

Assembler Directives 87

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

.cdecls — Share C Headers Between C and Assembly Code

Example

>>>>>>>2>2>>>>>>>>>>>>D>

O~NO A WNPRF P

The resulting assembly language is included in the assembly file at the point of the
.cdecls directive. If the LIST option is used, the converted assembly statements are
printed in the listing file.

The assembly resulting from the .cdecls directive is treated similarly to a .include file.
Therefore the .cdecls directive can be nested within a file being copied or included. The
assembler limits nesting to ten levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code
to identify the level of copying. An A indicates the first copied file, B indicates a second
copied file, etc.

The .cdecls directive can appear anywhere in an assembly source file, and can occur
multiple times within a file. However, the C/C++ environment created by one .cdecls is
not inherited by a later .cdecls; the C/C++ environment starts new for each .cdecls.

See for more information on setting up and using the .cdecls directive with C
header files.

In this example, the .cdecls directive is used call the C header.h file.

C header file:

#define WANT_I D 10
#defi ne NAME "John\n"

extern int a_variable;
extern float cvt_integer(int src);

struct nmyCstruct { int nmenber_a; float menber_b; };

enum status_enum { OK = 1, FAILED = 256, RUNNING = 0 };

Source file:
.cdecl s C, LI ST, "nyheader. h"

si ze: .int $sizeof (nyCstruct)
aof fset: .int nmyGCstruct.nenber_a
boffset: .int myCstruct.nenber_b
okval ue: .int status_enum K
failval: .int status_enum FAlI LED
.if $defined(WANT_I D)
id .cstring NAME
.endi f
Listing File:

.cdecl s C, LI ST, "nyheader. h"

=========== MACRO DEFI Nl TI ONS ===========
.define "1", OPTI M ZE_FOR_SPACE
.define "1", _ASM HEADER _
.define "1", _edg_front_end__
.define "5001000", __ COVPI LER VERSI ON__
.define "0", Tl _STRICT_ANSI MODE__
.define """14:53:42""", TIME _
.define """I""", __TI _COWPI LER VERSI ON QUAL__
.define "unsigned long", __SIZE T_TYPE_ _
.define "long", __PTRD FF_T_TYPE__
.define "1", _ TMS320C2000__
.define "1", TMS320C28X
.define "1", TMS320C2000
.define "1", TMS320C28X__
.define "1", _STDC _
.define "1", signed_chars__
.define "0", GNUC_M NOR__

88

Assembler Directives

SPRU513C—-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

.cdecls — Share C Headers Between C and Assembly Code

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
es| 16
45
46
es| 32

48
49
50
51
52

>>>P>>>>S<>P>SP>>>>>>>>>>>>>>>>>>>>>>D>

o~NOO O~ W

define "1", TMS320C28XX
define "5001000", _TI_COVPI LER VERSI ON__
define "1", TMS320C28XX__
define "1", little_endian__
define "199409L", STDC VERSI ON__
define """EDG gcc 3.0 node""", __VERSION__
define """John\n""", NAME
define "unsigned int",_ WCHAR T_TYPE _
define "1", Tl _RUNTIME_RTS _
define "3", GNUC__
define "10", WANT_I D
define """Sep 7 2007""",__DATE _
define "7250", Tl _COWPI LER VERSI ON_ QUAL I D _
; =========== TYPE DEFI NI TI ONS ===========
st at us_enum .enum
0001 .enenber 1
0100 FAI LED . emenber 256
0000 RUNNI NG .enenber 0
. endenum
nmyCst ruct .struct 0,2 ; struct size=(4 bytes|64 bits), alignnent=2
0000 nenber_a .field 16 ; int nenber_a - offset O bytes, size (1
bi ts)
0001 .field 16 ; paddi ng
0002 nmenber_b .field 32 ; float nenber_b - offset 2 bytes, size (2
bi ts)
0004 . endstruct ; final size=(4 bytes|64 bits)
=========== EXTERNAL FUNCTI ONS ===========
.global _cvt_integer
=========== EXTERNAL VARI ABLES ===========
.global _a_variable
00000000 0004 size: .int $sizeof (nyCstruct)
00000001 0000 aoffset: .int nyCstruct. menber_a
00000002 0002 boffset: .int myCstruct.menber_b
00000003 0001 okvalue: .int status_enum OK
00000004 0100 failval: .int status_enum FAlILED
.if $defined(WANT_I D)
00000005 004A id .cstring NAME
00000006 006F
00000007 0068
00000008 006E
00000009 000A
0000000a 0000
.endi f

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Assembler Directives

89

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

.clink — Conditionally Leave Section Out of Object Module Output

.clink Conditionally Leave Section Out of Object Module Output

Syntax .clink [*section name"]

Description The .clink directive enables conditional linking by telling the link step to leave a section
out of the final object module output of the link step if there are no references found to
any symbol in section name. The .clink directive can be applied to initialized or
uninitialized sections.

The section name identifies the section. If .clink is used without a section name, it
applies to the current initialized section. If .clink is applied to an uninitialized section, the
section name is required. The section name is significant to 200 characters and must be
enclosed in double quotes. A section hame can contain a subsection name in the form
section name:subsection name.

The .clink directive tells the link step to leave the section out of the final object module
output of the link step if there are no references found in a linked section to any symbol
defined in the specified section. The --absolute_exe link step option produces the final
output in the form of an absolute, executable output module.

A section in which the entry point of a C program is defined cannot be marked as a
conditionally linked section.

Example In this example, the Vars and Counts sections are set for conditional linking.

1 000000 . sect "Vars"
2 Vars section is conditionally Iinked
3 .clink
4
5 000000 001A X .long 01Ah
000001 0000
6 000002 001A Y: .word 01Ah
7 000003 001A Z: .word 01Ah
8 ; Counts section is conditionally Iinked
9 .clink
10
11 000004 001A XCount: .word 0lAh
12 000005 001A YCount: .word 01Ah
13 000006 001A ZCount: .word 01Ah
14 ; By default, .text in unconditionally Iinked
15 000000 . text
16
17 000000 97C6 MOV * XAR6, AH
18 ; These references to synbol X cause the Vars
19 ; section to be linked into the COFF out put
20 000001 8500+ MOV ACC, @
21 000002 3100 MOV P, #0
22 000003 OFAB CMPL ACC, P
90 Assembler Directives SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

.copyl.include — Copy Source File

.copyl.include

Syntax

Description

Example 1

Copy Source File

.copy ["Ifilename["]
.include ["]filename["]

The .copy and .include directives tell the assembler to read source statements from a
different file. The statements that are assembled from a copy file are printed in the
assembly listing. The statements that are assembled from an included file are not printed
in the assembly listing, regardless of the number of .list/.nolist directives assembled.

When a .copy or .include directive is assembled, the assembler:
1. Stops assembling statements in the current source file
2. Assembles the statements in the copied/included file

3. Resumes assembling statements in the main source file, starting with the statement
that follows the .copy or .include directive

The filename is a required parameter that names a source file. It can be enclosed in
double quotes and must follow operating system conventions. If filename starts with a
number the double quotes are required.

You can specify a full pathname (for example, /320tools/filel.asm). If you do not specify
a full pathname, the assembler searches for the file in:

1. The directory that contains the current source file
2. Any directories named with the --include_path assembler option
3. Any directories specified by the C2000_A_DIR environment variable

For more information about the --include_path option and , see Béction 3.4.

The .copy and .include directives can be nested within a file being copied or included.
The assembler limits nesting to 32 levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code
to identify the level of copying. A indicates the first copied file, B indicates a second
copied file, etc.

In this example, the .copy directive is used to read and assemble source statements
from other files; then, the assembler resumes assembling into the current file.

The original file, copy.asm, contains a .copy statement copying the file byte.asm. When
copy.asm assembles, the assembler copies byte.asm into its place in the listing (note
listing below). The copy file byte.asm contains a .copy statement for a second file,
word.asm.

When it encounters the .copy statement for word.asm, the assembler switches to
word.asm to continue copying and assembling. Then the assembler returns to its place
in byte.asm to continue copying and assembling. After completing assembly of byte.asm,
the assembler returns to copy.asm to assemble its remaining statement.

copy.asm byte.asm word.asm
(source file) (first copy file) (second copy file)
. space 29 ** |n byte.asm ** |n word.asm
.copy "byte.asnt .byte 32,1+ 'A .word OABCDh, 56q
** Back in original file .copy "word. asnf
.string "done" ** Back in byte.asm
.byte 67h + 3q
SPRU513C-0October 2007 Assembler Directives 91

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

.copyl.include — Copy Source File

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Listing file:
000000

000002 0005

000003 ABCD

000004 0006

ORWARANRFPWNENE

000005 646F
000006 6E6G5

. Space 29
.copy "byte.asnt
** |n byte.asm

byte 5

.copy "word.asnt
** |n word.asm
.word OABCDh
* Back in byte.asm

.byte 6

**Back in original

file

.string "done"

Example 2 In this example, the .include directive is used to read and assemble source statements
from other files; then, the assembler resumes assembling into the current file. The
mechanism is similar to the .copy directive, except that statements are not printed in the
listing file.

include.asm byte2.asm word2.asm
(source file) (first copy file) (second copy file)
. space 29 ** |n byte2. asm ** |n word2.asm
.include "byte2.asnt .byte 32,1+ 'A .word OABCDh, 56q
** Back in original file .include "word2.asnt
.string "done" ** Back in byte2.asm
.byte 67h + 3q
Listing file:
1 000000 . Space 29
2 .include "byte2. asnt
3
4 ** Back in original file
5 000007 0064 .string "done"
000008 006F
000009 006E
00000a 0065
92 Assembler Directives SPRU513C-0October 2007

u

mit bocumentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

.cstruct/.cunion/.endstruct/.endunion/.tag — Declare C Structure Type

.cstruct/.cunion/.endstruct/.endunion/.tag Declare C Structure Type

Syntax [stag] .cstruct|.cunion [expr]
[memy] element [exprg]
[mem;] element [exprq]
[mem,] .tag stag [expr,]
[memy] element [expry]
[size] .endstruct|.endunion
label tag stag
Description The .cstruct and .cunion directives have been added to support ease of sharing of

common data structures between assembly and C code. The .cstruct and .cunion
directives can be used exactly like the existing .struct and .union directives except that
they are guaranteed to perform data layout matching the layout used by the C compiler
for C struct and union data types.

In particular, the .cstruct and .cunion directives force the same alignment and padding as
used by the C compiler when such types are nested within compound data structures.

The .endstruct directive terminates the structure definition. The .endunion directive
terminates the union definition.

The .tag directive gives structure characteristics to a label, simplifying the symbolic
representation and providing the ability to define structures that contain other structures.
The .tag directive does not allocate memory. The structure tag (stag) of a .tag directive
must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

e The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the
global symbol table with the value of their absolute offset from the top of the
structure. A .stag is optional for .struct, but is required for .tag.

» The element is one of the following descriptors: .byte, .char, .int, .long, .word, .string,
.pstring, .float, and .field. All of these except .tag are typical directives that initialize
memory. Following a .struct directive, these directives describe the structure
element's size. They do not allocate memory. A .tag directive is a special case
because stag must be used (as in the definition of stag).

* The expr is an optional expression indicating the beginning offset of the structure.
The default starting point for a structure is 0.

» The expr,, is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

* The mem,, is an optional label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the structure. A label for a
structure member cannot be declared global.

» The size is an optional label for the total size of the structure.

e The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the
global symbol table with the value of their absolute offset from the top of the
structure. A .stag is optional for .struct, but is required for .tag.

Example This example illustrates a structure in C that will be accessed in assembly code.

SPRU513C-0October 2007 Assembler Directives 93
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*L‘ TEXAS
INSTRUMENTS

www.ti.com

.cstruct/.cunion/.endstruct/.endunion/.tag — Declare C Structure Type

; typedef struct MYSTRL

;{ long 10; /* offset 0 */

; short sO; /* offset 2 */

i} MYSTRY; /* size 4, alignnment 2 */
;typedef struct MYSTR2

i{ MYSTRL nt; /* offset 0 */

; short s1; /* offset 4 */

i} MYSTR2; /* size 6, alignment 2 */

; The structure will get the follow ng offsets once the C conpiler lays out the structure
; elenments according to C standard rul es:

; offsetof (MYSTRL, 10) =0
; of fset of (MYSTRL, sO0) 2
; si zeof (MYSTR1) =4

; offsetof (MYSTR2, nl) =0

; of fsetof (MYSTR2, sl1) = 4
;. sizeof (MYSTR2) =6
; Attenpts to replicate this structure in assenbly using .struct/.union directives will not

; create the correct offsets because the assenbler tries to use the npbst conpact
; arrangenent:

MYSTR1 .struct

10 .long ; bytes 0 and 1

s0 .short ; byte 2

ML_LEN . endstruct ; size 4, alignnent 2

MYSTR2 . struct

ml .tag MYSTR1 ; bytes 0-3

sl .short ; byte 4

M2_LEN . endstruct ; size 6, alignnent 2
. sect "dat al"

.wor d MYSTR1. 10
.wor d MYSTR1. s0O
.wor d ML_LEN

. sect "dat a2"
.wor d MYSTR2. niL
.wor d MYSTR2. s1
.word M2_LEN

; The .cstruct/.cunion directives calculate the offsets in the sane nanner as the C

; conpiler. The resulting assenbly structure can be used to access the el ements of the
; Cstructure. Conpare the difference in the offsets of those structures defined via

; .struct above and the offsets for the C code.

CMYSTR1L .cstruct

10 .long

sO .short

MC1_LEN .endstruct
CMYSTR2 .cstruct

mlL .tag CWSTR1
sl .short

MC2_LEN .endstruct

. sect "dat a3"

.word CWSTR1.10, MYSTRL.IO0
.word CMYSTR1. sO, MYSTRL. sO
.word MC1_LEN, ML_LEN

94 Assembler Directives SPRU513C-0October 2007
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
.data — Assemble Into the .data Section
. sect " dat a4"
.word CMYSTR2. ml, MYSTR2. mil
.word COMYSTR2.s1, MYSTR2.sl
.word MC2_LEN, M2_LEN
.data Assemble Into the .data Section
Syntax .data
Description The .data directive tells the assembler to begin assembling source code into the .data
section; .data becomes the current section. The .data section is normally used to contain
tables of data or preinitialized variables.
For more information about sections, see Chapter 2.
Example In this example, code is assembled into the .data and .text sections.
1 IR R SR RS EEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEESES]
2 *x Reserve space in .data. *x
3 ER R R R R SRR R R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEE S
4 000000 .data
5 000000 . space 0CCh
6 khkhkkhkhkkhkkhkhkhkhkhkhkhhhkhkhkhkhkhkhkhkhrhrhhkhkhkhkhkhkhkhrhrhrxrxhhhdkkx*x
7 *x Assenble into .text. *x
8 ERE R R R R R R R EEEEEEEEEEEEEEEEEEEE RS EEEEEEE RS RS
9 000000 .text
10 0000 | NDEX . set 0
11 000000 9A00 MOV AL, #| NDEX
12 khkhkhkhkkhkkhkhkhkhkhkhkhhhkhkhhkhkhkhkhkhrhrhhkhkhkhkhkdhkhkhrhrhrdrhhhhkkx*x
13 ** Assenble into .data. *x
14 ERE R R R R R R EEEEEEEEEEEEEEEEEEEEEE RS EEEEEEE RS RS
15 00000c Tabl e: .data
16 00000d FFFF .word -1 ; Assenbl e 16-bit constant into .data.
17 00000e OOFF .byte OFFh ; Assenble 8-bit constant into .data.
18 khkhkkhkhkkhkkhkhkhkhkhkhkhhkhkhkhhkhkhkhkhkhrhhhkhkhkhkhkhkhkhrhrhrxdxhhhdkkx*x
19 ** Assenble into .text. *x
20 ERE R R R R R R EEEEEEEEEEEEEEEEEEEEEE RS EEEEEEE RS RS
21 000001 .text
22 000001 08A9" ADD AL, Tabl e
000002 000C
23 khkhkkhkhkkhkkhkkhkhkhkhkhkhhhkhhkhkhkhkhkhrhrhrhrhhkhkhkhkhkhkhkhrhrhrhhhkkkx*x
24 ** Resune assenbling into the .data *x
25 ** gection at address OFh. **
26 khkhkkhkhkkhkkhkkhkhkhkhkhkhhhkhhkhkhkhkhkhrhrhrhrhhkhkhkhkhkhkhkhrhrhrhhhkkkx*x
27 00000f .data

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Assembler Directives 95

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

.drlist/.drnolist — Control Listing of Directives

*5‘ TEXAS
INSTRUMENTS

www.ti.com

.drlist/.drnolist

Control Listing of Directives

Syntax drlist
.drnolist
Description Two directives enable you to control the printing of assembler directives to the listing file:
The .drlist directive enables the printing of all directives to the listing file.
The .drnolist directive suppresses the printing of the following directives to the listing
file. The .drnolist directive has no affect within macros.
e .asg « fenolist .ssnolist
e .break o .mlist var
e .emsg * .mmsg .wmsg
e .eval e .mnolist
o fclist e .sslist
By default, the assembler acts as if the .drlist directive had been specified.
Example This example shows how .drnolist inhibits the listing of the specified directives.
Source file:
. asg 0, Xx
. | oop 2
.eval x+1, X
. endl oop
.drnoli st
. asg 1, X
.l oop 3
. eval x+1, X
. endl oop
Listing file:
1 . asg 0, x
2 .1 oop 2
3 .eval x+1, x
4 . endl oop
1 .eval 0+1, x
1 .eval 1+1, X
5
6 .drnoli st
7
9 .1 oop 3
10 . eval x+1, x
11 . endl oop
96 Assembler Directives SPRU513C-0October 2007

u

mit bocumentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

.emsg/.mmsg/.wmsg — Define Messages

.emsg/.mmsg/.wmsg Define Messages

These directives allow you to define your own error and warning messages. When you

use these directives, the assembler tracks the number of errors and warnings it
encounters and prints these numbers on the last line of the listing file.

The .emsg directive sends an error message to the standard output device in the same
manner as the assembler. It increments the error count and prevents the assembler from

The .mmsg directive sends an assembly-time message to the standard output device in
the same manner as the .emsg and .wmsg directives. It does not, however, set the error
or warning counts, and it does not prevent the assembler from producing an object file.

The .wmsg directive sends a warning message to the standard output device in the
same manner as the .emsg directive. It increments the warning count rather than the
error count, however. It does not prevent the assembler from producing an object file.

Syntax .emsg string
.mmsg string
.wmsg string
Description
producing an object file.
Example
output device.
Source file:
. gl obal PARAM
M5G_EX .macro parni

Vi f $sym en(parm) = 0

.ensg "ERROR -- M SSI NG PARAMETER"
. el se

add AL, @arnl

.endif

.endm

M5G_EX PARAM

MSG_EX
Listing file:
1
2
3
4
5
6
7
8
9
10 000000
1
1
1
1 000000 9400!
1
11
12 000001
1
1
* %k k k% USER ERRm * %k k k%
1
1
1
1 Error, No Warnings

. gl obal PARAM
M5G_EX .macro parndl
i f $sym en(parml) = 0
. ensg "ERROR -- M SSI NG PARAMETER'
. el se
add AL, @arnl
.endif
.endm

M5G_EX PARAM
i f $sym en(parml) = 0

.emsg "ERROR -- M SSI NG PARAMETER'
. el se
add AL, @PARAM
.endi f
MSG_EX
Jif $sym en(parnl) =0
.ensg "ERROR -- M SSI NG PARAMETER"
- ¢ ERROR -- M SSI NG PARAMETER
. el se
add AL, @arnl
.endi f

In this example, the message ERROR -- MISSING PARAMETER is sent to the standard

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Assembler Directives

97

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

.end — End Assembly

*5‘ TEXAS
INSTRUMENTS

www.ti.com

In addition, the following messages are sent to standard output by the assembler:

*** ERROR! line 12: ***** USER ERROR ***** - ERROR -- M SSI NG PARAMETER
. ensg "ERROR -- M SSI NG PARAMETER' 11

1 Assenbly Error,
Errors in source -

No Assenbly WArnings
Assenbl er Aborted

.end End Assembly
Syntax .end
Description The .end directive is optional and terminates assembly. The assembler ignores any
source statements that follow a .end directive. If you use the .end directive, it must be
the last source statement of a program.
This directive has the same effect as an end-of-file character. You can use .end when
you are debugging and you want to stop assembling at a specific point in your code.
Ending a Macro
Note: Do not use the .end directive to terminate a macro; use the .endm macro
directive instead.
Example This example shows how the .end directive terminates assembly. If any source
statements follow the .end directive, the assembler ignores them.
Source file:
START: .space 300
TEMP . set 15
. bss LOC1, 48h
ABS ACC
ADD ACC, #TEMP
MOV @QoCcL, ACC
. end
.byte 4
.word CCCh
Listing file:
1 000000 START: .space 300
2 000F TEMWP . set 15
3 000000 . bss LOCL, 48h
4 000013 FF56 ABS ACC
5 000014 090F ADD ACC, #TEWP
6 000015 9600- MOV @QCL, ACC
7 . end
98 Assembler Directives SPRU513C-0October 2007

u

mit bocumentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

fclist/.fcnolist — Control Listing of False Conditional Blocks

fclist/.fcnolist

Syntax

Description

Example

Control Listing of False Conditional Blocks

fclist
fcnolist
Two directives enable you to control the listing of false conditional blocks:

The fclist directive allows the listing of false conditional blocks (conditional blocks that
do not produce code).

The .fcnolist directive suppresses the listing of false conditional blocks until a .fclist
directive is encountered. With .fcnolist, only code in conditional blocks that are actually
assembled appears in the listing. The .if, .elseif, .else, and .endif directives do not
appear.

By default, all conditional blocks are listed; the assembler acts as if the .fclist directive
had been used.

This example shows the assembly language and listing files for code with and without
the conditional blocks listed.

Source file:
AAA .set 1
BBB .set O
Cfclist
i f AAA
ADD ACC, #1024
. el se
ADD ACC, #1024*4
.endif
.fcnoli st
i f AAA
ADD ACC, #1024
. el se
ADD ACC, #1024*10
.endif
Listing file:
1 0001 AAA .set 1
2 0000 BBB .set 0
3 fclist
4
5 i f AAA
6 000000 FF10 ADD ACC, #1024
000001 0400
7 . el se
8 ADD ACC, #1024*4
9 .endif
10
11 .fcnolist
12
14 000002 FF10 ADD ACC, #1024
000003 0400

SPRU513C-October 2007

Assembler Directives

Bubmit Documentafion FeedbacK

99

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

field — Initialize Field

*5‘ TEXAS
INSTRUMENTS

www.ti.com

field

Syntax

Description

Example

Initialize Field

field value [, size in bits]

The .field directive initializes a multiple-bit field within a single word (16 bits) of memory.
This directive has two operands:

The value is a required parameter; it is an expression that is evaluated and placed in
the field. The value must be absolute.

The size in bits is an optional parameter; it specifies a number from 1 to 32, which is
the number of bits in the field. If you do not specify a size, the assembler assumes
the size is 16 bits. If you specify a size in bits of 16 or more, the field starts on a word
boundary. If you specify a value that cannot fit in size in bits, the assembler truncates
the value and issues a warning message. For example, .field 3,1 causes the
assembler to truncate the value 3 to 1; the assembler also prints the message:
*** WARNING |ine 21: WO001: Field value truncated to 1

field 3, 1
Successive .field directives pack values into the specified number of bits starting at
the current word. Fields are packed starting at the least significant part of the word,
moving toward the most significant part as more fields are added. If the assembler
encounters a field size that does not fit into the current word, it writes out the word,
increments the SPC, and begins packing fields into the next word. You can use the
.align directive with an operand of 1 to force the next .field directive to begin packing
into a new word.

You can use the .align directive to force the next .field directive to begin packing into
a new word.

If you use a label, it points to the word that contains the specified field.

When you use .field in a .struct/.endstruct sequence, .field defines a member's size; it
does not initialize memory. For more information, see the [struct/.endstruct/.tag topid .

This example shows how fields are packed into a word. The SPC does not change until
a word is filled and the next word is begun. shows how the directives in this
example affect memory.

l EREEEE R E R E R EREEEEEEEEEEEEESEEEEESEESESEESE]
2 * % Initialize a 14-bit field. **
3 EREE R R R E R E R EREEEEEEEEEEESEESEEEEEEESEEESE]
4 000000 OABC .field O0ABCh, 14

5

6 ER R R I I R R I I I I I R I I
7 ** Initialize a 5-bit field **
8 * % in a new word. * %
9 R R R R E R E R EREEEEEEEEEEESEESEEEEEEESESEESE]
10 000001 O00A L_F: .field O0Ah, 5

11

12 ER R R I I R R I I I I I R I I
13 * ok Initialize a 4-bit field * ok
14 * % in the same word. * %
15 R R R R R R E R EREEEEEEEEEEEEESEEEEESEESEEESE]
16 000001 018A X .field 0Ch, 4

17

18 ER R R I I R R I I I I I I I O I
19 *x 22-bit relocatable field *x
20 * % in the next 2 words. * %
21 R R R R R R R E R EEEEEEEEEEEESEEEEEEESESEESE]
22 000002 0001 field X

23

24 ER R R I R R I I I I I
25 * ok Initialize a 32-bit field * ok
26 ER R R I R R I I I I
27 000003 4321 .field 04321h, 32

000004 0000

100 Assembler Directives

SPRU513C—-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
field — Initialize Field
Figure 4-6. The .field Directive
Word Code
15 13 0
@o | 0010101011110 0| field OABCh 14
14-bit field
®0 [0 0/0 010101011110 0| field 00AhS5
1] 0101 0]
%/—/
©1 | 110 0[/0 10 1 0| .field 000Ch, 4
;\/_/
4-bit field
d1 [0 0o0o00o0o0/00 01 1| field x
2 [0000000000O 0|
3 |0 0000000O0GO0GO0O 0|
€4 [0 00000000O0O0O 1| field 04321,32
5 010000110 0 1 0|

SPRU513C-0October 2007

Eubmit Documentafion FeedbacH

Assembler Directives

101

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

@‘ TEXAS

INSTRUMENTS
www.ti.com
float/.xfloat — Initialize Single-Precision Floating-Point Value
float/ xfloat Initialize Single-Precision Floating-Point Value
Syntax float value [, ...,value,]
Xxfloat value |, ...,value,]
Description The .float and .xfloat directives place the IEEE single-precision floating-point

representation of a single floating-point constant into a word in the current section. The
value must be a floating-point constant or a symbol that has been equated to a
floating-point constant. Each constant is converted to a floating-point value in IEEE
single-precision 32-bit format.

The .float directive aligns the floating-point constants on the long-word boundary, while
the .xfloat directive does not.

The 32-bit value is stored exponent byte first, least significant word of fraction second,
and most significant word of fraction third, in the format shown in Figure 4-7.

Figure 4-7. Single-Precision Floating-Point Format

[SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMM M|
31 23 0

value = (_1)SX (1 0+ mantissa) X (2)exponem-127

Legend: S =sign (1 bit)
E = exponent (8-bit biased)
M = mantissa (23-bit fraction)

When you use .float in a .struct/.endstruct sequence, .float defines a member's size; it
does not initialize memory. For more information, see the [struct/.endstruct/.tag topid .

Example Following are examples of the .float and .xfloat directives:
1 00000000 5951 .float -1.0e25
00000001 E904
2 00000002 0010 .byte 0x10
3 00000003 0000 .xfloat 123.0 ; not on |ong-word boundary
00000004 42F6
4 00000006 0000 .float 3 ; aligns on | ong-word boundary

00000007 4040

102 Assembler Directives SPRU513C-0October 2007
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
.global/.defl.ref/.globl — Identify Global Symbols

.global/.def/.ref/.globl Identify Global Symbols
Syntax .global symbol4], ..., symbol,]

.def symboly], ..., symbol,]

ref symboly[, ..., symbol,]

.globl symboly], ..., symbol,]
Description These directives identify global symbols that are defined externally or can be referenced

externally:

The .def directive identifies a symbol that is defined in the current module and can be
accessed by other files. The assembler places this symbol in the symbol table.

The .ref directive identifies a symbol that is used in the current module but is defined in
another module. The link step resolves this symbol's definition at link time.

The .global directive acts as a .ref or a .def, as needed.

The .globl directive is provided for backward compatibility for C2xlp source code. It is
accepted only when the --c2xlp_src_compatible option is used. The use of .globl is
discouraged.

A global symbol is defined in the same manner as any other symbol; that is, it appears
as a label or is defined by the .set, .equ, .bss, or .usect directive. As with all symbols, if a
global symbol is defined more than once, the link step issues a multiple-definition error.
The .ref directive always creates a symbol table entry for a symbol, whether the module
uses the symbol or not; .global, however, creates an entry only if the module actually
uses the symbol.

A symbol can be declared global for either of two reasons:

» If the symbol is not defined in the current module (which includes macro, copy, and
include files), the .global or .ref directive tells the assembler that the symbol is
defined in an external module. This prevents the assembler from issuing an
unresolved reference error. At link time, the link step looks for the symbol's definition
in other modules.

» If the symbol is defined in the current module, the .global or .def directive declares
that the symbol and its definition can be used externally by other modules. These
types of references are resolved at link time.

Example This example shows four files. The filel.Ist and file2.Ist refer to each other for all symbols
used; file3.Ist and file4.Ist are similarly related.

The filel.Ist and file3.Ist files are equivalent. Both files define the symbol INIT and
make it available to other modules; both files use the external symbols X, Y, and Z. Also,
filel.Ist uses the .global directive to identify these global symbols; file3.Ist uses .ref and
.def to identify the symbols.

The file2.Ist and file4.Ist files are equivalent. Both files define the symbols X, Y, and Z
and make them available to other modules; both files use the external symbol INIT. Also,
file2.Ist uses the .global directive to identify these global symbols; file4d.Ist uses .ref and
.def to identify the symbols.

filel.Ist

1 ; A obal synmbol defined in this file
2 .global INIT
3 ; G obal synbols defined in file2.1st
4 .global X Y, Z
5 000000 INIT:
6 000000 0956 ADD ACC, #56h
7
8 000001 0000! .word X
9 ; .

10

11

SPRU513C-October 2007 Assembler Directives 103

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS

INSTRUMENTS
www.ti.com
.global/.def/.ref/.globl — Identify Global Symbols
12 . end
file2.Ist
1 ; G obal synbols defined in this file
2 .global X, Y, Z
3 ; G obal synmbol defined in filel.lst
4 .global INIT
5 0001 X . set 1
6 0002 Y: . set 2
7 0003 z: . set 3
8 000000 0000! .word INIT
9 ;
10 ;
11 ; .
12 . end
file3.Ist
1 ; G obal synbol defined in this file
2 . def INIT
3 ; G obal synbols defined in file4.Ist
4 .ref XY, Z
5 000000 INIT
6 000000 0956 ADD ACC, #56h
7
8 000001 0000! .word X
9 ;
10
11 ;
12 .end
filed.lst
1 ; A obal synbols defined in this file
2 . def X Y, Z
3 ; A obal synbol defined in file3.Ist
4 .ref INIT
5 0001 X: . set 1
6 0002 Y: . set 2
7 0003 z: . set 3
8 000000 0000! .word INIT
9 ;
10 ;
11 ; .
12 .end
104 Assembler Directives SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

.if/.elseifl.else/.endif — Assemble Conditional Blocks

.if/.elseif/.else/.endif Assemble Conditional Blocks

Syntax

Description

Example

.if well-defined expression
[.elseif well-defined expression]
[.else]
.endif
Four directives provide conditional assembly:
The .if directive marks the beginning of a conditional block. The well-defined expression

is a required parameter.

« If the expression evaluates to true (nonzero), the assembler assembles the code that
follows the expression (up to a .elseif, .else, or .endif).

» If the expression evaluates to false (0), the assembler assembles code that follows a
.elseif (if present), .else (if present), or .endif (if no .elseif or .else is present).

The .elseif directive identifies a block of code to be assembled when the .if expression is
false (0) and the .elseif expression is true (nonzero). When the .elseif expression is
false, the assembler continues to the next .elseif (if present), .else (if present), or .endif
(if no .elseif or .else is present). The .elseif directive is optional in the conditional block,
and more than one .elseif can be used. If an expression is false and there is no .elseif
statement, the assembler continues with the code that follows a .else (if present) or a
.endif.

The .else directive identifies a block of code that the assembler assembles when the .if
expression and all .elseif expressions are false (0). The .else directive is optional in the
conditional block; if an expression is false and there is no .else statement, the assembler
continues with the code that follows the .endif.

The .endif directive terminates a conditional block.

The .elseif and .else directives can be used in the same conditional assembly block, and
the .elseif directive can be used more than once within a conditional assembly block.

See for information about relational operators.
This example shows conditional assembly:

1 0001 SYML . set 1
2 0002 SYM . set 2
3 0003 SYMB . set 3
4 0004 Syms . set 4
5
6 If_4: if SYM4 = SYM * SYM
7 000000 0004 .byte SYM4 Equal val ues
8 .el se
9 .byte SYM2 * SYM2 ; Unequal val ues
10 .endi f
11
12 If 5. .if SYML <= 10
13 000001 OO0O0A .byte 10 Less than / equal
14 .el se
15 .byte SYmL Greater than
16 .endi f
17
18 If_6: .if SYMB * SYM2 | = SYM4 + SYMR
19 .byte SYMB * SYme Unequal val ue
20 .el se
21 000002 0008 .byte SYM4 + SYM4 Equal val ues
22 .endi f
23
24 If_7: .if SYmw = 2
25 .byte SYmL
26 .elseif SYM + SYMB = 5
27 000003 0005 . byte SYM2 + SYMB
28 .endi f

SPRU513C-October 2007

Assembler Directives 105

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS

INSTRUMENTS
www.ti.com

.int/.word — Initialize 16-Bit Integer

.int/.word Initialize 16-Bit Integer

Syntax .int value4][, ... , value,]

.word valueq], ... , value,]

Description The .int and .word directives place one or more values into consecutive words in the
current section. Each value is placed in a 16-bit word by itself and is aligned on a word
boundary.

A value can be either an absolute or a relocatable expression. If an expression is
relocatable, the assembler generates a relocation entry that refers to the appropriate
symbol; the link step can then correctly patch (relocate) the reference. This allows you to
initialize memory with pointers to variables or labels.
You can use as many values as fit on a single line (200 characters). If you use a label
with these directives, it points to the first word that is initialized.
When you use .int or .word directives in a .struct/.endstruct sequence, they define a
member's size; they do not initialize memory. See the [struct/.endstruct/.tag fopid .
Example 1 This example uses the .int directive to initialize words.
1 000000 . space 73h
2 000000 .bss PAGE, 128
3 000080 .bss SYMPTR, 3
4 000008 FF20 [INST: MV ACC, #056h
000009 0056
5 00000a 000A .int 10, SYMPTR, -1, 35 + 'a', INST
00000b 0080-
00000c FFFF
00000d 0084
00000e 0008
Example 2 In this example, the .word directive is used to initialize words. The symbol WORDX
points to the first word that is reserved.
1 000000 0C80 WORDX: .word 3200, 1 + 'AB, -0AFh, 'X
000001 4242
000002 FF51
000003 0058
106 Assembler Directives SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

.label — Create a Load-Time Address Label

Jabel

Syntax

Description

Example

Create a Load-Time Address Label

.label symbol

The .label directive defines a special symbol that refers to the load-time address rather
than the run-time address within the current section. Most sections created by the
assembler have relocatable addresses. The assembler assembles each section as if it
started at 0, and the link step relocates it to the address at which it loads and runs.

For some applications, it is desirable to have a section load at one address and run at a
different address. For example, you may want to load a block of performance-critical
code into slower memory to save space and then move the code to high-speed memory
to run it. Such a section is assigned two addresses at link time: a load address and a run
address. All labels defined in the section are relocated to refer to the run-time address
so that references to the section (such as branches) are correct when the code runs.

The .label directive creates a special label that refers to the load-time address. This
function is useful primarily to designate where the section was loaded for purposes of
the code that relocates the section.

This example shows the use of a load-time address label.

sect ".exanp"
.l abel exanp_load ; |oad address of section

start: ; run address of section
<code>

finish: ; run address of section end
.l abel exanp_end ; |oad address of section end

See for more information about assigning run-time and load-time addresses
in the link step.

SPRU513C-October 2007

Assembler Directives 107

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Iength/.width — Set Listing Page Size

Jlength/.width

Set Listing Page Size

Syntax Iength [page length]
.width [page width]
Description Two directives allow you to control the size of the output listing file.
The .length directive sets the page length of the output listing file. It affects the current
and following pages. You can reset the page length with another .length directive.
» Default length: 60 lines. If you do not use the .length directive or if you use the
.length directive without specifying the page length, the output listing length defaults
to 60 lines.
e Minimum length: 1 line
* Maximum length: 32 767 lines
The .width directive sets the page width of the output listing file. It affects the next line
assembled and the lines following. You can reset the page width with another .width
directive.
» Default width: 132 characters. If you do not use the .width directive or if you use the
.width directive without specifying a page width, the output listing width defaults to
132 characters.
* Minimum width: 80 characters
e Maximum width: 200 characters
The width refers to a full line in a listing file; the line counter value, SPC value, and
object code are counted as part of the width of a line. Comments and other portions of a
source statement that extend beyond the page width are truncated in the listing.
The assembler does not list the .width and .length directives.
Example The following example shows how to change the page length and width.
*x Page Iength = 65 |ines *x
> Page width = 85 characters >
.length 65
.width 85
> Page I ength = 55 |ines >
*x Page width = 100 characters *x
.length 55
.width 100
108 Assembler Directives SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Jist/.nolist — Start/Stop Source Listing

Jdist/.nolist

Syntax

Description

Example

Start/Stop Source Listing

list

.nolist
Two directives enable you to control the printing of the source listing:
The .list directive allows the printing of the source listing.

The .nolist directive suppresses the source listing output until a .list directive is
encountered. The .nolist directive can be used to reduce assembly time and the source
listing size. It can be used in macro definitions to suppress the listing of the macro
expansion.

The assembler does not print the .list or .nolist directives or the source statements that
appear after a .nolist directive. However, it continues to increment the line counter. You
can nest the .list/.nolist directives; each .nolist needs a matching .list to restore the
listing.

By default, the source listing is printed to the listing file; the assembler acts as if the .list
directive had been used. However, if you do not request a listing file when you invoke
the assembler by including the --asm_listing option on the command line (see

Bection 3.3), the assembler ignores the .list directive.

This example shows how the .copy directive inserts source statements from another file.
The first time .copy is encountered, the assembler lists the copied source lines in the
listing file. The second time .copy is encountered, the assembler does not list the copied
source lines, because a .nolist directive was assembled. The .nolist, the second .copy,
and the .list directives do not appear in the listing file. Also the line counter is
incremented, even when source statements are not listed.

Source file:
copy.asm copy2.asm
(source file) (copy file)
.copy "copy2.asnt ** In copy2.asm
** Back in original file .word 32, 1 + 'A
NOP
.nolist

.copy "copy2.asnt
list

** Back in original file
.string "done"

Listing file:
1 . copy "copy2. asnf
1 *I'n copy2.asm (copy file)
2 000000 0020 .word 32, 1 +"'A

000001 0042

2 * Back in original file
3 000002 7700 NOP

7 * Back in original file
8 000005 0044 .string "Done"

000006 OO06F
000007 006E
000008 0065

SPRU513C-October 2007

Assembler Directives 109

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS

INSTRUMENTS
www.ti.com
long/.xlong — Initialize 32-Bit Integer

Jlong/.xlong Initialize 32-Bit Integer

Syntax long valueq][, ... , value,]

xlong value,|, ... , value,]

Description The .long and .xlong directives place one or more 32-bit values into consecutive words
in the current section. The most significant word is stored first. The .long directive aligns
the result on the long-word boundary, while .xlong does not.

