
Booting the TMS320C6201 through the Host Port Interface 1

Booting the
TMS320C6201 through
the Host Port Interface

APPLICATION REPORT: PRELIMINARY

 Author : Eric Biscondi
 LBE : DSP
 Date : March 24, 1998

Preliminary

2 Booting the TMS320C6201 through the Host Port Interface

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

Literature Number

Title 3

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

Preliminary

4 Booting the TMS320C6201 through the Host Port Interface

Contents
Abstract...5
Overview6
How to connect the ‘C6201 to the Host Processor...7
Using a host to boot the TMS320C6201 ..10

The HPI boot process..10
Accessing HPI registers from a Host ...10

Host program to boot the ‘C6201...12
Initialization of the TMS320C6201...12
Transferring code and data sections..13
Remove the TMS320C6201 from its reset state ..15

Creating a ‘C6x boot code to be downloaded by the Host ..16
Appendix A... .19

Host source code to boot the C6x through the HPI..19
Appendix B: ...23
Building a C array of values from a COFF file..23

References24

Figures
Figure 1. Example of connection between two TMS320C6201 through the HPI 7
Figure 2. Example of connection between two TMS320C6201 through the HPI 7
Figure 3. Function to store a word in the ‘C6x memory space through the HPI. 13
Figure 4. Function to store a buffer in the C6x memory space through the HPI. 14
Figure 5. Command file for the linker .. 17
Figure 6. Command file for the hex converter utility .. 18

Tables
Table 1. HPI External Interface Signals .. 8
Table 2. HPI Boot configuration .. 10
Table 3. HPI Control Signals Function Selection Description .. 11
Table 4. HPI Control Signals Function Selection Description with a host C6x............... 12

Literature Number

Title 5

Booting the TMS320C6201 through
the Host Port Interface

Abstract

Three types of boot processes are available on the
TMS320C6201. This document discusses the HPI boot mode and
it describes:

� how to connect a host with the ‘C6x ‘s HPI,

� the Host Port Interface Boot process,

� an example of C source code for the host processor,

� how to create a boot code to be downloaded though the HPI.

Preliminary

6 Booting the TMS320C6201 through the Host Port Interface

Overview

The ‘C6201 uses various types of boot configuration. Mainly there
are three types of boot process:

� The CPU starts direct execution at address 0.

� A 16K 32-bit words memory block is automatically copied from
the beginning of the CE1 memory space to memory located at
the address 0 through the DMA channel 0.

� A Host processor (connected to the ‘C6201 through the Host
Port Interface) maintain the ‘C6201 core in reset while
initializing the ‘C6201 memory space, including external
memory spaces.

When the HPI boot process is selected by the BOOTMODE[4:0]
pins during the reset, the ‘C6201’s CPU is held in reset while the
remainder of the device is awakes from reset. That means that a
host processor connected to the TMS320C6201 through the HPI
may access and initialize all the ‘C6210 ‘s memory space as well
as all the on-chip peripherals control registers. Once the host has
initialized all the ‘C6201 environment, it writes a 1 to the DSPHINT
bit in the HPI control register.

This documents describes the HPI boot process through a
example in which one ‘C6x (the host) is talking to another.

Literature Number

Title 7

How to connect the ‘C6201 to the Host Processor

Some systems are requiring the use of a host processor that
communicates with the DSP. A dedicated port is available on the
TMS320C6201: the Host Port Interface (HPI). The HPI is a 16-bit
wide parallel port through which a host processor can access all
the CPU’s memory space.

Figure 1 and Figure 2 give examples of connection between the
‘C6201 and host processors.

Figure 1. Example of connection between two TMS320C6201 through the HPI

Figure 2. Example of connection between two TMS320C6201 through the HPI

Please refer to [5] for a complete description of the interface
between a host processor and the ‘C6201’s Host Port Interface.

Table 1 describes the HPI external interface signals.

