
Application Report
SPRA577B

Digital Signal Processing Solutions November 2000

Using the TMS320 DSP Algorithm Standard in a
Static DSP System

Carl Bergman Digital Signal Processing Solutions

Abstract

The TMS320 DSP Algorithm Standard is part of TI's eXpressDSP (XDAIS) technology
initiative. It allows system designers to easily integrate algorithms from a variety of
sources (e.g., third parties, customers). However, in system design, flexibility comes with
a price.

This price is paid in CPU cycles and memory space, both critical in all DSP systems, but
perhaps most critical in a static system. For this application note, a static system is
defined as one in which memory is allocated once and is used for the remainder of the
system's life – there is no effort to reclaim or reuse memory. In contrast, a dynamic
system is one in which the memory is reused while the application is executing. A
dynamic system takes advantage of the available memory by sharing it between
algorithms, by reclaiming it when an algorithm is deactivated, and by reusing it when
another algorithm is activated.

Algorithms that comply with the TMS320 DSP Algorithm Standard are tested and
awarded an eXpressDSP compliant mark upon successful completion of the test. This
application note shows how an eXpressDSP-compliant algorithm may be used effectively
in a static system with limited memory. It examines some optimizations and illustrates
them with a very simple example: an algorithm that copies input to output. The impact in
terms of code size, data size, and CPU cycles will be demonstrated.

Application Report
SPRA577B

Using the TMS320 Algorithm Standard in a Static DSP System 2

Contents

Theory of Operation .. 3

Review of TMS320 DSP Algorithm Standard Fundamentals... 3
Naming Conventions.. 3
Interface Function Summary... 4

Sequence of Builds... 6
Build 1: No eXpressDSP Interface – Access Algorithm Directly.. 6
Build 2: Using the High Level Interface, 'CPY' ... 8
Build 3: Using and Removing Subsections in the Linker Command File ..10
Build 4: Removing the Code from the CPY High-Level Interface ...12
Build 5: Using Only the SPI – Creating the Object at Design Time ..12

Conclusion ..13
References ...14
TI Contact Numbers..15

Figures

Figure 1. Test Program ... 6
Figure 2. Build 1 Code Size... 8
Figure 3. Using the TMS320 Algorithm Standard Interface ... 9
Figure 4. Build 2 Code Size..10
Figure 5. Define Subsections ...11
Figure 6. NOLOAD Section in Linker Command File ...11
Figure 7. Build 3 Code Size..11

Application Report
SPRA577B

Using the TMS320 Algorithm Standard in a Static DSP System 3

Theory of Operation

The TMS320 DSP Algorithm Standard provides a general-purpose interface that allows
efficient use of a large variety of algorithms in a large variety of systems. However, the
full capability of the interface may not be useful in all systems. In a static system we
might allocate memory at design-time and initialize the algorithm at power-on and never
change anything else. In such a system, the code implementing the create and delete
functions, although never used, would take up valuable memory.

This application note follows an example program through a sequence of steps aimed at
reducing code size by linking only the required functions. The unused code is assigned to
a subsection that will not be loaded by the linker. The steps in the examples involve
incrementally more programming effort. The result is that the code is smaller and less
memory is used.

We begin with a typical implementation of the interface and then illustrate the process
with several optimizations. The first build provides a baseline for comparison. It calls the
algorithm directly with no algorithm standard interface. The second build adds the full
algorithm standard interface. The remaining examples simplify the use of the interface
and recover the memory from the unused functions.

Review of TMS320 DSP Algorithm Standard Fundamentals

Some of the key structures of an eXpressDSP-compliant algorithm are:

� Memory Table: Describes what memory the algorithm needs in order to operate

� Creation Parameters: Describes how the algorithm should be initialized

� Status Information: Describes the current state of the algorithm

� Function Table: Describes the operations available for the algorithm

There are two levels of access to the algorithm:

1) The service provider interface (SPI) provides the most direct access.

2) The application programmer's interface (API) provides an alternate, more convenient
interface.

The high-level functions of the API use the SPI to create and control the algorithm and to
process data.

Naming Conventions

The TMS320 Algorithm Standard naming convention ensures that implementations of the
same algorithm from different vendors can co-exist without duplicate symbols. This is
made possible by defining a two-part prefix to external symbols. Part one of the prefix
represents the algorithm and part two represents the vendor.

