
TMS320C6x DMA
Applications

APPLICATION REPORT: PRELIMINARY

 David Bell
 Jackie Brenner

 June 19, 1998

Preliminary

2 TMS320C6x DMA Applications

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without
notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being
relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support
this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government
requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental
damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE
FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications
requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a
local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards should be provided by
the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services
described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

Preliminary

TMS320C6x DMA Applications 3

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

Preliminary

4 TMS320C6x DMA Applications

Contents
Abstract... ..6

Backgr ound... ...7

System Structure... ..9

Data Relocation.. ...10
Block Move Example...10
Extremely Large Block Move Example..12
Data-Sorting Transfer Example...15

Servicing a Peripheral... ..18
Synchronized Data Transfer Example...19
Split-Mode Transfer Example...21
Frame-Synchronized Data Transfer Example...24
Endian Mode Considerations...27

Repetitive DMA operation... ...30
Transferring Data To and From Circular Buffers...30
Ping-Pong Transfer Example...34
Program Paging Example..39

DMA Interrupt Service Routines...43

Conclusion... ...46

Appendix. A... ..47
Block Move Example Code..47
Extremely Large Block Move Example Code..49
Data-Sorting Example Code..52
Synchronized Data Transfer Example Code...55
Split-Mode Transfer Example Code...57
Frame-Synchronized Data Transfer Example Code..59
Circular Buffering Transfer Example Code..62
Ping-Pong Transfer Example Code...66
Program Paging Transfer Example Code..69

Tables
Table 1: DMA Channel Synchronization Events...19
Table 2: DMA Channel SPLIT Settings...22
Table 3: Possible DMA Source and Destination Address for Servicing McBSP0...29
Table 4: DMA Channel Condition Descriptions...43

Preliminary

TMS320C6x DMA Applications 5

Figures
Figure 1: Primary Control Register Setup for Block Move Example...11
Figure 2: Transfer Counter Register Setup for Block Move Example..11
Figure 3: Block Move Example Diagram..12
Figure 4: Primary Control Register Setup for Extremely Large Block Move Example...14
Figure 5: Transfer Counter Register Setup for Extremely Large Block Move Example......................................14
Figure 6: Extremely Large Block Move Example Diagram..14
Figure 7: Primary Control Register Setup for Data-Sorting Transfer Example...16
Figure 8: Transfer Counter Register Setup for Data-Sorting Transfer Example..16
Figure 9: Global Index Register A Setup for Data-Sorting Transfer Example..16
Figure 10: Data Sorting Example Diagram..17
Figure 11: Primary Control Register Setup for Synchronized Data Transfer Example..20
Figure 12: Synchronized Data Transfer Example Diagram...21
Figure 13: Primary Control Register Setup for Split-Mode Data Transfer Example..23
Figure 14: Split-Mode Transfer Example Diagram...23
Figure 15: Primary Control Register Setup for Frame-Synchronized Data Transfer Example..........................25
Figure 16: Secondary Control Register Setup for Frame-Synchronized Data Transfer Example....................25
Figure 17: Transfer Counter Register Setup for Frame-Synchronized Data Transfer Example.......................25
Figure 18: Primary Control Register Setup for Frame-Synchronized Data Transfer Example (2)....................26
Figure 19: Transfer Counter Register Setup for Frame-Synchronized Data Transfer Example (2)..................26
Figure 20: Frame-Synchronized Transfer Example Diagram..27
Figure 21: DXR Byte Locations...28
Figure 22: DRR Byte Locations...28
Figure 23: Primary Control Register Setup for Circular Buffering Example...31
Figure 24: Secondary Control Register Setup for Circular Buffering Example..31
Figure 25: Transfer Counter Register Setup for Circular Buffering Example..32
Figure 26: Transfer Counter Register Setup for Circular Buffering Example..32
Figure 27: Primary Control Register Setup for Circular Buffering Example (2)...33
Figure 28: Transfer Counter Register Setup for Circular Buffering Example (2)..33
Figure 29: Circular Buffer Example Diagram..34
Figure 30: Primary Control Register Setup for Ping-Pong Transfer Example..36
Figure 31: Secondary Control Register Setup for Ping-Pong Transfer Example..36
Figure 32: Transfer Counter Register Setup for Ping-Pong Transfer Example...36
Figure 33: Primary Control Register Setup for Ping-Pong Transfer Example (2)..37
Figure 34: Transfer Counter Register Setup for Ping-Pong Transfer Example (2)...37
Figure 35: Ping-Pong Buffer Example Diagram...38
Figure 36: Primary Control Register Setup for Program Paging Example...41
Figure 37: Secondary Control Register Setup for Program Paging Example...41
Figure 38: Transfer Counter Register Setup for Program Paging Example...41
Figure 39: Program-Paging Example Diagram...42

Preliminary

6 TMS320C6x DMA Applications

TMS320C6x DMA Applications

Abstract

The on-chip Direct Memory Access (DMA) controller is used to
transfer data between two locations in the memory map in the
background of CPU operation. Typically the DMA will be used to
transfer blocks of data between external and internal data
memories, restructure portions of internal data memory,
continually service a Multi-channel Buffered Serial Port (McBSP)
or Analog Front End (AFE) circuit, or page program sections to
internal program memory. There are four DMA channels that may
be programmed to perform one or more of these tasks, while the
CPU is executing a program. Channels may be configured to run
continuously throughout the device’s entire operation, with only
one setup required. The fixed priority scheme between the
channels allows for high-priority synchronous transfers to be
performed during a low-priority block transfer. The DMA channels
may communicate their status to the CPU through interrupts to
provide the CPU with control over their operation. Most
applications require only an initial setup of DMA control registers,
with little intervention by the CPU to maintain their operation.

Preliminary

TMS320C6x DMA Applications 7

Background

The on-chip Data Memory Access (DMA) Controller is used to
transfer data from one memory-mapped location to another
without the intervention of the CPU. Data may be transferred
between internal memory, peripherals, and external devices in
the background of CPU operation allowing for the CPU to remain
active during data transfers. There are four DMA channels, which
may be independently configured to perform different types of
transfers.

The DMA is highly flexible, in that there are many different types
of transfers that may be done to enable faster throughput by the
CPU through data organization. With the DMA, data may be
transferred to and from internal program memory, internal data
memory, an external memory space, an external Analog Front
End (AFE) circuit, or the Multi-channel Buffered Serial Ports
(McBSPs). Also by using the DMA, data currently in memory may
be reorganized to increase the CPU’s effectiveness.

Each channel of the DMA has the following set of registers that
must be configured prior to beginning a data transfer:

� Primary Control Register – Used to configure the
transfer

� Secondary Control Register – Used to enable
interrupts to the CPU and to monitor the channels
activity

� Transfer Counter Register – Used to keep track of the
transferred elements

� Source Address Register – The memory location from
which the element will be transferred

� Destination Address Register – The memory location
to which the element will be transferred

In addition to these, there are several global DMA registers that
may be used by any of the DMA channels to perform more
complicated transfers:

� Global Address Registers (A, B, C, and D) – Used as
either a Split Address, or as an address reload value

� Global Index Registers (A and B) – Used to control
address updates during a transfer

Preliminary

8 TMS320C6x DMA Applications

� Global Count Reload Registers (A and B) – Used to
reload the Transfer Counter Register of a DMA
channel

Each of the global DMA registers may be used by any of the
DMA channels, and more than one channel may use the same
register at a time.

There is one additional DMA register, the Auxiliary Control
Register, which is used to set the priority of the Auxiliary Channel
with respect to the four main DMA channels and the CPU. The
Auxiliary Channel is used by the Host Port to access the C62xx
memory.

The TMS320C62xx Peripherals Reference Guide gives a
complete description of the DMA structure, and should be used in
conjunction with this document.

Preliminary

TMS320C6x DMA Applications 9

System Structure

The DMA may be used to access any location in the ‘C6x
memory map. This includes internal data memory, internal
program memory, on-chip peripherals, external memories, and
external AFEs. Typically the DMA will be used to transfer blocks
of data between external and internal data memories,
restructuring portions of internal data memory, continually
servicing a McBSP or AFE, or for program paging.

All accesses to external memory spaces must go through the
External Memory Interface (EMIF). External memory types which
are supported on the ‘C6x are Synchronous DRAM (SDRAM),
Sync-Burst SRAM (SBSRAM), and asynchronous memories. To
understand how to configure different memory spaces, see the
TMS320C62xx Peripherals Reference Guide.

External AFE circuits will predominantly use the asynchronous
memory interface of the ‘C6x. A typical AFE configuration will
include a Data-In address, a Data-Out Address, a Read Sync
signal, and a Write Sync signal. Synchronization events would be
connected to one of the four external interrupt pins of the device
(EXT_INT[7:4]).

The McBSP is the only on-chip peripheral that is likely to require
servicing by the DMA. Each McBSP has a Data Receive Register
(DRR), a Data Transmit Register (DXR), a transmit-event signal
(XEVT), and a receive-event signal (REVT). The DRR and DXR
are memory-mapped registers, and the events occur whenever
data is transferred out (XEVT) or transferred in (REVT).

Internal Data memory is divided into several 16-bit banks. For the
TMS320C6201 there are four banks and for the TMS320C6201B
there are two blocks of four banks, with each block occupying
half of the data memory. Each bank may only be accessed once
per cycle, either by the DMA or by one of the CPU sides (A or B).
If both the DMA and the CPU attempt to access the same bank
during the same cycle, then the priority bit set in the DMA
channel’s Priority Control Register will determine the order in
which the access is granted.

Internal Program memory always gives the CPU priority over the
DMA. In order for the DMA to access program memory, there
must be time slots during which it can get in. These slots occur
when a fetch packet (eight instructions) contains multiple execute
packets (a group of instructions executed in one cycle). This
leaves cycles in which the CPU is not requesting a fetch packet,
and the DMA may access the program memory.

Preliminary

10 TMS320C6x DMA Applications

Data Relocation

The purpose of the DMA is to move data elements from one
location to another. Through proper configuration of the DMA
channel control registers, the data to be transferred can be
moved in its current format or may be restructured to fit a
particular application.

The simple case is a block move, in which a contiguous memory
space is copied from one location to another, unaltered. This
transfer requires the minimum amount of setup, and is usually
performed either to transfer a program section from an external
memory location to internal program memory, or to transfer a
data section from external memory to internal data memory.

By taking advantage of some of the features of the DMA, a more
complicated transfer may be performed in which a section of data
is reorganized during the transfer. One example of this would be
sorting, in which a data block, divided into contiguous frames of
equal size, is reorganized in memory by ordinal location within a
frame. In other words the first element of the first frame would be
located next to the first element of the second frame. This type of
transfer is frequently performed when multiple frames of data are
arriving to the device via the serial port (or AFE), or when data
arrays, located in external memory, are brought on-chip.

The following examples demonstrate how the DMA may be used
to relocate and reorganize data.

Block Move Example

The block move is used to simply transfer a block of contiguous
memory from one location to another. This is ordinarily done to
move a data or program section from external memory to internal
memory, where the CPU may do single-cycle accesses. For this
transfer, four of the five basic registers mentioned in the
Background section must be configured: The Primary Control
Register, the Transfer Counter Register, the Source Address
Register, and the Destination Address Register.

Consider an example in which a 1k block of contiguous 32-bit
elements are transferred from off-chip memory located at the
base address of CE2 (0x02000000) to the base of internal data
memory (0x800000000). To initialize this transfer, the following
values should be set for the four control registers:

Preliminary

TMS320C6x DMA Applications 11

Primary Control Register = 0x00000050

Source Address Register = 0x02000000

Destination Address Register = 0x80000000

Transfer Counter Register = 0x00000400

The individual fields of the Primary Control Register are shown in
Figure 1 and the fields of the Transfer Counter Register are
shown in Figure 2.

Figure 1: Primary Control Register Setup for Block Move Example

31 30 29 28 27 26 25 24 23 19 18 16

00 00 0 0 0 0 00000 000
DST

RELOAD
SRC

RELOAD
EMOD FS TCIN

T
PRI WSYNC RSYNC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 00 00 01 01 00 00
RSYNC INDX CNT

RELOAD
SPLIT ESIZE DST DIR SRC DIR STATUS START

Figure 2: Transfer Counter Register Setup for Block Move Example

31 16 15 0

0x0000 0x0400
FRAME COUNT ELEMENT COUNT

The settings of 01b in the DST DIR and SRC DIR bitfields will
cause the DMA channel to increment both the source address
and the destination address by one element size (4 bytes in this
example) following the transfer of each element.

In order to initiate the transfer, a value of 01b needs to be written
to the START bitfield.

Figure 3 shows the transfer that the above setup will perform.

Preliminary

12 TMS320C6x DMA Applications

Figure 3: Block Move Example Diagram

0x02000000

0x02000004

0x02000008

0x0200000C

0x02000FF8

0x02000FFC

1

2

3

0x3FF

0x400

4

0x02000000

0x02000004

0x02000008

0x0200000C

0x02000FF8

0x02000FFC

1

2

3

0x3FF

0x400

4

Extremely Large Block Move Example

Occasionally there is a need to perform a block move of a large
section of memory containing more than 65535 elements (the
maximum value of ELEMENT COUNT). This transfer type would
typically be used to perform a data dump from external memory
to an off-chip AFE, or to initialize a memory space from an AFE.
This transfer is essentially the same as the basic block move in
the previous example, except multiple frames must be used.
Using the frame count in conjunction with the element count, it is
possible to transfer a single block of up to 0xFFFE0001 (4.3G)
elements. This is much greater than the 65535 possible using the
element count alone.

