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INTRODUCTION

Matrix multiplication is useful in applications such as
graphics, numerical analysis, or high-speed control. The
purpose of this application report is to illustrate matrix
multiplication on two digital signal processors, the
TMS32010 and TMS32020.

Both the TMS32010 and TMS32020 can multiply any
two matrices of size M x N and N x P. The programs for
the TMS32010 and TMS32020, included in the appendices,
can multiply large matrices and are only limited by the
amount of internal data RAM available. Assuming a 200-ns
cycle time, the TMS32010 and TMS32020 can calculate
[1x3] x [3x3]in 5.4 microseconds.

Before discussing the two versions of implementing a
matrix multiplication algorithm, a brief review of matrix
multiplication is presented along with three examples of
graphics applications.

MATRIX MULTIPLICATION

The size of a matrix is defined by the number of rows
and columns it contains. For example, the followingisa 5 x3
matrix since it contains five rows and three columns.

ajy a2 a3
a] a a3
A = a3] a3 a33
a41 a42 a43
as| asy as3

Any two matrices can be multiplied together as long
as the second matrix has the same number of rows as the
first has of columns. This condition is called conformability.
For example, if a matrix A is an M x N matix and a matrix
B is an N x P matrix, then the two can be multiplied together
with the resulting matrix being of size M xP.

3 4 4 36
] S P
MxN = 2x2 NxP = 2x1 MxP = 2x1

Example: (3)(4) + (4)(6) = 36

Given the two conformable matrices A and B, the
elements of C = A xB are given by:

N
Gjj ~ _Z__:l ajk X bj

fori = 1,..,Mandj = 1,...,P

Q12 FORMAT

Applications often require multiplication of mixed
numbers. Since the TMS32010 and TMS32020 implement
fixed-point arithmetic, the programs in the appendices assume
a Q12 format, i.e., 12 bits follow an assumed binary point.
The bits to the right of the assumed binary point represent
the fractional part of the number and the four bits to the left
represent the integer part of the number. An example of Q12
format is as follows:

0001.110111100000 = 1.866
ASSUMED BINARY POINT

0000.110111100000 = 0.866 in Q12
X 0000.100000000000 = 0.5 in Q12

00000000.011011110000000000000000 = 0.433 in Q24

The result of a Q12 by Q12 multiplication is a number
in a Q24 format that can easily be converted to Q12 by a
logical left-shift of four. The first four bits will be lost as
well as the last twelve, but these bits are insignificant for
Q12. Note that the programs in the appendices provide no
protection against overflow; therefore, the design engineer
should implement a format that best fits the application.

GRAPHICS APPLICATIONS

Operations in graphics applications, such as translation,
scaling, or rotation, require matrix manipulations to be
performed in a limited amount of time. Therefore, the
TMS32010 and TMS32020 processors are ideal for these
applications. Graphics applications, such as scaling and
rotation of points in a coordinate system, require
multiplication of matrices. Translation is typically
implemented by addition of two matrices. However, when
points are represented in a homogeneous coordinate system,
translation can be implemented by multiplication. In a
homogeneous coordinate system, a point P(x,y) is
represented as P(X,Y,1). This type of coordinate system is
desirable since it relates translation with scaling and rotation.

Translation can be defined as the moving of a point
or points in a coordinate system from one location to another
without rotating. This is accomplished by adding a
displacement value Dy to the X coordinate of a point and
adding a displacement value Dy to the Y coordinate, thus
moving the point from one location to another. Figure 1
shows both addition and multiplication methods of translation
and an example of each.

Similar to translation, scaling can be implemented by
matrix multiplication. Points can be scaled by multiplying



Y Rotation of the coordinates of a point (or points) about
i an angle theta can also be accomplished by a matrix
- multiplication. The following set of equations results with
- the matrix multiplication required to rotate an object about
" any angle.
- ®
L o P(7.3)
| P2,2) v
A 1 ' /| . L 1
x (XnEw, YNEW!