Application Report
SPRA577B

Using the TMS320 Algorithm Standard in a Static DSP System 4

In our example, the symbol for the 'copy' algorithm is the mnemonic 'CPY'. The symbol
for the vendor “Texas Instruments” is the acronym 'TI'. This yields the prefix 'CPY_TI_'.
An example of a function name using this prefix would be CPY_TI_create(). This name
indicates that TI implements the create function for the copy algorithm.

An example of an interface name would be 'CPY_TI_ICPY'. This name indicates that TI
implements the interface to the copy algorithm (ICPY) for the copy algorithm. This may
sound redundant, but there are other possible interfaces to the copy algorithm. For
example, the test interface (ITST) in this example would be named 'CPY_TI_ITST'.

Interface Function Summary

The functions that implement the two levels of access (API and SPI) may be organized
according to whether they apply to all algorithms (generic), apply to a specific algorithm
(algorithm-specific), or apply to a specific implementation of an algorithm (vendor-
specific). The naming convention helps here as well. The generic create function would
be ALG_create(). The algorithm-specific create function would be CPY_create() with the
copy algorithm mnemonic as a prefix. The vendor-specific function (if TI was the vendor)
would have the name CPY_TI_create().

Functions beginning with 'CPY_' (Algorithm Specific API)

The algorithm-specific API is the most convenient access to the algorithm and is a
superset of the TMS320 algorithm standard API.

CPY_activate() Prepare the algorithm to run

CPY_control() Command and status mechanism

CPY_create() Allocate memory and initialize a new algorithm instance

CPY_deactivate() Prepare the algorithm to be inactive or possibly deleted

CPY_delete() Remove algorithm instance and deallocate the memory used

CPY_exit() Finalize module other than deleting algorithm instance

CPY_init() Initialize module other than creating algorithm instance

CPY_process() Process data

Functions Beginning With 'ALG_' (Standard API)

The following do not include the algorithm-specific processing function calls.

ALG_activate() Prepare the algorithm to run

ALG_control() Command and status mechanism

ALG_create() Allocate memory and initializes a new algorithm instance

ALG_deactivate() Prepare the algorithm to be inactive or possibly deleted

ALG_delete() Remove algorithm instance and deallocate the memory used

ALG_exit() Finalize module other than deleting algorithm instance

ALG_init() Initialize module other than creating algorithm instance

Application Report
SPRA577B

Using the TMS320 Algorithm Standard in a Static DSP System 5

The CPY_IALG Interface (Standard SPI)

The IALG interface functions are described in the comments field of the ialg.h file.

/*

 * ======== IALG_Fxns ========

 * This structure defines the fields and methods that must be supplied by

 * all XDAIS algorithms.

 *

 * implementationId - unique pointer that identifies the module

 * implementing this interface.

 * algActivate() - notification to the algorithm that its memory

 * is "active" and algorithm processing methods

 * may be called. May be NULL; NULL => do nothing.

 * algAlloc() - apps call this to query the algorithm about

 * its memory requirements. Must be non-NULL.

 * algControl() - algorithm specific control operations. May be

 * NULL; NULL => no operations supported.

 * algDeactivate() - notfication that current instance is about to

 * be "deactivated". May be NULL; NULL => do nothing.

 * algFree() - query algorithm for memory to free when removing

 * an instance. Must be non-NULL.

 * algInit() - apps call this to allow the algorithm to

 * initialize memory requested via algAlloc(). Must

 * be non-NULL.

 * algMoved() - apps call this whenever an algorithms object or

 * any pointer parameters are moved in real-time.

 * May be NULL; NULL => object can not be moved.

 * algNumAlloc() - query algorithm for number of memory requests.

 * May be NULL; NULL => number of mem recs is less

 * then IALG_DEFMEMRECS.

 */

The CPY_ICPY Interface (Standard SPI Plus Algorithm Extensions)

The algorithm extensions provide the data processing function.

cpyProcess() Copy data from input buffer to output buffer

The CPY_TI_ICPY Interface (Standard SPI Plus Algorithm Extensions
Plus Vendor's Extensions)

The copy algorithm has no vendor extensions.

