

‘C6x McBSP Interface to
a Single rate ST bus
Device

APPLICATION REPORT: PRELIMINARY

Shaku Anjanaiah

Digital Signal Processing Solutions
 April 1998

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1998, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract 7
Product Support ... 8

Related Documentation... 8
World Wide Web ... 8
Email... 8

Design Problem... 9
ST Bus Requirements ... 9

McBSP Operation.. 9
McBSP Register Configuration.. 11
McBSP Initialization .. 13
Sample Code Setup.. 14
C Functions Overview... 16
Conclusion .. 17

Appendix A.. 18
Appendix B.. 22
Appendix C.. 26
Appendix D.. 28
Appendix E. ... 29

Figures
Figure 1. McBSP Connection for 2.048 MHz Single Rate ST Bus.................................. 10
Figure 2. Single Rate ST Bus Example .. 10
Figure 3. Receive Control Register (RCR) ... 12
Figure 4. Sample Rate Generator Register (SRGR)... 12
Figure 5. Pin Control Register (PCR) ... 12
Figure 6. Serial Port Control Register (SPCR).. 12
Figure 7 ST Bus emulator and the McBSP .. 15
Figure 8 Timing Diagram for Example Single Rate ST Bus Setup 16

Tables
Table 1. Bit-Field Values for McBSP Registers ... 13

‘C6x McBSP Interface to a Single rate ST bus Device 7

‘C6x McBSP Interface to a Single rate
ST bus Device

Abstract

This document describes how the multi-channel buffered serial
ports (McBSP) in the Texas Instruments (TI) TMS320C6201
digital signal processor (DSP) is used to communicate to a ST bus
compliant device.

The McBSP receives the framing signal, clock, and data from the
ST bus device and processes them to generate internal frame
syncs and clocks for correct data reception. The highly
programmable features of the McBSP make it easy to interface to
ST bus signals. This application report focuses on the single rate
ST bus wherein the ST bus system clock and the data rate
(number of bits per sec) are equal. Hence the name single rate,
which applies only to a 2.048 MHz system clock. The usage of
McBSP registers and sample code to perform the above function
is described in this document.

PRELIMINARY

8 ‘C6x McBSP Interface to a Single rate ST bus Device

Product Support

Related Documentation

The following list specifies product names, part numbers, and
literature numbers of corresponding TI documentation.

� TMS320C6201 Digital Signal Processor data sheet, March
1998, Literature number SPRS051C

� TMS320C6201/C6701 Peripherals Reference Guide, March
1998, Literature number SPRU190B

World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

Email

For technical issues or clarification on switching products, please
send a detailed email to dsph@ti.com . Questions receive prompt
attention and are usually answered within one business day.

PRELIMINARY

‘C6x McBSP Interface to a Single rate ST bus Device 9

Design Problem

How do I use the multi-channel buffered serial port in the
TMS320C6201 to communicate to a single rate Serial Telecom

(ST) Bus compliant device?

ST Bus Requirements

The ST bus 1 is a synchronous serial bus with data transfer rates
of 2.048, 4.096, or 8.192 Mbps. The interface to a ST-bus device
comprises the clock, frame, and data signals. These signals are
available on the McBSP and are programmable, thereby making it
a glue-less interface.

The ST bus data stream comprises of frames with a period of
125µs or a frame rate of 8000 frames per sec. This 8kHz sampling
rate (twice the highest signal frequency in order to retain all the
information in the stream) corresponds to the 3.5 to 4kHz voice
band frequency. The frame signal indicates the start of a frame
and each frame carries blocks of 8-bit data.

The clocks for ST bus data can be 2.048, 4.096, 8.192, or 16.384
MHz. Note that these clocks are always twice the data rate except
for 2.048 MHz. Since the 2.048 MHz ST bus clock rate can also
be the data rate, it is referred to as a Single Rate ST bus. An
example of a Double rate ST bus would be a 2.048Mbps data
stream clocked by a 4.096MHz clock. The following sections
describe the hardware and software interface of the ‘C6x McBSP
to a single rate ST bus device.2

McBSP Operation

The ST bus compliant device that the McBSP is interfacing to is
the master of frames and clock. This means that the ST bus
device should provide a 2.048 MHz clock, C2, which becomes the
external clock source to the McBSP via the CLKS pin. Also, the
framing signal, /F0, generated by the ST bus device is used as the
receive frame sync (FSR) input to the McBSP. The data
transmitted on STo by the ST bus device is received on the DR
pin of the McBSP. These connections are shown in Figure 1.

