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IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. Tl advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.

Tl warrants performance of its semiconductor products, including SNJ
and SMJ devices, to current specifications in accordance with Tl's
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In the absence of written agreement to the contrary, Tl assumes no
liability for Tl applications assistance, customer’s product design, or
infringement of patents or copyrights of third parties by or arising from
use of semiconductor devices described herein. Nor does Tl warrant
or represent that any license, either express or implied, is granted
under any patent right, copyright, or other intellectual property right
of Tl covering or relating to any combination, machine, or process in
which such semiconductor device might be or are used.

Copyright © 1985, Texas Instruments Incorporated



INTRODUCTION

The TMS32020 Digital Signal Processor is a fixed-point
16/32-bit microprocessor. However, it can also perform
floating-point computations at a speed comparable to some
dedicated floating-point processors.

The purpose of this application report is to analyze an
implementation of floating-point addition, multiplication, and
division on the TMS32020. The floating-point single-
precision standard proposed by the IEEE will be examined.
Using this standard, the TMS32020 performs a floating-point
multiplication in 7.8 microseconds, a floating-point addition
in 15.4 microseconds, and a floating-point division in 22.8
microseconds.

To illustrate floating-point formats and the tradeoffs
involved in making a choice between different floating-point
formats, a review of floating-point arithmetic notation and
of addition, multiplication, and division algorithms is first
presented.

FLOATING-POINT NOTATION

The floating-point number f may be written in floating-
point format as

f = mxbe
where

m = mantissa

b = base

e = exponent

For example, 6,789,320 may be written as
0.6789320 x 107
In this case,

0.6789320
10
7

m
b
e

The two floating-point numbers f] and f» may be written as

fi = mjp xbel
f) = mpxbe2

Floating-point addition/subtraction, multiplication, and
division for f] and f) are defined as follows:

fixf) = (mp+mpxb 178 xbel ife;=ep (1)
or
= (mp xb~©7€) £ my) xbe2 if e1<ep
fixfy = mj xmyxb®1+e) @)

fi/f, = (my/mp)xb €17€2) 3)

A cursory examination of these expressions reveals
some of the factors involved in the implementation of
floating-point arithmetic. For addition, it is necessary to shift
the mantissa of the floating-point number which has the
smaller exponent to the right by the difference in the
magnitude of the two exponents. This is shown in the
multiplication by the terms

b~ (€172 znd p— €221

This right shift can result in mantissa underflow. There
are also possibilities for mantissa overflow. Addition and
subtraction of exponents can lead to exponent underflow and
overflow. To alleviate underflow and overflow, it is
necessary to decide on some scheme for roundoff. For a
detailed description and analysis of underflow and overflow
conditions and rounding schemes, see reference 1.

It is desirable to have all numbers normalized, i.e., the
mantissas of f; and f; have the most significant digit in the
leftmost position. This provides the representation with the
greatest accuracy possible for a fixed mantissa length. The
result of any floating-point operation must also be
normalized. The factors associated with normalization,
overflow, and other characteristics of floating-point
implementations are best illustrated with a few examples.

Consider the addition of two binary floating-point
numbers f; and f where

0.10100 x 2011
0.11100 x 2001

f
f

Both of these numbers are normalized, i.e., the first
bit after the binary point is a 1. Addition requires equal
exponents, so the fractions are aligned by shifting right the
one with the smaller exponent and adjusting the smaller
exponent. This yields

fy 0.00111 x 2011
Then,

0.10100 x 2011 +0.00111 x2011
0.11011 x2011 =f5

fi+f



The sum may overflow the left end by one digit, thus
requiring a postaddition adjustment or renormalization step.
Since it is assumed that the register is only of a finite length,
this renormalization will result in the loss of the lowest order
bit.

Another example illustrates the overflow past the most
significant bit. With an assumed register length of five, let

0.11100 x 2011
0.10101 x 2001

f1
1)

Then,

0.11100 x2011=f;
+ 0.0010101 x2011=f,
1.0000101 x 2011 =f3

The significance of the two digits underlined in the right
part of the mantissa is suspect, since it is assumed that the
corresponding bits of f1 are zero. The left underlined digit
is the overflow past the most significant bit. To finish the
addition, f3 is shifted to the right and the exponent adjusted
accordingly. Thus,

1.0000101 x 2011 =f3

The shift of the fraction and the adjustment of the exponent
yield

0.10000101 x 2100 =3
The result may be rounded, giving

0.10001 x2100 =f3
or truncated, giving
0.10000 x 2100 =f3
FLOATING-POINT ALGORITHMS

Multiplication Algorithm

The algorithm for normalized floating-point
multiplication is illustrated in Figure 1. This algorithm is an
implementation of Equation 2 in the section on floating-point
notation. The floating-point numbers being multiplied are A
and B written as

A = mp xb% and B = mp xb°B
The result is
C = mc xb®C
For the resulting mc, there are three special cases. The

mc may be zero, in which case there is a branch to Step
10 to set C =0. If mc #0, then the most significant bit will

ma mg
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MULTIPLY MANTISSAS
mc = mp X mp

ea eg

¥ Y

ADD EXPONENTS
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[
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ec = oc !
\
6 DISPOSE OF EXTRA BITS:
ROUNDING OR TRUNCATION

A

~N

TEST FOR OVERFLOW OF m¢

NO OVERFLOW *' OVERFLOW

RIGHT SHIFT mc ONE BIT
ec = eC -1

w} Y

9 TEST FOR SPECIAL CASES OF ec

OVERFLOW IN RANGE
p ORy
UNDERFLOW

-
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Figure 1. Floating-Point Multiplication

be in either the first or second leftmost bit. If the most
significant bit is in the second leftmost bit, then a left shift
of mc is necessary (see Step 5). Otherwise, C is already in
normalized form, and there is a branch to Step 6.