Application Report
SPRA577B

Using the TMS320 Algorithm Standard in a Static DSP System 6

Sequence of Builds

Build 1: No eXpressDSP Interface – Access Algorithm Directly

The first build is for comparison purposes. The test program accesses the algorithm
directly. The copy algorithm only needs the count field in the object and the input and
output data buffers. Note that the eXpressDSP header files are included to support the
use of the ICPY_TI_Obj structure, which is expected by the algorithm. Figure 1 shows
the code from main() of the test program.

The system resources used are measured in terms of code size and CPU cycles. The
code size is shown in the excerpt from the linker map file in Figure 2. The CPU cycles for
the data processing function are determined with the profiler in Code Composer Studio
[1].

Program Memory Used 37,408 bytes

Data Memory Used 4,480 bytes

CPU Cycles Used 20441 (average of 3 runs on a C6201 EVM card)

Figure 1. Test Program

/*

 * build1.c

 */

#include <stdio.h> // access to printf()

#include <std.h> // basic data types

#include <xdais.h> // XDAIS data types

#include <ialg.h> // IALG standard

#include <icpy.h> // ICPY standard

#include <icpy_ti.h> // ICPY implementation

#include <copydata.h> // algorithm implementation

/* test data */

#define COPY_COUNT 16

#define BUFFER_SIZE 80

Char * testString = "eXpress DSP Algorithm Standard";

Char buffer[BUFFER_SIZE];

Int main()

{

 ICPY_TI_Handle handle;

 ICPY_TI_Obj cpyObj;

 Char *cp, *input, *output;

 Int i;

 printf("build1 1999 0802 1036\n");

Application Report
SPRA577B

Using the TMS320 Algorithm Standard in a Static DSP System 7

 /* init test buffers -- */

 input = testString;

 output = buffer;

 /* clear output buffer */

 cp = output;

 for (i = BUFFER_SIZE; i > 0; i--) {

 *cp++ = (Char)0;

 }

 printf("input: %s\n", input);

 printf("output: %s\n", output);

 /* init the algorithm ---------------------------------------*/

 handle = (ICPY_TI_Handle)&cpyObj;

 /* if create failed then exit (can't happen but keep consistent) */

 if (handle == NULL) {

 printf ("object creation failed\n");

 exit(1);

 }

 else {

 printf ("object created\n");

 }

 /* use the algorithm --*/

 /* set the count of bytes to copy */

 printf ("cpyControl\n"); // for fair code comparison

 printf ("ICPY_SET_COPY_COUNT\n"); // for fair code comparison

 cpyObj.count = 5;

 i = 1; // place profile point here

 /* do the copy operation */

 printf ("cpyProcess\n"); // for fair code comparison

 copyData(handle, input, output);

 i = 0; // place profile point here

 /* report results --- */

 printf("copy %d bytes, output: %s\n", cpyObj.count, output);

 printf("end of build1\n");

 /* for fair code size comparison: from the control function */

 printf ("ICPY_READ_STATUS\n");

 printf ("ICPY_WRITE_STATUS\n");

 printf ("default case!\n");

 return(0);

}

Application Report
SPRA577B

Using the TMS320 Algorithm Standard in a Static DSP System 8

Figure 2. Build 1 Code Size

MEMORY CONFIGURATION

 name origin length used attributes fill

 -------- -------- --------- -------- ---------- --------

 PMEM 00000000 000010000 00000000 RWIX

 EXT0 00400000 000040000 00000000 RWIX

 EXT1 01400000 000300000 00000000 RWIX

 EXT2 02000000 000400000 00009220 RWIX

 EXT3 03000000 000400000 00000000 RWIX

 DMEM 80000000 000010000 00001180 RWIX

SECTION ALLOCATION MAP

section page origin length input sections

-------- ---- ---------- ---------- ----------------

.text 0 02000000 00008500

.cinit 0 02008500 00000414

.cio 0 02008914 00000120 UNINITIALIZED

.far 0 02008a34 000007ec UNINITIALIZED

.stack 0 80000000 00000800 UNINITIALIZED

.bss 0 80000800 00000054 UNINITIALIZED

.const 0 80000854 0000012c

.sysmem 0 80000980 00000800 UNINITIALIZED

Build 2: Using the High Level Interface, 'CPY'

The second build represents a baseline of using the copy algorithm in a static system
with an algorithm standard interface.