 Mitel Semiconductor
1 Reference: Mitel Application Note MSAN-126, ST-BUS Generic Device Specification (Rev. B)
2 It is recommended that the reader be familiar with the features of the ‘C6x McBSP by reading
the TMS320C6201/C6701 Peripheral Reference Guide, especially Section 8.5.4

PRELIMINARY

10 ‘C6x McBSP Interface to a Single rate ST bus Device

Figure 1. McBSP Connection for 2.048 MHz Single Rate ST Bus

ST Bus
Compliant Device

 /F0

STo

C2

 ‘C6x McBSP

FSR

DR

CLKS

In order for the McBSP to recognize a ST bus data stream, the
GSYNC bit in the Sample Rate Generator Register has to be set.
The ST bus-provided frame sync /F0 is an active low signal that is
low for one half CLKS period. The GSYNC bit causes the external
frame sync that arrives on FSR to be sampled on the rising edge
of CLKS and in turn generates an internal frame sync in the
McBSP that is active high for one CLKS clock period. This internal
frame sync, FSR_int, is used as the reference for data reception.
This is shown in Figure 2.

Figure 2. Single Rate ST Bus Example

E1B7 E1B6 E1B5 E1B0 E2B7

E32B0 E1B7 E1B6 E1B5 E1B0 E2B7

FSR sampled

ExBy = Elementx Bi t y

C4=4.096MHz

C2=CLKS=2.048MHz

FSR external

FSR_int

CLKR_int (first FSR)

DR, DX (first FSR)

CLKR_int(subsequent FSR)

DR, DX (subsequent FSR)

PRELIMINARY

‘C6x McBSP Interface to a Single rate ST bus Device 11

In this 2.048MHz single rate ST bus example, the data stream
comprises 32 elements of 8-bits each in each frame. Each new
frame starts with a new frame sync signal /F0. Since the McBSP
receiver does not know when the first frame will arrive on FSR,
and therefore does not know when to get out of reset and receive
data, special interrupts should be used. This is made easy with the
new frame sync interrupt that is available on the McBSP and
which works even when the receiver is in reset. The receive CPU
interrupt (RINT) can be programmed to detect a new frame sync
pulse, after which the CPU can safely take the receiver out of
reset. Further initialization details are discussed in McBSP
Initialization section in this document.

McBSP Register Configuration

As shown in Figure 1, FSR, CLKS, and DR are inputs.

• Framing Signal : The polarity of the incoming frame sync
signal (/F0) has to be inverted to provide the necessary active
high input signal to the McBSP. The external frame sync pulse
dictates the arrival of a new frame and therefore the frame
period (FPER) and frame width (FWID) is not
used/programmed.

Although FSR is treated as input, FSRM bit in PCR and /FRST
bit in SPCR has to be set to 1. /FRST bit has to be set to
enable the frame sync signal generation. FSRM=1 indicates
that the internally generated FSR_int will be used to detect the
arrival of data, but will not be output on FSR pin because
GSYNC=1 disables the output buffer.

Since it is a single phase frame with each frame comprising 32
elements of 8-bits each, FRLEN1=31, and WDLEN1=0.

• Data Delay : Since there is no delay between the arrival of the
first bit of data and the generation of internal frame sync
FSR_int, the receiver should be set up for a data delay of zero.

• Clocks : Although CLKR pin of the McBSP is not used in this
set up, it is necessary to configure it as an output (which is the
default). Another important parameter is the polarity of CLKS
signal. The CLKS polarity determines the edge that samples
the incoming frame sync signal and also the edge that
generates internal clocks CLKG, CLKR_int, CLKX_int, and
internal frame sync signal FSG, FSR_int, and FSX_int. For the
Single Rate ST bus case, rising edge of CLKS does the above
function.

The various bit settings for the above requirements is shown in
Figure 3, Figure 4, Figure 5, Figure 6, and Table 1.

PRELIMINARY

12 ‘C6x McBSP Interface to a Single rate ST bus Device

Figure 3. Receive Control Register (RCR)
31 30 24 23 21 20 19 18 17 16
0 0 0 0 0 00

RPHASE RFRLEN2 RWDLEN2 RCOMPAND RFIG RDATDLY

15 14 8 7 5 4 0
0 31 0 0

reserved RFRLEN1 RWDLEN1 reserved

Figure 4. Sample Rate Generator Register (SRGR)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
1 0 0 0 0

GSYNC CLKSP CLKSM FSGM FPER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0x00

