TMS320C5x

User’s Guide

XGSO0CESN L

1993 1993 Digital Signal Processing Products

TMS320C5x
User’s Guide

2547301-9721 revision D
January 1993

TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (Tl) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

Tl warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer.
Use of Tl products in such applications requires the written approval of an appropriate Tl officer.
Questions concerning potential risk applications should be directed to Tl through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does Tl warrant or
representthat any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Ti covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated

Preface

The purpose of this user’s guide is to provide the Tl customer with information
on 'C5x digital signal processors. This manual can also be used as areference
guide for developing hardware or software applications. The following list
summarizes the contents of the chapters and appendices in this user’s guide.

How to Use This Manual

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

This document contains the following chapters:

Introduction
Summarizes the TMS320 family of products. Gives a general description, lists
the key features, and presents some typical applications of the 'C5x devices.

Pinouts and Signal Descriptions
Lists pin locations with associated signals, categorizes signals according to
function, and describes signals.

Architecture
Gives a general architectural overview with a functional block diagram.
Describes the 'C5x design, hardware components, and device operation.

Assembly Language Instructions

Lists instructions by function. Provides alphabetized individual instruction
descriptions with examples. Includes 'C2x-to-'C5x instruction set mapping
and instruction cycle times and opcodes.

Peripherals
Describes peripheral control, serial ports, software-programmable wait states,
and timing circuits.

Memory

Discusses program/data memory operation and configuration (with memory
maps), I/O space, external interface considerations, DMA operation, and
memory management.

Software Applications
Explains the use of ’C5x instruction set with particular emphasis on its new
features. Includes code examples for various DSP applications.

Read This First

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix |

Electrical Specifications
Provides design documentation for the 'C5x devices. This data is based upon
design goals and modeling information.

External Interface Timing
Provides functional timing of operation on the external interface bus.

Instruction Cycle Timings
Details the instruction cycle timings organized in different classes.

TMS320C5x System Migration
Provides information for upgrading a ’'C25 system to a 'C5x system. Includes
package dimensions and pinouts, timing similarities and differences,

source-code r\nmnnhhnl:hl memory mans. on- r\h|n nanr\haral interfacina and
LR 'J SIA llv', LA rl y WL v P INZ1GAR BT 1AW 1AW s, Al I

development tool enhancements

XDS510 Design Considerations
Provides information to meet the design requirements of the XDS510 emulator
and to support XDS510 Cable #2563988—001 Rev. B.

Analog Interface Peripherals and Applications
Describes a variety of devices that interface directly to the TMS320 DSPs for
various communication and multimedia applications.

Memories, Sockets, and Crystals

Provides product information regarding memories and sockets manufactured
by Texas Instruments that are compatible with the 'C5x. Information is also
given regarding crystal frequencies, specifications, and vendors.

ROM Codes
Outlines the procedural flow for submitting code and ordering TMS320
mask-programmed ROM-based DSPs from Texas Instruments.

Development Support
Provides a description of the 'C5x development support tools.

Related Documentation

The following books describe the TMS320 fixed-point devices and related
support tools. To obtain a copy of any of these Tl documents, call the Texas
Instruments Literature Response Center at (800) 477—8924. When ordering,
please identify the book by its title and literature number.

TMS320C2x/C5x Optimizing C Compiler User’s Guide (literature number
SPRUO024) describes the 'C2x/C5x C compiler. This C compiler accepts
ANSI standard C source code and produces TMS320 assembly
language source code for the 'C2x and 'C5x generations of devices.

Preface

Read This First

TMS320C5x C Source Debugger User’s Guide (literature number
SPRUO055) tells you how to invoke the 'C5x emulator, SWDS, EVM, and
simulator versions of the C source debugger interface. A tutorial
introduces basic debugger functionality and discusses various aspects
of the debugger interface, including window management, command
entry, code execution, data management, and breakpoints.

TMS320 Fixed-Point DSP Assembly Language Tools User’s Guide
(literature number SPRU018) describes the assembly language tools
(assembiler, linker, and other tools used to develop assembly language
code), assembler directives, macros, common object file format, and
symbolic debugging directives for the 'C1x, 'C2x, and 'C5x generations
of devices.

TMS320C5x Evaluation Module Technical Reference (literature number
SPRU087) describes the 'C5x EVM, its features, design details and
external interfaces.

A wide variety of related documentation is available on digital signal
processing. These references fall into one of the following application
categories:

[Digital control systems
[3d Digital signal processing
[Image processing

[dJ Speech processing

Within those areas, the references appear in alphabetical order according to
author. The documents contain beneficial information regarding designs,
operations, and applications for general and/or specific signal-processing
systems as well as circuits; all of the documents provide additional references.
Therefore, Texas Instruments strongly suggests that you refer to these
publications.

Digital Control Systems:

1) Jacquot, R., Modern Digital Control Systems, New York, NY: Marcel
Dekker, Inc., 1981.

2) Katz, P, Digital Control Using Microprocessors, Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1981.

3) Kuo, B.C., Digital Control Systems, New York, NY: Holt, Reinholt, and
Winston, Inc., 1980.

4) Moroney, P., Issues in the Implementation of Digital Feedback
Compensators, Cambridge, MA: The MIT Press, 1983.

5) Phillips, C., and H. Nagle, Digital Control System Analysis and Design,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

Read This First

vi

Digital Signal Processing:

1) Antoniou, A., Digital Filters: Analysis and Design, New York, NY:
McGraw-Hill Company, Inc., 1979.

2) Brigham, E.O., The Fast Fourier Transform, Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1974,

3) Burrus, C.S., and T.W. Parks, DFT/FFT and Convolution Algorithms, New
York, NY: John Wiley and Sons, Inc., 1984.

4) Gold, Bernard, and C.M. Rader, Digital Processing of Signals, New York,
NY: McGraw-Hill Company, Inc., 1969.

5) Hamming, R.W., Digital Filters, Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1977.

6) IEEE ASSP DSP Committee (Editor), Programs for Digital Signal
Processing, New York, NY: IEEE Press, 1979.

7) Jackson, Leland B., Digital Fiiters and Signal Processing, Hingham, MA:
Kluwer Academic Publishers, 1986.

8) Jones,D.L., and T.W. Parks, A Digital Signal Processing Laboratory Using
the TMS32010, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

9) Lim, Jae, and Alan V. Oppenheim, Advanced Topics in Signal Processing,
Englewood Cliffs, NJ: Prentice- Hall, Inc., 1988.

10) Morris, Robert L., Digital Signal Processing Software, Ottawa, Canada:
Carleton University, 1983.

11) Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing,
Englewood Ciliffs, NJ: Prentice-Hall, Inc., 1978.

12) Oppenheim, Alan V., and R.W. Schafer, Digital Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

13) Oppenheim, A.V., A.N. Willsky, and |.T. Young, Signals and Systems,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

14) Parks, TW., and C.S. Burrus, Digital Filter Design, New York, NY: John
Wiley and Sons, Inc., 1987.

15) Rabiner, Lawrence R., and Bernard Gold, Theory and Application of
Digital Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

16) Texas Instruments, Digital Signal Processing Applications with the
TMS320 Family, 1986; Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Preface

Read This First

17) Treichler, J.R., C.R. Johnson, Jr., and M.G. Larimore, A Practical Guide

to Adaptive Filter Design, New York, NY: John Wiley and Sons, Inc., 1987.

Image Processing:

1)

2)

3)

Andrews, H.C., and B.R. Hunt, Digital Image Restoration, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1977.

Gonzales, Rafael C., and Paul Wintz, Digital Image Processing, Reading,
MA: Addison-Wesley Publishing Company, Inc., 1977.

Pratt, Willaim K., Digital Image Processing, New York, NY: John Wiley and
Sons, 1978.

Speech Processing:

1)

2)

3)

4)

Gray, A.H., and J.D. Markel, Linear Prediction of Speech, New York, NY:
Springer-Verlag, 1976.

Jayant, N.S., and Peter Noll, Digital Coding of Waveforms, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1984.

Papamichalis, Panos, Practical Approaches to Speech Coding, Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Rabiner, L.R., and R.W. Schafer, Digital Processing of Speech Signals,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Read This First

Style and Symbol Conventions
This document uses the foliowing conventions.

[0 Program listings and program examples are shown in a special
typeface similar to a typewriter’s.

Here is a segment of a program listing:

OUTPUT:
LDP #0 ;data page 0
RPT #63 ;Output 64 values from a table at 800h
LMMR 50h,800h ;in data memory to port 50h.
RET

[In syntax descriptions, the instruction is in bold typeface font and
parameters are in italic typeface. Portions of a syntax in bold should be
entered as shown; portions of a syntax in jtalics describe the type of
information that you specify. Here is an example of an instruction syntax:

[label) BLDD src, dst

BLDD is the instruction, which has two parameters indicated by src and
dst. When you use BLDD, the first parameter must be an actual data
memory source address and dst a destination address. A comma and a
space must separate the two addresses.

[Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
do not type the brackets themselves. in the example above, instead of
typing [/abel], you specify a name for the label. When you specify more
than one optional parameter from a list, you separate them with a comma
and a space.

O Braces({and})indicate alist. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

ind: { * | *+ | *~ | *0+ | *0— | *BRO+ | *BRO-}
that provides seven choices.

Unless the list is enclosed in square brackets, you must choose one item
from the list.

Information About Notes and Cautions
This book may contain notes and cautions.
O A note describes a preferred way or recommended procedure.

Note:
This is what a note looks like.

viii Preface

Read This First

[A caution describes a situation that could potentially damage your
software or equipment.

The information in a note or caution is provided for your protection. Please read
it carefully.

Trademarks

MS-DOS and MS-Windows are trademarks of Microsoft Corp.
DEC, VAX, and VMS are trademarks of Digital Equipment Corp.
HP is a trademark of Hewlett Packard Co.

Macintosh and MPW are trademarks of Apple Computer Corp.
PC-DOS is a trademark of IBM Corp.

Sun 3 and Sun 4 are trademarks of Sun Microsystems, Inc.
UNIX s a trademark of UNIX System Laboratories, Inc.

If You Need Assistance. . .

If you want to. . . Do this. ..

Request more information about Call the LRC (Literature Response Center):
Texas Instruments Digital Signal ~ (800) 4778924, 8:00-17:00 CST
Processing (DSP) products or
oder Tl documentation

Or write to:
Texas Instruments Incorporated
Market Communications Manager, MS 736

P.O. Box 1443

Houston, Texas 772511443
Ask questions about product Call the DSP hotline:
operation or report suspected (713) 274-2320

problems

Report mistakes inthisdocument Fill out and return the reader response card at
or any other TI documentation the end of this book, or send your comments to:
Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Preface

Contents

1

L (o o 1T T2 (o o 1-1
1.1 TMSB20 Family OVerviewttt 1-3
1.1.1 Typical Applications 1-3
1.2 General DesCription e e e e 1-5
1.3 KeyFeatures e e 1-7
1.3.1 Core CPU .o e 1-8
1.3.2 On-Chip ROM e e e 1-8
1.3.3 On-ChipData RAM i e 1-9
1.3.4 On-ChipProgram/Data RAM ...ttt i 1-9
1.3.5 On-Chip Memory Securitycccviriiiiiiit i, 1-9
1.3.6 Address-Mapped Software Wait-State Generators 1-9
1.3.7 Parallel /O POMs ... e e 1-9
1.838 Serial l/OPOMS . ..o 1-9
1.3.9 Hardware TImer ... e 1-10
1.3.10 User-Maskable Interruptsc i i 1-10
1.3.11 JTAG Scanning LOGIC cvvit ettt ettt et 1-10
1.3.12 Packages ...t i e e e e e 1-10
Pinouts and Signal Descriptionsccciiiiiiiiiiiiiinirnsniererscninnanans 21
2. PINOUL L e 2-2
2.2 Signal DesCriptionsttt i e e e 2-3
Architecture ...ttt i it s ies s e ta s e e e, 3-1
3.1 Architectural Overview e 3-2
3.2 Functional Block Diagramttt e 3-3
3.3 Internal Hardware Summary ...t 3-5
3.4 Internal Memory Organizationc.oiiiiiiiiii i, 3-10
3.4.1 Core Processor Memory-Mapped Registers 3-10
3.42 Memory AddressingModes ... 3-11
343 Auxiliary Registerscoiiiiiiiiii i e e 3-16
3.44 Memory-to-Memory MoVeS ...ttt 3-20
3.5 Central Arithmetic Logic Unit (CALU) ..ottt i 3-22
3.5.1 Scaling Shifter ... e 3-23
352 ALUand Accumulatoroiiiiiiiiiite e 3-24
3.5.3 Multiplier, TREGO,and PREG ..., 3-27
3.6 System Control e 3-30

Xi

Contents

3.6.1 Program Address Generationand Controlo.... 3-30

3.6.2 PipelineOperationcccoviiiiiiiiii e 3-34

3.6.3 Statusand Control Registers ..ot 3-38

8.6.4 Repeat CoUMErttt it iieiiee et iinnaanaaeeenas 3-42

3.65 BlockRepeat 3-46

3.6.6 Power-DownModeccoiiiiiiiiiiii e 3-50

3.7 Parallel Logic Unit (PLU) ...ttt it ee e 3-51
38 nterrupts ... e 3-53
B8 ReSEE ... e e 3-53

3.8.2 InterruptOperationc.ciiiiiiiiiiiiiiiiiiiii e i 3-54

3.8.3 InterruptContextSavecoiiiiiiiiiii e e 3-58

3.8.4 NonmaskableInterruptc i 3-59

4 Assembly Language Instructions ...ttt i s 4-1
4.1 Memory Addressing Modes ...t i 4-2
4.1.1 Direct AddressingModecoiiiiiiii e 4-2

412 Indirect AddressingModettt 4-4

4.1.3 Immediate AddressingModeco i 4-9

4.1.4 Dedicated Register Addressingcoviiiiiiiiiiiiiiienenns 4-10

415 Memory-Mapped Register Addressingcccoiiiiiiiiiiiini, 4-10

416 Circular Addressingot vt e e 4-12

4.2 Instruction Set e 4-14
421 Symbols and Abbreviations i 4-14

422 Instruction Set Summary e 4-16

4.3 Individual Instruction Descriptionsoiiiiii e 4-22
4.4 ’C2x-to-'C5x Instruction SetMappingccooeiiiiiiii i 4-257
4.5 Instruction Set Opcodet e 4-262
5 Peripherals..........cciiiiiiiiiiiiiiiitieesserennensnssnssssssssssssssansssnsnsas 5-1
5.1 Peripheral Controlc.ciiiiiiii e 5-2
5.1.1 Memory-Mapped Registersand I/OPortsccvviiiinnn.. 5-2

5.2 INeITUPES ..o e e e e 5-4

5.1.3 Peripheral Reset ... e 5-8

5.2 Parallel Input/Output Portscoviiiiii i 5-9
5.3 Software-Programmable Wait-State Generatorsl 5-10
5.4 General-Purpose 1/O PiNSt e 5-14
5.5 Serial Port ... e 5-15
5.5.1 SerialPortOperationciiiiiii i e 5-15

5.5.2 Transmit and Receive Operations (BurstMode) 5-23

5.5.3 Transmit and Receive Operations (Continuous Mode) 5-27

554 ErrorConditions ..ot e e 5-29

B5.5.5 EXamMpPle ... e e 5-32

5.6 TDMSerial Port ... e e 5-35
5.6.1 Time-Division Multiplexingccoiiiiiii i 5-35

xii Table of Contents

Contents

5.6.2 TDMPortOperationttt 5-35
5.6.3 Transmit and Receive Operations (TDMMode)cvvvvnnn... 5-39
5.6.4 TDMErorConditionsciiiiiiiiiiiiiii it i 5-41
5.6.5 Exampleof TDMOperationooiiniiiiiiiiiii i, 5-41
30 A 1 1= 5-45
5.8 Divide-by-One CloCK i e e e 5-48
1= 1 e o 6-1
6.1 MeMOIY SPaCE .. .ottt e et e 6-2
6.2 Program MemOryc.ciiiintt i e e 6-5
6.2.1 Program Space Configurabilityc.coiiiiiiiiiiiiiiiiie 6-5
6.22 Program Memory Address Map ..ottt 6-7
6.2.3 Program Memory Addressingc.iiiiiiii i 6-8
6.2.4 Program Memory Security Feature i 6-9
6.2.5 External Interfacingto Program Memoryiiiiiiiiieen.. 6-10
6.3 LocalDataMemory ...ttt e 6-12
6.3.1 Local Data Space Configurabilitycoiiiiiiiii 6-12
6.3.2 Local Data Memory Address Mapcoiiiiiiiiiiiniiiiiinennnn 6-13
6.3.3 Local Data Memory Addressingcoovviiiiiiiniinninnneeens 6-19
6.3.4 External Interfacing to Local DataMemoryot 6-27
6.4 Global Memory ... oot i i s 6-29
6.4.1 Global Memory Configurability ittt 6-29
6.4.2 Global Memory Addressingc.cooviiiiiieriiniiiiiniannnnenannns 6-30
6.4.3 External Interfacingof GlobalMemorycooiiiiiiiiinin.., 6-30
6.5 Input/Output Spaceottt 6-31
6.5.1 Addressing Input/Output Ports it 6-31
6.5.2 Interfacingto l/OPOMScoviiiiiiii e 6-31
6.6 Direct Memory Access (DMA)oiviiiiii i et 6-33
6.7 MemoryManagement e e 6-37
B6.7.1 BloCKMOVES ...ttt i et 6-37
6.7.2 BootLoader (C50)couiiiiiiiiiiiinit ittt 6-40
Software Applicationsciiiiiiiiiiiiiiiiii it ittt et it 7-1
7.1 Processor Initialization e 7-2
2~ |) (=1 ¢ (]) - J P 7-4
7.3 Software StacK ...t e i 7-6
7.4 Logical and Arithmetic Operations i, ven 17
7.41 Parallel Logic Unit (PLU) ...ttt enns 7-7
7.4.2 Multiconditional Branch Instruction 7-8
7.4.3 Search Algorithm UsSing CRGTcciiiiiiiii it 7-9
7.4.4 Matrix Multiplication Using Nested Loopsccoviiiiiinnnt, 7-10
7.5 Circular Buffers ... i e e 7-12
7.6 Single-Instruction Repeat (RPT) LOOPSciiiiiiiiiiiiiiiiiiiiiiiinns 7-15
7.7 SUBIOUNINES ...ttt ittt e 7-18

Contents

xiv

7.8 Extended-Precision Arithmetic ...ttt i 7-20
’ 7.8.1 Addition and Subtraction i e 7-20
7.8.2 Multiplication ..ot e e 7-23
7.8.3 DIVISION ..t et e 7-27
7.9 Floating-Point Arithmetict i i e 7-31
7.10 Application-Oriented Operations ...ttt iiiiiiiieineeennnn, 7-36
7.10.1 Modem Applicationo e e 7-36
7.10.2 Adaptive Filtering ..ottt i i ittt 7-38
8 0 < T 11 = T (= A 7-40
7.10.4 Dynamic Programmingcuuuininnnnnnnnnnnnnneneeeeeenannns 7-42
711 FastFourier Transforms ...ttt ittt ittt eniiieeeeanns 7-45
Electrical Specificationsciiiiiiiiiiiii i it e s, A-1
A.1 Pinoutand Signal DesCriptionsc.ccoiiiiiii it e e A-2
A.2 Electrical Characteristics and Operating Conditionsccvvvinn... A7
A.3 Clock Characteristics and TIMiNGoiirtiiiiniiiiiiriiiierniiineenn, A-10
A.3.1 Internal Divide-by-Two Clock Option With External Crystal A-10
A.3.2 External Divide-by-Two Clock Optionoiiiiiiinnn, A-11
A.3.3 External Divide-by-One Clock Optioncciiiiiiiiiininnnen A-12
A.3.4 Memory and Parallel I/O Interfface Read Timingcoovvunn. A-14
A.3.5 Memory and Parallel I/O Interface Write Timingooivinnnn. A-14
A.3.6 Ready Timing for Externally Generated Wait States A-16
A.3.7 Reset, Interrupt,and BIOTIMIiNgscooiiiiiiiiiiii s, A-17
A.3.8 Instruction Acquisition , Interrupt Acknowledge (TACK), Externall
Flag (XF), anc‘iq TOUT ngs p g A-18
A3.9 External DMATIMINGovvrniie e eiieenes A-20
A.3.10 Serial Port Receive TimMiNg ...ttt it ittt eiieeanns A-22
A.3.11 Serial Port Transmit Timing of External Clocks and External Frames
[CT=T= 30 Ao (=) A-22
A.3.12 Serial Port Transmit Timing of Internal Clocks and Internal Frames
(SEEINOE) ..ot e A-24
A.3.13 Serial Port Receive TiminginTDMModec.oiiiiinnnn.. A-25
A.3.14 Serial Port Transmit Timingin TDMMode, A-26
A4 MechanicalDatac.coiiiiiiiiiiiiii i ittt ettt e A-27
External Interface TimiNgscciiiiiiiiiiiiiiiiiiiieiisetnnserssssnnnananss B-1
B.1 Read/Write TIMiNgstuttttttt ettt ettt eeeaeenns B-2
Instruction Cycle TimMiNgscoiiiiiiiiiiiii it ii i e iieae e rassnsnnsns C-1
C.1 Instruction Cycle SUMMArYiiiiiiiiii ittt nineannns C-2
System Migrationoiiiiiiiiiii it i et e e D-1
D.1 Packageand PinLayoutoiinniiiiiiiiiiiiiieeeeeeeaanans D-2
[2~ 11 111 4o PP D-7
D.2.1 Device Clock Speed ...ttt it ettt D-7
D.2.2 PIpelinecoviiiii i e e D-7
Table of Contents

Contents

D.2.3 External Memoryinterfacing o i D-7

D.2.4 Execution Cycle TImMeSoviiiiiiit ittt aaas D-8
D3 Instruction Set e D-9
D.4 On-Chip Peripheral Interfacingccoiiiiiiiiiiiiiii i D-11
XDS510 Design Considerationscciiiiiiiiiiiineisiisrarrsessassnsannans E-1
E.1 CableHeaderand Signalscoiiiiiiiiiiiii ittt e E-2
E.2 BUuSProtocol e E-3
E3 Cable Pod e E-4
E.4 TargetSystem Test Clockc.oiiiiiii i e i E-7
E.5 Multiprocessor Configuration E-8
E.6 Emulation Timing Calculationsttt E-11
Analog Interface Peripherals and Applicationsccoiiiiiiiiiiiii e, F-1
F1 Multimedia Applications e F-2

F.1.1 System Design Considerations, F-2

F.1.2 Multimedia-Related Devices ...t F-4
F.2 Telecommunications Applications ...t F-5
F.3 Dedicated Speech Synthesis Applicationsccviivviiiie... F-10
F.4 Servo Control/Disk Drive Applicationsccciiiiiiiiiiii i, F-12
F5 Modem Applicationsooiiiiiii i s F-15
F.6 Advanced Digital Electronics Applications for Consumers F-18
Memories, Sockets,and Crystalsc.iiiiiiiiiiiiriiiiiinnnsnrrnnnnannss G-1
Gl MEMONIES . it e G-2
G2 SOCKEES . ittt ittt e e G-3
G.8 Crystals ..o e e G-4
ROM COA@S ...iiiiieniiiniitetetasnnnnnsnnasassnsanssssesesssasesssesnnnnes H-1
H1 ROMC0Ode FIOW . ..ottt e H-2
Development SUppOrtt it it e e I-1
1.1 Device and Development Support Tool Nomenclaturecovvivunnn. -2
.2 Hewlett-Packard E2442A Preprocessor 'C5x Interface I-5

1.2.1 'CbxDevices Supportedcoiiiiiiiii e i-5

122 Capabilitiescoouii e I-5

1.2.3 Logic Analyzers Supported ...t e I-5

.24 PodsRequirediiiiiiiiii i e e e I-6

.25 Termination Adapters (TAS) ...ttt aeens -6

.26 Availabilityccoii e I-6

Figures

1-1

QP AR X

3-7

3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
41
4-2

TEIETLE

5-7

5-9
5-10
5-11
5-12
5-13

Evolution of the TMS320 Familycc i 1-2
Signal Assignments for 'C5x 132-PinQFPttt 2-2
Block Diagram of 'C5x InternalHardwarecccoeiiiiiiiii ... 3-4
Direct AddressingMode ... e e 3-12
Memory-Mapped AddressingModet e 3-12
Indirect AddressingMode ...ttt e 3-13
Shortimmediate Modecoi 3-13
Longimmediato MOdecoinini e 3-14
Register ACCESS MOdEcoiii ittt e sttt e 3-14
Long Immediate AddressingModeo i 3-15
Registered Block Memory AddressingMode ..., 3-16
Indirect Auxiliary Register Addressing Example oo, 3-17
Auxiliary Register Fileccoiiiiiiii e 3-18
Central Arithmetic Logic Unit ..ot i ettt e eiee e, 3-23
Examples of Carry Bit Operations ... 3-26
Four-Level Pipeline Operationt ntiiiiannnnaaneeennns 3-35
Status and Control Register Organizationccoiiiiiiiiiiiiiiinnn, 3-39
Parallel Logic Unit Block Diagram ..., 3-51
RS and HOLD Interactionouuiiiiiii i enieniiieeannnnennens 3-54
Interrupt Vector Address Generationc.c.eiiiiiiininiiiniiaannneneennn. 3-56
Direct Addressing Block Diagramcoiiiiiiiiiiiiii it 4-3
Indirect Addressing Block Diagram ... 4-4
Memory-Mapped Register Addressing Block Diagram 4-11
External Interrupt Logic Diagramo e 5-7
O Portinterface CirCUItryo e e e 5-9
Software Wait-State Generator Block Diagramccoviiiiiine.. 5-13
BIO Timing Diagramouuitiitt i e e e i e 5-14
External Flag Timing Diagram e 5-14
One-Way Serial Port Transfero 5-16
Serial Port Block Diagramc.oviiiiiiit i 5-17
Serial Port Control Registert i 5-18
Receiver Signal MUXeSsovviii ittt ettt 5-21
Burst-Mode Serial Port Transmit Operationccoiiiiiiiiiiiiinneennnnn. 5-23
Burst-Mode Serial Port Receive Operationcoiiiiiiiiiin., 5-24
Burst-Mode Serial Port Transmit at Maximum Packet-Frequency 5-25
Burst-Mode Serial Port Receive at Maximum Packet-Frequency 5-26

Table of Contents

Figures

5-14

5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
6-1

6-2

6-3

6-5

6-7

6-9
6-10
611
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
7-1
7-2
7-3
74
7-5
7-6
7-7
7-8

Burst-Mode Serial Transmit Operation With Delayed Frame Sync in External

Frame SyncModecoinuiiiiii i e e 5-26
Serial Port Transmit Continuous Operationccoiiiiiiiiiiiininnnnn, 5-28
Serial Port Receive Continuous Operation ..., 5-29
Receive Error (Normalor BurstMode)o 5-30
Transmit Error (NormalorBurstMode) ... 5-30
Receive Error (Continuous Mode)ottt 5-32
Transmit Error (Continuous Mode) ...t 5-32
Time-Division Multiplexing i 5-35
TDOMFoUur-Wire BuS ... it e 5-37
TDM Port Registerst i ettt et e 5-38
Serial Pot Tmingin TDMMode ...t s 5-40
Timer Block Diagramt e e 5-45
Timer Control Register (TCR)ttt e e i 5-46
TC50 MemMOrY Map ...ttt e 6-3
C51 MEMOTY MaD ..ottt e 6-4
OB MEMOTY MaD ..ottt e 6-4
Interface to External EPROM 6-11
Direct Addressing Mode ..ottt e 6-20
Memory-Mapped AddressingMode e 6-20
Indirect Addressing Mode ...t e 6-21
Long Immediate AddressingMode i i e 6-22
Registered Block Memory AddressingModeo 6-22
Indirect Auxiliary Register Addressing Example i, 6-23
Auxiliary Register File e 6-24
ARAU FUNCHONS ... it e e e e 6-25
Interface to External RAM i i e 6-28
Global Memory Interface ... e 6-30
Direct Memory Access Using a Master-Slave Configuration 6-33
Direct Memory Accessina PC Environment, 6-35
Boot Routine Selection Word i e 6-40
16-Bit EPROM AdAressooiiiiii ittt 6-41
16-Bit Parallel Booto e 6-41
8-Bit Parallel BoOott e 6-42
Handshake Protocolttt e et 6-44
Warm Boot ... 6-44
B2-Bit Addition oo e e 7-21
32-Bit Subtraction 7-22
16-Bit Integer Multiplication 7-24
32-Bit Multiplication Algorithm 7-25
Nth Order Direct-Form Type Il IR Filter ...t 7-40
Backtracking With Path Historyo e 7-43
An In-Place DIT FFT With In-Order Outputs and Bit-Reversed Inputs 7-45
An In-Place DIT FFT With In-Order Inputs but Bit-Reversed Outputs 7-46

Figures

A1
A-2
A3
A4
A-5
A-6
A-7
A-8
A-9
A-10

A-11

A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
B-1

B-2

TRIITIE

E-2
E-3
E—4
E-5
E-6
E-7
F-1
F-2
F-3
F—4
F-5
F-6
F-7

xviii

TMSB20CEX PinOUtttt vttt e ettt A-2
TestLoad CircuUitc.oiiii i e it e e e e A-8
TTL-LoVel OULPULS ..ttt e e et e s sii e anennnaens A-9
TTL-Level INputs i e ettt iae e A-9
Internal Clock Optionot i i ettt e A-11
External Divide-by-Two Clock TImingottt e, A-12
External Divide-by-One CIock Timingciiiiiiiiiii ittt i, A-13
Memory and Parallel I/O Interface Read and Write Timingooue.... A-15
Address Bus Timing Variation With Load Capacitance A-15
Ready Timing for Externally Generated Wait States During an External
Read CyCle ... e e A-16
Ready Timing for Externally Generated Wait States During an External Write
Ol Lot e e e, A-17
Reset, Interrupt, and BIO TimMiNgsvvvtiiii ittt e eiiiiieeees A-18
TAQ, TACK, and XF Timings Example With Two External Wait States A-19
External DMA TImMiNgttt ittt et e eaees A-21
Serial Port Receive TIMiNgoviiii it ittt i ie i e aaiiaee s A-22
Serial Port Transmit Timing of External Clocks and External Frames A-23
Serial Port Transmit Timing of Internal Clocks and Internal Frames A-24
Serial Port Receive Timingin TDMModecoiiiiiiii ittt eiiaee e A-25
Serial Port Transmit Timingin TDMModec ittt A-26
132-Pin Quad Flat Pack PlasticPackageccoiiiiiiiriiiiiienennnns A-27
Memory Interface Operation for Read-Read-Write (0 Wait States) B-3
Memory Interface Operation for Write-Write-Read (0 Wait States) B-4
Memory Interface Operation for Read-Write (1 Wait State) B-5
'C25 68-Pin Ceramic Pin Grid Arrayoutiiiiiie it eeennnnnnnnens D-2
'C25 68-Pin Plastic Leaded Chip Carrierc.coiiiiiiiiriiiiinnerininnnnn. D-3
'C25-t0-"C5x Pin/Signal Relationshipcovii e i D-4
'C25 and 'C5x Clocking Schemescciiiiii i i e D-5
"C25 TACK Versus "CoXTACKo e et D-6
Header Signals and Header Dimensionsciiiiiiiiiiiiiiinnnnnnnnn E-2
Emulator Pod Interfaceciiiiiiiiiiiiii it i E-5
Emulator Pod Timingsutttiiiiiii i it it ettt e E-6
Target-System Generated Test Clockoiiiiiiiiii it iiiinn, E-7
Multiprocessor CoNNECHIONSvvtt ittt ittt et eenannnns E-8
Unbuffered Signalst e E-9
Buffered Signals ... e e E-9
System BIoCK Diagramcuvuiiii i i e F-2
Multimedia Speech Encoding and Modem Communicationc..ovvt... F-3
TMS320C25 t0 TLC32047 Interfacec.vviiiiiretiiii it eenanns. F-3
Typical DSP/Combo Interface i i e F-6
DSP/Combo Interface TiMiNgovtettiiiiii ittt iiiiaees F-7
General Telecom Applicationsovitit ittt et eannns F-9
Generic Telecom Applicationoviuiiiiiiii ittt niaeennnns F-9
Table of Contents

Figures

F-8

F-10
F—11
F-12
F-13
F-14
H-1
-1

Generic Servo Control LOOPvviiiiiiii et e e F-12
Disk Drive Control System Block Diagramccoviiiiiiiiiininnnennn., F-13
TMS320C14 —TLC32071 Interfacecovvvniiiii it e i ieeees F-14
High-Speed V.32 Bis and Multistandard Modem With the TLC320AC01 AIC F-16
Applications Performance Requirementsooiuiieiiiiinninninnnninnns F-18
Video Signal Processing Basic System ...ttt i F-19
Typical Digital Audio Implementation..............c.ooiiiii i F-19
TMS320 ROM Code Flowchartccoiiiiiiiiiii i H-2
TMS320 Device NOmMeNClaturec.vte ettt it ie e eeeeeas 1-3
TMS320 Development Tool Nomenclature, I-4

XiX

Tables

3-10
3-11
3-12

R B

4-7
5-1
5-2
5-3

5-5

5-7

5-9
5-10
5-11
6-1
6-2

Typical Applications for the TMS320 Family, 1-4
Characteristics of the 'C5X DSP Processorsovviiiiiiiniieeneennennnns 1-6
TMS320C5x Signal Descriptionsoiiiiiii i, 2-3
C5x Internal Hardware SUMMaryc.riiiiiiiee ittt 3-5
Core Processor Memory-Mapped Registersc.ccoviiiiiiiiiiinnenennn., 3-10
Aucxiliary Register Arithmetic Unit Functionsccoiiiiiiiinnnnne... 3-19
Circular Buffer Control Register (CBCR) ...ttt 3-20
Product Shift Modes ...t e e e e 3-27
Latencies Requiredooiiiiiiiiii i i i e 3-37
Status Register Field Definitions i i i 3-39
On-Chip Single-Access RAM Configuration Controlccovvvn.... 3-41
Repeatable InStructions ... e 3-42
Instructions Not Meaningfulto Repeatcoi ittt 3-44
Nonrepeatable Instructionst e 3-45
Interrupt Locations and Priorities ...t e 3-55
Indirect Addressing Arithmetic Operationscoiiiiiiiiiii i, 4-7
Bit Fields for Indirect Addressingccoiiiiiiiiiiii it i i it 4-7
Instructions That Support Immediate Addressingcoiiiiiinnnnn... 4-9
Instruction Symbols e 4-15
Instruction Set Summaryt e e e 4-17
MapPpPiNg SUMMaANY ..o i i i i e e e 4-257
OPCOAE SUMMAIY . ettt e ittt et et et i i 4-263
Memory-Mapped Registersand [/OPortsooiiiiiiiiiiiii i 5-2
Interrupt Locations and Priorities ... e 5-5
Software Wait-State Registersooiiiiiiiiiii i 5-11
Wait-State Field Values and Wait States as a Function of CWSR Bitn 5-12
Space Controlled by CSWR Bit Nootii it 5-12
Serial POrt Pins ...ttt e e e e 5-15
Serial Port Registersoiiiiiiiiiiii i i e e e 5-16
Serial Port Control Register Bits Summarycciiiiiiiiiiiiiiin... 5-18
Interprocessor Communications Scenarioc.oiviiiiiiiiiiiii i, 5-42
TDMRegister Contents ...ttt e 5-42
Timer Control Registerovv i e e 5-46
"C50 Program Memory Configuration Controlc.ccoiiiiiiiiiiiinnenn, 6-6
’C51 Program Memory Configuration Controlc.ccoiviiiiiiiiinneenn, 6-6
’C53 Program Memory Configuration Controlcviiiiiiiiiinnnann.. 6-7

Table of Contents

Tables

TLLit

6-9
6-10
6—-11
7-1
A1

A3
A4

A-5
A6

A-7
A-8
A-9
A-10
A-11
A-12

A-13
A-14

A-15
A-16

A-17
A-18

A-19
A-20
A-21
A-22

"CSx Interrupt Vector Addressesttt ittt e
'C50 Local Data Memory Configuration Controlcccoiiiiiiien s,
"C51 Local Data Memory Configuration Controlcciiiiiiiiiinnnnn..
'C53 Local Data Memory Configuration Control,
DataPage O Address Mapcviiiiiiii ittt e
Circular Buffer Control Register ...ttt i
Global Data Memory Configurationscciiieeeiiiiiiiiiiineninnnnnnnns
Address Ranges for On-Chip Single-Access RAMDMA coiiiiivnnnn,
Bit-Reversal Algorithm for an 8-Point Radix-2 DITFFTcciiiiineinnnann.
TMS320C5X Pin AsSignmMeEntsttt et tia e iinnnns

Absolute Maximum Ratings Over Specified Temperature Range (Unless
Otherwise Noted) ... ettt ettt e e eee s

Recommended Operating Conditions i

Electrical Characteristics Over Specified Free-Air Temperature Range (Unless
Otherwise Noted) ...ttt et et n s

Recommended Operating Conditionsttt i iiiiiin e
Switching Characteristics Over Recommended Operating Conditions

(H=05(C0)) c o v e
Timing Requirements Over Recommended Operating Conditions

(H=0516(C0)) - o v eveee e
Switching Characteristics Over Recommended Operating Conditions

(H=0.510(C0)) - v v vreennee e e
Timing Requirements Over Recommended Operating Conditions

(H=0.58(C0)) -t vere et e e
Switching Characteristics Over Recommended Operating Conditions

H= 0-5tc(CO)) ... e
Timing Requirements Over Recommended Operating Conditions

(H=0.5t(C0)) +vverrrenne e e
Switching Characteristics Over Recommended Operating Conditions

(H=0.5t(C0)) - vveeeenee e
Timing Requirements Over Recommended Operating Conditions
Timing Requirements Over Recommended Operating Conditions

(H=05t0(C0) - ovverriee e
Switching Characteristics Over Recommended Operating Conditions

H=05tco) --vvvvrvrennnnn. e e
Switching Characteristics Over Recommended Operating Conditions

(H=05t(C0)) +vvre e e
Timing Requirements Over Recommended Operating Conditions

Timing Requirements Over Recommended Operating Conditions

(H=05t(C0)) v
Switching Characteristics Over Recommended Operating Conditions

(8= 0-5tc(SCK)) ..
Timing Requirements Over Recommended Operating Conditions

(H=0.5tC0) - v vvvrnenn e
Switching Characteristics Over Recommended Operating Conditions

(H =0.5t5(C0O)s S = 0.5tg(SCK)) «« v v v vvrvereeer e
Timing Requirements Over Recommended Operating Conditions

(H=0.5t(C0)) -« rveeeeee e

Tables

A-23
A-24

E-1
E-2
F-1
F-2
F-3
F—4
F-5
F-6
F-7
F-8
F-9
F-10
G-1

Switching Characteristics Over Recommended Operating Conditions

(S = 05H(SCK)) v v v vt e A-26
Timing Requirements Over Recommended Operating Conditions
(H=0.5t(00) - cvveeren e A-26
XDS510 Header Signal Descriptionoiui ittt e et E-2
Emulator Pod Timing Parameterscoiiiiiiiiiiiiiiiiieeririiienenenns E-6
Data Converer ICS ...ttt i e e F-4
Switched-Capacitor Filter ICsottt it e i e eiiereeen s F-4
TelECOM DOVICES . . it ittt ittt e e s F-8
Switched-Capacitor Filter ICs ..ottt e e iiiei e aninnnas F-8
VOICE SYNhESIZErS ... ottt et e e F-10
ST oL o] gV =T o = F-10
Switched-Capacitor Flter ICst it s e e it iie i e e F-11
Control Related DeviCes ...ttt it e e i F-13
Modem AFE Data ConVemersooii it e i iiie et iananans F-15
Audio/Video Analog/Digital Interface Devicesc.c.vviiiiiiiiiinerninnnn. F-20
Commonly Used Crystal Frequenciesccoviiiiiiin i ennnnn G-4
Table of Contents

7-10
7-11

7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21

7-22
7-23
7-24
7-25
7-26
7-27

Interrupt Operation With a Single-Word Instruction at the End of an RPTB 3-49

interrupt Cperation With a Two-Word instruction atthe Endofan RPTB 3-49
Minimum Interrupt Latency o e e 3-57
Moving External Data to Internal Data Memory WithBLDD 6-37
Moving Data Memory to Program Memory WithBLDP 6-38
Moving Program Memory to Data Memory WithBLPD 6-38
Moving Program Memory to Data Memory With TBLR 6-39
Moving Data Memory to Program Memory With TBLW 6-39
Moving Data From I/O Space to Data Memory WithSMMR 6-39
Moving Data From Data Memory to I/O Space With LMMR 6-39
Initialization of "CBX e e 7-3
Use of INTR Instruction e 7-5
Software Stack Operation i e 7-6
Using PLUto Do Unpackingcooiiiiiiii i ittt i e et it 7-7
Using PLUto Do Packingcouiiiiiii ittt 7-8
Using Multiple Conditions With BCND ... 7-9
Using CRGT and CRLT i it et e et 7-10
Using Nested Loopso 7-11
Use of Circular Addressing ...ttt e e 7-13
Memory-to-Memory Block Moves Using RPT,o, 7-16
Square Root Computation Using XC i e 7-18
B64-Bit Addition e 7-21
64-Bit Subtraction 7-23
32-Bit Integer Multiplication 7-26
32-Bit Fractional Multiplication i i 7-27
Integer Division Using SUBC i e 7-29
Fractional Division Using SUBGC it e e e 7-30
Floating-Point Addition Using SATLand SATHot 7-31
Floating-Point Multiplication Using BSAR i i i e 7-34
V.32 Encoder Using Accumulator Buffer ..o 7-36
Adaptive FIR Filter Using RPTand RPTBo 7-39
Using RPT and MACD i i et e e et 7-40
Using LTD and MP Y A . ..o e e 7-42
Backtracking Algorithm Using Circular Addressingcoooiiiiiiiieann. 7-44
Macros for 16-Point DIT FFT e e e iee s 7-48
Initialization Routingo i e e 7-52
16-Point Radix-2 Complex FFT i i i e 7-53

xxiii

XXiv Table of Contents

Chapter 1

This user’s guide discusses the TMS320C5x digital signal processors (DSPs),
the newest fixed-point generation in the TMS320 family. The 'C50, the 'C51,
and the 'C53 are the first devices in this generation. Their central processing
unit (CPU) core is based upon the 'C25’s CPU core with additional architectur-
al enhancements to greatly improve overall performance. The 'C5x generation
devices are capable of executing at twice the speed of the 'C2x and are
source-code upward compatible with all ’'C1x and ’C2x devices. Expansion of
this fixed-point generation is expected in the near future to provide even higher
levels of DSP performance.

The 'C5x generation consists of the following devices:

[’C50is a static CMOS digital signal processor with 10K words of on-chip
RAM and 2K words of on-chip ROM.

[J ’C51 is a static CMOS digital signal processor with 2K words of on-chip
RAM and 8K words of on-chip ROM.

[] ’'C53is a static CMOS digital signal processor with 4K words of on-chip
RAM and 16K words of on-chip ROM.

This chapter discusses these topics:

Topic Page

Introduction

Figure 1-1. Evolution of the TMS320 Family

A

moOZr»»=VOTMIMYO

®oormTT-wUv—T=s

D Fixed-Point Generations

TMS320C1x

TMS320C10
TMS320C10-14/-25
TMS320C14
TMS320E14/P14
TMS320C15/LC15
TMS320E15/P15
TMS320C15-25
TMS320E15-25
TMS320C16
TMS320C17/LC17
TMS320E17/P17

TMS320C25
TMS320E25
TMS320C25-33
TMS320C25-50
TMS320C26
TMS320C28

R 2

{
Vo

GENERATION

Floating-Point Generations

Introduction

TMS320 Family Overview

1.1 TMS320 Family Overview

The TMS320 family consists of 16-bit fixed-point- and 32-bit floating-point
single-chip digital signal processing devices. These processors possess the
operational flexibility of high-speed controllers and the numerical capability of
array processors. Combining those two qualities, the TMS320 processors are
inexpensive alternatives to custom-fabricated VLS| and multichip bit-slice pro-
cessors. The following qualities make this family the ideal choice for a wide
range of processing applications (refer to Table 1—1 for aiisi appiications):

[Very flexible instruction set

[Inherent operational flexibility

[High-speed performance

[Innovative, parallel architectural design
[Cost effectiveness

In 1982, Texas Instruments introduced the first fixed-point digital signal pro-
cessor in the TMS320 family, the TMS32010. Before the year had ended, the
Electronic Products magazine awarded the TMS32010 the title Product of
the Year. The TMS32010 became the model for future TMS320 generations.

Today, the TMS320 family consists of five generations: 'C1x, 'C2x, 'C3x, 'C4x,
and’C5x. Figure 11 illustrates the performance gains that the TMS320 family
has made over time with successive generations. Note that the 'C1x, 'C2x, and
'C5x generations are fixed-point, and the 'C3x and 'C4x generations are float-
ing-point. Source code is upward compatible from one fixed-point generation
to the next fixed-point generation and, likewise, from one floating-point gener-
ation to the next floating-point generation. Compatibility preserves the soft-
ware portion of your investment, thereby providing a convenient and cost-effi-
cient roadmap to a higher performance, more versatile DSP system.

Each generation of TMS320 devices has an internal core CPU and a variety
of memory and peripheral configurations. New combinations of on-chip
memory and peripheral options can create spin-off devices. These spin-offs
can satisfy a wide range of needs in the worldwide electronics market. When
memory and peripherals are integrated into one processor, overall system
cost is greatly reduced and board space is saved.

1.1.1 Typical Applications

With its unique versatility and real-time performance, a 'C5x-generation pro-
cessor offers better, more adaptable approaches to traditional signal-proces-
sing problems such as vocoding and filtering. Furthermore, the 'C5x supports
complex applications that often require several operations to be performed si-
multaneously. Table 1-1 lists those applications for which a'C5x device is well
suited.

1-3

TMS320 Family Overview

Table 1-1. Typical Applications for the TMS320 Family

Automotive Consumer Control
Adaptive Ride Control Digital Radio/TV Disk Drive Control
Antiskid Brake Educational Toys Engine Control
Cellular Telephone Music Synthesizer Laser Printer Control
Digital Radio Power Tools Motor Control
Engine Control Radar Detector Robotics Control
Global Positioning Solid-State Answering Servo Control
Navigation Machines
Vibration Analysis
Voice Commands

General-Purpose Graphics/imaging Industrial
Adaptive Filtering 3-D Rotation Numeric Control
Convolution Animation/Digital Map Power-Line Monitoring
Correlation Homomorphic Processing Robotics
Digital Filtering Pattern Recognition Security Access
Fast Fourier Transforms Image Enhancement
Hilbert Transforms Image Compression/

Waveform Generation Transmission
Windowing Robot Vision
Workstations
Instrumentation Medical Military

Digital Filtering
Function Generation

Diagnostic Equipment
Fetal Monitoring

Image Processing
Missile Guidance

Pattern Matching Hearing Aids Navigation
Phase-Locked Loops Patient Monitoring Radar Processing
Seismic Processing Prosthetics Radio Frequency
Spectrum Analysis Ultrasound Equipment Modems
Transient Analysis Secure Communications
Sonar Processing
Telecommunications Voice/Speech
1200- to 19200-bps DTMF Encoding/Decoding Speech Enhancement
Modems Echo Cancellation Speech Recognition
Adaptive Equalizer FAX Speech Synthesis
ADPCM Transcoder Line Repeater Speaker Verification
Cellular Telephone Speaker Phone Speech Vocoding
Channel Multiplexing Spread Spectrum Voice Mail
Data Encryption Communications Text-to-Speech
Digital PBXs Video Conferencing
Digital Speech Interpolation X.25 Packet Switching

0S))

Introduction

General Description

1.2 General Description

The 'C5x generation consists of the 'C50, the 'C51, and the 'C53 devices.
These digital signal processors (DSPs) are fabricated in accordance with stat-
ic CMOS integrated-circuit technology. Their architectural design is based
upon that of the 'C25. The combination of an advanced Harvard architecture
(separate buses for program memory and data memory), additional on-chip
peripherals, more on-chip memory, and a highly specialized instruction set is
the basis of the operational flexibility and speed of these DSP devices. The
'C5x devices are designed to execute more than 28 MIPS (million instructions
per second). Future spin-off devices with the core CPU and customized
on-chip memory and peripheral configurations may be developed for special-
ized areas of the electronics market.

