Matrix
Multiplication

with the TMS32010 and TMS32020

Digital Signal Processing

Application Report

*ip
TExas
INSTRUMENTS

OOOOOOO

Matrix Multiplication
with the
TMS32010 and TMS32020

Charles Dana Crowell
Digital Signal Processing
Applications Engineering

TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TIl) reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. Tl advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.

Tl warrants performance of its semiconductor products, including SNJ
and SMJ devices, to current specifications in accordance with Tl's
standard warranty. Testing and other quality control techniques are
utilized to the extent Tl deems such testing necessary to support this
warranty. Unless mandated by government requirements, specific
testing of all parameters of each device is not necessarily performed.

In the absence of written agreement to the contrary, Tl assumes no
liability for Tl applications assistance, customer’s product design, or
infringement of patents or copyrights of third parties by or arising from
use of semiconductor devices described herein. Nor does Tl warrant
or represent that any license, either express or implied, is granted
under any patent right, copyright, or other intellectual property right
of Tl covering or relating to any combination, machine, or process in
which such semiconductor device might be or are used.

Copyright © 1985, Texas Instruments Incorporated

INTRODUCTION

Matrix multiplication is useful in applications such as
graphics, numerical analysis, or high-speed control. The
purpose of this application report is to illustrate matrix
multiplication on two digital signal processors, the
TMS32010 and TMS32020.

Both the TMS32010 and TMS32020 can multiply any
two matrices of size M x N and N x P. The programs for
the TMS32010 and TMS32020, included in the appendices,
can multiply large matrices and are only limited by the
amount of internal data RAM available. Assuming a 200-ns
cycle time, the TMS32010 and TMS32020 can calculate
[1x3] x [3x3]in 5.4 microseconds.

Before discussing the two versions of implementing a
matrix multiplication algorithm, a brief review of matrix
multiplication is presented along with three examples of
graphics applications.

MATRIX MULTIPLICATION

The size of a matrix is defined by the number of rows
and columns it contains. For example, the followingisa 5 x3
matrix since it contains five rows and three columns.

ajy a2 a3
a] a a3
A = a3] a3 a33
a41 a42 a43
as| asy as3

Any two matrices can be multiplied together as long
as the second matrix has the same number of rows as the
first has of columns. This condition is called conformability.
For example, if a matrix A is an M x N matix and a matrix
B is an N x P matrix, then the two can be multiplied together
with the resulting matrix being of size M xP.

3 4 4 36
] S P
MxN = 2x2 NxP = 2x1 MxP = 2x1

Example: (3)(4) + (4)(6) = 36

Given the two conformable matrices A and B, the
elements of C = A xB are given by:

N
Gjj ~ _Z__:l ajk X bj

fori = 1,..,Mandj = 1,...,P

Q12 FORMAT

Applications often require multiplication of mixed
numbers. Since the TMS32010 and TMS32020 implement
fixed-point arithmetic, the programs in the appendices assume
a Q12 format, i.e., 12 bits follow an assumed binary point.
The bits to the right of the assumed binary point represent
the fractional part of the number and the four bits to the left
represent the integer part of the number. An example of Q12
format is as follows:

0001.110111100000 = 1.866
ASSUMED BINARY POINT

0000.110111100000 = 0.866 in Q12
X 0000.100000000000 = 0.5 in Q12

00000000.011011110000000000000000 = 0.433 in Q24

The result of a Q12 by Q12 multiplication is a number
in a Q24 format that can easily be converted to Q12 by a
logical left-shift of four. The first four bits will be lost as
well as the last twelve, but these bits are insignificant for
Q12. Note that the programs in the appendices provide no
protection against overflow; therefore, the design engineer
should implement a format that best fits the application.

GRAPHICS APPLICATIONS

Operations in graphics applications, such as translation,
scaling, or rotation, require matrix manipulations to be
performed in a limited amount of time. Therefore, the
TMS32010 and TMS32020 processors are ideal for these
applications. Graphics applications, such as scaling and
rotation of points in a coordinate system, require
multiplication of matrices. Translation is typically
implemented by addition of two matrices. However, when
points are represented in a homogeneous coordinate system,
translation can be implemented by multiplication. In a
homogeneous coordinate system, a point P(x,y) is
represented as P(X,Y,1). This type of coordinate system is
desirable since it relates translation with scaling and rotation.