In Step 6, the desired rounding scheme is implemented.
After this rounding, it is possible that m¢ will overflow (see
Step 7). In this case, it is necessary to right-shift mc one
bit (see Step 8). Special cases of ec , are tested for in Step 9.



If there is an overflow or underflow of ec, it is corrected
in Step 10. Otherwise, the result is in range, and the

calculation is complete.

Addition Algorithm

The implementation of normalized floating-point
addition is more involved than for multiplication. This
addition algorithm, outlined in Figure 2, is an implementation
of Equation 1 in the section on floating-point notation.

In Step 1, ea and eg are compared to determine ec.
For this illustration of the algorithm, it is assumed that
ea<ep. The right shift (d) required to align mp is
determined in Step 2. The procedure in Step 3 implements
the right shift of ma. In Step 4, the extra bits of mp are
discarded by using the desired rounding technique. The
mantissas of A and B are then added in Step 5.

A B
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I
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Figure 2. Floating-Point Addition

Now, the procedure becomes somewhat more involv-
ed. The mc may be zero, in which case there is a branch to
Step 9 which sets ec =0; a branch to Step 14 sets the special
value of the result. The mc may overflow, making a right
shift of one necessary (see Step 7). The m¢c may have k
leading zeroes; therefore, a left shift of k is required. This
normalization step is generally the most involved and time-
consuming step to perform. The procedures in Steps 10, 11,
and 12 round the mg, test for a possible overflow due to
the rounding, and adjust ec accordingly. The special case
of ec is determined in Step 13. Finally, after Step 14, the
sum C = A + B is formed.

Division Agorithm

Floating-point division is more sophisticated than
multiplication and addition since fixed-point processors such
as the TMS32020 are not inherently capable of performing
division. For example, 1/3 = 0.3333...; only an approx-
imation can be calculated since 1/3 must be represented in
a finite number of terms. Several algorithms can be im-
plemented to find good approximations of such numbers. The
algorithm implemented in this report is shown in Figure 3.

Step 1 shows the equivalent of A/B. In Step 2, the latter
term is expanded using a power series of 1/(1 + X), where
€ (BLO/BHI) is X (e simply denotes that the term is right-
shifted 16 bits forming the least significant bits of a 32-bit
number). The third term in the power series only affects the
LSB of a 32-bit result; therefore, this term and all the
following terms can be dropped, as shown in Step 3.

The equation in Step 3 can be implemented on the
TMS32020 in two steps. Assuming that the result is a 32-bit
number Q and that it is composed of a 16-bit QHI and a 16-bit
QLO, think of the equation in Step 3 in the following
manner: A/B = Q — eX. The first term is a fair approx-
imation of the result Q, and the second term is a correction
term to obtain a better approximation. With this in mind,
it can be shown that (AHI + ¢ALO)/BHI will give a 16-bit

quotient and a 16-bit remainder. Due to the architecture of
the TMS32020, the 16-bit quotient will be in the low word

of the accumulator and the remainder will be in the high word
of the accumulator after the division. Since it is desirable

A divided by B

AHI + €ALO
BHI + €BLO
1 .1
JWORDSIZE 216

where A
B
€

AH AL AH
STEP 1: BH: : :BLg - ;HleALo :
1+¢€ (_—BLO )
BHI
STEP 2: _ AHI + €ALO 1€ (B0 . e2 (B0 2
’ B BHI ( ( BHI ) ( BHI ) )

AHI + €ALO BLO AHI + €ALO
STEP 3: L AR EAD ¢ ( ) ( )

BHI BHI BHI

Figure 3. Division Equation



to have a floating-point result, the remainder must be divid-
ed by BHI to obtain the low word of the quotient. Now QHI
and QLO have been calculated. When placing Q into the cor-
rection term (equation in Step 3), note that Q is equal to QHI
+ QLO. It can be shown that QLO will have no effect on
the result since the correction term is multiplied by e.
Therefore, to calculate A divided by B, simply implement
the following equation:

A A

B BHI

BLO

BHI

X QHI)

where the division is fixed binary (left-shifts and subtracts).

Figure 4 shows the implementation of the division
algorithm that was outlined in Figure 3.

In Step 1, the dividend is right-shifted four times to
prevent an overflow. Note that the result is not shifted left
to compensate for this shift, because the normalization routine
automatically does this. The shift causes the dividend to be
limited to 27 significant bits instead of 31. In Step 2, a binary
divide (left-shifts and subtracts) is implemented on the
dividend by the high 16 bits of the divisor. The 32-bit result
contains a quotient in the low 16 bits of the accumulator,
and a remainder (R1) in the high 16 bits of the accumulator.
R1 is left-shifted fifteen places in Step 3. The new R1 is
divided by BHI in Step 4 to calculate the lower 16 bits of
the quotient.

The quotient has now been approximated. The 32-bit
result is composed of QHI and QLO, as shown in Figure 3.
To obtain a better approximation, one term in the power
series expansion must be added to the quotient. Therefore,
the procedure in Step 5 calculates a 16-bit correction term,
which is then added (or subtracted since it is the term
following the ‘“1’’ in the power series) to the 32-bit quotient.