A value can be either an absolute or a relocatable expression. If an expression is
relocatable, the assembler generates a relocation entry that refers to the appropriate
symbol; the link step can then correctly patch (relocate) the reference. This allows you to
initialize memory with pointers to variables or labels.
You can use up to 100 values, but they must fit on a single line (200 characters). If you
use a label with these directives, it points to the first word that is initialized.
When you use .long in a .struct/.endstruct sequence, .long defines a member's size; it
does not initialize memory. See the [struct/.endstruct/.taq topid .
Example This example shows how the .long and .xlong directives initialize double words.
1 000000 ABCD DAT1: .long OABCDh, 'A' + 100h, 'g', 'o'
000001 0000
000002 0141
000003 0000
000004 0067
000005 0000
000006 006F
000007 0000
2 000008 0000' .xl ong DAT1, OAABBCCDDh
000009 0000
00000a CCDD
00000b AABB
3 00000c DAT2:
110 Assembler Directives SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

.loop/.endloop/.break — Assemble Code Block Repeatedly

Jloop/.endloop/.break Assemble Code Block Repeatedly

Syntax .loop [well-defined expression]
.break [well-defined expression]
.endloop
Description Three directives allow you to repeatedly assemble a block of code:
The .loop directive begins a repeatable block of code. The optional expression
evaluates to the loop count (the number of loops to be performed). If there is no
well-defined expression, the loop count defaults to 1024, unless the assembler first
encounters a .break directive with an expression that is true (nonzero) or omitted.
The .break directive, along with its expression, is optional. This means that when you
use the .loop construct, you do not have to use the .break construct. The .break directive
terminates a repeatable block of code only if the well-defined expression is true
(nonzero) or omitted, and the assembler breaks the loop and assembles the code after
the .endloop directive. If the expression is false (evaluates to 0), the loop continues.
The .endloop directive terminates a repeatable block of code; it executes when the
.break directive is true (nonzero) or when the number of loops performed equals the loop
count given by .loop.
Example This example illustrates how these directives can be used with the .eval directive. The
code in the first six lines expands to the code immediately following those six lines.
1 .eval 0, x
2 COEF .l oop
3 .word x*100
4 .eval x+1, X
5 . break X =6
6 . endl oop
1 000000 0000 .word 0*100
1 .eval 0+1, x
1 . break 1=6
1 000001 0064 .word 1*100
1 .eval 1+1, X
1 . break 2 =6
1 000002 00C8 .word 2*100
1 .eval 2+1, X
1 . break 3=6
1 000003 012C .word 3*100
1 .eval 3+1, x
1 . break 4 =6
1 000004 0190 .word 4*100
1 .eval 4+1, x
1 . break 5=6
1 000005 01F4 .word 5*100
1 . eval 5+1, X
1 . break 6 =6

SPRU513C-October 2007

Bubmit Documentafion FeedbacK

Assembler Directives

111

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

.macro/.endm — Define Macro

.macro/.endm Define Macro

Syntax macname .macro [parameter,[, ... parameter,]]
model statements or macro directives
.endm
Description The .macro and .endm directives are used to define macros.

You can define a macro anywhere in your program, but you must define the macro
before you can use it. Macros can be defined at the beginning of a source file, in an
.include/.copy file, or in a macro library.

macname names the macro. You must place the name in the source
statement's label field.
.macro identifies the source statement as the first line of a macro definition.

You must place .macro in the opcode field.

[parameters] are optional substitution symbols that appear as operands for the
.macro directive.

model statements are instructions or assembler directives that are executed each time
the macro is called.

macro directives are used to control macro expansion.
.endm marks the end of the macro definition.

Macros are explained in further detail in Chapter 5.

112 Assembler Directives SPRU513C-0October 2007
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

.mlib — Define Macro Library

.mlib

Syntax

Description

Example

Define Macro Library

.mlib ["]filename["]

The .mlib directive provides the assembler with the filename of a macro library. A macro
library is a collection of files that contain macro definitions. The macro definition files are
bound into a single file (called a library or archive) by the archiver.

Each file in a macro library contains one macro definition that corresponds to the name
of the file. The filename of a macro library member must be the same as the macro
name, and its extension must be .asm. The filename must follow host operating system
conventions; it can be enclosed in double quotes. You can specify a full pathname (for
example, c:\320tools\macs.lib). If you do not specify a full pathname, the assembler
searches for the file in the following locations in the order given:

1. The directory that contains the current source file
2. Any directories named with the --include_path assembler option
3. Any directories specified by the environment variable

See for more information about the --include_path option.

When the assembler encounters a .mlib directive, it opens the library specified by the
filename and creates a table of the library's contents. The assembler enters the names
of the individual library members into the opcode table as library entries. This redefines
any existing opcodes or macros that have the same name. If one of these macros is
called, the assembler extracts the entry from the library and loads it into the macro table.
The assembler expands the library entry in the same way it expands other macros, but it
does not place the source code into the listing. Only macros that are actually called from
the library are extracted, and they are extracted only once.

See for more information on macros and macro libraries.

This example creates a macro library that defines two macros, incl and decl. The file
incl.asm contains the definition of incl, and decl.asm contains the definition of dec1l.

incl.asm decl.asm
* Macro for increnenting * Macro for decrenenting
incl .macro A decl .macro A
ADD A, #1 SUB A #1
.endm .endm

Use the archiver to create a macro library:
ar2000 -a nac incl.asmdecl. asm

Now you can use the .mlib directive to reference the macro library and define the incl
and decl1 macros:

1 .mib "mac. |ib"
2
3 * Macro call
4 000000 incl AL
1 000000 9C01 ADD AL, #1
5
6 * Macro call
7 000001 decl AR1
1 000001 08A9 SuB ARL, #1

000002 FFFF

SPRU513C-October 2007

Assembler Directives 113

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

.mlist/.mnolist — Start/Stop Macro Expansion Listing

.mlist/. mnolist

Syntax

Description

Examp

le

Start/Stop Macro Expansion Listing

.mlist
.mnolist

Two directives enable you to control the listing of macro and repeatable block
expansions in the listing file:

The .mlist directive allows macro and .loop/.endloop block expansions in the listing file.

The .mnolist directive suppresses macro and .loop/.endloop block expansions in the
listing file.

By default, the assembler behaves as if the .mlist directive had been specified.

See for more information on macros and macro libraries. See the
[Toop/lbreak/.endloop topid for information on conditional blocks.

This example defines a macro named STR_3. The first time the macro is called, the
macro expansion is listed (by default). The second time the macro is called, the macro
expansion is not listed, because a .mnolist directive was assembled. The third time the
macro is called, the macro expansion is again listed because a .mlist directive was
assembled.

1 STR 3 . nmacro P1, P2, P3
2 .string ":pl:", ":p2:", ":p3:"
3 .endm
4
5 000000 STR 3 "as", "I", "anf
1 000000 003A .string ":pl:", ":p2:", ":p3:"
000001 0070
000002 0031
000003 003A
000004 003A
000005 0070
000006 0032
000007 003A
000008 003A
000009 0070
00000a 0033
00000b 003A
6 00000c 003A .string ":pl:", ":p2:", ":p3:"
00000d 0070
00000e 0031
00000f 003A
000010 003A
000011 0070
000012 0032
000013 003A
000014 003A
000015 0070
000016 0033
000017 003A

.mol i st
000018 STR 3 "as", "I", "ant
.mist
000024 STR 3 "as", "I", "ant
1 000024 003A .string ":pl:", ":p2:", ":p3:"
000025 0070
000026 0031
000027 003A
000028 003A
000029 0070
00002a 0032
00002b 003A
00002c 003A
00002d 0070
00002e 0033
00002f 003A
12 000030 003A .string ":pl:", ":p2:", ":p3:"

[
= O ©om~

114

Assembler Directives

SPRU513C—-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
.newblock — Terminate Local Symbol Block
000031 0070
000032 0031
000033 003A
000034 003A
000035 0070
000036 0032
000037 003A
000038 003A
000039 0070
00003a 0033
00003b 003A
13
.newblock Terminate Local Symbol Block
Syntax .newblock
Description The .newblock directive undefines any local labels currently defined. Local labels, by
nature, are temporary; the .newblock directive resets them and terminates their scope.
A local label is a label in the form $n, where n is a single decimal digit, or name?, where
name is a legal symbol name. Unlike other labels, local labels are intended to be used
locally, cannot be used in expressions, and do not qualify for branch expansion if used
with a branch. They can be used only as operands in 8-bit jump instructions. Local labels
are not included in the symbol table.
After a local label has been defined and (perhaps) used, you should use the .newblock
directive to reset it. The .text, .data, and .sect directives also reset local labels. Local
labels that are defined within an include file are not valid outside of the include file.
See for more information on the use of local labels.
Example This example shows how the local label $1 is declared, reset, and then declared again.

1 .ref ADDRA, ADDRB, ADDRC
2 0076 B . set 76h

3

4 00000000 F800! MoV DP, #ADDRA

5

6 00000001 8500! LABEL1l: MOV ACC, @\DDRA

7 00000002 1976 SuB ACC, #B

8 00000003 6403 B $1, LT

9 00000004 9600! MoV @\DDRB, ACC

10 00000005 6F02 B $2, UNC

11

12 00000006 8500! $1 MoV ACC, @\DDRA

13 00000007 8100! $2 ADD ACC, @\DDRC

14 . newbl ock ; Undefine $1 to use again.
15

16 00000008 6402 B $1, LT

17 00000009 9600! MoV @\DDRC, ACC

18 0000000a 7700 $1 NOP

SPRU513C-October 2007

Assembler Directives 115

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

.option — Select Listing Options

*5‘ TEXAS
INSTRUMENTS

www.ti.com

.option Select Listing Options
Syntax .option option,[, option,, . . .]
Description The .option directive selects options for the assembler output listing. The options must
be separated by commas; each option selects a listing feature. These are valid options:
A turns on listing of all directives and data, and subsequent expansions, macros,
and blocks.

B limits the listing of .byte and .char directives to one line.

D turns off the listing of certain directives (same effect as .drnolist).

L limits the listing of .long directives to one line.

M turns off macro expansions in the listing.

N turns off listing (performs .nolist).

(0] turns on listing (performs .list).

R resets the B, L, M, R, T, W, and X directives (turns off the limits of B, L, M, R,
T, W, and X).

T limits the listing of .string directives to one line.

W limits the listing of .word and .int directives to one line.

X produces a cross-reference listing of symbols. You can also obtain a
cross-reference listing by invoking the assembler with the --cross_reference
option (see Bection 3.3).

Example This example shows how to limit the listings of the .byte, .long, .word, and .string
directives to one line each.

l khkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkkkkkkkkkkkk*x*%x
2 ** Limt the listing of .byte, .word, **
3 ** .long, and .string directives to 1 **
4 > to 1 line each. >
5 khkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkkkkkkkkkkkk*x*%x
6 .option B, W L, T
7 000000 00BD .byte -'C, 0BOh, 5
8 000004 CCDD .long OAABBCCDDh, 536 + 'A
9 000008 15AA .word 5546, 78h
10 00000a 0045 .string "Extended Registers"
ll khkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkk*x*
12 > Reset the listing options. >
13 khkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkkkkkk*k*%
14 .option R
15 00001c 00BD .byte -'C, 0BOh, 5

00001d 00BO

00001e 0005
16 000020 CCDD .long OAABBCCDDh, 536 + 'A

000021 AABB

000022 0259

000023 0000
17 000024 15AA .word 5546, 78h

000025 0078
18 000026 0045 .string "Extended Registers"

000027 0078

000028 0074

000029 0065

00002a 006E

00002b 0064

00002c 0065

00002d 0064

00002e 0020

00002f 0052

000030 0065

000031 0067

000032 0069

116 Assembler Directives SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
.page — Eject Page in Listing
000033 0073
000034 0074
000035 0065
000036 0072
000037 0073

.page Eject Page in Listing

Syntax .page

Description The .page directive produces a page eject in the listing file. The .page directive is not
printed in the source listing, but the assembler increments the line counter when it
encounters the .page directive. Using the .page directive to divide the source listing into
logical divisions improves program readability.

Example This example shows how the .page directive causes the assembler to begin a new page
of the source listing.

Source file:
.title "**** Page Directive Exanple ****"
‘ .pége
Listing file:
**** Page Directive Exanple **** PAGE 1
2 ;
3 ;
4 ; .
TMS320C2000 COFF Assenbl er Ver si on X. xx Day Ti me Year
Copyright (cC) XXXX-XXXX Texas | nstruments | ncorporated
**** Page Directive Exanple **** PAGE 2

.sblock Specify Blocking for an Initialized Section

Syntax .sblock["]section name["][,["]section name["],...

Description The .sblock directive designates sections for blocking. Blocking is an address alignment
mechanism similar to page alignment, but weaker. A blocked section does not cross a
page boundary (64 words) if it is smaller than a page, and it starts on a page boundary if
it is larger than a page. This directive allows specification of blocking for initialized
sections only, not for uninitialized sections declared with .usect or the .bss directives.
The section names may optionally be enclosed in quotation marks.

Example This example designates the .text and .data sections for blocking.

l khkkkkhkkkkkkkkkkkk*x*x

2 ** Specify blocking for the .text >
3 ** and .data sections. **
4 ER R I R R R I I I R R R R I I I I R R
5 . sbl ock .text, .data

SPRU513C-October 2007

Assembler Directives 117

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*{}‘ TEXAS

INSTRUMENTS
www.ti.com

.sect — Assemble Into Named Section

.sect Assemble Into Named Section

Syntax .sect "section name"

Description The .sect directive defines a named section that can be used like the default .text and
.data sections. The .sect directive tells the assembler to begin assembling source code
into the named section.

The section name identifies the section. The section name is significant to 200
characters and must be enclosed in double quotes. A section hame can contain a
subsection name in the form section name:subsection name.

See for more information about sections.

Example This example defines two special-purpose sections, Sym_Defs and Vars, and assembles

code into them.
1 *x Begi n assenbling into .text section. *x
2 000000 . text
3 000000 FF20 MoV ACC, #78h ; Assenbled into .text
000001 0078
4 000002 0936 ADD ACC, #36h ; Assenbled into .text
5
6 ** Begin assenbling into Sym Defs section. **
7 000000 . sect " Sym Def s"
8 000000 cccb .float O. ; Assenbl ed into Sym Defs
000001 3D4C
9 000002 00AA X: .word 0AAh ; Assenbl ed into Sym Defs
10 000003 FF10 ADD ACC, #X : Assenbled into Sym Defs
000004 0002+
11
12 *x Begi n assenbling into Vars section. **
13 000000 . sect "Vars"
14 0010 WORD _LEN . set 16
15 0020 DWORD LEN . set WORD LEN * 2
16 0008 BYTE_LEN . set WORD _LEN / 2
17 0053 STR . set 53h
18
19 *x Resunme assenbling into .text section. **
20 000003 . text
21 000003 0942 ADD ACC, #42h :; Assenbled into .text
22 000004 0003 .byte 3, 4 ; Assenbled into .text
000005 0004
23
24 *x Resume assenbling into Vars section. **
25 000000 . sect "Vars"
26 000000 000D .field 13, WORD LEN
27 000001 000A .field 0Ah, BYTE_LEN
28 000002 0008 .field 10q, DWORD LEN
000003 0000
29
118 Assembler Directives SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
.set — Define Assembly-Time Constant
.set Define Assembly-Time Constant
Syntax symbol .set value
Description The .set directive equates a constant value to a symbol. The symbol can then be used in
place of a value in assembly source. This allows you to equate meaningful names with
constants and other values.
* The symbol is a label that must appear in the label field.
» The value must be a well-defined expression, that is, all symbols in the expression
must be previously defined in the current source module.
Undefined external symbols and symbols that are defined later in the module cannot be
used in the expression. If the expression is relocatable, the symbol to which it is
assigned is also relocatable.
The value of the expression appears in the object field of the listing. This value is not
part of the actual object code and is not written to the output file.
Symbols defined with .set can be made externally visible with the .def or .global directive
(see the [globall.defl.ref topid). In this way, you can define global absolute constants.
Example This example shows how symbols can be assigned with .set.
l kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkk*x*%x
2 * % Equate synmbol AUX Rl to register ARL * %
3 *x and use it instead of the register. *x
4 R R o R R O O
5 0001 AUX Rl .set ARL
6 000000 28Cl1 MOV * AUX_R1, #56h
000001 0056
7
8 kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkk*x*%x
9 * % Set synbol index to an integer expr. * %
10 *x and use it as an inmedi ate operand. *x
ll R R S Rk R R O
12 0035 |INDEX .set 100/ 2 +3
13 000002 0935 ADD ACC, #| NDEX
14
15 R R S R R O O
16 ** Set synbol SYMIAB to a rel ocatable expr. **
17 * % and use it as a rel ocatabl e operand. * %
18 kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkk*x*%x
19 000003 000A LABEL .word 10
20 0004' SYMTAB . set LABEL + 1
21
22 kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkk*x
23 * % Set synmbol NSYMS equal to the synbol * %
24 *x INDEX and use it as you woul d | NDEX. *x
25 R R O kR O R
26 0035 NSYMs . set | NDEX
27 000004 0035 .word NSYMS

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Assembler Directives

119

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

@‘ TEXAS

INSTRUMENTS
www.ti.com
.space/.bes — Reserve Space
.space/.bes Reserve Space
Syntax [label] .space size in bits
[label] .bes size in bits
Description The .space and .bes directives reserve the number of bits given by size in bits in the

current section and fill them with Os. The section program counter is incremented to
point to the word following the reserved space.

When you use a label with the .space directive, it points to the first word reserved. When
you use a label with the .bes directive, it points to the last word reserved.

Example This example shows how memory is reserved with the .space and .bes directives.
l khkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkhkkhkkhkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkk*x*
2 ** Begin assenbling into .text section. >
3 khkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkhkkhkkhkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkk*x*
4 000000 . text
5 khkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkhkkhkkhkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkk*x*
6 ** Reserve OF0 bits (15 words in the >
7 *x .text section. *x
8 khkkkkhkhkkhkhkhkkhkhkkhhkhhkhkhhkhhhhhhhkhhdhdrhkrhdhxdhxdxhxdx*x%x
9 000000 .space O0F0h

10 00000f 0100 .word 100h, 200h

000010 0200
11 khkkhkkkhkhkkhkhkhkkhkhkkhhkhhkhkhhkhhhhhkhhkhhdhdrhdhdhxdhxdxhxdxkx%x
12 ** Begin assenbling into .data section. **
13 khkkkkhkhkkhkhkhkkhhkkhhkhhkhkhhkhhhhhhhkhhdhdrhkrhkdhxdhxdxhxdx*x%x
14 000000 .data
15 000000 0049 .string "In .data"

000001 006E

000002 0020

000003 002E

000004 0064

000005 0061

000006 0074

000007 0061
16 khkkhkkkhkhkkhkhkhkkhhkkhhkhhkhkhhkhhhhhkhhkhhdhdrhkrhdhrdhdxhdx*x%x
17 ** Reserve 100 bits in the .data section; **
18 > RES 1 points to the first word that >
19 ** contains reserved bits. *
20 khkkhkkkhkhkkhkhkhkkhhkkhhkhhkhkhhkhhhhdhhkhhdhdrhkrhdhxdhdxhxdx*x%x
21 000008 RES 1: .space 100
22 00000f OOOF .word 15
23 EE R R R Sk Sk S Sk Sk Sk Sk kS Sk Sk Sk Sk Sk Sk kS kS Sk Sk Sk Sk Ik ko ko
24 ** Reserve 20 bits in the .data section; **
25 ** RES 2 points to the last word that *x
26 > contains reserved bits. >
27 EE R R R Sk Sk Sk Sk Sk Sk S kS Sk Sk Sk Sk Sk Sk Sk Sk Sk kS Sk ko kS
28 000011 RES_2: .bes 20
29 000012 0036 .word 36h
30 000013 0011" . wor d RES_

120 Assembler Directives SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

.sslist/.ssnolist — Control Listing of Substitution Symbols

.sslist/.ssnolist

Control Listing of Substitution Symbols

Syntax .sslist
.ssnolist
Description Two directives allow you to control substitution symbol expansion in the listing file:
The .sslist directive allows substitution symbol expansion in the listing file. The
expanded line appears below the actual source line.
The .ssnolist directive suppresses substitution symbol expansion in the listing file.
By default, all substitution symbol expansion in the listing file is suppressed; the
assembler acts as if the .ssnolist directive had been used.
Lines with the pound (#) character denote expanded substitution symbols.
Example This example shows code that, by default, suppresses the listing of substitution symbol

expansion, and it shows the .sslist directive assembled, instructing the assembler to list
substitution symbol code expansion.

Y

TP HPHP

00000000
00000001
00000002
00000003

00000000
00000000
00000001
00000002

00000003

00000003

00000004

00000005

ADD2

8500-
8101-
9601-

8502-

8103-

9603-

. bss
. bss
. bss
. bss

. macro
MoV
ADD
MoV
.endm

ADD2
MoV
ADD
MoV

.sslist
ADD2
MOV

MOV
ADD

ADD
MOV

MOV

ADDRX,
ADDRY,
ADDRA,
ADDRB,

NN

parmi, parn®
ACC, @arnml
ACC, @arn?
@arn2, ACC

ADDRX, ADDRY
ACC, @\DDRX
ACC, @\DDRY
@\DDRY, ACC

ADDRA, ADDRB
ACC, @arml
ACC, @ADDRA
ACC, @arn?
ACC, @ADDRB
@arn2, ACC
@\DDRB, ACC

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Assembler Directives

121

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

.string/.pstring — Initialize Text

.string/.pstring

Initialize Text

Syntax .string {exprq | "string,"}[, ... , {expr, | "string,"}]

pstring {expry | "string,"}, ... , {expr, | "string,,"}]

Description The .string and .pstring directives place 8-bit characters from a character string into the
current section. With the .string directive, each 8-bit character has its own 16-bit word,
but with the .pstring directive, the data is packed so that each word contains two 8-bit
bytes. The expr or string can be one of the following:

* An expression that the assembler evaluates and treats as an 16-bit signed number.
e A character string enclosed in double quotes. Each character in a string represents a
separate byte. The entire string must be enclosed in quotes.
With .pstring, values are packed into words starting with the most significant byte of the
word. Any unused space is padded with null bytes.
The assembler truncates any values that are greater than eight bits. You can have up to
100 operands, but they must fit on a single source statement line.
If you use a label, it points to the location of the first word that is initialized.
When you use .string in a .struct/.endstruct sequence, .string defines a member's size; it
does not initialize memory. For more information, see the [struct/.endstruct/.tag topid .
Example In this example, 8-bit values are placed into words in the current section.
1 000000 0041 Str_Ptr: .string "ABCD'
000001 0042
000002 0043
000003 0044
2
3 000004 0041 .string 41h, 42h, 43h, 44h
000005 0042
000006 0043
000007 0044
4
5 000008 4175 .pstring "Austin", "Houston"
000009 7374
00000a 696E
00000b 486F
00000c 7573
00000d 746F
00000e 6E0O
6
7 00000f 0030 .string 36 + 12
122 Assembler Directives SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

.struct/.endstruct/.tag —

Declare Structure Type

.Struct/.endstruct/.tag Declare Structure Type

Syntax [stag] .struct [expr]
[memy] element [exprg]
[mem;] element [exprq]
[mem,] .tag stag [expr,]
[memy] element [expry]
[size] .endstruct
label .tag stag
Description The .struct directive assigns symbolic offsets to the elements of a data structure

definition. This allows you to group similar data elements together and let the assembler
calculate the element offset. This is similar to a C structure or a Pascal record. The
.struct directive does not allocate memory; it merely creates a symbolic template that can
be used repeatedly.

The .endstruct directive terminates the structure definition.

The .tag directive gives structure characteristics to a label, simplifying the symbolic
representation and providing the ability to define structures that contain other structures.
The .tag directive does not allocate memory. The structure tag (stag) of a .tag directive

must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag

directives:

The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the
global symbol table with the value of their absolute offset from the top of the

structure. A .stag is optional for .struct, but is required for .tag.

The expr is an optional expression indicating the beginning offset of the structure.
The default starting point for a structure is 0.

The mem,,y is an optional label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the structure. A label for a
structure member cannot be declared global.

The element is one of the following descriptors: .byte, .char, .int, .long, .word, .string,
.pstring, .float, and .field. All of these except .tag are typical directives that initialize
memory. Following a .struct directive, these directives describe the structure
element's size. They do not allocate memory. A .tag directive is a special case
because stag must be used (as in the definition of stag).
The expr,n is an optional expression for the number of elements described. This

value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

The size is an optional label for the total size of the structure.

Note:

Directives That Can Appear in a .struct/.endstruct Sequence

The only directives that can appear in a .struct/.endstruct sequence are
element descriptors, conditional assembly directives, and the .align
directive, which aligns the member offsets on word boundaries. Empty

structures are illegal.

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Assembler Directives 123

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

.struct/.endstruct/.tag — Declare Structure Type

*5‘ TEXAS
INSTRUMENTS

www.ti.com

The following examples show various uses of the .struct, .tag, and .endstruct directives.

Example 1 REAL_REC . struct ; stag
NOM .int ; nmenberl =0
DEN .int ; menber2 =1
REAL_LEN . endstruct ; real _len = 4
ADD ACC, @REAL + REAL_REC. DEN) ;access structure el ement
.bss REAL, REAL_LEN ; allocate memrec
Example 2 CPLX_REC .struct
REALI .tag REAL_REC ; stag
| MAG .tag REAL_REC ; menberl =0
CPLX_LEN . endstruct ; rec_len =4
COWLEX .tag CPLX REC ; assign structure attrib
ADD ACC, COWPLEX. REALI ; access structure
ADD ACC, COWPLEX. | MAG
. bss COWPLEX, CPLX_LEN ; allocate space
Example 3 .struct ; No stag puts nens into
X .int ; gl obal synbol table
Y .int ;create 3 dimtenpl ates
4 .int
. endstruct
Example 4 BIT_REC .struct ; stag
STREAM .string 64
BI T7 field 7 ; bitsl = 64
BI T9 .field 9 ; bits2 = 64
BI T10 .field 10 ; bits3 = 65
X_INT .int ;o x_int = 67
BIT_LEN .endstruct ; length = 68
BI TS .tag BI T_REC
ADD AC, @I TS. BIT7 ; nove into acc
AND ACC, #007Fh ; mask off garbage bits
.bss BITS, BIT_REC
124 Assembler Directives SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

tab — Define Tab Size

.tab

Syntax

Description

Example

Define Tab Size

.tab size

The .tab directive defines the tab size. Tabs encountered in the source input are

translated to size character spaces in the listing. The default tab size is eight spaces.

In this example, each of the lines of code following a .tab statement consists of a single

tab character followed by an NOP instruction.

Source file:
; default tab si

000000
000001
000002

000003
000004
000005

12 000006
13 000007
14 000008

ze

7700
7700
7700

7700
7700
7700

7700
7700
7700

default tab size

SPRU513C-October 2007

Bubmit Documentafion FeedbacK

Assembler Directives

125

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

text — Assemble Into the .text Section

*5‘ TEXAS
INSTRUMENTS

www.ti.com

text Assemble Into the .text Section
Syntax text
Description The .text directive tells the assembler to begin assembling into the .text section, which
usually contains executable code. The section program counter is set to 0 if nothing has
yet been assembled into the .text section. If code has already been assembled into the
.text section, the section program counter is restored to its previous value in the section.
The .text section is the default section. Therefore, at the beginning of an assembly, the
assembler assembles code into the .text section unless you use a .data or .sect directive
to specify a different section.
For more information about sections, see Chapter 2.
Example This example assembles code into the .text and .data sections. The .data section
contains integer constants and the .text section contains character strings.
1 ER I I I I I I I R
2 ** Begin assenbling into .data section. **
3 ER I I I I I I R R I
4 000000 .data
5 000000 000A .byte 0Ah, 0Bh
000001 000B
6
7 khkhkkhkkhkkkkkkkkkkkkk*k*x*%x
8 ** Begin assenbling into .text section. **
9 khkhkkhkkhkkkkkkkkkkkkk*k*x*%x
10 000000 . text
11 000000 0041 START: .string "A", "B", "C'
000001 0042
000002 0043
12 000003 0058 END: .string "X, "Y', "Zz"
000004 0059
000005 005A
13
14 000006 8100' ADD ACC, @TART
15 000007 8103' ADD ACC, @ND
16
17 khkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkhkkkhkkkkkhkkkkkkkkkk*x*%
18 ** Resunme assenbling into .data section.**
19 khkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkhkkkhkkkkkhkkkkkkkkkk*x*%
20 000002 .data
21 000002 000C .byte 0Ch, ODh
000003 000D
22 khkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkhkkkhkkkkkhkkkkkkkkkk*x*%
23 ** Resunme assenbling into .text section.**
24 khkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkkkkkkkkkkkkkk*x*%x
25 000008 . text
26 000008 0051 .string "Quit"
000009 0075
00000a 0069
00000b 0074
126 Assembler Directives SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
title — Define Page Title

title Define Page Title

Syntax title "string"

Description The .title directive supplies a title that is printed in the heading on each listing page. The
source statement itself is not printed, but the line counter is incremented.
The string is a quote-enclosed title of up to 64 characters. If you supply more than 64
characters, the assembler truncates the string and issues a warning:
*** WARNING |ine x: WO001: String is too long - will be truncated
The assembler prints the title on the page that follows the directive and on subsequent
pages until another .title directive is processed. If you want a title on the first page, the
first source statement must contain a .title directive.

Example In this example, one title is printed on the first page and a different title is printed on

succeeding pages.

Source file:
.title "**** Fast Fourier Transforms ****"

.title "**** Floating-Point Routines ****"
. page

Listing file:

TMS320C2000 COFF Assenbl er Ver si on X. Xx Day Ti me Year
Copyright (c) XXXX-XXXX Texas |nstrunments | ncorporated

xx Fast Fourier Transfornms **** PAGE 1

2 ;

3 ;
4 ; .

TMS320C2000 COFF Assenbl er Ver si on X. Xx Day Ti me Year

Copyright (c) XXXX-XXXX Texas |nstrunments | ncorporated

**** F| oating-Poi nt Routines **** PAGE 2

SPRU513C-October 2007

Assembler Directives 127

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

.union/.endunion/.tag — Declare Union Type

.union/.endunion/.tag Declare Union Type

Syntax

Description

[stag] .union [expr]

[memg] element [exprg]
[mem;] element [exprq]

[mem,] .tag stag [expr,]

[memy] element [expry]
[size] .endunion
label .tag stag

The .union directive assigns symbolic offsets to the elements of alternate data structure
definitions to be allocated in the same memory space. This enables you to define
several alternate structures and then let the assembler calculate the element offset. This
is similar to a C union. The .union directive does not allocate any memory; it merely
creates a symbolic template that can be used repeatedly.

A .struct definition can contain a .union definition, and .structs and .unions can be
nested.

The .endunion directive terminates the union definition.

The .tag directive gives structure or union characteristics to a label, simplifying the
symbolic representation and providing the ability to define structures or unions that
contain other structures or unions. The .tag directive does not allocate memory. The
structure or union tag of a .tag directive must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

* The utag is the union's tag. is the union's tag. Its value is associated with the
beginning of the union. If no utag is present, the assembler puts the union members
in the global symbol table with the value of their absolute offset from the top of the
union. In this case, each member must have a unique name.

e The expr is an optional expression indicating the beginning offset of the union.
Unions default to start at 0. This parameter can only be used with a top-level union. It
cannot be used when defining a nested union.

* The mem,, is an optional label for a member of the union. This label is absolute and
equates to the present offset from the beginning of the union. A label for a union
member cannot be declared global.

» The element is one of the following descriptors: .byte, .char, .int, .long, .word, .string,
.pstring, .float, and .field. An element can also be a complete declaration of a nested
structure or union, or a structure or union declared by its tag. Following a .union
directive, these directives describe the element's size. They do not allocate memory.

» The expr,, is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

» The size is an optional label for the total size of the union.

128

Assembler Directives

SPRU513C—-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
.union/.endunion/.tag — Declare Union Type
Directives That Can Appear in a .union/.endunion Sequence
Note: The only directives that can appear in a .union/.endunion sequence are
element descriptors, structure and union tags, and conditional assembly
directives. Empty structures are illegal.
These examples show unions with and without tags.
Example 1 1
2 . gl obal enployid
3 xanpl e .uni on ; utag
4 0000 ival .int ; menberl = int
5 0000 fval .float ; nmenber2 = float
6 0000 sval .string ; menber3 = string
7 0002 real _Ilen . enduni on
8
9 00000000 .bss enployid, real _Ilen ; allocate nenory
10
11 enpl oyi d .tag xanple ; name an instance
12
13 00000000 08A1- ADD AR1, #enployid.iva
00000001 0000
Example 2 1
2 .uni on ; utag
3 0000 x .long ; menber 1= | ong
4 0000 vy .float ; menber 2 = float
5 0000 z Lint ; menmber 3 = int
6 0002 size_u .endunion ; Size_u = 2
SPRU513C-0October 2007 Assembler Directives 129

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

.usect — Reserve Uninitialized Space

.usect

Syntax

Description

Reserve Uninitialized Space

symbol .usect "section name", size in words [, blocking flag[, alignment flag|[, type]]]

The .usect directive reserves space for variables in an uninitialized, named section. This
directive is similar to the .bss directive; both simply reserve space for data and that
space has no contents. However, .usect defines additional sections that can be placed
anywhere in memory, independently of the .bss section.

» The symbol points to the first location reserved by this invocation of the .usect
directive. The symbol corresponds to the name of the variable for which you are
reserving space.

e The section name is significant to 200 characters and must be enclosed in double
quotes. This parameter names the uninitialized section. A section name can contain
a subsection name in the form section name:subsection name.

* The size in words is an expression that defines the number of words that are
reserved in section name.

» The blocking flag is an optional parameter. If you specify a value greater than 0 for
this parameter, the assembler allocates size in words contiguously. This means that
the allocated space does not cross a page boundary (64 words) unless its size is
greater than a page, in which case the object starts on a page boundary.

» The alignment flag is an optional parameter. It causes the assembler to allocate size
in words on long word boundaries.

« The type is an optional parameter. Designating a type causes the assembler to

produce the appropriate debug information for the symbol. See for more
information.

Initialized sections directives (.text, .data, and .sect) end the current section and tell the
assembler to begin assembling into another section. A .usect or .bss directive
encountered in the current section is simply assembled, and assembly continues in the
current section.

Variables that can be located contiguously in memory can be defined in the same
specified section; to do so, repeat the .usect directive with the same section name and
the subsequent symbol (variable name).

For more information about sections, see Chapter 2.

130

Assembler Directives

SPRU513C—-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
.usect — Reserve Uninitialized Space
Example This example uses the .usect directive to define two uninitialized, named sections, varl

and var2. The symbol ptr points to the first word reserved in the varl section. The

symbol array points to the first word in a block of 100 words reserved in varl, and dflag
points to the first word in a block of 50 words in varl. The symbol vec points to the first
word reserved in the var2 section.

shows how this example reserves space in two uninitialized sections, varl

and var2.
1 IR R SR RS EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEERESES]
2 ** Assenble into .text section. **
3 IR R SR RS EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEERESES]
4 000000 .text
5 000000 9A03 MoV AL, #03h
6
7 IR R SR RS EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEESES]
8 ** Reserve 1 word in varl. **
9 IR R SR RS EEEEEEEEEEEEEEREEEEEEEEEESEEEEEEEEESES]
10 000000 ptr .usect "varl", 1
11
12 IR SRR S S S EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE S
13 *x Reserve 100 words in varl. *x
14 RS R RS S S SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE S
15 000001 array .usect "varl", 100
16
17 000001 9C03 ADD AL, #03h ; Still in .text
18
19 IR R SR RS EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEERSES]
20 ** Reserve 50 words in varl. **
21 IR R SR RS EEEEEEEEE SRR EEEEREEEEEEEEEEEEEEEEESES]
22 000065 dflag .usect "varl", 50
23
24 000002 08A9 ADD AL, #dflag ; Still in .text
000003 0065-
25
26 IR R SR RS EEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEESES]
27 ** Reserve 100 words in var?2. **
28 IR R SR RS EEEEEEEEEEE R EEEEEEEEEEEEEEEEEEEEESES.]
29 000000 vec .usect "var2", 100
30
31 000004 08A9 ADD AL, #vec ; Still in .text
000005 0000-
32
33 IR R SR RS EEEEEEEEEEEEEEREEREEREEEEEEEEEEEEEERSES]
34 *x Decl are an external .usect synmbol **
35 IR R SR RS EEEEEEEEEEEEEEREEREEREEEEEEEEEEEEEERSES]
36 .global array
Figure 4-8. The .usect Directive
Section var1 Section var2
ptr —> 1 word
array —»
100 words
100 words
100 words reserved in var2
dflag —»
50 words

151 words reserved in var1

SPRU513C—-0October 2007
Bubmit Documentation FeedbacH

Assembler Directives

131

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

.var — Use Substitution Symbols as Local Variables

.var Use Substitution Symbols as Local Variables

Syntax .var symy[, sym,, ..., symy]

Description The .var directive allows you to use substitution symbols as local variables within a
macro. With this directive, you can define up to 32 local macro substitution symbols
(including parameters) per macro.
The .var directive creates temporary substitution symbols with the initial value of the null
string. These symbols are not passed in as parameters, and they are lost after
expansion.
See for information on macros.

132 Assembler Directives SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

%‘ TEXAS Chapter 5
INSTRUMENTS SPRUS513C—October 2007

Macro Description

The TMS320C28x™ assembler supports a macro language that enables you to create your own
instructions. This is especially useful when a program executes a particular task several times. The macro
language lets you:

» Define your own macros and redefine existing macros

» Simplify long or complicated assembly code

* Access macro libraries created with the archiver

» Define conditional and repeatable blocks within a macro

* Manipulate strings within a macro

« Control expansion listing

Topic Page
N B U ST [Y/ = Ted o 1| N 134
5.2 Defining MacroSoe oot eeeeene 134
5.3 Macro Parameters/Substitution Symbolsf.......coooeeeeeeeeeeeriren . 139
5.4 Macro Libraries] oo ieiiaees 147
5.5 Using Conditional Assembly in Macros[......cooeeeeeee e 142
5.6 Using Labels in MaCroS i ieeeiieieeaeieieieiaeaeieiiaeaeeeieiiaeaeee. 144
5.7 Producing Messages in MacCroS[o.eeuuiieeeeeeiieiaraeieiieraeeeieiniaene. 143
5.8 Using Directives to Format the Output Listing[..oceeeeeeeeeeeeeeee...... 144
5.9 Using Recursive and Nested Macros[...o.oeeeeeeeieieieeeeiieeaeaeeeinnsn.. 147
5.10 Macro Directives SUMMaAry| . ..oueieeee it ee e ieieraeeeierezazaeeeieras.e. 143

SPRU513C-0October 2007 Macro Description 133

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Using Macros

5.1

5.2

Using Macros

Programs often contain routines that are executed several times. Instead of repeating the source
statements for a routine, you can define the routine as a macro, then call the macro in the places where
you would normally repeat the routine. This simplifies and shortens your source program.

If you want to call a macro several times but with different data each time, you can assign parameters
within a macro. This enables you to pass different information to the macro each time you call it. The
macro language supports a special symbol called a substitution symbol, which is used for macro
parameters. See for more information.

Using a macro is a 3-step process.

Step 1. Define the macro. You must define macros before you can use them in your program. There
are two methods for defining macros:

a. Macros can be defined at the beginning of a source file or in a copy/include file. See
Bection 5.7, Defining Macros, for more information.

b. Macros can also be defined in a macro library. A macro library is a collection of files in
archive format created by the archiver. Each member of the archive file (macro library)
may contain one macro definition corresponding to the member name. You can access a
macro library by using the .mlib directive. For more information, see Beciion 5.4.

Step 2. Call the macro. After you have defined a macro, call it by using the macro name as a
mnemonic in the source program. This is referred to as a macro call.

Step 3. Expand the macro. The assembler expands your macros when the source program calls
them. During expansion, the assembler passes arguments by variable to the macro
parameters, replaces the macro call statement with the macro definition, then assembles the
source code. By default, the macro expansions are printed in the listing file. You can turn off
expansion listing by using the .mnolist directive. For more information, see [Gection 5.9.

When the assembler encounters a macro definition, it places the macro name in the opcode table. This
redefines any previously defined macro, library entry, directive, or instruction mnemonic that has the same
name as the macro. This allows you to expand the functions of directives and instructions, as well as to
add new instructions.

Defining Macros

You can define a macro anywhere in your program, but you must define the macro before you can use it.
Macros can be defined at the beginning of a source file or in a .copy/.include file (see [Copy Source Filg);
they can also be defined in a macro library. For more information about macro libraries, see Gection 5.4.

Macro definitions can be nested, and they can call other macros, but all elements of the macro must be
defined in the same file. Nested macros are discussed in Bection 5.9

A macro definition is a series of source statements in the following format:

macname .macro [parameterq] [, ... ,parameter,]
model statements or macro directives
[.mexit]

.endm

macname names the macro. You must place the name in the source statement's label field.
Only the first 128 characters of a macro name are significant. The assembler
places the macro name in the internal opcode table, replacing any instruction or
previous macro definition with the same name.

.macro is the directive that identifies the source statement as the first line of a macro
definition. You must place .macro in the opcode field.

134

Macro Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
Defining Macros
parametery, are optional substitution symbols that appear as operands for the .macro directive.
parameter, Parameters are discussed in Bection 5.3.
model statements are instructions or assembler directives that are executed each time the macro is

called.
macro directives are used to control macro expansion.

.mexit is a directive that functions as a goto .endm. The .mexit directive is useful when
error testing confirms that macro expansion fails and completing the rest of the
macro is unnecessary.

.endm is the directive that terminates the macro definition.

If you want to include comments with your macro definition but do not want those comments to appear in
the macro expansion, use an exclamation point to precede your comments. If you do want your comments
to appear in the macro expansion, use an asterisk or semicolon. See for more information
about macro comments.

shows the definition, call, and expansion of a macro.

