
1

SPRU189C Errata -
1998 TMS320C62x/C67x CPU and Instruction Set Reference Guide
Last Update: July 24, 1998

Page 2-11 A note should be added about the Data Cache Control (DCC) field in the CSR:
Some C62x/C67x devices do not have a data cache (i.e. C6201 and C6701).

Page 2-15 The Rmode.L2 and Rmode.L1 Value 00 description for the FADCR should read:
Round toward nearest.

Page 2-19 The Rmode.L2 and Rmode.L1 Value 00 description for the FMCR should read:
Round toward nearest.

Page 2-20 The following should be added to section 2.6 and 2.7:
The SAT, OVER, UNDER, INEX, INVAL, DENn, NANn, INFO, UNORD, and DIV0 status bits will not
be modified by an instruction if the condition of the instruction is false.

Page 3-2 The description for slsb16 and smsb16 should read:
slsb16 Signed 16 LSB of register
smsb16 Signed 16 MSB of register

Page 3-3 The description for ulsb16, umsb16, xslsb16 and xulsb16 should read:
ulsb16 Signed 16 LSB of register that can optionally use cross path
umsb16 Unsigned 16 LSB of register that can optionally use cross path
xslsb16 Signed 16 LSB of register that can optionally use cross path
xulsb16 Unsigned 16 LSB of register that can optionally use cross path

Page 3-4 In table 3-2, under the .S unit, the SHRL instruction should read SSHL.

Page 3-4 In table 3-2, the ADDU instruction should not be listed for the .D or .S units; the ADDU
is only available on the .L units.

Page 3-5 In table 3-3, the ADDU instruction is only available on the .L units; the table should not
state that it is available on the .D or .S units.

Page 3-12 A note should be added to the load instruction type in table 3-5 stating:
The write on cycle i+4 uses a separate write port than the write on other .D unit instructions.

Page 3-34 The opcode diagram is incorrect for the ADDAB/ADDAH/ADDAW instruction. It
should be the 3rd diagram on page 3-10 (Operations on the .D unit) rather than the 6th diagram on page 3-
10 (Operations on the .S unit).

Page 3-35 In example 2, the AMR value should be 0002 0001h for “before instruction” and “1
cycle after instruction”.

Page 3-38 The correct opcode for the first version of the AND instruction should be 1111011 rather
than 111001.

Page 3-40 The second note for the B label instruction should be changed to read as follows:
Execute packets in the delay slots of a branch cannot be interrupted. This is true regardless of whether the
branch is taken.

2

Page 3-42 The second note for the B src2 instruction should be changed to read as follows:
Execute packets in the delay slots of a branch cannot be interrupted. This is true regardless of whether the
branch is taken.

Page 3-44 The third note for the B IRP instruction should be changed to read as follows:
Execute packets in the delay slots of a branch cannot be interrupted. This is true regardless of whether the
branch is taken.

Page 3-46 The third note for the B NRP instruction should be changed to read as follows:
Execute packets in the delay slots of a branch cannot be interrupted. This is true regardless of whether the
branch is taken.

Page 3-49 A note should be added to the CLR instruction stating:
Only the 10 LSBs are valid for the register version. If the 22 MSBs are non-zero, the result is invalid.

Page 3-55 A note should be added to the CMPGT(U) instruction stating:
Only the 4 LSBs are valid in the 5-bit cst field when the ucst4 operand is used. If the MSB of the cst field
is non-zero, the result is invalid.

Page 3-56 The first column of the table is incorrect for the first four opfields. The first operand
should be called src1 and the second operand should be called src2 for the opfields 1010111, 1010110,
1010101, and 1010100. All other columns should remain the same.

Page 3-59 A note should be added to the EXT instruction stating:
Only the 10 LSBs are valid for the register version. If the 22 MSBs are non-zero, the result is invalid.

Page 3-62 The first opcode diagram for the EXTU instruction (constant) has a misprint; the field
labeled src1 should read csta.