Testing for an overflow of the resulting mantissa is
necessary. Since the dividend was left-shifted four places,
the resulting quotient will not be negative if an overflow
occurred. To detect an overflow, bit 28 in the quotient must
be tested. If this bit is a 1, an overflow occurred; if it is a
0, no overflow occurred. If an overflow has occurred, the
exponent must be incremented. Finally, it is necessary to
normalize the quotient and output the results.

A DIVIDED BY B
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16 15 0
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ALO
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Y
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TOR1 x 215,

v

R1/BHI = 32-BIT RESULT.
HIGH 16 BITS ARE REMAINDER #2 (R2).
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\ 4
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(QHI x BLO)/BHI = CORRECTION TERM.

A

SUBTRACT 16-BIT CORRECTION TERM
FROM 32-BIT QUOTIENT.
(QHI | QLO) — (0 | CT) = RESULT.

OVERFLOW Y
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A

Y

91 NORMALIZE RESULT.

Y

10

OUTPUT Cgjgn. Cexp: CHI. AND CLO.

Figure 4. Floating-Point Division




IEEE FLOATING-POINT
SINGLE-PRECISION FORMAT

Of interest is a set of formats known as the IEEE
standard. This IEEE recommended format consists of a
variety of precision formats (single, double, single-extended,
and double-extended). The IEEE has also proposed several
techniques for handling special cases such as overflow,
underflow, + oo, and rounding. For complete details, the
reader is referred to the proposed IEEE standard.2

The single-precision format is a 32-bit format consisting
of a 1-bit sign field s, an 8-bit biased exponent e, and a 23-bit
fraction f (see Figure 5). The value of a binary floating-point
number X is determined as follows:

X = (=1s x 2(e-127) x 1f

31 30 23 22 0

Figure 5. IEEE Floating-Point Single-Precision Format

The advantage of this format is that it is structured in
such a way as to provide easy storage and straightforward
input/output operations on 8-, 16- and 32-bit processors. The
disadvantage with this format is that the large mantissa will
generally span several words of memory.

FLOATING-POINT IMPLEMENTATION

IEEE Implementation

The IEEE single-precision format is described here as
it applies to the addition, multiplication, and division
algorithms. In these floating-point routines written for the
TMS32020, all results are truncated to 31 bits to provide
more flexibility in the user’s development of a rounding
scheme suitable for his application. The representations of
+ oo are ignored so that the user can decide how to handle
these exceptions in a manner that is appropriate for his
particular application.

I/0 Considerations

The first consideration is the internal representation of
the binary floating-point number. If the number is read into
the TMS32020 as two 16-bit words, some processing is then
necessary to put the floating-point number into a
representation which is easier to process. The representation
used in the TMS32020 programs in the appendices is shown
in Figure 6. This internal representation may be arrived at
by a simple manipulation of the IEEE bit fields. For this
particular algorithm, it is assumed that the floating-point
number is input to the TMS32020 as the four 16-bit fields
shown in Figure 6. However, the user can easily supply his

own routine to arrive at this format from two 16-bit inputs
to the TMS32020 where the inputs contain the IEEE single-
precision format.

The format in Figure 6 was chosen to minimize the
execution time of the floating-point addition, multiplication,
and division routines. The format of the result is shown in
Figure 7. Notice that it is identical to the format in Figure
5 except for CLO. CLO has its 16 most significant bits valid
for both the addition, multiplication, and division routines.

Normalization

Since the floating-point routines require normalization,
a partial binary search algorithm is implemented in the
addition and division routines in the appendices. To begin
the normalization routine, note that all mantissas can be
considered to be positive with the format used for the result
shown in Figure 7. The binary search for the most significant
bit (the leftmost 1 since the mantissa is positive) is illustrated
in Figure 8.

The first move is to split the result into CHI and CLO.
If CHI # O, the most significant bit (MSB) is the CHI;
otherwise, it is the CLO. For this example, it is in CLO.

15 14 13121110 9 8 7 6 5 4 3 2 1 0

ASIGN
(0 IF POSITIVE,
OR — 1 IF NEGATIVE)

15 14 13 121110 9 8 7 6 5 4 3 2 1 0
AHI . "
14 bit
(NORMALIZED) I 0o 1 f (most significant its) J
%5 14 13121110 9 8 7 6 5 4 3 2 1 0
ALO I (4] f (least significant 9 bits) O 0 0 0 0 O

15 14 13 121110 9 8 7 6 5 4 3 2 1

AEXP | e

Figure 6. Floating-Point Representation

L e

o

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

CSIGN
(0OR -1)

1514 131211 10 9 8 7 6 5 4 3 2 1 0

CHI
(NORMALIZED)

15 14 13 12 1110 9 8 7 6 5 4 3 2 1

CcLo

LJo

15 14 13 12 1110 9 8 7 6 5 4 3 2 1

CEXP

L__J©

Figure 7. Result Representation
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Figure 8. Partial Binary Search

The next step is to form a 32-bit result with CLO in the most
significant word position. It is now possible for the MSB
to be in the highest bit location since CLO has been left-
shifted 16 times. If this is the case, an overflow has occurred,
and the result must be right-shifted once. The normalization
routine tests this by branching to NOFLOW if the result is
negative. If the number is not negative, the normalization
can continue.

The NORM instruction is used in the repeat mode to
complete the normalization. Note that this whole
normalization routine can be replaced by the following two
instructions: RPTK 29 and NORM. The RPTK instruction
causes the NORM instruction to be repeated 30 times, thus
normalizing a 32-bit number. This method is not
implemented here due to the timing. These two instructions
always take 31 cycles to normalize a 32-bit number. The
normalization routine here takes only 22 cycles (worst case)
for normalizing a 32-bit number. Therefore, if program space
is more important than timing efficiency, it is best to replace
the normalization routine with these two instructions.