For a large block transfer, the following are true:

- If the address is set to be adjusted using a
programmable value ((SRC/DST)_DIR = 11b), the
Frame Index must equal the Element Index.

- Frame synchronization must be disabled. This will
prevent a synchronization event in the middle of the
transfer.

- The number of elements transferred in the entire block
is ((F - 1) x Er) + Ei, where:

- F = The initial value of the Frame Count

- Ei = The initial value of the Element Count

- Er = Element Count Reload value

If the numbers of elements to be transferred is constant for a
given application, then suitable values may be used explicitly in a
program. For a majority of transfer lengths, many count and
reload values will provide the same performance.

Preliminary

TMS320C6x DMA Applications 13

If the block length were not a fixed amount, but established
during run-time, then an algorithm to determine the count and
reload values during execution would be a more convenient
solution.

Using the above information, a simple formula may be created to
calculate F, Ei, and Er from a given block size. One possible
formula is as follows:

- Ei = 15 LSBs of total element count. Fix to 0x8000 if
15 LSBs are all 0.

- Er = 0x8000 (fixed)

- F = total element count divided by Er, plus 1. Do not
add 1 if Ei is forced to 0x8000.

The following C code performs the above calculations:

F =(XFER_SIZE >> 15)+1;
Ei = XFER_SIZE & 0x7FFF;
if (!Ei){
 Ei = 0x8000;
 F -= 1;
}
Er = 0x8000;

For this set of equations, the maximum transfer size is
0x7FFF7FFF (2.15G). If larger transfers were to be performed,
then a more complicated algorithm would need to be established.

For this example, assume that the entire memory space CE2
(16MB) is to be transferred to an off-chip peripheral located at
0x00400000 (CE0). This transfer is of 0x00400000 32-bit words.
For this, the following values must be assigned to the DMA
registers1:

Primary Control Register = 0x00000010

Source Address Register = 0x02000000

Destination Address Register = 0x00400000

Transfer Counter Register = 0x00808000

Global Count Reload Register A = 0x00008000

1 The sample formulas were used to determine the Transfer Counter and Global Count Reload A values. If different
formulas were used to obtain the count values, those numbers may be different.

Preliminary

14 TMS320C6x DMA Applications

The Primary Control Register for channel 0 should be configured
as shown in Figure 4, and the Transfer Counter Register is
shown in Figure 5.

Figure 4: Primary Control Register Setup for Extremely Large Block Move Example

31 30 29 28 27 26 25 24 23 19 18 16

00 00 0 0 0 0 00000 000
DST

RELOAD
SRC

RELOAD
EMOD FS TCIN

T
PRI WSYNC RSYNC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 00 00 00 01 00 00
RSYNC INDX CNT

RELOAD
SPLIT ESIZE DST DIR SRC DIR STATUS START

Figure 5: Transfer Counter Register Setup for Extremely Large Block Move Example

31 16 15 0

0x0080 0x8000
FRAME COUNT ELEMENT COUNT

The settings of 01b in the SRC DIR bitfields will cause the DMA
channel to increment the source address by one element size (4
bytes in this example) following each element. Since the
destination is a fixed address, DST DIR is set to 00b.

In order to initiate the transfer, a value of 01b needs to be written
to the START bitfield.

Figure 6 shows the transfer that the above setup will perform.

Figure 6: Extremely Large Block Move Example Diagram

0x02000000

0x02000004

0x02000008

0x0200000C

0 x 0 2 F F F F F 8

0 x 0 2 F F F F F C

1

2

3

0 x 3 F F F F C

0x400000

4 0x00400000 1 - 0x400000

Preliminary

TMS320C6x DMA Applications 15

Data-Sorting Transfer Example

When an application requires the use of multiple data arrays, it is
often desirable to have the arrays arranged such that the first
elements of each array are adjacent, the second elements are
adjacent, and so on. Often this is not the format in which the data
is presented to the device. Either data comes via a peripheral, in
which the data arrays arrive one after the other, or the arrays are
located in memory, with each array occupying a portion (frame) of
contiguous memory spaces. For these instances, the DMA may
be configured to reorganize the data into the desired format.

The following formulas may be used to set up a DMA channel to
organize the data in memory by ordinal position:

- FRAME INDEX should be set to –(((E – 1) x F) – 1) x
S

- ELEMENT INDEX should be set to F x S, where

- F = The initial value of Frame Count

- E = The initial value of Element Count, as well as
the Element Count Reload value

- S = The element size in bytes

This example focuses on the second case mentioned above, in
which equal sized data arrays are located in external memory.
For this transfer to give the desired results, it is necessary that
the arrays are of the same size, and they reside in contiguous
memory.

For this example it will be assumed that the data is located in 16-
bit ROM, beginning at address 0x01600000 (Map 1, CE1). The
DMA channel will be configured to bring four frames of 1k half-
words from their locations in ROM to internal data memory
beginning at 0x800000002. The index values will be:

- FRAME INDEX = –(((1024 – 1) x 4) – 1) x 2 = 0xE00A

- ELEMENT INDEX should be set to 4 x 2 = 8

For this, the following values must be assigned to the DMA
channel’s control registers:

2 Note that on if this transfer is performed on the TMS320C6201, then each array will be located in its own memory bank.
This will allow for multiple arrays to be accessed during the same cycle without any contention. See the TMS320C62xx
Peripherals Reference Guide for details on the configuration of internal data memory.

Preliminary

16 TMS320C6x DMA Applications

Primary Control Register = 0x000001D0

Source Address Register = 0x01600000

Destination Address Register = 0x80000000

Transfer Counter Register = 0x00040400

Global Count Reload Register A = 0x00000400

Global Index Register A = 0xE00A0008

The Primary Control Register for channel 0 should be configured
as shown in Figure 7, the Transfer Counter Register is shown in
Figure 8, and Global Index Register A is shown in Figure 9.

Figure 7: Primary Control Register Setup for Data-Sorting Transfer Example

31 30 29 28 27 26 25 24 23 19 18 16

00 00 0 0 0 0 00000 000
DST

RELOAD
SRC

RELOAD
EMOD FS TCIN

T
PRI WSYNC RSYNC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 00 01 11 01 00 00
RSYNC INDX CNT

RELOAD
SPLIT ESIZE DST DIR SRC DIR STATUS START

Figure 8: Transfer Counter Register Setup for Data-Sorting Transfer Example

31 16 15 0

0x0004 0x0400
FRAME COUNT ELEMENT COUNT

Figure 9: Global Index Register A Setup for Data-Sorting Transfer Example

31 16 15 0

0xE00A 0x0008
FRAME INDEX ELEMENT INDEX

Preliminary

TMS320C6x DMA Applications 17

The settings of 01b in the SRC DIR bitfield will cause the DMA
channel to increment source address by one element size (2
bytes in this example) following each element. DST DIR being set
to 11b will cause the destination address to be modified
according to Global Index Register A (INDEX = 0). ELEMENT
INDEX will be used following each element within each frame to
increment the destination address by 8 bytes (4 elements).
FRAME INDEX will be used following the last element of each
frame to set the destination address to the first element of the
subsequent frame.

In order to initiate the transfer, a value of 01b needs to be written
to the START bitfield.

Figure 10 shows the transfer that the above setup will perform.

Figure 10: Data Sorting Example Diagram

0x01600000

0x02000800

0x02001000

0x02001800

A1

B1

C 1

D 1

A1023

B1023

C1023

D1023

A1024

B1024

C1024

D1024

A2

B2

C 2

D 2

0x80000000

0x80000008

0x80000010

A1

A2

D 1

D 2

B1

B2

C 1

C 2

0x80001FF0 A1023 D1023B1023 C1023

0x80001FF8 A1024 D1024B1024 C1024

A3 D 3B3 C 3

Preliminary

18 TMS320C6x DMA Applications

Servicing a Peripheral

In many ‘C6x applications the DMA will be used to service a
peripheral which is sending data to, and receiving data from the
device. This peripheral is most commonly either a McBSP or an
external AFE. In order for the DMA to effectively communicate
with either of these, it must be configured to perform a
synchronized data transfer. It must write only when the peripheral
is able to accept new data, and read only when the peripheral
has new data available.

There are three types of synchronization available to a DMA
channel:

- Read Synchronization: Each read transfer waits for
the selected event to occur before proceeding

- Write Synchronization: Each write transfer waits for
the selected event to occur before proceeding

- Frame Synchronization: Each frame transfer waits for
the selected event to occur before proceeding

Each DMA channel may be configured for Read Synchronization,
Write Synchronization, both, or Frame Synchronization. If Frame
Synchronization is used, then the Read Synchronization event
triggers the frame transfer. Synchronization is established in the
DMA channel’s Primary Control Register.

The events to the DMA from each McBSP are XEVT and REVT.
XEVT is issued when a value has been copied from the Data
Transmit Register (DXR) to the Transmit Shift Register (XSR),
signifying that the most recent data has been transferred out.
REVT is issued when a value has been copied from the Receive
Buffer Register (RBR) to the Data Receive Register (DRR),
indicating that a new data value has been received. An external
AFE would typically have similar synchronization events arriving
through one or more of the external interrupt pins (EXT_INT[7-4]).

A complete list of DMA synchronization events is given in Table
1.

Preliminary

TMS320C6x DMA Applications 19

Table 1: DMA Channel Synchronization Events

Event number
(binary)

Event Acronym Event Description

00000 None No Synchronization
00001 TINT0 Timer 0 interrupt
00010 TINT1 Timer 1 interrupt
00011 SD_INT EMIF SDRAM timer interrupt
00100 EXT_INT4 External interrupt pin 4
00101 EXT_INT5 External interrupt pin 5
00110 EXT_INT6 External interrupt pin 6
00111 ENX_INT7 External interrupt pin 7
01000 DMA_INT0 DMA channel 0 interrupt
01001 DMA_INT1 DMA channel 1 interrupt
01010 DMA_INT2 DMA channel 2 interrupt
01011 DMA_INT3 DMA channel 3 interrupt
01100 XEVT0 MCSP 0 transmit event
01101 REVT0 MCSP 0 receive event
01110 XEVT1 MCSP 1 transmit event
01111 REVT1 MCSP 1 receive event
10000 DSPINT Host to DSP interrupt

In addition to properly synchronizing the peripherals, care must
be taken to ensure that the data is being transferred to and from
the correct location. This becomes an issue when performing
transfers for 8- and 16-bit elements, particularly when operating
in an endian mode that is different than the peripheral expects.

Synchronized Data Transfer Example

In order to transfer data to and from a McBSP3, it is necessary to
use Read Synchronization for reading the DRR and Write
Synchronization for writing to the DXR.

3 This information is valid for servicing an external AFE as well. The more frequent the accesses to the AFE, however, the
more favorable a frame-synchronized transfer solution would be. It is usually important to keep the arbitration within the
EMIF to a minimum.

Preliminary

20 TMS320C6x DMA Applications

Consider a variation of the Block Move example. Once again it is
desired to bring a 1k block of 32-bit elements into data memory,
beginning at address 0x80000000. Instead of bringing the data
from a external memory space, however, it will be arriving
through McBSP 0. Every time a new 32-bit data value arrives in
McBSP 0 DRR Register, the event REVT0 will be set. The DMA
channel servicing this data must therefore have its read transfers
synchronized on this event (RSYNC = 01101b). To initialize this
transfer, the following values should be set for the four control
registers:

Primary Control Register = 0x00034040

Source Address Register = 0x018C0000

Destination Address Register = 0x80000000

Transfer Counter Register = 0x00000400

The individual fields of the Primary Control Register are shown in
Figure 11.

Figure 11: Primary Control Register Setup for Synchronized Data Transfer Example

31 30 29 28 27 26 25 24 23 19 18 16

00 00 0 0 0 0 00000 011
DST

RELOAD
SRC

RELOAD
EMOD FS TCIN

T
PRI WSYNC RSYNC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 0 00 00 01 00 00 00
RSYNC INDX CNT

RELOAD
SPLIT ESIZE DST DIR SRC DIR STATUS START

The settings of 01b in the DST DIR bitfield will cause the DMA
channel to increment the destination address by one element
size (4 bytes in this example) following each element. Since the
source is a fixed address, SRC DIR is set to 00b. RSYNC is set
to REVT0 to synchronize the reading of the DRR.

In order to initiate the transfer, a value of 01b needs to be written
to the START bitfield.

Figure 12 shows the transfer that the above setup will perform.

Preliminary

TMS320C6x DMA Applications 21

Figure 12: Synchronized Data Transfer Example Diagram

0x80000000

0x80000004

0x80000008

0x8000000C

0x80000FF8

0 x 8 0 0 0 0 F F C

1

2

3

0 x 3 F F

0x400

40x018C0000 1 - 0x400

REVT0

R E V T 0

R E V T 0

R E V T 0

R E V T 0

R E V T 0

Split-Mode Transfer Example

A McBSP or AFE is more commonly used for bi-directional
communication with the device, which means that the DMA will
need to both read and write to the peripheral. Adding to the
previous example, consider that at the same time 1k words are
being received from the McBSP, 1k words are being transmitted
to it as well. In order to facilitate this there needs to be a channel
set up to transfer data from internal memory to McBSP 0 DXR.
This channel must be write-synchronized on the event XEVT0.

While this could easily be done with another DMA channel, one
of the features of the DMA is that a single channel may be used
to perform two simultaneous transfers. This feature was designed
for use with a peripheral, for which the transmit- and receive-data
addresses are fixed. Using this feature, the previous example
could be modified such that a single DMA channel is used to
perform both reads from and writes to the McBSP.