Page 3-62 A note should be added to the EXTU instruction stating:
Only the 10 LSBs are valid for the register version. If the 22 MSBs are non-zero, the result is invalid.

Page 3-71 The second paragraph of the LDB(U)/LDH(U)/LDW description should read:
The offset, ucst15, is scaled by a left shift of 0, 1, or 2 for LDB(U), LDH(U), and LDW, respectively.
After scaling, ucst15 is added to baseR (no subtraction is supported). The result …

Page 3-107 A note should be added to the SET instruction stating:
Only the 10 LSBs are valid for the register version. If the 22 MSBs are non-zero, the result is invalid.

Page 3-109 The operand types for the third (opfield 010011) and sixth (opfield 010010) versions of
the SHL instruction should be changed to xuint, uint, and ulong for the src2, src1, and dst operands,
respectively.

Page 3-109 A note should be added to the SHL instruction stating:
Only the 6 LSBs are valid for the register version. If the 26 MSBs are non-zero, the result is invalid.

Page 3-111 A note should be added to the SHR instruction stating:
Only the 6 LSBs are valid for the register version. If the 26 MSBs are non-zero, the result is invalid.

Page 3-113 A note should be added to the SHRU instruction stating:
Only the 6 LSBs are valid for the register version. If the 26 MSBs are non-zero, the result is invalid.

Page 3-118 A note should be added to the SSHL instruction stating:

3

For the register version, the result is invalid if the shift amount is greater than 31.

Page 3-125 In example 4 of the STB/STH/STW instruction the value of A10 for “1 cycle after
instruction” and “3 cycles after instruction” should be 0000 00F8h, and the label mem 9Ch should read
mem F8h.

Page 3-126 The second paragraph of the STB/STH/STW instruction description should read:
The offset, ucst15, is scaled by a left shift of 0, 1, or 2 for STB, STH, and STW, respectively. After
scaling, ucst15 is added to baseR (no subtraction is supported). The result …

Page 3-135 The header for the SUB2 instruction should read:
Two 16-Bit Integer Subtractions on Upper and Lower Register Halves

Page 4-3 The meaning for sp in table 4-1 should read:
Single-precision floating point register value.

Page 4-3 The meaning for xsp in table 4-1 should read:
Single-precision floating point register value that can optionally use cross path.

Page 4-6 The last sentence of the first paragraph should be changed to read as follows:
The register pair syntax always places the odd register first, a colon, followed by the even register (that is,
A1:A0, B1:B0, A3:A2, B3:B2, etc).

Page 4-11 A note should be added to the load instruction type in table 4-9 stating:
The write on cycle i+4 uses a separate write port than other .D unit instructions.

Page 4-11 The second paragraph should be changed as follows:
The double-precision floating-point addition, subtraction, multiplication, compare, and the 32-bit integer
multiplication instructions also have a functional unit latency that is greater than 1. Functional unit
latency is equivalent to the number of cycles that the instruction uses the functional unit read ports.
For example, the ADDDP instruction …

Page 4-12 The first paragraph should read as follows:
If an instruction has a multicycle functional unit latency, it locks the functional unit for the necessary
number of cycles. Any new instruction dispatched to that functional unit during this locking period will
cause undefined results. If an instruction with a multicycle functional unit latency has a condition that is
evaluated as false during E1, it still locks the functional unit for subsequent cycles.

Page 4-12 The second paragraph should read as follows:
An instruction of the following types scheduled on cycle i has the following constraints:

Page 4-12 The forth paragraph should read as follows:
An instruction of the following types scheduled on cycle i and using a cross path to read a source, has the
following constraints:

Page 4-12 The fifth paragraph should read as follows:
Other hazards exist because instructions have varying numbers of delay slots, and because they need
the functional unit read and write ports for varying numbers of cycles. A read or write or write hazard
occurs when two instructions on the same functional unit attempt to read or write, respectively, to the
register file on the same cycle.

Page 4-13 The first paragraph should read as follows:
An instruction scheduled on cycle i has the following constraints:

4

Page 4-51 The Opcode should show the dst/src opfield as the dst field.