Translation can be defined as the moving of a point
or points in a coordinate system from one location to another
without rotating. This is accomplished by adding a
displacement value Dy to the X coordinate of a point and
adding a displacement value Dy to the Y coordinate, thus
moving the point from one location to another. Figure 1
shows both addition and multiplication methods of translation
and an example of each.

Similar to translation, scaling can be implemented by
matrix multiplication. Points can be scaled by multiplying

Y Rotation of the coordinates of a point (or points) about
i an angle theta can also be accomplished by a matrix
- multiplication. The following set of equations results with
- the matrix multiplication required to rotate an object about
" any angle.
- ®
L o P(7.3)
| P2,2) v
A 1 ' /| . L 1
x (XnEw, YNEW!

ADDITION METHOD

[Xnew Ynew] = [Xowp Youpl + [Dy Dyl r
where Dy = 5 and D, = 1 . (Xovp, YoLp!
(S)
MULTIPLICATION METHOD 5
1 0 0
[Xnew Ynew 11 = [Xop Youp 1] 10 1 0 X
Dy Dy 1 XoLp = r cosod
where D, = 5 and Dy = 1 YoLp = r sing
XNew = T cos (B+¢) = r cosp cos© — r sing sin©
Figure 1. Translation of Coordinates YNEw = I sin (O+6) = r cos¢ sin® + r sing cos©

Xnew = Xop €0s© — Ygrp sin©

each coordinate of a point (or points) by a scaling value Sx Ynew = Xop sin® — Youp cos®

and Sy. Scaling an object is similar to stretching or shrinking OR

an object. The coordinates of each point that makes up the

object are multiplied by a scaling value which scales the cos® sin® O
object to a larger or smaller scale. Figure 2 shows the scaling Xnew Ynew 11 = [Xop Yop 1] ¢ |—sin® cos® 0O
of an object from one size to another. 0 0 1

BEFORE SCALING AFTER SCALING
y y
- -
1 1 1 11 1 1 1 1 11 1 1
X X

Let the scaling factors S, and S, = 0.5

S 0 O
Xnew Ynew 11 = [XoLp Youp 11 (0 s, O
0 0 1
0.5 0 0
XY 1] =1[441]] 0 0.5 0
0 0 1

XY 1] =1[221]

Figure 2. Scaling From One Size To Another

Figure 3 shows an implementation of these equations
to rotate an object 30 degrees about the origin.

Figures 4 and 5 show a segment of straight-line
TMS32010 and TMS32020 code, respectively. These
programs calculate the coordinate rotation example using a
Q12 format. Note that once the matrices are loaded into
memory, the procssors can calculate the results in 5.4
microseconds. The segment of TMS32020 code in Figure 5
implements the MAC instruction. For small matrices, the
MAC instruction in conjunction with the RPT instruction
gains little due to the overhead timing of the MAC
instruction. However, for larger matrices, this method is
most efficient since the MAC instruction becomes single-
cycle in the repeat mode. For applications that only require
translation, scaling, or rotation of coordinates, straight-line
code as in Figures 4 and 5 is more efficient than the larger

P1(5,5.2)

30°

Xy1]

XY 1]

]

X
0.866 05 0
[721] | -05 0866 O
0 0 1
[6.0 6.2 1]

programs in the appendices.

