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Preface 

Read This First 

The purpose of this user's guide is to provide the Tl customer with information 
on 'C5x digital signal processors. This manual can also be used as a reference 
guide for developing hardware or software applications. The following list 
summarizes the contents of the chapters and appendices in this user's guide. 

How to Use This Manual 

This document contains the following chapters: 

Chapter 1 Introduction 
Summarizes the TMS320 family of products. Gives a general description, lists 
the key features, and presents some typical applications of the 'C5x devices. 

Chapter 2 Plnouts and Signal Descriptions 
Lists pin locations with associated signals, categorizes signals according to 
function, and describes signals. 

Chapter 3 Architecture 
Gives a general architectural overview with a functional block diagram. 
Describes the 'C5x design, hardware components, and device operation. 

Chapter 4 Assembly Language Instructions 
Lists instructions by function. Provides alphabetized individual instruction 
descriptions with examples. Includes 'C2x-to-'C5x instruction set mapping 
and instruction cycle times and opcodes. 

Chapter 5 Peripherals 
Describes peripheral control, serial ports, software-programmable wait states, 
and timing circuits. 

Chapter 6 Memory 
Discusses program/data memory operation and configuration (with memory 
maps), 1/0 space, external interface considerations, OMA operation, and 
memory management. 

Chapter 7 Software Applications 
Explains the use of 'C5x instruction set with particular emphasis on its new 
features. Includes code examples for various DSP applications. 
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Appendix A Electrical Specifications 
Provides design documentation for the 'CSx devices. This data is based upon 
design goals and modeling information. 

Appendix B External Interface Timing 
Provides functional timing of operation on the external interface bus. 

Appendix C Instruction Cycle Timings 
Details the instruction cycle timings organized in different classes. 

Appendix D TMS320C5x System Migration 
Provides information for upgrading a 'C25 system to a 'CSx system. Includes 
package dimensions and pinouts, timing similarities and differences, 
on11rf'\.o_f'nrl.o. l"'nmn~+ihilitu m.omnn1 m!:lno nn_rhin norinh.o.r!:lil intorf~l"'inn ~nrl 
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development tool enhancements. 

Appendix E XDS51 O Design Considerations 
Provides information to meet the design requirements of the XDSS 1 O emulator 
and to support XDS510 Cable #2563988-001 Rev. B. 

Appendix F Analog Interface Peripherals and Applications 
Describes a variety of devices that interface directly to the TMS320 DSPs for 
various communication and multimedia applications. 

Appendix G Memories, Sockets, and Crystals 
Provides product information regarding memories and sockets manufactured 
by Texas Instruments that are compatible with the 'CSx. Information is also 
given regarding crystal frequencies, specifications, and vendors. 

Appendix H ROM Codes 
Outlines the procedural flow for submitting code and ordering TMS320 
mask-programmed ROM-based DSPs from Texas Instruments. 

Appendix I Development Support 
Provides a description of the 'CSx development support tools. 

Related Documentation 

iv 

The following books describe the TMS320 fixed-point devices and related 
support tools. To obtain a copy of any of these Tl documents, call the Texas 
Instruments Literature Response Center at (800) 477-8924. When ordering, 
please identify the book by its title and literature number. 

TMS320C2x/C5x Optimizing C Compiler User's Guide (literature number 
SPRU024) describes the 'C2x/C5x C compiler. This C compiler accepts 
ANSI standard C source code and produces TMS320 assembly 
language source code for the 'C2x and 'C5x generations of devices. 
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TMS320C5x C Source Debugger User's Gulde (literature number 
SPRU055) tells you how to invoke the 'C5x emulator, SWDS, EVM, and 
simulator versions of the C source debugger interface. A tutorial 
introduces basic debugger functionality and discusses various aspects 
of the debugger interface, including window management, command 
entry, code execution, data management, and breakpoints. 

TMS320 Fixed-Point DSP Assembly Language Tools User's Gulde 
(literature number SPRU018) describes the assembly language tools 
(assembler, linker, and other tools used to develop assembly language 
code), assembler directives, macros, common object file format, and 
symbolic debugging directives for the 'C1 x, 'C2x, and 'C5x generations 
of devices. 

TMS320CSx Evaluation Module Technical Reference (literature number 
SPRU087) describes the 'C5x EVM, its features, design details and 
external interfaces. 

A wide variety of related documentation is available on digital signal 
processing. These references fall into one of the following application 
categories: 

D Digital control systems 
D Digital signal processing 
D Image processing 
D Speech processing 

Within those areas, the references appear in alphabetical order according to 
author. The documents contain beneficial information regarding designs, 
operations, and applications for general and/or specific signal-processing 
systems as well as circuits; all of the documents provide additional references. 
Therefore, Texas Instruments strongly suggests that you refer to these 
publications. 

Digital Control Systems: 

1) Jacquot, R., Modern Digital Control Systems, New York, NY: Marcel 
Dekker, Inc., 1981. 

2) Katz, P., Digital Control Using Microprocessors, Englewood Cliffs, NJ: 
Prentice-Hall, Inc., 1981. 

3) Kuo, B.C., Digital Control Systems, New York, NY: Holt, Reinholt, and 
Winston, Inc., 1980. 

4) Moroney, P., Issues in the Implementation of Digital Feedback 
Compensators, Cambridge, MA: The MIT Press, 1983. 

5) Phillips, C., and H. Nagle, Digital Control System Analysis and Design, 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984. 
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Digital Signal Processing: 

1) Antoniou, A., Digital Filters: Analysis and Design, New York, NY: 
McGraw-Hill Company, Inc., 1979. 

2) Brigham, E.O., The Fast Fourier Transform, Englewood Cliffs, NJ: 
Prentice-Hall, Inc., 1974. 

3) Burrus, C.S., andT.W. Parks, DFTIFFTandConvolutionAlgorithms, New 
York, NY: John Wiley and Sons, Inc., 1984. 

4) Gold, Bernard, and C.M. Rader, Digital Processing of Signals, New York, 
NY: McGraw-Hill Company, Inc., 1969. 

5) Hamming, R.W., Digital Filters, Englewood Cliffs, NJ: Prentice-Hall, Inc., 
1977. 

6) IEEE ASSP DSP Committee (Editor), Programs for Digital Signal 
Processing, New York, NY: IEEE Press, 1979. 

7) Jackson, Leland B., Digital Filters and Signal Processing, Hingham, MA: 
Kluwer Academic Publishers, 1986. 

8) Jones, D.L., and T.W. Parks, A Digital Signal Processing Laboratory Using 
the TMS32010, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987. 

9) Lim, Jae, and Alan V. Oppenheim, Advanced Topics in Signal Processing, 
Englewood Cliffs, NJ: Prentice- HaJI, Inc., 1988. 

1 O) Morris, Robert L., Digital Signal Processing Software, Ottawa, Canada: 
Carleton University, 1983. 

11) Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing, 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978. 

12) Oppenheim, Alan V., and R.W. Schafer, Digital Signal Processing, 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975. 

13) Oppenheim, A.V., A.N. Willsky, and l.T. Young, Signals and Systems, 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983. 

14) Parks, T.W., and C.S. Burrus, Digital Filter Design, New York, NY: John 
Wiley and Sons, Inc., 1987. 

15) Rabiner, Lawrence R., and Bernard Gold, Theory and Application of 
Digital Signal Processing, Englewood Cliffs, l',IJ: Prentice-Hall, Inc., 1975. 

16) Texas Instruments, Digital Signal Processing Applications with the 
TMS320 Family, 1986; Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987. 
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17) Treichler, J.R., C.R. Johnson, Jr., and M.G. Larimore, A Practical Guide 
to Adaptive Filter Design, New York, NY: John Wiley and Sons, Inc., 1987. 

Image Processing: 

1) Andrews, H.C., and B.R. Hunt, Digital Image Restoration, Englewood 
Cliffs, NJ: Prentice-Hall, Inc., 1977. 

2) Gonzales, Rafael C., and Paul Wintz, Digital Image Processing, Reading, 
MA: Addison-Wesley Publishing Company, Inc., 1977. 

3) Pratt, Willaim K., Digital Image Processing, New York, NY: John Wiley and 
Sons, 1978. 

Speech Processing: 

1) Gray, A.H., and J.D. Markel, Linear Prediction of Speech, New York, NY: 
Springer-Verlag, 1976. 

2) Jayant, N.S., and Peter Noll, Digital Coding of Waveforms, Englewood 
Cliffs, NJ: Prentice-Hall, Inc., 1984. 

3) Papamichalis, Panos, Practical Approaches to Speech Coding, Engle­
wood Cliffs, NJ: Prentice-Hall, Inc., 1987. 

4) Rabiner, LR., and R.W. Schafer, Digital Processing of Speech Signals, 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978. 
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Style and Symbol Conventions 
This document uses the following conventions. 

O Program listings and program examples are shown in a special 
typeface similar to a typewriter's. 

Here is a segment of a program listing: 

OUTPUT: 
LOP 
RPT 

LMMR 
RET 

#0 
#63 
50h,800h 

;data page 0 
;Output 64 values from a table at 800h 
;in data memory to port SOh. 

O In syntax descriptions, the instruction is in bold typeface font and 
parameters are in italic typeface. Portions of a syntax in bold should be 
entered as shown; portions of a syntax in italics describe the type of 
information that you specify. Here is an example of an instruction syntax: 

[labe~ BLDD src, dst 

BLDD is the instruction, which has two parameters indicated by src and 
dst. When you use BLDD, the first parameter must be an actual data 
memory source address and dst a destination address. A comma and a 
space must separate the two addresses. 

O Square brackets ( [ and ] } identify an optional parameter. If you use an 
optional parameter, you specify the information within the brackets; you 
do not type the brackets themselves. In the example above, instead of 
typing [/abe~. you specify a name for the label. When you specify more 
than one optional parameter from a list, you separate them with a comma 
and a space. 

O Braces ( {and} ) indicate a list. The symbol I (read as ory separates items 
within the list. Here's an example of a list: 

ind: { * I *+ I *- I *O+ I *0- I *BRO+ I *BRO-} 

that provides seven choices. 

Unless the list is enclosed in square brackets, you must choose one item 
from the list. 

Information About Notes and Cautions 
This book may contain notes and cautions. 

O A note describes a preferred way or recommended procedure. 

Note: 

This Is what a note looks like. 
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Read This First 

O A caution describes a situation that could potentially damage your 
software or equipment. 

The information in a note or caution is provided for your protection. Please read 
it carefully. 

MS-DOS and MS-Windows are trademarks of Microsoft Corp. 
DEC, VAX and VMS are trademarks of Digital Equipment Corp. 
HP is a trademark of Hewlett Packard Co. 
Macintosh and MPW are trademarks of Apple Computer Corp. 
PC-DOS is a trademark of IBM Corp. 
Sun 3 and Sun 4 are trademarks of Sun Microsystems, Inc. 
UN/Xis a trademark of UNIX System Laboratories, Inc. 

If You Need Assistance . .. 

If you want to ... 

Request more information about 
Texas Instruments Digital Signal 
Processing (DSP) products or 
oder Tl documentation 

Ask questions about product 
operation or report suspected 
problems 

Report mistakes in this document 
or any other Tl documentation 

Do this ... 

Call the LRC (Literature Response Center): 
(800) 477--8924, 8:00-17:00 CST 

Or write to: 
Texas Instruments Incorporated 
Market Communications Manager, MS 736 
P.O. Box 1443 
Houston, Texas 77251-1443 

Call the DSP hotline: 
(713) 274-2320 

Fill out and return the reader response card at 
the end of this book, or send your comments to: 
Texas Instruments Incorporated 
Technical Publications Manager, MS 702 
P.O. Box 1443 
Houston, Texas 77251-1443 
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Introduction 
m>/.>/.>..:w;:~:m::::w1m11»7.>.wmm~~:::::::xw.::::::.':':'W"~::>'M~?.").<'::X:X::::::>hM:¥~..:>m"M':l:=~h~l'~'W:''=="=»=====wm= ------------·-·--·-

This user's guide discusses the TMS320C5x digital signal processors (DSPs), 
the newest fixed-point generation in the TMS320 family. The 'C50, the 'C51, 
and the 'C53 are the first devices in this generation. Their central processing 
unit (CPU) core is based upon the 'C25's CPU core with additional architectur­
al enhancements to greatly improve overall performance. The 'C5x generation 
devices are capable of executing at twice the speed of the 'C2x and are 
source-code upward compatible with all 'C1x and 'C2x devices. Expansion of 
this fixed-point generation is expected in the near future to provide even higher 
levels of DSP performance. 

The 'C5x generation consists of the following devices: 

O 'C50 is a static CMOS digital signal processor with 1 OK words of on-chip 
RAM and 2K words of on-chip ROM. 

O 'C51 is a static CMOS digital signal processor with 2K words of on-chip 
RAM and 8K words of on-chip ROM. 

O 'C53 is a static CMOS digital signal processor with 4K words of on-chip 
RAM and 16K words of on-chip ROM. 

This chapter discusses these topics: 

Topic Page 

1-1 



Introduction 

Figure 1-1. Evolution of the TMS320 Family 
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TMS320 Family Overview 

1.1 TMS320 Family Overview 

The TMS320 family consists of 16-bit fixed-point and 32-bit floating-point 
single-chip digital signal processing devices. These processors possess the 
operational flexibility of high-speed controllers and the numerical capability of 
array processors. Combining those two qualities, the TMS320 processors are 
inexpensive alternatives to custom-fabricated VLSI and multichip bit-slice pro­
cessors. The following qualities make this family the ideal choice for a wide 
range of processing applications (refer to Table 1-1 for a lisj applications): 

O Very flexible instruction set 
O Inherent operational flexibility 
O High-speed performance 
O Innovative, parallel architectural design 
O Cost effectiveness 

In 1982, Texas Instruments introduced the first fixed-point digital signal pro­
cessor in the TMS320 family, the TMS32010. Before the year had ended, the 
Electronic Products magazine awarded the TMS3201 O the title Product of 
the Year. The TMS3201 O became the model for future TMS320 generations. 

Today, the TMS320 family consists of five generations: 'C1 x, 'C2x, 'C3x, 'C4x, 
and 'CSx. Figure 1-1 illustrates the performance gains that the TMS320 family 
has made over time with successive generations. Note that the 'C 1 x, 'C2x, and 
'CSx generations are fixed-point, and the 'C3x and 'C4x generations are float­
ing-point. Source code is upward compatible from one fixed-point generation 
to the next fixed-point generation and, likewise, from one floating-point gener­
ation to the next floating-point generation. Compatibility preserves the soft­
ware portion of your investment, thereby providing a convenient and cost-effi­
cient roadmap to a higher performance, more versatile DSP system. 

Each generation of TMS320 devices has an internal core CPU and a variety 
of memory and peripheral configurations. New combinations of on-chip 
memory and peripheral options can create spin-off devices. These spin-offs 
can satisfy a wide range of needs in the worldwide electronics market. When 
memory and peripherals are integrated into one processor, overall system 
cost is greatly reduced and board space is saved. 

1.1.1 Typical Applications 

With its unique versatility and real-time performance, a 'CSx-generation pro­
cessor offers better, more adaptable approaches to traditional signal-proces­
sing problems such as vocoding and filtering. Furthermore, the 'CSx supports 
complex applications that often require several operations to be performed si­
multaneously. Table 1-1 lists those applications for which a 'CSx device is well 
suited. 
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Table 1-1. Typical Applications for the TMS320 Family 

Automotive Consumer Control 

Adaptive Ride Control Digital Radio!TV Disk Drive Control 
Antiskid Brake Educational Toys Engine Control 
Cellular Telephone Music Synthesizer Laser Printer Control 
Digital Radio Power Tools Motor Control 
Engine Control Radar Detector Robotics Control 
Global Positioning Solid-State Answering Servo Control 
Navigation Machines 

I Vibration Analysis 
Voice Commands 

General-Purpose Graphics/Imaging lndustrlal 

Adaptive Filtering 3-D Rotation Numeric Control 
Convolution Animation/Digital Map Power-Line Monitoring 
Correlation Homomorphic Processing Robotics 
Digital Filtering Pattern Recognition Security Access 
Fast Fourier Transforms Image Enhancement 
Hilbert Transforms Image Compression/ 
Waveform Generation Transmission 
Windowing Robot Vision 

Workstations 

Instrumentation Medi cal Mllltary 

Digital Filtering Diagnostic Equipment Image Processing 
Function Generation Fetal Monitoring Missile Guidance 
Pattern Matching Hearing Aids Navigation 
Phase-Locked Loops Patient Monitoring Radar Processing 
Seismic Processing Prosthetics Radio Frequency 
Spectrum Analysis Ultrasound Equipment Modems 
Transient Analysis Secure Communications 

Sonar Processing 

Telecommunlcatlons Voice/Speech 

1200- to 19200-bps DTMF Encoding/Decoding Speech Enhancement 
Modems Echo Cancellation Speech Recognition 

Adaptive Equalizer FAX Speech Synthesis 
ADPCM Transcoder Line Repeater Speaker Verification 
Cellular Telephone Speaker Phone Speech Vocoding 
Channel Multiplexing Spread Spectrum Voice Mail 
Data Encryption Communications Text-to-Speech 
Digital PBXs Video Conferencing 
Digital Speech Interpolation X.25 Packet Switching 

(OSI) 
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1.2 General Description 

The 'C5x generation consists of the 'C50, the 'C51, and the 'C53 devices. 
These digital signal processors (DSPs) are fabricated in accordance with stat­
ic CMOS integrated-circuit technology. Their architectural design is based 
upon that of the 'C25. The combination of an advanced Harvard architecture 
(separate buses for program memory and data memory), additional on-chip 
peripherals, more on-chip memory, and a highly specialized instruction set is 
the basis of the operational flexibility and speed of these DSP devices. The 
'C5x devices are designed to execute more than 28 MIPS (million instructions 
per second). Future spin-off devices with the core CPU and customized 
on-chip memory and peripheral configurations may be developed for special­
ized areas of the electronics market. 

The 'C5x generation offers these advantages: 

O Enhanced TMS320 architectural design for increased performance and 
versatility 

O Modular architectural design for fast development of spin-off devices 
O Advanced IC processing technology for increased performance 
O Downward source-code compatibility with 'C1x and 'C2x DSPs for fast 

and easy performance upgrades 
O Enhanced TMS320 instruction set for faster algorithms and for optimized 

high-level language operation 
O New static design techniques for minimizing power consumption and max-

imizing radiation hardness 

Table 1-2 provides an overview of the 'C5x generation of digital signal proces­
sors. It shows the capacity of on-chip RAM and ROM memories, number of 
serial and parallel 1/0 ports, execution time of one machine cycle, and type of 
package with total pin count. The chart should help you choose the best pro­
cessor for an application. 

The following subsections summarize key features of the 'C5x processors. 
The CPU description applies to all 'C5x-generation members (current and fu­
ture). Descriptions of the remaining features apply only to the 'C50, 'C51 and 
the 'C53. Detailed information on the CPU, on-chip peripherals, and memory, 
is given in Chapters 3, 5, and 6, respectively. 
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Table 1-2. Characteristics of the 'C5x DSP Processors 

TMS320 On-Chip Memory 

Device RAM ROM 

Data Data+Prog Prog 

TMS320C50 1K 9K 2K 

TMS320C51 1K 1K SK 

TMS320C53 1K 3K 16K 

t Note that 16 of the 64K parallel VO ports are memory-mapped. 
§ QFP = Quad Flat Pack. 
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1/0 Ports 

Serial Parallelt 

2 64K 

2 64K 

2 64K 

Cycle Package 

Time 1Ype 

(ns) QFPt 

50/35 132-pin ceramic 

50/35 132-pin plastic 

50/35 132-pin plastic 
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Key Features 

Key features of the 'C5x DSPs are listed below. Where a feature is exclusive 
to a particular device, the device's name is enclosed within parentheses and 
noted after that feature. 

O 35-/50-ns single-cycle fixed-point instruction execution time (28.6/20 
MIPS) 

O Upward source-code compatible with all 'C1x and 'C2x devices 
O RAM-based memory operation ('C50) 
O ROM-based memory operation ('C51) 
O 9K x 16-bit single-cycle on-chip program/data RAM ('C50) 
O 1 K x 16-bit single-cycle on-chip program/data RAM ('C51) 
O 3K x 16-bit single-cycle on-chip program/data RAM ('C53) 
O 2K x 16-bit single-cycle on-chip boot ROM ('C50) 
O SK x 16-bit single-cycle on-chip program ROM ('C51) 
O 16K x 16-bit single-cycle on-chip program ROM ('C53) 
O 1056 x 16-bit dual-access on-chip data RAM 
O 224K x 16-bit maximum addressable external memory space (64K pro­

gram, 64K data, 64K 1/0, and 32K global) 
O 32-bit arithmetic logic unit (ALU), 32-bit accumulator (ACC), and 32-bit ac-

cumulator buffer (ACCB) 
O 16-bit parallel logic unit (PLU) 
O 16 x 16-bit parallel multiplier with a 32-bit product capability 
O Single-cycle multiply/accumulate instructions 
O Eight auxiliary registers with a dedicated arithmetic unit for indirect ad­

dressing 
O Eleven context-switch registers (shadow registers) for storing strategic 

CPU-controlled registers during an interrupt service routine 
O Eight-level hardware stack 
O 0- to 16-bit left and right data barrel-shifters and a 64-bit incremental data 

shifter 
O Two indirectly addressed circular buffers for circular addressing 
O Single-instruction repeat and block repeat operations for program code 
O Block memory move instructions for better program/data management 
O Full-duplex synchronous serial port for direct communication between the 

'C5x and another serial device 
O Time-division multiple-access (TOM) serial port 
O Interval timer with period, control, and counter registers for software stop, 

start, and reset 
O 64K parallel 1/0 ports, 16 of which are memory mapped 
O Sixteen software-programmable wait-state generators for program, data, 

and 1/0 memory spaces 
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1.3.1 Core CPU 

O Extended hold operation for concurrent external OMA 
D Four-deep pipelined operation for delayed branch, call, and return instruc-

tions 
D Index-addressing mode 
D Bit-reversed index-addressing mode for radix-2 FFTs 
O Divide-by-one clock option 
O On-chip clock generator 
D JTAG boundary scan logic (IEEE standard, 1149.1) 
D On-chip scan-based emulation logic 
D 5-V static CMOS technology with two power-down modes 
O 132-pin quad flat pack package 

Enhancements to the 'C5x CPU maintain source code compatibility with the 
'C1x and 'C2x generations while improving performance and versatility. Im­
provements include a 32-bit accumulator buffer, additional scaling capabili­
ties, and a host of new instructions to exploitthe additional hardware while sup­
plying a more orthogonal instruction set to the user. The new control functions 
include an independent parallel logic unit (PLU) for performing Boolean opera­
tions and a set of context-switch registers for providing zero-latency con­
text-switching capabilities to interrupt service routines (ISRs). Data manage­
ment has been improved through the use of new block move instructions and 
memory-mapped register instructions. The 'C5x has 28 memory-mapped 
core-CPU registers and 16 memory-mapped 1/0 ports. See Chapter 3 for more 
details. 

1.3.2 On-Chip ROM 

1-8 

The 'C50 features a 2K x 16-bit on-chip, maskable, programmable ROM. This 
memory is used for booting from slower external ROM or EPROM of program 
to fast on-chip or external SRAM. ROM can be selected during reset by driving 
the MP/MC pin low. Once your program has been booted into the RAM, this 
boot ROM can be operationally removed from the program memory space via 
the MP/MC bit in the PMSTstatus register. If the ROM is not selected, the 'C50 
starts its execution via an off-chip memory. 

The 'C51 features an SK x 16-bit on-chip maskable ROM. The 'C53 features 
a 16K x 16-bit on-chip maskable ROM. You can use this memory for your spe­
cified program. Once the development of the program has stabilized, submit 
a ROM code to Texas Instruments for implementation into your device. See 
Chapter 6 for more details. 
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1.3.3 On-Chip Data RAM 

All 'CSx devices carry a 1 OS6 x 16-bit on-chip data RAM. This RAM can be ac­
cessed twice per machine cycle (dual-access RAM). This block of memory is 
primarily intended to store data values but, when needed, can be used to store 
programs as well as data. It can be configured in one of two ways: either all 
1 OS6 x 16 bits as data memory or S44 x 16 bits as data memory with S12 x 16 
bits as program memory. You can select the configuration with the CNF bit in 
status register ST1, See Chapter 6 for more details, 

1.3.4 On-Chip Program/Data RAM 

The 'CSO has a 9K x 16-bit on-chip RAM. The 'CS1 has a 1 K x 16-bit on-chip 
RAM. This memory is software configurable as program and/or data memory 
space. Code can be booted from an off-chip nonvolatile memory and then ex­
ecuted at full speed, once it is loaded into this RAM. See Chapter 6 for more 
details. 

1.3.5 On-Chip Memory Security 

The 'CSx generation has a maskable option to protect the contents of on-chip 
memories. When the related bit is set, no externally originating instruction can 
access the on-chip memory spaces. See Chapter 6 for more details. 

1.3.6 Address-Mapped Software Wait-State Generators 

Software wait-state logic is incorporated without any external hardware into 
'CSx for interfacing with slower off-chip memory and 1/0 devices. This circuitry 
consists of 16 wait-state generating circuits and is user programmable to oper­
ate 0, 1, 2, 3, or 7 wait states. For off-chip memory accesses, these wait-state 
generators can be mapped on 16K-word boundaries in program memory, data 
memory, and to the 1/0 ports. See Chapter s for more details. 

1.3. 7 Parallel 1/0 Ports 

Each 'CSx device has a total of 64K 1/0 ports, sixteen of which are 
memory-mapped in data memory space. These ports can be addressed by the 
IN instruction or the OUT instruction. The memory-mapped 1/0 ports can be 
accessed with any instruction that reads or writes data memory. An active-low 
TS signal indicates a read/write operation via an 1/0 port. Requiring minimal 
off-chip address-decoding circuits, the 'CSx can easily interface with external. 
1/0 devices via the 1/0 ports. See Chapter S for more details. 

1.3.8 Serial 1/0 Ports 

The 'CSx devices carry two high-speed serial ports. These serial ports are ca­
pable of operating at up to one-fourth the machine cycle rate (CLKOUT1). One 
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of the two circuits is a synchronous, full-duplex serial port. Its transmitter and 
receiver are double buffered and individually controlled by maskable external 
interrupt signals. Data is framed either as bytes or as words. The second circuit 
is a full-duplex serial port that can be configured either for synchronous or for 
time-division multiple-access {TDM) operations. The TDM serial port is com­
monly used in multiprocessor applications. See Chapter 5 for more details. 

1.3.9 Hardware Timer 

The 'C5xfeatures a 16-bit timing circuit with a 4-bit prescaler. This timer clocks 
between one-half and one-thirty-second the machine rate of the device itself, 
depending upon the programmable timer's divide-down ratio. This timer can 
be stopped, restarted, reset, or disabled by specific status bits. See Chapter 
5 for more details. 

1.3.1 O User-Maskable Interrupts 

The 'C5x devices have four external-interrupt lines. These lines are internally 
latched so that asynchronous interrupt operations can be performed by the 
TMS320 device. Also, each device possesses five internal interrupts: the timer 
interrupt and four serial port interrupts. See Chapter 5 for more details. 

1.3.11 JTAG Scanning Logic 

1.3.12 Packages 

1-10 

The JTAG scanning logic circuitry is used for emulating and testing purposes 
only. The JTAG scan logic provides the boundary scan to and from the interfac­
ing devices. Also, it can be used to test pin-to-pin continuity as well as to per­
form operational tests on those peripheral devices that surround the 'C5x. It 
is interfaced to another internal scanning logic circuitry, which has access to 
all of the on-chip resources. Thus, the 'C5x can perform on-board emulation 
by means of the JTAG serial scan pins and the emulation-dedicated pins. See 
IEEE Standard 1149.1 for more details. 

The 'C5x devices are packaged in a 132-pin quad flat pack package (QFP). 
With consideration for the pin layout of a 'C25 package, the 'C5x package is 
designed to minimize printed circuit board modifications when a 'C2x-based 
system is upgraded to a 'C5x processing system. Signal callouts for the 'C5x 
appear on the same side and in the same order as those for the 'C25. See 
Chapter 2 for details. 
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Chapter 2 

Pinouts and Signal Descriptions 

The 'C5x DSPs are available in a 132-pin quad flat pack (QFP) package and 
have identical pin-to-signal relationship. The QFP package conforms to 
JEDEC specifications for electrical/electronic components. Electrical specifi­
cations and mechanical data for the 'C5x DSPs are in Appendix A. 

This chapter presents a simple layout of a 132-pin QFP package, with pin and 
signal callouts, and a table of signal definitions, in the following sections: 

Topic Page 
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2.1 Pinout 

The 'C5x devices are packaged in a 132-pin quad flat pack package (QFP) and 
have the same pin-to-signal relationship. Figure 2-1 shows the pin/signal call­
outs for this package. 

Figure 2-1. Signal Assignments for 'C5x 132-Pin QFP 

18 0 118 NC 
19 115 NC 

114 Voo14 
21 (Top View) 113 Voo13 
22 112 ~ 
23 111 NC 
24 110 CLKOUT1 
25 108 XF 
28 108 ROCCA 
27 107 TDX 
28 108 DX 
211 105 TFSX/TFRM 
30 104 FSX 
31 103 CLKMD2 
32 1112 Vss14 
33 101 Vss13 
34 100 TOO 
36 1111 Voo12 
38 98 Voo11 
37 97 X1 
38 98 X2/CLKIN1 
38 115 CLKIN2 
40 94 BR 
41 93 STRB 
42 92 R/W 
43 91 PS 
44 flO 1S 
45 88 OS 
48 88 NC 
47 97 Vss12 
48 88 Vss11 
48 85 NC 
50 84 NC 

51 52 53 54 56 58 57 58 58 80 81 ~8384858897aaaeronnn~~nnnn 8081~83 

Note: NC = No connect. (These pins are reserved.) 
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2.2 Signal Descriptions 

The signals for the 'C5x device are described in this section. Table 2-1 lists 
each signal, its pin location, function, and operating mode(s), i.e., input (I), out­
put (0), high-impedance (Z) or supply (S) state. The signals are grouped ac­
cording to their functional purpose. 

Table 2-1. TMS320C5x Signal Descriptions 

Slgnal Pin State Description 

Address and Data Buses 

A15 (MSB) 77 1/0/Z Parallel address bus A15 (MSB) through AO (LSB). Multi-
A14 76 plexed to address external data/program memory or 1/0. 
A13 75 Placed in high-impedance state in hold mode. These signals 
A12 74 also go into high impedance when OFF is active low. These 
A11 73 
A10 72 signals are used as inputs for external OMA access of the 

A9 64 on-chip single-access RAM. They become inputs while 
AS 63 RUCOA is active low if the BR pin is externally driven low. 
A7 62 
A6 61 
A5 60 
A4 59 
A3 58 
A2 57 
A1 56 
AO (LSB) 55 

015 (MSB) 6 1/0/Z Parallel data bus D15 (MSB) through DO (LSB). Multiplexed 
014 7 to transfer data between the core CPU and external data/ 
013 8 program memory or 1/0 devices. Placed in high-impedance 
012 9 state when not outputting or when RS or ROID is asserted. 
011 10 
010 11 They also go into high impedance when OFF is active low. 

09 12 These signals are also used in external OMA access of the 
08 13 on-chip single-access RAM. 
07 23 
06 24 
05 25 
04 26 
03 27 
02 28 
01 29 
DO (LSB) 30 

Note: All input pins that are unused should be connected to v00 or an external pull-up resistor. The BR pin has 
an internal pull-up for performing OMA to the on-chip RAM. For emulation, TRST has an inter!'lal pull­
down, and TMS, TCK, and TOI have internal pull-ups. EMUO and EMU1 require external pull-ups to 
support emulation. 
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Table 2-1. TMS320C5x Signal Descriptions (Continued) 

Signal Pin State Description 

Memory Control Signals 

OS 89 O/Z Data, Program, and 1/0 space select signals. Always high 
P'S 91 unless low level asserted for communicating to a particular 
TS 90 external space. Placed into a high-impedance state in hold 

mode. These signals also go into high-impedance when 
OFF Is active low. 

READY 128 I Data ready input. Indicates that an external device is pre-
pared for the bus transaction to be completed. If the device 
is not ready (READY is low), the processor waits one cycle 
and checks READY again. READY also indicates a bus 
grant to an external device after a BR (bus request) signal. 

RflJ 92 1/0/Z Read/Write signal. Indicates transfer direction during com-
munication to an external device. Normally in read mode 
(high), unless low level asserted for performing a write oper-
ation. Placed in high-impedance state in hold mode. This sig-
nal also goes into high impedance when OFF is active low, 
and it is used in external OMA access of the 9K RAM cell. 
While RO[IDi; and 1AO are active low, this signal is used to 
indicate the direction of the data bus for OMA reads (high) 
and writes (low). 

STRB 93 1/0/Z Strobe signal. Always high unless asserted low to indicate 
an external bus cycle. Placed in high-impedance state in the 
hold mode. This signal also goes into high impedance when 
OFF is active low, and it is used in external OMA access of 
the on-chip single-access RAM. While RO[IDi; and 1AO are 
active low, this signal is used to select the memory access. 

Rn 82 O/Z Read select indicates an active, external read cycle and may 
connect directly to the output enable (OE) of external de-
vices. This signal is active on all external program, data, and 
1/0 reads. Placed into high-impedance state In hold mode. 
This signal also goes into high impedance when OFF is ac-
tive low. 

WE 83 O/Z Write enable. The falling edge of this signal indicates that the 
device is driving the external data bus (015-00). Data may 
be latched by an external device on the rising edge of WL. 
This signal is active on all external program, data, and 1/0 
writes. Placed into high-impedance state in hold mode. This 
signal also goes into high impedance when OFF is active 
low. 
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Table 2-1. TMS320C5x Signal Descriptions (Continued) 

Slgnal Pin State Description 

Multlprocesslng Signals 

HOCO 129 I Hold input. This signal is asserted to request control of the 
address, data, and control lines. When acknowledged by the 
'C5x, these lines go to the high-impedance state. 

ROCDA 108 O!Z Hold acknowledge signal. Indicates to the external circuitry 
that the processor is In a hold state and that the address, 
data, and memory control lines are in a high-impedance 
state so that they are available to the external circuitry for ac-
cess of local memory. This signal also goes into high imped-
ance when OFF is active low. 

BR 94 1/0/Z Bus request signal. Asserted during access of external glob-
al data memory space. READY is asserted to the device 
when the global data memory is available for the bus trans-
action. BR can be used to extend the data memory address 
space by up to 32K words. It goes into high impedance when 
OFF is active low. BR is used in external OMA access of the 
on-chip single-access RAM. While ROCDA is active low, BR 
is externally driven low to request access to the on-chip 
single-access RAM. 

lAO 1 O!Z Instruction acquisition signal. This signal is asserted (active 
low) when there is an instruction address on the address bus 
and goes into high impedance when OFF is active low. lAO 
is also used in external OMA access of the on-chip single-ac-
cess RAM. While ~ is active low, lAO acknowledges 
the BR request for access of the on-chip single-access RAM 
and stops indicating instruction acquisition. 

B10 130 I Branch control input. Samples as the BIO condition. if low, 
the device executes the conditional instruction. This signal 
must be active during the fetch of the conditional instruction. 

XF 109 O!Z External flag output (latched software-programmable sig-
nal). This signal is set high or low by specific instruction or 
by loading status register 1 (ST1). Used for signaling other 
processors in multiprocessor configurations or as a general-
purpose output pin. This signal also goes into high imped-
ance when OFF is active low. This pin is set high at reset. 

1A"CK 112 O!Z Interrupt acknowledge signal. Indicates receipt of an inter-
rupt and that the program counter is fetching the interrupt 
vector location designated by A 1 ~AO. This signal also goes 
into high impedance when OFF is active low. 
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Table 2-1. TMS320C5x Signal Descriptions (Continued) 

Sign al Pin State Description 

lnltlallzatlon, Interrupt, and Reset Operations 

rnT4 41 I External user interrupt inputs. Prioritized and maskable by the interrupt mask 
TlilT3 40 register and interrupt mode bit. Can be polled and reset via the interrupt flag 
TfiJT2' 39 register. 
TIIITT 38 

fJMT 42 I Nonmaskable interrupt. External interrupt that cannot be masked via the 
INTM or the IMR. When fJMT is activated, the processor traps to the appropri· 
ate vector location. 

RS 127 I Reset input. Causes the device to terminate execution and forces the pro-
gram counter to zero. When RS Is brought to a high level, execution begins 
at location zero of program memory. RS affects various registers and status 
bits. 

MP/flC 5 I Microprocessor/Microcomputer mode select pin. If active low at reset (micro-
computer mode), the pin causes the internal program ROM to be mapped 
into program memory space. In the microprocessor mode, all program 
memory is mapped externally. This pin is sampled only during reset, and the 
mode that is set at reset can be overridden via the software control bit MP/ 
MC in the PMST register. 

Osclllatormmer Signals CLKIN1/2 

CLKOUT1 110 O/Z Master clock output signal (or CLKIN2 frequency). This signal cycles at the 
machine-cycle rate of the CPU. The internal machine cycle is bounded by 
the rising edges of this signal. This signal also goes into high impedance 
when OFF is active low. 

QL.IS:MOl QL.IS:M02 Qlock Mode 
CLKMD1 71 I 0 0 External clock with divide-by-two option. Input 
CLKMD2 103 clock provided to X2/CLKIN1 pin. Internal oscilla-

tor and PLL disabled. 

0 1 Reserved for test purposes. 

1 0 External divide-by-one option. Input clock pro-
vided to CLKIN2. Internal oscillator disabled. 
Internal PLL enabled. 

1 1 Internal or external divide-by-two option. Input 
clock provided to X2/CLKIN1 pin. Internal oscilla-
tor enabled. Internal PLL disabled. 

X2/CLKIN1 96 I Input pin to internal oscillator from the crystal. If the internal oscillator is not 
being used, a clock may be input to the device on this pin. The internal ma-
chine cycle is half this clock rate. 

X1 97 0 Output pin from the internal oscillator for the crystal. If the internal oscillator 
is not used, this pin should be left unconnected. This signal does not go into 
high impedance when OFF is active low. 
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Table 2-1. TMS320C5x Signal Descriptions (Continued) 

Signal Pin State Description 

Oaclllatorrnmer Signals (Concluded) 

CLKIN2 95 I Divide-by-1 input clock for driving the internal machine 
rate. 

TOUT 122 0 Timer output. This pin signals a pulse when the on-chip tim-
er counts down past zero. The pulse is a CLKOUT1 cycle 
wide. 

Supply Pins 

Voo1 14 s Power supply for data bus. 

Voo2 15 s Power supply for data bus. 

Voo3 32 s Power supply for data bus. 

Voo4 33 s Power supply for data bus. 

Voos 47 s Power supply for address bus. 

Vooe 48 s Power supply for address bus. 

Voo1 65 s Power supply for inputs and internal logic. 

Vooa 66 s Power supply for inputs and internal logic. 

Voo9 80 s Power supply for address bus. 

Voo10 81 s Power supply for address bus. 

Voo11 98 s Power supply for memory control signals. 

Voo12 99 s Power supply for memory control signals. 

Voo13 113 s Power supply for inputs and Internal logic. 

Voo14 114 s Power supply for inputs and internal logic. 

Voo1s 131 s Power supply for memory control signals. 

Voo1e 132 s Power supply for memory control signals. 

Vss1 3 s Ground for memory control signals. 

Vss2 4 s Ground for memory control signals. 

Vss3 20 s Ground for data bus. 

Vss4 21 s Ground for data bus. 

Vsss 35 s Ground for data bus. 

Vsse 36 s Ground for data bus. 

Vss1 53 s Ground for address bus. 

Vssa 54 s Ground for address bus. 

Vss9 68 s Ground for address bus. 

Vss10 69 s Ground for address bus. 

Vss11 86 s Ground for memory control signals. 

Vss12 87 s Ground for memory control signals. 

Vss13 101 s Ground for inputs and internal logic. 
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Table 2-1. TMS320C5x Signal Descriptions (Continued)' 

Signal Pin State Description 

Supply Pina (Concluded) 

Vss14 102 s Ground for inputs and internal logic. 

Vss1s 120 s Ground for inputs and internal logic. 

Vss1a 121 s Ground for inputs and internal logic. 

Serial Port Slgnala 

CLKR 46 I Receive clock inputs. External clock signal for clocking 
TCLKR 126 I data from the DR/TOR (data receive) pins into the RSR 

(serial port receive shift register). Must be present during 
serial port transfers. If the serial port is not being used, 
these pins can be sampled as an input via the INO bit of the 
SPC/TSPC registers. 

CLKX 124 1/0/Z Transmit clock. Clock signal for clocking data from the DR/ 
TCLKX 123 1/0/Z TOR (data receive register) to the DX/TDX (data transmit 

pin). The CLKX can be an input if the MCM bit in the serial 
port control register is set to o. It may also be driven by the 
device at 1/4 the CLKOUT1 frequency when the MCM bit 
is set to 1. If the serial port is not being used, this pin can 
be sampled as an input via the IN1 bit of the SPC/TSPC 
register. This signal goes into high impedance when OFF 
is active low. 

DR 43 I Serial data receive inputs. Serial data is received in the 
TOR 44 I RSR (serial port receive shift register) via the DR/TOR pin. 

DX 106 O/Z Serial port transmit outputs. Serial data transmitted from 
TDX 107 the XSR (serial port transmit shift register) via the DX/TDX 

pin. Placed in high-impedance state when not transmitting 
and also when OFF is active low. 

FSR 45 I Frame synchronization pulse for receive input. The falling 
TFSR/TADD 125 1/0/Z edge of the FSR/TFSR pulse initiates the data receive pro-

cess, beginning the clocking of the RSR. TFSR becomes 
an input/output (TADD) pin when the serial port is operat-
ing in TOM mode (TOM bit= 1). In TOM mode, this pin is 
used to output/input the address of the port. This signal 
goes into high impedance when OFF is active low. 

FSX 104 1/0/Z Frame synchronization pulse for transmit inpuVoutput. The 
TFSX/TFRM 105 1/0/Z falling edge of the FSX/TFSX pulse initiates the data trans-

mit process, beginning the clocking of the XSR. Following 
reset, the default operating condition of FSX/TFSX is an in-
put. This pin may be selected by software to be an output 
when the TXM bit in the serial control register is set to 1 . 
This signal goes into high impedance when OFF is active 
low. When operating in TOM mode (TOM bit= 1), the TFSX 
pin becomes TFRM, the TOM frame synch. 
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Signal Descriptions 

Table 2-1. TMS320C5x Signal Descriptions (Continued) 

Signal Pin State Description 

Teat Signals 

TCK 34 I JTAG test clock. This is normally a free-running clock sig-
nal with a 50% duty cycle. The changes on TAP (test ac-
cess port) input signals (TMS and TOI) are clocked into the 
TAP controller, Instruction register, or selected test data 
register on the rising edge ofTCK Changes atthe TAP out-
put signal (TOO) occur on the falling edge of TCK. 

TOI 67 I JTAG test data input. TOI is clocked into the selected regis-
ter (instruction or data) on a rising edge of TCK. 

TOO 100 O/Z JTAG test data output. The contents of the selected regis-
ter (Instruction or data) is shifted out of TOO on the falling 
edge ofTCK TOO is in high-impedance state except when 
scanning of data is in progress. This signal also goes into 
high impedance when OFF is active low. 

TMS 31 I JTAG test mode select. This serial control input is clocked 
into the test access port (TAP) controller on the rising edge 
ofTCK 

TRST 2 I JTAG test reset. This signal, when active high, gives the 
JTAG scan system control of the operations of the device. 
If this signal is not connected or driven low, the device will 
operate in its functional mode, and the JTAG signals are ig-
nored. 

EMUO 118 1/0/Z Emulator pin 0. When TRST is driven low, this pin must be 
high for activation of the OFF condition (see pin 119). 
When TRST is driven high, this pin is used as an interrupt 
to or from the emulator system and is defined as input/out-
put via JTAG scan. 
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Table 2-1. TMS320C5x Signal Descriptions (Concluded) 

Signal Pin State Description 

Test Slgnala (Concluded) 

EMU1/0FF 119 1/0/Z Emulator pin 1/disable all outputs. When TRST is driven 
high, this pin is used asan interrupt to or from the emulator 
system and is defined as input/output via JTAG scan. 
When TRST is driven low, this pin is configured as OFF. 
The EMU1/ OFF signal, when active low, puts all output 
drivers Into the high-impedance state. Note that OFF is 
used exclusively for testing and emulation purposes (not 
for multiprocessing applications). Thus, for OFF condition, 
the following conditions apply: 
TRST=low, 
EMUO=high 
EMU1/0FF=low 

RESERVED 16 N/C Reserved pin. These pins are reserved for future 'C5x de-
17 vices. These pins should be left unconnected. 
18 
19 
22 
37 
49 
50 
51 
52 
70 
78 
79 
84 
85 
88 
111 
115 
116 
117 
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Chapter 3 

Architecture 

The architectural structure of a TMS320 DSP consists of three basic seg­
ments: 

O Central processing unit (CPU) 
O Memory 
O Peripheral-interfacing circuits 

This chapter describes the architecture and operation of the 'CSx core CPU; 
the memory and peripheral segments are not discussed except in relation to 
the core CPU of the 'CSx generation. This CPU is capable of performing 
high-speed arithmetic executions within a short instruction cycle by means of 
its highly parallel architectural design. 

For information on the memory organization of the 'CSx, refer to Chapter 6, 
Memory. For further details about on-chip peripheral organization, refer to 
Chapter S, Peripherals. The major topics in this chapter are: 

Topic Page 
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3.1 Architectural Overview 

3-2 

The 'C5x high-performance digital signal processors are designed, like the 
'C25, with an advanced Harvard-type architecture that maximizes the pro­
cessing power by maintaining two separate memory bus structures, program 
and data, for full-speed execution. Instructions support data transfers between 
the two spaces. 

The 'C5x performs 2s-complement arithmetic, using the 32-bit arithmetic log­
ic unit (ALU) and accumulator. The ALU is a general-purpose arithmetic unit 
that uses 16-bit words taken from data memory or derived from immediate in­
structions, or the 32-bit result from the multiplier. In addition to arithmetic oper­
ations, the ALU can perform Boolean operations. The accumulator stores the 
output from the ALU and is also the second input to the ALU. The accumulator 
is 32 bits long and is divided into a high-order word (bits 31 through 16) and 
a low-order word (bits 15 through 0). Instructions are provided for storing those 
high- and low-order accumulator words in memory. For fast, temporary stor­
age of the accumulator, there is a 32-bit accumulator buffer. 

In addition to the main ALU, there is a parallel logic unit (PLU) that executes 
logic operations on data without affecting the contents of the accumulator. The 
PLU provides the bit-manipulation ability required of a high-speed controller 
and simplifies the bit setting, clearing, and testing required with control and sta­
tus register operations. 

The multiplier performs 16 x 16-bit 2s-complement multiplication with a 
32-bit result in a single-instruction cycle. The multiplier consists of three ele­
ments: multiplier array, PREG (product register), and TREGO (temporary reg­
ister). The 16-bit TREGO temporarily stores the multiplicand; the PREG stores 
the 32-blt product. The multiplier's values come from data memory, come from 
program memory when the MAC/MACD/MADS/MADD instructions are used, 
or are derived immediately from the multiply immediate instructions (MPV#). 
The fast on-chip multiplier allows the device to efficiently perform fundamental 
DSP operations such as convolution, correlation, and filtering. 

The 'C5x scaling shifter has a 16-bit input connected to the data bus and a 
32-bit output connected to the ALU. The scaling shifter produces a left shift 
of O to 16 bits on the input data, as programmed in the instruction or defined 
in the shift count register (TREG1). The LSBs of the output are filled with zeros, 
while the MSBs may be either zero-filled or sign-extended, depending upon 
the state of the sign-extension mode bit (SXM) of status register ST1 . Addition­
al shift capabilities enable the processor to perform numerical-scaling, bit-ex­
traction, extended-arithmetic, and overflow-prevention operations. 

Eight levels of hardware stack save the contents of the program counter dur­
ing interrupts and subroutine calls. On interrupts, the strategic registers (ACC, 
ACCB, ARCR, INDX, PMST, PREG, STO, ST1, TREGs) are pushed onto a 
one-deep stack and popped upon interrupt return, thus providing a zero-over­
head interrupt context switch. 
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3.2 Functional Block Diagram 

The functional block diagram, shown in Figure 3-1, outlines the principal 
blocks and data paths within the 'C5x processors. Further details of the func­
tional blocks are provided in the succeeding sections. Refer to Section 3.3, In­
ternal Hardware Summary, for definitions of the symbols used in Figure 3-1. 

The 'C5x architecture is built around two major buses: the program bus and 
the data bus. The program bus carries the instruction code and immediate op­
erands from program memory. The data bus interconnects various elements, 
such as the central arithmetic logic unit (CALU) and the auxiliary register file, 
to the data memory. Together, the program and data buses can carry data from 
on-chip data memory and internal or external program memory to the multipli­
er in a single cycle for multiply/accumulate operations. 

The 'C5x possesses a high degree of parallelism; that is, while the data is be­
ing operated upon by the CALU, arithmetic operations may also be executed 
in the auxiliary register arithmetic unit (ARAU). Such parallelism results in a 
powerful set of arithmetic, logic, and bit-manipulation operations that may all 
be performed in a single machine cycle. 
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Figure 3-1. Block Diagram of 'C5x Internal Hardware 
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Internal Hardware Summary 

3.3 Internal Hardware Summary 

The internal hardware of the 'CSx executes functions that other processors 
typically implement in software or microcode. For example, the device con­
tains hardware for single-cycle 16 x 16-bit multiplication, data shifting, and 
address manipulation. This hardware-intensive approach provides computing 
power previously unavailable on a single chip. 

Table 3-1 presents a summary of the 'CSx's internal hardware. This summary 
table, which includes the internal processing elements, registers, and buses, 
is alphabetized. All of the symbols used in the table correspond to the symbols 
used in Figure 3-1, the succeeding block diagrams in this chapter, and the text 
throughout this document. 

Table 3-1. 'C5x Internal Hardware Summary 

Unit Symbol Function 

Accumulator ACC(32) A 32-bit accumulator accessible in two halves: ACCH (accumulator high) 
ACCH(16) and ACCL (accumulator low). Used to store the output of the ALU. See sub-
ACCL(16) section 3.5.2 for more information. 

Accumulator Buffer ACCB(32) A register used to temporarily store the 32-bit contents of the accumulator. 
This register has a direct path back to the ALU and therefore can be arithmet-
ically or logically acted upon with the ACC. See subsection 3.5.2 for more 
information. 

Arithmetic Logic Unit ALU A 32-bit 2s-complement arithmetic logic unit having two 32-bit input ports 
and one 32-bit output port feeding the accumulator. See subsection 3.5.2 for 
more information. 

Auxiliary Register ARAU An unsigned 16-bit arithmetic unit used to calculate indirect addresses using 
Arithmetic Unit the auxiliary, index, and compare registers as inputs. See subsection 3.4.3 

for more information. 

Auxiliary Register ARCR(16) A 16-bit register used as a limit to compare indirect address against. See 
Compare subsection 3.4.3 for more information. 

Auxiliary Register File AUXREGS A register file containing eight 16-bit auxiliary registers (ARO-AR7) used for 
indirect data address pointers, temporary storage, or integer arithmetic pro-
cessing through the ARAU. See subsection 3.4.3 for more information. 

Auxiliary Register Buffer ARB(3) A 3-bit register that holds the previous value contained in the ARP. These bits 
are stored in ST1. See subsection 3.4.3 for more information. 

Auxiliary Register Pointer ARP(3) A 3-bit register used as a pointer to the currently selected auxiliary register. 
These bits are stored in STO. See subsection 3.4.3 for more information. 

Block Move Address BMAR(16) A 16-bit register that holds an address value for use with block moves or mul-
Register tiply/accumulates. See subsection 3.4.2 for more information. 

Block Repeat BRAF(1) A 1-bitflag indicating that a block repeat is currently active. This bit is normal-
Active Flag ly set when the RPTB instruction is executed and cleared when the BRCR 

register decrements below zero. This bit resides in the PMST register. See 
subsection 3.6.5 for more details. 

Block Repeat Address PAER(16) A 16-bit memory-mapped register containing the end address of the seg-
End Register ment of code being repeated. See subsection 3.6.5 for more details. 

3-5 



Internal Hardware Summary 

Table 3-1. 'C5x Internal Hardware (Continued) 

I Unit I Symbol I Function 

Block Repeat Address PASR(16) A 16-bit memory-mapped register containing the start address of the seg-
Start Register ment of code being repeated. See subsection 3.6.5 for more details. 

Block Repeat BRCR(16) A 16-bit memory-mapped counter register used to limit the number of times 
Counter Register the block is to be repeated. See subsection 3.6.5 for more details. 

Bus Interface Module BIM A buffered interface used to pass data between the internal data and pro-
gram buses. 

Bus Request BR This signal indicates that a data access is mapped to global memory space 
as defined by the GREG register. See Section 6.4 for more details. 

Carry c This bit stores the carry output of the ALU. This bit resides in ST1 . See sub-
section 3.5.2 for more information. 

Central Arithmetic Logic CALU The grouping of the ALU, multiplier, accumulator, and scaling shifters. See 
Unit Section 3.5 for more information. 

Circular Buffer CBCR(8) An 8-bit register used to enable/disable the circular buffers and define which 
Control Register auxiliary registers are mapped to the circular buffers. See subsection 3.4.3 

for more information. 

Circular Buffer CBER(16) Two 16-bit registers indicating circular buffer end addresses. CBER1 and 
End Address CBER1(16) CBER2 are associated with circular buffers one and two, respectively. See 

CBER2(16) subsection 3.4.3 for more information. 

Circular Buffer CBSR(16) Two 16-bit registers indicating circular buffer start addresses. CBSR1 and 
Start Address CBSR1(16) CBSR2 are associated with circular buffers one and two, respectively. See 

CBSR2(16) subsection 3.4.3 for more information. 

Compare of Program COMPARE This circuit compares the current value in the PC to the value in PAER if 
Address BRAF is active. If the compare shows equal, then the PASR is loaded into 

the PC. See subsection 3.4.3 for more information. 

Configure RAM CNF This bit indicates whether on-chip dual-access RAM blocks are mapped to 
program or data space. The CNF bit resides in ST1. See subsection 3.6.3 
for more information. 

Data Bus DATA A 16-bit bus used to route data. 

Data Memory DATA This block refers to data memory used with the core and defined in specific 
MEMORY device descriptions. It refers to both on- and off-chip memory blocks in data 

memory space. 

Data Memory DATA A 16-bit bus that carries the address for data memory accesses. 
Address Bus ADDRESS 

Data Memory Address dma(7) A 7-bit register containing the immediate relative address within a 128-word 
Immediate Register data page. See subsection 3.4.2 for more information. 

Data Memory DP(9) A 9-bit register containing the address of the current page. Data pages are 
Page Pointer 128 words each, resulting in 512 pages of addressable data memory space 

(some locations are reserved). See subsection 3.4.2 for more information. 

Data RAM Map Bit RAM(1) This bit indicates if the single-access RAM is mapped into data space. See 
subsection 3.6.3 for more information. 

Direct Data Memory DRB(16) A 16-bit bus that carries the direct address for the data memory, which is the 
Address Bus concatenation of the DP register and the seven LSBs of the instruction 

(OMA). See subsection 3.4.2 for more information. 
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Table 3-1. 'C5x Internal Hardware (Continued) 

Unit Symbol Function 

Dynamic Bit DBMR(16) A 16-bit memory-mapped register used as a mask input to the PLU in the ab-
Manipulation Register sence of a long immediate value. See Section 3.7 for more information. 

Dynamic Bit Pointer TREG2(4) A 4-bit register that holds a dynamic bit pointer for the BITT instruction. See 
Section 4.3 for more information. 

Dynamic Shift Count TREG1 (5) A 5-bit register that holds a dynamic prescaling shift count for data inputs to 
the ALU. See Section 4.3 for more information. 

External Flag XF(1) This bit drives the level of the external flag pin and resides in ST1. See sub-
section 3.6.3 for more information. 

Global Memory GREG(8) An 8-bit memory-mapped register for specifying the size of the global 
Allocation Register memory space. See Section 6.4 for more details. 

Hold Mode HM(1) This bit resides in ST1 and determines whether the CALU will stop or contin-
ue when the ROIJJ signal initiates a power-down mode. See Section 6.6 for 
more information. 

Index Register INDX(16) This 16-bit memory-mapped register specifies increment sizes greater than 
1 for indirect addressing updates. In bit-reversed addressing, the index reg-
ister defines the array size. See subsection 3.4.3 for more information. 

Index Register Enable NDX(1) This bit determines whether a modification or write to ARO writes also to 
INDX and ARCA to maintain compatibility with the 'C25. This bit resides in 
the PMST register. See subsection 3.4.3 for more information. 

Interrupt Flag Register IFR(16) A 16-bit flag register used to latch the active-low interrupts. The IFR is a me-
mory-mapped register. See Section 3.8 for more information. 

Interrupt Mask Bit INTM(1) The interrupt mask bit globally masks or enables all interrupts. This bit re-
sides in STO. See Section 3.8 for more information. 

Interrupt Number INT#(4) The number of the specific interrupt being sent to the CPU to be activated. 
This value comes from either the interrupt-processing circuitry or, in the case 
of the INTR instruction, the program bus. See Section 3.8 for more informa-
tion. 

Interrupt Pointer IPTR(5) Five bits pointing to the 2K page where the interrupt vectors currently reside 
in the system. These bits reside in the PMST register. See Section 3.8 for 
more information. 

Interrupt Mask Register IMR(16) A 16-bit memory-mapped register used to mask interrupts. See Section 3.8 
for more information. 

Microcall Stack MCS (15-0) A single-word stack thattemporarily stores the contents of the PFC while the 
PFC is being used to address data memory with the block move (BLDD/ 
BLPD), multiply-accumulate (MAC/MACO), and table read/write (TBLR/ 
TBLW) instructions. 

Microprocessor/ MP/MC This bit resides in the PMST register and indicates whether the on-chip ROM 
Microcomputer Mode is mapped into program address space. See subsection 3.6.3 for more infor-

mation. 

Multiplexer MUX A bus multiplexer used to select the source of operands for a bus or execu-
tion unit, depending on the nature of the current instruction. 

Multiplier MULTIPLIER A 16 x 16-bit parallel multiplier. See subsection 3.6.3 for more information. 
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Table 3-1. 'C5x Internal Hardware (Continued) 

··-·· Symbu; Funeiiun Vllll. 

Overflow Flag OV(1) This bit resides in STO and indicates an overflow in an arithmetic operation 
in the ALU. See subsection 3.6.3 for more information. 

Overflow Mode OVM(1) This bit resides in STO and determines whether an overflow in the ALU will 
wrap around or saturate. See subsection 3.6.3 for more information. 

Overlay to Data Space OVLY(1) This bit resides in the PMST register and determines whether the on-chip 
single-access memory will be addressable in data address space. See sub-
section 3.6.3 for more information. 

Parallel Logic Unit PLU A 16-bit logic unit that executes logic operations from either long immediate 
operands or the contents of the DBMR directly upon data locations without 
interfering with the contents of the CALU registers. See Section 3. 7 for more 
information. 

Prefetch Counter PFC (15--0) A 16-bit counter used to prefetch program instructions. The PFC contains 
the address of the instruction currently being prefetched. It is updated when 
a new prefetch is initiated. The PFC can also address program memory 
when the block move (BLPD), multiply-accumulate (MAC/MACO), and table 
read/write (TBLR/TBLW) instructions are used and can address data 
memory when the block move (BLDD) instruction is used. 

Prescaler Count Register COUNT(4) A four-bit register that contains the value for the prescaling operation. When 
the register contents are used as prescaling data, this register is loaded from 
the dynamic shift count or from the instruction. In conjunction with the BIT 
and BITT instructions, this register is loaded from the dynamic bit pointer or 
the instruction word. 

Product Register PREG(32) A 32-bit product register used to hold the multiplier's product. The high and 
low words of the PREG can be accessed individually. See subsection 3.5.3 
for more information. 

Program Bus PROG A 16-bit bus used to route instructions (and data for the MAC and MACO in-
DATA structions). 

Program Counter PC(16) A 16-bit program counter used to address program memory sequentially. 
The PC always contains the address of the next instruction to be fetched. 
The PC contents are updated following each instruction decode operation. 

Program Memory PROGRAM This block refers to program memory used with the core and defined in spe-
MEMORY cific device descriptions. It refers to both on- and off-chip memory blocks ac-

cessed in program memory space. 

Program Memory PROG A 16-bit bus that carries the program memory address. 
Address Bus ADDRESS 

Prescaling Shifter PRE SCALER A 0- to 16-bit left barrel shifter used to prescale data coming into the ALU. 
Also used to align data for multiprecision operations. This shifter is also used 
as a 0- to 16-bit right barrel shifter of the ACC. See subsection 3.5.2 for more 
information. 

Postscaling Shifter POST- A 0- to 7-bit left barrel shifter used to postscale data coming out of the CALU. 
SCALER See subsection 3.5.2 for more information. 

Product Shifter P-SCALER A 0-, 1-, or 4-bit left shifter that can remove extra sign bits (gained in the multi-
ply operation) when fixed-point arithmetic is used; or a 6-bit right shifter that 
can scale the products down to avoid overflow in the accumulation process. 
See subsection 3.5.3 for more information. 
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Table 3-1. 'C5x Internal Hardware (Continued) 

Unit Symbol Function 

Product Shifter Mode PM(2) These two bits define the product shifter mode; They reside in ST1 . See sub-
section 3.6.3 for more information. 

Repeat Counter RPTC(16) A 16-bit counter used to control the repeated execution of a single instruc-
tion. See subsection 3.6.4 for more information. 

Sign Extension Mode SXM(1) This bit resides in ST1 and controls whether the arithmetic operation will be 
sign-extended or not. See subsection 3.6.3 for more information. 

Stack STACK An 8 x 16-bit hardware stack used to store the PC during interrupts and calls. 
The ACCL and data memory values may also be pushed onto and popped 
from the stack. See Section 3.8 for more information. 

Status Registers STO, ST1, Three 16-bit status registers that contain status and control bits. See subsec-
PMST tion 3.6.3 for more information. 

Temporary Multiplicand TREG0(16) A 16-bit register that temporarily holds an operand for the multiplier. See sub-
section 3.5.3 for more information. 

Temporary Registers En- TRM(1) This bit defines whether an LT(A,D,P,S) instruction loads all three of the 
able TREGs(O, 1,2) to maintain compatibility with the 'C25 or loads just TREGO. 

This bit resides in the PMST register. See subsection 3.6.3 for more informa-
tion. 

Test/Control Flag TC(1) This bit resides in ST1 and stores the results of ALU or PLU test bit opera-
tions. See subsection 3.6.3 for more information. 

3-9 



Internal Memory Organization 

3.4 Internal Memory Organization 

This section describes the memory use of the 'C5x core and the addressing 
modes supported by the core. 

3.4.1 Core Processor Memory-Mapped Registers 

Twenty-eight core processor registers are mapped into the data memory 
space. These are listed in Table 3-2. An additional 64 memory-mapped regis­
ters are reserved in page O of data space. These data memory locations are 
reserved for memory-mapped peripheral control and 1/0 port registers. 

Table 3-2. Core Processor Memory-Mapped Registers 

Name Address Description 

'CSx 'CSX 
Dec Hex 

- 0-3 0-3 Reserved 
IMR 4 4 Interrupt mask register 
GREG 5 5 Global memory allocation register 
IFR 6 6 Interrupt flag register 
PMST 7 7 Processor mode status register 
RPTC 8 8 Repeat counter register 
BRCR 9 9 Block repeat counter register 
PASR 10 A Block repeat program address start register 
PAER 11 B Block repeat program address end register 
TREGO 12 c Temporary register for multiplicand 
TREG1 13 D Temporary register for dynamic shift count 
TREG2 14 E Temporary register used as bit pointer 

in dynamic bit test 
DBMR 15 F Dynamic bit manipulation register 
ARO 16 10 Auxiliary register zero 
AR1 17 11 Auxiliary register one 
AR2 18 12 Auxiliary register two 
AR3 19 13 Auxiliary register three 
AR4 20 14 Auxiliary register four 
AAS 21 15 Auxiliary register five 
AR6 22 16 Auxiliary register six 
AR7 23 17 Auxiliary register seven 
INDX 24 18 Index register 
ARCR 25 19 Auxiliary register compare register 
CBSR1 26 1A Circular buffer 1 start address register 
CBER1 27 18 Circular buffer 1 end address register 
CBSR2 28 1C Circular buffer 2 start address register 
CBER2 29 10 Circular buffer 2 end address register 
CBCR 30 1E Circular buffer control register 
SMAR 31 1F Block move address register 

- 32-79 20-4F Memory-mapped peripheral registers. See 
Table 5-1. 

80-95 50-SF Memory-mapped 1/0 port. See Table 5-1 . 
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3.4.2 Memory Addressing Modes 

The 'C5x can address a total of 64K words of program memory and 96K words 
of data memory. Chapter 6 shows how the on-chip program and data memo­
ries are mapped. 

The data used as instruction operands is obtained in one of the following eight 
ways: 

O By the direct address bus (ORB} using the direct addressing mode (e.g., 
ADD 01 Oh} relative to the data memory page pointer (DP} 

O By the ORB using the memory-mapped addressing mode (that is, LAMM 
PMST} within data page zero 

O By the auxiliary register file bus (AFB} using the indirect addressing mode 
(that is, ADD *) 

O By the instruction register (IREG} in short immediate operand mode (that 
is, ADD #OFFh} 

O By the program counter (PC} in long immediate operand mode (that is, 
ADD #OFFFFh} 

O By the core CPU access of a register in register access mode (that is, APL 
*+or MPV*+) 

O By the second instruction word in long immediate address mode (that is, 
BLDD #TBL 1,*+} 

O By the block memory address register (SMAR} in registered block memory 
addressing mode (that is, BLDD *+} 

In the direct addressing mode, the 9-bit DP points to one of 512 pages (1 page 
= 128 words}. The data memory address (dma}, specified by the seven LSBs 
of the instruction, points to the desired word within the page. The address on 
the ORB is formed by concatenating the 9-bit DP with the 7-bit dma. Figure 3-2 
illustrates direct addressing mode. In the illustration, the operand is fetched 
from data memory space via the data bus, and the address is the concatenated 
value of the DP and the seven LSBs of the instruction. Note that bit 7 =0 defines 
the addressing mode as direct. 
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Figure 3-2. Direct Addressing Mode 

ADD 010h 

Machine Code = I o o 1 o S H F T9Bl 0 0 1 0 0 0 ~ 

• r1 DP = 0 0 1 1 0 
\ 

I I 
I I 

1 I I I ----------1.\ I I 
\ \ I I 

\ 
DAB = I 1 1 0 0 1 1 1 0 

~ I ----------1~]<~0-o ___ o_o_o ___ ol 

Operand = Data(DRB) 

t SHFT represents a 4-bit shift value. 

Memory-mapped addressing mode operates much like direct addressing 
mode except that the most significant 9 bits of the address are forced to zero 
instead of being loaded with the contents of the DP. This allows the user to di­
rectly address the memory-mapped registers of data page zero without the 
overhead of changing the DP or auxiliary register. Figure ~ illustrates 
memory-mapped addressing mode. 

Figure 3-3. Memory-Mapped Addressing Mode 
LAMM PMST 

Machine Code = Io o o o 1 0 0 0 I OJ 0 0 0 0 1 1J 

I I 
I I 

I I 
', I I 
~ I -------------------0--1

1
0_0 __ 0 ____ 0 __ 1_1 __ 1~1 
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In the indirect addressing mode, the currently selected 16-bit auxiliary register 
AR(ARP) addresses the data memory through the auxiliary register file bus 
(AFB). While the selected auxiliary register provides the data memory address 
and the data is being manipulated by the CALLI, the contents of the auxiliary 
register may be manipulated through the ARAU. See Figure 3-4 for an exam­
ple of indirect auxiliary register addressing. Also, bit 7=1 defines this address­
ing mode as indirect. 

Figure 3-4. Indirect Addressing Mode 

ADD * 

Machine Code = lo 0 1 0 S H F T I 1 Io 0 0 0 0 0 ol 
I 

+ 
1 l+AR3 =I 1 ol ARP =lo 1 0 0 1 1 1 0 1 0 0 1 0 0 0 

Operand Data(AR(ARP)) 

The operand may reside as part of the instruction machine code. In the case 
of the short immediate operand, the operand is contained in the single-word 
instruction. These short immediate operands vary in length from 1 bit on the 
SETC instruction to 13 bits on the MPV instruction. Figure 3-5 shows an ex­
ample of short immediate mode. Note that, in this example, the lower eight bits 
are the operand and will be added to the ACC by the CALLI. 

Figure 3-5. Short Immediate Mode 

ADD #OFFh 

Machine Code 11011 1000 11111 ---------
1 1 1 1 I 

Operand = 

Operand = Data(ADD(7 - 0)) 
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In the case of the long immediate operand, the operand immediately follows 
the opcode in the program sequence. The long immediate operand is 16 bits 
long. Figure 3-6 shows an example of long immediate mode. In this example, 
the second word of the two-word instruction is added to the ACC by the CALU. 

Figure 3-6. Long Immediate Mode 

ADD #01234h 

Machine Code = 1 0 1 1 0 0 S H F T 
0 0 0 0 0 0 0 0 0 1 0 0 

Operand = 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 

Operand = Data(second word(15 - O)) 

The operand may come from a CPU register. This type of operand is used in 
special cases. The CALU uses this in multiplying with TREGO, in shifting with 
TREG1 and PM, and in bit manipulation with TREG2. The ARAU uses this with 
INDX and ARCR. The PLU uses this with DBMR. Figure 3-7 illustrates the use 
of the DBMR register as an AND mask in the APL instruction. 

Figure 3-7. Register Access Mode 

APL 010h 
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Machine Code = I o 1 o 1 1 o 1 o 01 o o 1 o o o ol 

DP = I 1 0 0 1 1 1 0 
\ 
\ 
\ 

ORB = I 1 1 0 0 1 1 1 0 

Operand1 
Operand2 

= Data ORB) 
= DBMR 

In the long immediate addressing mode, an operand is addressed by the sec­
ond word of a two-word instruction. In this case, the program address/data bus 
(PAB) is used for the operand fetch. The PC is stored in a temporary register, 
and the long immediate value is loaded into the PC. Then, the PAB is used for 
the operand fetch or write. At the completion of the instruction, the PC is re­
stored from the temporary register, and execution continues. This technique 
is used when two memory addresses are required for the execution of the in-
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struction. The PC is used so that, when an instruction is repeated, the address 
generated can be autoincremented. Figure 3-8 illustrates this mode. In this 
illustration, the source address (OPERAND1) is fetched via PAB, and the des­
tination address (OPERAND2) uses the direct addressing mode. 

Figure 3-8. Long Immediate Addressing Mode 
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Registered block memory addressing mode operates like the long immediate 
addressing mode with the exception that the address comes from BMAR. The 
advantage of this technique is that the address of the block of memory to be 
acted upon can be changed during execution of the program. The address in 
long immediate addressing mode resides in the program flow and cannot be 
easily changed. Figure 3-9 shows an example of registered block memory ad­
dressing mode. 
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Figure 3-9. Registered Block Memory Addressing Mode 
BLDD BMAR, 012h 
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Operand2 = Data (ORB) 

Operand1 = Data (PC) 

3.4.3 Auxiliary Registers 
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The 'C5x provides a register file containing eight auxiliary registers 
(ARO-AR7). The auxiliary registers may be used for indirect addressing of the 
data memory or for temporary data storage. Indirect auxiliary register address­
ing (see Figure 3-10) allows placement of the data memory address of an in­
struction operand into one of the auxiliary registers. These registers are 
pointed to by a three-bit auxiliary register pointer (ARP) that is loaded with a 
value from O through 7, designating ARO through AR7, respectively. The auxil­
iary registers and the ARP may be loaded from data memory, the accumulator, 
the product register, or by an immediate operand defined in the instruction. 
The contents of these registers may also be stored in data memory or used 
as inputs to the CALU. These registers appear in the memory map as de­
scribed in Table 3-2. 
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Figure 3-1 o. Indirect Auxiliary Register Addressing Example 

Auxiliary Register File 

ARO 0 5 3 7 hi 

Auxiliary Register AR1 5 5 0 hi 

Pointer AR2 0 E 9 F c hi (in STO) 

ARP Io I 1 I 1 I m.AR3 0 F F 3 A hi 

AR4 0 3 B hi 

AR5 2 6 B 1 hi 

AR6 0 0 0 8 hi 

AR7 8 4 3 D hi 

Internal Memory Organization 

Data Memory Map 

Location 
OOOOh .------. 

1------i 
---m. OFF3Ah 3121 h 

1-------1 

OFFFFh .__ __ _.. 

The auxiliary register file (ARO-AR?) is connected to the auxiliary register 
arithmetic unit (ARAU), shown in Figure 3-11. The ARAU may autoindex the 
current auxiliary register while the data memory location is being addressed. 
Indexing either by ±1 or by the contents of the INDX register may be per­
formed. As a result, accessing tables of information does not require the cen­
tral arithmetic logic unit (CALU) for address manipulation; thus, the CALU is 
free for other operations in parallel. 

If more advanced address manipulation is required, such as multidimensional 
array addressing, the CALU can directly read from or write to the auxiliary reg­
isters. However, the ARAU update of the ARs is done during the decode phase 
(second cycle) of the pipeline, while the CALU write is done during the execu­
tion phase (fourth cycle) of the pipeline. Therefore, the two instructions directly 
following the CALU write to an auxiliary register should not use the same auxil­
iary register for address generation. See subsection 3.6.2 for details. 
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Figure 3-11. 

16 

16 
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Auxiliary Register File 

Index Register (INDX) (16) 
16 

Compare Register (ARCR) (16) 

Auxiliary Register 7 (AR7) (16) 

Auxiliary Register 6 (AR6) (16) 

Auxiliary Register 5 (AR5) (16) 

Auxiliary Register 4 (AR4) (16) 

Auxiliary Register 3 (AR3) (16) 3 

Auxiliary Register 2 (AR2) (16) 

Auxiliary Register 1 (AR1)(16) 

Auxiliary Register 0 (ARO) (16) 

16 

IN B OUT 

Auxiliary Register Arithmetic Unit (ARAU) (16) 

Auxiliary Register File Bus (AFB) ~' ... 

8 LSB of Instruction Register 
(IREG) (16) 

Auxiliary 
Register 
Pointer 

(ARP) (3) 

3 

3 3 LSB of 
Instruction 
Register 
(IREG) (16) 

Auxiliary 
Register 
Buffer 

(ARB) (3) 

3 

As shown in Figure 3-11 , the index register, compare register, or the eight 
LSBs of the instruction register can be used as one of the inputs of the ARAU. 
The other input is fed by the current AR (being pointed to by ARP). AR(ARP) 
refers to the contents of the current AR pointed to by ARP. The ARAU performs 
the functions shown in Table 3-3. 

Architecture 



\ 

Internal Memory Organization 

Table 3-3. Auxiliary Register Arithmetic Unit Functions 

Auxiliary Register Operation Description 

AR(ARP) + INDX--+ AR(ARP) Index the current AR by adding an unsigned 16-bit in-
teger contained in INDX. Example: ADD *0+ 

AR(ARP) - INDX .... AR(ARP) Index the current AR by subtracting an unsigned 
16-bit integer contained in INDX. Example: ADD *0-

AR(ARP) + 1 .... AR(ARP) Increment the current AR by one. Example: ADD *+ 

AR(ARP) - 1 -+ AR(ARP) Decrement the current AR by one. Example: ADD *-

AR(ARP) -+ AR(ARP) Do not modify the current AR. Example: ADD * 

AR(ARP) + IR(7--0) -+ AR(ARP) Add an 8-bit immediate value to current AR. Example: 
ADDRK *55h 

AR(ARP) - IR(7--0) -+ AR(ARP) Subtract an 8-bit immediate value from current AR. 
Example: SBRK *55h 

AR(ARP) + rc(INDX) -+ AR(ARP) Bit-reversed indexing; add INDX with reversed-carry 
(re) propagation. Example: ADD *BRO+ 

AR(ARP) - rc(INDX) -+ AR(ARP) Bit-reversed indexing; subtract INDX with re-
versed-carry (re) propagation. Example: ADD *BRO-

If (AR(ARP)) = (ARCA) then TC = 1 Compare the current AR to ARCA and, if condition is 
If (AR(ARP)) < (ARCA) then TC = 1 true, then set TC bit of the status register ST1 to one. 
If (AR(ARP)) > (ARCA) then TC = 1 If false, then clear the TC bit. Example: CMPR 3 
If (AR(ARP)) .. (ARCA) then TC= 1 

If (AR(ARP)) = (CBER) then AR(ARP) = CBSR If at end of circular buffer, reload start address. The 
test for this condition is done prior to the execution of 
the auxiliary register modification. Example: ADD*+ 

The index register (INDX) can be added to or subtracted from AR(ARP) on any 
AR update cycle. This 16-bit register is one of the memory-mapped registers 
and is used to increment or decrement the address in steps larger than one, 
which is useful for operations such as addressing down a column of a matrix. 
The auxiliary register compare register (ARCA) is used as a limit to blocks of 
data and, in conjunction with the CMPR instruction, supports logical compari­
sons between AR(ARP) and ARCA. Note that the 'C25 uses ARO for these two 
functions. After reset, a LAR load of ARO also loads INDX and ARCA to main­
tain compatibility with the 'C25. The splitting of functions to the three registers 
is enabled by setting the NDX bit of PMST to one. 

Because the auxiliary registers are memory-mapped, they can be acted upon 
directly by the CALU to provide for more advanced indirect addressing tech­
niques. For example, the multiplier can be used to calculate the addresses of 
three-dimensional matrices. After a CALU load of the auxiliary register, there 
is, however, a two-instruction-cycle delay before auxiliary registers can be 
used for address generation. The INDX and ARCA registers are accessible 
via the CALU, regardless of the condition of the NDX bit (i.e., SAMM ARCA 
writes only to the ARCA}. 
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In addition to its use for address manipulation in parallel with other operations, 
the ARAU may also serve as an additional general-purpose arithmetic unit be­
cause the auxiliary register file can directly communicate with data memory. 
The ARAU implements 16-bit unsigned arithmetic, whereas the CALU imple­
ments 32-bit 2s-complement arithmetic. The BANZ and BANZD instructions 
permit the auxiliary registers to be used as loop counters. 

The 3-bit auxiliary register pointer buffer (ARB), shown in Figure 3-11, provides 
storage for the ARP on subroutine calls when the automatic context switch fea­
ture of the device are not used. 

Two circular buffers can operate at a given time and are controlled via the cir­
cular buffer control register (CBCR). The CSCR is defined as shown in 
Table 3-4. 

Table 3-4. Circular Buffer Control Register (CBCR) 

Bit Name Function 

0-2 CAR1 Identifies which auxiliary register is mapped to circular buffer 1. 

3 CENB1 Circular buffer 1 enable=1/disable=O. Set to O upon reset. 

4-6 CAR2 Identifies which auxiliary register is mapped to circular buffer 2. 

7 CENB2 Circular buffer 2 enable=1/disable=O. Set to O upon reset. 

Upon reset (RS rising edge), both circular buffers are disabled. To define a cir­
cular buffer, load the CBSR1/2 with the start address of the buffer and 
CBER1 /2 with the end address, and load the auxiliary register to be used with 
the buffer with an address between the start and end addresses. Finally, load 
CBCR with the appropriate auxiliary register number and set the enable bit. 
Note that the same auxiliary register can not be enabled for both circular buff­
ers, or unexpected results will occur. As the address is stepping through the 
circular buffer, the auxiliary register value is compared against the value con­
tained in CSER prior to the update to the auxiliary register value. If the current 
auxiliary register value and the CSER are equal and an auxiliary register modi­
fication occurs, the value contained in CBSR is automatically loaded into the 
AR. If the values in the CBER and the auxiliary register are not equal, the auxil­
iary register is modified as specified. 

Circular buffers can be used with either increment- or decrement-type up­
dates. If increment is used, then the value in CBER must be greater than the 
value in CBSR. If decrement is used, the value in CBER must be less than the 
value in CSSR. The other indirect addressing modes can be used; however, 
the ARAU tests only for the condition AR(ARP) = CSER. The ARAU will not 
detect an AR update that steps over the value contained in CBER. See sub­
section 4.1.6 for further details. 

3.4.4 Memory-to-Memory Moves 
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The 'C5x provides instructions for data and program block moves and for data 
move functions that efficiently utilize the memory spaces of the device. 
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The BLDD instruction moves a block within data memory, the BLPD instruction 
moves a block from program memory to data memory, and the BLDP instruc­
tion moves a block from data memory to program memory. One of the address­
es of these instructions comes from the data address generator, while the oth­
er comes either from a long immediate constant or from the BMAR. When used 
with the repeat instructions (RPT and RPTZ), these instructions efficiently per­
form block moves from on-chip or off-chip memory. 

Implemented in on-chip data RAM, the DMOV (data move) function is equiva­
lent to that of the 'C25. DMOV copies a word from the currently addressed data 
memory location in on-chip RAM to the next-higher location, while the data 
from the addressed location is being operated upon in the same cycle (e.g., 
by the CALU). An ARAU operation may also be performed in the same cycle 
when the indirect addressing mode is used. The DMOV function can imple­
ment algorithms that use the z-1 delay operation, such as convolution and dig­
ital filtering, where data is being passed through a time window. The data move 
function is at its highest efficiency when operating in dual-access on-chip 
memory. When operating in single-access memory, it requires an additional 
cycle. It is contiguous across the boundary of blocks BO and 81. The MACO 
(multiply and accumulate with data move), MADD (multiply and accumulate 
with data move and coefficient address contained in BMAR), DMOV (data 
move) and LTD (load TREGO with data move and accumulate product) instruc­
tions make use of the data move function. 

Note: 

The data move operation cannot be performed on external data memory. 

The TBLR/TBLW (table read/write) instructions transfer words between pro­
gram and data spaces. TBLR reads words from program memory into data 
memory. TBLW writes words from data memory to program memory. 
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3.5 Central Arithmetic Logic Unit (CALU} 
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The 'C5x central arithmetic logic unit (CALU) contains a 16-bit scaling shifter, 
a 16 x 16-bit parallel multiplier, a 32-bit arithmetic logic unit (ALU), a 32-bit 
accumulator (ACC), a 32-bit accumulator buffer (ACCB), and additional shift­
ers at the outputs of both the accumulator and the multiplier. This section de­
scribes the CALU components and their functions. Figure 3-12 is a block dia­
gram showing the components of the CALU. The following steps occur in the 
implementation of a typical ALU instruction: 

1) Data is fetched from memory on the data bus, 
2) Data is passed through the scaling shifter and the ALU where the arithme-

tic is performed, and 
3) The result is moved into the accumulator. 

One input to the ALU is always provided by the accumulator. The other input 
may be transferred from the product register (PREG) of the multiplier, the ac­
cumulator buffer (ACCB), or the scaling shifter that is loaded from data 
memory or the accumulator (ACC). 
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Figure 3-12. Central Arithmetic Logic Unit 

Multiplier 

P-Scaler PM 

ALU{32) 

ACCB(32) ACC{32) 

Postscaler 

3.5.1 Scaling Shifter 

The 'C5x provides a scaling shifter that has a 16-bit input connected to the data 
bus and a 32-bit output connected to the ALU; see Figure 3-12. The scaling 
shifter produces a left shift of O to 16 bits on the input data. The shift count is 
specified by a constant embedded in the instruction word or by the value in 
TREG 1. The LSBs of the output are filled with zeros; the MSBs may be either 
filled with zeros or sign-extended, depending upon the value of the SXM bit 
{sign-extension mode) of status register ST1. 
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The 'CSx also contains several other shifters that allow it to perform numerical 
scaling, bit extraction, extended-precision arithmetic, and overflow preven­
tion. These shifters are connected to the output of the product register and the 
accumulator. 

3.5.2 ALU and Accumulator 
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The 'CSx 32-bit ALU and accumulator implement a wide range of arithmetic 
and logical functions, the majority of which execute in a single clock cycle. 
Once an operation is performed in the ALU, the result is transferred to the ac­
cumulator where additional operations, such as shifting, may occur. Data that 
is input to the ALU may be scaled by the scaling shifter. 

The ALU is a general-purpose arithmetic/logic unit that operates on 16-bit 
words taken from data memory or derived from immediate instructions. In ad­
dition to the usual arithmetic instructions, the ALU can perform Boolean opera­
tions, facilitating the bit manipulation ability required of a high-speed controller. 
One input to the ALU is always supplied by the accumulator, and the other in­
put may be furnished from the product register (PREG) of the multiplier, the 
accumulator buffer (ACCB), or the output of the scaling shifter (that has been 
read from data memory or from the ACC). After the ALU has performed the 
arithmetic or logical operation, the result is stored in the accumulator. For the 
following example, assume ACC = 0, PREG = 000222200h, PM = 00, and 
ACCB = 000333300h: 

LACC #Ollllh,8 ;ACC = 00111100. Load ACC from prescaling 
:shifter 

APAC ;ACC = 00333300. Add to ACC the 
;product register. 

ADDB ;ACC = 00666600. Add to ACC the 
:accumulator buffer. 

The 32-bit accumulator (ACC) can be split into two 16-bit segments for storage 
in data memory; see Figure 3-12. Shifters at the output of the accumulator 
provide a left shift of Oto 7 places. This shift is performed while the data is being 
transferred to the data bus for storage. The contents of the accumulator re­
main unchanged. When the postscaling shifter is used on the high word of the 
accumulator (bits 16-31), the MSBs are lost and the LSBs are filled with bits 
shifted in from the low word (bits 0-1 S). When the postscaling shifter is used 
on the low word, the LSBs are zero-filled. For the following example, assume 
ACC = OFF234S67h: 

SACL TEMPl,7 ;TEMPl = 08380 ACC = 0FF234567. 
SACH TEMP2,7 ;TEMP2 = 91A2 ACC = OFF234567. 

The 'CSx supports floating-point operations for applications requiring a large 
dynamic range. By performing left shifts, the NORM (normalization) instruction 
is used to normalize fixed-point numbers contained in the accumulator. The 
four bits of the TREG 1 define a variable shift through the scaling shifter for the 
ADDT/ LACT/SUBT instructions (add to I load to I subtract from accumulator 
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with shift specified by TREG 1}. These instructions are useful in denormalizing 
a number {converting from floating-point to fixed-point}. They are also useful 
in execution of an automatic gain control {AGC} going into a filter. 

The single-cycle 1-bit to 16-bit right shift of the accumulator can efficiently align 
the accumulator's contents. This, coupled with the 32-bit temporary buffer on 
the accumulator, enhances the effectiveness of the CALU in extended-preci­
sion arithmetic. The accumulator buffer register {ACCB} provides a temporary 
storage place for a fast save of the accumulator. The ACCB can also be used 
as an input to the ALU. The minimum or maximum value in a string of numbers 
can be found by comparing the contents of the ACCB with the contents of the 
ACC. The minimum or maximum value is placed in both registers, and, if the 
condition is met, the carry bit {C} is set to 1 . The minimum and maximum func­
tions are executed by the CRLT and CRGT instructions, respectively. These 
operations are signed arithmetic operations. For the following examples, as­
sume ACC=012345678h and ACCB= 07654321 Oh: 

CRLT ;ACC • ACCB - 12345678. C • 1. 

CRGT ;ACC = ACCB = 76543210. C = 0. 

The accumulator's overflow saturation mode may be enabled/disabled by set­
ting/resetting the OVM bit of STO. When the accumulator is in the overflow sat­
uration mode and an overflow occurs, the overflow flag is set and the accumu­
lator is loaded with either the most positive or the most negative value repre­
sentable in the accumulator, depending upon the direction of the overflow. The 
value of the accumulator upon saturation is 07FFFFFFFh {positive} or 
080000000h {negative}. If the OVM {overflow mode} status register bit is reset 
and an overflow occurs, the overflowed results are loaded into the accumula­
tor without modification. Note that logical operations cannot result in overflow. 

The 'C5x can execute a variety of branch instructions that depend on the status 
of the ALU and the accumulator. For example, execution of the instruction 
BCND can depend on a variety of conditions in the ALU and the accumulator. 
The BACC instruction allows branching to an address stored in the accumula­
tor. The bittest instructions {BITT and BIT} facilitate branching on the condition 
of a specified bit in data memory. 

The 'C5x accumulator also has an associated carry bit that is set or reset, de­
pending on various operations within the device. The carry bit allows more effi­
cient computation of extended-precision products and additions or subtrac­
tions. It is quite useful in overflow management. The carry bit is affected by 
most arithmetic instructions as well as the single-bit shift and rotate instruc­
tions. It is not affected by loading the accumulator, logical operations, or other 
such non-arithmetic or control instructions. Examples of carry bit operations 
are shown in Figure 3-13. 
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Figure 3-13. Examples of Carry Bit Operations 
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Shown in the examples of Figure 3-13, the value added to or subtracted from 
the accumulator may come from the input scaling shifter, ACCB, or PREG. The 
carry bit is set if the result of an addition or accumulation process generates 
a carry; it is reset to zero if the result of a subtraction generates a borrow. 
Otherwise, it is cleared after an addition or set after a subtraction. 

The ADDC (add to accumulator with carry) and SUBS (subtract from accumu­
lator with borrow) instructions use the previous value of carry in their addition/ 
subtraction operation. The ADCB (add ACCB to accumulator with carry) and 
the SBBB {subtract ACCB from accumulator with borrow) also use the pre­
vious value of carry. 

The one exception to operation of a carry bit, as shown in Figure 3-13, is in 
the use of ADD with a shift count of 16 (add to high accumulator) and SUB with 
a shift count of 16 (subtract from high accumulator). This case of the ADD in­
struction can set the carry bit only if a carry is generated, and this case of the 
SUB instruction can reset the carry bit only if a borrow is generated; otherwise, 
neither instruction affects it. This feature is useful for extended precision arith­
metic, as discussed in Chapter 7. 

Two conditional operands, C and NC, are provided for branching, calling, re­
turning, and conditionally executing according to the status of the carry bit. 
The CLRC, LST #1, and SETC instructions can also be used to load the carry 
bit. The carry bit is set to one on a hardware reset. 

The SFL and SFR (in-place one-bit shift to the left/right) instructions and the 
ROL and ROR {rotate to the left/right) instructions shift or rotate the contents 
of the accumulator through the carry bit. The SXM bit affects the definition of 
the SFR {shift accumulator right) instruction. When SXM = 1, SFR performs 
an arithmetic right shift, maintaining the sign of the accumulator's data. When 
SXM = 0, SFR performs a logical shift, shifting out the LSBs and shifting in a 
zero for the MSB. The SFL {shift accumulator left) instruction is not affected 
by the SXM bit and behaves the same in both cases, shifting out the MSB and 
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shifting in a zero. The repeat {RPT and RPTZ) instructions may be used with 
the shift and rotate instructions for multiple-bit shifts. 

The SFLB, SFRB, RORB, and ROLB instructions can shift or rotate the 65-bit 
combination of the accumulator, ACCB, and carry bit as described above. 

The accumulator can also be right-shifted 0- 31 bits in two instruction cycles 
or 1 - 16 bits in one cycle. The bits shifted out are lost, and the bits shifted in 
are either zeros or copies of the original sign bit, depending on the value of the 
SXM status bit. A shift count of 1 to 16 is embedded in the instruction word of 
the BSAR instruction. For example, let ACC = 012345678h: 

BSAR 7 ;ACC = 02468ACE. 

The right shift can also be controlled via TREG1. The SATL instruction shifts 
the ACC by 0-15 bits as defined by bits 3-0 of TREG 1 . The SATH instruction 
shifts the ACC 16 bits to the right if bit 4 of TREG1 is a 1. The following code 
sequence executes a 0- to 31-bit right shift of the ACC based on the shift count 
stored at SHFT. As an example, consider the value stored at SHFT = 01 Bh and 
ACC = 012345678h: 

LMMR TREGl,SHFT ;TREGl = shift count 0 - 31. TREGl = lB 
SATH ;If shift count > 15, then ACC >> 16 

;ACC = 00001234 
SATL ;ACC >> shift count. ACC = 00000002 

3.5.3 Multiplier, TREGO, and PREG 

The 'C5x uses a 16 x 16-bit hardware multiplier that is capable of computing 
a signed or an unsigned 32-bit product in a single machine cycle. All multiply 
instructions, except the MPYU {multiply unsigned) instruction, perform a 
signed multiply operation in the multiplier. That is, two numbers being multi­
plied are treated as 2s-complement numbers, and the result is a 32-bit 
twos-complement number. As shown in Figure 3-12, the following two regis­
ters are associated with the multiplier: 

O 16-bit temporary register {TREGO) that holds one of the operands for the 
multiplier, and 

O 32-bit product register {PREG) that holds the product. 

Four product shift modes {PM) are available at the PREG's output. These shift 
modes are useful for performing multiply/accumulate operations, performing 
fractional arithmetic, or justifying fractional products. The PM field of status 
register ST1 specifies the PM shift mode, as shown in Table 3-5. 

Table 3-5. Product Shift Modes 

PM Resulting Shift 

00 No shift 

01 Left shift of 1 bit 

10 Left shift of 4 bits 

11 Right shift of 6 bits 
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The product is shifted one bit to compensate for the extra sign bit gained in mul­
tiplying two 16-bit 2s-complement numbers (MPY). The four-bit shift is used 
in conjunction with the MPV instruction with a short immediate value (13 bits 
or less} to eliminate the four extra sign bits gained in multiplying a16-bit num­
ber times a 13-bit number. The output of PREG can, instead, be right-shifted 
6 bits to enable the execution of up to 128 consecutive multiply/accumulates 
without the possibility of overflow. Note that, when the right shift is specified, 
the product is always sign-extended, regardless of the value of SXM. 

The LT (load TREGO} instruction normally loads TREGO to provide one oper­
and (from the data bus), and the MPV (multiply} instruction provides the sec­
ond operand (also from the data bus}. A multiplication can also be performed 
with a short or long immediate operand by using the MPV instruction with an 
immediate operand. A product can be obtained every two cycles except when 
a long immediate operand is used. 

Four multiply/accumulate instructions (MAC, MACO, MADD, and MADS} fully 
utilize the computational bandwidth of the multiplier, allowing both operands 
to be processed simultaneously.The data for these operations can be trans­
ferred to the multiplier each cycle via the program and data buses. This facili­
tates single-cycle multiply/accumulates when used with repeat (RPT and 
RPTZ} instructions. In these instructions, the coefficient addresses are gener­
ated by the PC, while the data addresses are generated by the ARAU. This 
allows the repeated instruction to sequentially access the values from the co­
efficient table and step through the data in any of the indirect addressing 
modes. The RPTZ instruction also clears the accumulator and the product reg­
ister to initialize the multiply/accumulate operation. As an example, consider 
multiplying the row of one matrix times the column of a second matrix. For this 
example, consider 10 x 10 matrices, MTRX1 points to the beginning of the 
first matrix, I NDX = 10, and AR (ARP} points to the beginning of the second ma­
trix: 

RPTZ #9 ;For i = 0, i < 10, i++ 
MAC MTRXl,*0+ ;PREG=DATA(MTRXl+i) x DATA[MTRX2 + (ixINDX)J 

;ACC += PREG. 
APAC ;ACC += PREG. 

The MAC and MACO instructions obtain their coefficient pointer from a long 
immediate address and are, therefore, two-word instructions. The MADS and 
MADD instructions obtain their coefficient pointer from the BMAR and are, 
therefore, one-word instructions. The use of the BMAR as a source to the coef­
ficient table enables one block of code to support multiple applications and 
makes it unnecessary to modify executable code to change the long immedi­
ate address. The MACO and MADD instructions also include a data move 
(DMOV} operation that, in conjunction with the fetch of the data multiplicand, 
writes the data value to the next-higher data address. 

The MACO and MADD instructions, when repeated, support filter constructs 
(weighted running averages} so that as the sum-of-products is executed, the 
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sample data is shifted in memory to make room for the next sample and to 
throw away the oldest sample. Circular addressing with MAC and MADS 
instructions may also be used to support filter implementation. 

For the example below, AR(ARP) points to the oldest of the samples. BMAR 
points to the coefficient table. In addition to initiating the repeat operation, the 
RPTZ instruction also clears the accumulator and the product register. In this 
example, the PC is stored in a temporary register while the repeated operation 
is executed. Next, the PC is loaded with the value stored in BMAR. The pro­
gram bus is used to address the coefficients and, as the MADD is repeatedly 
executed, the PC increments to step through the coefficient table. The ARAU 
generates the address of the sample data. Indirect addressing with decrement 
steps the sample data, starting with the oldest data. As the data is fetched, it 
is also written to the next higher location in data memory. This operation aligns 
the data for the next execution of the filter by moving the oldest sample out past 
the end of the sample's array and making room for the new sample at the be­
ginning of the sample array. The previous product (PREG) is added to the ac­
cumulator (ACC), while the two fetched values are multiplied and the product 
loaded into the PREG. Note that the DMOV portion of the MACO and MADD 
instructions will not function with external data memory addresses. 

RPTZ #9 
MADD *­
APAC 

;ACC = PREG = 0. For I = 9 TO 0 Do 
;SUM Ar x Xr. Xr+l = Xr. 
;FINAL SUM. 

The MPYU instruction performs an unsigned multiplication, which greatly facil­
itates extended-precision arithmetic operations. The unsigned contents of 
TREGO are multiplied by the unsigned contents of the addressed data memory 
location, with the result placed in PREG. This allows operands of greater than 
16 bits to be broken down into 16-bit words and processed separately to gener­
ate products of greater than 32 bits. The SORA (square/add) and SQRS 
(square/subtract) instructions pass the same value to both inputs of the multi­
plier for squaring a data memory value. 

After the multiplication of two 16-bit numbers, the 32-bit product is loaded into 
the 32-bit product register (PREG). The product from the PREG may be trans­
ferred to the ALU or to data memory via the SPH (store product high) and SPL 
(store product low). 
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3.6 System Control 

System control on the 'C5x is provided by the program counter, hardware 
stack, PC-related hardware, external reset signal, interrupts (see Section 3.8), 
status registers, and repeat counters. The following subsections describe the 
function of each of these components in system control and pipeline operation. 

3.6.1 Program Address Generation and Control 
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The 'C5x has a 16-bit program counter (PC) and an eight-deep hardware stack 
for PC storage. The program counter addresses internal and external program 
memory in fetching instructions. The stack is used during interrupts and sub­
routines. 

The program counter addresses program memory, either on-chip or off-chip, 
via the program address bus (PAB). Through the PAB, an instruction is ad­
dressed in program memory and loaded into the instruction register (IREG). 
When the IREG is loaded, the PC is ready to start the next instruction fetch 
cycle. 

The PC can be loaded in a number of ways. When code is sequentially ex­
ecuted, the PC is loaded with PC+ 1. When a branch is executed, the PC is 
loaded with the long immediate value directly following the branch instruction. 
In the case of a subroutine call, the PC+2 is pushed onto the stack and then 
loaded with the long immediate value directly following the call instruction. The 
return instructions pop the stack back into the PC to return to the calling or in­
terrupting sequence of code. In the case of a software trap or interrupt trap, 
the PC is loaded with the address of the appropriate trap vector. The contents 
of the accumulator may be loaded into the PC to implement computed GOTO 
operations. This can be accomplished with the BACC (branch to address in 
accumulator) or CALA (call subroutine at location specified by ACC) instruc­
tions. 

The PAB bus can also address data stored in either program or data space. 
This makes it possible, in repeated instructions, to fetch a second operand in 
parallel with the data bus for two-operand operations. When repeated, the 
array addressed by the PAB is sequentially accessed via the incrementing of 
the PC. The block transfer instructions (BLDD, BLDP, and BLPD) use both 
buses so that, when repeated, the pipeline structure can be reading the next 
operand while writing the current one. The BLPD instruction loads the PC with 
either the long immediate address following the BLPD or With the contents of 
the block move address register (BMAR). The PAB bus is then used to fetch 
the source data from program space in this block move operation. The BLDP 
executes in the same way, except that the PAB bus is used for the destination 
operation. The BLDD instruction uses the PAB bus to address data space. 

The TBLR and TBLW instructions operate much like the BLPD and BLDP in­
structions, respectively, except that the PC is loaded with the low 16 bits of the 
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accumulator instead of the BMAR or long immediate address. This facilitates 
calculated table look-up operations. The multiply/accumulate operations 
(MAC, MACO, MADD, and MADS) use the PAB bus to address their coefficient 
table. The MAC and MACO instructions load the PC with the long immediate 
address following the instruction. The MADD and MADS instructions load the 
PC with the contents of BMAR. 

To start a new fetch cycle, the PC is loaded either with PC + 1 or with a branch 
address (for instructions such as branches, calls, and interrupts). In the case 
of conditional branches where the branch is not taken, the PC is incremented 
once more beyond the location of the branch immediate address. In addition 
to the conditional branches, the 'C5x has a full complement of conditional calls, 
executes, and returns. These instructions execute according to the following 
conditions: 

Operand Condition Description 
EQ ACC=O Accumulator equal to zero 

NEQ ACC .. o Accumulator not equal to zero 

LT ACC<O Accumulator less than zero 

LEQ ACC:sO Accumulator less than or equal to zero 

GT ACC>O Accumulator greater than zero 

GEQ ACCa:O Accumulator greater than or equal to zero 

c C= 1 Accumulator carry set to one 

NC C=O Accumulator carry set to zero 

ov OV= 1 Accumulator overflow detected 

NOV OV=O No accumulator overflow detected 

BIO BIO is low BIO signal is low 

TC TC= 1 Test/control flag set to one 

NTC TC=O Test/control flag set to zero 

UNC none Unconditional operation 

Multiple conditions can be defined in the operands of the conditional instruc­
tions. If multiple conditions are defined, all conditions must be met. For exam­
ple, 

BCND BRANCH,LT,NOV ;If ACC < 0 and no overflow. 

In this example, both conditions must be met (that is, OV = O and ACC < 0) for 
the branch to be taken. 

The conditional branch is a two-word instruction. The conditions for the branch 
are not stable until the fourth cycle of the branch instruction pipeline execution, 
because the previous instruction must have completely executed for the accu­
mulator's status bits to be accurate. Therefore, the pipeline controller stops the 
decode of instructions following the branch until the conditions are valid. If the 
conditions defined in the operands of the instruction are met, then the PC is 
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loaded with the second word and the core CPU starts refilling the pipeline with 
instructions at the branch address. Because the pipeline has been flushed, the 
branch instruction has an effective execution time of four cycles if the branch 
is taken. If, however, any of the conditions are not met, the pipeline controller 
allows the next instruction ·(already fetched) to be decoded. This means that 
if the branch is not taken, the effective execution time of the branch is two 
cycles. 

The subroutine call can also be executed conditionally. The CC instruction op­
erates like the BCND except that the PC pointing to the instruction following 
the CC is pushed onto the PC stack. This sets up the return (by RET) to pop 
the stack to return to the calling sequence. A subroutine or function can have 
multiple return paths based upon the data being processed. Using conditional 
returns (RETC) avoids the need for conditionally branching around the return. 
For example, 

cc OVER_FLOW,OV ;If overflow,then execute the 
;overflow-handling routine. 

OVER_ FLOW ;Overflow-handling routine. 

RETC GEQ ;If ACC >= O, then return. 

RET ;Return. 

In the example, an overflow-handling subroutine is called if the main algorithm 
causes an overflow condition. During the subroutine, the ACC is checked and, 
if it is positive, the subroutine returns to the calling sequence. If not, additional 
processing is necessary before the return. Note that RETC, like RET, is a 
single-word instruction. However, because of the potential PC discontinuity, it 
still operates with the same effective execution time as BCND and CC. 

To avoid flushing the pipeline and causing extra cycles, the 'C5x has a full set 
of delayed branches, calls, and returns. In the delayed operation of branches, 
calls, or returns, the two-instruction words following the delayed instruction are 
executed while the instructions at and following the branch address are being 
fetched-therefore, giving an effective two-cycle branch instead of flushing 
the pipeline. If the instruction following the delayed branch is a two-word in­
struction, only that instruction is executed before the branch is taken. For ex­
ample, 

OPL #030h,PMST 
BCND NEW_ADRS,EQ 

or 
BCNDD NEW ADRS, EQ 
OPL #030h,PMST. 
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The first code segment takes six cycles to execute (two for the OPL and four 
for the BCND). The second code segment takes four cycles because the two 
dead cycles following the BCNDD are filled with the OPL instruction. Note that 
the condition tested on the branch is not affected by the OPL instruction, thus, 
allowing it to be executed after the branch. 

In cases where the conditional branch is used to skip over one or two words 
of code, the branch can be replaced with the conditional execute instruction. 
For example, 

BCND SUM,NC 
ADD ONE 

SUM APAC 

or 

XC l,C 
ADD ONE 
APAC 

The first code segment takes six cycles. The second code segment takes three 
cycles. If the condition is met in the second code segment, the ADD is ex­
ecuted. If the condition is not met, then a NOP is forced in the instruction regis­
ter over the ADD. Note that the condition must be stable one full cycle before 
the XC instruction is executed. This is to assure that the decision is made on 
the condition before the instruction following the XC is decoded (auxiliary reg­
ister updates occur during the decode phase of an instruction, so the instruc­
tion must be stopped before the decode to make sure it is not executed). The 
user should avoid affecting the XC test conditions one instruction word before 
the XC. Without interrupts, this instruction will have no effect on the XC. How­
ever, with interrupts, an interrupt can trap between the instruction and the XC 
so that the condition is affected prior to the XC execution. The following exam­
ples show this cycle dependency: 

LACL #0 ;ACC = 0. 
ADD TEMPl ;ACC = TEMPl. 
xc 2,EQ ; If ACC == 0, 
SPLK #OEEEEh,TEMP2 ;Then TEMP2 = EEEE. 

or 

LACL #0 ;ACC = 0. 
ADD #01234h ;ACC = 00001234. 
xc 2,EQ ;If ACC == 0, 
SPLK #OEEEEh,TEMP2 ;Then TEMP2 is unmodified. 

In the first code segment, TEMP2 = EEEE. The NEQ status, caused by the 
ADD instruction, is not established at the time the decision is made by the XC 
instruction. Therefore, the previous condition of EQ, caused by the ZAC in­
struction, determines the conditional execute. Since this condition is met, 
TEMP2 is loaded by the SPLK instruction. Note that interrupts can trap before 
the XC and after the ADD so that the SPLK will not execute. In the second code 
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segment, TEMP2 is not set to EEEE. The NEQ status, caused by the ADD in­
struction, is established one full cycle before the XC execution phase because 
the long immediate value (#01234h) used in the ADD caused it to be a 
two-cycle instruction. Since the condition is not met, a NOP is forced over both 
words of the two-word SPLK instruction, and, therefore, TEMP2 is not af­
fected. Note that interrupts have no effect on this instruction sequence. 

The 'C5x also has a feature that allows the execution of a single instruction N 
+ 1 times where N is the value loaded in a 16-bit repeat counter (RPTC). If the 
repeat feature is used, the instruction is executed and the RPTC is decrem­
ented until the RPTC goes to zero. This feature is useful with many instruc­
tions, such as NORM (normalize contents of accumulator), MACO (multiply 
and accumulate with data move), and SUBC (conditional subtract). As instruc­
tions repeat, the program address and data buses are freed to fetch a second 
operand in parallel with the data address and data buses. This allows instruc­
tions such as MACO and BLPD to effectively execute in a single cycle when 
they repeat. See Section 7.6, Single Instruction Repeat Loops, for details on 
these instructions. 

The stack is 16 bits wide and eight levels deep. The PC stack is accessible 
through the use of the PUSH and POP instructions. Whenever the contents 
of the PC are pushed onto the top of the stack, the previous contents of each 
level are pushed down, and the bottom (eighth) location of the stack is lost. 
Therefore, data will be lost if more than eight successive pushes occur before 
a pop. The reverse happens on pop operations. Any pop after seven sequen­
tial pops yields the value at the bottom stack level, and all of the stack levels 
then contain the same value. Two additional instructions, PSHD and POPD, 
push a data memory value onto the stack or pop a value from the stack to data 
memory. These instructions allow a stack to be built in data memory for the 
nesting of subroutines/interrupts beyond eight levels. See Section 7.3, Soft­
ware Stack, for details on software stack. 

3.6.2 Pipeline Operation 
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Instruction pipelining consists of the sequence of bus operations that occur 
during instruction execution. In the operation of the pipeline, the instruction 
fetch, decode, operand fetch, and execute operations are independent, which 
allows overall instruction executions to overlap. Thus, during any given cycle, 
one to four different instructions can be active, each at a different stage of com­
pletion, resulting in a four-deep pipeline. Figure 3-14 shows the operation of 
the four-level pipeline for single-word single-cycle instructions executing with 
no wait states. The pipeline is essentially invisible to the user except in some 
cases, such as auxiliary register updates, memory-mapped accesses of the 
CPU registers, the NORM instruction, and memory configuration commands. 
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Figure 3-14. Four-Level Pipeline Operation 
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ARAU updates of auxiliary registers execute during the decode (second 
phase) of the pipeline. This allows the address to be generated before the op­
erand fetch phase. However, memory-mapped accesses (e.g., SAMM, 
LMMR, SACL, or SPLK) of these registers happen on the execute phase of 
the pipeline. This means thatthe next two instructions after a memory-mapped 
load of the auxiliary register should not use this auxiliary register. In addition, 
modifications to the memory-mapped registers INDX and ARCR also occur in 
the execution phase of the pipeline. Therefore, any auxiliary register updates 
using the INDX register or auxiliary register compares using the ARCR register 
must occur at least two cycles after a load of these registers. The following 
code examples illustrate the effects of a memory-mapped write to an auxiliary 
register: 

EXAM! LAR AR2 , #0 6 7h 
LACC #064h 
SAMM AR2 

or 

LACC *­
ADD *-

EXAM2 LARAR2 ,#067h 
LACC #064h 
SAMM AR2 

LACC *­
NOP 

ADD *-

;AR2 = 67. 
;ACC = 00000064. 
;This update is overridden by *- up­
;dates on the next two instructions. 
;AR2 = 66. 
;AR2 = 65. 

;AR2 = 67. 
;ACC = 00000064. 
;LACC *- update happens before 
;SAMM write. 
;AR2 = 66. 
;AR2 = 64 {SAMM write to AR2 happens 
;in parallel with the NOP. 
;AR2 = 63. 
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or 

EXAM3 LAR 
LACC 
SAMM 
NOP 
NOP 
LACC 
ADD 

AR2,#067h 
#064h 
AR2 

*­
*-

;AR2 = 67. 
;ACC = 00000064. 
;AR2 = 64. 
;Pipeline protection. 
;Pipeline protection. 
;AR2 = 63. 
;AR2 = 62. 

In EXAM1, the decode phase of the ADD instruction is on the same cycle as 
the execute (write) phase of the SAMM instruction. Both of these instructions 
are trying to load AR2. The ADD *- update does load AR2, while the SAMM 
execution is voided. In EXAM2, a NOP is strategically placed to avoid the con­
flict between the ADD*- update of the AR2 and the SAM M write to AR2. In this 
code's sequence: 

AR2 = 67 - 66 - 64 - 63 

Note that the LACC address is based on the value in AR2 before the SAMM 
write to AR2. In EXAM3, the SAMM write to AR2 is completed before either the 
LACC or the ADD have updated AR2. Any two instruction words that do not 
update AR2 can be used in place of the two NOP instructions. This could be 
two one-word instructions or one two-word instruction. The results obtained 
by EXAM1 and EXAM2 code examples may be different if the code is interrupt­
ible. The user should avoid writing code similar to EXAM1 and EXAM2. 

The pipeline effect described above requires writes to memory-mapped regis­
ters to allow for a latency between the write and an access of that register. 
These registers can be accessed by 'C5x instructions in the decode and oper­
and fetch phases of the pipeline. Table 3-6 outlines the latency required be­
tween an instruction that writes the register via its memory-mapped address, 
and the access of that register by subsequent instructions. Note that all direct 
accesses to the registers that do not use memory-mapped addressing (such 
as all 'C25-compatible instructions, like LAR, LT, etc) are pipelined-protected 
and, hence, do not require any latency. 
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Table 3-6. Latencies Required 

Name 
GREG 

PMST 

TREG1 

TREG2 

ARx 

INDX 

ARCA 

CBSR 

CBER 

CBCR 

BMAR 

PDWSR 

IOWSR 

CWSR 

CNF 

Description Words Affects 

Global memory allocation register 1 Next 1 word uses previous map 

Processor mode status register 2 Next 2 words use previous map 

Dynamic shift count 1 Next 1 word uses old shift count 

Dynamic bit address 1 Next 1 word uses old bit address 

Auxiliary registers ~7 2 Next word uses previous value; second 
word update gets over written 

Index register 2 Next 2 words use previous value 

Auxiliary register compare register 2 Next 2 words use previous value 

Circular buffer start registers 1 and 2 2 Next 2 words use previous value 

Circular buffer end registers 1 and 2 2 Next 2 words cannot be end of buffer 

Circular buffer control register 2 Next 2 words cannot be end of buffer 

Block move address register 1 Next 1 word uses previous value 

Program/data SN/ wait state register 1 Next 1 word uses previous count 

1/0 space Sf# wait state register 1 Next 1 word uses previous count 

Sf# wait state control register 1 Next 1 word uses previous modes 

Configuration bit in ST1 register 2 Next 2 words use previous map 

The NORM instruction affects AR(ARP) during its execute phase of the pipe­
line. The same pipeline management, as described above, works in this case. 
The assembler can detect an auxiliary register update or store (SAR) directly 
after a NORM instruction and insert NOP instructions automatically to main­
tain source-code compatibility with the 'C25 (-p option). 

The 'C5x core CPU supports the reconfiguration of memory segments, both 
internal and external to the device. The reconfiguration operations happen 
during the execute phase of the pipeline. Therefore, before an instruction uses 
the new configuration, at least two instruction words should follow the instruc­
tion that reconfigures memory. In the following example, assume AR(ARP) = 
0200h and RAMBO(O) = 1. 

CLRC CNF 
LACC #01234h 
ADD * 

;Map RAM BO to data space. 
;ACC = 00001234. 
;ACC = 00001235. 

Notice the use of the LACC #01234h to fill the two-word requirement. Because 
a long immediate operand is used, this is a two-word instruction and, therefore, 
meets the requirement. This also applies to memory configurations controlled 
by the PMST register. 
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3.6.3 Status and Control Registers 
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There are four key status and control registers for the 'CSx core. STO and ST1 
contain the status of various conditions and modes compatible with the 'C2S, 
while PMST and CBCR contain extra status and control information for control 
of the enhanced features of the 'CSx core. These registers can be stored into 
data memory and loaded from data memory, thus allowing the status of the 
machine to be saved and restored for subroutines. STO, ST1, and PMST each 
have an associated one-deep stack for automatic context-saving when an in­
terrupt trap is taken. The stack is automatically popped upon a return from in­
terrupt (RETI or RETE). Note that the XF bit in ST1 is not saved on the one­
deep stack or restored from that stack on an automatic context save. This fea­
ture allows the XF pin to be toggled in an interrupt service routine while still 
allowing automatic context saves. 

The PMST and CBCR registers reside in the memory-mapped register space 
in page zero of data memory space. Therefore, they can be acted upon directly 
by the CALU and the PLU. They can be saved in the same way as any other 
data memory location. Note that the CALU and the PLU operations change the 
bits of these status registers during the execute phase of the pipeline. The next 
two instruction words, following an update of these status registers, may not 
be affected by the reconfiguration caused by the status update, as shown in 
Table3-6. 

The LST instruction writes to STO and ST1 , and the SST instruction reads from 
them, except that the I NTM bit is not affected by the LST instruction. Unlike the 
PMST and CBCR registers, the STO and ST1 registers do not reside in the 
memory map and, therefore, cannot be handled by using the PLU instructions. 
The individual bits of these registers can be set or cleared with the SETC and 
CLRC instructions. For example, the sign-extension mode is set with SETC 
SXM or cleared with CLRC SXM. 

Figure 3-1 S shows the organization of the four status registers, indicating all 
status bits contained in each. Several bits in the status registers are reserved 
and read as logic ones. Table 3-7 defines all the status/control bits. 
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Figure 3-15. Status and Control Register Organization 
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Table 3-7. Status Register Field Definitions 

Fleld Function 

ARB Auxiliary Register Pointer Buffer. Whenever the ARP is loaded, the old ARP value is copied to the ARB 
except during an LST instruction. When the ARB is loaded via an LST #1 instruction, the same value 
is also copied to the ARP. This is useful when restoring context (when not using the automatic context 
save) in a subroutine that modifies the current ARP. 

ARP Auxiliary Register Pointer. This three-bit field selects the AR to be used in indirect addressing. When 
the ARP is loaded, the old ARP value is copied to the ARB register. ARP may be modified by memory-
reference instructions when indirect addressing is used, and by the MAR and LST instructions. The 
ARP is also loaded with the same value as ARB when an LST #1 instruction is executed. 

AVIS Address VISibility Mode. This mode allows the internal program address to appear at the pins of the 
device so that the internal program address can be traced and the interrupt vector can be decoded 
in conjunction with lACK when the interrupt vectors reside in on-chip memory. The internal program 
address is driven to the pins when AVIS = 0. The address lines do not change with internal program 
when AVIS= 1. Note that the control lines and data lines are not effected when AVIS = 0 and the ad-
dress bus is driven with the last address on the bus. The AVIS bit is set to zero at reset. 

BRAF Block Repeat Active Flag. This bit indicates whether block repeat is currently active. Writing a zero 
to this bit deactivates block repeat. BRAF is set to zero upon reset. 

c Carry Bit. This bit is set to 1 if the result of an addition generates a carry, or is reset to O if the result 
of a subtraction generates a borrow. Otherwise, it is reset after an addition or is set after a subtraction, 
unless the instruction is ADD or SUB with a 16-bit shift. In these cases, the ADD can only set and the 
SUB only reset the carry bit, but they cannot affect it otherwise. The single-bit shift and rotate instruc-
tions, as well as the SETC, CLRC, and LST #1 instructions also affect this bit. C is set to 1 on a reset. 
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Table 3-7. Status Register Field Definitions (Continued) 

Fie Id Function 

CAR1 Circular Buffer 1 Auxiliary Register. These three bits identify which auxiliary register is assigned to circu-
lar buffer 1 . 

CAR2 Circular Buffer 2 Auxiliary Register. These three bits identify which auxiliary register is assigned to circu-
lar buffer 2. 

CENB1 Circular Buffer 1 Enable. This bit, when set to 1, enables circular buffer 1. When CENB1 is set to 0, circu-
lar buffer 1 is disabled. CENB1 is set to zero upon reset. 

CENB2 Circular Buffer 2 Enable. This bit, when set to 1, enables circular buffer 2. When CENB2 is set to 0, circu-
lar buffer 2 is disabled. CENB2 is set to zero upon reset. 

CNF On-chip RAM Configuration Control Bit. If this bit is set to 0, the reconfigurable-data dual-access RAM 
blocks are mapped to data space; otherwise, they are mapped to program space. The CNF may be modi-
fied by the SETC CNF, CLRC CNF, and LST #1 instructions. RS sets the CNF to 0. 

DP Data Memory Page Pointer. The 9-bit DP register is concatenated with the 7 LSBs of an instruction word 
to form a direct memory address of 16 bits. DP may be modified by the LST and LOP instructions. 

HM Hold Mode Bit. When HM = 1, the processor halts internal execution when acknowledging an active 
ROm. When HM = o, the processor may continue execution out of internal program memory but puts 
its external interface in a high-impedance state. This bit is set to 1 by resat. 

INTM Interrupt Mode Bit. When this bit is set to 0, all unmasked interrupts are enabled. When it is set to 1, all 
maskable Interrupts are disabled. INTM is set and is reset by the SETC INTM and CLRC INTM instruc-
tions. RS and~ also set INTM. INTM has no effect on the unmaskable RS and NMT interrupts. Note 
that INTM is unaffected by the LST instruction. This bit is set to 1 by reset. ltis also set to 1 when a mask-
able interrupt trap is taken. It is reset to O when a RETE (return from interrupt with interrupt enable) is 
executed. 

IPTR Interrupt Vector Pointer. These five bits point to the 2K page where the interrupt vectors reside. This al-
lows you to remap the interrupt vectors to RAM for boot-loaded operations. At. reset, these bits are all 
set to zero. Therefore, the reset vector always resides at zero in the program memory space. 

