
TMS320F24XX DSP Controllers

Texas Instruments

TMS320LF240x Flash Programming

Serial Port Flash Programming Utility

 TMS320F24XX DSP Controllers

Texas Instruments

Table of Contents

1. Introduction.. 4

1.1. Overview... 4

2. Operation.. 4

2.1. DSP Controller Initialization... 4

2.2. Kernel Transfer ... 6

2.3. Kernel Operation... 8

2.4. Clear.. 8

2.5. Erase.. 8

2.6. Program... 8

2.7. Repeat program / Exit Programming... 9

3. Working with the Serial Programming Utility.. 10

3.1. Preparing code for programming into flash... 10

3.2. Setting up the programming utilities ... 10

3.3. Invoking the serial loader.. 10

4. Configuring the target clock frequency ... 10

4.1. Adjusting Clock Frequency... 10

4.1.1. (NOT) Configuring the PLL Multiplier Ratio .. 11

4.1.2. Scaling the Timing Parameters ... 11

4.1.3. Generating a timing set ... 11

 TMS320F24XX DSP Controllers

Texas Instruments

Table of Figures

Figure 1. Serial Flash Utility Device Initialization ..5

Figure 2. Memory Maps for the LF 24xx Devices in Microcontroller Mode.7

Figure 3. Transfer Packet Formats for the Programming...9

Figure 4. Flowchart for the ROM Bootloader SCI Protocol ..12

Figure 5. Flowchart for Serial Flash Programming Utility ..13

Figure 6. Flowchart for Serial Flash Programming Utility ..14

 TMS320F24XX DSP Controllers

Texas Instruments

1. Introduction

This document describes the Serial Asynchronous Port based Flash Programming Utility for
the TMS320LF240x DSP Controllers. This utility leverages the Boot ROM on these
DSP controllers to provide a stand alone flash programming capability independent on the
previous contents of the flash. The serial port flash programming utility can be applied to
in-system programming for the DSP controller. The Serial Flash Programming Utilities share
the core flash programming algorithms with the JTAG Based Flash Programming Utilities.
Another major difference from the F24x Serial Programming is that the RAM resident kernel
is not fixed, copied from flash. It is downloaded run-time, resulting in added flexibility.

The TMS320LF240x devices have a on-chip asynchronous serial port (SCI - serial
communication interface). This chip communicates with standard RS232 compatible devices,
via external level translation hardware. The programming does not tie up the serial
communication port, this can be used for normal operation at other times.

1.1. Overview

The Boot ROM on the 'LF240x devices has two loaders in it. The serial flash programming
utility requires that upon device reset the Boot_EN / XF and the SPISIMO pins be pulled
low. This vectors the control of the device to the Boot ROM Asynchronous port loader. A
baud rate match protocol is then followed, synchronizing the communications port on the
target and the host. Once the communications are up-and-running , the host downloads a
kernel to the target. This kernel has the sequencing built into it, besides containing the
interface routines to the asynchronous serial port. This kernel will from this point onwards,
be the sole interface between the target flash algorithms and the host, the Boot ROM will not
be accessible during the flash programming process, and the routines in the ROM cannot be
executed. The kernel will be described in Sections 2.2 and 2.3. Once the kernel is initialized
correctly, the Clear, Erase and Program Algorithms are downloaded and executed.

2. Operation

A step by step description of the process appears below.

2.1. DSP Controller Initialization

The device is placed in Microcontroller mode and control transferred to the Boot ROM
(See Figure 1). To do this the following things are required:

Microcontroller Mode The ‘LF24xx device must be placed in microcontroller mode, by
pulling the MP/MC* pin LOW.

 TMS320F24XX DSP Controllers

Texas Instruments

Boot ROM Loader Invocation The boot loader is invoked by pulling the BOOT_EN* /
XF pin low through a resistor, prior to device reset. This causes the control to transfer to
the boot load program located in the on-chip ROM. At reset time internal logic takes a
‘snapshot’ of this pin and if this pin is a low level then the Boot ROM appears in the
memory map as shown in Figure 2.

 Otherwise the on-chip flash memory is enabled and the program counter begins execution
at 0x0000. It is suggested that this pin be driven from a jumper through a resistor, allowing
control whether the processor enters the boot loader or commences normal execution from

internal program memory. Alternately this pin may be controlled from a host processor,
allowing it to control the boot sequence of the DSP. The resistor must be present, since the
XF pin is an output at all other times.