Setting the SPLIT bitfield in the DMA Channel Primary Control
Register enables a split-mode transfer and selects the location of
the Split Address. Possible SPLIT values are listed in Table 2.

Preliminary

22 TMS320C6x DMA Applications

Table 2: DMA Channel SPLIT Settings

SPLIT Value Split Address

00 Split mode disabled

01 DMA Global Address Register A

10 DMA Global Address Register B

11 DMA Global Address Register C

Global Address Registers A, B, and C may be used to hold the
Split Address. This address is assumed to be on an even word
boundary, as the three LSBs are reserved and fixed at zero. This
address is used as the Split Source Address. The Split
Destination Address is automatically set to be one word address
greater than the Split Source Address. If an external peripheral is
to be serviced by a DMA channel in split-mode, this addressing
convention must be followed.

In this example a block of 1k 32-bit words will be transferred to
McBSP 0, and a block of 1k 32-bit words will be transferred from
McBSP 0 to memory using the same DMA channel.4 The 1k data
block to be transferred to the McBSP will begin at address
0x80001000, while the input data block will again be written to
0x80000000. For this, the following values must be assigned to
the DMA registers:

Primary Control Register = 0x00634450

Source Address Register = 0x80001000

Destination Address Register = 0x80000000

Transfer Counter Register = 0x00000400

Global Address Register A = 0x018C0000

The individual fields of the Primary Control Register are shown in
Figure 13.

4 Note that the DXR address is the next adjacent memory address above the DRR.

Preliminary

TMS320C6x DMA Applications 23

Figure 13: Primary Control Register Setup for Split-Mode Data Transfer Example

31 30 29 28 27 26 25 24 23 19 18 16

00 00 0 0 0 0 01100 011
DST

RELOAD
SRC

RELOAD
EMOD FS TCIN

T
PRI WSYNC RSYNC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 0 01 00 01 01 00 00
RSYNC INDX CNT

RELOAD
SPLIT ESIZE DST DIR SRC DIR STATUS START

The settings of 01b in the SRC DIR and DST DIR bitfields will
cause the DMA channel to increment both the source address
and the destination address by one element size (4 bytes in this
example) following each element. Since the this is a split transfer,
the elements from the source address will be written to the Split
Destination Address (DXR) and the elements transferred from the
Split Source Address (DRR) is written to the Destination Address.
RSYNC is set to REVT0 and WSYNC is set to XEVT0.

In order to initiate the transfer, a value of 01b needs to be written
to the START bitfield.

Figure 14 shows the transfer that the above setup will perform.

Figure 14: Split-Mode Transfer Example Diagram

0 x 8 0 0 0 1 0 0 0

0 x 8 0 0 0 1 0 0 4

0 x 8 0 0 0 1 0 0 8

0 x 8 0 0 0 1 0 0 C

0 x 8 0 0 0 1 F F 8

0 x 8 0 0 0 1 F F C

O u t 1

O u t 2

O u t 3

O u t 0 x 3 F F

O u t 0 x 4 0 0

O u t 4

0 x 0 1 8 C 0 0 0 4 Out [1 -0x400]

0 x 8 0 0 0 0 0 0 0

0 x 8 0 0 0 0 0 0 4

0 x 8 0 0 0 0 0 0 8

0 x 8 0 0 0 0 0 0 C

0 x 8 0 0 0 0 F F 8

0 x 8 0 0 0 0 F F C

In1

In2

In3

In0x3FF

In0x400

In4

0 x 0 1 8 C 0 0 0 0 In [1-0x400]

REVT0

REVT0

REVT0

REVT0

REVT0

REVT0

XEVT0

XEVT0

XEVT0

XEVT0

XEVT0

XEVT0

Preliminary

24 TMS320C6x DMA Applications

Frame-Synchronized Data Transfer Example

If accesses to an external AFE are frequent, it may be beneficial
to transfer elements in bursts, rather than making single
accesses through the EMIF. Bursting makes more efficient use of
the EMIF, as there are fewer cycles lost to arbitration between
requesters. In order to facilitate bursting, it may be necessary to
have an intermediate FIFO buffering system as part of the AFE.
By using a FIFO interface, there will still be a Data-In address and
a Data-Out address from the perspective of the DMA. The
synchronization event would then be an external signal from the
FIFO (or external control logic) indicating when the FIFO has
sufficient data to burst a frame.

In order to perform a synchronized burst, the DMA channel must
be configured with Frame Synchronization. The FS bitfield must
equal 1 and the RSYNC5 bitfield should be set to the desired
synchronization event, both in the Primary Control Register.

Consider a modification of the previous (Split-Mode transfer)
example, with an external AFE as the peripheral. If the elements
arrive and depart through the AFE at a rate which does not
seriously limit the bandwidth of the EMIF, then the only
modification to the previous setup would be to replace the Global
Address Register A value with the AFE Data-In address.6

If, however, servicing transmit- and receive-elements individually
prevents the EMIF from allowing further accesses (either by the
CPU or another DMA channel), then the bursting method should
be used. When performing frame synchronized transfers, two
DMA channels must be used, as split-mode transfers do not allow
bursting.

For this example system, assume there is an input FIFO and an
output FIFO, which are each capable of holding 1k 32-bit
elements (one frame size). An external interrupt (EXT_INT4)
selects when the frame of data is ready to be read from the input
FIFO. The output FIFO will be written to as soon as the input
frame is completed. In this fashion the input and output transfer
rates will be identical.7

The AFE is mapped into CE0 space (Map 1), with the address of
the input FIFO at 0x00400000, and the address of the output
FIFO at 0x0040004. For the channel which services the input
data the following values must be assigned to the DMA registers:

5 Usually an external interrupt or a timer interrupt synchronizes the DMA channel, depending on whether the data transfer is
internally or externally mastered.
6 This assumes that the Data-Out address is one word size above the Data-In address.
7 The input data transfer and the output data transfer could both have external synchronization, as well.

Preliminary

TMS320C6x DMA Applications 25

Primary Control Register = 0x06010040

Secondary Control Register = 0x00000008

Source Address Register = 0x00400000

Destination Address Register = 0x80000000

Transfer Counter Register = 0x00010400

The individual fields of the Primary Control Register are shown in
Figure 15, the fields of the Secondary Control Register are shown
in Figure 16, and the fields of the Transfer Counter Register are
shown in Figure 17.

Figure 15: Primary Control Register Setup for Frame-Synchronized Data Transfer Example

31 30 29 28 27 26 25 24 23 19 18 16

00 00 0 1 1 0 00000 001
DST

RELOAD
SRC

RELOAD
EMOD FS TCIN

T
PRI WSYNC RSYNC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 00 00 01 00 00 00
RSYNC INDX CNT

RELOAD
SPLIT ESIZE DST DIR SRC DIR STATUS START

Figure 16: Secondary Control Register Setup for Frame-Synchronized Data Transfer Example

31 19 18 16

XXXXXXXXXXXXX 000
Reserved DMAC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
WSYNC

CLR
WSYNC

STAT
RSYNC

CLR
RSYNC
STAT

WDROP
IE

WDROP
COND

RDROP
IE

RDROP
COND

BLOCK
IE

BLOCK
COND

LAST IE LAST
COND

FRAME
IE

FRAME
COND

SX IE SX
COND

Figure 17: Transfer Counter Register Setup for Frame-Synchronized Data Transfer Example

31 16 15 0

0x0001 0x0400
FRAME COUNT ELEMENT COUNT

Preliminary

26 TMS320C6x DMA Applications

The settings of 01b in the DST DIR bitfield will cause the DMA
channel to increment the destination address by one element
size (4 bytes in this example) following each element. Since this
is a frame synchronized transfer (FS = 1), the entire frame of
elements from the source address will be read from the AFE as
soon as the Read Synchronization event (RSYNC = EXT_INT4)
is received. Setting TCINT to 1 will cause the DMA channel to
generate an interrupt, which will occur at the end of a frame
(FRAME IE = 1). This interrupt will be used to initiate the transfer
to the output FIFO by another DMA channel.

For the DMA channel which services the output data the following
values must be assigned to the DMA registers:

Primary Control Register = 0x0402X0108

Source Address Register = 0x80001000

Destination Address Register = 0x00400004

Transfer Counter Register = 0x00010400

The individual fields of the Primary Control Register are shown in
Figure 18, and the fields of the Transfer Counter Register are
shown in Figure 19.

Figure 18: Primary Control Register Setup for Frame-Synchronized Data Transfer Example (2)

31 30 29 28 27 26 25 24 23 19 18 16

00 00 0 1 0 0 00000 010
DST

RELOAD
SRC

RELOAD
EMOD FS TCIN

T
PRI WSYNC RSYNC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

{n}9 0 0 00 00 00 01 00 00
RSYNC INDX CNT

RELOAD
SPLIT ESIZE DST DIR SRC DIR STATUS START

Figure 19: Transfer Counter Register Setup for Frame-Synchronized Data Transfer Example (2)

31 16 15 0

0x0001 0x0400
FRAME COUNT ELEMENT COUNT

8 The value of X is equal to 4*n, where n is the DMA channel number servicing the input data. See note 9.
9 The value of RSYNC for this channel depends on the channel servicing the input transfer, where n equals the DMA
channel number.

Preliminary

TMS320C6x DMA Applications 27

The settings of 01b in the SRC DIR bitfield will cause the DMA
channel to increment the source address by one element size (4
bytes in this example) following each element. Since this is a
frame synchronized transfer (FS = 1), the entire frame of
elements from the source address will be written to the AFE as
soon as the Read Synchronization event (RSYNC = DMA_INTn)
is received.

In order to initiate the two transfers, a value of 01b needs to be
written to the START bitfield of each channel’s Primary Control
Register.

Figure 20 shows the transfer that the above setup will perform.

Figure 20: Frame-Synchronized Transfer Example Diagram

DMA_INTn

0x80001000

0x80001004

0x80001008

0x8000100C

0x80001FF8

0x80001FFC

Out1

Out2

Out3

Out0x3FF

Out0x400

Out4

0x00400004 Out [1-0x400]

0x80000000

0x80000004

0x80000008

0x8000000C

0x80000FF8

0x80000FFC

In1

In2

In3

In0x3FF

In0x400

In4

0x00400000 In[1-0x400]

EXT_INT4 DMA_INTn

Endian Mode Considerations

When using a peripheral for element sizes other than 32-bits,
endianness plays an important role. This is usually only true for
the McBSPs, as external peripherals typically match the
endianness of the entire system.

The McBSPs are inherently little endian. The DXR and DRR,
being registers, have the Least Significant Byte (LSB) on the right
and the Most Significant Byte (MSB) on the left (conceptually).
The DXR and DRR of the McBSPs are depicted in Figure 21 and
Figure 22, with the byte ordering for each endian mode shown.

Preliminary

28 TMS320C6x DMA Applications

Figure 21: DXR Byte Locations

31 0
Little Endian Byte 3 Byte 2 Byte 1 Byte 0
Big Endian Byte 0 Byte 1 Byte 2 Byte 3

Figure 22: DRR Byte Locations

31 0
Little Endian Byte 3 Byte 2 Byte 1 Byte 0
Big Endian Byte 0 Byte 1 Byte 2 Byte 3

The DXR always transmits assuming the element is located with
its LSB at bit 0. When in little-endian mode, this is the base
address of the DXR, so no matter what the element size, a write
to the DXR base address will properly align the element. In big-
endian mode, however, this is the upper portion of the register.
Depending on the size of the element, the write must be made to
the address of either Byte 2 (16-bit) or to Byte 3 (8-bit).

The DRR is configurable to either right- or left-justify the incoming
data. The justification will determine the source address of the
data element. For right-justified data (default), the source address
will be Byte 0 in little-endian mode, and Byte 2 (16-bit) or Byte 3
(8-bit) in big-endian mode. For left-justified data, the reverse will
be true.

Table 3 shows the possible endian mode, element size, and DRR
justification combinations that may be encountered in a system.
Only the source and destination addresses are given for each. All
of the necessary configurations described previously still apply.

Preliminary

TMS320C6x DMA Applications 29

Table 3: Possible DMA Source and Destination Address for Servicing McBSP010

Element
Size

Endian
Mode

DRR
Justification

Source
Address

Destination
Address

Right 0x018C0000 0x018C0004
Little

Left 0x018C0003 0x018C0004

Right 0x018C0003 0x018C0007
8-bit

Big
Left 0x018C0000 0x018C0007

Right 0x018C0000 0x018C0004
Little

Left 0x018C0002 0x018C0004

Right 0x018C0002 0x018C0006
16-bit

Big
Left 0x018C0000 0x018C0006

Right 0x018C0000 0x018C0004
Little

Left 0x018C0000 0x018C0004

Right 0x018C0000 0x018C0004
32-bit

Big
Left 0x018C0000 0x018C0004

10 Note that the Source Addresses and Destination Addresses are identical for both the big- and little-endian modes when
transferring 32-bit elements.

Preliminary

30 TMS320C6x DMA Applications

Repetitive DMA operation

When data flow requires that a peripheral be repetitively serviced
throughout device operation, or when program sections are to be
continuously swapped in and out of program memory, it is
appropriate to configure the DMA to reprogram itself for
subsequent transfers. This may be accomplished by running the
DMA channel in auto-initialization mode and providing reload
values for the source and destination addresses and for the
transfer counter.

Once the DMA is programmed to run repetitively an important
concern is how to effectively buffer the incoming and outgoing
data. To keep memory usage to a minimum, the DMA should
write over old data, instead of storing information that is no longer
useful. This type of buffering is considered “circular”, as data is
continuously cycling through the same memory space.