MP/MC Microprocessor/Microcomputer Bit. When this bit is set to zero, the on-chip ROM is enabled. When it is 
set to one, the on-chip ROM is not addressable. This bit is set to the value corresponding to the logic 
level on the MP/MC pin at reset. The level on the MP/MC pin is sampled at device reset only and can 
have no effect until the next resat. 

NDX Enable Extra Index Register. This bit configures indexed indirect addressing and auxiliary address regis-
ter compare to operate either in a 'C2x-compatible mode (NDX = O) or in a 'C5x-enhanced mode (NDX 
= 1). When NDX = 0, any 'C2x-compatible instruction that modifies or loads ARO, also modifies/loads 
the INDX and ARCR registers in addition to ARO. This is because the 'C2x devices use ARO for indexing 
and AR compare operations. When NDX = 1, INDX and ARCR are not affected by any 'C2x-compatible 
instruction. NDX = O at reset. 

ov Overflow Flag Bit. As a latched overflow signal, OV is set to 1 when overflow occurs in the ALU. Once 
an overflow occurs, the OV remains set until a reset, BCND(D) on OV/NOV, or LST instruction clears 
ov. 

OVLY RAM Overlay Bit. This bit enables on-chip single-access program RAM cells to be mapped into data 
space. 11 OVLY is set to one, the block of memory is mapped Into data space. If it is set to 0, the memory 
block is not addressable in data space. See Table 3-8 for the mappings of specific 'C5x devices. This 
bit is set to zero at resat. 
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Table 3-7. Status Register Field Definitions (Concluded) 

Fie Id Function 

OVM Overflow Mode Bit. When OVM is set to 0, overflowed results overflow normally in the accumulator. 
When set to 1 , the accumulator is set to either its most positive or most negative value upon encountering 
an overflow. The SETC and CLRC instructions set and reset this bit, respectively. LST may also be used 
to modify the OVM. 

PM Product Shift Mode. If these two bits are 00, the multiplier's 32-bit product is not shifted when transferred 
to the ALU. If PM = 01, the PREG outpU1 is left-shifted one place when transferred to the ALU, with the 
LSB zero-filled. If PM= 10, the PREG output is left-shifted by four bits when transferred to the ALU, with 
the LSBs zero-filled. PM = 11 produces a right shift of six bits, sign-extended. Note that the PREG con-
tents remain unchanged. The shift also takes place when the contents of the PREG are stored to the 
data memory. PM is loaded by the SPM and LST #1 instructions. The PM bits are cleared by RS. 

RAM Program RAM Enable. This bit enables mapping of on-chip single-access RAM blocks into program 
space. RAM set to 1 maps the memory block in program space. RAM set to 0 removes the memory block 
from the program space. See Table 3-8 for the mappings of specific 'C5x devices. This bit is set to zero 
at reset. 

SXM Sign-Extension Mode Bit. SXM = 1 produces sign extension on data as it is passed into the accumulator 
through the scaling shifter. SXM = 0 suppresses sign extension. SXM does not affect the definitions of 
certain instructions; e.g., the ADDS instruction suppresses sign extension, regardless of SXM. This bit 
is set by the SETC SXM, reset by the CLRC SXM instructions, and may be loaded by the LST #1. SXM 
is set to 1 by reset. 

TC Test/Control Flag Bit. The TC bit is affected by the BIT, BITT, CMPR, LST #1, NORM, CPL, XPL, OPL, 
and APLinstructions. The TC bit is setto a 1 if (1) a bittested by BIT or BITT is a 1, (2) a compare condition 
tested by CMPR exists between ARCR and another AR pointed to by ARP, (3) the exclusive-OR function 
of the two MSBs of the accumulator is true when tested by a NORM instruction, (4) the long immediate 
value is equal to the data value on the CPL instruction, or (5) the result of the logical function (XPL, OPL 
or APL) is zero. The TC bit can influence the execution of the conditional branch, call, and return instruc-
tions. 

TRM Enable Multiple TREGs. This bit sets the 'C5x to operate in either 'C2x-compatible mode (TRM = 0) or 
'C5x-enhanced mode (TRM=1) in conjunction with the use of the TREGO, TREG1, and TREG2 registers. 
This bit affects the operation of all 'C2x-compatible instructions that modify TREGO. The 'C2x CPU uses 
TREGx as a shift count for the prescaling shifter and as a bit address in the BITT instruction. When 
TRM=O, all 'C2x-compatible instructions write to all three of the 'C5xTREGs to maintain source compati-
bility with the 'C2x devices. When TRM = 1, the LT instructions affect only TREGO. TRM = 0 upon reset. 

XF XF Pin Status Bit. This bit indicates the state of the XF pin, a general-purpose output pin. XF is set by 
the SETC XF and reset by the CLRC XF instructions. XF is set to 1 by reset. This bit is not saved or re-
stored on an automatic context save during interrupt service routines. 

Table 3-8. On-Chip Single-Access RAM Configuration Control 

OVLY RAM On-Chip SARAM Configuration 

0 0 Disabled 

0 1 Mapped into program space 

1 0 Mapped into data space 

1 1 Mapped into both program and data spaces 
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3.6.4 Repeat Counter 

RPTC is a 16-bit repeat counter, which, when loaded with a number N, causes 
the next single instruction to be executed N + 1 times. The RPTC register is 
loaded by either the RPT or the RPTZ instruction. This results in a maximum 
of 65,536 executions of a given instruction. RPTC is cleared by reset. The 
RPTZ instruction clears both ACC and PREG before the next instruction starts 
repeating. Once a repeat instruction (RPT or RPTZ) is decoded, all interrupts 
including NMI (except reset) are masked until the completion of the repeat 
loop. However, the device responds to the HOLD signal while executing an 
RPT/RPTZ loop. The RPTC register resides in the CPU's memory-mapped 
register space; however, you should avoid writing to this register. 

The repeat function can be used with instructions such as multiply/accumu­
lates (MAC and MACO), block moves (BLDD and BLPD), 1/0 transfers (IN/ 
OUT), and table read/writes (TBLR/TBLW). These instructions, although nor­
mally multicycle, are pipelined when the repeatfeature is used, and they effec­
tively become single-cycle instructions. For example, the table read instruction 
may take three or more cycles to execute, but when the instruction is repeated, 
a table location can be read every cycle. Note that not all instructions can be 
repeated. Table 3--9 through Table 3--11 list all 'C5x instructions, according to 
their repeatability. 

Table 3-9. Repeatable Instructions 

Repeatable Instructions Description 

ADCB Add ACCB to ACC with carry 
ADD dma,shft Add to ACC direct addressed with shift 
ADD *,shft Add to ACC indirect addressed with shift 
ADDB Add ACCB to ACC 
ADDC Add to ACC direct/indirect with carry 

ADDS Add to low ACC direct/indirect with sign suppressed 
ADDT Add to ACC direct/indirect with shift specified by TREG1 
APAC Add PREG to ACC 
APL AND DBMR to direct/indirect addressed 
BLDD Block move from data memory to data memory 
BLDP Block move from data memory to program memory 
BLPD Block move from program memory to data memory 
BSAR Barrel-shift ACC right 
DMOV Move direct/indirect addressed data one location up in memory 
IN Read from 1/0 space 
LMMR Load memory-mapped register 
LTA Load TR~GO direct/indirect and add PREG to ACC 
LTD Load TREGO direct/indirect with data move and add PREG to ACC 
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Table 3-9. Repeatable Instructions (Continued) 

Repeatable Instructions Description 

LTS Load TREGO direct/indirect and subtract PREG 

MAC Add PREG to ACC and multiply immediate addressed by direct/indirect 

MACO Add PREG to ACC and multiply immediate addressed by direct/indirect with data move 

MADD Add PREG to ACC and multiply BMAR addressed by direct/indirect with data move 

MADS Add PREG to ACC and multiply BMAR addressed by direct/indirect 

MPYA Add PREG to ACC and multiply TREGO by direct/indirect 

MPYS Subtract PREG from ACC and multiply TREGO by direct/indirect 

MAR Modify AR 

NOP No operation 

NORM Normalize ACC 

OPL OR DBMR to direct/indirect addressed 

OUT Write to 1/0 space 

POP Pop the PC stack to low ACC 

POPD Pop the PC stack to direct/indirect addressed 

PSHD Push direct/indirect addressed to the PC stack 

PUSH Push low ACC to the PC stack 

AOL Rotate ACC left once 

ROLB Rotate combined ACC and ACCB left once 

ROA Rotate ACC right once 

RORB Rotate combined ACC and ACCB right once 

SACH Store high ACC with shift 

SACL Store low ACC with shift 

SAMM Store low ACC direct/indirect to data page 0 

SAR AR,* Store AR indirect addressed 

SATH Shift ACC right 0 or 16 bits as specified by TREG1 (4) 

SATL Shift ACC right 0 to 15 bits as specified by TREG 1 (0-3) 

SBB Subtract ACCB from ACC 

SBBB Subtract ACCB from ACC with borrow 

SFL Shift ACC left once 

SFLB Shift combined ACC and ACCB left once 

SFR Shift ACC right once 

SFRB Shift combined ACC and ACCB right once 

SMMR Store memory-mapped register 

SPAC Subtract PREG from ACC 

SPH Store high PREG to direct/indirect addressed 

SPL Store low PREG to direct/indirect addressed 
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Table 3-9. Repeatable Instructions (Concluded) 

Repeatable Instructions Description 

SORA Add PREG to ACC and square direct/indirect addressed 

SQRS Subtract PREG from ACC and square direct/indirect addressed 

SST Store status registers 

SUB dma,shft Subtract from ACC direct addressed with shift 

SUB *,shft Subtract from ACC indirect addressed with shift 

SUBB Subtract from ACC direct/indirect with borrow 

SUBC Conditional subtract from ACC direct/indirect 

SUBS Subtract from low ACC direct/indirect with sign suppressed 

SUBT Subtract from ACC direct/indirect with shift specified by TREG1 

TBLR Read from program space to data space 

TBLW Write from data space to program space 

XPL XOR DBMR to direct/indirect addressed 

Table 3-1 O. Instructions Not Meaningful to Repeat 

Instructions Not Meanlngful to Repeat Description 

ABS Absolute value of ACC 

AND AND to low ACC direct/indirect 

ANDB AND ACCB to ACC 

BIT Test bit in data word 

BITT Test bit (specified by TREG2) in data word 

CLRC Clear status bit 

CMPL Complement ACC 

CMPR Compare AR(ARP) to ARCR 

CPL Compare DBMR to direct/indirect addressed 

CRGT Compare ACC to ACCB and match larger value 

CRLT Compare ACC to ACCB and match smaller value 

EXAR Exchange ACC with ACCB 

LACB Load ACC with ACCB 

LACC dma,shft Load ACC direct addressed with shift 

LACC *,shft Load ACC indirect addressed with shift . 
LACL Load low ACC direct/indirect and zero high ACC 

LACT Load ACC direct/indirect with shift specified by TREG1 

LAMM Load low ACC direct/indirect from data page 0 

LAA dma,AR Load AR direct addressed 

LAA *,AR Load AR indirect addressed 

LOP dma Load DP direct addressed 

LOP * Load DP indirect addressed 
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Table 3-1 O. Instructions Not Meaningful to Repeat (Continued) 

Instructions Not Meaningful to Repeat Description 

LPH Load high PREG with direct/indirect addressed 

LST Load status registers 

LT Load TREGO with direct/indirect addressed 

LTP Load TREGO direct/indirect and load ACC with PREG 

MPV Multiply TREGO by direct/indirect 

MPYU Multiply TREGO by direct/indirect unsigned 

NEG NegateACC 

OR OR to low ACC direct/indirect 

ORB OR ACCB to ACC 

PAC Load ACC with PREG 

SACB Store ACC in ACCB 

SAR AR,dma Store AR direct addressed 

SETC Set status bit 

SPM Set PREG shift mode 

XOR XOR to low ACC direct/indirect 

XORB XOR ACCB to ACC 

ZALR Zero low ACC, load high ACC with rounding 

ZAP Zero ACC and PREG 

ZPR Zero PREG 

Table 3-11. Nonrepeatable Instructions 

Nonrepeatable Instructions Description 

ADD #k Add to ACC short immediate 
ADD #lk,shift Add to ACC long immediate with shift 

ADAK Add to AR short immediate 

AND #lk,shft AND to ACC long immediate with shift 

APL #lk AND long immediate to direct/indirect addressed 

B[D] Branch [delayed] unconditionally 

BACC[D] Branch [delayed) to address specified in low ACC 

BANZ[D] Branch [delayed) on AR(ARP) not zero 

BCND[D] Branch [delayed] conditionally 

CALA[D] Call [delayed) to address specified in low ACC 

CALL[D] Call [delayed) subroutine 

CC[D] Call [delayed) subroutine conditionally 

CPL #lk Compare long immediate to direct/indirect addressed 

IDLE Idle CPU 
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Table 3-11 .Nonrepeatable Instructions (Continued) 

Nonrepeatlble Instructions DescrlpUon 

IDLE2 

INTR 

LACC #lk,shft 

LACL #le 

LAR #lk 

LOP #le 

NMI 

OPL #/k 

OR #lk,shft 

RCND[D] 

RET 

RETE 

RETI 

RPT 

RPTB 

RPTZ 

SBRK 

SPLK #lk 

SUB #le 

SUB #lk,shft 

TRAP 

xc 
XOR #lk,shft 

XPL #lk 

3.6.5 Block Repeat 
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Idle until interrupt- low power mode 

Soft Interrupt 

Load ACC long immediate 

Load ACC short Immediate 

Load AR with long immediate 

Load DP short immediate 

Non-maskable interrupt 

OR long immediate to direct/indirect addressed 

OR to ACC long immediate with shift 

Return (delayed) from subroutine conditionally 

Return from subroutine 

Return from interrupt service routine with automatic global enable 

Return from interrupt service routine 

Repeat next instruction N + 1 times 

Repeat block 

Zero ACC and PREG and repeat next instruction N + 1 times 

Subtract from AR short immediate 

Store long immediate to direct/indirect addressed 

Subtract from ACC short Immediate 

Subtract from ACC long immediate with shift 

Software interrupt 

Execute next instruction conditionally 

XOR to ACC long immediate with shift 

XOR long immediate to direct/indirect addressed 

The block repeat feature provides zero-overhead looping for implementation 
of FOR and DO loops. The function is controlled by three registers (PASR, 
PAER, and BRCR) and the BRAF bit in the PMST register. The block repeat 
counter register (BRCR) is loaded with a loop count of O to 65,535. Then, ex­
ecution of the RPTB (repeat block) instruction loads the program address start 
register (PASR) with the address of the instructiQn following the RPTB instruc­
tion and loads the program address end register (PAER) with its long immedi­
ate operand. The long immediate operand is the address of the instruction fol­
lowing the last instruction in the loop minus one. Note that the repeat block 
must contain at least three instruction words. Execution of the RPTB instruc­
tion automatically sets active the BRAF bit. With each PC update, the PAER 
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is compared to the PC. If they are equal, the BRCR contents are compared to 
zero. If the BRCR is greater than zero, it is decremented, and the PASR is 
loaded into the PC, thus starting the loop over. If not, the BRAF bit is set low, 
and the processor resumes execution past the end of the code's loop. For ex­
ample, 

SPLK #OlOh,BRCR. ;Set loop count to 16. 
RPTB END_LOOP-1 ;For I "' BRCR; I >=O; I--. 

* 
ZAP ;ACC = PREG = O~ 

SQRA * ,AR2 ;PREG = x2. 
SPL SQRX ; Save x2. 
MPY * ;PREG = b x X. 
LTA SQRX ;ACC = bX. TREG x2. 
MPY * ;PREG = ax2. 
APAC ;ACC = ax2 + bX. 
ADD *,O,AR3 ;ACC = ax2 + bX + c Y. 
SACL *,O,ARl ;Save Y. 
CRGT ;Save MAX. 

END_LOOP 

The example implements 16 executions of Y = ax2 + bX + c and saves the 
maximum value in ACCB. Note that the initialization of the auxiliary registers 
is not shown in the coded example. PAER is loaded with the address of the last 
word in the code segment. The label END_LOOP is placed after the last in­
struction, and the RPTB instruction long immediate is defined as 
END_LOOP-1 in case the last word in the loop is a two-word instruction. 

There is only one set of block repeat registers, so multiple block repeats cannot 
be nested without saving the context of the outside block or using BANZD. The 
simplest method of executing nested loops is to use the RPTB for only the in­
nermost loop and using BANZD for all the outer loops. This is still a valuable 
cycle-saving operation because the innermost loop is repeated significantly 
more times than the outer loops. Block repeats can be nested by storing the 
context of the outer loop before initiating the inner loop, then restoring the outer 
loop's context after completing the inner loop. The context save and restore 
are shown in the following example: 

SMMR 
SMMR 
SMMR 

SPLK 
RPTB 

END_INNER 

BRCR,TEMPl 
PASR,TEMP2 
PAER,TEMP3 

#NUM_LOOP,BRCR 
END INNER 

OPL #1,PMST 
LMMR BRCR,TEMPl 
LMMR PASR,TEMP2 
LMMR PAER,TEMP3 

;Save block repeat counter 
;Save block start address 
;Save block end address 

;Set inner loop count 
;For I = O; I<=BRCR; I++ 

;Set BRAF to continue outer loop 
;Restore block repeat counter 
;Restore block start address 
;Restore block end address , 

3-47 



System Control 

3-48 

In this example, the context save and restore operations take 14 cycles. Note 
that repeated single and BANZ/BANZD loops can also be inside a block re­
peat. The repeated code can include subroutine calls. Upon returning, the 
block repeat resumes. Repeated blocks can be interrupted. When an enabled 
interrupt occurs during a repeated block of code, the CALU traps to the inter­
rupt and, when the ISR returns, the block repeat resumes. 

Be extremely careful when interrupting block repeats. If the interrupt service 
routine uses block repeats, check whether a block repeat has been interrupted 
and, if so, save the context of the block repeat as shown in the previous exam­
ple. Smaller external loops can be implemented with the BANZD-looping 
method that takes two extra cycles per loop (that is, if the loop count is less than 
8, it may be more efficient to use the BANZD technique). Single-cycle instruc­
tions can be repeated within a block repeat by using the RPT or RPTZ instruc­
tions. 

While a block is being repeated, the block repeat active flag (BRAF) of the 
PMST register is set to a one. This flag is set by the execution of the RPTB 
instruction and is reset when the PC == PAER and BRCR == 0. This flag can be 
cleared and/or reset via the PMST register. WHILE loops can be implemented 
with the RPTB instruction and a conditional reset of the BRAF bit. The following 
code example clears BRAF so that the processor will drop out of the code loop 
and continue to sequentially access instructions past the end of the loop if an 
overflow occurs: 

xc 2,0V ;If overflow, 
APL #OFFFEh,PMST ;then turn off block repeat. 

The equivalent of a WHILE loop can be implemented by setting the BRAF bit 
to zero if the exit condition is met. If this is done, the program completes the 
current pass through the loop but does not go back to the top. To exit, the bit 
must be reset at least four instruction words before the end of the loop. You 
can exit block repeat loops and return to them without stopping and restarting 
the loop. Branches, calls, and interrupts do not necessarily affect the loop. 
When program control is returned to the loop, loop execution is resumed. The 
following example illustrates the block repeat with a small loop of code that ex­
ecutes a series of tasks. The tasks are stored in a table addressed by TEM POF. 
The number of tasks to be executed is defined at NUM_ TASKS. 

BLKP NUM TASKS,BRCR 
SPLK #(TASKS-1),TEMPOF 
RPTB ENDCALL-1 

TASK_HANDLER 
LACC TEMPOF 
ADD #1 
SACL TEMPOF 
TBLR TEMPOE 
LACC TEMPOE 
CALA 

ENDCALL 

;Set loop count. 
;TEMPOF points to list of tasks. 
;For I = o, I <= NUM_TASKS; I++. 

;ACC points to task table. 
;Increment pointer to next task. 
;Save for next pass of loop. 
;Get task address. 
;ACC = task address. 
;Call task. 
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In the setup for the example, the block repeat counter (BRCR) is loaded with 
the number of tasks to be executed, minus 1. Next, the address of the task 
table is loaded into a temporary register. The block repeat is started with the 
execution of the RPTB instruction. The PASR register is loaded with the ad­
dress of the LACC TEMPOF instruction. The PAER register is loaded with the 
address of the last word of the table. Notice that the label marking the end of 
the loop is placed after the last instruction, then the PAER is loaded with that 
label, minus 1. It is possible to place the label before the CALA instruction, then 
load the PAER with the label address because this is a one-word instruction. 
However, if the last instruction in this loop had been a two-word instruction, the 
second word of the instruction would not be read, and the long immediate oper­
and would be substituted with the first instruction in the loop. 

Inside the loop, the pointer to the task table is incremented and saved. Then, 
the task address is read from the table and loaded into the accumulator. Next, 
the task is called by the CALA instruction. Notice that, when the task returns 
to the task handler, it returns to the top of the loop. This is because the PC has 
already been loaded with the PASR before the CALA executes the PC discon­
tinuity. Therefore, when the CALA is executed, the address of the top of the 
loop is pushed onto the PC stack. 

The last two words of a repeat-block loop are not interruptible. In other words, 
the interrupt path will not be taken while the last two instruction words of a re­
peat block are being fetched. 

Example 3-1.lnterrupt Operation With a Single-Word Instruction at the End of an RPTB 

RPTB END_LOOP-1 
SAR ARO,* - interrupt path taken here 

if not the last loop iteration 

LACC *+ 
SACL * - interrupt occurs here 

ENDLOOP: 
MAR * ,ARl - Interrupt path taken here if interrupt 

occurs during last two instruction words 
of the last loop iteration 

Example 3-2.lnterrupt Operation With a Two-Word Instruction at the End of an RPTB 

RPTB END_LOOP-1 
SAR ARO,* 

LACC *+ 
SPLK #1234h, * 

ENDLOOP: 
MAR *,ARl 

- interrupt path taken here 
if not the last loop iteration 

- interrupt occurs here 

- Interrupt path taken here if interrupt 
occurs during last two instruction words 
of the last loop iteration 
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Note that any incoming interrupt is latched by the 'C5x as soon as it meets the 
interrupt timing requirement. However, the PC does not branch to the corre­
sponding interrupt service routine vector if it is fetching the last two words of 
a repeat-block loop. This behavior is functionally equivalent to disabling inter­
rupts before fetching the last two instruction words, and re-enabling interrupts 
afterward. Interrupt operation with repeat blocks potentially increases the 
worst-case interrupt latency time. 

3.6.6 Power-Down Mode 
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In the power-down mode, the 'C5x core enters a dormant state and dissipates 
considerably less power than normal. Power-down mode is invoked either by 
executing the IDLE/ IDLE2 instructions or by driving the HOCO input low with 
the HM status bit set to one. 

While the 'C5x is in power-down mode, all its internal contents are maintained; 
this allows operation to continue unaltered when power-down mode is termi­
nated. All CPU activities are halted when the IDLE instruction is executed but 
the CLKOUT1 pin remains active. The peripheral circuits continue to operate, 
allowing the peripherals such as serial ports and timers to take the CPU out 
of its powered-down state. Power-down mode, when initiated by an IDLE in­
struction, is terminated upon receipt of an interrupt. If INTM = 0, then the pro­
cessor enters the interrupt service routine when IDLE is terminated. If INTM 
= 1, then the processor continues with the instruction following IDLE. 

The I DLE2 instruction is used for a complete shutdown of the core CPU as well 
as all on-chip peripherals. Because the on-chip peripherals are stopped with 
this power-down mode, they cannot be used to generate the interrupt to wake 
the device as described above on the IDLE mode. However, the power is sig­
nificantly reduced because the complete device is stopped. This power-down 
mode is terminated by activating any of the external interrupt pins (RS, liJ"K.U, 
JNTf, 1N1'2, Tm'3", and JNT4) for at least five machine cycles. Once again, if 
INTM = 0, then the processor enters the interrupt service routine when the 
IDLE2 instruction is terminated. If INTM =1, then the processor continues with 
the instruction following the IDLE2. It is advisable to reset peripherals when 
IDLE2 terminates execution, especially if they are externally clocked. 

Power-down mode can also be initiated by the HOCO signal. When the HOCO 
signal initiates power-down and HM=1, the CPU stops executing; also, ad­
dress and control lines go into high impedance for further power reduction. If 
HM=O when HOCO initiates power-down, address and memory control signal 
drivers still go into high impedance, but the CPU continues to execute internal­
ly. If external memory accesses are not currently required in the system, the 
HM=O mode can be used. The device continues to operate normally unless an 
off-chip access is required by an instruction, at which time the processor halts 
until the hold is removed. When the HOCO signal initiates the power-down 
mode, power-down mode is terminated when ROD:> goes inactive. HOCO 
does not stop operation of on-chip peripherals (i.e., on-chip timers and serial 
ports continue to operate, regardless of the level on ROD:> or the condition of 
the HM bit}. 
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3. 7 Parallel Logic Unit (PLU) 
The parallel logic unit (PLU) can directly set, clear, test, or toggle multiple bits 
in a control/status register or any data memory location. The PLU, shown in 
the block diagram in Figure 3-16, provides a direct logic operation path to data 
memory values without affecting the contents of the accumulator or product 
register. It can be used to set or clear multiple bits in a control register or to test 
multiple bits in a flag register. 

Figure 3-16, Parallel Logic Unit Block Diagram 

The PLU executes a read-modify-write operation on data stored in data space. 
The PLU operation begins with the fetching of one operand from data memory 
space and the fetching of the second from either long immediate on the pro­
gram bus or the dynamic bit manipulation register (DBMR). Then, the PLU ex­
ecutes a logical operation defined by the instruction on the two operands. The 
result is written to the same data memory location from which the first operand 
was fetched. 

The PLU allows the direct manipulation of bits in any location in data memory 
space. This direct bit manipulation is done by ANDing, ORing, XORing, or 
loading a 16-bit long immediate value to a data location. For example, to use 
AR1 for circular buffer 1 and AR2 for circular buffer 2 but not enable the circular 
buffers, initialize the circular buffer control register (CBCR) by executing this: 

SPLK #02lh,CBCR ;Store peripheral long i11U11ediate (DP= 0). 

To later enable circular buffers 1 and 2, execute 
OPL #088h,CBCR ;Set bit 7 and bit 3 in CBCR. 
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Test for individual bits in a specific register or data word via the BIT instruction; 
however, test against a pattern with the CPL (compare parallel long immedi­
ate) instruction. If the data value is equal to the long immediate value, then the 
TC bit is set to 1. The TC bit is set if the result of any PLU instruction is zero. 

The bit set, clear, and toggle functions can also be executed with a 16-bit dy­
namic register value instead of the long immediate value. This is done with the 
following three instructions: APL (AND DBMR register to data), OPL (OR 
DBMR register to data), and XPL (XOR DBMR register to data). 

The TC bit in ST1 is also set by the APL, OPL, XPL instructions if the result of 
the PLU operation (value written back into data memory) is zero. This allows 
bits to be tested and cleared simultaneously. For example, 

APL #OFFOOh,TEMP ;Clear low byte and check for 
;bits set in high byte. 

BCND HIGH_BITS_SET,NTC ;If bits active in high byte, 
;then branch. 

or 

XPL #1,TEMP ;Toggle bit o. 
BCND BIT_SET,TC ;If bit was set, branch. If not, bit set now. 

In the first example, the low byte of a flag word is cleared while the high byte 
is checked for any active flags (bits = 1). If none of the flags in the high byte 
are set, then the resulting APL operation yields a zero to TEMP and the TC bit 
is set to 1. If any of the flags in the high byte are set, then the resulting APL 
operation yields a nonzero value to TEMP and the TC bit is set to 0. Therefore, 
the conditional branch (BCND) following the APL instruction branches if any 
of the bits in the high byte are nonzero. The second example tests the flag. If 
low, it is set high; if high, it is cleared and the branch is taken. The PLU instruc­
tions can operate anywhere in data address space, so they can be used to op­
erate with flags stored in RAM locations as well as control registers for both 
on- and off-chip peripherals. 
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3.8.1 Reset 

Interrupts 

The 'CSx core CPU supports sixteen user-maskable interrupts {1NTI6-JNTI). 
However, each 'CSx DSP does not necessarily use all 16. For example, the 
'CSO, 'CS 1, and 'C53 use only nine of these interrupts (the others are tied high 
inside the device}. Interrupts can be generated by the serial ports (RI NT, XI NT, 
TRNT, and TXNT}, by the timer {TINT}, and by the software interrupt {TRAP 
and INTR} instructions. The reset (RS) interrupt has the highest priority, and 
the TNT16 interrupt has the lowest priority. 

Reset (RS) is a nonmaskable external interrupt that can be used at any time 
to put the 'CSx into a known state. Reset is typically applied after power-up 
when the machine is in an unknown state. 

Driving the RS signal low causes the 'CSx to terminate execution and forces 
the program counter to zero. RS affects various registers and status bits. At 
power-up, the state of the processor is undefined. For correct system opera­
tion after power-up, a reset signal must be asserted low for several clock 
cycles so that data lines are put into the high-impedance state and address 
lines are driven low (see Appendix A for specific timings}. The device will latch 
the reset pulse and generate an internal reset pulse long enough to guarantee 
a reset of the device. Several clock cycles after deasserting reset (see Appen­
dix A}, the reset vector at program address zero is fetched. 

When the RS signal is received, the following actions occur: 

1} A logic O is loaded into the CNF (configuration control} bit in status register 
ST1 , mapping dual-access RAM block O into data address space. 

2} The program counter (PC} is set to 0. The address bus (lines A 15 - AO} 
is unknown while RS is low. IF ROIO is asserted while RS is low, HOLDA 
is generated. In this case, the address lines are placed into a high-impe­
dance state until ROIO is brought back high. 

3} All interrupts are disabled by setting the INTM bit (interrupt mode} to 1; 
note that RS and N1iitT are nonmaskable. The interrupt flag register (IFR} 
is cleared. 

4} Status bits are set as follows: 
o-ov, 1 -xF, 1 -sxM, o-PM, 1 - HM, o-BRAF, 
0 - TRM, 0 - NDX, 0 - CENB1 I 0 - CEN82, 0 - IPTR, 
0 - OVLY, 0 - AVIS, 0 - RAM, 0 - BIG, 0 - CNF, 
1 - INTM, MP/MC (Pin} - PMST (MP/flC)', and 1 - C, 

Note that the remaining status bits remain undefined and should be initial­
ized appropriately. 
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5) The global memory allocation register {GREG) is cleared to make all 
memory local. 

6) The repeat counter {RPTC) is cleared. 

7) The lACK {interrupt acknowledge) signal is generated in the same manner 
as a maskable interrupt. 

8) A synchronized reset {SRESET) signal is sent to the peripheral circuits to 
initialize them. See subsection 5.1.3 for peripheral reset information. 

Execution starts from location 0 of program memory when the RS signal is tak­
en high. Note that if ROIO is asserted while RS is low, normal reset operation 
occurs internally, but all buses and control lines remain in a high-impedance 
state and HOLDA is asserted, as shown in Figure 3-17{a) and {b). However, 
if RS is asserted while ROLD/HOLDA are low, the CPU comes out of the hold 
mode momentarily by deasserting HOLDA. This condition should be avoided. 
Upon release of ROIO and RS, execution starts from location zero. 
Figure 3-17 {a) and {b) shows two valid ways of exiting reset and hold. 

Figure 3-17. RS and HOLD Interaction 

a) 

b) 

3.8.2 Interrupt Operation 
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This subsection explains interrupt organization and management. Vector rela­
tive locations and priorities for all internal and external interrupts are shown in 
Table 3-12. 
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The TRAP instruction (software interrupts) is not prioritized but is included 
here because it has its own vector location. Each interrupt address has been 
spaced apart by two locations so that branch instructions can be accommo­
dated in those locations. To make vectors stored in ROM reprogrammable, 
use the following code: 

LAMM TEMPO 
BACC 

;ACC = ISR address. 
;Branch to ISR. 

TEMPO resides in 82 and holds the address of the interrupt service routine 
{ISR). Note that the ISR addresses must be loaded into 82 before interrupts 
are enabled. Further information regarding interrupt operation, with respect to 
specific devices in the 'C5x generation, is located in Chapter 5, Peripherals. 

The interrupt vectors can be remapped to the beginning of any 2K-word page 
in program memory. The interrupt vector address is generated by concatenat­
ing the IPTR bits of the PMST with the interrupt vector number (1-16) shifted 
by one as shown in Figure 3-18. 

Table 3-12. Interrupt Locations and Priorities 

Namet Location Priority Function 

Dec Hex 

RS 0 0 1 (highest) reset signal 

TITTl 2 2 3 user interrupt #1 

~ 4 4 4 user interrupt #2 

1NT3 6 6 5 user interrupt #3 

mT4 8 8 6 user interrupt #4 

TITT5 10 A 7 user interrupt #5 

TfJTS 12 c 8 user interrupt #6 

TITT7 14 E 9 user interrupt #7 

TITT8 16 10 10 user interrupt #8 

fITTg 18 12 11 user interrupt #9 

TfITfO 20 14 12 user interrupt #1 O 

1NTil 22 16 13 user interrupt #11 

~ 24 18 14 user interrupt #12 

TITTl3" 26 1A 15 user interrupt #13 

Tf\lTI4 28 1C 16 user interrupt #14 

1NTI5 30 1E 17 user interrupt #15 

TFJTI6 32 20 18 user interrupt #16 

TRAP 34 22 N/A TRAP instruction vector 

NMT 36 24 2 nonmaskable interrupt 

t The interrupt numbers here do not correspond to any specific 'C5x device. The definitions of the 
interrupts, specific to particular 'C5x devices, are covered in Chapter 5. 
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Figure 3-18. 
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Interrupt Vector Address Generation 

Vector 
Bit 

J IPTR = 00001 t ... , 
' 

0 0 0 0 

I INT=5 I 
/ ' / ' 

~I 
~ 

I ~ 
:::. 

0 0 ~I ~I 0 ~ I ~ I 7 6 2 15 14 13 12 

Upon reset, the IPTR bits are all set to zero, thus mapping the vectors to page 
zero in program memory space. This means the reset vector always resides 
at zero. The interrupt vectors can be moved to another location by loading a 
nonzero value into the IPTR bits. For example, the interrupt vectors can be 
moved to start at location 0800h by loading the IPTR with 1. 

When an interrupt occurs, a flag is activated in the 16-bit interrupt flag register 
(I FR). This happens regardless of whether the interrupt is enabled or disabled. 
Each interrupt is stored in the I FR until it is recognized by the CPU. Any of the 
following four events clears the interrupt flag: 

1) Device reset (RS is active low), 

2) Program takes the interrupt trap, 

3) Program writes a one to the appropriate bit in IFR, or 

4) Execution of the INTR instruction with the appropriate interrupt number. 

The IFR is located at address 6 in data memory space and can be read to iden­
tify active interrupts and written to clear interrupts. 

A logic one in an IFR bit position indicates a pending interrupt. A one can be 
written to a specific bit to clear the corresponding interrupt. All pending inter­
rupts can be cleared by writing the current contents of the IFR back into the 
I FR. The following example clears these two vectors without affecting any oth­
er flags that may have been set: 

SPLK #5,IFR ;Clear flags for INTl and INT3. 

An interrupt flag is automatically cleared when the corresponding interrupt trap 
is taken. When the CPU accepts the interrupt, it jams the instruction bus with 
an INTR instruction. This instruction forces the PC to the appropriate address 
and fetches the soft vector. While fetching the first word of the soft vector, it 
generates an interrupt acknowledge (1ACK) signal that clears the appropriate 
interrupt flag bit. The number of the specific interrupt being taken is indicated 
by address bits A 1 - A5 on the falling edge of JACR. If the interrupt vectors re­
side in on-chip memory, the device should be operating in address visibility 
mode (AVIS= 0) for the interrupt number to be decoded. A hardware reset (RS 
is active low) clears all pending interrupt flags. If an interrupt occurs while the 
device is in HOLD and HM = 0, the address will not be present when the 1ACR 
goes active low. 
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The 'C5x has a memory-mapped interrupt mask register (IMR) for masking ex­
ternal and internal interrupts. A 1 in bit positions 15 through 0 of the I MR en­
ables the corresponding interrupt, provided that INTM = 0. The IMR is accessi­
ble with both read and write operations. Note that neither J\Ifiiff norliS is in­
cluded in the IMR; therefore, the IMR has no affect on the nonmaskable inter­
rupt or reset. 

The INTM (global enable) bit, which is bit 9 of status register STO, enables or 
disables all interrupts. INTM = 0 enables all the unmasked interrupts, and 
INTM = 1 disables these interrupts. The INTM is set to 1 automatically when 
an interrupt trap is taken. If the interrupt service routine is exited via the RETE 
instruction (return from interrupt with automatic re-enable), then the INTM bit 
is re-enabled (set to zero). It can also be set to 1 with a hardware reset (RS 
is low) or by executing a disable interrupt (SETC INTM) instruction. This bit is 
reset to a zero by executing the enable interrupt instruction (CLRC I NTM). The 
INTM does not actually modify the IMR or IFR. 

The interrupt latency of 'C5x depends on the current contents of the pipeline. 
The device always completes all instructions in the pipeline before executing 
the soft vector. The following example, Example 3-3, illustrates the minimum 
latency from the time an interrupt occurs externally to the interrupt acknowl­
edge (JACK). The minimum interrupt acknowledge time is defined as 8 cycles: 

O 3 cycles to externally synchronize the interrupt 
O 1 cycle for the interrupt to be recognized by the CPU 
O 4 cycles to execute the INTR instruction and flush the pipeline 

On the ninth cycle, the interrupt vector is fetched and the IACR is generated. 

Example 3-3. Minimum Interrupt Latency 

Interrupt occurs 
before the fetch of 
this instruction i 
Fetch Mainl Main2 

Decode Mainl 

Read 

Execute 

Interrupt Thia instruction will be 
written to refetched after return from 

IFR i interrupt 

Main3 Main4 Mains Main6 Dummy Dummy Dummy Vecl Vec2 Dummy Dummy ISRl 

Ma.in2 Main3 Main4 Mains INTR Dummy Dummy Dummy Vecl Vec2 Dummy Dummy 

Mainl Main2 Main3 Main4 Mains INTR Dummy Dummy Dummy Vecl Vec2 Dummy 

Mainl Main2 Main3 Main4 Mains INTR Dummy Dummy Dummy Vecl Vec2 

f Interrupt t INTR jammed t IACK 
latched external into the pipe- generated 
to the CPU line here 

The maximum latency is a function of what is in the pipeline. Multicycle instruc­
tions add additional cycles to empty the pipeline. This applies to instructions 
that are extended via wait-state insertion on memory accesses. The wait 
states required for interrupt vector accesses also affect the latency. The repeat 
next instruction N times (RPT and RPTZ) also locks out interrupts (including 
NMI, but not reset), and the repeated instruction completes all executions be­
fore allowing the interrupt to execute. This is to protect the context of the re-
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peated instructions because when repeated, the instructions run more parallel 
operations in the pipeline, and the context of these additional parallel opera­
tions cannot be saved in an ISR. The ROrn function takes precedence over 
interrupts and also can delay the interrupt trap. If an interrupt happens during 
an active-ROCO state, the interrupt is taken at the completion of the ROrn 
state, that is, when HOLDA is deasserted. However, ifthe processor is in con­
current hold mode (HM bit of ST1 is 0) and the interrupt vector table is located 
in internal memory, then the CPU takes the interrupt, regardless of ROrn sta­
tus. 

Interrupts cannot be processed between CLRC INTM and the next instruction 
in a program sequence. For example, if an interrupt occurs during an CLRC 
INTM instruction execution, the device always completes CLRC INTM as well 
as the following instruction before the pending interrupt is processed. This en­
sures that a return (RET) can be executed in an ISR before the next interrupt 
is processed-thus protecting against PC stack overflow. If the ISR is exited 
via a RETE (return from ISR with enable), the CLRC INTM is unnecessary. Of 
course, after a SETC INTM instruction, the following instruction will not be in­
terrupted. 

3.8.3 Interrupt Context Save 
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When an interrupt trap is executed, certain strategic registers are saved auto­
matically. When the return from interrupt instruction (RETE or RETI) is ex­
ecuted, these registers are automatically restored. The program counter (PC) 
is saved on an 8-deep hardware stack. This stack is also used for subroutine 
calls. Therefore, the device supports subroutine calls within the interrupt ser­
vice routine (ISR) as long as the 8-level stack is not exceeded. Also, there is 
a one-deep stack (or shadow registers) for each of the following registers: 

ACC 
ACCB 
PREG 
STO 
ST1 
PMST 
TREGO 
TREG1 
TREG2 
INDX 
ARCR 

accumulator 
accumulator buffer 
product register 
status register 0 
status register 1 
processor mode status register 
temporary register for multiplier 
temporary register for shift count 
temporary register for bit test 
indirect address index register 
auxiliary register compare register 

When the interrupt trap is taken, all these registers are each pushed onto a 
one-level stack, with the exception of the XF bit in ST1 and the I NTM bit in STO. 
On an interrupt, the INTM bit is always set to 1 to disable interrupts. The values 
in the registers at the time of the trap are still available to the ISR but are also 
protected in the stack. The stack is popped when the return from interrupt 
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(RETI or RETE) is executed. This system allows the CPU to be used without 
requiring context save and restore overhead in the ISR. 

With only a one-level stack for the above 11 registers, this hardware does not 
support nested interrupts. In most cases, this is not a problem, because with­
out the context save and restore overhead, serial processing of the interrupts 
is so efficient that nested interrupt handling is less effective. If the application 
does require nested interrupts, they can be handled by using a software stack. 
Software compatibility with the 'C25 is maintained because the RET instruc­
tion, used to return from the ISR on a 'C25, does not pop these registers. Inter­
rupts are not re-enabled unless an RETE or a CLRC INTM instruction is ex­
ecuted. 

In a case where the ISR needs to modify values in these registers with respect 
to the interrupted code, these registers can be popped from the stack as shown 
in the following example and modified: 

ISR 
LACC #ISR_RE_ENTER ;ACC = address of reentry point. 
PUSH ;Top of stack = reentry point. 
RETI ;Pop all the stacks. 

ISR RE ENTER 

CLRC INTM 
RET ;Return to interrupted code. 

In the example, the address of the reentry point within the ISR is pushed onto 
the PC stack. The RETI instruction pops all the stacks, including the PC stack, 
and resumes execution. At the end of the ISR, a standard return is executed 
because the stack is already popped. 

Not all of the 16 core CPU interrupts are necessarily used on any given 'C5x 
device. The vectors for the interrupts not tied to specific external pins or inter­
nal peripherals can be used as software interrupts. To use the corresponding 
interrupt vectors as software traps with full context save and restore, execute 
the INTR instruction with the appropriate interrupt number as an operand. 
These traps are protected from other interrupts in the same way the I SR is pro­
tected; all interrupts are globally masked via the INTM bit. To execute the con­
text restore, these trap routines must be exited via the RETI or RETE instruc­
tion. For example, 

INTR 15 ;Software trap to address OlEh. 

In this example, the processor traps to the vector relatively located at 01 Eh. 

3.8.4 Nonmaskable Interrupt 

The core of the 'C5x has two nonmaskable interrupts, RS (reset) and 1'Jliilf. Re­
set is discussed in subsection 3.8.1 N1iilT is a soft reset. It is different from a 
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standard interrupt because it is not maskable, and it does not invoke the auto­
matic context save. The context save is not invoked, because it is possible to 
take the NfiilT even during an interrupt service routine. In addition, interrupts are 
globally disabled during an NMI instruction. The NfiilT is different from reset in 
that it does not affect any of the modes of the device. Note that some 'C5x de­
vices may not make the NfiilT available externally. The NfiilT is also delayed by 
multicycle instructions (including RPT) and by ROCO, as described in subsec­
tion 3.8.2. The NfiilT trap can also be initiated via software using the NMI in­
struction. This instruction forces the PC to the NMI trap location. 

Architecture 



Chapter 4 

Assembly Language Instructions 
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The 'C5x instruction set supports numerically intensive signal-processing op­
erations as well as general-purpose applications, such as multiprocessing and 
high-speed control. The instruction set is a superset of the 'C1 x and 'C2x in­
struction sets and is source-code upward compatible with both devices. This 
chapter describes the assembly language instructions for the 'C5x digital sig­
nal processor. Included in this chapter are the following major topics: 

Topic Page 
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4.1 Memory Addressing Modes 

The 'C5x instruction set provides six basic memory addressing modes: 

O Direct addressing mode 
O Indirect addressing mode 
O Immediate addressing mode 
O Dedicated register addressing mode 
O Memory-mapped register addressing mode 
O Circular addressing mode 

Both direct and indirect addressing can be used to access data memory. Direct 
addressing concatenates seven bits of the instruction word with the nine bits 
of the data memory page pointer to form the 16-bit data memory address. Indi­
rect addressing accesses data memory through one of eight auxiliary regis­
ters. In immediate addressing, the data is based on a portion of the instruction 
word(s). Two types of immediate addressing modes are available: short and 
long. In short immediate addressing, an 8-/ 9-/13-bit operand is included in the 
instruction word. Long immediate addressing mode uses as its operand a 
16-bit word following the instruction. Dedicated register addressing refers to 
the block move instructions in which the BMAR register addresses program 
or data memory and the parallel logic unit (PLU) instructions in which operands 
are obtained from the DBMR register. Memory-mapped register addressing 
mode is used to load and store memory-mapped registers. Circular address­
ing is an additional mode of indirect addressing that automatically wraps to the 
beginning of a block of data when the end of the block is reached. The following 
subsections describe each addressing mode and give the opcode formats and 
some examples for each mode. 

4.1.1 Direct Addressing Mode 
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In the direct memory addressing mode, the instruction contains the lower 
seven bits of the data memory address ( dma). This field is concatenated with 
the nine bits of the data memory page pointer (DP) register to form the full 
16-bit data memory address. Thus, the DP register points to one of 512 possi­
ble 128-word data memory pages, and the 7-bit address in the instruction 
points to the specific location within that data memory page. The DP register 
is loaded by using the LOP (load data memory page pointer) or the LST #0 
(load status register STO) instructions. 
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Note: 

The data page pointer is not initialized by reset and, therefore, is undefined 
after power-up. The 'C5x development tools, however, utilize default val­
ues for many parameters, including the data page pointer. Because of this, 
programs that do not explicitly initialize the data page pointer may execute 
improperly, depending on whether they are executed on a 'C5x device or 
with a development tool. Thus, it is critical that all programs initialize the 
data page pointer in software. 

Figure 4-1 illustrates how the 16-bit data address is formed. 

Figure 4-1. Direct Addressing Block Diagram 

9 

DP (9) 

9 

7 
7 LSBs From Instruction Register (IR) 

16 

16-Bit Data Address 

The direct addressing format is as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Opcode I 0 I dma 

Bits 15 through 8 contain the opcode. Bit 7 = O defines the addressing mode 
as direct, and bits 6 through O contain the data memory address (dma}. 

Example of direct addressing format: 

ADD 9h,5 ;The contents of data address 9h is 
;left-shifted 5 bits and added to the 
;contents of the accumulator. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 0 0 0 0 0 0 0 0 
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The opcode of the ADD 9h,5 instruction is 25h and appears in bits 15 through 
8. The shift count of 5 appears in bits 11 through 8 of the opcode. The data 
memory address 09h appears in bits 6 through O. 

4.1.2 Indirect Addressing Mode 

Eight auxiliary registers (ARO-AR?) provide flexible and powerful indirect ad­
dressing on the 'C5x. To select a specific auxiliary register, load the auxiliary 
register pointer (ARP) with a value from O through 7, designating ARO through 
AR7, respectively {see Figure 4-2). 

Figure 4-2. Indirect Addressing Block Diagram 

4-4 

Auxiliary Registers 

ARO (16) 
ARB (3) ARP (3) 

AR1 (16) 
(ARP= 2) 

AR2 (16) 

AR3 (16) 

AR4 (16) 16 

AR5 (16) 

AR6 (16) 

AR7 (16) 

16 
16 

ARAU (16) 

16-Bit Data Address 

The contents of the auxiliary registers may be operated upon by the auxiliary 
register arithmetic unit (ARAU), which implements unsigned16-bit arithmetic. 
The ARAU performs auxiliary register arithmetic operations in the decode 
phase of the pipeline. This allows the address to be generated before the de­
code phase of the next instruction. The AR is incremented or decremented 
after it is used in the current instruction. 

In indirect addressing, any location in the 64K data memory space can be ac­
cessed via a 16-bit address contained in an auxiliary register. The LAR instruc­
tion loads the address into the register. The auxiliary registers on the 'C5x may 
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be modified by ADRK (add to auxiliary register short immediate) or SBRK (sub­
tract from auxiliary register short immediate); they may also be modified by the 
MAR (modify auxiliary register) instruction or, equivalently, by the indirect ad­
dressing field of any instruction supporting indirect addressing. AR(ARP) de­
notes that the auxiliary register is to be selected by ARP. The auxiliary registers 
can also be loaded via the data bus by using memory-mapped writes to the 
auxiliary registers. The following instructions can write to the memory-mapped 
auxiliary registers: APL, BLDD, LMMR, OPL, SACH, SACL, SAMM, SMMR, 
SPLK, and XPL. Be careful when using these memory-mapped loads of the 
auxiliary registers because in this case the memory-mapped auxiliary regis­
ters are modified in the execute phase of the pipeline. This causes a pipeline 
conflict if one of the next two instruction words modifies that auxiliary register. 
For further information on the pipeline and possible pipeline conflicts, see sub­
section 3.6.2. 

The following symbols are used in indirect addressing, including bit-reversed 
(BR) addressing: 

* 
*-

*+ 

*0-

*0+ 

Contents of AR(ARP) are used as the data memory address. 

Contents of AR(ARP) are used as the data memory address and de-
cremented after the access. 

Contents of AR(ARP) are used as the data memory address and in­
cremented after the access. 

Contents of AR(ARP) are used as the data memory address, and the 
contents of INDX are subtracted from it after the access. 

Contents of AR(ARP) are used as the data memory address, and the 
contents of INDX are added to it after the access. 

*BRO- Contents of AR(ARP) are used as the data memory address, and the 
contents of INDX are subtracted, with reverse carry (re) propagation, 
from it after the access. 

*BRO+ Contents of AR(ARP) are used as the data memory address, and the 
contents of INDX added, with reverse carry (re) propagation, to it after 
the access. 

There are two primary types of indirect addressing with indexing: 

O Regular indirect addressing with increment or decrement, and 

O Indirect addressing with indexing based on the value of INDX: 
• Indexing by adding or subtracting the contents of INDX, or 
• Indexing by adding or subtracting the contents of INDX with the carry 

propagation reversed (for FFTs on the 'C5x). 

In either case, the contents of the auxiliary register pointed to by the ARP regis­
ter are used as the address of the data memory operand. Then, the ARAU per-
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forms the specified mathematical operation on the indicated auxiliary register. 
Additionally, the ARP may be loaded with a new value. All indexing operations 
are performed on the current auxiliary register in the same cycle as the original 
instruction decode phase of the pipeline. 

Indirect auxiliary register addressing allows for post-access adjustments of the 
auxiliary register pointed to by the ARP. The adjustment may be an increment 
or decrement by one or may be based upon the contents of the IN DX register. 
To maintain compatibility with the 'C2x devices, set the NDX bit in the PMST 
register to 0. In the 'C2x architecture, the current auxiliary register can be in­
cremented or decremented by the value in the ARO register. When the NDX 
bit is set to 0, every ARO modification or I.AR write also writes the ARCR and 
INDX registers with the same value. Subsequent modifications of the current 
auxiliary registers using indexed addressing will use the INDX register, there­
fore maintaining compatibility with existing 'C2x code. The NDX bit is set to O 
at reset. 

Bit-reversed addressing modes on the 'C5x allow efficient 1/0 to be performed 
by the resequencing of data points in a radix-2 FFT program. The direction of 
carry propagation in the ARAU is reversed when this mode is selected, and 
INDX is added to/subtracted from the current auxiliary register. Typical use of 
this addressing mode requires that INDX first be set to a value corresponding 
to one-half of the array's size, and that AR(ARP) be set to the base address 
of the data (the first data point). 

Indirect addressing can be used with all instructions except those with immedi­
ate operands or with no operands. The indirect addressing format is as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Opcode I 1 I 1ovl INCi DEC! NARI Y 

Bits 15 through 8 contain the opcode, and bit 7 = 1 defines the addressing 
mode as indirect. Bits 6 through O contain the indirect addressing control bits. 

Bit 6 contains the increment/decrement value (IDV). The IDV bit determines 
whether the INDX register will be used to increment or decrement the current 
auxiliary register. If bit 6 = 0, an increment or decrement (if any) by one occurs 
to the current auxiliary register. If bit 6 = 1, the INDX register is added to or sub­
tracted from the current auxiliary register as defined by bits 5 and 4. 

Bits 5 and 4 control the arithmetic operation to be performed with AR (ARP) and 
the INDX register. When set, bit 5 indicates that an increment is to be per­
formed. If bit 4 is set, a decrement is to be performed. Table 4-1 shows the 
correspondence of bit pattern and arithmetic operation. 
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Table 4-1. Indirect Addressing Arithmetic Operations 

Bits Arithmetic Operation 
6 5 4 

0 0 0 No operation on AR(ARP) 
0 0 1 AR(ARP) - 1 .... AR(ARP) 
0 1 0 AR(ARP) + 1 -+AR(ARP) 
0 1 1 Reserved 
1 0 0 AR(ARP) - INDX .... AR(ARP) [reverse carry propagation] 
1 0 1 AR(ARP) - INDX .... AR(ARP) 
1 1 0 AR(ARP) + INDX .... AR(ARP) 
1 1 1 AR(ARP) + INDX .... AR(ARP) [reverse carry propagation] 

Bit 3 and bits 2 through 0 control the auxiliary register pointer (ARP}. Bit 3 
(NAR} determines whether new value is loaded into the ARP. If bit 3 = 1, the 
contents of bits 2 through O \( = next ARP} are loaded into the ARP. If bit 3 = 
0, the contents of the ARP remain unchanged. If the ARP is loaded with a new 
value, the old value is loaded into the auxiliary register buffer (ARB} in the ST1 
status register. 

Table 4-2 shows the bit fields, notation, and operation used for indirect ad­
dressing. 

Table 4-2. Bit Fields for Indirect Addressing 

Instruction Field Bits Notation Operation 
15 - 8 7 6 5 4 3 2 1 0 

.... Opcode -1 0 0 0 0 .... y .... * No manipulation of ARx/ARP 

.... Opcode .... 1 0 0 0 1 .... y .... *,Y Y-+ARP 

.... Opcode .... 1 0 0 1 0 .... y .... *- AR(ARP) - 1 -+ AR(ARP) 

.... Opcode .... 1 0 0 1 1 .... y .... *-,Y AR(ARP) - 1 -+ AR(ARP) 
Y-+ARP 

.... Opcode .... 1 0 1 0 0 .... y .... *+ AR(ARP) + 1 .... AR(ARP) 

.... Opcode .... 1 0 1 0 1 .... y .... *+,Y AR(ARP) + 1 .... AR(ARP) 
Y-+ARP 

.... Opcode .... 1 1 0 0 0 .... y .... *BRO- AR(ARP) - rctNDX .... AR(ARP) t 

.... Opcode .... 1 1 0 0 1 .... y .... *BRO-,Y AR(ARP) - rclNDX -+ AR(ARP) 
Y-+ARPt 

.... Opcode .... 1 1 0 1 0 .... y .... *0- AR(ARP) - INDX -+ AR(ARP) 

.... Opcode .... 1 1 0 1 1 .... y .... *0-,Y AR(ARP) - INDX .... AR(ARP) 
Y-+ARP 

.... Opcode .... 1 1 1 0 0 .... y .... *O+ AR(ARP) + INDX -+ AR(ARP) 

.... Opcode .... 1 1 1 0 1 .... y .... *O+,Y AR(ARP) + INDX .... AR(ARP) 
Y-ARP 

.... Opcode .... 1 1 1 1 0 .... y .... *BRO+ AR(ARP) + rctNDX .... AR(ARP) t 

.... Opcode .... 1 1 1 1 1 ... y .... *BRO+,Y AR(ARP) + rclNDX-+ AR(ARP) 
Y-+ARPt 

t BR = bit-reversed addressing mode and re= reverse carry propagation 
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Example 1 ADD *+,8 

Example2 ADD *,8 

Example 3 ADD *-,8 

The CMPR (compare auxiliary register with ARCR) and TC/NTC conditions fa­
cilitate conditional branches, calls, returns, or conditional executes according 
to comparisons between the contents of ARCR and the contents of AR(ARP). 
To maintain compatibility with the TMS320C2x devices, set the NDX bit in the 
PMST register to 0. In the 'C2x architecture, the auxiliary register compare 
function is performed by comparing ARO with the current auxiliary register. 
When the NDX bit is set to 0, every load to ARO loads the ARCA register with 
the same value. Subsequent compares of the current auxiliary register will use 
the ARCA register, therefore maintaining compatibility with existing 'C2x code. 
The NDX bit is set to Oat reset. The auxiliary registers may also be used for 
temporary storage via the load and store auxiliary register instructions, LAA 
and SAR, respectively, or via any instruction that can load and store the 
memory-mapped auxiliary registers. 

The following examples illustrate the indirect addressing format: 

Add to the accumulator the contents of the data memory address defined by 
the contents of the current auxiliary register. This data is left-shifted 8 bits be­
fore being added. The current auxiliary register is autoincremented by one. 
The instruction word is 028AOh. 

As in Example 1, but with no autoincrement; the instruction word is 02880h. 

As in Example 1 , except that the current auxiliary register is decremented by 
one; the instruction word is 02890h. 

Example 4 ADD *0+,8 

As in Example 1, except that the contents of register INDX are added to the 
current auxiliary register; the instruction word is 028EOh. 

Example 5 ADD *0-,8 

As in Example 1, exceptthatthe contents of register INDXare subtracted from 
the current auxiliary register; the instruction word is 028DOh. 

Example 6 ADD *+,8,AR3 

As in Example 1, except that the auxiliary register pointer (ARP) is loaded with 
the value 3 for subsequent instructions; the instruction word is 028ABh. 

Example 7 ADD *BR0-,8 

4-8 

The contents of register INDX are subtracted from the current auxiliary regis­
ter, with reverse carry propagation; the instruction word is 028COh. 
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Example 8 ADD *BR0+,8 

The contents of register INDX are added to the current auxiliary register, with 
reverse carry propagation; the instruction word is 028FOh. 

4.1.3 Immediate Addressing Mode 

In immediate addressing, the instruction word(s) contains the value of the im­
mediate operand. The 'C5x has both single-word (8-bit, 9-bit, and 13-bit con­
stant) short immediate instructions and two-word (16-bit constant) long imme­
diate instructions. In short immediate instructions, the immediate operand is 
contained within the instruction word itself. In long immediate instructions, the 
word following the instruction word is used as the immediate operand. 

The 'C5x instructions listed in Table 4-3 support immediate addressing. 

Table 4-3. Instructions That Support Immediate Addressing 

8-Blt Immediate 9-Blt Immediate 13-Blt Immediate 16-Blt Immediate 

ADD LOP MPV ADD 
ADAK AND 
LACL APL 
LAA CPL 
APT LACC 
SBRK LAA 
SUB MPV 

OPL 
OR 
APT 
RPTZ 
SPLK 
SUB 
XOR 
XPL 

Example code for the RPT instruction with short immediate addressing: 

RPT #99 ;Execute the instruction after RPT 100 times. 

In this example, the immediate operand is contained as a part of the RPT in­
struction opcode. The instruction word format for RPT with short immediate 
addressing is as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 1 o 0 8-bit constant 

For long immediate instructions, the constant is a 16-bit value in the word fol­
lowing the opcode. The 16-bit value can be optionally used as an absolute con­
stant or as a 2s-complement value. 
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The following is an example code and the instruction word format for the RPT 
instruction with long immediate addressing: 

RPT #OFFFh ;Execute instruction after RPT lOOOh times. 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 
1 0 1 1 0 0 0 0 1 0 0 

16-bit constant 

4.1.4 Dedicated Register Addressing 

Nine instructions in the 'CSx instruction set can use one of two special-purpose 
memory-mapped registers in the core CPU. These two registers are the block 
move address register (BMAR) and the dynamic bit manipulation register 
(DBMR). The APL, OPL, CPL, and XPL parallel logic unit (PLU) instructions 
use the contents of the DBMR register when an immediate value is not speci­
fied as one of the operands. The BLDD, BLDP, and BLPD instructions can use 
the BMAR register to point at the source or destination space of a block move. 
The MADD and MADS also use the BMAR register to address an operand in 
program memory for a multiply-accumulate operation. 

The syntax for dedicated register addressing can be stated in one of two ways: 

1) Specifying BMAR by its predefined symbol as shown below: 

BLDD BMAR,DATlOO ;DP = 0. BMAR contains the value 200h. 

The contents of data memory location 200h are copied to data memory 
location 100 on the current data page. The opcode for this instruction is 
OAC64h. 

2) Excluding the immediate value from parallel logic unit instructions as 
shown below. The BMAR register is implied by the MADD and MADS in­
struction mnemonics. 

OPL DATlO ;DP = 6. DBMR contains the value OFFFOh. 
;Address 030Ah contains the value Olh 

The contents of data memory location 030Ah are ORed with the contents 
of DBMR. The resulting value OFFF1 h is stored back in memory location 
030Ah. The opcode for this instruction is 590Ah. 

4.1.5 Memory-Mapped Register Addressing 
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Memory-mapped register addressing is used for modifying the 
memory-mapped registers without affecting the current data page pointer val­
ue. In addition, any scratch pad RAM location or data page O can be modified 
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by using this addressing mode. Figure 4-3 illustrates how this is done by forc­
ing the 9 MSBs of the data memory address to zero, regardless of the current 
value of the DP when direct addressing is used or of the current auxiliary regis­
ter value when indirect addressing is used. The use of these instructions does 
not affect the contents of the DP. 

Figure 4-3. Memory-Mapped Register Addressing Block Diagram 

All bits Os 

9 

--~1-- 7 LSBs from 
Instruction Register (IR) 

16 or Current Auxiliary Register 

16-Bits Memory-Mapped Register Address 

This addressing mode allows greater flexibility for dealing with 
memory-mapped registers. The overhead required to perform operations in­
volving a memory-mapped register is greatly reduced because the data page 
pointer (DP) does not need to be modified before and after the operation. The 
following instructions operate in the memory-mapped register addressing 
mode: 

O LAMM - Load accumulator with memory-mapped register 
O SAMM - Store accumulator in memory-mapped register 
O LMMR - Load memory-mapped register 
O SMMR- Store memory-mapped register 

The following examples illustrate the use of these instructions in the direct and 
indirect addressing modes. 

LMMR CBCR,#OBOOh ;DP • 6. Load CBCR memory-mapped register. 

The CBCR memory-mapped register is loaded with the value at location 
0800h. The instruction word for this instruction is 0891 Eh, followed by the 
16-bit word 0800h. 

SAMM *+ ;Store accumulator to PMST register. 

If the auxiliary register pointer ARP = 3 and auxiliary register AR3 = FF07h, the 
contents of the accumulator is stored to the PMST register (address 07h) 
pointed at by the last 7 bits of AR3. The instruction word for this instruction is 
08890h. 
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4.1.6 Circular Addressing 
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Many algorithms such as convolution, correlation, and FIR filters can make 
use of circular buffers in memory. In these algorithms, a circular buffer is used 
to implement a sliding window, which contains the most recent data to be pro­
cessed. The 'C5x supports two concurrent circular buffers operating via the 
auxiliary registers. The following five memory-mapped registers control the 
circular buffer operation: 

0 CBSR1 
0 CBSR2 
0 CBER1 
0 CBER2 
0 CBCR 

- Circular Buffer One Start Register 
- Circular Buffer Two Start Register 
- Circular Buffer One End Register 
- Circular Buffer Two End Register 
- Circular Buffer Control Register 

The 8-bit circular buffer control register enables and disables the circular buffer 
operation. The CBCR is defined as follows: 

Bit Name Function 

0-2 CAR1 Identifies which auxiliary register is mapped to circular buffer 1. 
3 CENB1 Circular buffer 1, enable=1/disable=O. Set to O upon reset. 
4-6 CAR2 Identifies which auxiliary register is mapped to circular buffer 2. 
7 CENB2 Circular buffer 2, enable=1/disable=0. Set to 0 upon reset. 

In order to define circular buffers, the start and end addresses should first be 
loaded into the corresponding buffer registers; next, a value between the start 
and end registers for the circular buffer is loaded into an auxiliary register. The 
proper auxiliary register value is loaded, and the corresponding circular buffer 
enable bit is set in the control register. Note that the same auxiliary register can 
not be enabled for both circular buffers, or unexpected results occur.The algo­
rithm for circular buffer addressing is as follows (note that the test of the auxilia­
ry register value is performed before any modifications): 

If (ARn = CBER) and (any AR modification), 
Then: ARn = CBSR. 
Else: ARn = ARn + step. 

In addition, note that if ARn=CBER and no AR modification occurs, the current 
AR is not modified and is still equal to CSER.Note that when the current auxilia­
ry register = CBER, any AR modification (increment or decrement) will set the 
current AR = CBSR. The following examples illustrate the operation: 

splk 
splk 
splk 

lar 
lace 

#200h,CBSR1 
#203h,CBER1 
#Oeh,CBCR 

ar6,#200h 
* 

Circular buff er start register 
Circular buffer end register 
Enable AR6 pointing to buffer 1 

Case 1 
AR6 = 200h 
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lar ar6,#203h Case 2 
lace * AR6 = 203h 

lar ar6,#200h Case 3 
lace *+ AR6 = 20lh 

lar ar6,#203h Case 4 
lace *+ AR6 = 200h 

lar ar6,#200h Case 5 
lace *- AR6 = lffh 

lar ar6,#203h Case 6 
lace *- AR6 = 200h 

lar ar6,#202h Case 7 
adrk 2 AR6 = 204h 

lar ar6,#203h Case 8 
adrk 2 AR6 = 200h 

In circular addressing, the step is the quantity that is being added to or sub­
tracted from the specified auxiliary register. Take care when using a step of 
greater than one to modify the auxiliary register pointing to an element of the 
circular buffer. If an update to an auxiliary register generates an address out­
side the range of the circular buffer, the ARAU does not detect this situation, 
and the buffer does not wrap around. Auxiliary register updates are performed 
as described in subsection 4.1 .2. Note that there is a two-cycle latency be­
tween configuring the circular buffer control registers and performing AR modi­
fications due to the pipeline. 

Circular buffers can be used in increment- or decrement-type updates. For in­
crementing the value in the auxiliary register, the value in CSER must be great­
er than the value in CSSR. For decrementing the value in the auxiliary register, 
the CSSR register value must be greater than the value in the CSER register. 
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4.2 Instruction Set 

The 'C5x assembly language instruction set supports both DSP-specific and 
general-purpose applications. This section lists and groups the 'C5x instruc­
tion set according to the following functional headings: 

O Accumulator memory reference instructions 
O Auxiliary registers and data page pointer instructions 
O Parallel logic unit instructions 
O T register, P register, and multiply instructions 
O Branch instructions 
O 1/0 and data memory operations 
O Control instructions 

Section 4.1 covers the addressing modes associated with the instruction set, 
and Section 4.3 describes individual instructions in more detail. 

4.2.1 Symbols and Abbreviations 
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Table 4-4 lists symbols and abbreviations used in the instruction set summary 
{Table 4-4) and the individual instruction descriptions (Section 4.3). 
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Table 4-4. Instruction Symbols 

Symbol Meaning 

A Address 
.. ....., 

ACC Accumulator 
addr 16-bit data memory address 
ARB Auxiliary register pointer buffer 
ARn Auxiliary register n (0 " n " 7) 
ARP Auxiliary register pointer 
B 4-bit field specifying bit code 
BIO Branch control input 
BMAR Block move address register 
c Carry bit 
CM 2-bit field specifying compare mode 
CNF On-chip RAM configuration control bit 
D Data memory address field 
DATn Label assigned to data memory location n 
DBMR Dynamic bit manipulation register 
dma 7-bit data memory address 
DP Data page pointer 
FO Format status bit 
FSM Frame synchronization mode bit 
HM Hold mode bit 
I Addressing mode bit 
ind Indirect addressing operands 
INTM Interrupt mode flag bit 
K Immediate operand field 
IK Long immediate operand field 
MCS Microcall stack 
nnh Indicates that nn represents a hexadecimal number 
ov Overflow bit 
OVM Overflow mode bit 
p Product register 
PAn Port address n ( o " n s 65535 ) 
PC Program counter 
PFC Prefetch counter 
PG Mn Label assigned to program memory location n 
PM 2-bit field specifying P register output shift code 
pma Program memory address 
R 3-bit field specifying auxiliary register 
RPTC Repeat counter 
s 4-bit left-shift code 
STn Status register n (n = 0 or 1) 
SXM Sign-extension mode bit 
TREGn Temporary register n (n = o, 1, or 2) 
TC Test control bit 
TOS Top of stack 
TAM Control bit to enable multiple TREGs 
TXM Transmit mode bit 
XF XF pin status bit - Is assigned to 
Ix I Absolute value of x 
italics User-defined items 
[ 1 Optional items 
( ) Contents of 
{ } Alternative items; one of which must be entered 
# Prefix of constants used in immediate addressing 
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4.2.2 Instruction Set Summary 
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Table 4-5 is a summary of the instruction set for the 'C5x digital signal proces­
sors. This instruction set is a superset of the 'C1 x and 'C2x instruction sets. 

The instruction set summary is arranged according to function and is alphabet­
ized within each functional grouping. The number of words that an instruction 
occupies in program memory is specified in column four of the table. Several 
instructions specify two values, separated by a slash mark "f' for the number 
of words. Differentforms of the instruction occupy a different number of words. 
For example, the ADD instruction occupies one word when the operand is a 
short immediate value or two words if the operand is a long immediate value. 
The number of cycles that an instruction requires to execute is in column four 
of the table. All instructions are assumed to be executed from internal program 
memory {RAM) and internal data dual-access memory. The cycle timings are 
for single-instruction execution, not for repeat mode. Additional information is 
presented in the Individual Instruction Descriptions in Section 4.3. Bold type­
face indicates instructions that are new for the 'C5x instruction set. 

Section 4.4 includes a table that maps 'C2x instructions to 'C5x instructions. 
Note that the Texas Instruments 'C5x assembler accepts 'C2x instructions as 
well as 'C5x instructions. 
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Table 4-5. Instruction Set Summary 

Accumulator Memory Reference Instructions 

Mnemonic Description Words Cycles 

ABS Absolute value of ACC 1 1 

ADCB Add ACCB to ACC with carry 1 1 

ADD AddtoACC 1/2 1 
2 (long immediate value specified) 

ADDB Add ACCB to ACC 1 1 

ADDC Add to ACC with carry 1 1 

ADDS Add to low ACC with sign-extension suppressed 1 1 

ADDT Add to ACC with shift specified by TREG1 1 1 

AND ANDwithACC 1/2 1 
2 (long immediate value specified) 

ANDB AND ACCB with ACC 1 1 

BSAR Barrel-shift ACC right 1 1 

CMPL Complement ACC 1 1 

CRGT Test for ACC > ACCB 1 1 

CRLT Test for ACC < ACCB 1 1 

EXAR Swap ACCB with ACC 1 1 

LACB Load ACC with ACCB 1 1 

LACC Load ACC with shift 1/2 1 
2 (long immediate value specified 

LACL Load low word of ACC 1 1 

LACT Load ACC with shift specified by TREG1 1 1 

LAMM Load ACC with contents of memory-mapped 1 1 (processor memory-mapped register) 
register 2 (peripheral memory-mapped registers) 

NEG Negate accumulator 1 1 

NORM Normalize contents of ACC 1 1 

OR OR with accumulator 1/2 1 
2 (long immediate value specified) 

ORB OR ACCB with ACC 1 1 

AOL Rotate ACC left 1 1 

ROLB Rotate ACCB and ACC left 1 1 

ROA Rotate ACC right 1 1 

RORB Rotate ACCB and ACC right 1 1 
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Table 4-5. Instruction Set Summary (Continued) 

Accumulator Memory Reference Instructions (Concluded) 

Mnemonic Description Words Cycles 

SACB Store ACC In ACCB 1 1 

SACH Store high ACC with shift 1 1 

SACL Store low ACC with shift 1 1 

SAMM Store ACC to memory-mapped register 1 1 (processor memory-mapped register) 
2 (peripheral memory-mapped registers) 

SATH Barrel-shift ACC right o or 16 bits as specified 1 1 
byTREG1 

SATL Barrel-shift ACC right o to 15 bits as specified 1 1 
byTREG1 

SBB Subtract ACCB from ACC 1 1 

SBBB Subtract ACCB from ACC with borrow 1 1 

SFL Shift ACC left 1 1 

SFLB Shift ACCB and ACC left 1 1 

SFR Shift ACC right 1 1 

SFRB Shift ACCB and ACC right 1 1 

SUB Subtract from ACC 1/2 1 
2 (long immediate value specified) 

SUBB Subtract from ACC with borrow 1 1 

SUBC Conditional subtract 1 1 

SUBS Subtract from low ACC with sign-extension sup- 1 1 
pressed 

SUBT Subtract from ACC with shift specified by TREG1 1 1 

XOR Exclusive-OR with ACC 1/2 1 
2 (long immediate value specified) 

XORB Exclusive-OR ACCB with ACC 1 1 

ZALR Zero low ACC and load high ACC with rounding 1 1 

ZAP Zero ACC and PREG 1 1 

Auxlllary Registers and Data Page Pointer Instructions 

Mnemonic Description Words Cycles 

ADAK Add to ARn short immediate 1 1 

CMPR Compare ARn with ARCA 1 1 

LAA LoadARn 1/2 2 

LOP Load data page pointer 1 2 

MAR ModifyARn 1 1 

SAR StoreARn 1 1 

SBRK Subtract from ARn short immediate 1 1 
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Table 4-5. Instruction Set Summary (Continued) 

Mnemonic Description Words Cycles 

Parallel Logic Unit Instructions 

APL AND DBMR or constant with data memory 1/2 1 (second operand DBMR) 
value 2 (second operand long Immediate) 

CPL Compare DBMR or constant with data 1/2 1 (second operand DBMR) 
memory value 2 (second operand long Immediate) 

OPL OR DBMR or constant with data memory 1/2 1 (second operand DBMr'\ 
value 2 (second operand long '.r mediate) 

SPLK Store long Immediate to data memory 2 2 
locatlon 

XPL XOR DBMR or constant with data memory 1/2 1 (second operand DBMR) 
value 2 (second operand long Immediate) 

T Register, P Register, and Multlply Instructions 

Mnemonic Description Words Cycles 

APAC Add PREG to ACC 1 1 

LPH Load high PREG 1 1 

LT Load TREGO 1 1 

LTA Load TREGO & accumulate previous product 1 1 

LTD Load TREGO, accumulate previous product, and 1 1 
move data 

LTP Load TREGO & store PREG in accumulator 1 1 

LTS Load TREGO and subtract previous product 1 1 

MAC Multiply and accumulate 2 3 

MACO Multiply and accumulate with data move 2 3 

MADD Multlply and accumulate with source pointed at 1 3 
byBMAR 

MADS Multlply and accumulate both with source 1 3 
pointed at by BMAR and with data move 

MPV Multiply 1/2 1 
2 (long immediate value specified) 

MPYA Multiply and accumulate previous product 1 1 

MPYS Multiply and subtract previous product 1 1 

MPYU Multiply unsigned 1 1 

PAC Load ACC with PREG 1 1 

SPAC Subtract PREG from ACC 1 1 

SPH Store high PREG 1 1 

SPL Store low PREG 1 1 

SPM Set PREG output shift mode 1 1 

SORA Square and accumulate previous product 1 1 

SQRS Square and subtract previous product 1 1 

ZPR Zero product register 1 1 
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Table 4-5. Instruction Set Summary (Continued) 

Branch Instructions 

Mnemonic Description Words Cycles 

B[D] Branch unconditionally 2 4 (2 if delayed) 

BACC[D] Branch to address specified by ACC 1 4 (2 if delayed) 

BANZ[D] Branch on ARn not-zero 2 4 !conditions true, 2 if delayed) 
2 conditions false) 

BCND[D] Branch conditionally 2 4 !conditions true, 2 if dela~ed) 
2 at least one condition fa se) 

CALA[D] Call subroutine indirect 1 4 (2 if delayed) 

CALL[D] Call subroutine 2 4 (2 if delayed) 

CC[D] Call conditionally 2 4 !conditions true, 2 if dela~ed) 
2 at least one condition fa se) 

INTR Soft interrupt 1 4 

NMI Nonmaskable interrupt 1 4 

RET[D] Return from subroutine 1 4 (2 if delayed) 

RETC[D] Return conditionally 1 4 !conditions true, 2 if dela~ed) 
2 at least one condition fa e) 

RETE Return with context switch & global interrupt 1 4 
enable 

RETI Return with context switch 1 4 

TRAP Software interrupt 1 4 

xc Execute next instruction(s) conditionally 1 1 

1/0 and Data Memory Operations 

Mnemonic Description Words Cycles 

BLDD Block move from data memory to data memory 1/2 2 !operand specified by BMAR) 
3 operand specified by long 
immediate) 

BLDP Block move from data memory to program 1 2 
memory 

BLPD Block move from program memory to data 1/2 2 !operand specified by BMAR) 
memory 3 operand specified by long 

immediate) 

DMOV Data move in data memory 1 1 

IN Input data from port 2 2 

LMMR Load memory-mapped register 2 2 !processor memory-mapped register~ 
3 perlpheral memory-mapped register 

OUT Output data to port 2 3 

SMMR Store memory-mapped register 2 2 f processor memory-mapped reglste~ 
3 peripheral memory-mapped reglste 

TBLR Table read 1 3 

TBLW Table write 1 3 
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Instruction Set 

Table 4-5. Instruction Set Summary (Continued) 

Mnemonic 

BIT 

BITT 

CLRC 

IDLE 

IDLE2 

LST 

NOP 

POP 

POPD 

PSHD 

PUSH 

RPT 

RPTB 

RPTZ 

SETC 

SST 

Control Instructions 

Description Words Cycles 

Test bit 1 1 

Test bit specified by TREG2 1 1 

Clear control bit 1 1 

Idle until Interrupt 1 1 

Idle until Interrupt - low power mode 1 1 

Load status register 1 2 

No operation 1 1 

Pop top of stack to low ACC 1 1 

Pop top of stack to data memory 1 1 

Push data memory value on stack 1 1 

Push low ACC onto stack 1 1 

Repeat next instruction 1/2 2 

Repeat block 2 2 

Repeat next Instruction and clear ACC and 2 2 
PREG 

Set control bit 1 1 

Store status register 1 1 

Note that all writes to external memory require two cycles. Reads require one 
cycle. Any write access immediately before or after a read cycle will require 
three cycles (refer to Appendix 8). In addition, if two pipelined instructions try 
to access the same 2K-word long single-access memory block simultaneous­
ly, one extra cycle is required. For example, the DMOV instruction, when re­
peated with RPT, requires one cycle in the dual-access RAM but takes two 
cycles in the single-access RAM. Wait states are added to all external ac­
cesses according to the configuration of the software wait-state registers de­
scribed in Section 5.3. 
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Individual Instruction Descriptions 

4.3 Individual Instruction Descriptions 

4-22 

This section furnishes detailed information on the instruction set for the 'C5x 
family; see Table 4-4, Instruction Set Summary, for a complete list of available 
instructions. Each instruction presents the following information: 

O Assembler syntax 
O Operands 
O Opcode 
O Execution 
O Description 
O Words 
O Cycles 
O Examples 

The EXAMPLE instruction is provided to familiarize you with the instruction 
format and explain the contents of the instruction manual pages. 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Example Instruction EXAMPLE 

Direct: 
Indirect: 
Short Immediate: 
long Immediate: 

[labe~ EXAMPLE dma [,shift] 
[labe~ EXAMPLE {ind} [,shift[, next ARP]] 
[labe~ EXAMPLE [#k) 
[labe~ EXAMPLE [#/k) 

Each instruction begins with an assembler syntax expression. labels may be 
placed either before the command (instruction mnemonic) on the same line or 
on the preceding line in the first column. An optional comment field may con­
clude the syntax expression. Spaces are required between each field {label, 
command, operand, and comment fields). 

Os dma s 127 
O s pma s 65535 
0 s next ARP s 7 
0 :s; k :s; 255 
0 :s; lk :s; 65535 
Os shifts 15 

ind: {* I *+ I *- I *O+ I *0- I *BRO+ I *BRO-} 

The above set of operands is not comprehensive; however, they are the most 
frequently used in the instruction set. Operands may be constants or assem­
bly-time expressions referring to memory, 1/0 ports, register addresses, point­
ers, shift counts, and a variety of other constants. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
jx xx xx xx xx xx xx xx xi 

The opcode breaks down the various bit fields that make up each instruction 
word. 

(PC)+ 1 - PC 
(ACC) + (dma) - ACC; 0 --+ C 

Affected by OVM; affects OV and C. Not affected by SXM. 

The instruction operation sequence describes the processing that takes place 
when the instruction is executed. Conditional effects of status register speci­
fied modes are also given. Those bits in the 'C5x status registers affected by 
the instruction are also listed. 

Instruction execution and its effect on the rest of the processor or memory con­
tents are described. Any constraints on the operands imposed by the proces­
sor or the assembler are discussed. The description parallels and supple­
ments the information given by the execution block. 

This field specifies the number of memory words required to store the instruc­
tion and its extension words. 
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EXAMPLE Example Instruction 

Cycles 

Operand DARAM 

Operand SARAM 

Operand Ext 

Operand DARAM 

Operand SARAM 

Operand Ext 

4-24 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

1 1 1 1+p 

1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT) Instruction 

n n n n+p 

n n n n+p 

n+nd n+nd n+nd n+1+p+nd 

The table shows the number of cycles required for a given 'C5x instruction to 
execute in a given memory configuration when executed as a single instruc­
tiion or in the repeat (RPT} mode. The column headings in the table indicate 
the program source location (PR, PDA, PSA, PE), defined as follows: 

PR The instruction executes from internal program ROM. 

PDA The instruction executes from internal dual-access program RAM. 

PSA The instruction executes from internal single-access program RAM. 

PE The instruction executes from external program memory. 

If an instruction requires memory operand(s), row divisions in the table indi­
cate the location(s) of the operand(s), as defined below: 

DARAM 

SARAM 

Ext 

ROM 

MMR 

MM PORT 

The operand is in internal dual-access RAM. 

The operand is in internal single-access RAM. 

The operand is in external memory. 

The operand is in internal program ROM. 

The operand is a memory-mapped register. 

The operand is a memory-mapped io port. 

The number of cycles required for each instruction is given in terms of the pro­
cessor machine cycles (CLKOUT1 period). For the RPT mode execution, n in­
dicates the number of times a given instruction is repeated by an RPT or RPTZ 
instruction. The additional wait states for program/data memory and 1/0 ac­
cesses are defined below. Note that these additional cycles can be generated 
by the on-chip software wait state generator or by the external READY signal. 
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Example Instruction EXAMPLE 

p Program memory wait states. Represents the number of additional 
clock cycles the device waits for external program memory to respond 
to an access. 

d Data memory wait states. Represents the number of additional clock 
cycles the device waits for external data memory to respond to an ac­
cess. 

io 1/0 wait states. Represents the number of additional clock cycles the 
device waits for an external 1/0 to respond to an access. 

n Repetitions (where n > 2 to fill the pipeline). Represents the number of 
times a repeated instruction is executed. 

The above variables can also use the subscripts src, dst, and code to indicate 
source, destination, and code, respectively. 

Note that the internal single-access memory on each 'C5x processor is divided 
into 1 K- or 2K-word blocks contiguous in address space: 

'CSO Data Address Range 

Four 2K-word block OSOOh-OFFFh 
1000h-17FFh 
1800h-1FFFh 
2000h-27FFh 

One 1 K-word block 2800h-2BFFh 

'C51 Data Address Range 

One 1 K-word block OSOOh-OBFFh 

'C53 Data Address Range 

One 2K-word block OSOOh-OFFFh 

One 1 K-word block 1000h-13FFh 

All 'C5x processors support parallel accesses to these internal single-access 
RAM blocks. However, one single access block allows only one access per 
cycle. In other words, the processor can read/write on single-access RAM 
block while accessing another single-access RAM block at the same time. 

Note that all external reads take at least one machine cycle while all external 
writes take at least two machine cycles. However, if an external write is im­
mediately followed or preceded by an external read cycle, then the external 
write requires three cycles. See Appendix B for details. If the on-chip wait state 
generator is used to add m (m > 0) wait states to an external access, then both 
the external reads and the external writes require m+ 1 cycles, assuming that 
the external READY line is driven high. In case the READY input line is used 
to add m additional cycles to an external access, then external reads require 
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EXAMPLE Example Instruction 

Example 

4-26 

m+ 1 cycles, and external write accesses require m+2 cycles. See Chapter 6 
for the dicussion on software wait states and Appendix A for READY electrical 
specifications. 

The instruction cycle timings are based on the following assumptions: 

O At least the next four instructions are fetched from the same memory sec­
tion (internal or external) that was used to fetch the current instruction (ex­
cept in case of PC discontinuity instructions like B, CALL, etc.) 

O In the single execution mode, there is no pipeline conflict between the cur­
rent instruction and the instructions immediately preceding or following 
that instruction. The only exception is the conflict between the fetch phase 
of the pipeline and the memory read/write (if any) access of the instruction 
under consideration. See Chapter 3 for pipeline operation. 

O In the repeat execution mode, all conflicts caused by the pipelined execu­
tion of an instruction are considered. 

Refer to Appendix C for further information on instruction cycle classifications 
and timings. 

Example code is included for each instruction. The effect of the code on 
memory and/or registers is summarized. 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

Example2 

Absolute Value of Accumulator ABS 

[labe~ ABS 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 

(PC)+ 1 --+ PC 
l(ACC)I --+ ACC; 0 --+ C 

Affected by OVM; affects OV and C. 
Not affected by SXM. 

If the contents of the accumulator are greater than or equal to zero, the accu­
mulator is unchanged by the execution of ABS. If the contents of the accumula­
tor are less than zero, the accumulator is replaced by its 2s-complement value. 
The carry bit (C) on the 'CSx is always reset to zero by the execution of this 
instruction. 

Note that 80000000h is a special case. When the overflow mode is not set 
(OVM = 0), the ABS of 80000000h is 80000000h. When the overflow mode is 
set (OVM = 1), the ABS of 80000000h is 7FFFFFFFh. In either case, the OV 
status bit is set. 

1 

Cycle Timings for a Single Instruction 

PR POA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

ABS 

Before Instruction After Instruction 

ACC lKI 1234hl ACC @] 1234hl 

c c 

ABS 

Before Instruction After Instruction 

ACC lKI OFFFFFFFFhl ACC @] I 1hl 

c c 
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ABS Absolute Value of Accumulator 

Example3 ABS ~ (OVM = 1) 

Before Instruction After Instruction 

ACC 00 80000000hl ACC @] 7FFFFFFFhl 
c c 

00 m 
ov ov 

Example4 ABS ~ (OVM = 0) 
Before Instruction After Instruction 

ACC lK1 80000000hl ACC @] 80000000hl 
c c 

lK1 [I] 
ov ov 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

Add ACCB to Accu!!'ulator With Carry ADCB 

[labe~ ADCB 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
1 0 0 0 0 0 1 0 0 0 

(PC)+ 1 - PC 
(ACC) + (ACCB) + (C) - ACC 

Affected by OVM; affects OV and C 

The contents of the accumulator buffer (ACCB) and the value of the carry bit 
(C) are added to the accumulator. The carry bit is set to one if the result of the 
addition generates a carry from the MSB position of the accumulator. 

1 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

ADCB 

Before Instruction After Instruction 

ACC OJ 1234hl ACC @] 1237hl 

c c 
ACCB 2hj ACCB 2hj 
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ADD Add to Accumulator 

Syntax 

Operands 

Opcode 

Execution 

4-30 

Direct: [labe~ ADD dma [,shift1] 
Indirect: [labe~ ADD {ind} [,shift1 [,nextARPJ] 
Short Immediate: [/abe~ ADD #k 
Long Immediate: [labe~ ADD #lk [,shift2j 

Os dma s 127 
0 s shift1 s16 (defaults to 0) 
0 s next ARP s 7 
Osks255 
-32768 :s; lk :s; 32767 
Os shift2 s 15 (defaults to 0) 

15 14 13 12 11 10 9 8 7 6 
Direct: I o 0 1 o I SHFTt 0 

15 14 13 12 11 10 9 8 7 6 
Indirect: I 0 0 o I SHFTt I 1 

15 14 13 12 11 10 9 8 7 6 
Short: I 1 0 1 1 0 0 0 I 

15 14 13 12 11 10 9 8 7 6 
0 1 0 

Long: I 
16-Bit Constant 

Add to accumulator with shift of 16 
15 14 13 12 11 10 9 8 7 6 

Direct: I 0 0 0 0 0 0 

15 14 13 12 11 10 9 8 7 6 
Indirect: I 0 1 1 0 0 0 0 1 I 1 

t See Section 4.5. 

Direct or Indirect Addressing: 

(PC)+ 1 - PC 
{ACC) + [(dma) x 2shitt1 ] - ACC 
Affected by SXM and OVM; affects C and OV. 

Short Immediate Addressing: 

(PC)+ 1 - PC 
(ACC) + k - ACC 
Affected by OVM; affects C and OV 

Long Immediate Addressing: 

(PC}+ 2 - PC 
(ACC} + lk x 2shift2 - ACC 
Affected by SXM and OVM; affects C and OV. 

5 4 3 2 
Data Memory Address 

5 4 3 2 
See Subsection 4.1 .2 

5 4 3 2 
8-Bit Constant 

5 4 3 2 
0 1 SHFTt 

5 4 3 2 
Data Memory Address 

5 4 3 2 
See Subsection 4.1.2 

0 

0 

0 

0 

0 

0 
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Description 

Words 

Cycles 

Add to Accumulator ADD 

The contents of the addressed data memory location or an immediate con­
stant are left-shifted and added to the accumulator. During shifting, low-order 
bits are zero-filled. High-order bits are sign-extended if SXM = 1 and zero-filled 
if SXM = 0. The result is stored in the accumulator. When short immediate ad­
dressing is used, the addition is unaffected by SXM and is not repeatable. Note 
that when the ARP is updated during indirect addressing, a shift operand must 
be specified. If no shift is desired, a O may be entered for this operand. 

When adding with a shift of 16, the carry bit is set if the results of the addition 
generates a carry; otherwise, the carry bit is unaffected. This allows the accu­
mulation to generate the proper single carry when adding a 32-bit number to 
the accumulator. 

(Direct, indirect, or short immediate addressing) 

2 (Long immediate addressing) 

Direct: [labe~ ADD dma [,shift1] 
Indirect: [labe~ ADD {ind} [,shift1 [,nextARPJ] 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 

n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 

Short Immediate: [/abe~ ADD #k 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 
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ADD Add to Accumulator 

Cycles Long Immediate: [labe~ ADD #lk [,shift2J 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+2p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

Example 1 ADD DATl,l HDP = 6) 
Before Instruction After Instruction 

Data Memory 
1hl 

Data Memory 
1hl 301h 301h 

ACC !Kl 2hl ACC @] 04hl 
c c 

Example2 ADD *+,0,ARO 

Before Instruction After Instruction 

ARP 41 ARP ol 

AR4 0302hl AR4 0303hl 

Data Memory Data Memory 
302h 2hl 302h 2hl 

ACC !Kl 2hl ACC @] 04hl 
c c 

Example3 ADD #lh ;Add short immediate 
Before Instruction After Instruction 

ACC !Kl I 2hj ACC @] I 03hj 
c c 

Example4 ADD #llllh, 1 ;Add long immediate with shift of 1 
Before Instruction After Instruction 

ACC !Kl 2hl ACC [§] 2224hl 
c c 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

Add ACCB to Accumulator ADDB 

[labe~ ADDB 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
101 1 11100001 0 0 0 0 

(PC)+ 1 - PC 
(ACC) + (ACCB) - ACC 

Affected by OVM; affects C and OV. 

The contents of the accumulator buffer (ACCB) are added to the accumulator. 

1 

[/abe~ ADDB 

PR 

1 

n 

ADDB 

Cycle Timings for a Single Instruction 

PDA PSA PE 

1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n 

ACC 

ACCB (Kl 
c 

n n+p 

Before Instruction 

1234hl 

2hl 

ACC 

ACCB @] 
c 

After Instruction 

1236hl 
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ADDC Add to Accumulator With Carry 

Syntax 

Operands 

Opcode 

Execution 

Words 

Cycles 

Example 1 

4-34 

Direct: [labe~ ADDC dma 
Indirect: [labe~ ADDC {ind} [,next ARPJ 

Os dma s 127 
0 s next ARP s 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 0 0 0 0 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
lndirect:j 0 1 1 0 0 0 0 0 1 See Subsection 4.1.2 

(PC)+ 1 - PC 
(ACC) + (dma) + (C) - ACC 

Affected by OVM; affects OV and C. Not affected by SXM. 

The contents of the addressed data memory location and the value of the carry 
bit are added to the accumulator with sign extension suppressed. The carry 
bit is then affected in the normal manner. 

The ADDC instruction can be used in performing multiple-precision arithmetic. 

Direct: [labe~ ADDC dma 
Indirect: [/abe~ ADDC {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 
n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 

ADDC DATO ; (DP = 6) 

Data Memory 
300h 

ACC DJ 
c 

Before Instruction 

04hl 

After Instruction 

Data Memory 
sooh I o4hl 

:=:====~ ACC @] .... I ____ 18_,hl 

c 
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Example2 

Add ACCB to Accumulator With Carry ADDC 

ADDC *-,AR4 ; (OVM = 0) 

ARP 

ARO 
Data Memory 

300h 

ACC ITJ 
c 
~ 
ov 

Before Instruction 

ol 
300hl 

Ohl 

OFFFFFFFFh I 

ARP 
ARO 

Data Memory 
300h 

ACC ITJ 
c 

@] 
ov 

After Instruction 

41 
299hl 

Ohl 
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ADDS Add to Accumulator With Siq_,n-Extension sue.eressed 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

4-36 

Direct: [labe~ ADDS dma 
Indirect: [labe~ ADDS {ind} [,next ARPJ 

Os dma s 127 
0 s next ARP s 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 0 0 0 1 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 1 0 0 0 0 1 See Subsection 4.1.2 

(PC)+ 1 - PC 
(ACC) + (dma) - ACC 
(dma) is an unsigned16-bit number 

Affected by OVM; affects OV and C. 
Not affected by SXM. 

The contents of the specified data memory location are added to the accumu­
lator with sign-extension suppressed. The data is treated as an unsigned 
16-bit number, regardless of SXM. The accumulator contents are treated as 
a signed number. Note that ADDS produces the same results as an ADD in­
struction with SXM = 0 and a shift count of 0. 

1 

Direct: [labe~ ADDS dma 
Indirect: [labe~ ADDS {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 
n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 
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Add to Accumulator With Sign-Extension Suppressed ADDS 

Example 1 ADDS DATO ; (DP = 6) 
Before Instruction After Instruction 

Data Memory 
OF006hl 

Data Memory 
OF006hl 300h 300h 

ACC [Kl 00000003hl ACC [Q] OOOOF009hl 

c c 

Example2 ADDS * 
Before Instruction After Instruction 

ARP ol ARP ol 

ARO 0300hl ARO 0300hl 

Data Memory 
OFFFFhl 

Data Memory 
OFFFFhl 300h 300h 

ACC [Kl 7FFFOOOOhl ACC [Q] 7FFFFFFFhl 
c c 
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ADDT Add to Accumulator With Shift Specified by TREG 1 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

4-38 

Direct: [labe~ ADDT dma 
Indirect: [labe~ ADDT {ind} [,next ARP! 

Os dma s 127 
0 s next ARP s 7 

15 14 13 12 11 10 9 8 7 
Direct: I 0 1 1 0 0 0 1 0 

15 14 13 12 11 10 9 8 7 
Indirect: I 0 1 0 0 0 1 

(PC)+ 1 - PC 
(ACC) + [(dma) X 2TREG1 (3--0)] - (ACC) 
If SXM = 1: 

Then (dma) is sign-extended. 
If SXM = O: 

Then (dma) is not sign-extended. 

6 

6 

Affected by SXM and OVM; affects OVand C. 

5 4 3 2 0 
Data Memory Address 

5 4 3 2 0 
See Subsection 4.1.2 

The data memory value is left-shifted and added to the accumulator, with the 
result replacing the accumulator contents. The left-shift is defined by the four 
LSBs of the TREG 1 , resulting in shift options from O to 15 bits. Sign extension 
on the data memory value is controlled by SXM. The carry bit is set when a 
carry is generated out of the MSB of the accumulator. 

Software compatibility with the 'C25 can be maintained by setting the TRM bit 
of the PM ST status register to zero. This causes any 'C25 instruction that loads 
TREGO to write to all three TREGs. Subsequent calls to the ADDT instruction 
will shift the value by the TREG1 value (which is the same as TREGO), main­
taining object-code compatibility. 

1 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 

2t 

Operand Ext 1+d 1+d 1+d 2+d+p 
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Add to Accumulator With Shift Specified bK TREG1 ADDT 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 
n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 

Example 1 ADDT DAT127 ;(DP= 4. SXM = 0) 

Before Instruction After Instruction 

Data Memory 
09hl 

Data Memory 
027Fh 027Fh 09hl 

TREG1 OFF94hl TREG1 OFF94hl 

ACC [Kl OF715hl ACC []] OF7A5hl 

c c 

Example2 ADDT *-,AR4 ; (SXM = 0) 

Before Instruction After Instruction 

ARP ol ARP 41 

ARO 027Fhl ARO 027Ehl 

Data Memory Data Memory 
027Fh 09hl 027Fh 09hl 

TREG1 OFF94hl TREG1 OFF94hl 

ACC [Kl OF715hl ACC []] OF7A5hl 

c c 

4-39 



ADRK Add to Auxiliary Register With Short Immediate 

Syntax [labe~ ADRK #k 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

4-40 

O::s:ks255 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Short: I 0 1 0 0 0 8-Bit Constant 

(PC)+ 1 - PC 
AR(ARP) + 8-bit positive constant - AR(ARP) 

The 8-bit immediate value is added, right-justified, to the currently selected 
auxiliary register (as specified by the current ARP) with the result replacing the 
auxiliary register contents. The addition takes place in the ARAU, with the im­
mediate value treated as an 8-bit positive integer. Note that all arithmetic oper­
ations on the auxiliary registers are unsigned. 

[labe~ ADRK #k 
Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (APT) Execution 

ADRK #80h 

ARP 

AAS 

Not Repeatable 

Before Instruction 

sl 
4321 hl 

ARP 

AAS 

After Instruction 

sl 
43A1hl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

AND With Accumulator AND 

Direct: [labe~ AND dma 
Indirect: 
Long Immediate: 

[labe~ AND {ind} [,next ARPJ 
[labe~ AND #lk [,shiftj 

0 s dma s 127 
0 s next ARP s 7 
lk: 16-bit constant 
Os shifts 16 

15 14 13 12 
Direct: I 0 1 1 0 

15 14 13 12 
Indirect: I 0 1 1 0 

15 14 13 12 
1 0 1 

11 10 9 8 7 6 
1 1 01 o I 

11 10 9 8 7 6 
1 1 0 1 

11 10 9 8 7 6 
1 1 0 

Long: I 16-Bit Constant 

AND with ACC long immediate with shift of 16 
15 14 13 12 11 10 9 8 7 6 

Long: I 1 0 1 1 1 0 1 0 
16-Bit Constant 

t See Section 4.5. 

Direct or Indirect Addressing: 
(PC)+ 1 - PC 
(ACC(15--0)) AND (dma) - ACC(15--0) 
O - ACC(31-16) 

Immediate Addressing: 
(PC)+ 2 - PC 
(ACC(30-0)) AND lk x 2shift - ACC 
Not affected by SXM 

5 4 3 2 
Data Memory Address 

5 4 3 2 
See Subsection 4.1.2 

5 4 3 2 1 
1 1 SHFTt 

5 4 3 2 1 

0 0 0 0 0 

0 

I 
0 

0 

0 

If direct or indirect addressing is used, the low word of the accumulator is 
ANDed with a data memory value, and the result is placed in the low word posi­
tion in the accumulator. The high word of the accumulator is zeroed. If immedi­
ate addressing is used, the long immediate constant is shifted, and the low­
order bits below and high-order bits above the shifted value are zeroed. The 
resulting value is ANDed with the accumulator contents. 

1 (Direct or indirect addressing) 

2 (Long immediate addressing) 
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AND AND With Accumulator 

Cycles Direct: [labe~ AND dma 
Indirect: [labe~ AND {ino} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 

n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 

Long Immediate: [labe~ AND #lk [,shiftj 
Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+2p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

Example 1 AND DAT16 ; (DP = 4) 

Before Instruction After Instruction 

Data Memory Data Memory 
OOFFhl 0210h OOFFhl 0210h 

ACC 12345678hl ACC 00000078hl 

Example2 AND * 
Before Instruction After Instruction 

ARP ol ARP ol 

ARO 0301hl ARO 0301hl 

Data Memory Data Memory 
0301h OFFOOhl 0301h OFFOOhl 

ACC 12345678hl ACC 00005600hl 

Example3 AND #OOFFh,4 

Before Instruction After Instruction 

ACC 12345678hl ACC 00000670hl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

ANDACCB With Accumulator ANDB 

[labe~ ANDB 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
0 0 0 0 0 100 0 

(PC)+ 1 - PC 
(ACC) AND (ACCB) - ACC 

The contents of the accumulator are ANDed with the contents of the accumula­
tor buffer (ACCB). The result is placed in the accumulator while the accumula­
tor buffer is unaffected. 

1 

[labe~ ANDB 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n 

ANDB 

n 

ACC 
ACCB 

n n+p 

Before Instruction 
OFOFFFFFhl 

55555555hl 

ACC 
ACCB 

After Instruction 

05055555hl 

55555555hl 
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APAC Add P Register to Accumulator 

Syntax [/abe~ APAC 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

4-44 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 

(PC)+ 1 - PC 
(ACC) + (shifted P register) - ACC 

Affected by PM and OVM; affects OV and C. 
Not affected by SXM. 

The contents of the P register are shifted as defined by the PM status bits and 
added to the contents of the accumulator. The result is placed in the accumula­
tor. APAC is not affected by the SXM bit of the status register; the P register 
is always sign-extended.The APAC instruction is a subset of the LTA, LTD, 
MAC, MACO, MADS, MADD, MPYA, and SORA instructions. 

1 

[/abe~ APAC 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n 

APAC ; (PM "' 01) 

p 

ACC I:&:) 
c 

n n+p 

Before Instruction 

40hl 

20hl 

p 

ACC 

After Instruction 

40hl 

[Q) AOhl 
c 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

AND Data Memory Value With DBMR or Long Constant APL 

Direct: [labe~ APL [#/k,] dma 
Indirect: [labe~ APL [#/k,] {ind} [,next ARPJ 

o s: dma s: 127 
lk: 16-bit constant 
0 s: next ARP s: 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 0 0 1 0 0 Data Memo!}'. Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 0 0 0 1 See Subsection 4.1.2 

Direct: 

Indirect: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
0 1 0 1 0 0 Data Memory Address 

16-Bit Constant 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
0 1 0 0 1 See Subsection 4.1.2 

16-Bit Constant 

lk unspecified: 
(PC)+ 1 - PC 
(dma) AND (DBMR) - dma 

lk specified: 
(PC)+ 2 - PC 
(dma) AND lk - dma 

Affects TC. 

If a long immediate constant is specified, it is AN Ded with the data memory val­
ue dma. Otherwise, the data memory value is ANDed with the contents of the 
dynamic bit manipulation register (DBMR). In either case, the result is written 
directly back to the data memory location, while the contents of the accumula­
tor are unaffected. If the result of the AND operation is 0, then the TC bit is set 
to 1. Otherwise, the TC bit is set to 0. 

1 (Second operand DBMR) 

2 (Second operand long immediate) 

Direct: [/abe~ APL [#/k,] dma 
Indirect: [/abe~ APL [#/k,] {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
3t 

Operand Ext 2+2d 2+2d 2+2d 5+2d+p 
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APL AND Data MemorK. Value With DBMR or Long Constant 

Cycle Timings for a Repeat (RPl) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Direct: [labe~ APL [#/k,] dma 
Indirect: [labe~ APL [#/k,] {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 2 2 2 2+2p 

Operand SARAM 2 2 2 2+2p 

Operand Ext 3+2d 3+2d 3+2d 6+2d+2p 

Cycle Timings for a Repeat (RPl) Execution 

PR PDA PSA PE 

Operand DARAM n+1 n+1 n+1 n+1+2p 

Operand SARAM 2n-1 2n-1 2n-1 2n-1+2p 

2n+2t 

Operand Ext 4n-1+2nd 4n-1+2nd 4n-1+2nd 4n+2+2nd+2p 

t If the operand and the code reside in same SARAM block. 

Example 1 APL #0023h,DAT96 ; (DP = 0) 

Before Instruction After Instruction 

Data Memory 
60h [R] ooh I 

Data Memory 
60h DJ ooh I 

TC TC 

Example2 APL DAT96 ; (DP = 0) 

Before Instruction After Instruction 

DBMR OFFOOhl DBMR OFFOOhl 

Data Memory 
60h 0 1111 hi 

Data Memory 
60h @] 1100hl 

TC TC 

Example3 APL #0100h,*,AR6 

Before Instruction After Instruction 

ARP [R] sl ARP @) al 
TC TC 

AAS 300hl AR5 300hl 

Data Memory Data Memory 
300h OFFFhl 300h 0100hl 
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AND Data Memory Value With DBMR or Long Constant APL 

Example4 APL * ,AR7 

Before Instruction After Instruction 

ARP [R] I 61 ARP [Q] 11 
TC TC 

AR6 310hl AR6 310hl 

DBMR 0303hl DBMR 0303hl 

Data Memory Data Memory 
310h OEFFhl 310h 0203hl 
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B Branch Unconditionally 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

Example2 

4-48 

[labe~ B[DJ pma [, {incl} [,next ARPJ] 

O s pma s 65535 
0 s next ARP s 7 

Branch unconditional with AR update 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
O 1 1 1 1 O O 1 See Subsection 4.1.2 

16-Bit Constant 

Branch unconditional delayed with AR update 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
0 0 See Subsection 4.1.2 

16-Bit Constant 

pma - PC 
Modify AR(ARP) and ARP as specified. 

The current auxiliary register and ARP are modified as specified, and control 
is passed to the designated program memory address (pma). Pma can be ei­
ther a symbolic or numeric address. The one two-word instruction or two 
one-word instructions following the branch instruction are fetched from pro­
gram memory and executed before the branch is taken, if the branch is a 
delayed branch (specified by the D suffix). 

2 

[labe~ B[DJ pma [,{incl} [,next ARPJ] 
Cycle Timings for a Single Instruction 

PR PDA PSA PE 

4 4 4 4+4pt 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon­
tinuity is taken, these two instruction words are discarded. 

B 191,*+,ARl 

The value 191 is loaded into the program counter, and the program continues 
executing from that location. The current auxiliary register is incremented by 
1, and ARP is set to auxiliary register 1. 

BD 191 
MAR *+,ARl 
LOP #5 

After the current AR, ARP, and DP are modified as specified, program execu­
tion continues from location 191 . 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

Example2 

Branch to Location Specified bl, Accumulator BACC 

[labe~ BACC[Dj 

None 

BACC 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 1 0 0 0 0 0 0 0 0 0 

BACCO 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 1 0 1 0 0 0 0 0 0 0 1 

ACC(15-0) - PC 

Control is passed to the 16-bit address residing in the lower half of the accumu­
lator. The one two-word instruction or two one-word instructions following the 
branch instruction are fetched from program memory and executed before the 
branch is taken, if the branch is a delayed branch (specified by the D suffix). 

1 

BACC 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

4 4 4 4+3pt 

Cycle Timings for a Repeat (APT) Execution 

Not Repeatable 

t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon­
tinuity is taken, these two instruction words are discarded. 

BACCO (delayed) 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+p 

Cycle Timings for a Repeat (APT) Execution 

Not Repeatable 

BACC ; (ACC contains the value 191) 

The value 191 is loaded into the program counter, and the program continues 
executing from that location. 

BACCO ;(ACC contains the value 191) 
MAR *+,ARl 
LOP #5 

After the current AR, ARP, and DP are modified as specified, program execu­
tion continues from location 191 . 
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BANZ Branch on Auxiliar~ Reg/ster Not Zero 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 
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[labe~ BANZ[DJ pma [, {ind} [,next ARPJ] 

O s pma s 65535 
0 s next ARP s 7 

BANZ 

15 14 13 12 
0 1 1 1 

BANZD 

15 14 13 12 

0 1 

If AR(ARP)"'O 

11 10 
1 0 

11 10 

1 

Then pma - PC 
Else (PC) + 2 - PC 

Modify AR(ARP) as specified 

9 8 7 6 
1 1 
16-Bit Constant 

9 8 7 6 
1 1 
16-Bit Constant 

5 4 3 2 0 
See Subsection 4.1.2 

5 4 3 2 0 

See Subsection 4.1.2 

Control is passed to the designated program memory address (pma) if the 
contents of the current auxiliary register are not zero. Otherwise, control 
passes to the next instruction.The default modification to AR(ARP) is a decre­
ment by one. N loop iterations may be executed by initializing an auxiliary reg­
ister loop counter to N-1 prior to loop entry. The program memory address 
(pma) can be either a symbolic or a numeric address. 

The two one-word instructions or one two-word instruction following the 
branch instruction are fetched from program memory and executed before the 
branch is taken, if the branch is a delayed branch (specified by the D suffix). 

2 

[labe~ BANZ pma [,{ind} [,next ARPJ] 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Conditions True 4 4 4 4+4pt 

Condition False 2 2 2 2+2p 

Cycle Timings for a Repeat (RPT} Execution 

Not Repeatable 

t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon­
tinuity is taken, these two instruction words are discarded. 
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Example 1 

Example2 

Example3 

Branch on Auxiliarr RefJister Not Zero BANZ 

[labe~ BANZD pma [, {ind} [,next ARPJ] 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Conditions True 2 2 2 2+2p 

Condition False 2 2 2 2+2p 

Cycle Timings for a Repeat (APT) Execution 

Not Repeatable 

BANZ PGMO 
Before Instruction After Instruction 

ARP ol ARP ol 
ARO Shi ARO 4hl 

0 is loaded into the program counter, and the program continues executing 
from that location. 

or 

ARP 

ARO 

Before Instruction 

ol ARP 

ARO 

After Instruction 

ol 
OFFFFhl 

The program counter (PC) is incremented by 2, and execution continues from 
that location. 

BANZD PGMO 
LACC #Olh 
LOP #5 

Before Instruction After Instruction 

ARP ol ARP ol 
ARO Shi ARO 4hl 
DP 41 DP sl 

ACC ooh I ACC 01hl 

After the current DP and ACC are modified as specified, program execution 
continues from location 0. 

MAR *,ARO 
LAR ARl,#3 
LAR AR0,#60h 

PGM191 ADD *+,ARl 
BANZ PGM191,ARO 

The contents of data memory locations 60h-63h are added to the accumula­
tor. 
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BCND Branch Conditionally 

Syntax, [/abe~ BCND[DJ pma, [condt] [,cond2J [, ... ] 

Operands 

Opcode 

Execution 

Description 

4-52 

O :s: pma :s: 65535 

Conditions: 

BCND 

15 14 13 12 

11 
0 

BCNDD 

15 14 13 12 

11 
1 

t See Section 4.5. 

If (condition(s)) 

ACC=O 
ACC,,eO 
ACC<O 
ACC:s:O 
ACC>O 
ACC:tO 
C=O 
C=1 
OV=O 
0V=1 
BIO low 
TC=O 
TC=1 
Unconditionally 

EO 
NEO 
LT 
LEO 
GT 
GEO 
NC 
c 
NOV 
ov 
BIO 
NTC 
TC 
UNC 

11 10 9 8 7 6 5 
0 ol TP t zLvct 

16-Bit Constant 

11 10 9 8 7 6 5 
0 o I TPt ZLVCt 

16-Bit Constant 

Then pma - PC 
Else PC + 2 - PC 

4 3 2 1 0 
zLvct 

4 3 2 1 0 
zLvct 

A branch is taken to program memory address pma if the specified conditions 
are met. Note that not all combinations of conditions are meaningful. Also, note 
that testing BIO is mutually exclusive to testing TC. 

The two one-word instructions or one two-word instruction following the 
branch are fetched from program memory and executed before the branch is 
taken, if the branch is a delayed branch (specified by the D suffix). If the 
delayed instruction is specified, the two instruction words following the 
BCNDD instruction have no effect on the conditions being tested. 
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Words 

Cycles 

Example 1 

Example2 

Branch Conditionally BCND 

2 

[labe~ BCND pma, [cond1] [,cond2j [, ... ] 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Conditions True 4 4 4 4+4pt 

Condition False 2 2 2 2+2p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon­
tinuity is taken, these two instruction words are discarded. 

[labe~ BCNDD pma, [cond1) [,cond2j [, ... ] 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Conditions True 2 2 2 2+2p 

Condition False 2 2 2 2+2p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

BCND PGM191,LEQ,C 

If the accumulator contents are less than or equal to zero and the carry bit is 
set, program address 191 is loaded into the program counter, and the program 
continues executing from that location. If these conditions do not hold, execu­
tion continues from location PC + 2. 

BCNDD PGMl 91 , OV 

MAR * ,ARl 
LOP #5 

After the current AR, ARP, and DP are modified as specified, program execu­
tion continues at location 191 if the overflow flag (OV) in status register STO 
is set. If the flag is not set, execution continues at the instruction following the 
LOP instruction. 
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BIT Test Bit 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

4-54 

Direct: [labe~ BIT dma, bit code 
Indirect: [labe~ BIT {ind} , bit code [,next ARPJ 

O :s: dma:s: 127 
0 :s: next ARP :s: 7 
O :s: bit code :s:15 

15 14 13 12 
Direct: I 0 1 0 o I 

15 14 13 12 
Indirect: I 0 0 ol 

t See Section 4.5. 

(PC)+ 1 --. PC 

11 10 9 8 
BITXl 

11 10 9 8 
BITXt 

(dma bit at bit address (15 - bit code)) 

Affects TC. 

7 6 5 4 3 2 0 
0 Data Memory Address 

7 6 5 4 3 2 0 
See Subsection 4.1.2 

-+TC 

The BIT instruction copies the specified bit of the data memory value to the TC 
bit of status register ST1. Note that the BITI, CMPR, LST1, APL, CPL, OPL, 
XPL, and NORM instructions also affect the TC bit in status register ST1. A bit 
code value is specified that corresponds to a certain bit address in the instruc­
tion, as given by the following table: 

Bit Address Bit Code 

(LSB) 0 1 1 1 1 

1 1 1 1 0 

2 1 1 0 1 

3 1 1 0 0 

4 1 0 1 1 

5 1 0 1 0 

6 1 0 0 1 

7 1 0 0 0 

8 0 1 1 1 

9 0 1 1 0 

10 0 1 0 1 

11 0 1 0 0 

12 0 0 1 1 

13 0 0 1 0 

14 0 0 0 1 

(MSB) 15 0 0 0 0 

1 
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TestBit BIT 

Cycles Direct: [labe~ BIT dma, bit code 
Indirect: [labe~ BIT {ind}, bit code [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 

2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 

n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 

Example 1 BIT Oh,15 ; (DP = 6).Test LSB at 300h 

Before Instruction After Instruction 

Data Memory Data Memory 
300h 4DC8hl 300h 4DCshl 

TC ol TC ol 

Example2 BIT *,O,ARl ;Test MSB at 310h 

Before Instruction After Instruction 

ARP ol ARP 1 I 
ARO 310hl ARO 310hl 

Data Memory Data Memory 
310h SOOOhl 310h SOOOhl 

TC ol TC 1 I 
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BITT Test Bit Specified by TREG2 

Syntax 

Operands 

Opcode 

Execution 

Description 

4-56 

Direct: [labe~ BITT dma 
Indirect: [labe~ BITT {ind} [,next ARPJ 

O :s: dma :s: 127 
0 :s: next ARP :s: 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 1 0 1 1 1 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 1 1 0 1 1 1 1 1 See Subsection 4.1.2 

(PC)+ 1 - PC 
(dma bit at bit address (15 -TREG2(3-0))) - TC 

Affects TC. 

The BITT instruction copies the specified bit of the data memory value to the 
TC bit of status register ST1 . Note that the BITT, CMPR, LST1 , CPL, OPL, 
APL, XPL, and NORM instructions also affect the TC bit in status register ST1 . 
The bit address is specified by a bit code value contained in the 4 LSBs of the 
TREG2, as given by the table below. 

Software compatibility with the 'C25 can be maintained by setting the TRM bit 
of the PMST status register to zero. This causes any 'C25 instructions that load 
TREGO to write to all three TREGs. Subsequent calls to the BITT instruction 
will use TREG 1 value (which is the same as TREGO), maintaining 'C25 object­
code compatibility. 

Bit Address Bit Code 

(LSB) 0 1 1 1 1 

1 1 1 1 0 

2 1 1 0 1 

3 1 1 0 0 

4 1 0 1 1 

5 1 0 1 0 

6 1 0 0 1 

7 1 0 0 0 

8 0 1 1 1 

9 0 1 1 0 

10 0 1 0 1 

11 0 1 0 0 

12 0 0 1 1 

13 0 0 1 0 

14 0 0 0 1 

(MSB) 15 0 0 0 0 
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Words 

Cycles 

Example 1 

Example2 

Test Bit Specified by TREG2 BITT 

1 

Direct: [labe~ BITT dma 
Indirect: [labe~ BITT {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RP'D Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 

n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 

SITT OOh ;(DP= 6). Test bit 14 of data at 300h 

SITT 

Data Memory 
300h 

* 

TREG2 

TC 

;Test 

ARP 

AR1 

Data Memory 
310h 

TREG2 

TC 

Before Instruction After Instruction 

4DC8hl 
Data Memory 

4DC8hl 300h 

1hl TREG2 1hl 

ol TC 11 

bit 1 of data at 310h 

Before Instruction After Instruction 

1 I ARP 1 I 
310hl AR1 310hl 

Data Memory 
8000hl 310h 8000hl 

OEhl TREG2 OEhl 

01 TC 01 
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BLDD Block Move From Data Memory to Data Memory 

Syntax General syntax: [labe~ BLDD src, dst 

All valid cases have the general syntax: 
Direct K/DMA: [labe~ BLDD #addr, dma 
Indirect K/DMA: [labe~ BLDD #addr, {ind} [,next ARPJ 
Direct DMNK: [labe~ BLDD dma, #addr 
Indirect DMNK: [labe~ BLDD {ind}, #addr [,next ARPJ 
Direct BMAR/DMA: [/abe~ BLDD BMAR, dma 
Indirect BMAR/DMA: [/abe~ BLDD BMAR, {ind} [,next ARPJ 
Direct DMNBMAR: [labe~ BLDD dma, BMAR 
Indirect DMNBMAR: [labe~ BLDD {ind}, BMAR [,next ARPJ 

Operands O s addr s 65535 
Os dma s 127 
0 s next ARP s 7 

Opcode 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Direct: 1 0 1 0 1 0 0 0 0 Data Memo Address 

16-Bit Constant 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Indirect: 
0 0 0 0 0 See Subsection 4.1.2 

16-Bit Constant 

Block move data to data DEST long immediate 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 0 0 0 0 Data Memo Address 
Direct: 

16-Bit Constant 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Indirect: 
0 1 0 1 0 0 1 See Subsection 4.1.2 

16-Bit Constant 

Block move data to data with SRC in BMAR 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Direct: I 1 0 1 0 1 1 0 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 1 0 1 0 1 1 0 01 1 See Subsection 4.1.2 

Block move data to data with DEST in BMAR 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 1 0 1 0 1 1 0 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 1 0 1 0 1 1 0 1 1 See Subsection 4.1.2 
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Execution 

Description 

Words 

Block Move From Data Memory to Data Memory BLDD 

(PFC) -Mes 

If long immediate: 
(PC)+ 2 - PC 
#lk - PFC 

Else: 
(PC)+ 1 - PC 
(BMAR) - PFC 

While (repeat counter) .. 0: 
(src, addressed by PFC) - dst or src - (dst, addressed by PFC) 
Modify AR(ARP) and ARP as specified, 
(PFC) + 1 - PFC 
(repeat counter) -1 - repeat counter. 

