
TMS320 DSP Preliminary

'(6,*1(5·6

127(%22.

7H[DV ,QVWUXPHQWV SURYLGHV FXVWRPHU VXSSRUW LQ YDULHG WHFKQLFDO DUHDV� 6LQFH 7, GRHV QRW SRVVHVV IXOO DFFHVV WR GDWD FRQFHUQLQJ DOO RI WKH XVHV DQG DSSOLFDWLRQV RI
FXVWRPHUV¶ SURGXFWV� 7, DVVXPHV QR UHVSRQVLELOLW\ IRU FXVWRPHU SURGXFW GHVLJQ RU WKH XVH RU DSSOLFDWLRQ RI FXVWRPHUV¶ SURGXFWV RU IRU DQ\ LQIULQJHPHQWV RI SDWHQWV RU

ULJKWV RI RWKHUV ZKLFK PD\ UHVXOW IURP 7, DVVLVWDQFH�

86 706���+27/,1(����� �������� 86 706���)$; ����� �������� 86 706��� %%6 ����� �������� 86 706��� HPDLO GVSK#WL�FRP

SPI ROM interface to McBSP
Contributed by Shaku Anjanaiah
04/14/98

Design Problem

How do I interface the Serial Peripheral Interface (SPI) ROM to the
‘C6201?

Solution

The multi-channel buffered serial port (McBSP) in the ‘C6201 can be
interfaced to a SPI ROM with no glue logic. A SPI system is typically a 4-
wire interface comprising serial data in, serial data out, serial clock, and
device select. The McBSP provides this 4-wire interface via DR, DX,
CLKX, and FSX pins respectively.

The SPI interface is supported in the ‘C6201 McBSP for a synchronous,
full-duplex, variable element length (element length is fixed for a given
transfer), master or slave mode back-to-back transmission and
reception. This is achieved by using the clock-stop (CLKSTP) feature of
the McBSP. This document uses the Atmel™ SPI serial CMOS
EEPROM, which can only be a slave. Also, McBSP is typically used as a
master in a SPI system. The McBSP as a SPI master is responsible to
generate the required control signals and clocking to the slave.

Pin Configuration

In order that the McBSP behave as a master, it is necessary to configure
the bi-directional (except data pins) serial port pins as outputs only.
Hence, CLKX and FSX pins have to be outputs only. CLKX can be
generated either via the ‘C6201 CPU clock or by the CLKS pin which
serves as an external clock source. In SPI mode, a SPI system clock or
any other clock source can drive CLKS if present. The clock divide down
can be programmed as per application needs.

Figure 1. McBSP Master interface to SPI slave device

‘C6x McBSP
 Master

CLKX

DX

DR

FSX

SPI-compliant
Slave

SCK /WP

MOSI /HOLD

MISO

/CS

Vcc

The signal connectivity shown in Figure 1 is for connecting a Atmel™
SPI serial CMOS EEPROM AT25 series which has a maximum clock
rate of 2.1 MHz for Vcc range from 2.7V to 5.5V. This slave device is
organized as 1k/2k/4k/8k of 8-bit data and only supports SPI modes 0
and 3.

As shown in Figure 1, CLKSTP scheme supports back-to-back
transmission and reception utilizing signals that correspond to the
transmitter. But the McBSP also simultaneously receives data by utilizing
the CLKX and FSX outputs as CLKR and FSR signals internally. As a
good practice, CLKR and FSR should be programmed as inputs.

McBSP Initialization

The various McBSP control registers shown in Figures 2 through 6 have
to be initialized for SPI operation. The serial port initialization procedure
for SPI mode is as follows:

1. If McBSP is not in reset state, set /XRST = /RRST = 0 in SPCR.

2. Now program the McBSP configuration registers XCR, RCR, SRGR,
PCR, and SPCR for all parameters as required except for CLKSTP
bits in SPCR, which should be 0Xb.

3. Set /GRST=1 in SPCR to get the sample rate generator out of reset.

4. Wait two CLKG clocks for the McBSP to re-initialize.

5. Write the desired value into the CLKSTP bit-fields in the SPCR.
Figure 7 shows the various CLKSTP modes that are supported by
the McBSP.

6. Either (a) or (b) should be followed.

(a) This step should be performed if the CPU is used to service the
McBSP. Set /XRST = /RRST = 1 to enable the serial port. Note that
the value written to the SPCR at this time should have only the reset
bits changed to 1 and the remaining bit-fields should have the same
value as in Step 2 and 4 above.

(b) If DMA is used to perform data transfers, the DMA should be
initialized first with the appropriate read/write syncs and the start bit
set to run. The DMA waits for the synchronization events to occur.
Now, pull the McBSP out of reset.