M LT

D10 FAaMILY MACRD

Figure 3. Implementation of Rotation Matrix

33 S i 3 SRR A S 3 e 3 3 S 3 3 36 28 S 36 3 4 SR 3 S SE 4 3 3 30 A 36 30 3 48 30 3 3 S 30 30 B e 2 2 5

e
#* THIE THE INFLITS ARE IN @12, *
THE FIRZT NINE SHOULD BE THE ROTATION #*
* MATRIX (HOMOGE DROTNATE . ENTERED RY #
3* COLLIMNE . THE CEOINFUTE SHOULD BE THE *
#* DL X AND Y & 3
#* #*
g 330 5 3 3 30 530 B S 3040 3 3 30 36 50 56 0 36 30 30 3036 3 30 3 0 30 30 303 56 3 3030 30 36 30 30 30 30 36 3 3 30 3630 A5 3 3
OO0 0000 AEOO ROTATE LIFE Q
01l Q000 ANE B 1
2 = . LARF O
& TGO LARE ARO, O # FOINT AT BEGINMING OF ROTATION MATRIX.
QO14 Q003 710w LARK ARL # FOINT AT BEGINMING OF OLD COORDINATES.
QO1E 0004 40053 IN ¥4+, FA0 # INFUT ROTATION MATRIX AND QLD
; CGOOE 40A2 IN #+, FAO o COORDINATES,
40A% In #+, FAO
4OAE N LR S AT
40AE N #+ FAO
QOOY 40A% IN 4 FAQ
OOOM 40OAS IN #+, FAO
40A IN #+ FAO
< A40AD In #+, FAQ
QUOLD 40/ IN #+, FAO
DOOE 40AE IN #+ FAO
< OOOF 40A8 IN #4 FAD
QOL10 7R ZALC # ZLEAR ACCLUMULATIOR.
0011 7000 LARE ARG, O
0012 &HAAL LT #+, 1 # CALIZULATE NEW X COORDINATE.
0O13E &ADAO MFY #+, 0
0014 ACAL LTA #+ 1
Q015 ADAO MFY LE e
QO1lée ACAL LTA *+ 1
Q017 ADAO MFY #+, O
0oLE 7FEF AFAL
Q01e SCOC SACH AN, 4 # CONVERT T @212 AND QUTPUT RESLILT.
001A 4200 T ANES, FAO

Figure 4. TMS32010 Code for Rotation

S8 OOLR

o040
0041
004z
00473
0044
0045
0044
Q47
0043
Qo

001
QO1n
O0O1E
OO1F
OO0

TFEw
710w
&HAAT
ADAO
&AL
AHDAO
AT

AHTIA0
A

B IET
7FED

ZAL

AR ARL, ® # CALCULATE NEW Y COORDINATES.
LT #+1

MFY #+,0

LTA #+ 01

MEY #+, 0

L.TA #+, 1

MPY F+ 0O

AR AL
EAIH
LT

ZAL

AR ARL, # FINDSH HOMOGENEQLS MATRIX.
LT #4, 1

MEY 4+, 0

L.TA #+, 1

MY ek O

L.TA #+, 1

MEY #4+, O

AFAL
SALH
DT

RET

#ODONVERT TO @212 AND GUTPUT RESULT.

N WARN L MG

Figure 4. TMS32010 Code for Rotation (Concluded)

HOIDT

Q001
Q002
Q003
Q004
QOO0S
OO0E
0007
000
OO0
Q010
0011
0012
0013 O
0014

0000

0015
001¢
0017

Q00%
QOO

Q009
9 00048
O0O0R
QOO
Q00D
GOOE
OO0OF
G010
o011

noz2a

F2020 FAMILY MACRO ASSEMBLER

PCO.7 84,3242

16:07:215
PAGE 000]

02-25-85

hhhkhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhrhhhhhhhhhhhhhhkhhhhhhhods

* o ¥ A A+

*

THIS ROUTINE ASSUMES THE INPUTZ ARE IN QlZ.

THE FIRST NINE INPUTES SHOULD BRE THE ROTATION
MATRIX (HOMOGENEOUZ COORDINATEZ), ENTERED BY
COLUMNS. THE LAST THREE INPUTSZ :ZHOULD BE THE

OLD

X AND

Y COORDINATE:.

khkkhkhkhhhhdhhhhhhhhhhhhdhhhhbbhhdhhhhhhhhhrhhhhkhhhhhhhdhhhhdkd

ANZ

Q300
CRoOZ
SOAC
D100
Q200

CROZ
ZOAO
CEOS
AQOQ
D1GO
GEROO

FFOO
2 CE1S

013 ECOC

0014
0015
Q0O1E
0017
DOLE
WIS R R=]