(src, addressed by PFC) -dst or src - (dst, addressed by PFC) 
Modify AR(ARP) and ARP as specified. 
(MCS)- PFC 

The word in data memory pointed at by src is copied to a data memory space 
pointed at by dst. The word of the source and/or destination space can be 
pointed at with a long immediate value, with the contents of the BMAR register, 
or by a data memory address. Note that not all src/dst combinations of pointer 
types are valid. 

RPT can be used with the BLDD instruction in indirect addressing mode to 
move consecutive words in data memory. The number of words to be moved 
is one greater than the number contained in the repeat counter RPTC at the 
beginning of the instruction. The source or destination address for the BLDD 
instruction specified by the long immediate address or BMAR register contents 
are automatically incremented in repeat mode. If a direct memory address is 
specified, its address is not automatically incremented in repeat mode. Note 
that the source and destination blocks do not have to be entirely on-chip or 
off-chip. Interrupts are inhibited during a BLDD operation used with the RPT 
instruction. When used with RPT, BLDD becomes a single-cycle instruction 
once the RPT pipeline is started. 

1 (One source or destination is specified by the BMAR register) 

2 (One source or destination is specified by a long immediate value) 
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BLDD Block Move From Data Memory to Data Memory 

Cycles 

Source DARAM 
Destination DARAM 

Source DARAM 
Destination DARAM 

Source SARAM 
Destination DARAM 

Source Ext 
Destination DARAM 

Source DARAM 
Destination SARAM 

Source SARAM 
Destination SARAM 

Source Ext 
Destination SARAM 

Source DARAM 
Destination Ext 

Source SARAM 
Destination Ext 

Source Ext 
Destination Ext 

Source DARAM 
Destination DARAM 

Source SARAM 
Destination DARAM 

Source Ext 
Destination DARAM 

Source DARAM 
Destination SARAM 

Source SARAM 
Destination SARAM 
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Direct K/DMA: 
Indirect K/DMA: 
Direct DMA/K: 
Indirect DMA/K: 

[labe~ BLDD #addr, dma 
[labe~ BLDD #addr, {ind} [,next ARPJ 
[labe~ BLDD dma, #addr 
[labe~ BLDD {ind}, #addr [,next ARPJ 

Cycle Timings for a Slngle Instruction 

PR PDA PSA PE 

2 2 2 2+p 

2 2 2 2+p 

2 2 2 2+p 

2+dsrc 2+dsrc 2+dsrc 2+dsrc+P 

2 2 2 2+p 
3t 

2 2 2 2+p 
3t 

2+dsrc 2+dsrc 2+dsrc 2+dsrc+P 
3+dsrct 

3+d(fst 3+dctst 3+dctst 5+ddst+P 

3+ci(fst 3+d(fst 3+dctst 5+ddst+P 

3+dsrc+ddst 3+dsrc+~ 3+dsrc+dctst 5+dsrc+ci(fst+P 

Cycle Timings for a Repeat (RPT) Instruction 

PR PDA PSA PE 

n+1 n+1 n+1 n+1+p 

n+1 n+1 n+1 n+1+p 

n+1+nd8rc n+1+nd8rc n+1+nd8rc n+1+ndsrc+P 

n+1 n+1 n+1 n+1+p 
n+3t 

n+1 n+1 n+1 n+1+p 
2n-1* 2n-1* 2n-1* 2n-1+p* 

n+3t 
2n+1§ 
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Block Move From Data Memory to Data Memory BLDD 

Cycle Timings for a Repeat (RPT) Instruction (Continued) 

PR PDA PSA PE 

Source Ext n+1+ndsrct n+1+ndsrc n+1+ndsrc n+ 1 +ndsrc+P 
Destination SARAM n+3+ndsrct 

Source DARAM 2n+1+nddst 2n+1+n~st 2n+1+n~st 2n+ 1 +nddst+P 
Destination Ext 

Source SARAM 2n+1+nddst 2n+1+n~st 2n+1+n~st 2n+ 1 +nddst+P 
Destination Ext 

Source Ext 4n-1 +ndsrc+n 4n-1+ndsrc+n 4n-1 +ndsrc+n 4n+ 1 +ndsrc+n~st+P 
Destination Ext ddst ~st ddst 

t If the destination operand and the code are in the same SARAM block. 
* If both the source and the destination operands are in the same SARAM block. 
§ If both operands and the code are in the same SARAM block. 

Source DARAM 
Destination DARAM 

Source SARAM 
Destination DARAM 

Source Ext 
Destination DARAM 

Source DARAM 
Destination SARAM 

Source SARAM 
Destination SARAM 

Source Ext 
Destination SARAM 

Source DARAM 
Destination Ext 

Source SARAM 
Destination Ext 

Source Ext 
Destination Ext 

Source DARAM 

Destination DARAM 

Direct BMAR/DMA: [labe~ BLDD BMAR, dma 
Indirect BMAR/DMA: 
Direct DMNBMAR: 

[labe~ BLDD BMAR, {ind} [,next ARPJ 
[labe~ BLDD dma, BMAR 

Indirect DMNBMAR: [labe~ BLDD {ind}, BMAR [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

3 3 3 3+2p 

3 3 3 3+2p 

3+dsrc 3+dsrc 3+dsrc 3+dsrc+2p 

3 3 3 3+2p 
4t 

3 3 3 3+2p 
4t 

3+dsrc 3+dsrc 3+dsrc 3+dsrc+2p 
4+dsrct 

4+ddst 4+ddst 4+ddst 6+ddst+2p 

4+~st 4+ddst 4+ddst 6+ddst+2p 

4+dsrc+ddst 4+dsrc+ddst 4+dsrc+ddst 6+dsrc+ddst+2p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

n+2 n+2 n+2 n+2+2p 
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BLDD Block Move From Data Memorl to Data Memory 

Cycle Timings for a Repeat (RPT) Execution (Continued) 

PR PDA PSA 

Source SARAM n+2 n+2 n+2 

Destination DARAM 

Source Ext n+2+ndsrc n+2+ndsrc n+2+ndsrc 
Destination DARAM 

Source DARAM n+2 n+2 n+2 
Destination SARAM n+4t 

Source SARAM n+2 n+2 n+2 
Destination SARAM 2n* 2n* 2n* 

n+4t 
2n+2§ 

Source Ext n+2ndsrc n+2ndsrc n+2ndsrc 
Destination SARAM n+4+ndsrct 

Source DARAM 2n+2+n~st 2n+2+n~st 2n+2+nddst 
Destination Ext 

Source SARAM 2n+2+nddst 2n+2+n~st 2n+2+nddst 
Destination Ext 

Source Ext 4n+ndsrc+n~st* 4n+ndsrc+nddst 4n+ ndsrc +n~st 
Destination Ext 

t If the destination operand and the code are in the same SARAM block. 
* If both the source and the destination operands are in the same SARAM block. 
§ If both operands and the code are in the same SARAM block. 

Example 1 BLDD #300h,20h ; (DP = 6) 

Before Instruction 

PE 

n+2+2p 

n+2+ndsrc 

n+2+2p 

n+2+2p 
2n+2p* 

n+2+ndsrc+2p 

2n+2+n~st +2p 

2n+2+n~st+2p 

4n+2+ndsrc+nddst+2p 

After Instruction 

Data Memory 
Ohl 

Data Memory 
Ohl 300h 300h 

320h OF hi 320h Ohl 

Example2 BLDD *+,#32lh,AR3 

Before Instruction After Instruction 

ARP 21 ARP 31 

AR2 301hl AR2 302hl 

Data Memory Data Memory 
301h 01hl 301h 

321h OFhl 321h 
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Block Move From Data Memori, to Data Memory BLDD 

Example3 BLDD BMAR,* 

Before Instruction After Instruction 

ARP 21 ARP 21 

BMAR 320hl BMAR 320hl 

AR2 340hl AR2 340hl 

Data Memory 
01hl 

Data Memory 
320h 320h 01hl 

340h OFhl 340h 01hl 

Example4 BLDD OOh,BMAR ; (DP = 6) 
Before Instruction After Instruction 

Data Memory Data Memory 
300h OF hi 300h OFhl 

BMAR 320hl BMAR 320hl 

Data Memory Data Memory 
320h 01hl 320h OFhl 

Examples RPTK 2 
BLDD #300h,*+ 

Before Instruction After Instruction 

ARP ol ARP ol 

ARO 320hl ARO 323hl 

300h 7F98hl 300h 7F98hl 

301h OFFE6hl 301h OFFE6hl 

302h 9522hl 302h 9522hl 

320h 8DEEhl 320h 7F98hl 

321h 9315hl 321h OFFE6hl 

322h 2531 hi 322h 9522hl 
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BLDP Block Move From Data Memory to Pr'?fl.ram Memory 

Syntax Direct: [labe~ BLDP dma 
Indirect: [labe~ BLDP {ind} [,next ARPJ 

Operands Os: dma s: 127 
0 s: next ARP s: 7 

Opcode 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Direct: I 0 1 0 1 0 1 1 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 1 0 1 0 1 1 1 1 See Subsection 4.1.2 

Execution 

Description 

Words 

Cycles 

Source DARAM 
Destination DARAM 

Source SARAM 
Destination DARAM 

Source Ext 
Destination DARAM 

Source DARAM 
Destination SARAM 
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(PC)+ 1 - PC 
(PFC) - MCS 
(SMAR) - PFC 

While (repeat counter) ,. 0: 
dma - (dst, addressed by PFC) 
Modify AR(ARP) and ARP as specified, 
(PFC) + 1 - PFC 
(repeat counter) -1 - repeat counter. 

dma - (dst, addressed by PFC) 
Modify AR(ARP) and ARP as specified. 
(MCS) -PFC 

A word in data memory is copied to a word in program memory space pointed 
at by the BMAR register. The RPT instruction used with the BLDP instruction 
can move consecutive words pointed at indirectly in data memory to a contigu­
ous program memory space pointed at by the SMAR register. The SMAR reg­
ister is automatically updated in the repeat mode. Note that the source and 
destination blocks do not have to be entirely on-chip or off-chip. When used 
with RPT, SLDP becomes a single-cycle instruction once the RPT pipeline is 
started. Interrupts are inhibited during a SLDP operation used with RPT. 

1 

Direct: [labe~ BLDP dma 
Indirect: [labe~ BLDP {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+p 

2 2 2 2+p 
3' 

2+dsrc 2+dsrc 2+dsrc 3+dsrc+Pcode 

2 2 2 2+p 
3t 
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Block Move From Data Memorr, to Program Memorr.. BLDP 

Cycle Timings for a Single Instruction (Continued) 

PR PDA PSA 

Source SARAM 2 2 2 
Destination SARAM 3t or 1 

4§ 

Source Ext 2+dsrc 2+dsrc 2+dsrc 
Destination SARAM 3+dsrct 

Source DARAM 3+Pdst 3+Pdst 3+Pdst 
Destination Ext 

Source SARAM 3+Pdst 3+Pdst 3+Pdst 
Destination Ext 4+Pdst' 

Source Ext 3+dsrc+Pdst 3+dsrc+Pdst 3+dsrc+Pdst 
Destination Ext 

Cycle Timings for a Repeat (APT) Execution 

PR PDA PSA 

Source DARAM n+1 n+1 n+1 
Destination DARAM 

Source SARAM n+1 n+1 n+1 
Destination DARAM n+2• 

Source Ext n+1+ndsrc n+1+ndsrc n+1+ndsrc 
Destination DARAM 

Source DARAM n+1 n+1 n+1 
Destination SARAM n+2t 

Source SARAM n+1 n+1 n+1 
Destination SARAM 2n-1* 2n-1* 2n-1* 

n+2t or' 
2n+1S 

Source Ext n+1+ndsrc n+1+ndsrc n+1+ndsrc 
Destination SARAM n+2+nPsrct 

Source DARAM 2n+1+nPdst 2n+1+nPdst 2n+1+nPdst 
Destination Ext 

Source SARAM 2n+1+nPdst 2n+1+nPdst 2n+1+nPdst 
Destination Ext 2n+2+nPdst' 

Source Ext 4n-1 + ndsrc+ 4n-1 +ndsrc+ 4n-1 +ndsrc+ 
Destination Ext npdst nPdst npdst 

t If the destination operand and the code are in the same SARAM block. 

* If both the source and the destination operands are in the same SARAM block. 

§ If both operands and the code are in the same SARAM block. 

' If the source operand and the code are in the same SARAM block. 

PE 

2+p 

3+dsrc+Pcode 

4+Pdst+Pcode 

4+Pdst+Pcode 

5+dsrc+Pdst+ Pcode 

PE 

n+1+Pcode 

n+1+Pcode 

n+2+ndsrc+Pcode 

n+1+Pcode 

n+1+Pcode 

2n-1+Pcode* 

n+2+ndsrc+Pcode 

2n+2+nPdst+Pcode 

2n+2+nPdst+Pcode 

4n+ 1 +ndsrc+nPdst+P 
code 
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BLDP Block Move From Data Memory to Program Memory 

Example 1 BLDP OOh 1 (DP=6) 

Before Instruction After Instruction 

Data Memory 
OA089hl 

Data Memory 
300h 300h OA089hl 

BMAR 2800hl BMAR 2800hl 

Program Memory 
1234hl 

Program Memory 
2800h 2800h OA089hl 

Example2 BLDP *,ARO 

Before Instruction After Instruction 

ARP 11 ARP ol 

AR7 310hl AR7 310hl 

Data Memory 
OFOFOhl 

Data Memory 
OFOFOhl 310h 310h 

BMAR 2800hl BMAR 2800hl 

Program Memory 
1234hl 

Program Memory 
OFOFOhl 2800h 2800h 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Block Move From Program Memorr, to Data Memorr, BLPD 

General syntax: [labe~ BLPD src• dst 

All valid cases have the general syntax: 
Direct K/DMA: [/abe~ BLPD #pma, dma 
Indirect K/DMA: [/abe~ BLPD #pma, {ind} [,next ARPJ 
Direct BMAR/DMA: [/abe~ BLPD BMAR, dma 
Indirect BMAR/DMA: [/abe~ BLPD BMAR, {ind} [,next ARPJ 

O s pma s 65535 
0 s dma s 127 
0 s next ARP s 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Direct: 1--1 __ 0 ____ 0 __ 0 ___ 0 __ ......_0__.. ___ D_at_a_M_e_m_o......._A_d_d_re_s_s_---l 

16-Bit Constant 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
O O O o 1 See Subsection 4.1.2 

Indirect: 1-----------'----''-----'--~-'--'---'-......__-----------t 
16-Bit Constant 

Block move prog to data with source in BMAR 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Direct: I 1 0 1 0 0 1 0 0 I 0 Data Memory Address 

15 14 13 12 11 10 9 
Indirect: I 1 0 1 0 0 1 0 

If long immediate: 
(PC)+ 2 - PC 
(PFC) - MCS 
lk - PFC 

Else: 
(PC)+ 1 - PC 
(PFC) - MCS 
(BMAR) - PFC 

While (repeat counter) ,. 0: 

8 7 
o I 1 

(pma, addressed by PFC) - dst 
Modify AR(ARP) and ARP as specified, 
(PFC) + 1 - PFC 
(repeat counter) -1 - repeat counter. 

(pma, addressed by PFC) - dst, 
Modify AR(ARP) and ARP as specified. 
(MCS) - PFC 

6 5 4 3 2 
See Subsection 4.1.2 

0 

A word in program memory pointed at by the src is copied to data memory 
space pointed at by dst. The first word of the source space can be pointed at 
with a long immediate value or the contents of the BMAR register. The data 
memory destination space is always pointed at by a data memory address or 
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Words 

Cycles 

Source DARAM/ROM 
Destination DARAM 

Source SARAM 
Destination DARAM 

Source Ext 
Destination DARAM 

Source DARAM/ROM 
Destination SARAM 

Source SARAM 
Destination SARAM 

Source Ext 
Destination SARAM 

Source DARAM/ROM 
Destination Ext 

Source SARAM 
Destination Ext 

Source Ext 
Destination Ext 

Source DARAM/ROM 

Destination DARAM 

Source SARAM 

Destination DARAM 
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auxiliary register pointer. Note that not all src/dst combinations of pointer types 
are valid. 

RPT can be used with the BLPD instruction if more than one word is to be 
moved. The number of words to be moved is one greater than the number con­
tained in the repeat counter, RPTC, at the beginning of the instruction. The 
source address specified by the long immediate or BMAR value is automati­
cally incemented in repeat mode. Note that the source and destination blocks 
do not have to be entirely on-chip or off-chip. Interrupts are inhibited during 
a repeated BLPD instruction. When used with RPT, BLPD becomes a single­
cycle instruction once the RPT pipeline is started. 

(Source is specified by the BMAR register) 

2 (Source is specified by a long immediate) 

Direct K/DMA: [labe~ BLPD #pma, dma 
Indirect K/DMA: [labe~ BLPD #pma, {ind} [,next ARP] 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+Pcode 

2 2 2 2+Pcode 

2+Psrc 2+Psrc 2+Psrc 2+Psrc+Pcode 

2 2 2 2+Pcode 
3t 

2 2 2 2+Pcode 
3t 

2+Psrc 2+Psrc 2+Psrc 2+Psrc+2Pcode 
3+Psrct 

3+ddst 3+ddst 3+ddst 5+ddst+Pcode 

3+ddst 3+ddst 3+ddst 5+ddst+Pcode 

3+Psrc+ddst 3+Psrc+ddst 3+Psrc+ddst 5+Psrc+ddst+Pcode 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

n+1 n+1 n+1 n+1 +Pcode 

n+1 n+1 n+1 n+1+Pcode 

Assembly Language Instructions 



Block Move From Program Memorr, to Data Memorr, BLPD 

Cycle Timings for a Repeat (RPT) Execution (Continued) 

PR PDA PSA PE 

Source Ext n+1+nPsrc n+1+nPsrc n+1+nPsrc n+ 1 +nPsrc+Pcode 

Destination DARAM 

Source DARAM/ROM n+1 n+1 n+1 n+1+Pcode 

Destination SARAM n+3t 

Source SARAM n+1 n+1 n+1 n+1+Pcode 

Destination SARAM 2n-1* 2n-1* 2n-1* 2n-1 +Pcode* 

n+3t 

2n+1S 

Source Ext n+1+nPsrc n+1+nPsrc n+1+nPsrc n+ 1 +nPsrc+Pcode 

Destination SARAM n+3+nPsrct 

Source DARAM/ROM 2n+1+nddst 2n+1+n~st 2n+1+nddst 2n+ 1 +n~st+Pcode 

Destination Ext 

Source SARAM 2n+1+nddst 2n+1+n~st 2n+1+nddst 2n+ 1 +n~st+Pcode 

Destination Ext 

Source Ext 4n-1+nPsrc+ 4n-1+nPsrc+ 4n-1 +nPsrc+ 4n+ 1 +nPsrc+nddst+Pcode 

Destination Ext n~st n~st nddst 

t If the destination operand and the code are in the same SARAM block. 
* If both the source and the destination operands are in the same SARAM block. 
§ If both operands and the code are in the same SARAM block. 

Direct BMAR/DMA: [labe~ BLPD BMAR, dma 
Indirect BMAR/DMA: [/abe~ BLPD BMAR, {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Source DARAM/ROM 3 3 3 3+2Pcode 
Destination DARAM 

Source SARAM 3 3 3 3+2Pcode 
Destination DARAM 

Source Ext 3+Psrc 3+Psrc 3+Psrc 3+Psrc+2Pcode 
Destination DARAM 

Source DARAM/ROM 3 3 3 3+2Pcode 
Destination SARAM 4t 

Source SARAM 3 3 3 3+2Pcode 
Destination SARAM 4t 

Source Ext 3+Psrc 3+Psrc 3+Psrc 3+Psrc+2Pcode 
Destination SARAM 4+Psrct 

Source DARAM/ROM 4+~st 4+~st 4+ddst 6+~st+2Pcode 
Destination Ext 
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BLPD Block Move From Program Memori to Data Memory 

Cycle Timings for a Single Instruction (Continued) 

PR PDA PSA 

Source SARAM 4+cfc1st 4+cfc1st 4+cfc1st 
Destination Ext 

Source Ext 4+Psrc+cfc1st 4+Psrc+ddst 4+Psrc+cfc1st 
Destination Ext 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA 

Source DARAM/ROM n+2 n+2 n+2 
Destination DARAM 

Source SARAM n+2 n+2 n+2 
Destination DARAM 

Source Ext n+2+nPsrc n+2+nPsrc n+2+nPsrc 
Destination DARAM 

Source DARAM/ROM n+2 n+2 n+2 
Destination SARAM n+4t 

Source SARAM n+2 n+2 n+2 
Destination SARAM 2n* 2n* 2n* 

n+4t 
2n+2§ 

Source Ext n+2+nPsrct n+2+nPsrc n+2+nPsrc 
Destination SARAM n+4+nPsrct 

Source DARAM/ROM 2n+2+ncfc1st 2n+2+ncfc1st 2n+2+ncfc1st 
Destination Ext 

Source SARAM 2n+2+ncfc1st 2n+2+ncfc1st 2n+2+ncfc1st 
Destination Ext 

Source Ext 4n+nPsrc+ 4n+nPsrc+ 4n+nPsrc+ 
Destination Ext nddstt ncfc1st nddst 

t If the destination operand and the code are in the same SARAM block. 
* If both the source and the destination operands are in the same SARAM block. 
§ If both operands and the code are in the same SARAM block. 

Example 1 BLPD #800h,00h ~(DP=6) 

PE 

6+ddst+2Pcode 

6+Psrc+ddst+2Pcode 

PE 

n+2+2Pcode 

n+2+2Pcode 

n+2+nPsrc+2Pcode 

n+2+2Pcode 

n+2+2Pcode 

2n+2Pcode* 

n+2+nPsrc+2Pcode 

2n+2+ncfc1st+2Pcode 

2n+2+ncfc1st+2Pcode 

4n+2+nPsrc+ncfc1st+ 
2Pcode 

Before Instruction After Instruction 
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Program Memory 
800h 

Data Memory 
300h 

Program Memory 
.__ ____ o_Fh~I sooh 

Data Memory 
300h OFhl 
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Block Move From Program Memory to Data Memory BLPD 

Example2 BLPD #800h,*,AR7 

Before Instruction After Instruction 

ARP ol ARP 11 

ARO 310hl ARO 310hl 

Program Memory 
1111 hi 

Program Memory 
800h 800h 1111 hi 

Data Memory 
0100hl 

Data Memory 
1111 hi 310h 310h 

Example3 BLPD BMAR,OOh ; (DP=6) 

Before Instruction After Instruction 

BMAR aoohl BMAR 800hl 

Program Memory Program Memory 
800h OFhj 800h OFhl 

Data Memory Data Memory 
300h Ohl 300h OFhl 

Example4 BLPD BMAR,*+,AR7 

Before Instruction After Instruction 

ARP 01 ARP 11 
ARO 300hl ARO 301hl 

BMAR 810hl BMAR 810hl 

Program Memory 
4444hl 

Program Memory 
4444hl 810h 810h 

Data Memory Data Memory 
4444hl 300h 0100hl 300h 
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BSAR Ba"el Shift 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

Example2 
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[labe~ BSAR shift 

1 :s shift :s 16 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 1 1 1 1 1 1 0 SHFT t 

t See Section 4.5. 

(PC)+ 1 - PC 
(ACC) I 2shitt - ACC 

Affected by SXM. 

The BSAR instruction executes a 1- to 16-bit right-barrel arithmetic shift of the 
accumulator in a single cycle. The sign extension is determined by the sign-ex­
tension mode bit in status register 1 (ST1). 

1 

[labe~ BSAR shift 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

BSAR 16 ;(SXM=O) 
Before Instruction After Instruction 

ACC 00010000hl ACC 00000001hl 

BSAR 4 ; (SXM=l) 
Before Instruction After Instruction 

ACC OFFF1 oooohl ACC OFFFF1 ooohl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Call Subroutine at Location Specified by Accumulator CALA 

[/abe~ CALA[D] 

None 

CALA 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 0 1 0 0 0 1 0 0 0 0 

CALLD 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
I 1 0 0 0 0 0 1 

Nondelayed: PC + 1 - TOS 
Delayed: PC + 3 - TOS 
ACC(15--0) - PC 

The current program counter (PC) is incremented and pushed onto the top of 
the stack (TOS). Then, the contents of the lower half of the accumulator are 
loaded into the PC. Execution continues at this address. If the call is a delayed 
call (specified by the D suffix), the one two-word instruction or two one-word 
instructions following the call instruction are fetched from program memory 
and executed before the call is executed. 

The CALA instruction is used to perform computed subroutine calls. 

1 

[/abe~ CALA 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

4 4 4 4+3pt 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon­
tinuity is taken these two instruction words are discarded. 

[labe~ CALAD 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 
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CALA Ca// Subroutine at Location Specified by Accumulator 

Example 1 

Example2 

4-74 

CALA 

CALAD 

PC 

ACC 
TOS 

MAR *+,ARl 
LDP #5 

ARP 
ARO 
DP 
PC 

ACC 
TOS 

Before Instruction 

25hl 

83hl 

100hl 

Before Instruction 

ol 

al 

ol 

25hl 

83hl 

100hl 

After Instruction 

PC 83hl 

ACC 83hl 

TOS 26hl 

After Instruction 

ARP 1 I 
ARO el 

DP 51 

PC 83hl 

ACC 83hl 

TOS 28hl 

After the current AR, ARP, and DP are modified as specified, the address of 
the instruction following the LOP instruction is pushed onto the stack, and pro­
gram execution continues from location 83h. 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Cycles 

Call Unconditionally CALL 

[labe~ CALL[DJ pma [,{ind} [,next ARPJ] 

o :s; pma :s; 65535 
Q:s; next ARP :s; 7 

CALL 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 1 0 0 See Subsection 4.1.2 
16-Bit Constant 

CALLO 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 0 1 See Subsection 4.1.2 

Nondelayed: PC + 2 - TOS 
Delayed: PC + 4 - TOS 
pma - PC 

16-Bit Constant 

Modify AR(ARP) and ARP as specified. 

The current program counter (PC) is incremented and pushed onto the top of 
the stack (TOS). Then, the contents of the program memory address (pma), 
either a symbolic or numeric address, are loaded into the PC. Execution con­
tinues at this address. The current auxiliary register and ARP are modified as 
specified. If the call is a delayed call (specified by the "D" suffix), the one 
two-word instruction or two one-word instructions following the call instruction 
are fetched from program memory and executed before the call is executed. 

2 

[labe~ CALL pma [,{ind} [,next ARPJ] 

Cycle Timings for a Slngle Instruction 

PR PDA PSA PE 

4 4 4 4+4pt 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon­
tinuity is taken, these two instruction words are discarded. 

[labe~ CALLO pma [,{ind} [,next ARPJ] 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+2p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 
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CALL Ca// Unconditionally 

Example 1 

Example2 

4-76 

CALL PRG191,*+,ARO 
Before Instruction After Instruction 

ARP 11 ARP 01 

AR1 05hl AR1 06hl 

PC 30hl PC OBFhj 

TOS 100hl TOS 32hl 

OBFh is loaded into the program counter, and the program continues executing 
from that location. 

CALLO PRG191 
MAR *+,ARl 
LDP #5 

Before Instruction After Instruction 

ARP ol ARP 1 I 
ARO 09hl ARO OAhl 

DP 1 I DP sl 

PC 30hl PC OBFhl 

TOS 100hl TOS 34hl 

After the current AR, ARP, and DP are modified as specified, the address of 
the instruction following the LOP instruction is pushed onto the stack, and pro­
gram execution continues from location OBFh. 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

[labe~ CC[D] pma [cond1] [,cond2j [, ... ] 

0 s pma s 65535 

Conditions: 

cc 
15 14 13 12 

1 1 0 

ACC=O 
ACC .. o 
ACC<O 
ACCsO 
ACC>O 
ACC;z:O 
C=O 
C=1 
OV=O 
0V=1 
TC=O 
TC=1 
BTOlow 
Unconditionally 

11 10 9 8 
1 o I TP t 

7 

EO 
NEO 
LT 
LEO 
GT 
GEO 
NC 
c 
NOV 
ov 
NTC 
TC 
BIO 
UNC 

6 5 

ZLVC t 

I 16-Bit Constant 

CCD 

15 14 13 12 11 10 9 8 7 6 5 

1 1 1 o I TP t ZLVC t 

I 16-Bit Constant 

t See Section 4.5. 

lf(condition(s)) 
Then 

Nondelayed: PC + 2 - TOS 
Delayed: PC + 4 - TOS 
pma - PC 

Else 
PC+ 2 - PC 

Call Conditionally CC 

4 3 2 1 0 
ZLVC t 

4 3 2 1 0 
ZLVC t 

Control is passed to the program memory address pma if the specified condi­
tions are met. Note that not all combinations of conditions are meaningful. In 
addition, the NTC, TC, and BIO conditions are mutually exclusive. If the call 
is a delayed call (specified by the "D" suffix), the two one-word instructions or 
the one two-word instruction following the call are fetched from program 
memory and executed before the call is executed. The CC instruction operates 
like the CALL instruction if all conditions are true. 

2 
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CC Call Conditionally 

Cycles 

Example 1 

Example2 

4-78 

[labe~ CC pma [cond1] [,cond2j [, ... ] 

Cycle Timings for a Slngle Instruction 

PR PDA PSA PE 

Conditions True 4 4 4 4+4pt 

Condition False 2 2 2 2+2p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon­
tinuity is taken these two instruction words are discarded. 

[labe~ CCD pma [cond1] [,cond2j [, ... ] 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Conditions True 2 2 2 2+2p 

Condition False 2 2 2 2+2p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

cc PGM191,LEQ,C 

If the accumulator contents are less than or equal to zero and the carry bit is 
set, OBFh is loaded into the program counter, and the program continues ex­
ecuting from that location. If the conditions are not met, execution continues 
at the instruction following the CC instruction. 

CCD PGM191,LEQ,C 
MAR *+,ARl 
LDP #5 

The current AR, ARP, and DP are modified as specified. If the accumulator 
contents are less than or equal to zero and the carry bit is set, the address of 
the instruction following the LOP instruction is pushed onto the stack and pro­
gram execution continues from location OBFh. If the conditions are not met, 
execution continues at the instruction following the LOP instruction. 
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Clear Control Bit CLRC 

Syntax [labe~ CLRC control bit 

Operands Control bit STO, ST1 bit (from: {C, CNF, HM, INTM, OVM, TC, SXM, XF}) 

Opcode 
Reset overflow mode (OVM) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
I 1 0 1 1 0 0 0 0 0 0 0 

Reset sign extension mode (SXM) 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 1 0 1 1 0 0 0 0 0 0 

Reset hold mode (HM) 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 1 0 1 0 0 0 0 0 0 0 

Reset TC bit 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 1 0 1 1 0 0 1 0 0 1 0 0 

Reset carry (C) 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 1 0 1 1 0 0 0 0 0 

Reset CNF bit 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 0 1 1 1 0 0 0 0 0 0 0 

Reset INTM bit 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 0 1 1 1 1 0 0 1 0 0 0 0 0 0 

ResetXF pin 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 0 

Execution (PC)+ 1 --+ PC 
0 - control bit 

Description The specified control bit is set to a logic zero. Note that the LST instruction may 
also be used to load STO and ST1. See subsection 3.6.3, Status and Control 
Registers, for more information on each of these control bits. 

Words 1 

Cycles [labe~ CLRC control bit 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 
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CLRC Clear Control Bit 

Example CLRC TC 

4-80 

;TC is bit 11 of STl 
Before Instruction 

ST1 x9xxhl ST1 

After Instruction 

x1 xxhl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

Complement Accumulator CMPL 

[labe~ CMPL 

None 

15 14 13 12 11 
1 0 

(PC)+ 1 - PC 
(Ace)- ACC 

10 9 8 7 
0 0 

6 5 4 3 2 0 
0 0 0 0 0 0 

The contents of the accumulator are replaced with its logical inversion (ones 
complement). The carry bit is unaffected. 

[labe~ CMPL 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

CMPL 

ACC [R) 
Before Instruction 

OF7982513I ACC [R) 
c c 

After Instruction 

0867DAEChl 
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CMPR Comeare Auxililarr, Reg,ister With ARCR 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

4-82 

[labe~ CMPR constant 

O:s:CM:s:3 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 1 1 1 0 1 0 0 0 1 CM t 

t See Section 4.5. 

(PC)+ 1 - PC 
Compare AR(ARP) to ARCA, placing result in TC bit of status register ST1. 

Affects TC; affected by NDX. 
Not affected by SXM; does not affect SXM. 

The CMPR instruction performs a comparison specified by the value of CM: 

If CM = 00, test if AR(ARP) = ARCA 
If CM = 01, test if AR(ARP) < ARCA 
If CM = 10, test if AR(ARP) > ARCA 
If CM = 11, test if AR(ARP) .. ARCA 

If the condition is true, the TC bit is set to 1. If the condition is false, the TC bit 
is set to O. 

Software compatibility with 'C25 can be maintained by resetting the NDX bit 
in the PMST register to 0. This causes any 'C25 instruction that loads auxiliary 
register 0 (ARO) to load the ARCA register also. This allows source-code com­
patibility with the 'C25. Note that the auxiliary registers are treated as unsigned 
integers in the comparisons. 

1 

[labe~ CMPR constant 

PR 

1 

n 

CMPR 2 

Cycle Timings for a Single Instruction 

PDA PSA PE 

1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n 

ARP 

ARCA 
AR4 

TC 

n n+p 

Before Instruction 

41 
OFFFFhl 

7FFFhl 

1 I 

ARP 

ARCA 

AR4 
TC 

After Instruction 

1 I 
OFFFFhl 

7FFFhl 

ol 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Words 

Come,are DBMR or Long, Immediate With Data Value CPL 

Direct: [labe~ CPL [,#/k) dma 
Indirect: [labe~ CPL [,#/k) {ind} [,next ARPJ 

O :S dma :S 127 
lk: 16-bit constant 
0 :S next ARP :S 7 

Compare DBMR to data value 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Direct: I 0 1 0 1 1 0 1 1 0 Data Memo, Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 1 0 1 1 0 1 See Subsection 4.1.2 

Compare data with long immediate 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 1 0 0 Data Memo Address 
Direct: 

16-Bit Constant 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Indirect: 1--0 __ 1 __ 0 ________ 1___..J_1___.J ___ S_e_e_S_ub_s_e_ct_io_n_4_.1_.2 __ --1 

lk unspecified: 
(PC)+ 1 -+ PC 

16-Bit Constant 

Compare DBMR contents to (dma). 
If (DBMR) = (dma), 

TC= 1; 
Else, 

TC=O. 

lk specified: 
(PC)+ 2 -+ PC 

Compare lk to (dma). 
If lk = (dma), 

TC= 1; 
Else 

TC=O. 

Affects TC. 
Not affected by SXM. 

If the two quantities involved in the comparison are equal, the TC bit is set to 
one. TC is set to zero otherwise. 

1 (If long immediate value is not specified) 

2 (If long immediate value is specified) 
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CPL Comere DBMR or Long Immediate With Data Value 

Cycles 

Cycles 

Example 1 

Direct: [/abs~ CPL dma 
Indirect: [/abs~ CPL {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA 

Operand DARAM 1 1 1 

Operand SARAM 1 1 1 

2t 

Operand Ext 1+d 1+d 1+d 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA 

Operand DARAM n n n 

Operand SARAM n n n 

n+1t 

Operand Ext n+nd n+nd n+nd 

t If the operand and the code are in the same SARAM block. 

Direct: [labe~ CPL #lk dma 
Indirect: [labe~ CPL #lk {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA 

Operand DARAM 2 2 2 

Operand SARAM 2 2 2 

3t 

Operand Ext 2+d 2+d 2+d 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA 

Operand DARAM n+1 n+1 n+1 

Operand SARAM n+1 n+1 n+1 

n+2t 

Operand Ext n+1 n+1 n+1 

t If the operand and the code are in the same SARAM block. 

CPL #060h,60h 

Data Memory 
60h 

TC 

Before Instruction 

066hl 

1 I 

Data Memory 
60h 

TC 

PE 

1+p 

1+p 

2+d+p 

PE 

n+p 

n+p 

n+1+p+nd 

PE 

2+2p 

2+2p 

3+d+2p 

PE 

n+1+2p 

n+1+2p 

n+2+2p 

After Instruction 

066hl 

ol 
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Compare DBMR or Long, Immediate With Data Value CPL 

Example2 CPL 60h 
Before Instruction After Instruction 

Data Memory Data Memory 
60h 066hl 60h 066hl 

DBMR 066hl DBMR 066hl 

TC ol TC 11 

Example3 CPL #0Flh,*,AR6 
Before Instruction After Instruction 

ARP 11 ARP sl 

AR7 300hl AR7 300hl 

Data Memory 
OF1hl 

Data Memory 
OF1hl 300h 300h 

TC 11 TC 11 

Example4 CPL * ,AR7 
Before Instruction After Instruction 

ARP sl ARP 11 

AR6 300hl AR6 300hl 

Data Memory 
OF1hl 

Data Memory 
OF1hl 300h 300h 

DBMR OFOhl DBMR OFOhl 

TC 01 TC 01 
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CRGT Test for ACC Greater Than ACCB 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

Example2 

4-86 

[labe~ CRGT 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
101111100 0 0 1 1 0 1 

{PC)+ 1 -+ PC 
If {ACC} > {ACCB} 

Then {ACC} - ACCB; 1 - C 
If {ACC} < {ACCB} 

Then {ACCB} - ACC; 0 - C 
If {ACC} = {ACCB} 

Then 1 - C 

Affects C. 

The contents of the accumulator (ACC) are compared to the contents of the 
accumulator buffer {ACCB}. The larger value {signed} is loaded into both regis­
ters. If the contents of the accumulator are greater than or equal to the contents 
of the accumulator buffer, the carry bit is set to 1. Otherwise, it is set to 0. 

1 

[labe~ CRGT 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

CRGT 

Before Instruction After Instruction 

ACCB 4hl ACCB 5hl 
ACC 5hl ACC 5hl 
c ol c 1 I 

CRGT 

Before Instruction After Instruction 

ACCB 5hl ACCB 5hl 
ACC 5hl ACC 5hl 
c ol c 1 I 

Assembly Language Instructions 



Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

Example2 

Test for ACC Smaller Than ACCB CRLT 

[labe~ CRLT 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
1 0 1 1 1 1 1 0 0 0 0 1 1 0 1 

(PC)+ 1 - PC 
If (ACC) < (ACCB) 

Then (ACC) - ACCB; 1 - C 
If (ACC) > (ACCB) 

Then (ACCB) - ACC; O - C 
If (ACC) = (ACCB) 

ThenO - C 

Affects C. 

The contents of the accumulator (ACC) are compared to the contents of the 
accumulator buffer (ACCB). The smaller (signed) value is loaded into both reg­
isters. If the contents of the accumulator are less than the contents of the accu­
mulator buffer, the carry bit is set to 1 . Otherwise it is set to 0. 

1 

[labe~ CRLT 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (APT) Execution 

n n n n+p 

CRLT 

Before Instruction After Instruction 

ACCB Shi ACCB 4hl 
ACC 4hl ACC 4hl 
c ol c 1 I 

CRLT 

Before Instruction After Instruction 

ACCB 4hl ACCB 4hl 
ACC 4hl ACC 4hl 
c 1 I c ol 
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DMOV Data Move in Data Memory 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

4-88 

Direct: [labe~ DMOV dma 
Indirect: [labe~ DMOV {ind} [,next ARPJ 

O :s dma :s 127 
0 :s next ARP :s7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I O 1 1 1 0 1 1 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 1 1 1 0 1 1 1 1 See Subsection 4.1.2 

(PC)+ 1 - PC 
(dma) - dma + 1 

Affected by CNF and OVLY. 

The contents of the specified data memory address are copied into the con­
tents of the next higher address. DMOV works only within on-chip data RAM 
blocks. It works within any configurable RAM block if that block is configured 
as data memory. In addition, the data move function is continuous across block 
boundaries. The data move function cannot be used on external data memory 
or memory-mapped registers. If used on external memory or memory-mapped 
registers, DMOV will read the specified memory location but will perform no 
operations. 

When data is copied from the addressed location to the next higher location, 
the contents of the addressed location remain unaltered. 

The data move function is useful in implementing the r1 delay encountered 
in digital signal-processing. The DMOVfunction is included in the LTD, MACO, 
and MADD instructions (see the LTD, MACO, and MADD instructions for more 
information). 

1 

Direct: [labe~ DMOV dma 
Indirect: [/abe~ DMOV {ind} [,next ARP 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 
Operand DARAM 1 1 1 1+p 
Operand SARAM 1 1 1 1+p 

3t 

Operand Ext 2+2d 2+2d 2+2d 5+2d+p 
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Data Move in Data Memory DMOV 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM 2n-2 2n-2 2n-2 2n-2+p 
2n+1t 

Operand Ext 4n-2+2nd 4n-2+2nd 4n-2+2nd 4n+1+2nd+p 

t If the operand and the code are in the same SARAM block. 

Example 1 DMOV DAT8 ; (DP = 6) 
Before Instruction After Instruction 

Data Memory 
43hj 

Data Memory 
43hl 308h 308h 

Data Memory Data Memory 
309h 2hl 309h 43hl 

Example2 DMOV * ,ARl 

Before Instruction After Instruction 

ARP oj ARP 11 
AR1 30Ahj AR1 30Ahj 

Data Memory Data Memory 
30Ah 40hj 30Ah 40hj 

Data Memory Data Memory 
30Bh 41hl 30Bh 40hj 
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EXAR Exchange ACCB With Accumulator 

Syntax [/abe~ EXAR 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

4-90 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1011111000 0 11101 

(PC)+ 1 -+ PC 
(ACCB} - (ACC} 

The contents of the accumulator is exchanged (switched} with the contents of 
the accumulator buffer (ACCB}. 

1 

[labe~ EXAR 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n 

EXAR 

n 

ACC 
ACCB 

n n+p 

Before Instruction 

043hl 

02hl 

ACC 
ACCB 

After Instruction 

02hl 

043hl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

Idle Until lnterruet IDLE 

[labe~ IDLE 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
101 1 1100 0 10001 0 

(PC)+1 - PC 

Affected by INTM. 

The IDLE instruction forces the program being executed to wait until an un­
masked interrupt (external or internal) or reset occurs. The PC is incremented 
only once, and the device remains in an idle state until interrupted. 

The idle state is exited by an unmasked interrupt even if INTM is 1. If INTM is 
1, the program scontinue executing at the instruction following the IDLE. If 
INTM is 0, the program branches to the corresponding interrupt service rou­
tine. Execution of the IDLE instruction causes the 'C5x to enter the power­
down mode. During the idle mode, the timer and serial port peripherals are still 
active. Therefore, timer and peripheral interrupts, as well as reset or external 
interrupts, will remove the processor from the idle mode. 

[labe~ IDLE 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

IDLE ;The processor idles until a reset or unmasked 
;interrupt occurs. 
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IDLE2 Idle Until Interrupt- Low-Power Mode 

Syntax [/abe~ IDLE2 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

4-92 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
101111100 0 100 0 1 1 

(PC)+ 1 - PC 

Affected by I NTM. 

The IDLE2 instruction removes the functional clock input from the internal de­
vice. This allows for an extremely low power mode. The PC is incremented 
only once, and the device remains in an idle state until interrupted by reset or 
an unmasked interrupt. 

The low power mode is exited by an unmasked interrupt even if INTM is high. 
If INTM is high, the program continues executing at the instruction following 
the IDLE2. If INTM is low, then the program branches to the corresponding in­
terrupt service routine. Execution of the I DLE2 instruction causes the 'C5x to 
enter the power-down mode. Unlike the idle mode, in the idle2 mode the pe­
ripherals (serial ports or timer) are not active. 

The idle2 mode is exited by a low logic level on an external interrupt 
(TRTf-TNT4), RS, or NMI with a duration of at least five machine cycles since 
interrupts are not latched as in normal device operation. 

1 

[labe~ IDLE2 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

IDLE2 ;The processor idles until a reset or unmasked external 
;interrupt occurs. 
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Syntax 

Operands 

Opcode 

Direct: [labe~ IN dma , PA 
Indirect: [labe~ IN {ind} ,PA [,next ARPJ 

0 :s; dma :s; 127 
0 :s; next ARP :s;7 
0 :s; PA :s; 65535 

Input Data From Port IN 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
O O O Data Memo Address Direct: 1---......;...-----'-------........_--'.__ _____ ........_ ____ ...... 

16-Bit Constant 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Indirect: i----o"-----'o _______ ........___..__ __ s_e_e_S_u_b_s_ect_·_10_n_4_.1_.2 __ ...... 

Execution 

Description 

Words 

Cycles 

Destination DARAM 

Destination SARAM 

Destination Ext 

16-Bit Constant 

(PC)+ 2 - PC 
While (repeat counter) .. 0 

Port address - address bus A 15-AO 
Data bus 015-00 - dma 
Port address - dma 
Port address + 1 - Port address 
(repeat counter - 1) - repeat counter 

The IN instruction reads a 16-bit value from an external 1/0 port into the speci­
fied data memory location. The TS line goes low to indicate an 1/0 access, and 
the STRB, RO, and READY timings are the same as for an external data 
memory read. Note that port addresses 50h-5Fh are memory-mapped (see 
subsection 5.1.1), but the other port addresses are not. 

RPT can be used with the IN instruction to read in consecutive words from 1/0 
space to data space. In the repeat mode, the port address (PA) is incremented 
after each access. 

2 

Direct: [labe~ IN dma , PA 
Indirect: [labe~ IN {ind} ,PA [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2+iOsrc 2+iOsrc 2+iOsrc 3+iOsrc+2Pcode 

2+iOsrc 2+iOsrc 2+iOsrc 3+iOsrc+2Pcode 

3+iOsrct 

3+~st+iOsrc 3+~st+iOsrc 3+~st+iOsrc 6+~st+iOsrc+2Pcode 
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IN Input Data From Port 

Cycle Timings for a Repeat (RPT) Execution 

Destination DARAM 2n+nio5rc 2n+nio5rc 2n+nio5rc 2n+ 1 +niOsrc+2Pcode 

Destination SARAM 2n+niOsrc 2n+niOsrc 2n+nio5, 0 2n+ 1 +nio5, 0 +2Pcode 

2n+2+niosrc t 

Destination Ext 4n-1+n~st+ 4n-1+n~st+ 4n-1+n~st+ 4n+2+nddst+niOsrc+ 
niOsrc niOsrc niOsrc 2Pcode 

t If the destination operand and the code are in the same SARAM block. 

Example 1 IN 

Example2 IN 

4-94 

DAT7,PA5 

*,PAO 

;Read in word from peripheral on port 
;address 5. Store in data memory location 
;307h (DP=6). 

;Read in word from peripheral on port 
;address O. Store in data memory location 
;specified by current auxiliary register. 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Soft Interrupt INTR 

[/abe~ INTR k 

0 :s: k :s: 31 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 0 0 1 INTR# t 

t See Section 4.5. 

(PC) + 1 - stack 
corresponding interrupt vector - PC 

Not affected by I NTM. 
Affects INTM. 

The INTR instruction is a software interrupt that transfers program control to 
the program memory address specified by k (see the following table). The in­
struction allows any interrupt service routine to be executed from your soft­
ware. During execution of the instruction, the contents of PC+ 1 is pushed onto 
the stack. Note that the interrupt mask has no effect on the INTR instruction. 
An I NTR interrupt for the external interrupts (Tf\JTf-TNT4) looks exactly like an 
external interrupt (an interrupt acknowledge is generated, the appropriate bit 
in the IFR is cleared, interrupts are globally disabled (INTM = 1), and context 
is automatically saved). See subsection 5.1.2 for a complete description of in­
terrupt operation. 

k Interrupt Location k Interrupt Location 

0 RS Oh 16 Reserved 20h 

1 mTf 2h 17 TRAP 22h 

2 TITT2 4h 18 NfiilJ 24h 

3 TITT3 6h 19 Reserved 26h 

4 TINT Sh 20 User-defined 28h 

5 RINT Ah 21 User-defined 2Ah 

6 XINT Ch 22 User-defined 2Ch 

7 TANT Eh 23 User-defined 2Eh 

8 TXNT 10h 24 User-defined 30h 

9 TITT4 12h 25 User-defined 32h 

10 Reserved 14h 26 User-defined 34h 

11 Reserved 16h 27 User-defined 36h 

12 Reserved 18h 28 User-defined 38h 

13 Reserved 1Ah 29 User-defined 3Ah 

14 Reserved 1Ch 30 User-defined 3Ch 

15 Reserved 1Eh 31 User-defined 3Eh 
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INTR Soft Interrupt 

Words 

Cycles 

Example 

4-96 

[labe~ INTR k 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

4 4 4 4+3pt 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon­
tinuity is taken, these two instruction words are discarded. 

INTR 3 ;Control is passed to program memory location 6h 
;PC + 1 is pushed onto the stack. 

Assembly Language Instructions 



Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

Load Accumulator With ACCB LACB 

[labe~ LACB 

None 

15 14 13 12 11 10 9 
0 

(PC}+ 1 - PC 
(ACCB) - ACC 

8 7 6 5 4 3 2 1 0 
0 0 0 0 1 

The accumulator is loaded with the contents of the accumulator buffer (ACCB}. 

1 

[labe~ LACB 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT} Execution 

n 

LACB 

n 

ACC 
ACCB 

n n+p 

Before Instruction 

01376hl 

5555AAAAhl 

ACC 
ACCB 

After Instruction 

5555AAAAhl 

5555AAAAhl 
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LACC Load Accumulator With Shift 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

4-98 

Direct: [Jabe~ LACC dma [,shift1] 
Indirect: 
Immediate: 

[Jabe~ LACC {ind} [,shift1 [,next ARPJ] 
[labe~ LACC #lk [,shift2J 

Osdmas127 
0 s next ARP s 7 
0 s shift1 s 16 (defaults to 0) 
-32768 s lk s 32767 
0 s shift2 s 15 (defaults to 0) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 
Direct: I 0 0 0 1 I SHFTt 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 
Indirect: I 0 0 0 1 I SHFTt 1 See Subsection 4.1.2 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

Long: I 0 1 1 0 0 0 SHFTt 

16-Bit Constant 

Load ACC with shift of 16 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 

Direct: I 0 1 1 0 1 0 1 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 
Indirect: I 0 1 1 0 1 0 1 0 1 See Subsection 4.1.2 

t See Section 4.5. 

Direct or Indirect Addressing: 

(PC)+ 1 - PC 
(dma) x 2shift1 - ACC 

Long Immediate Addressing: 
(PC)+ 2 - PC 
lk x 2shitt2 - ACC 

Affected by SXM. 

0 

0 

0 

0 

0 

The contents of the specified data memory address or a 16-bit constant are 
left-shifted and loaded into the accumulator. During shifting, low-order bits are 
zero-filled. High-order bits are sign-extended if SXM = 1 and zeroed if SXM = 0. 

2 

(Direct or indirect addressing) 

(Long immediate addressing) 

Assembly Language Instructions 



Load Accumulator With Shift LACC 

Cycles Direct: [labe~ LACC dma [,shift1] 
Indirect: [labe~ LACC {ind} [,shift1 [,next ARPJ] 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 
n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 

Immediate: [labe~ LACC #lk [,shift2J 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+2p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

Example 1 LACC DAT6,4 ;(DP• 8. SXM = 0) 

Before Instruction After Instruction 

Data Memory Data Memory 
406h 01hl 406h 01hl 

ACC [8] 012345678hl ACC 00 10hj 

c c 

Example2 LACC *,4 ;(SXM • 0) 

Before Instruction After Instruction 

ARP ~ ARP ~ 
AR2 0300~ AR2 0300hj 

Data Memory Data Memory 
300h OFFhj 300h OFFhj 

ACC 00 012345678~ ACC ~ OFFOhj 

c c 
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LACC Load Accumulator With Shift 

Example3 LACC #FOOOh,1 ~(SXM • 1) 
Before Instruction After Instruction 

ACC [fil 012345678hl ACC IKJ OFFFFEOOOhl 
c c 
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Syntax 

Operands 

Opcode 

Direct: 
Indirect: 
Immediate: 

o :s: dma :s: 127 
0 :s: next ARP :s: 7 
0 :S k :S 255 

15 14 13 12 
Direct: I 0 1 1 0 

15 14 13 12 
Indirect: I 0 1 1 0 

15 14 13 12 

Load Low Accumulator and Clear High Accumulator LACL 

[labe~ LACL dma 
[labe~ LACL {ind} [,next ARPJ 
[labe~ LACL #k 

11 10 9 8 7 6 5 4 3 2 
1 0 0 1 0 Data Memory Address 

11 10 9 8 7 6 5 4 3 2 
0 0 1 See Subsection 4.1.2 

11 10 9 8 7 6 5 4 3 2 

0 

0 

0 
Short Immediate: I 1 0 1 1 1 0 0 1 8-Bit Constant 

Execution 

Description 

Words 

Cycles 

(PC)+ 1 - PC 

Direct or Indirect Addressing: 

O - ACC(31-16) 
(dma) - ACC(15--0) 

Short Immediate Addressing: 

0 - ACC(31-8) 
k - ACC(7--0) 

Not affected by SXM. 

The contents of the addressed data memory location or a zero-extended 8-bit 
constant are loaded into the 16 low-order bits of the accumulator. The upper 
half of the accumulator is zeroed. The data is treated as an unsigned 16-bit 
number rather than a 2s-complement number. There is no sign-extension of 
the operand with this instruction, regardless of the state of SXM. 

1 

Direct: [labe~ LACL dma 
Indirect: [labe~ LACL {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 
Operand SARAM 1 1 1 1+p 

2t 

Operand Ext 1+d 1+d 1+d 2+d+p 
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LACL Load Low Accumulator and Clear High Accumulator 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 

n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 

Immediate: [labe~ LACL #k 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

Example 1 LACL DATl ; (DP ... 6) 

Before Instruction After Instruction 

Data Memory Data Memory 
301h Ohl 301h Ohl 

ACC !XI 7FFFFFFFhl ACC 00 Ohl 
c c 

Exampls2 LACL *-,AR4 
Before Instruction After Instruction 

ARP ol ARP 41 

ARO 401hl ARO 400hl 

Data Memory 
OOFFhl 

Data Memory 
OOFFhl 401h 401h 

ACC !XI 7FFFFFFFhl ACC 00 OFFhj 

c c 

Exampls3 LACL #lOh 

Before Instruction After Instruction 

ACC x 7FFFFFFFh ACC x 010h 
[Q] I [Q] I 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Load Accumulator With Shift Specified by TREG1 LACT 

Direct: [/abe~ LACT dma 
Indirect: (/abe~ LACT {ina} [,next ARPJ 

O :s: dma :s: 127 
0 :S next ARP :S 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Direct: I 0 1 1 0 1 0 1 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Indirect: I 0 1 1 0 1 0 1 1 1 See Subsection 4.1.2 

(PC)+ 1 - PC 
(dma) x 2TREG1(3--0) - ACC 

If SXM = 1: 
Then (dma) is sign-extended. 

lfSXM =0: 
Then (dma) is not sign-extended. 

Affected by SXM. 

The LACT instruction loads the accumulator with a data memory value that has 
been left-shifted. The left-shift is specified by the four LSBs of TREG1, result­
ing in shift options from 0 to 15 bits. Using TREG1 's contents as a shift code 
provides a dynamic shift mechanism. During shifting, the high-order bits are 
sign-extended if SXM = 1 and zeroed if SXM = O. 

LACT may be used to denormalize a floating-point number if the actual expo­
nent is placed in the four LSBs of the T register and the mantissa is referenced 
by the data memory address. Note that this method of denormalization can be 
used only when the magnitude of the exponent is four bits or less. 

Software compatibility with the 'C25 can be maintained by setting the TRM bit 
of the PMST status register to zero. This causes any 'C25 instruction that loads 
TREGO to write to all three TREGs. Subsequent calls to LACT will contain the 
correct shift value in TREG1, maintaining object-code compatibility. 

1 

Direct: [/abe~ LACT dma 
Indirect: [/abe~ LACT {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 
Operand SARAM 1 1 1 1+p 

2t 

Operand Ext 1+d 1+d 1+d 2+d+p 
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LACT Load Accumulator With Shift specified by TREG1 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 
n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 

Example 1 LACT DATl ~(DP= 6. SXM • 0) 

Before Instruction After Instruction 

Data Memory Data Memory 
301h 1376hl 301h 1376hl 

ACC 00 98F7EC83hl ACC 00 13760hl 
c c 

TREG1 14hl TREG1 14hl 

Example2 LACT *-,AR3 ~ (SXM = 1) 
Before Instruction After Instruction 

ARP 11 ARP al 

AR1 310hl AR1 309hl 

Data Memory 
OFFOOhl 

Data Memory 
OFFoohl 310h 310h 

ACC 00 098F7EC83hl ACC 00 OFFFFFEOOhl 
c c 

TREG1 11 hi TREG1 11hl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

Load Accumulator With Memory-Mapped Register LAMM 

Direct: [labe~ LAMM dma 
Indirect: [labe~ LAMM {ind} [,next ARPJ 

Os dma s 127 
0 s next ARP s 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 0 0 0 1 0 0 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 0 0 0 1 0 0 0 1 See Subsection 4.1.2 

{PC)+ 1 - PC 
{dma) - ACC 

Not affected by SXM. 

The lower half of the accumulator is loaded with the contents of the addressed 
memory-mapped register. The upper half of the accumulator is zeroed. The 
9 MSBs of the data memory address are set to zero, regardless of the current 
value of DP or the upper 9 bits of AR(ARP). This instruction allows any location 
on data page zero to be loaded into the accumulator without modifying the DP 
field in status register STO. 

1 

Direct: [labe~ LAMM dma 
Indirect: [labe~ LAMM {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA 

Operand MMRt 1 1 1 

Operand MMPORT 1 +iOsrc 1 +iOsrc 1+iodsrc 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA 

Operand MMR* n n n 

Operand MMPORT n+miOsrc n+miOsrc n+miOsrc 

t Add one more cycle for peripheral memory mapped access. 
* Add n more cycles for peripheral memory mapped access. 

LAMM BMAR ; (DP = 6) 

ACC 

BMAR 

Data Memory 
31Fh 

Before Instruction 

22221376hl 

5555hl 

1000hi 

ACC 

BMAR 

Data Memory 
31Fh 

PE 

1+p 

1 +2+p+iodsrc 

PE 

n+p 

n+p+miosrc 

After Instruction 

5555hl 

5555hl 

1000hl 
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LAMM Load Accumulator With Memory-Mapped Register 

Example2 

4-106 

LAMM * 
Before Instruction After Instruction 

ARP 1 I ARP 1 I 
AR1 325hl AR1 325hl 

ACC 22221376hl ACC OFhl 

PRO OFhl PRO OFhl 

Data Memory 
1000hl 

Data Memory 
1000hl 325h 325h 

Note that the value in data memory location 325h is not loaded into the accu­
mulator. The value at data memory location 25h (address of the PRO register) 
is loaded. 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Load Auxiliary Register LAR 

Direct: [/abe4 LAR AR, dma 
Indirect: 
Short Immediate 
Long Immediate 

[/abe4 LAR AR, {ind} [,next ARPJ 
[/abe4 LAR AR, #k 
[/abe4 LAR AR, #lk 

0 s dma s 127 
O s auxiliary register AR s 7 
0 s next ARP s 7 
0 s ks 255 
0 s lk s 65535 

15 14 13 12 11 10 
Direct: I 0 0 0 0 o I 

15 14 13 12 11 10 
Indirect: I 0 0 0 0 0 

15 14 13 12 11 10 
Short: I 0 0 I 

15 14 13 12 11 10 

1 0 1 1 

9 8 7 
ARXT 0 

9 8 7 
ARXt 1 

9 8 7 
ARXt 

9 8 7 

0 

6 

6 

6 

6 

0 
long= I 

16-Bit Constant 

t See Section 4.5. 

Direct or Indirect Addressing: 

(PC)+ 1 - PC 
(dma) - auxiliary register AR 

Short Immediate Addressing: 

(PC)+ 1 - PC 
k - auxiliary register AR 

Long Immediate Addressing: 

(PC)+ 2 - PC 
lk - auxiliary register AR 

Affected by NDX. 

5 4 3 2 0 
Data Memory Address 

5 4 3 2 0 
See Subsection 4.1.2 

5 4 3 2 0 

8-Bit Constant 

5 4 3 2 0 

0 0 ARXt 

The contents of the specified data memory address or an 8-bit or 16-bit con­
stant are loaded into the designated auxiliary register (AR). The specified con­
stant is acted upon like an unsigned integer, regardless of the value of SXM. 
If the NDX bit of the PMST register is 0, then ARCR and INDX registers are 
also loaded to maintain compatibility with the 'C2x. 

The LAR and SAR (store auxiliary register) instructions can be used to load 
and store the auxiliary registers during subroutine calls and interrupts. If an 
auxiliary register is not being used for indirect addressing, LAR and SAR en-
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LAR Load Auxiliary Register 

Words 

Cycles 

Source DARAM 

Source SARAM 

Source Ext 

Source DARAM 

Source SARAM 

Source Ext 

able the register to be used as an additional storage register, especially for 
swapping values between data memory locations without affecting the con­
tents of the accumulator. 

1 (Direct, indirect, or short immediate addressing) 

2 (Long immediate addressing) 

Direct: [labe~ LAR AR, dma 
Indirect: [labe~ LAR AR, {ind} [,next ARP! 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+Pcode 

2 2 2 2+Pcode 
3t 

2+dsrc 2+dsrc 2+dsrc 3+dsrc+Pcode 

Cycle Timings for a Repeat (RPT) Execution 

2n 2n 2n 2n+Pcode 

2n 2n 2n 2n+Pcode 
2n+1t 

2n+ndsrc 2n+nd5rc 2n+ndsrc 2n+ 1 +ndsrc+Pcode 

t If the source operand and the code are in the same SARAM block. 

Short Immediate [labe~ LAR AR, #k 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+Pcode 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

Long Immediate [labe~ LAR AR, #lk 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+2p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

Example 1 LAR AR0,DAT16 ; (DP = 6) 

Before Instruction After Instruction 

Data Memory 
18hl 

Data Memory 
18hl 310h 310h 

ARO 6hl ARO 18hl 
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Example2 

Example3 

Examp/•4 

Load Auxiliary R5lster LAR 

LAR AR4,*-
Before Instruction After Instruction 

ARP 41 ARP 41 
Data Memory 

32h I 
Data Memory 

32hl 300h 300h 

AR4 aQQb I AR4 32hl 

Note: 

LAA in the indirect addressing mode ignores any AR modifications if the AR 
specified by the instruction is the same as that pointed to by the ARP. There­
fore, in Example 2, AR4 is not decremented after the LAA instruction. 

LAR AR4,#0lh 
Before Instruction After Instruction 

AR4 OFF09hl AR4 01hl 

LAR AR4,#3FFFh 
Before Instruction After Instruction 

AR4 Ohl AR4 3FFFhl 
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LOP Load Data Memorr, Pointer 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Source DARAM 

Source SARAM 

Source Ext 

4-110 

Direct: 
Indirect: 
Short Immediate: 

O :s: dma :s: 127 
O :s: next ARP :s: 7 
O:s:k:s:511 

15 14 13 12 

[labe~ LOP dma 
[labe~ LOP {ind} [,next ARP! 
[labe~ LOP #k 

11 10 9 8 7 6 5 4 3 2 
Direct: I 0 0 0 0 1 1 0 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 
Indirect: I 0 0 0 0 1 1 0 1 1 See Subsection 4.1.2 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

Short: I 1 0 1 1 0 9-Bit Constant 

{PC)+ 1 - PC 

Direct or Indirect Addressing: 
Nine LSBs of (dma} - data page pointer (DP} status bits 

Short Immediate Addressing: 
k - data page pointer register {DP} status bits 

Affects DP. 

0 

0 

0 

The nine LSBs of the contents of the addressed data memory location or a 9-bit 
immediate value are loaded into the DP register. The DP and 7-bit data 
memory address are concatenated to form 16-bit data memory addresses. 
The DP can also be loaded by the LST instruction. 

1 

Direct: [labe~ LOP dma 
Indirect: [labe~ LOP {ind} [,next ARP! 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+Pcode 

2 2 2 2+Pcode 
3t 

2+dsrc 2+dsrc 2+dsrc 3+dsrc+Pcode 
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Load Data Memory Pointer LOP 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Source DARAM 2n 2n 2n 2n+pcode 

Source SARAM 2n 2n 2n 2n+pcode 
2n+1t 

Source Ext 2n+nd8rc 2n+ndsrc 2n+ndsrc 2n+ 1 +ndsrc+Pcode 

t If the source operand and the code are in the same SARAM block. 

Short Immediate: [/abe~ LOP #k 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+Pcode 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

Example 1 LDP DAT127 ; (DP = 511) 
Before Instruction After Instruction 

Data Memory 
OFEDChl 

Data Memory 
OFEDChl OFFFFh OFFFFh 

DP 1FFhl DP ODChl 

Example2 LDP #Oh 
Before Instruction After Instruction 

DP 1FFhl DP Ohl 

Example3 LDP *,ARS 

Before Instruction After Instruction 

ARP 41 ARP I 51 

AR4 300hl AR4 300hl 

Data Memory Data Memory 
300h 06hl 300h 06hl 

DP 1FFhl DP 06hl 
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LMMR Load Memory-Mapped Register 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Source DARAM 

Direct: 

Indirect: 

Destination MMR* 

Source SARAM 

Destination MMR* 

4-112 

Direct: [labe~ LMMR dma, #addr 
Indirect: [labe~ LMMR {ind}, #addr [,next ARPJ 

O :s dma :s 127 
0 :s next ARP :s 7 
O :s addr :s 65535 

15 14 13 12 

0 0 0 

15 14 13 12 

0 0 

PFC - MCS 
{PC)+ 2 - PC 
lk - PFC 

0 

11 10 

0 

11 10 

0 

While (repeat counter ,e 0): 

9 8 7 6 5 4 3 2 1 

0 1 I o I Data Memory Address 

16-Bit Constant 

9 8 7 6 5 4 3 2 

0 1 l 1 l See Subsection 4.1.2 

16-Bit Constant 

(src, addressed by PFC) - (dst, specified by lower 7 bits of dma) 
(PFC) + 1 - PFC 
(repeat counter} - 1 - repeat counter 

MCS - PFC 

0 

0 

The memory-mapped register pointed at by the lower 7 bits of the directly or 
indirectly addressed data memory value is loaded with the contents of the data 
memory location addressed by the 16-bit address, addr. The 9 MSBs of the 
data memory address are set to zero, regardless of the current value of the 
data page pointer (DP) or the upper 9 bits of AR(ARP). This instruction allows 
any memory location on data page zero to be accessed without modifying the 
DP field in status register STO. 

When using the LMMR instruction with the RPT instruction, the source ad­
dress, #addr, is incremented after every memory-mapped load. 

2 

Direct: [labe~ LMMR dma, #addr 
Indirect: [labe~ LMMR {ind}, #addr [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+2Pcode 

2 2 2 2+2Pcode 
3t 
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Load Memory-Mapped Register LMMR 

Cycle Timings for a Slngle Instruction (continued) 

PR PDA PSA 

Source Ext 2+Psrc 2+Psrc 2+Psrc 
Destination MMR* 

Source DARAM 3+i0dst 3+i0dst 3+i0dst 
Destination MMPORT 

Source SARAM 3+i0dst 3+i0dst 3+i0dst 
Destination MMPORT 4t 

Source Ext 3+Psrc+i0dst 3+Psrc+i0dst 3+Psrc+i0dst 
Destination MMPORT 

Cycle Timings for a Repeat (RPT) Execution 

Source DARAM 2n 2n 

Destination MMR§ 

Source SARAM 2n 2n 
Destination MMR§ 

Source Ext 2n+ndsrc 2n+nd5rc 
Destination MMR§ 

Source DARAM 3n+niodst 3n+niodst 
Destination MMPORT 

Source SARAM 3n+niodst 3n+niodst 
Destination MMPORT 

Source Ext 4n-1 +ndsrc+ 4n-1+ndsrc+ 
Destination MMPORT niodst niodst 

t If the source operand and the code are in the same SARAM block. 
* Add one more cycle if peripheral memory mapped register access. 
§ Add n more cycles if peripheral memory mapped register access. 

Example 1 LMMR DBMR,#300h 

2n 

2n 
2n+1t 

2n+ndsrc 

3n+niodst 

3n+niodst 

3n+1+niodstt 

4n-1 +nd5rc+ 
niodst 

Before Instruction 

PE 

3+Psrc+2Pcode 

5+2Pcode+iodst 

5+2Pcode+iodst 

6+Psrc+2Pcode+iodst 

2n+2Pcode 

2n+2Pcode 

2n+ 1 +ndsrc+2Pcode 

3n+3+niodst+2Pcode 

3n+3+niodst+2Pcode 

4n+2+nd5rc+ 
niodst+2Pcode 

After Instruction 

Data Memory 
1376hl 

Data Memory 
1376hl 300h 

DBMR 

Examp/112 LMMR *,#300h,AR4 

ARP 

ARO 

Data Memory 
300h 

CBCR 

5555hl 

;CBCR • lEh 

Before Instruction 

ol 

31Ehl 

20hl 

Ohl 

300h 

DBMR 

ARO 

ARO 

Data Memory 
300h 

CBCR 

1376hl 

After Instruction 

4hl 

31Ehl 
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LPH Load Product High R5ister 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

4-114 

Direct: [/abe~ LPH dma 
Indirect: [/abe~ LPH {ind} [,next ARPJ 

O ::s: dma::s: 127 
0 ::s: next ARP ::s: 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Direct: I O 1 1 1 0 1 0 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I O 1 1 1 0 1 0 1 1 See Subsection 4.1.2 

(PC)+ 1 - PC 
(dma) - P register (31-16) 

The P register high-order bits are loaded with the contents of data memory. 
The low-order P register bits are unaffected. 

The LPH instruction can be used for restoring the high-order bits of the P regis­
ter after interrupts and subroutine calls if automatic context save is not used. 

1 

Direct: [/abe~ LPH dma 
Indirect: [labe~ LPH {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA 

Operand DARAM 1 1 1 

Operand SARAM 1 1 1 
2t 

Operand Ext 1+d 1+d 1+d 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA 

Operand DARAM n n n 

Operand SARAM n n n 
n+1t 

Operand Ext n+nd n+nd n+nd 

t If the operand and the code are In the same SARAM i>ioci<. 

LPH DATO ;(DP• 4) 
Before Instruction 

Data Memory 
200h 

p 

OF79Chl 

30079844hl 

Data Memory 
200h 

p 

PE 

1+p 

1+p 

2+d+p 

PE 

n+p 

n+p 

n+1+p+nd 

After Instruction 

OF79Chl 

OF79C9844hl 
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Load Product High Register LPH 

Example2 LPH *,AR6 

Before lnatructlon After lnatructlon 

ARP sl ARP 61 
AR5 200hl AR5 200hl 

Data Memory 
OF79Chl 

Data Memory 
OF79Chl 200h 200h 

p 30079844hl p OF79C9844h I 
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LST Load Status Register 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

4-116 

Direct: [labe~ LST #n, dma 
Indirect: [labe~ LST #n, {ind} [,next ARPJ 

O :s: dma:s: 127 
n = 0,1 
0 :s: next ARP :s: 7 

LST#O 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 

Direct: I 0 0 0 0 1 1 1 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
Indirect: I 0 0 0 0 1 1 1 01 1 See Subsection 4.1.2 

LST#1 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

Direct: I O 0 0 0 1 1 1 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
Indirect: I 0 0 0 0 1 1 1 1 1 See Subsection 4.1.2 

(PC)+ 1 - PC 
(dma) - status register STn 
dma (bits 13-15) - ARP (regardless of n) 

Affects ARB, ARP, OV, OVM, DP, CNF, TC, SXM, C, HM, XF, and PM. 
Does not affect INTM. 

0 

0 

0 

0 

Status register STn is loaded with the addressed data memory value. Note that 
the INTM bit is unaffected by LST #0. In addition, the LST #0 instruction does 
not affect the ARB field in the ST1 register even though a new ARP is loaded. 
If a next ARP value is specified via the indirect addressing mode, the specified 
value is ignored. Instead, ARP is loaded with the value contained within the 
addressed data memory word. 

Note: 

When ST1 is loaded, the value loaded into ARB is also loaded into ARP. 

The LST instruction can be used for restoring the status registers after subrou­
tine calls and interrupts. 

1 
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Load Status Register LST 

Cycles Direct: [labe~ LST #n, dma 
Indirect: [labe~ LST #n, {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Source DARAM 2 2 2 2+Pcooe 

Source SARAM 2 2 2 2+Pcooe 
3t 

Source Ext 2+dsrc 2+dsrc 2+dsrc 3+dsrc+Pcode 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Source DARAM 2n 2n 2n 2n+Pcode 

Source SARAM 2n 2n 2n 2n+Pcode 
2n+1t 

Source Ext 2n+ndsrc 2n+ndsrc 2n+ndsrc 2n+ 1 +ndsrc+Pcode 

t If the source operand and the code are in the same SARAM block. 

Example 1 

Example2 

Example3 

MAR *,ARO 
LST #0 I* ,ARl ;The data memory word addressed by the contents 

;of auxiliary register ARO is loaded into 
;status register S~O,except for the INTM bit. 
;Note that even though a next ARP value is 
;specified, that value is ignored, and the 
;old ARP is not loaded into the ARB. 

LST #0,60h ; (DP = 0) 

Before Instruction After Instruction 
Data Memory Data Memory 

60h 2404hl 60h 2404hl 
STO 6EOOhl STO 2604hl 
ST1 0580hl ST1 0580hl 

LST #0,*-,ARl 

Before Instruction After Instruction 
ARP 41 ARP 11 
AR4 3FFhl AR4 3FEhl 

Data Memory Data Memory 
3FFh OEE04hl 3FFh OEE04hl 
STO OEEOOhl STO OEE04hl 
ST1 OF780hl ST1 OF780hl 
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LST Load Status Register 

Example4 LST #1,00h HDP • 6) 

Before lnatrucUon After Instruction 

Data Memory 
OE1BChl 

Data Memory 
OE1BCI 300h 300h 

STO 0406hl STO E406I 

ST1 09Aol ST1 OE1BChl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Load TREGO LT 

Direct: [labe~ LT dma 
Indirect: [labe~ LT {ina} [,next ARPJ 

Os dma s 127 
0 s next ARP s 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 1 1 0 0 1 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 0 0 1 See Subsection 4.1.2 

{PC)+ 1 - PC 
{dma) - TREGO 

If TRM = O: 
{dma) - TREG1 
{dma) - TREG2 

Affected by TRM. 

TREGO is loaded with the contents of the specified data memory address 
( dma). The LT instruction may be used to load TREGO in preparation for multi­
plication. Seethe LTA, LTD, LTP, LTS, MPV, MPYA, MPYS,and MPYU instruc­
tions. If the TRM bit of the PMST register is 0, then TREG1 and TREG2 are 
also loaded to maintain compatibility with the 'C25. The TREGs are memory­
mapped registers and may be read and written with any instruction that ac­
cesses data memory. Note that TREG1 is only 5 bits and TREG2 is only 4 bits. 

1 

Direct: [labe~ LT dma 
Indirect: [labe~ LT {ina} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (APT) Execution* 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 
n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 
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LT Load TREGO 

Example 1 LT 

Example2 LT 

4-120 

DAT24 ;(DP• 8. TRM • 1). 

Data Memory 
418h 

TREGO 

Before lnatructlon 

3hl 

*,AR3 ; (TRM • 0) 

Before Instruction 

ARP 21 
AR2 418hl 

Data Memory 
62hl 418h 

TREGO 3hl 
TREG1 4hl 
TREG2 Shi 

Data Memory 
418h 

TREGO 

ARP 

AR2 

Data Memory 
418h 

TREGO 
TREG1 
TREG2 

After lnatructlon 

62hl 

62hl 

After Instruction 

31 
418hl 

62hl 
62hl 

62hl 
62hl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Load TREGO and Accumulate Previous Product LTA 

Direct: [labe~ LTA dma 
Indirect: (labe~ LTA {ind} [,next ARPJ 

Os dma s 127 
0 s next ARP s 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 1 1 0 0 0 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 0 0 0 0 1 See Subsection 4.1.2 

(PC)+ 1 - PC 
(dma) - TREGO 
(ACC) + (shifted P register) - ACC 

Affected by OVM, PM, and TRM; affects OV and C. 

TREGO is loaded with the contents of the specified data memory address 
(dma). The contents of the product register, shifted as defined by the PM status 
bits, are added to the accumulator, with the result left in the accumulator. If the 
TRM bit of the PMST register is O, then TREG1 and TREG2 are loaded with 
the same value as TREGO to maintain compatibility with the 'C25. Note that 
TREG1 is only 5 bits and TREG2 is only 4 bits. 

The function of the LTA instruction is included in the LTD instruction. 

1 

Direct: [labe~ LTA dma 
Indirect: [labe~ LTA {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT} Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 

n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 
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LTA Load TREGO and Accumulate Previous Product 

Example 1 LTA DAT36 ;(DP• 6, PM• 0 1 TRM • 1) 
Before Instruction After Instruction 

Data Memory Data Memory 
324h 62hl 324h 62hl 

TREGO 3hl TREGO 62hl 
p OFhl p OFhl 

ACC 00 Shi ACC []] 14hl 
c c 

Example2 LTA *,5 ;(TRM = 0) 

Before Instruction After Instruction 

ARP 41 ARP sl 

AR4 324hl AR4 324hl 

Data Memory Data Memory 
62hl 324h 62hl 324h 

TREGO 3hl TREGO 62hl 

TREG1 4hl TREG1 62hl 

TREG2 Shi TREG2 62hl 
p OFhl p OFhl 

ACC 00 Shi ACC []] 14hl 
c c 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Load TREGO, Accumulate Previous Product, and Move Data LTD 

Direct: [labe~ LTD dma 
Indirect: [labe~ LTD {inoj [,next ARPJ 

O :s; dma:s: 127 
O :s; next ARP :s; 7 

15 14 13 12 
Direct: I 0 1 

15 14 13 12 
Indirect: I 0 

(PC)+ 1 - PC 
(dma) - TREGO 
(dma) - dma + 1 

11 10 9 8 
0 0 0 

11 10 9 8 
0 0 0 

(ACC) + (shifted P register) - ACC 

7 
0 

7 

6 5 4 3 2 
Data Memory Address 

6 5 4 3 2 

See Subsection 4.1.2 

Affected by OVM, PM, and TRM; affects C and OV. 

0 

0 

TREGO is loaded with the contents of the specified data memory address 
(dma). The contents of the P register, shifted as defined by the PM status bits, 
are added to the accumulator, and the result is placed in the accumulator. The 
contents of the specified data memory address are also copied to the next 
higher data memory address. If the TRM bit of the PMST register is 0, then 
TREG1 and TREG2 are also loaded to maintain compatibility with the 'C25. 
Note that TREG1 is only 5 bits and TREG2 is only 4 bits. 

This instruction is valid for all blocks of on-chip RAM configured as data 
memory. The data move function is continuous across the boundaries of con­
tiguous blocks of memory but cannot be used with external data memory or 
memory-mapped registers. This function is described under the instruction 
DMOV. Note that if LTD is used with external data memory, its function is identi­
cal to that of LTA. 

1 

Direct: [labe~ LTD dma 
Indirect: [labe~ LTD {inoj [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 
Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 

3t 

Operand Ext 2+2d 2+2d 2+2d 5+2d+p 

4-123 



LTD Load TREGO, Accumulate Previous Product, and Move Data 

Cycle Timings for a Repeat (RPT} Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM 2~2 2~2 2~2 2~2+p 
2n+1t 

Operand Ext 4~2+2nd 4~2+2nd 4~2+2nd 4n+1+2nd+p 

t If the operand and the code are in the same SARAM block. 

Example 1 LTD DAT126 ; (DP = 7, PM= O, TRM = 1). 

Before Instruction After Instruction 

Data Memory Data Memory 
3FEh 62hl 3FEh 62hl 

Data Memory 
Ohl 

Data Memory 
62hl 3FFh 3FFh 

TREGO 3hl TREGO 62hl 
p OFhl p OFhl 

ACC 00 Shi ACC @] 14hl 
c c 

Example2 LTD * ,AR3 ; (TRM "' 0) 
Before Instruction After Instruction 

ARP 11 ARP 31 

AR1 3FEhl AR1 3FEhl 

Data Memory 
62hl 

Data Memory 
62hl 3FEh 3FEh 

Data Memory Data Memory 
3FFh Ohl 3FFh 62hl 

TREGO 3hl TREGO 62hl 

TREG1 4hl TREG1 62hl 

TREG2 Shi TREG2 62hl 
p OF hi p OFhl 

ACC 00 Shi ACC @] 14hl 
c c 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Load TREGO and Store P Register in Accumulator LTP 

Direct: [labe~ LTP dma 
Indirect: [labe~ LTP {ind} [,next ARPJ 

O :s; dma :s; 127 
0 :s; next ARP :s; 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 1 1 0 0 0 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I o 1 1 0 0 0 I 1 I See Subsection 4.1.2 I 

{PC)+ 1 - PC 
{dma) - TREGO 
{shifted P register) - ACC 

Affected by PM and TRM. 

TREGO is loaded with the contents of the addressed data memory location, 
and the product register is stored in the accumulator. The shift at the output 
of the product register is controlled by the PM status bits. If the TRM bit of the 
PMST register is 0, then TREG 1 and TREG2 are also loaded to maintain com­
patibility with the 'C25. Note that TREG 1 is only 5 bits and TREG2 is only 4 bits. 

1 

Direct: [labe~ LTP dma 
Indirect: [labe~ LTP {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 
n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 
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LTP Load TREGO and Store P Register in Accumulator 

Example 1 LTP DAT36 ;(DP= 6, PM= O, TRM = 1) 
Before Instruction After Instruction 

Data Memory 
62hl 

Data Memory 
62hl 324h 324h 

TREGO 3hl TREGO 62hl 
p OFhl p OFhl 

ACC IXJ Shi ACC [8] OFhl 
c c 

Example2 LTP *,AR5 ; (PM • 0, TRM = 0) 
Before Instruction After Instruction 

ARP 21 ARP sl 
AR2 324hl AR2 324hl 

Data Memory Data Memory 
62hl 324h 62hl 324h 

TREGO 3hl TREGO 62hl 
TREG1 4hl TREG1 62hl 
TREG2 Shi TREG2 62hl 

p OFhl p OFhl 
ACC IXJ Shi ACC [8] OFhl 

c c 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Load TREGO and Subtract Previous Product LTS 

Direct: [/abe~ LTS dma 
Indirect: [/abe~ LTS {ind} [,next ARPJ 

O:s: dma:s: 127 
0 :s: next ARP :s: 7 

15 14 13 12 
Direct: l 0 1 1 1 

15 14 13 12 
Indirect: I o 1 1 1 

(PC)+ 1 - PC 
(dma) - TREGO 

11 10 9 8 
0 1 0 0 

11 10 9 8 
0 0 o I 

ACC - (shifted P register) - ACC 

7 
0 

7 
1 

6 5 4 3 2 1 
Data Memory Address 

6 5 4 3 2 1 
See Subsection 4.1.2 

Affected by PM, TRM, and OVM; affects OVand C. 

0 

0 

I 

TREGO is loaded with the contents of the addressed data memory location. 
The contents of the product register, shifted as defined by the contents of the 
PM status bits, are subtracted from the accumulator. The result is placed in the 
accumulator. If the TRM bit of PMST is set to 0, the value is also loaded into 
TREG1 and TREG2 to maintain compatibility with the 'C25. Note that TREG1 
is only 5 bits and TREG2 is only 4 bits. 

1 

Direct: [/abe~ LTS dma 
Indirect: [/abe~ LTS {ind} [,next ARPJ 

Cycle Timings for a Slngle Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 

n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 
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LTS Load TREGO and Subtract Previous Product 

Example 1 LTS DAT36 J(DP • 6, PM= O, TRM • 1) 
Before Instruction After Instruction 

Data Memory 
62hl 

Data Memory 
62hl 324h 324h 

TREGO 3hl TREGO 62hl 

p OFhl p OFhl 

ACC 00 05hl ACC [Q] OFFFFFFF6hl 

c c 

Example2 LTS *,AR2 J (TRM • 0) 

Before Instruction After Instruction 

ARP 11 ARP 21 

AR1 324hl AR1 324hl 

324h 62hl 324h 62hl 

TREGO 3hl TREGO 62hl 

TREG1 4hl TREG1 62hl 

TREG2 Shi TREG2 62hl 

p OFhl p OFhl 

ACC 00 05hl ACC [Q] OFFFFFFF6hl 

c c 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Multiply and Accumulate MAC 

Direct: [/abe~ MAC pma, dma 
Indirect: [/abe~ MAC pma, {ind} [,next ARPJ 

o s pma s 65535 
Os dma s 127 
0 s next ARP s 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
0 o 0 o 0 0 Data Memory Address 

Direct: 1----------------------------
16-Bit Constant 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
1 O 1 0 O 0 1 O 1 See Subsection 4.1.2 

lndirect:1--------------------------

(PC)+ 2 - PC 
(PFC) - MCS 
(pma) - PFC 

If (repeat counter) .. 0: 

16-Bit Constant 

Then (ACC) + (shifted P register) - ACC, 
(dma) - TREGO 
(dma) x (pma, addressed by PFC) - P register, 
Modify AR(ARP) and ARP as specified 
(PFC) + 1 - PFC 
(repeat counter) - 1 - repeat counter. 

Else (ACC) + (shifted P register) - ACC, 
(dma) - TREGO 
(dma) x (pma, addressed by PFC) - P register, 
Modify AR(ARP) and ARP as specified 

(MCS)-PFC 

Affected by OVM, TRM, and PM; affects C and OV. 

The MAC instruction multiplies a data memory value (specified by dma) by a 
program memory value (specified by pma). It also adds the previous product, 
shifted as defined by the PM status bits, to the accumulator. 

The data and program memory locations on the 'C5x may be any nonreserved, 
on-chip or off-chip memory locations. If the program memory is block BO of 
on-chip RAM, then the CNF bit must be set to one. When the MAC instruction 
is used in the direct addressing mode, the dma cannot be modified during rep­
etition of the instruction. 

When the MAC instruction is repeated, the program memory address con­
tained in the PFC is incremented by one during its operation. This makes it 
possible to access a series of operands in memory. MAC is useful for long 
sum-of-products operations because it becomes a single-cycle instruction, 
once the RPT pipeline is started. 
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MAC Multp/y and Accumulate 

If the TRM bit of the PMST register is 0, then TREG1 and TREG2 are loaded 
with the same value as TREGO to maintain compatibility with the 'C2x. Note 
that TREG1 and TREG2 are only 5-bit, and 4-bit long, respectively. 

Words 2 

Cycles Direct: [labe~ MAC pma, dma 
Indirect: [labe~ MAC pma, {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand1 DARAM/ROM 3 3 3 3+2Pcode 
Operand2 DARAM 

Operand1 SARAM 3 3 3 3+2Pcode 
Operand2 DARAM 

Operand1 Ext 3+Pop1 3+Pop1 3+Pop1 3+Pop1 +2Pcode 
Operand2 DARAM 

Operand1 DARAM/ROM 3 3 3 3+2Pcode 
Operand2 SARAM 

Operand1 SARAM 3 3 3 3+2Pcode 
Operand2 SARAM 4t 4t 4t 4+2Pcodet 

Operand1 Ext 3+Pop1 3+Pop1 3+Pop1 3+Pop1 +2Pcode 
Operand2 SARAM 

Operand1 DARAM/ROM 3+dop2 3+dop2 3+dop2 3+dop2+2Pcode 
Operand2 Ext 

Operand1 SARAM 3+dop2 3+dop2 3+dop2 3+dop2+2Pcode 
Operand2 Ext 

Operand1 Ext 4+Pop1+dop2 4+Pop1+dop2 4+Popt+dop2 4+Pop1 +dop2+2Pcode 
Operand2 Ext 

Cycle Timings for a Repeat (RPT} Execution 

PR PDA PSA PE 

Operand1 DARAM/ROM n+2 n+2 n+2 n+2+2Pcode 
Operand2 DARAM 
""""ft .. "!!lrinrf1 QAC>AlA 

_,,, _,,, -·"' -·"'·"'-""t''°'' WI l'W I ""'"""' lr\IYI '''"' ... , llT' 1 IT'T'l'Cod8 

Operand2 DARAM 

Operand1 Ext n+2+nPop1 n+2+nPop1 n+2+nPop1 n+2+nPop1+2Pcode 
Operand2 DARAM 

Operand1 DARAM/ROM n+2 n+2 n+2 n+2+2Pcode 
Operand2 SARAM 
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Multiply and Accumulate MAC 

Cycle Timings for a Repeat (RPT) Execution (Continued) 

PR PDA PSA PE 

Operand 1 SARAM n+2 n+2 n+2 n+2+2Pcode 
Operand2 SARAM 2n+2t 2n+2t 2n+2t 2n+2t 

Operand1 Ext n+2+nPopf n+2+nPopf n+2+nPopf n+2+nPopf +2Pcode 
Operand2 SARAM 

Operand1 DARAM/ROM n+2+nd0 p2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2Pcode 
Operand2 Ext 

Operand1 SARAM n+2+nd0 p2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2Pcode 
Operand2 Ext 

Operand1 Ext 2n+2+np0 p1+n 2n+2+np0 p1+n 2n+2+nPopt+ 2n+2+np0 p1 +ndop2+ 
Operand2 Ext dop2 dop2 ndop2 2Pcode 

t If both operands are in the same SARAM block. 

Example 1 MAC 0FF00h,02h ;(DP= 6, PM= O, CNF = 1) 

Before Instruction After Instruction 

Data Memory 
23hl 

Data Memory 
23hl 302h 302h 

Program Memory 
4hl 

Program Memory 
4hl FFOOh FFOOh 

TREGO 45hl TREGO 23hl 
p 458972hl p 08Chl 

ACC 00 723EC41hl ACC I]] 76975B3hl 

c c 

Example2 MAC OFFOOh,*,ARS ; (PM = 0 I CNF = 1) 

Before Instruction After Instruction 

ARP 41 ARP sl 

AR4 302hl AR4 302hl 

Data Memory 
23hl 

Data Memory 
23hl 302h 302h 

Program Memory Program Memory 
FFOOh 4hl FFOOh 4hl 

TREGO 45hl TREGO 23hl 
p 458972hl p 8Chl 

ACC 00 723EC41hl ACC I]] 76975B3hl 
c c 
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MACO Multiply and Accumulate With Data Move 

Syntax 

Operands 

Opcode 

Direct: 

Indirect: 

Execution 

Description 

4-132 

Direct: [labe~ MACO pma, dma 
Indirect: [labe~ MACO pma, {ind} [,next ARPJ 

O :so pma :so 65535 
O :so dma :so 127 
0 :so next ARP :so 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 
1 0 1 0 0 0 1 1 0 Data Memory Address 

16-Bit Constant 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 
1 0 0 0 0 1 1 See Subsection 4.1.2 

(PC)+ 2 - PC 
(PFC) - MCS 
(pma) - PFC 

If (repeat counter) "' 0: 

16-Bit Constant 

Then (ACC) + (shifted P register) - ACC, 
(dma) - TREGO 
(dma) x (pma, addressed by PFC) - P register 
Modify AR(ARP) and ARP as specified, 
(PFC) + 1 - PFC 
{dma) - {dma) + 1 
(repeat counter) - 1 - repeat counter. 

Else (ACC) + (shifted P register) - ACC, 
(dma) - TREGO 
(dma) x (pma, addressed by PFC) - P register 
(dma) - (dma) + 1 
Modify AR(ARP) and ARP as specified, 

(MCS)-PFC 

Affected by OVM and PM; affects C and OV. 

0 

0 

The MACO instruction multiplies a data memory value (specified by dma) by 
a program memory value (specified by pma). It also adds the previous product, 
shifted as defined by the PM status bits to the accumulator. The data and pro­
giam memory locations on the 'C5x roay be any nonreserved, on-chip or 
off-chip memory locations. If the program memory is block BO of on-chip RAM, 
then the CNF bit must be set to one. When MACO is used in the direct address­
ing mode, the dma cannot be modified during repetition of the instruction. If 
MACO addresses one of the memory-mapped registers or external memory 
as a data memory location, the effect of the instruction will be that of a MAC 
instruction (see the DMOV instruction description). 

Assembly Language Instructions 



Words 

Cycles 

Operand1 SARAM 

Operand2 DARAM 

. Multietr, and Accumulate With Data Move MACO 

If the TRM bit of the PMST register is 0, TREG1 and TREG2 are loaded with 
the same value as TREGO to maintain compatibility with the 'C2x. Note that 
TREG1 and TREG2 are only 5 bits and 4 bits long, respectively. 

MACO functions in the same manner as MAC, with the addition of data move 
for on-chip RAM blocks. Otherwise, the effects are the same as for MAC. This 
feature makes MACO useful for applications such as convolution and trans­
versal filtering. 

When the MACO instruction is repeated, the program memory address con­
tained in the PFC is incremented by one during its operation. This permits 
accessing a series of operands in memory. When used with RPT, MACO be­
comes a single-cycle instruction once the RPT pipeline is started. 

2 

Direct: [labe~ MACO pma, dma 
Indirect: [labe~ MACO pma, {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

3 3 3 3+2Pcode 

Operand1 DARAM/ROM 3 3 3 3+2Pcode 
Operand2 DARAM 

Operand1 Ext 3+Pop1 3+Pop1 3+Pop1 3+Pop1 +2Pcode 
Operand2 DARAM 

Operand1 DARAM/ROM 3 3 3 3+2Pcode 
Operand2 SARAM 

Operand1 SARAM 3 3 3 3+2Pcode 
Operand2 SARAM 4* 4+2Pcode* 

5§ 

Operand1 Ext 3+Pop1 3+Pop1 3+Pop1 3+Popt+2Pcode 
Operand2 SARAM 

Operand1 DARAM/ROM 3+dop2 3+dop2 3+dop2 3+dop2+2Pcode 
Operand2 Ext' 

Operand 1 SARAM 3+d0 p2 3+dop2 3+dop2 3+dop2+2Pcode 
Operand2 Ext' 

Operand1 Ext 4+Pop1+dop2 4+Pop1 +dop2 4+Popt+dop2 4+Pop1 +dop2+2Pcode 
Operand2 Ext, 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand1 DARAM/ROM n+2 n+2 n+2 n+2+2Pcode 
Operand2 DARAM 
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MACD Multiply and Accumulate With Data Move 

Cycle Timings for a Repeat (APT) Execution (Continued) 

PR PDA PSA PE 

Operand1 SARAM n+2 n+2 n+2 n+2+2Pcocte 
Operand2 DARAM 

Operand1 Ext n+2+nPopf n+2+nPopt n+2+nPopf n+2+nPopt +2Pcocte 
Operand2 DARAM 

Operand1 DARAM/ROM 2n 2n 2n 2n+2Pcode 
Operand2 SARAM 2n+2t 

Operand1 SARAM 2n 2n 2n 2n+2Pcocte 
Operand2 SARAM 3n* 3n* 2n+2t 3n* 

3n* 
3n+21 

Operand1 Ext 2n+nPopf 2n+nPopt 2n+nPopf 2n+nPopf +2Pcocte 
Operand2 SARAM 2n+2+nPopt t 

Operand1 DARAM/ROM n+2+ndop:? n+2+ndop:? n+2+ndop:? n+2+ndo112+2Pcocte 
Operand2 Ext• 

Operand1 SARAM n+2+ndop:? n+2+ndop:? n+2+ndop:? n+2+ndo112+2Pcocte 
Operand2 Ext' 

Operand1 Ext 2n+2+nPop1+n 2n+2+nPop1+n 2n+2+nPop1+n 2n+2+nPop1+ndop:?+ 
dop:? do112 dop:? 2Pcode Operand2 Ext' 

t If operand2 and code are in the same SARAM block. * If both operands are in the same SARAM block. 
S If both operands and code are in the same SARAM block. 
' Data move operation is not performed when operand2 is in external data memory. 

Example 1 MACD OFFOOh,OSh 1 (DP = 6, PM = 0, 

Before Instruction 

Data Memory 
308h 23hl 

Data Memory 
1Bhl 309h 

Program Memory 
FFOOh 4hl 

TREGO 45hl 
p 458972hl 

ACC IY1 '7?'llCl"A1hl 
~ ·----.,.···· c 
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CNF= 1). 
After Instruction 

Data Memory 
308h 23hl 

Data Memory 
23hl 309h 

Program Memory 
4hl FFOOh 

TREGO 23hl 
p 8Chl 

ACC mi -,AQ-,l:Cl"J!hi 
L!:.J 

,,,,,..,,..,...,, .. ,.., 
c 
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Example2 

Multiply and Accumulate With Data Move MACO 

MACO OFF00h,*,AR6 ~(PM = 0, CF = l) 
Before Instruction After Instruction 

ARP sl ARP al 

AR5 308hl AR5 308hl 

Data Memory 
308h 23hl 

Data Memory 
308h 23hl 

Data Memory 
18hl 

Data Memory 
23hl 309h 309h 

Program Memory Program Memory 
FFOOh 4hl FFOOh 4hl 

TREGO 45hl TREGO 23hl 

p 458972hl p 8Chl 

ACC [Kl 723EC41hl ACC @] 7697583hl 

c c 

Note: The data move function for MACO can occur only within on-chip data memory RAM 
blocks. 
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MADD Multiply and Accumulate With Data Move and Dy_namic Addressing 

Syntax 

Operands 

Opcode 

Execution 

Description 

4-136 

Direct: [labe~ MADD dma 
Indirect: [labe~ MADD {ind} [,nextARPJ 

o s dma s 127 
0 :s; next ARP s 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 
Direct: I 1 0 0 1 0 0 Data Memo!}'. Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 
Indirect: I 1 0 0 0 1 See Subsection 4.1.2 

(PC)+ 2 - PC 
(PFC) - MCS 
(BMAR) - PFC 

If {repeat counter) >o! 0: 
Then {ACC) + {shifted P register) - ACC, 

(dma) - TREGO 
{dma) x (pma, addressed by PFC) - P register, 
Modify AR(ARP) and ARP as specified, 
(PFC) + 1 - PFC 
(dma) - (dma) + 1 
(repeat counter) - 1 - repeat counter. 

Else {ACC) + (shifted P register) - ACC, 
(dma) - TREGO 
{dma) x (pma, addressed by PFC) - P register 
{dma) - {dma) + 1 
Modify AR(ARP) and ARP as specified. 

{MCS)- PFC 

Affected by OVM, TRM, and PM; affects C and OV. 

0 

0 

The MADD instruction multiplies a data memory value {specified by the dma) 
by a program memory value. The program memory address is contained in the 
BMAR register; it is not specified by a long immediate constant. This facilitates 
dynamic addressing of coefficient tables. In addition, the previous product, 
shifted as defined by the PM status bits, is added to the accumulator. The data 
and program memory locations on the 'C5x may be any nonreserved, on-chip 
or off-chip memory locations. If the program memory is block BO of on-chip 
RAM, then the CNF bit must be set to one. When the MADD instruction is used 
in direct addressing mode, the dma cannot be modified during repetition of the 
instruction. If MADD addresses one of the memory-mapped registers or exter­
nal memory as a data memory location, the effect of the instruction is that of 
a MADS instruction {see the DMOV instruction description). 

MADD functions in the same manner as MADS, with the addition of data move 
for on-chip RAM blocks. Otherwise, the effects are the same as for MADS. This 
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Words 

Cycles 

Multiply and Accumulate With Data Move and Dynamic Addressing MADD 

feature makes MADD useful for applications such as convolution and trans­
versal filtering. 

If the TRM bit of the PMST register is 0, TREG1 and TREG2 are loaded with 
the same value as TREGO to maintain compatibility with the 'C2x. Note that 
TREG1 and TREG2 are only 5 bits and 4 bits long, respectively. 

When the MADD instruction is repeated, the program memory address con­
tained in the PFC is incremented by one during its operation. This enables ac­
cessing a series of operands in memory. When used with RPT, MADD be­
comes a single~cycle instruction, once the RPT pipeline is started. 

1 

Direct: [labe~ MADD dma 
Indirect: [labe~ MADD {ino/ [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand1 DARAM/ROM 2 2 2 2+Pcode 
Operand2 DARAM 

Operand 1 SARAM 2 2 2 2+Pcode 
Operand2 DARAM 

Operand 1 Ext 2+Pop1 2+Pop1 2+Pop1 2+Popt+Pcode 
Operand2 DARAM 

Operand1 DARAM/ROM 2 2 2 2+Pcode 
Operand2 SARAM 

Operand1 SARAM 2 2 2 2+Pcode 
Operand2 SARAM 3* 3+Pcode* 

4§ 

Operand 1 Ext 2+Pop1 2+Pop1 2+Pop1 2+Pop1 +Pcode 
Operand2 SARAM 

Operand1 DARAM/ROM 2+dop2 2+dop2 2+dop2 2+dop2+Pcode 
Operand2 Ext, 

Operand1 SARAM 2+dop2 2+dop2 2+dop2 2+dop2+Pcode 
Operand2 Ext' 

Operand1 Ext 3+Pop1+dop2 3+Popt+dop2 3+Pop1+dop2 3+Pop1 +dop2+Pcode 
Operand2 Ext' 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand1 DARAM/ROM n+1 n+1 n+1 n+1+Pcode 
Operand2 DARAM 

Operand 1 SARAM n+1 n+1 n+1 n+1+Pcode 
Operand2 DARAM 
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MADD Multiply and Accumulate With Data Move and Dynamic Addressing 

Cycle Timings for a Repeat (RPT} Execution (Continued) 

PR 

Operand1 Ext n+1+nPopt 
Operand2 DARAM 

Operand1 DARAM/ROM 2n-1 

Operand2 SARAM 

Operand1 SARAM 2n-1 
Operand2 SARAM 3n-1* 

Operand1 Ext 2n-1+np0 pt 
Operand2 SARAM 

Operand1 DARAM/ROM n+1+nd0 p2 

Operand2 Ext' 

Operand1 SARAM n+1+nd0 p2 

Operand2 Ext' 

Operand1 Ext 2n+ 1 +np0 pt + 

Operand2 Ext' ndop2 

t If operand2 and code reside in same SARAM block. 
* If both operands reside in same SARAM block. 

PDA PSA 

n+1+nPopt n+1+nPopt 

2n-1 2n-1 
2n+1t 

2n-1 2n-1 

3n-1* 2n+1t 

3n-1* 
3n+1• 

2n-1+nPopt 2n-1+nPopt 
2n+ 1 +nPopt t 

n+1+nd0 p2 n+1+ndop2 

n+1+ndop2 n+1+ndop2 

2n+ 1 +nPopt + 2n+ 1 +nPopt+ 
nd0 p2 ndop2 

§ If both operands and code reside in same SARAM block. 
11 Data move operation is not performed when operand2 is in external data memory. 

Example 1 MADD DAT7 ; (DP = 6, PM = O, CNF 1) 
Before Instruction 

PE 

n+ 1 +nPopt+Pcode 

2n-1+Pcode 

2n-1+Pcode 
3n-1* 

2n-1 +nPopt +Pcode 

n+ 1 +nd0 p2+Pcode 

n+ 1 +ndop2+Pcode 

2n+ 1 +np0 p1+ndop2+ 
Pcode 

After Instruction 

Data Memory Data Memory 
Shi 307h Shi 307h 

Data Memory Data Memory 
Shi 30Sh 9hl 30Sh 

BMAR OFFOOhl BMAR OFFOOhl 

TREGO 4Ehl TREGO Shi 

FFOOh 2hl FFOOh 2hl 
p 458972hl p 10hl 

ACC 0 723EC41hl ACC @] 76975B3hl 

c c 
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MultieJK. and Accumulate With Data Move and Dynamic Addressinq MADD 

Exsmple2 MADD *,3 ;(PM= O, CNF= l) 
Before Instruction After Instruction 

ARP 21 ARP 31 

AR2 307hl AR2 307hl 

Data Memory 
Shi 

Data Memory 
Shi 307h 307h 

Data Memory Data Memory 
308h 9hl 308h Shi 

BMAR OFFOOhl BMAR OFFOOhl 

TREGO 4Ehl TREGO Shi 

FFOOh 2hl FFOOh 2hl 

p 458972hl p 10hl 

ACC !KJ L 723EC41hl ACC []] 76975B3hl 

c c 

Note: The data move function for MADD can occur only within on-chip data memory RAM 
blocks. 
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MADS Multiply and Accumulate With Dynamic Addressing 

Syntax 

Operands 

Opcode 

Execution 

Description 

4-140 

Direct: [labe~ MADS dma 
Indirect: [/abe~ MADS {ind} [,next ARf1 

0sdmas127 
0 s next ARP s 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 
Direct: I 1 0 1 0 1 0 1 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 
Indirect: I 1 0 1 0 1 0 0 1 See Subsection 4.1.2 

(PC)+ 1 -+ PC 
(PFC) -+ MCS 
(BMAR) -+ PFC 

If (repeat counter) ,e O: 
Then (ACC) + (shifted P register) - ACC, 

(dma) - TREGO 
(dma) x (pma, addressed by PFC) -+ P register, 
Modify AR(ARP) and ARP as specified, 
(PFC) + 1 -+ PFC 
(repeat counter) - 1 - repeat counter. 

Else (ACC) + (shifted P register) - ACC, 
(dma) -+ TREGO 
(dma) x (pma, addressed by PFC) - P register, 
Modify AR(ARP) and ARP as specified, 

(MCS) -+PFC 

Affected by OVM, TRM, and PM; affects C and OV. 

0 

0 

The MADS instruction multiplies a data memory value (specified by dma) by 
a program memory value (specified by pma). It also adds the previous product, 
shifted as defined by the PM status bits, to the accumulator. The pma is speci­
fied by the contents of the BMAR register, rather than by a long immediate con­
stant. This allows for dynamic addressing of coefficient tables. 

The data and program memory locations on the 'C5x may be any nonreserved, 
on-chip or off-chip memory locations. If the program memory is block BO of 
on-chip RAM, then the CNF bit must be set to one. When MADS is used in the 
direct addressing mode, the dma cannot be modified during repetition of the 
instruction. 

When the MADS instruction is repeated, the program memory address con­
tained in the PFC is incremented by one during its operation. This makes it 
possible to access a series of operands in memory. MADS is useful for long 
sum-of-products operations because this instruction becomes a single-cycle 
instruction, once the RPT pipeline is started. 
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----------------M""'u""""ltie,!Y and Accumulate With Dynamic Addressing MADS 

If the TRM bit of the PMST register is 0, TREG1 and TREG2 are loaded with 
the same value as TREGO to maintain compatibility with the 'C2x. Note that 
TREG1 and TREG2 are only 5 bits and 4 bits long, respectively. 

Words 1 

Cycles Direct: [labe~ MADS dma 
Indirect: [labe~ MADS {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand1 DARAM/ROM 2 2 2 2+Pcode 
Operand2 DARAM 

Operand1 SARAM 2 2 2 2+Pcode 
Operand2 DARAM 

Operand1 Ext 2+Pop1 2+Popt 2+Popt 
Operand2 DARAM 

Operand1 DARAM/ROM 2 2 2 2+Pcode 
Operand2 SARAM 

Operand 1 SARAM 2 2 2 2+Pcode 
Operand2 SARAM 3t 3t 3t 3+Pcodet 

Operand1 Ext 2+Pop1 2+Popt 2+Pop1 2+Popt+Pcode 
Operand2 SARAM 

Operand1 DARAM/ROM 2+dop2 2+dop2 2+dop2 2+dop2+Pcode 
Operand2 Ext 

Operand1 SARAM 2+dop2 2+dop2 2+dop2 2+dop2+Pcode 
Operand2 Ext 

Operand1 Ext 3+Pop1+dop2 3+Pop1 +dop2 3+Popt+dop2 3+Pop1+dop2+Pcode 
Operand2 Ext 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand1 DARAM/ROM n+1 n+1 n+1 n+1+Pcode 
Operand2 DARAM 

Operand1 SARAM n+1 n+1 n+1 n+1+Pcode 
Operand2 DARAM 

Operand1 Ext n+1+nPop1 n+1+nPop1 n+1+nPop1 n+ 1 +nPop1 +Pcode 
Operand2 DARAM 

Operand1 DARAM/ROM n+1 n+1 n+1 n+1+Pcode 
Operand2 SARAM 
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MADS Multiply and Accumulate With Dynamic Addressinfl. 

Cycle Timings for a Repeat {RPT) Execution (Continued) 

PR PDA PSA PE 

Operand1 SARAM n+1 n+1 n+1 n+1+Pcode 
Operand2 SARAM 2n+1t 2n+1t 2n+1t 2n+1t 

Operand1 Ext n+1+nPop1 n+1+nPop1 n+1+nPop1 n+1+nPopt+Pcode 
Operand2 SARAM 

Operand1 DARAM/ROM n+1+ndop2 n+1+ndop2 n+1+ndop2 n+1 +ndop2+Pcode 
Operand2 Ext 

Operand1 SARAM n+1+ndop2 n+1+ndop2 n+1+ndop2 n+ 1 +ndop2+Pcode 
Operand2 Ext 

Operand1 Ext 2n+ 1 +nPopt + 2n+ 1 +nPopt + 2n+ 1 +nPop1 + 2n+ 1 +nPop1 +ndop2+ 
Operand2 Ext ndop2 ndop2 ndop2 Pcode 

t If both operands are in the same SARAM block. 

Example 1 MADS DAT12 ;(DP• 6, PM= 0, CNF - 1). 

Before Instruction After Instruction 

Data Memory Data Memory 
30Ch Shi 30Ch Shi 

BMAR OFFOOhl BMAR OFFOOhl 

TREGO 4Ehl TREGO Shi 

Program Memory 
2hl 

Program Memory 
2hl FFOOh FFOOh 

p 45S972hl p 1ohl 

ACC [Kl 723EC41hl ACC @] 76975B3hl 
c c 

Example2 MADS * ,AR3 ;(PM= 0, CNF= 1) 

Before Instruction After Instruction 

ARP 21 ARP al 
AR2 30Chl AR2 30Chl 

Data Memory Data Memory 
Shi 30Ch Shi 30Ch 

BMAR OFFOOhl BMAR OFFOOhl 

TREGO 4t::hl TREGO Shi 

Program Memory Program Memory 
2hl FFOOh 2hl FFOOh 

p 45S972hl p 10hl 

ACC [Kl 723EC41hl ACC @] 76975B3hl 
c c 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

Modity Auxiliary Register MAR 

Direct: [labe~ MAR dma 
Indirect: [labe~ MAR {ind} [,next ARPJ 

0 s next ARP s 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 1 0 0 0 1 0 1 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 1 0 0 0 1 0 See Subsection 4.1.2 

(PC)+ 1 - PC 

Modifies ARP, AR(ARP) as specified by the indirect addressing field. Acts as 
a NOP in direct addressing mode. 

Affected by NDX. 

In the indirect addressing mode, the auxiliary registers and the ARP are modi­
fied; however, no use is made of the memory being referenced. Note that if the 
NDX bit of the PMST register is 0 and the auxiliary register 0 (ARO) is modified, 
then the ARCR and IN DX registers are also modified in the same way to main­
tain compatibility with the 'C2x. Note that TREG1 and TREG2 are only 5 bits 
and 4 bits long, respectively. MAR modifies the auxiliary registers or the ARP, 
and the old ARP is copied to the ARB field of the status register ST1. Any oper­
ation that MAR performs can also be performed with any instruction that sup­
ports indirect addressing. ARP can also be loaded by an LST instruction. The 
instruction LARP from the 'C25 instruction set is a subset of MAR (that is, MAR 
*,4 performs the same function as LARP 4). 

Direct: 
Indirect: 

PR 

1 

n 

MAR 

[labe~ MAR dma 
[labe~ MAR {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PDA PSA PE 

1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n+p 

*,ARl ;Load the ARP with 1. 

ARP 
ARB 

Before Instruction 

ol ARP 

ARB 

After Instruction 

1 I 
ol 
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MAR Modifr. Auxiliary Register 

Example2 MAR 

4-144 

*+,ARS ;Increment current auxiliary register 
;(ARl) and load ARP with 5. 

Before Instruction After Instruction 

AR1 34hl AR1 35hl 

ARP 11 ARP sl 
ARB ol ARP 1 I 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Multiply M PY 

Direct: 
Indirect: 
Short Immediate: 
Long Immediate: 

O :s: dma :s: 127 
0 :s: next ARP :s: 7 
-4096 :s; k :s; 4095 
-32768 :s; lk :s; 32767 

[labe~ MPV dma 
[labe~ MPV {ind} [,next ARPJ 
[labe~ MPV #k 
[labe~ MPV #lk 

Multiply data value times TREGO 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I O 1 0 1 0 1 0 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect:! 0 1 0 1 o 0 0 I I See Subsection 4.1.2 

Multiply TREGO by 13-bit immediate 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Short: I 1 1 0 I 13-Bit Constant 

Multiply TREGO by long immediate 
15 14 13 12 11 10 9 8 7 6 

0 0 Long:l 1 o 1 
16-Bit Constant 

If indirect or direct addressing: 

(PC)+ 1 - PC 
(TREGO) x (dma) - P register 

If short immediate value specified: 

(PC)+ 1 - PC 
(TREGO) x k - P register 

If long immediate value specified: 

(PC)+ 2 - PC 
(TREGO) x lk - P register 

5 
0 

4 3 2 0 
0 0 0 0 0 

The contents of the TREGO register are multiplied by the contents of the ad­
dressed data memory location. The result is placed in the P register. Short im­
mediate addressing multiplies TREGO by a signed 13-bit constant. The short 
immediate value is right-justified and sign-extended before the multiplication, 
regardless of SXM. 

1 (Direct, indirect, or short immediate addressing) 
2 (Long immediate addressing) 
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MPV Multiply 

Cycles Direct: [labe~ MPV dma 
Indirect: [labe~ MPV {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT} Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 
n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 

Short Immediate: [/abe~ MPV #k 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT} Execution 

Not Repeatable 

Long Immediate: [/abe~ MPV #lk 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+2p 

Cycle Timings for a Repeat (RPT} Execution 

Not Repeatable 

Exampte 1 MPY DAT13 1 (DP = 8) 

Before Instruction After Instruction 

Data Memory Data Memory 
7hl 40Dh 7hl 40Dh 

TREGO 6hl TREGO 6hl 
p 36hl p 2Ahl 
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Multiply MPV 

Example2 MPY *,AR2 

Before Instruction After Instruction 

ARP 1 I ARP 21 

AR1 40Dhl AR1 40Dhl 

Data Memory 
7hl 

Data Memory 
7hl 40Dh 40Dh 

TREGO Shi TREGO Shi 
p 3Shl p 2Ahl 

Example3 MPY #03lh 

Before Instruction After Instruction 

TREGO 2hl TREGO 2hl 
p 3Shl p S2hl 

Example4 MPY #01234h 

Before Instruction After Instruction 

TREGO 2hl TREGO 2hl 
p 3Shl p 24SBhl 
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MPYA Multiply and Accumulate Previous Product 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

4-148 

Direct: [labe~ MPYA dma 
Indirect: [labe~ MPYA {ind} [,next ARPJ 

O :s: dma:s: 127 
0 :s: next ARP :s: 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 0 1 0 0 0 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I o 1 0 1 0 0 0 0 1 See Subsection 4.1.2 

(PC)+ 1 - PC 
(ACC) + (shifted P register) - ACC 
(TREGO register) x (dma) - P register 

Affected by OVM and PM; affects C and OV. 

The contents of TREGO are multiplied by the contents of the addressed data 
memory location. The result is placed in the P register. The previous product, 
shifted as defined by the PM status bits, is also added to the accumulator. 

1 

Direct: [labe~ MPYA dma 
Indirect: [labe~ MPYA {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 
n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 
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Multiply and Accumulate Previous Product MPYA 

Example 1 MPYA DAT13 : (DP = 6, PM = 0) 

Before Instruction After Instruction 

Data Memory 
7hl 

Data Memory 
7hl 30Dh 30Dh 

TREGO 6hl TREGO 6hl 
p 36hl p 2Ahl 

ACC [Kl 54hl ACC [fil 8Ahl 
c c 

Example2 MPYA *,AR4 : (PM • 0) 

Before Instruction After Instruction 

ARP al ARP 41 

AR3 30Dhl AR3 30Dhl 

Data Memory 
7hl 

Data Memory 
7hl 30Dh 30Dh 

TREGO 6hl TREGO 6hl 
p 36hl p 2Ahl 

ACC [Kl 54hl ACC [fil 8Ahl 
c c 
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MPYS Multiply and Subtract Previous Product 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

4-150 

Direct: [labe~ MPYS dma 
Indirect: [labe~ MPYS {ind} [,next ARPJ 

0:s;dmas127 
0 s next ARP s 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 0 1 0 0 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I o 1 0 1 0 0 0 1 See Subsection 4.1.2 

{PC)+ 1 - PC 
{ACC} - {shifted P register) - ACC 
{TREGO) x {dma) - P register 

Affected by OVM and PM; affects C and OV. 

The contents of TREGO are multiplied by the contents of the addressed data 
memory location. The result is placed in the P register. The previous product, 
shifted as defined by the PM status bits, is also subtracted from the accumula­
tor, and the result is placed in the accumulator. 

1 

Direct: [labe~ MPYS dma 
Indirect: [labe~ MPYS {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 

n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 
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Multiply and Subtract Previous Product MPYS 

Example 1 MPYS DAT13 ;(DP= 6, PM= 0) 

Before Instruction After Instruction 

Data Memory Data Memory 
30Dh 7hl 30Dh 7hl 

TREGO Shi TREGO Shi 
p 3Shl p 2Ahl 

ACC [8J 54hl ACC OJ 1Ehl 
c c 

Example2 MPYS *,ARS ; (PM • 0) 

Before Instruction After Instruction 

ARP ~ ARP ~ 
AR4 30Dhl AR4 30Dhl 

Data Memory Data Memory 
30Dh 7hl 30Dh 7hl 

TREGO s~ TREGO Shi 
p 3Shl p 2Ahl 

ACC [8J 54hl ACC OJ 1Ehl 
c c 
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MPYU Multiety Unsigned 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

4-152 

Direct: [labe~ MPYU dma 
Indirect: [labe~ MPYU {ind} [,next ARPJ 

O :s; dma :s; 127 
0 :s; next ARP :s; 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 0 1 0 1 0 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Indirect: I 0 1 0 0 0 1 1 See Subsection 4.1.2 

(PC)+ 1 - PC 
Unsigned (TREGO) x unsigned (dma) - P register 

Not affected by SXM. 

The unsigned contents of TREGO are multiplied by the unsigned contents of 
the addressed data memory location. The result is placed in the P register. The 
multiplier acts as a signed 17 x 17-bit multiplier for this instruction, with the 
MSB of both operands forced to zero. 

The shifter at the output of the P register will always invoke sign-extension on 
the P register when PM= 3 (right-shift by 6 mode). Therefore, this shift mode 
should not be used if unsigned products are desired. 

The MPYU instruction is particularly useful for computing multiple-precision 
products, such as when multiplying two 32-bit numbers to yield a 64-bit prod­
uct. 

1 

Direct: [labe~ MPYU dma 
Indirect: [labe~ MPYU {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 
Cycle Timings for a Repeat (RPT) Execution 

...... ""'A ftC'A nc r-n r- ....... r...,,.. .- .. 
Operand DARAM n n n n+p 

Operand SARAM n n n n+p 
n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 
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Multiply Unsigned MPYU 

Example 1 MPYU DAT16 ; (DP • 4) 

Before Instruction After Instruction 

Data Memory 
QEEEE~ 

Data Memory 
QEEEEbl 210h 210h 

TREGO OFFFFhl TREGO OFFFFhl 
p 1N p OFFFE0001 hi 

Example2 MPYU * ,AR6 

Before Instruction After Instruction 

ARP sl ARP el 

AR5 210hl AR5 210hl 

Data Memory Data Memory 
210h OFFFFhl 210h OFFFFhl 

TREGO OFFFFhl TREGO OFFFFhl 

p 1hl p OFFFE0001 hi 
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NEG NegateAccumulator 

Syntax [labe~ NEG 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

Example2 

4-154 

None 

15 14 13 12 11 10 9 8 7 6 
0 0 0 0 

(PC)+ 1 - PC 
(ACC) x -1 - ACC 

Affected by OVM; affects OV and C. 

5 4 3 2 1 0 
0 0 0 0 1 0 

The contents of the accumulator are replaced with its arithmetic complement 
(twos complement). The OV bit is set when taking the NEG of 80000000h. If 
OVM = 1, the accumulator contents are replaced with 7FFFFFFFh. If OVM = 
0, the result is 80000000h. The carry bit C on the 'C5x is reset to zero by this 
instruction for all nonzero values of the accumulator, and is set to one if the 
accumulator equals zero. 