Example 5-1. Macro Definition, Call, and Expansion

1 add3 argl, arg2, arg3
2 * arg3 = argl + arg2 + arg3
3
4 add3 .macro P1, P2, P3, ADDRP
5
6 MOV ACC, P1
7 ADD ACC, P2
8 ADD ACC, P3
9 ADD ACC, ADDRP
10 endm
11
12 .global ABC, def, ghi, adr
13
14 000000 add3 @bc, @lef, @hi, @dr
1
1 000000 EOO0O0! MOV ACC, @bc
1 000001 A000! ADD ACC, @lef
1 000002 A000! ADD ACC, @hi
1 000003 A000! ADD ACC, @dr
15
SPRU513C-0October 2007 Macro Description 135

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Macro Parameters/Substitution Symbols

5.3 Macro Parameters/Substitution Symbols
If you want to call a macro several times with different data each time, you can assign parameters within
the macro. The macro language supports a special symbol, called a substitution symbol, which is used for
macro parameters.
Macro parameters are substitution symbols that represent a character string. These symbols can also be
used outside of macros to equate a character string to a symbol name (see Becftion 3.8.6).
Valid substitution symbols can be up to 128 characters long and must begin with a letter. The remainder
of the symbol can be a combination of alphanumeric characters, underscores, and dollar signs.
Substitution symbols used as macro parameters are local to the macro they are defined in. You can define
up to 32 local substitution symbols (including substitution symbols defined with the .var directive) per
macro. For more information about the .var directive, see Bection 5.3.6.
During macro expansion, the assembler passes arguments by variable to the macro parameters. The
character-string equivalent of each argument is assigned to the corresponding parameter. Parameters
without corresponding arguments are set to the null string. If the number of arguments exceeds the
number of parameters, the last parameter is assigned the character-string equivalent of all remaining
arguments.
If you pass a list of arguments to one parameter or if you pass a comma or semicolon to a parameter, you
must surround these terms with quotation marks .
At assembly time, the assembler replaces the macro parameter/substitution symbol with its corresponding
character string, then translates the source code into object code.
shows the expansion of a macro with varying numbers of arguments.
Example 5-2. Calling a Macro With Varying Numbers of Arguments
Macro definition:
Par ns . Macro a, b, c
) a = .a.
b = :b:
cC = .C:
.endm
Calling the macro:
Par s 100, | abel Par s 100, | abel , x,y
a = 100 ; a = 100
b = I abel ; b = I abel
c="" ; c =Xy
Par ns 100, , x Par ns " 100, 200, 300", x, y
a = 100 ;a = 100, 200, 300
b="" ; b =x
c =X ; c=y
Par ms "ttstring""", X,y
a = "string"
b = x
c =y
136 Macro Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Macro Parameters/Substitution Symbols

53.1

5.3.2

Directives That Define Substitution Symbols

You can manipulate substitution symbols with the .asg and .eval directives.

» The .asg directive assigns a character string to a substitution symbol.
For the .asg directive, the quotation marks are optional. If there are no quotation marks, the assembler
reads characters up to the first comma and removes leading and trailing blanks. In either case, a
character string is read and assigned to the substitution symbol. The syntax of the .asg directive is:

’ .asg["]character string["], substitution symbol

shows character strings being assigned to substitution symbols.

Example 5-3. The .asg Directive

.asg "A4", RETVAL . return val ue

» The .eval directive performs arithmetic on numeric substitution symbols.

The .eval directive evaluates the expression and assigns the string value of the result to the
substitution symbol. If the expression is not well defined, the assembler generates an error and
assigns the null string to the symbol. The syntax of the .eval directive is:

‘ .eval well-defined expression, substitution symbol

shows arithmetic being performed on substitution symbols.

Example 5-4. The .eval Directive

. asg 1, counter

.loop 100

.word counter

.eval counter + 1,counter
. endl oop

In Example 5-4, the .asg directive could be replaced with the .eval directive (.eval 1, counter) without
changing the output. In simple cases like this, you can use .eval and .asg interchangeably. However, you
must use .eval if you want to calculate a value from an expression. While .asg only assigns a character
string to a substitution symbol, .eval evaluates an expression and then assigns the character string
equivalent to a substitution symbol.

See [Assign a Substitution Symbol for more information about the .asg and .eval assembler directives.

Built-In Substitution Symbol Functions

The following built-in substitution symbol functions enable you to make decisions on the basis of the string
value of substitution symbols. These functions always return a value, and they can be used in
expressions. Built-in substitution symbol functions are especially useful in conditional assembly
expressions. Parameters of these functions are substitution symbols or character-string constants.

In the function definitions shown in [[able 5-1], a and b are parameters that represent substitution symbols
or character-string constants. The term string refers to the string value of the parameter. The symbol ch
represents a character constant.

SPRU513C-0October 2007 Macro Description 137
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Macro Parameters/Substitution Symbols

Table 5-1. Substitution Symbol Functions and Return Values

Function

Return Value

$symlen (a)
$symcmp (a,b)
$firstch (a,ch)
$lastch (a,ch)
$isdefed (a)

$ismember (a,b)

$iscons (a)

$isname(a)

$isreg (a) @

Length of string a

<Oifa<b;0ifa=b;>0ifa>b

Index of the first occurrence of character constant ch in string a
Index of the last occurrence of character constant ch in string a

1 if string a is defined in the symbol table
0 if string a is not defined in the symbol table

Top member of list b is assigned to string a
0 if b is a null string

1 if string a is a binary constant

2 if string a is an octal constant

3 if string a is a hexadecimal constant
4 if string a is a character constant

5 if string a is a decimal constant

1 if string a is a valid symbol name
0 if string a is not a valid symbol name

1 if string a is a valid predefined register name
0 if string a is not a valid predefined register name

@ For more information about predefined register names, see Bection 3.8.9.
shows built-in substitution symbol functions.

Example 5-5. Using Built-In Substitution Symbol Functions

gl obal

000000 8000!

000001 8000!

©CoO~NOULAWNPEF

X,

| abel

. asg | abel , ADDR ; ADDR = | abel

Jif

($syncnp(ADDR, "1 abel ") = 0) ; evaluates to true

SUB ACC, @\DDR
.endif

. asg "X, y, z", list ; list

Jif

X, Yy, z
X list =vy,z

($i smenmber (ADDR, list)) ; ADDR

SUB ACC, @\DDR
.endif

5.3.3 Recursive Substitution Symbols

When the assembler encounters a substitution symbol, it attempts to substitute the corresponding
character string. If that string is also a substitution symbol, the assembler performs substitution again. The
assembler continues doing this until it encounters a token that is not a substitution symbol or until it
encounters a substitution symbol that it has already encountered during this evaluation.

In Example 5-8, the x is substituted for z; z is substituted for y; and y is substituted for x. The assembler
recognizes this as infinite recursion and ceases substitution.

Example 5-6. Recursive Substitution

A WNPEF

5 000000 FF10
000001 0000!
6

. gl obal x

.asg "x", z declare z and assign z = "x"
.asg "z", y ; declare y and assigny = "z"
.asg "y", x declare x and assign x = "y"
ADD ACC, x

138 Macro Description

SPRU513C—-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Macro Parameters/Substitution Symbols

5.3.4 Forced Substitution

In some cases, substitution symbols are not recognizable to the assembler. The forced substitution
operator, which is a set of colons surrounding the symbol, enables you to force the substitution of a
symbol's character string. Simply enclose a symbol with colons to force the substitution. Do not include
any spaces between the colons and the symbol.

The syntax for the forced substitution operator is:

:symbol:

The assembler expands substitution symbols surrounded by colons before expanding other substitution
symbols.

You can use the forced substitution operator only inside macros, and you cannot nest a forced substitution
operator within another forced substitution operator.

shows how the forced substitution operator is used.

Example 5-7. Using the Forced Substitution Operator

force . macr o X
.l oop 8
PORT: x: . set X*4
. eval x+1, X
. endl oop
.endm

. gl obal portbase

force
PORTO . set 0
PORT1 . set 4
PORT7 . set 28

5.3.5 Accessing Individual Characters of Subscripted Substitution Symbols

In a macro, you can access the individual characters (substrings) of a substitution symbol with subscripted
substitution symbols. You must use the forced substitution operator for clarity.

You can access substrings in two ways:
» :symbol (well-defined expression):

This method of subscripting evaluates to a character string with one character.
» :symbol (well-defined expression;, well-defined expression,):

In this method, expression; represents the substring's starting position, and expression, represents the
substring's length. You can specify exactly where to begin subscripting and the exact length of the
resulting character string. The index of substring characters begins with 1, not 0.

Example 5-§ and Example 5-9 show built-in substitution symbol functions used with subscripted
substitution symbols.

In Example 5-8, subscripted substitution symbols redefine the STW instruction so that it handles
immediates. In Example 5-9, the subscripted substitution symbol is used to find a substring strgl
beginning at position start in the string strg2. The position of the substring strgl is assigned to the
substitution symbol pos.

SPRU513C-0October 2007 Macro Description 139
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Macro Parameters/Substitution Symbols

Example 5-8. Using Subscripted Substitution Symbols to Redefine an Instruction

ADDX . macro ABC
.var T™P
. asg CABC(1): , TWP
Jif $syncp(TMP, "#") =0
ADD ACC, ABC
. el se
. ensg "Bad Macro Paraneter”
.endif
.endm
ADDX #100 ;macro cal

Example 5-9. Using Subscripted Substitution Symbols to Find Substrings

substr .macro start,strgl, strg2, pos
.var lenl,len2,i,tnp
i f $sym en(start) =0
.eval 1, start
.endi f
.eval 0, pos
.eval start,

. eval $synmi en(strgl),lenl
.eval $sym en(strg2),1en2

.1 oop

.break i = (len2 - lenl + 1)
. asg "istrg2(i,lenl):", tnp
i f $syncnp(strgl,tnmp) = 0
.eval i, pos

. break

.el se

. eval i+ 1,i

.endif

. endl oop

.endm

. asg 0, pos

. asg "arl ar2 ar3 ar4",regs
substr 1,"ar2", regs, pos
.word pos

5.3.6 Substitution Symbols as Local Variables in Macros

If you want to use substitution symbols as local variables within a macro, you can use the .var directive to
define up to 32 local macro substitution symbols (including parameters) per macro. The .var directive
creates temporary substitution symbols with the initial value of the null string. These symbols are not
passed in as parameters, and they are lost after expansion.

var symy [,sym,, ... ,sym,]

The .var directive is used in Example 5-§ and Example 5-9.

140 Macro Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Macro Libraries

5.4 Macro Libraries

One way to define macros is by creating a macro library. A macro library is a collection of files that contain
macro definitions. You must use the archiver to collect these files, or members, into a single file (called an
archive). Each member of a macro library contains one macro definition. The files in a macro library must
be unassembled source files. The macro name and the member name must be the same, and the macro
filename's extension must be .asm. For example:

Macro Name Filename in Macro Library
simple simple.asm
add3 add3.asm

You can access the macro library by using the .mlib assembler directive (described in
). The syntax is:

| mlib filename |

When the assembler encounters the .mlib directive, it opens the library named by filename and creates a
table of the library's contents. The assembler enters the names of the individual members within the library
into the opcode tables as library entries; this redefines any existing opcodes or macros that have the same
name. If one of these macros is called, the assembler extracts the entry from the library and loads it into
the macro table.

The assembler expands the library entry in the same way it expands other macros. See for
how the assembler expands macros. You can control the listing of library entry expansions with the .mlist
directive. For more information about the .mlist directive, see Bection 5.§ and Biart/Stop Macro Expansion
. Only macros that are actually called from the library are extracted, and they are extracted only
once.

You can use the archiver to create a macro library by including the desired files in an archive. A macro
library is no different from any other archive, except that the assembler expects the macro library to
contain macro definitions. The assembler expects only macro definitions in a macro library; putting object
code or miscellaneous source files into the library may produce undesirable results. For information about
creating a macro library archive, see Chapier 4.

SPRU513C-0October 2007 Macro Description 141
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Using Conditional Assembly in Macros

5.5 Using Conditional Assembly in Macros

The conditional assembly directives are .if/.elseif/.else/.endif and .loop/ .break/.endloop. They can be
nested within each other up to 32 levels deep. The format of a conditional block is:

.if well-defined expression
[.elseif well-defined expression]
[-else]

.endif

The .elseif and .else directives are optional in conditional assembly. The .elseif directive can be used
more than once within a conditional assembly code block. When .elseif and .else are omitted and when
the .if expression is false (0), the assembler continues to the code following the .endif directive. See
Assemble Conditional Blockg for more information on the .if/ .elseif/.else/.endif directives.

The .loop/.break/.endloop directives enable you to assemble a code block repeatedly. The format of a
repeatable block is:

Joop [well-defined expression]
[.break [well-defined expression]]

.endloop

The .loop directive's optional well-defined expression evaluates to the loop count (the number of loops to
be performed). If the expression is omitted, the loop count defaults to 1024 unless the assembler
encounters a .break directive with an expression that is true (nonzero). See Assemble Conditional Blockg
for more information on the .loop/.break/.endloop directives.

The .break directive and its expression are optional in repetitive assembly. If the expression evaluates to
false, the loop continues. The assembler breaks the loop when the .break expression evaluates to true or
when the .break expression is omitted. When the loop is broken, the assembler continues with the code
after the .endloop directive.

For more information, see Bection 4.8

Example 5-10, Example 5-11], and Example 5-1 show the .loop/.break/ .endloop directives, properly
nested conditional assembly directives, and built-in substitution symbol functions used in a conditional
assembly code block.

Example 5-10. The .loop/.break/.endloop Directives

. asg 1, x
.1 oop

.break (x == 10) ; if x == 10, quit |oop/break w th expression

. eval X+1, X
. endl oop

142 Macro Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Using Conditional Assembly in Macros

Example 5-11. Nested Conditional Assembly Directives

. asg 1, x

. | oop

i f (x ==10) ; if x == 10, quit |oop
.break (x == 10) ; force break

.endi f

.eval X+1, X

. endl oop

Example 5-12. Built-In Substitution Symbol Functions in a Conditional Assembly Code Block

MACK3 . macro srcl, src2, sum k
; sum = sum + k * (srcl * src2)

i f k =0

MoV T, #srcl
MPY ACC, T, #src2
MoV DP, #sum
ADD @um AL

.el se

MoV T, #srcl

MPY ACC, T, #k
MoV T, AL

MPY ACC, T, #src2
MoV DP, #sum
ADD @um AL
.endif

.endm
.global A0, Al, A2

MACK3 A0, Al, A2,0
MACK3 A0, Al, A2, 100

SPRU513C-0October 2007 Macro Description 143
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Using Labels in Macros

5.6 Using Labels in Macros
All labels in an assembly language program must be unique. This includes labels in macros. If a macro is
expanded more than once, its labels are defined more than once. Defining a label more than once is
illegal. The macro language provides a method of defining labels in macros so that the labels are unique.
Simply follow each label with a question mark, and the assembler replaces the question mark with a
period followed by a unique number. When the macro is expanded, you do not see the unique number in
the listing file. Your label appears with the question mark as it did in the macro definition. You cannot
declare this label as global. The syntax for a unique label is:
| label ?
shows unique label generation in a macro. The maximum label length is shortened to allow
for the unique suffix. For example, if the macro is expanded fewer than 10 times, the maximum label
length is 126 characters. If the macro is expanded from 10 to 99 times, the maximum label length is 125.
The label with its unique suffix is shown in the cross-listing file. To obtain a cross-listing file, invoke the
assembler with the --cross_reference option (see Gection 3.3).
Example 5-13. Unique Labels in a Macro
1
2 mn .macro X, vy, z
3
4 MoV z, ¥y
5 W X, vy
6 B 12, GT
7 MoV z, X
8 |2
9 .endm
10
11 00000000 mn AH AL, PH
1
1 00000000 2FA9 MOV PH, AL
1 00000001 55A9 CVP AH, AL
1 00000002 6202 B |2, GT
1 00000003 2FA8 MOV PH, AH
1 [?
12
LABEL VALUE DEFN REF
. TM5320C2700 000000 0
. TMB320C2800 000001 0
. TM8320C2800_FPU32 000000 0
. TMB320C2800_FPUG4 000000 0
__LARGE_MODEL 000000 0
__LARGE_MODEL__ 000000 0
__TI_ASSEMBLER VERSI ON_QUAL_ID__ 001c52 0
__TI_ASSEMBLER VERSI ON_QUAL__ 000049 0
__TI _ASSEMBLER VERSI ON__ 4c4f 28 0
__large_nodel __ 000000 0
I 1 000004 12 11
144 Macro Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Producing Messages in Macros

5.7

Producing Messages in Macros

The macro language supports three directives that enable you to define your own assembly-time error and
warning messages. These directives are especially useful when you want to create messages specific to
your needs. The last line of the listing file shows the error and warning counts. These counts alert you to
problems in your code and are especially useful during debugging.

.emsg sends error messages to the listing file. The .emsg directive generates errors in the same
manner as the assembler, incrementing the error count and preventing the assembler from
producing an object file.

.mmsg sends assembly-time messages to the listing file. The .mmsg directive functions in the same
manner as the .emsg directive but does not set the error count or prevent the creation of an
object file.

.wmsg sends warning messages to the listing file. The .wmsg directive functions in the same
manner as the .emsg directive, but it increments the warning count and does not prevent the
generation of an object file.

Macro comments are comments that appear in the definition of the macro but do not show up in the
expansion of the macro. An exclamation point in column 1 identifies a macro comment. If you want your
comments to appear in the macro expansion, precede your comment with an asterisk or semicolon.

shows user messages in macros and macro comments that do not appear in the macro
expansion.

For more information about the .emsg, .mmsg, and .wmsg assembler directives, see Define Messageq .

Example 5-14. Producing Messages in a Macro

1 testparam .macro X, y
2 !
3 ! This macro checks for the correct nunber of paraneters.
4 ! It generates an error nessage if x and y are not present.
5 !
6 ! The first line tests for proper input.
7 !
8 i f ($sym en(x) == 0)
9 . ensg "ERROR --m ssing paraneter in call to TEST"
10 . mexi t
11 .else
12 MoV ACC, #2
13 MoV AL, #1
14 ADD ACC, @\L
15 .endif
16 .endm
17
18 000000 testparam 1, 2
1 Jif ($sym en(x) == 0)
1 . ensg "ERROR --m ssing paraneter in call to TEST"
1 . mexit
1 . el se
1 000000 FF20 MoV ACC, #2
000001 0002
1 000002 9A01 MoV AL, #1
1 000003 AOA9 ADD ACC, @A\L
1 .endif
SPRU513C-0October 2007 Macro Description 145

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Using Directives to Format the Output Listing

5.8 Using Directives to Format the Output Listing

Macros, substitution symbols, and conditional assembly directives may hide information. You may need to
see this hidden information, so the macro language supports an expanded listing capability.

By default, the assembler shows macro expansions and false conditional blocks in the list output file. You
may want to turn this listing off or on within your listing file. Four sets of directives enable you to control
the listing of this information:

« Macro and loop expansion listing

.mlist expands macros and .loop/.endloop blocks. The .mlist directive prints all code
encountered in those blocks.

.mnolist suppresses the listing of macro expansions and .loop/ .endloop blocks.
For macro and loop expansion listing, .mlist is the default.

« False conditional block listing

fclist causes the assembler to include in the listing file all conditional blocks that do not
generate code (false conditional blocks). Conditional blocks appear in the listing
exactly as they appear in the source code.

fcnolist suppresses the listing of false conditional blocks. Only the code in conditional blocks
that actually assemble appears in the listing. The .if, .elseif, .else, and .endif directives
do not appear in the listing.

For false conditional block listing, .fclist is the default.

e Substitution symbol expansion listing

.sslist expands substitution symbols in the listing. This is useful for debugging the expansion
of substitution symbols. The expanded line appears below the actual source line.

.ssnolist turns off substitution symbol expansion in the listing.
For substitution symbol expansion listing, .ssnolist is the default.

« Directive listing
drlist causes the assembler to print to the listing file all directive lines.

.drnolist suppresses the printing of certain directives in the listing file. These directives are
.asg, .eval, .var, .sslist, .mlist, .fclist, .ssnolist, .mnolist, .fcnolist, .emsg, .wmsg,
.mmsg, .length, .width, and .break.

For directive listing, .drlist is the default.

146 Macro Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Using Recursive and Nested Macros

59

Using Recursive and Nested Macros

The macro language supports recursive and nested macro calls. This means that you can call other
macros in a macro definition. You can nest macros up to 32 levels deep. When you use recursive macros,
you call a macro from its own definition (the macro calls itself).

When you create recursive or nested macros, you should pay close attention to the arguments that you
pass to macro parameters because the assembler uses dynamic scoping for parameters. This means that
the called macro uses the environment of the macro from which it was called.

shows nested macros. The y in the in_block macro hides the y in the out_block macro. The
x and z from the out_block macro, however, are accessible to the in_block macro.

Example 5-15. Using Nested Macros

in_block .macro y,a
. ; visible paraneters are y,a and x,z fromthe calling macro
.endm

out _bl ock . macro X,Y,Z
. ; visible paraneters are Xx,y,z
in_block x,y ; macro call with x and y as argunents
.endm
out _bl ock ; macro call

shows recursive and fact macros. The fact macro produces assembly code necessary to
calculate the factorial of n, where n is an immediate value. The result is placed in the A register. The fact
macro accomplishes this by calling factl, which calls itself recursively.

Example 5-16. Using Recursive Macros

1 .fcnolist
2
3 fact .macro N, LCC
4
5 if N< 2
6 MOV @cocc, #1
7 . el se
8 MOV @OCC, #N
9
10
11 .eval N1, N
12 factl
13
14 .endif
15 .endm
16
17 factl .macro
18 if N> 1
19 MoV @, @cc
20 MPYB @, @, #N
21 MoV @coc @
22 MOV ACC, @QCC
23 .eval N- 1, N
24 factl
25
26 .endif
27 .endm

SPRU513C-October 2007

Macro Description 147

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

Macro Directives Summary

*L‘ TEXAS
INSTRUMENTS

www.ti.com

5.10 Macro Directives Summary

The directives listed in through can be used with macros. The .macro, .mexit, .endm
and .var directives are valid only with macros; the remaining directives are general assembly language

directives.

Table 5-2. Creating Macros

See
Mnemonic and Syntax Description Macro Use Directive
.endm End macro definition Bection54 [endn
macname .macro [parameter][,... , parameter,] Define macro by macname Bection 5.4 [macrd
.mexit Go to .endm Beclion5] [Fection5.2
.mlib filename Identify library containing macro definitions pection 5.4

Table 5-3. Manipulating Substitution Symbols

See
Mnemonic and Syntax Description Macro Use Directive
.asg ["]character string["], substitution symbol Assign character string to substitution symbol bection 5.3.1
.eval well-defined expression, substitution symbol Perform arithmetic on numeric substitution symbols
.var symj [,sym,, ...,symy] Define local macro symbols S d

Table 5-4. Conditional Assembly

See
Mnemonic and Syntax Description Macro Use Directive
.break [well-defined expression] Optional repeatable block assembly Section 5.9 joreay
.endif End conditional assembly
.endloop End repeatable block assembly
.else Optional conditional assembly block Section 5.9
.elseif well-defined expression Optional conditional assembly block Section 5.9
.if well-defined expression Begin conditional assembly Section 5.9 1
loop [well-defined expression] Begin repeatable block assembly Section 5.9

Table 5-5. Producing Assembly-Time Messages

See
Mnemonic and Syntax Description Macro Use Directive
.emsg Send error message to standard output Bection 51 €ms
.mmsg Send assembly-time message to standard output Bection 51 mms
.wmsg Send warning message to standard output Bection 51 Wms

Table 5-6. Formatting the Listing
See

Mnemonic and Syntax Description Macro Use Directive
felist Allow false conditional code block listing (default)
fcnolist Suppress false conditional code block listing
.mlist Allow macro listings (default)
.mnolist Suppress macro listings
.sslist Allow expanded substitution symbol listing
.ssnolist Suppress expanded substitution symbol listing (default)

148 Macro Description

SPRU513C-October 2007
Bubmit Documentation FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

J@ TEXAS

INSTRUMENTS

Chapter 6

SPRU513C-0October 2007

Archiver Description

The TMS320C28x™ archiver lets you combine several individual files into a single archive file. For
example, you can collect several macros into a macro library. The assembler searches the library and
uses the members that are called as macros by the source file. You can also use the archiver to collect a
group of object files into an object library. The linker includes in the library the members that resolve

external references during the link. The archiver allows you to modify a library by deleting, replacing,
extracting, or adding members.

Topic

6.1
6.2
6.3
6.4

ArchivVer OVerVIeW e oot et teeee e i ieeet et et iaraeeeeerezaraeeeiezazaeeees 1570
The Archiver's Role in the Software Development Flow[............... 157
Invoking the ArchiVer oo e e ieieeeeieieiiaeeeieiiaeaeeees 153
IV S E Tl S 153

SPRU513C-October 2007

Archiver Description

Bubmit Documentafion FeedbacK

149

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Archiver Overview

6.1

Archiver Overview

You can build libraries from any type of files. Both the assembler and the linker accept archive libraries as
input; the assembler can use libraries that contain individual source files, and the linker can use libraries
that contain individual object files.

One of the most useful applications of the archiver is building libraries of object modules. For example,
you can write several arithmetic routines, assemble them, and use the archiver to collect the object files
into a single, logical group. You can then specify the object library as linker input. The linker searches the
library and includes members that resolve external references.

You can also use the archiver to build macro libraries. You can create several source files, each of which
contains a single macro, and use the archiver to collect these macros into a single, functional group. You
can use the .mlib directive during assembly to specify that macro library to be searched for the macros
that you call. Chapter 5, Macro Language, discusses macros and macro libraries in detail, while this
chapter explains how to use the archiver to build libraries.

150

Archiver Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

The Archiver's Role in the Software Development Flow

6.2 The Archiver's Role in the Software Development Flow

shows the archiver's role in the software development process. The shaded portion highlights
the most common archiver development path. Both the assembler and the linker accept libraries as input.

Figure 6-1. The Archiver in the TMS320C28x Software Development Flow

Debugging
tools

: c .
e source
: files :
* Maco | . *C2 :
. . . XX .
* source - C/C+_+ ¢ assembler -
o files compiler . source |
) > Assembler - Translation
Archiver . source assistant
. Macro . : Assembler:
° library ? Assembler . source -
. * Object * lerfré/(;bund
Archiver . files . process
. Library of 3 . Rsuunéggnr(te- .
- object .) ° library °
. files . Linker ° °
Post-link
optimizer
. Executable ®
. oObjectfile
Hex-conversion
utility
v X
EPROM Absolute lister | | Cross-reference Object file C28x
programmer lister utilities

SPRU513C-October 2007

Eubmit Documentafion FeedbacH

Archiver Description

151

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

Invoking the Archiver

*5‘ TEXAS
INSTRUMENTS

www.ti.com

6.3 Invoking the Archiver
To invoke the archiver, enter:
‘arZOOO [[lcommand [options] libname [filename; ... filename,)]

ar2000 is the command that invokes the archiver.

[-Jcommand tells the archiver how to manipulate the existing library members and any specified . A
command can be preceded by an optional hyphen. You must use one of the following
commands when you invoke the archiver, but you can use only one command per
invocation. The archiver commands are as follows:

@ uses the contents of the specified file instead of command line entries. You can
use this command to avoid limitations on command line length imposed by the
host operating system. Use a ; at the beginning of a line in the command file to
include comments. (See for an example using an archiver command
file.)

a adds the specified files to the library. This command does not replace an existing
member that has the same name as an added file; it simply appends new
members to the end of the archive.

d deletes the specified members from the library.

r replaces the specified members in the library. If you do not specify filenames, the
archiver replaces the library members with files of the same name in the current
directory. If the specified file is not found in the library, the archiver adds it instead
of replacing it.

t prints a table of contents of the library. If you specify filenames, only those files
are listed. If you do not specify any filenames, the archiver lists all the members in
the specified library.

X extracts the specified files. If you do not specify member names, the archiver
extracts all liborary members. When the archiver extracts a member, it simply
copies the member into the current directory; it does not remove it from the library.

options In addition to one of the commands, you can specify options. To use options, combine
them with a command; for example, to use the a command and the s option, enter -as
or as. The hyphen is optional for archiver options only. These are the archiver options:

-q (quiet) suppresses the banner and status messages.

-s prints a list of the global symbols that are defined in the library. (This option is
valid only with the a, r, and d commands.)

-u replaces library members only if the replacement has a more recent modification
date. You must use the r command with the -u option to specify which members to
replace.

-v (verbose) provides a file-by-file description of the creation of a new library from an
old library and its members.

libname names the archive library to be built or modified. If you do not specify an extension for
libname, the archiver uses the default extension .lib.

filenames names individual files to be manipulated. These files can be existing library members or
new files to be added to the library. When you enter a filename, you must enter a
complete filename including extension, if applicable.

152 Archiver Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
Archiver Examples
Naming Library Members
Note: It is possible (but not desirable) for a library to contain several members with the same

6.4 Archiver Examples

name. If you attempt to delete, replace, or extract a member whose name is the same as
another library member, the archiver deletes, replaces, or extracts the first library member
with that name.

The following are examples of typical archiver operations:
» If you want to create a library called function.lib that contains the files sine.obj, cos.obj, and flt.obj,

enter:

ar2000 -a function sine.obj cos.obj flt.obj
The archiver responds as follows:

==> new ar chi ve

==>

* You can print a table of contents of function.lib with the -t command, enter:

ar2000 -t

"function.lib'
bui | di ng new archive 'function.lib'

function

The archiver responds as follows:
FI LE NAME

si ne. obj
cos. obj
flt.obj

» If you want to add new members to the library, enter:

SI ZE DATE

300 Wed Jun 14 10: 00: 24 2006
300 Wed Jun 14 10:00: 30 2006
300 Wed Jun 14 09:59:56 2006

ar2000 -as function atan. obj

The archiver responds as follows:

==>
==>
==>
==>
==>
==>
==>
==>
==>

archiver to list the global symbols that are defined in the library.)

synbol
synbol
synbol
synbol
synbol
synbol
synbol
synbol

defi
defi
defi
defi
defi
defi
defi
defi

ned:
ned:
ned:
ned:
ned:
ned:
ned:
ned:

'_sin'
"$sin'
' _cos'
" $cos'
'_tan'
" $tan'
' _atan
' $at an’

bui | ding archive 'function.lib’

Because this example does not specify an extension for the libname, the archiver adds the files to the
library called function.lib. If function.lib does not exist, the archiver creates it. (The -s option tells the

» If you want to modify a library member, you can extract it, edit it, and replace it. In this example,
assume there is a library named macros.lib that contains the members push.asm, pop.asm, and
swap.asm.

ar2000 -x macros push.asm

The archiver makes a copy of push.asm and places it in the current directory; it does not remove
push.asm from the library. Now you can edit the extracted file. To replace the copy of push.asm in the
library with the edited copy, enter:

ar2000 -r

macros push. asm

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Archiver Description 153

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

Archiver Examples

*5‘ TEXAS
INSTRUMENTS

www.ti.com

example:
ar 2000 - @mdul es. cnd

The archiver responds as follows:
==> building archive 'nodules.lib'

If you want to use a command file, specify the command filename after the -@ command. For

is the modules.cmd command file. The r command specifies that the filenames given in
the command file replace files of the same name in the modules.lib library. The -u option specifies that
these files are replaced only when the current file has a more recent revision date than the file that is

in the library.
Example 6-1. Archiver Command File

Command file to replace nenbers of the
; modul es library with updated files
Use r command and u option:
ru
Specify library nane:
nodul es. lib

List filenanmes to be replaced if updated:

al i gn. obj
bss. obj
dat a. obj

t ext . obj
sect . obj

cl i nk. obj
copy. obj
doubl e. obj
drnol i st. obj
ensg. obj
end. obj

154

Archiver Description

u

SPRU513C—-0October 2007
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

J@ TEXAS

INSTRUMENTS

Chapter 7

SPRU513C-0October 2007

Link Step Description

The TMS320C28x™ link step creates executable modules by combining object modules. This chapter
describes the link step options, directives, and statements used to create executable modules. Object
libraries, command files, and other key concepts are discussed as well.

The concept of sections is basic to link step operation; discusses the object module sections in

detail.

Topic

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19

Page

Link Step OVervieW[oooeoieee e i i eeaeataraeeeiereene. 154
The Link Step's Role in the Software Development Flow[.............. 15/
Invoking the Link Steplo oot e ieeeeeeeieiazeeees 153
Link Step OptioNS oo iieeeeeeieieeaeaeieiereeaeeeiieeaeeeieieraeaeeeiineasn 159
Link Step Command FileS[. oo iiieeiieeeeeeieiiiieaeeeininnes 163
Object Libraries[..oeee e 170
The MEMORY DirectiVel it eeeeeiieeeaeeeieieazaeieieenn 177
The SECTIONS Dir€CtiVe et eeiiereeaeieieiiaraeieieiazaeaeeese. 174
Specifying a Section's Run-Time Address[.....coeeeeeeeieieeeeeeeeen... 183
Using UNION and GROUP Statements[.ooioeieieeeeeiieieeaeieieiesn.. 183
Overlaying PagesS e ieiee i ieieeaeeeieiiseaeeeieieiaraeeeiineaeeeeeinineasn 197
Special Section Types (DSECT, COPY, and NOLOAD)...cceevvn....... 193
Default Allocation Algorithm[oo iieeeee e 194
Assigning Symbols at Link Time[....ooeeee oo eieeee e 193
Creating and Filling Holes[.....o oo eeeeee 2049
Link-Step-Generated Copy Tables[..ooeoieiiieeieieeeiieieeaeeeieinen.s 203
Partial (Incremental) Linking[ee v ieiee e ieeeeeeieiiaeaeieinsnes 217
Linking C/C++ COd€].e e i eeeeaeeearaeeiieneneees 217
Link Step Examplel o oeeee e ieene 213

SPRU513C-October 2007

Link Step Description

Bubmit Documentafion FeedbacK

155

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Link Step Overview

7.1

Link Step Overview

The TMS320C28x link step allows you to configure system memory by allocating output sections
efficiently into the memory map. As the link step combines object files, it performs the following tasks:

» Allocates sections into the target system's configured memory

* Relocates symbols and sections to assign them to final addresses

» Resolves undefined external references between input files

The link step command language controls memory configuration, output section definition, and address
binding. The language supports expression assignment and evaluation. You configure system memory by

defining and creating a memory model that you design. Two powerful directives, MEMORY and
SECTIONS, allow you to:

» Allocate sections into specific areas of memory
« Combine object file sections
» Define or redefine global symbols at link time

156

Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

The Link Step's Role in the Software Development Flow

7.2 The Link Step's Role in the Software Development Flow

illustrates the link step's role in the software development process. The link step accepts
several types of files as input, including object files, command files, libraries, and partially linked files. The

link step creates an executable object module that can be downloaded to one of several development

tools or executed by a TMS320C28x device.

Figure 7-1. The Link Step in the TMS320C28x Software Development Flow

: C .
e source e
: files :
. Macro . : :
. o . C2xx .
e source C/C++ - assembler -
: files : compiler S UTCET
) » Assembler o Translation
Archiver ¢ source assistant
. Macro . . Assembler:
* library Assembler . source .
: . . Library-build
. . Object { roé/ess
Archiver . files . P
5 . l Debugging
i T tools
° Library of : A . R:unr;g?;- .
. object . * libra . y
. files . Linker ° Y °
Post-link
optimizer
: Executable :
. oObjectfile .
Hex-conversion
utility
EPROM Absolute lister Cross-_reference Obqut file C28x
programmer lister utilities

SPRU513C-October 2007

Eubmit Documentafion FeedbacH

Link Step Description

157

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Invoking the Link Step

7.3

Invoking the Link Step
The general syntax for invoking the link step is:

¢l2000 -v28 --run_linker [options] filename; filename, ‘

¢l2000 -v28 --run_linker is the command that invokes the link step.
options can appear anywhere on the command line or in a link command file. (Options

are discussed in Bection 7.4.)

filenamey, filename, can be object files, link command files, or archive libraries. The default

extension for all input files is .obj; any other extension must be explicitly
specified. The link step can determine whether the input file is an object or
ASCII file that contains link step commands. The default output filename is
a.out, unless you use the --output_file option to name the output file.

There are two methods for invoking the link step:

Specify options and filenames on the command line. This example links two files, filel.obj and file2.obj,
and creates an output module named link.out.

cl 2000 -v28 --run_linker filel.obj file2.0bj --output_file=link.out

Put filenames and options in a link command file. Filenames that are specified inside a link command
file must begin with a letter. For example, assume the file linker.cmd contains the following lines:

--out put _file=link. out
filel.obj
file2. obj

Now you can invoke the link step from the command line; specify the command filename as an input
file:

cl 2000 -v28 --run_linker linker.cnd

When you use a command file, you can also specify other options and files on the command line. For
example, you could enter:

cl 2000 -v28 --run_linker --map_file=link.map linker.cnd file3.obj

The link step reads and processes a command file as soon as it encounters the filename on the
command line, so it links the files in this order: filel.obj, file2.0bj, and file3.obj. This example creates an
output file called link.out and a map file called link.map.

For information on invoking the link step for C/C++ files, see Bection 7.13.

158

Link Step Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS

www.ti.com

Link Step Options

7.4 Link Step Options

Link step options control linking operations. They can be placed on the command line or in a command
file. Link step options must be preceded by a hyphen (-). Options can be separated from arguments (if
they have them) by an optional space. summarizes the link step options.

Table 7-1. Link Step Options Summary

Option Alias Description Section
--absolute_exe -a Produces an absolute, executable module. This is the default; if neither S ZT]
--absolute_exe nor --relocatable is specified, the link step acts as if
--absolute_exe were specified.
-ar Produces a relocatable, executable object module
--arg_size --args Allocates memory to be used by the loader to pass arguments
--disable_clink 5 Disables conditional linking of COFF object modules
--entry_point -e Defines a global symbol that specifies the primary entry point for the output
module
--fill_value -f Sets default fill values for holes within output sections; fill_value is a 32-bit
constant
--gen_func_subsections Puts each function in its own subsection in the object file
--heap_size -heap Sets heap size (for the dynamic memory allocation in C) to size words and
defines a global symbol that specifies the heap size. Default = 1K bytes
--library -l Names an archive library or link command filename as link step input bection 7.4. 1
--linker_help -help Displays information about syntax and available options -
--make_global -g Makes symbol global (overrides -h)
--make_static -h Makes all global symbols static S 29
--map_file -m Produces a map or listing of the input and output sections, including holes, and .10
places the listing in filename
--no_sym_merge -b Disables merge of symbolic debugging information in COFF object files S .17
--no_sym_table -S Strips symbol table information and line number entries from the output S 4.17
module
--output_file -0 Names the executable output module. The default filename is a.out. Bection 7.4.13
--priority -priority Satisfies unresolved references by the first library that contains a definition for B 115
that symbol
--ram_model -cr Initializes variables at load time S 112
--relocatable -r Produces a nonexecutable, relocatable output module
--reread_libs -X Forces rereading of libraries, which resolves back references
--rom_model -C Autoinitializes variables at run time
--run_abs -abs Produces an absolute listing file S 710
--search_path - Alters library-search algorithms to look in a directory named with pathname
| before looking in the default location. This option must appear before the
--library option.
--stack_size -stack Sets C system stack size to size words and defines a global symbol that
specifies the stack size. Default = 1K bytes
--undef_sym -u Places an unresolved external symbol into the output module's symbol table S 119
--warn_sections -w Displays a message when an undefined output section is created S 2.20
--xml_link_info Generates a well-formed XML file containing detailed information about the S 4217

result of a link

SPRU513C-October 2007

Bubmit Documentafion FeedbacK

Link Step Description

159

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Link Step Options

7.4.1 Relocation Capabilities (--absolute_exe and --relocatable Options)

The link step performs relocation, which is the process of adjusting all references to a symbol when the
symbol's address changes. The link step supports two options (--absolute_exe and --relocatable) that
allow you to produce an absolute or a relocatable output module. The link step also supports a third option
(-ar) that allows you to produce an executable, relocatable output module.

When the link step encounters a file that contains no relocation or symbol table information, it issues a
warning message (but continues executing). Relinking an absolute file can be successful only if each input
file contains no information that needs to be relocated (that is, each file has no unresolved references and
is bound to the same virtual address that it was bound to when the link step created it).

7.4.1.1 Producing an Absolute Output Module (--absolute_exe option)

When you use the --absolute_exe option without the --relocatable option, the link step produces an
absolute, executable output module. Absolute files contain no relocation information. Executable files
contain the following:

» Special symbols defined by the link step (see
* An optional header that describes information such as the program entry point
* No unresolved references

The following example links filel.obj and file2.0bj and creates an absolute output module called a.out:
cl 2000 -v28 --run_linker --absolute_exe filel.obj file2.obj

The --absolute_exe and --relocatable Options

Note: If you do not use the --absolute_exe or the --relocatable option, the link step acts as if you
specified --absolute_exe.

7.4.1.2 Producing a Relocatable Output Module (--relocatable option)

When you use the -ar option, the link step retains relocation entries in the output module. If the output
module is relocated (at load time) or relinked (by another link step execution), use --relocatable to retain
the relocation entries.

The link step produces a file that is not executable when you use the --relocatable option without the
--absolute_exe option. A file that is not executable does not contain special link step symbols or an
optional header. The file can contain unresolved references, but these references do not prevent creation
of an output module.