HOST C6x
EA[2]

EA[4:3]
/BE[1:0]

ED[15:0]
ARDY
/CEn

/AWE
/ARE

/EXT_INTm
/EA[5]

C6x
HHWIL
HCNTL[1:0]
/HBE[1:0]
HD[15:0]
/HRDY
/HCS
/HDS1
/HDS2
/HINT
HR/W

HOST Mot 68302
A[1]

A[3:2]

D[15:0]
/DTACK

/CSn

/IRQm

C6x
HHWIL
HCNTL[1:0]
/HBE[1:0]
HD[15:0]
/HRDY
/HCS
/HDS1
/HDS2
/HINT
HR/W

GND

GND

VCC

VCC

Preliminary

8 Booting the TMS320C6201 through the Host Port Interface

Table 1. HPI External Interface Signals

Signal
Name

Signal
Type
(Input/
Output/
HI-Z)

Signal
Count

Host Connection Signal Function

HD15:0 I/O/Z 16 Data Bus
HCNTL1:0 I 2 Address or control lines Controls HPI access type.

HHWIL I 1 Address or control lines Halfword identification input.
HAS- I 1 Address latch enable (ALE) or

Address strobe or unused (tied high)
Differentiates address versus data values on
multiplexed address/data host.

HBE-1:0 I 2 Byte enables Data write byte enables
HR/W- I 1 Read/Write strobe, address line, or

multiplexed address/ data
Read/Write select

HCS- I 1 Address or control lines Data strobe inputs.
HDS1-
HDS2-

I 2 Read strobe and write strobe or data
strobe

Data strobe inputs.

HRDY- O 1 Asynchronous ready Ready status of current HPI access
HINT- O 1 Host interrupt input. Interrupt signal to Host

The 16-bit data bus (HD0-HD15) exchanges information with the
host. Because of the 32-bit word structure of the chip architecture,
all transfers with a host consist of two consecutive 16-bit half-
words.

On host data (HPID) write accesses, the HBE[1:0]- byte enables
select which bytes in a 32-bit accesses should be written.

HCNTL[1:0] indicate which internal HPI register is being
accessed. The states of these two pins select access to the HPI
address (HPIA), HPI data (HPID), or HPI control (HPIC) registers.
Additionally, the HPID register can be accessed with an optional
automatic address increment.

HPIA, HPIC, and HPID read accesses are performed as 32-bit
accesses, and the byte enables are not used. The dedicated
HHWIL pin indicates whether the first or second half-word is being
transferred. An internal control register bit determines whether the
first or second half-word is placed into the most significant half-
word of a word.

The 16-bit data bus (HD0-HD15) exchanges information with the
host. Because of the 32-bit word structure of the chip architecture,
all transfers with a host consist of two consecutive 16-bit half-
words.

On host data (HPID) write accesses, the HBE[1:0]- byte enables
select which bytes in a 32-bit accesses should be written.

Literature Number

Title 9

HCNTL[1:0] indicate which internal HPI register is being
accessed. The states of these two pins select access to the HPI
address (HPIA), HPI data (HPID), or HPI control (HPIC) registers.
Additionally, the HPID register can be accessed with an optional
automatic address increment.

HPIA, HPIC, and HPID read accesses are performed as 32-bit
accesses, and the byte enables are not used. The dedicated
HHWIL pin indicates whether the first or second half-word is being
transferred. An internal control register bit determines whether the
first or second half-word is placed into the most significant half-
word of a word.

Preliminary

10 Booting the TMS320C6201 through the Host Port Interface

Using a host to boot the TMS320C6201

The HPI boot process

A host processor can directly access to the ‘C6201 memory space
through the Host Port Interface. This peripheral allows a host
processor to exchange information with the ‘C6201.

The HPI may also by used by the host to initialize and load a boot
code in the ‘C6201. The HPI boot configuration is selected by the
external pins BOOTMODE[4:0].

Table 2. HPI Boot configuration

BOOTMODE[4:0] Memory Map Memory at Address 0 Boot

00110 MAP 0 External; default values HPI

00111 MAP 1 Internal HPI

The HPI boot process can operate in memory MAP1 (the CPU
starts from internal program memory) or memory MAP0. In that
case, CPU starts from CE0 with the default values, i.e. 32-bit
asynchronous memory with the maximum read/write setup, strobe
and hold time. Therefore the host can write to memory mapped at
0 without initializing the EMIF.

When the RESET pin on the processor is driven low, then high,
the device is reset. When the HPI boot process is selected, the
CPU is then held in reset while the remainder of the device
awakes from reset. At that time, a host processor (connected to
the ‘C6201 through the HPI) can access all ‘C6201’s memory
space, including internal, external and on-chip peripheral
registers.

To release the ‘C6201’s CPU from its reset state, the host has to
write a 1 to the DSPINT bit in the HPI control register (HPIC). The
CPU then starts the program execution from address 0.

