TMS320 DSP Number xx.0

DESIGNERS
NOTEBOOK Brows

Loop Partitioning on the ‘C6x
Contributed by Richard Scales

Design Problem The C6x code generation tools go through 5 basic phases when
scheduling a loop as follows:

1. Front-end C optimizations (C compiler only).

2. Instruction Selection (C compiler only).

3. Partitioning (C compiler and Assembly Optimizer).
4

Instruction Scheduling (C compiler and Assembly
Optimizer).

5. Register Allocation (C compiler and Assembly
Optimizer).

The first three phases can have a direct impact on the 4t and most
important stage, instruction scheduling. At each of the first three
stages there are a set of heuristics which try to make intelligent
decisions where multiple options exist. This designer notebook
page focuses on the third stage, partitioning, as this can have
great impact on the performance achieved with the tools.

Sometimes non-optimal partitioning can be the limiting factor in
attaining the highest possible performance. Once the instructions
are chosen in phase 2, the compiler and/or assembly optimizer
must decide which instructions to execute on the A side and which
to execute on the B side in phase 3. This can have a direct affect
on res MII since there is only one cross path from A to B and one
cross path from B to A available on any given cycle. If the
partitioning is poor, either the number of cross paths or the
number of functional units on a particular side can become a
limiting factor in res MII.

Solution The following code development flow is recommended to achieve
the highest performance on loops:

1. Compile native C code

2. Add const declarations and loop count information.
3. Optimize C code using intrinsics and other methods.
4. Write linear assembly.

5. Add partitioning information to the linear assembly.

The fifth stage, partitioning, is necessary when optimal
partitioning is not achieved with the Compiler or Assembly
Optimizer.

Example 1 shows example feedback obtained from the Compiler

Texas Instruments Incorporated

and Assembly Optimizer when using the -mw option. This
information is valuable for pointing out potential problems with
partitioning. Notice that the unpartitioned resource bound on the
loop iteration interval is 3 but after partitioning it is 4. We can see
below that this is due to 4 X cross paths on the A side and that
there are 10 non-M unit instructions on the A side. Each of these
force the minimum iteration interval to be at least 4.

*

SOFTWARE PIPELINE INFORMATION

Loop label : LOOP
Loop Carried Dependency Bound : 3
Unpartitioned Resource Bound : 3
Partitioned Resource Bound(*) : 4
Resource Partition:

A-side B-side
.L units
.S units
.D units
.M units
.X cross paths 4*
.T address paths
Long read paths
Long write paths
Logical ops (.LS)
Addition ops (.LSD)
Bound(.L .S .LS)
Bound(.L.S.D .LS.LSD) 4*

NN
NN

(Lor.S)

.Lo
(Lor.Sor.D)
2

OJN"}OHI\J
N'_"_‘Ool\)w

Searching for software pipeline schedule at ...
ii =4 Schedule found with 4 iterations in parallel
Done

TR TR TR TR TR T AT R TR T AT AT TR TA T AT AT R TA TR AT TR TR T TR

*

Example 1. Example Feedback

By passing partitioning information to the Assembly Optimizer, it
is possible to improve the loop minimum iteration interval to 3
even after partitioning. Example 2 shows the linear assembly for
the feedback in Example 1. Notice the functional units specified in
boldface. These pass enough information to the tools to improve
the partitioning between the A and B sides of the loop.

_iir .cproc cptrO,sptr0
.reg cptrl, s01, s10, s23, c10, c32, s10_s, s10_t
.reg po, p1, p2, p3, s23_s, s1, t, x, mask, sptrl
.reg s10p, ctr

MV cptrO,cptrl

MV sptr0,sptrl

MVK 50,ctr ; setup loop counter
LOOP: .trip 50

LDW .D1T1 *cptr0,c32 ; CoefAddr[3] & CoefAddr[2]

LDW .D2T2 *cptrl,c10 ; CoefAddr[1] & CoefAddr[0]

LDW .D1T2 *sptr0,s10 ; StateAddr[1] & StateAddr[0]

MV s10,s10p ; save StateAddr[1] & StateAddr[0]
MPY .M1 ¢32,s10,p2 ; CoefAddr[2] * StateAddr[0]