FWID CLKGDV

Figure 5. Pin Control Register (PCR)
31 16

0x0000
reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 1 0 0 0 0 0 1 0 0

rsv XIOEN RIOEN FSXM FSRM CLKXM CLKRM rsv CLKS_STAT DX_STAT DR_STAT FSXP FSRP CLKXP CLKRP

Figure 6. Serial Port Control Register (SPCR)
31 24 23 22 21 20 19 18 17 16

0x00 1 1 0 0 0 0 0
R, +0 FRST- GRST- XINTM XSYNCERR XEMPTY- XRDY XRST-

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 10 0 0 0 0

DLB RJUST CLKSTP reserved reserved reserved RINTM RSYNCERR RFULL RRDY RRST-

PRELIMINARY

‘C6x McBSP Interface to a Single rate ST bus Device 13

Table 1. Bit-Field Values for McBSP Registers

Value (in binary)Register [bit-field #] Bit-field Name

Slave (Receiver)
RCR[17:16] RDATDLY 0(default)

SPCR[5:4] RINTM 10b

SPCR[23] /FRST 1

SPCR[22] /GRST 1

SRGR[31] GSYNC 1

SRGR[29] CLKSM 0(default)

SRGR[7:0] CLKGDV 0(default)

PCR[10] FSRM 1

PCR[8] CLKRM 1

PCR[2] FSRP 1

McBSP Initialization

Typical applications use the DMA to service the McBSP. The
following steps describe the setup of interrupts, DMA, and the
McBSP in the required order.

1. Program the Sample Rate Generator Register (SRGR), Serial
Port Control Register (SPCR), Pin Control Register (PCR),
and Receive Control Register (RCR) to the values shown
above.

Caution: Do not set the /GRST bit in SPCR in this step.

2. Take the sample rate generator out of reset by setting
/GRST=1 in the SPCR.

3. Enabling Interrupts: To use interrupts, you have to set the
Global Interrupt Enable (GIE), and Non-Maskable Interrupt
Enable (NMIE) bits in the IER.

Select the DMA channel you want to use. Enable CPU
interrupts that correspond to the DMA channel that will be
used to service the McBSP. The default mapping of DMA
channel-complete interrupts to CPU is as follows:

DMA channel 0 Î CPU interrupt 8

DMA channel 1 Î CPU interrupt 9

DMA channel 2 Î CPU interrupt 11

PRELIMINARY

14 ‘C6x McBSP Interface to a Single rate ST bus Device

DMA channel 3 Î CPU interrupt 12

Since the McBSP has to be taken out of reset on the arrival of
the very first frame sync, corresponding receive interrupt mode
has to be selected in Step 1. Accordingly, RINT should be
mapped to one of the CPU interrupts (say, CPU interrupt 13)
and the corresponding enable bit set in the IER.

4. DMA initialization: Program the DMA channel for required
operation. Following would be a typical set up:

Source address = DRR

Destination address = internal memory or as required.

Transfer counter = number of elements to be transferred,
typically at least 32.

Receive synchronization event, RSYNC = REVT from McBSP

DMA interrupt bit, TCINT = enabled

Priority bit, PRI = 1; optional, but recommended.

5. Instruct the DMA to run. For example, set START=01b in the
DMA channel’s primary control register to start the DMA
without auto-initialization.

6. Now, the first frame sync that arrives on FSR will wake up the
receiver. This is done in the ISR corresponding to
CPU_INT13. The ISR should also disable this interrupt so that
subsequent frame syncs do not cause unnecessary enabling
of the receiver that has already been taken out of reset.

The receiver then provides the read sync event to the DMA, which
causes transfer of data from DRR to specified destination
address. The receiver will continue to receive data until the
required number of frames have been received.

Sample Code Setup

The example code in Appendix A through D was tested on two
‘C6201 devices, CPU0 and CPU1, on a single board. The block
diagram of this test setup is shown in Figure 7.

PRELIMINARY

‘C6x McBSP Interface to a Single rate ST bus Device 15

Figure 7 ST Bus emulator and the McBSP

CPU1- McBSP0
ST Bus Emulator

 DX0

 FSX0

CLKS0

 CPU0- McBSP1
ST Bus Compliant

DR1

FSR1

CLKS1

 PAL

fsx_in

 fsx_out

 clks

 clks24.096 MHz
2.048 MHz

McBSP0 in CPU1 is configured as the ST-bus transmitter (master)
which provides the frame sync and data. The ST bus clock in this
example is 2.048 MHz which is derived from a 4.096 MHz clock
via a PAL. The PAL uses FSX0 (fsx_in) to generate the active low
frame sync signal, fsx_out, at the appropriate rising edge of
CLKS(0/1). Signal fsx_out is equivalent to FSR_ext signal shown
in Figure 2. The PAL equations in VHDL are listed in Appendix E.
The resulting signals due to the above set up is shown in Figure 8.