The 'C5x generation offers these advantages:

Enhanced TMS320 architectural design for increased performance and
versatility

Modular architectural design for fast development of spin-off devices
Advanced IC processing technology for increased performance
Downward source-code compatibility with 'C1x and 'C2x DSPs for fast
and easy performance upgrades

Enhanced TMS320 instruction set for faster algorithms and for optimized
high-level language operation

New static design techniques for minimizing power consumption and max-
imizing radiation hardness

O 0O ooo o

Table 1-2 provides an overview of the 'C5x generation of digital signal proces-
sors. It shows the capacity of on-chip RAM and ROM memories, number of
serial and parallel /O ports, execution time of one machine cycle, and type of
package with total pin count. The chart should help you choose the best pro-
cessor for an application.

The following subsections summarize key features of the 'C5x processors.
The CPU description applies to all ’'C5x-generation members (current and fu-
ture). Descriptions of the remaining features apply only to the 'C50, 'C51 and
the 'C53. Detailed information on the CPU, on-chip peripherals, and memory,
is given in Chapters 3, 5, and 6, respectively.

1-5

General Description

Table 1-2. Characteristics of the 'C5x DSP Processors

TMS320 On-Chip Memory 1/0 Ports Cycle Package
Device RAM ROM Time Type
Data Data+Prog Prog Serlal Paralielt (ns) QFP*
TMS320C50 1K 9K 2K 2 64K 50/35 132-pin ceramic
TMS320C51 1K 1K 8K 2 64K 50/35 132-pin plastic
TMS320C53 1K 3K 16K 2 64K 50/35 132-pin plastic

1 Note that 16 of the 64K parallel I/O ports are memory-mapped.
§ QFP = Quad Flat Pack.

1-6 Introduction

Key Features

1.3 Key Features

Key features of the 'C5x DSPs are listed below. Where a feature is exclusive
to a particular device, the device’s name is enclosed within parentheses and
noted after that feature.

o0 00 O0O0O0 OO0 O 0000 0 OJ00o0O0oodOdo O

35-/50-ns single-cycle fixed-point instruction execution time (28.6/20
MIPS)

Upward source-code compatible with all 'C1x and 'C2x devices
RAM-based memory operation ('C50)

ROM-based memory operation ('C51)

9K x 16-bit single-cycle on-chip program/data RAM ('C50)

1K x 16-bit single-cycle on-chip program/data RAM ('C51)

3K x 16-bit single-cycle on-chip program/data RAM ('C53)

2K x 16-bit single-cycle on-chip boot ROM ('C50)

8K x 16-bit single-cycle on-chip program ROM ('C51)

16K x 16-bit single-cycle on-chip program ROM ('C53)

1056 x 16-bit dual-access on-chip data RAM

224K x 16-bit maximum addressable external memory space (64K pro-
gram, 64K data, 64K I/0, and 32K global)

32-bit arithmetic logic unit (ALU), 32-bit accumulator (ACC), and 32-bit ac-
cumulator buffer (ACCB)

16-bit parallel logic unit (PLU)

16 x 16-bit parallel multiplier with a 32-bit product capability
Single-cycle multiply/accumulate instructions

Eight auxiliary registers with a dedicated arithmetic unit for indirect ad-
dressing

Eleven context-switch registers (shadow registers) for storing strategic
CPU-controlled registers during an interrupt service routine

Eight-level hardware stack

0- to 16-bit left and right data barrel-shifters and a 64-bit incremental data
shifter

Two indirectly addressed circular buffers for circular addressing
Single-instruction repeat and block repeat operations for program code
Block memory move instructions for better program/data management
Full-duplex synchronous serial port for direct communication between the
’C5x and another serial device

Time-division multiple-access (TDM) serial port

Interval timer with period, control, and counter registers for software stop,
start, and reset

64K parallel I/O ports, 16 of which are memory mapped

Sixteen software-programmable wait-state generators for program, data,
and 1/O memory spaces

1-7

Key Features

1.3.1

Core CPU

Extended hold operation for concurrent external DMA
Four-deep pipelined operation for delayed branch, call, and return instruc-
tions

Index-addressing mode

Bit-reversed index-addressing mode for radix-2 FFTs
Divide-by-one clock option

On-chip clock generator

JTAG boundary scan logic (IEEE standard, 1149.1)
On-chip scan-based emulation logic

5-V static CMOS technology with two power-down modes
132-pin quad flat pack package

oooooood 0o

Enhancements to the 'C5x CPU maintain source code compatibility with the
'C1x and 'C2x generations while improving performance and versatility. Im-
provements include a 32-bit accumulator buffer, additional scaling capabili-
ties, and a host of new instructions to exploit the additional hardware while sup-
plying a more orthogonal instruction set to the user. The new control functions
include an independent parallel logic unit (PLU) for performing Boolean opera-
tions and a set of context-switch registers for providing zero-latency con-
text-switching capabilities to interrupt service routines (ISRs). Data manage-
ment has been improved through the use of new block move instructions and
memory-mapped register instructions. The 'C5x has 28 memory-mapped
core-CPU registers and 16 memory-mapped I/O ports. See Chapter 3 for more
details.

1.3.2 On-Chip ROM

1-8

The 'C50features a 2K x 16-bit on-chip, maskable, programmable ROM. This
memory is used for booting from slower external ROM or EPROM of program
to fast on-chip or external SRAM. ROM can be selected during reset by driving
the MP/MC pin low. Once your program has been booted into the RAM, this
boot ROM can be operationally removed from the program memory space via
the MP/MC bit in the PMST status register. If the ROM is not selected, the ’C50
starts its execution via an off-chip memory.

The 'C51 features an 8K x 16-bit on-chip maskable ROM. The 'C53 features
a 16K x 16-bit on-chip maskable ROM. You can use this memory for your spe-
cified program. Once the development of the program has stabilized, submit
a ROM code to Texas Instruments for implementation into your device. See
Chapter 6 for more details.

Introduction

Key Features

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

On-Chip Data RAM

All’C5x devices carry a 1056 x 16-bit on-chip data RAM. This RAM can be ac-
cessed twice per machine cycle (dual-access RAM). This block of memory is
primarily intended to store data values but, when needed, can be used to store
programs as well as data. It can be configured in one of two ways: either all
1056 x 16 bits as data memory or 544 x 16 bits as data memory with 512 x 16
bits as program memory. You can select the configuration with the CNF bit in
status register ST1. See Chapter 6 for more details.

On-Chip Program/Data RAM

The 'C50 has a 9K x 16-bit on-chip RAM. The 'C51 has a 1K x 16-bit on-chip
RAM. This memory is software configurable as program and/or data memory
space. Code can be booted from an off-chip nonvolatile memory and then ex-
ecuted at full speed, once it is loaded into this RAM. See Chapter 6 for more
details.

On-Chip Memory Security

The 'C5x generation has a maskable option to protect the contents of on-chip
memories. When the related bit is set, no externally originating instruction can
access the on-chip memory spaces. See Chapter 6 for more details.

Address-Mapped Software Wait-State Generators

Software wait-state logic is incorporated without any external hardware into
"C5x for interfacing with slower off-chip memory and I/O devices. This circuitry
consists of 16 wait-state generating circuits and is user programmable to oper-
ate 0, 1, 2, 3, or 7 wait states. For off-chip memory accesses, these wait-state
generators can be mapped on 16K-word boundaries in program memory, data
memory, and to the I/O ports. See Chapter 5 for more details.

Parallel /O Ports

Each 'C5x device has a total of 64K 1/O ports, sixteen of which are
memory-mapped in data memory space. These ports can be addressed by the
IN instruction or the OUT instruction. The memory-mapped I/O ports can be
accessed with any instruction that reads or writes data memory. An active-low
IS signal indicates a read/write operation via an 1/O port. Requiring minimal

off-chip address-decoding circuits, the 'C5x can easily interface with external.

1/O devices via the I/O ports. See Chapter 5 for more details.

Serial I/O Ports

The 'C5x devices carry two high-speed serial ports. These serial ports are ca-
pable of operating at up to one-fourth the machine cycle rate (CLKOUT1). One

1-9

Key Features

of the two circuits is a synchronous, full-duplex serial port. lts transmitter and
receiver are double buffered and individually controlled by maskable external
interrupt signals. Data is framed either as bytes or as words. The second circuit
is a full-duplex serial port that can be configured either for synchronous or for
time-division multiple-access (TDM) operations. The TDM serial port is com-
monly used in multiprocessor applications. See Chapter 5 for more details.

1.3.9 Hardware Timer

The 'C5x features a 16-bit timing circuit with a 4-bit prescaler. This timer clocks
between one-half and one-thirty-second the machine rate of the device itself,
depending upon the programmable timer’s divide-down ratio. This timer can
be stopped, restarted, reset, or disabled by specific status bits. See Chapter
5 for more details.

1.3.10 User-Maskable Interrupts

The 'C5x devices have four external-interrupt lines. These lines are internally
latched so that asynchronous interrupt operations can be performed by the
TMS320device. Also, each device possesses five internal interrupts: the timer
interrupt and four serial port interrupts. See Chapter 5 for more details.

1.3.11 JTAG Scanning Logic

1.3.12 Packages

The JTAG scanning logic circuitry is used for emulating and testing purposes
only. The JTAG scan logic provides the boundary scan to and from the interfac-
ing devices. Also, it can be used to test pin-to-pin continuity as well as to per-
form operational tests on those peripheral devices that surround the 'C5x. It
is interfaced to another internal scanning logic circuitry, which has access to
all of the on-chip resources. Thus, the 'C5x can perform on-board emulation
by means of the JTAG serial scan pins and the emulation-dedicated pins. See
IEEE Standard 1149.1 for more details.

The 'C5x devices are packaged in a 132-pin quad flat pack package (QFP).
With consideration for the pin layout of a ’C25 package, the 'C5x package is
designed to minimize printed circuit board modifications when a 'C2x-based
system is upgraded to a 'C5x processing system. Signal callouts for the 'C5x
appear on the same side and in the same order as those for the 'C25. See
Chapter 2 for details.

Introduction

Chapter 2

The 'C5x DSPs are available in a 132-pin quad flat pack (QFP) package and
have identical pin-to-signal relationship. The QFP package conforms to
JEDEC specifications for electrical/electronic components. Electrical specifi-
cations and mechanical data for the 'C5x DSPs are in Appendix A.

This chapter presents a simple layout of a 132-pin QFP package, with pin and
signal callouts, and a table of signal definitions, in the following sections:

Topic Page

2-1

Pinout

2.1 Pinout

The 'C5x devices are packaged in a 132-pin quad flat pack package (QFP) and
have the same pin-to-signal relationship. Figure 2—1 shows the pin/signal call-
outs for this package.

Figure 2—-1. Signal Assignments for 'C5x 132-Pin QFP

(=]
IO © v g g g © mls
835 c-—unvngak g 'O @ 55558
90 88zagsgzsedBessy Ehﬁ&§899§55
eV ¥ e Y Y s T e T
1716 16 14 13 12 11 10 9 8 7 6 65 4 3 2 1 132131 130 129 128 127 126 125 124 123 122 121 120 119 118 117
NC[] o 18 1 NG
NC[] 19 "5 I NC
Vssa[] 2 14 1 Vooia
Vssa[] 21 (Top View) 13 [Voia
NC([] 2 12 [TATR
p7[] » 1t FNC
D6 [10] CLKOUTA
D5[] 2 10 [XF
D4[] = 108 | AOLDA
D3[] 107 [TDX
D2[] 28 108 [DX
D1[] 2 105 [] TFSX/TFRM
Do[] % 104 I FSX
TMS[] a1 18 [CLKMD2
Voos[] = 102 [Vssi4
VDD4[: 3 101 |7 Vssia
TCK[] 1% ' TDO
Vsss[] % % 17 Vopiz
Vssel] 3 % I Voot
NC[] & 7 17 x1
INTT(] = % [X2/CLKINT
NT2[] » % [] cLkiNz
INT3[] « % [BR
INTZ[] 4 % []15TRB
RMI[] « 2 N RrRW
DR[] 4 o[PS
TOR[] w[E
FSR[] 4 ® [Jps
CLKR[] 8 [1NC
Voos[] 47 87 :]Vss12
Voos[] 4 8 || Vssi1
NC[] & [INC
NC[] s “ [1nc
51 52 53 54 55 56 57 58 50 00 61 62 63 64 65 06 67 68 00 70 71 72 73 74 75 76 77 78 79 80 81 £ 83

N N N N O S N N N N N N N N N O N O D N O NN O N N N N J O |

$¢ pgezeeIReR 228§§§§ gg:—;g‘z’" l°|§
> > >

Note: NC = No connect. (These pins are reserved.)

2.2 Pinout and Signal Descriptions

Signal Descriptions

2.2 Signal Descriptions

The signals for the 'C5x device are described in this section. Table 2—1 lists
each signal, its pin location, function, and operating mode(s), i.e., input (I), out-
put (O), high-impedance (2) or supply (S) state. The signals are grouped ac-
cording to their functional purpose.

Table 2—1. TMS320C5x Signal Descriptions

Signal | Pin | State | Description
Address and Data Buses

A15 (MSB) 77 1/0/Z Parallel address bus A15 (MSB) through A0 (LSB). Multi-
A14 76 plexed to address external data/program memory or |/O.
A13 75 Placed in high-impedance state in hold mode. These signals
2112 ;‘; also go into high impedance when OFF is active low. These
A10 72 signals are used as inputs for external DMA access of the
A9 64 on-chip single-access RAM. They become inputs while
A8 63 HOLDA is active iow if the BR pin is externally driven low.
A7 62
A6 61
A5 60
A4 59
A3 58
A2 57
Al 56
A0 (LSB) 55
D15 (MSB) 6 1/0/Z Parallel data bus D15 (MSB) through DO (LSB). Multiplexed
D14 7 to transfer data between the core CPU and external data/
D13 8 program memory or |/O devices. Placed in high-impedance
8112 190 state when not outputting or when RS or HOLD is asserted.
D10 11 They also go into high impedance when OFF is active low.
D9 12 These signals are also used in external DMA access of the
D8 13 on-chip single-access RAM.
D7 23
D6 24
D5 25
D4 26
D3 27
D2 28
D1 29
DO (LSB) 30

Note: Allinput pins that are unused should be connected to Vpp or an external pull-up resistor. The BR pin has
an internal pull-up for performing DMA to the on-chip RAM. For emulation, TRST has an internal pull-
down, and TMS, TCK, and TDI have internal pull-ups. EMUO and EMU1 require external pull-ups to
support emulation.

Signal Descriptions

Table 2—-1. TMS320C5x Signal Descriptions (Continued)

Signal

| Description

Memory Control Signals

DS
PS
B

Data, Program, and /O space select signals. Always high
unless low level asserted for communicating to a particular
external space. Placed into a high-impedance state in hold
mode. These signals also go into high-impedance when
OFF is active low.

READY

Data ready input. Indicates that an external device is pre-
pared for the bus transaction to be completed. If the device
is not ready (READY is low), the processor waits one cycle
and checks READY again. READY also indicates a bus
grant to an external device after a BR (bus request) signal.

Read/Write signal. Indicates transfer direction during com-
munication to an external device. Normally in read mode
(high), unless low level asserted for performing a write oper-
ation. Placed in high-impedance state in hold mode. This sig-
nal also goes into high impedance when OFF is active low,
and it is used in external DMA access of the 9K RAM cell.
While HOLDA and TAQ are active low, this signal is used to
indicate the direction of the data bus for DMA reads (high)
and writes (low).

Strobe signal. Always high unless asserted low to indicate
an external bus cycle. Placed in high-impedance state in the
hold mode. This signal also goes into high impedance when
OFF is active low, and it is used in external DMA access of
the on-chip single-access RAM. While HOLDA and TAQ are
active low, this signal is used to select the memory access.

3

Read selectindicates an active, external read cycle and may
connect directly to the output enable (OE) of external de-
vices. This signal is active on all external program, data, and
I/O reads. Placed into high-impedance state in hold mode.
This signal also goes into high impedance when OFF is ac-
tive low.

| Pin | State
89 0/z
91
90
128 |
92 1/0/Z
93 1/10/2
82 0/z
83 0/Zz

Write enable. The falling edge of this signal indicates that the
device is driving the external data bus (D15-D0). Data may
be latched by an external device on the rising edge of WL,
This signal is active on all external program, data, and /O
writes. Placed into high-impedance state in hold mode. This
signal also goes into high impedance when OFF is active
low.

Pinout and Signal Descriptions

Signal Descriptions

Table 2—-1. TMS320C5x Signal Descriptions (Continued)

Signal

| Pin

| State

| Description

Muitiprocessing Signals

HOLD

129

Hold input. This signal is asserted to request control of the
address, data, and control lines. When acknowledged by the
'C5x, these lines go to the high-impedance state.

108

(0)74

Hold acknowledge signal. Indicates to the external circuitry
that the processor is in a hold state and that the address,
data, and memory control lines are in a high-impedance
state so that they are available to the external circuitry for ac-
cess of local memory. This signal also goes into high imped-
ance when OFF is active low.

94

I/0/2

Bus request signal. Asserted during access of external glob-
al data memory space. READY is asserted to the device
when the global data memory is available for the bus trans-
action. BR can be used to extend the data memory address
space by up to 32K words. It goes into high impedance when
OFF is active low. BR is used in external DMA access of the
on-chip single-access RAM. While HOLDA is active low, BR
is externally driven low to request access to the on-chip
single-access RAM.

0o/z

Instruction acquisition signal. This signal is asserted (active
low) when there is an instruction address on the address bus
and goes into high impedance when OFF is active low. TAQ
is also used in external DMA access of the on-chip single-ac-
cess RAM. While HOLDA is active low, TAQ acknowledges
the BR request for access of the on-chip single-access RAM
and stops indicating instruction acquisition.

130

Branch control input. Samples as the BIO condition. If low,
the device executes the conditional instruction. This signal
must be active during the fetch of the conditional instruction.

XF

109

O/z

External flag output (latched software-programmable sig-
nal). This signal is set high or low by specific instruction or
by loading status register 1 (ST1). Used for signaling other
processors in multiprocessor configurations or as a general-
purpose output pin. This signal also goes into high imped-
ance when OFF is active low. This pin is set high at reset.

112

01z

Interrupt acknowledge signal. Indicates receipt of an inter-
rupt and that the program counter is fetching the interrupt
vector location designated by A15—A0. This signal also goes
into high impedance when OFF is active low.

2-5

Signal Descriptions

Table 2—1. TMS320C5x Signal Descriptions (Continued)

Signal | Pin | State | Description

Initialization, Interrupt, and Reset Operations

INT4 41 | External user interruptinputs. Prioritized and maskable by the interrupt mask

INT3 gg register and interrupt mode bit. Can be polled and reset via the interrupt flag

INT2 register.

INTT 38 9

NMI 42 | Nonmaskable interrupt. External interrupt that cannot be masked via the
INTM orthe IMR. When NMT is activated, the processor traps to the appropri-
ate vector location.

RS 127 | Reset input. Causes the device to terminate execution and forces the pro-

gram counter to zero. When RS is brought to a high level, execution begins
at location zero of program memory. RS affects various registers and status
bits.

MP/MC 5 | Microprocessor/Microcomputer mode select pin. If active low atreset (micro-
computer mode), the pin causes the internal program ROM to be mapped
into program memory space. In the microprocessor mode, all program
memory is mapped externally. This pin is sampled only during reset, and the
mode that is set at reset can be overridden via the software control bit MP/
MC in the PMST register.

Oscillator/Timer Signals CLKIN1/2

CLKOUT1 110 0/Z Master clock output signal (or CLKIN2 frequency). This signal cycles at the
machine-cycle rate of the CPU. The internal machine cycle is bounded by
the rising edges of this signal. This signal also goes into high impedance
when OFF is active low.

CLKMD1 CLKMD2 Clock Mode

CLKMD1 71 | 0 0 External clock with divide-by-two option. Input
CLKMD2 103 clock provided to X2/CLKIN1 pin. Internal oscilla-
tor and PLL disabled.
0 1 Reserved for test purposes.
0 External divide-by-one option. Input clock pro-

vided to CLKIN2. Internal oscillator disabled.
Internal PLL enabled.

1 1 Internal or external divide-by-two option. Input
clock provided to X2/CLKIN1 pin. Internal oscilla-
tor enabled. Internal PLL disabled.

X2/CLKIN1 96 | Input pin to internal oscillator from the crystal. If the internal oscillator is not
being used, a clock may be input to the device on this pin. The internal ma-
chine cycle is half this clock rate.

X1 97 (o] Output pin from the internal oscillator for the crystal. If the internal oscillator
is not used, this pin should be left unconnected. This signal does not go into
high impedance when OFF is active low.

2.6 Pinout and Signal Descriptions

Signal Descriptions

Table 2-1. TMS320C5x Signal Descriptions (Continued)

Signal | Pin l State | Description
Osclllator/Timer Signais (Concluded)

CLKIN2 95 | Divide-by-1 input clock for driving the internal machine
rate.

TOUT 122 (o} Timer output. This pin signals a pulse when the on-chip tim-
er counts down past zero. The pulse is a CLKOUT1 cycle
wide.

Supply Pins

Vop1 14 S Power supply for data bus.

Vbop2 15 S Power supply for data bus.

Vop3 32 S Power supply for data bus.

Vbps 33 S Power supply for data bus.

Vpps 47 S Power supply for address bus.

Vops 48 S Power supply for address bus.

Vpo7 65 S Power supply for inputs and internal logic.

Vbos 66 S Power supply for inputs and internal iogic.

Vpps 80 S Power supply for address bus.

Vop1o 81 S Power supply for address bus.

Vbp11 98 S Power supply for memory control signals.

Vbpi2 99 S Power supply for memory control signals.

Vpp13 113 S Power supply for inputs and internal logic.

Vpp14 114 S Power supply for inputs and internal logic.

Vppis 131 S Power supply for memory control signals.

Vopie 132 S Power supply for memory control signals.

Vss1 3 S Ground for memory control signals.

Vss2 4 S Ground for memory control signals.

Vss3 20 S Ground for data bus.

Vsss 21 S Ground for data bus.

Vsss 35 S Ground for data bus.

Vsss 36 S Ground for data bus.

Vss7 53 S Ground for address bus.

Vsss 54 S Ground for address bus.

Vsse 68 S Ground for address bus.

Vssio 69 S Ground for address bus.

Vssi1 86 S Ground for memory control signals.

Vssi2 87 S Ground for memory control signals.

Vssi3 101 S Ground for inputs and internal logic.

Signal Descriptions

Table 2-1. TMS320C5x Signal Descriptions (Continued)

| Pin

l State

I Description

Supply Pins (Concluded)

Vssi4

102

S

Ground for inputs and internal logic.

Vssis

120

S

Ground for inputs and internal logic.

Vssie

121

s

Ground for inputs and internal logic.

Serlal Port Signals

CLKR
TCLKR

46
126

Receive clock inputs. External clock signal for clocking
data from the DR/TDR (data receive) pins into the RSR
(serial port receive shift register). Must be present during
serial port transfers. If the serial port is not being used,
these pins can be sampled as an input via the INO bit of the
SPC/TSPC registers.

CLKX
TCLKX

124
123

1/0/Z
I/0/Z

Transmit clock. Clock signal for clocking data from the DR/
TDR (data receive register) to the DX/TDX (data transmit
pin). The CLKX can be an input if the MCM bit in the serial
port control register is set to 0. It may also be driven by the
device at 1/4 the CLKOUT1 frequency when the MCM bit
is set to 1. If the serial port is not being used, this pin can
be sampled as an input via the IN1 bit of the SPC/TSPC
register. This signal goes into high impedance when OFF
is active low.

DR
TDR

43

Serial data receive inputs. Serial data is received in the
RSR (serial port receive shift register) via the DR/TDR pin.

DX
TDX

106
107

(074

Serial port transmit outputs. Serial data transmitted from
the XSR (serial port transmit shift register) via the DX/TDX
pin. Placed in high-impedance state when not transmitting
and also when OFF is active low.

FSR
TFSR/TADD

45
125

|
I/0/Z

Frame synchronization pulse for receive input. The falling
edge of the FSR/TFSR pulse initiates the data receive pro-
cess, beginning the clocking of the RSR. TFSR becomes
an input/output (TADD) pin when the serial port is operat-
ing in TDM mode (TDM bit = 1). In TDM mode, this pin is
used to output/input the address of the port. This signal
goes into high impedance when OFF is active low.

FSX
TFSX/TFRM

104
105

1/0/Z
I/0/Z

Frame synchronization pulse for transmitinput/output. The
falling edge of the FSX/TFSX pulse initiates the data trans-
mit process, beginning the clocking of the XSR. Following
reset, the default operating condition of FSX/TFSXis anin-
put. This pin may be selected by software to be an output
when the TXM bit in the serial control register is set to 1.
This signal goes into high impedance when OFF is active
low. When operating in TDM mode (TDM bit = 1), the TFSX
pin becomes TFRM, the TDM frame synch.

Pinout and Signal Descriptions

Signal Descriptions

Table 2—1. TMS320C5x Signal Descriptions (Continued)

Signal

| Pin

| State

| Description

Test Signals

TCK

34

JTAG test clock. This is normally a free-running clock sig-
nal with a 50% duty cycle. The changes on TAP (test ac-
cess port) input signals (TMS and TDI) are clocked into the
TAP controlier, instruction register, or selected test data
register on the rising edge of TCK. Changes at the TAP out-
put signal (TDO) occur on the falling edge of TCK.

TDI

67

JTAG test data input. TDI is clocked into the selected regis-
ter (instruction or data) on a rising edge of TCK.

TDO

100

o/z

JTAG test data output. The contents of the selected regis-
ter (instruction or data) is shifted out of TDO on the falling
edge of TCK. TDO is in high-impedance state except when
scanning of data is in progress. This signal also goes into
high impedance when OFF is active low.

T™S

31

JTAG test mode select. This serial control input is clocked
into the test access port (TAP) controller on the rising edge
of TCK.

JTAG test reset. This signal, when active high, gives the
JTAG scan system control of the operations of the device.
If this signal is not connected or driven low, the device will
operate in its functional mode, and the JTAG signals are ig-
nored.

EMUO

118

1oz

Emulator pin 0. When TRST is driven low , this pin must be
high for activation of the OFF condition (see pin 119).
When TRST is driven high, this pin is used as an interrupt
to or from the emulator system and is defined as input/out-
put via JTAG scan.

Signal Descriptions

Table 2-1. TMS320C5x Signal Descriptions (Concluded)

2-10

Signal | Pin l State l Description
Test Signals (Concluded)

EMU1/0OFF 119 /012 Emulator pin 1/disable all outputs. When TRST is driven
high, this pin is used as an interrupt to or from the emulator
system and is defined as input/output via JTAG scan.
When TRST is driven low, this pin is configured as OFF.
The EMU1/ OFF signal, when active low, puts all output
drivers into the high-impedance state. Note that OFF is
used exclusively for testing and emulation purposes (not
for multiprocessing applications). Thus, for OFF condition,
the following conditions apply:

TRST=low,
EMUO=high
EMU1/OFF=low
RESERVED 16 N/C Reserved pin. These pins are reserved for future 'C5x de-

:; vices. These pins should be left unconnected.

19

22

37

49

50

51

52

70

78

79

84

85

88

11

115

116

117

Pinout and Signal Descriptions

Chapter 3

The architectural structure of a TMS320 DSP consists of three basic seg-
ments:

O Central processing unit (CPU)
3 Memory
[Peripheral-interfacing circuits

This chapter describes the architecture and operation of the ’C5x core CPU;
the memory and peripheral segments are not discussed except in relation to
the core CPU of the 'C5x generation. This CPU is capable of performing
high-speed arithmetic executions within a short instruction cycle by means of
its highly parallel architectural design.

For information on the memory organization of the 'C5x, refer to Chapter 6,
Memory. For further details about on-chip peripheral organization, refer to
Chapter 5, Peripherals. The major topics in this chapter are:

Topic Page

3-1

Architectural Overview

3.1 Architectural Overview

3-2

The 'C5x high-performance digital signal processors are designed, like the
'C25, with an advanced Harvard-type architecture that maximizes the pro-
cessing power by maintaining two separate memory bus structures, program
and data, for full-speed execution. Instructions support data transfers between
the two spaces.

The'C5x performs 2s-complement arithmetic, using the 32-bit arithmetic log-
ic unit (ALU) and accumulator. The ALU is a general-purpose arithmetic unit
that uses 16-bit words taken from data memory or derived from immediate in-
structions, or the 32-bit result from the multiplier. In addition to arithmetic oper-
ations, the ALU can perform Boolean operations. The accumulator stores the
output from the ALU and is also the second input to the ALU. The accumulator
is 32 bits long and is divided into a high-order word (bits 31 through 16) and
alow-order word (bits 15 through 0). Instructions are provided for storing those
high- and low-order accumulator words in memory. For fast, temporary stor-
age of the accumulator, there is a 32-bit accumulator buffer.

In addition to the main ALU, there is a parallel logic unit (PLU) that executes
logic operations on data without affecting the contents of the accumulator. The
PLU provides the bit-manipulation ability required of a high-speed controller
and simplifies the bit setting, clearing, and testing required with control and sta-
tus register operations.

The multiplier performs 16 x 16-bit 2s-complement muiltiplication with a
32-bit result in a single-instruction cycle. The multiplier consists of three ele-
ments: multiplier array, PREG (product register), and TREGO (temporary reg-
ister). The 16-bit TREGO temporarily stores the multiplicand; the PREG stores
the 32-bit product. The multiplier’s values come from data memory, come from
program memory when the MAC/MACD/MADS/MADD instructions are used,
or are derived immediately from the multiply immediate instructions (MPY #).
The fast on-chip multiplier allows the device to efficiently perform fundamental
DSP operations such as convolution, correlation, and filtering.

The 'C5x scaling shifter has a 16-bit input connected to the data bus and a
32-bit output connected to the ALU. The scaling shifter produces a left shift
of 0 to 16 bits on the input data, as programmed in the instruction or defined
in the shift count register (TREG1). The LSBs of the output are filled with zeros,
while the MSBs may be either zero-filled or sign-extended, depending upon
the state of the sign-extension mode bit (SXM) of status register ST1. Addition-
al shift capabilities enable the processor to perform numerical-scaling, bit-ex-
traction, extended-arithmetic, and overflow-prevention operations.

Eight levels of hardware stack save the contents of the program counter dur-
ing interrupts and subroutine calls. On interrupts, the strategic registers (ACC,
ACCB, ARCR, INDX, PMST, PREG, ST0, ST1, TREGS) are pushed onto a
one-deep stack and popped upon interrupt return, thus providing a zero-over-
head interrupt context switch.

Architecture

Functional Block Diagram

3.2 Functional Block Diagram

The functional block diagram, shown in Figure 3—1, outlines the principal
blocks and data paths within the *C5x processors. Further details of the func-
tional blocks are provided in the succeeding sections. Refer to Section 3.3, /n-
ternal Hardware Summary, for definitions of the symbols used in Figure 3—1.

The 'C5x architecture is built around two major buses: the program bus and
the data bus. The program bus carries the instruction code and immediate op-
erands from program memory. The data bus interconnects various elements,
such as the central arithmetic logic unit (CALU) and the auxiliary register file,
to the data memory. Together, the program and data buses can carry data from
on-chip data memory and internal or external program memory to the multipli-
er in a single cycle for multiply/accumulate operations.

The 'C5x possesses a high degree of parallelism; that is, while the data is be-
ing operated upon by the CALU, arithmetic operations may also be executed
in the auxiliary register arithmetic unit (ARAU). Such parallelism results in a
powerful set of arithmetic, logic, and bit-manipulation operations that may all
be performed in a single machine cycle.

Functional Block Diagram

Figure 3—1. Block Diagram of ‘C5x Internal Hardware

BMAR

— ‘

Y v

MUX

| e | INT#'H INM Je| MR Je| IFR |
4

—F

PC(16)

tack
(8 x 16)

A
| pasr || BraF |

i

vy
Compare J<rPAER I l]

BRCR

y Y
| vPMT | CNF | RaM |
4 [3 3
Program Memory I
Y

TREG2 TREGT
MUX
MUX COUNT

rescaler

MUX | ow | sxv |

AN ALU(32) /
ACCB(32) ACC(32)

] o T T

¥

Multiplier

PREG(32)

P-Scaler

* 3
NDX

\ 4
_ [[AUXREGS
> (8x16)

CNF

Data Memory

)
OVLY

Architecture

Internal Hardware Summary

3.3

Internal Hardware Summary

The internal hardware of the 'C5x executes functions that other processors
typically implement in software or microcode. For example, the device con-
tains hardware for single-cycle 16 X 16-bit multiplication, data shifting, and
address manipulation. This hardware-intensive approach provides computing
power previously unavailable on a single chip.

Table 3—1 presents a summary of the ‘'C5x’s internal hardware. This summary
table, which includes the internal processing elements, registers, and buses,
is alphabetized. All of the symbols used in the table correspond to the symbols
used in Figure 3—1, the succeeding block diagrams in this chapter, and the text
throughout this document.

Table 3—-1. °'C5x Internal Hardware Summary

Unit Symbol Function

Accumulator ACC(32) A 32-bit accumulator accessible in two halves: ACCH (accumulator high)
ACCH(16) and ACCL (accumulator low). Used to store the output of the ALU. See sub-
ACCL(16) section 3.5.2 for more information.

Accumulator Buffer ACCB(32) A register used to temporarily store the 32-bit contents of the accumulator.
This register has a direct path back to the ALU and therefore can be arithmet-
ically or logically acted upon with the ACC. See subsection 3.5.2 for more
information.

Arithmetic Logic Unit ALU A 32-bit 2s-complement arithmetic logic unit having two 32-bit input ports
and one 32-bit output port feeding the accumulator. See subsection 3.5.2 for
more information.

Auxiliary Register ARAU An unsigned 16-bit arithmetic unit used to calculate indirect addresses using

Arithmetic Unit the auxiliary, index, and compare registers as inputs. See subsection 3.4.3
for more information.

Auxiliary Register ARCR(16) A 16-bit register used as a limit to compare indirect address against. See

Compare subsection 3.4.3 for more information.

Auxiliary Register File AUXREGS A register file containing eight 16-bit auxiliary registers (AR0—AR7) used for
indirect data address pointers, temporary storage, or integer arithmetic pro-
cessing through the ARAU. See subsection 3.4.3 for more information.

Aucxiliary Register Buffer ARB(3) A 3-bitregisterthat holds the previous value contained in the ARP. These bits
are stored in ST1. See subsection 3.4.3 for more information.

Auxiliary Register Pointer ARP(3) A 3-bit register used as a pointer to the currently selected auxiliary register.
These bits are stored in STO. See subsection 3.4.3 for more information.

Block Move Address BMAR(16) A16-bit register that holds an address value for use with block moves or mul-

Register tiply/accumulates. See subsection 3.4.2 for more information.

Block Repeat BRAF(1) A1-bitflag indicating that a block repeat is currently active. This bitis normal-

Active Flag ly set when the RPTB instruction is executed and cleared when the BRCR
register decrements below zero. This bit resides in the PMST register. See
subsection 3.6.5 for more details.

Block Repeat Address PAER(16) A 16-bit memory-mapped register containing the end address of the seg-

End Register ment of code being repeated. See subsection 3.6.5 for more details.

3-5

Internal Hardware Summary

Table 3—1.°C5x Internal Hardware (Continued)

Unit Symbol Function

Block Repeat Address PASR(16) A 16-bit memory-mapped register containing the start address of the seg-

Start Register ment of code being repeated. See subsection 3.6.5 for more details.

Block Repeat BRCR(16) A 16-bit memory-mapped counter register used to limit the number of times

Counter Register the block is to be repeated. See subsection 3.6.5 for more details.

Bus Interface Module BIM A buffered interface used to pass data between the internal data and pro-
gram buses.

Bus Request BR This signal indicates that a data access is mapped to global memory space
as defined by the GREG register. See Section 6.4 for more details.

Carry C This bit stores the carry output of the ALU. This bit resides in ST1. See sub-
section 3.5.2 for more information.

Central Arithmetic Logic CALU The grouping of the ALU, multiplier, accumulator, and scaling shifters. See

Unit Section 3.5 for more information.

Circular Buffer CBCR(8) An 8-bit register used to enable/disable the circular buffers and define which

Control Register auxiliary registers are mapped to the circular buffers. See subsection 3.4.3
for more information.

Circular Buffer CBER(16) Two 16-bit registers indicating circular buffer end addresses. CBER1 and

End Address CBER(1(16) CBER2 are associated with circular buffers one and two, respectively. See

CBER2(16) subsection 3.4.3 for more information.
Circular Buffer CBSR(16) Two 16-bit registers indicating circular buffer start addresses. CBSR1 and
Start Address CBSR1(16) CBSR2 are associated with circular buffers one and two, respectively. See
CBSR2(16) | subsection 3.4.3 for more information.

Compare of Program COMPARE This circuit compares the current value in the PC to the value in PAER if

Address BRAF is active. If the compare shows equal, then the PASR is loaded into
the PC. See subsection 3.4.3 for more information.

Configure RAM CNF This bit indicates whether on-chip dual-access RAM blocks are mapped to
program or data space. The CNF bit resides in ST1. See subsection 3.6.3
for more information.

Data Bus DATA A 16-bit bus used to route data.

Data Memory DATA This block refers to data memory used with the core and defined in specific

MEMORY device descriptions. It refers to both on- and off-chip memory blocks in data
memory space.

Data Memory DATA A 16-bit bus that carries the address for data memory accesses.

Address Bus ADDRESS

Data Memory Address dma(7) A 7-bit register containing the immediate relative address within a 128-word

Immediate Register data page. See subsection 3.4.2 for more information.

Data Memory DP(9) A 9-bit register containing the address of the current page. Data pages are

Page Pointer 128 words each, resulting in 512 pages of addressable data memory space
(some locations are reserved). See subsection 3.4.2 for more information.

Data RAM Map Bit RAM(1) This bit indicates if the single-access RAM is mapped into data space. See
subsection 3.6.3 for more information.

Direct Data Memory DRB(16) A 16-bit bus that carries the direct address for the data memory, which is the

Address Bus concatenation of the DP register and the seven LSBs of the instruction

(DMA). See subsection 3.4.2 for more information.

3-6

Architecture

Internal Hardware Summary

Table 3—-1.’C5x Internal Hardware (Continued)

Unit Symbol Function

Dynamic Bit DBMR(16) A 16-bit memory-mapped register used as a mask input to the PLU in the ab-

Manipulation Register sence of a long immediate value. See Section 3.7 for more information.

Dynamic Bit Pointer TREG2(4) A 4-bit register that holds a dynamic bit pointer for the BITT instruction. See
Section 4.3 for more information.

Dynamic Shift Count TREG1(5) A 5-bit register that holds a dynamic prescaling shift count for data inputs to
the ALU. See Section 4.3 for more information.

External Flag XF(1) This bit drives the level of the external flag pin and resides in ST1. See sub-
section 3.6.3 for more information.

Global Memory GREG(8) An 8-bit memory-mapped register for specifying the size of the global

Allocation Register memory space. See Section 6.4 for more details.

Hold Mode HM(1) This bit resides in ST1 and determines whether the CALU will stop or contin-
ue when the HOLD signal initiates a power-down mode. See Section 6.6 for
more information.

Index Register INDX(16) This 16-bit memory-mapped register specifies increment sizes greater than
1 for indirect addressing updates. In bit-reversed addressing, the index reg-
ister defines the array size. See subsection 3.4.3 for more information.

Index Register Enable NDX(1) This bit determines whether a modification or write to ARO writes also to
INDX and ARCR to maintain compatibility with the 'C25. This bit resides in
the PMST register. See subsection 3.4.3 for more information.

Interrupt Flag Register IFR(16) A 16-bit flag register used to latch the active-low interrupts. The IFR is a me-
mory-mapped register. See Section 3.8 for more information.

Interrupt Mask Bit INTM(1) The interrupt mask bit globally masks or enables all interrupts. This bit re-
sides in STO. See Section 3.8 for more information.

Interrupt Number INT#(4) The number of the specific interrupt being sent to the CPU to be activated.
This value comes from either the interrupt-processing circuitry or, in the case
of the INTR instruction, the program bus. See Section 3.8 for more informa-
tion.

Interrupt Pointer IPTR(5) Five bits pointing to the 2K page where the interrupt vectors currently reside
in the system. These bits reside in the PMST register. See Section 3.8 for
more information.

Interrupt Mask Register IMR(16) A 16-bit memory-mapped register used to mask interrupts. See Section 3.8
for more information.

Microcall Stack MCS (15-0) Asingle-word stack that temporarily stores the contents of the PFC while the
PFC is being used to address data memory with the block move (BLDD/
BLPD), multiply-accumulate (MAC/MACD), and table read/write (TBLR/
TBLW) instructions.

Microprocessor/ MP/M'E This bit resides inthe PMST register and indicates whether the on-chip ROM

Microcomputer Mode is mapped into program address space. See subsection 3.6.3 for more infor-
mation.

Multiplexer MUX A bus multiplexer used to select the source of operands for a bus or execu-
tion unit, depending on the nature of the current instruction.

Multiplier MULTIPLIER A 16 x 16-bit parallel multiplier. See subsection 3.6.3 for more information.

3-7

Internal Hardware Summary

Table 3—1. 'C5x Internal Hardware (Continued)

Unlit Syimboi Funciion

Overflow Flag ov(1) This bit resides in STO and indicates an overflow in an arithmetic operation
in the ALU. See subsection 3.6.3 for more information.

Overflow Mode OVM(1) This bit resides in STO and determines whether an overflow in the ALU will
wrap around or saturate. See subsection 3.6.3 for more information.

Overlay to Data Space OVLY(1) This bit resides in the PMST register and determines whether the on-chip
single-access memory will be addressable in data address space. See sub-
section 3.6.3 for more information.

Parallel Logic Unit PLU A 16-bit logic unit that executes logic operations from either long immediate
operands or the contents of the DBMR directly upon data locations without
interfering with the contents of the CALU registers. See Section 3.7 for more
information.

Prefetch Counter PFC (15-0) A 16-bit counter used to prefetch program instructions. The PFC contains
the address of the instruction currently being prefetched. It is updated when
a new prefetch is initiated. The PFC can also address program memory
when the block move (BLPD), multiply-accumulate (MAC/MACD), and table
read/write (TBLR/TBLW) instructions are used and can address data
memory when the block move (BLDD) instruction is used.

Prescaler Count Register COUNT(4) A four-bit register that contains the value for the prescaling operation. When
the register contents are used as prescaling data, this register is loaded from
the dynamic shift count or from the instruction. In conjunction with the BIT
and BITT instructions, this register is loaded from the dynamic bit pointer or
the instruction word.

Product Register PREG(32) A 32-bit product register used to hold the multiplier’s product. The high and
low words of the PREG can be accessed individually. See subsection 3.5.3
for more information.

Program Bus PROG A 16-bit bus used to route instructions (and data for the MAC and MACD in-

DATA structions).

Program Counter PC(16) A 16-bit program counter used to address program memory sequentially.
The PC always contains the address of the next instruction to be fetched.
The PC contents are updated following each instruction decode operation.

Program Memory PROGRAM This block refers to program memory used with the core and defined in spe-

MEMORY cific device descriptions. It refers to both on- and off-chip memory blocks ac-
cessed in program memory space.

Program Memory PROG A 16-bit bus that carries the program memory address.

Address Bus ADDRESS

Prescaling Shifter PRESCALER | A 0-to 16-bit left barrel shifter used to prescale data coming into the ALU.
Also used to align data for multiprecision operations. This shifter is also used
as a 0- to 16-bit right barrel shifter of the ACC. See subsection 3.5.2 for more
information.

Postscaling Shifter POST- A0-to 7-bit left barrel shifter used to postscale data coming out of the CALU.

SCALER See subsection 3.5.2 for more information.
Product Shifter P-SCALER A0-, 1-, or 4-bit left shifter that can remove extra sign bits (gained in the multi-

ply operation) when fixed-point arithmetic is used; or a 6-bit right shifter that
can scale the products down to avoid overflow in the accumulation process.
See subsection 3.5.3 for more information.

Architecture

Internal Hardware Summary

Table 3—1. 'C5x Internal Hardware (Continued)

Unit Symbol Function

Product Shifter Mode PM(2) These two bits define the product shifter mode; They reside in ST1. See sub-
section 3.6.3 for more information.

Repeat Counter RPTC(16) A 16-bit counter used to control the repeated execution of a single instruc-
tion. See subsection 3.6.4 for more information.

Sign Extension Mode SXM(1) This bit resides in ST1 and controls whether the arithmetic operation will be
sign-extended or not. See subsection 3.6.3 for more information.

Stack STACK An 8 x 16-bit hardware stack used to store the PC during interrupts and calls.
The ACCL and data memory values may also be pushed onto and popped
from the stack. See Section 3.8 for more information.

Status Registers STo, STH, Three 16-bit status registers that contain status and control bits. See subsec-

PMST tion 3.6.3 for more information.

Temporary Multiplicand TREGO(16) A16-bitregister that temporarily holds an operand for the multiplier. See sub-
section 3.5.3 for more information.

Temporary Registers En- TRM(1) This bit defines whether an LT(A,D,P,S) instruction loads all three of the

able TREGSs(0,1,2) to maintain compatibility with the *C25 or loads just TREGO.
This bit resides in the PMST register. See subsection 3.6.3 for more informa-
tion.

Test/Control Flag TC(1) This bit resides in ST1 and stores the results of ALU or PLU test bit opera-

tions. See subsection 3.6.3 for more information.

Internal Memory Organization

3.4 Internal Memory Organization
This section describes the memory use of the 'C5x core and the addressing
modes supported by the core.

3.4.1 Core Processor Memory-Mapped Registers

Twenty-eight core processor registers are mapped into the data memory
space. These are listed in Table 3—2. An additional 64 memory-mapped regis-
ters are reserved in page 0 of data space. These data memory locations are
reserved for memory-mapped peripheral control and 1/O port registers.

Table 3-2. Core Processor Memory-Mapped Registers

Name Address Description
'C5x 'C5x
Dec Hex
—_ 0-3 0-3 Reserved
IMR 4 4 Interrupt mask register
GREG 5 5 Global memory allocation register
IFR 6 6 Interrupt flag register
PMST 7 7 Processor mode status register
RPTC 8 8 Repeat counter register
BRCR 9 9 Block repeat counter register
PASR 10 A Block repeat program address start register
PAER 11 B Block repeat program address end register
TREGO 12 C Temporary register for multiplicand
TREG1 13 D Temporary register for dynamic shift count
TREG2 14 E Temporary register used as bit pointer
in dynamic bit test
DBMR 15 F Dynamic bit manipulation register
ARO 16 10 Auxiliary register zero
ARt 17 11 Auxiliary register one
AR2 18 12 Auxiliary register two
AR3 19 13 Auxiliary register three
AR4 20 14 Aucxiliary register four
AR5 21 15 Auxiliary register five
AR6 22 16 Auxiliary register six
AR7 23 17 Auxiliary register seven
INDX 24 18 Index register
ARCR 25 19 Auxiliary register compare register
CBSR1 26 1A Circular buffer 1 start address register
CBER1 27 1B Circular buffer 1 end address register
CBSR2 28 1C Circular buffer 2 start address register
CBER2 29 iD Circular buffer 2 end address register
CBCR 30 1E Circular buffer control register
BMAR 31 1F Block move address register
— 32-79 204F Memory-mapped peripheral registers. See
Table 5-1.
80-95 50-5F Memory-mapped |/O port. See Table 5-1.

3-10 Architecture

Internal Memory Organization

3.4.2 Memory Addressing Modes

The 'C5x can address a total of 64K words of program memory and 96K words
of data memory. Chapter 6 shows how the on-chip program and data memo-
ries are mapped.

The data used as instruction operands is obtained in one of the following eight

ways:

1 By the direct address bus (DRB) using the direct addressing mode (e.g.,
ADD 010h) relative to the data memory page pointer (DP)

(O By the DRB using the memory-mapped addressing mode (that is, LAMM
PMST) within data page zero

[Bythe auxiliary register file bus (AFB) using the indirect addressing mode
(that is, ADD *)

[By theinstruction register (IREG) in shortimmediate operand mode (that
is, ADD #0FFh)

[By the program counter (PC) in long immediate operand mode (that is,
ADD #0FFFFh)

[J Bythe core CPU access of a register in register access mode (that is, APL
*+ or MPY *+)

[d By the second instruction word in long immediate address mode (that is,
BLDD #TBL1,*+)

[Bytheblock memory address register (BMAR) in registered block memory

addressing mode (that is, BLDD *+)

In the direct addressing mode, the 9-bit DP points to one of 512 pages (1 page
= 128 words). The data memory address (dma), specified by the seven LSBs
of the instruction, points to the desired word within the page. The address on
the DRB is formed by concatenating the 9-bit DP with the 7-bit dma. Figure 3-2
ilustrates direct addressing mode. In the illustration, the operand is fetched
from data memory space viathe data bus, and the address is the concatenated
value of the DP and the seven LSBs of the instruction. Note that bit 7=0 defines
the addressing mode as direct.