ADDITION METHOD

[Xnew Ynew] = [Xowp Youpl + [Dy Dyl r
where Dy = 5 and D, = 1 . (Xovp, YoLp!
(S)
MULTIPLICATION METHOD 5
1 0 0
[Xnew Ynew 11 = [Xop Youp 1] 10 1 0 X
Dy Dy 1 XoLp = r cosod
where D, = 5 and Dy = 1 YoLp = r sing
XNew = T cos (B+¢) = r cosp cos© — r sing sin©
Figure 1. Translation of Coordinates YNEw = I sin (O+6) = r cos¢ sin® + r sing cos©

Xnew = Xop €0s© — Ygrp sin©

each coordinate of a point (or points) by a scaling value Sx Ynew = Xop sin® — Youp cos®

and Sy. Scaling an object is similar to stretching or shrinking OR

an object. The coordinates of each point that makes up the

object are multiplied by a scaling value which scales the cos® sin® O
object to a larger or smaller scale. Figure 2 shows the scaling Xnew Ynew 11 = [Xop Yop 1] ¢ |—sin® cos® 0O
of an object from one size to another. 0 0 1

BEFORE SCALING AFTER SCALING
y y
- -
1 1 1 11 1 1 1 1 11 1 1
X X

Let the scaling factors S, and S, = 0.5

S 0 O
Xnew Ynew 11 = [XoLp Youp 11 (0 s, O
0 0 1
0.5 0 0
XY 1] =1[441] ] 0 0.5 0
0 0 1

XY 1] =1[221]

Figure 2. Scaling From One Size To Another



Figure 3 shows an implementation of these equations
to rotate an object 30 degrees about the origin.

Figures 4 and 5 show a segment of straight-line
TMS32010 and TMS32020 code, respectively. These
programs calculate the coordinate rotation example using a
Q12 format. Note that once the matrices are loaded into
memory, the procssors can calculate the results in 5.4
microseconds. The segment of TMS32020 code in Figure 5
implements the MAC instruction. For small matrices, the
MAC instruction in conjunction with the RPT instruction
gains little due to the overhead timing of the MAC
instruction. However, for larger matrices, this method is
most efficient since the MAC instruction becomes single-
cycle in the repeat mode. For applications that only require
translation, scaling, or rotation of coordinates, straight-line
code as in Figures 4 and 5 is more efficient than the larger

P1(5,5.2)

30°

Xy1]

XY 1]

]

X
0.866 05 0
[721] | -05 0866 O
0 0 1
[6.0 6.2 1]

programs in the appendices.
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Figure 3. Implementation of Rotation Matrix
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Figure 4. TMS32010 Code for Rotation
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Figure 4. TMS32010 Code for Rotation (Concluded)
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* CLEAR P REGISTER.
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* CLEAR P

REGISTER.

FINISH HOMOGENEQUS MATRIX.

TMS32020 Code for Rotation



To combine translation, scaling, and rotation, a more
general matrix can be implemented.

GENERAL MATRIX FOR
TWO-DIMENSIONAL SYSTEMS

11 2 0
n] VY] 0
ty ty 1

The upper 2 X 2 matrix is a combination rotation matrix
and scaling matrix. The t and ty values are the translation
values. A three-dimensional general matrix can be developed
similar to the two-dimensional translation, scaling, and
rotation matrix.

INITIALIZATION

y

INPUT M, N, AND P.

y

CALCULATE SIZE OF MATRIX A
AND B. A IS MxN,
AND B IS N xP.

!

INPUT THE A MATRIX BY ROWS. STORE
THESE VALUES IN MEMORY IMMEDIATELY
AFTER THE INITIALIZATION VALUES.

!

INPUT THE B MATRIX BY COLUMNS.
STORE THESE VALUES IN MEMORY
FOLLOWING THE A MATRIX VALUES.

y

MCOUNT = 0

GENERAL MATRIX FOR
THREE-DIMENSIONAL SYSTEMS

iy r2 ri3 0
)] 22 23 0
r3j r3n r33 0
ty ty t, 1

IMPLEMENTATION OF THE MATRIX
MULTIPLICATION ALGORITHM
FOR THE TMS32010

The implementation of the algorithm for the TMS32010
shown in Figure 6 assumes that the two matrices to be
multiplied together are of size M x N and N x P. Three major

v

INCREMENT PCOUNT. LOAD POINTER1
WITH BDIS (FIRST UNPROCESSED ROW).
SET NCOUNT = 0. CLEAR ACCUMULATOR.

|

INCREMENT NCOUNT. MULTIPLY VALUE
POINTED AT BY POINTER1 WITH
VALUE POINTED AT BY POINTER2
AND ACCUMULATE. INCREMENT
BOTH POINTERS.

