
‘C6x Optimization Checklist

Because most of the MIPs in many DSP
applications occur in tight loops, it is important for
the C6x code generation tools to be able to make
maximal use of all the hardware resources in
important loops. Fortunately, loops inherently
have more parallelism because there are multiple
iterations of the same code executing with limited
dependencies between each iteration. Through a
technique called software pipelining, the C6x
code generation tools are able to efficiently use the
multiple resources of the VelociTI architecture and
obtain very high performance. Example 1 shows
the code development flow recommended to
achieve the highest performance on loops:

Phase Description
1 Compile and Profile native C code

• Validates original C code
• Determines which loops are most

important in terms of MIPS
requirements

2 Add const declarations and loop count
information
• Reduces potential pointer aliasing

problems
• Allows loops with indeterminate

iteration counts to execute epilogs
3 Optimize C code using intrinsics and other

methods
• Facilitates use of certain C6x

instructions not easily represented in C
• Optimizes data flow bandwidth

4a Write linear assembly
• Allows control in determining exact

C6x instructions to be used
• Provides flexibility of hand coded

assembly without worry of pipelining,
parallelism, or register allocation

• Can pass memory bank information to
the tools

4b Add partitioning information to the linear
assembly
• Can improve partitioning of loops

when necessary
• Can avoid bottlenecks of certain

hardware resources

Example 1. Code Development Phases

If at any phase in the flow, the desired
performance is achieved, there is no need to move
to the next phase. Each of the phases in the
development involve passing more information to
the ‘C62xx tools. Even at the final phase,
development time is greatly reduced from that of
hand coding, and the performance is approaching
the best that could be achieved by hand.

Internal benchmarking efforts at Texas
Instruments have shown that most loops achieve
maximal throughput after phases 1 and 2. For
those that do not, the C compiler offers a rich set
of optimizations that can allow more optimization
and fine tuning all from the high level C language.
Finally, for the few loops that need further
optimizations, there is the Linear Assembly
Optimizer, which was developed to give the
programmer more flexibility than C can offer, still
work with in the framework of C, and be much
like programming in higher level C. For more
information on the Linear Assembly Optimizer,
refer to the Optimizing Assembly chapters in the
Programmer’s Guide and the Optimizing C
Compiler User’s Guide. For example linear
assembly files look in the demo directory included
with the C6x tools.

In order to aide the development process a
Feedback Option (-mw) is included in the code
generation tools. Example 2 shows output from
the Compiler and/or Assembly Optimizer of a
particular loop. Refer to section 3.2.2 in the
Optimizing C Compiler Book for more
information.

;*---------------------------------------*
;* SOFTWARE PIPELINE INFORMATION
;*
;* Loop label : LOOP
;* Loop Carried Dependency Bound : 3
;* Unpartitioned Resource Bound : 3
;* Partitioned Resource Bound(*) : 4
;* Resource Partition:
;* A-side B-side
;* .L units 0 0
;* .S units 2 2
;* .D units 2 2
;* .M units 2 2
;* .X cross paths 4* 3
;* .T address paths 2 2
;* Long read paths 1 0
;* Long write paths 0 0
;* Logical ops (.LS) 4 1
;* Addition ops (.LSD) 2 1
;* Bound(.L .S .LS) 3 2
;* Bound(.L .S .D .LS .LSD)4* 2
;*
;* Searching for software pipeline schedule
;* at ii = 4 Failed register allocation
;* ii = 5 Schedule found with 4
;* iterations in parallel
;* Done
;*--*

Example 2. Example Feedback

This Feedback is key in determining which
optimizations might be useful for further improved
performance. The following checklist is provided
as a quick reference to techniques that can be used
to optimize loops with references to more detailed
documentation:

C6x Optimization Checklist

Feedback Solution

Loop Carried Dependency
Bound is much larger than
Unpartitioned Resource Bound

C Code
9�Use -pm program level optimization to reduce memory pointer aliasing (Ref

3.2.2.2 in PG)
9�Add const declarations to all pointers passed to a function that are read only

(Ref 3.2.2.1 in PG)
9�Use -mt option to assume no memory pointer aliasing (Ref 3.2.2 in PG)
9�Declare loop counters and array indexes as type int (Ref 3.1.1 in PG)
Linear Assembly
9�Make sure instructions accessing memory at the beginning of the loop do

not use the same pointer variables as instructions accessing memory at the
end of the loop (Ref 5.6.3 in PG)

Partitioned Resource Bound is
higher than Unpartitioned
Resource Bound

9�Write code in Linear Assembly with partitioning/functional unit
information (Ref 5.3.4 in PG)

Too many instructions, or
inefficient instructions were
generated by the compiler

9�Use intrinsics in C code to pick force more efficient C6x instructions (Ref
3.3.1 in PG)

9�Write code in Linear Assembly to pick exact C6x instruction to be executed
(Ref 4.3 in CG)

Failed to software pipeline due
to Register live too long

9�Write Linear Assembly and insert MV instructions to split register lifetimes
that are live too long (Ref 5.9.4.4 in PG)

Failed to software pipeline due
to register allocation

9�Try splitting the loop into two separate loops
9�If multiple conditionals are used in the loop register allocation of the

condition registers could be the reason for the failure. Try writing linear
assembly and partition all instructions writing to a condition register evenly
between the A and B sides of the machine. If there are an uneven number
put more on the B side as there are 3 condition registers on the B side and 2
on the A side.

T address paths are Resource
Bound

C Code
9�Use word access for short arrays - declare int * adn use mpy intrinsics to

multiply upper and lower halves of registers (Ref 3.3.2 in PG)
9�Try to employ redundant load elimination technique if possible (Ref 5.10 in

PG)
Linear Assembly
9�Use LDW/STW instructions for accesses to memory (Ref 5.3 in PG)

There are memory bank conflicts
(specified in the memory
analysis window of simulator)

9�Write Linear Assembly and use the .mptr directive (Ref 5.11 in PG)

Large outer loop overhead in
nested loop

9�Unroll inner loop (Ref 3.3.3.4 & 5.8 in PG)
9�Make one loop with outer loop instructions conditional on an inner loop

counter (Ref 5.13 in PG)

Uneven resources (i.e. 3
multiplies per loop iteration)

9�Unroll loop to make even number of resources (Ref 5.8 in PG)

Two loops are generated, one
not software pipelined.

9�Use _nassert statement to specify loop count info (Ref 3.3.3.3 in PG)

Loop will not software pipeline
for other reasons

9�Make sure there are no function calls, branches to other code, or conditional
break statements in loop (Ref 3.3.3.5 in PG)

9�Try making the loop counter downcounting and declared an int in C (Ref
3.1.1 & 3.3.3.1 in PG)

9�Remove any modifications to the loop counter inside the loop (Ref 3.3.3.5
in PG)

PG - Programmer’s Guide CG - C Compiler User’s Guide