3-11

Internal Memory Organization

Figure 3-2. Direct Addressing Mode

ADD 010h
Machine Code = loo10 SHFTt [000o01 0000
7 7
7 /
/ /
DP = (1100 1110 1} / /
\ \ 7/ /
\ \ / /
\ \/ /
DRB = (1100 1110 1]/001 000 0]
Operand = Data(DRB)

t SHFT represents a 4-bit shift value.

Memory-mapped addressing mode operates much like direct addressing
mode except that the most significant 9 bits of the address are forced to zero
instead of being loaded with the contents of the DP. This allows the user to di-
rectly address the memory-mapped registers of data page zero without the
overhead of changing the DP or auxiliary register. Figure 3-3 illustrates
memory-mapped addressing mode.

Figure 3-3. Memory-Mapped Addressing Mode

LAMM PMST
MachineCode = [0 000 1000 [0/j]OOO 011 1]
7 7
/ /
DP - [0000 0000 0] / /
\\ \\ / /
AN AV /
DRB = [boo0oo0o o000 of000 011 1]
Operand = Data(DRB)

3-12 Architecture

Internal Memory Organization

Inthe indirect addressing mode, the currently selected 16-bit auxiliary register
AR(ARP) addresses the data memory through the auxiliary register file bus
(AFB). While the selected auxiliary register provides the data memory address
and the data is being manipulated by the CALU, the contents of the auxiliary
register may be manipulated through the ARAU. See Figure 3—4 for an exam-
ple of indirect auxiliary register addressing. Also, bit 7=1 defines this address-
ing mode as indirect.

Figure 3—4. Indirect Addressing Mode

ADD

*

Machine Code = [boo10 SHFT [1/o0o0 00 0 0]
]

ARP =/0 1 1| »AR3 =[1100 1110 1001 000 O]

Operand = Data(AR(ARP))

The operand may reside as part of the instruction machine code. In the case
of the short immediate operand, the operand is contained in the single-word
instruction. These short immediate operands vary in length from 1 bit on the
SETC instruction to 13 bits on the MPY instruction. Figure 3-5 shows an ex-
ample of shortimmediate mode. Note that, in this example, the lower eight bits
are the operand and will be added to the ACC by the CALU.

Figure 3-5. Short Immediate Mode

ADD #OFFh
MachineCode = [1 0 1 1 1000 1111 111 1]
Operand = |[1.111 1111]
Operand = Data(ADD(7 - 0))

3-13

Internal Memory Organization

In the case of the long immediate operand, the operand immediately follows
the opcode in the program sequence. The long immediate operand is 16 bits
long. Figure 3—6 shows an example of long immediate mode. In this example,
the second word of the two-word instruction is added to the ACC by the CALU.

Figure 3—6. Long Immediate Mode
ADD #01234h

MachineCode = |1 011 1111 1001 SHFT
000 1 0010 0011 0100
Operand = [0001 0010 0011 010 O0fe—
Operand = Data(second word(15 — 0))

The operand may come from a CPU register. This type of operand is used in
special cases. The CALU uses this in multiplying with TREGO, in shifting with
TREG1 and PM, and in bit manipulation with TREG2. The ARAU uses this with
INDX and ARCR. The PLU uses this with DBMR. Figure 3—7 illustrates the use
of the DBMR register as an AND mask in the APL instruction.

Figure 3—7. Register Access Mode

APL 010h
Machine Code = [0101 1010 0001 0000
/ /
/ /
/ /
bP = 100 1110 1] i il
\ \ / /
\ \ / /
\ \/ /
DRB = (1100 1110 1/001 00 0 O]

Operand1 = Data(DRB)
Operand2 = DBMR

In the long immediate addressing mode, an operand is addressed by the sec-
ond word of a two-word instruction. In this case, the program address/data bus
(PAB) is used for the operand fetch. The PC is stored in a temporary register,
and the long immediate value is loaded into the PC. Then, the PAB is used for
the operand fetch or write. At the completion of the instruction, the PC is re-
stored from the temporary register, and execution continues. This technique
is used when two memory addresses are required for the execution of the in-

3-14 Architecture

Internal Memory Organization

struction. The PC is used so that, when an instruction is repeated, the address
generated can be autoincremented. Figure 3-8 illustrates this mode. In this
illustration, the source address (OPERAND1) is fetched via PAB, and the des-
tination address (OPERAND2) uses the direct addressing mode.

Figure 3-8. Long Immediate Addressing Mode
BLDD #02345h, 012h

Machine Code 1 = [fo10 1000 oo 001 0]
/ e
/ /
/ /
pP=[1100 1110 1] Y. Y
AN
AN AN / /
N \\,/ //
DRB = |[1100 1110 1001 00 1 0]
Operand2 = Data (DRB)
MachineCode2 = |0010 0011 0100 0101]
-~ -~
PC = l[oo10 0011 0100 0101]
Operand1 = Data (PC)

Registered block memory addressing mode operates like the long immediate
addressing mode with the exception that the address comes from BMAR. The
advantage of this technique is that the address of the block of memory to be
acted upon can be changed during execution of the program. The address in
long immediate addressing mode resides in the program flow and cannot be
easily changed. Figure 3-9 shows an example of registered block memory ad-
dressing mode.

3-15

Internal Memory Organization

Figure 3-9. Registered Block Memory Addressing Mode

BLDD BMAR, 012h

Machine Code 1 = ([1to10 1100 o0/001 00 10]
7 7
/ /
P = (1100 1110 1 [/ /
A D /
\ \ /
\ \v /
DRB = (1100 1110 1001 00 10|
Operand2 = Data (DRB)
BMAR . [FC]
Operand1 = Data (PC)

3.4.3 Auxiliary Registers

3-16

The ’'Cbx provides a register file containing eight auxiliary registers
(ARO—-AR?7). The auxiliary registers may be used for indirect addressing of the
data memory or for temporary data storage. Indirect auxiliary register address-
ing (see Figure 3—10) allows placement of the data memory address of an in-
struction operand into one of the auxiliary registers. These registers are
pointed to by a three-bit auxiliary register pointer (ARP) that is loaded with a
value from 0 through 7, designating ARO through AR7, respectively. The auxil-
iary registers and the ARP may be loaded from data memory, the accumulator,
the product register, or by an immediate operand defined in the instruction.
The contents of these registers may also be stored in data memory or used
as inputs to the CALU. These registers appear in the memory map as de-
scribed in Table 3-2.

Architecture

Internal Memory Organization

Figure 3-10. Indirect Auxiliary Register Addressing Example

Auxiliary Register File Data Memory Map
ARO [0537 h Location
| 0000h
Auxiliary Register ARt [5150h
Pointer AR2 [0 E9 F Ch]

(in STO)
ARP [0[1[1]—»AR3 [0 F F 3 A h|—» OFF3Ah| 3121h

AR4 | 103 B h OFFFFh

AR5 | 2 6 B 1 hi

AR6 [0 00 8

AR7 | 8 4 3 D hj

The auxiliary register file (ARO—-AR?7) is connected to the auxiliary register
arithmetic unit (ARAU), shown in Figure 3—11. The ARAU may autoindex the
current auxiliary register while the data memory location is being addressed.
Indexing either by +1 or by the contents of the INDX register may be per-
formed. As a result, accessing tables of information does not require the cen-
tral arithmetic logic unit (CALU) for address manipulation; thus, the CALU is
free for other operations in parallel.

If more advanced address manipulation is required, such as multidimensional
array addressing, the CALU can directly read from or write to the auxiliary reg-
isters. However, the ARAU update of the ARs is done during the decode phase
(second cycle) of the pipeline, while the CALU write is done during the execu-
tion phase (fourth cycle) of the pipeline. Therefore, the two instructions directly
following the CALU write to an auxiliary register should not use the same auxil-
iary register for address generation. See subsection 3.6.2 for details.

3-17

Internal Memory Organization

Figure 3—-11. Auxiliary Register File

8 LSB of Instruction Register

1
/-PI Index Register (INDX) (16) ——6/—\ (IREG) (16)
16

/'Pl Compare Register (ARCR) (16)
/'FI Auxiliary Register 7 (AR7) (16)
/'Pl Auxiliary Register 6 (AR6) (16) MUX
|» Auxilary Register 5(AR5)(16)
| » Auxiliary Register 4 (AR4) (16) Auxliary Auliary

- . 3, Register | 3 Register

| AR3) (1 ‘ g 9
/-bl Auxiliary Register 3 (AR3)(16) 4 Pointer —9 Buffer
/D| Auxiliary Register 2 (AR2) (16) (ARP) (3) (ARB) (3)
» Auxiliary Register 1 (AR1)(16) x

3
»| Auxiliary Register 0 (AR0) (16)
16‘,
N 16,
] A 4 3/
INg ouT IN A
16} | Auxiliary Register Arithmetic Unit (ARAU) (16) 3} ?n:ti? cg:)n
- - - Register

_Auxiliary Register File Bus (AFB) 3, > (IREG) (16)

As shown in Figure 3—11, the index register, compare register, or the eight
LSBs of the instruction register can be used as one of the inputs of the ARAU.
The other input is fed by the current AR (being pointed to by ARP). AR(ARP)
refers to the contents of the current AR pointed to by ARP. The ARAU performs

the functions shown in Table 3-3.

3-18

Architecture

-~

Internal Memory Organization

Table 3-3. Auxiliary Register Arithmetic Unit Functions

Auxiliary Register Operation

Description

AR(ARP) + INDX — AR(ARP)

Index the current AR by adding an unsigned 16-bit in-
teger contained in INDX. Example: ADD *0+

AR(ARP) — INDX — AR(ARP)

Index the current AR by subtracting an unsigned
16-bit integer contained in INDX. Example: ADD *0—

AR(ARP) + 1 — AR(ARP)

Increment the current AR by one. Example: ADD *+

AR(ARP) — 1 — AR(ARP)

Decrement the current AR by one. Example: ADD *—

AR(ARP) — AR(ARP)

Do not modify the current AR. Example: ADD *

AR(ARP) + IR(7-0) — AR(ARP)

Add an 8-bitimmediate value to current AR. Example:
ADDRK *55h

AR(ARP) — IR(7-0) — AR(ARP)

Subtract an 8-bit immediate value from current AR.
Example: SBRK *55h

AR(ARP) + rc(INDX) — AR(ARP)

Bit-reversed indexing; add INDX with reversed-carry
(rc) propagation. Example: ADD *BRO+

AR(ARP) — rc(INDX) — AR(ARP)

Bit-reversed indexing; subtract INDX with re-
versed-carry (rc) propagation. Example: ADD *BRO-

If (AR(ARP)) = (ARCR) then TC = 1
If (AR(ARP)) < (ARCR) then TC = 1
If (AR(ARP)) > (ARCR) then TC = 1
If (AR(ARP)) = (ARCR) then TC = 1

Compare the current AR to ARCR and, if condition is
true, then set TC bit of the status register ST1 to one.
If false, then clear the TC bit. Example: CMPR 3

If (AR(ARP)) = (CBER) then AR(ARP) = CBSR

If at end of circular buffer, reload start address. The

test for this condition is done prior to the execution of

the auxiliary register modification. Example: ADD *+

The index register (INDX) can be added to or subtracted from AR(ARP) on any
AR update cycle. This 16-bit register is one of the memory-mapped registers
and is used to increment or decrement the address in steps larger than one,
which is useful for operations such as addressing down a column of a matrix.
The auxiliary register compare register (ARCR) is used as a limit to blocks of
data and, in conjunction with the CMPR instruction, supports logical compari-
sons between AR(ARP) and ARCR. Note that the 'C25 uses ARO for these two
functions. After reset, a LAR load of ARO also loads INDX and ARCR to main-
tain compatibility with the 'C25. The splitting of functions to the three registers
is enabled by setting the NDX bit of PMST to one.

Because the auxiliary registers are memory-mapped, they can be acted upon
directly by the CALU to provide for more advanced indirect addressing tech-
niques. For example, the multiplier can be used to calculate the addresses of
three-dimensional matrices. After a CALU load of the auxiliary register, there
is, however, a two-instruction-cycle delay before auxiliary registers can be
used for address generation. The INDX and ARCR registers are accessible
via the CALU, regardless of the condition of the NDX bit (i.e., SAMM ARCR
writes only to the ARCR).

3-19

Internal Memory Organization

In addition to its use for address manipulation in parallel with other operations,
the ARAU may also serve as an additional general-purpose arithmetic unit be-
cause the auxiliary register file can directly communicate with data memory.
The ARAU implements 16-bit unsigned arithmetic, whereas the CALU imple-
ments 32-bit 2s-complement arithmetic. The BANZ and BANZD instructions
permit the auxiliary registers to be used as loop counters.

The 3-bit auxiliary register pointer buffer (ARB), shown in Figure 3-11, provides
storage for the ARP on subroutine calls when the automatic context switch fea-
ture of the device are not used.

Two circular buffers can operate at a given time and are controlled via the cir-
cular buffer control register (CBCR). The CBCR is defined as shown in
Table 3—4.

Table 3—4. Circular Buffer Control Register (CBCR)

Bit Name Function

0-2 | CAR1 Identifies which auxiliary register is mapped to circular buffer 1.
3 CENB1 Circular buffer 1 enable=1/disable=0. Set to 0 upon reset.
4-6 | CAR2 Identifies which auxiliary register is mapped to circular buffer 2.
7 CENB2 | Circular buffer 2 enable=1/disable=0. Set to 0 upon reset.

Upon reset (RS rising edge), both circular buffers are disabled. To define a cir-
cular buffer, load the CBSR1/2 with the start address of the buffer and
CBER1/2 with the end address, and load the auxiliary register to be used with
the buffer with an address between the start and end addresses. Finally, load
CBCR with the appropriate auxiliary register number and set the enable bit.
Note that the same auxiliary register can not be enabled for both circular buff-
ers, or unexpected results will occur. As the address is stepping through the
circular buffer, the auxiliary register value is compared against the value con-
tained in CBER prior to the update to the auxiliary register value. If the current
auxiliary register value and the CBER are equal and an auxiliary register modi-
fication occurs, the value contained in CBSR is automatically loaded into the
AR. Ifthe values in the CBER and the auxiliary register are not equal, the auxil-
iary register is modified as specified.

Circular buffers can be used with either increment- or decrement-type up-
dates. If increment is used, then the value in CBER must be greater than the
value in CBSR. If decrement is used, the value in CBER must be less than the
value in CBSR. The other indirect addressing modes can be used; however,
the ARAU tests only for the condition AR(ARP) = CBER. The ARAU will not
detect an AR update that steps over the value contained in CBER. See sub-
section 4.1.6 for further details.

3.4.4 Memory-to-Memory Moves

The 'C5x provides instructions for data and program block moves and for data
move functions that efficiently utilize the memory spaces of the device.

3-20 Architecture

Internal Memory Organization

The BLDD instruction moves a block within data memory, the BLPD instruction
moves a block from program memory to data memory, and the BLDP instruc-
tion moves a block from data memory to program memory. One of the address-
es of these instructions comes from the data address generator, while the oth-
er comes either from alongimmediate constant or from the BMAR. When used
with the repeat instructions (RPT and RPTZ), these instructions efficiently per-
form block moves from on-chip or off-chip memory.

Implemented in on-chip data RAM, the DMOV (data move) function is equiva-
ient to that of the 'C25. DMOV copies a word from the currentiy addressed data
memory location in on-chip RAM to the next-higher location, while the data
from the addressed location is being operated upon in the same cycle (e.g.,
by the CALU). An ARAU operation may also be performed in the same cycle
when the indirect addressing mode is used. The DMOV function can imple-
ment algorithms that use the z—1 delay operation, such as convolution and dig-
ital filtering, where data is being passed through a time window. The data move
function is at its highest efficiency when operating in dual-access on-chip
memory. When operating in single-access memory, it requires an additional
cycle. It is contiguous across the boundary of blocks BO and B1. The MACD
(multiply and accumulate with data move), MADD (multiply and accumulate
with data move and coefficient address contained in BMAR), DMOV (data
move) and LTD (load TREGO with data move and accumulate product) instruc-
tions make use of the data move function.

) L

Note:
The data move operation cannot be performed on external data memory.

L J

The TBLR/TBLW (table read/write) instructions transfer words between pro-
gram and data spaces. TBLR reads words from program memory into data
memory. TBLW writes words from data memory to program memory.

3-21

Central Arithmetic Logic Unit (CALU)

3.5 Central Arithmetic Logic Unit (CALU)

3-22

The 'C5x central arithmetic logic unit (CALU) contains a 16-bit scaling shifter,
a 16 x 16-bit parallel multiplier, a 32-bit arithmetic logic unit (ALU), a 32-bit
accumulator (ACC), a 32-bit accumulator buffer (ACCB), and additional shift-
ers at the outputs of both the accumulator and the multiplier. This section de-
scribes the CALU components and their functions. Figure 3—12 is a block dia-
gram showing the components of the CALU. The following steps occur in the
implementation of a typical ALU instruction:

1) Data is fetched from memory on the data bus,

2) Datais passed through the scaling shifter and the ALU where the arithme-
tic is performed, and

3) The result is moved into the accumulator.

One input to the ALU is always provided by the accumulator. The other input
may be transferred from the product register (PREG) of the multiplier, the ac-
cumulator buffer (ACCB), or the scaling shifter that is loaded from data
memory or the accumulator (ACC).

Architecture

Central Arithmetic Logic Unit (CALU)

Figure 3—12. Central Arithmetic Logic Unit

I v 1

TREG2 TREG1 TREGO TRM
=] =] =] Ty

fE—

| Multiplier

v
\ MUX /| Count | # +
* * | PREG(32) |
Prescaler ¢ {—-
| P-Scaler | | PM |
T
L OVM | SXM |
ALU(32)
! }
ACCB(32) ACC(32) ; +
T L ov TC c
; 1
I Postscaler I

3.5.1 Scaling Shifter

The 'C5x provides a scaling shifter that has a 16-bit input connected to the data
bus and a 32-bit output connected to the ALU; see Figure 3—12. The scaling
shifter produces a left shift of 0 to 16 bits on the input data. The shift count is
specified by a constant embedded in the instruction word or by the value in
TREGH1. The LSBs of the output are filled with zeros; the MSBs may be either
filled with zeros or sign-extended, depending upon the value of the SXM bit
(sign-extension mode) of status register ST1.

3-23

Central Arithmetic Logic Unit (CALU)

The 'C5x also contains several other shifters that allow it to perform numerical
scaling, bit extraction, extended-precision arithmetic, and overflow preven-
tion. These shifters are connected to the output of the product register and the
accumulator.

3.5.2 ALU and Accumulator

3-24

The 'C5x 32-bit ALU and accumulator implement a wide range of arithmetic
and logical functions, the majority of which execute in a single clock cycle.
Once an operation is performed in the ALU, the result is transferred to the ac-
cumulator where additional operations, such as shifting, may occur. Data that
is input to the ALU may be scaled by the scaling shifter.

The ALU is a general-purpose arithmetic/logic unit that operates on 16-bit
words taken from data memory or derived from immediate instructions. In ad-
dition to the usual arithmetic instructions, the ALU can perform Boolean opera-
tions, facilitating the bit manipulation ability required of a high-speed controller.
One input to the ALU is always supplied by the accumulator, and the other in-
put may be furnished from the product register (PREG) of the multiplier, the
accumulator buffer (ACCB), or the output of the scaling shifter (that has been
read from data memory or from the ACC). After the ALU has performed the
arithmetic or logical operation, the result is stored in the accumulator. For the
following example, assume ACC = 0, PREG = 000222200h, PM = 00, and
ACCB = 000333300h:

LACC #01111h,8 ;ACC = 00111100. Load ACC from prescaling

sshifter

APAC ;ACC = 00333300. Add to ACC the
;product register.

ADDB sACC = 00666600. Add to ACC the

taccumulator buffer.

The 32-bit accumulator (ACC) can be split into two 16-bit segments for storage
in data memory; see Figure 3—12. Shifters at the output of the accumulator
provide aleft shift of 0 to 7 places. This shift is performed while the data is being
transferred to the data bus for storage. The contents of the accumulator re-
main unchanged. When the postscaling shifter is used on the high word of the
accumulator (bits 16 — 31), the MSBs are lost and the LSBs are filled with bits
shifted in from the low word (bits 0 — 15). When the postscaling shifter is used
on the low word, the LSBs are zero-filled. For the following example, assume
ACC = 0FF234567h:

SACL TEMP1,7 ;TEMPl = 0B380 ACC = OFF234567.
SACH TEMP2,7 ;TEMP2 = 91A2 ACC = OFF234567.

The 'C5x supports floating-point operations for applications requiring a large
dynamic range. By performing left shifts, the NORM (normalization) instruction
is used to normalize fixed-point numbers contained in the accumulator. The
four bits of the TREG1 define a variable shift through the scaling shifter for the
ADDT/LACT/SUBT instructions (add to / load to / subtract from accumulator

Architecture

Central Arithmetic Logic Unit (CALU)

with shift specified by TREG1). These instructions are useful in denormalizing
a number (converting from floating-point to fixed-point). They are also useful
in execution of an automatic gain control (AGC) going into a filter.

The single-cycle 1-bitto 16-bit right shift of the accumulator can efficiently align
the accumulator’s contents. This, coupled with the 32-bit temporary buffer on
the accumulator, enhances the effectiveness of the CALU in extended-preci-
sion arithmetic. The accumulator buffer register (ACCB) provides a temporary
storage place for a fast save of the accumulator. The ACCB can also be used
as an input to the ALU. The minimum or maximum value in a string of numbers
can be found by comparing the contents of the ACCB with the contents of the
ACC. The minimum or maximum value is placed in both registers, and, if the
condition is met, the carry bit (C) is set to 1. The minimum and maximum func-
tions are executed by the CRLT and CRGT instructions, respectively. These
operations are signed arithmetic operations. For the following examples, as-
sume ACC=012345678h and ACCB= 076543210h:

CRLT ;ACC = ACCB = 12345678. C = 1.

CRGT ;ACC = ACCB = 76543210. C = 0.

The accumulator’s overflow saturation mode may be enabled/disabled by set-
ting/resetting the OVM bit of ST0. When the accumulator is in the overflow sat-
uration mode and an overflow occurs, the overflow flag is set and the accumu-
lator is loaded with either the most positive or the most negative value repre-
sentable in the accumulator, depending upon the direction of the overflow. The
value of the accumulator upon saturation is 07FFFFFFFh (positive) or
080000000h (negative). If the OVM (overflow mode) status register bit is reset
and an overflow occurs, the overflowed results are loaded into the accumula-
tor without modification. Note that logical operations cannot result in overflow.

The 'C5x can execute a variety of branch instructions that depend on the status
of the ALU and the accumulator. For example, execution of the instruction
BCND can depend on a variety of conditions in the ALU and the accumulator.
The BACC instruction allows branching to an address stored in the accumula-
tor. The bittestinstructions (BITT and BIT) facilitate branching on the condition
of a specified bit in data memory.

The 'C5x accumulator also has an associated carry bit that is set or reset, de-
pending on various operations within the device. The carry bit allows more effi-
cient computation of extended-precision products and additions or subtrac-
tions. It is quite useful in overflow management. The carry bit is affected by
most arithmetic instructions as well as the single-bit shift and rotate instruc-
tions. It is not affected by loading the accumulator, logical operations, or other
such non-arithmetic or control instructions. Examples of carry bit operations
are shown in Figure 3-13.

3-25

Central Arithmetic Logic Unit (CALU)

Figure 3—13. Examples of Carry Bit Operations

3-26

C MSB LSB C MSB LSB
X FFFFFFFFACC X 00000000 ACC
+ 1 - 1

1 00000000 0 FFFFFFFF

C MSB LSB C MSB LSB

X 7 FFFFTFTFF ACC X 8 0000O0O01AcC
+ 1 _(QVM=0) - 2

0 80000000 1 7FFFFFFF

C MSB LSB C MSB LSB

1 0000000 0ACC 0 FFFFFFFF ACC
+ 0 (ADDC) - 1

0 00000001 1 FFFFFFFd

Shown in the examples of Figure 3—13, the value added to or subtracted from
the accumulator may come from the input scaling shifter, ACCB, or PREG. The
carry bit is set if the result of an addition or accumulation process generates
a carry; it is reset to zero if the result of a subtraction generates a borrow.
Otherwise, it is cleared after an addition or set after a subtraction.

The ADDC (add to accumulator with carry) and SUBB (subtract from accumu-
lator with borrow) instructions use the previous value of carry in their addition/
subtraction operation. The ADCB (add ACCB to accumulator with carry) and
the SBBB (subtract ACCB from accumulator with borrow) also use the pre-
vious value of carry.

The one exception to operation of a carry bit, as shown in Figure 3-13, is in
the use of ADD with a shift count of 16 (add to high accumulator) and SUB with
a shift count of 16 (subtract from high accumulator). This case of the ADD in-
struction can set the carry bit only if a carry is generated, and this case of the
SUB instruction can reset the carry bit only if a borrow is generated; otherwise,
neither instruction affects it. This feature is useful for extended precision arith-
metic, as discussed in Chapter 7.

Two conditional operands, C and NC, are provided for branching, calling, re-
turning, and conditionally executing according to the status of the carry bit.
The CLRC, LST #1, and SETC instructions can also be used to load the carry
bit. The carry bit is set to one on a hardware reset.

The SFL and SFR (in-place one-bit shift to the left/right) instructions and the
ROL and ROR (rotate to the left/right) instructions shift or rotate the contents
of the accumulator through the carry bit. The SXM bit affects the definition of
the SFR (shift accumulator right) instruction. When SXM = 1, SFR performs
an arithmetic right shift, maintaining the sign of the accumulator’s data. When
SXM = 0, SFR performs a logical shift, shifting out the LSBs and shifting in a
zero for the MSB. The SFL (shift accumulator left) instruction is not affected
by the SXM bit and behaves the same in both cases, shifting out the MSB and

Architecture

Central Arithmetic Logic Unit (CALU)

shifting in a zero. The repeat (RPT and RPTZ) instructions may be used with
the shift and rotate instructions for multiple-bit shifts.

The SFLB, SFRB, RORB, and ROLB instructions can shift or rotate the 65-bit
combination of the accumulator, ACCB, and carry bit as described above.

The accumulator can also be right-shifted 0 — 31 bits in two instruction cycles
or 1 — 16 bits in one cycle. The bits shifted out are lost, and the bits shifted in
are either zeros or copies of the original sign bit, depending on the value of the
SXM status bit. A shift count of 1 to 16 is embedded in the instruction word of
the BSAR instruction. For example, let ACC = 012345678h:

BSAR 7 ;ACC = 02468ACE.

The right shift can also be controlled via TREG1. The SATL instruction shifts
the ACC by 0—15 bits as defined by bits 3—0 of TREG1. The SATH instruction
shifts the ACC 16 bits to the right if bit 4 of TREGH1 is a 1. The following code
sequence executes a 0- to 31-bit right shift of the ACC based on the shift count
stored at SHFT. As an example, consider the value stored at SHFT =01Bh and
ACC = 012345678h:

LMMR TREG1, SHFT sTREG1 = shift count 0 — 31. TREGl = 1B

SATH ;If shift count > 15, then ACC >> 16
sACC = 00001234

SATL ;ACC >> shift count. ACC = 00000002

3.5.3 Multiplier, TREGO, and PREG

The 'C5x uses a 16 X 16-bit hardware multiplier that is capable of computing
a signed or an unsigned 32-bit product in a single machine cycle. All multiply
instructions, except the MPYU (multiply unsigned) instruction, perform a
signed multiply operation in the multiplier. That is, two numbers being multi-
plied are treated as 2s-complement numbers, and the result is a 32-bit
twos-complement number. As shown in Figure 3—12, the following two regis-
ters are associated with the multiplier:

[16-bit temporary register (TREGO) that holds one of the operands for the
multiplier, and

[32-bit product register (PREG) that holds the product.

Four product shift modes (PM) are available at the PREG’s output. These shift

modes are useful for performing multiply/accumulate operations, performing

fractional arithmetic, or justifying fractional products. The PM field of status
register ST1 specifies the PM shift mode, as shown in Table 3-5.

Table 3-5. Product Shift Modes

PM Resulting Shift
00 No shift

o1 Left shift of 1 bit
10 Left shift of 4 bits
11 Right shift of 6 bits

3-27

Central Arithmetic Logic Unit (CALU)

3-28

The productis shifted one bit to compensate for the extra sign bit gained in mul-
tiplying two 16-bit 2s-complement numbers (MPY). The four-bit shift is used
in conjunction with the MPY instruction with a short immediate value (13 bits
or less) to eliminate the four extra sign bits gained in multiplying a16-bit num-
ber times a 13-bit number. The output of PREG can, instead, be right-shifted
6 bits to enable the execution of up to 128 consecutive multiply/accumulates
without the possibility of overflow. Note that, when the right shift is specified,
the product is always sign-extended, regardless of the value of SXM.

The LT (load TREGO) instruction normally loads TREGO to provide one oper-
and (from the data bus), and the MPY (multiply) instruction provides the sec-
ond operand (also from the data bus). A multiplication can also be performed
with a short or long immediate operand by using the MPY instruction with an
immediate operand. A product can be obtained every two cycles except when
a long immediate operand is used.

Four multiply/accumulate instructions (MAC, MACD, MADD, and MADS) fully
utilize the computational bandwidth of the multiplier, allowing both operands
to be processed simultaneously. The data for these operations can be trans-
ferred to the multiplier each cycle via the program and data buses. This facili-
tates single-cycle multiply/accumulates when used with repeat (RPT and
RPTZ) instructions. In these instructions, the coefficient addresses are gener-
ated by the PC, while the data addresses are generated by the ARAU. This
allows the repeated instruction to sequentially access the values from the co-
efficient table and step through the data in any of the indirect addressing
modes. The RPTZ instruction also clears the accumulator and the product reg-
ister to initialize the multiply/accumulate operation. As an example, consider
multiplying the row of one matrix times the column of a second matrix. For this
example, consider 10 X 10 matrices, MTRX1 points to the beginning of the
first matrix, INDX = 10, and AR(ARP) points to the beginning of the second ma-
trix:

RPTZ #9 sFor i = 0, i <10, i++

MAC MTRX1,*0+ ;PREG=DATA(MTRX1+i) x DATA[MTRX2 + (ixINDX)]

;ACC += PREG.
APAC ;sACC += PREG.

The MAC and MACD instructions obtain their coefficient pointer from a long
immediate address and are, therefore, two-word instructions. The MADS and
MADD instructions obtain their coefficient pointer from the BMAR and are,
therefore, one-word instructions. The use of the BMAR as a source to the coef-
ficient table enables one block of code to support multiple applications and
makes it unnecessary to modify executable code to change the long immedi-
ate address. The MACD and MADD instructions also include a data move
(DMOV) operation that, in conjunction with the fetch of the data multiplicand,
writes the data value to the next-higher data address.

The MACD and MADD instructions, when repeated, support filter constructs
(weighted running averages) so that as the sum-of-products is executed, the

Architecture

Central Arithmetic Logic Unit (CALU)

sample data is shifted in memory to make room for the next sample and to
throw away the oldest sample. Circular addressing with MAC and MADS
instructions may also be used to support filter implementation.

For the example below, AR(ARP) points to the oldest of the samples. BMAR
points to the coefficient table. In addition to initiating the repeat operation, the
RPTZ instruction also clears the accumulator and the product register. In this
example, the PC is stored in a temporary register while the repeated operation
is executed. Next, the PC is loaded with the value stored in BMAR. The pro-
gram bus is used to address the coefficients and, as the MADD is repeatedly
executed, the PC increments to step through the coefficient table. The ARAU
generates the address of the sample data. Indirect addressing with decrement
steps the sample data, starting with the oldest data. As the data is fetched, it
is also written to the next higher location in data memory. This operation aligns
the data for the next execution of the filter by moving the oldest sample out past
the end of the sample’s array and making room for the new sample at the be-
ginning of the sample array. The previous product (PREG) is added to the ac-
cumulator (ACC), while the two fetched values are multiplied and the product
loaded into the PREG. Note that the DMOV portion of the MACD and MADD
instructions will not function with external data memory addresses.

RPTZ #9 sACC = PREG = 0. For I = 9 TO 0 Do
MADD *— sSUM Ay x X1. X141 = Xr.
APAC ;FINAL SUM.

The MPYU instruction performs an unsigned multiplication, which greatly facil-
itates extended-precision arithmetic operations. The unsigned contents of
TREGO are multiplied by the unsigned contents of the addressed data memory
location, with the result placed in PREG. This allows operands of greater than
16 bits to be broken downinto 16-bit words and processed separately to gener-
ate products of greater than 32 bits. The SQRA (square/add) and SQRS
(square/subtract) instructions pass the same value to both inputs of the muilti-
plier for squaring a data memory value.

After the multiplication of two 16-bit numbers, the 32-bit product is loaded into
the 32-bit product register (PREG). The product from the PREG may be trans-
ferred to the ALU or to data memory via the SPH (store product high) and SPL
(store product low).

3-29

System Control

3.6 System Control

System control on the 'C5x is provided by the program counter, hardware
stack, PC-related hardware, external reset signal, interrupts (see Section 3.8),
status registers, and repeat counters. The following subsections describe the
function of each of these components in system control and pipeline operation.

3.6.1 Program Address Generation and Control

The'C5x has a 16-bit program counter (PC) and an eight-deep hardware stack
for PC storage. The program counter addresses internal and external program
memory in fetching instructions. The stack is used during interrupts and sub-
routines.

The program counter addresses program memory, either on-chip or off-chip,
via the program address bus (PAB). Through the PAB, an instruction is ad-
dressed in program memory and loaded into the instruction register (IREG).
When the IREG is loaded, the PC is ready to start the next instruction fetch
cycle.

The PC can be loaded in a number of ways. When code is sequentially ex-
ecuted, the PC is loaded with PC + 1. When a branch is executed, the PC is
loaded with the long immediate value directly following the branch instruction.
In the case of a subroutine call, the PC+2 is pushed onto the stack and then
loaded with the long immediate value directly following the call instruction. The
return instructions pop the stack back into the PC to return to the calling or in-
terrupting sequence of code. In the case of a software trap or interrupt trap,
the PC is loaded with the address of the appropriate trap vector. The contents
of the accumulator may be loaded into the PC to implement computed GOTO
operations. This can be accomplished with the BACC (branch to address in
accumulator) or CALA (call subroutine at location specified by ACC) instruc-
tions.

The PAB bus can also address data stored in either program or data space.
This makes it possible, in repeated instructions, to fetch a second operand in
parallel with the data bus for two-operand operations. When repeated, the
array addressed by the PAB is sequentially accessed via the incrementing of
the PC. The block transfer instructions (BLDD, BLDP, and BLPD) use both
buses so that, when repeated, the pipeline structure can be reading the next
operand while writing the current one. The BLPD instruction loads the PC with
either the long immediate address following the BLPD or with the contents of
the block move address register (BMAR). The PAB bus is then used to fetch
the source data from program space in this block move operation. The BLDP
executes in the same way, except that the PAB bus is used for the destination
operation. The BLDD instruction uses the PAB bus to address data space.

The TBLR and TBLW instructions operate much like the BLPD and BLDP in-
structions, respectively, except that the PC is loaded with the low 16 bits of the

3-30 Architecture

System Control

accumulator instead of the BMAR or long immediate address. This facilitates
calculated table look-up operations. The multiply/accumulate operations
(MAC, MACD, MADD, and MADS) use the PAB bus to address their coefficient
table. The MAC and MACD instructions load the PC with the long immediate
address following the instruction. The MADD and MADS instructions load the
PC with the contents of BMAR.

To start a new fetch cycle, the PC is loaded either with PC +1 or with a branch
address (for instructions such as branches, calls, and interrupts). In the case
of conditional branches where the branch is not taken, the PC is incremented
once more beyond the location of the branch immediate address. In addition
tothe conditional branches, the 'C5x has a full complement of conditional calls,
executes, and returns. These instructions execute according to the following
conditions:

Operand Condition Description

EQ ACC=0 Accumulator equal to zero

NEQ ACC =0 Accumulator not equal to zero

LT ACC<0 Accumulator less than zero

LEQ ACC=<0 Accumulator less than or equal to zero
GT ACC>0 Accumulator greater than zero

GEQ ACC=z20 Accumulator greater than or equal to zero
C C=1 Accumulator carry set to one

NC C=0 Accumulator carry set to zero

ov ovV=t1 Accumulator overflow detected

NOV ov=0 No accumulator overflow detected

BIO BIO is low BIO signal is low

TC TC =1 Test/control flag set to one

NTC TC=0 Test/control flag set to zero

UNC none Unconditional operation

Multiple conditions can be defined in the operands of the conditional instruc-
tions. If multiple conditions are defined, all conditions must be met. For exam-
ple,

BCND BRANCH,LT,NOV ;If ACC < 0 and no overflow.

In this example, both conditions must be met (that is, OV = 0 and ACC < 0) for
the branch to be taken.

The conditional branch is a two-word instruction. The conditions for the branch
are not stable until the fourth cycle of the branch instruction pipeline execution,
because the previous instruction must have completely executed for the accu-
mulator’s status bits to be accurate. Therefore, the pipeline controller stops the
decode of instructions following the branch until the conditions are valid. If the
conditions defined in the operands of the instruction are met, then the PC is

3-31

System Control

3-32

loaded with the second word and the core CPU starts refilling the pipeline with
instructions at the branch address. Because the pipeline has been flushed, the
branch instruction has an effective execution time of four cycles if the branch
is taken. If, however, any of the conditions are not met, the pipeline controller
allows the next instruction (already fetched) to be decoded. This means that
if the branch is not taken, the effective execution time of the branch is two
cycles.

The subroutine call can also be executed conditionally. The CC instruction op-
erates like the BCND except that the PC pointing to the instruction following
the CC is pushed onto the PC stack. This sets up the return (by RET) to pop
the stack to return to the calling sequence. A subroutine or function can have
multiple return paths based upon the data being processed. Using conditional
returns (RETC) avoids the need for conditionally branching around the return.
For example,

cc OVER_FLOW,0V ;If overflow,then execute the
. ;overflow-handling routine.

OVER_FLOW ;Overflow—handling routine.
RETC GEQ ;If ACC >= 0, then return.
RET ;Return.

In the example, an overflow-handling subroutine is called if the main algorithm
causes an overflow condition. During the subroutine, the ACC is checked and,
ifitis positive, the subroutine returns to the calling sequence. If not, additional
processing is necessary before the return. Note that RETC, like RET, is a
single-word instruction. However, because of the potential PC discontinuity, it
still operates with the same effective execution time as BCND and CC.

To avoid flushing the pipeline and causing extra cycles, the 'C5x has a full set
of delayed branches, calls, and returns. In the delayed operation of branches,
calls, or returns, the two-instruction words following the delayed instruction are
executed while the instructions at and following the branch address are being
fetched—therefore, giving an effective two-cycle branch instead of flushing
the pipeline. If the instruction following the delayed branch is a two-word in-
struction, only that instruction is executed before the branch is taken. For ex-
ample,

OPL #030h,PMST

BCND NEW_ADRS,EQ

or

BCNDD NEW_ADRS,EQ
OPL #030h,PMST.

Architecture

System Control

The first code segment takes six cycles to execute (two for the OPL and four
for the BCND). The second code segment takes four cycles because the two
dead cycles following the BCNDD are filled with the OPL instruction. Note that
the condition tested on the branch is not affected by the OPL instruction, thus,
allowing it to be executed after the branch.

In cases where the conditional branch is used to skip over one or two words
of code, the branch can be replaced with the conditional execute instruction.
For example,

BCND SUM,NC

ADD ONE
SUM APAC
or
XC 1,C
ADD ONE
APAC

Thefirst code segment takes six cycles. The second code segment takes three
cycles. If the condition is met in the second code segment, the ADD is ex-
ecuted. If the condition is not met, then a NOP is forced in the instruction regis-
ter over the ADD. Note that the condition must be stable one full cycle before
the XC instruction is executed. This is to assure that the decision is made on
the condition before the instruction following the XC is decoded (auxiliary reg-
ister updates occur during the decode phase of an instruction, so the instruc-
tion must be stopped before the decode to make sure it is not executed). The
user should avoid affecting the XC test conditions one instruction word before
the XC. Without interrupts, this instruction will have no effect on the XC. How-
ever, with interrupts, an interrupt can trap between the instruction and the XC
so that the condition is affected prior to the XC execution. The following exam-
ples show this cycle dependency:

LACL #0 ;ACC = 0.

ADD TEMP1 ;ACC = TEMP1.

XC 2,EQ ;If ACC == 0,

SPLK #OEEEEh, TEMP2 ;Then TEMP2 = EEEE.
or

LACL #0 ;ACC = 0.

ADD #01234h ;ACC = 00001234,
XC 2,EQ ;If ACC == 0,

SPLK #0EEEEh, TEMP2 ;Then TEMP2 is unmodified.

In the first code segment, TEMP2 = EEEE. The NEQ status, caused by the
ADD instruction, is not established at the time the decision is made by the XC
instruction. Therefore, the previous condition of EQ, caused by the ZAC in-
struction, determines the conditional execute. Since this condition is met,
TEMP2 is loaded by the SPLK instruction. Note that interrupts can trap before
the XC and after the ADD so that the SPLK will not execute. In the second code

3-33

System Control

segment, TEMP2 is not set to EEEE. The NEQ status, caused by the ADD in-
struction, is established one full cycle before the XC execution phase because
the long immediate value (#01234h) used in the ADD caused it to be a
two-cycle instruction. Since the condition is not met, a NOP is forced over both
words of the two-word SPLK instruction, and, therefore, TEMP2 is not af-
fected. Note that interrupts have no effect on this instruction sequence.

The 'C5x also has a feature that allows the execution of a single instruction N
+ 1 times where N is the value loaded in a 16-bit repeat counter (RPTC). If the
repeat feature is used, the instruction is executed and the RPTC is decrem-
ented until the RPTC goes to zero. This feature is useful with many instruc-
tions, such as NORM (normalize contents of accumulator), MACD (multiply
and accumulate with data move), and SUBC (conditional subtract). As instruc-
tions repeat, the program address and data buses are freed to fetch a second
operand in parallel with the data address and data buses. This allows instruc-
tions such as MACD and BLPD to effectively execute in a single cycle when
they repeat. See Section 7.6, Single Instruction Repeat Loops, for details on
these instructions.

The stack is 16 bits wide and eight levels deep. The PC stack is accessible
through the use of the PUSH and POP instructions. Whenever the contents
of the PC are pushed onto the top of the stack, the previous contents of each
level are pushed down, and the bottom (eighth) location of the stack is lost.
Therefore, data will be lost if more than eight successive pushes occur before
a pop. The reverse happens on pop operations. Any pop after seven sequen-
tial pops yields the value at the bottom stack level, and all of the stack levels
then contain the same value. Two additional instructions, PSHD and POPD,
push a data memory value onto the stack or pop a value from the stack to data
memory. These instructions allow a stack to be built in data memory for the
nesting of subroutines/interrupts beyond eight levels. See Section 7.3, Soft-
ware Stack, for details on software stack.

3.6.2 Pipeline Operation

3-34

Instruction pipelining consists of the sequence of bus operations that occur
during instruction execution. In the operation of the pipeline, the instruction
fetch, decode, operand fetch, and execute operations are independent, which
allows overall instruction executions to overlap. Thus, during any given cycle,
one to four different instructions can be active, each at a different stage of com-
pletion, resulting in a four-deep pipeline. Figure 3—14 shows the operation of
the four-level pipeline for single-word single-cycle instructions executing with
no wait states. The pipeline is essentially invisible to the user except in some
cases, such as auxiliary register updates, memory-mapped accesses of the
CPU registers, the NORM instruction, and memory configuration commands.

Architecture

System Control

Figure 3—-14. Four-Level Pipeline Operation

CLKIN

FETCH

DECODE

OPERAND

EXECUTE

O I A

N >':% N+1 >:I< N+2 >:< N+3 —»,
N-1 - N e N+1 o~ N+2 ——p
N-2 re— N-1— pia N >e N+1
N-3 »e N-2 e N1 e N—»

ARAU updates of auxiliary registers execute during the decode (second
phase) of the pipeline. This allows the address to be generated before the op-
erand fetch phase. However, memory-mapped accesses (e.g., SAMM,
LMMR, SACL, or SPLK) of these registers happen on the execute phase of
the pipeline. This means that the next two instructions after a memory-mapped
load of the auxiliary register should not use this auxiliary register. In addition,
modifications to the memory-mapped registers INDX and ARCR also occur in
the execution phase of the pipeline. Therefore, any auxiliary register updates
using the INDX register or auxiliary register compares using the ARCR register
must occur at least two cycles after a load of these registers. The following
code examples illustrate the effects of a memory-mapped write to an auxiliary
register:

EXAM1 LARAR2,#067h ;AR2 = 67.
LACC #064h ;ACC = 00000064.
SAMM AR2 ;This update is overridden by *- up-—
;dates on the next two instructions.
LACC *— ;AR2 = 66.
ADD * ;AR2 = 65.
or
EXAM2 LARAR2,#067h ;AR2 = 67.
LACC #064h ;ACC = 00000064.
SAMM AR2 ;LACC *— update happens before
;SAMM write.
LACC K sAR2 = 66.
NOP ;AR2 = 64 {SAMM write to AR2 happens

;in parallel with the NOP.
ADD *e ;AR2 = 63.

3-35

System Control

3-36

or

EXAM3 LAR AR2,#067h ;AR2 = 67.
LACC #064h ;ACC = 00000064.
SAMM AR2 :AR2 = 64.
NOP ;Pipeline protection.
NOP ;Pipeline protection.
LACC *— ;AR2 = 63.
ADD *— ;AR2 = 62.

In EXAM1, the decode phase of the ADD instruction is on the same cycle as
the execute (write) phase of the SAMM instruction. Both of these instructions
are trying to load AR2. The ADD *— update does load AR2, while the SAMM
execution is voided. In EXAM2, a NOP is strategically placed to avoid the con-
flict between the ADD *— update of the AR2 and the SAMM write to AR2. In this
code’s sequence:

AR2= 67 —- 66 — 64 — 63

Note that the LACC address is based on the value in AR2 before the SAMM
write to AR2. In EXAMB, the SAMM write to AR2 is completed before either the
LACC or the ADD have updated AR2. Any two instruction words that do not
update AR2 can be used in place of the two NOP instructions. This could be
two one-word instructions or one two-word instruction. The results obtained
by EXAM1 and EXAM2 code examples may be different if the code is interrupt-
ible. The user should avoid writing code similar to EXAM1 and EXAM2.

The pipeline effect described above requires writes to memory-mapped regis-
ters to allow for a latency between the write and an access of that register.
These registers can be accessed by 'C5x instructions in the decode and oper-
and fetch phases of the pipeline. Table 3—6 outlines the latency required be-
tween an instruction that writes the register via its memory-mapped address,
and the access of that register by subsequent instructions. Note that all direct
accesses to the registers that do not use memory-mapped addressing (such
as all ‘C25-compatible instructions, like LAR, LT, etc) are pipelined-protected
and, hence, do not require any iatency.

Architecture

System Control

Table 3-6. Latencies Required

Name Description Words Affects
GREG Global memory allocation register 1 Next 1 word uses previous map
PMST Processor mode status register 2 Next 2 words use previous map
TREG1 Dynamic shift count 1 Next 1 word uses old shift count
TREG2 Dynamic bit address 1 Next 1 word uses old bit address
ARx Aucxiliary registers 0—7 2 Next word uses previous value; second

word update gets over written

INDX Index register 2 Next 2 words use previous value
ARCR Aucxiliary register compare register 2 Next 2 words use previous value
CBSR Circular buffer start registers 1 and 2 2 Next 2 words use previous value
CBER Circular buffer end registers 1 and 2 2 Next 2 words cannot be end of buffer
CBCR Circular buffer control register 2 Next 2 words cannot be end of buffer
BMAR Block move address register 1 Next 1 word uses previous value
PDWSR Program/data S/W wait state register 1 Next 1 word uses previous count
IOWSR 1/O space S/W wait state register 1 Next 1 word uses previous count
CWSR S/W wait state control register 1 Next 1 word uses previous modes
CNF Configuration bit in ST1 register 2 Next 2 words use previous map

The NORM instruction affects AR(ARP) during its execute phase of the pipe-
line. The same pipeline management, as described above, works in this case.
The assembler can detect an auxiliary register update or store (SAR) directly
after a NORM instruction and insert NOP instructions automatically to main-
tain source-code compatibility with the 'C25 (—p option).

The 'C5x core CPU supports the reconfiguration of memory segments, both
internal and external to the device. The reconfiguration operations happen
during the execute phase of the pipeline. Therefore, before an instruction uses
the new configuration, at least two instruction words should follow the instruc-
tion that reconfigures memory. In the following example, assume AR(ARP) =
0200h and RAMBO(0) = 1.

CLRC CNF
LACC #01234h ;ACC = 00001234.
ADD * ;ACC = 00001235.

;Map RAM B0 to data space.

