{9 TeEXAS
INSTRUMENTS

DTMF Tone Generation and

Detection
An Implementation Using the TMS320C54x

Application

Report

1997 Digital Signal Processing Solutions

*’:‘ TEXAS
INSTRUMENTS

Printed in U.S.A., June 1997 SPRA096

DTMF Tone Generation and Detection

An Implementation Using the TMS320C54x

&

PRINTED WITH

SOYINK|_

SPRA096
June 1997

b TEXAS

INSTRUMENTS

o

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

Tlwarrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent Tl deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer.
Use of Tl products in such applications requires the written approval of an appropriate Tl officer.
Questions concerning potential risk applications should be directed to Tl through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does Tl warrant or
representthat any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 00 1997, Texas Instruments Incorporated

Contents

1 INtrodUCHION .ot e 1
2 DTMF Tone GENEBIAIOr ..ttt e e e e e 2
3 DTMF Tone DeteCtOr ..o e e 5
3.1 Collecting Spectral Information 5
3.2 Modifications to the Goertzel Algorithm 7
3.3 Validity Checks 8
3.4 Program Flow Description of the DTMF Detector 10
3.5 Multichannel DTMF Tone Detectionttt e 13
4 Speed and Memory ReqUIrEMENtSttt e e 14
P OrmMaNCE . ..o e e e 15
5.1 MITEL TESES .ottt e e e e 15
5.2 BELLCORE Talk-Off TeSt .. oot e e e e e e 18
B SUMIMIAIY .o 19
REEIENCES . o 20
Appendix A Background: Digital Oscillators A-1
A.1 Digital Sinusoidal Oscillators A-1
Appendix B Background: Goertzel Algorithm B-1
B.1 Goertzel Algorithm o B-1
Appendix C DTMF Tone Generator Code LisSting ...ttt C-1
C.1 DTMF Tone Generator Executable on a TMS320C54Xx EVM C-1
Appendix D DTMF Tone Detector Code LiStingt D-1
D.1 DTMF Tone Detector Executable on a TMS320C54xEVM D-1

DTMF Tone Generation and Detection iii

Figures

iv

List of Figures
Touch-Tone Telephone Keypad

(A row tone and column tone are associated with each digit.)

Two Second-Order Digital Sinusoidal Oscillators
(Program-flow description of the DTMF generator)

Flowcharts of the DTMF Encoder Implementation

Short Mathematical Description of Goertzel Algorithm
Mathcad Simulation (Case 1: 858 Hz, 1483 Hz - digit = 9)

(Case 2: 800 Hz, 1483 Hz - digit = undefined) ..

Flowcharts of the DTMF Decoder Implementation (Part10of2)

Flowcharts of the DTMF Decoder Implementation (Part20of2)

SPRA096

Tables

N o ok 0N

List of Tables
Coefficients and Initial Conditions for Sinusoidal Oscillators 2
List of Frequencies and Filter Coefficients i 6
List of Tuned Frequencies and Modified Filter Coefficients 8
Speed and Memory Requirements for the DTMF Encoder 14
Speed and Memory Requirements for the DTMF Decoder, 14
MITEL Test RESUISo e e e e e e e e 17
Bellcore Talk-off TeSt RESUILS o e 18

DTMF Tone Generation and Detection v

Vi SPRA096

DTMF Tone Generation and Detection

ABSTRACT
This application report describes the implementation of a dual-tone multiple
frequency (DTMF) tone generator and detector for the TMS320C54x. The author
provides some theoretical background on the algorithms used for tone generation
and detection, and documents the actual implementation in detail. Finally, code is
benchmarked in terms of speed and memory requirements.

1 Introduction

A DTMF codec incorporates an encoder that translates key strokes or digit
information into dual-tone signals, as well as a decoder that detects the
presence and the information content of incoming DTMF tone signals. Each
key on the keypad is identified uniquely by its row frequency and its column
frequency (see Figure 1). The DTMF generating and decoding scheme is
not very computationally extensive and can be handled easily by a DSP
concurrently with other tasks. This report describes an implementation of
the DTMF codec onthe TMS320C54x, a fixed-point DSP designed by Texas

Instruments (TIO)T especially for telecommunication applications.
Column-Frequency Group

Normal Key- 1209 Hz 1336 Hz 1477 Hz 1633 Hz
pad \

N
I
697 Hz 1 2 3 A H
I
I
I
I
770 Hz 4 5 6 B
I
Row- |
Frequency |
Group |
852 Hz 7 8 9 ¢ H
I
I
I
I
941 Hz * 0 # D |
| I
| Lo

Figure 1. Touch-Tone Telephone Keypad

(A row tone and column tone are associated with each digit.)
T Tlis a trademark of Texas Instruments Incorporated.

DTMF Tone Generation and Detection

DTMF Tone Generator

2 DTMF Tone Generator

2

The encoder portion and tone generation part of a DTMF codec are based
on two programmable, second-order digital sinusoidal oscillators, one for
the row tone and one for the column tone. Two oscillators, instead of eight,
facilitate the code and reduce the code size. Of course, for each digit that
is to be encoded, each of the two oscillators needs to be loaded with the
appropriate coefficient and initial conditions before oscillation can be
initiated. Since typical DTMF frequencies range from approximately 700 Hz
to 1700 Hz, a sampling rate of 8 kHz for this implementation is within a safe
area of the Nyquist criteria. Table 1 specifies the coefficients and initial
conditions necessary to generate the DTMF tones. Figure 2 displays the
block diagram of the digital oscillator pair.

For more detail, see Appendix A, which provides some theoretical
background and a guideline for determining coefficients and initial
conditions for digital sinusoidal oscillators.

Tone duration specifications by AT&T state the following: 10 digits/sec is the
maximum data rate for touch-tone signals. For a 100-msec time slot, the
duration for the actual tone is at least 45 msec and not longer than 55 msec.
The tone generator must be quiet during the remainder of the 100-msec time
slot.