Qo Q0LA
4 OOlER
y D01¢
8] Q01D

OOLE

HO ERRORS,

EQDC
BOOO
CADO
CBGZ
SDAO
FEOO
CELS

o

EQOC
AQOQO
CADO
CROZ

D SDAD

FFOO

NO WARMINGES

ROTATE LARP

EQU
ZAC
LDPK
LRLE

RPTK
IN
LRLE

RPTE
IN

CNFP
MPYE
LRLE

RPTE
MAC

APAC
SACH
ouT
MPYE
ZAC
RPTE
MAC

APAC
=ZACH
ouT
MPYE
ZAC
RPTE
MAC

APAC
SACH
ouT
RET

Figure S.

1

12

£

AR1, 3200
*+,PAO

AR1, »Z200

*+,PAD

=0

BR1, 300

<

*FFROO Tt

ANZ, 4
ANS,PAD
=0

s

FFFOO, *+

AN, 4
ANZ,PAD
=0

FEEOO, *+

ANS, 2
ANS, PAC

*

*

USE AUXILIARY REGISTER 1.

INITIALIZE ACCUMULATOR.

LOAD ROTATION MATRIX INTO El.

*
*
*
*
*
*
*
*

LOAD COORDINATES INTO BLOCK BO.

* CONFIGURE BO AZ PROGRANM MEMORY.

CLERR P REGIZTER.

CALCULATE THE NEW X COORDINATE.

* QUTPUT NEW X COORDINATE.
* CLEAR P REGISTER.

CALCULATE NEW Y COORDINATE.

* QUTPUT NEW Y COORDINATE.

* CLEAR P

REGISTER.

FINISH HOMOGENEQUS MATRIX.

TMS32020 Code for Rotation

To combine translation, scaling, and rotation, a more
general matrix can be implemented.

GENERAL MATRIX FOR
TWO-DIMENSIONAL SYSTEMS

11 2 0
n] VY] 0
ty ty 1

The upper 2 X 2 matrix is a combination rotation matrix
and scaling matrix. The t and ty values are the translation
values. A three-dimensional general matrix can be developed
similar to the two-dimensional translation, scaling, and
rotation matrix.

INITIALIZATION

y

INPUT M, N, AND P.

y

CALCULATE SIZE OF MATRIX A
AND B. A IS MxN,
AND B IS N xP.

!

INPUT THE A MATRIX BY ROWS. STORE
THESE VALUES IN MEMORY IMMEDIATELY
AFTER THE INITIALIZATION VALUES.

!

INPUT THE B MATRIX BY COLUMNS.
STORE THESE VALUES IN MEMORY
FOLLOWING THE A MATRIX VALUES.

y

MCOUNT = 0

GENERAL MATRIX FOR
THREE-DIMENSIONAL SYSTEMS

iy r2 ri3 0
)] 22 23 0
r3j r3n r33 0
ty ty t, 1

IMPLEMENTATION OF THE MATRIX
MULTIPLICATION ALGORITHM
FOR THE TMS32010

The implementation of the algorithm for the TMS32010
shown in Figure 6 assumes that the two matrices to be
multiplied together are of size M x N and N x P. Three major

v

INCREMENT PCOUNT. LOAD POINTER1
WITH BDIS (FIRST UNPROCESSED ROW).
SET NCOUNT = 0. CLEAR ACCUMULATOR.

|

INCREMENT NCOUNT. MULTIPLY VALUE
POINTED AT BY POINTER1 WITH
VALUE POINTED AT BY POINTER2
AND ACCUMULATE. INCREMENT
BOTH POINTERS.

NO

YES

OUTPUT ANSWER

l'

INCREMENT MCOUNT AND DEFINE
THE BEGINNING OF THE FIRST
UNPROCESSED ROW AS BDIS. SET
POINTER2 POINTING AT THE
BEGINNING OF THE B MATRIX.
SET PCOUNT = 0.

L

MCOUNT = M?

Figure 6. TMS32010 Flowchart

INITIALIZATION

v

INPUT M, N, AND P.

y

READ B MATRIX
INTO BLOCK B1.

y

MULTIPLY THE ROW OF THE
A MATRIX BY A COLUMN IN
THE B MATRIX.

v

OUTPUT RESULT.

