TMS320 DSP Number xx.0

DESIGNERS
NOTEBOOK Brows

Nested Loop Optimization on the ‘C6x
Contributed by Richard Scales

Design Problem In many typical DSP applications, loops comprise a majority of the
number of cycles, or MIPS. Because of this, performance of loops
can greatly affect the performance of the entire application. Many
of these loops are nested loops with both an inner and outer loop.
Some common examples are FIR and 1IR filters, FFT, and DCT.
To optimize these nested loops it is necessary to consider not only
the inner loop performance, but also the outer loop performance,
especially when the inner loop count is small for execution of each
outer loop.

One technique used to optimize loops on the highly parallel ‘C6x
VelociTI architecture is software pipelining. This involves
initiating new iterations of the loop before previous iterations have
completed to obtain high throughput. This implies there are some
cycles (loop prologue) to begin executing, or pipe up, of each inner
loop and some more cycles to pipe down the loop (loop epilogue).
These cycles will be incurred each outer loop so they can affect
performance, especially when the inner loop count is small. The
more deeply pipelined the DSP is, the more cycles will be required
for the prologue and epilogue.

Figure 1 shows a simple dot product example, (with non-C6x like
single cycle loads and multiplies), where inner loop setup is 2
cycles, the prolog is 2 cycles, the epilog is 2 cycles, and the time to
execute outer loop instructions is 2 cycles. At the end of cycle 9
there is a branch back to the beginning of the loop setup (Br 1).
Thus, 8 cycles will be incurred each time this inner loop is
executed in an outer loop. As we move to deeper and deeper
pipelines in DSPs for higher clock speeds, the number of cycles of
overhead will increase. The higher the number of cycles for setup,
prolog, epilog, and outer loop instructions, and the lower the inner
loop count, the more overall nested loop performance is reduced.

Texas Instruments Incorporated

DL D2 ML SI <

cycle
add add
Setup for
Inner Loop 2 add add
Prolog 3 ldh Idh

Staging for loop4 [ldh | [ldh npy

Single-cycle “loop”> ldh ldh npy add Br

Epilog 6 npy add
Completing final
operations. add
add add
Outer Loop

Instructions 9 add add Bri

Figure 1. Nested Loop w/ Software Pipelined Inner Loop

Solution This designer notebook page will present techniques for reducing
and even eliminating the extra cycles due to inner loop setup,
prologs and epilogs normally seen in nested loops.

1) Pipeline Outer Loop

b1 D2 ML S1 s2 11 L2

cycle
add add
Setup for
Inner Loop 2 add add
3 ldh Idh

Prolog
Staging for loop4 [ldh | [ldh npy

Single-cycle “loop”> ldh ldh npy add Br

Epilog - Prolog ¢ npy add add add add
Setup - Outer Loop idh Idh
instructions.

add add add add
8 |ldh Idh npy Br5 add add
Figure 2. Nested Loop w/ Software Pipelined Outer Loop

The performance of the loop Figure 2 shows that now there are
only 3 cycles in the outer loop because now cycle 8 contains a
branch directly to the inner loop (cycle 5).

For more detailed information on this technique, consult the
section in the Assembly Optimizations Chapter on Software
Pipelining Outer Loops.

2) Conditionally Execute Outer Loop

A second and even more powerful technique for improving outer
loop performance is to conditionally execute all inner loop setup
and outer loop instructions in parallel with the inner loop. If there
are a lot of instructions for the setup and outer loop, this can slow

Texas Instruments Incorporated

down inner loop performance (there might not be enough empty
slots in the loop to do all the extra instructions). In some cases
though, this can still be an overall savings depending on the inner
loop count.

Consider the following case:

Inner loop cycles are 4 and outer loop cycles are 10. Thus the total
loop eycles are y*(4x+10) where x and y represent the number of
inner and outer loop counts respectively. If we slow down the
inner loop by 1 cycle to avoid outer loop cycles, the formula
becomes y*(5x). So for inner loop counts of x < 10, the slower
inner loop yields faster overall results.

In other cases, it is useful to unroll inner loop (to increase the
effective number of spare slots) and execute at the same inner loop
performance. This effectively eliminates all outer loop overhead.
The formula for the above example would then be y*(4x).

D1 D2 M1 S1 s2 11 L2

cycle
add add add
Setup for
Inner Loop 2 add add
3 I[dh Idh

Prolog
Staging for loop4 ldh [ldhi npy

Three-cycle "IOOp”5 Idh ldh npy add add add add

jwith Setup/Oqter 6 h Ih "y add add add add
Loop Instructions
Cond. InParallel / ldh ldh npy add Br add add

Figure 3. Conditionally Executed Outer Loop

Figure 3 shows that the inner loop has been unrolled three times
to allow enough slots to insert all loop setup and outer loop
instructions conditionally and completely avoid any outer loop
overhead.

For more detailed information on this technique, consult the
section in the Assembly Optimizations Chapter on Conditionally
Executing Outer Loops.