When a high throughput is required of the device, and time
cannot be spared waiting on the DMA to transfer a frame of data
to the device before processing, a ping-pong buffering system
should be used. This scheme requires slightly more complicated
reload settings, but allows for the CPU to be processing data
while the DMA is transferring new data on-chip, and old data off-
chip.

The following examples demonstrate these two buffering
schemes.

Transferring Data To and From Circular Buffers

In many DSP applications, data is stored in on-chip circular
buffers, in which new data is written directly over old data, so that
a minimum amount of memory space will be consumed by an
application. For such an application, it is desired for the DMA to
continually bring frames of data to the same block of data
memory. This may easily be accomplished by configuring the
DMA channel(s) for the initial block move, and taking a few extra
steps to allow for the DMA to reset itself after each transfer.

As an example of how to use circular buffering, the Frame-
Synchronized Data Transfer Example will be modified to run
continuously, with the input and output data buffers being reused
for each frame of data. The address of the input FIFO is
0x00400000, and the address of the output FIFO is 0x0040004.

Preliminary

TMS320C6x DMA Applications 31

For the DMA channel that services the input data the Primary
Control Register value must be modified to allow the channel to
use an index for the Destination Address. Global Index Register
A will be used to return the Destination Address to the beginning
of the frame. The control registers for this channel should be:

Primary Control Register = 0x060100C0

Secondary Control Register = 0x00000008

Source Address Register = 0x00400000

Destination Address Register = 0x80000000

Transfer Counter Register = 0x00010400

Global Index Register A = 0xF0040004

The individual fields of the Primary Control Register are shown in
Figure 23, the fields of the Secondary Control Register are shown
in Figure 24, the fields of the Transfer Counter Register are
shown in Figure 25, and the Global Index Register A is shown in
Figure 26.

Figure 23: Primary Control Register Setup for Circular Buffering Example

31 30 29 28 27 26 25 24 23 19 18 16

00 00 0 1 1 0 00000 001
DST

RELOAD
SRC

RELOAD
EMOD FS TCIN

T
PRI WSYNC RSYNC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 00 00 11 00 00 00
RSYNC INDX CNT

RELOAD
SPLIT ESIZE DST DIR SRC DIR STATUS START

Figure 24: Secondary Control Register Setup for Circular Buffering Example

31 19 18 16

XXXXXXXXXXXXX 000
Reserved DMAC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
WSYNC

CLR
WSYNC

STAT
RSYNC

CLR
RSYNC
STAT

WDROP
IE

WDROP
COND

RDROP
IE

RDROP
COND

BLOCK
IE

BLOCK
COND

LAST IE LAST
COND

FRAME
IE

FRAME
COND

SX IE SX
COND

Preliminary

32 TMS320C6x DMA Applications

Figure 25: Transfer Counter Register Setup for Circular Buffering Example

31 16 15 0

0x0001 0x0400
FRAME COUNT ELEMENT COUNT

Figure 26: Transfer Counter Register Setup for Circular Buffering Example

31 16 15 0

0xF004 0x0004
FRAME INDEX ELEMENT INDEX

The settings of 11b in the DST DIR bitfield will cause the DMA
channel to modify the destination address using Global Index
Register A (INDEX = 0). Following each element the address will
be modified by four bytes using ELEMENT INDEX, and after
each frame the destination address will return to 0x80000000
using FRAME INDEX. Since this is a frame synchronized transfer
(FS = 1), the entire frame of elements from the source address
will be read from the AFE as soon as the Read Synchronization
event (RSYNC = EXT_INT4) is received. Setting TCINT to 1 will
cause the DMA channel to generate an interrupt, which will occur
at the end of a frame (FRAME IE = 1). This interrupt will be used
to initiate the transfer to the output FIFO by another DMA
channel.11

For the DMA channel that services the output data the Primary
Control Register value must be modified to allow the channel to
use an index for the Source Address. Global Index Register A will
be used to return the Source Address to the beginning of the
frame. The control registers for this channel should be:

Primary Control Register = 0x0402X03012

Source Address Register = 0x80001000

Destination Address Register = 0x00400004

Transfer Counter Register = 0x00010400

The individual fields of the Primary Control Register are shown in
Figure 27, and the fields of the Transfer Counter Register are
shown in Figure 28.

11 Note that the FRAME COND bit must be manually cleared following each frame transfer by this channel. See the
section on DMA Interrupt Service Routines for information on how to do this.
12 The value of X is equal to 4*n, where n is the DMA channel number servicing the input data. See note 13.

Preliminary

TMS320C6x DMA Applications 33

Figure 27: Primary Control Register Setup for Circular Buffering Example (2)

31 30 29 28 27 26 25 24 23 19 18 16

00 00 0 1 0 0 00000 010
DST

RELOAD
SRC

RELOAD
EMOD FS TCIN

T
PRI WSYNC RSYNC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

{n}13 0 0 00 00 00 11 00 00
RSYNC INDX CNT

RELOAD
SPLIT ESIZE DST DIR SRC DIR STATUS START

Figure 28: Transfer Counter Register Setup for Circular Buffering Example (2)

31 16 15 0

0x0001 0x0400
FRAME COUNT ELEMENT COUNT

The settings of 11b in the SRC DIR bitfield will cause the DMA
channel to modify the source address using Global Index
Register A (INDEX = 0). Following each element the address will
be modified by four bytes using ELEMENT INDEX, and after
each frame the destination address will return to 0x80001000
using FRAME INDEX. Since this is a frame synchronized transfer
(FS = 1), the entire frame of elements from the source address
will be written to the AFE as soon as the Read Synchronization
event (RSYNC = DMA_INTn) is received.

In order to initiate the two transfers, a value of 11b needs to be
written to the START bitfield of each channel’s Primary Control
Register. Since the output buffer will not have valid data in it until
after the CPU has processed the initial input buffer, the DMA
channel servicing the output should not be started until after the
first frame completes.

Figure 29 shows the transfer that the above setup will perform.

13 The value of RSYNC for this channel depends on the channel servicing the input transfer, where n equals the DMA
channel number.

Preliminary

34 TMS320C6x DMA Applications

Figure 29: Circular Buffer Example Diagram

0x80001000

0x80001004

0x80001008

0x8000100C

0x80001FF8

0x80001FFC

Out1

Out2

Out3

Out0x3FF

Out0x400

Out4

0x00400004 Out[1-0x400]

0x80000000

0x80000004

0x80000008

0x8000000C

0x80000FF8

0x80000FFC

In1

In2

In3

In0x3FF

In0x400

In4

0x00400000 In[1-0x400]

E X T _ I N T 4 D M A _ I N T n

D M A _ I N T n

Ping-Pong Transfer Example

The previous example provides an easy way to renew the buffer
of data being operated on by the CPU. One drawback associated
with the single pair of input and output buffers is that while the
DMA is filling the input buffer or reading from the output buffer,
the CPU cannot be accessing the same space.14 One way to
ensure that the CPU will not be operating on an incorrect set of
data, or changing data which has not yet been moved off-chip, is
to have a dual-buffering scheme. This means simply that there
are two input buffers, and two output buffers. This will double the
amount of internal memory consumed, but will greatly increase
throughput for applications for which the CPU is dedicated to
converting the input data set to an output data set, with few
breaks. For this type of application, the DMA will be moving data
to and from one pair of input/output buffers, while the CPU is
operating on the other pair. As soon as both the CPU and DMA
are finished they will switch input/output buffer pairs.

14 This is true unless care is taken that the CPU is always ahead of the input data and behind the output data.

Preliminary

TMS320C6x DMA Applications 35

Consider a variation of the previous transfer in which there are
two 1k-word input buffers and two 1k-word output buffers in data
memory. The DMA will transfer 1k block of 32-bit words to one
input buffer, located at 0x80000000, and a 1k block of 32-bit
words from one output buffer, located at 0x80002000. After these
sets of data are transferred, a new block is transferred to a
second input buffer, at 0x80001000, and a new block is
transferred from a second output buffer, at 0x80003000. The
next pair of transfers will return to the original input/output pair.
The CPU will compute data located in the first input buffer and
store the results in the first output buffer following the first DMA
transfer. Once completed, the CPU will use the second input
buffer, storing the results in the second output buffer. The CPU
will then switch back to the first pair and continue. The control
registers from the previous example will be modified such that the
source and destination addresses are reloaded to their original
values following each block (two frames) of data transferred.

For the DMA channel that services the input data the Primary
Control Register value must be modified to allow the channel to
post-increment the Destination Address. Global Address Register
B will be used to return the Destination Address to the beginning
of the first buffer. The control registers for this channel should be:

Primary Control Register = 0x46010040

Secondary Control Register = 0x00000088

Source Address Register = 0x00400000

Destination Address Register = 0x80000000

Transfer Counter Register = 0x00020400

Global Address Register B = 0x80000000

The individual fields of the Primary Control Register are shown in
Figure 30, the fields of the Secondary Control Register are shown
in Figure 31, and the fields of the Transfer Counter Register are
shown in Figure 32.

Preliminary

36 TMS320C6x DMA Applications

Figure 30: Primary Control Register Setup for Ping-Pong Transfer Example

31 30 29 28 27 26 25 24 23 19 18 16

01 00 0 1 1 0 00000 001
DST

RELOAD
SRC

RELOAD
EMOD FS TCIN

T
PRI WSYNC RSYNC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 00 00 01 00 00 00
RSYNC INDX CNT

RELOAD
SPLIT ESIZE DST DIR SRC DIR STATUS START

Figure 31: Secondary Control Register Setup for Ping-Pong Transfer Example

31 19 18 16

XXXXXXXXXXXXX 000
Reserved DMAC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
WSYNC

CLR
WSYNC

STAT
RSYNC

CLR
RSYNC
STAT

WDROP
IE

WDROP
COND

RDROP
IE

RDROP
COND

BLOCK
IE

BLOCK
COND

LAST IE LAST
COND

FRAME
IE

FRAME
COND

SX IE SX
COND

Figure 32: Transfer Counter Register Setup for Ping-Pong Transfer Example

31 16 15 0

0x0002 0x0400
FRAME COUNT ELEMENT COUNT

The settings of 01b in the DST DIR bitfield will cause the DMA
channel to increment the destination address following each
element. Since this is a frame-synchronized transfer (FS = 1), an
entire frame of elements will be read from the AFE as soon as
the Read Synchronization event (RSYNC = EXT_INT4) is
received. Setting TCINT to 1 will cause the DMA channel to
generate an interrupt, which will occur at the end of a frame
(FRAME IE = 1). This interrupt will be used to initiate the transfer
to the output FIFO by another DMA channel.15 Following the
second frame of each block, the destination address will be
reloaded to 0x80000000, to allow the DMA to overwrite old data
with new.

15 Note that the FRAME COND bit must be manually cleared following each frame transfer by this channel. See the
section on DMA Interrupt Service Routines for information on how to do this.

Preliminary

TMS320C6x DMA Applications 37

For the DMA channel that services the output data the Primary
Control Register value must be modified to allow the channel to
post-increment the Source Address. Global Address Register C
will be used to return the Source Address to the beginning of the
first output buffer. The control registers for this channel should
be:

Primary Control Register = 0x2602X01016

Source Address Register = 0x80002000

Destination Address Register = 0x00400004

Transfer Counter Register = 0x00020400

Global Address Register C = 0x80002000

The individual fields of the Primary Control Register are shown in
Figure 33, and the fields of the Transfer Counter Register are
shown in Figure 34.

Figure 33: Primary Control Register Setup for Ping-Pong Transfer Example (2)

31 30 29 28 27 26 25 24 23 19 18 16

00 10 0 1 0 0 00000 010
DST

RELOAD
SRC

RELOAD
EMOD FS TCIN

T
PRI WSYNC RSYNC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

{n}17 0 0 00 00 00 01 00 00
RSYNC INDX CNT

RELOAD
SPLIT ESIZE DST DIR SRC DIR STATUS START

Figure 34: Transfer Counter Register Setup for Ping-Pong Transfer Example (2)

31 16 15 0

0x0002 0x0400
FRAME COUNT ELEMENT COUNT

16 The value of X is equal to 4*n, where n is the DMA channel number servicing the input data. See note 17.
17 The value of RSYNC for this channel depends on the channel servicing the input transfer, where n equals the DMA
channel number.

Preliminary

38 TMS320C6x DMA Applications

The settings of 01b in the SRC DIR bitfield will cause the DMA
channel increment the source address following each element.
Since this is a frame-synchronized transfer (FS = 1), an entire
frame of elements will be written to the AFE as soon as the Read
Synchronization event (RSYNC = DMA_INTn) is received.
Following the second frame of each block, the Source Address
will be reloaded to 0x80002000.

In order to initiate the two transfers, a value of 11b needs to be
written to the START bitfield of each channel’s Primary Control
Register. Since the output buffers will not have valid data in them
until after the CPU has processed the initial two input buffers, the
DMA channel servicing the output should not be started until after
the first block completes. By enabling the BLOCK IE to generate
an interrupt, the DMA channel servicing the output data may be
started following the first input block (two frames).18

Figure 35 shows the transfer that the above setup will perform.

Figure 35: Ping-Pong Buffer Example Diagram

0x00400004 Out(A/B)[1-0x400]

0x80000000

0x80000004

0x80000FFC

0x80001000

0x80001004

0x80001FFC

InA1

InB1

InA0x3FF

0x00400000

EXT_INT4

InA2

InB0x3FF

InB2

In(A/B)[1-0x400]

INTn

INTn

INTn

OutA1

OutB1

OutA0x3FF

OutA2

OutB0x3FF

OutB2

0x80002000

0x80002004

0x80002FFC

0x80003000

0x80003004

0x80003FFC

INTn

18An example Interrupt Service Routine that does this and clears the FRAME COND bit is given in the DMA Interrupt
Service Routines section.