Notice the use of the LACC #01234h tofill the two-word requirement. Because
alongimmediate operand is used, this is a two-word instruction and, therefore,
meets the requirement. This also applies to memory configurations controlled
by the PMST register.

3-37

System Control

3.6.3 Status and Control Registers

3-38

There are four key status and control registers for the ‘'C5x core. STO and ST1
contain the status of various conditions and modes compatible with the ‘C25,
while PMST and CBCR contain extra status and control information for control
of the enhanced features of the 'C5x core. These registers can be stored into
data memory and loaded from data memory, thus allowing the status of the
machine to be saved and restored for subroutines. ST0, ST1, and PMST each
have an associated one-deep stack for automatic context-saving when an in-
terrupt trap is taken. The stack is automatically popped upon a return from in-
terrupt (RETI or RETE). Note that the XF bit in ST1 is not saved on the one-
deep stack or restored from that stack on an automatic context save. This fea-
ture allows the XF pin to be toggled in an interrupt service routine while still
allowing automatic context saves.

The PMST and CBCR registers reside in the memory-mapped register space
in page zero of data memory space. Therefore, they can be acted upon directly
by the CALU and the PLU. They can be saved in the same way as any other
datamemory location. Note that the CALU and the PLU operations change the
bits of these status registers during the execute phase of the pipeline. The next
two instruction words, following an update of these status registers, may not
be affected by the reconfiguration caused by the status update, as shown in
Table 3—-6.

The LST instruction writes to STO and ST1, and the SST instruction reads from
them, except that the INTM bit is not affected by the LST instruction. Unlike the
PMST and CBCR registers, the STO and ST1 registers do not reside in the
memory map and, therefore, cannot be handled by using the PLU instructions.
The individual bits of these registers can be set or cleared with the SETC and
CLRC instructions. For example, the sign-extension mode is set with SETC
SXM or cleared with CLRC SXM.

Figure 3—15 shows the organization of the four status registers, indicating all
status bits contained in each. Several bits in the status registers are reserved
and read as logic ones. Table 3—7 defines all the status/control bits.

Architecture

System Control

Figure 3-15. Status and Control Register Organization

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o b3 =
> - o
STO E 3 (>) 2 o}
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o W s w
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
.8 o N o -
CBCR g 2l £ 12| ¢
Q o o ol (&)
P (&) (&]
156 14 13 12 11 10 9 8 7 6 5 4 2 1.0
(&)
e » l=1Elx =
PMST - olole|sS|o|d 2|5
& 2[°13|Z |2 |F §
Table 3-7. Status Register Field Definitions
Fleld Function
ARB Auxiliary Register Pointer Buffer. Wheneverthe ARP is loaded, the old ARP value is copied to the ARB

except during an LST instruction. When the ARB is loaded via an LST #1 instruction, the same value
is also copied to the ARP. This is useful when restoring context (when not using the automatic context
save) in a subroutine that modifies the current ARP.

ARP Auxiliary Register Pointer. This three-bit field selects the AR to be used in indirect addressing. When
the ARP is loaded, the old ARP value is copied to the ARB register. ARP may be modified by memory-
reference instructions when indirect addressing is used, and by the MAR and LST instructions. The
ARP is also loaded with the same value as ARB when an LST #1 instruction is executed.

AVIS Address VISibility Mode. This mode allows the internal program address to appear at the pins of the
device so that the internal program address can be traced and the interrupt vector can be decoded
in conjunction with TACK when the interrupt vectors reside in on-chip memory. The internal program
address is driven to the pins when AVIS = 0. The address lines do not change with internal program
when AVIS = 1. Note that the control lines and data lines are not effected when AVIS = 0 and the ad-
dress bus is driven with the last address on the bus. The AVIS bit is set to zero at reset.

BRAF Block Repeat Active Flag. This bit indicates whether block repeat is currently active. Writing a zero
to this bit deactivates block repeat. BRAF is set to zero upon reset.
C Carry Bit. This bit is set to 1 if the result of an addition generates a carry, or is reset to 0 if the result

of a subtraction generates a borrow. Otherwise, it is reset after an addition or is set after a subtraction,
unless the instruction is ADD or SUB with a 16-bit shift. In these cases, the ADD can only set and the
SUB only reset the carry bit, but they cannot affect it otherwise. The single-bit shift and rotate instruc-
tions, as well as the SETC, CLRC, and LST #1 instructions also affect this bit. C is setto 1 on areset.

3-39

System Control

Table 3-7. Status Register Field Definitions (Continued)

Field

Function

CAR1

Circular Buffer 1 Auxiliary Register. These three bits identify which auxiliary register is assigned to circu-
lar buffer 1.

CAR2

Circular Buffer 2 Auxiliary Register. These three bits identify which auxiliary register is assigned to circu-
lar buffer 2.

CENBH1

Circular Buffer 1 Enable. This bit, when setto 1, enables circular buffer 1. When CENB1 is setto 0, circu-
lar buffer 1 is disabled. CENB1 is set to zero upon reset.

CENB2

Circular Buffer 2 Enable. This bit, when setto 1, enables circular buffer 2. When CENB2 is set to 0, circu-
lar buffer 2 is disabled. CENB2 is set to zero upon reset.

CNF

On-chip RAM Configuration Control Bit. If this bit is set to 0, the reconfigurable-data dual-access RAM
blocks are mapped to data space; otherwise, they are mapped to program space. The CNF may be modi-
fied by the SETC CNF, CLRC CNF, and LST #1 instructions. RS sets the CNF t0 0.

DP

Data Memory Page Pointer. The 9-bit DP register is concatenated with the 7 LSBs of an instruction word
to form a direct memory address of 16 bits. DP may be modified by the LST and LDP instructions.

HM

Hold Mode Bit. When HM = 1, the processor halts internal execution when acknowledging an active
HOLD. When HM = 0, the processor may continue execution out of internal program memory but puts
its external interface in a high-impedance state. This bit is set to 1 by reset.

INTM

Interrupt Mode Bit. When this bit is set to 0, all unmasked interrupts are enabled. When it is setto 1, all
maskable interrupts are disabled. INTM is set and is reset by the SETC INTM and CLRC INTM instruc-
tions. RS and TACK also set INTM. INTM has no effect on the unmaskabie RS and NMT interrupts. Note
that INTM is unaffected by the LST instruction. This bit is setto 1 by reset. ltis also set to 1 when a mask-
able interrupt trap is taken. It is reset to 0 when a RETE (return from interrupt with interrupt enable) is
executed.

IPTR

Interrupt Veector Pointer. These five bits point to the 2K page where the interrupt vectors reside. This al-
lows you to remap the interrupt vectors to RAM for boot-loaded operations. At reset, these bits are all
set to zero. Therefore, the reset vector always resides at zero in the program memory space.

MP/MCT

Microprocessor/Microcomputer Bit. When this bit is set to zero, the on-chip ROM is enabled. When itis
set to one, the on-chip ROM is not addressable. This bit is set to the value corresponding to the logic
level on the MP/MC pin at reset. The level on the MP/MC pin is sampled at device reset only and can
have no effect until the next reset.

NDX

Enable Extra Index Register. This bit configures indexed indirect addressing and auxiliary address regis-
ter compare to operate either in a ‘C2x-compatible mode (NDX = 0) or in a ‘'C5x-enhanced mode (NDX
= 1). When NDX = 0, any 'C2x-compatible instruction that modifies or loads ARO, also modifies/loads
the INDX and ARCR registers in addition to ARO. This is because the 'C2x devices use ARO for indexing
and AR compare operations. When NDX = 1, INDX and ARCR are not affected by any 'C2x-compatible
instruction. NDX = 0 at reset.

ov

Overflow Flag Bit. As a latched overflow signal, OV is set to 1 when overflow occurs in the ALU. Once
an overflow occurs, the OV remains set until a reset, BCND(D) on OV/NOV, or LST instruction clears
ov.

OovLy

RAM Overlay Bit. This bit enables on-chip single-access program RAM cells to be mapped into data
space. If OVLY is set to one, the block of memory is mapped into data space. If it is set to 0, the memory
block is not addressable in data space. See Table 3-8 for the mappings of specific 'C5x devices. This
bit is set to zero at reset.

3-40

Architecture

System Control

Table 3-7. Status Register Field Definitions (Concluded)

Field

Function

OVM

Overflow Mode Bit. When OVM is set to 0, overflowed results overflow normally in the accumulator.
Whensetto 1, the accumulator is set to either its most positive or most negative value upon encountering
an overflow. The SETC and CLRC instructions set and reset this bit, respectively. LST may also be used
to modify the OVM.

PM

Product Shift Mode. If these two bits are 00, the multiplier’s 32-bit product is not shifted when transferred
to the ALU. If PM = 01, the PREG output is left-shifted one place when transferred to the ALU, with the
LSB zero-filled. If PM = 10, the PREG output is left-shifted by four bits when transferred to the ALU, with
the LSBs zero-filled. PM = 11 produces a right shift of six bits, sign-extended. Note that the PREG con-
tents remain unchanged. The shift also takes place when the contents of the PREG are stored to the
data memory. PM is loaded by the SPM and LST #1 instructions. The PM bits are cleared by RS.

RAM

Program RAM Enable. This bit enables mapping of on-chip single-access RAM blocks into program
space. RAM set to 1 maps the memory block in program space. RAM set to 0 removes the memory block
from the program space. See Table 3-8 for the mappings of specific 'C5x devices. This bit is set to zero
at reset.

SXM

Sign-Extension Mode Bit. SXM = 1 produces sign extension on data as it is passed into the accumulator
through the scaling shifter. SXM = 0 suppresses sign extension. SXM does not affect the definitions of
certain instructions; e.g., the ADDS instruction suppresses sign extension, regardless of SXM. This bit
is set by the SETC SXM, reset by the CLRC SXM instructions, and may be loaded by the LST #1. SXM
is set to 1 by reset.

TC

Test/Control Flag Bit. The TC bit is affected by the BIT, BITT, CMPR, LST #1, NORM, CPL, XPL, OPL,
and APL instructions. The TC bitissettoa 1 if (1) abittested by BIT or BITTisa 1, (2) acompare condition
tested by CMPR exists between ARCR and another AR pointed to by ARP, (3) the exclusive-OR function
of the two MSBs of the accumulator is true when tested by a NORM instruction, (4) the long immediate
value is equal to the data value on the CPL instruction, or (5) the resuit of the logical function (XPL, OPL
or APL) is zero. The TC bit can influence the execution of the conditional branch, call, and return instruc-
tions.

TRM

Enable Multiple TREGs. This bit sets the 'C5x to operate in either 'C2x-compatible mode (TRM = 0) or
'C5x-enhanced mode (TRM=1) in conjunction with the use ofthe TREGO, TREG1, and TREG2registers.
This bit affects the operation of all ’'C2x-compatible instructions that modify TREGO. The 'C2x CPU uses
TREGX as a shift count for the prescaling shifter and as a bit address in the BITT instruction. When
TRM=0, all 'C2x-compatible instructions write to all three of the 'C5x TREGSs to maintain source compati-
bility with the 'C2x devices. When TRM = 1, the LT instructions affect only TREGO. TRM = 0 upon reset.

XF

XF Pin Status Bit. This bit indicates the state of the XF pin, a general-purpose output pin. XF is set by
the SETC XF and reset by the CLRC XF instructions. XF is set to 1 by reset. This bit is not saved or re-
stored on an automatic context save during interrupt service routines.

Table 3-8. On-Chip Single-Access RAM Configuration Control

OVLY RAM On-Chip SARAM Configuration
0 0 Disabled
0 1 Mapped into program space
1 0 Mapped into data space
1 1 Mapped into both program and data spaces

3-41

System Control

3.6.4 Repeat Counter

RPTC s a 16-bit repeat counter, which, when loaded with a number N, causes
the next single instruction to be executed N + 1 times. The RPTC register is
loaded by either the RPT or the RPTZ instruction. This results in a maximum
of 65,536 executions of a given instruction. RPTC is cleared by reset. The
RPTZinstruction clears both ACC and PREG before the next instruction starts
repeating. Once a repeat instruction (RPT or RPTZ) is decoded, all interrupts
including NMI (except reset) are masked until the completion of the repeat
loop. However, the device responds to the HOLD signal while executing an
RPT/RPTZ loop. The RPTC register resides in the CPU’s memory-mapped
register space; however, you should avoid writing to this register.

The repeat function can be used with instructions such as multiply/accumu-
lates (MAC and MACD), block moves (BLDD and BLPD), I/O transfers (IN/
OUT), and table read/writes (TBLR/TBLW). These instructions, although nor-
mally multicycle, are pipelined when the repeat feature is used, and they effec-
tively become single-cycle instructions. For example, the table read instruction
may take three or more cycles to execute, but when the instruction is repeated,
a table location can be read every cycle. Note that not all instructions can be
repeated. Table 3-9 through Table 3—11 list all 'C5x instructions, according to
their repeatability.

Table 3—9. Repeatable Instructions

Repeatable instructions Description

ADCB Add ACCB to ACC with carry

ADD dma,shft Add to ACC direct addressed with shift

ADD * shft Add to ACC indirect addressed with shift

ADDB Add ACCB to ACC

ADDC Add to ACC direct/indirect with carry

ADDS Add to low ACC direct/indirect with sign suppressed

ADDT Add to ACC direct/indirect with shift specified by TREG1

APAC Add PREG to ACC

APL AND DBMR to direct/indirect addressed

BLDD Block move from data memory to data memory

BLDP Block move from data memory to program memory

BLPD Block move from program memory to data memory

BSAR Barrel-shift ACC right

DMOV Move direct/indirect addressed data one location up in memory
IN Read from 1/O space

LMMR Load memory-mapped register

LTA Load TREGO direct/indirect and add PREG to ACC

LTD Load TREGO direct/indirect with data move and add PREG to ACC

3-42

Architecture

System Control

Table 3-9. Repeatable Instructions (Continued)

Repeatable Instructions Description

LTS Load TREGO direct/indirect and subtract PREG

MAC Add PREG to ACC and multiply immediate addressed by direct/indirect
MACD Add PREG to ACC and multiply immediate addressed by direct/indirect with data move
MADD Add PREG to ACC and multiply BMAR addressed by direct/indirect with data move
MADS Add PREG to ACC and multiply BMAR addressed by direct/indirect
MPYA Add PREG to ACC and multiply TREGO by direct/indirect

MPYS Subtract PREG from ACC and multiply TREGO by direct/indirect
MAR Modify AR

NOP No operation

NORM Normalize ACC

OPL OR DBMR to direct/indirect addressed

ouT Write to I/O space

POP Pop the PC stack to low ACC

POPD Pop the PC stack to direct/indirect addressed

PSHD Push direct/indirect addressed to the PC stack

PUSH Push low ACC to the PC stack

ROL Rotate ACC left once

ROLB Rotate combined ACC and ACCB left once

ROR Rotate ACC right once

RORB Rotate combined ACC and ACCB right once

SACH Store high ACC with shift

SACL Store low ACC with shift

SAMM Store low ACC direct/indirect to data page 0

SAR AR* Store AR indirect addressed

SATH Shift ACC right 0 or 16 bits as specified by TREG1(4)

SATL Shift ACC right 0 to 15 bits as specified by TREG1(0-3)

SBB Subtract ACCB from ACC

SBBB Subtract ACCB from ACC with borrow

SFL Shift ACC left once

SFLB Shift combined ACC and ACCB left once

SFR Shift ACC right once

SFRB Shift combined ACC and ACCB right once

SMMR Store memory-mapped register

SPAC Subtract PREG from ACC

SPH Store high PREG to direct/indirect addressed

SPL Store low PREG to direct/indirect addressed

System Control

Table 3-9. Repeatable Instructions (Concluded)

Repeatable Instructions Description

SQRA Add PREG to ACC and square direct/indirect addressed
SQRS Subtract PREG from ACC and square direct/indirect addressed
SST Store status registers

SuB dma,shft Subtract from ACC direct addressed with shift

SuB * shft Subtract from ACC indirect addressed with shift

SuBB Subtract from ACC direct/indirect with borrow

SUBC Conditional subtract from ACC direct/indirect

SUBS Subtract from low ACC direct/indirect with sign suppressed
SUBT Subtract from ACC direct/indirect with shift specified by TREG1
TBLR Read from program space to data space

TBLW Write from data space to program space

XPL XOR DBMR to direct/indirect addressed

Table 3—10.Instructions Not Meaningful to Repeat

Instructions Not Meaningful to Repeat Description

ABS Absolute value of ACC

AND AND to low ACC direct/indirect

ANDB AND ACCB to ACC

BIT Test bit in data word

BITT Test bit (specified by TREG2) in data word
CLRC Clear status bit

CMPL Complement ACC

CMPR Compare AR(ARP) to ARCR

CPL Compare DBMR to direct/indirect addressed
CRGT Compare ACC to ACCB and match larger value
CRLT Compare ACC to ACCB and match smaller value
EXAR Exchange ACC with ACCB

LACB Load ACC with ACCB

LACC dma,shft Load ACC direct addressed with shift

LACC *shft Load ACC indirect addressed with shift

LACL Load low ACC direct/indirect and zero high ACC
LACT Load ACC direct/indirect with shift specified by TREG1
LAMM Load low ACC direct/indirect from data page 0
LAR dma,AR Load AR direct addressed

LAR * AR Load AR indirect addressed

LDP dma Load DP direct addressed

LDP * Load DP indirect addressed

Architecture

System Control

Table 3-10. Instructions Not Meaningful to Repeat (Continued)

Instructions Not Meaningful to Repeat

Description

LPH

Load high PREG with direct/indirect addressed

LST Load status registers
LT Load TREGO with direct/indirect addressed
LTP Load TREGO direct/indirect and load ACC with PREG
MPY Multiply TREGO by direct/indirect
MPYU Multiply TREGO by direct/indirect unsigned
NEG Negate ACC
OR OR to low ACC direct/indirect
ORB OR ACCB to ACC
PAC Load ACC with PREG
SACB Store ACC in ACCB
SAR AR,dma Store AR direct addressed
SETC Set status bit
SPM Set PREG shift mode
XOR XOR to low ACC direct/indirect
XORB XOR ACCB to ACC
ZALR Zero low ACC, load high ACC with rounding
ZAP Zero ACC and PREG
ZPR Zero PREG
Table 3—11. Nonrepeatable Instructions
Nonrepeatable Instructions Description

ADD #k

Add to ACC short immediate

ADD #lk,shift

Add to ACC long immediate with shift

ADRK Add to AR short immediate

AND #lk,shit AND to ACC long immediate with shift

APL #lk AND long immediate to direct/indirect addressed
B[D] Branch [delayed] unconditionally

BACC[D] Branch [delayed] to address specified in low ACC
BANZ|[D] Branch [delayed] on AR(ARP) not zero

BCNDI[D] Branch [delayed] conditionally

CALA[D] Call [delayed] to address specified in low ACC
CALLID] Call [delayed] subroutine

CC[D] Call [delayed] subroutine conditionally

CPL #lk Compare long immediate to direct/indirect addressed
IDLE Idle CPU

3-45

System Control

Table 3—11 .Nonrepeatable Instructions (Continued)

Nonrepeatible Instructions Description

IDLE2 Idle until interrupt — low power mode

INTR Soft interrupt

LACC #lkshtt Load ACC long immediate

LACL #k Load ACC short immediate

LAR #lk Load AR with long immediate

LDP #k Load DP short immediate

NMI Non-maskable interrupt

OPL #lk OR long immediate to direct/indirect addressed
OR #lk,shit OR to ACC long immediate with shift

RCND[D] Return [delayed] from subroutine conditionally
RET Return from subroutine

RETE Return from interrupt service routine with automatic global enable
RETI Return from interrupt service routine

RPT Repeat next instruction N + 1 times

RPTB Repeat block

RPTZ Zero ACC and PREG and repeat next instruction N + 1 times
SBRK Subtract from AR short immediate

SPLK #lk Store long immediate to direct/indirect addressed
suB #k Subtract from ACC short inmediate

SuB #lk,shft Subtract from ACC long immediate with shift
TRAP Software interrupt

XC Execute next instruction conditionally

XOR #lk,shft XOR to ACC long immediate with shift

XPL #lk XOR long immediate to direct/indirect addressed

3.6.5 Block Repeat

3-46

The block repeat feature provides zero-overhead looping for implementation
of FOR and DO loops. The function is controlled by three registers (PASR,
PAER, and BRCR) and the BRAF bit in the PMST register. The block repeat
counter register (BRCR) is loaded with a loop count of 0 to 65,535. Then, ex-
ecution of the RPTB (repeat block) instruction loads the program address start
register (PASR) with the address of the instruction following the RPTB instruc-
tion and loads the program address end register (PAER) with its long immedi-
ate operand. The long immediate operand is the address of the instruction fol-
lowing the last instruction in the loop minus one. Note that the repeat block
must contain at least three instruction words. Execution of the RPTB instruc-
tion automatically sets active the BRAF bit. With each PC update, the PAER

Architecture

System Control

is compared to the PC. If they are equal, the BRCR contents are compared to
zero. If the BRCR is greater than zero, it is decremented, and the PASR is
loaded into the PC, thus starting the loop over. If not, the BRAF bit is set low,
and the processor resumes execution past the end of the code’s loop. For ex-
ample,

SPLK #010h,BRCR. ;Set loop count to 16.
RPTB END_LOOP-1 ;For I = BRCR; I >=0; I——.

ZAP sACC = PREG = 0.
SQRA *,AR2 ;PREG = X2,
SPL SORX ;Save X2.
MPY * sPREG = b x X.
LTA SQRX ;ACC = bX. TREG = X2,
MPY * ;PREG = aX2,
APAC ;ACC = aX? + bX.
ADD *,0,AR3 ;ACC = aX?2 + bX + ¢ = Y.
SACL *,0,AR1 ;Save Y.
CRGT ;s Save MAX.
END_LOOP

The example implements 16 executions of Y = aX? + bX + ¢ and saves the
maximum value in ACCB. Note that the initialization of the auxiliary registers
is not shown in the coded example. PAER is loaded with the address of the last
word in the code segment. The label END_LOOP is placed after the last in-
struction, and the RPTB instruction long immediate is defined as
END_LOOP-1 in case the last word in the loop is a two-word instruction.

There is only one set of block repeat registers, so multiple block repeats cannot
be nested without saving the context of the outside block or using BANZD. The
simplest method of executing nested loops is to use the RPTB for only the in-
nermost loop and using BANZD for all the outer loops. This is still a valuable
cycle-saving operation because the innermost loop is repeated significantly
more times than the outer loops. Block repeats can be nested by storing the
context of the outer loop before initiating the inner loop, then restoring the outer
loop’s context after completing the inner loop. The context save and restore
are shown in the following example:

SMMR BRCR,TEMP1 ;Save block repeat counter

SMMR PASR,TEMP2 ;Save block start address

SMMR PAER,TEMP3 ;Save block end address

SPLK #NUM_LOOP,BRCR ;Set inner loop count

RPTB END_INNER sFor I = 0; I<=BRCR; I++
END_INNER

OPL #1,PMST ;Set BRAF to continue outer loop

LMMR BRCR,TEMP1 ;Restore block repeat counter

LMMR PASR,TEMP2 ;Restore block start address

LMMR PAER,TEMP3 ;Restore block end address -

3-47

System Control

3-48

In this example, the context save and restore operations take 14 cycles. Note
that repeated single and BANZ/BANZD loops can also be inside a block re-
peat. The repeated code can include subroutine calls. Upon returning, the
block repeat resumes. Repeated blocks can be interrupted. When an enabled
interrupt occurs during a repeated block of code, the CALU traps to the inter-
rupt and, when the ISR returns, the block repeat resumes.

Be extremely careful when interrupting block repeats. If the interrupt service
routine uses block repeats, check whether a block repeat has been interrupted
and, if so, save the context of the block repeat as shown in the previous exam-
ple. Smaller external loops can be implemented with the BANZD-looping
method that takes two extra cycles perloop (thatis, if the loop countis less than
8, it may be more efficient to use the BANZD technique). Single-cycle instruc-
tions can be repeated within a block repeat by using the RPT or RPTZ instruc-
tions.

While a block is being repeated, the block repeat active flag (BRAF) of the
PMST register is set to a one. This flag is set by the execution of the RPTB
instruction and is reset when the PC = PAER and BRCR = 0. This flag can be
cleared and/or reset via the PMST register. WHILE loops can be implemented
with the RPTB instruction and a conditional reset of the BRAF bit. The following
code example clears BRAF so that the processor will drop out of the code loop
and continue to sequentially access instructions past the end of the loop if an
overflow occurs:

XC 2,0V ;If overflow,
APL #0FFFEh,PMST ;then turn off block repeat.

The equivalent of a WHILE loop can be implemented by setting the BRAF bit
to zero if the exit condition is met. If this is done, the program completes the
current pass through the loop but does not go back to the top. To exit, the bit
must be reset at least four instruction words before the end of the loop. You
can exit block repeat loops and return to them without stopping and restarting
the loop. Branches, calls, and interrupts do not necessarily affect the loop.
When program control is returned to the loop, loop execution is resumed. The
following example illustrates the block repeat with a small loop of code that ex-
ecutes a series of tasks. The tasks are stored in a table addressed by TEMPOF.
The number of tasks to be executed is defined at NUM_TASKS.

BLKP NUM_TASKS ,BRCR ;Set loop count.
SPLK #(TASKS-1),TEMPOF ; TEMPOF points to list of tasks.
RPTB ENDCALIL~1 ;For I = 0, I <= NUM_TASKS; I++.
TASK_HANDLER
LACC TEMPOF ;ACC points to task table.
ADD #1 ;Increment pointer to next task.
SACL TEMPOF ;Save for next pass of loop.
TBLR TEMPOE ;Get task address.
LACC TEMPOE ;ACC = task address.
CALA ;Call task.
ENDCALL

Architecture

System Control

In the setup for the example, the block repeat counter (BRCR) is loaded with
the number of tasks to be executed, minus 1. Next, the address of the task
table is loaded into a temporary register. The block repeat is started with the
execution of the RPTB instruction. The PASR register is loaded with the ad-
dress of the LACC TEMPOF instruction. The PAER register is loaded with the
address of the last word of the table. Notice that the label marking the end of
the loop is placed after the last instruction, then the PAER is loaded with that
label, minus 1. Itis possible to place the label before the CALA instruction, then
load the PAER with the label address because this is a one-word instruction.
However, if the last instruction in this loop had been a two-word instruction, the
second word of the instruction would not be read, and the longimmediate oper-
and would be substituted with the first instruction in the loop.

Inside the loop, the pointer to the task table is incremented and saved. Then,
the task address is read from the table and loaded into the accumulator. Next,
the task is called by the CALA instruction. Notice that, when the task returns
to the task handler, it returns to the top of the loop. This is because the PC has
already been loaded with the PASR before the CALA executes the PC discon-
tinuity. Therefore, when the CALA is executed, the address of the top of the
loop is pushed onto the PC stack.

The last two words of a repeat-block loop are not interruptible. In other words,
the interrupt path will not be taken while the last two instruction words of a re-
peat block are being fetched.

Example 3—1.Interrupt Operation With a Single-Word Instruction at the End of an RPTB

RPTB END_LOOP-1
SAR ARO, * < interrupt path taken here
if not the last loop iteration

LACC *+

SACL * <« interrupt occurs here
ENDLOOP:
MAR *,AR1 <« Interrupt path taken here if interrupt

occurs during last two instruction words
of the last loop iteration

Example 3-2.Interrupt Operation With a Two-Word Instruction at the End of an RPTB

RPTB END_LOOP-1
SAR ARO, * < interrupt path taken here
if not the last loop iteration

LACC *+
SPLK #1234h,* <« interrupt occurs here
ENDLOOP:
MAR *,AR1 < Interrupt path taken here if interrupt

occurs during last two instruction words
of the last loop iteration

3-49

System Control

Note that any incoming interrupt is latched by the *C5x as soon as it meets the
interrupt timing requirement. However, the PC does not branch to the corre-
sponding interrupt service routine vector if it is fetching the last two words of
arepeat-block loop. This behavior is functionally equivalent to disabling inter-
rupts before fetching the last two instruction words, and re-enabling interrupts
afterward. Interrupt operation with repeat blocks potentially increases the
worst-case interrupt latency time.

3.6.6 Power-Down Mode

In the power-down mode, the 'C5x core enters a dormant state and dissipates
considerably less power than normal. Power-down mode is invoked either by
executing the IDLE/ IDLE2 instructions or by driving the HOLD input low with
the HM status bit set to one.

While the 'C5x is in power-down mode, all its internal contents are maintained;
this allows operation to continue unaltered when power-down mode is termi-
nated. All CPU activities are halted when the IDLE instruction is executed but
the CLKOUT1 pin remains active. The peripheral circuits continue to operate,
allowing the peripherals such as serial ports and timers to take the CPU out
of its powered-down state. Power-down mode, when initiated by an IDLE in-
struction, is terminated upon receipt of an interrupt. If INTM = 0, then the pro-
cessor enters the interrupt service routine when IDLE is terminated. If INTM
= 1, then the processor continues with the instruction following IDLE.

The IDLE2 instruction is used for a complete shutdown of the core CPU as well
as all on-chip peripherals. Because the on-chip peripherals are stopped with
this power-down mode, they cannot be used to generate the interrupt to wake
the device as described above on the IDLE mode. However, the power is sig-
nificantly reduced because the complete device is stopped. This power-down
mode is terminated by activating any of the external interrupt pins (RS, NMI,
INTT, INT2, INT3, and INT4) for at least five machine cycles. Once again, if
INTM = 0, then the processor enters the interrupt service routine when the
IDLE2 instruction is terminated. If INTM =1, then the processor continues with
the instruction following the IDLE2. It is advisable to reset peripherals when
IDLE2 terminates execution, especially if they are externally clocked.

Power-down mode can also be initiated by the HOLD signal. When the HOLD
signal initiates power-down and HM=1, the CPU stops executing; also, ad-
dress and control lines go into high impedance for further power reduction. If
HM=0 when HOLD initiates power-down, address and memory control signal
drivers still go into high impedance, but the CPU continues to execute internal-
ly. If external memory accesses are not currently required in the system, the
HM=0 mode can be used. The device continues to operate normally unless an
off-chip access is required by an instruction, at which time the processor halts
until the hold is removed. When the HOLD signal initiates the power-down
mode, power-down mode is terminated when HOLD goes inactive. HOLD
does not stop operation of on-chip peripherals (i.e., on-chip timers and serial
ports continue to operate, regardless of the level on HOLD or the condition of
the HM bit).

Architecture

Parallel Logic Unit

3.7 Parallel Logic Unit (PLU)

The paraliel logic unit (PLU) can directly set, clear, test, or toggle multiple bits
in a control/status register or any data memory location. The PLU, shown in
the block diagram in Figure 3—16, provides a direct logic operation path to data
memory values without affecting the contents of the accumulator or product
register. It can be used to set or clear multiple bits in a control register or to test
multiple bits in a flag register.

Figure 3—16. Parallel Logic Unit Block Diagram

PLU(16)

< | I

The PLU executes a read-modify-write operation on data stored in data space.
The PLU operation begins with the fetching of one operand from data memory
space and the fetching of the second from either long immediate on the pro-
gram bus or the dynamic bit manipulation register (DBMR). Then, the PLU ex-
ecutes a logical operation defined by the instruction on the two operands. The
result is written to the same data memory location from which the first operand
was fetched.

The PLU allows the direct manipulation of bits in any location in data memory
space. This direct bit manipulation is done by ANDing, ORing, XORing, or
loading a 16-bit long immediate value to a data location. For example, to use
AR for circular buffer 1 and AR2 for circular buffer 2 but not enable the circular
buffers, initialize the circular buffer control register (CBCR) by executing this:

SPLK #021h,CBCR ;Store peripheral long immediate (DP = 0).

To later enable circular buffers 1 and 2, execute
OPL #088h,CBCR ;Set bit 7 and bit 3 in CBCR.

3-51

Parallel Logic Unit

3-52

Test for individual bits in a specific register or data word via the BIT instruction;
however, test against a pattern with the CPL (compare parallel long immedi-
ate) instruction. If the data value is equal to the long immediate value, then the
TC bit is set to 1. The TC bit is set if the result of any PLU instruction is zero.

The bit set, clear, and toggle functions can also be executed with a 16-bit dy-
namic register value instead of the long immediate value. This is done with the
following three instructions: APL (AND DBMR register to data), OPL (OR
DBMR register to data), and XPL (XOR DBMR register to data).

The TC bitin ST1 is also set by the APL, OPL, XPL instructions if the resuit of
the PLU operation (value written back into data memory) is zero. This allows
bits to be tested and cleared simultaneously. For example,

APL #0FFOOh , TEMP ;Clear low byte and check for
;bits set in high byte.

BCND HIGH BITS_SET,NTC ;If bits active in high byte,
;then branch.

or

XPL #1, TEMP ;Toggle bit 0.
BCND BIT SET,TC ;If bit was set, branch. If not, bit set now.

In the first example, the low byte of a flag word is cleared while the high byte
is checked for any active flags (bits = 1). If none of the flags in the high byte
are set, then the resulting APL operation yields a zero to TEMP and the TC bit
is set to 1. If any of the flags in the high byte are set, then the resulting APL
operation yields a nonzero value to TEMP and the TC bitis setto 0. Therefore,
the conditional branch (BCND) following the APL instruction branches if any
of the bits in the high byte are nonzero. The second example tests the flag. If
low, it is set high; if high, it is cleared and the branch is taken. The PLU instruc-
tions can operate anywhere in data address space, so they can be used to op-
erate with flags stored in RAM locations as well as control registers for both
on- and off-chip peripherals.

Architecture

Interrupts

3.8

3.8.1

Interrupts

Reset

The 'C5x core CPU supports sixteen user-maskable interrupts (INT16-INTT).
However, each 'C5x DSP does not necessarily use all 16. For example, the
'C50, 'C51, and 'C53 use only nine of these interrupts (the others are tied high
inside the device). Interrupts can be generated by the serial ports (RINT, XINT,
TRNT, and TXNT), by the timer (TINT), and by the software interrupt (TRAP
and INTR) instructions. The reset (RS) interrupt has the highest priority, and
the TNT16 interrupt has the lowest priority.

Reset (RS) is a nonmaskable external interrupt that can be used at any time
to put the 'C5x into a known state. Reset is typically applied after power-up
when the machine is in an unknown state.

Driving the RS signal low causes the 'C5x to terminate execution and forces
the program counter to zero. RS affects various registers and status bits. At
power-up, the state of the processor is undefined. For correct system opera-
tion after power-up, a reset signal must be asserted low for several clock
cycles so that data lines are put into the high-impedance state and address
lines are driven low (see Appendix A for specific timings). The device will latch
the reset pulse and generate an internal reset pulse long enough to guarantee
areset of the device. Several clock cycles after deasserting reset (see Appen-
dix A), the reset vector at program address zero is fetched.

When the RS signal is received, the following actions occur:

1) AlogicOisloaded into the CNF (configuration control) bitin status register
ST1, mapping dual-access RAM block 0 into data address space.

2) The program counter (PC) is set to 0. The address bus (lines A15 — AQ)
is unknown while RS is low. IF HOLD is asserted while RS is low, HOLDA
is generated. In this case, the address lines are placed into a high-impe-
dance state until HOLD is brought back high.

3) All interrupts are disabled by setting the INTM bit (interrupt mode) to 1;
note that RS and NMTI are nonmaskable. The interrupt flag register (IFR)
is cleared.

4) Status bits are set as follows:
0—-0V, 1—-XF, 1—-SXM, 0—-PM, 1 —HM, 0— BRAF,
0—TRM, 0 - NDX, 0— CENB1, 0— CENB2, 0— IPTR,
0—O0VLY, 0—AVIS, 0—RAM, 0—BIG, 0— CNF,
1 —INTM, MP/MC (Pin) - PMST (MP/MC), and 1 —C,

Note that the remaining status bits remain undefined and should be initial-
ized appropriately.

3-53

Interrupts

5) The global memory allocation register (GREG) is cleared to make all
memory local.

6) The repeat counter (RPTC) is cleared.

7) TheTACK (interrupt acknowledge) signal is generated in the same manner
as a maskable interrupt.

8) Asynchronized reset (SRESET) signal is sent to the peripheral circuits to
initialize them. See subsection 5.1.3 for peripheral reset information.

Execution starts from location 0 of program memory when the RS signal is tak-
en high. Note that if HOLD is asserted while RS is low, normal reset operation
occurs internally, but all buses and control lines remain in a high-impedance
state and HOLDA is asserted, as shown in Figure 3—17(a) and (b). However,
if RS is asserted while HOLD/HOLDA are low, the CPU comes out of the hold
mode momentarily by deasserting HOLDA. This condition should be avoided.
Upon release of HOLD and RS, execution starts from location zero.
Figure 3-17 (a) and (b) shows two valid ways of exiting reset and hold.

Figure 3—-17. RS and HOLD Interaction

a)

Fow \ /

HOLDA \ /
b)

R\ /

RO\ = /S

HOLDA \

- /

3.8.2 Interrupt Operation

This subsection explains interrupt organization and management. Vector rela-
tive locations and priorities for all internal and external interrupts are shown in
Table 3-12.

3-54 Architecture

Interrupts

The TRAP instruction (software interrupts) is not prioritized but is included
here because it has its own vector location. Each interrupt address has been
spaced apart by two locations so that branch instructions can be accommo-
dated in those locations. To make vectors stored in ROM reprogrammable,
use the following code:

LAMM TEMPO ;ACC = ISR address.
BACC ;Branch to ISR.

TEMPO resides in B2 and holds the address of the interrupt service routine
(ISR). Note that the ISR addresses must be loaded into B2 before interrupts
are enabled. Further information regarding interrupt operation, with respect to
specific devices in the *C5x generation, is located in Chapter 5, Peripherals.

The interrupt vectors can be remapped to the beginning of any 2K-word page
in program memory. The interrupt vector address is generated by concatenat-
ing the IPTR bits of the PMST with the interrupt vector number (1-16) shifted
by one as shown in Figure 3—18.

Table 3—12. Interrupt Locations and Priorities

Name { Location Priority Function
Dec Hex

RS 0 0 1 (highest) reset signal
INTT 2 2 3 user interrupt #1
INT2 4 4 4 user interrupt #2
INT3 6 6 5 user interrupt #3
INT4 8 8 6 user interrupt #4
INT5 10 A 7 user interrupt #5
INTE 12 Cc 8 user interrupt #6
INT7 14 E 9 user interrupt #7
INT8 16 10 10 user interrupt #8
INTS 18 12 11 user interrupt #9
INTT0 20 14 12 user interrupt #10
INTIT 22 16 13 user interrupt #11
INT12 24 18 14 user interrupt #12
INT13 26 1A 15 user interrupt #13
INT14 28 1C 16 user interrupt #14
INTT5 30 1E 17 user interrupt #15
INT6 32 20 18 user interrupt #16
TRAP 34 22 N/A TRAP instruction vector
NMI 36 24 2 nonmaskable interrupt

1 The interrupt numbers here do not correspond to any specific 'C5x device. The definitions of the
interrupts, specific to particular ‘C5x devices, are covered in Chapter 5.

3-55

Interrupts

Figure 3—18. Interrupt Vector Address Generation

3-56

Vector
Bit

IPTR = 00001 INT=5

~

~ // \\
0 0 0 O 1/]0 0 O 0O 0 ofo0 1 0 1]0
15 14 13 12 11/]10 9 8 7 6 5|4 3 2 110

Upon reset, the IPTR bits are all set to zero, thus mapping the vectors to page
zero in program memory space. This means the reset vector always resides
at zero. The interrupt vectors can be moved to another location by loading a
nonzero value into the IPTR bits. For example, the interrupt vectors can be
moved to start at location 0800h by loading the IPTR with 1.

When an interrupt occurs, aflag is activated in the 16-bit interrupt flag register
(IFR). This happens regardless of whether the interrupt is enabled or disabled.
Each interrupt is stored in the IFR until it is recognized by the CPU. Any of the
following four events clears the interrupt flag:

1) Device reset (RS is active low),

2) Program takes the interrupt trap,

3) Program writes a one to the appropriate bit in IFR, or

4) Execution of the INTR instruction with the appropriate interrupt number.

The IFR s located at address 6 in data memory space and can be read to iden-
tify active interrupts and written to clear interrupts.

A logic one in an IFR bit position indicates a pending interrupt. A one can be
written to a specific bit to clear the corresponding interrupt. All pending inter-
rupts can be cleared by writing the current contents of the IFR back into the
IFR. The following example clears these two vectors without affecting any oth-
er flags that may have been set:

SPLK #5,IFR ;Clear flags for INT1 and INT3.

Aninterrupt flag is automatically cleared when the corresponding interrupt trap
is taken. When the CPU accepts the interrupt, it jams the instruction bus with
an INTR instruction. This instruction forces the PC to the appropriate address
and fetches the soft vector. While fetching the first word of the soft vector, it
generates an interrupt acknowledge (TACK) signal that clears the appropriate
interrupt flag bit. The number of the specific interrupt being taken is indicated
by address bits A1 — A5 on the falling edge of IACK. If the interrupt vectors re-
side in on-chip memory, the device should be operating in address visibility
mode (AVIS = 0) for the interrupt number to be decoded. A hardware reset (RS
is active low) clears all pending interrupt flags. If an interrupt occurs while the
device is in HOLD and HM = 0, the address will not be present when the TACK
goes active low.

Architecture

Interrupts

The 'C5x has a memory-mapped interrupt mask register (IMR) for masking ex-
ternal and internal interrupts. A 1 in bit positions 15 through 0 of the IMR en-
ables the corresponding interrupt, provided thatINTM = 0. The IMRis accessi-
ble with both read and write operations. Note that neither NMI nor' RS is in-
cluded in the IMR; therefore, the IMR has no affect on the nonmaskable inter-
rupt or reset.

The INTM (global enable) bit, which is bit 9 of status register STO, enables or
disables all interrupts. INTM = 0 enables all the unmasked interrupts, and
INTM = 1 disables these interrupts. The INTM is set to 1 automatically when
an interrupt trap is taken. If the interrupt service routine is exited via the RETE
instruction (return from interrupt with automatic re-enable), then the INTM bit
is re-enabled (set to zero). It can also be set to 1 with a hardware reset (RS
is low) or by executing a disable interrupt (SETC INTM) instruction. This bit is
reset to a zero by executing the enable interruptinstruction (CLRC INTM). The
INTM does not actually modify the IMR or IFR.

The interrupt latency of ‘'C5x depends on the current contents of the pipeline.
The device always completes all instructions in the pipeline before executing
the soft vector. The following example, Example 3-3, illustrates the minimum
latency from the time an interrupt occurs externally to the interrupt acknowl-
edge (TACK). The minimum interrupt acknowledge time is defined as 8 cycles:

[d 3 cycles to externally synchronize the interrupt
[1 cycle for the interrupt to be recognized by the CPU
[4 cycles to execute the INTR instruction and flush the pipeline

On the ninth cycle, the interrupt vector is fetched and the TACK is generated.

Example 3-3.Minimum Interrupt Latency

Interrupt occurs
before the fetch of
this instruction L

Fetch Mainl Main2
Decode Mainl
Read

Execute

Interrupt Thie instruction will be
written to refetched after return from
IFR l i interrupt
Main3 Main4 Main5 Mainé Dummy Dummy Dummy Vecl Vec2 Dummy Dummy ISR1
Main2 Main3 Maind4 Main5 INTR Dummy Dummy Dummy Vecl Vec2 Dummy Dummy
Mainl Main2 Main3 Maind4 Main$5 INTR Dummy Dummy Dummy Vecl Vec2 Dummy

Mainl Main2 Main3 Maind Main5 INTR Dummy Dummy Dummy Vecl Vec2

T Interrupt 1 INTR jammed T IACK
latched external into the pipe- generated
to the CPU line here

The maximum latency is a function of what is in the pipeline. Multicycle instruc-
tions add additional cycles to empty the pipeline. This applies to instructions
that are extended via wait-state insertion on memory accesses. The wait
states required for interrupt vector accesses also affect the latency. The repeat
next instruction N times (RPT and RPTZ2) also locks out interrupts (including
NMI, but not reset), and the repeated instruction completes all executions be-
fore allowing the interrupt to execute. This is to protect the context of the re-

3-57

Interrupts

peated instructions because when repeated, the instructions run more paraliel
operations in the pipeline, and the context of these additional parallel opera-
tions cannot be saved in an ISR. The HOLD function takes precedence over
interrupts and also can delay the interrupt trap. If an interrupt happens during
an active-HOLD state, the interrupt is taken at the completion of the HOLD
state, that is, when HOLDA is deasserted. However, if the processor is in con-
current hold mode (HM bit of ST1 is 0) and the interrupt vector table is located
in internal memory, then the CPU takes the interrupt, regardless of HOLD sta-
tus.

Interrupts cannot be processed between CLRC INTM and the next instruction
in a program sequence. For example, if an interrupt occurs during an CLRC
INTM instruction execution, the device always completes CLRC INTM as well
as the following instruction before the pending interrupt is processed. This en-
sures that a return (RET) can be executed in an ISR before the next interrupt
is processed—thus protecting against PC stack overflow. If the ISR is exited
viaa RETE (return from ISR with enable), the CLRC INTM is unnecessary. Of
course, after a SETC INTM instruction, the following instruction will not be in-
terrupted.

3.8.3 Interrupt Context Save

3-58

When an interrupt trap is executed, certain strategic registers are saved auto-
matically. When the return from interrupt instruction (RETE or RETI) is ex-
ecuted, these registers are automatically restored. The program counter (PC)
is saved on an 8-deep hardware stack. This stack is also used for subroutine
calls. Therefore, the device supports subroutine calls within the interrupt ser-
vice routine (ISR) as long as the 8-level stack is not exceeded. Also, there is
a one-deep stack (or shadow registers) for each of the following registers:

ACC accumulator

ACCB accumulator buffer

PREG product register

STO status register 0

ST1 status register 1

PMST processor mode status register

TREGO temporary register for multiplier
TREGH1 temporary register for shift count
TREG2 temporary register for bit test
INDX indirect address index register
ARCR auxiliary register compare register

When the interrupt trap is taken, all these registers are each pushed onto a
one-level stack, with the exception of the XF bitin ST1 and the INTM bitin STO.
On aninterrupt, the INTM bit is always set to 1 to disable interrupts. The values
in the registers at the time of the trap are still available to the ISR but are also
protected in the stack. The stack is popped when the return from interrupt

Architecture

Interrupts

(RETI or RETE) is executed. This system allows the CPU to be used without
requiring context save and restore overhead in the ISR.

With only a one-level stack for the above 11 registers, this hardware does not
support nested interrupts. In most cases, this is not a problem, because with-
out the context save and restore overhead, serial processing of the interrupts
is so efficient that nested interrupt handling is less effective. If the application
does require nested interrupts, they can be handled by using a software stack.
Software compatibility with the 'C25 is maintained because the RET instruc-
tion, used to return from the ISR on a ‘C25, does not pop these registers. Inter-
rupts are not re-enabled unless an RETE or a CLRC INTM instruction is ex-
ecuted.

In a case where the ISR needs to modify values in these registers with respect
tothe interrupted code, these registers can be popped from the stack as shown
in the following example and modified:

ISR
LACC #ISR_RE_ENTER ;ACC = address of reentry point.
PUSH ;Top of stack = reentry point.
RETI ;Pop all the stacks.

ISR_RE_ENTER

CLRC INTM
RET ;Return to interrupted code.

In the example, the address of the reentry point within the ISR is pushed onto
the PC stack. The RETI instruction pops all the stacks, including the PC stack,
and resumes execution. At the end of the ISR, a standard return is executed
because the stack is already popped.

Not all of the 16 core CPU interrupts are necessarily used on any given 'C5x
device. The vectors for the interrupts not tied to specific external pins or inter-
nal peripherals can be used as software interrupts. To use the corresponding
interrupt vectors as software traps with full context save and restore, execute
the INTR instruction with the appropriate interrupt number as an operand.
These traps are protected from other interrupts in the same way the ISR is pro-
tected; all interrupts are globally masked via the INTM bit. To execute the con-
text restore, these trap routines must be exited via the RETI or RETE instruc-
tion. For example,

INTR 15 ;Software trap to address 01Eh.

In this example, the processor traps to the vector relatively located at 01Eh.

3.8.4 Nonmaskable Interrupt

The core of the 'C5x has two nonmaskable interrupts, RS (reset) and NMI. Re-
set is discussed in subsection 3.8.1 NMI is a soft reset. It is different from a

3-59

Interrupts

3-60

standard interrupt because it is not maskable, and it does not invoke the auto-
matic context save. The context save is not invoked, because it is possible to
take the NMI even during an interrupt service routine. In addition, interrupts are
globally disabled during an NMI instruction. The NMI is different from reset in
that it does not affect any of the modes of the device. Note that some 'C5x de-
vices may not make the NMI available externally. The NMT is also delayed by
multicycle instructions (including RPT) and by HOLD, as described in subsec-
tion 3.8.2. The NMI trap can also be initiated via software using the NMI in-
struction. This instruction forces the PC to the NMI trap location.