This example links filel.obj and file2.0bj and creates a relocatable output module called a.out:
cl 2000 -v28 --run_linker --relocatable filel.obj file2.obj

The output file a.out can be relinked with other object files or relocated at load time. (Linking a file that will
be relinked with other files is called partial linking. For more information, see [Béection 7.17.)

7.4.1.3 Producing an Executable, Relocatable Output Module (-ar Option)

If you invoke the link step with both the --absolute_exe and --relocatable options, the link step produces an
executable, relocatable object module. The output file contains the special link step symbols, an optional
header, and all resolved symbol references; however, the relocation information is retained.

This example links filel.obj and file2.obj and creates an executable, relocatable output module called
Xr.out:
cl 2000 -v28 --run_linker -ar filel.obj file2. obj --output_file=xr.out

160

Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Link Step Options

7.4.2 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)

The --arg_size option instructs the link step to allocate memory to be used by the loader to pass
arguments from the command line of the loader to the program. The syntax of the --arg_size option is:

--arg_size= size

The size is a number representing the number of bytes to be allocated in target memory for command-line
arguments.

By default, the link step creates the __c¢_args__ symbol and sets it to -1. When you specify
--arg_size=size, the following occur:

» The link step creates an uninitialized section named .args of size bytes.
* The __c_args__ symbol contains the address of the .args section.

The loader and the target boot code use the .args section and the __c_args__ symbol to determine
whether and how to pass arguments from the host to the target program. See the TMS320C28x C/C++
Compiler User's Guide for information about the loader.

7.4.3 Disable Conditional Linking (--disable_clink option)

The --disable_clink option disables removal of unreferenced sections in COFF object modules. Only
sections marked as candidates for removal with the .clink assembler directive are affected by conditional
linking. See [Conditionally Leave Section Out of Object Module Outpui for details on setting up conditional
linking using the .clink directive.

7.4.4 Define an Entry Point (--entry_point=global_symbol Option)

The memory address at which a program begins executing is called the entry point. When a loader loads
a program into target memory , the program counter (PC) must be initialized to the entry point; the PC
then points to the beginning of the program.

The link step can assign one of four values to the entry point. These values are listed below in the order in
which the link step tries to use them. If you use one of the first three values, it must be an external symbol
in the symbol table.

» The value specified by the --entry_point option. The syntax is:
--entry_point= global_symbol
where global_symbol defines the entry point and must be as an external symbol of the input files.

» The value of symbol _c_int0O0 (if present). The _c_int00 symbol must be the entry point if you are
linking code produced by the C compiler.

» The value of symbol _main (if present)
e 0 (default value)

This example links filel.obj and file2.obj. The symbol begin is the entry point; begin must be defined as
external in filel or file2.

cl 2000 -v28 --run_linker --entry_point=begin filel.obj file2.obj

7.4.5 Set Default Fill Value (--fill_value=value Option)
The --fill_value option fills the holes formed within output sections. The syntax for the --fill_value option is:
--fill_value=value

The argument value is a 32-bit constant (up to eight hexadecimal digits). If you do not use --fill_value, the
link step uses 0 as the default fill value.

This example fills holes with the hexadecimal value ABCDABCD:
cl 2000 -v28 --run_linker --fill_val ue=OxABCDABCD fil el.obj file2. obj

SPRU513C-0October 2007 Link Step Description 161
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

b TEXAS

INSTRUMENTS

www.ti.com

Link Step Options

7.4.6

7.4.7

Define Heap Size (--heap_size= size Option)

The C/C++ compiler uses an uninitialized section called .sysmem for the C run-time memory pool used by
malloc(). You can set the size of this memory pool at link time by using the --heap_size option. The syntax
for the --heap_size option is:

--heap_size= size

The size must be a constant. This example defines a 4K byte heap:
cl 2000 -v28 --run_linker --heap_size=0x1000 /* defines a 4k heap (.sysnmem section)*/

The link step creates the .sysmem section only if there is a .sysmem section in an input file.

The link step also creates a global symbol _ SYSMEM_SIZE and assigns it a value equal to the size of
the heap. The default size is 1K words.

For more information about C/c++ linking, see Béection 7.1

Alter the Library Search Algorithm (--library Option, --search_path Option, and
C2000_C_DIR Environment Variable)

Usually, when you want to specify a file as link step input, you simply enter the filename; the link step
looks for the file in the current directory. For example, suppose the current directory contains the library
object.lib. Assume that this library defines symbols that are referenced in the file filel.obj. This is how you
link the files:

cl 2000 -v28 --run_linker filel.obj object.lib

If you want to use a file that is not in the current directory, use the --library link step option. The syntax for
this option is:

--library=[pathname] filename

The filename is the name of an archive, an object file, or link command file. You can specify up to 128
search paths.

The --library option is not required when one or more members of an object library are specified for input
to an output section. For more information about allocating archive members, see Bection 7.8.7.

You can augment the link step's directory search algorithm by using the --search_path link step option or
the C2000_C_DIR environment variable. The link step searches for object libraries and command files in
the following order:

1. It searches directories named with the --search_path link step option. The --search_path option must
appear before the --library option on the command line or in a command file.

2. It searches directories named with C2000_C_DIR.

3. If C2000_C _DIR is not set, it searches directories named with the assembler's C2000_A DIR
environment variable.

4. It searches the current directory.

7.4.7.1 Name an Alternate Library Directory (--search_path=pathname Option)

The --search_path option names an alternate directory that contains input files. The syntax for this option
is:

--search_path=pathname

The pathname names a directory that contains input files.

When the link step is searching for input files named with the --library option, it searches through
directories named with --search_path first. Each --search_path option specifies only one directory, but you
can have several --search_path options per invocation. When you use the --search_path option to name
an alternate directory, it must precede any --library option used on the command line or in a command file.

For example, assume that there are two archive libraries called r.lib and lib2.lib. The table below shows
the directories that r.lib and lib2.lib reside in, how to set environment variable, and how to use both
libraries during a link. Select the row for your operating system:

162

Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
Link Step Options
Operating System Pathname Enter
cl 2000 -v28 --run_linker f1.0bj f2.0bj --search_path=/1d
UNIX (Bourne shell) /Id and /Id2 --search_path=/1d2 --library=r.lib --library=lib2.1ib
cl 2000 -v28 --run_linker fl1.0bj f2.0bj --search_path=\1d
Windows \Id and \ld2 --search_path=\1d2 --library=r.lib --library=lib2.1ib

7.4.7.2 Name an Alternate Library Directory (C2000_C_DIR Environment Variable)

An environment variable is a system symbol that you define and assign a string to. The link step uses an
environment variable named C2000_C_DIR to name alternate directories that contain object libraries. The
command syntaxes for assigning the environment variable are:

Operating System Enter
UNIX (Bourne shell) C2000_C_DIR=" pathname; ; pathname, ; . .."; export C2000_C_DIR
Windows set C2000_C_DIR= pathname; ; pathname, ; . ..

The pathnames are directories that contain input files. Use the --library link step option on the command
line or in a command file to tell the link step which library or link command file to search for. The
pathnames must follow these constraints:
» Pathnames must be separated with a semicolon.
» Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after
the semicolon in the following is ignored:
set C2000_C DIR= c:\path\one\to\tools ; c:\path\tw\to\tools
» Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:
set C2000_C DI R=c:\first path\to\tools;d:\second path\to\tools
In the example below, assume that two archive libraries called r.lib and lib2.lib reside in Id and |1d2

directories. The table below shows the directories that r.lib and lib2.lib reside in, how to set the
environment variable, and how to use both libraries during a link. Select the row for your operating system:

Operating System Pathname Invocation Command

C2000_C DIR="/1d ;/1d2"; export C2000_C DR cl 2000 -v28
UNIX (Bourne shell) /ld and /Id2 --run_linker fl.obj f2.0bj --library=r.lib --library=lib2.1ib

set C2000_C DIR=\Id;\Id2

cl 2000 -v28 --run_linker fl.o0bj f2.0bj --library=r.lib
Windows \Id and \ld2 --library=lib2.lib

The environment variable remains set until you reboot the system or reset the variable by entering:

Operating System Enter
UNIX (Bourne shell) unset C2000_C DIR
Windows set C2000_C DI R=

The assembler uses an environment variable named C2000_A_DIR to name alternate directories that
contain copy/include files or macro libraries. If C2000_C_DIR is not set, the link step searches for object
libraries in the directories named with C2000_A_DIR. For more information about object libraries, see

I~
- Q.

7.4.8 Make a Symbol Global (--make_global=symbol Option)

The --make_static option makes all global symbols static. If you have a symbol that you want to remain
global and you use the --make_static option, you can use the --make_global option to declare that symbol
to be global. The --make_global option overrides the effect of the --make_static option for the symbol that
you specify. The syntax for the --make_global option is:

--make_global= global_symbol

SPRU513C-0October 2007 Link Step Description 163
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Link Step Options

7.4.9 Make All Global Symbols Static (--make_static Option)

The --make_static option makes all global symbols static. Static symbols are not visible to externally linked
modules. By making global symbols static, global symbols are essentially hidden. This allows external
symbols with the same name (in different files) to be treated as unique.

The --make_static option effectively nullifies all .global assembler directives. All symbols become local to
the module in which they are defined, so no external references are possible. For example, assume
filel.obj and file2.0bj both define global symbols called EXT. By using the --make_static option, you can
link these files without conflict. The symbol EXT defined in filel.obj is treated separately from the symbol
EXT defined in file2.obj.

cl 2000 -v28 --run_linker --make_static filel.obj file2.obj

7.4.10 Create a Map File (--map_file=filename Option)

The --map_file option creates a link step map listing and puts it in filename. The syntax for the --map_file
option is:

--map_file= filename

The link step map describes:

* Memory configuration

* Input and output section allocation

» The addresses of external symbols after they have been relocated

The map file contains the name of the output module and the entry point; it can also contain up to three
tables:

» A table showing the new memory configuration if any nondefault memory is specified (memory
configuration). The table has the following columns; this information is generated on the basis of the
information in the MEMORY directive in the link command file:

— Name. This is the name of the memory range specified with the MEMORY directive.

— Origin. This specifies the starting address of a memory range.

— Length. This specifies the length of a memory range.

— Unused. This specifies the total amount of unused (available) memory in that memory area.
— Attributes. This specifies one to four attributes associated with the named range:

R specifies that the memory can be read.

W specifies that the memory can be written to.

X specifies that the memory can contain executable code.
I specifies that the memory can be initialized.

» For more information about the MEMORY directive, see [Section 7.7.

» A table showing the linked addresses of each output section and the input sections that make up the
output sections (section allocation map). This table has the following columns; this information is
generated on the basis of the information in the SECTIONS directive in the link command file:

— Output section. This is the name of the output section specified with the SECTIONS directive.

— Origin. The first origin listed for each output section is the starting address of that output section.
The indented origin value is the starting address of that portion of the output section.

— Length. The first length listed for each output section is the length of that output section. The
indented length value is the length of that portion of the output section.

— Attributes/input sections. This lists the input file or value associated with an output section. If the
input section could not be allocated, the map file will indicate this with "FAILED TO ALLOCATE".

« For more information about the SECTIONS directive, see [Gection 7.8.
» Atable showing each external symbol and its address sorted by symbol name.
» A table showing each external symbol and its address sorted by symbol address.

This following example links filel.obj and file2.0bj and creates a map file called map.out:

164

Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Link Step Options

cl 2000 -v28 --run_linker filel.obj file2.0bj --map_fil e=map. out
shows an example of a map file.

7.4.11 Disable Merge of Symbolic Debugging Information (--no_sym_merge Option)

By default, the link step eliminates duplicate entries of symbolic debugging information. Such duplicate
information is commonly generated when a C program is compiled for debugging. For example:

-[header.h]-
typedef struct

<define sonme structure nenbers>
} XYz;

-[fl.¢c]-
#i ncl ude "header. h"

-[f2.¢]-
#i ncl ude "header. h"

When these files are compiled for debugging, both f1.obj and f2.0bj have symbolic debugging entries to
describe type XYZ. For the final output file, only one set of these entries is necessary. The link step
eliminates the duplicate entries automatically.

Use the COFF only --no_sym_merge option if you want the link step to keep such duplicate entries in
COFF object files. Using the --no_sym_merge option has the effect of the link step running faster and
using less machine memory.

7.4.12 Strip Symbolic Information (--no_sym_table Option)

The --no_sym_table option creates a smaller output module by omitting symbol table information and line
number entries. The --no_sym_table option is useful for production applications when you do not want to
disclose symbolic information to the consumer.

This example links filel.obj and file2.0bj and creates an output module, stripped of line numbers and
symbol table information, named nosym.out:

cl 2000 -v28 --run_linker --output_file=nosymout --no_symtable filel.obj file2.obj

Using the --no_sym_table option limits later use of a symbolic debugger.

Stripping Symbolic Information

Note: To remove symbol table information, use the strip2000 utility as described in Eection 10.3.
The --no_sym_table option is deprecated.

7.4.13 Name an Output Module (--output_file=filename Option)

The link step creates an output module when no errors are encountered. If you do not specify a filename
for the output module, the link step gives it the default name a.out. If you want to write the output module
to a different file, use the --output_file option. The syntax for the --output_file option is:

--output_file= filename
The filename is the new output module name.

This example links filel.obj and file2.obj and creates an output module named run.out:
cl 2000 -v28 --run_linker --output_file=run.out filel.obj file2.obj

SPRU513C-0October 2007 Link Step Description 165
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Link Step Options

7.4.14 C Language Options (--ram_model and --rom_model Options)

The --ram_model and --rom_model options cause the link step to use linking conventions that are required
by the C compiler.

* The --ram_model option tells the link step to initialize variables at load time.

* The --rom_model option tells the link step to autoinitialize variables at run time.

For more information, see [Bection 7.18, Bection 7.18.4, and Bection 7.18.5.

7.4.15 Exhaustively Read and Search Libraries (--reread_libs and --priority Options)

There are two ways to exhaustively search for unresolved symbols:
» Reread libraries if you cannot resolve a symbol reference (--reread_libs).
» Search libraries in the order that they are specified (--priority).

The link step normally reads input files, including archive libraries, only once when they are encountered
on the command line or in the command file. When an archive is read, any members that resolve
references to undefined symbols are included in the link. If an input file later references a symbol defined
in a previously read archive library, the reference is not resolved.

With the --reread_libs option, you can force the link step to reread all libraries. The link step rereads
libraries until no more references can be resolved. Linking using --reread_libs may be slower, so you
should use it only as needed. For example, if a.lib contains a reference to a symbol defined in b.lib, and
b.lib contains a reference to a symbol defined in a.lib, you can resolve the mutual dependencies by listing
one of the libraries twice, as in:

cl 2000 -v28 --run_linker --library=a.lib --library=b.lib --library=a.lib

or you can force the link step to do it for you:
cl 2000 -v28 --run_linker -reread_libs --library=a.lib --library=b.lib

The --priority option provides an alternate search mechanism for libraries. Using --priority causes each
unresolved reference to be satisfied by the first library that contains a definition for that symbol. For

example:
objfile references A
libl defines B
lib2 defines A, B; obj defining A references B

% cl 2000 -v28 --run_linker objfile libl |ib2

Under the existing model, obifile resolves its reference to A in lib2, pulling in a reference to B, which
resolves to the B in lib2.

Under --priority, obijfile resolves its reference to A in lib2, pulling in a reference to B, but now B is resolved
by searching the libraries in order and resolves B to the first definition it finds, namely the one in lib1.

The --priority option is useful for libraries that provide overriding definitions for related sets of functions in
other libraries without having to provide a complete version of the whole library.

For example, suppose you want to override versions of malloc and free defined in the rts2800.lib without
providing a full replacement for rts2800.lib. Using --priority and linking your new library before rts2800.lib
guarantees that all references to malloc and free resolve to the new library.

The --priority option is intended to support linking programs with DSP/BIOS where situations like the one
illustrated above occur.

7.4.16 Create an Absolute Listing File (--run_abs Option)

The --run_abs option produces an output file for each file that was linked. These files are named with the
input filenames and an extension of .abs. Header files, however, do not generate a corresponding .abs
file.

166 Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Link Step Options

7.4.17 Define Stack Size (--stack_size Option)

The TMS320C28x C/C++ compiler uses an uninitialized section, .stack, to allocate space for the run-time
stack. You can set the size of this section in words at link time with the --stack_size option. The syntax for
the --stack_size option is:

--stack_size= size

The size must be a constant and is in bytes. This example defines a 4K byte stack:
cl 2000 -v28 --run_linker --stack_size=0x1000 /* defines a 4K stack (.stack section) */

If you specified a different stack size in an input section, the input section stack size is ignored. Any
symbols defined in the input section remain valid; only the stack size is different.

When the link step defines the .stack section, it also defines a global symbol, _ STACK_SIZE, and
assigns it a value equal to the size of the section. The default software stack size is 1K words.

7.4.18 Mapping of Symbols (--symbol_map Option)

Symbol mapping allows a symbol reference to be resolved by a symbol with different name. Symbol
mapping allows functions to be overridden with alternate definitions. This feature can be used to patch in
alternate implementations, which provide patches (bug fixes) or alternate functionality. The syntax for the
--symbol_map option is:

--symbol_map=refname=defname

For example, the following code makes the link step resolve any references to foo by the definition
foo_patch:

--synbol _map='f oo=f oo_pat ch’

7.4.19 Introduce an Unresolved Symbol (--undef_sym=symbol Option)

The --undef_sym option introduces an unresolved symbol into the link step's symbol table. This forces the
link step to search a library and include the member that defines the symbol. The link step must encounter
the --undef_sym option before it links in the member that defines the symbol. The syntax for the
--undef_sym option is:

--undef_sym= symbol

For example, suppose a library named rts2800.lib contains a member that defines the symbol symtab;
none of the object files being linked reference symtab. However, suppose you plan to relink the output
module and you want to include the library member that defines symtab in this link. Using the --undef _sym
option as shown below forces the link step to search rts2800.lib for the member that defines symtab and
to link in the member.

cl 2000 -v28 --run_linker --undef_symrsyntab filel.obj file2.0obj rts2800.lib

If you do not use --undef_sym, this member is not included, because there is no explicit reference to it in
filel.obj or file2.obj.

7.4.20 Display a Message When an Undefined Output Section Is Created (--warn_sections
Option)

In a link command file, you can set up a SECTIONS directive that describes how input sections are
combined into output sections. However, if the link step encounters one or more input sections that do not
have a corresponding output section defined in the SECTIONS directive, the link step combines the input
sections that have the same name into an output section with that name. By default, the link step does not
display a message to tell you that this occurred.

You can use the --warn_sections option to cause the link step to display a message when it creates a new
output section.

For more information about the SECTIONS directive, see Eection 7.8. For more information about the
default actions of the link step, see Bection 7.13.

SPRU513C-0October 2007 Link Step Description 167
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com
Link Step Command Files
7.4.21 Generate XML Link Information File (--xml_link_info Option)

The link step supports the generation of an XML link information file through the --xml_link_info=file option.
This option causes the link step to generate a well-formed XML file containing detailed information about
the result of a link. The information included in this file includes all of the information that is currently
produced in a link step generated map file.

See for specifics on the contents of the generated XML file.

7.5 Link Step Command Files

Link step command files allow you to put linking information in a file; this is useful when you invoke the
link step often with the same information. Link step command files are also useful because they allow you
to use the MEMORY and SECTIONS directives to customize your application. You must use these
directives in a command file; you cannot use them on the command line.

Link step command files are ASCII files that contain one or more of the following:

» Input filenames, which specify object files, archive libraries, or other command files. (If a command file
calls another command file as input, this statement must be the last statement in the calling command
file. The link step does not return from called command files.)

» Link step options, which can be used in the command file in the same manner that they are used on
the command line

» The MEMORY and SECTIONS link step directives. The MEMORY directive defines the target memory
configuration (see Bection 7.7). The SECTIONS directive controls how sections are built and allocated
(see Bection 7.8.)

e Assignment statements, which define and assign values to global symbols

To invoke the link step with a command file, enter the cl2000 -v28 --run_linker command and follow it with
the name of the command file:

¢l12000 -v28 --run_linker command_filename

The link step processes input files in the order that it encounters them. If the link step recognizes a file as
an object file, it links the file. Otherwise, it assumes that a file is a command file and begins reading and
processing commands from it. Command filenames are case sensitive, regardless of the system used.

shows a sample link command file called link.cmd.
Example 7-1. Link Step Command File

a. obj /* First input filenane */
b. obj /* Second input filenane */
--output_fil e=prog. out /* Option to specify output file */
--map_fil e=prog. map /* Option to specify map file */

The sample file in contains only filenames and options. (You can place comments in a
command file by delimiting them with /* and */.) To invoke the link step with this command file, enter:

cl 2000 -v28 --run_linker |ink.cnd

You can place other parameters on the command line when you use a command file:

cl 2000 -v28 --run_linker --relocatable link.cnd c.obj d.obj

The link step processes the command file as soon as it encounters the filename, so a.obj and b.obj are
linked into the output module before c.obj and d.obj.

168 Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Link Step Command Files

You can specify multiple command files. If, for example, you have a file called names.Ist that contains

filenames and another file called dir.cmd that contains link step directives, you could enter:

cl 2000 -v28 --run_linker nanes.| st

dir.cmd

One command file can call another command file; this type of nesting is limited to 16 levels. If a command
file calls another command file as input, this statement must be the last statement in the calling command

file.

Blanks and blank lines are insignificant in a command file except as delimiters. This also applies to the

format of link step directives in a command file. shows a sample command file that contains

link step directives.

Example 7-2. Command File With Link Step Directives

a.obj b.obj c.obj
--out put _fil e=prog. out /* Options
--map_fil e=prog. map

MEMORY /* MEMORY directive
FAST_MEM origin = 0x0100 I ength = 0x0100
SLOWMEM origin = 0x7000 | ength = 0x1000

}

SECTI ONS /* SECTI ONS directive

{
.text: > SLOWMEM
.data: > SLOW MEM
. bss: > FAST_MEM

}

For more information, see for the MEMORY directive, and for the SECTIONS

directive.

7.5.1 Reserved Names in Link Step Command Files
The following names are reserved as keywords for link step directives. Do not use them as symbol or

section names in a command file.

align DSECT
ALIGN f

attr fill

ATTR FILL

block group

BLOCK GROUP
COPY | (lowercase L)

/* I'nput filenanes

len

length
LENGTH
load
LOAD
MEMORY
NOLOAD

*/

*/

*/

0
org
origin
ORIGIN
page
PAGE
range

run
RUN
SECTIONS
spare

type

TYPE
UNION

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Link Step Description

169

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Object Libraries

7.5.2 Constants in Link Step Command Files

You can specify constants with either of two syntax schemes: the scheme used for specifying decimal,
octal, or hexadecimal constants used in the assembler (see Beclion 3.6) or the scheme used for integer
constants in C syntax.

Examples:

Format Decimal Octal Hexadecimal
Assembler format 32 40q 020h

C format 32 040 0x20

7.6 Object Libraries
An object library is a partitioned archive file that contains object files as members. Usually, a group of
related modules are grouped together into a library. When you specify an object library as link step input,
the link step includes any members of the library that define existing unresolved symbol references. You
can use the archiver to build and maintain libraries. contains more information about the
archiver.
Using object libraries can reduce link time and the size of the executable module. Normally, if an object
file that contains a function is specified at link time, the file is linked whether the function is used or not;
however, if that same function is placed in an archive library, the file is included only if the function is
referenced.
The order in which libraries are specified is important, because the link step includes only those members
that resolve symbols that are undefined at the time the library is searched. The same library can be
specified as often as necessary; it is searched each time it is included. Alternatively, you can use the
--reread_libs option to reread libraries until no more references can be resolved (see Bection 7.4.15). A
library has a table that lists all external symbols defined in the library; the link step searches through the
table until it determines that it cannot use the library to resolve any more references.
The following examples link several files and libraries, using these assumptions:
* Input files f1.0bj and f2.0bj both reference an external function named clrscr.
* Input file f1.0bj references the symbol origin.
» Input file f2.0bj references the symbol fillclr.
» Member 0 of library libc.lib contains a definition of origin.
e Member 3 of library liba.lib contains a definition of fillclr.
* Member 1 of both libraries defines clrscr.
If you enter:
cl 2000 -v28 --run_linker fl.0bj f2.0bj liba.lib libc.lib
then:
 Member 1 of liba.lib satisfies the f1.0bj and f2.0bj references to clrscr because the library is searched
and the definition of clrscr is found.
* Member 0 of libc.lib satisfies the reference to origin.
» Member 3 of liba.lib satisfies the reference to fillclr.
If, however, you enter:
cl 2000 -v28 --run_linker fl.obj f2.0obj libc.lib liba.lib
then the references to clrscr are satisfied by member 1 of libc.lib.
170 Link Step Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

The MEMORY Directive

7.7

7.7.1

7.7.2

If none of the linked files reference symbols defined in a library, you can use the --undef_sym option to
force the link step to include a library member. (See Bection 7.4.19.) The next example creates an
undefined symbol routl in the link step's global symbol table:

cl 2000 -v28 --run_linker --undef_synrroutl libc.lib

If any member of libc.lib defines routl, the link step includes that member.
Library members are allocated according to the SECTIONS directive default allocation algorithm; see

S d.

describes methods for specifying directories that contain object libraries.

The MEMORY Directive

The link step determines where output sections are allocated into memory; it must have a model of target
memory to accomplish this. The MEMORY directive allows you to specify a model of target memory so
that you can define the types of memory your system contains and the address ranges they occupy. The
link step maintains the model as it allocates output sections and uses it to determine which memory
locations can be used for object code.

The memory configurations of TMS320C28x systems differ from application to application. The MEMORY
directive allows you to specify a variety of configurations. After you use MEMORY to define a memory
model, you can use the SECTIONS directive to allocate output sections into defined memory.

For more information, see [Bection 2.3 and Bection 2.4.

Default Memory Model

If you do not use the MEMORY directive, the link step uses a default memory model that is based on the
TMS320C28x architecture. For more information about the default memory model, see Bection 7.13.

MEMORY Directive Syntax

The MEMORY directive identifies ranges of memory that are physically present in the target system and
can be used by a program. Each range has several characteristics:

* Name

e Starting address

* Length

e Optional set of attributes
» Optional fill specification

TMS320C28x devices have separate memory spaces (pages) that occupy the same address ranges
(overlay). In the default memory map, one space is dedicated to the program area, while a second is
dedicated to the data area. (For detailed information about overlaying pages, see Becfion 7.11].)

In the linker command file, you configure the address spaces separately by using the MEMORY directive's
PAGE option. The linker treats each page as a separate memory space. The TMS320C28x supports up to
255 address spaces, but the number of address spaces available depends on the customized
configuration of your device (see the TMS320C2xx User's Guide for more information.)

When you use the MEMORY directive, be sure to identify all memory ranges that are available for loading
code. Memory defined by the MEMORY directive is configured; any memory that you do not explicitly
account for with MEMORY is unconfigured. The link step does not place any part of a program into
unconfigured memory. You can represent nonexistent memory spaces by simply not including an address
range in a MEMORY directive statement.

The MEMORY directive is specified in a command file by the word MEMORY (uppercase), followed by a
list of memory range specifications enclosed in braces. The MEMORY directive in defines a
system that has 4K words of slow external memory at address 0x0000 0COO in program memory, 32
words of fast external memory at address 0x0000 0060 in data memory, and 512 words of slow external
memory at address 0x0000 0200 in data memory.

SPRU513C-0October 2007 Link Step Description 171
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

@‘ TEXAS

INSTRUMENTS
www.ti.com
The MEMORY Directive

Example 7-3. The MEMORY Directive

/**/

/* Sanpl e conmand file with MEMORY directive */

/**/

filel. obj file2. obj /* Input files */

--out put _fil e=prog. out /* Options */

MEMORY
{
PAGE 0: SLONMEM origin = 0x00000000, |ength = 0x00001000
PAGE 1: SCRATCH. origin = 0x00000060, |ength = 0x00000020
FAST_MEM origin = 0x00000200, |ength = 0x00000200
}
Figure 7-2. Memory Map Defined in
Page 0 Page 1
0x0000 0000 0x0000 0000
0x0000 0060 SCRATCH
0x0000 007F
0x0000 0080
0x0000 0200
FAST-MEM
0x0000 03FF
0x0000 0400
0x0000 0C00
SLOW-MEM
0x0000 1BFF
0x0000 1C00
0x0000 FFFF 0x0000 FFFF

The general syntax for the MEMORY directive is:

MEMORY

{

[PAGE 0:] name 1 [(attr)] : origin = constant, length = constant [, fill = constant];
[PAGE 1:] name 2 [(attr)] : origin = constant, length = constant [, fill = constant];
[PAGE n:] name n [(attr)] : origin = constant, length = constant [, fill = constant];

}

PAGE identifies a memory space. You can specify up to 32 767 pages. Usually, PAGE 0 specifies
program memory, and PAGE 1 specifies data memory. If you do not specify PAGE, the
linker uses PAGE 0. Each PAGE represents a completely independent address space.
Configured memory on PAGE 0 can overlap configured memory on PAGE 1 and so on.

172 Link Step Description SPRU513C-0October 2007

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

The MEMORY Directive

name names a memory range. A memory name can be one to 64 characters; valid characters
include A-Z, a-z, $, ., and _. The names have no special significance to the link step; they
simply identify memory ranges. Memory range names are internal to the link step and are
not retained in the output file or in the symbol table. All memory ranges must have unique
names and must not overlap.

attr specifies one to four attributes associated with the named range. Attributes are optional;
when used, they must be enclosed in parentheses. Attributes restrict the allocation of
output sections into certain memory ranges. If you do not use any attributes, you can
allocate any output section into any range with no restrictions. Any memory for which no
attributes are specified (including all memory in the default model) has all four attributes.
Valid attributes are:

R specifies that the memory can be read.

w specifies that the memory can be written to.

X specifies that the memory can contain executable code.
I specifies that the memory can be initialized.

origin specifies the starting address of a memory range; enter as origin, org, or 0. The value,
specified in bytes, is a 22-bit constant and can be decimal, octal, or hexadecimal.

length specifies the length of a memory range; enter as length, len, or |. The value, specified in
bytes, is a 22-bit constant and can be decimal, octal, or hexadecimal.

fill specifies a fill character for the memory range; enter as fill or f. Fills are optional. The value
is a integer constant and can be decimal, octal, or hexadecimal. The fill value is used to fill
areas of the memory range that are not allocated to a section.

Filling Memory Ranges

Note: If you specify fill values for large memory ranges, your output file will be very large because
filing a memory range (even with 0s) causes raw data to be generated for all unallocated
blocks of memory in the range.

The following example specifies a memory range with the R and W attributes and a fill constant of
OFFFFFFFFh:

MEMORY

RFILE (RW : o = 0x00000020, | = 0x00001000, f = OxFFFFFFFFh

You normally use the MEMORY directive in conjunction with the SECTIONS directive to control allocation
of output sections. After you use MEMORY to specify the target system's memory model, you can use
SECTIONS to allocate output sections into specific named memory ranges or into memory that has
specific attributes. For example, you could allocate the .text and .data sections into the area named
FAST_MEM and allocate the .bss section into the area named SLOW_MEM.

SPRU513C-0October 2007 Link Step Description 173
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

The SECTIONS Directive

7.8

7.8.1

The SECTIONS Directive

The SECTIONS directive:
» Describes how input sections are combined into output sections
» Defines output sections in the executable program

» Specifies where output sections are placed in memory (in relation to each other and to the entire
memory space)

» Permits renaming of output sections

For more information, see Bection 2.3, Bection 2.4, and Eection 2.2.4. Subsections allow you to
manipulate sections with greater precision.

If you do not specify a SECTIONS directive, the link step uses a default algorithm for combining and
allocating the sections. Bection 7.13, describes this algorithm in detail.

SECTIONS Directive Syntax

The SECTIONS directive is specified in a command file by the word SECTIONS (uppercase), followed by
a list of output section specifications enclosed in braces.

The general syntax for the SECTIONS directive is:
SECTIONS
{

name : [property [, property] [, property] . . .]

name : [property [, property] [, property] . . .]
name : [property [, property] [, property] . . .]

Each section specification, beginning with name, defines an output section. (An output section is a section
in the output file.) A section name can be a subsection specification. (See for information on
multi-level subsections.) After the section name is a list of properties that define the section's contents and
how the section is allocated. The properties can be separated by optional commas. Possible properties for
a section are as follows:
* Load allocation defines where in memory the section is to be loaded.

Syntax: load = allocation or

allocation or

> allocation

¢ Run allocation defines where in memory the section is to be run.
Syntax: run = allocation or
run > allocation

« Input sections defines the input sections (object files) that constitute the output section.
Syntax: { input_sections }

e Section type defines flags for special section types.
Syntax: type = COPY or
type = DSECT or
type = NOLOAD

174

Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

The SECTIONS Directive

See Bection 7.12.
* Fill value defines the value used to fill uninitialized holes.

Syntax: fill = value or

name : [properties =
value]

See Bection 7.13.

shows a SECTIONS directive in a sample link command file.

Example 7-4. The SECTIONS Directive

/**/

/* Sanple command file with SECTIONS directive */

/**/

filel.obj file2.obj /* Input files */
- - out put =pr og. out /* Options */
SECTI ONS
{

.text: load = SLOWMEM run = 0x00000800

.const: | oad = SLOW MEM

. bss: | oad = FAST_MEM

.vectors: | oad = 0x0000FF80

{

t1.0bj(.intvecl)
t2.0bj (.intvec2)

endvec = .;
.data:al pha: align = 16
.data: beta: align = 16
}
SPRU513C-0October 2007 Link Step Description 175

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

@‘ TEXAS

INSTRUMENTS
www.ti.com
The SECTIONS Directive
Figure 7-3. Section Allocation Defined by
bss - Allocated in The .bss section combines the .bss sections from
FAST_MEM file1.obj and file2.obj.
. - Aligned on 16-word
data:alpha bogndary The .data section combines the .data sections from
file1.obj and file2.0bj. The linker places it anywhere
space for it is available (in FAST_MEM in this
data:beta illustration) and aligns it to a 16-word boundary.
SLOW_MEM The .text section combines the .text sections from
text - Allocated in file1.obj and file2.0bj. The linker combines all sec-
' SLOW_MEM tions named .text into this section. The application
must relocate the section to run at 0x0000 0800.
const - Allocated in .))
: SLOW MEM The .const section combines the .const sections
- from file1.0bj and file2.0bj.
0x0000 FF80 - Bound at PR :
.vectors The .vectors section is composed of the .intvec1
0x0000 FF80h section from t1.0bj and the .intvec2 section from
t2.0bj.

7.8.2

Allocation

The link step assigns each output section two locations in target memory: the location where the section
will be loaded and the location where it will be run. Usually, these are the same, and you can think of each
section as having only a single address. The process of locating the output section in the target's memory
and assigning its address(es) is called allocation. For more information about using separate load and run
allocation, see Bection 7.9.

If you do not tell the link step how a section is to be allocated, it uses a default algorithm to allocate the
section. Generally, the link step puts sections wherever they fit into configured memory. You can override
this default allocation for a section by defining it within a SECTIONS directive and providing instructions on
how to allocate it.

You control allocation by specifying one or more allocation parameters. Each parameter consists of a
keyword, an optional equal sign or greater-than sign, and a value optionally enclosed in parentheses. If
load and run allocation are separate, all parameters following the keyword LOAD apply to load allocation,
and those following the keyword RUN apply to run allocation. The allocation parameters are:

Binding allocates a section at a specific address.
.text: load = 0x1000

Named memory allocates the section into a range defined in the MEMORY directive with the specified
name (like SLOW_MEM) or attributes.
.text: load > SLOW MEM

Alighment uses the align or palign keyword to specify that the section must start on an address
boundary.
.text: align = 0x100

176

Link Step Description SPRU513C-0October 2007
[Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
The SECTIONS Directive
Blocking uses the block keyword to specify that the section must fit between two address
boundaries: if the section is too big, it starts on an address boundary.
.text: bl ock(0x100)
Page specifies the memory page to be used.

.text: load = SLOWMEM PAGE 1

For the load (usually the only) allocation, you can simply use a greater-than sign and omit the load
keyword:

text: > SLOW MEM .text: {...} > SLONMEM

.text: > 0x4000

If more than one parameter is used, you can string them together as follows:
.text: > SLONMEM align 16 PAGE 2

Or if you prefer, use parentheses for readability:
.text: load = (SLONMEM align (16) page (2))

You can also use an input section specification to identify the sections from input files that are combined
to form an output section. See Becfion 7.8.3.

7.8.2.1 Binding

You can supply a specific starting address for an output section by following the section name with an
address:

.text: 0x00001000

This example specifies that the .text section must begin at location 0x1000. The binding address must be
a 22-bit constant.

Output sections can be bound anywhere in configured memory (assuming there is enough space), but
they cannot overlap. If there is not enough space to bind a section to a specified address, the link step
issues an error message.

Binding is Incompatible With Alignment and Named Memory

Note: You cannot bind a section to an address if you use alignment or named memory. If you try to
do this, the link step issues an error message.

7.8.2.2 Named Memory

You can allocate a section into a memory range that is defined by the MEMORY directive (see
Bection 7.7). This example names ranges and links sections into them:

MEMORY
SLOW MEM (RI X) : origin = 0x00000000, |ength = 0x00001000
FAST_MEM (RW X) : origin = 0x30000000, |ength = 0x00000300

}

SECTI ONS

{
.text > SLOW MEM
.data : > FAST_MEM ALI GN\(128)
. bss : > FAST_MEM

}

In this example, the link step places .text into the area called SLOW_MEM. The .data and .bss output
sections are allocated into FAST_MEM. You can align a section within a named memory range; the .data
section is aligned on a 128-byte boundary within the FAST_MEM range.

SPRU513C-0October 2007 Link Step Description 177
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

The SECTIONS Directive

Similarly, you can link a section into an area of memory that has particular attributes. To do this, specify a
set of attributes (enclosed in parentheses) instead of a memory name. Using the same MEMORY directive
declaration, you can specify:

SECTI ONS

{
.text: > (X) /* .text --> executable menory */
.data: > (RI) /* .data --> read or init nmenory */
.bss: > (RW /* .bss -->read or wite nmenory */

}

In this example, the .text output section can be linked into either the SLOW_MEM or FAST_MEM area
because both areas have the X attribute. The .data section can also go into either SLOW_MEM or
FAST_MEM because both areas have the R and | attributes. The .bss output section, however, must go
into the FAST_MEM area because only FAST_MEM is declared with the W attribute.

You cannot control where in a named memory range a section is allocated, although the link step uses
lower memory addresses first and avoids fragmentation when possible. In the preceding examples,
assuming no conflicting assignments exist, the .text section starts at address 0. If a section must start on a
specific address, use binding instead of named memory.

7.8.2.3 Controlling Allocation Using The HIGH Location Specifier

The link step allocates output sections from low to high addresses within a designated memory range by
default. Alternatively, you can cause the link step to allocate a section from high to low addresses within a
memory range by using the HIGH location specifier in the SECTION directive declaration.

For example, given this MEMORY directive:

MEMORY
RAM origin = 0x0200, |ength = 0x0800
FLASH origin = 0x1100, |ength = OxEEEO
VECTCORS origin = OXFFEO, |ength = Ox001lE
RESET origin = OxFFFE, |ength = 0x0002

}

and an accompanying SECTIONS directive:

SECTI ONS
{

. bss
. sysnmem
. stack

}

The HIGH specifier used on the .stack section allocation causes the link step to attempt to allocate .stack
into the higher addresses within the RAM memory range. The .bss and .sysmem sections are allocated
into the lower addresses within RAM. illustrates a portion of a map file that shows where the
given sections are allocated within RAM for a typical program.

Example 7-5. Link Step Allocation With the HIGH Specifier

. bss 0 00000200 00000270 UNI NI TI ALI ZED
00000200 0000011a rtsxxx.lib defs.obj (.bss)
0000031a 00000088 : trgdrv.obj (.bss)
000003a2 00000078 : low ev.obj (.bss)
0000041a 00000046 exit.obj (.bss)
00000460 00000008 : menory.obj (.bss)
00000468 00000004 . _lock.obj (.bss)
0000046¢ 00000002 . fopen.obj (.bss)
0000046e 00000002 hel | 0. obj (. bss)

. sysmem 0 00000470 00000120 UNI NI TI ALI ZED
00000470 00000004 rtsxxx .lib : menory.obj (.sysnen)

. stack 0 000008c0 00000140 UNI NI TI ALI ZED
000008c0 00000002 rtsxxx .lib : boot.obj (.stack)

178 Link Step Description

SPRU513C-October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

The SECTIONS Directive

As shown in , the .bss and .sysmem sections are allocated at the lower addresses of RAM
(0x0200 - 0x0590) and the .stack section is allocated at address 0x08c0, even though lower addresses
are available.

Without using the HIGH specifier, the link step allocation would have resulted in the code shown in

The HIGH specifier is ignored if it is used with specific address binding or automatic section splitting (>>

operator).