PRELIMINARY

16 ‘C6x McBSP Interface to a Single rate ST bus Device

Figure 8 Timing Diagram for Example Single Rate ST Bus Setup

E1B7 E1B6 E1B5

FSR1 sampled

RDATDLY1=0
XDATDLY0=1

CLKS2

CLKS

FSX0/fsx_in

FSR1/fsx_out

FSR1_int/FSG1_int

DX0/DR1

C Functions Overview

A sample C code that initializes the ‘C6x to interface to a ST bus
device is enclosed in Appendices A through D. A brief description
of some of the routines is described below:

init_M1_srgr();
init_M0_srgr();

/* Set up SRGR values in McBSP0/1 as needed */

init_m0to1();
init_m1to0();
/* Set up SPCR0/1, PCR0/1, XCR0, RCR1 registers in
CPU0_McBSP1 and CPU1_McBSP0 */

set_interrupts();
/* Maps interrupt sources to CPU interrupts.
Hooks the ISR to the relevant CPU interrupt.
Enables GIE, NMIE, CPU_INT8, and CPU_INT13. */

reg_dump();
/* Dumps the value of McBSP registers at the end of
data transfer. */

/* The following are Interrupt Service Routines */
interrupt void
c_int08(void)
/* This ISR is entered when DMA ch0 in McBSP1 (ST bus
slave) has completed data reception. Sets the
‘recv1_done’flag. */

PRELIMINARY

‘C6x McBSP Interface to a Single rate ST bus Device 17

interrupt void
c_int11(void)
/* This ISR is entered when DMA ch2 in McBSP0 (ST bus
emulator) has completed transmitting data. Sets the
‘xmit0_done’flag. */

interrupt void
c_int13(void)
/* This ISR is executed when the first frame sync
arrives. Wakes up the receiver (/RRST=1), sets the
‘new_fsr’ flag, disables this interrupt to prevent
unnecessary setting of /RRST bit. */

Conclusion

The ‘C6x McBSP offers ease of interface and ease of use to
interface to a Single Rate ST bus. Although, double rate ST bus is
not discussed in this document, it is a fairly straightforward
interface too. This is discussed in Section 8.5.4.1 of the
TMS320C6201/C6701 Peripheral Reference Guide.

PRELIMINARY

18 ‘C6x McBSP Interface to a Single rate ST bus Device

Appendix A.
/***/
/* STB1_MASTER.C V1.00 */
/* Copyright (c) 1998 Texas Instruments Incorporated */
/***/
/*
 04/15/98: Shaku Anjanaiah

 stb1_master.c:
 McBSP0 (defined in stb1_master.c) acts as STbus emulator
 and McBSP1 (defined in stb1_slave.c) acts as single rate
 ST bus device.
*/
/*
This is a test to verify Single rate ST-bus operation using 2 C6201s.
This tcase configures CPU0_McBSP1 as ST bus master on the VDB.
FSX generated by the master has to be delayed (this is done in the
PAL) so that it is detected on the rising edge of CLKS.

CLKS drives both master and slave ST-bus devices.
*/

#include "common.h"

#define M0TO1 TRUE /* McBSP0 transmits to McBSP1 */
#define M1TO0 FALSE /* McBSP1 transmits to McBSP0 */

#define CLKGDV0 0
#define FPER0 511
#define FWID0 0

#define XFER_SIZE 128
#define XFER_TYPE DMA_STB

#define CLKSM0 CLK_MODE_CLKS
#define CLKSM1 CLK_MODE_CLKS

#define M0TO1_MSTR TRUE
#define M1TO0_MSTR TRUE

void init_m0to1(void);
void init_M0_srgr(void);

void
main(void)
{

int xfer_size;
int xfer_type;
int mcsp0to1_rate;
int mcsp1to0_rate;

xmit1_done = mcsp1to0 ? FALSE : TRUE;
recv0_done = mcsp1to0 ? FALSE : TRUE;
xmit0_done = mcsp0to1 ? FALSE : TRUE;
recv1_done = mcsp0to1 ? FALSE : TRUE;

PRELIMINARY

‘C6x McBSP Interface to a Single rate ST bus Device 19

mcsp1to0 = M1TO0;
mcsp0to1 = M0TO1;
xfer_size = XFER_SIZE;
xfer_type = XFER_TYPE;

/* Set up SRGR values as needed */
init_M0_srgr();

/* Enable sample rate generator; /GRST=1 */
MCBSP_SAMPLE_RATE_ENABLE(0);