Architecture

Chapter 4

Assembly Language Instructi

The 'C5x instruction set supports numerically intensive signal-processing op-
erations as well as general-purpose applications, such as multiprocessing and
high-speed control. The instruction set is a superset of the 'C1x and 'C2x in-
struction sets and is source-code upward compatible with both devices. This
chapter describes the assembly language instructions for the *C5x digital sig-
nal processor. Included in this chapter are the following major topics:

Toplc

Individual Instruction Descriptlonsv o A
TM5320C2x-to-TM832005x Instructlon Set Mapplng

Memory Addressing Modes

4.1 Memory Addressing Modes

4.1.1

4-2

The 'C5x instruction set provides six basic memory addressing modes:

[Direct addressing mode

[d Indirect addressing mode

[Immediate addressing mode

[Dedicated register addressing mode

[Memory-mapped register addressing mode
[d Circular addressing mode

Both direct and indirect addressing can be used to access data memory. Direct
addressing concatenates seven bits of the instruction word with the nine bits
of the data memory page pointer to form the 16-bit data memory address. Indi-
rect addressing accesses data memory through one of eight auxiliary regis-
ters. Inimmediate addressing, the data is based on a portion of the instruction
word(s). Two types of immediate addressing modes are available: short and
long. In short immediate addressing, an 8-/ 9-/13-bit operand is inciuded in the
instruction word. Long immediate addressing mode uses as its operand a
16-bit word following the instruction. Dedicated register addressing refers to
the block move instructions in which the BMAR register addresses program
or data memory and the parallel logic unit (PLU) instructions in which operands
are obtained from the DBMR register. Memory-mapped register addressing
mode is used to load and store memory-mapped registers. Circular address-
ing is an additional mode of indirect addressing that automatically wraps to the
beginning of a block of data when the end of the block is reached. The following
subsections describe each addressing mode and give the opcode formats and
some examples for each mode.

Direct Addressing Mode

In the direct memory addressing mode, the instruction contains the lower
seven bits of the data memory address (dma). This field is concatenated with
the nine bits of the data memory page pointer (DP) register to form the full
16-bit data memory address. Thus, the DP register points to one of 512 possi-
ble 128-word data memory pages, and the 7-bit address in the instruction
points to the specific location within that data memory page. The DP register
is loaded by using the LDP (load data memory page pointer) or the LST #0
(load status register STO) instructions.

Assembly Language Instructions

Memory Addressing Modes

Note:

The data page pointer is not initialized by reset and, therefore, is undefined
after power-up. The 'C5x development tools, however, utilize default val-
ues for many parameters, including the data page pointer. Because of this,
programs that do not explicitly initialize the data page pointer may execute
improperly, depending on whether they are executed on a 'C5x device or
with a development tool. Thus, it is critical that all programs initialize the
data page pointer in software.

Figure 4-1 illustrates how the 16-bit data address is formed.

Figure 4—1. Direct Addressing Block Diagram

7 LSBs From Instruction Register (IR)

16

16-Bit Data Address

The direct addressing format is as follows:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Opcode 0 dma

Bits 15 through 8 contain the opcode. Bit 7 = 0 defines the addressing mode
as direct, and bits 6 through 0 contain the data memory address (dma).

Example of direct addressing format:

ADD 9h,5 ;The contents of data address 9h is
;left—shifted 5 bits and added to the
;contents of the accumulator.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o ot o o t O 10|00 O O 1t O0 O

4-3

Memory Addressing Modes

4.1.2

The opcode of the ADD 9h,5 instruction is 25h and appears in bits 15 through
8. The shift count of 5 appears in bits 11 through 8 of the opcode. The data
memory address 09h appears in bits 6 through 0.

Indirect Addressing Mode

Eight auxiliary registers (ARO—-AR?7) provide flexible and powerful indirect ad-
dressing on the ‘C5x. To select a specific auxiliary register, load the auxiliary
register pointer (ARP) with a value from 0 through 7, designating ARO through
AR?7, respectively (see Figure 4-2).

Figure 4-2. Indirect Addressing Block Diagram

4-4

Auxiliary Registers
ARO (16)
ARB (3) 3. ArP(3) 3 AR1 (16)

(ARP =2) 1 AR2 (16) —\
AR3 (16)
AR4 (16) 16
ARS (16)

ARG (16)
AR7 (16)

o

ARAU (16)

v
16-Bit Data Address

The contents of the auxiliary registers may be operated upon by the auxiliary
register arithmetic unit (ARAU), which implements unsigned16-bit arithmetic.
The ARAU performs auxiliary register arithmetic operations in the decode
phase of the pipeline. This allows the address to be generated before the de-
code phase of the next instruction. The AR is incremented or decremented
after it is used in the current instruction.

In indirect addressing, any location in the 64K data memory space can be ac-
cessed via a 16-bit address contained in an auxiliary register. The LAR instruc-
tion loads the address into the register. The auxiliary registers on the 'C5x may

Assembly Language Instructions

Memory Addressing Modes

be modified by ADRK (add to auxiliary register shortimmediate) or SBRK (sub-
tract from auxiliary register shortimmediate); they may also be modified by the
MAR (modify auxiliary register) instruction or, equivalently, by the indirect ad-
dressing field of any instruction supporting indirect addressing. AR(ARP) de-
notes that the auxiliary register is to be selected by ARP. The auxiliary registers
can also be loaded via the data bus by using memory-mapped writes to the
auxiliary registers. The following instructions can write to the memory-mapped
auxiliary registers: APL, BLDD, LMMR, OPL, SACH, SACL, SAMM, SMMR,
SPLK, and XPL. Be careful when using these memory-mapped loads of the
auxiliary registers because in this case the memory-mapped auxiliary regis-
ters are modified in the execute phase of the pipeline. This causes a pipeline
conflict if one of the next two instruction words modifies that auxiliary register.
For further information on the pipeline and possible pipeline conflicts, see sub-
section 3.6.2.

The following symbols are used in indirect addressing, including bit-reversed
(BR) addressing:
* Contents of AR(ARP) are used as the data memory address.

* Contents of AR(ARP) are used as the data memory address and de-
cremented after the access.

*+ Contents of AR(ARP) are used as the data memory address and in-
cremented after the access.

*0— Contents of AR(ARP) are used as the data memory address, and the
contents of INDX are subtracted from it after the access.

*0+ Contents of AR(ARP) are used as the data memory address, and the
contents of INDX are added to it after the access.

*BR0O— Contents of AR(ARP) are used as the data memory address, and the
contents of INDX are subtracted, with reverse carry (rc) propagation,
from it after the access.

*BRO+ Contents of AR(ARP) are used as the data memory address, and the
contents of INDX added, with reverse carry (rc) propagation, to it after
the access.

There are two primary types of indirect addressing with indexing:
[Regular indirect addressing with increment or decrement, and

[Indirect addressing with indexing based on the value of INDX:
B Indexing by adding or subtracting the contents of INDX, or
B Indexing by adding or subtracting the contents of INDX with the carry
propagation reversed (for FFTs on the 'C5x).

In either case, the contents of the auxiliary register pointed to by the ARP regis-
ter are used as the address of the data memory operand. Then, the ARAU per-

4-5

Memory Addressing Modes

4-6

forms the specified mathematical operation on the indicated auxiliary register.
Additionally, the ARP may be loaded with a new value. All indexing operations
are performed on the current auxiliary register in the same cycle as the original
instruction decode phase of the pipeline.

Indirect auxiliary register addressing allows for post-access adjustments of the
auxiliary register pointed to by the ARP. The adjustment may be an increment
or decrement by one or may be based upon the contents of the INDX register.
To maintain compatibility with the 'C2x devices, set the NDX bit in the PMST
register to 0. In the 'C2x architecture, the current auxiliary register can be in-
cremented or decremented by the value in the ARO register. When the NDX
bit is set to 0, every ARO modification or LAR write also writes the ARCR and
INDX registers with the same value. Subsequent modifications of the current
auxiliary registers using indexed addressing will use the INDX register, there-
fore maintaining compatibility with existing 'C2x code. The NDX bit is set to 0
at reset.

Bit-reversed addressing modes on the ’C5x allow efficient I/O to be performed
by the resequencing of data points in a radix-2 FFT program. The direction of
carry propagation in the ARAU is reversed when this mode is selected, and
INDX is added to/subtracted from the current auxiliary register. Typical use of
this addressing mode requires that INDX first be set to a value corresponding
to one-half of the array’s size, and that AR(ARP) be set to the base address
of the data (the first data point).

Indirect addressing can be used with all instructions except those with immedi-
ate operands or with no operands. The indirect addressing format is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode 1 |Dv| INC| DEC| NAR Y

Bits 15 through 8 contain the opcode, and bit 7 = 1 defines the addressing
mode as indirect. Bits 6 through 0 contain the indirect addressing control bits.

Bit 6 contains the increment/decrement value (IDV). The IDV bit determines
whether the INDX register will be used to increment or decrement the current
auxiliary register. If bit 6 = 0, an increment or decrement (if any) by one occurs
to the current auxiliary register. If bit 6 = 1, the INDX register is added to or sub-
tracted from the current auxiliary register as defined by bits 5 and 4.

Bits 5 and 4 control the arithmetic operation to be performed with AR(ARP) and
the INDX register. When set, bit 5 indicates that an increment is to be per-
formed. If bit 4 is set, a decrement is to be performed. Table 4—1 shows the
correspondence of bit pattern and arithmetic operation.

Assembly Language Instructions

Memory Addressing Modes

Table 4—1. Indirect Addressing Arithmetic Operations

Bits Arithmetic Operation

6 5 4

0 0 o0 No operation on AR(ARP)

o o0 1 AR(ARP) — 1 — AR(ARP)

o 1 0 AR(ARP) + 1 — AR(ARP)

o 1 1 Reserved

i1 0 O AR(ARP) — INDX — AR(ARP) [reverse carry propagation]
i1 0 1 AR(ARP) — INDX — AR(ARP)

1 1 0 AR(ARP) + INDX — AR(ARP)

11 1 AR(ARP) + INDX — AR(ARP) [reverse carry propagation]

Bit 3 and bits 2 through 0 control the auxiliary register pointer (ARP). Bit 3
(NAR) determines whether new value is loaded into the ARP. If bit 3 = 1, the
contents of bits 2 through 0 (Y = next ARP) are loaded into the ARP. If bit 3 =
0, the contents of the ARP remain unchanged. If the ARP is loaded with a new
value, the old value is loaded into the auxiliary register buffer (ARB) in the ST1
status register.

Table 4-2 shows the bit fields, notation, and operation used for indirect ad-
dressing.

Table 4-2. Bit Fields for Indirect Addressing

Instruction Field Bits Notation Operation

15 - 876543210

« Opcode -1 0000 «Y — * No manipulation of ARX/ARP

<« Opcode -1 0001 «Y — *Y Y — ARP

« Opcode -1 0010 «Y — *— AR(ARP) - 1 — AR(ARP)

« Opcode -1 0011 «Y — Y AR(ARP) — 1 — AR(ARP)
Y — ARP

« Opcode -1 0 1 0 «Y - *y AR(ARP) + 1 — AR(ARP)

« Opcode -10 1 «Y - *Y AR(ARP) + 1 — AR(ARP)
Y — ARP

« Opcode -110 0 «Y — *BRO- AR(ARP) - rciNDX — AR(ARP) 1

«— Opcode -1 1 1 «Y - *BRO-Y AR(ARP) — rciNDX — AR(ARP)
Y — ARP f

« Opcode -1 1010 «¥Y — *0— AR(ARP) — INDX — AR(ARP)

<« Opcode -1 1011 «Y - *0-,Y AR(ARP) — INDX — AR(ARP)
Y — ARP

«— Opcode -1 11 0 «Y — *0+ AR(ARP) + INDX — AR(ARP)

« Opcode -1 11 1 «Y - *0+,Y AR(ARP) + INDX — AR(ARP)
Y — ARP

« Opcode -11110 «Y — *BRO+ AR(ARP) + rciNDX — AR(ARP) t

<« Opcode -1 1111 «<¥Y - *BRO+,Y AR(ARP) + rcINDX — AR(ARP)
Y - ARP 1

t BR = bit-reversed addressing mode and rc = reverse carry propagation

Memory Addressing Modes

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Example 7

ADD *+,8

ADD *8

ADD *-8

The CMPR (compare auxiliary register with ARCR) and TC/NTC conditions fa-
cilitate conditional branches, calls, returns, or conditional executes according
to comparisons between the contents of ARCR and the contents of AR(ARP).
To maintain compatibility with the TMS320C2x devices, set the NDX bit in the
PMST register to 0. In the 'C2x architecture, the auxiliary register compare
function is performed by comparing ARQ with the current auxiliary register.
When the NDX bit is set to 0, every load to ARO loads the ARCR register with
the same value. Subsequent compares of the current auxiliary register will use
the ARCR register, therefore maintaining compatibility with existing ’C2x code.
The NDX bit is set to 0 at reset. The auxiliary registers may also be used for
temporary storage via the load and store auxiliary register instructions, LAR
and SAR, respectively, or via any instruction that can load and store the
memory-mapped auxiliary registers.

The following examples illustrate the indirect addressing format:

Add to the accumulator the contents of the data memory address defined by
the contents of the current auxiliary register. This data is left-shifted 8 bits be-
fore being added. The current auxiliary register is autoincremented by one.
The instruction word is 028A0h.

As in Example 1, but with no autoincrement; the instruction word is 02880h.

As in Example 1, except that the current auxiliary register is decremented by
one; the instruction word is 02890h.

ADD *0+,8

As in Example 1, except that the contents of register INDX are added to the
current auxiliary register; the instruction word is 028E0h.

ADD *0-,8

As in Example 1, except that the contents of register INDX are subtracted from
the current auxiliary register; the instruction word is 028D0h.

ADD *+,8,AR3

Asin Example 1, except that the auxiliary register pointer (ARP) is loaded with
the value 3 for subsequent instructions; the instruction word is 028ABh.

ADD *BR0-,8

The contents of register INDX are subtracted from the current auxiliary regis-
ter, with reverse carry propagation; the instruction word is 028COh.

Assembly Language Instructions

Memory Addressing Modes

Example8 ADD *BRO0+,8

The contents of register INDX are added to the current auxiliary register, with
reverse carry propagation; the instruction word is 028F0h.

4.1.3 Immediate Addressing Mode

Inimmediate addressing, the instruction word(s) contains the value of the im-
mediate operand. The 'C5x has both single-word (8-bit, 9-bit, and 13-bit con-
stant) short immediate instructions and two-word (16-bit constant) long imme-
diate instructions. In short immediate instructions, the immediate operand is
contained within the instruction word itself. In long immediate instructions, the
word following the instruction word is used as the immediate operand.

The 'C5x instructions listed in Table 4-3 support imnmediate addressing.

Table 4-3. Instructions That Support Immediate Addressing

8-Bit Inmediate 9-Bit Inmediate 13-Bit Inmediate 16-Bit Immediate
ADD LDP MPY ADD
ADRK AND
LACL APL
LAR CPL
RPT LACC
SBRK LAR
SuB MPY
OPL
OR
RPT
RPTZ
SPLK
SsuB
XOR
XPL

Example code for the RPT instruction with short immediate addressing:
RPT #99 ;Execute the instruction after RPT 100 times.

In this example, the immediate operand is contained as a part of the RPT in-
struction opcode. The instruction word format for RPT with short immediate
addressing is as follows:

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 o 1 1 8-bit constant

For long immediate instructions, the constant is a 16-bit value in the word fol-
lowing the opcode. The 16-bit value can be optionally used as an absolute con-
stant or as a 2s-complement value.

4-9

Memory Addressing Modes

The following is an example code and the instruction word format for the RPT
instruction with long immediate addressing:

RPT #0FFFh ;Execute instruction after RPT 1000h times.

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

i o 11+ 1 ¢+ 1 1 0 1 1 0 0 0 1 0 O
16-bit constant

4.1.4 Dedicated Register Addressing

Nine instructions in the ‘'C5x instruction set can use one of two special-purpose
memory-mapped registers in the core CPU. These two registers are the block
move address register (BMAR) and the dynamic bit manipulation register
(DBMR). The APL, OPL, CPL, and XPL parallel logic unit (PLU) instructions
use the contents of the DBMR register when an immediate value is not speci-
fied as one of the operands. The BLDD, BLDP, and BLPD instructions can use
the BMAR register to point at the source or destination space of a block move.
The MADD and MADS also use the BMAR register to address an operand in
program memory for a multiply-accumulate operation.

The syntax for dedicated register addressing can be stated in one of two ways:

1) Specifying BMAR by its predefined symbol as shown below:
BLDD BMAR,DAT100 ;DP = 0. BMAR contains the value 200h.

The contents of data memory location 200h are copied to data memory
location 100 on the current data page. The opcode for this instruction is
0AC64h.

2) Excluding the immediate value from parallel logic unit instructions as
shown below. The BMAR register is implied by the MADD and MADS in-
struction mnemonics.

OPL DAT10 ;DP = 6. DBMR contains the value OFFFOh.
;Address 030Ah contains the value 0lh

The contents of data memory location 030Ah are ORed with the contents

of DBMR. The resulting value OFFF1h is stored back in memory location

030Ah. The opcode for this instruction is 590Ah.

4.1.5 Memory-Mapped Register Addressing

Memory-mapped register addressing is used for modifying the
memory-mapped registers without affecting the current data page pointer val-
ue. In addition, any scratch pad RAM location or data page 0 can be modified

4-10 Assembly Language Instructions

Memory Addressing Modes

by using this addressing mode. Figure 4-3 illustrates how this is done by forc-
ing the 9 MSBs of the data memory address to zero, regardless of the current
value of the DP when direct addressing is used or of the current auxiliary regis-
ter value when indirect addressing is used. The use of these instructions does
not affect the contents of the DP.

Figure 4-3. Memory-Mapped Register Addressing Block Diagram

All bits 0s

©

L 7 LSBs from
Instruction Register (IR)
16 or Current Auxiliary Register

16-Bits Memory-Mapped Register Address

This addressing mode allows greater flexibility for dealing with
memory-mapped registers. The overhead required to perform operations in-
volving a memory-mapped register is greatly reduced because the data page
pointer (DP) does not need to be modified before and after the operation. The
following instructions operate in the memory-mapped register addressing
mode:

[LAMM — Load accumulator with memory-mapped register
[SAMM - Store accumulator in memory-mapped register
[LMMR - Load memory-mapped register

O SMMR - Store memory-mapped register

The following examples illustrate the use of these instructions in the direct and
indirect addressing modes.

LMMR CBCR,#0800h ;DP = 6. Load CBCR memory-mapped register.

The CBCR memory-mapped register is loaded with the value at location
0800h. The instruction word for this instruction is 0891Eh, followed by the
16-bit word 0800h.

SAMM *+ ;Store accumulator to PMST register.

If the auxiliary register pointer ARP = 3 and auxiliary register AR3 = FFO7h, the
contents of the accumulator is stored to the PMST register (address 07h)
pointed at by the last 7 bits of AR3. The instruction word for this instruction is
08890h.

4-11

Memory Addressing Modes

4.1.6 Circular Addressing

4-12

Many algorithms such as convolution, correlation, and FIR filters can make
use of circular buffers in memory. In these algorithms, a circular buffer is used
to implement a sliding window, which contains the most recent data to be pro-
cessed. The 'C5x supports two concurrent circular buffers operating via the
auxiliary registers. The following five memory-mapped registers control the
circular buffer operation:

CBSR1 - Circular Buffer One Start Register
CBSR2 - Circular Buffer Two Start Register
CBER1 - Circular Buffer One End Register

CBER2 - Circular Buffer Two End Register

CBCR — Circular Buffer Control Register

ooood

The 8-bit circular buffer control register enables and disables the circular buffer
operation. The CBCR is defined as follows:

Bit Name Function
0-2 CAR1 Identifies which auxiliary register is mapped to circular buffer 1.
3 CENB1 Circular buffer 1, enable=1/disable=0. Set to 0 upon reset.
4-6 CAR2 Identifies which auxiliary register is mapped to circular buffer 2.
7 CENB2 Circular buffer 2, enable=1/disable=0. Set to 0 upon reset.

In order to define circular buffers, the start and end addresses should first be
loaded into the corresponding buffer registers; next, a value between the start
and end registers for the circular buffer is loaded into an auxiliary register. The
proper auxiliary register value is loaded, and the corresponding circular buffer
enable bit is setin the control register. Note that the same auxiliary register can
not be enabled for both circular buffers, or unexpected results occur.The algo-
rithm for circular buffer addressing is as follows (note that the test of the auxilia-
ry register value is performed before any modifications):

If (ARn = CBER) and (any AR modification),
Then: ARn = CBSR.
Else: ARn = ARn + step.

In addition, note that if ARn=CBER and no AR modification occurs, the current
ARis not modified and is still equal to CBER.Note that when the current auxilia-
ry register = CBER, any AR modification (increment or decrement) will set the
current AR = CBSR. The following examples illustrate the operation:

splk #200h,CBSR1

splk #203h,CBER1
splk #0eh,CBCR

lar ar6,#200h
lacc *

Circular buffer start register
Circular buffer end register
Enable AR6 pointing to buffer 1

e we e

Case 1
AR6 = 200h

e weo

Assembly Language Instructions

Memory Addressing Modes

lar ar6,#203h ; Case 2
lacc * ; AR6 = 203h
lar ar6,#200h ; Case 3
lacc *+ ; AR6 = 201h
lar ar6,#203h ; Case 4
lacc *+ ; AR6 = 200h
lar aré6,#200h ; Case 5
lacc *— ; AR6 = 1ffh
lar ar6,#203h ; Case 6
lacc *— ; AR6 = 200h
lar ar6,#202h ; Case 7
adrk 2 ; AR6 = 204h
lar ar6,#203h ; Case 8
adrk 2 ; AR6 = 200h

In circular addressing, the step is the quantity that is being added to or sub-
tracted from the specified auxiliary register. Take care when using a step of
greater than one to modify the auxiliary register pointing to an element of the
circular buffer. If an update to an auxiliary register generates an address out-
side the range of the circular buffer, the ARAU does not detect this situation,
and the buffer does not wrap around. Auxiliary register updates are performed
as described in subsection 4.1.2. Note that there is a two-cycle latency be-
tween configuring the circular buffer control registers and performing AR modi-
fications due to the pipeline.

Circular buffers can be used in increment- or decrement-type updates. For in-
crementing the value in the auxiliary register, the value in CBER must be great-
er than the value in CBSR. For decrementing the value in the auxiliary register,
the CBSR register value must be greater than the value in the CBER register.

4-13

Instruction Set

4.2 Instruction Set

The 'C5x assembly language instruction set supports both DSP-specific and
general-purpose applications. This section lists and groups the 'C5x instruc-
tion set according to the following functional headings:

Accumulator memory reference instructions
Auxiliary registers and data page pointer instructions
Parallel logic unit instructions

T register, P register, and multiply instructions
Branch instructions

I/0 and data memory operations

Control instructions

OOo00o0doo

Section 4.1 covers the addressing modes associated with the instruction set,
and Section 4.3 describes individual instructions in more detail.

4.2.1 Symbols and Abbreviations

Table 44 lists symbols and abbreviations used in the instruction set summary
(Table 4—4) and the individual instruction descriptions (Section 4.3).

4-14 Assembly Language Instructions

Instruction Set

Table 4—4. Instruction Symbols

Symbol Meaning

A Address

ACC Accumulator

addr 16-bit data memory address

ARB Auxiliary register pointer buffer

ARn Auxiliary registern (0 s n < 7)

ARP Auxiliary register pointer

B 4-bit field specifying bit code

BIO Branch control input

BMAR Block move address register

C Carry bit

CM 2-bit field specifying compare mode

CNF On-chip RAM configuration control bit

D Data memory address field

DATn Label assigned to data memory location n
DBMR Dynamic bit manipulation register

dma 7-bit data memory address

DP Data page pointer

FO Format status bit

FSM Frame synchronization mode bit

HM Hold mode bit

| Addressing mode bit

ind Indirect addressing operands

INTM Interrupt mode flag bit

K Immediate operand field

IK Long immediate operand field

MCS Microcall stack

nnh Indicates that nn represents a hexadecimal number
ov Overflow bit

OVM Overflow mode bit

P Product register

PAn Port address n (0 s n < 65535)

PC Program counter

PFC Prefetch counter

PGMn Label assigned to program memory location n
PM 2-bit field specifying P register output shift code
pma Program memory address

R 3-bit field specifying auxiliary register
RPTC Repeat counter

S 4-bit left-shift code

STn Status registern (n =0or 1)

SXM Sign-extension mode bit

TREGn Temporary register n (n =0, 1, or 2)

TC Test control bit

TOS Top of stack

TRM Control bit to enable multiple TREGs
TXM Transmit mode bit

XF XF pin status bit

- Is assigned to

| x| Absolute value of x

italics User-defined items

[1] Optional items

() Contents of

{ } Alternative items; one of which must be entered
Prefix of constants used in immediate addressing

4-15

Instruction Set

4.2.2 Instruction Set Summary

4-16

Table 4-5 is a summary of the instruction set for the 'C5x digital signal proces-
sors. This instruction set is a superset of the 'C1x and 'C2x instruction sets.

Theinstruction set summary is arranged according to function and is alphabet-
ized within each functional grouping. The number of words that an instruction
occupies in program memory is specified in column four of the table. Several
instructions specify two values, separated by a slash mark ”/” for the number
of words. Different forms of the instruction occupy a different number of words.
For example, the ADD instruction occupies one word when the operand is a
short immediate value or two words if the operand is a long immediate value.
The number of cycles that an instruction requires to execute is in column four
of the table. All instructions are assumed to be executed from internal program
memory (RAM) and internal data dual-access memory. The cycle timings are
for single-instruction execution, not for repeat mode. Additional information is
presented in the Individual Instruction Descriptions in Section 4.3. Bold type-
face indicates instructions that are new for the 'C5x instruction set.

Section 4.4 includes a table that maps 'C2x instructions to 'C5x instructions.
Note that the Texas Instruments 'C5x assembler accepts 'C2x instructions as
well as 'C5x instructions.

Assembly Language Instructions

Instruction Set

Table 4-5. Instruction Set Summary

Accumulator Memory Reference Instructions

Mnemonic | Description Words | Cycles
ABS Absolute value of ACC 1 1
ADCB Add ACCB to ACC with carry 1 1
ADD Add to ACC 12 1
2 (long immediate value specified)
ADDB Add ACCB to ACC 1 1
ADDC Add to ACC with carry 1 1
ADDS Add to low ACC with sign-extension suppressed 1 1
ADDT Add to ACC with shift specified by TREG1 1 1
AND AND with ACC 1/2 1
2 (long immediate value specified)
ANDB AND ACCB with ACC 1 1
BSAR Barrel-shift ACC right 1 1
CMPL Complement ACC 1 1
CRGT Test for ACC > ACCB 1 1
CRLT Test for ACC < ACCB 1 1
EXAR Swap ACCB with ACC 1 1
LACB Load ACC with ACCB 1 1
LACC Load ACC with shift 1/2 1
2 (long immediate value specified
LACL Load low word of ACC 1 1
LACT Load ACC with shift specified by TREG1 1 1
LAMM Load ACC with contents of memory-mapped 1 1 (processor memory-mapped register)
register 2 (peripheral memory-mapped registers)
NEG Negate accumulator 1 1
NORM Normalize contents of ACC 1 1
OR OR with accumulator 1/2 1
2 (long immediate value specified)
ORB OR ACCB with ACC 1 1
ROL Rotate ACC left 1 1
ROLB Rotate ACCB and ACC left 1 1
ROR Rotate ACC right 1 1
RORB Rotate ACCB and ACC right 1 1

4-17

Instruction Set

Table 4-5. Instruction Set Summary (Continued)

Accumulator Memory Reference Instructions (Concluded)
Mnemonic | Description Words | Cycles
SACB Store ACC in ACCB 1 1
SACH Store high ACC with shift 1 1
SACL Store low ACC with shift 1 1
SAMM Store ACC to memory-mapped register 1 1 (processor memory-mapped register)
2 (peripheral memory-mapped registers)
SATH Barrel-shift ACC right 0 or 16 bits as specified 1 1
by TREG1
SATL Barrel-shift ACC right 0 to 15 bits as specified 1 1
by TREG1
SBB Subtract ACCB from ACC 1 1
SBBB Subtract ACCB from ACC with borrow 1 1
SFL Shift ACC left 1 1
SFLB Shift ACCB and ACC left 1 1
SFR Shift ACC right 1 1
SFRB Shift ACCB and ACC right 1 1
SuB Subtract from ACC 1/2 1
2 (long immediate value specified)
suBB Subtract from ACC with borrow 1 1
SUBC Conditional subtract 1 1
SUBS Subtract from low ACC with sign-extension sup- 1 1
pressed
SUBT Subtract from ACC with shift specified by TREG1 1
XOR Exclusive-OR with ACC 1/2 1
2 (long immediate value specified)
XORB Exclusive-OR ACCB with ACC 1 1
ZALR Zero low ACC and load high ACC with rounding 1 1
ZAP Zero ACC and PREG 1 1
Auxiliary Registers and Data Page Polinter Instructions
Mnemonic | Description Words | Cycles
ADRK Add to ARn short immediate 1 1
CMPR Compare ARn with ARCR 1 1
LAR Load ARn 1/2 2
LDP Load data page pointer 1 2
MAR Modify ARn 1 1
SAR Store ARn 1 1
SBRK Subtract from ARn short inmediate 1 1

4-18

Assembly Language Instructions

Instruction Set

Table 4-5. Instruction Set Summary (Continued)

Mnemonic | Description

| Words | Cycles

Parallel Logic Unit Instructions

APL AND DBMR or constant with data memory 1/2 1 (second operand DBMR)
value 2 (second operand long immediate)
CPL Compare DBMR or constant with data 1/2 1 (second operand DBMR)
memory value 2 (second operand long immediate)
OPL OR DBMR or constant with data memory 1/2 1 (second operand DBM™
value 2 (second operand long :":medlate)
SPLK Store long Iimmediate to data memory 2 2
location
XPL XOR DBMR or constant with data memory 1/2 1 (second operand DBMR)
value 2 (second operand long Immediate)
T Register, P Register, and Multiply Instructions
Mnemonic | Description Words | Cycles
APAC Add PREG to ACC 1 1
LPH Load high PREG 1 1
LT Load TREGO 1 1
LTA Load TREGO & accumulate previous product 1 1
LTD Load TREGO, accumulate previous product, and 1 1
move data
LTP Load TREGO & store PREG in accumulator 1 1
LTS Load TREGO and subtract previous product 1 1
MAC Multiply and accumulate 2 3
MACD Multiply and accumulate with data move 2 3
MADD Multiply and accumulate with source pointed at 1 3
by BMAR
MADS Multiply and accumulate both with source 1 3
pointed at by BMAR and with data move
MPY Multiply 1/2 1
2 (long immediate value specified)
MPYA Multiply and accumulate previous product 1 1
MPYS Multiply and subtract previous product 1 1
MPYU Multiply unsigned 1 1
PAC Load ACC with PREG 1 1
SPAC Subtract PREG from ACC 1 1
SPH Store high PREG 1 1
SPL Store low PREG 1 1
SPM Set PREG output shift mode 1 1
SQRA Square and accumulate previous product 1 1
SQRS Square and subtract previous product 1 1
ZPR Zero product register 1 1

4-19

Instruction Set

Table 4-5. Instruction Set Summary (Continued)

Branch Instructions
Mnemonic Description Words | Cycles
B[D] Branch unconditionally 2 4 (2 if delayed)
BACCI[D] Branch to address specified by ACC 1 4 (2 if delayed)
BANZ[D] Branch on ARn not-zero 2 4 (conditions true, 2 if delayed)
2 (conditions false)
BCND[D] Branch conditionally 2 4 Sconditions true, 2 if delared)
2 (at least one condition false)
CALA[D] Call subroutine indirect 4 (2 if delayed)
CALL[D] Call subroutine 4 (2 if delayed)
CCID] Call conditionally 4 Sconditions true, 2 if delared)
2 (at least one condition false)
INTR Soft interrupt 1 4
NMI Nonmaskable interrupt 1 4
RET[D] Return from subroutine 1 4 (2 if delayed)
RETCI[D] Return conditionally 1 4 (conditions true, 2 if delared)
2 (at least one condition false)
RETE Return with context switch & global interrupt 1 4
enable
RETI Return with context switch 1 4
TRAP Software interrupt 1
XC Execute next instruction(s) conditionally 1 1
I/O and Data Memory Operations
Mnemonic Description Words | Cycles
BLDD Biock move from data memory to data memory 1/2 2 2operand specified by BMAR)
3 (operand specified by long
immediate)
BLDP Block move from data memory to program 1 2
memory
BLPD Block move from program memory to data 1/2 2 (operand specified by BMAR)
memory 3 (operand specified by long
immediate)
DMOV Data move in data memory 1 1
IN Input data from port 2
LMMR Load memory-mapped register 2 2 iprocessor memory-mapped register
3 (peripheral memory-mapped register]
ouT Output data to port 3
SMMR Store memory-mapped register 2 2 2processor memory-mapped register,
3 (peripheral memory-mapped register]
TBLR Table read 1 3
TBLW Table write 1 3

4-20

Assembly Language Instructions

Instruction Set

Table 4-5. Instruction Set Summary (Continued)

Control Instructions

Mnemonic | Description Words | Cycles
BIT Test bit 1 1
BITT Test bit specified by TREG2 1 1
CLRC Clear control bit 1 1
IDLE Idie until interrupt 1 1
IDLE2 Idle until interrupt — low power mode 1 1
LST Load status register 1 2
NOP No operation 1 1
POP Pop top of stack to low ACC 1 1
POPD Pop top of stack to data memory 1 1
PSHD Push data memory value on stack 1 1
PUSH Push low ACC onto stack 1 1
RPT Repeat next instruction 1/2 2
RPTB Repeat block 2 2
RPTZ Repeat next instruction and clear ACC and 2 2
PREG
SETC Set control bit 1 1
SST Store status register 1 1

Note that all writes to external memory require two cycles. Reads require one
cycle. Any write access immediately before or after a read cycle will require
three cycles (refer to Appendix B). In addition, if two pipelined instructions try
to access the same 2K-word long single-access memory block simultaneous-
ly, one extra cycle is required. For example, the DMOV instruction, when re-
peated with RPT, requires one cycle in the dual-access RAM but takes two
cycles in the single-access RAM. Wait states are added to all external ac-
cesses according to the configuration of the software wait-state registers de-

scribed in Section 5.3.

4-21

Individual Instruction Descriptions

4.3 Individual Instruction Descriptions

4-22

This section furnishes detailed information on the instruction set for the 'C5x
family; see Table 44, Instruction Set Summary, for a complete list of available
instructions. Each instruction presents the following information:

Assembler syntax
Operands
Opcode
Execution
Description
Words

Cycles

Examples

oooooooo

The EXAMPLE instruction is provided to familiarize you with the instruction
format and explain the contents of the instruction manual pages.

Assembly Language Instructions

Example Instruction EXAMPLE

Syntax

Operands

Opcode

Execution

Description

Words

Direct: [label] EXAMPLE dma [,shiff]

Indirect: [label] EXAMPLE {ind} [,shifff,next ARP]]
Short Immediate: [label] EXAMPLE [#K

Long Immediate: [labe]] EXAMPLE [#/K]

Each instruction begins with an assembler syntax expression. Labels may be
placed either before the command (instruction mnemonic) on the same line or
on the preceding line in the first column. An optional comment field may con-
clude the syntax expression. Spaces are required between each field (label,
command, operand, and comment fields).

O0sdma=<127

0 < pma < 65535
OsnextARP s 7
0 <k =255

0 < Ik < 65535

0 s shift = 15

ind: {*| *+ | *~ | *0+ | *0— | *BRO+ | *BRO-}

The above set of operands is not comprehensive; however, they are the most
frequently used in the instruction set. Operands may be constants or assem-
bly-time expressions referring to memory, 1/O ports, register addresses, point-
ers, shift counts, and a variety of other constants.

i5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[x x x x x x x x x x x x x x x x|

The opcode breaks down the various bit fields that make up each instruction
word.

(PC)+1 — PC
(ACC) + (dma) — ACC;0 — C

Affected by OVM; affects OV and C. Not affected by SXM.

The instruction operation sequence describes the processing that takes place
when the instruction is executed. Conditional effects of status register speci-
fied modes are also given. Those bits in the 'C5x status registers affected by
the instruction are also listed.

Instruction execution and its effect on the rest of the processor or memory con-
tents are described. Any constraints on the operands imposed by the proces-
sor or the assembler are discussed. The description parallels and supple-
ments the information given by the execution block.

This field specifies the number of memory words required to store the instruc-
tion and its extension words.

4-23

EXAMPLE Example Instruction

Cycles
Cycle Timings for a Single Instruction

PR PDA PSA PE
Operand DARAM 1 1 1 14p
Operand SARAM 1 1 1 1+p
Operand Ext 1+d 1+d 1+d 2+d+p

Cycle Timings for a Repeat (RPT) Instruction
Operand DARAM n n n n+p
Operand SARAM n n n n+p
Operand Ext n+nd n+nd n+nd n+1+p+nd

4-24

The table shows the number of cycles required for a given ’C5x instruction to
execute in a given memory configuration when executed as a single instruc-
tiion or in the repeat (RPT) mode. The column headings in the table indicate
the program source location (PR, PDA, PSA, PE), defined as follows:

PR The instruction executes from internal program ROM.

PDA The instruction executes from internal dual-access program RAM.
PSA The instruction executes from internal single-access program RAM.
PE The instruction executes from external program memory.

If an instruction requires memory operand(s), row divisions in the table indi-
cate the location(s) of the operand(s), as defined below:

DARAM The operand is in internal dual-access RAM.
SARAM The operand is in internal single-access RAM.

Ext The operand is in external memory.
ROM The operand is in internal program ROM.
MMR The operand is a memory-mapped register.

MMPORT The operand is a memory-mapped io port.

The number of cycles required for each instruction is given in terms of the pro-
cessor machine cycles (CLKOUT1 period). For the RPT mode execution, nin-
dicates the number of times a given instruction is repeated by an RPT or RPTZ
instruction. The additional wait states for program/data memory and /O ac-
cesses are defined below. Note that these additional cycles can be generated
by the on-chip software wait state generator or by the external READY signal.

Assembly Language Instructions

Example Instruction EXAMPLE

p Program memory wait states. Represents the number of additional
clock cycles the device waits for external program memory to respond
to an access.

d Data memory wait states. Represents the number of additional clock
cycles the device waits for external data memory to respond to an ac-
cess.

io 1/0 wait states. Represents the number of additional clock cycles the
device waits for an external I/O to respond to an access.

n Repetitions (where n> 2 to fill the pipeline). Represents the number of

times a repeated instruction is executed.

The above variables can also use the subscripts src, dst, and codeto indicate
source, destination, and code, respectively.

Note that the internal single-access memory on each 'C5x processor is divided
into 1K- or 2K-word blocks contiguous in address space:

’C50 Data Address Range

Four 2K-word block 0800h—0FFFh
1000h—-17FFh
1800h—1FFFh
2000h—27FFh

One 1K-word block 2800h—2BFFh

'C51 Data Address Range
One 1K-word block 0800h—0BFFh

'C53 Data Address Range
One 2K-word block 0800h—O0FFFh
One 1K-word block 1000h~13FFh

All 'C5x processors support parallel accesses to these internal single-access
RAM blocks. However, one single access block allows only one access per
cycle. In other words, the processor can read/write on single-access RAM
block while accessing another single-access RAM block at the same time.

Note that all external reads take at least one machine cycle while all external
writes take at least two machine cycles. However, if an external write is im-
mediately followed or preceded by an external read cycle, then the external
write requires three cycles. See Appendix B for details. If the on-chip wait state
generator is used to add m (m > 0) wait states to an external access, then both
the external reads and the external writes require m+1 cycles, assuming that
the external READY line is driven high. In case the READY input line is used
to add m additional cycles to an external access, then external reads require

4-25

EXAMPLE Example Instruction

Example

4-26

m+1 cycles, and external write accesses require m+2 cycles. See Chapter 6
for the dicussion on software wait states and Appendix A for READY electrical
specifications.

The instruction cycle timings are based on the following assumptions:

[Atleast the next four instructions are fetched from the same memory sec-
tion (internal or external) that was used to fetch the current instruction (ex-
cept in case of PC discontinuity instructions like B, CALL, etc.)

[d Inthe single execution mode, there is no pipeline conflict between the cur-
rent instruction and the instructions immediately preceding or following
thatinstruction. The only exception is the conflict between the fetch phase
of the pipeline and the memory read/write (if any) access of the instruction
under consideration. See Chapter 3 for pipeline operation.

[Inthe repeat execution mode, all conflicts caused by the pipelined execu-
tion of an instruction are considered.

Refer to Appendix C for further information on instruction cycle classifications
and timings.

Example code is included for each instruction. The effect of the code on
memory and/or registers is summarized.

Assembly Language Instructions

Absolute Value of Accumulator ABS

Syntax

Operands
Opcode

Execution

Description

Words

Cycles

Example 1

Example 2

[label] ABS

None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
(1t o 1+ 1 1 1 1 0 0 0 0 O O 0 O O]

(PC)+1 — PC
|(ACC)| - ACC;0—C

Affected by OVM,; affects OV and C.
Not affected by SXM.

If the contents of the accumulator are greater than or equal to zero, the accu-
mulator is unchanged by the execution of ABS. If the contents of the accumula-
tor are less than zero, the accumulator is replaced by its 2s-complement value.
The carry bit (C) on the 'C5x is always reset to zero by the execution of this
instruction.

Note that 80000000h is a special case. When the overflow mode is not set
(OVM = 0), the ABS of 80000000h is 80000000h. When the overflow mode is
set (OVM = 1), the ABS of 80000000h is 7FFFFFFFh. In either case, the OV
status bit is set.

1

Cycle Timings for a Single Instruction
PR PDA PSA PE
1 1 i 14p
Cycle Timings for a Repeat (RPT) Execution

n n [n | n+p
ABS
Before Instruction After Instruction
AcC [) Acc [0
C C
ABS
Before Instruction After Instruction
ACC [OFFFFFFFFh Acc [o] [_1n]
C (o}

4-27

ABS Absolute Value of Accumulator

Example 3 ABS ; (OVM = 1)
Before Instruction After Instruction
AcC [80000000h] Acc [0] 7FFFFFFFh
(o] (o]
Kl
ov ov
Example 4 ABS ; (OVM = 0)
Before Instruction After Instruction
ACC [80000000h] Acc [0]
(o] (o]
ov ov

4-28 Assembly Language Instructions

Add ACCB to Accumulator With Carry ADCB

Syntax

Operands
Opcode

Execution

Description

Words

Cycles

Example

[labe] ADCB

None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
[t o 1+ 1+ 1 1 1 0 0 0 0 1 0 0 0 1

(PC) +1 —PC
(ACC) + (ACCB) + (C) — ACC

Affected by OVM; affects OV and C

The contents of the accumulator buffer (ACCB) and the value of the carry bit
(C) are added to the accumulator. The carry bit is set to one if the result of the
addition generates a carry from the MSB position of the accumulator.

1

Cycle Timings for a Single Instruction
PR PDA PSA PE
1 1 1 14p
Cycle Timings for a Repeat (RPT) Execution

n n |n [n+p

ADCB

Before Instruction After Instruction

acc [A | @~ acc [0]
C C
AccB (2h| AccB

4-29

ADD Add to Accumulator

Syntax

Operands

Opcode

Execution

4-30

Direct:

Indirect:

Short:

Long:

Direct:

Indirect:

Direct: [label] ADD dma [,shift1]

Indirect: [label] ADD {ind} [,shift1 [,nextARP]]
Short Immediate: [label] ADD #k

Long Immediate: [label] ADD #lk [,shift2]

O0sdmas 127

0 < shift1 <16 (defaults to 0)
Osnext ARP <7

O0<k=<255

—32768 = |k < 32767

0 s shift2 <15 (defaults to 0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 o 1 o] SHFT t | o] Data Memory Address |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0 1 Ol SHFT t [1 | See Subsection 4.1.2 I
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1 0o 1 1 1 0 0 o| 8-Bit Constant |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 _0
i 0 1 1 1 1 1+ 1 1 0 0 1 SHFT t
16-Bit Constant

Add to accumulator with shift of 16
15 14 13 12 11 10 9 8 6 5 4 3 2 1 0

7

[o 1 1 o o o o 1o Data Memory Address |
7
1

15 14 13 12 11 _10 9 8 6 5 4 3 2 1 0
o 1 1 0 0 0 0 1]1] See Subsection 4.1.2 |

1 See Section 4.5.

Direct or Indirect Addressing:

(PC)+1 — PC .
(ACC) + [(dma) x 2shift1] — ACC
Affected by SXM and OVM,; affects C and OV.

Short Immediate Addressing:

(PC)+1 — PC
(ACC) +k — ACC
Affected by OVM; affects C and OV

Long Immediate Addressing:

(PC)+2 — PC
(ACC) + Ik x 2shift2 —, ACC
Affected by SXM and OVM,; affects C and OV.

Assembly Language Instructions

Add to Accumulator ADD

Description The contents of the addressed data memory location or an immediate con-
stant are left-shifted and added to the accumulator. During shifting, low-order
bits are zero-filled. High-order bits are sign-extended if SXM = 1 and zero-filled
if SXM = 0. The resuilt is stored in the accumulator. When short immediate ad-
dressing is used, the addition is unaffected by SXM and is not repeatable. Note
that when the ARP is updated during indirect addressing, a shift operand must
be specified. If no shift is desired, a 0 may be entered for this operand.

When adding with a shift of 16, the carry bit is set if the results of the addition
generates a carry; otherwise, the carry bit is unaffected. This allows the accu-
mulation to generate the proper single carry when adding a 32-bit number to
the accumulator.

Words 1 (Direct, indirect, or short immediate addressing)
2 (Long immediate addressing)

Cycles Direct: [labell ADD dma [,shift1]
Indirect: [label} ADD {ind} [,shift1 [,nextARP]]

Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand DARAM 1 1 1 1+p
Operand SARAM 1 1 1 1+p
ot
Operand Ext 1+d 1+d 1+d 2+d+p
Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Operand DARAM n n n n+p
Operand SARAM n n n n+p
n+1t
Operand Ext n+nd n+nd n+nd n+1+p+nd

1 If the operand and the code are in the same SARAM block.

Short Immediate: [label] ADD #k

Cycle Timings for a Single Instruction
PR PDA PSA PE
1 1 1 1+p
Cycle Timings for a Repeat (RPT) Execution

Not Repeatable

4-31

ADD Add to Accumulator

Cycles

Example 1

Example 2

Example 3

Example 4

4-32

Long Immediate: [labe] ADD #lk [,shift2

Cycle Timings for a Single Instruction
PR PDA PSA PE
2 2 2 2+2p
Cycle Timings for a Repeat (RPT) Execution
Not Repeatable
ADD DAT1,1 ;(DP = 6)
Before Instruction After Instruction
Data Memory Data Memory
301h | 1h] 301h T
ACC [2] acc [o]
o] Cc
ADD *+,0,AR0
Before Instruction After Instruction
ARP [4] ARP 9
AR4 | 0302h| AR4
Data Memory Data Memory
302h [2h] 302h ([on
ACC l 2h] acc [0
(o] (o]
ADD #1h ;Add short immediate
Before Instruction After Instruction
Ace l w oacc [0]
(o] Cc
ADD #1111h,1 ;Add long immediate with shift of 1

After Instruction

O o —-21
C

Before Instruction

ACC [2h|

Assembly Language Instructions

Add ACCB to Accumulator ADDB

Syntax

Operands
Opcode

Execution

Description
Words
Cycles

Example

[label] ADDB

None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
(1t o 1+ 1 1 1 1 0 0 0 0 1 0 0 0 O

(PC) +1 — PC
(ACC) + (ACCB) — ACC

Affected by OVM; affects C and OV.

The contents of the accumulator buffer (ACCB) are added to the accumulator.
1

[labe] ADDB

Cycle Timings for a Single Instruction
PR PDA PSA PE
1 1 1 1+p
Cycle Timings for a Repeat (RPT) Execution

n n n [n+p
ADDB
Before Instruction After Instruction
AcC [23 ACC
AccB | Y I 5 E—0
C C

4-33

ADDC Add to Accumulator With Carry

Syntax Direct: [labelj] ADDC dma
Indirect: [label] ADDC {ind} [,next ARP|
Operands 0 <dma=< 127

OsnextARP <7

Opcode
15 14 13 12 11 10
Direct: [0O 1 1 0 0 O

15 14 13 12 11 10
Indirect] 0 1 1 0 0 0

Execution (PC)+1 — PC
(ACC) + (dma) + (C) — ACC

Affected by OVM; affects OV and C. Not affected by SXM.