SPI or SPI Selection The boot loader code selects the source of the incoming code
depending on the state of the SPISIMO pin, on the device.

Figure 1. Serial Flash Utility Device Initialization

The code takes a snapshot of this code after being invoked, and determines which loader
(SPI or SCI) to invoke based on the status of this pin.

• If SPISIMO/IOPC2 is pulled low, an SCI transfer is commenced, otherwise
• If SPISIMO/IOPC2 is pulled high an SPI transfer is commenced

For the Serial port flash programming the first option, to commence SCI transfer must be
selected.

SPISOMI
SPISIMO

SPICLK

Boot_EN / XF

SCITXD
SCIRXD

DOUT
DIN

CLK

CS

EEPROMLF240x
Vdd

SCI Bootload

Boot_EN

Host PC
Boot ROM

SPI Bootload

Vdd

Flash Execute

 TMS320F24XX DSP Controllers

Texas Instruments

At this point the control is transferred into the Boot ROM SCI control program. This
program resident in the Boot ROM enables the transfer of the kernel into RAM on the
device.

Communications Initialization The baud rate over the communication link is always
38400 bps. The baud rate protocol is necessary because the ‘LF240x device may be
operated at different speeds. The underlying assumption for the baud rate matching is that
the device is clocked at a clock frequency belonging to a given set. This set is determined
by the parameters in ROM. The host is required to send ‘probe’ characters, with the
hexadecimal value 0x0D. The target listens in on the serial port, at the set speeds, in
succession. Every time a character is detected, it is compared to 0x0D. If more than three
characters do not match, the target tries a new baud rate. If the baud rate is correct and the
character matches 0x0D, then the target expects to receive nine correct characters back to
back. If any other character is received the baud match fails. Once the nine chars are
received correctly then the target sends an acknowledge character. Once the acknowledge
character is sent, from this point on each and every character is bounced back to the host
to ensure data transfer integrity. All the communications are with 8 bits/char. 1 stop bit
and no parity. The communications initialization protocol is flowcharted in Figure 4.
Once the communications are locked, the data transfer commences.

2.2. Kernel Transfer

The kernel is transferred over the communications channel split into bytes. The LS Byte
is transferred first, followed by the MS Byte. The data packet format is shown below:

Host sends:
• Start address : One Word (16 bits) , split into bytes, LS Byte first.
• Length (i.e. number of words to transfer): One Word (16 bits) , split into

bytes, LS Byte first.
• Actual kernel code, split into bytes, LS Byte first.

As part of the initialization process, once the kernel is transferred into RAM, the kernel
sends a 'error code' to indicate its initialization status. A 0x0 code indicates success
whereas a failure to return any code or the return of an incorrect code would cause the
host to abandon the transfer.

Note: Once the kernel is initialized it is possible to change the communication
parameters, however the custom kernel must verify that the last transfer on the SCI is
complete before attempting to change the parameters. Additionally the host must take this
change of parameters into account.

 TMS320F24XX DSP Controllers

Texas Instruments

Figure 2. Memory Maps for the LF 24xx Devices in Microcontroller Mode.

Interru pts

FLASH
32 KW

(seg - 4/12/12/4)
Note: External if

MC*/MP=1

DARAM (B0)
256W

(CNF=1)

0000
003F
0040

FFFF

7FFF

FE00

8000

0000

External
(off chip)

87FF
8800

SARAM
2KW

(Note: Double mapped
with Data space

4K

12K Sector

4K

12K Sector

Flash Block details

0000

0FFF

7000
7FFF

4000
3FFF

1000

6FFF

FDFF

00FF

FF00
FEFF

DARAM (B0)
Double mapped

(CNF=1)

Boot ROM (256 W)
Note:
Active only when
BOOT_EN*/XF pin =
Lo at reset.

00FF
010

Note:

• Boot ROM & Flash Memory
appear in the same memory space,
and hence are not visible (active) at
the same time. If BOOT_EN*/XF
pin = Low at reset Flash memory is
disabled. See SCSR2 register
description for more explanation.