Accessing HPI registers from a Host

Depending on the connection used between the host and the
‘C6201, the way to access HPI registers from the host may differ.

Literature Number

Title 11

Typically, the ‘C6x‘s HPI registers are mapped in the host memory
map. HCNTRL[1:0] and HHWIL are connected to address lines of
the host processors to select which register is accessed, following
the Table 3.

Table 3. HPI Control Signals Function Selection Description

HCNTL1 HCNTL0 HHWIL HPI Register accessed

0 0 0 HPIC 1st half-word

0 0 1 HPIC 2nd half-word

0 1 0 HPIA 1st half-word

0 1 1 HPIA 2nd half-word

1 0 0 HPID 1st half-word, HPIA is post-incremented.

1 0 1 HPID 2nd half-word, HPIA is post-incremented.

1 1 0 HPID 1st half-word, HPIA not affected.

1 1 1 HPID 2nd half-word, HPIA not affected.

Even if the HPI is a 16-bit external interface, it provides 32-bit to
the CPU by combining successive 16-bit transfers. HHWIL
identifies the first or second half-word of transfer and the bit
HWOB determines the halfword ordering.

Example:

Let’s consider example given on Figure 1 and in which one C6x
(host) is connected to the HPI of an another. The HPI is mapped
into the asynchronous memory space CE1. The address lines
EA[4:2] are used to control the HPI control lines HCNTL[1:0] and
HHWIL.

To access the HPI registers, the host has to perform a memory
access to CE1 space as shown on Table 4.

Using C language, a pointer may be used as shown below:

#define C6201_HPI 0x01400000 /* Host address on which C6x
HPI is mapped */

int *hpi_ptr; /* define and initialize pointer*/
hpi_ptr = (int *)C6201_HPI;

Then following Table 4, the following piece of code may be used
to access HPIA register:

Preliminary

12 Booting the TMS320C6201 through the Host Port Interface

/* Write dest_address to HPIA, with HOB=1 */

ptr_hpi[2] = (int)(dest_address & 0x0ffff);
ptr_hpi[3] = (int)((dest_address>>16)&0x0ffff);

Table 4. HPI Control Signals Function Selection Description with a host C6x

Address generated by HPI Control lines HPI Register accessed

the host HCNTL[1:0] HHWIL

HPI Base address + 0x00 00 0 HPIC 1st half-word

HPI Base address + 0x04 00 1 HPIC 2nd half-word

HPI Base address + 0x08 01 0 HPIA 1st half-word

HPI Base address + 0x0C 01 1 HPIA 2nd half-word

HPI Base address + 0x10 10 0 HPID 1st half-word, HPIA is
post-incremented.

HPI Base address + 0x14 10 1 HPID 2nd half-word, HPIA is
post-incremented.

HPI Base address + 0x18 11 0 HPID 1st half-word, HPIA not
affected.

HPI Base address + 0x1C 11 1 HPID 2nd half-word, HPIA not
affected.

Host program to boot the ‘C6201

This chapter is considering the example given on Figure 1 and
describes a host program to boot load the ‘C6201. This particular
example considers one C6x (host) talking to another. The C code
presented below can be run without any modifications on a C6x.

The user to support another host can easily modify the C code
presented in that example. The main modification to port this code
on another host, is to change the way to access the HPI registers
in accordance with the host memory map, the host specific data
types.

Initialization of the TMS320C6201

In addition to write code into internal memory, the host may have
to download code or data sections into one of the external
memory space. The host must initialize EMIF registers prior
accessing any external memory spaces.

On Figure 3 is shown an example of C code which may be run on
the host to write a single 32-bit value to the ‘C6201. The host first
writes the HPIC setting the HWOB bit, then it writes the HPIA, and
then HPID.

Literature Number

Title 13

Figure 3. Function to store a word in the ‘C6x memory space through the HPI.

void C6x_write_word(int *ptr_hpi, int source_word, int dest_address)
{

/* Write HPIC with HWOB=1,1st halfword transferred is least significant */

/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[0] = 0x0001; /* 1st halfword 0 0 0 */
ptr_hpi[1] = 0x0001; /* 2nd halfword 0 0 1 */

/* Write destination address to HPIA, 1st halfword is least significant */

/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[2] = (int)(dest_address & 0x0ffff);/* 0 1 0 */
ptr_hpi[3] = (int)((dest_address>>16)&0x0ffff);/* 0 1 1 */

/* Write source_word to HPID without address post-increment */
/* 1st half-word transferred is least significant */

/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[6] = (int)(source_word&0x0ffff); /* 1 1 0 */
ptr_hpi[7] = (int)((source_word>>16)&0x0ffff);/*1 1 1 */

}

On Appendix A is given a complete example. Lines 46 to 52
correspond to the EMIF initialization performed by the host
processor through the HPI.

