
Creating a vector table
and boot ROM for the
TMS320C6201

APPLICATION REPORT: PRELIMINARY

 Author : Eric Biscondi
 LBE : DSP
 Date : Tuesday, March 24, 1998

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

Contents
Abstract...7
Overview8
ROM Boot Process ...9
Vector table (or Interrupt Service Table) ...11

Creating a vector table ..11
Creating a vector table respecting the C language conventions12

Creating a Boot ROM code ..13
Example.. ...16
Annexes21

Annex A...23
Example of vector table supporting C language...23

References21

Figures
Figure 1. ROM Boot process .. 9
Figure 2. EMIF-ROM interface (16-bit) ... 10
Figure 3. Example of Interrupt Service Table .. 11
Figure 4. Sections organization for a ROM boot code with MAP1............................... 14
Figure 5. Sections organization for a ROM boot code with MAP0............................... 14
Figure 6. TMS320C6201 connected to four 8-bit EPROM Memories.......................... 17
Figure 7. Command file for the linker .. 18
Figure 8. Command file for the hex converter utility .. 19

Creating a vector table and boot ROM for the TMS320C6201 7

Creating a vector table and boot ROM
code for the TMS320C6201

Abstract

Three types of boot processes are available on the
TMS320C6201. The boot process is determined by the
BOOTMODE[4:0] pins.

This document describes:

� the ROM Boot process,

� how to create a vector table,

� how to build a ROM boot code in C and Assembly language
through an example.

Preliminary

8 Creating a vector table and boot ROM for the TMS320C6201

Overview

The ‘C6201 uses various types of boot configuration. There are
three types of boot process:

� The CPU starts direct execution at address 0.

� A 16K 32-bit words memory block is automatically copied from
the beginning of the CE1 memory space to memory located at
the address 0 through the DMA channel 0.

� A Host processor (connected to the ‘C6201 through the Host
Port Interface) maintain the ‘C6201 core in reset while
initializing the ‘C6201 memory space, including external
memory spaces.

In addition to these three modes, the user need also to select the
memory map and the type of memory which is mapped at the
address 0. This setting is determined by the BOOTMODE[4:0]
pins during the reset. Please refer to the section 7.3 of the
TMS320C62xx Peripherals Reference Guide for a complete
description of the BOOTMODE[4:0] pins.

The following chapters describe ROM boot process and how to
create a vector table for assembly and C framework, how to build
a code to be downloaded using the ROM boot process.

Literature Number

Title 9

ROM Boot Process

During ‘C6201 reset, the 64Kbyte memory block mapped at the
beginning of the memory space CE1 is transferred to the memory
located at the address 0, as shown in Figure 1. DMA channel 0
performs that transfer. Once channel 0 has performed the
transfer, the CPU is removed from reset and allowed to start from
the memory location 0.

Figure 1. ROM Boot process

The memory mapped at address 0 can either be the internal
program memory (MAP1) or the external memory space CE0
(MAP0), which may contain SDRAM, SBSRAM or Asynchronous
memory.

Typically a ROM device is connected to the TMS3206201, as
shown on the Figure 2, and mapped at the beginning of the
memory space CE1.

Notice that the values stored in the memory space CE1 are
expected to be in little endian format.

CE1

0x01400000
0x00000000

Memory
mapped at 0

64Kbytes

64K bytes

Preliminary

10 Creating a vector table and boot ROM for the TMS320C6201

Figure 2. EMIF-ROM interface (16-bit)

/ARE

/CE1

EA[N+2:2]

/AOE

ED[15:0]

/CS

/OE

A[N:0]

D[15:0]

/ARDY

R O M
External Memory
Interface (EMIF)

G N D

For any further details about the connection between
TMS320C6201 and ROM devices, please refer to [1] section 6.5
and [2].