Table 1. Coefficients and Initial Conditions for Sinusoidal Oscillators

f(Hz) al y(=1) Y(=2)IA

697 0.85382 0 —-0.52047
770 0.82263 0 -0.56857
852 0.78433 0 —0.62033
941 0.73911 0 -0.67358
1209 0.58206 0 —-0.81314
1336 0.49820 0 -0.86706
1477 0.39932 0 —0.91680
1633 0.28424 0 —0.95874

SPRA096

DTMF Tone Generator

? Row Tone
al

-1

Column Tone

al

-1

Figure 2. Two Second-Order Digital Sinusoidal Oscillators
(Program-flow description of the DTMF generator)

For the following description of the program flow, it is helpful to consult the
flowchart shown in Figure 3. Essentially, the series of keypad entries (digits)
are translated into a series of dual-tones of certain duration that are
interrupted by pauses of certain duration. Later, the dual-tones enable the
decoder to identify the associated digits. But, the pauses also are necessary
to discriminate between two or more identical digits entered successively.

The program flow, therefore, incorporates two tasks that are swapped after
certain time intervals. One task (the “tone task”) generates dual-tone
samples and the other (the “quiet task”) generates pause samples. Each
task is assigned a certain duration that is controlled by a timer variable. At
the end of each task, the task has to initialize the timer variable and the
task-name (tone or quiet) for the next task to be invoked. At the end of the
quiet task, one very important component is added: A new digit is retrieved
from the digit buffer and is unpacked. Unpacking means that the digit is
mapped to the row/column tone properties (oscillator coefficients, initial
conditions) and pointers are loaded, pointing to the appropriate locations in
the oscillator property table.

DTMF Tone Generation and Detection 3

DTMF Tone Generator

The entire program flow is synchronized to the receive-interrupt service
routine, which provides a perfect clock for real-time processing and constant
sample output. On completion of the RINT_ISR, the task scheduler is
invoked, which determines the particular task (tone or quiet) that needs to
be executed. Both tone task and quiet task check on the timer variable to
determine if the end of the task duration is already reached. If not, a tone or
quiet sample, respectively, is generated. If the end of the task duration is
reached, the next task name and duration is initialized and starts to execute
with the completion of the next RINT_ISR. The quiet task, additionally,
unpacks the next digit at the end of its duration.

Task Scheduler “Quiet Task” “Tone Task”

(® o

Yes Yes

Decrement Set TASK - ! Decrement Set TASK = 0
TIMER TIMER = TIMER TIMER =
TIME_LG TIME_SH

- N

Load New Digit

Increment Generate
DIGIT_PTR Dual-Tone
‘ Sample
Unpack New
Digit RET

Generate Quiet
Sample

RET

Figure 3. Flowcharts of the DTMF Encoder Implementation

SPRA096

DTMF Tone Detector

3 DTMF Tone Detector

The task to detect DTMF tones in an incoming signal and to convert them
into actual digits is certainly more complex than the encoding process. The
decoding process is by its nature a continuous process, meaning it needs
to continually search an incoming data stream for the presence of DTMF
tones.

3.1 Collecting Spectral Information

The Goertzel algorithm is the basis of the DTMF detector. This method is a
very effective and fast way to extract spectral information from an input
signal. This algorithm essentially utilizes two-pole IIR type filters to compute
DFT values effectively. Itis, thereby, a recursive structure (always operating
on one incoming sample at a time), as compared to the DFT (or FFT) which
needs a block of data before being able to start processing. The lIR structure
for the Goertzel filter incorporates two complex-conjugate poles and
facilitates the computation of the difference equation by having only one real
coefficient. For the actual tone detection, the magnitude (here, squared
magnitude) information of the DFT is sufficient. After a certain number of
samples N (equivalent to a DFT block size), the Goertzel filter output
converges towards a pseudo DFT value vk(n), which can then be used to
determine the squared magnitude. See Figure 4 for a short mathematical
description of the algorithm. More detail is provided in Appendix B.

DTMF Tone Generation and Detection 5

DTMF Tone Detector

6

Goertzel Algorithm in short:

1. Recursively compute forn=0 ..N
v, (n) = 2cos (% K) -V, (n-1)-V, (n-2) + x(n)
where V, (-1) = 0 Vi (2) =0

x(n) = input

2. Compute once every N

IX (KI° = v (N)y,* (N)

V2(N) + Z(N-1)-2 cos (ZW” k) V2 (N) V2 (N-1)

Figure 4. Short Mathematical Description of Goertzel Algorithm

The Goertzel algorithm is much faster than a true FFT, as only few of the set
of spectral line values are needed and only for those values are filters
provided. Squared magnitudes are needed for eight row/column
frequencies and for their eight-second harmonics. The second harmonics
information later enables discrimination of DTMF tones from speech or
music. Table 2 contains a list of frequencies and filter coefficients. The
choice of Nis mainly driven by the frequency resolution needed, which sets
alower boundary. Nalso is chosen so that (k/N)fs most accurately coincides
with the actual DTMF frequencies (see Table 1) assuming ks are integer
values and fs is a sampling frequency of 8 ksps.

Table 2. List of Frequencies and Filter Coefficients

1st HARMONICS 2nd HARMONICS
(N=102) fs = 8 ksps (N=102) fs = 8 ksps
DTME K FREQUENCY COEFFI'CIENT 2nd K FREQUENCY COEFFI'CIENT
(k/N)fs/Hz cos(2pi k/IN) harm. (k/N)fs/Hz cos(2pi k/IN)
697 9 706 (+ 1.2%) 27860 1394 18 1412 (+ 1.2%) 14606
770 10 784 (+ 1.9%) 26745 1540 20 1569 (+ 1.9%) 10891
852 11 863 (+ 1.3%) 25529 1704 22 1725 (+ 1.3%) 7010
941 12 941 (0.0%) 24216 1882 24 1882 (+ 0.0%) 3023
1209 15 1176 (— 2.7%) 19747 2418 31 2431 (+ 0.5%) -10891
1336 17 1333 (- 0.2%) 16384 2672 34 2667 (— 0.2%) -16384
1477 19 1490 (+ 0.9%) 12773 2954 38 2980 (+ 0.9%) —22811
1633 21 1647 (+ 0.9%) 8967 3266 42 3294 (+ 0.9%) —27860
SPRA096

DTMF Tone Detector

The graphs of Figure 5 (from a Mathcad simulation) show how the Goertzel
filters resonate with an input signal of matching row/column frequency
(case 1) and how they do not resonate when the input signal does not match
their frequency (case 2). Appendix C contains the Mathcad simulation.