Added Precision
As illustrated in Figure 7, the 16 most significant bits
of CLO are valid, i.e., C is valid for 31 places beyond the

6

binary point. Oftentimes the user is not as concerned with
the IEEE standard as in being certain that he has enough
accuracy for his particular application. Since the TMS32020
uses 16-bit words, the routines in the appendices implicitly
maintain a 30-bit mantissa. They also implicitly use a 16-bit
exponent. If the user desires this added accuracy and dynamic
range, then it is readily implementable with no additional
cost in execution time. The normalization for the addition,
as mentioned previously, operates over the entire 32-bit
accumulator. For the strict IEEE format, the user will only
want to normalize over the 25 most significant bits of the
accumulator. The structure of the normalization routine
inakes this modification simple.

The routines in the appendices make no provision for
the representation of + oo and exponent underflow and
overflow. The user of the routines should consider the degree
of significance of these results and the way they should be
handled for his particular application. Since these routines
are written to operate at maximum speed, truncation of results
is used. If the user desires to implement a rounding scheme,
then he will also need to check for the possibility of overflow
due to the rounding scheme. This step is shown in the
multiplication, addition, and division flowcharts (see Figures
1, 2, and 3).



SUMMARY

The TMS32020 may be used to perform floating-point
operations with great accuracy, wide dynamic range, and
high-speed execution. The design engineer has the
responsibility of deciding what type of floating-point format
is best for his application. To aid in understanding floating-
point operations, several examples have been given that
illustrate the manipulations necessary to implement floating-
point addition, multiplication, and division algorithms.
Flowcharts for these algorithms are also included. The
appendices contain the TMS32020 code for the IEEE
floating-point single-precision format used in addition,
multiplication, and division. The addition and multiplication
routines may also be used without modification to implement
a format with up to a 30-bit mantissa and a 16-bit exponent
without any increase in execution time.
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APPENDIX A
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O0ZE

OO3F £
Q040 £

0041
0042

Q0473 £
0044 2

0045
Q044
0047
Q048

Qo4
QD4n
O04R
Q04
O04n
QO4E
O04F
QOS50
0051

@ G052

Q054

0049

D010
QO
2000
2004
LODE

2107
LOOT

2000
1004
F&z0
0076
Faa0
OOS0
4002
4203
4507
4404

QO&R

*
AEXER

ALTE

*
CHESGN

BIENELG

LACT
SACH
SACL
LACT
SFL
SACH
LAC
R
SACL
LA
SACL

LAC
SACL
LAC
SACL
LALC
SACL
LAL
SACL

ADD
SACL
LT
LAC
SACL
LA
SACL
LACT
SACH
SACL
LACT
SFL
SACH
LAC
R
SACL
LAC
SACL

LA
SUB
BZ

BLZ

ZALH
ANDS
SRS
SUEH
BZ

BHI
BHI
RE=ID
BLOD

BLD
BLD
RE=ID
BLO
AL, 1
ALD
CHEZGN

AS TGN
CSIGN
AL, 1
ALD
ELD, 1
ELO
AEXP
CEXF
CHESEN

SIXT
]

I}
BSIGN
S IGN
BEXF
CEXF
AHI
AHI
REZID
ALD

ALD
ALD
RESID
ALD
ELD, 1
BLO

ASIGN
BEIGN
ADNCIW

ATENEG

AHI
ALD
BLO
BHI
CZERO

FCO.T7 24,242 15:24: 29 02-27-55
FAGE 0003

BHI I% SHIFTED RIGHT "D TIMES.

REZIDUAL BITS MUST BE MAINTAINELD.

BLO IS SHIFTED RIGHT "D TIMES.

MZE (THE 0) IS SHIFTED AWAY.

GET BITS THAT WERE =ZHIFTED FROM BHI.

GET RID OF EXTRA BIT.

DO BOTH NUMBERS HAVE THE SAME SIGNT

IF SIGNS ARE THE SAME, CSIGN = ASIGN

ALIGN MANTISSAS,
SET C EXPONENT = A EXPONENT.
oy BOTH NUMBERS HAVE THE SAME SIGNT
0= (14-IN

B I% THE BIGGEST NUMEER.

THEREFORE, LET THE SIGN OF © =
SET C EXPONENT = B EXPONENT.

BZIGN.

AHI GETS SHIFTED D" TIMES.
MAINTAIN EXTRA BITES.
ALO GETS SHIFTED "D
MSR (THE O)

TIMEZ,
IS SHIFTED AWAY.
GET RESIDUAL RITE.

GET RID OF EXTRA EIT.

CHECE THE SIGNS.

IF THEY ARE THE SAME, JUST ADD.

Do (1Al - 1B,

SINCE B < O AND A I 0.



A-4

NOSIDT

0141

0142
0163
AR
0165
Q144

0147
0148
014%
0170
0171

017z

0173
0174
0173
0174
0177

0172
017%
0130
0121
0182
0183

0124

0185
Q184
0127
0o1es

O1aw

0190
0191

019z
0193
0174
0195
0194
0197
019s
0199

0055
D054
0057
QOSs
Q059
O05A
O0SR
QOSC
QO0s0D
O0OSE
O05F
Q0L
00k 1
QOkAZ
818725
0L
Q0LS
Q0&E
0067
QOAS
Q0L
QOLA

O06R
O0O&
O0&D
Q0AE
O0OLF
Q070
0071

0072
Q073
o074
Q075
Q074
Q077
o078
Q07

00748
0078
Q070
o070
Q07E
O07F

0200 00

Q205

22020 FAMILY MACRD ASSEMBLER

###% FRERELEASE ##+#

Fas0
0072
AHE0A
LOQOR
CAQD
LODE
FFa0
Q04
4004
4207
450732
4402
F&E0
O0&R
Faa0
Q072
AZ00
AO00R
CAQD
LHOO2
FF20
O0s4

CAOO
AHO08
LO0A
AOOR
FFa0
QOA7

CELER
AS0A
AHOOR
Doot
FFFF
OO
FFa0
008

4002
4203
4507
4304
£S0A
~HO0R
FOE0
QDS

Faa0

T QO4LEB

20048

5 FASO

L QOED

ATENEG

*
CZERD

CNEG

#
ADNOW

#*
NIOJRMAL.