During the HPI boot process, only the CPU is maintained in reset.
All the peripherals may be active. By accessing the on-chip
peripheral registers, the host can initialize and start any C6201’s
peripherals. For example and depending on the system
requirements, the host may have to initialize and start one serial
port, or a DMA transfer.

Transferring code and data sections

A program is composed with initialized sections and non-initialized
sections. The host processor has to load sections in the ‘C6201 to
the correct address, in accordance with the link command file.

The host has to write a complete section at a given address. On
Figure 4 is given an example of C function which reads length 32-
bit words data from *source and then, write through the HPI to the
C6x’s address dest_addr.

Preliminary

14 Booting the TMS320C6201 through the Host Port Interface

Figure 4. Function to store a buffer in the C6x memory space through the HPI.

void C6x_write_section(int *ptr_hpi, short *source, int dest_add, int length)
{
int i;

/* Write HPIC with HWOB=1,1st halfword transferred is least significant */

/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[0] = 0x0001; /* 1st halfword 0 0 0 */
ptr_hpi[1] = 0x0001; /* 2nd halfword 0 0 1 */

/* Write destination address to HPIA, 1st halfword is least significant */

/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[2] = (int)(dest_add & 0x0ffff); /* 0 1 0 */
ptr_hpi[3] = (int)((dest_add>>16)&0x0ffff);/* 0 1 1 */

 for(i=0 ; i < length ; i++)
 {

/* Write source_word to HPID with address post-increment */
/* 1st half-word transferred is least significant */
/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[4] = (int) *source++; /* 1 0 0 */
ptr_hpi[5] = (int) *source++; /* 1 0 1 */

 }
}

The pointer *source point to the location where the C6x boot code
is stored. For example, this pointer might point to:

� an external ROM, mapped in the host memory map, containing
the C6x boot code,

� an data array (linked with host code) containing the C6x boot
code,

� a host peripheral which can receive the C6x boot code (for
example a serial port).

The second option is used in the complete example given in
Appendix A. On Lines 21 and 22 is given the inclusion of the
header files containing the code (code.h) and the initialized data
(initia.h).

Notice that this solution requires a recompilation of the host code
each time the DSP code is modified. It also requires an automatic
way to create a C array (containing the C6x program and
initialized data) from a COFF file.

Literature Number

Title 15

Remove the TMS320C6201 from its reset state

Once the host processor has performed all ‘C6201’s initialization
and loaded all the code and data sections into the C6201’s
memory spaces, it has to release the C6201 from its reset state by
writing a 1 in the DSPINT bit.

In the example we are considering in that document:

/* Write HPIC with DSPINT=1 */

/* HCNTRL1 HCNTRL0 HHWIL */
/* 1st halfword 0 0 0 */
/* 2nd halfword 0 0 1 */

ptr_hpi[0] = 0x0002; /* 1 st halfword */
ptr_hpi[1] = 0x0002; /* 2 nd halfword */

Once DSPINT is written to 1, the CPU starts at address 0.

Preliminary

16 Booting the TMS320C6201 through the Host Port Interface

Creating a ‘C6x boot code to be downloaded by the Host

This chapter discusses how boot code can be generated either
sing C code or assembly code. As we have seen in the previous
chapters, the host processor has to write, through the HPI to the
C6x memory space, all code sections and all initialized data
sections.

The user has the possibility or not to use the auto-initialization of
variables at load-time or at run-time.

When using auto-initialization at load-time (option –cr), the host
has the responsibility of initializing all variables and to initialize the
stack pointer.

When using auto-initialization at run-time (option –c), the linker will
automatically include a function (c_int00), before the call of the
function main().

Figure 5 gives an example of linker command file in which the au-
initialization at run-time is used. In that case, the host program has
just to transfer the code section and the initialized data sections
(.cinit, .const) in the C6x memory, then the function c_int00
(created by the –c option) will perform the stack pointer
initialization and will initialize all global variables by copying the
data from the initialization tables in the .cinit section to the .bss
sections. (See [3] section 8.8 for any further details). This is
typically the option used in the example given in Appendix A.