Example 7-6. Link Step Allocation Without HIGH Specifier

. bss 0 00000200 00000270 UNI NI TI ALI ZED
00000200 0000011a rtsxxx.lib defs.obj (.bss)
0000031a 00000088 trgdrv.obj (.bss)
000003a2 00000078 | oW ev.obj (.bss)
0000041a 00000046 exit.obj (.bss)
00000460 00000008 menory. obj (.bss)
00000468 00000004 _lock.obj (.bss)
0000046¢ 00000002 . fopen.obj (.bss)
0000046e 00000002 hel | 0. obj (. bss)

.stack 0 00000470 00000140 UNI NI TI ALI ZED
00000470 00000002 rtsxxx.lib boot . obj (.stack)

.sysmem 0 000005b0 00000120 UNI NI TI ALI ZED
000005b0 00000004 rtsxxx.lib menory. obj (.sysnmen)

7.8.2.4 Alignment and Blocking

You can tell the link step to place an output section at an address that falls on an n-byte boundary, where
n is a power of 2, by using the align keyword. For example, the following code allocates .text so that it falls
on a 32-byte boundary:

.text: load = align(32)

You can specify the same alignment with the palign keyword. In addition, palign ensures the section's size
is a multiple of its placement alignment restrictions, padding the section size up to such a boundary, as
needed.

Blocking is a weaker form of alignment that allocates a section anywhere within a block of size n. The
specified block size must be a power of 2. For example, the following code allocates .bss so that the entire
section is contained in a single 128-byte page or begins on that boundary.:

bl ock(0x0080)

bss: load =

You can use alignment or blocking alone or in conjunction with a memory area, but alignment and
blocking cannot be used together.

7.8.2.5 Using the Page Method

Using the page method of specifying an address, you can allocate a section into an address space that is
named in the MEMORY directive. For example:

MEMORY
{
PAGE 0 : PROG origin = 0x00000800, | ength = 0x00240
PAGE 1 : DATA : origin = 0x00000AQ0, I ength = 0x02200
PAGE 1 : OVR_MEM: origin = 0x00002D00, | ength = 0x01000
PAGE 2 : DATA : origin = 0x00000AQ0, I ength = 0x02200
PAGE 2 : OVR_MEM: origin = 0x00002D00, | ength = 0x01000
}
SECTI ONS
{
.text: PAGE = 0
.dat a: PAGE = 2
.cinit: PAGE =0

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Link Step Description 179

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

The SECTIONS Directive

. bss: PAGE = 1
}

In this example, the .text and .cinit sections are allocated to PAGE 0. They are placed anywhere within the
bounds of PAGE 0. The .data section is allocated anywhere within the bounds of PAGE 2. The .bss
section is allocated anywhere within the bounds of PAGE 1.

You can use the page method in conjunction with any of the other methods to restrict an allocation to a
specific address space. For example:
.text: load = OVR_MEM PAGE 1

In this example, the .text section is allocated to the named memory range OVR_MEM. There are two
named memory ranges called OVR_MEM, however, so you must specify which one is to be used. By
adding PAGE 1, you specify the use of the OVR_MEM memory range in address space PAGE 1 rather
than in address space PAGE 2.

7.8.3 Specifying Input Sections
An input section specification identifies the sections from input files that are combined to form an output
section. In general, the link step combines input sections by concatenating them in the order in which they
are specified. However, if alignment or blocking is specified for an input section, all of the input sections
within the output section are ordered as follows:
» All aligned sections, from largest to smallest
» All blocked sections, from largest to smallest
» All other sections, from largest to smallest
The size of an output section is the sum of the sizes of the input sections that it comprises.
shows the most common type of section specification; note that no input sections are listed.
Example 7-7. The Most Common Method of Specifying Section Contents
SECTI ONS
{
text:
. dat a:
. bss:
}
In Example 7-1, the link step takes all the .text sections from the input files and combines them into the
.text output section. The link step concatenates the .text input sections in the order that it encounters them
in the input files. The link step performs similar operations with the .data and .bss sections. You can use
this type of specification for any output section.
You can explicitly specify the input sections that form an output section. Each input section is identified by
its filename and section name:
SECTI ONS
{
.text : /* Build .text output section */
f1l.0bj(.text) /* Link .text section fromf1. obj */
f2. obj (secl) /* Link secl section fromf2.obj */
f 3. obj /* Link ALL sections fromf3. obj */
f4.0bj(.text,sec2) /* Link .text and sec2 from f4. obj */
}
180 Link Step Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

The SECTIONS Directive

It is not necessary for input sections to have the same name as each other or as the output section they
become part of. If a file is listed with no sections,all of its sections are included in the output section. If any
additional input sections have the same name as an output section but are not explicitly specified by the
SECTIONS directive, they are automatically linked in at the end of the output section. For example, if the
link step found more .text sections in the preceding example and these .text sections were not specified
anywhere in the SECTIONS directive, the link step would concatenate these extra sections after
f4.0bj(sec2).

The specifications in are actually a shorthand method for the following:

SECTI ONS
{

Ctext: { *(.text) }

.data: { *(.data) }

.bss: { *(.bss) }
}

The specification *(.text) means the unallocated .text sections from all the input files. This format is useful
when:

* You want the output section to contain all input sections that have a specified name, but the output
section name is different from the input sections' name.

* You want the link step to allocate the input sections before it processes additional input sections or
commands within the braces.

The following example illustrates the two purposes above:

SECTI ONS
{
text 0 {
abc. obj (xqt)
*(.text)
}
.data : {

*(.data)
fil.obj(table)

}

In this example, the .text output section contains a hamed section xqt from file abc.obj, which is followed
by all the .text input sections. The .data section contains all the .data input sections, followed by a named
section table from the file fil.obj. This method includes all the unallocated sections. For example, if one of
the .text input sections was already included in another output section when the link step encountered
*(.text), the link step could not include that first .text input section in the second output section.

7.8.4 Using Multi-Level Subsections

Originally, subsections were identified with the base section name and a subsection name separated by a
colon. For example, A:B names a subsection of the base section A. In certain places in a link command
file specifying a base name, such as A, selects the section A as well as any subsections of A, such as A:B
or A:.C.

This concept has been extended to include multiple levels of subsection naming. The original constraints
are still true, but a name such as A:B can be used to specify a (sub)section of that name as well as any
(multi-level) subsections beginning with that name, such as A:B:C, A:B:OTHER, etc. All the subsections of
A:B are also subsections of A. A and A:B are supersections of A:B:C. Among a group of supersections of
a subsection, the nearest supersection is the supersection with the longest name. Thus, among {A, A:B}
the nearest supersection of A:B:C:D is A:B.

With multiple levels of subsections, the constraints are the following:

1. When specifying input sections within a file (or library unit) the section name selects an input section
of the same name and any subsections of that name.

2. Input sections that are not explicitly allocated are allocated in an existing output section of the same
name or in the nearest existing supersection of such an output section. An exception to this rule is that
during a partial link (specified by the --relocatable link step option) a subsection is allocated only to an
existing output section of the same name.

SPRU513C-0October 2007 Link Step Description 181
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

The SECTIONS Directive

3. If no such output section described in 2) is defined, the input section is put in a newly created output
section with the same name as the base name of the input section

Consider linking input sections with the following names:

europe:north:norway europe:central:france europe:south:spain
europe:north:sweden europe:central:germany europe:south:italy
europe:north:finland europe:central:denmark europe:south:malta

europe:north:iceland

This SECTIONS specification allocates the input sections as indicated in the comments:

SECTI ONS {

nordic: {*(europe:north)

(europe:central :denmark)} / the nordic countries */

central: {*(europe:central)} /* france, gernany */

therest: {*(europe)} /* spain, italy, malta */
}

This SECTIONS specification allocates the input sections as indicated in the comments:

SECTI ONS {

i sl ands: {*(europe:south: malta)
(europe:north:iceland)} / nmalta, iceland */

europe: north:finland : {} /* finland */
europe: north {} /* norway, sweden */
eur ope: central {} /* germany, denmark */
europe: central : france: {} /* france */

/* (italy, spain) go into a |link step-generated output section "europe" */

Upward Compatibility of Multi-Level Subsections

Note: Existing link step commands that use the existing single-level subsection features and which
do not contain section hames containing multiple colon characters continue to behave as
before. However, if section names in a link command file or in the input sections supplied to
the link step contain multiple colon characters, some change in behavior could be possible.
You should carefully consider the impact of the new rules for multiple levels to see if it affects
a particular system link.

7.8.5 Allocation Using Multiple Memory Ranges

The link step allows you to specify an explicit list of memory ranges into which an output section can be
allocated. Consider the following example:

MEMORY
P_MEML : origin = 02000h, Iength = 01000h
P_MEM2 : origin = 04000h, Iength = 01000h
P_MEMB : origin = 06000h, Iength = 01000h
P_MEM4A : origin = 08000h, Iength = 01000h

}

SECTI ONS
.text : {} > P MM | PMEMR | P_NEMA

}

The | operator is used to specify the multiple memory ranges. The .text output section is allocated as a
whole into the first memory range in which it fits. The memory ranges are accessed in the order specified.
In this example, the link step first tries to allocate the section in P_MEML1. If that attempt fails, the link step
tries to place the section into P_MEMZ2, and so on. If the output section is not successfully allocated in any
of the named memory ranges, the link step issues an error message.

182

Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

The SECTIONS Directive

With this type of SECTIONS directive specification, the link step can seamlessly handle an output section
that grows beyond the available space of the memory range in which it is originally allocated. Instead of
modifying the link command file, you can let the link step move the section into one of the other areas.

7.8.6 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges

The link step can split output sections among multiple memory ranges to achieve an efficient allocation.
Use the >> operator to indicate that an output section can be split, if necessary, into the specified memory
ranges. For example:

MEMORY
P MEML : origin = 02000h, Iength = 01000h
P_MEM2 : origin = 04000h, Iength = 01000h
P_MEMB : origin = 06000h, Iength = 01000h
P_MEMA : origin = 08000h, |ength = 01000h

}
SECTI ONS

.text: { *(.text) } > P_MEML | P.MEM | P_MEMB | P_MEMA

In this example, the >> operator indicates that the .text output section can be split among any of the listed
memory areas. If the .text section grows beyond the available memory in P_MEM1, it is split on an input
section boundary, and the remainder of the output section is allocated to P_MEM2 | P_MEM3 | P_MEMA4.

The | operator is used to specify the list of multiple memory ranges.

You can also use the >> operator to indicate that an output section can be split within a single memory
range. This functionality is useful when several output sections must be allocated into the same memory
range, but the restrictions of one output section cause the memory range to be partitioned. Consider the
following example:

MEMORY

{

}
SECTI ONS

RAM : origin = 01000h, |ength = 08000h

.special: { fl.obj(.text) } = 04000h
.text: { *(.text) } >> RAM

The .special output section is allocated near the middle of the RAM memory range. This leaves two
unused areas in RAM: from 01000h to 04000h, and from the end of f1.0bj(.text) to 08000h. The
specification for the .text section allows the link step to split the .text section around the .special section
and use the available space in RAM on either side of .special.

The >> operator can also be used to split an output section among all memory ranges that match a
specified attribute combination. For example:

MEMORY
P_MEML (RAK) : origin = 01000h, Iength = 02000h
P_MEMR (RW) : origin = 04000h, Iength = 01000h

}
SECTI ONS

{
Ltext: { *(.text) } >> (RW
}
The link step attempts to allocate all or part of the output section into any memory range whose attributes
match the attributes specified in the SECTIONS directive.

This SECTIONS directive has the same effect as:
SECTI ONS

{
Ctext: { *(.text) } > P_MEML | P_MEMZ}

SPRU513C-0October 2007 Link Step Description 183
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com
The SECTIONS Directive

}
Certain sections should not be split:
» Certain sections created by the compiler, including

— The .cinit section, which contains the autoinitialization table for C/C++ programs

— The .pinit section, which contains the list of global constructors for C++ programs

— The .bss section, which defines global variables

» An output section with an input section specification that includes an expression to be evaluated. The
expression may define a symbol that is used in the program to manage the output section at run time.

* An output section that has a START(), END(), OR SIZE() operator applied to it. These operators
provide information about a section's load or run address, and size. Splitting the section may
compromise the integrity of the operation.

e The run allocation of a UNION. (Splitting the load allocation of a UNION is allowed.)

If you use the >> operator on any of these sections, the link step issues a warning and ignores the
operator.

7.8.7 Allocating an Archive Member to an Output Section

The ability to specify an archive member of a library archive for allocation into a specific output section
can be specified inside angle brackets after a library name. Any object files separated by commas or
spaces from the specified archive file are legal within the angle brackets. The syntax for allocating
archived library members specifically inside of a SECTIONS directive is as follows:

[--library=] library name <memberl[,] member2[,] ...> [(input sections)]

specifies that the text sections of boot.obj, exit.obj, and strcpy.obj from the run-time-support
library should be placed in section .boot. The remainder of the .text sections from the run-time-support
library are to be placed in section .rts. Finally, the remainder of all other .text sections are to be placed in
section .text.

Example 7-8. Archive Members to Output Sections

SECTI ONS
{
boot > BOOT1
{
--library=rtsXX lib<boot.obj> (.text)
--library=rtsXX lib>exit.obj strcpy.obj> (.text)
}
.rts > BOOT2
{
--library=rtsXX.lib (.text)
}
. text > RAM

The --library option (which normally implies a library path search be made for the named file following the
option) listed before each library in is optional when listing specific archive members inside <
>. Using < > implies that you are referring to a library.

To collect a set of the input sections from a library in one place, use the --library option within the
SECTIONS directive. For example, the following collects all the .text sections from rts2800.lib into the
.rtstest section:

SECTI ONS

{

184 Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Specifying a Section's Run-Time Address

.rtstest { ---library=rts2800.lib(.text) } > RAM
}

SECTIONS Directive Effect on --priority

Note: Specifying a library in a SECTIONS directive causes that library to be entered in the list of
libraries that the link step searches to resolve references. If you use the --priority option, the
first library specified in the command file will be searched first.

7.9 Specifying a Section's Run-Time Address

At times, you may want to load code into one area of memory and run it in another. For example, you may
have performance-critical code in slow external memory. The code must be loaded into slow external
memory, but it would run faster in fast external memory.

The link step provides a simple way to accomplish this. You can use the SECTIONS directive to direct the
link step to allocate a section twice: once to set its load address and again to set its run address. For
example:

.fir: load = SLONMEM run = FAST_MEM
Use the load keyword for the load address and the run keyword for the run address.
See for an overview on run-time relocation.

7.9.1 Specifying Load and Run Addresses

The load address determines where a loader places the raw data for the section. Any references to the
section (such as labels in it) refer to its run address. The application must copy the section from its load
address to its run address; this does not happen automatically when you specify a separate run address.

If you provide only one allocation (either load or run) for a section, the section is allocated only once and
loads and runs at the same address. If you provide both allocations, the section is allocated as if it were
two sections of the same size. This means that both allocations occupy space in the memory map and
cannot overlay each other or other sections. (The UNION directive provides a way to overlay sections; see

Bection 7.70.1)

If either the load or run address has additional parameters, such as alignment or blocking, list them after
the appropriate keyword. Everything related to allocation after the keyword load affects the load address
until the keyword run is seen, after which, everything affects the run address. The load and run allocations
are completely independent, so any qualification of one (such as alignment) has no effect on the other.
You can also specify run first, then load. Use parentheses to improve readability.

The examples below specify load and run addresses:
.data: load = SLOWMEM align = 32, run = FAST_MEM

(align applies only to load)
.data: load = (SLOWMEM align 32), run = FAST_MEM

(identical to previous example)

.data: run FAST_MEM align 32,
| oad align 16

(align 32 in FAST_MEM for run; align 16 anywhere for load)

7.9.2 Uninitialized Sections

Uninitialized sections (such as .bss) are not loaded, so their only significant address is the run address.
The link step allocates uninitialized sections only once: if you specify both run and load addresses, the link
step warns you and ignores the load address. Otherwise, if you specify only one address, the link step
treats it as a run address, regardless of whether you call it load or run. This example specifies load and
run addresses for an uninitialized section:

.bss: load = 0x1000, run = FAST_MEM

SPRU513C-0October 2007 Link Step Description 185
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Specifying a Section's Run-Time Address

A warning is issued, load is ignored, and space is allocated in FAST_MEM. All of the following examples
have the same effect. The .bss section is allocated in FAST_MEM.
.bss: load = FAST_MEM

.bss: run = FAST_MEM
. bss: > FAST_MEM

7.9.3 Referring to the Load Address by Using the .label Directive

Normally, any reference to a symbol in a section refers to its run-time address. However, it may be
necessary at run time to refer to a load-time address. Specifically, the code that copies a section from its
load address to its run address must have access to the load address. The .label directive defines a
special symbol that refers to the section's load address. Thus, whereas normal symbols are relocated with
respect to the run address, .label symbols are relocated with respect to the load address. See
Load-Time Address Label for more information on the .label directive.

Example 7-9 and Example 7-10 show the use of the .label directive to copy a section from its load address
in SLOW_MEM to its run address in FAST_MEM. illustrates the run-time execution of

-9
Example 7-9. Copying Section Assembly Language File

.sect ".fir"

.label fir_src ; load address of section
fir: ; run address of section

<code here> ; code for the section

.label fir_end ; load address of section end

MOV XAR6, fir_src
MoV XAR7, #fir
RPT #(fir_end - fir_src - 1)

k PWRI TE *XAR7, *XAR6++

; junp to section, nowin RAM

Example 7-10. Link Step Command File for

/***/

/* PARTI AL LI NKER COMVAND FI LE FOR FI R EXAMPLE */

/***/

MEMORY
PAGE 0 : RAM : o origin = 0x00000800, |ength = 0x00002400
PAGE 0 : SLOWMEM : origin = 0x00002C00, |ength = 0x0000D200
PAGE 1 : FAST_MEM : origin = 0x00000800, |ength = 0x0000F800

}

SECTI ONS

{
.text: load = SLOW MEM PAGE 0O
.fir: load = FAST_MEM PAGE 1, run RAM PAGE 0

}

186 Link Step Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Specifying a Section's Run-Time Address

Figure 7-4. Run-Time Execution of

0x0000 0800

0x0000 2C00

0x0000 FEOO

Program memory

FAST_MEM

fir (relocated
L to run here)

|
¢

0x0000 0800

Data memory

Data

[

(loads here)

fir

SPRU513C—-0October 2007
Bubmit Documentation FeedbacH

Link Step Description

187

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

b TEXAS

INSTRUMENTS

www.ti.com

Using UNION and GROUP Statements

7.10 Using UNION and GROUP Statements

Two SECTIONS statements allow you to conserve memory: GROUP and UNION. Unioning sections
causes the link step to allocate them to the same run address. Grouping sections causes the link step to
allocate them contiguously in memory. Section names can refer to sections, subsections, or archive library
members.

7.10.1 Overlaying Sections With the UNION Statement

For some applications, you may want to allocate more than one section to run at the same address. For
example, you may have several routines you want in fast external memory at various stages of execution.
Or you may want several data objects that are not active at the same time to share a block of memory.
The UNION statement within the SECTIONS directive provides a way to allocate several sections at the
same run-time address.

In Example 7-17], the .bss sections from filel.obj and file2.obj are allocated at the same address in
FAST_MEM. In the memory map, the union occupies as much space as its largest component. The
components of a union remain independent sections; they are simply allocated together as a unit.

Example 7-11. The UNION Statement

SECTI ONS
.text: load = SLON MEM
UNION: run = FAST_MEM

{
.bss:partl: { filel.obj(.bss) }

.bss:part2: { file2.0bj(.bss) }

.bss:part3: run = FAST_MEM { gl obal s. obj (. bss) }

Allocation of a section as part of a union affects only its run address. Under no circumstances can
sections be overlaid for loading. If an initialized section is a union member (an initialized section, such as
.text, has raw data), its load allocation must be separately specified. See Example 7-12.

Example 7-12. Separate Load Addresses for UNION Sections

UNI ON run = FAST_MEM

{

SLOWMEM { filel.obj(.text) }
SLOWMEM { file2.obj(.text) }

.text:partl: |oad
.text:part2: |oad

188

Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Using UNION and GROUP Statements

Figure 7-5. Memory Allocation Shown in Example 7-17 and Example 7-12

FAST_MEM Sections can run FAST_MEM
as a union. This .
t
.bss:part2 7 is run-time alloca- Aext 2 (run) ﬁ?lptliﬁ’ea
.bss:part1 tion only. text 1 (run)
w
.bss:part3 .bss:part3
SLOW_MEM SLOW_MEM
text . text 1 (load)
Sections cannot
load as a union i\
.text 2 (load)

Since the .text sections contain data, they cannot load as a union, although they can be run as a union.
Therefore, each requires its own load address. If you fail to provide a load allocation for an initialized
section within a UNION, the link step issues a warning and allocates load space anywhere it can in
configured memory.

Uninitialized sections are not loaded and do not require load addresses.

The UNION statement applies only to allocation of run addresses, so it is meaningless to specify a load
address for the union itself. For purposes of allocation, the union is treated as an uninitialized section: any
one allocation specified is considered a run address, and if both run and load addresses are specified, the
link step issues a warning and ignores the load address.

7.10.2 Grouping Output Sections Together

The SECTIONS directive's GROUP option forces several output sections to be allocated contiguously. For
example, assume that a section named term_rec contains a termination record for a table in the .data
section. You can force the link step to allocate .data and term_rec together:

Example 7-13. Allocate Sections Together

SECTI ONS
{
.text /* Normal output section */
. bss /* Nornmal output section */
GROUP 0x00001000 : /* Specify a group of sections */
{
.data /* First section in the group */
termrec /* Allocated imedi ately after .data */
}
}
SPRU513C-0October 2007 Link Step Description 189

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Using UNION and GROUP Statements

You can use binding, alignment, or named memory to allocate a GROUP in the same manner as a single
output section. In the preceding example, the GROUP is bound to address 0x00001000. This means that
.data is allocated at 0x00001000, and term_rec follows it in memory.

You Cannot Specify Addresses for Sections Within a GROUP

Note: When you use the GROUP option, binding, alignment, or allocation into named memory can
be specified for the group only. You cannot use binding, named memory, or alignment for
sections within a group.

7.10.3 Nesting UNIONs and GROUPs

The link step allows arbitrary nesting of GROUP and UNION statements with the SECTIONS directive. By
nesting GROUP and UNION statements, you can express hierarchical overlays and groupings of sections.
shows how two overlays can be grouped together.

Example 7-14. Nesting GROUP and UNION Statements

SECTI ONS

GROUP 1000h : run = FAST_MEM

UNI ON:
nysect1l: |oad = SLON MEM
nysect2: |oad = SLON MEM
}
UNI ON:
{
nysect3: |oad = SLON MEM
nysect4: |oad = SLON MEM

}
}
}

For this example, the link step performs the following allocations:

» The four sections (mysectl, mysect2, mysect3, mysect4) are assigned unigue, non-overlapping load
addresses in the SLOW_MEM memory region. This assignment is determined by the particular load
allocations given for each section.

» Sections mysectl and mysect2 are assigned the same run address in FAST_MEM.

» Sections mysect3 and mysect4 are assigned the same run address in FAST_MEM.

« The run addresses of mysectl/mysect2 and mysect3/mysect4 are allocated contiguously, as directed
by the GROUP statement (subject to alignment and blocking restrictions).

To refer to groups and unions, link step diagnostic messages use the notation:

GROUP_n UNION_n

In this notation, n is a sequential number (beginning at 1) that represents the lexical ordering of the group
or union in the link step control file, without regard to nesting. Groups and unions each have their own
counter.

7.10.4 Checking the Consistency of Allocators
The link step checks the consistency of load and run allocations specified for unions, groups, and
sections. The following rules are used:

* Run allocations are only allowed for top-level sections, groups, or unions (sections, groups, or unions
that are not nested under any other groups or unions). The link step uses the run address of the
top-level structure to compute the run addresses of the components within groups and unions.

» The link step does not accept a load allocation for UNIONSs.

190 Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Overlaying Pages

» The link step does not accept a load allocation for uninitialized sections.

« In most cases, you must provide a load allocation for an initialized section. However, the link step does
not accept a load allocation for an initialized section that is located within a group that already defines
a load allocator.

* As a shortcut, you can specify a load allocation for an entire group, to determine the load allocations
for every initialized section or subgroup nested within the group. However, a load allocation is
accepted for an entire group only if all of the following conditions are true:

— The group is initialized (that is, it has at least one initialized member).
— The group is not nested inside another group that has a load allocator.
— The group does not contain a union containing initialized sections.

» If the group contains a union with initialized sections, it is necessary to specify the load allocation for
each initialized section nested within the group. Consider the following example:
SECTI ONS

GROUP: |l oad = SLONWMEM run = SLON MEM
{

.text1:
UNI ON:

.text2:
Ltext3:

}
}
}

» The load allocator given for the group does not uniquely specify the load allocation for the elements
within the union: .text2 and .text3. In this case, the link step issues a diagnostic message to request
that these load allocations be specified explicitly.

7.11 Overlaying Pages

Some devices use a memory configuration in which all or part of the memory space is overlaid by shadow
memory. This allows the system to map different banks of physical memory into and out of a single
address range in response to hardware selection signals. In other words, multiple banks of physical
memory overlay each other at one address range. You may want the link step to load various output
sections into each of these banks or into banks that are not mapped at load time.

The link step supports this feature by providing overlay pages. Each page represents an address range
that must be configured separately with the MEMORY directive. You then use the SECTIONS directive to
specify the sections to be mapped into various pages.

Overlay Section and Overlay Page Are Not the Same

Note: The UNION capability and the overlay page capability (see sound similar
because they both deal with overlays. They are, in fact, quite different. UNION allows
multiple sections to be overlaid within the same memory space. Overlay pages, on the other
hand, define multiple memory spaces. It is possible to use the page facility to approximate
the function of UNION, but it is cumbersome.

7.11.1 Using the MEMORY Directive to Define Overlay Pages

To the link step, each overlay page represents a completely separate memory space comprising the full
range of addressable locations. In this way, you can link two or more sections at the same (or
overlapping) addresses if they are on different pages.

Pages are numbered sequentially, beginning with 0. If you do not use the PAGE option, the link step
allocates initialized sections into PAGE 0 (program memory) and uninitialized sections into PAGE 1 (data
memory).

SPRU513C-0October 2007 Link Step Description 191
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Overlaying Pages

7.11.2 Example of Overlay Pages

Assume that your system can select between two banks of physical memory for data memory space:
address range AOOh to FFFFh for PAGE 1 and 0A00h to 2BFFh for PAGE 2. Although only one bank can
be selected at a time, you can initialize each bank with different data. shows how you use
the MEMORY directive to obtain this configuration:

Example 7-15. MEMORY Directive With Overlay Pages

MEMORY
PAGE 0 : RAM ;origin = 0x00000800, |ength = 0x00000240
. PROG sorigin = 0x00002C00, |ength = 0x0000D200
PAGE 1 : OVR_MEM :origin = 0x00000A00, |ength = 0x00002200
. DATA sorigin = 0x00002C00, |ength = 0x0000D400
PAGE 2 : OVR_MEM :origin = 0x00000A00, |ength = 0x00002200

defines three separate address spaces.

* PAGE 0 defines an area of RAM program memory space and the rest of program memory space.
* PAGE 1 defines the first overlay memory area and the rest of data memory space.

* PAGE 2 defines another area of overlay memory for data space.

Both OVR_MEM ranges cover the same address range. This is possible because each range is on a
different page and therefore represents a different memory space.

7.11.3 Using Overlay Pages With the SECTIONS Directive

Assume that you are using the MEMORY directive as shown in Example 7-13. Further assume that your
code consists of the standard sections, as well as four modules of code that you want to load in data
memory space and run in RAM program memory. shows how to use the SECTIONS
directive overlays to accomplish these objectives.

Example 7-16. SECTIONS Directive Definition for Overlays in Example 7-10

SECTI ONS
UNION : run = RAM

S1 : load = OVR_MEM PAGE 1
{
sl | oad = 0x00000A00h;
sl _start = .;
fl.obj (.text)
f2.0bj (.text)
sl length = . - sl start;

S2 : load = OVR_MEM PACE 2

s2_|l oad = 0x00000A00h;
s2_start = .;

f3.0bj (.text)

f4.0bj (.text)

s2_length = . - s2_start;
}
}
.text: load = PROG PAGE 0
.data: load = PROG PAGE 0
.bss : load = DATA PACGE 1
}
192 Link Step Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

b TEXAS

INSTRUMENTS

www.ti.com

Special Section Types (DSECT, COPY, and NOLOAD)

The four modules are f1, 12, f3, and f4. Modules f1 and f2 are combined into output section S1, and f3 and
f4 are combined into output section S2. The PAGE specifications for S1 and S2 tell the link step to link
these sections into the corresponding pages. As a result, they are both linked to load address AOOh, but in
different memory spaces. When the program is loaded, a loader can configure hardware so that each
section is loaded into the appropriate memory bank.

7.11.4 Memory Allocation for Overlaid Pages

Figure 7-g shows overlay pages defined by the MEMORY directive in Example 7-13 and the SECTIONS
directive in Example 7-19.

Figure 7-6. Overlay Pages Defined in Example 7-1§ and Example 7-1G

0x0000 0800

0x0000 2C00

0x0000 FEOO

Program memory
page 0

FAST_MEM

: Run address :
| forf1,f2,f3, |
I

= ——— o o o .

0x0000 0AQO

0x0000 2C00

Data memory
page 1

i
I f1.0bj (.text)
I f2.0bj (text)
I

7.12 Special Section Types (DSECT, COPY, and NOLOAD)

You can assign three special types to output sections: DSECT, COPY, and NOLOAD. These types affect
the way that the program is treated when it is linked and loaded. You can assign a type to a section by
placing the type after the section definition. For example:

SECTI ONS

{
secl: | oad = 0x00002000,
sec2: | oad = 0x00004000,
sec3: | oad = 0x00006000,

e The DSECT type creates a dummy section with the following characteristics:

type
type
type

DSECT {f1.obj}
COPY {f2.o0bj}
NOLOAD {f 3. obj }

0x0000 OAOO

0x0000 2C00

Data memory
page 2

OVR_MEM

f3.0bj (.text)
f4.0bj (.text)

It is not included in the output section memory allocation. It takes up no memory and is not included
in the memory map listing.
It can overlay other output sections, other DSECTS, and unconfigured memory.

Global symbols defined in a dummy section are relocated normally. They appear in the output
module's symbol table with the same value they would have if the DSECT had actually been
loaded. These symbols can be referenced by other input sections.

Undefined external symbols found in a DSECT cause specified archive libraries to be searched.
The section's contents, relocation information, and line number information are not placed in the

output module.

In the preceding example, none of the sections from fl1.obj are allocated, but all the symbols are
relocated as though the sections were linked at address 0x2000. The other sections can refer to any of
the global symbols in secl.

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Link Step Description 193

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Default Allocation Algorithm

» A COPY section is similar to a DSECT section, except that its contents and associated information are
written to the output module. The .cinit section that contains initialization tables for the TMS320C28x
C/C++ compiler has this attribute under the run-time initialization model.

» A NOLOAD section differs from a normal output section in one respect: the section's contents,

relocation information, and line number information are not placed in the output module. The link step
allocates space for the section, and it appears in the memory map listing.

7.13 Default Allocation Algorithm

The MEMORY and SECTIONS directives provide flexible methods for building, combining, and allocating
sections. However, any memory locations or sections that you choose not to specify must still be handled
by the link step. The link step uses default algorithms to build and allocate sections within the
specifications you supply.

If you do not use the MEMORY and SECTIONS directives, the link step allocates output sections as
though the definitions in were specified.

Example 7-17. Default Allocation for TMS320C28x Devices

MEMORY
PAGE 0: PROG origin = 0x000040 Ilength = Ox3fffcO
PAGE 1: DATA: origin = 0x000000 |Iength = 0x010000
PAGE 1: DATAl: origin = 0x010000 I|ength = 0x3f0000
}
SECTI ONS
{
.text: PAGE = 0
. dat a: PAGE = 0
.cinit: PAGE = 0 /* Used only for C prograns */
. bss: PAGE = 1

All .text input sections are concatenated to form a .text output section in the executable output file, and all
.data input sections are combined to form a .data output section.

If you use a SECTIONS directive, the link step performs no part of the default allocation. Allocation is
performed according to the rules specified by the SECTIONS directive and the general algorithm
described next in Bection 7.13.7].

7.13.1 How the Allocation Algorithm Creates Output Sections

An output section can be formed in one of two ways:

Method 1 As the result of a SECTIONS directive definition

Method 2 By combining input sections with the same name into an output section that is not defined in
a SECTIONS directive

If an output section is formed as a result of a SECTIONS directive, this definition completely determines
the section's contents. (See for examples of how to define an output section's content.)

If an output section is formed by combining input sections not specified by a SECTIONS directive, the link
step combines all such input sections that have the same name into an output section with that name. For
example, suppose the files f1.obj and f2.0bj both contain named sections called Vectors and that the
SECTIONS directive does not define an output section for them. The link step combines the two Vectors
sections from the input files into a single output section named Vectors, allocates it into memory, and
includes it in the output file.

194

Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Assigning Symbols at Link Time

By default, the link step does not display a message when it creates an output section that is not defined
in the SECTIONS directive. You can use the --warn_sections link step option (see [Bection 7.4.20) to
cause the link step to display a message when it creates a new output section.

After the link step determines the composition of all output sections, it must allocate them into configured
memory. The MEMORY directive specifies which portions of memory are configured. If there is no
MEMORY directive, the link step uses the default configuration as shown in Example 7-17. (See

for more information on configuring memory.)

7.13.2 Reducing Memory Fragmentation

7.14

The link step's allocation algorithm attempts to minimize memory fragmentation. This allows memory to be
used more efficiently and increases the probability that your program will fit into memory. The algorithm
comprises these steps:

1. Each output section for which you have supplied a specific binding address is placed in memory at that
address.

2. Each output section that is included in a specific, named memory range or that has memory attribute
restrictions is allocated. Each output section is placed into the first available space within the named
area, considering alignment where necessary.

3. Any remaining sections are allocated in the order in which they are defined. Sections not defined in a
SECTIONS directive are allocated in the order in which they are encountered. Each output section is
placed into the first available memory space, considering alignment where necessary.

Assigning Symbols at Link Time

Link step assignment statements allow you to define external (global) symbols and assign values to them
at link time. You can use this feature to initialize a variable or pointer to an allocation-dependent value.

7.14.1 Syntax of Assignment Statements

The syntax of assignment statements in the link step is similar to that of assignment statements in the C
language:

symbol = expression; assigns the value of expression to symbol
symbol += expression; adds the value of expression to symbol
symbol -= expression; subtracts the value of expression from symbol
symbol * = expression; multiplies symbol by expression

symbol /= expression; divides symbol by expression

The symbol should be defined externally. If it is not, the link step defines a new symbol and enters it into
the symbol table. The expression must follow the rules defined in Bection 7.14.3. Assignment statements
must terminate with a semicolon.

The link step processes assignment statements after it allocates all the output sections. Therefore, if an
expression contains a symbol, the address used for that symbol reflects the symbol's address in the
executable output file.

For example, suppose a program reads data from one of two tables identified by two external symbols,
Tablel and Table2. The program uses the symbol cur_tab as the address of the current table. The
cur_tab symbol must point to either Tablel or Table2. You could accomplish this in the assembly code,
but you would need to reassemble the program to change tables. Instead, you can use a link step
assignment statement to assign cur_tab at link time:

prog. obj /* Input file */
cur_tab = Tablel; /* Assign cur_tab to one of the tables */
SPRU513C-0October 2007 Link Step Description 195

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Assigning Symbols at Link Time

7.14.2 Assigning the SPC to a Symbol

A special symbol, denoted by a dot (.), represents the current value of the section program counter (SPC)
during allocation. The SPC keeps track of the current location within a section. The link step's . symbol is
analogous to the assembler's $ symbol. The . symbol can be used only in assignment statements within a
SECTIONS directive because . is meaningful only during allocation and SECTIONS controls the allocation
process. (See Bection 7.9.)

The . symbol refers to the current run address, not the current load address, of the section.

For example, suppose a program needs to know the address of the beginning of the .data section. By
using the .global directive (see [dentify Global Symbolg), you can create an external undefined variable
called Dstart in the program. Then, assign the value of . to Dstart:

SECTI ONS

{
.text: {}
. dat a: {Dstart = .;}
.bss : {}

}

This defines Dstart to be the first linked address of the .data section. (Dstart is assigned before .data is
allocated.) The link step relocates all references to Dstart.

A special type of assignment assigns a value to the . symbol. This adjusts the SPC within an output
section and creates a hole between two input sections. Any value assigned to . to create a hole is relative
to the beginning of the section, not to the address actually represented by the . symbol. Holes and
assignments to . are described in Bection 7.19.

7.14.3 Assignment Expressions

These rules apply to link step expressions:

» Expressions can contain global symbols, constants, and the C language operators listed in [Table 7-2.
» All numbers are treated as long (32-bit) integers.

» Constants are identified by the link step in the same way as by the assembler. That is, numbers are
recognized as decimal unless they have a suffix (H or h for hexadecimal and Q or q for octal). C
language prefixes are also recognized (0 for octal and Ox for hex). Hexadecimal constants must begin
with a digit. No binary constants are allowed.

» Symbols within an expression have only the value of the symbol's address. No type-checking is
performed.

» Link step expressions can be absolute or relocatable. If an expression contains any relocatable
symbols (and O or more constants or absolute symbols), it is relocatable. Otherwise, the expression is
absolute. If a symbol is assigned the value of a relocatable expression, it is relocatable; if it is assigned
the value of an absolute expression, it is absolute.

The link step supports the C language operators listed in in order of precedence. Operators in
the same group have the same precedence. Besides the operators listed in [Table 7-2, the link step also
has an align operator that allows a symbol to be aligned on an n-byte boundary within an output section (n
is a power of 2). For example, the following expression aligns the SPC within the current section on the
next 16-byte boundary. Because the align operator is a function of the current SPC, it can be used only in
the same context as . —that is, within a SECTIONS directive.

= align(16);
Table 7-2. Groups of Operators Used in Expressions (Precedence)

Group 1 (Highest Precedence) Group 6
! Logical NOT & Bitwise AND
~ Bitwise NOT
- Negation

Group 2 Group 7
196 Link Step Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
Assigning Symbols at Link Time
Table 7-2. Groups of Operators Used in Expressions (Precedence) (continued)
* Multiplication | Bitwise OR
/ Division
% Modulus
Group 3 Group 8
+ Addition && Logical AND
- Subtraction
Group 4 Group 9
>> Arithmetic right shift Il Logical OR
<< Arithmetic left shift
Group 5 Group 10 (Lowest Precedence)
== Equal to = Assignment
= Not equal to += A+=B"A=A+B
> Greater than -= A-=B"A=A-B
< Less than * = A*=B"A=A*B
<= Less than or equal to /= A/=B"A=A/B
>= Greater than or equal to

7.14.4 Symbols Defined by the Link Step

The link step automatically defines several symbols based on which sections are used in your assembly
source. A program can use these symbols at run time to determine where a section is linked. Since these
symbols are external, they appear in the link step map. Each symbol can be accessed in any assembly
language module if it is declared with a .global directive (see [dentify Global Symbolg). You must have
used the corresponding section in a source module for the symbol to be created. Values are assigned to
these symbols as follows:

text is assigned the first address of the .text output section.
(It marks the beginning of executable code.)

etext is assigned the first address following the .text output section.
(It marks the end of executable code.)

.data is assigned the first address of the .data output section.
(It marks the beginning of initialized data tables.)

edata is assigned the first address following the .data output section.
(It marks the end of initialized data tables.)

.bss is assigned the first address of the .bss output section.
(It marks the beginning of uninitialized data.)

end is assigned the first address following the .bss output section.
(It marks the end of uninitialized data.)

The following symbols are defined only for C/C++ support when the --ram_model or --rom_maodel option is

used.
__ _STACK_SIZE is assigned the size of the .stack section.
__SYSMEM_SIZE is assigned the size of the .sysmem section.
SPRU513C-0October 2007 Link Step Description 197

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Assigning Symbols at Link Time

7.14.5 Assigning Exact Start, End, and Size Values of a Section to a Symbol

The code generation tools currently support the ability to load program code in one area of (slow) memory
and run it in another (faster) area. This is done by specifying separate load and run addresses for an
output section or group in the link command file. Then execute a sequence of instructions (the copying
code in Example 7-9) that moves the program code from its load area to its run area before it is needed.

There are several responsibilities that a programmer must take on when setting up a system with this
feature. One of these responsibilities is to determine the size and run-time address of the program code to
be moved. The current mechanisms to do this involve use of the .label directives in the copying code. A
simple example is illustrated Example 7-9.

This method of specifying the size and load address of the program code has limitations. While it works
fine for an individual input section that is contained entirely within one source file, this method becomes
more complicated if the program code is spread over several source files or if the programmer wants to
copy an entire output section from load space to run space.

Another problem with this method is that it does not account for the possibility that the section being
moved may have an associated far call trampoline section that needs to be moved with it.

