
TMS320 DSP Number xx.0

DESIGNER’S
NOTEBOOK TEXAS

INSTRUMENTS

Wait-states on TMS320C6201 CPU Data accesses versus various
memory types.
Contributed by Eric Biscondi

Design Problem How many cycles is CPU stalled when performing CPU data access to the
external memory?

Solution Depending on the memory type, the time required to complete an external
memory access varies. The pipeline may stall the CPU during a various
amount of cycle (wait-states) to wait for the external memory. (Cf. CPU and
Instruction Set section 4.3.3.1) as shown in Figure 1. When performing CPU
data access, wait-states are inserted due to the pipelined nature of the Data
Memory Controller’s interface to the External Memory Interface (EMIF).

Figure 1: Example of path for a load access.

Accessing external memory, the architecture implies CPU to be stalled for a
variable amount of cycles depending on the external memory type. This
document describes the number of CPU wait-states required while accessing
the external memory from the CPU to data access. Notice that it affects only
CPU accesses (that means LD and ST instructions) and not CPU program
fetches or DMA accesses from external memory.

Number of CPU wait-states when accessing SBSRAM memory:

The SBSRAM interface can run either at CLKOUT1, or at ½ CLKOUT1.

q Single load from SBSRAM:

 13 CPU wait-states when SSCLK = CLKOUT1
17 CPU wait-states when SSCLK = ½ CLKOUT1

q Single store to SBSRAM:

 6 CPU wait-states when SSCLK=CLKOUT1

External
MemoryTMS320C6201

Internal
Data

Memory

D

A

Data Memory
Controller

CPU PINSEMIF

E3

E4

E2
E2

Preliminary

Texas Instruments Incorporated

 8 CPU wait-states when SSCLK= ½ CLKOUT1

All CPU data accesses appear as single access externally. There are no
additional CPU wait-states when performing two consecutive loads or stores
from/to SBSRAMs. Parallel load/store requests are processed consecutively
by the DMEMC without any penalty cycles. For example, two parallel loads
operation will result in 28 CPU wait-states. For the same reason, load
instruction followed by store instruction results in the sum of the wait-states
needed for the loads and the wait-states needed for the store.

Number of CPU wait-states when accessing Asynchronous memory:

The number of wait-state when accessing an asynchronous memory depends
on the setup time, strobe time, hold time defined for the CE space. The
values for the setup, strobe and hold fields are defined to match the
asynchronous memory timing requirements. Please refer to [5] for any
details about the setting of those fields. The protocol used between CPU,
DMEMC and EMIF implies a minimum number of CPU wait-states. To
describe the number of wait-states when performing CPU data access to the
external asynchronous memory, lets define x, y and z as follow:

If (setup ≤ 2) x = 2
Else x = setup

if(strobe ≤ 1) y = 1
Else y = strobe

if(hold ≤ 1) z = 1
Else z = hold

Then, the number of wait-states is described by the following equations:

q Single load from Asynchronous Memory:

wait-sates for a single load = x + y + 8 cycles

q Single store to Asynchronous Memory:

 if ((x + y + z) > 10)
 wait-states for a single store = x + y + z - 3 cycles.
 else
 wait-states for a single store = 6 cycles.

q Back-to-back stores and store followed by a load:

 Performing an asynchronous access immediately after an
asynchronous store (as consecutive stores, parallel stores or store
followed by a load), results into some penalty cycles included after
the store. The number of wait-states inserted is described by the
following equations:

Texas Instruments Incorporated

 if ((x + y + z) >= 10)
 additional wait-states = 7 cycles.
 else
 if (y + z >= 6)
 additional wait-states = 6 cycles.
 else
 additional wait-states = y + z cycles.

q Back-to-back loads and load followed by a store:

 There is no penalty cycle inserted after an asynchronous load.

 Example 1: How many cycles are required to execute a store, followed
by a load, followed by a store? (With setupload=0,
strobeload=0, holdload=0, setupstore=3,strobe store=4,
holdstore=2).

 STW ð 1 cycle + 6 wait-states + 6 penalty cycles.
 LDW ð 1 cycle + 11 wait-states + 0 penalty cycles.
 STW ð 1 cycle + 6 wait-states.

 Example 2: How many cycles does it take to perform 3 consecutive
loads from asynchronous memory with setupload=3,
strobeload=0 and holdload=0?

 LDW ð 1 cycle + 12 wait-states + 0 penalty cycles.
 LDW ð 1 cycle + 12 wait-states + 0 penalty cycles.
 LDW ð 1 cycle + 12 wait-states.

 Number of CPU wait-states when accessing SDRAM memory:

 Because SDRAM is a paged memory type, the External Memory Interface
controls SDRAM using multiplexed address information and monitors the
active row of SDRAM. During an SDRAM access, the selected bank is
activated with the row address by the ACTV command. The row stays
opened until the EMIF sends a deactivate command, DCAB, to the SDRAM.
This allows suppressing the activate-deactivate overhead when performing
burst accesses (i.e. using the DMA controller or fetching an instruction). As
all CPU data accesses appears as single accesses, even to complete multiple
consecutive accesses, the EMIF will activate the row, and then will access
the SDRAM. Performing a single access to an inactive row results in some
additional wait-states due to the deactivation of the active row as shown
below:

q Load from an active row:

 17-18 CPU wait-states. (Including the ACTV command)

q Load from an inactive row:

 41-42 CPU wait-states. (Including DCAB and ACTV)

Texas Instruments Incorporated

q Store to an active row:

 7-8 CPU wait-states (Including the ACTV command).

q Store from an inactive row:

 32-33 CPU wait-states. (Including DCAB and ACTV)

 There are no additional CPU wait-states when performing two consecutive
loads or stores from/to SDRAM. There is no difference when performing two
consecutive accesses to different banks or to the same bank. In both cases, a
DCAB command needs to be issued by the EMIF.

Number of CPU wait-states when accessing the peripheral bus:

To control on-chip peripherals, the CPU is accessing on-chip control
registers through the peripheral bus. CPU accesses through the peripheral
bus controller causes 6 wait-states.

Conclusion :

CPU data access to external memory implies a certain amount of wait-states
depending on the memory type. These wait-states are due to the number of
the registers between the CPU and the external memories. On the other
hand, the Program Memory Controller (PMEMC) or through the DMA
Controller are accessing the external memory in burst mode, which allows to
accessing up to one data per cycles. Depending on the type of memory, the
number of wait-states on CPU data accesses may be important therefore it is
more efficient to perform all data movements using one of the DMA channel
than transferring data using the CPU.

References [1]. TMS320C6201 Data Sheet, Texas Instruments 1997.
[2]. TMS320C62xx Peripherals, Reference Guide, Texas Instruments 1997.
[3]. TMS62812A –10ns Data Sheet, Texas Instruments 1997.
[4]. Interfacing the TMS320C62xx to External SDRAM, Application Note.
[5]. Interfacing the TMS320C62xx to External Asynchronous SRAM,

Application Note.
[6]. Interfacing the TMS320C62xx to External SBSRAM, Application Note.