HAS
LAST ROW
BEEN ENTERED

YET?

INPUT A ROW
OF THE A MATRIX.

#T

CLEAR ACCUMULATOR
AND P REGISTER.

|

Figure 7. TMS32020 Flowchart

loops are included to multiply the two matrices. The outside
loop control is labeled MCOUNT since it controls which row
in the A matrix is being referenced during the multiplication.
The secondary loop control is labeled PCOUNT because it
counts how many columns in the B matrix have been
processed. The inside loop control is labeled NCOUNT since
it controls the multiplication of the values in the A matrix
with the values in the B matrix.

IMPLEMENTATION OF THE MATRIX
MULTIPLICATION ALGORITHM
FOR THE TMS32020

The implementation of the algorithm for the TMS32020
is somewhat different since its advanced instruction set allows
for a more efficient method of computing matrix
multiplication. The TMS32020 version in Figure 7 also
assumes that the two matrices to be multiplied are of size
M x N and N x P. This program takes a row of the A matrix,

loads it into block BO of data memory, and then multiplies
this row by all columns in the B matrix. The TMS32020
continues this process until all the rows in the A matrix have
been multiplied by all the columns in the B matrix. The
TMS32020 version is similar to the TMS32010 in that the
A matrix must be entered by rows and the B matrix by
columns. This allows for a faster execution time. Figure 7
shows the basic implementation of the matrix multiplication
algorithm that the TMS32020 uses to multiply two matrices.

Since the programs in the appendices treat the matrices
differently, a memory map is included to help in
understanding the two versions. Figure 8 shows how the
matrices should look in memory after they have been entered.
Note that for the TMS32020 version, the A matrix values
reside in program memory since the CNFP (configure as
program memory) instruction was implemented. Note also
that only one row of the A matrix is in this block since the
program enters one row at a time.

For the following matrices,

A=| 21 2
a1 a2

b1t bi2 b13
b1 b2 b23

the memory would be configured in this manner for the TMS32010 and TMS32020.

TMS32020
DATA MEMORY PROGRAM MEMORY
LOCATION VALUE LOCATION VALUE
(IN HEX) (IN HEX)
>308 b1 >FFOO aj1
>309 bsq >FFO1 aj2
>30A bq2
>30B boo
>30C b1s
>30D b23

Figure 8. Memory Maps

TMS32010
DATA MEMORY
LOCATION VALUE
(IN HEX)

>O00F aiq
>010 ary
>011 azq
>012 asy
>013 bq1
>014 by
>015 b12
>016 b22
>017 b1s
>018 b23

SUMMARY

The TMS32010 and TMS32020 processors can be used
to multiply large matrices efficiently. A brief review of
matrix multiplication has been given to assist in the
understanding of fundamental matrix multiplication. Three
examples of graphics applications have been presented since
these applications often require multiplication of matrices.

The TMS320 family has the power and flexibility to
cost-effectively implement a wide range of high-speed
graphics, numerical analysis, digital signal processing, and

control applications. Since the TMS32010 and TMS32020
combine the flexibility of a high-speed controller with the
numerical capability of an array processor, a new approach
to applications such as graphics can now be considered.

REFERENCES

1. J.D. Foley and A. Van Dam, Fundamentals of
Interactive Commputer Graphics, Addison-Wesley
Publishing Company, Inc. (1982).

2. S.D. Conte and Carl de Boor, Elementary Numerical
Analysis, McGraw-Hill, Inc. (1980).

NOSIOT

0001
0002
QO0z2
0004
0005
0004
o007
O00s
[s]n]0)]
0010
0011
0012
0013
0014
001S
0014
0017
o012

G043
0044

[S187%
GOA A
Q047
Q045
Q047
QOS0
0051
0052
Q053

0054

DO5Y

QOO0

0000
Q001
Q002
0004
005
000 A

Q007
GO0

[slsle3

O00A
O0O0E

[alslale]