The contents of the addressed data memory location and the value of the carry
bit are added to the accumulator with sign extension suppressed. The carry
bit is then affected in the normal manner.

8 7 6 5 4 3 2 1 0
0| o] Data Memory Address |
8 7

0 1

6 5 4 3 2 1 0
| See Subsection4.1.2 |

ojo |O|©

The ADDC instruction can be used in performing multiple-precision arithmetic.
Words 1

Cycles Direct: [label] ADDC dma
Indirect: [labell ADDC {ind} [,next ARP|

Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand DARAM 1 1 1 1+p
Operand SARAM 1 1 1 1+p
ot
Operand Ext 1+d 1+d 1+d 2+d+p
Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Operand DARAM n n n n+p
Operand SARAM n n n n+p
n+1t
Operand Ext n+nd n+nd n+nd n+1+p+nd

1 If the operand and the code are in the same SARAM block.

Example 1 ADDC DATO ;(DP = 6)
Before Instruction After Instruction
Data Memory Data Memory
300n | o a00n
Acc r @ A [0]
C C

4-34 Assembly Language Instructions

Add ACCB to Accumulator With Carry ADDC

Example 2 ADDC *—,AR4 ; (OVM = 0)
Before Instruction After Instruction
ARP [0j ARP C— 4
ARO C T AR

Data Memory Data Memory

300h [on] 300h
Acc [T] [__orrrFrrFrn) acc [T

C C

(0]

ov ov

4-3

(3]

ADDS Add to Accumulator With Sign-Extension Suppressed

Syntax

Operands

Opcode

Execution

Description

Words

Cycles

4-36

Direct: [label] ADDS dma
Indirect: [label] ADDS {ind} [,next ARP
Osdmas< 127
OsnextARP <7
15 14 13 12 11 10 9 8 6 5 4 3 2 1 0
Direc:f] 0 1 1 0 0 0 1 0] 0] Data Memory Address |
15 14 13 12 11 10 9 8 6 5 4 3 2 1 0
Indirect] 0 1 1 0 0 0 1 O] 1] See Subsection 4.1.2]

(PC)+1 — PC

(ACC) + (dma) — ACC
(dma) is an unsigned16-bit number

Affected by OVM,; affects OV and C.
Not affected by SXM.

The contents of the specified data memory location are added to the accumu-
lator with sign-extension suppressed. The data is treated as an unsigned
16-bit number, regardiess of SXM. The accumulator contents are treated as
a signed number. Note that ADDS produces the same results as an ADD in-
struction with SXM = 0 and a shift count of 0.

1

Direct: [labe] ADDS dma
Indirect: [labell ADDS ({ind} [,next ARP|
Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand DARAM 1 1 1 1+p
Operand SARAM 1 1 1 1+p
ot
Operand Ext 1+d 14d 1+d 2+d+p
Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Operand DARAM n n n n+p
Operand SARAM n n n n+p
n+1t
Operand Ext n+nd n+nd n+nd n+1+p+nd

1 If the operand and the code are in the same SARAM block.

Assembly Language Instructions

Add to Accumulator With Sign-Extension Suppressed ADDS

Example 1 ADDS DATO ;(DP = 6)
Before Instruction
Data Memory
300h L OF006h|
ACC [00000003h]
(o]
Example 2 ADDS *
Before Instruction
ARP | 0l
ARO | 0300h|
Data Memory
300h | OFFFFh|
ACC [7FFF0000h]
C

After Instruction
Data Memory

300h 0F006h
acc [o] 0000F00%h
c

After Instruction

ARP —
ARO
Data Memory
300h OFFFFh

acc [o] 7FFFFFFER
c

4-37

ADDT Add to Accumulator With Shift Specified by TREG1

Syntax

Operands

Opcode

Execution

Description

Words

Cycles

4-38

Direct: [label]l ADDT dma
Indirect: [label] ADDT {ind} [,next ARP]

0=<dmas127

OsnextARP =<7

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct]| 0 1 1 0 0 0 1 1]o0] Data Memory Address |

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Indirect: 0 1 1 0 0 0 1 1]1] See Subsection4.1.2 |

(PC) +1 — PC

(ACC) + [(dma) x 2TREG1(3-0)] — (ACC)

If SXM = 1:

Then (dma) is sign-extended.
If SXM = 0:

Then (dma) is not sign-extended.
Affected by SXM and OVM,; affects OV and C.

The data memory value is left-shifted and added to the accumulator, with the
result replacing the accumulator contents. The left-shift is defined by the four
LSBs of the TREGH1, resulting in shift options from 0 to 15 bits. Sign extension
on the data memory value is controlied by SXM. The carry bit is set when a
carry is generated out of the MSB of the accumulator.

Software compatibility with the 'C25 can be maintained by setting the TRM bit
of the PMST status register to zero. This causes any 'C25 instruction that loads
TREGO to write to all three TREGs. Subsequent calls to the ADDT instruction
will shift the value by the TREG1 value (which is the same as TREGO), main-
taining object-code compatibility.

1

Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand DARAM 1 1 1 1+p
Operand SARAM 1 1 1 1+p
ot
Operand Ext 14d 1+d 1+d 2+d+p

Assembly Language Instructions

Add to Accumulator With Shift Specified by TREG1 ADDT

Example 1

Example 2

Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Operand DARAM n n n n+p
Operand SARAM n n n n+p
n+1t
Operand Ext n+nd n+nd n+nd n+1+p+nd

1 If the operand and the code are in the same SARAM block.

ADDT DAT127 ;(DP = 4. SXM = 0)
Before Instruction

Data Memory
027Fh l 09h|
TREG1 { OFF94h|
ACC [OF715h]
(o}

ADDT *—,AR4 ; (SXM = 0)

Before Instruction

ARP [0
ARO | 027Fh|

Data Memory
027Fh | 09h|
TREGH | OFF94h|
ACC [OF715h]
o]

After Instruction

Data Memory
027Fh

TREG1 OFF94h
Acc [o] OF7A5h
c

After Instruction

ARP I

ARO
Data Memory

027Fh

TREG1

acc [0] [___or7AsN
C

4-39

ADRK Add to Auxiliary Register With Short Immediate

Syntax

Operands
Opcode

Execution

Description

Words
Cycles

Example

4-40

[label] ADRK #k

0sks=255

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Short:l o 1 1 1 1 0 0 o| 8-Bit Constant]

(PC)+1 — PC

AR(ARP) + 8-bit positive constant — AR(ARP)

The 8-bit immediate value is added, right-justified, to the currently selected
auxiliary register (as specified by the current ARP) with the result replacing the
auxiliary register contents. The addition takes place in the ARAU, with the im-
mediate value treated as an 8-bit positive integer. Note that all arithmetic oper-
ations on the auxiliary registers are unsigned.

1

[label] ADRK #k

Cycle Timings for a Single Instruction
PR PDA PSA PE
1 1 1 1+p
Cycle Timings for a Repeat (RPT) Execution
Not Repeatable
ADRK #80h
Before instruction After Instruction
ARP I 5] ARP I
AR5 l 4321h| AR5

Assembly Language Instructions

AND With Accumulator AND

Syntax

Operands

Opcode

Execution

Description

Words

Direct:

Indirect:

Long:

Long:

Direct: [labe)] AND dma

Indirect: [labell AND {ind} [,next ARP|

Long Immediate: [labe] AND #lk [,shiff

0<dmas<127

OsnextARP <7

Ik: 16-bit constant

0 < shift< 16

i5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1+ 1 0 1 1 1 ofJo] Data Memory Address |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 0 1 1 1 of1] See Subsection 4.1.2 |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 o 1 1 1 1 1 1 1 o 1 1 SHFT 1
16-Bit Constant

AND with ACC long immediate with shift of 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i o {1+ 1 1 1 1 0 1 0 0 O O O O 1
16-Bit Constant

1 See Section 4.5.

Direct or Indirect Addressing:
(PC)+1—=PC

(ACC(15-0)) AND (dma) — ACC(15-0)
0 — ACC(31-16)

Immediate Addressing:

(PC)+2—=PC

(ACC(30-0)) AND Ik x 2shit — ACC
Not affected by SXM

If direct or indirect addressing is used, the low word of the accumulator is
ANDed with a data memory value, and the result is placed in the low word posi-
tion in the accumulator. The high word of the accumulator is zeroed. Ifimmedi-
ate addressing is used, the long immediate constant is shifted, and the low-
order bits below and high-order bits above the shifted value are zeroed. The
resulting value is ANDed with the accumulator contents.

1 (Direct or indirect addressing)

2 (Long immediate addressing)

4-41

AND AND With Accumulator

Cycles Direct: [label] AND dma
Indirect: [label] AND {ind} [,next ARP]
Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand DARAM 1 1 1 1+p
Operand SARAM 1 1 1 1+p
ot
Operand Ext 1+d 1+d 1+d 2+d+p
Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Operand DARAM n n n n+p
Operand SARAM n n n n+p
n+1t
Operand Ext n+nd n+nd n+nd n+1+p+nd
1 If the operand and the code are in the same SARAM block.
Long Immediate: [label] AND #lk [,shiff
Cycle Timings for a Single Instruction
PR PDA PSA PE
2 2 2 2+2p
Cycle Timings for a Repeat (RPT) Execution
Not Repeatable
Example 1 AND DAT16 ;(DP = 4)
Before Instruction After Instruction
Data Memory Data Memory
0210h [00FFh] 0210h
ACC C 12345678h] ACC
Example 2 AND *
Before Instruction After Instruction
ARP [9 ARP C d
ARO [0301h] ARO
Data Memory Data Memory
0301h [OFFOOh] 0301h
ACC C 12345678h] ACC
Example 3 AND #00FFh, 4
Before Instruction After Instruction
ACC [12345678h] ACC
4-42 Assembly Language Instructions

AND ACCB With Accumulator ANDB

Syntax

Operands
Opcode

Execution

Description

Words
Cycles

Example

[label] ANDB

None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1+ o 1 1 1 1+ 1+ o0 0 0 0 1 0 0 1 0|

(PC)+1 — PC
(ACC) AND (ACCB) — ACC

The contents of the accumulator are ANDed with the contents of the accumula-
tor buffer (ACCB). The result is placed in the accumulator while the accumula-
tor buffer is unaffected.

1
[labelj] ANDB

Cycle Timings for a Single Instruction
PR PDA PSA PE
1 1 1 1+p
Cycle Timings for a Repeat (RPT) Execution

n n [n [n+p
ANDB
Before Instruction After Instruction
ACC [OFOFFFFFh] ACC
ACCB I 55555555h] ACCB

APAC AddP Register to Accumulator

Syntax

Operands
Opcode

Execution

Description

Words
Cycles

Example

4-44

[label] APAC

None

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
r1011111000000100

(PC)+1 — PC
(ACC) + (shifted P register) — ACC

Affected by PM and OVM; affects OV and C.
Not affected by SXM.

The contents of the P register are shifted as defined by the PM status bits and
added to the contents of the accumulator. The resultis placed in the accumula-
tor. APAC is not affected by the SXM bit of the status register; the P register
is always sign-extended.The APAC instruction is a subset of the LTA, LTD,
MAC, MACD, MADS, MADD, MPYA, and SQRA instructions.

1
[label] APAC

Cycle Timings for a Single Instruction
PR PDA PSA PE
1 1 1 1+p
Cycle Timings for a Repeat (RPT) Execution
n [n [n [n+p

APAC ;(PM = 01)
Before Instruction After Instruction
P { 40h] P
ACC [20h] Acc [o] AD)
C C

!!

Assembly Language Instructions

AND Data Memory Value With DBMR or Long Constant APL

Syntax

Operands

Opcode

Execution

Description

Words

Cycles

Direct:

Indirect:

Direct:

Indirect:

Direct: [labell APL [#lk)] dma

Indirect: [label] APL [#Ik,) {ind} [,next ARP|

0s<dmax<127

Ik: 16-bit constant

Osnext ARP <7
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o 1+ o 1+ 1 0 1 O [OJ Data Memory Address I
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 0o 1+ 1 0o 1 of1] See Subsection 4.1.2 |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o 1+ 0 1 1 1 A1 OT 0 I Data Memory Address

16-Bit Constant

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
01 0 1 1 1 1 of1] See Subsection 4.1.2

16-Bit Constant

Ik unspecified:
(PC)+1 — PC
(dma) AND (DBMR) — dma

Ik specified:
(PC)+2 — PC
(dma) AND Ik — dma

Affects TC.

Ifalongimmediate constant is specified, itis ANDed with the data memory val-
ue dma. Otherwise, the data memory value is ANDed with the contents of the
dynamic bit manipulation register (DBMR). In either case, the result is written
directly back to the data memory location, while the contents of the accumula-
tor are unaffected. If the result of the AND operation is 0, then the TC bit is set
to 1. Otherwise, the TC bit is set to 0.

1 (Second operand DBMR)
2 (Second operand long immediate)

Direct: [label] APL [#lk] dma
Indirect: [label] APL [#lk,) {ind} [,next ARP]
Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand DARAM 1 1 1 14p
Operand SARAM 1 1 1 1+p
3t
Operand Ext 2+2d 2+2d 2+2d 5+2d+p

4-45

APL AND Data Memory Value With DBMR or Long Constant

Cycle Timings for a Repeat (RPT) Execution

PR PDA PSA PE

Operand DARAM n n n n+p

Direct: [label] APL [#lk] dma
Indirect: [label] APL [#Ik)] {ind} [,next ARP]

Cycle Timings for a Single Instruction

PR PDA PSA PE
Operand DARAM 2 2 2 2+2p
Operand SARAM 2 2 2 2+2p
Operand Ext 3+2d 3+2d 3+2d 6+2d+2p

Cycle Timings for a Repeat (RPT) Execution

PR PDA PSA PE
Operand DARAM n+1 n+1 n+1 n+1+2p
Operand SARAM 2n-1 2n-1 2n-1 2n-1+2p

2n+2t

Operand Ext 4n-1+2nd | 4n—1+2nd | 4n—1+2nd | 4n+2+2nd+2p

1 If the operand and the code reside in same SARAM biock.

Example 1 APL #0023h,DAT96 ; (DP = 0)
Before Iinstruction After Instruction
Data Memory Data Memory
60h [00h] 60h
TC TC
Example 2 APL DAT96 ;(DP = 0)
Before Instruction After instruction
DBMR | OFF00h| DBMR
Data Memory Data Memory
60h C 1111h] 6oh [0]
TC TC
Example 3 APL #0100h, *,AR6
Before Instruction After Instruction
ARP l 5] LU L) I I
TC TC
AR5 [300h] AR5
Data Memory Data Memory
300h | OFFFh] 300h

4-46 Assembly Language Instructions

AND Data Memory Value With DBMR or Long Constant APL

Example 4 APL * ,AR7
Before Instruction After Instruction
ARP l 6 Arp [0]
TC TC
ARG l 310h] AR6
DBMR [0303h) DBMR
Data Memory Data Memory
310h | OEFFh| 310h

4-47

B Branch Unconditionally

Syntax
Operands

Opcode

Execution

Description

Words
Cycles

Example 1

Example 2

4-48

[label} B[D] pma], {ind} [,next ARF]]

0 < pma =< 65535
OsnextARP =< 7

Branch unconditional with AR update

15 14 13 12 11 10 9 8 7
o1 1 1 1 0 0 11|

16-Bit Constant

6 5 4 3 2 1 0
See Subsection 4.1.2

Branch unconditional delayed with AR update
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
01 1 1 1 1 0 1/[1] See Subsection 4.1.2
16-Bit Constant

pma — PC
Modify AR(ARP) and ARP as specified.

The current auxiliary register and ARP are modified as specified, and control
is passed to the designated program memory address (pma). Pma can be ei-
ther a symbolic or numeric address. The one two-word instruction or two
one-word instructions following the branch instruction are fetched from pro-
gram memory and executed before the branch is taken, if the branch is a
delayed branch (specified by the D suffix).

2
[label} B[D] pma], {ind} [,next ARP]]

Cycle Timings for a Single Instruction
PR PDA PSA PE
4 4 4 4+4pt
Cycle Timings for a Repeat (RPT) Execution
Not Repeatable

t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

B 191,*+,AR1

The value 191 is loaded into the program counter, and the program continues
executing from that location. The current auxiliary register is incremented by
1, and ARP is set to auxiliary register 1.

BD 191
MAR *+,AR1
LDP #5

After the current AR, ARP, and DP are modified as specified, program execu-
tion continues from location 191.

Assembly Language Instructions

Branch to Location Specified by Accumulator BACC

Syntax

Operands
Opcode

Execution
Description

Words
Cycles

Example 1

Example 2

[label] BACCID]

None
BACC
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
(1t o 1+ 1 1 1 1 0 0 0 1 0 0 O 0 |
BACCD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1t 0 1 1 1 1 1 0 0 0 1 0 0 O 1|

ACC(15-0) — PC

Control is passed to the 16-bit address residing in the lower half of the accumu-
lator.The one two-word instruction or two one-word instructions following the
branch instruction are fetched from program memory and executed before the
branch is taken, if the branch is a delayed branch (specified by the D suffix).

1

BACC
Cycle Timings for a Single Instruction
PR PDA PSA PE
4 4 4 4+3pt

Cycle Timings for a Repeat (RPT) Execution

Not Repeatable

1 The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

BACCD (delayed)
Cycle Timings for a Single Instruction
PR PDA PSA PE
2 2 2 2+p

Cycle Timings for a Repeat (RPT) Execution

Not Repeatable

BACC ; (ACC contains the value 191)

The value 191 is loaded into the program counter, and the program continues
executing from that location.

BACCD ; (ACC contains the value 191)
MAR *+,AR1
LDP #5

After the current AR, ARP, and DP are modified as specified, program execu-
tion continues from location 191.

4-49

BANZ Branch on Auxiliary Register Not Zero

Syntax

Operands

Opcode

Execution

Description

Words
Cycles

4-50

[labell] BANZ[D] pma [, {ind} [,next ARF]]

0 < pma < 65535
OsnextARP <7

BANZ

15 14 13 12 11 10 9 8 7
0 1 1 1 1 0 1 1]1]
16-Bit Constant

6 5 4 3 2 1. 0
See Subsection 4.1.2

BANZD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o 1 1 1 1 1 1 1]1] See Subsection 4.1.2
16-Bit Constant

If AR(ARP)=0
Thenpma — PC
Else (PC) +2 — PC
Modify AR(ARP) as specified

Control is passed to the designated program memory address (pma) if the
contents of the current auxiliary register are not zero. Otherwise, control
passes to the next instruction. The default modification to AR(ARP) is a decre-
ment by one. N loop iterations may be executed by initializing an auxiliary reg-
ister loop counter to N—1 prior to loop entry. The program memory address
(pma) can be either a symbolic or a numeric address.

The two one-word instructions or one two-word instruction following the
branch instruction are fetched from program memory and executed before the
branch is taken, if the branch is a delayed branch (specified by the D suffix).

2
[labell BANZ pma [, {ind} [,next ARPF]]

Cycle Timings for a Single Instruction
PR PDA PSA PE
Conditions True 4 4 4 4+4pt
Condition False 2 2 2 2+2p
Cycle Timings for a Repeat (RPT) Execution
Not Repeatable

1 The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

Assembly Language Instructions

Branch on Auxiliary Register Not Zero BANZ

Example 1

Example 2

Example 3

[labell] BANZD pma [, {ind} [,next ARP]]

Cycle Timings for a Single Instruction

PR PDA PSA PE
Conditions True 2 2 2 2+2p
Condition False 2 2 2 2+2p
Cycle Timings for a Repeat (RPT) Execution
Not Repeatable
BANZ PGMO

Before Instruction After Instruction
ARP I o] ARP 9
ARO I 5h] ARO

0 is loaded into the program counter, and the program continues executing
from that location.

or
Before Instruction After Instruction
ARP I o ARP C
ARO | Oh| ARO OFFFFh

The program counter (PC) is incremented by 2, and execution continues from

that location.

BANZD PGMO
LACC #01h
LDP #5
Before Instruction After Instruction
ARP l 9] ARP 4
ARO L 5h] ARO
DP I 4 DP 4
ACC I 0oh] ACC

After the current DP and ACC are modified as specified, program execution
continues from location 0.

MAR *,AR0

LAR AR1,#3

LAR ARO,#60h
PGM191 ADD *+,AR1

BANZ PGM191,AR0

The contents of data memory locations 60h—63h are added to the accumula-
tor.

4-51

BCND Branch Conditionally

Syntax.

Operands

Opcode

Execution

Description

4-52

[labell] BCND[D] pma, [cond1] [,condd] [,...]

0 < pma < 65535

Conditions: ACC=0 EQ
ACC=0 NEQ
ACC<0 LT
ACC=<0 LEQ
ACC>0 GT
ACC=0 GEQ
C=0 NC
C=1 C
ov=0 NOV
OV=1 ov
BIO low BIO
TC=0 NTC
TC=1 TC
Unconditionally UNC

BCND

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1. 1. 0 0 o] TPt | zLve t | ZLvGt
16-Bit Constant

BCNDD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1. 1 1 0 ol 1t | ZLve t zLvet
16-Bit Constant

1 See Section 4.5.

If (condition(s))
Then pma — PC
ElsePC+2 — PC

A branch is taken to program memory address pma if the specified conditions
are met. Note that not all combinations of conditions are meaningful. Also, note
that testing BIO is mutually exclusive to testing TC.

The two one-word instructions or one two-word instruction following the
branch are fetched from program memory and executed before the branch is
taken, if the branch is a delayed branch (specified by the D suffix). If the
delayed instruction is specified, the two instruction words following the
BCNDD instruction have no effect on the conditions being tested.

Assembly Language Instructions

Branch Conditionally BC

ND

Words
Cycles

Example 1

Example 2

2

[labe)] BCND pma, [condT] [,condd] |[,...]

Cycle Timings for a Single Instruction

PR PDA PSA PE
Conditions True 4 4 4 4+4pt
Condition False 2 2 2 2+2p

Cycle Timings for a Repeat (RPT) Execution

Not Repeatable

t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

[labell BCNDD pma, [cond1] [,condd] |,...]

Cycle Timings for a Single Instruction
PR PDA PSA PE
Conditions True 2 2 2 2+2p
Condition False 2 2 2 2+2p
Cycle Timings for a Repeat (RPT) Execution
Not Repeatable

BCND PGM191,LEQ,C

If the accumulator contents are less than or equal to zero and the carry bit is
set, program address 191 is loaded into the program counter, and the program
continues executing from that location. If these conditions do not hold, execu-
tion continues from location PC + 2.

BCNDD PGM191,0V
MAR *,AR1
LDP #5

After the current AR, ARP, and DP are modified as specified, program execu-
tion continues at location 191 if the overflow flag (OV) in status register STO
is set. If the flag is not set, execution continues at the instruction following the
LDP instruction.

4-53

BIT 7estBit

Syntax

Operands

Opcode

Execution

Description

Words

4-54

Direct: [label)l BIT dma, bit code
Indirect: [label] BIT {ind}, bit code [,next ARP]

0sdmas 127

OsnextARP s7
0 =< bit code <15

15 14 13

12

11

10 8

8

7

6

5 4 3 2 1 0

Direct:f 0 1 0

0 |

BITX T

[o]

Data Memory Address 1

15 14 13

12

1

109

8

7

6

5 4 3 2 1 0

Indirect:[0 1 o

0|

BITX t

1 1]

See Subsection 4.1.2 |

1 See Section 4.5.

(PC)+1 — PC
(dma bit at bit address (15 — bit code)) — TC

Affects TC.

The BIT instruction copies the specified bit of the data memory value tothe TC
bit of status register ST1. Note that the BITT, CMPR, LST1, APL, CPL, OPL,
XPL, and NORM instructions also affect the TC bit in status register ST1. A bit
code value is specified that corresponds to a certain bit address in the instruc-
tion, as given by the following table:

Bit Address Bit Code
(LSB) 0 11 1 1
1 1110
2 110 1
3 1100
4 1 0 1 1
5 1010
6 1 0 0 1
7 1 000
8 01 1 1
9 o110
10 010 1
11 0100
12 0011
13 0010
14 0 00 1t
(MSB) 15 0000

Assembly Language Instructions

Test Bit BIT

Cycles

Example 1

Example 2

Direct: [label} BIT dma, bit code
Indirect: [label] BIT {ind}, bit code [,next ARF]

Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand DARAM 1 1 1 1+p
Operand SARAM 1 1 1 1+p
ot
Operand Ext 1+d 1+d 1+d 2+d+p
Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Operand DARAM n n n n+p
Operand SARAM n n n n+p
n+1f
Operand Ext n+nd n+nd n+nd n+1+p+nd

t If the operand and the code are in the same SARAM block.

BIT Oh,15 ;(DP = 6).Test LSB at 300h

Before Instruction After Instruction

Data Memory Data Memory
300h L 4DCsh| 300h 4DC8h
TC l 0 TC C_ 9

BIT *,0,AR1 ;Test MSB at 310h

Before Instruction After Instruction

ARP l o ARP I

ARO [310h] ARO
Data Memory Data Memory

310h (8000h] 310h

TC n o T —

4-55

BITT Test Bit Specified by TREG2

Syntax

Operands

Opcode

Execution

Description

Direct: [labe)) BITT dma
Indirect: [label] BITT {ind} [,next ARP]

0<dma=<127

O<nextARP <7

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direc:f| 0 1 1 0 1 1 1 1[0] Data Memory Address |

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Indirect:f 0 1 1 0 1 1 1 1] 1] See Subsection 4.1.2 |

(PC)+1 — PC

(dma bit at bit address (15 -TREG2(3-0))) — TC

Affects TC.

The BITT instruction copies the specified bit of the data memory value to the
TC bit of status register ST1. Note that the BITT, CMPR, LST1, CPL, OPL,
APL, XPL, and NORM instructions also affect the TC bit in status register ST1.
The bit address is specified by a bit code value contained in the 4 LSBs of the
TREG2, as given by the table below.

Software compatibility with the ’C25 can be maintained by setting the TRM bit
ofthe PMST status register to zero. This causes any 'C25 instructions that load
TREGO to write to all three TREGs. Subsequent calls to the BITT instruction
willuse TREG1 value (which is the same as TREGO), maintaining 'C25 object-
code compatibility.

Bit Address Bit Code
(LsB) o 1111
1 1110
2 1101
3 1100
4 1011
5 1010
6 1001
7 1000
8 0111
9 0110
10 0101
1 0100
12 0011
13 0010
14 0001
(MSB) 15 0000

Assembly Language Instructions

Test Bit Specified by TREG2 BITT

Words 1

Cycles Direct: [label] BITT dma
Indirect: [label] BITT {ind} [,next ARP]

Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand DARAM 1 1 1 1+p
Operand SARAM 1 1 1 14p
ot
Operand Ext 1+d 1+d 1+d 2+d+p
Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Operand DARAM n n n n+p
Operand SARAM n n n n+p
n+1t
Operand Ext n+nd n+nd n+nd n+1+p+nd

1 If the operand and the code are in the same SARAM biock.

Example 1 BITT O00h ;(DP = 6). Test bit 14 of data at 300h
Before Instruction After Instruction
Data Memory Data Memory
300h [4DC8h] 300h
TREG2 [1h] TREG2 T
TC C 0] TC 1
Example 2 BITT * ;Test bit 1 of data at 310h
Before Instruction After Instruction
ARP | 1] ARP
AR1 L 310h] AR1
Data Memory Data Memory
310h [8000h] 310h
TREG2 [OEh] TREG2
TC | 3 o o

4.5

~

BLDD Block Move From Data Memory to Data Memory

Syntax General syntax: [label] BLDD src, dst
All valid cases have the general syntax:
Direct K/DMA: [label]l BLDD #addr, dma
Indirect K/DMA: [label]l BLDD #addr, {ind} [,next ARP|
Direct DMA/K: [label) BLDD dma, #addr
Indirect DMA/K: [labell BLDD {ind}, #addr [,next ARP|

Direct BMAR/DMA: [label] BLDD BMAR, dma
Indirect BMAR/DMA: [labe]] BLDD BMAR, {ind} [,next ARP]
Direct DMA/BMAR: [/abel] BLDD dma, BMAR
Indirect DMA/BMAR: [/abel] BLDD {ind}, BMAR [,next ARP]

Operands 0 < addr s 65535
Osdmas<127
Os<nextARP <7
Opcode
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct: i 0 1 0 1 0 0 O | o| Data Memory Address
16-Bit Constant
15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
indirect 10 1 0 1 0 0 o] 1] See Subsection 4.1.2
ndirect:
16-Bit Constant

Block move data to data DEST long immediate
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 01 0 1 0 0 1/|o] Data Memory Address

Direct: 16-Bit Constant
15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
. 1 0 1 0 1 0O 0 1 | 1 l See Subsection 4.1.2
Indirect:

16-Bit Constant

Block move data to data with SRC in BMAR
15 14 13 12 11 10 9
Direct| i 0 1 0 1 1

7 6 5 4 3 2 1 0
0 | Data Memory Address |

7 6 5 4 3 2 1 0
[1] See Subsection 4.1.2 |

8
0 0|
15 14 13 12 11 10 9 8
Indirect:t{| 1 0 1 0 1 1 0 O

Block move data to data with DEST in BMAR

i5 14 13 12 11 10 9 7 6 5 4 3 2 1 o0
Direct| 1 0 1 0 1 1 0 1]0] Data Memory Address |

16 14 13 12 11 10 9

8 6 5 4 3 2 1 0
Indirec:| 1 0 1 0 1 1 0 1]

| See Subsection 4.1.2]

-

4-58 Assembly Language Instructions

Block Move From Data Memory to Data Memory BLDD

Execution

Description

Words

(PFC) » MCS

If long immediate:
(PC)+2 — PC
#k — PFC

Else:

(PC)+1 — PC
(BMAR) — PFC

While (repeat counter) = O:
(src, addressed by PFC) — dst or src — (dst, addressed by PFC)
Modify AR(ARP) and ARP as specified,
(PFC) +1 = PFC
(repeat counter) —1 — repeat counter.
(src, addressed by PFC) —dst or src — (dst, addressed by PFC)
Modify AR(ARP) and ARP as specified.
(MCS) — PFC

The word in data memory pointed at by srcis copied to a data memory space
pointed at by dst. The word of the source and/or destination space can be
pointed at with along immediate value, with the contents of the BMAR register,
or by a data memory address. Note that not all src/dst combinations of pointer
types are valid.

RPT can be used with the BLDD instruction in indirect addressing mode to
move consecutive words in data memory. The number of words to be moved
is one greater than the number contained in the repeat counter RPTC at the
beginning of the instruction. The source or destination address for the BLDD
instruction specified by the long immediate address or BMAR register contents
are automatically incremented in repeat mode. If a direct memory address is
specified, its address is not automatically incremented in repeat mode. Note
that the source and destination blocks do not have tc be entirely on-chip or
off-chip. Interrupts are inhibited during a BLDD operation used with the RPT
instruction. When used with RPT, BLDD becomes a single-cycle instruction
once the RPT pipeline is started.

1 (One source or destination is specified by the BMAR register)

2 (One source or destination is specified by a long immediate value)

4-59

BLDD Block Move From Data Memory to Data Memory

Cycles Direct K/DMA: [label] BLDD #addr, dma
Indirect K/DMA: [label} BLDD #addr, {ind} [,next ARP]
Direct DMA/K: [label] BLDD dma, #adar
Indirect DMA/K: [fabel) BLDD {ind}, #addr [,next ARP]
Cycle Timings for a Single Instruction
PR PDA PSA PE
Source DARAM 2 2 2 2+p
Destination DARAM
Source DARAM 2 2 2 2+p
Destination DARAM
Source SARAM 2 2 2 2+p
Destination DARAM
Source Ext 2+dgc 2+0dgc 2+dgc 2+dgc+p
Destination DARAM
Source DARAM 2 2 2 2+p
Destination SARAM 3t
Source SARAM 2 2 2 2+p
Destination SARAM 3t
Source Ext 2+dgpe 2+dg/c 2+dgpc 2+4dgc+p
Destination SARAM 3+dg,ct
Source DARAM 3+dgst 3+dyst 3+dgst 5+dgse+p
Destination Ext
Source SARAM 3+dyst 3+dgst 3+dyst 5+dgst+p
Destination Ext
SOUTCG EXt 3+dsrc+ddsf 3+dsrc+ddst 3+dsrc+ddst 5+dsrc+ddst+p
Destination Ext
Cycle Timings for a Repeat (RPT) Instruction
PR PDA PSA PE
Source DARAM n+1 n+1 n+1 n+1+p
Destination DARAM
Source SARAM n+1 n+1 n+1 n+1+p
Destination DARAM
Source Ext n+1+ndg,c n+14ndg,c n+1+ndgc N+1+Nndg,c+p
Destination DARAM
Source DARAM n+1 n+1 n+1 n+1+p
Destination SARAM n+3t
Source SARAM n+1 n+1 n+1 n+1+p
Destination SARAM 2n-1# 2n-1# 2n-1# 2n-1+p#
n+3t
2n+18

Assembly Language Instructions

Block Move From Data Memory to Data Memory BLDD

Cycle Timings for a Repeat (RPT) Instruction (Continued)

PR PDA PSA PE
Source Ext n+1+ndg,.t n+1+ndgc n+1+ndgc n+1+ndg,c+p
Destination SARAM n+3+ndg,t
Source DARAM 2n+1+ndyst 2n+1+ndgg; 2n+1+ndggs 2n+1+ndgss+p
Destination Ext
Source SARAM 2n+1+ndyg; 2n+1+ndgg 2n+1+ndyst 2n+1+ndgss+p
Destination Ext
Source Ext 4n—1+ndgc+n | 4n—1+ndge+n | 4n—1+4ndge+n | 4n+1+ndgc+ndgst+p
Destination Ext dast dast dast

1 If the destination operand and the code are in the same SARAM block.

% If both the source and the destination operands are in the same SARAM block.
§ If both operands and the code are in the same SARAM block.

Direct BMAR/DMA:
Indirect BMAR/DMA:
Direct DMA/BMAR:
Indirect DMA/BMAR:

[labe] BLDD BMAR, dma
[label] BLDD BMAR, {ind} [,next ARP]
[label) BLDD dma, BMAR

[label] BLDD {ind}, BMAR [,next ARP]

Cycle Timings for a Single Instruction

PR PDA PSA PE
Source DARAM 3 3 3 3+2p
Destination DARAM
Source SARAM 3 3 3 3+2p
Destination DARAM
Source Ext 3+dgrc 3+dgre 3+dg/c 3+dgc+2p
Destination DARAM
Source DARAM 3 3 3 3+2p
Destination SARAM 4t
Source SARAM 3 3 3 3+2p
Destination SARAM 4t
Source Ext 3+dgrc 3+dgyc 3+dg/c 3+dg,c+2p
Destination SARAM 4+dg,ct
Source DARAM 4+dgs¢ 4+dgst 4+dyst 6+dgst+2p
Destination Ext
Source SARAM 4+dgst 4+dgst 4+dgst 6+dgst+2p
Destination Ext
Source Ext 4+dg+dyst 4+dg,c+dyst 4+dg,+dgst 6+dg,c+dgst+2p
Destination Ext

Cycle Timings for a Repeat (RPT) Execution

PR PDA PSA PE
Source DARAM n+2 n+2 n+2 n+2+2p
Destination DARAM

4-61

BLDD Block Move From Data Memory to Data Memory

Cycle Timings for a Repeat (RPT) Execution (Continued)
PR PDA PSA PE
Source SARAM n+2 n+2 n+2 n+2+2p
Destination DARAM
Source Ext n+2+ndgc n+2+ndg,; n+2+ndg,c N+2+ndgc
Destination DARAM
Source DARAM n+2 n+2 n+2 n+2+2p
Destination SARAM n+4t
Source SARAM n+2 n+2 n+2 n+2+2p
Destination SARAM | 2n# 2n# 2nt 2n+2p#
n+4t
2n+2§
Source Ext n+2ndsyc n+2ndgc N+2ndgc N+2+ndg,c+2p
Destination SARAM n+4+ndg, .t
Source DARAM 2n+2+ndyst 2n+2+ndgst 2n+2+ndgg; 2n+2+ndgst +2p
Destination Ext
Source SARAM 2n+2+ndyst 2n+2+ndgst 2n+2+ndgst 2n+2+ndggst+2p
Destination Ext
Source Ext 4n+ndg,c+ndysst 4n+ndg,c+ndgst | 4n+ndgc+ndgst 4n+2+ndg,c+Ndggt+2p
Destination Ext
1 If the destination operand and the code are in the same SARAM block.
¥ If both the source and the destination operands are in the same SARAM block.
§ If both operands and the code are in the same SARAM block.
Example 1 BLDD #300h,20h ;(DP = 6)
Before Instruction After Instruction
Data Memory Data Memory
300h I on) 300h
320h l OFh] 320h
Example 2 BLDD *+,#321h,AR3
Before Instruction After Instruction
ARP l 2] ARP 3l
AR2 l 301h] AR2
Data Memory Data Memory
301h l 01h] 301h
321h [OFh] 321h

4-62

Assembly Language Instructions

Block Move From Data Memory to Data Memory BLDD

Example 3 BLDD
Example 4 BLDD
Example 5 RPTK

BLDD

BMAR, *

ARP
BMAR
AR2

Data Memory
320h

340h

00h,BMAR

Data Memory
300h

BMAR

Data Memory
320h

2
#300h, *+

ARP
ARO
300h
301h
302h
320h
321h
322h

Before Instruction

(2]
[320h|
L 340h|
| 01h|
[OFh]

;(DP = 6)
Before Instruction

{ OFh|
320h|

| 01h|

Before Instruction
[

320h|

7F98h|

OFFES6h|

9522h|

8DEEh|

9315h|

[2531h|

Py ey — p— —— — f—

ARP
BMAR
AR2

Data Memory
320h

340h

Data Memory
300h

BMAR

Data Memory
320h

ARP
ARO
300h
301h
302h
320h
321h
322h

After Instruction

o
purg

o
purg
=2

After Instruction

I!
T
T 1=

320

o
T
=2

After Instruction

7F98|
OFFE6h
9522
7F98
OFFE6h
9522

o

4-63

BLDP Block Move From Data Memory to Program Memory

Syntax Direct: [label] BLDP dma
Indirect: [labell BLDP {ind} [,next ARP]
Operands Osdmas 127
OsnextARP =<7
Opcode
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Direc:[0 1 0 1 0 1 1 1]0] Data Memory Address |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Indirect:{ 0 1 0 1 0 1 1 1] 1] See Subsection4.1.2 |
Execution (PC)+1 — PC
(PFC) — MCS

(BMAR) — PFC

While (repeat counter) = O:
dma — (dst, addressed by PFC)
Modify AR(ARP) and ARP as specified,
(PFC) + 1 = PFC
(repeat counter) —1 — repeat counter.
dma — (dst, addressed by PFC)
Modify AR(ARP) and ARP as specified.
(MCS) — PFC

Description A word in data memory is copied to a word in program memory space pointed
at by the BMAR register. The RPT instruction used with the BLDP instruction
can move consecutive words pointed at indirectly in data memory to a contigu-
ous program memory space pointed at by the BMAR register. The BMAR reg-
ister is automatically updated in the repeat mode. Note that the source and
destination blocks do not have to be entirely on-chip or off-chip. When used
with RPT, BLDP becomes a single-cycle instruction once the RPT pipeline is
started. Interrupts are inhibited during a BLDP operation used with RPT.

Words 1

Cycles Direct: [label] BLDP dma
Indirect: [label] BLDP {ind} [,next ARP]

Cycle Timings for a Single Instruction

PR PDA PSA PE
Source DARAM 2 2 2 2+p
Destination DARAM
Source SARAM 2 2 2 2+p
Destination DARAM 3%
SOUI’CS EX‘l 2+deC 2+dsrc 2+dsrc 3+dsrc+pcode
Destination DARAM
Source DARAM 2 2 2 2+p
Destination SARAM 3f

4-64 Assembly Language Instructions

Block Move From Data Memory to Program Memory BLDP

Cycle Timings for a Single Instruction (Continued)

PR PDA PSA PE
Source SARAM 2 2 2 2+p
Destination SARAM 3tord

45

Source Ext 2+dg,c 2+dgc 2+dgc 3+dgrc+Pcode
Destination SARAM 3+dg,ct
Source DARAM 3+Pgst 3+Pgst 3+Pdst 4+pgst+Pcode
Destination Ext
Source SARAM 3+Pgst 3+Pgst 3+Pgst 4+Pgst+Pcode
Destination Ext 4+pgss"
Source Ext 3+dsrc+Pgst 3+ds/c+Pyst 3+dsc+Past 5+ds/c+Pdst+Pcode

Destination Ext

Cycle Timings for a Repeat (RPT) Execution

PR PDA PSA PE

Source DARAM n+1 n+1 n+1 N+1+Pcode
Destination DARAM
Source SARAM n+1 n+1 n+1 N+1+Pcode
Destination DARAM n+21
Source Ext n+1+ndgc n+1+ndg,c n+1+ndgc N+2+Nnds,c+Pcode
Destination DARAM
Source DARAM n+1 n+1 n+1 N+1+Pcode
Destination SARAM n+2t
Source SARAM n+1 n+1 n+1 N+1+Pcode
Destination SARAM | 2n—1# 2n-1# 2n-1% 2n—1+Pcoge’

n+2t or s

2n+1§
Source Ext n+1+ndg,c n+1+ndg,c n+1+ndg,c N+2+ndgc+Pcode
Destination SARAM N+2+npgct
Source DARAM 2n+1+npgst 2n+1+npyst 2n+1+npgst 2n+2+NpPgst+Pcode
Destination Ext
Source SARAM 2n+1+npgst 2n+1+npyst 2n+1+npgst 2n+2+NnpPgst+Pcode
Destination Ext 2n+2+npgs;’
Source Ext 4n—1+ndg,c+ 4n—1+ndg, o+ 4n—1+ndg, o+ 4n+1+ndgc+NPgst+p
Destination Ext NPgst NPdst NPdst code

1 If the destination operand and the code are in the same SARAM block.

1 If both the source and the destination operands are in the same SARAM block.
§ If both operands and the code are in the same SARAM block.

¥ If the source operand and the code are in the same SARAM block.

4-65

BLDP _ Block Move From Data Memory to Program Memory

Example 1 BLDP 00h ; (DP=6)
Before Instruction
Data Memory
300h | 0A089h]
BMAR l 2800h|
Program Memory
2800h | 1234h|
Example 2 BLDP *,AR0
Before Instruction
ARP | 7]
AR7 { 310h]
Data Memory
310h l OFQFOh|
BMAR | 2800h|
Program Memory
2800h l 1234h|
4-66

After Instruction

Data Memory
300h 0A089h
BMAR 2800h
Program Memory
2800h 0A08Sh
After Instruction
ARP 4
AR7
Data Memory
310h OFOFOh
BMAR 2800h
Program Memory
2800h OFOFOh

Assembly Language Instructions

Block Move From Program Memory to Data Memory BLPD

Syntax

Operands

Opcode

Execution

Description

Direct:

Indirect:

Direct:

Indirect:

General syntax: [labell BLPD g, gst

All valid cases have the general syntax:

Direct K/DMA: [label) BLPD #pma, dma

Indirect K/DMA: [label] BLPD #pma, {ind} [,next ARP]

Direct BMAR/DMA: [label] BLPD BMAR, dma
Indirect BMAR/DMA: [label] BLPD BMAR, {ind} [,next ARP]

0 < pma =< 65535
0<dmas 127
OsnextARP <7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1]o0] Data Memory Address
16-Bit Constant

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1_0 1 0 0 1 0 1] 1] See Subsection 4.1.2

16-Bit Constant

Block move prog to data with source in BMAR
15 14 13 12 11 10 9
[1 o0 1 0 0 1

8 7 6 5 4 3 2 1 0
ofo] Data Memory Address |

6 5 4 3 2 1 0

0
15 14 13 12 11 10 9 8 7
0 0] 1] SeeSubsection4.1.2 I

[T 0 1 0 0 1

If long immediate:
(PC)+2 — PC
(PFC) — MCS
Ik - PFC

Else:

(PC)+1 — PC
(PFC) — MCS
(BMAR) — PFC

While (repeat counter) = 0:
(pma, addressed by PFC) — dst
Modify AR(ARP) and ARP as specified,
(PFC) +1 - PFC
(repeat counter) —1 — repeat counter.

(pma, addressed by PFC) — dst,
Modify AR(ARP) and ARP as specified.
(MCS) — PFC

A word in program memory pointed at by the src is copied to data memory
space pointed at by dst. The first word of the source space can be pointed at
with a long immediate value or the contents of the BMAR register. The data
memory destination space is always pointed at by a data memory address or

4-67

BLPD Block Move From Program Memory to Data Memory

auxiliary register pointer. Note that not all src/dst combinations of pointer types
are valid.

RPT can be used with the BLPD instruction if more than one word is to be
moved. The number of words to be moved is one greater than the number con-
tained in the repeat counter, RPTC, at the beginning of the instruction. The
source address specified by the long immediate or BMAR value is automati-
cally incemented in repeat mode. Note that the source and destination blocks
do not have to be entirely on-chip or off-chip. Interrupts are inhibited during
arepeated BLPD instruction. When used with RPT, BLPD becomes a single-
cycle instruction once the RPT pipeline is started.

Words 1 (Source is specified by the BMAR register)
2 (Source is specified by a long immediate)
Cycles Direct K/DMA: [label] BLPD #pma, dma
Indirect K/DMA: [label] BLPD #pma, {ind} [,next ARP]
Cycle Timings for a Single Instruction

PR PDA PSA PE
Source DARAM/ROM 2 2 2 2+Pcode
Destination DARAM
Source SARAM 2 2 2 2+Pcode
Destination DARAM
Source Ext 24+Pgrc 2+psrc 2+Pgrc 2+PsrctPcode
Destination DARAM
Source DARAM/ROM 2 2 2 2+Pcode
Destination SARAM 3t
Source SARAM 2 2 2 2+Pcode
Destination SARAM 3t
Source Ext 2+Pgrc 2+pgrc 2+Pgrc 2+Psrc*+2Pcode
Destination SARAM 3+Psret
Source DARAM/ROM 3+dgst 3+dgst 3+dygst 5+dgst+Pcode
Destination Ext
Source SARAM 3+dgst 3+dgst 3+dgst 5+dgst+Pcode
Destination Ext
Source Ext 3+Psrc+dgst 3+Psrc+dgst 3+Psrc+dgst 5+Psrc+dgst+Peode
Destination Ext

Cycle Timings for a Repeat (RPT) Execution

PR PDA PSA PE
Source DARAM/ROM n+1 n+1 n+1 N+1+Pcode
Destination DARAM
Source SARAM n+1 n+1 n+1 N+1+Pcode
Destination DARAM

4-68 Assembly Language Instructions

Block Move From Program Memory to Data Memory BLPD

Cycle Timings for a Repeat (RPT) Execution (Continued)
PR PDA PSA PE
Source Ext n+1+Npg/c n+1+nPg/c n+14NPgrc N+14+NPgrc+Pcode
Destination DARAM
Source DARAM/ROM n+1 n+1 n+1 N+1+Pcode
Destination SARAM n+3t
Source SARAM n+1 n+1 n+1 N+1+Pcode
Destination SARAM 2n-1# 2n-1% 2n-1%# 2n—1+pgoge?
n+3t
2n+18
Source Ext n+1+Npg,c n+1+Npg/c N+1+Npg/c N+1+NPsrc+Pcode
Destination SARAM n+3+npg,ct
Source DARAM/ROM 2n+1+ndgg; 2n+1+ndgg; 2n+1+ndgg; 2n+1+ndgst+Pcode
Destination Ext
Source SARAM 2n+1+ndgg; 2n+1+ndgg; 2n+1+ndgg; 2n+1+ndgst+Peode
Destination Ext
Source Ext 4n—14npgct+ | 4n—14npgc+ | 4n—1+npgc+ | 4n+1+nNpgrc+Ndyst+Peode
Destination Ext ndgst Ndgst Ndgst

1 If the destination operand and the code are in the same SARAM block.
% If both the source and the destination operands are in the same SARAM block.
§ If both operands and the code are in the same SARAM block.