Preliminary

TMS320C6x DMA Applications 39

Program Paging Example

The methodology behind the Ping-Pong data transfer may also
be applied to program paging. When a program requires more
than 64kbytes of memory, and it is not desired to operate either
from external memory or in cache mode, then it becomes
necessary to implement program paging. Providing a DMA
channel to bring in a block of code from external memory to
internal program memory does this. In order to maintain efficiency
with the CPU, it is necessary to have at least two sections of
program space in the internal program memory. By doing so,
existing code may be executed while new code is brought to the
device.

In order to facilitate an efficient paging scheme, a program should
be divided into sections, with the sections to be paged occupying
the same amount of memory space.19 These sections should
then be stored in known external memory locations so that the
DMA is capable of retrieving specific blocks of code. A typical
breakdown of code would include:

- Interrupt Service Table which resides in either program
memory or external memory20

- Main block of code which resides in program memory

- Program pages which reside in external memory

Bringing data into internal program memory with the DMA differs
significantly from accessing internal data memory. The end result
is that transfers to program memory are slower than transfers to
data memory, and these transfers should be given time to
complete. The primary factor in enabling a program page to be
transferred more effectively is code parallelism. The less parallel
a program is, the more frequent the accesses to the internal
program memory space by the DMA can be. Any optimized loops
in a program will slow the transfer.

The sample program in this example will include the following
sections:

- Interrupt Service Table (1k), linked to the base
address of internal program memory: 0x00000000
(Map 1). This section contains Interrupt

19 For information on how to create program sections and organize them in memory, see the TMS320C6x Assembly
Language Tools User’s Guide and the TMS320C6x Optimizing C Compiler User’s Guide.
20 The location of the Interrupt Vector Table should depend upon the frequency of interrupts that need to be serviced. If
interrupts were frequent, then it would be more efficient for the IST to be in internal program memory.

Preliminary

40 TMS320C6x DMA Applications

- Main block of code (15k), linked to 0x00000400 in
internal program memory. This section contains main
subroutine,

- Initialization section linked to 0x0000A000. This block
of code sets up the EMIF, interrupts, data initialization,
and any DMA transfers to be performed during the
program that may be configured ahead of time. This
section will be overwritten as it is only used once.

- Page1 section linked to external memory location
0x20000000 (CE2), with run-time location set to
0x00006000. This page of code will be brought into
internal program memory multiple times throughout the
program execution.

- Page2 section linked to 0x20004000, with run-time
location set to 0x0000A000. This page of code will be
brought into internal program memory multiple times
throughout the program execution.

- Page3 section linked to 0x20008000, with run-time
location set to 0x00006000. This page of code will be
brought into internal program memory multiple times
throughout the program execution.

- Page4 section linked to 0x2000C000, with run-time
location set to 0x0000A000. This page of code will be
brought into internal program memory multiple times
throughout the program execution.

Each page (1-4) listed above is of length 16k (0x4000), and each
page branches to the next, sequentially. In order to facilitate this,
a DMA channel should be set up by the initialization code to
transfer pages 1 through 4 to their run-time program space.

Program paging is typically a background transfer, as it is not
desirable to interfere with the servicing of peripherals or other
data transfers. Paging is normally done using a low-priority
channel.

For this example, the DMA channel is set up as follows:

Preliminary

TMS320C6x DMA Applications 41

Primary Control Register = 0x9601A050

Secondary Control Register = 0x00000080

Source Address Register = 0x20000000

Destination Address Register = 0x00006000

Transfer Counter Register = 0x00011000

Global Address Register B = 0x20006000

Global Address Register C = 0x0000A000

Global Reload Register A = 0x00011000

The individual fields of the Primary Control Register are shown in
Figure 36, the fields of the Secondary Control Register are shown
in Figure 37, and the fields of the Transfer Counter Register are
shown in Figure 38.

Figure 36: Primary Control Register Setup for Program Paging Example

31 30 29 28 27 26 25 24 23 19 18 16

10 01 0 1 1 0 00000 001
DST

RELOAD
SRC

RELOAD
EMOD FS TCIN

T
PRI WSYNC RSYNC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 1 0 00 00 01 01 00 00
RSYNC INDX CNT

RELOAD
SPLIT ESIZE DST DIR SRC DIR STATUS START

Figure 37: Secondary Control Register Setup for Program Paging Example

31 19 18 16

XXXXXXXXXXXXX 000
Reserved DMAC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
WSYNC

CLR
WSYNC

STAT
RSYNC

CLR
RSYNC
STAT

WDROP
IE

WDROP
COND

RDROP
IE

RDROP
COND

BLOCK
IE

BLOCK
COND

LAST IE LAST
COND

FRAME
IE

FRAME
COND

SX IE SX
COND

Figure 38: Transfer Counter Register Setup for Program Paging Example

31 16 15 0

0x0001 0x1800
FRAME COUNT ELEMENT COUNT

Preliminary

42 TMS320C6x DMA Applications

The settings of 01b in the DST DIR and SRC DIR bitfields will
cause the DMA channel to increment the destination and source
addresses following each element. Since this is a frame-
synchronized transfer (FS = 1), an entire page will be transferred
to program memory as soon as the Read Synchronization event
(RSYNC = EXT_INT6) is received. Setting TCINT to 1 will cause
the DMA channel to generate an interrupt, which will occur at the
end of a block (BLOCK_IE = 1). This interrupt will be used to let
the CPU know that valid code is present. Following each block,
Global Reload Registers should be set with the destination and
source addresses for the subsequent transfer. External interrupt
EXT_INT6 should not actually be used during program execution.
Instead, the CPU should directly set the RSYNC STAT bit in the
channel’s Secondary Control Register to initiate each transfer.
This will provide control between the CPU and the DMA. Each
time the CPU finishes executing a page, it should set the RSYNC
STAT bit, then poll the Interrupt Flag for the interrupt number of
the DMA channel. If it is known that the CPU will complete before
the DMA every time then CPU may be placed in IDLE to
decrease the transfer time.

Figure 39 shows the transfer that the above setup will perform.

Figure 39: Program-Paging Example Diagram

Interrupt Service Rout ine for DMA_INTn:
Select which page to t ransfer into memory.

Modi fy Global Address Regis ter B for next Source Address
Modi fy Global Address Register C for next Dest inat ion Address

Set RSYNC_STAT b i t in DMA Secondary Cont ro l Reg is te r
Branch to new page of code

D M A _ I N T n

0 x 0 2 0 0 4 0 0 0

0 x 0 2 0 0 4 0 0 4

0 x 0 2 0 0 4 0 0 8

0 x 0 2 0 0 4 0 0 C

0 x 0 2 0 4 7 F F 8

0 x 0 2 0 4 7 F F C

C P U s y n c

Instr1-1

Instr1-2

Instr1-3

Inst r1-0x17FF

Inst r1-0x1800

Instr1-4

0 x 0 2 0 0 8 0 0 0

0 x 0 2 0 0 8 0 0 4

0 x 0 2 0 0 8 0 0 8

0 x 0 2 0 0 8 0 0 C

0 x 0 2 0 0 8 F F 8

0 x 0 2 0 0 8 F F C

C P U s y n c

Instr1-1

Instr1-2

Instr1-3

Inst r1-0x17FF

Inst r1-0x1800

Instr1-4

0 x 0 2 0 0 C 0 0 0

0 x 0 2 0 0 C 0 0 4

0 x 0 2 0 0 C 0 0 8

0 x 0 2 0 0 C 0 0 C

0 x 0 2 0 0 C F F 8

0 x 0 2 0 0 C F F C

C P U s y n c

Instr1-1

Instr1-2

Instr1-3

Inst r1-0x17FF

Inst r1-0x1800

Instr1-4

0 x 0 2 0 0 0 0 0 0

0 x 0 2 0 0 0 0 0 4

0 x 0 2 0 0 0 0 0 8

0 x 0 2 0 0 0 0 0 C

0 x 0 2 0 0 3 F F 8

0 x 0 2 0 0 3 F F C

C P U s y n c

Instr1-1

Instr1-2

Instr1-3

Inst r1-0x17FF

Inst r1-0x1800

Instr1-4

D M A _ I N T n D M A _ I N T n D M A _ I N T n

D M A _ I N T n

Page 1 Page 3 Page 2 Page 4

0 x 0 0 0 0 A 0 0 0

0 x 0 0 0 0 A 0 0 4

0 x 0 0 0 0 A 0 0 8

0 x 0 0 0 0 A 0 0 C

0 x 0 0 0 0 D F F 8

0 x 0 0 0 0 D F F C

Instr(2/4)-1

Instr(2/4)-2

Instr(2/4)-3

Instr (2/4)-0xFFF

Inst r (2 /4) -0x1000

Instr(2/4)-4

0 x 0 0 0 0 6 0 0 0

0 x 0 0 0 0 6 0 0 4

0 x 0 0 0 0 6 0 0 8

0 x 0 0 0 0 6 0 0 C

0 x 0 0 0 0 9 F F 8

0 x 0 0 0 0 9 F F C

Instr(1/3)-1

Instr(1/3)-2

Instr(1/3)-3

Instr (1/3)-0xFFF

Inst r (1 /3) -0x1000

Instr(1/3)-4

Preliminary

TMS320C6x DMA Applications 43

DMA Interrupt Service Routines

Through configuration of a DMA channel’s Primary and
Secondary Control Register, it is possible for each DMA channel
to interrupt the CPU when one or more conditions occur. When
any of the enabled conditions occur, the interrupt flag for the
DMA channel will be set. If this interrupt is enabled in the Interrupt
Enable Register (IER), then the interrupt will be serviced. The
conditions that may be used are given in Table 4.

Table 4: DMA Channel Condition Descriptions

Bitfield Event Occurs…

BLOCK Block transfer
complete

After the last write transfer in a
block transfer is written to memory.

FRAME Frame
complete

After the last write transfer in each
frame is written to memory.

LAST Last frame After all counter adjustments for the
next to last frame in a block transfer
complete.

WDROP

RDROP

Dropped
read/write
synchronization

If a subsequent synchronization
event occurs before the last one is
cleared.

SX Split transmit
overrun
receive

If the split-mode is enabled, and
transmit-element transfers get
seven or more element transfers
ahead of receive-element transfers.

The IE bits in the channel’s Secondary Control Register must be
set for each condition to generate an interrupt to the CPU. The
TCINT bit in the channel’s Primary Control Register must also be
set. This will cause an interrupt to occur whenever the enabled
condition transitions from a “0” to a “1”, which will be reported in
the COND bitfields of the channel’s Secondary Control Register.

Preliminary

44 TMS320C6x DMA Applications

If the IE bit for a condition is enabled, then the CPU must
manually clear the COND bit in order to receive subsequent
interrupts. This is to avoid confusion in the case that multiple
events trigger the same interrupt. The most common way to
perform this is to have an Interrupt Service Routine (ISR) which
services each DMA Channel in use.21 ISRs range in function from
simplistic to complex, depending on the application. They are
typically designed to be as short as possible, so that little time is
taken away from the processor.

In order to enable a DMA-generated interrupt to be taken, several
steps must be taken by the CPU. The Global Interrupt Enable
(GIE) bit must be set in the Control Status Register (CSR) and
the appropriate interrupt number’s Interrupt Enable (IEn) bit and
the Non-Maskable Interrupt Enable (NMIE) bit must be set in the
Interrupt Enable Register (IER). The setting of NMIE is to prevent
the processor to be interrupted until it is fully out of reset, and no
interrupts may be taken until this is done. The GIE bit globally
enables any enabled interrupt to be serviced by the CPU. This bit
may be cleared to protect certain routines. The IEn bit is used to
enable the specific interrupt number of the DMA channel in use.

The most common DMA Conditions used to interrupt the CPU are
the BLOCK, FRAME, and LAST conditions. These are used
primarily to modify RELOAD values in the DMA, or to update
global variables used within a program. These are for planned
services that occur during program execution. The remaining
Conditions are used to service unplanned situations. (R/W)DROP
is used in the instance that a synchronized transfer was skipped,
and the SX Condition is used in the case that a split-mode
transfer is not symmetric. An ISR for a DMA channel may
address any number of these Conditions.

A typical sequence of events in servicing a DMA interrupt is:

- Read the Secondary Control Register

- Check COND bits to see which Condition generated
the interrupt

- Clear the Condition(s) by writing “0” to the COND bits

- Write the Secondary Control Register22

- Perform necessary tasks to service the Condition

21 For information on how to set up CPU interrupts, see the TMS320C62xx Peripherals Reference Guide and the
TMS320C62x/C67x CPU and Instruction Set Reference Guide.
22 In a synchronized transfer, it is a good idea to mask the RSYNC STAT and WSYNC STAT bits. If a synchronization
event is serviced during the ISR, then writing a “1” to either may cause a spurious synchronization event. Writing a “0” has
no effect.