QOOE
QO0F
Q010
Q011

001z

Appendix A

2010 FAMILY MACRO ASSEMBLER FPC2.1 24,107

Q000
0001
0002
0003
0004
Q005
Q004
Q007
0003
Q002
QO0A
QOO0R
GOOC
Q00D
QOCE

LEQO
LER0
FEOF
SO00
TEO1

S500E

4000
4001
40073

AHAQ0
D0

5007

AAOL
ADOE
TFY

5008

ZE0C

10:02:42 02-25-25

FAGE 0001

Fe 3t 3t 36 3 38 3 3 3 36 3 38 3 3t 3E 353t 3t 36 36 36 38 38 33t 34 3 30 3 36 303 38 3 3038 6 36 30 30 38 36 30 36 36 S S 3

3
#*
3

ALL INPUTS AND OQUTFUTS FOR THIS
BE OR ARE IN 212 FORMAT EXCEFPT FOR THE M, N, #*
AND P OINPLTS, WHICH SHOULD BE Q0.

PROGRAM SHOULD #

3*

F 303 03 36 30 36 3 30 30 3 3 30 30 330 30303 H 30 3 30330 033 30 I 330 A3 GG

oo mMZ X
[I

I

2
ot

o
=z
o

ADIE
EOIE
COIs
TEMF
o0l
Cos
T
CINE
*

ADRG o]
EQL
ER
EQ
[=nih]
EQ
Eiid
E
Ed
ERL
ER
Ert o

B =R
EfL I
e il
EQL =B

YRR
fed

W
e

R I A

*7

INITIALIZATION

#*

E I

A

¥ % A A

LDPE 0
LARF 0
LACE 1
SACL C
SACL T
LACK 1
ZACL CONE

MATRIX A& IS M = N AND MATRIX B IS N = P,
THESE STATEMENTS READ IN THE SIZES OF
THE TWO MATRICES.

IN M, PAD
N N, FAO
N ELFAO

CALCULATE THE LENGTH OF THE A MATRIX AND
STORE THTS VALUE IN ADIS.

LT M
MEY i
AT

RIS AOLE

CALCULATE THE LENGTH OF THE B MATRIX AND
STORE THIS VALLUE IN BDIS.

LT N
mey =
FAC

SACL BOIZ

FOINT AT THE END OF THE INITIAL DATA.

LAR AROQ, CO%

OOAO
00kl
Q042
O0AS
Q0L
OOAS
OO b
QOAT
QOEE
Q&
Q070
0071
0072
Q073
o074

OO75
Q074
o077
Q07

0094

QO95
009k
Q097

0100
0101
0102
0103
0104
0103
0106
0107
0108
010%
0110
o111
0112
0113
0114
0115
0114
0117
0112
o119
0120
0121

D013
0014
Q015
o014

0017 A2
QO1s

0017
O0la
OO1HR

D010
ool

O0Ol1E
- O00E

T 0027

00ze
0022
00ZA
OOZER
002
00z
O0ZE

002F

Z00R
QOOE
S0O0R
4053

07
1008
FEGO
Q01

VA=K
SGOR

200R

2008
100K

FEQO
D01E

2000
1001
003
2000
Q007
500D
1001
5007

2003

0122 0030 0001

#*
* READ THE A MATRIX VALUES INTO DATA RAM,
THIS MATRIX MUST BE ENTERED BY ROWE.

THE MATRIX VALUES WILL BE LOCATED IN

DATA RAM FOLLOWING THE INITIALIZATION
VALUES,

#*
FET LA
ADD
SACL
IN
MAR
LALC
SUR
BNZ

ol
ONE
Cor
* FAO
*+
ADTS
Cor
F=T

#
RESET COUNTER TO READ IN THE B MATRIX VALUIES,
+*
ZAC
SACL [Nl
+*

% READ THE B MATRIX VALUES
* UNLIKE THE A& MATRIX,
ENTERED BY COLLMNG.
LIOCATED
%

+*

SN

INTO DATA RAM.
THESE VALUES MUST BE
THESE VALUES WILL BE

LAC
ADD

CoI
ONE

SACL oY
InN # FAO
MAR *+

LAC
SUB
BNZ

BOIIS
ool
SND

#
MORE
#

INITIALIZATION

LA
SLB
SACL
LA
ADD
SACL
=B
SACL

pors

Z2 4D = A
o}
—
iy

ADIS

CALCULATE A =« B

OUTPUT (1 j) = \

TR T T R
-~

5 LAC
ADD N

IN DATA RAM FOLLOWING THE & MATRIX VALLES.