Page 4-51 A sentence should be added to the end of the second paragraph stating the following:
The dst field must always be an even value since LDDW loads register pairs. Therefore, bit 23 must
always be zero.

Page 4-52 The last sentence of the first paragraph should be changed to read as follows:
The register pair syntax always places the odd register first, a colon, followed by the even register.

Page 4-62 The 7th note should be removed since RCPDP will never perform rounding.

Page 4-64 The 7th note should be removed since RCPSP will never perform rounding.

Page 4-66 The 3rd note for RSQRDP should be changed to read:
If src2 is a negative, nonzero, nondenormalized number, NaN_out is placed in dst and the INVAL bit is
set.

Page 4-66 The 6th note for RSQRDP should be changed to read:
If src2 is positive infinity, then positive zero is placed in dst.

Page 4-66 The 7th note should be removed since RSQRDP will never perform rounding.

Page 4-69 The 3rd note for RSQRSP should be changed to read:
If src2 is a negative, nonzero, or nondenormalized number, then NaN_out is placed in dst and the INVAL
bit is set.

Page 4-69 The 6th note for RSQRSP should be changed to read:
If src2 is positive infinity, then positive zero is placed in dst.

Page 4-69 The 7th note should be removed since RSQRSP will never perform rounding.

Page 6-16 The last sentence of the first paragraph should read as follows:
If an instruction has a multicycle functional unit latency, it locks the functional unit for the necessary
number of cycles. Any new instruction dispatched to that functional unit during this locking period will
cause undefined results. If an instruction with a multicycle functional unit latency has a condition that is
evaluated as false during E1, it still locks the functional unit for subsequent cycles.

Page 6-16 The second paragraph should read as follows:
An instruction of the following types scheduled on cycle i has the following constraints:

Page 6-17 The first paragraph should read as follows:
An instruction of the following types scheduled on cycle i and using a cross path to read a source, has the
following constraints:

Page 6-17 The second paragraph should read as follows:
Other hazards exist because instructions have varying numbers of delay slots, and because they need
the functional unit read and write ports for varying numbers of cycles. A read or write or write
hazard occurs when two instructions on the same functional unit attempt to read or write, respectively, to
the register file on the same cycle.

Page 6-17 The third paragraph should read as follows:
An instruction scheduled on cycle i has the following constraints:

5

Page 7-28 The following section should be added:
It is good practice to disable interrupts when modifying a control register since an ISR may modify the
control register value between the time that the program loads the old value and stores the new value. The
below method will ensure that an ISR does not modify the CSR between the 2 MVC instructions since
interrupts are disabled during the 5 delay slots of the branch instruction.

b label
mvc CSR, B0 ; B0 = CSR
or 1, B0, B0 ; modify B0
mvc B0, CSR ; CSR = B0
nop 2

label

Without disabling the interrupts the following could occur:

mvc CSR, B0 ; B0 = CSR (Assume PCC = 0)
or 1, B0, B0 ; modify B0

; interrupt occurs and the ISR sets PCC = 1 in the CSR
mvc B0, CSR ; CSR = B0

; writing the old value of PCC = 0 to the CSR

Page 7-28 The following section should be added:
If the SAT bit in the CSR is zero, the MVC instruction can not set it to one. This could be a problem if an
ISR saves a CSR value with SAT=1, sets SAT=0, and later tries to restore the saved CSR value.

; assume SAT = 1 before CSR value was saved to B0
; assume that SAT = 0 in the CSR
 mvc B0,CSR ; restore previous CSR value

The above code will not set SAT back to one. The following is a work-around.

; assume SAT = 1 before CSR value was saved to B0
; assume that SAT = 0 in the CSR

extu B0,22,31,B1 ; b1 = previous SAT value
 shl B1,30,B1 ; if prev SAT bit set, B1 = 0x40000000
 sadd B1,B1,B1 ; if(b1) set SAT bit
 mvc B0,CSR ; restore previous CSR value