Direct BMAR/DMA: [label] BLPD BMAR, dma
Indirect BMAR/DMA: [/abel] BLPD BMAR, {ind} [,next ARP]

Cycle Timings for a Single Instruction

PR PDA PSA PE
Source DARAM/ROM 3 3 3 3+2pPcode
Destination DARAM
Source SARAM 3 3 3 3+2Pcode
Destination DARAM
Source Ext 3+Psrc 3+Psrc 3+Psrc 3+Psrc+2Pcode
Destination DARAM
Source DARAM/ROM 3 3 3 3+2pcode
Destination SARAM 4t
Source SARAM 3 3 3 3+2Pcode
Destination SARAM 4t
Source Ext 3+Psrc 3+Psrc 3+Psrc 3+Psrc+2Pcode
Destination SARAM 44pgct
Source DARAM/ROM 4+dgg; 4+dggt 4+dgst 6+dgst+2Pcode
Destination Ext

4-69

BLPD Block Move From Program Memory to Data Memory

Cycle Timings for a Single Instruction (Continued)
PR PDA PSA PE
Source SARAM 4+dggt 4+dgst 4+dggt 6+d4st+2Pcode
Destination Ext
Source Ext 4+psretdgst 4+Ppsrc+dgst 4+Psrc+dgst 6+Psrctddst+2Pcode
Destination Ext
Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Source DARAM/ROM n+2 n+2 n+2 N+2+2Pcode
Destination DARAM
Source SARAM n+2 n+2 n+2 N+2+2Pcode
Destination DARAM
Source Ext N+2+NPgrc N+2+NPgrc N+2+NPg/c N+2+NPsrc+2Pcode
Destination DARAM
Source DARAM/ROM n+2 n+2 n+2 N+2+2Pcode
Destination SARAM n+4t
Source SARAM n+2 n+2 n+2 N+2+2Pcode
Destination SARAM ont ont 2nt 2N+2Pcoge’
n+4t
2n+25
Source Ext N+2+npg/ct N+2+NPg/c N+2+NPg/c N+2+NPsre+2Pcode
Destination SARAM N+4+npg,ct
Source DARAM/ROM 2n+2+ndgss 2n+2+ndgss 2n+2+ndyss 2n+2+Nndgst+2Pcode
Destination Ext
Source SARAM 2n+2+ndgst 2n+2+ndgg; 2n+2+ndgst 2n+2+ndgst+2pPcode
Destination Ext
Source Ext 4n+npgc+ 4n+npgc+ 4n+npgc+ 4n+2+npg c+Ndgst+
Destination Ext ndgstt ndgst ndgst 2Pcode

1 If the destination operand and the code are in the same SARAM block.
If both the source and the destination operands are in the same SARAM block.
§ If both operands and the code are in the same SARAM block.

Example 1 BLPD #800h,00h ; (DP=6)
Before Instruction After Instruction
Program Memory Program Memory
800h L OFh]| 800h OFh
Data Memory Data Memory
300h l on] 300h

4-70 Assembly Language Instructions

Block Move From Program Memory to Data Memory BLPD

Example 2 BLPD #800h, *,AR7
Before Instruction After Instruction
ARP | g A
ARO [TR AR
Program Memory Program Memory
800h | 1111h] 800h 1111h
Data Memory Data Memory
310h [0100h] 310h
Example 3 BLPD BMAR,00h ; (DP=6)
Before Instruction After Instruction
BMAR { 800h| BMAR 800h
Program Memory Program Memory
800h | OFh] 800h OFh
Data Memory Data Memory
300h | Oh| 300h OFh
Example 4 BLPD BMAR, *+,AR7
Before Instruction After Instruction
ARP | 9 A
ARO l 300h| ARO 301h
BMAR | 810n) BMAR
Program Memory Program Memory
810h [4444h) 810h
Data Memory Data Memory
300h [0100h] 300h

4-71

BSAR Barrel Shift

Syntax

Operands
Opcode

Execution

Description

Words
Cycles

Example 1

Example 2

4-72

[labe] BSAR shift
1 s shift < 16

15 14 13 12 11 10 9 8 7 6 5

3

2 1 0

[1 o 1 1 1 1 1 1 1 1 A

SHFTT |

t See Section 4.5.

(PC)+1 — PC
(ACC) / 2shift —» ACC

Affected by SXM.

The BSAR instruction executes a 1- to 16-bit right-barrel arithmetic shift of the
accumulator in asingle cycle. The sign extension is determined by the sign-ex-

tension mode bit in status register 1 (ST1).
1
[labell BSAR shift

Cycle Timings for a Single Instruction

PR PDA PSA PE
1 1 1 1+p
Cycle Timings for a Repeat (RPT) Execution
n | n | n | n+p
BSAR 16 ; (SXM=0)
Before Instruction After Instruction
ACC l 00010000h]| ACC
BSAR 4 ; (SXM=1)
Before Instruction After Instruction
ACC | OFFF10000h| ACC

Assembly Language Instructions

Call Subroutine at Location Specified by Accumulator CALA

Syntax

Operands
Opcode

Execution

Description

Words
Cycles

[labe] CALA[D]

None

CALA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[+ o 1+ 1 1 1 1 0 0 0 1 1 0 0 0 O]
CALLD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
[t o 1 1+ 1 1 1 0 0 0 1 1 1 1 0 1]

Nondelayed: PC+1 — TOS
Delayed: PC+3 — TOS
ACC(15-0) — PC

The current program counter (PC) is incremented and pushed onto the top of
the stack (TOS). Then, the contents of the lower half of the accumulator are
loaded into the PC. Execution continues at this address. Ifthe call is a delayed
call (specified by the D suffix), the one two-word instruction or two one-word
instructions following the call instruction are fetched from program memory
and executed before the call is executed.

The CALA instruction is used to perform computed subroutine calls.

1

[labe] CALA
Cycle Timings for a Single Instruction
PR PDA PSA PE
4 4 4 4+3pt

Cycle Timings for a Repeat (RPT) Execution

Not Repeatable

t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken these two instruction words are discarded.

[label] CALAD

Cycle Timings for a Single Instruction
PR PDA PSA PE
2 2 2 2+p
Cycle Timings for a Repeat (RPT) Execution
Not Repeatable

4-73

CALA Call Subroutine at Location Specified by Accumulator

Example 1 CALA
Before Instruction After Instruction
PC [25h) PC
ACC [83h] ACC
TOS [100h] TOS
Example 2 CALAD
MAR *+,AR1
LDP #5
Before Instruction After Instruction
ARP I o] ARP]
ARO [8] ARO 9
DP I o] oP 3l
PC [25h] PC
AcC C 83n] ACC
TOS C 100h] TOS

After the current AR, ARP, and DP are modified as specified, the address of
the instruction following the LDP instruction is pushed onto the stack, and pro-
gram execution continues from location 83h.

4-74 Assembly Language Instructions

Call Unconditionally CALL

Syntax
Operands

Opcode

Execution

Description

Words
Cycles

Cycles

[labe] CALL[D] pma [{inc}[,next ARP]]

0 < pma < 65535
Osnext ARP <7

CALL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0o 1 1 1 1 0 1 o1} See Subsection 4.1.2
16-Bit Constant

CALLD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0]1| See Subsection 4.1.2
16-Bit Constant

Nondelayed: PC +2 — TOS
Delayed: PC+4 — TOS

pma — PC

Modify AR(ARP) and ARP as specified.

The current program counter (PC) is incremented and pushed onto the top of
the stack (TOS). Then, the contents of the program memory address (pma),
either a symbolic or numeric address, are loaded into the PC. Execution con-
tinues at this address. The current auxiliary register and ARP are modified as
specified. If the call is a delayed call (specified by the “D” suffix), the one
two-word instruction or two one-word instructions following the call instruction
are fetched from program memory and executed before the call is executed.

2
[labe] CALL pma [{ind} [,next ARP]]
Cycle Timings for a Single Instruction
PR PDA PSA PE
4 4 4 4+4pt
Cycle Timings for a Repeat (RPT) Execution

Not Repeatable

1 The ’C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

[label] CALLD pma [{ind} [,next ARF]]

Cycle Timings for a Single Instruction
PR PDA PSA PE
2 2 2 2+2p
Cycle Timings for a Repeat (RPT) Execution
Not Repeatable

4-75

CALL call Unconditionally

Example 1

Example 2

4-76

CALL

PRG191, *+,AR0
Before Instruction
ARP | 1]
AR1 [05h]
PC [30h)
TOS C 100h|

After Instruction

P N E—
A
Po
TOS 32h

OBFhis loaded into the program counter, and the program continues executing
from that location.

CALLD
MAR
LDP

PRG191
*+,AR1
#5
Before Instruction
ARP L 0
ARO | 09h]
DP L 1]
PC L 30h|
TOS | 100h|

After Instruction

ARP 1]
ARO
oP 5]
PC
TOS

After the current AR, ARP, and DP are modified as specified, the address of
the instruction following the LDP instruction is pushed onto the stack, and pro-
gram execution continues from location 0BFh.

Assembly Language Instructions

Call Conditionally CC

Syntax

Operands

Opcode

Execution

Description

Words

[label) CC[D] pma [condT] [,condd] |,...]

0 < pma < 65535
Conditions: ACC=0 EQ
ACC=0 NEQ
ACC<0 LT
ACC=0 LEQ
ACC>0 GT
ACCz0 GEQ
C=0 NC
C=1 C
ov=0 NOV
Oov=1 ov
TC=0 NTC
TC=1 TC
BIO low BIO
Unconditionally UNC
CC
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 ol 1Pt | z2wvet | zwvet
16-Bit Constant
CCD
i5 14 13 12 11 10 9 8 7 6 _5 4 3 2 1 O
1 1 1 1 1 ol 1Pt zwvct | zivet
16-Bit Constant

1 See Section 4.5.

If(condition(s))
Then
Nondelayed: PC +2 — TOS
Delayed: PC +4 — TOS
pma — PC
Else
PC+2 — PC

Control is passed to the program memory address pma if the specified condi-
tions are met. Note that not all combinations of conditions are meaningful. In
addition, the NTC, TC, and BIO conditions are mutually exclusive. If the call
is a delayed call (specified by the “D” suffix), the two one-word instructions or
the one two-word instruction following the call are fetched from program
memory and executed before the call is executed. The CC instruction operates
like the CALL instruction if all conditions are true.

2

4-77

CC call Conditionally

Cycles

Example 1

Example 2

4-78

[labell] CC pma [cond1] [,cond2]]

Cycle Timings for a Single Instruction

PR PDA PSA PE
Conditions True 4 4 4 4+4pt
Condition False 2 2 2 2+2p

Cycle Timings for a Repeat (RPT) Execution

Not Repeatable

t The ’C5x performs speculative fetching by reading two additional instruction words. If PC discon-

tinuity is taken these two instruction words are discarded.
[label] CCD pma [cond1] [,condd] [,...]

Cycle Timings for a Single Instruction

PR PDA PSA PE
Conditions True 2 2 2 2+2p
Condition False 2 2 2 2+2p

Cycle Timings for a Repeat (RPT) Execution

Not Repeatable

ccC PGM191,LEQ,C

If the accumulator contents are less than or equal to zero and the carry bit is
set, 0BFh is loaded into the program counter, and the program continues ex-
ecuting from that location. If the conditions are not met, execution continues
at the instruction following the CC instruction.

ccD PGM191,LEQ,C
MAR *+,AR1
LDP #5

The current AR, ARP, and DP are modified as specified. If the accumulator
contents are less than or equal to zero and the carry bit is set, the address of
the instruction following the LDP instruction is pushed onto the stack and pro-
gram execution continues from location OBFh. If the conditions are not met,
execution continues at the instruction following the LDP instruction.

Assembly Language Instructions

Clear Control Bit CLRC

Syntax

Operands
Opcode

Execution

Description

Words
Cycles

[labell CLRC control bit
Control bit. STO, ST1 bit (from: {C, CNF, HM, INTM, OVM, TC, SXM, XF})
Reset overflow mode (OVM)

15 14 13 12 11 10 9 8 7 6 5 4
[1 o 1 1 1 1 1 0 0

w
N
-
o

-
o
o
o
o
-
o

Reset sign extension mode (SXM)
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 0o 1t 1 1 1 1 0 0

Reset hold mode (HM)
15_14 13 12 11 10 9 8 7 6 5 4 3 2
[+ o 1+ 1 1+ 1 1 0 0 1 0 0 1 0 0 O]

Reset TC bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[+ o 1 1. 1 1 1 0 0 1 0 O

Reset carry (C)
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-
o
o
o
-
-
o

-—
o

-
o
-
o

1 0 1 1 1 1 1 0 0 1 0 0 1 1 1 0]
Reset CNF bit

15 14 13 12 11 10 9 8 7 6 5 4 3 1.0
[t o 1 1 1 1 1 0 0 1 0 0O 0O 1 0 Of
Reset INTM bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 1+ 1 1 1 1 0 0 1 0 0 O O O O]
Reset XF pin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[t o 1+ 1 1 1 1 0 0 1 0 0 1 1 0 0]

(PC)+1 — PC
0 — controi bit

The specified control bit is set to a logic zero. Note that the LST instruction may
also be used to load STO and ST1. See subsection 3.6.3, Status and Control
Registers, for more information on each of these control bits.

1
[label] CLRC control bit

Cycle Timings for a Single Instruction
PR PDA PSA PE
1 1 1 1+p
Cycle Timings for a Repeat (RPT) Execution
n [n [n [n+p

4-79

CLRC Clear Control Bit

Example CLRC TC ;TC is bit 11 of ST1
Before Instruction After Instruction
ST1 { x9xxh| ST1

4-80 Assembly Language Instructions

Complement Accumulator CMPL

Syntax

Operands

Opcode

Execution

Description

Words

Cycles

Example

[labell CMPL

None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
[1+ o 1 1 1 1 1+ 0 0 0 0 O O O O 1]

(PC)+1 — PC
(ACT) — ACC

The contents of the accumulator are replaced with its logical inversion (ones
complement). The carry bit is unaffected.

1
[labe] CMPL

Cycle Timings for a Single Instruction
PR PDA PSA PE
1 1 1 1+p
Cycle Timings for a Repeat (RPT) Execution

n [n [n [n+p
CMPL
Before Instruction After Instruction
ACC [0F7982513] ACC 0867DAECH
(o} (o}

4-81

CMPR __ Compare Auxililary Register With ARCR

Syntax
Operands
Opcode

Execution

Description

Words
Cycles

Example

4-82

[label] CMPR constant
0=<CM=<3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[t o 1+ 1 1 1 1 1 0 1 0 0 0 1] cMt |

t See Section 4.5.

(PC)+1 — PC
Compare AR(ARP) to ARCR, placing result in TC bit of status register ST1.

Affects TC; affected by NDX.
Not affected by SXM; does not affect SXM.

The CMPR instruction performs a comparison specified by the value of CM:

If CM = 00, test if AR(ARP) = ARCR
If CM = 01, test if AR(ARP) < ARCR
if CM = 10, test if AR(ARP) > ARCR
If CM = 11, test if AR(ARP) = ARCR

If the condition is true, the TC bit is set to 1. If the condition is false, the TC bit
is setto 0.

Software compatibility with 'C25 can be maintained by resetting the NDX bit
inthe PMST register to 0. This causes any 'C25 instruction that loads auxiliary
register 0 (AROQ) to load the ARCR register also. This allows source-code com-
patibility with the 'C25. Note that the auxiliary registers are treated as unsigned
integers in the comparisons.

1
[label] CMPR constant

Cycle Timings for a Single Instruction

PR PDA PSA PE

1 1 1 1+p
Cycle Timings for a Repeat (RPT) Execution

n [n [n [n+p
CMPR 2
Before Instruction After Instruction
ARP I 4] ARP C— 1]
ARCR [OFFFFh] ARCR
AR4 | 7FFFh) AR4
TC I 1] TC I

Assembly Language Instructions

Compare DBMR or Long Immediate With Data Value CPL

Syntax Direct: [label] CPL [,#IK] dma
Indirect: [label] CPL [#IK {ind} [,next ARP|
Operands Osdmas 127
Ik: 16-bit constant
O<snextARP <7
Opcode Compare DBMR to data value
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1. 0
Direct] 0 1 0 1 1 0 1 1]o0] Data Memoi . Address |
i56 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Indirect:t| 0 1 0 1 1 0 1 1]1] See Subsection 4.1.2 |

Compare data with long immediate
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Direct: 0 1 0 1 1 1 1 1|0| Data Memory Address
irect: 16-Bit Constant

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
001 0 1 1 1 1 1]1] See Subsection 4.1.2

16-Bit Constant

Indirect:

Execution Ik unspecified:
(PC)+1 — PC
Compare DBMR contents to (dma).
If (DBMR) = (dma),
TC=1;
Else,
TC =0.

Ik specified:
(PC)+2 — PC

Compare Ik to (dma).
If Ik = (dma),

TC =1,
Else

TC =0.

Affects TC.
Not affected by SXM.

Description If the two quantities involved in the comparison are equal, the TC bit is set to
one. TC is set to zero otherwise.

Words 1 (If long immediate value is not specified)

Words 2 (If long immediate value is specified)

4-83

CPL Compare DBMR or Long Immediate With Data Value

Cycles Direct: [label] CPL. dma
Indirect: [label] CPL {ind} [,next ARP]
Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand DARAM 1 1 1 14p
Operand SARAM 1 1 1 1+p
ot
Operand Ext 1+d 1+d 1+d 2+d+p
Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Operand DARAM n n n n+p
Operand SARAM n n n n+p
n+1f
Operand Ext n+nd n+nd n+nd n+1+p+nd
1 If the operand and the code are in the same SARAM block.
Cycles Direct: [label] CPL #lk dma
Indirect: [label] CPL #lk {ind} [,next ARP]
Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand DARAM 2 2 2 2+2p
Operand SARAM 2 2 2 2+2p
3t
Operand Ext 2+d 2+d 2+d 3+d+2p
Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Operand DARAM n+1 n+1 n+1 n+1+2p
Operand SARAM n+1 n+1 n+1 n+1+2p
n+2t
Operand Ext n+1 n+1 n+1 n+2+2p
1 If the operand and the code are in the same SARAM block.
Example 1 CPL #060h,60h
Before Instruction After Instruction
Data Memory Data Memory
60h [066h] 60h
TC I 1] TC L Jd

4-84 Assembly Language Instructions

Compare DBMR or Long Immediate With Data Value CPL

Example 2 CPL 60h
Before Instruction After Instruction
Data Memory Data Memory
60h [066h] 60h
DBMR [066h) DBMR
TC l 0] TC
Example 3 CPL #0F1h, * ,AR6
Before Instruction After Instruction
ARP C 7] ARP 4
AR7 [300h] AR?7
Data Memory Data Memory
300h l OF1h]| 300h
TC 1 7 TC
Example 4 CPL * ,AR7
Before Instruction After Instruction
ARP [6] ARP
AR6 | 300h] AR6
Data Memory Data Memory
300h [OF1h] 300h
DBMR l OFOh| DBMR
TC [g TC —

4-85

CRGT Test for ACC Greater Than ACCB

Syntax

Operands
Opcode

Execution

Description

Words

Cycles

Example 1

Example 2

[labe] CRGT

None

15 14 13 12 11 10 9 8

[1 0o 1 1 1 1 1 0

(PC)+1 — PC
If (ACC) > (ACCB)

Then (ACC) - ACCB;1— C
If (ACC) < (ACCB)

Then (ACCB) — ACC;0— C
If (ACC) = (ACCB)

Then 1 — C

Affects C.

The contents of the accumulator (ACC) are compared to the contents of the
accumulator buffer (ACCB). The larger value (signed) is loaded into both regis-
ters. If the contents of the accumulator are greater than or equal to the contents
of the accumulator buffer, the carry bit is set to 1. Otherwise, it is set to 0.

1
[labe] CRGT

Cycle Timings for a Single Instruction

PR PDA PSA PE
1 1 1 14p
Cycle Timings for a Repeat (RPT) Execution
n n n | n+p
CRGT
Before Instruction After Instruction
ACCB | 4h] ACCB [&n]
ACC | 5h) ACC [&n]
c | o] c
CRGT
Before Instruction After Iinstruction
ACCB [5h] ACCB 1)
ACC | 5h] ACC 51
c | o c 1

Assembly Language Instructions

Test for ACC Smaller Than ACCB CRLT

Syntax [label] CRLT
Operands None
Opcode
i5 14 13 12 11 10 9 8 7 5 3 2 1 0
[t o 1+ 1 1 1 1 0 0 0 0 1 1 0 1 1
Execution (PC)+1 — PC
If (ACC) < (ACCB)
Then (ACC) — ACCB;1— C
if (ACC) > (ACCB)
Then (ACCB) — ACC;0— C
If (ACC) = (ACCB)
Then0 — C
Affects C.
Description The contents of the accumulator (ACC) are compared to the contents of the

accumulator buffer (ACCB). The smaller (signed) value is loaded into both reg-
isters. If the contents of the accumulator are less than the contents of the accu-
mulator buffer, the carry bit is set to 1. Otherwise it is set to 0.

Words 1

Cycles [labe] CRLT
Cycle Timings for a Single Instruction
PR PDA PSA PE
1 1 1 1+p
Cycle Timings for a Repeat (RPT) Execution
n [n [n | n+p
Example 1 CRLT
Before Instruction After Instruction
ACCB [5h] ACCB
ACC I ah] ACC
c I 0] c 1]
Example 2 CRLT
Before Instruction After Instruction
ACCB [4h] ACCB
ACC [an) ACC
c l 1] c _____d

4-87

DMOV Data Move in Data Memory

Syntax

Operands

Opcode

Execution

Description

Words
Cycles

4-88

Direct[0 1 1 1 0 1 1

Indirect:f 0 1 1 1 0

Direct: [label] DMOV dma
Indirect: [label] DMOV ({ind} [,next ARP]

O0sdmas< 127
0 s next ARP <7

7 6 5 4 3 2 1 0

[o] Data Memory Address |
7
1

15 14 13 12 11 10 9 8
1

6 5 4 3 2 1 0
| See Subsection 4.1.2 |

15 14 13 12 11 10 9 8
1 1 1

(PC)+1 — PC
(dma) — dma+ 1

Affected by CNF and OVLY.

The contents of the specified data memory address are copied into the con-
tents of the next higher address. DMOV works only within on-chip data RAM
blocks. It works within any configurable RAM block if that block is configured
as data memory. In addition, the data move function is continuous across block
boundaries. The data move function cannot be used on external data memory
or memory-mapped registers. If used on external memory or memory-mapped
registers, DMOV will read the specified memory location but will perform no
operations.

When data is copied from the addressed location to the next higher location,
the contents of the addressed location remain unaltered.

The data move function is useful in implementing the z-! delay encountered
in digital signal-processing. The DMOV function is included in the LTD, MACD,
and MADD instructions (see the LTD, MACD, and MADD instructions for more
information).

1

Direct: [label] DMOV dma
Indirect: [labe]] DMOV {ind} [,next ARP

Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand DARAM 1 1 1 1+p
Operand SARAM 1 1 1 1+p
3t
Operand Ext 2+2d 2+2d 2+2d 5+2d+p

Assembly Language Instructions

DMOV

Data Move in Data Memory

Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Operand DARAM n n n n+p
Operand SARAM 2n-2 2n-2 2n-2 2n-2+p
2n+1t
Operand Ext 4n-2+2nd | 4n—2+2nd | 4n-2+2nd 4n+1+2nd+p

1 If the operand and the code are in the same SARAM block.

Example 1 DMOV DAT8 ;(DP = 6)
Before Instruction After Instruction
Data Memory Data Memory
308h [43h] 308h
Data Memory Data Memory
309h I 2n] 309h
Example 2 DMOV *,AR1
Before Instruction After Instruction
ARP [o aRe
AR1 | 30Ah| AR1 30Ah
Data Memory Data Memory
30Ah | 40h] 30Ah
Data Memory Data Memory
308h I a1h] 308h

48

©

EXAR Exchange ACCB With Accumulator

Syntax

Operands
Opcode

Execution

Description

Words
Cycles

Example

[label] EXAR

None

15 14 13 12

11 10 9

[1 0 1 1

1 1 1

(PC) +1 — PC
(ACCB) « (ACC)

The contents of the accumulator is exchanged (switched) with the contents of

the accumulator buffer (ACCB).

1

[label] EXAR
Cycle Timings for a Single Instruction
PR PDA PSA PE
1 1 1 1+p
Cycle Timings for a Repeat (RPT) Execution
n [n [n [n+p
EXAR
Before Instruction After Instruction
ACC [043h] ACC
ACCB | 02h| ACCB

Assembly Language Instructions

Idle Until Interrupt IDLE

Syntax

Operands
Opcode

Execution

Description

Words
Cycles

Example

[label] IDLE

None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[+ o 1 1.1 1 1 0 0 0 1 0 0 0 1 0

(PC)+1 — PC
Affected by INTM.

The IDLE instruction forces the program being executed to wait until an un-
masked interrupt (external or internal) or reset occurs. The PC is incremented
only once, and the device remains in an idle state until interrupted.

The idle state is exited by an unmasked interrupt even if INTMis 1. If INTM is
1, the program scontinue executing at the instruction following the IDLE. If
INTM is 0, the program branches to the corresponding interrupt service rou-
tine. Execution of the IDLE instruction causes the 'C5x to enter the power-
down mode. During the idle mode, the timer and serial port peripherals are still
active. Therefore, timer and peripheral interrupts, as well as reset or external
interrupts, will remove the processor from the idle mode.

1
[label] IDLE

Cycle Timings for a Single Instruction
PR PDA PSA PE
1 1 1 1+p
Cycle Timings for a Repeat (RPT) Execution

Not Repeatable

IDLE ;The processor idles until a reset or unmasked
;interrupt occurs.

4-91

IDLE2 /dle Until Interrupt — Low-Power Mode

Syntax

Operands
Opcode

Execution

Description

Words
Cycles

Example

4-92

[label] IDLE2

None

15 14 13 12 11 10 9 8 7 6 5 4 3
[1 0o 1 1 1

(PC)+1 — PC
Affected by INTM.

The IDLE2 instruction removes the functional clock input from the internal de-
vice. This allows for an extremely low power mode. The PC is incremented
only once, and the device remains in an idle state until interrupted by reset or
an unmasked interrupt.

The low power mode is exited by an unmasked interrupt even if INTM is high.
If INTM is high, the program continues executing at the instruction following
the IDLE2. If INTM is low, then the program branches to the corresponding in-
terrupt service routine. Execution of the IDLE2 instruction causes the 'C5x to
enter the power-down mode. Unlike the idle mode, in the idle2 mode the pe-
ripherals (serial ports or timer) are not active.

The idle2 mode is exited by a low logic level on an external interrupt
(INTT-INT4), RS, or NMI with a duration of at least five machine cycles since
interrupts are not latched as in normal device operation.

1
[labe] IDLE2

Cycle Timings for a Single Instruction
PR PDA PSA PE
1 1 1 1+p
Cycle Timings for a Repeat (RPT) Execution
Not Repeatable

IDLE2 ;The processor idles until a reset or unmasked external
;interrupt occurs.

Assembly Language Instructions

Input Data From Port IN

Syntax Direct: [label] IN dma, PA
Indirect: [label]] IN {ind} ,PA [,next ARP]
Operands 0 sdmasx 127
0 s next ARP <7
0 < PA <65535
Opcode
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct: 1 0 1 0 1 1 1 1 | 0 | Data Memory Address
16-Bit Constant
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ndirect 10 1 0 1 1 1 1]1] See Subsection 4.1.2
16-Bit Constant
Execution (PC)+2 — PC
While (repeat counter) = 0
Port address — address bus A15—-A0
Data bus D15-D0 — dma
Port address — dma
Port address + 1 — Port address
(repeat counter — 1) — repeat counter
Description The IN instruction reads a 16-bit value from an external I/O port into the speci-
fied data memory location. The IS line goes low to indicate an |/O access, and
the STRB, RD, and READY timings are the same as for an external data
memory read. Note that port addresses 50h—5Fh are memory-mapped (see
subsection 5.1.1), but the other port addresses are not.
RPT can be used with the IN instruction to read in consecutive words from I/O
space to data space. In the repeat mode, the port address (PA) is incremented
after each access.
Words 2
Cycles Direct: [label] IN dma, PA
Indirect: [label] IN {ind} ,PA [,next ARP]
Cycle Timings for a Single Instruction
PR PDA PSA PE
Destination DARAM 2+i0gy¢ 2+i0gyc 2+i0gp¢ 3+i0grc+2Pcode
Destination SARAM 2+i°src 2+i°src 2+i°SfC 3+iosrc+2pcode
3+iogct
Destination EXt 3+dds[+i°src 3+ddst+i°src 3+ddst+iosrc 6+ddst+i°src+2pcodo

4-93

IN Input Data From Port

Cycle Timings for a Repeat (RPT) Execution
Destination DARAM 2n+niogc 2n+niog,c 2n+Ni0g,¢ 2n+14ni0gc+2Pcode
Destination SARAM 2n+Niogyc 2n+niog,c 2n+niog,c 2n+1+4Ni0grc+2Pcode
2n+2+niogt
Destination Ext 4n—1+ndggs+ 4n—1+ndgss+ 4n—1+ndggs+ 4n+2+ndggp+Niogo+
NiOgrc NiOgrc NiOsrc 2Pcode

t If the destination operand and the code are in the same SARAM block.

Example 1 IN DAT7,PAS ;Read in word from peripheral on port
;address 5. Store in data memory location
;307h (DP=6).

Example 2 IN *,PAO ;Read in word from peripheral on port

;address 0. Store in data memory location
;specified by current auxiliary register.

4-94 Assembly Language Instructions

Soft Interrupt INTR

Syntax

Operands

Opcode

Execution

Description

[label) INTR k

O0<ks31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 1+ 1 1 1 1 0 0 1 1 INTR# 1

t See Section 4.5.

(PC) + 1 — stack
corresponding interrupt vector — PC

Not affected by INTM.
Affects INTM.

The INTR instruction is a software interrupt that transfers program control to
the program memory address specified by k (see the following table). The in-
struction allows any interrupt service routine to be executed from your soft-
ware. During execution of the instruction, the contents of PC + 1 is pushed onto
the stack. Note that the interrupt mask has no effect on the INTR instruction.
An INTR interrupt for the external interrupts (INTT1-INT4) looks exactly like an
external interrupt (an interrupt acknowledge is generated, the appropriate bit
in the IFR is cleared, interrupts are globally disabled (INTM = 1), and context
is automatically saved). See subsection 5.1.2 for a complete description of in-
terrupt operation.

k Interrupt Location k Interrupt Location
0 S oh 16 Reserved 20h
1 INTT 2h 17 TRAP 22h
2 | INT2 4h 18 NMI 24h
3 NT3 6h 19 Reserved 26h
4 TINT 8h 20 User-defined 28h
5 RINT Ah 21 User-defined 2Ah
6 XINT Ch 22 User-defined 2Ch
7 TRNT Eh 23 User-defined 2Eh
8 TXNT 10h 24 User-defined 30h
9 INT4 12h 25 User-defined 32h
10 Reserved 14h 26 User-defined 34h
1 Reserved 16h 27 User-defined 36h
12 Reserved 18h 28 User-defined 38h
13 Reserved 1Ah 29 User-defined 3Ah
14 Reserved 1Ch 30 User-defined 3Ch
15 Reserved 1Eh 31 User-defined 3Eh

4-95

INTR Soft interrupt

Words 1
Cycles [label] INTR k
Cycle Timings for a Single Instruction
PR PDA PSA PE
4 4 4 44+3pt

Cycle Timings for a Repeat (RPT) Execution

Not Repeatable

 The’C5x performs speculative fetching by reading two additional instruction words. if PC discon-
tinuity is taken, these two instruction words are discarded.

Example INTR 3 ;Control is passed to program memory location 6h
;PC + 1 is pushed onto the stack.

Assembly Language Instructions

Load Accumulator WithAccB LACB

Syntax

Operands

Opcode

Execution

Description
Words
Cycles

Example

[label] LACB

None

15 14 13 12 11 _10 9 8 7 6 5 4 3 2 1 0
[1+ o 1 1 1+ 1 1 0 0 0 0 1 1 1

(PC) +1 — PC
(ACCB) — ACC

The accumulator is loaded with the contents of the accumulator buffer (ACCB).

1

[label] LACB
Cycle Timings for a Single Instruction
PR PDA PSA PE
1 1 1 1+p
Cycle Timings for a Repeat (RPT) Execution
n [n [n [n+p
LACB
Before Instruction After Instruction
ACC ACC 5555AAAAD
ACCB 5555AAAAh ACCB 5555AAAAN

4-97

LACC Load Accumulator With Shift

Syntax

Operands

Opcode

Execution

Description

Words

4-98

Direct: [label] LACC dma [,shift1]
Indirect: [labell LACC {ind} [,shift1 [,next ARPF]]
Immediate: [labell LACC #lk [,shiftZ]

O0sdmas 127

Os<next ARP <7

0 s shift1 <16 (defaults to 0)
-32768 < Ik < 32767

0 sshift2<15 (defaults to 0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direc:| 0 0 0 1| SHFT! [0] Data Memory Address |

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Indirect| 0 0 0 1 | SHFT! [1] See Subsection 4.1.2 |

i6 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i o 1 1t 1 1 1 1 1 0 0 O SHFT t
Long: -
16-Bit Constant
Load ACC with shift of 16
15 14 13 12 11 10 8 7 6 5 4 3 2 1 0
Direct| 0 1 1 0 1 0 1 0]O0] Data Memory Address |

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Indirectf 0 1 1 0 1 0 1 0] 1| See Subsection 4.1.2 |

t See Section 4.5.

Direct or Indirect Addressing:

(PC) +1 — PC
(dma) x 2shift! — ACC

Long Immediate Addressing:
(PC)+2 — PC
lk x 2shifz . ACC

Affected by SXM.

The contents of the specified data memory address or a 16-bit constant are
left-shifted and loaded into the accumulator. During shifting, low-order bits are
zero-filled. High-order bits are sign-extended if SXM = 1 and zeroed if SXM = 0.

1 (Direct or indirect addressing)

2 (Long immediate addressing)

Assembly Language Instructions

Load Accumulator With Shift LACC

Cycles Direct: [label LACC dma [,shift1]
Indirect: [labe] LACC {ind} [,shift1 [,next ARP]]
Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand DARAM 1 1 1 14p
Operand SARAM 1 1 1 1+p
ot
Operand Ext 1+d 14d 1+d 2+d+p
Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Operand DARAM n n n n+p
Operand SARAM n n n n+p
n+1t
Operand Ext n+nd n+nd n+nd n+1+p+nd

1 If the operand and the code are in the same SARAM block.
Immediate: [labe]l LACC #lk[,shift2]

Cycle Timings for a Single Instruction
PR PDA PSA PE
2 2 2 2+2p
Cycle Timings for a Repeat (RPT) Execution
Not Repeatable
Example 1 LACC DAT6,4 ;(DP = 8, SXM = 0)
Before Instruction After Instruction
Data Memory Data Memory
406h [01h] 406h
ACC [o12345678H| AcC
c (o]
Example 2 LACC *,4 ; (SXM = 0)
Before Instruction After Instruction
ARP [3 e
AR2 [0300h) AR2
Data Memory Data Memory
300h l OFFh| 300h

ACC [012345678h ACC OFFOh
c c

LACC Load Accumulator With Shift

Example 3 LACC #FO00Oh,1 ;(SXM = 1)
Before Instruction After Instruction
ACC [012345678h| ACC OFFFFEO00h
c (o]

4-100 Assembly Language Instructions

Load Low Accumulator and Clear High Accumulator LACL

Syntax Direct: [labe] LACL dma
Indirect: [labe] LACL {ind} [,next ARP|
Immediate: [labe] LACL #k
Operands O0s<dmas< 127
OsnextARP <7
O0=<k=<255
Opcode
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o0
Direct]| 0 1 1 0 1 0 0 1] 0] Data Memory Address |
16 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Indirect:{| 0 1 1 0 1 0 0 1] 1] See Subsection 4.1.2 |
i56 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o0
Shortimmediate: 1 0 1 1 1 0 0 1| 8-Bit Constant |
Execution (PC)+1 — PC
Direct or Indirect Addressing:
0 — ACC(31-16)
(dma) — ACC(15-0)
Short Immediate Addressing:
0 — ACC(31-8)
k — ACC(7-0)
Not affected by SXM.
Description The contents of the addressed data memory location or a zero-extended 8-bit

constant are loaded into the 16 low-order bits of the accumulator. The upper
half of the accumulator is zeroed. The data is treated as an unsigned 16-bit
number rather than a 2s-complement number. There is no sign-extension of
the operand with this instruction, regardless of the state of SXM.

Words 1
Cycles Direct: [labe] LACL dma
Indirect: [labej LACL {ind} [,next ARP|
Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand DARAM 1 1 1 1+p
Operand SARAM 1 1 1 1+p
ot
Operand Ext 1+d 1+d 1+d 2+d+p

4-101

LACL Load Low Accumulator and Clear High Accumulator

Example 1

Example 2

Example 3

4-102

Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Operand DARAM n n n n+p
Operand SARAM n n n n+p
n+1t
Operand Ext n+nd n+nd n+nd n+1+p+nd

1 If the operand and the code are in the same SARAM block.

Immediate: [labe] LACL #k
Cycle Timings for a Single Instruction
PR PDA PSA PE

1 1 1 1+p

Cycle Timings for a Repeat (RPT) Execution

Not Repeatable

LACL DAT1 ;(DP = 6)
Before Instruction

Data Memory
301h | oh|
ACC [7FFFFFFFh]
c

LACL *—,AR4
Before Instruction

ARP [0
ARO [401h]

Data Memory
401h [00FFh]
ACC | 7FFFFFFFh]

c

LACL #10h

Before Instruction
ACC X 7FFFFFFFh
I]

After Instruction

Data Memory
301h
ACC
C
After Instruction
ARP
ARO
Data Memory
401h
ACC
C
After Instruction
ACC X 010h

Assembly Language Instructions

Load Accumulator With Shift Specified by TREG1 LACT

Syntax

Operands

Opcode

Execution

Description

Words
Cycles

Direct: [label] LACT dma
Indirect: [label] LACT {ind} [,next ARP]

O0<dma=x127
O<nextARP <7
i56 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o0
Direct| 0 1 1 0 1 0 1 1]0] Data Memory Address |
i 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o0
Indirect:/| 0 1 1 0 1 0 1 1] 1] SeeSubsection4.1.2 |
(PC)+1 — PC
(dma) x 2TREG1(3-0) . ACC
If SXM = 1:
Then (dma) is sign-extended.
If SXM = 0:
Then (dma) is not sign-extended.
Affected by SXM.

The LACT instruction loads the accumulator with a data memory value that has
been left-shifted. The left-shift is specified by the four LSBs of TREG1, resuilt-
ing in shift options from 0 to 15 bits. Using TREG1’s contents as a shift code
provides a dynamic shift mechanism. During shifting, the high-order bits are
sign-extended if SXM = 1 and zeroed if SXM = 0.

LACT may be used to denormalize a floating-point number if the actual expo-
nentis placed in the four LSBs of the T register and the mantissa is referenced
by the data memory address. Note that this method of denormalization can be
used only when the magnitude of the exponent is four bits or less.

Software compatibility with the 'C25 can be maintained by setting the TRM bit
of the PMST status register to zero. This causes any 'C25 instruction that loads
TREGO to write to all three TREGs. Subsequent calls to LACT will contain the
correct shift value in TREG1, maintaining object-code compatibility.

1

Direct: [label] LACT dma
Indirect: [label] LACT {ind} [,next ARP]

Cycle Timings for a Single Instruction

PR PDA PSA PE
Operand DARAM 1 1 1 1+p
Operand SARAM 1 1 1 1+p
ot
Operand Ext 1+d 1+d 1+d 2+d+p

4-103

LACT Load Accumulator With Shift specified by TREG1

Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Operand DARAM n n n n+p
Operand SARAM n n n n+p
n+1t
Operand Ext n+nd n+nd n+nd n+1+p+nd
1 If the operand and the code are in the same SARAM block.
Example 1 LACT DAT1 ;(DP = 6. SXM = 0)
Before Instruction After Instruction
Data Memory Data Memory
301h [1376h] 301h
ACC [98F7EC83h] ACC
o] C
TREG1 I 14h| TREG1
Example 2 LACT *—,AR3 ;(SXM = 1)
Before Instruction After Instruction
ARP [1] ARP 3
AR1 [310h] AR1
Data Memory Data Memory
310h L OFFOOh| 310h
ACC [098F7EC83h] ACC
C (o}
TREG1 [11h] TREG1)
4-104 Assembly Language Instructions

Load Accumulator With Memory-Mapped Register LAMM

Syntax

Operands

Opcode

Execution

Description

Words
Cycles

Example 1

Direct: [labell LAMM dma
Indirect: [label] LAMM {ind} [,next ARP|

O=s<dmas 127
O<nextARP =7

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct| 0 0 0 0 1 0 0 0] o] Data Memory Address |
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Indirect:l o 0 o o 1 0 0 O | 1 [See Subsection 4.1.2 I
(PC)+1 — PC
(dma) — ACC
Not affected by SXM.

The lower half of the accumulator is loaded with the contents of the addressed
memory-mapped register. The upper half of the accumulator is zeroed. The
9 MSBs of the data memory address are set to zero, regardless of the current
value of DP or the upper 9 bits of AR(ARP). This instruction allows any location
on data page zero to be loaded into the accumulator without modifying the DP
field in status register STO.

1

Direct: [label] LAMM dma
Indirect: [label] LAMM {ind} [,next ARP]

Cycle Timings for a Single Instruction

PR PDA PSA PE
Operand MMR* 1 1 1 1+p
Operand MMPORT 1+i0grc 1+i0grc 1+iodgre 1+2+p+iodge

Cycle Timings for a Repeat (RPT) Execution

PR PDA PSA PE
Operand MMR# n n n n+p
Operand MMPORT | n+miogc N+MiOgrc N+Miogyc N+p+Miogrc

t Add one more cycle for peripheral memory mapped access.
¥ Add n more cycles for peripheral memory mapped access.

LAMM BMAR ;(DP = 6)
Before Instruction After Instruction
ACC [22221376h] ACC
BMAR [5555h] BMAR
Data Memory Data Memory
31Fh [1000h] 31Fh

4-105

LAMM Load Accumulator With Memory-Mapped Register

Example 2 LAMM *

ARP
AR1
ACC
PRD

Data Memory
325h

Before Instruction

1]

325h]

22221376h]|

OFh]

1000h|

After Instruction

ARP I

AR _____325h

ACC

PRD
Data Memory

a2sh

Note that the value in data memory location 325h is not loaded into the accu-
mulator. The value at data memory location 25h (address of the PRD register)

is loaded.

4-106

Assembly Language Instructions

Load Auxiliary Register LAR

Syntax

Operands

Opcode

Execution

Description

Direct:

Indirect:

Short:

Long:

Direct: [labe] LAR AR, dma

Indirect: [labej LAR AR, {ind} [,next ARP|
Short Immediate [label] LAR AR, #k

Long Immediate [label] LAR AR, #lk

O0sdmasx 127

0 < auxiliary register AR < 7
O<next ARP <7
0sks255

0 < Ik < 65535

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0 0 0 Oof ARXT |o] Data Memory Address |

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0 o o o ARxt T1] See Subsection 4.1.2 |

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[t o 1 1 of ARxt | 8-Bit Constant |

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 0 1 1 1 i 11 0 0 O O 1 ARX T

16-Bit Constant

t See Section 4.5.

Direct or Indirect Addressing:

(PC)+1 — PC

(dma) — auxiliary register AR

Short Immediate Addressing:

(PC)+1 — PC

k — auxiliary register AR

Long Immediate Addressing:

(PC)+2 — PC

Ik — auxiliary register AR

Affected by NDX.

The contents of the specified data memory address or an 8-bit or 16-bit con-
stant are loaded into the designated auxiliary register (AR). The specified con-
stant is acted upon like an unsigned integer, regardless of the value of SXM.

If the NDX bit of the PMST register is 0, then ARCR and INDX registers are
also loaded to maintain compatibility with the 'C2x.

The LAR and SAR (store auxiliary register) instructions can be used to load
and store the auxiliary registers during subroutine calls and interrupts. If an
auxiliary register is not being used for indirect addressing, LAR and SAR en-

4-107

LAR _Load Auxiliary Register

able the register to be used as an additional storage register, especially for
swapping values between data memory locations without affecting the con-
tents of the accumulator.

Words 1 (Direct, indirect, or short immediate addressing)
2 (Long immediate addressing)
Cycles Direct: [labe] LAR AR, dma
Indirect: [label] LAR AR, {ind} [,next ARP]
Cycle Timings for a Single Instruction
PR PDA PSA PE
Source DARAM 2 2 2 2+Pcode
Source SARAM 2 2 2 2+Pcode
3t
Source Ext 2+dgc 2+dgc 2+dgc 3+dgc+Pcode
Cycle Timings for a Repeat (RPT) Execution
Source DARAM 2n 2n 2n 2N+Pcode
Source SARAM 2n 2n 2n 2N+Peode
2n+1t
Source Ext 2n+ndg,c 2n+ndgyc 2n+ndgre 2n+1+Nndsrc+Peode

1 If the source operand and the code are in the same SARAM block.

Example 1

4-108

Short Immediate [label] LAR AR, #k

Cycle Timings for a Single Instruction

PR PDA PSA PE
2 2 2 2+Pcode
Cycle Timings for a Repeat (RPT) Execution
Not Repeatable

Long Immediate [labe]] LAR AR, #lk

Cycle Timings for a Single Instruction

PR PDA PSA PE
2 2 2 2+2p
Cycle Timings for a Repeat (RPT) Execution
Not Repeatable

LAR ARO,DAT16 ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
310h l 18h] 310h
ARO l ehJ ARO

Assembly Language Instructions

Load Auxiliary Register LAR

Example 2 LAR AR4, *—
Before Instruction After Instruction
ARP 1 7 A —
Data Memory Data Memory
300h | 32h] 300h [3]
AR4 (300h | AR4 7|
Note:

LAR in the indirect addressing mode ignores any AR modifications if the AR
specified by the instruction is the same as that pointed to by the ARP. There-
fore, in Example 2, AR4 is not decremented after the LAR instruction.

Example 3 LAR AR4,#01h
Before Instruction After Instruction

AR4 C OFFoh] AR4

Example 4 LAR AR4,#3FFFh
Before Instruction After Instruction
AR4 [oh] AR4 ‘ 3FFFh

4-109

LDP Load Data Memory Pointer

Syntax Direct: [labell] LDP dma
Indirect: [labell LDP {ind} [,next ARP|
Short Immediate: [labe]] LDP #k

Operands 0Osdmas 127
OsnextARP <7
O0s<ks511

Opcode

i 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o0
Direc:f] 0 0 0 0 1 1 0 1]0] Data Memory Address |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
indirect:[0 0 0 0 1 1 0 1] 1] SeeSubsection4.1.2 |
156 14 13 12 1 10 9 8 7 6 65 4 3 2 1 O
Shor:{ 1 0 1 1 1 1 0] 9-Bit Constant |

Execution (PC)+1 — PC
Direct or Indirect Addressing:

Nine LSBs of (dma) — data page pointer (DP) status bits
Short Immediate Addressing:

k — data page pointer register (DP) status bits

Affects DP.

Description The nine LSBs of the contents of the addressed data memory location or a 9-bit
immediate value are loaded into the DP register. The DP and 7-bit data
memory address are concatenated to form 16-bit data memory addresses.
The DP can also be loaded by the LST instruction.