1 

[labe~ NEG 

Cycle Timings for a Slngle Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

NEG ;(OVM=X) 

Before Instruction After Instruction 

ACC 00 OFFFFF228~ ACC [Q] ODD8hl 
c c 

00 00 
ov ov 

NEG ; (OVM == 0) 

Before Instruction After Instruction 

ACC 00 080000000~ ACC [Q] 080000000~ 
c c 

00 [i] 
ov ov 
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NegateAccumulator NEG 

Example3 NEG ~ (OVM "' l) 
Before Instruction After Instruction 

ACC IX! oaooooooohl ACC ~ 7FFFFFFFhl 

c c 
IX! [i] 
ov ov 
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NMI Nonmaskable Interrupt 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

4-156 

[labe~ NMI 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 

(PC) + 1 - stack 
24h - PC 
1 - INTM 

Not affected by INTM. 

This instruction forces the program counter to the nonmaskable interrupt vec­
tor located at 24h. The instruction has the same affect as a hardware non­
maskable interrupt. Interrupts are globally disabled (INTM=1 ). Automatic con­
text save is not performed. 

1 

[labe~ NMI 

Cycle Timings for a Slngle Instruction 

PR PDA PSA PE 

4 4 4 4+3pt 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon­
tinuity is taken, these two instruction words are discarded. 

NMI ;Control is passed to program memory location 24h and 
;PC+l is pushed onto the stack 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

No Operation NOP 

[labe~ NOP 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 

(PC)+ 1 - PC 

No operation is performed. The NOP instruction affects only the PC. 
The NOP instruction is useful to create pipeline and execution delays. 

1 

[labe~ NOP 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

NOP ;No operation is performed. 
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NORM Normalize Contents of Accumulator 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

4-158 

[labe~ NORM {ind} 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
I 1 0 1 0 0 0 0 0 1 See Subsection 4.1.2 

(PC)+ 1 - PC 

If (ACC) = O; 
ThenTC -1; 

Else, if (ACC(31)) XOR (ACC(30)) = O: 
ThenTc-o, 

(ACC) x 2 - ACC 
Modify AR(ARP) as specified; 

ElseTC-1. 

Affects TC. 

The NORM instruction normalizes a signed number that is contained in the ac­
cumulator. Normalizing a fixed-point number separates it into a mantissa and 
an exponent. This is done by finding the magnitude of the sign-extended num­
ber. ACC bit 31 is exclusive-ORed with ACC bit 30 to determine if bit 30 is part 
of the magnitude or part of the sign extension. If they are the same, they are 
both sign bits, and the accumulator is left-shifted to eliminate the extra sign bit. 

The AR(ARP) is modified as specified to generate the magnitude of the expo­
nent. It is assumed that AR(ARP) is initialized before normalization begins. 
The default modification of the AR(ARP) is an increment. 

Multiple executions of the NORM instruction may be required to completely 
normalize a 32-bit number in the accumulator. Although using NORM with 
RPT does not cause execution of NORM to fall out of the repeat loop automati­
cally when the normalization is complete, no operation is performed for the re­
mainder of the repeat loop. Note that NORM functions on both positive and 
negative 2s-complement numbers. 

1 
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Cycles 

Example 1 

Example2 

Example3 

Normalize Contents of Accumulator NORM 

[labe4 NORM {incft 

Cycle Timings for a Slngle Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

n n n n+p 

NORM *+ 
Before Instruction After Instruction 

ARP ~ ARP ~ 
AR2 QQ~ AR2 Q1hl 
ACC [RJ OFFFFF001~ ACC [Q] OFFFE002hl 

TC TC 

31-Bit Normalization: 

LOOP 

MAR 
LAR 
NORM 
BCND 

* ,ARl 
ARl,#Oh 
*+ 
LOOP,NTC 

;Use ARl to store the exponent. 
;Clear out exponent counter. 
;One bit is normalized. 
;If TC = 0, magnitude not found yet. 

15-Bit Normalization: 

MAR* ,ARl 
LAR ARl,#OFh 
RPT #14 

NORM *-

;Use ARl to store the exponent. 
;Initialize exponent counter. 
;15-bit normalization specified (yielding 
;a 4-bit exponent and 16-bit mantissa). 
;NORM automatically stops shifting when first 
;significant magnitude bit is found, 
;performing NOPs for the remainder of the 
;repeat loops 

The method in Example 2 is used to normalize a 32-bit number and yields a 
5-bit exponent magnitude. The method in Example 3 is used to normalize a 
16-bit number and yields a 4-bit magnitude. If the number requires only a small 
amount of normalization, the Example 2 method may be preferable to the Ex­
ample 3 method. This is because the loop in Example 2 runs only until normal­
ization is complete. Example 3 always executes all 15 cycles of the repeat 
loop. Specifically, Example 2 is more efficient if the number requires three or 
less shifts. If the number requires six or more shifts, Example 3 is more effi­
cient. 
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NORM Normalize Contents of Accumulator 

4-160 

Note: 

The NORM instruction may be used without a specified operand. In that 
case, any comments on the same line as the instruction are interpreted as 
the operand. If the first character is an asterisk*, then the instruction is as­
sembled as NORM * with no auxiliary register modification taking place 
upon execution. Therefore, Tl recommends that you replace the NORM in­
structions with NORM *+ when you want the default increment modifica­
tion. 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

OR With DBMR or Long Immediate OPL 

Direct: [labe~ OPL [#/k,] dma 
Indirect: [labe~ OPL [#/k,] {ina} [,next ARPJ 

Os dma s 127 
lk: 16-bit constant 
0 s next ARP s 7 

OR DBMR contents with data value 
15 14 13 12 11 10 9 

Direct: I 0 1 0 1 0 0 

15 14 13 12 11 10 9 
Indirect: I 0 1 0 0 0 

OR long immediate with data value 

8 7 6 
0 

8 7 6 

5 4 3 2 0 
Data Memory Address 

5 4 3 2 0 
See Subsection 4.1.2 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: 0 1 O 1 1 1 O 0 Data Memory Address 

16-Bit Constant 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
O 1 O 1 1 1 O 1 1 See Subsection 4.1.2 lndirect:i-------------___.__......._ __________ -i 

lk unspecified: 
(PC)+ 1 - PC 
dma OR (DBMR) - dma 

lk specified: 

(PC) +2 - PC 
dma OR lk - dma 

Affects TC. 

16-Bit Constant 

If a long immediate constant is specified, it is ORed with the value at the speci­
fied data memory address. If the constant is not specified, the second operand 
to the OR operation is the contents of the dynamic bit manipulation register 
(DBMR). The result of the operation is always written back into the data 
memory location specified. The contents of the accumulator are not affected. 
If the result of the OR operation is 0, then the TC bit is set to 1. Otherwise, the 
TC bit is set to O. 

1 (long immediate value not specified) 

2 (long immediate value specified) 
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OPL OR With DBMR or Long Immediate 

Cycles 

Example 1 

Example2 

Direct: [labe~ OPL [#/k,] dma 
Indirect: [labe~ OPL [#/k,] {ina} [,next ARP! 

Cycle Timings for a Single Instruction 

PR PDA PSA 

Operand DARAM 1 1 1 

Operand SARAM 1 1 1 
3t 

Operand Ext 2+2d 2+2d 2+2d 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA 

Operand DARAM n n n 

Operand SARAM 2n-2 2n-2 2n-2 
2n+1t 

Operand Ext 4n-2+2nd 4n-2+2nd 4n-2+2nd 

t If the operand and the code are in the same SARAM block. 

Direct: [labe~ OPL [#/k,] dma 
Indirect: [labe~ OPL [#/k,] {ina} [,next ARP! 

Cycle Timings for a Single Instruction 

PR PDA PSA 

Operand DARAM 2 2 2 

Operand SARAM 2 2 2 

Operand Ext 3+2d 3+2d 3+2d 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA 

Operand DARAM n+1 n+1 n+1 

Operand SARAM 2n-1 2n-1 2n-1 

2n+2t 

Operand Ext 4n-1+2nd 4n-1+2nd 4n-1+2nd 

t If the operand and the code reside in same SARAM block. 

OPL DATlO 

DBMR 

Data Memory 
30Ah 

OPL #OFFFh,DATlO 

Data Memory 
30Ah 

; ( DP=6) 

Before Instruction 

OFFFOhl 

0001hl 

; ( DP=6) 

Before Instruction 

0001hl 

DBMR 

Data Memory 
30Ah 

Data Memory 
30Ah 

PE 

1+p 

1+p 

5+2d+p 

PE 

n+p 

2n-2+p 

4n+1+2nd+p 

PE 

2+2p 

2+2p 

6+2d+2p 

PE 

n+1+2p 

2n-1+2p 

4n+2+2nd+2p 

After Instruction 

OFFFOhl 

OFFF1hl 

After Instruction 

OFFFhl 
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OR With DBMR or Long Immediate OPL 

Example3 OPL * ,AR6 

Before Instruction After Instruction 

ARP ~1 ARP §I 
AR3 300hl AR3 300hl 

DBMR OFOhl DBMR OFOhl 

Data Memory 
OFhl 

Data Memory 
OFFhl 300h 300h 

Example4 OPL #llllh, * ,AR3 

Before Instruction After Instruction 

ARP §I ARP I ~1 
AR6 306hl AR6 306hl 

Data Memory Data Memory 
306h OEhl 306h 111 Fhl 
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OR OR With Accumulator 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

4-164 

Direct: 
Indirect: 
Long Immediate: 

0 :s; dma :s; 127 
O :s; next ARP :s; 7 
lk: 16-bit constant 
O :s; shift :s; 16 

[labe~ OR dma 
[labe~ OR {ind} [,next ARPJ 
[labe~ OR #lk [,shift] 

OR accumulator with data value 
15 14 13 12 11 10 9 8 7 6 

Direct: I 0 1 1 0 1 1 0 1 0 

15 14 13 12 11 10 9 8 7 6 
Indirect: I 0 1 1 0 1 0 1 1 

OR with ACC long immediate with shift 
15 14 13 12 11 10 9 8 7 6 

5 4 3 2 0 
Data Memory Address 

5 4 3 2 0 
See Subsection 4.1.2 

5 4 3 2 1 0 

0 0 SHFTt 
1

1 0 1 1 1 1 1 Long:1-. __________________ __._ _____ --t 

16-Bit Constant 

OR with ACC long immediate with shift of 16 
15 14 13 12 11 10 9 8 7 6 

1 0 1 1 0 1 0 LDng:I 
16-Bit Constant 

Direct or Indirect Addressing: 

(PC}+ 1 - PC 
(ACC(15--0}} OR dma - ACC(15--0} 
(ACC(31-16}} - ACC(31-16} 

Immediate Addressing: 

(PC}+ 2 - PC 
(ACC} OR lk x 28hift - ACC 
Not affected by SXM. 

5 4 3 2 1 0 

0 0 0 0 0 

The accumulator is ORed with the contents of the addressed data memory lo­
cation or with a left-shifted long immediate value. The result remains in the ac­
cumulator. All bit positions unoccupied by the data operand are zero-filled, no 
matter what the value of the SXM status bit is. Thus, the high word of the accu­
muiator is unaffected by this instruction if direct or indirect addressing is used, 
or if immediate addressing is used with a shift of zero. Zeros are shifted into 
the least significant bits of the operand if immediate addressing is used with 
a nonzero shift count. 

1 

2 

(Direct or indirect addressing} 

(Long immediate addressing} 
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OR With Accumulator OR 

Cycles Direct: [labe~ OR dma 
Indirect: [Jabe~ OR {ino; [,next ARPJ 

Cycle Timings for a Slngle Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 
n+1 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 

Long Immediate: [labe~ OR #lk [,shiftj 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+2p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

Example 1 OR OATS 1 (DP • 8) 

Before Instruction After Instruction 

Data Memory 
OFOOOhl 

Data Memory 
OFOOOhl 408h 408h 

ACC [R] 100002hl ACC [Kl 10F002hl 

c c 

Example2 OR *,ARO 

Before Instruction After Instruction 

ARP 11 ARP gl 

AR1 300hl AR1 300hl 

Data Memory Data Memory 
300h 1111hl 300h 1111hl 

ACC [R] 222hl ACC [Kl 1333hl 

c c 
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OR OR With Accumulator 

Example3 OR #OSlllh,8 

Before Instruction After lnatrucUon 

ACC [R) OFFOOOOhl ACC (ID OFF1100hl 
c c 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

OR ACCB With Accumulator ORB 

[labe~ ORB 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
0 0 0 0 0 100 

(PC}+ 1 - PC 
(ACC) OR (ACCB} - ACC 

The contents of the accumulator are ORed with the contents of the accumula­
tor buffer (ACCB}. The result is placed in the accumulator. 

[labe~ ORB 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

ORB 
Before Instruction After Instruction 

ACC 00 55555555hl ACC [R] 55555557hl 

c c 
ACCB 00000002hl ACCB 00000002hl 
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OUT Output Data to Port 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Source DARAM 

Source SARAM 

Source Ext 

4-168 

Direct: 

Indirect: 

PR 

Direct: [labe~ OUT dma , PA 
Indirect: [/abe~ OUT {ind}, PA [,next ARPJ 

Os dma s 127 
0 s next ARP s 7 
O s PA s 65535 

15 14 13 12 
0 0 0 0 

11 10 9 8 7 6 
1 1 0 0 0 

16-Bit Constant 

15 14 13 12 11 10 9 8 7 6 
0 0 0 0 0 0 1 

16-Bit Constant 

(PC)+ 2 - PC 
While (repeat counter) "" O 

Port address - address bus A 15-AO 
(dma) - Data bus D15-DO 
Port address + 1 - Port address 
(repeat counter - 1) - (repeat counter) 
(dma) - (port address) 

5 4 3 2 0 
Data Memory Address 

5 4 3 2 0 
See Subsection 4.1.2 

The OUT instruction writes a 16-bit value from a data memory location to the 
specified 1/0 port. The IS line goes low to indicate an 1/0 access, and the 
STRB, R/W, and READY timings are the same as for an external data memory 
write. Note that port addresses 50h-5Fh are memory-mapped (see subsec­
tion 5.1.1); the other port addresses are not. 

RPT can be used with the OUT instruction to write consecutive words from 
data memory to 1/0 space. In the repeat mode, the port address (PA) is increm­
ented after each access. 

2 

Direct: [/abe~ OUT dma , PA 
Indirect: [/abe~ OUT {ind}, PA [,next ARPJ 

Cycle Timings for a Single Instruction - - -

PDA PSA PE 

3+iodst 3+i0dst 3+iodst 5+i0dst+2Pcocte 

3+iodst 3+i0dst 3+i0dst 5+i0dst+2Pcocte 
4+i0dstt 

3+dsrc+iOctst 3+dsrc+iodst 3+dsrc+iodst 6+dsrc+iOctst+2Pcode 
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Output Data to Port OUT 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Source DARAM 3n+niodst 3n+niodst 3n+niodst 3n+3+niodst+2Pcods 

Source SARAM 3n+niodst 3n+niodst 3n+niodst 3n+3+niodst+2Pcods 
3n+1+niodstt 

Source Ext 5n-2+ndsrc+niodst 5n-2+ndsrc+nioctst 5n-2+nd8rc+ niodst 5n+ 1 +ndsrc+niodst+ 
2Pcods 

t If the source operand and the code are in the same SARAM block. 

Example 1 OUT DATO,PA7 ; (DP • 4) Output data word stored in data memory 
;location 200h to peripheral on port address 7. 

Example2 OUT *,PA15 ;Output data word referenced by current auxiliary 
;register to peripheral on port address 15. 
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PAC Load Accumulator With Product Register 

Syntax [/abe~ PAC 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

4-170 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 I 

(PC)+ 1 - PC 
(shifted P register) - ACC 

Affected by PM. 

The contents of the P register, shifted as specified by the PM status bits, are 
loaded into the accumulator. 

1 

[labe~ PAC 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

PAC ~{PM= 0) 
Before Instruction After Instruction 

p 144hl P I 144hl 

ACC (Kl 23hl ACC [R] I 144hl 
c c 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

Pop Top of Stack to Low Accumulator POP 

[/abe~ POP 

None 

15 14 13 
1 0 1 

12 
1 

(PC)+ 1 - PC 

11 
1 

(TOS) - ACC(15-0) 
0 - ACC(31-16) 
Pop stack one level 

10 
1 

9 8 7 6 5 4 3 2 0 
1 0 0 0 1 1 0 0 0 

The contents of the top of the stack (TOS) are copied to the low accumulator, 
and the stack is popped after the contents are copied. The upper half of the 
accumulator is set to all zeros. 

The hardware stack is last-in, first-out with eight locations. Any time a pop oc­
curs, every stack value is copied to the next higher stack location, and the top 
value is removed from the stack. After a pop, the bottom two stack words will 
have the same value. Because each stack value is copied, if more than seven 
stack pops (POP, POPD, RETC, RETE, RETI, or RET instructions) occur be­
fore any pushes occur, all levels of the stack contain the same value. No provi­
sion exists to check stack underflow. 

1 

[labe~ POP 

Cycle Timings for a Slngle Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

POP 

Before Instruction After Instruction 

ACC ~ 82hl ACC [X] 45hl 
c c 

Stack 45hl Stack 16hl 

16hl 7hl 

7hl 33hl 

33hl 42hl 

42hl 56hl 

56hl 37hl 

37hl 61hi 

61hl 61hl 
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POPD Pop Top of Stack to Data Memory 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

4-172 

Direct: [labe~ POPD dma 
Indirect: [labe~ POPD {ind} [,next ARPJ 

Os dmas 127 
0 s next ARP s 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 1 0 0 0 1 0 1 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 1 0 0 0 1 0 1 ol 1 See Subsection 4.1.2 

(PC)+ 1 - PC 
(TOS) - dma 
POP stack one level 

The value from the top of the stack is transferred into the data memory location 
specified by the instruction. The values are also popped in the lower seven lo­
cations of the stack. The stack operation is described in the previous instruc­
tion, POP. The lowest stack location remains unaffected. No provision exists 
to check stack underflow. 

Direct: [labe~ POPD dma 
Indirect: [labe~ POPD {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 2+d 2+d 2+d 4+d+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 

n+2t 

Operand Ext 2n+nd 2n+nd 2n+nd 2n+2+nd+p 

t If the operand and the code are in the same SARAM block. 
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Pop Top of Stack to Data Memory POPD 

Example 1 POPD DATlO ~(DP • 8) 

Before Instruction After Instruction 

Data Memory 
ssh I 

Data Memory 
92hl 40Ah 40Ah 

Stack 92hl Stack 72hl 

72hl Shi 

Shi 44hl 

44hl S1hl 

S1hl 75hl 

75hl 32hl 

32hl OAAhl 

OAAhl OAAhl 

Example2 POPD *+,ARl 

Before Instruction After Instruction 

ARP I QI ARP I l I 
ARO 300hl ARO 301hl 

Data Memory 
55hl 

Data Memory 
92hl 300h 300h 

Stack 92hl Stack 72hl 

72hl Shi 

Shi 44hl 

44hl S1hl 

S1hl 75hl 

75hl 32hl 

32hl OAAhl 

OAAhl OAAhl 
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PSHD Push Data Memory Value Onto Stack 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

4-174 

Direct: [/abe~ PSHD dma 
Indirect: [/abe~ PSHD {ino} [,next ARPJ 

Os dma s 127 
0 :s: next ARP :s: 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Direct: I o 1 1 1 0 1 1 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Indirect: I 0 1 0 1 1 ol 1 See Subsection 4.1.2 

(dma) - TOS 
(PC)+ 1 - PC 
Push all stack locations down one level. 

The value from the data memory location specified by the instruction Is trans­
ferred to the top of the stack. The values are also pushed down in the lower 
seven locations of the stack, as described in the PUSH instruction. The lowest 
stack location is lost. 

1 

Direct: [/abe~ PSHD dma 
Indirect: [labe~ PSHD {ino} [,next ARPJ 

Cycle Timings for a Slngle Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 
n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t if the operand and the COde are In the same SARAM block. 
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Push Data Memory Value Onto Stack PSHD 

Example 1 PSHD DAT127 1(DP • 3) 
Before lnatructlon After lnatructlon 

Data Memory Data Memory 
1FFh 65hl 1FFh 65hl 

Stack 2hl Stack 65hl 

33hl 2hl 

78hl 33hl 

99hl 7Bhl 

42hl 99hl 

50hl 42hl 

Ohl 50hl 

Ohl Ohl 

Examp/e2 PSHD *,ARl 

Before Instruction After lnatructlon 

ARP I ol ARP 1 I 
ARO I 1FFhl ARO 1FFhl 

Data Memory Data Memory 
1FFh 12hl 1FFh 12hl 

Stack 2hl Stack 12hl 

33hl 2hl 

7Bhl 33hl 

99hl 7Bhl 

42hl 99hl 

50hl 42hl 

Ohl 50hl 

Ohl Ohl 
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PUSH Push Low Accumulator Onto Stack 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

4-176 

[labe~ PUSH 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 1 0 0 0 1 1 1 1 0 0 

(PC)+ 1 - PC 
Push all stack locations down one level 
ACC(15--0) - TOS 

The contents of the lower half of the accumulator are copied onto the top of 
the hardware stack. The stack is pushed down before the accumulator value 
is copied. 

The hardware stack is last-in.first-out with eight locations. If more than eight 
pushes (due to CALA, CALL, CC, PSHD, PUSH, TRAP, INTR, and NMI in­
structions) occur before a pop, the first data values written will be lost with each 
succeeding push. 

1 

[labe~ PUSH 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

PUSH 

Before Instruction After Instruction 

ACC [K] 7hl ACC 00 7hl 
c c 

Stack 2hl Stack 7hl 

5hl 2hl 

3hl 5hl 

Ohl 3hl 

12hl Ohl 

86hl 12hl 

54hl 86hl 

3Fhl 54hl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Return From Subroutine RET 

[labe~ RET[D] 

None 

RET: 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 

RETD: 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 1 1 1 0 0 0 0 0 0 0 0 

(TOS) - PC 
Pop stack one level. 

The contents of the top stack register are copied into the program counter. The 
stack is then popped one level. RET is used with CALA, CALL, and CC for sub­
routines. The two one-word instructions or one two-word instruction following 
the RET instruction are fetched and executed before the execution of the re­
turn, if the delayed version is specified with the "D" suffix. 

1 

[labe~ RET 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

4 4 4 4+3pt 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon­
tinuity is taken, these two instruction words are discarded. 

[labe~ RETD 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 
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RET Return From Subroutine 

Example 1 RET 

Before Instruction After Instruction 

PC ~bl PC ;mil 

Stack 37hl Stack 45hl 

45hl 75hl 

75hl 21hl 

21hl 3Fhl 

3Fhl 45hl 

45hl 6Ehl 

6Ehl 6Ehl 

6Ehl 6Ehl 

Example2 RETD 
MAR *,4 
LACC #lh 

Before Instruction After Instruction 

PC 96hl PC 37h 

ARP ol ARP 4 

ACC Ohl ACC 01h 

Stack 37hl Stack 45h 

45hl 75h 

75hl 21h 

21hl 3Fh 

3Fhl 45h 

45hl 6Eh 

6Ehl 6Eh 

6Ehl 6Eh 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Return Conditionally RETC 

[labe~ RETC [DJ [cond1J [, cond.2] [, ... ] 

Conditions: 

RETC: 
15 14 13 12 

I 1 1 0 

RETCD: 
15 14 13 12 

I 1 1 1 1 

ACC=O 
Acc .. o 
ACC<O 
ACC:s;O 
ACC>O 
ACC0i!::O 
C=O 
C=1 
OV=O 
0V=1 
BTOlow 
TC=O 
TC=1 
Unconditional 

11 10 9 

1 I TP t 

11 10 9 

1 I TPt 

If (condition(s)) then 
(TOS) - PC 
Pop stack one level. 

Else, continue 

8 7 

8 7 

EQ 
NEQ 
LT 
LEQ 
GT 
GEO 
NC 
c 
NOV 
ov 
BIO 
NTC 
TC 
UNC 

6 5 
ZLVC t 

6 5 
zLvct 

4 

4 

3 2 1 0 
ZLVC t 

3 2 1 0 
ZLVCt 

A standard return, RET, is executed if the specified conditions are met. Note 
that not all combinations of conditions are meaningful. The two one-word in­
structions or one two-word instruction following the RETC are fetched and ex­
ecuted before the execution of the return, if the delayed version is specified 
with the "D" suffix. If the delayed instruction is specified, the two instruction 
words following the RETCD instruction have no effect on the conditions being 
tested. 

1 

[labe~ RETC [cond1] [, cond.2] [, ... ] 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Conditions True 2 2 2 2+p 

Condition False 2 2 2 2+p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 
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RETC Return Conditionally 

Example 1 

Example2 

4-180 

[labe~ RETCD [cond1) [, cono2) [, ... ) 

Cycle Timings for a Slngle Instruction 

PR PDA PSA PE 

Conditions True 4 4 4 4+3pt 

Condition False 2 2 2 2+p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon­
tinuity is taken, these two instruction words are discarded. 

RETC GEQ,NOV ;A return, RET, is executed if the 
;accununulator contents are positive and the 
;OV bit is a zero. 

RETCD C 
MAR*,4 
LARAR3,#lh 

;A return, RET, is executed if the carry 
;bit is set. The two instructions following 
;the return instruction are executed 
;before the return is taken. 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

Enable Interrupts and Return From lnterruet RETE 

[labe~ RETE 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 1 0 0 0 1 1 1 0 1 0 

(TOS) - PC 
Pop stack one level. 
O - global interrupt enable (INTM bit in STO) 

The contents of the top stack register are copied into the program counter. The 
stack is then popped one level. RETE automatically clears the global interrupt 
enable bit to O (INTM in STO) and pops the shadow register values (see RETI 
description). RETE is the equivalent of setting the INTM bit to 0 and executing 
a RETI instruction. 

1 

[labe~ RETE 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

4 4 4 4+3pt 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon­
tinuity is taken, these two instruction words are discarded. 

RETE 

Before Instruction After Instruction 

PC 96hl PC 37hl 

STO xx6xhl STO xx4xhl 

Stack 37hl Stack 45hl 

45hl 75hl 

75hl 21hl 

21hl 3Fhl 

3Fhl 45hl 

45hl 6Ehl 

6Ehl 6Ehl 

6Ehl 6Ehl 
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RETI Return From Interrupt 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

4-182 

[labe~ RETI 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 1 1 0 0 0 1 1 1 0 0 0 

(TOS) - PC 
Pop stack one level. 

The contents of the top stack register are copied into the program counter. The 
RETI instruction also pops the values in the shadow registers (stored when an 
interrupt was taken) back into their corresponding strategic registers. The fol­
lowing registers are shadowed: ACC, ACCB, PREG, STO, ST1, PMST, ARCR, 
INDX, TREGO, TREG1, and TREG2. The XF bit in status register ST1 is not 
saved or restored to/from the shadow registers during interrupt service rou­
tines. 

1 

[/abe~ RETI 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

4 4 4 4+3pt 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon­
tinuity is taken, these two instruction words are discarded. 

RETI 
Before Instruction After Instruction 

PC 96hl PC 37hl 

Stack 37hl Stack 45hl 

45hl 75hl 

75hl 21hl 

21hl 3Fhl 

3Fhl 45hl 
A chi A~hl 
"'TWiii --··· 
6Ehl 6Ehl 

6Ehl 6Ehl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

Rotate Accumulator Left ROL 

[/abe~ ROL 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1101 1 1 0 0 0 0 0 1100 

(PC) + 1 - PC 
C - ACC(O) 
(ACC(31)) - C 
(ACC(30-0)) - ACC(31-1) 

Affects C. 
Not affected by SXM. 

The ROL instruction rotates the accumulator left one bit. The MSB is shifted 
into the carry bit, and the value of the carry bit from before the execution of the 
instruction is shifted into the LSB. 

1 

[/abe~ ROL 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

ROL 

Before Instruction After Instruction 

ACC [QJ OB0001234hl Ace m 1 6000246ah1 
c c 
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ROLB Rotate ACCB and Accumulator Left 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

4-184 

[labe~ ROLB 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
11 0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 

(PC) + 1 - PC 
C - ACCB(O) 
(ACCB(30-0)) - ACCB(31-1) 
(ACCB(31)) - ACC(O) 
(ACC(30-0)) - ACC(31-1) 
(ACC(31)) - C 

Affects C. 
Not affected by SXM. 

The ROLB instruction causes a 65-bit rotation. The contents of both the accu­
mulator (ACC) and accumulator buffer (ACCB) are rotated to the left by one 
bit. The MSB of the original contents in the accumulator shifts into the carry 
position. The original value of the carry bit (C) shifts into the LSB position of 
the accumulator buffer, and the MSB of the original contents of the accumula­
tor buffer shifts into the LSB position of the accumulator. 

1 

[labe~ ROLB 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

ROLB 
Before Instruction After Instruction 

ACC [i] I 08080808hl ACC [Q] I 10101011hl 
c c 

ACCB OFFFFFFFEhl ACCB OFFFFFFFDhl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

Rotate Accumulator Right ROR 

[labe~ ROR 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 

(PC) + 1 - PC 
C - ACC(31) 
(ACC(O)) - C 
(ACC(31-1)) - ACC(30-0) 

Affects C. 
Not affected by SXM. 

The ROR instruction rotates the accumulator right one bit. The LSB is shifted 
into the carry bit, and the value of the carry bit from before the execution of the 
instruction is shifted into the MSB. 

[labe~ ROR 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

ROR 

Before Instruction After Instruction 

ACC [QJ OB0001235hl ACC [j] 5800091Ahl 

c c 
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RORB Rotate ACCB and Accumulator Right 

Syntax [/abe~ RORB 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

4-186 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 1 1 0 0 0 0 1 0 1 0 1 

(PC) + 1 - PC 
C - ACC(31) 
(ACC(31-1)) - ACC(3CH>) 
(ACC(O)) - ACCB(31) 
(ACCB(31-1)) - ACCB(3CH>) 
(ACCB(O)) - C 

Affects C. 
Not affected by SXM. 

The RORB instruction causes a 65-bit rotation. The contents of both the accu­
mulator (ACC) and accumulator buffer (ACCB) are rotated to the right by one 
bit. The LSB of the original contents in the accumulator buffer shifts into the 
carry position. The original value of the carry bit (C) shifts into the MSB position 
of the accumulator, and the LSB of the original contents of the accumulator 
shifts into the MSB position of the accumulator buffer. 

1 

[/abe~ RORB 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

RORB 
Before Instruction After Instruction 

ACC OJ 08080808hl ACC [Q] os4040404h I 
c c 

ACCB OFFFFFFFEh I ACCB 7FFFFFFFhl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Reeeat Next Instruction RPT 

Direct: [labe~ RPT dma 
Indirect: 
Short Immediate: 

[labe~ RPT {ind} [,next ARPJ 
[labe~ RPT #k 

Long Immediate: [labe~ RPT #lk 

0 s dma s 127 
0 s next ARP s 7 
Osks255 
0 s lk s 65535 

Repeat next instruction 
15 14 13 12 11 

Direct: I 0 0 0 0 

15 14 13 12 11 
Indirect: I 0 0 0 0 1 

10 9 8 7 6 
0 1 1 0 

10 9 8 7 6 
0 1 1 

Repeat next instruction specified by long immediate 
15 14 13 12 11 10 9 8 7 6 

Long: I 1 0 0 
16-Bit Constant 

Repeat next instruction specified by short immediate 
15 14 13 12 11 10 

Short: I 0 1 0 

Direct or Indirect Addressing: 
(PC)+ 1 - PC 
(dma) - RPTC 

Short Immediate Addressing: 
(PC)+ 1 - PC 
k - RPTC 

Long Immediate Addressing: 
(PC)+ 2 - PC 
lk - RPTC 

9 8 7 6 

1 

5 4 3 2 
Data Memory Address 

5 4 3 2 
See Subsection 4.1.2 

5 4 3 2 

0 0 0 1 0 

5 4 3 2 

8-Bit Constant 

0 

0 

0 

0 

0 

The repeat counter (RPTC) is loaded with the addressed data memory loca­
tion if direct or indirect addressing is used, an 8-bit immediate value if short 
immediate addressing is used, or a 16-bit immediate value if long immediate 
addressing is used. The instruction following the RPT is repeated n times, 
where n is one more than the initial value of the RPTC. Since the RPTC cannot 
be saved during a context switch, repeat loops are regarded as multicycle in­
structions and are not interruptible. However, the processor can halt a repeat 
loop in response to an external ROIO signal. The execution restarts when 
ROIO/AOLOA are deasserted.The RPTC is set to zero on a device reset. 
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APT Repeat Next Instruction 

Words 

Cycles 

Example 1 

4-188 

APT is especially useful for block moves, multiply-accumulates, normaliza­
tion, and other functions. The repeat instruction itself is not repeatable. 

1 (Direct, indirect, or short immediate addressing} 

2 (Long immediate addressing} 

Direct: [labe~ RPT dma 
Indirect: [labe~ RPT {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA 

Operand DARAM 1 1 1 

Operand SARAM 1 1 1 

2t 

Operand Ext 1+d 1+d 1+d 

Cycle Timings for a Repeat (RPl) Execution 

Not Repeatable 

t If the operand and the code are in the same SARAM block. 

Short Immediate: [labe~ RPT #k 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPl) Execution 

Not Repeatable 

Long Immediate: [labe~ RPT #lk 

PR 

2 

RPT 

Cycle Timings for a Single Instruction 

PDA PSA PE 

2 2 2+2p 

Cycle Timings for a Repeat (RPl) Execution 

Not Repeatable 

DAT127 ;(DP~ 31) 

Before Instruction 

Data Memory 
OFFFh 

RPTC 

OChl 

Ohl 

Data Memory 
OFFFh 

RPTC 

PE 

1+p 

1+p 

2+d+p 

After Instruction 

OChl 

OChl 
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Reeeat Next Instruction RPT 

Example2 RPT * ,ARl 
Before Instruction After Instruction 

ARP ol ARP 11 

ARO 300hl ARO 300hl 

Data Memory Data Memory 
300h OFFFhl 300h OFFFhl 

RPTC Ohl RPTC OFFFhl 

Example3 RPT #1 ;Repeat next instruction 2 times. 
Before Instruction After Instruction 

RPTC Ohl RPTC I 1hl 

Example4 RPT #llllh ;Repeat next instruction 4370 times. 
Before Instruction After Instruction 

RPTC Ohl RPTC 1111hl 
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RPTB Repeat Block 

Syntax 

Operands 

Opcode 

[labe~ RPTB pma 

O s pma s 65535 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Long: 11 0 1 1 0 1 0 

16-Bit Constant 
0 0 0 

Execution 

Description 

Words 

Cycles 

Example 

4-190 

1 - BRAF 
PC+2 _. PASR 
pma _. PAER 

The RPTB instruction allows a block of instructions to be repeated a number 
of times specified by the memory-mapped block repeat count register (BRCR) 
without any penalty for looping. The BRCR must be loaded before execution 
of an RPTB instruction. When the RPTB is executed, the start and end address 
pointers PASR and PAER are loaded with PC+2 and pma, respectively. The 
block-repeat-active status bit (BRAF) is set to one. Block repeat can be deacti­
vated by clearing the BRAF bit. The number of loop iterations is given by 
(BRCR) + 1. 

The RPTB instruction is interruptible. However, RPTB instructions cannot be 
nested unless the BRCR, PAER, and PASR registers are appropriately saved 
and restored and the block repeat active flag (BRAF) is properly set. Single-in­
struction repeat loops (APT, RPTZ) can be included as part of RPTB blocks. 

2 

[labe~ RPTB pma 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+2p 

Cycle Timings for a Repeat (RPT) Execution 

SPLK 
RPTB 
LACC 
ADD 
SACL 

end_block 

Not Repeatable 

#iterations minus 1,BRCR;initialize BRCR 
end block --1 -
DATT 
DAT2 
DATl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

Repeat Preceded by Clearing of ACC and PREG RPTZ 

Long Immediate: [/abe~ RPTZ #lk 

0 :S lk :S 65535 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

1 0 1 1 1 1 1 0 1 1 0 0 0 0 

16-Bit Constant 

0 - ACC 
0 - PREG 
(PC)+ 1 - PC 
lk - RPTC 

The RPTZ instruction clears the accumulator and product register and repeats 
the instruction following the RPTZ ntimes, where n = lk+ 1. RPTZ is equivalent 
to the following instruction sequence: 

MPY #0 
PAC 
RPT #<lk> 

2 

Long Immediate: [labe~ RPTZ #lk 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+2p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

RPTZ #7FFh ;Zero product register and accumulator. 
MACD pma,*+ ;Repeat MACD 2048 times. 
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SACB Store Accumulator in ACCB 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

4-192 

[labe~ SACB 

None 

15 14 13 12 11 10 9 8 
0 0 

(PC}+ 1 - PC 
(ACC) -+ ACCB 

7 6 
0 0 

5 4 3 2 0 
0 0 

The accumulator contents are copied to the accumulator buffer (ACCB). 

1 

[labe~ SACB 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n 

SACB 

n 

ACC 

ACCB 

n n+p 

Before Instruction 

7C638421hl ACC 

ACCB 

After Instruction 

7C638421hl 

7C638421hl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Store High Accumulator With Shift SACH 

Direct: [labe~ SACH dma [,shifij 
Indirect: [labe~ SACH {ind} [,shift[, next ARPJ] 

Os dma s 127 
0 s next ARP s 7 
0 s shifts 7 (defaults to 0) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 1 0 0 1 1 SHFf 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 0 SHFt See Subsection 4.1.2 

t See Section 4.5. 

(PC)+ 1 - PC 
[(ACC) x 2shift] - dma 

Not affected by SXM 

The SACH instruction copies the entire accumulator into a shifter, where it left­
shifts the entire 32-bit number from 0 to 7 bits. It then copies the upper 16 bits 
of the shifted value into data memory. The accumulator itself remains unaf­
fected. 

1 

Direct: [labe~ SACH dma [,shifij 
Indirect: [labe~ SACH {ind} [,shiftf.,next ARPJ] 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 2+d 2+d 2+d 4+d+p 

Cycle Timings for a Repeat (APT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 

n+2t 

Operand Ext 2n+nd 2n+nd 2n+nd 2n+2+nd+p 

t If the operand and the code are in the same SARAM block. 
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SACH Store Hi9.,h Accumulator With Shift 

Example 1 SACH DATlO,l ; (DP = 4) 
Before Instruction After Instruction 

ACC [Kl 4208001hl ACC !Kl 4208001hl 

c c 
Data Memory 

Ohl 
Data Memory 

0841hl 20Ah 20Ah 

Example2 SACH *+,O,AR2 
Before Instruction After Instruction 

ARP 1 I ARP 21 

AR1 300hl AR1 301hl 

ACC 00 4208001hl ACC [RJ 4208001hl 

c c 
Data Memory 

Ohl 
Data Memory 

0420hl 300h 300h 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Store Low Accumulator With Shift SACL 

Direct: [labe~ SACL dma [,shiftj 
Indirect: [labe~ SACL {ind} [,shift[, next ARPJ] 

0sdmas127 
0 s next ARP s 7 
0 s shift s 7 (defaults to 0) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 1 0 0 1 0 SHFT 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 1 0 0 0 SHFt 1 See Subsection 4.1.2 

t See Section 4.5. 

(PC)+ 1 - PC 
16 LSBs of [(ACC) x 2shifl] - dma 

Not affected by SXM. 

The low-order bits of the accumulator are shifted left from 0 to 7 bits, as speci­
fied by the shift code, and stored in data memory. The low-order bits are filled 
with zeros on the shift, and the high-order bits are lost. The accumulator itself 
remains unaffected. 

Direct: [labe~ SACL dma [,shiftj 
Indirect: [labe~ SACL {ind} [,shift[, next ARPJ] 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 

2t 

Operand Ext 2+d 2+d 2+d 4+d+p 

Cycle Timings for a Repeat (APT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 

n+2t 

Operand Ext 2n+nd 2n+nd 2n+nd 2n+2+nd+p 

t If the operand and the code are in the same SARAM block. 
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SACL Store Low Accumulator With Shift 

Example 1 SACL DATll, 1 ; (DP = 4) 

Before Instruction After Instruction 

ACC [K] 7C63 84211 ACC [R] 7C638421hl 
c c 

Data Memory 
oshl 

Data Memory 
0842hl 20Bh 20Bh 

Example2 SACL *,O,AR7 

Before Instruction After Instruction 

ARP I ~1 ARP I 11 
AR6 300hl AR6 300hl 

ACC IX! OOFF 8421hl ACC [Kl OOFF8421hl 
c c 

Data Memory 
Oshl 

Data Memory 
8421hl 300h 300h 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

Store Accumulator in Memory-Maee,ed Reg,,ister SAM M 

Direct: [labe~ SAMM dma 
Indirect: [labe~ SAMM {ind}[, next ARPJ 

Os dma s 127 
0 s next ARP s 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 1 0 0 0 1 0 0 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 1 0 0 0 1 0 0 0 1 See Subsection 4.1 .2 

(PC)+ 1 - PC 
(ACC) - dma(0-7) 

The low word of the accumulator is copied to the addressed memory-mapped 
register. The upper 9 bits of the data address are set to zero, regardless of the 
current value of DP or the upper 9 bits of AR(ARP). This instruction allows the 
accumulator to be stored to any memory location on data page 0 without modi­
fying the DP field in status register STO. 

Direct: [labe~ SAMM dma 
Indirect: [labe~ SAMM {ind}[, next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand MMRt 1 1 1 1+p 

Operand MMPORT 2+i0dst 2+i0dst 2+i0dst 4+iodst 

Cycle Timings for a Repeat (APT) Execution 

PR PDA PSA 

Operand MMR* n n n 

Operand MMPORT 2+niodst 2+niodst 2+niodst 

t Add one more cycle if source is a peripheral memory mapped register. 
* Add n more cycles if source is a peripheral memory mapped register. 

SAMM PRD ; (DP = 6) 

Before Instruction 

PE 

n+p 

2n+2+p+ niodst 

After Instruction 

ACC f!Ohl ACC I f!Qhl 
PRO 

Data Memory 
325h 

oshl 

OFhl 

PAD 

Data Memory 
325h 

I Sohl 
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SAMM Store Accumulator in Memory-Mapped Register 

Example2 SAMM *,AR2 ;(BMAR = lFh) 

ARP 
AR7 
ACC 

BMAR 
Data Memory 

31Fh 

Before Instruction 
...._ _____ 7~1 ARP 

:========31::F~hl AR7 
::=:=:=:=::OS::O:::hl ACC 
.._ _____ Oh_,I BMAR 

Data Memory 
.._ ____ 1_1 h_,I 31 Fh 

After Instruction 

21 
31Fhl 

oaohl 
oaohl 

11hl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

Store Auxiliary Register SAR 

Direct: [labe~ SAR AR, dma 
Indirect: [labe~ SAR AR,{ind} [,next ARPJ 

0sdmas127 
Os AR::s:7 
0 s next ARP s 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 1 0 0 0 0 ARX f 0 Data Memory Address 

15 14 13 12 11 10 9 8 5 4 3 2 0 
Indirect: I 1 0 0 0 0 I ARX t See Subsection 4.1.2 

t See Section 4.5. 

(PC)+ 1 - PC 
(AR) - dma 

The contents of the designated auxiliary register (ARx) are stored in the ad­
dressed data memory location. When the contents of the current auxiliary reg­
ister are modified in the indirect addressing mode, SAR ARn (when n =ARP) 
stores the value of the auxiliary register contents before it is incremented, de­
cremented, or indexed by INDX. 

1 

Direct: [/abe~ SAR AR, dma 
Indirect: [labe~ SAR AR,{ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA 

Operand DARAM 1 1 1 

Operand SARAM 1 1 1 
2t 

Operand Ext 2+d 2+d 2+d 

Cycle Timings for a Repeat (RPT} Execution 

PR PDA PSA 

Operand DARAM n n n 

Operand SARAM n n n 
n+2t 

Operand Ext 2n+nd 2n+nd 2n+nd 

t If the operand and the code are in the same SARAM block. 

SAR AR0,DAT30 ; (DP = 6) 
Before Instruction 

ARO jl7hl ARO 

Data Memory Data Memory 
31Eh 1Bhl 31Eh 

PE 

1+p 

1+p 

4+d+p 

PE 

n+p 

n+p 

2n+2+nd+p 

After Instruction 

37hl 

37hl 
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SAR Store Auxiliary Register 

Example2 SAR 

4-200 

ARO,*+ 

ARO 
Data Memory 

401h 

Before Instruction 

401hl ARO 
Data Memory 

401h 

After Instruction 

I 402hl 

401hl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

Example2 

Barrel ShiftACC as se,ecified bi; TREG1, SATH 

SATH 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
101111100101 1 0 0 

(PC)+ 1 -+ PC 
16 x (TREG1 (4)) - count 
(ACC) right-shifted by count - ACC 

Affected by SXM. 

The accumulator is barrel-shifted right by 16 bits if bit 4 of TREG 1 is a one. If 
bit 4 of TREG1 is a zero, the accumulator is unaffected. Zeros are shifted in 
if SXM=O. Copies of ACC(31) are shifted in if SXM=1. The SATH instruction 
in conjunction with the SATL instruction allows a 2-cycle 0- to 31-bit right shift. 
The carry bit is unaffected. 

1 

SATH 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

SATH ; ( SXM = 0) 

Before Instruction After Instruction 

ACC US] OFFFFOOOOhl ACC [R] OOOOFFFFhl 

c c 
TREG1 xx1xhl TREG1 xx1xhl 

SATH ; (SXM = 1) 
Before Instruction After Instruction 

ACC [I] OFFFFOOOOhl ACC lRJ OFFFFFFFFhl 

c c 
TREG1 xx1xhl TREG1 xx1xhl 
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SATL Barrel-Shift ACC as se,ecified by TREG1 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

4-202 

SATL 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
101111100 101 1 0 0 

(PC)+ 1 - PC 
(TREG1 (3-0)) - count 
(ACC) right-shifted by count - ACC 

Affected by SXM. 

The accumulator is barrel-shifted right by the value specified in the 4 LSBs of 
TREG1. Zeros are shifted in if SXM=O. Copies of ACC(31) are shifted in if 
SXM=1. The SATL instruction in conjunction with the SATH instruction allows 
a 2-cycle 0- to 31-bit right shift. The carry bit is unaffected. 

1 

SATL 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (APT) Execution 

n n n n+p 

SATL ; ( SXM = 0) 

Before Instruction After Instruction 

ACC [R] OFFFFOOOOhl ACC !Kl 3FFFCOOOhl 
c c 

TREG1 x2hl TREG1 x2hl 

SATL ; (SXM = 1) 

Before Instruction After Instruction 

ACC 00 OFFFFOOOOhl ACC !Kl OFFFFCOOOhl 
c c 

TREG1 x2hl TREG1 x2hl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

Subtract ACCB From Accumulator SBB 

[labe~ SBB 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 

(PC)+ 1 - PC 
(ACC) - (ACCB) - ACC 

The contents of the accumulator buffer (ACCB) are subtracted from the con­
tents of the accumulator. The result is stored in the accumulator, and the accu­
mulator buffer is not affected. The carry bit is reset to zero if the result of the 
subtraction generates a borrow. 

[labe~ SBB 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

SBB 
Before Instruction After Instruction 

ACC [Kl 20000000hl ACC DJ 10000000hl 
c c 

ACCB 10000000hj ACCB 10000000hl 
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SBBB Subtract ACCB From Accumulator With Borrow 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

Example2 

4-204 

[labe~ SBBB 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 1 0 0 0 0 1 1 0 0 

(PC)+ 1 - PC 
(ACC) - (ACCB) - (Logical inversion of C) - ACC 

The contents of the accumulator buffer (ACCB) and the logical inversion of the 
carry bit are subtracted from the accumulator(ACC). The results are stored in 
the accumulator, and the accumulator buffer is not affected. The carry bit is set 
to zero if the result generates a borrow. 

1 

[labe~ SBBB 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

SBBB 
Before Instruction After Instruction 

ACC OJ 20000000hl ACC m 10000000hl 

c c 
ACCB 10000000hl ACCB 10000000hl 

SBBB 
Before Instruction After Instruction 

ACC [QJ 098012hl ACC LJJ 01hl 

c c 
ACCB 098010hl ACCB 098010hl 

Assembly Language Instructions 



Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

Subtract From Auxiliary Refl,ister Short Immediate SBRK 

[labe~ SBRK #k 

0 :S k :S 255 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Short: I 0 1 O O 8-Bit Constant 

(PC)+ 1 - PC 
AR(ARP) -8-bit positive constant - AR(ARP) 

The 8-bit immediate value is subtracted, right-justified, from the currently se­
lected auxiliary register with the result replacing the auxiliary register contents. 
The subtraction takes place in the ARAU, with the immediate value treated as 
a 8-bit positive integer. 

1 

[labe~ SBRK #k 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

SBRK #OFFh 

Before Instruction After Instruction 

ARP 11 ARP I 11 
AR7 Ohj AR7 L OFF01hj 
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SETC Set Control Bit 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

4-206 

[labe~ SETC control bit 

control bit: STO or ST1 bit (from : {C, CNF, HM, INTM, OVM, SXM, TC, XF}) 

Set overflow mode (OVM) 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 1 0 1 1 1 1 1 0 0 1 0 0 0 0 1 

Set sign extension mode (SXM) 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 1 0 1 1 1 1 0 0 0 0 0 1 

Set hold mode (HM) 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 0 1 1 1 1 1 0 0 1 0 0 0 0 1 

Set TC bit 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 1 0 1 1 1 1 1 0 0 1 0 0 1 0 

Set carz (C) 
15 1 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 1 0 1 1 1 1 1 0 0 1 0 0 1 1 

Set XF pin high 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 1 

Set CNF bit 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 

Set INTM bit 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 0 1 1 1 1 0 0 1 0 0 0 0 0 

(PC)+ 1 - PC 
1 - control bit 

The specified control bit is set to 1. Note that LST may also be used to load 
STO and ST1 . See subsection 3.6.3 for more information on each control bit. 

1 

[labe~ SETC control bit 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

SETC TC ;TC is bit 11 of STl 
Before Instruction 

ST1 x1xxh I ST1 

After Instruction 

x9xxhl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

Shift Accumulator Left SFL 

[labe~ SFL 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 1 1 0 0 0 0 0 1 0 0 1 

(PC)+ 1 - PC 
(ACC(31)) - C 
(ACC(30-0)) - ACC(31-1} 
O - ACC(O) 

Affects C. 
Not affected by SXM bit. 

The SFL instruction shifts the entire accumulator left one bit. The least signifi­
cant bit is filled with a zero, and the most significant bit is shifted into the carry 
bit (C). Note that SFL, unlike SFR, is unaffected by SXM. 

1 

[/abe~ SFL 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

SFL 

Before Instruction After Instruction 

ACC [Kl OB0001234hl ACC DJ I 60002468hl 

c c 

4-207 



SFLB Shift ACCB and Accumulator Left 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

4-208 

[labe~ SFLB 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
1 0 1 1 1 1 1 0 0 0 0 1 0 1 0 

{PC)+ 1 - PC 
O - ACCB(O} 
{ACCB{30--0)} - ACCB{31-1) 
{ACCB{31}} - ACC(O} 
(ACC(30--0}} - ACC(31-1) 
(ACC{31} - C 

Affects C. 
Not affected by SXM bit. 

The SFLB instruction shifts the concatenation of the accumulator (ACC} and 
accumulator buffer (ACCB} left by one bit position. The least significant bit of 
the accumulator buffer is filled with a zero, and the most significant bit of the 
accumulator buffer is shifted into the least significant bit of the accumulator. 
The most significant bit of the accumulator is shifted into the carry bit (C). The 
SFLB instruction is unaffected by SXM. 

1 

[labe~ SFLB 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n+p 

SFLB 

Before Instruction After Instruction 

ACC ~ OB0001234hl ACC DJ 60002469hl 

c c 
ACCB OB0001234hl ACCB 6000246Bhl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

Example2 

Shift,Accumulator Right SFR 

[labe~ SFR 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
101 100 0 0 0 1 0 0 

(PC)+ 1 - PC 

If SXM = O: 
Then 0 - ACC(31). 

lfSXM = 1 
Then (ACC(31)) - ACC(31). 

(ACC(31-1)) - ACC(30-0) 
(ACC(O)) - C 

Affects C. 
Affected by SXM bit. 

The SFR instruction shifts the accumulator right one bit. 

If SXM = 1, the instruction produces an arithmetic right shift. The sign bit (MSB) 
is unchanged and is also copied into bit 30. Bit O is shifted into the carry bit (C). 

If SXM = 0, the instruction produces a logic right shift. All of the accumulator 
bits are shifted right by one bit. The least significant bit is shifted into the carry 
bit, and the most significant bit is filled with a zero. 

1 

[labe~ SFR 
Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (APT) Execution 

n n n n+p 

SFR ; (SXM = 0) 
Before Instruction After Instruction 

ACC [8J OB0001234hl ACC @] 5800091Ahl 

c c 

SFR ; ( SXM = l) 
Before Instruction After Instruction 

ACC [8J OBOOO 1234h I ACC @] OD800091Ahl 
c c 
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SFRB Shift ACCB and Accumulator Right 

Syntax [/abe~ SFRB 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

4-210 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
101 1110000101 1 

(PC}+ 1 - PC 

If SXM=O: 
Then 0 - ACC(31} 

If SXM=1: 
Then (ACC(31}} - ACC(31} 

(ACC(31-1}} - ACC(30-0} 
(ACC(O}} - ACCB (31} 
(ACCB(31-1}} - ACCB(30-0} 
(ACCB(O}} - C 

Affects C. 
Affected by SXM. 

The SFRB instruction shifts the concatenation of the accumulator (ACC) and 
accumulator buffer (ACCB} right by one bit position. The LSB of the ACCB is 
shifted into the carry bit. 

If SXM=1, the instruction produces an arithmetic right shift. The sign bit (MSB} 
of the accumulator is unchanged and is also copied into bit 30. Bit O of the accu­
mulator buffer is shifted into the carry bit (C). 

If SXM=O, the instruction produces a logic right shift. All of the accumulator and 
accumulator buffer bits are shifted right by one bit. The least significant bit of 
the accumulator buffer is shifted into the carry bit, and the most significant bit 
of the accumulator becomes zero. 

1 

[labe~ SFRB 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n n n.Ln 
" • I"' 

SFRB ~(SXM = 0) 
Before Instruction After Instruction 

ACC US] OB0001235hl ACC [QJ 5800091Ahl 

c c 
ACCB OB0001234hl ACCB OD800091Ahl 
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Shift ACCB and Accumulator Right SFRB 

Example2 SFRB ; (SXM = 1) 

Before Instruction After Instruction 

ACC [Kl OB0001234hl ACC (fil OD800091Ahl 

c c 
ACCB OB0001234hl ACCB 05800091Ahl 
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SMMR Store Memory-Mapped Register 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Direct: 

Indirect: 

Destination DARAivi 

Source MMR* 

Destination SARAM 

Source MMR* 

Destination Ext 

Source MMR* 

4-212 

Direct: [labe~ SMMR dma, #addr 
Indirect: [labe~ SMMR {ind}, #addr [, next ARP] 

O :'!i addr :'!i 65535 
O :'!i dma :'!i 127 
0 :!i next ARP :!i 7 

15 14 13 12 

0 0 0 0 

15 14 13 12 

0 0 0 

PFC - MCS 
(PC)+ 2 - PC 
1K - PFC 

0 

11 10 

0 

11 10 

0 

While (repeat counter .. 0): 

9 8 7 6 5 4 3 2 

0 0 Data Memo Address 

16-Bit Constant 

9 8 7 6 5 4 3 2 

0 See Subsection 4.1.2 

16-Bit Constant 

(src, specified by lower 7 bits of dma) - (dst, addressed by PFC) 
(PFC) + 1 - PFC 
(repeat counter) - 1 - repeat counter 

MCS - PFC 

0 

0 

The memory-mapped register value pointed at by the lower 7 bits of the data 
memory address is stored to the data memory location addressed by the 16-bit 
address, addr. The 9 MSBs of the data memory address of the 
memory-mapped register are set to zero, regardless of the current value of DP 
or the upper 9 bits of AR(ARP). This instruction allows any memory location 
on data page Oto be stored anywhere in data memory without modifying the 
DP field in status register STO. When using the SMMR instruction with the RPT 
instruction, the destination address, #addr, is incremented after every memo­
ry-mapped store operation. 

2 

Direct: [labe~ SMMR dma, #addr 
Indirect: [labe~ SMMR {ind}, #addr [, next ARP] 

Cycle Timings for a Slngle Instruction 

PR PDA PSA PE 

2 2 2 2+2Pcode 

2 2 2 2+2Pcode 
3t 

3+~st 3+~st 3+~st 5+~st+2Pcode 
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Store Memory-Mapped Register SMMR 

Cycle Timings for a Single Instruction (Continued) 

PR PDA PSA 

Destination DARAM 3+iOsrc 3+iOsrc 3+iOsrc 

Source MMPORT 

Destination SARAM 3+iOsrc 3+iOsrc 3+iOsrc 

Source MMPORT 4+iOsrct 

Destination Ext 4+iOsrc+d<tst 4+iOsrc+ddst 4+iOsrc+~st 

Source MMPORT 

Cycle Timings for a Repeat (APT) Execution 

PR PDA 

Destination DARAM 2n 2n 

Source MMR§ 

Destination SARAM 2n 2n 

Source MMR§ 

Destination Ext 3n+n~st 3n+n~st 

Source MMR§ 

Destination DARAM 2n+nio5rc 2n+niosrc 

Source MMPORT 

Destination SARAM 2n+niOsrc 2n+niOsrc 

Source MMPORT 

Destination Ext 5n-2+n~51+ 5n-2+n~51+ 

Source MMPORT niOsrc niOsrc 

t If the destination operand and the code are in the same SARAM block. 
* Add one more cycle if source is a peripheral memory-mapped register. 
§ Add n more cycles if source is a peripheral memory-mapped register. 

Example 1 SMMR CBCR,#307h ; (DP = 6, 

PSA 

2n 

2n 

2n+2t 

3n+nddst 

2n+niOsrc 

2n+niosrc 

2n+2+niOsrct 

5n-2+n~51+ 
niOsrc 

CBCR = lEh) 

Before Instruction 

PE 

4+iOsrc+2Pcode 

3+iOsrc+2Pcode 

6+iOsrc+ddst+2Pcode 

PE 

2n+2Pcods 

2n+2Pcode 

3n+3+nddst+2Pcods 

2n+ 1 +niOsrc+2Pcode 

2n+ 1 +niOsrc+2Pcods 

5n+ 1 +nddst+niosrc+ 
2Pcode 

After Instruction 

Data Memory 
1376hl 

Data Memory 
5555hl 307h 307h 

CBCR 5555hl CBCR 5555hl 

Example2 SMMR *,#307h,AR6 ; (CBCR lEh) 

Before Instruction After Instruction 

ARP 61 ARP I 61 

AR6 OF01Ehl AR6 OF01Ehl 

Data Memory 
1376hl 

Data Memory 
5555hl 307h 307h 

CBCR 5555hl CBCR 5555hl 
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SPAC Subtract P Reg,ister From Accumulator 

Syntax [/abe~ SPAC 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

4-214 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 0 0 0 0 0 0 0 11 

(PC)+ 1 -+ PC 
(ACC) - (shifted P register) -+ ACC 

Affects OV and C; affected by PM and OVM. 
Not affected by SXM. 

The contents of the P register, shifted as defined by the PM status bits, are sub­
tracted from the contents of the accumulator. The result is stored in the accu­
mulator. Note that SPAC is not affected by the SXM, and the P register is al­
ways sign-extended. 

The SPAC instruction is a subset of LTS, MPYS, and SQRS. 

1 

[labe~ SPAC 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n n 

SPAC ; (PM = 0) • 

p 

ACC !Kl 
c 

n n+p 

Before Instruction 

10000000hl 

70000000hl 

p 

ACC 

After Instruction 

I 1ooooooohl 

UJ l.____6~0~00~0_00~0~hl 
c 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

Store High P Register SPH 

Direct: [labe~ SPH dma 
Indirect: [labe~ SPH {ina} [,next ARPJ 

Os dma s 127 
0 s next ARP s 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 1 0 0 0 1 1 0 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 1 0 0 0 1 1 0 1 1 See Subsection 4.1.2 

(PC)+ 1 - PC 
(P register shifter output (31-16)) - dma 

Affected by PM. 

The high-order bits of the P register, shifted as specified by the PM bits, are 
stored in data memory. Neither the P register nor the accumulator is affected 
by this instruction. High-order bits are sign-extended when the right-shift-by-6 
mode is selected. Low-order bits are taken from the low P register when left 
shifts are selected. 

Direct: [labe~ SPH dma 
Indirect: [labe~ SPH {ina} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA 

Operand DARAM 1 1 1 

Operand SARAM 1 1 1 
2t 

Operand Ext 2+d 2+d 2+d 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA 

Operand DARAM n n n 

Operand SARAM n n n 

n+2t 

Operand Ext 2n+nd 2n+nd 2n+nd 

t If the operand and the code are in the same SARAM block. 

SPH DAT3 ; (DP = 4, PM= 0). 
Before Instruction 

p QFE079844hl p 

203h 4567hl 203h 

PE 

1+p 

1+p 

4+d+p 

PE 

n+p 

n+p 

2n+2+nd+p 

After Instruction 

OFEQ79844hl 

OFE07hl 
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SPH Store High P Register 

Example2 SPH 

4-216 

* , AR 7 ; ( PM = 2 ) 

ARP 

AR6 

p 

Data Memory 
203h 

Before Instruction 

al 
203hl 

OFE079844hl 

4567hl 

ARP 

AR6 

p 

Data Memory 
203h 

After Instruction 

71 
203hl 

OFE079844hl 

OE079hl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

Store Low P Register SPL 

Direct: [/abe~ SPL dma 
Indirect: [/abe~ SPL {ino} [,next ARP) 

Os dma s 127 
0 s next ARP s 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Direct: I 1 0 0 0 1 1 0 0 0 Data Memory Address 

15 i4 i3 12 11 iO 9 8 7 6 5 4 3 2 0 
Indirect: I 1 0 0 0 1 0 0 1 See Subsection 4.1 .2 

(PC)+ 1 - PC 
(P register shifter output (15-0)) -dma 

Affected by PM. 

The low-order bits of the P register, shifted as specified by the PM bits, are 
stored in data memory. Neither the P register nor the accumulator is affected 
by this instruction. High-order bits are taken from the high P register when the 
right-shift-by-6 mode is selected. Low-order bits are zero-filled when left shifts 
are selected. 

Direct: [/abe~ SPL dma 
Indirect: [/abe~ SPL {ino} [,next ARP) 

PR PDA PSA 

Operand DARAM 1 1 1 

Operand SARAM 1 1 1 
2t 

Operand Ext 2+d 2+d 2+d 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA 

Operand DARAM n n n 

Operand SARAM n n n 
n+2t 

Operand Ext 2n+nd 2n+nd 2n+nd 

t If the operand and the code are in the same SARAM block. 

SPL OATS ;(DP= 1, PM= 2). 

p 

Data Memory 
205h 

Before Instruction 

OFE079844hl 

4567hl 

p 

Data Memory 
205h 

PE 

1+p 

1+p 

4+d+p 

PE 

n+p 

n+p 

2n+2+nd+p 

After Instruction 

OFE079844hl 

08440hl 
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SPL Store Low P Reg/ster 

Example2 SPL 

4-218 

* ,AR3 ; (PM = 0). 

ARP 
AR2 

p 

Data Memory 
205h 

Before Instruction 

I 21 
205hl 

OFE079844hl 

4567hl 

ARP 
AR2 

p 

Data Memory 
205h 

After Instruction 

I 31 
205hl 

OFE079844hl 

09844hl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

Example2 

Direct: 

Store Parallel Long Immediate SPLK 

Direct: [labe~ SPLK #lk,dma 
Indirect: [labe~ SPLK #lk, {ind} [,next ARPJ 

O :s; dma :s; 127 
0 :s; next ARP :s; 7 
lk: 16-bit constant 

15 14 13 12 
0 0 

15 14 13 12 

11 10 9 8 7 6 
0 0 

16-Bit Constant 

11 10 9 8 7 6 

5 4 3 2 0 
Data Memory Address 

5 4 3 2 0 

Indirect: 
0 0 0 1 See Subsection 4.1.2 

16-Bit Constant 

(PC)+ 2 - PC 
lk - dma 

The SPLK instruction allows a full 16-bit pattern to be written into any memory 
location. The parallel logic unit (PLU) supports this bit manipulation indepen­
dently of the ALU so that the ACC is unaffected. 

2 

Direct: 
Indirect: 

[labe~ SPLK #lk,dma 
[labe~ SPLK #/k, {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 2 2 2 2+2p 

Operand SARAM 2 2 2 2+2p 

3t 

Operand Ext 3+d 3+d 3+d 5+d+2p 

Cycle Timings for a Repeat (RPT} Execution 

Not Repeatable 

SPLK #7FFFh,DAT3 ; (DP = 6) 
Before Instruction After Instruction 

Data Memory 
OFE07hl 

Data Memory 
7FFFhl 303h 303h 

SPLK #llllh, *+,AR4 
Before Instruction After Instruction 

ARP ol ARP 41 
AR4 300hl AR4 301hl 

Data Memory 
07hl 

Data Memory 
1111hl 300h 300h 
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SPM Shift ACCB and Accumulator Right 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

4-220 

[labe~ SPM constant 

O :S constant :S 3 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 0 0 0 0 0 ol PM t I 

t See Section 4.5. 

(PC)+ 1 - PC 
Constant - product register shift mode (PM) status bits 

Affects PM. 
Unaffected by SXM. 

The two low-order bits of the instruction word are copied into the PM field of 
status register ST1. The PM status bits control the P register output shifter. 
This shifter has the ability to shift the P register output either one or four bits 
to the left or six bits to the right. The bit combinations and their meanings are 
shown below: 

PM Action 
o o No shift of multiplier output 
o 1 Output left-shifted 1 place and zero-filled 
1 o Output left-shifted 4 places and zero-filled 
11 Output right-shifted 6 places, sign-extended; LSB bits lost. 

The left-shifts allow the product to be justified for fractional arithmetic. The right 
shift by six bits has been incorporated to implement up to 128 multiply-accu­
mulate processes without the possibility of overflow occurring. PM may also 
be loaded by an LST #1 instruction. 

1 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

t Note that ADD, ADRK, LACL, MPV: SBRK, SPM, SUB, XC, and RPT are nonrepeatable, 

SPM 3 ;Product register shift mode 3 is selected, causing 
;all subsequent transfers from the product register 
;to the ALU to be shifted to the right six places. 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Square and Accumulate Previous Product SQRA 

Direct: [labe~ SQRA dma 
Indirect: [labe~ SQRA {ind} [,next ARPJ 

O ::s: dma::s: 127 
0 ::s: next ARP ::s: 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 0 1 0 0 1 O 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 1 0 1 0 o o See Subsection 4.1.2 

(PC}+ 1 - PC 
(ACC} + (shifted P register} - ACC 
(dma} - TREGO 
(dma} x (dma} - P register 

Affects OV and C. 
Affected by PM and OVM. 

The contents of the P register, shifted as defined by the PM status bits, are add­
ed to the accumulator. The addressed data memory value is then loaded into 
TREGO, squared, and stored in the P register. 

1 

Cycle Timings for a Slngle Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 

n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 
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SQRA Square and Accumulate Previous Product 

Example 1 SQRA DAT30 ;(DP= 6, PM= 0). 

Before Instruction After Instruction 

Data Memory Data Memory 
31Eh OFhl 31Eh OFhl 

TREGO 3hl TREGO OFhj 
p 12Chl p OE1hl 

ACC [fil 1F4hl ACC [Q] 320hl 
c c 

Example2 SQRA *,AR4 ; (PM = 0) • 

Before Instruction After Instruction 

ARP 31 ARP 41 

AR3 31Ehl AR3 31Ehl 

Data Memory 
OFhl 

Data Memory 
31Eh 31Eh OFhl 

TREGO 3hl TREGO OFhl 
p 12Chl p OE1hl 

ACC [R] 1F4hl ACC [QJ 320hl 
c c 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Square and Subtract Previous Product SQRS 

Direct: [labe~ SQRS dma 
Indirect: [labe~ SQRS {ind} [,next ARPJ 

O :s: dma:s: 127 
0 :s: next ARP :s: 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 0 1 0 0 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 1 0 0 0 1 1 See Subsection 4.1.2 

(PC)+ 1 - PC 
(ACC) - (shifted P register) - ACC 
(dma) - TREGO 
(dma) x (dma) - P register 

Affects OV and C. 
Affected by PM and OVM. 

The contents of the P register, shifted as defined by the PM status bits, are sub­
tracted from the accumulator. The addressed data memory value is then 
loaded into TREGO, squared, and stored in the P register. 

1 

Direct: [labe~ SQRS dma 
Indirect: [labe~ SQRS {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 

n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 
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SQRS Square and Subtract Previous Product 

Example 1 ~QRS DAT9 ;(DP = 6, PM= 0). 
Before Instruction After Instruction 

Data Memory 
Oehl 

Data Memory 
Oehl 309h 309h 

TREGO 1124h I TREGO oeh I 
p ,19oh I p 40hl 

ACC x 14soh I ACC 1 12Cl>hl 
c c 

Example2 SQRS *,ARS ; (PM = 0) 
Before Instruction After Instruction 

ARP 31 ARP sl 
AR3 309hl AR3 309hl 

Data Memory Data Memory 
309h Oehl 309h Oehl 

TREGO 1124hl TREGO Oehl 
p 190hl p 40hl 

ACC CR] 1450hl ACC DJ 12COhl 
c c 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Direct: [labe~ SST #n, dma 
Indirect: [Jabe~ SST #n, {ind} [,next ARP] 

Os dma s 127 
n = 0,1 
0 s next ARP s 7 

Store Status Register O 
15 14 13 12 11 

Direct: [ 1 0 0 0 1 

15 14 13 12 11 
Indirect: I 1 0 0 0 

Store Status Register 1 
15 14 13 12 11 

Direct: I 1 0 0 0 1 

15 14 13 12 11 
Indirect: I 1 0 0 0 

(PC)+ 1 - PC 

SST#O 
10 9 
1 1 

10 9 
1 1 

SST#1 
10 9 
1 1 

10 9 
1 1 

(status register STn) - dma 

8 7 6 
0 0 

8 7 6 

01 

8 7 6 
1 0 

8 7 6 
1 

Store Status Reqister SST 

5 4 3 2 0 
Data Memory Address 

5 4 3 2 0 
See Subsection 4.1.2 

5 4 3 2 0 
Data Memory Address 

5 4 3 2 0 
See Subsection 4.1 .2 

Status register STn is stored in data memory. In the direct addressing mode, 
status register STn is always stored in page 0, regardless of the value of the 
DP register. The processor automatically forces the page to be 0, and the spe­
cified location within that page is defined in the instruction. Note that the DP 
register is not physically modified. This allows storage of the DP register in the 
data memory on interrupts, etc., in the direct addressing mode without having 
to change the DP. In the indirect addressing mode, the data memory address 
is obtained from the auxiliary register selected (see the LST instruction for 
more information). In the indirect addressing mode, any page in data memory 
may be accessed. 

Status registers STO and ST1 are defined in subsection 3.6.3, Status and Con­
trol Registers. 

1 

Direct: [labe~ SST #n, dma 
Indirect: [Jabe~ SST #n, {ind} [,next ARPj 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 

2t 

Operand Ext 2+d 2+d 2+d 4+d+p 
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SST Store Status Register 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 
n+2t 

Operand Ext 2n+nd 2n+nd 2n+nd 2n+2+nd+p 

t If the operand and the code are in the same SARAM block. 

Example 1 SST #0,DAT96 l (DP = 6) 

Before Instruction After Instruction 

STO OA408hl STO OA408hl 

Data Memory 
OAhl 

Data Memory 
60h 60h OA408hl 

Example2 SST #1,*,AR.7 

Before Instruction After Instruction 

ARP I QI ARP I 11 
ARO I 300hl ARO I 300hl 

ST1 2580hl ST1 I 2580hl 

Data Memory Data Memory 
300h Ohl 300h 2580hl 
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Syntax 

Operands 

Opcode 

Execution 

Subtract From Accumulator SUB 

Direct: [labe~ SUB dma [,shift1] 
Indirect: 
Short Immediate: 

[labe~ SUB {ind} [,shift1 [,next ARP]] 
[labe~ SUB #k 

Long Immediate: [labe~ SUB #lk [,shift2J 

Os dma s 127 
O s shift1 s 16 (defaults to 0) 
0 s next ARP s 7 
0 :S k :S 255 
-32768 :S lk :S 32767 
0 s shift2 s 15 (defaults to 0) 

Subtract from accumulator with shift 
15 14 13 12 11 10 9 

Direct: I 0 0 1 1 I SHFTf 

15 14 13 12 11 10 9 
lndirect:j 0 0 1 1 I SHFTt 

8 

8 

Subtract from accumulator with shift of 16 
15 14 13 12 11 10 9 8 

Direct: I 0 1 1 0 0 1 0 1 

15 14 13 12 11 10 9 8 
Indirect: I 0 1 0 0 1 0 1 

Subtract from ACC short immediate 
15 14 13 12 11 10 9 8 

Short: I 1 0 0 0 

7 
0 

7 
1 

7 
0 

7 
1 

7 

Subtract from ACC long immediate with shift 
15 14 13 12 11 10 9 8 7 
1 0 

6 

6 

6 

6 

6 

6 

0 
Long:' 

16-Bit Constant 

t See Section 4.5. 

Direct or Indirect Addressing: 

(PC)+ 1 - PC 
(ACC) - [(dma) x 2shitt1 ] - ACC 
Affects C and OV. 
Affected by SXM and OVM. 

Short Immediate Addressing: 

(PC)+ 1 - PC 
(ACC) - k - ACC 
Affects C and OV. 
Affected by OVM. 

5 4 3 2 
Data Memory Address 

5 4 3 2 
See Subsection 4.1.2 

5 4 3 2 
Data Memory Address 

5 4 3 2 
See Subsection 4.1.2 

5 4 3 2 
8-Bit Constant 

5 4 3 2 

0 SHFTt 

0 

0 

0 

0 

0 

0 
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SUB Subtract From Accumulator 

Description 

Words 

Cycles 

Long Immediate Addressing: 

(PC)+ 2- PC 
(ACC) - lk x 2shift2 - ACC 
Affects C and OV. 
Affected by SXM and OVM. 

The contents of the addressed data memory location or a 16-bit constant are 
left-shifted and subtracted from the accumulator if direct, indirect, or long im­
mediate addressing is used. During shifting, low-order bits are zero-filled. 
High-order bits are sign-extended if SXM = 1 and zero-filled if SXM = 0. The 
result is then stored in the accumulator. 

When short immediate addressing is used, an 8-bit positive constant is sub­
tracted from the accumulator. In this case, no shift value may be specified, the 
subtraction is unaffected by SXM, and the instruction is not repeatable. 

The carry bit is reset to zero if the result of a subtraction generates a borrow; 
otherwise, it is set to 1. If a 16-bit shift is specified with the subtraction, the in­
struction may reset the carry bit to O only if the result of the subtraction gener­
ates a borrow; otherwise, C is unaffected. 

1 (Direct, indirect, or short immediate) 

2 (Long immediate) 

Direct: [labe~ SUB dma [.shift1] 
Indirect: [labe~ SUB {ind} [,shift1 [,next ARPJ] 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (APT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 

n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 

Short Immediate: [labe~ SUB #k 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

4-228 Assembly Language Instructions 



Subtract From Accumulator SUB 

Cycle Timings for a Repeat (RPT) Execution 

PR l PDA l PSA l PE 

Not Repeatable 

Long Immediate: [labe~ SUB #lk [,shift2J 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+2p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

Example 1 SUB DATSO ; (DP "" 8, SXM=O) 

Before Instruction After Instruction 

Data Memory Data Memory 
450h 11 hi 450h 11 hi 

ACC !Kl 24hl ACC DJ 13hl 
c c 

Example2 SUB *-, 1,ARO ; (SXM = 0) 

Before Instruction After Instruction 

ARP 11 ARP ol 

Data Memory Data Memory 
AR? 301hl AR? 300hl 

301h 04hl 301h I 04hl 

ACC !Kl 09hl ACC DJ I 01hl 
c c 

Example3 SUB #Sh ; (SXM = 1) 

Before Instruction After Instruction 

ACC ~ 07hl ACC [QJ OFFFFFFFFhl 

c c 

Example4 SUB #OFFFh,4 ; (SXM = 0) 

Before Instruction After Instruction 

ACC ~ OFFFFhl ACC [j] I OFhl 
c c 
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SUBB Subtract From Accumulator With Borrow 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

4-230 

Direct: [labe~ SUBB dma 
Indirect: [/abe~ SUBB {ind} [,next ARP) 

O :s: dma :s: 127 
0 :s: next ARP :s: 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I O 1 1 0 0 1 0 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Indirect: I 0 1 0 0 1 0 0 See Subsection 4.1.2 

(PC)+ 1 - PC 
(ACC) - (dma) - (logical inversion of C ) - ACC 

Affects OV and C. 
Affected by OVM. 
Not affected by SXM. 

The contents of the addressed data memory location and the logical inversion 
of the carry bit are subtracted from the accumulator with sign extension sup­
pressed. The carry bit is then affected in the normal manner. 

The SUBB instruction can be used in performing multiple-precision arithmetic. 

1 

Direct: [labe~ SUBB dma 
Indirect: [labe~ SUBB {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 
n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 
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Exampl• 1 

Example2 

Subtract From Accumulator With Borrow SUBB 

SUBB OATS ;(DP .. 8) 
Before Instruction After Instruction 

Data Memory 
oahl 

Data Memory 
oahl 405h 405h 

ACC [[I oahl ACC [QJ OFFFFFFFFhl 

c c 

SUBB * 
Before Instruction After Instruction 

ARP al ARP al 

ARa 301hl ARa 301hl 

301h 02hl 301h 02hl 

ACC m 04hl ACC DJ 02hl 
c c 

In the first example, C is originally zeroed, presumably from the result of a pre­
vious subtract instruction that performed a borrow. The effective operation per­
formed was 6- 6 - (0-) = -1, generating another borrow (resetting carry) in 
the process. In the second example, no borrow was previously generated 
(C=1), and the result from the subtract instruction does not generate a borrow. 
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SUBC Conditional Subtract 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

4-232 

Direct: [labe~ SUBC dma 
Indirect: [labe~ SUBC {ind} [,next ARPJ 

O :s; dma :s; 127 
0 :s; next ARP :s; 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 0 0 0 1 0 1 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 0 0 0 0 O 1 See Subsection 4.1.2 

(PC)+ 1 -+ PC 
(ACC) - [(dma) x 21 5 ] - ALU output 

If ALU output ;i:: O: 
Then (ALU output) x 2 + 1 -+ ACC; 
Else (ACC) x 2 -+ ACC. 

Affects OV and C. 
Affected by SXM. 
Not affected by SXM, and OVM (no saturation). 

The SUBC instruction performs conditional subtraction, which may be used for 
division. The 16-bit dividend is placed in the low accumulator, and the high ac­
cumulator is zeroed. The divisor is in data memory. SU BC is executed 16 times 
for 16-bit division. After completion of the last SUBC, the quotient of the divi­
sion is in the lower-order 16-bit field of the accumulator, and the remainder is 
in the higher-order 16-bits of the accumulator. SUBC assumes that the divisor 
and the dividend are both positive. The divisor is not sign extended. The divi­
dend, which is in the accumulator, must initially be positive (that is, bit 31 must 
be 0) and must remain positive following the accumulator shift, which occurs 
in the first portion of the SUBC execution. 

If the 16-bit dividend contains fewer than 16 significant bits, the dividend may 
be placed in the accumulator and left-shifted by the number of leading nonsig­
nificant zeroes. The number of executions of SUBC is reduced from 16 by that 
number. One leading zero is always significant. 

Note that SUBC affects OV but is not affected by OVM, and therefore the accu­
mulator does not saturate upon positive or negative overflows when executing 
this instruction. The carry bit is affected in the normal manner during this in­
struction. 
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Cycles Direct: [labe~ SUBC dma 
Indirect: [labe~ SUBC {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1 +d 2+d+p 

Cycle Timings for a Repeat (APT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 

n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 

Example 1 SUBC DAT2 ; (DP = 6) 
Before Instruction After Instruction 

Data Memory Data Memory 
302h 01hl 302h 01 hi 

ACC 0 04hl ACC @] oahl 

c c 

Example2 RPT #15 
SUBC * 

Before Instruction After Instruction 

ARP 31 ARP 31 

AR3 1000hl AR3 1 ooohl 

Data Memory Data Memory 
1000h 07hl 1000h 07hl 

ACC [[] 41 hi ACC IJJ 20009hl 

c c 

4-233 



SU BS Subtract From Accumulator With Sign-Extension Suepressed 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

4-234 

Direct: [labe~ SUBS dma 
Indirect: [labe~ SUBS {ind} [,next ARPJ 

Os dma s 127 
0 s next ARP s 7 

15 14 13 12 11 10 9 8 
Direct: I 0 1 1 0 0 1 1 0 

15 14 13 12 11 10 9 8 
Indirect: I 0 0 0 0 

(PC)+ 1 - PC 
(ACC) - (dma) - ACC 

Affects OV and C; affected by OVM. 
Not affected by SXM. 

7 
0 

7 

6 5 4 3 2 0 
Data Memory Address 

6 5 4 3 2 0 
See Subsection 4.1.2 

The contents of the specified data memory location are subtracted from the 
accumulator with sign extension suppressed. The data is treated as a 16-bit 
unsigned number, regardless of SXM. The accumulator behaves as a signed 
number. SUBS produces the same results as a SUB instruction with SXM = 
O and a shift count of 0. 

1 

Direct: [labe~ SUBS dma 
Indirect: [labe~ SUBS {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE I 
Operand DARAM n n n n+p 

Operand SARAM n n n n+p 

n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 
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Subtract From Accumulator With Sign-Extension Suppressed SUBS 

Example 1 SUBS DAT2 ; (DP = 16, SXM = l). 
Before Instruction After Instruction 

Data Memory 
OF003hl 

Data Memory 
802h 802h OF003hl 

ACC 00 OF105hl ACC m 102hl 

c c 

Example2 SUBS * ;(SXM = 1) 
Before Instruction After Instruction 

ARP ol ARP ol 

ARO 310hl ARO 310hl 

Data Memory 
OF003hl 

Data Memory 
OF003hl 310h 310h 

ACC 00 OFFFF105hl ACC m OFFF0102hl 

c c 
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SUBT Subtract From Accumulator With Shift Specified by TREG1 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

4-236 

Direct: [labe~ SUBT dma 
Indirect: [labe~ SUBT {ind} [,next ARPJ 

O :s: dma:s: 127 
0 :s: next ARP :s: 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 1 0 0 1 1 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 1 1 0 0 1 1 See Subsection 4.1.2 

(PC)+ 1 - PC 
{ACC) - [(dma) X 2TREG1 (3-0)] - (ACC) 

lfSXM = 1: 
Then (dma) is sign-extended. 

If SXM = 0: 
Then (dma) is not sign-extended. 

Affects OVand C; affected by SXM and OVM. 

The data memory value is left-shifted and subtracted from the accumulator. 
The left-shift is defined by the four LSBs of TREG1, resulting in shift options 
from Oto 15 bits. The result replaces the accumulator contents. Sign extension 
on the data memory value is controlled by the SXM status bit. 

Software compatibility with the 'C25 can be maintained by setting the TRM bit 
of the PM ST status register to zero. This causes any 'C25 instruction that loads 
TREGO to write to all three TREGs. 

1 

Direct: [labe~ SUBT dma 
Indirect: [labe~ SUBT {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

,...._ - -.- ·- -• - . V!Jtm:mu cxi l+O 1+d 1+d 2+d+p 
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Subtract From Accumulator With Shift Specified bt:, TREG1 SUBT 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 

n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 

Example 1 SUBT DAT127 ; (DP = 4) 
Before Instruction After Instruction 

Data Memory 
06hl 

Data Memory 
06hl 2FFh 2FFh 

TREG1 oahl TREG1 OBhl 

ACC ~ OFDAshl ACC OJ OF7A5hl 

c c 

Example2 SUBT * 
Before Instruction After Instruction 

ARP 1 I ARP 1 I 
AR1 aoohl AR1 800hl 

Data Memory Data Memory 
800h 01hl 800h I 01hl 

TREG1 oahl TREG1 I OBhl 

ACC ~ Ohl ACC @] I OFFFFFFOOh I 
c c 
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TBLR Table Read 

Syntax Direct: [labe~ TBLR dma 
Indirect: [labe~ TBLR {ind} [,next ARPJ 

Operands Os dma s 127 
0 s next ARP s 7 

Opcode 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Direct: I 1 0 1 0 0 1 1 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 1 0 1 0 0 1 1 01 1 See Subsection 4.1.2 

Execution 

Description 

Words 

Cycles 

Source DARAM/ROM 

Destination DARAM 

Source SARAM 

Destination DARAM 

Source Ext 

Destination DARAM 

Source DARAM/ROM 

Destination SARAM 
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(PC)+ 1 - PC 
(PFC) - MCS 
(ACC{15-0)) - PFC 

If (repeat counter) .. 0: 
Then (pma, addressed by PFC) - dma, 

Modify AR(ARP) and ARP as specified, 
(PFC) + 1 - PFC 
(repeat counter) -1 - repeat counter. 

Else (pma, addressed by PFC) - dma, 
Modify AR(ARP) and ARP as specified. 

(MCS)-PFC 

The TBLR instruction transfers a word from a location in program memory to 
a data memory location specified by the instruction. The program memory ad­
dress is defined by the low-order 16 bits of the accumulator. For this operation, 
a read from program memory is performed, followed by a write to data memory. 
When the repeat mode is used, TBLR effectively becomes a single-cycle in­
struction, and the program counter that contains the ACCL is incremented 
once each cycle. 

1 

Direct: [labe~ TBLR dma 
Indirect: [labe~ TBLR {ind} [,next ARPJ 

Cycle Timings for a Slngle Instruction 

PR PDA PSA PE 

3 3 3 3+Pcode 

3 3 3 ':l..Ln 
- • t6Code 

3+Psrc 3+Psrc 3+Psrc 3+Psrc+Pcode 

3 3 3 3+Pcode 
4t 
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Cycle Timings for a Single Instruction (Continued) 

PR PDA PSA 

Source SARAM 3 3 3 
Destination SARAM 4t 

Source Ext 3+Psrc 3+Psrc 3+Psrc 
Destination SARAM 4+Psrct 

Source DARAM/ROM 4+dctst 4+dctst 4+dctst 
Destination Ext 

Source SARAM 4+dctst 4+dctst 4+dctst 
Destination Ext 

Source Ext 4+Psrc+dctst 4+Psrc+ddst 4+Psrc+ddst 
Destination Ext 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA 

Source DARAM/ROM n+2 n+2 n+2 
Destination DARAM 

Source SARAM n+2 n+2 n+2 
Destination DARAM 

Source Ext n+2+nPsrc n+2+nPsrc n+2+nPsrc 
Destination DARAM 

Source DARAM/ROM n+2 n+2 n+2 
Destination SARAM n+4t 

Source SARAM n+2 n+2 n+2 
Destination SARAM 2n* 2n* 2n* 

2n+2s 

Source Ext n+2+nPsrc n+2+nPsrc n+2+nPsrc 
Destination SARAM n+4+nPsrct 

Source DARAM/ROM 2n+2+ndctst 2n+2+ndctst 2n+2+ndctst 
Destination Ext 

Source SARAM 2n+2+ndctst 2n+2+ndctst 2n+2+ndctst 
Destination Ext 

Source Ext 4n+nPsrc+ndctst 4n+nPsrc+nddst 4n+nPsrc+nddst 
Destination Ext 

t If the destination operand and the code are in the same SARAM block. 
* If both the source and the destination operands are in the same SARAM block. 
§ If both operands and the code are In the same SARAM block. 

Table Read TBLR 

PE 

3+Pcode 

3+Psrc+Pcode 

6+dctst+Pcode 

6+dctst+Pcode 

6+Psrc+dctst+Pcode 

PE 

n+2+Pcode 

n+2+Pcode 

n+2+nPsrc+Pcode 

n+2+Pcode 

n+2+Pcode 
2n* 

n+2+nPsrc+Pcode 

2n+4+ndctst+Pcode 

2n+4+ndctst+Pcode 

4n+2+nPsrc+ndctst+ 
Pcode 
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TBLR Table Read 

Example 1 TBLR DAT6 ~(DP = 4) 
Before Instruction After Instruction 

ACC 23hl ACC 23hl 

Program Memory 
306hl 

Program Memory 
306hl 23h 23h 

Data Memory Data Memory 
206h 75hl 206h 306hl 

Example2 TBLR * ,AR7 

Before Instruction After Instruction 

ARP ol ARP 11 
ARO 300hl ARO 300hl 

ACC 24hl ACC 24hl 

Program Memory Program Memory 
24h 307hl 24h 307hl 

Data Memory Data Memory 
300h 75hl 300h 307hl 
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Table Write TBLW 

Syntax Direct: [labe~ TBLW dma 
Indirect: [labe~ TBLW {ina} [.next ARPJ 

Operands Os dma s 127 
0 s next ARP s 7 

Opcode 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Direct: I 1 0 1 0 0 1 1 1 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Indirect: I 1 0 1 0 0 1 1 1 1 See Subsection 4.1.2 

Execution 

Description 

Words 

Cycles 

Source DARAM 

Destination DARAM 

Source SARAM 

Destination DARAM 

Source Ext 

Destination DARAM 

Destination SARAM 

Source DARAM 

(PC)+ 1 - PC 
(PFC) - MCS 
(ACC(15-0)) - PFC 

If (repeat counter) ;oie O: 
Then (dma, addressed by PFC) - pma, 

Modify AR(ARP) and ARP as specified, 
(PFC) + 1 - PFC 
(repeat counter) -1 - repeat counter. 

Else (dma, addressed by PFC) - pma, 
Modify AR(ARP) and ARP as specified. 

(MCS)- PFC 

The TBLW instruction transfers a word in data memory to program memory. 
The data memory address is specified by the instruction, and the program 
memory address is specified by the lower 16 bits of the accumulator. A read 
from data memory is followed by a write to program memory to complete the 
instruction. When the repeat mode is used, TBLW effectively becomes a sing­
le-cycle instruction, and the program counter that contains the ACCL is in­
cremented once each cycle. 

1 

Direct: [labe~ TBLW dma 
Indirect: [labe~ TBLW {ina} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

3 3 3 3+Pcode 

3 3 3 3+Pcode 

3+dsrc 3+dsrc 3+dsrc 3+dsrc+Pcode 

3 3 3 3+Pcode 
4t 
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TBLW Table Write 

Cycle Timings for a Single Instruction (Continued) 

PR PDA PSA 

Source SARAM 3 3 3 
Destination SARAM 4t 

Source Ext 3+dsrc 3+dsrc 3+dsrc 
Destination SARAM 4+dsrct 

Source DARAM 4+Pctst 4+Pctst 4+Pctst 
Destination Ext 

Source SARAM 4+Pctst 4+Pdst 4+Pctst 
Destination Ext 

Source Ext 4+dsrc+Pdst 4+dsrc+Pdst 4+dsrc+Pctst 
Destination Ext 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA 

Source DARAM n+2 n+2 n+2 
Destination DARAM 

Source SARAM n+2 n+2 n+2 
Destination DARAM 

Source Ext n+2+ndsrc n+2+ndsrc n+2+ndsrc 
Destination DARAM 

Source DARAM n+2 n+2 n+2 
Destination SARAM n+3t 

Source SARAM n+2 n+2 n+2 
Destination SARAM 2n* 2n* 2n* 

2n+1s 

Source Ext n+2+ndsrc n+2+ndsrc n+2+ndsrc 
Destination SARAM n+3+nd5rct 

Source DARAM 2n+2+nPdst 2n+2+nPdst 2n+2+nPdst 
Destination Ext 

Source SARAM 2n+2+nPctst 2n+2+nPdst 2n+2+nPdst 
Destination Ext 

Source Ext 4n+nd8rc+nPdst 4n+ndsrc+nPdst 4n+ndsrc+nPdst 
Destination Ext 

t If the destination operand and the code are in the same SARAM block. 
* If both the source and the destination operands are in the same SARAM block. 
§ If both operands and the code are in the same SARAM block. 

PE 

3+Pcooe 

3+dsrc+Pcode 

5+Pdst+Pcode 

5+Pdst+Pcode 

5+dsrc+Pctst+Pcode 

PE 

n+2+Pcode 

n+2+Pcode 

n+2+ndsrc+Pcode 

n+2+Pcode 

n+2+Pcode 
2n* 

n+2+ndsrc+Pcode 

2n+3+nPdst+Pcode 

2n+3+nPdst+Pcode 

4n+ 1 +ndsrc+nPdst+ 
Pcode 
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Table Write TBLW 

Example 1 TBLW OATS ; (DP = 32) 
Before Instruction After Instruction 

ACC 2§7hl ACC 2§7hl 

Data Memory Data Memory 
1905h 4339hl 1905h 4339hl 

Program Memory Program Memory 
257h 30ahl 257h 4399hl 

Example2 TBLW * 
Before Instruction After Instruction 

ARP al ARP al 

AR a 1ooahl AR a 1ooahl 

ACC 258hl ACC 258hl 

Data Memory Data Memory 
1006h 4340hl 1ooah 4340hl 

Program Memory Program Memory 
258h 307hl 258h 4340hl 
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TRAP Software lnterruet 

Syntax [/abe~ TRAP 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 
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None 

15 14 13 12 11 
1 0 1 1 1 

(PC) + 1 - stack 
22h - PC 

10 9 8 7 
0 0 

Not affected by INTM; does not affect INTM. 

6 5 4 3 2 0 
0 0 0 0 

The TRAP instruction is a software interrupt that transfers program control to 
program memory location 22h and pushes the program counter plus one onto 
the hardware stack. The instruction at location 22h may contain a branch in­
struction to transfer control to the TRAP routine. Putting the PC+ 1 onto the 
stack enables a return instruction to pop the return PC (points to the instruction 
after the TRAP) from the stack. The TRAP instruction is not maskable. 

[labe~ TRAP 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

4 4 4 4+3pt 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon­
tinuity is taken, these two instruction words are discarded. 

TRAP ;Control is passed to program memory location 22h and 
;PC + 1 is pushed onto the stack. 

Assembly Language Instructions 



Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Execute Conditionally,, XC 

[labe~ XC k [,cond1] [.cond2J [, ... ] 

k = 1 or 2 

Conditions: ACC=O 
Acc .. o 
ACC<O 
ACCsO 
ACC>O 
ACC;i:O 
C=O 
C=1 
OV=O 
0V=1 
BTOlow 
TC=O 
TC=1 
Unconditional 

15 14 13 12 11 10 9 8 
I TP t 

t See Section 4.5. 

If (condition(s)) 
Then next k instructions executed 

EQ 
NEQ 
LT 
LEQ 
GT 
GEO 
NC 
c 
NOV 
ov 
BIO 
NTC 
TC 
UNC 

7 6 5 
ZLVC t 

Else execute NOP's for next k instructions 

4 3 2 1 0 
ZLVC t 

If k = 2 and conditions are met, the one two-word instruction or two one-word 
instructions following the XC instruction execute. If k = 1 and conditions are 
met, the one-word instruction following the XC instruction executes. If the con­
ditions are not met, one or two NOPs are executed. Note that not all combina­
tions of conditions are meaningful. The XC instruction and two-instruction 
words following the XC are uninterruptible. 

1 

[labe~ XC k [,cond1] [,cond2J [, ... ] 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (APT) Execution 

Not Repeatable 

4-245 



XC Execute Conditionally 

Example 
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XC 1,LEQ,C 
MAR *+ 
ADD DATlOO 

If the accumulator contents are less than or equal to zero and the carry bit is 
set, the ARP is modified prior to the execution of the ADD instruction. 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Exclusive-OR With Accumulator XOR 

Direct: 
Indirect: 
Long Immediate: 

O :s: dma:s: 127 
0 :s: next ARP :s: 7 
lk: 16-bit constant 
O :s: shift :s: 16 

15 14 13 12 

[labe~ XOR dma 
[labe~ XOR {ind} [,next ARPJ 
[labe~ XOR #lk, [,shiftj 

11 10 9 8 7 6 5 4 3 2 0 
Direct: I 0 1 1 0 1 1 0 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 1 0 1 0 0 1 See Subsection 4.1.2 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Long: I 1 0 1 1 1 1 1 1 0 SHFTt 

16-Bit Constant 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

1 0 1 1 1 1 0 0 0 0 0 0 

16-Bit Constant 

XOR with ACC long immediate with shift of 16 

t See Section 4.5. 

Direct or Indirect Addressing: 
(PC)+ 1 - PC 
(ACC(15-0}) XOR dma - ACC(15-0) 
(ACC(31-16)) - ACC(31-16) 

Long Immediate Addressing: 
(PC)+ 2 - PC 
(ACC(31-0)) XOR (lk x 2shift) - ACC(31-0) 

With direct or indirect addressing, the low half of the accumulator is XORed 
with the contents of the addressed data memory location; the upper half of the 
accumulator is unaffected. With immediate addressing, the long immediate 
constant is shifted and zero-extended on both ends and XORed with the high­
and low-order bits of the accumulator. The carry bit (C) is unaffected by XOR. 

1 (Direct or indirect addressing) 

2 (Long immediate addressing) 
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XOR Exclusive-OR With Accumulator 

Cycles Direct: [labe~ XOR dma 
Indirect: [labe~ XOR {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 
2t 

Operand Ext 1+d 1+d 1+d 2+d+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM n n n n+p 
n+1t 

Operand Ext n+nd n+nd n+nd n+1+p+nd 

t If the operand and the code are in the same SARAM block. 

Long Immediate: [/abe~ XOR #lk, [,shiftj 
Cycle Timings for a Single Instruction 

PR PDA PSA PE 

2 2 2 2+2p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

Example 1 XOR DAT127 ;(DP = 511) 

Before Instruction After Instruction 

Data Memory Data Memory 
OFFFFh OFOFOhl OFFFFh OFOFOhl 

ACC IK1 1234567Bhl ACC IBJ 1234A68Bhl 
c c 

Example2 XOR *+,ARO 
Before Instruction After Instruction 

ARP 11 ARP ol 

AR7 300hl AR7 301hl 

Data Memory Data Memory 
300h OFFFFhl 300h OFFFFhl 

ACC 
~ 

i234FOF0hl ACC 
,..,..,.., 

i 2340t-Ot-hl ~ ~ 
c c 

Example3 XOR #OFOFOh,4 
Before Instruction After Instruction 

ACC IK1 11111010hl ACC IBJ 111E1F10hl 

c c 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

Exclusive-OR of ACCB With Accumulator XORB 

[labe~ XORB 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
101111100 0 0 1 1 0 0 

(PC)+ 1 - PC 
(ACC) XOR (ACCB) - ACC 

The contents of the accumulator buffer (ACCB) are exclusive-ORed with the 
contents of the accumulator. The results are placed in the accumulator, and 
the accumulator buffer is unaffected. 

1 

[labe~ XORB 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n 

XORB 

n 

ACCB 

ACC 

n n+p 

Before Instruction 

OFOFOFOFOhl 

OFFFFOOOOhl 

ACCB 

ACC 

After Instruction 

OFOFOFOFOhl 

OFOFFOFOhl 
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XPL Exclusive-OR Data Memory Value 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

4-250 

Direct: [labe~ XPL [#/k,] dma 
Indirect: [labe~ XPL [#/k,] {ind} [,next ARPJ 

Os; dma s; 127 
lk: 16-bit constant 
O s; next ARP s; 7 

XOR DBMR with data value 
15 14 13 12 11 10 

Direct: I 0 1 0 1 1 0 

15 14 13 12 11 10 
Indirect: I 0 1 0 0 

9 
0 

9 
0 

XOR long immediate with data value 
15 14 13 12 11 10 9 

Direct: 0 0 1 0 

8 7 6 
0 0 

8 7 6 
0 1 

8 7 6 

o Io I 
16-Bit Constant 

5 4 3 2 
Data Memory Address 

5 4 3 2 
See Subsec.1ion 4.1.2 

5 4 3 2 
Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

0 

0 

0 

0 

Indirect: 1--0 ___ 0 __ 1 __ 1 ___ 0 __ 0__.1_1 .... J ___ s_e_e _S_ub_s_e_ct_io_n_4_.1_.2_----1 

lk unspecified: 
(PC)+ 1 - PC 
(dma) XOR (DBMR) -+ dma 

lk specified: 
(PC)+ 2 -+ PC 
(dma) XOR lk - dma 
Affects TC. 

16-Bit Constant 

If a long immediate constant is specified, it is XORed with the addressed data 
memory value. If it is not specified, the addressed data memory value is 
XORed with the contents of the dynamic bit manipulation register (DBMR). In 
either case, the result is written back into the specified data memory location, 
and the accumulator contents are not disturbed. If the result of the XOR opera­
tion is 0, then the TC bit is set to 1. Otherwise, the TC bit is set to O. 

1 (Long immediate value not specified) 

2 (Long immediate value specified) 

Direct: [labe~ XPL [#/k,] dma 
Indirect: [/abe~ XPL [#/k,] {ind} [,next ARPJ 
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Example 1 

Example2 

Exclusive-OR Data Memorr., Value XPL 

Cycle Timings for a Single Instruction 

PR PDA PSA 

Operand DARAM 1 1 1 

Operand SARAM 1 1 1 
3t 

Operand Ext 2+2d 2+2d 2+2d 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA 

Operand DARAM n n n 

Operand SARAM 2n-2 2n-2 2n-2 
2n+1t 

Operand Ext 4n-2+2nd 4n-2+2nd 4n-2+2nd 

t If the operand and the code are in the same SARAM block. 

Direct: [labe~ XPL [#/k,] dma 
Indirect: [labe~ XPL [#/k,] {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA 

Operand DARAM 2 2 2 

Operand SARAM 2 2 2 

Operand Ext 3+2d 3+2d 3+2d 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA 

Operand DARAM n+1 n+1 n+1 

Operand SARAM 2n-1 2n-1 2n-1 

2n+2t 

Operand Ext 4n-1+2nd 4n-1+2nd 4n-1+2nd 

t If the operand and the code reside in same SARAM block. 

XPL 

XPL 

#100h,DAT60 ;(DP= 0) 

Data Memory 
60h 

Before Instruction 

01hl 

DAT60 ;(DP=O) 

DBMR 

Data Memory 
60h 

Before Instruction 

OFFFFhl 

101hl 

Data Memory 
60h 

DBMR 

Data Memory 
60h 

PE 

1+p 

1+p 

5+2d+p 

PE 

n+p 

2n-2+p 

4n+1+2nd+p 

PE 

2+2p 

2+2p 

6+2d+2p 

PE 

n+1+2p 

2n-1+2p 

4n+2+2nd+2p 

After Instruction 

101hl 

After Instruction 

OFFFFhl 

OFEFEhl 
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XPL Exclusive-OR Data Memory Value 

Example3 XPL #1000h,*,AR6 

Before Instruction After Instruction 

ARP ol ARP sl 

ARO 300hl ARO 300hl 

Data Memory 
OFFOOhl 

Data Memory 
300h 300h OEFOOhl 

Example4 XPL *-,ARO 
Before Instruction After Instruction 

ARP sl ARP I ol 

AR6 301hl AR6 L 300hl 

DBMR OFFOOhl DBMR OFFOOhl 

Data Memory Data Memory 
301h OEFOOhl 301h 1000hl 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 1 

Zero Low Accumulator Load High Accumulator With Rounding ZALR 

Direct: [labe~ ZALR dma 
Indirect: [labe~ ZALR {ind} [,next ARPJ 

O :s dma :s 127 
0 :s next ARP :s 7 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Direct:! 0 1 1 0 1 0 0 0 0 Data Memory Address 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Indirect: I 0 1 1 0 1 0 0 0 See Subsection 4.1.2 

(PC)+ 1 - PC 
8000h - ACC(15-0) 
(dma) - ACC(31-16) 

To load a data memory value into the high-order half of the accumulator, the 
ZALR instruction rounds the value by adding 1 /2 LSB; that is, the 15 low bits 
(bits 0-14) of the accumulator are set to zero, and bit 15 of the accumulator 
is set to one. 

1 

Direct: [labe~ ZALR dma 
Indirect: [labe~ ZALR {ind} [,next ARPJ 

Cycle Timings for a Single Instruction 

PR PDA PSA 

Operand DARAM 1 1 1 

Operand SARAM 1 1 1 
2t 

Operand Ext 1+d 1+d 1+d 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA 

Operand DARAM n n n 

Operand SARAM n n n 

n+1t 

Operand Ext n+nd n+nd n+nd 

t If the operand and the code are in the same SARAM block. 

ZALR DAT3 ; (DP = 32) 

Before Instruction 

Data Memory 
1003h 

ACC IX] 
c 

3F01hl 

77FFFFhl 

Data Memory 
1003h 

ACC (R] 
c 

PE 

1+p 

1+p 

2+d+p 

PE 

n+p 

n+p 

n+1+p+nd 

After Instruction 

3F01hl 

3F018000hl 
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ZALR Zero Low Accumulator Load High Accumulator With Rounding 

Example2 ZALR *-,AR4 
Before Instruction After Instruction 

ARP 11 ARP 41 
AR7 OFFOOhl AR7 OFEFFhl 

Data Memory 
OEOEOhl 

Data Memory 
OEOEOhl OFFOOh OFFOOh 

ACC [X] 107777hl ACC [R] OEOE08000h I 
c c 
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Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

Zero Accumulator and P Register ZAP 

[labe~ ZAP 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
1 0 1 1 1 1 1 0 0 1 0 1 1 0 0 

(PC)+ 1 - PC 
0 - ACC 
0 - PREG 

The accumulator and product register are zeroed. The ZAP instruction speeds 
up the preparation for a repeat multiply/accumulate. 

1 

[labe~ ZAP 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (RPT) Execution 

n 

ZAP 

n 

PREG 

ACC 

n n+p 

Before Instruction 

3F011111hl 

77FFFF77hl 

PREG 

ACC 

After Instruction 

oooooooohl 
oooooooohl 
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ZPR Zero Product Register 

Syntax 

Operands 

Opcode 

Execution 

Description 

Words 

Cycles 

Example 

4-256 

[labe~ ZPR 

None 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 1 1 0 0 1 0 1 1 0 0 0 

(PC)+ 1 - PC 
O - PREG 

The product register is set to zero. 

1 

[labe~ ZPR 

Cycle Timings for a Single Instruction 

PR 

1 

n 

ZPR 

PDA PSA PE 

1 1 1+p 

Cycle Timings for a Repeat (RPT} Execution 

n 

PREG 

n n+p 

Before Instruction 

3F011111hl PREG 

After Instruction 

oooooooohl 
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'C2x-to-'C5x Instruction Set Mapping 

4.4 'C2x-to-'C5x Instruction Set Mapping 

Table 4-5 provides a map between the 'C2x and 'C5x instruction sets. The Tex­
as Instruments 'C5x assembler accepts instruction mnemonics from either in­
struction set. Because the 'C5x instruction set is a superset of the 'C2x instruc­
tion set, there are some 'C5x instructions that do not appear in the table. 

Table 4-6. Mapping Summary 

Accumulator Memory Reference Instructions 

'C2x Mnemonic 'C5x Mnemonic 

ABS ABS 

ADD ADD 

ADDC ADDC 

ADDH ADD 

ADDK ADD 

ADDS ADDS 

ADDT ADDT 

ADLK ADD 

AND AND 

ANDK AND 

CMPL CMPL 

LAC LACC 

LACK LACL 

LACT LACT 

LALK LACC 

NEG NEG 

NORM NOR Mt 

OR OR 

ORK OR 

ROL ROL 

ROR ROR 

SACH SACH 

SACL SACL 

SBLK SUBB 

SFL SFL 

SFR SFR 

SUB SUB 

SUBB SUBB 

t There is a potential pipeline conflict with the NORM instruc­
tion. See the NORM instruction summary for details. 
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'C2x-to-'C5x Instruction Set Mapping 

Table 4-6. Mapping Summary (Continued) 

Accumulator Memory Reference lnatructlona 
(Concluded) 

'C2x Mnemonic 'C5x Mnemonic 

SUBC SUBC 
SUBH SUB 
SUBK SUB 
SUBS SUBS 
SUBT SUBT 
XOR XOR 
XORK XOR 
ZAC LACL 
ZALH LACC 
ZALR ZALR 
ZALS LACL 

Auxlllary Reglatera and Data Page Pointer 
lnatructlona 

'C2x Mnemonic 'C5x Mnemonic 

ADRK ADRK 
CMPR CMPR 
LAR LAR 
LARK LAR 
LARP MAR 
LOP LOP 
LDPK LOP 
LRLK LAR 

MAR MAR 
SAR SAR 
SBRK SBRK 
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'C2x-to-'C5x Instruction Set Mapping 

Table 4-6. Mapping Summary (Continued) 

T Register, P Register, and Multiply Instructions 

'C2x Mnemonic 'CSx Mnemonic 

APAC APAC 

LPH LPH 

LT LT 

LTA LTA 

LTD LTD 

LTP LTP 

LTS LTS 

MAC MAC 

MACO MACO 

MPY MPY 

MPYA MPYA 

MPYK MPY 

MPYS MPYS 

MPYU MPYU 

PAC PAC 

SPAC SPAC 

SPH SPH 

SPL SPL 

SPM SPM 

SQRA SQRA 

SQRS SQRS 

Branch/Call Instructions 

'C2x Mnemonic 'CSx Mnemonic 

B B 

BACC BACC 

BANZ BANZ 

BBNZ BCND 

BBZ BCND 

BC BCND 

BGEZ BCND 
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Table 4-6. Mapping Summary (Continued) 

4-260 

Branch/Call Instructions (Concluded) 

'C2x Mnemonic 'CSx Mnemonic 

BGZ BCND 
BIOZ BCND 
BLEZ BCND 
BLZ BCND 
BNC BCND 
BNV BCND 
BNZ BCND 
BV BCND 
BZ BCND 
CALA CALA 
CALL CALL 
RET RET 

TRAP TRAP 
1/0 and Data Memory Operations 

'C2x Mnemonic 'CSx Mnemonic 

BLKD BLDD 
BLKP BLPD 
DMOV DMOV 

FORTt OPL 
APL 

IN IN 

OUT OUT 
RFSMt APL 
RTXMt APL 
RXF CLRC 

SFSMt OPL 

STXM OPL 
SXF SETC 
TBLR TBLR 
TBLW TBLW 

t The suggested mapping requires that the data page pointer 
be set too. 
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'C2x-to-'C5x Instruction Set Mapping 

Table 4-6. Mapping Summary (Concluded) 

Control lnetrucUone 

'C2x Mnemonic 'C5x Mnemonic 

BIT BIT 
BITT BITT 
CNFD CLRC 
CNFP SETC 
DINT SETC 
EINT CLAC 
IDLE IDLE 
LST LST 
LST1 LST 
NOP NOP 
POP POP 
POPD POPD 
PSHD PSHD 
PUSH PUSH 
RC CLRC 
RHM CLAC 
ROVM CLRC 
RPT RPT 
RPTK RPT 
RSXM CLRC 
RTC CLRC 
SC SETC 
SHM SETC 
SOVM SETC 
SST SST 
SST1 SST 
SSXM SETC 
STC SETC 
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4.5 Instruction Set Opcode 

Symbol 

A 

ARX 

8 IT X 

CM 

I 

I I I I I I I I 

I NTR# 

PM 

S H F 

SH FT 

N 

T p 

ZLVC 

+ 1 word 

4-262 

This section summarizes the opcodes of the instruction set for the 'C5x digital 
signal processors. This instruction set is a superset of the 'C1x and 'C2x in­
struction sets. The instructions are arranged according to function and are al­
phabetized within each category. 

The following symbols are used in the opcode table: 

Meaning 

Data memory address bit. 

Three-bit field containing the auxiliary register value (0 - 7). 

Four-bit field specifies which bit to test for the BIT instruction. 

See CMPR instruction. 

Addressing mode bit. 0= direct addressing mode 
1 = indirect addressing mode 

Short Immediate value. 

Interrupt vector number. 

Constant copied into PM bits in status register ST1. See SPM instruction. 

Three-bit shift value. 

Four-bit shift value. 

Field for the XC instruction indicating the number of instructions (one or two) to condi-
tionally execute. N=1 One instruction to execute. 

N=2 Two instruction to execute. 

Two bits used by the conditional execution instructions to represent the conditions TC, 
NTC, and BIO. 

TP Meaning 
00 BTOlow 
01 TC=1 
1 0 TC=O 
1 1 None of the above condition. 

Four-bit field representing the following conditions: 
Z: ACC=O 
L: ACC<O 
V: Overflow 
C: Carry 
A conditional instruction contains two of these four-bit fields. The four-LSB field of the 
instruction is a four-bit mask field. A one in the corresponding mask bit indicates that 
condition is being tested. The second four-bit field (bits 4 - 7) indicates the state of the 
conditions designated by the mask bits as being tested. For example, to test for ACC. 
"" 0, the Z and L fields are set, while the V and C fields are not set. The next four-bit 
field contains the state of the conditions to test. The Z field is set to indicate to test the 
condition ACC = 0, and the L field is reset to indicate to test the condition ACC ""0. The 
conditions possible with these 8 bits are shown in the BCND, CC, and XC instructions. 
To determine if the conditions are met, the four LSB bit mask is ANDed with the condi-
tions. If any bits are set, the conditions are met. 