Preliminary

TMS320C6x DMA Applications 45

- Resume program execution

An example of a basic ISR is one that could be used in the Ping-
Pong Transfer Example. In that example, it was desired to initiate
the second DMA channel (servicing the output data) after the
second input frame had been completed. It was also required that
the FRAME COND bit be cleared following each frame, as the
FRAME IE bit is set. The following C code will perform what is
necessary for the case where DMA channel 1 is servicing the
input data and DMA channel 2 is servicing the output data:

/* DMA Channel 1 Interrupt Service Routine will
execute upon completion of a Frame Transfer by
Channel 1. Since Channel 1 is servicing the input
data, when it completes its transfer the CPU will
be free to begin executing code. */

interrupt void DMA_Ch1_ISR(void)

{

unsigned int sec_ctrl;

/* Read Channel 1 Secondary Control Register */

 sec_ctrl = REG_READ(DMA1_SECONDARY_CTRL_ADDR);

/* If the second frame has completed, start DMA
Channel 2 in auto-initialization mode, then clear
the Block Condition bit and disable Block Interrupt
Enable. */

 if (GET_BIT(&sec_ctrl, BLOCK_COND){

 DMA_AUTO_START(DMA_Ch2);

 RESET_BIT(&sec_ctrl, BLOCK_COND);

 RESET_BIT(&sec_ctrl, BLOCK_IE);

 }

/* Clear the FRAME COND bit in the DMA Channel 1
Secondary Control Register */

 RESET_BIT(&sec_ctrl, FRAME_COND);

 REG_WRITE(DMA1_SECONDARY_CTRL_ADDR, sec_ctrl);

} /* End DMA_Ch1_ISR */

Preliminary

46 TMS320C6x DMA Applications

Conclusion

The TMS320C6x DMA is a versatile tool that may be used to
perform data transfers throughout device operation, with little
setup required. Through proper initialization, both simple and
complex data transfers may be run concurrently to provide data
to the CPU, and to transmit data to external devices as well. The
examples provided here offer some of the more common DMA
applications for a system. Many of these transfers have multiple
setups possible to accomplish the same tasks. The best way to
set up multiple transfers using more than one DMA channel will
depend on the combinations desired. It may be necessary to use
a single channel to perform more than one type of transfer, using
the CPU to continuously reprogram the channel. It is typically
possible to configure those transfers that will occur throughout
device operation only once, which will free the CPU to perform its
application with little interruption.

Preliminary

TMS320C6x DMA Applications 47

Appendix. A

Included in the Appendix.A are code segments for each of the
DMA transfer examples provided in this document. The following
code may be modified as required for a given system, and many
of these transfers may be used within the same system to
perform multiple transfers.

Block Move Example Code
/* Set up the DMA Control Registers to perform the data transfer */

/* of a block or data. */

void

run_DMA(void)

{

unsigned int dma_pri_ctrl = 0;

unsigned int dma_sec_ctrl = 0;

unsigned int dma_src_addr = 0;

unsigned int dma_dst_addr = 0;

unsigned int dma_tcnt = 0;

unsigned int dma_gcr = 0;

unsigned int dma_gcra = 0;

unsigned int dma_gcrb = 0;

unsigned int dma_gndxa = 0;

unsigned int dma_gndxb = 0;

unsigned int dma_gaddra = 0;

unsigned int dma_gaddrb = 0;

unsigned int dma_gaddrc = 0;

unsigned int dma_gaddrd = 0;

 /* Transfer a block of size = XFER_SIZE from DBLOCK1 to */

 /* DBLOCK2. */

 /* Reset DMA Control Registers */

 dma_reset();

 /* Set up Global Configuration Registers for the DMA */

 dma_gcra = (unsigned int)reload_elm;

 dma_global_init(dma_gcr,dma_gcra,dma_gcrb,dma_gndxa,dma_gndxb,

 dma_gaddra,dma_gaddrb,dma_gaddrc,dma_gaddrd);

Preliminary

48 TMS320C6x DMA Applications

 /* Set up DMA Ch2 to write 256k words (1MB) from CE2 to

 external AFE in CE0 */

 /* Set up DMA Primary Control Register */

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_NONE, DST_RELOAD, DST_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_NONE, SRC_RELOAD, SRC_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_NO_EM_HALT , EMOD , 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CPU_PRI , PRI , 1);

 LOAD_FIELD(&dma_pri_ctrl, SEN_NONE , WSYNC , WSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, SEN_NONE , RSYNC , RSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CNT_RELOADA, CNT_RELOAD, 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_SPLIT_DIS , SPLIT , SPLIT_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ESIZE32 , ESIZE , ESIZE_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_NO_MOD, DST_DIR , DST_DIR_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_INC , SRC_DIR , SRC_DIR_SZ);

 /* Set up DMA Tranfer Count Register */

 LOAD_FIELD(&dma_tcnt, XFER_SIZE, ELEMENT_COUNT, ELEMENT_COUNT_SZ);

 /* Set up Source and Destination Address Registers */

 dma_src_addr = (unsigned int)DBLOCK1;

 dma_dst_addr = (unsigned int)DBLOCK2;

 /* Store DMA Channel 2 registers */

 dma_init(DMA_CH2,

 dma_pri_ctrl,

 dma_sec_ctrl,

 dma_src_addr,

 dma_dst_addr,

 dma_tcnt);

 /* Start DMA Ch2 Transfer */

 DMA_START(DMA_CH2);

} /* End run_DMA */

Preliminary

TMS320C6x DMA Applications 49

Extremely Large Block Move Example Code
/* Set up the DMA Control Registers to perform the data transfer */

/* of the large data block */

void

run_DMA(void)

{

unsigned int dma_pri_ctrl = 0;

unsigned int dma_sec_ctrl = 0;

unsigned int dma_src_addr = 0;

unsigned int dma_dst_addr = 0;

unsigned int dma_tcnt = 0;

unsigned int dma_gcr = 0;

unsigned int dma_gcra = 0;

unsigned int dma_gcrb = 0;

unsigned int dma_gndxa = 0;

unsigned int dma_gndxb = 0;

unsigned int dma_gaddra = 0;

unsigned int dma_gaddrb = 0;

unsigned int dma_gaddrc = 0;

unsigned int dma_gaddrd = 0;

unsigned int count_reload = 0;

unsigned int frame_cnt = 0;

unsigned int initial_elm = 0;

unsigned int reload_elm = 0;

 /* Establish initial count value, and reload value, based */

 /* on the transfer size (XFER_SIZE) of the large block. */

 /* The formulas used to calculate the initial and reload */

 /* are as follows: */

 /* Initial element count = 15 LSBs of total transfer size */

 /* Reload element count = 0x8000 (bit 15) */

 /* Frame count = bits 15 through 30, plus 1 */

 /* NOTE: The maximum size using this method is 0x7FFF7FFF */

 /* For even larger sizes, new formulas must be used */

 frame_cnt = (XFER_SIZE >> 15) + 1;

 initial_elm = XFER_SIZE & 0x7FFF; /* keep 15 LSBs */

 if (!initial_elm) /* element count of 0 not allowed */

Preliminary

50 TMS320C6x DMA Applications

 {

 initial_elm = 0x8000;

 frame_cnt -= 1;

 }

 reload_elm = 0x8000;

 /* Reset DMA Control Registers */

 dma_reset();

 /* Set up Global Configuration Registers for the DMA */

 dma_gcra = (unsigned int)reload_elm;

 dma_global_init(dma_gcr,dma_gcra,dma_gcrb,dma_gndxa,dma_gndxb,

 dma_gaddra,dma_gaddrb,dma_gaddrc,dma_gaddrd);

 /* Set up DMA Ch2 to write 256k words (1MB) from CE2 to

 external AFE in CE0 */

 /* Set up DMA Primary Control Register */

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_NONE, DST_RELOAD, DST_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_NONE, SRC_RELOAD, SRC_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_NO_EM_HALT , EMOD , 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CPU_PRI , PRI , 1);

 LOAD_FIELD(&dma_pri_ctrl, SEN_NONE , WSYNC , WSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, SEN_NONE , RSYNC , RSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CNT_RELOADA, CNT_RELOAD, 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_SPLIT_DIS , SPLIT , SPLIT_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ESIZE32 , ESIZE , ESIZE_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_NO_MOD, DST_DIR , DST_DIR_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_INC , SRC_DIR , SRC_DIR_SZ);

 /* Set up DMA Tranfer Count Register */

 LOAD_FIELD(&dma_tcnt, frame_cnt, FRAME_COUNT, FRAME_COUNT_SZ);

 LOAD_FIELD(&dma_tcnt, initial_elm, ELEMENT_COUNT, ELEMENT_COUNT_SZ);

 /* Set up Source and Destination Address Registers */

 dma_src_addr = (unsigned int)DBLOCK;

 dma_dst_addr = (unsigned int)AFEout;

 /* Store DMA Channel 2 registers */

 dma_init(DMA_CH2,

 dma_pri_ctrl,

Preliminary

TMS320C6x DMA Applications 51

 dma_sec_ctrl,

 dma_src_addr,

 dma_dst_addr,

 dma_tcnt);

 /* Start DMA Ch2 Transfer */

 DMA_START(DMA_CH2);

} /* End run_DMA */

Preliminary

52 TMS320C6x DMA Applications

Data-Sorting Example Code

/* Set up the DMA Control Registers to perform a column-wise sort */

/* of data arrays located in external memory. */

void

run_DMA(void)

{

unsigned int dma_pri_ctrl = 0;

unsigned int dma_sec_ctrl = 0;

unsigned int dma_src_addr = 0;

unsigned int dma_dst_addr = 0;

unsigned int dma_tcnt = 0;

unsigned int dma_gcr = 0;

unsigned int dma_gcra = 0;

unsigned int dma_gcrb = 0;

unsigned int dma_gndxa = 0;

unsigned int dma_gndxb = 0;

unsigned int dma_gaddra = 0;

unsigned int dma_gaddrb = 0;

unsigned int dma_gaddrc = 0;

unsigned int dma_gaddrd = 0;

unsigned int count_reload = 0;

unsigned int el_index = 0;

unsigned int fr_index = 0;

unsigned int esize = 0;

 /* Reset DMA Control Registers */

 dma_reset();

 /* Calculate index values, as well as the ESIZE, based on the */

 /* number of elements per frame (EL_COUNT), the number of */

 /* frames per block (FR_COUNT), and the number of bytes of each*/

 /* element (EL_SIZE). */

 el_index = FR_COUNT * EL_SIZE;

 fr_index = -(((EL_COUNT - 1) * FR_COUNT) - 1) * EL_SIZE;

 if (EL_SIZE == 1) esize = 2;

 else if (EL_SIZE == 2) esize = 1;

 else esize = 0;

Preliminary

TMS320C6x DMA Applications 53

 /* Set up Global Configuration Registers for the DMA */

 LOAD_FIELD(&dma_gcra , FR_COUNT, FRAME_COUNT , FRAME_COUNT_SZ);

 LOAD_FIELD(&dma_gcra , EL_COUNT, ELEMENT_COUNT, ELEMENT_COUNT_SZ);

 LOAD_FIELD(&dma_gndxa, fr_index, FRAME_INDEX , FRAME_INDEX_SZ);

 LOAD_FIELD(&dma_gndxa, el_index, ELEMENT_INDEX, ELEMENT_INDEX_SZ);

 dma_global_init(dma_gcr,dma_gcra,dma_gcrb,dma_gndxa,dma_gndxb,

 dma_gaddra,dma_gaddrb,dma_gaddrc,dma_gaddrd);

 /* Set up DMA Ch1 to perform a block transfer of XFER_SIZE elements */

 /* from AFE to INBUFFER */

 /* Set up DMA Primary Control Register */

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_NONE, DST_RELOAD, DST_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_NONE, SRC_RELOAD, SRC_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_NO_EM_HALT , EMOD , 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CPU_PRI , PRI , 1);

 LOAD_FIELD(&dma_pri_ctrl, SEN_NONE , WSYNC , WSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, SEN_NONE , RSYNC , RSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_INDXA , INDEX , 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CNT_RELOADA, CNT_RELOAD, 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_SPLIT_DIS , SPLIT , SPLIT_SZ);

 LOAD_FIELD(&dma_pri_ctrl, esize , ESIZE , ESIZE_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_INDX , DST_DIR , DST_DIR_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_NO_MOD, SRC_DIR , SRC_DIR_SZ);

 SET_BIT(&dma_pri_ctrl,FS); /* Set Frame Sync bit */

 SET_BIT(&dma_pri_ctrl,TCINT); /* Allow Ch2 to interrupt CPU */

 SET_BIT(&dma_pri_ctrl,EMOD); /* Halt DMA with emu halt */

 /* Set up DMA Tranfer Count Register */

 LOAD_FIELD(&dma_tcnt, FR_COUNT, FRAME_COUNT , FRAME_COUNT_SZ);

 LOAD_FIELD(&dma_tcnt, EL_COUNT, ELEMENT_COUNT, ELEMENT_COUNT_SZ);

 /* Set up Source and Destination Address Registers */

 dma_src_addr = (unsigned int)AFEin;

 dma_dst_addr = (unsigned int)INBUFFER1;

 /* Store DMA Channel 1 registers */

 dma_init(DMA_CH1,

 dma_pri_ctrl,

 dma_sec_ctrl,

 dma_src_addr,

Preliminary

54 TMS320C6x DMA Applications

 dma_dst_addr,

 dma_tcnt);

 /* Start DMA Ch1 Transfer */

 DMA_START(DMA_CH1);

} /* End run_DMA */

Preliminary

TMS320C6x DMA Applications 55

Synchronized Data Transfer Example Code

/* Set up the DMA Control Registers to perform the data transfers */

/* from McBSP 0 to internal data memory. */

void

run_DMA(void)

{

unsigned int dma_pri_ctrl = 0;

unsigned int dma_sec_ctrl = 0;

unsigned int dma_src_addr = 0;

unsigned int dma_dst_addr = 0;

unsigned int dma_tcnt = 0;

unsigned int dma_gcr = 0;

unsigned int dma_gcra = 0;

unsigned int dma_gcrb = 0;

unsigned int dma_gndxa = 0;

unsigned int dma_gndxb = 0;

unsigned int dma_gaddra = 0;

unsigned int dma_gaddrb = 0;

unsigned int dma_gaddrc = 0;

unsigned int dma_gaddrd = 0;