MPYH ¢32,s10,p3 ; CoefAddr[3] * StateAddr[1]

ADD p2,p3,523 ; CA[2] * SA[0] + CA[3] * SA[1]

SHR $23,15,523_s; (CA[2]*SA[0] + CA[3]* SA[1])>>15
ADD .2 s23_s,x,t ; t=x+((CA[2]*SA[0]+CA[3]*SA[1])>>15)
AND t,mask,t ; clear upper 16 bits

MPY ¢10,s10,p0 ; CoefAddr[0] * StateAddr[0]

MPYH ¢10,s10,p1 ; CoefAddr[1] * StateAddr[1]

ADD p0,p1,s10_t; CA[O] * SA[O] + CA[1] * SA[1]

SHR s10_t,15,510_s ; (CA[0]*SA[0] + CA[1]*SA[1])>>15

Texas Instruments Incorporated

[ctr] ADD -1l,ctr,ctr ; dec outer Ip cntr
[ctr] B LOOP ; Branch outer loop
.endproc

ADD s10_s,t,x ; x = t+((CA[0]*SA[0]+CA[1]*SA[1])>>15)
SHL s10p,16,s1 ; StateAddr[1] = StateAddr[0]

OR t,s1,s01 ; StateAddr[0] =t

STW .D1 sO01,*sptrl ; store StateAddr[1]& StateAddr[0]

Example 2. Linear Assembly for IIR Filter

Example 3 shows the improved result. Now the minimum
iteration interval is 3 even after partitioning and a schedule with
1i=3 is found.

TETA TR

SOFTWARE PIPELINE INFORMATION

Loop label : LOOP
Loop Carried Dependency Bound : 3
Unpartitioned Resource Bound : 3
Partitioned Resource Bound(*) : 3
Resource Partition:

A-side B-side
.L units
.S units 2
.D units 3*
.M units 2
.X cross paths 2 1
.T address paths 1 3
Long read paths 0 1
Long write paths 0 0
Logical ops (.LS) 0 3
Addition ops (.LSD) 2 3
Bound(.L .S .LS) 1 3*
Bound(.L .S .D .LS .LSD) 3* 3*

NRNO

*

(.Lor.S)
(Lor.Sor.D)

Searching for software pipeline schedule at ...
ii =3 Schedule found with 5 iterations in parallel
Done

*

Example 3. Feedback after Partitioning

The goal in defining functional units and/or sides, is to split the
loop into two halves (A and B) with minimal cross paths and
minimal effect to the scheduling. When partitioning a loop in
Linear Assembly try the following:

1.

Minimize the number of cross paths. This usually involves
looking at the dependency graph of the loop and splitting it
such that there are the fewest number of paths crossing to the
opposite side. Figure 1 shows a split where only one cross path
is required. Keep in mind that dependencies due to
conditional registers do not require a cross path (i.e. an
instruction on the A side which is conditional on a B register
does not use the cross path).

Choose a fairly even number of instructions for each side.

Force even numbers of certain functional units on each side.
Figure 1 shows that even though there are 4 instructions that
require a .D unit, they can be split on opposite sides to allow
for an iteration interval of 2. The same is true of the three
multiplies, rather than putting all 3 on the same side, one is
put on the opposite side.

4. TForce even numbers of instructions which write to a

Texas Instruments Incorporated

conditional value on each side. Since there are a more limited
number of conditional registers (there are 5 as opposed to the
full 32 available for other source operands), it is easier to
register allocate multiple conditional registers if they are split
evenly between the two sides. If you have an uneven number,
put more on the B side since there are 3 condition registers on
this side and only 2 on the A side.

5. Use the T1 and T2 path directives to force the result of Loads
and the source of Stores to a particular side (it can be different
than the side the D unit is on). Refer to the Memory Banks
section in the Assembly Optimizations chapter of the
Programmer’s Guide for more detailed information and
examples.

& Unpartitioned Resource Bound = 2
m 4 .D Units
m 3 .M Units

SUB
m 2 .S Units ‘@

m 3 gen purpose ADDS

Figure 1. Splitting a Dependency Graph