Literature Number

Title 11

Vector table (or Interrupt Service Table)

When the RESET pin on the processor is driven low, then high,
the device is reset. Once the ROM boot process is done (i.e. DMA
channel 0 has completed data transfer from CE1 to memory
mapped at 0) , registers are initialized to their default value, the
Program Counter is loaded with the reset vector (which is always
0) and the CPU begins running code at address 0. Reset is the
highest priority interrupt. At the end of all interrupt sequence, the
CPU loads the vector address from the Interrupt Service Table
(IST) to the program counter. The IST is a table containing code
for servicing the interrupts. The reset vector is always located at
the address 0.

Creating a vector table

As a fetch packet contains eight 32-bit instructions, each vector is
aligned on a fetch packet boundary that means each packet must
contain eight instructions. Each vector may either contain the
branch to the interrupt service routine (with some padding NOPs
or fill them with setup code for the interrupt service routine), or
may contain the complete interrupt service routine if that one is
less than eight instructions. On the Figure 3, the Interrupt Service
Table is included in the code section vectors, which is typically
linked at the address 0. Refer to [2] for any further details about
the Interrupt service table.

Figure 3. Example of Interrupt Service Table

.sect vectors
RESET: MVK .S2 Start, B0 ; Load Start address

MVKH .S2 Start, B0 ; Load Start address
B .S2 B0 ; Branch to start
NOP
NOP
NOP
NOP
NOP

NMI_ISR: MVK .S2 Nmi_isr, B0
MVKH .S2 Nmi_isr, B0
B .S2 B0
NOP
NOP
NOP
NOP
NOP
.

.

Preliminary

12 Creating a vector table and boot ROM for the TMS320C6201

Creating a vector table respecting the C language conventions

Because each vector included into the interrupt vector table has to
be aligned on a fetch packet boundary, the vector table is always
written in assembly language. When C language is used for the
application framework, C conventions have to be respected when
writing the vector table.

The C compiler run-time support library is automatically creating a
function, _c_int00, when the –c or –cr linker options are invoked.
This function correspond to the entry point of the C program and
the reset vector needs to be setup to branch to _c_int00. The
Annex A give a complete example of table vector respecting the C
convention.

The interrupt keyword allows the user to write interrupt service
routine in C language. For example:

interrupt void myISR(void)
{

/* Code for myISR */
…

}

The vector, which is associated to the interrupt service routine
myISR, has to follow C conventions. If a branch to a register is
used, the register will first be stored to the stack before branching
to the interrupt service routine and then restored. For example,
vector for the C interrupt service routine myISR would be:

.ref _myISR

INTx: STW .D2 B0,*B15--[1] ;push B0 to stack
 || MVK .S2 _myISR, B0 ;store address of

MVKH .S2 _myISR, B0 ;myISR to B0
B .S2 B0 ;branch to B0
LDW .D2 *++B15[1], B0 ;restore B0
NOP ;
NOP ;
NOP 2 ;branch occurs

Literature Number

Title 13

Creating a Boot ROM code

The boot code is the piece of code that is transferred during the
ROM boot process to memory at address 0. When the complete
application is small enough (less than 64 Kbytes), the boot code
corresponds to the whole application. First, the boot code takes
care of the system initialization. The boot code might be written
either in assembly or C language. To initialize variables, the boot
code needs to copy initial values to variables. The user needs to
take care of this task when writing code in assembly. With C
language, the routine _c_int00, which is included in the runtime-
support library, performs the variable initialization automatically
when you use the –c linker option, then it branches to the main
function. (Cf. to [4] sections 8.8 System Initialization).

A particular attention needs to be taken when using the ROM boot
process in MAP 1. TMS320C6201’s CPU can not perform data
accesses to/from on-chip program memory. Initialized data
sections have to be linked in the CE1 memory space.

As shown on the Figure 4, step c is performed automatically by
the ROM boot process. Once the 64Kbyte memory block is
transferred (step c), CPU starts to execute the program at
address 0, which is in charge of copy initialized value to variables,
step d.

To avoid getting the initialized data sections into internal program
memory after the step 1, the user may choose to link those
sections outside the first 64kbytes of CE1. (i.e. at address
0x01410000 or after).