/* Now, initialize other control registers for McBSP operation */
if (mcsp0to1)

init_m0to1();
if (mcsp1to0) { for (;;); }

/* Reset all DMA channels */
switch (xfer_type) {
case DMA_STB:

dma_reset();
set_interrupts();
/* Initialize DMA to service McBSP */
if (mcsp0to1) {/* uses ch2 for xmit */

DMA2_SRC_ADDR = (unsigned int) out0;
DMA2_DEST_ADDR = MCBSP_DXR_ADDR(0);
REG_WRITE (DMA2_XFR_COUNTER_ADDR, xfer_size);

LOAD_FIELD (DMA2_PRIMARY_CTRL_ADDR, DMA_ESIZE32,
ESIZE, ESIZE_SZ);

SET_BIT (DMA2_PRIMARY_CTRL_ADDR, TCINT);
LOAD_FIELD (DMA2_PRIMARY_CTRL_ADDR, DMA_ADDR_INC,

SRC_DIR, SRC_DIR_SZ);
LOAD_FIELD (DMA2_PRIMARY_CTRL_ADDR, DMA_DMA_PRI, PRI,

1);
LOAD_FIELD (DMA2_PRIMARY_CTRL_ADDR, SEN_XEVT0, WSYNC,

WSYNC_SZ);
DMA_START(DMA_CH2);

}
if (mcsp1to0) { for (;;); }
/* take transmitter (stb1 master) out of reset */
SET_BIT (MCBSP_SPCR_ADDR(0), XRST);
SET_BIT (MCBSP_SPCR_ADDR(0), FRST);

while (!xmit0_done);
break;

}
reg_dump();
CSR |= 0x00007000; /* PowerDown PD3 to shut off MCSP */

}

void
init_m0to1(void)
{

PRELIMINARY

20 ‘C6x McBSP Interface to a Single rate ST bus Device

/* PCR setup*/
LOAD_FIELD (MCBSP_PCR_ADDR(0), FSYNC_POL_LOW, FSXP, 1); /* fsx

inverted */
LOAD_FIELD (MCBSP_PCR_ADDR(0), M0TO1_MSTR, CLKXM, 1); /* clkx0 is

o/p */
LOAD_FIELD (MCBSP_PCR_ADDR(0), FSYNC_MODE_INT, FSXM, 1); /* fsx0

is o/p */
/* SRGR setup */
LOAD_FIELD (MCBSP_SRGR_ADDR(0), FSX_FSG, FSGM, 1);
/* XCR setup */
LOAD_FIELD (MCBSP_XCR_ADDR(0), SINGLE_PHASE, XPHASE, 1);
LOAD_FIELD (MCBSP_XCR_ADDR(0), WORD_LENGTH_8, XWDLEN1,

XWDLEN1_SZ);
LOAD_FIELD (MCBSP_XCR_ADDR(0), 31, XFRLEN1, XFRLEN1_SZ);
LOAD_FIELD (MCBSP_XCR_ADDR(0), DATA_DELAY1, XDATDLY, XDATDLY_SZ);
LOAD_FIELD (MCBSP_XCR_ADDR(0), NO_COMPAND_MSB_1ST, XCOMPAND,

XCOMPAND_SZ);
}

void
init_M0_srgr(void)
{

LOAD_FIELD (MCBSP_SRGR_ADDR(0), CLKGDV0, CLKGDV, CLKGDV_SZ);
LOAD_FIELD (MCBSP_SRGR_ADDR(0), FWID0, FWID, FWID_SZ);
LOAD_FIELD (MCBSP_SRGR_ADDR(0), FPER0, FPER, FPER_SZ);
LOAD_FIELD (MCBSP_SRGR_ADDR(0), CLK_MODE_CLKS, CLKSM, 1);
LOAD_FIELD (MCBSP_SRGR_ADDR(0), CLKS_POL_RISING, CLKSP, 1);
LOAD_FIELD (MCBSP_SRGR_ADDR(0), GSYNC_OFF, GSYNC, 1);

}

void
reg_dump(void)
{

int i;
int *m0 = (int *) MCBSP_ADDR(0);
int *m1 = (int *) MCBSP_ADDR(1);

for (i = 0; i < 10; i++) {
regdump0[i] = m0[i];
regdump1[i] = m1[i];

}
}

void
set_interrupts(void)
{

intr_init();
/* Hook interrupt service routine to an interrupt */
intr_hook (c_int11, CPU_INT11);

/* enable NMIE, default CPU interrrupt 11 correponding to DMA
channel 2 */

PRELIMINARY

‘C6x McBSP Interface to a Single rate ST bus Device 21

INTR_ENABLE(CPU_INT_NMI);/* Enable NMIE */
INTR_GLOBAL_ENABLE; /* Set GIE in CSR*/
INTR_ENABLE(11);

}

/* ================================= */
/* DMA DATA TRANSFER COMPLETION ISRS */
/* ================================= */

interrupt void
c_int11(void) /* DMA ch2 */
{

xmit0_done = TRUE;
return;

}

PRELIMINARY

22 ‘C6x McBSP Interface to a Single rate ST bus Device

Appendix B.