Literature Number

Title 17

Figure 5. Command file for the linker

/***/
/* lnk.cmd */
/* Copyright © 1996-1997 Texas Instruments Inc. */
/***/
-c
vector.obj
main.obj

-o main.out
-heap 0x0200
-stack 0x0200
-l rts6201.lib

MEMORY
{
 VECS: o = 00000000h l = 0000200h
 PMEM: o = 00000200h l = 000FC00h
 DMEM: o = 80000000h l = 0010000h
 CE0: o = 00400000h l = 1000000h
 CE1: o = 01400000h l = 0010000h
 CE2: o = 02000000h l = 1000000h
 CE3: o = 03000000h l = 1000000h
}

SECTIONS
{
 vectors > VECS
 .text > PMEM
 .far > DMEM
 .stack > DMEM
 .bss > DMEM
 .sysmem > DMEM
 .cinit > DMEM
 .cio > DMEM
 .const > DMEM
 .data > DMEM
}

Preliminary

18 Booting the TMS320C6201 through the Host Port Interface

If the host is reading the C6x code from an external memory, the
user has first to program ROM with the C6x code. Texas
Instruments is providing a hex conversion utility, which converts
the output of the linker (a COFF object file) into one of the several
standards suitable for loading into an EEPROM programmer.
Figure 6 shows an example of command file for the hex
conversion utility that builds four files to program four 8-bit
EEPROM. Assuming the host is connected to four 8-bit
EEPROM. Refer to [4] Chapter 9 for any further details about the
hex conversion utility.

Figure 6. Command file for the hex converter utility (four 8-bit EEPROM)

main.out
-i
-byte
-image
-memwidth 32
-romwidth 8
-order L

ROMS
{
 EPROM: org = 0x0, length = 0x20000
 files = {u22.int, u24.int, u23.int, u25.int}
}

Literature Number

Title 19

Appendix A

Host source code to boot the C6x through the HPI

/**/
/* Host.c: Host program to boot load the C6x through the HPI. */
/* This program is an example which assumes that host needs to */
/* initialize first the external memory configuration registers */
/* and then needs to download the .text, .cint and .const */5
/* */
/* Author : Eric Biscondi */
/* Date : 24 dec 97 */
/* Modifications: */
/* */10
/* */
/* (c) Texas Instruments France */
/***/
#include <stdio.h>
#include <stdlib.h>15

#include "test6201.h"
#include "prts.h"

/* Header files containing the code to program into the flash */20
#include "code.h" /* contains initialized sections of code */
#include "initia.h" /* contains initialized sections of data */

#define C6201_HPI 0x01600000 /* Address of the 'C6201 HPI*/
#define DEBUG 0 /* Flag for conditional DEBUG info */25

void C6x_write_section(int *ptr_hpi, short *source, int dest_add, int length);

void C6x_write_word(int *ptr_hpi, int source_word, int dest_address);30

void init_host(void);

void main(void)35
{
int *ptr_hpi;
int i, number_code, number_init;

ptr_hpi = (int *)C6201_HPI;40

init_host(); /* Initialization of the Host processor */

/* Initialization of the 'C6201 's EMIF */
45

C6x_write_word(ptr_hpi, 0x0000377d, Emif_global_control);
C6x_write_word(ptr_hpi, 0x00000040, Emif_CE1_control);
C6x_write_word(ptr_hpi, 0x00000030, Emif_CE0_control);
C6x_write_word(ptr_hpi, 0x00000030, Emif_CE2_control);
C6x_write_word(ptr_hpi, 0xffffff23, Emif_CE3_control);50
C6x_write_word(ptr_hpi, 0x03166000, Emif_SDRAM_control);

Preliminary

20 Booting the TMS320C6201 through the Host Port Interface

C6x_write_word(ptr_hpi, 0x00000aaa, Emif_SDRAM_refresh);

/* Determine the number of halfword contained in the code section */55
number_code = sizeof(code) / sizeof(code[0]);

/* Write the code sections into the C6x memory mapped at 0 */
C6x_write_section(ptr_hpi, (short *)&code , 0x0, number_code);

60

/* Determine the number of halfword contained in the data section */
number_init = sizeof(initia) / sizeof(initia[0]);