The code is built using Code Composer Studio (CCStudio) with the following
components:

Build2.mak Code Composer Studio Project File

Build2.c Test Program

mem.c Memory Allocation Utility

cpy.c Algorithm Specific High Level Interface

alg.c Standard High Level Interface

cpy.lib Algorithm Library

Build2.cmd Linker Command File

System resources used:

Build 1 Build 2 Change

Program Memory (bytes) 37408 40456 3048

Data Memory (bytes) 4480 4615 135

CPU Cycles 20441 21343 902

Application Report
SPRA577B

Using the TMS320 Algorithm Standard in a Static DSP System 9

The code in Figure 3 is an excerpt from the function main() in build2.c and shows the
following steps:

1) Using the high level CPY API, an instance of the algorithm is created.

2) The copy count is then changed from the default value with a control call and the
copy process is run on the input and output buffers.

3) Finally, a control call is made to retrieve status, which in our case simply proves we
can find out what the copy count was.

Figure 3. Using the TMS320 Algorithm Standard Interface

 /* init the algorithm --------------------------------------- */

 /* create an instance of the algorithm object */

 handle = CPY_create(&CPY_ICPY, ¶mDefaults);

 /* if create failed then exit */

 if (handle == NULL) {

printf ("object creation failed\n");

exit(1);

 }

 else {

printf ("object created\n");

 }

 /* use the algorithm -- */

 /* set the count of bytes to copy */

 CPY_control(handle, ICPY_SET_COPY_COUNT, (Void *)5);

 i = 1; /* place profile point here */

 /* do the copy operation */

 CPY_process(handle, input, output);

 i = 0; /* place profile point here */

 /* read back the copy count */

 CPY_control(handle, ICPY_READ_STATUS, &status);

Application Report
SPRA577B

Using the TMS320 Algorithm Standard in a Static DSP System 10

Figure 4 is an excerpt from the Build 2 linker map file.

Figure 4. Build 2 Code Size

MEMORY CONFIGURATION

 name origin length used attributes fill

 -------- -------- --------- -------- ---------- --------

 PMEM 00000000 000010000 00000000 RWIX

 EXT0 00400000 000040000 00000000 RWIX

 EXT1 01400000 000300000 00000000 RWIX

 EXT2 02000000 000400000 00009e08 RWIX

 EXT3 03000000 000400000 00000000 RWIX

 DMEM 80000000 000010000 00001207 RWIX

SECTION ALLOCATION MAP

section page origin length input sections

-------- ---- ---------- ---------- ----------------

.text 0 02000000 00009080

.cinit 0 02009080 0000047c

.cio 0 020094fc 00000120 UNINITIALIZED

.far 0 0200961c 000007ec UNINITIALIZED

.stack 0 80000000 00000800 UNINITIALIZED

.bss 0 80000800 0000008c UNINITIALIZED

.const 0 8000088c 0000017b

.sysmem 0 80000a08 00000800 UNINITIALIZED

Build 3: Using and Removing Subsections in the Linker
Command File

In the next build, the code is the same as Build 2 (refer to Figure 3). We now add
pragma directives to all the interface levels to assign an input subsection for each
function statement (see Figure 5). This allows us to selectively include or exclude the
subsections in the link process.

System resources used:

Build 1 Build 3 Change

Program Memory (bytes) 37408 39432 2024

Data Memory (bytes) 4480 4615 135

CPU Cycles 20441 21132 691

Application Report
SPRA577B

Using the TMS320 Algorithm Standard in a Static DSP System 11

Figure 5. Define Subsections

#pragma CODE_SECTION(CPY_activate, ".text:algActivate")

#pragma CODE_SECTION(CPY_apply, ".text:algApply")

#pragma CODE_SECTION(CPY_control, ".text:algControl")

#pragma CODE_SECTION(CPY_create, ".text:algCreate")

#pragma CODE_SECTION(CPY_deactivate, ".text:algDeactivate")

#pragma CODE_SECTION(CPY_delete, ".text:algDelete")

#pragma CODE_SECTION(CPY_exit, ".text:algExit")

#pragma CODE_SECTION(CPY_init, ".text:algInit")

Subsections are selected in the linker command file. By specifying a NOLOAD output
section, the unused code is removed from the program image (see Figure 6). The code
is built the same way as in Build 2.

Figure 6. NOLOAD Section in Linker Command File

SECTIONS

{

 ...