Squared 858 Hz Squared 800 Hz
Magnitude Magnitude 1483 Hz
A A
1483 Hz

Figure 5. Mathcad Simulation
(Case 1: 858 Hz, 1483 Hz - digit=9)
(Case 2: 800 Hz, 1483 Hz - digit = undefined)

3.2 Modifications to the Goertzel Algorithm

The coefficients of Table 2 reflect the coefficients needed to recursively
compute the true DFT. The evenly spaced frequency bins of a true DFT
present an inherent drawback in the DTMF tone-detection process. The
DFT frequency bins mostly deviate from the true DTMF frequency by an
amount in the range of up to 2% off center frequency. To be able to meet the
acceptable bandwidth specifications, a modification of the algorithm departs
from the true DFT and tunes frequency bins exactly with the DTMF tone
frequencies. This modification gives up the DFT property of evenly spaced
frequency bins; and with that, takes two calculated risks: (1) A frequency bin
is possibly moved inside of the mainlobe of its neighboring frequency bin.
Therefore, neighboring frequency bins can affect each other. Note that the
mainlobe of the continuous magnitude spectrum of a rectangular windowed
sinewave (window is N wide) is exactly the distance of 2 DFT frequency bins.
(2) This is especially true when column frequencies and 2nd harmonics of
row frequencies lie close to one another. Note that column frequencies and
2nd harmonics of row frequencies share the same frequency band.

DTMF Tone Generation and Detection 7

DTMF Tone Detector

To minimize these risks, two rules were applied: (1) Frequency bins are
spaced apart by more than 0.9/fs. (2) If rule 1 cannot be achieved, 1st
harmonics frequency bin placement has a higher priority than 2nd harmonic
bin placement. With these rules applied, the coefficienttable givenin Table 2
is modified. All necessary fundamental frequency bins essentially can be
tuned to their DTMF frequencies. A small frequency deviation is needed to
be accepted only in two cases of second harmonics. The new method of
using tuned frequency bins facilitates the checking of acceptable
bandwidths of DTMF tones and helps meet the acceptable bandwidth
specifications. The modified table of coefficients is given in Table 3.

Table 3. List of Tuned Frequencies and Modified Filter Coefficients

1st HARMONICS 2nd HARMONICS
(N=102) fs = 8 ksps (N=102) fs = 8 ksps
DTME K FREQUENCY COEFFI_CIENT 2nd K FREQUENCY COEFFI_CIENT
(k/N)fs/Hz cos(2pi k/IN) harm. (k/N)fs/Hz cos(2pi k/IN)
697 8.88 697 27980 1394 | 17.93 | 1406 (+ 0.9%) 14739
770 9.82 770 26956 1540 | 19.72 | 1546 (+ 0.4%) 11414
852 10.86 852 25701 1704 | 21.72 1704 7549
941 12.00 941 24216 1882 | 24.00 1882 3032
1209 | 15.42 1209 19073 2418 | 30.83 2418 —-10565
1336 | 17.03 1336 16325 2672 | 34.07 2672 —-16503
1477 | 18.83 1477 13085 2954 | 37.66 2954 —22318
1633 | 20.82 1633 9315 3266 | 41.64 3266 —27472

3.3 \Validity Checks

Once the spectral information (in the form of squared magnitude at each of
the row and column frequencies and their second harmonics) is collected,
a series of tests need to be executed to determine the validity of tone and
digit results.

A first check makes sure the signal strength of the possible DTMF tone pair
is sufficient. The sum of the squared magnitudes of the peak spectral row
component and the peak spectral column component needs to be above a
certain threshold (THR_SIG). Since already small twists (row and column
tone strength are not equal) result in significant row and column peak
differences, the sum of row and column peak provides a better parameter
for signal strength than separate row and column checks. Tone twists are
investigated in a separate check to make sure the twist ratio specifications
are met.

SPRA096

DTMF Tone Detector

The spectral information can reflect the types of twists. The more likely one,
called “reverse twist”, assumes the row peak to be larger than the column
peak. Row frequencies (lower frequency band) are typically less attenuated
as than column frequencies (higher frequency band), assuming a low-pass
filter type telephone line. The decoder, therefore, computes a reverse twist
ratio and sets a threshold (THR_TWIREV) of 8 dB acceptable reverse twist.
The other twist, called “standard twist”, occurs when the row peak is smaller
than the column peak. Similarly, a “standard twist ratio” is computed and its
threshold (THR_TWISTD) is set to 4 dB acceptable standard twist.

The program makes a comparison of spectral components within the row
group as well as within the column group. The strongest component must
stand out (in terms of squared amplitude) from its proximity tones within its
group by more than a certain threshold ratio (THR_ROWREL,
THR_COLREL).

Finally, the program checks on the strength of the second harmonics in order
to be able to discriminate DTMF tones from possible speech or music. It is
assumed that the DTMF generator generates tones only on the fundamental
frequency; however, speech will always have significant even-order
harmonics added to its fundamental frequency component. This second
harmonics check, therefore, makes sure that the ratio of the second
harmonics component and the fundamental frequency component is below
a certain threshold (THR_ROW2nd, THRCOL2nd). If the DTMF signal pair
passes all these checks, we say a valid DTMF tone pair, which corresponds
to a digit, is present.

We now need to determine if the valid DTMF tone information contains
stable digit information. This is done by mapping the tone-pair to its
corresponding digit and comparing it with the previously detected digit. We
call the digit information stable if it has been detected twice successively.

Finally, we compare the detected digit with the previous-to-last digit. Only if
the last digit was preceded by a pause do we accept the current digit as a
valid digit. The detector is then forced into a state where it waits for a pause
before being able to accept a new digit. This last step is hecessary to ensure
the discrimination of identical keystrokes succeeding one another.

DTMF Tone Generation and Detection 9

DTMF Tone Detector

3.4 Program Flow Description of the DTMF Detector

10

This DTMF decoder implementation uses a task scheduler in a similar
fashion as the encoder, again synchronized to the completion of the receive
interrupt service routine (ISR). The receive ISR is continuously filling a buffer
of N =102 words with incoming data. Once the buffer is full, it signals the full
buffer by setting the input data status word, indatastat, to 1. The task
scheduler essentially keeps polling indatastat; and once it recognizes a full
input data buffer (indatastat = 1), it initiates the DTMF detection process by
calling the appropriate functions. (Consult the flowcharts in Figure 6 and
Figure 7 might be very helpful at this point.)

First, the input data status word is reset to signal that the detection process
has been initiated. Then, the content of the input data buffer is copied into
an intermediate buffer for processing (double buffering). All the detection
functions will then operate on the intermediate buffer. The gain control
function attenuates strong signal inputs and protects the succeeding
functions from the overflow of the accumulators. Next, the Goertzel filters
are executed. Since the preceding gain control ensures that overflow cannot
occur, overflow checking is removed and optimized loops allow fast
execution. The output of the Goertzel function are the delay states of the
16 filters which are collected in an array.