7.14.6 Why the Dot Operator Does Not Always Work

The dot operator (.) is used to define symbols at link-time with a particular address inside of an output
section. It is interpreted like a PC. Whatever the current offset within the current section is, that is the
value associated with the dot. Consider an output section specification within a SECTIONS directive:
out sect:

{
sl.obj (.text)
end_of _s1 = .
start_of _s2 = .;
s2.0bj (.text)
end_of _s2 = .;

}
This statement creates three symbols:

» end_of sl—the end address of .text in s1.0bj
» start_of s2—the start address of .text in s2.0bj
* end_of_s2—the end address of .text in s2.0bj

Suppose there is padding between s1.0bj and s2.obj that is created as a result of alignment. Then
start_of s2 is not really the start address of the .text section in s2.0bj, but it is the address before the
padding needed to align the .text section in s2.0bj. This is due to the link step's interpretation of the dot
operator as the current PC. It is also due to the fact that the dot operator is evaluated independently of the
input sections around it.

Another potential problem in the above example is that end_of_s2 may not account for any padding that
was required at the end of the output section. You cannot reliably use end_of_s2 as the end address of
the output section. One way to get around this problem is to create a dummy section immediately after the
output section in question. For example:

GROUP

{

out sect :

{

start_of _outsect = .;

dummy: { size_of _outsect = . - start_of_outsect; }

198

Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Assigning Symbols at Link Time

7.14.7 Address and Dimension Operators

Six new operators have been added to the link command file syntax:

LOAD_START(sym)
START(sym)

LOAD_END(sym)
END(sym)

LOAD_SIZE(sym)
SIZE(sym)

RUN_START(sym)
RUN_END(sym)
RUN_SIZE(sym)

Defines sym with the load-time start address of related allocation unit

Defines sym with the load-time end address of related allocation unit

Defines sym with the load-time size of related allocation unit

Defines sym with the run-time start address of related allocation unit
Defines sym with the run-time end address of related allocation unit
Defines sym with the run-time size of related allocation unit

Link Step Command File Operator Equivalencies

LOAD_START() and START() are equivalent, as are LOAD_END()/END() and
LOAD_SIZE()/SIZE().

Note:

The new address and dimension operators can be associated with several different kinds of allocation

units, including input items, output sections, GROUPs, and UNIONs. The following sections provide some

examples of how the operators can be used in each case.

7.14.7.1

Consider an output section specification within a SECTIONS directive:
out sect :

{

Input Items

sl.obj (.text)
end_of _s1 = .
start_of _s2 = .;
s2.0bj (.text)
end_of _s2 = .;

}

This can be rewritten using the START and END operators as follows:
out sect:

{
sl.obj(.text) { END(end_of _s1) }

s2.0bj (.text) { START(start_of_s2), END(end_of_s2) }
}

The values of end_of sl and end_of s2 will be the same as if you had used the dot operator in the

original example, but start_of_s2 would be defined after any necessary padding that needs to be added
between the two .text sections. Remember that the dot operator would cause start_of_s2 to be defined

before any necessary padding is inserted between the two input sections.

The syntax for using these operators in association with input sections calls for braces { } to enclose the
operator list. The operators in the list are applied to the input item that occurs immediately before the list.

7.14.7.2 Output Section

The START, END, and SIZE operators can also be associated with an output section. Here is an example:

outsect: START(start_of_outsect), SIZE(size_of_outsect)
{

}

<list of input itens>

In this case, the SIZE operator defines size_of outsect to incorporate any padding that is required in the

output section to conform to any alignment requirements that are imposed.

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Link Step Description

199

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Creating and Filling Holes

The syntax for specifying the operators with an output section do not require braces to enclose the
operator list. The operator list is simply included as part of the allocation specification for an output
section.

7.14.7.3 GROUPs

Here is another use of the START and SIZE operators in the context of a GROUP specification:

GROUP

{
outsectl: { ... }
outsect2: { ...
} load = ROM run = RAM START(group_start), S| ZE(group_size);

This can be useful if the whole GROUP is to be loaded in one location and run in another. The copying
code can use group_start and group_size as parameters for where to copy from and how much is to be
copied. This makes the use of .label in the source code unnecessary.

7.14.7.4 UNIONs

7.15

The RUN_SIZE and LOAD_SIZE operators provide a mechanism to distinguish between the size of a
UNION's load space and the size of the space where its constituents are going to be copied before they
are run. Here is an example:

UNION: run = RAM LQOAD_START(uni on_| oad_addr),
LOAD_SI ZE(union_l d_sz), RUN_SIZE(uni on_run_sz)
{

.textl: load = ROM SIZE(textl_size) { fl.obj(.text) }
.text2: load = ROM SIZE(text2_size) { f2.0obj(.text) }
}

Here union_lId_sz is going to be equal to the sum of the sizes of all output sections placed in the union.
The union_run_sz value is equivalent to the largest output section in the union. Both of these symbols
incorporate any padding due to blocking or alignment requirements.

Creating and Filling Holes

The link step provides you with the ability to create areas within output sections that have nothing linked
into them. These areas are called holes. In special cases, uninitialized sections can also be treated as
holes. This section describes how the link step handles holes and how you can fill holes (and uninitialized
sections) with values.

7.15.1 Initialized and Uninitialized Sections

There are two rules to remember about the contents of output sections. An output section contains either:
» Raw data for the entire section
* No raw data

A section that has raw data is referred to as initialized. This means that the object file contains the actual
memory image contents of the section. When the section is loaded, this image is loaded into memory at
the section's specified starting address. The .text and .data sections always have raw data if anything was
assembled into them. Named sections defined with the .sect assembler directive also have raw data.

By default, the .bss section (see Reserve Space in the .bss Section]) and sections defined with the .usect
directive (see Reserve Uninitialized Spacd) have no raw data (they are uninitialized). They occupy space
in the memory map but have no actual contents. Uninitialized sections typically reserve space in fast
external memory for variables. In the object file, an uninitialized section has a normal section header and
can have symbols defined in it; no memory image, however, is stored in the section.

200

Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Creating and Filling Holes

7.15.2 Creating Holes

You can create a hole in an initialized output section. A hole is created when you force the link step to
leave extra space between input sections within an output section. When such a hole is created, the link
step must supply raw data for the hole.

Holes can be created only within output sections. Space can exist between output sections, but such
space is not a hole. To fill the space between output sections, see [Bection 7.7.2.

To create a hole in an output section, you must use a special type of link step assignment statement
within an output section definition. The assignment statement modifies the SPC (denoted by .) by adding
to it, assigning a greater value to it, or aligning it on an address boundary. The operators, expressions,
and syntaxes of assignment statements are described in Gection 7.14,

The following example uses assignment statements to create holes in output sections:

SECTI ONS
{

out sect:

{
filel.obj(.text)
+= 0x0100 /* Create a hole with size 0x0100 */

file2.obj(.text)

. = align(16); /* Create a hole to align the SPC */
file3.obj(.text)

}

}

The output section outsect is built as follows:

1. The .text section from filel.obj is linked in.

2. The link step creates a 256-byte hole.

3. The .text section from file2.0bj is linked in after the hole.

4. The link step creates another hole by aligning the SPC on a 16-byte boundary.

5. Finally, the .text section from file3.obj is linked in.

All values assigned to the . symbol within a section refer to the relative address within the section. The link
step handles assignments to the . symbol as if the section started at address 0 (even if you have specified
a binding address). Consider the statement . = align(16) in the example. This statement effectively aligns

the file3.obj .text section to start on a 16-byte boundary within outsect. If outsect is ultimately allocated to
start on an address that is not aligned, the file3.obj .text section will not be aligned either.

The . symbol refers to the current run address, not the current load address, of the section.

Expressions that decrement the . symbol are illegal. For example, it is invalid to use the -= operator in an
assignment to the . symbol. The most common operators used in assignments to the . symbol are += and
align.

If an output section contains all input sections of a certain type (such as .text), you can use the following
statements to create a hole at the beginning or end of the output section.

.text: { .+= 0x0100; } /* Hol e at the beginning */
. dat a: { *(.data)
+= 0x0100; } /* Hole at the end */

Another way to create a hole in an output section is to combine an uninitialized section with an initialized
section to form a single output section. In this case, the link step treats the uninitialized section as a hole
and supplies data for it. The following example illustrates this method:

SECTI ONS

{

out sect :

filel.obj(.text)
filel.obj(.bss) /* This becones a hole */

}

Because the .text section has raw data, all of outsect must also contain raw data. Therefore, the
uninitialized .bss section becomes a hole.

SPRU513C-0October 2007 Link Step Description 201
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Creating and Filling Holes

Uninitialized sections become holes only when they are combined with initialized sections. If several
uninitialized sections are linked together, the resulting output section is also uninitialized.

7.15.3 Filling Holes

When a hole exists in an initialized output section, the link step must supply raw data to fill it. The link step
fills holes with a 32-bit fill value that is replicated through memory until it fills the hole. The link step
determines the fill value as follows:

1. If the hole is formed by combining an uninitialized section with an initialized section, you can specify a
fill value for the uninitialized section. Follow the section name with an = sign and a 32-bit constant. For
example:

SECTI ONS
{ outsect:

{
filel.obj(.text)
file2.obj(.bss)= OxFFOOFFOO /* Fill this hole with OxFFOOFFOO */
}
}
2. You can also specify a fill value for all the holes in an output section by supplying the fill value after the
section definition:

SECTI ONS
{ outsect:fill = OxFFOOFFOO /* Fills holes w th OxFFOOFFOO */
{
+= 0x0010; /* This creates a hole */
filel.obj(.text)
filel.obj(.bss) /* This creates another hole */
}
}

3. If you do not specify an initialization value for a hole, the link step fills the hole with the value specified
with the --fill_value option (see Bection 7.4.5). For example, suppose the command file link.cmd
contains the following SECTIONS directive:

SECTI ONS
{

}
Now invoke the link step with the --fill_value option:

cl 2000 -v28 --run_linker --fill_val ue=OxFFFFFFFF |i nk.cnd
This fills the hole with OXFFFFFFFF.

4. If you do not invoke the link step with the --fill_value option or otherwise specify a fill value, the link
step fills holes with Os.

.text: { .= 0x0100; } /* Create a 100 word hole */

Whenever a hole is created and filled in an initialized output section, the hole is identified in the link map
along with the value the link step uses to fill it.

7.15.4 Explicit Initialization of Uninitialized Sections

You can force the link step to initialize an uninitialized section by specifying an explicit fill value for it in the
SECTIONS directive. This causes the entire section to have raw data (the fill value). For example:

SECTI ONS
{

.bss: fill = 0x12341234 /* Fills .bss with 0x12341234 */
}

Filling Sections

Note: Because filling a section (even with 0s) causes raw data to be generated for the entire
section in the output file, your output file will be very large if you specify fill values for large
sections or holes.

202 Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Link-Step-Generated Copy Tables

7.16 Link-Step-Generated Copy Tables

The link step supports extensions to the link command file syntax that enable the following:

« Make it easier for you to copy objects from load-space to run-space at boot time

» Make it easier for you to manage memory overlays at run time

» Allow you to split GROUPs and output sections that have separate load and run addresses

7.16.1 A Current Boot-Loaded Application Development Process

In some embedded applications, there is a need to copy or download code and/or data from one location
to another at boot time before the application actually begins its main execution thread. For example, an
application may have its code and/or data in FLASH memory and need to copy it into on-chip memory
before the application begins execution.

One way you can develop an application like this is to create a copy table in assembly code that contains
three elements for each block of code or data that needs to be moved from FLASH into on-chip memory
at boot time:

» The load location (load page id and address)

» The run location (run page id and address)

* The size

The process you follow to develop such an application might look like this:

1. Build the application to produce a .map file that contains the load and run addresses of each section
that has a separate load and run placement.

2. Edit the copy table (used by the boot loader) to correct the load and run addresses as well as the size
of each block of code or data that needs to be moved at boot time.

3. Build the application again, incorporating the updated copy table.

4. Run the application.

7.16.2 An Alternative Approach

You can avoid some of this maintenance burden by using the LOAD_START(), RUN_START(), and
SIZE() operators that are already part of the link command file syntax . For example, instead of building
the application to generate a .map file, the link command file can be annotated:

SECTI ONS

.flashcode: { app_tasks.obj(.text) }
|l oad = FLASH, run = PMEM
LOAD START(_fl ash_code_Id_start),
RUN_START(_fl ash_code_rn_start),
S| ZE(_f | ash_code_si ze)

}

In this example, the LOAD_START(), RUN_START(), and SIZE() operators instruct the link step to create
three symbols:

Symbol Description
_flash_code_Id_start Load address of .flashcode section
_flash_code_rn_start Run address of .flashcode section
_flash_code_size Size of .flashcode section
SPRU513C-0October 2007 Link Step Description 203

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Link-Step-Generated Copy Tables

These symbols can then be referenced from the copy table. The actual data in the copy table will be
updated automatically each time the application is linked. This approach removes step 1 of the process
described in Bection 7.16.1].

While maintenance of the copy table is reduced markedly, you must still carry the burden of keeping the
copy table contents in sync with the symbols that are defined in the link command file. Ideally, the link step
would generate the boot copy table automatically. This would avoid having to build the application twice
and free you from having to explicitly manage the contents of the boot copy table.

For more information on the LOAD_START(), RUN_START(), and SIZE() operators, see Bection 7.14.1.

7.16.3 Overlay Management Example

Consider an application which contains a memory overlay that must be managed at run time. The memory
overlay is defined using a UNION in the link command file as illustrated in Example 7-18:

Example 7-18. Using a UNION for Memory Overlay

SECTI ONS
{

UNI ON
{
GROUP

.taskl: { taskl.obj(.text) }
.task2: { task2.obj(.text) }

} load = ROM LOAD _START(_task12_| oad_start), S|ZE(_taskl12_size)
GROUP

.task3: { task3.obj(.text) }
.task4: { task4.obj(.text) }

} load = ROM LOAD START(_task34_l oad_start), SIZE(_task_34_size)

} run = RAM RUN_START(_task_run_start)

The application must manage the contents of the memory overlay at run time. That is, whenever any
services from .taskl or .task2 are needed, the application must first ensure that .taskl1 and .task2 are
resident in the memory overlay. Similarly for .task3 and .task4.

To affect a copy of .taskl and .task2 from ROM to RAM at run time, the application must first gain access
to the load address of the tasks (_task12 load_start), the run address (_task run_start), and the size
(_task12_size). Then this information is used to perform the actual code copy.

204 Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Link-Step-Generated Copy Tables

7.16.4 Generating Copy Tables Automatically With the Link Step

The link step supports extensions to the link command file syntax that enable you to do the following:

» Identify any object components that may need to be copied from load space to run space at some
point during the run of an application

» Instruct the link step to automatically generate a copy table that contains (at least) the load address,
run address, and size of the component that needs to be copied

» Instruct the link step to generate a symbol specified by you that provides the address of a link
step-generated copy table. For instance, can be written as shown in Example 7-19:

Example 7-19. Produce Address for Link Step Generated Copy Table

SECTI ONS
{

UNI ON
{
GROUP

.taskl: { taskl.obj(.text) }
.task2: { task2.obj(.text) }

} load = ROM tabl e(_taskl2_copy_tabl e)
GROUP

.task3: { task3.obj(.text) }
.task4: { task4.obj(.text) }

} load = ROM tabl e(_task34_copy_table)

} run = RAM

Using the SECTIONS directive from in the link command file, the link step generates two
copy tables named: _task12 copy_table and _task34 copy_table. Each copy table provides the load
address, run address, and size of the GROUP that is associated with the copy table. This information is
accessible from application source code using the link step-generated symbols, task12 copy_table and
_task34 copy_table, which provide the addresses of the two copy tables, respectively.

Using this method, you do not have to worry about the creation or maintenance of a copy table. You can
reference the address of any copy table generated by the link step in C/C++ or assembly source code,
passing that value to a general purpose copy routine which will process the copy table and affect the
actual copy.

7.16.5 The table() Operator

You can use the table() operator to instruct the link step to produce a copy table. A table() operator can be
applied to an output section, a GROUP, or a UNION member. The copy table generated for a particular
table() specification can be accessed through a symbol specified by you that is provided as an argument
to the table() operator. The link step creates a symbol with this name and assigns it the address of the
copy table as the value of the symbol. The copy table can then be accessed from the application using the
link step-generated symbol.

Each table() specification you apply to members of a given UNION must contain a unique name. If a
table() operator is applied to a GROUP, then none of that GROUP's members may be marked with a
table() specification. The link step detects violations of these rules and reports them as warnings, ignoring
each offending use of the table() specification. The link step does not generate a copy table for erroneous
table() operator specifications.

SPRU513C-0October 2007 Link Step Description 205
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Link-Step-Generated Copy Tables

7.16.6 Boot-Time Copy Tables

The link step supports a special copy table name, BINIT (or binit), that you can use to create a boot-time
copy table. For example, the link command file for the boot-loaded application described in
can be rewritten as follows:

SECTI ONS

.flashcode: { app_tasks.obj(.text) }
load = FLASH, run = PME
tabl e(BINIT)

}

For this example, the link step creates a copy table that can be accessed through a special link
step-generated symbol, __ binit__, which contains the list of all object components that need to be copied
from their load location to their run location at boot-time. If a link command file does not contain any uses
of table(BINIT), then the ___ binit__ symbol is given a value of -1 to indicate that a boot-time copy table
does not exist for a particular application.

You can apply the table(BINIT) specification to an output section, GROUP, or UNION member. If used in
the context of a UNION, only one member of the UNION can be designated with table(BINIT). If applied to
a GROUP, then none of that GROUP's members may be marked with table(BINIT).The link step detects
violations of these rules and reports them as warnings, ignoring each offending use of the table(BINIT)
specification.

7.16.7 Using the table() Operator to Manage Object Components

If you have several pieces of code that need to be managed together, then you can apply the same table()
operator to several different object components. In addition, if you want to manage a particular object
component in multiple ways, you can apply more than one table() operator to it. Consider the link

command file excerpt in Example 7-20;
Example 7-20. Link Step Command File to Manage Object Components

SECTI ONS
UNI ON

first: { al.obj(.text), bl.obj(.text), cl.obj(.text) }
load = EMEM run = PMEM table(BINIT), table(_first_cthl)

.second: { a2.obj(.text), b2.obj(.text) }
load = EMEM run = PMEM tabl e(_second_cthl)

}
.extra: load = EMEM run = PMEM table(BINT)

In this example, the output sections .first and .extra are copied from external memory (EMEM) into
program memory (PMEM) at boot time while processing the BINIT copy table. After the application has
started executing its main thread, it can then manage the contents of the overlay using the two overlay
copy tables named: _first_ctbl and _second_ctbl.

7.16.8 Copy Table Contents

In order to use a copy table that is generated by the link step, you must be aware of the contents of the
copy table. This information is included in a new run-time-support library header file, cpy_tbl.h, which
contains a C source representation of the copy table data structure that is automatically generated by the
link step.

shows the TMS320C28x copy table header file.

206

Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Link-Step-Generated Copy Tables

Example 7-21. TMS320C28x cpy_tbl.h File

/**/

/* cpy_thl.h */
/* */
/* Copyright (c) 2003 Texas |nstrunents |ncor porated */
/* */
/* Specification of copy table data structures which can be autonatically */
/* generated by the linker (using the table() operator in the LCF). */
/* */

/**/

/**/

/* Copy Record Data Structure */

/**/

typedef struct copy_record

unsi gned i nt src_pgi d;
unsi gned i nt dst _pgi d;
unsi gned | ong src_addr;
unsi gned | ong dst _addr;
unsi gned | ong si ze;

} COPY_RECORD;

/AR AR R EE SR EEEEEEEEEEEE SRR EEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

/* Copy Table Data Structure */

/AR AR R E R EEEEEE SRR EEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

typedef struct copy_table

unsi gned int rec_si ze;

unsi gned i nt numrecs;

COPY_RECORD recs[1];
} COPY_TABLE;

AR R E R EEEEEEEEEEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEERELY]

/* Prototype for general purpose copy routine. */

AR AR R E R EEEEEEEEEEEE SRR EEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

extern void copy_i n(COPY_TABLE *tp);

/**/

/* Prototypes for utilities used by copy_in() to nove code/data between */
/* program and data nenory (see cpy_utils.asmfor source). */

AR AR R EE AR EEEEEEEEEEEE SRR EEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

extern void ddcopy(unsigned |ong src, unsigned |ong dst);
extern voi d dpcopy(unsigned |ong src, unsigned |ong dst);
extern void pdcopy(unsigned |ong src, unsigned |ong dst);
extern voi d ppcopy(unsigned |ong src, unsigned |ong dst);

For each object component that is marked for a copy, the link step creates a COPY_RECORD object for
it. Each COPY_RECORD contains at least the following information for the object component:

* The load page id
» The run page id

e The load address
e The run address

* The size

SPRU513C-0October 2007 Link Step Description 207
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Link-Step-Generated Copy Tables

The link step collects all COPY_RECORDSs that are associated with the same copy table into a
COPY_TABLE object. The COPY_TABLE object contains the size of a given COPY_RECORD, the
number of COPY_RECORD:s in the table, and the array of COPY_RECORDSs in the table. For instance, in
the BINIT example in Bection 7.16.4, the .first and .extra output sections will each have their own
COPY_RECORD entries in the BINIT copy table. The BINIT copy table will then look like this:

COPY_TABLE _ binit__ = { 12, 2,

{ <load page id of .first>,
<run page id of .first>,
<l oad address of .first>,
<run address of .first>,
<size of .first> },

{ <l oad page id of .extra>,
<run page id of .extra>,
<l oad address of .extra>,
<run address of .extra>,
<size of .extra> } };

7.16.9 General Purpose Copy Routine

The cpy_tbl.h file in also contains a prototype for a general-purpose copy routine, copy_in(),
which is provided as part of the run-time-support library. The copy_in() routine takes a single argument:
the address of a link step-generated copy table. The routine then processes the copy table data object
and performs the copy of each object component specified in the copy table.

The copy_in() function definition is provided in the cpy_tbl.c run-time-support source file shown in
23

Example 7-22. Run-Time-Support cpy_tbl.c File

/**/

/* cpy_thl.c */
/* */
/* Copyright (c) 2003 Texas |nstrunents |ncor porated */
/* */
/* General purpose copy routine. Gven the address of a |inker-generated */
/* COPY_TABLE data structure, effect the copy of all object conponents */

/* that are designated for copy via the corresponding LCF table() operator. */
/**/

#i nclude <cpy_thbl.h>
#i ncl ude <string. h>

/**/

/* COPY_IN() *]

/**/

voi d copy_i n(COPY_TABLE *tp)
{

unsigned int i;

for (i =0; i < tp->numrecs; i++)

{
COPY_RECORD *crp = & p->recs[i];
unsigned int cpy_type = 0;
unsigned int j;

if (crp->src_pgid) cpy_type += 2;
if (crp->dst_pgid) cpy_type += 1;

for (j =0; j < crp->size; j++)

switch (cpy_type)
{

case 3: ddcopy(crp->src_addr + j, crp->dst_addr + j); break;
case 2: dpcopy(crp->src_addr + j, crp->dst_addr + j); break;
case 1: pdcopy(crp->src_addr + j, crp->dst_addr + j); break;
case 0: ppcopy(crp->src_addr + j, crp->dst_addr + j); break;
}
}
}
}
208 Link Step Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Link-Step-Generated Copy Tables

The load (or source) page id and the run (or destination) page id are used to choose which low-level copy
routine is called to move a word of data from the load location to the run location. A page id of O indicates
that the specified address is in program memory, and a page id of 1 indicates that the address is in data
memory. The hardware provides special instructions, PREAD and PWRITE, to move code/data into and
out of program memory.

7.16.10 Link Step Generated Copy Table Sections and Symbols

The link step creates and allocates a separate input section for each copy table that it generates. Each
copy table symbol is defined with the address value of the input section that contains the corresponding
copy table.

The link step generates a unique name for each overlay copy table input section. For example,
table(_first_ctbl) would place the copy table for the .first section into an input section called
.ovly:_first_ctbl. The link step creates a single input section, .binit, to contain the entire boot-time copy
table.

illustrates how you can control the placement of the link step-generated copy table sections
using the input section names in the link command file.

Example 7-23. Controlling the Placement of the Link-Step-Generated Copy Table Sections

SECTI ONS

{
UNI ON

first: { al.obj(.text), bl.obj(.text), cl.obj(.text) }
load = EMEM run = PMEM table(BINIT), table(_first_ctbl)

.second: { a2.obj(.text), b2.obj(.text) }
load = EMEM run = PMEM tabl e(_second_ctbl)
}

.extra: load = EMEM run = PMEM tabl e(BINT)

.ovly: { } > BMEM
.binit: { } > BMEM

For the link command file in Example 7-23, the boot-time copy table is generated into a .binit input section,
which is collected into the .binit output section, which is mapped to an address in the BMEM memaory
area. The _first_ctbl is generated into the .ovly:_first_ctbl input section and the _second_ctbl is generated
into the .ovly:_second_ctbl input section. Since the base names of these input sections match the name of
the .ovly output section, the input sections are collected into the .ovly output section, which is then
mapped to an address in the BMEM memory area.

If you do not provide explicit placement instructions for the link step-generated copy table sections, they
are allocated according to the link step's default placement algorithm.

The link step does not allow other types of input sections to be combined with a copy table input section in
the same output section. The link step does not allow a copy table section that was created from a partial
link session to be used as input to a succeeding link session.

7.16.11 Splitting Object Components and Overlay Management

In previous versions of the link step, splitting sections that have separate load and run placement
instructions was not permitted. This restriction was because there was no effective mechanism for you,
the developer, to gain access to the load address or run address of each one of the pieces of the split
object component. Therefore, there was no effective way to write a copy routine that could move the split
section from its load location to its run location.

SPRU513C-0October 2007 Link Step Description 209
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Link-Step-Generated Copy Tables

However, the link step can access both the load address and run address of every piece of a split object
component. Using the table() operator, you can tell the link step to generate this information into a copy
table. The link step gives each piece of the split object component a COPY_RECORD entry in the copy
table object.

For example, consider an application which has 7 tasks. Tasks 1 through 3 are overlaid with tasks 4
through 7 (using a UNION directive). The load placement of all of the tasks is split among 4 different
memory areas (LMEM1, LMEM2, LMEM3, and LMEM4). The overlay is defined as part of memory area
PMEM. You must move each set of tasks into the overlay at run time before any services from the set are
used.

You can use table() operators in combination with splitting operators, >>, to create copy tables that have
all the information needed to move either group of tasks into the memory overlay as shown in
=24 illustrates a possible driver for such an application.

Example 7-24. Creating a Copy Table to Access a Split Object Component

SECTI ONS
UNI ON

.tasklto3: { *(.taskl), *(.task2), *(.task3) }
load >> LMEML | LMEM2 | LMEMA4, table(_taskl3_ctbl)

GROUP

{
.task4: { *(.task4) }
.task5: { *(.task5) }
.task6: { *(.task6) }
.task7: { *(.task7) }

} load >> LMEML | LMEMB | LMEM4, table(_task47_ctbl)

} run = PMEM

.ovly: > LMEMA
}

Example 7-25. Split Object Component Driver

#i ncl ude <cpy_tbl.h>

extern far COPY_TABLE task13_ctbl;
extern far COPY_TABLE task47_cthl;

extern void taskl(void);
extern void task7(void);

mai n()

{

copy_i n(& ask13_cthl);
taskl1();
task2();
task3();

copy_i n(& ask47_cthbl);
task4();
task5();
task6();
task7();

210 Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Partial (Incremental) Linking

You must declare a COPY_TABLE object as far to allow the overlay copy table section placement to be
independent from the other sections containing data objects (such as .bss).

The contents of the .task1to3 section are split in the section's load space and contiguous in its run space.
The link step-generated copy table, task13_ctbl, contains a separate COPY_RECORD for each piece of
the split section .task1to3. When the address of _task13_ctbl is passed to copy_in(), each piece of
.task1to3 is copied from its load location into the run location.

The contents of the GROUP containing tasks 4 through 7 are also split in load space. The link step
performs the GROUP split by applying the split operator to each member of the GROUP in order. The
copy table for the GROUP then contains a COPY_RECORD entry for every piece of every member of the
GROUP. These pieces are copied into the memory overlay when the task47 ctbl is processed by

copy_in().

The split operator can be applied to an output section, GROUP, or the load placement of a UNION or
UNION member. The link step does not permit a split operator to be applied to the run placement of either
a UNION or of a UNION member. The link step detects such violations, emits a warning, and ignores the
offending split operator usage.

7.17 Partial (Incremental) Linking

An output file that has been linked can be linked again with additional modules. This is known as partial

linking or incremental linking. Partial linking allows you to partition large applications, link each part

separately, and then link all the parts together to create the final executable program.

Follow these guidelines for producing a file that you will relink:

* The intermediate files produced by the link step must have relocation information. Use the --relocatable
option when you link the file the first time. (See Bection 7.4.1.7.)

» Intermediate files must have symbolic information. By default, the link step retains symbolic information
in its output. Do not use the --no_sym_table option if you plan to relink a file, because --no_sym_table
strips symbolic information from the output module. (See Bection 7.4.12.)

» Intermediate link steps should be concerned only with the formation of output sections and not with
allocation. All allocation, binding, and MEMORY directives should be performed in the final link step.

» If the intermediate files have global symbols that have the same name as global symbols in other files
and you want them to be treated as static (visible only within the intermediate file), you must link the
files with the --make_static option (see Bection 7.4.9).

» If you are linking C code, do not use --ram_model or --rom_model until the final link step. Every time
you invoke the link step with the --ram_model or --rom_model option, the link step attempts to create
an entry point. (See Bection 7.4.14.)

The following example shows how you can use patrtial linking:

Step 1: Link the file filel.com; use the --relocatable option to retain relocation information in the
output file tempoutl.out.
cl 2000 -v28 --run_linker --relocatable --output_file=tenpoutl filel.com
filel.com contains:
SECTIONS { ssl: { fl.obj f2.0bj . . . fn.obj } }

Step 2: Link the file file2.com; use the --relocatable option to retain relocation information in the
output file tempout2.out.
cl 2000 -v28 --run_linker --relocatable --output_file=tenpout2 file2. com
file2.com contains:
SECTIONS { ss2: { gl.obj g2.0bj . . . gn.obj } }

Step 3: Link tempoutl.out and tempout2.out.
cl 2000 -v28 --run_linker --map_file=final.map --output_file=final.out tenpoutl.out
t emrpout 2. out

SPRU513C-0October 2007 Link Step Description 211

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Linking C/C++ Code

7.18 Linking C/C++ Code

The C/C++ compiler produces assembly language source code that can be assembled and linked. For
example, a C program consisting of modules progl, prog2, etc., can be assembled and then linked to
produce an executable file called prog.out:

cl 2000 -v28 --run_linker --romnodel --output_file prog.out progl.obj prog2.obj ... rts2800.lib

The --rom_model option tells the link step to use special conventions that are defined by the C/C++
environment.

The archive libraries shipped by Tl contain C/C++ run-time-support functions.

C, C++, and mixed C and C++ programs can use the same run-time-support library. Run-time-support
functions and variables that can be called and referenced from both C and C++ will have the same
linkage.

For more information about the TMS320C28x C/C++ language, including the run-time environment and
run-time-support functions, see the TMS320C28x C/C++ Compiler User's Guide

7.18.1 Run-Time Initialization

All C/C++ programs must be linked with code to initialize and execute the program, called a bootstrap

routine, also known as the boot.obj object module. The symbol _c_int00 is defined as the program entry

point and is the start of the C boot routine in boot.obj; referencing _c_int00 ensures that boot.obj is

automatically linked in from the run-time-support library. When a program begins running, it executes

boot.obj first. The boot.obj symbol contains code and data for initializing the run-time environment and

performs the following tasks:

» Sets up the system stack and configuration registers

» Processes the run-time .cinit initialization table and autoinitializes global variables (when the link step is
invoked with the --rom_model option)

» Disables interrupts and calls _main

The run-time-support object libraries contain boot.obj. You can:
» Use the archiver to extract boot.obj from the library and then link the module in directly.

* Include the appropriate run-time-support library as an input file (the link step automatically extracts
boot.obj when you use the --ram_model or --rom_model option).

7.18.2 Object Libraries and Run-Time Support

The TMS320C28x C/C++ Compiler User's Guide describes additional run-time-support functions that are
included in rts.src. If your program uses any of these functions, you must link the appropriate
run-time-support library with your object files.

You can also create your own object libraries and link them. The link step includes and links only those
library members that resolve undefined references.

7.18.3 Setting the Size of the Stack and Heap Sections

The C/C++ language uses two uninitialized sections called .sysmem and .stack for the memory pool used

by the malloc() functions and the run-time stacks, respectively. You can set the size of these by using the
--heap_size or --stack_size option and specifying the size of the section as a 4-byte constant immediately

after the option. If the options are not used, the default size of the heap is 1K words and the default size of
the stack is 1K words.

See for setting heap sizes and for setting stack sizes.

212

Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Linking C/C++ Code

Linking the .stack Section

Note: The .stack section must be linked into the low 64K of data memory (PAGE 1) since the SP is
a 16-bit register and cannot access memory locations beyond the first 64K.

7.18.4 Autoinitialization of Variables at Run Time

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke
the link step with the --rom_maodel option.

Using this method, the .cinit section is loaded into memory along with all the other initialized sections. The
link step defines a special symbol called cinit that points to the beginning of the initialization tables in
memory. When the program begins running, the C boot routine copies data from the tables (pointed to by
.cinit) into the specified variables in the .bss section. This allows initialization data to be stored in slow
external memory and copied to fast external memory each time the program starts.

illustrates autoinitialization at run time. Use this method in any system where your application
runs from code burned into slow external memory.

Figure 7-7. Autoinitialization at Run Time

Object file Memory

Initialization

- cint
o

(EXT_MEM)

Boot
routine

.bss
section
(D_MEM)

7.18.5 Initialization of Variables at Load Time

Initialization of variables at load time enhances performance by reducing boot time and by saving the
memory used by the initialization tables. To use this method, invoke the link step with the --ram_model
option.

When you use the --ram_model link step option, the link step sets the STYP_COPY bit in the .cinit
section's header. This tells the loader not to load the .cinit section into memory. (The .cinit section
occupies no space in the memory map.) The link step also sets the cinit symbol to -1 (normally, cinit
points to the beginning of the initialization tables). This indicates to the boot routine that the initialization
tables are not present in memory; accordingly, no run-time initialization is performed at boot time.

A loader must be able to perform the following tasks to use initialization at load time:

» Detect the presence of the .cinit section in the object file.

e Determine that STYP_COPY is set in the .cinit section header, so that it knows not to copy the .cinit
section into memory.

» Understand the format of the initialization tables.
illustrates the initialization of variables at load time.

SPRU513C-0October 2007 Link Step Description 213
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Linking C/C++ Code

Figure 7-8. Initialization at Load Time

Object file Memory

.cinit —Pl Loader I

.bss

7.18.6 The --rom_model and --ram_model Link Step Options

The following list outlines what happens when you invoke the link step with the --ram_model or
--rom_model option.

» The symbol c_int00 is defined as the program entry point. The _c_int00 symbol is the start of the C
boot routine in boot.obj; referencing _c_int00 ensures that boot.obj is automatically linked in from the
appropriate run-time-support library.

» The .cinit output section is padded with a termination record to designate to the boot routine
(autoinitialize at run time) or the loader (initialize at load time) when to stop reading the initialization
tables.

* When you initialize at load time (--ram_model option):

— The link step sets cinit to -1. This indicates that the initialization tables are not in memory, so no
initialization is performed at run time.

— The STYP_COPY flag (0010h) is set in the .cinit section header. STYP_COPY is the special
attribute that tells the loader to perform initialization directly and not to load the .cinit section into
memory. The link step does not allocate space in memory for the .cinit section.

* When you autoinitialize at run time (--rom_model option), the link step defines cinit as the starting

address of the .cinit section. The C boot routine uses this symbol as the starting point for
autoinitialization.

Boot Loader

Note: A loader is not included as part of the C/C++ compiler tools. Use the TMS320C28x Code
Composer Studio as a loader.

214 Link Step Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Link Step Example

7.19 Link Step Example

This example links three object files named demo.obj, ctrl.obj, and tables.obj and creates a program called
demo.out.

Assume that target memory has the following program memory configuration:

Memory Type Address Range Contents

Program 0x0f0000 to Ox3fffbf SLOW_MEM
0x3fffcO to Ox3fffff Interrupt vector table

Data 0x000040 to 0x0001ff Stack
0x000200 to 0x0007ff FAST_MEM_1
0x3ed000 to 0x3effff FAST_MEM_2

The output sections are constructed in the following manner:

» Executable code, contained in the .text sections of demo.obj, fft.obj, and tables.obj, is linked into
program memory ROM.

» Variables, contained in the var_defs section of demo.obj, are linked into data memory in block
FAST _MEM_2.

» Tables of coefficients in the .data sections of demo.obj, tables.obj, and fft.obj are linked into
FAST_MEM_1. A hole is created with a length of 100 and a fill value of 0x07A1C.

e The xy section form demo.obj, which contains buffers and variables, is linked by default into page 1 of
the block STACK, since it is not explicitly linked.

shows the link command file for this example. shows the map file.
SPRU513C-0October 2007 Link Step Description 215

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

Link Step Example

*L‘ TEXAS
INSTRUMENTS

www.ti.com

Example 7-26. Link Step Command File, demo.cmd

/***/

[xxx Speci fy Linker Options *Ex

/***/

--output_fil e=deno. out /* Nane the output file */
--map_fil e=deno. map /* Create an output nap */

/***/

[xxx Specify the Input Files xRk

/***/

denp. obj
fft. obj
t abl es. obj

/***/

[xxx Speci fy the Menory Configuration xRk

/***/

MEMORY

ori gi n=0x3f 0000

PAGE 0: SLONMEM (R):
(R: ori gi n=0x3fffcO

VECTORS
PAGE 1: STACK (RW: origi n=0x000040
(RW: origin=0x000200
(RW: origin=0x3ed000

| engt h=0x00f f cO
| engt h=0x000040

| engt h=0x0001c0
| engt h=0x000600
| engt h=0x003000

}

/***/

[xxx Speci fy the Qutput Sections *Ex

/***/

SECTI ONS
{
vectors { } > VECTORS page=0
.text : load = SLOWNMEM page = 0 /* link in .text */

.data : fill = 07A1Ch, Load=FAST_MEM 1, page=1
{
tabl es. obj (. data) /* .data input */
fft.obj(.data) /* .data input */
+= 100h; /* create hole, fill with Ox07A1C */

}

var _defs { } > FAST_MEM 2 page=1
. bss: page=1, fill=0x0ffff

/* defs in RAM */
/*.bss fill and Iink*/

}

AR EEA R EEEREEEEEEEEEEEEEEEEE SRR EEEEEEEEEEEEEEEEEEREEEEEEEEEY]

[x** End of Command File xRk

AR EEA R EEEREEEEEEEEEEEEEEEEE SRR EEEEEEEEEEEEEEEEEEREEEEEEEEEY]

Invoke the link step by entering the following command:

cl 2000 -v28 --run_linker deno.cnd

This creates the map file shown in and an output file called demo.out that can be run on a

TMS320C28xX.

216

Link Step Description

u

SPRU513C—-0October 2007
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Link Step Example

Example 7-27. Output Map File, demo.map

QUTPUT FI LE NAME: <deno. out >
ENTRY PO NT SYMBOL: O

MEMORY CONFI GURATI ON

name origin I ength
PAGE 0: SLOW MEM 003f 0000 0000ffcO
VECTORS 003fffcO 00000040
PAGE 1: STACK 00000040 000001cO
FAST_MEM 1 00000200 00000600
FAST_MEM 2 003ed000 00003000
SECTI ON ALLOCATI ON MAP
out put
section page origin I ength
vectors 0 003fffcO 00000000
.text 0 003f 0000 0000001a
003f 0000 0000000e
003f 000e 00000000
003f oooe 0000000c
var _defs 1 003ed000 00000002
003ed000 00000002
.data 1 00000200 0000010c
00000200 00000004
00000204 00000000
00000204 00000100
00000304 00000008
. bss 0 00000040 00000069
00000040 00000068
000000a8 00000000
000000a8 00000001
Xy 1 000000a9 00000014
000000a9 00000014

attributes

attributes/
i nput sections

UNI NI TI ALl ZED

deno. obj (.text)
tabl es. obj (.text)
fft.obj (.text)
deno. obj (var_defs)
t abl es. obj
fft.obj
- - HOLE- -
deno. obj

(.data)

(.data)
[fill
(.data)

7alc]

deno. obj (.bss) [fill=ffff]
fft.obj (.bss)

tables.obj (.bss) [fill=ffff]
UNI NI TI ALI ZED

deno. obj (xy)

GLOBAL SYMBOLS: SORTED ALPHABETI CALLY BY Nane

addr ess name
00000040 . bss
00000200 .data

003f 0000 . text
00000040 ARRAY
000000a8 TEMP
00000040 __ bss__
00000200 __ data__
0000030c ___edata__
000000a9 __ _end__
003f00la __ etext__
003f 0000 _ text_
003f000e _funcl
003f 0000 _main
0000030c edat a
000000a9 end
003f001a et ext
GLOBAL SYMBOLS: SORTED BY Synbol Address
addr ess name
00000040 ARRAY
00000040 __ bss__
00000040 . bss
000000a8 TEMP
000000a9 __ _end__
000000a9 end
00000200 __ data__
00000200 .data
0000030c edat a

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Link Step Description 217

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS

INSTRUMENTS
www.ti.com
Link Step Example
Example 7-27. Output Map File, demo.map (continued)
0000030c ___edata__
003f 0000 _main
003f 0000 .text
003f0000 _ text__
003f000e _funcl
003f001a et ext
003f00la _ etext__
[16 synbol s]
218 Link Step Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

%‘ TEXAS Chapter 8
INSTRUMENTS

SPRU513C-0October 2007

Absolute Lister Description

The TMS320C28x™ absolute lister is a debugging tool that accepts linked object files as input and
creates .abs files as output. These .abs files can be assembled to produce a listing that shows the
absolute addresses of object code. Manually, this could be a tedious process requiring many operations;
however, the absolute lister utility performs these operations automatically.