/***/
/* STB1_SLAVE.C V1.00 */
/* Copyright (c) 1998 Texas Instruments Incorporated */
/***/
/*
 04/15/98: Shaku Anjanaiah

 stb1_slave.c:
 McBSP0 acts as STbus emulator and McBSP1 (defined in stb1_slave.c)
 acts as single rate ST bus device.
*/
/*
This is a test to verify Single rate ST-bus operation using 2 C6201s.
This tcase configures CPU1_McBSP0 as ST bus slave on the VDB.
External FSR is derived from FSX0 and some glue logic in the PAL
so that it is detected on the rising edge of CLKS.

CLKS drives both master and slave ST-bus devices.
*/

#include "common.h"

#define M0TO1 TRUE /* McBSP0 transmits to McBSP1 */
#define M1TO0 FALSE /* McBSP1 transmits to McBSP0 */

#define CLKGDV1 0
#define FPER1 0
#define FWID1 0

#define XFER_SIZE 128
#define XFER_TYPE DMA_STB

#define CLKSM0 CLK_MODE_CLKS
#define CLKSM1 CLK_MODE_CLKS

#define M0TO1_MSTR TRUE
#define M1TO0_MSTR TRUE

void init_m0to1(void);
void init_M1_srgr(void);
volatile int new_fsr;

void
main(void)
{

int xfer_size;
int xfer_type;

xmit1_done = mcsp1to0 ? FALSE : TRUE;
recv0_done = mcsp1to0 ? FALSE : TRUE;
xmit0_done = mcsp0to1 ? FALSE : TRUE;
recv1_done = mcsp0to1 ? FALSE : TRUE;

PRELIMINARY

‘C6x McBSP Interface to a Single rate ST bus Device 23

new_fsr = FALSE;

mcsp1to0 = M1TO0;
mcsp0to1 = M0TO1;
xfer_size = XFER_SIZE;
xfer_type = XFER_TYPE;

/* Set up SRGR values as needed */
init_M1_srgr();

/* Enable sample rate generator; /GRST=1 */
MCBSP_SAMPLE_RATE_ENABLE(1);

/* Now, initialize other control registers for McBSP operation */
if (mcsp0to1)

init_m0to1();
if (mcsp1to0) { for (;;); }

/* Reset all DMA channels */
switch (xfer_type) {
case DMA_STB:

dma_reset();
set_interrupts();

/* Initialize DMA to service McBSP */
if (mcsp0to1) {/* uses ch0 for recv */

DMA0_SRC_ADDR = MCBSP_DRR_ADDR(1);
DMA0_DEST_ADDR = (unsigned int) in1;
REG_WRITE (DMA0_XFR_COUNTER_ADDR, xfer_size);
LOAD_FIELD (DMA0_PRIMARY_CTRL_ADDR, DMA_ESIZE32,

ESIZE, ESIZE_SZ);
SET_BIT (DMA0_PRIMARY_CTRL_ADDR, TCINT);
LOAD_FIELD (DMA0_PRIMARY_CTRL_ADDR, DMA_ADDR_INC,

DST_DIR, DST_DIR_SZ);
LOAD_FIELD (DMA0_PRIMARY_CTRL_ADDR, DMA_DMA_PRI, PRI,

1);
LOAD_FIELD (DMA0_PRIMARY_CTRL_ADDR, SEN_REVT1, RSYNC,

RSYNC_SZ);
DMA_START(DMA_CH0);

}
if (mcsp1to0) { for (;;); }
/* wait for first frame sync to enable receiver */
while (!new_fsr);
/* wait until all data is received */
while (!recv1_done);
break;