BLZ CNETG
SACH
SACL
ZALC
SACL CEIGN
E NORMAL

CHI
Lo

ZALH
ADDE
SRS
SURH
BZ

BHI
BLD
ALD
AHI
CZERD
BLZ CNEG
SACH
SACL
ZALC
SACL CESIGN
B NORMAL

CHI
CLa

CEXF
CSIGN
CHI
Lo
ARCILIND

ARZ

SACH
SACL
LALE

CHI
CLo
FFFF

SACL CSIGN
E NORMAL

ZIALH
ADDE
ADDS
ADDH
SACH
SACL
RV

AHI
AL
BLI
BHI
CHI
CLa
OVFLOW

BZ CZERD

NORMALIZE

LA
EZ

CHI
L

1502429

Fa

E=-27 -5

GE 0004

GO ANDN NORMALIZE RESULT.

oo iR - A,
SINCE A < O

ANDD B O,

GOOAND NORMALIZE RESULTE.

HERE, ONLY IF RESULT =

OUTPUT A ZER(L.

HERE,

GO NORMALIZE RE

SHLT.

IF =IGNS ARE THE SAME,

DID AN OVERFLOW QCCURT

IS RESULT = O 7%

DOES CHI HAVE THE MESRT

0,

IF RESULT IS NEGATIVE.

JUET ADL.



NOSIDT ZR0Z0 FAMILY MACRD ASSEMBLER BCo, 7 oS4, 348 15134109 O3—TT 55
#4# FRERELEASE ##%
FAGE 0005

4000 ZALH CHI IF YES, NORMALIZE RESULT.

= 470R AN CLn

w 4R17 RFET TTEEN WILL FERFORM 14 "NORMZ"

CEAZ MNORM

4 FF20 B OUTRLT GO OUTRUT RESULTES.

© 0O0A1

021l 400R 01 ZAaLH CLo HERE IF L0 HAS MSB.

0212 E 010 LARE ARO, 14 OFFSET EXFONENT BY 14,

013 00ZF F220 BLZ NOFLIOW OID BIT SEARCH CALZE OVERFLOWT
Q020 DO9E

1 4Riz RFT TTEEN IF NOT, NORMALIZE REZULT.

2 CEAZ NCIRM

3 FFa0 E QUTRUT GOOOUTPUT RESULT.

QOAL

0214
0215 ¢

014

0217
ozie
FINISHED WITH NORMALTZATION

HERE ONLY IF OVERFLOW OCCURRED DURING ADDITION

o d ok @

*
CEQH  OVFLIOW REXM RESET SIGN EXTEMSION TO SHIFT RIGHT.
H CELS SFR SHIFT RIGHT.
HB0A SACH CHI STORE NORMALIZED MANTISZA.
LOOR SACL oo
2009 LALC CEXF DECREMENT EXFPONENT.
Ooon ALD JINE
L AOOF SACL CEXF
. FF=0 E ARDLIND GO OUTFUT RESULTS.
0O0RA7

# OVERLOW OCCURRED DURING BIT SEARCH

OOYE 5590 NOFLOW MAR #- DECREMENT EXFONENT.
- QOPF CEOA REXM RSXM FOR LOSICAL RIGHT SHIFT.
Q0AD CEL? SFR FERFORM RIGHT SHIFT.

0240
0241
0242
0247
0244 00A1 7O0E  QUTPUT SAR ARG, TEMF HERE AFTER NORMALIZATION.
0z4% 00AZ LE0A SACH CHI SAVE NORMALIZED MANTIZEA.
0E46 O0AZ A00R SACL L

0247 Q0A4 2009 LAC CEXF ADUST EXFONENT.

D242 00AS 100E SR TEMF

0247 QOAL LOOD SACL CEXF

0250 #

0251 00A7 558%  AROUND LARF 1 RESET POINTER.

0252 00AZ 4BOF RET THREE

0253 00A% EOAD ouT #4+, FAO

0254 00AA CELF INLE WAIT FOR INTERRUFPT.

N ERRORS, WO WARNINGE

TAKE CARE OF EXPONENT & NORMALIZED MANTIZEA,
THEN QUTFUT RESULTS.