. 5004
2004 =N

CNE

™

140
0141
0142
14
0144 2
G145 0047 1001
(1446 0042 FEOOD

o047 O0ZE

DS

0147
0143
149
0150
0151
0152 004A 2
G153 004R S0
G154 004

%

LOAD ACCUMULATOR WITH HIGH WORD OF @324 RESULT.
LEFT-SHIFT FOUR TO CONVERT TO @1z,
NOTE THAT ONLY THE 12 MSE'S ARE STGNIFICANT.

L

LAL ANS:, 4

SACL ANS

OuT ANS PAO

0155 004D LA rz

0154 004K SR

0157 004F FEQO BNZ =N
o050 0037

0158 0051 2003 LAC o1

0159 0052 1007 =1UE ADTs

0140 0053 FEOO ENZ Fo
0054 00ZF

0141 00SS FP00 OUIT B QuTT
GOSA 0055

NOPERRORSE, NO WARNINGS

Rl

NS LT

QOO
QOO2
GO0
0004
QOO
OO0 A
GOO7
D00
QOO
0010
Qo011
QoL
001
0014
001
O 1A
QG117
D01 E
Q0w

b

[SInT %
[RINT YN
47
[SInF 3

Qa5
DOE0

(19301

QOSER
DOSE

QOS54

QOEE
OO%54

00

B0

QOO0

£

Uloé

AL
SO0

O1ono
(9318
4R0O4
SO0
2001
1005
LHOOL
Faz0

QOH2

P
=

* ALL.
SHOLILIDY BE
IR

il

N

F:n
AN
EIIMI
CINE
MM
M
*

FAMILY MACRD

INFLITES

COTHE M

ARG
BV
B
E
Fd
Et
g
B
EREIN

Appendix B

[AR

DR ARE IN 6
N, AND F

Kl

INITIALTZATION

@&

READ

MORE

*
READ
.ﬂ.

CALLER

3#*

LR
LRLE

L.ARF
[T
AL

STZES

RETH
IN

OF MATRIC

i

AR, FEROO
1

CINE

L

3 N Fend

INITIALYZATION

L.
AL
DAL

LRLE

RET
IN
LAL
SR
SACL
¥4

M
CINE
M
M
CINE
[T
]

2

DI
BIM1
F_'-

M
Fiv L

AR,

BIOM1
4+, FAO
™

OINE

™

=T

AN OLITFLTS

il

FOR

WHIH

CALL ROUTINE TO READ IN A ROW

THI
FORMAT
SHEILIL T
B od g b g 3 G SR S 3E 4 30 S 3 A 35 3 S 3 30 H 3 5 3 R 3 S B S SR S X A 5T 3 3

FRIIGRAM
EXCERT

B-1

%

OF THE & MATRIX.

QCSs ODEF
OO40

Q0EO G041
0043

QAL 0047 S5EET LLARF 1

Q044 2007 L.AR ARG, FM 1

CALL o

LRLE AR1, »EOS

g -

CLEAR ACCUMULATOR AND P REGISTER.

ACOO ML MEYE 0
QO4L AGD A0

= MULTIFLY & ROW BY A& COLUMN.

00477
Wley: =

RET MM
[HIETe FFFOOQ) %4

AR

o CHITRFLT

SATH

TF ool b COLLMRE HAVE BEEN PR

QCAE BabZ pLIL. e]

MNEZET RO
B CALLER

QT TTILE

T CNFT
LARF 1
LRLE BRlL,

Is)edule]
4RO RFT ML
OO0 N %+?Pﬁ0
CEOS CNFE

CE2A RET

N WARN T NG

IJ
April 1985

Revision * TEXAS
1602263-9701 INSTRUMENTS
Printed in U.S.A. Creating useful products

and services for you.

SPRA0OS8