Topic Page
8.1 Producing an Absolute Listing[.c.ceeeeeieieieeeieeeeeeeeeeieieieieeenene. 227
8.2 Invoking the Absolute Lister] oo eeeeeeee 227
8.3 Absolute Lister Example[..o 223

SPRU513C-October 2007

Absolute Lister Description 219
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

%‘ TEXAS

INSTRUMENTS
www.ti.com
Producing an Absolute Listing
8.1 Producing an Absolute Listing
illustrates the steps required to produce an absolute listing.
Figure 8-1. Absolute Lister Development Flow
. Assembler i i
Step 1: First, assemble a source file.
Assembler
Link the resulting object file.
Invoke the absolute lister; use the linked ob-
ject file as input. This creates a file with an .abs
Absolute extension.
lister
.abs
———— fle J—————————————————
Step 4: Finally, assemble the .abs file; you must in-
voke the assembler with the —a option. This
Assembler produces a listing file that contains absolute
addresses.
Absolute
listing
220 Absolute Lister Description SPRU513C-0October 2007

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Invoking the Absolute Lister

8.2 Invoking the Absolute Lister
The syntax for invoking the absolute lister is:

‘ abs2000 [-options] input file

abs2000 is the command that invokes the absolute lister.

options identifies the absolute lister options that you want to use. Options are not case sensitive
and can appear anywhere on the command line following the command. Precede each
option with a hyphen (-). The absolute lister options are as follows:

-e enables you to change the default naming conventions for filename extensions on
assembly files, C source files, and C header files. The three options are listed below.

» ea [.]Jasmext for assembly files (default is .asm)
» ec [.Jeext for C source files (default is .c)

» eh [.]Jhext for C header files (default is .h)

* ep [.]Jpext for CPP source files (default is cpp)

The . in the extensions and the space between the option and the extension are
optional.

-fs specifies a directory for the output files. For example, to place the .abs file generated

by the absolute lister in C:\ABSDIR use this command:
abs2000 -fs C.\ABSDIR fil enane. out

If the -fs option is not specified, the absolute lister generates the .abs files in the
current directory.

-q (quiet) suppresses the banner and all progress information.

input file names the linked object file. If you do not supply an extension, the absolute lister
assumes that the input file has the default extension .out. If you do not supply an input
filename when you invoke the absolute lister, the absolute lister prompts you for one.

The absolute lister produces an output file for each file that was linked. These files are named with the
input filenames and an extension of .abs. Header files, however, do not generate a corresponding .abs
file.

Assemble these files with the -aa assembler option as follows to create the absolute listing:
cl2000 -v28 -aa filename.abs

The -e options affect both the interpretation of filenames on the command line and the names of the
output files. They should always precede any filename on the command line.

The -e options are useful when the linked object file was created from C files compiled with the debugging
option (-g compiler option). When the debugging option is set, the resulting linked object file contains the
name of the source files used to build it. In this case, the absolute lister does not generate a
corresponding .abs file for the C header files. Also, the .abs file corresponding to a C source file uses the
assembly file generated from the C source file rather than the C source file itself.

For example, suppose the C source file hello.csr is compiled with the debugging option set; the debugging
option generates the assembly file hello.s. The hello.csr file includes hello.hsr. Assuming the executable
file created is called hello.out, the following command generates the proper .abs file:

abs2000 -ea s -ec csr -eh hsr hello.out

An .abs file is not created for hello.hsr (the header file), and hello.abs includes the assembly file hello.s,
not the C source file hello.csr.

SPRU513C-0October 2007 Absolute Lister Description 221
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Absolute Lister Example

8.3 Absolute Lister Example

This example uses three source files. The files modulel.asm and module2.asm both include the file
globals.def.

modulel.asm

. text

. bss array, 100

. bss dfl ag, 2
.copy globals.def
MoV ACC, #of fset
MoV ACC, #dfl ag

module2.asm

. bss of fset, 2
.copy globals.def
MoV

CC, #offset
MoV ACC, #array
globals.def
. gl obal dflag

. gl obal array
. gl obal of fset
The following steps create absolute listings for the files modulel.asm and module2.asm:
1. First, assemble modulel.asm and module2.asm:
cl 2000 -v28 nodul el
cl 2000 -v28 nodul e2
This creates two object files called modulel.obj and module2.ob;.
2. Next, link modulel.obj and module2.obj using the following linker command file, called bttest.cmd:

--output_file=bttest. out
--map_file=bttest. map

nmodul el. obj
nodul e2. obj

MEMORY

{
PAGE 0: ROM ori gi n=2000h | engt h=2000h
PAGE 1: RAM origi n=8000h | engt h=8000h

}

SECTI ONS

{
.data: >RAM
.text: >ROM
. bss: >RAM

}

Invoke the linker:
cl 2000 -v28 -z bttest.cnd

This command creates an executable object file called bttest.out; use this new file as input for the
absolute lister.

222 Absolute Lister Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Absolute Lister Example

3. Now, invoke the absolute lister:
abs2000 bttest. out

This command creates two files called modulel.abs and module2.abs:
modulel.abs:

.nolist

array .setsym 000008000h

dfl ag .setsym 000008064h

of f set .setsym 000008066h

.data .setsym 000008000h

edat a .setsym 000008000h

.text .setsym 000002000h

et ext .setsym 000002008h

. bss .setsym 000008000h

end .setsym 000008068h
. setsect ".text", 000002000h
. set sect ".data", 000008000h
. setsect ". bss", 00008000h
st
.text
. copy "modul el. asnt

module2.abs:

.noli st

array .setsym 000008000h

df | ag .setsym 000008064h

of f set .setsym 000008066h

.data .setsym 000008000h

edat a .setsym 000008000h

. text .setsym 000002000h

et ext .setsym 000002008h

. bss .setsym 000008000h

end .setsym 000008068h
. set sect ".text", 000002004h
. setsect ".data", 000008000h
. set sect ". bss", 00008066h
list
.text
. copy "modul e2. asnt'

These files contain the following information that the assembler needs for step 4:

e They contain .setsym directives, which equate values to global symbols. Both files contain global
equates for the symbol dflag. The symbol dflag was defined in the file globals.def, which was
included in modulel.asm and module2.asm.

« They contain .setsect directives, which define the absolute addresses for sections.
« They contain .copy directives, which defines the assembly language source file to include.
The .setsym and .setsect directives are useful only for creating absolute listings, not normal assembly.

4. Finally, assemble the .abs files created by the absolute lister (remember that you must use the -aa
option when you invoke the assembler):

cl 2000 -v28 -aa nodul el. abs

cl 2000 -v28 -aa nodul e2. abs
This command sequence creates two listing files called modulel.Ist and module2.Ist; no object code is
produced. These listing files are similar to normal listing files; however, the addresses shown are
absolute addresses.
IEhja absolute listing files created are modulel.Ist (see Example 8-1) and module2.Ist (see

).

SPRU513C-0October 2007 Absolute Lister Description 223
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

Absolute Lister Example

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Example 8-1. modulel.lst

nmodul el

15
16

GQWNEFREAWNPRE

[«2)

Example 8-2. module2.Ist

nmodul e2

15
16
1

WWNEN

I

abs
002000

002000
008000
008064

002000
002001
002002
002003

abs
002004

008066

002004
002005
002006
002007

FF20
8066
FF20-
8064

FF20-
8066
FF20
8000

. text
. copy
. text
. bss
. bss
. copy
. gl oba
. gl oba
. gl oba

.text

. copy
. bss

. copy
. gl obal
. gl oba
. gl obal
MoV

MoV

"modul el. asnt

array, 100
dfl ag, 2

gl obal s. def
df | ag

array

of f set
ACC, #of f set

ACC, #df | ag

"modul e2. asnt'
of fset, 2
gl obal s. def
df | ag
array
of f set
ACC, #of f set

ACC, #arr ay

PAGE

PAGE

224

Absolute Lister Description

u

SPRU513C—-0October 2007
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

%‘ TEXAS Chapter 9
INSTRUMENTS

SPRU513C-0October 2007

Cross-Reference Lister Description

The TMS320C28x™ cross-reference lister is a debugging tool. This utility accepts linked object files as

input and produces a cross-reference listing as output. This listing shows symbols, their definitions, and
their references in the linked source files.

Topic Page
9.1 Producing a Cross-Reference Listing[oooieeeeeeeieieeeeeeieieraeaeieieinsne. 224
9.2 Invoking the Cross-Reference Listerf...ocoeeeeeeeeeeeeeeeeieieieieeeeenen. 224
9.3 Cross-Reference Listing Example[..oooeieie e eeeeeeee 227

SPRU513C-October 2007

Cross-Reference Lister Description 225
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

Producing a Cross-Reference Listing

*L‘ TEXAS
INSTRUMENTS

www.ti.com

9.1 Producing a Cross-Reference Listing
illustrates the steps required to produce a cross-reference listing.

Figure 9-1. The Cross-Reference Lister in the TMS320C28x Software Development Flow

Step 1:

Assembler
source file

\T/

Assembler

Object
file

Link step

Linked object

file

Cross-reference
lister

Cross-reference

listing

First, invoke the assembler with the -ax option.
This option produces a cross-reference table
in the listing file and adds to the object file
cross-reference information. By default, the
assembler cross-references only global
symbols. If you use the -as option when
invoking the assembler, it cross-references
local symbols as well.

Link the object file (.obj) to obtain an
executable object file (.out).

Invoke the cross-reference lister. The following
section provides the command syntax for
invoking the cross-reference lister utility.

9.2 Invoking the Cross-Reference Lister

To use the cross-reference utility, the file must be assembled with the correct options and then linked into
an executable file. Assemble the assembly language files with the -ax option. This option creates a
cross-reference listing and adds cross-reference information to the object file. By default, the assembler
cross-references only global symbols, but if the assembler is invoked with the -as option, local symbols
are also added. Link the object files to obtain an executable file.

To invoke the cross-reference lister, enter the following:

‘xrefZOOO [options] [input filename [output filename]]

xref2000 is the command that invokes the cross-reference utility.

options identifies the cross-reference lister options you want to use. Options are not case
sensitive and can appear anywhere on the command line following the command.

-q

(lowercase L) specifies the number of lines per page for the output file. The format
of the -l option is -Inum, where num is a decimal constant. For example, -130 sets
the number of lines per page in the output file to 30. The space between the
option and the decimal constant is optional. The default is 60 lines per page.

suppresses the banner and all progress information (run quiet).

input filename is a linked object file. If you omit the input filename, the utility prompts for a filename.

226 Cross-Reference Lister Description

SPRU513C-October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Cross-Reference Listing Example

output filename is the name of the cross-reference listing file. If you omit the output filename, the default
filename is the input filename with an .xrf extension.

9.3 Cross-Reference Listing Example
is an example of cross-reference listing.

Example 9-1. Cross-Reference Listing

Symbol : _SETUP

Fi | enane RTYP Asnmval LnkVal Def Ln Ref Ln Ref Ln Ref Ln

deno. asm EDEF ' 00000018 00000018 18 13 20

Symbol : _fill_tab

Fi | enane RTYP Asnmval LnkVal Def Ln Ref Ln Ref Ln Ref Ln
ctrl.asm EDEF ' 00000000 00000040 10 5

Synbol : _x42

Fi | enane RTYP Asnmval LnkVal Def Ln Ref Ln Ref Ln Ref Ln
deno. asm EDEF ' 00000000 00000000 7 4 18

Synbol : gvar

Fi | enane RTYP Asnmval LnkVal Def Ln Ref Ln Ref Ln Ref Ln
t abl es. asm EDEF "00000000 08000000 11 10

The terms defined below appear in the preceding cross-reference listing:

Symbol Name of the symbol listed
Filename Name of the file where the symbol appears
RTYP The symbol's reference type in this file. The possible reference types are:

STAT The symbol is defined in this file and is not declared as global.
EDEF The symbol is defined in this file and is declared as global.

EREF The symbol is not defined in this file but is referenced as global.
UNDF The symbol is not defined in this file and is not declared as global.

AsmVal This hexadecimal number is the value assigned to the symbol at assembly time. A
value may also be preceded by a character that describes the symbol's attributes.
lists these characters and names.

LnkVal This hexadecimal number is the value assigned to the symbol after linking.
DefLn The statement number where the symbol is defined.
SPRU513C-0October 2007 Cross-Reference Lister Description 227

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS

INSTRUMENTS
www.ti.com
Cross-Reference Listing Example
RefLn The line number where the symbol is referenced. If the line number is followed by an

asterisk (*), then that reference can modify the contents of the object. A blank in this
column indicates that the symbol was never used.

Table 9-1. Symbol Attributes in Cross-Reference
Listing

Character Meaning

Symbol defined in a .text section
Symbol defined in a .data section
+ Symbol defined in a .sect section
- Symbol defined in a .bss or .usect section

228 Cross-Reference Lister Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

%‘ TEXAS Chapter 10
INSTRUMENTS SPRUS513C—October 2007

Object File Utilities Descriptions

This chapter describes how to invoke the following miscellaneous utilities:

* The object file display utility prints the contents of object files, executable files, and/or archive
libraries in both text and XML formats.

» The name utility prints a list of names defined and referenced in an object or executable file.
» The strip utility removes symbol table and debugging information from object and executable files.

Topic Page
10.1 Invoking the Object File Display Utility[....coceeeeeeeeeee e 237
10.2 Invoking the Name Utility[..o iieee e 237
10.3 Invoking the Strip Utility[oo eeeeeieeeie e iieeeeeeieiereieieieieeees, 234
SPRU513C-0October 2007 Object File Utilities Descriptions 229

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

Invoking the Object File Display Utility

*5‘ TEXAS
INSTRUMENTS

www.ti.com

10.1 Invoking the Object File Display Utility

The object file display utility, ofd2000, prints the contents of object files (.obj), executable files (.out),
and/or archive libraries (.lib) in both text and XML formats.

To invoke the object file display utility, enter the following:

’odeOOO [options] input filename [input filename]

ofd2000 is the command that invokes the object file display utility.

input filename names the object file (.obj), executable file (.out), or archive library (.lib) source file.
The filename must contain an extension.

options identify the object file display utility options that you want to use. Options are not case
sensitive and can appear anywhere on the command line following the command.
Precede each option with a hyphen.

--dwarf_display=attributes controls the DWARF display filter settings by specifying a

--dynamic_info
-9

-h

-o=filename

--obj_display attributes

-V
-X
--xml_indent=num

comma-delimited list of attributes. When prefixed with no,
an attribute is disabled instead of enabled.

Examples: --dwarf_display=nodabbrev,nodline
--dwarf_display=all,nodabbrev
--dwarf_display=none,dinfo,types

The ordering of attributes is important (see --obj_display).
The list of available display attributes can be obtained by
invoking ofd2000 --dwarf_display=help.

outputs dynamic linking information for ELF only.
appends DWARF debug information to program output.
displays help

sends program output to filename rather than to the
screen.

controls the object file display filter settings by specifying
a comma-delimited list of attributes. When prefixed with
no, an attribute is disabled instead of enabled.

Examples: --0bj_display=rawdata,nostrings
--0bj_display=all,norawdata
--0bj_display=none,header

The ordering of attributes is important. For instance, in
"--obj_display=none,header", ofd2000 disables all output,
then re-enables file header information. If the attributes
are specified in the reverse order, (header,none), the file
header is enabled, the all output is disabled, including the
file header. Thus, nothing is printed to the screen for the
given files. The list of available display attributes can be
obtained by invoking ofd2000 --obj_display=help.

prints verbose text output.
displays output in XML format.
sets the number of spaces to indent nested XML tags.

230 Object File Utilities Descriptions

SPRU513C—-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Invoking the Name Utility

If an archive file is given as input to the object file display utility, each object file member of the archive is
processed as if it was passed on the command line. The object file members are processed in the order in
which they appear in the archive file.

If the object file display utility is invoked without any options, it displays information about the contents of
the input files on the console screen.

Object File Display Format

Note: The object file display utility produces data in a text format by default. This data is not
intended to be used as machine or software input.

10.2 Invoking the Name Utility

The name utility, nm2000, prints the list of names defined and referenced in an object (.obj) or an

executable file (.out). It also prints the symbol value and an indication of the kind of symbol.

To invoke the name utility, enter the following:

‘ nm2000 [-options] [input filenames]

nm2000 is the command that invokes the name utility.

input filename is an object file (.obj) or an executable file (.out).

options identifies the name utility options you want to use. Options are not case sensitive and
can appear anywhere on the command line following the invocation. Precede each
option with a hyphen (-). The name utility options are as follows:
-a prints all symbols.
-C also prints C_NULL symbols for a COFF object module.
-d also prints debug symbols for a COFF object module.
-f prepends file name to each symbol.
-g prints only global symbols.
-h shows the current help screen.
-l produces a detailed listing of the symbol information.
-n sorts symbols numerically rather than alphabetically.
-o file outputs to the given file.
-p causes the name utility to not sort any symbols.
-q (quiet mode) suppresses the banner and all progress information.
-r sorts symbols in reverse order.
-S lists symbols in the dynamic symbol table for an ELF object module.
-t also prints tag information symbols for a COFF object module.
-u only prints undefined symbols.

SPRU513C-0October 2007 Object File Utilities Descriptions 231

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Invoking the Strip Utility

10.3 Invoking the Strip Utility

The strip utility, strip2000, removes symbol table and debugging information from object and executable
files.

To invoke the strip utility, enter the following:

strip2000 [-p] input filename [input filename]

strip2000 is the command that invokes the strip utility.
input filename is an object file (.obj) or an executable file (.out).

options identifies the strip utility options you want to use. Options are not case sensitive and can
appear anywhere on the command line following the invocation. Precede each option
with a hyphen (-). The strip utility option is as follows:

-0 filename writes the stripped output to filename.

-p removes all information not required for execution. This option causes more
information to be removed than the default behavior, but the object file is
left in a state that cannot be linked. This option should be used only with
executable (.out) files.

When the strip utility is invoked without the -0 option, the input object files are replaced with the stripped
version.

232 Object File Utilities Descriptions SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

J@ TEXAS
INSTRUMENTS

Chapter 11

SPRU513C-0October 2007

Hex Conversion Utility Description

The TMS320C28x™ assembler and linker create object files which are in binary formats that encourage
modular programming and provide powerful and flexible methods for managing code segments and target

system memory.

Most EPROM programmers do not accept object files as input. The hex conversion utility converts an
object file into one of several standard ASCIlI hexadecimal formats, suitable for loading into an EPROM
programmer. The utility is also useful in other applications requiring hexadecimal conversion of an object
file (for example, when using debuggers and loaders).

The hex conversion utility can produce these output file formats:
e ASCII-Hex, supporting 16-bit addresses

» Extended Tektronix (Tektronix)
» Intel MCS-86 (Intel)

» Motorola Exorciser (Motorola-S), supporting 16-bit addresses
» Texas Instruments SDSMAC (TI-Tagged), supporting 16-bit addresses

Topic Page

11.1 The Hex Conversion Utility's Role in the Software Development

[o). 234
11.2 Invoking the Hex Conversion Utility[.. oooiioiei e ieeeeeieiiaeaeens 233
11.3 Understanding Memory WidthsS[....oooeeo oo 239
11.4 The ROMS Dir€CtiVe . et eeiee e i seeaeaeeeisaeaeaeeeiacaraeaeiernzaeaees 243
11.5 The SECTIONS Dir€CtiVe . ieieeieiearerearareaearearareiearerearerearereazareaeene. 2449
11.6 Excluding a Specified Section[..o e iieeeees 247
11.7 Assigning Output Filenames i ooooioieeeeeieieeeeeiieieeaeieiineacaees 243
11.8 Image Mode and the fill OptioN[oo i ieeeeiieieeeeieieineaeaees 249
11.9 Building a Table for an On-Chip Boot Loader[....c.coeveveveeeeeeene...... 254
11.10 Controlling the ROM Device Address[...oooeeeeeeeeeeeeeieieieieeeeenen. 254
11.11 Description of the Object Formatsf...........cooo oo 251
11.12 Hex Conversion Utility Error Messagesf....oooeeeeeeeieeeeeeee e 267

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Hex Conversion Utility Description 233

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

%‘ TEXAS

INSTRUMENTS
www.ti.com
The Hex Conversion Utility's Role in the Software Development Flow
11.1 The Hex Conversion Utility's Role in the Software Development Flow
highlights the role of the hex conversion utility in the software development process.
Figure 11-1. The Hex Conversion Utility in the TMS320C28x Software Development Flow

. ¢
s source
: files :

. Macro . . .

. . o C2xx .

. source - C/C+ - assembler «

© files 2 compiler ° source

. + Assembler o Translation
Archiver . source . assistant
+ Macro : Assembler :
* library Assembler . source .
. E Object E Library-build
Archiver . files . process
. * l Debugging
v T tools

N » : Run-time- :

. lergry of | . support -+

« oObject . * libra . v

. files ° Linker . y .

Post-link
optimizer
. Executable ®
. oObjectfile .
Hex-conversion
utility
EPROM Absolute lister Cross-reference Obqut file C28x
programmer lister utilities

234

Hex Conversion Utility Description

SPRU513C-0October 2007
Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Invoking the Hex Conversion Utility

11.2 Invoking the Hex Conversion Utility

There are two basic methods for invoking the hex conversion utility:
» Specify the options and filenames on the command line. The following example converts the file
firmware.out into TI-Tagged format, producing two output files, firm.Isb and firm.msb.
hex2000 -t firmvare -o firmlsb -o firmnsb
» Specify the options and filenames in a command file. You can create a batch file that stores

command line options and filenames for invoking the hex conversion utility. The following example
invokes the utility using a command file called hexutil.cmd:

hex2000 hexutil.cnd

In addition to regular command line information, you can use the hex conversion utility ROMS and
SECTIONS directives in a command file.

11.2.1 Invoking the Hex Conversion Utility From the Command Line

To invoke the hex conversion utility, enter:

’hexZOOO [options] filename

hex2000 is the command that invokes the hex conversion utility.
options supplies additional information that controls the hex conversion process. You can use
options on the command line or in a command file. lists the basic options.

L]

L]

All options are preceded by a hyphen and are not case sensitive.

Several options have an additional parameter that must be separated from the option
by at least one space.

Options with multicharacter names must be spelled exactly as shown in this document;
no abbreviations are allowed.

Options are not affected by the order in which they are used. The exception to this rule
is the -g (quiet) option, which must be used before any other options.

filename names an object file or a command file (for more information, see Becfion 11.2.7). If you
do not specify a filename, the utility prompts you for one.

SPRU513C-October 2007

Hex Conversion Utility Description 235

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

@‘ TEXAS

INSTRUMENTS
www.ti.com
Invoking the Hex Conversion Utility
Table 11-1. Basic Hex Conversion Utility Options
General Options Option Description See
Control the overall operation of -exclude=section_name Ignore specified section S g
the hex conversion utility. -linkerfill Include linker fill sections in images
-map=filename Generate a map file S 17
-o=filename Specify an output filename
-quiet, -q Run quietly (when used, it must appear before [Eection T1.2.2
other options)
Image Options Option Description See
Create a continuous image of a -fill=value Fill holes with value S 8
range of target memory -image Specify image mode S 3. 1]
-zero Reset the address origin to 0 in image mode S 8
Memory Options Option Description See
Configure the memory widths for -memwidth=value Define the system memory word width (default [Bection T1.3:2
your output files 32 bits)
-romwidth=value Specify the ROM device width (default
depends on format used)
-order LS Output file is in little-endian format pbection 11.5.4
-order MS Output file is in big-endian format bection 11.5.4
Output Options Option Description See
Specify the output format -a Select ASCII-Hex
-l Select Intel
-m Select Motorola-S
-t Select TI-Tagged bection 11.11.4
-ti_txt Select TI-Txt
-X Select Tektronix (default) Beciion IT1.11T.9
Boot Options Option Description See
Control the boot loader -boot Convert all sections into bootable form (use

-bootorg=addr
-e

-gpio8
-gpiol6
-lospcp=value
-sci8

-spi8

-spibrr=value

instead of a SECTIONS directive)

Specify the source address of the boot loader
table

Specify the entry point at which to begin
execution after boot loading

Specify table source as the GP I/O port, 8-bit
mode. (Aliased by --can8).

Specify table source as the GP 1/O port, 16-bit
mode

Specify the initial value for the LOSPCP
register

Specify table source as the SCI-A port, 8-bit
mode

Specify table source as the SPI-A port, 8-bit
mode

Specify the initial value for the SPIBRR
register

236 Hex Conversion Utility Description

SPRU513C—-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Invoking the Hex Conversion Utility

11.2.2 Invoking the Hex Conversion Utility With a Command File

A command file is useful if you plan to invoke the utility more than once with the same input files and
options. It is also useful if you want to use the ROMS and SECTIONS hex conversion utility directives to
customize the conversion process.

Command files are ASCII files that contain one or more of the following:

» Options and filenames. These are specified in a command file in exactly the same manner as on the
command line.

« ROMS directive. The ROMS directive defines the physical memory configuration of your system as a
list of address-range parameters. (See Bection 11.4.)

» SECTIONS directive. The hex conversion utility SECTIONS directive specifies which sections from the
object file are selected. (See Bection 11.5.)

« Comments. You can add comments to your command file by using the /* and */ delimiters. For
example:
[* This is a comrent. */

To invoke the utility and use the options you defined in a command file, enter:
hex2000 command_filename

You can also specify other options and files on the command line. For example, you could invoke the
utility by using both a command file and command line options:

hex2000 firmware.cnd -map firmare. mxp

The order in which these options and filenames appear is not important. The utility reads all input from the
command line and all information from the command file before starting the conversion process. However,
if you are using the -q option, it must appear as the first option on the command line or in a command file.

The -q option suppresses the hex conversion utility's normal banner and progress information.

* Assume that a command file named firmware.cmd contains these lines:

firmare. out /* input file */

-t /* TI-Tagged */

-0 firmlsb /* output file */

-0 firmmsb /* output file */

You can invoke the hex conversion utility by entering:

hex2000 firnmnare. cnd

» This example shows how to convert a file called appl.out into eight hex files in Intel format. Each output

file is one byte wide and 4K bytes long.

appl . out /* input file */
-1 /* Intel format */
-map appl . mxp I* map file */
ROVS

ROML: ori gi n=0x00000000 | en=0x4000 romni dt h=8
files={ appl.u0 appl.ul appl.u2 appl.u3 }

ROM2: ori gi n=0x00004000 | en=0x4000 romni dt h=8
files={ appl.u4d appl.u5 appl.u6 appl.u7 }

SECTI ONS
{ .text, .data, .cinit, .sectl, .vectors, .const:

}

SPRU513C-0October 2007 Hex Conversion Utility Description 237
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

” TEXAS
INSTRUMENTS

www.ti.com

Understanding Memory Widths

11.3 Understanding Memory Widths

The hex conversion utility makes your memory architecture more flexible by allowing you to specify
memory and ROM widths. To use the hex conversion utility, you must understand how the utility treats
word widths. Three widths are important in the conversion process:

» Target width
e Memory width
* ROM width

The terms target word, memory word, and ROM word refer to a word of such a width.
illustrates the two separate and distinct phases of the hex conversion utility's process flow.

Figure 11-2. Hex Conversion Utility Process Flow
Raw data in object files is
/ represented in the target’s
addressable units. For the
(Input file) TMS320C28x, this is 16 bits.

The raw data in the object file
is grouped into words according
Phase | to the size specified by the
-memwidth option.

The memwidth-sized words are
broken up according to the size
specified by the -romwidth option
and are written to a file(s)
according to the specified format
(i.e., Intel, Tektronix, etc.).

Phase Il

(outputfile(s))

11.3.1 Target Width

Target width is the unit size (in bits) of the target processor's word. The unit size corresponds to the data
bus size on the target processor. The width is fixed for each target and cannot be changed. The
TMS320C28x targets have a width of 16 bits.

238

Hex Conversion Utility Description SPRU513C-0October 2007
[Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Understanding Memory Widths

11.3.2 Specifying the Memory Width

Memory width is the physical width (in bits) of the memory system. Usually, the memory system is
physically the same width as the target processor width: a 32-bit processor has a 32-bit memory
architecture. However, some applications require target words to be broken into multiple, consecutive, and
narrower memory words.

By default, the hex conversion utility sets memory width to the target width (in this case, 16 bits).

You can change the memory width by:
e Using the -memwidth option. This changes the memory width value for the entire file.

e Setting the memwidth parameter of the ROMS directive. This changes the memory width value for the
address range specified in the ROMS directive and overrides the -memwidth option for that range. See

Fection 124,

For both methods, use a value that is a power of 2 greater than or equal to 8.

You should change the memory width default value of 16 only when you need to break single target words
into consecutive, narrower memory words.

demonstrates how the memory width is related to object file data.

Data after
phase | of
hex2000

Figure 11-3. Object File Data and Memory Widths

Source file

.word O0AABBh
word 01122h

COFF data (assumed to be in big-endian format)

Memory widths (variable)

-memwidth 16 (default) -memwidth 8

N =|o]| >
Nl =] >

SPRU513C—-0October 2007
Eubmit Documentation Feedbacl

Hex Conversion Utility Description 239

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Understanding Memory Widths

11.3.3 Partitioning Data Into Output Files

ROM width specifies the physical width (in bits) of each ROM device and corresponding output file
(usually one byte or eight bits). The ROM width determines how the hex conversion utility partitions the
data into output files. After the object file data is mapped to the memory words, the memory words are
broken into one or more output files. The number of output files is determined by the following formulas:
» If memory width > ROM width:
number of files = memory width + ROM width
e If memory width < ROM width:
number of files = 1
For example, for a memory width of 16, you could specify a ROM width value of 16 and get a single
output file containing 16 bits words. Or you can use a ROM width value of 8 to get two files, each
containing 8 bits of each word.
The default ROM width that the hex conversion utility uses depends on the output format:
« All hex formats except TI-Tagged are configured as lists of 8-bit bytes; the default ROM width for these
formats is 8 bits.
* TI-Tagged is a 16-bit format; the default ROM width for TI-Tagged is 16 bits.

The TI-Tagged Format is 16 Bits Wide

Note: You cannot change the ROM width of the TI-Tagged format. The TI-Tagged format supports
a 16-bit ROM width only.

You can change ROM width (except for TI-Tagged format) by:

» Using the -romwidth option. This option changes the ROM width value for the entire object file.

» Setting the romwidth parameter of the ROMS directive. This parameter changes the ROM width value
for a specific ROM address range and overrides the -romwidth option for that range. See Béection 11.4.

For both methods, use a value that is a power of 2 greater than or equal to 8.

If you select a ROM width that is wider than the natural size of the output format (16 bits for TI-Tagged or
8 bits for all others), the utility simply writes multibyte fields into the file.

illustrates how the object file data, memory, and ROM widths are related to one another.

Memory width and ROM width are used only for grouping the object file data; they do not represent
values. Thus, the byte ordering of the object file data is maintained throughout the conversion process. To
refer to the partitions within a memory word, the bits of the memory word are always numbered from right
to left as follows:

-memwidth 16

AABB1122
15 0

240

Hex Conversion Utility Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
Understanding Memory Widths
Figure 11-4. Data, Memory, and ROM Widths
Source file
.word OAABBh
word 01122h
COFF data (assumed to be in big-endian format)
Memory widths (variable) TS
N
/’—_‘\\ 7 N\
,+ memwidth 16 /. -memwidth 8 \
/ \ / \
\
Data after (AABB | /I AA \
phase | of N 1122 y { BB I
hex2000 N e < \ 11 |
S———-Y \\ \\ /
Y \ \ 22 /
\ \ \ o o 0 /
\‘ \ \\ //
N
| \\ \‘—’T/
] \ \
. [} 3 \
Output files /I N |I
\
-romwidth 16 i \]
ofilewrd |AABB1122|eee) H
7 /
Data after -romwidth 8 " 4
phase Il of : .. /
hex2000 ofileb0 |BB 22 //
-o file.b1 AA 11| eee 7
//
//
-romwidth 8 -
-o file.oyt |AABB1122| e

SPRU513C—-0October 2007
Bubmit Documentation FeedbacH

Hex Conversion Utility Description 241

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

Understanding Memory Widths

*L‘ TEXAS
INSTRUMENTS

www.ti.com

11.3.4 Specifying Word Order for Output Words
There are two ways to split a wide word into consecutive memory locations in the same hex conversion

utility output file:

» -order MS specifies big-endian ordering, in which the most significant part of the wide word occupies

the first of the consecutive locations.

» -order LS specifies little-endian ordering, in which the least significant part of the wide word occupies

the first of the consecutive locations.

By default, the utility uses little-endian format. Unless your boot loader program expects big-endian format,

avoid using -order MS.

When the -order Option Applies

Notes:

e This option applies only when you use a memory width with a value less than 16.

Otherwise, -order is ignored.

e This option does not affect the way memory words are split into output files. Think of the
files as a set: the set contains a least significant file and a most significant file, but there
is no ordering over the set. When you list filenames for a set of files, you always list the
least significant first, regardless of the -order option.

Eigure T1-§ demonstrates how the -order option affects the conversion process. This figure and
Eigure TT-4 explain the condition of the data in the hex conversion utility output files.

Figure 11-5. Varying the Word Order

Source file

.word O0AABBh
word 01122h

Target width = 16 (fixed)

0AABBh
01122h

Memory widths (variable)

-memwidth 8

BB
AA
22
11

® o 0

-order LS (default)

-memwidth 8
-order MS

AA
BB
11
22

® o0

242

Hex Conversion Utility Description

u

SPRU513C—-0October 2007
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

The ROMS Directive

11.4 The ROMS Directive
The ROMS directive specifies the physical memory configuration of your system as a list of address-range

parameters.

Each address range produces one set of files containing the hex conversion utility output data that
corresponds to that address range. Each file can be used to program one single ROM device.

The ROMS directive is similar to the MEMORY directive of the TMS320C28x link step: both define the
memory map of the target address space. Each line entry in the ROMS directive defines a specific
address range. The general syntax is:

ROMS
{
romname : [origin=value,] [length=value,] [romwidth=value,]
[memwidth=value,] [fill=value]
[files={filename,, filename,, ...}]
romname : [origin=value,] [length=value,] [romwidth=value,]
[memwidth=value,] [fill=value]
[files={filenamey, filename,, ...}]
}
ROMS begins the directive definition.
romname identifies a memory range. The name of the memory range can be one to eight
characters in length. The name has no significance to the program; it simply identifies
the range. (Duplicate memory range names are allowed.)
origin specifies the starting address of a memory range. It can be entered as origin, org, or o.
The associated value must be a decimal, octal, or hexadecimal constant. If you omit
the origin value, the origin defaults to 0. The following table summarizes the notation
you can use to specify a decimal, octal, or hexadecimal constant:
Constant Notation Example
Hexadecimal 0x prefix or h suffix 0x77 or 077h
Octal 0 prefix 077
Decimal No prefix or suffix 77
length specifies the length of a memory range as the physical length of the ROM device. It
can be entered as length, len, or I. The value must be a decimal, octal, or hexadecimal
constant. If you omit the length value, it defaults to the length of the entire address
space.
romwidth specifies the physical ROM width of the range in bits (see Becfion 11.3.3). Any value
you specify here overrides the -romwidth option. The value must be a decimal, octal,
or hexadecimal constant that is a power of 2 greater than or equal to 8.
memwidth specifies the memory width of the range in bits (see Bection 11.3.2). Any value you

specify here overrides the -memwidth option. The value must be a decimal, octal, or
hexadecimal constant that is a power of 2 greater than or equal to 8. When using the
memwidth parameter, you must also specify the paddr parameter for each section in
the SECTIONS directive. (See Bection 11.5.)

SPRU513C-October 2007

Hex Conversion Utility Description 243

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS

INSTRUMENTS
www.ti.com
The ROMS Directive
fill specifies a fill value to use for the range. In image mode, the hex conversion utility

uses this value to fill any holes between sections in a range. A hole is an area between
the input sections that comprises an output section that contains no actual code or
data. The fill value must be a decimal, octal, or hexadecimal constant with a width
equal to the target width. Any value you specify here overrides the -fill option. When
using fill, you must also use the -image command line option. (See [Bection 11.8.73.)

files identifies the names of the output files that correspond to this range. Enclose the list of
names in curly braces and order them from least significant to most significant output
file, where the bits of the memory word are numbered from right to left. The number of
file names must equal the number of output files that the range generates. To calculate
the number of output files, see Bection 11.3.3. The utility warns you if you list too many
or too few filenames.

Unless you are using the -image option, all of the parameters that define a range are optional; the
commas and equal signs are also optional. A range with no origin or length defines the entire address
space. In image mode, an origin and length are required for all ranges.

Ranges must not overlap and must be listed in order of ascending address.

11.4.1 When to Use the ROMS Directive

If you do not use a ROMS directive, the utility defines a single default range that includes the entire
address space. This is equivalent to a ROMS directive with a single range without origin or length.

Use the ROMS directive when you want to:

» Program large amounts of data into fixed-size ROMs. When you specify memory ranges
corresponding to the length of your ROMs, the utility automatically breaks the output into blocks that fit
into the ROMs.

» Restrict output to certain segments. You can also use the ROMS directive to restrict the conversion
to a certain segment or segments of the target address space. The utility does not convert the data
that falls outside of the ranges defined by the ROMS directive. Sections can span range boundaries;
the utility splits them at the boundary into multiple ranges. If a section falls completely outside any of
the ranges you define, the utility does not convert that section and issues no messages or warnings.
Thus, you can exclude sections without listing them by name with the SECTIONS directive. However, if
a section falls partially in a range and partially in unconfigured memory, the utility issues a warning and
converts only the part within the range.

» Use image mode. When you use the -image option, you must use a ROMS directive. Each range is
filled completely so that each output file in a range contains data for the whole range. Holes before,
between, or after sections are filled with the fill value from the ROMS directive, with the value specified
with the -fill option, or with the default value of 0.

11.4.2 An Example of the ROMS Directive

The ROMS directive in shows how 16K bytes of 16-bit memory could be partitioned for two
8K-byte 8-bit EPROMS. illustrates the input and output files.

Example 11-1. A ROMS Directive Example

infile.out
-i mage
-menmwi dth 16
ROVS
EPROML: org = 0x00004000, |en = 0x2000, roma dth = 8
files = { rom000. bO, romi000. b1}
EPROM2: org = 0x00006000, |en = 0x2000, roma dth = 8,
fill = OxFFOOFFOO,
244 Hex Conversion Utility Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

JE?‘TEDQAS
INSTRUMENTS

www.ti.com

The ROMS Directive

Example 11-1. A ROMS Directive Example (continued)

files = { ron6000. b0, ron6000. b1}
}

Figure 11-6. The infile.out File Partitioned Into Four Output Files

COFF file: Output files:
infile.out EPROM1
rom4000.b0 rom4000.b1
000004000 000004000
text (org) text text
0x0000487F 0x00004880
0x00005B80 0Oh Oh
.data 0x00005B80
0x0000633F data data
0x00006700
0x00005FFF
.table
Width = 8 bits
0x00007C7F len = 2000h (8K)
EPROM2
rom6000.b0 rom6000.b1
0x00006000
0x00006340 .data .data
X FFh 00h
0x00006700
.table .table
0x00007C80 = oon
0x00007FFF

The map file (specified with the -map option) is advantageous when you use the ROMS directive with
multiple ranges. The map file shows each range, its parameters, names of associated output files, and a
list of contents (section names and fill values) broken down by address. is a segment of the
map file resulting from the example in Example 11-1].