On completion of the Goertzel function, the digit validation checks are
invoked. The spectral information is computed from the filter delay states
and collected in an energy template. For the next round of execution, the
filter delay states are initialized to zero. The energy template is then
searched for row and column energy peaks. From then on, the detector
essentially operates in two modes: the tone/digit detection mode or the
pause detection mode. In the tone/digit detection mode, the detector
searches for DTMF tone presence and executes all the digit validation tests.
In the pause detection mode, DTMF tone detection is disabled and the
decoder first has to await a pause signal. Tone/digit or pause modes are
controlled by the detectstat variable. Digit validation checks include signal
strength, reverse and standard twist, relative peaks, second harmonics and
digit stablility. With the successful completion of these tests, the valid digit
is stored into the digit output buffer.

SPRA096

DTMF Tone Detector

Buffer Ready

Indatastat = =1
2

Set
Indatastat = 0

v

Gain Control Attenuate
Strong Signals

v

Goertzel Filters
for 1st and 2nd Harmonics

v

Digital Validation Checks T_’@

RET

Figure 6. Flowcharts of the DTMF Decoder Implementation
(Part 1 of 2)

DTMF Tone Generation and Detection 11

DTMF Tone Detector

Task #2

Energy Computation

y

Initialize filter taps to zero

y

Search for energy maxima

Detector status
DTMF_STST
==1?

Tone/Digit

Pause Detection Mode ves Detection Mode

No

Is this a
Pause
2

set
DTMF_STAT =1

Rel.
Peaks OK
?

Valid Tones!

Map detected tone pair to digit
Store digit in buffer

Same
digit as last
2

Valid Digit!

Store digit as valid result

Figure 7. Flowcharts of the DTMF Decoder Implementation
(Part 2 of 2)

12 SPRA096

DTMF Tone Detector

3.5 Multichannel DTMF Tone Detection

The software is written as C-callable reentrant functions. This enables the
user to set up multichannel tone detectors in C without adding significant
additional code. In order to facilitate and structure multichannel applications,
the code uses a structure to hold all the global variables and pointers to
various arrays for a single channel. All the user has to do is to define a
structure for each channel and initialize it properly. A pointer to the structure
of a desired channel is passed to the C-callable functions and the detection
takes place.

DTMF Tone Generation and Detection 13

Speed and Memory Requirements

4 Speed and Memory Requirements

Table 4 and Table 5 summarize the speed and memory requirements of the
DTMF encoder/decoder implementation. The encoder, as well as the
decoder, occupies only a very small portion of the computing capability of
this 50-MIPS DSP. The maximum MIPS count for the actual DTMF encoder
is approximately 0.45 MIPS. The isolated DTMF decoder uses
approximately 0.82 MIPS. These speed specifications include all
processing necessary after the completion of the receive interrupt service
routine. Also, a sampling rate of 8000 samples/sec is assumed. The MIPS
performance of the DTMF decoder is achieved using a buffered concept
instead of a sample-by-sample concept. The speed-critical Goertzel-DFT
function has the 16 filters coded inline for fast execution. Due to an improved
gain control, the typical overflow check within the goertzel routine was
omitted. A drawback of the buffered concept is the need for additional data
memory due to double buffering of data. The amount of data memory is
given, to a large degree, by the size of the input data buffers, which are set
to N = 102 length in this application. Table 4 and Table 5 summarize the
benchmarks for the DTMF encoder and decoder.

Table 4. Speed and Memory Requirements for the DTMF Encoder

MAX
PROGRAM DATA CYCLES
MODULE NAME TASKS INCLUDED MEMORY MEMORY PER MIPS
SAMPLE
Task Scheduler
(E;;mﬁsgcosd:r;) Tone Task 129 49 57 0.45
pie by P Quiet Task
HW/SW Initialization hw!n_lt
/0 swinit 90 — — —
RINT_ISR
TOTAL 219 49 57 0.45
Table 5. Speed and Memory Requirements for the DTMF Decoder
MAX
DATA
MODULE NAME C FUNCTIONS PROGRAM MEMORY CYCLES MIPS
MEMORY (n CHANNELS) PER 102
SAMPLES
some overhead 100 0.008
DTMF Decoder Gain Control " 705 0.055
(buffered) Goertzel-DFT 572 260°n +32 8802 0.690
DTMFChecks 788 0.062
HW/SW Initialization | /SRS
inits 351 — — —
110 .
C-environment
TOTAL 923 260*n + 32 10395 0.82

14 SPRA096

Performance

5 Performance

Two well-known tests to evaluate the performance of DTMF decoders are
available through MITEL and Bell Communications Research (Bellcore),
both of which supply the associated test tapes and test procedures.

5.1 MITEL Tests

The DTMF tone decoder has been tested using the MITEL test procedures.
For a preliminary test, a set of files with the digitized signal data for the
various MITEL tests was acquired through TI internal sources. The files
essentially contain a subset of the signal data of the real MITEL test tapes.
Since none of the files contained more than 32K words of data, the files were
reformatted as “.inc” files and then included in the source code. At link time,
the data of a given test file was mapped into the external memory of the
TMS320C54XEVM, occupying at maximum 32K words of data space. The
code was then tested in real-time using the contents of the 32K-word test
buffer as its input source. During this preliminary test, the various decoder
thresholds were set to proper levels.

The complete MITEL test was then executed according to the test
procedures specified in the MITEL test document. A digital audio tape (DAT)
recording of the test tapes was used as input signal source. The decoder
was executed on the TMS320C54xEVM utilizing a TMS320ACO01 analog
interface to convert the incoming signal into the digital domain. The MITEL
test essentially has two sections. The first section measures the DTMF tone
decoder in terms of recognition bandwidths (RBW), recognition center
frequency offset (RCFO), standard twist, reverse twist, dynamic range (DR),
guard time and signal-to-noise ratio (SNR). The second section, called
“talk-off test”, consists of recordings of conversations on telephone trunks
made over a long period of time and condensed into a 30-minute period. In
this section, the decoder’s capabilities to reject other sources such as
speech and music is measured. MITEL specifies a maximum of
30 responses of the DTMF decoder as acceptable speech-rejection.