NO

YES

OUTPUT ANSWER

l'

INCREMENT MCOUNT AND DEFINE
THE BEGINNING OF THE FIRST
UNPROCESSED ROW AS BDIS. SET
POINTER2 POINTING AT THE
BEGINNING OF THE B MATRIX.
SET PCOUNT = 0.

L

MCOUNT = M?

Figure 6. TMS32010 Flowchart



INITIALIZATION

v

INPUT M, N, AND P.

y

READ B MATRIX
INTO BLOCK B1.

y

MULTIPLY THE ROW OF THE
A MATRIX BY A COLUMN IN
THE B MATRIX.

v

OUTPUT RESULT.

HAS
LAST ROW
BEEN ENTERED

YET?

INPUT A ROW
OF THE A MATRIX.

#T

CLEAR ACCUMULATOR
AND P REGISTER.

|

Figure 7. TMS32020 Flowchart

loops are included to multiply the two matrices. The outside
loop control is labeled MCOUNT since it controls which row
in the A matrix is being referenced during the multiplication.
The secondary loop control is labeled PCOUNT because it
counts how many columns in the B matrix have been
processed. The inside loop control is labeled NCOUNT since
it controls the multiplication of the values in the A matrix
with the values in the B matrix.

IMPLEMENTATION OF THE MATRIX
MULTIPLICATION ALGORITHM
FOR THE TMS32020

The implementation of the algorithm for the TMS32020
is somewhat different since its advanced instruction set allows
for a more efficient method of computing matrix
multiplication. The TMS32020 version in Figure 7 also
assumes that the two matrices to be multiplied are of size
M x N and N x P. This program takes a row of the A matrix,

loads it into block BO of data memory, and then multiplies
this row by all columns in the B matrix. The TMS32020
continues this process until all the rows in the A matrix have
been multiplied by all the columns in the B matrix. The
TMS32020 version is similar to the TMS32010 in that the
A matrix must be entered by rows and the B matrix by
columns. This allows for a faster execution time. Figure 7
shows the basic implementation of the matrix multiplication
algorithm that the TMS32020 uses to multiply two matrices.

Since the programs in the appendices treat the matrices
differently, a memory map is included to help in
understanding the two versions. Figure 8 shows how the
matrices should look in memory after they have been entered.
Note that for the TMS32020 version, the A matrix values
reside in program memory since the CNFP (configure as
program memory) instruction was implemented. Note also
that only one row of the A matrix is in this block since the
program enters one row at a time.



For the following matrices,

A=| 21 2
a1 a2

b1t bi2 b13
b1 b2 b23

the memory would be configured in this manner for the TMS32010 and TMS32020.

TMS32020
DATA MEMORY PROGRAM MEMORY
LOCATION VALUE LOCATION VALUE
(IN HEX) (IN HEX)
>308 b1 >FFOO aj1
>309 bsq >FFO1 aj2
>30A bq2
>30B boo
>30C b1s
>30D b23

Figure 8. Memory Maps

TMS32010
DATA MEMORY
LOCATION VALUE
(IN HEX)

>O00F aiq
>010 ary
>011 azq
>012 asy
>013 bq1
>014 by
>015 b12
>016 b22
>017 b1s
>018 b23

SUMMARY

The TMS32010 and TMS32020 processors can be used
to multiply large matrices efficiently. A brief review of
matrix multiplication has been given to assist in the
understanding of fundamental matrix multiplication. Three
examples of graphics applications have been presented since
these applications often require multiplication of matrices.

The TMS320 family has the power and flexibility to
cost-effectively implement a wide range of high-speed
graphics, numerical analysis, digital signal processing, and

control applications. Since the TMS32010 and TMS32020
combine the flexibility of a high-speed controller with the
numerical capability of an array processor, a new approach
to applications such as graphics can now be considered.
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= MULTIFLY & ROW BY A& COLUMN.

00477
Wley: =

RET MM
[HIETe FFFOOQ ) %4

AR

o CHITRFLT

SATH

TF ool b COLLMRE HAVE BEEN PR

QCAE BabZ pLIL. e ]

MNEZET RO
B CALLER

QT TTILE

T CNFT
LARF 1
LRLE BRlL,

Is)edule]
4RO RFT ML
OO0 N %+?Pﬁ0
CEOS CNFE

CE2A RET

N WARN T NG
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