/* Write the cinit sections into the C6x internal data memory */65
C6x_write_section(ptr_hpi,(short*)&initia,0x80000000, number_init);

#if DEBUG
printf("TMS320C6201 boot code loaded\n");

#endif70

/* Wake up TMS320C6201 */
ptr_hpi[0] = 0x0003; /* Writes 1st half to HPIC - 0x01600000 */

ptr_hpi[1] = 0x0003; /* Writes 2nd half to HPIC - 0x01600004 */75

#if DEBUG
printf("TMS320C6201 is running \n");

#endif
}80

void init_host(void)
{

/* Initialize CE1 as an Asynchronous memory space */85
*(int *)0x01800004 = 0x00e20322;

}

/** */90
/* C6x_write_word */
/* This routine is downloading data from source address to the C6x */
/* dest_address through the C6x Host Port Interface. */
/* This routine accesses the HPID without automatic address increment */
/* */95
/* Inputs: */
/* ptr_hpi: pointer to the C6x HPI vase address */
/* source_word: address of the data to transfer to the C6x */
/* dest_address: destination address to write to the C6x HPIA */
/* */100
/* (c) Texas Instruments France */
/**/
void C6x_write_word(int *ptr_hpi, int source_word, int dest_address)
{
 /* Write HPIC with HWOB=1,1st halfword transferred is least significant */105

Literature Number

Title 21

/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[0] = 0x0001; /* 1st halfword 0 0 0 */
ptr_hpi[1] = 0x0001; /* 2nd halfword 0 0 1 */

110

/* Write destination address to HPIA, 1st halfword is least significant */

/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[2] = (int)(dest_address & 0x0ffff);/* 0 1 0 */115
ptr_hpi[3] = (int)((dest_address>>16)&0x0ffff);/* 0 1 1 */

/* Write source_word to HPID without address post-increment */
/* 1st half-word transferred is least significant */120

/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[6] = (int)(source_word&0x0ffff); /* 1 1 0 */
ptr_hpi[7] = (int)((source_word>>16)&0x0ffff);/*1 1 1 */

}125

/** */
/* C6x_write_section */
/* This routine is downloading data from source address to the C6x */130
/* dest_address through the C6x Host Port Interface. */
/* This routine accesses the HPID with automatic address increment */
/* */
/* Inputs: */
/* ptr_hpi: pointer to the C6x HPI vase address */135
/* source_word: address of the data to transfer to the C6x */
/* dest_address: destination address to write to the C6x HPIA */
/* length: number of data to transfer */
/* */
/* (c) Texas Instruments France */140
/** */

Preliminary

22 Booting the TMS320C6201 through the Host Port Interface

void C6x_write_section(int *ptr_hpi, short *source, int dest_add, int length)
{
int i;

145
/* Write HPIC with HWOB=1,1st halfword transferred is least significant */

/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[0] = 0x0001; /* 1st halfword 0 0 0 */
ptr_hpi[1] = 0x0001; /* 2nd halfword 0 0 1 */150

/* Write destination address to HPIA, 1st halfword is least significant */

/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[2] = (int)(dest_add & 0x0ffff); /* 0 1 0 */155
ptr_hpi[3] = (int)((dest_add>>16)&0x0ffff);/* 0 1 1 */

 for(i=0 ; i < length ; i++)
 {160

/* Write source_word to HPID with address post-increment */
/* 1st half-word transferred is least significant */
/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[4] = (int) *source++; /* 1 0 0 */
ptr_hpi[5] = (int) *source++; /* 1 0 1 */165

 }
}

Booting the TMS320C6201 through the Host Port Interface 23

Appendix B:

Building a C array of values from a COFF file

 Could include here a brief explanation on the use of a tool to
convert an ASCII file into a C array of data

Preliminary

24 Booting the TMS320C6201 through the Host Port Interface

References

[1]. TMS320C62xx Peripherals Reference Guide, Texas Instruments 1997.

[2]. Application Report : Interfacing TMS320C62xx to external Asynchronous SRAM,
Texas Instruments 1998.

[3]. TMS320C6x Optimizing C Compiler User’s Guide, Texas Instruments 1997.

[4]. Application Report: Interfacing the TMS320C62xx to External Flash Memory, Texas
Instruments 1997.

[5]. Application Report: TMS320C62xx Host Port Interface Application, Texas
Instruments 1998.

[6]. TMS320C6x Assembly Language Tools – User’s Guide, Texas Instruments 1997.