DTMF Tone Generation and Detection 15

Performance

16

Table 6 summarizes the MITEL test results. With the exception of the
recognition bandwidth results for the low-band frequencies, the DTMF
decoder passes all the tests and exceeds the specifications. The slightly
higher relative bandwidths for the low-band frequencies were accepted in
favor of a higher robustness. Essentially, the signal strength threshold
THR_SIG2 determines to a large part the recognition bandwidths.
THR_SIG2 has been setto leave slightly more room for digit acceptance and
higher robustness. The threshold settings for acceptable twists helped pass
the twist test and exceed the specifications. The dynamic range of the
decoder of 28 dB is better than the specification. The guard time of 30 ms
leaves enough head room to safely detect digits with a specified 45-ms tone
duration. The decoder was able to correctly detect all 12000 tone bursts for
each of the given noise environments of —24 dBV, —18 dBV and —12 dBV
AWGN. When the decoder was exposed to the 30 minutes of speech and
music samples, it did not respond a single time and, thereby, exceeded the
MITEL talk-off specification of 30 permissible responses by a significant
margin.

SPRA096

Performance

Table 6. MITEL Test Results

BW TESTS FREQUENCY RBW% RCFO%
specification 1.5% < RBW < 3.5%
697 Hz 5.8% 0.10%
Low band 770 Hz 5.5% 0.05%
852 Hz 5.1% 0.05%
941 Hz 4.5% 0.05%
1209 Hz 2.8% 0.10%
High band 1336 Hz 2.5% 0.05%
1477 Hz 2.3% 0.15%
1633 Hz 2.4% 0.00%
TWIST TESTS STD TWIST REV TWIST
specification >4dB >8dB
DIGIT 1 4.7 dB 8.5dB
DIGIT 5 4.6 dB 8.6 dB
DIGIT 9 4.5dB 8.3dB
DIGIT 16 4.6 dB 8.5dB
DR TESTS DYN RANGE
specification >25dB
DIGIT 1 28 dB
DIGIT 5 28 dB
DIGIT 9 28 dB
DIGIT 16 28 dB
GUARD TIME MIN PAUSE TIME MIN TONE TIME
specification 45 ms
DIGIT 1 13 ms 30 ms
SNR TESTS NOISE RESULT
specification —24 dBV
DIGIT 1 —24 dBV passed
DIGIT 1 -12 dBV passed
DIGIT 1 -18 dBV passed
specification <30
result none very robust

DTMF Tone Generation and Detection 17

Performance

5.2 BELLCORE Talk-Off Test

Through TI internal sources, the Bellcore series-1 Digit Simulation Test
Tapes for DTMF receivers were available for testing. These tapes consist
of six half-hour sequences of speech samples, designated part 1 through
part 6, which are known to contain energy at or near valid DTMF frequency
pairs. This test exhaustively measures the speech-rejection capabilities of
DTMF receivers in telecommunication systems. There are over
50,000 speech samples, some of which are music samples. It is estimated
that the six parts of the series-1 tapes are equivalent to the exposure of one
million customer dialing attempts in a local central office. In other words,
exposing a DTMF receiver to all the speech samples in series-1, will produce
the same number of digit simulations that the receiver would experience if
it were exposed to customer speech and room noise present during network
control signaling on one million calls. The Bellcore talk-off test is far more
exhaustive than the MITEL talk-off test.

The test setup was identical to the one used for the MITEL talk-off. Table 7
summarizes the test results for the Bellcore talk-off. In the three hours of
testing, the decoder responded to digit simulations only in six cases. This is
far less than the specifications required to pass the talk-off. The decoder
proved to be very robust in terms of its speech-rejection capabilities.

Table 7. Bellcore Talk-off Test Results

TEST DIGITS SPECIFICATION RESULTS
parts 1 through 6 (3 hours) 0-9 pirgg’geg’s%%?]gsgs 6 responses
parts 1 through 6 (3 hours) 0-9,* # pi;%g?g’s?)%?]sc:!s 6 responses
parts 1 through 6 (3 hours) 0-9,*#, A, B,C,D pirelfs,g(;g,scr))%?];::gs 6 responses

18 SPRA096

Summary

6 Summary

DTMF tone encoding and decoding concepts and algorithms were
described in detail. Further theoretical background is provided in the
appendix. The DTMF encoder and decoder implementations were
explained, and the associated speed and memory requirements were
presented. The DTMF tone decoder has been tested according to the
MITEL and BELLCORE test specifications and the results are documented.
It is important to note that the decoder was implemented as reentrant,
C-callable functions, which facilitate setting up a multi-channel DTMF
decoder system. The code is modular and easy to integrate into any given
telephony application. The decoder algorithm was optimized to meet the test
specifications as well as offer a very attractive MIPS count far below 1 MIPS
per channel.

DTMF Tone Generation and Detection 19

References

References
1. Proakis, J.G., Manolakis, D.G., Digital Signal Processing, Macmillan
Publishing Company, New York, 1992, pages 737-739.

2. Mock, P., “Add DTMF Generation and Decoding to DSP-P Designs,”
DSP Applications with the TMS320 Family, Vol. 1, Texas Instruments,
1989.

3. Ziemer, R.E., Tranter, W.H., Principles of Communications, Houghton
Mifflin Company, Boston, 1995.

4. MITEL Technical Data, Tone Receiver Test Cassette CM7291, 1980.

5. Bell Communications Research, Digit Simulation Test Tape, Technical
Reference TR-TSY-000763, Issue 1, July 1987.

20 SPRA096

Background: Digital Oscillators

Appendix A Background: Digital Oscillators

A.1 Digital Sinusoidal Oscillators

A digital sinusoidal oscillator can, in general, be viewed as a form of a
two-pole resonator for which the complex-conjugate poles lie on the unit
circle. It can be shown that the poles of a second-order system with system
function

by
-1 -2
l+a,z4+ a,z

with parameters
b, = Asinw,
a; = —2Cos w, (A-2)
a, =1
are exactly located at the unit circle. That is
p1’2 = etiog (A.3)
The discrete-time impulse response
h(n) = Asin ((n + 1) wg) - u(n) (A4)

corresponding to the above second-order system clearly indicates a clean
sinusoidal output due to a given impulse input. Therefore, this system can
be termed a digital sinusoidal oscillator or digital sinusoidal generator.