 TMS320F24XX DSP Controllers

Texas Instruments

2.3. Kernel Operation

Once the kernel is successfully initialized, the kernel controls the sequencing of the
transfer over the link. The TI kernel requires the algorithms to satisfy certain
conditions/guidelines. These are:

a. The algorithm must be less than 0x100 words, and must be assembled/linked
to execute between 0xfe00 and 0xfeff. In addition the entry point must be at
0xfe00.

b. The algorithm must return status in the variable ERROR_FLAG. See
SVAR.H in the algos\include directory for details.

c. The algorithm must return control by means of a return instruction. Also it
should not destroy any variables the kernel uses. The kernel variables are in
the file indicated in (b).

d. The algorithm should also not interfere with the communications port, this
may interrupt the protocol.

e. The kernel expects the algorithms to be Clear, Erase and Program in that
sequence. The clear, erase and program algorithms are described in step
(5),(6) and (7).

f. The kernel must of course be located at an address with valid RAM
available. No check is made to see if there is RAM available, so the kernel
must be assembled and linked to ensure that this happens correctly.

2.4. Clear
The clear algorithm is the first algorithm downloaded to the target. It performs the pre-
condition operation on the flash, clearing(setting to zero) all the bits in the main and
secondary arrays. This readies the flash for erase. Upon a successful clear the algo returns
a zero, otherwise non-zero.

2.5. Erase

Erase is the downloaded next. This erases all four sectors of the flash. The erase
algorithm also performs a compaction check on the flash, compacting any depleted
columns. Upon a successful erase the algo returns a zero, otherwise non-zero.

2.6. Program

Following the erase and clear the programming algorithm is downloaded next. However
the programming algorithm is not executed immediately, instead first block of
programming data is downloaded. Once the programming data is available a call is made
to the programming algorithm, with the destination address and the length are available.
The programming algo reads in data from the data buffer and programs the data into the
flash array. The programming operation puts a pattern of zeros into the flash array.

 TMS320F24XX DSP Controllers

Texas Instruments

2.7. Repeat program / Exit Programming

Once the programming operation for one block is completed the programming algorithm
returns a status in ERROR_FLAG. Once the kernel regains control, it passes the status to
the host. The host, upon receiving a success status, send a "last block flag" - one word.
The target looks at this and either returns to receive one more program data block, or
terminates in a blind loop.

The TI kernel terminates in a blind loop, however if the system allows, a custom kernel
may allow the control to return to the newly programmed code in the flash. It would also
be possible to extend the kernel to run further algorithms, after programming, performing
other functions.

Figure 3. Transfer Packet Formats for the Programming
 data blocks (a) and the three operational algorithms(b).

Start Address

Size(number of words)

Data block start

o
o
o

Data block end

Last Block Flag

(a)

Start Address

Size(number of words)

Code block start

o
o
o

Code block end

(b)

 TMS320F24XX DSP Controllers

Texas Instruments

Serial Flash Programming Utility Operation

3. Working with the Serial Programming Utility

3.1. Preparing code for programming into flash.
To use the serial port flash programming utility compile, assemble and link your code to
run out of flash. Prepare your COFF file (flashcode.out) for programming the flash. This
COFF file can contain up to 32K words for the ‘F24xx. The only restriction is that the
COFF file must not include anything other then the code to be programmed in the flash.
Never include data sections in the COFF file that will be used to program the flash. For
more information on COFF and working with sections, refer to the
TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide.

3.2. Setting up the programming utilities
The programming utilities are distributed as a compressed file. To set up the tool unzip
this file. Ensure that the directory structure is restored. For correct operation this required.

3.3. Invoking the serial loader
Verify that the serial link on your target is functioning by means of echoing characters
back from a terminal program. By connecting RX and TX together on the target side for
example) Once this is done restore the connections.

Choose loader1.bat or loader2.bat depending on whether your serial cable is connected to
COM1 or COM2. Copy this batch file to another batch file say, prog.bat. Edit this file to
point the command line parameter for spf24xb?.exe to your hex file. Once this is done,
run this batch file to invoke the loader

3.4.

4. Configuring the target clock frequency
For the utilities as released the target clock frequency MUST be 30MHz.
The serial boot ROM loader will lock at other clock frequencies as well, but the
flash algorithms must be first configured for the NEW frequency first.
Programming the flash using wrongly configured algorithms can cause permanent
damage to the target device and/or undefined operation.