Indicates the instruction is a two-word instruction. The second word is a 16-bit long 
immediate value or a 16-bit program memory address for immediate addressing. 
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Table 4-7. Opcode Summary 

Accumulator Memory Reference Instructions 

Instruction Mnemonic Opcode 

Absolute value of accumulator ABS 1011 1110 0000 0000 
Add ACCB to accumulator with carry ADCB 1011 1110 0001 0001 
Add to accumulator with shift ADD 0010 SHFT IAAA AAAA 
Add to low ACC short immediate ADD 1011 1000 IIII III! 
Add to ACC long immediate with shift ADD 1011 1111 1001 SHFT + 1 word 
Add to accumulator with shift of 16 ADD 0110 0001 IAAA AAAA 
Add to accumulator with carry ADDC 0110 0000 !AAA AAAA 
Add ACCB to accumulator ADDS 1011 1110 0001 0000 
Add to low accumulator with sign suppressed ADDS 0110 0010 IAAA AAAA 
Add to ACC with shift specified by TREG1 ADDT 0110 0011 IAAA AAAA 
AND accumulator with data value AND 0110 1110 IAAA AAAA 
AND with ACC long immediate with shift AND 1011 1111 1011 SHFT + 1 word 
AND with ACC long immediate with shift of 16 AND 1011 1110 1000 0001 + 1 word 
AND ACCB with accumulator ANDS 1011 1110 0001 0010 
Barrel shift accumulator right BSAR 1011 1111 1110 SHFT 
Complement accumulator CMPL 1011 1110 0000 0001 
Store ACC in ACCB if ACC > ACCB CRGT 1011 1110 0001 1011 
Store ACC in ACCB if ACC< ACCB CRLT 1011 1110 0001 1100 
Exchange ACCB with accumulator EXAR 1011 1110 0001 1101 
Load accumulator with ACCB LACS 1011 1110 0001 1111 
Load accumulator with shift LACC 0001 SHFT IAAA AAAA 
Load ACC long immediate with shift LACC 1011 1111 1000 SHFT + 1 word 
Load ACC with shift of 16 LACC 0110 1010 IAAA AAAA 
Load low word of ACC with immediate LACL 1011 1001 IIII IIII 
Load low word of accumulator LACL 0110 1001 IAAA AAAA 
Load ACC with shift specified by TREG1 LACT 0110 1011 IAAA AAAA 
Load ACCL with memory-mapped register LAMM 0000 1000 IAAA AAAA 
Negate accumulator NEG 1011 1110 0000 0010 
Normalize accumulator NORM 1010 0000 IAAA AAAA 
OR accumulator with data value OR 0110 1101 !AAA AAAA 
OR with ACC long immediate with shift OR 1011 1111 1100 SHFT + 1 word 
OR with ACC long immediate with shift of 16 OR 1011 1110 1000 0010 + 1 word 
OR ACCB with accumulator ORB 1011 1110 0001 0011 
Rotate accumulator 1 bit left AOL 1011 1110 0000 1100 
Rotate ACCB and accumulator left ROLB 1011 1110 0001 0100 
Rotate accumulator 1 bit right ROA 1011 1110 0000 1101 
Rotate ACCB and accumulator right RORB 1011 1110 0001 0101 
Store accumulator in ACCB SACS 1011 1110 0001 1110 
Store high accumulator with shift SACH 1001 lSHF IAAA AAAA 
Store low accumulator with shift SACL 1001 OSHF IAAA AAAA 
Store ACCL to memory-mapped register SAMM 1000 1000 IAAA AAAA 
Shift ACC 16 specified by TREG1 (4) SATH 1011 1110 0101 1010 
Shift ACC 0-15 specified by TREG 1 (3,0) SATL 1011 1110 0101 1011 
Subtract ACCB from accumulator SBB 1011 1110 0001 1000 
Subtract ACCB from accumulator with carry SBBB 1011 1110 0001 1001 
Shift accumulator 1 bit left SFL 1011 1110 0000 1001 
Shift ACCB and accumulator left SFLB 1011 1110 0001 0110 
Shift accumulator 1 bit right SFR 1011 1110 0000 1010 
Shift ACCB and accumulator right SFRB 1011 1110 0001 0111 
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Table 4-7. Opcode Summary (Continued) 

Accumulator Memory Reference Instructions (Concluded) 

Instruction Mnemonic Opcode 

Subtract from accumulator with shift SUB 0011 SHFT IAAA AAAA 
Subtract from accumulator with shift of 16 SUB 0110 0101 IAAA AAAA 
Subtract from ACC short immediate SUB 1011 1010 IIII IIII 
Subtract from ACC long immediate with shift SUB 1011 1111 1010 SHFT + 1 word 
Subtract from accumulator with borrow SUBB 0110 0100 IAAA AAAA 
Conditional subtract SUBC 0000 1010 IAAA AAAA 
Subtract from ACC with sign suppressed SUBS 0110 0110 IAAA AAAA 
Subtract from ACC, shift specified by TREG1 SUBT 0110 0111 IAAA AAAA 
XOR accumulator with data value XOR 0110 1100 IAAA AAAA 
XOR with ACC long immediate with shift XOR 1011 1111 1101 SHFT + 1 word 
XOR with ACC long Immediate with shift of 16 XOR 1011 1110 1000 0011 + 1 word 
XOR ACCB with accumulator XORB 1011 1110 0001 1010 
Zero ACC, load high ACC with rounding ZALR 0110 1000 IAAA AAAA 
Zero accumulator and product register ZAP 1011 1110 0101 1001 

Auxlllary Registers and Data Page Pointer Instructions 

Instruction Mnemonic Opcode 

Add to AR short immediate ADAK 0111 1000 IIII IIII 
Compare AR with CMPR CMPR 1011 1111 0100 OlCM 
Load AR from addressed data LAA 0000 OARX IAAA AAAA 
Load AR short immediate LAA 1011 OARX IIII IIII 
Load AR long immediate LAA 1011 1111 0000 lARX + 1 word 
Load data page pointer with addressed data LOP 0000 1101 IAAA AAAA 
Load data page immediate LOP 1011 llOI IIII IIII 
Modify auxiliary register MAR 1000 1011 IAAA AAAA 
Store AR to addressed data SAR 1000 OARX IAAA AAAA 
Subtract from AR short immediate SBRK 0111 1100 IIII IIII 

Parallel Logic Unit Instructions 

Instruction Mnemonic Opcode 

AND DBMR with data value APL 0101 1010 IAAA AAAA 
AND long immediate with data value APL 0101 1110 IAAA AAAA + 1 word 
Compare DBMR to data value CPL 0101 1011 IAAA AAAA 
Compare data with long immediate CPL 0101 1111 IAAA AAAA + 1 word 
OR DBMR to data value OPL 0101 1001 IAAA AAAA 
OR long immediate with data value OPL 0101 1101 IAAA AAAA + 1 word 
Store long immediate to data SPLK 1010 1110 IAAA AAAA + 1 word 
XOR DBMR to data value XPL 0101 1000 IAAA AAAA 
XOR long immediate with data value XPL 0101 1100 IAAA AAAA + 1 word 
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Table 4-7. Opcode Summary (Continued) 

T Register, P Register, and Multiply Instructions 

Instruction Mnemonic Opcode 

Add product to accumulator APAC 1011 1110 0000 0100 
Load high product register LPH 0111 0101 IAAA AAAA 
Load TREGO LT 0111 0011 IAAA AAAA 
Load TREGO and accumulate previous product LTA 0111 0000 IAAA AAAA 
Load TREGO, accumulate previous product, and LTD 0111 0010 IAAA AAAA 

move data 
Load TREGO and load ACC with PREG LTP 0111 0001 IAAA AAAA 
Load TREGO and subtract previous product LTS 0111 0100 IAAA AAAA 
Multiply/accumulate MAC 1010 0010 IAAA AAAA + 1 word 
Multiply/accumulate with data shift MACO 1010 0011 IAAA AAAA + 1 word 
Mult/ACC with source ADAS In BMAR and DMOV MADD 1010 1011 IAAA AAAA 
Mult/ACC with source address in BMAR MADS 1010 1010 IAAA AAAA 
Multiply data value times TREGO MPV 0101 0100 IAAA AAAA 
Multiply TREGO by 13-bit immediate MPV llOI IIII IIII IIII 
Multiply TREGO by long immediate MPV 1011 1110 1000 0000 + 1 word 
Multiply TREGO by data, add previous product MPVA 0101 0000 IAAA AAAA 
Multiply TREGO by data, ACC - PREG MPVS 0101 0001 IAAA AAAA 
Multiply unsigned data value times TREGO MPVU 0101 0101 IAAA AAAA 
Load accumulator with product register PAC 1011 1110 0000 0011 
Subtract product from accumulator SPAC 1011 1110 0000 0101 
Store high product register SPH 1000 1101 IAAA AAAA 
Store low product register SPL 1000 1100 IAAA AAAA 
Set PREG shift count SPM 1011 1111 0000 OOPM 
Data to TREGO, square it, add PREG to ACC SORA 0101 0010 IAAA AAAA 
Data to TREGO, square it, ACC - PREG SQRS 0101 0011 IAAA AAAA 
Zero product register ZPR 1011 1110 0101 1000 
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Table 4-7. Opcode Summary (Continued) 

Branch Instructions 

Instruction Mnemonic Opcode 

Branch unconditional with AR update B 0111 1001 lAAA AAAA + 1 word 
Branch unconditional with AR update delayed BD 0111 1101 lAAA AAAA + 1 word 
Branch addressed by ACC BACC 1011 1110 0010 0000 
Branch addressed by ACC delayed BACCO 1011 1110 0010 0001 
Branch AR = 0 with AR update BANZ 0111 1011 lAAA AAAA + 1 word 
Branch AR = 0 with AR update delayed BANZD 0111 1111 lAAA AAAA + 1 word 
Branch conditional BCND 1110 OOTP ZLVC ZLVC + 1 word 
Branch conditional delayed BCNDD 1111 OOTP ZLVC ZLVC + 1 word 
Call subroutine addressed by ACC CALA 1011 1110 0011 0000 
Call subroutine addressed by ACC delayed CALAD 1011 1110 0011 1101 
Call unconditional with AR update CALL 0111 1010 lAAA AAAA + 1 word 
Call unconditional with AR update delayed CALLO 0111 1110 lAAA AAAA + 1 word 
Call conditional cc 1110 lOTP ZLVC ZLVC + 1 word 
Call conditional delayed CCD 1111 lOTP ZLVC ZLVC + 1 word 
Software interrupt INTR 1011 1110 011 I NTR# 
Nonmaskable interrupt NMI 1011 1110 0101 0010 
Return RET 1110 1111 0000 0000 
Return conditional RETC 1110 llTP ZLVC ZLVC 
Return conditionally, delayed RETCD 1111 llTP ZLVC ZLVC 
Return, delayed RETD 1111 1111 0000 0000 
Return from interrupt with enable RETE 1011 1110 0011 1010 
Return from interrupt RETI 1011 1110 0011 1000 
Trap TRAP 1011 1110 0101 0001 
Execute next one or two INST on condition xc lllN OlTP ZLVC ZLVC 

1/0 and Data Memory Operations 

Instruction Mnemonic Opcode 

Block move from data to data memory BLDD 1010 1000 IAAA AAAA + 1 word 
Block move data to data DEST long immediate BLDD 1010 1001 IAAA AAAA + 1 word 
Block move data to data with source in BMAR BLDD 1010 1100 IAAA AAAA 
Block move data to data with DEST in BMAR BLDD 1010 1101 IAAA AAAA 
Block move data to PROG with DEST in BMAR BLDP 0101 0111 IAAA AAAA 
Block move from program to data memory BLPD 1010 0101 IAAA AAAA + 1 word 
Block move Prog to data with source in BMAR BLPD 1010 0100 IAAA AAAA 
Data move in data memory DMOV 0111 0111 IAAA AAAA 
Input external access IN 1010 1111 IAAA AAAA + 1 word 
Load memory mapped register LMMR 1000 1001 IAAA AAAA + 1 word 
Out external access OUT 0000 1100 IAAA AAAA + 1 word 
Store memory mapped register SMMR 0000 1001 IAAA AAAA + 1 word 
Table read TBLR 1010 0110 IAAA AAAA 
Table write TBLW 1010 0111 IAAA AAAA 
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Table 4-7. Opcode Summary (Concluded) 

Control Instructions 

Instruction Mnemonic Opcode 

Test bit specified immediate BIT 0100 BITX IAAA AAAA 
Test bit in data value as specified by TREG2 BITT 0110 1111 IAAA AAAA 
Reset overflow mode CLRC 1011 1110 0100 0010 
Reset sign extension mode CLRC 1011 1110 0100 0110 
Reset hold mode CLRC 1011 1110 0100 1000 
Reset TC bit CLRC 1011 1110 0100 1010 
Reset carry CLRC 1011 1110 0100 1110 
Reset CNF bit CLRC 1011 1110 0100 0100 
Reset INTM bit CLRC 1011 1110 0100 0000 
ResetXF pin CLRC 1011 1110 0100 1100 
Idle IDLE 1011 1110 0010 0010 
Load status register 0 LST 0000 1110 IAAA AAAA 
Load status register 1 LST 0000 1111 IAAA AAAA 
No operation NOP 1000 1011 0000 0000 
Pop PC stack to low accumulator POP 1011 1110 0011 0010 
Pop stack to data memory POPD 1000 1010 IAAA AAAA 
Push data memory value onto PC stack PSHD 0111 0110 IAAA AAAA 
Push low accumulator to PC stack PUSH 1011 1110 0011 1100 
Repeat instruction as specified by data APT 0000 1011 IAAA AAAA 
Repeat next INST specified by long immediate RPT 1011 1110 1100 0100 + 1 word 
Repeat INST specified by short immediate APT 1011 1011 IIII IIII 
Block repeat RPTB 1011 1110 1100 0110 + l word 
Clear ACC/PREG and repeat next INST long RPTZ 1011 1110 llOO 0101 + 1 word 
immediate 

Set overflow mode SETC 1011 1110 0100 0011 
Set sign extension mode SETC 1011 1110 0100 0111 
Set hold mode SETC 1011 1110 0100 1001 
Set TC bit SETC 1011 1110 0100 1011 
Set carry SETC 1011 1110 0100 1111 
Set XF pin high SETC 1011 1110 0100 1101 
Set CNF bit SETC 1011 1110 0100 0101 
Set INTM bit SETC 1011 1110 0100 0001 
Store status register 0 SST 1000 1110 IAAA AAAA 
Store status register 1 SST 1000 1111 IAAA AAAA 
Idle until interrupt - low power mode IDLE2 1011 1110 0010 0011 
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Chapter 5 

Peripherals 
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The seven peripheral interfaces connected to the 'C50, 'C51 and 'C53 core 
CPU are the serial port, TOM serial port, timer, software-programmable wait­
state generators, 1/0 ports, divide-by-one clock, and XF and BTO pins. These 
peripherals are controlled through registers that reside in the memory map. 
The serial ports and timer are synchronized to the core CPU via interrupts. Pe­
ripherals and peripheral control are discussed in this chapter as shown below. 

Topic Page 
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5.1 Peripheral Control 

Peripheral circuits are operated and controlled through access of memory­
mapped control and data registers. The operation of the serial ports and timer 
is synchronized to the processor via interrupts or through interrupt polling. Set­
ting and clearing bits can enable, disable, initialize, and dynamically reconfi­
gure the peripherals. Data is transferred to and from the peripherals through 
memory-mapped data registers. When a peripheral is not in use, the internal 
clocks are shut off from that peripheral, allowing for lower power consumption 
when the device is in normal run mode or idle mode. 

5.1.1 Memory-Mapped Registers and 1/0 Ports 

Twenty-eight core processor registers are mapped into the data memory 
space, they are listed in subsection 3.4.1. In addition to these core registers, 
15 peripheral registers and 16 1/0 ports are mapped into the data memory 
space. Table 5-1 lists the memory-mapped registers and 1/0 ports of the 'C5x. 
Note that all writes to memory-mapped peripheral registers require one addi­
tional machine cycle. 

Table 5-1. Memory-Mapped Registers and 1/0 Ports 

Memory-Mapped Core Processor Registers 

Name Address Description 

Dec Hex 

- 0-3 0-3 Reserved 

IMR 4 4 Interrupt Mask Register 

GREG 5 5 Global Memory Allocation Register 

IFR 6 6 Interrupt Flag Register 

PMST 7 7 Processor Mode Status Register 

RPTC 8 8 Repeat Counter Register 

BRCR 9 9 Block Repeat Counter Register 

PASR 10 A Block Repeat Program Address Start Register 

PAER 11 B Block Repeat Program Address End Register 

TREGO 12 c Temporary Register Used for Multiplicand 

TREG1 13 D Temporary Register Used for Dynamic Shift 
Count (5 bits only) 

TREG2 14 E Temporary Register Used as Bit Pointer in Dy-
namic Bit Test (4 bits only} 

DBMR 15 F Dynamic Bit Manipulation Register 

ARO 16 10 Auxiliary Register Zero 

AR1 17 11 Auxiliary Register One 

AR2 18 12 Auxiliary Register Two 
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Table 5-1. Memory-Mapped Registers and 1/0 Ports (Continued) 

Memory-Mapped Core Processor Registers (Concluded) 

Name Address Description 

Dec Hex 

AR3 19 13 Auxiliary Register Three 

AR4 20 14 Auxiliary Register Four 

AR5 21 15 Auxiliary Register Five 

AR6 22 16 Auxiliary Register Six 

AR7 23 17 Auxiliary Register Seven 

INDX 24 18 Index Register 

ARCR 25 19 Auxiliary Register Compare Register 

CBSR1 26 1A Circular Buffer 1 Start Register 

CBER1 27 1B Circular Buffer 1 End Register 

CBSR2 28 1C Circular Buffer 2 Start Register 

CBER2 29 1D Circular Buffer 2 End Register 

CBCR 30 1E Circular Buffer Control Register 

BMAR 31 1F Block Move Address Register 

Memory-Mapped Peripheral Registers 

ORR 32 20 Data Receive Register 

DXR 33 21 Data Transmit Register 

SPC 34 22 Serial Port Control Register 

- 35 23 Reserved 

TIM 36 24 Timer Register 

PRO 37 25 Period Register 

TCR 38 26 Timer Control Register 

- 39 27 Reserved 

PDWSR 40 28 Program/Data S/W Wait-State Register 

IOWSR 41 29 1/0 S/W Wait-State Register 

CWSR 42 2A S/W Wait-State Control Register 

- 43-47 2B-2F Reserved 

TRCV 48 30 TOM Data Receive Register 

TDXR 49 31 TOM Transmit Data Register 

TSPC 50 32 TOM Serial Port Control Register 

TCSR 51 33 TOM Channel Select Register 

TRTA 52 34 TOM Receive/Transmit Address Register 

TRAD 53 35 TOM Received Address Register 
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Table 5-1. Memory-Mapped Registers and 1/0 Ports (Concluded) 

5.1.2 Interrupts 

5-4 

Name Address Description 

Dec Hex 

- 54-79 36-4F Reserved 

Memory-Mapped 1/0 Portst 

PAO 80 50 1/0 Port 50h 

PA1 81 51 1/0 Port 51h 

PA2 82 52 1/0 Port 52h 

PAS 83 53 1/0 Port 53h 

PA4 84 54 1/0 Port 54h 

PA5 85 55 1/0 Port 55h 

PA6 86 56 1/0 Port 56h 

PA7 87 57 1/0 Port 57h 

PAS 88 58 1/0 Port 58h 

PA9 89 59 1/0 Port 59h 

PA10 90 5A 1/0 Port 5Ah 

PA11 91 58 1/0 Port 5Bh 

PA12 92 5C 1/0 Port 5Ch 

PA13 93 50 1/0 Port 5Dh 

PA14 94 5E 1/0 Port 5Eh 

PA15 95 5F 1/0 Port 5Fh 

t See Section 6.2 for memory-mapped 1/0 ports. 

The 'C5x devices have four external, maskable user interrupts (1NT4-TNTI) 
that external devices can use to interrupt the processor; there is one external 
nonmaskable interrupt (NW). Internal interrupts are generated by the serial 
port (RINT and XINT), the timer (TINT), the TDM port (TANT and TXNT), and 
the software interrupt instructions (TRAP, NMI, and INTR). Interrupt priorities 
are set so that reset (RS) has the highest priority and TNT4 has the lowest prior­
ity. The NMT has the second highest priority. 

This subsection explains interrupt organization and management. Vector-rela­
tive locations and priorities for all internal and external interrupts are shown in 
Table 5-2. No priority is set for the TRAP instruction (used for software inter­
rupts), but it is included here because it has its own vector location. Each inter­
rupt address has been spaced apart by two locations so that branch instruc­
tions can be accommodated in those locations. 

The interrupt vectors reside at locations determined by the five-bit IPTR field 
of the PMST and the address values shown in Table 5-2. The IPTR field is set 

Peripherals 



Peripheral Control 

to zero upon device reset, resulting in the interrupt vectors mapping to OOOOh 
in the program memory space. The vectors' program address can be re­
mapped to the beginning of any of the 32 2K-word blocks composing program 
memory space. This is done by loading a five-bit block address (5 MSBs of a 
full 16-bit address) into the IPTR. For example, the vectors can be moved to 
the beginning of the on-chip program RAM of the 'CSO by loading IPTR with 
1. When an interrupt trap occurs, the value in the IPTR is loaded into the most 
significant five bits of the vector address, and the relative address of the inter­
rupt causing the trap constitutes the 6 LSBs of the vector address. This relative 
addressing scheme applies to all interrupts as well as to the software trap. It 
does not apply to the reset vector, because the reset signal forces the IPTR 
to be set to zero. 

Table 5-2. Interrupt Locations and Priorities 

Name Location Priority Function 

Dec Hex 

RS 0 0 1 (highest) External reset signal 

JilMT 36 24 2 Nonmaskable interrupt 

rnTf 2 2 3 External user interrupt #1 

lJifrn 4 4 4 External user interrupt #2 

TITT3 6 6 5 External user interrupt #3 

TINT 8 8 6 Internal timer interrupt 

RINT 10 A 7 Serial port receive interrupt 

XINT 12 c 8 Serial port transmit interrupt 

TANT 14 E 9 TOM port receive interrupt 

TXNT 16 10 10 TOM port transmit interrupt 

lm4 18 12 11 External user interrupt #4 

- 2o-33 14--21 N/A Reserved 

TRAP 34 22 N/A Trap instruction vector 

- 38-39 26-27 N/A Reserved 

- 40-63 28-3F N/A Software interrupts 

When an interrupt occurs, it is stored in the 16-bit interrupt flag register (IFR). 
Note that this happens regardless of whether that interrupt is currently enabled 
or disabled. Each interrupt sets a flag in IFR. The flag can be cleared in any 
of the following three ways: 

1) Device reset (RS active low), 
2) The program takes the interrupt trap, or 
3) The program writes a one to the appropriate bit in the IFR. 
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The IFR is located at address 6 in the data memory space and can be read to 
identify active interrupts and written to clear interrupts. The IFR register is laid 
out as follows: 

15 9 8 7 6 5 4 3 2 0 

Reserved I TNT4 TXNT TANT XINT RINT TINT TlilT3 TITT2 lNTT I 
Note that the 'CSx uses only ten of the sixteen generic interrupt lines to the core 
CPU shown in Section 3.8. 

A one in a specific bit, when read, indicates an active interrupt. For example, 
if the IFR is read to be OOOSh, then TNT3" and mTf are active. A one can be 
written to a specific bit to clear the corresponding interrupt. In the example, if 
a one is written to bit zero (0001 h to IFR), then the mTf interrupt would be 
cleared. In the above example, the value OOOSh could be written back into the 
IFR to clear both pending interrupts. 

A corresponding interrupt flag is automatically cleared when the interrupt trap 
is taken. When the CPU accepts the interrupt and fetches the instruction at the 
interrupt vector location, it generates an interrupt acknowledge (1ACK) signal 
that clears the appropriate interrupt flag bit. A hardware reset (RS active low) 
clears all pending interrupt flags. 

The 'CSx devices have a memory-mapped interrupt mask register (IMR) for 
masking external and internal interrupts. The layout of the register is as fol­
lows: 

15 9 8 7 6 5 4 3 2 0 

Reserved I TNT4 TXNT TANT XINT RINT TINT TlilT3 TITT2 lNTT I 
A 1 in bit positions 8 through O of the IMR enables the corresponding interrupt, 
provided that INTM = 0. The IMR is accessible with both read and write opera­
tions. Note that RS and NMT are not included in the IMR; the IMR has no effect 
on reset or a nonmaskable interrupt. 

Interrupts may be asynchronously triggered. In the functional logic organiza­
tion for rnT4-mTI, shown in Figure 5-1, the external interrupt 1NTri is syn­
chronized to the core via a five flip-flop synchronizer. The actual implementa­
tion of the interrupt circuits is similar to this logic implementation. A one is 
loaded into the IFR if a 1-1-0-0-0 sequence on five consecutive CLKOUT1 
cycles is detected. 

The 'CSx devices sample the external interrupt pins multiple times to avoid noi­
se-generated interrupts. To detect an active interrupt, these devices must 
sample the signal low on at least three consecutive machine cycles. Once an 
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interrupt is detected, the devices must sample the signal high on at least two 
consecutive machine cycles to be able to detect another interrupt. The exter­
nal interrupt pins are sampled on the rising edge of CLKOUT1 . If the external 
interrupts are running asynchronously, the pulses should be stretched to guar­
antee three consecutive low samples. 

Figure 5-1. External Interrupt Logic Diagram 
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If the INTM bit and mask registers have been properly enabled, the interrupt 
signal is accepted by the processor. An TACK signal is then generated. The 
TACK clears the appropriate interrupt edge flip-flop and sets the INTM =1. The 
logic is the same for 1NTI-fliJT4. NMT uses the same logic, except that it is not 
affected by IMR or INTM status. 

The context of the interrupted code segment is automatically saved by the pro­
cessor. When the processor takes the interrupt trap (TACK goes active low), 
the accumulator, accumulator buffer, product register, index register, auxiliary 
compare register, STO, ST1 (except for the XF bit), PMST, and all three tempo­
rary registers are pushed onto corresponding one-deep stacks. At the comple­
tion of the ISR, the RETI (return from interrupt) or RETE instruction causes the 
stacks to be popped automatically to restore the interrupted code segment's 
context. Because these stacks are one deep, nesting of interrupts requires a 
software context save. However, the overhead is lowered considerably by the 
automatic context save. Therefore, it is usually more code efficient to serially 
execute multiple ISRs. 
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Interrupt service routines can be invoked in software via the INTR instruction 
(see page 4-76 for details). 

5.1.3 Peripheral Reset 

5-8 

A number of actions occur when the 'C5x is reset. Subsection 3.8.1 describes 
what happens in the 'C5x core when reset is activated. On a device reset, the 
core CPU sends an SRESET signal to the peripheral circuits. The SRESET 
signal has the following consequences in the peripheral circuits: 

1) The two software wait-state registers are set to OFFFFh, causing all exter­
nal accesses to occur with 7 wait states. The CWSR is loaded with OFh. 

2) The FO bits of the SPC and TSPC registers are set to zero, selecting a 
word length of 16 bits for each serial port. 

3) The FSM bits of the SPC and TSPC registers are set to zero. FSM must be 
set to one for operation with frame sync pulses. 

4) The TXM bits of the SPC and TSPC are set to zero, configuring the FSX 
and TFSX pins as inputs. 

5) The SPC and TSPC registers are loaded with OyOOh, where the 2 MSBs of 
y are 1 O (binary) and the 2 LSBs of y reflect the current levels on the trans­
mit and receive clock pins of the respective port. 

6) The TIM and PRO registers are loaded with OFFFFh. The TDDR field of 
the TCR is set to zero. The timer is started. 
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5.2 Parallel Input/Output Ports 

The 'CSx devices have 64K parallel input/output ports. 1/0 port accesses are 
defined as accesses during which the 1/0 space select signal (TS} is active. Six­
teen of the 64K ports are mapped in data memory space as shown in Table 
&-1. All 64K 1/0 ports can be accessed with the IN and OUT instructions. The 
16 memory-mapped 1/0 ports (50h-5Fh) can also be accessed via any in­
struction that reads or writes a location in data space. RO can be used in con­
junction with chip-select logic to generate an output enable signal for an exter­
nal peripheral. The WE signal can be used in conjunction with chip-select logic 
to generate a write enable signal for an external peripheral. Figure &-2 shows 
typical 1/0 port interface circuitry. Note that the decode section can be simpli­
fied if fewer 1/0 ports are used. 

Figure 5-2. 1/0 Port Interface Circuitry 
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5.3 Software-Programmable Wait-State Generators 

5-10 

Software-programmable wait-state generators can be used to extend external 
bus cycles by up to 7 machine cycles. This provides a convenient means for 
interfacing external devices that do not satisfy the full-speed access-time re­
quirements of the 'CSx. Devices requiring more than 7 wait states can be inter­
faced with the hardware READY line. When all external accesses are confi­
gured for zero wait states, the internal clocks to the wait-state generator are 
shut off, allowing the device to run in a lower power mode of operation. 

The software-programmable wait-state generators are controlled by two 16-bit 
wait-state registers (PDWSR and IOWSR) and a 5-bit control register 
(CWSR). Each of the three external spaces (program, data, and 1/0 spaces) 
has an assigned field in a software wait-state register. Wait states for the pro­
gram and data spaces are specified in the lower and upper halves of PDWSR, 
respectively. Wait states for 1/0 space are specified in IOWSR. The bits of 
CWSR control the mapping between wait-state register contents and the num­
ber of wait states. 

The program and data spaces each consist of 64K addresses. Each 64K 
space can be viewed as being composed of four 16K-word blocks. Each 16K 
address segment in program and data space is associated with 2 bits in 
PDWSR, as shown in Table 5-3. The value of a 2-bit field in PDWSR specifies 
the number of wait states to be inserted for each access in the given space and 
address range. 

Peripherals 



Software-Programmable Wait-State Generators 

Table 5-3. Software Wait-State Registers 

Register Bits Space Address Range 

PDWSR 0-1 Program OOOOh--3FFFh 

2-3 4000h-7FFFh 

4-5 8000h--OBFFFh 

6-7 OCOOOh--OFFFFh 

8-9 Data OOOOh--3FFFh 

i0-i1 4000h-7FFFh 

12-13 8000h--OBFFFh 

14-15 OCOOOh--OFFFFh 

IOWSR BIG =0 BIG= 1 

0-1 1/0 Port 0/1 , Port 10/11, etc. OOOOh-1FFFh 

2-3 Port 2/3, Port 12/13, etc. 2000h-3FFFh 

4-5 Port 4/5, Port 14/15, etc. 4000h-5FFFh 

6-7 Port 6/7, Port 16/17, etc. 6000h-7FFFh 

8-9 Port 8/9, Port 18/19, etc. 8000h-9FFFh 

10-11 Port ONOB, Port 1 N1 B, OAOOOh-OBFFFh 
etc. 

12-13 Port OC/OD, Port 1 C/1 D, OCOOOh--ODFFFh 
etc. 

14-15 Port OE/OF, Port 1 E/1 F, etc. OEOOOh--OFFFFh 

The 1/0 space wait-state register (IOWSR) can be mapped in either of two 
ways, as specified by the BIG bit in the CWSR register. If BIG=O, each of 8 pairs 
of memory-mapped 1/0 ports has its own 2-bit field in IOWSR. Note that even 
when BIG=O, the entire 1/0 space is configured with wait states on two-word 
boundaries (i.e., port 0/1 , port 10/11 , and port 20/21 all have the same number 
of wait states). This configuration provides maximum flexibility when 1/0 bus­
cycles access peripherals such as DIA and ND devices. However, if 1/0 ac­
cesses read and/or write devices that are addressable (e.g., external RAM), 
BIG can be setto 1. In this case, the 64K 1/0 space is divided into eight SK-word 
address blocks, with each block having an independently programmable num­
ber of wait states. 

Note that the wait-state generators affect external accesses only; internal ac­
cesses always have zero wait states. 

The four bits in CWSR allow the user to select one of two mappings between 
2-bit wait-state fields and the number of wait states for the corresponding 
space. As shown in Table 5-4, if a particular bit of CWSR is a zero, the map­
ping between wait-state field values and the resulting number of wait states 
is direct: the number of wait states for external accesses in the space asso­
ciated with that control bit is equal to the wait-state field value. If the control bit 
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of CWSR is a one, the number of wait states is determined by the mapping 
shown in Table ~. Table 5-5 shows the layout of the CWSR register in 
PDWSR and IOWSR registers. You should always program the CWSR regis­
ter prior to configuring the PDWSR and IOWSR registers to avoid configuring 
memory with too few wait states during the set-up of wait-state registers. 

Table 5-4. Wait-State Field Values and Wait States as a Function of CWSR Bit n 

Walt-State Fleldt No. of Walt States No. of Walt States 
of PDWSR or IOWSR {CWSR Bit n = 0) {CWSR Bit n = 1) 
{Binary Value) 

00 0 0 

01 1 1 

10 2 3 

11 3 7 

t This bit field corresponds to the bit field defined in the second column of Table 5-3. 

Table 5-5. Space Controlled by CWSR Bit n 

5-12 

n {Bit Position Space 
In CWSR) 

0 Program 

1 Data 

2 1/0 (lower-half: Port 0-Port 7 if BIG=O, OOOOh-7FFFh if BIG=1) 

3 1/0 (upper-half: Port 8-Port F if BIG=O, 8000h--OFFFFh if BIG=1) 

4 BIG mode bit 

Figure 5-3 shows a block diagram of the wait-state generator logic for external 
program space. When an external program access is decoded, the appropri­
ate field of the PDWSR wait-state register is loaded into the counter. If the field 
is not 000, a not-ready signal is sent to the CPU. The not-ready condition is 
maintained until the counter decrements to zero and the external READY line 
is high. The external READY and the wait-state register READY are ORed to­
gether to generate the CPU WATT signal. Also, the READY line is sampled at 
the falling edge of CLKOUT. (Note that the external READY line is machine­
sampled only at the last cycle of an external access if the on-chip wait-state 
generator is used to insert software wait states). 

Upon reset, all the software wait-state control register fields are set to 7. 
CWSR is set to OFh. Device reset also sets the BIG bit of the CWSR register 
to zero. 
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Figure 5-3. Soffware Wait-State Generator Block Diagram 
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5.4 General-Purpose 1/0 Pins 

The 'C5x devices have two general-purpose pins that are software controlled. 
The BIO pin is a branch control input pin, and the XF pin is an external flag out­
put pin. For detailed timing specifications of BIO and XF signals, refer to Ap­
pendix A. 

The BIO pin monitos peripheral device status-especially as an alternative to 
an interrupt when time-critical loops must not be disturbed. A branch can be 
conditionally executed when the BIO input is active (low). The timing diagram, 
shown in Figure 5-4, is an example of the BIO operation. This timing diagram 
is for a sequence of single-cycle, signal-word instructions located in external 
memory. The BIO condition is sampled during the decode phase of the pipeline 
for the XC instruction. All other instructions sample the BIO pin during the ex­
ecute phase of the pipeline. 

Figure 5-4. HlO Timing Diagram 
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The XF (external flag) pin signals to external devices via software. It is set high 
by the SETC XF (set external flag) instruction and reset to a low level by the 
CLRC XF (reset external flag) instruction. XF is set high upon device reset. The 
relationship between the time SETC/CLRC instruction is fetched, and the time 
the XF pin is set or reset as shown in Figure 5-5. As with BIO, the timing shown 
for XF is for a sequence of single-cycle, single-word instructions located in ex­
ternal memory. Actual timing may vary with different instruction sequences. 

Figure 5-5. External Flag Timing Diagram 
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Serial Port 

A full duplex (bidirectional) on-chip serial port provides direct communication 
with serial devices such as codecs, serial ND (analog to digital) converters, 
and other serial systems. The interface signals are compatible with codecs 
and many other serial devices. The serial port may also be used for intercom­
munication between processors in multiprocessing applications (the TOM port 
is further optimized for such an application). 

Both receive and transmit operations are double-buffered on the 'C5x, thus al­
lowing a continuous communications stream (either 8- or 16-bit data packets. 
The continuous mode provides operation that once initiated requires no further 
frame synchronization pulses when transmitting at maximum packet frequen­
cy. The serial port is fully static and thus will function at arbitrarily low clocking 
frequencies. The maximum operating frequency of the serial port while using 
internal clocks is CLKOUT1/4 (5 MbiVs at 50 ns, 7.14 MbiVs at 35 ns). When 
the serial ports are in reset the device may be configured to shut off the serial 
port internal clocks, allowing the device to run in a lower power mode of opera­
tion. 

5.5.1 Serial Port Operation 

Table 5-6 lists the pins used in serial port operation. Three signals are neces­
sary to connect the transmit pins of the transmitting device with the receive 
pins of the receiving device for data transmission. The transmitted serial data 
signal (DX) sends the actual data. The transmit frame synchronization signal 
(FSX) initiates the transfer (at the beginning of the packet), and the transmit 
clock signal (CLKX) clocks the bit transfer. The corresponding pins on the re­
ceive device are DR, FSR and CLKR, respectively. Figure 5-6 shows these 
pins for two 'C5x serial ports connected for a one-way transfer from device 0 
to device 1. 

Table 5-6. Serial Port Pins 

Pins Description 

CLKX Transmit clock signal 

CLKR Receive clock signal 

DX Transmitted serial data signal 

DR Received serial data signal 

FSX Transmit frame synchronization signal 

FSA Receive framing synchronization signal 
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Figure 5-6. One-Way Serial Port Transfer 
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The serial port operates through the three memory-mapped registers (SPC, 
DXR, and ORR) and two other registers (XSR and RSR) that are not accessi­
ble but permit double-buffering capability. These five registers are listed in 
Table S-7. 

Table 5-7. Serial Port Registers 

5-16 

Registers Description 

SPC Serial port control register 

DXR Data transmit register 

DAR Data receive register 

XSR Transmit shift register 

RSA Receive shift register 

Figure S-7 shows how the pins and registers are configured on the serial port 
and how the double-buffering is implemented. 
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Figure 5-7. Serial Port Block Diagram 
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The SPC controls serial port operation; the functions of SPC bit fields are de­
scribed in Table 5-8. Transmit data is written to the DXR, while received data 
is read from the ORR. A transmit is executed by writing data to the DXR, which 
copies the data to the XSR when the XSR is empty {the last word has been 
serially transmitted, that is, driven on the DX pin). The XSR manages the shift­
ing of the data to the DX pin, thus allowing another write to DXR as soon as 
the DXR-to-XSR copy is completed. 

Upon completion of the DXR-to-XSR copy, a O-to-1 transition occurs on the 
transmit ready XRDY bit in the SPC and generates a serial port transmit inter­
rupt (XINT - see subsection 5.1.2 for more information on 'C5x interrupts) 
that signals that DXR is ready for a new word. The process is similar on the 
receive side. Data from the DR pin is shifted into the RSR, which copies it to 
the data receive register (ORR) from which it may be read. Upon completion 
of the RSR-to-DRR copy, a O-to-1 transition occurs on the receive ready 
{RRDY) bit in the SPC and generates a serial port receive interrupt (RINT). 
Thus, the serial port is double-buffered because data can be transferred to or 
from DXR or ORR while another transmit or receive is being performed. Note 
that the transfer timing is synchronized by the frame sync pulse in burst mode 
and is discussed in more detail in subsection 5.5.2. 
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Figure 5-8 shows the 16-bit memory-mapped register that configures the seri­
al port. Some of the bits are read-only while others are read/write. 

Figure 5-8. Serial Port Control Register 
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Note: R = Read, W = Write 

Table 5-8. Serial Port Control Register Bits Summary 

Bit Name Function 

0 Reserved Always read as zero. 

The Digital Loop back Mode Bit can be used to put the serial port in digital loop back mode. When DLB= 1, 
DR and FSA are connected to DX and FSX, respectively, through multiplexers, as shown in 
Figure 5-9(a) and Figure 5-9(b). Additionally, CLKR is driven by CLKX if MCM=1. If DLB=1 and 

1 DLB 
MCM=O, CLKR is taken from the CLKR pin of the device. This configuration allows CLKX and CLKR 
to be tied together externally and supplied by a common external clock source. The logic diagram for 
CLKR is shown in Figure 5-9(c). If DLB=O, DR, FSA, and CLKR are taken from the respective device 
pins. Note that TXM must be set to one for proper operation in DLB mode. Note also that the FSX and 
DX signals appear on the device pins when DLB=1, but FSA and DR do not. 

The Format Bit specifies the word length of the serial port transmitter and receiver. If FO=O, data is trans-
2 FO mitted and/or received as 16-bit words. If FO= 1, data is transferred as 8-bit bytes. The data is transferred 

with the MSB first. 

The Frame Synch Mode Bit specifies whether frame synchronization pulses are required for serial port 

3 FSM 
operation. If FSM=1, a frame sync pulse is required on FSX/FSR for the transmission/reception of each 
word. When the serial port is operated in the continuous mode, FSM=O. Refer to subsection 5.5.1 for 
more details on the frame sync signals. 

The Clock Mode Bit specifies the clock source for CLKX. If MCM=O, CLKX is taken from the CLKX pin. 
4 MCM If MCM=1, CLKX is driven by an on-chip clock source having a frequency equal to one-fourth of 

CLKOUT1. Note that if MCM=1 and DLB=1, a CLKR signal is also supplied by the internal source. 

The Transmit Mode Bit configures the FSX pin as an input (TXM = 0) or as an output 
(TXM = 1). When TXM = 1, frame sync pulses are generated internally when data is transferred from 

5 TXM the DXR to DSR to initiate data transfers. The internally generated framing signal is synchronous with 
respect to CLKX. When TXM = 0, the transmitter idles until a frame synch pulse is supplied on the FSX 
pin. 

The Transmit Reset and Receive Reset signals reset the transmitter and receiver, respectively. If the 
SPC is to be modified to reconfigure the serial port, a total of two writes should be made to the SPC. The 

6 XRST 
first write should write zeroes to XRST and RAST and the desired configuration to bits 1-5. The second 

7 RAST 
write should write ones to XRST and RAST, taking the serial port out of reset. When a zero is written.to 
either of these bits, activity in the corresponding section of the serial port halts. Note that when XRDY =0, 
writing a zero to XRST generates a transmit interrupt. When XRST =0, RAST =0, and MCM=O, the inter-
nal clocks to the serial ports are shut off, allowing the device to run in a lower power mode of operation. 
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Table 5-8. Serial Port Control Register Bits Summary (Continued) 

Bit Name 

8 INO 
9 IN1 

10 RADY 
11 XRDY 

12 XSAEMPTY 

13 RSRFULL 

14 SOFT 

15 FREE 

Function 

The lnputO Bitand Input 1 Bit allow the CLKRand CLKXpinsto be used as bitinputs. INOand IN1 reflect 
the current levels of the CLKR and CLKX pins, respectively, of the device. The levels on these pins can 
be read by reading the SPC. They can be tested by using the PLU or the BIT or BITT instruction. Note 
that there is a latency of between 0.5 and 1.5 CLKOUT1 cycles in length from CLKR/CLKX switching 
to the new CLKR/CLKX value being represented in the SPC. 

Receive Ready and Transmit Ready Bits. A transition from 0 to 1 of the RADY bit indicates that the re-
ceive shift register (RSA) has been copied to the ORR and that the data can be read. A receive interrupt 
is generated upon the transition. A transition from 0 to i of the XRDY bit indicates that the DXR contents 
have been copied to the XSR and that data is ready to be loaded with a new data word. A transmit inter-
rupt is generated upon the transition. These bits can be polled in software in lieu of using serial port inter-
rupts. 

The Transmit Shift Register Empty Flag. This bit indicates whether the transmitter has experienced un-
derflow. Underflow occurs when two conditions are satisfied: 1) the XSR empties, and 2) the DXR has 
not been reloaded since the last DXR-to-XSR transfer. Note that underflow does not constitute an error 
condition in burst mode. If another frame synch pulse occurs prior to writing the DXR while in burst mode, 
the previous data in the XSR is shifted out the DX pin. Writing to DXR inactivates the XSREMPTY bit. 
XSREMPTY=O indicates underflow. 

The Receive Shift Register Full Flag. This bit indicates whether the receiver has experienced overrun. 
Overrun occurs when three conditions are satisfied: 1) RSA is full, 2) the ORR has not been read since 
the last RSR-to-DRR transfer, and 3) a frame sync pulse appears on FSA. Note that condition 3 applies 
only when FSM=1. When FSM=O, only the first two conditions apply. When RSRFULL=1, the receiver 
halts and waits for the ORR to be read. The data in the RSA is preserved, but any data sent on DR while 
the receiver is halted is lost. Reading ORR, device reset, and serial port reset each clear the RSRFULL 
bit. RSRFULL=1 indicates overflow. 

The SOFT bit. This bit is enabled when the FREE bit is 0. If FREE=O, the SOFT bit selects immediate 
stop if 0, stop after word completion if 1. See page 5-23. 

The FREE bit. If FREE=1, free run is selected, regardless of the value of the SOFT bit. If FREE=O, the 
SOFT bit selects the emulation mode as described above. See page 5-23. 

Bit 0 is reserved and is read as 0 (although it performs a function in the TDM 
serial port, explained in Section 5.6). The format bit FO, bit 1 of the SPC, speci­
fies whether data is transmitted as 16-bit words (FO=O) or 8-bit bytes (F0=1). 
Note that in the latter case, only the lower byte of whatever is written to DXR 
on the transmitter is transmitted and the lower byte of whatever is read from 
DAR on the receiver is received. To transmit a whole 16-bit word in 8-bit byte 
mode on the transmitter, two writes to DXR are necessary, with the appropriate 
shifts of the value because the upper 8 bits written to DXR are ignored. Similar­
ly, to receive a whole 16-bit word in 8-bit mode on the receiver, two reads from 
DRR are necessary, with the appropriate shifts of the value, because the upper 
8 bits in DRR are random values. 

The source device for the clock for serial port transfers is set by bit 4 (MCM) 
of the SPC register. If MCM=1, then the CLIO< is configured as an output and 
is driven by an internal clock source with a frequency equal to 1 /4 of CLKOUT1. 
If MCM=O, CLKX is configured as an input and thus accepts an external clock. 
Note that the CLKR pin is always configured as an input. 
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The source device for the frame synchronization pulse is set with the TXM bit, 
(bit 3). Like MCM, if TXM=1, the FSX pin is configured as an output and drives 
a pulse at the beginning of every transmit. If TXM=O, FSX is configured as an 
input and accepts an external frame sync signal. Note that the FSA pin is al­
ways configured as an input. 

The reset of the serial port for both transmitter and receiver is done by the 
XRST bit and the RAST bit, bits 6 and 7, respectively. These signals are active 
low, so that if XRST =RAST =0, the serial port is in reset. To modify SPC to con­
figure the serial port, a total of two writes to the SPC are necessary. The first 
write should write zeros to the XRST and RAST and the desired configuration 
bits 1-5. While maintaining the desired configuration bits, the second write 
should write ones to XRST, and RAST, bits, taking the serial port out of reset. 
Note that these bits can be reset individually if desired. When a zero is written 
to either of these bits, activity in the corresponding section of the serial port 
stops. When XRST =0 and RAST =0, the particular internal clocks to the serial 
port are shut off. This minimizes the switching and allows the device to operate 
on lower power consumption {as long as the CLKX bit is configured as an input 
- that is, with MCM=O). 

The FSM bit (bit 3) specifies whether frame syncs are needed in consecutive 
serial port transmits. If FSM=1, a frame sync is required for every transfer and 
the mode is referred to as burst mode, because there may be periods of inac­
tivity on the serial port between transmits. The frequency of packet writes to 
DXR is called packet frequency. The packets can be 8 or 16 bits long, depend­
ing on FO. 

As the packet frequency increases, it reaches a maximum that is equivalent 
to 8 or 16 clock cycles, depending on FO. Note that this cycle count corre­
sponds to 32 or 64 instruction cycles on the CPU, again depending on FO if 
internal 'C5x clocks are used. Thus, if transmitting at maximum rate for more 
than one transmission, the frame sync signal becomes extraneous. The con­
tinuous mode of operation (FSM=1) is then the mode that requires only an ini­
tial frame sync pulse, as long as a write to DXR for transmit, or a read from ORR 
for receive, is executed during each transmission. The timing of both modes 
is dicussed in detail in subsections 5.5.2 and 5.5.3. 

The DLB bit, (bit 1) is a digital loop back mode that allows testing of the serial 
port code with just one device. When DLB=1, DR and FSA are connected to 
DX and FSX, respectively, through multiplexers, as shown in Figure 5-9. 
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Figure 5-9. Receiver Signal MUXes 
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CLKR is driven by CLIO< if MCM=1. But if MCM=O while DLB=1, then CLKR 
is taken from the CLKR pin. This allows for external clock generation of these 
signals during digital loopback mode. If DLB=O, then normal operation occurs 
where DR, FSR, and CLKR are all taken from their respective pins. 

Bits 10-13 in the SPC are read-only status bits that indicate various states in 
serial port operation. Writes and reads to the serial port may be synchronized 
by polling RRDY and XRDY, (bits 1 O and 11, respectively) or by using the inter­
rupts that they generate. A transition from 0 to 1 of the RRDY bit indicates that 
the RSR has been copied to the ORR and that the received data may be read. 
A receive interrupt (RINT) is generated upon this transition. A transition from 
0 to 1 of the XRDY bit indicates that the DXR contents have been copied to the 
XSR and that DXR is ready to be loaded with a new data word. A transmit inter­
rupt (XINT) is generated upon this transition. Polling these bits in software may 
either substitute for or complement the use of serial port interrupts. In other 
words, both polling and interrupts can be used together if so desired. The 
XSREMPTY bit (bit 12) indicates whether the transmitter has experienced un­
derflow. (When XSREMPTY=O, it is active). 

The following three situations cause the XSREMPTY flag to become active: 

DXR has not been loaded since the last DXR-XSR transfer 

AND XSR empties (The actual transition of XSREMPTY occurs after the 
last bit has been shifted out of XSR) 

OR serial port reset (XRST =0) 

OR device reset 
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When XSREMPTY is active, the transmit side of the serial port halts, thus driv­
ing no value (the DX pin is in a high-impedance state). An exception occurs 
in burst mode with external frame syncs, which is explained in subsection 
5.5.4. Note that underflow does not constitute an error condition in the burst 
mode, although it does in the continuous mode (error conditions are further 
discussed in subsection 5.5.4). The XSREMPTY flag becomes inactive 
{XSREMPTY=1) when: 

A write to DXR occurs. Note that more information on the transmit timing 
is explained in subsection 5.5.2. 

The RSRFULL bit, (bit 13) indicates whether the receiver has experienced 
overrun {When RSRFULL=1, it is active). 

Overrun occurs when: 

The ORR has not been read since the last RSR-to-DRR transfer. 

AND RSR is full. 

AND a frame sync pulse appears on FSR. 

Note that in continuous mode (FSM=O), only the first two conditions apply; 
therefore, RSRFULL transitions after the last bit has been shifted out. When 
RSRFULL=1, the receiver halts and waits for ORR to be read. The data in RSR 
is preserved, but any new data driven on the DR pin while the receiver is halted 
is lost. 

The RS RFU LL flag becomes inactive (RS RFU LL=O) under the following three 
conditions: 

ORR is read 

OR serial port is reset (RAST =0) 

OR device is reset 

I NO and IN 1 (bits 8 and 9) in the SPC allow the CLKR and CLKX pins to be used 
as bit inputs. INO and IN 1 reflect the current levels of the CLKR and CLKX pins. 
The levels on the pins can be read by reading the SPC. They can be tested 
by using the PLU or BIT or BITT instructions. Note that there is a latency of 
between 0.5 and 1.5 CLKOUT1 cycles in length from CLKR/CLKX switching 
to the new CLKR/CLKX value being represented in the SPC. Note that if the 
serial port is put into reset, INO and IN1 can be used as bit inputs and ORR and 
DXR as general-purpose registers. SOFT and FREE (bits 14 and 15) are spe­
cial emulation bits that determine the state of the serial port clock when a 
breakpoint is encountered in the high-level language debugger. If the FREE 
bit (bit 15) is set to one, then upon a software breakpoint, the clock continues 
to run (that is, free runs) and data is shifted out. In this case, SOFT (bit 14) is 
a don't care. But if FREE is 0, then SOFT takes effect. If SOFT =0, then the 
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clock immediately stops, thus aborting any transmission. If the SOFT bit is 1 , 
the particular transmission continues until completion of the word, and then the 
clock halts. The options are as follows: 

FREE SOFT 
1 x 
0 0 
0 1 

Free run 
Immediate stop 
Stop after completion of word 

The receive side functions in a similar fashion. Note that if an option besides 
immediate stop is chosen, the receiver continues running and an overflow er­
ror is possible. The default value for these bits is immediate stop. 

5.5.2 Transmit and Receive Operations (Burst Mode) 

Figure 5-10. 
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In burst mode operation, there are periods of serial port inactivity between 
packet transmits. The data packet is marked by the frame sync pulse on FSX. 
On the transmit device, the transmission is initiated by a write to DXR. The val­
ue in DXR is shifted to XSR; upon a frame sync pulse on FSX (generated inter­
nally or externally depending on TXM), the value in XSR is shifted out and driv­
en on the DX pin. If DXR is reloaded before the old DXR contents have been 
transferred to XSR, the old DXR contents are overwritten. The DXR is copied 
to the XSR only if the XSR is empty and the DXR has been loaded since the 
last DXR to XSR transfer. The DXR should be written to only if XRDY=1, which 
is guaranteed if the DXR write is made in response to a transmit interrupt or 
polling XRDY. The timing for the serial port transmit is shown in Figure 5-10. 

Burst-Mode Serial Port Transmit Operation 

I I I I I 

H I J-L *I I I I I I 
I A1 I I 

I MSB I I I 

rk I I rh_ I *' f 
I I i' f I 

XSR DXR XSR 
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Note in the following discussion that the timings are slightly different for inter­
nally (TXM=1, FSX is an output) and externally (TXM=O, FSX is an input) gen-
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erated frame syncs. This distinction is made because in the former case, the 
frame sync pulse is generated by the transmitting device as a direct result of 
a write to DXR. In the latter case, there is no such direct effect. Instead, the 
transmitting device must write to DXR and wait for an externally generated 
frame sync. 

If frame sync pulses are internally generated (TXM=1), then after a write to 
DXR, a frame sync pulse is generated on the next rising edge of CLKX (For 
externally generated frame syncs the following events will occur whenever the 
frame sync pulse appears by the rising edge of CLKX after a write to DXR). 
Then on the next falling edge of CLKX, XSR is loaded with the value from DXR, 
and XRDY goes high, generating a transmit interrupt (XI NT). On the next rising 
edge of the CLKX cycle, the first data bit (MSB first) is driven on the DX pin. 
With the fall of the frame sync pulse, the rest of the bits will be shifted out. 
(Therefore, the first bit could have variable length if the frame sync is gener­
ated externally and does not fall within one CLKX cycle. Internally generated 
frame syncs are guaranteed by 'C5x timings). 

When all the bits are transferred, the DX pin enters the high-impedance state. 
Note that if DXR had not been loaded when XINT was generated, the 
XSREMPTY flag would become active (go low), indicating underflow. Thus, 
there is a 2-CLKX cycle latency (approximately) after DXR is loaded, before 
the data is driven on the line, assuming that the frame sync pulse is generated 
internally (TXM=1 ). If the pulse is externally generated, this latency does not 
exist, and the timing specifications are relaxed. With externally generated 
frame sync, if the XSREMPTY flag is active and a frame sync pulse is gener­
ated, any old data in the DXR is transmitted. This is explained in detail in sub­
section 5.5.4. 

Figure 5-11. Burst-Mode Serial Port Receive Operation 
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The shifting into RSR begins on the falling edge of the CLKR cycle after the 
frame sync has gone low. After all the bits have been received, the contents 
of the RSR are transferred to the ORR on the falling edge of CLKR and RADY 
goes high, generating a receive interrupt {RI ND, as shown in Figure 5-11. 
Note that if the ORR from the previous receive had not been read and a frame 
sync appears, the RSRFULL flag would go high. This condition is an actual er­
ror and introduces questions of the serial port's behavior under various error 
situations: for example, the appearance of frame sync during a receive. Vari­
ous error situations are discussed in subsection 5.5.4. 

Note that if the packet frequency is increased, the inactivity period between the 
data packets for adjacent transfers decreases to zero. This corresponds to a 
minimum period between frame sync pulses {equivalent to 8 or 16 CLKX/R 
cycles, depending on FO) that corresponds to a maximum packet frequency 
at which the serial port may operate. At maximum packet frequency in 
Figure 5-12, the timing looks like a compressed version of Figure 5-10. 

Figure 5-12. Burst-Mode Serial Port Transmit at Maximum Packet Frequency 
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The data bits in consecutive packets are transmitted continuously with no inac­
tivity in between the bits. The frame sync pulse overlaps the last bit transmitted 
in the previous packet. The receive side in Figure 5-13 looks similar. 
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Figure 5-13. Burst-Mode Serial Port Receive at Maximum Packet-Frequency 
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The maximum packet frequency transfer looks like a compressed version of 
burst mode with no periods of inactivity. The frame sync pulse overlaps the first 
bit transmitted. 

Figure 5-12 and Figure 5-13 show the transfer of multiple data packets at 
maximum packet frequency; the frame sync appears to be extraneous in­
formation. Since the data packets are transmitted at a constant rate, the CLK 
provides enough timing information for the transfer and permits a continuous 
stream of data. Theoretically, only an initial frame sync signal is needed to initi­
ate the multipacket transfer. This continuous mode is supported by the 'C5x 
serial port and is discussed in subsection 5.5.3. 

Figure 5-14. Burst-Mode Serial Transmit Operation With Delayed Frame Sync in External 
Frame Sync Mode 
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The operation of the serial port with external frame sync is similar to that with 
internal frame sync. Events occur when the external frame sync appears. 
When the external frame sync is delayed, however, the double buffer is filled 
and frozen until the delayed frame sync appears, as shown in Figure 5--14. 
When the delayed frame sync occurs, A is transmitted on DX; after the trans­
mit, a DXR-to-XSR copy of B occurs, and XINT is generated. The next frame 
sync after the delayed frame sync causes B to be transmitted on DX. Note than 
when the loading of B into DXR occurs, a DXR-to-XSR copy of B does not oc­
cur, and XI NT is not generated because A has not been transmitted on DX. Any 
subsequent writes to DXR before the delayed frame sync occurs would over­
write DXR. 

5.5.3 Transmit and Receive Operations (Continuous Mode) 

In the continuous mode, the frame sync signal on FSX/FSR is not necessary 
for consecutive packet transfers at maximum packet frequency after the initial 
pulse. Continuous mode is selected by setting FSM=O. Upon the first store to 
DXR in continuous mode, a frame sync is generated for the first transmission 
and then no more. As long as DXR is updated once every transmission, the 
continuous mode continues. Failing to update causes the serial port to halt, as 
in the burst mode case (The XS A EMPTY flag becomes asserted etc.). If DXR 
is written to after the halt, the device restarts the continuous mode transmit and 
generates an FSX, assuming that the frame sync is internally generated. This 
distinction that occurs between transmits using internal and external frame 
syncs is similar to the one discussed in subsection 5.5.2. 

If the frame syncs are externally generated (TXM=O), then DXR should be 
loaded, and the appearance of an external frame sync on the FSX pin restarts 
a new continuous mode transmit. If the DXR has not been updated with exter­
nal frame sync, the DX pin remains in the high-impedance state. This is differ­
ent from the burst mode operation and is covered in detail in subsection 5.5.4. 
The continuous mode may be discontinued- in other words changed to burst 
mode - only by a serial port or device reset. Changing the FSM bit during 
transmit or halt is not guaranteed to switch to burst mode. 

The transmit timing in continuous mode is shown in Figure 5-15. 
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Figure 5-15. Serial Port Transmit Continuous Operation 
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Transmit timing in continuous mode is similar to the continuous stream in 
Figure 5-12. The major difference is the lack of a frame sync pulse after the 
initial one. As long as OXR is updated once per transmission, this mode will 
continue. Overwrites to OXR behave just as in burst mode. The data written 
last will be transmitted. XSR operation is not disturbed. An external FSX pulse 
on the line will abort the present transmission, cause one data packet to be 
lost, and initiate a new continuous mode transmit. This is explained in more 
detail in subsection 5.5.4. 

The receive operation is similar to the transmit operation. After the initial frame 
sync pulse on FSR, no more frame syncs are needed. This mode will continue 
as long as ORR is read every transmission. If it is not read, the serial port re­
ceive will halt (RSRFULL flag becomes active). Reading ORR will restart the 
continuous mode as soon as a frame sync is received. The continuous mode 
must be discontinued with a serial port or device reset. The receive timing can 
be seen in Figure 5-16. 
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Figure 5-16. Serial Port Receive Continuous Operation 
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Figure 5-16 shows no frame signals; otherwise, it is similar to Figure 5-13. If 
a pulse occurs on FSR during transmission (an error), then the receive opera­
tion is aborted, one packet is lost, and a new receive cycle is begun. This is 
discussed in more detail on page 5-22. 

5.5.4 Error Conditions 

Error conditions result from an unprogrammed event occurring to the serial 
port. These conditions are operational aberrations such as overrun, underflow, 
or a frame sync pulse during a transmission. You may need to understand how 
the serial port handles these errors and the state it acquires during these error 
conditions. Because they differ slightly in burst and continuous modes, the er­
ror conditions are discussed separately. 

In burst mode, the first error condition (discussed in subsection 5.5.1) is the 
RSRFULL flag. Basically, this flag occurs when the device has not read incom­
ing data and more data is being sent, which is indicated by a frame sync pulse 
on FSR. The processor halts serial port receives until ORR is read. Thus, any 
further data sent is lost. If receive errors continue, and the frame sync occurs 
during a receive (that is, data is being shifted into RSR from DR pin), then the 
present receive is aborted and a new one begins. Thus, the data that was be­
ing loaded into RSR is lost, but the data in ORR is not. No RSR-to-DRR copy 
occurs. Figure 5-17 shows the serial port receive side behavior for a frame 
sync pulse during a receive and includes nonerror situations. 
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Figure 5-17. Receive Error (Normal or Burst Mode) 
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Transmit errors in burst mode result when a frame sync occurs during various 
conditions. Underrun in burst mode is not considered an error but is explained 
in subsection 5.5.1 . If a transmit is in progress (that is, XSR data is being driven 
on the DX pin) when the frame sync pulse occurs, then the present transmit 
is aborted, and data in the XSR is lost. Then, whatever data is in the DXR at 
the time of the frame sync pulse is transferred to XSR (DXR-to-XSR copy) for 
transmitting. However, a transmit interrupt XINT is generated only if the DXR 
has been written to after the last transmit. Also, if XSREMPTY is active and a 
frame sync pulse appears, the old data in DXR is shifted out. Figure 5-18 sum­
marizes serial port transmit behavior with error (and nonerror) conditions. 

Figure 5-18. Transmit Error (Normal or Burst Mode) 
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In continuous mode, errors take on a broader meaning. Data transfer is sup­
posed to be occuring at all times in continuous mode. Thus, underflow 
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(XSREMPTY=O) is considered an error in continuous mode because data is 
not being transmitted. As in burst mode, overrun is an error, and both of these 
cause the serial port receive or transmit sections to halt. The operation of both 
these flags is explained in subsection 5.5.1 in the XSREMPTY and RSRFULL 
flags description. Underflow and overrun errors are not fatal; they can be cor­
rected by reading DRR or writing to DXR. In a write to DXR to deactivate 
XSREMPTY, either a frame sync pulse is generated (if FSM=1) or required (if 
FSM=O). On the receive side, however, after DRR is read to deactivate 
RSRFULL, a frame sync pulse is not required. The receive side of the serial 
port keeps track of the word (either 8- or 16-bit) boundary, even though it is not 
receiving data. When the RSRFULL flag is deactivated by a read from DRR, 
the receiver begins the read from the correct bit. 

Another cause for error is the appearance of frame syncs during a transmis­
sion. After the initial frame sync in continuous mode, no others should occur. 
When a frame sync pulse occurs during a transmit, the current transmit opera­
tion (that is, serially driving XSR data onto DX pin) is aborted, and data in XSR 
is lost. A new transmit cycle is initiated, as long as the DXR is updated once 
per transmission afterward. During a receive in continuous mode, the situation 
is similar: if a frame sync pulse occurs, one packet of data (8-bit byte or 16-bit 
word, depending on FO) is lost. The RSR bit counter is reset, so the data that 
was being shifted into RSR from the DR pin is lost. Data then driven on DR is 
shifted into RSR. Therefore, the frame sync during transmission chart for con­
tinuous mode looks like the left half of the burst mode charts in Figure 5-17 
and Figure 5-18 because a receive or transmit is always in progress. 

Figure 5-19 and Figure 5-20 show receive and transmit errors for continuous 
mode. Note that if a frame sync occurs after deactivating the RSRFULL flag 
by reading DRR but before the beginning of the next word (either 8- or 16-bit) 
boundary, a receive abort condition occurs. Also, note a major difference in the 
transmit continuous mode error compared with transmit burst mode error. If 
XSREMPTY is active in continuous mode and an external frame sync occurs, 
no old data is transmitted. Instead, since underflow in continuous mode is con­
sidered an error, the frame sync pulse is ignored, and the DX pin remains in 
the high-impedance state. 

5-31 



Serial Port 

Figure 5-19. Receive Error (Continuous Mode) 
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Figure 5-20. Transmit Error (Continuous Mode) 
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The code example that follows shows a one-way transmit from device Oto de­
vice 1 of an arithmetic sequence of numbers. The numbers are written in each 
device in a block from 9000h to bOOOh in data memory. Device O waits in a BIO 
loop for a ready to receive signal (XF) from device 1 and initializes the transfer 
with a value of zero. Only its transmit interrupt is enabled; its transmit ISR 
writes the value it will send into its own memory. 
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* Device 0 - Transmit side 

I LOOP 

SENDZ 

SELFl 
XMT_ISR 

;Setup SPC as CLK source 
;and internal frame sync 

SPLK #0 0 3 Bh, SPC ; Set TXM=MCM=FSM= 1, 
;TDM=DLB=FO=O. 
;And put SP into reset 
; ( XRST=RRST=O) 

SPLK #OOFBh, SPC ;Take SP out of reset 

;Setup interrupts 
SPLK #Offffh, IFR ;clear IFR 
SPLK #020h, !MR ;Turn on XINT 
CLRC INTM ;enable interrupts 
BCND SENDZ, BIO ;Wait to for ready-to-
B !LOOP ;receive from other device 
LACL #0 ;First transmit/write 

;value is O 
LAR AR7, #9000h ;Setup where to write 
SACL * ;Write first value 
SACL DXR ;Transmit first value 
B SELFl ;Wait for interrupts 
LACC AR7 ;Check if past OxObOOO 
SUB #ObOOOh ;i.e. end of block 
BCND END_SERP,GEQ ;Go to tight loop if so 

;Add one and transmit 
LACL *+ ;Load value 
ADD #1 ; Add one 
SACL * ;Write value 
SACL DXR ;Transmit value 
RETE 

END SERP B END SERP ;Sit in tight loop after 
;block is complete. 

The code in device 1 follows. It sends a ready-to-recieve signal (XF) to device 
0. Only its receive interrupt is masked and its receive ISR reads from the ORR, 
writes to the block, and checks to see if it has reached the end of the block. 

Device 1 Receive 

SPLK #0008h, SPC 

SPLK #OOCBh, SPC 

SPLK #Offffh, IFR 
SPLK #OlOh, IMR 

;Set SP as CLK, frame 
;sync receive 
;Set TXM=MCM=DLB=FO=O, 
;FSM=l. 
;And put SP into reset 
; ( XRST=RRST=O) 

;Take SP out of reset 

;Setup interrupts 
;clear IFR 
;Turn on RINT 
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CLRC INTM ;Enable interrupts 
LAR AR7, #9000h ;Setup where to write 

;received data 
CLRC XF ;Signal ready to receive 

SELFl B SELFl ;Wait for interrupts 

RCV ISR 
LACL ORR ;Load received value 
SACL *+ ;Write to memory block 
LACC AR7 ;Check if past Ox9000 
SUB #ObOOOh ; i.e. end of block 
BCND END_SERP, GEQ ;Go to tight loop if so 

END SERP B END_SERP ;Sit in tight loop after 
;block is complete. 
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5.6 TOM Serial Port 

The 'C5x devices have a TOM (time-division-multiplexed) serial port that al­
lows the device to communicate serially with up to seven other 'C5x devices. 
The TOM port provides a simple and efficient interface for multiprocessing 
applications. 

The TOM serial port is a superset of the serial port described in Section 5.5. 
By means of the TOM bit in the TSPC control register, the port can be confi­
gured in multiprocessing mode (TDM=1) or stand-alone mode (TDM=O). 
When in stand-alone mode, the port operates as described in Section 5.5. 
When in multiprocessing mode, the port behaves as described in this section. 
The port can be shut down for low power consumption via the XRST and RRST 
bits as described in Section 5.5. 

5.6.1 Time-Division Multiplexing 

Time-division multiplexing is the division of time intervals into a number of sub­
intervals, with each subinterval representing a communications channel ac­
cording to a prespecified arrangement. Figure 5-21 shows a 4-channel TOM 
scheme. Note thatthe firsttime slot is labeled chan 1 (channel 1), the next ch an 
2 (channel 2), etc. Channel 1 is active during the first communications period 
and during every fourth period thereafter. The remaining 3 channels are inter­
leaved in time with channel 1, as shown in the figure. 

The 'C5x TOM port supports eight TOM channels. You can independently 
specify which device is to transmit and which device or devices are to receive 
for each channel. This results in a high degree of flexibility in interprocessor 
communications. 

Figure 5-21. Time-Division Multiplexing 

Full Interval (frame) 

~ Word Transfer Interval 

0 time 

5.6.2 TOM Port Operation 

Figure 5-22(a) shows the 'C5x TOM port architecture. Up to eight devices can 
be placed on the four-wire serial bus. This four-wire bus consists of a conven-
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tional serial port's bus of clock, frame, and data (TCLK, TFRM, and TDAT) 
wires plus an additional wire (TADD) that carries the device addressing in­
formation. The TADD line, which is driven by a particular device for a particular 
time slot, determines which devices in the TOM configuration can execute a 
valid TOM receive on that time slot. This is similar to a valid serial port read 
operation described in Section 5.5, except that the corresponding TOM regis­
ters are named differently. The TOM receive register is TRCV, and the TOM 
receive shift register is TRSR. The actual data is transmitted on the bidirection­
al TDAT line. 

Note in Figure 5-22(b) that the device TDX and TOR pins are tied together ex­
ternally to form the TDAT line. Also note that only one device can drive the data 
and address line (TDAT and TADD) in a particular slot. Meanwhile, in that par­
ticular slot, all the devices (including the one driving that slot) sample the TDAT 
and TADD lines to see if the data is a TOM valid read. This is discussed in detail 
later in this section. In a valid TOM read, the value is transferred from the TRSR 
register to the TRCV register, and a receive interrupt is generated, indicating 
that the TRCV has valid receive data and can be read. 

All TOM port operations are synchronized by the TCLK and TFRM lines, which 
are generated by one device each (typically the same device}, referred to as 
the TCLK and TFRM sources. The word master is not used here because it 
implies that one device controls the other. This is not the case, and you must 
set TCSR to prevent slot contention. Consequently, the remaining devices in 
the TOM configuration use these lines as inputs. Figure 5-22(b) shows 
TCLKX and TCLKR are externally tied together to form the TCLK line. Also, 
TFRM and TADD originate from the TFSX and TFSR pins respectively. The 
reason for this is to make the TOM serial port easy to use in standalone mode. 
The TOM port operation is controlled by several memory-mapped registers. 
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Figure 5-22. TOM Four-Wire Bus 
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Each device has six memory-mapped registers associated with the TDM serial 
port. The layout of these registers is shown in Figure 5-23. The TRCV and 
TDXR registers have the same functions as the DRR and DXR registers re­
spectively, described in Section 5.5. The TSPC register is identical to the SPC 
register except that bit 0 is not reserved in TSPC. See subsection 5.5.1 for its 
operation. This bit (TDM) configures the port in stand-alone mode (TDM=O -
In this mode the TDM serial port operates like the standard serial port de­
scribed in Section 5.5) or in multiprocessor mode (TDM=1). 

Bits DLB and FO in the TSPC are hard-configured when the port is in multipro­
cessor mode. These bits are set to zero when TDM=1, resulting in no access 
to the digital loopback mode and in a fixed word length of 16 bits (A different 
type of loopback is covered in the example in subsection 5.6.5). The value of 
FSM does not affect the port when TDM=1. Also, when TDM=1 the underflow 
and overrun flags are not operational (subection 5.6.4 explains how these er­
rors are treated in TDM mode). If TOM= 1 , changes made to the contents of the 
TSPC become effective upon completion of channel 7 of the current frame. 
Thus the TSPC value cannot be changed for a the current frame. Any changes 
take effect on the next frame. 
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Figure 5-23. TOM Port Registers 
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12 11 10 9 8 7 6 5 4 3 2 1 0 
Receive Data 

Transmit Data 
x XRDY RADY IN1 INO RAST XRST TXM MCM FSM FO DLB TOM 
x x x x x CH7 CH6 CHS CH4 CH3 CH2 CH1 CHO 

TA4 TA3 TA2 TA1 RAO RA7 RA6 RAS RA4 RA3 RA2 RA1 RAO 

X1 XO S2 S1 so A7 A6 AS A4 A3 A2 A1 AO 

The source device for the timing signals TFRM and TCLK is set by MCM and 
TXM, respectively. The TCLK source device is identified by setting the TXM 
bit of its TSPC register to one. Typically, this device is the same one that sup­
plies the TDM port clock signal TCLK. TCLKX pin is configured as an input if 
MCM=O and an output if MCM=1. In the latter (internal 'C5x clock) case, the 
device whose MCM=1 supplies the clock (TCLK frequency=one fourth of 
CLKOUT1 frequency) for all devices on the TDM bus. The clock can be sup­
plied by an external source if MCM=O for all devices. TFRM can also be sup­
plied externally if TXM=O. An external TFRM must meet TDM receive timing 
specifications with repect to TCLK for proper operation. No more than one de­
vice should have MCM or TXM set to one at any given time. The specification 
of which device is to supply clock and framing signals is typically made only 
once, during system initialization. 

The TDM channel select register (TCSR) of a given device specifies in which 
time slot(s) that device is to transmit. A 1 in bits 0-7 of the TCSR sets the trans­
mitter active during the corresponding time slot. A key system-level constraint 
repeated here is that no more that one device can transmit during the same 
time slot. The devices do not check for bus contention. You must assign the 
slots consistently. As in TSPC operation, a write to TCSR during a particular 
frame is valid only during the next frame. However, a given device can transmit 
in more than one slot. This is discussed in more detail in subsection 5.6.3, with 
an emphasis on the utilization of TRTA, TDXR, and TCSR in this respect. 

The TDM receive/transmit address register (TRTA) of a given device specifies 
two key pieces of information. The lower half specifies the receive address of 
the device, while the upper half of TRTA specifies the transmit address. The 
receive address is the 8-bit value that a device compares to the 8-bit value it 
samples on the TADD line in a particular slot to determine whether it should 
execute a valid TDM receive. The receive address establishes the slots in 
which that device may receive. This process occurs on each device during ev­
ery slot. The transmit address corresponds to what a device drives on the 
TADD line during a transmit operation on an assigned slot. The transmit ad-
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dress establishes which receiving devices may execute a valid TOM receive 
on the driven data. 

Only one device at a time can drive a transmit address on TADD. Each proces­
sor bitwise-logical-AN Os the value it samples on the TADD line with its receive 
address. If this operation results in a nonzero value, then a valid TOM receive 
is executed. Thus, for one device to transmit to another, there must be at least 
one bit in the upper half of the first device's TRTA (the transmit address) with 
a value of 1 that matches one bit with a value of 1 in the lowe' iialf of TRTA (the 
receive address) of the second device. This method of configuration of TRTA 
allows the transmitting device to control which devices receive, without having 
to change the receive address on any of the devices. 

The TOM receive address register (TRAD) holds various information on the 
status of the TADD line, which can be polled to verify the integrity of this line 
and to verify the relationship between instruction cycle and TOM port timing. 
Bits 13-11 (XrXo) hold the current slot number value, whether a valid data re­
ceive was executed or not. This value is latched at the begininng of the slot and 
latched only until the end of the slot. Bits 10-S (srSo) hold the number of the 
last slot plus one (modulo 8) in which data was received. This value is latched 
at the end of the slot in which a valid data receive occurred during the TOM 
receive interrupt (TANT), and maintained until the end of the next slot that is 
a valid receive. Bits 7-0 (a,ao) hold the last value sampled on the TADD line, 
whether a valid data receive was executed or not. This value is latched half­
way through the slot (so the value on the TADD may be shifted in) and main­
tained until half-way through the next slot, whether a valid receive is executed 
or not. 

5.6.3 Transmit and Receive Operations (TOM Mode) 

Figure 5-16 shows the timing for the TOM port transfers. The TCLK and TFRM 
signals are generated by the timing source device. The TCLK frequency is one 
fourth the frequency of CLKOUT1 if generated by a 'C5x device. The TFRM 
pulse occurs every 128 TCLK cycles. This allows 16 data bits for each of 8 time 
slots to be driven on the TDAT line. This also permits the processor to execute 
a maximum of 64 instructions between each slot, assuming that a 'C5x internal 
clock is used. Beginning with slot O and with the MSB first, the transmitter 
drives 16 data bits for each slot, with each bit having a duration of 1 TCLK cycle 
(the exception is the first bit of each slot, as noted below). The data is driven 
onto the TDAT line on the rising edge of TCLK and read on the falling edge. 
Meanwhile, the transmitter also drives the TADD line with its transmit address. 
This information, unlike that on TDAT, is only one byte long and is transmitted 
with the LSB first for the first half of the slot. During the second half of the slot 
(that is, the last eight TCLK periods) the TADD line is driven high. The TOM 
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receive logic samples the TADD line only for the first eight TCLK periods, ignor­
ing it during the second half of the slot. Therefore, the transmitting device (if 
not a 'C5x} may choose to drive TADD high or low during that time period. 

Figure 5-24. Serial Port Timing in TDM Mode 

TCLK 

TDAT 

TADD 

TFRM 
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If none of the devices on the TOM bus are configured to transmit in a slot (that 
is, none of the devices have a 1 for the corresponding slot in their TCSR regis­
ter}, that slot qualifies as an empty slot. In an empty slot, both TADD and TDAT 
will be high impedance. This has the potential for spurious receives because 
the device actually samples TDAT and TADD for every slot and determines a 
valid TOM receive if its receive address matches the receive address on the 
TADD line. To avoid spurious reads, a pull-down 1-kQ resistor must be tied to 
the TADD line. This causes the TADD line to read low on empty slots. Other­
wise, any noise on the TADD line that happens to match a particular receive 
address would result in a spurious read. If power dissipation is a concern and 
the resistor is not desired, then an arbitrary processor with transmit address 
equal to Oh can drive empty slots by writing to TDXR in those slots. Slot manip­
ulation is explained later in this section. The 1-kQ resistor is not needed in the 
TDATline. 

An empty slot is defined by the following two cases: the first obvious case oc­
curs when no device has its TCSR configured to transmit in that slot. A second 
more subtle case occurs when TDXR has not been written to before a slot. This 
may happen when TCSR contents are changed because they are not sampled 
until the TFRM pulse occurs. Therefore, any subsequent change takes effect 
only on the next frame. The same is true for the receive address (the lower half 
of TRTA}. But the transmit address (upper half of TRTA} and the TDXR (ob­
viously} may be changed for the current frame for a particular slot, assuming 
that slot has not yet been reached when the instruction is executed. 

Note that the transmit address does not need to be written every time a write 
to TDXR is executed. During a write to TDXR, whatever value is in the TRTA 
is transmitted. You can test the current slot by examining TRAD while using 
the XRDY flag or transmit interrupt. This flexibility affords TOM slot manipula-
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tion and even slot sharing if you so desire. The key is to understand the timing 
relationship between the instructions being executed and the frame/slots of 
the TOM port. Simply stated, the TCSR and the receive address (lower half of 
TRTA) take effect only at the start of a new frame, while the transmit address 
(upper half of TRTA) and TDXR (transmit data) can take effect at the start of 
a new slot. 

When changing a transmit address on the fly, be careful not to corrupt the re­
ceive address; both are located in the same register TRTA. Thus, this scheme 
follows the philosophy of allowing the transmitting device to set which devices 
can receive. Regarding empty slots, note that in a TOM port the frame sync 
on TFRM is being transmitted at all times, not just when there is a write to 
TDXR. Thus, if a device does not happen to write to TDXR during its selected 
slots (by TCSR), it will have an empty slot that shows up as high impedance 
on the TDAT and TADD lines. 

As a final note on timing, the duration of the first bit (bit 15 TDAT and bit 0 of 
TADD) of each slot is only half the normal duration. Also, the TFRM overlaps 
bit O of time slot 7. Refer to the timing diagrams in Appendix A. 

5.6.4 TOM Error Conditions 

Due to time slots and the ability for one processor to transmit in multiple slots, 
the concept of overflow and underrun becomes unclear. Thus, the overrun and 
underflow flags are not enabled in the TOM port in TOM mode. On the receive 
side, if ORR has not been read and a valid receive operation is initiated (due 
to the value on TRTA and the device's receive address), the present value of 
ORR is overwritten. Thus, the TOM port is not halted. On the other hand, dur­
ing a transmit if DXR has not been updated, nothing will be driven on the TADD 
or TDAT lines. The pins will be in high impedance. This mode of operation pre­
vents spurious transmits from occurring. 

If TFRM pulses occur during a nonregular time in transmission, the TOM port 
fails. In other words, only one TFRM should occur every 128 TCLK cycles. Un­
like the serial port, the TOM port cannot be reinitialized with a frame sync pulse 
during transmission. 

5.6.5 Example of TOM Operation 

Table 5-9 shows the data represented by the TADD signal for each of the eight 
channels, given the transmitter and receiver designations shown. This exam­
ple shows the configuration for eight devices to communicate with each other. 
In this example, device O broadcasts to all device addresses. In subsequent 
frames, devices 1-7 communicate to one other processor. 
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Table 5-9. Interprocessor Communications Scenario 

Channel TADD Data Transmitter Receiver Device(&) 
Device 

0 OFEh 0 1-7 

1 40h 7 6 

2 20h 6 5 

3 10h 5 4 

4 08h 4 3 

5 04h 3 2 

6 02h 2 1 

7 01h 1 0 

Table 5-1 O shows the TOM port register contents of each device that results 
in the scenario given in Table 5-9. Device O provides the clock and frame con­
trol signals for all channels and devices. The TCSR and TRTA register con­
tents specify which device is to transmit on a given channel and which devices 
are to receive. 

Table 5-10. TOM Register Contents 

5-42 

Device TSPC TRTA TCSR 

0 xxF9h OFE01h xx01h 

1 xxC9h 0102h xx80h 
2 xxC9h 0204h xx40h 

3 xxC9h 0408h xx20h 

4 xxC9h 0810h xx10h 

5 xxC9h 1020h xx08h 

6 xxC9h 2040h xx04h 

7 xxC9h 4080h xx02h 

In Table 5-10, the transmit address of a particular device (the upper byte of 
TRTA) matches the receive address (the lower byte of TRTA) of the receiving 
device. But it is not necessary for the transmit and receive addresses to match 
exactly. Remember that the matching operation implemented on the receive 
side is a bitwise AND. Thus, only one bit must match. The advantage of this 
scheme is that a transmitting device can select the devices to receive its data 
by changing its transmit address only. The receive address of the receiving de­
vice does not need to be changed (assuming the receive address is unique). 
In the example, device O can transmit to any combination of the other devices 
by merely writing to the upper byte of TRTA. For example, if it changed its 
TRTA to 08001 hon the fly, it would transmit only to device 7. A device can write 
to itself because the transmit is executed on the rising edge and the receive 
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on the falling edge of TCLK. To enable this sort of loop back, it is necessary 
to have the wired-OR pins connected (the TDAT and TCLK lines). In the exam­
ple, if device O has a TRTA of 00101 h, it would transmit to itself. 

In the code example below, a one-way transmit from device 0 to device 1 of 
an arithmetic sequence of numbers is shown. The numbers are written in each 
device in a block from 4000h to 6000h in data memory. Device O transmits on 
slot 0 and has a transmit address of 01 h. It waits in a BTO loop for a ready to 
receive signal (XF) from device 1 and initializes the transfer with a value of 
zero. Only its transmit interrupt is enabled, and its transmit ISR writes the value 
it will send into its own memory. 

* Device 0 - Transmit side 

TI LOOP 

SELF2 
TXMT ISR 

SPLK #lh, TCSR 

SPLK #lOOh, TRTA 

SPLK #0039h, TSPC 

SPLK #00F9h, TSPC 

SPLK #Offffh, IFR 
SPLK #080h, IMR 

CLRC INTM 

BCND TSENDZ, BIO 
B TI LOOP 

TSENDZ LACL #0 

LAR AR7, #4000h 
SACL * 
SACL TDXR 

B SELF2 

LACC AR7 
SUB #6000h 
BCND END_TDMP, GEQ 

LACL *+ 
ADD #1 
SACL * 
SACL TDXR 
RETE 

;Setup TCSR to xmt on 
;slot 0 
;Setup transmit address 

;Set up TSPC as TCLK, TFRM 
;source 
;Set TXM=MCM=FSM=TDM=l, 
;DLB=FO=O. 
;And put TDM into reset 
;(XRST=RRST=O) 
;Take TOM out of reset 

;Setup interrupts 
;clear IFR 
;Turn on TXNT 

;enable interrupts 

;Wait for ready-to-
; receive from other device 

;First transmission/write 
;value is O. 
;Setup where to write 
;Write first value 
;Transmit first value 

;Wait for interrupts 

;Check if past Ox6000 
;i.e. end of block 
;Go to tight loop if so. 
;Add one and transmit 
;Load value 
;Add one 
;Write value 
;Transmit value 
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END TDMP B END TDMP ;Sit in tight loop after 
;block is complete. 

The code in device 1 follows. It has a receive address of 01 h and sends a 
ready-to-receive signal (XF) to device O. Only its receive interrupt is masked, 
and its receive ISR reads from the TORR, writes to the block, and checks to 
see if it has reached the end of the block. 

*Device 1 - receive side 

SPLK #Oh, TCSR 

SPLK #OOlh, TRTA 

SPLK #0009h, TSPC 

SPLK #00C9h, TSPC 

SPLK #Offffh, IFR 
SPLK #040h, IMR 

CLRC INTM 
LAR AR7 I #4000h 

CLRC XF 

SELF2 B SELF2 

TRCV ISR 
LACC TRCV 
SACL *+ 
LACC AR7 
SUB #6000h 
BCND END_TDMP, GEQ 
RETE 

END TDMP B END TDMP 

Setup TCSR to xmt on 
no slots 
Setup receive address 

Set TOM as TCLK, TFRM 
receive 
Set TXM=MCM=DLB=FO=O, 
FSM=TDM=l. 
And put TOM into reset 
(XRST=RRST=O) 
Take TOM out of reset 

Setup interrupts 
clear IFR 
Mask on TRNT 

enable interrupts 
Setup where to write 
received data 
Signal ready to receive 

Wait for interrupts 

Load received value 
Write to memory block 
Check if past Ox6000 
i.e. end of block 
Go to tight loop if so 

Sit in tight loop after 
block is complete. 
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Timer 

The timer is an on-chip down counter that can be used to periodically generate 
CPU interrupts. The timer is decremented by one at every CLKOUT1 cycle. 
A timer interrupt (TINT) is generated each time the counter decrements to 
zero. The timer thus provides a convenient means of performing periodic 1/0 
or other functions. Figure 5-25 shows a logical block diagram of the timer. 
When the timer is stopped (TSS = 1), the internal clocks to the timer are shut 
off, allowing the device to run in a lower power mode of operation. 

Figure 5-25. Timer Block Diagram 

TDDR 

TIM PSC 

Borrow Borrow 

The timer interrupt rate is given by 

SR ES ET 

TAB 

CLKOUT1 

TSS 

1 = 1 
TINT rate = tc(Cl x u x v tc<Cl x (TOOR + 1) X (PRO + 1) 

where tc(C) is the period of CLKOUT1, u is the sum of the TOOR contents (see 
Table 5-11) plus 1, and v is the sum of the PRO contents (see Figure 5-25) 
plus 1. 

Therefore, the timer interrupt rate is equal to the CLKOUT1 frequency divided 
by two independent factors. Referring to Figure 5-25, each of the two divisors 
is implemented with a down counter and period register. The counter and peri­
od registers for the first stage are the PSC and TOOR fields of the TCR, respec­
tively, and each is 4 bits wide. The counter and period registers for the second 
stage are the memory-mapped, 16-bit wide TIM and PRO registers. Each time 
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a counter decrements to zero, a borrow is generated on the next CLKOUT1 
cycle, and the counter is reloaded with the contents of its corresponding period 
register. The output of the second stage is the timer interrupt signal sent to the 
CPU and to the timer output pin (TOUT). The width of the borrow pulse appear­
ing on the output of stage 2 is equal to tc(C) (see Appendix A). 

The timer operation is controlled via the timer control register (TCR). Bits o-3 
constitute the TOOR field of the TCR. Upon reset, TOOR is set to zero. The 
timer can be stopped and restarted with the TSS bit and can be reset with the 
TRB bit. The timer is stopped by setting the TSS bit to one and restarted by 
setting the TSS bit to zero. When the timer stopped, the internal clocks are shut 
off to the timer, allowing a lower power mode of operation. Upon reset, the TSS 
bit is zero, and the timer immediately starts timing. The timer period can be re­
loaded by setting the TRB bit to one. These bits are defined in the TCR as 
shown in Table 5-11. Bits 6-9 constitute the PSC field of the TCR. Figure 5-26 
shows the bit layout of the timer control register. 

Table 5-11. Timer Control Register 

Bit Name Description 

0-3 TDDR Timer Divide-Down Ratio 

4 TSS Stop Timer = 1, Restart Timer = o 
5 TAB Reload Timer with Period = 1 

6-9 PSC Prescaler Counter 

Figure 5-26. Timer Control Register {TCR) 
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15-12 11 10 5 4 3-0 

Reserved I SOFT I FREE PSC TAB TSS TDDR 

The contents of the PRO register are loaded into the timer counter register 
(TIM) when the timer counter register decrements to zero or when the timer 
is reset by setting the TRB bit to 1. The TRB bit is always read as zero. When 
a 1 is written to TRB, the timer is reset, but TRB is still read as zero. The TOOR 
(timer divide down register) is loaded by writing the appropriate divide-down 
value into the TCR. As with the TIM/PRO register pair, the value of TOOR is 
not immediately loaded into the prescaler counter (PSC). The prescaler count­
er is loaded with the value in TOOR when it decrements to zero or when the 
timer is reset by setting the TRB bit to 1 . The PSC can be read by reading the 
TCR register, but cannot be written directly via software. Bits 1 O and 11 are 
special emulation bits that determine the state of the serial port clock when a 
breakpoint is encountered in the high-level language debugger. Please see 
page 5-23 for their functional description. Bits 15-12 are always read as zero. 
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The current value in the timer can be read by reading the Tl M register; the pre­
scaler counter can be read by reading the TCR. Because it takes two instruc­
tions to read both registers, there may be a change between the two reads as 
the counter decrements. Therefore, where precise timing measurements are 
being made, it may be more accurate to stop the timer to read these two val­
ues. The timer can be stopped by setting the TSS bit to one and restarted by 
resetting this bit to zero. 

The timer provides a convenient and efficient way to generate a sample clock 
for an analog interface. Consider the following example of using the timer to 
generate a sample rate of 50 kHz. The initialization for this example is as fol­
lows: 

*Clkin frequency = 20 MHz, timer is running at 10 MHz. 

* 
LOP #0 
SPLK #199,PRD ;Load timer period for 20 us period. 
OPL #8,IMR ;Set timer interrupt mask bit 
SPLK #20h,TCR ;reload and start timer. 
SPLK #lOOOOb,IFR ;Clear any pending timer interrupts. 
CLRC INTM ;global interrupt enable. 

* 

Consider an analog-to-digital converter operating at this sample rate. A typical 
interrupt service routine (ISR) would be as follows: 

*50 kHz sample rate A/D interrupt service routine 

* 
TIMER_ISRMAR*,AR3 ;Use auxiliary register reserved for 

;timer ISR. 
IN *, 14 ;Read A/D. 
RETE ;Re-enable interrupts and return. 

* 
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5.8 Divide-by-One Clock 
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The divide-by-one clock feature on the 'C5x consists of a phase lock loop (PLL) 
peripheral, which provides the capability to supply a clock cycling at the ma­
chine cycle rate of the CPU. This is a desirable feature because it reduces a 
system's high-frequency noise that is due to a high-speed switching clock. 
When this peripheral feature is implemented, the external frequency source 
can be used by injecting the clock directly into CLKIN2, with X1 left uncon­
nected and X2 connected to V00. The divi~e-by-one option is used when the 
CLKMD1 pin is strapped high and CLKMD2 is strapped low. The PLL is not 
enabled in all other clock modes, and clocks are shut off to the module to allow 
a lower power mode of operation. 

The processor generates two internal clocks, via the input clock, to the device. 
The CLKOUT1 signal indicating the CPU machine cycle rate equals the input 
clock. The PLL has a maximum operating frequency of 28.6 MHz (on a 35-ns 
'C5x device). The PLL requires a transitory locking time of 256 cycles. See Ap­
pendix A for more information on the external input frequency specification. 
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Memory 

The total memory address range of the 'C5x devices is 224K 16-bit words. The 
memory space is divided into four specific memory segments: 64K program, 
64K local data, 32K global data, and 64K 1/0 port. The parallel nature of the 
architecture of the 'C5x devices allows for the device to perform three concur­
rent memory operations in any given machine cycle: fetching an instruction, 
reading an operand, and writing an operand. The 'C5x memory configuration 
and operation are described in the following sections: 

Topic Page 
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6.1 Memory Space 

6-2 

The 'C5x design is based on the enhanced Harvard architecture. This archi­
tecture has multiple memory spaces that can be accessed on three parallel 
buses; this makes it possible to access both program and data simultaneously. 
The three parallel buses are the program read/write bus (PAB), data read bus 
(DAB1), and data write bus (DAB2). Each bus accesses different memory 
spaces for different aspects of the device operation. The 'C5x memory is orga­
nized into four individually selectable spaces: program, local data, global data, 
and inpuVoutput ports (1/0). These spaces compose an address range of 
224K words. Within any of these spaces RAM, ROM, EPROM, EEPROM, or 
memory-mapped peripherals can reside either on- or off-chip. 

The program space contains the instructions to be executed as well as tables 
used in execution. The local data space stores data used by the instructions. 
The global data space can share data with other processors within the system 
or can serve as additional data space. The 1/0 space interfaces to external 
memory-mapped peripherals and can also serve as extra data storage space. 
Within a given machine cycle, the CALU can execute as many as three concur­
rent memory operations. This chapter describes each memory space and the 
'C5x memory map. 

The 'C5x devices include a considerable amount of on-chip memory to aid in 
system performance and integration. The 'C50 includes 2K words of boot 
ROM, 9K words program/data single-access RAM (SARAM) , and 1056 words 
of dual-access data RAM (DARAM). The boot ROM resides in program space 
at address O and includes a device test (for internal use) and boot code. The 
9K block of single-access RAM can be mapped to program and/or data space 
and resides at address OSOOh in either space. The single-access RAM re­
quires a full machine cycle to perform a read or a write. The dual-access RAM 
can be read from and written to in the same cycle. The 1056 words of dual-ac­
cess RAM are configured in three blocks: block 0 (BO) is 512 words at address 
01 OOh-02FFh in local data memory, or OFEOOh-OFFFFh in program space; 
block 1 (81) is 512 words at address 0300h-04FFh in local data memory; and 
block 2 (82) is 32 words at address 060h in local data memory. 

The 'C51 removes the 2K boot ROM from program memory space. It also re­
places SK words of single-access program/data RAM with an SK-word block 
of maskable ROM. The ROM is located in the address range Oh-1 FFFh in pro­
gram space. The additional 1 K word of single-access RAM is mapped to data 
space (800h-OBFFh), program space (2000h-23FFh), or both spaces. The 
dual-access blocks of RAM on the 'C51 are mapped at the same addresses 
as the 'C50. 

The 'C53 has 16K words of on-chip maskable ROM and 3K words of single-ac­
cess RAM. The ROM is located in the address range 0-3FFFh in program 
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space. The 3K words of single-access RAM are mapped into data space 
(800-13FFh), program space (400Q.-4BFFh), or both spaces. The dual-ac­
cess RAM blocks on all 'C5x devices are mapped at the same addresses. 

Figure 6-1. 'C50 Memory Map 

Hex 
0000 

002F 
0030 

07FF 
0800 

2BFF 
2COO 

FDFF 
FEOO 

FFFF 

PrQQ!'am 

Interrupts and 
Reserved 
(External) 

External 

On-Chip SARAM 
(RAM=1) 
External 
(RAM=O) 

External 

On-Ch~ DARAM 
BO ( NF=P, 

External (CN =0) 

MP/MC= 1 
(Microprocessor Mode) 

Hex 
0000 

002F 
0030 

07FF 
0800 

2BFF 
2COO 

FDFF 
FEOO 

FFFF 

Proa ram 

Interrupts and 
Reserved 
(On-Chip) 

On-Chip 
ROM 

On-Ch~ SARAM 
(R M=1) 
External 
(RAM=O) 

External 

MP/MC=O 
(Microcomputer Mode) 

Hex 
0000 

OOSF 
0060 

007F 
0080 

OOFF 
0100 

02FF 
0300 

04FF 
0500 

07FF 
0800 

2BBF 
2COO 

FFFF 

Data 

Memory-Mapped 
Registers 

On-Chi~ 
DARAM 2 

Reserved 

On-Ch~ DARAM BO 
( NF=O) 

Reserved 1CNF=!l 

On-Chi~ 
DARAM 1 

Reserved 

On-C~SARAM 
(0 LY=1) 

External (OVLY=O) 

External 
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Figure fr-2. 'C51 Memory Map 

Hex 
0000 

002F 
0030 

lFFF 
2000 

23FF 
2400 

FDFF 
FEOO 

FFFF 

p rQg_ram 

Interrupts and 
Reserved 
(External) 

External 

On-Chip SARAM 
(RAM=1) 
External 
(RAM=O) 

External 

On-Ch~ DARAM 
BO ( NF=P, 

External (CN =0) 

MP/MC= 1 
(Microprocessor Mode) 

Figure 6-3. 'C53 Memory Map 

Hex 
0000 

002F 
0030 

3FFF 
4000 

4BFF 
4COO 

FDFF 
FEOO 

FFFF 
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p rqgram 

Interrupts and 
Reserved 
(External) 

External 

On-Chip SARAM 
(RAM=1) 
External 
(RAM=O) 

External 

On-Ch~ DARAM 
BO ( NF=P, 

External (CN =0) 

MP/MC= 1 
(Microprocessor Mode) 

Hex 
0000 

002F 
0030 

lFFF 
2000 

23FF 
2COO 

FDFF 
FEOO 

FFFF 

Hex 
0000 

002F 
0030 

3FFF 
4000 

4BFF 
4COO 

FDFF 
FEOO 

FFFF 

Program 

Interrupts and 
Reserved 
(On-Chip) 

On-Chip 
ROM 

On-Chip SARAM 
(RAM=1) 
External 
(RAM=O) 

External 

On-Ch~ DARAM 
BO ( NF=P, 

External (CN =0) 

MP/MC=O 
(Microcomputer Mode) 

p rQg_ram 

Interrupts and 
Reserved 
(On-Chip) 

On-Chip 
ROM 

On-Chip SARAM 
(RAM=1) 
External 
(RAM=O) 

External 

On-Ch~ DARAM 
BO ( NF=P, 

External (CN =0) 

MP/MC=O 
(Microcomputer Mode) 

Hex 
0000 

005F 
0060 

007F 
0080 

OOFF 
0100 

02FF 
0300 

04FF 
0500 

07FF 
0800 

OBFF 
ocoo 

FFFF 

Hex 
0000 

005F 
0060 

007F 
0080 

OOFF 
0100 

02FF 
0300 

04FF 
0500 

07FF 
0800 

13FF 
1400 

FFFF 

Data 
Memory-Mapped 

Registers 

On-Chi~ 
DARAM 2 

Reserved 

On-Ch~ DARAM BO 
( NF=O) 

Reserved _(_CNF=1l 

On-Chi~ 
DARAM 1 

Reserved 

On-C~SARAM 
(0 LY=1) 

External (OVLY=O) 

External 

Data 
Memory-Mapped 

Registers 

On-Chi~ 
DARAM 2 

Reserved 

On-Ch~ DARAM BO 
( NF=O) 

Reserved _(_CNF=1l 

On-Chi~ 
DARAM 1 

Reserved 

On-Chip SARAM BO 
(OVLY=1) 

Reserved (OVLY=O) 

External 
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6.2 Program Memory 

The external program memory space on the 'C5x devices addresses up to 64K 
16-bit words. In addition, 'C5x devices have on-chip ROM, single-access pro­
gram/data RAM, and dual-access RAM. Software can configure these 
memory cells to reside inside or outside of the program address map. When 
they are mapped into program space, the device automatically accesses them 
when it addresses within their bounds. When the CALU generates an address 
outside these bounds, the device automatically generates an external access. 
The advantages of operating from on-chip memory are as follows: 

1) Higher performance because no wait states are required for slower exter-
nal memories. 

2) Lower cost than external memory. 
3) Lower power than external memory. 

The advantage of operating from off-chip memory is the ability to access a larg­
er address space. 

6.2.1 Program Space Conflgurablllty 

The program memory can reside both on- and off-chip. After reset, the configu­
ration is set by the level on the MP/MC pin. If this pin is high, the device is confi­
gured as a microprocessor, and the on-chip ROM is not addressed. If this pin 
is low, the device is configured as a microcomputer, and the on-chip ROM is 
enabled. The 'C5x devices fetch their reset vector at location O of program 
memory; so, if the device is operating as a microcomputer, it starts running 
from on-chip ROM. Otherwise, it starts running from off-chip memory. Once 
the program is running, you can change the MP/MC configuration by setting 
or clearing the MP/MC bit in the PMST register. Note that the MP/MC pin is 
sampled only at reset. The following instruction removes the ROM from pro­
gram space: 

OPL#B,PMST ;Remove boot ROM from program space. 

You can submit code to be masked for the 'C51 's SK-word or for the 'C53's 
16K-word on-chip ROM. This is a process-masked ROM cell, which requires 
ROM codes to be submitted to Texas Instruments for implementation in the de­
vice, as detailed in Appendix H. 

At reset, the single-access RAM and the 512-word program/data (BO) RAM 
are not resident in program space. You can make the single-access RAM resi­
dent in program space by setting the RAM bit in the PMST register to 1 . When 
the RAM bit is set, these RAM cells become addressable in program space. 
You can make the dual-access RAM block BO resident in program space 
(OFEOOh-OFFFFh) by setting the CNF bit to 1. The following code example 
maps these blocks into program space. 
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OPL #OlOh,PMST ;Map 'CSx single-access memory 
;in program space. 

SETC CNF ;Map BO to program space. 

Table 6-1 through Table 6-3 show program memory configurations available 
on the 'C5x devices. Note that all addresses are specified in hexadecimal. 

Table 6-1. 'C50 Program Memory Configuration Control 

CNF RAM MP/MC ROM SARAM DARAMBO Ott.Chip 

0 0 0 0000-07FF 0800-FFFF 
0 0 1 0000-FFFF 
0 1 0 0000-07FF 0800-2BFF 2COO-FFFF 
0 1 1 0800-2BFF 0000-07FF 

2COO-FFFF 
1 0 0 0000-07FF FEOO-FFFF 0800-FDFF 
1 0 1 FEOO-FFFF 0000-FDFF 
1 1 0 0000-07FF 0800-2BFF FEOO-FFFF 2COO-FDFF 
1 1 1 0800-2BFF FEOO-FFFF 0000-07FF 

2COO-FDFF 

Table 6-2. 'C51 Program Memory Configuration Control 

CNF RAM MP/MC ROM SARAM DARAMBO Ott.Chip 

0 0 0 0000-1FFF 2000-FFFF 
0 0 1 0000-FFFF 
0 1 0 0000-1FFF 2000-23FF 2400-FFFF 
0 1 1 2000-23FF 0000-1FFF 

2400-FFFF 
1 0 0 0000-1FFF FEOO-FFFF 2000-FDFF 
1 0 1 FEOO-FFFF 0000-FDFF 
1 1 0 0000-1FFF 2000-23FF FEOO-FFFF 2400-FDFF 
1 1 1 2000-23FF FEOO-FFFF 0000-1FFF 

2400-FDFF 
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Table 6-3. 'C53 Program Memory Configuration Control 

CNF RAM MP/MC ROM SARAM DARAMBO Off·Chlp 

0 0 0 0000-3FFF 4000-FFFF 

0 0 1 0000-FFFF 

0 1 0 0000-3FFF 4000-4BFF 4COO-FFFF 

0 1 1 4000-4BFF 0000-3FFF 

4000-FFFF 

1 0 0 0000-3FFF FEOO-FFFF 2000-FOFF 

1 0 1 FEOO-FFFF 0000-FOFF 

1 1 0 0000-3FFF 4000-4BFF FEOO-FFFF 4000-FOFF 

1 1 1 4000-4BFF FEOO-FFFF 0000-1FFF 

2400-FOFF 

6.2.2 Program Memory Address Map 

The reset, interrupt, and trap vectors are addressed in program space. These 
vectors are soft-meaning that the processor, when taking the trap, loads the 
PC with the trap address and executes code at the vector location. Two words 
are reserved at each vector location for a branch instruction to the appropriate 
interrupt service routine. Table 6-4 shows the interrupt vector addresses after 
reset. 

Table 6-4. 'C5x Interrupt Vector Addresses 

Name Location Priority Function 

Dec Hex 

RS 0 0 1 (highest) External reset signal 

1ITTf 2 2 3 External user interrupt #1 

TFJT2 4 4 4 External user interrupt #2 

1f.m 6 6 5 External user interrupt #3 

TINT 8 8 6 Internal timer interrupt 

RINT 10 A 7 Serial port receive Interrupt 

XINT 12 c 8 Serial port transmit interrupt 

TANT 14 E 9 TOM port receive interrupt 

TXNT 16 10 10 TOM port transmit interrupt 

rnT4 18 12 11 External user interrupt #4 

- 20-33 14-21 N/A Reserved 

TRAP 34 22 N/A Software trap instruction 

NMI 36 24 2 Nonmaskable interrupt 

- 38-41 26-29 N/A Reserved for emulation and test 

- 42-47 2A-2F N/A Software Interrupts 

6-7 



Program Memory 

At reset, these vectors are mapped absolutely to address Oh in program 
space. However, the vectors can be remapped to the beginning of any 2K­
word page in program space after reset. This is done by loading the interrupt 
vector pointer (IPTR) bits in the PMST register with the appropriate 2K-word 
page boundary address. After loading IPTR, any user interrupt or trap vector 
is mapped to the new 2K-word page. For example: 

OPL #05800h,PMST ;Remap vectors to start at 5800h. 

This example moves the interrupt vectors to off-chip program space at ad­
dress 05800h. Any subsequent interrupt (except for a reset) will fetch its inter­
rupt vector from that new location. For example, if, after loading the IPTR, an 
1NT2' occurs, the interrupt service routine vector will be fetched from location 
5804h in program space as opposed to location 04h. This feature facilitates 
moving the desired vectors out of the boot ROM and then removing the ROM 
from the memory map. Once the system code is booted into the system from 
the boot-loader code resident in ROM, the application reloads the IPTR with 
a value pointing to the new vectors. In the above example, the OPL instruction 
is used to modify the PMST. This example assumes that the IPTR is currently 
set to Os. If it is not, then it must be set to Os before this instruction is executed; 
this assures that the correct value for IPTR is set. 

6.2.3 Program Memory Addressing 

6-8 

The program memory space contains the code for applications. It can also 
hold table information and immediate operands. The program memory is ac­
cessed only by the PAB address bus. The address for this bus is generated 
by the program counter (PC) when instructions and long immediate operands 
are accessed. The PAB address bus can also be loaded with long immediate, 
low accumulator, or registered addresses for block transfers, multiply/accu­
mulates, and table read/writes. 

The 'C5x devices fetch instructions by putting the PC on the PAB bus and read­
ing the appropriate location in memory. While the read is executing, the PC is 
incremented for the next fetch. If there is a program address discontinuity (for 
example, branch, call, return, interrupt, or block repeat), the appropriate ad-
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dress is loaded into the PC. The PC is also loaded when operands are fetched 
from program memory. Operands are fetched from program memory when the 
device reads or writes to tables (TBLR and TBLW), when it transfers data to/ 
from data space (BLPD and BLDP), or when it uses the program bus to fetch 
a second multiplicand (MAC, MACO, MADS, and MADD). The PC is loaded 
with a value other than PC + 1 in the following ways: 

O Long immediate address with branch or call instructions. 
O Long immediate address with MAC, MACO, BLDP or BLPD instructions. 
O Low accumulator with BACC or CALA instructions. 
O Low accumulator with TBLR or TBLW instruction. 
0 BMAR with MADS, MADD, BLDP or BLPD instructions. 
O CALU with an interrupt vector address (INTR, TRAP, or NMI) instruction. 
O CALU with PASR when at the end of a block repeat loop. 
O Top of stack popped with a return instruction. 

The address flow of a program can be traced externally through the address 
visibility feature. This feature can be used to debug during program develop­
ment; it is enabled after reset and disabled/re-enabled by setting/clearing the 
AVIS bit in the PMST register. The address visibility mode sends the program 
address out to the address pins of the device, even when on-chip program 
memory is addressed. Note that the memory control signals (PS, RU, etc.) are 
not active in address visibility mode. 

Instruction addresses can be externally clocked with the falling edge of the in­
struction acquisition (TAO) pin (see Appendix A for TAO timings). These instruc­
tion addresses include both words of a two-word instruction but do not include 
block transfers, table reads, or multiply/accumulate operands. The address 
visibility mode also allows a specific interrupt trap to be decoded in conjunction 
with the interrupt acknowledge (1ACK) pin. While TACK is low, address pins 
A 1-A4 can be decoded to identify which interrupt is being acknowledged (see 
Appendix A for TACK timings). Once the system is debugged, the address visi­
bility mode can be disabled by setting the AVIS bit to one. Disabling the ad­
dress visibility mode lowers the power consumption of the device and the RF 
noise of the system. Note that if the processor is running while HOLDA is active 
low (HM = 0), the address is not visible at the pins, regardless of the address 
visibility mode. 

6.2.4 Program Memory Security Feature 

The on-chip program memory can be secured on the 'CSx devices. This secu­
rity feature does not allow an instruction fetched from off-chip memory to read 
or write on-chip program memory. The pipeline controller tracks instructions 
fetched from off-chip memory, and, if the operand address resides in on-chip 
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program space, the instruction reads invalid data off the bus. The limitations 
of the mode are as follows: 

O Instructions fetched from off-chip memory cannot read or write on-chip 
single-access and read-only memory. 

O Instructions fetched from BO cannot read or write on-chip single-access 
and read-only program memory. 

O Coefficients for off-chip multiply/accumulate instructions cannot reside in 
on-chip single-access and read-only program memory. 

O The on-chip single-access memory cannot be mapped to data space. 
O The emulator cannot work with on-chip program memory. 
O The program memory address range that corresponds to the on-chip 

single-access RAM is not available for external memory. 

This feature can be used with the on-chip ROM to secure program code that 
is stored in external memory. The ROM code can include a decryption algo­
rithm that takes encrypted off-chip code, decrypts it, and stores the routine in 
on-chip single-access program RAM. This is a process-mask option and, like 
the ROM, must be submitted to Texas Instruments for implementation. 

6.2.5 External Interfacing to Program Memory 
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The 'C5x devices can address up to 64K words of program memory off-chip. 
These are key signals for external memory interfacing: 

AO-A15 
DO-D15 
pg 
STRB 
RU 
WE 
TACK 
READY 
ROm 
HOLDA 
BR 
TAO 

16-Bit Bidirectional Address Bus 
16-Bit Bidirectional Data Bus 
Program Memory Select 
External Memory Access Active Strobe 
Read Select (External Device Output Enable) 
Write Enable 
Interrupt Acknowledge 
Memory Ready to Complete Cycle 
Request for Control of Memory Interface 
Acknowledge ROm Request 
Bus Request 
Acknowledge Bus Request (when HOLDA is low) 

An example of a minimal external program memory interface is shown in 
Figure 6--4. In this figure, the 'CSx device interfaces to an BK x 8 EPROM. 
The use of 8-bit-wide memories saves power, board space, and cost over 
16-bit wide memory banks. The 16-bit-wide memory banks can be used with 
the same basic interface as the 8-bit-wide memories. Note thatthe 'CSx cannot 
directly execute code from 8-bit-wide memory. An on-chip program (such as 
a bootloader) is required to read 8-bit-wide memory to form 16-bit long instruc­
tion words and transfer them to on-chip RAM. 
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Figure 6-4. Interface to External EPROM 

'CSx 8Kx 8 EPROM 
RO UE 
PS cs 

A12 A12 
A11 A11 
A10 A10 
A9 A9 
AB AS 
A7 A7 D7 r---., 
AS AS DS r----; 
AS AS DS i-----, 

A4 A4 D4 r----; 
A3 A3 D3 ~ 
A2 A2 D2 r----; 
A1 A1 D1 t-----1 
AO AO DO t--"" 

D7 
DS 
DS 
D4 
D3 

j_ 
D2 
D1 
DO 

The program select (PS) signal is connected directly to the chip select (CS) 
to select the EPROM on any external program access. The EPROM is ad­
dressed in any SK address block in program space. If multiple blocks of 
memory are to be interfaced in program space, a decode circuit that gates PS 
and the appropriate address bits can be used to drive the memory block chip 
selects. 

The RU signal is tied directly to the output enable (OE) pin of the EPROM. The 
OE signal enables the output drivers of the EPROM. The drivers are turned 
off in time to guarantee that no data bus conflicts occur with an external write 
by the 'C5x devices. 

The device can be interfaced to external program RAM by connecting the WE 
signal to the write enable signal of the RAM device. The 'C5x devices take two 
cycles on all external writes, including a half cycle before the WE goes low and 
a half cycle after WE goes high; this prevents buffer conflicts on the external 
buses. Additional write cycles can be obtained by modifying the software wait­
state generator registers. Subsection 6.3.4 includes an example of interfacing 
to external RAM. 
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6.3 Local Data Memory 

The local data memory space on the 'C5x addresses up to 64K of 16-bit words. 
The 'C50, 'C51, and 'C53 have 9K, 1 Kand 3K words of on-chip single-access 
RAM (SARAM), respectively. All 'C5x devices have the same 1056 words of 
dual-access RAM (DARAM). These on-chip memory cells can be configured 
by software in or out of the local data address map. When these cells are 
mapped into data space, the device automatically accesses them when ad­
dressing within their bounds. When an address is generated outside these 
bounds, the device automatically generates an external access. The advan­
tages of operating from on-chip memory are as follows: 

1) Higher performance because no wait states are required. 
2) Higher performance because of better flow within the pipeline of the 

CALU. 
3) Lower cost than external memory. 
4) Lower power than external memory. 

The advantage of operating from off-chip memory is the ability to access a larg­
er address space. 

6.3.1 Local Data Space Conflgurablllty 

The local data memory can reside both on and off chip. At reset, the configura­
tion maps the 1056 words of dual-access RAM into local data space. Block BO 
can be reconfigured into program space by setting the CNF bit in ST1 to 1 . The 
single-access RAM can be mapped into data space by setting the OVLY bit to 
1 in the PMST register. Table 6-5 the possible local data memory configura­
tions available on the 'C50. Table 6-6 and Table 6-7 show the possible local 
data memory configurations available on the 'C51 and 'C53, respectively. Note 
that all locations in the address range, Oh-800h, that are not mapped into 
on-chip memory are on-chip reserved locations (SOh-FFh and 500h-7FFh). 
Addresses D-4Fh contain on-chip memory-mapped registers, and addresses 
50-5Fh contain the memory-mapped 1/0 ports. 

Table 6-5. 'C50 Local Data Memory Configuration Control 

CNF OVLV DARAM BO DARAMB1 DARAMB2 SARAM Off-Chip 

0 0 100h-2FFh 300h-4FFh 60h-7Fh 800h-FFFFh 
0 1 100h-2FFh 300h-4FFh 60h-7Fh 800h-2BFFh 2COOh-FFFFh 
1 0 - 300h-4FFh 60h-7Fh 800h-FFFFh 
1 1 - 300h-4FFh 60h-7Fh 800h-2BFFh 2COOh-FFFFh 
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Table 6-6. 'C51 Local Data Memory Configuration Control 

CNF OVLY DARAM80 DARAM81 DARAM 82 SA RAM Off-Chip 

0 0 100h-2FFh 300h-4FFh 60h-7Fh 800h-FFFFh 

0 1 100h-2FFh 300h-4FFh 60h-7Fh 800h-BFFh COOh-FFFFh 
1 0 - 300h-4FFh 60h-7Fh 800h-FFFFh 

1 1 - 300h-4FFh 60h-7Fh 800h-BFFh COOh-FFFFh 

Table 6-7. 'C53 Local Data Memory Configuration Control 

CNF OVLY DARAM80 DARAM 81 DARAM 82 SARAM Off-Chip 

0 0 100h-2FFh 300h-4FFh 60h-7Fh 600h-FFFFh 
0 1 100h-2FFh 300h-4FFh 60h-7Fh 800h-13FFh 1400h-FFFFh 
1 0 - 300h-4FFh 60h-7Fh 800h-FFFFh 
1 1 - 300h-4FFh 60h-7Fh 800h-13FFh 1400h-FFFFh 

6.3.2 Local Data Memory Address Map 

The 64K words of local data memory space include the memory-mapped reg­
isters for the device. The memory-mapped registers reside in data page 0. 
Data page O has five sections of register banks: core CPU registers, peripheral 
registers, test/emulation reserved area, 1/0 space port hole, and scratch-pad 
RAM. 

O The 28 core CPU registers can be accessed with zero wait states. Some 
of these registers can be accessed through paths other than the data bus 
- for example, auxiliary registers can be loaded by the auxiliary register 
arithmetic unit {ARAU) by using the LAR instruction. 

O The peripheral registers are the control and data registers used in the pe­
ripheral circuits. These registers reside on a dedicated peripheral bus 
structure called the Tl BUS. They require one wait state when accessed. 

O The test/emulation reserved area is used by the test and emulation sys­
tems for special information transfers. Writing to this area can cause the 
device to change Its operational mode and, therefore, affect the oper­
ation of the application. 

O The 1/0 space port hole provides addressability to 16 words of 1/0 space 
within the data address space. This allows access to 1/0 space {other than 
IN and OUT instructions) via the more extensive addressing modes avail­
able within the data space. For example, the SAMM instruction can write 
to an 1/0 memory-mapped port as an OUT instruction does. The external 
interface looks as if an OUT instruction occurs (TS active). Port addresses 
reside off-chip and are subject to external wait states. They are also af­
fected by the on-chip software wait-state generator, like any other non me­
mory-mapped 1/0 port. 

O The scratch-pad RAM block {B2) includes 32 words of dual-access RAM 
for variable storage without fragmenting the larger RAM blocks, both on 
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the device and external to the device. Table 6-8 shows the address map 
of data page 0. 

Table 6-8. Data Page o Address Map 

Name Address Description 

Dec Hex 

Core Processor Memory-Mapped Registers 

- 0-3 0-3 Reserved 

IMR 4 4 Interrupt Mask Register 

GREG 5 5 Global Memory Allocation Register 

IFR 6 6 Interrupt Flag Register 

PMST 7 7 Processor Mode Status Register 

RPTC 8 8 Repeat Counter Register 

BRCR 9 9 Block Repeat Counter Register 

PASR 10 A Block Repeat Program Address Start Register 

PAER 11 B Block Repeat Program Address End Register 

TREGO 12 c Temporary Register Used for Multiplicand 

TREG1 13 D Temporary Register Used for Dynamic Shift Count (5 bits only) 

TREG2 14 E Temporary Register Used as Bit Pointer In Dynamic Bit Test (4 bits only) 

DBMR 15 F Dynamic Bit Manipulation Register 

ARO 16 10 Auxiliary Register Zero 

AR1 17 11 Auxiliary Register One 

AR2 18 12 Auxiliary Register Two 

AR3 19 13 Auxiliary Register Three 

AR4 20 14 Auxiliary Register Four 

AR5 21 15 Auxiliary Register Five 

AR6 22 16 Auxiliary Register Six 

AR7 23 17 Auxiliary Register Seven 

INDX 24 18 Index Register 

ARCA 25 19 Auxiliary Register Compare Register 

CBSR1 26 1A Circular Buffer 1 Start Register 

CBER1 27 1B Circular Buffer 1 End Register 

CBSR2 28 1C Circular Buffer 2 Start Register 

CBER2 29 1D Circular Buffer 2 End Register 

CBCR 30 1E Circular Buffer Control Register 

BMAR 31 1F Block Move Address Register 

Peripheral Memory-Mapped Registers 
DAR 32 20 Data Receive Register 

DXR 33 21 Data Transmit Register 

SPC 34 22 Serial Port Control Register 

- 35 23 Reserved 
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Table 6-8. Data Page O Address Map (Continued) 

Name Address Description 

Dec Hex 

Peripheral Memory-Mapped Registers (Continued) 

TIM 36 24 Timer Register 

PRO 37 2S Period Register 

TCR 38 26 Timer Control Register 

- 39 27 Reserved 

PDWSR 40 28 Program/Data S/W Wait-State Register 

IOWSR 41 29 1/0 Port S/W Wait-State Register 

CWSR 42 2A Control S/W Wait-State Register 

- 43-47 2B-2F Reserved for Test/Emulation 

TRCV 48 30 TOM Data Receive Register 

TDXR 49 31 TOM Data Transmit Register 

TSPC so 32 TOM Serial Port Control Register 

TCSR S1 33 TOM Channel Select Register 

TATA S2 34 Receive/Transmit Address Register 

TRAD S3 3S Received Address Register 

- S4-79 36-4F Reserved 

Memory-Mapped 1/0 Ports 

PAO 80 so 1/0 Port 80 

PA1 81 S1 1/0 Port 81 

PA2 82 S2 1/0 Port 82 

PA3 83 S3 1/0 Port 83 

PA4 84 S4 1/0 Port 84 

PAS as SS 1/0 Port SS 

PAS 86 SS 1/0 Port 86 

PA7 87 S7 1/0 Port 87 

PAS 88 S8 1/0 Port 88 

PA9 89 S9 1/0 Port 89 

PA10 90 SA 1/0 Port 90 

PA11 91 S8 1/0 Port 91 

PA12 92 SC 1/0 Port 92 

PA13 93 SD 1/0 Port 93 

PA14 94 SE 1/0 Port 94 

PA1S 95 SF 1/0 Port 9S 

82 96-127 60-7F Scratch Pad RAM 

6.3.2. 1 Auxiliary Register (ARO-AR7) 

The eight 16-bit auxiliary registers (ARO-AR7) can be accessed by the CALU 
and modified by the ARAU or the PLU. The primary function of the auxiliary 
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registers is generating 16-bit addresses to data space. However, these regis­
ters can also act as general-purpose registers or counters. Subsection 6.3.3 
describes how these registers are used in indirect addressing. 

6.3.2.2 Auxll/ary Register Compare Register (ARCR) 

The auxiliary register compare register (ARCR) is a 16-bit register for address 
boundary comparison. The ARCR is compared to the selected AR by the 
CMPR instruction, and the result of the compare is placed in the TC bit of ST1. 
Subsection 6.3.3 describes how the ARCR can be used in memory manage­
ment. 

6.3.2.3 Index Register (INDX) 

The index register (INDX) is used by the ARAU as a step value for indirect ad­
dressing modifications to auxiliary registers (i.e., addition or subtraction by 
more than 1). For example, when the ARAU steps across a row of a matrix, 
the indirect address is incremented by 1. However, when the ARAU steps 
down a column, the address is incremented by the dimension of the matrix. 
The ARAU can add or subtract the value stored in IN DX from AR(ARP) as part 
of the indirect address operation. The INDX register is also used to map the 
dimension of the address block used for bit-reversal addressing. Subsection 
6.3.3 describes how INDX can be used in memory management. 

6.3.2.4 Circular Buffer Registers (CBSR1, CBER1, CBSR2, CBER2, CBCR) 

The 'C5x devices support two concurrent circular buffers operating in conjunc­
tion with user-specified auxiliary registers. Two circular buffer start registers 
(CBSR1 and CBSR2) indicate the 16-bit address where the circular buffer 
starts. Two circular buffer end registers (CBER 1 and CBER2) indicate the end 
of the circular buffers. The circular buffer control register (CBCR) controls the 
operation of these circular buffers. Subsection 6.3.3 describes how circular 
buffers can be used in memory management. 

6.3.2.5 Block Move Address Register (SMAR) 

The 16-bit block move address register (BMAR) holds an address value for 
use with block moves and multiple/accumulate operations. This register pro­
vides 16-bit address to a second indirect-addressed operand for these opera­
tions. The use of the BMAR is described further in subsection 6.3.3. 

6.3.2.6 Repeat Registers (RPTC, BRCR, PASR, and PAER) 
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The repeat counter (RPTC) holds the repeat count in a repeat single-instruc­
tion operation. This register is loaded by the RPT and RPTZ instructions. 
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The block repeat counter register (BRCR) holds the count value for the block 
repeatfeature. This value is loaded before a block repeat operation is initiated. 
It can be changed while a block repeat is in progress; however, take caution 
in this case to avoid infinite loops. The program address start register (PASR) 
holds the start address of the block of code to be repeated. The program ad­
dress end register (PAER) holds the end address of the block of code to be 
repeated. Both these registers are loaded by the RPTB instruction. Block re­
peats are described in more detail in subsection 3.6.5. 

6.3.2.7 Interrupt Registers (IMR,IFRJ 

The interrupt mask register (I MR) is used to individually mask off specific inter­
rupts at required times. The interrupt flag register (IFR) indicates the current 
status of the interrupts. Interrupts are described in detail in Section 3.8. 

6.3.2.B Global Memory Allocation Register (GREG) 

The global memory allocation register (GREG) is used to allocate parts of the 
data address space as global memory. This register defines what amount of 
the local data space will be overlayed by global data space. The operation of 
GREG is further discussed in Section 6.4. 

6.3.2.9 Dynamic Bit Manipulation Register (DBMRJ 

The dynamic bit manipulation register (DBMR) is used in conjunction with the 
PLU to provide a dynamic (execution time programmable) mask register. The 
use of this register is described in Section 3.7. 

6.3.2.10 Temporary Registers (TREGO, TREG1, TREG2) 

TREGO holds one of the multiplicands of the multiplier. It can also be loaded 
via the CALU with the following instructions: LT, LTA, LTD, LTP, LTS, SORA, 
SQRS, MAC, MACO, MADS, and MACO. TREG1 holds a dynamic (execution­
time programmable) shift count for the prescaling shifter. TREG2 holds a dy­
namic bit address for the BITT instruction. 