For the actual implementation of a digital sinusoidal oscillator, the
corresponding difference equation is the essential system descriptor, given
by

y(n) = —a,y(n-1)-a,y(n-2) + byo(n) (A5)

where initial conditions y(-1) and y(—2) are zero. Note that the impulse
applied at the system input serves the purpose of beginning the sinusoidal
oscillation. Thereafter, the oscillation is self-sustaining, as the system has
no damping and is exactly marginally stable. Instead of applying a delta
impulse at the input, let the initial condition y(—2) be the systems oscillation
initiator and remove the input. With this in mind, the final difference equation
is given by

y(n) = 2cos wy y(n-1)-y(n-2) (A6)

DTMF Tone Generation and Detection A-1

Background: Digital Oscillators

where
y(-1) =0
y(=2) = “Asinw, (A7)
wo = 2nfy/fs

with f5 being the sampling frequency, fy being the frequency and A being the
amplitude of the sinusoid to be generated. Note that the initial condition y(-2)
solely determines the actual amplitude of the sinewave.

A-2 SPRA096

Background: Goertzel Algorithm

Appendix B Background: Goertzel Algorithm

B.1 Goertzel Algorithm

As the first stage in the tone-detection process, the Goertzel algorithm is one
of the standard schemes used to extract the necessary spectral information
from an input signal. Essentially, the Goertzel algorithm is a very fast way
to compute DFT values under certain conditions. It takes advantage of two
facts:

1. The periodicity of phase factors {va} allows the expression of the
computation of the DFT as a linear filter operation utilizing recursive
difference equations.

2. Only a few of the spectral values of an actual DFT are needed (in this
application, there are eight row/column tones plus an additional eight
tones or corresponding 2nd harmonics).

Keeping in mind that a DFT of size N is defined as
N-1 .
X(k) = Z x(m)e 7 km (B.1)
m=0
it is possible to find the sequence of a one-pole resonator

N-1
Yi(n) = 2 x(m) e i3 k(-m) (B.2)

m=0

which has a sample value at n = N coinciding exactly with the actual DFT
value. In other words, each DFT value X(k) can be expressed in terms of the
sample value at n = Nresulting from a linear filter process (one-pole filter).

It can be verified that

N-1
X(K) = y(N) = x(m) e I k(N-m)
m=0
N-1 5
= x(m)e IwkN g =5km (B.3)
m=0
N-1

I
x
~
3
D
2|

3

The difference equation corresponding to the above one-pole resonator
sequence (B.2), which is essential for the actual implementation, is given by

DTMF Tone Generation and Detection B-1

Background: Goertzel Algorithm

B-2

y(n) = el y, (n-1) + x (n) 64

;2
with y(—1) = 0 and pole location p = e Ik, Being a one-pole filter, this
recursive filter description yet contains complex multiplications, not very
convenientfora DSP implementation. Instead, by using a two-pole filter with

i _ if%k s ..
complex conjugate poles p, , = e and only real multiplications in its
difference equation,

v, (n) = 2cos (%’ k) -V (n-1)-v, (n-2) + x(n) (B.5)

where v (-1) and v (-2) are zero.

In the Ath iteration, only a complex multiplication is needed to compute the
DFT value, which is

X(K) = ¥, (N) = v (N)—e T K v, (N-1) (B6)

However, the DTMF tone-detection process does not need the phase
information of the DFT;, squared magnitudes of the computed DFT values,
in general, suffices. After some mathematical manipulation, it is found that

IXKRZ = v (N)y, * (N)

V2 (N) + v, > (N-1)-2cos (2—” k) v 2 (N) v, 2(N-1) (B7)

N

In short: For the actual DSP implementation, equations (B.5) and (B.7) are
used to retrieve the spectral information from the input signal x(n) for further
evaluation. Note that equation (B.5) is the actual recursive linear filter
expression, which is looped through for n = 0 .. N. Equation (B.7) is
computed only once every N samples to determine the squared
magnitudes.

SPRA096

DTMF Tone Generator Code Listing

Appendix C DTMF Tone Generator Code Listing

C.1 DTMF Tone Generator Executable on a TMS320C54x EVM

* (C) COPYRIGHT TEXAS INSTRUMENTS, INC. 1996 *
* Program Name: DTMF tone generator *
* File Name: dtmf100e.asm *
* File Description: This file contains the code fora *
* DTMF tone generator *
* (TMS320C54x EVM version) *
* *
* Author: Gunter Schmer *
* Date: 08/20/96 *
* Revision: 2.0 *
* Latest working date: 08/20/96 *
title "dtmf encoder”
.mmregs
.include "varse.inc” ; define global vars and consts
.include "sectse.inc” ; define global tables and buffers
.include "globalse.inc” ; globalized labels
* CODE STARTS HERE
text
START
sshx INTM ; global interrupt disable
Id #0,DP ; initialize data pointer
; Initialize Hardware
call hwinit ; hardware initialization subroutine
; Initialize Software
ssbx SXM ; data sign ext. before usage
rshx OVM ; no saturation of accu if overflow
ssbx FRCT ; fractional mode bit, left shift of
; multiplier to compensate for extra sign bit
stm #0040h,IMR ; enable RINT1 interrupt
stm #00c8h,IFR ; clear all pending serial port or timer interrupts
rshx INTM ; global interrupt enable
Id #aic_conf,DP ; DP to variables
mvmd DRR1,rcv ; dummy read
mvdm tra,DXR1 ; dummy write
* Main Program
Main
st #PH_NBR,DIGIT_PTR ; initialize pointer to PHNBR table
st #0,TASK ; initialize beginning task
st #0,TIMER ; initialize timer to zero
stm #DATA AR5 ; AR5 points to testbuffer
next idle 1
call tasks ; actual processing following RINT interrupt
nop
; store to test buffer
;stm o #7fffh,BK
;1d tra,A

;stl A*AR5+%
b next

DTMF Tone Generation and Detection

C-1

DTMF Tone Generator Code Listing

done b done

* Task Scheduler:
* Run this task scheduler section at the beginning of
* each RINT_ISR process