4.1. Adjusting Clock Frequency

The programming algorithms for the ‘F240x on-chip flash include software delays that must be
adjusted according to the instruction rate of the target device. This chapter describes how to
modify the programming utility for use with different clock frequencies.

 TMS320F24XX DSP Controllers

Texas Instruments

WARNING! If the design will be using a variable CLKOUT, (i.e. CLKOUT will be varied by
the application) then the flash should be erased at the highest possible CLKOUT rate. This is
important to ensure adequate read-back margin throughout the life of the application. If for
instance the CLKOUT may be any of 5,10,20 MHz, then the flash must be erased using the
CLKOUT at 20Mhz.

If the frequency of CLKOUT will be different for some reason, eg. the CLKIN is not 7.5
MHz, then it is necessary to re-configure the flash programming utilities to take this into
account. To do this following things must be accomplished.

a. PLL Multiplier Configuration

b. Scaling the Timing Parameters.

c. Generating a timing set.

d. Re-building the algorithms.

4.1.1. (NOT) Configuring the PLL Multiplier Ratio

The configuration set in the algos\include\var.h is ignored, since the utilities depend on
the Boot ROM loader to configure the PLL.

4.1.2. Scaling the Timing Parameters

Timing parameters are selected based on the clock frequency the CPU is running at. A
few timing sets are distributed with the tools. Each set of timings is contained in a file
called timings.xx. For example the file containing loop timings calibrated at 28MHz is
called timings.28.In STEP 2 in VAR.H choose the appropriate timing set.

4.1.3. Generating a timing set

Lets assume that a system needs timings to be calibrated at 28 MHz. For this purpose the
Excel worksheet timings.xls is provided. To generate a new set of timings open this file
in Microsoft Excel, and see the instructions in the worksheet.

 TMS320F24XX DSP Controllers

Texas Instruments

Figure 4. Flowchart for the ROM Bootloader SCI Protocol
Communications Synchronization.

Initialize Baud Rate Parameters

Clear VBR_COUNTER,

Is the RX
Flag Set?

Fetch Character

Is Char
=0x0D?

Increment VBR

Is VBR
>max ?

Send 0xAA to Host

A

Y

N

N

Y

Y

N

Listen for a character

Increment VBR

 TMS320F24XX DSP Controllers

Texas Instruments

Figure 5. Flowchart for Serial Flash Programming Utility
Algorithm execution sequence.

C

Get Kernel from Host (XFER_SCI_2_PROG)
Transfer control to kernel. Return status

FETCH_HEADER

Get Clear from the host (XFER_SCI_2_PROG)
Execute clear algorithm. Return status

B

FETCH_HEADER

FETCH_HEADER

Get Erase from the host (XFER_SCI_2_PROG)
Execute erase algorithm. Return status.

FETCH_HEADER

Get program algorithm from the host
(XFER_SCI_2_PROG)

 TMS320F24XX DSP Controllers

Texas Instruments

Figure 6. Flowchart for Serial Flash Programming Utility
Programming Sequence.

C

Get LAST_BLOCK flag

Execute program
algorithm. Return status

Get data block from host
(XFER_SCI_2_DATA)

More data
blocks to
program ?

End

N

Y

FETCH_HEADER

 TMS320F24XX DSP Controllers

Texas Instruments

;***
; File Name: Kernel.ASM Build 2.
;
; Project: F24XX Serial Boot Loader
; Originator: DSP Digital Control Systems Group, Houston (Texas Instruments)
;
; Target Sys: F240x.
;***

.include ..\include\svar.h

.include ..\include\x24x.h

ALGO_START .set 0fe00h
.def ALGO_START

;Miscellaneous
BUF_SADDR .set 0328h ;Start address for Data buffer
VBR_MAX .set 09h ;# times valid char needs to be received
CRC_MAX .set 03h ;# retries at each PLL setting before giving up.
B0_SADDR .set 00200h ;Block B0 start address