Preliminary

14 Creating a vector table and boot ROM for the TMS320C6201

Figure 4. Sections organization for a ROM boot code with MAP1

When configuring the TMS320C6201 with memory map 0, there is
no restriction regarding where code and initialized data sections
are linked within CE1. Once the CPU is removed from reset and it
starts from the memory location 0, which is memory space CE0,
and may also access the initialized data sections stored into CE0.

Figure 5. Sections organization for a ROM boot code with MAP0

n

o

0x01410000

0x01400000

CE1

0x00000000

o

Code sections

Initialized data
sections

0x01410000

n

0x01400000

CE1

0x00000000
CE0

64Kbytes

o

Code sections

Data sections

Internal Data
Memory

Code sections
After step c

Data sections
After step c

Data sections
After step d

0x80000000

0x80000000

Code sections
(after step 1 and 2)

Initialized data
sections

(after step 1)

Initialized data
sections

(after step 2)

Literature Number

Title 15

As shown on the Figure 5, because when using MAP 0 the CPU is
able to perform data accesses to CE0, the initialized values may
be copied with all the code sections by the ROM boot process.
Then, once CPU is released from the reset state, it starts at
address 0 and runs the boot code previously downloaded from
CE0. Boot code performs the system initialization by reading and
copying initialized values to the on-chip data memory. (Step d)

Step d is automatically performed by the function _c_int00 when
using the C compiler and the linker option –cr.

Preliminary

16 Creating a vector table and boot ROM for the TMS320C6201

Example

Let’s consider the system requirements are the following:

• The TMS320C6201 is booting from four 8-bit external EPROM
mapped in CE1 memory space.

• Memory map MAP1 is used, i.e. once the boot code has been
transferred the CPU will start to run at address 0, which is the
internal on-chip memory.

• The boot code and the application are written in C and every
thing fits into internal program memory.

To avoid getting the initialized data sections copied into internal
memory after the boot process, those sections are linked at
address 0x01410000. (Outside the first 64Kbytes of CE1).

In this example, the TMS320C6201 is connected to four 8-bit
EPROM. As shown on the Figure 6, BOOTMODE[4:0] is equal to
11101, i.e. :

• MAP 1, Internal Program memory mapped at 0

• ROM boot process selected from a 32-bit with the
default timing.

Literature Number

Title 17

Figure 6. TMS320C6201 connected to four 8-bit EPROM Memories

Figure 7 gives the linker commands file which may be used for
this example. Note –c option forces _c_int00 to initialize the C
environment. The file vector.asm, which contains for example the
table vector included in Annex A, is linked with main.obj. cinit and
const are mapped in the memory space CE1.

/CE1

/AWE

/AOE

EA[21:2]

ED[31:24]

External Memory
ED[23:16]

 Interface

TMS320C6201

ED[15:8]

/CE

/AWE
EPROM

/AOE

EA[17:0]

/CE

/AWE
EPROM

/AOE

EA[17:0]

/CE

/AWE
EPROM

/AOE

EA[17:0]

/CE

/AWE
EPROM

/AOE

EA[17:0]

1 1 1 0 1

Preliminary

18 Creating a vector table and boot ROM for the TMS320C6201

Figure 7. Command file for the linker

/***/
/* lnk.cmd */
/* Copyright © 1996-1997 Texas Instruments Inc. */
/***/
-c
vector.obj
main.obj

-o main.out
-heap 0x0200
-stack 0x0200
-l rts6201.lib

MEMORY
{
 VECS: o = 00000000h l = 0000200h
 PMEM: o = 00000200h l = 000FC00h
 DMEM: o = 80000000h l = 0010000h
 CE0: o = 00400000h l = 1000000h
 CE1: o = 01400000h l = 0010000h
 CE1init:o = 01410000h l = 0010000h
 CE2: o = 02000000h l = 1000000h
 CE3: o = 03000000h l = 1000000h
}

SECTIONS
{
 vectors > VECS
 .text > PMEM
 .far > DMEM
 .stack > DMEM
 .bss > DMEM
 .sysmem > DMEM
 .cinit > CE1init
 .cio > DMEM
 .const > CE1init
 .data > DMEM
}

Literature Number

Title 19

Texas Instruments is providing a hex conversion utility, which
converts the output of the linker (a COFF object file) into one of
the several standards suitable for loading into an EEPROM
programmer. Figure 8 shows the command file for the hex
converter utility corresponding to our example. Refer to [7]
Chapter 9 for any further details.