*

*

tasks cmpm TASK,#00h
bc task1,NTC ; if(TASK!=0) branch to taskl
; else branch to task0
task0 cmpm TIMER,#00h

bc task01,NTC ; branch if timer not zero
mvdm DIGIT_PTR,AR1 ; ARL1 points to digit in PHNBR table
st #01h, TASK ; TASK of next RINT_ISR is taskl
st #TIME_LG,TIMER ; set timer to long duration
Id *AR1+,A ; load A with digit
bc done,alt ; done if digit is 1!
mvmd ARLDIGIT_PTR ; save new pointer to digit in PHNBR table
call unpack ; unpack digit: A—> T1_OFS, T2_OFS
b task02
task01 Id TIMER,A
sub #1,A
stl A TIMER ; decrement timer
task02 call quiet
b task3 ; branch to task3
taskl cmpm TIMER,#00h
bc task11,NTC ; branch if timer not zero
st #00h, TASK ; TASK of next RINT_ISR is taskO
st #TIME_SH,TIMER ; set timer to short duration
b task12
task11l Id TIMER,A
sub #1,A
stl A, TIMER ; decrement timer
taskl2 mvdm T1_OFS,AR2 ; AR2 is offset for row—tone
mvdm T2_OFS,AR3 ; AR3 is offset for column—tone
call tone
task3 ret

* Interrupt Service Routines

RINT1_ISR:
Id #rcv,DP
mvmd DRR1,rcv
andm #0fffch,tra
mvdm tra,DXR1

popm ST1
popm STO
rete
.end
;varse.inc

*** Constants

TIME_SH .set 440 ; pause duration (55 msec)
TIME_LG .set 360 ; tone duration (45 msec)
DAC_OFS .set 000h ; DAC offset

*** \/ariables

C-2 SPRA096

DTMF Tone Generator Code Listing

.bss aic_conf,1
.bss rcv,1
.bss tra,1
.bss DIGIT,1
.bss DIGIT_PTR,1
.bss TIMER,1
bss T1_OFS,1
bss T2 _OFS,1
.bss TASK,1
;sectse.inc
*** Tables

; receive variable
; transmit variable
; current digit
; points to current digit in PHNBR table
; timer counter
; offset for tone 1 (row tone)
; offset for tone 2 (column tone)
; holds the nbr of the task that is to be executed

* The following table assembles the coefficients and *
* initial conditions for the difference equations of *

* the digital sinusoidal oscillators.
*

* In general:

* DEQ:

.word

L . T T R

Example:
.word

y(n) = 2*cos(2pi*f/fs)*y(n—1)
I.C.: y(-1)=0

y(—2) = —A*sin(2pi*f/fs)
where A = desired amplitude of sine wave *

f = desired frequency of sine wave *

fs = sampling frequency

*

y(n-2) *

*

*

*

*

cos(2pi*f/fs)*32768 ;coefficient *

0

word —A*sin(2pi*f/fs)*32768
*

Y1) *
yE2) ¥

.sect

"tbl_tone”

TONES .word 27980

.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word

0
—-1024*5204/10000
26956

0
-1024*5686/10000
25701

0
-1024*6203/10000
24219

0
-1024*6736/10000
19073

0
—-1024*8132/10000
16325

0
—-1024*8671/10000
13085

0
-1024*9168/10000
9315

0
—1024*9587/10000

; row 1 coef
;y(n-1)

;y(n=2)

; row 2 coef

;y(n-1)
;y(n=2)

; row 3 coef

;y(n-1)
;y(n=2)

; row 4 coef

;y(n-1)
;y(n=2)

; col 1 coef

; y(n-1)
;y(n=2)

; col 2 coef

; y(n-1)
;y(n—=2)

; col 3 coef

; y(n-1)
;y(n—=2)

; col 4 coef

; y(n-1)
; y(n-2)

DTMF Tone Generation and Detection C-3

DTMF Tone Generator Code Listing

* The following table contains offsets into the *

* tone table tbl_tone. *

* The offset for the row—tone is the (upper byte) of each word *
* The offset for the column—tone is the (lower byte + #12) *

* *

.sect "tbl_keys”

KEYS .word 0903h ;'0" example: 0903h —> 3.row, 1.column (*3)

.word 0000h 1

.word 0003h ;2

.word 0006h Y

.word 0300h N

.word 0303h Y

.word 0306h ;6

.word 0600h T

.word 0603h ;'8

.word 0606h 'Y

.word 0009h VA

.word 0309h ;B

.word 0609h ;'C

.word 0909h ;'D’

.word 0900h BT

.word 0906h VR E#
* The following table contains the phone number to be *
* encoded. The format is as follows *
*PH_NBR .word 4,2,7,0Eh,0Fh,0Ah,3,-1 *

*isthe follnbr: 427 *# A3 (-1 terminates the encoding)*

.sect "tbl_phnr”

PH_NBR .word 1,2,3,4,5,6,7,8,9,0,0Ah,0Bh,0Ch,0Dh,0Eh,0Fh
.word 1,2,3,4,5,6,7,8,9,0,0Ah,0Bh,0Ch,0Dh,0Eh,0Fh
.word 1,2,3,4,5,6,7,8,9,0,0Ah,0Bh,0Ch,0Dh,0Eh,0Fh
.word 1,2,3,4,5,6,7,8,9,0,0Ah,0Bh,0Ch,0Dh,0Eh,0Fh
.word 1,2,3,4,5,6,7,8,9,0,0Ah,0Bh,0Ch,0Dh,0Eh,0Fh
.word 1,2,3,4,5,6,7,8,9,0,0Ah,0Bh,0Ch,0Dh,0Eh,0Fh
.word 1,2,3,4,5,6,7,8,9,0,0Ah,0Bh,0Ch,0Dh,0Eh,0Fh
.word 1,2,3,4,5,6,7,8,9,0,0Ah,0Bh,0Ch,0Dh,0Eh,0Fh
.word 1,2,3,4,5,6,7,8,9,0,0Ah,0Bh,0Ch,0Dh,0Eh,0Fh
.word 1,2,3,4,5,6,7,8,9,0,0Ah,0Bh,0Ch,0Dh,0Eh,0Fh
.word 1,2,3,4,5,6,7,8,9,0,0Ah,0Bh,0Ch,0Dh,0Eh,0Fh
.word 1,2,3,4,5,6,7,8,9,0,0Ah,0Bh,0Ch,0Dh,0Eh,0Fh
.word 1,2,3,4,5,6,7,8,9,0,0Ah,0Bh,0Ch,0Dh,0Eh,0Fh
.word 1,2,3,4,5,6,7,8,9,0,0Ah,0Bh,0Ch,0Dh,0Eh,0Fh
.word 1,2,3,4,5,6,7,8,9,0,0Ah,0Bh,0Ch,0Dh,0Eh,0Fh
.word 1,2,3,4,5,6,7,8,9,0,0Ah,0Bh,0Ch,0Dh,0Eh,0Fh
.word -1