- A B







NOSIDT

Q001
000z
000z
0004
0005
OO0~
Q007

0002

QOins
Q010
0011
o012
0013
0014
0015
O01b
0017
0012

0040
0041
o4z
Q042
0044
0045
0044
0047
0048
004
0050
Q051
o5z
0053
0054
0055

0054

QD00

APPENDIX B

32020 FAMILY MACRD ASSEMBLER PO, 7 54, 348 1524157
##% FRERELEASE ##%

[alalals}
0001
OO0z
ao0s
Dng
Q005
0004

OE-27-2

FAGE Q001

n

FERRBBAPERERAREA KBRS FE R T L FEE R HAAFER R RS SRR E S H I HRRHS

ok ok d %

THIZ IS A FLOATING-FOINT MULTIFLICATION ROUTINE WHICH

IMFLEMENT:S
ON THE TMZ:2

020,

THE IEEE FPROFPOESED FLOATING-POINT FORMAT

HHBUHHFEFFBEXEFFEHRESF T HIHAR RN R R E S FH S TR IR B E AT F IR HES

e ok M % owk ok ok ok k¥ ¥ ok ok M ok ok de He o ok ok ok ok sk ok ok ok % ok % o

INITIAL FORMAT (ALL 14-BIT WORDE)

i____%&_?_?ﬁ_i_—ni ASIGN (O OR —1)
?""'—'"_“"“"'—"? AEXF (—-127 T 122)

TO CORRESFOND WITH IEEE FORMAT,
INPLT O.1F # 2 %% (E + 1)

INSTEAD OF 1.F ¥ 2 #%E, AND SUBTRACT 127 FROM E.

THE FINAL FORMAT IS THE SAME AS THE INITIAL FORMAT

EXCEFT THAT FOR CLO WE HAVE:

i 14 BITS ! CLo

ALL 14 BITS OF CLO ARE VALID. ANYTHING FAST THESE HAS

BEEN TRLNCATEL.

HEEEREFERF AR IR R AU TSI L LR AR B R AR IR SRR AR E SR LG LR G X BE SRR LT IS

B I

HERFFF R ER SRS H LS TH RSB SE A LSS H SRS A S I L ER RS H IS RS E LSS E S RHEEL

+

ASIGN
AEXF
AHI
ALD
BEIGN
RBEXF
EBHI

WORST CASE (EXCLUDING INITIALIZATION AND
7.8 MICROSECONDS.

THIS TIMING INCLUDES THE NORMALIZATION.
WORDS OF PROGRAM MEMORY: &0

ADRG

B 0
Ernt 1
EnL 2
Bl =
B 4
Ea 5
EQid I

T/700:

#
#*
E:3
#
+#*
*
*

*
k-3
*
#*
#*
*



NOSIDT

0057
QOSa
0O5%
QOAD
0041
00s2
QOLZ
00s4
Q0L
OOAA
Q0OLT7
O0OLS
0046%
0070
0071
Q072
00732
0074
Q07%

0076
0077
Q078
Q072
0020

Q01
QOEz
00a3
Q024
Q0E5
0034
00e7
[alslat=d
00ay
Q020

Q024
QOIS
O0O94
0097
QOos
00w
0100
0101
0102
0102
0104
0105
Q104
o107
0102
0109
0110

0000
0001
0002
Q003
0004
Q005
0004
0007
[alalelxs
QOO
o00A
O0O0R

Q00C
QOO0

QOOE

QOOF

> 0010

a1l
001z
Q013

0014
0015

0014
0017

k]
Q01w
001A

O01E
oo1c
Q010

32020 FAMILY MACRD ASSEMBLER FCO.7 24,3245 15:

qrTI 0 03-27-385

3

### PRERELEASE ###

0007
QOOS
Q002
O00A
QOOR
[lnlalm
ooon
QOOE
QOOF

204
CEOQ7
SEEY
0100
Q200
CRO7
S0A0
OO0
SnER
nool
FFFF
AHO00

2001
0005

LOOY

ICO3
D4
CEL14
L20C
HO0E

SO

BLO
ZSIGN
CEXF
CHI
CLo
THI
NEGONE
TLO
TEMF

I A

% %k % ok

LF

FAGE 0002

Eqd 7
El o
EQld ]
EQ) 10
Efd 11
Ec 1z
EG 13
e 14
Emd 15

INITIALIZATION

LIOFE 4 BEGIN ON PAGE 4.
SEXM SET SIGN EXTENSION,
LARF 1

LRLE ARYL, X200

RPTE 7
IN #+, PAO
LARK  ARD,O
LARF 0
LALE  ZFFFF

READ NUMBEREZ INTO BLOCKE RO,

CLEAR EXPONENT REGISTER.

SACL NEGONE NEGONE = -1

BEGIN FLOATING-FOINT MULTIFLICATION.

_AC AEXF
ADD BEXF
SACL CEXF

ADD EXPONENTS.

LT ALD
MFY BHI
FAC

SACH THI
SACL TLO

FIRST FRODUCT (ALD % BHI)

LT AHI SECOND FRODUCT (AHT # BLIO)
MFY BLO

AFAC HAS EFFECT OF (AHI # BLO + ALD * BHI)
AFALC

ADDH THI
ADDE TLO
SACH THI

MPY BHI
FAC
ADDE THI

(AHI # BHI}



NO$SIDT

0111 0O0LE
0112 001F
0113
0114

0115
0114 ¢
0117 ¢

0i1=
0119 ¢
Q120
0121
0122
0123 002
0124 00OZR
0125 0021
0124 002D
0127 00ZE
0122

0129 00ZF
0120 0030
0131

0135
0140 O
Nt ERRORS

k]

32020 FAMILY MACRO ASSEMBLER

### PRERELEASE ##+

£P0A
&10R

20 F5R0

Q024

ZAQOD

= A00%

FFa0
O0ZF

26040080 0K
7 4%90R

CEAZ
LS00
AOOR
700F
200
100F
LOOS

4100 ZETSIN
404
FSa0
onz7
CADOD

NEG
DOUTRUT
EDAQ

CELF
NI WARNINGS

SACH
SACL

ZAC
SACL

ZALH
Ann=E
NORM
SACH
SACL
=AR
LALC
SR
SACL

ZALS
XOR
EBNZ

ZAC
SACL
E

LA
SACL
LLARF
RFTE
auT
IDLE

CHI, 1
CLo 1

I

CHI
CLo
ARO, TEMF
CEXF
TEMF
CEXF

AZIGN
BZIGN
NEG

CSIGN
OuTRUT

NEGONE
CEIGN

D b=

%+ PAD

FOOL7 24,342 15:24:52  02-27-85

FAGE 0003

GET RID OF EXTRA SIGN BITE.