 /* Reset DMA Control Registers */

 dma_reset();

 /* Set up Global Configuration Registers for the DMA */

 LOAD_FIELD(&dma_gcra, XFER_SIZE, ELEMENT_COUNT, ELEMENT_COUNT_SZ);

 dma_global_init(dma_gcr,dma_gcra,dma_gcrb,dma_gndxa,dma_gndxb,

 dma_gaddra,dma_gaddrb,dma_gaddrc,dma_gaddrd);

 /* Set up DMA Ch1 to perform a block transfer of XFER_SIZE elements */

 /* from McBSP 1 DRR to INBUFFER */

 /* Set up DMA Primary Control Register */

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_GARB, DST_RELOAD, DST_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_NONE, SRC_RELOAD, SRC_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_NO_EM_HALT , EMOD , 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CPU_PRI , PRI , 1);

 LOAD_FIELD(&dma_pri_ctrl, SEN_NONE , WSYNC , WSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, SEN_REVT0 , RSYNC , RSYNC_SZ);

Preliminary

56 TMS320C6x DMA Applications

 LOAD_FIELD(&dma_pri_ctrl, DMA_CNT_RELOADA, CNT_RELOAD, 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_SPLIT_DIS , SPLIT , SPLIT_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ESIZE32 , ESIZE , ESIZE_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_INC , DST_DIR , DST_DIR_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_NO_MOD, SRC_DIR , SRC_DIR_SZ);

 SET_BIT(&dma_pri_ctrl,TCINT); /* Allow Ch2 to interrupt CPU */

 SET_BIT(&dma_pri_ctrl,EMOD); /* Halt DMA with emu halt */

 /* Set up DMA Tranfer Count Register */

 LOAD_FIELD(&dma_tcnt, XFER_SIZE, ELEMENT_COUNT, ELEMENT_COUNT_SZ);

 /* Set up Source and Destination Address Registers */

 dma_src_addr = MCBSP_DRR_ADDR(0);

 dma_dst_addr = (unsigned int)INBUFFER;

 /* Store DMA Channel 1 registers */

 dma_init(DMA_CH1,

 dma_pri_ctrl,

 dma_sec_ctrl,

 dma_src_addr,

 dma_dst_addr,

 dma_tcnt);

 /* Start DMA Transfers */

 DMA_START(DMA_CH1);

} /* End run_DMA */

Preliminary

TMS320C6x DMA Applications 57

Split-Mode Transfer Example Code

/* Set up the DMA Control Registers to perform to service McBSP 0. */

void

run_DMA(void)

{

unsigned int dma_pri_ctrl = 0;

unsigned int dma_sec_ctrl = 0;

unsigned int dma_src_addr = 0;

unsigned int dma_dst_addr = 0;

unsigned int dma_tcnt = 0;

unsigned int dma_gcr = 0;

unsigned int dma_gcra = 0;

unsigned int dma_gcrb = 0;

unsigned int dma_gndxa = 0;

unsigned int dma_gndxb = 0;

unsigned int dma_gaddra = 0;

unsigned int dma_gaddrb = 0;

unsigned int dma_gaddrc = 0;

unsigned int dma_gaddrd = 0;

 /* Reset DMA Control Registers */

 dma_reset();

 /* Set up Global Configuration Registers for the DMA */

 LOAD_FIELD(&dma_gcra, XFER_SIZE, ELEMENT_COUNT, ELEMENT_COUNT_SZ);

 dma_gaddra = MCBSP_DRR_ADDR(0);

 dma_global_init(dma_gcr,dma_gcra,dma_gcrb,dma_gndxa,dma_gndxb,

 dma_gaddra,dma_gaddrb,dma_gaddrc,dma_gaddrd);

 /* Set up DMA Ch1 to perform a block transfer of XFER_SIZE elements */

 /* from McBSP 0 DRR to INBUFFER */

 /* Set up DMA Primary Control Register */

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_NONE, DST_RELOAD, DST_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_NONE, SRC_RELOAD, SRC_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_NO_EM_HALT , EMOD , 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CPU_PRI , PRI , 1);

 LOAD_FIELD(&dma_pri_ctrl, SEN_XEVT0 , WSYNC , WSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, SEN_REVT0 , RSYNC , RSYNC_SZ);

Preliminary

58 TMS320C6x DMA Applications

 LOAD_FIELD(&dma_pri_ctrl, DMA_CNT_RELOADA, CNT_RELOAD, 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_SPLIT_GARA , SPLIT , SPLIT_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ESIZE32 , ESIZE , ESIZE_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_INC , DST_DIR , DST_DIR_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_INC , SRC_DIR , SRC_DIR_SZ);

 SET_BIT(&dma_pri_ctrl,TCINT); /* Allow Ch1 to interrupt CPU */

 /* Set up DMA Tranfer Count Register */

 LOAD_FIELD(&dma_tcnt, XFER_SIZE, ELEMENT_COUNT, ELEMENT_COUNT_SZ);

 /* Set up Source and Destination Address Registers */

 dma_src_addr = (unsigned int)OUTBUFFER;

 dma_dst_addr = (unsigned int)INBUFFER;

 /* Store DMA Channel 1 registers */

 dma_init(DMA_CH1,

 dma_pri_ctrl,

 dma_sec_ctrl,

 dma_src_addr,

 dma_dst_addr,

 dma_tcnt);

 /* Start DMA Transfer */

 DMA_START(DMA_CH1);

} /* End run_DMA */

Preliminary

TMS320C6x DMA Applications 59

Frame-Synchronized Data Transfer Example Code

/* Set up the DMA Control Registers to perform the data transfers */

/* between internal data memory and the external AFE. */

void

run_DMA(void)

{

unsigned int dma_pri_ctrl = 0;

unsigned int dma_sec_ctrl = 0;

unsigned int dma_src_addr = 0;

unsigned int dma_dst_addr = 0;

unsigned int dma_tcnt = 0;

unsigned int dma_gcr = 0;

unsigned int dma_gcra = 0;

unsigned int dma_gcrb = 0;

unsigned int dma_gndxa = 0;

unsigned int dma_gndxb = 0;

unsigned int dma_gaddra = 0;

unsigned int dma_gaddrb = 0;

unsigned int dma_gaddrc = 0;

unsigned int dma_gaddrd = 0;

unsigned int count_reload = 0;

 /* Reset DMA Control Registers */

 dma_reset();

 /* Set up Global Configuration Registers for the DMA */

 dma_gcra = (unsigned int)XFER_SIZE;

 dma_gaddrb = (unsigned int)INBUFFER;

 dma_gaddrc = (unsigned int)OUTBUFFER;

 dma_global_init(dma_gcr,dma_gcra,dma_gcrb,dma_gndxa,dma_gndxb,

 dma_gaddra,dma_gaddrb,dma_gaddrc,dma_gaddrd);

 /* Set up DMA Ch1 to perform a block transfer of XFER_SIZE elements */

 /* from AFE to INBUFFER */

 /* Set up DMA Primary Control Register */

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_GARB, DST_RELOAD, DST_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_NONE, SRC_RELOAD, SRC_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_NO_EM_HALT , EMOD , 1);

Preliminary

60 TMS320C6x DMA Applications

 LOAD_FIELD(&dma_pri_ctrl, DMA_CPU_PRI , PRI , 1);

 LOAD_FIELD(&dma_pri_ctrl, SEN_NONE , WSYNC , WSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, SEN_EXT_INT4 , RSYNC , RSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CNT_RELOADA, CNT_RELOAD, 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_SPLIT_DIS , SPLIT , SPLIT_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ESIZE32 , ESIZE , ESIZE_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_INC , DST_DIR , DST_DIR_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_NO_MOD, SRC_DIR , SRC_DIR_SZ);

 SET_BIT(&dma_pri_ctrl,FS); /* Set Frame Sync bit */

 SET_BIT(&dma_pri_ctrl,TCINT); /* Allow Ch2 to interrupt CPU */

 SET_BIT(&dma_pri_ctrl,EMOD); /* Halt DMA with emu halt */

 /* Set up DMA Secondary Control Register */

 SET_BIT(&dma_sec_ctrl,FRAME_IE); /* FRAME COND to generate interrupt*/

 /* Set up DMA Tranfer Count Register */

 LOAD_FIELD(&dma_tcnt, 1 , FRAME_COUNT , FRAME_COUNT_SZ);

 LOAD_FIELD(&dma_tcnt, XFER_SIZE, ELEMENT_COUNT, ELEMENT_COUNT_SZ);

 /* Set up Source and Destination Address Registers */

 dma_src_addr = (unsigned int)AFEin;

 dma_dst_addr = (unsigned int)INBUFFER;

 /* Store DMA Channel 1 registers */

 dma_init(DMA_CH1,

 dma_pri_ctrl,

 dma_sec_ctrl,

 dma_src_addr,

 dma_dst_addr,

 dma_tcnt);

 /* Start DMA Ch1 Transfer */

 DMA_START(DMA_CH1);

 /* Set up DMA Ch2 to perform a block transfer of XFER_SIZE elements */

 /* from OUTBUFFER to AFE */

 /* Set up DMA Primary Control Register */

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_NONE, DST_RELOAD, DST_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_GARC, SRC_RELOAD, SRC_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_NO_EM_HALT , EMOD , 1);

Preliminary

TMS320C6x DMA Applications 61

 LOAD_FIELD(&dma_pri_ctrl, DMA_CPU_PRI , PRI , 1);

 LOAD_FIELD(&dma_pri_ctrl, SEN_NONE , WSYNC , WSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, SEN_DMA_INT1 , RSYNC , RSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CNT_RELOADA, CNT_RELOAD, 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_SPLIT_DIS , SPLIT , SPLIT_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ESIZE32 , ESIZE , ESIZE_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_NO_MOD, DST_DIR , DST_DIR_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_INC , SRC_DIR , SRC_DIR_SZ);

 SET_BIT(&dma_pri_ctrl,FS); /* Set Frame Sync bit */

 SET_BIT(&dma_pri_ctrl,EMOD); /* Halt DMA with emu halt */

 /* Set up DMA Tranfer Count Register */

 LOAD_FIELD(&dma_tcnt, 1 , FRAME_COUNT , FRAME_COUNT_SZ);

 LOAD_FIELD(&dma_tcnt, XFER_SIZE, ELEMENT_COUNT, ELEMENT_COUNT_SZ);

 /* Set up Source and Destination Address Registers */

 dma_src_addr = (unsigned int)OUTBUFFER;

 dma_dst_addr = (unsigned int)AFEout;

 /* Store DMA Channel 2 registers */

 dma_init(DMA_CH2,

 dma_pri_ctrl,

 dma_sec_ctrl,

 dma_src_addr,

 dma_dst_addr,

 dma_tcnt);

 /* Start DMA Ch2 Transfer */

 DMA_START(DMA_CH2);

} /* End run_DMA */

Preliminary

62 TMS320C6x DMA Applications

Circular Buffering Transfer Example Code

/* Set up the DMA Control Registers to perform the data transfers */

/* between internal data memory and the external AFE, using cir- */

/* ular buffering for both the input and output data. */

void

run_DMA(void)

{

unsigned int dma_pri_ctrl = 0;

unsigned int dma_sec_ctrl = 0;

unsigned int dma_src_addr = 0;

unsigned int dma_dst_addr = 0;

unsigned int dma_tcnt = 0;

unsigned int dma_gcr = 0;

unsigned int dma_gcra = 0;

unsigned int dma_gcrb = 0;

unsigned int dma_gndxa = 0;

unsigned int dma_gndxb = 0;

unsigned int dma_gaddra = 0;

unsigned int dma_gaddrb = 0;

unsigned int dma_gaddrc = 0;

unsigned int dma_gaddrd = 0;

unsigned int count_reload = 0;

unsigned int el_index = 0;

unsigned int fr_index = 0;

unsigned int esize = 0;

 /* Reset DMA Control Registers */

 dma_reset();

 /* Calculate index values, as well as the ESIZE, based on the */

 /* number of elements per frame (EL_COUNT) and the number of */

 /* bytes of each element (EL_SIZE). */

 el_index = EL_SIZE;

 fr_index = -((EL_COUNT - 1) * EL_SIZE);

 if (EL_SIZE == 1) esize = 2;

 else if (EL_SIZE == 2) esize = 1;

 else esize = 0;

Preliminary

TMS320C6x DMA Applications 63

 /* Set up Global Configuration Registers for the DMA */

 dma_gcra = (unsigned int)XFER_SIZE;

 LOAD_FIELD(&dma_gcra , 1 , FRAME_COUNT , FRAME_COUNT_SZ);

 LOAD_FIELD(&dma_gcra , EL_COUNT, ELEMENT_COUNT, ELEMENT_COUNT_SZ);

 LOAD_FIELD(&dma_gndxa, fr_index, FRAME_INDEX , FRAME_COUNT_SZ);

 LOAD_FIELD(&dma_gndxa, el_index, ELEMENT_INDEX, ELEMENT_COUNT_SZ);

 dma_global_init(dma_gcr,dma_gcra,dma_gcrb,dma_gndxa,dma_gndxb,

 dma_gaddra,dma_gaddrb,dma_gaddrc,dma_gaddrd);