Figure 2. Receive Control Register (RCR for SPI Master)
31 30 24 23 21 20 19 18 17 16
0 0 0 0 0 01

RPHASE RFRLEN2 RWDLEN2 RCOMPAND RFIG RDATDLY

15 14 8 7 5 4 0
0 0 0 0

reserved RFRLEN1 RWDLEN1 reserved

Figure 3. Transmit Control Register (XCR for SPI Master)
31 30 24 23 21 20 19 18 17 16
0 0 0 0 0 01

XPHASE XFRLEN2 XWDLEN2 XCOMPAND XFIG XDATDLY

15 14 8 7 5 4 0
0 0 0 0

reserved XFRLEN1 XWDLEN1 reserved

Figure 4. Sample Rate Generator Register (SRGR for SPI
Master)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0 0 1 0 0

GSYNC CLKSP CLKSM FSGM FPER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0x5F

FWID CLKGDV

Figure 5. Pin Control Register (PCR for SPI Master)
31 16

0x0000
reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 0 1 0 0 0 0 0 1 1 0 0

rsv XIOEN RIOEN FSXM FSRM CLKXM CLKRM rsv CLKS_STAT DX_STAT DR_STAT FSXP FSRP CLKXP CLKRP

Figure 6. Serial Port Control Register (SPCR for SPI Master)
31 24 23 22 21 20 19 18 17 16

0x00 0 1 0 0 0 0 0
R, +0 FRST- GRST- XINTM XSYNCERR XEMPTY- XRDY XRST-

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0
0 0 11 0 0 0 0 0 0 0 0

DLB RJUST CLKSTP reserved reserved reserved RINTM RSYNCERR RFULL RRDY RRST-

Table 1. McBSP Register values for 200MHz CPU clock

Register Value in hex Description

RCR 0x00010000 single phase, one 8-bit element per frame, one bit-clock delay

XCR 0x00010000 single phase, one 8-bit element per frame, one bit-clock delay

SRGR 0x0200005F serial clock CLKX generated by CPU clock (CLKSM=1), frame
sync FSX generated due to DXR-to-XSR transfer (FSGM=0),
clock divide down is 95 for 200 MHz clock to generate 2.1 MHz
shift clock (CLKGDV=0x5F)

PCR 0x00000A0C FSX is an active low (FSXP=1) output (FSXM=1), FSR is an
active low (FSRP=1) input (FSRM=0), CLKX is an output
(CLKXM=1) and starts with a rising edge (CLKXP=0)

SPCR[12:10] 0x3 CLKSTP=11b. Since CLKXP=0, this refers to data transmitted
on rising edge and received on falling edge of CLKX by the
master. This parameter can be changed as per application
needs.

The following macros initialize the McBSP in the correct order for SPI mode
communication between the McBSP and a SPI serial EEPROM. These macros (except
your_*) can be found in the TMS320C6x Peripheral Support Library.

#include <regs.h>
#include <mcbsp.h>
/* Refer Table 1 for a description of the register initialization
values */
REG_WRITE (MCBSP_RCR_ADDR(0), 0x00010000);
REG_WRITE (MCBSP_XCR_ADDR(0), 0x00010000);
REG_WRITE (MCBSP_SRGR_ADDR(0), 0x0200005F);
REG_WRITE (MCBSP_PCR_ADDR(0), 0x00000A0C);
MCBSP_SAMPLE_RATE_ENABLE (0); /* set /GRST=1 */
your_wait (2 bitclocks); /* wait for 2 bit-clocks */
LOAD_FIELD (MCBSP_SPCR_ADDR(0), 3, CLKSTP, CLKSTP_SZ); /* Set
CLKSTP=11b */
your_wait (2 bitclocks); /* wait for 2 bit-clocks */
your_dma_setup(); /* Set up DMA for data acquisition if required.
See Step 5 */
MCBSP_ENABLE (0, 3); /* enable transmit and receive side of
McBSP0 */

Figure 7. Clock Stop Mode Options

B7 B6 B5 B4 B3 B2 B1 B0

CLKX (CLKSTP=10b, CLKXP=0)

CLKX (CLKSTP=11b, CLKXP=0)

CLKX (CLKSTP=10b, CLKXP=1)

CLKX (CLKSTP=11b, CLKXP=1)

D(R/X)

 FSX

Conclusion

The TMS320C6201 can be interfaced to any SPI-type device without
requiring any glue logic. If the McBSP is used as a slave, please ensure
that the internal clock, CLKG runs at least eight times that of the master
clock. Typically, programming CLKGDV=1 and using CPU clock
(CLKSM=1) (when McBSP is a SPI slave) should suffice since SPI
clocks are very slow.