Words 1

Cycles Direct: [label LDP dma
Indirect: [labell LDP {ind} [,next ARP]

Cycle Timings for a Single Instruction
PR PDA PSA PE
Source DARAM 2 2 2 2+Pcode
Source SARAM 2 2 2+Pcode
3t
Source Ext 2+dgrc 2+dgrc 2+dgyc 3+dsretPeode
4-110 Assembly Language Instructions

Load Data Memory Pointer

LD

o

Cycle Timings for a Repeat (RPT) Execution

PR PDA PSA PE
Source DARAM 2n 2n 2n 2n+Peode
Source SARAM 2n 2n 2n 2n+Peode
2n+1t
Source Ext 2n+ndgc 2n+ndgc 2n+ndgc 2n+1+ndgc+Peode

1 If the source operand and the code are in the same SARAM block.

Example 1

Example 2

Example 3

Short Immediate:

[labe]] LDP #k

Cycle Timings for a Single Instruction
PR PDA PSA PE
2 2 2 2+Pcode
Cycle Timings for a Repeat (RPT) Execution
Not Repeatable
LDP DAT127 ;(DP = 511)
Before Instruction After Instruction
Data Memory Data Memory
OFFFFh | OFEDCh] OFFFFh
o | FFR] oP
LDP #0h
Before Instruction After Instruction
DP | 1FFh) DP
LDP * , AR5
Before Instruction After Instruction
ARP I] e -
AR4 [300h] AR4
Data Memory Data Memory
300h [06h] 300h
DP | 1FFh) DP

4-111

LMMR Load Memory-Mapped Register

Syntax Direct: [labe]] LMMR dma, #addr
Indirect: [label] LMMR {ind}, #addr [,next ARP]
Operands O0sdmas127
O<nextARP <7
0 < addr < 65535
Opcode
i56 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
brectl 10 © 0 1t 0 o t]|of DataMemoryAddress
16-Bit Constant
i56 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O
_ 1.0 0 0 1 0 0 1[1] See Subsection 4.1.2
Indirect:
16-Bit Constant
Execution PFC — MCS
(PC)+2 — PC
Ik - PFC
While (repeat counter = 0):
(src, addressed by PFC) — (dst, specified by lower 7 bits of dma)
(PFC)+1 — PFC
(repeat counter) — 1 — repeat counter
MCS — PFC
Description The memory-mapped register pointed at by the lower 7 bits of the directly or
indirectly addressed data memory value is loaded with the contents of the data
memory location addressed by the 16-bit address, addr. The 9 MSBs of the
data memory address are set to zero, regardiess of the current value of the
data page pointer (DP) or the upper 9 bits of AR(ARP). This instruction allows
any memory location on data page zero to be accessed without modifying the
DP field in status register STO.
When using the LMMR instruction with the RPT instruction, the source ad-
dress, #addr, is incremented after every memory-mapped load.
Words 2
Cycles Direct: [label LMMR dma, #addr

Indirect: [label]] LMMR {ind}, #addr [,next ARP]

Cycle Timings for a Single Instruction

PR PDA PSA PE
Source DARAM 2 2 2 2+2Pcode
Destination MMR#
Source SARAM 2 2 2 2+2Pcode
Destination MMR# 3t

4-112

Assembly Language Instructions

Load Memory-Mapped Register LMMR

Cycle Timings for a Single Instruction (continued)
PR PDA PSA PE
Source Ext 2+pgre 2+Pgre 2+psrc 3+Psrc+2Pcode
Destination MMR#
Source DARAM 3+iogst 3+i0gst 3+i0gst 5+2Pcode+iOdst
Destination MMPORT
Source SARAM 3+i0gst 3+i0gst 3+i0gst 5+2Pcode+iOdst
Destination MMPORT 4t
Source Ext 3+Pgrc+iOgst 3+Psrc+iogst 3+Psrct+iogst 6+Psrc+2Pcode+iOdst
Destination MMPORT
Cycle Timings for a Repeat (RPT) Execution
Source DARAM 2n 2n 2n 2n+2pcode
Destination MMR$
Source SARAM 2n 2n 2n 2n+2Pcode
Destination MMRS$ 2n+1t
Source Ext 2n+ndg,c 2n+ndg,, 2n+ndg,c 2n+1+ndsrc+2Pcode
Destination MMRS
Source DARAM 3n+niogst 3n+niogst 3n+niogst 3n+3+Ni0gst+2Pcods
Destination MMPORT
Source SARAM 3n+niogst 3n+niogst 3n+niogst 3n+3+Ni0gst+2Pcode
Destination MMPORT 3n+1+nioggst
Source Ext 4n—1+ndge+ | 4n—14ndg e+ | 4n—1+ndge+ | 4n+2+ndg o+
Destination MMPORT Niogst Niogst Niogst Niogst+2Pcode
1 If the source operand and the code are in the same SARAM block.
Add one more cycle if peripheral memory mapped register access.
§ Add n more cycles if peripheral memory mapped register access.
Example 1 LMMR DBMR,#300h
Before Instruction After Instruction
Data Memory Data Memory
300h 1376h] 300h
DBMR [5555h] DBMR
Example 2 LMMR *,#300h,AR4 ;sCBCR = 1Eh
Before Instruction After Instruction
ARP [0 ARO
ARO [31En ARO (C———3iEn
Data Memory Data Memory
300h [20n) 300h
CBCR [oh] CBCR

4-113

LPH Load Product High Register

Syntax

Operands

Opcode

Execution

Description

Words
Cycles

Example 1

4-114

(dma) — P register (31-16)

Direct: [labe] LPH dma

Indirect: [label] LPH {ind} [,next ARP]

0=dmax127

O=<nextARP <7

15 14 13 12 1 10 9 8 7 6 65 4 3 2 1 O
Directf 0 1 1 1 0 1 0 1]0] Data Memory Address |

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Indirec:| 0 1 1 1 0 1 0 1] 1] See Subsection 4.1.2 |

(PC)+1 — PC

The P register high-order bits are loaded with the contents of data memory.
The low-order P register bits are unaffected.

The LPH instruction can be used for restoring the high-order bits of the P regis-
ter after interrupts and subroutine calls if automatic context save is not used.

1

Direct: [labe] LPH dma
Indirect: [label] LPH {ind} [,next ARP]
Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand DARAM 1 1 1 1+p
Operand SARAM 1 1 1 1+p
ot
Operand Ext 1+d 1+4d 1+d 2+d+p
Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Operand DARAM n n n n+p
Operand SARAM n n n n+p
n+1t
Operand Ext n+nd n+nd n+nd n+1+p+nd
T If the operand and the code are in the same SARAM biock.
LPH DATO ;(DP = 4)
Before Instruction After Instruction
Data Memory Data Memory
200h [OF79Ch| 200h
P [30079844h] P

Assembly Language Instructions

Load Product High Register LPH

Example 2 LPH * ,AR6
Before Instruction After Instruction
ARP [5] ARP
ARS [200h] ARS
Data Memory Data Memory
200h [OF75Ch] 200h
P [30079844h] P

LST Load Status Register

Syntax

Operands

Opcode

Execution

Description

Words

4-116

Direct[0 0 0 0 1 1

Indirect:t]| 0 0 0 0 1 1

Direct: [labell LST #n, dma
Indirect: [label] LST #n, {ind} [,next ARP]

0<dma=x<127

n=0,1

OsnextARP <7

LST #0

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:t) 0 0 0 0 1 1 1 0]O0] Data Memory Address |

i5 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 0
Indirec:] 0 0 0 0 1 1 1 0] 1] See Subsection 4.1.2 |

LST #1
15 14 13 12 11 10 9 8 6 5 4 3 2 1 0
1

7

[0] Data Memory Address |
7
1

-t

15 14 13 12 11 10 6 5 4 3 2 1 0

[See Subsection 4.1.2 |

-
- |00

(PC)+1 — PC
(dma) — status register STn
dma (bits 13—-15) — ARP (regardless of n)

Affects ARB, ARP, OV, OVM, DP, CNF, TC, SXM, C, HM, XF, and PM.
Does not affect INTM.

Status register STnis loaded with the addressed data memory value. Note that
the INTM bit is unaffected by LST #0. In addition, the LST #0 instruction does
not affect the ARB field in the ST1 register even though a new ARP is loaded.
If anext ARP value is specified via the indirect addressing mode, the specified
value is ignored. Instead, ARP is loaded with the value contained within the
addressed data memory word.

Note:
When ST1 is loaded, the value loaded into ARB is also loaded into ARP.

The LST instruction can be used for restoring the status registers after subrou-
tine calls and interrupts.

1

Assembly Language Instructions

Load Status Register LST
Cycles Direct: [label) LST #n, dma
Indirect: [label] LST #n, {ind} [,next ARP]
Cycle Timings for a Single Instruction
PR PDA PSA PE
Source DARAM 2 2 2 2+Pcode
Source SARAM 2 2 2 2+Pcode
at
Source Ext 2+ds,c 2+dg/o 2+dgc 3+dgrc+Pcods
Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Source DARAM 2n 2n 2n 2n+Pcode
Source SARAM 2n 2n 2n 2N+Pcode
2n+1t
Source Ext 2n+ndg¢ 2n+ndg¢ 2n+ndgc 2n+1+ndg;c+Pcode

t If the source operand and the code are in the same SARAM block.

Example 1 MAR *,ARO
LST #0,*,AR1 ;The data memory word addressed by the contents
;of auxiliary register ARO is loaded into
;status register S8TO,except for the INTM bit.
;Note that even though a next ARP value is
;specified, that value is ignored, and the
;old ARP is not loaded into the ARB.
Example 2 LST #0,60h ;(DP = 0)
Before Instruction After Instruction
Data Memory Data Memory
60h [2404h] 60h
sTo C o] sTo
ST1 | 0580h| STH 0580h
Example 3 LST #0,*—,AR1
Before Instruction After Instruction
ARP I 4] ARP
AR4 I 3FFh] AR4 3FEh
Data Memory Data Memory
3FFh [OEE04h] 3FFh
sTo [oEER] SO
STH | OF780h) ST1 OF780h

4-117

LST Load Status Register

Example 4 LST #1,00h ;(DP = 6)

Before Instruction After Instruction

Data Memory

Data Memory
300h | OE1BCh| 300h OE1BC
sTo L 0406h| sTo
ST1 | 09A0] ST1 OE1BCh

4-118 Assembly Language Instructions

Load TREGO LT

Syntax

Operands

Opcode

Execution

Description

Words
Cycles

Direct| 0 1 1 1 0 0 1

Indirect:f 0 1 1 1 0 0 1

Direct: [label} LT dma
Indirect: [label] LT {ind} [,next ARP]

O=<dmas127
O=<nextARP <7

7 6 5 4 3 2 1 o0
[o] Data Memory Address |

15 14 13 12 11 10 9 8
1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
111

| See Subsection 4.1.2 |

(PC)+1 — PC
(dma) — TREGO

If TRM = 0:
(dma) — TREG1
(dma) — TREG2

Affected by TRM.

TREGO is loaded with the contents of the specified data memory address
(dma). The LT instruction may be used to load TREGO in preparation for multi-
plication. See the LTA, LTD, LTP, LTS, MPY, MPYA, MPYS,and MPYU instruc-
tions. If the TRM bit of the PMST register is 0, then TREG1 and TREG2 are
also loaded to maintain compatibility with the 'C25. The TREGs are memory-
mapped registers and may be read and written with any instruction that ac-
cesses data memory. Note that TREGH1 is only 5 bits and TREG2 is only 4 bits.

1

Direct: [labe] LT dma
Indirect: [labell LT {ind} [,next ARP|

Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand DARAM 1 1 1 1+p
Operand SARAM 1 1 1 1+p
ot
Operand Ext 14d 1+4d 1+d 2+d+p
Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Operand DARAM n n n n+p
Operand SARAM n n n n+p
n+1t
Operand Ext n+nd n+nd n+nd n+1+p+nd

1 If the operand and the code are in the same SARAM block.

4-119

LT Load TREGO

Example 1 LT DAT24 ;(DP = 8. TRM = 1).
Before Instruction
Data Memory
418h 62h
TREGO [3h|
Example 2 LT *,AR3 ; (TRM = 0)
Before Instruction
ARP | 2
AR2 l 418h|
Data Memory
418h [62h]
TREGO [3h]
TREG1 | 4h]
TREG2 [5h]
4-120

After Instruction

Data Memory
418h
TREGO

After Instruction

ARP 3
AR2

Data Memory
418h
TREGO
TREG1
TREG2

Assembly Language Instructions

Load TREGO and Accumulate Previous Product LTA

Syntax

Operands

Opcode

Execution

Description

Words
Cycles

Direct| 0 1 1 1 0 0

Indirectt/ 0 1 1 1 0 0

Direct: [labell LTA dma
Indirect: [label] LTA {ind} [,next ARF]

O0sdmas 127
O=<nextARP <7

15 14 13 12 11 10 6 5§ 4 3 2 1 0

7

[o] Data Memory Address |
7
1

156 14 13 12 11 10 6 5 4 3 2 1 0

| See Subsection 4.1.2 |

(o] [{] [=] [(e]
[[o-] [=] [.)

(PC)+1 — PC
(dma) — TREGO
(ACC) + (shifted P register) — ACC

Affected by OVM, PM, and TRM; affects OV and C.

TREGO is loaded with the contents of the specified data memory address
(dma). The contents of the product register, shifted as defined by the PM status
bits, are added to the accumulator, with the result left in the accumulator. If the
TRM bit of the PMST register is 0, then TREG1 and TREG2 are loaded with
the same value as TREGO to maintain compatibility with the ’C25. Note that
TREGH is only 5 bits and TREG2 is only 4 bits.

The function of the LTA instruction is included in the LTD instruction.
1

Direct: [labe) LTA dma
Indirect: [label] LTA {ind} [,next ARP]

Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand DARAM 1 1 1 1+p
Operand SARAM 1 1 1 1+p
ot
Operand Ext 1+d 1+d 1+d 2+d+p
Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Operand DARAM n n n n+p
Operand SARAM n n n n+p
n+it
Operand Ext n+nd n+nd n+nd n+1+p+nd

1 If the operand and the code are in the same SARAM block.

4-121

LTA Load TREGO and Accumulate Previous Product

Example 1 LTA DAT36 ;(DP = 6, PM = 0, TRM = 1)
Before Instruction After Instruction
Data Memory Data Memory
324h [62h] 324h
TREGO [3n] TREGO
P —
ACC C 5h) acc [o]
o] C
Example 2 LTA *,5 ; (TRM = 0)
Before Instruction After Instruction
e Y S n—
AR4 I 324h] AR4
Data Memory Data Memory
324h [62h] 324h
TREGO [3h) TREGO
TREG1 [4h) TREG1
TREG2 50 TREG2
P | 7 e
acc [B &~ oacc [0]
o] C
4-122 Assembly Language Instructions

Load TREGO, Accumulate Previous Product , and Move Data LTD

Syntax

Operands

Opcode

Execution

Description

Words

Cycles

Directtf 0 1 1 1 0 0 1

Indirect:/ 0 1 1 1 0 0 1

Direct: [label] LTD dma
Indirect: [label] LTD {ind} [,next ARP]

0sdmas< 127
O<snextARP <7

15 14 13 12 1110 6 5 4 3 2 1 0

Data Memory Address |

15 14 13 12 11 10 9 6 5 4 3 2 1 0

| See Subsection 4.1.2 |

(=3 [) o |
- IN o |N

(PC)+1 — PC

(dma) — TREGO

(dma) — dma + 1

(ACC) + (shifted P register) — ACC

Affected by OVM, PM, and TRM,; affects C and OV.

TREGO is loaded with the contents of the specified data memory address
(dma). The contents of the P register, shifted as defined by the PM status bits,
are added to the accumulator, and the result is placed in the accumulator. The
contents of the specified data memory address are also copied to the next
higher data memory address. If the TRM bit of the PMST register is 0, then
TREG1 and TREG2 are also loaded to maintain compatibility with the 'C25.
Note that TREGH1 is only 5 bits and TREG2 is only 4 bits.

This instruction is valid for all blocks of on-chip RAM configured as data
memory. The data move function is continuous across the boundaries of con-
tiguous blocks of memory but cannot be used with external data memory or
memory-mapped registers. This function is described under the instruction
DMOV. Note that if LTD is used with external data memory, its function is identi-
cal to that of LTA.

1

Direct: [label] LTD dma
Indirect: [label] LTD {ind} [,next ARP}

Cycle Timings for a Single Instruction

PR PDA PSA PE
Operand DARAM 1 1 1 14p
Operand SARAM 1 1 1 1+p
3t
Operand Ext 2+2d 2+2d 2+2d 5+2d+p

4-123

LTD Load TREGO, Accumulate Previous Product , and Move Data

Cycle Timings for a Repeat (RPT) Execution

PR PDA PSA PE
Operand DARAM n n n n+p
Operand SARAM 2n-2 2n-2 2n-2 2n-2+p
2n+1t
Operand Ext 4n-2+2nd | 4n-2+2nd | 4n-2+2nd 4n+1+2nd+p

1 If the operand and the code are in the same SARAM block.

Data Memory
3FEh

Data Memory
3FFh

TREGO
P
ACC

[

c

ARP
AR1

Data Memory
3FEh

Data Memory
3FFh

TREGO
TREG1
TREG2
P
ACC

oo

Example 1 LTD DAT126 ;(DP = 7, PM = 0, TRM = 1),
Before Instruction
Data Memory
3FEh L 62h]
Data Memory
3FFh | Oh|
TREGO L 3h|
P | OFh]
ACC | 5h|
Cc
Example 2 LTD *,AR3 ;(TRM = 0)
Before Instruction
ARP | 1]
AR1 l 3FEh|
Data Memory
3FEh { 62h|
Data Memory
3FFh [oh)
TREGO [3h|
TREG1 [ah]
TREG2 | 5h|
P | OFh|
ACC | 5h)
Cc
4-124

After Instruction

After Instruction

3FE!

[T

Assembly Language Instructions

Load TREGO and Store P Register in Accumulator LTP

Syntax

Operands

Opcode

Execution

Description

Words

Cycles

Direct: [labell LTP dma
Indirect: [label] LTP {ind} [,next ARP]

0=<dma=x 127
O<nextARP <7
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direc:f 0 1 1 1 0 0 0 1[o0] Data Memory Address |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Indirectt/ 0 1 1 1 0 0 0 1] 1] See Subsection4.1.2 |

(PC)+1 —» PC
(dma) — TREGO
(shifted P register) — ACC

Affected by PM and TRM.

TREGO is loaded with the contents of the addressed data memory location,
and the product register is stored in the accumulator. The shift at the output
of the product register is controlled by the PM status bits. If the TRM bit of the
PMST register is 0, then TREG1 and TREG2 are also loaded to maintain com-
patibility with the ‘C25. Note that TREG1 is only 5 bits and TREG2 is only 4 bits.

1

Direct: [labe] LTP dma
Indirect: [label] LTP {ind} [,next ARP]

Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand DARAM 1 1 1 1+p
Operand SARAM 1 1 1 1+p
ot
Operand Ext 1+d 1+d 1+d 2+d+p
Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Operand DARAM n n n n+p
Operand SARAM n n n n+p
n+1t
Operand Ext n+nd n+nd n+nd n+1+p+nd

t If the operand and the code are in the same SARAM block.

4-125

LTP Load TREGO and Store P Register in Accumulator

After Instruction
Data Memory

Example 1 LTP DAT36 ;(DP = 6, PM = 0, TRM = 1)
Before Instruction
Data Memory

324h | 62h]|

TREGO l 3h]

P { OFh]

ACC [5h]

(o]
Example 2 LTP * AR5 ;(PM = 0, TRM = 0)

Before Instruction

ARP l 2|

AR2 | 324h)

Data Memory

324h [62h

TREGO l 3h|

TREGH1 [4h]

TREG2 | 5h|

P [oFn

ACC | 5h|

(o}

4-126

324
TREGO
P
ACC
Cc
After Instruction
ARP 3
AR2
Data Memory
324h
TREGO
TREG!
TREG2
P
Acc
C

Assembly Language Instructions

Load TREGO and Subtract Previous Product LTS

Syntax

Operands

Opcode

Execution

Description

Words

Cycles

Direct| 0 1 1 1 0 1

Indirect:| 0 1 1 1 0 1

Direct: [labell LTS dma
Indirect: [label] LTS {ind} [,next ARP]

Os<dmasx 127
OsnextARP <7

6 5§ 4 3 2 1 0

15 14 13 12 11 10 7
[0] Data Memory Address |

i5 14 13 12 11 10

o |© ojw©

7 6 5 4 3 2 1 0
1| See Subsection 4.1.2 |

(PC)+1 — PC
(dma) — TREGO
ACC — (shifted P register) — ACC

Affected by PM, TRM, and OVM,; affects OV and C.

TREGO is loaded with the contents of the addressed data memory location.
The contents of the product register, shifted as defined by the contents of the
PM status bits, are subtracted from the accumulator. The result is placed in the
accumulator. If the TRM bit of PMST is set to 0, the value is also loaded into
TREG1 and TREG2 to maintain compatibility with the 'C25. Note that TREG1
is only 5 bits and TREG2 is only 4 bits.

1

Direct: [labe] LTS dma
Indirect: [labe] LTS {ind} [,next ARP]

Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand DARAM 1 1 1 1+p
Operand SARAM 1 1 1 1+p
ot
Operand Ext 1+d 1+d 1+d 2+d+p
Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Operand DARAM n n n n+p
Operand SARAM n n n n+p
n+1t
Operand Ext n+nd n+nd n+nd n+1+p+nd

1 If the operand and the code are in the same SARAM block.

4-127

LTS Load TREGO and Subtract Previous Product

Data Memory
324h

TREGO
P
ACC

ARP

AR1

324h
TREGO
TREGH
TREG2

ACC

Example 1 LTS DAT36 ;(DP = 6, PM = 0, TRM = 1)
Before Instruction
Data Memory
324h [62h|
TREGO | 3h|
P | OFh|
ACC [05h]
C
Example 2 LTS *,AR2 ;(TRM = 0)
Before Instruction
ARP | 1]
AR1 [324h]
324h | 62h|
TREGO [3h|
TREGH1 [4h]
TREG2 [5h]
P [o
ACC [05h|
(o]
4-128

[

[o]

ofs]

Atfter Instruction

OFFFFEFF6h

After Instruction

mn
T =

OFFFFFFF6

Muitiply and Accumulate MAC

Syntax

Operands

Opcode

Execution

Description

Direct:

Indirect:

Direct: [label] MAC pma, dma
Indirect: [label]l MAC pma, {ind} [,next ARP]

0 < pma =< 65535
Osdmas 127
OsnextARP =<7

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i 0 1 0 O O 1 O I 0| Data Memory Address
16-Bit Constant

i6 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1 0 1 0 0 0 1 0f1] See Subsection 4.1.2
16-Bit Constant

(PC)+2 — PC

(PFC) — MCS

(pma) — PFC

If (repeat counter) = O:
Then (ACC) + (shifted P register) — ACC,
(dma) - TREGO
(dma) x (pma, addressed by PFC) — P register,
Modify AR(ARP) and ARP as specified
(PFC) +1 — PFC
(repeat counter) — 1 — repeat counter.
Else (ACC) + (shifted P register) — ACC,
(dma) — TREGO
(dma) x (pma, addressed by PFC) — P register,
Modify AR(ARP) and ARP as specified
(MCS) — PFC

Affected by OVM, TRM, and PM; affects C and OV.

The MAC instruction multiplies a data memory value (specified by dma) by a
program memory value (specified by pma). It also adds the previous product,
shifted as defined by the PM status bits, to the accumulator.

The dataand program memory locations on the ’'C5x may be any nonreserved,
on-chip or off-chip memory locations. If the program memory is block BO of
on-chip RAM, then the CNF bit must be set to one. When the MAC instruction
is used in the direct addressing mode, the dma cannot be modified during rep-
etition of the instruction.

When the MAC instruction is repeated, the program memory address con-
tained in the PFC is incremented by one during its operation. This makes it
possible to access a series of operands in memory. MAC is useful for long
sum-of-products operations because it becomes a single-cycle instruction,
once the RPT pipeline is started.

4-129

MAC Muitiply and Accumulate

If the TRM bit of the PMST register is 0, then TREG1 and TREG2 are loaded
with the same value as TREGO to maintain compatibility with the 'C2x. Note
that TREG1 and TREG2 are only 5-bit, and 4-bit long, respectively.

Words 2

Cycles Direct: [label] MAC pma, dma
Indirect: [labe] MAC pma, {ind} [,next ARP]

Cycle Timings for a Single Instruction

PR PDA PSA PE
Operand1 DARAM/ROM | 3 3 3 3+2Pcode
Operand2 DARAM
Operand1 SARAM 3 3 3 3+2Pcode
Operand2 DARAM
Operand1 Ext 3+Pop1 3+Pop1 3+Pop1 3+Pop1+2Pcode
Operand2 DARAM
Operandi DARAM/ROM | 3 3 3 3+2Pcode
Operand2 SARAM
Operand1 SARAM 3 3 3 3+2p;ode
Operand2 SARAM 4t 4t 4t 4+2pcoge’
Operand1 Ext 3+pop1 3+pop1 3+Pop1 3+Pop1+2Pcode
Operand2 SARAM
Operand1 DARAM/ROM | 3+dop2 3+dop2 3+dop2 3+dop2+2Pcode
Operand2 Ext
Operand1 SARAM 3+dop2 3+dop2 3+dop2 3+dop2+2Pcode
Operand2 Ext
Operand1 Ext 4+popr+dop2 4+pop71+dop2 4+popy+dop2 4+Pop1+dop2+2Pcode
Operand2 Ext

Cycle Timings for a Repeat (RPT) Execution

PR PDA PSA PE
Operand1 DARAM/ROM | n+2 n+2 n+2 N+2+2Pcode
Operand2 DARAM
Operand! SARAM n+2 n+2 n+e 1 +2+2Pcode
Operand2 DARAM
Operand1 Ext N+2+npopy N+2+Npopy N+2+npopy N+2+NPop1+2Pcode
Operand2 DARAM
Operand1 DARAM/ROM | n+2 n+2 n+2 N+2+2Pcode
Operand2 SARAM

4-130 Assembly Language Instructions

Muiltiply and Accumulate MAC

Cycle Timings for a Repeat (RPT) Execution (Continued)
PR PDA PSA PE

Operand1 SARAM n+2 n+2 n+2 N+2+2Pcode
Operand2 SARAM 2n+2t 2n+2f 2n+2t 2n+2t
Operand1 Ext N+2+NPopy N+2+NPgp1 N+2+NPopy N+2+NPop1+2Pcode
Operand2 SARAM
Operand1 DARAM/ROM | n+2+ndyp2 N+2+ndop2 N+2+ndyp2 N+2+ndop2+2Pcode
Operand2 Ext
Operand1 SARAM N+2+ndop2 N+2+ndopo N+2+ndyp2 N+2+ndop2+2Pcode
Operand2 Ext
Operand1 Ext 2n+24NPopr+N | 2n+2+NPopr+n | 2N+2+NPgpr+ 2n+2+npopy+Ndopo+
Operand2 Ext dop2 dop2 ndop2 2Pcode

1 If both operands are in the same SARAM block.

Example 1 MAC OFFO0Oh,02h ;(DP = 6, PM = 0, CNF = 1)
Before Instruction After Instruction
Data Memory Data Memory
302h | 23h] 302h [aan]
Program Memory Program Memory
FFOOh [an] FFOOh
TREGO | 45h] TREGO [aan)
P [458972h| P
ACC | 723EC41h| acc [o]
Cc Cc
Example 2 MAC OFFOOh,*,AR5 ;(PM = 0, CNF = 1)
Before Instruction After Instruction
ARP [4] ARP 4
AR r T AR
Data Memory Data Memory
302h [23h] 302h ([aan]
Program Memory Program Memory
FFOON | ah] FFOOh
TREGO [45h] TREGO (23]
P | 458972h| P
ACC [723EC41h| Acc [0]
c o]

4-131

MACD Multiply and Accumulate With Data Move

Syntax

Operands

Opcode

Execution

Description

4-132

Direct:

Indirect:

Direct: [labe]l MACD pma, dma
Indirect: [labe]] MACD pma, {ind} [,next ARP

0 < pma =< 65535

Osdmas127
OsnextARP <7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o0

1 0 1 0 0 0 1 1]o0 Data Memory Address
16-Bit Constant

15 14 13 12 11_10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 1 1[1] SeeSubsection4.1.2
16-Bit Constant

(PC) +2 — PC

(PFC) — MCS

(pma) — PFC

If (repeat counter) = 0:
Then (ACC) + (shifted P register) — ACC,
(dma) — TREGO
(dma) x (pma, addressed by PFC) — P register
Modify AR(ARP) and ARP as specified,
(PFC) +1 —= PFC
(dma) — (dma) + 1
(repeat counter) — 1 — repeat counter.
Else (ACC) + (shifted P register) — ACC,
(dma) — TREGO
(dma) x (pma, addressed by PFC) — P register
(dma) — (dma) + 1
Modify AR(ARP) and ARP as specified,
(MCS) — PFC

Affected by OVM and PM; affects C and OV.

The MACD instruction multiplies a data memory value (specified by dma) by
a program memory value (specified by pma). It also adds the previous product,
shifted as defined by the PM status bits to the accumulator. The data and pro-
gram memoiy locations on the 'C5x may be any nonreserved, on-chip or
off-chip memory locations. If the program memory is block BO of on-chip RAM,
then the CNF bit must be set to one. When MACD is used in the direct address-
ing mode, the dma cannot be modified during repetition of the instruction. If
MACD addresses one of the memory-mapped registers or external memory
as a data memory location, the effect of the instruction will be that of a MAC
instruction (see the DMOV instruction description).

Assembly Language Instructions

Multiply and Accumulate With Data Move MACD

If the TRM bit of the PMST register is 0, TREG1 and TREG2 are loaded with
the same value as TREGO to maintain compatibility with the '‘C2x. Note that
TREG1 and TREG2 are only 5 bits and 4 bits long, respectively.

MACD functions in the same manner as MAC, with the addition of data move
for on-chip RAM blocks. Otherwise, the effects are the same as for MAC. This
feature makes MACD useful for applications such as convolution and trans-
versal filtering.

When the MACD instruction is repeated, the program memory address con-
tained in the PFC is incremented by one during its operation. This permits
accessing a series of operands in memory. When used with RPT, MACD be-
comes a single-cycle instruction once the RPT pipeline is started.

Words 2

Cycles Direct: [label] MACD pma, dma
Indirect: [labe]l MACD pma, {ind} [,next ARP)
Cycle Timings for a Single Instruction

PR PDA PSA PE
Operand1 SARAM 3 3 3 3+2pcode
Operand2 DARAM
Operand1 DARAM/ROM 3 3 3 3+2Pcode
Operand2 DARAM
Operand1 Ext 3+Pop1 3+Pop1 3+Pop1 3+Pop1+2Pcode
Operand2 DARAM
Operand1 DARAM/ROM 3 3 3 3+2Pcode
Operand2 SARAM
Operand1 SARAM 3 3 3 3+2Pcode
Operand2 SARAM 4% 442pcode*

58

Operand1 Ext 3+Pop1 3+Pop1 3+Pop1 3+Pop1+2Pcode
Operand2 SARAM
Operandi DARAM/ROM | 3+d,p0 3+dop2 3+dop2 3+dop2+2Pcode
Operand2 Ext?
Operand1 SARAM 3+dop2 3+dop2 3+dop2 3+dop2+2Pcode
Operand2 Ext*
Operand1 Ext 4+Pop1+dop2 4+Pop1+dop2 4+popr+dop2 4+Pop1+dop2+2Pcode
Operand2 Ext¥

Cycle Timings for a Repeat (RPT) Execution

PR PDA PSA PE
Operand1 DARAM/ROM n+2 n+2 n+2 N+2+2Pcode
Operand2 DARAM

4-133

MACD Muiltiply and Accumulate With Data Move

Cycle Timings for a Repeat (RPT) Execution (Continued)

PR PDA PSA PE

Operand1 SARAM n+2 n+2 n+2 N+2+2Pgode
Operand2 DARAM
Operand1 Ext N+2+NPopy N+2+NpPopy N+2+npopy N+2+NPop1+2Pcode
Operand2 DARAM
Operandi DARAM/ROM 2n 2n 2n 2n+2pPcode
Operand2 SARAM 2n+2t
Operand1 SARAM 2n 2n 2n 2n+2Pgode
Operand2 SARAM 3nt 3n# 2n+2t 3n#

3n#

3n+28
Operand1 Ext 2n+npopy 2n+npypy 2n+npopy 2n+nPop1+2Pcode
Operand2 SARAM 2n+2+npopst
Operandi DARAM/ROM N+2+ndgp2 n+2+ndyp2 n+2+ndop2 N+2+Ndop2+2Pcode
Operand2 Ext'
Operand1 SARAM N+2+Ndop2 n+2+ndyp2 Nn+2+ndop2 N+2+ndop2+2Pcode
Operand2 Ext?
Operand1 Ext 2n+2+NPpy+N | 2n+2+NPopr+n | 2n+2+NPopr+N | 2N+2+NPgp7+Ndopo+
Operand2 Ext! p2 p2 dopz 2Pcode

1 If operand2 and code are in the same SARAM block.
% If both operands are in the same SARAM block.

§ If both operands and code are in the same SARAM block.
¥ Data move operation is not performed when operand2 is in external data memory.

Example 1 MACD OFFO00h,08h ;(DP = 6, PM = 0, CNF = 1).
Before Instruction After Instruction
Data Memory Data Memory
30h | ZH 308n I
Data Memory Data Memory
309h | 18h] 309h 23]
Program Memory Program Memory
FROoh | # - Froon
TREGO [45h] TREGO |
P L 458972h| P
acc QT 723ECA1h] acc [ol ! 76875820
(o] Cc
4-134 Assembly Language Instructions

Multiply and Accumulate With Data Move MACD

Example 2 MACD OFFOOh,*,AR6 ;(PM = 0, CF = 1)
Before Instruction After Instruction
ARP | 5] ARP 4
AR5 [308h) AR5
Data Memory Data Memory
308h —) [S—
Data Memory Data Memory
309h [18h] 309h [aan]
Program Memory Program Memory
FFOOh [4h| FFOOh
TREGO C 45h] TREGO 2]
P | 458972h] P
AcC | 723EC4Th] Acc [0]
C C

Note: The data move function for MACD can occur only within on-chip data memory RAM
blocks.

4-135

MADD _ Muitiply and Accumulate With Data Move and Dynamic Addressing

Syntax Direct: [labe]] MADD dma
Indirect: [label] MADD {ind} [,next ARP]
Operands 0sdmas 127
OsnextARP <7
Opcode
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Directf 1 0 1 0 1 0 1 1]o} Data Memory Address |
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Indirect:{ + 0 1 o 1 o0 1 1]1] See Subsection 4.1.2 |
Execution (PC)+2 — PC
(PFC) — MCS

(BMAR) — PFC

If (repeat counter) = 0:
Then (ACC) + (shifted P register) — ACC,
(dma) — TREGO
(dma) x (pma, addressed by PFC) — P register,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 — PFC
(dma) — (dma) + 1
(repeat counter) — 1 — repeat counter.
Else (ACC) + (shifted P register) — ACC,
(dma) — TREGO
(dma) x (pma, addressed by PFC) — P register
(dma) — (dma) + 1
Modify AR(ARP) and ARP as specified.
(MCS) — PFC

Affected by OVM, TRM, and PM; affects C and OV.

Description The MADD instruction multiplies a data memory value (specified by the dma)
by a program memory value. The program memory address is contained in the
BMAR register; it is not specified by a long immediate constant. This facilitates
dynamic addressing of coefficient tables. In addition, the previous product,
shifted as defined by the PM status bits, is added to the accumulator. The data
and program memory locations on the 'C5x may be any nonreserved, on-chip
or off-chip memory locations. If the program memory is block BO of on-chip
RAM, then the CNF bit must be set to one. When the MADD instruction is used
in direct addressing mode, the dma cannot be modified during repetition of the
instruction. If MADD addresses one of the memory-mapped registers or exter-
nal memory as a data memory location, the effect of the instruction is that of
a MADS instruction (see the DMOV instruction description).

MADD functions in the same manner as MADS, with the addition of data move
for on-chip RAM blocks. Otherwise, the effects are the same as for MADS. This

4-136 Assembly Language Instructions

Multiply and Accumulate With Data Move and Dynamic Addressing MADD

feature makes MADD useful for applications such as convolution and trans-
versal filtering.

If the TRM bit of the PMST register is 0, TREG1 and TREG2 are loaded with
the same value as TREGO to maintain compatibility with the 'C2x. Note that
TREG1 and TREG2 are only 5 bits and 4 bits long, respectively.

When the MADD instruction is repeated, the program memory address con-
tained in the PFC is incremented by one during its operation. This enables ac-
cessing a series of operands in memory. When used with RPT, MADD be-
comes a single-cycle instruction, once the RPT pipeline is started.

Words 1
Cycles Direct: [label MADD dma
Indirect: [labell] MADD {ind} [,next ARP)
Cycle Timings for a Single Instruction

PR PDA PSA PE
Operand1i DARAM/ROM | 2 2 2 2+Pcode
Operand2 DARAM
Operand1 SARAM 2 2 2 24Pcode
Operand2 DARAM
Operand1 Ext 2+Pop1 2+Pop1 2+Pop1 2+pop1+Pcode
Operand2 DARAM
Operandi DARAM/ROM | 2 2 2 2+Pcode
Operand2 SARAM
Operand1 SARAM 2 2 2 2+Pcode
Operand2 SARAM 3t 3+Pcodet

48

Operand1 Ext 2+pop1 2+pop1 2+Pop1 2+Pop1+Pcode
Operand2 SARAM
Operand1 DARAM/ROM | 2+dyp2 2+dop2 2+dyp2 2+dop2+Pcode
Operand?2 Ext¥
Operand1 SARAM 2+dop2 2+dop2 2+dop2 2+dop2+Pcode
Operand2 Ext?
Operand1 Ext 3+pop1+dop2 3+Pop1+dop2 3+pop1+dop2 3+pop1+dop2+Pcode
Operand2 Ext¥

Cycle Timings for a Repeat (RPT) Execution

PR PDA PSA PE
Operand1 DARAM/ROM | n+1 n+1 n+1 N+1+Peode
Operand2 DARAM
Operand1 SARAM n+1 n+1 n+1 N+1+Pcode
Operand2 DARAM

4-137

MADD Muttiply and Accumulate With Data Move and Dynamic Addressing

Cycle Timings for a Repeat (RPT) Execution (Continued)
PR PDA PSA PE
Operand1 Ext N+1+NPgpg N+1+nPgpg n+1+npopy N+1+NPop1+Pcode
Operand2 DARAM
Operandi DARAM/ROM | 2n-1 2n-1 2n-1 2n—1+pcode
Operand2 SARAM 2n+1t
Operand1 SARAM 2n-1 2n-1 2n-1 2n—1+Pcode
Operand2 SARAM 3n-1# 3n-1% 2n+1t 3n-1%#
3n-1%
3n+1$
Operand1 Ext 2n—1+npgpy 2n—1+npopy 2n—1+npgpy 2n-14npPgp1+Pcode
Operand2 SARAM 2n+1+npgpst
Operand1 DARAM/ROM | n+1+ndyp2 Nn+1+ndyp2 n+1+ndyp2 n+1+ndop2+Pcode
Operand2 Ext?
Operand1 SARAM n+1+ndop2 n+1+ndypo n+1+ndyp2 N+1+ndop2+Pcode
Operand2 Ext?
Operand1 Ext 2n+1+npgpy+ 2n+1+npops+ 2n+1+npops+ 2n+1+Nnpgpy+Ndop2+
Operand2 Ext' Ndop2 Ndop2 Ndop2 Pcode
1 If operand2 and code reside in same SARAM block.
If both operands reside in same SARAM block.
§ If both operands and code reside in same SARAM block.
9 Data move operation is not performed when operand2 is in external data memory.
Example 1 MADD DAT7 ;(DP =6, PM = 0, CNF = 1)
Before Instruction After Instruction
Data Memory Data Memory
307h [8h] 307h
Data Memory Data Memory
308h [on] 308h
BMAR | OFF00h] BMAR
TREGO [4Eh] TREGO
FFOOh | 2h] FFOOh [
P C 458972h| P
ACC [723EC41h] Acc [0]
c c
4-138 Assembly Language Instructions

Multiply and Accumulate With Data Move and Dynamic Addressing MADD

Example 2 MADD *,3 ;(PM = 0, CNF = 1)

Before Instruction
ARP [2|
AR2 | 307h|

Data Memory
307h I 8h|

Data Memory
308h [9h)
BMAR [OFF0Oh)
TREGO L 4Eh|
FFOOh I 2h]
P | 458972h|
ACC [723EC41h]

C
Note:

blocks.

ARP
AR2

Data Memory
307h

Data Memory
308h

BMAR
TREGO
FFOOh
P
ACC

The data move function for MADD can occur only within on

(o]

C

I
=

Atfter Instruction

307

OFFOOh

LUl

7697583

©
a
2
]
3
o
3
o
<2
P
>
<

4-139

MADS Multiply and Accumulate With Dynamic Addressing

Syntax Direct: [labe] MADS dma

Indirect: [labe] MADS {ind} [,next ARP]
Operands 0=<dmas 127

O <next ARP <7
Opcode

15 14 13 12 11 10 9
Direc:t] 1 0 1 0 1 0 1

7 6 5§ 4 3 2 1 0
1 0] Data Memory Address |

oj|®

15 14 13 12 11 10 9 8
Indirect| 1 0 1 0 1 0 1 0|

7 6 5 4 3 2 1 0
1| See Subsection 4.1.2 |

Execution (PC)+1 — PC
(PFC) — MCS
(BMAR) — PFC

If (repeat counter) = 0:
Then (ACC) + (shifted P register) — ACC,
(dma) — TREGO
(dma) x (pma, addressed by PFC) — P register,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 = PFC
(repeat counter) — 1 — repeat counter.
Else (ACC) + (shifted P register) — ACC,
(dma) — TREGO
(dma) x (pma, addressed by PFC) — P register,
Modify AR(ARP) and ARP as specified,
(MCS) — PFC

Affected by OVM, TRM, and PM; affects C and OV.

Description The MADS instruction multiplies a data memory value (specified by dma) by
a program memory value (specified by pma). It also adds the previous product,
shifted as defined by the PM status bits, to the accumulator. The pmais speci-
fied by the contents of the BMAR register, rather than by a longimmediate con-
stant. This allows for dynamic addressing of coefficient tables.

The data and program memory locations on the ‘C5x may be any nonreserved,
on-chip or off-chip memory locations. If the program memory is block BO of
on-chip RAM, then the CNF bit must be set to one. When MADS is used in the
direct addressing mode, the dma cannot be modified during repetition of the
instruction.

When the MADS instruction is repeated, the program memory address con-
tained in the PFC is incremented by one during its operation. This makes it
possible to access a series of operands in memory. MADS is useful for long
sum-of-products operations because this instruction becomes a single-cycle
instruction, once the RPT pipeline is started.

4-140 Assembly Language Instructions

Multiply and Accumulate With Dynamic Addressing MADS

If the TRM bit of the PMST register is 0, TREG1 and TREG2 are loaded with
the same value as TREGO to maintain compatibility with the 'C2x. Note that
TREG1 and TREG2 are only 5 bits and 4 bits long, respectively.

Words 1
Cycles Direct: [label] MADS dma
Indirect: [label] MADS {ind} [,next ARP]
Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand1 DARAM/ROM | 2 2 2 2+Pcode
Operand2 DARAM
Operand1 SARAM 2 2 2 2+Pcode
Operand2 DARAM
Operand1 Ext 2+Pop1 2+Pop1 2+Popt
Operand2 DARAM
Operand1 DARAM/ROM | 2 2 2 2+4Pcode
Operand2 SARAM
Operand 1 SARAM 2 2 2 2+Pcode
Operand2 SARAM 3t 3t 3t 3+Pcodet
Operand1 Ext 2+popt 2+Popt 2+popy 2+Pop1+Pcode
Operand2 SARAM
Operandi DARAM/ROM | 2+dop2 2+dop2 2+dop2 2+dop2+Pcode
Operand2 Ext
Operand1 SARAM 2+dapg 2+dop2 2+dop2 2+dap2+pcod9
Operand2 Ext
Operand1 Ext 3+Pop1+dop2 3+pop1+dop2 3+Pop1+dop2 3+Pop1+dop2+Pcode
Operand?2 Ext
Cycle Timings for a Repeat (RPT) Execution
PR PDA PSA PE
Operand1 DARAM/ROM | n+1 n+1 n+1 N+1+Pgode
Operand2 DARAM
Operand1 SARAM n+1 n+1 n+1 N+1+Pcode
Operand2 DARAM
Operand1 Ext N+1+npPop1 N+1+npgpy N+1+NPopy N+1+NPop1+Pcode
Operand2 DARAM
Operand1 DARAM/ROM | n+1 n+1 n+1 N+1+Pcode
Operand2 SARAM

4-141

MADS Muitiply and Accumulate With Dynamic Addressing

Cycle Timings for a Repeat (RPT) Execution (Continued)
PR PDA PSA PE
Operandi SARAM n+1 n+1 n+1 N+1+Peode
Operand2 SARAM 2n+1t 2n+1t 2n+1t 2n+1t
Operand1 Ext N+1+Npop7 n+1+NpPopy n+1+Npgpy n+1+NPop1+Pcode
Operand2 SARAM
Operand1 DARAM/ROM | n+1+nd,p2 n+1+ndop2 n+1+ndyp2 N+1+ndop2+Pcode
Operand2 Ext
Operand1 SARAM n+1+ndyp2 n+1+ndop2 n+1+ndop2 N+1+Nndop2+Pcode
Operand2 Ext
Operand1 Ext 2n+1+Npgpr+ 2n+1+npyp1+ 2n+1+npopy+ 2n+1+npops+ndopo+
Operand2 Ext Ndop2 ndop2 Ndop2 Pcode
T If both operands are in the same SARAM block.
Example 1 MADS DAT12 ;(DP = 6, PM = 0, CNF = 1).
Before Instruction After Instruction
Data Memory Data Memory
30Ch [8h] 30Ch
BMAR | OFFOOh] BMAR
TREGO | 4Eh] TREGO
Program Memory Program Memory
FFOOh [2h| FFOOh o)
P [458972h] P
ACC [723EC41h] acc [o]
c c
Example 2 MADS *,AR3 ;(PM = 0, CNF = 1)
Before Instruction After Instruction
ARP [2 ARP 3
AR2 [30Ch] AR2
Data Memory Data Memory
30Ch [8h) 30Ch
BMAR [OFFOOh] BMAR
TREGO [4EN] TREGO i 8hj
Program Memory Program Memory
FFOOh L 2h| FFOOh
P [458972h) P
ACC (723EC41h] Acc [0]
Cc C
4-142 Assembly Language Instructions

Modify Auxiliary Register MAR

Syntax

Operands
Opcode

Execution

Description

Words

Cycles

Example 1

Direct{ 1 0 0 0 1 0 1

Indirect| 1 0 0 0 1 0 1

Direct: [labell] MAR dma
Indirect: [label] MAR {ind} [,next ARP]

OsnextARP <7

7 6 5 4 3 2 1 0
| o] Data Memory Address |

15 14 13 12 11 10 9 8
1

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1

| See Subsection 4.1.2]

(PC)+1 — PC

Modifies ARP, AR(ARP) as specified by the indirect addressing field. Acts as
a NOP in direct addressing mode.

Affected by NDX.

Inthe indirect addressing mode, the auxiliary registers and the ARP are modi-
fied; however, no use is made of the memory being referenced. Note that if the
NDX bit of the PMST register is 0 and the auxiliary register 0 (AR0) is modified,
then the ARCR and INDX registers are also modified in the same way to main-
tain compatibility with the 'C2x. Note that TREG1 and TREG2 are only 5 bits
and 4 bits long, respectively. MAR modifies the auxiliary registers or the ARP,
and the old ARP is copied to the ARB field of the status register ST1. Any oper-
ation that MAR performs can also be performed with any instruction that sup-
ports indirect addressing. ARP can also be loaded by an LST instruction. The
instruction LARP from the 'C25 instruction set is a subset of MAR (that is, MAR
*4 performs the same function as LARP 4).

1

Direct: [label MAR dma
Indirect: [labe) MAR {ind} [,next ARP]

Cycle Timings for a Single Instruction
PR PDA PSA PE
1 1 1 1+p
Cycle Timings for a Repeat (RPT) Execution

n | n n [n+p

MAR *,AR1 ;Load the ARP with 1.

Before Instruction After Instruction
ARP [0] ARP 1
ARB 1 7] aRs —

4-143

4-144

MAR __ Modify Auxiliary Register

Example 2 MAR

AR1
ARP
ARB

; (AR1) and load ARP with 5.
Before Instruction

L 34h] AR1
(1] ARP
| 0] ARP

*+,AR5 ;Increment current auxiliary register

After Iinstruction

Assembly Language Instructions

Muiltiply MPY

Syntax

Operands

Opcode

Execution

Description

Words

Direct:

Indirect:

Short:

Long:

Direct: [label] MPY dma

Indirect: [labell MPY {ind} [,next ARP]
Short Immediate: [labe] MPY #k

Long Immediate: [label] MPY #lk

0sdmas<127
OsnextARP <7
—4096 =< k < 4095
—32768 =< |k < 32767

Multiply data value times TREGO

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1+ 0o 1 0o 1 0 ofo] Data Memory Address |
i56 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
fo 1 0 1 0 1 0 0f1] See Subsection 4.1.2 |

Multiply TREGO by 13-bit immediate
15 14 13 12 11 10 9 8 7 6 5

4 3 2 1 O

|1 1 0 13-Bit Constant

Multiply TREGO by long immediate
15 14 13 12 11 10 9 8 7 6 5

1 0 1 1 1 i 1 0 1 0 o0

16-Bit Constant

If indirect or direct addressing:

(PC)+1 — PC
(TREGO) x (dma) — P register

If short immediate value specified:

(PC)+1 — PC
(TREGO) x k — P register

If long immediate value specified:

(PC)+2 — PC
(TREGO) x Ik — P register

The contents of the TREGO register are multiplied by the contents of the ad-
dressed data memory location. The result is placed in the P register. Shortim-
mediate addressing multiplies TREGO by a signed 13-bit constant. The short
immediate value is right-justified and sign-extended before the multiplication,

regardiess of SXM.

1 (Direct, indirect, or short immediate addressing)

2 (Long immediate addressing)

4-145

MPY Muitiply

Cycles Direct: [labe] MPY dma
Indirect: [labell MPY {ind} [,next ARP|
Cycle Timings for a Single Instruction
PR PDA PSA PE
Operand DARAM 1 1 1 14p
Operand SARAM 1 1 1 1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>