6.3.2.11 Processor Mode Status Register (PMSTJ 

The processor mode status register (PMST) controls memory configurations 
of the 'C5x devices (with exception of the CNF bit in ST1). The PMST register 
is described in more detail in subsection 3.6.3 and in the configurability sec­
tions of Chapter 6. 
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6.3.2.12 Serial Port Registers (DRR, DXR, SPC) 

Three registers control and operate the serial port. The serial port control reg­
ister (SPC) contains the mode control and status bits of the serial port. The 
data receive register (ORR) holds the incoming serial data, and the data trans­
mit register (OXR) holds the outgoing serial data. The serial port is described 
in more detail in Section 5.4. 

6.3.2.13 TDM Serial Port Registers (TRCV, TDXR, TSPC, TCSR, TRTA, TRAD) 

The TOM serial port is a feature superset of the first serial port. The TOM serial 
port supports applications that require serial communication in a multiproces­
sing environment. The TOM serial port is described in more detail in Section 
5.4. 

6.3.2.14 Timer Registers (TIM, PRD, TCR) 

The timer operates with three registers. The TIM register is the current count 
of the timer. The PRO register defines the period for the timer. The TCR (timer 
control register) controls the operations of the timer. Refer to Section 5.6 for 
more details on the timer. 

6.3.2.15 Software Walt-State Registers (PDWSR, IOWSR, CWSR) 

The software wait-state registers contain the wait-state counts for the different 
banks of off-chip memory address ranges. POWSR contains the wait-state 
count for the four 16K blocks of program and data memory. IOWSR contains 
the wait-state counts for the 16 partitions of 1/0 space. The CWSR control reg­
ister determines the range of wait states you may select-(0, 1, 2, or 3) or (0, 
1, 3, 7). In addition, the BIG bit in the CWSR register determines how the 1/0 
space is partitioned. If BIG is set to 0, the 1/0 wait states apply to the pair of 
port addresses. If the BIG bit is set to 1, the 1/0 wait states apply to BK blocks 
of the 1/0 space. Refer to Section 5.3 for more details on software wait states. 

6.3.2.16 1/0 Space Port Hole (PA0-15) 

The 1/0 space port hole allows the addressing of sixteen locations (50h-5Fh) 
of 1/0 space via the addressing modes of the local data space. This means that 
these locations can be read directly into the CALU or written from the ACC. It 
also means that these locations can be acted upon by the PLU or addressed 
via the memory-mapped addressing mode. The locations can also be ad­
dressed with the IN and OUT instructions. 

6.3.2. 17 Scratch Pad RAM 
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This 32-word block of RAM can be used to hold overhead variables so that the 
larger blocks of RAM are not fragmented. This RAM block supports dual-ac-

Memory 



Local Data Memory 

cess operations and can be addressed by using the memory-mapped ad­
dressing mode or any data memory addressing mode. 

6.3.3 Local Data Memory Addressing 

The local data space address generation is controlled by the decode of the cur­
rent instruction. Local data memory is read via data address bus 1 (DAB1) on 
instructions with only one data memory operand and program address bus 
(PAB) on instructions with a second data memory operand. An instruction op­
erand is provided to the CALU in eight ways, as described in subsection 3.4.2. 
However, data memory addresses are generated in one of the following five 
ways: 

O By the direct address bus (DAB) using the direct addressing mode (for ex­
ample, ADD 010h) relative to the data page pointer (DP), 

O By the direct address bus (DAB) using the memory-mapped addressing 
mode (for example, LAMM PMST) within data page zero, 

O By the auxiliary register file bus (AFB) using the indirect addressing mode 
(for example, ADD*), 

O By the value pointed at by the PC in long immediate address mode (for 
example, BLDD TBL 1,*+), and 

O By the block memory address register (BMAR) in registered block memory 
addressing mode (for example, BLDD, BMAR*+). 

In the direct addressing mode, the 9-bit data memory page pointer (DP) points 
to one of 512 pages (1 page=128 words). The data memory address (dma), 
specified by the seven LSBs of the instruction, points to the desired word within 
the page. The address on the DAB is formed by concatenating the 9-bit DP 
with the 7-bit dma. 

Figure 6-5 illustrates the direct addressing mode. In the illustration, the oper­
and is fetched from data memory space via the data bus, and the address is 
the concatenated value of the DP and the seven LSBs of the instruction. For 
the following example, consider DP = 018Dh and TEMP1 = 01 Oh: 

LACC TEMPl :ACC = TEMPl. 

In the example, the accumulator is loaded with DATA(CE80). 
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Figure 6-5. Direct Addressing Mode 

ADD 010h 

o o o o ;)Bl o o 1 o o o ~I Machine Code = Io o 1 o 
I I 

I I 
I I 

I I 
\ I I 
\I I 

\------------------1~10 __ 0 __ 1 ___ 0_0 __ 0 __ 0~1 

Operand = Data(DAB) 

Note: DAB is the 16-bit internal address bus for data memory. 

The memory-mapped addressing mode operates much like the direct ad­
dressing mode except that the most significant 9 bits of the address are forced 
to zero instead of being loaded with the contents of the DP. This makes it possi­
ble to address the memory-mapped registers of data page zero directly with­
out the overhead of changing the DP or auxiliary register. 

Figure 6-6 illustrates memory-mapped addressing mode. For the following 
example, consider DP = 0184h and TEMP1 = 08060h: 

LAMM 07h ~ACC = PMST 

In this example, the contents of memory location 7h is loaded into the accumu­
lator. 

Figure 6-6. Memory-Mapped Addressing Mode 
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LAMM PMST 

Machine Code = I 0 0 0 0 1 0 0 0 I o) 0 0 0 

I 

Value = \ O O O O O O O O O I / I 
I I I 

1 r 

0 1 1 11 
I 

I 
I 

I 
I 

I 
I 

1 I 

In the indirect addressing mode, the currently selected 16-bit auxiliary register 
AR(ARP) addresses the data memory through the AFB. While the selected 
auxiliary register provides the data memory address and the data is being ma­
nipulated by the CALU, the contents of the auxiliary register can be manipu-
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lated through the ARAU. See Figure 6-7 for an example of indirect auxiliary 
register addressing. In this case, AR3 is the selected auxiliary register 
{ARP=3}. 

Figure 6-7. Indirect Addressing Mode 

ADD * 

Machine Code = lo 0 1 0 0 0 0 0 I 1 I a 0 0 0 0 0 al 
I 

+ 
1 l ... AR3 =I 1 al ARP =lo 1 0 0 1 1 1 0 0 0 1 0 0 0 

Operand = Data(AR(ARP)) 

The following code illustrates the use of indirect addressing in a program: 

* This routine uses indirect addressing to calculate the following equation: 
* 
* 
* 
* 
* 
* 
* 
* 

\ 
I 

10 

I = 1 

X(I) x Y(I) 

* The routine assumes that the x values are located in on-chip RAM block BO, 
* and the Y values in block Bl. The efficiency of the routine is due to the 
* use of indirect addressing and the repeat instruction. 
* 
SERIES MAR *I AR4 

SETC CNF 
;ARP POINTS TO ADDRESS REGISTER 4. 
;CONFIGURE BLOCK BO AS PROGRAM MEMORY. 
;POINT AT BEGINNING OF DATA MEMORY. LAR AR4 ,#0300h 

RPTZ #9 ;CLEAR ACC AND P; REPEAT NEXT INST. 10 TIMES 
;MULTIPLY AND ACCUMULATE; INCREMENT AR4. 
;ACCUMULATE LAST PRODUCT. 

MAC OFFOOh, *+ 
APAC 
RET ;Accumulator contains result. 

In the long immediate addressing mode, an operand is addressed by the sec­
ond word of a two-word instruction. In this case, the program address/data bus 
(PAB} is used for the operand fetch. The pref etch counter (PFC} is pushed onto 
the microcall stack {MCS}, and the long immediate value is loaded into the 
PFC. The PAB is then used for the operand fetch or write. At the completion 
of the instruction, the MCS is popped back to the PFC. The PC is incremented 
by two, and execution continues. This technique is used when two memory ad­
dresses are required for the execution of the instruction. The PFC is used so 
that when the instruction is repeated, the address generated can be autoin­
cremented. Figure 6-8 illustrates this mode. In this illustration, the source ad­
dress (OPERAND1} is fetched via PAB, and the destination address {OPER­
AND2} uses the direct addressing mode. 
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Figure 6--8. Long Immediate Addressing Mode 

BLDD 02345h,012h 

Machine Code1 = I 1 0 1 0 o o ~) o o 1 o o 1 /o) 
....-~~~~~~~~~~~~~~ I / 

I / 
I / 

I / 
'\./ / 

--~~~~~~~~1~)~'0~0~1~-0~0-1~0~1 

Machine Code2 
PC 

= 
= 

Operand1 = Data (PC) 

0 
0 

0 0 0 0 0 0 
0 0 0 0 0 0 

The registered block memory addressing mode operates like the long immedi­
ate addressing mode with the exception that the address comes from the 
BMAR register. The advantage of this technique over long immediate address­
ing is that it allows the address of the block of memory to be changed in run­
time. On the other hand, the address in long immediate addressing mode re­
sides in the program flow and cannot be easily changed. Figure ~9 shows an 
example of registered block memory addressing mode. 

Figure 6-9. Registered Block Memory Addressing Mode 

BLDD BMAR, 012h 

Machine Code 1 = 1 0 1 0 

+ 
DP = I 1 0 0 1 1 1 0 1 I 

\ \ 
\ 

\ 
DAB = I 1 1 0 0 1 1 1 0 

Operand2 = Data (DAB) 

Operand1 = Data (PFC) 
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'CSx devices provide a register file containing eight auxiliary registers 
(ARO-AR7). The auxiliary registers can be used for indirect addressing of the 
data memory or for temporary data storage. Indirect auxiliary register address­
ing (see Figure 6-10) allows placement of the data memory address of an in­
struction operand into one of the auxiliary registers. These registers are 
pointed to by a three-bit auxiliary register pointer (ARP) that is loaded with a 
value from O through 7, designating ARO through AR7, respectively. 

Figure 6-10. Indirect Auxiliary Register Addressing Example 

Auxlllary Register Fiie 

ARO 0 5 3 7 hi 

Auxiliary 
AR1 5 5 0 hi 

Register Pointer AR2 E 9 F chi (in STO) 

ARP I ol 1I11--. AR3 F F 3 A hi_. 

AR4 0 3 B hi 

AR5 2 6 B hi 

AR6 0 0 0 8 hi 
AR7 8 4 3 D hi 

Data Memory Map 

3121h 

FF3Ah 

The auxiliary registers and the ARP can be updated directly from data memory, 
the accumulator, or the product register, or by an immediate operand defined 
in the instruction. The contents of these registers can also be stored in data 
memory or used as inputs to the CALLI. These registers appear in the memory 
map as described in Table 6-8. 

The auxiliary register file (ARO-AR7) is connected to the auxiliary register 
arithmetic unit (ARAU), shown in Figure 6-11. The ARAU can autoindex the 
current auxiliary register while the data memory location is being addressed. 
Indexing either by± 1 or by the contents of the IN DX register can be performed. 
As a result, accessing tables of information does not require the central arith­
metic logic unit (CALLI) for address manipulation. The CALLI can perform oth­
er operations in parallel. 

If more advanced address manipulation is required, such as multidimensional 
array addressing, the CALLI can directly read from or write to the auxiliary reg­
isters. However, the ARAU updates of the ARs is done during the decode 
phase (second cycle) of the pipeline, whereas the CALLI writes during the ex­
ecution phase (fourth cycle) of the pipeline. Therefore, the two instructions di-
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rectly following the CALU write to an auxiliary register should not use the same 
auxiliary register for address generation. 

Figure 6-11. Auxiliary Register File 

16 

16 
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16 
Index Register (INDX) (16) 

1--~~~~~~~~~~~--1s 

Compare Register (ARCA) (16) 

Auxiliary Register 7 (AR7) (16) 

Auxiliary Register 6 (AAS) (16) 

Auxiliary Register 5 (AAS) (16) 

Auxiliary Register 4 (AR4) (16) 

Auxiliary Register 3 (AR3) (16) 
3 

Auxiliary Register 2 (AR2) (16) 

Auxiliary Register 1 (AR1) (16) 

Auxiliary Register 0 (ARO) (16) 

16 

IN B OUT 

Auxiliary Register Arithmetic Unit (ARAU) (16) 

Auxiliary Register Bus (ARB) 3 

8 LSBs of Instruction Register 
(IA) (16) 

3MSB 

Auxiliary 
3 Register 

Pointer 
(ARP) (3) 

3 

3 3 LSBs of 
Instruction 
Register 
(IA) (16) 

Auxiliary 
Register 

Buffer (ARB) 
(3) 

3 

3MSB 

As shown in Figure 6-11 , the index register, the compare register, or the eight 
LSBs of the instruction register can be connected to one of the inputs of the 
ARAU. The other input is fed by the current AR (being pointed to by ARP). 
AR(ARP) refers to the contents of the current AR pointed to by ARP. The ARAU 
performs the functions shown in Figure 6-12. 
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Figure 6-12. ARAU Functions 

Function Description 

AR(ARP) + INDX .... AR(ARP) Index the current AR by adding a 16-bit un-
signed integer contained in INDX. Exam-
pie: ADD *O+. 

AR(ARP) - INDX .... AR(ARP) Index the current AR by subtracting a 16-bit 
unsigned integer contained in INDX. Ex· 
ample: ADD *0-. 

AR(ARP) + 1 .... AR(ARP) Increment the current AR by one. Example: 
ADD*+. 

AR(ARP) - 1 .... AR(ARP) Decrement the current AR by one. Exam-
pie: ADD*-. 

AR(ARP) .... AR(ARP) Do not modify the current AR. Example: 
ADD*. 

AR(ARP) + IR(7-0) .... AR(ARP) Add an 8-bit immediate value to current 
AR. Example: ADAK #055h. 

AR(ARP) - IR(7-0) .... AR(ARP) Subtract an 8-bit immediate value from cur-
rent AR. Example: SBRK #055h. 

AR(ARP) + rc(INDX) .... AR(ARP) Bit-reverse indexing; add INDX with re-
verse-carry (re) propagation. Example: 
ADD *BRO+. 

AR(ARP) - rc(INDX) .... AR(ARP) Bit-reverse indexing; subtract INDX with 
reverse-carry (re) propagation. Example: 
ADD *BRO-. 

If (AR(ARP) ==ARCA), then TC= 1 Compare current AR with ARCA and if 
If (AR(ARP) <ARCA), then TC = 1 condition is true, then set TC bit of the 
lf(AR(ARP) >ARCA), then TC= 1 status register (ST1) to one. If false, then 
lf(AR(ARP) '"ARCA), then TC = 1 clear TC. Example: CMPR 3. 

If (AR(ARP) = CBER), then If at end of circular buffer, reload start 
AR(ARP) =CBSR address. 

The index register (I NDX) can be added to or subtracted from AR(ARP) on any 
AR update cycle. This 16-bit register is one of the memory-mapped registers 
and is used to increment or decrement the address in steps larger than one 
for operations such as addressing down a column of a matrix. The auxiliary 
register compare register (ARCA) is used as a limit to blocks of data and, in 
conjunction with the CMPR instruction, supports logical comparisons between 
AR(ARP) and ARCR. The 'C2x devices use ARO for these two functions. Upon 
reset, a LAR load of ARO also loads INDX and ARCR to maintain compatibility 
with the 'C2x devices. To avoid loading the INDX and ARCR registers on an 
ARO load, the NDX bit of the PMST register is set to one. For the following ex­
ample, assume INDX = 01 Oh, ARP = 3, and AR3 = 0200h: 

ADD*0+,4,ARS ~ACC += addressed value shifted left 4. 

In the example, DATA(200) is shifted left 4 bits and added to the ACC, AR3 is 
incremented by 10h, and ARP is changed to 5. 
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The 'C5x supports two circular buffers operating at a given time. These two 
circular buffers are controlled via the circular buffer control register (CBCR). 
The CBCR is defined in Table 6-9. 

Table 6-9. Circular Buffer Control Register 
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Bit Name Function 

0-2 CAR1 Identifies which auxiliary register is mapped to circular buff-
er 1 

3 CENB1 Circular buffer 1 enable=1/disable=O. Set to 0 upon reset 

4-6 CAR2 Identifies which auxiliary register is mapped to circular buff-
er2 

7 CENB2 Circular buffer 2 enable=1/disable=O. Set to 0 upon reset 

Upon reset (RS rising edge), both circular buffers are disabled. To define a cir­
cular buffer, load the CBSR1/2 with the start address of the buffer and 
CBER1 /2 with the end address. Load the auxiliary register to be used with the 
buffer with an address between the start and the end, load CBCR with the ap­
propriate auxiliary register number, and set the enable bit. As the address is 
stepping through the circular buffer, the update is compared against the value 
contained in CBER1 /2. When those values are equal and any AR modification 
occurs, the value contained in CBSR1/2 is automatically loaded into the AR. 
For the following example, assume CBSR1 = 0200h, CBER1 = 0203h, CBCR 
= OCh, AR4 = 0203h, and ARP = 4: 

ADD*+ ;ACC += addressed value at 203h. 

At the completion of the instruction, AR4 = 0200h. 

Circular buffers can be used with either increment- or decrement-type up­
dates. If increment updates are used, then the value in CBER must be greater 
than the value in CBSR. If decrement updates are used, the value in CBER 
must be less than the value in CBSR. The other indirect addressing modes 
may also be used; however, the ARAU tests only for the condition 
AR(ARP)=CBER. The ARAU will not wrap around if an AR update steps over 
the value contained in CBER. Note that the test in the ARAU is performed be­
fore the auxiliary register update. Refer to subsection 4.1.6 for details. 
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6.3.4 External Interfacing to Local Data Memory 

The 'C5x devices can address up to 64K words of off-chip local data memory. 
These are the key signals for this interface: 

AO-A15 
DO-D15 
O'S 
STRB 
RO 
WE 
READY 
RO['O 
HOLDA 
BR 
TAO 

16-Bit Bidirectional Address Bus 
16-Bit Bidirectional Data Bus 
Data Memory Select 
External Memory Access Active Strobe 
Read Select (External Device Output Enable) 
Write Enable 
Memory Ready to Complete Cycle 
Request for Control of Memory Interface 
Acknowledge ROC'O Request 
Bus Request 
Acknowledge Bus Request (when HOLDA is low) 

An example of an external RAM interface is shown in Figure 6-13. In this fig­
ure, the 'C5x device interfaces to four 16K x 4-bit RAM devices. The data 
memory select (OS) is directly connected to the chip select (CS) of the devices. 
This means the external RAM block will be addressed in any of the four 16K 
banks of local data space. If there are additional banks of off-chip data 
memory, a decode circuit that gates O'S with the appropriate address bits can 
be used to drive the memory block chip select. 
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Figure 6-13. Interface to External RAM 
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A13 
A12 
A11 
A10 
A9 
AS 
A7 
A6 
A5 
A4 
A3 
A2 
A1 
AO 

TMS320C5x 

015 
014 
013 
012 
011 
010 
09 
08 
07 
06 
05 
04 
03 
01 
02 
DO 

A13 
A12 
A11 
A10 
A9 
A8 
A7 
A6 
A5 
A4 
A3 
A2 
A1 
AO 

015 
014 
013 
012 

011 
010 
09 
08 

07 
06 
05 
04 

03 
02 
01 
DO 

16Kx4RAM 
AO 16K x4 RAM 

AO 16Kx4RAM 
AO 16Kx 4 RAM 

The RO signal is tied directly to the output enable {OE) pin of the RAMs. This 
signal enables the output drivers of the RAM and turns them off in time to pre­
vent data bus conflicts with an external write by the 'C5x device. If the RAM 
device does not have an OE pin, then OS should be gated with STRB and con­
nected to the CS pin of the RAM to implement the same function. The WE sig­
nal of the 'C5x is tied to the WE signal of the RAM. The 'C5x takes at least two 
cycles on all external writes, including a half cycle before the WE goes low and 
a half cycle after WE goes high; this prevents buffer conflicts on the external 
buses. Additional wait states can be generated with the software wait-state 
generators. 
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6.4 Global Memory 

For multiprocessing applications, the 'C5x devices are capable of allocating 
global data memory space and communicating with that space via the BR (bus 
request) and READY control signals. In addition, this capability can be used 
to extend the data memory address map by overlaying the address space. 

Global memory is memory shared by more than one processor. Therefore, ac­
cess to it must be arbitrated. When global memory is used, the processor's ad­
dress space is divided into local and global sections. The local section is used 
by the processor to perform its individual function, and the global section is 
used to communicate with other processors. This implementation facilitates 
shared data multiprocessing in which data is transferred between two or more 
processors. Unlike a direct memory access (OMA) between two processors, 
reading or writing global memory does not require that one of the processors 
be halted. 

6.4.1 Global Memory Conflgurablllty 

A memory-mapped global memory allocation register (GREG) specifies part 
of the 'C5x data memory as global external memory. The register, GREG, 
memory-mapped to data memory address location Sh, is an eight-bit register 
connected to the eight LSBs of the internal data bus. The upper eight bits of 
location 5 are nonexistent and are read as ones. 

The contents of GREG determine the size of the global memory space be­
tween 256 and 32K words. The legal values of GREG and corresponding glob­
al memory spaces are shown in Table 6-10. Note that values other than those 
listed in the table lead to fragmented memory maps and should be avoided. 

Table 6-10. Global Data Memory Configurations 

GREG Value Local Memory Global Memory 

Range #Words Range #Words 

ooooooxx Oh-OFFFFh 65,536 - 0 
10000000 Oh-07FFFh 32,768 08000h-OFFFFh 32,768 
11000000 Oh-OBFFFh 49,152 OCOOOh-OFFFFh 16,384 
11100000 Oh-ODFFFh 57,344 OEOOOh-OFFFFh 8,192 
11110000 Oh-OEFFFh 61,440 OFOOOh-OFFFFh 4,096 
11111000 Oh-OF7FFh 63,488 OF800h-OFFFFh 2,048 
11111100 Oh-OFBFFh 64,512 OFCOOh-OFFFFh 1,024 
11111110 Oh-OFDFFh 65,024 OFEOOh-OFFFFh 512 
11111111 Oh-OFEFFh 65,280 OFFOOh-OFFFFh 256 
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6.4.2 Global Memory Addressing 

When a data memory address, either direct or indirect, corresponds to a global 
data memory address (as defined by GREG), BR is asserted low with OS to 
indicate that the processor wishes to make a global memory access. External 
logic then arbitrates for control of the global memory, asserting READY when 
the 'C5x device has control. The length of the memory cycle is controlled by 
the READY signal. In addition, the software wait-state generators can be used 
to extend the access times for slower, external memories. The wait-state gen­
erators corresponding to the overlapped memory address space in local data 
space will generate the wait states for the corresponding addresses in global 
data memory space. 

6.4.3 External Interfacing of Global Memory 

Global memory can be used in various digital signal processing tasks, such 
as filters or modems, where the algorithm being implemented may be divided 
into sections with a distinct processor dedicated to each section. With multiple 
processors dedicated to distinct sections of the algorithm, throughput may be 
increased via pipelined execution. Figure 6-14 illustrates an example of a 
global memory interface. Since the processors can be synchronized by using 
the R'S pin, the arbitration logic may be simplified and the address and data 
bus transfers made more efficient. 

Figure 6-14. Global Memory Interface 

6-30 

'C5x 

A15-AO 
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.....--- 015-00 

The global memory interface can also be used to extend the data memory ad­
dress map beyond the reach of the 16-bit address bus by paging in an addition­
al 32K words. Loading the GREG register with the appropriate value can over­
lay the local data memory with additional memory, starting at the highest 
memory address (OFFFFh) and moving down. This additional memory is dif­
ferentiated from local memory accesses by the BR pin being active low. The 
rest of the memory interface control signals (STRB, OS, etc.) behave identical­
ly on a local or global data access. 
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6.5 Input/Output Space 

The 'C5x devices support an 1/0 address space of 64K 16-bit parallel input and 
output ports. 1/0 ports allow access to peripherals typically used in DSP appli­
cations such as codecs, digital-to-analog (DIA) converters, and analog-to-digi­
tal (ND) converters. This section discusses addressing 1/0 ports and interfac­
ing 1/0 ports to external devices. 

6.5.1 Addressing Input/Output Ports 

Access to external parallel 1/0 ports is multiplexed over the same address and 
data bus for program/data memory accesses. 1/0 space access is distin­
guished from program/data memory accesses by the TS signal going active 
low. All 65,536 ports can be accessed via the IN and OUT instructions, as 
shown in the following example: 

IN DAT7,0FFFEh;Read data to data memory from external 
;device on port 65534. 

OUT DAT7,0FFFFh;Write data from data memory to external 
;device on port 65535. 

Sixteen of the 64K 1/0 ports are mapped in data memory space as shown in 
Table 6-4. The 1/0 ports may be accessed with the IN and OUT instructions 
along with any instruction that reads or writes a location in data space. In this 
way, 1/0 is treated the same way as memory. The following example illustrates 
the use of direct addressing to access an 1/0 device on port 51 h: 

SACL Slh ;(DP= 0) Store accumulator to external 
;device on port 81. 

Accesses to memory-mapped 1/0 space are also distinguished from program/ 
data accesses by the TS signal. O'S is not active, even though the user is writing 
to data space. 

6.5.2 Interfacing to 1/0 Ports 

The RO and WE signals can be used along with chip-select logic to output data 
to an external device. The port address can be decoded and used as a chip 
select for the input or output device. The access times to 1/0 ports can be mo­
dified through the CWSR and IOWSR software wait-state registers. The BIG 
bit in the CWSR register determines how the 1/0 space is mapped to the soft­
ware control registers. If the BIG bit is set to O in the CWSR register, the first 
sixteen ports are assigned in pairs to a software wait-state generator. Each fol­
lowing set of 16 registers maps accordingly to the first 16 ports when BIG = 0. 
For example, the 16 ports that correspond to the addresses in the data space 
port hole (ports 50h-5Fh) have the same wait states as ports 0-Fh. If the BIG 
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bit is set to 1, the wait states are mapped to program space in eight 8K blocks 
of memory. The following table shows how the software wait states are as­
signed to 1/0 ports according to the BIG bit: 

1/0 Porta When 
IWSR Bits 

0-1 
2-3 
4-5 
6-7 
8--9 

10-11 
12-13 
14-15 

1/0 Ports When 
BIG=O 
Port O/Port 1 
Port 2/Port 3 
Port 4/Port 5 
Port 6/Port 7 
Port 8/Port 9 
Port 1 O/Port 11 
Port 12/Port 13 
Port 14/Port 15 

See Section 5.3 for details. 

BIG=1 
Ports OOOOh-lFFFh 
Ports 2000h-3FFFh 
Ports 4000h-SFFFh 
Ports 6000h-7FFFh 
Ports aoooh-9FFFh 
Ports AOOOh-BFFFh 
Ports COOOh-DFFFh 
Ports EOOOh-FFFFh 
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6.6 Direct Memory Access (OMA) 

The 'C5x supports multiprocessing designs using direct memory access 
(OMA) of external memory or the 'C5x on-chip single access RAM. The OMA 
feature can be used for multiprocessing by temporarily halting the execution 
of one or more processors to allow another processor to read from or write to 
the 'C5x's local off-chip memory or on-chip single-access RAM. You can con­
trol the external memory access via the RO'CO/HOLDA signals. The OMA ac­
cess of internal RAM on the 'C5x is controlled by the RO'CO, HOLDA, R/W, 
STRB, BR, and 1AO lines. 

The multiprocessing is typically a master-slave configuration. The master may 
initialize a slave by downloading a program into its program memory space 
and/or may provide the slave with the necessary data by using external 
memory to complete a task. In a typical 'C5x direct memory access scheme, 
the master may be a general-purpose CPU, another 'C5x, or even an ana­
log-to-digital converter. A simple 'C5x master-slave configuration is shown in 
Figure 6-15. 

Figure 6-15. Direct Memory Access Using a Master-Slave Configuration 

'C5x 'C5x 
(Master) (Slave) 

Xf't----------------+-4RO[O 
BlO RO'[OJt; 

TITTT-TITT4 XF 
lAC'K BlO 

A 15-AO Buffer A 15-AO 
015-DO and 015-DO 

R/W t---+----+---.... Logic 

MasterData 
Memory (RAM) 

Master Program 
Memory (ROM) 

Slave Program 
Memory (RAM) 

Slave Data 
Memory (RAM) 

The master 'C5x device takes complete control of the slave's external memory 
by asserting RO'CO low via its external flag (XF). This causes the slave to place 
its address, data , and control lines in a high-impedance state. 

After control of the slave's buses is given up to the master processor, the slave 
alerts the master of the fact by asserting HOLDA. This signal may be tied to 
the master 'C5x mo pin. The slave's XF pin may be used to indicate to the 
master when it has finished performing its task and needs to be reprogrammed 
or requires additional data to continue processing. In a multiple-slave configu­
ration, priority of each slave's task may be determined by tying the slave's XF 
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signals to the appropriate TNT(4, 3, 2, or 1) pin on the master 'C5x device. The 
external bus interface of the slave 'C5x device is put in high-impedance mode 
when its HOLDA signal is asserted. While the HOLDA is active, the processor 
can continue running code out of its internal memory (internal ROM or single/ 
dual access RAM) if it is in concurrent hold mode (status bit HM is 0). However, 
TAO pin does not indicate instruction acquisition, once HOLDA goes active. 
Otherwise, the processor will halt internal execution (status bit HM is 1). See 
Section 3.8 for interaction between ROLD RS, and external interrupts. 

A PC environment presents another example of a potential direct memory ac­
cess scheme in which a system bus (the PC bus) is used for data transfer to 
external 'C5x memory. In this configuration, either the master CPU or a disk 
controller may place data onto the system bus, which can be downloaded into 
the local memory of the 'C5x device. In this case, the 'C5x acts more like ape­
ripheral processor with multifunction capability. In a speech application, for ex­
ample, the master can load the 'C5x program memory with algorithms to per­
form such tasks as speech analysis, synthesis, or recognition, and can fill the 
'C5x data memory with the required speech templates. In another application 
example, the 'C5x can serve as a dedicated graphics engine. Programs can 
be downloaded via the system bus into program RAM. Data can come from 
PC disk storage or can be provided directly by the master CPU. 

Figure 6-16 depicts a direct memory access using a PC environment. In this 
configuration, decode and arbitration logic are used to control the direct 
memory access. When the address on the system bus resides in the local 
memory of the peripheral 'C5x, this logic asserts the ROLD signal of the 'C5x 
while sending the master a not-ready indication to allow wait states. After the 
'C5x acknowledges the direct memory access by asserting HOLDA, READY 
is asserted and the information is transferred. 
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Figure 6-16. Direct Memory Access in a PC Environment 
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Disk Controller 

The 'C5x also provides direct access of the on-chip single-access RAM for ex­
ternal devices. OMA of the on-chip single-access RAM requires the following 
signals: 

ROCO 
HOLDA 

BR 

A(15-0) 
0(15-0) 

External request for control of address, data, and control lines. 
Indicates to external circuitry that the memory address, data, 
and control lines are in high impedance, allowing external ac­
cess of on-chip single-access RAM. 
Bus request signal. Externally driven low in hold mode to indi­
cate a request for access to on-chip single-access RAM. 
Acknowledge BR request for access to on-chip single-access 
RAM while HOLDA is low. 
Read/Write signal indicates the data bus direction for OMA reads 
(high) and OMA writes (low). 
When active low and 1AQ and ~H-o~L~DA ..... are low, this input signal is 
used to select the memory access. STRB determines the dura­
tion of the memory access. 
Address inputs during HOLDA and BR active low. 
OMA data. 

To access the 'C5x device's on-chip single-access RAM, a master processor 
must control the device. The master processor initiates a OMA transfer by 
placing the 'C5x device in ROCO. Once the device responds with a HOLDA, 
the master can select access to the internal on-chip single-access RAM by 
lowering the BR input. The device responds with an 1AQ to acknowledge ac­
cess to the on-chip memory. Once access is granted, the master drives the 
R/W signal to indicate the direction of the transfer. On a OMA write, the master 
must drive the address and data lines for a write. On a OMA read, the master 

6-35 



Direct Memory Access 

must drive the address lines and latch the data. Each memory access (read 
or write) must be selected by the STRB signal. External access wait states are 
added by extending the STRB signal. The address decode of the OMA access 
includes only A13-AO, (A14 and A15 ignored). The ranges shown in 
Table 6-11 respond during OMA access, effectively overlaying A 13-AO. 

Table 6-11.Address Ranges for On-Chip Single-Access RAM OMA 
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Device Address Bus Hex Address 
Range 

'C50 A13-AO used 0000-23FF 

A15, A14 ignored 4000-63FF 

8000-A3FF 

COOO-E3FF 

'C51 A9-AO used 0000-03FF 

A13-A10 must be 0 4000-43FF 

A 15-A 14 ignored 8000-83FF 

COOO-C3FF 

'C53 A11-AO used 0000-0BFF 

A13-A12 must be O 4000-4BFF 

A 15-A 14 ignored 8000-SBFF 

COOO-CBFF 

Note that the above address ranges correspond to 9K/1 K/3K words of on-chip 
single-access RAM of the 'C50/51 /53, respectively. For example, writing to the 
address 01 h (using OMA) on a 'C50 affects the second memory location of the 
on-chip single-access RAM. Furthermore, writing to the address 4001 h on 
'C50 is equivalent to writing to the address 01 h, as shown in Table 6-11. 
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6. 7 Memory Management 

The 'C5x devices have a programmable memory map, which can vary for each 
application. Instructions are provided for integrating the device memory into 
the system memory map. The 'C50 device includes 2K words of boot ROM, 
9K words of single-access RAM, and 1056 words of dual-access RAM. The 
'C51 device includes SK words of program ROM, 1 K words of single-access 
RAM, and 1056 words of dual-access RAM, wheras the 'C53 has 16K words 
of on-chip ROM, 3K words of single-access and 1056 words of dual-access 
RAM. Examples of moving and configuring memory are provided in this sec­
tion. 

6. 7.1 Block Moves 

The 'C5x devices address a large amount of memory but are limited in the 
amount of on-chip memory. Several instructions are available for moving 
blocks of data from off-chip slower memories to on-chip memory for faster pro­
gram execution. In addition, data can be transferred from on-chip to off-chip 
for storage or multiprocessor applications. 

The BLDD instruction facilitates the transfer of data from external or internal 
data memory to internal or external data memory. Example 6-1 illustrates the 
use of the BLDD command to move data (for example, a table of coefficients) 
from external memory to internal data RAM. 

Example 6-1. Moving External Data to Internal Data Memory With BLDD 

* * This routine uses the BLDD instruction to move external data memory to 
* internal data memory. 
* 
MOVED LACC 

SAMM 
LAR 
MAR 
RPT 

#BOO Oh 
BMAR ;BMAR contains source address in data memory. 
AR7,#300h;AR7 contains destination address in data memory. 
* ,AR7 ;LARP = AR7. 
#511 ;Move 512 values to data memory block Bl. 

BLDD BMAR, *+ 
RET 

For systems with external data memory but no external program memory, the 
BLDP instruction can be used to move additional blocks of code into internal 
program memory. Example 6-2 illustrates the use of the BLDP instruction. 
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Example 6-2. Moving Data Memory to Program Memory With BLDP 

* * This routine uses the BLDP instruction to move external data memory to 
* internal program memory. This instruction could be used to boot load a 
* program to the on chip program RAM from external data memory. 
* 
MOVEDPLACC #2000h 

SAMM BMAR ;BMAR contains dest. address in program memory ('C51) 
LAR AR7,#0F000h ;AR7 contains source address in data memory 
MAR * ,AR7 ;ARP=AR7 
RPT #1023 ;Move lk of data to program memory space 
BLDP *+ 
RET 

When no external data memory is available, program memory may contain 
necessary coefficient tables that should be loaded into internal data memory. 
The routine in Example 6-3 illustrates the use of the BLPD instruction to per­
form this function. 

Example 6-3. Moving Program Memory to Data Memory With BLPD 

* * This routine uses the BLPD instruction to move external program memory to 
* internal data memory. This routine is useful for loading a coefficient 
* table stored in external program memory to data memory when no external 
* data memory is available. 
* 
MOVEPDLAR AR7,#300h 

MAR * ,AR7 
;AR7 points to destination in data memory 
;ARP=AR7 
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RPT #127 
BLPD #OFDOOh, *+ 
RET 

;Move 128 values from external program to 
;internal data memory. 

Another method of transferring data between memory spaces uses the TBLR 
and TBLW instructions. These instructions can specify a calculated, rather 
than predetermined, location of a block of data in program or data memory for 
transfer. The following examples illustrate the use of the TBLR and TBLW in­
structions. 
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Example 6--4. Moving Program Memory to Data Memory With TBLR 

• 
• This routine uses instruction TBLR to move program memory to data memory 
• space. It differs from the BLPD instruction in that the accumulator 
• contains the address in program memory from which to transfer. This allows 
• for a calculated, rather than predetermined, location in program memory to 
• be specified. The calling routine must load accumulator with the source 
• address • 
• 
TABLER MAR 

LAR 
RPT 
TBLR 
RET 

*,AR3 ;ARP=AR3 
AR3,#300h;AR3 contains destination in data memory 
#127 ;Move 128 items to data memory block 82 
•+ ;Accumulator contains external program 

;memory address. 

Example ~5. Moving Data Memory to Program Memory With TBLW 

• 
• This routine uses the TBLW instruction to move data memory to 
• program memory. The calling routine must contain the destination program 
• memory address in the accumulator • 
• 
TABLEWMAR *,AR4 

LAR AR4 ,#300h 
RPT #511 
TBLW *+ 
RET 

;LARP = AR4. 
;AR4 contains source address in data memory 
;Move 512 items from data memory to program 
;memory. 
;Accumulator contains address of program RAM. 

The IN and OUT instructions move data from data memory to an external port. 
The use of these instructions is shown in Example 6-6 and Example 6-7. 

Example 6-6. Moving Data From 1/0 Space to Data Memory With SMMR 

* * This routine uses the SMMR instruction to move data from a memory-mapped 
* I/O port to local data memory. Note that 16 I/O ports are mapped in data 
* page 0 of the 'C5x memory map. 
* 
INPUT: 

LOP 
RPT 
SMMR 
RET 

#0 
#511 
5lh,800h 

;Input 512 values from port 51h to 
;table at 800h in data memory. 

Example ~7. Moving Data From Data Memory to 1/0 Space With LMMR 

* * This routine uses the LMMR instruction to move data from local data 
* space to a memory-mapped I/O port. Note that 16 I/O ports are mapped 
* in data page O of 'C5x memory map. 
* OUTPUT: 

LOP 
RPT 
LMMR 
RET 

#0 
#63 
50h,800h 

data page 0 
Output 64 values from a table at 800h 
in data memory to port 50h. 
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6.7.2 Boot Loader ('CSO) 

Figure 6-17. 
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The main function of the boot loader is to transfer user code from an external 
source to the program memory at power-up. The 'C50 provides different ways 
to download the code to accommodate various system requirements. For 
some applications, a serial interface is appropriate. For others, a parallel inter­
face is appropriate if the code is already stored in external ROM. 

If the MP/MC pin of the 'C50 is sampled low during a hardware reset, execution 
begins at location zero of the on-chip ROM. The on-chip ROM Is factory pro­
grammed with a boot-load program. 

The boot-load program sets up the CPU status registers before initiating the 
boot load. Interrupts are globally disabled (INTM=O), internal dual-access 
RAM block BO is mapped in program space (CNF=1), and the on-chip single­
access RAM block is enabled in program space (RAM=1, OVLY=O). Seven 
wait states are selected for the entire program and data spaces. Initially, the 
32K words of global data memory are enabled in data space 08000h to 
OFFFFh. After the code transfer is complete, the global memory is disabled be­
fore control is transferred to the destination address. 

The boot routine reads the global data memory location OFFFFh by driving the 
bus request (BR) and data strobe (OS) pins low. The lower eight bits of the 
word read from global memory location OFFFFh specify the mode of transfer. 
The rest of the bits are ignored by the boot loader. 

Figure 6-17 lists available boot options and corresponding configuration byte 
patterns. 

Boot Routine Selection Word 
15 8 7 4 3 0 At Addresa FFFFh 

xxxxxxxx xxxx 0000 8-Bit Serial Mode 

xxxxxxxx xxxx 0100 16-Bit Serial Mode 

xxxxxxxx xxxx 1000 8-Bit Parallel 1/0 Mode 

xxxxxxxx xxxx 1100 16-Bit Parallel 1/0 Mode 

xxxxxxxx SRC 01 8-Bit Parallel EPROM Mode 

xxxxxxxx SRC 10 16-Bit Parallel EPROM Mode 

xxxxxxxx ADDR 10 Warm Boot 

Note: x . Don't care condition 
SAC . 6-blt page address for parallel modes 
ADDA= 6-blt page address for warm boot 
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The parallel boot option is used if the code is stored in EPROMs (8-bit or 16-bit 
wide in global data space). The code is transferred from global data memory 
to program memory. The six MSBs of the source address are specified by the 
SRC field of the boot routine selection (BRS) word as shown in Figure 6-17. 
A 16-bit EPROM address is defined by this SRC field as shown in Figure 6-18. 

Figure 6-18. 16-Bit EPROM Address 

15 10 9 0 

SRC 

Source Address 

If the16-bit parallel mode is selected, data is read in 16-bit words from the 
source address, incrementing the address by one after every read operation. 
The destination address destination16 and the length length16 of the code are 
specified by the first two 16-bit words. The length N is defined as: 

length N = number of 16-bit words to be transferred- 1 

The number of 16-bit words specified by the parameter N do not include the 
first two words read, starting from the source address-that is, the destination 
and length parameters. This is shown in Figure 6-19. The code is transferred 
from the global data memory to the program memory. There is at least a four­
instruction cycle delay between a read from EPROM and a write to the destina­
tion address. This ensures that if the destination is external memory (such as 
fast SRAM), there is enough time to turn off the source memory (EPROM) be­
fore the write operation is performed. 

Figure 6-19. 16-Bit Parallel Boot 
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Length1s 
Code Word(N)1s 

16-Bit Data Bus 0 

Destination1 s 

Length1s 
Code Word(1)1s 

. 

. 
Code Word(N)1s 

16-bit destination address. 
16-bit word that specifies the length of the code (N) that follows it. 
N 16-bit words to be transferred. 

After the specified length of code words are transferred to the program 
memory, the 'C50 branches to the destination address. 
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If the 8-bit parallel boot option is selected, two consecutive memory locations 
(starting at source address) are read to make one 16-bit word. The high-order 
byte should be followed by the low-order byte. Data is read from the lower eight 
data lines, ignoring the upper byte on the data bus. The destination address 
is a 16-bit word that constitutes address in program space where the boot code 
is transferred. The length N is defined as: 

length N = number of 16-bit words to be transferred- 1 

length N = (number of bytes to be transferred+ 2' - 1 

The number of 16-bit words specified by the parameter N do not include the 
firstfour bytes (or first two words) read, starting from the source address-that 
is, the destination and length parameters. This is shown in Figure 6-20. The 
code is transferred from the global data memory to the program memory. There 
is at least a four-instruction cycle delay between a read from source memory 
(such as EPROM) and a write to the destination address. This ensures that if 
the destination is external memory (such as fast SRAM), there is enough time 
to turn off the source memory (EPROM) before the write operation is per­
formed. 

Figure 6-20. 8-Bit Parallel Boot 
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In the serial boot option, the serial port control register (SPC) is set to OxxF8h 
or OxxFCh for 16-bit and 8-bit modes, respectively. The RRST and XRST bits 
are each set to 1 , taking the serial port out of reset. FSM is set to 1 , configuring 
the serial port in frame sync mode - that is, frame sync pulses are required 
to be supplied externally on the FSR pin. The value of the FO bit is set accord­
ing to the mode selected (8- or 16-bit modes). The external flag XF signals that 
the 'CSO is ready to respond to the serial port receive section. XF is set to high 
at reset and is driven low to initiate reception. No frame sync pulses should 
appear on the FSR before XF going low. The receive clock must be supplied 
by a device external to the 'CSO. 

In the case of 16-bit serial mode, the first 16-bit word received by the device 
from the serial port specifies the destination address of boot code in program 
memory. The next 16-bit word specifies the length of the actual code that fol­
lows it. The length N is defined as: 

length N = number of 16-bit words - 1 

Note that the number of 16-bit words specified by the parameter N do not in­
clude the first two words read, starting from the source address - that is, the 
destination and length parameters. In the case of an 8-bit serial transfer, a 
higher-order byte followed by a low-order byte constitute a 16-bit word. The 
first 16-bit word received by the device from the serial port specifies the des­
tination address of boot code in program space. The following 16-bit word 
specifies the length of the actual code that follows it. The length N is defined 
as: 

length N = number of 16-bit words - 1 

length N = (number of bytes to be transferred+ 2) - 1 

After the specified length of code words is transferred to program memory, the 
'CSO branches to the destination address. 

The 1/0 boot mode is provided to asynchronously transfer code from 1/0 port 
50h to internal/external program memory. Each word may be either 16 bits or 
8 bits long. The 'CSO communicates with the external device by using BTO and 
XF handshake lines. The handshake protocol shown in Figure 6-21 is re­
quired to succesfully transfer each word from port 50h: 
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Figure 6-21. 
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If the 8-bit transfer mode is selected, the lower eight data lines are read from 
port 50h. The upper byte on the data bus is ignored. The 'CSO reads two 8-bit 
words to form a 16-bit word. The low byte of a 16-bit word should follow the 
high byte. 

For both 8-bit and 16-bit 1/0 modes, the first two 16-bit words received by the 
'C50 must be the destination and the length of the code, respectively. See the 
parallel boot description for destination and length code words. A minimum 
delay of four clock cycles is provided between the XF rising edge and the write 
operation to the destination address. This allows the host processor sufficient 
time to turn off its data buffers before the 'C50 initiates write operation (if des­
tination is external memory). Note that the 'C50 accesses the external bus 
only when XF is high. 

The warm boot option can be used if the program has already been transferred 
to internal (or external) memory by other means (for example, OMA), or if it is 
only a warm device reset. In this case, six MSBs of the 8-bit long BRS word 
specify the entry point of the code as shown in Figure 6-22. 

Figure 6-22. Warm Boot 

15 10 0 

ADDA 

Entry Address 

The 'C50 transfers control to the entry address if a warm boot is specified. 
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The'C5x digital signal processors maintain source code compatibility with 'C1 x 
and 'C2x generations and have architectural enhancements that improve per­
formance and versatility. An orthogonal instruction set is augmented by new 
instructions that support additional hardware and handle data movement and 
memory-mapped registers. Other features include an independent parallel 
logic unit (PLU) for performing Boolean operations, a 32-bit accumulator buff­
er, and a set of registers that provide zero-latency context-switching capabili­
ties to interrupt service routines. The on-chip dual-access RAM and 
memory-mapped register set are enhanced. 

This chapter explains the use of 'C5x instruction set with particular emphasis 
on its new features and special applications. For a complete discussion of the 
assembler directives used in this chapter's examples, please consult the 
TMS320 Fixed-Point DSP Assembly Language Tools User's Guide, literature 
number SPRU018B. Major topics discussed in this chapter are listed below. 

Topic Page 
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7.1 Processor Initialization 

7-2 

Before executing a digital signal processing algorithm, it is necessary to initial­
ize the processor. Generally, initialization takes place anytime the processor 
is reset. 

The processor is reset by applying a low level to RS input; the IPTR bits of 
PMST register are all cleared, thus mapping the vectors to page zero in pro­
gram memory space. This means that the reset vector always resides at pro­
gram memory location 0. This location normally contains a branch instruction 
to direct program execution to the system initialization routine. A hardware re­
set clears all pending interrupt flags and sets the INTM (global enable inter­
rupts) bit to 1, thereby disabling all interrupts. It also initializes various status 
bits and peripheral registers. Refer to subsection 3.8.1 for details. 

To configure the processor after the reset, the following internal functions 
should be initialized. 

O Memory-mapped core processor and peripheral control registers 
O Interrupt structure (INTM) 
0 Mode control (OVM, SXM, PM, AVIS, NDX, TRM) 
0 Memory control (RAM, OVLY, CNF) 
O Auxiliary registers and the auxiliary register pointer (ARP) 
O Data memory page pointer (DP) 

The OVM (overflow mode), TC (test/control flag), IMR (interrupt mask regis­
ter), auxiliary register pointer (ARP), auxiliary register pointer buffer (ARB), 
and data memory page pointer (DP) are not initialized by reset. 

Example 7-1 shows coding for initializing the 'C5x to the following machine 
state, and for the initialization performed during hardware reset: 

O Internal single-access RAM configured as program memory 
O Interrupt vector table loaded in internal program memory 
O Interrupt vector table pointer (IPTR) 
O Internal dual-access RAM blocks filled with zero 
O Interrupts enabled 
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Example 7-1.lnitialization of 'C5x 

.title 'PROCESSOR INITIALIZATION' 

.mmregs 

.ref ISRO,ISR1,ISR2,ISR3,ISR4,TIME 

.ref RCV,XMT,TRCV,TXMT,TRP,NMISR 

MAIN_PRG .set 04000h ;program space address of main 
;foreground routine •............................................................... ,, ,,, ,,,,,,,,, ,, ,,,, ,,, , ,,,,, ,,,,,, ,,,,,,,,,, ,, , , , ,,, , , , ,,,,,,, 

* Processor initialization for TMS320C50. 
* 
* For the TMS320C51, the memory mapping of S/A RAM in program 
* space and data space is not identical. Therefore, memory location 
* pointed to by address 0800h in data space is mapped to address 
* 02000h in program space. Hence, the vector table must be loaded 
* at data memory 0800h in order to keep the vector table address 
* 02000h in program space • .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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V_TBL .sect "vectors" 

RESET B !NIT 

INTl B ISRl 
INT2 B ISR2 
INT3 B ISR3 
TINT B TIME 
RINT B RCV 
XINT B XMT 
TRNT B TRCV 
TXNT B TXMT 
INT4 B ISR4 

.space 14*16 

TRAP B TRP 
NMI B NMISR 

.text 

INIT LDP 10 
OPL #20h,PMST 
LAR AR7,#02000h 

;;;; LAR AR7,#0800h 
MAR *,AR7 
RPT #39 
BLPD #V_TBL,*+ 
SPLK #201Eh,PMST 

SPLK #OlFFh,IMR 
CLRC OVM 

LAR AR7,#60h 
RPTZ #31 
SACL *+ 

LAR AR7,#100h 
RPTZ #1023 
SACL *+ 

CLRC INTM 
B MAIN_PRG 

;This section will be loaded in program 
;memory address Oh. 
;INTl- begins processing here 
;INT2- begins processing here 
;INT3- begins processing here 
;Timer interrupt processing 
;Serial port receive interrupt 
;Serial port transmit interrupt 
;TDM port receive interrupt 
;TDM port transmit interrupt 
;INT4- begins processing here 

;14 words 

;Initialize data pointer 
;Configure S/A RAM in data memory 
;data space address for vector table 
;for TMS320C51 
;ARP <- AR7 
;for I=O,I<=39,I++ 
;Load vector table at 2000h 
;Now configure S/A RAM in program space 
;and initialize vector table pointer 
;Clear interrupt mask register 
;Disable overflow saturation mode 

;Initialize B2 block 
;for I•O,I<=31,I++ 
;B2[I] = 0 

;Initialize BO and Bl blocks 
;for Is0,I<•1023,I++ 
;BO/Bl[I] = 0 

;Globally enable interrupts 
;Return to foreground program 
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7.2 Interrupts 

7-4 

The 'C5x devices have four external maskable user interrupts (lNTT-rnT4) 
and one nonmaskable interrupt (mM) available for external devices. Internal 
interrupts are generated by the serial ports, the timer, and by the software in­
terrupt instructions (INTR, TRAP, and NMI). The interrupt structure is de­
scribed in subsection 5.1.2, Interrupts. 

The 'C5x devices are capable of generating software interrupts using I NTR in­
struction. This allows any of the 32 interrupt service routines to be executed 
from your software. The first 20 ISRs are reserved for external interrupts, pe­
ripheral interrupts, and future implementations. The other 12 locations in the 
interrupt vector table are user-definable. The INTR instruction can invoke any 
of the 32 interrupts available on the 'C5x devices. 

The context saving and restoring function is done in hardware when an inter­
rupt trap is executed. An 8-deep hardware stack is available for saving return 
addresses of the subroutines and the interrupt service routines. Also, there is 
a one-deep stack (or shadow registers) for each of the following registers: 

ACC 
ACCB 
PREG 
STO 
ST1 
PMST 
TREGO 
TREG1 
TREG2 
INDX 
ARCR 

accumulator 
accumulator buffer 
product register 
status register 0 (INTM not restored) 
status register 1 (XF not restored) 
processor mode status register 
temporary register for multiplier 
temporary register for shift count 
temporary register for bit test 
indirect address index register 
auxiliary register compare register 

When the interrupt trap is taken, all these registers are pushed onto the one­
deep stack. These shadow registers are popped when the return-from-inter­
rupt (RETI or RETE) is executed. Detailed discussion of interrupts are given 
in Section 3.8, Interrupts. 

Example 7-2 illustrates the use of INTR instruction. The foreground program 
sets up auxiliary registers and invokes user-defined interrupt number 20. 
Since the context is saved automatically, the interrupt service routine is free 
to use any of the saved registers without destroying the calling program's vari­
ables. The routine shown here uses the CRGT instruction to find the maximum 
value of 16 executions of the equation Y =8X2+bX+c. The X values are pointed 
at by AR1. AR2 and AR3 point to the coefficients and Y results, respectively. 
To return the result to the calling routine, all the registers are restored by ex­
ecuting an RETI instruction. The computed value is placed in the accumulator, 
and a standard return is executed because the stack is already popped. 
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Example 7-2. Use of INTR Instruction 

* Foreground Program 

TEMP 

* 

.mmregs 

• set 

LAR 
LAR 
LAR 
INTR 

63h 

ARl,#X 
AR2,#COEFF 
AR3,#Y 
20 

Interrupts 

;Temporary storage • 

;ARl points to X values 
;AR2 points to coefficients b,a,c in that order 
;AR3 points to Y results 
;Invoke software interrupt #20 

* This routine uses the block repeat feature of the 'CSO to find the maximum 
* value of 16 executions of the equation Y•aXA2+bX+c. The X values are pointed 
* at by ARl. The Y results are pointed at by AR3. The coefficients are pointed 
* at by AR2. At the completion of the routine, ACC contains the maximum value. 
* ARl, AR2, and AR3 are modified. All other registers are unaffected. Note that 
* this routine should not be called from within a repeat block. 
* 
ISR20 

* 

LDP 
LACC 
SACB 
MAR 

#0 
#08000h 

*,ARl 

;Use page 0 of data memory. 

;Initialize AccB with min. possible value 
;ARP <- ARl 

* Load Block repeat count register with 15. 
* SPLK #OFh I BRCR 
* * Repeat Block. 
* 

END_LOOP 

RE_ENTER 

RPTB END_LOOP-1 
ZAP 
SQRA *+,AR2 
SPL TEMP 
MPY *+ 
LTA TEMP 
MPY *+ 
APAC 
ADD *,O,AR3 
SACL *+,0,ARl 
CRGT 

SACL 
LACC 
PUSH 
RETI 
LAMM 
RET 

TEMP 
#RE_ENTER 

TEMP 

;For i=O; i<=l5; i++. 
;ACC = PREG = XA2 
;TREGO = x PREG = XA2 
;Save XA2. 
;PREG = b*X 
;TREG - XA2 ACC = b*X 
;PREG = a*XA2 
;ACC = a*XA2 + b*X 
;ACC = A*XA2 + b*X + C 
;Save Y. 
;Save maximum Y. 

Save the result temporarily 

Push re-entry address onto stack 
Pop all registers 
Load ACC with the max. value 
Return to interrupted code 

7-5 



Software Stack 

7.3 Software Stack 

The 'C5x has an internal 8-deep hardware stack that is used to save and re­
store return addresses for subroutines and interrupts. See subsection 3.6.1 for 
further details. Provisions have been made on the 'C5x to extend the hardware 
stack into the data memory. 

The PUSH and POP instructions can access the hardware stack via the accu­
mulator. Two additional instructions, PSHD and POPD, are included in the in­
struction set so that the stack may be directly stored to and recovered from the 
data memory. 

A software stack can be implemented by using POPD instruction at the begin­
ning of each subroutine to save the PC in data memory. Then, before returning, 
a PSHD is used to put the proper value back onto the top of the stack. 

When the stack has seven values stored on it, and two or more values are to 
be put on the stack before any other values are popped off, a subroutine that 
expands the stack is needed, such as the one shown in Example 7-3. In this 
example, the main program stores the stack, starting location in memory in 
AR2 and indicates to the subroutine whether to push the data from memory 
onto the stack or pop data from the stack to memory. If a zero is loaded into 
the accumulator before calling the subroutine, the subroutine pushes data 
from memory to the stack. If the accumulator contains a nonzero value, the 
subroutine pops data from the stack to memory. 

Because the CALL instruction uses the stack to save the program counter, the 
subroutine pops this value into the accumulator and utilizes the BACC instruc­
tion to return to the main program. This prevents the program counter from be­
ing stored into a memory location. The subroutine in Example 7-3 uses the 
BCNDD (delayed conditional branch) instruction to determine whether a save 
or restore operation is to be performed. 

Example 7-3.Software Stack Operation 
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* * This routine expands the stack while letting the 
* main program determine where to store the stack 
* contents, or from where to restore them. 
* Entry Conditions: 
* ACC = 0 (restore stack); 1 (save stack) 
* AR2 -> Top of software stack in data memory 
* 
STACK:BCNDD POP,NEQ 

MAR *,AR2 
POP 

;Delayed branch if POPD required 
;Use AR2 as stack pointer 

RPT #6 
PSHD *+ 

BACC 
POP: MAR *-

RPT #6 
POPD *-

MAR *+ 
BACC 

;Get return address 
;repeat 7 times 
;Put memory in stack 
:Return to main program 
;Align AR2 
;Repeat 7 times 
;Put stack in memory 
;Realign stack pointer 
:Return to main program 
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7 .4 Logical and Arithmetic Operations 

7.4.1 Parallel Logic Unit (PLU) 

The PLU provides direct logical path to data memory values without affecting 
the contents of the accumulator or product register. It allows direct manipula­
tion of bits in any location in data memory space. Source operand can be either 
a long immediate value or the dynamic bit manipulation register (DBMR). The 
use of a long immediate value is particularly effective in initializing data 
memory locations, including the memory-mapped registers. The use of DBMR 
as source operand allows run-time computation of operands. It also reduces 
instruction execution time to one cycle, which may be important for time-critical 
routines. 

Example 7-4 and Example 7-5 illustrate the use of PLU for initialization and 
logical operation. The UNPACK subroutine extracts individual bits from a 
single word and stores them separately in an array. The PACK subroutine does 
the opposite of UNPACK by getting each bit from a different location and pack­
ing them in a single word. In Example 7-5, notice that a NOP instruction is in­
serted in the repeat-block loop to make it three words long. A repeat-block 
must be at least three words long on 'CSx devices. 

Example 7-4. Using PLU to Do Unpacking 

.title 
* PCKD 

'Routine to extract bits from a single word' 

* 
* IBn -- BOI 
* 
* 
* UNPCKD 
* 
*IO OIBnl 
* ------
* IO OIBn-11 
* ------
* 
* * I 0 0 IBO I 
* .mmregs 
NO BITS .set 16 
PCKD .set 60h 
UNPCKD • set 61h 

• text 
UNPACK LDP 

MAR 
LAR 
SPLK 
SPLK 
LACC 
RPTB 

SACL 
APL 
SFR 

LOOP RET 

#0 
*,ARO 
ARO,#UNPCKD+NO BITS-1 
#NO BITS-1,BRCR 
#1,DBMR 
PCKD 
LOOP-1 
* 
*-

number of packed bits in the word 
Input word 
Output buffer. Each word will have 
one bit in LSB location • 

;DP=O 

End of table address 
Initialize the count register 
Load mask in DBMR register 
Packed bits -> Ace 
Begin looping 
Save remaining packed bits 
Keep the LSB only 
Shift right to eliminate unpacked bit 
Return back 
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Example 7-5. Using PLU to Do Packing 

.title 'Routine to pack input bits in a single word' 
* 
* PCKD 
* 
* IBn --- BO I 
* 
* 
* UNPCKD 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

10 

10 

10 

.data 
NO BITS .set 
PCKD .set 
UNPCKD .set 

.text 
PACK LAR 

LOOP 

MAR 
LDP 
SPLK 
LACC 
RPTB 

SFL 
ADD 
NOP 

0 IBnl 

0 IBn-1 I 

0 IBO I 

16 
60h 
61h 

ARO,#UNPCKD 
*,ARO 
#0 

#NO BITS-2,BRCR 
*+ -
LOOP-1 

*+ 

SACL PCKD 
RET 

Number of bits to be packed 
Packed word 
Array of unpacked bits 

;ARO points to start of UNPACKED array 
;ARP <- ARO 
;DP=O 
;Loop NO_BITS-1 times 
;Get the MSB 
;Begin looping 
;Make space for next bit 
;Put next bit 

;Store the result 
;Return back 

7.4.2 Multiconditional Branch Instruction 
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The 'C5x allows multiple conditions to be tested before passing control to 
another section of program. Any of the following 13 conditions can be tested 
individually or in combination with others by CC, RETC, XC, and BCND in­
structions: 

ACC=O 
Acc .. o 
ACC<O 
ACC:s:O 
ACC>O 
Acc~o 

C=O 
C=1 
OV=O 
0V=1 
BIO low 
TC=O 
TC=1 

EQ 
NEQ 
LT 
LEQ 
GT 
GEQ 
NC 
c 
NOV 
ov 
BIO 
NTC 
TC 
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Testing the status of TC flag is mutually exclusive to testing the BIO pin. The 
code in Example 7-6 tests the carry flag and the sign bit of the accumulator 
simultaneously to locate a zero bit (beginning from MSB) in a 64-bit word con­
sisting of ACC and ACCB with ACC having the higher part. This 64-bit word 
could be the serial port output where the first zero indicates the start bit. 

Example 7-6. Using Multiple Conditions With BCND 

LDP #0 
SPLK #63,BRCR ;no. of iterations - 1 

;code to get 64-bit input word and load 
;it in ACC and ACCB 

* 

LAR 
RPTB 

SFLB 

MAR 
BCND 

ENDLOOP: 
APL 

AR0,#0 ;initialize the bit counter 
ENDLOOP-1 ;for I=O,I<=63,I++ 

;shift left ACC+ACCB, MSB is shifted 
;out in Carry flag 

*+ ;increment bit counter 
ENDLOOP,NC,LT ;exit if carry=O and current MSB=l 

;ACC+ACCB contains aligned data now 
#Offfeh,PMST ;clear BRAF flag 

7.4.3 Search Algorithm Using CRGT 

The following example shows how the CRGT and RPTB instructions find the 
maximum value and its location by searching through a block of data. Loop 
overhead is minimized by using the block-repeat function. The accumulator is 
initialized with the minimum possible value (08000h) before the main search 
loop is entered. 

To find the minimum value, CRGT instruction may be replaced by CRLT, and 
the accumulator is loaded with the maximum possible value (07FFFh) instead 
of the smallest. The rest of the code remains the same. 
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Example 7-7.Using CRGT and CRLT 

* 
* This routine searches through a block of data in the data memory 
* to store the maximum value and the address of that value in memory 
* locations MAXVAL and MAXADR, respectively. The data block could be 
*of any size defined by the Block Repeat Counter Register (BRCR). 
* 
* KEY CSX instructions: 
* 
* RPTB Repeat a block of code as defined by repeat counter BRCR 
* CRGT Compare ACC to ACCB. Store larger value in both ACC, ACCB. 
* Set CARRY bit if value larger than previously larger is found 
* XC Execute conditionally (l or 2 words) if flag (Carry) is set. 
* 
* 
MAXADR • set 60h 
MAXVAL • set 61h 

.mmregs 

.text 
LDP 
LAR 
SETC 
LACC 

#0 
ARO, #0300h 
SXM 
#08000h 

* Use #07FFFh 
SACB 
SPLK 
RPTB 

(largest possible) 

startb: 

#9,BRCR 
endb -1 

LACC * 
CRGT 

* Use CRLT to 
SACL 
xc 
SAR 
MAR 

endb: RET 

find minimum value 
MAXVAL 
#1,C 
ARO,MAXADR 
*+ 

;point to data page O 
;AR= data memory addr 
;set sign extension mode 
;load minimum value 

to check for minimum value 
;into ACCB 
;rpt cont = 9 for 10 data values 
;repeat block from here to endb-1 

;load data from <(ARO)> into ACC 
;set carry if ACC > previous largest 

;save new largest which is in ACC & ACCB 
;save addr if current value > previous largest 

* At the end of routine, 
* registers contain: 

following 

* ACC = 32050 
* ACCB 32050 
* (MAXVAL) 32050 
* (MAXADR) 0307h 

.data 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.end 

5000 
10000 
320 
3200 
-5600 
-2105 
2100 
32050 
1000 
-1 

;data is expected to be in data RAM 
;start address = 0300h 

7.4.4 Matrix Multiplication Using Nested Loops 
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The 'C5x provides three different types of instructions to implement code 
loops. The RPT (single-instruction repeat) instruction allows the following in­
struction to be executed N times. The RPTB (repeat block) instruction repeat­
edly executes a block of instructions with the loop count determined by the 
BRCR count register. The BANZ (branch if AR not zero) instruction is another 
way of implementing for-next loops with the count specified by an auxiliary reg­
ister. 
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Three-level-deep nested loops can be efficiently implemented by these three 
instructions with each instruction controlling one loop. The following example 
implements this nested code structure to do N-by-N matrix multiplication. Note 
the use of BANZD (delayed BANZ) instruction to avoid flushing the instruction 
pipeline. Also, note the use of MADS (multiply-accumulate using BMAR) in­
struction to dynamically switch between the rows of matrix A to compute the 
elements of the product matrix C. 

Example 7-8. Using Nested Loops 

.title "NxN Matrix Multiply Routine" 

.mmregs 

* * This routine performs multiplication of two NxN matrices. 
* A x B • C where A,B, and C are NxN in size. 
* Entry Conditions: 
* ARl -> element (0,0) of A (in program space) 
* AR2 -> element (0,0) of B (in data space) 
* AR3 -> element (0,0) of C (in data space) 
* DP = O, NDX • 1 
* ARP = 2 
* Storage of matrix elements in memory (beginning from low 
* memory): 
* M(O,O), ••• ,M(O,N-1) ,M(l,O), ••• ,M(N-1,N-l) 
* 
MTRX MPY: 

* 

- LAR 

SPLK 
SAR 

LOOPl: SMMR 
SPLK 
SAR 

LOOP2: RPTB 
SAR 

LOOP3: RPTZ 
ELOOP3:MADS 

APAC 
MAR 
MAR 

ELOOP2:SACL 
MAR 
BANZD 
ADRK 

ELOOPl: MAR 

ARO,#(N-1) 
#N,INDX 
AR2,AR4 

ARl,BMAR 
#(N-1),BRCR 
AR4,AR5 
ELOOP2 
AR5,AR2 
#(N-1) 
*O+ 

*,ARS 
*+,AR3 
*+,O,AR2 
*,ARO 
LOOPl,*-,ARl 
N 
*,AR2 

;set up loop count 
;row size 
;Save addr of B 
;for i=O,i<N,++i 
;BMAR -> A(i,O) 
;setup loop2 count 
;ARS -> B(O,O) 
;for j•O,j<N,++j 
;AR2 -> B(O,j) 
;for k•O,k<N,++k 
;Acc=A(i,k)xB(k,j) 
;Final accumulation 
;ARp = ARS 
;ARS -> B(O,j+l) 
;Save C(i,j) 
;loop back if 
;count I= N 
;ARl -> A(i+l,O) 
;ARp • AR2 
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7.5 Circular Buffers 
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Circular addressing is an important feature of the 'C5x instruction set. Algo­
rithms like convolution, correlation, and FIR filters can make use of circular 
buffers in memory. The 'C5x supports two concurrent buffers operating via the 
auxiliary registers. These five memory-mapped registers control the circular 
buffer operation: CBSR1, CBSR2, CBER1, CBER2, CBCR. See subsection 
4.1.6 for details. 

The start and end addresses must be loaded in the corresponding buffer regis­
ters before the circular buffer is enabled. Also, the auxiliary register that acts 
as a pointer to the buffer must be initialized with the proper value. 

Example 7-9 illustrates the use of a circular buffer to generate a digital sine 
wave. A 256-word sine-wave table is loaded in the B 1 block of dual-access in­
ternal data memory from external program memory. Accessing the internal 
dual-access memory requires only one machine cycle. The block move ad­
dress register (BMAR) is loaded with the ROM address of the table. The 
block-move instruction moves 256 samples of sine wave to internal data 
memory, which is then set up as a circular buffer. 

The start and end addresses of this circular buffer are loaded into the corre­
sponding registers. The auxiliary register AR7 is also initialized to the begin­
ning of the sine-wave table. Note the use of SAMM instruction to update AR7. 
This is possible because all auxiliary registers are memory-mapped at page 
0. Finally, the circular buffer #1 is enabled, and AR7 is mapped to that buffer. 
The other circular buffer is disabled. 

Whenever the next sample is to be pulled off from the table, postincrement in­
direct addressing may be used with AR7 as the pointer. This ensures that the 
pointer will wrap around to the beginning of the table if the previous sample 
was the last one on the table. 
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Example 7-9. Use of Circular Addressing 

.title 'Digital Sine-Wave Generator' 

.mmregs 

****************************************************************** 
* This routine illustrates the circular addressing capability of 
* TMS320C5x devices. A digital sine wave generator is implemented 
* as a circular buffer #1 with AR7 as its pointer. XSINTBL is the 
* location in external program memory where this table is stored. 
* It is moved to internal data memory block Bl where it is setup 
* as a circular buffer. 
****************************************************************** 

XSINTBL .set 03000h 
.text 

SINTBL LDP #0 

* 

* 

* 

LAR AR0,#0300h 
MAR *,ARO 
LACC #XSINTBL 

SAMM BMAR 

RPT #255 
BLPD BMAR,*+ 

SAMM CBSRl 
SAMM AR7 
ADD #255 
SAMM CBERl 
SPLK #OFh,CBCR 

NXTSMP MAR * ,AR7 
LACC *+ 

;program space address of sine table 

;address of Bl block 

;get sine table address in 
;external program memory 
;load source register 

;move 256-word 
;load table from external program 
;memory to internal data memory 
;start address of buffer=300h 
;AR7 points to start of buffer 

;end address of buffer=3ffh 
;enable CB#l, disable CB#2 
;pointer for CB#l is AR7 

;get next sample from table 
;AR7 is updated to next valid sample 

DISBLE APL #OFFF7h,CBCR ;Disable CB#l 

RET 

If the step size must be greater than one, check to see if an update to the auxil­
iary register generates an address outside the range of the circular buffer. This 
may happen if the same sine table is used to generate sine waves of different 
frequencies by changing the step size. Modulo addressing can avoid such 
problems. A simple way to perform modulo addressing on 'C5x devices is to 
use the APL and OPL instructions. For example, to implement the modulo-256 
counter, first load the DBMR (dynamic bit manipulation register) with 255 (the 
maximum value allowed); when the auxiliary register is updated (by any 
amount), it is ANDed with the DBMR register and ORed with the start address 
of the buffer. The start address of the modulo-2k buffer must have zeros in the 
kLSBs. Hence, for modulo-256 addressing, the first 8 LSBs of the start register 
must be zero. 
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The following code does modulo-256 addressing: 

START .set 04000h ;start address of the buff er 

LDP #0 
LACL #OFFh 
SAMM DBMR ;max value 255 

MAR •o+ increment AR7 by some amount 
APL AR7 extract lower 8 bits 
OPL #START,AR7 add the start address 
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7.6 Single-Instruction Repeat (RPT) Loops 

The 'C5x provides two different types of repeat instructions. The repeat block 
RPTB instruction implements code loops that can be 3 to 65536 words in size. 
These loops do not require any additional cycles to jump from the end-of-block 
to the start-of-block address at the end of each iteration. In addition, these 
zero-overhead loops are interruptible so that they can be used in background 
processing without affecting the latency of time-critical tasks. 

On the other hand, the single-instruction repeat RPT pipelines the execution 
of the next instruction to provide a high-speed repeat mode. A 16-bit repeat 
counter RPTC allows execution of a single instruction 65536 times. When this 
repeat feature is used, the instruction being repeated is fetched only once. As 
a result, many multicycle instructions, such as MAC/MACO, BLDD/BLDP, or 
TBLR/TBLW, become single-cycle when repeated. 

Some of 'C5x instructions behave differently in the single-instruction repeat 
mode to efficiently utilize the 'C5x multiple-bus architecture. The following in­
structions fall in this category: 

BLDD, BLDP, BLPD, IN, OUT, MAC, MACO, MADS, MADD, TBLR, TBLW, 
LMMR, SMMR 

Because the instruction is fetched and internally latched when in single-in­
struction repeat mode, the program bus is used by these instructions to read 
or write a second operand in parallel to the operations being done using the 
data bus. With the instruction latched for repeated execution, the program 
counter is loaded with the second operand address (which may be in data, pro­
gram, or 1/0 space) and incremented on succeeding executions to read/write 
in successive memory locations. As an example, the MAC instruction fetches 
the multiplicand from the program memory via the program bus. Simulta­
neously with the program bus fetch, the second multiplicand is fetched from 
data memory via the data bus. In addition to these data fetches, preparation 
is made for accesses in the following cycle by incrementing the program count­
er and by indexing the auxiliary register. IN instruction is another example of 
an instruction that benefits from simultaneous transfers of data on both the 
program and data buses. In this case, data values from successive locations 
in 1/0 space may be read and transferred to data memory. For complete details 
of how the above-listed instructions behave in repeat mode, see the individual 
description of each instruction in Chapter 4. 

The following example demonstrates the implementation of 
memory-to-memory block moves on the 'C5x using single-instruction repeat 
(RPT) loops. 
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Example 7-10. Memory-to-Memory Block Moves Using RPT 
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* 

.nunregs 

.text 

* This routine uses the BLDD instruction to move external 
* data memory to internal data memory. 
* 
MOVEDD: 

* 

LACC #4000h 
SAMM BMAR 
LAR AR7 ,#lOOh 
MAR * ,AR7 
RPT #1023 

BLDD BMAR,*+ 
RET 

;BMAR -> source in data memory. 
;AR7 -> destination in data memory 
;LARP - AR7. 
;Move 1024 value to blocks BO and Bl 

* This routine uses the BLDP instruction to move external 
* data memory to internal program memory. This instruction could be 
* used to boot load a program to the SK on chip program memory from 
* external data memory. 
* 
MOVEDP: 

* 

LACC #SOOh 
SAMM,BMAR 
LAR AR7,#0E000h 
RPT #Sl91 

BLDP *+ 
RET 

;BMAR -> destination in program memory 
;AR7 -> source in data memory. 
;Move SK to program memory space. 

* This routine uses the BLPD instruction to move external 
* program memory to internal data memory. This routine 
* is useful for loading a coefficient table stored in 
* external program memory to data memory when no external 
* data memory is available. 
* 
MOVEPD: 

* 

LAR 
RPT 

BLPD 
RET 

AR7,#100h 
#127 
#3SOOh,*+ 

;AR7 -> destination in data memory. 
;Move 12S values from external program 
;to internal data memory BO. 

* This routine uses the TBLR instruction to move program 
* memory to data memory space. This differs from the BLPD 
* instruction in that the accumulator contains the address 
* in program memory from which to transfer. This allows 
* for a calculated, rather than pre-determined, location in 
* program memory to be specified. 
* 

TABLER: 

* 

MAR 
LAR 
RPT 

*,AR3 
AR3,#300h 
#127 

TBLR *+ 
RET 

;AR3 -> destination in data memory. 

;Move 12S items to data memory block Bl 

* This routine uses the TBLW instruction to move data memory 
* to program memory. The calling routine must contain the destination 
* program memory address in the accumulator. 
* 
TABLEW: 

MAR 
LAR 
RPT 

*,AR4 
AR4,#3SOh 
#127 

TBLW *+ 
RET 

ARP = AR4. 
AR4 -> source address in data memory. 
Move 12S items from data memory to 
program memory. 

Software Applications 



Single-Instruction Repeat Loops 

* * This routine uses the SMMR instruction to move data 
* from a memory-mapped I/O port to local data memory. 
* Note that 16 I/O ports are mapped in data page 0 of 
* the 'C5x memory map. 
* 
INPUT: 

* 

LDP 
RPT 
SMMR 
RET 

#0 
#511 

51h,800h 
;Input 512 values from port 51h to 
;table at 800h in data memory. 

* This routine uses the LMMR instruction to move data from 
* local data space to a memory-mapped I/O port. Note that 
* 16 I/O ports are mapped in data page 0 of TMS320C5x 
* memory map. 
* 
OUTPUT: 

LDP 
RPT 

LMMR 
RET 

#0 
#63 
50h,800h 

data page O 
Output 64 values from a table at 800h 
in data memory to port 50h. 
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7.7 Subroutines 

Example 7-11 illustrates the use of a subroutine to determine the square root 
of a 16-bit number. The main routine executes to the point where the square 
root of a number should be taken. At this point, a delayed call (CALLO) is made 
to the subroutine, transferring control to that section of the program memory 
for execution and then returning to the calling routine via the delayed return 
(RETD) instruction when execution has completed. 

This example shows several features of 'C5x instruction set. In particular, note 
the use of delayed-call (CALLO), delayed-return (RETD), and conditional-exe­
cute (XC) instructions. Due to the four-level-deep pipeline on 'C5x devices, 
normal branch instructions require 4 cycles to execute. Using delayed 
branches, only two cycles are required for execution. The XC instruction is 
useful where only one or two instructions are to be executed conditionally. In 
this example, notice how XC is used to avoid extra cycles due to branch in­
struction. Use of the XC instruction also helps in keeping the execution time 
of a routine constant, regardless of input conditions. This is because XC ex­
ecutes NOPs in place of instructions if conditions are not met. 

Example 7-11. Square Root Computation Using XC 
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* Autocorrelation 
* This routine performs a correlation of two vectors and then 
* calls a Square Root subroutine that will determine the RMS 
* amplitude of the wave form. 
* 
AUTOC 

* 

CALLO 
MAR 
LACC 

SQRT 
*,ARO 

* 

* Square Root Computation 
* 

;Call square root subroutine after 
;executing next two instructions 
;Get the value to be passed to SQRT 
;subroutine 

* This routine computes the square root of a number that is located 
* in the lower half of accumulator. The number is in Ql5 format. 
* 
BRCR .set 09h 
STO .set 60h 
STl .set 61h 
NUMBER.set 62h 
TEMPR .set 63h 
GUESS • set 64h 

.text 
SQRT SST #0,STO 

SST #1,STl 
LDP #0 
SETC SXM 
SPM 1 
SACL NUMBER 
LACL #0 
SACB 
SPLK #11, BRCR 
SPLK #800h,GUESS 

;DP=O 
;Internal RAM block B2 

;Save context 

Set SXM=l 
Set PM mode for fractional arithmetic 
Save the number 

Clear accumulator buff er 
initialize for 12 iterations 
Set initial guess 
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LACC NUMBER 
SUB #200h 
BCNDD LOOP,LT ;If NUMBER<200h then begin looping 

SPLK #800h,TEMPR 
LACC #4000h ;Otherwise set initial guess 
SACL GUESS ;and temporary root to 4000h 
SACL TEMPR 
SPLK #14,BRCR ;and increase iterations to 15 

LOOP RPTB ENDLP-1 ;Repeat block 
SQRA TEMPR ;Square temporary root 
LACC NUMBER, 16 
SPAC ;Acc•NUMBER-TEMPR**2 
NOP ;Dead cycle for XC 
xc 2,GT ;If NUMBER>TEMPR**2 skip next 2 instr. 
LACC TEMPR, 16 
SACB ;Otherwise ROOT <- TEMPR 
LACC GUESS,15 
SACH GUESS ;GUESS <- GUESS/2 
ADDB 
SACH TEMPR ;TEMPR <- GUESS+ROOT 

ENDLP LACB ;High Ace contains square root of NUMBER 
RETD 

LST #1,STl 
LST #0,STO ;Restore context 

Note that the restore is done with the LST instruction to prevent ARP from be­
ing overwritten. If indirect addressing is used, the order is reversed. 
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7.8 Extended-Precision Arithmetic 

Numerical analysis, floating-point computations, or other operations may re­
quire arithmetic to be executed with more than 32 bits of precision. Since the 
'C5x devices are 16/32-bit fixed-point processors, software is required for the 
extended precision of arithmetic operations. Subroutines that perform the ex­
tended-arithmetic functions for 'C5x are provided in the examples of this sec­
tion. The technique consists of performing the arithmetic by parts, similar to 
the way in which longhand arithmetic is done. 

The 'C5x has several features that help make extended-precision calculations 
more efficient. One of the features is the carry bit. This bit is affected by all arith­
metic operations of the accumulator, including addition and subtraction with 
the accumulator buffer. This allows 32-bit-long arithmetic operations using the 
accumulator buffer as the second operand. 

The carry bit is also affected by the rotate and shift accumulator instructions. 
It may also be explicitly modified by the load status register ST1 and the set/re­
set control bit instructions. For proper operation, the overflow mode bit should 
be reset (OVM = 0) so that the accumulator results is not loaded with the satu­
ration value. 

7.8.1 Addition and Subtraction 
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The carry bit is set whenever the addition of a value from the input scaling shift­
er, the P register, or the accumulator buffer to the accumulator contents gener­
ates a carry out of bit 31. Otherwise, the carry bit is reset because the carry 
out of bit 31 is a zero. One exception to this case is the addition to the accumu­
lator with a shift of 16 instruction (ADD mem, 16), which can only set the carry 
bit. This allows the ALU to generate a proper single carry when the addition 
either to the lower or the upper half of the accumulator actually causes the 
carry. The following examples help to demonstrate the significance of the carry 
bit of the 'C5x for additions: 

Software Applications 



Extended-Precision Arithmetic 

Figure 7-1. 32-Bit Addition 

c MSB LSB c MSB LSB 
x F F F F F F F F ACC x F F F F F F F F ACC 

+ +[ [ [ [ [ [ [ [ 
1 0 0 0 0 0 0 0 0 1 F F F F F F F E 

c MSB LSB c MSB LSB 
x 7 F F F F F F F ACC x 7 F F F F F F F ACC 

+ +[ [ [ [ [ [ [ [ 
0 8 0 0 0 0 0 0 0 1 7 F F F F F F E 

c MSB LSB c MSB LSB 
x 8 0 0 0 0 0 0 0 ACC 1 8 0 0 0 0 0 0 0 ACC 

+ +[ [ [ [ [ [ [ [ 
0 8 0 0 0 0 0 0 1 1 7 F F F F F F F 

c MSB LSB c MSB LSB 
1 0 0 0 0 0 0 0 0 ACC 1 F F F F F F F F ACC 

+ Q (APDC) + 
(ADPC) 

(ADD 

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

c MSB LSB c MSB LSB 
1 8 0 0 0 F F F F ACC 1 8 0 0 0 F F F F ACC 

+Q Q Q l Q Q Q Q (ADD ln§lm, 16 > +2 E E [ Q Q Q Q 
m~m.16) 
1 8 0 0 0 F F F F 1 F F F F F F F F 

Example 7-12 shows an implementation of two 64-bit numbers added to each 
other to obtain a 64-bit result. 

Example 7-12. 64-Bit Addition 

* * Two 64-bit numbers are added to each other producing a 
* 64-bit result. The number x (X3,X2,Xl,XO) and Y 
* (Y3,Y2,Yl,YO) are added resulting in W (W3,W2,Wl,WO). 
* If the result is required in 64-bit ACC/ACCB pair, 
* replace the instructions as indicated in the comments 
* below. 
* * X3 X2 Xl XO 
* + Y3 Y2 Y1 YO 
* * W3 W2 Wl WO -OR- ACC ACCB 
* 
ADD64 LACC 

ADDS 
ADDS 
ADD 
SACL 
SACH 
LACC 
ADDC 

Xl,16 
XO 
YO 
Yl,16 
WO 
Wl 
X3,16 
X2 

ACC • Xl 00 
ACC = Xl XO 
ACC • Xl XO + 00 YO 
ACC = Xl XO + Yl YO 
THESE 2 INSTR ARE REPLACED BY 
"SACB" IF RESULT IS DESIRED IN (ACC ACCB) 
ACC • X3 00 
ACC • X3 X2 + C 
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ADDS 
ADD 
SACL 
SACH 
RET 

Y2 
Y3,16 
W2 
W3 

ACC = X3 X2 + 00 Y2 + C 
ACC = X3 X2 + Y3 Y2 + C 
THESE 2 INSTR ARE NOT REQUIRED IF 
THE RESULT IS DESIRED IN (ACC ACCB) 

As in addition, the carry bit on the 'C5x is reset whenever the input scaling shift­
er, the P register, or the accumulator buffer value subtracted from the accumu­
lator contents generates a borrow into bit 31. Otherwise, the carry bit is set be­
cause no borrow into bit 31 is required. One exception to this case is the SUB 
mem, 16 instruction, which can only reset the carry bit. This allows the genera­
tion of the proper single carry when the subtraction from either the lower or the 
upper half of the accumulator actually causes the borrow. The examples in 
Figure 7-2 demonstrate the significance of the carry bit for subtraction. 

Figure 7-2. 32-Bit Subtraction 
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C MSB LSB c MSB LSB 
X 0 0 0 0 0 0 0 0 ACC x 0 0 0 0 0 0 0 0 

ACC 
1 -F F F F F [ [ F 

0 F F F F F F F F 0 0 0 0 0 0 0 0 1 

C MSB LSB c MSB LSB 
X 7 F F F F F F F ACC x 7 F F F F F F F 

ACC 
-[ [ [ [ [ [ [ [ 

1 7 F F F F F F E c 8 0 0 0 0 0 0 0 

C MSB LSB c MSB LSB 
X 8 0 0 0 0 0 0 0 ACC x 8 0 0 0 0 0 0 0 

ACC 
-[ [ [ [ f f f f 

1 7 F F F F F F F 0 8 0 0 0 0 0 0 1 

c MSB LSB c MSB LSB 
0 0 0 0 0 0 0 0 0 ACC 0 F F F F F F F F 

ACC 
Q ( S!.lBB) 

(S!.lBB) 
0 F F F F F F F F 1 F F F F F F F E 

c MSB LSB c MSB LSB 
0 8 0 0 0 F F F F ACC 0 8 0 0 0 F F F F 

ACC 
-Q Q Q l Q Q Q Q ( sua mem. Hi l -[ [ f [ Q Q Q Q 

(S:UB mem, Hi) 
0 7 F F F F F F F 0 8 0 0 1 F F F F 

Example 7-13 implements the subtraction of two 64-bit numbers on the 'C5x. 
A borrow is generated within the accumulator for each of the 16-bit parts of the 
subtraction operation. 
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Example 7-13. 64-Bit Subtraction 

7.8.2 Multiplication 

* 
Two 64-bit numbers are subtracted, producing a 64-bit 

* result. The number Y (Y3,Y2,Yl,YO) is subtracted from 
* x (X3,X2,Xl,XO) resulting in w (W3,W2,Wl,WO). 
* If the result is required in 64-bit ACC/ACCB pair, 
* replace the instructions as indicated in the comments 
* below. 
* * X3 X2 Xl XO 
* - Y3 Y2 Y1 YO 
* * W3 W2 Wl WO -OR- ACC ACCB 
* 
SUB64 LACC 

ADDS 
SUBS 
SUB 
SACL 
SACH 
LACL 
SUBB 
ADD 
SUB 
SACL 
SACH 
RET 

Xl,16 
XO 
YO 
Yl,16 
WO 
Wl 
X2 
Y2 
X3,16 
Y3,16 
W2 
W3 

ACC • Xl 00 
ACC • Xl XO 
ACC = Xl XO - 00 YO 
ACC • Xl XO - Yl YO 
THESE 2 INSTR ARE REPLACED BY 
"SACB" IF RESULT IS DESIRED IN (ACC ACCB) 
ACC ,. 00 X2 
ACC = 00 X2 - 00 Y2 - C 
ACC = X3 X2 - 00 Y2 - C 
ACC • X3 X2 - Y3 Y2 - C 
THESE 2 INSTR ARE NOT REQUIRED IF 
THE RESULT IS DESIRED IN (ACC ACCB) 

Another important feature that aids in extended-precision calculations is the 
MPYU (unsigned multiply) instruction. The MPYU instruction allows two un­
signed 16-bit numbers to be multiplied and the 32-bit result placed in the prod­
uct register in a single cycle. Efficiency is gained by generating partial products 
from the 16-bit portions of a 32-bit or larger value instead of having to split the 
value into 15-bit or smaller parts. 

Further efficiency is gained by using the accumulator buffer to hold partial re­
sults instead of using a temporary location in data memory. The ability of 'C5x 
devices to barrel-shift the accumulator by 1 to 16 bits in only one cycle is also 
useful for scaling and justifying operands. 

For 16-bit integer multiplication, in which one operand is a 2s-complement 
signed integer and the other one is an unsigned integer, you can use the algo­
rithm shown in Figure 7-3. 
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Figure 7-3. 16-Bit Integer Multiplication 
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x 

Signed Integer 

y 

X Unsigned Integer 

XxY 

Signed Multiplication 

x 

Add X if Y 1s = 1 

XxY 

Final 32-Bit Result 

Steps required: 

1) Multiply two operands X and Y as if they are signed integers. 

2) If MSB of the unsigned integer Y is 1, add X to the upper half of the 32-bit 
signed product. 

The correction factor must be added to the signed multiplication result be­
cause the bit weight of the MSB of any 16-bit unsigned integer is 215. 

Consider following representation of a signed integer X and an unsigned inte­
ger Y: 

X = -21sx1s + 214x14 + 21sx13 + ... + 21x1 + 2Clxo 

Multiplication of X and Y yields: 

XxY =Xx (215Y1s + 214Y14 + 213y13 + ... + 21Y1 + 2°yo) 

= 215Y1sX + 21 4y1~ + 213Y1sX + ... + 21Y1X + 2°yoX (1) 

However, if X and Y are considered signed integers, their multiplication yields: 

XxY =Xx (-215Y1s + 214Y14 + 213Y1s + ... + 21Y1 + 2°Yo) 

(2) 
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The difference between (1) and (2) is in the first term on the right-hand side 
of the two equations. 

Hence, if we addthe correction term, 216y1s)<, to equation (2), the result would 
be identical to that of equation (1) and is the correct result. 

This method of multiplying a signed integer with an unsigned integer can be 
used to implement extended-precision multiplication on 'C5x. The following 
description of a 32-bit multiplication algorithm is based on this method: 

Figure 7--4. 32-Bit Multiplication Algorithm 

X1 XO 

Y1 YO 
x 

XOxYO 

Unsigned Multiplication 

X1 xYO 

Signed Multiplication 

XO xY1 

Signed Multiplication 

X1 

If MSB of YO= 1 

Y1 

If MSB of XO = 1 

X1 xY1 

+ Signed Multiplication 

W3 W2 W1 WO 

Final 64-Bit Result 
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The following example implements this algorithm. The product is a 64-bit inte­
ger number. Note in particular, the use of BSAR and XC instructions. 

Example 7-14. 32-Bit Integer Multiplication 
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.title "32-bit Optimized Integer Multiplication" 

.def MPY32 

* * This routine multiplies two 32-bit signed integers result­
* ing in a 64-bit product. The operands are fetched from 
* data memory and the result is written back to data memory. 
* Data Storage: 
* Xl,XO 
* Yl,YO 
* W3,W2,Wl,WO 

32-bit operand 
32-bit operand 
64-bit product 

* Entry Conditions: 
* DP = 6, SXM = 1 
* OVM = 0 
* 
Xl .set 300h ;DP=6 
XO .set 301h ;DP-6 
Y1 .set 302h ;DP=6 
YO .set 303h ;DP=6 
W3 .set 304h ;DP=6 
W2 .set 305h ;DP=6 
Wl .set 306h ;DP=6 
WO .set 307h ;DP=6 

.text 

MPY32: 
BIT 
LT 
MPYU 
SPL 
SPH 
MPY 
LTP 
MPY 
MPYA 
ADDS 
SACL 
BSAR 
xc 

ADD 
BIT 
APAC 
xc 

ADD 
SACL 
SACH 

xo,o 
XO 
YO 
WO 
Wl 
Yl 
Xl 
YO 
Yl 
Wl 
Wl 
16 
1,TC 
Yl 
YO,O 

1,TC 
Xl 
W2 
W3 

;TC = XO bit#15 
;T = XO 
;P = XOYO 
;Save WO 
;Save partial Wl 
;P = XOYl 
;Ace = XOYl, T = Xl 
;P = XlYO 
;Ace = XOYl+XlYO, P=XlYl 
;Ace = XOYl+XlYO+XOY02A-16 
;Save final Wl 
;Shift Ace right by 16 
;If MSB of XO is 1 
;Add Yl 
;TC = YO bit#15 
;ACC = XlYl + (XOYl+XlY0)2A-16 
;IF MSB of YO is 1 
;Add Xl 
;Save W2 
;Save W3 
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The next example performs fractional multiplication. The operands are in 031 
format, while the product is in 030 format. 

Example 7-15. 32-Bit Fractional Multiplication 

7 .8.3 Division 

.title "32-bit Fractional Multiplication" 
............................................................ 
11 Thi~,~~~ti~~,~~itipii~~,t~~'o3i'~i9~~d'i~t~9~~~,~~~~iti~9' 

in a Q30 product. The operands are fetched from data 
memory and the result is written back to data memory. 
Data Storage: 

Xl,XO 
Yl,YO 
Wl,WO 

Entry Conditions: 

Q31 operand 
031 operand 
Q30 product 

DP = 6, SXM = 1 
; OVM = 0 ............................................................ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
Xl .set 300h ;DP=6 
XO .set 301h ;DP=6 
Yl .set 302h ;DP=6 
YO .set 303h ;DP=6 
Wl .set 304h ;DP=6 
WO .set 305h ;DP•6 

.text 

BIT XO,O TC = XO bit#lS 
LT XO TREGO = XO 
MPY Yl P = XO*YO 
LTP Xl Ace = XO*YO 
MPY YO P = Xl*YO 
MPYA Yl Ace = XO*YO + Xl*YO 
BSAR 16 Throw away low 16 bits 
xc l,TC If MSB of XO is 1 

ADD Y1 then add Yl 
BIT YO,O TC = YO bit#lS 
APAC Ace = Ace + Xl*Yl 
xc l,TC If MSB of YO is 1 

ADD Xl then add Xl 
SACL WO Save lower product 
SACH Wl Save upper product 

Integer and fractional division is implemented on the 'C5x by repeated subtrac­
tions executed with SUBC, a special conditional subtract instruction. Given a 
16-bit positive dividend and divisor, the repetition of the SUBC command 16 
times produces a 16-bit quotient in the low accumulator and a 16-bit remainder 
in the high accumulator. 

SUBC implements binary division in the same manner as long division is done. 
The dividend is shifted until subtracting the divisor no longer produces a nega­
tive result. For each subtract that does not produce a negative answer, a one 
is put in the LSB of the quotient and then shifted. The shifting of the remainder 
and quotient after each subtract produces the separation of the quotient and 
remainder in the low and high halves of the accumulator. 

Both the dividend and the divisor must be positive when using the SUBC com­
mand. Thus, the sign of the quotient must be determined and the quotient com­
puted by using the absolute value of the dividend and divisor. 
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Integer and fractional division can be implemented with the SUBC instruction 
as shown in Example 7-16 and Example 7-17, respectively. When imple­
menting a divide algorithm, it is important to know if the quotient can be repre­
sented as a fraction and the degree of accuracy to which the quotient is to be 
computed. For integer division, the absolute value of the numerator must be 
greater than the absolute value of the denominator. For fractional division, the 
absolute value of the numerator must be less than the absolute value of the 
denominator. 

Long Division: 

000000000000110 Quotient 
0000000000000101 )000000000010001 

-101 
m 

-.1.Q1 

11 Remainder 

SUBC Method: 

32 HIGHACC LOWACC 0 Comment 

0000000000000000 0000000000100001 (1) Dividend is loaded into ACC. The di-
-10 1000000000000000 visor is left-shifted 15 and subtracted 
-1 o 0111111111011111 from ACC. The subtraction is nega-

I I I I 
0000000000000000 0000000001000001 

-10 1000000000000000 
-10 0111111110111110 

I I I I 
0000000000000100 0010000000000000 

-10 1000000000000000 
0000000000000001 1010000000000000 

I I I I 
0000000000000011 0100000000000001 

-10 1000000000000000 
0000000000000000 1100000000000001 
I I I I 
0000000000000001 1000000000000011 

-10 1000000000000000 
- 1111111111111101 

0000000000000011 0000000000000110 

Remainder I I Quotient 

tive, so discard the result and shift 
left the ACC one bit. 

(2) 2nd subtract produces negative an­
swer, so discard result and shift ACC 
(dividend) left. 

(14) 14th SUBC command. The result is 
positive. Shift result left and replace 
LSB with 1. 

(15) Result is again positive. Shift result 
left and replace LSB with 1. 

(16) Last subtract. Negative answer, so 
discard result and shift ACC left. 

Answer reached after 16 SUBC in­
structions. 

Software Applications 



Extended-Precision Arithmetic 

Example 7-16. Integer Division Using SUBC 

* * This routine implements inteqer division with the SUBC instruction. For this 
* inteqer division routine, the absolute value of the numerator must be qreater 
* than the absolute value of the denominator. In addition, the calling routine 
* must check to verify that the divisor does not equal O. 
* * The 16-bit dividend is placed in the low accumulator, and the hiqh accumulator 
* is zeroed. The divisor is in data memory. At the completion of the last 
* SUBC, the quotient of the division is in the lower-order 16-bits of the 
* accumulator. The remainder is in the hiqher-order 16-bits·. 
* * Key CSx Instruction: 
* RETCD return if conditions true - after executinq next 2-word instruction or 
* two sinqle-word instructions 
* 
DEN OM .set 60h 
NUMERA .set 6lh 
QUOT .set 62h 
REM .set 63h 
TEMSGN .set 64h 
* INTDIV LOP 10 

LT NUMERA ;Determine siqn of quotient. 
MPY DEN OM 

* SPH TEMSGN ;Save the siqn 
LACL DEN OM 
ABS ;Make denominator and numerator positive. 
SACL DEN OM ;Save absolute value of denominator 
LACL NUMERA 
ABS 

* * If divisor and dividend are aliqned, division can start here. 
* RPT 

SUBC 
* BIT 

RETCD 
SACL 
SACH 

* 
LACL 
RETD 

SUB 
SACL 

115 
DENOM 

TEMSGN,O 
NTC 
QUOT 
REM 

10 

QUOT 
QUOT 

;16 cycle division. Low accumulator contains 
;the quotient and hiqh accumulator contains the 
;remainder at the end of the loop. 
;Test siqn of quotient. 
;Return if siqn positive, else continue. 
;Store quotient and remainder durinq delayed 
;return. 

;If sign neqative, neqate quotient 
;and return 
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Example 7-17. Fractional Division Using SUBC 

7-30 

* * This routine implements fractional division with the SUBC instruction. For 
* this division routine, the absolute value of the denominator must be 
* greater than the absolute value of the numerator. In addition, the 
* calling routine must check to verify that the divisor does not equal o. 
* * The 16-bit dividend is placed in the high accumulator, and the low accumulator 
* is zeroed. The divisor is in data memory. 
* 
DEN OM .set 
NUMERA .set 
QUOT .set 
REM .set 
TEMSGN .set 
* FRACDIV LDP 

LT 
* 

MPY 
SPH 
LACL 
ABS 
SACL 
LACC 
ABS 

* 

60h 
6lh 
62h 
63h 
64h 

#0 
NUMERA 

DENOM 
TEMSGN 
DENOM 

DENOM 
NUMERA,16 

;Determine sign of quotient. 

;Make denominator and numerator positive. 

;Load high accumulator, zero low accumulator. 

* If divisor and dividend are aligned, division can start here. 
* 

RPT 
SUBC 

* BIT 
RETCD 

SACL 
SACH 

* 
LACL 
RETD 

SUB 
SACL 

#15 
DENOM 

TEMSGN,O 
NTC 
QUOT 
REM 

#0 

QUOT 
QUOT 

;16-cycle division. Low accumulator contains 
;the quotient and high accumulator contains the 
;remainder at the end of the loop. 

;Test sign of quotient. 
;Return if sign positive, else continue. 
;Store quotient and remainder during delayed 
;return. 

;If sign negative, negate quotient 
;and return 
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7.9 Floating-Point Arithmetic 

To implement floating-point arithmetic on the 'C5x, operands must be con­
verted to fixed point for arithmetic operations and then converted back to float­
ing point. Conversion to floating-point notation is performed by normalizing the 
input data. 

To multiply two floating-point numbers, the mantissas are multiplied and the 
exponents added. The resulting mantissa must be renormalized. Float­
ing-point addition or subtraction requires shifting the mantissa so that the ex­
ponents of the two operands match. The difference between the exponents is 
used to left-shift the lower power operand before adding. Then, the output of 
the add must be renormalized. 

The 'C5x instructions used in floating-point operations are NORM, SATL, 
SATH, and XC. NORM may be used to convert fixed-point numbers to float­
ing-point. SATL in combination with SATH provides a two-cycle 0-31-bit right 
shift. XC helps avoid extra cycles caused by branch instructions. 

Example 7-18 and Example 7-19 show how to implement floating-point arith­
metic on 'C5x devices. Floating-point numbers are generally represented by 
mantissa and exponent values. Single-precision IEEE floating-point numbers 
are represented by a 24-bit mantissa, an 8-bit exponent, and a sign bit. In order 
to simplify the routines, a format slightly different from the IEEE format is used. 
Four words are occupied by each floating-point number. One sign word, one 
word for exponent, and two words for mantissa are reserved in memory as de­
scribed in the code below. 

Example 7-18. Floating-Point Addition Using SATL and SATH 

.title 'Floating Point Addition Algorithm' 

.def FL_ ADD 

* ........•.......................................................... 
fl 111111 Ill I II I 11111Ill1111IIIIIII1111111111 Ill II I I I I I I I II lltl llt If 

* THIS SUBROUTINE ADDS TWO FLOATING-POINT NUMBERS PRODUCING 
* A NORMALIZED FLOATING-POINT PRODUCT. THE FORMAT OF FLOATING­
* POINT NUMBERS IS SPECIFIED BELOW. 
* * INPUT / OUTPUT FORMAT 
* ===================== 
* 
* 
* 
* 
* 
* 
* 
* 
* 

ALL 0 OR 1 

16 BITS 

* I 0 I 15 BITS 
* 
* 
* 
* 
* 
* 

16 BITS 

SIGN WORD 

EXPONENT 

HIGH PART OF MANTISSA 

LOW PART OF MANTISSA 

* Key C5x Instructions: 
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7-32 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

SAMM save the accumulator contents in a memory-mapped 
register 

LACB accumulator is loaded with contents of accumulator 
buffer 

SACB contents of accumulator are copied in accumulator 
buffer 

SATL accumulator is barrel-shifted right by the value 
specified in the 4 LSBs of TREGl 

SATH accumulator is barrel-shifted right by 16 bits 
if bit 4 of TREGl is a one. 

SPLK store immediate long constant in data memory 
CPL compare long immediate value (or DBMR) with data 

memory 
TC•l if two values are same 
TC•O otherwise 

TREGl • set Odh 

ASIGN 
AEXP 
AHI 
ALO 

.set 

.set 

.set 

.set 

BSIGN .set 
BEXP .set 
BHI .set 
BLO .set 

CSIGN .set 
CEXP .set 
CHI .set 
CLO .set 
DIFFEXP • set 

.text 

FL_ADD LDP 
SETC 
MAR 
LAR 

CMPEXP LACL 
ADD 
SACB 
LACC 
SUB 
SACL 
BCND 
BCND 

AGTB LACC 
SAMM 
SUB 
BCND 
LACB 
SATL 
SATH 
SACB 

AEQB LACC 
SACL 
LACC 
SACL 

CHKSGN LACC 
SUB 
CLRC 
xc 

SETC 
BCNDD 
LACL 

60h 
6lh 
62h 
63h 

64h 
65h 
66h 
67h 

68h 
69h 
6Ah 
6Bh 
6Ch 

#0 
SXM 
*,ARO 
AR0,#0 

BLO 
BHI,16 

AEXP 
BEXP 
DIFFEXP 
AEQB,EQ 
ALTB,LT 

DIFFEXP 
TREGl 
#32 
AGRT32,GEQ 

ASIGN 
CSIGN 
AEXP 
CEXP 

ASIGN 
BSIGN 
TC 
l,LT 
TC 
ADNOW,EQ 
ALO 

;Sign, exponent, high and low part of mantissa 
;of input number A 

;Sign, exponent, high and low part of mantissa 
;of input number B 

;Sign, exponent, high and low part of mantissa 
;of the resulting floating point number C 

;Initialization 
;Set sign extension mode 
;ARP <- ARO 
;ARO is used by NORM instruction 

;Load low Ace with BLO 
;Add BHI to high Ace 
;AccB = BHIBLO 

;Ace - AEXP•BEXP 
;Save the difference 
;If IAI -- IBI 
;If A < IBI 

;If IAI > IBI 
;Load TREGl with # of right shifts reqd. 

;If difference > 32 
;Ace - BHIBLO 

;Right justify BHIBLO 
;Store the result back in AccB 

;Copy sign and exponent values of 
;A in C (i.e. the result) 

;Acc=ASIGN-BSIGN 

Clear TC flag 
If A<O and B>O 
Set TC flag 
If both A and B have same sign 
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ADD 
SBB 
xc 

NEG 
BCND 
xc 

SPLK 
xc 

SPLK 
XC 

ABS 
BD 

SACH 
SACL 

CZERO LACL 
SACL 
SACL 
RETD 
SACL 
SACL 

ADNOW ADDB 
BCNDD 

SACH 
SACL 

BCND 

NORMAL CPL 
NOP 
xc 

LACC 
LAR 
xc 

LACC 
ADDS 

CLRC 
xc 

SBRK 
SFR 

SETC 
RPT 

NORM 

OUTPUT SACH 
SACL 
LACC 
SAR 
RETD 

SUB 
SACL 

OVFLOW CLRC 
SFR 
SACH 
SACL 
LACC 
ADD 
SACL 

ALTB LACC 
SACL 
LACC 
SACL 
LACC 
NEG 
SAMM 
SUB 
BCND 
LACL 
ADD 
SATL 

AHI,16 

l,TC 

CZERO,EQ 
2,LT 
#OFFFFH,CSIGN 
2,GT 
#0,CSIGN 
l,LT 

NORMAL 
CHI 
CLO 

#0 
CEXP 
CSIGN 

CHI 
CLO 

OVFLOW,OV 
CHI 
CLO 
CZERO,EQ 

#0,CHI 

2,TC 
CL0,16 
AR0,#16 
2,NTC 
CHI,16 
CLO 
SXM 
2 ,LT 
1 

SXM 
#13 
*+ 

CHI 
CLO 
CEXP 
ARO,CEXP 

CEXP 
CEXP 

SXM 

CHI 
CLO 
CEXP 
#1 
CEXP 

BSIGN 
CSIGN 
BEXP 
CEXP 
DIFFEXP 

TREGl 
#32 
BGRT32,GEQ 
ALO 
AHI,16 

Extended-Precision Arithmetic 

;Ace = AHIALO 
;Acc=A-B 
;If A<O and B>O 
;then Acc=B-A 
;If A-B == 0 
;If A-B < 0 
; then CSIGN~l 
;If A-B > 0 
; then CSIGN=O 
;If A-B<O 
; then Acc=IA-BI 
;delayed branch 
;Save the result 

;If A-B == 0 
;then result is zero 
;Make sign positive 
;Return delayed 

;Clear CHICLO 

;If signs are same 
;then add two numbers 

;Save it in CHICLO 
;If CHICLO is zero, goto CZERO 

;Compare CHI with 0 
;Dead cycle for XC 
;If CHI is 0 
;then normalize only the CLO part 
;ARO has exponent value 
;If CHI I= 0 
;Acc=CHICLO 

;Disable sign extension mode 
;If MSB of CLO is 1 
;then shift right once 
;and decrement exponent. 
;Enable sign extension mode 
;Repeat 14 times 
;Normalize 

;Store high part 
;Store low part of the result 

;Save exponent 
;Return delayed 

;CEXP•CEXP-ARO 

;Disable sign extension mode 
;Shift Ace right 

;Save the result 

;Increment exponent by one 
;Save it 

;Copy sign of B in c 

;Copy exponent of B in C 

;since A-B < 0 here 
;No. of shifts reqd. for right-justification 

;difference in exponent >= 32 

;Acc=AHIALO 

7-33 



Extended-Precision Arithmetic 

SATH Right-justify ALOAHI 
BD CHKSGN Jump back after next two instructions 

SACL ALO Save normalized value 
SACH AHI in ALO and AHI 

BGRT32 LACC BHI ;If exponent of B > 32 
SACL CHI ;then C <- B. 
RETD ;Return after 

LACC BLO ;saving CHI and CLO 
SACL CLO 

AGRT32 LACC AH! ;If exponent of A> 32 
SACL CHI ;then c <- A. 
LACC ALO 
SACL CLO ;Copy ALO to CLO 
LACC ASIGN 
SACL CSIGN ;Copy ASIGN to CSIGN 
RETD ;Return after 

LACC AEXP ;copying AEXP to CEXP 
SACL CEXP 

Example 7-19. Floating-Point Multiplication Using BSAR 

7-34 

.title 'Floating Point Multiplication Routine• 

* * THIS SUBROUTINE MULTIPLIES TWO FLOATING-POINT NUMBERS PRODUCING 
* A NORMALIZED FLOATING-POINT PRODUCT. THE FORMAT OF FLOATING-
* POINT NUMBERS IS SPECIFIED BELOW. 
* * INPUT I OUTPUT FORMAT 
* ===================== 

ALL 0 OR 1 SIGN WORD 

16 BITS EXPONENT 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Io I 15 BITS HIGH PART OF MANTISSA 

16 BITS LOW PART OF MANTISSA 

* NOTE THAT EVEN IF THE PRODUCT IS ZERO, SIGN OF THE PRODUCT MAY 
* EITHER BE POSITIVE OR NEGATIVE DEPENDING ON THE INPUTS. 
* * Key C5x Instructions: 
* BSAR 1-16 bit right barrel arithmetic shift in one cycle 
* CLRC reset control bit 
* SETC set control bit 
* BD branch after executing next two one-word instructions 
* or one two-word instruction 
* 
ASIGN .set 60h ;Sign, exponent, high and low parts of mantissa 
AEXP .set 61h ;of input number A 
AHI .set 62h 
ALO .set 63h 

BSIGN .set 64h ;Sign, exponent, high and low parts of mantissa 
BEXP .set 65h ;of input number B 
BHI .set 66h 
BLO .set 67h 

CSIGN .set 68h ;Sign, exponent, high and low parts of mantissa 
CEXP .set 69h ;of the resulting floating point number C 
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CHI 
CLO 

.set 

.set 

.text 

MULT 

NZ ERO 

SIGN 

LOP 
MAR 
LAR 
SPM 
LACC 
ADD 
SACL 
CLRC 
LT 
MPYU 
LTP 
MPYU 
MPYA 
BSAR 
APAC 
BCND 
SACH 
BO 

SACL 
SACL 

SFL 
NORM 
SACH 
SACL 
SETC 
LACC 
SAR 
SUB 
SACL 
LACL 
RETD 

XOR 
SACL 

6ah 
6bh 

#0 
*,ARO 
AR0,#0 
0 
AEXP 
BEXP 
CEXP 
SXM 
ALO 
BHI 
AHI 
BLO 
BHI 
16 

NZERO,NEQ 
CHI 
SIGN 
CLO 
CEXP 

*+ 
CHI 
CLO 
SXM 
CEXP 
ARO,CEXP 
CEXP 
CEXP 
ASIGN 

BSIGN 
CSIGN 

Extended-Precision Arithmetic 

ARP <- ARO 
Reset exponent counter 
No left shift of P register 

;CEXP = AEXP + BEXP 
;for barrel shift, disable sign extension 
;T • ALO 
;P • ALO*BHI 
;Acc•ALO*BHI, T=AHI 
;P•AHI*BLO 
;Acc•ALO*BHI + AHI*BLO, P=AHI*BHI 
;Retain upper 16 bits plus 1 additional 
;bit due to zero MSBs of BLO & ALO 
;If the product is not zero 
;If the product is zero 
;then clear CHI,CLO and CEXP 
;and jump to SIGN 

;Discard additional sign bit (Q63) 
;Remove leading zero if any 
;Save product 

;Enable sign extension mode 

;CEXP<-ARO 

CEXP=CEXP-ARO 
If signs are same then product is +ve 
Return after next two instructions 
otherwise it is -ve. 
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7 .1 O Application-Oriented Operations 

7 .10.1 Modem Application 

Digital signal processors are especially appropriate for modem applications. 
The 'C5x devices with their enhanced instruction set and reduced instruction 
cycle time are particularly effective in implementing encoding and decoding al­
gorithms. Features like circular addressing, repeat block, and single-cycle bar­
rel shift reduce the execution time of such routines. 

Example 7-20 implements a differential and convolutional encoder for a 9600-
bit/s V.32 modem. This encoder uses trellis coding with 32 carrier states. The 
data stream to be transmitted is divided into groups of four consecutive data 
bits. The first two bits in time 01 n and 02n in each group are differentially en­
coded into Y1 n and Y2n according to the following equations: 

Y1n=01n®Y1n-1 

Y2n = (01 n • Y1 n-1) Ef> Y2n-1 Ef> 02n 

This is done by a subroutine called DIFF. The two differentially encoded bits 
Y1 n and Y2n are used as inputs to a convolutional encoder subroutine EN­
CODE, which generates a redundant bit YOn. These five bits are packed into 
a single word by the PACK subroutine. 

Example 7-20. V.32 Encoder Using Accumulator Buffer 

7-36 

.title 'Convolutional Encoding for a V.32 Modem' 

.mmregs 

STATMEM 
INPUT 
YPAST 
OUTPUT 
LOCATE 
PCKD IP 
PCKD-OP 
COUNT 

INIT 

START 

UNPACK 

.set 

.set 

.set 

.set 

.set 

.set 

.set 

.set 

.text 

LAR 
LAR 
LAR 
LDP 

MAR 
LACC 
SACL 

LAR 
LACL 
SAMM 
LACL 
SAMM 

LACC 
RPTB 

60h 
64h 
68h 
63h 
6ah 
lOOOh 
2000h 
so 

ARl,#PCKD_IP 
AR2,#PCKD_OP 
AR3,#COUNT-1 
#0 

*,ARl 
*+,O,ARO 
LOCATE 

AR0,#INPUT+3 
#3 
BRCR 
#1 
DBMR 

LOCATE 
LOOPl-1 

;(60h - 62h) Delay States Sl,S2,S3 
;(64h - 67h) Four input bits 
;(68h - 69h) Past values of Yl and Y2 
;YO, the redundant bit 
;Temporary storage for current input word 
;Input buffer (4 bits packed per word) 
;Output buffer (5 bits packed per word) 
;# of input data words 

;COUNT contains # of input words 

;Temporary storage for current input word 

;Loop 4 times 

;Load DBMR with the mask for LSB 

;Ace = packed input bits 
;for I=O,I<=3,I++ 
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SACL * Save it 
APL *- Mas~ off all bits except LSB 
SFR Shift right to get next bit 

LOOPl 
CALL DIFF ;Call differential encoder 
CALL ENCODE ;Call convolutional encoder 

PACK LAR ARO,#INPUT 
LACL 13 ;Loop 4 times only 
SAMM BRCR 
LACC *+ ;Get first bit (MSB) 

RPTB LOOP2-1 ;for I•O,I<•2,I++ 
SFL ;make space by left-shifting once 
ADD *+ ;Pack next bit by left-shifting other 
NOP 

LOOP2 
MAR *,AR2 ;ARP <- AR2 
SACL *+,0,AR3 ;Save it in packed form 
BANZ START ;Loop if COUNT is not zero 
RET ;Return 

This subroutine differentially encodes Qln and Q2n (INPUT 
buffer) according to previous output values Yln-1 and 
Y2n-1 (YPAST buffer). The resulting values Yln and Y2n overwrite 
previous Qln and Q2n. 

DIFF LACC YPAST ;Acc•Yln-1 
AND INPUT ;Qln & Yln-1 
XOR INPUT+l ; (Qln & Yln-1) xor Q2n 
XOR YPAST+l ; (Qln & Yln-1) xor Q2n xor Y2n-1 
SACL INPUT+l 
SACL YPAST+l ;Save Y2n 
LACC YPAST 
XOR INPUT ;Qln xor Yln-1 
RETD ;Delayed return 

SACL INPUT ;Save Yln 
SACL YPAST ;save Yln-1 

This subroutine generates a redundant bit YOn by convolutional encoding, 
taking Yln and Y2n as input. Three delay states Sl, S2 and S3 are 
located in STATMEM buffer. 

ENCODE LACC STATMEM 
SACL OUTPUT ;YO <- Sl 
LACC INPUT+l 
XOR STATMEM+l ;Y2 xor S2 
SACB ;Save in AccB 
LACC OUTPUT 
AND INPUT ;YO & Yl 
XORB ;(YO 'Yl) xor (Y2 xor S2) 
SACL STATMEM ;Save it in Sl 
LACC OUTPUT 
ANDB ;YO ' (Y2 xor S2) 
SACB 
LACC INPUT 
XOR INPUT+l ;Yl xor Y2 
XOR STATMEM+2 ;(Yl xor Y2) xor S3 
XORB ;((Yl xor Y2) xor S3) xor (YO & (Y2 xor S2)) 
SACL STATMEM+l ;Update S2 
RETD ;Delayed return 

LACC OUTPUT 
SACL STATMEM+2 ;Update S3 
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7.10.2 Adaptive Filtering 

There are many practical applications of adaptive FIR/llR filtering; one exam­
ple is in the adapting or updating of coefficients. This can become computa­
tionally expensive and time-consuming. The MPYA, ZALR, and RPTB instruc­
tions on the 'CSx can reduce execution time. 

A means of adapting the coefficients on the 'CSx is the least-mean-square al­
gorithm given by the following equation: 

bk (i + 1) = bk (i) + 2Be(i)x(i - k) 

where e (i) = x (i) - y (i) 
and 

N-1 

y(i) = I bk x(i - k) 
k=O 

Quantization errors in the updated coefficients can be minimized if the result 
is obtained by rounding rather than truncating. For each coefficient in the filter 
at a given point in time, the factor 2*B*e(i) is a constant. This factor can then 
be computed once and stored in the T register for each of the updates. 

MPYA and ZALR instructions help in reducing the number of instructions in the 
main adaptation loop. Furthermore, the RPTB (repeat block) instruction allows 
the block of instructions to be repeated without any penalty for looping. 

Example 7-21 shows a routine that implements a 128-tap FIR filter and an 
LMS adaptation of its coefficients. The single-access internal RAM of the 
'C50/C51 can be mapped in both the program and data spaces at the same 
time by setting OVL Y and RAM control flags to 1 . This feature can be used to 
advantage by locating the coefficients table in single-access internal RAM so 
that it can be accessed by MACO and MPY instructions without modifying 
RAM configuration. Note that the MACO instruction requires one of its oper­
ands to be in program space. 

If the address of the coefficient table is to be determined in runtime, load the 
BMAR (block move address register) with the address computed dynamically 
and replace the instruction 

MACO COEFFP,*-
by 
MAOO *-
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Example 7-21. Adaptive FIR Filter Using RPT and RPTB 

* 

.title 'Adaptive Filter' 

.def ADPFIR 

.def X,Y 

.nunregs 

* This 128-tap adaptive FIR filter uses on-chip memory block BO for 
* coefficients and block Bl for data samples. The newest input should 
* be in memory location X when called. The output will be in memory location Y 
* when returned. 
* OVLY •1 , RAM •l when this routine is called. 
* 
COEFFP .set 02000h ;Program memory address of the coeff. 
COEFFD .set 02000h ;Data memory address of the coeff. 
* For TMS320C51, COEFFD is 0800h instead of 02000h 
ONE .set 7Ah ;Constant one. (DP•O). 
BETA .set 7Bh ;Adaptation constant. (DP=O). 
ERR .set 7Ch ;Signal error. (DP=O). 
ERRF • set 7Dh ;Error function. (DP=O) • 
y .set 7Eh ;Filter output. (DP=O). 
x .set 037Fh ;Newest data sample. 
FRSTAP .set 0380h ;Next newest data sample. 
LAS TAP .set 03FFh ;Oldest data sample. 