* TEST BUFFER

DATA .usect "testbuf”’,8000h

* Stack setup

BOS .usect "stack”,20h ; setup stack
TOS .usect "stack”,1 ; Top of stack at reset

C-4 SPRA096

DTMF Tone Generator Code Listing

* (C) COPYRIGHT TEXAS INSTRUMENTS, INC. 1996 *

File Name:

Revision: 2.0

R T T TN N

Program Name: DTMF tone generator

dtmfsube.asm

Author: Gunter Schmer
Date: 08/20/96

Latest working date: 08/20/96

*

*

File Description: This file contains subroutines fora *
DTMF tone generator
(TMS320C54x EVM version)

*

*

*

.mmregs
.include "globalse.inc”

* SUBROUTINE: unpack *

* Description: Maps the key value (in A) into two offsets for *

* two tones and writes results into variables ~ *

* T1_OFS, T2_OFS *

* Uses: AR2
* Input: A
* Qutput: none

unpack stim AAR2 ; AR2 keys—map offset for unpacking
Id #DIGIT,DP ; DP to variables
nop ; pipeline conflict(1) + latency(1) with AR2
Id *AR2(KEYS),A ; load A with keys—map value
Id *AR2(KEYS),B ; load B with keys—map value
and #0f00h,A ; mask out the row portion
and #000fh,B ; mask out the column portion
sftl A-8 ; right shift A by 8
add #12,B ; add 4*3 words offset to point into column portion
stl ATl OFS ; store tone 1 offset (row tone)
stl B, T2_OFS ; store tone 2 offset (column tone)
ret
* SUBROUTINE: tone *
* Description: Generates the dual tone samples for DTM *
* using offsets T1_OFS, T2_OFS *

* Uses: AR2, AR3

* Input: none
* Output: none

*

tone Id
sub
Itd
mpy
add
sth
Id
b
sub
Itd
mpy
add
sth
tonel add
add
sth

#0,B
*AR2(TONES+2),15,B
*AR2(TONES+1)
*AR2(TONES),A
AB
B,1,*AR2(TONES+1)
#0,B
tonel
*AR3(TONES+2),15,B
*AR3(TONES+1)
*AR3(TONES),A
AB

B,1,*AR3(TONES+1)

*AR2(TONES+1),15,B
#DAC_OFS,B

B,tra

; clear B ——ROW TONE——
; (B) = —=(1/2)y(n—2), in high accumulator
; load (T) with y(n—1) and y(n—-1) —> y(n-2)
; (A) = coefrty(n-1)
; (B) = coef*y(n—1) — (1/2)y(n—-2)
; 2%(B) —> y(n-1)
; clear B ——COLUMN TONE——
; test only one oscillator
; (B) = —(1/2)y(n-2), in high accumulator
; load (T) with y(n—1) and y(n—1) —> y(n-2)
; (A) = coef*y(n—1)
; (B) = coef*ty(n-1) — (1/2)y(n-2)
; 2¢(B) —>y(n-1)
; add two tone samples
; add DAC offset
; write to transmit variable

DTMF Tone Generation and Detection

C-5

DTMF Tone Generator Code Listing

ret

* SUBROUTINE: quiet *
* Description: Generates a pause of specified duration *
* *
* Uses: AR2, AR3 *
* Input: TIME_SH *
* Qutput: none *
quiet Id #0,B ; clear B
add #DAC_OFS,B ; add DAC offset
sth B,tra ; write to transmit variable

ret

C-6 SPRA096

DTMF Tone Detector Code Listing

Appendix D DTMF Tone Detector Code Listing

D.1 DTMF Tone Detector Executable on a TMS320C54x EVM

* (C) COPYRIGHT TEXAS INSTRUMENTS, INC. 1996 *
* Program Name: DTMF tone decoder *
* File Name: globals.h *
* File Description: defines channel information *
* *
* Author: Gunter Schmer *
* Date: 10/15/96 *
* Revision: 2.0 *
* Latest working date: 10/15/96 *
/
/* globals */
/* struct used to pass on channel info to functions */
typedef struct
{
int *indata; [* ptr to indata
int *taps; [* ptr to filter states */
int *energy; /* ptr to energy template
int *digitptr; [* ptr to digit output array */
int digitlast; /* last detected digit */
int detectstat; [* status of detector */

/* 0 — detector waiting for pause
/* 1 — detector ready to detect digit

int err_flags; /* error flags for dtmf checks */
/* b0 — error signal strength */
/* b1 — error reverse twist */
/* b2 — error standard twist */
/* b3 — error row’s relative peak */
/* b4 — error col's relative peak
/* b5 — error row’s 2nd harmonic */
/* b6 — error col's 2nd harmonic */
/* b7 — error OVERFLOW of ACCA *
/* b8..b15 are zero *
} DTMFCHANNEL;
/¥ ——————— channel#1 information */
int indatal[102]; /* receive buffer */
int indata2[102]; [* process buffer */
int digits[128]; /* output buffer for digit results ~ */
int taps[32]; /* filter states */
int energy[16]; /* energy template */
/* used for interrupt servicing and signaling a full buffer */
int *indataptr = &indatal[0]; [* ptr to receive buffer */
int indatastat = 0; [* status of receive buffer
/* 0 = buffer not ready to process */

/* 1 = buffer ready to process

/* initialized DTMFCHANNEL */

*

DTMF Tone Generation and Detection

D-1

DTMF Tone Detector Code Listing

DTMFCHANNEL channell ={ &indata2[0],
&taps[0],
&energy[0],
&digits[0],
OXFFFF,
1
0 X
DTMFCHANNEL *ptrchannell = &channell;
/¥ ———— end of channel#1 */
* used for testing */
volatile unsigned int *testdataptr = (volatile unsigned int *) 0x8000;
/
* (C) COPYRIGHT TEXAS INSTRUMENTS, INC. 1996 *

* Program Name: DTMF tone decoder *
* File Name: main.c *

* File Description: calls init functions *

* calls decoder functions *

* Author: Gunter Schmer *
* Date: 10/15/96 *

* Revision: 2.0 *

* Latest working date: 10/15/96 *

#include "init.n”
#include "globals.h”
#include "mmregs.h”
#include "dtmfsub.h”
/* prototypes */

void tasks(void);
void initArrays(void);

m