Figure 8. Command file for the hex converter utility

main.out
-i
-byte
-image
-memwidth 32
-romwidth 8
-order L

ROMS
{
 EPROM: org = 0x0, length = 0x20000
 files = {u22.int, u24.int, u23.int, u25.int}
}
SECTIONS
{
 .text: paddr=0x00000
 .cinit: paddr=0x10000
 .const: paddr=0x10000
}

Preliminary

20 Creating a vector table and boot ROM for the TMS320C6201

Literature Number

Title 21

References

[1]. TMS320C62xx Peripherals Reference Guide, Texas Instruments 1997.

[2]. TMS320C62xx CPU and Instruction Set Reference Guide, Texas Instruments 1997.

[3]. Application Report : Interfacing TMS320C62xx to external Asynchronous SRAM,
Texas Instruments 1998.

[4]. TMS320C6x Optimizing C Compiler User’s Guide, Texas Instruments 1997.

[5]. Data Sheet: AT29LV020, Atmel.

[6]. Application Report: Interfacing the TMS320C62xx to External Flash Memory.

[7]. TMS320C6x Assembly Language Tools – User’s Guide, Texas Instruments 1997.

Preliminary

22 Creating a vector table and boot ROM for the TMS320C6201

Creating a vector table and boot ROM for the TMS320C6201 23

Annexes

Annex A

Example of vector table supporting C language.

/**
**/
/* vectors.asm: */
/* TMS320C6201 vector table */
/* supporting C conventions */
/* */
/* © Texas Instruments */
/**
*/

.ref
_c_int00,_c_nmi01,_c_int04,_c_int05,
.ref
_c_int06,_c_int07,_c_int08,_c_int09,
.ref
_c_int10,_c_int11,_c_int12,_c_int13
.ref _c_int14, _c_int15

.sect vectors

RESET: B .S2 _c_int00
NOP
NOP
NOP
NOP
NOP
NOP
NOP

NMI: B .S2 _c_nmi01
NOP
NOP
NOP
NOP
NOP
NOP
NOP

RESV1: B .S2 RESV1
NOP
NOP
NOP
NOP
NOP
NOP
NOP

RESV2: B .S2 RESV2
NOP

Preliminary

24 Creating a vector table and boot ROM for the TMS320C6201

NOP
NOP
NOP
NOP
NOP
NOP

INT4: B .S2 _c_int04
NOP
NOP
NOP
NOP
NOP
NOP
NOP

INT5: B .S2 _c_int05
NOP
NOP
NOP
NOP
NOP
NOP
NOP

INT6: B .S2 _c_int06
NOP
NOP
NOP
NOP
NOP
NOP
NOP

INT7: B .S2 _c_int07
NOP
NOP
NOP
NOP
NOP
NOP

NOP

INT8: B .S2 _c_int08
NOP
NOP
NOP
NOP
NOP
NOP
NOP

INT9: B .S2 _c_int09
NOP
NOP
NOP
NOP
NOP
NOP
NOP

INT10: B .S2 _c_int10
NOP
NOP
NOP
NOP
NOP
NOP
NOP

INT11: B .S2 _c_int11
NOP
NOP
NOP
NOP
NOP
NOP
NOP

INT12: B .S2 _c_int12
NOP
NOP

Literature Number

Title 25

NOP
NOP
NOP
NOP
NOP

INT13: B .S2 _c_int13
NOP
NOP
NOP
NOP
NOP
NOP
NOP

INT14: B .S2 _c_int14

NOP
NOP
NOP
NOP
NOP
NOP
NOP

INT15: B .S2 _c_int15
NOP
NOP
NOP
NOP
NOP
NOP
NOP