* * Finite impulse response (FIR) filter. 
* 
ADPFIR ZPR ;Clear P register. 

LACC #1,14 ;Load output rounding bit. 
MAR * ,ARJ 
LAR AR3,#LASTAP ;Point to oldest sample. 

FIR RPT #127 
MACD COEFFP,*- ;128-tap FIR filter. 

APAC 
SACH y I 1 ;Store the filter output. 
NEG ;Ace - -y(n) 
LAR ARJ,#X 
ADD *,15 ;Add the newest input sample. 
SACH ERR,l ;err(n) = x(n) - y(n) 
DMOV * ;Include newest sample 

* 
* LMS Adaption of Filter Coefficients. 
* 

* 

* 

* 
ADAPT 

* 

* 
LOOP 

LT 
MPY 
PAC 
ADD 
SACH 

LACC 
SAMM 

LAR 
LAR 
LT 
MPY 

RPTB 
ZALR 
MPYA 

SACH 

ZALR 
RETD 

ERR 
BETA 

ONE,14 
ERRF,1 

#126 
BRCR 

AR2,#COEFFD 
AR3,#LASTAP 
ERRF 
*-,AR2 

LOOP-1 
*,ARJ 
*-,AR2 

Ace = ak(i) + 
*+ 

* ,ARJ 

APAC 
SACH *+ 

;T = err 
;P = beta*err(i) 
;errf (i) = beta * err(i) 
;Round the results. 
;Save errf(i) 

;127 coefficients to update 
in the loop. 

;Point to the coefficients. 
;Point to the data samples. 

;P = 2*beta*err(i)*x(i-255) 

;For I=O,I<=l26,I++ 
;Load ACCH with ak(i). 
;P = 2*beta*err(i)*x(i-k-l) 
2*beta•err(i)*x(i-k) 
;Store ak(i+l) 

;Finally update last coeff. aO(i) 
Delayed return 
Ace = aO(i) + 2*beta*err(i)*x(i) 
Save aO(i+l) 

in 
in S/A RAM 
S/A RAM 
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7.10.3 HR Filters 

Infinite impulse response (llR) filters are widely used in digital signal process­
ing applications. The transfer function of an II R filter is given by: 

H(z) = bo + b1z-1 + ... + bMz-M = Y(z) 
1 + a1z-1 + ... + aNz-N X(z) 

Figure 7-5 shows a block diagram of an Nth order direct-form 11 llR filter: 

Figure 7-5. Nth Order Direct-Form Type II llR Filter 

x(n) y(n) 

In the time domain, an Nth order llR filter is represented by the following two 
difference equations: 

at time interval n: 

x(n) is the current input sample 

y(n) is the output of the llR filter 

d(n) = x(n) - d(n-1 )a1 - ... - d(n-N+ 1 )aN_1 

y(n) = d(n)bo + d(n-1)b1 + ... + d(n-N+1)bN-1 

The two equations above can easily be implemented on the 'C5x by using mul­
tiply-accumulate instructions (MAC, MACO, MADS, MADD). Note that the 
second equation would also require a data-move operation to update the state 
variable sequence d(n). Example 7-22 implements an Nth order llR filter us­
ing single-instruction repeat (RPT) and multiply-accumulate (MAC, MACO} in­
structions. 

Example 7-22. Using RPT and MACO 
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.title "Nth Order IIR Type II Filter" 

.mmregs 
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* 
* Thie routine implements an N-th order type II IIR filter. 
* d(n) • x(n) - d(n-l)al - d(n-2)a2 + ••• - d(n-N+l)aN-1 
* y(n) • d(n)bO + (dn-l)bl + ••• + d(n-N+l)bN-1 
* Memory Requirement: 
* State variables (low to high data memory): 
* d(n) d(n-1) ••• d(n-N+l) 
* Coefficient (low to high program memory): 
* b(N-1) b(N-2) ••• b(l) -a(N-1) -a(N-2) ••• -a(l) -a(O) 
* Entry Conditions: 
* ARO -> Input 
* ARl -> d(n-N+l) 
* AR2 -> Output 
* COEFFA -> -a(N-1) 
* COEFFB -> b(N-1) 
* ARP = ARO 
* 
IIR_N: 

ZPR 
LACC 
RPT 

AC 
APAC 
SACH 
ADRK 
RPTZ 

MACO 
LTA 
SACH 

*,15,ARl 
#(N-2) 
COEFFB,*-

*,l 
N-1 
#(N-1) 
COEFFA,*­
*,AR2 
*,l 

;Clear P register 
;Get QlS input 
;for i=l,i<=N-1,++i 
;Acc+~a(N-i))*d(n-N+i) 
;Final accumulation 
;Save d(n) 
;ARl -> d(n-N+l) 
;for i•l,i<•N,++i 
;Acc+•b(N-i)*d(n-N+i) 
;Final accumulation 
;Save Yn 

Due to the recursive nature of an I IR filter, quantization of filter coefficients may 
cause significant variation from the desired frequency response. To avoid this 
problem, the desired filter transfer function can be broken up into lower order 
sections that are cascaded with each other. The following example shows an 
implementation of N cascaded second-order llR sections (also called biquad 
sections). The filter coefficients and the state variables are stored in data 
memory. Note the use of LTD and MPYA instructions to perform multiply-accu­
mulate and data-move operations. 
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Example 7-23. Using LTD and MPYA 

.title "N Cascaded BiQuad IIR Filters" 

.nunregs 

* * This routine implements N cascaded blocks of biquad IIR 
* canonic type II filters. Each biquad requires 3 data 
*memory locations d(n),d(n-l),d(n-2), and 5 coefficients 
* -al,-a2,b0,bl,b2. 
* For each block: d(n) = x(n)-d(n-l)al-d(n-2)a2 
* y(n) = d(n)b0+d(n-l)bl+d(n-2)b2 
* Coefficients Storage: (low to high data memory) 
* -a2,-al,b2,bl,b0, •.• ,-a2,-al,b2,bl,b0 
* let biquad Nth biquad 
* 
* State Variables: (low to high data memory) 
* d(n),d(n-l),d(n-2), ,d(n),d(n-l),d(n-2) 
* Nth biquad let biquad 
* 
* Entry conditions: 
* ARl -> d(n-2) of let biquad 
* AR2 -> -a2 of let biquad 
* AR3 -> input sample (Ql5 number) 
* AR4 -> output sample (Ql5 number) 
* DP = O, PM = O, ARP = 3 
* 
BIQUAD: 

LOOP: 

ZPR 
LACC * , 15 , ARl 
SPLK #2,INDX 
SPLK #N-1 , BRCR 

RPTB ELOOP-1 

LT *-,AR2 
MPYA *+,ARl 
LTA *-,AR2 
MPY *+ 
LTA *+,ARl 
SACH *O+,l 
MPY *­
LACL #0 
LTD *-,AR2 
MPY *+,ARl 
LTD *-,AR2 
MPY *+,ARl 

ELOOP: 
LTA *,AR4 
SACH *,l 

Setup variables 
Clear P register 
Get Q15 input 
Setup index register 
Setup count 

Begin computation; 
repeat for N biquads 

T = d(n-2) 
Ace= x(n), P = -d(n-2)a2 
Ace += -d(n-2)a2, T d(n-1) 
P = -d(n-l)al 
Ace += -d(n-l)al, T = b2 
Save d(n) 
P = d(n-2)b2 
Ace = O 
T = d(n-1), d(n-2) = d(n-1) 
Ace += d(n-2)b2, P = d(n-l)bl 
T = d(n), d(n-1) = d(n) 
Ace += d(n-l)bl, P = d(n)bO 

Final accumulation 
Save output in Ql5 format 

7.10.4 Dynamic Programming 
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Dynamic programming techniques are widely used in optimal search algo­
rithms. Applications such as speech recognition, telecommunications, and ro­
botics use dynamic programming algorithms. The 'CSx digital signal proces­
sors have an enhanced instruction set for efficient implementation of dynamic 
programming methods. 

Most real-time search algorithms use the basic dynamic programming princi­
ple that the final optimal path from the start state to the goal state always 
passes through an optimal path from the start state to an intermediate state. 
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Identifying intermediate paths reduces a long, time-consuming search to the 
final goal. An integral part of any optimal search scheme based on the dynamic 
programming principle is the backtracking operation. The backtracking is nec­
essary to retrace the optimal path when the goal state is reached. 

Example 7-24 shows an implementation of the backtracking algorithm in 
which the path history consists of four independent path traces for Ntime peri­
ods. This path history is stored in a circular buffer. After each back-tracking op­
eration, the path history is updated by a search algorithm (not shown) for the 
next time period. The path history buffer is shown in Figure 7-6 for N equal to 
4. Each group of four consecutive memory locations in the buffer corresponds 
to the expansion of the four paths by one node (or by one time period). Each 
element of a group corresponds to one of the four states in that time period. 
In addition, each element of a group points to an element in the previous time 
period that belongs to that path. 

As an illustration of backtracking using the path history buffer shown in 
Figure 7-4, the element corresponding to state #0 at the current time period 
contains a 1. This points to the second element of the previous time period that 
contains a 0. In this way, beginning from the current time period and using 
pointers to step back in time, this path is traced back as 1--0-2-1. Note that 
this simplified backtracking approach is taken here to illustrate 'C5x program­
ming techniques. Most real applications would require more complex back­
tracking algorithms. 

Figure 7-6. Backtracking With Path History 

n-4 n-3 n-2 n-1 

Path Trace for 5 Periods 

Buffer 

1 1 2 2 

0 0 0 1 

3 2 1 3 

2 3 3 0 

n-1 n n-3 n-2 
t Current Time Period 

Path History Circular Buffer (N = 4) 

State #0 

2 

3 

n 
Current Time Period 

Buffer+ 15 
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Example 7-24. Backtracking Algorithm Using Circular Addressing 
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* * Backtracking Example 
* Thia program back-tracks the optimal path expanded by 
* a dynamic programming algorithm. The path history 
* consists of four paths expanded N times. It is set up 
* as a circular buffer of length N*4. 
* Note that decrement type circular buffer is used. 
* The start and end address of the circular buffer are 
* initialized this way because of two reasonss 
* 1- to avoid skipping the end-address of circ buffer 
* 2- to ensure that wrap-around is complete before next 
* iteration. 
* 

LAR ARO,#BUFFER ;get buffer address 
LMMR INDX,PATH ;get the selected path [0 •• 3] 
SPLK #N-1,BRCR ;trace back N time periods 

* init. ARO as pointer to circular buffer#l; length=N*4 words 
SPLK #BUFFER+(N-1)*4,CBSRl 
SPLK #BUFFER-3,CBERl 
SPLK #OBh,CBCR 

* RPTB 
MAR 
LACC 
SAMM 
SBRK 
SBRK 

TLOOP: 

TLOOP-1 
*0+ 
*0-
INDX 
3 
1 

for i•O,i<N,i++ 
of feet by state# 
get next pointer & reset to state#O 
save next state# 
decrement ARO to avoid skipping CBERl 
now ARO is correctly positioned 1 time 
period back (circular addressing) 
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7 .11 Fast Fourier Transforms 

Fourier transforms are an important tool often used in digital signal processing 
systems. The purpose of the transform is to convert information from the time 
domain to the frequency domain. The inverse Fourier transform converts infor­
mation back to the time domain from the frequency domain. Computationally 
efficient implementations of the Fourier transforms are known as fast Fourier 
transforms {FFT}. 

The 'C5x reduces the execution time of all FFTs by virtue of its 50-ns instruction 
cycle time. Also, the bit-reversed addressing mode helps reduce execution 
time for radix-2 FFTs. As demonstrated in Figure 7-7 and Figure 7-8, the in­
puts or outputs of an FFT are not in sequential order. This scrambling of data 
locations is a direct result of the radix-2 FFT derivation. Observation of the fig­
ures and the relationship of the input and output addressing reveal that the ad­
dress indexing is in bit-reversed order, as shown in Table 7-1. As a result, ei­
ther the input data sequence or the output data sequence must be scrambled 
in association with the execution of the FFT. In Example 7-27, the input data 
is scrambled before the execution of FFT algorithm so that the output is in or­
der. 

Figure 7-7. An In-Place DIT FFT With In-Order Outputs and Bit-Reversed Inputs 

Stage 1 Stage 2 Stage 3 
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x(2) 
Wo 
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Figure 7-8. An In-Place DIT FFT With In-Order Inputs but Bit-Reversed Outputs 

Stage 1 Stage2 Stage3 
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x(1) 

x(2) 
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x(2) 
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Wo 

x(3) 

x(1) x(4) 
Wo W1 
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x(7) x(7) 
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1 = Wa W2 2 3 =We W3 =We 

Table 7-1. Bit-Reversal Algorithm for an 8-Point Radix-2 DIT FFT 
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Index Bit Pattern Bit-Reversed Pattern Bit-Reversed Index 

0 000 000 0 
1 001 100 4 
2 010 010 2 
3 011 110 6 
4 100 001 1 
5 101 101 5 
6 110 011 3 
7 111 111 7 

The bit-reversed addressing mode is part of the indirect addressing implem­
ented with the auxiliary registers and the associated arithmetic unit. In this 
mode, a value (index) contained in INDX is either added to or subtracted from 
the auxiliary register being pointed to by the ARP. However, the carry bit is not 
propagated in the forward direction; instead, it is propagated in the reverse di­
rection. The result is a scrambling in the address access. 

The procedure for generating the bit-reversed address sequence is to load 
IN DX with a value corresponding to one-half the length of the FFT and to load 
another auxiliary register-for example, AR1-with the base address of the 
data array. However, implementations of FFTs involve complex arithmetic; as 
a result, two data memory locations (one real and one imaginary) are asso­
ciated with each data sample. For ease of addressing, the samples are stored 
in workspace memory in pairs with the real part in the even address locations 
and the imaginary part in the odd address locations. This means that the offset 
from the base address for any given sample is twice the sample index. If the 
incoming data is in the following form: 
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XR(O),XR(l), ••• ,XR(7),XI(O),XI(l), ••• ,XI(7) 
WHERE 

XR - real component of input sample 
XI - imaginary component of input sample 

then it is easily transferred into the data memory and stored in the scrambled 
order: 

XR(O),XI(O),XR(4),XI(4),XR(2),XI(2), ••• XR(7),XI(7) 

by loading INDX register with the size of FFT and by using bit-reversed ad-
dressing to save each input word. 

The following list shows the contents of auxiliary register AR1 when INDX is 
initialized with a value of 8 and when the data is being transferred by the code 
that follows. 

MSB LSB 
INDX 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 FOR 8-POINT FFT 
ARl 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 BASE ADDRESS 

RPT 15 
BLDD #INPUT,*BRO+ 

ARl 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 XR( 0) 
ARl 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 XR( 4) 
ARl 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 XR( 2) 
ARl 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 XR( 6) 
ARl 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0XR(1) 
ARl 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 XR( 5) 
ARl 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 XR( 3) 
ARl 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 XR( 7) 
ARl 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 XI ( 0) 
ARl 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 XI ( 4) 
ARl 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 XI ( 2) 
ARl 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 XI ( 6) 
ARl 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 XI ( 1) 
ARl 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 XI ( 5) 
ARl 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 XI ( 3) 
ARl 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 XI ( 7) 

This is shown in the FFT subroutine for 16 input samples. 
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Example 7-25. Macros for 16-Point DIT FFT 

7-48 

****************************************************************************** 
* FILE: cScxrad2.mac ~> macro file for radix 2 fft's based on 320cSx * 

* 
* 

* * COPYRIGHT TEXAS INSTRUMENTS INC. 1990 
****************************************************************************** 
* * 
* MACRO 'COMB02X' FOR THE COMPLEX, RADIX-2 DIT FFT 

* 
* ORGANIZATION OF THE INPUT DATA MEMORY: Rl,Il,R2,I2,R3,I3,R4,I4 

* 
* 
* 
* * 

****************************************************************************** 
* * 
* THE MACRO 'COMB02x' PERFORMS FOLLOWING CALCULATIONS: * 

* * * Rl 
* R2 
* R3 
* R4 
* I1 
* I2 
* I3 
* I4 
* 

:= [(Rl+R2)+(R3+R4)]/4 
:• [(Rl-R2)+(I3-I4)]/4 
:• [(Rl+R2)-(R3+R4)]/4 
:= [(Rl-R2)-(I3-I4)]/4 
:= [(Il+I2)+(I3+I4)]/4 
:= [(Il-I2)-(R3-R4)]/4 
:= [(Il+I2)-(I3+I4)]/4 
:= [(Il-I2)+(R3-R4)]/4 

INPUT 

ARO • 7 
ARl -> Rl,Il 
AR2 -> R2,I2 
ARP-> AR3 -> R3,I3 
AR4 -> R4,I4 

OUTPUT * 
* 
* 

ARl > RS,IS * 
AR2 > R6,I6 * 
ARP > AR3 - > R7,I7 * 
AR4 > R8,I8 * 

* 
* 

* For a 16-point Radix 2 complex FFT the Macro 'COMB02x' has to be 
*repeated N/4 times (e.g. 4 times for a 16 point FFT). 

* 
* 
* * ****************************************************************************** 

* 
COMBOSx $MACRO num 

SPLK #:num:-1,BRCR 
REPEAT MACRO 'COMBOSx': N/4 times 
execute •num' times 'COMBOSx' 

* 
* 

* 

* 

* 

* 

* 

RPTB 

LACC 
SUB 

SACH 

ADD 
SACH 

ADD 
ADD 
SACH 
SUB 
SACH 

ADD 
SUB 
ADD 
SUB 
SACH 
ADD 
SUB 
SACH 

LACC 
SUB 
SACH 
ADD 
ADD 
ADD 
SACH 
SUB 
SUB 
SACH 

LACC 

comboend 

*,14,AR4 
*,14,ARS 
*+,l,AR4 

*+,lS,ARS 
*,l,AR2 

*,14,ARl 
*,14 
*+,O,ARS 
*,16,AR3 
*+,O,ARS 

*,1S,AR2 
*,1S,AR3 
*,14,AR4 
*,14,AR2 
*+,O,AR4 
*-, 1S,AR3 
*, 1S,AR4 
*+,O,ARl 

*,14,AR2 
*,14,ARS 
*,l,AR2 
*,1S,AR3 
*,14,AR4 
*,14,ARl 
*O+,O,AR3 
*,1S,AR4 
*,1S,AR3 
*0+,0,ARS 

*-,lS 

ACC := (R3)/4 
ACC :• (R3-R4)/4 
Tl = (R3-R4)/2 

ACC := (R3+R4)/4 
T2 (R3+R4 I /2 

ACC := (R2+R3+R4)/4 
ACC := (Rl+R2+R3+R4)/4 
Rl := (Rl+R2+R3+R4)/4 
ACC := (Rl+R2-(R3+R4))/4 
R3 :• (Rl+R2-(R3+R4))/4 

ACC := (Rl+R2)/4 
ACC := (Rl-R2)/4 
ACC :• ((Rl-R2)+(I3))/4 
ACC :• ((Rl-R2)+(I3-I4))/4 
R2 := ((Rl-R2)+(I3-I4))/4 
ACC :• ((Rl-R2)+ I3+I4 )/4 
ACC := ((Rl-R2)-(I3-I4))/4 
R4 :• ((Rl-R2)-(I3-I4) )/4 

ACC : "" ( I1 I I 4 
ACC := (Il-I2)/4 
T2 := (Il-I2)/2 
ACC :• ((Il+I2))/4 
ACC :• ((Il+I2)+(I3))/4 
ACC := ((Il+I2)+(I3+I4))/4 
Il :• ((Il+I2)+(I3+I4))/4 
ACC := ((Il+I2)-(I3+I4))/4 
ACC :• ((Il+I2)-(I3+I4))/4 
I3 :• ((Il+I2)-(I3+I4))/4 

ACC := (Il-I2)/4 

ARP ARl AR2 AR3 AR4 ARS 

4 Rl R2 R3 R4 Tl 
S Rl R2 R3 R4 Tl 
4 Rl R2 I3 R4 T2 

S Rl R2 R3 I4 T2 
2 Rl R2 R3 I4 T2 

1 Rl R2 R3 I4 T2 
1 Rl R2 R3 I4 T2 
S Il R2 R3 I4 T2 
3 Il R2 R3 I4 T2 
S Il R2 I3 I4 T2 

2 I1 R2 
3 I1 R2 
4 I1 R2 
2 I1 R2 
4 I1 I2 
3 I1 I2 
4 I1 I2 
1 I1 I2 

I3 I4 T2 
I3 I4 T2 
I3 I4 T2 
I3 I4 T2 
I3 I4 T2 
I3 R4 T2 
I3 R4 T2 
I3 I4 T2 

2 I1 
s I1 
2 I1 
4 I1 
4 I1 
1 I1 
3 RS 
4 RS 
3 RS 
S RS 

I2 I3 
I2 I3 
I2 I3 
I2 I3 
I2 I3 
I2 I3 
I2 I3 
I2 I3 
I2 I3 
I2 R7 

I4 T2 
I4 T2 
I4 T2 
I4 T2 
I4 T2 
I4 T2 
I4 T2 
I4 T2 
I4 T2 
I4 T2 

S RS I2 R7 I4 Tl 

Software Applications 



Fast Fourier Transforms 

SUB *,1S,AR2 ACC = ((Il-I2)-(R3-R4))/4 2 RS I2 R7 I4 Tl 
SACH *0+,0,ARS I2 • ((Il-I2)-(R3-R4))/4 s RS R6 R7 I4 Tl 
ADD *,16,AR4 ACC • ((Il-I2)+(R3-R4))/4 4 RS R6 R7 I4 Tl 

comboend: 
SACH *0+,0,AR3 I4 :• ((Il-I2)+(R3-R4))/4 3 RS R6 R7 RB Tl 

* 
MAR *,AR2 ARP=AR2 
$ENDM 

* 
****************************************************************************** 
* * 
* MACRO 'ZEROI' number of words : 10 * 
* * 
* ARP=2 FOR INPUT AND OUTPUT * 
* AR2 -> QR,QI,QR+l, ••• * 
* AR3 -> PR,PI,PR+l, ••• * 
* * 
* CALCULATE Re[P+Q) AND Re(P-Q) * 
* QR'=(PR-QR)/2 * 
* PR'=(PR+QR)/2 * 
* PI'=(PI+QI)/2 * 
* PI'=(PI-QI)/2 * 
* * 
****************************************************************************** 
ZERO I $MACRO ARl AR2 ARP 

LACC *,lS,ARl ACC := (1/2) (QR) PR QR 1 
ADD *,lS ACC := ( 1/2) (PR+QR) PR QR 1 
SACH *+,0,AR2 PR := (l/2)(PR+QR) PI QR 2 
SUB *,16 ACC := (l/2)(PR+QR)-(QR) PI QR 2 
SACH *+ QR :• (l/2)(PR-QR) PI QI 2 

* 
LACC *,lS,ARl ACC := (1/2) (QI) PI QI 1 
ADD *,lS ACC := ( 1/2) (PI+QI) PI QI 1 
SACH *+,0,AR2 PI := (1/2) (PI+QI) PR+l QI 2 
SUB *,16 ACC pc (l/2)(PI+QI)-(QI) PR+l QI 2 
SACH *+ QI := (l/2)(PI-QI) PR+l QR+l 2 
$ENDM 

****************************************************************************** 
* * 
* MACRO 'PBY2I' number of words: 12 * 
* * 
* PR'=(PR+QI)/2 PI'=(PI-QR)/2 * 
* QR'=(PR-QI)/2 QI '=(PI+QR) /2 * 
* * 
****************************************************************************** 
PBY2I $MACRO ARl AR2 ARP 

LACC *+,lS,ARS PR QI s 
SACH *,l,AR2 TMP=QR PR QI 2 

* 
LACC *,lS,ARl ACC := QI/2 PR QI 1 
ADD *,lS ACC := (PR+QI)/2 PR QI 1 
SACH *+,O,AR2 PR := (PR+QI)/2 PI QI 2 
SUB *-, 16 ACC := (PR-QI)/2 PI QR 2 
SACH *+,0,ARl QR := (PR-QI)/2 PI QI 1 

* 
LACC *,lS,ARS ACC := (PI)/2 PI QI s 
SUB *,lS,ARl ACC := (PI-QR) /2 PI QI 1 
SACH *+,O,ARS PI := (PI-QR)/2 PR+l QI s 
ADD *,16,AR2 ACC := (PI+QR) /2 PR+l QI 2 
SACH *+ QI := (PI+QR) /2 PR+l QI+l 2 
$ENDN 

* 
****************************************************************************** 
* 
* 
* 
* 
* 
* 

MACRO 'PBY4J' number of words: 16 

T=SIN(4S)=COS(4S)=W4S 

PR'= PR + (W*QI + W*QR) PR + W * QI + W * QR (<- ARl) 

* 
* 
* 
* 
* 
* 
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* 
* 
* 
* 

QR'= PR - (W*QI + W*QR) = PR - W * QI W * QR 
PI'= PI + (W*QI - W*QR) = PI + W * QI W * QR 
QI'= PI - (W*QI - W*QR) = PI - W * QI + W * QR 

(<- AR2) 
(<- ARl+l) 
(<- AR1+2) 

* 
* 
* 
* 

****************************************************************************** 
; 
PBY4J $MACRO TREG= W AR5 PREG ARl AR2 ARP 

MPY *+,AR5 PREG= W*QR/2 W*QR/2 PR QI 5 
SPH *,ARl TMP W*QR/2 W*QR/2 W*QR/2 PR QI 1 
LACC *,15,AR2 ACC PR/2 W*QR/2 W*QR/2 PR QI 2 
MPYS *- ACC = (PR-W*QR)/2 W*QR/2 W*QI/2 PR QR 2 
SPAC ACC - (PR-W*QI-W*QR)/2 W*QR/2 W*QI/2 PR QR 2 
SACH *+,0,ARl QR (PR-W*QI-W*QR)/2 W*QR/2 W*QI/2 PR QI 1 
SUB *,16 ACC = (-PR-W*QI-W*QR)/2 W*QR/2 W*QI/2 PR QI 1 
NEG ACC = (PR+W*QI+W*QR)/2 W*QR/2 W*QI/2 PR QI 1 
SACH *+ QR (PR+W*QI+W*QR)/2 W*QR/2 W*QI/2 PI QI 1 

LACC *,15,AR5 ACC = (PI)/2 W*QR/2 W*QI/2 PI QI 5 
SPAC ACC = (PI-W*QI)/2 W*QR/2 PI QI 5 
ADD *,16,AR2 ACC = (PI-W*QI+W*QR)/2 PI QI 2 
SACH *+,O,ARl QI = (PI-W*QI+W*QR)/2 PI QRl 1 
SUB *,16 ACCU= (-PI-W*QI+W*QR)/2 PI QRl 1 
NEG ACCU• (PI+W*QI-W*QR)/2 PI QRl 1 
SACH *+,O,AR2 PI (PI+W*QI-W*QR)/2 PRl QRl 2 
$ENDM 

* 
****************************************************************************** 
* * 
* MACRO 'P3BY4J' number of words: 16 * 
* * 
* ENTRANCE IN THE MACRO: ARP=AR2 * 
* ARl->PR,PI * 
* AR2->QR,QI * 
* TREG=W=COS(45)=SIN(45) * 
* * 
* PR'= PR + (W*QI W*QR) = PR + W * QI - w * QR (<- ARl) * 
* QR'= PR - (W*QI W*QR) = PR - W * QI + w * QR (<- AR2) * 
* PI'= PI - (W*QI + W*QR) PI w * QI w * QR (<- ARl+l) * 
* QI'= PI + (W*QI + W*QR) = PI + W * QI + w * QR (<- AR1+2) * 
* * 
* EXIT OF THE MACRO: ARP=AR2 * 
* ARl->PR+l,PI+l * 
* AR2->QR+l,QI+l * 
* * 
****************************************************************************** 
P3BY4J $MACRO TREG= w AR5 PREG ARl AR2 ARP 

MPY *+,AR5 PREG• W*QR/2 W*QR/2 PR QI 5 
SPH *,ARl TMP = W*QR/2 W*QR/2 W*QR/2 PR QI 1 
LACC *,15,AR2 ACC = PR/2 W*QR/2 W*QR/2 PR QI 2 
MPYA *- ACC = (PR+W*QR)/2 W*QR/2 W*QI/2 PR QR 2 
SPAC ACC = (PR-W*QI+W*QR)/2 W*QR/2 W*QI/2 PR QR 2 
SACH *+,O,ARl QR' = (PR-W*QI+W*QR)/2 W*QR/2 W*QI/2 PR QI 1 
SUB *,16 ACC = (-PR-W*QI+W*QR)/2 W*QR/2 W*QI/2 PR QI 1 
NEG ACC - (PR+W*QI-W*QR)/2 W*QR/2 W*QI/2 PR QI 1 
SACH *+ PR' (PR+W*QI-W*QR)/2 W*QR/2 W*QI/2 PI QI 1 

LACC *,15,AR5 ACC = (PI)/2 W*QR/2 W*QI/2 PI QI 5 
APAC ACC (PI+W*QI)/2 W*QR/2 PI QI 5 
ADD *,16,AR2 ACC = (PI+W*QI+W*QR)/2 PI QI 2 
SACH *0+,0,ARl QI' (PI+W*QI+W*QR)/2 PI QR5 1 
SUB *,16 ACCU= (-PI+W*QI+W*QR)/2 PI QR5 1 
NEG ACCU= (PI-W*QI-W*QR)/2 PI QR5 1 
SACH *0+,0,AR2 PI' - (PI-W*QI-W*QR)/2 PR5 QR5 2 
$ENDM 

; 
****************************************************************************** 
* * 
* MACRO 'stage3' number of words: 54 * 
* * 
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****************************************************************************** 
stage3 

stage3e: 

* 

$macro 
SPLK 
LT 
RPTB 
ZERO I 
PBY4J 
PBY2I 
P3BY4j 
.set 
$ENDM 

num 
#1num1-l,BRCR 
cos45 
stage3e 

$-1 

; execute 'num'-1 times •stage3' 

****************************************************************************** 
* * * MACRO: 'BUTTFLYI' general butterfly radix 2 for 320C5x * 
* * * THE MACRO 'BUTTFLYI' REQUIRES 18 WORDS 
* * Definition: ARP -> AR2 (input) ARP -> AR2 (output) 
* 
* 
* 
* 
* 
* 
* 

Definition: 
Definition: 
Definition: 
Definition: 
Definition: 

ARl -> 
AR2 -> 
AR3 -> 
AR4 -> 
ARS -> 

* uses index register 

QR (input) ARl -> QR+l (output) 
PR (input) AR2 -> PR+l (output) 
Cxxx (input) AR3 -> Cxxx+l (output) 
Sxxx (input) AR4 -> Sxxx+l (output) 
temporary variable (unchanged) 

* 
* 
* 
* 
* 
* 

-> WR•cosine * 
-> WI•sine * 

* 
* 
* 
* * 

* 
* 
* 
* 
* 

PR' • (PR+(QR*WR+QI*WI))/2 
PI'= (PI+(QI*WR-QR*WI))/2 
QR'• (PR-(QR*WR+QI*WI))/2 
QI' = (PI-(QI*WR-QR*WI))/2 

WR=COS(W) WI•SIN(W) * 
* 
* 
* 
* 

****************************************************************************** 
BUTTFLYI $MACRO 

(contents of register after exec.) 
TREG ARl AR2 AR3 AR4 ARP 

RPTB btflyend ; ---- -- -- --
LT *+,AR3 ;TREG:= QR QR PR QI c s 3 
MPY *,AR2 ;PREG:• QR*WR/2 QR PR QI c s 2 
LTP *-,AR4 ;ACC I"' QR*WR/2 QI PR QR c s 4 
MPY *,AR3 ;PREG:• QI*WI/2 QI PR QR c s 3 
MPYA *+,AR2 ;ACC :• (QR*WR+QI*WI)/2 QR PR QR C+l s 2 

PREG:• QI*WR 
LT *,ARS ;TREG = QR QR PR QR C+l s 5 
SACH *, 1,ARl ;HO I'" (QR*WR+QI*WI) QR PR QR C+l s 1 

ADD *,15 ;ACC :• (PR+(QR*WR+QI*WI))/2 QR PR QR C+l s 1 
SACH *+,O,ARS ;PR :• (PR+(QR*WR+QI*WI))/2 QR PI QR C+l s 5 
SUB *,16,AR2 ;ACC 1= (PR-(QR*WR+QI*WI))/2 QR PI QR C+l s 2 
SACH *+,O,ARl ;QR I"' (PR-(QR*WR+QI*WI))/2 QR PI QI C+l s l 

LACC *,15,AR4 ;ACC := PI /PREG,.QI*WR QI PI QI C+l S 4 
MPYS *+,AR2 ;PREG:• QR*WI/2 QI PI QI C+l S+l 2 

;ACC :• (PI-QI*WR)/2 
APAC ;ACC :• (PI-(QI*WR-QR*WI))/2 QI PI QI C+l S+l 2 
SACH *+,O,ARl ;QI 1• (PI-(QI*WR-QR*WI))/2 QI PI QR+l C+l S+l 1 
NEG ;ACC 1•(-PI+(QI*WR-QR*WI))/2 QI PI QR+l C+l S+l 1 
ADD *,16 ;ACC :• (PI+(QI*WR-OR*WI))/2 QI PI QR+l C+l S+l 1 

btflyend: 
SACH *+,O,AR2 ;PI :• (PI+(QI*WR-QR*WI))/2 QI PR+l QR+l C+l S+l 2 
$ENDM 

end of file 
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Example 7-26. Initialization Routine 
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* 
* file: INIT-FFT.ASM 
* 
* Initialized variables 
* 

.bss 

.bss 

.bss 

.bss 

.bss 

.bss 

NN, 1 
NN2,1 
DATAADD,1 
cos45,1 
sin4,1 
cos4,1 

* Temp variables 
* 

.bss TEMP,2 
* • sect "vectors" 

B INIT,*,ARO 

number of fft-points 
2*N-l 
START ADDRESS OF DATA 

;start of sine in stage 4 
;start of cosine in stage 4 

;used for temporary numbers 

TABINIT: 
.sect 
.word 
.word 
.word 
.set 

"init" 
N,N-l,2*N-1,DATA 
5AB2h ;cos(4S)=sin(45) 

TABEND: 
* 
INIT: 

* 

LOP 
SPM 
CLRC 
SETC 
SPLK 

* INIT Block B2 
* 

TWID,TWID+4 
$ 

#0 
0 
OVM 
SXM 
#pmstmask,PMST 

;use only B2 and mmregs for direct addressing 
;no shift from PREG to ALU 
;disable overflowmode 
;enable sign extension mode 
:ndx=trm=l 

LAR ARO, #NN ; arp is already pointing to arO 
LACC #TABINIT 
RPT #TABEND-TABINIT 
TBLR *+ 

* 
* INIT TWIDDLE FACTORS 
* LAR ARO,#TWID 

LACC #TWIDSTRT 
RPT #TWIDLEN 
TBLR *+ 

* 
* EXECUTE THE FFT 
* 

LAR ARS,#TEMP 
CALL FFT,*,AR3 

* 
WAIT RET 
* 

;arp is already pointing to arO 

;pointer to 2 temp register 
;ARP=AR3 FOR MACRO COMBO 

;Return 
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Example 7-27. 16-Point Radix-2 Complex FFT 

N 

.file 

.title 

.width 

.set 

.mmregs 

"c5cx0016.asm" 
"0016 point DIT Radix-2, Complex FFT" 
120 
16 ; NUMBER OF POINTS FOR FFT 

pmstmask .set OllOb ; ndx=trm=l 
****************************************************************************** 
* 
* 
* 

16 - POINT COMPLEX, RADIX-2 DIF FFT WITH THE TMS320C5x / LOOPED CODE 
* 
* 
* 

****************************************************************************** 
* THE PROGRAM IS BASED ON THE BOOK 'CIGITAL SIGNAL PROCESSING APPLICATIONS' * 
* FROM TEXAS INSTRUMENTS P. 69. IT IS OPTIMIZED FOR THE TMS320C5x INCLUDING * 
* BIT REVERSAL ADDRESSING MODE. * 
* * 
****************************************************************************** 

* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

USED REGISTERS: INDX,AR1,AR2,AR3,AR4,AR5,ACCU,PREG,TREGO, PMST, BRCR 
2 Stacklevel, Block B2 for temp variables 

* 
* 
* 
* 
* 
* 
* 

PROGRAM MEMORY: 164 WORDS ('END' - 'FFT') WITHOUT INITIALIZATION 

COEFFICIENTS 16 BITS (Q15 Format) SCALING: 

PROGRAM SEQUENCE:O. 
1. 
2. 
2 .1. 
2.2. 
3. 

INITIALIZATION FOR FFT/COEFF 
INPUT NEW DATA INTO 'INPUT' 
CALL SUBROUTINE FFT 
BITREVERSAL FROM INPUT TO DATA 
FFT WITH WORK SPACE DATA 
OUTPUT THE RESULTS FROM DATA 

INPUT DATA AT ADDRESS 0220h-023fh: 

ADD: 
ADD: 
ADD: 
ADD: 
ADD: 
ADD: 

240H 
220H 
600H 
200H 
200H 
200H 

THE DATA IS STORED IN 'INPUT' AS THE SEQUENCE: X(O),X(l), •.• ,X(l5) 
Y(O),Y(l), ••• ,Y(l5) 

OUTPUT DATA AT ADDRESS 0200h-021fh: 

THE DATA IS STORED IN 'DATA' AS THE SEQUENCE: 
X(O),Y(O),X(l),Y(l), •••••• ,X(l5),Y(l5) 

20BH * 
23FH * 
6A3H * 
21FH * 
21FH * 
21FH * 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

****************************************************************************** 
* * 
* THIS PROGRAM INCLUDES FOLLOWING FILE: * 
* * 
* THE FILE 'TWIDDLES.Q15' CONSISTS OF TWIDDLE FACTORS IN Q15 FORMAT * 
* THE FILE 'C5CXRAD2.MAC' macro files * 
* THE FILE 'INIT-FFT.ASM' for initialization * 
****************************************************************************** 
* 

; table of 
TWIDSTRT 

TWIDEND 
TWIDLEN 
* 
INPUT 
DATA 
TWID 
* 
* 
* 

.include 

.def 

.def 

.def 

C5CXRAD2.MAC 
TWIDLEN,FFTLEN,TEMP,WAIT,cos45 
INIT,FFT,TWIDSTRT,TWIDEND 
STAGE1,STAGE3,STAGE4,INPUT,DATA,TWID 

.sect "twiddles" 
twiddle factors for the FFT 
.set $ 
.include twiddles.q15 
.set $ 
.set TWIDEND-TWIDSTRT 

.usect 

.usect 

.usect 

.include 

"input",N*2 
"data",N*2 
"twid",N*2 

init-fft.asm 

;input data array 
;working data array 
;reserve space for twiddles 
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.sect "fftprogram" 
* * FFT CODE WITH BIT-REVERSED INPUT SAMPLES / ARP=AR3 
* FFT: 

* 
* 
* 
STAGEl: 

* 
* FFT CODE 
* 
STAGE3: 

* 

LAR 
LACC 
SAMM 
RPT 
BLDD 

FFT CODE 

SPLK 
LAR 
LAR 
LAR 
LAR 
COMBOSX 4 

FOR STAGE 

SPLK 
LAR 
LAR 
stage3 

AR3,DATAADD 
NN 
INDX 
NN2 
#INPUT,*BRO+ 

for STAGES 1 and 

#7,INDX 
ARl, DATAADD 
AR2,#DATA+2 
AR3,#DATA+4 
AR4,#DATA+6 

3 I ARP=AR2 

#9,INDX 
ARl, DATAADD 
AR2,#DATA+8 
2 

* FFT CODE FOR STAGE 4 / ARP=ARP 
* STAGE4: 

END: 
FFTLEN 

SPLK 
LAR 
LAR 
LAR 
LAR 
SPLK 
ZERO I 
BUTTFLYI 
RET 
.set 
.set 
.end 

#1,INDX 
ARl, DATAADD 
AR2,#DATA+l6 
AR3,cos4 
AR4,sin4 
#6,BRCR 

$ 
END-FFT+l 

1TRANSFER 32 WORDS FROM 'input• to 'data• 

iindexregister=7 
1N TIMES 

2 

iindexregister 
ipointer to DATA 
ipointer to DATA 
ipointer to DATA 
ipointer to DATA 
irepeat 4 times 

iindex register 
iarl -> DATA 
iar2 -> DATA+8 
irepeat 2 times 

7 
rl,il 
+ 2 r2,i2 
+ 4 r3,i3 
+ 6 r4,i4 

9 

iindex register = 1 

istart of cosine in stage 4 
istart of sine in stage 4 

iexecute ZEROI 
iexecute 7 times BUTTFLYI 
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Electrical Specifications 
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This appendix contains data sheet information on the TMS320C5x digital sig­
nal processors family, including the following devices: 

0 TMS320C50 
0 TMS320C51 
0 TMS320C53 

Figure A-1 shows the pinout of the 'CSx devices in a 132-pin quad flat pack; 
the pin assignments are given in Table A-1 . This appendix also contains the 
electrical characteristics of the 'CSx devices and the mechanical data of the 
132-pin quad flat pack. 
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A.1 Plnout and Signal Descriptions 

Figure A-1. TMS320C5x Pinout 
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t See Pin Assignments, Table A-1 (page A-3) for location and description of all pins. The 'C50, 'C51, and 
'C53 are packaged in 132-pin plastic QFP in production. See Figure A-20 for mechanical data. 
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Table A-1. TMS320C5x Pin Assignments 

Pin Name Type Description 

1 lAO O/Z Instruction Acquisition 

2 TRST I JTAG Test Reset 

3 Vss Supply Ground 

4 Vss Supply Ground 

5 MP/MC I Microprocessor/Microcomputer 

6 D15 {MSB) 1/0/Z Parallel Data Port, High-Byte (8 pins) 

7 D14 1/0/Z 

8 D13 1/0/Z 

9 D12 1/0/Z 

10 D11 1/0/Z 

11 D10 1/0/Z 

12 D9 1/0/Z 

13 D8 1/0/Z 

14 Voo Supply +SV 

15 Voo Supply +5V 

16 NCt Reserved 

17 NCt Reserved 

18 NCt Reserved 

19 NCt Reserved 

20 Vss Supply Ground 

21 Vss Supply Ground 

22 NCt Reserved 

23 D7 1/0/Z Parallel Data Port, Low-Byte (8 pins) 

24 D6 1/0/Z 

25 D5 1/0/Z 

26 D4 1/0/Z 

27 D3 1/0/Z 

28 D2 1/0/Z 

29 D1 1/0/Z 

30 DO (LSB) 1/0/Z 

31 TMS I JTAG Test Mode 

32 Voo Supply +5V 

33 Voo Supply +5V 

34 TCK I JTAG Test Clock 

t NC = No connect 
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Table A-1. TMS320C5x Pin Assignments (Continued) 

Pin Name Type Description 

35 Vss Supply Ground 

36 Vss Supply Ground 

37 NCt Reserved 

38 TITTf I Interrupt #1 

39 TITT2" I Interrupt #2 

40 TfIT3 I Interrupt #3 

41 mT4 I Interrupt #4 

42 NW I Nonmaskable Interrupt 

43 DR I Serial Port 1 Data Receive 

44 TOR I Serial Port 2 Data Receive 

45 FSR I Serial Port 1 Receiver Frame Sync 

46 CLKR I Serial Port 1 Receiver Clock 

47 Voo Supply +5V 

48 Voo Supply +5V 

49 NCt Reserved 

50 NCt Reserved 

51 NCt Reserved 

52 NCt Reserved 

53 Vss Supply Ground 

54 Vss Supply Ground 

55 AO (LSB) 1/0/Z Parallel Port Address Bus 

56 A1 1/0/Z (10 pins) 

57 A2 1/0/Z 

58 A3 1/0/Z 

59 A4 1/0/Z 

60 A5 1/0/Z 

61 A6 1/0/Z 

62 A7 1/0/Z 
63 AS 1/0/Z 

64 A9 1/0/Z 

65 Voo Supply +5V 

66 Voo Supply +5V 

67 TOI I JTAG Scan Input 

t NC " No connect 
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Table A-1. TMS320C5x Pin Assignments (Continued) 

Pin Name Type Description 

68 Vss Supply Ground 

69 Vss Supply Ground 

70 NCt Reserved 

71 CLKMD1 I Clock Mode Pin 1 

72 A10 1/0/Z Parallel Port Address Bus 

73 A11 1/0/Z (6 pins) 

74 A12 1/0/Z 

75 A13 1/0/Z 

76 A14 1/0/Z 

77 A15 1/0/Z 

78 NCt Reserved 

79 NCt Reserved 

80 Voo Supply +5V 

81 Voo Supply +5V 

82 RD O/Z Read Enable 

83 WE O/Z Write Enable 

84 NCt Reserved 

85 NCt Reserved 

86 Vss Supply Ground 

87 Vss Supply Ground 

88 NCt Reserved 

89 OS O/Z Data Space Select 

90 TS 0/Z 1/0 Space Select 

91 l'S O/Z Program Space Select 

92 R/W 1/0/Z Read/Write 

93 STRB 1/0/Z External Parallel Access Active 

94 BR 1/0/Z Bus Request 

95 CLKIN2 I Divide-by-One Clock Input 

96 X2/CLKIN I Divide-by-Two Clock Input 

97 X1 0 Oscillator Output 

98 Voo Supply +5V 

99 Voo Supply +5V 

100 TOO O/Z JTAG Scan Output 

t NC = No connect 
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Table A-1. TMS320C5x Pins (Concluded) 

Pin Name Type Description 

101 Vss Supply Ground 

102 Vss Supply Ground 

103 CLKMD2 I Clock Mode Pin 2 

104 FSX 1/0/Z Serial Port 1 Transmitter Frame Sync 

105 TFSX/TFRM 1/0/Z Serial Port 2 Transmitter Frame Sync 

106 DX O/Z Serial Port 1 Transmitter Output 

107 TDX O/Z Serial Port 2 Transmitter Output 

108 ROCDA O/Z Hold Acknowledge 

109 XF O/Z External Flag 

110 CLKOUT1 O/Z Machine Clock Output 

111 NCt Reserved 

112 JACK O/Z Interrupt Acknowledge 

113 Voo Supply +5V 

114 Voo Supply +5V 

115 NCt Reserved 

116 NCt Reserved 

117 NCt Reserved 

118 EMUO 1/0/Z Emulator Interrupt O 

119 EMU1/0FF 1/0/Z Emulator Interrupt 1 

120 Vss Supply Ground 

121 Vss Supply Ground 

122 TOUT O/Z Timer Output 

123 TCLKX 1/0/Z Serial Port 2 Transmitter Clock 

124 CLKX 1/0/Z Serial Port 1 Transmitter Clock 

125 TFSR/TADD 1/0/Z Serial Port 2 Receive Frame/Address 

126 TCLKR I Serial Port 2 Receiver Clock 

127 RS I Device Reset 

128 READY I External Access Ready to Complete 

129 ROCO I Request Access of Local Memory 

130 BTO I Bit 1/0 Pin 

131 Voo Supply +5V 

132 Voo Supply +5V 

t NC = No connect 
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A.2 Electrical Characteristics and Operating Conditions 

Table A-2.Absolute Maximum Ratings Over Specified Temperature Range (Unless 
Otherwise Noted)t 

Supply voltage range, V00 :j: ..•..•.•...•.......•...•........•..••.......•...... --0.3 V to 7 V 
Input voltage range ........................................................... --0.3 V to 7 V 
Output voltage range ......................................................... --0.3 V to 7 V 
Operating case temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0° to 85°C 
Storage temperature range ................................................... -55° to 150°C 
t Stresses beyond those listed under "Absolute Maximum Ratings" may cause damage to the device. This is a stress rating only, 

and functional operation of the device atthese or any other conditions beyond those indicated in the "Recommended Operating 
Conditions" sections of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods 
may affect reliability. 

*All voltage values are with respect to Vss· 

Table A-3. Recommended Operating Conditions 

Parameter Min Nom Max Unit 

Voo Supply voltage 4.75 5 5.25 v 
Vss Supply voltage 0 v 
V1H High-level input voltage CLKIN, CLKIN2 3.0 V00+0.3 v 

CLKX,CLKR, TCLKX, TCLKR 2.5 V00+0.3 

All others 2.0 v00+0.3 

V1L Low-level input voltage -0.3 0.8 v 
loH High-level output current -3oot µA 

loL Low-level output current 2 mA 

T Operating case temperature 0 85 oc 
t This loH may be exceeded when using a 1-kQ pull-down resistor on the TOM serial port TADD output, however, this output still 

meets VoH specifications under these conditions. 
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Table A-4. Electrical Characteristics Over Specified Free-Air Temperature Range (Unless 
Otherwise Noted) 

Parameter Test Conditions Min Typt Max Unit 

VoH High-level output voltage§ loH=Max 2.4 3 v 
Vol Low-level output voltage § loL=Max 0.3 0.6 v 
lz Three-state current BR -400 * 20 µA 

(Voo =Max) All other three-state -20 * 20 

1, Input current TRST pin (with internal pulldown) -10 * 800 µA 

(Vi=Vss to Voo) TMS, TCK, TOI pins (with internal pullups) -400 * 10 

X2/CLKIN pin -50 * +50 µA 

All other input-only pins -10 * 10 

looc Supply current, core CPU Operating TA=25°C, Voo=5.25 V, fx=40.96 MHz 60 mA 

loop Supply current, pins Operating TA=25°C, Voo=5.25 V, fx=40.96 MHz 40 mA 

loo Supply current, standby IDLE2, clocks shut off 5 µA 

Ci Input capacitance 15 pF 

Co Output capacitance 15 pF 

t All typical nominal values are at Voo=5 V, TA=25°C. 
* These values are not specified, pending detailed characterization. 
§ All input and output voltage levels are TTL-compatible. Figure A-2 shows the test load circuit and Figure A-3 shows the voltage 

reference levels. 

Figure A-2. Test Load Circuit 
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TIL output levels are driven to a minimum logic-high level of 2.4 volts and to 
a maximum logic-low level of 0.6 volt. Figure A-3 shows the TIL-level outputs. 
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Figure A-3. TTL-Level Outputs 

TIL-output transition times are specified as follows: 

2.4 v 
2.0V 

1.0V 
0.6V 

O For a high-to-low transition, the level at which the output is said to be no 
longer high is 2.0 volts, and the level at which the output is said to be low 
is 1.0 volt. 

O For a /ow-to-high transition, the level at which the output is said to be no 
longer low is 1.0 volt, and the level at which the output is said to be high 
is 2.0 volts. 

Figure A-4 shows the TIL-level inputs. 

Figure A-4. TTL-Level Inputs ----z ~----- 2.0V ----- ------------- ---- 00% 

--- ---------------- --- 10% 
--- a.av 

TIL-compatible input transition times are specified as follows: 

O For a high-to-low transition on an input signal, the level at which the input 
is said to be no longer high is 2.0 volts, and the level at which the input is 
said to be low is 0.8 volt. 

O For a low-to-high transition on an input signal, the level at which the input 
is said to be no longer low is 0.8 volt, and the level at which the input is said 
to be high is 2.0 volts. 
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A.3 Clock Characteristics and Timing 

The 'C5x can use either its internal oscillator or an external frequency source 
for a clock. The clock mode is determined by the CLKMD1 (pin 71) and 
CLKMD2 (pin 103) clock mode pins. The following table outlines the selection 
of the clock mode by these pins. 

CLKMD1 CLKMD2 Clock Source 

1 0 External divide-by-one clock option. 

0 1 Reserved for test purposes. 

1 1 External divide-by-two option or internal divide-by-two clock option 
with an external crystal. 

0 0 External divide-by-two option with the internal oscillator disabled. 

A.3.1 Internal Divide-by-Two Clock Option With External Crystal 

The internal oscillator is enabled by connecting a crystal across X1 and 
X2/CLKIN. The frequency of CLKOUT1 is one-half the crystal's oscillating fre­
quency. The crystal should be in either fundamental or overtone operation and 
parallel resonant, with an effective series resistance of 30 ohms and a power 
dissipation of 1 mW: it should be specified at a load capacitance of 20 pF. Note 
that overtone crystals require an additional tuned-LC circuit. Figure A-4 shows 
an external crystal (fundamental frequency) connected to the on-chip oscilla­
tor. 

Table A-5. Recommended Operating Conditions 

Parameter Min Nom Max Unit 

1 TMS320C5x-40 ot 40.96 MHz 
fx Input clock frequency 

l TMS320C5x-57* ot 57.14 MHz 
C1,C2 10 pF 

t This device utilizes a fully static design and therefore can operate with lc(CI) approaching ""·The device is characterized at fre­
quencies approaching O Hz but is tested at a minimum of 3.3 MHz to meet device test time requirements. 

* Other timings for the 57-MHz CLKIN devices are the same as those for the 40-MHz CLKIN devices, except where otherwise 
indicated. 
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Figure A-5. Internal Clock Option 

X1 X2/CLKIN 

Crystal 

---.iO~ 

C1 T 

A.3.2 External Divide-by-Two Clock Option 

An external frequency source can be used by injecting the frequency directly 
into X2/CLKIN, with X1 left unconnected, CLKMD1 set high, and CLKMD2 set 
high. This external frequency is divided by two to generate the internal ma­
chine cycle. 

The external frequency injected must conform to specifications listed in the 
timing requirements table. 

Table A-6. Switching Characteristics Over Recommended Operating Conditions 
(H = 0.5 fc(COJ} 

Parameter Min Typ Max Unit 

L TMS320C5x-40 48.8 2tc(CI) t ns 
le( CO) CLKOUT1 cycle time 

l TMS320C5x-57* 35 2t~c!_ t ns 

~CIH-Cq}_ CLKIN high to CLKOUT1 high/low 3 11 20 ns 

l_!tcq}_ CLKOUT1 fall time 5 ns 

tr:i._co_i CLKOUT1 rise time 5 ns 

laj_coy_ CLKOUT1 low pulse duration H-2 H H+2 ns 

twccol:!L CLKOUT1 high pulse duration H-2 H H+2 ns 

t This device utilizes a fully static design and therefore can operate with tc(CI) approaching"°· The device is characterized at fre­
quencies approaching 0 Hz but is tested at a minimum of 3.35 MHz to meet device test time requirements. * Other timings for the 57-MHz CLKIN devices are the same as those for the 40-MHz CLKIN devices, except where otherwise 
indicated. 
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Table A-7. Timing Requirements Over Recommended Operating Conditions 
(H = 0.5 fc(COJ) 

Parameter Min Max Unit 

TMS320C5x-40 24.4 T ns 
tc(CI) CLKIN cycle time 

TMS320C5x-57:j: 17.5 T ns 

t!l_cn_ CLKIN fall time t 5 ns 

ti:l._C!l_ CLKIN rise time t 5 ns 

TMS320C5x-40 11 T ns 
tw(CIL) CLKIN low pulse duration 

TMS320C5x-57:j: 8 § ns 

TMS320C5x-40 11 T ns 
tw(CIH) CLKIN high pulse duration 

TMS320C5x-57:j: 8 § ns 

t Values derived from characterization data and not tested. 
*Other timings for the 57-MHz CLKIN devices are the same as those for the 40-MHz CLKIN devices, except where otherwise 

indicated. 
§This device utilizes a fully static design and therefore can operate with tc(CI) approaching oo, The device is characterized at 

frequencies approaching 0 Hz, but is tested at a minimum of 6.7 MHz to meet device test time requirements. 

Figure A-6. External Divide-by-Two Clock Timing 

CLKIN 

I ~ 14- t1(CO) 

I 14 tc(CO) .,,I I I -9'1 I+- tr(CO) 

1- -, til(CIH-CO) w(COH) I w(COL) ~ t _,..4~~--.. , '14 .. 11 ,' t 

CLKOUT1 _/ \ I ~ y \ ___ ! \_ 

A.3.3 External Divide-by-One Clock Option 

A-12 

An external frequency source can be used by injecting the frequency directly 
into CLKIN2, with X1 left unconnected and X2 connected to V0 o. This external 
frequency is divided by one to generate the internal machine cycle. The divide­
by-one option is used when the CLKMD1 pin is strapped high and CLKMD2 
is strapped low. 

The external frequency injected must conform to specifications listed in the 
timing requirements table. 

Electrical Specifications 



Clock Characteristics and Timing 

Table A-8. Switching Characteristics Over Recommended Operating Conditions 
(H = 0.5 fc(COJ) 

Parameter Min Typ Max 

CLKOUT1 cycle time 1 TMS320C5x-40 48.8 fc(CI}_ 75§ 
fc(CO) l TMS320C5x-57'1: 35 ~ 75§ 

~CIH-Cq)_ CLKIN2 high to CLKOUT1 high 2 9 16 

l_!tcqi_ CLKOUT1 fall time 5 

!lco1 CLKOUT1 rise time 5 

fw1co_y_ CLKOUT1 low pulse duration H-2 H H+2 

~COl:!l. CLKOUT1 high pulse duration H-2 H H+2 

tp Transitory phase-PLL synchro- 256, 10oot 
nized after CLKIN2 supplied 

t Values derived from characterization data and not tested. 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

cycles 

*Other timings for the 57-MHz CLKIN devices are the same as those for the 40-MHz CLKIN devices, except where otherwise 
indicated. 

S Clocks can be stopped only while the device executes IDLE2 when using the external divide-by-one clock option. 
' Values guaranteed by design and not tested. 

Table A-9. Timing Requirements Over Recommended Operating Conditions 
(H = 0.5 fc(COJ) 

Parameter Min Max 

TMS320C5x-40 48.8 75§ 
fc(CI) CLKIN2 cycle time 

TMS320C5x-57* 35 75§ 

t.!{_C.!)_ CLKIN2 fall time t 5 

!le~ CLKIN2 rise time t 5 

TMS320C5x-40 15 60 
fw(CIL) CLKIN2 low pulse duration 

TMS320C5x-57* 11 64 
TMS320C5x-40 15 60 

fw(CIH) CLKIN2 high pulse duration 
TMS320C5x-57* 11 64 

t Values derived from characterization data and not tested. 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

* Other timings for the 57-MHz CLKIN devices are the same as those for the 40-MHz CLKIN devices, except where indicated 
otherwise. 

§ Clocks can be stopped only while the device executes IDLE2 when using the external divide-by-one clock option. Note that tp 
(the transitory phase) will occur when restarting clock from IDLE2 in this mode. 

Figure A-7. External Divide-by-One Clock Timing 
fw(CIL) ~ j+-

fw(CIH) ~ I+- I I lr(CI) -.i 
lc(CI) -14----•1 I I I I 

lt(CI) -'JI 
I+- I 
I I 

CLKIN2 °'i'VV' 

CLKOUT1 

I I 

tt(CO) ~ 

fw(COL) I 
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A.3.4 Memory and Parallel 1/0 Interface Read Timing 

Table A-10. Switching Characteristics Over Recommended Operating Conditions 
(H = 0.5fc(COJ) 

Parameter Min Max Unit 

fs'!®_R Setup time, address valid before RD low t H-10' 

tll®_R Hold time, address valid after RD high t o• 
taj_Rl,}_ RU low pulse duration *' H-2 H+2 

~R~ RU high pulse duration ** H-2 

~ Delay time, RU high to WE low 2H-5 

t A 15-AO,PS, OS, JS, and BR timings are all included in timings referenced as address. 

ns 

ns 

ns 

ns 

ns 

* STRB and RU rising and falling edges track and are {}-4 and :t 2 ns, respectively, from CLKOUT1 edges on reads, following the 
cycle after reset, which is always 7 wait states; thus, tolerance of resulting pulsewidths is :t 2 ns, not :t 4 ns. See Appendix B. 

*Values derived from characterization data and are not tested. 
' See Figure A-9 for address bus timing variation with load capacitance. 

Table A-11. Timing Requirements Over Recommended Operating Conditions 
(H = 0.5fc(COJ) 

Parameter Min Max Unit 
. l TMS320C5x-40 2H-1st ns 

ta(A) Read data access from address valid j TMS320C5x-57* 2H-1st ns 

ts~R Read data setup time before RU high 10 ns 

t~R Read data hold time after RU high 0 ns 

tl!(fil Read data access time after RU low H-10 ns 

t See Figure A--9 for address bus timing variation with load capacitance. 
* Other timings for 57-MHz CLKIN devices are the same as for the 40-MHz devices, except where indicated otherwise. 

A.3.5 Memory and Parallel 1/0 Interface Write Timing 

Table A-12. Switching Characteristics Over Recommended Operating Conditions 
(H = 0.5fc(COJ) 

Parameter Min Max Unit 

ts~w Setup time, address valid before WE low t H-5* 

tll®_w Hold time, address valid after WE high t H-101 

~ WE low pulse duration *' 2H-2 2H +2 

lw~Hl WE high pulse duration *' 2H-2 

~ Delay time, WE high to RU low 2H-10 

ts~w Setup time, write data valid before WE high * 2H-20 2H'§ 

tli@_w Hold time, write data valid after WE high * H-5 H+10' 

ier!!P_lW Enable time, WE to data bus driven -5' 

t A 15-AO,PS, OS, TS, R/W, and BR timings are all included in timings referenced as address. 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

* STRB and WE ed~es are {}-4 ns from CLKOUT1 edges on writes. Rising and falling edges of these SiQnals track each other; 
tolerance of resulting pulsewidths is :t 2 ns, not :t 4 ns. See Appendix B for logical device interface timings. 

' Values derived from characterization data and are not tested. 
S This value holds true for zero or one wait state only. 
* See Figure A-9 for address bus timing variation with load capacitance. 
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Figure A-8. Memory and Parallel 1/0 Interface Read and Write Timing 

I 

WE 

STRS, ___ / \ ___ / \_ 
Note: All timings are for 0 wait states. However, external writes always require two cycles to prevent external bus conflicts. 

The above diagram illustrates a one-cycle read and a two-cycle write and is not drawn to scale. All external writes 
immediately preceded by an external read or immediately followed by an external read require three machine cycles. 

Figure A-9. Address Bus Timing Variation With Load Capacitance 

2.oo..-----.--~-..---~-~-~~-~-~~-~--.--..------.--~-~.......1~H-~p~ 

! 1.75 t--+--t--t---+--t--+--t--t--+---il---+-+--t--+--t---::;looo""~--+---i 

g; ~ ·e 1.50 t--+-+--t---+-+-+--t-+-+--i1---+-+--t-,~-::;;;oo"""""_,_-+-+--+--t 

F ~ 
~ 1.251---+--+--+---+--+--+---+---+--+-..,,,,,.---ll----11----+-i-,..,,,..,__+----+--+--+---+---+-----l 

~ 1.001---+--+--+---+--+--+---+--1--, _.,,,,.--c.....-=c..+--+---+---+--+---+---+---+--+----1 
I!? __.....r-! o.75 1---+--+--+-+---+k--1--1v---::...t"'::.._1---+--+---1---+---i--1--1---+-+---+--1 

i o.50 l---+--+--......i--+-V-+i-"""_,_~-+---+---+--+----1'-----+---+--+----+--+--+---+---+-----l 

0 0.25 ~ 

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 

Change in Load Capacitance, pf 

A-15 



Clock Characteristics and Timing 

A.3.6 Ready Timing for Externally Generated Wait States 

Table A-13. Timing Requirements Over Recommended Operating Conditions 

Parameter Min Max Unit 

fe'!{_R-Cq READY setup time before CLKOUT1 rises 10 ns 

~CO-RJ_ READY hold time after CLKOUT1 rises 0 ns 

fe~R READY setup time before RO falls 10 ns 

~R READY hold time after RO falls 5 ns 

~w READY valid after WE falls H-15 ns 

~w READY hold after WE falls H+5 ns 

Note: The external READY input is sampled only after the internal software wait states are completed. 

Figure A-1 O. Ready Timing for Externally Generated Wait States During an External 
Read Cycle 

CLKOUT11 I 
feu(R-CO) -.i I I I 

I I+- ...i 

:~-I 

i 
I 

ADDRESS J< x 
I : I I -.:I I+- lti(~O-R) I 
I I I 

READY. I 'l__y I I 
I Wait state 

~ I I ~ Generated 
feu(R)R -+j ~ I Wait state I by READY 

I !+-.I- j+- Generated --+j 
I I I th(R)R 

Internally 
RO 

~I I 
I 
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Figure A-11. Ready Timing for Externally Generated Wait States During an External Write 
Cycle 

CLKOUT1 I I 
~ 

"'' 
I th(R-CO) 

ADDRESS x 
: : : x 

tsu(R-CO) 
~ •1 

I I I 

Ii I I 
READY I I 

I I 
tv(R)W -.i~ I I I 

I I I I 

WE 'X th(R)Wi I ;i I 
I I 
I I 

Wait State Generated by READY ~ ~ 

A.3.7 Reset, Interrupt, and BIO Timings 

Table A-14. Timing Requirements Over Recommended Operating Conditions 
(H = 0.5tc(coJ} 

Parameter Min Max 

ts~f'il TNTT-mT4, NM!, RS setup time before CLKOUT1 low t 15 

t~N) TNTT-mT4, NM!, RS hold time after CLKOUT1 low t 0 

lwjiNl,ls TNTT-mT4, NM! low pulse duration, synchronous 4H+15* 

twjlNH)s TNTT-TITT4, f\1MT high pulse duration, synchronous 2H+15* 

lwjiN!::l_a TNTT-TITT4, NM! low pulse duration, asynchronous# 6H+15* 

lwjiNl:!)_a TNTT-TITT4, NM! high pulse duration, asynchronous# 4H+15* 

ls~ RS set up time before X2/CLKIN low 10 

lwJ.RSy_ RS low pulse duration 12H 

~ RS high to reset vector fetch 34H 

lw(B.!)_s mo low pulse duration, synchronous 15 

lwJ.B.!)_a mo low pulse duration, asynchronous # H+15 

ls~]_ mo setup before CLKOUT1 low 15 

~.iB.!l. mo hold time after CLKOUT1 low 0 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

t These parameters must be met to use the synchronous timings. Both reset and the interrupts can operate asynchronously. The 
pulse widths require an extra half-cycle to guarantee internal synchronization. 

* If in IDLE2, add 4H to these timings. 
# Values derived from characterization data and are not tested. 
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Figure A-12. Reset, Interrupt, and 1JTO Timings 
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A.3.8 Instruction Acquisition (TAO), Interrupt Acknowledge ~' External 
Flag (XF), and TOUT Timings 

Table A-15. Switching Characteristics Over Recommended Operating Conditions 
(H = 0.5fc(CO)) 

Parameter Min Max Unit 

ts~AQ Setup time, address valid before TAO low t H-121 ns 

t~AQ Hold time, address valid after TAO low H-101 ns 

tw_QAOl,l !AO low pulse duration H-101 ns 

~Olffi_ Delay time, CLKOUT1 falling to TOUT -6 6 ns 

ts~ACK Setup time, address valid before 1ACR: low * H-12' ns 

t~ACK Hold time, address valid after 1ACR: high* H-101 ns 

lwj!ACK!J_ 1ACR: low pulse duration H-10' ns 

lw_lli)lffi_ TOUT pulse width 2H-12 ns 

tcfO<El_ Delay time, XF valid after CLKOUT1 0 12 ns 

t TAO goes low during an instruction acquisition. It goes low only on the first cycle of the read when wait states are used. The 
falling edge should be used to latch the valid address. The AVIS bit in the PMST register must be set to zero for the address 
to be valid when the instruction being addressed resides in on-chip memory. 

* 1ACR: goes low during the fetch of the first word of the interrupt vector. It goes low only on the first cycle of the read when wait 
states are used. Address pins A 1 -A4 can be decoded at the falling edge to identify the interrupt being acknowledged. The 
AVIS bit in the PMST register must be set to zero for the address to be valid when the vectors reside in on-chip memory. 

• Valid only if the external address reflects the current instruction activity (that is, code is executing on chip with no external bus 
cycles and AVIS is on or code is executing off-chip). 
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Figure A-13. TAO, 7AC1?, and XF Timings Example With Two External Wait States 
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Note: um and ~ are not affected by wait states. 
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A.3.9 External OMA Timing 

Table A-16. Switching Characteristics Over Recommended Operating Conditions 
(H = 0.5fc(CO)) 

Parameter Min Max Unit 

~H-H~ Delay time, ROID low to ROIDA low 4H § ns 

tiiJ_HH-H~ Delay time, ROID high before ROIDA high 2H ns 

t~M-H~ Address three-state before ROIDA low t H-15' ns 

ten_t_HA-MJ. Enable time, ROIDA high to address driven H-51 ns 

~!l.. Delay time, XBR low to !AO low 4H' 6H' ns 

~H-1)_ Delay time, XBR high to !AO high 2H' 4H' ns 

tcm>lxR Delay time, read data valid after XSTRB low 40 ns 

tll{QlXR Read data hold time after XSTRB high 0 ns 

te!)Q-~ Enable time, !AO low to read data driven* o• 2H' ns 

t~ XR/W low to data three-state o• 151 ns 

t~-~ !AO high to data three-state H ns 

telJ..(QlRW Enable time, data from XR/W going high 4 ns 

t This parameter includes all memory control lines. 
* This parameter refers to the delay between the time the condition (!AO = 0 and XR/W = 1) is satisfied and the time that the 'C5x 

data lines become valid. 
§ ROID is not acknowledged until current external access request is complete. 
' Values derived from characterization data and are not tested. 

Note: X preceding a name refers to external drive of the signal. 

Table A-17. Timing Requirements Over Recommended Operating Conditions 

Parameter Min Max Unit 

~HA-~ Delay time, AOCOA low to XBR low t o• ns 

~-X~ Delay time, !AO low to XSTRB low t o• ns 

tsu(XA) Setup time, Xaddress valid before XSTRB low 15 ns 

tsu.Qml_W Setup time, Xdata valid before XSTRB low 15 ns 

t~w Hold time, Xdata hold after XSTRB low 15 ns 

th(XA)W Hold time, Write Xaddress hold after XSTRB low 15 ns 

tw~y_ Width XSTRB low pulse 45 ns 

tw~l:!l._ Width XSTRB high pulse 45 ns 

tsuQCfil_ RW Setup time, R/W valid before XSTRB low 20 ns 

th(XA)R Hold time, read Xaddress after XSTRB high 0 ns 

t XBR, XR/W, and XSTRB lines should be pulled up with a 10-kQ resistor to assure that they are in an inactive high state during 
the transition period between the TMS320C5x driving them and the external circuit driving them. 

11 Values derived from characterization data and are not tested. 
Note: X preceding a name refers to external drive of the signal. 
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Figure A-14. External DMA Timing 
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A.3.1 o Serial Port Receive Timing 

Table A-18. Timing Requirements Over Recommended Operating Conditions 
(H = 0.5fc(CO)) 

Parameter Min Max 

tots@ Serial port clock cycle time 5.2H * 
tt(SCK) Serial port clock fall time 8, 

tr{_SQl<l_ Serial port clock rise time 8~ 

~C_l<l_ Serial port clock low/high pulse duration 2.1H 

tsu(FS) FSA setup time before CLKR falling edge 10 

tti!f~ FSA hold time after CLKR falling edge 10 

tsuJDRl DR setup time before CLKR falling edge 10 

tlill>Fn_ DR hold time after CLKR falling edge 10 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 
ns 

*The serial port design is fully static and therefore can operate with tc(SCK) approaching oo, It is characterized approaching an 
input frequency of 0 Hz but tested at a much higher frequency to minimize test time. 

' Values derived from characterization data and are not tested. 

Figure A-15. Serial Port Receive Timing 
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A.3.11 Serial Port Transmit Timing of External Clocks and External Frames 
(see Note) 

Table A-19. Switching Characteristics Over Recommended Operating Conditions 
(S = 0.5fc(SCK)) 

Parameter Min Max 

~ Delay time, DX valid after CLKX rising 25 

tell~ Disable time, DX after CLKX rising 40 

th(DX) Hold time, DX valid after CLKX rising -5 

8/16 

Unit 

ns 

ns 
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Table A-20. Timing Requirements Over Recommended Operating Conditions 
(H = 0.Sfc(COJ) 

Parameter Min Max 

~CK) Serial port clock cycle time 5.2H * 

trr_sCJ9_ Serial port clock fall time 8' 

ti]?~ Serial port clock rise time 8~ 

1wj_SCJ9_ Serial port clock low/high pulse duration 2.1H 

~~ FSX delay time after CLKX rising edge 2H--8 

tl!!_F~ FSX hold time after CLKX falling edge 10 

tlllffil.H FSX hold time after CLKX rising edge 2H-8 t 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 
t If the FSX pulse does not meet this specification, the first bit of serial data will be driven on the DX pin until the falling edge of 

FSX. After the falling edge of FSX, data will be shifted out on the DX pin. The transmit buffer empty interrupt will be generated 
when the th(FS) and th(FS)H specification is met. 

*The serial port design is fully static and therefore can operate with lc(SCK) approaching oo. It is characterized approaching an 
input frequency of 0 Hz but tested at a much higher frequency to minimize test time. 

' Values derived from characterization data and are not tested. 

Note: Internal clock with external FSX and vice versa are also allowable. However, FSX timings to CLKX are always defined 
depending on the source of FSX, and CLKX timings are always dependent upon the source of CLKX. Specifically, the 
relationship of FSX to CLIO< is independent of the source of CLKX. Table A-20 shows external FSX and external CLKX 
timings; Table A-21 shows internal FSX and internal CLKX timings. 

Figure A-16. Serial Port Transmit Timing of External Clocks and External Frames 
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A.3.12 Serial Port Transmit Timing of Internal Clocks and Internal Frames 
(see Note) 

Table A-21. Switching Characteristics Over Recommended Operating Conditions 
(H = 0.Sfc(CO)• S = 0.Sfc(SCK)) 

Parameter Min Typ Max 

1<!i.F~ Delay time, CLKX rising to FSX 25 

~ Delay time, CLKX rising to DX 25 

1<li~ Disable time, CLKX rising to DX 40 

~s~ Serial port clock cycle time SH 

t~~ Serial port clock fall time 5 

t!l_SC...!5l_ Serial port clock rise time 5 

tw~C...!9_ Serial port clock low/high pulse duration 4H-20 

tlllP.19.. Hold time, DX valid after CLKX rising -5 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Note: Internal clock with external FSX and vice versa are also allowable. However, FSX timings to CLKX are always defined 
depending on the source of FSX, and CLKX timings are always dependent upon the source of CLKX. Specifically, the 
relationship of FSX to CLKX is independent of the source of CLKX. Table A-20 shows external FSX and external CLKX 
timings; Table A-21 shows internal FSX and internal CLKX timings. 

Figure A-17. Serial Port Transmit Timing of Internal Clocks and Internal Frames 

CLKX 

FSX 

DX 
BIT 

A-24 

i--- tc(sci<l --.i 
I I" ., lw(SCK) 

I 

2 

~,~~ 

7/15 8/16 

Electrical Specifications 



Clock Characteristics and Timing 

A.3.13 Serial Port Receive Timing In TOM Mode 

Table A-22. Timing Requirements Over Recommended Operating Conditions 
(H = 0.5fc(CO)) 

Parameter Min Max 

~S@ Serial port clock cycle time 5.2H § 

t!LSCJ<l Serial port clock fall time a* 
t~c__!g_ Serial port clock rise time a* 
twJ_S@ Serial port clock low/high pulse duration 2.1H 

tsu{Lfil_ TDAT/TADD setup time before TCLK rising 30 

t'!.(_L~ TDAT/TADD hold time after TCLK rising -5 

tsi,@fil_ TDAT/TADD setup time before TCLK rising t 25 

tl!.(_sfil_ TDAT/TADD hold time after TCLK rising t 0 

ts~~ TRFM setup time before TCLK rising edge * 10 

tltlffil_ TRFM hold time after TCLK rising edge * 10 

t These parameters apply only to the first bits in the serial bit string. 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

* TFRM timing and waveforms shown in FigureA-18 are for external TFRM. TFRM can also be configured as internal. The TFRM 
internal case is illustrated in the transmit timing diagram in Figure A-19. 

S The serial port design is fully static and therefore can operate with lc(SCK) approaching oo. It is characterized approaching an 
input frequency of 0 Hz but tested at a much higher frequency to minimize test time. 

# Values derived from characterization data and are not tested. 

Figure A-18. Serial Port Receive Timing in TOM Mode 
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A.3.14 Serial Port Transmit Timing in TOM Mode 

Table A-23. Switching Characteristics Over Recommended Operating Conditions 
(S = 0.5fc(SCK)) 

Parameter Min Typ Max 

tJiA~ Hold time, TDAT/TADD valid after TCLK rising -2 

~~ Delay time, TFRM valid after TCLK rising * H 3H+10 

~ADJ_ Delay time, TCLK to valid TDAT/TADD 25 

t These parameters apply only to the first bits in the serial bit string. 

Unit 

ns 

ns 

ns 

* TFRM timing and waveforms shown in FigureA-19 are for internal TFRM. TFRM can also be configured as external, and the 
TFRM external case is illustrated in the receive timing diagram in Figure A-18. 

Table A-24. Timing Requirements Over Recommended Operating Conditions 
(H = 0.5fcrcoj} 

Parameter Min Typ Max 

\c(SC...!9, Serial port clock cycle time 5.2H a Ht * 

tits~ Serial port clock fall time a* 
t~c_!9. Serial port clock rise time a* 
tw_LS@ Serial port clock low/high pulse duration 2.1H 

t When SCK is generated internally. 

Unit 

ns 

ns 

ns 

ns 

*The serial port design is fully static and therefore can operate with tc(SCK) approaching oo. It is characterized approaching an 
input frequency of 0 Hz but tested at a much higher frequency to minimize test time. 

# Values derived from characterization data and are not tested. 

Figure A-19. Serial Port Transmit Timing in TOM Mode 
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A.4 Mechanical Data 

Figure A-20. 132-Pin Quad Flat Pack Plastic Package 

27 ,56 (1.085) 
27 ,31 (1.075) 

0,254 (0.010) Norn T 
0,635 (0.025) Norn -+j j4-

24, 18 (0.952) 
24,08 (0.948) 

24,18 (0.952) 
24,08 (0.948) 

27,56 (1.085) 
27,31 (1.075) 

Thermal Resistance Characteristics 

Parameter ·ctw Air Flow 
LFPM 

R9Jc 10 N/A 
t------1 --------

R9JA 50 0 

R9JA 36 200 

ReJA 28 400 

ReJA 24 600 

ReJA 22 800 

R9JA 20 1000 

Mechanical Data 

4,45 (0.175) 

4.19 (0.165) n 
0,76 (0.030) No~ ~ 14--

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

Note: The contact points are within 0, 15 (0.006) of being planar. 

A-27 



A-28 Electrical Specifications 



Appendix B 

External Interface Timings 

This appendix discusses functional timing operations on the external memory 
interface bus. Detailed timing specifications for all 'C5x signals are contained 
in Appendix A, Electrical Specifications. 

The 'C5x memory is organized into four selectable spaces: program, local 
data, global data, and 1/0 space. These spaces are multiplexed through a 16-
bit data bus and a 16-bit address bus. Each space is selected by its corre­
sponding select signal: data select (OS), program select (PS), and 1/0 space 
select (TS). Global data memory accesses are distinguished by the bus re­
quest (BR) pin. The read and write diagrams shown apply to accesses to all 
spaces. 
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B.1 Read/Write Timings 

B-2 

All bus cycles comprise integral numbers of CLKOUT1 cycles. One CLKOUT1 
cycle is defined to be from one falling edge of CLKOUT1 to the next falling edge 
of CLKOUT1. For full-speed, zero-wait state operation, reads require one 
cycle and writes require two cycles. A write immediately preceded by a read 
or immediately followed by a read requires three bus cycles. 

For read cycles, STRB goes low and ADDRESS becomes valid with the falling 
edge of CLKOUT1. The RO signal then goes low with the rising edge of 
CLKOUT1 and goes high again at the next falling edge of CLKOUT1 (for zero 
wait-states read cycles). For one more wait state (multicycle) read, RO stays 
low but goes high again with the falling edge of CLKOUT1 before the next 
cycle, even if the cycles are contiguous. Read data is sampled at the rising 
edge of RO. 

The ARV signal goes high at least one half CLKOUT1 cycle before any read 
cycle; for contiguous read cycles, STRB stays low. At the end of a read cycle 
or sequence of reads, STRB goes high along with RO on the falling edge of 
CLKOUT1. 

Write cycles always have at least one inactive (pad) cycle of CLKOUT1 before 
and after the actual write operation, including contiguous writes. This allows 
a smooth transition between the write and any adjacent bus operations as well 
as other writes. For this pad cycle, STRB and WE are always high. The RRV 
signal always changes state on the rising edge of CLKOUT1 during the pad 
cycle before and after a write or sequence of writes. This prevents bus conten­
tion when making the transition between read and write operations. Note that 
for a sequence of contiguous writes, R/VJ stays low. 

Timing of valid addresses for writes differs, depending on what activities occur 
before and after the write; between writes, and for the first and last write in a 
series, valid ADDRESS occurs on the rising edge of CLKOUT1. If a read im­
mediately follows a write or series of writes, valid ADDRESS for that read cycle 
occurs one half CLKOUT1 cycle early-that is, on the rising edge, rather than 
on the falling edge, of CLKOUT1. Note that this is an exception to the usual 
read cycle address timing. 

For the actual write operation, STRB and WE both go low on the falling edge 
of CLKOUT1 and stay low until the next falling edge of CLKOUT1 {for zero 
wait-state write cycles). For one or more wait-state (multicycle) writes, STRB 
and WE remain low but go high again on the falling edge of CLKOUT1 at the 
beginning of the pad cycle. Write data is driven approximately at the falling 
edge of STRB and WE and is held for approximately one half cycle of 
CLKOUT1 after STRB and WE go high (see Appendix A for actual timing spec­
ifications). 

Note that transitions on the external parallel interface control outputs 
(CLKOUT1, STRB, WE, and RO) are all initiated by the same two internal 
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clocks. Since these signals also use the same output buffer circuitry, they all 
switch within close tolerances of each other, as specified in Appendix A. 

Transitions on the address bus and other related outputs (TS, PS, OS, PJW, and 
BR) are initiated by the same internal signals that cause transitions on the con­
trol outputs; however, the internal device logic used to generate these outputs 
differs somewhat from the circuitry used for the control outputs. Because of 
this, transitions on the address bus and related outputs typically occur some­
what later than control-line transitions. 

Timings of control outputs with respect to CLKOUT1 are specified in Appendix 
A; address timing with respect to CLKOUT1 can be derived from timings pro­
vided for address with respect to control signals and control signal timing with 
respect to CLKOUT1 . Therefore, for example, the delay from CLKOUT1 falling 
to address bus valid at the begininng of a read cycle is calculated as [H -
tsu(A)R1 + maximum positive RD to CLKOUT1 skew (refer to Appendix A for 
specific timing values). Other interface timings with respect to CLKOUT1 can 
be calculated in the same manner. 

The following timing diagrams illustrate the varieties of logical timings for both 
read and write cycles in various orders. 

Figure 8-1. Memory Interface Operation for Read-Read-Write (0 Wait States) 
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WE 
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Figure B-2. Memory Interface Operation for Write-Write-Read (0 Wait States) 
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Figure 8-3. Memory Interface Operation for Read-Write (1 Wait State) 

CLKOUT1 

I I I I 
ADDRESS ~--!----!----llK I I I *-1---C 

DATA 

TS,P"S,OS 

READY 

R7W 

i i i ~>--ii---+-ei <:=:==w:; r=ite=D=~=ta====>t-
i : : : \: r 
I I I I 1--i-------1 

--...... --.--.....---+:-\ : t : : : : 
_.__....__.__......____,,1_~1-........ _~1-~l-~l---.I 1--~'-i I I I I \

1 
_______ /

1 
I 

I I I I I I 

-+---+----+---+--\ : : n : : r 
-------1 I l_ .... 1_1 1_...,.,_ 

~ I : : " : ~ I I { I 
I I I I I I I I I I I -------: \.U I I I I I \j_/ I I I 
I Two-cycle read I Four-cycle write I 
14-- with one .... .,.,..,..__ with one .,1 

READY-generated I READY-generated I 

WE 

wait state wait state 

B-5 



B-6 External Interface Timing 



Appendix C 

Instruction Cycle Timings 

This appendix details the instruction cycle timings for the 'CSx processors. 
Instructions are classified into several categories according to their cycle ti­
mings. 
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Instruction Cycle Summary 

C.1 Instruction Cycle Summary 

C-2 

Each class of instructions is listed in a separate table showing the number of 
cycles required for a 'C5x instruction to execute in a given memory configura­
tion singly or in repeat mode. The column headings in the table indicate the 
program source location (PR, PDA, PSA, PE), defined as follows: 

PR The instruction executes from internal program ROM. 
PDA The instruction executes from internal dual-access program RAM. 
PSA The instruction executes from internal single-access program RAM. 
PE The instruction executes from external program memory. 

If a class of instructions requires memory operand (s), row divisions in table in­
dicate the location(s) of the operand(s), as defined below: 

DARAM 

SA RAM 
Ext 
ROM 
MMR 
MM PORT 

The operand is in internal dual-access RAM. 

The operand is in internal single-access RAM. 
The operand is in external memory. 
The operand is in internal program ROM. 
The operand is a memory-mapped register. 
The operand is a memory-mapped io port. 

Note that the internal single-access memory on each 'C5x processor is divided 
into 2K-word blocks that are contiguous in address space: 

'CSO 

Four 2K-word block 0800h-0FFFh 
1000h-17FFh Data address range 1800h-lFFFh 
2000h-27FFh 

One 1 K-word block 2800h-2BFFh Data address range 

'C51 

One 1 K-word block 0800h-0BFFh Data address range 

'C53 

One 2K-word block 0800h-0FFFh Data address range 

One 1 K-word block 1000h-13FFh Data address range 

All 'C5x processors support parallel accesses to these internal single-access 
blocks. However, one single-access block allows only one access per cycle. 
In other words, the processor can read/write on one single-access memory 
block while accessing another single-access block. 
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The number of cycles required for each instruction is given in terms of the pro­
cessor machine cycles (CLKOUT1 period). The additional wait states for pro­
gram/data memory and 1/0 accesses are defined below: 

p Program memory wait states. Represents the number of additional 
clock cycles the device waits for external program memory to respond 
to an access. 

d Data memory wait states. Represents the number of additional clock 
cycles the device waits for external data memory to respond to an ac­
cess. 

lo 1/0 wait states. Represents the number of additional clock cycles the 
device waits for an external 1/0 to respond to an access. 

n Repetitions (where n>2 to fill the pipeline). Represents the number of 
times a repeated instruction is executed. 

The above variables can also use the subscripts src, dst, and code to indicate 
source, destination, and code, respectively. 

Note that all external reads require at least one machine cycle, while all exter­
nal writes require at least two machine cycles. However, if an external write is 
immediately followed or preceded by an external read cycle, the external write 
requires three cycles. See Appendix B for details. If an on-chip wait-state gen­
erator is used to add m (m>O) wait states to an external access, both the exter­
nal reads and the external writes require m+ 1 cycles, assuming that the exter­
nal READY line is pulled high. If the READY input line is used to add m addi­
tional cycles to an external access, external reads require m+ 1 cycles and ex­
ternal write accesses require m+2 cycles. Refer to software wait state genera­
tion in Section 5.3 and to Appendix A for READY electrical specs. 

The instruction cycle timings are based on following assumptions: 

O At least the next four instructions are fetched from the same memory sec­
tion (internal or external) that was used to fetch the current instruction (ex­
cept in case of PC discontinuity instructions like B, CALL, etc.). 

O In the single execution mode, there is no pipeline conflict between the cur­
rent instruction and the instructions immediately preceding or following 
that instruction. The only exception is the conflict between the fetch phase 
of the pipeline and the memory read/write (if any) access of the instruction 
under consideration. See Chapter 3 for pipeline operation. 

O In the repeat execution mode, all conflicts caused by the pipelined execu­
tion of that instruction are considered. 
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C-4 

Class I 

1-word, 1-cycle, no memory operands 

ABS, ADCB, ADD, ADDB, ADAK, ANDB, APAC, BSAR, CLRC, SETC, CMPL, 
CMPR, CRGT, CRLT, EXAR, IDLE, IDLE2, LACB, LACL #k, MAR, MPV #k, 
NEG, NOP, NORM, ORB, PAC, POP, PUSH, RPT #k, ROL, ROLB, ROR, 
RORB,SACB,SATH,SATL,SBB,SBBB,SBRK,SFL,SFLB,SFR,SFRB, 
SPAC, SPM, SUB #k, XC, XORB, ZAP, ZPR 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

1 1 1 1+p 

Cycle Timings for a Repeat (APT} Executlont 

n n n n+p 

t ADD, ADAK, LACL, MPV, SBAK, SPM, SUB, XC, and APT are nonrepeatable instructions. 

Class llA 

1-word, 1-cycle, memory read operand 

ADD, ADDC, ADDS, ADDT, AND, BIT, BITT, CPL, LACC, LACL, LACT, LPH, 
LT, LTA, LTP, LTS, MPV, MPYA, MPYS, MPYU, OR, PSHD, RPT, SORA, 
SQRS, SUB, SUBB, SUBC, SUBS, SUBT, XOR, ZALR 

Cycle Timings for a Single Instruction 

PR PDA PSA 

Operand DARAM 1 1 1 

Operand SARAM 1 1 1 

2t 

Operand Ext 1+d 1+d 1+d 

Cycle Timings for a Repeat (RPT} Execution 

PR PDA 

Operand DARAM n n 

Operand SARAM n n 

Operand Ext n+nd n+nd 

t If the operand and the code are in the same SAAAM block. * APT Is a nonrepeatable Instruction. 

PSA 

n 

n 

n+1t 

n+nd 

PE 

1+p 

1+p 

2+d+p 

PE 

n+p 

n+p 

n+1+p+nd 
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Class llB 

1-word, 1-cycle, memory-mapped register read 

LAMM 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand MMRt 1 1 1 1+p 

Operand MMPORT 1+iOsrc 1 +iOsrc 1 +iodsrc 1 +2+p+iod8 rc 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA 

Operand MMR* n n 

Operand MMPORT n+miOsrc n+mio8 rc 

t Add one more cycle for peripheral memory-mapped access. 
* Add n more cycles for peripheral memory-mapped access. 

Class Ill 

PSA 

n 

n+miOsrc 

PE 

n+p 

n+p+miOsrc 

2-word, 2-cycle, long-immediate operand, no memory access 

ADD, AND, LACC, LAR, MPV, OR, SUB, XOR, RPT, RPTB, RPTZ 

Cycle Timings for a Slngle Instruction 

PR PDA PSA PE 

2 2 2 2+2p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

Class IVA 

1-word, 1-cycle, memory write operand 

SACH, SACL, SAR, SPH, SPL, SST #0, SST #1, POPD 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 1 1 1 1+p 

Operand SARAM 1 1 1 1+p 

2t 

Operand Ext 2+d 2+d 2+d 4+d+p 
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Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA 

Operand DARAM n n n 

Operand SARAM n n n 

n+2t 

Operand Ext 2n+nd 2n+nd 2n+nd 

t If the operand and the code are in the same SARAM block. 

Class IVB 

1-word, 1-cycle, memory-mapped register write 

SAMM 

Cycle Timings for a Single Instruction 

PR PDA PSA 

Operand MMRt 1 1 1 

Operand MMPORT 2+i0dst 2+i0dst 2+iOdst 

PE 

n+p 

n+p 

2n+2+nd+p 

PE 

1+p 

4+iodst 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA 

Operand MMR* n n n 

Operand MMPORT 2+niodst 2+niodst 2+niodst 

t Add one more cycle if source is a peripheral memory-mapped register. * Add n more cycles if source is a peripheral memory-mapped register. 

ClassV 

1-word, 1-cycle, read and write memory 

APL, OPL, XPL, DMOV, LTD 

Cycle Timings for a Single Instruction 

PR PDA PSA 

Operand DARAM 1 1 1 

Operand SARAM 1 1 1 

3t 

Operand Ext 2+2d 2+2d 2+2d 

PE 

n+p 

2n+2+p+p niodst 

PE 

1+p 

1+p 

5+2d+p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n n n n+p 

Operand SARAM 2n-2 2n-2 2n-2 2n-2+p 
2n+1t 

Operand Ext 4n-2+2nd 4n-2+2nd 4n-2+2nd 4n+1+2nd+p 

t If the operand and the code are in the same SARAM block. 
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Class VI 

2-word, 2-cycle, memory read and write 

APL, OPL, XPL 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 2 2 2 2+2p 

Operand SARAM 2 2 2 2+2p 

Operand Ext 3+2d 3+2d 3+2d 6+2d+2p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n+1 n+1 n+1 n+1+2p 

Operand SARAM 2n-1 2n-1 2n-1 2n-1+2p 

2n+2t 

Operand Ext 4n-1+2nd 4n-1+2nd 4n-1+2nd 4n+2+2nd+2p 

t If the operand and the code reside in same SARAM block. 

Class VIia 

2-word, 2-cycle, memory read operand 

CPL#lk,dma 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 2 2 2 2+2p 

Operand SARAM 2 2 2 2+2p 

3t 

Operand Ext 2+d 2+d 2+d 3+d+2p 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand DARAM n+1 n+1 n+1 n+1+2p 

Operand SARAM n+1 n+1 n+1 n+1+2p 
n+2t 

Operand Ext n+1 n+1 n+1 n+2+2p 

t If the operand and the code are in the same SARAM block. 
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Class Vllb 

2-word, 2-cycle, memory write operand 

SPLK#lk 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand DARAM 2 2 2 2+2p 

Operand SARAM 2 2 2 2+2p 
3t 

Operand Ext 3+d 3+d 3+d 5+d+2p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

t If the operand and the code are in the same SARAM block. 

Class VIII 

2-word, 4-cycle, PC discontinuity, no delay slot 

B, BANZ, BCND, CALL, CC 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Conditions True 4 4 4 4+4p* 

Condition Falset 2 2 2 2+2p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

t Applicable only to conditional instructions. * The 'C5x performs speculative fetching by reading two additional instruction words. If PC 
discontinuity is taken, these two instruction words are discarded. 

Class IX 

2-word, 2-cycle, PC discontinuity, 2 delayed slots 

BD,BANZD,BCNDD,CALLD,CCD 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Conditions True 2 2 2 2+2p 

Condition Falset 2 2 2 2+2p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

t Applicable only to conditional instructions. 
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Source DARAM 
Destination DARAM 

Source SARAM 
Destination DARAM 

Source Ext 
Destination DARAM 

Instruction Cycle Summary 

ClassX 

1-word, 4-cycle, PC discontinuity, no delayed slots 

BACC, CAL.A, RETC, RET, NMI, INTR, RETE, RETI, TRAP 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Conditions True 4 4 4 4+3pt 

Condition False* 2 2 2 2+p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon­
tinuity is taken, these two instruction words are discarded. 

* Applicable only to conditional instructions. 

Class XI 

1-word, 2-cycle, PC discontinuity, 2 delayed slots 

BACCD,CAL.AD,RETCD,RETD,TRAPD 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Conditions True 2 2 2 2+p 

Condition Falset 2 2 2 2+p 

Cycle Timings for a Repeat (RPT) Execution 

Not Repeatable 

t Only applicable to conditional instructions. 

Class XII 

2-word, 3-cycle, block data transfer, data to data space 

BLDD #lk,dma; BLDD dma,#lk 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

3 3 3 3+2p 

3 3 3 3+2p 

3+dsrc 3+dsrc 3+dsrc 3+dsrc+2p 
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Instruction Cycle Summary 

Source DARAM 3 3 3 
Destination SARAM 4t 

Source SARAM 3 3 3 
Destination SARAM 4t 

Source Ext 3+dsrc 3+dsrc 3+dsrc 
Destination SARAM 4+dsrc 
Source DARAM 4+ddst 4+ddst 4+~st 
Destination Ext 

Source SARAM 4+ddst 4+ddst 4+ddst 
Destination Ext 

Source Ext 4+dsrc+ddst 4+dsrc+ddst 4+dsrc+ddst 
Destination Ext 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA 

Source DARAM n+2 n+2 n+2 

Destination DARAM 

Source SARAM n+2 n+2 n+2 

Destination DARAM 

Source Ext n+2+nd8rc n+2+ndsrc n+2+ndsrc 
Destination DARAM 

Source DARAM n+2 n+2 n+2 
Destination SARAM n+4t 

Source SARAM n+2 n+2 n+2 
Destination SARAM 2n* 2n* 2n* 

n+4t 
2n+2§ 

Source Ext n+2ndsrc n+2ndsrc n+2ndsrc 
Destination SARAM n+4+nd5, 0 t 

Source DARAM 2n+2+nddst 2n+2+n~st 2n+2+n~st 
Destination Ext 

Source SARAM 2n+2+nddst 2n+2+n~st 2n+2+n~st 
Destination Ext 

Source Ext 4n+nd8,0+n~st* 4n+ndsrc+nddst 4n+ndsrc +nddst 
Destination Ext 

t If the destination operand and the code are in the same SARAM block. * If both the source and the destination operands are in the same SARAM block. 
§ If both operands and the code are in the same SARAM block. 

Class XIII 

3+2p 

3+2p 

3+dsrc+2p 

6+dsrc+ddst+2p 

PE 

n+2+2p 

n+2+2p 

n+2+ndsrc 

n+2+2p 

n+2+2p 
2n+2p 

n+2+ndsrc+2p 

2n+2+nddst +2p 

2n+2+nddst+2p 

4n+2+nd8, 0 +nddst+2p 

1-word, 2-cycle, block data transfer, data to data space 

BLDD BMAR,dma; BLDD dma,BMAR 

Cycle Timings for a Slngle Instruction 

PR PDA PSA PE 

Source DARAM 2 2 2 2+p 
Destination DARAM 
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Instruction Cycle Summary 

Cycle Timings for a Single Instruction (Continued) 

PR PDA PSA PE 

Source DARAM 2 2 2 2+p 
Destination DARAM 

Source SARAM 2 2 2 2+p 
Destination DARAM 

Source Ext 2+dsrc 2+dsrc 2+dsrc 2+dsrc+P 
Destination DARAM 

Source DARAM 2 2 2 2+p 
Destination SARAM 3t 

Source SARAM 2 2 2 2+p 
Destination SARAM 3t 

Source Ext 2+dsrc 2+dsrc 2+dsrc 2+dsrc+P 
Destination SARAM 3+dsrct 
Source DARAM 3+ddst 3+~st 3+ddst 5+~st+P 
Destination Ext 

Source SARAM 3+~st 3+ddst 3+ddst 5+ddst+P 
Destination Ext 

Source Ext 3+dsrc+~st 3+dsrc+ddst 3+dsrc+ddst 5+dsrc+~st+P 
Destination Ext 

Cycle Timings for a Repeat (RPT) Instruction 

PR PDA PSA PE 

Source DARAM n+1 n+1 n+1 n+1+p 
Destination DARAM 

Source SARAM n+1 n+1 n+1 n+1+p 
Destination DARAM 

Source Ext n+1+nd8rc n+1+ndsrc n+1+ndsrc n+1+ndsrc+P 
Destination DARAM 

Source DARAM n+1 n+1 n+1 n+1+p 
Destination SARAM n+3t 

Source SARAM n+1 n+1 n+1 n+1+p 
Destination SARAM 2n-1* 2n-1* 2n-1* 2n-1+p:I: 

n+3S 
2n+1S 

Source Ext n+1+ndsrct n+1+ndsrc n+1+ndsrc n+ 1 +nd8, 0+p 
Destination SARAM n+3+ndsrct 
Source DARAM 2n+1+n~st 2n+1+nddst 2n+1+nddst 2n+ 1 +n~81+p 
Destination Ext 
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Instruction Cycle Summary 

Cycle Timings for a Repeat (RPT) Instruction (Concluded) 
PR PDA PSA PE 

Source SARAM 2n+ 1 +ndcfst 2n+1+nddst 2n+ 1 +ndcfst 2n+ 1 +ndcfst+P 
Destination Ext 
Source Ext 4n-1 +ndsrc+nddst 4n-1 +ndsrc+ndcfst 4n-1 +nd8, 0+ndctst 4n+ 1 +ndsrc+ndc1st+P 
Destination Ext 

t If the destination operand and the code are in the same SARAM block. 
* If both the source and the destination operands are in the same SARAM block. 
§ If both operands and the code are in the same SARAM block. 

Class XIV 

2-word, 3-cycle, block data transfer, program to data space 

BLPD #lk,dma 

Cycle Timings for a Single Instruction 
PR PDA PSA PE 

Source DARAM/ROM 3 3 3 3+2Pcode 
Destination DARAM 
Source SARAM 3 3 3 3+2Pcode 
Destination DARAM 
Source Ext 3+Psrc 3+Psrc 3+Psrc 3+Psrc+2Pcode 
Destination DARAM 
Source DARAM/ROM 3 3 3 3+2Pcode 
Destination SARAM 4t 

Source SARAM 3 3 3 3+2Pcode 
Destination SARAM 4t 

Source Ext 3+Psrc 3+Psrc 3+Psrc 3+Psrc+2Pcode 
Destination SARAM 4+Psrct 
Source DARAM/ROM 4+dcfst 4+dcfst 4+ddst 6+ddst+2Pcode 
Destination Ext 
Destination Ext 4+dcfst 4+dcfst 4+dcfst 6+ddst+2Pcode 
Source SARAM 
Source Ext 4+Psrc+ddst 4+Psrc+ddst 4+Psrc+dctst 6+Psrc+dctst+2Pcode 
Destination Ext 

Cycle Timings for a Repeat (RPT) Execution 
PR PDA PSA PE 

Source DARAM/ROM n+2 n+2 n+2 n+2+2Pcode 
Destination DARAM 
Source SARAM n+2 n+2 n+2 n+2+2Pcode 
Destination DARAM 
Source Ext n+2+nPsrc n+2+nPsrc n+2+nPsrc n+2+nPsrc+2Pcode 
Destination DARAM 
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Instruction Cycle Summary 

Cycle Timings for a Repeat (APT) Execution (Continued) 

PR PDA PSA 
Source DARAM/ROM n+2 n+2 n+2 
Destination SARAM n+4t 
Source SARAM n+2 n+2 n+2 

Destination SARAM 2n* 2n* 2n* 
n+4t 

2n+2S 
Source Ext n+2+nPsrct n+2+nPsrc n+2+nPsrc 
Destination SARAM n+4+nPsrct 
Source DARAM/ROM 2n+2+ndclst 2n+2+ndclst 2n+2+ndclst 
Destination Ext 
Source SARAM 2n+2+ndclst 2n+2+ndclst 2n+2+ndclst 
Destination Ext 

Source Ext 4n+nPsrc+ndclstt 4n+nPsrc+nddst 4n+nPsrc+nddst 

Destination Ext 

t If the destination operand and the code are in the same SARAM block. * If both the source and the destination operands are in the same SARAM block. 
§ If both operands and the code are in the same SARAM block. 

Class XV 

PE 

n+2+2Pcode 

n+2+2Pcode 

2n+2Pcode* 

n+2+nPsrc+2Pcode 

2n+2+nddst+2Pcode 

2n+2+nddst+2Pcode 

4n+2+nPsrc+ndclst+2Pcode 

1-word, 2-cycle, block data transfer, program to data space 

BLPD BMAR,dma 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Source DARAM/ROM 2 2 2 2+Pcode 
Destination DARAM 

Source SARAM 2 2 2 2+Pcode 
Destination DARAM 

Source Ext 2+Psrc 2+Psrc 2+Psrc 2+Psrc+Pcode 
Destination DARAM 

Source DARAM/ROM 2 2 2 2+Pcode 
Destination SARAM 3t 

Source SARAM 2 2 2 2+Pcode 
Destination SARAM 3t 

Source Ext 2+Psrc 2+Psrc 2+Psrc 2+Psrc+2Pcode 
Destination SARAM 3+Psrct 

Source DARAM/ROM 3+dclst 3+dclst 3+dclst S+ddst+Pcode 
Destination Ext 

C-13 



Instruction Cycle Summary 

Cycle Timings for a Single Instruction (Continued) 

PR PDA PSA 

Source SARAM 3+~st 3+~st 3+~st 
Destination Ext 

Source Ext 3+Psrc+ddst 3+Psrc+~st 3+Psrc+ddst 
Destination Ext 

Cycle Timings for a Repeat (APT) Execution 

PR PDA PSA 

Source DARAM/ROM n+1 n+1 n+1 

Destination DARAM 

Source SARAM n+1 n+1 n+1 
Destination DARAM 

Source Ext n+1+nPsrc n+1+nPsrc n+1+nPsrc 
Destination DARAM 

Source DARAM/ROM n+1 n+1 n+1 
Destination SARAM n+3t 

Source SARAM n+1 n+1 n+1 

Destination SARAM 2n-1* 2n-1* 2n-1* 
n+3t 

2n+1§ 

Source Ext n+1+nPsrc n+1+nPsrc n+1+nPsrc 
Destination SARAM n+3+nPsrct 

Source DARAM/ROM 2n+1+n~st 2n+1+n~st 2n+1+nddst 
Destination Ext 

Source SARAM 2n+1+n~st 2n+1+n~st 2n+1+nddst 
Destination Ext 

Source Ext 4n-1 +nPsrc+ 4n-1 +nPsrc+ 4n-1 +nPsrc+ 
Destination Ext nddst nddst n~st 

t If the destination operand and the code are in the same SARAM block. 
* If both the source and the destination operands are in the same SARAM block. 
§ If both operands and the code are in the same SARAM block. 
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PE 

5+~st+Pcode 

5+Psrc+ddst+Pcode 

PE 

n+1+Pcode 

n+1+Pcode 

n+ 1 +nPsrc+Pcode 

n+1+Pcode 

n+1+Pcode 

2n-1+Pcode* 

n+ 1 +nPsrc+Pcode 

2n+ 1 +nddst+Pcode 

2n+ 1 +nddst+Pcode 

4n+ 1 +nPsrc+nddst+Pcode 
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Instruction Cycle Summary 

Class XVI 

1-word, 2-cycle, block data transfer, data to program space 

BLDP dma 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Source DARAM 2 2 2 2+p 
Destination DARAM 

Source SARAM 2 2 2 2+p 
Destination DARAM 31 

Source Ext 2+dsrc 2+dsrc 2+dsrc 3+dsrc+Pcode 
Destination DARAM 

Source DARAM 2 2 2 2+p 
Destination SARAM 3t 

Source SARAM 2 2 2 2+p 
Destination SARAM 3t or~ 

4§ 

Source Ext 2+dsrc 2+dsrc 2+dsrc 3+dsrc+Pcode 
Destination SARAM 3+dsrct 

Source DARAM 3+Pdst 3+Pdst 3+Pdst 4+Pdst+Pcode 
Destination Ext 

Source SARAM 3+Pdst 3+Pdst 3+Pdst 4+Pdst+Pcode 
Destination Ext 4+Pdst, 

Source Ext 3+dsrc+Pdst 3+dsrc+Pdst 3+dsrc+Pdst 5+dsrc+Pdst+Pcode 
Destination Ext 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Source DARAM n+1 n+1 n+1 n+1+Pcode 
Destination DARAM 

Source SARAM n+1 n+1 n+1 n+1+Pcode 
Destination DARAM n+2' 

Source Ext n+1+ndsrc n+1+ndsrc n+1+ndsrc n+2+ndsrc+Pcode 
Destination DARAM 

Source DARAM n+1 n+1 n+1 n+1+Pcode 
Destination SARAM n+2t 
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Instruction Cycle Summary 

Cycle Timings for a Repeat (RPT) Execution (Continued} 

PR PDA PSA 

Source SARAM n+1 n+1 n+1 
Destination SARAM 2n-1* 2n-1* 2n-1* 

n+2t or t 

2n+1S 

Source Ext n+1+ndsro n+1+nd8rc n+1+ndsrc 
Destination SARAM n+2+nPsrct 

Source DARAM 2n+1+nPdst 2n+1+nPdst 2n+1+nPdst 
Destination Ext 

Source SARAM 2n+1+nPdst 2n+1+nPdst 2n+1+nPdst 
Destination Ext 2n+2+nPdst11 

Source Ext 4n-1 +ndsrc+nPdst 4n-1 +ndsr+nPdst 4n-1 +ndsrc+nPdst 
Destination Ext 

t If the destination operand and the code are in the same SARAM block. * If both the source and the destination operands are in the same SARAM block. 
S If both operands and the code are in the same SARAM block. 
' If the source operand and the code are in the same SARAM block. 

Class XVII 

1-word, 3-cycle, table read 

TBLR 

Cycle Timings for a Single Instruction 

PR PDA PSA 

Source DARAM/ROM 3 3 3 

Destination DARAM 

Source SARAM 3 3 3 
Destination DARAM 

Source Ext 3+Psrc 3+Psrc 3+Psrc 
Destination DARAM 

Source DARAM/ROM 3 3 3 

Destination SARAM 4t 

Source SARAM 3 3 3 

Destination SARAM 4t 

Source Ext 3+Psrc 3+Psrc 3+Psrc 
Destination SARAM 4+Psrct 

Source DARAM/ROM 4+~st 4+~st 4+dorst 

Destination Ext 
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PE 

n+1+Pcode 
2n-1+Pcode2 

n+2+ndsrc+Pcode 

2n+2+nJ>dst+Pcode 

2n+2+nPdst+Pcode 

4n+ 1 +nd8rc+nPdst+ 
Pcode 

PE 

3+Pcode 

3+Pcode 

3+Psrc+Pcode 

3+Pcode 

3+Pcode 

3+Psrc+Pcode 

6+~st+Pcode 
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Instruction Cycle Summary 

Cycle Timings for a Single Instruction (Continued) 

PR PDA PSA PE 

Source SARAM 4+ddst 4+~st 4+~st 6+ddst+Pcode 
Destination Ext 

Source Ext 4+Psrc+ddst 4+Psrc+ddst 4+Psrc+ddst 6+Psrc+~st+Pcode 
Destination Ext 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Source DARAM/ROM n+2 n+2 n+2 n+2+Pcode 

Destination DARAM 

Source SARAM n+2 n+2 n+2 n+2+Pcode 

Destination DARAM 

Source Ext n+2+nPsrc n+2+nPsrc n+2+nPsrc n+2+nPsrc+Pcode 
Destination DARAM 

Source DARAM/ROM n+2 n+2 n+2 n+2+Pcode 

Destination SARAM n+4t 

Source SARAM n+2 n+2 n+2 n+2+Pcode 

Destination SARAM 2n* 2n* 2n* 2n* 
2n+2§ 

Source Ext n+2+nPsrc n+2+nPsrc n+2+nPsrc n+2+nPsrc+Pcode 

Destination SARAM n+4+nPsrct 

Source DARAM/ROM 2n+2+n~st 2n+2+n~st 2n+2+nddst 2n+4+nddst+Pcode 

Destination Ext 

Source SARAM 2n+2+n~st 2n+2+n~st 2n+2+n~st 2n+4+n~st+Pcode 

Destination Ext 

Source Ext 4n+nPsrc+n~st 4n+nPsrc+n~st 4n+nPsrc+n~st 4n+2+nPsrc+n~st+ 

Destination Ext 

t If the destination operand and the code are in the same SARAM block. 
* If both the source and the destination operands are in the same SARAM block. 
§ If both operands and the code are in the same SARAM block. 

Pc ode 
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Instruction Cycle Summary 

Source DARAM 
Destination DARAM 

Source SARAM 
Destination DARAM 

Source Ext 
Destination DARAM 

Source DARAM 
Destination SARAM 

Source SARAM 
Destination SARAM 

Source Ext 
Destination SARAM 

Source DARAM 
Destination Ext 

Source SARAM 
Destination Ext 

Source Ext 
Destination Ext 

Source DARAM 
Destination DARAM 

Source SARAM 
Destination DARAM 

Source Ext 
Destination DARAM 

Source DARAM 
Destination SARAM 

Source SARAM 
Destination SARAM 

Source Ext 
Destination SARAM 

Source DARAM 
Destination Ext 
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Class XVIII 

1-word, 3-cycle, table write 

TBLW 

Cycle Timings for a Single Instruction 

PR PDA PSA 

3 3 3 

3 3 3 

3+dsrc 3+dsrc 3+dsrc 

3 3 3 
4t 

3 3 3 
4t 

3+dsrc 3+dsrc 3+dsrc 
4+dsrct 

4+Pdst 4+Pdst 4+Pdst 

4+Pdst 4+Pdst 4+Pdst 

4+dsrc+Pdst 4+dsrc+Pdst 4+dsrc+Pdst 

Cycle Timings for a Repeat (RPl) Execution 

PR PDA PSA 

n+2 n+2 n+2 

n+2 n+2 n+2 

n+2+ndsrc n+2+ndsrc n+2+ndsrc 

n+2 n+2 n+2 
n+3t 

n+2 n+2 n+2 
2n* 2n* 2n* 

2n+1S 

n+2+ndsrc n+2+ndsrc n+2+ndsrc 
n+3+ndsrct 

2n+2+nPdst 2n+2+nPdst 2n+2+nPdst 

PE 

3+Pcode 

3+Pcode 

3+dsrc+Pcode 

3+Pcode 

3+Pcode 

3+dsrc+Pcode 

5+Pdst+Pcode 

5+Pdst+Pcod8 

5+dsrc+Pdst+Pcode 

PE 

n+2+Pcode 

n+2+Pcode 

n+2+ndsrc+Pcode 

n+2+Pcode 

n+2+Pcode 
2n* 

n+2+ndsrc+Pcode 

2n+3+nPdst+Pcode 
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Instruction Cycle Summary 

Cycle Timings for a Repeat (RPT) Execution (Continued) 

PR PDA PSA 

Source SARAM 2n+2+nPdst 2n+2+nPdst 2n+2+nPdst 
Destination Ext 

Source Ext 4n+ndsrc+nPdst 4n+ndsrc+nPdst 4n+ndsrc+nPdst 
Destination Ext 

t If the destination operand and the code are in the same SARAM block. 
* If both the source and the destination operands are in the same SARAM block. 
§ If both operands and the code are in the same SARAM block. 

Operand1 DARAM/ROM 

Operand2 DARAM 

Operand1 SARAM 

Operand2 DARAM 

Operand1 Ext 

Operand2 DARAM 

Operand1 DARAM/ROM 

Operand2 SARAM 

Operand1 SARAM 

Operand2 SARAM 

Operand1 Ext 
Operand2 SARAM 

Operand1 DARAM/ROM 

Operand2 Ext 

Operand1 SARAM 

Operand2 Ext 

Operand1 Ext 
Operand2 Ext 

Operand1 DARAM/ROM 

Operand2 DARAM 

Operand1 SARAM 

Operand2 DARAM 

Class XIX 

2-word, 3-cycle, multiply accumulate 

MAC#lk,dma 

Cycle Timings for a Single Instruction 

PR PDA PSA 

3 3 3 

3 3 3 

3+Popt 3+Popt 3+Popt 

3 3 3 

3 3 3 
4t 4t 4t 

3+Popt 3+Popt 3+Popt 

3+dop2 3+dop2 3+dop2 

3+dop2 3+dop2 3+dop2 

4+Popt+dop2 4+Popt+dop2 4+Popt+dop2 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA 

n+2 n+2 n+2 

n+2 n+2 n+2 

PE 

2n+3+ npdst+ Pcode 

4n+ 1 +ndsrc+nPdst+ 
Pcode 

PE 

3+2Pcode 

3+2Pcode 

3+Popt+2Pcode 

3+2Pcode 

3+2Pcode 

4+2Pcodet 

3+Pop1 +2Pcode 

3+dop2+2Pcode 

3+dop2+2Pcode 

4+Pop1 +dop2+2Pcode 

PE 

n+2+2Pcode 

n+2+2Pcode 
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Instruction Cycle Summary 

Cycle Timings for a Repeat (RPT) Execution (Continued) 

PR PDA PSA PE 

Operand1 Ext n+2+nPop1 n+2+nPop1 n+2+nPopt n+2+nPopt+2Pcocte 
Operand2 DARAM 

Operand1 DARAM/ROM n+2 n+2 n+2 n+2+2Pcode 
Operand2 SARAM 

Operand1 SARAM n+2 n+2 n+2 n+2+2Pcode 
Operand2 SARAM 2n+2t 2n+2t 2n+2t 2n+2t 

Operand1 Ext n+2+nPop1 n+2+nPop1 n+2+nPop1 n+2+nPopt+2Pcode 
Operand2 SARAM 

Operand1 DARAM/ROM n+2+ndop2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2Pcode 

Operand2 Ext 

Operand1 SARAM n+2+ndop2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2Pcode 

Operand2 Ext 

Operand1 Ext 2n+2+np0p1+n 2n+2+np0p1+n 2n+2+np0p1+ 2n+2+np0p1+ndop2+ 

Operand2 Ext dop2 dop2 ndop2 2Pcode 

t If both operands are in the same SARAM block. 

Class XX 

1-word, 2-cycle, multiply-accumulate 

MADSdma 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand1 DARAM/ROM 2 2 2 2+Pcode 
Operand2 DARAM 

Operand1 SARAM 2 2 2 2+Pcode 
Operand2 DARAM 

Operand1 Ext 2+Popt 2+Popt 2+Pop1 

Operand2 DARAM 

Operand1 DARAM/ROM 2 2 2 2+Pcode 
Operand2 SARAM 

Operand 1 SARAM 2 2 2 2+Pcode 
Operand2 SARAM 3t 3t 3t 3+Pcodet 

Operand1 Ext 2+Popt 2+Popt 2+Popt 2+pop1+Pcode 
Operand2 SARAM 

Operand1 DARAM/ROM 2+dop2 2+dop2 2+dop2 2+dop2+ Pcode 
Operand2 Ext 
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Instruction Cycle Timings 

Cycle Timings for a Single Instruction (Continued) 

PR PDA PSA PE 

Operand 1 SARAM 2+dop2 2+dop2 2+dop2 2+dop2+Pcode 
Operand2 Ext 

Operand1 Ext 3+Popt+dop2 3+Popt+dop2 3+Popt+dop2 3+Pop1+dop2+Pcode 
Operand2 Ext 

Cycle Timings for a Repeat (APT) Execution 

PR PDA PSA PE 

Operand1 DARAM/ROM n+1 n+1 n+1 n+1+Pcode 

Operand2 DARAM 

Operand1 SARAM n+1 n+1 n+1 n+1+Pcode 

Operand2 DARAM 

Operand 1 Ext n+1+nPop1 n+1+nPop1 n+1+nPop1 n+ 1 +nPopt+Pcode 

Operand2 DARAM 

Operand1 DARAM/ROM n+1 n+1 n+1 n+1+Pcode 

Operand2 SARAM 

Operand 1 SARAM n+1 n+1 n+1 n+1+Pcode 

Operand2 SARAM 2n+1t 2n+1t 2n+1t 2n+1t 

Operand 1 Ext n+1+nPop1 n+1+nPop1 n+1+nPop1 n+ 1 +nPop1 +Pcode 

Operand2 SARAM 

Operand1 DARAM/ROM n+1+nd0p2 n+1+ndop2 n+1+ndop2 n+ 1 +ndop2+Pcode 

Operand2 Ext 

Operand1 SARAM n+1+ndop2 n+1+ndop2 n+1+nd0p2 n+ 1 +ndop2+Pcode 

Operand2 Ext 

Operand 1 Ext 2n+1+np0p1+ 2n+1+nPopt+ 2n+1+np0p1+ 2n+ 1 +nPop1 +ndop2+ 

Operand2 Ext ndop2 ndop2 ndop2 Pcode 

t If both operands are in the same SARAM block. 