}
reg_dump();
CSR |= 0x00007000; /* PowerDown PD3 to shut off MCSP */

}

void
init_m0to1(void)
{

PRELIMINARY

24 ‘C6x McBSP Interface to a Single rate ST bus Device

/* PCR setup*/
LOAD_FIELD (MCBSP_PCR_ADDR(1), FSYNC_POL_LOW, FSRP, 1);/* fsr

inverted */
LOAD_FIELD (MCBSP_PCR_ADDR(1), M1TO0_MSTR, CLKRM, 1); /* clkr1 is

o/p */
LOAD_FIELD (MCBSP_PCR_ADDR(1), FSYNC_MODE_INT, FSRM, 1); /* fsx0

is o/p */
/* RCR setup */
LOAD_FIELD (MCBSP_RCR_ADDR(1), SINGLE_PHASE, RPHASE, 1);
LOAD_FIELD (MCBSP_RCR_ADDR(1), WORD_LENGTH_8, RWDLEN1,

RWDLEN1_SZ);
LOAD_FIELD (MCBSP_RCR_ADDR(1), 31, RFRLEN1, RFRLEN1_SZ);
LOAD_FIELD (MCBSP_RCR_ADDR(1), DATA_DELAY0, RDATDLY, RDATDLY_SZ);
LOAD_FIELD (MCBSP_RCR_ADDR(1), NO_COMPAND_MSB_1ST, RCOMPAND,

RCOMPAND_SZ);
/* SPCR */
LOAD_FIELD (MCBSP_SPCR_ADDR(1), RXJUST_RJZF, RJUST, RJUST_SZ);
LOAD_FIELD (MCBSP_SPCR_ADDR(1), INTM_FRAME, RINTM, RINTM_SZ);
/* Very important to enable FRST so that internal FSR_int
can be generated when GSYNC is ON */
SET_BIT (MCBSP_SPCR_ADDR(1), FRST);

}

void
init_M1_srgr(void)
{

LOAD_FIELD (MCBSP_SRGR_ADDR(1), CLKGDV1, CLKGDV, CLKGDV_SZ);
LOAD_FIELD (MCBSP_SRGR_ADDR(1), FWID1, FWID, FWID_SZ);
LOAD_FIELD (MCBSP_SRGR_ADDR(1), FPER1, FPER, FPER_SZ);
LOAD_FIELD (MCBSP_SRGR_ADDR(1), CLKSM1, CLKSM, 1);
LOAD_FIELD (MCBSP_SRGR_ADDR(1), CLKS_POL_RISING, CLKSP, 1);
LOAD_FIELD (MCBSP_SRGR_ADDR(1), GSYNC_ON, GSYNC, 1);

}

void
reg_dump(void)
{

int i;
int *m0 = (int *) MCBSP_ADDR(0);
int *m1 = (int *) MCBSP_ADDR(1);

for (i = 0; i < 10; i++) {
regdump0[i] = m0[i];
regdump1[i] = m1[i];

}
}

void
set_interrupts(void)
{

intr_init();
INTR_MAP_RESET;
intr_map(CPU_INT13, ISN_RINT1);

PRELIMINARY

‘C6x McBSP Interface to a Single rate ST bus Device 25

/* Hook interrupt service routine to an interrupt */
intr_hook (c_int08, CPU_INT8);
intr_hook (c_int13, CPU_INT13);

/* Enable NMIE and GIE */
INTR_ENABLE(CPU_INT_NMI);
INTR_GLOBAL_ENABLE;

/* default CPU interrrupt 8 correponding to DMA channel 0 */
INTR_ENABLE(8);
/* enable new frame sync interrupt in McBSP1) */
INTR_ENABLE(13);

}

/* DMA DATA TRANSFER COMPLETION ISRS */
interrupt void
c_int08(void) /* DMA ch0 */
{

recv1_done = TRUE;
return;

}

/* new frame sync interrupt wakes up the receiver */
interrupt void
c_int13(void)

{
new_fsr = TRUE;
SET_BIT (MCBSP_SPCR_ADDR(1), RRST);
INTR_DISABLE(13);
return;

}

PRELIMINARY

26 ‘C6x McBSP Interface to a Single rate ST bus Device

Appendix C.
/***/
/* COMMON.H V1.00*/
/* Copyright (c) 1997 Texas Instruments Incorporated */
/***/

#include <dma.h>
#include <emif.h>
#include <intr.h>
#include <timer.h>
#include <cache.h>
#include <hpi.h>
#include <mcbsp.h>
#include <regs.h>
#include <stdio.h>
#include <trgcio.h>
#include <stdlib.h>

/* variables used in tcase */
int mcsp0to1;
int mcsp1to0;
volatile int xmit1_done;
volatile int recv0_done;
volatile int xmit0_done;
volatile int recv1_done;