IS RESULT ZEROY

NORMALIZE AND WRAF LIF.

WHAT 1= SIGN OF RESULT?Y

OUTFUT RESULTE.

B-3






NO$IOT

0001
0002
0002
0004
0005
QOO
Q007
0002
QOO
o010
001l
001z
Goiz
0014
0015
Q014
0017
Q0i1s
on1e
Q020

[leper
Q0z7
06

0039
0040
0041
0042
0043
0044
0045
Q044
o047
ST T35
Q049
0050

0051

Q000

22020 FAMILY MACRD ASSEMBLER FCO.7 24, 245 15: 25017

APPENDIX C

##% FRERELEASE ¥

QOO0
[aIn]83]
OO0z
Q003
0004
Q005

Q00

03-27-295

FAGE 0001

HEHASEAAEHFER SR IR B P TS T HLE A S I FRE LS SRR LI AP ERAH ARSI REFS

£

LI

THIZ I% A FLOATING-POINT DIVISION ROUTINE WHICH

#
*

IMPLEMENTS THE ITEEE PROPOSED FLOATING-FOINT FORMAT #

ON THE TME

V2O,

#*
#

FHFPHERFFHEH A HF BRI RS AR S LS H S ISR BRI F I IR F RSB EHILEH

R A I L T T T - A N

INITIAL FORMAT (ALL 14-EIT WORDSE)

ASIGN (0 OR —-13

101, 1% BITS ] AHI  (NORMALIZED)

00 % BITS (——0-1 aLo

i ' AEXF (=127 TO 12F

TO CORRESFOND WITH IEEE FORMAT,
INPUT O.1F # 2 #% (E + 1)

B

INSTEAD OF 1.F # 2 ##E, AND SUBTRACT 127 FROM E.

THE FINAL FORMAT IS THE SAME AS THE INITIAL FORMAT

EXCEFT THAT FOR CLO WE HAVE:

i 14 BITS i CLa

ALL 14 BITS OF CLO ARE VALID. ANYTHING FPAST THESE HAS

EEEN TRUNCATELD.

FEEHEES LSS B E RS S SR HR YL E S LR T EERE S FE R LS FE XX LR SRR LA LI REREE

B o

k34

WORET CASE (EXCLUDING INITIALIZATION AND I/0):

2.8 MICROSECONDS,
THIS TIMING IMCLUDES THE NORMALIZATION.
WORDES OF FROGRAM MEMORY: %2

dod & %k K W

FEEHUESSHEHF P AT LR R P E SRS LRSS RIS RS SRS R R H SR UG ES R R IERS

H#

AZTGN
AEXF
AHI
ALd
BEIGN
BEXF
BHI

ARG
ER

e D

B i
Eru z
Eid 3
ECi 4
B 5
Eid IS

C-1



N IDT F2020 FAMILY MACRD ASSEMELER FCO,7 24,3548 19225017 0Z-27-85
### FRERELEASE ###
FAGE 0002

0057 0o07  BLO Em 7
QO0Ss Q002 CSIGN Efud =
Q0Se 000Y  CEXF B o
004D Q0048 CHI Em 10
00&H1 000R  CLO EG i1
ODEZ 0000 NEGONE EfL 1z
QOAS 0000 TEMF Et) 13
Q064 O0O0E  FOUR Ecid 14
O0LS O0O0F M EGid 15
QOAA Q010 AL EC 14
QO&T o011 R1 ERLd 17
0063 o001z R2 i 1
Q0L 0012 CL Ei 19
0070 Q014 MI000 EQU 20
0071 0015 ONE ECGiL 21
Q072 0014 THREE Efu 2
0073 0017 FITEEN EQU =3
0074 0012 THIRTY EQU 24
0075 Qo019 TTEEN EQU 25
[elay s #*
0077
0078
007w
[e181=18]
001
0022 0000 CR04 LDFE 4 BEGIN ON FAGE 4.
0023 0001 CEO7 SEXM SET SIGN EXTENSION.
0024 0007 S529 LARF 1
Q025 0002 D100 LRLE AR, =200

Q004 0200
00246 0005 CRO7 RFTE 7 READ NUMBERZ INTO BLOCK RO,
0027 0004 20A0 IN #+, FAC
0022 0007 S5a2 LARF ]
Q022 0002 CO00 LARE ARD, O CLEAR EXFONENT REGISTER.
Q020 Q007 D001 LALE >FFFF

Q00A FFFF
0021 000B AQOC SACL NEGONE NEGONE = -1
0092 0000 DOOY LALE 1000

Q000 1000
Q023 O00E A014 SACL M1000 M1O0O0O = 1000
0024 000F CAO4 LLACE 4
Q095 0010 AODE SACL FOLR FOIR = 4
0024 Q011 CACL LACE 1
Q097 0012 4015 SACL {INE ONE = 1
OO9s 0013 CANR LACk e
0092 0014 L0144 SACL THREE THREE
0100 0015 CAOF LACE 15
0101 0014 A01L7 =ACL FITEEN FITEEN
Q102 0017 CALE LACK jeis]
0102 0018 4015 SACL THIRTY THIRTY
0104 O01% CAOD LACE 13
0105 001A &01% SACL TTEEN TTEEN = 12
Q1048 O01E CADO A0
0107 D010 4009 SACL CEXF CLEAR CEXF
Q108 *
0109 #