;---
; M A C R O - Definitions
;---
SBIT0 .macro DMA, MASK ;Clear bit Macro

LACC DMA
AND #(0FFFFh-MASK)
SACL DMA
.endm

SBIT1 .macro DMA, MASK ;Set bit Macro
LACC DMA
OR #MASK
SACL DMA
.endm

KICK_DOG .macro ;Watchdog reset macro
LDP #00E0h

 SPLK #05555h, WDKEY
 SPLK #0AAAAh, WDKEY

LDP #0h
 .endm

POINT_0 .macro
LDP #00h
.endm

POINT_B0 .macro
LDP #04h
.endm

POINT_B1 .macro
LDP #06h
.endm

POINT_PF1 .macro
LDP #0E0h
.endm

;==
; This is the entry point and will be at 0x8000.
;==

.text
START: LDP #WDCR>>7

SPLK #006Fh,WDCR ;Disable WD
;==
;Init Kernel
;==
FLSH_INIT POINT_B1

 TMS320F24XX DSP Controllers

Texas Instruments

SPLK #0,ERROR_FLAG
;==

LACC ERROR_FLAG ;Send Zero error to host to indicate to
CALL SEND_CHAR ;host kernel successfully initialized.

;==
;Load & Execute CLEAR

M00 CALL XFER_SCI_2_PROG
CALL RUN_ALGO

;==
;Load & Execute ERASE

M01 CALL XFER_SCI_2_PROG
CALL RUN_ALGO

;==
;Load & Execute PROG

M02 CALL XFER_SCI_2_PROG

M03 CALL FETCH_HEADER ;Get info on Data block
LACC dest_addr
SACL PRG_paddr ;Pass Flash dest addr
LACC length
ADD #01h ;adjust for actual length
SACL PRG_length ;Pass Data block length
SPLK #BUF_SADDR, PRG_bufaddr ;Pass Data buffer start addr

M04 CALL XFER_SCI_2_DATA ;Transfer Data block to B1
CALL RUN_ALGO

;==
CALL FETCH_SCI_WORD ;Check if more blocks to come.
LACC data_buf ;If non-zero, then loop
BCND M03, NEQ ;If zero then finish up.

DEND B DEND ;
;===
; Routine Name: F E T C H _ H E A D E R Routine Type: SR
;===
FETCH_HEADER: CALL FETCH_SCI_WORD

LACC data_buf
SACL dest_addr
CALL FETCH_SCI_WORD
LACC data_buf
SACL length
RET

;===
; Routine Name: X F E R _ S C I _ 2 _ P R O G Routine Type: SR
;===
XFER_SCI_2_PROG:

CALL FETCH_HEADER
MAR *, AR0
LAR AR0, length
LACC #ALGO_START ;ACC=dest address

XSP0 CALL FETCH_SCI_WORD
TBLW data_buf ;data_buff-->[ACC]
ADD #01h ;ACC++
BANZ XSP0 ;loop "length" times
RET

;===
; Routine Name: X F E R _ S C I _ 2 _ D A T A Routine Type: SR
;===
XFER_SCI_2_DATA:

MAR *, AR1
LAR AR0, length ;AR0 is loop counter
LAR AR1, #BUF_SADDR ;Dest --> B1 RAM

XSD0 CALL FETCH_SCI_WORD
LACC data_buf
SACL *+, AR0
BANZ XSD0, AR1
RET

 TMS320F24XX DSP Controllers

Texas Instruments

;===
; Routine Name: F E T C H _ S C I _ W O R D Routine Type: SR
;
; Description: Version which expects Lo byte / Hi byte sequence from Host &
; also echos byte
;===
FETCH_SCI_WORD: POINT_B1

SACL stk0
LDP #SCIRXST>>7

FSW0 BIT SCIRXST,BIT6 ;Test RXRDY bit
BCND FSW0, NTC ;If RXRDY=0,then repeat loop
LACC SCIRXBUF ;First byte is Lo byte
SACL SCITXBUF ;Echo byte back
AND #0FFh ;Clear upper byte

FSW1 BIT SCIRXST,BIT6 ;Test RXRDY bit
BCND FSW1, NTC ;If RXRDY=0,then repeat loop
ADD SCIRXBUF,8 ;Concatenate Hi byte to Lo
SFL ;used because 7 is max in SACH
SACH SCITXBUF,7 ;Echo byte back (after SFL 8)

POINT_B1
SFR ;restore ACC as before
SACL data_buf ;Save received word
LACC stk0
RET

;==
; Transmit char to host subroutine.
;==
SEND_CHAR LDP #SCITXBUF>>7

SACL SCITXBUF ;Transmit byte to host.
POINT_B1
RET

RUN_ALGO CALL ALGO_START
LACC ERROR_FLAG
CALL SEND_CHAR ;Indicate to host Clear finished.
RET

;==
.end