 .notUsed {

* (.text:algActivate)

* (.text:algApply)

* (.text:algDeactivate)

* (.text:algDelete)

* (.text:algExit)

* (.text:algInit)

* (.text:algMoved)

* (.text:algNumAlloc)

 } type = NOLOAD > EXT3

 ...

}

Figure 7 is an excerpt from the Build 3 linker map file.

Figure 7. Build 3 Code Size

MEMORY CONFIGURATION

 name origin length used attributes fill

 -------- -------- --------- -------- ---------- --------

 PMEM 00000000 000010000 00000000 RWIX

 EXT0 00400000 000040000 00000000 RWIX

 EXT1 01400000 000300000 00000000 RWIX

 EXT2 02000000 000400000 00009a08 RWIX

 EXT3 03000000 000400000 00000400 RWIX

 DMEM 80000000 000010000 00001207 RWIX

Application Report
SPRA577B

Using the TMS320 Algorithm Standard in a Static DSP System 12

SECTION ALLOCATION MAP

section page origin length input sections

-------- ---- ---------- ---------- ----------------

.text 0 02000000 00008c80

.cinit 0 02008c80 0000047c

.cio 0 020090fc 00000120 UNINITIALIZED

.far 0 0200921c 000007ec UNINITIALIZED

.stack 0 80000000 00000800 UNINITIALIZED

.bss 0 80000800 0000008c UNINITIALIZED

.const 0 8000088c 0000017b

.sysmem 0 80000a08 00000800 UNINITIALIZED

.notUsed 0 03000000 00000400 NOLOAD SECTION

Build 4: Removing the Code from the CPY High-Level Interface

In the fourth build, we replace the calls to the CPY interface (CPY_* functions) with
macros that call the standard API (ALG_* functions) and the SPI. The three macros
shown replace the corresponding function calls to CPY_control(), CPY_create() and
CPY_process().

 #define CPY_CONTROL(alg, cmd, status) \

 ((alg->fxns->ialg.algControl)((IALG_Handle)alg, cmd, status));

 #define CPY_CREATE(fxns, prms) \

 (CPY_Handle)ALG_create((IALG_Fxns *)fxns, (IALG_Params *)prms);

 #define CPY_PROCESS(alg, input, output) \

 (alg->fxns->cpyProcess)((ICPY_Handle)alg, input, output);

This allows us to eliminate the file cpy.c from our build. The rest remains the same.

System resources used:

Build 1 Build 4 Change

Program Memory (bytes) 37408 39224 1816

Data Memory (bytes) 4480 4611 131

CPU Cycles 20441 20725 284

Build 5: Using Only the SPI – Creating the Object at Design Time

In Build 5, we remove the remaining API code in alg.c from the program. We can do this
because we are going to 'create' the object and declare the data structures the algorithm
requires at design time in the test program. Four steps are required for this build:

1) Allocate the space for the memory descriptor table.
memTab =

(IALG_MemRec *)malloc(sizeof(memTab[IALG_DEFMEMRECS]));

Application Report
SPRA577B

Using the TMS320 Algorithm Standard in a Static DSP System 13

2) Plug in the addresses of our allocated object and working memory to the memory
descriptor table.

memTab[CPY_OBJ_DATA].base =

(void *)malloc(sizeof(ICPY_TI_Obj));

memTab[CPY_DATA_RAM].base =

(void *)malloc(sizeof(cpyDataRam));

3) Set the value of our handle to the algorithm. We also set the address of the function
table in the object. Previously ALG_create() set the function table address and
returned the value of our handle.

handle = (CPY_Handle)memTab[CPY_OBJ_DATA].base;

handle->fxns = &CPY_ICPY;

4) Initialize the algorithm. For this, we call the SPI directly with the parameters it
expects. If the initialization fails, the handle is set to NULL.

 if (handle->fxns->ialg.algInit(

 (IALG_Handle)handle, memTab,

 NULL, (IALG_Params *)¶mDefaults

) != IALG_EOK) {

 handle = NULL;

 }

Now with alg.c and mem.c removed from the program (memory allocation is no longer
used) and with the subsection .text:algAlloc placed in the .notUsed section, we build the
program as before.

System resources used:

Build 1 Build 5 Change

Program Memory (bytes) 37408 38232 824

Data Memory (bytes) 4480 4611 131

CPU Cycles 20441 20653 212

Conclusion

These build techniques allowed us to reduce the program memory overhead for using the
algorithm standard from 3048 bytes to 824 bytes, a 70% reduction. This was
accomplished by using only the service provider interface (SPI) and by placing unused
code in a NOLOAD section.