INITIALIZATION

EE

i

i
—
in

il
:
P



NO®IDT

0110
0111
0112
011z
0114
0113
0114

0117
0113
0119
0120
0121
0122
01232
0124
0123
0126
0127
o1z
0129
0130
01321
o132

G159
0140
0141
0142
0143
0144
0145
0144
0147

0148
0149
0150
G151
0152
0153
0154
0155
0156
0157
D158

0159

0140
0141
0142

o010
O01E
O01F
0020
0021

0025

0023
0024
0025

Q024

0027
QOzE
00z
00ZA
Q0ZR
Q00
QOzD
O0ZE
D0OZF

0020

SZE0Z0 FAMILY MACRD ASSEMELER
##% PRERELEASE #3#

2000
LOOE

1004

2000

4002
4903
4B14
CELY

4R17
4704
L2211
LOOF
2F11
4R17
4704
&E12

Q10

ICOF
2207

22 CEL4

W17
0025

[BI03EFS

0034
QOZR
Q03T
QoD
OOZE
O03F
QD40
0041
004z
04z
0044

0045
Q044
0047
0045
0049
0044

4B17
4704
AO13
400F
4310

1013
7 AH00B

AZ0A
200A
4E14
F&a0
0041
2015
LODD
2001
1005
[slalel
LOO9

2008
FA20
GO4E
A00A
4208
4B1%

#
O

NOOVE

E T

NORMAL

FCO.7 24,3243 15825517

03-27-85

FAGE Q003

FINISHED WITH INITIALIZATION

LAC
SACL
SUB
B2z

LAC
SACL
ZALH
ADDE
RFT
SFR

RFT
SLIRC
SACH
SACL
LLAC
RFT
SHBC
SACH
SACL

LT
MPY
FAL
RFT
SLRBRC
SACL
ZALH
ADD=E
SUR
SACL
SACH
LAC
AND
BZ

LALC
SACL
LALC
SUE
ADD
SACL

ASTGN
CSIGN
GN

NEGONE
e TGN
AHI
AL
THREE

FITEEN
EHI

R1

oM
Ri,15
FITEEN
EHI

R

L

Bl
RLO

FITEEN
BHI
CL

(]

(K]

oL
CLo
CHI
THI
M1000
NOOVF

ONE

CEXF
AEXF
BEXF
CEXF
CEXF

NORMALIZE

LAC
EZ

ZALH
ADNE
RET

CHI
Lol

CHI
CLO
TTEEN

IF ASIGN = BSIGN.

ELZE, CSIGN = -1.

SHIFT DIVIDEND TO FROTECT FROM OVERFLOW.

GM = AHIIALD / BHI, Rl = REMAINDER.
HIGH ACCUMULATOR RETAINS REMAINDER.

(R1 % 2%#15) / BHI
COMFUTES (R1 # 2%%15)

GIVES @L, AND R:Z.
/ BHI.

HIGH ACCUMULATOR RETAINT REMAINDER.

CORRECTION TERM =
COMFLUTES

(oM o+ BLODY /7 BHI.
(M o+ BLO).,

COMFUTES (GM # BLO) / BHI.

ML — OCL = CHITCLO

OID AN OVERFLOW DCCLRT
IF NOT, GOTO NOOVF,
ELZE, INCREMENT CEXFP.

COMPUTE RESULTING EXFONENT.

DOE= CHI HAVE THE MSR?

IF YEZ, NORMALIZE RESULT.

WILL FERFORM 14 "NORME".



NO$IOT

D1AZ
0144

0145
Qlbdk

0147
0163
Qléey

0170
0171
0172
0173
0174
0175
0174
0177
0172
0179
0120
0181
0ia2
0183
01324
0185
01864
0127
SN RCH
01ae

QD4R
Q0410
Q040
O04E
QO4F
Q050
Q051
onsz
0053

0054

0055

Q054

I2020 FAMILY MACRO ASSEMELER PO, 7 54,345 15225017 023-27-85
##% PRERELEASE ##+%

CEAZ
FFZ0
Q057
4008 L1
Fa20
0055
4B1%
CEAZ
FF20
0057

kA d K ok K

CEO&  NOFLIDOW
CEL?

#
#
#
#
#
*
Q057 A20A  OUTRUT
0052 L00R
005 5587
0054

QOSR
QO5C

ND ERRORS,

CELIF
N0 WARNINGS

FAGE Q004

NIORM
E QUTPUT GO OUTPUT RESULTE.

ZALH CLO HERE, IF CLO HAZ MEER.
BLZ NOFLOW DID BIT SEARCH CAUSE OVERFLOW?

RFT TTEEN IF NOT, NORMALIZE RESULT.
NORM
B DUTPUT GO OUTFRUT RESULT.

FINISHED WITH NORMALIZATION
OVERFLOW OCCURRED DURING BIT SEARCH

RSXM REXM FOR LOGICAL RIGHT SHIFT.
SFR FERFORM RIGHT SHIFT.

TAKE CARE 0OF EXPONENT % NORMALIZED MANTISSA,
THEN OUTFUT RESULTS.

SACH CHI SAVE NORMALIZED MANTISZA.

SACL CLo

LARF 1 REZET POINTER.

RFT THREE DUTPUT RESULTS, CEIGN, CEXP, CHI, AND CLD.
auT #+, FAO

ILE WAIT FOR INTERRUFT.
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