ClassXXI 

2-word, 3-cycle, multiply accumulate with data move 

MACO #lk,dma 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Operand1 SARAM 3 3 3 3+2Pcode 

Operand2 DARAM 

Operand1 DARAM/ROM 3 3 3 3+2Pcode 

Operand2 DARAM 
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Instruction Cycle Summary 

Cycle Timings for a Single Instruction (Continued) 

PR PDA PSA PE 

Operand1 Ext 3+Pop1 3+Popt 3+Pop1 3+Pop1 +2Pcode 
Operand2 DARAM 

Operand1 DARAM/ROM 3 3 3 3+2Pcode 
Operand2 SARAM 

Operand1 SARAM 3 3 3 3+2Pcode 
Operand2 SARAM 4* 4+2Pcode* 

5§ 

Operand 1 Ext 3+Pop1 3+Pop1 3+Pop1 3+Pop1 +2Pcode 
Operand2 SARAM 

Operand1 DARAM/ROM 3+dop2 3+dop2 3+dap2 3+dop2+2Pcode 
Operand2 ExtS 

Operand1 SARAM 3+dap2 3+dap2 3+dap2 3+dop2+2Pcode 
Operand2 Ext• 

Operand1 Ext 4+Pop1+dop2 4+Pop1+dop2 4+Pop1+dap2 4+Pop1 +dop2+2Pcode 
Operand2 Ext• 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Operand1 DARAM/ROM n+2 n+2 n+2 n+2+2Pcode 
Operand2 DARAM 

Operand1 SARAM n+2 n+2 n+2 n+2+2Pcode 
Operand2 DARAM 

Operand1 Ext n+2+nPop1 n+2+nPopt n+2+nPop1 n+2+nPop1 +2Pcode 
Operand2 DARAM 

Operand1 DARAM/ROM 2n 2n 2n 2n+2Pcode 
Operand2 SARAM 2n+2t 

Operand1 SARAM 2n 2n 2n 2n+2Pcode 
Operand2 SARAM 3n* 3n* 2n+2t 3n* 

3n2 
3n+2S 

Operand1 Ext 2n+nPop1 2n+nPopt 2n+nPopt 2n+nPop1+2Pcode 
Operand2 SARAM 2n+2+np0p1 t 

Operand1 DARAM/ROM n+2+ndop2 n+2+ndop2 n+2+nd0p2 n+2+ndap2+2Pcode 
Operand2 Ext' 
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Instruction Cycle Summary 

Cycle Timings for a Repeat (RPT) Execution (Continued) 

PR 

Operand1 SARAM n+2+ndop2 
Operand2 Ext' 
Operand1 Ext 2n+2+nPopt+ 
Operand2 Ext' ndop2 

t If operand2 and code are in the same SARAM block. 
* If both operands are in the same SARAM block. 

PDA 

n+2+ndop2 

2n+2+np0p1+ 
ndop2 

§ If both operands and code are in the same SARAM block. 

PSA 

n+2+ndop2 

2n+2+np0p1+ 
ndop2 

' Data move operation is not performed when operand 2 is in external data memory. 

Class XXll 

1-word, 2-cycle, multiply accumulate with data move 

MADDdma 

Cycle Timings for a Single Instruction 

PR PDA PSA 

Operand1 DARAM/ROM 2 2 2 

Operand2 DARAM 

Operand1 SARAM 2 2 2 

Operand2 DARAM 

Operand1 Ext 2+Popt 2+Popt 2+Pop1 
Operand2 DARAM 

Operand1 DARAM/ROM 2 2 2 

Operand2 SARAM 

Operand1 SARAM 2 2 2 

Operand2 SARAM 3* 
4§ 

Operand1 Ext 2+Pop1 2+Pop1 2+Pop1 
Operand2 SARAM 

Operand1 DARAM/ROM 2+dop2 2+dop2 2+dop2 

Operand2 Ext' 
Operand1 SARAM 2+dop2 2+dop2 2+dop2 

Operand2 Ext' 

Operand1 Ext 3+Popt+dop2 3+Popt+dop2 3+Popt+dop2 
Operand2 Ext' 

PE 

n+2+ndop2+2Pcode 

2n+2+np0p1+ndop2+ 
2Pcode 

PE 

2+Pcode 

2+Pcode 

2+Popt+Pcode 

2+Pcode 

2+Pcode 

3+Pcode* 

2+Popt+Pcode 

2+dop2+Pcode 

2+dop2+Pcode 

3+Popt+dop2+Pcode 
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Instruction Cycle Summary 

Cycle Timings for a Repeat (RPT) Execution 

PR 

Operand1 DARAM/ROM n+1 
Operand2 DARAM 

Operand1 SARAM n+1 

Operand2 DARAM 

Operand1 Ext n+1+nPop1 
Operand2 DARAM 

Operand1 DARAM/ROM 2n-1 

Operand2 SARAM 

Operand1 SARAM 2n-1 

Operand2 SARAM 3n-1* 

Operand1 Ext 2n-1+nPop1 
Operand2 SARAM 

Operand1 DARAM/ROM n+1+ndop2 

Operand2 Ext' 

Operand1 SARAM n+1+ndop2 

Operand2 Ext' 

Operand1 Ext 2n+ 1 +nPop1 + 

Operand2 Ext' ndop2 

t If operand 2 and code reside in same SARAM block. 
* If both operands reside in same SARAM block. 

PDA 

n+1 

n+1 

n+1+nPop1 

2n-1 

2n-1 

3n-1* 

2n-1+nPop1 

n+1+ndop2 

n+1+nd0p2 

2n+1+np0p1+ 
ndop2 

§ If both operands and code reside in same SARAM block. 

PSA 

n+1 

n+1 

n+1+nPop1 

2n-1 

2n+1t 

2n-1 

2n+1t 

3n-1* 
3n+1§ 

2n-1+nPop1 
2n+ 1 +np0 p1 t 

n+1+ndop2 

n+1+ndop2 

2n+1+np0p1+ 
ndop2 

' Data move operation is not performed when operand2 is in external data memory. 

Class XXlll 

2-word, 2-cycle, memory map register load 

LMMR dma,#lk 

Cycle Timings for a Single Instruction 

PR PDA PSA 

Source DARAM 2 2 2 

Destination MMR* 

Source SARAM 2 2 2 

Destination MMR* 3t 

Source Ext 2+Psrc 2+Psrc 2+Psrc 
Destination MMR* 
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PE 

n+1+Pcode 

n+1+Pcode 

n+ 1 +nPop1 +Pcode 

2n-1+Pcode 

2n-1+Pcode 
3n-1* 

2n-1 +nPopt+Pcode 

n+ 1 +ndop2+Pcode 

n+ 1 +ndop2+Pcode 

2n+1 +nPop1+ndop2+ 
Pcode 

PE 

2+2Pcode 

2+2Pcode 

3+Psrc+2Pcode 

Instruction Cycle Timings 



Cycle Timings for a Slngle Instruction (Continued) 

PR PDA PSA 

Source DARAM 3+iodst 3+iodst 3+iodst 
Destination MMPORT 

Source SARAM 3+iodst 3+i0dst 3+i0dst 
Destination MMPORT 4t 

Source Ext 3+Psrc+iOdst 3+Psrc+iOctst 3+Psrc+iOdst 
Destination MMPORT 

Cycle Timings for a Repeat (APT) Execution 

PR PDA PSA 

Source DARAM 2n 2n 2n 
Destination MMR§ 

Source SARAM 2n 2n 2n 
Destination MMR§ 2n+1t 

Source Ext 2n+ndsrc 2n+ndsrc 2n+nd5rc 
Destination MMR§ 

Source DARAM 3n+niodst 3n+niodst 3n+niodst 
Destination MMPORT 

Source SARAM 3n+niodst 3n+niodst 3n+niodst 
Destination MMPORT 3n+ 1 +niodstt 

Source Ext 4n-1 +nd5, 0+ 4n-1 +nd5, 0+ 4n-1 +ndsrc+ 

Destination MMPORT niodst niodst niodst 

t If the source operand and the code are in the same SARAM block. 
* Add one more cycle for peripheral memory-mapped register access. 
§ Add n more cycles for peripheral memory-mapped register access. 

Destination DARAM 

Source MMR* 

Destination SARAM 

Source MMR* 

Destination Ext 

Source MMR* 

Destination DARAM 

Source MMPORT 

ClassXXIV 

2-word, 2-cycle, memory map register store 

SMMR dma,#lk 

Cycle Timings for a Single Instruction 

PR PDA PSA 

2 2 2 

2 2 2 
3t 

3+~st 3+~st 3+~st 

3+iOsrc 3+iOsrc 3+iOsrc 

Instruction Cycle Summary 

PE 

5+2Pcode+iodst 

5+2Pcode+iodst 

6+Psrc+2Pcode+iOdst 

PE 

2n+2Pcode 

2n+2Pcode 

2n+ 1 +ndsrc+2Pcode 

3n+3+niodst+2Pcode 

3n+3+niodst+2Pcode 

4n+2+ndsrc+ niodst + 
2Pcode 

PE 

2+2Pcode 

2+2Pcode 

5+ddst+2Pcode 

4+iOsrc+2Pcode 
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Instruction Cycle Summary 

Cycle Timings for a Single Instruction (Continued) 

PR PDA PSA 

Destination SARAM 3+iOsrc 3+iOsrc 3+io8rc 

Source MMPORT 4+io8rct 

Destination Ext 4+iOsrc+~st 4+iOsrc+~st 4+iOsrc+~st 

Source MMPORT 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA 

Destination DARAM 2n 2n 
Source MMRS 

Destination SARAM 2n 2n 
Source MMR§ 

Destination Ext 3n+n~st 3n+n~st 

Source MMRS 

Destination DARAM 2n+nio8, 0 2n+nio8, 0 

Source MMPORT 

Destination SARAM 2n+nio8 , 0 2n+nio8, 0 

Source MMPORT 

Destination Ext 5n-2+n~st+ 5n-2+n~st+ 

Source MMPORT niosrc nio8, 0 

t If the destination operand and the code are in the same SARAM block. 
* Add one more cycle for peripheral memory-mapped register. 
§ Add n more cycles for peripheral memory-mapped register access. 

ClassXXV 

2-word, 3-cycle, output port 

OUT dma,port 

PSA 

2n 

2n 
2n+2t 

3n+n~st 

2n+nio8, 0 

2n+nio8, 0 

2n+2+nio8, 0 t 

5n-2+n~st+ 
niOsrc 

Cycle Timings for a Single Instruction 

PR PDA PSA 

Source DARAM 3+i0dst 3+i0dst 3+i0dst 

Source SARAM 3+iodst 3+iodst 3+iodst 
4+iodstt 

Source Ext 3+dsrc+iodst 3+dsrc+iodst 3+dsrc+iodst 
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PE 

3+iOsrc+2Pcode 

6+iOsrc+<idst+2Pcode 

PE 

2n+2Pcode 

2n+2Pcode 

3n+3+nddst+2Pcode 

2n+ 1 +ni<>src+2Pcode 

2n+ 1 +niosrc+2Pcode 

Sn+ 1 +n~st+ niOsrc+ 
2Pcode 

PE 

5+i0dst+2Pcode 

5+iodst+2Pcode 

6+dsrc+ iodst+2Pcode 
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Instruction Cycle Summary 

Cycle Timings for a Repeat (RPT) Execution 

PR PDA PSA PE 

Source DARAM 3n+niodst 3n+niodst 3n+niodst 3n+3+niodst+2Pcode 

Source SARAM 3n+niodst 3n+niodst 3n+niodst 3n+3+niodst+2Pcode 

3n+1+niodstt 

Source Ext 5n-2+ndsrc+ 5n-2+ndsrc+ 5n-2+ndsrc+ 5n+ 1 +ndsrc+niodst+ 
niodst niodst niodst 2Pcode 

t If the source operand and the code are in the same SARAM block. 

ClassXXVI 

2-word, 2-cycle, input port 

IN dma,port 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Destination DARAM 2+iOsrc 2+iOsrc 2+iOsrc 3+iOsrc+2Pcode 

Destination SARAM 2+iOsrc 2+iOsrc 2+iOsrc 3+iOsrc+2Pcode 

3+iOsrct 

Destination Ext 3+~st+iOsrc 3+~st+iOsrc 3+ddst+iOsrc 6+~st+iOsrc+2Pcode 

Cycle Timings for a Repeat (RPT) Execution 

Destination DARAM 2n+niOsrc 2n+niosrc 2n+niOsrc 2n+ 1 +niOsrc+2Pcode 

Destination SARAM 2n+niOsrc 2n+niosrc 2n+niOsrc 2n+ 1 +niOsrc+2Pcode 
2n+2+nio5,ct 

Destination Ext 4n-1+n~st+ 4n-1+n~51+ 4n-1 +nddst+ 4n+2+n~51+nio5,c+ 
niOsrc niosrc niOsrc 2Pcode 

t If the destination operand and the code are in the same SARAM block. 

ClassXXVll 

1-word, 2-cycle, pipeline-protected, memory read 

LOP dma; LST #0,dma; LST #1,dma, LAR ARn,dma 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Source DARAM 2 2 2 2+Pcode 

Source SARAM 2 2 2 2+Pcode 
3t 

Source Ext 2+dsrc 2+dsrc 2+dsrc 3+dsrc+Pcode 
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Instruction Cycle Summary 

Cycle Timings for a Repeat (APT) Execution 

Source DARAM 2n 2n 2n 2n+Pcocte 

Source SARAM 2n 2n 2n 2n+Pcocte 
2n+1t 

Source Ext 2n+ndsrc 2n+ndsn: 2n+ndsrc 2n+ 1 +ndsn:+Pcode 

t If the source operand and the code are in the same SARAM block. 

ClasaXXVlll 

1-word, 2-cycle, pipeline-protected, nonrepeatable 

LOP #k; LAR ARN,#k 

Cycle Timings for a Single Instruction 

PR PDA PSA PE 

Source DARAM 2 2 2 2+Pcode 

Source SARAM 2 2 2 2+Pcocte 
3t 

Source Ext 2+dsrc 2+dsn: 2+dsrc 3+dsrc+Pcode 

Cycle Timings for a Repeat (APT) Execution 

Not Repeatable 

t If the source operand and the code are in the same SARAM block. 
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Appendix D 

System Migration 

This appendix contains information that is necessary to upgrade a 'C25 sys­
tem into a 'CSx system. The information consists of a detailed list of the pro­
gramming differences and hardware and timing differences between the two 
generations of TMS320 DSPs. Note that the 'CSO, C51, and 'C53 have the 
same features with the exception of memory map; so within this appendix, any 
reference to 'CSx applies to 'CSO, 'C51, and 'C53, unless otherwise stated. 
This appendix contains the following: 

Topic Page 
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Package and Pin Layout 

D.1 Package and Pin Layout 

The 'C25 is available in both a 68-pin CPGA and a 68-pin PLCC as shown in 
Figure D-1 and Figure 0-2, respectively. The 'C5x devices are packaged in 
a 132-pin Quad Flat Pack package (QFP), as shown in Appendix A. 

Figure D-1. 'C25 68-Pin Ceramic Pin Grid Array 

Thermal Resistance Characteristics 

Parameter Max Unit 

ReJA 
Junction-to-free-air 36 ·crw thermal resistance 

ReJc 
Junction-to-case 6 ·crw thermal resistance 

D-2 

Top View 
28,448 (1.120) .... G 27,432 , •• 080) 28,448 (1 .120) 

.080) 17,02 (0.670)---+ 27,432 (1 

Nom 
~ 

l 
17,02 

(0.670) 
Nom 

, 
, 

4•953 <0• 195> 1 397 (0.055) Max r032 , .. 080, . J 
.... ~,~~t 111 n n ~~, , 
2:794 (o:110) 0,508 (0.020) _Jj._ _J 1,575 (0.062) Dia 

0,406 (0.016) 1,473(0.058) 

2,54 (0.100) T.P. Bottom View 

L 0 0 0 0 0 0 0 (oo:~-t---+ 

K•000000000• 
J00 00 

2,54 
(0.100) 

T.P. 

H00 00 
G00 00 1,524 
F00 00 (0.060) 

E00 00 Nom 
4 places 

000 00 
C00 00 
e000000000 __ ""-I-.~ 
A 0 0 0 0 0 0 0 0 °'>---.......-

1,27 
(0.050) 
Nom 

1 2 3 4 5 6 7 8 9 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES. 
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Package and Pin Layout 

Figure D-2. 'C25 68-Pin Plastic Leaded Chip Carrier 
1,35 (0.053) 0 

1,19 (0.047) x 45 

2,79 (0.110) 

------- 2,41 (0.095) 

-....-+------ 4,50 (0.177) 
4,24 (0.167) 

23,62 (0.930) 
23,11 (0.910) 

(At Seating Plane) 

Seating Plane 

0,94 (0.037) R 
0,69 (0.027) 

Thermal Resistance Characteristics 

Parameter Max Unit 

RruA 
Junction-to-free-air 46 •ctw 
thermal resistance 

Rruc 
Junction-to-case 

11 ·ctw thermal resistance 

\ 
0,25 (0.010) R Max 

In 3 places 

0 

24,33 (0.956) 
24, 13 (0.950) 
(see Note A) 

·-~----- 24,33 (0.956) -----kl.ii 
24, 13 (0.950) 
(see Note A) 

------ 25,27 (0.995) -----
25,02 (0.985) 

0,81 (0.032) 
0,66 (0.026) T==f 

I _J1J._ 0,51 (0.020) 
I o,36 (0.014) 

I 
Lead Detail 

25,27 (0.995) 
25,02 (0.985) 

1,22 (0.048) x 45 
1,07 (0.042) 

1,52 (0.060) Min r 0,64 (0.025) 
Min 

Notes: A. Centerline of center pin, each side, is within 0, 10 (0.004) of package centerline as determined by this dimension. 
B. Location of each pin is within o, 127 (0.005) of true position with respect to center pin on each side. 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES. 
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When a 'C2S is upgraded to a 'CSx, there is minimal layout modification. The 
'CSx signals are on the same side (except the CLKR and AO pins) and in the 
same order (except the X1 and X2/CLKIN pins) as those of the 'C2S. 
Figure D-3 shows the pin-to-pin relationship between the 'C2S and the 'CSx 
devices in J-leaded chip carrier packages. Note that the two devices are not 
drawn to scale. The power (V00) and ground (Vss) signals are symmetrically 
positioned on the 'CSx so that, in conjunction with the OFF signal, the device 
is not damaged by inserting it in the wrong orientation. The 'CSx has more pow­
er and ground pins to provide higher performance and more noise immunity 
than the 'C2S. 

Figure D-3. 'C25-to- 'C5x Pin/Signal Relationship 

'C5x 

46 
46 
47 
46 
48 

Vss 
07 
06 
D 
04 
03 
02 

88 
87 
88 
~ 

~ M 
~~~M~M~M~~~~~M~88~88~ronn~~nnnnN~~~~ 

o ololw 
~~a:.'?;. 

Note: Pins without callouts are unassigned (reserved). 
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Yoo 
Yoo 
JACK 

CLKOUT1 
XF 
ROCDA 
TDX 
DX 
TFSX/TFRM 
FSX 
CLKMD2 
Vss 
Vss 
TOO 
Yoo 
Yoo 
X1 
X2/CLKIN 
CLKIN2 
SR 
STRB 
R/W 
PS 
TS 
us 

Vss 
Vss 
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Package and Pin Layout 

Three 'C2S signals (CLKOUT2, MSC and SY'NC) are not present on the 'CSx. 
Because the 'CSx operates with a divide-by-two clock, it can be synchronized 
with reset. Therefore, there is no need for the SVfJC signal. With only two 
phases, there are no external timings that tie to the CLKOUT2 of the 'C2S. 

Some of the 'C2S-equivalent pins have additional capabilities on the 'CSx. The 
'CSx supports external direct memory access of the on-chip single-access 
RAM block. For this reason, the following signals are now bidirectional: 

AO-A 15 = address lines 
STRB = memory access strobe 

RNJ = read/write 
BR = bus request 

The 'CSx serial port transmit clock (CLKX) can now be configured as an output 
that operates at one-fourth the machine clock rate. CLKX is configured as an 
input by reset. The 'C2S CLKX pin is always an input. 

The 'C2S operates with a four-phase clock. This device's machine rate is 
one-fourth the CLKIN rate. CLKOUT1 and CLKOUT2 operate at the machine 
rate and are 90° out of phase. The 'CSx operates with a two-phase clock. The 
device's machine rate is one-half the CLKIN rate. In addition, the 'CSx offers 
a divide-by-one clock input feature so that the device's machine rate equals 
the CLKIN rate. CLKOUT1 operates at the machine rate. Figure D-4 shows 
both the 'C2S and the 'CSx clocking schemes. 

Figure lJ-4.. 'C25 and 'C5x Clocking Schemes 
'C25 

CLKIN 

CLKOUT1 

CLKOUT2 

'C50 

CLKIN 

CLKOUT1 
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Package and Pin Layout 

The 'CSx MP/MC (microprocessor/microcomputer) pin is sampled only while 
RS is low. Changes on this pin are ignored while RS is high. The mode can be 
changed during execution by changing the MP/MC bit in the PMST register. 
On the 'C25, any change on the MP/MC pin affects the operation of the device, 
regardless of the state of RS. 

The 'CSx TACK signal goes low only on the first machine cycle of the fetch of 
the first word of the interrupt vector. The 'C25 TACK goes low on each 
wait-state cycle, as well as on the first machine cycle, but it is valid only during 
CLKOUT1 low (during CLKOUT1 high, it has a specific meaning for emulator/ 
test operations). Figure D-5 illustrates this difference. 

The 'CSx device includes some additional functions not included with the 'C25. 
These functions and associated pins are as follows: 

0 TOM serial port = TCLKR, TCLKX, TDR, TDX, TADD, TFRM 
0 Emulation interface = EMUO, EMU1/0FF, TAO, TCK, TDI, TDO, TMS, 

TRST 
O Timer borrow = TOUT 
0 Divide-by-one clock= CLKIN2, CLKMD1, and CLKMD2 
O Fourth external interrupt = TNT4 
O Nonmaskable interrupt = NMT 
O Read enable = RU 
O Write enable = WE 

The 'CSx package also includes 12 additional power and 13 additional ground 
pins. These additional power and ground pins enable the device to operate at 
much faster speeds. Twenty pins are reserved for future 'CSx spinoff devices. 

Figure D-5. 'C25 IAlJR Versus 'C5x IAlJR 

CLKOUT1 _j L 
c2s1ACR ::::xxxxxx*"'"'--_,,<Xxxxxxx~ ____ ,<xxxxxx* ____ xxxxxxxxx 
C501ACR 
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D.2 Timing 

Timing 

The 'C2S and the 'CSx operate with some timing differences. These timing dif­
ferences include aspects of the on-chip operation as well as aspects of the ex­
ternal memory interfacing. One key difference is that the 'CSx is capable of op­
erating at two to three times the speed of a 'C2S. Another key difference is that 
the 'C2S operates with a three-deep pipeline, while the 'CSx operates with a 
four-deep pipeline. Key differences in the external memory interface encom­
pass the faster 'CSx and include certain external interface enhancements. The 
final key difference is that some compatible operations execute in a different 
number of machine cycles. This section describes these differences. 

D.2.1 Device Clock Speed 

D.2.2 Pipeline 

The 'C2S operates its machine cycles with a divide-by-four clocking scheme. 
The 'CSx uses a divide-by-two clocking scheme. This means that a 'C2S, oper­
ating with a 40-MHz CLKIN, executes its machine cycles within 100 ns, while 
the 'CSx, which is operating with the same CLKIN, executes its machine cycles 
in SO ns. This clocking arrangement changes the way that the signals of the 
devices are specified. Many of the 'C2S timing values, given in the TMS320 
Second-Generation Digital Signal Processor Data Sheet, are specified as 
quarter-phase (Q) ± N ns. The timing values of the 'CSx are defined in 
half-phases (H). 

The 'C2S operates with a three-deep pipeline, while the 'CSx operates with a 
four-deep pipeline. This means that anytime there is a program counter (PC) 
discontinuity (for example, branch, call, return, interrupt, etc.), it takes four 
cycles to complete with the 'CSx, whereas it takes three cycles on the 'C2S. 
The 'CSx, however, also has delayed instructions that take only two cycles to 
complete. 

D.2.3 External Memory Interfacing 

The 'CSx is designed to execute external memory operations with the same 
signals as the 'C2S. As mentioned above, the 'CSx operates at twice the instruc­
tion rate of the 'C2S when both operate with the same input clock. The 'CSx 
uses its software wait-state generators to compensate for this interface differ­
ence. The 'CSx device, operating with one software wait state, has similar 
memory timing to the 'C2S operating with no wait states. However, external 
writes require two cycles on the 'CSx devices. The exact timing of the signals 
differ because of the more advanced process used with the 'CSx. 

The 'CSx has two additional memory interface signals to reduce the amount 
of external interfacing circuitries. The RU signal can be used to interface direct-
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Timing 

lyto the output enable pin of another device, while the WE signal can be directly 
connected to the write enable pin of another device. This alleviates the need 
of gating STRS and R/W to generate the equivalent signals. 

D.2.4 Execution Cycle Times 

D-8 

Some of the 'C25 instructions require additional cycles or program words to 
execute on the 'C5x. The function of these instructions is the same, but the for­
mat and pipeline execution are enhanced to operate with the 'C5x architec­
ture. 

The IN and OUT instructions are now two-word instructions.They execute on 
the 'C5x in the same number of cycles as with the 'C25, but the assembler gen­
erates a two-word instruction for the 'C5x. Note that the 'C5x IN and OUT 
instructions behave differently in RPT mode. See Chapter 4 for details. Two 
words are used because the 'C5x can address 65,536 1/0 ports; the 'C25 ad­
dresses 16. The 'C5x can address sixteen of its 1/0 ports in data memory 
space. This allows any instruction with data-memory-addressing capability to 
also read or write directly to an 1/0 port instead of having to pass it through a 
temporary on-chip data memory location. For example, a value can be read 
directly from an external analog-to-digital converter into the ALU via an 1/0 
port. 

The modification of the three mode bits of the serial port are executed in 
two-cycle/two-word instructions with the 'C5x. However, any or all of three bits 
can be modified with one instruction without affecting other bits in the register. 
This is done with the PLU instructions. 

The NORM instruction modifies the auxiliary register (AR) on the execute 
(fourth) phase of the pipeline, while the ARAU operations occur on the decode 
(second) phase. The two instructions following a NORM instruction should not 
use the same auxiliary register for an address. If the two instructions following 
NORM change the auxiliary register pointer (ARP), then the NORM update of 
the AR is executed on the new ARP, not the old one. See Chapter 4 for NORM 
instruction description. The assembler supports an optional way to test for this 
condition and automatically compensate by adding NOP instructions to the 
code. This modification is made to the listing and object files and does not af­
fect your source code. 

Unlike the 'C25, the auxiliary registers are also accessible in the data address 
space on the 'C5x. This allows these registers to be loaded with the CALU 
instructions for advanced-addressing modes. However, take care when using 
this feature because the CALU operations write to the auxiliary registers on the 
execute phase of the pipeline and, therefore, are subject to the same charac­
teristics of the NORM instruction. The assembler supports the option to flag 
these conflicts for resolution. 
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D.3 Instruction Set 

The 'C5x instruction set is a superset of the 'C25 instruction set. The instruction 
set of the 'C25 is upward source-code compatible. This means that all of the 
instruction features of the 'C25, implemented and code written for the 'C25, 
can be reassembled to run on the 'C5x. 

The serial port mode control bits have been moved from the status registers 
to the serial port control register. Because they are no longer part of the CPU 
registers, they no longer have direct instructions to set or clear them. The bits 
of the SPC can be manipulated easily with the PLU instructions. The following 
table shows the instructions used to replace the serial port instructions (note 
that the data page pointer must be set to zero to execute these new instruc­
tions): 

'C25 'CSx 

RFSM APL #OFFF7h,SPC 
SFSM CPL #8,SPC 
RTXM APL #OFFDFh,SPC 
STXM CPL #020h,SPC 
FCRTO APL #OFFFBh,SPC 
FCRT1 CPL #4,SPC 

Note that any or all three bits can be set in one execution of the OPL instruction, 
while any or all three bits can be cleared using the APL. The bits can be toggled 
with the XPL instruction. The 1/0 ports of the device are addressable in data 
memory space on the 'C5x devices. This means any instruction that can ad­
dress data memory can also address the 1/0 ports. 

There are a number of new instructions on the 'C5x devices. These instruc­
tions provide a more orthogonal addressing scheme and exercise the new 
CPU enhancements. To simplify the description of the instruction set, a num­
ber of different instructions are combined into single new instructions with ad­
ditional operand formats, as in this example: 

'C25 'CSX 

ADD *+ ADD *+ 
ADDK OFFh ADD #OFFh 
ADLK OFFFFh ADD #OFFFFh 
ADDH *+ ADD *+,16 

Refer to Chapter 4 for the detailed discussion of the instruction set. 

The IDLE instruction, when executed, stops the CPU from fetching and ex­
ecuting instructions until an unmasked interrupt occurs. The 'C25 automatical­
ly enables the interrupts globally with the execution of the I OLE instruction; this 
saves the extra instruction word/cycle required to execute the EINT (enable 
interrupts globally) instruction. Upon receipt of the interrupt, the 'C25 executes 
the interrupt vector and resumes operations. The 'C5x does not automatically 
enable the interrupts globally with its I OLE instruction. If the interrupts are not 
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globally enabled, then the CPU resumes execution with the instructions follow­
ing the IDLE instruction, without taking the interrupt trap. If the interrupts are 
globally enabled, the 'C5x operates like the 'C25. In addition, a second low­
power mode is available with IDLE2 instruction. This mode operates the same 
as IDLE except that the CPU will resume only after an external interrupt. See 
Chapter 4 for IDLE/IDLE2 instruction details. 

The 'C5x repeat counter is 16 bits wide (the 'C25 repeat counter is 8 bits wide). 
This means that, when loading from RAM, the RPT instruction supports repeat 
counts up to 65,536. The assembler allows the RPTto support a16-bit immedi­
ate repeat count also. Note that RPT with long immediate addressing is, how­
ever, a two-word instruction. 
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D.4 On-Chip Peripheral Interfacing 

The 'C5x has more peripherals than the 'C25; many 'C5x peripherals are en­
hancements of the 'C25 peripherals. The 'C25 has three peripheral circuits: 
serial port, timer, and 16 1/0 ports. In addition to these peripherals, the 'C5x 
has software wait states and a divide-by-one clock. 

The serial port of the 'C5x has been enhanced in that the CLIO< pin can be con­
figured as either an input or an output (CLKX is always an input on the 'C25). 
CLKX is configured as an input upon a device reset to maintain compatibility 
with the 'C25. The new serial port status bits are now mapped to a 
memory-mapped register that is used exclusively for the serial port. The serial 
port modes are no longer controlled via status register 1. Therefore, serial port 
modes that are changed by using LST1 instruction will no longer work. The 
mode bits must be set/reset via the serial port control register (SPC). The data 
transmit (DXR) and data receive (DAR) registers have been moved in the 
memory map from locations 1 and 0 to 33 and 32, respectively. 

The timer has been enhanced on the 'C5x to include a divide-down factor of 
1 to 17 and can be stopped or reset via software. These additional features are 
controlled via the timer control register (TCR). Upon reset, the divide-down 
factor is set to 1 , and the timer is enabled to maintain compatibility with the 
'C25. The timer (TIM) and period (PAD) registers have been moved in the 
memory map from locations 2 and 3 to locations 36 and 37, respectively. 

The 16 input/output ports of the 'C5x are addressable in the data memory 
space. This allows direct access of the 1/0 space by the core CPU and sup­
ports bit operation in the 1/0 space via the PLU. The 1/0 space is increased 
from 16 ports to 65,536 ports. However, no additional decode circuitry is nec­
essary if only 16 ports are used. 

The 'C5x includes software wait-state generators that are mapped on 
16K-word page sizes in the program and data memory spaces. There are also 
wait-state generators for the 1/0 ports. The 1/0 space wait-state generators 
can be mapped on two-word or on BK-word boundaries. These wait-state gen­
erators allow the system to be programmed for 0, 1 , 2, 3, 4, or 7 wait states, 
eliminating the need of an off-chip interfacing circuitry. External access wait 
states can be extended further via the READY signal. 
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Appendix E 

XDS510 Design Considerations 

The 'C5x DSPs support emulation through a dedicated emulation port. The 
emulation port is a superset of the IEEE 1149.1 (JTAG) standard and can be 
accessed by the XDS510 emulator. For details on the JTAG protocol, refer to 
the IEEE 1149.1 specification. The information in this appendix supports 
XDS510 Cable #2563988-001 Rev B. 

This appendix contains the following sections 

Topic Page 

f:'.i. .·~able. Header .. Signals• .. ,;:(;(;: •••• : ;h} .. i/.,;}j.) ./ •. ~••~ .. ; .•.• ~••········.;. E-2 
·•e.2> §~~ l3~h16cci1··••.;. ~• .. :; ... )f..A. r .. :~:. > ••. . u~; .. • .. •.••.•• ..... •.•• .... ·.E-3 
· ~:a··· :~~~,~····~·ci·~···•···:· ... ··.\: ::••·.• .. :·•.•): :•:··•·:·~··•:·•:;•·•·.·•·~··:·::::•·::·.·;~ . : i~·c .. L••. i§;··•·.•••.·•.·••.·•.··••··~~"·· 
·•·•!~;~··•·• ?·t~;~~~····sy~te·~· ·Te~t .• c1c>6~•••.•. i.•••~•'.:.···~···~··· ; {~·······••······••:·~ 1•·~·N.•: •...• [••.·······~···············•.•·•·.·•••··~~i· .. ·· 
'.e:~ m ~Giii~r6c~~.~6r•·.86ri11~ii;~i1ciri\(.·••·;.•·.·.%••:•·:•.·•;•.•·~ •·•·••·•·•• .• •;•.••·••;· ..• ; .•.••• .. ••.••······•• .. ; ..•..... ·.•.Er~······ 
···e:~ ~fu·.~,.~tid·~··+,•~·1ri9···.·c111~~·,~t1~ri~·e .. ::•.t·::.••·;•.;·; ;c,·•~~~ i ;-~·••~•f ;\;.;~•·:'.}i4 : ~fj1 ·. 

E-1 



Cable Header and Signals 

E.1 Cable Header and Signals 

To perform emulation with the XDSS 10, your target system must have a 14-pin 
header {two 7-pin rows) with connections as shown in Figure E-1. Table E-1 
describes the emulation signals. 

Although you can use other headers, recommended parts include: 

Straight header, unshrouded DuPont Electronics® part number 
6799~114 

Right-angle header, unshrouded DuPont Electronics® part number 
68405-114 

Figure E-1. Header Signals and Header Dimensions 

TMS 1 2 TR"ST 
TOI 3 4 GND Header Dimensions: 

PD {+5 V) 5 6 No pin (key) Pin-to-pin spacing: 0.100 in. (X,Y) 
TOO 7 8 GND Pin width: 0.025 in. square post 

TCK RET 9 10 GND Pin length: 0.235 in., nominal 

TCK 11 12 GND 
EMUO 13 14 EMU1 

Table E-1.XDS510 Header Signal Description 

Signal State Target State Description 

TMS 0 I JTAG test mode select. 

TOI 0 I JTAG test data input. 

TOO I 0 JTAG test data output. 

JTAG test clock. TCK is a 10-MHz clock source 
TCK 0 I from the emulation cable pod. This signal can be 

used to drive the system test clock. 

TRST 0 I JTAG test reset. 

EMUO I 1/0 Emulation pin 0. 

EMU1 I 1/0 Emulation pin 1. 

Presence detect. Indicates that the emulation 

PD I 0 cable is connected and that the target is powered 
up. PD should be tied to +5 volts in the target sys-
tern. 

JTAG test clock return. Test clock input to the 
TCK_RET I 0 XDS510 emulator. May be a buffered or unbuf-

fared version of TCK. 
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E.2 Bus Protocol 

Bus Protocol 

The IEEE 1149.1 specification covers the requirements for JTAG bus slave de­
vices ('C5x) and provides certain rules. Those rules are summarized as fol­
lows: 

O The TMSrro1 inputs are sampled on the rising edge of the TCK signal of 
the device. 

O The TOO output is clocked from the falling edge of the TCK signal of the 
device. 

When JTAG devices are daisy-chained together, the TOO of one device has 
approximately a half TCK cycle set up to the next device's TOI signal. This type 
of timing scheme minimizes race conditions that would occur if both TOO and 
TOI were timed from the same TCK edge. The penalty for this timing scheme 
is a reduced TCK frequency. 

The IEEE 1149.1 specification does not provide rules for JTAG bus master 
(XOS510) devices. Instead, it states that it expects a bus masterto provide bus 
slave compatible timings. The XOS510 provides timings that meet the bus 
slave rules and also provides an optional timing mode that allows you to run 
the emulation at a much higher frequency for improved performance. 
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E.3 Cable Pod 

E-4 

Figure E-2 shows a portion of the XDS510 emulator cable pod. These are the 
functional features of the emulator pod: 

O Signals TOO and TCK_RET can be parallel-terminated inside the pod if 
required by the application. The default is that these signals are not termi­
nated. 

O Signal TCK is driven with a 74AS1034 device. Because of the high current 
drive {48 mA lm./loH), this signal can be parallel-terminated. If TCK is tied 
to TCK_RET, then you can use the parallel terminator in the pod. 

O Signals TMS and TOI can be generated from the falling edge of TCK_RET, 
according to the IEEE 1149.1 bus slave device timing rules.They can also 
be driven from the rising edge of TCK_RET, which allows a higher 
TCK_RET frequency. The default is to match the IEEE 1149.1 slave de­
vice timing rules. This is an emulator software option that can be selected 
when the emulator is invoked. In general, single-processor applications 
can benefit from the higher clock frequency. However, in multiprocessing 
applications, you may wish to use the IEEE 1149.1 bus slave timing mode 
to minimize emulation system timing constraints. 

O Signals TMS and TOI are series-terminated to reduce signal reflections. 

O A 10-MHz test clock source is provided. You may also provide your own 
test clock for greater flexibility. 
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Figure E-2. Emulator Pod Interface 

y. 180'2 70'2 
74F175 

a 
JP1 

TOO (Pin 7) D 0 

33'2 
TMS (Pin 1) 

74AS258 
33Q 

GND 
TOI (Pin 3) 

(Pins 4,6,8, 1o,12) 
+5V 

TCK (Pin 11) 

10 ka 
EMUO (Pin 13) TRST (Pin 2) 

EMU1 (Pin 13 

y. 180Q 70Q 

JP2 74AS1004 

TCK_RET (Pin 9) 

PD (Pin 5) 

100 Q 

LJ 74AS74 

Figure E-3 and Table E-2 show the signal timings for the XDS510. Timing pa­
rameters are calculated from standard data sheet parts used in the cable pod. 
These timings are for reference only. Texas Instruments does not test or guar­
antee these timings. 

The emulator pod uses TCK_RET as its clock source for internal synchroniza­
tion. TCK is provided as an optional target system test clock source. 
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Figure E-3. Emulator Pod Timings 

r ·1 
TCK_RET _1,----\ __ 3_,{--1.s_v __ \_ 

---- 2 -- --+I 
TMS TOI (Default) 

TMS TOI (Optional) 

TDO----·f 
7~--

Table E-2.Emulator Pod Timing Parameters 

No. Reference 

1 tTCKmin 
trcKmax 

2 trcKh_lg_hmin 
3 trcKJowmin 

4 tcl{XTMXmln) 
tcl..QITM.Xmaxj_ 

5 td(XTMSmin) 
t!!)_XTMSmaxj_ 

6 tsiJ_QrrQ_Omiri 
7 th®ITPOmiol 
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Description Min Max Unit 

TCK_RET period 35 200 ns 

TCK_RET high pulse duration 15 ns 

TCK_RET low pulse duration 15 ns 

TMS{TOI valid from TCK_RET low (default timing) 6 20 ns 

TMS!TOI valid from TCK_RET high (optional timing) 7 24 ns 

TOO setup time to TCK RET high 3 ns 
TOO hold time from TCK RET high 12 ns 

It is extremely important to provide high-quality signals between the emulator 
and the target processor. If the distance between the emulation header and 
the processor is greater than 6 inches, the emulation signals should be buff­
ered. Sections E.4 and E.5 illustrate typical connections between the target 
processor and the emulation header. 
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E.4 Target System Test Clock 

Figure E-4 shows an application with the system test clock generated in the 
target system. In this application the TCK signal is left unconnected. 

System Test Clock 

There are two benefits to having the target system generate the test clock: 

1) You can set the test clock frequency to match your system requirements. 
The emulator provides only a single 10-MHz test clock. 

2) You may have other devices in your system that require a test clock when 
the emulator is not connected. 
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E.5 Multiprocessor Configuration 

Figure E-5. Multiprocessor Connections 
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+5 v 
Emulator Header Ii-

EMUO PD 
5 

t-----' 

EMU1 

TRST GND ~ 

TMS GNO r4 
TOI GND ~ 
TOO GND ~ 
TCK GND r!.4 
TCK_RET v 

GN 0 

Figure E-5 shows a typical multiprocessor configuration. This is a daisy­
chained configuration (TOO-TOI daisy-chained), which meets the minimum 
requirements of the IEEE 1149.1 specification. The emulation signals in this 
example are buffered to isolate the processors from the emulator and provide 
adequate signal drive for the target system. One of the benefits of a JTAG test 
interface is that you can generally slow down the test clock to eliminate timing 
problems. Several key points to multiprocessor support are as follows: 

O The processor TMS, TOI, TOO, and TCK should be buffered through the 
same physical package to control timing skew better. 

O The input buffers for TMS, TOI, and TCK should have pullups to 5 volts. 
This will hold these signals at a known value when the emulator is not con­
nected. A pullup of 4.7 kO or greater is suggested. 

O Buffering EMUO and EMU1 is optional, but highly recommended to pro­
vide isolation. These are not critical signals and do not need to be buffered 
through the same physical package as TMS, TCK, TOI, and TOO. Buff­
ered and unbuffered signals are shown in Figure E--6 and Figure E-7. 

No signal buffering. In this situation, the distance between the header and 
the processor should be no more than 6 inches. 
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Figure E-6. Unbuffered Signals 

+5V 
'C5x Emulator Header 

EMUO 
13 

EMUO PD 
EMU1 

14 
EMU1 

TRST 2 TRST GND 4 

TMS 
1 

TMS GND 6 

TOI 
3 

TOI GND 8 

TOO 
7 

TOO GND 10 

TCK 
11 

TCK GND 12 

9 
TCK_RET GND 

Emulation signals buffered. The distance between the emulation header 
and the processor is greater than 6 inches. The emulation signals-TMS, TOI, 
TOO, and TCK_RET- are buffered through the same package. 

Figure E-7. Buffered Signals r More than 6 in ~ 
+5V 

'C5x 
+5V 

Emulator Header 

EMUO 
13 

EMUO PD 
EMU1 

14 
EMU1 

TRST 2 TRST GND 4 

TMS TMS GND 6 

TOI 
3 

TOI GND 8 

TOO 
7 

TOO GND 10 

TCK 
11 

TCK GND 12 

9 
TCK_RET GND 

O The EMUO and EMU1 signals must have pullups to 5 volts. The pullup re­
sistor value should be chosen to provide a signal rise time less than 1 O µs. 
A 4. 7-kQ resistor is suggested for most applications. EMU0-1 are 1/0 pins 
on the 'C4X and 'CSX; however, they are only inputs to the XOS510. In 
general, these pins are used in multiprocessor systems to provide global 
run/stop operations. 
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O It is extremely important to provide high quality signals, especially on the 
processor TCK and the emulator TCK_RET signal. In some cases, this 
may require you to provide special PWB trace routing and to use termina­
tion resistors to match the trace impedance. The emulator pod does pro­
vide optional internal parallel terminators on the TCK_RET and TOO. TMS 
and TOI provide fixed series termination. 
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E.6 Emulation Timing Calculations 

The following are a few examples on how to calculate the emulation timings 
in your system. For actual target timing parameters, see the appropriate de­
vice data sheets. 

Assumptions: 

lsu(TTMS) 

th(TTMS) 

lci(TTDO) 

lci(bufmax) 

lei (bufmin) 

t(bufskew) 

ttckfactor 

Target TMS!TDI setup to TCK high 

Target TMS!TDI hold from TCK high 

Target TOO delay from TCK low 

Target buffer delay maximum 

Target buffer delay minimum 

Target buffer skew between two devices 
in the same package: 
[lci(bufmax) - lci(bufmin)1 x 0.15 

Assume a 40/60 duty cycle clock 

Given In Table E-2 (page E-6): 

lci(XTMSmax) XDS510 TMS!TDI delay from TCK_RET 
low, maximum 

lci(XTMX) 

lci(XTMSmax) 

td(XTMXmin) 

tsu(XTDOmin) 

min XDS510 TMS!TDI delay from 
TCK_RET low, minimum 

XDS51 O TMS!TDI delay from TCK_RET 
high, max 

XDS510 TMS!TDI delay from TCK _ RET 
high, minimum 

TOO setup time to XDS510 TCK_RET 
high 

There are two key timing paths to consider in the emulation design: 
(1) the TCK_RET!TMS!TDI (tprdtck_TMS) path, and 
(2) the TCK_RET!TDO (tprdtck_TDo) path. 

10 ns 

5 ns 

15 ns 

10 ns 

1 ns 

1.35 ns 

0.4 

20 ns 

6 ns 

24 ns 

7 ns 

3 ns 

In each case, the worst case path delay is calculated to determine the maxi­
mum system test clock frequency. 
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Case 1: 

Case 2: 

Case 3: 

E-12 

Single processor, direct connection, TMS/TDI timed from TCK_RET low (de­
fault timing). 

tprdtck _ TMS 

tprdtck _ TDO 

= [t(d(XTMSmax) + fsu(TTMS)] I ttckfactor 
= (20 ns + 10 ns) I O .4 
= 75 ns (13.3 MHz) 

= [t(d(TTOO) + fsu(XTOOmin)1 I ttckfactor 
= (15 ns + 3 ns) I 0.4 
= 45 ns (22.2 MHz) 

In this case, the TCK/TMS path is the limiting factor. 

Single processor, direct connection, TMS/TDI timed from TCK_RET high (op­
tional timing). 

tprdtck_TMS 

tprdtck _ TDO 

= ~(XTMSmax) + tsu(TTMS) 
= (24 ns + 1 O ns) 
= 34 ns (29.4 MHz) 

= [~(TToo) + fsu(XTDOmin)1 I ttckfactor 
= (15 + 3) I 0.4 
= 45 ns (22.2 MHz) 

In this case, the TCK/TDO path is the limiting factor. One other thing to consid­
er in this case is the TMS/TDI hold time. The minimum hold time for the 
XDS51 O cable pod is 7 ns, which meets the 5-ns hold time of the target device. 

Single/multiple processor, TMS/TDI buffered input; TCK_RET/TDO buffered 
output, TMS/TDI timed from TCK_RET high (optional timing). 

tprdtck_ TMS 

tprdtck_ TDO 

= ~(XTMSmax) + tsu(TTMS) + 2~(bufmax) 
= 24 ns + 1 O ns + 2 (1 O) 
= 54 ns (18.5 MHz) 

= [~(TTOO) + tsu(XTDOmin) + t(bufskew)1 I ttckfactor 

= (15 ns + 3 ns + 1.35 ns) I 0.4 

= 58.4 ns (20.7 MHz) 

In this case, the TCK/TMS path is the limiting factor. The hold time on TMS/TDI 
is also reduced by the buffer skew (1.35 ns) but still meets the minimum device 
hold time. 
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Emulation Timing Calculations 

Single/multiprocessor, TMS/TDl/TCK buffered input; TOO buffered output, 
TMS/TDI timed from TCK_RET low (default timing). 

tprdtck_TMS = [~(XTMSmax) + 1su(TTMS) + tbufskew] /1ckfactor 

= (24 ns + 1 O ns + 1.35 ns) I 0.4 
= 88.4 ns (11.3 MHz) 

1Prdtck_TDO = [~(TTDO) + 1su(XTDOmin) + ~(bufmax)J I 1ckfactor 

= (15 ns + 3 ns + 10 ns) I 0.4 
= 70 ns (14.3 MHz) 

In this case, the TCK/TMS path is the limiting factor. 

In a multiprocessor application, it is necessary to ensure thatthe EUM0-1 lines 
can go from a logic low level to a logic high level in less than 10 µs. This can be 
calculated as follows (remember that t = 5 RC): 

trise = 5(Rpullup x Ndevices x C1oad_per_device) 
= 5(4.7kC x 16 x 15pF) 
= 5.64 µs 
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Appendix F 

Analog Interface Peripherals and 
Applications 

Texas Instruments offers many products for total system solutions, including 
memory options, data acquisition, and analog inpuVoutput devices. This ap­
pendix describes a variety of devices that interface directly to the TMS320 
DSPs in rapidly expanding applications. 
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Multimedia App[lications 

F.1 Multimedia Applications 

Multimedia integrates different media through a centralized computer. These 
media can be visual or audio and can be input to or output from the central 
computer via a number of technologies. The technologies can be digital based 
or analog based (such as audio or video tape recorders). The integration and 
interaction of media enhances the transfer of information and can accommo­
date both analysis of problems and synthesis of solutions. 

Figure F-1 shows both the central role of the multimedia computer and the 
multimedia system's ability to integrate the various media to optimize informa­
tion flow and processing. 

Figure F-1. System Block Diagram 

CD ROM Operator Input Modem 

~ 
Video Input L.>..._ f-

Image Sensor nl~ P-1 
Video Monitor 

Multimedia 
Computer 

LJ J r;::) Ell 1 Microphone Facsimile/Modem 

+ • Music Input Slides and Printing 
(MIDI) Speakers 

F.1.1 System Design Considerations 
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Multimedia systems can include various grades of audio and video quality. The 
most popular video standard currently used NGA) covers 640 x 480 pixels 
with 1, 2, 4, and 8-bit memory-mapped color. Also, 24-bit true color is sup­
ported, and 1024 x 768 (beyond VGA) resolution has emerged. There are two 
grades of audio. The lower grade accommodates 11.25-kHz sampling for 8-bit 
monaural systems, while the higher grade accommodates 44.1-kHz sampling 
for 16-bit stereo. 

Audio specifications include a musical instrument digital interface (MIDI) with 
compression capability, which is based on keystroke encoding, and an input/ 
output port with a 3-disc voice synthesizer. In the media control area, video 
disc, CD audio, and CD ROM player interfaces are included. Figure F-2 
shows a multimedia subsystem. 
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The TLC32047 wide-band analog interface circuit (AIC) is well suited for multi­
media applications because it features wide-band audio and up to 25-kHz 
sampling rates. The TLC32047 is a complete analog-to-digital and digital-to­
analog interface system for the TMS320 DSPs. The nominal bandwidths of the 
filters accommodate 11.4 kHz, and this bandwidth is programmable. The 
application circuit shown in Figure F-2 handles both speech encoding and 
modem communication functions, which are associated with multimedia appli­
cations. 

Figure F-2. Multimedia Speech Encoding and Modem Communication 
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Figure F-3 shows the interfacing of the 'C25 DSP to the TLC32047 AIC that 
constitutes the building blocks of the 9600-bps V.32 bis modem shown in 
Figure F-2. 

Figure F-3. TMS320C25 to TLC32047 Interface 
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F.1.2 Multlmedla-Related Devices 

As shown in Table F-1 , Tl provides a complete array of analog and graphics 
interface devices. These devices support the TMS320 DSPs for complete mul­
timedia solutions. 

Table F-1. Data Converter /Cs 

Resolu- Conversion Device Description 1/0 tion 
CLKRate 

Application 
(Bits} 

TLC320AC01 Analog interface (5 V Serial 14 43.2 kHz Portable modem and 
only) speech, multimedia 

TLC32047 Analog interface Serial 14 25 kHz Speech, modem, and 
(11.4-kHz BW) (AIC) multimedia 

TLC32046 Analog interface (AIC) Serial 14 25 kHz Speech and modems 

TLC32044 Analog interface (AIC) Serial 14 19.2 kHz Speech and modems 

TLC32040 Analog interface (AIC) Serial 14 19.2 kHz Speech and modems 

TLC34075/6 Video palette Parallel Triple 8 135 MHz Graphics 

TLC34058 Video palette Parallel Triple 8 135 MHz Graphics 

TLC5502/3 Flash ADC Parallel 8 20MHz Video 

TLC5602 Video DAC Parallel 8 20MHz Video 

TLC5501 Flash ADC Parallel 6 20MHz Video 

TLC5601 Video DAC Parallel 6 20MHz Video 

TLC1550/1 ADC Parallel 10 150 kHz Servo ctrl I speech 

TLC32071 Analog interface (AIC) Parallel 8 1 MHz Servo ctrl I disk drive 

TMS57013/4 Dual audio DAC+ digital Serial 16/18 32, 37.8, Digital audio 
filter 44.1, 48 kHz 

Table F-2. Switched-Capacitor Filter /Cs 

Device 

TLC2470 

TLC2471 

TLC10/20 

TLC04/14 

F-4 

Function Order Roll-Off Power Out Power Down 

Differential audio filter amplifier 4 5 kHz 500mW Yes 

Differential audio filter amplifier 4 3.5 kHz 500mW Yes 

General-purpose dual filter 2 CLK+ 50 N/A No 
CLK + 100 

Low pass, Butterworth filter 4 CLK+ 50 N/A No 
CLK+ 100 

For application assistance or additional information, please call Tl Linear 
Applications at {214) 997-3772. 
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F.2 Telecommunications Applications 

The Tl linear product line focuses on three primary telecommunications appli­
cation areas: subscriber instruments (telephones, modems, etc.), central of­
fice line card products, and personal communications. Subscriber instruments 
include the TCM508x DTMF tone encoder family, the TCM150x tone ringer 
family, the TCM1520 ring detector, and the TCM3105 FSK modem. Central of­
fice line card products include the TCM29Cxx combo (combined PCM filter 
plus codec) family, the TCM420x subscriber line control circuit family, and the 
TCM1030/60 line card transient protector. Personal communication (PCN) 
and cellular products include the TCM320AC3x family of 5-volt voice-band au­
dio processors (VBAP). 

Tl continues to develop newtelecom integrated circuits, such as a high-perfor­
mance 3-volt combo family for personal communications applications, and an 
RF power amplifier family for hand-held and mobile cellular phones. 

System Design Considerations. The size, network complexity, and com­
patibility requirements of telecommunications central office systems create 
demanding performance requirements. Combo voice-band filter performance 
is typically± 0.15 dB in the passband. Idle channel noise must be on the order 
of 15 dBrncO. Gain tracking (S/Q) and distortion must also meet stringent re­
quirements. The key parameters for a SLIC device are gain, longitudinal bal­
ance, and return loss. 
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Figure F-4. Typical DSP/Combo Interface 
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The TCM320AC36 combo interfaces directly to the 'C25 serial port with a mini­
mum of external components, as shown in Figure F-4. Half of hex inverter U3 
and crystal Y1 form an oscillator that provides clock timing to the 
TCM320AC36. The synchronous 4-bit counters U 1 and U2 generate an 8-kHz 
frame sync signal. DCLKR on the TCM320AC36 is connected to VDD• placing 
the combo in fixed data-rate mode. Two 20-kQ resistors connected to AN LG IN 
and MIC_ GS setthe gain of the analog input amplifier to 1. The timing is shown 
in Figure F-5. 
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Figure F-5. DSP/Combo Interface Timing 
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Telecommunications-Related Devices. Data sheets for the devices in 
Table F-3 are contained in the 1991 Telecommunications Circuits Databook, 
(literature number SCTD001). To request your copy, contact your nearest Tex­
as Instruments field sales office. 

For further information on these telecommunications products, please call Tl 
Linear Applications at (214) 997-3772. 
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Table F-3. Telecom Devices 

Device Number Coding Clock Rates #of Bits Comments Law MHzt 

Codec/Fiiter 

TCM29C13 Aand µ 1.544, 1.536, 2.048 8 C.O. and PBX line cards 

TCM29C14 Aand µ 1.544, 1.536, 2.048 8 Includes 8th-bit signal 

TCM29C16 µ 2.048 8 16-pin package 

TCM29C17 A 2.048 8 16-pin package 

TCM29C18 µ 2.048 8 Low-cost DSP interface 

TCM29C19 µ 1.536 8 Low-cost DSP interface 

TCM29C23 Aand µ Up to 4.096 8 Extended frequency range 

TCM29C26 Aand µ Up to 4.096 8 Low-power TCM29C23 

TCM320AC36 µand Linear Up to 4.096 8 and 13 Single voltage (+5) VBAP 

TCM320AC37 Aand Linear Up to 4.096 8 and 13 Single voltage (+5) VBAP 

TCM320AC38 µand Linear Up to 4.096 8 and 13 Single voltage (+5) GSM 

TCM320AC39 A and Linear Up to 4.096 8 and 13 Single voltage (+5) GSM 

TP3054/64 1.544, 1.536, 2.048 8 National Semiconductor µ second source 

TP3054/67 A 1.544, 1.536, 2.048 8 National Semiconductor 
second source 

TLC320AC01 Linear 43.2 kHz 14 5-volt-only analog interface 

TLC32040/1 Linear Up to 19.2-kHz sampling 14 For high-dynamic linearity 

TLC32044/5 Linear Up to 19.2-kHz sampling 14 For high-dynamic linearity 

TLC32046 Linear Up to 25-kHz sampling 14 For high-dynamic linearity 

TLC32047 Linear Up to 25-kHz sampling 14 For high-dynamic linearity 

Transient Suppressor 

TCM1030 Transient suppressor for SLIC-based line card (30 A max) 

TCM1060 Transient suppressor for SLIC-based line card (60 A max) 

t Unless otherwise noted 

Table F-4. Switched-Capacitor Filter /Cs 

Device Function Order Roll-Off Power Out Power Down 

TLC2470 Differential audio filter amplifier 4 5 kHz 500mW Yes 

TLC2471 Differential audio filter amplifier 4 3.5 kHz 500mW Yes 

TLC10/20 General-purpose dual filter 2 
CLK+ 50 

N/A No 
CLK+ 100 

TLC04/14 Low pass, Butterworth filter 4 
CLK+ 50 

N/A No 
CLK + 100 
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Figure F-6. General Telecom Applications 
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Figure F-7. Generic Telecom Application 
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F.3 Dedicated Speech Synthesis Appllcatlons 

For dedicated speech synthesis applications, Texas Instruments offers a fami­
ly of dedicated speech synthesizer chips. This speech technology has been 
used in a wide range of products including games, toys, burglar alarms, fire 
alarms, automobiles, airplanes, answering machines, voice mail, industrial 
control machines, office machines, advertisements, novelty items, exercise 
machines, and learning aids. 

Dedicated speech synthesis chips are effective in low-cost applications. The 
speech synthesis technology provided by the dedicated chips is either LPC (li­
near-predictive coding) or CVSD (continuously variable slope delta modula­
tion). Table F-5 shows the characteristics of the Tl voice synthesizers. 

Table F-5. Voice Synthesizers 

Device 

TSP50C4x 

TSP50C1x 

TSP53C30 

TSP50C20 

TMS3477 

Tl Voice Synthesizers: 

Microprocessor Synthesis 1/0 Pins On-Chip External Data Rate 
Method Memory (Bits) Memory (Bits/Sec) 

8-bit 

8-bit 

8-bit 

8-bit 

N/A 

LPC-10 20/32 64K/128K VROM 1200-2400 

LPC-12 10 64K/128K VROM 1200-2400 

LPC-10 20 N/A From host µP 1200-2400 

LPC-10 32 N/A EPROM 1200--2400 

CVSD 2 None DRAM 16K--32K 

Tl has low-cost memories that are ideal for use with speech synthesizers 
chips. Texas Instruments can also be of assistance in developing and process­
ing the speech data that is used in these speech synthesis systems. Table F-6 
shows speech memory devices of different capabilities. Additionally, audio fil­
ters are outlined in Table F-7. 

Table F-6. Speech Memories 

TSP60Cxx Famlly of Speech ROMs 

TSP60C18 TSP60C19 TSP60C20 TSP60C80 TSP60C81 

Size 256K 256K 256K 1M 1M 

No. of Pina 16 16 28 28 28 

Interface Parallel 4-bit Serial Parallel/serial Serial Parallel 4-bit 8-bit 

For use with: TSP50C1x TSP50C4x TSP50C4x TSP50C4x TSP50C1x 
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Table F-7. Switched-Capacitor Filter /Cs 

Device Function Order Roll-Off Power Out Power Down 

TLC2470 Differential audio filter amplifier 4 5 kHz 500mW Yes 

TLC2471 Differential audio filter amplifier 4 3.5 kHz 500mW Yes 

TLC10/20 General-purpose dual filter 2 
CLK+50 

N/A No 
CLK+ 100 

TLC04/14 Low pass, Butterworth filter 4 CLK+ 50 
N/A No 

CLK+ 100 

Speech Synthesis Development Tools 

Software: 
EVM 
Speech: 
SAB 
SD85000 

Code development tool 

Speech audition board 
PC-based speech analysis 
system 

System: 
SEB System emulator board 
SEB60Cxx System emulator boards for speech 

memories 

For further information on these speech synthesis products, please call Tl Linear Applications at 
(214) 997-3772. 
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F.4 Servo Control/Disk Drive Applications 

Several years ago, most servo control systems used only analog circuitry. 
However, the growth of digital signal processing has made digital control 
theory a reality. Figure F-8 shows a block diagram of a generic digital control 
system using a DSP, along with an ADC and DAC. 

Figure F-8. Generic Servo Control Loop 
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In a DSP-based control system, the control algorithm is implemented via soft­
ware. No component aging or temperature drift is associated with digital con­
trol systems. Additionally, sophisticated algorithms can be implemented and 
easily modified to upgrade system performance. 

System Design Considerations. TMS320 DSPs have facilitated the de­
velopment of high-speed digital servo control for disk drive and industrial con­
trol applications. Disk drives have increased storage capacity from 5 mega­
bytes to over 1 gigabyte in the past decade, which equates to a 23,900 percent 
growth in capacity. To accommodate these increasingly higher densities, the 
data on the servo platters, whether servo-positioning or actual storage infor­
mation, must be converted to digital electronic signals at increasingly closer 
points in relation to the platter "pick-off' point. The ADC must have increasingly 
higher conversion rates and greater resolution to accommodate the increasing 
bandwidth requirements of higher storage densities. In addition, the ADC con­
version rates must increase to accommodate the shorter data retrieval access 
time. 
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Figure F-9 shows a block diagram of a disk drive control system. 

Figure F-9. Disk Drive Control System Block Diagram 
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Table F-8 lists analog/digital interface devices used for servo control. 

Table F-8. Control Related Devices 

Function Device Bits Speed Channels Interface 

ADC TLC1550 iO 3-5 µs 1 Parallel 

TLC1551 10 3-5 µs 1 Parallel 

TLC5502/3 8 50 ns (flash) 1 Parallel 

TLC0820 8 1.5 µs 1 Parallel 

TLC1225 13 12 µs 1 (Diff.) Parallel 

TLC1558 10 3-5 µs 8 Parallel 

TLC1543 10 21 µs 11 Serial 

TLC1549 10 21 µs 1 Serial 

DAC TLC7524 8 9 MHz 1 Parallel 

TLC7628 8 9MHz (Dual) Parallel 

TLC5602 8 30MHz 1 Parallel 

AIC TLC32071 8 (ADC) 1 µs 8 Parallel 
9 MHz 1 
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Figure F-10 shows the interfacing of the 'C14 and the TLC32071. 

Figure F-10. TMS320C14-TLC32071 Interface 
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For further information on these servo control products, please call Tl Linear 
Applications at {214) 997-3772. 
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F.5 Modem Applications 
High-speed modems (9,600 bps and above) require a great deal of analog sig­
nal processing in addition to digital signal processing. Designing both high­
speed capabilities and slower fall-back modes poses significant engineering 
challenges. Tl offers a number of analog front-end (AFE) circuits to support 
various high-speed modem standards. 

The TLC32040, TLC32044, TLC32046, TLC32047, and TLC320AC01 analog 
interface circuits (AIC) are especially suited for modem applications by the in­
tegration of an input multiplexer, switched capacitor filters, high resolution 
14-bit ADC and DAC, a four-mode serial port, and control and timing logic. 
These converters feature adjustable parameters, such as filtering characteris­
tics, sampling rates, gain selection, (sin x)/x correction (TLC32044, 
TLC32046, and TLC32047 only), and phase adjustment. All these parameters 
are software programmable, making the AIC suitable for a variety of applica­
tions. Table F-9 has the description and characteristics of these devices. 

Table F-9. Modem AFE Data Converters 

Device Description 1/0 Resolution Conversion 
(Bits) Rate 

TLC32040 Analog interface chip (AIC) Serial 14 19.2 kHz 

TLC32041 AIC without on-board VREF Serial 14 19.2 kHz 

TLC32044 Telephone speed/modem AIC Serial 14 19.2 kHz 

TLC32045 Low-cost version of the TLC32044 Serial 14 19.2 kHz 

TLC32046 Wide-band AIC Serial 14 25 kHz 

TLC32047 AIC with 11 .4-kHz BW Serial 14 25 kHz 

TLC320AC01 5-volt-only AIC Serial 14 43.2 kHz 

TCM29C18 Companding codec/filter PCM 8 8 kHz 

TCM29C23 Companding codec/filter PCM 8 16 kHz 

TCM29C26 Low-power codec/filter PCM 8 16 kHz 

PCM 
TCM320AC36 Single-supply codec/filter and 8 25kHz 

Linear 

The AIC interfaces directly with serial-input TMS320 DSPs, which execute the 
modem's high-speed encoding and decoding algorithms. The TLC3204x fami­
ly performs level-shifting, filtering, and ND and D/A data conversion. The 
DSP's many software-programmable features provide the flexibility required 
for modem operations and make it possible to modify and upgrade systems 
easily. Under DSP control, the AIC's sampling rates permit designers to in­
clude fall-back modes without additional analog hardware in most cases. 
Phase adjustments can be made in real time so that the ND and D/A conver­
sions can be synchronized with the upcoming signal. In addition, the chip has 
a built-in loopback feature to support modem self-test requirements. 
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For further information or application assistance, please call Tl Linear Applica­
tions at (214) 997-3772. 

Figure F-11. High-Speed V.32 Bis and Multistandard Modem With the TLC320AC01 AJC 
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Figure F-11 shows a V.32 bis modem implementation using the'C25 and a 
TLC320AC01. The upper 'C25 performs echo cancellation and transmit data 
functions, while the lower 'C25 performs receive data and timing recovery 
functions. The echo canceler simulates the telephone channel and generates 
an estimated echo of the transmit data signal. The TLC320AC01 performs the 
following functions: 

Upper TLC320AC01 DIA Path: Converts the estimated echo, as com­
puted by the upper 'C25, into an analog 
signal, which is subtracted from the re­
ceive signal. 

Upper TLC320AC01 AID Path: Converts the residual echo to a digital sig­
nal for purposes of monitoring the residu­
al echo and continuously training the echo 
canceler for optimum performance. The 
converted signal is sent to the upper 'C25. 
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Lower TLC320AC01 D/A Path: Converts the upper 'C25 transmit output 
to an analog signal, performs a smoothing 
filter function, and drives the DAC. 

Lower TLC320AC01 D/A Path: Converts the echo-free receive signal to 
a digital signal, which is sent to the lower 
'C25 to be decoded. 

Note: 

The example in Figure F-11 is for illustration only. In reality, one single 'CSx 
DSP can implement high-speed modem functions. 
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F.6 Advanced Digital Electronics Applications for Consumers 

With the extensive use of the TMS320 DSPs in consumer electronics, much 
electromechanical control and signal processing can be done in the digital do­
main. Digital systems generally require some form of analog interface, usually 
in the form of high-performance ADCs and DACs. Figure F-12 shows the gen­
eral performance requirements for a variety of applications. 

Figure F-12. Applications Performance Requirements 
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Advanced Television System Design Considerations. Advanced 
Digital Television (ADTV) is a technology that uses digital signal processing to 
enhance video and audio presentations and to reduce noise and ghosting. Be­
cause of these DSP techniques, a variety of features can be implemented, in­
cluding frame store, picture-in-picture, improved sound quality, and zoom. The 
bandwidth requirements remain at the existing 6-MHz television allocation. 
From the IF(intermediate frequency) output, the video signal is converted by 
an 8-bit video ADC. The digital output can be processed in the digital domain 
to provide noise reduction, interpolation or averaging for digitally increased 
sharpness, and higher quality audio. The DSP digital output is converted back 
to analog by a video DAC, as shown in Figure F-13. 
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Figure F-13. Video Signal Processing Basic System 
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VCRs, compact disc and DAT players, and PCs are a few of the products that 
have taken a major position in the marketplace in the last ten years. The audio 
channels for compact disc and DAT require 16-bit ND resolution to meet the 
distortion and noise standards. See Figure F-14 for a block diagram of a typi­
cal digital audio system. 

Figure F-14. Typical Digital Audio Implementation 
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The motion and motor control systems usually use 8- to 10-bit ADCs for the 
lower frequency servo loop. Tape or disc systems use motor or motion control 
for proper positioning of the record or playback heads. With the storage me­
dium compressing data into an increasingly smaller physical size, the position­
ing systems require more precision. 

The audio processing becomes more demanding as higher fidelity is required. 
Better fidelity translates into lower noise and distortion in the output signal. 
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The TMS570130W/570140W 1-bit digital-to-analog converters (OAC) in­
clude an 8 times over sampling digital filter designed for digital audio systems, 
such as COPs, OATs, COis, LOPs, digital amplifiers, car stereos, and BS tun­
ers. They are also suitable for all systems that include digital sound processing 
like TVs, VCRs, musical instruments, NICAM systems, multimedia, etc. 

The converters have dual channels so that the right and left stereo signals can 
be transformed into analog signals with only one chip. There are some func­
tions that allow the customers to select the conditions according to their appli­
cations, such as muting, attenuation, de-emphasis, and zero data detection. 
These functions are controlled by external 16-bit serial data from a controller 
like a microcomputer. 

The TMS57030W/570140W adopt 129-tap FIR filter and third-order fl. I mod­
ulation to get -75-dB stop band attenuation and 96-dB SNR. The output is 
PWM wave, which facilitates analog signal through a low-pass filter. 

Table F-10 lists Tl products for analog interfacing to digital systems. 

Table F-1 O.AudioNideo Analog/Digital Interface Devices 

Function Device Bits Speed Channels Interface 

Dual audio DAC+ digital filter TMS57013/4 16/18 32, 37.8, 2 Serial 

Analog interface 
AID 
DIA 

AID 

AID 

Video D/A 

Video D/A 

Triple video D/A 

Triple flash AID 

Flash AID 

Flash AID 

F-20 

44.1, 48 kHz 

TLC32071 
8 2 µS 8 Parallel 
8 15 µS 1 Parallel 

TLC1225 12 12 µS 1 Parallel 

TLC1550 10 6 µS 1 Parallel 

TLC5602 8 sons 1 Parallel 

TL5602 8 50 ns 1 Parallel 

TL5632 8 16 ns 3 Parallel 

TLC5703 8 70 ns 3 Parallel 

TLC5503 8 100 ns 1 Parallel 

TLC5502 8 50 ns 1 Parallel 

For further information or application assistance, please call Tl Linear Applica­
tions at {214) 997-3772. 
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Appendix G 

Memories, Sockets, and Crystals 

This appendix provides product information regarding memories and sockets 
that are manufactured by Texas Instruments and are compatible with the 'C5x. 
Information is also given regarding crystal frequencies, specifications, and 
vendors. 

The contents of the major areas in this appendix are listed below. 

Topic Page 
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G.1 Memories 

G-2 

This section provides product information on EPROM memories that can be 
interfaced with 'C5x processors. Refer to Digital Signal Processing Applica­
tions with the TMS320 Family for additional information on interfaces using 
memories and analog conversion devices. 

Data sheets for EPROM memories are located in the MOS Memory Data Book 
(literature number SMYD008). 

TMS27C64 
TMS27C128 
TMS27C256 
TMS27C512 

Another EPROM memory, TMS27C291 /292, is described in a data sheet (liter­
ature number SMLS291A). 
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Sockets 

AMP manufactures a 132-pin quad flat pack socket for the 'C5x devices. There 
are two pieces - a base (the socket itself) and a lid. The part numbers are 

Base AMP part number 821942-1 
Lid AMP part number 821949-5 

For additional information about Tl sockets, contact the nearest Tl sales office 
or: 

Texas Instruments Incorporated 
Connector Systems Dept, M/S 14-3 
Attleboro, MA 02703 
(617) 699-5242/5269 
Telex: 92-7708 
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Crystals 

G.3 Crystals 

This section lists the commonly used crystal frequencies, crystal specification 
requirements, and the names of suitable vendors. 

Table G-1 lists the commonly used crystal frequencies and the devices with 
which they can be used. 

Table G-1. Commonly Used Crystal Frequencies 

G-4 

Device Frequency 

TMS320C25 40.96 MHz 

TMS320C5x 20.48 MHz 
40.96MHz 

When connected across X1 and X2/CLKIN of the TMS320 processor, a crystal 
enables the internal oscillator. Crystal specification requirements are listed be­
low. 

Load capacitance = 20 pF 
Series resistance = 30 ohm 
Power dissipation = 1 mW 

Vendors of crystals suitable for use with TMS320 devices are listed below. 

RXD, Inc. 
Norfolk, NB 
(800) 228--8108 

N.E.L. Frequency Controls, Inc. 
Burlington, WI 
{414) 763-3591 

CTS Knight, Inc. 
Contact the local distributor. 
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Appendix H 

ROM Codes 

The size of a printed circuit board must be considered in many DSP applica­
tions. To fully utilize the board space, Texas Instruments offers an option that 
reduces the chip count and provides a single-chip solution to its customers. 
On the 'C51, this option incorporates SK words of on-chip program from a 
mask programmable ROM. This allows you to use a code-customized proces­
sor for a specific application while taking advantage of the following: 

O Greater memory expansion 
D Lower system cost 
O Less hardware and wiring 
0 Smaller PCB 

If used often, the routine or entire algorithm can be programmed into the on­
chip ROM of a TMS320 DSP. TMS320 programs can also be expanded by us­
ing external memory; this reduces chip count and allows for a more flexible 
program memory. Multiple functions are easily implemented by a single de­
vice, thus enhancing system capabilities. 

TMS320 development tools are used to develop, test, refine, and finalize the 
algorithms. The microprocessor/microcomputer (MP/lVfC) mode is available 
on all ROM-coded TMS320 DSP devices when accessing either on-chip or off­
chip memory is required. The microprocessor mode is used to develop, test, 
and refine a system application. In this mode of operation, the TMS320 acts 
as a standard microprocessor by using external program memory. When the 
algorithm has been finalized, the designer may submit the code to Texas In­
struments for masking into the on-chip program ROM. At that time, the 
TMS320 becomes a microcomputer that executes customized programs from 
the on-chip ROM. Should the code need changing or upgrading, the TMS320 
may once again be used in the microprocessor mode. This shortens the field 
upgrade time and avoids the possibility of inventory obsolescence. 
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ROM Code Flow 

H.1 ROM Code Flow 

Figure H-1 illustrates the procedural flow for developing and ordering 
TMS320 masked parts. When ordering, there is a one-time/nonrefundable 
charge for mask tooling. A minimum production order per year is required for 
any masked-ROM device. ROM codes will be deleted from the Tl system one 
year after the last delivery. 

Figure H-1. TMS320 ROM Code Flowchart 

Customer TMS320 Design 

Customer Submits: 
- TMS320 New Code Release Form 
- Print Evaluation and Acceptance Form (PEAF} 
- Purchase Order for Mask Charge Prototypes 
- TMS320 Code 

Texas Instruments Responds: 
- Customer Code Input Into Tl System 
- Code Sent Back to Customer for Verification 

No 

Tl Produces Prototypes 

No 

(--~~~~~T-M_s_a_2_o_P_rod~uci_i_on~~~~~-.J) 
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ROM Code Flow 

A TMS320 ROM code may be submitted in one of the following formats (the 
preferred media is 5-1/4-in floppies): 

5-1 /4-in Floppy: COFF format from macro-assembler/linker (preferred) 

Modem (BBS): COFF format from macro-assembler/linker 

EPROM (others): 

PROM: 

TMS27C64 

TBP28S166,TBP28S86 

When a code is submitted to Texas Instruments for masking, the code is refor­
matted to accommodate the Tl mask generation system. System-level verifi­
cation by the customer is therefore necessary. Although the code has been re­
formatted, it is important that the changes remain transparent to the user and 
do not affect the execution of the algorithm. The formatting changes involve 
the removal of address relocation information (the code address begins at the 
base address of the ROM in the TMS320 device and progresses without gaps 
to the last address of the ROM on the TMS320 device) and the addition of data 
in the reserved locations of the ROM for device ROM test. Note that because 
these changes have been made, a checksum comparison is not a valid means 
of verification. 

With each masked device order, the customer must sign a disclaimer stating: 

"The units to be shipped against this order were assembled, for expediency 
purposes, on a prototype (that is, nonproduction qualified) manufacturing 
line, the reliability of which is not fully characterized. Therefore, the antici­
pated inherent reliability of these prototype units cannot be expressly de­
fined." 

and a release stating: 

"Any masked ROM device may be resymbolized as Tl standard product 
and resold as though it were an unprogrammed version of the device, at 
the convenience of Texas Instruments." 

The use of the ROM-protect feature does not hold for this release statement. 
Additional risk and charges are involved when the ROM-protect feature is se­
lected. Contact the nearest Tl Field Sales Office for more information on proce­
dures, leadtimes, and cost associated with the ROM-protect feature. 
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Appendix I 

Development Support 

Texas Instruments offers an extensive line of development tools for the 'C5x 
generation of DSPs, including tools to evaluate the performance of the proces­
sors, generate code, develop algorithm implementations, and fully integrate 
and debug software and hardware modules. 

The following products support development of 'CSx-based applications: 

Software Development Tools: 
Assembler/Linker 
Simulator 
Optimizing ANSI C compiler 
Application Algorithms 
Cf Assembly Debugger and Code Profiler 

Hardware Development Tools: 
Emulator XDS51 O 
'C5x EVM (Evaluation Module) 

Each 'C5x support product is described in the TMS320 Family Development 
Support Reference Guide (literature number SPRU011). In addition, more 
than 100 TMS320 third-party developers provide support products to comple­
ment Tl's offering. For more information on third-party support refer to the 
TMS320 Third Party Reference Guide (literature number SPRU052). 

For information on pricing and availability, contact the nearest Tl Field Sales 
Office or authorized distributor. 

This appendix contains the following: 

Topic Page 
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Device and Development Support Tool Nomenclature 

1.1 Device and Development Support Tool Nomenclature 

1-2 

To designate the stages in the product development cycle, Texas Instruments 
assigns prefixes to the part numbers of all TMS320 devices and support tools. 
Each TMS320 member has one of three prefixes: TMX, TMP, and TMS. Texas 
Instruments recommends two of three possible prefix designators for its sup­
port tools: TMDX and TMDS. These prefixes represent evolutionary stages of 
product development from engineering prototypes (TMX!TMDX) through fully 
qualified production devices/tools (TMSfTMDS). This development flow is de­
fined below. 

Device Development Evolutlonary Flow: 

TMX Experimental device that is not necessarily representative of the final 
device's electrical specifications. 

TMP Final silicon die that conforms to the device's electrical specifications 
but has not completed quality and reliability verification. 

TMS Fully qualified production device. 

Support Tool Development Evolutionary Flow: 

TMDX Development support product that has not yet completed Texas 
Instruments internal qualification testing. 

TMDS Fully qualified development support product. 

TMX and TMP devices and TMDX development support tools are shipped 
against the following disclaimer: 

"Developmental product is intended for internal evaluation purposes." 

TMS devices and TMDS development support tools have been fully character­
ized, and the quality and reliability of the device has been fully demonstrated. 
Texas Instruments standard warranty applies. 

Note: 

Predictions show that prototype devices (TMX or TMP) will have a greater 
failure rate than the standard production devices. Texas Instruments recom­
mends that these devices not be used in any production system because 
their expected end-use failure rate is still undefined. Only qualified produc­
tion devices are to be used. 

Tl device nomenclature also includes a suffix with the device family name. 
This suffix indicates the package type (for example, N, FN, or GB) and temper­
ature range (for example, L). Figure 1-1 provides a legend for reading the com­
plete device name for any TMS320 family member. 
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Device and Development Support Tool Nomenclature 

Figure 1-1. TMS320 Device Nomenclature 

TMS 320 C 25 GB 

PREFIX-----­
TMX = experimental device 
TMP = prototype device 
TMS = qualified device 
SMJ = MIL-STD-883C 

DEVICE FAMILY ____ _. 
320 = TMS320 Family 

TECHNOLOG:v------­
C =CMOS 
E = CMOS EPROM 

L 

l____TEMPERATURERANGE 
H = Oto50°c 
L= Oto70°C 
s = -55 to 1 oo•c 
M = -55 to 125°C 
A = -40 to s5•c 

PACKAGE TYPE 
N =plastic DIP 
J = ceramic CER-DIP 
JD = ceramic DIP 

side-brazed 
GB = ceramic PGA 
FZ = ceramic CER-QUAD 
FN = plastic leaded CC 
FD =ceramic leadless CC 

DEVICE 
C1xDSP: 

10 
14 
15 
16 
17 

C2xDSP: 
20 
25 
26 
28 

C3xDSP: 
30 
31 

C4xDSP: 
40 

C5xDSP: 
50 
51 
53 
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Device and Development Support Tool Nomenclature 

Figure 1-2 provides a legend for reading the part number for any TMS320 
hardware or software development tool. 

Figure 1-2. TMS320 Development Tool Nomenclature 

1-4 

TMDS 32 4 28 1 0 - 0 2 

QUALIFICATION STATUSJ LMEDIUMt 
TMDX = prototype 
TMDS = qualified 

DEVICE FAMILY ----'"" 
32 = TMS320 family 

PRODUCT TYPE-------' 
4 =software 
6 =hardware 
8 =upgrade 

MODEL*---------~ 

11 = XDS/11 
22 =XDS/22 
88 =upgrade kits 

OPERATING SYSTEMt -------' 
02 = C1x VAXNMS 
08 = C1x IBM MS/PC-DOS 
22 = C2x VAXNMS 
28 = C2x IBM MS/PC-DOS 
32 = C3x VAXNMS 
38 = C3x IBM MS/PC-DOS 
42 = C4x VAXNMS 
48 = C4x IBM MS/PC-DOS 
S2 = CSx VAXNMS 
S8 = CSx IBM MS/PC-DOS 

t Software only. 
:j: Hardware only. 

2 = S-1/4" floppy disk 
8 = 1600 BPI magnetic tape 

S/WFORMATt 
O = object code 
1 = source code 

....___ SEQUENCE NUMBER* 

GENERATION* 
1 = C1x 
2=C2x 
3=C3x 
4=C4x 
S=C5x 

..._ ___ FORMATt 

1 = Tl-tagged 
S= COFF 
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Hewlett-Packard E2442A Preprocessor 'C5x Interface 

1.2 Hewlett-Packard E2442A Preprocessor 'CSx Interface 

The Hewlett-Packard E2442A 'C5x preprocessor interface provides a me­
chanical and electrical connection between your target system and an HP log­
ic analizer. Preprocessor hardware captures processor signals and passes 
them to the logic analyzer at the appropriate time, depending on the type of 
measurement you are making. With the preprocessor plugged in, both state 
and timing analysis is available. Two connectors are loaded onto the prepro­
cessor to facilitate communications with other debugging tools. You can use 
a BNC connector, when used with the sequencer of the logic analyzer to halt 
the processor on a condition. Then the 'C5x HLL debugger can be used to ex­
amine the state of the system (for example, microprocessor registers). Like­
wise, a 14-pin connector is available to receive signals from the XDS510 de­
velopment system. These signals can be used when defining a trigger condi­
tion for the analyzer. 

The HP E2442A includes software which automatically labels address, data 
and status lines. Additionally, a disassembler is included. The disassembler 
processes state traces and displays the information on TMS320 mnemonics. 

1.2.1 'C5x Devices Supported 

1.2.2 Capabilities 

The Hewlett-Packard E2442A preprocessor 'C5x interface supports the 'C50, 
'C51, and 'C53 devices. 

The preprocessor supports three modes of operation: in the first mode, State 
per Transfer, the preprocessor clocks the logic analizer only when a bus trans­
fer is complete. In this mode, wait and halt states are filtered out. In the second 
mode, CLKOUT1 clocks the analyzer every time the microprocessor is 
clocked. This mode captures all bus states. An example application would be 
to locate memory locations that do not respond to requests for data. In the third 
mode, you can use the HP E2442A to make timing measurements. 

The JTAG TAP (test access port) controller can be monitored in realtime. TAP 
state can be viewed under the predefined label TAP. 

1.2.3 Logic Analyzers Supported 

0 HP 1650NB 
0 HP 165108 
0 HP 16511 B 
0 HP16540/41(ND) 
0 HP16550A 
0 HP 1660N61N62A 
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Hewlett-Packard E2442A Preprocessor 'C5x Interface 

1.2.4 Pods Required 

There are eight pod-connectors on the preprocessor. Three are terminated 
and best used for state analysis as all signals needed for disassembly are 
available. The other five connectors are not terminated and contain all proces­
sor signals, including a second set of the signals needed for disassembly. This 
allows you to double probe these signals, making simnultaneous state and 
timing measurements. 

1.2.5 Termination Adapters {TAs) 

1.2.6 Availability 

1-6 

Of the eight pods, three are terminated. You may need to order up to five ter­
mination adapters, depending on how many pods are connected at the same 
time. 

For more information and availabilty of the Hewlett-Packard E2442A contact: 

Hewlett-Packard Company 
2000 South Park Place 

Atlanta, GA 30339 
(404) 980-7351 

Pinout and Signal Descriptions 



ABS instruction, 4-27 
ACCB, 3-5 

See also accumulator 

ACCH, 3-5 
See also accumulator 

ACCL, 3-5 
See also accumulator 

accumulator, 3-2, 3-5, 3-24-3-27, 7-9 

adaptive filtering, 1-4, 7-38 

ADC devices, F-20 

ADCB instruction, 4-29 
ADD instruction, 4-30 

ADDB instruction, 4-33 

ADDC instruction, 4-34 

addition, 7-20, 7-31 

addition example, 7-21 

address bus, 2-3, 3-4 

address generation, 3-30 

address map, data page 0, 6-14 

address visibility, 3-39, 3-53, 3-56, 6-9 

addressing modes, 3-11 
circular, 7-13, 7-44 
direct, 3-12 
indirect, 3-13 
long immediate, 3-14-3-16 
memory-mapped, 3-12 
register access, 3-14 
registered block memory, 3-16 
short immediate, 3-13 

ADDS instruction, 4-36 

ADDT instruction, 4-38 

ADRK instruction, 4-40 

ADTV, F-18 

ALU instruction steps, 3-22 

Index 

analog interface 
converters, F-4 
peripherals, F-1 

AND instruction, 4-41 
ANDB instruction, 4-43 

APAC instruction, 4-44 
APL instruction, 4-45 

applications, 1-3-1-4, 1-10, 7-36 
ARB, 3-5 

See also auxiliary registers 
architectural overview, 3-2 

architecture, 1-5 
ARCR register, 3-5, 3-19, 6-16 
arithmetic logic unit (ALU), 3-2, 3-5, 3-24 
arithmetic operations, 3-2 
ARP pointer, 3-5 

See also auxiliary registers 
assembly language instructions, 4-1 
auxiliary register arithmetic unit (ARAU), 3-5 

See also auxiliary registers 
auxiliary register file, 3-5, 6-24 

See also auxiliary registers 

auxiliary registers, 3-5, 3-16-3-20, 3-37, 4-4-4-9, 
4-40, 6-15 
circular buffer 1, 3-40, 4-12 
circular buffer 2, 3-40, 4-12 
file, 3-5, 6-24 
pointer, 3-5, 3-39 
pointer buffer, 3-39 

m 
B instruction, 4-48 
BACC[D] instruction, 4-49 
backtracking algorithm, 7-44 

BANZ[D] instruction, 4-50 

BCND example, 7-9 
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Index 

BCNO instruction, 4-52 

BIG bit, 5-11, 6-32 

BIM, 3-6 

mo pin, 2·5, 5-14 
BID timing, 5-14, A-17-A-18 

BIT instruction, 4-54 

bit manipulation, 3-24, 3-51-3-53 

bit-reversed addressing, 4-5, 7-46 

BITT instruction, 4-56 

BLOO example, 6-37 

BLOO instruction, 4-58 

BLOP example, 6-38 

BLOP instruction, 4-64 

block diagram, 3-3 

block moves, 3-20-3-22, 4-20, 6-37-6-39, 
7-15-7-17 

block repeat, 3-5, 3-46-3-48, 6-17, 7-15 
address register, 3-5 

BLPO example, 6-38 

BLPO instruction, 4-67 

BMAR register, 3-5 
See also block moves; block moves 

boot loader, 6-10, 6-40-6-44 

boot ROM, 6-2 

boot routine, 6-40 

BR pin, 2-3, 2-5, 3-6, 6-29, 6-33-6-35 
BRAF bit. See block repeat 

branch execution, 3-32 

branches, 3-32, 4-20 

BRCR register. See block repeat 

BSAR instruction, 4-72 

burst mode (serial mode), 5-20 

burst mode (serial port), 5-23-5-26 

bus protocol, E-3 

C (carry) bit, 3-6, 3-24-3-27, 3-39 

'C25 instruction compatibility, 0-9 

'C25 packages, 0-2 

'C25 to 'C5x clocking, 0-5 

'C25 to 'C5x execution times, 0-8 

'C25 to 'C5x pins/signals, 0-4 

'C25 to 'C5x software compatibility, 3-59, 4-6, 4-257 
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'C25 to TLC32047 interfacing, F-3 

'C2x to 'C5x mapping, 4-257 
'C2xto 'C5x migration, 0-1-0-12 

CALA[O] instruction, 3-49, 4-73 
CALL[O] instruction, 4-75 

CARx register, 3-40 
See also circular buffer 

CBCR register, 3-38 
See also circular buffer 

CBERx register, 3-6 
See also circular buffer 

CBSRx register, 6-16 
See also circular buffer 

CC[O] instruction, 4-77 
CENBx register. See circular buffer 

central arithmetic logic unit (CALU), 3-6, 3-22-3-29 
central processing unit (CPU), 1-1, 3-1, 3-50 

characteristics of 'C5x processors, 1-6 
circular addressing, 7-12-7-14 

circular buffer, 3-20, 4-12, 6-25, 6-26, 7-12-7-14 
control register, 6-26 

CLKIN2 pin, 2-7 
CLKM01 pin, 2-6, A-10-A-13 

CLKM02 pin, 2-6, A-1 O-A-13 
CLKOUT1 pin, 2·6 

CLKR pin, 2-8, 5-15 
CLKX pin, 2-8, 5-15 
clock characteristics, A-10 
clock options, A-11 

CLRC instruction, 4-79 
CMPL instruction, 4-81 

CMPR instruction, 4-82 

CNF bit, 3-6, 3-37, 3-40, 6-5, 6-12 

combo interface, F-6 

combo interface timing, F-7 

compatibility, 1-8 
conditional branch, 3-31 

consumer electronics, F-18 

context save/restore, 3-59, 5-7, 7-4 
context switching, 1-8, 7-4 
continuous mode (serial port), 5-27-5-29 
convolution, 1-4, 3-2 
correlation, 3-2 

COUNT register, 3-8 
CPGA package, 0-2 



CPL instruction, 4-83 

CRGTexample, 7-9 

CRGT instruction, 4-86 

CRLT example, 7-9 

CRLT instruction, 4-87 

crystals, G-4 

CWSR register, 5-12, 6-18 

cycles, C-1 

m 
DAC devices, F-20 

DARAM, 4-24, 6-2, 6-12, C-2 

data bus, 2-3, 3-3, 3-6 

data converters, F-15 

data memory, 3-4, 3-6, 3-51, 6-12 
page pointer, 3-6, 6-19 

data moves. See block moves 

DBMR register, 3-7, 3-51, 6-17 

delayed branches, 3-32, 7-18 

development tool nomenclature, 1-4 

device nomenclature, 1-3 

digital audio, F-19 

direct addressing mode, 3-12, 4-2-4-4 

divide-by-one clock, 5-48, D-6 

divide-by-one-clock, A-12 

divide-by-two-clock, A-11 

division, 4-232, 7-27 
fractional, 7-30 
integer, 7-29 

division example, 7-29 

DLB bit, 5-18, 5-20, 5-20 

dma (data memory address) register, 3-6-3-8 

OMA (direct memory access), 6-33-6-36 
address ranges, 6-36 
master/slave configuration, 6-33-6-36 

DMOV instruction, 3-21, 4-88 

DP register, 3-6, 3-40, 4-2-4-4, 6-19 

DR pin, 2-8, 5-15 
ORB bus, 3-6 

ORR register, 5-16, 6-18 

US pin, 2-4, 6-27 

dual-access RAM. See DARAM 

DX pin, 2-8, 5-15 

DXR register, 5-16, 6-18 

dynamic programming, 7-42-7-44 

echo cancellation, 1-4 
electrical specifications, A-1 
EMUO pin, 2-9, E-2 
EMU1 pin, 2-10, E-2 

emulator, E-1 
buffered signals, E-9 
cable header, E-2 
cable pod, E-4 
header signals, E-2 
interface, E-5 
timing, E-11 
timings, E-6 
unbuffered signals, E-9 

error conditions 
serial port, 5-29 
TOM serial port, 5-41 

example 
serial port, 5-32 
TOM serial port, 5-41 

EXAR instruction, 4-90 

Ext, 4-24, C-2 
extended-precision arithmetic, 3-25, 7-20 

external crystal, A-1 o 
external OMA, 6-33 

See also OMA (direct memory access) 

external OMA timing, A-20 

external flag (XF) timing, 5-14, A-18 
external memory interface, 6-11, 6-28, A-14 

IJ 
fast Fourier transforms (FFT), 1-4, 7-45-7-54 

complex, 7-53 

filtering, 1-3, 3-2 

filters 
adaptive, 7-38 
FIR, 7-39 
llR, 7-40-7-42 
switched capacitor, F-4, F-8 

fixed-point generations, 1-2 

floating-point 
addition, 7-31 

Index 
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Index 

floating-point (continued) 
arithmetic, 7-31 
generations, 1-2 
multiplication, 7-34 

FO bit, 5-18-5-20 

four-level pipeline, 3-34 

Fourier transforms, 1-4, 7-45-7-54 

fractional division, 7-30 

fractional multiplication, 7-27 
FREE bit, 5-19, 5-23, 5-46 

FSM bit, 5-18, 5-20 

FSA pin, 2-8, 5-15 

FSX pin, 2-8, 5-15 
functional block diagram, 3-3 

m 
global memory, 6-29-6-30 

addressing, 6-30 
configurability, 6-29-6-30 
external interfacing, 6-30 
map, 6-29 

global memory allocation register (GREG), 3-7, 3-7, 
6-17, 6-29-6-31 

m 
hardware multiplier, 3-4, 3-27 

hardware stack, 3-2, 3-9, 3-58 

hardware tools, 1-1 

Harvard architecture, 1-5 

HDTV, F-18 
Hewlett-Packard interface, 1-5 

HM bit, 3-7, 3-40, 3-50, 6-34 

hold mode, 3-7, 6-34 

ROrn pin, 2-5, 3-54, 6-33-6-36 

HOLDA pin, 2-s, 3-54, 6-33-6-36 

D 
1/0 

boot mode, 6-43 
interfacing, 5-9, 6-31-6-33 
parallel, 1-6, 5-9 
pins, 5-14 
ports, 5-11 
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110 (continued) 
ports addressing, 6-31 
serial, 1-6, 1-9, 5-15-5-34, 5-35-5-44 
space, 6-31 

port hole, 6-18 

1ACR pin, 2-5, 3-54, 5-6, 6-9, 6-1 o 
1AO pin, 2-5, 6-33-6-36 

IDLE, 3-50 

IDLE instruction, 4-91, D-9 
IDLE2 instruction, 3-50, 4-92 

IEEE 1149.1, E-3 

IFR register, 3-7, 3-56, 5-2, 5-6, 6-17 

image processing, 1-4 

immediate addressing mode, 3-15, 4-9-4-10 

IMR register, 3-7, 3-57, 5-2, 5-6, 6-17 

IN instruction, 4-93 

INO bit, 5-19 

IN1 bit, 5-19 
indirect addressing mode, 3-13, 3-16-3-20, 4-4--4-9 
indirect addressing routine, 6-21 

INDX register, 3-7, 3-19, 6-16, 6-25 

infinite impulse response (llR) filters, 7-40 

initialization 
peripherals, 5-8 
processor, 3-53, 7-2 

initialization routine, 7-52 

instruction acquisition (IAQ) timing, A-18 

instruction cycle timings, 4-24, C-1 

instruction descriptions, 4-22 

instruction operands, 3-11 

instruction set, symbols and abbreviations, 4-14 

instruction set summary, 4-16--4-22 
instruction symbols, 4-15 

instrumentation, 1-4 

TITT# interrupt, 3-7, 3-55, 5-4-5-8 

INT16, 3-53 

integer division, 7-28-7-30 

integer multiplication, 7-24, 7-26 

interfacing, 1/0 ports, 5-9 

interfacing memories 
EPROM, 6-11 
global memory, 6-30-6-31 
RAM, 6-11, 6-28 

internal hardware summary, 3-5-3-9 

internal oscillator, A-1 O 



interprocessor communications, 5-37, 5-42 
interrupt acknowledge signal (IACK), D-6 

See also IACK pin 
interrupt context save, 3-58 
interrupt latency, 3-57 
interrupt logic, 5-7 
interrupt mode, 3-40 
interrupt timing, A-17-A-18 
interrupt trap, 3-59 
interrupts, 3-53-3-60, 5-4-5-8, 7-4-7-6 

external, 1-1 0 
location, 3-55 
operation, 3-54-3-60, 5-4-5-8 
priorities, 3-55, 5-5 
priority, 5-4 
vectors, 3-56, 6-7 

INTM bit, 3-7, 3-40, 3-53, 3-57, 5-7 
INTR example, 7-5 
INTR instruction, 4-95, 7-4 
lNTx pin, 2-6, 5-7 
IOWSR register, 6-18 
IPTR pointer, 3-7, 3-40, 3-56 
IREG register, 3-18, 3-30 
IS pin, 2-4, 5-9 

II 
JTAG, E-1 

scanning logic, 1-10 
signals, 2-9, E-3 

13 
key features, 1-7 

II 
LACB instruction, 4-97 
LACC instruction, 4-98 
LACL instruction, 4-101 
LACT instruction, 4-1 03 
LAMM instruction, 4-105 
LAR instruction, 4-107 
latency 

interrupt, 3-37, 3-57 

pipeline, 3-35 
LOP instruction, 4-11 0 
LMMR example, 6-39 
LMMR instruction, 4-112 
load circuit, A-8 
local data memory, 6-12 

address map, 6-13 
addressing, 6-19 
direct addressing, 6-20 
external interfacing, 6-27 
indirect addressing, 6-21 
indirect auxiliary register example, 6-23 
long immediate addressing, 6-22 
memory-mapped addressing, 6-20 
registered block memory addressing, 6-22 

logic high, A-9 
logic low, A-9 
logical and arithmetic operations, 7-7-7-11 
long immediate mode, 3-14-3-16, 6-22 
low-power mode, 3-50, 5-48 
LPH instruction, 4-114 
LST instruction, 4-116 
LT instruction, 4-119 
LTA instruction, 4-121 
LTD example, 7-42 
LTD instruction, 4-123 
LTP instruction, 4-125 
LTS instruction, 4-127 

II 
MAC instruction, 3-28, 4-129 
MACO example, 7-40 
MACO instruction, 4-132 
MADD instruction, 4-136 
MADS instruction, 4-140 
MAR instruction, 4-143 
masked parts, H-2 
maximum ratings, A-7 
MCM bit, 5-18 
mechanical data, A-27 
memories, G-2 
memory 

addressing modes, 3-11, 4-2-4-13 
configurability, 6-5 
data, 3-6 

Index 
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memory (continued) 
OMA, 6-33--6-36 
external, 6-2 
global, 3-7, 6-29 
internal, 3-1 O 
local data, 6-12-6-28 
management, 6-37-6-39 
maps, 6-3 
organization, 3-10-3-21 
program memory, 6-5-6-11 
security, 1-9, 6-9 

memory addressing modes, 4-2-4-13 
direct addressing, 3-12 
immediate addressing, 3-15, 4-9-4-10 
indirect addressing, 3-19, 4-4-4-9 

memory interface, 6-10, 6-27, B-3-8-5 

memory space, 6-2 

memory-mapped 
core processor registers, 6-14 
1/0 ports, 6-15 
peripheral registers, 6-14-6-16 
register addressing, 4-10-4-11 
registers, 3-10, 5-2 
write, 3-35 

microcall stack (MCS), 3-7 

microcomputer mode, 2-6, 3-7, 3-40, 6-3--6-5 

microprocessor mode, 2-6, 3-7, 3-40, 6-3--6-5 

MMPORT, 4-24, C-2 

MMR, 4-24, C-2 

modem, 1-4, 7-36, F-15 

MP/MC bit and pin, 1-8, 2-6, 3-7, 3-40, 6-3--6-5, 
6-40 

MPV instruction, 4-145 

MPYA example, 7-42 

MPYA instruction, 4-148 

MPYS instruction, 4-150 

MPYU instruction, 3-29, 4-152 

multiconditional branch, 3-31, 7-8 

multimedia applications, F-2 
multimedia-related devices, F-4 
system design, F-2 

multiplexer, 3-7 

multiplication, 7-23 
algorithm, 7-25 
floating point, 7-34 
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fractional, 7-27 
integer, 7-24, 7-26 
matrix, 7-10-7-20 

multiplication example, 7-26 
multiplier, 3-2, 3-7, 3-27 
multiply accumulate, 3-28, 7-38 
multiprocessing, 6-29, 6-33 
multiprocessor configuration, 6-29, 6-33, E-8 
multiprocessor serial communications, 5-35 

m 
NDX bit, 3-7, 3-40, 4-6 
NEG instruction, 4-154 
nested loops, 3-47, 7-11 
NMI instruction, 4-156 
NMT pin, 2-6, 3-59 
nomenclature, 1-2 
nonrepeatable instructions, 3-45 
NOP instruction, 4-157 
NORM instruction, 3-37, 4-158, D-8 
not meaningful to repeat instructions, 3-44 

m 
OFF pin, 2-1 o 
on-chip memory, 1-3, 1-5-1-7, 6-2 
on-chip RAM, 1-9, 6-2, 6-36 
on-chip ROM, 1-8, H-1 
on-chip memory, 1-6 
on-chip ROM, 6-2 
opcode summary, 4-263 
opcode symbols, 4-262 
operand conditions, 3-31 
operating conditions, A-7 
OPL instruction, 4-161 
OR instruction, 4-164 
ORB instruction, 4-167 
OUT instruction, 4-168 
ov bit, 3-8, 3-40 
overflow saturation mode, 3-25 
OVLY bit, 3-8, 3-40, 6-3, 6-12 
OVM bit, 3-8, 3-25, 3-41 



PAB, 3-30 
PAC instruction, 4-170 
packages, 1-6, 1-10, D-2 
packet frequency, 5-15, 5-25 
packing, 7-8 
PAER register, 3-5, 3-46 
parallel boot mode, 6-41 
parallel 1/0 ports. See 1/0, parallel 
parallel logic unit (PLU), 1-8, 3-2, 3-8, 3-51, 7-7 
parallelism, 3-3, 4-25 
PASR register, 3·6, 3-46 
PAx port, 6-18 

See also 1/0, parallel 
PC, 3-8, 3-30, 6-9 
PC environment (OMA), 6-35 
PDA, 4-24, C-2 
PDWSR register, 6-18 
PE, 4-24, C-2 
period register (PRO), 5-46 
peripheral control, 5-2 
peripheral interfacing, D-11 
peripheral reset conditions, 5-8 
PFC bit, 3-8 
pinout, 2-2 
pinouts, A-2-A-6 
pipeline operation, 3-34 
PLCC package, D-2 
PM bits, 3-9, 3-27, 3-41 
PMST, 7-4 
PMST register, 3-9, 3-38, 4-11, 6-5, 6-17 
POP instruction, 4-171 
POPD instruction, 4-172 
postscaling shifter, 3-8 
power-down mode, 3-50 
PR, 4-24, C-2 
PRO register, 5-45, 6-18 
prefetch counter, 3-8 
PREG register, 3-8, 3-27 
preprocessor interface, 1-5 
prescaling shifter, 3-8 
priorities, interrupt, 3-55 

processor initialization, 7-2 
product shift mode, 3-41 

See also PM bits 
product shifter, 3-8 
program bus, 3-3 
program counter. See PC 
program execution, 3-30, 6-37 
program memory, 1-9, 6-5 

address bus, 3-8 
address map, 6-7 
configuration control, 6-6 

PS pin, 2-4, 6-10 
PSA, 4-24, C-2 
PSC bits, 5-46 
PSHD instruction, 4-174 
PUSH instruction, 4-176 

m 
quad flat package (QFP), A-27 

m 
R/W pin, 2-4, 6-10, A-15, B-2 
RAM bit, 3-6, 3-41 
RAM blocks, 4-25, 6-2 
RO' pin, 2-4, 6-10, 6-27 
READY pin, 2-4, A-17 
ready timing, A-17 

See also READY pin 
receiving multiplexer (serial port), 5-21 
register access mode, 3-14 
registered block mode, 3-16 
registers 

auxiliary, 3-5, 3-16-3·20 
memory-mapped, 3-10, 5-2, 6-13 
peripheral, 5-3 
repeat, 6-16 
serial port, 5-16, 6-18 
software wait states, 5-11, 6-18 
status and control, 3-38 
TOM serial port, 5-37, 6-18 
timer, 5-45, 6-18 

repeat, 3-42, 3-46 
repeat blocks. See block repeat 
repeat loops, 3-41, 7-15-7-17 

Index 
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repeatable instructions, 3-42 

reserved pins, 2-10 

reset condition 
CPU, 3-53 
peripherals, 5-8 

reset timing, A-17-A-18 

RET[D] instruction, 4-177 

RETC instruction, 4-179 

RETE instruction, 4-181 
RETI instruction, 4-182 

right shift, 3-27, 3-28-3-30 

RINT interrupt, 5-17 
RMS routine, 7-18 

robotics, 1-4 

ROL instruction, 4-183 

ROLB instruction, 4-184 

ROM, 4-24, C-2 
ROM codes, 1-8, H-2 

ROR instruction, 4-185 

RORB instruction, 4-186 

RPT example, 7-16, 7-40 
RPT instruction, 4-187 

RPTB instruction, 4-190 

RPTC register, 3-9, 3-42, 5-2, 7-15 

RPTZ instruction, 4-191 

RRDY bit, 5-19 
RRST bit, 5-18, 5-20 

RS pin, 2-6, 3-54, 3-56, 7-2, D-5 

RSR register, 5-16 

RSRFULL bit, 5-19, 5-22 

SACB instruction, 4-192 

SACH instruction, 4-193 

SACL instruction, 4-195 

SAMM instruction, 4-197 

SAR instruction, 4-199 

SARAM I 4-24, 6-2, C-2 

SATH example, 7-31 

SATH instruction, 4-201 

SATL example, 7-31 

SATL instruction, 4-202 

SBB instruction, 4-203 
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SBBB instruction, 4-204 
SBRK instruction, 4-205 

scaling, 3-2, 3-23 
scratch-pad RAM, 6-13, 6-18 
search algorithm, 7-9 

security feature, 6-9 

serial boot mode, 6-43 
serial port, 1-10, 5-15-5-34 

block diagram, 5-17 
control register, 5-18 
error conditions, 5-29 
example, 5-32 
external transmit timing, A-23 
internal transmit timing, A-24 
one-way transfer, 5-16 
operation, 5-15 
pins, 5-15 
receive timing, A-22 
receiving multiplexer, 5-21 
registers, 5-16, 6-18 
reset, 5-20 
timing, A-22 

servo control-related devices, F-13 
servo control/disk drive applications, F-12 

SETC instruction, 4-206 
SFL instruction, 4-207 

SFLB instruction, 4-208 
SFR instruction, 4-209 
SFRB instruction, 4-210 

shadow registers, 3-58, 4-182, 7-4 

shift modes, 3-27 

short immediate mode, 3-13 

sign-extension mode, 3-41 

signal descriptions, 2-1-2-10, A-2-A-6 

single-access RAM. See SARAM 

SMMR example, 6-39 

SMMR instruction, 4-212 

sockets, G-3 

SOFT bit, 5-19, 5-23, 5-46 

software stack, 7-6 

software tools, 1-1 
software wait states, 5-10, 6-18, D-7 
SPAC instruction, 4-214 

SPC register, 5-16, 5-18, 6-18 

specifications, 1-7, A-1 

speech encoding, F-3 



speech memories, F-1 O 

speech synthesis applications, F-1 O 

SPH instruction, 4-215 

SPL instruction, 4-217 
SPLK instruction, 4-219 

SPM instruction, 4-220 

SORA instruction, 4-221 

SQRS instruction, 4-223 

SST instruction, 4-225 

STO register, 3-9, 3-38 

ST1 register, 3-9, 3-38 

stack 
hardware, 3-2, 3-9, 3-58 
microcall, 3-7 

status and control registers, 3-38 

status registers, 3-39 

strategic registers, 3-2 
STRB pin, 2-4, 6-10, 6-28, B-2, D-5 

strobe signal (STRB), 6-35 

SUB instruction, 4-227 

SUBB instruction, 4-230 

SUBC example, 7-29-7-31 

SUBC instruction, 4-232 

subroutines, 7-18-7-19 

SUBS instruction, 4-234 

SUBT instruction, 4-236 

subtraction, 7-20 

subtraction example, 7-22 

support tools nomenclature, 1-2 

switching characteristics, A-14 

SXM bit, 3-9, 3-23, 3-41 

symbols and abbreviations, instruction set, 
4-14-4-15 

system control, 3-30-3-50 

system migration, D-1-0-12 

II 
T registers. See TREGO, TREG1, or TREG2 

TADD pin, 2-8, 5-36 

target system clock, E-7 

TBLR example, 6-39 

TBLR instruction, 3-21, 4-238 

TBLW example, 6-39 

TBLW instruction, 3-21, 4-241 
TC bit, 3-9, 3-41 

TCK pin, 2·9, E-4 
TCLKR bit, 5-36 
TCLKR pin, 2·8 
TCLKX bit, 5-36 
TCLKX pin, 2·8 
TCR register, 5-45, 5-46, 6-18 
TCSR register, 6-18 

TOOR bits, 5-45, 5-46 
TOI pin, 2·9, E-4 
TOM serial port, 5-35-5-44 

error conditions, 5-41 
example, 5-41 
four-wire bus, 5-37 
operation, 5-35-5-44 
registers, 5-38-5-44, 6-18 

Index 

transmit and receive, 5-39-5-44, A-25-A-27 
TOO pin, 2·9, E-4 
TOR pin, 2·8, 5-36 

TOX pin, 2·8, 5-36 
TOXR register, 6-18 

telecommunications applications, F-5 
telecommunications-related devices, F-7-F-9 
test load circuit, A-8 
test/control flag, 3-41 
TFRM pin, 2·8, 5-36 
TFSR pin, 2·8, 5-36 
TFSX pin, 2·8, 5-36 
TIM register, 5-8, 5-45, 5-47, 6-18 
time division multiplexing port. See TOM port 
time-division multiplexing. See TOM serial port 
timer, 1-1 0, 5-45-5-4 7, 0-11 
timer block diagram, 5-45 
timer control register (TCR), 5-46 

See also TCR register 
timer interrupt (TIM). See TIM interrupt 
timer interrupt (TINT). See TINT interrupt 

timer registers, 6-18 
timing, 0-7 

combo interface, F-7 
emulator, E-11 
external interface, B-1 
requirements, A-14, A-23 

TINT interrupt, 5-4, 5-45 
TINT rate, 5-45 
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TLC32071, F-14 
TMS pin, 2-9, E-4 
TMS320 family, 1-2 
TOUT pin, 2-7, 5-45 
TOUT timing, A-18 
TRAD register, 6-18 
TRAP instruction, 4-244 
TAB bit, 5-45, 5-46 
TRCV register, 6-18 
TREGO, 6-17 
TREGO register, 3-9, 3-27 
TREG1, 6-17 
TREG1 register, 3-7, 3-24 
TREG2, 6-17 
TREG2 register, 3-7, 4-56 
TAM bit, 3-9, 3-41 
TANT interrupt, 5-4 
TRST pin, 2-9, E-2 
TATA register, 6-18 
TSPC register, 6-18 
TSS bit, 5-46 
TSS interrupt, 5-45 
TTL-level 

inputs, A-9 
outputs, A-9 

TXM bit, 5-18 
TXNT interrupt, 5-4 

m 
unpacking, 7-7 
user-maskable interrupts. See IMR register 

V.32 encoder, 7-36 
VDD pin, 2-7 
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vectors 
interrupt, 5-5 

See also Interrupts 
reset. See RS pin 

video signal processing, F-19 
voice synthesizers, F-1 o 
VSS pin, 2-7 

wait states, 6-32, A-16-A-18 
registers, 6-18 

wait-state generator, 1-9, 5-10, 5-13 
warm boot mode, 6-44 
WE pin, 2-4, 6-10, 6-27, B-2 
word moves, 3-21 

13 
X1pin,2-6 
X2/CLKIN1 pin, 2-6 
XC example, 7-18 
XC execution, 3-33 
XC instruction, 4-245 
XDS510 emulator, E-1 
XF bit, 2-5, 3-7, 3-41 
XINT interrupt, 5-17 
XOR instruction, 4-247 
XORB instruction, 4-249 
XPL instruction, 4-250 
XRDY, 5-19 
XRST bit, 5-18, 5-20 
XSR register, 5-16 
XSREMPTY bit, 5-19, 5-21 

ZALR instruction, 4-253 
ZAP instruction, 4-255 
ZPR instruction, 4-256 



NOTES 



NOTES 



NOTES 



NOTES 



NOTES 



Tl Worldwide Sales and Representative Offices 

AUSTRALIA I NEW ZEALAND: Texas Instruments Australia Ltd.: Sydney 
[61] 2·910-3100, Fax 2-805-1186; Melbourne 3-696-1211, Fax 3-696-4446. 
BELGIUM: Texas Instruments Belgium S.A./N.V.: Brussels 
[32] (02) 242 75 80, Fax (02) 726 72 76. 
BRAZIL: Texas lnstrumentos Electronlcos do Brasil Lida.: Sao Paulo 
[55] 11-535-5133. 
CANADA: Texas Instruments Canada Ltd.: Montreal (514) 335-8392; 
Ottawa (613) 726-3201; Toronto (416) 884-9181. 
DENMARK: Texas Instruments A/S: Ballerup [45] (44) 68 74 00. 
FINLAND: Texas lnstrument&/OY: Espoo [358] (0) 43 54 20 33, 
Fax (0) 46 73 23. 
FRANCE: Texas Instruments France: Vellzy-Vlllacoublay Cedex 
[33](1) 307010 01, Fax (1) 307010 54. 
GERMANY: Texas Instruments Deutschland GmbH.: Frelslng 
[49](08161) 80-0, Fax (08161) 80 4516; Hannover (0511) 90 49 60, 
Fax (0511)6490331; Ostllldern (0711)34030, Fax (0711)3403257. 
HONG KONG: Texas Instruments Hong Kong Ltd.: Kowloon 
[852] 956-7288, Fax 956-2200. 
HUNGARY: Texas Instruments Representation: Budapest 
[36] (1) 269 8310, Fax (1) 2671357. 
INDIA: Texas Instruments India Private Ltd.: Bangalore [91] 80 226-9007. 
IRELAND: Texas Instruments Ireland Ltd.: Dublin [353] (01) 475 52 33, 
Fax (01)4781463. 
ITALY: Texas Instruments Italia S.p.A.: Agrate Brienza [39] (039) 68 42.1, 
Fax (039) 68 42.912; Rome (06) 657 26 51. 
JAPAN: Texas Instruments Japan Ltd.: Tokyo [81] 03-769-8700, 
Fax 03-3457-6777; Osaka 06-204-1881, Fax 06-204-1895; Nagoya 
052-583-8691, Fax 052-583-8696; Ishikawa 0762-23-5471, Fax 0762-23-1583; 
Nagano 0263-33-1060, Fax 0263-35-1025; Kanagawa 045-338-1220, 
Fax 045-338-1255; Kyoto 075-341-7713, Fax 075-341-7724; Saltama 
0485-22-2440, Fax 0425-23-5787; Oita 0977-73-1557, Fax 0977-73-1583. 
KOREA: Texas Instruments Korea Ltd.: Seoul [82] 2-551-2800, 
Fax 2-551-2828. 
MALAYSIA: Texas Instruments Malaysia: Kuala Lumpur [60] 3-230-6001, 
Fax 3-230-6605. 
MEXICO: Texas Instruments de Mexico S.A. de C.V.: Colina del Valle 
[52] 5-639-97 40. 
NORWAY: Texas Instruments Norge A/S: Oslo [47] (02) 264 75 70. 
PEOPLE'S REPUBLIC OF CHINA: Texas Instruments China Inc.: Beijing 
[86] 1-500-2255, Ext. 3750, Fax 1-500-2705. 
PHILIPPINES: Texas Instruments Asia Ltd.: Metro Manila [63] 2-817-6031, 
Fax 2-817-6096. 
PORTUGAL: Texas Instruments Equlpamento Electronlco (Portugal) 
LOA.: Mala [351](2) 94810 03, Fax (2) 94819 29. 
SINGAPORE/ INDONESIA I THAILAND: Texas Instruments Singapore 
(PTE) Ltd.: Singapore [65] 390-7100, Fax 390-7062. 
SPAIN: Texas Instruments Espaiia S.A.: Madrid [34] (1) 372 80 51, 
Fax (1) 372 82 66; Barcelona (3) 31 791 80. 
SWEDEN: Texas Instruments International Trade Corporation 
(Sverigeflllaien): Klsta [46] (08) 752 58 00, Fax (08) 751 97 15. 
SWITZERLAND: Texas Instruments Switzerland AG: Dielikon 
[41] 886-2-3n1450. 
TAIWAN: Texas Instruments Taiwan Limited: Taipei [886] (2) 378-6800, 
Fax 2-377-2718. 
UNITED KINGDOM: Texas Instruments Ltd.: Bedford [44] (0234) 270 111, 
Fax (0234) 223 459. 

UNITED STATES: Texas Instruments Incorporated: ALABAMA: 
Huntsville (205) 430-0114; ARIZONA: Phoenix (602) 244-7800; 
CALIFORNIA: Irvine (714) 660-1200; San Diego (619) 278-9600; San Jose 
(408) 894-9000; Woodland Hiiis (818) 704-8100; COLORADO: Aurora 
(303) 368-8000; CONNECTICUT: Wallingford (203) 265-3807; FLORIDA: 
Orlando (407) 260-2116; Fort Lauderdale (305) 425-7820; Tampa 
(813) 882-0017; GEORGIA: Atlanta (404) 662-7967; ILLINOIS: Arlington 
Heights (708) 640-2925; INDIANA: Indianapolis (317) 573-6400; KANSAS: 
Kansas City (913) 451-4511; MARYLAND: Columbia (410) 312-7900; 
MASSACHUSETIS: Boston (617) 895-9100; MICHIGAN: Detroit 
(313) 553-1500; MINNESOTA: Minneapolis (612) 828-9300; NEW JERSEY: 
Edison (908) 906-0033; NEW MEXICO: Albuquerque (505) 345-2555; 
NEW YORK: Poughkeepsie (914) 897-2900; Long Island (516) 454-6601; 
Rochester (716) 385-6770; NORTH CAROLINA: Charlotte (704) 522-5487; 
Raleigh (919) 876-2725; OHIO: Cleveland (216) 765-7258; Dayton 
(513) 427-6200; OREGON: Portland (503) 643-6758; PENNSYLVANIA: 
Philadelphia (215) 825-9500; PUERTO RICO: Halo Rey (809) 753-8700; 
TEXAS: Austin (512) 250-6769; Dallas (214) 917-1264; Houston 
(713) 778-6592; WISCONSIN: Miiwaukee (414) 798-1001. 

North American Authorized Distributors 

MILITARY COMMERCIAL 
l>Jmac/Arrow 
Anthem Electronics 
Arrow I Schweber 

l>Jliance Electronics Inc 
Future Electronics (Canada) 
Hamilton Hallmark 

Future Electronics (Canada) 
Hamilton Hallmark 

Zeus, All Arrow Company 

Marshall Industries 
Wyle 

OBSOLETE PRODUCTS 
Rochester Electronics 508/462-9332 

CATALOG 
l>Jlied Electronics 
Arrow Advantage 
Newark Electronics 

For Distributors outside Norfh America, contact your local Sales Office. 

Important Notice: Texas Instruments (Tl) reserves the right to make changes to 
or to discontinue any product or service Identified In this publication without 
notice. Tl advises Its customers to obtain the latest version of the relevant 
Information to verify, before placing orders, that the information being relied upon 
Is current. 

Please be advised that Tl warrants its semiconductor products and related 
software to the specifications applicable at the time of sale In accordance with 
Tl's standard warranty. Tl assumes no llablllty for applications assistance, 
software performance, or third-party product Information, or for Infringement of 
patents or services described in thls publication. Tl assumes no responsibility for 
customers' applications or product designs. 

~TEXAS 
INSTRUMENTS 

© 1995 Texas Instruments Incorporated 
Printed in the U.S.A. 

A11114 



Printed in U.S.A. , January 1993 
2547301-9761 revision D 

.,, 
1ExAs 

INSIRUMENTS 

SPRU056B 