Build 1 Build 2 Build 3 Build 4 Build 5

Program Memory 37408 40456 39432 39224 38232

Change 3048 2024 1816 824

Percent of XDAIS 100.00% 66.40% 59.58% 27.03%

The data memory was not really affected, with a change of only 4 bytes from Build 3 to
Build 4.

Application Report
SPRA577B

Using the TMS320 Algorithm Standard in a Static DSP System 14

Build 1 Build 2 Build 3 Build 4 Build 5

Data Memory 4480 4615 4615 4611 4611

Change From Build 1 135 135 131 131

The CPU cycle count for the data processing call was measured with the profiler in Code
Composer Studio. Because our copy algorithm has only 160 bytes of code, it is important
to note that the percentage of overhead of the algorithm standard interface in a more
realistic algorithm would be much smaller than what is shown.

With that in mind, the most direct use of the SPI gives us a cycle count of 212 – a little
more than 1% of the total cycles used in the data processing call. This is less than 24%
of the 902 cycles used with the full algorithm standard interface in Build 2.

Build 1 Build 2 Build 3 Build 4 Build 5

CPU Cycles 20441 21343 21132 20725 20653

Change 902 691 284 212

Percent of Total 4.41% 3.38% 1.39% 1.04%

In an actual case with a G.723 algorithm, the processing call takes an average of
375,000 cycles, and the overhead of 212 cycles would be less than 0.1%. The overhead
of the full interface at 902 cycles would be less than 0.25%.

Finally, the following chart summarizes the improvements in program memory for the
examples given.

eXpressDSP Overhead On Program Memory

0

1000

2000

3000

4000

Build 2 Build 3 Build 4 Build 5

B
y
te

s

References

1. Code Composer Studio User's Guide, SPRU328.
2. TMS320C6000 Assembly Language Tools User's Guide, SPRU186.
3. TMS320 DSP Algorithm Standard Rules and Guidelines, SPRU352.
4. TMS320 DSP Algorithm Standard API Reference, SPRU360.

Application Report
SPRA577B

Using the TMS320 Algorithm Standard in a Static DSP System 15

TI Contact Numbers

INTERNET

TI Semiconductor Home Page
www.ti.com/sc

TI Distributors
www.ti.com/sc/docs/distmenu.htm

PRODUCT INFORMATION CENTERS

Americas
Phone +1(972) 644-5580
Fax +1(972) 480-7800
Email sc-infomaster@ti.com

Europe, Middle East, and Africa
Phone

Deutsch +49-(0) 8161 80 3311
English +44-(0) 1604 66 3399
Español +34-(0) 90 23 54 0 28
Francais +33-(0) 1-30 70 11 64
Italiano +33-(0) 1-30 70 11 67

Fax +44-(0) 1604 66 33 34
Email epic@ti.com

Japan
Phone

International +81-3-3344-5311
Domestic 0120-81-0026

Fax
International +81-3-3344-5317
Domestic 0120-81-0036

Email pic-japan@ti.com

Asia
Phone

International +886-2-23786800
Domestic

Australia 1-800-881-011
TI Number -800-800-1450

China 10810
TI Number -800-800-1450

Hong Kong 800-96-1111
TI Number -800-800-1450

India 000-117
TI Number -800-800-1450

Indonesia 001-801-10
TI Number -800-800-1450

Korea 080-551-2804
Malaysia 1-800-800-011

TI Number -800-800-1450
New Zealand 000-911

TI Number -800-800-1450
Philippines 105-11

TI Number -800-800-1450
Singapore 800-0111-111

TI Number -800-800-1450
Taiwan 080-006800
Thailand 0019-991-1111

TI Number -800-800-1450
Fax 886-2-2378-6808
Email tiasia@ti.com

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue

any product or service without notice, and advise customers to obtain the latest version of relevant information

to verify, before placing orders, that information being relied on is current and complete. All products are sold

subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those

pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in

accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent

TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily

performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating

safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent

that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other

intellectual property right of TI covering or relating to any combination, machine, or process in which such

semiconductor products or services might be or are used. TI’s publication of information regarding any third

party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  2000, Texas Instruments Incorporated