#define FALSE 0
#define TRUE 1

/* BUFFERS DEFINED IN data6201.asm */

#define BUFFER_SIZE 256
#define COMPAND_SIZE 4096

extern int in0[BUFFER_SIZE];
extern int in1[BUFFER_SIZE];
extern int out0[BUFFER_SIZE];
extern int out1[BUFFER_SIZE];
extern int regdump0[10];
extern int regdump1[10];
extern int ulawenc[BUFFER_SIZE];

extern cregister volatile unsigned int AMR;
extern cregister volatile unsigned int CSR;
extern cregister volatile unsigned int IFR;
extern cregister volatile unsigned int ISR;
extern cregister volatile unsigned int ICR;
extern cregister volatile unsigned int IER;

extern interrupt void c_nmi01(void);
extern interrupt void c_int04(void);
extern interrupt void c_int05(void);
extern interrupt void c_int06(void);

PRELIMINARY

‘C6x McBSP Interface to a Single rate ST bus Device 27

extern interrupt void c_int07(void);
extern interrupt void c_int08(void);
extern interrupt void c_int09(void);
extern interrupt void c_int10(void);
extern interrupt void c_int11(void);
extern interrupt void c_int12(void);
extern interrupt void c_int13(void);
extern interrupt void c_int14(void);
extern interrupt void c_int15(void);

#define DMA_XFER 0
#define POLL_XFER 1
#define INT_XFER 2
#define GPIO 3
#define DLB1 4
#define DLB2 5
#define SPLIT_XFER 6
#define HW_BYTE 7
#define DMA_SPI 8
#define DMA_STB 9
#define DMA_MCM_FLY 10
#define DMA_NEW_FRAMESYNC 11
#define AUTO_INIT 12
#define DMA_SORT 13
#define SPLIT_SORT 14
#define DMA_SYNCERR 15

#define DMA_BYTE 16
#define DMA_HALFWORD 17

extern void set_interrupts(void);
extern void reg_dump(void);

PRELIMINARY

28 ‘C6x McBSP Interface to a Single rate ST bus Device

Appendix D.
/***/
/* DATA6201.ASM V1.00*/
/* Copyright (c) 1997 Texas Instruments Incorporated */
/***/

.global _in0, _in1, _out0, _out1

.global _regdump0, _regdump1, _ulawenc

.data
_out0:

.eval 0, i

.loop 128

.word (i | 0x80888880) ; sets bits to check sign extension

.word i + 1 ; no sign extension

.eval i + 2, i

.endloop
_out1:

.eval 127, i

.loop 128

.word (i | 0x80888880) ; sets bits to check sign extension

.word i - 1 ; no sign extension

.eval i - 2, i

.endloop
_in0:

.loop 256

.word 0xDEADFACE

.endloop
_in1:

.loop 256

.word 0xDEADFACE

.endloop

_regdump0:
.loop 10
.word 0xDEADFACE
.endloop

_regdump1:
.loop 10
.word 0xDEADFACE
.endloop

_ulawenc:
.eval 0, i
.loop 256
.word i
.eval i+1, i
.endloop

PRELIMINARY

‘C6x McBSP Interface to a Single rate ST bus Device 29

Appendix E.

˝
--
˝
-- Copyright: Texas Instruments, Inc.
˝
--
˝
-- TI Proprietary Information
˝
-- Internal Data
˝
--

-- stb1b.vhd
--
-- Description : Generate a clean FSR using clks and clks
-- times 2 (clks2) signal. Added test bench.
--
-- Assumptions:
--
-- Operation:
--
-- Disclaimers:
--
-- Issues:
--

--
-- Revision 1 5/11/98 Shaku Anjanaiah
-- Generate delayed FSX for single rate ST bus emulation
--

--
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE WORK.std_arith.ALL;

entity stb1b_fsx is port(
clks2: in std_logic;
fsx_in: in std_logic;
clks: out std_logic;
fsx_out: out std_logic);

end stb1b_fsx;

architecture bhv of stb1b_fsx is
signal clks_q: std_logic;
signal clks_int: std_logic;

begin
clks_q <= NOT (clks_int);
DIVIDER : PROCESS
-- Generate a divide-by-2 clock

BEGIN

PRELIMINARY

30 ‘C6x McBSP Interface to a Single rate ST bus Device

wait until clks2'event AND clks2 = '1'; -- wait til rising
edge

clks_int <= clks_q;
END PROCESS DIVIDER;

clks <= clks_int;

LATCH : PROCESS
-- Generate fsx_out which is external FSR so that it
-- can be sampled on the rising edge of CLKS. Therefore,
-- rising edge of clks2 is used to latch fsx_in.

BEGIN
wait until clks2' event AND clks2 = '1';

 fsx_out <= fsx_in;
END PROCESS LATCH;

end bhv;