Example 11-2. Map File Output From Showing Memory Ranges

QUTPUT FI LES: rom4000. b0 [b0. . b7]
romd000. bl [b8. . bl5]
CONTENTS: 00004000..0000487f .text
00004880. . 00005b7f FILL = 00000000
00005b80. . 00005fff .data

QUTPUT FILES: ron6000.b0 [bO..b7]
ron6000. bl [b8. . b15]
CONTENTS: 00006000. . 0000633f . dat a
00006340. . 000066ff FILL = ff00ff00
00006700. . 00007c7f .table
00007¢80. . 00007fff FILL = ffO0Off00

EPROML1 defines the address range from 0x00004000 through 0x00005FFF with the following sections:

SPRU513C-0October 2007 Hex Conversion Utility Description 245
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

The SECTIONS Directive

This section ... Has this range ...
text 0x00004000 through 0x0000487F
.data 0x00005B80 through 0xO0005FFF

The rest of the range is filled with Oh (the default fill value), converted into two output files:

e rom4000.b0 contains bits 0 through 7
* rom4000.b1 contains bits 8 through 15

EPROM2 defines the address range from 0x00006000 through 0x00007FFF with the following sections:

This section ... Has this range ...
.data 0x00006000 through 0x0000633F
.table 0x00006700 through 0x00007C7F

The rest of the range is filled with Where is hex_exfill_value (from the specified fill value). The data from
this range is converted into two output files:

* rom6000.b0 contains bits O through 7

e rom6000.b1 contains bits 8 through 15

11.5 The SECTIONS Directive

You can convert specific sections of the object file by name with the hex conversion utility SECTIONS

directive. You can also specify those sections that you want to locate in ROM at a different address than

the load address specified in the linker command file. If you:

» Use a SECTIONS directive, the utility converts only the sections that you list in the directive and
ignores all other sections in the object file.

» Do not use a SECTIONS directive, the utility converts all initialized sections that fall within the
configured memory. For the TMS320C28x these sections are .text, .const, and .cinit.

Uninitialized sections are never converted, whether or not you specify them in a SECTIONS directive.

Sections Generated by the C/C++ Compiler

Note: The TMS320C28x C/C++ compiler automatically generates these sections:
* Initialized sections: .text, .const, and .cinit.
¢ Uninitialized sections: .bss, .stack, and .sysmem

Use the SECTIONS directive in a command file. (See [Bection 11.2.2) The general syntax for the
SECTIONS directive is:

SECTIONS
{

sname[:] [paddr=value]
shamel:] [paddr=boot]
sname(:] [boot]

246 Hex Conversion Utility Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
Excluding a Specified Section

SECTIONS begins the directive definition.

shame identifies a section in the input file. If you specify a section that does not exist, the
utility issues a warning and ignores the name.

paddr=value specifies the physical ROM address at which this section should be located. This value
overrides the section load address given by the linker. This value must be a decimal,
octal, or hexadecimal constant. It can also be the word boot (to indicate a boot table
section for use with a boot loader). If your file contains multiple sections, and if one
section uses a paddr parameter, then all sections must use a paddr parameter.

boot configures a section for loading by a boot loader. This is equivalent to using

11.6

paddr=boot. Boot sections have a physical address determined by the location of the
boot table. The origin of the boot table is specified with the -bootorg option.

For more similarity with the linker's SECTIONS directive, you can use colons after the section names (in
place of the equal sign on the boot keyboard). For example, the following statements are equivalent:

SECTIONS { .text: .data: boot }
SECTIONS { .text: .data = boot }

In the example below, the object file contains six initialized sections: .text, .data, .const, .vectors, .coeff,
and .tables. Suppose you want only .text and .data to be converted. Use a SECTIONS directive to specify
this:

SECTIONS { .text: .data: }

To configure both of these sections for boot loading, add the boot keyword:
SECTIONS { .text = boot .data = boot }

For more information about -boot and other command line options associated with boot tables, see
pbection 11.4.

Excluding a Specified Section

The -exclude section_name option can be used to inform the hex utility to ignore the specified section. If a
SECTIONS directive is used, it overrides the -exclude option.

For example, if a SECTIONS directive containing the section name mysect is used and an -exclude
mysect is specified, the SECTIONS directive takes precedence and mysect is not excluded.

The -exclude option has a limited wildcard capability. The * character can be placed at the beginning or
end of the name specifier to indicate a suffix or prefix, respectively. For example, -exclude sect*
disqualifies all sections that begin with the characters sect.

If you specify the -exclude option on the command line with the * wildcard, enter quotes around the
section name and wildcard. For example, -exclude"sect*". Using quotes prevents the * form being
interpreted by the hex conversion utility. If -exclude is in a command file, then the quotes should not be
specified.

SPRU513C-0October 2007 Hex Conversion Utility Description 247
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Assigning Output Filenames

11.7 Assigning Output Filenames

When the hex conversion utility translates your object file into a data format, it partitions the data into one

or more output files. When multiple files are formed by splitting memory words into ROM words, filenames
are always assigned in order from least to most significant, where bits in the memory words are numbered
from right to left. This is true, regardless of target or endian ordering.

The hex conversion utility follows this sequence when assigning output filenames:

1.

It looks for the ROMS directive. If a file is associated with a range in the ROMS directive and you
have included a list of files (files = {. . .}) on that range, the utility takes the filename from the list.
For example, assume that the target data is 16-bit words being converted to two files, each eight bits
wide. To name the output files using the ROMS directive, you could specify:

ROVG

{
RANGEL: romwi dth=8, files={ xyz.b0 xyz.bl }

}
The utility creates the output files by writing the least significant bits to xyz.b0O and the most significant
bits to xyz.b1.
It looks for the -0 options. You can specify names for the output files by using the -o option. If no
filenames are listed in the ROMS directive and you use -0 options, the utility takes the filename from
the list of -0 options. The following line has the same effect as the example above using the ROMS
directive:

-0 xyz.b0 -0 xyz.bl
If both the ROMS directive and -0 options are used together, the ROMS directive overrides the -0
options.
It assigns a default filename. If you specify no filenames or fewer names than output files, the utility
assigns a default filename. A default filename consists of the base name from the input file plus a 2- to
3-character extension. The extension has three parts:

a. A format character, based on the output format (see Bection 11.17)):
a for ASCII-Hex

| for Intel

m for Motorola-S
t for TI-Tagged
X for Tektronix

b. The range number in the ROMS directive. Ranges are numbered starting with 0. If there is no
ROMS directive, or only one range, the utility omits this character.

c. The file number in the set of files for the range, starting with O for the least significant file.

For example, assume a.out is for a 16-bit target processor and you are creating Intel format output.
With no output filenames specified, the utility produces two output files named a.i0, a.il.

If you include the following ROMS directive when you invoke the hex conversion utility, you would have
four output files:

ROV
{
rangel: o = 0x00001000 | = 0x1000
range2: o = 0x00002000 | = 0x1000
}
These output files ... Contain data in these locations ...
a.i00 and a.i01 0x00001000 through 0x00001FFF
a.i10 and a.ill1 0x00002000 through 0x00002FFF
248 Hex Conversion Utility Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Image Mode and the -fill Option

11.8 Image Mode and the -fill Option

This section points out the advantages of operating in image mode and describes how to produce output
files with a precise, continuous image of a target memory range.

11.8.1 Generating a Memory Image

With the -image option, the utility generates a memory image by completely filling all of the mapped
ranges specified in the ROMS directive.

An object file consists of blocks of memory (sections) with assigned memory locations. Typically, all
sections are not adjacent: there are holes between sections in the address space for which there is no
data. When such a file is converted without the use of image mode, the hex conversion utility bridges
these holes by using the address records in the output file to skip ahead to the start of the next section. In
other words, there may be discontinuities in the output file addresses. Some EPROM programmers do not
support address discontinuities.

In image mode, there are no discontinuities. Each output file contains a continuous stream of data that
corresponds exactly to an address range in target memory. Any holes before, between, or after sections
are filled with a fill value that you supply.

An output file converted by using image mode still has address records, because many of the
hexadecimal formats require an address on each line. However, in image mode, these addresses are
always contiguous.

Defining the Ranges of Target Memory

Note: If you use image mode, you must also use a ROMS directive. In image mode, each output
file corresponds directly to a range of target memory. You must define the ranges. If you do
not supply the ranges of target memory, the utility tries to build a memory image of the entire
target processor address space. This is potentially a huge amount of output data. To prevent
this situation, the utility requires you to explicitly restrict the address space with the ROMS
directive.

11.8.2 Specifying a Fill Value

The -fill option specifies a value for filling the holes between sections. The fill value must be specified as
an integer constant following the -fill option. The width of the constant is assumed to be that of a word on
the target processor. For example, specifying -fill OFFh results in a fill pattern of OFFh.. The constant value
is not sign extended.

The hex conversion utility uses a default fill value of 0 if you do not specify a value with the fill option. The
-fill option is valid only when you use -image; otherwise, it is ignored.

11.8.3 Steps to Follow in Using Image Mode

Step 1: Define the ranges of target memory with a ROMS directive. See Bection 11.4.

Step 2: Invoke the hex conversion utility with the -image option. You can optionally use the -zero
option to reset the address origin to O for each output file. If you do not specify a fill value
with the ROMS directive and you want a value other than the default of O, use the -fill option.

SPRU513C-0October 2007 Hex Conversion Utility Description 249
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Building a Table for an On-Chip Boot Loader
11.9 Building a Table for an On-Chip Boot Loader

Some C28x devices, such as the F2810/12, have a built-in boot loader that initializes memory with one or
more blocks of code or data. The boot loader uses a special table stored in memory or loaded from a
device peripheral to initialize code or data. The hex conversion utility supports the boot loader by
automatically building the boot table.

11.9.1 Description of the Boot Table

The input for a boot loader is the boot table. The boot table contains records that instruct the on-chip
loader to copy blocks of data contained in the table to specified destination addresses. The table can be
stored in memory (such as EPROM) or read in through a device peripheral (such as a serial or
communications port).

The hex conversion utility automatically builds the boot table for the boot loader. Using the utility, you
specify the sections you want the boot loader to initialize and the table location. The hex conversion utility
builds a complete image of the table according to the format specified and converts it into hexadecimal in
the output files. Then, you can burn the table into ROM or load it by other means.

The boot loader supports loading from memory that is narrower than the normal width of memory. For
example, you can boot a 16-bit TMS320C28x from a single 8-bit EPROM by using the -memwidth option
to configure the width of the boot table. The hex conversion utility automatically adjusts the table's format
and length. See the boot loader example in the TMS320C28x DSP CPU and Instruction Set Reference
Guide for an illustration of a boot table.

11.9.2 The Boot Table Format

The boot table format is simple. Typically, there is a header record containing a key value that indicates
memory width, entry point, and values for control registers. Each subsequent block has a header
containing the size and destination address of the block followed by data for the block. Multiple blocks can
be entered. The table ends with a header containing size zero. See the boot loader section in the
TMS320C28x DSP CPU and Instruction Set Reference Guide for more information.

11.9.3 How to Build the Boot Table
summarizes the hex conversion utility options available for the boot loader.

Table 11-2. Boot-Loader Options

Option Description

-boot Convert all sections into bootable form (use instead of a SECTIONS directive).

-bootorg=value Specify the source address of the boot-loader table.

-e value Specify the entry point at which to begin execution after boot loading. The value can be
an address or a global symbol.

-gpio8 Specify the source of the boot-loader table as the GP I/O port, 8-bit mode

-gpiol6 Specify the source of the boot-loader table as the GP I/O port, 16-bit mode

-lospcp=value Specify the initial value for the LOSPCP register. The value is used only for the spi8

boot table format and is ignored for all other formats. A value greater than Ox7F is
truncated to Ox7F.

-sci8 Specify the source of the boot-loader table as the SCI-A port, 8-bit mode
-spi8 Specify the source of the boot-loader table as the SPI-A port, 8-bit mode
-spibrr=value Specify the initial value for the SPIBRR register. The value is used only for the spi8

boot table format and is ignored for all other formats. A value greater than Ox7F is
truncated to Ox7F.

250 Hex Conversion Utility Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Building a Table for an On-Chip Boot Loader

11.9.3.1 Building the Boot Table
To build the boot table, follow these steps:

Step 1: Link the file. Each block of the boot table data corresponds to an initialized section in the
object file. Uninitialized sections are not converted by the hex conversion utility (see
Section 11.5).
When you select a section for placement in a boot-loader table, the hex conversion utility
places the section's load address in the destination address field for the block in the boot
table. The section content is then treated as raw data for that block. The hex conversion
utility does not use the section run address. When linking, you need not worry about the
ROM address or the construction of the boot table- the hex conversion utility handles this.

Step 2: Identify the bootable sections. You can use the -boot option to tell the hex conversion
utility to configure all sections for boot loading. Or, you can use a SECTIONS directive to
select specific sections to be configured (see Bection 11.5). If you use a SECTIONS
directive, the -boot option is ignored.

Step 3: Set the boot table format. Specify the -gpio8, -gpiol6, -sci8, or -spi8 options to set the
source format of the boot table. You do not need to specify the memwidth and romwidth as
the utility will set these formats automatically. If -memwidth and -romwidth are used after a
format option, they override the default for the format.

Step 4: Set the ROM address of the boot table. Use the -bootorg option to set the source address
of the complete table. For example, if you are using the C28x and booting from memory
location Ox3FF000, specify -bootorg 0x3FF000. The address field for the boot table in the
hex conversion utility output file will then start at 0x3FF000.

Step 5: Set boot-loader-specific options. Set entry point and control register values as needed.

Step 6: Describe your system memory configuration. See Bection 11.3 and [Section 11.4.

11.9.3.2 Leaving Room for the Boot Table

The complete boot table is similar to a single section containing all of the header records and data for the
boot loader. The address of this section is the boot table origin. As part of the normal conversion process,
the hex conversion utility converts the boot table to hexadecimal format and maps it into the output files
like any other section.

Be sure to leave room in your system memory for the boot table, especially when you are using the
ROMS directive. The boot table cannot overlap other nonboot sections or unconfigured memory. Usually,
this is not a problem; typically, a portion of memory in your system is reserved for the boot table. Simply
configure this memory as one or more ranges in the ROMS directive, and use the -bootorg option to
specify the starting address.

11.9.4 Booting From a Device Peripheral

You can choose to boot from the F2810/12 serial or parallel port by using the -gpio9, -gpiol6, -sci8, or
-spi8 boot table format option. The initial value for the LOSPCP register can be specified with the -lospcp
option. The initial value for the SPIBRR register can be specified with the -spibrr option. Only the -spi8
format uses these control register values in the boot table.

If the register values are not specified for the -spi8 format, the hex conversion utility uses the default
values 0x02 for LOSPCP and 0x7F for SPIBRR. When the boot table format options are specified and the
ROMS directive is not specified, the ASCII format hex utility output does not produce the address record.

SPRU513C-0October 2007 Hex Conversion Utility Description 251
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Building a Table for an On-Chip Boot Loader

11.9.5 Setting the Entry Point for the Boot Table

After completing the boot load process, execution starts at the default entry point specified by the link step
and contained in the object file. By using the -e option with the hex conversion utility, you can set the entry
point to a different address.

For example, if you want your program to start running at address 0x0123 after loading, specify
-e=0x0123 on the command line or in a command file. You can determine the -e address by looking at the
map file that the link step generates.

Valid Entry Points

Note: The value can be a constant, or it can be a symbol that is externally defined (for example,
with a .global) in the assembly source.

11.9.6 Using the C28x Boot Loader

This subsection explains how to use the hex conversion utility with the boot loader for C28x devices. The
C28x boot loader accepts the formats listed in [able 11-3.

Table 11-3. Boot Table Source Formats

Format Option
Parallel boot GP 1/0O 8 bit -gpio8
Parallel boot GP 1/O 16 bit -gpiol6
8-bit SCI boot -sci8
8-bit SPI boot -spi8

The F2810/12 can boot through the SCI-A 8-bit, SPI-A 8-bit, GP 1/O 8-bit, or GP I/l 16-bit interface. The
format of the boot table is shown in

Table 11-4. Boot Table Format

Description Word Content

Boot table header 1 Key value (0x10AA or 0X08AA)
2-9 Register initialization value or reserved for future use
10-11 Entry point

Block header 12 Block size in number of words (n1)
13-14 Destination address of the block

Block data 15 Raw data for the block (n1 words)

Block header 16 + nl Blcok size in number of words

Destination address of the block

Block data . Raw data for the block

Additional block headers and data, Content as appropriate

as required

Block header with size O 0x0000; indicates the end of the boot table.

The C28x can boot through either the serial 8-bit or parallel interface with either 8- or 16-bit data. The
format is the same for any combination: the boot table consists of a field containing the destination
address, a field containing the length, and a block containing the data. You can boot only one section. If
you are booting from an 8-bit channel, 16-bit words are stored in the table with MSBs first; the hex
conversion utility automatically builds the table in the correct format. Use the following options to specify
the boot table source:

e To boot from a SCI-A port, specify -spi8 when invoking the utility. Do not specify -memwidth or
-romwidth.

252

Hex Conversion Utility Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Building a Table for an On-Chip Boot Loader

» To boot from a SPI-A port, specify -sci8 when invoking the utility. Do not specify -memwidth or
-romwidth. Use -lospcp to set the initial value for the LOSPCP register and -spibrr to set the initial
value for the SPIBRR register. If the register values are not specified for the -spi8 format, the hex
conversion utility uses the default value 0x02 for LOSPCP and 0x7F for SPIBRR.

* To load from a general-purpose parallel I/O port, invoke the utility with -gpio8 or -gpio16. Do not
specify -memwidth or -romwidth.

The command file in allows you to boot the .text and .cinit sections of test.out from a
16-bit-wide EPROM at location 0x3FFCO00. The map file test.map is also generated.

Example 11-3. Sample Command File for Booting From 8-Bit SPI Boot

/* ___ */
/* Hex converter command file. */
/* ___ */
test. out /* Input COFF file */

-a /* Select ASCI| format */

- map=t est . map /* Specify the map file */

- 0=t est _spi 8. hex /* Hex utility out file */

- boot /* Consider all the input sections as boot sections */
-spi 8 /* Specify the SPI 8-bit boot format */

-1 ospcp=0x3F /* Set the initial value for the LOSPCP as Ox3F */

/* The -spibrr option is not specified to show that */
/* the hex utility uses the default val ue (Ox7F) */
- e=0x3F0000 /* Set the entry point */

The command file in generates the out file in Figure T1-7. The control register values are
coded in the boot table header and that header has the address that is specified with the -e option.

SPRU513C-0October 2007 Hex Conversion Utility Description 253
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

” TEXAS
INSTRUMENTS

www.ti.com

Building a Table for an On-Chip Boot Loader

Figure 11-7. Sample Hex Converter Out File for Booting From 8-Bit SPI Boot

Key value
LOSPCP initial value
SPIBRR register initial value
JrJ: Reserved for future use Entry point
J\ N

AA 08 3F 7F 00 00 00 00 00 00 00 0O 0O 0O 00 00 00 00 3F 00 00 00 90 0O

e

Length of first block in words

Address of the first block

—h

3F 00 00 00 42 B8 00 9A 04 28 05 00 06 00 AD 28 88 10 69 FF 1F 56 16 56
1A 56 40 29 1F 76 00 00 02 29 1B 76 22 76 A9 28 90 00 A8 28 3F 00 01 09
1D 61 FF 76 90 00 04 29 OF 6F 00 9B A9 24 01 DF 04 6C 04 29 A8 24 01 DF
A6 1E Al F7 86 24 A7 06 Al 81 01 09 A7 1E A9 24 03 63 5C FF 04 3B A9 59
00 77 00 77 01 DF 09 00 EA FF 1A 76 A9 28 FF FF A8 28 FF FF 01 09 OE 61
FF 76 FF FF 06 6F 01 DF BD C3 A7 1E 67 3E BE C5 A9 24 01 DF A8 24 58 FF
F7 60 7F 76 00 00 7F 76 4B 00 BD B2 42 B8 BD AA 02 C5 67 3E 40 B8 00 59
Al 92 0D EC 03 56 A1 01 A9 08 40 10 A9 5A 82 DA C2 C5 67 3E Al 92 FF 9C
A9 59 FA ED 40 B8 02 06 03 EC A7 1E 67 3E 40 B8 04 06 03 EC A7 1E 67 3E
00 77 00 6F 42 B8 BD B2 02 C5 A4 8B 67 3E 40 B8 00 92 20 52 06 64 42 BS
00 C5 67 3E 01 9A 0D 6F 00 93 00 OA 03 56 A8 01 A9 5C A4 08 40 10 42 B8
C4 B2 00 C5 67 3E 00 9A BE 8B 06 00 00 6F 06 00 42 B8 02 A8 06 00 42 B8
00 A8 06 00

Length of second block in words
Address of the second block

—

1A 00 3F 00 90 00 04 00 84 10 01 00 02 00 03 00 04 00 01 00 00 10 00 00
02 00 02 10 00 00 0O OO 02 00O 04 10 00 00 00 00 02 00 80 10 89 00 3F 00
02 00 82 10 89 00 3F 00 00 00 00 OO

Terminating header with length zero

The command file in allows you to boot the .text and .cinit sections of test.out from the
16-bit parallel GP I/O port. The map file test.map is also generated.

Example 11-4. Sample Command File for C28x 16-Bit Parallel Boot GP I/0

/* ___ */
/* Hex converter comand file. */
/* ___ */
test. out /* Input COFF file */
-a /* Select ASCII| format */
- map=t est . map /* Specify the map file */
-o=test_gpi 016. hex /* Hex utility out file */
- gpi 016 /* Specify the 16-bit GP I/O boot format */
SECTI ONS
{
.text: paddr=BOOT
.cinit: paddr=BOOT
}
The command file in generates the out file in Figure 11-8.
254 Hex Conversion Utility Description SPRU513C-0October 2007

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Building a Table for an On-Chip Boot Loader

Figure 11-8. Sample Hex Converter Out File for C28x 16-Bit Parallel Boot GP 1/O

Key value Reserved for future use Entry point

B J

10 AA 00 00 00 00 00 00 00O 0O OO 0O 00 00 OO 00 00 00 0O 3F 00 05 00 90

Length of first block in words
Address of the first block

S W

00 3F 00 00 B8 42 9A 00 28 04 00 05 00 06 28 AD 10 88 FF 69 56 1F 56 16
56 1A 29 40 76 1F 00 00 29 02 76 1B 76 22 28 A9 00 90 28 A8 00 3F 09 01
61 1D 76 FF 00 90 29 04 6F OF 9B 00 24 A9 DF 01 6C 04 29 04 24 A8 DF 01
1E A6 F7 Al 24 86 06 A7 81 Al 09 01 1E A7 24 A9 63 03 FF 5C 3B 04 59 A9
77 00 77 00 DF 01 00 09 FF EA 76 1A 28 A9 FF FF 28 A8 FF FF 09 01 61 OE
76 FF FF FF 6F 06 DF 01 C3 BD 1E A7 3E 67 C5 BE 24 A9 DF 01 24 A8 FF 58
60 F7 76 7F 00 00 76 7F 00 4B B2 BD B8 42 AA BD C5 02 3E 67 B8 40 59 00
92 Al EC OD 56 03 01 Al 08 A9 10 40 5A A9 DA 82 C5 C2 3E 67 92 Al 9C FF
59 A9 ED FA B8 40 06 02 EC 03 1E A7 3E 67 B8 40 06 04 EC 03 1E A7 3E 67
77 00 6F 00 B8 42 B2 BD C5 02 8B A4 3E 67 B8 40 92 00 52 20 64 06 B8 42
C5 00 3E 67 9A 01 6F OD 93 00 OA 00 56 03 01 A8 5C A9 08 A4 10 40 B8 42
B2 C4 C5 00 3E 67 9A 00 8B BE 00 06 6F 00 00 06 B8 42 A8 02 00 06 B8 42
A8 00 00 06

Length of second block in words

[Address of the second block

00 1A 00 3F 00 90 00 04 10 84 00 01 00 02 00 03 00 04 00 01 10 00 00 0O
00 02 10 02 00 00 0O 00O 00 02 10 04 00 00 00 00 0O 02 10 80 00 89 00 3F
00 02 10 82 00 89 00 3F 00 00 00 OO

Terminating header with length zero

The command file in Gection 11.9.6.7] allows you to boot the .text and .cinit sections of test.out from a
16-bit wide EPROM from the SCI-A 8-bit port. The map file test.map is also generated.

11.9.6.1 Sample Command File for Booting From 8-Bit SCI Boot

/* ___ */
/* Hex converter command file. */
/* ___ */
test. out /* Input COFF file */

-a /* Select ASCII format */

- map=t est . map /* Specify the map file */

- o=t est_sci 8. hex /* Hex utility out file */

-sci 8 /* Specify the SCI 8-bit boot format */

SECTI ONS

{

.text: paddr=BOOT
.cinit: paddr=BOOT

}
The command file in Bection 11.9.6.]] generates the out file in Figure T1-9.
SPRU513C-0October 2007 Hex Conversion Utility Description 255

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

” TEXAS
INSTRUMENTS

www.ti.com

Controlling the ROM Device Address

Figure 11-9. Sample Hex Converter Out File for Booting From 8-Bit SCI Boot

J J

AA 08 00 00 00 00O 00O 00O 00O OO OO OO 0O OO OO OO 00 00 3F 00 05 00 90 0O

£ey value Reserved for future use Entry point

Length of first block in words
Address of the first block

S S

3F 00 00 00 42 B8 00 9A 04 28 05 00 06 00 AD 28 88 10 69 FF 1F 56 16 56
1A 56 40 29 1F 76 00 00 02 29 1B 76 22 76 A9 28 90 00 A8 28 3F 00 01 09
1D 61 FF 76 90 00 04 29 OF 6F 00 9B A9 24 01 DF 04 6C 04 29 A8 24 01 DF
A6 1E Al F7 86 24 A7 06 Al 81 01 09 A7 1E A9 24 03 63 5C FF 04 3B A9 59
00 77 00 77 01 DF 09 00 EA FF 1A 76 A9 28 FF FF A8 28 FF FF 01 09 OE 61
FF 76 FF FF 06 6F 01 DF BD C3 A7 1E 67 3E BE C5 A9 24 01 DF A8 24 58 FF
F7 60 7F 76 00 00 7F 76 4B 00 BD B2 42 B8 BD AA 02 C5 67 3E 40 B8 00 59
Al 92 OD EC 03 56 Al 01 A9 08 40 10 A9 5A 82 DA C2 C5 67 3E Al 92 FF 9C
A9 59 FA ED 40 B8 02 06 03 EC A7 1E 67 3E 40 B8 04 06 03 EC A7 1E 67 3E
00 77 00 6F 42 B8 BD B2 02 C5 A4 8B 67 3E 40 B8 00 92 20 52 06 64 42 B8
00 C5 67 3E 01 9A 0D 6F 00 93 00 OA 03 56 A8 01 A9 5C A4 08 40 10 42 B8
C4 B2 00 C5 67 3E 00 9A BE 8B 06 00 00 6F 06 00 42 B8 02 A8 06 00 42 B8
00 A8 06 00

Length of second block in words
Address of the second block
1A 00 3F 00 90 00 04 00 84 10 01 00 02 00 03 00 04 00 01 00 00 10 00 0O

02 00 02 10 00 00 0O 00 02 00 04 10 00 00 0O 00 02 00 80 10 89 00 3F 00
02 00 82 10 89 00 3F 00 00 00 00 00

Terminating header with length zero

11.10 Controlling the ROM Device Address

The hex conversion utility output address field corresponds to the ROM device address. The EPROM
programmer burns the data into the location specified by the hex conversion utility output file address field.
The hex conversion utility offers some mechanisms to control the starting address in ROM of each
section. However, many EPROM programmers offer direct control of the location in ROM in which the
data is burned.

The address field of the hex-conversion utility output file is controlled by the following items, which are
listed from low to high priority:

1.

2.

The linker command file. By default, the address field of the hex conversion utility output file is the
load address (as given in the linker command file).

The paddr parameter of the SECTIONS directive. When the paddr parameter is specified for a
section, the hex conversion utility bypasses the section load address and places the section in the
address specified by paddr.

. The -zero option. When you use the -zero option, the utility resets the address origin to 0 for each

output file. Since each file starts at 0 and counts upward, any address records represent offsets from
the beginning of the file (the address within the ROM) rather than actual target addresses of the data.
You must use the -zero option in conjunction with the -image option to force the starting address in
each output file to be zero. If you specify the -zero option without the -image option, the utility issues a
warning and ignores the -zero option.

The -byte option. Some EPROM programmers may require the output file address field to contain a
byte count rather than a word count. If you use the —byte option, the output file address increments

256

Hex Conversion Utility Description SPRU513C-0October 2007

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Description of the Object Formats

once for each byte. For example, if the starting address is Oh, the first line contains eight words, and
you use no —hyte option, the second line would start at address 8 (8h). If the starting address is Oh, the
first line contains eight words, and you use the —byte option, the second line would start at address 16
(010h). The data in both examples are the same; —byte affects only the calculation of the output file
address field, not the actual target processor address of the converted data.

The -byte option causes the address records in an output file to refer to byte locations within the file,
whether the target processor is byte-addressable or not.

11.11 Description of the Object Formats
The hex conversion utility has options that identify each format. specifies the format options.
They are described in the following sections.

* You need to use only one of these options on the command line. If you use more than one option, the
last one you list overrides the others.

» The default format is Tektronix (-x option).

Table 11-5. Options for Specifying Hex Conversion Formats

Option Format Address Bits Default Width
-a ASCII-Hex 16 8
-l Intel 32 8
-m Motorola-S 32 8
-t TI-Tagged 16 16
-X Tektronix 32 8

Address bits determine how many bits of the address information the format supports. Formats with
16-bit addresses support addresses up to 64K only. The utility truncates target addresses to fit in the
number of available bits.

The default width determines the default output width of the format. You can change the default width by
using the -romwidth option or by using the romwidth parameter in the ROMS directive. You cannot change
the default width of the TI-Tagged format, which supports a 16-bit width only.

11.11.1 ASCII-Hex Object Format (-a Option)

The ASCII-Hex object format supports 16-bit addresses. The format consists of a byte stream with bytes
separated by spaces. illustrates the ASCII-Hex format.

Figure 11-10. ASCII-Hex Object Format

Nonprintable
Nonprintable Address end code

start code jj Jj

AB SAXXXXXXXX,
XX XX XX XX XX XX XX XX XX XX . . AC

Data byte

The file begins with an ASCIl STX character (ctrl-B, 02h) and ends with an ASCII ETX character (ctrl-C,
03h). Address records are indicated with $AXXXXXXX, in which XXXXXXXX is a 8-digit (16-bit)
hexadecimal address. The address records are present only in the following situations:

* When discontinuities occur

* When the byte stream does not begin at address 0

You can avoid all discontinuities and any address records by using the -image and -zero options. This
creates output that is simply a list of byte values.

SPRU513C-0October 2007 Hex Conversion Utility Description 257
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*L‘ TEXAS
INSTRUMENTS

www.ti.com

Description of the Object Formats

11.11.2 Intel MCS-86 Object Format (-1 Option)

The Intel object format supports 16-bit addresses and 32-bit extended addresses. Intel format consists of
a 9-character (4-field) prefix (which defines the start of record, byte count, load address, and record type),
the data, and a 2-character checksum suffix.

The 9-character prefix represents three record types:

Record Type Description

00 Data record
01 End-of-file record
04 Extended linear address record

Record type00, the data record, begins with a colon (:) and is followed by the byte count, the address of
the first data byte, the record type (00), and the checksum. The address is the least significant 16 bits of a
32-bit address; this value is concatenated with the value from the most recent 04 (extended linear
address) record to create a full 32-bit address. The checksum is the 2s complement (in binary form) of the
preceding bytes in the record, including byte count, address, and data bytes.

Record type 01, the end-of-file record, also begins with a colon (:), followed by the byte count, the
address, the record type (01), and the checksum.

Record type 04, the extended linear address record, specifies the upper 16 address bits. It begins with a
colon (:), followed by the byte count, a dummy address of Oh, the record type (04), the most significant
16 bits of the address, and the checksum. The subsequent address fields in the data records contain the
least significant bytes of the address.

illustrates the Intel hexadecimal object format.

Figure 11-11. Intel Hexadecimal Object Format

Start
character
Address

Extended linear
address record
Most significant 16 bits

:2000000000000100020003000400050006000700080009000A000B000CO00DOOOEOOOFO068
:2000200010001100120013001400150016001700180019001A001B001C001DO01EO001F0048 Data
:2000400000000100020003000400050006000700080009000A000B000CO00DOOOEOOOF0028 records
: 2000600010001100120013001400150016001700180019001A001BOOlCOOlDOOlEOOlFOOOSj

: 00000001FF o
T |
‘ Checksum
Byte Record End-of-file
count type record
258 Hex Conversion Utility Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Description of the Object Formats

11.11.3 Motorola Exorciser Object Format (-m Option)

The Motorola-S format supports 32-bit addresses. It consists of a start-of-file (header) record, data
records, and an end-of-file (termination) record. Each record consists of five fields: record type, byte
count, address, data, and checksum. The three record types are:

Record Type Description
SO Header record
S3 Code/data record
S7 Termination record

The byte count is the character pair count in the record, excluding the type and byte count itself.

The checksum is the least significant byte of the 1s complement of the sum of the values represented by
the pairs of characters making up the byte count, address, and the code/data fields.

illustrates the Motorola-S object format.

Figure 11-12. Motorola-S Format

Record Address Checksum

type
S00600004844521B _F Header record
$32200DD
S31A0P001FFEBO00FA Data records
S70500000000FA F Termination

record
Checksum
Byte count

Address for S3 records

11.11.4 Texas Instruments SDSMAC Object Format (-t Option)

The Texas Instruments SDSMAC (TI-Tagged) object format supports 16-bit addresses, including
start-of-file record, data records, and end-of-file record. Each data records consists of a series of small
fields and is signified by a tag character:

Tag Character Description

K Followed by the program identifier
Followed by a checksum

Followed by a dummy checksum (ignored)
Followed by a 16-bit load address
Followed by a data word (four characters)
Identifies the end of a data record

* T W © o ~

Followed by a data byte (two characters)

SPRU513C-0October 2007 Hex Conversion Utility Description 259
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*L‘ TEXAS
INSTRUMENTS

www.ti.com

Description of the Object Formats

illustrates the tag characters and fields in TI-Tagged object format.
Figure 11-13. TI-Tagged Object Format
Start-of-file Load
record Program address Tag characters

identifier ‘

b L]

KOOOCOFFTOTI 90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7 EF3DF
BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7EE37F | Data

ETFFFﬁl%FFFﬁI%FFFFXI%FFFFXBXFFFFXI%FFFFXBXFFFHI%FFFITB}FFFFXBXFFFFIF2451F B records
T [I I

End-of-file Data

record words Checksum

If any data fields appear before the first address, the first field is assigned address 0000h. Address fields
may be expressed but not required for any data byte. The checksum field, preceded by the tag character
7, is the 2s complement of the sum of the 8-bit ASCII values of characters, beginning with the first tag
character and ending with the checksum tag character (7 or 8). The end-of-file record is a colon (:).

11.11.5 Extended Tektronix Object Format (-x Option)
The Tektronix object format supports 32-bit addresses and has two types of records:
Data records contains the header field, the load address, and the object code.

Termination records signifies the end of a module.

The header field in the data record contains the following information:
Number of ASCII

Item Characters Description

% 1 Data type is Tektronix format

Block length 2 Number of characters in the record, minus the %
Block type 1 6 = data record

8 = termination record

Checksum 2 A 2-digit hex sum modulo 256 of all values in the record except the % and the
checksum itself.

The load address in the data record specifies where the object code will be located. The first digit
specifies the address length; this is always 8. The remaining characters of the data record contain
the object code, two characters per byte.

illustrates the Tektronix object format.
Figure 11-14. Extended Tektronix Object Format
Checksum: 21h= 1+5+6+8+1+0+0+0+0+0+0+
0+
Block length o 2+0+2+0+2+0+2+0+2+0+2+
lah =26 Object code: 6 bytes
Header %45621810000000202020202020
character T
Load address: 10000000h
Block type: 6 Length of
(data) load address
260 Hex Conversion Utility Description SPRU513C-0October 2007

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Hex Conversion Utility Error Messages

11.12 Hex Conversion Utility Error Messages

section mapped to reserved memory

Description A section is mapped into a memory area that is designated as reserved in the processor
memory map.

Action Correct section or boot-loader address. For valid memory locations, refer to the
TMS320C28x CPU and Instruction Set Reference Guide.
sections overlapping

Description ~ Two or more COFF section load addresses overlap, or a boot table address overlaps
another section.

Action This problem may be caused by an incorrect translation from load address to hexadecimal
output-file address that is performed by the hex-conversion utility when memory width is
less than data width. See Bection 11.3 and Section 11.10.

unconfigured memory error

Description ~ The COFF file contains a section whose load address falls outside the memory range
defined in the ROMS directive.

Action Correct the ROM range as defined by the ROMS directive to cover the memory range
needed, or modify the section load address. Remember that if the ROMS directive is not
used, the memory range defaults to the entire processor address space. For this reason,
removing the ROMS directive could also be a workaround.

SPRU513C-0October 2007 Hex Conversion Utility Description 261
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

262 Hex Conversion Utility Description SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

%‘ TEXAS Chapter 12
INSTRUMENTS SPRUS513C—October 2007

Sharing C/C++ Header Files With Assembly Source

You can use the .cdecls assembler directive to share C headers containing declarations and prototypes
between C and assembly code. Any legal C/C++ can be used in a .cdecls block and the C/C++
declarations will cause suitable assembly to be generated automatically, allowing you to reference the
C/C++ constructs in assembly code.

Topic Page
12.1 Overview of the .cdecls DireCtiVE] i iieeieeeeraeeneaeeaeeneaeeaeencaeeaeences 264
12.2 NoOtes 0N C/CH++ CONVEIrSIONS] ittt iueieeaeeeineaeeneaeeaeeacaneaeeaeaneas 264
12.3 Notes on C++ Specific CoNVersionSo.eeeeeeeeieieeeeeeeieieeaeaeiizeae.s 269
12.4 New Assembler SUPPOrt ..ot ieeeeee et ieizeaees 269
SPRU513C-0October 2007 Sharing C/C++ Header Files With Assembly Source 263

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Overview of the .cdecls Directive

12.1 Overview of the .cdecls Directive

The .cdecls directive allows programmers in mixed assembly and C/C++ environments to share C headers
containing declarations and prototypes between the C and assembly code. Any legal C/C++ can be used
in a .cdecls block and the C/C++ declarations will cause suitable assembly to be generated automatically.
This allows the programmer to reference the C/C++ constructs in assembly code — calling functions,
allocating space, and accessing structure members — using the equivalent assembly mechanisms. While
function and variable definitions are ignored, most common C/C++ elements are converted to assembly:
enumerations, (non function-like) macros, function and variable prototypes, structures, and unions.

See [he _.cdecls topid for details on the syntax of the .cdecls assembler directive.

The .cdecls directive can appear anywhere in an assembly source file, and can occur multiple times within
a file. However, the C/C++ environment created by one .cdecls is not inherited by a later .cdecls; the
C/C++ environment starts over for each .cdecls instance.

For example, the following code causes the warning to be issued:

.cdecls C NOLI ST
%

%

.cdecls C, NOLI ST
A

#def i ne ASMIEST 1

#i f ndef ASMIEST
#warn "ASMIEST not defined!" /* will be issued */
#endi f

%
Therefore, a typical use of the .cdecls block is expected to be a single usage near the beginning of the
assembly source file, in which all necessary C/C++ header files are included.

Use the compiler -1 path (include path) options to specify additional include file paths needed for the
header files used in assembly, as you would when compiling C files.

Any C/C++ errors or warnings generated by the code of the .cdecls are emitted as they normally would for
the C/C++ source code. C/C++ errors cause the directive to fail, and any resulting converted assembly is
not included.

C/C++ constructs that cannot be converted, such as function-like macros or variable definitions, cause a
comment to be output to the converted assembly file. For example:

; ASM HEADER WARNI NG - variable definition ' ABCD ignored

The prefix ASM HEADER WARNING appears at the beginning of each message. To see the warnings,
either the WARN parameter needs to be specified so the messages are displayed on STDERR, or else
the LIST parameter needs to be specified so the warnings appear in the listing file, if any.

Finally, note that the converted assembly code does not appear in the same order as the original C/C++
source code and C/C++ constructs may be simplified to a normalized form during the conversion process,
but this should not affect their final usage.

12.2 Notes on C/C++ Conversions
The following sections describe C and ++ conversion elements that you need to be aware of when sharing
header files with assembly source.

12.2.1 Comments

Comments are consumed entirely at the C level, and do not appear in the resulting converted assembly
file.

264 Sharing C/C++ Header Files With Assembly Source SPRU513C-0October 2007
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU513C

{'f TEXAS
INSTRUMENTS

www.ti.com

Notes on C/C++ Conversions

12.2.2 Conditional Compilation (#if/#else/#ifdef/etc.)

Conditional compilation is handled entirely at the C level during the conversion step. Define any necessary
macros either on the command line (using the compiler -DNAME=value option) or within a .cdecls block
using #define. The #if, #ifdef, etc. C/C++ directives are not converted to assembly .if, .else, .elseif, and
.endif directives.

12.2.3 Pragmas

Pragmas found in the C/C++ source code cause a warning to be generated as they are not converted.
They have no other effect on the resulting assembly file. See [he_.cdecls topid for the WARN and
NOWARN parameter discussion for where these warnings are created.

12.2.4 The #error and #warning Directives

These preprocessor directives are handled completely by the compiler during the parsing step of
conversion. If one of these directives is encountered, the appropriate error or warning message is emitted.
These directives are not converted to .emsg or .wmsg in the assembly output.

12.2.5 Predefined symbol __ASM_HEADER_ _

The C/C++ macro _ _ASM_HEADER_ _is de