 /* Set up DMA Ch1 to perform a block transfer of XFER_SIZE elements */

 /* from AFE to INBUFFER, continuously. */

 /* Set up DMA Primary Control Register */

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_NONE, DST_RELOAD, DST_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_NONE, SRC_RELOAD, SRC_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_NO_EM_HALT , EMOD , 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CPU_PRI , PRI , 1);

 LOAD_FIELD(&dma_pri_ctrl, SEN_NONE , WSYNC , WSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, SEN_EXT_INT4 , RSYNC , RSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_INDXA , INDEX , 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CNT_RELOADA, CNT_RELOAD, 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_SPLIT_DIS , SPLIT , SPLIT_SZ);

 LOAD_FIELD(&dma_pri_ctrl, esize , ESIZE , ESIZE_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_INDX , DST_DIR , DST_DIR_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_NO_MOD, SRC_DIR , SRC_DIR_SZ);

 SET_BIT(&dma_pri_ctrl,FS); /* Set Frame Sync bit */

 SET_BIT(&dma_pri_ctrl,TCINT); /* Allow Ch2 to interrupt CPU */

 /* Set up DMA Secondary Control Register */

 SET_BIT(&dma_sec_ctrl,FRAME_IE); /* FRAME COND to generate interrupt*/

 /* Set up DMA Tranfer Count Register */

 LOAD_FIELD(&dma_tcnt, 1 , FRAME_COUNT , FRAME_COUNT_SZ);

 LOAD_FIELD(&dma_tcnt, EL_COUNT, ELEMENT_COUNT, ELEMENT_COUNT_SZ);

 /* Set up Source and Destination Address Registers */

 dma_src_addr = (unsigned int)AFEin;

 dma_dst_addr = (unsigned int)INBUFFER;

 /* Store DMA Channel 1 registers */

 dma_init(DMA_CH1,

Preliminary

64 TMS320C6x DMA Applications

 dma_pri_ctrl,

 dma_sec_ctrl,

 dma_src_addr,

 dma_dst_addr,

 dma_tcnt);

 /* Start DMA Ch1 Transfer */

 DMA_AUTO_START(DMA_CH1);

 /* Set up DMA Ch2 to perform a block transfer of XFER_SIZE elements */

 /* from OUTBUFFER to AFE, continuously. */

 /* Set up DMA Primary Control Register */

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_NONE, DST_RELOAD, DST_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_NONE, SRC_RELOAD, SRC_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_NO_EM_HALT , EMOD , 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CPU_PRI , PRI , 1);

 LOAD_FIELD(&dma_pri_ctrl, SEN_NONE , WSYNC , WSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, SEN_DMA_INT1 , RSYNC , RSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_INDXA , INDEX , 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CNT_RELOADA, CNT_RELOAD, 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_SPLIT_DIS , SPLIT , SPLIT_SZ);

 LOAD_FIELD(&dma_pri_ctrl, esize , ESIZE , ESIZE_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_NO_MOD, DST_DIR , DST_DIR_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_INDX , SRC_DIR , SRC_DIR_SZ);

 SET_BIT(&dma_pri_ctrl,FS); /* Set Frame Sync bit */

 /* Set up DMA Tranfer Count Register */

 LOAD_FIELD(&dma_tcnt, 1 , FRAME_COUNT , FRAME_COUNT_SZ);

 LOAD_FIELD(&dma_tcnt, EL_COUNT, ELEMENT_COUNT, ELEMENT_COUNT_SZ);

 /* Set up Source and Destination Address Registers */

 dma_src_addr = (unsigned int)OUTBUFFER;

 dma_dst_addr = (unsigned int)AFEout;

 /* Store DMA Channel 2 registers */

 dma_init(DMA_CH2,

 dma_pri_ctrl,

 dma_sec_ctrl,

 dma_src_addr,

 dma_dst_addr,

Preliminary

TMS320C6x DMA Applications 65

 dma_tcnt);

 /* Start DMA Ch2 Transfer */

 DMA_AUTO_START(DMA_CH2);

} /* End run_DMA */

Preliminary

66 TMS320C6x DMA Applications

Ping-Pong Transfer Example Code

/* Set up the DMA Control Registers to perform the data transfers */

/* between internal data memory and the external AFE, using a ping-*/

/* pong buffering scheme for both input and output data. */

void

run_DMA(void)

{

unsigned int dma_pri_ctrl = 0;

unsigned int dma_sec_ctrl = 0;

unsigned int dma_src_addr = 0;

unsigned int dma_dst_addr = 0;

unsigned int dma_tcnt = 0;

unsigned int dma_gcr = 0;

unsigned int dma_gcra = 0;

unsigned int dma_gcrb = 0;

unsigned int dma_gndxa = 0;

unsigned int dma_gndxb = 0;

unsigned int dma_gaddra = 0;

unsigned int dma_gaddrb = 0;

unsigned int dma_gaddrc = 0;

unsigned int dma_gaddrd = 0;

unsigned int count_reload = 0;

 /* Reset DMA Control Registers */

 dma_reset();

 /* Set up Global Configuration Registers for the DMA */

 LOAD_FIELD(&dma_gcra, 2 , FRAME_COUNT , FRAME_COUNT_SZ);

 LOAD_FIELD(&dma_gcra, XFER_SIZE, ELEMENT_COUNT, ELEMENT_COUNT_SZ);

 dma_gaddrb = (unsigned int)INBUFFER1;

 dma_gaddrc = (unsigned int)OUTBUFFER1;

 dma_global_init(dma_gcr,dma_gcra,dma_gcrb,dma_gndxa,dma_gndxb,

 dma_gaddra,dma_gaddrb,dma_gaddrc,dma_gaddrd);

 /* Set up DMA Ch1 to perform a block transfer of XFER_SIZE elements */

 /* from AFE to INBUFFER */

 /* Set up DMA Primary Control Register */

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_GARB, DST_RELOAD, DST_RELOAD_SZ);

Preliminary

TMS320C6x DMA Applications 67

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_NONE, SRC_RELOAD, SRC_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_NO_EM_HALT , EMOD , 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CPU_PRI , PRI , 1);

 LOAD_FIELD(&dma_pri_ctrl, SEN_NONE , WSYNC , WSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, SEN_EXT_INT4 , RSYNC , RSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CNT_RELOADA, CNT_RELOAD, 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_SPLIT_DIS , SPLIT , SPLIT_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ESIZE32 , ESIZE , ESIZE_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_INC , DST_DIR , DST_DIR_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_NO_MOD, SRC_DIR , SRC_DIR_SZ);

 SET_BIT(&dma_pri_ctrl,FS); /* Set Frame Sync bit */

 SET_BIT(&dma_pri_ctrl,TCINT); /* Allow Ch2 to interrupt CPU */

 /* Set up DMA Secondary Control Register */

 SET_BIT(&dma_sec_ctrl,FRAME_IE); /* FRAME COND to generate interrupt*/

 /* Set up DMA Tranfer Count Register */

 LOAD_FIELD(&dma_tcnt, 2 , FRAME_COUNT , FRAME_COUNT_SZ);

 LOAD_FIELD(&dma_tcnt, EL_COUNT, ELEMENT_COUNT, ELEMENT_COUNT_SZ);

 /* Set up Source and Destination Address Registers */

 dma_src_addr = (unsigned int)AFEin;

 dma_dst_addr = (unsigned int)INBUFFER1;

 /* Store DMA Channel 1 registers */

 dma_init(DMA_CH1,

 dma_pri_ctrl,

 dma_sec_ctrl,

 dma_src_addr,

 dma_dst_addr,

 dma_tcnt);

 /* Start DMA Ch1 Transfer */

 DMA_AUTO_START(DMA_CH1);

 /* Set up DMA Ch2 to perform a block transfer of XFER_SIZE elements */

 /* from OUTBUFFER to AFE */

 /* Set up DMA Primary Control Register */

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_NONE, DST_RELOAD, DST_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_GARC, SRC_RELOAD, SRC_RELOAD_SZ);

Preliminary

68 TMS320C6x DMA Applications

 LOAD_FIELD(&dma_pri_ctrl, DMA_NO_EM_HALT , EMOD , 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CPU_PRI , PRI , 1);

 LOAD_FIELD(&dma_pri_ctrl, SEN_NONE , WSYNC , WSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, SEN_DMA_INT1 , RSYNC , RSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CNT_RELOADA, CNT_RELOAD, 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_SPLIT_DIS , SPLIT , SPLIT_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ESIZE32 , ESIZE , ESIZE_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_NO_MOD, DST_DIR , DST_DIR_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_INC , SRC_DIR , SRC_DIR_SZ);

 SET_BIT(&dma_pri_ctrl,FS); /* Set Frame Sync bit */

 /* Set up DMA Tranfer Count Register */

 LOAD_FIELD(&dma_tcnt, 2 , FRAME_COUNT , FRAME_COUNT_SZ);

 LOAD_FIELD(&dma_tcnt, XFER_SIZE, ELEMENT_COUNT, ELEMENT_COUNT_SZ);

 /* Set up Source and Destination Address Registers */

 dma_src_addr = (unsigned int)OUTBUFFER1;

 dma_dst_addr = (unsigned int)AFEout;

 /* Store DMA Channel 2 registers */

 dma_init(DMA_CH2,

 dma_pri_ctrl,

 dma_sec_ctrl,

 dma_src_addr,

 dma_dst_addr,

 dma_tcnt);

 /* Start DMA Ch2 Transfer in DMA_Ch1_ISR after Output Buffer 1 has */

 /* valid data in it (i.e. after first 2 input frames are received). */

} /* End run_DMA */

Preliminary

TMS320C6x DMA Applications 69

Program Paging Transfer Example Code

/* Set up the DMA Control Registers to perform the data transfers */

/* from external memory to internal program memory. There are four */

/* program pages: EXTPAGE1, EXTPAGE2, EXTPAGE3, EXTPAGE4. These are*/

/* brought into program memory locations PAGE1 and PAGE2 to be */

/* executed. Note that an interrupt service routine must be set up */

/* to adjust dma_gaddrb and dma_gaddrc to point to the next ex- */

/* ternal and internal page locations. */

run_DMA(void)

{

unsigned int dma_pri_ctrl = 0;

unsigned int dma_sec_ctrl = 0;

unsigned int dma_src_addr = 0;

unsigned int dma_dst_addr = 0;

unsigned int dma_tcnt = 0;

unsigned int dma_gcr = 0;

unsigned int dma_gcra = 0;

unsigned int dma_gcrb = 0;

unsigned int dma_gndxa = 0;

unsigned int dma_gndxb = 0;

unsigned int dma_gaddra = 0;

unsigned int dma_gaddrb = 0;

unsigned int dma_gaddrc = 0;

unsigned int dma_gaddrd = 0;

 /* Reset DMA Control Registers */

 dma_reset();

 /* Set up Global Configuration Registers for the DMA */

 LOAD_FIELD(&dma_gcra, 1 , FRAME_COUNT , FRAME_COUNT_SZ);

 LOAD_FIELD(&dma_gcra, PAGE_SIZE, ELEMENT_COUNT, ELEMENT_COUNT_SZ);

 dma_gaddrb = (unsigned int)EXTPAGE2;

 dma_gaddrc = (unsigned int)INPAGE2;

 dma_global_init(dma_gcr,dma_gcra,dma_gcrb,dma_gndxa,dma_gndxb,

 dma_gaddra,dma_gaddrb,dma_gaddrc,dma_gaddrd);

 /* Set up DMA Ch3 to perform an auto-initialized block transfer of */

 /* PAGE_SIZE elements from external to internal program memory */

Preliminary

70 TMS320C6x DMA Applications

 /* Set up DMA Primary Control Register */

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_GARC, DST_RELOAD, DST_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_GARB, SRC_RELOAD, SRC_RELOAD_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_EM_HALT , EMOD , 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CPU_PRI , PRI , 1);

 LOAD_FIELD(&dma_pri_ctrl, SEN_NONE , WSYNC , WSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, SEN_EXT_INT6 , RSYNC , RSYNC_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_CNT_RELOADA, CNT_RELOAD, 1);

 LOAD_FIELD(&dma_pri_ctrl, DMA_SPLIT_DIS , SPLIT , SPLIT_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ESIZE32 , ESIZE , ESIZE_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_INC , DST_DIR , DST_DIR_SZ);

 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_INC , SRC_DIR , SRC_DIR_SZ);

 SET_BIT(&dma_pri_ctrl,FS); /* Set Frame Sync bit */

 SET_BIT(&dma_pri_ctrl,TCINT); /* Allow Ch3 to interrupt CPU */

 /* Set up DMA Secondary Control Register */

 LOAD_FIELD(&dma_sec_ctrl, DMAC_BLOCK_COND, DMAC_EN, DMAC_EN_SZ);

 SET_BIT(&dma_sec_ctrl,BLOCK_IE); /* FRAME COND to generate interrupt*/

 /* Set up DMA Tranfer Count Register */

 LOAD_FIELD(&dma_tcnt, 1 , FRAME_COUNT , FRAME_COUNT_SZ);

 LOAD_FIELD(&dma_tcnt, PAGE_SIZE, ELEMENT_COUNT, ELEMENT_COUNT_SZ);

 /* Set up Source and Destination Address Registers */

 dma_src_addr = (unsigned int)EXTPAGE1;

 dma_dst_addr = (unsigned int)INPAGE1;

 /* Store DMA Channel 3 registers */

 dma_init(DMA_CH3,

 dma_pri_ctrl,

 dma_sec_ctrl,

 dma_src_addr,

 dma_dst_addr,

 dma_tcnt);

 /* Start DMA Ch3 Transfer */

 DMA_AUTO_START(DMA_CH3);

 DMA_RSYNC_SET(DMA_CH3);

} /* End run_DMA */

